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Preface

The motivation for this book was to construct a mathematics module that
encouraged first-year university students to appreciate the diverse ways in which
the mathematics they already knew, or were just about to learn, can impact on
everyday occurrences. The applications discussed here will give students further
practice in working with calculus, linear algebra, geometry, trigonometry and
probability, thus supporting other modules. The chapters are largely independent of
each other, and within most chapters, sections are often self-contained, giving
teachers freedom in selecting topics to their taste. All in all, there is likely to be
more material than would be covered in a one-semester course. Readers are
assumed to have a background roughly equivalent to single-subject Mathematics at
A-level in the UK.

In many degree courses, students have the opportunity, or even the obligation, to
write an extended essay on a mathematical topic of their choice. They will find a
range of ideas here, in the set exercises as well as the formal text, and references to
more substantial accounts.

Mathematics has many applications: it is unrealistic to expect one book to do
more than give a representative sample of them. My selection runs from the
obviously practical, such as how to calculate mortgage repayments, or schedule
nurses to cover hospital wards, to amusing ways in which mathematical ideas can
give pointers to tactics in TV Game Shows, or influence the scoring systems in
sporting events. We see how simple differential equations can model bacterial
growth, mixing liquids, emptying baths, evaporating mothballs, and the spread of
epidemics; when looking at darts, roulette and how people progress through hier-
archical organisations, we use combinatorics, logic, difference equations, and cal-
culations with matrices and vectors. The variety of voting systems in use
throughout the world is inevitable, given Kenneth Arrow’s “Impossibility
Theorems”—that no system can be constructed that satisfies all among a simple list
of desirable properties! Mathematics is versatile: and discovering the unusual places
where it provides insights or answers is enjoyable.
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When young children first use the rule for dividing by a fraction—“turn it upside
down and multiply”—they seldom understand why it works. But they quickly find
that the rule is easy to apply, and gives the right answer. Only much later are they
able to appreciate a valid justification. Similarly with more advanced material:
heuristic explanations, or worked examples, can be more enlightening than an
all-encompassing general approach. Meeting and understanding a formal proof of a
theorem or technique the first time you use it is not essential. But it is vital that
students appreciate the necessity for formal proofs at some stage of their studies,
else they will not be confident about the conditions under which particular tech-
niques can properly be applied. One of the most vital, if unacknowledged, words in
mathematics is “if”: if certain conditions hold, then some result follows. All too
often, it is tempting to use that result without checking the “if” part.

Each chapter ends with a collection of exercises, which are an integral part of the
book. Seeking to solve them should help students reinforce their understanding of
basic principles. I do not indicate whether an exercise is expected to be routine, or
quite tricky; lack of that knowledge is exactly the position mathematicians find
themselves in when confronted with a problem to solve. I am happy to supply a set
of Solutions to these exercises to any teacher who emails me at J.Haigh@sussex.ac.
uk. (Students, please don’t pretend. The best way to learn maths is to try to solve
problems from scratch, without having looked at a solution first. And if handing in
my work in your name would gain you significant credit, is your degree qualifi-
cation worth having?)

It is a pleasure to acknowledge the feedback from the cohorts of Sussex students
who have taken a module based on much of this material, as well as the helpful
comments from three anonymous referees, and the support from the Springer
production team.

The Appendix contains several formulae, techniques and approximations that
working mathematicians will have used so often that they are as familiar as com-
mon multiplication tables. No student will regret the time spent in committing this
list to memory.

Brighton John Haigh
September 2015
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Chapter 1
Money

Abstract Weexamine the concept of interest, developing the Rule of 72, the ideas of
Present Value and Annual Percentage Rate (APR), and show how to calculate mort-
gage repayments or annuity receipts over different periods. The important financial
notion of pound cost averaging is described, along with considerations of personal
finance such as savings, UK taxation, credit cards, and the student loan system. The
mathematical ideas and techniques that are used include the expansion of log(1+ x),
that exp(x) is the limit of the sequence (1 + x/n)n , L’Hôpital’s Rule, summing
geometric series, numerical solution to diverse equations of the forms f (x) = 0 or
g(x) = x , sensible approximations, recurrence relations, and the relation between
integrals and sums.

1.1 Interest

When you borrow or lendmoney for a period of time, “interest”will be either charged
or received. Without further elaboration, it might be simple or compound interest; to
appreciate the difference, imagine investing £100 for 100years at an annual rate of
5%.

(a) With simple interest, £5 is added each year, £500 in total, hence the end total is
£600.

(b) With compound interest, let S and E respectively denote the amounts at
the Start and End of a given year. During the year, 5% of S is added, so
E = S(1 + 5/100). This happens every year; thus, after 100years the total
amount we have is £100(1 + 5/100)100 = £13, 150.13.

From such dramatic differences, Albert Einstein concluded that compound interest
is “the greatest mathematical discovery of all time”. Unless otherwise specified, all
our calculations assume that compound interest is being used.

Suppose you borrow an amount C , on which interest at an annual rate of α% is
charged. If you make no repayments, you will owe C(1 + α/100)n after n years, so
your debt will double at that time n when

C(1 + α/100)n = 2C,
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2 1 Money

i.e. when n log(1 + α/100) = log(2) = 0.693147181 . . .. Thus

n = 0.693 . . .

log(1 + x)
,

where x = α/100. Now when |x | < 1, log(1 + x) = x − x2/2 + x3/3 − · · · , so
when x (> 0) is small, the right side is just under x , meaning that n is just over
0.693/x = 69.3/α. This background justifies

The Rule of 72 At an annual interest rate of α%, it will take approximately 72/α
years for a debt to double, if no repayments are made.

A similar argument, of course, shows that if you invest a sum of money that earns
annual interest of α%, it will take around 72/α years for your capital to double. And
if inflation runs at 3% annually, then it will take about 24years to halve the value of
any cash you keep under the bed.

There are two good reasons to replace the figure of 69.3 by 72. The first is that 72
is, helpfully, “just over” 69.3; the other is that 72 has many divisors, often leading
to easy arithmetic. For example, the Rule indicates that for interest rates of 6%
and 12%, it will take about 12 or 6years respectively for a debt to double; exact
calculations lead to 11.896 and 6.12years. This Rule is very handy.

Notice that the Rule gives an answer that is too large when the rate is 6%, too
small when the rate is 12%. The Exercises ask you to prove these exemplify the
general result that there is some interest rate (just under 8%), below which the Rule
overestimates the doubling time, and above which the Rule gives an underestimate.

If the (annual) interest rate is 12%, and you borrow £1000 for 6months, howmuch
should you repay? It is tempting to think that, borrowing for half a year, the interest
charge is half of 12%, i.e. 6%, so the repayment should be £1060, but this is incorrect.

Let the interest rate for 6months be x%; after 6months you owe £1000
(
1+ x

100

)
, so

after another 6months, 1year in total, you would owe £1000
(
1 + x

100

)2
. And since

the annual rate is 12%, we have

1000
(
1 + x

100

)2 = 1000
(
1 + 12

100

)
,

leading to

1 + x

100
= √

1.12 = 1.0583 . . . .

The interest rate for 6months is just 5.83%, you should repay £1058.30.
Similarly, if the annual rate is 12% and you borrow £1000 for just 1month, the

appropriate interest rate is that value x so that

1000
(
1 + x

100

)12 = 1000
(
1 + 12

100

)
,
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giving 1 + x
100 = 1.121/12 = 1.0094888 or so. The interest rate for 1month is

0.94888%, you would repay £1009.49.
Youmay read “The quarterly interest rate is 2%”.After a full year of four quarters,

with 2% interest charged each time, a loan of size C becomes C(1.02)4 = 1.0824C .
The true annual interest rate is some 8.24%, not the 8% that the headline figure
suggests. A rate of 1% per month would mean that the debt is C(1.01)12 = 1.1268C
at the year’s end, a true annual rate of 12.68%, not 12%.

However the interest rate is presented, there is a simple way to find how much is
owed at any specific future time: if the rate is not already given as the true annual
rate, first convert it to that format; then, with α% as the true annual rate, the amount
owed when borrowing C for t years, whether t is an integer, a fraction, or whatever,
is simply

C
(
1 + α

100

)t
.

We say that interest is compounded continuously.

Example 1.1 If the true (annual) interest rate is 10%, what should you pay back if
you borrow £1000 for (a) 6months; (b) 40months?

Solution. (a) 6months is half a year, so the debt rises to £1000(1.10)1/2, or
£1048.81. (b) 40months is three and a third years, so the debt would be
£1000(1.10)10/3 = £1373.96.

1.2 Present Value and APR

Would you prefer a gift of £1000 now, or a gift of £10, 000 two years from now?Only
rarely would the immediate money be chosen, but what if the alternative is £1100
in 2years time? The choice is no longer obvious. In general, we seek to answer the
question: how much is it worth now to be offered amount X , but to be received in K
years’ time?

Suppose I is the current interest rate: if you had amount Y now, that would become
Y (1+ I )K in K years, so setting X = Y (1+ I )K leads to Y = X/(1+ I )K . Having
X/(1 + I )K now is equivalent to having X in K years time: we say that the Present
Value, or PV, of the offer is X/(1 + I )K .

This idea lets us make sensible comparisons. In the scenario above, the Present
Value of receiving £1100 two years hence would be equivalent to £1000 now, pro-
vided that, with an interest rate of I , 1100/(1 + I )2 = 1000, i.e. when I = 4.88%.
For lower interest rates, the delayed gift is preferred, for higher rates the immediate
cash is more attractive. If a stream of money is expected at different future times,
the PV of that stream is found by summing the PVs of each element. For example,
a company might invest in an expensive piece of machinery now, with the prospect
of a stream of higher future profits. The times at which those profits appear, as well
as the amounts, are vital: an extra million pounds tomorrow is worth far more than
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a million pounds 20years hence. Formally, if I is the interest rate, and amount c j

arises at the end year j for j = 1, 2, . . . , n, then the PV of this income stream is
n∑

j=1
c j/(1 + I ) j .

In the UK, there is a proposal to build HS2—a high-speed rail link from London
via Birmingham to points further north, ready sometime after 2030. The cost has
been estimated at over 40 billion pounds, and some economic justifications involve
assessing the values of time saved over many years into the future. Simply adding
up the sums involved, without taking account of WHEN costs will be incurred, and
benefits seen, makes no sense.

Example 1.2 What (sensible) interest rates might make receiving £1, 000 now
preferable to £2, 000 in 1year’s time, then repaying £910 one year later?

Solution. Work in £, with interest rate I . “Repaying” an amount means “receiving”
the negative of that sum, so the Present Value of the second offer is
2000/(1 + I ) − 910/(1 + I )2. The immediate gift is preferable if

1000 >
2000

1 + I
− 910

(1 + I )2
.

Write x = 1 + I and simplify: this is the same as 100x2 − 200x + 91 > 0. The
quadratic factorises as (10x −13)(10x −7), so its roots are x = 13/10 or x = 7/10,
corresponding to interest rates of I = 0.3 or I = −0.3. The quadratic is positive
when I > 0.3 (and when I < −0.3).

Hence, if I > 0.3, i.e. interest rates exceed 30%, the PV of the immediate £1000
is higher, while for (positive) interest rates of below 30%, the delayed gift with
repayment has higher PV.

You may be offered a loan of size L , to be repaid via instalments of sizes
S1, S2, S3, . . . at respective times t1, t2, t3, . . . later. Another organisation may offer
you the same amount, but with a different repayment schedule. To assess the merits
of such offers, you could calculate their Annual Percentage Rate, or APR: this is
defined to be that interest rate I that makes the Present Value of the repayments
equal to the sum loaned.

To find the APR, calculate how much is still owing after each repayment: after
repaying S1 at time t1, you owe L(1 + I )t1 − S1; at time t2 − t1 later, you pay S2,
hence you now owe

(L(1 + I )t1 − S1)(1 + I )t2−t1 − S2 = L(1 + I )t2 − S1(1 + I )t2−t1 − S2.

Continue this argument, to see that the amount left after the nth repayment col-
lapses to

L(1 + I )tn − S1(1 + I )tn−t1 − S2(1 + I )tn−t2 − · · · − Sn.
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Equate this to zero to mark the final repayment, divide through by (1 + I )tn to
obtain the formula

L =
∑

k

Sk

(1 + I )tk
.

Solve this to find I . The APR is meant to reflect the true cost of a loan, taking
into account any fees, the frequency and amounts of repayments, all calculated in
the same “fair” way.

Example 1.3 You wish to borrow £5000. Megaloan asks for repayments of £1500
each year for 5years, Affordit will seek £1000 each year for 9years. Repayments
begin 1year after the loan. Which APR is lower?

Solution. For Megaloan, we solve 5000 = 1500
∑5

k=1(1/(1 + I ))k . Replacing
1/(1+ I ) by x , this is the same as 5000/1500 = 10/3 = x + x2+· · ·+ x5. How best
to solve this? It has the format A = x + x2 + · · · + x K , i.e. A = x(1− x K )/(1− x),
and so can be turned into “x = g(x)” as

x = (A + x K+1)/(A + 1)

The iteration scheme xn+1 = g(xn), with a suitable starting value such as x0 = 0.9
can be used here to find x , and hence I ; the APR is 15.24%. A similar argument for
the terms offered by Affordit leads to

5000/1000 = 5 = x + x2 + · · · + x9,

with an APR of 13.70%. Although you would repay £9000 to Affordit, but only
£7500 to Megaloan, Affordit offer a lower APR.

1.3 Mortgage Repayments: Annuities

The largest financial commitment that many people make is to borrow money to buy
a house. If you borrow amount C , at annual interest rate I > 0, paying off the same
amount each month for n years, how much will you pay?

Consider a month at a time: let Ck be the amount owed at the end of month k,
so that C0 = C , and suppose that R is repaid each month, beginning 1month after
you receive the loan. With an annual interest rate of I , suppose the corresponding
monthly rate is α, found via 1+ I = (1+α)12. At the end of the 1month, the amount
owing is C1 = C(1 + α) − R, (yes?).

At the end of month two, we similarly have C2 = C1(1 + α) − R, so, using the
previous expression, we obtain C2 = C(1 + α)2 − R(1 + α) − R.
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Then, from C3 = C2(1 + α) − R, we get

C3 = C(1 + α)3 − R(1 + α)2 − R(1 + α) − R,

from which the general relation

Ck = C(1 + α)k − R
k−1∑
j=0

(1 + α) j (1.1)

is obvious. There are m = 12n months in n years, so repaying the whole amount
after m months means that Cm = 0; hence we find R from the equation

0 = C(1 + α)m − R
m−1∑
j=0

(1 + α) j .

The sum is a geometric series. Recall that, when x �= 1,

m−1∑
j=0

x j = (xm − 1)/(x − 1),

so, after a little manipulation, since α > 0,

R = Cα(1 + α)m

(1 + α)m − 1
(1.2)

is the monthly repayment.
Since we found α via (1 + I ) = (1 + α)12, then (1.2) can also be written as

R = Cα(1 + I )n

(1 + I )n − 1
.

Example 1.4 You borrow £100, 000 at 6% annual interest to be repaid over 25years.
(a) How much is repaid each month? (b) How much is still owing after 15years? (c)
Is it surprising that, after 15years, you still owemore than half of what you borrowed,
despite having made 60% of the payments due?

Solution. (a) We have C = 100, 000, I = 0.06 and n = 25, so α comes from
1.06 = (1+ α)12, i.e. α = 0.4867%. From Eq. (1.2), R = 634.62 — you pay about
£635 each month.

(b) After 15years, i.e. 180months, (1.1) shows that the amount still owing is

C180 = C(1 + α)180 − R
179∑
j=0

(1 + α) j = C(1 + α)180 − R((1 + α)180 − 1)

α
.
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Arithmetic gives an answer of 57, 575.55. You still owe about £57, 600.
(c) Each payment must pay off the interest accumulated since the last one, and

also reduce the capital owed. In the early years, when the amount owed is greatest,
the interest component is higher, so less goes towards reducing the amount still owed.

Example 1.5 An outfit is on sale at £200. If you take out a credit card to purchase it,
with an annual interest rate of 30%, the store will reduce the price by 10%; you will
pay this off, making equal instalments at the end of each month, for n months. In
total cash terms, compare (a) paying the full price up front, and (b) taking the store
card, and paying the loan off over 8, 12 or 24months.

Solution. Let Rm be the monthly repayment if you take the credit card loan of
£180 for m months. An annual rate of 30% leads to a monthly rate of x%, where
(1+ x/100)12 = 1.30, so that the monthly rate is α = 2.21%. Equation (1.2) shows
that

Rm = (180 × 0.0221 × (1.0221)m)/((1.0221)m − 1),

and the total repaid is plainly m.Rm . Over 8months, repayments are £24.79, so the
total is £198.32; similarly, R12 = £17.24, giving a total of £206.88; and R24 = £9.74,
or £233.76 overall. Using the store card to obtain the discount is cheaper than paying
cash if you repay over 8 equal monthly instalments, but the cash amount is less than
the credit cost if you repay over 12 or 24months.

Many people take out an annuity to provide an income for their retirement. They
give money to an insurance company, in exchange for a commitment that they will
receive a fixed amountmonthly for the rest of their life. Exactly the samemathematics
as is used to calculate mortgage repayments also applies here!

The reason is that receiving an annuity is the mirror image of paying off a mort-
gage. C is now the amount handed over, I is the annual interest the company expects
to earn from its investments, over and above its own costs, and n is the number of
years they expect to make payments, based on your age and health. With α again
the monthly interest corresponding to I , the expression (1.1) for Ck now represents
the amount remaining invested next month. With m = 12n, setting Cm equal to
zero means that, on average, the insurance company expects to return the capital it
received.

Some annuitants will live longer than average, others will die earlier; the company
relies on having a large number of customers so that their estimate of the average
life-span is accurate. The residue from those who die an early death will enable the
company to meet the payments to people like Jeanne Louise Calment who, at the age
of 90, promised her modest apartment to André-François Raffray, in exchange for a
monthly sum of around $500 for the rest of her life; she died, 32years later, having
been paid the value of her apartment many times over.

To cater for the effects of inflation, an annuitant may ask that her annual income
rises steadily. See the Exercises for the simple adjustment that is required to recal-
culate the new payments.
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1.4 Investing

Conventional wisdom is that stocks and shares, although riskier, will tend to produce
a higher return in the long term than deposits in bank accounts. The price of shares
fluctuates, according to what “the market” thinks they are worth at any time. Suppose
that an investor, seeking to commit a total of C > 0 during a year, can buy shares
either

(a) just once, at the average price over the year; or
(b) spending C/n on n occasions at the current price, which varies around that

average.

Which method is expected to produce most shares? Or does it make no difference?
Suppose {xi : i = 1, 2, . . . , n} are the share prices at times {1, 2, . . . , n}, all

strictly positive, and that θ is a real number. Then as the sum of non-negative numbers
is non-negative, we have

n∑
i=1

(
θ
√

xi + 1√
xi

)2

≥ 0,

i.e.

θ2
n∑

i=1

xi + 2nθ +
n∑

i=1

1

xi
≥ 0.

But if a quadratic in θ is never negative, it cannot have two distinct real roots, so its
discriminant is non-positive (“b2 ≤ 4ac”), i.e.

n2 ≤ (

n∑
i=1

xi )

(
n∑

i=1

1

xi

)
.

So if x = (
n∑

i=1
xi )/n is the arithmetic mean of the x’s, we see that

n

x
≤

n∑
i=1

1

xi
and so

C

x
≤

n∑
i=1

C/n

xi
.

In this final inequality, the right side is the total number of shares that would be
acquired when spending C/n on n occasions. And since x is the average price at
those times over the year, so the left side is the total number of shares expected from
spending C in one fell swoop. Thus:

Theorem 1.1 However the share price fluctuates, we expect at least as many shares
if we make n regular purchases, rather than by investing C all at once at their average
price.
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This principle is known as “pound cost averaging”. The extra shares you obtain when
the price is low more than make up for the fewer you get when the price is high.
And as the Exercises demonstrate, the more the share price fluctuates, the greater the
advantage of drip-feeding your funds over the year.

Example 1.6 The prices (pence) of shares in Tescos on the first trading day of the
month from June 2014 to May 2015 were: 302, 284, 258, 229, 186, 173, 185, 189,
227, 244, 240, 218. How many shares would you possess if you invested £12, 000
(a) by spending £1, 000 on the first trading day of each month; (b) by spending the
whole lot at the beginning of the period; (c) by spending the whole lot at the average
price over the year? (Ignore dealing costs.)

Solution (a) We calculate
∑12

r=1
1000

xr
where xr is the price (pounds) in the rth month.

It works out as 5418.6 shares.
(b) This is simply 12,000/3.02=3973.5 shares.
(c) In the notation of (a), the average price is

∑12
r=1 xr/12 = 2.279, so we would

have 12, 000/2.279 = 5265.1 shares.
So pound cost averaging, as compared to a single purchase at the annual

average price, gives 5418.6 − 5265.1 = 155.5 more shares, an increase of
155.5/5265.1 × 100%, i.e. nearly 3%.

1.5 Personal Finance

Savings Even those who will qualify for a maximum State pension will usually wish
to make extra provision from savings built up during their working life. So it is worth
making calculations, however speculative, about howmuch you need to save in order
to build up a suitable sum. At its simplest, if you invest X at the beginning of each
year for n years, and the annual growth rate is G > 0, the mathematics is similar to
that used for mortgage repayments.

In this context, write Yk as the amount you will have at the end of year k,
so that Y0 = 0, Y1 = X (1 + G) (we invest at the beginning of the year),
Y2 = Y1(1 + G) + X (1 + G) = X (1 + G)2 + X (1 + G), etc. giving

Yn = X
n∑

j=1

(1 + G) j = X (1 + G)((1 + G)n − 1)

G
.

Thus, for example, compare twins Anne, who invests X each year for 40years, and
Beth who starts 20years later, and invests W each year for just 20years: how much
more must she save to achieve the same final amount as her sister, if both enjoy the
same growth rate?

For Beth to do as well as Anne, she requires that

X (1 + G)((1 + G)40 − 1)

G
= W (1 + G)((1 + G)20 − 1)

G
,
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i.e. that W = X ((1 + G)20 + 1). At a modest growth rate of 3%, Beth must save
almost three times asmuch as Anne every year, and if the growth rate is 6%, shemust
save 4.2 times as much. The magic of compound interest demonstrates the benefits
of saving from a young age.

In general, saving X every year for n years will give the same total as saving W
every year for m years, whenever

X (1 + G)((1 + G)n − 1)

G
= W (1 + G)((1 + G)m − 1)

G
,

or
W

X
= (1 + G)n − 1

(1 + G)m − 1
.

Let’s assess how the growth rate affects the value of this ratio for general values
of m and n. The simplest case should be when G = 0, but putting G = 0 in this
formula leads to the nonsensical expression 0/0 – (maths students who write that
ratio down, without comment, risk the wrath of their tutors). We need L’Hôpital’s
Rule – see the Appendix.

This Rule says that, at some point c where f (c) = g(c) = 0, then, provided all
expressions make sense, the limit of f (G)/g(G), as G → c, is f ′(c)/g′(c). Here
take

f (G) = (1 + G)n − 1, g(G) = (1 + G)m − 1 and c = 0.

Plainly f ′(G) = n(1 + G)n−1, g′(G) = m(1 + G)m−1, so their ratio f ′(G)/g′(G)

reduces to (n/m)(1 + G)n−m . L’Hôpital’s Rule tells us that, as G → 0, so the ratio
W/X tends to n/m – which makes perfect sense: with zero growth, then if you invest
form years rather than n, the amount required to give the same total is just n/m times
as much each year.

Good mathematicians get in the habit of making such simple checks.

Tax In theUK, individuals under 65years old, andwhose income is below £100, 000,
are taxed on their income from employment and pensions as follows. There is a
Personal Allowance, P , on which no Income Tax (IT) is levied; above this, IT is
levied at the Basic Rate of 20% on the amounts from P to P + B for some B > 0,
and at 40% on amounts above P + B. P and B are updated annually.

National Insurance Contributions (NICs) are levied on earned income (but not on
pensions or annuities); no NICs are paid on earnings up to a Lower Limit L , 12% is
charged on earnings between L and the Upper Limit U , and 2% on earnings above
U . Again, L and U change annually.

T (x), the marginal rate of tax at a total income level of £x (as a percentage), is
defined as the total extra tax due, from both IT and NIC (in pence), if income rises
from £x to £(x + 1). Thus the total “tax” paid by someone whose income is X is

x=X−1∑
x=0

T (x);



1.5 Personal Finance 11

the derivation of an integral as the limit of a sum shows that this is close to
∫ X
0 T (x)dx .

“Tax years” start on April 6. In 2015/16, P = £10, 600, B = £31, 785,
L = £8, 060 and U = £42, 380.

Taking an Annuity The principles behind the next example may be relevant to some
of your family now, or to you at some stage of your life.

Example 1.7 David, aged 65, will use his savings to buy an annuity. If he buys one
now, and continues to work, his salary is large enough that the annuity will be taxed
at 40%; but if he postpones buying it until he stops work in 5years time, it will be
taxed at just 20%. Postponing taking the annuity also means that the amount it pays
will increase by some factor K > 0.

If his only consideration is financial, how should David decide between those
alternatives?

Solution. One sensible path is to compare their Present Values. Assume his future
lifespan is n years, with n > 5, write A =Annual amount from the annuity, (assumed
paid at the beginning of a year), and take I as the Interest rate. We calculate the PVs
of what David receives, after tax.

The PV of the annuity if he draws it immediately is

5∑
r=1

(0.6)A

(1 + I )r−1
+

n∑
r=6

(0.8)A

(1 + I )r−1
.

Postponing for 5years, the PV is

n∑
r=6

(0.8)A(1 + K )

(1 + I )r−1
.

Thus drawing now is better than postponing if, and only if, the first expression
exceeds the second. This simplifies to

3
5∑

r=1

1

(1 + I )r−1
> 4K

n∑
r=6

1

(1 + I )r−1
.

Write x = 1/(1 + I ) < 1; we are summing geometric series, so the condition
reduces to

3(1 − x5) > 4K x5(1 − xn−5).

As we expect, the values of n for which this holds depend on x and K .
A realistic value of K (based on annuity rates of around 5.8% at age 65 and 6.8%

at age 70, and assuming his savings pot increases annually at 3% over the 5years if
he postpones buying the annuity) is about 35%; suppose we take I = 4%, so that
x = 1/1.04.With thosefigures, the criterionbecomes0.5342 > 1.1507(1−xn−5), or,
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using logs, n < 20.9. Thus, on those figures, he should take the annuity immediately
if he expects to die within about 21years, but if he expects to live longer, he should
postpone for 5years.

But suppose I is different: with I = 2%, the cut-off figure is about 18years, while
with I = 6%, it increases to about 27years. How you value prospective income in
the far future affects the decision you make now. And other assumptions about K ,
or changes in tax rates, may also lead to different conclusions.

TheExercises examine how this analysis is easilymodified if the annuity increases
by the factor 1 + α each year. The actual annuity amount in year r changes from
A to A(1 + α)r−1, so, if you look closely, you will see that we would now write
x = (1 + α)/(1 + I ), and follow the same path!

A similar dilemma is addressed by (Dagpunar 2015): if UK pensioners postpone
taking their State Pension, the actual amount to be paid is enhanced (by 5.8% for
each year of delay from 2016). By using tables of life expectancy at various ages,
Dagpunar compares the total amounts pensioners can expect to receive with or with-
out postponement; his conclusion is that unless there is good reason to believe your
life expectancy is well above the UK norm, deferring is probably not worth while.

(He carefully notes that his article should not be construed as offering financial
advice, or advocating any particular course of action. I make a similar disclaimer
about the contents of this book.)

Student Loans For UK Student Loans beginning in 2012 or later, repayments may
be due from the April after graduation. In each year from then, 9% of total income
in excess of some Threshold, T , is paid until the debt is cleared, or 30years elapse,
whichever comes earlier. No payments are required in years when income is below T .
Interest is charged at the rate of inflation, plus an amount that depends on the income
that year: this extra amount is zero for incomes below T , it is 3% for incomes above
some higher level E , and on a linear sliding scale for incomes between T and E .
Currently, T = £21, 000 and E = £41, 000; these may change.

Example 1.8 With the information above, and assuming the values of the threshold
T and the higher amount E remain fixed over the next few years, draw up a table
showing how the Student Loan for Cindy, who has an initial Loan of £30, 000 and
a starting salary of £25, 000, changes. Assume her salary increases by £2, 000 each
year, that the inflation rate is 2%, and (for simplicity) that she receives her entire
salary at the beginning of the year, but pays the interest due at the year’s end.

Solution. When her salary is £S, with 21, 000 ≤ S ≤ 41, 000, the interest rate is

(2 + 3(S − 21, 000)/20, 000)%.

A suitable table looks as follows: (Money is in pounds, and the column “End
Loan” means after interest added and repayment made. All calculations rounded to
the nearest pound.)

Despite “repaying” £3, 600 in total, she owes £1, 318 more than when she started.
And even after 5years, her repayments still do not match the interest charged.
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Year Salary Interest
rate (%)

Start loan Interest Repay End loan

1 25,000 2.60 30,000 780 360 30,420
2 27,000 2.90 30,420 882 540 30,762
3 29,000 3.20 30,762 984 720 31,026
4 31,000 3.50 31,026 1086 900 31,212
5 33,000 3.80 31,212 1186 1080 31,318

1.6 More Worked Examples

Example 1.9 Suppose you invest £10, 000 in property, which increases in value at
the compound rate of 5% annually, but you are charged 2% of the total value at the
end of each year. What will your investment be worth at the end of 5years?

Solution. If, at the beginning of any year, your investment is worth C , it increases to
1.05C , but the 2% charge then turns this into 1.05C × 0.98 = 1.029C , so at the end
of 5years, you will have 1.0295C . Here this translates to £11536.57 or so. (Note that
a 5% increase, with a 2% decrease, is not the same as a 3% increase.)

Example 1.10 On your retirement, you have a lump sum of £200, 000 to provide an
income until you die. An insurance company estimates that you will live for 20years,
and assumes it can earn 4% (after its expenses) on the capital you give it.What (fixed)
amount would you expect to receive each year (round to a multiple of £100)?

You believe that you can earn 5%yourself through your skilled investing: suppose
you are correct, and that you take a fixed income of £20, 000 at the end of each year.
How long will your pot last?

Solution. For the company payment, we use (1.2), with α = 4% and m = 20.
Working in pounds, you would expect

200, 000 × 0.04 × 1.0420/(1.0420 − 1) = 14, 716.35,

which rounds to £14, 700.
In your own hands, let Ck be your capital at the end of year k; then, so long as

your plan lasts, we have Ck+1 = 1.05Ck − S, where S is the income you draw. Thus

Ck = 1.05kC0 − S(1 + 1.05 + · · · + 1.05k−1) = 1.05kC0 − S
1.05k − 1

1.05 − 1
.

With C0 = 200, 000 and S = 20, 000, and so long as Ck > 0, this reduces nicely to
Ck = 200, 000(2 − 1.05k). So we need 1.05k < 2.

Now 1.0514 = 1.9799 . . ., 1.0515 = 2.0789 . . .. You can live this lifestyle for
14years, and since C14 = 4013.68, your pot has diminished to about £4000 at the
beginning of year 15.
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Example 1.11 To borrow £100, a payday loan company will charge 0.8% per day
simple interest. How much will you pay back if you clear your debt after 13days?
And what is the APR?

Solution. The total interest charge is £0.80×13 = £10.40, so you must pay £110.40
to clear the debt. If the APR is α, we must solve

100
(
1 + α

100

)t = 110.40,

where t = 13/365 is the fraction of a year for which you borrowed the money. Thus

13

365
log

(
1 + α

100

)
= log

(
110.40

100

)
= log(1.104) = 0.09894,

i.e. log(1 + α
100 ) = 2.7779, so α

100 = 15.09, meaning that the APR to be quoted is,
in round figures, 1509%.

Example 1.12 At the age of 25, you decide to build up a pot of money to fund your
retirement. You assess that you will retire at age 70, and will need a lump sum of
one million pounds at that time. You will pay into the pot at the end of each year,
you expect to increase the amount you pay by 2% each year, and that your funds
will grow at 4% annually. How much should you plan to save in the first year? If
you were to put off starting to save for 10years, what would be the new initial sum?
(Assume your annual savings are paid in at the end of each year.)

Solution. Suppose you have Cn at the beginning of year n, and you start by saving
R in the first year. Then C0 = 0 and Cn+1 = Cn.1.04 + R.1.02n−1, so C1 = R,
C2 = (1.04 + 1.02)R, C3 = (1.042 + 1.04 × 1.02 + 1.022)R, which leads to

Cn = R
n−1∑
i=0

1.04i × 1.02n−1−i = R
1.04n − 1.02n

1.04 − 1.02
= 50R(1.04n − 1.02n)

(summing the geometric series). In the first case, saving for 45years, we want

50R(1.0445 − 1.0245) = 1, 000, 000,

i.e. R = 20, 000/(1.0445 − 1.0245) = 5876.61. You need to save about £5, 900 in
the first year.

In the second case, replacing 45 by 35 means that R = 10, 276.44; you must now
save about £10, 300 in the first year. Be warned!

Example 1.13 A student graduates with a Student Debt of £30, 000, and her share
of the monthly rental on her London flat will be £800 (including bills). She desires a
monthly income of at least £700, after all taxes, debt repayments, and bills. Suppose
the PersonalAllowance for IncomeTax is B = £10, 600 and take theLower threshold
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for National Insurance Contributions as L = £8, 000, for simplicity. Tax rates are as
given in the text. Find the minimum annual salary she needs. If she were paid that
salary (rounded up to the next £100), how much would she keep of the 10% bonus
she gets?

Solution. She hopes to have at least £1, 500 each month after all taxes and
debt repayments, i.e. at least £18, 000 per year. So let’s confidently assume her
gross salary needs to be at least £21, 000 (where Student Loan payments kick in).On a
gross salary of exactly £21, 000, she loses £10, 400/5 = £2, 080 in IT and
£13, 000 × 0.12 = £1, 560 in NIC, so she retains just £17, 360. She now loses
41 pence in each pound over 21,000, so to get her extra £640 to bring her total to
£18, 000 she needs another £640/0.59 = £1, 084.75. Rounding, her salary must be
at least £22, 100.

If she received a 10% bonus, i.e. £2, 210, she keeps only 59% of this (it is still
subject to IT, NIC and Loan), so she keeps £1303.90.

1.7 Exercises

1.1 How good is the “Rule of 72” for interest rates of 4% and of 24% (i.e. per-
centagewise, how close to the exact value does this Rule come)?

1.2 Let α% denote the interest rate. Prove that there is some value x such that this
Rule overestimates the doubling time when 0 < α < x , and underestimates it
if α > x . Find the value of x (correct to 3 significant figures).

1.3 Suppose a loan is offered, on the terms that interest will be “15%, compounded
quarterly”. Show that the true annual rate is about 15.865%.
Find the true annual percentage rate, correct to 3 decimal places, if the nominal
rate is 15% compounded (i) monthly (ii) weekly (iii) daily (iv) hourly (v) even
more frequently!

1.4 Listed are three alternative income streams: the sums shown are the amounts
(in £1000) that will be paid to you at the ends of years 1, 2, 3, 4, 5.

A: 12, 14, 16, 18, 20 (total 80)
B: 16, 16, 15, 15, 15 (total 77)
C: 20, 16, 14, 12, 10 (total 72)

Consider possible interest rates of 10, 20 and 30%. Find the present values of
each income stream, and decide, for each interest rate, which stream has the
largest present value.

1.5 Peter asks to borrow £100 from you, and will pay this off by two payments
of £70 at the end of years One and Two. Use the notion of Present Value to
determine the interest rate to which this is equivalent.

1.6 Shares in Butterbean plc will pay annual dividends, of initial amount D one
year after purchase. This amount will increase at the compound rate α each
year (with α < I ), I being the relevant interest rate for computing Present
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Values. Show that the Present Value of the total of all the dividends that will
ever be paid into the indefinite future is D/(I − α).

1.7 Determine the APR, correct to three significant figures, when a loan of £1000
now is to be paid off by five equal annual instalments of £250, starting 1year
from now.

1.8 As in Example 1.11 above, you arrange to borrow £100 at simple interest of
0.8% per day but now for (a) 8days (b) 20days. Find the respective APRs.

1.9 Tobuy ahouse, youborrow£100, 000, to be repaid in equalmonthly instalments
for the next 25years.

(a) Find the repayments at annual interest rates of (i) 5% and (ii) 10%.
(b) In total, how much more does the second case cost than the first?
(c) In each case, how much do you owe after 10years of repayments?
(d) Sketch a graph showing the amount owing against time when the interest

rate is 10%.

1.10 Suppose you take out a mortgage of size C > 0, which you will repay by
monthly instalments of some fixed size R. The monthly interest rate is α > 0,
and the first repayment is made 1month after the loan is taken out, and the loan
will be fully repaid after N months.

Write R = K Cα for some K > 1. Deduce that

N = log(K/(K − 1))

log(1 + α)
,

and use this result to show that, when α is small, and you make fixed monthly
repayments of size 2Cα, you will repay approximately 1.4C altogether, over
the lifetime of the mortgage.

1.11 We have seen that the formula for an amount of a level annuity is the same as
that used for mortgage repayments. Suppose the insurance company will earn
interest at rate γ > 0 per year, while you want the annuity to increase at rate
β > 0 each year. Adapt the argument leading to (1.2) to cover this case, so
finding the amount of the (initial) annual annuity payment, assuming γ �= β.
By taking γ fixed, and allowing β to approach γ , use L’Hôpital’s Rule to find
the initial annuity amount when γ = β.

1.12 At the age of 25,Colin decides to save a proportion 10%of his income annually.
His twin brother David will delay starting saving for k years, and then will
also save a fixed proportion of his income; both will retire at age 68. Their
incomes are identical, and rise by 2% each year. For a growth rate of 4%, what
proportion of his income must David save, to put himself in the same position
as Colin at retirement age, when (i) k = 5, and (ii) k = 10.

1.13 Your credit card company charges interest monthly, at the annual rate of 25%,
on any outstanding debt after themonthly repayment. The rules on thismonthly
repayment say that any sum of up to £5 is to be paid off in full, otherwise you
must pay at least £5, or all the outstanding interest plus 1% of the balance,



1.7 Exercises 17

whichever is greater. Making the minimum repayment, how long would it take
you to reduce a debt of £5000 to at most £100?

1.14 (a) Over twelve consecutive months in 2014/15, the costs of units in the Nep-
tune Russia and Greater Russia fund (in pence) were 249, 234, 268, 275,
251, 259, 237, 232, 222, 175, 169, 201; their average is 231. If you had
£12, 000 to spend, how many units would you have if you spent all of it at
that average price? How many would you have if you spent £1, 000 each
month, at that month’s price?

(b) If, in the 6months where the price was below 235 pence, the prices had
been 30 pence lower, while in the other 6months, they had been 30 pence
higher, what would the new figures be for those calculations?

(c) Comment on how the advantage of pound cost averaging appears to vary
with the variability of the share price.

1.15 Suppose that, in a certain tax year, the values of P , B, L and U are as given in
the text, and let T (x) be the marginal tax rate at income level x .

(i) For someone whose income is x , all of it from employment, plot the graph
of the function T (x) on the range 0 < x < £70, 000.

(ii) Do the same for someone who gets a pension of £20, 000, but also has
other earnings, up to £50, 000. (Treat the pension income as the first
£20, 000 of income, with the “other earnings” coming after this.)

(iii) For each of (i) and (ii), is T (x) monotone increasing?

1.16 Alice is aged 60, enjoys her job, expects to retire in 10years time, and has a
savings pot to use to buy an annuity sometime. While she works, her annuity
income would be taxed at 40%, in retirement it will be taxed at just 20%. An
annuity would pay 5.1% of her savings pot at age 60, 6.8% at age 70, and
she estimates her savings pot will increase annually at 4% until she starts the
annuity if she postpones.
Advise Alice on how long she would need to live, in order to justify postponing
for 10years, using the Present Value of the total sum, after tax, that she would
receive from her annuity as the criterion. Assume she receives the annual pay-
ments at the beginning of each year, with an interest rate of 5% to give Present
Values.

1.17 Use the text figures for P , B, L and U for the following circumstances: Lucy,
aged 22, has just graduated, and has a job offer at an annual salary of £S. She
has no other form of income. In addition to IT and NIC, she must pay 9% of
any excess salary over £21, 000 to repay her Student Loan (SL). How much
(to the nearest £100) must her salary be so that, after all deductions, she has a
net monthly income of at least (i) £1500 (ii) £2000 (iii) £3000?
[It is fairly clear that S must exceed 21, 000 in every case. So follow the path of
Example 1.13: first assess how much she keeps of the first £21, 000, then see
how much extra (taking account of the three sources of deduction on amounts
above 21,000) she needs to reach the stated net levels.]
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(iv) Suppose her starting salary is £21, 000, and her initial SL is £25, 000.
Assume that the inflation rate is constant at 2%, the threshold for
SL repayments remains fixed at £21, 000, her salary is paid at the
start of the year and increases by £1, 000 annually; she pays the full
amount due immediately. Interest on the SL is the inflation rate +
3(S − 21, 000)/20, 000%, if the salary S is in the range £21, 000–
£41, 000. Construct a table showing, for 5years, her salary, the relevant
interest rate that year, the SL amount owed at the start of the year, the
interest charged, the repayment, and the amount owed at the end of the
year. Show that she would owe nearly £27, 100 at the start of the sixth
year. (Work in whole pounds.)

Reference

Dagpunar J (2015) Deferring a state pension—is it worthwhile? Significance 12(2) 30–35.



Chapter 2
Differential Equations

Abstract When, for example, we seek to model changes in population size, or the
path of a projectile, or the escape of water down a plughole, or rowing across a
river, we generally have information about the rate of change of one variable, y, with
respect to another one, x ; writing down that information often leads to an equation
involving quantities such as dy

dx or d2 y
dx2 , the derivatives of y with respect to x . In

this introduction to a vast topic, we consider only straightforward first or second
order ordinary differential equations: we show how they can be set up from verbal
information, and how particular types can be solved by standard methods. We look
at linked systems, with applications to predator-prey equations, and models for the
spread of epidemics or rumours, with Exercises on topics such as carbon dating,
cooling of objects, evaporation of mothballs, mixing of liquids and Lanchester’s
Square Law about conflicts.

2.1 What They Are, How They Arise

Many problems in maths are of the form: “We have two quantities of interest, and
some information on how they are related. How to use that information to say as
much as possible, and as precisely as possible, what that relation is.” A differential
equation may arise when the relation between these quantities includes information
about the rate at which one variable changes as the other one changes.

For example, let t represent time, and let y be the distance travelled as in Fig. 2.1.
If, as t increases from t1 to t2, so y increases from y1 to y2, then the average velocity
over that period is (y2 − y1)/(t2 − t1), the slope of the line AB.

But what about the actual velocity at time t1? Keeping t1 fixed, move t2 closer
and closer to t1; write t2 = t1 + δt , where δt is a tiny quantity, and suppose the
corresponding distance moved is y2 = y1 + δy. Then the average velocity over the
time from t1 to t1 + δt is the ratio δy

δt . In the limit, as δt decreases down to zero, this
is the actual velocity at the time t1, and we write it

dy
dt . It might be more meaningful

to write it as

d

dt
(y),

© Springer International Publishing Switzerland 2016
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Fig. 2.1 Average velocity
over a period of time

y

t

t1 t2

y2 − y1

y1

y2

A

B

and read this as “the rate of change of distance y with time t”, but we will stick to
dy
dt . This will be the slope of the tangent to the curve at the point t1.

Since dy
dt represents velocity, so

d

dt

(
dy

dt

)
= d2y

dt2

is the rate of change of velocity with time, i.e. the acceleration. If a stone of mass
m (> 0) travels vertically (and we can ignore air resistance), then Newton’s Law,
that Mass × Acceleration = Force, says that

m
d2y

dt2
= mg, or simply

d2y

dt2
= g, (2.1)

where g is the acceleration due to gravity. Our task would be to derive a formula for
the distance y fallen at time t .

If air resistance is proportional to velocity, this changes to

d2y

dt2
= g − c

dy

dt
(2.2)

for some constant c > 0. Notice that, if we take v = dy
dt , this same equation becomes

dv

dt
= g − cv. (2.3)

For another example, suppose bacteria grow freely in a nutrient solution, with
the population growth rate proportional to the current size. Here, with the natural
notation that t is time, and x is population size, allowed to assume continuous values,
we have

dx

dt
= K x, (2.4)
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K > 0 some constant. On the other hand, if there is competition for space or food,
with a maximum possible size of N , the growth rate may be similar to (2.4) when x
is small, but reduce as x increases: perhaps

dx

dt
= K x

(
1 − x

N

)
(2.5)

ismore realistic.Ormaybe, aswell as competition, the growth rate naturally decreases
with time: perhaps K gets replaced by K0 exp(−λt). Then our relation becomes

dx

dt
= K0 exp(−λt)x

(
1 − x

N

)
. (2.6)

The general idea is to introduce symbols to represent relevant quantities, and then
turn the physical description of what we believe is happening into an equation, or set
of equations, intended to describe that belief.

Example 2.1 A snowplough, which clears snow at constant rate V/unit time sets off
at time t = 0, and travels distance xt by time t > 0. Snow began falling earlier, at
time t = −T , and falls at a constant rate of s/unit time. Over the short time interval
from time t to time t + δt , the amount of snow cleared is plainly V δt . But we can
obtain another expression: as snow has been falling at rate s for a total time of T + t ,
the total amount of snow at any position is s(T +t); and as the ploughmoves distance
xt+δt − xt over that short time interval, the amount cleared can also be written as
s(T + t)(xt+δt − xt ).

Equating these, we have

s(T + t)(xt+δt − xt ) = V δt.

Divide both sides by δt , pass to the limit as δt → 0 to obtain

s(T + t)
dx

dt
= V .

Example 2.2 Consider a bath or sink with a small plughole with cross-sectional area
A. At time t , take V = Vt as the volume of water, x as the depth, and u as the escape
velocity down the plughole. Torricelli’s Law states that u = √

2gx (the same as the
velocity of a body, initially at rest, falling distance x).

In the time interval from t to t + δt , the amount of water lost is Auδt , so

Vt+δt − Vt = −Auδt.

Divide by δt , let δt → 0, to find

dV

dt
= −Au = −A

√
2gx .
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The volume V plainly depends on x , and the shape of the bath or sink. And since
dV
dt = dV

dx
dx
dt = V ′(x) dx

dt , we can rewrite the relation as

dx

dt
= −A

√
2gx/V ′(x),

which, when solved, lets us find the time it takes for x to decrease from its initial
level to zero.

Vocabulary. The order of a differential equation is the order of the highest derivative
present—(2.1) and (2.2) above are second order, the others are first order. The degree
is the highest power to which the derivative of highest order appears. All of the
equations above are “first degree”.

Thus the “simplest” format for a differential equation is

dy

dx
= f (x, y) (2.7)

for some function f ; it is first order, first degree. You should not necessarily expect
that such a differential equation, even if it only involves standard functions, is
solvable with standard functions! For example, how might you set about solving
dy
dx = sin(exp(x) + 3y)? But numerical methods could come to our rescue in such
cases, and many differential equations that arise naturally fall into one of a small
number of different types, each with its own method of solution. We look at some.

2.2 First Order Equations

(i). If the Eq. (2.7) can be put in the form dy
dx = A(x).B(y), i.e. the function f (x, y)

is the product of some function of x alone with another involving y alone, we
term it variables separable, and seek to solve it via

∫
dy

B(y)
=

∫
A(x)dx .

To complete the job, use standard techniques of integration to find both integrals,
throw in a constant of integration, and use whatever other information we have—
maybe the value of y when x = 0—to get the relevant solution.

Example 2.3 The Eq. (2.3) above has its variables separable: it can be turned into

∫
dv

g − cv
=

∫
dt,

hence −1
c log(g − cv) = t + K , K a constant. If the stone starts from rest, so that

v = 0 when t = 0, we find v = g
c (1 − exp(−ct)).
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Since v = dx
dt , this becomes dx

dt = g
c (1 − exp(−ct)), which also has its variables

separable, and leads to ∫
dx = g

c

∫ (
1 − e−ct

)
dt,

easily integrable giving x as a function of t . See also Example 2.6 below.

(ii). There is a cunning trick available if the function f in (2.7) is homogeneous, i.e.
if f (t x, t y) = f (x, y)whenever t is non-zero. Change the variables from (x, y)

to (x, v) by writing y = vx . Then

dy

dx
= v + x

dv

dx
,

and f becomes f (x, vx); but f (x, vx) = f (1, v) by the homogeneity property,
so the original Eq. (2.7) becomes

v + x
dv

dx
= f (1, v).

This can be rewritten as x dv
dx = f (1, v) − v = g(v) (say), clearly separable to

∫
dv

g(v)
=

∫
dx

x
.

Remember the cunning trick, not this formula!

Example 2.4 The stream in a river c metres wide flows at the uniform rate a
metres/second. A boat travelling at constant speed b metres/sec sets off to cross
the river, always steering for the point directly opposite its initial point. Describe its
path. For what values of a and b can it reach its goal?

Solution. Let the river banks be the parallel lines x = 0 (i.e. the y-axis) and x = c.
The boat starts at (c, 0), and always aims at (0, 0). Suppose it is at position (x, y) as
shown in Fig. 2.2.

Look separately at the components of the velocity, first across the river (i.e. x),
and then upstream (i.e. y). Because the boat is aiming at the origin, we have

dx

dt
= −b cos(θ).

Also, the influence of the current means that

dy

dt
= −a + b sin(θ).
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y

x

*
(x,y )

θ)

a

Boat

(c, 0)
Start

River
flow

(0, 0)

River
Bank

River
Bank

Fig. 2.2 The boat aims at its destination

Divide these out to get

dy

dx
= dy/dt

dx/dt
= −a + b sin(θ)

−b cos(θ)
=

−a + b
(
−y/

√
x2 + y2

)

−b
(

x/
√

x2 + y2
) ,

which simplifies to
dy

dx
= a

√
x2 + y2 + by

bx
.

The right side is a homogeneous function, so put y = vx to get

v + x
dv

dx
= a

√
1 + v2 + bv

b
= a

b

√
1 + v2 + v.

Take k = a/b, the ratio of the speed of the river to the speed of the boat. Then
x dv

dx = k
√
1 + v2, leading to

∫
dv√
1 + v2

=
∫

k
dx

x
= k log(x) + Const.

To find the integral on the left side, if you have met the functions sinh(u) and
cosh(u), you will be able to solve this by the substitution v = sinh(u), and some

work with inverses. Otherwise, define u = log
(
v + √

1 + v2
)
, and see that

du

dv
= 1 + (1/2)

(
1 + v2

)−1/2
.2v

v + √
1 + v2

= 1√
1 + v2

.

Hence, since differentiation and integration are inverse processes, the integral we

seek is indeed u = log
(
v + √

1 + v2
)
.
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Thus log
(
v + √

1 + v2
)

= k log(x) + Const. Initially, when x = c, so y = 0,

hence also v = 0. So 0 = k log(c) + Const , giving

log
(
v +

√
1 + v2

)
= k log(x) − k log(c) = log

( x

c

)k
.

Since v = y/x , this becomes

y +
√

x2 + y2 = xk+1/ck (2.8)

in our original notation.
This has “solved” the equation, but it is usual to try to end up with a solution in

the form y = A(x) for some expression A(x). To this end, rewrite (2.8) as

√
x2 + y2 = xk+1

ck
− y,

and square both sides. Cancel the term y2 on each side, leading to

y = 1

2

(
xk+1

ck
− ck

xk−1

)
.

Near x = 0, i.e. just before completing the crossing, the second term dominates. We
look at the different cases.

(i) If k > 1, (the river flows faster than they can row), then as x → 0, so y → −∞.
The boat is swept downstream.

(ii) If k = 1, then y = (
x2/c − c

)
/2 so, as x → 0 then y → −c/2. The boat

lands, but half a river’s width downstream.
(iii) If k < 1, (they can row faster than the flow), then y → 0 as x → 0. The boat

reaches its destination.

Let’s check that these answers seem reasonable. If k > 1, when the boat is
downstream of its target, and near its aim point, they are trying to row directly
against the current, which is too strong.

When k < 1, they can indeed row faster than the opposing stream, so do reach
their target.

When k = 1, they can row at exactly the stream speed. This case isn’t important,
as it will never happen than these speeds are EXACTLY equal. But even so, the
answer, landing precisely c/2 downstream, is not easy to guess!

(iii) A First Order Linear Equation is one of the form

dy

dx
+ P(x)y = Q(x),
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and this too has a standard method of solution. Write R(x) = exp
(∫

P(x)dx
)
,

the so-called integrating factor: just multiply throughout by R(x), leading to

R(x)
dy

dx
+ R(x)P(x)y = R(x)Q(x).

This does represent progress because the left side is just d
dx (R(x)y) (yes?), and

so our equation becomes

d

dx
(R(x)y) = R(x)Q(x).

Hence, integrating leads to

R(x)y =
∫

R(x)Q(x)dx .

Even if the function R(x)Q(x) doesn’t integrate to a standard form, numerical
techniques can be used.

Again, do not remember this formula! Learn the method, as illustrated now.

Example 2.5 Solve

x
dy

dx
− 3y = x4.

Solution.

(i) Rewrite it in the standard form for a first order linear equation,

dy

dx
− 3y

x
= x3.

(ii) Thus the integrating factor is exp
(∫

(−3/x)dx)
) = exp(−3 log(x)) = x−3.

(iii) Multiplying through by this, we obtain

dy

dx
x−3 − 3yx−4 = 1,

and so
d

dx

(
yx−3

) = 1.

(iv) Integrate to find y/x3 = x + c, i.e. y = x4 + cx3, c an arbitrary constant.

(Check: given this y, differentiate to see that dy
dx = 4x3 + 3cx2, so that x dy

dx − 3y =
4x4 + 3cx3 − 3

(
x4 + cx3

) = x4, as we wanted.)
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2.3 Second Order Equations with Constant Coefficients

There is a standard approach to solving

a
d2y

dx2
+ b

dy

dx
+ cy = f (x), (2.9)

when a, b and c are constants and a �= 0. First, find the general solution to the
corresponding homogeneous equation,

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (H E)

by assuming a solution of the form y = exp(mx) for some unknown m. Then plainly
(HE) leads to

exp(mx)
(
am2 + bm + c

) = 0.

But, since exp(mx) is never zero, the only solutions come from solving the quadratic
am2 + bm + c = 0 (known as the auxiliary equation) in the standard way. There are
three possibilities:

(a) two different real roots, m1 and m2;
(b) one repeated real root, m;
(c) two complex conjugate roots u + iv and u − iv, u and v real.

All of these are dealt with in a similar way. Let A and B be arbitrary constants.
In case (a), the general solution of (HE) is

Y1(x) = A exp(m1x) + B exp(m2x);

in case (b), it is Y1 = (A + Bx) exp(mx), while case in (c) it can be written as
Y1 = exp(ux)(A cos(vx) + B sin(vx)).

The next step is to use your ingenuity to find, somehow or other, SOME solution
of the original Eq. (2.9); you should pay close attention to the form of f (x), and use
trial and error. Let Y2(x) be some such solution. Then the general solution to (2.9) is

y = Y1(x) + Y2(x).

In case (a), this is y = A exp(m1x) + B exp(m2x) + Y2(x).

Finally, use other information, such as the values of y and dy
dx when x = 0, or the

values of y when x = a and when x = b, to find the relevant values of A and B. Be
clear that this last step is made only AFTER both Y1 and Y2 have been found!

Example 2.6 Equation (2.2) above, i.e.

d2y

dt2
= g − c

dy

dt
,



28 2 Differential Equations

comes from Newton’s Law. Here y is the distance travelled in time t when a stone
moves vertically, subject to air resistance. Take c > 0, and assume that y = 0 and
dy
dt = v0 when t = 0.

Solution. Rewrite it as

d2y

dt2
+ c

dy

dt
= g,

so that the homogeneous version is

d2y

dt2
+ c

dy

dt
= 0.

This leads, using y = exp(mt), to the auxiliary equation m2 + cm = 0, with two
different solutions m = 0 and m = −c.

Thus the general solution of the homogeneous equation is

y = A + B exp(−ct).

For a particular solution to

d2y

dt2
+ c

dy

dt
= g,

guess y = K t , giving cK = g, i.e. y = gt/c. The general solution of the equation
is the sum of these solutions, namely

y = A + B exp(−ct) + gt/c.

Recall that y = 0 and dy
dt = v0, when t = 0. Thus find A and B from 0 = A + B

and v0 = −Bc + g/c, leading to the solution

y = v0

c
(1 − exp(−ct)) + g

c2
(exp(−ct) + ct − 1) .

This gives another excuse to use L’Hôpital’s Rule. See what happens as c → 0. The
first term on the right side is

v0(1 − exp(−ct))

c
.

Differentiate numerator and denominator (as functions of c) to get v0t exp(−ct) and
unity, whose ratio converges to v0t . The second term is

g(exp(−ct) + ct − 1)

c2
,
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and it will turn out that we need to differentiate numerator and denominator twice.
Their respective second derivatives are gt2 exp(−ct) and 2, so the second term con-
verges to gt2/2. The whole expression converges to tv0 + gt2/2.

This suggests that y = tv0 + gt2/2 solves the corresponding problem when
c = 0, i.e. without air resistance. Exercise 2.14 ask you to check this, using the
general solution to (HE) in the case (b) of equal roots of the quadratic.

2.4 Linked Systems

Sometimes, we have several interacting quantities, all also changing with time. We
look first at the Lotka-Volterra model of a predator-prey system.

Rabbits on an island feed on an unlimited supply of clover, and foxes feed on
rabbits. So let x be the number of rabbits at time t and let y be the number of foxes.
(As we wish to differentiate, we shall treat x and y as continuous variables, even
though they will be integers.) In the absence of foxes, rabbits breed happily, and we
expect

dx

dt
= ax

for some a > 0. With foxes, the rate at which foxes and rabbits meet is proportional
to the product xy of their numbers, so, for some b > 0, we have

dx

dt
= ax − bxy. (2.10)

If there were no rabbits, the foxes would just die out, leading to

dy

dt
= −cy

with c > 0. But eating rabbits enables breeding; and since the rate of meeting is
proportional to xy, we see that

dy

dt
= −cy + hxy (2.11)

with h > 0. Setting the right sides of (2.10) and (2.11) to zero, i.e.

x(a − by) = 0 and y(hx − c) = 0

gives an equilibrium, as the rate of change of the size of both populations is then
zero. With both species present, the only solution is x = c/h and y = a/b.
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Vito Volterra became interested in this sort of problem when his attention was
drawn to the data on the proportion of predatory fish among all fish caught at the
Italian port of Fiume. It rose from around 12% just before the First World War in
1914 to around 30% at the end of the war in 1918/9, before returning to its previous
level. In the above model, the dramatic reduction in general fishing during the war
changed the values of the parameters in Eqs. (2.10) and (2.11): the natural growth rate
of prey, a, increased, the natural death rate of the predators, c, decreased, but both
b and h, which apply to the interactions between the prey and predators, were not
affected. Thus at the model’s equilibrium point (c/h, a/b), with little fishing, the first
value dropped, the second increased—exactly what the observed data confirmed!

In 1910, Alfred Lotka had already developed the same system of equations, but
in connection with the analysis of certain chemical reactions.

What happens if we are away from the equilibrium point? Dividing out (2.10) and
(2.11), we get

dy

dx
= y(hx − c)

x(a − by)

which has separable variables, hence

∫
(a − by)dy

y
=

∫
(hx − c)dx

x
.

Integrate to find
a log(y) − by = hx − c log(x) + Const.

Take exponentials of both sides, rewrite as

ya exp(−by) = K exp(hx)/xc,

where K is a constant that can be found from the initial values of x and y.
This “solution” is a collection of closed curves round the equilibrium point—to a

first approximation, they are distorted ellipses, as you will confirm when you solve
Exercise 2.15. Figure2.3 illustrates how the two populations change when disturbed
from equilibrium—for this illustration, we have chosen a = 30, b = 1, c = 50 and
h = 0.5, for which (100, 30) is the equilibrium. The arrows indicate the model’s
predictions for initial states either (120, 30) or (140, 30); in the former, the rabbit
population ranges from 83 to 120, the fox population from 23 to 38, while in the
latter, rabbit numbers run from 70 to 140, fox numbers from 18 to 46.

It is plain that the picture accords with our intuition. Starting with the equilibrium
number of foxes, but excess rabbits (near point A, say), foxes are favoured: their
numbers increase, rabbit numbers decrease, until there are too few rabbits to support
the large excess of foxes (after B); both populations now decline, until rabbits are
so scarce that foxes die off quickly (at C), enabling the rabbit population to recover
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Fig. 2.3 How numbers change away from equilibrium

(along CD). With sufficiently many rabbits around (after D), fox numbers increase
again, and the whole cycle repeats from A.

Another example of a linked system is the Kermack-McKendrick model for epi-
demics.

Imagine an isolated community of size n into which one person infected with
an infectious disease is introduced. At time t , there are x Susceptibles (people who
may catch the disease), y Infecteds (people with the disease, and spreading it) and
z Removed cases (they have had the disease, and have recovered, or died, or been
placed in isolation: they are no longer susceptible). Take x + y + z = n + 1, so that
any two of x , y, z determine the third; and again treat then as continuous variables
(even though they are not) so as to be able to differentiate them. Initially, x = n,
y = 1 and z = 0.

When an Infected comes into contact with a Susceptible, the Susceptible might
become an Infected (and so infectious), while as the disease runs its course, Infecteds
become Removed. How might the disease spread, how many will escape infection?

The quantity xy is the number of possible encounters between a Susceptible and
an Infected; the actual number of encounters in a given time period will depend
on whether the population is tightly packed, or sparsely scattered, and whether the
encounter leads to infection will depend on the infectiousness of the disease. For
some constant β > 0, the quantity βxy describes the rate at which a Susceptible
turns into an Infected; so we have

dx

dt
= −βxy.

The right side also describes the rate at which the number of Infecteds increases; but
Infecteds turn into Removed cases (by recovering, dying, being isolated, etc.) at a



32 2 Differential Equations

rate simply proportional to their number, so putting these two factors together we
have

dy

dt
= βxy − γ y

for some constant γ > 0. Finally, this last term also gives the rate at which Removed
cases increase, so

dz

dt
= γ y.

From the first two equations, divide out to find

dy

dx
= βxy − γ y

−βxy
= ρ − x

x
(2.12)

where ρ = γ /β. This has separable variables, so we integrate to find

∫
dy =

∫
ρ − x

x
dx,

which gives y = Const − x + ρ log(x). Since y = 1 when x = n, the general
relationship is y = n + 1 − x + ρ log(x/n). The epidemic is over when y = 0, so
we deduce that the number who escaped infection is x1, found from the equation
x1 = n + 1 + ρ log(x1/n).

Suppose first that n > ρ. Initially x = n, so (2.12) shows that dy
dx is initially

negative; and since x can only decrease, this negative slope means that y, the number
infected, begins to increase, continues to do so while x > ρ, but then decreases until
y = 0 and the epidemic ends, as in Fig. 2.4 (i). The formula for x1 above shows that,
to a first approximation, if there are ρ +δ Susceptibles initially, there are about ρ −δ

when the epidemic is over. See Exercise 2.16.
By contrast, if n < ρ, (2.12) shows that the initial value of dy

dx is positive, so y,
already tiny, tends to decrease as x decreases, and the disease swiftly dies out, with
no epidemic, as in Fig. 2.4 (ii).

x
Susceptibles

Infecteds
y

(i) (ii)

ρ n n
x

ρ Susceptibles

Infecteds
y

Fig. 2.4 How numbers of infecteds and susceptibles change
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The crucial quantity ρ = γ /β is termed the threshold for this system. If n < ρ, the
disease is expected to die out quickly, whereas if n > ρ, an epidemic will occur. (Of
course, this analysis is based on averages so, in practice, the size of any epidemic will
be some random number, whose average we have found. In case (ii), this average
is tiny, so there is no real chance of a large outbreak; in case (i), random chance
MIGHT eliminate the disease before it has time to take hold, but if it does not die
out quickly, there is a good possibility of a substantial epidemic.)

So overall, to prevent epidemics, we wish to ensure that n < ρ. One obvious way
is vaccination, to reduce the value of n. Other ways are to increase ρ = γ /β: either
by increasing γ—e.g. remove Infecteds quickly, or help them recover quickly (or
cull them if this is a foot-and-mouth epidemic in cattle!); or by reducing β—perhaps
disperse the population, or close schools, or postpone soccer matches to reduce
the frequency of contact between Infecteds and Susceptibles. Even vaccination that
is partly effective by reducing the infectiousness of a disease will also reduce β.
Our mathematical model points to ways of reducing the frequency and severity of
epidemics, and enables us to forecast how cost-effective possiblemeasures to combat
the disease might be.

2.5 Exercises

(Several of these Exercises, and the chapter examples, are adapted from material
in the excellent book by George Simmons, that also contains interesting historical
information on this subject and its pioneers.)

2.1 A model for the growth of bacteria subject to competition is

dx

dt
= K x

(
1 − x

N

)
.

Here t represents time and x is the amount of bacteria. Suppose that, at time
t = 0, then x = N/4, while at t = 1, then x = N/2. At what time will we find
x = 3N/4?

2.2 The principle of radiocarbon dating is that air-breathing plants absorb carbon
dioxide only while they are alive: radiocarbon is a radioactive isotope of carbon,
and its proportion in the atmosphere has long been in equilibrium. It decays after
the plant’s death, so that comparing the proportion of radiocarbon in a piece of
old wood with the current proportion in the atmosphere gives an estimate of the
length of time the tree has been dead.
Suppose matter decays at a rate proportional to its quantity. Write down the form
of the differential equation for x(t), the amount of matter at time t , and deduce
that x(t) = x(0) exp(−kt) for some constant k > 0.
It takes around 5600 years for half the initial amount to decay (hence the term
half-life). Estimate the age of a wooden object whose proportion of radiocarbon
is (i) 75% (ii) 10% of the current amount. (Round your answers sensibly.)
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2.3 Snow has been falling steadily for some time when the snowplough begins to
clear the road at noon. It removes snow at a constant rate, and has covered two
miles by 1-00 pm, two further miles by 3-00 pm.
We have argued that, if snow began T hours before noon and fell at rate s/unit
time, while the plough cleared V /unit time and had moved distance x in time t ,
then

s(T + t)
dx

dt
= V .

Solve this equation with the given conditions, and deduce the time that snow
started to fall.

2.4 Newton’s Law of Cooling states that the rate an object cools is proportional to
the temperature difference between it and its surroundings. A rock is heated to
120 ◦C, and placed in a large room kept at a constant temperature at 20 ◦C. The
temperature of the rock falls to 60 ◦C after an hour; how much longer does it
take to cool to 30 ◦C?

2.5 A spherical mothball evaporates uniformly at a rate proportional to its surface
area. Hence deduce a differential equation that links its radius with time. Given
that the radius halves from its initial value in one month, how long will the
mothball last?

2.6 We have shown that if the water level in a sink or bath is x > 0, then

dx

dt
= − A

√
2gx

V ′(x)
,

where V is the volume of water, V ′ is its derivative, t is time, and A is the
cross-sectional area of the plughole.

(i) Suppose a bath can be taken as having a rectangular horizontal cross-
section of fixed area B. How long will it take to empty from depth D > 0?
(Your answer should just involve D, B, A and g.) Now suppose a blockage
halves the cross-sectional area of the plughole, and you decide to have a
really luxurious bath by doubling the amount of water: what difference
does all that make to the time to empty the bath?

(ii) Take the plughole to be a circle, radius r > 0, and suppose a sink is a
perfect hemisphere of radius R > 0. Show that the volume of water when
the depth is x > 0 is V = πx2(3R − x)/3. Deduce that the time for the

bowl to empty from full is 14R5/2

15r2
√
2g
.

(iii) Let f be a smooth and strictly increasing function with f (0) = 0. A sink
has the shape of the graph y = f (x), for 0 ≤ x ≤ c, being rotated round
the y-axis. Give the form of f that corresponds to the water level falling
at a constant rate.

(A clepsydra is a water clock consisting of a sink with a small hole to allow water
to escape. It was used in ancient Greek and Roman courts to time the speeches of
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lawyers. It is plainly an advantage in such an implement to have the water level
falling at a uniform rate.)

2.7 Find y as a function of x when y = 1 when x = 1, and

dy

dx
= 3xy + 2y2

x2
.

2.8 Find y as a function of x for x > 0 when

dy

dx
− 5y

x
= x,

and y = 1 when x = 1.
2.9 Suppose dy

dx + P(x)y = Q(x)yn for some n, with n �= 0 and n �= 1 (known as
Bernoulli’s Equation). Define z = y1−n , and show that the resulting differential
equation linking z and x is linear.
Hence solve x dy

dx + y = x4y3, given that y = 1 when x = 1.
2.10 In the model of rowing across a river described in this chapter, suppose that we

can row twice as fast as the river flows. Use the result

y = 1

2

(
xk+1

ck
− ck

xk−1

)

and the relation
dx

dt
= −bx√

x2 + y2

to find an equation linking x and t . Deduce how long it takes to cross the river.
2.11 A 100-L tank is initially full of a mixture of 10% alcohol and 90% water.

Simultaneously, a pump drains the tank at 4 L/s, while a mixture of 80%
alcohol and 20% water is poured in at rate 3 L/s. Thus the tank will be empty
after 100 seconds (yes?). Assume that the two liquids mix thoroughly, and let
y litres be the amount of alcohol in the tank after t seconds; explain why the
equation

dy

dt
= 2.4 − 4y

100 − t

holds for 0 ≤ t < 100. Find y as a function of t ; hence deduce that the
maximum amount of alcohol in the tank occurs after about 34 seconds, and is
about 39.5 L.

2.12 25 grams (gm) of salt are dissolved in 50L of water, and poured into tank A.
From time t = 0, pure water is poured into this tank at the rate of 2 L/s, and
simultaneously 2 L/s drain from the tank. Thus the tank always contains 50 L
of liquid, thoroughly mixed. Let x (gm) denote the amount of salt in tank A at
time t ≥ 0; justify the equation
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dx

dt
= −x/25.

The liquid that drains from tank A pours into tank B, which initially has 50 L
of pure water, and 2 L/s drain from tank B. Thus tank B also always contains
50 L of liquid, thoroughly mixed. Let y (gm) denote the amount of salt in tank
B at time t ≥ 0. Explain briefly why

dy

dt
= x/25 − y/25.

Hence find x , then y. At what time is the amount of salt in tank B at its
maximum?

2.13 A chain of length L = 150 cm has constant density ρ/cm. It rests on a smooth
horizontal table with 30cm hanging over the edge, and is released. Neglect
friction. It slides off the table according to Newton’s Law:

Mass × Acceleration = Force.

The Mass is constant at Lρ, but the Force varies according to the amount of
overhang; for an overhang of length x , the Forcewill be xρg. Set up the relevant
differential equation, state the initial conditions, and find how long it takes for
the chain to fall off the table. (Take g = 10 m/s/s.)

2.14 Solve the equation
d2y

dt2
= g,

where y represents the distance travelled at time t when a stone is thrown
vertically, with initial velocity v0, in the absence of air resistance.

2.15 Using the notation in this chapter for the Lotka-Volterra model, write
x = c/h + X and y = a/b + Y , where X and Y are assumed small (i.e.
(x, y) is close to the equilibrium point (c/h, a/b)). Find the exact equations
for X and Y that correspond to (2.10) and (2.11), and then, neglecting the
terms involving the product XY , divide out these equations to obtain dY/d X
(approximately). Show that the exact solutions to this approximate equation
form a family of ellipses centered at the equilibrium point; select a represen-
tative member of this family and show (by marking arrows at a selection of
points) how the populations sizes are expected to change if the two populations
are disturbed from the equilibrium point.

2.16 Suppose one infected individual enters a population of size 1100, when the
relevant value of the threshold is ρ = 1000. According to the Kermack-
McKendrick model, how many people will be infected before the epidemic
dies out?

2.17 In a model of warfare, let the sizes of the opposing armies at time t be x(t) and
y(t), and let a, b be positive constants. Then the equations
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dx

dt
= −by,

dy

dt
= −ax

might describe how the conflict develops; for example, b will be largerwhen the
y−army has strong offensive capabilities and the x−army has weak defences,
and vice versa for the interpretation of a.
Divide one equation by the other to eliminate t , and deduceLanchester’s Square
Law, i.e. a(x(0)2 − x(t)2) = b(y(0)2 − y(t)2).
Assume that fighting continues until one side is annihilated: show that the x-
army wins whenever ax(0)2 > by(0)2, and that if this holds, the final size of
the x-army is

√
x(0)2 − (b/a)y(0)2.

Now suppose the armies have equal initial sizes, and the same offensive and
defensive capabilities so that a = b, but the x-army has split the other into two
equal parts, and will fight them sequentially. What is the size of the x-army
after the first battle? After the second?
Give a similar analysis for when the y−army has been split into three equal
parts, tackled sequentially. Are your two answers consistentwith the commonly
stated principle of offensivewarfare that “Themore you use, the less you lose.”?

2.18 As a parallel to the Kermack-McKendrick model for the spread of epidemics,
Daryl Daley and David Kendall proposed a model for the spread of rumours. A
homogeneously mixing community, initially contains one person (a Spreader)
who knows a rumour, and N who do not (the Ignorants). When a Spreader
meets an Ignorant, the Ignorant learns the rumour and becomes a Spreader;
but if a Spreader attempts to tell the rumour to another person who already
knows it, both of them believe the rumour to be “old hat”, and decide to cease
spreading it: people who know the rumour but no longer spread it are Stiflers.
At time t , let x be the number of Ignorants, y the number of Spreaders, and z
the number of Stiflers; thus x + y + z = N + 1. By considering the outcomes
of encounters between the different types of person, justify the equations

dx

dt
= −Axy,

dy

dt
= Axy − Ayz − Ay(y − 1),

where A > 0 is a constant. Deduce an expression for dy
dx , and hence find y in

terms of x . Show that, when the rumour dies out, the number of Ignorants, X ,
satisfies the equation

0 = 1 + N log(X/N ) + 2(N − X).

Hence show that, when N is large, this model predicts that about 80% of the
Ignorants will learn the rumour, and, in contrast to the epidemic model, there
is no “threshold theorem”.
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Chapter 3
Sport and Games

Abstract Mathematical ideas can give pointers to good tactics in a variety of sports
and games. In lawn tennis, we assess how the proportion of points won on serve
might translate into the proportion of games won, the respective merits of risky or
safer serves, and how the scoring system adds to spectator enjoyment. In rugby, from
where should a conversion be attempted after a try is scored? Snooker gives rise to
applications of geometry and trigonometry, and the use of scalar products. Throwing
events in athletics use differential equations, the formulae used to derive scores in
the decathlon or heptathlon have interesting mathematical properties. The game of
darts suggests diverse exercises in counting and logic, we show how the theory of
zero-sum games can be applied to taking penalties in soccer, and we examine the
trade-off between consistency and flamboyance in golf. We investigate how different
tournaments, from soccer via chess to ice-skating, have been designed, and show
how the Marriage Theorem helps avoid catastrophes when UEFA make the draw
for the knockout round in soccer. Simple ideas of probability, recurrence relations,
summing series, and matrix algebra arise naturally in many of these contexts.

3.1 Lawn Tennis

In this popular pastime, whether played as singles (i.e. one against one) or doubles
(one pair against another), the right to serve is a substantial advantage among good
players. A match consists of a sequence of sets, each set consists of a number of
games, and within a game, the same player serves to every point. A game ends when
one side has won at least four points, and has also scored at least two points more
than their opponents. Suppose the serving side tends to win a proportion p of the
points; what proportion of service games should they expect to win?

Instead of counting the points in the usual sequence 0, 1, 2, 3, etc., tennis replaces
1 by 15, 2 by 30 and 3 by 40 (!), so we will use this convention. For the simplest
plausible model, we assume that the outcome of any point has no effect on the
outcomes of other points, the serving side winning a point with a fixed probability
p, so that the receiving side wins any point with probability q = 1 − p. We answer
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our question by listing the distinct ways in which the serving side can win the game,
finding their respective chances, and summing these values.

Plainly, if they have won the game, the serving side did win the final point. The
distinct scores before this final point are

(a) 40 − 0, when winning the first 3 points, probability p3;
(b) 40− 15, when winning any 3 of the first 4 points, with possible orders WWWL,

WWLW, WLWW, LWWW, each with probability p3q, so the total chance is
4p3q.

(c) 40 − 30 when winning any 3 of the first 5 points; there are 10 possible orders,
each with chance p3q2, giving a total of 10p3q2.
These are the chances of reaching each score: multiply by p and sum, to get the
chance of winning the game from any of those scores.

(d) Finally, the score reaches “Deuce”, or 40 − 40, if each side wins 3 of the first
6 points. There are 20 possible orders (e.g. WWLWLL), each with probability
p3q3, so the chance of reaching Deuce is 20p3q3. From that score, obtaining
a lead of two points automatically ensures that at least four points have been
scored, so let x be the chance the server wins when the current score is Deuce.
To end up as the winner, either the server wins the next two points (probability
p2), or the next two points are shared (probability 2pq), bringing the score back
to Deuce, from where the server goes on to win. Overall, we have

x = p2 + 2pqx,

leading to x = p2/(1 − 2pq).
Putting all these together, the chance the server wins the game is (Fig. 3.1)

G = (p3 + 4qp3 + 10q2 p3)p + 20p3q3
p2

1 − 2pq
= p4(1 + 4q + 10q2) + 20p5q2

1 − 2pq
.

If p = 1/2, you can check that this leads to G = 1/2, as we would expect, by
symmetry. Suppose p �= 1/2. Put the whole expression for G over the denominator
(1− 2pq), and note that since p + q = 1, then 1 = (p + q)2 = p2 + 2pq + q2, so
1 − 2pq = p2 + q2. Hence

G = p4 (1 + 4q + 10q2)(1 − 2pq) + 20pq3

p2 + q2
= p4 1 + 4q + 10q2 − 2pq − 8pq2

p2 + q2
.

The numerator can be written p4(1+2q +4q2 +8q3) = p4(1−16q4)/(1−2q).
Also 1 − 2q = (p + q) − 2q = p − q = (p − q)(p + q) = p2 − q2, which leads
to the elegant answer

G = p4 − 16p4q4

p4 − q4
.
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Fig. 3.1 From a point to a
game
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If p = 1/2, both numerator and denominator are zero, but L’Hôpital’s Rule shows
that, as p → 1/2, so also G → 1/2 (which makes sense). The Exercises explore
some consequences of this formula.

Service Tactics. Players usually have two types of serve, call them Fast (F) and
Steady (S). With F, the chance of a fault is higher, but if it is not a fault, it is more
likely to win the point. So players, having two serves, have a choice of four possible
tactics: FF, FS, SF, SS (where, e.g. FS means Fast serve first then, if it is a fault, use
a Steady serve). You often see FS, sometimes FF, even SS, but (almost) never SF. Is
there good reason for this?

Let f and s be the respective chances a Fast or Steady serve wins the point, if it
is not a fault; we have f > s. And let x , y be the chances the Fast and Steady serves
are good; we expect that x < y.

Consider the intention to use FF: the server wins the point either when the first
serve is good, and leads to winning the point (chance x f ) or when the first serve is a
fault, the second serve is good, and the point is subsequently won (chance (1−x)x f ).
Overall, the winning chance is

A = x f + (1 − x)x f = x f (2 − x).

Similar arguments lead to winning chances of B = x f + (1 − x)ys with FS,
C = ys + (1 − y)x f with SF and finally D = ys + (1 − y)ys = ys(2 − y) with
SS. But

B − C = x f + ys − xys − (ys + x f − xy f ) = xy( f − s) > 0

because f > s. So using FS always gives a higher winning chance than SF, and so
SF should indeed never be used.
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A server should logically choose those tactics that make the chance of winning
any point as large as possible. Write R = (x f )/(ys), the ratio of the chances of
winning the point with one Fast Serve to one Steady serve, and suppose that x < y.
Exercise 3.4 asks you to show that FF gives the best chance if R > 1; otherwise, FS
is best if 1 > R > 1 + x − y, while SS is best if R < 1 + x − y.

Example 3.1 When Anna uses her Fast serve, she has a 70% chance of winning the
point, if that serve is good. However, her Fast serve is unreliable—it is a fault 60%
of the time. If, without changing the potency of the serve, she could make it a valid
serve half the time, what would be the change in her success rate when she decided to
use her Fast serve on both service opportunities (if necessary)? Or would she rather
have the same reliability, but improve her Fast serve so that it won 80% of the time,
if good?

Solution. She plans to use FF, with chance A = x f (2 − x) of winning the point;
currently f = 0.7, x = 0.4 so A = 0.448. If x increases to 0.5, A increases to 0.525.
But if f increases to 0.8, while x remains at 0.4, then A = 0.512; given the choices,
it is marginally preferable to increase the reliability of the Fast serve.

Match Structure It is quite possible that the winner of a match, or even a set, scores
fewer points than her opponent. For, suppose Anna wins a set by six games to four:
in each game she won, the points score was 4−2, but whenever she lost it was 0−4:
so Anna won 24 points, but her opponent won 28 points.

If the prime purpose of a tennis match were to identify which of two players
is superior, a quite different format would be recommended. Some suitable points
total, say 216, would be chosen: each player would have 108 serves, 54 from each
end, alternating in blocks of six to give changeovers and rests, the winner being the
one who scored most points (with some sensible rule in the case of equal scores).
Such matches would often be boring—one player establishes a comfortable lead,
and coasts to victory.

But the structure of a tennis match prevents such complacency, and gives much
more enjoyment to spectators. “Crucial” points occur frequently—the next pointmay
decide who wins a game, the next game who wins a set, the next set may decide the
whole match. The general dominance of the serve means that particular attention is
paid to scores such as 15 − 40, where the receiver is said to hold two break points,
i.e. should she win either of the next two points, she will win the game (against the
odds). Match analyses often focus on how many break points each player had, and
how often they were then successful.

A strong server, leading 40-0, feels very comfortable, and has little concern if she
loses the next point. Some points are plainlymore important in determining thematch
winner than others: we might measure the importance of a point as the difference
winning or losing it makes to the outcome of a game. Pancho Gonzales, probably the
best male player in the 1950s, claimed that the most important point when serving
was if he found himself 15-30 down: he argued that losing the next point would be
very serious—he would be 15-40 down—but winning would take him level, and his
powerful serve would clinch the game.
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Morris (1977) pointed out that his logic was faulty. For, compare being 15-30
down to being 30-40 down: winning the next point would take the score to 30-30 or
40-40 respectively—but these are equivalent as, in each case, the game winner will
be the next player to take a two-point lead. Losing the point from 15-30 is indeed
serious—but losing the next point from 30-40 is catastrophic, as the game is lost! So
the difference between winning and losing the next point must be greater at 30-40
than at 15-30. 30-40 is always more important.

It is possible to extend this analysis by seeking to measure the “importance” of
the next point at any score, and hence try to identify the most important point in a
game. However, for most scores, the answer will depend on p, the chance the server
wins any particular point, whereas the analysis just given is quite independent of that
notion.

Many other sports also have a structure that encourages crucial points. In table
tennis, the current rule is that to win a set, you must score at least 11 points, with a
two-point lead, and the match may be best of five, seven or nine sets: previously, sets
were won by the first player to score 21 points, with a two-point lead, and matches
were best of three (or five) sets.

3.2 Rugby

In rugby (League or Union), a team scores a “try” by grounding the ball over the
opposition’s goal-line AB, at the point X, say, in Fig. 3.2. They then attempt a “con-
version”, i.e. to kick the ball between the posts C and D (and over the crossbar). This
kick is taken from any point in the field of play on the line XE, perpendicular to the
goal-line. Assume that the kicker can always clear the crossbar, and when X is wide
of the posts, seeks to select Y on XE to maximise the angle θ =CYD. What is the
optimal place for Y?

Given Y on XE, there is a unique circle through C, D and Y. The centre of this
circle, Z, is plainly on the perpendicular bisector of the goal-line CD. Elementary
geometry tell us that the angle CZD is just 2θ , so our task is equivalent to making
CZD as large as possible. This happens when Z is as close to CD as possible, i.e. the
radius ZD is as small as possible. All radii have equal length, so this is the same as

Field of Play

“In goal” area

X

E

A DC B

Y?

Z?

Fig. 3.2 From where should we take the kick?
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making ZY as small as possible: but Z and Y are on parallel lines, so we need ZYX
to be a right angle, which happens when XE is a tangent to the circle.

This gives a recipe: choose that point Y on XE such that the line XE is a tangent
to the circle through C, D and Y. Exercise 3.8 invites you to practice your skill
at co-ordinate geometry by finding a suitable equation to describe how Y varies
with X.

Example 3.2 Suppose the posts of a rugby field are 5.5 m apart, and a try is scored
10m wide of the nearer post. To maximise the angle between the conversion point
and the two posts, how far from the goal line should the kick be taken?

Solution. Use the recipe above: take the origin as the centre of the goal line, and
the x−axis as the goal line. The ball is grounded at the position (12.75, 0), and the
centre of the circle is at (0, z), say. Then the length of the radius will be 12.75, and
also will be

√
z2 + 2.752 (Pythagoras). Hence

12.752 = z2 + 2.752,

meaning that z = √
155, i.e. take the kick 12.45m from the goal line.

3.3 The Snooker Family

In snooker (or billiards), the cue ball is aimed at a particular place on the object ball
with the intention that the object ball be sent off at an angle φ from the straight line
joining the centres of the two balls. The radius of each ball is r > 0, the distance
between the centres of the two balls is d > 2r : we seek a formula for the angle θ at
which the cue ball should be sent to achieve this goal. (Assume θ is small enough
for the cue ball to actually strike the object ball.)

Take the centre of the cue ball as the origin, and the line joining the balls as the
x-axis, so that the centre of the object ball is at (d, 0), as in Fig. 3.3. Then the co-
ordinates of the point of impact, P , are (d − r cos(φ), r sin(φ)), and so the centre of
the cue ball at the time of impact is at (d − 2r cos(φ), 2r sin(φ)). Hence

tan(θ) = 2r sin(φ)/(d − 2r cos(φ))

is the EXACT relation between θ and φ that we seek. Exercise 3.9 asks you to use
this formula to see how errors in the direction you send the cue ball translate into
errors in the direction of the object ball.

Suppose a carom billiards table (i.e. without pockets) has the shape of an ellipse,
whose standard equation is

x2

a2
+ y2

b2
= 1,
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x
P

φ
θ

Cue Ball
Object Ball

Fig. 3.3 Aiming the Cue ball at the Object ball

with a > b > 0. Its eccentricity is the value e = √
(1 − b2/a2), and the points

(±ae, 0) are called its foci. Exercise 3.10 asks you to look at what happens when
a cue ball is placed on one focus, and struck to hit the cushion at an arbitrary point
P = (x1, y1). To aid you, note that if we differentiate the above equation, we get

2x

a2
+ 2y

b2

dy

dx
= 0.

Thus the slope of the tangent at P is −(x1/a2)/(y1/b2) = −x1b2/(y1a2).

3.4 Athletics

Throwing events. A shot-putter releases the shot at V metres/second, from height
h metres, and at an angle θ above the horizontal. How far will it go before it hits the
ground, assuming that air resistance can be neglected?

At time t ≥ 0, let x be the horizontal distance travelled, and y the vertical distance
above the ground, and take the acceleration due to gravity as g metres/sec/sec. When
t = 0, we have x = 0, dx

dt = V cos(θ), y = h and dy
dt = V sin(θ). Since we neglect

air resistance, there is no horizontal force acting on x , so (Newton)

d2x

dt2
= 0.

The general solution is x = A + Bt , A and B being constants; using the initial
conditions, we see that x = V t cos(θ).

Newton’s Law also tells us that

d2y

dt2
= −g,

hence y = C + Dt − gt2/2, which leads to

y = h + V t sin(θ) − gt2/2

(so long as, of course, y ≥ 0).
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Write V sin(θ) = U . The shot hits the ground at that time t > 0 when y = 0, i.e.
a solution of

gt2 − 2tU − 2h = 0.

The positive root of this quadratic is

t = T = (U +
√

U 2 + 2gh)/g = V sin(θ)

g

(
1 +

√
1 + 2gh

V 2 sin2(θ)

)
.

Thus the distance thrown is the value of x = V T cos(θ), i.e.

V 2 sin(2θ)

2g

(
1 +

√
1 + 2gh

V 2 sin2(θ)

)
.

For given values of V, g, h, we can use differentiation to find the optimal
angle of projection. Exercise 3.11 asks you to show that this comes from
sin2(θ) = 0.5V 2/(V 2 + gh). However, because of the way human joints are con-
structed, the achievable value of V depends on the angle θ , so this result is less useful
than it first appears.

But it does lead to the optimal value of θ for a given V , and we can explore the
effect of small changes of in the values of the parameters V , h and g. Note that the
value of g varies according to latitude and altitude, so certain locations are better
than others for breaking records. See Exercise 3.11

This analysis would also apply to hammer-throwing, but in both the discus and the
javelin, there is considerable skill in using the aerodynamic properties of the missile
to achieve long distances, so this factor should be built into any model. And in the
ubiquitous way in which mathematical arguments constructed for one purpose often
apply elsewhere, the analysis above could also be used to assess how far a cricket
ball would travel in the air when thrown, or hit with a bat; see Exercise 3.12.

Decathlon/Heptathlon. In these multi-event competitions, the separate perfor-
mances in the individual components are converted into a score, and these scores
are then totalled to give a single number. For example, let X be the time in seconds
taken for the men’s 100m: the corresponding score is

25.4347(18 − X)1.81,

rounded down to the nearest integer below. Thus a time of 10s would score 1096
points, 11 s would score 861 points, and any time of 18s or more would score zero
points.

All track events have a score with the format C(A − X)B , where C , A and B are
carefully chosen constants. There is an obvious difference in format for field events,
where the greater the distance or height, the better: a formula of the formC(X − A)B

is used. For example, the score in the men’s High Jump for a height of X cm is
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0.8465(X − 75)1.42,

again rounded down to the nearest integer below: so jumping 220cm would score
992 points, just 2m scores 803 points, and failing to reach at least 75cm gives a zero
score.

Both formats have the feature of some “baseline” performance A, worse than
which gives a zero score; C can be adjusted so that the mean scores of competitors
in each event are fairly close. Mathematically, the most interesting parameter is B.
In the men’s decathlon, its values for the three throwing events range for 1.05–1.1,
for the three jumps the range is 1.35–1.42, while for the four track events the range
is 1.81–1.92. Crucially, all these values exceed unity: that means that the increase in
decathlon (or heptathlon) points for a better performance in any event is higher than
linear; and the larger the value of the exponent B, the larger the points benefit of a
given percentage improvement in performance.

To illustrate: a one percent reduction in the 100m time from 10–9.9 s would gain
an extra 2.3% (25 points), a one percent increase in the High Jump, from 220cm
to 222cm would add 1.9% (19 points), and in the men’s shot put, with formula
51.39(X − 1.5)1.05, a one per cent increase in X from 20–20.20m would add some
1.1%, just 12 more points.

The athletics authorities seek to ensure that competitors specialising in a particular
single event do not have an unreasonable advantage: thus when fibre glass replaced
bamboo in the pole vault, leading to a considerable increase in the heights reached,
the scoring systemwas adjusted. Changes are also made when (as happens from time
to time) the specification of the javelin is altered, for safety reasons.

Plainly there is an element of arbitrariness in the choice of the values of the para-
meters A, B and C ; no-one would claim that the actual values used are conclusively
optimal.

3.5 Darts

Figure3.4 shows the layout of a standard dartboard, designed by Brian Gamlin in
1896.

(The Bull scores 50 points, the Inner (around the Bull) scores 25; in each segment,
the outer ring scores double, the inner ring scores treble, so the maximum score with
one dart is 60, from treble 20.) In the standard game, players alternately throw three
darts in succession, the winner being the first to reach a total of exactly 501, finishing
with a double (which includes the Bull as double 25).

There are 20! ≈ 2.4 × 1018 ways to arrange the values {1, 2, . . . , 20} round
the segments, or 19!/2 ≈ 6.1 × 1016 distinct ways if rotations and reflections of a
given ordering are not distinguished. Is this the best possible arrangement, or can we
improve on it?

Players seek large scores in the initial stages, so one way to punish slight errors
is to have low numbers next to higher ones. Reading clockwise from the top, let the
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Fig. 3.4 Gamlin’s standard
dartboard

numbers be {x1, x2, . . . , x20}, take x21 = x1 and write

S =
20∑

i=1

|xi+1 − xi |,

the sum of the absolute values of the differences between adjacent segments. S will
tend to be large when high numbers are adjacent to low numbers, and any of the
9!10!/2 ≈ 6.6 × 1011 arrangements in which the ten highest numbers alternate
with the ten lowest will give S = 200, the maximum possible. See Exercise 3.14 (ii);
Gamlin’s board scores 198 on thismeasure. Singmaster (1980) suggested that the sum
of any pair of adjacent numbers be as uniform as possible as a way to punish small
errors; Percy (2012) modified this idea with the proposal that, so far as possible,
the total score within any set of r adjacent numbers should be similar all round
the board. Both of them found alternative arrangements that were “optimal” under
sensible criteria offered. But despite these attractive mathematical ideas, Gamlin’s
board faces no serious challenge.

In some games it would be convenient if odd and even numbers alternated. But
see Exercise 3.14 (iii)!

Example 3.3 Describe a way to score 501, finishing on a double, with nine throws.
Explain why it is not possible to “finish” in three darts from 159, but show how 158,
157 and 156 do have 3-dart finishes. Hence explain why finishes with three or fewer
darts are possible for all targets in the range 2 to 155.

Solution. One way is to score 60 with 7 darts, then 57, finish with double 12. To
finish from 159 is not possible, because: (a) even with a Bull finish, the first two
darts would need to total exactly 109, so must include an odd number; using 57 then
requires an additional 52, not possible, using 51 asks for 58, not possible; and (b)
with a 40 to finish, the first two darts would need to total 119, plainly not possible.
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We can get 158 as 60 + 60 + 38, 157 as 60 + 57 + 40 and 156 as 60 + 60 + 36.
Since the three successive scores 156, 157, 158 are possible and use two treble beds,
by changing one treble bed to the next lower number, we can go all the way from
155 to 44 (not necessarily efficiently, but who cares?). And any number from 2 to 43
is plainly possible in at most two darts.

In the standard game, throwing first is plainly an advantage. To assess the size of
this advantage, we take two equally good players, Phil andAndy, say, and assume that
whoever throws first wins that game with probability p > 0.5. In darts terminology,
each such game is termed a leg, a set may be the best of three or five legs, and a
match could consist of almost any (odd) number of sets. Within any set, the right to
throw first to a leg alternates. If Phil throws first in a set of three legs, what is the
chance he wins that set?

Write W to indicate a leg Phil wins, L to mean he loses, and write q = 1 − p
as usual. As with our approach in the model of lawn tennis, we assume that the
outcome of any leg does not affect the outcome of other legs. Then the set outcomes
where Phil wins, with their respective probabilities in parentheses, are W W (chance
pq), W LW (p3) and LW W (q2 p), so his overall winning chance is their sum,
pq + p3 + q2 p = p(2 − 3p + 2p2) = g(p), say.

Let’s check this makes sense—it should evaluate to 0.5 when p = 0.5, by
symmetry—and it does. Also, g(0) = 0 and g(1) = 1, as are plainly essential.
We can construct the table

p 0.5 0.6 0.7 0.8
g(p) 0.5 0.552 0.616 0.704

For a set of five legs, the list of outcomes leading to Phil winning the set when he
throws first in the first leg is:
W W W , W W LW , W LW W , LW W W , W W L LW , W LW LW , W L LW W , LW W
LW , LW LW W and L LW W W with respective chances p2q, pq3, etc. Their sum
can be simplified to

g(p) = p(3 − 9p + 16p2 − 15p3 + 6p4).

The usual checks confirm that g(0), g(0.5) and g(1) have the correct values. The
corresponding table for 5-leg sets is

p 0.5 0.6 0.7 0.8
g(p) 0.5 0.539 0.585 0.654

Again, throwing first carries a significant advantage towards winning the set, but,
as we would expect, a smaller advantage with the longer set.

We now seek to assess the value of p among top-class players. Such a player will
average around 100 on each set of throws, so taking some 4 − 5 visits to get near to
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501, and perhaps two more darts, on average, to hit the finishing double. Overall, an
average of 5–6 visits looks plausible. A nine-dart finish (three visits) is rare enough
to be effectively discounted, so to give the desired average, and using round figures,
I offer the table

Visits 4 5 6 7 8
Chances 0.1 0.3 0.3 0.2 0.1

as a fair assessment of the chances of a top-class darts player reaching the target of
501 in the number of visits to the oche indicated.

Assume this table holds: if you go first, you win whenever you need n visits, and
your opponent needs at least n visits. Break this down:

(a) n = 4: you must win, chance is 0.1
(b) n = 5: winning chance is 0.3 × 0.9 = 0.27
(c) n = 6: winning chance is 0.3 × 0.6=0.18
(d) n = 7: winning chance is 0.2 × 0.3=0.06
(e) n = 8: winning chance is 0.1 × 0.1=0.01

These sum to 0.62. Our table underestimates the skill of multiple world champion
Phil “The Power” Taylor, so at his level, 65% is a reasonable estimate of the chance
the person who throws first wins the leg. With p = 65%, the one who throws first
wins a 3-leg set some 58% of the time, and a 5-leg set about 56% of the time.

While seeking to accumulate points towards the target of 501, top players generally
aim for treble 20, the highest scoring segment on the board. Should less competent
players use different tactics? The danger of aiming for 20 is that the adjacent beds
score just 5 or 1; moderate players would tend to score higher if they aimed at treble
16—near misses are far less disastrous. Real tyros should go for the bull, maximising
the chance of scoring something!

3.6 Tournament Design

UEFA Champions League Many soccer leagues operate on a round-robin basis;
each team plays every other team home and away, and the points accumulated over
the season determine the ranking. The main alternative is a knockout competition,
in which teams or players are eliminated when a match is lost. In soccer, the UEFA
Champions League combines these two features: 32 teams are split into eight mini-
leagues of four teams, each of which operates on the round-robin basis, the top two
teams in each going on to a knockout stage.

Thus 16 teams reach this knockout stage: if the draw were purely at random,
there would be 16!/(288!) = 2, 027, 025 different possibilities, all equally likely.
But to reward the mini-league winners, one rule is that each pairing shall consist
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of a Runners-up against a Champion, reducing the number of possible draws to
8! = 40, 320, again all equally likely; also, the Champions of any league shall
not play the Runners-up of the same league—careful counting shows that there are
now just 14, 833 equally likely draws. One final rule: two teams from the same
federation shall not meet, so AC Milan would not play Juventus, Barcelona would
avoid Valencia, Arsenal would not meet Manchester United.

The mechanics of the draw are that eight balls representing the Runners-up are
placed in a bowl, one is chosen at random: it is announced which Champions are
eligible to meet that team, one of these possible opponents is selected at random in a
similar fashion. But there is a danger unless precautions are taken beforehand: late in
the draw, we might find that all the Champions initially eligible to play a remaining
Runners-up have already been allocated other opponents, in which case the draw
would collapse.

There is a neat mathematical way to avoid this fiasco: it is to use what is known
as the Marriage Theorem. The usual setting for this Theorem is that we have a group
of n women and n men; each woman has a list of those men she is prepared to marry.
The Theorem asserts that, given these lists, it is possible to pair up every woman
with a suitable man on her list if, and only if, for each integer r , 1 ≤ r ≤ n, and each
group of r women, the number of men in their joint lists is at least r . In the UEFA
draw, regard the Runners-up as the women, each of which has an initial collection
of eligible Champions; as the draw progresses, these lists of possible opponents
may decrease in size. To ensure the draw can be completed, when a Runners-up
name is drawn, UEFA’s computer matches them against each ostensibly eligible
remaining Champion, and if drawing that Champion would lead to a violation of the
crucial condition of theMarriage Theorem for the teams that would remain, then that
Champion team may not be chosen as opponents.

The matrix displayed describes the options in December 2012. Each row corre-
sponds to a Runner-up in a mini-league, each column to the corresponding Cham-
pions. A Zero means those two teams may not be drawn against each other, Unity
means that pairing is permitted. There were four Spanish teams, three German, two
English, two Italian and one each from France, Portugal, Scotland, Turkey and the
Ukraine.

A B C D E F G H
A 0 1 1 1 1 1 1 1
B 1 0 1 1 1 1 1 0
C 1 1 0 1 0 1 1 1
D 1 1 0 0 1 1 0 1
E 1 1 1 1 0 1 1 1
F 1 1 0 1 1 0 0 1
G 1 1 1 1 1 1 0 1
H 1 1 1 1 1 1 1 0

There was some press interest in the fact that, the day before the actual draw, a
rehearsal drawwas held: and the real draw gave exactly the same set of eight pairings.



52 3 Sport and Games

How likely was it that this would occur? There is a simple formula that gives the total
number of possible draws: compute what is known as the Permanent of the above
matrix, defined by

Perm(A) =
∑ 8∏

r=1

ar,σ (r),

the sum being over all permutations σ of the numbers 1–8. (For our matrix, with
entries entirely zero or one, this formula simply counts the number of paths from a
“one” in the top row to a “one” in the bottom row, weaving the path through a series
of “ones”, all in different rows and columns.)

It turns out that there were just 5463 different draws: Kiesl (2013) gave an elegant
proof that they are not all equally likely. He noted that, since each Runner-up has
at most seven possible opponents, the chance of any particular sequence of draws is
some product of the form �8

r=1(1/kr ), where always 1 ≤ kr ≤ 7: a given draw may
occur in many orders, so we then sum all the relevant products of this form. If all
draws were equally likely, this sum would come to 1/5463—but the prime factors of
5463 are just 3 and 607; and since 607 > 7, the value 1/5463 could never arise from
the calculation!

The chance of the coincidence was at least 1/5463, computer simulations leading
to an estimate of around 1/5400. More interestingly, if UEFA had trusted to luck that
the draw would be successfully completed without the precaution of checking the
conditions of the Marriage Theorem, it would have collapsed about 22% of the time.

Using that Theorem in 2012 was essential! During the actual draw, AC Milan
were the fifth Runners-up drawn; the Champions left wereMalaga, Paris St Germain,
Manchester United and Barcelona. Malaga were ineligible, having won the league
ahead of AC Milan, but no random draw took place: UEFA simply announced that
AC Milan would meet Barcelona! Had they not done so, and either the French or
English team been chosen as Milan’s opponents, disaster would have occurred: two
remaining Spanish Runners-up would have had just one eligible opponent between
them.

Chess Round-robin is a standard format in chess tournaments among n > 2 players;
if a game is drawn, each player gets half a point, otherwise the winner scores one
point, the loser zero. Of particular interest is the Sonneborn-Berger method that chess
uses to break ties when two (or more) players end up with the same total number of
points. Call the points total for each player their raw score. To break ties, a secondary
score is computed for each player: this is found by adding up the raw scores of those
players he has beaten, together with half the raw scores of those players he drewwith.
The idea is to suitably reward performance against the better ranked opponents.

This is neatly described using matrices. To avoid fractions, double all standard
scores, so that winning gains two points, drawing gives one point; for the secondary
score, add up twice the scores of those you have beaten, together with the scores
of those you draw with. This plainly does not affect the ranking of players. As an
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illustration, the matrix below shows the points scored in a (fictitious) six-player
tournament:

A B C D E F Raw score
A 0 2 1 1 2 1 7
B 0 0 2 1 2 2 7
C 1 0 0 1 1 2 5
D 1 1 1 0 2 0 5
E 0 0 1 0 0 2 3
F 1 0 0 2 0 0 3

Thus, on raw scores, A and B tie for first, C and D for third, E and F for fifth: the
secondary scores, in order, are 33, 27, 21, 25, 11 and 17 leading to a clear ranking
as {A, B, D, C, F, E}, all ties being broken. Player A obtained considerable benefit
from beating B, D’s draws against A and B were well rewarded in his tie-break
contest with C, and F’s victory against D contributed highly to him being placed
ahead of E.

Now if M represents the matrix of scores, and e = (1, 1, 1, 1, 1, 1)T is the col-
umn vector all of whose entries are unity, the raw scores are just the entries in the
vector Me = u, say; and the secondary scores are the entries in Mu = M2e. This
observation prompts the thought: why stop there? Why not calculate M3e, M4e, and
so on? Of course, the entries in these vectors become large very quickly, but it is not
the actual values, it is the ranking of the entries that is used to order the contestants;
we could simply scale all these vectors in some sensible fashion, e.g. make them sum
to unity, so divide the raw scores by 30, the secondary scores by 134, and so on.

The key mathematical idea here is the Perron-Frobenius Theorem, which states
that, in the present context, there is some unique number λ > 0, the largest so-called
eigenvalue of the matrix M , and a corresponding eigenvector v, all of whose entries
are positive, with Mv = λv; and the vector Mne, when scaled, converges to be
proportional to v. Thus we could use the entries in v as a neutral way of ordering the
contestants, without arbitrarily stopping at some power of M . Mathematical software
exists that will swiftly perform these calculations.

Just for fun, here is how one table in the 2011/12 UEFAChampions League would
haveworked, if the Sonneborn-Bergermethod had been used to break ties. The points
scored across all matches were:

A Z P S Total points
APOEL 0 4 4 1 9
Zenit St Petersburg 1 0 4 4 9
Porto 1 1 0 6 8
Shaktar Donetsk 4 1 0 0 5

APOELwon the league, because of the rule that, on equal points, the head-to-head
matches are looked at first—and APOEL got four points, while Zenit got only one



54 3 Sport and Games

point. For Sonneborn-Berger, as extended, the secondary scores are (73, 61, 48, 45),
then comes (481, 445, 404, 353), both leading to the same order as under head-to-
head. Indeed, in the limit, the eigenvector gives the same order.

Ice-skating This event has two components; the short programme comes first, and
counts just half the weight of the free programme. After the Ladies short programme
in the 2002 Winter Olympic Games in Salt Lake City, the top four skaters, in rank
order, were Michelle Kwan, Irina Slutskaya, Sasha Cohen, Sarah Hughes. In the free
programme, Slutskayawas last to skate; before she began, the others had been ranked
asHughes,Kwan andCohen. Temporarily ignoring Slutskaya, the provisional overall
order was Kwan, Hughes, Cohen. Which of Kwan or Slutskaya will take Gold?

It was neither of them: Sarah Hughes won Gold, Slutskaya Silver, Kwan dropped
to Bronze.

The explanation is the bizarre scoring system, that used just the ranks in each
component. The rank scores from the short programme were Kwan (0.5), Slutskaya
(1.0), Cohen (1.5) and Hughes (2.0), the fractions reflecting the lesser weight of this
component. In the free programme, before Slutskaya skated, the provisional rank
scores were Hughes (1.0), Kwan (2.0), Cohen (3.0), giving provisional totals Kwan
(2.5), Hughes (3.0) and Cohen (4.5)—the lower the better.

Had Slutskayawon the free programme, the final totalswould have been Slutskaya
(2.0), Kwan (3.5), Hughes (4.0), with Cohen (5.5) fourth.

Had Slutskaya finished third or lower, then the scores of Kwan and Hughes would
have been the 2.5 and 3.0 noted above, with Slutskaya at least 4.0, so Kwan would
win, Hughes second.

But suppose Slutskaya came second: the final totals would be Hughes (3.0), Slut-
skaya (3.0), Kwan (3.5), Cohen (5.5), and Hughes would win overall, because of the
rule that, with a tie, the free programme dominates. And that is exactly what hap-
pened! By this method of judging, the relative ranking of Sarah Hughes andMichelle
Kwan depended on how well Irina Slutskaya skated! This is not an outcome that is
easy to defend.

Postscript: Thankfully, the rules have been changed, ranking is no longer used in
this way. Skaters are marked according to their success in various elements of their
programme, and the scores added up. When ranking was used, it made no difference
if you were first by a tiny margin, or first by a long way: now it does.

3.7 Penalty Kicks in Soccer

In taking a penalty kick, a player has many choices: to aim left, right or centre; high
or low; blast or steady, etc. Similarly, the goalkeeper can stay still, dive left or right,
high or low, etc. To focus on principles, and keep things simple, let each player have
just two tactics. The Kicker, K , can aim straight, or at a corner; the Goalkeeper G
can stand still, or dive one way.

For any given choice they each make, we can assess the chance a goal results.
For example, if K aims straight, and G dives, the goal chance would be about 90%



3.7 Penalty Kicks in Soccer 55

(K may hit it over the bar, or it might hit G’s leg); but if G stays still, the goal chance
will be much less. On the other hand, if K aims for the corner, he might miss the goal
altogether, but if he does not, he is very likely to score if G stands still, less likely if
G makes a dive. Perhaps the goal chances are:

Stay still (%) Dive (%)
Aim straight 30 90
Aim at corner 80 50

Given this table, what should K do? What should G do?
The essence of this set-up is that there is a conflict. If K aims straight, it is best

for G to stay still, if K aims at a corner, G does best to dive, and vice versa. Each
player would like to know what the other will do, so each must conceal his tactics
from the other. Suppose K aims straight a proportion p of the time, at the corner
otherwise. Then the chance K scores depends on what G does. Use the columns in
the table of goal chances:

(i) G stays still. The goal chance is p × 0.3 + (1 − p) × 0.8 = 0.8 − 0.5p.
(ii) G dives. The goal chance is p × 0.9 + (1 − p) × 0.5 = 0.5 + 0.4p.

As p increases, the former falls and the latter rises, as Fig. 3.5 shows.
Suppose we select the value of p that makes these goal chances equal, i.e. put

0.8−0.5p = 0.5+0.4p, leading to p = 1/3 and the goal chance is then X = 63.3%.
We now have protection against any spies G has—if G knew that p < 1/3, G would
dive, while if p > 1/3, G would stand still. In both cases the chance of a goal would
be less than X .

G can argue in the same way, using the rows in the table. He will stand still
a proportion r of the time, so the respective chances of a goal are
0.3r + 0.9(1 − r) = 0.9 − 0.6r , and 0.8r + 0.5(1 − r) = 0.5 + 0.3r , which
are equal when r = 4/9. By this choice, G ensures that the goal chance is no more
than this same value X .

p

0 1

0.5

0.8

0.9

0.3
Stays Still

Dives

Goal chance Goal chance

Fig. 3.5 Variation of goal chance with K’s tactics
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The above analysis puts taking a penalty into the context of a two-person zero-sum
game. “Zero-sum” suggests that one player gains what the other loses, but the crucial
point is that one player seeks to minimise the “reward”, the chance of scoring, while
the other seeks to maximise it. We could add realism by increasing the number of
strategies available to each player: the analysis, althoughmore complicated, will lead
to a similar end result, in that each player should use each of the available tactics
some calculable proportion of the time, at random.

There remains an important question: how does either player carry out such a
recommended strategy? In the simple example above, look at the Kicker’s problem:
how to have a 1/3 chance of aiming straight, a 2/3 chance of aiming at the corner?
Human beings are not programmed to be able to do such things, they need outside
help!

The possibilities include:

(i) In the dressing room, throw a fair die: aim straight if it shows 1 or 2.
(ii) On the pitch, glance at the second hand on the stadium clock: aim straight if it

is in the segment 0 to 4-o’clock.
(iii) On the pitch, which of your three best team-mates (A, B or C) is currently nearest

the referee? If A, aim straight.

CONCEAL what you are doing from the goalie—but you don’t care if he knows
you have a 1/3 chance of aiming straight! But, as well as using game theory, do
practice your penalties.

Example 3.4 When Vic takes a penalty in soccer, he always aims for a corner, either
to his left or to his right. He is more accurate when shooting to his left—he only
misses the goal 10% of the time, but misses 25% of the time when aiming right.
Goalkeeper Harry has to guess which way to dive: even if he guesses the correct side,
his chance of saving the shot (when it is on target) is only 20%. What tactics should
each use? Intuitively, justify Harry’s best tactics.

Solution. Draw up a payoff table, giving the chance of a goal according to the two
actions, as follows. (All directions are from Vic’s perspective.)

Dive left (%) Dive right (%)
Aim left 72 90
Aim right 75 60

Justification: if Vic aims left, he is on target 90% of the time, so must score if
Harry dives right, and will score 80%×90% = 72% of the time if Harry dives left.
If Vic aims right, he is on target 75% of the time, so then scores if Harry dives left,
and still scores 80% × 75% = 60% of the time if Harry dives right.

Suppose Vic aims left with probability p. If Harry dives left, the overall (per-
centage) chance of a goal is 72p + 75(1 − p) = 75 − 3p, if he dives right it is
90p + 60(1 − p) = 60 + 30p. These are equal when 75 − 3p = 60 + 30p, i.e.
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when p = 5/11. Vic should aim left 5/11 of the time, and right 6/11 of the time, at
random.

For Harry, if he dives left with probability r , the corresponding equation is
72r + 90(1 − r) = 75r + 60(1 − r), i.e. r = 10/11. Harry should dive left 10/11
of the time, and right just 1/11 of the time, again at random.

Why should Harry overwhelmingly dive to the left? Intuitively, if he guesses
correctly, and the shot is on target, he still only stops it one time in five. So his best
chance of “no goal” is for Vic to miss. Vic is far more likely to miss if he goes right,
so Harry should concentrate on increasing his chance of stopping the shot if Vic goes
left. Hence the 10/11.

3.8 Golf: Flamboyance Versus Consistency

In golf, a risky shot may gain, but could also prove costly. For given overall ability,
will a steady consistent player tend to do better orworse than a flamboyant competitor
who takes risks?

A central idea in golf is “par”: most holes are “par 4”, with a competent player
expected to take two shots to land the ball on the green, one putt to get near the hole,
one more putt to sink it. Shorter holes are “par 3”, longer ones may be “par 5”. So,
from any position on the course, there is some “par score” expected to complete the
hole: close to the hole, it will be “par 1”, 6m away “par 2”, etc.

For a simple model to explore this idea, we suppose there are three types of shot:
an Ordinary shot does what is expected for par, a Good shot saves one shot to par,
a Bad shot essentially leaves the ball where it is, losing one shot to par. We assume
the player is equally likely to hit a Good shot as a Bad one so that, on average, all
shots are Ordinary. Good and Bad shots each occur a proportion x of the time, so
that Ordinary shots will happen 1 − 2x of the time. How does the average number
of shots for a hole vary with x?

Write Ar as the average number of shots it will takewhen at a point whose distance
from the hole would be “par r”, for r = 1, 2, 3, . . .. When r = 1, the ball is holed
with frequency 1 − x , but a proportion x of the time, it effectively stays where it is.
So we have

A1 = 1 + x A1,

leading to the simple result A1 = 1/(1 − x).
For r ≥ 2, the next shot either leaves the ball where it is (frequency x), moves it

one par shot closer (frequency 1 − 2x), or two par shots closer (frequency x again),
giving the recurrence relation

Ar = 1 + x .Ar + (1 − 2x).Ar−1 + x .Ar−2.
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We can use this to find the particular values A2 = (2 − 3x)/(1 − x)2,
A3 = (3 − 8x + 6x2)/(1 − x)3, etc., with the general result (Exercise 3.19)

Ar = r + x + (−1)r−1 xr+1

(1 − x)r
.

So when r is an odd number, Ar always increases with x ; when r is even, this also
holds for the fairly small values of x seen in practice. Thus, as a general rule, a
more consistent golfer (lower x) will take fewer shots, on average, than a flamboyant
risk-taker.

But a flamboyant player may well win more money. Prizes are skewed towards
the winner, and our consistent player may finish about 20th every time, while the
flamboyant player finishes 30th on average—but the prize money coming from the
occasional top-five finishes could outweigh the steady moderate amounts won by the
consistent player.

3.9 Exercises

3.1 We have argued that, if p is the chance of winning a point in tennis, then the
chance of winning the game can be written as

G(p) = p4 − 16p4(1 − p)4

p4 − (1 − p)4

when p �= 1/2. Use L’Hôpital’s Rule to show that, as p → 1/2, so also
G(p) → 1/2.
Let p = 0.5+ε, where ε > 0 is small. Show thatG is approximately 0.5+2.5ε,
and compare the correct value of G with this approximation when p = 52%
and p = 60%.
Figure3.1 shows the graph of G against p. If you already win 80% of points
on your serve, how many more service games would you expect to win if you
could increase this to 90%?

3.2 In 2010, John Isner beat Nicolas Mahut 70-68 in the fifth set in theWimbledon
tournament. (Both players have powerful serves.) To reduce the chance of such
a long set, it has been suggested that each game might begin with the score
already 0 − 15. Adapt the argument in this chapter to show that, with such a
rule change, the chance the server wins the game (if p �= 1/2, and q = 1− p)
would be

H(p) = p4 + 4p4q + 10p3q2.
p2

1 − 2pq
= p4(1 − 10q3 + 4q4)

p4 − q4
.
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For a server who wins 80% of the points on serve, by how much would this
rule change decrease the chance the server wins the game?

3.3 Let F(S) denote the Fast(Steady) serve of a tennis player; let x , y be the respec-
tive chances that F(S) are good (not faults), and f , s be the respective chances
of winning the point if the two types are good.
Take f = 80%, s = 50%, x = 50% and y = 90%. For each of FF, FS, SF,
SS find the winning chances; rank these tactics.
Invent plausible values (i.e. with f > s and with y > x) for f, s, x, y making:
(i) FF best; (ii) SS best.

3.4 In the notation of this chapter, prove the claims that, when f > s and y > x ,
then FF has the largest chance of winning a point if R > 1, while SS is best
when R < 1 + x − y and FS is best otherwise.

3.5 Suppose that the chance Alice wins any set in tennis against Betty is
p (0 < p < 1), irrespective of who serves first and the results of other sets.
The winner of the match is the first to win two sets. List the ways in which
Alice could win the match, and hence deduce that the chance she does so is
p2(3 − 2p). Deduce that, if p > 0.5, Alice is more likely to win the match
than to win the first set.

3.6 In lawn tennis, if the set score reaches 6 − 6, a tie-break may be played—the
first player to win seven points, and be at least two ahead of his opponent—
wins the tiebreak, and so wins the set 7− 6. Suppose Ted beats Harry 0-6, 0-6,
7-6, 7-6, 7-6: show that it is possible for Harry to have won some 65% of the
points.

3.7 In table tennis, estimate the total number of points played in a match between
two equally good players under the old rules, and the new (see the text at the
end of the Lawn Tennis section).

3.8 In the notation of Fig. 3.2, when seeking to convert a try scored at the point
X (wide of the posts), the angle made by the posts (C, D) and the conversion
point Y is maximised when XY is a tangent to the circle through C, D and Y.
Choose a co-ordinate system with the x−axis along CD, the origin being at
the centre of the goal, and the y−axis parallel to XY. Take C as (−a, 0), D as
(a, 0), and Y as (x, y), with angle CYD = θ .
Write θ as the difference between two angles to show that

tan(θ) = 2ay

(x2 + y2 − a2)
.

Since maximising θ is the same as maximising tan(θ) (why?), find the optimal
value of y, given x , thereby showing that the locus of the optimal points X
satisfies x2 − y2 = a2 (a rectangular hyperbola).

3.9 Two snooker balls each have radius r > 0, their centres are distance 2xr apart
with x > 1. If the cue ball is sent at an angle θ away from the line of the
centres, but small enough to hit the object ball, we have shown that the object
ball is deflected at an angle φ, where
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tan(θ) = 2r sin(φ)/(2xr − 2r cos(φ)).

Deduce that φ = arcsin(x sin(θ)) − θ ; hence give the actual values of φ when
x = 10 and θ is (i) one tenth of a degree (ii) 1◦.
In the rest of this question, the centre of the cue ball is distance 2Dr from the
pocket, all other balls are placed in the straight line between the cue ball and
the centre of the pocket, the cue ball is hit hard and θ �= 0.

(a) Suppose there is one other ball, distance 2xr from the cue ball with
1 < x < D. If θ is small and the cue ball hits the object ball, show that
the object ball will be approximately 2r(x − 1)(D − x)θ away from the
pocket’s centre. What value of x maximises the distance of the object ball
from the pocket? What is this distance (approximately)?

(b) Suppose two other balls are placed, the first at distance 2xr from the cue
ball, the second at a further distance 2yr form the first, with x > 1, y > 1
and x + y < D. If θ is small enough for the cue ball to propel the first
object ball into the second, show that the second ball will miss the pocket by
2r(x − 1)(y − 1)(D − x − y)θ , approximately. Deduce that this quantity is
maximised when x = y = (D + 1)/3, and write down the corresponding
approximation to the distance by which the second ball misses the pocket.

3.10 When a > b > 0, the relation

x2

a2
+ y2

b2
= 1

describes an ellipse with foci at S = (−ae, 0) and H = (ae, 0), where e > 0
is its eccentricity, given by a2e2 = a2 − b2. Let P = (x1, y1) be an arbitrary
point on this ellipse.

(i) Use the hint in the text, and the fact that tangent and normal are orthogonal,
to show that n = (b2x1, a2y1) is in the direction of the normal at P .

(ii) Let θ and φ be the angles between this normal and the lines S P and H P
respectively, joining P to the two foci. Use scalar products to show that
cos(θ) = cos(φ) = ab2/|n|.

(iii) Place the cue ball at one focus of such an elliptical billiard table (with no
pockets) and cushions that give true rebounds. Describe its path, when hit in
any direction, but so that the total distance it travels is 4a.

3.11 A shot-putter releases the shot at V metres/second, from height h metres, and at
an angle θ above the horizontal, and g m/sec2 is the acceleration due to gravity.
Use the formula for the distance achieved to show that the optimal value of θ

comes from sin2(θ) = 0.5V 2/(V 2 + gh). Take V = 14, h = 2 and g = 10
(plausible for top-class male shot-putters), and verify that, with these figures,
the best value of θ is around 42◦. Give the maximum distance achieved (to the
nearest 5 cm).
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Take θ = 42◦, and V, h, g as above. How much further (to the nearest cm or
so) would the shot travel, with (three separate answers) (i) a 1% increase in V
(ii) a 1% increase in h (iii) a 1% decrease in g?
According to the National Physical Laboratory, the formula for g at latitude φ

and altitude A metres above sea level is (very nearly)

g = 9.7803(1 + 0.0053 sin2(φ) − 0.000006 sin2(2φ)) − 0.0000031A.

Estimate the extra distance (cm) a top class male shot-putter would achieve in
Mexico City (latitude 19◦, altitude 2300m) as opposed to sea level Helsinki
(60◦ North).

3.12 Cricketer Kevin practises straight hits in the nets. The ball leaves his bat at
30m/s, launched at an angle of either 60, or 45, degrees above the horizontal.
Joe stands directly in the line of the hit, distance D metres from Kevin, and
will try to catch the ball (at exactly the same height above ground as where it
leaves the bat). Joe will face Kevin all the time, and can run at 5m/s forwards,
or 3m/s backwards. Find the largest value of D so that Joe can reach the ball
running forwards if it is hit at the steeper angle, and the smallest value of D so
that he can reach the ball running backwards, if it is hit at the shallower angle.
(Take g = 10m/s/s.)

3.13 In the decathlon, the score for a High Jump of x cm is 0.8465(x − 75)1.42,
provided x ≥ 75. Use the Taylor expansion

f (x + h) ≈ f (x) + h f ′(x)

to estimate the extra points scored for each extra increment of 2cm achieved,
for an athlete currently jumping around 2.20m.

3.14 (i) In how many ways can we arrange the numbers 1–20 on a dartboard, with
odd and even numbers alternating?

(ii) In the notation of this chapter, prove that S ≤ 200 for all arrangements of
{1, 2, . . . , 20} round the board.

(iii) The “Low” numbers are 1–10, the “High” numbers are 11–20. Prove that it
is not possible to have an arrangement where both High and Low numbers
alternate, and Odd and Even numbers alternate.

(iv) A darts match is set up as the best of five sets, each set having five legs.
Use the appropriate text formula (twice) to find the chance that the player
who throws first in the first leg of the first set wins this match, using the
value p = 0.7. (They alternate the right to go first from set to set.)

(v) Tina and Kate are equally good at darts; whoever throws first wins a stan-
dard game with probability p > 0.5. They alternate who goes first, and
use an unusual rule: the winner is the first to win two consecutive games.
Tina can decide who throws first in the first game: should she choose to go
first, let Kate go first, or does it make no difference?
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(Assume that the outcomes of different games are independent, meaning
that the overall chance of a particular list of outcomes arises bymultiplying
together the chances of the outcomes of the individual games.)

3.15 Suppose that, during a draw for the UEFA Champions League, using the rules
given in the text, the position when twelve teams are left is as follows. (The
Runners-up areA to F, theChampions are P toU;we list theChampions eligible
to play the given Runners-up.) A: QRT; B: QT; C: PQRSU; D: RST; E: QRT;
F: PQSTU. Verify that the draw can be legally completed. Now suppose that
team D are the next Runners-up selected: describe what will happen.

3.16 Suppose that, in a given year, there are N valid draws for the UEFAChampions
League, with respective probabilities {x1, x2, . . . , xN }. Show that the chance
that the rehearsal draw and the real draw give identical fixtures is

∑
x2

i . Prove
that the value of this expression is at least 1/N .

3.17 In a chess tournament with four players, A beats B and C but loses to D; B beats
C and D; C beats D. How does the Sonneborn-Berger method resolve the ties
for first and third places? Write M as the matrix of results, giving one point for
a win, zero for a loss, and let e = (1, 1, 1, 1)T ; compute the successive values
of Mr e for r = 1, 2, 3, . . . until all components of the vector are different.
What overall order would using that vector imply?

3.18 We have set up the taking of a penalty kick as a conflict between the Kicker K
and the Goalkeeper G. The chances of a goal, according to which of their two
tactics they use, have the form

Stay still Dive
Aim straight a b
Aim at corner c d

with a < b, c > d, a < c and b > d. For each of G and K , find (in terms of
a, b, c, d) the proportion of the time they should use each of their tactics, in
order to guard against the possibility that the other has spies who may discover
this.
If these proportions are used, what is the overall chance of a goal?

3.19 Use induction to prove the general formula

Ar = r + x + (−1)r−1 xr+1

(1 − x)r

for the mean number of shots to complete a hole from a point which is “par-r”
in the golf model described in the text.

3.20 An 18-hole golf course has three par-3 holes, three par-5, the rest being par-4.
For the golf model described in the text, what is the average score for one
complete round for a player who hits Good or Bad shots each with frequency
5%, Ordinary shots with frequency 90%?
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Chapter 4
Business Applications

Abstract We begin by analyzing how a retail outlet can minimise its overall costs in
ordering and holding stock, and then show how to set up and solve problems as linear
programmes, with applications to diets, producing the right quantities of goods at
minimum cost, transporting materials from several sources to different destinations
as cheaply as possible, and even allocating nurses to shifts, or obtaining the optimal
allocation of lecturers to different modules in universities. The use of check digits,
via the properties of prime numbers, helps ensure that customers do not order the
wrong product when using a numerical code over the internet, and could also prevent
customers transferring money to the wrong recipient in automated bank transfers.
Models of how employees move through different ranks in a large organisation give
more practice in matrix algebra, including inverting small upper triangular matrices
and a hint at eigenvalue/eigenvector work that students can expect to meet later. The
Kelly strategy for investing under conditions of uncertainty is derived (this section
could equally well be incorporated in Chaps. 1 or 7).

4.1 Stock Control

Suppose a retailer sells non-perishable non-seasonal goods, such as kitchen equip-
ment, car accessories or cleaning necessities. The estimate of total annual demand is
N items, which must be obtained from some wholesaler, and stored until sold: thus
costs comprise

(i) a fixed amount C for each order, including delivery;
(ii) the wholesale cost of each item, P;
(iii) storage costs, of H per item per year.

If demand is steady, howmany should be ordered each time so as to minimise overall
annual costs?

Ordering Q at a time implies N/Q orders per year in the long run, at an annual
order cost of C N/Q. Buying the items costs N P , and with steady demand, the
average number in storage at any time (above an irreducible minimum) will be Q/2:
so we assess the annual storage costs as H Q/2. In total, the annual cost is
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f (Q) = N P + C N/Q + H Q/2.

To find the value of Q that minimises this, put the derivative of f (Q) to zero, i.e.
solve

−C N/Q2 + H/2 = 0,

leading to Q2 = 2C N/H .
Since f ′′(Q) = 2C N/Q3 > 0, this does indeed give a minimum. The quan-

tity Q̂ = √
2C N/H that minimises these long-term costs is termed the Economic

Ordering Quantity (EOQ).
The function f (Q) is the sum of a constant (N P), a decreasing function (C N/Q),

and an increasing one (H Q/2). The general shape of

y = f (Q) − N P

is shown in Fig. 4.1.
A supplier might give discounts on a sufficiently large orders, perhaps 5% on

orders of at least Q1, and 10% on orders of at least Q2. This has no impact on storage
or delivery costs, but there will be a step change in the overall cost at any point where
the discount kicks in: for any quantity Q where the discount is of size θ , total cost
drops by θ N P . Figure 4.2 shows the shape of the new graph of y = f (Q) − N P , if
there is a discount on orders of at least Q1, and a higher discount for orders of size
at least Q2.

For any value Q where the original graph is strictly decreasing (e.g. at the point
Q1 here) this discount point cannot be a global minimum, as a marginally higher
Q leads to a lower total cost. But where the original graph is increasing or level, a
discount might well (as at the point Q2 here) be a global minimum. Thus we just
have a finite list of candidates for the minimum possible cost—the original Q̂ already
identified, and those discount points where f ′(Q) ≥ 0. An example illustrates.

Example 4.1 Megastore sells electric toasters, and estimates annual demand at 1,000
items. Their wholesale suppliers normally charge £10 for each such toaster; it costs
Megastore £20 to place an order (including delivery), and they take storage costs as
£4 per item per year. What order size minimises costs for Megastore? If the suppliers
give a discount of 2% on order sizes of at least 50, 3% on order sizes of at least 100,
and 5% if the order is for 200 or more, what order size would now minimise costs?

Fig. 4.1 Variation of annual
cost with size of each order

Q

y = f(Q) − NP
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Fig. 4.2 Annual cost, with
discounts for bulk orders

Q

y = f(Q) − NP

Q2Q1

Solution. In our notation, we have N = 1,000, P = 10, C = 20 and H = 4, and
it seems reasonable to assume that demand is steady. So if Megastore order Q at a
time, their annual cost (in £) will be

f (Q) = N P + C N/Q + H Q/2 = 10,000 + 20,000/Q + 2Q,

with an EOQ of
√
2C N/H = √

40 × 1000/4 = 100. The store should order 100
items each time, if no discounts are offered.

Since the threshold of 50 for the 2% discount is below this quantity, this cannot
yield a global minimum. We must check on the other two possibilities:

(i) when Q = 100, the new cost (above 10,000) is

20,000/100 + 2 × 100 − 10,000 × 3% = 200 + 200 − 300 = 100;

(ii) when Q = 200, the new cost (above 10,000) is

20,000/200 + 2 × 200 − 10,000 × 5% = 100 + 400 − 500 = 0.

With such discounts, they should order 200 at a time.
Reducing a search from infinitely many choices to a small finite number is also a

feature of our next topic.

4.2 Linear Programming

In this introduction, we will merely describe what this subject is, and how to solve
the problems it throws up. Precisely why the methods work is not covered. And we
will look only at examples that involve only a small number of variables, although, in
applications, the number of variables can be in the tens of thousands, or even more.

Suppose a firm supplying m different food items must produce at least (say) b1
tons of sugar, b2 litres of apple juice, b3 kilograms of muesli, etc, as cheaply as
possible. It has n production sites, with different costs and capabilities: to run site
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j for one day costs c j , and it will produce ai j units of item i , for i = 1, 2, . . . , m.
Suppose site j runs for x j days.

To meet demand, we must have ai1x1 + ai2x2 + · · · + ain xn ≥ bi for each value
of i = 1, 2, . . . , m. The total cost will be c1x1 + c2x2 + · · · + cn xn . Hence we seek
to

Minimise c1x1 + c2x2 + · · · + cn xn, subject to ai1x1 + ai2x2 + · · · + ain xn ≥ bi

for each i = 1, 2, . . . m,with each xi ≥ 0.

In vector and matrix notation: let c′ = (c1, c2, . . . , cn) be a row vector, and let
x = (x1, x2, . . . , xn)

′, b = (b1, b2, . . . , bm)′ be column vectors. Take A as the m ×n
matrix (ai j ). The problem can be expressed as:

Minimise c′x subject to Ax ≥ b and x ≥ 0.

This is called the Standard Minimum Problem of linear programming. The quan-
tity of interest, c′x, is termed the objective function.

There is a logical method to solve such problems, which rests on one simple idea.
(To visualize matters, think of n being 2 or 3, so you have a mental picture of the
(x, y) plane, or ordinary 3-space.) Equations like

xi = 0 or ai1x1 + ai2x2 + · · · + ain xn = bi

define lines or planes that split the whole space into two halves. An inequality such
as xi ≥ 0 or ai1x1 + ai2x2 + · · · + ain xn ≥ bi specifies the points that lie on one side
of this line or plane. (In higher dimensions, we refer to “hyperplanes”.) To satisfy
all such constraints, we want the intersection of the half-spaces defined by these
hyperplanes. Because each xi ≥ 0, we are interested only in points in the positive
quadrant/octant/higher-dimensional analogue. The points where all the inequalities
hold is called the feasible region.

This feasible regionwill always be a convex polytope: in twodimensions, the edges
are straight lines, in 3-space, all its faces are planes, all its edges straight lines. It will
generally contain infinitely many points, and the minimum of an arbitrary function
f (x) could be anywhere in the feasible region. But when the function takes the
linear form c′x, the minimum can only occur at one of the vertices of the polytope—
of which there are only finitely many! Example 4.2 illustrates why. (With just two
variables, it is more convenient to use x, y than x1, x2.)

Example 4.2 Minimise x + y subject to

2x + y ≥ 2, x + 2y ≥ 2, 6x + y ≥ 3 and x ≥ 0, y ≥ 0.

Solution. The feasible region, whose vertices are A = (0, 3), B = (1/4, 3/2),
C = (2/3, 2/3), and D = (2, 0), is shaded in Fig. 4.3. We draw a straight line
x + y = c, seeking for c to be as small as possible, consistent with some part of
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Fig. 4.3 The feasible region,
and the objective function

x

y

21

1

2

A

x + y = c

C

B

D

the line falling in the feasible region. As c reduces, the line moves parallel to itself
towards the origin, so that any such line can leave the feasible region ONLY at the
vertices!

So to solve the problem, just work out the values of the objective function at
the vertices, and see which is smallest. At A, B, C and D, the respective values of
the objective function are 3, 7/4, 4/3 and 2, the smallest of which is 4/3 achieved at
point C = (2/3, 2/3) (as is apparent from the graph). If the objective function had
been 5x + y, with the same feasible region, the minimum value, 11/4, would arise
at B = (1/4, 3/2).

Exercise 4.2 ask you to minimise 3x + y, and x + 4y, under the same constraints.
So you need do no more than evaluate each objective function at the four vertices,
to identify where the minimum lies.

Reducing a search from infinitely many points to maybe 4 or 5 is a major advance.
The Simplex Method (described in any standard textbook on Linear Programming),
a logical way to solve such problems even with thousands of variables, consists of

(a) locating ONE of these vertices;
(b) using a criterion that checks whether this is the one that minimises the objective

function;
(c) if that vertex does not yield a minimum, then locating a vertex with a smaller

value of the objective function;
(d) returning to step (b).

This Method was developed by George Dantzig in 1947, in response to logistical
problems in the deployment of forces and equipment in the US Air Force. One of the
first practical applications was to construct an adequate diet at minimum cost—see
Exercise 4.4(iii).
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Sometimes, there is one other practical constraint: that the nature of the problem
implies that the answer only makes sense when the values xi are integers. In such
cases, if the methods described lead to a non-integer solution, it is usually enough to
look at the nearest all-integer points within the feasible region.

4.3 Transporting Goods

Givenm sourceswhere goods are currently stored, andn destinationswherewewould
like them to be, how do we find the cheapest way of getting the right quantities of
goods to their intended locations? This is known as the transportation problem and,
in many instances, is also a problem amenable to techniques developed in the general
theory of linear programming.

Suppose the cost of moving one item from the i th source to the j th destination
is ci j ≥ 0, and we will move xi j ≥ 0 units from source i to destination j . Then the
cost, which we seek to minimise, is expressed as

∑
ci j xi j .

If there are si items at the i th source, we must have
∑

j

xi j ≤ si ;

and if at least d j items are required at the j th destination, then also

∑
i

xi j ≥ d j .

Plainly, for any solution to exist, the total supply of goods must be at least as great
as the number required at the destinations and, if necessary, by introducing an extra
destination which will receive any surplus goods, at zero transportation cost, we
can assume that supply and demand exactly balance out. This lets us formulate the
problem in the following standard way:

given quantities {si } and {d j } with each si > 0, each d j > 0 and

m∑
i=1

si =
n∑

j=1

d j ,

we seek to minimise

m∑
i=1

n∑
j=1

ci j xi j

subject to
∑n

j=1 xi j = si ,
∑m

i=1 xi j = d j and each xi j ≥ 0.
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We describe a way of solving this problem, and outline why it works later, but
a formal justification must be found elsewhere. The general idea is to start with a
feasible solution, i.e. some method of getting the right quantities of goods to their
destinations, checkingwhether it can be bettered and, if so finding an improvement—
exactly the template noted above for the SimplexMethod.We have set up the problem
ensuring that

∑
si = ∑

d j ; there is a slight awkwardness if these numbers are such
that a partial sum of the values {si } is equal to a partial sum of the {d j }, so we will
initially assume this is not the case.

Firstly, we set up a framework that summarises the problem, showing the supplies,
demands and costs in a rectangular array, and introduces quantities ui and v j that
will lead to a solution.

d d1 d2 . . . dn
s ui vj . . . . . .

s1
s2
...

sm

⎛
⎜⎜⎜⎝

c11 . c12 . . . . c1n .

c21 . c22 . . . . c2n .
...

...
...

...
...

...
...

cm1 . cm2 . . . . cmn .

⎞
⎟⎟⎟⎠

Example 4.3 Suppose we have m = 2 supply points holding 4 and 7 units respec-
tively, with demands 5, 3, 3 at n = 3 destinations. Costs are c11 = 6, c12 = 5,
c13 = 8, c21 = 2, c22 = 3 and c23 = 1. Then the initial layout is

d 5 3 3
s ui vj . . .

4
7

(
6 . 5 . 8 .

2 . 3 . 1 .

)

We need an initial feasible solution, i.e. a suitable m × n matrix {xi j } which
describes some way of moving the supplies to their destinations. One way is the
“northwest corner method”: take x11 as the smaller of the quantities s1 and d1: if
s1 < d1, we have not yet met the demand at the first destination, so choose x21
as large as possible without exceeding the smaller of s2 and the residual demand;
whereas if s1 > d1, choose x12 as large as possible without exceeding the smaller
of the residual supply, or d2. Continue in this fashion, moving from left to right
and top to bottom of the matrix. Our assumptions ensure that we can always take
the next desired step. Insert the non-zero values {xi j } after the corresponding costs.
There will automatically be m +n −1 non-zero values of the {xi j }, and this property
(a “basic” feasible solution) must be maintained in the subsequent steps. Here, this
path would lead to
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d 5 3 3
s ui vj . . .

4 .

7 .

(
6 4 | 5 . | 8 .

2 1 | 3 3 | 1 3

)

Work on this array, using the non-zero values of xi j . Set u1 = 0, and find all the
other values of ui and v j in turn from the equations v j − ui = ci j whenever xi j > 0.
Then calculate the values of v j − ui in the remaining cells, where xi j = 0—mark
them with an asterisk. Here, we now obtain

d 5 3 3
s ui vj 6 7 5

4 0
7 4

(
6 4 | 5 7∗ | 8 5∗

2 1 | 3 3 | 1 3

)

If all the asterisked values are less than or equal to the corresponding costs, we
have found an optimal solution; but if some asterisked value exceeds the cost ci j ,
we can find a better solution that sends as much as possible down that route. In the
example, since v2 − u1 = 7 > 5 = c12, we should send some amount, θ say, from
supply 1 to destination 2. This will require modifications to the previous values of
the x ′s, some bigger, some less, to satisfy the constraints. This notion leads to

d 5 3 3
s ui vj 6 7 5

4 0
7 4

(
6 4 − θ | 5 θ | 8 .

2 1 + θ | 3 3 − θ | 1 3

)

The largest value of θ that keeps all the xi j non-negative is θ = 3, so the new
display, with re-calculated values of the ui and v j is

d 5 3 3
s ui vj 6 5 5

4 0
7 4

(
6 1 | 5 3 | 8 5∗

2 4 | 3 1∗ | 1 3

)

This time, the two asterisked values are indeed less than or equal to the corre-
sponding costs, so we have found an optimal solution: x11 = 1, x12 = 3, x21 = 4
and x23 = 3. The total cost is 32, the cost of the initial feasible solution would have
been 38.
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To see why this procedure leads to an optimal solution, imagine that the whole
job of transporting the goods is put out to tender. A firm applying for the tender
will buy all the goods at the supply points, and sell them in the correct quantities
at the demand points. The important factor is not the prices themselves, but just the
difference between buying and selling costs. So we can arbitrarily set u1 = 0, i.e. the
goods at the first supply point are acquired at zero cost. The equations v j − ui = ci j

whenever xi j > 0 then fix all the other buying costs of the supplies, and selling
costs at the demand points. But if any asterisked value—the difference between
buying and selling costs for a route that this tendering firm will not use—exceeds the
corresponding ci j , the tender will be unsuccessful, as the original firm could do the
job cheaper using that route just identified. Only when no asterisked value exceeds
the corresponding cost can the tendering firm match the minimum overall cost that
can be achieved.

A possibly better way of beginning (in that it may well require fewer subsequent
steps) is the “matrix minimum” method: locate the smallest cost among all the {ci j },
and send the largest possible amount along that route; go to the next-smallest ci j ,
and do the same, taking account of the previous move; continue until all supplies
are exhausted and demands met. In our example, the smallest cost is c23 = 1, so we
would send 3 units from supply 2 to fulfill demand 3; we then exhaust supply 2 by
sending the other 4 units to demand 1, and complete the initial schedule using supply
1 in the only way possible. And this time, our initial allocation turns out to be the
optimal one we have just found, so no introduction of a new route is required.

Recall the assumption that we never find that a partial sum of the supplies adds
up to a partial sum of the demands: if two such partial sums are indeed equal, we
say the problem is degenerate, and we could well find, following the recipe given,
that there are fewer than m + n − 1 equations from which to determine all the ui and
v j . The method would break down. A subtle trick is available: change each supply
from si to s ′

i = si + ε, and change demand dn to d ′
n = dn + mε, where ε is tiny. The

problem is then non-degenerate, as now no partial sum of the supplies is equal to a
partial sum of demands: thus we solve this non-degenerate problem, and put ε = 0.
Again, an example should help.

Example 4.4 With the same cost matrix as before, let the supplies be 4 and 7, with
demands 2, 4 and 5. This is plainly degenerate, so wemake the adjustment described,
and the north-west corner method leads to x11 = 2, x12 = 2 + ε, x22 = 2 − ε and
x23 = 5 + 2ε. The initial tableau, after the values of the u′s and the v′s have been
calculated, is thus

d 2 4 5 + 2ε

s ui vj 6 5 3

4 + ε 0
7 + ε 2

(
6 2 | 5 2 + ε | 8 3∗

2 4∗ | 3 2 − ε | 1 5 + 2ε

)
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Since the values of s and d are automatically catered for in subsequent steps, we
can omit specific mention of them. The asterisked value 4 exceeds the corresponding
cost 2, so we seek to send a maximal amount θ from supply 2 to demand 1; the other
necessary adjustments before fixing the value of θ lead to

ui vj 6 5 3

0
4

(
6 2 − θ | 5 2 + ε + θ | 8 .

2 θ | 3 2 − ε − θ | 1 5 + 2ε

)

Take θ = 2 − ε, recalculate the u′s and the v′s to find

ui vj 6 5 5

0
4

(
6 ε | 5 4 | 8 5∗

2 2 − ε | 3 1∗ | 1 5 + 2ε

)

Since both asterisked entries do not exceed the corresponding costs, we have
found an optimal solution to this perturbed problem: so now set ε = 0 to give an
optimal solution to the initial problem, i.e. x12 = 4, x21 = 2, x23 = 5.

4.4 Jobs and People

Suppose you have n different jobs to be done, and n people, of diverse suitability,
available. You must allocate one job to each person, in the “best” manner possible.
How might you set about this task?

Surprising as it might seem, this problem is identical, in essence, to the transporta-
tion problem we have just examined! For each person, give them a score in the range
zero to ten, say, according to their suitability for each job: a score of zero means they
are totally unsuited, ten means they are ideal. Write ai j as the score of person i to
job j , for all values of i and j ; make an allocation of the n people to the jobs, add up
all the corresponding values of the scores, and the larger this sum is, the better the
overall allocation.

So our task is reduced to finding that allocation that maximises this sum: to turn
this into the language of the transportation problem, each person is a “supply” of
size 1, each job is a “demand” of size 1, and if we write ci j = 10 − ai j as a cost,
minimising the total cost of an allocation is the same as our goal of maximising the
sum of the ai j . However, it is more natural to stay with the idea of maximising the
sum of the values {ai j } of the allocations used, and it is not difficult to believe that
the only difference in the method of solution is that now we continue to seek a better
solution if any asterisked value is below the corresponding score {ai j }.
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Plainly this is a degenerate problem! So we adjust it, by having n supplies each
of size 1 + ε, along with n − 1 demands of size 1, and one demand of size 1 + nε.
As ever, an example will prove useful.

Example 4.5 The Head of Department assesses the suitability of four teachers, A,
B, C, D to deliver four lecture courses R, S, T, U on a ten-point scale according to the
matrix shown, and wishes to allocate one course to each teacher so as to maximise
the sum of the associated suitability scores.

R S T U

A
B
C
D

⎛
⎜⎜⎝

3 7 8 4
6 4 5 8
7 5 2 7
4 6 8 5

⎞
⎟⎟⎠

Solution. All the “supplies” are adjusted to 1+ε, the demand for courseU is increased
to 1+ 4ε, and we will find a basic (i.e. 7 non-zero entries) solution using the matrix
maximum method, beginning with x13 = 1 since a13 = 8 is a largest entry; the initial
tableau, after calculating the u′s and v′s, is

d 1 1 1 1 + 4ε

s ui vj 6 7 8 6

1 + ε 0
1 + ε −2
1 + ε −1
1 + ε 1

⎛
⎜⎜⎝

3 6∗ | 7 ε | 8 1 | 4 6∗

6 8∗ | 4 9∗ | 5 10∗ | 8 1 + ε

7 1 | 5 8∗ | 2 9∗ | 7 ε

4 5∗ | 6 1 − ε | 8 7∗ | 5 2ε

⎞
⎟⎟⎠

Only at the (4, 3) position is the asterisked value below the corresponding score,
so we will put x43 = θ , with associated changes x13 = 1 − θ , x12 = ε + θ and
x42 = 1 − ε − θ . We have a new basic solution when θ = 1 − ε. The new tableau,
ignoring the values of s and d, is

ui vj 5 7 8 5

0
−3
−2

0

⎛
⎜⎜⎝

3 5∗ | 7 1 | 8 ε | 4 5∗

6 8∗ | 4 10∗ | 5 11∗ | 8 1 + ε

7 1 | 5 9∗ | 2 10∗ | 7 ε

4 5∗ | 6 7∗ | 8 1 − ε | 5 2ε

⎞
⎟⎟⎠

Now no asterisked value is below the corresponding suitability score, so we have
an optimal allocation. Put ε = 0: A should take course S, B takes U, C takes R and
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D takes T, with a total “suitability score” of 30. (The initial feasible allocation had
a score of 29, using the northwest corner method would have given a score with
enormous scope for improvement.)

With a little imagination, you can identify many places where this idea could
be useful. Some soccer referees will be more suited to certain matches than others;
political parties must match the qualities of their candidates to the constituencies
where they might stand; charities could aim to make best use of their voluntary
helpers when assigning tasks.

4.5 Check Digits

Many organisations use a string of digits to identify their different customers or
products. When names are used, it is easy to spot errors—a mistyping that reads
“Pride and Prejduice” is easily spotted and corrected, but you could well not notice
an error if you use one of its ISBN numbers such as 1604501480 (its many editions
in different countries may have different ISBN numbers). When you make an online
payment from your bank account, you are in danger of mistyping an account number
and sending money to the wrong person. Not all errors can automatically be picked
up, but the use of so-called check digits can dramatically reduce the chance of error.

An ISBN 10-digit code is of the form {x1x2 . . . x9x10}, where each xi is a digit in
the range zero to nine, except that the last digit, x10, is allowed to take the value X ,
meaning 10. It is constructed in such a way that

10x1 + 9x2 + 8x3 + · · · + 2x9 + x10 = 0 mod 11, (4.1)

i.e the sum on the left is divisible by 11. The simplest way to engineer this identity is
to use the first nine digits (which gives 109 = one billion different possibilities!) as
the main person or product identifier, then choose x10 in the range zero to ten to make
the identity hold. In the above example, 1604501480, the sum 10x1+9x2+· · ·+2x9
has the value 154, which is already a multiple of 11, which is why x10 = 0.

To appreciate how useful this is, consider the two most common errors humans
are likely to make when writing down a string of ten arbitrary digits: to mistype
one number, or to interchange two adjacent numbers. First, if just xi is incorrectly
entered, then the size of the error (positive or negative) is some value m in the range
1 to 9. In the check-sum, the relevant multiplier is 11 − i , an integer n in the range
2 to 10; and since 11 is a prime number, it is not possible for the product mn to be a
multiple of 11, so the number typed in fails the check and will be rejected as invalid.

Similarly, suppose two different adjacent numbers xi and xi+1 are inadvertently
interchanged when being entered. So instead of the correct expression

(11 − i)xi + (10 − i)xi+1
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appearing in the check-sum, we find (11 − i)xi+1 + (10 − i)xi ; and the difference
between these two expressions is xi − xi+1 which can never be a multiple of 11.

Not all errors will be picked up: it is quite possible that if two numbers are
interchanged, and one of them is also entered wrongly, the resulting string happens
to satisfy (4.1). But this simple idea, based on properties of prime numbers, will
prevent many customers from ordering the wrong book when just using digits to
identify it.

4.6 Hierarchies in Large Organisations

The effect of a promotions policy
A firm may wish to know the consequences of their current policies on how many
employees are expected to be in each of K grades or salary bands in each of the
next few years, or even over the long term. If they can see that the structure would
become undesirable at some point, they could alter their policies now to avoid such
problems.

Write ai j as the proportion of those in band i who will move to band j in 1 year,
and A = (ai j ) as the K by K matrix. Plainly we have ai j ≥ 0 and, for each i ,∑K

j=1 ai j ≤ 1. The quantity 1 − ∑K
j=1 ai j is the proportion of those in band i who

leave the firm.
Let n j (T ) be the number in band j at time T for j = 1, 2, . . . , K and

T = 0, 1, . . ., so that nT = (n1(T ), n2(T ) . . . , nK (T ))) gives the distribution among
grades in year T . Finally, let RT be the vector giving the number of recruits in year
T . We have the recurrence relation

nT +1 = nT A + RT +1.

Suppose, for simplicity, that all recruitment is to the lowest band, so that, if
e1 = (1, 0, . . . , 0), then RT = RT e1. Thus

nT +1 = nT A + RT +1e1,

so that
nT +2 = nT A2 + RT +1e1 A + RT +2e1

etc. Hence, for m = 1, 2, . . .,

nT +m = nT Am + e1[RT +1 Am−1 + RT +2 Am−2 + · · · + RT +m].

If we have a hierarchy with band 1 being the lowest and band K the highest, there
is no demotion, and any promotion is just one step up, the only places with non-zero
entries in the matrix A are down the main diagonal, and the main super-diagonal:
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aii = pi is the proportion in band i who remain there, ai,i+1 = qi is the proportion
whomove from band i to band i +1 (for i < K ), so that a proportion ri = 1− pi −qi

of those in band i leave the firm. Thus

A =

1
2
3
...

K

⎛
⎜⎜⎜⎜⎜⎝

p1 q1 0 · · · 0
0 p2 q2 · · · 0
0 0 p3 · · · 0
...

...
... · · · ...

0 0 0 · · · pK

⎞
⎟⎟⎟⎟⎟⎠

.

For realism, take 0 < pi < 1. Also, to keep the total size of the organisation fixed,
as many as leave the firm altogether will be recruited into band 1 for the next year.
What happens in the long run?

Note that the model takes no account of how long someone has been in a salary
band: so long as the numbers in a band are fairly large, this will not be a serious
weakness, as the band will have in it people with a range of service lengths. We are
tracking the sizes of bands, not the progress of individuals.

Under our assumptions, Am → 0 and it seems reasonable to suppose that the
numbers recruited each year settle down to some number R, so we expect nT +m to
converge to n, where

n = Re1(I + A + A2 + · · · ) = Re1(I − A)−1.

This shows that the vector giving the long-run distribution is the first rowof (I −A)−1,
multiplied by the annual number recruited. So the key is calculating the matrix
(I − A)−1.

Example 4.6 Take an organisation of fixed size 10,000 with three salary bands; ten
percent of each band leave in any year, ten percent of those in bands one and two are
promoted one band. Initially, there are 5,000 in the lowest band, 4,000 in the next,
and 1,000 in the top band. Calculate the distributions at the beginnings of each of the
next 5 years (i.e. after recruitment), and the limiting distribution. (Round numbers
to the nearest integer.)

Solution. We have n(0) = (5000, 4000, 1000),

A =
⎛
⎝
0.8 0.1 0
0 0.8 0.1
0 0 0.9

⎞
⎠ ,

and since 10% leave each band, it is plain that RT = 1,000 for all times T . Then
n(1) = (4000, 500 + 3200, 400 + 900) + (1000, 0, 0) = (5000, 3700, 1300). Sim-
ilarly, the rounded figures for subsequent years are
n(2) = (5000, 3460, 1540), n(3) = (5000, 3268, 1732),
n(4) = (5000, 3114, 1886), and n(5) = (5000, 2991, 2009).



4.6 Hierarchies in Large Organisations 79

Also

I − A =
⎛
⎝
0.2 −0.1 0
0 0.2 −0.1
0 0 0.1

⎞
⎠ ,

and we seek its inverse. You may already know how to do this, otherwise the Appen-
dix of this chapter shows a simple method starting from scratch. For practise and
illustration, here is a calculation via determinants. The determinant of I − A is 0.004,
hence its inverse is

(I − A)−1 = 1

0.004

⎛
⎝
0.02 0.01 0.01
0 0.02 0.02
0 0 0.04

⎞
⎠ =

⎛
⎝
5 2.5 2.5
0 5 5
0 0 10

⎞
⎠ .

The long-run distribution is 1000(5, 2.5, 2.5) = (5000, 2500, 2500).
Although the limiting distribution depends only on the top row of the matrix

(I − A)−1, notice that this could change if we change any element of A. Suppose
we want a long term structure of (7000, 2000, 1000), and we reckon on an annual
turnover of ten percent (not necessarily the same in each band).Whatmatrix A should
we use for our promotions policy?

Any A such that the top row of (I − A)−1 is (7, 2, 1) will work—but it must be
a matrix with all entries non-negative, row sums no more than unity. If we want no
demotions (i.e. A is upper triangular), then (I − A)−1 will also be upper triangular,
so write

(I − A)−1 =
⎛
⎝
7 2 1
0 x y
0 0 z

⎞
⎠

and we must choose x, y, z. Invert by the determinants method:

I − A = 1

7xz

⎛
⎝

xz −2z 2y − x
0 7z −7y
0 0 7x

⎞
⎠ .

Taking x = 2y ensures no jump from band one to band three (not necessary, but
it reduces the number of unknowns we seek), and then

A =
⎛
⎝
6/7 2/(7x) 0
0 1 − 1/x 1/(2z)
0 0 1 − 1/z

⎞
⎠ .

We must have 0 < 2/(7x) < 1/7, i.e. x > 2 for the top row to be sensible. For the
second row,we need 1−1/x+1/(2z) < 1, i.e. x < 2z; finally, we need 0 < 1/z < 1,
i.e. z > 1. Try x = 4, z = 5 giving
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A =
⎛
⎝
6/7 1/14 0
0 0.75 0.1
0 0 0.8

⎞
⎠ .

It is sensible to check that this does indeed do what we require; this check is left
to you. Alternatively, take x = 8 and z = 10, to give

A =
⎛
⎝
6/7 1/28 0
0 7/8 1/20
0 0 0.9

⎞
⎠ .

Either version of A describes a promotions policy that leads to the desired long-run
distribution among the three grades.

Maintaining a grade structure
Suppose an organisation has K grades and, in any year, a proportion pi of those
in grade i stay there, while proportion qi move to the next higher grade. (Plainly,
qK = 0, and pi + qi ≤ 1.) Suppose this time that recruitment can be to any grade,
not just the lowest. We have

A =

1
2
3
...

K

⎛
⎜⎜⎜⎜⎜⎝

p1 q1 0 · · · 0 0
0 p2 q2 · · · 0 0
0 0 p3 · · · 0 0
...

...
... · · · ...

...

0 0 0 0 · · · pK

⎞
⎟⎟⎟⎟⎟⎠

.

If the vector n = (n1, n2, . . . , nK ) gives the numbers in each band now, then
n1 = nA gives the numbers before recruitment next year. We want to know whether
the distribution n is maintainable, i.e. whether each component of the vector n1 is
no greater than the corresponding component of n (as then recruitment can regain
the distribution n.) Thus n is maintainable exactly when nA ≤ n.

Suppose n is maintainable and c is a positive constant. Write m = cn: thus (using
c > 0), we see that mA = cnA ≤ cn = m: integer considerations apart, it is only
the proportions in the grades that matter.

Example 4.7

A =

⎛
⎜⎜⎝
0.8 0.1 0 0
0 0.7 0.2 0
0 0 0.7 0.1
0 0 0 0.8

⎞
⎟⎟⎠ .

Is n = (400, 300, 200, 100) maintainable? Is n′ = (500, 300, 180, 60)?

Solution. Plainly nA = (320, 250, 200, 100), so this is maintainable: we would
recruit 80 in the lowest grade, and 50 into the next lowest.

But n′ A = (400, 260, 186, 66), so this is NOT maintainable—promotion takes
too many into the top two grades.
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If a structure is not maintainable, it might be 2-step maintainable: i.e., if we delay
recruiting for 2 years, and the sizes of all bands are then no larger than the original
numbers, we can recruit to regain the original structure. The condition for n to be
2-step maintainable is that nA2 ≤ n, or to be m−step maintainable, it is nAm ≤ n.

Suppose, for a given A, structure n is maintainable, i.e. nA ≤ n. As all entries
everywhere are non-negative, we can multiply on the right by A to find nA2 ≤ nA;
and hence nA2 ≤ nA ≤ n, i.e. this structure is also 2−step maintainable.

An obvious induction step leads to the little theorem; “If a structure is maintain-
able, it is also m−step maintainable, for any m ≥ 1.”

This raises the question: if a structure is 2−step maintainable, must it be 3−step
maintainable? The answer is “No”, even when we have no demotions. For, take A
as the 4× 4 matrix with aii = 0.8 and ai,i+1 = 0.1, all other entries being zero. And
write u = (2916, 1296, 657, 328).

Then, by calculation,

uA = (2332.8, 1328.4, 655.2, 328.1),

(notice that the top grade is too large, so u is not maintainable). Calculate

uA2 = (1866.24, 1296, 657, 328),

meaning that uA2 ≤ u, so u is 2-step maintainable. However,

uA3 = (1492.992, 1223.424, 655.2, 328.1);

and as the final component again exceeds 328, our u is NOT 3-step maintainable.

4.7 Investing for Profits

Suppose you have funds available to invest in a series of speculative ventures. For
simplicity, assume that if you do invest, then either the venture collapses (you lose all
your money) or it succeeds (and you double your money).When is it worth investing,
and how much should you risk?

Let p be the proportion of times the venture succeeds, and suppose that your
criterion is that you wish your funds to increase as fast as possible over the long
term. If p < 0.5 then, on average, you will lose money, so a policy of investing in
those circumstances may pay off some of the time but, in the long run, you will lose.

So suppose p > 0.5: even though you succeedmore often than you fail, a bold and
ambitious approach could easily hit a run of bad luck: if your fortune is F , and you
invest all of it every time, on average each investment multiplies your current fortune
by 2p, and 2p > 1, so on average you achieve exponential growth. However, after
n investments, this average is made up of a tiny chance, pn , of an enormous fortune,
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and a much larger chance, 1 − pn , of losing everything. It is overwhelmingly likely
that you face complete ruin, even though the average outcome appears attractive.

On the other hand, if you are cautious and invest only small amounts, it may take
a very long time to make a reasonable profit. So suppose you decide to invest some
fraction x of your current fortune: that means that you will invest more next time
after a successful venture, less after a loss. What value of x is best?

If your fortune is now F , you invest amount x F , so when you know the outcome,
your new fortune is (1−x)F after a loss, or (1−x)F +2x F = (1+x)F after success.
So each time, your fortune changes by the factor (1− x), or (1+ x), according to the
outcome. That means, if you begin with X0 and have S successes and n − S losses
in n ventures, then Xn , your new fortune, comes from

Xn = X0(1 + x)S(1 − x)n−S .

Write Xn = X0 · rn , so that r is the average change in your fortune over each of
n investments: then

rn = (1 + x)S(1 − x)n−S.

Take logs, divide by n.

log(r) = S

n
log(1 + x) + n − S

n
log(1 − x).

When n is large, then S/n, the actual fraction of successful ventures, will be close
to p, the long-run proportion of successes. This gives

log(r) ≈ p log(1 + x) + (1 − p) log(1 − x) = f (x),

say. To find the value of x that makes the growth rate r to be as large as possible,
differentiate to find f ′(x) = p/(1 + x) − (1 − p)/(1 − x). Put the right side equal
to zero for a maximum: this gives

p(1 − x) = (1 − p)(1 + x),

so the solution is x = 2p − 1.
And since here f ′′(x) = −p/(1 + x)2 − (1 − p)/(1 − x)2 < 0, this is indeed

a maximum. We have discovered the Kelly strategy, named after John L Kelly who
derived it in 1956.

Conclusion: the growth rate of our capital is maximised if we invest the fraction
2p − 1 of our fortune.

As f (2p − 1) = p log(2p) + (1 − p) log(2 − 2p) = log(2p p(1 − p)1−p), the
optimum growth rate is then r = 2p p(1 − p)1−p.

Example 4.8 Suppose p = 0.55. Then since 2p − 1 = 0.1, we should invest
10% of our current fortune, and the long-term growth rate of our capital is then
r = 2 × 0.550.550.450.45 = 1.00502 each time, i.e. about half of one percent.
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0 Fraction,x

Growth Rate, f(x) × 1000

5

0.10

Fig. 4.4 Growth rate of fortune against investment size

This may not look wonderful, but it is the best you can do! When p = 0.55, the
graph of f (x) is shown in Fig. 4.4.

There is a negative growth rate if x > 0.2, even though the odds are in your
favour for each individual investment. So if you greedily risk 25% of your capital
on investments with a 55% chance of doubling up, and a 45% chance of total loss,
the arithmetic shows that, in the long run, you lose about two-thirds of one percent
of your capital each time.

Exercise 4.14 applies these ideas to the context of betting on the spins of a roulette
wheel, rather than investing in speculative business ventures—the maths is identical.

4.8 More Worked Examples

Example 4.9 On the front of a car, Goodstone tyres will last for A miles; on the rear,
they last for B miles (with B ≥ A). Suppose you switch front and rear tyres after
C miles; what choice of C will make all tyres wear out at the same time, and how
many miles will be driven in total at that time?

Solution. After C miles, the front tyres have used a proportion C/A of wear, so when
switched to the rear they will be able to travel a further B(1 − C/A) miles, so the
total distance travelled will be C + B(1 − C/A) miles. The same argument for the
rear tyres show that they will have travelled C + A(1 − C/B) miles; these must be
equal, so B − BC/A = A − AC/B, i.e.

C = AB/(A + B).

You should switch tyres after AB/(A + B) miles, and the total distance achieved
will be 2AB/(A + B) miles.
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Example 4.10 A baby cereal to be marketed must contain at least 25% protein, but
not more than 70% carbohydrate. It will be formed from a mix of four other cereals,
which have the following properties:

Cereal C1 C2 C3 C4

% Carbohydrate 80 80 70 60
% Protein 10 15 20 30
Unit cost 1 2 3 4

Set up as a linear programming problem the task of minimising the cost of a
suitable blend.

Solution. Suppose we use xi units of Ci with x1 + x2 + x3 + x4 = 1. To meet the
carbohydrate requirement, we need

80x1 + 80x2 + 70x3 + 60x4 ≤ 70.

For the protein constraint, we must also have

10x1 + 15x2 + 20x3 + 30x4 ≥ 25,

and wemust also have each xi ≥ 0. Subject to those constraints, we wish tominimise

x1 + 2x2 + 3x3 + 4x4.

Since we have just three independent variables, after eliminating x1 and simplifica-
tion, we can rewrite this as: Minimise

x2 + 2x3 + 3x4

subject to
x3 + 2x4 ≥ 1,

x2 + 2x3 + 4x4 ≥ 3,

and x2 ≥ 0, x3 ≥ 0 and x4 ≥ 0.

Example 4.11 Given that the best solution to the previous question is to use just C1

and C4 in the ratios 1 : 3, by how much should the cost of C2 be reduced so that it
would be just as cheap to use a mixture of C2 and C4, and what blend would then be
used?

Solution. We are given that the optimum mix is 1/4 of C1 and 3/4 of C4, i.e. take
x2 = x3 = 0 and x4 = 3/4, with the value of the objective function then being
9/4. If the cost of C2 were reduced from 2 to c, we would be seeking to minimise



4.8 More Worked Examples 85

(c − 1)x2 + 2x3 + 3x4, subject to the same constraints, of course. Using a mixture
with proportion y of C4 and (1− y) of C2, the cost would be (c−1)(1− y)+3y, and
this would be the same when (c − 1)(1 − y) + 3y = 9/4. For the constraints,
we need 2y ≥ 1 and (1 − y) + 4y ≥ 3, i.e. y ≥ 2/3. Altogether, we have
c = (13/4 − 4y)/(1 − y), and y ≥ 2/3; at y = 2/3, we find c = 7/4, and c
decreases as y increases to its maximum, 13/16. So use a mix of 1/3 of C2 and 2/3
of C4, if the cost of C2 reduces to 7/4.

Example 4.12 Suppose the roulette wheel in a casino is so biased that it shows Red
numbers 60% of the time; a winning bet on Red doubles your money. Find the Kelly
strategy that maximises the long-term growth of your fortune, and use the Rule of
72 to estimate how many bets it will take you to double your money. What is the
smallest value of x that, if you bet x % of your fortune each time, you are certain to
be ruined?

Solution. In the notation of this chapter, p = 0.6 so the Kelly strategy is to bet
20% of your current fortune each time. In that case, the mean growth rate per bet is
r = 2×0.60.6×0.40.4 = 1.02033 . . ., i.e. about 2% per bet. The Rule of 72 suggests
it will take about 72/2 = 36 bets to double your fortune.

To find the critical point when betting too much leads to losses, solve
0.6 log(1 + x) + 0.4 log(1 − x) = 0, i.e.

(1 + x)0.6 × (1 − x)0.4 = 1.

To solve this, raise both sides to the power five, and rewrite it as (1−x)2 = (1+x)−3,
giving the iterative scheme

xn+1 = 1 − (1 + xn)
−3/2,

which converges to give x = 0.38939 or so. If you bet more than (say) 39% of your
fortune regularly, you will lose it all in the long run.

4.9 Exercises

4.1 There is steady demand during the year for oil filters. A garage assesses annual
demand at 5,000 items; the suppliers charge 5 units per item, plus a cost of 50
units per order; the garage carries a holding cost of 2 units per item per year.
Sketch the graph of the total cost to the garage, in excess of 25,000 units, as a
function of the size Q of each order, and find the Economic Ordering Quantity.
Suppose the suppliers give discounts for bulk orders: 0.5% on orders of at least
400, rising to 1% on orders of 500 or more, and 2% on orders of 800 or more.
Sketch a new graph, a modification of your previous one, that shows the effects
of this discount. What is the optimum now?
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4.2 Use graphs to solve the following problems.
Minimise (a) 3x + y (b) x + 4y subject to, in each case,
2x + y ≥ 2,
x + 2y ≥ 2,
6x + y ≥ 3,
and x ≥ 0, y ≥ 0.

4.3 For a problem of the form:
minimise αx + βy subject to x ≥ 0, y ≥ 0 and 2x + y ≥ 6, x + y ≥ 4,
x + 2y ≥ 5 (where α and β are constants), sketch a diagram showing the
feasible region, and give the co-ordinates of its four vertices.
Solve the problem in the two cases
(a) α = 5, β = 4: (b) α = 3, β = 7.

4.4 Formulate the following as linear programming problems. (You are NOT asked
to solve the problems.)

(i) Waiters in an ever-open transport cafe work 8-hour shifts, one shift per day,
and can come on duty at 0700, and every four hours thereafter. The numbers
of waiters required in the six periods 0700–1100, . . ., 0300–0700 are 10, 14,
8, 10, 3 and 2 respectively. The aim is to employ the smallest possible total
number of waiters. Use {xi : 1 ≤ i ≤ 6} to denote the numbers who start
work at 0700, 1100, etc.

(ii) The Accident and Emergency Department in the hospital is open round the
clock. Nurses work for six-hour periods, and begin their shifts at three-hour
intervals frommidnight. Past experience suggests that the minimum number
of nurses required for the eight three-hour periods, starting at midnight, then
3-00 a.m. etc., are 4, 2, 2, 4, 4, 6, 8 and10.Oneobject is to employ the smallest
possible total number of nurses, so long as these constraints are satisfied.
Explain your notation carefully.

(iii) The unit costs of food items A, B and C are 25, 30 and 40. Janet wishes to
meet her dietary constraints of (at least) 40 units of vitamin R, 20 of vitamin
S, 60 of vitamin T and 25 of vitamin U, at minimum cost. The amounts of
vitamins R to U respectively in unit amount of A are 5, 10, 0, 8; in B the
amounts are 0, 6, 15, 3; in C they are 4, 2, 5, 10.

(iv) For 1 ≤ i ≤ n, goods of type i each weighwi and have value vi . A container
can hold items whose total weight is at most W . Maximise the value of the
goods in the container, explaining your notation carefully. (This is known
as the knapsack problem.)

4.5 Wallpaper rolls are 33 ft. long. A particular room needs drops only of lengths
7 ft. (full height) and 3 ft. (for under the windows).

(i) List the five sensible ways of cutting any roll to give drops of these lengths.
(ii) The room requires 19 of the longer drops, 8 of the shorter ones. We aim

to minimise the total number of rolls to be bought. Formulate this task as a
linear programming problem, using {xi : 1 ≤ i ≤ 5} to denote the respective
numbers of rolls that will be cut in the five ways of (i).
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(iii) Solve this problem, using only cutting patterns that give at least three drops
of length 7 ft. How much wallpaper will be spare at the end?

(iv) Prove that this solution cannot be bettered, even by using other feasible
cutting patterns.

4.6 A paper mill produces rolls of standard length, 2.80 metres wide. An order is
made for 297 rolls that are 110cm wide, 713 rolls of 91cm wide, 147 rolls that
are 74cm wide and 301 rolls, each 33cm wide. Standard rolls can be sliced to
meet such orders; the mill seeks to minimise the number of rolls used. Consider
five different ways of slicing (measurements in cm):
A: 2 of 110, 1 of 33; B: 1 of 110, 2 of 74; C: 3 of 91;
D: 1 of 110, 5 of 33; E: one each of 110, 91, 74.
Introduce suitable notation, and formulate the mill’s task, using just those five
cutting patterns. Verify that the order can be met using pattern A 51 times,
B twice, C 190 times, D 50 times, and E 143 times. With that solution, what
proportion of the 436 standard rolls needed is waste?

4.7 Recall that the StandardMinimumProblem is tominimise c′x subject to Ax ≥ b
and x ≥ 0. Its dual, termed the Standard Maximum Problem, is to choose y to
maximise b′y subject to y′ A ≤ c′ and y ≥ 0.

(a) By rewriting the StandardMaximumProblem as a StandardMinimumProb-
lem, show that the dual of the dual is just the original Problem. (Hint: max-
imising a quantity is the same as minimising the negative of that quantity.)

(b) Write down the duals of the problems found in Q4.2.

4.8 A company has 10 lorry loads of goods in Tilbury, 15 in Harwich, and 15 in
Newcastle. It needs to move 24 loads to Liverpool, and 16 to Bristol. The costs,
in hundreds of pounds, of moving one load to Liverpool/Bristol respectively
are: from Tilbury 3 and 2.5; from Harwich 3.2 and 3; from Newcastle 1.8 and
2.6. Advise the company on a strategy that minimises its costs.

4.9 Four cricket umpires, Alan, Brian, Chris and Dickie are to be allocated to
matches taking place in Kent, Lancashire, Middlesex and Nottingham, one to
each match. The costs of travel and accommodation (in hundreds of pounds)
are as shown in the table below.

K L M N

A

B

C

D

⎛
⎜⎜⎝

5 6 9 7
8 8 6 6
5 9 7 8
6 5 4 8

⎞
⎟⎟⎠

Allocate umpires to matches so as to minimise the total cost.
4.10 Suppose that, instead of the decimal system, the world used the heximal (or

senary) system, which has base six. A bank account number of length six
would be of the form x1, x2, x3, x4, x5, x6 (but where “6” would appear as
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“10”, of course); what would be the corresponding check-sum calculation (use
decimals)? Show that Isabella’s bank account number of 450232 is indeed valid.
How many different bank account numbers of this length could be issued, if
check-sums were used? Interchange the fourth and fifth digits of Isabella’s
number, AND mistype the sixth, so that the resulting string DOES pass the
check-sum.

4.11 Employees in a firm are in one of three salary bands {A, B, C}. Movement
between bands takes place annually, at which time 10% of each band leave the
firm: of those in band A, 60% stay there, 20% move to band B, 10% to band
C; from band B, 80% remain there, 10% move to band C; 90% of those in
band C remain—there is no demotion from any grade. Initially, there are 2000
in band A, 1000 in band B, 500 in band C and, at the end of each year, 350 are
recruited into band A.

(i) How many will be in each band after the movements and recruitment at the
end of 2 years?

(ii) If E denotes the matrix of movements, verify that (I − E)−1 is the matrix
⎛
⎝
2.5 2.5 5
0 5 5
0 0 10

⎞
⎠ .

(iii) If the pattern described continues indefinitely, what will be the long-term
distribution of numbers in each grade?

4.12 In the notation of this chapter, the matrix A below shows the proportions of
employees in each of 3 salary bands who stay in that band, or move to the next
higher band each year. As many as leave the firm during a year are recruited to
band 1 for the next year.

A =
⎛
⎝
0.7 0.2 0
0 0.8 0.1
0 0 0.9

⎞
⎠ .

Suppose that initially the firm has 3,000 employees, all in band 1. Chart the
distribution over the next 5 years (round the number in any band to the nearest
whole number). Calculate the long-term distribution of numbers in each band.
The firm desires a stable distribution with 1500 in band 1, 1000 in band 2, and
500 in band 3. Construct a realistic matrix that would lead to such an outcome.
Assume a total of 3,000 employees, and annual recruitment of 300 into band 1.

4.13 With a similar background to the previous question, suppose that the firmwishes
to maintain a fixed total number of employees, but may recruit to any band to
fill vacancies. The matrix giving the proportions who remain, or are promoted
in each of the three bands is
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A =
⎛
⎝
0.7 0.2 0
0 0.6 0.2
0 0 0.8

⎞
⎠ .

Decide which of the following structures are maintainable, giving reasons for
your answers:

(i) (400, 300, 200) (ii) (600, 250, 250) (iii) (800, 400, 420).

Which of these same structures are 2-step maintainable? Say why.
4.14 Suppose the chance that a roulette wheel shows Red is p = 0.75, and will pay

out winning bets at even money. Describe the policy that maximises the rate at
which you expect your fortune to increase. By finding the expected growth rate
using the best policy, use the Rule of 72 to estimate how many bets it takes you
to double your money.

4.15 Suppose that, as in the text, you will invest a fixed fraction of your current
capital in a series of speculative ventures: if a venture fails, you lose the whole
amount invested, but if it succeeds you get your investment back, plus a profit of
α times the amount invested. Let p denote the proportion of such investments
that succeed, with p > 1/(1 + α) so that, on average, you make a profit.
Generalise the text argument to this case, showing that your capital is expected
to increase fastest when x = (p(1+α)−1)/α, and find the corresponding rate
at which your capital increases.
In the case when p = 20% and α = 5, estimate how many investments it will
take for your initial capital to double.

Appendix

Inverting 3 by 3 Upper Triangular Matrices

Suppose the 3 by 3 matrix M is invertible, and “upper triangular”, i.e. it has the form

M =
⎛
⎝

a b c
0 d e
0 0 f

⎞
⎠

where ad f �= 0. Then its inverse M−1 also has this format, and it is easy to see that
we can put some entries in immediately, and write

M−1 =
⎛
⎝
1/a x y
0 1/d z
0 0 1/ f

⎞
⎠ ,
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where we seek x, y, z. Since M.M−1 = I , the (1, 2), (1, 3) and (2, 3) entries lead to

ax + b/d = 0 ay + bz + c/ f = 0 dz + e/ f = 0,

so x = −b/(ad), z = −e/( f d), hence from ay = −bz − c/ f we find that
y = (be − cd)/(ad f ). Thus

M−1 =
⎛
⎝
1/a −b/(ad) (be − cd)/(ad f )

0 1/d −e/(d f )

0 0 1/ f

⎞
⎠ .

You may prefer to use this method with numbers, working out x, y, z from simple
simultaneous linear equations, rather than quote an ugly formula.

But, given the matrix A as in Example 4.6, in the matrix M = I − A we have
a = 0.2, b = −0.1, c = 0, d = 0.2, e = −0.1, f = 0.1; the formula gives its
inverse as (reading along rows): (5, 0.1/0.04, 0.01/0.004), then (0, 5, 0.1/0.02) and
(0, 0, 10), exactly as before.

Similarly, starting from

(I − A)−1 =
⎛
⎝
7 2 1
0 x y
0 0 z

⎞
⎠

this formula/method leads to I − A in terms of x, y, z. Immediately we deduce A,
and can then choose “sensible” values of x, y, z as above.
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Chapter 5
Social Sciences

Abstract The mathematical properties of the variety of methods used in different
countries and organisations to vote for their legislatures or executives is examined,
with copious examples to illustrate the merits and problems that arise. We meet
Arrow’s celebrated “Impossibility Theorems”, which show that, when seeking to
choose a winner from more than two candidates, there can be no “best” method, and
discuss the inevitability of tactical voting under the systems in use. How the USA
has chosen its House of Representatives illustrates problems of logic, involving
simple arithmetic ideas. We describe Simpson’s Paradox, and point out how failure
to appreciate its existence can lead to flawed conclusions. Medical tests for drug use,
or the presence of cancers, are not infallible; we look at the balance between false
positives, and failure to detect actual cases. The Gini Index is one way of measuring
inequality in income or wealth; we note this, and several other ways, and make
mathematical comparisons between them, noting that students can expect to see this
general idea when they meet metric spaces later in their career.

5.1 Voting Methods

Different countries and organisations use a variety of methods to choose their parlia-
ments, presidents, board of directors, or other governing bodies. A sensible voting
system must prescribe what the outcome will be, once we know how the votes are
cast.Wewill look at themerits of, and problems associated with, some of thesemeth-
ods. We assume that all voters are able to rank the candidates, from first preference
down to last (but they are allowed to express no preference between some or all of
the candidates). First, we define a few terms.

(a) Anonymity means that all voters are treated as equal. If two voters swap their
ballot papers, the result is always unchanged.

(b) Neutrality means that all candidates are treated as equal. If every voter switches
the positions of candidates A and B, then the positions of A and B in the outcome
would be simply swapped.

© Springer International Publishing Switzerland 2016
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(c) Monotonicity means that if the only changes to a ballot paper leave a candidate
in the same position as before, or place them higher, then it is impossible for that
candidate to move down the order.

Most people would agree that these are desirable, maybe even essential, properties
that a voting system should possess.

The term Majority Rule means that each voter casts one vote; if no candidate
gets more than half the votes cast, the outcome is a tie (no winner), otherwise the
winner is whoever gets more than half the votes cast. It is plain that this system is
anonymous, neutral and monotone but, of course, it may produce no winner.

A quota system is a system in which there is some number q, the quota, such that
the winners are exactly those with at least q votes.

Theorem If there are just two candidates, and the voting system is anonymous,
neutral and monotone, then it is a quota system.

Proof Suppose n voters are to choose between candidates A and B using a system
that is anonymous, neutral and monotone, and that if the first x voters vote for A
while the rest vote for B, then A is elected.

Because the system is anonymous, this means that if any x candidates vote for A,
then A is elected. And because it is neutral, we see that if any x candidates vote for
B, then B is elected, so if either candidate gets x votes, they are elected. Suppose
A gets x votes, and some of the candidates who voted for B now switch to A: by
monotonicity, A cannot now be worse off, hence any candidate obtaining at least x
votes is elected.

Let q be the smallest value of x such that, if the first x voters select A, then A
is elected. Then if A (hence also B) gets q − 1 or fewer votes, they are not elected,
but if they get at least q votes they are elected—the defining properties of a quota
system. The theorem is proved, and the corollary we now state is immediate.

Corollary In a two-candidate election with an odd number of voters, “majority
rule” is the only system that is anonymous, neutral and monotone.

Effectively, that settles the issue when choosing one of two candidates: if you
insist on the method being anonymous, neutral and monotone, then you have to use
the “obvious” method of electing whoever gets most votes. If their total votes are
equal, draw lots, or use some other way of giving them equal chances.

But with n > 2 candidates, matters are far more complex. In UK parliamentary
elections, when choosing one winner from a list, even though a voter might have
well-considered and subtle preferences, only one thing counts—the number of first
preference votes. This is known as “First Past the Post (FPTP)” or “Plurality Voting”.
If there are ten candidates, it is quite possible that the one chosen gets only just over
ten percent of the votes cast—and the winner might have been the last choice of
those who voted for somebody else. In the 1992 UK General Election, the outcome
in the constituency Inverness, Nairn and Lochinvar found the top four candidates
within 3.5% of each other (Table5.1):
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Table 5.1 UK General
Election 1992, one
constituency

Party Votes Percentage share

Liberal Democrat 13,258 26.05

Labour 12,800 25.15

Scottish National 12,562 24.68

Conservative 11,517 22.63

Green 766 1.50

In May 2011, the UK held a referendum on using the Alternative Vote, or AV, as a
possible change to the current system. Here each voter ranks the candidates: the can-
didate with fewest first place votes is eliminated, and their votes redistributed to their
second preference. This is repeated, the remaining candidates move up one place,
each time they were originally ranked below the candidate eliminated. Eventually
one candidate remains, and we also get a rank order of the candidates.

(Lots are drawn to resolve tied votes, voters need not rank all candidates. The
proposal was heavily defeated in the referendum, but this method has been used in
other countries, and, indeed, the UK.)

Example 5.1 The 2006 ballot for the leadership of the Liberal Democrats was con-
ducted under AV. The votes cast were:

Campbell 23, 264;Huhne 16, 691;Hughes 12, 081.

Thus Hughes was eliminated; his votes went 6,433 to Campbell, 4,937 to Huhne
with 711 voters giving no second preference. This gave Campbell 29,697 and Huhne
21,628, so Campbell won.

When the choice of venue for the Olympic games is held, in each round of voting,
the electors select one prospective venue, that with fewest votes is eliminated. The
voting for the 2016 venue is shown (Table5.2):

This cannot be AV, as Tokyo’s vote dropped from Round 1 to Round 2, so some
delegates who gave first preference to Tokyo changed their choice after Chicago was
eliminated.

A variant on this system, the Single Transferable Vote or STV, can be used to
choose more than one winner from a list of candidates. It is used by many Student
Unions, and in national elections in Ireland, Australia, Malta and elsewhere. Voters
simply mark an order of preference on a single ballot paper, being assured that their

Table 5.2 Voting for the
2016 Olympics venue

City Round 1 Round 2 Round 3

Rio 26 46 66

Madrid 28 29 32

Tokyo 22 20

Chicago 18

Total 94 95 98
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higher-ranked candidates are not affected bywhatever order they choose among those
ranked lower. Suppose V votes are cast in total, and N candidates are to be chosen;
let Q = V/(N + 1)—this is termed the quota. Unless Q is an integer, it is plainly
impossible for more than N candidates to obtain Q or more first preference votes.

As with AV, count the number of first preference votes for each candidate. Any
candidate who scores Q or more is immediately declared elected, and if there are N
such candidates, the election is over. At the other extreme, if no candidates obtain
the quota, the candidate with fewest first preference votes is eliminated, and their
votes are transferred to the next-ranked candidate on each ballot paper.

When any candidate reaches the quota, they may have “surplus votes” to be
transferred to lower ranked candidates. Specifically, if a candidate has M > Q
votes, there are M − Q surplus votes to be transferred: to do this in a fair way, each
of the M ballot papers is given a weight of X = (M − Q)/M , and the next-ranked
candidate on each paper is awarded X votes. This may take other candidates over
the threshold quota, and they will then be elected, with their surplus votes dealt with
in the same way.

The procedure in each round, until N are elected, is: first, check whether any
candidate becomes elected, and if that election ends the process; if a candidate is
elected, but the process is not ended, transfer any surplus votes; redistribute the votes
of the bottom candidate to the next-ranked candidates. Computer programs exist, that
take each voter’s rank order, and follow these steps, including fractional votes, with
complete accuracy. STV reduces to AV if there is just one candidate to be elected.

Example 5.2 Four candidates for two seats: 46 voters, with 13 ranking ABCD, 10
vote BADC, 8 say ACDB, 6 go for CBDA, 5 have DACB and 4 say CABD.

Thus N = 2, V = 46 and the quota is Q = 46/3 = 15.33. First preference votes
give 21 to A, 10 to B, 10 to C and 5 to D, so A is elected and has 5.67 surplus votes.
Since 13 voters gave the order ABCD, B gets another 13∗5.67/21 = 3.51; from the
8 who wrote ACDB, C gets 8 ∗ 5.67/21 = 2.16. So B now has 13.51, C has 12.16,
while D still has only 5 votes. No-one else has the quota, so D is eliminated; all D’s
voters wrote DACB, but A is already elected, so these 5 votes all go to C, who now
has 17.16 votes. Thus C gets the second seat.

But suppose that, among the five who ranked D first, x had put B above C, and
5−x had put C above B. Then Bwould now have 13.51+x , C would have 17.16−x ,
so B would be ahead of C if, and only if, 13.51 + x > 17.16 − x , i.e. x > 1.83,
in practice x ≥ 2: B would get the second seat if at least two of D’s five voters had
ranked B ahead of C.

With Approval Voting, each voter can cast one vote for as many candidates as
they like—those they “approve of”. The winner(s) are simply those candidates who
attract most votes. Obviously, voting for all candidates has just the same effect as
not voting at all, and one objection is that it can encourage negative votes—if you
really dislike one candidate, just vote for everybody else. Also, if you would really
like A to win, you have no strong feelings about B, but won’t vote for C, you have
a dilemma: voting for both A and B could make B the winner at the expense of A,
voting only for A could let C win in preference to B. Your vote allows no nuances
about how strongly you approve of those you don’t wish to support.
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Two other ways of proceeding carry the names of eighteenth century French
mathematicians/political scientists, Jean-Charles deBorda andNicolas deCondorcet.
In the Borda Count, each voter puts the n candidates in rank order from 1 to n, and
the winner is selected in one of two equivalent ways: for each candidate, either add
up the ranks given, and order them according to this total, the lower the better, or
give a score of n − j points if the candidate is ranked in the j th position, and order
them according to the sum of these scores, the higher the better. If two candidates are
tied on the same score, some tie-breaking method, such as drawing lots, or favouring
the one with the most top rankings, is used.

For any pair of candidates, A and B, each voter is able to say which they prefer,
so for each such head-to-head contest, the electorate can pick a winner. If some
candidate X beats every other candidate in a head-to-head contest then X is termed a
Condorcet Winner. If there is aCondorcetWinner, that candidate is elected, otherwise
the Condorcet method does not give a winner. If there is no Condorcet Winner, one
suggestion is that any candidate who wins more pairwise contests than any other
candidate should be declared the winner—draw lots if this suggestion produces a tie.
(A Condorcet Loser is a candidate who loses in every head-to-head contest.)

Plainly, if one candidate is ranked first by more than half the voters, that candidate
will be a CondorcetWinner, so ifMajority Rule produces a winner, that person is also
a CondorcetWinner. However (see Example5.5), that candidate does not necessarily
win under the Borda Count!

Example 5.3 In an electorate of size 23 with three candidates, 5 voters rank them as
ABC, 5 as ACB, 7 as BAC and 6 as CAB. So, with first preferences only, A has 10,
B 7 and C 6—there is no winner under Majority Rule. But in head-to-heads, A beats
B 16-7, A beats C 17-6 while B beats C 12-11, so A is a Condorcet Winner (and C is
a Condorcet Loser). The Condorcet method has given a winner when Majority Rule
did not.

Example 5.4 With three candidates and 16 voters, six voters select the order ABC,
seven choose BCA and three choose CAB. Then summing the ranks, A scores 33, B
has 28 and C has 35, so the Borda Count gives the overall rank order as BAC. Using
Condorcet’s method, A beats B 9 − 7, C beats A 10 − 6 and B beats C 13 − 3, so
this method leads to a triple tie, with no winner.

Example 5.5 With 61 voters and three candidates, all six possible orderings are used:
10 choose ABC, 16 go for ACB, 13 select BAC, 12 use BCA, 4 offer CAB and 6
choose CBA. Under Condorcet, B beats A 31-30, B beats C 35-26 and A beats C
39-22, leading to the ranking BAC; with Borda, and using the convenient scores of
2, 1, 0 for first, second and third positions, A has 69 points, B has 66 and C has 48.
Thus Borda would produce the order ABC.

Note that, if the rules of this election were to use the Borda count, and C had
dropped out the day before voting took place, it would be B, not A, who won.
Similarly, if all voters moved C to last place, the Borda Count winner changes from
A to B—the Borda Count is not monotone. The relative ranking of A and B depends
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Table 5.3 The D’Hondt
method in practice

A B C D E Outcome

60,000 51,000 39,000 29,000 16,000 A

30,000 51,000 39,000 29,000 16,000 B

30,000 25,500 39,000 29,000 16,000 C

30,000 25,500 19,500 29,000 16,000 A

20,000 25,500 19,500 29,000 16,000 D

20,000 25,500 19,500 14,500 16,000 B

20,000 17,000 19,500 14,500 16,000 A

15,000 17,000 19,500 14,500 16,000 C

on whether or not C is also a candidate. We saw this anomaly in Chap.3, when
looking at Olympic Ice-skating.

The D’Hondt method is a form of “proportional representation”. It is used in
elections to the European Parliament, and also in the second stage of elections to the
London Assembly. Political Parties offer lists of candidates in their own preferred
order, voters cast one vote for their Party of choice. Suppose Party J has V (J ) votes,
J = 1, 2, . . . , n, and there are to be S seats allocated altogether.

The seats are allocated sequentially, as follows. The first seat goes to the party
with most votes. Now suppose Party J currently has S(J ) seats; calculate all the
ratios V (J )/(1+ S(J )), and allocate the next seat to the party for which this ratio is
the highest. Continue until S seats are allocated. As usual, an example clarifies.

Example 5.6 Suppose five parties compete for eight seats; in total, party A gets
60,000 votes, B has 51,000, C has 39,000, D has 29,000 and E has 16,000. Table5.3
shows the ratios V (J )/(1 + S(J )) at each stage, the bold figure indicating which
party gets that seat.

Here party A gets three seats, B and C get two each, D gets one and E gets none.
A variation on thismethod due to Sainte-Laguë, which tends to favour smaller parties,
is described in Exercise 5.5 (ii).

5.2 Voting Dilemmas

We began this chapter by suggesting three properties that any sensible voting system
ought to possess. Consideration of systems that are actually used has thrown up other
factors. So what general properties should a voting system satisfy? How about:

(1) Universality Voters may rank the candidates in any order they wish.
(2) Monotonicity No candidate can be disadvantaged by being placed higher on

some ballot papers, and not lower on the others.

http://dx.doi.org/10.1007/978-3-319-27939-8_3
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(3) Independence of Irrelevant AlternativesSupposeA,B andCare three candidates.
If the system ranks A above B when C is present, it should also rank A above B
if C is absent from the list.

(4) Citizen Sovereignty There cannot be two candidates A and B with A always
preferred to, or tieing with, B, no matter how the votes are cast.

(5) No Dictatorship There can be no voter V such that, if V ranks A ahead of B,
then the system will rank A ahead of B, no matter how others vote.

(6) Unanimity Suppose every voter ranks A above B; then the voting system should
rank A above B.

In isolation, each of these looks very reasonable (but we have seen that the Borda
Count fails on (3)). Yet economist/political scientist Kenneth Arrow won a Nobel
prize in 1972 for his work, leading to

Arrow’s First Theorem For an election with more than two candidates, it is
impossible for conditions (1) to (5) all to be satisfied.

Arrow’s Second Theorem For an election with more than two candidates, it is
impossible for conditions (1), (3), (5) and (6) all to be satisfied.

Thus, there cannot be a perfect voting system, if there are more than two can-
didates! Every system that can be devised has some flaw, we just have to choose
between alternatives that are bound to have a deficiency somewhere. Proofs of these
Theorems are given in an Appendix to this Chapter, following the path described by
Hodge and Klima (2005). On a first reading, you may prefer to skip these proofs, but
do think about the consequences of this devastating conclusion.

Another result (credited to Allan Gibbard and Mark Satterthwaite) is that, if there
are at least three candidates, any of which can win, and the voting system is not
simply a dictatorship, then whatever system is used, some voters would be more
likely to get their preferred candidate elected if they don’t vote according to their
preferences—tactical voting!

Example 5.7 Suppose there are three candidates and 100 voters. Their true prefer-
ences are: 40 voters would rank ABC, 31 would rank BAC, while 29 would choose
CBA.

Under FPTP (or the D’Hondt method), if all vote honestly, A wins. But if the 29
who like C best realise that C can’t win, and vote for their second preference, B, then
B wins 60-40.

Under AV, if all vote honestly, C gets eliminated in the first round, her 29 votes
all go to B, and B wins; but if 3 of those whose real preference is ABC actually vote
CAB, then the first round gives 37 to A, 32 to C and 31 to B, who gets eliminated.
So when B’s 31 votes are transferred to A, A wins 68-32.

With the Borda count, scoring 2, 1, 0 for ranks first, second and third, B wins with
131 against A’s total of 111 and C’s score of 58; but if more than 20 real ABC voters
actually mark their order as ACB, A would win.

Under Condorcet, with honest voting, B beats both A and C, A beats C, so Bwins.
But if more than 21 of the ABC voters mark their order as ACB, C would beat B and
give a triple tie—no winner.
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5.3 From the USA

The Constitution of the USA attempts to reflect the general will of the population,
but also to ensure that the less populous states are not swamped by the interests of the
largest ones. So each state, irrespective of size, elects two Senators, while its number
of seats in the House of Representatives is based on its population. Thus, if a state has
proportion p of the entire population, and there are to be N House seats in total, that
state should have N p House seats—its standard quota. But N p will almost certainly
not be a whole number! How should this arithmetical fact be overcome?

Definition A system is said to satisfy quota if the number of seats to every state
differs from N p only by rounding up, or rounding down.

To have a system that satisfies quota is generally thought to be a good thing. One
early suggestion was
Hamilton’s Method Find the standard quota for each state, round it down to the
integer below, and give each state that number to begin with. Count how many seats
are left (the surplus seats) and award them one at a time to the states whose standard
quotas have the largest decimal parts.

Put simply, the standard quotas with the largest fractional parts are rounded up,
the others rounded down. This method plainly satisfies quota. But in 1790, with
N = 105 the standard quotas for Delaware and Maryland were 1.594 and 8.622,
with nine surplus seats. Since 0.622 > 0.594, Maryland would get a surplus seat
(actually, the last to be allocated) before Delaware, giving it nine seats to Delaware’s
one. George Washington felt this would be unfair to Delaware, as Delaware would
get only 1/1.594 ≈ 64% its quota, while Maryland got 9/8.622 ≈ 104% of its
quota. He vetoed the proposal.

An alternative suggested by another Founding Father was
Jefferson’s Method For a total population of T , write d = T/N , call it the
standard divisor. Note that, if the population of a state is X , then p = X/T , so
N p = N X/T = X/d, hence the standard quota is also calculated as X/d. So first
find the standard quotas via X/d: if, by a fluke, all values are integers, we are done,
but otherwise, try a smaller divisor d ′, and round down the values of X/d ′.

If the total number of seats allocated is then N , we have finished—otherwise, try
a new divisor. For all X , decreasing d ′ always increases X/d ′, so there is a range of
values d ′ that give N seats in total, but they will always allocate the same number to
each state. There is no ambiguity.

Example 5.8 In 1822, with total population T = 8, 969, 878 and N = 213, New
York had a population X = 1, 368, 775. The standard divisor was d = 42, 112,
giving a standard quota of 32.503 to New York. To satisfy quota, New York must
have either 32 or 33 seats; but, using Jefferson, d ′ = 39, 900 is a suitable divisor,
and then X/d ′ = 34.305, so New York would get 34 seats—it doesn’t satisfy quota!
When a similar problem arose after 1832, suggestions included:
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Adams’s Method Like Jefferson, except that we take d ′ > d, and the values X/d ′ are
rounded up, not down. Just as Jefferson’s method could give “extra” seats to larger
states, so Adams’ method could favour smaller ones (and also not satisfy quota).
It was never used.
Webster’s Method Like Jefferson, except that, instead of always rounding up or
rounding down, round to the nearest integer.

Webster’s Method was used in 1842. Exercise 5.7 demonstrates that it is possible
for Webster to violate quota. In 1852, it was agreed that Hamilton’s Method be used,
but also (for safety!) that the total number of seats be such that using Hamilton or
Webster gave identical outcomes.

This was not the final word. After the 1880 census, suppose N = 299 seats were
to be allocated. Then the standard quota for Alabama would be 7.646, for Illinois
it would be 18.640, while for Texas the calculation gives 9.640. Looking at the
fractional parts of all the standard quotas, Alabama would be placed 20th, and as
there were 20 surplus seats, Alabama would qualify for 8 in total, Illinois and Texas
would get 18 and 9 respectively.

For a House with N = 300 seats, the standard quotas would increase to 7.671,
18.702 and 9.672; so Illinois would be 20th, Texas next—hence Illinois would now
get 19, Texas 10, and Alabama only 7! The number of seats available increases,
but the number apportioned to Alabama decreases! This is known as the “Alabama
Paradox”. It was resolved by taking N = 325, with no such paradox arising.

The books in the References describe other anomalies. Indeed, there is a theorem
by Balinski and Young, to the effect that is impossible for an apportionment method
always to satisfy quota, and be incapable of producing paradoxes.

In practice, Hill’s Method has been used from 1942. With Webster, a fraction is
rounded to the nearest integer, i.e. if K is an integer, and using divisor d ′ leads to
apparent quota x , with K ≤ x < K + 1, then the cut-off for rounding is at K + 0.5,
the arithmetic mean of K and K + 1. With Hill, the cutoff is the geometric mean,√

K (K + 1).

Example 5.9 Suppose the divisor used leads to apparent quotas of 5.482 for state
A, and 15.482 for state B. Then Webster would round them to 5 and 15 respectively.
But since

√
5 × 6 = 5.477, if we use Hill, then A gets rounded to 6, whereas√

15 × 16 = 15.492, so B is still rounded to 15.

Why such a fuss over tiny changes in the number of seats in theHouse that different
proposals would produce? One reason is the composition of the Electoral College,
that chooses the President: the number of votes cast by a State is the number of its
Senators (two), plus its number of House seats, currently giving 538 in total. With an
electorate of that size, and States casting their votes en bloc, tiny changes can have
large consequences!
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5.4 Simpson’s Paradox

Two equally effective drugs were tried out on 800 people for side effects. For drug
A, 50 out of 200 had side effects— 25%, while with drug B, 180 out of 600 had side
effects—30%. Drug A came out safer.

The company statistician looked at males and females separately. 150 males had
been given drug A, and 30 had side effects—a rate of 20%. 200 males had used B,
and 30 of them had side effects—15%. Among males, drug B was safer.

By simple subtraction, we deduce that 50 females used A, and 20 had side effects,
a rate of 40%; and also that 400 females used B, of whom 150 had side effects, a
rate of 37.5%. Drug B was safer among females as well!

So B was safer among males, and B was safer among females, but A came out as
safer in the whole population – an example of Simpson’s Paradox. (Dennis Lindley,
a prominent UK statistician in the twentieth century, when asked “If you were at
a party, how would you convince people that statistics was more than just ‘boring
numbers’?”, immediately cited Simpson’s Paradox. See Joyce (2004)).

It seems counter-intuitive that B can be “better” than A in both subpopulations,
but A better than B when the data for these are merged, but this phenomenon is
something to watch out for all over the place. In this context, the information to act
on is that B is safer, separately, among both males and females, and is thus preferred.

But consider two bowlers in the same side in a two-innings cricket match. Bowler
A may have the better analysis in each innings (i.e. a lower ratio of runs to wickets),
but B may have the better analysis in the whole match. At a stretch, A could have a
better analysis in every one of the ten matches in the season, but B a better analysis
over the season as a whole. In this context, we would look at the season as a whole
to make the comparison, and agree that B had done better than A.

Depending on context, it may be right to compare A and B among the whole
population, or among each of N sub-populations.

One of the best-known examples relates to admissions data to graduate pro-
grammes at the University of California, Berkeley, in 1973. Across all programmes,
44% of male applicants were admitted, but only 35% of females. A challenge alleg-
ing gender bias failed: within departments, overall admissions rates ranged from only
7% in the most competitive departments (e.g. English) to around 70% in Engineer-
ing and Chemistry. But in both those departments, even though far more men than
women applied, women had a higher success rate; indeed, at the department level,
there was generally little difference in success rates. The apparent bias in favour of
men was entirely accounted for by the fact that female applications were consider-
ably higher in those departments with lower admissions rates. Representative data
are found in Exercise 5.10.

If you express matters algebraically, the appearance of the Paradox is no surprise.
For, suppose

a

b
>

c

d
and

e

f
>

g

h
.
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No maths student would dream of “deducing” that

a + e

b + f
>

c + g

d + h

would they?

5.5 False Positives

How useful is screening for breast cancer? Suppose Bessie, a fifty-year-old woman
with no symptoms, tests positive after a mammograph: how likely is it that she
actually has breast cancer?

We plainly need some basic data: take it that around 1% of fifty-year-old women
with no symptoms actually have breast cancer, and the sensitivity of this test is 90%.
That means that 90% of women who really do have breast cancer will correctly test
positive (and so 10% of them will not). The False Positive rate for this test is about
9%, i.e. of those women without breast cancer, 9% will still test positive (so 91%
will not). What is your estimate of the chance Bessie has breast cancer? Choose
between:

about 9 in 10; about 8 in 10; about 1 in 10; about 1 in 100.

Doctors untrained in the subtleties of statistics frequently get the answer to this
question quite wrong. For a valid argument, consider a group of 1000 such women.
Since the prevalence rate is about 1%, we take it that this group consists of 10women
with breast cancer, and 990 without. Since the sensitivity of the test is 90%, 9 of
those who do suffer will test positive, and 1 will not. But also, 9% of the 990 who
do not suffer, i.e. 89 women, will also test positive. So we have 9+ 89 = 98 women
who test positive, but only 9 of them will have the disease. Bessie is one of those
98 women—the chance she is among the nine with cancer is around one in ten.

It is quite erroneous to think that, because the test gives the right answer over 90%
of the time, if the test says “cancer” there is a 90% chance it is correct! On those
figures, this test is a disaster: for everywoman correctly diagnosedwith breast cancer,
nine or ten will wrongly be told that they also have the disease, and that will lead to
a period of high anxiety until the error is corrected. Increasing the sensitivity from
90% to 100% may look useful, but would make little difference to the downside:
now all ten women with the disease will be picked up—but we will still have another
89 wrongly identified. It would be far more helpful to reduce the false positive rate,
as then a larger proportion of those picked up will genuinely be sufferers.

In another context, it has been suggested that the use of biometric data (e.g. iris
scans) can help detect terrorists (or anyone else seeking to conceal their true identity)
at an airport. Identification by machine will not be perfect, but suppose that, when
someone uses their correct identity, the machine wrongly raises an alert 1% of the
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time; and when someone uses a false identity, this is correctly picked up 99.9% of
the time. What will be the consequences for, say, the 1, 000, 000 people who pass
through this airport in a given period?

The answer will depend on howmany people try to claim false identities. Suppose
this is 0.01% of would-be passengers. That means that, among the 1,000,000 people,
100will be using a false identity, and it is highly likely that all of themwill be detected.

But, of the 999,900 honest passengers, 1% of them, or 9,999, will wrongly be
stopped as a potential terrorist. Themachine picks up 9, 999+100 = 10, 099 people,
but only 100 of them, about 1%, are dishonest. A distressing 99%of all those stopped
will, eventually, turn out to be honest.

The single factor that the uninitiated tend to overlook is the base-rate prevalence
of the “condition” under question. The rarer this condition, the more likely it is that
a test to identify it wrongly picks out too many suspects.

In general, suppose the intention is to identify people who possess a certain char-
acteristic, X . There are two errors that can be made:

(i) to assert a person has X , when they do not;
(ii) to assert a person does not have X , when they do.

Without knowing the context, we cannot determine whether error (i) or error (ii)
is more serious: and any attempt to reduce the frequency of one type of error will
automatically increase the frequency of the other.

For example, in sport, athletes are periodically tested for the use of illegal
substances—steroids that build up body strength, drugs that conceal the use of such
steroids, “blood doping” to enhance performance at a particular time. In one context,
a quantity known as the T/E ratio is measured—if certain illegal drugs are used, a
dramatically high T/E ratio arises. So it would be convenient to use a single cut-off
point: a ratio in excess of K is evidence of drug use and punishment follows, ratios
below K are acceptable.

But the T/E ratio varies naturally in any individual: a common cold, alcohol
consumption, or changing birth control pills, can increase its value. So in the choice
of K , a balance must be struck: too high, and drug cheats will prosper, too low, and
innocent athletes may have their career unfairly interrupted or terminated. There is
no simple answer; see Exercise 5.12.

5.6 Measuring Inequality

It is often claimed that societies would be more socially cohesive, generally happier,
if income (or wealth, or property) were more equally distributed. How best might we
measure how evenly income (or whatever) is divided? At the heart of several ideas
is the Lorentz Curve.

To construct this curve (for income), arrange people in increasing order of their
income, and suppose that, collectively, the poorest 100x% of the population earn
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Fig. 5.1 A Lorentz curve
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100y% of the total income. The Lorentz curve is just the graph of y against x , as
illustrated as the curve ADB in Fig. 5.1.

The best-known measure of inequality that is derived from this curve is the Gini
Index, defined as the ratio of the shaded area to the area of the triangle ABC. If all
members of the population have the same income, the Lorentz curve coincides with
the straight line AB, and the Gini Index is zero (perfect equality); if one member
takes the entire income, the Lorentz curve collapses to the two straight lines, AC
then CB, and the Gini Index is unity (total inequality): it is about 0.33 in Fig. 5.1.

A fairly common pattern finds a large number of people with low incomes, rather
morewho are comfortably off, and a small number on high incomes; for convenience,
call the bottom 40% the poor, the next 50% the middle, and the top 10% the rich;
frequently, that “middle” tends to earn about half the total income. Figure5.1 shows
that if there is a transfer from the poorest of the middle to the richest of the middle,
but not affecting the rich or the poor, the shaded area gets bigger, so the Gini Index
will increase. Social commentators often point to this as a criticism of this Index—it
pays too little attention to the extremes of the distribution. But a single number cannot
hope to capture all features of inequality.

One quantity that directly addresses the extremes is the Palma measure, defined
as the ratio of the total income of the top 10% to that of the bottom 40%. With total
equality, this ratio will be 0.25, but it is rare to find countries where it is below unity.
Broadly, the larger the Gini, the larger the Palma: Denmark has a Gini Index of 0.24,
its Palma measure is 0.92, in the UK we find 0.34 and 1.62, while the 2002 figures
for Jamaica, then possibly the most unequal country in the world, are 0.66 and 14.67.
The Palma measure has a much wider range than the Gini, differences are easier to
spot.

The 20–20 ratio rests on the same idea as the Palma: it is the ratio of the total
income of the top 20% to that of the bottom 20%, while a quite different idea is
behind theHoover Index—the proportion of total income that should be redistributed
to achieve perfect equality. This is also calculated from the Lorenz curve, being the
largest vertical distance between the curve ADB and the line AB in Fig. 5.1.
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(At some stage in your mathematical career, you are likely to come across the
general idea of a metric space, i.e. a set of “points” X and a way of measuring
d(x, y), the “distance” between members of X . In the present context, each “point”
is a continuous curve defined on the interval [0, 1], and we have looked at different
ways of defining the distances between two such curves.)

In a population of size N , if the income of the i th person is denoted by xi and the
mean income by x , the Theil Index is given by

T = 1

N

N∑
i=1

xi

x
log

( xi

x

)
.

If all have the same income, then xi = x for all values of i , and so T = 0. At
the other extreme, when one person has the entire income, then T = log(N ), so we
could normalise this measure by reporting the value of T/ log(N ), which will always
fall in the range from zero to unity.

To relate this index to the Lorentz curve, consider the i th person: write
pi = xi/(N x), the proportion of total income for this person, and qi = 1/N , their
proportion of the whole population. Since xi/x = pi/qi , then

T =
N∑

i=1

1

N

( pi

qi

)
log

( pi

qi

)
,

the format of the Riemann sum approximation to the integral
∫ 1
0 g(x)dx , where g is

specified at the points i/N . But notice that pi is the increase in the cumulative total
of wealth attributable to the i th person, while qi = 1/N , so the ratio pi/qi will, in
the limit for large N , be the derivative of the Lorentz curve. This curve is, of course,
already a smoothed version of the discrete function that considers each individual
separately, so the Theil index is

T =
1∫

0

f ′(x) log( f ′(x))dx,

where f (x) is the Lorentz curve!
Finally, we mention the Atkinson Index, defined as A = 1 − exp(−T ), (where

T is the Theil Index). Since T = 0 with perfect equality of income, so we also have
A = 0 in that case, and as T rises, so does A, which will thus fall in the range for
zero to (N − 1)/N , effectively unity.

All these measures can be, and are, used in a wide variety of circumstances, not
only in the economic field for quantities such as income, wealth or possessions. For
example, they offer measures of biological diversity, and differences in educational
attainment or quality of life across different countries, regions, or periods of history.
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5.7 More Worked Examples

Example 5.10 In an (admittedly peculiar) election, there are three voters, A, B and
C, and two candidates X and Y. The outcomes, for three of the possible ways the
voters may vote, are as shown (Table5.4).

(Thus the first row shows that, if A votes for X, and B, C each vote for Y, the
winner is X.) Explain why this system is none of monotone, neutral, or anonymous.

Is there a dictator, i.e. someone who’s vote always fixes the outcome? Does the
person with fewest votes always win? Is there imposed rule, i.e. the outcome is fixed
irrespective of the voting? Show that this is not a quota system.
Solution. It is not monotone: between the first and second row, X gains a vote without
losing one, yet changes from a Winner to a Loser.

It is not neutral: in the second and third rows, all voters change their minds, but
the outcome is the same—Y wins both times.

It is not anonymous: in both the first and third row, Y gets two votes, but X wins
in the first row, Y in the third.

There is no dictator: A’s and B’s choices lose in row two, C’s choice loses in
row one.

X has fewest votes in row three, yet Y wins—this is not Minority Rule.
There is no Imposed Rule—it is possible for either to win.
The possible values for the quota are {0, 1, 2, 3}: if the quota were 0 or 1, all three

rows should produce a tie—they don’t; if it were 2, Y should win in row one, but
doesn’t; if it were 3, none of the rows should give a winner, but they all do. It is not
a quota system.

Example 5.11 In an election for members of the Senate at Sussex University, under
STV rules, there were 52 voters, 8 candidates, and 5 places to be filled. The election
outcomewas reported as inTable5.5:what deductions can youmake about the voters’
ballot papers?

Solution. The Quota is Q = 52/6 = 8.67, to two decimal places, so A and E
would be elected immediately. The system also elected F, B and D (in that order) We
can deduce:

(i) A’s surplus was split in the ratios 2 : 1 : 4, with some rounding. The only way
to give these ratios, using integers that sum to at most 11, is that 7 of A’s voters
made second preferences, with 2 selecting B, 1 for C and 4 for F.

Table 5.4 Outcomes in an
unusual election process

Voter A B C Outcome

X Y Y X

X X Y Y

Y Y X Y
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Table 5.5 STV in operation

Cand. First Pref Surplus of A Votes Surplus of E Votes C Out Votes H Out

A 11 −2.33 8.67 8.67 8.67

B 6 0.66 6.66 6.66 1 7.66

C 3 0.33 3.33 3.33 −3.33

D 6 6 0.65 6.65 6.65 2

E 10 10 −1.33 8.67 8.67

F 8 1.32 9.32 9.32 9.32

G 4 4 0.13 4.13 2 6.13

H 4 4 0.52 4.52 0.33 4.85 −4

Not trans 0.02 0.03 0.05 0.05 2

(ii) Since E, with 10 votes, had a surplus of 1.33, and the amount 0.13 was trans-
ferred to G, all those 10 voters expressed second preferences, with 5 for D,
1 for G, and 4 for H.

(iii) F’s surplus was 9.32 − 8.67 = 0.65, so even if this entire surplus went to
C, C would still be bottom, with no further surpluses available. So C must be
eliminated, and we can exclude C before distributing the surplus of F.

(iv) We saw that one voter who marked A as first preference also marked C as
second; and the only explanation of the 0.33 votes being transferred from C to
H is that this voter had H as third preference. Hence just one voter had an order
beginning A, C, H.

(v) Two of the four voters whose first preference was H did not express a second
preference. So when H was eliminated, it was as though fewer total votes had
been cast, so D’s score of 8.65 was now enough for election, even if all “spare”
votes went to G.

(vi) Suppose that the first preferences were as above, but only ONE of the 11 who
voted for A gave any lower preferences. There would still be 2.33 surplus votes
to distribute, but ALLof themwould go to that voter’s second preference, giving
ENORMOUS influence!

Would this voter have wielded more power than can be justified? Effectively, if all
others who voted for A gave up their chances to express lower preferences, this one
person is acting as representative of A’s voters—it is as though all 11 of A’s voters
had filled in their voting slips in identical fashion!

5.8 Exercises

5.1 An electorate of size 27 will choose the single winner from four candidates.
Each voter ranks the candidates, but only four of the 24 possible orders are
chosen: 12 voters use the ranking ABCD, 7 use BCDA, 5 choose CDAB and 3
choose DCBA.
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(a) What happens under Majority Rule? Who would win, and what would be
the order, under the UK system FPTP?

(b) How many points would each candidate get under the Borda count? How
would this system rank all four candidates?

(c) These 27 rankings enable you to deduce the choice a voter would make
between any two of the four candidates. There are six possible “head to
head” contests between the four candidates: give the results of these six
contests.

(d) Is there a Condorcet Winner? Is there a Condorcet Loser?
(e) One possible voting method is Sequential Pairwise Voting, SPaV, meaning

a sequence of head-to-heads: e.g. A versus B, loser eliminated, the winner
against C; then the winner versus D. The overall winner may well depend
on the order of these head-to-heads. Give orders that show that any of the
candidates could end up as winner.

(f ) Explain briefly why SPaV is both monotone and anonymous.
(g) Suppose SPaV is used, in the order (BC), winner versus A, and finally

versus D:
(i) Give the overall ranking.
(ii) Give the overall ranking, if all 27 voters reversed their preferences as

between C and D, nothing else affected.
(iii) What do your results imply about the neutrality of SPaV?

5.2 (i) Explain briefly why the Alternative Vote (AV) is both anonymous and
neutral.

(ii) AV is to be used to choose one of four candidates, R, S, T and U. Of the
17 voters, 6 choose the order RSTU, 5 choose SRTU, 4 select TUSR, 2 go
for UTRS. Conduct the count, and give the result.

(iii) Suppose the two whose order was UTRS both change their minds, and use
URTS (a change that favoursRat the expense ofT, all others are unaffected).
Give the new result.

(iv) What does this mean about the monotonicity of AV?
(v) Conduct the election for the (original) preferences shown in the previous

question under the AV, giving the rank order.

5.3 An electorate of size 46 must choose one winner from the four candidates, A,
B, C and D. Each voter ranked all the candidates from best to worst, and 15
voters chose the order ABCD, 13 chose BCAD, 12 selectedDBCA and 6 picked
CADB.

(i) Carry out the Borda count on the above figures, and give the rank order of
the four candidates.

(ii) Suppose that, after the votes have been cast, candidate C dies, and it is ruled
that C be struck off the ballot papers, and the Borda count be used from
the beginning on the remaining three candidates. Give their rank order in
these new circumstances.
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(iii) Comparing the relative positions of candidates A and B in your two calcu-
lations, describe a deficiency in the Borda count system that this example
illustrates.

(iv) On the original data (i.e. including C), what would be the results of the
election under the UK First Past the Post (also known as Plurality) system,
and under Majority Rule.

5.4 In the South-East constituency for the European Parliament elections in May
2014, which uses the D’Hondt system, the total votes cast for the parties that
won seats were: UKIP 751,439; Conservative 723,571; Labour 342,775; Green
211,876; Lib. Dem. 187,876. Ten seats were allocated by this method: how
many seats did each party get, and in what order? If twelve seats had been on
offer, which parties would have got the next two seats?

5.5 In the London Assembly elections of 2012, the four relevant Parties, with
their total votes, were: Labour 911,204; Conservative 708,528; Green 189,215;
Lib.Dem. 150,447. 8 Labour members and 6 Conservatives were directly
elected, and 11 further members were chosen, with the total number of seats
won by each Party following the D’Hondt method, but with a supplementary
rule: to qualify for top-up seats, parties must obtain at least 5% of the total
votes cast. Since 2,215,008 votes were cast, and UKIP obtained only 100,040
votes overall, they fell short of the qualifying figure of 110,750 (as did some
other parties).

(i) Which parties got these last 11 seats, and in what order?
(ii) The Sainte-Laguë method is a variation on D’Hondt, using the quantity

V (J )/(1 + 2S(J )) instead, but otherwise proceeding in the same way.
What difference would using Sainte-Laguë have made in those elections?

5.6 In the UK 2015 General Election Thurrock constituency, the Conservative can-
didate won with 16,692 votes, closely followed by Labour (16,156), then UKIP
(15,718), with 998 votes cast for other parties. Ignore the votes for the “Other”
parties, and suppose that AV, rather than FPTP had been in use, with voters
voting honestly: under what circumstances would the Labour candidate have
won the seat?

5.7 The country of Freedomia has ten states, with populations in the proportions
142:237:332:427:522:617:712:807:912:2192 (numbers which sum to 6900).
Its parliament has 69 members, the number from each state to “reflect” that
state’s population, as in the USA. The standard divisor will thus be 100, giving
standard quotas of 1.42, 2.37, etc. Recall that a method satisfies quota if the
numbers chosen in a state are its standard quota, rounded either up or down to
an integer.
Give the apportionments that would result using the methods of, in turn, Hamil-
ton, Jefferson,Adams,Webster, Hill. For each, decidewhether quota is satisfied.
Hint: after Hamilton, try the divisors 91.3, 107, 95, 97 respectively.

5.8 A firm has two target groups of customers, the Young and theOld, and two com-
peting sales forces, the Reds and the Blues. Any customer will be approached
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by one sales force only. Construct your own set of numbers for which (a) and
(b) hold:

(a) Reds achieve a higher sales proportion than Blues among both Young and
Old separately;

(b) Overall, Blues achieve a higher proportion of sales than Reds.

Argue as to which sales force deserves the bigger bonus.

5.9 Construct an example, as mentioned in the text, of two bowlers in cricket where
A has a lower runs to wickets ratio in both innings, but B’s ratio is better in the
whole match.

5.10 The admissions data for the six largest graduate departments at Berkeley in
1973 (see the text) were as shown in the table (Table5.6):
For each department, compute the proportion of admissions for males and
females separately; without formal statistical calculations, state whether the
admission rates appear to differ in any of these departments.
Compute also the admission rates for men and women across the six depart-
ments as a whole, and say whether, on those figures, the rates seem to differ.
Comment.

5.11 (i) Among a certain population, 2% suffer from a disease D. There is a test
to detect D, but it is not infallible: it gives the correct answer 90% of the
time (i.e. whether or not someone is a sufferer, the test has a 90% chance
of being correct).
Suppose the population has 1,000 members. Follow through the maths to
find the proportion of those who do suffer from the disease, among those
the test picks out as sufferers.

(ii) For the same population, change the test reliability so that, of those who
actually suffer from D, the test gives the correct result 95% of the time;
and among those without the disease, the test gives the correct result 80%
of the time. Follow the maths through again.

(iii) Now do it all with symbols: proportion p, with 0 < p < 1, suffer from
D; among sufferers, the test is correct a proportion x of the time, among
non-sufferers, it is correct a proportion y of the time.

Table 5.6 Admissions data in Berkeley, (1973)

Department Male applications Male admissions Female applications Female admissions

A 825 512 108 89

B 560 353 25 17

C 325 120 593 202

D 417 138 376 131

E 191 53 393 94

F 373 22 341 24
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Among all those picked out by the test, what proportion will actually suffer
from the disease?
Hence, under what conditions on x and y will the test be “useful”, in
the sense that, among those for whom the test indicates they have D, the
proportion who do so exceeds p?

5.12 Suppose that a test to detect the use of illegal performance-enhancing drugs has
been developed. It measures a certain quantity,M: for all x > 0, among “clean”
athletes, the proportion for whom the value of M exceeds x is exp(−x), among
drug users the proportion is exp(−x/4). Suppose 10% of athletes tested are
drug users: what proportion of those tested will have a value that exceeds x?
Suppose K is taken as the cut-off value, above which a reading is accepted as
evidence of drug use. What values of K will ensure that

(i) no more than 5% of clean athletes fail the test;
(ii) at least 50% of drug users are identified?

Howmany cheats would escape detection if the value in (i) were used? And
how many clean athletes would be wrongly accused using the value in (ii)?
What value of K minimises the total number of misclassifications, and,
for that value, what proportion of those tested will be wrongly classified?
(Give all answers to three significant figures.)

5.13 Suppose a Lorentz curve has the format f (x) = xα over 0 < x < 1, for some
α ≥ 1. Calculate the corresponding Gini Index, Palma measure, 20− 20 ratio,
Hoover Index, Theil Index and Atkinson Index. Evaluate these for α = 2.

Appendix

Proofs of Arrow’s ImpossibilityTheorems

Proof Our logic is to prove the Second Theorem, and then deduce the First. Wewrite
A � B to mean that A is strictly preferred to B, and A 	 B to mean that A is ranked
level with B, or higher. Assume there are n ≥ 3 candidates, and that the voting system
satisfies conditions (1), (3) and (6). We will show that there is some voter, v∗, who
is a dictator, i.e. that (5) cannot hold. To do this, suppose B is a candidate, and every
voter ranks B either first or last. Then if the system does not rank B as either first or
last, there is some candidate, A, with A 	 B, and another candidate C with B 	 C .

Suppose now that every voter makes a simple change, if necessary, to move C
above A in their own ranking, making no other changes. Since all voters rank B either
top or bottom, this does not affect any voter’s preferences between A and B, or B
and C; so by property (3), we still have A 	 B 	 C . However, because every voter
ranks C above A, by (6), C � A in the voting system—a contradiction. The system
must rank B either first or last.
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So suppose first all voters rank B last. We have just seen that the systemmust rank
B either first or last—and it cannot be first, by (6), so B must be ranked last. Plainly,
if all voters now move B from last to first, (6) shows that the system must rank B at
the top. Write {v1, v2, . . . , vm} as the list of voters who originally all ranked B last,
and now change one at a time in that order to make B first. There is some first voter,
vx say, who’s vote change causes B to move from first to last. Call vx a pivotal voter;
we show that vx is a dictator.

For, let A and C be two candidates other than B, and suppose vx prefers A to C in
some list, L , of rankings by all voters. By property (3), the system’s choice between
A and C must be unaffected if either

(i) vx moves B to between A and C, or
(ii) all of v1, v2, . . . , vx−1 move B to the top of their lists, or
(iii) all of vx+1, . . . , vm move B to the bottom of their lists.

So suppose all these changes are made giving a new list of rankings L ′. In L ′,
v1, . . . , vx−1 prefer B to A, while vx , . . . , vm prefer A to B. But since vx is the pivotal
voter, as only v1, . . . , vx−1 rank B first, L ′ still ranks B last; in particular, L ′ ranks A
above B. But in addition, since B would be ranked top if vx now moved B to the top
from its position of above C but below A, this has no effect on the relative positions
of B and C, so L ′ must prefer B to C. But if A � B and B � C , then A � C in L ′.
But as we know that these changes do not alter the overall choice between A and C,
then A is ranked above C in the original list L . Because the pivotal voter vx prefers
A to C, so does the system.

This pivotal voter was chosen by reference to a particular candidate B. So let D
be some candidate other than B, and let vy be the corresponding pivotal voter. Let
E be someone other than B or D. We have just seen that whatever choice vx makes
between two candidates other than B—in this case, D and E—the system follows the
choice made by vx . But, as vy is pivotal for D, vy also determines the relative ranking
of D and E. So vx and vy are the same person—there is a single pivotal voter, v∗ say,
who controls the relative rankings of anyone other than B, anyone other than D, and
anyone other than E. v∗ is a dictator.

To deduce the First Theorem, it is enough to show that conditions (2), (3) and (4)
imply condition (6); for then, if all of (1) to (5) hold, so must (6), and we have found
that (1), (3), (5) and (6) are incompatible.

Given (2), (3) and (4), suppose all voters prefer candidate A to candidate B in
some list L of rankings. By (4), we know that there is some list L ′ which would lead
to A � B; modify L ′ if necessary to produce L ′′ in which every voter prefers A to
B. By (2), the system prefers A to B under L ′′; L and L ′′ may be quite different, but
the relative ranking of A and B is the same for every voter each time so using (3),
we see that the system must rank A above B in the original list L . Condition (6) does
indeed hold.
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Chapter 6
TV Game Shows

Abstract Itmay surprisemanypeople howoftenmathematical ideas arise in popular
TV game shows, either in pointing the way towards good tactics, or simply adding
to the viewer’s enjoyment. The general idea of the Utility of a sum of money, rather
than its actual amount, has a strong influence on whether a contestant will play safe,
or take a riskier but potentially more rewarding path. We look at (of course) “Monty
Hall’s” game, but also its extension to more then three boxes; maths comes up in
“The Price is Right”, both inmaking sensible guesses at the value of prizes, and in the
final part, when three contestants spin a giant wheel, seeking the largest score from
one or two spins without going over the score 100. Newer games such as “Pointless”
and “Two Tribes” throw up subtle but interesting maths—how really unlucky could
a contestant be, or how a game could be made fairer to all players. Utility can explain
many actions in the “Million Pound Drop”, “Deal or No Deal”, and “Who wants to
be a Millionaire?”, and we consider at what stage contestants in “TheWeakest Link”
should bank the accumulated funds. The idea of Backwards Induction, applied to
the short-lived “The Colour of Money”, proves that there was some optimal strategy
at all stages of the game. Several formats have used variations on the well-known
“Prisoner’s Dilemma” to split, or share, a prize. Teams of different sizes might arise
in some formats, (in pub quizzes, can we find a good handicapping system to use?).

6.1 Utility

Game shows are a popular TV format. Theymix skill and luck in diverse proportions,
and some contestants have won enormous prizes. I make no claim that mathematical
considerations are a prime factor in determining success. But sometimesmathematics
will show you that one particular strategy is more likely to lead to success than
another; moreover, an appreciation of non-obvious mathematical ideas can simply
add to your enjoyment of the show.

Initially, we will look at shows where contestants have no influence on the size of
prize they might win, but when their actions can influence their possible winnings,
the concept of Utility can guide them into making sensible decisions. Imagine that
you have a choice of receiving £1 for certain, or receiving £2 if an ordinary fair coin,

© Springer International Publishing Switzerland 2016
J. Haigh, Mathematics in Everyday Life, DOI 10.1007/978-3-319-27939-8_6

113



114 6 TV Game Shows

Fig. 6.1 A typical Utility
curve

Monetary Amount

Utility

when thrown, falls Heads, but zero if it falls Tails. Gambling scruples aside, most
people would see those options as about equally attractive—on average, you would
get the same amount of money, £1.

But now suppose those amounts are ten thousand times as large: only the very
rich would be indifferent, most of us would plump for the definite sum of £10,000
rather than have a 50–50 chances of zero and £20,000. With larger sums, twice as
much money is worth less than twice as much to us. Our “Utility” curves have the
general shape shown in Fig. 6.1—a larger amount of money is indeed valued higher,
initially in a linear fashion, but at a decreasing rate for higher sums.

Given a choice between £10,000 for certain, and £20,000with someprobability p,
what values of p make the latter more attractive?WriteU (x) as the Utility of amount
£x ; basing our decision on the idea of Utility suggests that we work out the average
Utility of the two choices, and plump for the one with the larger value. Taking the
gamble leads toU(20,000) a proportion p of the time, andU (0) = 0 otherwise, so the
average value is the weighted sum of these values, here just pU(20,000). We should
take the gamble when p, the chance of success, exceeds U(20,000)/U(10,000).

Example 6.1 Suppose that a contestant in Who Wants to be a Millionaire? has suc-
cessfully answered the £75,000 question. She sees the next question, but is unsure
of the answer: if she offers a wrong answer, she will leave with £50,000, but a cor-
rect answer takes her to £150,000—and the prospect of more. Should she take the
£75,000, or gamble?

Solution. Whatever happens she wins at least £50,000, so she should ask which
she prefers, above that pleasant prospect: another £25,000 for certain, or (at least)
£100,000 with some probability p, zero otherwise. With a choice of four possible
answers, even a pure guess will succeed 1/4 of the time: so, if p > 1/4, the average
amount from the gamble exceeds the sure thing. But our Utility approach tells her to
compare the average Utilities, not the monetary amounts, of the different outcomes.

One curve that has the properties described for Fig. 6.1 is y = K
√

x , K > 0.
The expected utility of taking the £25,000 would be K

√
25,000 = 158.1K . If her

chance of a correct answer is p, her expected utility in going for the larger prize is
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K p
√
100,000 = 316.2K p. “Utility” indicates that she should take the gamble only

if 316.2K p > 158.1K , so she should take the gamble only if p > 50%—rather
more cautious.

(Of course, a correct answer would give her the chance to increase her winnings
further, so the actual utility taking the gamble is higher than K

√
100,000; she can

justify being a little bolder than this!)

6.2 Monty Hall’s Game

The analysis of this game is much better known now than just a few years ago, when
it was notorious for causing heated arguments, with holders of PhDs in mathematics
making fundamental blunders. “Monty Hall” was host for this game, where three
closed boxes were on display: one contained a valuable prize, the other two had
rubbish. The contestant was invited to select one of the boxes; and when she had
done this, Monty (who knew which box the prize was in) would then open one of
the other two boxes, showing it contained rubbish, and invite the contestant to stick
with their original choice, or swap to the third box. What should she do—or does it
make no difference?

We assume the contestant knows this ritual, so she can decide her tactics, to
“Stick” or to “Swap” in advance. Suppose her decision is “Stick”. Plainly, there is
one chance in three her original choice is correct. The host’s action does not affect
this, so the “Stick” strategy wins with probability 1/3.

For the “Swap” strategy, consider the two times in three that her original choice
was one of the rubbish boxes. That leaves two other boxes, one with the prize, and
one with rubbish: obviously the host must open the one containing rubbish, so in
these circumstances, swapping always leads to the winning box. “Swapping” gets
the prize with probability 2/3.

You win the prize twice as often if you Swap.
All sorts of nonsense has been written in support of other conclusions. For exam-

ple, some have argued that after Monty has opened a box and shown it to be empty,
then as there are just two boxes left, each is equally likely to contain the prize, so
whether you Swap or Stick, your winning chance has (magically) increased from 1/3
to 1/2! How Monty’s action has changed the probability that your original choice
held the prize is not explained.

If your friend is still puzzled when you tell him the correct analysis, given above,
change the problem: let there be 100 boxes, 99 with rubbish and one with the prize:
after the contestant makes her original choice, Monty solemnly opens 98 boxes,
showing rubbish each time. Do they really think each of the two remaining boxes
are equally likely to hold the prize?

As inmost questions concerning probability, the exact specification of the problem
is vital. Here, it is crucial that, whatever box is chosen, Monty will always open
another box. If he only opened a box when the original choice had picked out the
prize, swapping would be fatal!
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6.3 The Price Is Right

Maths arises at two stages of this show. First, when four contestants are asked to
guess the cost, in whole pounds, of some object—a bicycle, a computer, an item
of furniture—the winner being whoever gets nearest, without going over the actual
price. Suppose the guesses of the first three are a, b and c, with 0 < a < b < c. Then
the last contestant should choose one answer from the list {1, a+1, b+1, c+1}—any
other choice would be poor play.

The reason is that if the correct answer has already been chosen, there is nothing
the last contestant can do: otherwise, the correct answer is in one of the intervals
[1, a − 1], [a + 1, b − 1], [b + 1, c − 1] or is at least c + 1. If the correct interval is
chosen, the value at the left end of the interval must win—and any other value might
not. The key phrase is “without going over”. The worst answers that could be given
are a − 1, b − 1, and c − 1, which can win only if they are exactly right.

The first three contestants do not have this simple selection: indeed, they run the
risk that a later player may virtually scupper their chances by guessing £1 more than
their offering.

The second place for some maths is at the end of the show, during The Showcase
Showdown. Three contestants,Adam,Brian andCarla take turns to spin a largewheel,
with twenty segments marked {5, 10, 15, . . . , 100}; the intention is that, when the
wheel is spun, all these numbers are equally likely. The winner is the one with the
the largest score, over one spin or the sum of two spins, provided that this score does
not exceed 100. So each player must decide whether they are satisfied with the first
score, or whether they should take a second spin. If two or more of them tie, they
have a one-spin play-off, the high score winning. When should each person take a
second spin? And what are their respective winning chances?

As often happens in maths, solving an easier problem points the way: so suppose
there are just two players, and the possible scores are 1, 2, 3, 4, 5, all equally likely.
When should the first player, Adam, spin again?

First we must see what the second player, Brian, will do when he knows Adam’s
score. He will spin again if behind, or if equal to Adam with a score of 1 or 2.
(If he equals Adam’s score of 3, he will bust 60% of the time if he spins again, so
he should go for a one-spin spin-off.)

If Adam’s final score is x with 1 ≤ x ≤ 5, Brian will win if either

(i) his first score exceeds x , or
(ii) his first score is x , and he goes on to win, or
(iii) his first score is less than x , his second spin takes him to tie at x , he wins the

spin-off, or
(iv) his first score is less than x , his second spin takes him above x but no more

than 5.
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The respective chances are

(i) (5 − x)/5;
(ii) (1/5) · (1/2) = 1/10 if x > 2, or (1/5) · (4/5) = 4/25 when x = 1, or

(1/5) · (3/5) = 3/25 when x = 2;
(iii) ((x − 1)/5) · (1/5)(1/2) = (x − 1)/50;
(iv) ((x − 1)/5) · ((5 − x)/5) = (x − 1)(5 − x)/25.

Summing, we find Brian’s winning chances:

when x = 1, chance is 4/5 + 4/25 = 24/25 = 48/50, Adam’s chance is 2/50;
when x = 2, chance is 3/5 + 3/25 + 1/50 + 3/25 = 43/50, for Adam 7/50;
when x = 3, chance is 2/5 + 1/10 + 2/50 + 4/25 = 35/50, for Adam 15/50;
when x = 4, chance is 1/5 + 1/10 + 3/50 + 3/25 = 24/50, for Adam 26/50;
and when x = 5, chance is 1/10 + 4/50 = 9/50, for Adam 41/50.

Adam should do these sums. Plainly he will spin again if his first score is 1, but
suppose his first score is 2. If he sticks, we have seen that his winning chance is only
7/50; if he spins again, he will bust 2/5 of the time, but otherwise (1/5 of the time
each) will reach 3, 4 or 5. So his winning chance from spinning is

((15/50) + (26/50) + (41/50))/5 = 82/250,

much better. Suppose his first score is 3: sticking, his winning chance will be 15/50;
spinning, hewill bust 3/5 of the time, otherwise he reaches 4 or 5 eachwith probability
1/5, leading to an overall winning chance of

((26/50) + (41/50))/5 = 67/250,

which is lower. So Adam should spin again from 1 or 2, stick at 3 or more.
Now we can find their winning chances. If Adam scores 1, he spins, and thus

ends up at 2, 3, 4, 5, or bust, all with probability 1/5: from those scores, his win-
ning chances are 7/50, 15/50, 26/50, 41/50 and zero, so the overall contribution is
((7 + 15 + 26 + 41)/50)/25 = 89/1250.

From 2, he spins and so gets to 3, 4, 5 or bust, leading to a contribution of
((15 + 26 + 41)/50)/25 = 82/1250.

He sticks at 3, 4, and 5, with respective winning chances of 15/50, 26/50 and
41/50, total contribution ((15+26+41)/50)/5 = 82/250 = 410/1250. Altogether,
his winning chance is (89+82+410)/1250 = 581/1250, so Brian’s winning chance
is 669/1250.

Coe and Butterworth (1995) analysed the real 3-player game with this same
approach: they showed that if Carla ties with just one opponent, she should spin
with a score of 50 or lower, tieing with both opponents she should spin on 65 or
lower; Brian should spin on a tie with Adam at 65 or below, but stop if the tie is at
70 or more; Adam should spin again at 65 or below. Overall, their winning chances
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are around 31% for Adam, 33% for Brian, and 36% for Carla. Maybe closer than
you would think?

In the analysis of this game, the fact that two players may end up with exactly the
same score complicates matters. But suppose that, instead of a wheel with twenty
segments, a “spin” corresponds to selecting some value completely at random in the
interval [0, 1]; each player can take one spin or sum two spins, but a total above unity
eliminates the player. Then ties can be ignored. This version, with three (or more)
players, was solved by Grosjean (1998). See the Appendix.

6.4 Pointless

This show seeks to reward obscure knowledge: we can all name some capital city in
continental Europe, but what answer might we give if the aim is to name such a city
that other people won’t think of?

The test used for obscurity of a (correct) answer is to count how many of 100
randomly selected people select that answer within a given time limit. So although
answers like Paris or Berlin will be very popular, I believe that Vaduz (Liechtenstein)
or Podgorica (Montenegro) would get very fewmentions—possibly zero, that much-
desired “Pointless” answer.

Four couples begin the game, three of them are eliminated over a series of rounds
based on a wide variety of subjects. In the final round, the remaining pair select a
topic from a list presented to them, and may offer three possible answers: they will
win money if any of their answers are “Pointless”. Frequently, they will fail to do so,
but do give correct answers chosen only by a small number—two or three—of the
100-strong pool. How unlucky have they been, in the sense that, had a different set
of 100 people been asked that question, their answer would have been “Pointless”?

Let x > 0 be the number among the 100-strong pool that gave a particular answer.
Then we will take x/100 as our estimate of the probability that a randomly selected
personwill give that answer, so that the probability a person does not give that answer
would be 1− x/100. Hence, with a different set of 100 randomly chosen people, the
chance that none of them gave that answer is taken as

(
1 − x

100

)100
.

But, when x is small compared to N , we know that

(
1 − x

N

)N ≈ exp(−x).

Now exp(−1) ≈ 0.37, exp(−2) ≈ 0.135 and exp(−3) ≈ 0.05; so even if just two
people in the pool gave that answer, the chance it would have been pointless with
another pool is only about 13.5%. For a single attempt, only if just one person had
given their answer might the epithet “unlucky” be appropriate.
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But they offer three answers, so the most frustrating outcome would be if each
answer had attracted just one vote. Then, with a different pool of 100 people, each
answer has a 37% chance of being pointless, so the chance that at least one of them
would be pointless is taken as

1 − (1 − 0.37)3,

about 75%. And that is as unlucky as you can get in this game.

6.5 Two Tribes

Seven original contestants are whittled down to a single player, who then has the
chance to win a cash prize. In each of the first three rounds, the contestants are split
into two teams (“tribes”) on the basis of a fairly arbitrary criterion, such as do they
go on caravan holidays, or whether or not they have the letter “e” in their name.
The teams compete, and one member of the losing team is eliminated. A different
criterion leads to new teams in the next round.

When six contestants remain, each tribe has three players, and, all things being
equal, every player has the same chance of being eliminated. But with seven or five
players, the team numbers are inevitably unequal: is the quiz format fair to all players
in those rounds, or does it advantage players in one team over the other? If it is unfair,
what changes might make it fairer?

With five or seven players, one team has one more member than the other. Each
team in turn is asked a series of quiz trivia questions, a correct answer from any team
member scores one point, but as soon as the team fails to answer a question correctly,
or a one-minute time limit is reached, their turn ends. If the scores are equal, each
team selects a “champion” to go head-to-head to determine the winning team: one
member of the losing team is then eliminated (in a fair manner).

Denote the larger team by A and the smaller one by B. Assume all players are
equally competent, and let Pr(B) denote the chance that team B wins; plainly
Pr(B) < 0.5. How big a disadvantage is it to belong to team B?

Look first at the case of five players, with team A having three players and team
B just two. Then a given member of B survives if either

(i) team B wins, with chance Pr(B), or
(ii) team B loses, but it is the other player who gets eliminated; the chance here is

(1 − Pr(B))/2.

Summing these, the chance a given member of B survives is (1 + Pr(B))/2.
And a given member of team A survives if

(i) team A wins—chance is 1 − Pr(B), or
(ii) team A loses, but some other player gets eliminated—chance 2Pr(B)/3, giving

an overall survival chance of 1 − Pr(B)/3.
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The latter survival chance exceeds the former when

1 − Pr(B)/3 ≥ (1 + Pr(B))/2,

i.e. when Pr(B) ≤ 3/5; a similar calculation for seven players shows that being in
team A is advantageous whenever Pr(B) ≤ 4/7 (see Exercise 6.3). Members of the
smaller team are significantly disadvantaged. How best might we overcome this?

We should not be too elaborate here: we could set up models of how many points
it is reasonable to expect a team of given size to score, and thus estimate some
“handicap” for the larger team. (This general problem is addressed in the last section
of this Chapter.) But such models will have flaws, and conclusions based on them of
questionable value. The critical values of 3/5 and 4/7 are quite similar (60 and57.1%),
but noticeably above 50%, and (by observation) teams score around 7–8 points before
they hit the time limit. So (on gut feeling, rather than any specific calculation), we
suggest that the smaller team gets a one-point start and is also awarded a win if the
scores are tied. This would nudge their winning chance higher: but only data from
an experiment would test whether this change evened up the chances of all players.

6.6 The Million Pound Drop

Contestants face a series of questions, each of which has up to four possible answers
displayed, but only one is correct. They begin with one million pounds and, with
each question, must decide how to split their money among the possible answers.
They may select one answer only, or spread it among two or more: any money placed
on incorrect answers is lost, and they will win however much they have left after the
final question. Two rules: first, all the money must be placed somewhere; second, at
least one answer must attract no money. If they are sure of the answer, they do best to
place all their funds on it, but what should they do when they are uncertain between
two (or more) answers?

With such large sums available, we again turn to the concept of Utility, using the
square root function. Suppose our current fortune is £F with utility

√
F , and we

are uncertain as between answers A and B: our intuitive feeling is that they have
respective probabilities p and q = 1− p of being correct, where 0 < p < 1. Placing
£X on A, and £(F − X) on B leads to an expected Utility of

p
√

X + q
√

F − X .

To find the value of X that maximises this, set the derivative equal to zero, i.e.

p

2
√

X
− q

2
√

F − X
= 0,
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or

X

F − X
= p2

q2
.

In words, the amount you place on any answer should be proportional to the
square of the chance it is correct. So if you think A is twice as likely as B, put four
times as much on A as B, while if you still have one million pounds, and think A
three times as likely as B, then split it as £900,000 to £100,000.

The same notion carries through if you wish to spread your money among three
answers, say with respective chances 1/2, 1/3 and 1/6: when the dust settles after
squaring these values, you should split your funds in the ratios 9:4:1.

Of course, a different utility function (see Exercise 6.4) might lead to a different
decision.

6.7 Deal or No Deal

This game originated in the Netherlands. In the UK version, 22 sealed boxes each
contain a sum of money, ranging from 1p to £250,000, with a mean amount of
£25,712, but a highly skewed distribution—just five amounts exceed the mean, the
median amount is below £1000. Each box is allocated to a contestant, one of whom,
Chloe, is selected at random to be the main player. Chloe chooses a number of other
boxes, their contents are revealed; a “Banker”, Bert, then offers to give Chloe some
sum in exchange for her box. If she accepts the offer, the game ends, if she rejects it,
more boxes are opened, new offers are made, until eventually either Chloe accepts
an offer, or she is left with whatever is in her box. How likely is she to win the top
prize?

Consider Chloe’s position when just two boxes (including the one holding
£250,000) remain. Suppose first that the other box has £50,000 or less. Here Bert is
likely to offer at least £100,000, and, rather than risk ending up with a much smaller
sum, Chloe will rationally accept (on Utility grounds), forgoing the chance to win
the top prize.

But suppose that the other box is also known to contain more than £50,000—it
will be either £75,000 or £100,000: with a guarantee of at least £75,000, she may
well feel confident enough to take her chance on her own box having the maximum
sum.

So to win the top prize, we argue that

(i) her own box must contain that prize (chance 1/22);
(ii) the other box, when two are left, must have at least the third prize (conditional

chance 2/21)
(iii) she has rejected all previous offers, and
(iv) she rejects the final offer.
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Conditions (i) and (ii) alone combine to give a chance 1/231, which is thus an
upper bound for the chance of winning the top prize. And this is borne out by the
data—in the first 2600 shows, only seven players won £250,000.

It can be instructive to do a thought experiment, and put yourself in the Banker’s
position, with the following rule: if Chloe accepts your offer, you pay her, and the
TV company pays you the amount in her box. If she never accepts your offer, the TV
company pays her, and you get zero. How would you structure your offers?

At any stage of the game, the different amounts left in the unopened boxes are
displayed, and you have some duty to make offers that are “interesting”, otherwise
the showwill be killed off. It would be perverse to make an offer that exceeded all the
possible winning amounts—although this did happen once! If you offer an amount
that is less than the mean amount in the remaining boxes, then a fundamental result
in Probability Theory, known as the Law of Large Numbers, assures you that, in the
long run, you will be in profit: this can only happen if your offers are sufficiently
tempting to a good proportion of the Chloes who you face and, of course, you need
a reserve of capital to guard against a run of bad luck early on.

6.8 The Weakest Link

Here nine initial competitors seek to answer quiz trivia questions. Prizemoney is built
up over a series of rounds, with one competitor eliminated each time; the eventual
winner takes all the money. During any round, they face one question each in turn.
SupposeAlan has just given the correct answer, leading to possible prizemoney of X ;
if the next contestant, Beth, immediately calls “Bank” before she hears her question,
that sum is safely banked, and her question begins a newchain at zero. If Beth does not
call “Bank”, and fails to give the correct answer, the money previously accumulated
in that chain is lost, but if her answer is correct, the prize money increases to Y , say,
and the next contestant Chris must decide whether to bank Y, or seek to build the
chain even higher. When should a contestant bank?

When the time limit for that round is almost up, plainly it can be best to bank
quickly. But ignoring any pressure of time, the answer is a balance between the
amount X that would be banked, and the probability that future questions will be
answered correctly. The criterion is to find the banking strategy that maximises the
rate at which the prize fund builds up, and the fine detail will depend on the exact
sequence of potential prize amounts. Table6.1 shows the the amounts that could be
banked according to the number of correct answers in the most common version of
the UK game.

Table 6.1 The prize amounts corresponding to the lengths of chains of correct answers

Answers 1 2 3 4 5 6 7 8 9

Prize(£) 20 50 100 200 300 450 600 800 1000
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If questions are answered independently, with the same chance p of success, and
S(K ) is the amount banked for a chain of K correct answers, then the mean rate of
accumulating money when banking at S(K ) can be calculated as

S(K )pK (1 − p)

1 − pK
.

For the array of prize amounts displayed above, this is maximised at K = 1 when
p ≤ 0.6021, at K = 4 for 0.6022 ≤ p ≤ 0.7243, at K = 6 if 0.7244 ≤ p ≤ 0.7953,
at K = 8 if 0.7954 ≤ p ≤ 0.8430 and at K = 9, the maximum available, if
p > 0.8430. It is never optimal to bank at other prize levels.

(With less precision, this advice is to bank immediately if p ≤ 60%, to try to bank
after a chain of four or six if 60% < p < 80%, but hope for a chain of eight or nine
if p ≥ 80%. Exercise 6.6 investigates optimal play for different prize structures.)

Another element in this game is the process of round-by-round player elimination,
which is by vote among the remaining players—whoever receives most votes as “the
weakest link” is removed. If Alan and Beth were able secretly to collude and, by
surreptitious exchange of signals, agree to target some particular third player in each
round, how likely is it that they would end up as the final pair (when they might also
have agreed to share the winnings)? As there are nine players, there are 36 possible
pairs so, with no collusion, we would put their chance at being the final pair as 1/36,
under 3%.

Perhaps surprisingly, collusion can increase this to over 40%, assuming all the
other players simply vote at random for someone other than themselves! To see why
this figure might be so large, note that if Alan and Beth survive to be among the
final three, they will certainly be able to eject the other player, so look at what would
happen if they are two of the final four players, and agree to target Chris. Then, since
Chris has at least two votes, the only way Alan might be eliminated is if both Chris
and Dinah vote for him (chance (1/3)2 = 1/9) and Alan is randomly eliminated on
a tie-break with Chris—overall chance 1/18. The chance Beth is eliminated is the
same, so the chance both survive is 8/9. Similar, but more complex arguments can
be constructed for larger groups of players, leading to the answer of some 43.2%.

Collusion aside, the objectively strongest player should never win: at the stage
when three players are left, the two weaker players should automatically vote to
eliminate the strongest player left, to increase their own chance in the final.

6.9 The Colour of Money

This was a well-hyped but short-lived game. Working in units of £1000, the amounts
{1, 2, 3, . . . , 20} were randomly assigned, one to each of twenty boxes identified by
their different colours. The contestantwas given a target T , in the range 50 ≤ T ≤ 80,
and won that amount if they could accumulate it by selecting up to ten boxes, one at
a time.
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When selecting a box, they were aware of the amounts that previously chosen
boxes had contained; they made a guess, G, as to the amount in that box. If the box
had less than G, they won nothing, if it had G or more, they won amount that amount
G (not necessarily the whole amount in the box). How best to choose the guess G at
each stage?

For the first box, there are G − 1 boxes with lower amounts, leading to zero
being banked, and 21 − G boxes with at least G, so the mean amount banked is
G(21 − G)/20. This achieves its maximum of 5.5 when G is either 10 or 11. On
average, the same holds for all ten boxes chosen, so a target of around 50 looks quite
achievable, but 70 or more looks rather difficult.

Whatever the target,we claim theremust be one ormore optimal strategies to reach
it! This claim can be proved by the method of backward induction. For, suppose we
are in the tenth and final round, with eleven boxes left, and some residual target. If
that target exceeds the highest amount available, the task is impossible, otherwise
the best strategy is obvious.

In the penultimate round, suppose the amounts in the boxes remaining are
x1 < x2 < · · · < x12, and let the residual target from the last two choices be
T0. We assume that T0 ≤ x11 + x12, otherwise the target is impossible. We can obvi-
ously restrict our choice of G to the 12 amounts that remain; for each choice, we
know (by counting!) the chance it succeeds, and also the remaining target and boxes
for the final round. But as we know the best tactics, and their success chances in that
final round, we can now find the success chance for each choice of G, and identify
the highest. Thus there is a best strategy (or strategies) for this penultimate round.

Because we know the best tactics for all the situations that might face us with
12 boxes left, parallel arguments hold for the move from 13 boxes to 12, and then
from 14 to 13, and so on. The key point is that, at each stage, there are only finitely
many choices, and we already know the best tactics and success chances for all the
possible outcomes after we have chosen G. There is an optimal strategy from the
beginning—but it consists of a huge number of nested “if” clauses, impracticable to
write down. However, we now describe the best strategy for the penultimate round.

Using the notation above, let t be the number of boxes that contain at least T0.
There are two approaches to the penultimate guess if t > 0:

(a) try G = T0; (b) try G as some value less than T0.

(The strategy for the final guess will be obvious, given the outcome of this initial
guess.) To identify the best first step, we count how often each option will reach the
desired target.

There are 12 choices for the first guess, then 11 (if needed) for the second, giving
12 × 11 = 132 choices altogether. We may as well assume all are used, even if
the target is met first time. Using strategy (a), there are t choices that will win
immediately, and 12− t that give a second chance, so the overall number leading to
success is

t × 11 + (12 − t) × t = t (23 − t). (6.1)
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There may be several pairs {xi , x j } with xi < x j and xi + x j ≥ T0, and again we
have to examine two cases:

(c) 2xi < T0; (d) 2xi ≥ T0.

In case (c), counting shows that, for any such pair, it is better to try for the higher
value, x j , first, rather than the other way round. There are 13− j boxes that contain
at least x j and if our first choice is one of these, there are 12− i that have at least xi ;
on the ( j − 1) occasions where the first guess fails, there are still t boxes that get us
home in one go, so the overall success frequency is

(13 − j)(12 − i) + ( j − 1)t. (6.2)

In case (d), trying to bank xi twice is superior to going for both xi and x j , and
here the success frequency would be

(13 − i)(12 − i) + (i − 1)t. (6.3)

So the best strategy is to look at the outcomes of (6.1), the possible choices of (i, j)
for (6.2), and, if it exists, (6.3); and see which would succeed most often.

Example 6.2 This situation did occur on TV: the last twelve boxes contained the
amounts {1, 4, 5, 6, 9, 10, 12, 13, 15, 17, 19, 20}, and T0 = 15. Then t = 4, so the
value of (6.1) is 4 × 19 = 76. For (6.2), possible choices include (4, 12), (5, 10),
(6, 9), corresponding to (i, j) being (2, 7), (3, 6) and (4, 5), with (6.2) having respec-
tive values 6× 10+ 4× 6 = 84, 7× 9+ 4× 5 = 83 and 8× 8+ 4× 4 = 80, so the
best of these is the first. The pair (9, 10), with i = 5, j = 6 is a possible candidate for
(6.3), but the value is only 8× 7+ 4× 4 = 72, so best tactics are to try first to bank
12; if you succeed, go for 4, if you fail go for 15, overall chance 84/132 = 7/11.

6.10 Who Wants to Be a Millionaire?

A contestant, David, faces a series of up to twelve quiz questions, the correct answer
being one of four possibilities displayed. A correct answer increases the amount won,
an incorrect answer ends the game. David has several “lifelines”—ways of getting
assistance—each of which can be used at most once. We assess their value below.
Having seen the question, the answers, even after using some lifelines, David can opt
to take the amount won before he saw that question. If he is uncertain of the answer,
how should he decide what to do?

The twelve possible winning amounts range from £500 to £1,000,000, with two
“safe havens” at £1000 and £50,000. IfDavid gives an incorrect answer after reaching
one of these amounts, his game ends, but hewins the amount in the highest safe haven
reached. Earlier, we introduced the notion of utility as a aid when deciding whether
to guess, or to end the game and take a sure amount.
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His prior wealth is crucial in constructing his own utility function. If he is of
modest means and, having reached £20,000, he is only about 60% confident of his
answer to the £50,000 question, he should probably take that £20,000, rather than
risk losing £19,000 of it; but if he is better off, and that loss would not be a disaster,
the potential gains if his favoured answer is valid could be decisive.

How valuable are his lifelines? With Ask the Audience, each of the 200 or so
members of the studio audience votes for their favoured option. If, say, one of the
four options gains even 50% of the votes, and no other choice has more than 20%,
that is strong evidence that the most popular choice is indeed correct; but a 55 − 45
split between two choices would be far less reliable. But be warned: once, over 80%
of the audience wrongly claimed that alcohol could be consumed in the House of
Commons during the State Opening of Parliament (it is only permitted during the
Budget speech).

In Fifty-fifty, two incorrect alternatives are removed, leaving one wrong answer
and the correct answer. This can be decisively helpful—David may know that the
remainingwrong answer in incorrect—but it is completely unhelpful if he had already
mentally discarded the two choices removed. This option would be very valuable at
the first question after a safe haven, if David cannot eliminate any of the four choices:
here it can never bewrong to offer some answer, and the opportunity to guess between
two choices, rather than four, is very attractive.

With Phone-a-Friend, David may select one of several pre-determined, isolated,
“friends”, and have some 30 seconds to obtain help over the phone. Hemust be brisk,
or his time will expire. This lifeline raises an interesting point: if the friend’s help is
the main factor in getting the correct answer, how much money, in fairness, should
David give his friend as a reward? Discuss!

At later stages of the game, one opportunity to Switch to a completely newquestion
may be offered. The questions tend to get more difficult as the game progresses, and
he will have some reasonable idea of his objective chance of answering questions
at that level—maybe 80% at earlier stages, 40% now. Whatever that current figure
is, he should be reluctant to Switch if he thinks his chance with the actual question
exceeds it, as Switching would be expected to make matters worse.

6.11 Other Shows

In both The Chase, and Eggheads, we can find that teams of different sizes compete
against each other. In pub quizzes, this frequently happens, an incident provoking
Percy and Scarf (2008) into suggesting a system of handicapping to take account of
this. We will use their model to assess how much additional team members might
contribute to an overall score.

Write θ as the chance that a randomly selected team member can give the correct
answer to a randomly chosen question. (In practice, θ will vary between the team
members, and also with the actual question, but for a simple model we ignore these
points.) With a team of size m > 0, assuming players act independently, the chance
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Table 6.2 The chances that a
team can give a correct
answer according to its size,
m and the question’s
difficulty, θ

θ /m 1 2 3 4 5

0.2 0.2 0.36 0.49 0.59 0.67

0.4 0.4 0.64 0.78 0.87 0.92

0.6 0.6 0.84 0.94 0.97 0.99

0.8 0.8 0.96 0.99 0.998 0.9997

none of them can give the correct answer is (1− θ)m , so the chance that at least one
team member can give the answer is 1− (1− θ)m . Table6.2 shows some numerical
values of this probability.

(The original Percy-Scarf application was to a difficult quiz, θ being estimated
as below 15%, with teams of up to ten players. With n questions (e.g. n = 60), the
estimated score of a team of size m > 0 is n(1− (1− θ)m), so adding n(1− θ)m to
their actual score might well be a fair handicap.) For the easier questions (θ > 0.5)
teams of size three or more are overwhelmingly likely to give the correct answer: the
benefit of a large team shows up best with difficult questions (θ small).

The Chase has a resident Chaser (a quiz trivia expert) who faces four contestants.
Each contestant in turn answers a series of quiz questions, a correct answer gaining a
nominal £1000. Perhaps Maria earns £4000 here. The default position is that she and
the Chaser will then face a series of identical quiz questions: she begins five steps
from Home, the Chaser starts two steps behind her, correct answers move either one
step closer to Home. If Maria reaches Home before the Chaser catches up with her,
the £4000 goes forward to the last stage (the “Final Chase”), otherwise that money
is lost and she is eliminated.

The Chaser will offer Maria two alternatives: if she is content with some lesser
sum, say £1200, she may start one step closer to Home, or does she wish to try for a
much larger sum, say £30,000, but starting one step further from Home. How should
she respond?

All the contestants who reach Home ahead of the Chaser will form a team, who
will win (and share equally) the total amount they carried through, provided they
can answer more questions than the Chaser in that Final Chase. A larger team might
markedly increase the number of correct answers they give: a reasonable estimate of
θ , the chance that a random contestant knows the answer is in the range from 50 to
75%. Maria’s decision will take account of how much money previous contestants
have carried through.

For example, if some £40,000 is already in the pot for the Final Chase, it makes far
more sense for Maria to be unambitious, and go for the £1200 offer, rather than stay
with the default £4000, as having £41,200, as opposed to £44,000 hardly changes
the Utility, but increases the chance of having a larger team in the Final Chase. Maria
should also think seriously about the offer of £30,000, as having £70,000 rather than
£40,000might be quite exciting. It would be poor play forMaria to stick at the £4000
default option.

But if the prize fund is very low when Maria has to decide, a reasonable case can
be made for any of the three alternatives.
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In both Shafted and Golden Balls, the game ends with two players and a potential
prize fund. After some discussion about trust, they must each, simultaneously, state
whether they wish to split that fund equally (“Share”), or take it all themselves
(“Steal”). If both opt to Share, the fund is indeed split equally; if one is willing to
Share, but the other will Steal, the Stealer takes the lot; if both would Steal, neither
gets anything.

You may well recognise this as a variant on the much-discussed “Prisoners’
Dilemma”. Here each may think along the following lines: “If my opponent chooses
Steal, I will get nothing whatever I do. If he chooses Share, I will get twice as much
if I Steal. So whatever he does, I am at least as well off if I Steal, and I might be better
off. So I will Steal.” And if this scene plays out, both using that chain of thought,
both will opt to Steal, and both will lose out.

6.12 Exercises

6.1 Generalise the “Three Boxes” problem to the case when there are N boxes
(N ≥ 3), one containing the prize, and N − 1 being empty. After you have cho-
sen one of these N boxes at random, the host will open r boxes (1 ≤ r ≤ N −2),
showing them to be empty, and invite you to stick with your original choice,
or to swap to one of the remaining N − r − 1 boxes, to be selected by you at
random.
For the two tactics, “Stick” or “Swap”, give the respective chances of ending up
with the prize, in terms of N and r . Make your recommendation.
Finally, analyse the case when m of the N boxes contain a token leading
to the valuable prize. The same framework applies, and we have m ≥ 1,
1 ≤ r ≤ N − m − 1.

6.2 Give a complete analysis of the Showcase Showdown for two players when there
are just four values, {1, 2, 3, 4} on the wheel.

6.3 Confirm the claim made in the text that in the game “Two Tribes” with teams
of size four and three, all players equally proficient, being in the smaller team
makes it more likely that you will be eliminated in that round, if the chance that
team wins is less than 4/7.

6.4 Suppose your utility function for the amount £X is X1/3. In the Million Pound
Drop, how should you split your current fortune so as tomaximise your expected
utility, if you are torn between two answers, but think one twice as likely to be
correct as the other?

6.5 A number of (fun) versions of Deal or No Deal can be found on the internet.
Find one, play it, and report what happened in one play of the game, playing
through to the end, justifying your decisions, to Deal or Not to Deal, in each
round.

6.6 In “The Weakest Link”, and using the notation given in this chapter, suppose
you use the criterion of banking when
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R(p, K ) = S(K )pK /(1 + p + p2 + · · · + pK−1)

is a maximum (i.e. ignoring time factors).

(a) If the prize levels increase as S(K ) = K , show that you should bank imme-
diately, whatever the value of p.

(b) Suppose S(K ) = αK , where α > 2 and K = 1, 2, . . . , K0. By considering
when R(p, K + 1) exceeds R(p, K ):

(i) show that, if p ≤ 1/α, it is optimal to bank at K = 1;
(ii) show that, if p = βK is the solution of αp − 1 = (α − 1)pK+1 when

p > 1/α, then β1 > β2 > · · · > βK0 > 1/α, and banking at K + 1 is better
than banking at K if, and only if, p > βK ;

(iii) deduce that, if p > 1/α and p > β1, then it is optimal to bank at K = K0;
(iv) explain why, if βK > p > βK+1, banking at K + 1 is the worst decision;
(v) deduce the optimal banking decision for all p with 0 < p < 1.

6.7 Suppose the last twelve boxes in The Colour of Money contain the values
{1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 16, 20}. Find the optimum tactics in the cases
where the residual target is: (i) 10; (ii) 12; (iii) 16.

6.8 In the game “Who wants to be a Millionaire”, explain what you would do in
each of the following positions, and why.

(a) You have used all lifelines except 50–50, could take £5,000, the next ques-
tion is worth £10,000, and all four answers look plausible.

(b) The same, except that you have £75,000 and the question is worth £150,000.
(c) The same, except that you have £500,000 and the question is worth

£1,000,000.
(d) The same as (c), except that your remaining lifeline is phone-a-friend, and

your friend says she is 75% certain of the answer she gives.

6.9 In the game “Who wants to be a Millionaire”, rank the following breakdowns
of the voting in “Ask the Audience” in order of helpfulness. (Figures are per-
centages.)

(i) 60, 15, 15, 10: (ii) 55, 40, 5, 0: (iii) 50, 20, 15, 15: (iv) 50, 30, 10, 10.

Justify your answer.

Appendix

Following Grosjean (1998), we analyse the three-person “Spinning” game, with a
wheel giving values in the continuous range [0, 1]; each player may take one spin,
or two spins, but is eliminated with a score of zero if the second spin takes the total
above unity.



130 6 TV Game Shows

0 x 1y

Fig. 6.2 Early player scores x , later player scores y < x

Suppose an early player finisheswith a total of x , with 0 < x < 1. Any subsequent
player beats this, either by scoring more than x on the first go (probability 1 − x of
course), or by scoring some y < x on the first go (probability x), and then scoring
z, with x − y < z < 1 − y, on the second go (Fig. 6.2).

But notice that, if this second go is needed, the length of the “winning interval”
is 1 − x , whatever the value of y. Thus, overall, a subsequent player will exceed x
with probability (1 − x) + x(1 − x) = 1 − x2. And hence a score of x has chance
x2 of beating any one subsequent player.

We now work backwards. Suppose the best outcome by the first two is x . The
argument above shows that the chance Carla wins is 1 − x2.

What will x be? Suppose Brian has a score of y, already bigger than Adam’s
score. Should he spin again? If he does not, his winning chance is plainly y2, so see
what happens if he does take a second spin.

With probability y, his next spin scores more than 1 − y and he is eliminated;
otherwise, his next spin is z (z < 1− y), his total is y + z, making his winning chance
(y + z)2. If he spins, his winning chance is

∫ 1−y

0
(y + z)2dz = [

(y + z)3/3
]1−y

0 = (1 − y3)/3.

So he should spin whenever (1 − y3)/3 > y2, i.e. whenever y < 0.5321 = α, say.
So Brian spins whenever he is behind Adam, or when he is ahead of Adam, but

his score is less than α.
Adam can work this out, so what action should he take, with an initial score of

z? If z < α, he must spin again—he would do so to maximise the chance of beating
one opponent, let alone two. So assume z ≥ α. Should he spin?

If he does not spin, he wins only if both Brian and Carla fail to exceed z. For each
of them, the chance they don’t beat z is z2: the overall chance they both fail to beat
z is z4. Adam’s winning chance if he does not spin is z4.

Suppose Adam spins from his score of z. To win, he must score y, with y < 1− z,
and then beat both Brian and Carla from his score of z + y. Since we have assumed
that z ≥ α, plainly z + y ≥ α, so his winning chance would be (z + y)4. Overall,
his chance is

∫ 1−z

0
(y + z)4dy = (1 − z5)/5.

He should spin again if (1 − z5)/5 > z4, which occurs if z < β = 0.6487.
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In summary: Adam should spin if he scores less than β = 0.6487; Brian should
spin if his first score is less than Adam’s, or if he beats Adam, but his score is less
than α = 0.5321; and Carla should spin if her first score has not already won.

We now find their respective winning chances. Calculation is a little complex, but
a good computer will spit out as many random numbers, i.e. scattered uniformly over
the range (0, 1), as we like, so Grosjean simulated this game 20 million times to get
reliable answers. The respective winning chances came out as close to 30.5, 33 and
36.5%, very close to the values found by Coe and Butterworth in the real game.

For the n−player game, using the same argument, Adam should spin again if his
first spin gives less than γ , the positive root of

x2n−1 + (2n − 1)x2n−2 − 1 = 0.
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Chapter 7
Gambling

Abstract We point out that the term odds is ambiguous, either relating to the true
probability an event occurs, or to the payout price offered by bookmakers. The UK
National Lottery changed its format in 2015; comparisons are made between the
old and new formats, with well-organised counting central to analyzing both. When
examining roulette, we draw parallels between differential equations and difference
equations, and show how similar are the methods used in both fields—a link between
discrete and continuous mathematics. How bookmakers may set their payout prices
for horse races, and paradoxes that can arise, are discussed. We look at different
formats of poker, both in casinos (video poker, Casino Stud Poker) and tournaments
or at home (e.g. Texas Hold ’Em); again, counting and the idea of average are
central. Finally, we describe the operation of UK Premium Bonds. None of this
material should be taken as an encouragement to students to gamble: on the contrary,
by showing them how to analyse commercial gambling games, we hope they will
become well-informed about the widely differing rates of return that are offered.

7.1 Introduction

The organisers of commercial gambling opportunities—casinos, bingo halls, lot-
teries, sports betting, etc.—do so in the expectation of making a profit. That they
continue to flourish shows this expectation is fulfilled. In games of pure chance, the
prize levels are set to pay out less, and often considerably less, than the entrance
fees paid by the public. But sometimes, there is enough opportunity to show skill,
meaning that some participants can legitimately expect the odds to be in their favour;
in poker, a top player may be sure that, in the long run, her winnings will exceed the
entrance fees, in horse racing, a very knowledgeable punter will identify times when
the terms offered by the bookmakers underestimate the true winning chances. But
most of the time, the more you gamble, the more you lose.

Suppose all six outcomes when you roll a die are taken as equally likely. Then the
probability of each outcome is 1/6; equivalently, we can say that the odds against
any of them are 5 to 1. But in gambling, the term “odds” is more frequently used
to mean something quite different, describing the amount a bookie or casino will
pay if your bet is successful. For example, a bookie may offer “odds” of 8 to 1 that
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Manchester United will beat Arsenal 2− 1; that means that if your bet is successful,
your stake, plus eight times your stake, will be returned to you. Here there is no
automatic conversion to give the probability of that particular score. Rather than
“odds”, a much better term is “payout price”, but you must get used to seeing the
word “odds” in that context.

In a soccer match, the payout prices for a Home win, Away win or Draw may be
expressed as 5 to 6, 4 to 1 and 12 to 5 respectively. If your bet of six units on a Home
win is successful, you will receive back 11 units altogether—the six units you bet,
plus five more. A successful bet of five units on a Draw would lead to a return of
17 = 5 + 12 units. In all cases, “odds” can be expressed in the form α to 1: here
α = 5/6 for a Home win, or α = 12/5 = 2.4 for a Draw. For the Home win, with
α < 1, this would be termed “odds on”; when α > 1, the term is “odds against”.
With α = 1, which applies to many popular bets in roulette or coin-tossing, the term
is “evens”, or “even money”.

In most of the applications discussed in this chapter, the probability of an event of
interest will indeed arise in the format m/N , where there are N possible outcomes
altogether, taken as equally likely by symmetry, and the event of interest corresponds
to exactly m of them. But sometimes, we shall want to use the term “probability” in
a wider context: informally, in this case the simplest interpretation of the word is the
long-run relative frequency—if we were able to carry out an experiment many times
under identical conditions, the proportion of those experiments in which our event
occurred will settle down to what we term its probability.

7.2 Lotteries

Commercial lotteries are based on the principle that all the “tickets” sold have the
same chance of success. This is achieved in diverse ways, but to analyse their work-
ings, the main tool is simple counting. A large proportion of the adult UK population
buys lottery tickets, the most popular being the National Lottery and Euromillions,
both of which offer the chance to win millions of pounds. The fundamental mathe-
matical fact in the analysis of these games is that the number of ways of selecting r
objects from a set of n objects (without regard to their order) is

(
n

r

)
= n!

r !(n − r)! . (7.1)

For its first 21years, the UKNational Lottery followed the format termed 6/49, as
six (winning) numbers would be chosen from the list {1, 2, 3, . . . , 49}, all possible
choices being equally likely. Formula (7.1) shows that this gave N1 = 13, 983, 816
different choices. Gamblers also chose six of these numbers, and would win a prize
if at least three of their selections were among the winning numbers. If they selected
exactly r of the six winning numbers, then they would have also selected 6 − r of
the other 43 numbers; overall, there are just
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Table 7.1 The numbers of ways of matching r winning numbers

No. of winning numbers No. of ways (6/49) No. of ways (6/59)

6 1 1

5 258 318

4 13,545 20,670

3 246,820 468,520

2 1,851,150 4,392,375

1 5,775,588 17,218,110

0 6,096,454 22,957,480

(
6

r

)
.

(
43

6 − r

)
(7.2)

ways of doing this.
In late 2015, the format changed to 6/59; Formula (7.1) leads to N2 = 45, 057, 474

different choices, and now a prize is won if at least two selections are winning num-
bers. Plainly, Eq. (7.2) is modified by replacing “43” by “53” to give the information
for the new format. Table7.1 shows the different numbers of ways of matching r
winning numbers.

In the 6/49 format, there are 260,624 ways of matching at least three winning
numbers, so the chance of winning some prize with a single ticket was 260, 624/N1,
about 1 in 54, while the chance of winning a share of the jackpot was just 1/N1,
about 7 × 10−8. But, under 6/59, as there are 4,881,884 ways to match at least two
winning numbers, the chance of winning something has increased to 4, 881, 884/N2,
just under one in nine, while the chance of a share of the jackpot is 1/N2, less than
one third as much as before. The “prize” for matching two numbers now is a free
“Lucky Dip” ticket to the next Lottery; the chance of a cash prize, by matching three
or more winning numbers, has dropped to 1 in 92.

Both versions follow a common pattern in distributing the prize money: a certain
proportion of the total generated by sales is returned as prizes, and the amount
of the bottom cash prize is fixed. The remaining prize money is allocated in fixed
proportions to the other prize-winning levels, and, at each such level, the prize amount
is split equally among all winning tickets. There is thus no guarantee that matching
x winning numbers will yield a larger prize than matching x − 1. Indeed, it has
happened in the UK Lottery that the jackpot prize has been less than the “second”
prize, won by matching five numbers and the Bonus Ball. See Exercise 7.1.

An intriguing question is how many tickets must be bought in order to guarantee
winning at least one prize. In the 6/49 format, needing to match at least three win-
ning numbers, it has been shown that a particular choice of 163 tickets carries this
guarantee and, at the time of writing this is the record-holder (see, e.g., the “wheeling
challenge” at the website lottery.merseyworld.com).
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For the 6/59 format, it is possible to guarantee to match at least two winning
numbers with 30 tickets. For, since there are six winning numbers, at least one of the
five lists {1, 2, . . . , 12}, {13, 14, . . . , 24}, . . . , {49, 50, . . . , 59}must contain at least
two of them. Suppose it is the first one, {1, 2, . . . , 12}: split these into four triples,
A= {1, 2, 3}, B= {4, 5, 6}, C= {7, 8, 9} and D= {10, 11, 12}, and consider the six
tickets that consist of AB, AC, AD, BC, BD, CD. It is easy to check that every pair of
numbers among the list appears in at least one of those six tickets. Parallel arguments
hold for the other three lists of a dozen numbers, and, a fortiori, if six tickets suffice
for a dozen numbers, six will certainly suffice for the last set {49, 50, . . . , 59} of
eleven numbers, so 30 carefully chosen tickets will guarantee a win of some sort.
(Can you do better?)

Which is more likely, in the current 6/59 format, that the six winning num-
bers contain, or do not contain, a consecutive pair such as 26 and 27? (Most
people’s first thought is that it is far more likely that there is no such pair.)
Let y1 < y2 < y3 < · · · < y6 be chosen from the list {1, 2, . . . , 54}, and write
xi = yi + i − 1, for i = 1, 2, . . . , 6. By construction, the x-numbers belong to
{1, 2, . . . , 59}, and none of them are consecutive; and given any set {xi } of six num-
bers from the list {1, 2, . . . , 59}, none ofwhich are consecutive,writing yi = xi +1−i
gives six different numbers from {1, 2, . . . , 54}.

We have set up a one-one correspondence between the collections of six numbers
from 54, and the collections of six of the first 59 numbers, none consecutive, so the
size of each of these sets is the same, and is thus

(
54

6

)
= 25, 827, 165 = M,

say. That means that N2 − M = 18, 230, 309 of the possible choices of six numbers
from 59 do contain a consecutive pair—about 40%. Yes, no consecutive pair is more
likely, but not by an overwhelming margin.

This gives a hint of skill in this game of chance. Because many people confuse a
random scatter of numbers with a uniform scatter, spread evenly around the ticket,
if they seek to construct a “random” selection of numbers, then far more often
their choice will not contain a consecutive pair. So if your selection does contain
a consecutive pair, it makes no difference to your winning chance—all N2 choices
are taken as equally likely—but, if you do fluke the six winning numbers, you are
more likely to share the jackpot with fewer other people, and so win more money.
See Riedwyl (1990) or Henze and Riedwyl (1998), for which access to data on
the number combinations that punters had chosen in the Swiss Lottery was given.
(This information about the UK Lottery is not generally available—“commercial
confidentiality” is cited.)

Henze and Riedwyl found that punter choice was far from random! Many chose
the winning numbers for the previous lottery or lotteries (possibly on the grounds
that “nobody else will think to do that”); selections forming horizontal, vertical or
diagonal lines on the ticket to mark the choices were remarkably popular, and, as
noted above, selectionswith “clusters” of numbers tended to be avoided.And because
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many gamblers used birth dates of family and friends, lower numbers were chosen
more often than higher ones.

By and large, a combination will tend to be selected by fewer players than average
if the numbers

(i) are biased towards higher values;
(ii) fall into little clusters, rather than being evenly scattered;
(iii) include some on the edge of the ticket;
(iv) form no obvious pattern on the ticket;
(v) have not been a previous winning combination.

So if you must buy Lottery tickets, then, to avoid copying someone else’s thought
process, try to make a genuine random choice: use some auxiliary device—maybe
take an ordinary pack of 52 playing cards, add seven more from a second pack to
give 59 cards altogether, to be identified with the 59 available numbers. Shuffle them
well, deal out six of them, but, unless their numbers meet the criteria above, reject
them, return them to the pack, shuffle, and deal again.

The Euromillions game is similar, but asks gamblers to choose five numbers from
fifty, and two “Lucky Stars” from eleven. The number of different combinations is
thus

(
50

5

)
.

(
11

2

)
= 116, 531, 800,

so the chance of a jackpot share, the reciprocal of this, is less than 10−8, less than half
as likely as the UK National Lottery (but with the prospect of much higher prizes).
You will win something if you match at least twomain numbers, or one main number
and both Lucky Stars, thirteen different ways in all. See Exercise 7.2.

We might term the Euromillions format as 5/50+2/11; it is apparent from these
two examples that, when the Lottery organisers have decided a ball park figure for the
chance of winning the top prize, there will be a variety of ways of tweaking formats
like the National Lottery’s r/K , or the Euromillions r/K + a/b to achieve their
aim. Ian Walker (Chap.22 in Hausch and Ziemba (2008)) points to the attraction of
rollovers—if the jackpot prize is not won, its value is added to the sums available in
the next Lottery—in relieving the tedium of the standard game. (The change in the
UK Lottery, from 6/49 to 6/59, by trebling the number of different tickets, will lead
to many more rollovers.)

If, in any of these lotteries, you wish to buy r tickets, with r ≥ 2, how do your
prospects compare if all the number combinations you select are different, or if you
use the same selection every time? Let J be the size of the jackpot that will be
generated, and take N as the number of different tickets possible, all equally likely
to win.

Suppose you buy r different tickets, and the respective numbers of other punters
who have also bought these tickets are {x1, x2, . . . , xr }. If the ith ticket happens to
hit the jackpot, you will win J/(xi + 1), so the average amount you will win can be
written
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r∑
i=1

J

N (xi + 1)
;

similarly, if you buy r copies of the same ticket, your average winnings will be
J.r/(N (x + r)), where x is the number of other punters who also bought this ticket.
You cannot know x , or the values xi , so it is possible for either of these expressions
to exceed the other. But the typical values of xi or x are low single digit numbers, so
it is very likely that, with r ≥ 2, 1/(xi + 1) will exceed 1/(x + r). Thus we expect∑

(1/(xi + 1) to exceed r/(x + r), so buying different tickets is a superior strategy
to spending the same sum on multiple copies. If just one other person had bought
the same tickets as we did, having two chances of half the jackpot is better than one
chance of two-thirds of it.

Whatever the format, it is usually the case that no more than 50% of ticket sales
get returned as prizes, so, whatever strategy used, the large majority of players lose
money. Some players will only buy lottery tickets when the “free money” from
rollovers, or artificial top-ups, is sufficiently large.

A different format is used in the Numbers Game, popular in many states in the
USA: punters choose three or four numbers from the list {0, 1, 2, . . . , 9}, repetitions
being allowed, but now the order matters. Thus, with one ticket, and ten different
digits available at each of three or four places, the chance of the top prize is 1/1, 000,
or 1/10, 000 respectively.

In the most common format of Keno, fresh draws are made every 4–5minutes: the
Lottery selects 20 numbers from a list of 80, punters may select just one or two, or, if
ambitious, up to ten or even twelve numbers, winning prizes for (say) having at least
fivewinning numbers among the ten they chose. Themean return varies considerably
in the different States where this game is played: for example, when selecting ten
numbers with prizes awarded when at least five winning numbers have been chosen
(or none at all!), it ranges from 49% in Washington to 69% in Massachusetts.

7.3 Roulette

A European roulette wheel has 37 slots, labelled 0 to 36; an American wheel has
an extra slot, double zero. Zeroes are coloured Green, half the other 36 numbers are
Red, the rest are Black, with half of each colour being Odd numbers, and also half of
them High numbers (i.e. 19 to 36). Figure7.1 shows the standard European wheel.

A casino balances and oils the wheels carefully, and we will take it that all 37 or
38 outcomes are equally likely. If you bet one unit on a single number, the standard
payout price is 35 to 1; thus, on average, over 37 bets on a European wheel, you will
part with 37 units, and receive back 36 units the one time you win—your average
loss per bet is 1/37 of your stake. This is a very thin margin, just 2.7%, hence the
casino’s strong incentive to keep its wheels in prime condition. The margin is the
same on bets of pairs of numbers (payout price 17 to 1), triples (at 11 to 1), quads
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Fig. 7.1 The European
roulette wheel

(8 to 1), six numbers (5 to 1) or dozens (2 to 1): over 37 bets you will expect to
lose one unit. On American wheels, the payout prices are the same, but the extra slot
increases the casino’s advantage: it takes 38 unit bets, on average, to receive 36 units
back, so the average loss is 2/38 = 5.3%.

On either wheel, the payout prices for bets on blocks of 18 numbers—Red or
Black, Odd or Even, Low or High—are at even money: if you bet one unit, two
units are returned on a win. Often Zero loses on all these bets, but sometimes, the
“in prison” rule applies: Zero loses, but you only lose half your stake. To cover the
different cases, we write p as the true winning probability on an even money bet,
and put q = 1 − p. Take it that 0 < p < 0.5.

Ignoring Zeroes, for each n with 1 ≤ n ≤ 9, there are 36 overlapping segments of
2n numbers. Since Red and Black alternate, all these segments automatically contain
the “correct” numbers of these colours; however, for reasons similar to those noted
when considering the standard dartboard in Exercise 3.14, it is impossible for the
same to always occur with Odd/Even or High/Low—some segments must have some
bias. But Percy (2015) notes that the discrepancy within any biased section never
exceeds one misplaced number.

Suppose you enter the casino with an initial fortune of F units, and decide to bet
one unit at a time on some even money chance—Red, say—and will play until your
fortune reaches some higher target T > F , or you lose all your money. How likely
are you to reach that target, and how many bets will you make?

Write xn as the chance that, with a current fortune of n, you hit the target before
you lose all your money, for 0 ≤ n ≤ T . Obviously x0 = 0 and xT = 1. For
0 < n < T , looking at the two possible outcomes of the next bet, when your fortune
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will either increase or decrease by one unit, we find

xn = pxn+1 + qxn−1, (7.3)

a so-called difference equation. The standard way to solve such equations should
remind you of the path used in Chap. 2 to solve second order differential equations
with constant coefficients. (Indeed, highlighting this link between continuous and
discrete mathematics is a strong motivation for including this section.)

Put xn = θn in (7.3), giving

θn = pθn+1 + qθn−1,

which collapses to

pθ2 − θ + q = 0.

This quadratic factorises (recall q = 1 − p) to give two different solutions, θ = 1
and θ = q/p = R, say. Now any constant multiple of a solution to (7.3) is also a
solution, as is the sum of any two solutions. Thus xn = A + B Rn is a solution, for
any constants A and B. The extreme cases n = 0 and n = T show that

0 = A + B, 1 = A + B RT ,

so the chance of reaching the target from n units initially is

xn = Rn − 1

RT − 1
. (7.4)

On an American wheel with p = 18/38, then R = 20/18 = 10/9, so the chance
you double your initial fortune of 10 units before you are bankrupted is found to
be 0.2585 . . ., just under 26%. On a European wheel without the in prison rule,
p = 18/37 so R = 19/18 and the chance of the same event rises to almost 37%;
with the in prison rule, then we take p = 73/148, so that R = 75/73 and the chance
rises to over 43%.

A similar approach works to find mn , the mean number of spins you will play
altogether, if your fortune is now n. Here m0 = mT = 0, and, for 0 < n < T ,
considering one spin leads to

mn = 1 + pmn+1 + qmn−1. (7.5)

Again, mirror the method for differential equations: we look for a particular solution
to the given equation, as well as the general solution to the homogeneous version—
which we have just solved. Try mn = αn in (7.5); it will be a particular solution so
long as

http://dx.doi.org/10.1007/978-3-319-27939-8_2
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αn = 1 + pα(n + 1) + qα(n − 1),

giving α = 1/(q − p). The general solution to (7.5) will be

mn = n/(q − p) + A + B Rn,

so using the known values of m0 and mT we find

mn = n − T xn

q − p
,

where xn is as given above.
On average, hoping to turn 10 units into 20 in this manner, you would play about

92 spins on an American wheel, and 98 on a European wheel, or 99 if the in prison
rule applied. Whichever rule applies, the mean number of bets you make is quite
similar, but the chance of doubling your money, rather than losing it all, does differ
appreciably.

If your sole intention is to double your money, then betting one unit at a time
would be poor play: a single bet, of your entire fortune, would achieve your goal
with probability p (under the different rules p = 18/38 = 47.4%, 18/37 = 48.6%
or 73/148 = 49.3%), much larger than the drawn-out play. This illustrates a general
principle: in unfavourable games, you maximise your chance of reaching a goal
through bold play, expecting to make few bets. Cautious play, hoping to edge your
way to a larger sum, will be less successful—but will prolong your time in the casino.

But suppose the casino have been careless, and the wheel is so biased towards cer-
tain numbers that there are favourable bets: for example, maybe the true probability
of Red is p > 0.5 —how best to take advantage of this?

The answer is found in Chap. 4 , where the Kelly Strategy is described: you should
bet the fraction 2p −1 of your current fortune, and you can then expect your fortune
to grow at the average rate of 2p p(1 − p)1−p per bet. Even if you are lucky enough
to find this opportunity, your fortune will not build up quickly—if p = 0.5+ ε, with
ε > 0 small, this growth rate is around 200ε2 %. Using the Rule of 72, this indicates
that it will take, on average, around 9/(25ε2) bets to double your fortune—with an
optimistic value of p = 52%, you should expect to need about 900 bets of 4% of
your current fortune to double its initial value!

A more general scenario is described by Bass (1991) (also published under the
title “The Eudaemonic Pie”). A group of physics students used sensors in their shoes
to transmit information on the speed of the ball as it travelled to predict into which
region of the wheel it would settle; if their predictions were accurate enough—they
did not need certainty, it was enough to know that (say) landing in a particular set of
six adjacent numbers was at least 1/6 = 16.7%, rather than 6/38 = 15.8%, to give
them an advantage. To make the best of any advantage, they had also to judge the
optimal size of bet. The maths is that of the adaptation of the basic Kelly Strategy,
as described in the last Exercise of Chapter Four. We will illustrate this by looking
at the optimal strategy if the chance of some particular single number is p > 1/36.

http://dx.doi.org/10.1007/978-3-319-27939-8_4
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The payout odds on single numbers are 35:1, so we know that bets on that number
are favourable: and it transpires that the optimum growth rate of your fortune is
achieved if you bet the fraction x = p − (1− p)/35 of your fortune. Your fortune’s
growth rate then turns out to be around 17.5x2(1 − 34x) per spin. For example,
suppose p is as large as 1/30: then you should bet just over 1/200th of your fortune
each spin, expecting an average growth rate of just under 0.05%, and taking over
1500 spins to double up. This is not a swift or sure route to riches, despite your
advantage.

A different idea is to aim to leave the casino with a profit of one unit: to do so,
you will wait until three successive spins show Black, and then begin a sequence of
bets on Red, of sizes 1, 2, 4, 8, . . ., doubling the bet after each loss, and stopping at
the first success. If Red arises for the first time on your nth bet, your stake will be
2n−1, and you will have lost a total of

1 + 2 + 4 + · · · + 2n−2 = 2n−1 − 1

to date; so your net position after this winning bet is easily seen to be a profit of
2n−1 − [2n−1 − 1] = 1 unit.

This holds whatever the value of n, and Red will certainly appear sometime! But
we have not found the Holy Grail, a guaranteed method of winning, for two linked
reasons. First, although it is quite likely that Red will appear fairly soon, and we do
bank our profit, we cannot ignore the possibility that our funds are insufficient to
meet the next bet the system requires—casinos do not allow credit. Second, there
will be both a minimum and a maximum permitted bet—perhaps the maximum is
100 times our initial bet. Then, if the first seven bets lose, the last losing bet was of
64 units and the system demands a bet of 128 units, which is not allowed.

If the wheel is fair, and the chance of Red is 18/37 each time, the chance of losing
on seven consecutive bets is (19/37)7, just under 1%. So 99% of the time, we do
make our one unit profit, but the loss of 127 units when we fail more than outweighs
this. Exercise 7.7 asks you to show that the mean number of bets you make would
be is around 2.05, with an average total stake of about 4.3 units.

(You will realise that the only effect of waiting until three consecutive Blacks
appear before making your first bet is to prolong your time in the casino: waiting has
no effect at all on your chance of winning, or the mean amount of your losses.)

7.4 The Horse Racing Family

Betting on horses has been a substantial activity in theUKand elsewhere for hundreds
of years. For each horse, bookmakers will offer a payout price of the form α to 1;
this price will reflect both the objective chance that the horse wins the race, and the
amounts of money that punters bet on it. Write S as the sum, over all the horses, of
the quantity 1/(1+α); it is crucial that S ≥ 1, (and we often find that S substantially
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exceeds unity), for otherwise an observant punter could guarantee to win money,
whatever the result of the race.

For, suppose S < 1, and the punter has a fortune of size F . By betting the entire
amount, placing F/(S(1 + α)) on a horse with payout price α : 1, the total return
will be F/S whichever horse happens to win—and F/S > F since S < 1.

Example 7.1 In a racewith four horses, the bookmakers have erred: the payout prices
are posted as 3 to 1, 4 to 1, 5 to 1 and 6 to 1. Suzie has £319 in her purse: she stakes
£105, £84, £70 and £60 on those horses respectively; whichever wins, she will be
paid £420, a profit of 32% on her total stake.

The amount by which S exceeds unity is known as the overround, or bookies’
margin. In the soccer example in the Introduction, with payout prices for the three
outcomes as 5 to 6, 4 to 1 and 12 to 5, you should check that the overround is almost
4%. In horse racing, the overround varies with the size of the field, with an average
figure of around 20% found by Smith et al. (2006). The Grand National, with up to
40 runners, has a much larger overround.

As well as betting on a horse to win, it is also possible to bet on a horse being
placed: this bet is not offered if there are fewer than five runners, otherwise the
general rule is that placed means first or second in a race with five to seven runners,
in the first three with 8–15 runners, and in the first four with 16+ runners. The place
odds are derived from the win odds: usually, the formula is one quarter the odds (i.e.,
if the win odds are α to 1, the place odds are α/4 to 1), but this often reduces to one
fifth the odds for races with eight to fifteen runners.

Statistician Robin Plackett (1975) described how a bookmaker had approached
him for an explanation of the fact that it appeared to be possible that, although the
bookie had set odds with a positive overround for the win market, punters might be
able to guarantee a profit by betting on the place market, derived from the win odds
as above. See Exercise 7.8.

A different betting format is the Tote, or pari-mutuel system. Suppose that, in a
race with n runners, punters collectively stake amounts {xi } of the ith horse to win,
with T = �xi the total amount staked on that race. A proportion p of this amount
is deducted to cover the running costs (and profits) of the Tote, leaving T (1 − p) as
the net pool, which is divided among the winners in proportion to the amounts they
staked—exactly how the higher prizes in many Lotteries are determined. Formally, if
horse i is the winner, then the dividend is D = (1− p)T/xi , (rounded to the nearest
10p below); a punter who had staked amount A on this horse will receive A.D.

The same principles apply to other types of pari-mutuel bet, such as the place
market, the Exacta (forecast the first two horses in the correct order), the Trifecta
(get the first three in the correct order) and more exotic bets. In the UK, the amount
of the deduction p to form the net pool is currently 16.5% for the winner, 18% for
places, and up to 30% for other bets. In some countries, pari-mutuel is the only legal
format.

If the net pool for the place market is P , and the first r runners qualify, then the
amount P/r is allocated to each “place”, and the backers of that horse similarly
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receive an amount proportional to their own stake. Exercise 7.9 points to a problem
with this set-up.

In the 1973 Belmont Stakes, the winner was Secretariat, such an overwhelming
favourite that the return on a 2-dollar bet to win was $2.20 only. But shrewd punters
who put their 2-dollar stake on Secretariat being placed (in the first two horses)
obtained a return of $2.40! (We have noted that similar anomalies have arisen in the
UK National Lottery.)

From a punter’s perspective, the main difference between bookmakers and the
Tote is that, with the Tote, they cannot know in advance the size of their potential
winnings—it depends on how much other people have staked on the same horse.
But continuous guidance is available, on screens that display what the Tote payouts
would be, updated after every bet placed: you can watch your own bet shift those
amounts (if it is large enough).

Example 7.2 Suppose a race has twelve horses, all at bookies’ odds of 9 to 1 to win,
giving an overround of 20%. Suppose also that the total win stakes at the Tote across
all horses are £ 120,000, and that the winner is Gullible, with a Tote total stake of £
16,700. The net pool is 83.5% of total stakes, i.e. £ 100,200, so the Tote dividend is
100, 200/16, 700 = 6.0. A punter who had bet £10 on Gullible to win would receive
back £60 had the stake been with the Tote, but £100 for a bet with the bookies.

But if the winner had been Optimistic, with a total Tote stake of £ 8,350, the Tote
return would have been £120, with £100 again from the bookies. In this example,
there is little overall difference between the two systems—if £ 120,000 were staked
with the bookies, the actual amount they paid out would vary with the winner, but
the average total payout would be £ 100,000, comparable to the certain total payout
of just £200 more with the Tote.

Note that Football Pools operate along the same lines as the Tote. The Pools
promoters deduct a percentage of stakes to cover their costs and to provide profits,
and return the rest to winning punters, in proportion to the amount they have staked.

7.5 Card Games

There is no such animal as a “skilled baccarat player”. Baccarat is a game of pure
chance, the actions of dealer and player being constrained by rigid rules. But most
card games do provide opportunities for skill to be shown, and proficient counting
is usually the key.

Poker has many variant forms, but the basic rules are simple: each player will
have a hand consisting of five cards, and the one with the best hand wins. The best
possible hand is a Straight Flush—five cards of the same suit, and with consecutive
ranks: then come Four of Kind (four cards of the same rank, plus one other card),
Full House (three cards of one rank, two of another), Flush (five of the same suit,
not consecutive), Straight (five consecutive cards, not all the same suit),Three of a
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Table 7.2 Types of poker hand, and their respective numbers

Type of hand Number of ways

Straight flush 40

Four of a kind 624

Full house 3,744

Flush 5,108

Straight 10,200

Three of a kind 54,912

Two pairs 123,552

One pair 1,098,240

High card 1,302,540

Kind (three cards of one rank, two other cards of different ranks), Two Pairs (two
cards of one rank, two of another, one other card), One Pair (two cards of the same
rank, three other cards of different ranks), and finally High Card (none of the above).
Within each category, it should be clear which of two hands is the better.

The number of possible hands is
(52
5

)
= 2,598,960. Since a Straight can begin

(working upwards) with any one of the ten possible ranks Ace to Ten (as Ace can
count both high or low at your choice), and there are four suits, there are 10×4 = 40
Straight Flushes. With 13 different ranks, and then 48 ways to select the last card,
we find 13 × 48 = 624 hands forming Four of a Kind. For a Full House, there are
13 ways to choose the rank for the triple, and, within that, four ways to select those
three cards; combine these with 12 ways to choose the rank of the pair, and then six
ways to choose which two suits form that Pair, leading to 13× 4× 12× 6 = 3, 744
hands in all.

There are
(13
5

) = 1287 ways to choose five cards from any suit: but ten of these
Flushes are Straight Flushes, leaving 1277 ordinary Flushes in each suit, so 5,108
altogether. With ten ways to begin a Straight, and four suit choices at each stage,
there are 10×45 = 10,240 combinations, but 40 of these are Straight Flushes, giving
10,200 ordinary Straights.

Exercise 7.10 asks you to make the appropriate calculations for the other types of
hand, and thus verify the values in Table7.2.

Perhaps the simplest form of this game is Draw Poker: each player is dealt a poker
hand, and may choose to discard one or more cards, replacing them with an equal
number from the remaining pack. The player with the best hand wins.

The four Straight Flushes that consist of Ten to Ace are termed Royal Flushes, and
are especially valuable in Video Draw Poker machines found in casinos: typically,
unless the final hand is Two Jacks, or better, the stake is lost. Plainly, just 4/13 of
One Pair hands are indeed at least as good as Two Jacks. Hands are paid out at odds
similar to those displayed in Table7.3.

Michael Shackleford, who writes under the name “The Wizard of Odds” is a
reliable authority on this and many other games found in casinos. Different machines
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Table 7.3 Types of hand, and typical payout odds at Video Draw Poker

Type of hand Payout odds

Royal flush 799:1

Other straight flush 49 :1

Four of a kind 24 :1

Full house 8 :1

Flush 5 :1

Straight 3 :1

Three of a kind 2 :1

Two pairs Evens

One pair, jacks+ Stake returned

Worse than two jacks Loss

have subtly different rules and payout odds, but the Wizard has calculated the best
strategy for all the machines with which he is familiar, and generously displays his
findings for free on the internet.

Example 7.3 Based on the payout odds of Table7.3,what are the plausible strategies,
and which would give the best mean return, if you are dealt {K , Q, 7, 5} of Spades
and the Five of Hearts?

Solution. Since we have two choices with each of five cards, keep it or reject it, there
are 25 = 32 possible strategies, but just three of them are plausible. The simplest,
(a), is to keep the four Spades and discard the Heart, hoping for a Flush or High Pair.
Of the 47 cards to be drawn from, nine are Spades and six are King or Queen, so the
chance of a Flush is 9/47, of a High Pair it is 6/47. Using Table7.3, we see that that
the mean return is (9/47) × 6 + (6/47) × 1 = 60/47.

Alternative (b) is to keep both Fives, discarding the other three Spades. A pair
of Fives is worthless, but it opens up several possibilities. Exercise 7.11 asks you to
verify the calculations for this strategy, and also alternative (c), which is to keep just
the King and Queen of Spades, giving chances of a Royal or Straight Flush. In both
cases, there are

(47
3

) = 16, 215 = N, say, ways to select the other three cards.
With (b), drawing both the remaining Fives and one other card gives 45 chances

of Fours; there are 165 ways to get a Full House, 1,854 for Threes and 2,592 choices
that give Two Pairs. All other choices, 11,559 in number, are losing hands, so the
mean return is

(45 × 25 + 165 × 9 + 1,854 × 3 + 2,592 × 2)/N = 13,356/N ≈ 0.824.

For (c), there is just one way to obtain a Royal Flush, and one way to obtain an
ordinary Straight Flush, while drawing the remaining three Kings or Queens gives
two ways for Fours. There are 18 ways to get a Full House, 82 for a Flush, and 126
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for a Straight. (A little harder) we find 283 ways to get Threes, 717 to get Two Pairs
and 5,016 to get a High Pair, leaving 9,969 losing selections. The mean return is

(800 + 50 + 2 × 25 + 18 × 9 + 82 × 6 + 126 × 4 + 283 × 3 + 717 × 2 + 5,016)/N ,

approximately 0.577. The choice with highest mean return is (a), discard the Five of
Hearts.

Plainly, it is impractical to make these calculations while seated at a machine in
the casino; print off a copy of the Wizard’s relevant cheat sheet.

Another version of poker found in casinos is Caribbean (or Casino) Stud Poker.
There are minor rule variations but, in all formats, the Dealer plays on behalf of the
casino against up to six Players. Initially, each Player selects his basic stake—his
Ante, and all are dealt five cards from a single freshly shuffled deck, the Dealer’s
final card—her Upcard—is exposed.

On seeing his cards, a Player will Fold—i.e. drop out and concede his Ante—or
Raise: a Raise is an additional stake of twice the Ante. When all decisions are made,
the dealer exposes the rest of her cards. If she does not have a hand at least as good
as High Card with Ace and King—a non-Qualifying Hand—only the Antes are in
play: those who did not Fold win just the amount of their Ante. If she does have a
Qualifying hand, she matches it against each player who made a Raise. A winning
player wins the amount of his Ante, plus a Bonus on his Raise that depends on how
good his hand is; for example, a winning Straight Flush is paid out at odds of 50:1, a
winning Two Pairs hand is paid out at 2:1. A losing hand just loses Ante and Raise.

When should a Player Raise? If he Drops, he loses his Ante, one unit, so he should
Raise when, on average, the outcome from doing so exceeds a loss of one unit. After
a considerable amount of well-organised counting, in which the Upcard plays a very
minor role, you will find that you should always Drop if you have a non-Qualifying
hand, and always Raise if your hand is AKQJx High Card or better. For the small
proportion of hands that do not fall into one or other of these categories, see either
Griffin and Gwynn (2000) or Haigh (2002). To a good approximation, if you hold a
hand at least as good as a Pair of Sevens, you will make a profit, on average. And
based on the average stake if using optimal play, the casino’s edge is about 2.36%,
slightly smaller than in roulette.

Currently, the most popular poker format outside casinos is Texas Hold’Em. Each
player has two cards, but five other cards are dealt face up on the table, and players
seek to make the best possible hand via some combination of their own cards, and
the five communal cards.

I will not detail all the rules. But it is important to know that there are up to four
rounds of betting: after your two cards are dealt; after the first three communal cards
(the “flop”); after the next card (the “turn”); and after the final card (the “river”). At
each stage, you must decide whether to retire gracefully, abandoning your cards and
the amounts you have staked, or match other people’s bets, or even raise the stakes. In
contrast toVideomachines in casinos, you are now facing human opponents whowill
try to outwit you, either by intimidating you into retiring bymaking big bets (without
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holding cards that objectively justify their actions), or by sandbagging—luring you
onwith small bets, perhaps hesitant plays, while actually holding an unbeatable hand.
Mathematical calculations help, but psychological factors are important.

In evaluating your hand, the number of players in the game is important. The
Wizard’s website is a mine of useful information; he gives the answers, but not the
calculations that lead to them. It is instructive to peruse these answers, and to think
why they hold. For example: always, your best possible two-card holding is a Pair of
Aces, which will win nearly 85% of the time with just two players, and over 31% of
the time with ten players; with six to ten players, the worst hand is Seven and Two
of different suits, but with four or fewer players, the worst hand is Three and Two of
different suits.

Phil Woodward (2006) attributed the following quirky example to 1972 World
Champion Amarillo Slim. Consider the three two-card hands:

(a) Two of Clubs, Two of Spades;
(b) Ace of Spades, King of Diamonds;
(c) Jack and Ten of Hearts.

Slim was happy to allow his opponent to make a choice from those alternatives, then
he would pick one of the remaining hands, and play one game of Texas Hold’Em for
$1, 000. He expected to win, in the long run, since calculations show that (a) beats
(b) some 52% of the time, (b) beats (c) 59% of the time, while the chance (c) beats
(a) is about 53%!

(The issue of Significance that contains Woodward’s article includes many other
pointers to mathematical and statistical aspects of gambling.)

7.6 Premium Bonds

PremiumBonds have been on sale in theUnitedKingdom since 1956. They are issued
by National Savings and Investments, backed by HM Treasury. An individual may
hold up to 50,000 Bonds, each costing £1, and (as of September 2015), every month,
each Bond has one chance in 26,000 of winning a tax-free prize. These parameters
have changed over time, but this broad framework has prevailed.

It has been argued that, since any Bond can be redeemed at its full cost price,
without notice, this is not a gamble, as the Bond-holder cannot lose; but the prize
fund is generated by a notional interest rate, currently 1.35%, so the Bond-holder
foregoes the chance to earn interest directly. Assuming that annual interest of 2.5%
would be paid to someone depositing £ 10,000 with a bank for three years, buying
Premium Bonds instead exchanges the certainty of £750 interest for 10,000 chances
in each of the next 36months to win prizes. The average amount won would be £405,
so we suggest that that this Bond-holder has gambled £750, with a mean return of
54%.
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The total number of Bonds currently held is over 50 billion, and the amount
generated each month is over £60 million. This funds two prizes of one million
pounds, and over two million prizes of lower sums: 88% of the prize money is
allocated to prizes of £100 or less. Indeed, by number, over 98% of the prizes are
for the minimum amount, £25. Like the National Lottery, the prize structure gives a
remote chance of an enormous prize, and a respectable chance of some sort of prize.

How remote? Even if you hold 50,000 Bonds, the chance of winning a million
pounds in any month is less than two in a million, and the average time you would
wait for the top prize is over 40,000years! But, with that holding, the chance you
will win something in any given month is about 85%.

The winning numbers are generated by ERNIE (Electronic Random Number
Indicator Equipment). The original machine was built by members of the famous
Bletchley Park code-breaking team. It has been replaced several times with faster
equipment; the current version, ERNIE 4, completes the draw in around two and a
half hours. A description of its workings, and the tests made on the output to enable
the Government Actuary’s Department to certify the draw is satisfactory, can be
found in Field et al. (1979).

Emphatically, ERNIE does NOT work in the same way as pocket calculators,
or modern digital computers, which are programmed to produce “pseudo-random”
numbers - these numbers do pass stringent tests of “randomness’, but are actually
produced by an arithmetical formula which will give the same sequence again, given
the same initial value.

7.7 Exercises

7.1 In the UK National Lottery, as well as the six winning numbers, a seventh one
(the Bonus Ball) is also chosen: punters whose selection consists of any five
winning numbers, along with the Bonus Ball number, qualify for the second
prize, after the jackpot, those with five winning numbers but not this Bonus
number qualify for the third prize. In the old 6/49 format, prizes were also given
for matching three or four numbers, in the new 6/59 format there are prizes
for matching two, three or four numbers. For each format, give the chances, to
three significant figures, of winning at each prize level.

7.2 This Chapter notes that there are thirteen ways of winning a prize in the
Euromillions game. List these different ways, count how many different gam-
bler choices will give each of them, and hence give their odds (appropriately
rounded to 1 in M , for suitable integers M).

7.3 Suppose you are in Las Vegas with $100, which you hope to turn into $400
through roulette on an American wheel with 38 numbers. Find your chances
of doing so, if you confine yourself to bets on Black, with constant stakes of
(i) One dollar (ii) $10 (iii) $50 (iv) $100.

7.4 Suppose you find a casino with a biased wheel, so that the chance of Red is
some value p > 1/2. Your begin with fortune F and bet on Red, one unit at
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a time, until either you have a run of bad luck, and lose everything, or your
fortune builds indefinitely (the casino has limitless resources). Use the fact that,
in the expression xn = (Rn − 1)/(RT − 1), we now have R < 1, to find the
chance you are ruined before the casino.

7.5 Suppose p = q = 1/2 in Eq. (7.3). Then, in parallel with differential
equations, when the auxiliary equation has equal roots, the general solution
is xn = A + Bn. Deduce that xn = n/T , and use L’Hôpital’s Rule to verify
that, as R → 1 in Eq. (7.4), so xn → T .
Similarly, find the new expression for mn , the mean number of spins until ruin
or triumph.

7.6 In roulette, Isabella will bet one unit on her favourite number until her money
runs out: the payout odds are 35 to 1, her winning chance on any spin is 1/37.
Find the chance that she is ahead after n spins when (a) 1 ≤ n ≤ 35 (b)
37 ≤ n ≤ 71 (c) 73 ≤ n ≤ 107. At which point is she more likely to be ahead,
after 175 spins, 179 spins, or 181 spins?

7.7 Suppose that, as described in the text, you bet one unit initially on Red, double
up your bets after a loss, and quit either when you have won, or you make N
consecutive losses, whichever comes first. Let p < 0.5 be the chance of Red
on any spin, and write q = 1− p. Show that the mean number of bets youmake
will be (1−q N )/p, and themean total stakewill be (2N−1q N +q−1)/(2q−1);
verify the figures given in the text, by evaluating these quantities when N = 7
and p = 18/37.

7.8 Consider a horse race with 16 runners, with the payout odds for each horse to
win being α to 1, and the payout odds for a place being α/4 to 1, “place” here
meaning finishing in the first four, as described in the text. What condition on
α implies a positive overround for the bookies on the win market? For what
values of α can the bookies have a positive overround on the win market, but
a shrewd punter could guarantee to win on the place market?
If the bookies sought to protect themselves by insisting that any bet on a horse
to place must be accompanied by a bet of the same size on that horse to win,
would it still be possible for a shrewd punter to guarantee a profit?

7.9 Suppose the net pool for the place market in a ten-horse race is £150,000, and
the totals staked on the first three horses are £100,000, £10,000 and £20,000.
Derek has bet £10 on each of these, so has three winning bets. According to
the formula given in the text, show that he should receive £5, £50 and £25
respectively.
(So Derek staked £10 on the horse that finished first, the bet was successful, but
the formula gives him £5 only—a loss of £5. In practice, to avoid this absurd
outcome, special rules are applied to ensure that such “winners” do not receive
less than their stake. One such method is described by Skiena (2001): first,
allocate to each place pool the total amount staked on that horse, then divide
the rest of the place pool into equal amounts, and add this sum to each pool.)

7.10 Make the calculations that verify the entries in Table7.2.
7.11 Make the calculations that verify the mean returns for strategies (b) and (c) in

Example 7.3.
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7.12 In Casino Stud Poker, show that there are 1,135,260 non-Qualifying hands,
about 43.7% of the total. Consider the five hands R= {J, 9, 8, 5, 2},
S= {A, K , J, 10, 9}, T= {A, A, J, 4, 3}, U= {6, 6, 6, J, 4} and
V= {J, J, 8, 8, 8}, all non-Flush. Decide on which hands you would Fold
or Raise; on those decisions, what would the outcome be if the Dealer held (i)
Hand R; (ii) Hand S; (iii) Hand U?

7.13 Watch a clip of the 2006 film “Casino Royale”, showing the final hand of
“Texas Hold’Em”, where the five communal cards are Spades {A, 8, 6, 4} and
the Heart Ace. The four remaining players held, concealed, (a) Spades {K , Q},
(b) {8, 8}, (c) {A, 6} and (d) Spades {7, 5}. On what each player could see, how
many of the

(45
2

) = 990 possible holdings for an opponent would beat their
hand? Were they all justified in going “all-in”?

7.14 Use the information given in the text to verify the claims made for holders
of 10,000, or 50,000, Premium Bonds. As the prizes are tax-free, what is the
interest rate that a person whose marginal tax rate is 40%would need to obtain
on a bank deposit, to match the average return on Premium Bonds?

7.15 Explain (briefly) why it is vital for Premium Bonds that, as described in the
final sentence of the text, ERNIE does not produce its winning numbers in
the same way as standard random number generators in computers or pocket
calculators.
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Appendix: Useful Mathematical Facts

1. 1 + 2 + 3 + · · · + n = n(n + 1)/2.
2. 12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)/6.
3.

(n
r

) = n!
r !(n−r)! is the number of ways of choosing r objects from a collection of

n objects, without regard to their order.

4. (a + b)n =
n∑

r=0

(n
r

)
an−r br = an + nan−1b + (n

2

)
an−2b2 + · · · + bn.

5. For |x | < 1, then log(1 + x) = x − x2

2 + x3

3 − x4

4 + · · · .
6. (a) Sum of a finite geometric series,

n−1∑

k=0
xk = 1−xn

1−x = xn−1
x−1 if x �= 1.

(b) When |x | < 1, since xn → 0 as n → ∞, we obtain

(i)
∞∑

k=0
xk = 1/(1 − x). Then, by differentiation,

(ii)
∞∑

k=1
kxk−1 = 1/(1 − x)2. Multiply by x to see that

(iii)
∞∑

k=1
kxk = x/(1 − x)2.

7. For fixed x , limn→∞(1 + x
n )n = ex = exp(x).

8. For all x , exp(x) = ex = 1 + x + x2

2! + x3

3! + · · · .
9. To solve f (x) = 0 via aNewton-Raphson iteration, make an initial guess x0 = c,

then calculate x1, x2, . . . from xn+1 = xn − f (xn)/ f ′(xn). If the sequence
converges to a limit, that limit is a solution.

10. To solve f (x) = 0 using the Midpoint Rule, suppose x0 and x1 are such that
f (x0) < 0 and f (x1) > 0. Write x2 = (x0 + x1)/2 (the midpoint of x0 and x1),
and evaluate f (x2). If f (x2) > 0, take x3 = (x0+x2)/2, while if f (x2) < 0, take
x3 = (x1 + x2)/2, and so on. Provided f is a continuous function, the sequence
{xi } converges to a solution. Proceed in an analogous fashion if f (x0) > 0 but
f (x1) < 0.

11. To solve x = g(x) via an iteration scheme, let x0 be an initial guess, and
take xn+1 = g(xn) for n ≥ 0. Provided that x0 is close enough to the answer,
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and |g′(x)| < 1 for x near the desired root, the sequence will converge as
required. (We could convert the equation f (x) = 0 to this format by defining
g(x) = f (x) + x .)

12. L’Hôpital’s Rule deals with expressions of the form f(x)/g(x) at any point x = c
where f (c) = g(c) = 0. Assuming all expressions make sense, the Rule states
that, if f (c) = g(c) = 0, then, as x → c, so f (x)/g(x) → f ′(c)/g′(c).
If you find that we also have f ′(c) = g′(c) = 0, worry not: apply the Rule to
f ′(x)/g′(x), so that the desired limit is just f ′′(c)/g′′(c) – etc.

13. Suppose that f is a function that can be differentiated as often as we like. Then
its MacLaurin expansion is

f (0) + x f ′(0) + x2

2! f ′′(0) + x3

3! f ′′′(0) + · · · .

Its Taylor expansion about the point c is

f (c) + (x − c) f ′(c) + (x − c)2

2! f ′′(c) + (x − c)3

3! f ′′′(c) + · · · .

Provided these series converge, thefirst few terms canbe expected to approximate
f well for values near zero, or near c, respectively.

14. Here, informally, is how the Maclaurin expansion arises. (A similar argument
works for the Taylor series.) SUPPOSE there are coefficients a0, a1, a2, . . . such
that

f (x) = a0 + a1x + a2x2 + a3x3 + · · · ,

and that everything behaves nicely. Put x = 0; then f (0) = a0, as all other terms
are eliminated. So IF such an expansion exists, then a0 = f (0). Differentiate
to see that f ′(x) = a1 + 2a2x + 3a3x2 + · · · ; put x = 0 again, now obtaining
a1 = f ′(0). Differentiate again, find f ′′(x) = 2a2 + 6a3x + · · · , and again put
x = 0. This gives f ′′(0) = 2a2, i.e. a2 = f ′′(0)/2. Keep on taking the tablets.
This is NOT a proof that a function is equal to itsMaclaurin expansion. The logic
merely says “IF there is a power series expansion, THEN it has this Maclaurin
form.” But there may be no such expansion: for example, when f (x) = |x |.

15. We can use Taylor expansions to see how L’Hôpital’s Rule arises. Assume that
the functions f (x) and g(x) have valid Taylor series about the point c, and that
f (c) = g(c) = 0. Then we have

f (x)

g(x)
= f (c) + (x − c) f ′(c) + (x−c)2

2! f ′′(c) + · · ·
g(c) + (x − c)g′(c) + (x−c)2

2! g′′(c) + · · ·

But f (c) = g(c) = 0, and when x �= c we can cancel the common factor (x −c)
in every other term. Thus numerator and denominator simplify, leading to
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f (x)

g(x)
= f ′(c) + (x−c)

2 f ′′(c) + (x−c)2

6 f ′′′(c) + · · ·
g′(c) + (x−c)

2 g′′(c) + (x−c)2

6 g′′′(c) + · · · .

Provided not both of f ′(c) and g′(c) are zero, then, as x → c, so this ratio
converges to f ′(c)/g′(c). And if f ′(c) = g′(c) = 0, then (x −c)/2 is a common
factor in all other terms; cancel throughout, obtaining

f (x)

g(x)
= f ′′(c) + x−c

3 f ′′′(c) + · · ·
g′′(c) + x−c

3 g′′′(c) + · · · .

Again, if not both f ′′(c) and g′′(c) are zero, we can make sense of this as x → c,
and so on.
(This is not, of course, an actual proof of L’Hôpital’s Rule. Even if the Taylor
series is valid, we have to take care in replacing (x − c) by zero, infinitely often
as x → c.)

16. Useful approximations include: 210 ≈ 1000; exp(3) = e3 ≈ 20; π2 ≈ 10.
17. (a) 1 + 1

2 + 1
3 + · · · + 1

n ≈ log(n) + 0.577.

(b) 1 + 1
22 + 1

32 + · · · = π2

6 .
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Hoover Index, 103, 110
Horse racing, 142–144, 150
Hyperbola, 59
Hyperbolic functions, 25

I
Ice-skating, 54
Income tax, 10
Inequality, 102–104
Integrating factor, 26
Interest, 1, 5
Investing, 8, 81
ISBN, 76
Iteration scheme, 153

J
Jobs and people, 74–76, 87

K
Kelly strategy, 82, 85, 141
Kermack-McKendrick, 31–33, 36
Knapsack problem, 86

L
Lanchester’s Square law, 36, 37
Lawn tennis, 39–43, 49, 58, 59
L’Hôpital’s Rule, 10, 16, 28, 41, 58, 150, 154
Linear equations, 25
Linear programming, 67–69, 84–86
Lorentz curve, 102–104
Lotka-Volterra, 29, 30, 36
Lotteries, 134–138, 143, 149

M
MacLaurin expansion, 154
Maintaining grade structure, 80–81, 87–88
Majority rule, 92, 107
Marginal tax rate, 10, 151

Marriage Theorem, 51–52
Match structure, 42, 49
Matrix minimum, 73
Metric space, 104
Midpoint rule, 153
Million Pound Drop, 120, 128
Millionaire, Who Wants to Be a, 125–126,

129
Monty Hall’s Game, 115, 128
Mortgage repayments, 5, 16

N
National Insurance, 10
Newton-Raphson, 153
Newton’s Laws, 20, 28, 34, 36, 45
Northwest corner, 71, 76

O
Objective function, 68
Odds, 133–134
Olympic games, 54, 93
Order, 22
Overround, 143

P
Palma measure, 110
Payday loans, 14, 16
Payout price, 134
Penalty kicks, 54–57, 62
Pension, 12
Permanent, 52
Perron-Frobenius, 53
Personal finance, 9
Plurality voting, 92, 108
Pointless, 118–119
Poker, 144–148, 150–151
Pound cost averaging, 9, 17
Premium Bonds, 148–149, 151
Present Value, 3, 11, 15–17
Price is Right, The, 116–118
Prisoner’s Dilemma, 128
Promotions policies, 77–80, 88

Q
Quota system, 92, 105

R
Roulette, 83, 85, 89, 138–142, 149
Rugby, 43–60
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Rule of 72, 2, 15, 85, 89
Rumours, model for, 37

S
Sainte-Laguë Method, 96, 108
Savings, 9, 10
Second order, 27–29
Separable variables, 22
Sequential pairwise, 107
Shafted, 128
Shot put, 45, 60
Showcase Showdown, 116, 118, 128–131
Simple interest, 1, 14
Simplex Method, 69
Simpson’s Paradox, 100–101
Single transferable vote, 93
Snooker, 44, 59, 60
Sonneborn-Berger, 52–54, 62
Standard divisor, 98
Standard minimum problem, 68, 87
Standard quota, 98, 108
Stock control, 65, 67
Student loans, 12, 15, 17

T
Table tennis, 43, 59
Tactical voting, 97
Tax, 10

Taylor expansion, 61, 154
Texas Hold ’Em, 147–148
Theil Index, 104, 110
Threshold, 33
Torricelli’s Law, 21
Transportation problem, 70–74, 88
Two Tribes, 119–120, 128
Tyre mileage, 83–84

U
UEFA Champions League, 50–52
Utility, 113–115

V
Variables separable, 22
Video poker, 145–146, 151
Voting methods, 91–97

W
Weakest link, 122–123, 128–129
Wheeling challenge, 135
Wizard of Odds, 145

Z
Zero-sum games, 56
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