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ix  

In preparing this new edition of Modern Physics, we have again relied heavily on the 
many helpful suggestions from a large team of reviewers and from a host of instruc-

tor and student users of the earlier editions. Their advice reflected the discoveries that 
have further enlarged modern physics in the first decade of the new century, took note 
of the evolution that is occurring in the teaching of physics in colleges and universities, 
and recognized the growing role of modern physics in the biological sciences. As the 
term modern physics has come to mean the physics of the modern era—relativity and 
quantum theory—we have heeded the advice of many users and reviewers and pre-
served the historical and cultural flavor of the book while being careful to maintain the 
mathematical level of the earlier editions. We continue to provide the flexibility for 
instructors to match the book and its supporting ancillaries to a wide variety of teach-
ing modes, including both one- and two-semester courses and media-enhanced courses.

New and Enhanced Features
The successful features of the earlier editions have been retained, many have been 
augmented, and new ones have been added. Among them are the following:

•	 The logical structure—beginning with an introduction to relativity and quantiza-
tion and following with applications—has been continued. Opening the book 
with relativity has been endorsed by many reviewers and instructors.

•	 As in the earlier editions, the end-of-chapter problems are separated into three 
sets based on difficulty, the least difficult also grouped by chapter section. 
New problems have been added in every chapter as we continue to offer more 
problems than any other book in the field.

•	 The first edition’s Instructors’ Solutions Manual with solutions, not just answers, 
to all end-of-chapter problems was the first such aid to accompany a physics (and 
not just a modern physics) textbook, and that leadership has been continued in 
this edition. The Instructors’ Solutions Manual (ISM) is available in print or on 
CD for those adopting Modern Physics, sixth edition, for their classes. As with 
the previous editions, the popular paperback Student’s Solution Manual, contain-
ing one-quarter of the solutions in the ISM, is also available.

•	 We have continued to include many worked-out examples in every chapter, a 
feature singled out by many instructors as a strength of the book. Several new 
examples at the interface between modern physics and the biological sciences 
have been added. As before, we frequently use combined quantities such as hc, 
Uc, and ke2 in eV # nm to simplify many numerical calculations.

•	 The summaries and reference lists at the end of every chapter have, of course, 
been retained and augmented, including the two-column format of the summaries 
that improves their clarity.

preface

TIPLER_FM_i-xvi-hr.indd   9 11/4/11   12:06 PM



x	 Preface

•	 We have continued the use of real data in figures, photos of real people and appa-
ratus, and short quotations by many scientists who were key participants in the 
development of modern physics. These features, along with the Notes at the 
end of each chapter, bring to life many events in the history of science and help 
counter the too-prevalent view among students that physics is a dull, impersonal 
collection of facts and formulas.

•	 More than two dozen Exploring sections, identified by an atom icon  and 
dealing with text-related topics that captivate student interest such as superlumi-
nal speed, giant atoms, and spintronics, are distributed throughout the text.

•	 The book’s Web site includes 31 More sections, which expand in depth on 
many  text-related topics. These have been enthusiastically endorsed by both 
students and instructors and often serve as springboards for projects and alter-
nate credit assignments. Identified by an icon CCR , each is introduced with a brief 
text box.

•	 More than 125 questions intended to foster discussion and review of concepts are 
distributed throughout the book, including several new ones in this edition. These 
have received numerous positive comments from many instructors over the 
years, often citing how the questions encourage deeper thought about the topic.

•	 A number of new Application Notes have been added to the sixth edition. These brief 
notes in the margins of many pages point to a few of the many benefits to society that 
have been made possible by a discovery or development in modern physics.

•	 Also new in the sixth edition are the For You text boxes. These text boxes high-
light current and future research and development activity toward which today’s 
students may consider directing their own career interests.

•	 Recognizing the need for students on occasion to be able to quickly review key 
concepts from classical physics that relate to topics developed in modern physics, 
the Classical Concept Review (CCR) was introduced in the book’s fifth edition. 
Found on the book’s Web site and identified by a numbered icon CCR  in the mar-
gin near the pertinent modern physics discussion, the CCR can be printed out to 
provide a convenient study-support booklet. Several new CCRs have been added 
to the sixth edition. The CCRs provide concise reviews of pertinent classical con-
cepts just a mouse click away.

Organization and Coverage
This edition, like the earlier editions, is divided into two parts: Part 1, “Relativity and 
Quantum Mechanics: The Foundations of Modern Physics,” and Part 2, “Applications 
of Quantum Mechanics and Relativity.” We continue to open Part 1 with the two rela-
tivity chapters. This location for relativity is firmly endorsed by users and reviewers. 
The rationale is that this arrangement avoids separation of the foundations of quantum 
mechanics in Chapters 3 through 8 from its applications in Chapters 9 through 12. The 
two-chapter format for relativity provides instructors the flexibility to cover only the 
basic concepts or to go deeper into the subject. Chapter 1 covers the essentials of spe-
cial relativity and includes discussions of several paradoxes, such as the twin paradox 
and the pole-in-the-barn paradox, that never fail to excite student interest. Relativistic 
energy and momentum are covered in Chapter 2, which concludes with a mostly quali-
tative section on general relativity that emphasizes experimental tests. Many instruc-
tors use this section as an opener for Chapter 13, Astrophysics and Cosmology. Since 
the relation E 2  p2c2 1 (mc2)2 is the result most needed for the later applications 
chapters, it is possible to omit Chapter 2 without disturbing continuity.
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Chapters 1 through 8 have been updated with several improved explanations and 
new diagrams. Many quantitative topics are included as More sections on the Web 
site. Examples of these topics are the derivation of Compton’s equation (Chapter 3), 
the details of Rutherford’s alpha-scattering theory (Chapter 4), the graphical solution 
of the finite square well (Chapter 6), and the excited states and spectra of two-electron 
atoms (Chapter 7). The comparisons of classical and quantum statistics are illustrated 
with several examples in Chapter 8, and, unlike the other chapters in Part 1, it is arranged 
to be covered briefly and qualitatively, if desired. This chapter, like Chapter 2, is not 
essential to the understanding of the applications chapters of Part 2 and may be used 
as an application chapter or omitted without loss of continuity.

Preserving the approach used in the previous edition, in Part 2 the ideas and 
methods discussed in Part 1 are applied to the study of molecules, solids, nuclei, par-
ticles, and the cosmos. Also in Part 2 several explanations have been improved and 
new diagrams added. Chapter 9 (Molecular Structure and Spectra) is a broad, detailed 
discussion of molecular bonding and the basic types of lasers. Chapter 10 (Solid State 
Physics) includes sections on bonding in metals, magnetism, and superconductivity. 
Chapter 11 (Nuclear Physics) is an integration of the nuclear theory and applications. 
It focuses on nuclear structure and properties, radioactivity, and the applications of 
nuclear reactions. Included in the last topic are fission, fusion, and several techniques 
of age dating and elemental analysis. The material on nuclear power and the discus-
sion of radiation dosage continue as More sections. Chapter 12 (Particle Physics) was 
substantially reorganized and rewritten with a focus on the Standard Model in the 
fifth edition and has been revised for the sixth edition to reflect the recent advances of 
that field. The emphasis is on the fundamental interactions of quarks, leptons, and 
force carriers and includes discussions of the conservation laws, neutrino oscillations, 
and supersymmetry. Finally, Chapter 13 (Astrophysics and Cosmology) examines the 
current observations of stars and galaxies and qualitatively integrates our discussions 
of quantum mechanics, atoms, nuclei, particles, and relativity to explain our present 
understanding of the origin and evolution of the universe from the Big Bang to dark 
energy and to highlight the enormity of what is not yet known.

The Research Frontier
Research over the past century has added abundantly to our understanding of our 
world, forged strong links from physics to virtually every other discipline, and mea-
surably improved the tools and devices that enrich life. As was the case at the begin-
ning of the last century, it is hard for us to foresee in the early years of this century 
how scientific research will deepen our understanding of the physical universe and 
enhance the quality of life. Here are just a few of the current subjects of frontier 
research included in Modern Physics, sixth edition, that you will hear more of in the 
years just ahead. Beyond these years there will be many other discoveries that no one 
has yet dreamed of.

•	 The Higgs boson, the harbinger of mass, may now be within our reach at 
Brookhaven’s Relativistic Heavy Ion Collider and at CERN with the successful 
start-up and early experimental runs of the Large Hadron Collider. (Chapter 12)

•	 The discovery of Fe-based superconductors, including some that are high Tc, 
has opened an entirely new area of experimental and theoretical research. 
(Chapter 10)

•	 The neutrino mass question has been solved by the discovery of neutrino oscil-
lations at the Super Kamiokande and SNO neutrino observatories (Chapters 2, 
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11, and 12), but the magnitudes of the masses and whether the neutrino is a 
Majorana particle remain unanswered.

•	 Discovery of single-cell biological lasers points the way to new forms of inter-
cellular sensing and imaging. (Chapter 9)

•	 The origin of the proton’s spin, which may include contributions from virtual 
strange quarks, still remains uncertain. (Chapter 11)

•	 The Bose-Einstein condensates, which suggest atomic lasers and superatomic 
clocks are in our future, were joined in 2003 by Fermi-Dirac condensates, in 
which pairs of fermions act like bosons at very low temperatures. (Chapter 8)

•	 Antihydrogen atoms trapped for 1000 seconds at the CERN ALPHA detector 
brings closer definitive comparison experiments on the stability, mass, and spec-
tra with ordinary hydrogen. (Chapters 4, 11, and 12)

•	 The evidence is now clear that dark energy accounts for 74 percent of the 
mass/energy of the universe. Only 4 percent is baryonic (visible) matter. The 
remaining 22 percent consists of as yet unidentified dark matter particles. 
(Chapter 13)

•	 The predicted fundamental particles of supersymmetry (SUSY), an integral 
part of grand unification theories, will be a priority search at the Large Hadron 
Collider. (Chapters 12 and 13)

•	 High-temperature superconductors reached critical temperatures greater 
than 130 K a few years ago and doped fullerenes compete with cuprates for 
high-Tc records, but a theoretical explanation of the phenomenon is not yet in 
hand. (Chapter 10)

•	 Gravity waves from space may soon be detected by the upgraded Laser Inter
ferometric Gravitational Observatory (LIGO) and several similar laboratories 
around the world. (Chapter 2)

•	 Adaptive-optics telescopes, large baseline arrays, and the Hubble telescope 
are providing new views deeper into space of the very young universe, revealing 
that the expansion is speeding up, a discovery supported by results from the 
Sloan Digital Sky Survey and the Wilkinson Microwave Anisotropy Project. 
(Chapter 13)

•	 Giant Rydberg atoms, made accessible by research on tunable dye lasers, are 
now of high interest and may provide the first direct test of the correspondence 
principle. (Chapter 4)

•	 Discovery of new elements has filled all the gaps in the periodic table and 
reached Z  118, tantalizingly near the edge of the “island of stability.” 
(Chapter 11)

Many more discoveries and developments just as exciting as these are to be found 
throughout Modern Physics, sixth edition.

Some Teaching Suggestions
This book is designed to serve well in either one- or two-semester courses. The chap-
ters in Part 2 are independent of one another and can be covered in any order. Some 
possible one-semester courses might consist of

•	 Part 1, Chapters 1, 3, 4, 5, 6, 7, and Part 2, Chapters 11, 12
•	 Part 1, Chapters 3, 4, 5, 6, 7, 8, and Part 2, Chapters 9, 10
•	 Part 1, Chapters 1, 2, 3, 4, 5, 6, 7, and Part 2, Chapter 9
•	 Part 1, Chapters 1, 3, 4, 5, 6, 7, and Part 2, Chapters 11, 12, 13
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Possible two-semester courses might be made up of

•	 Part 1, Chapters 1, 3, 4, 5, 6, 7, and Part 2, Chapters 9, 10, 11, 12, 13
•	 Part 1, Chapters 1, 2, 3, 4, 5, 6, 7, 8, and Part 2, Chapters 9, 10, 11, 12, 13

There is tremendous potential for individual student projects and alternate credit 
assignments based on the Exploring and, in particular, the More sections. The latter 
will encourage students to search for related sources on the Web.
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1

Relativity and Quantum 
Mechanics: The Foundations 
of Modern Physics

The earliest recorded systematic efforts to assemble knowledge about motion as 
a key to understanding natural phenomena were those of the ancient Greeks. Set 

forth in sophisticated form by Aristotle in about 350 B.C., theirs was a natural phi-
losophy (i.e., physics) of explanations deduced from assumptions rather than experi-
mentation. For example, it was a fundamental assumption that every substance had 
a “natural place” in the universe; motion then resulted when a substance was try-
ing to reach its natural place. Time was given a similar absolute meaning, as mov-
ing from some instant in the past (the creation of the universe) toward some end 
goal in the future, its natural place. The remarkable agreement between the deduc-
tions of Aristotelian physics and motions observed throughout the physical universe, 
together with a nearly total absence of accurate instruments to make contradictory 
measurements, made possible acceptance of the Greek view for nearly 2000 years. 
During the latter part of that time a few Arab scholars, notably Ibn al-Haytham, had 
begun to deliberately test some of the predictions of theory, but it was the Italian 
scientist Galileo Galilei, who, with his brilliant experiments on motion near the end 
of that period, established for all time the absolute necessity of experimentation 
in physics and, coincidentally, initiated the disintegration of Aristotelian physics. 
Within 100 years Isaac Newton had generalized the results of Galileo’s experiments 
into his three spectacularly successful laws of motion, and the natural philosophy of 
Aristotle was gone.

With the burgeoning of experimentation, the succeeding 200 years saw a mul-
titude of major discoveries and a concomitant development of physical theories to 
explain them. Most of the latter, then as now, failed to survive increasingly sophisti-
cated experimental tests, but by the dawn of the twentieth century Newton’s theo-
retical explanation of the motion of mechanical systems had been joined by equally 
impressive laws of electromagnetism and thermodynamics as expressed by Max-
well, Carnot, and others. The remarkable success of these laws led many scientists to 
believe that description of the physical universe was complete. Indeed, A. A. Michel-
son, speaking to scientists near the end of the nineteenth century, said, “The grand 
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2

underlying principles have been firmly established . . . The future truths of physics are 
to be looked for in the sixth place of decimals.”

Such optimism (or pessimism, depending on your point of view) turned out to 
be premature, as there were already vexing cracks in the foundation of what we 
now refer to as classical physics. Two of these were described by Lord Kelvin, in his 
famous Baltimore Lectures in 1900, as the “two clouds” on the horizon of twentieth-
century physics: the failure of theory to account for the radiation spectrum emit-
ted by a blackbody and the inexplicable results of the Michelson-Morley experiment. 
Indeed, the breakdown of classical physics occurred in many different areas: the 
Michelson-Morley null result contradicted Newtonian relativity, the blackbody radia-
tion spectrum contradicted predictions of thermodynamics, the photoelectric effect 
and the spectra of atoms could not be explained by electromagnetic theory, and the 
exciting discoveries of x rays and radioactivity seemed to be outside the framework 
of classical physics entirely. The development of the theories of quantum mechanics 
and relativity in the early twentieth century not only dispelled Kelvin’s “dark clouds” 
but provided answers to all of the puzzles listed above and many more. The applica-
tion of these theories to such microscopic systems as atoms, molecules, nuclei, and 
fundamental particles and to macroscopic systems of solids, liquids, gases, and plas-
mas has given us a deep understanding of the intricate workings of nature and has 
revolutionized our way of life.

In Part 1 we discuss the foundations of the physics of the modern era, relativity 
theory and quantum mechanics. Chapter 1 examines the apparent conflict between 
Einstein’s principle of relativity and the observed constancy of the speed of light and 
shows how accepting the validity of both ideas led to the special theory of relativity. 
Chapter 2 concerns the relations connecting mass, energy, and momentum in special 
relativity and concludes with a brief discussion of general relativity and some experi-
mental tests of its predictions. In Chapters 3, 4, and 5 the development of quantum 
theory is traced from the earliest evidence of quantization to de Broglie’s hypothesis 
of electron waves. An elementary discussion of the Schrödinger equation is provided 
in Chapter 6, illustrated with applications to one-dimensional systems. Chapter 7 
extends the application of quantum mechanics to many-particle systems and intro-
duces the important new concepts of electron spin and the exclusion principle. Con-
cluding the development, Chapter 8 discusses the wave mechanics of systems of 
large numbers of identical particles, underscoring the importance of the symmetry 
of wave functions. Beginning with Chapter 3, the chapters in Part 1 should be stud-
ied in sequence because each of Chapters 4 through 8 depends on the discussions, 
developments, and examples of the previous chapters.
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The relativistic character of the laws of physics began to be apparent very early 
in the evolution of classical physics. Even before the time of Galileo and  

Newton, Nicolaus Copernicus1 had shown that the complicated and imprecise 
Aristotelian method of computing the motions of the planets, based on the assump-
tion that Earth was located at the center of the universe, could be made much sim-
pler, though no more accurate, if it were assumed that the planets move about the 
Sun instead of Earth. Although Copernicus did not publish his work until very late 
in life, it became widely known through correspondence with his contemporaries 
and helped pave the way for acceptance a century later of the heliocentric theory 
of planetary motion. While the Copernican theory led to a dramatic revolution in 
human thought, the aspect that concerns us here is that it did not consider the loca-
tion of Earth to be special or favored in any way. Thus, the laws of physics discov-
ered on Earth could apply equally well with any point taken as the center—that is, 
the same equations would be obtained regardless of the origin of coordinates. This 
invariance of the equations that express the laws of physics is what we mean by the 
term relativity.

We will begin this chapter by investigating briefly the relativity of Newton’s 
laws and then concentrate on the theory of relativity as developed by Albert Einstein 
(1879–1955). The theory of relativity consists of two rather different theories, the 
special theory and the general theory. The special theory, developed by Einstein and 
others in 1905, concerns the comparison of measurements made in different frames of 
reference moving with constant velocity relative to each other. Contrary to popular 
opinion, the special theory is not difficult to understand. Its consequences, which can 
be derived with a minimum of mathematics, are applicable in a wide variety of situa-
tions in physics and engineering. On the other hand, the general theory, also devel-
oped by Einstein (around 1916), is concerned with accelerated reference frames and 
gravity. Although a thorough understanding of the general theory requires more 
sophisticated mathematics, such as tensor analysis, a number of its basic ideas and 
important predictions can be discussed at the level of this book. The general theory is 
of great importance in cosmology and in understanding events that occur in the vicin-
ity of very large masses, such as stars. Thanks to advances in our ability to make 
accurate measurements, the general theory is increasingly encountered in other areas 
of physics, engineering, and daily life, for example, the global positioning system 
(GPS). We will devote this chapter entirely to the special theory (often referred to as 
special relativity) and discuss the general theory in the final section of Chapter 2, fol-
lowing the sections concerned with special relativistic mechanics.

1-1	 The Experimental 
Basis of 
Relativity� 4

1-2	 Einstein’s 
Postulates� 11

1-3	 The Lorenz 
Transformation� 15
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and Length 
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1-5	 The Doppler
Effect� 38

1-6	 The Twin
Paradox and 
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4	 Chapter 1  Relativity I

1-1  The Experimental Basis of Relativity 
Classical Relativity
In 1687, with the publication of the Philosophiae Naturalis Principia Mathematica, 
Newton became the first person to generalize the observations of Galileo, al-Haytham, 
and others into the laws of motion that occupied much of your attention in introduc-
tory physics. The second of Newton’s three laws is

	 F = m 
d v
dt

= ma	 1-1

where d  v>dt = a is the acceleration of the mass m when acted on by a net force F. 
Equation 1-1 also includes the first law, the law of inertia, by implication: if F = 0, 
then d  v>dt = 0 also; that is, a = 0. (Recall that letters and symbols in boldface type 
are vectors.)

As it turns out, Newton’s laws of motion only work correctly in inertial refer-
ence frames, that is, reference frames in which the law of inertia holds.2 They also 
have the remarkable property that they are invariant, or unchanged, in any reference 
frame that moves with constant velocity relative to an inertial frame. Thus, all iner-
tial frames are equivalent—there is no special or favored inertial frame relative to 
which absolute measurements of space and time could be made. Two such inertial 
frames are illustrated in Figure 1-1, arranged so that corresponding axes in S and S9 
are parallel and S9 moves in the +x direction at velocity v for an observer in S (or S 
moves in the x9 direction at velocity v for an observer in S9). Figures 1-2 and 1-3 
illustrate the conceptual differences between inertial and noninertial reference 
frames. Transformation of the position coordinates and the velocity components of S 
into those of S9 is the Galilean transformation, Equations 1-2 and 1-3, respectively.

	 x9 = x - vt  y9 = y  z9 = z  t9 = t� 1-2

	 u =x = ux - v  u =y = uy   u =z = uz� 1-3

Figure 1-1  Inertial 
reference frame S is attached 
to Earth (the palm tree) 
and S9 to the cyclist. The 
corresponding axes of the 
frames are parallel, and S9 
moves at speed v in the +x 
direction of S.
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	 1-1  The Experimental Basis of Relativity 	 5

Figure 1-2  A mass suspended by a cord from the roof of a railroad boxcar illustrates the 
relativity of Newton’s second law F = ma. The only forces acting on the mass are its weight 
mg and the tension T in the cord. (a) The boxcar sits at rest in S. Since the velocity v and
the acceleration a of the boxcar (i.e., the system S9) are both zero, both observers see the
mass hanging vertically at rest with F = F9 = 0. (b) As S9 moves in the +x direction with
v constant, both observers see the mass hanging vertically but moving at v with respect to
O in S and at rest with respect to the S9 observer. Thus, F = F9 = 0. (c) As S9 moves in the
+x direction with a  0 with respect to S, the mass hangs at an angle u  0 with respect to
the vertical. However, it is still at rest (i.e., in equilibrium) with respect to the observer in S9,
who now “explains” the angle u by adding a pseudoforce Fp in the x9 direction to Newton’s 
second law.
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Figure 1-3  A geosynchronous satellite has an orbital angular velocity equal to that of 
Earth and, therefore, is always located above a particular point on Earth; that is, it is at rest 
with respect to the surface of Earth. An observer in S accounts for the radial, or centripetal, 
acceleration a of the satellite as the result of the net force FG. For an observer O9 at rest on 
Earth (in S9), however, a9 = 0 and F =

G  ma9. To explain the acceleration being zero,
observer O9 must add a pseudoforce Fp = FG.
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6	 Chapter 1  Relativity I

Classical 
Concept Review
The concepts 
of classical 
relativity, frames of 

reference, and coordinate 
transformations—all 
important background 
to our discussions of 
special relativity—may not 
have been emphasized 
in many introductory 
courses. As an aid to a 
better understanding of 
the concepts of modern 
physics, we have included 
the Classical Concept 
Review on the book’s 
Web site. As you proceed 
through Modern Physics, 

the icon 
CCR

 in the 

margin will alert you to 
potentially helpful classical 
background pertinent to 
the adjacent topics.

Notice that differentiating Equation 1-3 yields the result a9 = a since d v>dt = 0 for 
constant v. Thus, F = ma = ma9 = F9. This is the invariance referred to above. Gen-
eralizing this result:

Any reference frame that moves at constant velocity with respect to 
an inertial frame is also an inertial frame. Newton’s laws of mechan-
ics  are invariant in all reference systems connected by a Galilean 
transformation.

Speed of Light
In about 1860 James Clerk Maxwell summarized the experimental observations of 
electricity and magnetism in a consistent set of four concise equations. Unlike Newton’s 
laws of motion, Maxwell’s equations are not invariant under a Galilean transforma-
tion between inertial reference frames (see Figure 1-4). Since the Maxwell equations 
predict the existence of electromagnetic waves whose speed would be a particular 
value, c = 1>1m00 = 3.00 * 108 m>s, the excellent agreement between this num-
ber and the measured value of the speed of light3 and between the predicted polariza-
tion properties of electromagnetic waves and those observed for light provided strong 
confirmation of the assumption that light was an electromagnetic wave and, therefore, 
traveled at speed c.4

That being the case, it was postulated in the nineteenth century that electromag-
netic waves, like all other waves, propagated in a suitable material medium. The 
implication of this postulate was that the medium, called the ether, filled the entire 
universe, including the interior of matter. (The Greek philosopher Aristotle had first 
suggested that the universe was permeated with “ether” 2000 years earlier.) In this 
way the remarkable opportunity arose to establish experimentally the existence of the 
all-pervasive ether by measuring the speed of light c9 relative to Earth as Earth moved 
relative to the ether at speed v, as would be predicted by Equation 1-3. The value of c 
was given by the Maxwell equations, and the speed of Earth relative to the ether, 
while not known, was assumed to be at least equal to its orbital speed around the Sun, 
about 30 km/s. Since the maximum observable effect is of the order v2>c2 and given 
this assumption v2>c2  108, an experimental accuracy of about 1 part in 108 is nec-
essary in order to detect Earth’s motion relative to the ether. With a single exception, 

CCR

Figure 1-4  The observers in S and S9 see identical electric fields 2kl>y1 at a distance 
y1 = y =1 from an infinitely long wire carrying uniform charge l per unit length. Observers in 
both S and S9 measure a force 2kql>y1 on q due to the line of charge; however, the S9 observer 
measures an additional force -m0lv2q>(2py1) due to the magnetic field at y =1 arising from 
the motion of the wire in the x9 direction. Thus, the electromagnetic force does not have the 
same form in different inertial systems, implying that Maxwell’s equations are not invariant 
under a Galilean transformation.
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	 1-1  The Experimental Basis of Relativity 	 7

equipment and techniques available at the time had experimental accuracy of only 
about 1 part in 104, woefully insufficient to detect the predicted small effect. That 
single exception was the experiment of Michelson and Morley.5

Questions

1.	 What would the relative velocity of the inertial systems in Figure 1-4 need to 
be in order for the S9 observer to measure no net electromagnetic force on the 
charge q?

2.	 Discuss why the very large value for the speed of the electromagnetic waves 
would imply that the ether be rigid, that is, have a large bulk modulus.

The Michelson-Morley Experiment
All waves that were known to nineteenth-century scientists required a medium in 
order to propagate. Surface waves moving across the ocean obviously require the 
water. Similarly, waves move along a plucked guitar string, across the surface of 
a struck drumhead, through Earth after an earthquake, and, indeed, in all materials 
acted on by suitable forces. The speed of the waves depends on the properties of 
the medium and is derived relative to the medium. For example, the speed of sound 
waves in air, that is, their absolute motion relative to still air, can be measured. The 
Doppler effect for sound in air depends not only on the relative motion of the source 
and listener, but also on the motion of each relative to still air. Thus, it was natural for 
scientists of that time to expect the existence of some material like the ether to sup-
port the propagation of light and other electromagnetic waves and to expect that the 
absolute motion of Earth through the ether should be detectable, despite the fact that 
the ether had not been observed previously.

Michelson realized that, although the effect of Earth’s motion on the results of any 
“out and back” speed of light measurement, such as shown generically in Figure 1-5, 
would be too small to measure directly, it should be possible to measure v2>c2 by a dif-
ference measurement, using the interference property of the light waves as a sensitive 
“clock.” The apparatus that he designed to make the measurement is called the 
Michelson interferometer. The purpose of the Michelson-Morley experiment was to 
measure the speed of light relative to the interferometer (i.e., relative to Earth), thereby 
detecting Earth’s motion through the ether and, thus, verifying the latter’s existence. 
To illustrate how the interferometer works and the reasoning behind the experiment, 
let us first describe an analogous situation set in more familiar surroundings.

Albert A. Michelson, here 
playing pool in his later 
years, made the first accurate 
measurement of the speed of 
light while an instructor at the 
U.S. Naval Academy, where 
he had earlier been a cadet. 
[AIP Emilio Segrè Visual 
Archives.]

Figure 1-5  ​Light source, mirror, and observer are moving with speed v relative to the ether. 
According to classical theory, the speed of light c, relative to the ether, would be c  v relative 
to the observer for light moving from the source toward the mirror and c + v for light reflecting 
from the mirror back toward the source.

Observer

Light source Mirror

BA
L

v

c + v

c – v
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8	 Chapter 1  Relativity I

EXAMPLE 1-1	 A Boat Race ​ Two equally matched rowers race each other over 
courses as shown in Figure 1-6a. Each oarsman rows at speed c in still water; the 
current in the river moves at speed v. Boat 1 goes from A to B, a distance L, and 
back. Boat 2 goes from A to C, also a distance L, and back. A, B, and C are marks 
on the riverbank. Which boat wins the race, or is it a tie? (Assume c  v.)

Figure 1-6  ​(a) The rowers both row at speed c in still water. The current in the river 
moves at speed v. Rower 1 goes from A to B and back to A, while rower 2 goes from
A to C and back to A. (b) Rower 1 must point the bow upstream so that the sum of
the velocity vectors c + v results in the boat moving from A directly to B. His speed 
relative to the banks (i.e., points A and B) is then (c2  v2)1/2. The same is true on the 
return trip.

Ground

Ground

River

C

B

A

1

2

L

L
v

(a)

(b)

c 2 – v 2

v

A→B

c
c 2 – v 2

v

B →A

c

SOLUTION
The winner is, of course, the boat that makes the round trip in the shortest time, 
so to discover which boat wins, we compute the time for each. Using the classical 
velocity transformation (Equations 1-3), the speed of 1 relative to the ground is 
(c2  v2)1/2, as shown in Figure 1-6b; thus the round trip time t1 for boat 1 is

 t1 = tASB + tBSA =
L2c2 - v2

+
L2c2 - v2

=
2L2c2 - v2

	  =
2L

cB1 -
v2

c2

=
2L
c
a1 -

v2

c2 b
-1>2


2L
c
a1 +

1

2
 
v2

c2 + g b 	 1-4

where we have used the binomial expansion (see Appendix B2). Boat 2 moves 
downstream at speed c + v relative to the ground and returns at c  v, also relative 
to the ground. The round trip time t2 is thus

 t2 =
L

c + v
+

L
c - v

=
2Lc

c2 - v2

	  =
2L
c

 
1

1 -
v2

c2


2L
c
a1 +

v2

c2 + g b 	 1-5
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	 1-1  The Experimental Basis of Relativity 	 9

Figure 1-7  Drawing of Michelson-Morley apparatus used in their 1887 experiment. The 
optical parts were mounted on a 5 ft square sandstone slab, which was floated in mercury, 
thereby reducing the strains and vibrations during rotation that had affected the earlier 
experiments. Observations could be made in all directions by rotating the apparatus in the 
horizontal plane. [From R.S. Shankland, “The Michelson-Morley Experiment.” Copyright © 
November 1964 by Scientific American, Inc. All rights reserved.]
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Mirrors
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mirror
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Mirrors Mirrors
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which, you may note, is the same result obtained in our discussion of the speed of 
light experiment in the Classical Concept Review.

The difference Dt between the round-trip times of the boats is then

	 Dt = t2 - t1 
2L
c
a1 +

v2

c2 b -
2L
c
a1 +

1

2
 
v2

c2 b 
Lv2

c3 	 1-6

The quantity Lv2>c3 is always positive; therefore, t2  t1 and rower 1 has the faster 
average speed and wins the race.

The Results  Michelson and Morley carried out the experiment in 1887, repeat-
ing with a much-improved interferometer an inconclusive experiment that Michelson 
alone had performed in 1881 in Potsdam. The path length L on the new interferometer 
(see Figure 1-7) was about 11 meters, obtained by a series of multiple reflections. 
Michelson’s interferometer is shown schematically in Figure 1-8a. The field of view 
seen by the observer consists of parallel alternately bright and dark interference bands, 
called fringes, as illustrated in Figure 1-8b. The two light beams in the interferometer 
are exactly analogous to the two boats in Example 1-1, and Earth’s motion through the 
ether was expected to introduce a time (phase) difference as given by Equation 1-6. 
Rotating the interferometer through 90° doubles the time difference and changes the 
phase, causing the fringe pattern to shift by an amount DN. An improved system for 

CCR

15
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10	 Chapter 1  Relativity I

rotating the apparatus was used in which the massive stone slab on which the inter-
ferometer was mounted floated on a pool of mercury. This dampened vibrations and 
enabled the experimenters to rotate the interferometer without introducing mechanical 
strains, both of which would cause changes in L, and hence a shift in the fringes. Using 
a sodium light source with l = 590 nm and assuming v = 30 km/s (i.e., Earth’s orbital 
speed), DN was expected to be about 0.4 of the width of a fringe, about 40 times the 
minimum shift (0.01 fringe) that the interferometer was capable of detecting.

To Michelson’s immense disappointment, and that of most scientists of the time, 
the expected shift in the fringes did not occur. Instead, the shift observed was only 
about 0.01 fringe, that is, approximately the experimental uncertainty of the appara-
tus. With characteristic reserve, Michelson described the results thus:6

The actual displacement [of the fringes] was certainly less than the 
twentieth part [of 0.4 fringe], and probably less than the fortieth part. 

Figure 1-8  ​ ​ Michelson interferometer. (a) Yellow light from the sodium source is divided 
into two beams by the second surface of the partially reflective beam splitter at A, at which 
point the two beams are exactly in phase. The beams travel along the mutually perpendicular 
paths 1 and 2, reflect from mirrors M1 and M2, and return to A, where they recombine and are 
viewed by the observer. The compensator’s purpose is to make the two paths of equal optical 
length, so that the lengths L contain the same number of light waves, by making both beams 
pass through two thicknesses of glass before recombining. M2 is then tilted slightly so that it is 
not quite perpendicular to M1. Thus, the observer O sees M1 and M =

2, the image of M2 formed 
by the partially reflecting second surface of the beam splitter, forming a thin wedge-shaped 
film of air between them. The interference of the two recombining beams depends on the 
number of waves in each path, which in turn depends on (1) the length of each path and (2) the 
speed of light (relative to the instrument) in each path. Regardless of the value of that speed, 
the wedge-shaped air film between M1 and M =

2 results in an increasing path length for beam 
2 relative to beam 1, looking from left to right across the observer’s field of view; hence, the 
observer sees a series of parallel interference fringes as in (b), alternately yellow and black 
from constructive and destructive interference, respectively.
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But since the displacement is proportional to the square of the velocity, 
the relative velocity of the earth and the ether is probably less than one-
sixth the earth’s orbital velocity and certainly less than one-fourth.

Michelson and Morley had placed an upper limit on Earth’s motion relative to  the 
ether of about 5 km/s. From this distance in time it is difficult for us to appreciate the 
devastating impact of this result. The then-accepted theory of light propagation could 
not be correct, and the ether as a favored frame of reference for Maxwell’s equations 
was not tenable. The experiment was repeated by a number of people more than a 
dozen times under various conditions and with improved precision, and no shift has 
ever been found. In the most precise attempt, the upper limit on the relative velocity 
was lowered to 1.5 km/s by Georg Joos in 1930 using an interferometer with light 
paths much longer than Michelson’s. Recent, high-precision variations of the experi-
ment using laser beams have lowered the upper limit to 15 m/s.

The Conclusions  More generally, on the basis of this and other experiments, we 
must conclude that Maxwell’s equations are correct and that the speed of electromag-
netic radiation is the same in all inertial reference systems independent of the motion 
of the source relative to the observer. This invariance of the speed of light between 
inertial reference frames means that there must be some relativity principle that applies 
to electromagnetism as well as to mechanics. That principle cannot be Newtonian 
relativity, which implies the dependence of the speed of light on the relative motion 
of the source and observer. It follows that the Galilean transformation of coordinates 
between inertial frames cannot be correct, but must be replaced with a new coordinate 
transformation whose application preserves the invariance of the laws of electromag-
netism. We then expect that the fundamental laws of mechanics, which were consistent 
with the old Galilean transformation, will require modification in order to be invariant 
under the new transformation. The theoretical derivation of that new transformation 
was a cornerstone of Einstein’s development of special relativity.

More
�A more complete description of the Michelson-Morley experiment, its 
interpretation, and the results of very recent versions can be found on 
the home page: www.whfreeman.com/tiplermodernphysics6e. See also 
Figures 1-9 through 1-11 here, as well as Equations 1-7 through 1-10.

More

1-2  Einstein’s Postulates 
In 1905, at the age of 26, Albert Einstein published several papers, among which was 
one on the electrodynamics of moving bodies.11 In this paper, he postulated a more 
general principle of relativity that applied to the laws of both electrodynamics and 
mechanics. A consequence of this postulate is that absolute motion cannot be detected 
by any experiment. We can then consider the Michelson apparatus and Earth to be at 
rest. No fringe shift is expected when the interferometer is rotated 90° since all direc-
tions are equivalent. The null result of the Michelson-Morley experiment is therefore 
to be expected. It should be pointed out that Einstein did not set out to explain the 
Michelson-Morley experiment. His theory arose from his considerations of the theory 
of electricity and magnetism and the unusual property of electromagnetic waves that 

Michelson interferometers 
with arms as long as 4 km 
are currently being used 
in the search for gravity 
waves. See Section 2-5.
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12	 Chapter 1  Relativity I

they propagate in a vacuum. In his first paper, which contains the complete theory of 
special relativity, he made only a passing reference to the experimental attempts to 
detect Earth’s motion through the ether, and in later years he could not recall whether 
he was aware of the details of the Michelson-Morley experiment before he published 
his theory.

The theory of special relativity was derived from two postulates proposed by 
Einstein in his 1905 paper:

Postulate 1. � The laws of physics are the same in all inertial reference 
frames.

Postulate 2. � The speed of light in a vacuum is equal to the value c, 
independent of the motion of the source.

Postulate 1 is an extension of the Newtonian principle of relativity to include all 
types of physical measurements (not just measurements in mechanics). It implies that 
no inertial system is preferred over any other; hence, absolute motion cannot be 
detected. Postulate 2 describes a common property of all waves. For example, the 
speed of sound waves does not depend on the motion of the sound source. When an 
approaching car sounds its horn, the frequency heard increases according to the Dop-
pler effect, but the speed of the waves traveling through the air does not depend on the 
speed of the car. The speed of the waves depends only on the properties of the air, 
such as its temperature. The force of this postulate was to include light waves, for 
which experiments had found no propagation medium, together with all other waves, 
whose speed was known to be independent of the speed of the source. Recent analysis 
of the light curves of gamma-ray bursts that occur near the edge of the observable 
universe has shown the speed of light to be independent of the speed of the source to 
a precision of one part in 1020.

Although each postulate seems quite reasonable, many of the implications of the 
two together are surprising and seem to contradict common sense. One important 
implication of these postulates is that every observer measures the same value for the 
speed of light independent of the relative motion of the source and observer. Consider 
a light source S and two observers R1, at rest relative to S, and R2, moving toward S 
with speed v, as shown in Figure 1-12a. The speed of light measured by R1 is c = 
3  108 m/s. What is the speed measured by R2? The answer is not c + v, as one 
would expect based on Newtonian relativity. By postulate 1, Figure 1-12a is equiva-
lent to Figure 1-12b, in which R2 is at rest and the source S and R1 are moving with 
speed v. That is, since absolute motion cannot be detected, it is not possible to say 
which is really moving and which is at rest. By postulate 2, the speed of light from  
a moving source is independent of the motion of the source. Thus, looking at  
Figure 1-12b, we see that R2 measures the speed of light to be c, just as R1 does. This 
result, that all observers measure the same value c for the speed of light, is often con-
sidered an alternative to Einstein’s second postulate.

This result contradicts our intuition. Our intuitive ideas about relative velocities 
are approximations that hold only when the speeds are very small compared with the 
speed of light. Even in an airplane moving at the speed of sound, it is not possible to 
measure the speed of light accurately enough to distinguish the difference between 
the results c and c + v, where v is the speed of the plane. In order to make such a distinc-
tion, we must either move with a very great velocity (much greater than that of sound) 
or make extremely accurate measurements, as in the Michelson-Morley experiment, 
and when we do, we will find, as Einstein pointed out in his original relativity paper, 
that the contradictions are “only apparently irreconcilable.”

Figure 1-12  (a) Stationary 
light source S and a stationary 
observer R1, with a second 
observer R2 moving toward 
the source with speed v.
(b) In the reference frame in 
which the observer R2 is at 
rest, the light source S and 
observer R1 move to the right 
with speed v. If absolute 
motion cannot be detected, 
the two views are equivalent. 
Since the speed of light does 
not depend on the motion 
of the source, observer R2 
measures the same value for 
that speed as observer R1.

S

S

v

R2

R1 v
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R1
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Events and Observers
In considering the consequences of Einstein’s postulates in greater depth, that is, in 
developing the theory of special relativity, we need to be certain that meanings of 
some important terms are crystal clear. First, there is the concept of an event. A physi-
cal event is something that happens, such as the closing of a door, a lightning strike, 
the collision of two particles, your birth, or the explosion of a star. Every event occurs 
at some point in space and at some instant in time, but it is very important to rec-
ognize that events are independent of the particular inertial reference frame that we 
might use to describe them. Events do not “belong” to any reference frame.

Events are described by observers, who do belong to particular inertial frames of 
reference. Observers could be people (as in Section 1-1), electronic instruments, or 
other suitable recorders, but for our discussions in special relativity we are going to be 
very specific. Strictly speaking, the observer will be an array of recording clocks 
located throughout the inertial reference system. It may be helpful for you to think of 
the observer as a person who goes around reading out the memories of the recording 
clocks or receives records that have been transmitted from distant clocks, but always 
keep in mind that in reporting events, such a person is strictly limited to summarizing 
the data collected from the clock memories. The travel time of light precludes him 
from including in his report distant events that he may have seen by eye! It is in this 
sense that we will be using the word observer in our discussions.

Each inertial reference frame may be thought of as being formed by a cubic three-
dimensional lattice made of identical measuring rods (e.g., meter sticks) with a record-
ing clock at each intersection, as illustrated in Figure 1-13. The clocks are all identical, 
and we, of course, want them all to read the “same time” as one another at any instant; 
that is, they must be synchronized. There are many ways to accomplish synchroniza-
tion of the clocks, but a very straightforward way, made possible by the second postu-
late, is to use one of the clocks in the lattice as a standard, or reference clock. For 
convenience we will also use the location of the reference clock in the lattice as the 
coordinate origin for the reference frame. The reference clock is started with its indica-
tor (hands, pointer, digital display) set at zero. At the instant it starts, it also sends out  
a flash of light that spreads out as a spherical wave in all directions. When the flash 
from the reference clock reaches the lattice clocks one meter away (notice that in Fig-
ure 1-13 there are six of them, two of which are off the edges of the figure), we want 
their indicators to read the time required for light to travel 1 m (= 1/299,792,458 s). 
This can be done simply by having an observer at each clock set that time on the indi-
cator and then having the flash from the reference clock start them as it passes. The 
clocks 1 m from the origin now display the same time as the reference clock; that is, 
they are all synchronized. In a similar fashion, all of the clocks throughout the inertial 
frame can be synchronized since the distance of any clock from the reference clock can 
be calculated from the space coordinates of its position in the lattice and the initial set-
ting of its indicator will be the corresponding travel time for the reference light flash. 
This procedure can be used to synchronize the clocks in any inertial frame, but it does 
not synchronize the clocks in reference frames that move with respect to one another. 
Indeed, as we will see shortly, clocks in relatively moving frames cannot in general be 
synchronized with one another.

When an event occurs, its location and time are recorded instantly by the nearest 
clock. Suppose that an atom located at x = 2 m, y = 3 m, z = 4 m in Figure 1-13 emits a 
tiny flash of light at t = 21 s on the clock at that location. That event is recorded in space 
and in time, or, as we will henceforth refer to it, in the spacetime coordinate system with 
the numbers (2, 3, 4, 21). The observer may read out and analyze these data at his 

(top) Albert Einstein in 1905 
at the Bern, Switzerland, 
patent office. [Hebrew 
University of Jerusalem Albert 
Einstein Archives, courtesy AIP 
Emilio Segrè Visual Archives.]
(bottom) Clock tower and 
electric trolley in Bern on 
Kramstrasse, the street on 
which Einstein lived. If you 
are on the trolley moving 
away from the clock and look 
back at it, the light you see 
must catch up with you. If 
you move at nearly the speed 
of light, the clock you see 
will be slow. In this Einstein 
saw a clue to the variability 
of time itself.
[Underwood & Underwood/
CORBIS.]
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leisure, within the limits set by the information transmission time (i.e., the light travel 
time) from distant clocks. For example, the path of a particle moving through the lattice 
is revealed by analysis of the records showing the particle’s time of passage at each 
clock’s location. Distances between successive locations and the corresponding time 
differences enable the determination of the particle’s velocity. Similar records of the 
spacetime coordinates of the particle’s path can, of course, also be made in any inertial 
frame moving relative to ours, but to compare the distances and time intervals measured 
in the two frames requires that we consider carefully the relativity of simultaneity.

Relativity of Simultaneity
Einstein’s postulates lead to a number of predictions regarding measurements made 
by observers in inertial frames moving relative to one another that initially seem very 
strange, including some that appear paradoxical. Even so, these predictions have been 
experimentally verified, and nearly without exception, every paradox is resolved by 
an understanding of the relativity of simultaneity, which states that

Two spatially separated events simultaneous in one reference frame are 
not, in general, simultaneous in another inertial frame moving relative 
to the first.

A corollary to this is that

Clocks synchronized in one reference frame are not, in general, synchro-
nized in another inertial frame moving relative to the first.

Figure 1-13  Inertial reference frame formed 
from a lattice of measuring rods with a clock at 
each intersection. The clocks are all synchronized 
using a reference clock. In this diagram the 
measuring rods are shown to be 1 m long, but 
they could all be 1 cm, 1 mm, or 1 km as required 
by the scale and precision of the measurements 
being considered. The three space dimensions 
are the clock positions. The fourth spacetime 
dimension, time, is shown by indicator readings 
on the clocks.

x

z

y

Reference clock
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What do we mean by simultaneous events? Suppose two observers, both in the 
inertial frame S at different locations A and B, agree to explode bombs at time to 
(remember, we have synchronized all of the clocks in S). The clock at C, equidistant 
from A and B, will record the arrival of light from the explosions at the same instant, 
that is, simultaneously. Other clocks in S will record the arrival of light from A or B 
first, depending on their locations, but after correcting for the time the light takes to 
reach each clock, the data recorded by each would lead an observer to conclude that 
the explosions were simultaneous. We will thus define two events to be simultaneous 
in an inertial reference frame if the light signals for the events reach an observer 
halfway between them at the same time as recorded by a clock at that location, called 
a local clock.

Einstein’s Example  To show that two events that are simultaneous in frame 
S are not simultaneous in another frame S9 moving relative to S, we use an example 
introduced by Einstein. A train is moving with speed v past a station platform. We 
have observers located at A9, B9, and C9 at the front, back, and middle of the train. 
(We consider the train to be at rest in S9 and the platform in S.) We now suppose 
that the train and platform are struck by lightning at the front and back of the train 
and that the lightning bolts are simultaneous in the frame of the platform (S; see 
Figure 1-14a). That is, an observer located at C halfway between positions A and B, 
where lightning strikes, observes the two flashes at the same time. It is convenient to 
suppose that the lightning scorches both the train and the platform so that the events 
can be easily located in each reference frame. Since C9 is in the middle of the train, 
halfway between the places on the train that are scorched, the events are simultaneous 

Figure 1-14  Lightning bolts strike 
the front and rear of the train, scorching 
both the train and the platform, as the 
train (frame S9) moves past the platform 
(system S) at speed v. (a) The strikes are 
simultaneous in S, reaching the C observer 
located midway between the events at 
the same instant as recorded by the clock 
at C as shown in (c). In S9 the flash from 
the front of the train is recorded by the C9 
clock, located midway between the scorch 
marks on the train, before that from the 
rear of the train (b and d, respectively). 
Thus, the C9 observer concludes that the 
strikes were not simultaneous.
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16	 Chapter 1  Relativity I

in S9 only if the clock at C9 records the flashes at the same time. However, the clock 
at C9 records the flash from the front of the train before the flash from the back. In 
frame S, when the light from the front flash reaches the observer at C9, the train has 
moved some distance toward A, so that the flash from the back has not yet reached 
C, as indicated in Figure 1-14b. The observer at C9 must therefore conclude that the 
events are not simultaneous, but that the front of the train was struck before the back. 
Figures 1-14c and 1-14d illustrate, respectively, the subsequent simultaneous arrival 
of the flashes at C and the still later arrival of the flash from the rear of the train at C9. 
As we have discussed, all observers in S9 on the train will agree with the observer C9 
when they have corrected for the time it takes light to reach them.

Corollary to Einstein’s Example  The corollary can also be demonstrated 
with a similar example. Again consider the train to be at rest in S9, which moves past 
the platform that is at rest in S, with speed v. Figure 1-15 shows three of the clocks 
in the S lattice and three of those in the S9 lattice. The clocks in each system’s lattice 
have been synchronized in the manner that was described earlier, but those in S are 
not synchronized with those in S9. The observer at C midway between A and B on the 
platform announces that light sources at A and B will flash when the clocks at those 
locations read to (Figure 1-15a). The observer at C9, positioned midway between A9 
and B9, notes the arrival of the light flash from the front of the train (Figure 1-15b) 
before the arrival of the one from the rear (Figure 1-15d ). Observer C9 thus concludes 
that, if the flashes were each emitted at to on the local clocks, as announced, then the 
clocks at A and B are not synchronized. All observers in S9 would agree with that 
conclusion after correcting for the time of light travel. The clock located at C records 
the arrival of the two flashes simultaneously, of course, since the clocks in S are 
synchronized (Figure 1-15c). Notice, too, in Figure 1-15 that C9 also concludes that 
the clock at A is ahead of the clock at B. This is important, and we will return to it in 

Figure 1-15  (a) Light flashes originate 
simultaneously at clocks A and B, 
synchronized in S. (b) The clock at C9, 
midway between A9 and B9 on the moving 
train, records the arrival of the flash from 
A before the flash from B shown in (d ). 
Since the observer in S announced that the 
flashes were triggered at t0 on the local 
clocks, the observer at C9 concludes that 
the local clocks at A and B did not read 
t0 simultaneously; that is, they were not 
synchronized. The simultaneous arrival of 
the flashes at C is shown in (c).
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more detail in the next section. Figure 1-16 illustrates the relativity of simultaneity 
from a different perspective.

Questions

3.	 In addition to the method described above, what would be another possible 
method of synchronizing all of the clocks in an inertial reference system?

4.	 Using Figure 1-16d, explain how the spaceship observer concludes that the 
Earth clocks are not synchronized.

1-3  The Lorentz Transformation 
We now consider a very important consequence of Einstein’s postulates, the general 
relation between the spacetime coordinates x, y, z and t of an event as seen in refer-
ence frame S and the coordinates x9, y9, z9 and t9 of the same event as seen in reference 

Figure 1-16  A light flash occurs on Earth midway between two Earth clocks. At the instant 
of the flash the midpoint of a passing spaceship coincides with the light source. (a) The Earth 
clocks record the lights’ arrival simultaneously and are thus synchronized. (b) Clocks at both
ends of the spaceship also record the lights’ arrival simultaneously (Einstein’s second postulate) 
and they, too, are synchronized. (c) However, the Earth observer sees the light reach the 
clock at B9 before the light reaches the clock at A9. Since the spaceship clocks read the same 
time when the light arrives, the Earth observer concludes that the clocks at A9 and B9 are not 
synchronized. (d ) Illustrates that the spaceship observer similarly concludes that the Earth 
clocks are not synchronized.

(a) Earth view of Earth clocks (b) Spaceship view of spaceship clocks

(d ) Spaceship view of Earth clocks(c) Earth view of spaceship clocks
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18	 Chapter 1  Relativity I

frame S9, which is moving with uniform velocity relative to S. For simplicity we will 
consider only the special case in which the origins of the two coordinate systems are 
coincident at time t = t9 = 0 and S9 is moving, relative to S, with speed v along the 
x (or x9) axis and with the y9 and z9 axes parallel, respectively, to the y and z axes as 
shown in Figure 1-17. As we discussed earlier (Equation 1-2), the classical Galilean 
coordinate transformation is

	 x9 = x - vt  y9 = y  z9 = z  t9 = t	 1-2

which expresses coordinate measurements made by an observer in S9 in terms of 
those measured by an observer in S. The inverse transformation is

x = x9 + vt9  y = y9  z = z9  t = t9

and simply reflects the fact that the sign of the relative velocity of the reference 
frames is different for the two observers. The corresponding classical velocity trans-
formation was given in Equation 1-3, and the acceleration, as we saw earlier, is 
invariant under a Galilean transformation. (For the rest of the discussion we will 
ignore the equations for y and z, which do not change in this special case of motion 
along the x and x9 axes.) These equations are consistent with experiment as long as v 
is much less than c.

It should be clear that the classical velocity transformation is not consistent with 
the Einstein postulates of special relativity. If light moves along the x axis with speed 
c in S, Equation 1-3 implies that the speed in S9 is u =x = c - v rather than u =x = c. 
The Galilean transformation equations must therefore be modified to be consistent 
with Einstein’s postulates, but the result must reduce to the classical equations when v 
is much less than c. We will give a brief outline of one method of obtaining the rela-
tivistic transformation that is called the Lorentz transformation, so named because 
of its original discovery by H. A. Lorentz.12 We assume the equation for x9 to be of 
the form

	 x9 = g1x - vt2	 1-11

where g is a constant that can depend on v and c but not on the coordinates. If this 
equation is to reduce to the classical one, g must approach 1 as v>c approaches 0. The 
inverse transformation must look the same except for the sign of the velocity:

	 x = g1x9 + vt92	 1-12

With the arrangement of the axes in Figure 1-17, there is no relative motion of the 
frames in the y and z directions; hence y9 = y and z9 = z. However, insertion of the as yet 
unknown multiplier g modifies the classical transformation of time, t9 = t. To see this, 
we substitute x9 from Equation 1-11 into Equation 1-12 and solve for t9. The result is

	 t9 = g c t +
11 - g22

g2  
x
v
d 	 1-13

Figure 1-17  ​Two inertial frames S and S9 with the latter moving 
at speed v in the +x direction of system S. Each set of axes shown 
is simply the coordinate axes of a lattice like that in Figure 1-13. 
Remember, there is a clock at each intersection. A short time before 
the times represented by this diagram, O and O9 were coincident and 
the lattices of S and S9 were intermeshed.
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Now let a flash of light start from the origin of S at t = 0. Since we have assumed 
that the origins coincide at t = t9 = 0, the flash also starts at the origin of S9 at t9 = 0. 
The flash expands from both origins as a spherical wave. The equation for the wave 
front according to an observer in S is

	 x2 + y 2 + z 2 = c2t2	 1-14

and according to an observer in S9 it is

	 x92 + y92 + z92 = c2t92	 1-15

where both equations are consistent with the second postulate. Consistency with the 
first postulate means that the relativistic transformation that we seek must transform 
Equation 1-14 into Equation 1-15, and vice versa. For example, substituting Equa-
tions 1-11 and 1-13 into 1-15 results in Equation 1-14 if

	 g =
1B1 -

v2

c2

=
121 - b2

	 1-16

where b = v>c. Notice that g = 1 for v = 0 and g S  for v = c. How this is done is 
illustrated in Example 1-2 below.

EXAMPLE 1-2	 Relativistic Transformation Multiplier g ​ Show that g must 
be given by Equation 1-16 if Equation 1-15 is to be transformed into Equation 1-14 
consistent with Einstein’s first postulate.

SOLUTION
Substituting Equations 1-11 and 1-13 into 1-15 and noting that y9 = y and z9 = z in 
this case yields

	 g21x - vt22 + y2 + z 2 = c2g2 c t +
1 - g2

g2  
x
v
d

2

	 1-17

To be consistent with the first postulate, Equation 1-15 must be identical to 
Equation 1-14. This requires that the coefficient of the x2 term in Equation 1-17 be 
equal to 1, that of the t2 term be equal to c2, and that of the xt term be equal to 0. 
Any of those conditions can be used to determine g, and all yield the same result. 
Using, for example, the coefficient of x2, we have from Equation 1-17 that

g2 - c2g2 
11 - g222

g4v2 = 1

which can be rearranged to

-c2 
11 - g222

g2v2 = 11 - g22

Canceling 1  g2 on both sides and solving for g yields

g =
1B1 -

v2

c2
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With the value for g found in Example 1-2, Equation 1-13 can be written in a 
somewhat simpler form and with it the complete Lorentz transformation becomes

 x9 = g1x - vt2  y9 = y

	  t9 = ga t -
vx

c2 b  z9 = z
	 1-18

and the inverse

 x = g1x9 + vt92  y = y9

	  t = ga t9 +
vx9

c2 b  z = z9
	 1-19

with

g =
121 - b2

EXAMPLE 1-3	 Transformation of Time Intervals ​ The arrivals of two cosmic-
ray m mesons (muons) are recorded by detectors in the laboratory, one at time ta at 
location xa and the second at time tb at location xb in the laboratory reference frame, 
S in Figure 1-17. What is the time interval between those two events in system S9, 
which moves relative to S at speed v?

SOLUTION
Applying the time coordinate transformation from Equation 1-18,

 t =b - t =a = ga tb -
vxb

c2 b - ga ta -
vxa

c2 b

	  t =b - t =a = g1tb - ta2 -
gv

c2 1xb - xa2
	 1-20

We see that the time interval measured in S9 depends not just on the corre-
sponding time interval in S, but also on the spatial separation of the clocks in S that 
measured the interval. This result should not come as a total surprise since we have 
already discovered that, although the clocks in S are synchronized with each other, 
they are not, in general, synchronized for observers in other inertial frames.

Special Case 1
If it should happen that the two events occur at the same location in S, that is, 
xa = xb, then (tb  ta), the time interval measured on a clock located at the events, is 
called the proper time interval. Notice that, since g  1 for all frames moving rela-
tive to S, the proper time interval is the minimum time interval that can be measured 
between those events.

Special Case 2
Does there exist an inertial frame for which the events described above would be 
measured to be simultaneous? Since the question has been asked, you probably sus-
pect that the answer is yes, and you are right. The two events will be simultaneous 
in a system S  for which t>b - t>a = 0, that is, when

g1tb - ta2 =
gv

c2 1xb - xa2
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or when

	 b =
v
c
= a tb - ta

xb - xa
bc	 1-21

Notice that (xb  xa)>c = time for a light beam to travel from xa to xb; thus we 
can characterize S  as being that system whose speed relative to S is that fraction of 
c given by the time interval between the events divided by the travel time of light 
between them. (Note, too, that c(tb  ta)  (xb  xa) implies that b  1, a nonphysi-
cal situation that we will discuss in Section 1-4.)

While it is possible for us to get along in special relativity without the Lorentz 
transformation, it has an application that is quite valuable: it enables the spacetime 
coordinates of events measured by the measuring rods and clocks in the reference 
frame of one observer to be translated into the corresponding coordinates determined 
by the measuring rods and clocks of an observer in another inertial frame. As we will 
see in Section 1-4, such transformations lead to some startling results.

Relativistic Velocity Transformations
The transformation for velocities in special relativity can be obtained by differen-
tiation of the Lorentz transformation, keeping in mind the definition of the velocity. 
Suppose a particle moves in S with velocity u whose components are ux = dx>dt,
uy = dy>dt, and uz = dz>dt. An observer in S9 would measure the components 
u =x = dx9>dt9, u =y = dy9>dt9, and u =z = dz9>dt9. Using the transformation equations, 
we obtain

 dx9 = g1dx - vdt2  dy9 = dy

 dt9 = gadt -
vdx

c2 b  dz9 = dz

from which we see that u =x is given by

u =x =
dx9

dt9
=

g1dx - vdt2
gadt -

vdx

c2 b
=
1dx>dt - v2

1 -
v

c2 
dx

dt
or

	 u =x =
ux - v

1 -
vux

c2

	 1-22

and, if a particle has velocity components in the y and z directions, it is not difficult to 
find the components in S9 in a similar manner.

u =y =
uy

ga1 -
vux

c2 b
  u =z =

uz

ga1 -
vux

c2 b

Remember that this form of the velocity transformation is specific to the 
arrangement of the coordinate axes in Figure 1-17. Note, too, that when v V c, that 
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is, when b = v>c  0 the relativistic velocity transforms reduce to the classical veloc-
ity addition of Equation 1-3. Likewise, the inverse velocity transformation is

	 ux =
u =x + v

a1 +
vu =x
c2 b
  uy =

u =y

ga1 +
vu =x
c2 b
  uz =

u =z

ga1 +
vu =x
c2 b

	 1-23

EXAMPLE 1-4	 Relative Speeds of Cosmic Rays ​ Suppose that two cosmic-ray 
protons approach Earth from opposite directions as shown in Figure 1-18a. The 
speeds relative to Earth are measured to be v1 = 0.6c and v2 = 0.8c. What is Earth’s 
velocity relative to each proton, and what is the velocity of each proton relative to 
the other?

SOLUTION
Consider each particle and Earth to be inertial reference frames S9, S, and S, with 
their respective x axes parallel as in Figure 1-18b. With this arrangement v1 = u1x = 
0.6c and v2 = u2x = 0.8c. Thus, the speed of Earth measured in S9 is v =Ex = -0.6c 
and the speed of Earth measured in S is v>Ex = 0.8c.

To find the speed of proton 2 with respect to proton 1, we apply Equation 1-22 
to compute u =2x, that is, the speed of particle 2 in S9. Its speed in S has been mea-
sured to be u2x = 0.8c, where the S9 system has relative speed v1 = 0.6c with 
respect to S. Thus, substituting into Equation 1-22, we obtain

u =2x =
-0.8c - (0.6c)

1 - (0.6c)(-0.8c)>c2 =
-1.4c

1.48
= -0.95c

and the first proton measures the second to be approaching (moving in the x9 
direction) at 0.95c.

The observer in S  must of course make a consistent measurement, that is, find 
the speed of proton 1 to be 0.95c in the +x direction. This can be readily shown by 
a second application of Equation 1-22 to compute u>1x.

u>1x =
0.6c - (-0.8c)

1 - (0.6c)(-0.8c)>c2 =
1.4c

1.48
= 0.95c

Figure 1-18  ​(a) Two cosmic-ray protons approach Earth from opposite directions at 
speeds v1 and v2 with respect to Earth. (b) Attaching an inertial frame to each particle and 
Earth enables one to visualize the several relative speeds involved and apply the velocity 
transformation correctly.
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Questions

5.	 The Lorentz transformation for y and z is the same as the classical result: y = y9 
and z = z9. Yet the relativistic velocity transformation does not give the classical 
result uy = u =y and uz = u =z. Explain.

6.	 Since the velocity components of a moving particle are different in relatively 
moving frames, the directions of the velocity vectors are also different, in 
general. Explain why the fact that observers in S and S9 measure different 
directions for a particle’s motion is not an inconsistency in their observations.

Spacetime Diagrams
The relativistic discovery that time intervals between events are not the same for 
observers in different inertial reference frames underscores the four-dimensional 
character of spacetime. With the diagrams that we have used thus far, it is difficult to 
depict and visualize on the two-dimensional page events that occur at different times 
since each diagram is equivalent to a snapshot of spacetime at a particular instant. 
Showing events as a function of time typically requires a series of diagrams, such 
as Figures 1-14, 1-15, and 1-16, but even then our attention tends to be drawn to the 
space coordinate systems rather than the events, whereas it is the events that are fun-
damental. This difficulty is removed in special relativity with a simple, yet powerful 
graphing method called the spacetime diagram. (This is just a new name given to the 
t vs. x graphs that you first began to use when you discussed motion in introductory 
physics.) On the spacetime diagram we can graph both the space and time coordinates 
of many events in one or more inertial frames, albeit with one limitation. Since the 
page offers only two dimensions for graphing, we suppress, or ignore for now, two of 
the space dimensions, in particular y and z. With our choice of the relative motion of 
inertial frames along the x axis, y9 = y and z9 = z anyhow. (This is one of the reasons 
we made that convenient choice a few pages back, the other reason being mathemati-
cal simplicity.) This means that for the time being, we are limiting our attention to 
one space dimension and to time, that is, to events that occur, regardless of when, 
along one line in space. Should we need the other two dimensions, for example, in 
a consideration of velocity vector transformations, we can always use the Lorentz 
transformation equations.

In a spacetime diagram the space location of each event is plotted along the x axis 
horizontally and the time is plotted vertically. From the three-dimensional array of 
measuring rods and clocks in Figure 1-13, we will use only those located on the x axis 
as in Figure 1-19. (See, things are simpler already!) Since events that exhibit relativis-
tic effects generally occur at high speeds, it will be convenient to multiply the time 
scale by the speed of light (a constant), which enables us to use the same units and 
scale on both the space and time axes, for example, meters of distance and meters of 
light travel time.13 The time axis is, therefore, c times the time t in seconds, that is, ct. 
As we will see shortly, this choice prevents events from clustering about the axes and 
makes possible the straightforward addition of other inertial frames into the diagram.

As time advances, notice that in Figure 1-19 each clock in the array moves verti-
cally upward along the dotted lines. Thus, as events A, B, C, and D occur in space
time, one of the clocks of the array is at (or very near) each event when it happens. 
Remembering that the clocks in the reference frame are synchronized, you will see 
that the difference in the readings of clocks located at each event records the proper 
time interval between the events (see Example 1-3). In the figure, events A and D 
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occur at the same place (x = 2 m), but at different times. The time interval between 
them measured on clock 2 is the proper time interval since clock 2 is located at both 
events. Events A and B occur at different locations, but at the same time (i.e., simulta-
neously in this frame). Event C occurred before the present since ct = 1 m. For this 
discussion we will consider the time that the coordinate origins coincide, ct = ct9 = 0, 
to be the present.

Worldlines in Spacetime  Particles moving in space trace out a line in the 
spacetime diagram called the worldline of the particle. The worldline is the “trajectory” 
of the particle on a ct versus x graph. To illustrate, consider four particles moving in 
space (not spacetime) as shown in Figure 1-20a, which shows the array of synchro-
nized clocks on the x axis and the space trajectories of four particles, each starting at 
x = 0 and moving at some constant speed, during 3 m of time. Figure 1-20b shows 
the worldline for each of the particles in spacetime. Notice that constant speed means 
that the worldline has constant slope; that is, it is a straight line (slope = Dt>Dx = 
1>(Dx>Dt) = 1/speed). That was also the case when you first encountered elapsed 
time versus displacement graphs in introductory physics. Even then, you were plot-
ting spacetime graphs and drawing worldlines! If the particle is accelerating—either 
speeding up like particle 5 in Figure 1-20c or slowing down like particle 6—the 
worldlines are curved. Thus, the worldline is the record of the particle’s travel through 
spacetime, giving its speed (= 1/slope) and acceleration (= 1/rate at which the slope 
changes) at every instant.

EXAMPLE 1-5	 Computing Speeds in Spacetime ​ Find the speed u of particle 
3 in Figure 1-20.

SOLUTION
The speed u = Dx>Dt = 1/slope where we have Dx = 1.5  0 = 1.5 m and cD =

c  Dt = 3.0  0 = 3.0 m (from Figure 1-20). Thus, Dt = (3.0/c) = (3.0/3.0  108) = 
108 s and u = 1.5 m/108 s = 1.5  108 m/s = 0.5c.

The speed of particle 4, computed as shown in Example 1-5, turns out to be c, 
the speed of light. (Particle 4 is a light pulse.) The slope of its worldline D(ct)>Dx =
3 m/3 m = 1. Similarly, the slope of the worldline of a light pulse moving in the 

ct (m)

x (m)–3 –2 –1 0 1 2 3

2
B

C

A

D
1

–1

3

Figure 1-19  Spacetime diagram for 
an inertial reference frame S. Two of the 
space dimensions (y and z) are suppressed. 
The units on both the space and time axes 
are the same, meters. A meter of time 
means the time required for light to travel 
one meter, that is, 3.3  109 s.

TIPLER_01_001-064hr2.indd   24 11/2/11   11:05 AM



	 1-3  The Lorentz Transformation 	 25

x direction is 1. Since relativity limits the speed of particles with mass to less than c, 
as we will see in Chapter 2, the slopes of worldlines for particles that move through 
x = 0 at ct = 0 are limited to the larger shaded triangle in Figure 1-21. The same limits 
to the slope apply at every point along a particle’s worldline, such as point A on the 
curved spacetime trajectory in Figure 1-21. This means that the particle’s possible 
worldlines for times greater than ct = 2 m must lie within the heavily shaded triangle.

Figure 1-20  ​(a) The space trajectories of four 
particles with various constant speeds. Note 
that particle 1 has a speed of zero and particle 
2 moves in the x direction. The worldlines of 
the particles are straight lines. (b) The worldline 
of particle 1 is also the ct axis since that particle 
remains at x = 0. The constant slopes are a 
consequence of the constant speeds. (c) For 
accelerating particles 5 and 6 [not shown in (a)], 
the worldlines are curved, the slope at any point 
yielding the instantaneous speed.

#4(a)

(b)

#3
#2

#1

x (m)0–1 1 2 3

#4#3#1

2

#2

1

3

ct (m)

x (m)0–1 1 2 3

(c)

#5#6

2

1

3

ct (m)

x (m)0–1 1 2 3

Figure 1-21  ​ ​ The speed-of-light limit to the speeds of particles limits the slopes of 
worldlines for particles that move through x = 0 at ct = 0 to the shaded area of spacetime,
that is, to slopes  1 and  +1. The dashed lines are worldlines of light flashes moving in 
the x and +x directions. The curved worldline of the particle shown has the same limits at 
every instant. Notice that the particle’s speed = 1/slope.

1

2

ct (m)

A
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Event Analysis Using Worldlines  Analyzing events and motion in inertial 
systems that are in relative motion can now be accomplished more easily than with 
diagrams such as Figures 1-14 through 1-18. Suppose we have two inertial frames 
S and S9 with S9 moving in the +x direction of S at speed v as in those figures. The 
clocks in both systems are started at t = t9 = 0 (the present) as the two origins x = 0 and 
x9 = 0 coincide, and, as before, observers in each system have synchronized the 
clocks in their respective systems. The spacetime diagram for S is, of course, like 
that in Figure 1-19, but how does S9 appear in that diagram, that is, with respect to an 
observer in S? Consider that, as the origin of S9 (i.e., the point where x9 = 0) moves 
in S, its worldline is the ct9 axis since the ct9 axis is the locus of all points with x9 = 0 
(just as the ct axis is the locus of points with x = 0). Thus, the slope of the ct9 axis as 
seen by an observer in S can be found from Equation 1-18, the Lorentz transforma-
tion, as follows

x9 = g(x - vt) = 0 for  x9 = 0

or

x = vt = (v>c)(ct) = bct

and

ct = (1>b)x

which says that the slope (in S) of the worldline of the point x9 = 0, the ct9 axis, is 1>b 
(see Figure 1-22a).

In the same manner, the x9 axis can be located using the fact that it is the locus 
of points for which ct9 = 0. The Lorentz transformation once again provides the 
slope:

 t9 = ga t -
vx

c2 b = 0

or

t =
vx

c2  and  ct =
v
c

 x = bx

Thus, the slope of the x9 axis as measured by an observer in S is b, as shown in 
Figure 1-22a. Don’t be confused by the fact that the x axes don’t look parallel any-
more. They are still parallel in space, but this is a spacetime diagram. It shows 
motion in both space and time. For example, the clock at x9 = 1 m in Figure 1-22b 
passed the point x = 0 at about ct = 1.5 m as the x9 axis of S9 moved both upward 
and to the right in S. Remember, as time advances, the array of synchronized clocks 
and measuring rods that are the x axis also moves upward, so that, for example, when 
ct = 1, the origin of S9(x9 = 0, ct9 = 0) has moved vt = (v>c)ct = bct to the right 
along the x axis.

Question

7.	 Explain how the spacetime diagram in Figure 1-22b would appear drawn by an 
observer in S9.
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Figure 1-22  ​Spacetime diagram of S showing S9 moving at speed v = 0.5c in the +x 
direction. The diagram is drawn with t = t9 = 0 when the origins of S and S9 coincided.
The dashed line shows the worldline of a light flash that passed through the point x = 0 at
t = 0 heading in the +x direction. Its slope equals 1 in both S and S9. The ct9 and x9 axes of
S9 have slopes of 1>b = 2 and b = 0.5, respectively. (a) Calibrating the axes of S9 as
described in Exploring (pages 26–27) allows the grid of coordinates to be drawn on S9. 
Interpretation is facilitated by remembering that (b) shows the system S9 as it is observed
in the spacetime diagram of S.
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28	 Chapter 1  Relativity I

EXAMPLE 1-6	 Simultaneity in Spacetime ​ Use the train-platform example of 
Figure 1-15 and a suitable spacetime diagram to show that events simultaneous in 
one frame are not simultaneous in a frame moving relative to the first. (This is the 
corollary to the relativity of simultaneity that we first demonstrated in the previous 
section using Figure 1-15.)

SOLUTION
Suppose a train is passing a station platform at speed v and an observer C at the 
midpoint of the platform, system S, announces that light flashes will be emitted at 
clocks A and B located at opposite ends of the platform at t = 0. Let the train, sys-
tem S9, be a rocket train with v = 0.5c. As in the earlier discussion, clocks at C and 
C9 both read 0 as C9 passes C. Figure 1-23 shows this situation. It is the spacetime 
equivalent of Figure 1-15.

Two events occur; the light flashes. The flashes are simultaneous in S since both 
occur at ct = 0. In S9, however, the event at A occurred at ct9(A9) (see Figure 1-23), 
about 1.2 ct9 units before ct9 = 0, and the event at B occurred at ct9(B9), about 1.2 ct9 
units after ct9 = 0. Thus, the flashes are not simultaneous in S9 and A occurs before B, 
as we also saw in Figure 1-15.

EXPLORING
Calibrating the Spacetime Axes

By calibrating the coordinate axes of S9 consistent with the Lorentz transformation, 
we will be able to read the coordinates of events and calculate space and time intervals 
between events as measured in both S and S9 directly from the diagram, in addition 
to calculating them from Equations 1-18 and 1-19. The calibration of the S9 axes is 
straightforward and is accomplished as follows. The locus of points, for example, with 

Figure 1-23  ​Spacetime equivalent of
Figure 1-15, showing the spacetime diagram 
for the system S in which the platform is at rest. 
Measurements made by observers in S9 are read 
from the primed axes.

2

1

–2

–1

2

1

–2

–1

B A
C

C�

A�

B�

ct ct�

x

x�

Platform
(S frame)

Train
(S� frame)

ct� (B�)

ct� (A�)

TIPLER_01_001-064hr2.indd   28 11/2/11   11:05 AM



	 1-4  Time Dilation and Length Contraction 	 29

x9 = 1 m, is a line parallel to the ct9 axis through the point x9 = 1 m, ct9 = 0, just as we 
saw earlier that the ct9 axis was the locus of those points with x9 = 0 through the point 
x9 = 0, ct9 = 0. Substituting these values into the Lorentz transformation for x9, we see 
that the line through x9 = 1 m intercepts the x axis, that is, the line where ct = 0 at

 x9 = g1x - vt2 = g1x - bct2
	  1 = gx  or  x = 1>g = 21 - b2

	 1-24

or, in general,

x = x921 - b2

In Figure 1-22b, where b = 0.5, the line x9 = 1 m intercepts the x axis at
x = 0.866 m. Similarly, if x9 = 2 m, x = 1.73 m; if x9 = 3 m, x = 2.60 m, and so on.

The ct9 axis is calibrated in a precisely equivalent manner. The locus of points with 
ct9 = 1 m is a line parallel to the x9 axis through the point ct9 = 1 m, x9 = 0. Using the 
Lorentz transformation, the intercept of that line with the ct axis (where x = 0) is found 
as follows.

t9 = g1t - vx>c22
which can also be written as

	 ct9 = g1ct - bx2	 1-25

or ct9 = gct for x = 0. Thus, for ct9 = 1 m, we have 1 = gct or ct = (1  b2)1/2 and, again, 
in general, ct = ct9(1  b2)1/2. The x9 # ct9 coordinate grid is shown in Figure 1-22b.

Notice in Figure 1-22b that the clocks located in S9 are not found to be synchro-
nized by observers in S, even though they are synchronized in S9. This is exactly the 
conclusion that we arrived at in the discussion of the lightning striking the train and 
platform. In addition, those with positive x9 coordinates are behind the S9 reference 
clock and those with negative x9 coordinates are ahead, the differences being greatest 
for those clocks farthest away. This is a direct consequence of the Lorentz transforma-
tion of the time coordinate—that is, when ct = 0 in Equation 1-25, ct9 = gbx. Note, 
too, that the slope of the worldline of the light beam equals 1 in S9, as well as in S, as 
required by the second postulate.

1-4  Time Dilation and Length Contraction 
The results of correct measurements of the time and space intervals between events 
do not depend on the kind of apparatus used for the measurements or on the events 
themselves. We are free therefore to choose any events and measuring apparatus that 
will help us understand the application of the Einstein postulates to the results of mea-
surements. As you have already seen from previous examples, convenient events in 
relativity are those that produce light flashes. A convenient, simple such clock is a 
light clock, pictured schematically in Figure 1-24. A photocell detects the light pulse 
and sends a voltage pulse to an oscilloscope, which produces a vertical deflection of 
the oscilloscope’s trace. The phosphorescent material on the face of the oscilloscope 
tube gives a persistent light that can be observed visually, photographed, or recorded 
electronically. The time between two light flashes is determined by measuring the 
distance between pulses on the scope and knowing the sweep speed. Such clocks can 
easily be calibrated and compared with other types of clocks. Although not drawn as 
in Figure 1-24, the clocks used in explanations in this section may be thought of as 
light clocks.
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Time Dilation (or Time Stretching)
We first consider an observer A9 at rest in frame S9 a distance D from a mirror, also 
in S9, as shown in Figure 1-25a. He triggers a flash gun and measures the time inter-
val Dt9 between the original flash and the return flash from the mirror. Since light 
travels with speed c, this time is Dt9 = (2D)>c.

We now consider these same two events, the original flash of light and the return-
ing flash, as observed in reference frame S, with respect to which S9 is moving to the 
right with speed v. The events happen at two different places, x1 and x2, in frame S 
because between the original flash and the return flash observer A9 has moved a hori-
zontal distance vDt, where Dt is the time interval between the events measured in S. In 
Figure 1-25b, a space diagram, we see that the path traveled by the light is longer in S 
than in S9. However, by Einstein’s postulates, light travels with the same speed c in 
frame S as is does in frame S9. Since it travels farther in S at the same speed, it takes 
longer in S to reach the mirror and return. The time interval between flashes in S is 
thus longer than it is in S9. We can easily calculate Dt in terms of Dt9. From the trian-
gle in Figure 1-25c, we see that

a cDt

2
b

2

= D 2 + a vDt

2
b

2

or

Dt =
2D2c2 - v2

=
2D
c

 
121 - v2>c2

Using Dt9 = 2D>c, we have

	 Dt =
Dt921 - v2>c2

= gDt9 = gt	 1-26

where t = Dt9 is the proper time interval that we first encountered in Example 1-3. 
Equation 1-26 describes time dilation; that is, it tells us that the observer in frame S 
always measures the time interval between two events to be longer (since g  1) than 
the corresponding interval measured on the clock located at both events in the frame 
where they occur at the same location. Thus, observers in S conclude that the clock 

Figure 1-24  Light clock for measuring time intervals. The 
time is measured by reading the distance between pulses on 
the oscilloscope after calibrating the sweep speed.
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at A9 in S9 runs slow since that clock measures a smaller time interval between the two 
events. Notice that the faster S9 moves with respect to S, the larger is g, and the slower 
the S9 clocks will tick. It appears to the S observer that time is being stretched out in S9.

Be careful! The same clock must be located at each event for Dt9 to be the proper 
time interval t. We can see why this is true by noting that Equation 1-26 can be obtained 
directly from the inverse Lorentz transformation for t. Referring again to Figure 1-25 and 
calling the emission of the flash event 1 and its return event 2, we have that

 Dt = t2 - t1 = ga t =2 +
vx =2
c2 b - ga t =1 +

vx =1
c2 b

 Dt = g1t =2 - t =12 +
gv

c2 1x =2 - x =12
or

	 Dt = gDt9 +
gv

c2 Dx9	 1-27

If the clock that records t =2 and t =1 is located at the events, then Dx9 = 0. If that is not 
the case, however, Dx9  0 and Dt9, though certainly a valid measurement, is not a 
proper time interval. Only a clock located at an event when it occurs can record a proper 
time interval.

EXAMPLE 1-7	 Spatial Separation of Events ​ Two events occur at the same 
point x =0 at times t =1 and t =2 in S9, which moves with speed v relative to S. What is the 
spatial separation of these events measured in S?

SOLUTION

	 1.	 The location of the events in S is given 
by the Lorentz inverse transformation, 
Equation 1-19:

x = g(x9 + vt9)

	 2.	 The spatial separation of the two 
events Dx = x2  x1 is then

Dx = g ( x =0 + vt =2 ) - g ( x =0 + vt =1)

Figure 1-25  (a) Observer A9 and the mirror are in a spaceship at rest in frame S9. The time 
it takes for the light pulse to reach the mirror and return is measured by A9 to be 2D>c. (b) In 
frame S, the spaceship is moving to the right with speed v. If the speed of light is the same in 
both frames, the time it takes for the light to reach the mirror and return is longer than 2D>c in 
S because the distance traveled is greater than 2D. (c) A right triangle for computing the time 
Dt in frame S.
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	 3.	 The gx =0 terms cancel: Dx = gv ( t =2 - t =1) = gvDt9

	 4.	 Since Dt9 is the proper time interval t, 
Equation 1-26 yields

Dx = vgt = vDt

	 5.	 Using the situation in Figure 1-26 as 
a numerical example, where b = 0.5
and g = 1.15, we have

Dx = g 
v
c

 D(ct9) = (1.15)(0.5)(2)

 = 1.15 m

EXAMPLE 1-8	 The Pregnant Elephant14 ​ Elephants have a gestation period of 
21 months. Suppose that a freshly impregnated elephant is placed on a spaceship 
and sent toward a distant space jungle at v = 0.75c. If we monitor radio transmis-
sions from the spaceship, how long after launch might we expect to hear the first 
squealing trumpet from the newborn calf?

SOLUTION

	 1.	 In S9, the rest frame of the elephant, the 
time interval from launch to birth is 
t = 21 months.

		  In the Earth frame S the time interval is
Dt1 given by Equation 1-26:

 Dt1 = gt =
121 - b2

 t

=
121 - (0.75)2

 (21 months)

= 31.7 months
	 2.	 At that time the radio signal announcing 

the happy event starts toward Earth at 
speed c, but from where? Using the
result of Example 1-7, since launch 
the spaceship has moved Dx in S
given by

 Dx = gvt = gbct
 = (1.51)(0.75)(21 c # months)

 = 23.8c # months
where c # month is the distance 
light travels in one month.

	 3.	 Notice that there is no need to convert 
Dx into meters since our interest is in
how long it will take the radio signal to 
travel this distance in S. That time is
Dt2 given by

 Dt2 = Dx>c
 = 23.8c # months>c
 = 23.8 months

	 4.	 Thus, the good news will arrive at Earth at 
time Dt after launch where

 Dt = Dt1 + Dt2

 = 31.7 + 23.8

 = 55.5 months

Remarks:  This result, too, is readily obtained from a spacetime diagram. Fig-
ure  1-27 illustrates the general appearance of the spacetime diagram for this 
example, showing the elephant’s worldline and the worldline of the radio signal.

Question

8.	 You are standing on a corner and a friend is driving past in an automobile. 
Both of you note the times when the car passes two different intersections and 
determine from your watch readings the time that elapses between the two 
events. Which of you has determined the proper time interval?

Figure 1-27  Sketch of 
the spacetime diagram for 
Example 1-8. b = 0.75. The 
colored line is the worldline 
of the pregnant elephant. The 
worldline of the radio signal 
is the dashed line at 45° 
toward the upper left.

ct
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Figure 1-26  Spacetime 
diagram illustrating time 
dilation. The dashed line is 
the worldline of a light flash 
emitted at x9 = 0 and reflected 
back to that point by a mirror 
at x9 = 1 m. b = 0.5.
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The time dilation of Equation 1-26 is easy to see in a spacetime diagram such as 
Figure 1-26, using the same round trip for a light pulse used above. Let the light 
flash leave x9 = 0 at ct9 = 0, when the S and S9 origins coincided. The flash travels to 
x9 = 1 m, reflects from a mirror located there, and returns to x9 = 0. Let b = 0.5. The 
dotted line shows the worldline of the light beam, reflecting at (x9 = 1, ct9 = 1) and 
returning to x9 = 0 at ct9 = 2 m. Note that the S observer records the latter event at
ct  2 m; that is, the observer in S sees the S9 clock running slow.

Experimental tests of the time dilation prediction have been performed using 
macroscopic clocks, in particular, accurate atomic clocks. In 1975, C. O. Alley con-
ducted a test of both general and special relativity in which a set of atomic clocks 
were carried by a U.S. Navy antisubmarine patrol aircraft while it flew back and forth 
over the same path for 15 hours at altitudes between 8000 m and 10,000 m over Ches-
apeake Bay. The clocks in the plane were compared by laser pulses with an identical 
group of clocks on the ground. (See Figure 1-13 for one way such a comparison might 
be done.) Since the experiment was primarily intended to test the gravitational effect 
on clocks predicted by general relativity (see Section 2-5), the aircraft was deliber-
ately flown at the rather sedate average speed of 270 knots (140 m/s) = 4.7  107c 
so as to minimize the time dilation due to the relative speeds of the clocks. Even so, 
after deducting the effect of gravitation as predicted by general relativity, the airborne 
clocks lost an average of 5.6  109 s due to the relative speed during the 15-hour 
flight. This result agrees with the prediction of special relativity, 5.7  109 s to 
within 2 percent, even at this low relative speed. More recently, in 2010 J. C.-W. Chou 
and his coworkers at the National Institute of Science and Technology (NIST) used 
precision optical clocks to detect the minuscule time dilation at a speed of only 10 m/s, 
about the speed of a collegiate track sprinter. These and other experimental results 
leave little basis for further debate as to whether traveling clocks of all kinds lose 
time. They do.

Length Contraction
A phenomenon closely related to time dilation is length contraction. The length of 
an object measured in the reference frame in which the object is at rest is called its 
proper length Lp. In a reference frame in which the object is moving, the measured 
length parallel to the direction of motion is shorter than its proper length. Consider 
a rod at rest in the frame S9 with one end at x =2 and the other end at x =1 as illustrated 
in Figure 1-28. The length of the rod in this frame is its proper length Lp = x =2 - x =1.
Some care must be taken to find the length of the rod in frame S. In this frame, the 
rod is moving to the right with speed v, the speed of frame S9. The length of the rod in 
frame S is defined as L = x2  x1, where x2 is the position of one end at some time t2 
and x1 is the position of the other end at the same time t1 = t2 as measured in frame S. 
Since the rod is at rest in S9, t =2 need not equal t =1. Equation 1-18 is convenient to use to 
calculate x2  x1 at some time t because it relates x, x9, and t, whereas Equation 1-19 
is not convenient because it relates x, x9, and t9:

x =2 = g1x2 - vt22 and x =1 = g1x1 - vt12
Since t2 = t1, we obtain

 x =2 - x =1 = g1x2 - x12

 x2 - x1 =
1
g
1x =2 - x =12 = B1 -

v2

c2 1x =2 - x =12
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or

	 L =
1
g

Lp = B1 -
v2

c2 Lp	 1-28

Thus, the length of a rod is smaller when it is measured in a frame with respect to 
which it is moving. Before Einstein’s paper was published, Lorentz and FitzGerald 
had independently shown that the null result of the Michelson-Morley experiment 
could be explained by assuming that the lengths in the direction of the interferome-
ter’s motion contracted by the amount given in Equation 1-28. For that reason, the 
length contraction is often called the Lorentz-FitzGerald contraction.

EXAMPLE 1-9	 Speed of S9 ​ A stick that has a proper length of 1 m moves in a 
direction parallel to its length with speed v relative to you. The length of the stick as 
measured by you is 0.914 meter. What is the speed v?

SOLUTION

	 1.	 The length of the stick measured in a 
frame relative to which it is moving 
with speed v is related to its proper 
length by Equation 1-28:

L =
Lp

g

	 2.	 Rearranging to solve for g: g =
Lp

L

	 3.	 Substituting the values of Lp and L: g =
1 m

0.914 m
=

121 - v2>c2

	 4.	 Solving for v:  21 - v2>c2 = 0.914

 1 - v2>c2 = 10.91422 = 0.835

 v2>c2 = 1 - 0.835 = 0.165

 v2 = 0.165c2

 v = 0.406c

x (m)(x1) (x2)

ct (m)

ct ′ (m)

x ′ (m)

1 2

1

2

L 

Lp

1
(x ′)1

2
(x ′)2

Figure 1-28  ​A measuring rod, a meter 
stick in this case, lies at rest in S9 between 
x =2 = 2 m and x =1 = 1 m. System S9 
moves with b = 0.79 relative to S. Since 
the rod is in motion, S must measure the 
locations of the ends of the rod x2 and x1 
simultaneously in order to have made a 
valid length measurement. L is obviously 
shorter than Lp. By direct measurement 
from the diagram (use a millimeter scale) 
L/Lp = 0.62 = 1/g.
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It is important to remember that the relativistic contraction of moving lengths 
occurs only parallel to the relative motion of the reference frames. In particular, 
observers in relatively moving systems measure the same values for lengths in the y 
and y9 and in the z and z9 directions perpendicular to their relative motion. The result 
is that observers measure different shapes and angles for two- and three-dimensional 
objects (see Example 1-10 and Figures 1-29 and 1-30).

Figure 1-30  Length contraction distorts the shape and orientation of two- and three-
dimensional objects. The observer in S measures the square shown in S9 as a rotated 
parallelogram.

B�
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A�

A�

v = 0.5c
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1
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B

B

S
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A
θ = 34°φ = 63°

1

(b)

x�
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Figure 1-29  The appearance of rapidly moving objects depends on both length contraction 
in the direction of motion and the time when the observed light left the object. (a) The array
of clocks and measuring rods that represents S9 as viewed by an observer in S with b = 0.
(b) When S9 approaches the S observer with b = 0.9, the distortion of the lattice becomes 
apparent. This is what an observer on a cosmic-ray proton might see as it passes into the lattice 
of a face-centered-cubic crystal such as NaCl. [P.-K. Hsiung, R. Dunn, and C. Cox. Courtesy of 
C. Cox, Adobe Systems, Inc., San Jose, CA.]

(a) (b)
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EXAMPLE 1-10	 The Shape of a Moving Square ​ Consider the square in the x9y9 
plane of S9 with one side making a 30° angle with the x9 axis as in Figure 1-30a. If S9 
moves with b = 0.5 relative to S, what is the shape and orientation of the figure in S?

SOLUTION
The S observer measures the x components of each side to be shorter by a factor 1>g 
than those measured in S9. Thus, S measures

 A = [cos2 30 + sin2 30>g2]1>2A9 = 0.968A9

 B = [sin2 30 + cos2 30>g2]1>2B9 = 0.901B9

Since the figure is a square in S9, A9 = B9. In addition, the angles between B 
and the x axis and between A and the x axis are given by, respectively,

 u = tan-1 c  
B9sin 30

B9cos 30>g d = tan-1 cg 
sin 30

cos 30
d = 33.7

  = tan-1 c  
A9cos 30

A9 sin 30>g d = tan-1 cg 
cos 30

sin 30
d = 63.4

Thus, S concludes from geometry that the interior angle at vertex 1 is not 90°, 
but 180°  (63.4° + 33.7°) = 82.9°—that is, the figure is not a square, but a paral-
lelogram whose shorter sides make 33.7° angles with the x axis! Its shape and ori-
entation in S are shown in Figure 1-30b.

Muon Decay
An interesting example of both time dilation and length contraction is afforded by the 
appearance of muons as secondary radiation from cosmic rays. Muons decay accord-
ing to the statistical law of radioactivity:

	 N1t2 = N0 e1- t>t2	 1-29

where N0 is the original number of muons at time t = 0, N(t) is the number remaining 
at time t, and t is the mean lifetime (a proper time interval), which is about 2 ms for 
muons. Since muons are created (from the decay of pions) high in the atmosphere, 
usually several thousand meters above sea level, few muons should reach sea level. 
A typical muon moving with speed 0.998c would travel only about 600 m in 2 ms. 
However, the lifetime of the muon measured in Earth’s reference frame is increased 
according to time dilation (Equation 1-26) by the factor 1> (1  v2>c2)1/2, which is 
15 for this particular speed. The mean lifetime measured in Earth’s reference frame 
is therefore 30 ms, and a muon with speed 0.998c travels about 9000 m in this time. 
From the muon’s point of view, it lives only 2 ms, but the atmosphere is rushing 
past it with a speed of 0.998c. The distance of 9000 m in Earth’s frame is thus con-
tracted to only 600 m in the muon’s frame as indicated in Figure 1-31.

It is easy to distinguish experimentally between the classical and relativistic pre-
dictions of the observations of muons at sea level. Suppose that we observe 108 muons 
at an altitude of 9000 m in some time interval with a muon detector. How many would 
we expect to observe at sea level in the same time interval? According to the nonrela-
tivistic prediction, the time it takes for these muons to travel 9000 m is (9000 m)/ 
0.998c  30 ms, which is 15 lifetimes. Substituting N0 = 108 and t = 15t into Equa-
tion 1-29, we obtain

N = 108e-15 = 30.6

Figure 1-31  Although 
muons are created high 
above Earth and their mean 
lifetime is only about 2 ms 
when at rest, many appear at 
Earth’s surface. (a) In Earth’s 
reference frame, a typical 
muon moving at 0.998c has 
a mean lifetime of 30 ms and 
travels 9000 m in this time. 
(b) In the reference frame 
of the muon, the distance 
traveled by Earth is only 
600 m in the muon’s lifetime 
of 2 ms. (c) L varies only 
slightly from Lp until v is of 
the order of 0.1c. L S  0 as 
v S  c.

(a) Muon

(b )
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(c)
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We would thus expect all but about 31 of the original 100 million muons to decay 
before reaching sea level.

According to the relativistic prediction, Earth must travel only the contracted dis-
tance of 600 m in the rest frame of the muon. This takes only 2 ms = 1t. Therefore, 
the number of muons expected at sea level is

N = 108e-1 = 3.68 * 107

Thus, relativity predicts that we would observe 36.8 million muons in the same 
time interval. Experiments of this type have confirmed the relativistic predictions.

The Spacetime Interval
We have seen earlier in this section that time intervals and lengths (= space intervals), 
quantities that were absolutes, or invariants, for relatively moving observers using the 
classical Galilean coordinate transformation, are not invariants in special relativity. 
The Lorentz transformation and the relativity of simultaneity lead observers in iner-
tial frames to conclude that lengths moving relative to them are contracted and time 
intervals are stretched, both by the factor g. The question naturally arises: Is there any 
quantity involving the space and time coordinates that is invariant under a Lorentz 
transformation? The answer to that question is yes, and as it happens, we have already 
dealt with a special case of that invariant quantity when we first obtained the correct 
form of the Lorentz transformation. It is called the spacetime interval, or usually just 
the interval, Ds, and is given by

	 (Ds)2 = (cDt)2 - [Dx2 + Dy 2 + Dz 2]	 1-30

or, specializing it to the one-space-dimensional systems that we have been discussing,

	 (Ds)2 = (cDt)2 - (Dx)2	 1-31

It may help to think of Equations 1-30 and 1-31 like this:

[interval]2 = [separation in time]2 - [separation in space]2

The interval Ds is the only measurable quantity describing pairs of events in 
spacetime for which observers in all inertial frames will obtain the same numerical 
value. The negative sign in Equations 1-30 and 1-31 implies that (Ds)2 may be positive, 
negative, or zero depending on the relative sizes of the time and space separations. 
With the sign of (Ds)2, nature is telling us about the causal relation between the two 
events. Notice that whichever of the three possibilities characterizes a pair for one 
observer, it does so for all observers since Ds is invariant. The interval is called time-
like if the time separation is the larger and spacelike if the space separation predomi-
nates. If the two terms are equal, so that Ds = 0, then it is called lightlike.

Timelike Interval  Consider a material particle15 or object, such as, the elephant 
in Figure 1-27, that moves relative to S. Since no material particle has ever been mea-
sured traveling faster than light, particles always travel less than 1 m of distance in 
1 m of light travel time. We saw that to be the case in Example 1-8, where the time 
interval between launch and birth of the baby elephant was 31.7 months on the S 
clock, during which time the mother elephant had moved a distance of 23.8c # months. 
Equation 1-31 then yields (cDt)2  (Dx)2 = (31.7c)2  (23.8c)2 = (21.0c)2 = (Ds)2 and 
the interval in S is Ds = 21.0c # months. The time interval term being the larger, Ds is 
a timelike interval and we say that material particles have timelike worldlines. Such 

Experiments with muons 
moving near the speed 
of light are performed 
at many accelerator 
laboratories throughout 
the world despite their 
short mean life. Time 
dilation results in much 
longer mean lives 
relative to the laboratory, 
providing plenty of time to 
do experiments.
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worldlines lie within the shaded area of the spacetime diagram in Figure 1-21. Note 
that in the elephant’s frame S9 the separation in space between the launch and birth is 
zero and Dt is 21.0 months. Thus, Ds = 21.0c # months in S9 too. That is what we mean 
by the interval being invariant: observers in both S and S9 measure the same number 
for the separation of the two events in spacetime.

The proper time interval t between two events can be determined from Equa-
tions 1-31 using space and time measurements made in any inertial frame since we 
can write that equation as

Ds
c

= 21Dt22 - 1Dx>c22

Since Dt = t when Dx = 0—that is, for the time interval recorded on a clock in a 
system moving such that the clock is located at each event as it occurs—in that case

	 21Dt22 - 1Dx>c22 = 2t2 - 0 = t =
Ds
c

	 1-32

Notice that this yields the correct proper time t = 21.0 months in the elephant 
example.

Spacelike Interval  When two events are separated in space by an interval 
whose square is greater than the value of (cDt)2, then Ds is called spacelike. In that 
case it is convenient for us to write Equation 1-31 in the form

	 (Ds)2 = (Dx)2 - (cDt)2	 1-33

so that, as with timelike intervals, (Ds)2 is not negative.16 Events that are spacelike occur 
sufficiently far apart in space and close together in time that no inertial frame could move 
fast enough to carry a clock from one event to the other. For example, suppose two 
observers in Earth frame S, one in San Francisco and one in London, agree to each 
generate a light flash at the same instant, so that cDt = 0 m in S and Dx = 1.08  107 m.
For any other inertial frame (cDt)2  0, and we see from Equation 1-33 that (Dx)2 
must be greater than (1.08  107)2 in order that Ds be invariant. In other words, 
1.08  107 m is as close in space as the two events can be in any system; conse-
quently, it will not be possible to find a system moving fast enough to move a clock 
from one event to the other. A speed greater than c, in this case infinitely greater, 
would be needed. Notice that the value of Ds = Lp, the proper length. Just as with the 
proper time interval t, measurements of space and time intervals in any inertial sys-
tem can be used to determine Lp.

Lightlike (or Null) Interval  The relation between two events is lightlike if Ds 
in Equation 1-31 equals zero. In that case

	 cDt = Dx	 1-34

and a light pulse that leaves the first event as it occurs will just reach the second as it 
occurs.

The existence of the lightlike interval in relativity has no counterpart in the world 
of our everyday experience, where the geometry of space is Euclidean. In order for the 
distance between two points in space to be zero, the separation of the points in each of 
the three space dimensions must be zero. However, in spacetime the interval between 
two events may be zero, even though the intervals in space and time may individually 
be quite large. Notice, too, that pairs of events separated by lightlike intervals have 
both the proper time interval and proper length equal to zero since Ds = 0.
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Things that move at the speed of light17 have lightlike worldlines. As we saw 
earlier (see Figure 1-22), the worldline of light bisects the angles between the ct and x 
axes in a spacetime diagram. Timelike intervals lie in the shaded areas of Figure 1-32 
and share the common characteristic that their relative order in time is the same for 
observers in all inertial systems. Events A and B in Figure 1-32 are such a pair. 
Observers in both S and S9 agree that A occurs before B, although they of course mea-
sure different values for the space and time separations. Causal events, that is, events 
that depend on or affect one another in some fashion, such as your birth and that of 
your mother, have timelike intervals. On the other hand, the temporal order of events 
with spacelike intervals, such as A and C in Figure 1-32, depends on the relative 
motion of the systems. As you can see in the diagram, A occurs before C in S, but C 
occurs first in S9. Thus, the relative order of pairs of events is absolute in the shaded 
areas but elsewhere may be in either order.

Question

9.	 In 1987 light arrived at Earth from the explosion of a star (a supernova) in the 
Large Magellanic Cloud, a small companion galaxy to the Milky Way, located 
about 170,000 c # y away. Describe events that together with the explosion of 
the star would be separated from it by (a) a spacelike interval, (b) a lightlike 
interval, and (c) a timelike interval.

EXAMPLE 1-11	 Characterizing Spacetime Intervals ​ Figure 1-33 is the 
spacetime diagram of a laboratory showing three events, the emission of light from 
an atom in each of three samples.

1.	 Determine whether the interval between each of the three possible pairs of 
events is timelike, spacelike, or lightlike.

2.	 Would it have been possible in any of the pairs for one of the events to have 
been caused by the other? If so, which?

Figure 1-32  The relative temporal order 
of events for pairs characterized by timelike 
intervals, such as A and B, is the same for 
all inertial observers. Events in the upper 
shaded area will all occur in the future of 
A; those in the lower shaded area occurred 
in A9s past. Events whose intervals are 
spacelike, such as A and C, can be measured 
as occurring in either order, depending on 
the relative motion of the frames. Thus, C 
occurs after A in S, but before A in S9.
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Figure 1-33  A spacetime diagram of 
three events whose intervals Ds are found in 
Example 1-11.

SOLUTION
	 1.	 The spacetime coordinates of the events are

event ct x

1 2 1

2 5 9

3 8 6

		  and for the three possible pairs 1 and 2, 2 and 3, and 1 and 3 we have

pair cDt Dx (cDt)2 (Dx)2

1 & 2 5-2 9-1 9 64 spacelike

2 & 3 8-5 6-9 9 9 lightlike

1 & 3 8-2 6-1 36 25 timelike

	 2.	 Yes, event 3 may possibly have been caused by either event 1, since 3 is in the 
absolute future of 1, or event 2, since 2 and 3 can just be connected by a flash 
of light.

1-5  The Doppler Effect 
In the Doppler effect for sound the change in frequency for a given velocity v depends 
on whether it is the source or receiver that is moving with that speed. Such a dis-
tinction is possible for sound because there is a medium (the air) relative to which 
the motion takes place, and so it is not surprising that the motion of the source or 
the receiver relative to the still air can be distinguished. Such a distinction between 
motion of the source or receiver cannot be made for light or other electromagnetic 
waves in a vacuum as a consequence of Einstein’s second postulate; therefore, the 
classical expressions for the Doppler effect cannot be correct for light. We will now 
derive the relativistic Doppler effect equations that are correct for light.

Consider a light source moving toward an observer or a receiver at A in Figure 1-34a 
at velocity v. The source is emitting a train of light waves toward receivers A and B 
while approaching A and receding from B. Figure 1-34b shows the spacetime diagram 
of S, the system in which A and B are at rest. The source is located at x9 = 0 (the
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x9 axis is not shown), and, of course, its worldline is the ct9 axis. Let the source emit a 
train of N electromagnetic waves in each direction beginning when the S and S9 ori-
gins were coincident. First, let’s consider the train of waves headed toward A. During 
the time Dt over which the source emits the N waves, the first wave emitted will have 
traveled a distance cDt and the source itself a distance vDt in S. Thus, the N waves are 
seen by the observer at A to occupy a distance cDt  vDt and, correspondingly, their 
wavelength l is given by

l =
cDt - vDt

N

and the frequency f = c>l is

f =
c

l
=

c N

(c - v)Dt
=

1

1 - b
 
N

Dt

Figure 1-34  ​Doppler effect in light, as in sound, arises from the relative motion of the
source and receiver; however, the independence of the speed of light on that motion leads to 
different expressions for the frequency shift. (a) A source approaches observer A and recedes 
from observer B. (b) The spacetime diagram of the system S in which A and B are at rest and 
the source moves at velocity v illustrates the two situations. The source located at x9 = 0
(the x9 axis is omitted) moves along its worldline, the ct9 axis. The N waves emitted toward A 
in time Dt occupy space Dx = cDt  vDt, whereas those headed for B occupy Dx = cDt + vDt. 
In three dimensions the observer in S may see light emitted at some angle u with respect to the
x axis as in (c). In that case a transverse Doppler effect occurs. (d) Kündig’s apparatus for 
measuring the transverse Doppler effect.
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The frequency of the source in S9, called the proper frequency, is given by f0 = c>l9 =
N>Dt9, where Dt9 is measured in S9, the rest system of the source. The time interval 
Dt9 = t is the proper time interval since the light waves, in particular the first and the 
Nth, are all emitted at x9 = 0; hence Dx9 = 0 between the first and the Nth in S9. Thus, 
Dt and Dt9 are related by Equation 1-26 for time dilation, so Dt = gDt9. So when the 
source and receiver are moving toward each other, the observer A in S measures the 
frequency

	 f =
1

1 - b
  
f0Dt9

Dt
=

f0

1 - b
 
1
g

	 1-35

or

	 f =
21 - b2

1 - b
 f0 = A1 + b

1 - b
 f0  (approaching)	 1-36

This differs from the classical equation only in the addition of the time dilation factor. 
Note that f  f0 for the source and observer approaching each other. Since for visible 
light this corresponds to a shift toward the blue part of the spectrum, it is called a 
blueshift.

Suppose the source and receiver are moving away from each other, as for 
observer B in Figure 1-34b. Observer B, in S, sees the N waves occupying a distance 
cDt + vDt, and the same analysis shows that observer B in S measures the frequency

	 f =
21 - b2

1 + b
 f0 = A1 - b

1 + b
 f0  (receding)	 1-37

Notice that f  f0 for the observer and source receding from each other. Since for vis-
ible light this corresponds to a shift toward the red part of the spectrum, it is called a 
redshift. It is left as a problem for you to show that the same results are obtained when 
the analysis is done in the frame in which the source is at rest.

Some Useful Approximations
In the event that v V c (i.e., b V 1), as is often the case for light sources moving 
on Earth, useful (and easily remembered) approximations of Equations 1-36 and 1-37 
can be obtained. Using Equation 1-36 as an example and rewriting it in the form

f = f011 + b21>211 - b2-1>2

the two quantities in parentheses can be expanded by the binomial theorem to yield

f = f0a1 +
1

2
 b -

1

8
 b2 + g b a1 +

1

2
 b +

3

8
 b2 + g b

Multiplying out and discarding terms of higher order than b yields

f>f0  1 + b 1approaching2
and, similarly,

f>f0  1 - b 1receding2
and | Df> f0 |  b in both situations, where Df = f0  f.

The use of Doppler radar 
to track weather systems 
is a direct application of 
special relativity.
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EXAMPLE 1-12	 Rotation of the Sun ​ The Sun rotates at the equator once in 
about 25.4 days. The Sun’s radius is 7.0  108 m. Compute the Doppler effect that 
you would expect to observe at the left and right limbs (edges) of the Sun near the 
equator for light of wavelength l = 550 nm = 550  109 m (yellow light). Is this 
a redshift or a blueshift?

SOLUTION
The speed of limbs v = (circumference)>(time for one revolution) or

v =
2pR

T
=

2p17.0 * 1082 m
25.4 d # 3600 s>h # 24 h>d = 2000 m>s

v V c, so we may use the approximation equations. Using Df> f0  b, we have
that Df  bf0 = bc>l0 = v>l0 or Df  2000>550  109 = 3.64  109 Hz. Since 
f0 = c>l0 = (3  108 m/s)>(550  109) = 5.45  1014 Hz, Df represents a frac-
tional change in frequency of b, or about one part in 105. It is a redshift for the 
receding limb, a blueshift for the approaching one.

Wavelength/Frequency Shift of Starlight
In 1929 E. P. Hubble became the first astronomer to suggest that the universe is 
expanding.18 He made that suggestion and offered a simple equation (Equation 13-28) 
to describe the expansion on the basis of measurements of the shifted frequencies 
of spectral lines emitted toward us by relatively nearby galaxies for which distance 
data were available at the time, a phenomenon he attributed to the Doppler effect. 
Spectral lines from distant galaxies are always shifted toward frequencies lower than 
those emitted by similar sources on Earth. Since the general expression connecting 
the frequency f and wavelength l of light is c = f  l, the shift is toward longer wave-
lengths. As noted earlier, red is on the longer-wavelength side of the visible spectrum 
(see Chapter 4), so the redshift is used to describe a receding source. Similarly, blue-
shift describes light emitted by stars that are approaching us, typically ones relatively 
nearby in our galaxy.

As we will explain in Chapter 13, the observed redshift of light from astronomi-
cal sources is due to the general expansion of space, not to the Doppler effect as 
Hubble believed. It just happens that the redshift due to the Doppler effect agrees with 
that due to the expansion of space to within a few percent for the nearby, small z gal-
axies for which Hubble had data. Astronomers define the redshift by the expression 
z ; (  f0  f  )> f, where f0 = frequency measured in the frame of the star or galaxy and 
f = frequency measured at the receiver on Earth. This allows us to write b = v>c in 
terms of z as	

	 b =
1z + 122 - 1

1z + 122 + 1
	 1-38

Equation 1-37 is the appropriate one to use for such calculations, rather than the 
approximations, since galactic recession velocities can be quite large. For example, 
the quasar 2000-330 has a measured z = 3.78, which implies from Equation 1-38 that 
it is receding from Earth at 0.91c due to the expansion of space.
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EXAMPLE 1-13	 Redshift of Starlight ​ The longest wavelength of light emitted 
by hydrogen in the Balmer series (see Chapter 4) has a wavelength of l0 = 656 nm. 
In light from a distant galaxy, this wavelength is measured as l = 1458 nm. Find 
the speed at which the galaxy is receding from Earth, assuming the shift to be due 
to Doppler effect.

SOLUTION

	 1.	 The recession speed is the v in b =
v>c. Since l  l0, this is a redshift
and Equation 1-37 applies:

f = A1 - b

1 + b
 f0

	 2.	 Rewriting Equation 1-37 in terms of 
the wavelengths: A1 - b

1 + b
=

f

f0
=

l0

l

	 3.	 Squaring both sides and substituting 
values for l0 and l:  

1 - b

1 + b
= al0

l
b

2

= a 656 nm

1458 nm
b

2

= 0.202

	 4.	 Solving for b:  1 - b = 10.2022 11 + b2
 1.202b = 1 - 0.202 = 0.798

 b =
0.798

1.202
= 0.664

	 5.	 The galaxy is thus receding at speed v, 
where

v = cb = 0.664c

EXPLORING
Transverse Doppler Effect

Our discussion of the Doppler effect in Section 1-5 involved only one space dimension 
wherein the source, observer, and the direction of the relative motion all lie on the x axis.
In three space dimensions, where they may not be co-linear, a more complete anal-
ysis, though beyond the scope of our discussion, makes only a small change in Equa-
tion 1-35. If the source moves along the positive x axis but the observer views the 
light emitted at some angle u with the x axis, as shown in Figure 1-34c, Equation 1-35 
becomes

	 f =
f0

g
 

1

1 - b cos u
	 1-35a

When u = 0, this becomes the equation for the source and receiver approaching, and 
when u = p, it becomes the equation for the source and the receiver receding. Equa-
tion 1-35a also makes the quite surprising prediction that even when viewed perpendic-
ular to the direction of motion, where u = p>2, the observer will still see a frequency 
shift, the so-called transverse Doppler effect, f = f0>g. Note that f  f0 since g  1. The 
transverse Doppler effect is sometimes referred to as the second-order Doppler effect 
and is the result of time dilation of the moving source. (The general derivation of Equa-
tion 1-35a can be found in the French (1968), Resnick (1992), and Ohanian (2001) 
references at the end of the chapter.)
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Following a suggestion first made by Einstein in 1907, Walter Kündig in 1962 
made an excellent quantitative verification of the transverse Doppler effect.19 He used 
14.4 keV gamma rays emitted by a particular isotope of Fe as the light source (see 
Chapter 11). The source was at rest in the laboratory, on the axis of an ultracentrifuge, 
and the receiver (an Fe absorber foil) was mounted on the ultracentrifuge rim, as shown 
in Figure 1-34d. Using the extremely sensitive frequency measuring technique called 
the Mössbauer effect (see Chapter 11), Kündig found a transverse Doppler effect in 
agreement with the relativistic prediction within {1 percent over a range of relative 
speeds up to about 400 m/s.

1-6  The Twin Paradox and Other Surprises 
The consequences of Einstein’s postulates—the Lorentz transformation, relativistic 
velocity addition, time dilation, length contraction, and the relativity of simultaneity—
lead to a large number of predictions that are unexpected and even startling when 
compared with our experiences in a macroscopic world where b  0 and geometry 
obeys the Euclidean rules. Still other predictions seem downright paradoxical, with 
relatively moving observers obtaining equally valid but apparently totally inconsis-
tent results. This chapter concludes with the discussion of a few such examples that 
will help you hone your understanding of special relativity.

Twin Paradox
Perhaps the most famous of the paradoxes in special relativity is that of the twins or, 
as it is sometimes called, the clock paradox. It arises out of time dilation (Equation 1-26) 
and goes like this. Homer and Ulysses are identical twins. Ulysses travels at a con-
stant high speed to a star beyond our solar system and returns to Earth while his twin, 
Homer, remains at home. When the traveler Ulysses returns home, he finds his twin 
brother much aged compared to himself—in agreement, we will see, with the predic-
tion of relativity. The paradox arises out of the contention that the motion is relative 
and either twin could regard the other as the traveler, in which case each twin should 
find the other to be younger than he and we have a logical contradiction—a paradox. 
Let’s illustrate the paradox with a specific example. Let Earth and the destination star 
be in the same inertial frame S. Two other frames S9 and S move relative to S at 
v = +0.8c and v = 0.8c, respectively. Thus, g = 5/3 in both cases. The spaceship 
carrying Ulysses accelerates quickly from S to S9, then coasts with S9 to the star, again 
accelerates quickly from S9 to S , coasts with S  back to Earth, and brakes to a stop 
along side Homer.

It is easy to analyze the problem from Homer’s point of view on Earth. Suppose, 
according to Homer’s clock, Ulysses coasts in S9 for a time interval Dt = 5 y and in S  
for an equal time. Thus, Homer is 10 y older when Ulysses returns. The time interval 
in S9 between the events of Ulysses’ leaving Earth and arriving at the star is shorter 
because it is a proper time interval. The time it takes to reach the star by Ulysses’ 
clock is

Dt9 =
Dt
g

=
5y

5>3 = 3y

Since the same time is required for the return trip, Ulysses will have recorded 6 y for 
the round trip and will be 4 y younger than Homer upon his return.
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The difficulty in this situation seems to be for Ulysses to understand why his twin 
aged 10 y during his absence. If we consider Ulysses as being at rest and Homer as 
moving away, Homer’s clock should run slow and measure only 3>g = 1.8 y, and it 
appears that Ulysses should expect Homer to have aged only 3.6 years during the 
round trip. This is, of course, the paradox. Both predictions can’t be right. However, 
this approach makes the incorrect assumption that the twins’ situations are symmetri-
cal and interchangeable. They are not. Homer remains in a single inertial frame, 
whereas Ulysses changes inertial frames, as illustrated in Figure 1-35a, the spacetime 
diagram for Ulysses’ trip. While the turnaround may take only a minute fraction of 
the total time, it is absolutely essential if the twins’ clocks are to come together again 
so that we can compare their ages (readings).

A correct analysis can be made using the invariant interval Ds from Equation 1-31 
rewritten as

a Ds
c
b

2

= 1Dt22 - a Dx
c
b

2

where the left side is constant and equal to (t)2, the proper time interval squared, and 
the right side refers to measurements made in any inertial frame. Thus, Ulysses along 
each of his worldlines in Figure 1-35a has Dx = 0 and, of course, measures Dt = t =
3 y, or 6 y for the round trip. Homer, on the other hand, measures

1Dt22 = 1t22 + a Dx
c
b

2

Figure 1-35  ​(a) The spacetime diagram of Ulysses’ journey 
to a distant star in the inertial frame in which Homer and the star 
are at rest. (b) Divisions on the ct axis correspond to years on 
Homer’s clock. The broken lines show the paths (worldlines) 
of light flashes transmitted by each twin with a frequency of 
one/year on his clock. Note the markedly different frequencies 
at the receivers.
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and since (Dx>c)2 is always positive, he always measures Dt  t. In this situation
Dx = 0.8cDt, so

1Dt22 = 13 y22 + 10.8cDt>c22

or 1Dt2210.362 = 1322

Dt =
3

0.6
= 5 y

or 10 y for the round trip as we saw earlier. The reason that the twins’ situations can-
not be treated symmetrically is because the special theory of relativity can predict the 
behavior of accelerated systems, such as Ulysses at the turnaround, provided that in 
the formulation of the physical laws we take the view of an inertial, that is, unacceler-
ated, observer such as Homer. That’s what we have done. Thus, we cannot do the same 
analysis in the rest frame of Ulysses’ spaceship because it does not remain in an inertial 
frame during the round trip; hence, it falls outside of the special theory, and no paradox 
arises. The laws of physics can be reformulated so as to be invariant for accelerated 
observers, which is the role of general relativity (see Chapter 2), but the result is the 
same: Ulysses returns younger than Homer by just the amount calculated above.

EXAMPLE 1-14	 Twin Paradox and the Doppler Effect ​ This example, first 
suggested by C. G. Darwin,20 may help you understand what each twin sees during 
Ulysses’ journey. Homer and Ulysses agree that once each year, on the anniversary 
of the launch date of Ulysses’ spaceship (when their clocks were together), each twin 
will send a light signal to the other. Figure 1-35b shows the light signals each sends. 
Based on our discussion above, Homer sends 10 light flashes (the ct axis, Homer’s 
worldline, is divided into 10 equal intervals corresponding to the 10 years of the jour-
ney on Homer’s clock) and Ulysses sends 6 light flashes (each of Ulysses’ worldlines 
is divided into 3 equal intervals corresponding to 3 years on Ulysses’ clock). Note 
that each transmits his final light flash as they are reunited at B. Although each trans-
mits light signals with a frequency of 1 per year, they obviously do not receive them 
at that frequency. For example, Ulysses sees no signals from Homer during the first 
three years! How can we explain the observed frequencies?

SOLUTION
The Doppler effect provides the explanation. As the twins (and clocks) recede from 
one another, the frequency of their signals is reduced from the proper frequency f0 
according to Equation 1-37 and we have

f

f0
= A1 - b

1 + b
= A1 - 0.8

1 + 0.8
=

1

3

which is exactly what both twins see (refer to Figure 1-35b): Homer receives 3 
flashes in the first 9 years and Ulysses 1 flash in his first 3 years; that is, f = (1/3) f0 
for both.

After the turnaround they are approaching each other and Equation 1-38 yields

f

f0
= A1 + b

1 - b
= A1 + 0.8

1 - 0.8
= 3

and again this agrees with what the twins see: Homer receives 3 flashes during the 
final (10th) year and Ulysses receives 9 flashes during his final 3 years; that is, 
f = 3f0 for both.
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Question

10.	 The different ages of the twins on being reunited are an example of the 
relativity of simultaneity that was discussed earlier. Explain how that accounts 
for the fact that their biological clocks are no longer synchronized.

MORE
�It is the relativity of simultaneity, not their different accelerations, that is 
responsible for the age difference between the twins. This is readily illus-
trated in The Case of the Identically Accelerated Twins, which can be 
found on the home page: www.whfreeman.com/tiplermodernphysics6e. 
See also Figure 1-36 here.

More

The Pole and Barn Paradox
An interesting problem involving length contraction, reported initially by W. Rindler, 
involves putting a long pole into a short barn. One version, owing to E. F. Taylor and 
J. A. Wheeler,22 goes as follows. A runner carries a pole 10 m long toward the open 
front door of a small barn 5 m long. A farmer stands near the barn so that he can see 
both the front and the back doors of the barn, the latter being a closed swinging door, 
as shown in Figure 1-37a. The runner carrying the pole at speed v enters the barn, and 
at some instant the farmer sees the pole completely contained in the barn and closes 
the front door, thus putting a 10 m pole into a 5 m barn. The minimum speed of the 
runner v that is necessary for the farmer to accomplish this feat may be computed 
from Equation 1-28, giving the relativistic length contraction L = Lp>g, where Lp = 
proper length of the pole (10 m) and L = length of the pole measured by the farmer, to 
be equal to the length of the barn (5 m). Therefore, we have

g =
121 - v2>c2

=
Lp

L
=

10

5

1 - v2>c2 = 15>1022

v2>c2 = 1 - 15>1022 = 0.75

v = 0.866c or b = 0.866

A paradox seems to arise when this situation is viewed in the rest system of the runner. 
For him the pole, being at rest in the same inertial system, has its proper length of 10 m. 
However, the runner measures the length of the barn to be

 L = Lp>g = 521 - b2

 L = 2.5 m

How can he possibly fit the 10 m pole into the length-contracted 2.5 m barn? The 
answer is that he can’t, and the paradox vanishes, but how can that be? To understand 
the answer, we need to examine two events—the coincidences of both the front and 
back ends of the pole, respectively, with the rear and front doors of the barn—in the 
inertial frame of the farmer and in that of the runner.

These are illustrated by the spacetime diagrams of the inertial frame S of the 
farmer and barn (Figure 1-37b) and that of the runner S9 (Figure 1-37c). Both 
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diagrams are drawn with the front end of the pole coinciding with the front door of 
the barn at the instant the clocks are started. In Figure 1-37b the worldlines of the barn 
doors are, of course, vertical, while those of the two ends of the pole make an angle 
u = tan1(1>b) = 49.1° with the x axis. Note that in S the front of the pole reaches the 
rear door of the barn at ct = 5 m/0.866 = 5.8 m simultaneous with the arrival of the 
back end of the pole at the front door; that is, at that instant in S the pole is entirely 
contained in the barn.

In the runner’s rest system S9 it is the worldlines of the ends of the pole that are 
vertical, while those of the front and rear doors of the barn make angles of 49.1° with 
the x9 axis (since the barn moves in the x9 direction at v). Now we see that the rear 
door passes the front of the pole at ct9 = 2.5 m/0.866 = 2.9 m, but the front door of the 
barn doesn’t reach the rear of the pole until ct9 = 10 m/0.866 = 11.5 m. Thus, the first 
of those two events occurs before the second, and the runner never sees the pole 
entirely contained in the barn. Once again, the relativity of simultaneity is the key—
events simultaneous in one inertial frame are not necessarily simultaneous when 
viewed from another inertial frame.

Pole entirely
within barn
(ct = 5.8 m)

Front end of pole
enters barn door
at ct = 0

Front door
of barn

Rear door
of barn

Back end
of pole

Pole

Front end
of pole

Rear doorFront door

Front of pole
leaves barn

Back of pole
enters barn

Back of pole Front of pole
(c)(b)

(a)

10

1050–5 –5

ct

x (m)

S

10

5

50–10

ct�

x� (m)

S�

Front of pole
enters barn door
at ct� = 0

Pole

Figure 1-37  ​(a) A runner carrying a 10 m pole moves quickly enough so that the farmer will 
see the pole entirely contained in the barn. The spacetime diagrams from the point of view of 
the farmer’s inertial frame (b) and that of the runner (c). The resolution of the paradox is in the 
fact that the events of interest, shown by the large dots in each diagram, are simultaneous in S, 
but not in S9.
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Now let’s consider a different version of this paradox, the one initially due to 
W. Rindler. Suppose the barn’s back wall was made of thick, armor-plate steel and 
had no door. What do the farmer and the runner see then? Once again, in the farmer’s 
(and the barn’s) rest frame, the instant the front of the pole reaches the armor plate, 
the farmer shuts the door and the 10 m pole is instantaneously contained in the 5 m 
barn. However, in the next instant (assuming that the pole doesn’t break) it must either 
bend (i.e., rotate in spacetime) or break through the armor plate. Since this is relativ-
ity, the runner must come to the same conclusion in his rest frame as the 2.5 m barn 
races toward him at b = 0.866. But now when the armor plate back wall contacts the 
front of the pole, the barn continues to move at b = 0.866, taking the front of the pole 
with it and leaving at that instant 7.5 m of the pole still outside the barn. Yet like the 
farmer, the runner must also see the 10 m pole entirely contained within the 2.5 m 
barn. How can that be? Like this: the instant the tip of the pole hits the steel plate, that 
information (an elastic shock wave) begins to propagate down the pole. Even if the 
wave were to propagate at the speed of light c, it would take 10 m/3.0  108 m/s = 
3.33  108 s to reach the back of the pole. In the meantime, the barn door must 
move only 7.5 m to reach the back of the pole and does so in only 7.5 m/(0.866  3.0 
 108 m/s) = 2.89  108 s. Thus, the runner, in agreement with the farmer, sees the 
10 m pole entirely contained within the 2.5 m barn—at least briefly!

Question

11.	 In the discussion where the barn’s back wall was made from armor plate 
steel and had no door, do the farmer and the runner both see the pole entirely 
contained in the barn, no matter what their relative speed is? Explain.

Headlight Effect
We have made frequent use of Einstein’s second postulate asserting that the speed of 
light is independent of the source motion for all inertial observers; however, the same 
is not true for the direction of light. Consider a light source in S9 that emits light uni-
formly in all directions. A beam of that light emitted at an angle u9 with respect to the 
x9 axis is shown in Figure 1-38a. During a time Dt9 the x9 displacement of the beam is 
Dx9, and these are related to u9 by

	
Dx9

cDt9
=

Dx9

D 1ct92 = cos u9	 1-39

The direction of the beam relative to the x axis in S is similarly given by

	
Dx

D 1ct2 = cos u	 1-40

Applying the inverse Lorentz transformation to Equation 1-40 yields

cos u =
Dx

cDt
=

g1Dx9 + vDt92
cg1Dt9 + vDx9>c22

Dividing the numerator and denominator by Dt9 and then by c, we obtain

cos u =
1Dx9>Dt9 + v2

ca1 +
v

c2Dx9>Dt9b
=

Dx9>D 1ct92 + v>c
1 +

v
c
# Dx9

D 1ct92
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and substituting from Equation 1-39 yields

	 cos u =
cos u9 + b

1 + b cos u9
	 1-41

Considering the half of the light emitted by the source in S9 into the forward 
hemisphere, that is, rays with u9 between {p>2, note that Equation 1-41 restricts the 
angles u measured in S for those rays (50 percent of all the light) to lie between 
u = {cos1 b. For example, for b = 0.5, the observer in S would see half of the total 
light emitted by the source in S9 to lie between u = {60°, that is, in a cone of half 
angle 60° whose axis is along the direction of the velocity of the source. For values of 
b near unity u is very small; for example, b = 0.99 yields u = 8.1°. This means that 
the observer in S sees half of all the light emitted by the source to be concentrated into 
a forward cone with that half angle (see Figure 1-38b). Note, too, that the remaining 
50 percent of the emitted light is distributed throughout the remaining 344° of the 
two-dimensional diagram.23 As a result of the headlight effect, light from a directly 
approaching source appears more intense than that from the same source at rest. For 
the same reason, light from a directly receding source will appear dimmer than that 
from the same source at rest. This result has substantial applications in experimental 
particle physics and astrophysics.

Question

12.	 Notice from Equation 1-41 that some light emitted by the moving source into 
the rear hemisphere is seen by the observer in S as having been emitted into the 
forward hemisphere. Explain how that can be, using physical arguments.

Exploring
Superluminal Speeds

We conclude this chapter with a few comments about things that move faster than light. 
The Lorentz transformations (Equations 1-18 and 1-19) have no meaning in the event 
that the relative speeds of two inertial frames exceed the speed of light. This is gener-
ally taken to be a prohibition on the moving of mass, energy, and information faster 
than c. However, it is possible for certain processes to proceed at speeds greater than 
c and for the speeds of moving objects to appear to be greater than c without contra-
dicting relativity theory. A common example of the first of these is the motion of the 

In determining the 
brightness of stars 
and galaxies, a 
critical parameter in 
understanding them, 
astronomers must correct 
for the headlight effect, 
particularly at high 
velocities relative to 
Earth.

Figure 1-38  (a) The source at rest in S9 moves 
with b = 0.7 with respect to S. (b) Light emitted 
uniformly in S9 appears to S concentrated into a 
cone in the forward direction. Rays shown in 
(a) are 18° apart. Rays shown in (b) make angles 
calculated from Equation 1-41. The two colored 
rays shown are corresponding ones.
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point where the blades of a giant pair of scissors intersect as the scissors are quickly 
closed, sometimes called the scissors paradox. Figure 1-39 shows the situation. A long 
straight rod (one blade) makes an angle u with the x axis (the second blade) and moves 
in the y direction at constant speed vy = Dy>Dt. During time Dt, the intersection of
the blades, point P, moves to the right a distance Dx. Note from the figure that Dy>Dx = 
tan u. The speed with which P moves to the right is

	 vp = Dx>Dt =
Dx

Dy>vy

=
vy Dx

Dx tan u
	 1-42

or

vp =
vy

tan u

Since tan u S  0 as u S  0, it will always be possible to find a value of u close enough 
to zero so that vp  c for any (nonzero) value of vy. As real scissors are closed, the angle 
gets progressively smaller, so in principle all that one needs for vp  c are long blades 
so that u S  0.

Question

	 13.	 Use a diagram like Figure 1-32 to explain why the motion of point P cannot 
be used to convey information to observers along the blades.

The point P in the scissors paradox is, of course, a geometrical point, not a mate-
rial object, so it is perhaps not surprising that it could appear to move at speeds greater 
than c. As an example of an object with mass appearing to do so, consider a tiny mete-
orite moving through space directly toward you at high speed v. As it enters Earth’s 
atmosphere, about 9 km above the surface, frictional heating causes it to glow and the 
first light from the glow starts toward your eye. After some time Dt the frictional heat-
ing has evaporated all of the meteorite’s matter, the glow is extinguished, and its final 
light starts toward your eye, as illustrated in Figure 1-40. During the time between the 
first and the final glow, the meteorite traveled a distance vDt. During that same time 
interval light from the first glow has traveled toward your eye a distance cDt. Thus, the 
space interval between the first and final glows is given by

Dy = cDt - vDt = Dt1c - v2
and the visual time interval at your eye Dteye, between the arrival of the first and final 
light is

Dteye = Dy>c =
Dt1c - v2

c
= Dt11 - b2

Figure 1-39  As the long, straight 
rod moves vertically downward, the 
intersection of the “blades,” point P, 
moves toward the right at speed 
vp = Dx>Dt. In terms of vy and u,
vp = vy> tan u.

x

θ

y

P

vy

vy

∆y

∆x

Meteorite
first glow

Last glow
wave front

First glow
wave front

Eye

v

v ∆t

c ∆t

(c – v ) ∆t

Figure 1-40  A meteorite 
moves directly toward the 
observer’s eye at speed v.
The spatial distance between 
the wave fronts is (c  v)Dt 
as they move at c, so the time 
interval between their arrival 
at the observer is not Dt, but 
Dteye, which is (c  v)Dt>c = 
(1  b)Dt, and the apparent 
speed of approach is va =
vDt>Dteye = bc>(1  b).
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and, finally, the apparent visual speed va that you record is

	 va =
vDt

Dteye
=

vDt

Dt11 - b2 =
bc

1 - b
	 1-43

Clearly, b = 0.5 yields va = c and any larger b yields va  c. For example, a 
meteorite approaching you at v = 0.8c is perceived to be moving at va = 4c. Certain 
galactic structures may also be observed to move at superluminal speeds, as the 
sequence of images of the jet from galaxy M87 in Figure 1-41 illustrates.

As a final example of things that move faster than c, it has been proposed that 
particles with mass might exist whose speeds would always be faster than light speed. 
One basis for this suggestion is an appealing symmetry: ordinary particles always have 
v  c, and photons and other massless particles have v = c, so the existence of par-
ticles with v  c would give a sort of satisfying completeness to the classification of 
particles. Called tachyons, their existence would present relativity with serious but not 
necessarily insurmountable problems of infinite creation energies and causality para-
doxes, for example, alteration of history (see the next example.) No compelling theo-
retical arguments preclude their existence and eventual discovery; however, to date all 
experimental searches for tachyons24 have failed to detect them, and the limits set by 
those experiments indicate that it is highly unlikely they exist.

EXAMPLE 1-15	 Tachyons and Reversing History ​ Use tachyons and an 
appropriate spacetime diagram to show how the existence of such particles might 
be used to change history and hence alter the future, leading to a paradox.

SOLUTION
In a spacetime diagram of the laboratory frame S the worldline of a particle with v  c 
created at the origin traveling in the +x direction makes an angle less than 45° with 
the x axis; that is, it is below the light worldline as shown in Figure 1-42. After 
some time the tachyon reaches a tachyon detector mounted on a spaceship moving 

Figure 1-41  Superluminal motion 
has been detected in a number of 
cosmic objects. This sequence of 
images taken by the Hubble Space 
Telescope shows apparent motion 
at six times the speed of light in 
galaxy M87. The jet streaming from 
the galaxy’s nucleus (the bright, 
round region at the far left in the bar 
image at the top) is about 5000 c # y 
long. The boxed region is enlarged. 
The slanting lines track the moving 
features and indicate the apparent 
speeds in each region. [John Biretta, 
Space Telescope Science Institute.]

Superluminal Motion in M87 Jet

1994

1995

1996

1997

1998

6.0c 5.5c 6.1c 6.0c
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rapidly away at v  c in the +x direction. The spaceship frame S9 is shown in the 
figure at P. The detector immediately creates a new tachyon, sending it off in the x9 
direction and, of course, into the future of S9, that is, with ct9  0. The second 
tachyon returns to the laboratory at x = 0 but at a time ct before the first tachyon 
was emitted, having traveled into the past of S to point M, where ct  0. Having 
sent an object into our own past, we would then have the ability to alter events that 
occur after M and produce causal contradictions. For example, the laboratory tachyon 
detector could be coupled to equipment that created the first tachyon via a computer 
programmed to cancel emission of the first tachyon if the second tachyon is detected 
(shades of the Terminator!). It is logical contradictions such as this that, together 
with the experimental results referred to above, lead to the conclusion that faster-
than-light particles do not exist.

As mentioned above, one attraction (or specter) associated with objects moving 
faster than light is the prospect of altering history via time travel. We close this chap-
ter on relativity by illustrating one such paradox in Figure 1-43.

Figure 1-43  The 
knowledge creation 
paradox illustrates 
a causality problem 
associated with time 
travel, one possible 
consequence of material 
objects moving faster than 
light speed. [The authors 
thank Costas Efthimiou for 
this example.]

March 1, 1905: Aristotle finds the famous paper
titled “On the Electrodynamics of Moving Bodies,”
by Albert Einstein, published in the journal 
Annals of Physics earlier in 1905.

February 1, 1905: Aristotle arrives in the future.

January 1, 1906: Aristotle leaves for the past.

Aristotle studies the new paper.

January 1, 1905: Einstein publishes the paper.

March 1, 1904: Aristotle explains the paper to Einstein.

February 1, 1904: Aristotle meets Einstein, and they start 
discussing physics.

January 1, 1904: Aristotle returns before the publication 
of the paper.

January 1, 350 B.C.: Time traveler Aristotle leaves for the future.

Aristotle 
travels 

to the past

Aristotle 
travels to 
the future

Where did 
the knowledge 

come from?

Figure 1-42  A tachyon emitted at
O in S, the laboratory frame, catches up 
with a spaceship moving at high speed 
at P. Its detection triggers the emission 
of a second tachyon at P back toward 
the laboratory at x = 0. The second 
tachyon arrives at the laboratory at 
ct  0, that is, before the emission of 
the first tachyon.

x
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Classical relativity

	 Galilean transformation

	 Newtonian relativity

x9 = x - vt  y9 = y  z9 = z  t9 = t� 1-2

Newton’s laws are invariant in all systems connected by a Galilean 
transformation.

2.	 Einstein’s postulates The laws of physics are the same in all inertial reference frames. The speed of 
light is c, independent of the motion of the source.

3.	 Relativity of simultaneity Events simultaneous in one reference frame are not in general simultaneous in 
any other inertial frame.

4.	 Lorentz transformation x9 = g1x - vt2  y9 = y  z9 = z� 1-18

t9 = g1t - vx>c22  with  g = 11 - v2>c22-1>2

5.	 Time dilation Proper time is the time interval t between two events that occur at the same
space point. If that interval is Dt9 = t, then the time interval in S is 

Dt = gDt9 = gt  where  g = 11 - v2>c22-1>2� 1-26

6.	 Length contraction The proper length of a rod is the length Lp measured in the rest system of the rod.
In S, moving at speed v with respect to the rod, the length measured is

L = Lp>g� 1-28

7.	 Spacetime interval All observers in inertial frames measure the same interval Ds between pairs of
events in spacetime, where

1Ds22 = 1cDt22 - 1Dx22� 1-31

8.	 Doppler effect

	 Source/observer approaching

	 Source/observer receding

f = A1 + b

1 - b
 f0� 1-36

f = A1 - b

1 + b
 f0� 1-37

General References 
The following general references are written at a level appro-
priate for readers of this book.

Bohm, D., The Special Theory of Relativity, W. A. Benjamin, 
New York, 1965.

French, A. P., Special Relativity, Norton, New York, 1968. 
Includes an excellent discussion of the historical basis 
of relativity.

Gamow, G., Mr. Tompkins in Paperback, Cambridge Uni-
versity Press, Cambridge, 1965. Contains the famous 

Mr. Tompkins stories. In one of these Mr. Tompkins 
visits a dream world where the speed of light is 
only about 10 mi/hr and relativistic effects are quite 
noticeable.

Lorentz, H. A., A. Einstein, H. Minkowski, and W. Weyl, 
The Principle of Relativity: A Collection of Origi-
nal Memoirs on the Special and General Theory of 
Relativity (trans. W. Perrett and J. B. Jeffery), Dover, 
New York, 1923. A delightful little book containing 
Einstein’s original paper [“On the Electrodynamics 
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of Moving Bodies,” Annalen der Physik, 17 
(1905)] and several other original papers on special 
relativity.

Ohanian, H. C., Special Relativity: A Modern Introduction, 
Physics Curriculum & Instruction, 2001.

Pais, A., Subtle Is the Lord…, Oxford University Press, 
Oxford, 1982.

Resnick, R., and D. Halliday, Basic Concepts in Relativity 
and Early Quantum Theory, 2d ed., Macmillan, 1992.

Rindler, W., Essential Relativity, Van Nostrand Reinhold, 
New York, 1969.

Taylor, E. F., and J. A. Wheeler, Spacetime Physics, 2d ed., 
W. H. Freeman and Co., 1992. This is a good book with 
many examples, problems, and diagrams.

Notes 
1.	 Polish astronomer, 1473–1543. His book describing 

heliocentric (i.e., sun-centered) orbits for the planets was 
published only a few weeks before his death. He had hesi-
tated to release it for many years, fearing that it might be 
considered heretical. It is not known whether or not he saw 
the published book.

2.	 Events are described by measurements made in a coor-
dinate system that defines a frame of reference. The ques-
tion was, Where is the reference frame in which the law of 
inertia is valid? Newton knew that no rotating system, for 
example, Earth or the Sun, would work and suggested the 
distant “fixed stars” as the fundamental inertial reference 
frame.

3.	 The speed of light is exactly 299,792,458 m/s. The value 
is set by the definition of the standard meter as being the dis-
tance light travels in 1/299,792,458 s.

4.	 Over time, an entire continuous spectrum of electromag-
netic waves has been discovered, ranging from extremely 
low-frequency (radio) waves to extremely high-frequency 
waves (gamma rays), all moving at speed c.

5.	 Albert A. Michelson (1852–1931), an American experi-
mental physicist whose development of precision optical 
instruments and their use in precise measurements of the 
speed of light and the length of the standard meter earned 
him the Nobel Prize in Physics in 1907. Edward W. Morley 
(1838–1923), American chemist and physicist and professor 
at Western Reserve College during the period when Michel-
son was a professor at the nearby Case School of Applied 
Science.

6.	 Albert A. Michelson and Edward W. Morley, American 
Journal of Science, XXXIV, no. 203, November 1887.

7.	 Note that the width depends on the small angle between 
M =

2 and M1. A very small angle results in relatively few wide 
fringes, a larger angle in many narrow fringes.

8.	 Since the source producing the waves, the sodium lamp, 
was at rest relative to the interferometer, the frequency would 
be constant.

9.	 T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes, 
Physical Review, 133, A1221 (1964).
10.	 A. Brillet and J. Hall, Physical Review Letters, 42, 549 
(1979).
11.	 Annalen der Physik, 17, 841(1905). For a translation 
from the original German, see the collection of original 

papers Lorentz, Einstein, Minkowski, and Weyl (Dover,  
New York, 1923).
12.	 Hendrik Antoon Lorentz (1853–1928), Dutch theoretical 
physicist, discovered the Lorentz transformation empirically 
while investigating the fact that Maxwell’s equations are not 
invariant under a Galilean transformation, although he did not 
recognize its importance at the time. An expert on electro-
magnetic theory, he was one of the first to suggest that atoms 
of matter might consist of charged particles whose oscilla-
tions could account for the emission of light. Lorentz used 
this hypothesis to explain the splitting of spectral lines in a 
magnetic field discovered by his student Pieter Zeeman, with 
whom he shared the 1902 Nobel Prize in Physics.
13.	 One meter of light travel time is the time for light to travel 
1 m, that is, ct = 1 m, or t = 1 m/3.00  108 m/s = 3.3  109 s. 
Similarly, 1 cm of light travel time is ct = 1 cm, or t = 3.3  
1011 s, and so on.
14.	 This example is adapted from a problem in H. Ohanian, 
Modern Physics, Prentice Hall, Englewood Cliffs, N.J., 1987.
15.	 Any particle that has mass.
16.	 Equation 1-31 would lead to imaginary values of Ds for 
spacelike intervals, an apparent problem. However, the geom-
etry of spacetime is not Euclidean, but Lorentzian. While a 
consideration of Lorentz geometry is beyond the scope of this 
chapter, suffice it to say that it enables us to write (Ds)2 for 
spacelike intervals as in Equation 1-33.
17.	 There are only two such things: photons (including those 
of visible light), which will be introduced in Chapter 3, and 
gravitons, which are the particles that transmit the gravita-
tional force.
18.	 Edwin P. Hubble, Proceedings of the National Academy 
of Sciences, 15, 168 (1929).
19.	 Walter Kündig, Physical Review, 129, 2371 (1963).
20.	 C. G. Darwin, Nature, 180, 976 (1957).
21.	 S. P. Boughn, American Journal of Physics, 57, 791 
(1989).
22.	 E. F. Taylor and J. A. Wheeler, Spacetime Physics, 2d ed. 
(New York: W. H. Freeman and Co., 1992).
23.	 Seen in three space dimensions by the observer in S, 
50 percent of the light is concentrated in 0.06 steradian of 
4p-steradian solid angle around the moving source.
24.	 T. Alväger and M. N. Kreisler, “Quest for Faster-Than-
Light Particles,” Physical Review, 171, 1357 (1968).
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25.	 Paul Ehrenfest (1880–1933), Austrian physicist and pro-
fessor at the University of Leiden (The Netherlands), long-
time friend and correspondent of Einstein about whom, upon 
his death, Einstein wrote, “[He was] the best teacher in our 
profession I have ever known.”

26.	 This experiment is described in J. C. Hafele and R. E. 
Keating, Science, 177, 166 (1972). Although not as accurate 
as the experiment described in Section 1-4, its results sup-
ported the relativistic prediction.
27.	 R. Shaw, American Journal of Physics, 30, 72 (1962).

Problems 
Level I
Section 1-1  The Experimental Basis of Relativity
1-1.	 In episode 5 of Star Wars the Empire’s spaceships launch probe droids through-
out the galaxy to seek the base of the Rebel Alliance. Suppose a spaceship moving at  
2.3  108 m/s toward Hoth (site of the rebel base) launches a probe droid toward Hoth at 
2.1  108 m/s relative to the spaceship. According to Galilean relativity: (a) What is the 
speed of the droid relative to Hoth? (b) If rebel astronomers are watching the approaching 
spaceship through a telescope, will they see the probe before it lands on Hoth?
1-2.	 In one series of measurements of the speed of light, Michelson used a path length L 
of 27.4 km (17 mi). (a) What is the time needed for light to make the round trip of distance 
2L? (b) What is the classical correction term in seconds in Equation 1-5, assuming Earth’s 
speed is v = 104c? (c) From about 1600 measurements, Michelson arrived at a result for 
the speed of light of 299,796  4 km/s. Is this experimental value accurate enough to be 
sensitive to the correction term in Equation 1-5?
1-3.	 A shift of one fringe in the Michelson-Morley experiment would result from a differ-
ence of one wavelength or a change of one period of vibration in the round-trip travel of the 
light when the interferometer is rotated by 90°. What speed would Michelson have com-
puted for Earth’s motion through the ether had the experiment seen a shift of one fringe?
1-4.	 In the “old days” (circa 1935) pilots used to race small, relatively high-powered 
airplanes around courses marked by a pylon on the ground at each end of the course. Sup-
pose two such evenly matched racers fly at airspeeds of 130 mph. (Remember, this was 
a long time ago!) Each flies one complete round trip of 25 miles, but their courses are 
perpendicular to each other and there is a 20 mph wind blowing steadily parallel to one 
course. (a) Which pilot wins the race and by how much? (b) Relative to the axes of their 
respective courses, what headings must the two pilots use?
1-5.	 Paul Ehrenfest25 suggested the following thought experiment to illustrate the dra-
matically different observations that might be expected, dependent on whether light 
moved relative to a stationary ether or according to Einstein’s second postulate:

Suppose that you are seated at the center of a huge dark sphere with a radius of 
3  108 m and with its inner surface highly reflective. A source at the center 
emits a very brief flash of light which moves outward through the darkness with 
uniform intensity as an expanding spherical wave.

What would you see during the first 3 seconds after the emission of the flash if (a) the 
sphere moved through the ether at a constant 30 km/s and (b) if Einstein’s second postu-
late is correct?
1-6.	 Einstein reported that as a boy he wondered about the following puzzle. If you hold 
a mirror at arm’s length and look at your reflection, what will happen as you begin to run? 
In particular, suppose you run with speed v = 0.99c. Will you still be able to see yourself? 
If so, what would your image look like, and why?
1-7.	 Verify by calculation that the result of the Michelson-Morley experiment places an 
upper limit on Earth’s speed relative to the ether of about 5 km/s.
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1-8.	 Consider two inertial reference frames. When an observer in each frame measures 
the following quantities, which measurements made by the two observers must yield the 
same results? Explain your reason for each answer.
(a)	 The distance between two events
(b)	 The value of the mass of a proton
(c)	 The speed of light
(d )	The time interval between two events
(e)	 Newton’s first law
( f )	 The order of the elements in the periodic table
(g)	 The value of the electron charge

Section 1-2  Einstein’s Postulates
1-9.	 Assume that the train shown in Figure 1-14 is 1.0 km long as measured by the 
observer at C9 and is moving at 150 km/h. What time interval between the arrival of the 
wave fronts at C9 is measured by the observer at C in S?
1-10.	 Suppose that A9, B9, and C9 are at rest in frame S9, which moves with respect to S 
at speed v in the +x direction. Let B9 be located exactly midway between A9 and C9. At 
t9 = 0, a light flash occurs at B9 and expands outward as a spherical wave. (a) According 
to an observer in S9, do the wave fronts arrive at A9 and C9 simultaneously? (b) Accord-
ing to an observer in S, do the wave fronts arrive at A9 and C9 simultaneously? (c) If you 
answered no to either (a) or (b), what is the difference in their arrival times and at which 
point did the front arrive first?

Section 1-3  The Lorentz Transformation

1-11.	 Make a graph of the relativistic factor g = 1>(1  v2>c2)1/2 as a function of b = v>c. 
Use at least 10 values of b ranging from 0 up to 0.995.
1-12.	 Two events happen at the same point x =0 in frame S9 at times t =1 and t =2. (a) Use Equa-
tions 1-19 to show that in frame S the time interval between the events is greater than 
t =2 - t =1 by a factor g. (b) Why are Equations 1-18 less convenient than Equations 1-19 for 
this problem?
1-13.	 Suppose that an event occurs in inertial frame S with coordinates x = 75 m, y =
18 m, z = 4.0 m at t = 2.0  105 s. The inertial frame S9 moves in the +x direction with
v = 0.85c. The origins of S and S9 coincided at t = t9 = 0. (a) What are the coordinates of 
the event in S9? (b) Use the inverse transformation on the results of (a) to obtain the origi-
nal coordinates.
1-14.	 Show that the null effect of the Michelson-Morley experiment can be accounted for 
if the interferometer arm parallel to the motion is shortened by a factor of (1  v2>c2)1/2.
1-15.	 Two spaceships are approaching each other. (a) If the speed of each is 0.9c relative 
to Earth, what is the speed of one relative to the other? (b) If the speed of each relative to 
Earth is 30,000 m/s (about 100 times the speed of sound), what is the speed of one relative 
to the other?
1-16.	 Starting with the Lorentz transformation for the components of the velocity (Equa-
tion 1-23), derive the transformation for the components of the acceleration.
1-17.	 Consider a clock at rest at the origin of the laboratory frame. (a) Draw a spacetime 
diagram that illustrates that this clock ticks slow when observed from the reference frame 
of a rocket moving with respect to the laboratory at v = 0.8c. (b) When 10 s have elapsed 
on the rocket clock, how many have ticked by on the lab clock?
1-18.	 A light beam moves along the y9 axis with speed c in frame S9, which is moving to 
the right with speed v relative to frame S. (a) Find ux and uy, the x and y components of the 
velocity of the light beam in frame S. (b) Show that the magnitude of the velocity of the 
light beam in S is c.
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1-19.	 A particle moves with speed 0.9c along the x axis of frame S, which moves with 
speed 0.9c in the positive x9 direction relative to frame S9. Frame S9 moves with speed 
0.9c in the positive x direction relative to frame S. (a) Find the speed of the particle rela-
tive to frame S9. (b) Find the speed of the particle relative to frame S.

Section 1-4  Time Dilation and Length Contraction
1-20.	 Use the binomial expansion to derive the following results for values of v V c and 
use when applicable in the problems that follow in this section.

1a2 g  1 +
1

2
 
v2

c2

1b2 1
g

 1 -
1

2
 
v2

c2

1c2 g - 1  1 -
1
g


1

2
 
v2

c2

1-21.	 How great must the relative speed of two observers be for their time-interval mea-
surements to differ by 1 percent (see Problem 1-20)?
1-22.	 A nova is the sudden, brief brightening of a star (see Chapter 13). Suppose Earth 
astronomers see two novas occur simultaneously, one in the constellation Orion (The 
Hunter) and the other in the constellation Lyra (The Lyre). Both nova are the same dis-
tance from Earth, 2.5  103c · y, and are in exactly opposite directions from Earth. Observ-
ers on board an aircraft flying at 1000 km/h on a line from Orion toward Lyra see the same 
novas but note that they are not simultaneous. (a) For the observers on the aircraft, how 
much time separates the novas? (b) Which one occurs first? (Assume Earth is an inertial 
reference frame.)
1-23.	 A meter stick moves parallel to its length with speed v = 0.6c relative to you. 
(a) Compute the length of the stick measured by you. (b) How long does it take for the 
stick to pass you? (c) Draw a spacetime diagram from the viewpoint of your frame with 
the front of the meter stick at x = 0 when t = 0. Show how the answers to (a) and (b) are 
obtained from the diagram.
1-24.	 The proper mean lifetime of p mesons (pions) is 2.6  108 s. Suppose a beam 
of such particles has speed 0.9c. (a) What would their mean life be as measured in the 
laboratory? (b) How far would they travel (on the average) before they decay? (c) What 
would your answer be to part (b) if you neglected time dilation? (d ) What is the interval in 
spacetime between creation of a typical pion and its decay?
1-25.	 You have been posted to a remote region of space to monitor traffic. Near the end 
of a quiet shift, a spacecraft streaks past. Your laser-based measuring device reports the 
spacecraft’s length to be 85 m. The identification transponder reports it to be the NCXXB-12, 
a cargo craft of proper length 100 m. In transmitting your report to headquarters, what 
speed should you give for this spacecraft?
1-26.	 The light clock in the spaceship in Figure 1-25 uses a light pulse moving up the y 
axis to reflect back from a mirror as the ship moves along the x axis. Suppose instead the 
light pulse moves along the x9 axis between x9 = 0 and a mirror at x9 = L. (a) What is the 
time required for the pulse to make a round trip in the rest system of the spaceship? (b) What 
is the round-trip time in the laboratory frame? (c) Does the result in (b) agree with that 
expected from time dilation? Justify your answer.
1-27.	 Two spaceships pass each other traveling in opposite directions. A passenger on 
ship A, which she knows to be 100 m long, notes that ship B is moving with a speed of 
0.92c relative to A and that the length of B is 36 m. What are the lengths of the two space-
ships measured by a passenger in B?
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1-28.	 A meter stick at rest in S9 is tilted at an angle of 30° to the x9 axis. If S9 moves at 
b = 0.8, how long is the meter stick as measured in S and what angle does it make with 
the x axis?
1-29.	 A rectangular box at rest in S9 has sides a9 = 2 m, b9 = 2 m, and c9 = 4 m and is 
oriented as shown in Figure 1-44. S9 moves with b = 0.65 with respect to the laboratory 
frame S. (a) Compute the volume of the box in S9 and in S. (b) Draw an accurate diagram 
of the box as seen by an observer in S.

Section 1-5  The Doppler Effect
1-30.	 How fast must you be moving toward a red light (l = 650 nm) for it to appear yel-
low (l = 590 nm)? Green (l = 525 nm)? Blue (l = 460 nm)?
1-31.	 A distant galaxy is moving away from us at speed 1.85  107 m/s. Calculate the 
fractional redshift (l9  l0)>l0 of the light from this galaxy.
1-32.	 The light from a nearby star is observed to be shifted toward the blue by 2 percent; 
that is, fobs = 1.02f0. Is the star approaching or receding from Earth? How fast is it 
moving? (Assume motion is directly toward or away from Earth so as to avoid superlumi-
nal speeds.)
1-33.	 Stars typically emit the red light of atomic hydrogen with wavelength 656.3 nm 
(called the Ha spectral line). Compute the wavelength of that light observed at Earth from 
stars receding directly from us with relative speed v = 103c, v = 102c, and v = 101c.

Section 1-6  The Twin Paradox and Other Surprises
1-34.	 Heide boards a spaceship and travels away from Earth at a constant velocity 0.45c 
toward Betelgeuse (a red giant star in the constellation Orion). One year later on Earth 
clocks, Heide’s twin, Hans, boards a second spaceship and follows her at a constant veloc-
ity of 0.95c in the same direction. (a) When Hans catches up to Heide, what will be the 
difference in their ages? (b) Which twin will be older?
1-35.	 You point a laser flashlight at the Moon, producing a spot of light on the Moon’s 
surface. At what minimum angular speed must you sweep the laser beam in order for the 
light spot to streak across the Moon’s surface with speed v  c? Why can’t you transmit 
information between research bases on the Moon with the flying spot?
1-36.	 A clock is placed in a satellite that orbits Earth with a period of 108 min. (a) By 
what time interval will this clock differ from an identical clock on Earth after 1 y? (b) How 
much time will have passed on Earth when the two clocks differ by 1.0 s? (Assume special 
relativity applies and neglect general relativity.)
1-37.	 Einstein used trains for a number of relativity thought experiments since they were the 
fastest objects commonly recognized in those days. Let’s consider a train moving at 0.65c 
along a straight track at night. Its headlight produces a beam with an angular spread of 60° 
according to the engineer. If you are standing alongside the track (rails are 1.5 m apart), how 
far from you is the train when you see its approaching headlight suddenly disappear?

Level II
1-38.	 In 1971 four portable atomic clocks were flown around the world in jet aircraft, two 
eastbound and two westbound, to test the time dilation predictions of relativity.26 (a) If the 
westbound plane flew at an average speed of 1500 km/h relative to the surface, how long 
would it have had to fly for the clock on board to lose 1 second relative to the reference 
clock on the ground at the U.S. Naval Observatory? (b) In the actual experiment the planes 
circumflew Earth once and the observed discrepancy of the clocks was 273 ns. What was 
the average speed of each plane?
1-39.	 “Ether drag” was among the suggestions made to explain the null result of the 
Michelson-Morley experiment (see the More section). The phenomenon of stellar aber-
ration refutes this proposal. Suppose Earth moves relative to the ether at velocity v and a 

Figure 1-44  [Problem 1-29.]
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light beam (e.g., from a star) approaches Earth at an angle u with respect to v. (a) Show 
that the angle of approach in Earth’s reference frame u9 is given by

tan u9 =
sin u

cos u + v>c
(b) u9 is the stellar aberration angle. If u = 90°, by how much does u9 differ from 90°?
1-40.	 A rod of proper length L moves past you a speed v. You reach out and grab the back 
end of the rod, bringing that point instantly to rest in your frame of reference. Assuming 
that this information, that the back of the rod has stopped, travels toward the front of the 
rod at the speed of light (it actually travels at the speed of sound), (a) show that for any 
v  0 the length of the rod always extends beyond the proper length Lp before the front 
of the rod comes to rest and the rod assumes its proper length. (b) Defining a “coefficient 
of extension” D as 1>Lp times the difference between its maximum length and its proper 
length, plot a graph of D versus v>c for the following values v>c: 0, 0.10, 0.25, 0.40, 
0.50, 0.65, 0.80, 0.85, 0.90, 0.95, 0.98. (c) What is the maximum length the rod can attain 
as v S  c?
1-41.	 A friend of yours who is the same age as you travels to the star Alpha Centauri, 
which is 4c · y away, and returns immediately. She claims that the entire trip took just
6 years. (a) How fast did she travel? (b) How old are you when she returns? (c) Draw a 
spacetime diagram that verifies your answer to (a) and (b).
1-42.	 A clock is placed in a satellite that orbits Earth with a period of 90 min. By what 
time interval will this clock differ from an identical clock on Earth after 1 year? (Assume 
that special relativity applies.)
1-43.	 In frame S, event B occurs 2 ms after event A and at Dx = 1.5 km from event A. 
(a) How fast must an observer be moving along the +x axis so that events A and B occur 
simultaneously? (b) Is it possible for event B to precede event A for some observer?
(c) Draw a spacetime diagram that illustrates your answers to (a) and (b). (d ) Compute the 
spacetime interval and proper distance between the events.
1-44.	 A burst of p+ mesons (pions) travels down an evacuated beam tube at Fermilab mov-
ing at b = 0.92 with respect to the laboratory. (a) Compute g for this group of pions. (b) The 
proper mean lifetime of pions is 2.6  108 s. What mean lifetime is measured in the lab? 
(c) If the burst contained 50,000 pions, how many remain after the group has traveled 50 m 
down the beam tube? (d ) What would be the answer to (c) ignoring time dilation?
1-45.	 H. A. Lorentz suggested 15 years before Einstein’s 1905 paper that the null effect of 
the Michelson-Morley experiment could be accounted for by a contraction of that arm of 
the interferometer lying parallel to Earth’s motion through the ether to a length L = Lp(1  
v2>c2)1/2. He thought of this, incorrectly, as an actual shrinking of matter. By about how 
many atomic diameters would the material in the parallel arm of the interferometer have 
had to shrink in order to account for the absence of the expected shift of 0.4 of a fringe 
width? (Assume the diameter of atoms to be about 1010 m.)
1-46.	 Observers in reference frame S see an explosion located at x1 = 480 m. A second 
explosion occurs 5 ms later at x2 = 1200 m. In reference frame S9, which is moving along 
the +x axis at speed v, the explosions occur at the same point in space. (a) Draw a spacetime 
diagram describing this situation. (b) Determine v from the diagram. (c) Calibrate the ct9 
axis and determine the separation in time in ms between the two explosions as measured 
in S9. (d ) Verify your results by calculation.
1-47.	 Two spaceships, each 100 m long when measured at rest, travel toward each other 
with speeds of 0.85c relative to Earth. (a) How long is each ship as measured by someone 
on Earth? (b) How fast is each ship traveling as measured by an observer on the other?
(c) How long is one ship when measured by an observer on the other? (d ) At time t = 0 
on Earth, the fronts of the ships are together as they just begin to pass each other. At what 
time on Earth are their ends together? (e) Sketch accurately scaled diagrams in the frame 
of one of the ships showing the passing of the other ship.
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1-48.	 If v is much less than c, the Doppler frequency shift is approximately given by
Df> f0 = {b, both classically and relativistically. A radar transmitter-receiver bounces 
a signal off an aircraft and observes a fractional increase in the frequency of Df> f0 = 
8  107. What is the speed of the aircraft? (Assume the aircraft to be moving directly 
toward the transmitter.)
1-49.	 The null result of the Michelson-Morley experiment could be explained if the speed 
of light depended on the motion of the source relative to the observer. Consider a binary 
eclipsing star system, that is, a pair of stars orbiting their common center of mass with 
Earth lying in the orbital plane of the system, as is very nearly the case for the binary sys-
tem Algol (see the More section). Assume that the stars in the system have circular orbits 
with a period of 115 days and that one of the star’s orbital speeds is 32 km/s (about the 
same as Earth’s orbital speed around the Sun). If the suggestion above were true, astrono-
mers would simultaneously see two images of the star in opposition, that is, on opposite 
sides of its orbit. What is the minimum distance L from Earth to the binary for this phe-
nomenon to occur?
1-50.	 Frames S and S9 are moving relative to each other along the x and x9 axes. They set 
their clocks to t = t9 = 0 when their origins coincide. In frame S, event 1 occurs at x1 =
1c # y and t1 = 1 y and event 2 occurs at x2 = 2.0c # y and t2 = 0.5 y. These events occur 
simultaneously in frame S9. (a) Find the magnitude and direction of the velocity of S9 rela-
tive to S. (b) At what time do both of these events occur as measured in S9? (c) Compute 
the spacetime interval Ds between the events. (d ) Is the interval spacelike, timelike, or 
lightlike? (e) What is the proper distance Lp between the events?
1-51.	 Do Problem 1-50 parts (a) and (b) using a spacetime diagram.
1-52.	 An observer in frame S standing at the origin observes two flashes of colored light 
separated spatially by Dx = 2400 m. A blue flash occurs first, followed by a red flash 5 ms 
later. An observer in S9 moving along the x axis at speed v relative to S also observes the 
flashes 5 ms apart and with a separation of 2400 m, but the red flash is observed first. Find 
the magnitude and direction of v.
1-53.	 A cosmic-ray proton streaks through the lab with velocity 0.85c at an angle of 
50° with the +x direction (in the xy plane of the lab). Compute the magnitude and direc-
tion of the proton’s velocity when viewed from frame S9 moving with b = 0.72.

Level III
1-54.	 A meter stick is parallel to the x axis in S and is moving in the +y direction at con-
stant speed vy. From the viewpoint of S9 show that the meter stick will appear tilted at an 
angle u9 with respect to the x9 axis of S9 moving in the +x direction at b = 0.65. Compute 
the angle u9 measured in S9.
1-55.	 The equation for the spherical wave front of a light pulse that begins at the origin at 
time t = 0 is x2 + y2 + z2  (ct)2 = 0. Using the Lorentz transformation, show that such a 
light pulse also has a spherical wave front in S9 by showing that x92 + y92 + z92  (ct9)2 = 
0 in S9.
1-56.	 An interesting paradox has been suggested by R. Shaw27 that goes like this. A very 
thin steel plate with a circular hole 1 m in diameter centered on the y axis lies parallel to 
the xz plane in frame S and moves in the +y direction at constant speed vy as illustrated 
in Figure 1-45. A meter stick lying on the x axis moves in the +x direction with b = v>c. 
The steel plate arrives at the y = 0 plane at the same instant that the center of the meter 
stick reaches the origin of S. Since the meter stick is observed by observers in S to be 
contracted, it passes through the 1 m hole in the plate with no problem. A paradox appears 
to arise when one considers that an observer in S9, the rest system of the meter stick, mea-
sures the diameter of the hole in the plate to be contracted in the x dimension and, hence, 
becomes too small to pass the meter stick, resulting in a collision. Resolve the paradox. 
Will there be a collision?
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1-57.	 Two events in S are separated by a distance D = x2  x1 and a time T = t2  t1.
(a) Use the Lorentz transformation to show that in frame S9, which is moving with speed 
v relative to S, the time separation is t =2 - t =1 = g1T - vD>c22. (b) Show that the events 
can be simultaneous in frame S9 only if D is greater than cT. (c) If one of the events is the 
cause of the other, the separation D must be less than cT since D>c is the smallest time 
that a signal can take to travel from x1 to x2 in frame S. Show that if D is less that cT, t =2 is 
greater than t =1 in all reference frames. (d) Suppose that a signal could be sent with speed
c9  c so that in frame S the cause precedes the effect by the time T = D>c9. Show that 
there is then a reference frame moving with speed v less than c in which the effect pre-
cedes the cause.
1-58.	 Two observers agree to test time dilation. They use identical clocks, and one 
observer in frame S9 moves with speed v = 0.6c relative to the other observer in frame S. 
When their origins coincide, they start their clocks. They agree to send a signal when 
their clocks read 60 min and to send a confirmation signal when each receives the other’s 
signal. (a) When does the observer in S receive the first signal from the observer in S9? 
(b) When does he receive the confirmation signal? (c) Make a table showing the times in S 
when the observer sent the first signal, received the first signal, and received the confirma-
tion signal. How does this table compare with one constructed by the observer in S9?
1-59.	 The compact disc in a CD-ROM drive rotates with angular speed v. There is a clock 
at the center of the disk and one at a distance r from the center. In an inertial reference frame, 
the clock at distance r is moving with speed u = rv. Show that from time dilation in special 
relativity, time intervals Dt0 for the clock at rest and Dt for the moving clock are related by

Dtr - Dt0

Dt0


r 2v2

2c2  if rv V c

1-60.	 Two rockets A and B leave a space station with velocity vectors vA and vB relative to 
the station frame S, perpendicular to each other. (a) Determine the velocity of A relative 
to B, vBA. (b) Determine the velocity of B relative to A, vAB. (c) Explain why vAB and vBA 
do not point in opposite directions.
1-61.	 Suppose a system S consisting of a cubic lattice of meter sticks and synchronized 
clocks, for example, the eight clocks closest to you in Figure 1-13, moves from left to 
right (the +x direction) at high speed. The meter sticks parallel to the x direction are, of 
course, contracted and the cube would be measured by an observer in a system S9 to be 
foreshortened in that direction. However, recalling that your eye constructs images from 
light waves that reach it simultaneously, not those leaving the source simultaneously, 

Figure 1-45  [Problem 1-56.]
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sketch what your eye would see in this case. Scale contractions and show any angles accu-
rately. (Assume the moving cube to be farther than 10 m from your eye.)
1-62.	 Figure 1-11b (in the More section about the Michelson-Morley experiment) shows 
an eclipsing binary. Suppose the period of the motion is T and the binary is a distance 
L from Earth, where L is sufficiently large so that points A and B in Figure 1-11b are 
a half orbit apart. Consider the motion of one of the stars and (a) show that the star 
would appear to move from A to B in time T>2 + 2Lv>(c2  v2) and from B to A in time
T>2  2Lv>(c2  v2), assuming classical velocity addition applies to light, that is, that 
emission theories of light were correct. (b) What rotational period would cause the star to 
appear to be at both A and B simultaneously?
1-63.	 Show that if a particle moves at an angle u with respect to the x axis with speed u in 
system S, it moves at an angle u9 with the x9 axis in S9 given by

tan u9 =
sin u

g1cos u - v>u2
1-64.	 Like jets emitted from some galaxies (see Figure 1-41), some distant astronomi-
cal objects can appear to travel at speeds greater than c across our line of sight. Suppose 
distant galaxy AB15 moving with velocity v at an angle u with respect to the direction 
toward Earth emits two bright flashes of light separated by time Dt on the galaxy AB15 
local clock. Show that (a) the time interval DtEarth = Dt(1  b cos u) and (b) the apparent 

speed of AB15 measured by observers on Earth is vapp =
DxEarth

DtEarth
=

b sin u

1 - b cos u
. (c) For 

b = 0.75, compute the value of u for which vapp = c.
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In the opening section of Chapter 1 we discussed the classical observation that, if 
Newton’s second law F 5 ma holds in a particular reference frame, it also holds in 

any other reference frame that moves with constant velocity relative to it, that is, in any 
inertial frame. As shown in Section 1-1, the Galilean transformation (Equations 1-2) 
leads to the same accelerations a =x = ax in both frames, and forces such as those due 
to stretched springs are also the same in both frames. However, according to the 
Lorentz transformation, accelerations are not the same in two such reference frames. 
If a particle has acceleration ax and velocity ux in frame S, its acceleration in S9, 
obtained by computing du =x>dt9 from Equation 1-22, is

	 a =x =
ax

g311 - vux>c223	 2-1

Thus, F>m must transform in a similar way, or else Newton’s second law, F 5 ma, 
does not hold.

It is reasonable to expect that F 5 ma does not hold at high speeds, for this equa-
tion implies that a constant force will accelerate a particle to unlimited velocity if it 
acts for a long enough time. However, if a particle’s velocity were greater than c in 
some reference frame S, we could not transform from S to the rest frame of the parti-
cle because g becomes imaginary when v  c. We can show from the velocity trans-
formation that, if a particle’s velocity is less than c in some frame S, it is less than c in 
all frames moving relative to S with v  c. This result leads us to expect that particles 
never have speeds greater than c. Thus, we expect that Newton’s second law F 5 ma 
is not relativistically invariant. We will, therefore, need a new law of motion, but one 
that reduces to Newton’s classical version when b(5 v>c) S  0, since F 5 ma is 
consistent with experimental observations when b V  1.

In this chapter we will explore the changes in classical dynamics that are 
dictated by relativity theory, directing particular attention to the same concepts 
around which classical mechanics was developed, namely mass, momentum, and 
energy. We will find these changes to be every bit as dramatic as those we encoun-
tered in Chapter 1, including a Lorentz transformation for momentum and energy 
and a new invariant quantity to stand beside the invariant spacetime interval Ds. 
Then, in the final section of the chapter, we will direct our attention to noninertial, or 
accelerated, reference frames—the theory of general relativity, Einstein’s theory of 
gravity that underlies our contemporary understanding of the origin and evolution of 
the universe.
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2-1  Relativistic Momentum 
Among the most powerful fundamental concepts that you have studied in physics 
until now have been the ideas of conservation of momentum and conservation of total 
energy. As we will discuss a bit further in Chapter 12, each of these fundamental laws 
arises because of a particular symmetry that exists in the laws of physics. For exam-
ple, the conservation of total energy in classical physics is a consequence of the sym-
metry, or invariance, of the laws of physics to translations in time. As a consequence, 
Newton’s laws work exactly the same way today as they did when he first wrote then 
down. The conservation of momentum arises from the invariance of physical laws to 
translations in space. Indeed, Einstein’s first postulate and the resulting Lorentz trans-
formation (Equations 1-18 and 1-19) guarantee this latter invariance in all inertial 
frames.

The simplicity and universality of these conservation laws leads us to seek equa-
tions for relativistic mechanics, replacing Equation 1-1 and others, that are consistent 
with momentum and energy conservation and are also invariant under a Lorentz 
transformation. However, it is straightforward to show that the momentum, as formu-
lated in classical mechanics, does not result in relativistic invariance of the law of 
conservation of momentum. To see that this is so, we will look at an isolated collision 
between two masses, where we avoid the question of how to transform forces because 
the net external force is zero. In classical mechanics, the total momentum p 5 mi ui is 
conserved. We can see that relativistically, conservation of the quantity mi ui is an 
approximation that holds only at low speeds.

Consider one observer in frame S with a ball A and another in S9 with ball B. The 
balls each have mass m and are identical when measured at rest. Each observer throws 
his ball along his y axis with speed u0 (measured in his own frame) so that the balls 
collide.1 Assuming the balls to be perfectly elastic, each observer will see his ball 
rebound with its original speed u0. If the total momentum is to be conserved, the y 
component must be zero because the momentum of each ball is merely reversed by 
the collision. However, if we consider the relativistic velocity transformation, we can 
see that the quantity muy does not have the same magnitude for each ball as seen by 
either observer.

Let us consider the collision as seen in frame S (Figure 2-1a). In this frame ball A 
moves along the y axis with velocity uyA = u0. Ball B has x component of velocity 
uxB = v and y component

	 uyB = u =yB>g = -u021 - v2>c2	 2-2

Here we have used the velocity transformation (Equation 1-22) and the facts that u =yB 
is just u0 and u =xB = 0. We see that the y component of the velocity of ball B is 
smaller in magnitude than that of ball A. The quantity (1  v2>c2)1/2 comes from the 
time dilation factor. The time taken for ball B to travel a given distance along the y 
axis in S is greater than the time measured in S9 for the ball to travel this same dis-
tance. Thus, in S the total y component of classical momentum is not zero. Since the y 
components of the velocities are reversed in an elastic collision, momentum as 
defined by p 5 mu is not conserved in S. Analysis of this problem in S9 leads to the 
same conclusion (Figure 2-1b) since the roles of A and B are simply interchanged.2 In 
the classical limit v V  c, momentum is conserved, of course, because in that limit 
g  1 and uyB  u0.

The reason for defining momentum as mu in classical mechanics is that this 
quantity is conserved when there is no external force, as in our collision example. 
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We now see that this quantity is conserved only in the approximation v V  c. We will 
define relativistic momentum p of a particle to have the following properties:

1.	 p is conserved in collisions.

2.	 p approaches mu as u>c approaches zero.

Let’s apply the first of these conditions to the collision of the two balls that we 
just discussed, noting two important points: First, for each observer in Figure 2-1, 
the speed of each ball is unchanged by the elastic collision. It is either u0 (for the 
observer’s own ball) or 1u2

y + v221>2 = u (for the other ball). Second, the failure 
of the conservation of momentum in the collision we described can’t be due to the 
velocities because we used the Lorentz transformation to find the y components. 
It must have something to do with the mass! Let us write down the conservation of 
the y component of the momentum as observed in S, keeping the masses of the two 
balls straight by writing m(u0) for the S observer’s own ball and m(u) for the S9 
observer’s ball.

	  m1u02u0 + m1u2uyB = -m1u02u0 - m1u2uyB� 2-3

	  1before collision2	 1after collision2	
Equation 2-3 can be readily rewritten as

	
m1u2
m1u02 = -  

u0

uyB
	 2-4

If u0 is small compared to the relative speed v of the reference frames, then it follows 
from Equation 2-2 that uyB 5 v and, therefore, u  v.

If we can now imagine the limiting case where u0 S  0, that is, where each ball 
is at rest in its “home” frame so that the collision becomes a “grazing” one as B moves 
past A at speed v 5 u, then we conclude from Equations 2-2 and 2-4 that in order for 
Equation 2-3 to hold, that is, for the momentum to be conserved,

	
m1u = v2
m1u0 = 02 =

u0

u021 - v2>c2
	

or

	 m1u2 =
m21 - u2>c2

	 2-5

Equation 2-5 says that the observer in S measures the mass of ball B, moving relative 
to him at speed u, as equal to 1>(1  u2>c2)1/2 times the rest mass of the ball, or its 
mass measured in the frame in which it is at rest. Notice that observers always mea-
sure the mass of an object that is in motion with respect to them to be larger than the 
value measured when the object is at rest.

Thus, we see that the law of conservation of momentum will be valid in relativ-
ity, provided that we write the momentum p of an object with rest mass m moving 
with velocity u relative to an inertial system S to be

	 p =
mu21 - u2>c2

	 2-6

The design and 
construction of large 
particle accelerators 
throughout the world, 
such as CERN’s LHC, are 
based directly on the 
relativistic expressions for 
momentum and energy.

S�

S

B

A

A

v

x�

x

y�

y

(b)

S�

S

B

v

x�

x

y�

y
u0

u0

(a)

Figure 2-1  (a) Elastic 
collision of two identical 
balls as seen in frame S. The 
vertical component of the 
velocity of ball B is u0>g in S 
if it is u0 in S9. (b) The same 
collision as seen in S9. In this 
frame ball A has vertical 
component of velocity u0>g.
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where u is the speed of the particle. We therefore take this equation as the definition 
of relativistic momentum. It is clear that this definition meets our second criterion 
because the denominator approaches 1 when u is much less than c. From this defini-
tion, the momenta of the two balls A and B in Figure 2-1 as seen in S are

pyA =
mu021 - u2

0>c2
  pyB =

muyB21 - 1u2
xB + u2

yB2 >c2

where uyB 5 u0(1 2 v2>c2)1/2 and uxB 5 v. It is similarly straightforward to show that 

pyB 5 2pyA. Because of the similarity of the factor 1>21 - u2>c2 and g in the 
Lorentz transformation, Equation 2-6 is often written

	 p = gmu with g =
121 - u2>c2

	 2-7

This use of the symbol g for two different quantities causes some confusion; the 
notation is standard, however, and simplifies many of the equations. We will use this 
notation except when we are also considering transformations between reference 
frames. Then, to avoid confusion, we will write out the factor 1>(1  u2>c2)1/2 and 
reserve g for 1>(1  v2/c2)1/2, where v is the relative speed of the frames. Figure 2-2 
shows a graph of the magnitude of p as a function of u>c. The quantity m(u) in Equa-
tion 2-5 is sometimes called the relativistic mass; however, we will avoid using the 
term or a symbol for relativistic mass: in this book m always refers to the mass mea-
sured in the rest frame of the mass. In this we are following Einstein’s view. In a letter 
to a colleague in 1948 he wrote:3

It is not good to introduce the concept of mass M 5 m/(1  v 2/c 2)1/2 of a 
body for which no clear definition can be given. It is better to introduce 
no other mass than “the rest mass” m. Instead of introducing M, it is 
better to mention the expression for the momentum and energy of a 
body in motion.

Figure 2-2  Relativistic momentum as given by 
Equation 2-6 versus u>c, where u 5 speed of the 
object relative to an observer. The magnitude of 
the momentum p is plotted in units of mc. The 
fainter dashed line shows the classical momentum 
mu for comparison.
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EXAMPLE 2-1	 Measured Values of Mass Moving Relative to an Observer ​
For what value of u>c will the mass of an object measured by an observer, gm, 
exceed the rest mass m by a given fraction f ?

SOLUTION
From Equation 2-5 we see that

f =
gm - m

m
= g - 1 =

121 - u2>c2
- 1

Solving for u>c,

1 - u2>c2 =
1

1  f + 122
S u2>c2 = 1 -

1

1  f + 122

or

u>c =
2f1  f + 22

f + 1

from which we can compute the table of values below or the value of u>c for 
any other f. Note that the value of u>c that results in a given fractional increase f 
in the measured value of the mass is independent of m. A diesel locomotive mov-
ing at a particular u>c will be observed to have the same f as a proton moving 
with that u>c.

	

f u>c Example

1012 1.4  106 jet fighter aircraft

5 3 109 0.0001 Earth’s orbital speed

0.0001 0.014 50 eV electron

0.01 (1%) 0.14 quasar 3C273

1.0 (100%) 0.87 quasar 0Q172

10 0.996 muons from cosmic rays

100 0.99995 some cosmic-ray protons
	

EXAMPLE 2-2	 Momentum of a Rocket ​ A high-speed interplanetary probe 
with a mass m 5 50,000 kg has been sent toward Pluto at a speed u 5 0.8c. What is 
its momentum as measured by Mission Control on Earth? If, preparatory to landing 
on Pluto, the probe’s speed is reduced to 0.4c, by how much does its momentum 
change?

SOLUTION
	 1.	 Assuming that the probe travels in a straight line toward Pluto, its momentum 

along that direction is given by Equation 2-6:

	  p =
mu21 - u2>c2

=
150,000 kg2 10.8c221 - 10.8c22>c2

	

	  = 6.7 * 104c # kg = 2.0 * 1013 kg # m>s	
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	 2.	 When the probe’s speed is reduced, the momentum declines along the relativis-
tic momentum curve in Figure 2-2. The new value is computed from the ratio:

 
p0.4c

p0.8c
=

m10.4c2 >21 - 10.422

m10.8c2 >21 - 10.822

 =
1

2

21 - 10.82221 - 10.422

= 0.33

	 3.	 The reduced momentum p0.4c is then given by

 p0.4c = 0.33p0.8c

 = 10.332 16.7 * 104c # kg2
 = 2.2 * 104c # kg

 = 6.6 * 1012 kg # m>s

Remarks:  Notice from Figure 2-2 that the incorrect classical value of p0.8c 
would have been 4.0  104c # kg. Also, while the probe’s speed was decreased to 
one-half its initial value, the momentum was decreased to one-third of the initial 
value.

Question

1.	 In our discussion of the inelastic collision of balls A and B, the collision was 
a “grazing” one in the limiting case. Suppose instead that the collision is a 
“head-on” one along the x axis. If the speed of S9 (i.e., ball B) is low, say, 
v 5 0.1c, what would a spacetime diagram of the collision look like?

2-2  Relativistic Energy 
As noted in the preceding section, the fundamental character of the principle of con-
servation of total energy leads us to seek a definition of total energy in relativity that 
preserves the invariance of that conservation law in transformations between inertial 
systems. As with the definition of the relativistic momentum, Equation 2-6, we will 
require that the relativistic total energy E satisfy two conditions:

1.	 The total energy E of any isolated system is conserved.

2.	 E will approach the classical value when u>c approaches zero.

Let us first find a form for E that satisfies the second condition and then see if it 
also satisfies the first. We have seen that the quantity mu is not conserved in colli-
sions but that gmu is, with g 5 1>(1  u2>c2)1/2. We have also noted that Newton’s 
second law in the form F 5 ma cannot be correct relativistically, one reason being 
that it leads to the conservation of mu. We can get a hint of the relativistically correct 
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form of the second law by writing it F 5 dp>dt. This equation is relativistically cor-
rect if relativistic momentum p is used. We thus define the force in relativity to be

	 F =
dp

dt
=

d1gmu2
dt

	 2-8

Now, as in classical mechanics, we will define kinetic energy Ek as the work done by 
a net force in accelerating a particle from rest to some velocity u. Considering motion 
in one dimension only, we have

	 Ek = L
 u

u=0 

F dx = L
 u

0

d1gmu2
dt

 dx = L
 u

0

u d1gmu2	

using u 5 dx>dt. The computation of the integral in this equation is not difficult but 
requires a bit of algebra. It is left as an exercise (Problem 2-2) to show that

	 d1gmu2 = ma1 -
u2

c2 b
-3>2

du	

Substituting this into the integrand of the equation for Ek above, we obtain

 Ek = L
 u

0

u d1gmu2 = L
 u

0

ma1 -
u2

c2 b
-3>2

u du

 = mc2a 121 - u2>c2
- 1b

or

	 Ek = gmc2 - mc2	 2-9

Equation 2-9 defines the relativistic kinetic energy. Notice that, as we warned earlier, 
Ek is not mu2>2 or even gmu2>2. This is strikingly evident in Figure 2-3. However, 
consistent with our second condition on the relativistic total energy E, Equation 2-9 

Aerial view of the Jefferson Laboratory’s 
Continuous Electron Beam Accelerator 
Facility (CEBAF) in Virginia. The dashed 
line indicates the location of the 
underground accelerator, where electrons 
are accelerated to 6 GeV, reaching speeds 
of more than 99.99 percent of the speed of 
light. The circles outline the experiment 
halls, also underground. [Thomas Jefferson 
National Accelerator Facility/U.S. 
Department of Energy.]
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does approach mu2>2 when u V  c. We can check this assertion by noting that for 
u>c V  1, expanding g by the binomial theorem yields

	 g = a1 -
u2

c2 b
-1>2

= 1 +
1

2
 
u2

c2 + g 	

and thus

	 Ek = mc2a1 +
1

2
 
u2

c2 + g -1b 
1

2
 mu2	

The expression for kinetic energy in Equation 2-9 consists of two terms. One 
term, gmc2, depends on the speed of the particle (through the factor g), and the other 
term, mc2, is independent of the speed. The quantity mc2 is called the rest energy of 
the particle, that is, the energy associated with the rest mass m. The relativistic total 
energy E is then defined as the sum of the kinetic energy and the rest energy.

	 E = Ek + mc2 = gmc2 =
mc221 - u2>c2

	 2-10

Thus, the work done by a net force increases the energy of the system from the rest 
energy mc2 to gmc2 (or increases the measured value of the moving mass from m to gm).

For a particle at rest relative to an observer, Ek 5 0, Equation 2-10 becomes 
perhaps the most widely recognized equation in all of physics, Einstein’s famous 
E 5 mc2. When u 5 c, Equation 2-10 can be written as

	 E 
1

2
 mu2 + mc2	

Before the development of relativity theory it was thought that mass was a 
conserved quantity;4 consequently, m would always be the same before and after an 
interaction or event and mc2 would therefore be constant. Since the zero of energy is 
arbitrary, we are always free to include an additive constant; therefore, our definition 
of the relativistic total energy reduces to the classical kinetic energy for u 5 c and our 
second condition on E is thus satisfied.5

Figure 2-3  Experimental confirmation of the 
relativistic relation for kinetic energy. Electrons were 
accelerated to energies up to several MeV in large 
electric fields and their velocities were determined 
by measuring their time of flight over 8.4 m. Note 
that when the velocity u V c, the relativistic 
and nonrelativistic (i.e., classical) relations are 
indistinguishable. [W. Bertozzi, American Journal of 
Physics, 32, 551 (1964).]
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Be very careful to understand Equation 2-10 correctly. It defines the total energy 
E, and E is what we are seeking to conserve for isolated systems in all inertial frames, 
not Ek and not mc2. Remember, too, the distinction between conserved quantities and 
invariant quantities. The former have the same value before and after an interaction in 
a particular reference frame. The latter have the same value when measured by 
observers in different reference frames. Thus, we are not requiring observers in rela-
tively moving inertial frames to measure the same values for E, but rather that E be 
unchanged in interactions as measured in each frame. To assist us in showing that E 
as defined by Equation 2-10 is conserved in relativity, we will first see how E and p 
transform between inertial reference frames.

Lorentz Transformation of E and p
Consider a particle of rest mass m that has an arbitrary velocity u with 
respect to frame S as shown in Figure 2-4. System S9 is a second iner-
tial frame moving in the +x direction. The particle’s momentum and 
energy are given in the S and S9 systems, respectively, by

In S:

 E = gmc2

	  px = gmux
� 2-11

 py = gmuy

 pz = gmuz

where

g = 1>21 - u2>c2

In S9:

 E9 = g9 mc2

 p =x = g9 mu =x
� 2-12 p =y = g9 mu =y

 p =z = g9 mu =z

where

g9 = 1>21 - u92>c2

Developing the Lorentz transformation for E and p requires that we first express g9 in 
terms of quantities measured in S. (We could just as well express g in terms of primed 
quantities. Since this is relativity, it makes no difference which we choose.) The result is

	
121 - u92>c2

= g
11 - vux>c2221 - u2>c2

 where now g =
121 - v2>c2

	 2-13

Substituting Equation 2-13 into the expression for E9 in Equation 2-12 yields

E9 =
mc221 - u92>c2

= g c mc221 - u2>c2
-

mc2vux>c221 - u2>c2
d

The first term in the brackets you will recognize as E and the second term, canceling 
the c2 factors in the numerator, as vpx from Equation 2-11. Thus, we have

	 E9 = g1E - vpx2	 2-14

Figure 2-4  Particle of mass m moves with 
velocity u measured in S. System S9 moves
in the +x direction at speed v. The Lorentz 
velocity transformation makes possible 
determination of the relations connecting 
measurements of the total energy and the 
components of the momentum in the two 
frames of reference.

y�S S�

z

y

u

x, x�

z�

v
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Similarly, substituting Equation 2-13 and the velocity transformation for u =x into the 
expression for p =x in Equations 2-12 yields

p =x =
mu =x21 - u92>c2

= g c mux21 - u2>c2
-

mv21 - u2>c2
d

The first term in the brackets is px from Equation 2-11, and, since m(1  u2>c2)1/2 5 
E>c2, the second term is vE>c2. Thus, we have

	 p =x = g1px - vE>c22	 2-15

Using the same approach, it can be shown (Problem 2-48) that

	 p =y = py  and  p =z = pz	

Together these relations are the Lorentz transformation for momentum and energy:

		

	

 p =x = g1px - vE>c22   p =y = py

 E9 = g1E - vpx2     p =z = pz

	 2-16

The inverse transformation is

		

	

 px = g1p =x + vE9>c22  py = p =y

 E = g1E9 + vp =x2    pz = p =z 	
2-17

with

g =
121 - v2>c2

=
121 - b2

Note the striking similarity between Equations 2-16 and 2-17 and the Lorentz trans-
formation of the space and time coordinates, Equations 1-18 and 1-19. The momen-
tum p(px, py, pz) transforms in relativity exactly like r(x, y, z), and the total energy E 
transforms like the time t. We will return to this remarkable result and related mat-
ters shortly, but first let’s do some examples and then, as promised, show that the 
energy as defined by Equation 2-10 is conserved in relativity.

EXAMPLE 2-3	 Transforming Energy and Momentum ​ Suppose a micromete-
orite of mass 109 kg moves past Earth at a speed of 0.01c. What values will be 
measured for the energy and momentum of the particle by an observer in a system 
S9 moving relative to Earth at 0.5c in the same direction as the micrometeorite?

SOLUTION
Taking the direction of the micrometeorite’s travel to be the x axis, the energy and 
momentum as measured by the Earth observer are, using the u V  c approximation 
of Equation 2-10:

 E 
1

2
 mu2 + mc2 = 10-9 kg3 10.01c22>2 + c24

 E  1.00005 * 10-9c2 J
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S

y
m

u

x

α

Figure 2-5  The system 
discussed in Example 2-4.

and

px = mux = 110-9 kg2 10.01c2 = 10-11c kg # m>s
For this situation g 5 1.1547, so in S9 the measured values of the energy and 
momentum will be

 E9 = g1E - vpx2 = 11.15472 31.00005 * 10-9c2 - 10.5c2 110-11c2 4
 E9 = 11.15472 11.00005 * 10-9 - 0.5 * 10-112c2

 E9 = 1.14898 * 10-9c2 J

and

 p =x = g1px - vE>c22 = 11.15472 310-11c - 10.5c2 11.00005 * 10-9c22 >c24
 p =x = 11.15472 110-11 - 5.00025 * 10-102c
 p =x = -5.66 * 10-10c kg # m>s = -56.6 * 10-11c kg # m>s

Thus, the observer in S9 measures a total energy nearly 15 percent larger and a 
momentum more than 50 times greater and in the x direction.

EXAMPLE 2-4	 More Difficult Lorentz Transformation of Energy ​ Suppose 
that a particle with mass m and energy E is moving toward the origin of a system 
S such that its velocity u makes an angle a with the y axis as shown in Figure 2-5.
Using the Lorentz transformation for energy and momentum, determine the 
energy E9 of the particle measured by an observer in S9, which moves relative to 
S so that the particle moves along the y9 axis.

SOLUTION
System S9 moves in the x direction at speed u sin a, as determined from the 
Lorentz velocity transformation for u =x = 0. Thus, v 5 u sin a. Also,

E = mc2>21 - u2>c2  p = mu>21 - u2>c2

and from the latter,

px = - 1mu>21 - u2>c22sin a

In S9 the energy will be

 E9 = g1E - vpx2

 =
121 - v2>c2

3E - 1u sin a2 1-mu>21 - v2>c22sin a4

 =
121 - u2 sin2 a>c2

3E - 1m>21 - u2>c22u2 sin2 a4
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Multiplying the second term in the brackets by c2>c2 and factoring an E from both 
terms yields

E9 = E21 - 1u2>c22sin2 a

Since u , c and sin2 a  1, we see that E9 , E, except for a 5 0 when E9 5 E, 
in which case S and S9 are the same system. Note, too, that for a . 0, if u S  c, 
E9  S  E cos a. As we will see later, this is the case for light.

Question

2.	 Recalling the results of the measurements of time and space intervals by 
observers in motion relative to clocks and measuring rods, discuss the results 
of corresponding measurements of energy and momentum changes.

Conservation of Energy
As with our discussion of momentum conservation in relativity, let us consider a col-
lision of two identical particles, each with rest mass m. This time, for a little variety, 
we will let the collision be completely inelastic—that is, when the particles collide, 
they stick together. There is a system S9, called the zero momentum frame, in which 
the particles approach each other along the x9 axis with equal speeds u—hence equal 
and opposite momenta—as illustrated in Figure 2-6a. In this frame the collision 
results in the formation of a composite particle of mass M at rest in S9. If S9 moves 
with respect to a second frame S at speed v 5 u in the x direction, then the particle on 

Figure 2-6  Inelastic collision 
of two particles of equal rest 
mass m. (a) In the zero 
momentum frame S9 the particles 
have equal and opposite 
velocities and, hence, momenta. 
After the collision the composite 
particle of mass M is at rest in S9.
The diagram on the far right is 
the spacetime diagram of the 
collision from the viewpoint 
of S9. (b) In system S the frame 
S9 is moving to the right at speed 
u so that the particle on the right 
is at rest in S, while the left one 
moves at 2u>(1 + u2>c2). After 
collision, the composite particle 
moves to the right at speed u. 
Again, the spacetime diagram of 
the interaction is shown on the 
far right. All diagrams are drawn 
with the collision occurring at 
the origin.
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the right before the collision will be at rest in S and the composite particle will move 
to the right at speed u in that frame. This situation is illustrated in Figure 2-6b.

Using the total energy as defined by Equation 2-10, we have in S9:

Before collision:

 E =
before =

mc221 - u2>c2
+

mc221 - u2>c2

 =
2mc221 - u2>c2

� 2-18

After collision:

	 E =
after = Mc2� 2-19

Energy will be conserved in S9 if E =
before = E =

after, that is, if

	
2mc221 - u2>c2

= Mc2� 2-20

This is ensured by the validity of conservation of momentum, in particular by Equa-
tion 2-5, and so energy is conserved in S9. (The validity of Equation 2-20 is important 
and not trivial. We will consider it in more detail in Example 2-7.) To see if energy as 
we have defined it is also conserved in S, we transform to S using the inverse trans-
form, Equation 2-17. We then have in S:

Before collision:

	  Ebefore = g1E =
before + vp =x2	

	  Ebefore = ga 2mc221 - u2>c2
+ up =xb 	

	  Ebefore = a 2mc221 - u2>c2
b since p =x = 0	 2-21

After collision:

	 Eafter = g1Mc2 + up =x2 = gMc2 since again p =x = 0	 2-22

The energy will be conserved in S and, therefore, the law of conservation of energy 
will hold in all inertial frames if Ebefore 5 Eafter, that is, if

	 ga 2mc221 - u2>c2
b = gMc2	 2-23

which, like Equation 2-20, is ensured by Equation 2-5. Thus, we conclude that the energy 
as defined by Equation 2-10 is consistent with a relativistically invariant law of conserva-
tion of energy, satisfying the first of the conditions set forth at the beginning of this sec-
tion. While this demonstration has not been a general one, that being beyond the scope of 
our discussions, you may be assured that our conclusion is quite generally valid.

Question

3.	 Explain why the result of Example 2-4 does not mean that energy conservation 
is violated.
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EXAMPLE 2-5	 Mass of Cosmic-Ray Muons ​ In Chapter 1, muons produced 
as secondary particles by cosmic rays were used to illustrate both the relativis-
tic length contraction and time dilation resulting from their high speed relative 
to observers on Earth. That speed is about 0.998c. If the rest energy of a muon 
is  105.7 MeV, what will observers on Earth measure for the total energy of a 
cosmic-ray-produced muon? What will they measure for its mass as it moves rela-
tive to them?

SOLUTION
The electron volt (eV), the amount of energy acquired by a particle with electric 
charge equal in magnitude to that on an electron (e) accelerated through a potential 
difference of 1 volt, is a convenient unit in physics, as you may have learned. It is 
defined as

	 1.0 eV = 1.602 * 10-19 C * 1.0 V = 1.602 * 10-19 J	 2-24

Commonly used multiples of the eV are the keV (103 eV), the MeV (106 eV), the 
GeV (109 eV), and the TeV (1012 eV). Many experiments in physics involve the 
measurement and analysis of the energy and/or momentum of particles and sys-
tems of particles, and Equation 2-10 allows us to express the masses of particles in 
energy units rather than the SI unit of mass, the kilogram. That and the convenient 
size of the eV facilitate6 numerous calculations. For example, the mass of an elec-
tron is 9.11  1031 kg. Its rest energy is given by

E = mc2 = 9.11 * 10-31 kg # c2 = 8.19 * 10-14 J

or

E = 8.19 * 10-14 J *
1

1.602 * 10-19 J>eV
= 5.11 * 105 eV

or

E = 0.511 MeV rest energy of the electron

The mass of the particle is often expressed with the same number thus:

m =
E

c2 = 0.511 MeV>c2 mass of the electron

Now, applying the above to the muons produced by cosmic rays, each has a total 
energy E given by

 E = gmc2 =
121 - 10.998c22>c2

* 105.7  
MeV

c2 * c2

 E = 1670 MeV

and a mass as measured by Earth observers (see Equation 2-5) of

gm = E>c2 = 1670 MeV>c2

The dependence of the measured mass on the speed of the particle has been verified 
by numerous experiments. Figure 2-7 illustrates a few of those results.
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Figure 2-7  A few of the many experimental 
measurements of the mass of electrons as a 
function of their speed u>c. The data points are 
plotted onto Equation 2-5, the solid line. The data 
points represent the work of Kaufmann (, 1901), 
Bucherer (D, 1908), and Bertozzi (, 1964). Note 
that Kaufmann’s work preceded the appearance of 
Einstein’s 1905 paper on special relativity. 
Kaufmann used an incorrect mass for the electron 
and interpreted his results as support for classical 
theory. [Adapted from Figure 3-4 in R. Resnick 
and D. Halliday, Basic Concepts in Relativity and 
Early Quantum Theory, 2d ed. (New York: 
Macmillan, 1992).]
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EXAMPLE 2-6	 Change in the Solar Mass ​ Compute the rate at which the Sun is 
losing mass, given that the mean radius R of Earth’s orbit is 1.5 3 108 km and the 
intensity of solar radiation at Earth (called the solar constant) is 1.36 3 103 W/m2.

SOLUTION
	 1.	 The conversion of mass into energy, a consequence of conservation of energy 

in relativity, is implied by Equation 2-10. With u 5 0, that equation becomes

E = mc2

	 2.	 Assuming that the Sun radiates uniformly over a sphere of radius R, the total 
power radiated by the Sun is given by

 P = 1area of the sphere2 1solar constant2
 = 14pR22 11.36 * 103 W>m22
 = 4p11.50 * 1011 m2211.36 * 103 W>m22
= 3.85 * 1026 J>s

	 3.	 Thus, every second the Sun emits 3.85 3 1026 J, which, from Equation 2-10, is 
the result of converting an amount of mass given by

 m = E>c2

 =
3.85 * 1026 J

13.00 * 108 m>s22

 = 4.3 * 109 kg

Remarks:  Thus, the Sun is losing 4.3 3 109 kg of mass (about 4 million metric tons) 
every second! If this rate of mass loss were to remain constant (which it will for 
the next few billion years) and considering the fusion mass-to-energy conversion 
efficiency of about 1 percent, the Sun’s present mass of about 2.0 3 1030 kg would 
“only” last for about 1011 more years!
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Exploring
Another Surprise

One consequence of the fact that Newton’s second law F 5 ma is not relativistically 
invariant is yet another surprise—the lever paradox. Consider a lever of mass m at rest 
in S (see Figure 2-8). Since the lever is at rest, the net torque tnet due to the forces Fx 
and Fy is zero, that is (using magnitudes):

tnet = tx + ty = -Fx b + Fy a = 0

and, therefore,

Fx b = Fy a

An observer in system S9 moving with b 5 0.866 (g 5 2) with respect to S sees the 
lever moving in the x9 direction and measures the torque to be

 t=net = t=x + t=y = -F =
x b9 + F =

y a = -Fx b + 1Fy>22 1a>22
 = -Fx b + -Fx b>4 = - 13>42Fx b  0

where F =
x = Fx and F =

y = Fy>2 (see Problem 2-55) and the lever is rotating!
The resolution of the paradox was first given by the German physicist Max von 

Laue (1879–1960). Recall that the net torque is the rate of change of the angular 
momentum L. The S9 observer measures the work done per unit time by the two forces as

For F =
x:          -F =

x v = -Fx v
For F =

y:          zero, since F =
y is perpendicular to the motion

and the change in mass Dm per unit time of the moving lever as

Dm

Dt9
=

DE>c2

 Dt9
=

1

c2 
DE

Dt9
= -  

1

c2Fx v

Figure 2-8  (a) A lever in the xy plane of system S is free to rotate about the pin P but is 
held at rest by the two forces Fx and Fy. (b) The same lever as seen by an observer in S9, 
which is moving with instantaneous speed v in the +x direction. For the S9 observer the 
lever is moving in the x9 direction.
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The S9 observer measures a change in the magnitude of angular momentum per unit 
time given by

t=net =
DL9

Dt9
= bv 

-Fx v

c2 = -bFx

v2

c2 = -bFx b2 = -  
3

4
Fx b

As a result of the motion of the lever relative to S9, an observer in that system sees the 
force F =

x doing net work on the lever, thus changing the angular momentum over time, 
and the paradox vanishes. (The authors thank Costas Efthimiou for bringing this para-
dox to our attention.)

2-3  �Mass/Energy Conversion and
Binding Energy 

The identification of the term mc2 as rest energy is not merely a conve-
nience. Whenever additional energy DE in any form is stored in an 
object, the mass of the object is increased by DE>c2. This is of particu-
lar importance whenever we want to compare the mass of an object 
that can be broken into constituent parts with the mass of the parts (for 
example, an atom containing a nucleus and electrons, or a nucleus 
containing protons and neutrons). In the case of the atom, the mass 
changes are usually negligibly small (see Example 2-8). However, the 
difference between the mass of a nucleus and that of its constituent 
parts (protons and neutrons) is often of great importance.

As an example, consider Figure 2-9a, in which two particles, each 
with mass m, are moving toward each other with speeds u. They col-
lide with a spring that compresses and locks shut. (The spring is 
merely a device for visualizing energy storage.) In the Newtonian 
mechanics description, the original kinetic energy Ek 5 2(½ mu2) is 
converted into potential energy of the spring U. When the spring is 
unlocked, the potential energy reappears as kinetic energy of the par-
ticles. In relativity theory, the internal energy of the system, Ek 5 U, 
appears as an increase in the rest mass of the system. That is, the mass 
of the system M is now greater than 2m by Ek/c

2. (We will derive this 
result in the next example.) This change in mass is too small to be 
observed for ordinary-size masses and springs, but it is easily observed 
in transformations that involve nuclei. For example, in the fission of 
a 235U nucleus, the energy released as kinetic energy of the fission 
fragments is an appreciable fraction of the rest energy of the original 
nucleus (see Example 11-19). This energy can be calculated by measuring the differ-
ence between the mass of the original system and the total mass of the fragments. 
Einstein was the first to point out this possibility in 1905, even before the discovery 
of the atomic nucleus, at the end of a very short paper that followed his famous arti-
cle on relativity.7 After deriving the theoretical equivalence of energy and mass,
he wrote:

It is not impossible that with bodies whose energy content is variable 
to a high degree (e.g., with radium salts) the theory may be successfully 
put to the test.

The relativistic conversion 
of mass into energy 
is the fundamental 
energy source in the 
nuclear-reactor-based 
systems that produce 
electricity in 30 nations 
and in large naval vessels 
and nuclear submarines.

Figure 2-9  Two objects colliding with a 
massless spring that locks shut. The total rest 
mass of the system M is greater than that of 
the parts 2m by the amount Ek>c2, where Ek 
is the internal energy, which in this case is 
the original kinetic energy. (a) The event as 
seen in a reference frame S in which the final 
mass M is at rest. (b) The same event as seen 
in a frame S9 moving to the right at speed u 
relative to S, so that one of the initial masses 
is at rest.
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EXAMPLE 2-7	 Change in the Rest Mass of the Two-Particle and Spring 
System of Figure 2-9 ​ Derive the increase in the rest mass of a system of two 
particles in a totally inelastic collision. Let m be the mass of each particle so that the 
total mass of the system is 2m when the particles are at rest and far apart, and let M 
be the rest mass of the system when it has internal energy Ek. The original kinetic 
energy in the reference frame S (Figure 2-9a) is

	 Dm =
Ek

c2 = 2m1g - 12	 2-25

SOLUTION
In a perfectly inelastic collision, momentum conservation implies that both par-
ticles are at rest after collision in this frame, which is the center-of-mass frame. The 
total kinetic energy is therefore lost. We wish to show that, if momentum is to be 
conserved in any reference frame moving with a constant velocity relative to S, the 
total mass of the system must increase by Dm, given by

	 Dm =
Ek

c2 = 2m1g - 12	 2-26

We therefore wish to show that the total mass of the system with internal energy is 
M, given by

	 M = 2m + Dm = 2gm	 2-27

To simplify the mathematics, we chose a second reference frame S9 moving to the 
right with speed v 5 u relative to frame S so that one of the particles is initially at rest, 
as shown in Figure 2-9b. The initial speed of the other particle in this frame is 

	 u9 =
u - v

1 - uv>c2 =
-2u

1 + u2>c2	 2-28

After collision, the particles move together with speed u toward the left (since they 
are at rest in S). The initial momentum in S9 is 

p =i =
mu921 - u92>c2

 to the left

The final momentum is

p =f =
Mu21 - u2>c2

 to the left

Using Equation 2-28 for u9, squaring, dividing by c2, and adding 1 to both sides 
gives

1 -
u92

c2 = 1 -
4u2>c2

11 + u2>c222 =
11 - u2>c222

11 + u2>c222

Then

p =i =
m32u> 11 + u2>c22 4

11 - u2>c22 > 11 + u2>c22 =
2mu

11 - u2>c22
Conservation of momentum in frame S9 requires that p =f = p =i, or

	
Mu21 - u2>c2

=
2mu

1 - u2>c2	
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Solving for M, we obtain

	 M =
2m21 - u2>c2

= 2gm	

which is Equation 2-27. Thus, the measured value of M would be 2gm.

If the latch in Figure 2-9b were to suddenly come unhooked, the two particles 
would fly apart with equal momenta, converting the rest mass Dm back into kinetic 
energy. The derivation is similar to that in Example 2-7.

Mass and Binding Energy
When a system of particles is held together by attractive forces, energy is required to 
break up the system and separate the particles. The magnitude of this energy Eb is 
called the binding energy of the system. An important result of the special theory of 
relativity, which we will illustrate by example in this section, is

The mass of a bound system is less than that of the separated particles 
by Eb/c2, where Eb is the binding energy.

In atomic and nuclear physics, masses and energies are typically given in atomic 
mass units (u) and electron volts (eV) rather than in standard SI units of kilograms 
and joules. The u is related to the corresponding SI units by

	 1 u = 1.66054 * 10-27 kg = 931.494 MeV>c2	 2-29

(The eV was defined in terms of the joule in Equation 2-24.) The rest energies of some 
elementary particles and a few light nuclei are given in Table 2-1, from which you can 
see by comparing the sums of the masses of the constituent particles with the nuclei 
listed that the mass of a nucleus is not the same as the sum of the masses of its parts.

 Table 2-1 � Rest energies of some elementary particles
and light nuclei

Particle Symbol Rest energy (MeV)

Photon g 0

Neutrino (antineutrino) n1n2 ,1 3 106

Electron (positron) e or e (e+) 0.5110

Muon mm+ 105.7

Pi mesons (pions) p (p0) p+ 139.6 (135) 139.6

Proton p 938.272

Neutron n 939.565

Deuteron 2H or d 1875.613

Helion 3He or h 2808.391

Alpha 4He or a 3727.379
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Binding Energy of the Deuteron
The simplest example of nuclear binding energy is that of the deuteron 2H, which 
consists of a neutron and a proton bound together. Its rest energy is 1875.613 MeV. 
The sum of the rest energies of the proton and neutron is 938.272 + 939.565 5 
1877.837 MeV. Since this is greater than the rest energy of the deuteron, the deuteron 
cannot spontaneously break up into a neutron and a proton without violating conser-
vation of energy. The binding energy of the deuteron is 1877.837  1875.613 5 
2.224 MeV. In order to break up a deuteron into a proton and a neutron, at least 
2.224 MeV must be added. This can be done by bombarding deuterons with energetic 
particles or electromagnetic radiation. If a deuteron is formed by combination of a 
neutron and a proton, the same amount of energy is released.

EXAMPLE 2-8	 Binding Energy of the Hydrogen Atom ​ The binding energies 
of atomic electrons to the nuclei of atoms are typically of the order of 106 times 
those characteristic of particles in the nuclei; consequently, the mass differences 
are correspondingly smaller. The binding energy of the hydrogen atom (the energy 
needed to remove the electron from the atom) is 13.6 eV. How much mass is lost 
when an electron and a proton form a hydrogen atom?

SOLUTION
The mass of the proton plus that of the electron must be greater than that of the 
hydrogen atom by 

13.6 eV

931.5 MeV>u = 1.46 * 10-8 u

This mass difference is so small that it is usually neglected.

2-4  Invariant Mass 
In Chapter 1 we discovered that, as a consequence of Einstein’s relativity postu-
lates, the coordinates for space and time are linearly dependent on one another in 
the Lorentz transformation, which connects measurements made in different inertial 
reference frames. Thus, the time t became a coordinate, in addition to the space 
coordinates x, y, and z, in the four-dimensional relativistic “world” that we call 
spacetime. We note in passing that the geometry of spacetime was not the familiar 
Euclidean geometry of our three-dimensional world, but the four-dimensional 
Lorentz geometry. The difference became apparent when one compared the compu-
tation of the distance r between two points in space with that of the interval between 
two events in spacetime. The former is, of course, the vector r, whose magnitude is 
given by r2 5 x2 + y2 + z2. The vector r is unchanged (invariant) under a Galilean 
transformation in space, and quantities that transform like r are also vectors. The 
latter we called the spacetime interval Ds, and its magnitude, as we have seen, is 
given by

	 (Ds)2 = (c Dt)2 - [(Dx)2 + (Dy)2 + (Dz)2]	 2-30

The interval Ds is the four-dimensional analog of r and, therefore, is called a four 
vector. Just as x, y, and z are the components of the three vector r, the components of 
the four vector Ds are Dx, Dy, Dz, and c Dt. We have seen that Ds is also invariant under 
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a Lorentz transformation in spacetime. Correspondingly, any quantity that transforms 
like Ds—that is, is invariant under a Lorentz transformation—will also be a four 
vector. The physical significance of the invariant interval Ds is quite profound: for 
timelike intervals Ds>c 5 t (the proper time interval), for spacelike intervals Ds 5 Lp 
(the proper length), and the proper intervals could be found from measurements made 
in any inertial frame.8

In the relativistic energy and momentum we have components of another four 
vector. In the preceding sections we saw that the momentum and energy, defined by 
Equations 2-6 and 2-10, respectively, were not only both conserved in relativity, 
but also together satisfied the Lorentz transformation, Equations 2-16 and 2-17, 
with the components of the momentum p(px, py, pz) transforming like the space 
components of r(x, y, z) and the energy transforming like the time t. The questions 
then are, What invariant four vectors are they components of ? and, What is its 
physical significance? The answers to both turn out to be easy to find and yield for 
us yet another relativistic surprise. By squaring Equations 2-6 and 2-10, you can 
readily verify that 

	 E2 = 1pc22 + 1mc222	 2-31

This very useful relation we will rearrange slightly to

	 1mc222 = E2 - 1pc22 	 2-32

Comparing the form of Equation 2-32 with that of Equation 2-30 and knowing that 
E and p transform according to the Lorentz transformation, we see that the magnitude 
of the invariant energy-momentum four vector is the rest energy of the mass m! Thus, 
observers in all inertial frames will measure the same value for the rest energy of 
isolated systems and, since c is constant, the same value for the mass. Note that 
only  in the rest frame of the mass m, that is, the frame where p 5 0, are the rest 
energy and the total energy equal. Even though we have written Equation 2-31 for a 
single particle, we could as well have written the equations for momentum and 
energy in terms of the total momentum and total energy of an entire ensemble of 
non-interacting particles with arbitrary velocities. We would only need to write 
down Equations 2-6 and 2-10 for each particle and add them. Thus, the Lorentz 
transformation for momentum and energy, Equations 2-16 and 2-17, holds for any 
system of particles, and so, therefore, does the invariance of the rest energy expressed 
by Equation 2-32.

We can state all of this more formally by saying that the kinematic state of the 
system is described by the four vector Ds where 

(Ds)2 = (c Dt)2 - [(Dx)2 + (Dy)2 + (Dz)2]

and its dynamic state is described by the energy-momentum four vector mc2, given by

1mc222 = E2 - 1pc22

The next example illustrates how this works.

EXAMPLE 2-9	 Rest Mass of Moving Object ​ A particular object is observed to 
move through the laboratory at high speed. Its total energy and the components of 
its momentum are measured by lab workers to be (in SI units) E 5 4.5 3 1017 J, 
px 5 3.8 3 108 kg # m/s, py 5 3.0 3 108 kg # m/s, and pz 5 3.0 3 108 kg # m/s. What 
is the object’s rest mass?
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SOLUTION A
From Equation 2-32 we can write

 (mc2)2 = (4.5 * 1017)2 - [(3.8 * 108c)2 + (3.0 * 108c)2 + (3.0 * 108c)2]

 = (4.5 * 1017)2 - [1.4 * 1017 + 9.0 * 1016 + 9.0 * 1016]c2

 = 2.0 * 1035 - 2.9 * 1034

 = 1.74 * 1035

 m = 11.74 * 103521>2>c2 = 4.6 kg

SOLUTION B
A slightly different but sometimes more convenient calculation that doesn’t involve 
carrying along large exponentials makes use of Equation 2-32 divided by c4:

	 m2 = a E

c2 b
2

- a p

c
b

2

	 2-33

Notice that this is simply a unit conversion, expressing each term in (mass)2 units—
for example, kg2 when E and p are in SI units:

 m2 = a 4.5 * 1017

c2 b
2

- c a 3.8 * 108

c
b

2

+ a 3.0 * 108

c
b

2

+ a 3.0 * 108

c
b

2

d

 = (5.0)2 - [(1.25)2 + (1.0)2 + (1.0)2]

 = 25 - 3.56

 m = 121.421>2 = 4.6 kg

In the example, we determined the rest energy and mass of a rapidly moving 
object using measurements made in the laboratory without the need to be in the 
system in which the object was at rest. This ability is of enormous benefit to 
nuclear, particle, and astrophysicists, whose work regularly involves particles 
moving at speeds close to that of light. For particles or objects whose rest mass 
is known, we can use the invariant magnitude of the energy/momentum four 
vector to determine the values of other dynamic variables, as illustrated in the next 
example.

EXAMPLE 2-10	 Speed of a Fast Electron ​ The total energy of an electron pro-
duced in a particular nuclear reaction is measured to be 2.40 MeV. Find the elec-
tron’s momentum and speed in the laboratory frame. (The rest mass of an electron 
is 9.11 3 1031 kg and its rest energy is 0.511 MeV.)

SOLUTION
The magnitude of the momentum follows immediately from Equation 2-31:

	  pc = 2E2 - 1mc222 = 212.40 MeV22 - 10.511 MeV22	

	  = 2.34 MeV	

	  p = 2.34 MeV>c	
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where we have again made use of the convenience of the eV as an energy unit. The 
resulting momentum unit MeV/c can be readily converted to SI units by converting 
the MeV to joules and dividing by c, that is,

	 1 MeV>c =
1.602 * 10-13 J

2.998 * 108 m>s = 5.34 * 10-22 kg # m>s	

Therefore, the conversion to SI units is easily done, if desired, and yields

 p = 2.34 MeV>c *
5.34 * 10-22 kg # m>s

1 MeV>c
 p = 1.25 * 10-21 kg # m>s

The speed of the particle is obtained by noting from Equation 2-32 or from Equa-
tions 2-6 and 2-10 that

	
u
c
=

pc

E
=

2.34 MeV

2.40 MeV
= 0.975	 2-34

or 

u = 0.975c

It is extremely important to recognize that the invariant rest energy in Equation 2-32 
is that of the system and that its value is not the sum of the rest energies of the par-
ticles of which the system is formed, if the particles move relative to one another. 
Earlier we used numerical examples of the binding energy of atoms and nuclei that 
illustrated this fact by showing that the masses of the atoms and nuclei were less than 
the sum of the masses of their constituents by an amount Dmc2 that equaled the 
observed binding energy, but those were systems of interacting particles—that is, 
there were forces acting between the constituents. A difference exists, even when the 
particles do not interact. To see this, let us focus our attention on specifically what 
mass is invariant.

Consider two identical non-interacting particles, each of rest mass m 5 4 k mov-
ing toward each other along the x axis of S with momentum px 5 3c kg, as illustrated 
in Figure 2-10a. The energy of each particle, using Equation 2-33, is

E = c22m2 + 1p>c22 = c221422 + 1322 = 5c2 kg

Thus, the total energy of the system is 5c2 + 5c2 5 10c2 kg, since the energy is a scalar. 
Similarly, the total momentum of the system is 3c  3c 5 0 since the momentum is a 
vector and the momenta are equal and opposite. The rest mass of the system is then 

m = 21E>c222 - 1p>c22 = 211022 - 02 = 10 kg

Thus, the system mass of 10 kg is greater than the sum of the masses of the two particles, 
8 kg. (This is in contrast to bound systems, such as atoms, where the system mass is 
smaller than the total of the constituents.) This difference is not binding energy, since the 
particles are non-interacting. Neither does the 2 kg “mass difference” reside equally with 
the two particles. In fact, it doesn’t reside in any particular place, but is a property of the 
entire system. The correct interpretation is that the mass of the system is 10 kg.

While the invariance of the energy/momentum four vector guarantees that 
observers in other inertial frames will also measure 10 kg as the mass of the system, 
let us allow for a skeptic or two and transform to another system S9, for example, the 
one shown in Figure 2-10c, just to be sure.
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Figure 2-10  (a) Two identical particles with rest mass 4 kg approach each 
other with equal but oppositely directed momenta. The rest mass of the 
system made up of the two particles is not 4 kg + 4 kg because the system’s 
rest mass includes the mass equivalent of its internal motions. (b) That 
value, 10 kg, would be the result of a measurement of the system’s mass 
made by an observer in S, for whom the system is at rest, or by observers in 
any other inertial frames. (c) Transforming to S9 moving at v 5 0.6c with 
respect to S, as described in Example 2-11, also yields m 5 10 kg.

m = 10 kg

m = 10 kg

y
S System

System

x

S�
y�

x�

v = 0.6c

(b)

(c)

m = 4 kg m = 4 kg

u = 0.6c u = –0.6c

y
S

x

(a)

EXAMPLE 2-11	 Lorentz Transformation of System Mass ​ For the system 
illustrated in Figure 2-10, show that an observer in S9, which moves relative to S at 
b 5 0.6, also measures the mass of the system to be 10 kg.

SOLUTION
	 1.	 The mass m measured in S9 is given by Equation 2-33, which in this case is

m = [1E9>c222 - 1p =x>c22]1>2

	 2.	 E9 is given by Equation 2-16:

 E9 = 1E - vpx2
 =

121 - 10.622
110c2 - 0.6c * 02

 = 11.252 110c22
 = 12.5c2 # kg

	 3.	 p =x is also given by Equation 2-16:

 p =x = 1px - vE>c22
 = 11.252[0 - 10.6c2 110c22 >c2]

 = -7.5c # kg

	 4.	 Substituting E9 and p =x into Equation 2-33 yields

 m = [112.5c2>c222 - 1-  7.5c>c22]1>2

 = [112.522 - 1-  7.522]1>2

 = 10 kg

Remarks:  This result agrees with the value measured in S. The speed of S9 chosen 
for this calculation, v 5 0.6c, is convenient in that one of the particles constituting 
the system is at rest in S9; however, that has no effect on the generality of the solution.
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Thus, we see that it is the rest energy of any isolated system that is invariant, 
whether that system is a single atom or the entire universe. And, based on our discus-
sions thus far, we note that the system’s rest energy may be greater than, equal to, or 
less than the sum of the rest energies of the constituents depending on their relative 
velocities and the detailed character of any interactions between them.

Questions

4.	 Suppose two loaded boxcars, each of mass m 5 50 metric tons, roll toward each 
other on level track at identical speeds u, collide, and couple together. Discuss 
the mass of this system before and after the collision. What is the effect of the 
magnitude of u on your discussion?

5.	 In 1787 Count Rumford (1753–1814) tried unsuccessfully to measure an 
increase in the weight of a barrel of water when he increased its temperature 
from 29°F to 61°F. Explain why, relativistically, you would expect such an 
increase to occur, and outline an experiment that might, in principle, detect the 
change. Since Count Rumford preceded Einstein by about 100 years, why might 
he have been led to such a measurement?

Massless Particles
Equation 2-32 formally allows positive, negative, and zero values for (mc2)2, just as 
was the case for the spacetime interval (Ds)2. We have been tacitly discussing positive 
cases thus far in this section; a discussion of possible negative cases we will defer 
until Chapter 12. Here we need to say something about the mc2 5 0 possibility. Note 
first of all that the idea of zero rest mass has no analog in classical physics since clas-
sically Ek 5 mu2>2 and p 5 mu. If m 5 0, then the momentum and kinetic energy are 
always zero too and the “particle” would seem to be nothing at all, experiencing no 
second-law forces, doing no work, and so forth. However, for mc2 5 0, Equation 2-32 
states that, in relativity,

	 E = pc 1for m = 02	 2-35

and, together with Equation 2-34, that u 5 c, that is, a particle whose mass is zero 
moves at the speed of light. Similarly, a particle whose speed is measured to be c will 
have m 5 0 and satisfy E 5 pc.

We must be careful, however, because Equation 2-32 was obtained from the rela-
tivistic definitions of E and p,

E = gmc2 =
mc221 - u2>c2

  p = gmu =
mu21 - u2>c2

As u S  c, 1>21 - u2>c2  S  ; however, since m is also approaching zero, the 
quantity gm, which is tending toward 0>0, can (and does) remain defined. Indeed, 
there is ample experimental evidence for the existence of particles with mc2 5 0.

Current theories suggest the existence of three such particles. Perhaps the most 
important of these and the one thoroughly verified by experiment is the photon, a par-
ticle of electromagnetic radiation (i.e., light). Classically, electromagnetic radiation 
was interpreted via Maxwell’s equations as a wave phenomenon, its energy and 
momentum distributed continuously throughout the space occupied by the wave. It 
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was discovered around 1900 that the classical view of light required modification in 
certain situations, the change being a confinement of the energy and momentum of 
the radiation into many tiny packets or bundles, which were referred to as photons. 
Photons move at light speed, of course, and, as we have noted, are required by relativ-
ity to have mc2 5 0. Recall that the spacetime interval Ds for light is also zero. Strictly 
speaking, of course, the second of Einstein’s relativity postulates prevents a Lorentz 
transformation to the rest system of light since light moves at c relative to all inertial 
frames. Consequently, the term rest mass has no operational meaning for light.

EXAMPLE 2-12	 Rest Energy of a System of Photons ​ Remember that the rest 
energy of a system of particles is not the sum of the rest energies of the individual 
particles if they move relative to one another. This applies to photons too! Suppose 
two photons, one with energy 5 MeV and the second with energy 2 MeV, approach 
each other along the x axis. What is the rest energy of this system?

SOLUTION
The momentum of the 5 MeV photon is (from Equation 2-35) px 5 5 MeV/c and 
that of the 2 MeV photon is px 5 2 MeV/c. Thus, the energy of the system is 
E 5 5 MeV + 2 MeV 5 7 MeV and its momentum is p 5 5 MeV/c  2 MeV/c 5 
3 MeV/c. From Equation 2-32, the system’s rest energy is

mc2 = 217 MeV22 - 13 MeV22 = 6.3 MeV!!

A second particle whose rest energy is zero is the gluon. This massless particle 
transmits or carries the strong interaction between quarks, which are the “building 
blocks” of all fundamental particles, including protons and neutrons. The existence of 
gluons is well established experimentally. We will discuss quarks and gluons further 
in Chapter 12. Finally, there are strong theoretical reasons to expect that gravity is 
transmitted by a massless particle called the graviton, which is related to gravity in 
much the same way that the photon is related to the electromagnetic field. Gravitons, 
too, move at speed c. While direct detection of the graviton is beyond our current and 
foreseeable experimental capabilities, major international cooperative experiments 
are currently under way to detect gravity waves (see Section 2-5).

Until about the beginning of this century a fourth particle, the neutrino, was also 
thought to have zero rest energy. However, substantial experimental evidence col-
lected by the Super-Kamiokande (Japan) and SNO (Canada) imaging neutrino detec-
tors, among others, made it clear that neutrinos are not massless. We discuss neutrino 
mass and its implications further in Chapters 11 and 12.

Creation and Annihilation of Particles
The relativistic equivalence of mass and energy implies still another remarkable 
prediction that has no classical counterpart. As long as momentum and energy are 
conserved in the process,9 elementary particles with mass can combine with their 
antiparticles, the masses of both being completely converted to energy in a process 
called annihilation. An example is that of an ordinary electron. An electron can orbit 
briefly with its antiparticle, called a positron,10 but then the two unite, mutually anni-
hilating and producing two or three photons. The two-photon version of this process 
is shown schematically in Figure 2-11. Positrons are produced naturally by cosmic 
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rays in the upper atmosphere and as the result of the decay of certain radioactive 
nuclei. P. A. M. Dirac had predicted their existence in 1928 while investigating the 
invariance of the energy/momentum four vector.

If the speeds of both the electron and the positron u V c (not a requirement for 
the process, but it makes the following calculation clearer), then the total energy of 
each particle is E 5 mc2 5 0.511 MeV. Therefore, the total energy of the system in 
Figure 2-11a before annihilation is 2mc2 5 1.022 MeV. Noting also from the diagram 
that the momenta of the particles are always opposite and equal, we see that the total 
momentum of the system is zero. Conservation of momentum then requires that the 
total momentum of the two photons produced also be zero; that is, that they move in 
opposite directions relative to the original center of mass and have equal momenta. 
Since E 5 pc for photons, then they must also have equal energy. Conservation of 
energy then requires that the energy of each photon be 0.511 MeV. (Photons are usu-
ally called gamma rays when their energies are a few hundred keV or higher.) Notice 
from Example 2-12 that the magnitude of the energy/momentum four vector (the rest 
energy) is not zero, even though both of the final particles are photons. In this case it 
equals the rest energy of the initial system. Analysis of the three-photon annihilation, 
although the calculation is a bit more involved, is similar.

By now it will not be a surprise to learn that the reverse process, the creation of 
mass from energy, can also occur under the proper circumstances. The conversion of 
mass and energy works both ways. The energy needed to create the new mass can be 
provided by the kinetic energy of another massive particle or by the “pure” energy of 
a photon. In either case, in determining what particles might be produced with a given 
amount of energy, it is important to be sure, as was the case with annihilation, that the 
appropriate conservation laws are satisfied. As we will discuss in detail in Chapter 12, 

+ –
(a) (b)

Figure 2-11  (a) A positron orbits with an electron about their common center of mass, 
shown by the dot between them. (b) After a short time, typically of the order of 1010 s for the 
case shown here, the two annihilate, producing two photons. The orbiting electron-positron 
pair, suggestive of a miniature hydrogen atom, is called positronium.

Decay of a Z into an 
electron-positron pair in the 
UA1 detectors at CERN. This 
is the computer image of the 
first Z event recorded (April 
30, 1983). The newly created 
pair leave the central detector 
in opposite directions at 
nearly the speed of light. 
[CERN.]
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this restricts the creation process for certain kinds of particles (including electrons, 
protons, and neutrons) to producing only particle-antiparticle pairs. This means, for 
example, that the energy in a photon cannot be used to create a single electron, but 
must produce an electron-positron pair.

To see how relativistic creation of mass goes, let us consider a particular situa-
tion, the creation of an electron-positron pair from the energy of a photon. The photon 
moving through space encounters, or “hits,” an electron at rest in frame S as illus-
trated in Figure 2-12a.11 Usually the photon simply scatters, but occasionally a pair is 
created. Encountering the existing electron is important, since it is not possible for the 
photon to spontaneously produce the two rest masses of the pair and also conserve 
momentum (see Problem 2-47). Some other particle must be nearby, not to provide 
energy to the creation process, but to acquire some of the photon’s initial momentum. 
In this case we have selected an electron for this purpose because it provides a neat 
example, but almost any particle would do (see Example 2-13).

While near the electron, the photon suddenly disappears, and an electron-positron 
pair appears. The process must occur very fast since the photon, moving at speed c, 
will travel cross a region as large as an atom in about 1019 s. Let’s suppose that the 
details of the interaction that produced the pair are such that the three particles all 
move off together toward the right in Figure 2-12b with the same speed u—that is, 
they are all at rest in S9, which moves to the right with speed u relative to S.12 What 
must the energy Eg of the photon be in order that this particular electron-positron pair 
is created? To answer this question, we first write the conservation of energy and 
momentum:

	  Before Pair Creation	  After Pair Creation	

	  Ei = Eg + mc2	 Ef = Ei = Eg + mc2	

	  pi =
Eg

c
	 pf = pi =

Eg

c
 	

where mc2 5 rest energy of an electron. In the final system after pair creation the total 
rest energy is 3mc2 in this case. We know this because the invariant rest energy equals 
the sum of the rest energies of the constituent particles (the original electron and the 
pair) in the system where they do not move relative to one another, that is, in S9. So in 
S9 we have for the system after pair creation:

 13mc222 = E2 - 1pc22

 91mc222 = 1Eg + mc222 - aEg  c

c
b

2

 91mc222 = E2
g + 2Eg  mc2 + 1mc222 - E2

g

+
–

–

–

S S

u = 0.8c

(a) (b)

Figure 2-12  (a) A photon of energy E and momentum p 5 E>c encounters an electron at 
rest. The photon produces an electron-positron pair (b), and the group move off together at 
speed u 5 0.8c.
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Noting that the E2
g terms cancel, and dividing the remaining terms by mc2, we

see that

Eg = 4mc2

Thus, the initial photon needs energy equal to 4 electron rest energies in order to cre-
ate 2 new electron rest masses in this case. Why is the “extra” energy needed? Because 
the three electrons in the final system share momentum Eg>c, they must also have 
kinetic energy Ek given by

 Ek = E - 3mc2 = 1Eg + mc22 - 3mc2

 = 4mc2 + mc2 - 3mc2 = 2mc2

or the initial photon must provide the 2mc2 necessary to create the electron and 
positron masses and the additional 2mc2 of kinetic energy that they and the existing 
electron share as a result of momentum conservation. The speed u at which the group 
of particles moves in S can be found from u>c 5 pc>E (Equation 2-34):

u>c =

aEg

c
* cb

1Eg + mc22 =
4mc2

5mc2 = 0.8

The portion of the incident photon’s energy that is needed to provide kinetic 
energy in the final system is reduced if the mass of the existing particle is larger than 
that of an electron and, indeed, can be made negligibly small, as illustrated in the fol-
lowing example.

EXAMPLE 2-13	 Threshold for Pair Production ​ What is the minimum or 
threshold energy that a photon must have in order to produce an electron-positron 
pair?

SOLUTION
The energy Eg of the initial photon must be

Eg = mc2 + Ek- + mc2 + Ek+ + EkM

where mc2 5 electron rest energy, Ek- and Ek+ are the kinetic energies of the elec-
tron and positron, respectively, and EkM 5 kinetic energy of the existing particle of 
mass M. Since we are looking for the threshold energy, consider the limiting case 
where the pair is created at rest in S, that is, Ek- 5 Ek+ 5 0 and correspondingly 
p 5 p+ 5 0. Therefore, momentum conservation requires that

pinitial = Eg>c = pfinal =
Mu21 - u2>c2

where u 5 speed of recoil of the mass M. Since the masses of single atoms are in 
the range of 103 to 105 MeV/c2 and the value of Eg at the threshold is clearly less 
than 2 MeV (i.e., it must be less than the value Eg 5 4 mc2 5 2.044 MeV), the 
speed with which M recoils from the creation event is quite small compared with c, 
even for the smallest M available, a single proton! (See Table 2-1.) Thus, the kinetic 
energy EkM  1

2 Mu2 becomes negligible, and we conclude that the minimum 
energy Eg of the initial photon that can produce an electron-positron pair is 2 mc2, 
that is, that needed just to create the two rest masses.
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Some Useful Equations and Approximations

	 E2 = 1pc22 + 1mc222	 2-31

Extremely Relativistic Case  The triangle shown in Figure 2-13 is sometimes 
useful in remembering this result. If the energy of a particle is much greater than its 
rest energy mc2, the second term on the right of Equation 2-31 can be neglected, giv-
ing the useful approximation

	 E  pc for E W mc2	 2-36

This approximation is accurate to about 1 percent or better if E is greater than about 
8 mc2. Equation 2-36 is the exact relation between energy and momentum for particles 
with zero rest mass.

From Equation 2-36 we see that the momentum of a high-energy particle is 
simply its total energy divided by c. A convenient unit of momentum is MeV/c. 
The momentum of a charged particle is usually determined by measuring the 
radius of curvature of the path of the particle moving in a magnetic field. If the 
particle has charge q and a velocity u, it experiences a force in a magnetic field B 
given by

F = qu * B

where F is perpendicular to the plane formed by u and B and, hence, is always 
perpendicular to u. Since the magnetic force is always perpendicular to the velocity, 
it  does no work on the particle (the work-energy theorem also holds in relativity), 
so  the energy of the particle is constant. From Equation 2-10 we see that if the 
energy is constant, g must be a constant, and therefore the speed u is also constant. 
Therefore,

F = qu * B =
dp

dt
=

d1gmu2
dt

= gm 
du
dt

For the case u  B, the particle moves in a circle of radius R with centripetal accel-
eration u2>R. (If u is not perpendicular to B, the path is a helix. Since the compo-
nent of u parallel to B is unaffected, we will only consider motion in a plane.) We 
then have

quB = mg ` du

dt
` = mga u2

R
b

or

	 BqR = mgu = p	 2-37

This is the same as the nonrelativistic expression except for the factor of g. Figure 2-14 
shows a plot of BqR>mu versus u>c. It is useful to rewrite Equation 2-37 in terms of 
practical but mixed units; the result is

	 p = 300 BRa q

e
b 	 2-38

where p is in MeV/c, B is in tesla, and R is in meters.

CCR

mc2

pc
E = (pc)2 + (mc2)2

Figure 2-13  Triangle 
showing the relation 
between energy, momentum, 
and rest mass in special 
relativity. Caution: 
Remember that E and pc are 
not relativistically invariant. 
The invariant is mc2.

14
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EXAMPLE 2-14	 Electron in a Magnetic Field ​ What is the approximate radius 
of the path of a 30 MeV electron moving in a magnetic field of 0.05 tesla(5 500 
gauss)?

SOLUTION
	 1.	 The radius of the path is given by rearranging Equation 2-38 and substituting 

q 5 e:

R =
p

300 B

	 2.	 In this situation the total energy E is much greater than the rest energy mc2:

E = 30 MeV W mc2 = 0.511 MeV

	 3.	 Equation 2-36 may then be used to determine p:

p  E>c = 30 MeV>c
	 4.	 Substituting this approximation for p into Equation 2-38 yields

 R =
30 MeV>c
13002 10.052

 = 2 m

Remarks:  In this case the error made by using the approximation, Equation 2-36, 
rather than the exact solution, Equation 2-31, is only about 0.01 percent.

Nonrelativistic Case  Nonrelativistic expressions for energy, momentum, and 
other quantities are often easier to use than the relativistic ones, so it is important 
to know when these expressions are accurate enough. As g S 1, all the relativistic 
expressions approach the classical ones. In most situations, the kinetic energy or the 

Figure 2-14  BqR>mu 
versus u>c for particle of 
charge q and mass m moving 
in a circular orbit of radius R 
in a magnetic field B. The 
agreement of the data with 
the curve predicted by 
relativity theory supports the 
assumption that the force 
equals the time rate of change 
of relativistic momentum. 
[Adapted from I. Kaplan, 
Nuclear Physics, 2d ed. 
(Reading, MA: Addison-
Wesley Publishing Company, 
Inc., 1962); by permission.]
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total energy is known, so that the most convenient expression for calculating g is, 
from Equation 2-10,

	 g =
E

mc2 = 1 +
Ek

mc2	 2-39

When the kinetic energy is much less than the rest energy, g is approximately 1 and 
nonrelativistic equations can be used. For example, the classical approximation Ek  
(1/2)mu2 5 p2>2m can be used instead of the relativistic Ek 5 (g  1)mc2 if Ek is 
much less than mc2. We can get an idea of the accuracy of these expressions by 
expanding g, using the binomial expansion as was done in Section 2-2 and examining 
the first term that is neglected in the classical approximation. We have

g = a1 -
u2

c2 b
1>2

 1 +
1

2
 
u2

c2 +
3

8
 
u4

c4 + g

and

Ek = 1g - 12mc2 
1

2
 mu2 +

3

2
 

a 1

2
 mu2b

2

mc2 + g

Then

	

Ek -
1

2
mu2

Ek


3

2
 

Ek

mc2	

For example, if Ek>mc2  1 percent, the error in using the approximation Ek  
(1/2)mu2 is about 1.5 percent.

At very low energies, the velocity of a particle can be obtained from its kinetic 
energy Ek  (1/2)mu2 just as in classical mechanics. At very high energies, the veloc-
ity of a particle is very near c and the following approximation is sometimes useful 
(see Problem 2-28):

	
u
c

 1 -
1

2g2 for g W 1	 2-40

An exact expression for the velocity of a particle in terms of its energy and momen-
tum was obtained in Example 2-10:

	
u
c
=

pc

E
	 2-41

This expression is, of course, not useful if the approximation E  pc has already 
been made.

EXAMPLE 2-15	 Different Particles, Same Energy ​ An electron and a proton 
are each accelerated through 10 3 106 V. Find g, the momentum, and the speed for 
each.

SOLUTION
Since each particle has a charge of e, each acquires a kinetic energy of 10 MeV. 
This is much greater than the 0.511 MeV rest energy of the electron and much less 
than the 938.3 MeV rest energy of the proton. We will calculate the momentum and 
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speed of each particle exactly and then by means of the nonrelativistic (proton) or 
the extreme relativistic (electron) approximations.

	 1.	 We first consider the electron. From Equation 2-39 we have

	 g = 1 +
Ek

mc2 = 1 +
10 MeV

0.511 MeV
= 20.57	

		  Since the total energy is Ek + mc2 5 10.511 MeV, we have, from the magnitude 
of the energy/momentum four vector (Equation 2-31),

 pc = 2E2 - 1mc222 = 2110.51122 - 10.51122

 = 10.50 MeV

		  The exact calculation then gives p 5 10.50 MeV/c. The high-energy or extreme 
relativistic approximation p  E>c 5 10.50 MeV is in good agreement with the 
exact result. If we use Equation 2-34, we obtain for the speed u>c 5 pc>E 5 
10.50 MeV>10.51 MeV 5 0.999. On the other hand, the approximation of 
Equation 2-40 gives

	
u
c

 1 -
1

2
 a 1

g
b

2

= 1 -
1

2
 a 1

20.57
b

2

= 0.999	

	 2.	 For the proton, the total energy is Ek + mc2 5 10 MeV + 938.3 MeV 5 948.3 
MeV. From Equation 2-39 we obtain g 5 1 + Ek>mc2 5 1 + 10>938.3 5 1.01. 
Equation 2-31 gives for the momentum

 pc = 2E2 - 1mc222 = 21948.322 - 1938.322

 p = 137.4 MeV>c
		  The nonrelativistic approximation gives

Ek 
1

2
 mu2 =

1mu22

2m


p2

2m
=

p2c2

2mc2

		  or

 pc  22mc2Ek = 2122 1938.32 1102
 p = 137.0 MeV>c

		  The speed can be determined from Equation 2-34 exactly or from p 5 mu 
approximately. From Equation 2-34 we obtain

u
c
=

pc

E
=

137.4

948.3
= 0.1449

		  From p  mu, the nonrelativistic expression for p, we obtain

u
c


pc

mc2 =
137.0

938.3
= 0.1460

2-5  General Relativity 
The generalization of relativity to noninertial reference frames by Einstein in 1916 is 
known as the general theory of relativity or, commonly, general relativity. It is the 
theory that describes gravity, one of the four fundamental forces of nature. As such, 
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it is the basis of our understanding of the Big Bang, black holes, quasars, the life 
cycles of stars, and the evolution of the universe—all topics among those we will 
discuss in Chapter 13. General relativity, the idea that gravity is the geometry of our 
four-dimensional spacetime, is at once one of the most elegant and revolutionary 
ideas in modern physics. This theory generally requires the use of higher mathe-
matics than did our discussion of special relativity, and there are fewer situations in 
which it can be tested. Nevertheless, its importance in the areas of astrophysics and 
cosmology and the need to take account of its effects in the design of such things as 
global navigation systems, atomic clocks, space probe communications, and yet-to-
be-developed precision systems of the future calls for its inclusion here. A full 
description of the general theory uses tensor analysis at a sophisticated level, well 
beyond the scope of this book, so we will be limited to qualitative or, in some 
instances, semi-quantitative discussions.

Einstein’s development of the general theory of relativity was not motivated by 
any experimental enigma. Instead, it grew out of his desire to include the descriptions 
of all natural phenomena within the framework of the special theory. By 1907 he real-
ized that he could accomplish that goal with the single exception of gravitation. About 
that exception he said,13

I felt a deep desire to understand the reason behind this [exception].

The “reason” came to him, as he said later, while he was sitting in a chair in the patent 
office in Bern. He described it like this:14

Then there occurred to me the happiest thought of my life, in the fol-
lowing form. The gravitational field has only a relative existence in a 
way similar to the electric field generated by electromagnetic induc-
tion. Because for an observer falling freely from the roof of a house 
there exists—at least in his immediate surroundings—no gravitational 
field. [Einstein’s italics] . . . The observer then has the right to interpret 
his state as “at rest.”

Out of this “happy thought” grew the principle of equivalence that became Einstein’s 
fundamental postulate for general relativity.

Principle of Equivalence
The basis of the general theory of relativity is what we may call Einstein’s third 
postulate, the principle of equivalence, which states:

A homogeneous gravitational field is completely equivalent to a uni-
formly accelerated reference frame.

This principle arises in a somewhat different form in Newtonian mechanics because 
of the apparent identity of gravitational and inertial mass. In a uniform gravitational 
field, all objects fall with the same acceleration independent of their mass because the 
gravitational force is proportional to the (gravitational) mass while the acceleration 
varies inversely with the (inertial) mass. That is, the mass m in

F = ma 1inertial m2

The exceptional 
sensitivity of modern 
electronic devices is such 
that general relativistic 
effects are included in the 
design of such systems 
as the global positioning 
system and orbiting 
atomic clocks.
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and that in

F =
GMm

r 2  rn (gravitational m)

appear to be identical in classical mechanics, although classical theory provides no 
explanation for this equality. For example, near Earth’s surface, Fgrav 5 GMmgrav>r2 5 
mgrav g 5 minertial a 5 Finertial. Recent experiments have shown that minertial 5 mgrav to 
better than one part in 1012.

To understand what the equivalence principle means, consider a compartment in 
space far away from any matter and undergoing uniform acceleration a as shown in 
Figure 2-15a. If people in the compartment drop objects, they fall to the “floor” with 
acceleration g 5 a. If they stand on a spring scale, it will read their “weight” of 
magnitude ma. No mechanics experiment can be performed within the compartment 
that will distinguish whether the compartment is actually accelerating in space or is at 
rest (or moving with uniform velocity) in the presence of a uniform gravitational field 
g 5 a as in Figure 2-15b. Like the centripetal force and the Coriolis force, the 
gravitational force is a pseudo- or apparent force;15 that is, it can be transformed away 
by a suitable choice of coordinates.

Einstein broadened the principle of equivalence to apply to all physical experi-
ments, not just to those in mechanics. In effect, he assumed that there is no experi-
ment of any kind that can distinguish uniformly accelerated motion from the presence 
of a gravitational field. A direct consequence of the principle is that minertial 5 mgrav is 
a requirement, not a coincidence. The principle of equivalence extends Einstein’s first 
postulate, the principle of relativity, to all reference frames, noninertial (i.e., acceler-
ated) as well as inertial. It follows that there is no absolute acceleration of a reference 
frame. Acceleration, like velocity, is only relative.

Planet

a

g

(a) (b)

Figure 2-15  Results from 
experiments in a uniformly 
accelerated reference frame 
(a) cannot be distinguished 
from those in a uniform 
gravitational field (b) if the 
acceleration a and 
gravitational field g have the 
same magnitude.
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Question

6.	 For his 76th (and last) birthday Einstein received a present designed to 
demonstrate the principle of equivalence. It is shown in Figure 2-16. The object 
is, starting with the ball hanging down as shown, to put the ball into the cup with 
a method that works every time (as opposed to random shaking). How would 
you do it? (Note: When it was given to Einstein, he was delighted and did the 
experiment correctly immediately.)

The Invariant Interval Revisited
In general relativity the invariant interval Ds, defined in Equation 1-30, has a more 
central role than it did in our discussions of special relativity, as indeed do proper 
time t and proper length Lp. Rewriting Equation 1-30 in differential form,

	 ds2 = c2
 dt2 - 1dx2 + dy 2 + dz 22	 2-42

consider a cosmic-ray proton moving through the laboratory, iner-
tial frame S, at speed v. Transforming to S9, the rest frame of the 
proton, dx9 5 dy9 5 dz9 5 0 and dt9 5 dt, proper time; therefore, 
ds2 5 c2 dt2. Because dx 5 vdt and dy 5 dz 5 0, Equation 2-42 
reduces to

ds2 = c2
 dt2 = c2

 dt2 - v2
 dt2 = 1c2 - v22dt2

or

dt =
121 - v2>c2

 dt = gdt

which is the differential version of Equation 1-36 that describes 
time dilation. In a similar fashion length contraction and the 
Lorentz transformation equations can also be obtained from the 
invariant interval.

Now consider a noninertial system such as a rotating refer-
ence frame attached to a spinning CD or DVD. In the rotating sys-
tem the centripetal force is an apparent force, like the force of 
gravity. It provides a more familiar example that will help us bet-
ter understand the motion of relativistic particles in a gravitational 
field. In considering the spinning disk, it is more convenient to use 
cylindrical rather than Cartesian coordinates (see Figure 2-17). In 
S Equation 2-42 then becomes

	 ds2 = c2dt2 - 1dr 2 + r 2d2 + dz 22� 2-43

If the disk is rotating with constant angular velocity v about 
the z axis in the inertial frame S, then a fixed point on the disk, 
system S9, has coordinates (r, , z) in S and (r9, 9, z9) in S9, where 
r9 5 r, z9 5 z, and 9 5   vt. Therefore, dr9 5 dr, dz9 5 dz, 
and d9 5 d  v dt. Substituting into Equation 2-43, the invari-
ant interval becomes (see Problem 2-32)

ds2 = 1c2 - r 2v22dt2 - 1dr 2 + r 2 d92 + 2r 2vd9 dt + dz 22
2-44

Transparent
plastic sphere

String

Broomstick

≈ 4 ft

Weak spring

Small 
brass ball

Figure 2-16  Principle of equivalence 
demonstrator given to Einstein by E. M. Rogers. 
The object is to put the hanging brass ball into the 
cup by a technique that always works. The spring 
is weak, too weak to pull the ball in as it stands, 
and is stretched even when the ball is in the cup. 
The transparent sphere, about 10 cm in diameter, 
does not open. [From A. P. French, Albert 
Einstein: A Centenary Volume, Harvard 
University Press (Cambridge, MA, 1979).]
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The time interval between two events that both occur at a particular location 
(r9,  9, z9) on the rotating disk as measured on a clock located at that point is, of 
course, the proper time interval dt. Since for these events dr9 5 d9 5 dz9 5 0, Equa-
tion 2-44 reduces to

ds2 = c2 dt2 = 1c2 - r 2v22dt2

which on rearranging and taking the square root becomes

dt =
121 - r 2v2>c2

 dt

Because rv 5 v in the inertial system S, this relation is once again the time dila-
tion equation; however, now v (the tangential velocity) increases with increasing r, so 
time dilation increases correspondingly. Similarly, for smaller values of r the time 
dilation effect is reduced.

If we now establish a grid of measuring rods with a clock at each intersection in 
the rotating system S9 analogous to that in the inertial system illustrated in Figure 1-13, 
the clocks in S9 can be synchronized in the same manner that we described in Sec-
tion 1-2. However, the d9dt cross term in Equation 2-44 presents a problem since it 
is a mixture of space and time variables. To solve the problem, consider two clocks 
with the same r9(5 r) and 9 but different z9(5 z). Their tangential velocities v are the 
same in S, so S and S9 observers both see them synchronized. Similarly, clocks with 
the same 9 and z9 but slightly different r9 are seen as synchronized by observers in 
both systems. Now consider two clocks with the same r9(5 r) and z9(5 z) but different 
9 as in Figure 2-18a. The clocks at A9 and B9 are synchronized because light flashes 
emitted simultaneously from them reach C9 midway between them simultaneously. But 
wait! Viewed from the inertial frame, the two clocks clearly have different tangential 
velocities. What that means for observers in S we can better understand by considering 
the two clocks to be separated by a very small (infinitesimal) distance as in Figure 2-18b 
with C9 again midway between them. Now we know the answer! Just as in Einstein’s 
train example illustrated in Figure 1-15, the clock at A9 leads that at B9 and observers in 
the inertial system S conclude that clocks at different 9 are not synchronized. Thus, 
clocks synchronized in S9 are not synchronized in S if they have different .

From our discussion in Sections 1-3 and 1-4 we also know the magnitude of 
the effect. It is (see Equation 1-18) gvx>c2, where for the observer in S in our present 
discussion v 5 rv and the distance between the rotating clocks is gr d9. The time 
difference is then

gvx

c2 1
g2r 2vd9

c2 =
1

1 - r 2v2>c2 
r 2vd9

c2 =
r 2vd9

c2 - r 2v2

Tipler: Modern Physics 6/e
Perm fig.: 217,  New fig.: 02-17
First Draft: 2011-04-18
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Figure 2-17  Geometrical 
relations between cylindrical 
and Cartesian (rectangular) 
coordinates.

Figure 2-18  (a) Looking in the z direction, 
clocks A9 and B9 are at rest in the rotating 
frame S9 with different values of 9 and A9 
leading B9. (b) Clocks A9 and B9 are separated 
by an infinitesimal angle with A9 still leading 
B9. In each case C9 (not shown) is midway 
between A9 and B9 and has the same value of r.
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Perm fig.: 218,  New fig.: 02-18
First Draft: 2011-04-18
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This is the difference between the time interval dt9 measured by the synchronized 
clocks in S9 and dt, measured by an observer in the inertial system S. That is,

	 dt9 = dt -
r 2vd9

c2 - r 2v2	 2-45

Substituting dt from Equation 2-45 into Equation 2-44 yields (see Problem 2-36)

	 ds2 = 1c2 - r 2v22dt92 - adr 2 +
c2r 2 d92

c2 - r 2v2 + dz 2b 	 2-46

Now, just as in Equation 1-30, the interval consists of a time part and a space part and 
the cross term is gone. (Recall that in the development above r9 5 r, dr9 5 dr, z9 5 z, 
and dz9 5 dz.)

Equation 2-46 expresses the invariant interval in a particular noninertial refer-
ence frame, a system rotating at constant angular velocity v with respect to an inertial 
frame. For a clock at rest in S9, ds2 5 (c2  r2v2)dt92. Comparing the time intervals 
measured on this clock to those measured on a clock at rest in the inertial frame S 
where ds2 5 c2dt2, we have

 c2dt2 = 1c2 - r 2v22dt92

 dt = 21 - r 2v2>c2dt9

which describes time dilation in the rotating system. For length measurements in S9, 
consider a rod at rest in S9 a distance r from the axis and oriented parallel to the tan-
gential velocity v at that point. For the rod in S9, ds2 5 c2r2d92>(c2  r2v2) where 
r d9 5 L is the length of the rod. An identical rod oriented the same way at rest in S 
has ds2 5 r2d2, where r d 5 Lp is the proper length of the rod in S. We then have

 -r 2 d2 = -c2r 2 d92> 1c2 - r 2v22

 r d = Lp =
r d921 - r 2v2>c2

=
L21 - r 2v2>c2

which describes length contraction.

Some Predictions of General Relativity
In his first paper on general relativity, in 1916, Einstein was able to explain quantita-
tively a discrepancy of long standing between the measured and (classically) com-
puted values of the advance of the perihelion of Mercury’s orbit, about 43 arc 
seconds/century. It was the first success of the new theory. A second prediction, the 
bending of light in a gravitational field, would seem to be more difficult to measure 
owing to the very small effect. However, it was accurately confirmed less than five 
years later when Arthur Eddington measured the deflection of starlight passing near 
the limb of the Sun during a total solar eclipse. The theory also predicts the slowing 
of light itself and the slowing of clocks—that is, frequencies—in gravitational fields, 
both effects of considerable importance to the determination of astronomical 
distances and stellar recession rates. The predicted slowing of clocks, called gravita-
tional redshift, was demonstrated by Pound and coworkers in 1960 in Earth’s gravi-
tational field using the ultrasensitive frequency-measuring technique of the 
Mössbauer effect (see Chapter 11). The slowing of light was conclusively measured 
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in 1971 by Shapiro and coworkers using radar signals reflected from several planets. 
Two of these experimental tests of relativity’s predictions, bending of light and grav-
itational redshift, are discussed in the Exploring sections that follow. The perihelion 
of Mercury’s orbit and the delay of light are discussed in More sections on the web 
page. Many other predictions of general relativity are subjects of active current 
research. Two of these, black holes and gravity waves, are discussed briefly in the 
concluding paragraphs of this chapter.

EXPLORING
Deflection of Light in a Gravitational Field

With the advent of special relativity, several features of the Newtonian law of gravita-
tion, FG 5 GMm>r2, became conceptually troublesome. One of these was the implica-
tion from the relativistic concept of mass-energy equivalence that even particles with 
zero rest mass should exhibit properties such as weight and inertia, thought of classi-
cally as masslike; classical theory does not include such particles. According to the 
equivalence principle, however, light, too, would experience the gravitational force. 
Indeed, the deflection of a light beam passing through the gravitational field near a 
large mass was one of the first consequences of the equivalence principle to be tested 
experimentally.

To see why a deflection of light would be expected, consider Figure 2-19, which 
shows a beam of light entering an accelerating compartment. Successive positions of 
the compartment are shown at equal time intervals. Because the compartment is accel-
erating, the distance it moves in each time interval increases with time. The path of the 
beam of light, as observed from inside the compartment, is therefore a parabola. But 
according to the equivalence principle, there is no way to distinguish between an accel-
erating compartment and one with uniform velocity in a uniform gravitational field. We 
conclude, therefore, that a beam of light will accelerate in a gravitational field as do 
objects with rest mass. For example, near the surface of Earth light will fall with accel-
eration 9.8 m/s2. This is difficult to observe because of the enormous speed of light. For 
example, in a distance of 3000 km, which takes about 0.01 second to cover, a beam of 
light should fall about 0.5 mm. Einstein pointed out that the deflection of a light beam 
in a gravitational field might be observed when light from a distant star passes close to 

This relativistic effect 
results in gravitational 
lenses in the cosmos that 
focus light from extremely 
distant galaxies, greatly 
improving their visibility in 
telescopes, both on Earth 
and in orbit.

Light

t1

t1 t2 t3 t4

t2 t3 t4

beam

a
(a)

(b)

Figure 2-19  (a) Light beam moving in a straight line through a compartment that is 
undergoing uniform acceleration. The position of the light beam is shown at equally spaced 
times t1, t2, t3, t4. (b) In the reference frame of the compartment, the light travels in a 
parabolic path, as would a ball were it projected horizontally. Note that in both (a) and (b) 
the vertical displacements are greatly exaggerated for emphasis.
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the Sun.16 The deflection, or bending, is computed as follows. Rewriting the spacetime 
interval (Equation 2-42) in polar coordinates,

	 ds2 = c2 dt2 - 1dr 2 + r 2 d2 + r 2 sin2  d22� 2-47

Since the deflection of the light beam occurs in a plane, the two-dimensional version of 
Equation 2-47 is

	 ds2 = c2 dt2 - 1dr 2 + r 2 d22� 2-48

Einstein showed that Equation 2-48 is modified in the presence of a (spherical, nonro-
tating) mass M to become

	 ds2 = g1r22c2 dt2 - dr 2>g1r22 - r 2 d2� 2-49

where g(r) 5 (1  2GM>c2r)1/2, with G 5 universal gravitational constant and r 5 
distance from the center of mass M. The factor g(r) is roughly analogous to the g of 
special relativity. In the following Exploring section on gravitational redshift, we will 
describe how g(r) arises. For now, g(r) can be thought of as correcting for gravitational 
time dilation (the first term on the right of Equation 2-49) and gravitational length con-
traction (the second term).

This situation is illustrated in Figure 2-20, which shows the light from a distant 
star just grazing the edge of the Sun. The gravitational deflection of light (with mass 
gm 5 E>c2) can be treated as a refraction of the light. The speed of light is reduced to 
g(r)c in the vicinity of the mass M since g(r) , 1 (see Equation 2-49), thus bending 
the wave fronts, and hence the beam, toward M. This is analogous to the deflection of 
starlight toward Earth’s surface as a result of the changing density—hence index of 
refraction—of the atmosphere. By integrating Equation 2-49 over the entire trajectory 
of the light beam (recall that ds 5 0 for light) as it passes by M, the total deflection a 
is found to be17

	 a = 4GM>c2R� 2-50

where R 5 distance of closest approach of the beam to the center of M. For a beam just 
grazing the Sun, R 5 R 5 solar radius 5 6.96 3 108 m. Substituting the values for G 
and the solar mass (M 5 1.99 3 1030 kg) yields a 5 1.75 arc second.18

Ordinarily, of course, the brightness of the Sun prevents astronomers (or any-
one else) from seeing stars close to the limbs (edges) of the Sun, except during a total 
eclipse. Einstein completed the calculation of a in 1915, and in 1919 expeditions were 
organized by Eddington19 at two points along the line of totality of a solar eclipse, both 
of which were successful in making measurements of a for several stars and testing the 
predicted 1>R dependence of a. The measured values of a for grazing beams at the 
two sites were

 At Sobral 1South America2: a = 1.98 { 0.12 arc seconds

 At Principe Island 1Africa2: a = 1.61 { 0.30 arc seconds

their average agreeing with the general relativistic prediction to within about 2 percent. 
Figure 2-21 illustrates the agreement of the 1>R dependence with Equation 2-50. 
(Einstein learned of the successful measurements via a telegram from H. A. Lorentz.) 
Since 1919, many measurements of a have been made during eclipses. Since the 
development of radio telescopes, which are not blinded by sunlight and hence 
don’t require a total eclipse, many more measurements have been made. The lat-
est data agree with the deflection predicted by general relativity to within about 
0.1 percent.

The gravitational deflection of light is being put to use by modern astrono-
mers via the phenomenon of gravitational lensing to help in the study of galaxies 

Sun, M

Earth

Star

Light
path

Apparent
light path

α

Apparent
position of star

R

Figure 2-20  Deflection 
(greatly exaggerated) of a 
beam of starlight due to the 
gravitational attraction of 
the Sun.
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and other large masses in space. Light from very distant galax-
ies passing near or through other galaxies or clusters of galaxies 
between the source and Earth can be bent so as to reach Earth 
in much the same way that light from an object on a bench in 
the laboratory can be refracted by a glass lens and thus reach the 
eye of an observer. An intervening galaxy or cluster of galaxies 
can thus produce images of the distant source, even ones magni-
fied and distorted, just as the glass lens can. Figure 2-22a will 
serve as a reminder of a refracting lens in the laboratory, while 
Figure 2-22b illustrates the corresponding action of a gravita-
tional lens. The accompanying photograph shows the images of 
several distant galaxies drawn out into arcs by the lens effect of 
the cluster of galaxies in the center. The first confirmed discovery 
of images formed by a gravitational lens, the double image of 
the quasar QSO 0957, was made in 1979 by D. Walsh and his 
coworkers. Since then astronomers have found many such images. 
Their discovery and interpretation is currently an active area of 
research (see Chapter 13).

Figure 2-21  The deflection angle a depends on 
the distance of closest approach R according to 
Equation 2-50. Shown here is a sample of the data 
for 7 of the 13 stars measured by the Eddington 
expeditions. The agreement with the relativistic 
prediction is apparent.
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Figure 2-22  ​(a) Ordinary 
refracting lens bends light, 
causing many rays that would 
not otherwise have reached 
the observer’s eye to do so. 
Their apparent origin is the 
image formed by the lens. 
Notice that the image is not 
the same size as the object 
(magnification) and, although 
not shown here, the shape 
of the lens can cause the 
image shape to be different 
from that of the object. 
(b) Gravitational lens has the 
same effects on the light from 
distant galaxies seen at Earth.Viewer
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Exploring
Gravitational Redshift

A second prediction of general relativity concerns the rates of clocks and the frequen-
cies of light in a gravitational field. As a specific case that illustrates the gravitational 
redshift as a direct consequence of the equivalence principle, suppose we consider 
two identical light sources (A and A9) and detectors (B and B9) located in identical 
spaceships (S and S9) as illustrated in Figure 2-23. The spaceship S9 in Figure 2-23b is 
located far from any mass. At time t 5 0, S9 begins to accelerate, and simultaneously 
an atom in the source A9 emits a light pulse of its characteristic frequency f0. During the 
time t (5 h>c) for the light to travel from A9 to B9, B9 acquires a speed v 5 at 5 gh>c, 
and the detector B9, receding from the original location of A9, measures the frequency of 
the incoming light to be f redshifted by a fractional amount ( f0  f )> f0  b for v 5 c 
(see Section 1-5). Thus,

	 1  f0 - f 2 >f0 = Df>f  b = v>c = gh>c2	 2-51

Notice that the right side of Equation 2-51 is equal to the gravitational potential (i.e., the 
gravitational potential energy per unit mass) D 5 gh between A and B, divided by c2. 
According to the equivalence principle, the detector at B in S must also measure the fre-
quency of the arriving light to be f, even though S is at rest on the planet and, therefore, 
the shift cannot be due to the Doppler effect! Since the vibrating atom that produced the 
light pulse at A can be considered to be a clock, and since no “cycles” of the vibration 

Images of distant galaxies are drawn out into arcs by the massive cluster of galaxies 
Abell 2218, whose enormous gravitational field acts as a lens to magnify, brighten, and 
distort the images. Abell 2218 is about 2 billion c # y from Earth. The arcs in this January 
2000 Hubble Space Telescope photograph are images of galaxies 10 to 20 billion c # y away.
[NASA, A. Fruchter; ERO Team.]

TIPLER_02_065-118hr.indd   106 8/18/11   11:20 AM



	 2-5  General Relativity 	 107

are lost on the pulse’s trip from A to B, the observer at B must conclude that the clock at 
A runs slow, compared with an identical clock (or an identical atom) located at B. Since 
A is at the lower potential, the observer concludes that clocks run more slowly the lower 
the gravitational potential. This shift of clock rates to lower frequencies, hence longer 
wavelengths in lower gravitational potentials, is the gravitational redshift.

In the more general case of a spherical, nonrotating mass M, the change in gravi-
tational potential between the surface at some distance R from the center and a point at 
infinity is given by

	 D = L
 

R

GM

r 2 dr = GM1-1>r2 0 R =
GM

R
� 2-52

and the factor by which gravity shifts the light frequency is found from

Df>f0 = 1f0 - f2 >f0 = GM>c2R

or

	 f>f0 = 1 - GM>c2R 1gravitational redshift2� 2-53

Notice that if the light is moving the other way, that is, from high to low gravitational 
potential, the limits of integration in Equation 2-52 are reversed and Equation 2-53 
becomes

	 f>f0 = 1 + GM>c2R 1gravitational blueshift2� 2-54

Analyzing the frequency of starlight for gravitational effects is exceptionally dif-
ficult because several shifts are present. For example, the light is gravitationally red-
shifted as it leaves the star and blueshifted as it arrives at Earth. The blueshift near 
Earth is negligibly small with current measuring technology; however, the redshift 
due to the receding of nearby stars and distant galaxies from us as a part of the gen-
eral expansion of the universe is typically much larger than gravitational effects and, 

Figure 2-23  (a) System S is at rest in the gravitational field of the planet.
(b) Spaceship S9, far from any mass, accelerates with a 5 g.

g
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TIPLER_02_065-118hr.indd   107 8/18/11   11:20 AM



108	 Chapter 2  Relativity II

together with thermal frequency broadening in the stellar atmospheres, results in large 
uncertainties in measurements. Thus, it is quite remarkable that the relativistic predic-
tion of Equation 2-54 has been tested in the relatively small gravitational field of Earth. 
R. V. Pound and his coworkers,20 first in 1960 and then again in 1964 with improved 
precision, measured the shift in the frequency of 14.4 keV gamma rays emitted by 57Fe 
falling trough a height h of only 22.5 m. Using the Mössbauer effect, an extremely 
sensitive frequency-shift-measuring technique developed in 1958, their measure-
ments agreed with the predicted fractional blueshift gh>c2 5 2.45 3 1015 to within 
1 percent. Equations 2-53 and 2-54 have been tested a number of times since then—
using atomic clocks carried on aircraft, as described in Section 1-4, and, in 1980, by 
R. F. C. Vessot and his coworkers, using a precision microwave transmitter carried to 
10,000 km from Earth by a space probe. These, too, agree with the relativistically pre-
dicted frequency shift, the latter to one part in 14,000. More recently, in 2010 J. C.-W. 
Chou and his coworkers at the National Institute of Science and Technology (NIST) 
used precision optical clocks to detect the minuscule shift in a transition in an 27Al ion 
between optical clocks differing in elevation by only 33 cm.

Question

7.	 The frequency f in Equation 2-53 can be shifted to zero by an appropriate value 
of M>R. What would be the corresponding value of R for a star with the mass of 
the Sun? Speculate on the significance of this result.

More
�The inability of Newtonian gravitational theory to correctly account 
for the observed rate at which the major axis of Mercury’s orbit 
precessed about the Sun was a troubling problem, pointing as it did 
to some subtle failure of the theory. Einstein’s first paper on general 
relativity quantitatively explained the advance of the Perihelion of 
Mercury’s Orbit, setting the stage for general relativity to supplant the 
old Newtonian theory. A clear description of the relativistic explana-
tion is on the home page:  www.whfreeman.com/tiplermodernphys-
ics6e. See also Equations 2-55 through 2-57 here, as well as Figure 
2-24 and Table 2-2.

More

More
�General relativity includes a gravitational interaction for particles with 
zero rest mass, such as photons, which are excluded in Newtonian 
theory. One consequence is the prediction of a Delay of Light in a 
Gravitational Field. This phenomenon and its subsequent observation 
are described qualitatively on the home page:  www.whfreeman.com/
tiplermodernphysics6e. See also Equation 2-58 here, as well as Figures 
2-25 and 2-26.

More

Black Holes  Black holes were first predicted by Oppenheimer and Snyder in 
1939.24 According to the general theory of relativity, if the density of an object such as a 
star is great enough, the gravitational attraction will be so large that nothing can escape 
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from its surface, not even light or other electromagnetic radiation. It is as if space itself 
were being drawn inward faster than light could move outward through it. A remarkable 
property of such an object is that nothing that happens inside it can be communicated to 
the outside world. This occurs when the gravitational potential at the surface of the mass 
M becomes so large that the frequency of radiation emitted at the surface is redshifted to 
zero. From Equation 2-53 we see that the frequency will be zero when the radius of the 
mass has the critical value RG 5 GM>c2. This result is a consequence of the principle 
of equivalence, but Equation 2-53 is a v V c approximation. A precise derivation of 
the critical value of the radius RG, called the Schwarzschild radius, yields

	 RG =
2MG

c2 	 2-59

For an object with mass equal to that of our Sun to be a black hole, its radius 
would be about 3 km. A large number of black holes have been identified by astrono-
mers in recent years, one of them in the center of the Milky Way (see Chapter 13).

An interesting historical note is that Equation 2-59 was first derived by the 
nineteenth-century French physicist Pierre Laplace using Newtonian mechanics to 
compute the escape velocity ve from a planet of mass M before anyone had ever heard 
of Einstein or black holes. The result, derived in first-year physic courses by setting 
the kinetic energy of the escaping object equal to the gravitational potential energy at 
the surface of the planet (or star), is

	 ve = A2GM
r

	

Setting ve 5 c gives Equation 2-59. Laplace obtained the correct result by making two 
fundamental errors that just happened to cancel each other!

Gravitational Waves  Einstein’s formulation of general relativity in 1916 explic-
itly predicted the existence of gravitational radiation. He showed that, just as acceler-
ated electric charges generate time-dependent electromagnetic fields in space—that 
is, electromagnetic waves—accelerated masses would create time-dependent gravita-
tional fields in space—that is, gravitational waves—that propagate 
from their source at the speed of light. The gravitational waves are 
propagating ripples, or distortions of spacetime. Figure 2-27 illus-
trates gravitational radiation emitted by two merging black holes 
distorting the otherwise flat “fabric” of spacetime.

The best experimental evidence that exists thus far in support 
of the gravitational wave prediction is indirect. In 1974 Hulse and 
Taylor25 discovered the first binary pulsar, that is, a pair of neutron 
stars orbiting each other, one of which was emitting periodic 
flashes of electromagnetic radiation (pulses). In an exquisitely pre-
cise experiment they showed that the gradual decrease in the 
orbital period of the pair was in good agreement with the general 
relativistic prediction for the rate of loss of gravitational energy via 
the emission of gravitational waves.

Experiments are currently under way in several countries to 
directly detect gravitational waves arriving at Earth. One of the most 
promising is LIGO (Laser Interferometer Gravitational-Wave 
Observatory), a pair of large Michelson interferometers, one at the 
Livingston Observatory in Louisiana and one at the Hanford 

Figure 2-27  Gravitational waves, intense 
ripples in the fabric of spacetime, are expected to 
be generated by a merging binary system of 
neutron stars or black holes. The amplitude 
decreases with distance due to the 1>R falloff and 
because waves farther from the source were 
emitted at an earlier time, when the emission was 
weaker. [Courtesy of Patrick Brady.]
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Observatory 3002 km away in Washington, operating in coincidence. Figure 2-28 illus-
trates one of  the LIGO interferometers. Each arm is 4 km long. The laser beams are 
reflected back and forth making about 75 round trips along each arm and recombining 
at the photodetector, so that the effective lengths of the arms is about 400 km. (A half-
size but equally sensitive instrument using Fabry-Perot cavities is also housed at the 
Hanford Observatory.) The arrival of a gravitational wave would stretch one arm of the 
interferometer by about 1/1000 of the diameter of a proton and squeeze the other arm by 
the same minuscule amount! Nonetheless, that tiny change in the lengths is sufficient to 
very slightly change the relative phase of the recombining laser beams and produce a 
shift in interference fringes. The two LIGO interferometers must record the event within 
10 ms of each other for the signal to be interpreted as a gravitational wave, that being 
the travel time between the two observatories for a gravitational wave moving at 

Figure 2-28  The LIGO 
detectors are equal-arm 
Michelson interferometers. 
The mirrors, each 25 cm in 
diameter by 10 cm thick and 
isolated from Earth’s motions, 
are also the test masses of the 
gravitational wave detector. 
Arrival of a gravitational wave 
would change the length of each 
arm by about the diameter of an 
atomic nucleus and result in a 
light signal at the photodetector.

M

M M 

M
M are mirrors/test masses

Light storage arm

Light storage arm
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Beam
splitter
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Aerial view of the LIGO 
gravity wave interferometer 
near Hanford, Washington. 
Each of the two arms is 4 km 
long. [CalTech/LIGO]
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speed c. LIGO completed its two-year, low-sensitivity initial operational phase and 
went online in mid-2002. By 2008 LIGO had completed five science runs, the fifth (S5) 
including coincidence operations with the GEO 600 interferometer near Hannover, Ger-
many, and the Virgo interferometer in Cascina, Italy. At this writing a sixth science run 
(S6) is under way. These instruments are by far the most sensitive scientific instruments 
ever built. Thus far, none of the half-dozen or so experiments under way around the 
world has confirmed detection of a gravitational wave.26 On completion of S6 at the end 
of 2010 the LIGO interferometers were shut down and disassembled in preparation for 
the installation of Advanced LIGO. The new instruments will increase the system’s 
sensitivity by a factor of 10 and its range into the cosmos by a factor of 1000, as Figure 
2-29 illustrates. Advanced LIGO is scheduled to begin operation in 2014.

There is still an enormous amount to be learned about the predictions and impli-
cations of general relativity—not just about such things as black holes and gravity 
waves, but also, for example, about gravity and spacetime in the very early universe, 
when forces were unified and the constituents were closely packed. These and other 
fascinating matters are investigated more specifically in the areas of particle physics 
(Chapter 12) and astrophysics and cosmology (Chapter 13), fields of research linked 
by general relativity, perhaps the grandest of Einstein’s great scientific achievements.

Question

8.	 Speculate on what the two errors made by Laplace in deriving Equation 2-59 
might have been.

This application of 
Michelson’s interferometer 
may well lead to the 
first direct detection 
of “ripples” or waves in 
spacetime.

Figure 2-29  ​Comparison of 
the ranges of LIGO and 
Advanced LIGO. Each dot in 
the diagram represents a 
galaxy. [LIGO/Cal Tech]
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Summary 

TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Relativistic momentum p 5 gmu 2-7

The relativistic momentum is conserved and approaches mu for 
v V c. g 5 (1  u2/c2)1/2 in Equation 2-7, where u 5 particle 
speed in S.

2.	 Relativistic energy

	 Total energy

	 Kinetic energy

E 5 gmc2

The relativistic total energy is conserved.

Ek 5 gmc2  mc2

mc2 is the rest energy. g 5 (1  u2/c2)1/2 in Equations 2-9 and 2-10.

2-10

2-9

3.	 Lorentz transformation for E and p. p =x = g1px - vE>c22 p =y = py

E9 = g1E - vpx2   p =z = pz

where v 5 relative speed of the systems and g 5 (1  v2/c2)1/2

2-16

4.	 Mass/energy conversion Whenever additional energy DE in any form is stored in an object, 
the rest mass of the object is increased by Dm 5 DE>c2.

5.	 Invariant mass (mc2) 5 E2  ( pc)2 2-32

The energy and momentum of any system combine to form an 
invariant four vector whose magnitude is the rest energy of the 
mass m.

6.	 Force in relativity The force F 5 ma is not invariant in relativity. Relativistic force is 
defined as

F =
dp

dt
=

d1gmu2
dt

2-8

7.	 General relativity

	 Principle of equivalence A homogeneous gravitational field is completely equivalent to a 
uniformly accelerated reference frame.

	 Invariant interval ds2 5 c2dt2  (dx2 + dy2 + dz2) 2-42

General References 
The following general references are written at a level appro-
priate for readers of this book.

Alder, R., M. Bazin, and M. Schiffer, Introduction to General 
Relativity, McGraw-Hill, New York, 1965.

Bohm, D., The Special Theory of Relativity, W. A. Benjamin, 
New York, 1965.

French, A. P., Albert Einstein: A Centenary Volume, Harvard
University Press, Cambridge, MA, 1979. This is an 

excellent collection of contributions from many people 
about Einstein’s life and work.

Kogut, J. B., Introduction to Relativity, Harcourt/Academic 
Press, San Diego, CA, 2001. Our discussion of the invari-
ant interval was based in part on that in section 7.2 in 
this excellent book.

Lorentz, H. A., A. Einstein, H. Minkowski, and W. Weyl, The 
Principle of Relativity: A Collection of Original Memoirs 
on the Special and General Theory of Relativity (trans. 
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W. Perrett and J. B. Jeffery), Dover, New York, 1923. 
Two of Einstein’s papers reprinted here are of interest 
in connection with this chapter: “On the Electrodynam-
ics of Moving Bodies” [Annalen der Physik, 17 (1905)] 
and “Does the Inertia of a Body Depend upon Its Energy 
Content?” [Annalen der Physik, 17 (1905)].

Ohanian, H. C., Special Relativity: A Modern Introduction, 
Physics Curriculum & Instruction, 2001.

Pais, A., Subtle is the Lord . . . , Oxford University Press, 
Oxford, 1982.

Resnick, R., Introduction to Relativity, Wiley, New York, 1968.
Rosser, W. G. V., The Theory of Relativity, Butterworth, 

London, 1964.
Taylor, E. F., and J. A. Wheeler, Spacetime Physics, 2d ed., 

W. H. Freeman and Co., 1992. This is a good book with 
many examples, problems, and diagrams.

Notes 
1.	 This gedankenexperiment (thought experiment) is based 

on one first suggested by G. N. Lewis and R. C. Tolman, 
Philosophical Magazine, 18, 510 (1909).

2.	 You can see that this is so by rotating Figure 2-1a through 
180° in its own plane; it then matches Figure 2-1b exactly.

3.	 C. G. Adler, American Journal of Physics, 55, 739 (1987).
4.	 This idea grew out of the results of the measurements 

of masses in chemical reactions in the nineteenth century, 
which, within the limits of experimental uncertainties of the 
time, were always observed to conserve mass. The conser-
vation of energy had a similar origin in the experiments of 
James Joule (1818–89) as interpreted by Hermann von Helm-
holtz (1821–94). This is not an unusual way for conservation 
laws to originate; scientists still do it this way.

5.	 The approximation of Equation 2-10 used in this discus-
sion was, of course, not developed from Newton’s equations. 
The rest energy mc2 has no classical counterpart.

6.	 “Facilitates” means that we don’t have to make frequent 
unit conversions or carry along large powers of 10 with nearly 
every factor in many calculations. However, a word of cau-
tion is in order. Always remember that the eV is not a basic SI 
unit. When making calculations whose results are to be in SI 
units, don’t forget to convert the eV!

7.	 A. Einstein, Annalen der Physik, 17 (1905).
8.	 Strictly speaking, the time component should be written 

icDt, where i 5 (1)1/2. The i is the origin of the minus sign 
in the spacetime interval, as well as in Equation 2-32 for the 
energy/momentum four vector and other four vectors in both 
special and general relativity. Its inclusion was a contribu-
tion of Hermann Minkowski (1864–1909), a Russian-German 
mathematician, who developed the geometric interpretation of 
relativity and who was one of Einstein’s professors at Zurich. 
Consideration of the four-dimensional geometry is beyond 
the scope of our discussions, so we will not be concerned with 
the i.

9.	 Other conservation laws must also be satisfied, for exam-
ple, electric charge, angular momentum.
10.	 The positron is a particle with the same mass as an ordi-
nary electron but with a positive electric charge of the same 
magnitude as that carried by the electron. It and other antipar-
ticles will be discussed in Chapters 11 and 12.
11.	 Since electrons are thought to be point particles, that is, 
they have no space dimensions, it isn’t clear what it means to 

“hit” an electron. Think of it as the photon close to the elec-
tron’s location, hence within its strong electric field.
12.	 Such a system is called a polyelectron. It is analogous to 
an ionized hydrogen molecule much as positronium is analo-
gous to a hydrogen atom (see the caption for Figure 2-12).
13.	 From Einstein’s lecture in Kyoto in late 1922. See Pais 
(1982).
14.	 From an unpublished paper now in the collection of the 
Pierpont Morgan Library in New York. See Pais (1982).
15.	 Apparent forces are inertial in nature, that is, they are 
proportional to mass and do not exist in an appropriately cho-
sen coordinate system. Actual, or “real” forces, such as the 
spring force and the Coulomb force, are independent of mass.
16.	 Einstein inquired of the astronomer George Hale (after 
whom the 5 m telescope on Palomar Mountain is named) in 
1913 whether such minute deflections could be measured 
near the Sun. The answer was no, but a corrected calculation 
two years later doubled the predicted deflection and brought 
detection to within the realm of possibility.
17.	 This is not a simple integration. See, for example, Adler 
et al., Introduction to General Relativity (McGraw-Hill, 
New York, 1963).
18.	 Both Newtonian mechanics and special relativity pre-
dict half this value. The particle-scattering formula used in 
Chapter 4 to obtain Equation 4-3 applied to the gravitational 
deflection of a photon of mass hn>c2 by the solar mass M at 
impact parameter b equal to the solar radius R shows how 
this value arises.
19.	 A copy of Einstein’s work (he was then in Berlin) was 
smuggled out of Germany to Eddington in England so that 
he could plan the project. Germany and England were then at 
war. Arthur S. Eddington was at the time director of the pres-
tigious Cambridge Observatory. British authorities approved 
the eclipse expeditions to avoid the embarrassment of putting 
such a distinguished scientist as Eddington, a conscientious 
objector, into a wartime internment camp.
20.	 See, for example, R. V. Pound and G. A. Rebka, Jr., 
Physical Review Letters, 4, 337 (1960).
21.	 These values are relative to the fixed stars.
22.	 A. Einstein, “The Foundation of the General Theory of 
Relativity,” Annalen der Physik, 49, 769 (1916).
23.	 I. I. Shapiro et al., Physical Review Letters, 26, 1132 
(1971).
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24.	 Actually, the first recorded suggestion of the possibility of 
stars so massive that light could not escape from them—“dark 
stars”—was made by John Mitchell, an English rector, in 1783. 
The term black hole was coined by John Wheeler in 1968.
25.	 R. A. Hulse and J. H. Taylor, Astrophysical Journal, 195, 
L51 (1975).

26.	 Gravity wave detectors outside the United States are the 
TAMA 300 (Japan), GEO 600 (Germany), and Virgo (Italy). 
NASA and the European Space Agency are designing a 
space-based gravity wave detector, LISA, that will have arms 
5 million kilometers long. The three satellites that will consti-
tute LISA are scheduled for launch in about 2020.

Problems 
Level I
Section 2-1  Relativistic Momentum and Section 2-2 Relativistic 
Energy
2-1.	 Show that pyA 5 pyB, where pyA and pyB are the relativistic momenta of the balls in 
Figure 2-1, given by

 pyA =
mu021 - u2

0>c2
   pyB =

muyB21 - 1u2
xB + u2

yB2 >c2

 uyB = -u021 - v2>c2  uxB = v

2-2.	 Show that d(gmu) 5 m(1  u2>c2)3/2 du.
2-3.	 An electron of rest energy mc2 5 0.511 MeV moves with respect to the laboratory 
at speed u 5 0.6c. Find (a) g, (b) p in units of MeV>c, (c) E, and (d ) Ek.
2-4.	 How much energy would be required to accelerate a particle of mass m from rest to 
a speed of (a) 0.5c, (b) 0.9c, and (c) 0.99c? Express your answers as multiples of the rest 
energy.
2-5.	 Two 1 kg masses are separated by a spring of negligible mass. They are pushed 
together, compressing the spring. If the work done in compressing the spring is 10 J, find 
the change in mass of the system in kilograms. Does the mass increase or decrease?
2-6.	 At what value of u>c does the measured mass of a particle exceed its rest mass by 
(a) 10 percent, (b) a factor of 5, and (c) a factor of 20?
2-7.	 A cosmic-ray proton is moving at such a speed that it can travel from the Moon to 
Earth in 1.5 s. (a) At what fraction of the speed of light is the proton moving? (b) What 
is its kinetic energy? (c) What value would be measured for its mass by an observer in 
Earth’s reference frame? (d ) What percent error is made in the kinetic energy by using the 
classical relation? (The Earth-Moon distance is 3.8 3 105 km. Ignore Earth’s rotation.)
2-8.	 How much work must be done on a proton to increase its speed from (a) 0.15c to 
0.16c? (b) 0.85c to 0.86c? (c) 0.95c to 0.96c? Notice that the change in the speed is the 
same in each case.
2-9.	 The Relativistic Heavy Ion Collider (RHIC) at Brookhaven is colliding fully ionized 
gold (Au) nuclei accelerated to an energy of 200 GeV per nucleon. Each Au nucleus con-
tains 197 nucleons. (a) What is the speed of each Au nucleus just before collision? (b) What 
is the momentum of each at that instant? (c) What energy and momentum would be mea-
sured for one of the Au nuclei by an observer in the rest system of the other Au nucleus?
2-10.	 (a) Compute the rest energy of 1 g of dirt. (b) If you could convert this energy 
entirely into electrical energy and sell it for 10 cents per kilowatt-hour, how much money 
would you get? (c) If you could power a 100 W lightbulb with the energy, for how long 
could you keep the bulb lit?
2-11.	 An electron with rest energy of 0.511 MeV moves with speed u 5 0.2c. Find its 
total energy, kinetic energy, and momentum.
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2-12.	 A proton with rest energy of 938 MeV has a total energy of 1400 MeV. (a) What is 
its speed? (b) What is its momentum?
2-13.	 The orbital speed of the Sun relative to the center of the Milky Way is about 250 km/s. 
By what fraction do the relativistic and Newtonian values differ for (a) the Sun’s momen-
tum and (b) the Sun’s kinetic energy?
2-14.	 An electron in a hydrogen atom has a speed about the proton of 2.2 3 106 m/s. 
(a) By what percent do the relativistic and Newtonian values of Ek differ? (b) By what 
percent do the momentum values differ?
2-15.	 Suppose that you seal an ordinary 60 W lightbulb and a suitable battery inside a 
transparent enclosure and suspend the system from a very sensitive balance. (a) Compute 
the change in the mass of the system if the lamp is on continuously for one year at full 
power. (b) What difference, if any, would it make if the inner surface of the container 
were a perfect reflector?

Section 2-3  Mass/Energy Conversion and Binding Energy
2-16.	 Use Appendix A and Table 2-1 to find how much energy is needed to remove one 
proton from a 4He atom, leaving a 3H atom plus a proton and an electron.
2-17.	 Use Appendix A and Table 2-1 to find how much energy is required to remove one 
of the neutrons from a 3H atom to yield a 2H atom plus a neutron.
2-18.	 The energy released when sodium and chlorine combine to form NaCl is 4.2 eV. 
(a) What is the increase in mass (in unified mass units) when a molecule of NaCl is dissociated 
into an atom of Na and an atom of Cl? (b) What percentage of error is made in neglecting this 
mass difference? (The mass of Na is about 23 u and that of Cl is about 35.5 u.)
2-19.	 In a nuclear fusion reaction two 2H atoms are combined to produce one 4He. 
(a)  Calculate the decrease in rest mass in unified mass units. (b) How much energy is 
released in this reaction? (c) How many such reactions must take place per second to pro-
duce 1 W of power?
2-20.	 An elementary particle of mass M completely absorbs a photon, after which its mass 
is 1.01M. (a) What was the energy of the incoming photon? (b) Why is that energy greater 
than 0.01Mc2?
2-21.	 When a beam of high-energy protons collides with protons at rest in the laboratory 
(e.g., in a container of water or liquid hydrogen), neutral pions (p0) are produced by the 
reaction p + p S  p + p + p0. Compute the threshold energy of the protons in the beam 
for this reaction to occur (see Table 2-1 and Example 2-13).
2-22.	 The energy released in the fission of a 235U nucleus is about 200 MeV. How much 
rest mass (in kg) is converted to energy in this fission?
2-23.	 The temperature of the sun’s core is about 1.5 3 107 K. Assuming the core to consist 
of atomic hydrogen gas and recalling that temperature measures the average kinetic energy 
of the atoms, compute (a) the thermal energy of 1 kg of the gas and (b) the mass associated 
with this energy. [Ek = 3kT>2], where k is the Boltzmann constant (see Chapter 3).]

Section 2-4  Invariant Mass
2-24.	 Compute the force exerted on the palm of your hand by the beam from a 1.0 W 
flashlight (a) if your hand absorbs the light and (b) if the light reflects from your hand. 
What would be the mass of a particle that exerts that same force in each case if you hold 
it at Earth’s surface?
2-25.	 An electron-positron pair combined as positronium is at rest in the laboratory. The 
pair annihilate, producing a pair of photons (gamma rays) moving in opposite directions 
in the lab. Show that the invariant rest energy of the gamma rays is equal to that of the 
electron pair.
2-26.	 Show that Equation 2-31 can be written E 5 mc2(1 + p2>m2c2)1/2 and use the bino-
mial expansion to show that, when pc is much less than mc2, E  mc2 + p2>2m.
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2-27.	 An electron of rest energy 0.511 MeV has a total energy of 5 MeV. (a) Find its 
momentum in units of MeV>c. (b) Find u>c.
2-28.	 Make a sketch of the total energy of an electron E as a function of its momentum p. 
(See Equations 2-36 and 2-40 for the behavior of E at large and small values of p.)
2-29.	 What is the speed of a particle that is observed to have momentum 500 MeV/c and 
energy 1746 MeV? What is the particle’s mass (in MeV>c2)?
2-30.	 An electron of total energy 4.0 MeV moves perpendicular to a uniform magnetic 
field along a circular path whose radius is 4.2 cm. (a) What is the strength of the magnetic 
field B? (b) By what factor does gm exceed m?
2-31.	 A proton is bent into a circular path of radius 2 m by a magnetic field of 0.5 T. 
(a) What is the momentum of the proton? (b) What is its kinetic energy?

Section 2-5 G eneral Relativity
2-32.	 For a spinning disk, such as a CD or DVD, show that in the reference frame of the 
disk Equation 2-44 follows from Equation 2-43.
2-33.	 Compute the deflection angle a for light from a distant star that would, according 
to general relativity, be measured by an observer on the Moon as the light grazes the edge 
of Earth.
2-34.	 A set of twins work in the Sears Tower, a very tall office building in Chicago. One 
works on the top floor and the other works in the basement. Considering general relativity, 
which twin will age more slowly? (a) They will age at the same rate. (b) The twin who works 
on the top floor will age more slowly. (c) The twin who works in the basement will age more 
slowly. (d ) It depends on the building’s speed. (e) None of the previous choices is correct.
2-35.	 Jupiter makes 8.43 orbits/century and exhibits an orbital eccentricity  5 0.048. 
Jupiter is 5.2 AU from the Sun (see footnote for Table 2-2) and has a mass 318 times the 
Earth’s 5.98 3 1024 kg. What does general relativity predict for the rate of precession of 
Jupiter’s perihelion? (It has not yet been measured.) (The astronomical unit AU 5 the 
mean Earth-Sun distance 5 1.50 3 1011 m.)
2-36.	 Show that the substitution of dt from Equation 2-45 into Equation 2-44 removes the 
spacetime cross term d9dt, resulting in Equation 2-46.
2-37.	 A synchronous satellite “parked” in orbit over the equator is used to relay micro-
wave transmissions between stations on the ground. To what frequency must the satellite’s 
receiver be tuned if the frequency of the transmission from Earth is exactly 9.375 GHz? 
(Ignore all Doppler effects.)
2-38.	 A particular distant star is found to be 92c # y from Earth. On a direct line between us 
and the star and 35c # y from the distant star is a dense white dwarf star with a mass equal to 
3 times the Sun’s mass M and a radius of 104 km. Deflection of the light beam from the 
distant star by the white dwarf causes us to see it as a pair of circular arcs like those shown 
in Figure 2-22(b). Find the angle 2a formed by the lines of sight to the two arcs.

Level II
2-39.	 A clock is placed on a satellite that orbits Earth with a period of 90 min at an alti-
tude of 300 km. By what time interval will this clock differ from an identical clock on 
Earth after 1 year? (Include both special and general relativistic effects.)
2-40.	 Referring to Example 2-11, find the total energy E9 as measured in S9 where p9 5 0.
2-41.	 In the Stanford linear collider, small bundles of electrons and positrons are fired at 
each other. In the laboratory’s frame of reference, each bundle is about 1 cm long and 10 mm 
in diameter. In the collision region, each particle has energy of 50 GeV, and the electrons 
and positrons are moving in opposite directions. (a) How long and how wide is each bundle 
in its own reference frame? (b) What must be the minimum proper length of the accelera-
tor for a bundle to have both its ends simultaneously in the accelerator in its own reference 
frame? (The actual length of the accelerator is less than 1000 m.) (c) What is the length of 
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a positron bundle in the reference frame of the electron bundle? (d ) What are the momen-
tum and energy of the electrons in the rest frame of the positrons?
2-42.	 The rest energy of a proton is about 938 MeV. If its kinetic energy is also 938 MeV, 
find (a) its momentum and (b) its speed.
2-43.	 A spaceship of mass 106 kg is coasting through space when suddenly it becomes 
necessary to accelerate. The ship ejects 103 kg of fuel in a very short time at a speed of 
c>2 relative to the ship. (a) Neglecting any change in the rest mass of the system, calculate 
the speed of the ship in the frame in which it was initially at rest. (b) Calculate the speed 
of the ship using classical Newtonian mechanics. (c) Use your results from (a) to estimate 
the change in the rest mass of the system.
2-44.	 A clock (or a light-emitting atom) located at Earth’s equator moves at about 463 m/s 
relative to one located at the pole. The equator clock is also about 21 km farther from the 
center of Earth than the pole clock due to Earth’s equatorial bulge. For an inertial refer-
ence frame centered on Earth, compute the time dilation effect for each clock as seen by 
an observer at the other clock. Show that the effects nearly cancel and that, as a result, the 
clocks read very close to the same time. (Assume that g is constant over the 21 km of the 
equatorial bulge.)
2-45.	 Professor Spenditt, oblivious to economics and politics, proposes the construction 
of a circular proton accelerator around Earth’s circumference using bending magnets that 
provide a magnetic field of 1.5 T. (a) What would be the kinetic energy of protons orbit-
ing in this field in a circle of radius RE? (b) What would be the period of rotation of these 
protons?
2-46.	 In ancient Egypt the annual flood of the Nile was predicted by the rise of Sirius (the 
Dog Star). Sirius is one of a binary pair whose companion is a white dwarf. Orbital analy-
sis of the pair indicates that the dwarf ’s mass is 2 3 1030 kg (i.e., about one solar mass). 
Comparison of spectral lines emitted by the white dwarf with those emitted by the same 
element on Earth show a fractional frequency shift of 7 3 104. Assuming this to be due 
to a gravitational redshift, compute the density of the white dwarf. (For comparison, the 
Sun’s density is 1409 kg/m3.)
2-47.	 Show that the creation of an electron-positron pair (or any particle-antiparticle pair, 
for that matter) by a single photon is not possible in isolation, that is, that additional mass 
(or radiation) must be present. (Hint: Use the conservation laws.)
2-48.	 With inertial systems S and S9 arranged with their corresponding axes parallel and 
S9 moving in the +x direction, it was apparent that the Lorentz transformation for y and 
z would be y9 5 y and z9 5 z. The transformation for the y and z components of the 
momentum are not so apparent, however. Show that, as stated in Equations 2-16 and 2-17, 
p =y = py and p =z = pz.

Level III
2-49.	 Two identical particles of rest mass m are each moving toward the other with speed 
u in frame S. The particles collide inelastically with a spring that locks shut (Figure 2-9) 
and come to rest in S, and their initial kinetic energy is transformed into potential energy. 
In this problem you are going to show that the conservation of momentum in reference 
frame S9, in which one of the particles is initially at rest, requires that the total rest mass of 
the system after the collision be 2m>(1  u2>c2)1/2. (a) Show that the speed of the particle 
not at rest in frame S9 is

u9 =
2u

1 + u2>c2

and use this result to show that B1 -
u92

c2 =
1 - u2>c2

1 + u2>c2

TIPLER_02_065-118hr.indd   117 8/18/11   11:20 AM



118	 Chapter 2  Relativity II

(b) Show that the initial momentum in frame S9 is p9 5 2mu>(1  u2>c2). (c) After the 
collision, the composite particle moves with speed u in S9 (since it is at rest in S). Write 
the total momentum after the collision in terms of the final rest mass M, and show that the 
conservation of momentum implies that M 5 2m>(1  u2>c2)1/2. (d ) Show that the total 
energy is conserved in each reference frame.
2-50.	 An antiproton p has the same rest energy as a proton. It is created in the reaction 
p + p S p + p + p + p. In an experiment, protons at rest in the laboratory are bom-
barded with protons of kinetic energy Ek, which must be great enough so that kinetic energy 
equal to 2mc2 can be converted into the rest energy of the two particles. In the frame of the 
laboratory, the total kinetic energy cannot be converted into rest energy because of conser-
vation of momentum. However, in the zero-momentum reference frame in which the two 
initial protons are moving toward each other with equal speed u, the total kinetic energy can 
be converted into rest energy. (a) Find the speed of each proton u such that the total kinetic 
energy in the zero-momentum frame is 2mc2. (b) Transform to the laboratory’s frame in 
which one proton is at rest, and find the speed u9 of the other proton. (c) Show that the 
kinetic energy of the moving proton in the laboratory’s frame is Ek 5 6mc2.
2-51.	 In a simple thought experiment, Einstein showed that there is mass associated with 
electromagnetic radiation. Consider a box of length L and mass M resting on a frictionless 
surface. At the left wall of the box is a light source that emits radiation of energy E, which 
is absorbed at the right wall of the box. According to classical electromagnetic theory, this 
radiation carries momentum of magnitude p 5 E>c. (a) Find the recoil velocity of the box 
such that momentum is conserved when the light is emitted. (Since p is small and M is 
large, you may use classical mechanics.) (b) When the light is absorbed at the right wall of 
the box, the box stops, so the total momentum remains zero. If we neglect the very small 
velocity of the box, the time it takes for the radiation to travel across the box is Dt 5 L>c. 
Find the distance moved by the box in this time. (c) Show that if the center of mass of the 
system is to remain at the same place, the radiation must carry mass m 5 E>c2.
2-52.	 A pion spontaneously decays into a muon and a muon antineutrino according to 
(among other processes) p- S m- + nm. Recent experimental evidence indicates that the 
mass m of the nm is no larger than about 190 keV/c2 and may be as small as zero. Assum-
ing that the pion decays at rest in the laboratory, compute the energies and momenta of 
the muon and muon antineutrino (a) if the mass of the antineutrino were zero and (b) if 
its mass were 190 keV/c2. The mass of the pion is 139.56755 MeV/c2 and the mass of the 
muon is 105.65839 MeV/c2. (See Chapters 11 and 12 for more on the neutrino mass.)
2-53.	 Use Equation 2-47 to obtain the gravitational redshift in terms of the wavelength l. 
Use that result to determine the shift in wavelength of light emitted by a white dwarf star 
at 720.00 nm. Assume the white dwarf has the same mass as the Sun (1.99 3 1030 kg) but 
a radius equal to only 1 percent of the solar radius R. (R 5 6.96 3 108 m.)
2-54.	 For a particle moving in the xy plane of S, show that the y9 component of the accel-
eration is given by

a =y =
ay

g211 - uxv>c222 +
axuyv>c2

g211 - uxv>c223

2-55.	 Consider an object of mass m at rest in S acted on by a force F with components Fx 
and Fy. System S9 moves with instantaneous velocity v in the +x direction. Defining the 
force with Equation 2-8 and using the Lorentz velocity transformation, show that  
(a) F =

x = Fx and (b) F =
y = Fy>g. (Hint: See Problem 2-54.)

2-56.	 An unstable particle of mass M decays into two identical particles, each of
mass m. Obtain an expression for the velocities of the two decay particles in the lab frame 
(a) if M is at rest in the lab and (b) if M has total energy 4mc2 when it decays and the decay 
particles move along the direction of M.
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The idea that all matter is composed of tiny particles, or atoms, dates to the specu-
lations of the Greek philosopher Democritus1 and his teacher Leucippus in about 

450 b.c. However, there was little attempt to correlate such speculations with obser-
vations of the physical world until the seventeenth century. Pierre Gassendi, in the 
middle of the seventeenth century, and Robert Hooke, somewhat later, attempted 
to explain states of matter and the transitions between them with a model of tiny, 
indestructible solid objects flying in all directions. But it was Avogadro’s hypothesis, 
advanced in 1811, that all gases at a given temperature contain the same number of 
molecules per unit volume, that led to great success in the interpretation of chemical 
reactions and to development of kinetic theory in about 1900. It made possible quanti-
tative understanding of many bulk properties of matter and led to general (though not 
unanimous) acceptance of the molecular theory of matter. Thus, matter is not continu-
ous, as it appears, but is quantized (i.e., discrete) on the microscopic scale. Scientists 
of the day understood that the small size of the atom prevented the discreteness of 
matter from being readily observable.

In this chapter, we will study how three additional great quantization discoveries 
were made: (1) electric charge, (2) light energy, and (3) energy of oscillating mechan-
ical systems. The quantization of electric charge was not particularly surprising to 
scientists in 1900; it was quite analogous to the quantization of mass. However, the 
quantization of light energy and mechanical energy, which are of central importance 
in modern physics, were revolutionary ideas.

3-1  Quantization of Electric Charge 
Early Measurements of e and e/m
The first estimates of the order of magnitude of the electric charges found in atoms 
were obtained from Faraday’s law. The work of Michael Faraday (1791–1867) in 
the early to mid-1800s stands out even today for its vision, experimental ingenuity, 
and thoroughness. The story of this self-educated blacksmith’s son who rose from 
errand boy and bookbinder’s apprentice to become the director of the distinguished 
Royal Institution of London and the foremost experimental investigator of his time 
is a fascinating one. One aspect of his work concerned the study of the conduction 
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120	 Chapter 3  Quantization of Charge, Light, and Energy

of electricity in weakly conducting solutions. His discovery that the same quantity 
of electricity, F, now called the faraday and equal to about 96,500 C, always decom-
poses one gram-ionic weight; that is, Avogadro’s number NA, of monovalent ions 
leads to the reasonable conclusion that each monovalent ion carries the same electric 
charge, e, and therefore

	 F = NA e	 3-1

Equation 3-1 is called Faraday’s law of electrolysis. While F was readily measur-
able, neither NA nor e could be experimentally determined at the time. Faraday was 
aware of this but could not determine either quantity. Even so, it seemed logical to 
expect that electric charge, like matter, was not continuous but consisted of particles 
of some discrete minimum charge. In 1874, G. J. Stoney2 used an estimate of NA 
from kinetic theory to compute the value of e from Equation 3-1 to be about 1020 C; 
however, direct measurement of the value of e had to await an ingenious experiment 
conducted by R. A. Millikan a third of a century later.

Meanwhile, Pieter Zeeman, in 1896, obtained the first evidence for the existence 
of atomic particles with a specific charge-to-mass ratio by looking at the changes in 
the discrete spectral lines emitted by atoms when they were placed in a strong mag-
netic field. He discovered that the individual spectral lines split into three very closely 
spaced lines of slightly different frequencies when the atoms were placed in the mag-
netic field. (This phenomenon is called the Zeeman effect and will be discussed fur-
ther in Chapter 7.) Classical electromagnetic theory relates the slight differences in 
the frequencies of adjacent lines to the charge-to-mass ratio of the oscillating charges 
producing the light.

From his measurements of the splitting, Zeeman calculated q>m to be about
1.6  1011 C/kg, which compares favorably with the presently accepted value 1.759  
1011 C/kg. From the polarization of the spectral lines, Zeeman concluded that the 
oscillating particles were negatively charged.

Discovery of the Electron: J. J. Thomson’s Experiment
The year following Zeeman’s work, J. J. Thomson3 measured the q>m value for the
so-called cathode rays that were produced in electrical discharges in gases and pointed 
out that, if their charge was Faraday’s charge e as determined by Stoney, then their 
mass was only a small fraction of the mass of a hydrogen atom. Two years earlier 
J. Perrin had collected cathode rays on an electrometer and found them to carry a 
negative electric charge.4 Thus, with his measurement of q>m for the cathode rays, 
Thomson had, in fact, discovered the electron. That direct measurement of e>m of 
electrons by J. J. Thomson in 1897, a little over a century ago, can be justly consid-
ered to mark the beginning of our understanding of atomic structure.

When a uniform magnetic field of strength B is established perpendicular to the 
direction of motion of charged particles, the particles move in a circular path. The 
radius R of the path can be obtained from Newton’s second law, by setting the mag-
netic force quB equal to the mass m times the centripetal acceleration u2>R, where u 
is the speed of the particles:

	 quB =
mu2

R
  or  R =

mu

qB
  and  

q

m
=

u

RB
	 3-2

Thomson performed two e>m experiments of somewhat different designs. The second, 
more reproducible of the two has become known as the J. J. Thomson experiment 
(see Figure 3-1). In this experiment he adjusted perpendicular B and  fields so that 

CCR

CCR

12

5, 6
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the particles were undeflected. This allowed him to determine the speed of the elec-
trons by equating the magnitudes of the magnetic and electric forces and then to com-
pute e>m(; q>m) from Equation 3-2:

	 quB = q  or  u =


B
	 3-3

Thomson’s experiment was remarkable in that he measured e>m for a subatomic par-
ticle using only a voltmeter, an ammeter, and a measuring rod, obtaining the result 
0.7  1011 C/kg. Present-day particle physicists routinely use the modern equivalent 
of Thomson’s experiment to measure the momenta of elementary particles.

Thomson repeated the experiment with different gases in the tube and different met-
als for cathodes and always obtained the same value for e>m within his experimental 

Thomson’s technique for 
controlling the direction 
of the electron beam 
with “crossed” electric 
and magnetic fields was 
subsequently applied 
in the development of 
cathode-ray tubes used 
in oscilloscopes and the 
picture tubes of older 
television receivers.

C
A B

D

E
–

+

Figure 3-1  J. J. Thomson’s tube for measuring e>m. Electrons from the cathode C pass 
through the slits at A and B and strike a phosphorescent screen. The beam can be deflected by 
an electric field between the plates D and E or by a magnetic field (not shown) whose direction 
is perpendicular to the electric field between D and E. From the deflections measured on a 
scale on the tube at the screen, e>m can be determined. [From J. J. Thomson, “Cathode Rays,” 
Philosophical Magazine (5), 44, 293 (1897).]

J. J. Thomson in his laboratory. He is facing the screen end of an e>m tube; an 
older cathode-ray tube is visible in front of his left shoulder. [Courtesy of Cavendish 
Laboratory.]
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122	 Chapter 3  Quantization of Charge, Light, and Energy

uncertainty, thus showing that these particles were common to all metals. The agree-
ment of these results with Zeeman’s led to the unmistakable conclusion that these par-
ticles—called corpusles by Thomson and later called electrons by Lorentz—having 
one unit of negative charge e and mass about 2000 times less than the mass of the 
lightest known atom, were constituents of all atoms.

Questions

1.	 One advantage of Thomson’s evidence over others (such as Faraday’s or 
Zeeman’s) was its directness. Another was that it was not just a statistical 
inference. How is it shown in the Thomson experiment that e>m is the same
for a large number of particles?

2.	 Thomson noted that his values for e>m were about 2000 times larger than those 
for the lightest known ion, that of hydrogen. Could he distinguish from his data 
between the possibility that this was the result of the electron having either a 
greater charge or a smaller mass than the hydrogen ion?

Measuring the Electric Charge: Millikan’s Experiment
The fact that Thomson’s e>m measurements always yielded the same results regardless 
of the materials used for the cathodes or the kind of gas in the tube was a persuasive 
argument that the electrons all carried one unit e of negative electric charge. Thomson 
initiated a series of experiments to determine the value of e. The first of these experi-
ments, which turned out to be very difficult to do with high precision, were carried 
out by his student J. S. E. Townsend. The idea was simple: A small (but visible) 
cloud of identical water droplets, each carrying a single charge e was observed to 
drift downward in response to the gravitational force. The total charge on the cloud 
Q  Ne was measured, as were the mass of the cloud and the radius of a single drop. 
Finding the radius allowed calculation of N, the total number of drops in the cloud 
and, hence, the value of e.

The accuracy of Thomson’s method was limited by the uncertain rate of evapo-
ration of the cloud. In addition, the assumption that each droplet contained a single 
charge could not be verified. R. A. Millikan tried to eliminate the evaporation prob-
lem by using a field strong enough to hold the top surface of the cloud stationary so 
that he could observe the rate of evaporation and correct for it. That, too, turned out 
to be very difficult, but then he made a discovery of enormous importance, one that 
allowed him to measure directly the charge of a single electron! Millikan described 
his discovery in the following words:

It was not found possible to balance the cloud as had been originally 
planned, but it was found possible to do something much better: namely, 
to hold individual charged drops suspended by the field for periods vary-
ing from 30 to 60 seconds. I have never actually timed drops which 
lasted more than 45 seconds, although I have several times observed 
drops which in my judgment lasted considerably longer than this. The 
drops which it was found possible to balance by an electric field always 
carried multiple charges, and the difficulty experienced in balancing 
such drops was less than had been anticipated.5
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The discovery that he could see individual droplets 
and that droplets suspended in a vertical electric field 
sometimes suddenly moved upward or downward, evi-
dently because they had picked up a positive or nega-
tive ion, led to the possibility of observing the charge 
of a single ion. In 1909, Millikan began a series of 
experiments that not only showed that charges occurred 
in integer multiples of an elementary unit e, but mea-
sured the value of e to about 1 part in 1000. To elimi-
nate evaporation, he used oil drops sprayed into dry air 
between the plates of a capacitor (Figure 3-2). These 
drops were already charged by the spraying process, 
that is, by friction in the spray nozzle, and during the 
course of the observation they picked up or lost addi-
tional charges. By switching the direction of the electric 
field between the plates, a drop could be moved up or 
down and observed for several hours. When the charge 
on a drop changed, the velocity of the drop with the field 
“on” changed also. Assuming only that the terminal 
velocity of the drop was proportional to the force acting 
on it (this assumption was carefully checked experimen-
tally), Millikan’s oil drop experiment6 gave conclusive evidence that electric charges 
always occur in integer multiples of a fundamental unit e, whose value he determined 
to be 1.601  1019 C. The currently accepted value7 is 1.60217653  1019 C. An 
expanded discussion of Millikan’s experiment is included in the Classical Concept 
Review.

3-2  Blackbody Radiation 
The first clue to the quantum nature of radiation came from the study of thermal radi-
ation emitted by opaque bodies. When radiation falls on an opaque body, part of it 
is reflected and the rest is absorbed. Light-colored bodies reflect most of the visible 
radiation incident on them, whereas dark bodies absorb most of it. The absorption part 
of the process can be described briefly as follows. The radiation absorbed by the body 
increases the kinetic energy of the constituent atoms, which oscillate about their equi-
librium positions. Because the average translational kinetic energy of the atoms deter-
mines the temperature of the body, the absorbed energy causes the temperature to 
rise. However, the atoms contain charges (the electrons), and they are accelerated by 
the oscillations. Consequently, as required by electromagnetic theory, the atoms emit 
electromagnetic radiation, which reduces the kinetic energy of the oscillations and 
tends to reduce the temperature. When the rate of absorption equals the rate of emis-
sion, the temperature is constant and we say that the body is in thermal equilibrium 
with its surroundings. A good absorber of radiation is therefore also a good emitter.

The electromagnetic radiation emitted under these circumstances is called ther-
mal radiation. At ordinary temperatures (below about 600°C) the thermal radiation 
emitted by a body is not visible; most of the energy is concentrated in wavelengths 
much longer than those of visible light. As a body is heated, the quantity of thermal 
radiation emitted increases, and the energy radiated extends to shorter and shorter 
wavelengths. At about 600°–700°C there is enough energy in the visible spectrum so 

CCR

Figure 3-2  Schematic diagram of Millikan’s oil-drop 
experiment. The drops are sprayed from an atomizer and pick 
up a static charge, a few falling through the hole in the top 
plate. Their fall due to gravity and their rise due to the electric 
field between the capacitor plates can be observed with the 
telescope. From measurements of the rise and fall times, the 
electric charge on a drop can be calculated. The charge on a 
drop could be changed by exposure to x rays from a source 
(not shown) mounted opposite the light source.
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124	 Chapter 3  Quantization of Charge, Light, and Energy

that the body glows and becomes a dull red. At higher temperatures it becomes bright 
red or even “white hot.”

A body that absorbs all radiation incident on it is called an ideal blackbody. In 
1879 Josef Stefan found an empirical relation between the power radiated by an ideal 
blackbody and the temperature:

	 R = sT 4	 3-4

where R is the power radiated per unit area, T is the absolute temperature, and s  
5.6703  108 W/m2K4 is a constant called Stefan’s constant. This result was also 
derived on the basis of classical thermodynamics by Ludwig Boltzmann about five 
years later, and Equation 3-4 is now called the Stefan-Boltzmann law. Note that the 
power per unit area radiated by a blackbody depends only on the temperature and not 
on any other characteristic of the object, such as its color or the material of which 
it is composed. Note, too, that R tells us the rate at which energy is emitted by the 
object. For example, doubling the absolute temperature of an object, for example, a 
star, increases the energy flow out of the object by a factor of 24  16. An object at 
room temperature (300°C) will double the rate at which it radiates energy as a result 
of a temperature increase of only 57°C. Thus, the Stefan-Boltzmann law has an enor-
mous effect on the establishment of thermal equilibrium in physical systems.

Objects that are not ideal blackbodies radiate energy per unit area at a rate less 
than that of a blackbody at the same temperature. For those objects the rate does 
depend on properties in addition to the temperature, such as color and the composition 
of the surface. The effects of those dependencies are combined into a factor called the 
emissivity , which multiplies the right side of Equation 3-4. The values of , which is 
itself temperature dependent, are always less than unity.

Like the total radiated power R, the spectral distribution of the radiation emitted 
by a blackbody is found empirically to depend only on the absolute temperature T. 
The spectral distribution is determined experimentally as illustrated schematically in 
Figure 3-3. With R(l) d  l the power emitted per unit area with wavelength between l 
and l + d  l, Figure 3-4 shows the measured spectral distribution function R(l) versus 
l for several values of T ranging from 1000 K to 6000 K.

The R(l) curves in Figure 3-4 are quite remarkable in several respects. One is 
that the wavelength at which the distribution has its maximum value varies inversely 
with the temperature:

lm 
1

T
or

	 lm  T = constant = 2.898 * 10-3 m # K	 3-5

Figure 3-3  Radiation emitted by the object 
at temperature T that passes through the slit is 
dispersed according to its wavelengths. The prism 
shown would be an appropriate device for that 
part of the emitted radiation in the visible region. 
In other spectral regions other types of devices or 
wavelength-sensitive detectors would be used.
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This result is known as Wien’s displacement law. It was obtained by Wien in 1893. 
Examples 3-1 and 3-2 illustrate its application.

EXAMPLE 3-1	 How Big Is a Star? ​ Measurement of the wavelength at which 
the spectral distribution R(l) from a certain star is maximum indicates that the 
star’s surface temperature is 3000 K. If the star is also found to radiate 100 times 
the power P} radiated by the Sun, how big is the star? (The symbol } = Sun.) 
The Sun’s surface temperature is 5800 K.

SOLUTION
Assuming the Sun and the star both radiate as blackbodies (astronomers nearly 
always make that assumption, based on, among other things, the fact that the solar 
spectrum is very nearly that of an ideal blackbody), their surface temperatures have 
been determined from Equation 3-5 to be 5800 K and 3000 K, respectively. Mea-
surement also indicates that Pstar = 100 P}. Thus, from Equation 3-4 we have that

Rstar =
Pstar

(area)star
=

100 P}

4pr 2
star

= sT 4
star

and

R} =
P}

(area)}
=

P}

4pr 2
}

= sT 4
}

Thus, we have

r 2
star = 100 r 2

} a
T}

Tstar
b

4

rstar = 10 r} a
T}

Tstar
b

2

= 10a 5800

3000
b

2

r}

rstar = 37.4 r}

Since r} = 6.96 * 108 m, this star has a radius of about 2.6  1010 m, or about 
half the radius of the orbit of Mercury. This star is a red giant (see Chapter 13).

Figure 3-4  ​Spectral 
distribution function R(l) 
measured at different 
temperatures. The R(l) 
axis is in arbitrary units for 
comparison only. Notice 
the range of l in the visible 
spectrum. The Sun emits 
radiation very close to that of 
a blackbody at 5800 K. lm is 
indicated for the 5000 K and 
6000 K curves.
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126	 Chapter 3  Quantization of Charge, Light, and Energy

Rayleigh-Jeans Equation
The calculation of the distribution function R(l) involves the calculation of the 
energy density of electromagnetic waves in a cavity. Materials such as black velvet 
or lampblack come close to being ideal blackbodies, but the best practical realiza-
tion of a ideal blackbody is a small hole leading into a cavity (such as a keyhole in a 
closet door; see Figure 3-5). Radiation incident on the hole has little chance of being 
reflected back out of the hole before it is absorbed by the walls of the cavity. The 
power radiated out of the hole is proportional to the total energy density U (the energy 
per unit volume of the radiation in the cavity). The proportionality constant can be 
shown to be c>4, where c is the speed of light.8

	 R =
1

4
 cU	 3-6

Similarly, the spectral distribution of the power emitted from the hole is proportional 
to the spectral distribution of the energy density in the cavity. If u(l) d  l is the frac-
tion of the energy per unit volume in the cavity in the range d  l, then u(l) and R(l) 
are related by

	 R(l) =
1

4
 cu(l)	 3-7

The energy density distribution function u(l) can be calculated from classical 
physics in a straightforward way. The method involves finding the number of modes 
of oscillation of the electromagnetic field in the cavity with wavelengths in the inter-
val d  l and multiplying by the average energy per mode. The result is that the number 
of modes of oscillation per unit volume, n(l), is independent of the shape of the cav-
ity and is given by

	 n(l) = 8l-4	 3-8

According to classical kinetic theory, the average energy per mode of oscillation is 
kT, the same as for a one-dimensional harmonic oscillator, where k is the Boltzmann 
constant. Classical theory thus predicts for the energy density distribution function

	 u1l2 = kT n1l2 = 8kT l-4	 3-9

This prediction, initially derived by Lord Rayleigh,9 is called the Rayleigh-Jeans 
equation. It is illustrated in Figure 3-6.

At very long wavelengths the Rayleigh-Jeans equation agrees with the experi-
mentally determined spectral distribution, but at short wavelengths this equation pre-
dicts that u(l) becomes large, approaching infinity as l S 0, whereas experiment 
shows (see Figure 3-4) that the distribution actually approaches zero as l S 0. This 
enormous disagreement between the experimental measurement of u(l) and the pre-
diction of the fundamental laws of classical physics at short wavelengths was called 
the ultraviolet catastrophe. The word catastrophe was not used lightly; Equation 3-9 
implies that

	 L
q

0

u1l2  d l S  	 3-10

That is, every object would have an infinite energy density, which observation assures 
us is not true.

CCR

Figure 3-5  A small hole 
in the wall of a cavity 
approximating an ideal 
blackbody. Radiation 
entering the hole has little 
chance of leaving before it is 
completely absorbed within 
the cavity.

16
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Planck’s Law
In 1900 the German physicist Max Planck10 announced that by making somewhat 
strange assumptions, he could derive a function u(l) that agreed with the experimen-
tal data. He first found an empirical function that fit the data and then searched for a 
way to modify the usual calculation so as to predict his empirical formula. We can see 
the type of modification needed if we note that, for any cavity, the shorter the wave-
length, the more standing waves (modes) there will be possible. Therefore, as l S 0 
the number of modes of oscillation approaches infinity, as evidenced in Equation 3-8. 
In order for the energy density distribution function u(l) to approach zero, we expect 
the average energy per mode to depend on the wavelength l and approach zero as l 
approaches zero, rather than be equal to the value kT predicted by classical theory.

Parenthetically, we should note that those working on the ultraviolet catastrophe 
at the time—and there were many besides Planck—had no a priori way of knowing 
whether the number of modes n(l) or the average energy per mode kT (or both) was 
the source of the problem. Both were correct classically. Many attempts were made to 
re-derive each so as to solve the problem. As it turned out, it was the average energy 
per mode (that is, kinetic theory) that was at fault.

Classically, the electromagnetic waves in the cavity are produced by accelerated 
electric charges in the walls of the cavity vibrating as simple harmonic oscillators. 
Recall that the radiation emitted by such an oscillator has the same frequency as the 
oscillation itself. The average energy for a one-dimensional simple harmonic oscil-
lator is calculated classically from the energy distribution function, which in turn is 
found from the Maxwell-Boltzmann distribution function. That energy distribution 
function has the form (see Chapter 8)

	 f (E) = Ae -E>kT	 3-11

where A is a constant and f (E) is the fraction of the oscillators with energy equal to E. 
The average energy E is then found, as is any weighted average, from

	 E = L
q

0

E f (E) dE = L
q

0

EAe -E>kT dE	 3-12

with the result E = kT , as was used by Rayleigh and others.

u(λ)

0 2000

Planck’s
law

Rayleigh-Jeans
law

4000 6000 λ, nm

Figure 3-6  Comparison of Planck’s law and the Rayleigh-Jeans equation with experimental 
data at T  1600 K obtained by W. W. Coblenz in about 1915. The u(l) axis is linear. [Adapted 
from F. K. Richmyer, E. H. Kennard, and J. N. Cooper, Introduction to Modern Physics, 6th ed., 
McGraw-Hill, New York (1969), by permission.]
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128	 Chapter 3  Quantization of Charge, Light, and Energy

Planck found that he could derive his empirical formula by calculating the aver-
age energy E assuming that the energy of the oscillating charges, and hence the radia-
tion that they emitted, was a discrete variable; that is, that it could take on only the 
values 0, , 2, . . . n, where n is an integer, and further, that  was proportional to the 
frequency of the oscillators and, hence, to that of the radiation. Planck therefore wrote 
the energy as

	 En = n = nhf  n = 0, 1, 2,c 	 3-13

where the proportionality constant h is now called Planck’s constant. The Maxwell-
Boltzmann distribution (Equation 3-11) then becomes

	 fn = Ae -En>kT = Ae -n>kT	 3-14

where A is determined by the normalization condition that the sum of all fractions fn 
must, of course, equal one, that is,

	 a


n=0
 fn = Aa



n=0
e -n>kT = 1	 3-15

The average energy of an oscillator is then given by the discrete sum equivalent of 
Equation 3-12:

	 E = a


n=0
En fn = a



n=0
En Ae -En>kT	 3-16

Calculating the sums in Equations 3-15 and 3-16 (see Problem 3-60) yields the 
result:

	 E =


e>kT - 1
=

hf

ehf>kT - 1
=

hc>l
ehc>lkT - 1

	 3-17

Multiplying this result by the number of oscillators per unit volume in the interval d l 
given by Equation 3-8, we obtain for the energy density distribution function of the 
radiation in the cavity:

	 u1l2 =
8phcl-5

ehc>lkT - 1
	 3-18

This function, called Planck’s law, is sketched in Figure 3-6. It is clear from the fig-
ure that the result fits the data quite well.

For very large l, the exponential in Equation 3-18 can be expanded using ex 
1 + x + … for x V 1, where x  hc>lkT. Then

ehc>lkT - 1 
hc

lkT

and

u1l2S 8pl-4kT

which is the Rayleigh-Jeans formula. For short wavelengths, we can neglect the 1 in 
the denominator of Equation 3-18, and we have

u1l2S 8phcl-5e -hc>lkT S 0

as l S 0. The value of the constant in Wien’s displacement law also follows from 
Planck’s law, as you will show in Problem 3-23.
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The value of Planck’s constant, h, can be determined by fitting the function 
given by Equation 3-18 to the experimental data, although direct measurement (see 
Section 3-3) is better, but more difficult. The presently accepted value is

	 h = 6.626 * 10-34 J # s = 4.136 * 10-15 eV # s	 3-19

Planck tried at length to reconcile his treatment with classical physics but was unable 
to do so. The fundamental importance of the quantization assumption implied by 
Equation 3-13 was suspected by Planck and others but was not generally appreciated 
until 1905. In that year Einstein applied the same ideas to explain the photoelectric 
effect and suggested that, rather than being merely a mysterious property of the oscil-
lators in the cavity walls and blackbody radiation, quantization was a fundamental 
characteristic of light energy.

EXAMPLE 3-2	 Peak of the Solar Spectrum ​ The surface temperature of the 
Sun is about 5800 K, and measurements of the Sun’s spectral distribution show that 
it radiates very nearly like a blackbody, deviating mainly at very short wavelengths. 
Assuming that the Sun radiates like an ideal blackbody, at what wavelength does 
the peak of the solar spectrum occur?

SOLUTION
	 1.	 The wavelength at the peak, or maximum intensity, of an ideal blackbody is 

given by Equation 3-5:

lm  T = constant = 2.898 * 10-3 m # K

	 2.	 Rearranging and substituting the Sun’s surface temperature yields

 lm = (2.898 * 10-3 m # K)>T =
2.898 * 10-3 m # K

5800 K

 =
2.898 * 106 nm # K

5800 K
= 499.7 nm

	 where 1 nm  109 m.

Remarks:  This value is near the middle of the visible spectrum.

EXAMPLE 3-3	 Average Energy of an Oscillator ​ What is the average energy 
E of an oscillator that has a frequency given by hf  kT according to Planck’s 
calculation?

SOLUTION
From Equation 3-17 with   hf  kT, we have

E =


e>kT - 1
=

kT

e1 - 1
= 0.582 kT

Remarks:  Recall that according to classical theory, E = kT  regardless of the 
frequency.

The electromagnetic 
spectrum emitted by 
incandescent bulbs is 
a common example of 
blackbody radiation, 
the amount of visible 
light being dependent 
on the temperature 
of the filament. Other 
applications include 
infrared thermometers 
used to detect hot spots 
in electrical circuits and 
mechanical equipment 
and the pyrometer, a 
device that measures the 
temperature of a glowing 
object, such as molten 
metal in a steel mill.
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EXAMPLE 3-4	 Stefan-Boltzmann from Planck ​ Show that the total energy 
density in a blackbody cavity is proportional to T 4 in accordance with the Stefan-
Boltzmann law.

SOLUTION
The total energy density is obtained from the distribution function (Equation 3-18) 
by integrating over all wavelengths:

U = L
q

0

u1l2  d l = L
q

0

8phcl-5

ehc>lkT - 1
 d l

Define the dimensionless variable x  hc>lkT. Then dx  (hc>l2kT ) d l or
d l  l2(kT>hc) dx. Then

U = - L
q

0

 
8phcl-3

ex - 1
 a kT

hc
b  dx = 8phca kT

hc
b

4

 L
q

0

 
x3

ex - 1
 dx

Since the integral is now dimensionless, this shows that U is proportional to T 4. The 
value of the integral is p4>15. Then U  (8p5k 4>15h3c3)T 4. This result can be com-
bined with Equations 3-4 and 3-6 to express Stefan’s constant in terms of p, k, h, 
and c (see Problem 3-13).

A dramatic example of an application of Planck’s law on the current frontier of 
physics is in tests of the Big Bang theory of the formation and present expansion of 
the universe. Current cosmological theory suggests that the universe originated in an 
extremely high-temperature explosion of space, one consequence of which was to fill 
the infant universe with radiation whose spectral distribution must surely have been that 
of an ideal blackbody. Since that time, the universe has expanded to its present size and 
cooled to its present temperature Tnow. However, it should still be filled with radiation 
whose spectral distribution should be that characteristic of a blackbody at Tnow.

Figure 3-7  ​The energy 
density spectral distribution 
of the cosmic microwave 
background radiation. The 
solid line is Planck’s law 
with T  2.725 K. These 
measurements (the black 
dots) were made by the 
COBE satellite.
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In 1965, Arno Penzias and Robert Wilson discovered radiation of wavelength 
7.35 cm reaching Earth with the same intensity from all directions in space. It was 
soon recognized that this radiation could be a remnant of the Big Bang fireball, and 
measurements were subsequently made at other wavelengths in order to construct an 
experimental energy density u(l) versus l graph. The most recent data from the Cosmic 
Background Explorer (COBE) satellite, shown in Figure 3-7, and by the Wilkinson 
Microwave Anisotropy Probe (WMAP) have established the temperature of the back-
ground radiation field at 2.725 { 0.001 K. The excellent agreement of the data with 
Planck’s equation, indeed, the best fit that has ever been measured, is considered to be 
very strong support for the Big Bang theory (see Chapter 13).

3-3  The Photoelectric Effect 
It is one of the ironies in the history of science that in the famous experiment of 
Heinrich Hertz11 in 1887 in which he produced and detected electromagnetic waves, 
thus confirming Maxwell’s wave theory of light, he also discovered the photoelectric 
effect, which led directly to the particle description of light. Hertz was using a spark 
gap in a tuned circuit to generate the waves and another similar circuit to detect them. 
He noticed accidentally that when the light from the generating gap was shielded 
from the receiving gap, the receiving gap had to be made shorter in order for the spark 
to jump the gap. Light from any spark that fell on the terminals of the gap facilitated 
the passage of the sparks. He described the discovery with these words:

In a series of experiments on the effects of resonance between very rapid 
electric oscillations that I had carried out and recently published, two elec-
tric sparks were produced by the same discharge of an induction coil, and 
therefore simultaneously. One of these sparks, spark A, was the discharge 
spark of the induction coil, and served to excite the primary oscillation. 
I occasionally enclosed spark B in a dark case so as to make observations 
more easily, and in so doing I observed that the maximum spark length 
became decidedly smaller inside the case than it was before.12

The unexpected discovery of the photoelectric effect annoyed Hertz because it 
interfered with his primary research, but he recognized its importance immediately 

Albert A. Michelson, Albert Einstein, and 
Robert A. Millikan at a meeting in Pasadena, 
California, in 1931. [AP/Wide World Photos.]

TIPLER_03_119-152hr2.indd   131 8/22/11   11:33 AM



132	 Chapter 3  Quantization of Charge, Light, and Energy

and interrupted his other work for six months in order to study it in detail. His results, 
published later that year, were then extended by others. It was found that negative 
particles were emitted from a clean surface when exposed to light. P. Lenard in 1900 
deflected them in a magnetic field and found that they had a charge-to-mass ratio 
of the same magnitude as that measured by Thomson for cathode rays: the particles 
being emitted were electrons.

Figure 3-8 shows a schematic diagram of the basic apparatus used by Lenard. When 
light L is incident on a clean metal surface (cathode C ), electrons are emitted. If some 
of these electrons that reach the anode A pass through the small hole, a current results 
in the external electrometer circuit connected to a. The number of the emitted electrons 
reaching the anode can be increased or decreased by making the anode positive or nega-
tive with respect to the cathode. Letting V be the potential difference between the cath-
ode and anode, Figure 3-9a shows the current versus V for two values of the intensity 
of light incident on the cathode. When V is positive, the electrons are attracted to the 
anode. At sufficiently large V all the emitted electrons reach the anode and the current 
reaches its maximum value. Lenard observed that the maximum current was propor-
tional to the light intensity, an expected result since doubling the energy per unit time 
incident on the cathode should double the number of electrons emitted. Intensities too 
low to provide the electrons with the energy necessary to escape from the metal should 
result in no emission of electrons. However, in contrast with the classical expectation, 
there was no minimum intensity below which the current was absent. When V is nega-
tive, the electrons are repelled from the anode. Then, only electrons with initial kinetic 
energy mv2>2 greater than e|V | can reach the anode. From Figure 3-9a we see that if 
V is less than V0, no electrons reach the anode. The potential V0 is called the stopping 
potential. It is related to the maximum kinetic energy of the emitted electrons by

	 a 1

2
 mv2b = eV0	 3-20

The experimental result, illustrated by Figure 3-9a, that V0 is independent of the incident 
light intensity was surprising. Apparently, increasing the rate of energy falling on the 
cathode does not increase the maximum kinetic energy of the emitted electrons, con-
trary to classical expectations. In 1905, Einstein offered an explanation of this result 

A

β
α

W

V

B

L

W

C

Pump

Figure 3-8  Schematic diagram of the apparatus used by P. Lenard to demonstrate the 
photoelectric effect and to show that the particles emitted in the process were electrons. Light from 
the source L strikes the cathode C. Photoelectrons going through the hole in anode A are recorded 
by the electrometer connected to a. A magnetic field, indicated by the circular pole piece, could 
deflect the particles to a second electrometer connected to b, making possible the establishment of 
the sign of the charges and their e>m ratio. [P. Lenard, Annalen der Physik, 2, 359 (1900).]
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in a remarkable paper in the same volume of Annalen der Physik that contained his 
papers on special relativity and Brownian motion.

Einstein assumed that the energy quantization used by Planck in solving the black-
body radiation problem was, in fact, a universal characteristic of light. Rather than 
being distributed evenly in the space through which it propagated, light energy con-
sisted of discrete quanta, each of energy hf. When one of these quanta, called a photon, 
penetrates the surface of the cathode, all of its energy may be absorbed completely by 
a single electron. If  is the energy necessary to remove an electron from the surface 
( is called the work function and is a characteristic of the metal), the maximum kinetic 
energy of an electron leaving the surface will be hf   as a consequence of energy 
conservation; see Figure 3-9c. (Some electrons will have less than this amount because 
of energy lost in traversing the metal.) Thus, the stopping potential should be given by

	 eV0 = a 1

2
 mv2b

max 
= hf - 	 3-21

Equation 3-21 is referred to as the photoelectric effect equation. As Einstein noted,

If the derived formula is correct, then V0, when represented in Cartesian 
coordinates as a function of the frequency of the incident light, must be 
a straight line whose slope is independent of the nature of the emitting 
substance.13

As can be seen from Equation 3-21, the slope of V0 versus f should equal h>e. At 
the time of this prediction there was no evidence that Planck’s constant had anything 
to do with the photoelectric effect. There was also no evidence for the dependence of 

Among the many 
applications of the 
photoelectric effect is the 
photomultiplier, a device 
for making possible the 
accurate measurement 
of the energy of the 
light absorbed by the 
photosensitive surface. 
The SNO, Kamiokande 
and Ice Cube neutrino 
observatories (see 
Chapter 12) use thousands 
of photomultipliers. 
Hundreds more have been 
deployed in a number of 
deep-water high-energy-
neutrino experiments.
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Figure 3-9  ​(a) Photocurrent i versus anode voltage V for light of frequency f with two 
intensities I1 and I2, where I2  I1. The stopping voltage V0 is the same for both. (b) For 
constant I, Einstein’s explanation of the photoelectric effect indicates that the magnitude of 
the stopping voltage should be greater for f2 than f1, as observed, and that there should be 
a threshold frequency ft below which no photoelectrons were seen, also in agreement with 
experiment. (c) Electric potential energy curve across the metal surface. An electron with the 
highest energy in the metal absorbs a photon of energy hf. Conservation of energy requires that 
its kinetic energy after leaving the surface be hf  .
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the stopping potential V0 on the frequency. Careful experiments by Millikan, reported 
in 1914 and in more detail in 1916, showed that Equation 3-21 was correct and that 
measurements of h from it agreed with the value obtained by Planck. A plot taken 
from this work is shown in Figure 3-10.

The minimum, or threshold, frequency for photoelectric effect, labeled ft in this 
plot and in Figure 3-9b, and the corresponding threshold wavelength lt are related 
to the work function  by setting V0  0 in Equation 3-21:

	  = hft =
hc

lt

	 3-22

Photons of frequencies lower than ft (and therefore having wavelengths greater than lt) 
do not have enough energy to eject an electron from the metal. Work functions for 
metals are typically on the order of a few electron volts. The work functions for sev-
eral elements are given in Table 3-1.

Figure 3-10  Millikan’s 
data for stopping potential 
versus frequency for the 
photoelectric effect. The data 
fall on a straight line with 
slope h>e, as predicted by 
Einstein a decade before the 
experiment. The intercept on 
the stopping potential axis 
is >e. [R. A. Millikan, 
Physical Review, 7, 362 
(1915).]

 Table 3-1  Photoelectric work functions

Element Work function (eV)

Na 2.28

Cs 1.95

Cd 4.07

Al 4.08

Ag 4.73

Pt 6.35

Mg 3.68

Ni 5.01

Se 5.11

Pb 4.14
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EXAMPLE 3-5	 Photoelectric Effect in Potassium ​ The threshold wavelength 
of potassium is 558 nm. What is the work function for potassium? What is the stop-
ping potential when light of 400 nm is incident on potassium?

SOLUTION
	 1.	 Both questions can be answered with the aid of Equation 3-21:

 eV0 = a 1

2
mv2b

 max 
= hf - 

 V0 =
hf

e
-  



e

	 2.	 At the threshold wavelength the photoelectrons have just enough energy to 

overcome the work function barrier, so a 1

2
 mv2b

 max 
= 0, hence V0  0, and

 


e
=

hft
e

=
hc

elt

 =
1240 eV # nm

558 nm
= 2.22 eV

	 3.	 When 400 nm light is used, V0 is given by Equation 3-21:

 V0 =
hf

e
-  



e
=

hc

el
-  



e

 =
1240 eV # nm

400 nm
- 2.22 eV

 = 3.10 eV - 2.22 eV = 0.88 V

Another interesting feature of the photoelectric effect that is contrary to classical 
physics but is easily explained by the photon hypothesis is the lack of any time lag 
between the turning on of the light source and the appearance of photoelectrons. Classi-
cally, the incident energy is distributed uniformly over the illuminated surface; the time 
required for an area the size of an atom to acquire enough energy to allow the emission 
of an electron can be calculated from the intensity (power per unit area) of the incident 
radiation. Experimentally, the incident intensity can be adjusted so that the calculated 
time lag is several minutes, or even hours. But no time lag is ever observed. The photon 
explanation of this result is that although the rate at which photons are incident on the 
metal is very small when the intensity is low, each photon has enough energy to eject 
an electron, and there is some chance that a photon will be absorbed immediately. The 
classical calculation gives the correct average number of photons absorbed per unit time.

EXAMPLE 3-6	 Classical Time Lag ​ Light of wavelength 400 nm and intensity 
102 W/m2 is incident on potassium. Estimate the time lag for the emission of pho-
toelectrons expected classically.

SOLUTION
According to Example 3-5, the work function for potassium is 2.22 eV. If we 
assume r  1010 m to be the typical radius of an atom, the total energy falling on 
the atom in time t is

 E = 110-2 W>m22 1pr 22t = 110-2 W>m22 1p10-20 m22t
 = 13.14 * 10-22 J>s2t
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Setting this energy equal to 2.22 eV gives

 13.14 * 10-22 J>s2t = 12.22 eV2 11.60 * 10-19 J>eV2

t =
12.22 eV2 11.60 * 10-19 J>eV2

13.14 * 10-22 J>s2 = 1.13 * 103 s = 18.8 min

According to the classical prediction, no atom would be expected to emit an elec-
tron until 18.8 min after the light source was turned on. According to the photon 
model of light, each photon has enough energy to eject an electron immediately. 
Because of the low intensity, there are few photons incident per second, so the 
chance of any particular atom absorbing a photon and emitting an electron in any 
given time interval is small. However, there are so many atoms in the cathode that 
some emit electrons immediately.

EXAMPLE 3-7	 Incident Photon Intensity ​ In Example 3-6, how many photons 
are incident per second per square meter?

SOLUTION
The energy of each photon is

E = hf = hc>l = 11240 eV # nm2 > 1400 nm2
 = (3.10 eV)11.60 * 10-19 J>eV2 = 4.96 * 10-19 J

Since the incident intensity is 102 W/m2  102 J/s # m2, the number of photons per 
second per square meter is

 N =
10-2 J>s # m2

4.96 * 10-19 J>photon

 = 2.02 * 1016 photons>s # m2

This is, of course, a lot of photons, not a few; however, the number n per atom at 
the surface is quite small. n  2.02  1016 photons/s # m2  p (1010)2 m2/atom  
6.3  104 photons/s # atom, or about 1 photon for every 1000 atoms.

EXAMPLE 3-8	 Photon Sensitivity of the Human Eye ​ A 100 W point source 
radiates light with wavelength 555 nm (yellowish green) uniformly in all direc-
tions. This is the wavelength at which the human eye has peak sensitivity, a dark-
adapted eye capable of detecting as few as 10 photons per second. Assuming that 
the pupil of the dark-adapted eye has a diameter of 7 mm, how far from the source 
could the light be detected? (The answer will astound you!)

SOLUTION
	 1.	 Each 555 nm photon has energy Eph given by

Eph =
hc

l
=

(6.63 * 10-34 J # s)(3.00 * 108 m>s)

555 * 10-9 m
= 3.58 * 10-19 J>photon

	 2.	 The 100 W point source emits

100 J>s *
1 photon

3.58 * 10-19 J
= 2.79 * 1020 photons>s
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	 3.	 Since 10 photons/s must pass through the 7 mm diameter pupil in order to be 
detected, the minimum flux, photons per second per square meter of pupil area, 
is given by

minimum flux = 10  
photons

s
*

1

pR2
pupil

=
10

p(3.5 * 10-3)2  
photons

s # m2

 = 2.60 * 105  
photons

s # m2

	 4.	 That flux of photons radiated uniformly by the point source is reached at a 
distance r from the source given by

 4pr 2 = 2.79 * 1020  
photons

s
*

1 s # m2

2.60 * 105 photons

 r 2 =
2.79 * 1020

4p(2.60 * 105)
 m2

 r = 9.24 * 106 m = 9.24 * 103 km

Questions

3.	 How is the result that the maximum photoelectric current is proportional to the 
intensity explained in the photon model of light?

4.	 What experimental features of the photoelectric effect can be explained by 
classical physics? What features cannot?

5.	 Referring to Example 3-8, why are you not able to actually see such a source at 
that distance?

The photoemission of electrons has developed into a significant technique for 
investigating the detailed structure of molecules and solids, making possible discov-
eries far beyond anything that Hertz may have imagined. The use of x-ray sources 
(see Section 3-4) and precision detectors has made possible precise determination of 
valence electron configurations in chemical compounds, leading to detailed under-
standing of chemical bonding and the differences between the bulk and surface atoms 
of solids. Photoelectric-effect microscopes will show the chemical situation of each 
element in a specimen, a prospect of intriguing and crucial importance in molecular 
biology and microelectronics. And they are all based on a discovery that annoyed 
Hertz—at first.

3-4  X Rays and the Compton Effect 
Further evidence of the correctness of the photon concept was furnished by Arthur H. 
Compton, who measured the scattering of x rays by free electrons and, by his anal-
ysis of the data, resolved the last lingering doubts regarding special relativity (see 
Chapter 1). Before we examine Compton scattering in detail, we will briefly describe 
some of the early work with x rays since it provides a good conceptual understanding 
of x-ray spectra and scattering and the images of astronomical objects obtained from 
orbiting observatories (see Chapter 13).
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X Rays
The German physicist Wilhelm K. Roentgen discovered x rays in 1895 when he was 
working with a cathode-ray tube. Coming five years before Planck’s explanation of 
the blackbody emission spectrum, Roentgen’s discovery turned out to be the first 
significant development in quantum physics. He found that “rays” originating from 
the point where the cathode rays (electrons) hit the glass tube, or a target within the 
tube, could pass through materials opaque to light and activate a fluorescent screen 
or photographic film. He investigated this phenomenon extensively and found that 
all materials were transparent to these rays to some degree and that the transparency 
decreased with increasing density. This fact led to the medical use of x rays within 
months after the publication of Roentgen’s first paper.14

Roentgen was unable to deflect these rays in a magnetic field, nor was he able 
to observe refraction or the interference phenomena associated with waves. He thus 
gave the rays the somewhat mysterious name of x rays. Since classical electromag-
netic theory predicts that accelerated charges will radiate electromagnetic waves, it is 
natural to expect that x rays are electromagnetic waves produced by the acceleration 
of the electrons when they are deflected and stopped by the atoms of a target. Such 
radiation is called bremsstrahlung, German for “braking radiation.” The slight dif-
fraction broadening of an x-ray beam after passing through slits a few thousandths of 
a millimeter wide indicated their wavelengths to be of the order of 1010 m  0.1 nm. 
In 1912, Laue suggested that since the wavelengths of x rays were of the same order 

(a) Early x-ray tube. 
[Courtesy of Cavendish 
Laboratory.]
(b) x-ray tubes became more 
compact over time. This 
tube was a design typical of 
the mid-twentieth century. 
[Courtesy of Schenectady 
Museum, Hall of Electrical 
History, Schenectady, NY.]
(c) Diagram of the 
components of a modern 
x-ray tube. Design 
technology has advanced 
enormously, making possible 
very high operating voltages, 
beam currents, and x-ray 
intensities, but essential 
elements of the tubes remain 
unchanged.
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of magnitude as the spacing of atoms in a crystal, the regular array of atoms in a crys-
tal might act as a three-dimensional grating for the diffraction of x rays. Experiments 
(see Figure 3-11) soon confirmed that x rays are a form of electromagnetic radiation 
with wavelengths in the range of about 0.01 to 0.10 nm and that atoms in crystals are 
arranged in regular arrays.

W. L. Bragg, in 1912, proposed a simple and convenient way of analyzing the 
diffraction of x rays by crystals.15 He examined the interference of x rays due to scat-
tering from various sets of parallel planes of atoms, now called Bragg planes. Two 
sets of Bragg planes are illustrated in Figure 3-12 for NaCl, which has a simple cubic 
structure called face-centered cubic. Consider Figure 3-13. Waves scattered from the 
two successive atoms within a plane will be in phase and thus interfere constructively, 
independent of the wavelength, if the scattering angle equals the incident angle. (This 
condition is the same as for reflection.) Waves scattered at equal angles from atoms in 
two different planes will be in phase (constructive interference) only if the difference 
in path length is an integral number of wavelengths. From Figure 3-13 we see that this 
condition is satisfied if

	 2d sin u = ml where m = an integer	 3-23

Equation 3-23 is called the Bragg condition.

(a)

(b)

Photographic
plate with
Laue spots

X rays

Crystal

Figure 3-11  (a) Schematic 
sketch of a Laue experiment. 
The crystal acts as a 
three-dimensional grating, 
which diffracts the x-ray 
beam and produces a regular 
array of spots, called a Laue 
pattern, on photographic 
film or an x-ray-sensitive 
charge-coupled device (CCD) 
detector. (b) Laue x-ray 
diffraction pattern using a 
niobium boride crystal and 
20 keV molybdenum x rays. 
[General Electric Company.]

An x-ray of Mrs. Roentgen’s hand taken by Roentgen shortly after his discovery.

Figure 3-12  ​A crystal of 
NaCl showing two sets of 
Bragg planes.
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Measurements of the spectral distribution of the intensity of 
x rays as a function of the wavelength using an experimental arrange-
ment such as shown in Figure 3-14 produces the x-ray spectrum 
and, for classical physics, some surprises. Figure 3-15a shows two 
typical x-ray spectra produced by accelerating electrons through 
two voltages V and bombarding a tungsten target mounted on the 
anode of the tube. In this figure I(l) is the intensity emitted within 
the wavelength interval d  l for each value of l. Figure 3-15b shows 
the short wavelength lines produced with a molybdenum target and 
35 keV electrons. Three features of the spectra are of immediate 
interest, only one of which could be explained by classical physics. 
(1) The spectrum consists of a series of sharp lines, called the char-
acteristic spectrum, superimposed on (2) the continuous brems-
strahlung spectrum. The line spectrum is characteristic of the target 
material and varies from element to element. (3) The continuous 
spectrum has a sharp cutoff wavelength, lm, which is independent 
of the target material but depends on the energy of the bombarding 

electrons. If the voltage on the x-ray tube is V volts, the cutoff wavelength is found 
empirically to be given by

	 lm =
1.24 * 103

V
 nm	 3-24

Equation 3-24 is called the Duane-Hunt rule, after its discoverers. It was pointed out 
rather quickly by Einstein that x-ray production by electron bombardment was an 
inverse photoelectric effect and that Equation 3-21 should apply. The Duane-Hunt lm 
simply corresponds to a photon with the maximum energy of the electrons, that is, the 
photon emitted when the electron loses all of its kinetic energy in a single collision. 
Since the kinetic energy of the electrons in an x-ray tube is 20,000 eV or higher, the 
work function  (a few eV) is negligible by comparison. That is, Equation 3-21 

d
θ

θ d sin θ

Figure 3-13  Bragg scattering from two 
successive planes. The waves from the two atoms 
shown have a path length difference of 2d sin u. 
They will be in phase if the Bragg condition 2d 
sin u  ml is met.

Figure 3-14  ​Schematic diagram of a Bragg crystal spectrometer. A collimated x-ray beam 
is incident on a crystal and scattered into an ionization chamber. The crystal and ionization 
chamber can be rotated to keep the angles of incidence and scattering equal as both are 
varied. By measuring the ionization in the chamber as a function of angle, the spectrum 
of the x rays can be determined using the Bragg condition 2d sin u  ml, where d is the 
separation of the Bragg planes in the crystal. If the wavelength l is known, the spacing d can 
be determined.
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becomes eV  hf  hc>lm or lm  hc>eV  1.2407  106 V 1 m  1.24  103 V 1 
nm. Thus, the Duane-Hunt rule is explained by Planck’s quantum hypothesis. (Notice 
that the value of lm can be used to determine h>e.)

The continuous spectrum was understood as the result of the acceleration (i.e., 
“braking”) of the bombarding electrons in the strong electric fields of the target 
atoms. Maxwell’s equation predicted the continuous radiation. The real problem for 
classical physics was the sharp lines. The wavelengths of the sharp lines were a func-
tion of the target element, the set for each element being always the same. But the 
sharp lines never appeared if V was such that lm was larger than the particular line, 
as can be seen from Figure 3-15a, where the shortest-wavelength group disappears 
when V is reduced from 80 keV to 40 keV so that lm becomes larger. The origin of the 
sharp lines was a mystery that had to await the discovery of the nuclear atom. We will 
explain them in Chapter 4.

Compton Effect
It had been observed that scattered x rays were “softer” than those in the incident 
beam, that is, were absorbed more readily. Compton16 pointed out that if the scat-
tering process were considered a “collision” between a photon of energy hf1 (and 
momentum hf1>c) and an electron, the recoiling electron would absorb part of the 
incident photon’s energy. The energy hf2 of the scattered photon would therefore be 
less than the incident one and thus of lower frequency f2 and momentum hf2>c. (The 
fact that electromagnetic radiation of energy E carried momentum E>c was known 
from classical theory and from experiments of Nichols and Hull in 1903. This rela-
tion is also consistent with the relativistic expression E 2  p2c2 + (mc2)2 for a particle 
with zero rest energy.) Compton applied the laws of conservation of momentum and 
energy in their relativistic form (see Chapter 2) to the collision of a photon with an 
isolated electron to obtain the change in the wavelength l2  l1 of the photon as a 

Well-known applications 
of x rays are medical 
and dental x rays (both 
diagnostic and treatment) 
and industrial x ray 
inspection of welds and 
castings. Perhaps not so 
well known is their use in 
determining the structure 
of crystals, identifying 
black holes in the cosmos, 
and “seeing” the folded 
shapes of proteins in 
biological materials.

Figure 3-15  (a) x-ray spectra from tungsten at two accelerating voltages and (b) from 
molybdenum at one. The names of the line series (K and L) are historical and explained in 
Chapter 4. The L-series lines for molybdenum (not shown) are at about 0.5 nm (5 Å). The 
cutoff wavelength lm is independent of the target element and is related to the voltage on the 
x-ray tube V by lm  hc>eV. The wavelengths of the lines are characteristic of the element.
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function of the scattering angle u. The result, called Compton’s equation and derived 
in a More section on the home page, is

	 l2 - l1 =
h

mc
11 - cos u2	 3-25

The change in wavelength is thus predicted to be independent of the original wavelength. 
The quantity h>mc has the dimensions of length and is called the Compton wave-
length of the electron. Its value is

lc =
h

mc
=

hc

mc2 =
1.24 * 103 eV # nm

5.11 * 105 eV
= 0.00243 nm

Because l2  l1 is small, it is difficult to observe unless l1 is very small so that the 
fractional change (l2  l1)>l1 is appreciable. For this reason Compton effect is gen-
erally only observed for x rays and gamma radiation.

Compton verified his result experimentally using the characteristic x-ray line of 
wavelength 0.0711 nm from molybdenum for the incident monochromatic photons 
and scattering these photons from electrons in graphite. The wavelength of the scat-
tered photons was measured using a Bragg crystal spectrometer. His experimental 
arrangement is shown in Figure 3-16; Figure 3-17 shows his results. The first peak at 
each scattering angle corresponds to scattering with no shift in the wavelength due 
to scattering by the inner electrons of carbon. Since these are tightly bound to the atom, 
it is the entire atom that recoils rather than the individual electrons. The expected shift 
in this case is given by Equation 3-25, with m being the mass of the atom, which is 
about 104 times that of the electron; thus, this shift is negligible. The variation of
Dl  l2  l1 with u was found to that predicted by Equation 3-25.

We have seen in this and the preceding two sections that the interaction of elec-
tromagnetic radiation with matter is a discrete interaction that occurs at the atomic 
level. It is perhaps curious that after so many years of debate about the nature 
of light, we now find that we must have both a particle (i.e., quantum) theory to 
describe in detail the energy exchange between electromagnetic radiation and mat-
ter and a wave theory to describe the interference and diffraction of electromag-
netic radiation. We will discuss this so-called wave-particle duality in more detail 
in Chapter 5.

φ

X-ray tube
(Mo target)

R

S1

Defining
slit
S2

Calcite
crystal

Bragg
spectrometer

Ionization
chamber

Shutter

Figure 3-16  Schematic sketch of Compton’s apparatus. x rays from the tube strike the 
carbon block R and are scattered into a Bragg-type crystal spectrometer. In this diagram, 
the scattering angle is 30°. The beam was defined by slits S1 and S2. Although the entire 
spectrum is being scattered by R, the spectrometer scanned the region around the Ka line of 
molybdenum.

Figure 3-17  Intensity versus 
wavelength for Compton 
scattering at several angles. 
The left peak in each case 
results from photons of the 
original wavelength that are 
scattered by tightly bound 
electrons, which have an 
effective mass equal to that 
of the atom. The separation 
in wavelength of the peaks 
is given by Equation 3-25. 
The horizontal scale used by 
Compton “angle from calcite” 
refers to the calcite analyzing 
crystal in Figure 3-16.
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More
�Derivation of Compton’s Equation, applying conservation of 
energy and momentum to the relativistic collision of a photon and 
an electron, is included on the home page: www.whfreeman.com 
/tiplermodernphysics6e. See also Equations 3-26 and 3-27 and Figure 
3-18 here.

More

Questions

6.	 Why is it extremely difficult to observe the Compton effect using visible light?

7.	 Why is the Compton effect unimportant in the transmission of television and 
radio waves? How many Compton scatterings would a typical FM signal have 
before its wavelengths were shifted by 0.01 percent?

EXAMPLE 3-9	 Compton Effect ​ In a particular Compton scattering experiment 
it is found that the incident wavelength l1 is shifted by 1.5 percent when the scatter-
ing angle u  120°. (a) What is the value of l1? (b) What will be the wavelength l2 
of the shifted photon when the scattering angle is 75°?

SOLUTION
	 1.	 For question (a), the value of l1 is found from Equation 3-25:

 l2 - l1 = l =
h

mc
11 - cos u2

 = 0.0024311 - cos 1202

Arthur Compton. After discovering the 
Compton effect, he became a world 
traveler seeking an explanation for cosmic 
rays. He ultimately showed that their 
intensity varied with latitude, indicating 
an interaction with Earth’s magnetic field, 
and thus proved that they were charged 
particles. [Courtesy of American Institute of 
Physics, Niels Bohr Library.]
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144	 Chapter 3  Quantization of Charge, Light, and Energy

	 2.	 That the scattered wavelength l2 is shifted by 1.5 percent from l1 means that

Dl

l1
= 0.015

	 3.	 Combining these yields

 l1 =
Dl

0.015
=

0.0024311 - cos 1202
0.015

 = 0.243 nm

	 4.	 Question (b) is also solved with the aid of Equation 3-25, rearranged as

l2 = l1 + 0.0024311 - cos u2
	 5.	 Substituting u  75 and l1 from above yields

 l2 = 0.243 + 0.0024311 - cos 752
 = 0.243 + 0.002
 = 0.245 nm

A Final Comment
In this chapter together with Section 2-4 of the previous chapter we have introduced 
and discussed at some length the three primary ways by which photons interact with 
matter: (1) the photoelectric effect, (2) the Compton effect, and (3) pair production. 
As we proceed with our explorations of modern physics throughout the remainder of 
the book, we will have many occasions to apply what we have learned here to aid in 
our understanding of a myriad of phenomena, ranging from atomic structure to the 
fusion “furnaces” of the stars.

Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 J. J. Thomson’s experiment Thomson’s measurements with cathode rays showed that the same 
particle (the electron), with e>m about 2000 times that of ionized 
hydrogen, exists in all elements.

2.	 Quantization of electric charge e  1.60217653  1019 C

3.	 Blackbody radiation

	 Stefan-Boltzmann law

	 Wein’s displacement law

	 Planck’s radiation law

	 Planck’s constant

R  sT 4� 3-4

lmT  2.898  103 m # K� 3-5

u(l) =
8phcl-5

ehc>lkT - 1
� 3-18

h  6.626  1034 J # s� 3-19

4.	 Photoelectric effect eV0  hf  � 3-21

5.	 Compton effect
l2 - l1 =

h

mc
11 - cos u2 � 3-25

6.	 Photon-matter interaction The (1) photoelectric effect, (2) the Compton effect, and (3) pair 
production are the three ways of interaction.
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General References 
The following references are written at a level appropriate for 
the readers of this book.

Millikan, R. A., Electrons (1 and ) Protons, Photons, Neu-
trons, Mesotrons, and Cosmic Rays, 2d ed., University 
of Chicago Press, Chicago, 1947. This book on modern 
physics by one of the great experimentalists of his time 
contains fascinating, detailed descriptions of Millikan’s 
oil-drop experiment and his verification of the Einstein 
photoelectric-effect equation.

Mohr, P. J., B. N. Taylor, and D. B. Newell, “The Fundamen-
tal Physical Constants,” Reviews of Modern Physics 80, 
633–730 (April 2008).

Richtmyer, F. K., E. H. Kennard, and J. N. Cooper, Intro-
duction to Modern Physics, 6th ed., McGraw-Hill,
New York, 1969. This excellent text was originally 

published in 1928, intended as a survey course for grad-
uate students.

Shamos, M. H. (ed.), Great Experiments in Physics, Holt, 
Rinehart, & Winston, New York, 1962. This book contains 
25 original papers and extensive editorial comment. Of 
particular interest for this chapter are papers by Faraday, 
Hertz, Roentgen, J. J. Thomson, Einstein (photoelectric 
effect), Millikan, Planck, and Compton.

Thomson, G. P., J. J. Thomson, Discoverer of the Elec-
tron, Doubleday/Anchor, Garden City, NY, 1964. An 
interesting study of J. J. Thomson by his son, also a 
physicist.

Weart, S. R., Selected Papers of Great American Physicists, 
American Institute of Physics, New York, 1976. The 
bicentennial commemorative volume of the American 
Physical Society.

Notes 
1.	 Democritus (about 470 b.c. to about 380 b.c.). Among 

his other modern-sounding ideas were the suggestion that 
the Milky Way is a vast conglomeration of stars and that the 
Moon, like Earth, has mountains and valleys.

2.	 G. J. Stoney (1826–1911). An Irish physicist who first 
called the fundamental unit of charge the electron. After 
Thomson discovered the particle that carried the charge, the 
name was transferred from the quantity of charge to the par-
ticle itself by Lorentz.

3.	 Joseph J. Thomson (1856–1940). English physicist and 
director, for more than 30 years, of the Cavendish Labora-
tory, the first laboratory in the world established expressly for 
research in physics. He was awarded the Nobel Prize in Physics 
in 1906 for his work on the electron. Seven of his research 
assistants also won Nobel Prizes.

4.	 There had been much early confusion about the nature 
of cathode rays due to the failure of Heinrich Hertz in 1883 
to observe any deflection of the rays in an electric field. The 
failure was later found to be the result of ionization of the gas 
in the tube; the ions quickly neutralized the charges on the 
deflecting plates so that there was actually no electric field 
between the plates. With better vacuum technology in 1897, 
Thomson was able to work at lower pressure and observe elec-
trostatic deflection.

5.	 R. A. Millikan, Philosophical Magazine (6), 19,
209 (1910). Millikan, who held the first physics Ph.D. 
awarded by Columbia University, was one of the most 
accomplished experimentalists of his time. He received the 
Nobel Prize in Physics in 1923 for the measurement of the 
electron’s charge. Also among his many contributions, he 
coined the phrase cosmic rays to describe radiation pro-
duced in outer space.

6.	 R. A. Millikan, Physical Review, 32, 349 (1911).

7.	 Mohr, P. J., B. N. Taylor, and D. B. Newell, “The Funda-
mental Physical Constants,” Reviews of Modern Physics 80, 
633–730 (April 2008).

8.	 See pp. 135–137 of F. K. Richtmyer, E. H. Kennard, and 
J. N. Cooper (1969).

9.	 John W. S. Rayleigh 1842–1919. English physicist, 
almost invariably referred to by the title he inherited from his 
father. He was Maxwell’s successor and Thomson’s prede-
cessor as director of the Cavendish Laboratory.
10.	 Max K. E. L. Planck (1858–1947). Most of his career was 
spent at the University of Berlin. In his later years his renown 
in the world of science was probably second only to that of 
Einstein.
11.	 Heinrich R. Hertz (1857–1894). German physicist, student 
of Helmholtz. He was the discoverer of electromagnetic “radio” 
waves, later developed for practical communication by Marconi.
12.	 H. Hertz, Annalen der Physik, 31, 983 (1887).
13.	 A. Einstein, Annalen der Physik, 17, 144 (1905).
14.	 A translation of this paper can be found in E. C. Watson, 
American Journal of Physics, 13, 284 (1945), and in Shamos 
(1962). Roentgen (1845–1923) was honored in 1901 with the 
first Nobel Prize in Physics for his discovery of x rays.
15.	 William Lawrence Bragg (1890–1971), Australian-
English physicist. The work that Bragg, an infant prodigy, 
performed on x-ray diffraction with his father, William 
Henry Bragg (1862–1942), earned for them both the Nobel 
Prize in Physics in 1915, the only father-son team to be so 
honored thus far. In 1938 W. L. Bragg became director of 
the Cavendish Laboratory, succeeding Rutherford.
16.	 Arthur H. Compton (1892–1962), American physicist. It 
was Compton who suggested the name photon for the light 
quantum. His discovery and explanation of the Compton effect 
earned him a share of the Nobel Prize in Physics in 1927.

TIPLER_03_119-152hr2.indd   145 8/22/11   11:33 AM



146	 Chapter 3  Quantization of Charge, Light, and Energy

Problems 
Level I
Section 3-1  Quantization of Electric Charge
3-1.	 A beam of charged particles consisting of protons, electrons, deuterons, and singly 
ionized helium atoms and H2 molecules all pass through a velocity selector, all emerging 
with speeds of 2.5  106 m/s. The beam then enters a region of uniform magnetic field 
B  0.40 T directed perpendicular to their velocity. Compute the radius of curvature of the 
path of each type of particle.
3-2.	 Consider Thomson’s experiment with the electric field turned “off.” If the elec-
trons enter a region of uniform magnetic field B and length , show that the electrons are 
deflected through an angle   eB/mu for small values of . (Assume that the electrons 
are moving at nonrelativistic speeds.)
3-3.	 Equation 3-3 suggests how a velocity selector for particles or mixtures of dif-
ferent particles all having the same charge can be made. Suppose you wish to make a 
velocity selector that allows undeflected passage for electrons whose kinetic energy is 
5.0  104 eV. The electric field available to you is 2.0  105 V/m. What magnetic field 
will be needed?
3-4.	 A cosmic-ray proton approaches Earth vertically at the equator, where the hori-
zontal component of Earth’s magnetic field is 3.5  105 T. If the proton is moving at 
3.0  106 m/s, what is the ratio of the magnetic force to the gravitational force on the proton?
3-5.	 An electron of kinetic energy 45 keV moves in a circular orbit perpendicular to a 
magnetic field of 0.325 T. (a) Compute the radius of the orbit. (b) Find the period and 
frequency of the motion.
3-6.	 If electrons have kinetic energy of 2000 eV, find (a) their speed, (b) the time needed 
to traverse a distance of 5 cm between plates D and E in Figure 3-1, and (c) the verti-
cal component of their velocity after passing between the plates if the electric field is 
3.33  103 V/m.
3-7.	 In J. J. Thomson’s first method (see Problem 3-46), the heat capacity of the beam 
stopper was about 5  103 cal/°C and the temperature increase was about 2°C. How 
many 2000 eV electrons struck the beam stopper?
3-8.	 On drop #16, Millikan measured the following total charges, among others, at dif-
ferent times:

 25.41 * 10-19 C  17.47 * 10-19 C  12.70 * 10-19 C

 20.64 * 10-19 C  19.06 * 10-19 C  14.29 * 10-19 C

What value of the fundamental quantized charge e do these numbers imply?
3-9.	 Show that the electric field needed to make the rise time of the oil drop equal to its 
field-free fall time is  = 2mg>q.
3-10.	 One variation of the Millikan oil-drop apparatus arranges the electric field horizon-
tal, rather than vertical, giving charged droplets acceleration in the horizontal direction. 
The result is that the droplet falls in a straight line that makes an angle u with the vertical. 
Show that

sin u = q>bv =t

where v =t is the terminal speed along the angled path.
3-11.	 A charged oil droplet falls 5.0 mm in 20.0 s at terminal speed in the absence 
of an electric field. The specific gravity of air is 1.35  103 and that of oil is 0.75.
The viscosity of air is 1.80  105 N # s/m2. (a) What are the mass and radius of the 
drop? (b) If the droplet carries two units of electric charge and is in an electric field of 
2.5  105 V/m, what is the ratio of the electric force to the gravitational force on the 
droplet?
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Section 3-2  Blackbody Radiation
3-12.	 Find lm for blackbody radiation at (a) T  3 K, (b) T  300 K, and (c) T  3000 K.
3-13.	 Use the result of Example 3-4 and Equations 3-4 and 3-6 to express Stefan’s constant 
in terms of h, c, and k. Using the known values of these constants, calculate Stefan’s constant.
3-14.	 Show that Planck’s law, Equation 3-18, expressed in terms of the frequency f, is

u1  f 2 =
8pf 2

c3  
hf

ehf>kT - 1

3-15.	 As noted in the chapter, the cosmic microwave background radiation fits the 
Planck equation for a blackbody at 2.7 K. (a) What is the wavelength at the maximum 
intensity of the spectrum of the background radiation? (b) What is the frequency of the 
radiation at the maximum? (c) What is the total power incident on Earth from the back-
ground radiation?
3-16.	 Find the temperature of a blackbody if its spectrum has its peak at (a) lm  700 nm 
(visible), (b) lm  3 cm (microwave region), and (c) lm  3 m (FM radio waves).
3-17.	 If the absolute temperature of a blackbody is doubled, by what factor is the total 
emitted power increased?
3-18.	 Calculate the average energy E per mode of oscillation for (a) a long wavelength 
l  10 hc>kT, (b) a short wavelength l  0.1 hc>kT, and compare your results with the 
classical prediction kT (see Equation 3-9). (The classical value comes from the equiparti-
tion theorem discussed in Chapter 8.)
3-19.	 A particular radiating cavity has the maximum of its spectral distribution of radiated 
power at a wavelength of 27.0 mm (in the infrared region of the spectrum). The temperature is 
then changed so that the total power radiated by the cavity doubles. (a) Compute the new tem-
perature. (b) At what wavelength does the new spectral distribution have its maximum value?
3-20.	 A certain very bright star has an effective surface temperature of 20,000 K. 
(a) Assuming that it radiates as a blackbody, what is the wavelength at which u(  l) is 
maximum? (b) In what part of the electromagnetic spectrum does the maximum lie?
3-21.	 The energy reaching Earth from the Sun at the top of the atmosphere is 1.36 
103 W/m2, called the solar constant. Assuming that Earth radiates like a blackbody at uni-
form temperature, what do you conclude is the equilibrium temperature of Earth?
3-22.	 A 40 W incandescent bulb radiates from a tungsten filament operating at 3300 K. 
Assuming that the bulb radiates like a blackbody, (a) what are the frequency fm and the 
wavelength lm at the maximum of the spectral distribution? (b) If fm is a good approximation 
of the average frequency of the photons emitted by the bulb, about how many photons is the 
bulb radiating per second? (c) If you are looking at the bulb from 5 m away, how many pho-
tons enter your eye per second? (The diameter of your pupil is about 5.0 mm.)
3-23.	 Use Planck’s law, Equation 3-18, to derive the constant in Wien’s law, Equation 3-5.

Section 3-3  The Photoelectric Effect
3-24.	 The wavelengths of visible light range from about 380 nm to about 750 nm. 
(a) What is the range of photon energies (in eV) in visible light? (b) A typical FM radio 
station’s broadcast frequency is about 100 MHz. What is the energy of an FM photon of 
that frequency?
3-25.	 The orbiting space shuttle moved around Earth well above 99 percent of the atmo-
sphere, yet it still accumulated an electric charge on its skin due, in part, to the loss of 
electrons caused by the photoelectric effect with sunlight. Suppose the skin of the shuttle 
were coated with Ni, which has a relatively large work function   4.87 eV at the tem-
peratures encountered in orbit. (a) What is the maximum wavelength in the solar spectrum 
that could result in the emission of photoelectrons from the shuttle’s skin? (b) What is 
the maximum fraction of the total power falling on the shuttle that potentially could have 
produced photoelectrons?
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3-26.	 The work function for cesium is 1.9 eV, the lowest of any metal. (a) Find the thresh-
old frequency and wavelength for the photoelectric effect. Find the stopping potential if 
the wavelength of the incident light is (b) 300 nm and (c) 400 nm.
3-27.	 (a) If 5 percent of the power of a 100 W bulb is radiated in the visible spectrum, 
how many visible photons are radiated per second? (b) If the bulb is a point source radiating 
equally in all directions, what is the flux of photons (number per unit time per unit area) at 
a distance of 2 m?
3-28.	 The work function of molybdenum is 4.22 eV. (a) What is the threshold frequency 
for the photoelectric effect in molybdenum? (b) Will yellow light of wavelength 560 nm 
cause ejection of photoelectrons from molybdenum? Prove your answer.
3-29.	 The NaCl molecule has a bond energy of 4.26 eV; that is, this energy must be sup-
plied in order to dissociate the molecule into neutral Na and Cl atoms (see Chapter 9). 
(a) What are the minimum frequency and maximum wavelength of the photon necessary 
to dissociate the molecule? (b) In what part of the electromagnetic spectrum is this photon?
3-30.	 Using apparatus similar to that in Figure 3-8, the photoelectric effect data below 
were measured.

l nm 544 594 604 612 633

Ek, max eV 0.360 0.199 0.156 0.117 0.062

(a) From a graph of Ek, max versus f, find a value for Planck’s constant. (b) By what percent-
age (+ or ) does the value found in (a) differ from the accepted value? (c) Based on the 
graph plotted in (a), what is the approximate value of the work function of the metal used in 
the cathode of the apparatus? (d ) What metal was most likely used for the cathode?
3-31.	 Under optimum conditions, the eye will perceive a flash if about 60 photons arrive 
at the cornea. How much energy is this in joules if the wavelength of the light is 550 nm?
3-32.	 The longest wavelength of light that will cause emission of electrons from cesium 
is 653 nm. (a) Compute the work function for cesium. (b) If light of 300 nm (ultraviolet) 
were to shine on cesium, what would be the energy of the ejected electrons?

Section 3-4  X Rays and the Compton Effect
3-33.	 Use Compton’s equation (Equation 3-25) to compute the value of Dl in Figure 3-17d. 
To what percent shift in the wavelength does this correspond?
3-34.	 x-ray tubes currently used by dentists often have accelerating voltages of 80 kV. 
What is the minimum wavelength of the x rays they produce?
3-35.	 Find the momentum of a photon in eV/c and in kg · m/s if the wavelength is (a) 400 nm, 
(b) 1 Å  0.1 nm, (c) 3 cm, and (d ) 2 nm.
3-36.	 Gamma rays emitted by radioactive nuclei also exhibit measurable Compton scat-
tering. Suppose a 0.511 MeV photon from a positron-electron annihilation scatters at 110° 
from a free electron. What are the energies of the scattered photon and the recoiling 
electron? Relative to the initial direction of the 0.511 MeV photon, what is the direction of 
the recoiling electron’s velocity vector?
3-37.	 A Compton scattering experiment yielded the data in the table below.

Dl pm 0.647 1.67 2.45 3.98 4.80

 degrees 45 75 90 135 170

(a) Using Equation 3-25 as a guide, construct an appropriate graph that enables you to obtain 
a value for the Compton wavelength of the electron. (b) By what percent (+ or ) does 
your result differ from the accepted value?
3-38.	 The wavelength of Compton-scattered photons is measured at u  90°. If Dl>l is 
to be 1 percent, what should the wavelength of the incident photon be?

TIPLER_03_119-152hr2.indd   148 8/22/11   11:33 AM



	 Problems	 149

3-39.	 Compton used photons of wavelength 0.0711 nm. (a) What is the energy of these 
photons? (b) What is the wavelength of the photons scattered at u  180°? (c) What is the 
energy of the photons scattered at u  180°? (d ) What is the recoil energy of the electrons 
if u  180°?
3-40.	 Compute Dl for photons scattered at 120° from (a) free protons, (b) free electrons, 
and (c) N2 molecules in air.
3-41.	 Compton’s equation (Equation 3-25) indicates that a graph of l2 versus (1  cos u) 
should be a straight line whose slope h>mc allows a determination of h. Given that the 
wavelength of l1 in Figure 3-17 is 0.0711 nm, compute l2 for each scattering angle in the 
figure and graph the results versus (1  cos u). What is the slope of the line?
3-42.	 (a) Compute the Compton wavelength of an electron and a proton. (b) What is the 
energy of a photon whose wavelength is equal to the Compton wavelength of (1) the elec-
tron and (2) the proton?

Level II
3-43.	 In the Compton scattering of a photon with energy E1 from an electron at rest, show 
that the energy of the scattered photon E2 is given by

E2 =
E1

(E1>mc2)(1 - cos ) + 1

3-44.	 When light of wavelength 450 nm is incident on potassium, photoelectrons with 
stopping potential of 0.52 V are emitted. If the wavelength of the incident light is changed 
to 300 nm, the stopping potential is 1.90 V. Using only these numbers together with the 
values of the speed of light and the electron charge, (a) find the work function of potas-
sium and (b) compute a value for Planck’s constant.
3-45.	 Assuming that the difference between Thomson’s calculated e>m in his second exper-
iment (see Figure 3-19) and the currently accepted value was due entirely to his neglect-
ing the horizontal component of Earth’s magnetic field outside the deflection plates, what 
value for that component does the difference imply? (Thomson’s data: B  5.5  104 T, 
  1.5  104 V/m, x1  5 cm, y2>x2  8>110.)

ux

uy

y1

y2

x2x1

ux

θ

Deflection
plates

Figure 3-19  Deflection of the 
electron beam in Thomson’s apparatus. 
The deflection plates are D and E in 
Figure 3-1. Deflection is shown with 
the magnetic field off and the top plate 
positive. The magnetic field is applied 
perpendicular to the plane of the diagram 
and directed into the page.

3-46.	 In his first e>m experiment Thomson determined the speed of electrons accelerated 
through a potential DV by collecting them in an insulated beam stopper and measuring 
both the total collected charge Q and the temperature rise DT of the beam stopper. 
(a) Show that with those measurements, he could obtain an expression for e>m in terms of 
the speed of the electrons and the directly measured quantities. (b) Show that the expres-
sion obtained in (a) together with the result of Problem 3-2 enabled Thomson to compute 
e>m in terms of directly measured quantities.
3-47.	 Data for stopping potential versus wavelength for the photoelectric effect using 
sodium are

l nm 200 300 400 500 600

V0 V 4.20 2.06 1.05 0.41 0.03
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Plot these data in such a way as to be able to obtain (a) the work function, (b) the threshold 
frequency, and (c) the ratio h>e.
3-48.	 Prove that the photoelectric effect cannot occur with a completely free electron, 
that is, one not bound to an atom. (Hint: Consider the reference frame in which the total 
momentum if the electron and the incident photon is zero.)
3-49.	 When a beam of monochromatic x rays is incident on a particular NaCl crystal, 
Bragg reflection in the first order (i.e., with m  1) occurs at u  20°. The value of d  
0.28 nm. What is the minimum voltage at which the x-ray tube can be operating?
3-50.	 A 100 W beam of light is shined onto a blackbody of mass 2  103 kg for
104 s. The blackbody is initially at rest in a frictionless space. (a) Compute the total 
energy and momentum absorbed by the blackbody from the light beam, (b) calculate the 
blackbody’s velocity at the end of the period of illumination, and (c) compute the final 
kinetic energy of the blackbody. Why is the latter less than the total energy of the absorbed 
photons?
3-51.	 Show that the maximum kinetic energy Ek, called the Compton edge, that a recoil-
ing electron can carry away from a Compton scattering event is given by

Ek =
hf

1 + mc2>2hf
=

2E2


2E + mc2

3-52.	 The x-ray spectrometer on board a satellite measures the wavelength at the maximum 
intensity emitted by a particular star to be lm  82.8 nm. Assuming that the star radiates 
like a blackbody, (a) compute the star’s surface temperature. (b) What is the ratio of the 
intensity radiated at l  70 nm and at l  100 nm to that radiated at lm?
3-53.	 Determine the fraction of the energy radiated by the Sun in the visible region of the 
spectrum (350 nm to 700 nm). Assume that the Sun’s surface temperature is 5800 K.
3-54.	 Millikan’s data for the photoelectric effect in lithium are shown in the table.

Incident l (nm) 253.5 312.5 365.0 404.7 433.9

Stopping Voltage V0 (V) 2.57 1.67 1.09 0.73 0.55

(a) Graph the data and determine the work function for lithium. (b) find the value of 
Planck’s constant directly from the graph in (a). (c) The work function for lead is 4.14 eV. 
Which, if any, of the wavelengths in the table would not cause emission of photoelectrons 
from lead?

Level III
3-55.	 This problem is to derive the Wien displacement law, Equation 3-5. (a) Show that 
the energy density distribution function can be written u  C l5(ea>l  1)1, where C is 
a constant and a  hc>kT. (b) Show that the value of l for which du>d l  0 satisfies 
the equation 5l(1  ea>l)  a. (c) This equation can be solved with a calculator by the 
trial-and-error method. Try l  a a for various values of a until l>a is determined to four 
significant figures. (d) Show that your solution in (c) implies lmT  constant and calculate 
the value of the constant.
3-56.	 This problem is one of estimating the time lag (expected classically but not observed) 
for the photoelectric effect. Assume that a point light source emits 1 W  1 J/s of light 
energy. (a) Assuming uniform radiation in all directions, find the light intensity in eV/s # m2 
at a distance of 1 m from the light source. (b) Assuming some reasonable size for an atom, 
find the energy per unit time incident on the atom for this intensity. (c) If the work func-
tion is 2 eV, how long does it take for this much energy to be absorbed, assuming that all 
of the energy hitting the atom is absorbed?
3-57.	 A photon can be absorbed by a system that can have internal energy. Assume that 
a 15 MeV photon is absorbed by a carbon nucleus initially at rest. The recoil momentum 
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of the carbon nucleus must be 15 MeV/c. (a) Calculate the kinetic energy of the carbon 
nucleus. What is the internal energy of the nucleus? (b) The carbon nucleus comes to rest 
and then loses its internal energy by emitting a photon. What is the energy of the photon?
3-58.	 The maximum kinetic energy given to the electron in a Compton scattering event 
plays a role in the measurement of gamma-ray spectra using scintillation detectors. The 
maximum is referred to as the Compton edge. Suppose that the Compton edge in a par-
ticular experiment is found to be 520 keV. What were the wavelength and energy of the 
incident gamma rays?
3-59.	 An electron accelerated to 50 keV in an x-ray tube has two successive collisions in 
being brought to rest in the target, emitting two bremsstrahlung photons in the process. 
The second photon emitted has a wavelength 0.095 nm longer than the first. (a) What are 
the wavelengths of the two photons? (b) What was the energy of the electron after emis-
sion of the first photon?
3-60.	 Derive Equation 3-17 from Equations 3-15 and 3-16.
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153  

Among his many experiments, Newton found that sunlight passing through a small 
opening in a window shutter could be refracted by a glass prism so that it would fall 

on a screen. The white sunlight thus refracted was spread into a rainbow-colored band—
a spectrum. He had discovered dispersion, and his experimental arrangement was the 
prototype of the modern spectroscope (Figure 4-1a). When, 150 years later, Fraunhofer1 
dispersed sunlight using an experimental setup similar to that shown in Figure 4-1b to 
test prisms made of glasses that he had developed, he found that the solar spectrum was 
crossed by more than 600 narrow, or sharp, dark lines.2 Soon after, a number of scientists 
observed sharp bright lines in the spectra of light emitted by flames, arcs, and sparks. 
Spectroscopy quickly became an important area of research.

It soon became clear that chemical elements and compounds emit three general 
types of spectra. Continuous spectra, emitted mainly by incandescent solids, show no 
lines at all, bright or dark, in spectroscopes of the highest-possible resolving power. 
Band spectra consist of very closely packed groups of lines that appear to be continu-
ous in instruments of low resolving power. These are emitted when small pieces of 
solid materials are placed in the source flame or electrodes. The line spectra men-
tioned above arise when the source contains unbound chemical elements. The lines 
and bands turned out to be characteristic of individual elements and chemical com-
pounds when excited under specific conditions. Indeed, the spectra could be (and are 
today) used as a highly sensitive test for the presence of elements and compounds. 
Line spectra raised an enormous theoretical problem: although classical physics could 
account for the existence of a continuous spectrum (if not its detailed shape, as we 
saw with blackbodies), it could in no way explain why sharp lines and bands should 
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154	 Chapter 4  The Nuclear Atom

exist. Explaining the origin of the sharp lines and accounting for the primary features 
of the spectrum of hydrogen, the simplest element, was a major success of the so-called 
old quantum theory begun by Planck and Einstein and will be the main topic in this 
chapter. Full explanation of the lines and bands requires the later, more sophisticated 
quantum theory, which we will begin studying in Chapter 5.

4-1  Atomic Spectra 
The characteristic radiation emitted by atoms of individual elements in a flame or in a 
gas excited by an electrical discharge was the subject of vigorous study during the late 
nineteenth and early twentieth centuries. When viewed or photographed through a 
spectroscope, this radiation appears as a set of discrete lines, each of a particular 
color or wavelength; the positions and intensities of the lines are characteristic of the 
element. The wavelengths of these lines could be determined with great precision, 

Source of
wavelengths
λ1 and λ2
(λ2 > λ1)

λ1

λ2

Slit

Lens

Source

Prism

Screen

Slit

Prism Screen

Spectrum

(a)

(b)

Figure 4-1  (a) Light from the source passes through a small hole or a narrow slit before 
falling on the prism. The purpose of the slit is to ensure that all the incident light strikes the 
prism face at the same angle so that the dispersion by the prism causes the various frequencies 
that may be present to strike the screen at different places with minimum overlap. (b) The 
source emits only two wavelengths, l2 . l1. The source is located at the focal point of the lens 
so that parallel light passes through the narrow slit, projecting a narrow line onto the face of 
the prism. Ordinary dispersion in the prism bends the shorter wavelength through the larger 
total angle, separating the two wavelengths at the screen. In this arrangement each wavelength 
appears on the screen (or on CCD detectors replacing the screen) as a narrow line, which is an 
image of the slit. Such a spectrum was dubbed a “line spectrum” for that reason. Prisms have 
been almost entirely replaced in modern spectroscopes by diffraction gratings, which have 
much higher resolving power.
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and much effort went into finding and interpreting regularities in the spectra. A major 
breakthrough was made in 1885 by a Swiss schoolteacher, Johann Balmer, who found 
that the lines in the visible and near ultraviolet spectrum of hydrogen could be repre-
sented by the empirical formula

	 ln = 364.6
n2

n2 - 4
 nm	 4-1

where n is a variable integer that takes on the values n 5 3, 4, 5, . . . . Figure 4-2a is a 
photo of the set of spectral lines of hydrogen (now known as the Balmer series) whose 
wavelengths are given by Balmer’s formula. For example, the wavelength of the Ha 
line could be found by letting n 5 3 in Equation 4-1 (try it!), and other integers each 
predicted a line that was found in the spectrum. Balmer suggested that his formula 
might be a special case of a more general expression applicable to the spectra of other 
elements when ionized to a single electron, that is, hydrogenlike elements. Such an 

The uniqueness of the 
line spectra of the 
elements has enabled 
astronomers to determine 
the composition of stars, 
chemists to identify 
unknown compounds, 
and theme parks and 
entertainers to have 
laser shows.

Figure 4-2  (a) Emission 
line spectrum of hydrogen 
in the visible and near 
ultraviolet. The lines appear 
dark because the spectrum 
was photographed; hence, 
the bright lines are exposed 
(dark) areas on the film. 
The names of the first five 
lines are shown, as is the 
point beyond which no lines 
appear, H, called the limit 
of the series. (b) A portion 
of the emission spectrum of 
sodium. The two very close 
bright lines at 589 nm are 
the D1 and D2 lines. They are 
the principal radiation from 
sodium street lighting. 
(c) A portion of the emission 
spectrum of mercury. (d ) Part 
of the dark line (absorption) 
spectrum of sodium. White 
light shining through sodium 
vapor is absorbed at certain 
wavelengths, resulting in no 
exposure of the film at those 
points. Notice that the line at 
259.4 nm is visible here in 
both the bright and dark line 
spectra. Note that frequency 
increases toward the right, 
wavelength toward the left in 
the four spectra shown.
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expression, found independently by J. R. Rydberg and W. Ritz and thus called the 
Rydberg-Ritz formula, gives the reciprocal wavelength3 as

	
1

lmn

= Ra 1

m2 -
1

n2 b for n 7 m	 4-2

where m and n are integers and R, the Rydberg constant, is the same for all series of 
spectral lines of the same element and varies only slightly, and in a regular way, from 
element to element. For hydrogen, the value of R is RH 5 1.096776  107 m21. For very 
heavy elements, R approaches the value of R 5 1.097373  107 m21. Such empirical 
expressions were successful in predicting other series of spectral lines, such as other 
hydrogen lines outside the visible region.

EXAMPLE 4-1	 Hydrogen Spectral Series ​ The hydrogen Balmer series recip-
rocal wavelengths are those given by Equation 4-2 with m 5 2 and n 5 3, 4, 5, . . . .
For example, the first line of the series, Ha, would be for m 5 2, n 5 3:

1

l23
= Ra 1

22 -
1

32 b =
5

36
 R = 1.523 * 106 m-1

or

l23 = 656.5 nm

Other series of hydrogen spectral lines were found for m 5 1 (by Lyman) and m 5 3 
(by Paschen). Compute the wavelengths of the first lines of the Lyman and Paschen 
series.

SOLUTION
For the Lyman series (m 5 1), the first line is for m 5 1, n 5 2.

 
1

l12
= Ra 1

12 -
1

22 b =
3

4
 R = 8.22 * 106 m-1

 l12 = 121.6 nm 1in the ultraviolet2
For the Paschen series (m 5 3), the first line is for m 5 3, n 5 4.

 
1

l34
= Ra 1

32 -
1

42 b =
7

144
 R = 5.332 * 105 m-1

 l34 = 1876 nm 1in the infrared2
All of the lines predicted by the Rydberg-Ritz formula for the Lyman and Paschen 
series are found experimentally. Note that no lines are predicted to lie beyond 
l = 1>R = 91.2 nm for the Lyman series and l = 9>R = 820.6 nm for the 
Paschen series and none are found by experiments.

4-2  Rutherford’s Nuclear Model 
Many attempts were made to construct a model of the atom that yielded the Balmer and 
Rydberg-Ritz formulas. It was known that an atom was about 10210 m in diameter (see 
Problem 4-6), that it contained electrons much lighter than the atom (see Section 3-1), 
and that it was electrically neutral. The most popular model was J. J. Thomson’s 
model, already quite successful in explaining chemical reactions. Thomson attempted 
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various models consisting of electrons embedded in a fluid that contained most of the 
mass of the atom and had enough positive charge to make the atom electrically neu-
tral (see Figure 4-3a). He then searched for configurations that were stable and had 
normal modes of vibration corresponding to the known frequencies of the spectral 
lines. One difficulty with all such models was that electrostatic forces alone cannot 
produce stable equilibrium. Thus, the charges were required to move and, if they 
stayed within the atom, to accelerate; however, the acceleration would result in con-
tinuous emission of radiation, which is not observed. Despite elaborate mathematical 
calculations, Thomson was unable to obtain from his model a set of frequencies of 
vibration that corresponded with the frequencies of observed spectra.

The Thomson model of the atom was replaced by one based on the results of a set 
of experiments conducted by Ernest Rutherford4 and his students H. W. Geiger and
E. Marsden. Rutherford was investigating radioactivity and had shown that the radia-
tions from uranium consisted of at least two types, which he labeled a and b. He 
showed, by an experiment similar to that of J. J. Thomson, that q>m for the a was half 
that of the proton. Suspecting that the a particles were doubly ionized helium, Ruther-
ford and his coworkers in a classic experiment let a radioactive substance a decay in a 
previously evacuated chamber; then, by spectroscopy, they detected the spectral lines 
of ordinary helium gas in the chamber. Realizing that this energetic, massive a particle 

Figure 4-3  Thomson’s model of the atom: (a) A sphere of positive charge with electrons 
embedded in it so that the net charge would normally be zero. The atom shown would have 
been phosphorus. (b) An a particle scattered by such an atom would have a scattering
angle u much smaller than 1.

(a) (b)

α θ

Hans Geiger and Ernest Rutherford in 
their Manchester laboratory. [Courtesy 
of University of Manchester.]
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would make an excellent probe for “feeling about” within the interiors of other atoms, 
Rutherford began a series of experiments with this purpose.

In these latter experiments, a narrow beam of a particles fell on a zinc sulfide 
screen, which emitted visible light scintillations when struck (Figure 4-4). The distri-
bution of scintillations on the screen was observed when various thin metal foils were 

Figure 4-4  Schematic diagram of the apparatus used by Geiger and Marsden to test 
Rutherford’s atomic model. (a) The beam of a particles is defined by the small hole D in 
the shield surrounding the radioactive source R of 214Bi (called RaC in Rutherford’s day). 
The a beam strikes an ultrathin gold foil F (about 2000 atoms thick), and the a particles are 
individually scattered through various angles. Those scattering at the angle u shown strike 
a small screen S coated with a scintillator, that is, a material that emits tiny flashes of light 
(scintillations) when struck by an a particle. The scintillations were viewed by the observer 
through a small microscope M. The scintillation screen–microscope combination could be 
rotated about the center of the foil. The region traversed by the a beam is evacuated. The 
experiment consisted of counting the number of scintillations as a function of u. (b) A diagram 
of the actual apparatus as it appeared in Geiger and Marsden’s paper describing the results. 
The letter key is the same as in (a). [Part (b) from H. Geiger and E. Marsden, Philosophical 
Review, 25, 507 (1913).]

(b)

Observer
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source R
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placed between it and the source. Most of the a particles were either undeflected or 
deflected through very small angles of the order of 1. Quite unexpectedly, however, a 
few a particles were deflected through angles as large as 90 or more. If the atom con-
sisted of a positively charged sphere of radius 10210 m, containing electrons as in the 
Thomson model, only a very small deflection could result from a single encounter 
between an a particle and an atom, even if the a particle penetrated into the atom. 
Indeed, calculations showed that the Thomson atomic model could not possibly 
account for the number of large-angle scatterings that Rutherford saw. The unexpected 
scatterings at large angles were described by Rutherford with these words:

It was quite the most incredible event that ever happened to me in my 
life. It was as incredible as if you fired a 15-inch shell at a piece of tissue 
paper and it came back and hit you.

Rutherford’s Scattering Theory and the Nuclear Atom
The question is, then, Why would one obtain the large-angle scattering that Rutherford 
saw? The trouble with the Thomson atom is that it is too “soft”—the maximum force 
experienced by the a is too weak to give a large deflection. If the positive charge of 
the atom is concentrated in a more compact region, however, a much larger force will 
occur at near impacts. Rutherford concluded that the large-angle scattering obtained 
experimentally could result only from a single encounter of the a particle with a mas-
sive charge confined to a volume much smaller than that of the whole atom. Assum-
ing this “nucleus” to be a point charge, he calculated the expected angular distribution 
for the scattered a particles. His predictions of the dependence of scattering probabil-
ity on angle, nuclear charge, and kinetic energy were completely verified in a series of 
experiments carried out in his laboratory by Geiger and Marsden.

We will not go through Rutherford’s derivation in detail but merely outline the 
assumptions and conclusions. Figure 4-5 shows the geometry of an a particle being 
scattered by a nucleus, which we take to be a point charge Q at the origin. Initially, 
the a particle approaches with speed v along a line a distance b from a parallel line 

C O A

v

v

r

F

φ0

φ0 φ

mα

mα

b

b

θ

mα
z�

B

Figure 4-5  Rutherford scattering geometry. The nucleus is assumed to be a point charge Q 
at the origin O. At any distance r the a particle experiences a repulsive force kqa Q>r 2. The a 
particle travels along a hyperbolic path that is initially parallel to line COA a distance b from it 
and finally parallel to line OB, which makes an angle u with OA. The scattering angle u can be 
related to the impact parameter b by classical mechanics.
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COA through the origin. The force on the a particle is 
F = kqa Q>r 2, given by Coulomb’s law (Figure 4-6). After scat-
tering, when the a particle is again far from the nucleus, it is mov-
ing with the same speed v parallel to the line OB, which makes an 
angle u with line COA. (Since the potential energy is again zero, 
the final speed must be equal to the initial speed by conservation of 
energy, assuming, as Rutherford did, that the massive nucleus 
remains fixed during the scattering.) The distance b is called the 
impact parameter and the angle u, the scattering angle. The path of 
the a particle can be shown to be a hyperbola, and the scattering 
angle u can be related to the impact parameter b from the laws of 
classical mechanics. The result is

	 b =
kqa Q

ma v2  cot 
u

2
	 4-3

Of course, it is not possible to choose or know the impact 
parameter for any particular a particle, but when one recalls the 
values of the cotangent between 0 and 90, all such particles with 
impact parameters less than or equal to a particular b will be scat-
tered through an angle u greater than or equal to that given by 
Equation 4-3; that is, the smaller the impact parameter, the larger 
the scattering angle (Figure 4-7). Let the intensity of the incident a 
particle beam be I0 particles per second per unit area. The number 

per second scattered by one nucleus through angles greater than u equals the number 
per second that have impact parameters less than b(u). This number is pb2I0.

The quantity pb2, which has the dimensions of an area, is called the cross section s 
for scattering through angles greater than u. The cross section s is thus defined as the 

The particle-scattering 
technique devised by 
Rutherford to “look” at 
atoms now has wide 
application throughout 
physics. Scattering of 
high-energy electrons 
from protons and 
neutrons provided our 
first experimental hint 
of the existence of 
quarks. Rutherford back-
scattering spectroscopy 
is widely used as a highly 
sensitive surface analysis 
technique.

Figure 4-6  Force on a point charge versus 
distance r from the center of a uniformly charged 
sphere of radius R. Outside the sphere the force is 
proportional to Q>r 2, where Q is the total charge. 
Inside the sphere, the force is proportional to 
q9>r 2 = Qr>R3, where q9 = Q1r>R23 is the 
charge within a sphere of radius r. The maximum 
force occurs at r 5 R.

rR

R

r

r

F

F ∝ Q /r 2

Figure 4-7  Two a particles with equal kinetic energies approach the positive charge
Q 5 +Ze with impact parameters b1 and b2, where b1 , b2. According to Equation 4-3, the 
angle u1 through which a1 is scattered will be larger than u2. In general, all a particles with 
impact parameters smaller than a particular value of b will have scattering angles larger than 
the corresponding value of u from Equation 4-3. The area pb2 is called the cross section for 
scattering with angles greater than u.

b2

b1

+Ze

Area πb1
2

Area πb2
2

α2

α1

θ1
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number scattered per nucleus per unit time divided by the incident 
intensity. The total number of particles scattered per second is 
obtained by multiplying pb2I0 by the number of nuclei in the scat-
tering foil (this assumes the foil to be thin enough to make the 
chance of overlap negligible). Let n be the number of nuclei per 
unit volume:

	 n =
r1g>cm32NA1atoms>mol2

M1g>mol2 =
rNA

M
 
atoms

cm3 � 4-4

For a foil of thickness t, the total number of nuclei “seen” by the beam 
is nAt, where A is the area of the beam (Figure 4-8). The total number 
scattered per second through angles greater than u is thus pb2I0ntA. If 
we divide this by the number of a particles incident per second I0A, 
we get the fraction f scattered through angles greater than u:

	 f = pb2
 nt� 4-5

EXAMPLE 4-2	 Scattered Fraction f ​ Calculate the fraction of an incident beam 
of a particles of kinetic energy 5 MeV that Geiger and Marsden expected to see for 
u  90 from a gold foil (Z 5 79) 1026 m thick.

SOLUTION

	 1.	 The fraction f is 
related to the impact 
parameter b, the 
number density of 
nuclei n, and the 
thickness t by 
Equation 4-5:

f 5 pb2nt

	 2.	 The particle density 
n is given by 
Equation 4-4:

 n =
rNA

M
=
119.3 g>cm32 16.02 * 1023 atoms>mol2

197 gm>mol

 = 5.90 * 1022 atoms>cm3 = 5.90 * 1028 atoms>m3

	 3.	 The impact param-
eter b is related to
u by Equation 4-3:

 b =
kqa Q

ma v2  cot
u

2
=
122 1792ke2

2Ka

 cot 
90

2

 =
122 1792 11.44 eV # nm2
122 15 * 106 eV2 = 2.28 * 10-5 nm

 = 2.28 * 10-14 m

	 4.	 Substituting these 
into Equation 4-5 
yields f:

 f = p12.28 * 10-14 m22a5.9 * 1028 
atoms

m3 b 110-6 m2
= 9.6 * 10-5  10-4

Remarks:  This outcome is in good agreement with Geiger and Marsden’s mea-
surement of about 1 in 8000 in their first trial. Thus, the nuclear model is in good 
agreement with their results.

Figure 4-8  The total number of nuclei of foil 
atoms in the area covered by the beam is nAt, 
where n is the number of foil atoms per unit 
volume, A is the area of the beam, and t is the 
thickness of the foil.

Number of foil nuclei
in beam is nAt

t

Area A of beam
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162	 Chapter 4  The Nuclear Atom

On the strength of the good agreement between the nuclear atomic model and the 
measured fraction of the incident a particles scattered at angles u  90, Rutherford 
derived an expression, based on the nuclear model, for the number of a particles DN 
that would be scattered at any angle u. That number, which also depends on the 
atomic number Z and thickness t of the scattering foil, on the intensity I0 of the inci-
dent a particles and their kinetic energy Ek, and on the geometry of the detector (Asc is 
the detector area and r is the foil-detector distance), is given by

	 DN = a I0 Asc nt

r 2 b a kZe2

2Ek

b
2 1

sin4 
u

2

	 4-6

Within the uncertainties of their experiments, which involved visually observing 
several hundred thousand a particles, Geiger and Marsden verified every one of the 
predictions of Rutherford’s formula over four orders of magnitude of DN. The 
excellent agreement of their data with Equation 4-6 firmly established the nuclear 
atomic model as the correct basis for further studies of atomic and nuclear phenomena 
(Figure 4-9).

More
�Rutherford’s derivation of Equation 4-6 was based on his atomic 
model and the well-known Coulomb scattering process of charged 
particles. Rutherford’s Prediction and Geiger and Marsden’s Results 
are described on the home page: www.whfreeman.com/tiplermodern 
physics6e. See also Equations 4-7 through 4-10 here, as well as Figures 
4-10 through 4-12.

More

Figure 4-9  (a) Geiger and Marsden’s data for a scattering from thin gold and silver foils. The graph is a log-log plot to show 
the data over several orders of magnitude. Note that scattering angle increases downward along the vertical axis. (b) Geiger and 
Marsden also measured the dependence of DN on t predicted by Equation 4-6 for foils made from a wide range of elements, this 
being an equally critical test. Results for four of the elements used are shown.
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The Size of the Nucleus
The fact that the force law is shown to be correct, confirming Rutherford’s model, does 
not imply that the nucleus is a mathematical point charge, however. The force law 
would be the same even if the nucleus were a ball of charge of some radius R0, as long 
as the a particle did not penetrate the ball (see Figures 4-6 and 4-13). For a given scat-
tering angle, the distance of closest approach of the a particle to the nucleus can be cal-
culated from the geometry of the collision. For the largest angle, near 180, the collision 
is nearly “head-on.” The corresponding distance of closest approach rd is thus an exper-
imental upper limit on the size of the target nucleus. We can calculate the distance of 
closest approach for a head-on collision rd by noting that conservation of energy requires 
the potential energy at this distance to equal the original kinetic energy:

1V + Ek2large r = 1V + Ek2rd

a0 +
1

2
 ma v2b

large r
= a kqa Q

rd
+ 0b

rd

1

2
 ma v2 =

kqa Q

rd

or

	 rd =
kqa Q

1

2
 ma v2

	 4-11

For the case of 7.7 MeV a particles, the distance of closest approach for a head-on 
collision is

rd =
122 1792 11.44 eV # nm2

7.7 * 106 eV
= 3 * 10-5 nm = 3 * 10-14 m

For other collisions, the distance of closest approach is somewhat greater, but for a par-
ticles scattered at large angles it is of the same order of magnitude. The excellent agree-
ment of Geiger and Marsden’s data at large angles with the prediction of Equation 4-6 
thus indicates that the radius of the gold nucleus is no larger than about 3  10214 m. If 
higher-energy particles could be used, the distance of closest approach would be 
smaller, and as the energy of the a particles increased, we might expect that eventually 
the particles would penetrate the nucleus. Since, in that event, the 
force law is no longer F 5 kqa Q>r 2, the data would not agree with 
the point-nucleus calculation. Rutherford did not have higher-energy 
a particles available, but he could reduce the distance of closest 
approach by using targets of lower atomic numbers.9 For the case of 
aluminum, with Z 5 13, the most energetic a particles that he had 
available (7.7 MeV from 214Bi) scattered at large angles did not fol-
low the predictions of Equation 4-6. However, when their kinetic 
energy was reduced by passing the beam through thin mica sheets of 
various thicknesses, the data again followed the prediction of Equa-
tion 4-6. Rutherford’s data are shown in Figure 4-14. The value of rd 
(calculated from Equation 4-11) at which the data begin to deviate 
from the prediction can be thought of as the surface of the nucleus. 
From these data, Rutherford estimated the radius of the aluminum 
nucleus to be about 1.0  10214 m. (The radius of the Al nucleus is 
actually about 3.6  10215 m; see Chapter 11.)

Figure 4-13  (a) If the a 
particle does not penetrate 
the nuclear charge, the 
nucleus can be considered a 
point charge located at the 
center. (b) If the particle 
has enough energy to 
penetrate the nucleus, the 
Rutherford scattering law 
does not hold but would 
require modification to 
account for that portion of the 
nuclear charge “behind” the 
penetrating a particle.

(a)

(b)

α

α

Figure 4-14  Data from Rutherford’s group 
showing observed a scattering at a large fixed 
angle versus values of rd computed from
Equation 4-11 for various kinetic energies.
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164	 Chapter 4  The Nuclear Atom

A unit of length convenient for describing nuclear sizes is the fermi, or femtom-
eter (fm), defined by 1 fm 5 10215 m. As we will see in Chapter 11, the nuclear radius 
varies from about 1 to 10 fm from the lightest to the heaviest atoms.

EXAMPLE 4-3	 Rutherford Scattering at Angle u ​ In a particular experiment, 
a particles from 226Ra are scattered at u 5 45 from a silver foil and 450 particles 
are counted each minute at the scintillation detector. If everything is kept the same 
except that the detector is moved to observe particles scattered at 90, how many 
will be counted per minute?

SOLUTION
Using Equation 4-6, we have that DN 5 450 when u 5 45, but we don’t have any 
of the other parameters available. Letting all of the quantities in the parenthesis 
equal a constant C, we have that

DN = 450 = C sin-4 
45

2

or

C = 450 sin4 a 45

2
b

When the detector is moved to u 5 90, the value of C is unchanged, so

 DN = C sin-4 a 90

2
b = 450 sin4 a 45

2
b  sin-4 a 90

2
b

 = 38.6  39 particles>min

EXAMPLE 4-4	 Alpha Scattering ​ A beam of a particles with Ek 5 6.0 MeV 
impinges on a silver foil 1.0 mm thick. The beam current is 1.0 nA. How many a 
particles will be counted by a small scintillation detector of area equal to 5 mm2 
located 2.0 cm from the foil at an angle of 75? (For silver Z 5 47, r 5 10.5 gm/cm3, 
and M 5 108.)

SOLUTION

	 1.	 The number counted 
DN is given by 
Equation 4-6:

DN = a I0 Ascnt

r 2 b a kZe2

2Ek

b
2 1

sin4 
u

2

	 2.	 Since each a
particle has
qa 5 2e, I0 is

 I0 = 11.0 * 10-9 A2 12 * 1.60 * 10-19 C>a2-1

 = 3.12 * 109 a>s

	 3.	 The kinetic energy 
of each a is

 Ek = 16.0 MeV2 11.60 * 10-13 J>MeV2
 = 9.60 * 10-13 J

	 4.	 For silver n is
given by

 n = rNA>M

 =
110.5 g>cm32 16.02 * 1023 atoms>mol2

108 g>mol
 = 5.85 * 1022 atoms>cm3 = 5.85 * 1028 atoms>m3
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	 5.	 Substituting the given values and computed results into Equation 4-6 gives DN:

 DN =
13.12 * 109 a>s2 15 * 10-6 m22 15.85 * 1028 atoms>m32 110-6 m2

12 * 10-222 sin4 175>22

  * c 19 * 1092 1472 11.60 * 10-1922

122 19.60 * 10-132 d
2

 = 528 a>s

EXAMPLE 4-5	 Radius of the Au Nucleus ​ The radius of the gold (Au) nucleus 
has been measured by high-energy electron scattering as 6.6 fm. What kinetic 
energy a particles would Rutherford have needed so that for 180 scattering, the a 
particle would just reach the nuclear surface before reversing direction?

SOLUTION
From Equation 4-11, we have

 
1

2
 mv2 =

kqa Q

rd
=
19 * 1092 122 1792 11.60 * 10-1922

6.6 * 10-15

 = 5.52 * 10-12 J = 34.5 MeV

Alpha particles of such energy are not emitted by naturally radioactive materials 
and hence were not accessible to Rutherford. Thus, he could not have performed an 
experiment for Au equivalent to that for Al illustrated by Figure 4-14.

Questions

1.	 Why can’t the impact parameter for a particular a particle be chosen?

2.	 Why is it necessary to use a very thin target foil?

3.	 Why could Rutherford place a lower limit on the radius of the Al nucleus but not 
on the Au nucleus?

4.	 How could you use the data in Figure 4-9a to determine the charge on a silver 
nucleus relative to that on a gold nucleus?

5.	 How would you expect the data (not the curve) to change in Figure 4-9 if the foil 
were so thick that an appreciable number of gold nuclei were hidden from the 
beam by being in the “shadow” of the other gold nuclei?

4-3  The Bohr Model of the Hydrogen Atom 
In 1913, the Danish physicist Niels H. D. Bohr10 proposed a model of the hydrogen 
atom that combined the work of Planck, Einstein, and Rutherford and was remarkably 
successful in predicting the observed spectrum of hydrogen. The Rutherford model 
assigned charge and mass to the nucleus but was silent regarding the distribution of 
the charge and mass of the electrons. Bohr, who had been working in Rutherford’s 
laboratory during the experiments of Geiger and Marsden, made the assumption that 
the electron in the hydrogen atom moved in an orbit about the positive nucleus, bound 
by the electrostatic attraction of the nucleus. Classical mechanics allows circular or 
elliptical orbits in this system, just as in the case of the planets orbiting the Sun. For 
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166	 Chapter 4  The Nuclear Atom

simplicity, Bohr chose to consider circular orbits. Such a 
model is mechanically stable because the Coulomb poten-
tial V = -kZe2>r provides the centripetal force

	 F =
kZe2

r 2 =
mv2

r
	 4-12

necessary for the electron to move in a circle of radius r at 
speed v, but it is electrically unstable because the electron 
is always accelerating toward the center of the circle. The 
laws of electrodynamics predict that such an accelerating 
charge will radiate light of frequency f equal to that of the 
periodic motion, which in this case is the frequency of 
revolution. Thus, classically,

f =
v

2pr
= a kZe2

rm
b

1>2 1

2pr
= a kZe2

4p2
 m
b

1>2 1

r 3>2 
1

r 3>2

4-13

The total energy of the electron is the sum of the kinetic and the potential energies:

E =
1

2
 mv2 + a -  

kZe2

r
b

From Equation 4-12, we see that 1
2mv2 = kZe2>2r (a result that holds for circular 

motion in any inverse-square force field), so the total energy can be written as

	 E =
kZe2

2r
-

kZe2

r
= -  

kZe2

2r
 -  

1
r

	 4-14

Thus, classical physics predicts that, as energy is lost to radiation, the electron’s orbit 
will become smaller and smaller while the frequency of the emitted radiation will 
become higher and higher, further increasing the rate at which energy is lost and end-
ing when the electron reaches the nucleus (see Figure 4-15a). The time required for 
the electron to spiral into the nucleus can be calculated from classical mechanics and 
electrodynamics; it turns out to be less than a microsecond. Thus, at first sight, this 
model predicts that the atom will radiate a continuous spectrum (since the frequency 

of revolution changes continuously as the electron spirals in) and 
will collapse after a very short time, a result that fortunately does 
not occur. Unless excited by some external means, atoms do not 
radiate at all, and when excited atoms do radiate, a line spectrum is 
emitted, not a continuous one.

Bohr “solved” these formidable difficulties with two decidedly 
nonclassical postulates. His first postulate was that electrons could 
move in certain orbits without radiating. He called these orbits sta-
tionary states. His second postulate was to assume that the atom 
radiates when the electron makes a transition from one stationary 
state to another (Figure 4-15b) and that the frequency f of the emit-
ted radiation is not the frequency of motion in either stable orbit but 
is related to the energies of the orbits by Planck’s theory

	 hf = Ei - Ef 	 4-15

where h is Planck’s constant and Ei and Ef are the energies of the 
initial and final states. The second assumption, which is equivalent 
to that of energy conservation with the emission of a photon, is 

Niels Bohr explains a point 
in front of the blackboard 
(1956). [American Institute of 
Physics, Niels Bohr Library, 
Margrethe Bohr Collection.]

Figure 4-15  (a) In the classical orbital model, 
the electron orbits about the nucleus and spirals 
into the center because of the energy radiated. 
(b) In the Bohr model, the electron orbits without 
radiating until it jumps to another allowed radius of 
lower energy, at which time radiation is emitted.

(a) (b)
γ

γ

γ

γ

γ
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crucial because it deviated from classical theory, which requires the frequency of 
radiation to be that of the motion of the charged particle. Equation 4-15 is referred to 
as the Bohr frequency condition.

In order to determine the energies of the allowed, nonradiating orbits, Bohr made 
a third assumption, now known as the correspondence principle, which had profound 
implications:

In the limit of large orbits and large energies, quantum calculations must 
agree with classical calculations.

Thus, the correspondence principle says that, whatever modifications of classical physics 
are made to describe matter at the submicroscopic level, when the results are extended 
to the macroscopic world, they must agree with those from the classical laws of phys-
ics that have been so abundantly verified in the everyday world. While Bohr’s detailed 
model of the hydrogen atom has been supplanted by modern quantum theory, which 
we will discuss in later chapters, his frequency condition (Equation 4-15) and the cor-
respondence principle remain as essential features of the new theory.

In his first paper,11 in 1913, Bohr pointed out that his results implied that the angular 
momentum of the electron in the hydrogen atom can take on only values that are integral 
multiples of Planck’s constant divided by 2p, in agreement with a discovery made a year 
earlier by J. W. Nicholson. That is, angular momentum is quantized; it can assume only 
the values nh>2p, where n is an integer. Rather than follow the intricacies of Bohr’s 
derivation, we will use the fundamental conclusion of angular momentum quantization 
to find his expression for the observed spectra. The development that follows applies not 
only to hydrogen, but to any atom of nuclear charge +Ze with a single orbital electron—
for example, singly ionized helium He+ or doubly ionized lithium Li2+.

If the nuclear charge is +Ze and the electron charge 2e, we have noted (Equa-
tion 4-12) that the centripetal force necessary to move the electron in a circular orbit 
is provided by the Coulomb force kZe2>r 2. Solving Equation 4-12 for the speed of 
the orbiting electron yields

	 v = a kZe2

mr
b

1>2
� 4-16

Bohr’s quantization of the angular momentum L is

	 L = mvr =
nh

2p
= nU  n = 1, 2, 3,c 	 4-17

where the integer n is called a quantum number and U = h>2p. (The constant U, read 
“h-bar,” is often more convenient to use than h itself, just as the angular frequency 
v 5 2p f is often more convenient than the frequency f.) Combining Equations 4-16 
and 4-17 allows us to write for the circular orbits

r =
nU
mv

=
nU
m

 a rm

kZe2 b
1>2

Squaring this relation gives

r 2 =
n2U2

m2  a rm

kZe2 b

and canceling common quantities yields

	 rn =
n2U2

mkZe2 =
n2

 a0

Z
� 4-18
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where

	 a0 =
U2

mke2 = 0.529 A
= 0.0529 nm� 4-19

is called the Bohr radius. The Å, a unit commonly used in the early days of spectros-
copy, equals 10210 m or 1021 nm. Thus, we find that the stationary orbits of Bohr’s 
first postulate have quantized radii, denoted in Equation 4-18 by the subscript on rn. 
Notice that the Bohr radius a0 for hydrogen (Z 5 1) corresponds to the orbit radius 
with n 5 1, the smallest Bohr orbit possible for the electron in a hydrogen atom. 
Since rn  Z  -1, the Bohr orbits for single-electron atoms with Z . 1 are closer to the 
nucleus than the corresponding ones for hydrogen.

The total energy of the electron (Equation 4-14) then becomes, on substitution of 
rn from Equation 4-18,

 En = -  
kZe2

2rn

= -  
kZe2

2
amkZe2

n2U2 b

En =  -
mk2

 Z2
 e4

2U2
 n2 = -E0

Z2

n2  n = 1, 2, 3,c � 4-20

where E0 = mk2
 e4>2U2. Thus, the energy of the electron is also quantized; that is, the 

stationary states correspond to specific values of the total energy. This means that 
energies Ei and Ef that appear in the frequency condition of Bohr’s second postulate 
must be from the allowed set En and Equation 4-15 becomes

hf = Eni
- Enf

= -E0
Z2

n2
i

- a -E0
Z2

n2
f

b

or

	 f =
E0Z

2

h
a 1

n2
f

-
1

n2
i

b 	 4-21

which can be written in the form of the Rydberg-Ritz equation (Equation 4-2) by sub-
stituting f = c>l and dividing by c to obtain

1

l
=

E0 Z2

hc
a 1

n2
f

-
1

n2
i

b

or

	
1

l
= Z2

 Ra 1

n2
f

-
1

n2
i

b � 4-22

where

	 R =
E0

hc
=

mk2
 e4

4pcU3 � 4-23

is Bohr’s prediction for the value of the Rydberg constant.
Using the values of m, e, c, and U known in 1913, Bohr calculated R and found 

his result to agree (within the limits of uncertainties of the constants) with the value 
obtained from spectroscopy, 1.097  107 m21. Bohr noted in his original paper that 
this equation might be valuable in determining the best values for the constants e, m, 
and U because of the extreme precision possible in measuring R. This has indeed 
turned out to be the case.

TIPLER_04_153-192hr.indd   168 8/22/11   11:36 AM



	 4-3  The Bohr Model of the Hydrogen Atom	 169

The possible values of the energy of the hydrogen atom predicted by Bohr’s 
model are given by Equation 4-20 with Z 5 1:

	 En = -  
mk2

 e4

2U2
 n2 = -  

E0

n2 	 4-24

where

E0 =
mk2

 e4

2U2 = 2.18 * 10-18 J = 13.6 eV

is the magnitude of En with n 5 1. E1(52E0) is called the ground state. It is conve-
nient to plot these allowed energies of the stationary states as in Figure 4-16. Such a 

Figure 4-16  (a) Energy-level diagram for hydrogen showing the seven lowest stationary states and the four lowest energy 
transitions each for the Lyman, Balmer, and Paschen series. There are an infinite number of levels. Their energies are given by 
En = -13.6>n2 eV, where n is an integer. The dashed line shown for each series is the series limit, corresponding to the energy 
that would be radiated by an electron at rest far from the nucleus (n S ) in a transition to the state with n 5 nf  for that series. 
The horizontal spacing between the transitions shown for each series is proportional to the wavelength spacing between the lines 
of the spectrum. (b) The spectral lines corresponding to the transitions shown for the three series. Notice the regularities within 
each series, particularly the short-wavelength limit and the successively smaller separation between adjacent lines as the limit is 
approached. The wavelength scale in the diagram is not linear.
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plot is called an energy-level diagram. Three series of transitions between the station-
ary states are shown in this diagram by vertical arrows drawn between the levels. The 
frequency of light emitted in each of these transitions is the energy difference divided 
by h according to Bohr’s frequency condition, Equation 4-15. The energy required to 
remove the electron from the atom, 13.6 eV, is called the ionization energy, or bind-
ing energy, of the electron.

At the time Bohr’s paper was published, there were two spectral series known for 
hydrogen: the Balmer series, corresponding to nf 5 2, ni 5 3, 4, 5, . . . , and a series 
named after its discoverer, Paschen (1908), corresponding to nf 5 3, ni 5 4, 5, 6, . . . . 
Equation 4-22 indicated that other series should exist for different values of nf. In 
1916 Lyman found the series corresponding to nf 5 1, and in 1922 and 1924 Brackett 
and Pfund, respectively, found series corresponding to nf 5 4 and nf 5 5. As can be 
easily determined by computing the wavelengths for these series, only the Balmer 
series lies primarily in the visible portion of the electromagnetic spectrum. The 
Lyman series is in the ultraviolet, the others in the infrared.

EXAMPLE 4-6	 Wavelength of the Hb Line ​ Compute the wavelength of the 
Hb spectral line, that is, the second line of the Balmer series predicted by Bohr’s 
model. The Hb line is emitted in the transition from ni 5 4 to nf 5 2.

SOLUTION
	 1.	 Method 1: The wavelength is given by Equation 4-22 with Z 5 1:

1

l
= Ra 1

n2
f

-
1

n2
i

b

	 2.	 Substituting R 5 1.097  107 m21 and the values of ni and nf :

1

l
= 11.097 * 107 m-12 a 1

22 -
1

42 b

	 or

l = 4.86 * 10-7 = 486 nm

	 3.	 Method 2: The wavelength may also be computed from Equation 4-15:

hf = hc>l = Ei - Ef

	 or

1

l
=

1

hc
1Ei - Ef2

	 4.	 The values of Ei and Ef are given by Equation 4-24:

 Ei = - a 13.6 eV

n2
i

b = - a 13.6 eV

42 b = -0.85 eV

 Ef = - a 13.6 eV

n2
f

b = - a 13.6 eV

22 b = -3.4 eV

	 5.	 Substituting these into Equation 4-15 yields

 
1

l
=
3-0.85 eV - 1-3.4 eV2 4 11.60 * 10-19 J>eV2

16.63 * 10-34 J # s2 13.00 * 108 m>s2
 = 2.051 * 106 m-1

A bit different sort of 
application, the Bohr-
Rutherford model of 
the nuclear atom and 
electron orbits is the 
picture that, for millions 
of people, provides their 
visual link to the world of 
the atom and subatomic 
phenomena.
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	 or

l = 4.87 * 10-7 m = 487 nm

Remarks:  The difference in the two results is due to rounding of the Rydberg con-
stant to three decimal places.

Reduced Mass Correction
The assumption by Bohr that the nucleus is fixed is equivalent to the assumption that 
it has infinite mass. In fact, the Rydberg constant in Equation 4-23 is normally written 
as R, as we will do from now on. If the nucleus has mass M, its kinetic energy will be 
1
2 Mv2 = p2>2M, where p 5 Mv is the momentum. If we assume that the total momen-
tum of the atom is zero, conservation of momentum requires that the momenta of the 
nucleus and electron be equal in magnitude. The total kinetic energy is then

Ek =
p2

2M
+

p2

2m
=

M + m

2mM
 p2 =

p2

2m

where

	 m =
mM

m + M
=

m

1 + m>M 	 4-25

This is slightly different from the kinetic energy of the electron because m, called 
the reduced mass, is slightly different from the electron mass. The results derived 
earlier for a nucleus of infinite mass can be applied directly to the case of a nucleus 
of mass M if we replace the electron mass in the equations by reduced mass m, 
defined by Equation 4-25. (The validity of this procedure is proven in most inter-
mediate and advanced mechanics books.) The Rydberg constant (Equation 4-23) is 
then written

	 R =
mk2

 e4

4pcU3 =
mk2

 e4

4pcU3 a
1

1 + m>M b = Ra 1

1 + m>M b 	 4-26

This correction amounts to only 1 part in 2000 for the case of hydrogen and to even 
less for other nuclei; however, the predicted variation in the Rydberg constant from 
atom to atom is precisely that which is observed. For example, the spectrum of a sin-
gly ionized helium atom, which has one remaining electron, is just that predicted by 
Equations 4-22 and 4-26 with Z 5 2 and the proper helium mass. The current value 
for the Rydberg constant R from precision spectroscopic measurements12 is

	 R = 1.0973732 * 107 m-1 = 1.0973732 * 10-2 nm-1	 4-27

Urey13 used the reduced mass correction to the spectral lines of the Balmer series to 
discover (in 1931) a second form of hydrogen whose atoms had twice the mass of 
ordinary hydrogen. The heavy form was called deuterium. The two forms, atoms with 
the same Z but different masses, are called isotopes.

EXAMPLE 4-7	 Rydberg Constants for H and He+ ​ Compute the Rydberg con-
stants for H and He+ applying the reduced mass correction (m 5 9.1094  10231 kg, 
mp 5 1.6726  10227 kg, ma 5 6.6447  10227 kg).

CCR

29
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SOLUTION

For hydrogen:

 RH = Ra 1

1 + m>MH
b = Ra 1

1 + 9.1094 * 10-31>1.6726 * 10-27 b

 = 1.09677 * 107 m-1

For helium: Since M in the reduced mass correction is the mass of the nucleus, for 
this calculation we use M equal to the a particle mass:

 RHe = Ra 1

1 + m>MH
b = Ra 1

1 + 9.1094 * 10-31>6.6447 * 10-27 b

= 1.09722 * 107 m-1

Thus, the two Rydberg constants differ by about 0.04 percent.

Correspondence Principle
According to the correspondence principle, which applies also to modern quantum 
mechanics, when the energy levels are closely spaced, quantization should have little 
effect; classical and quantum calculations should give the same results. From the 
energy-level diagram of Figure 4-16, we see that the energy levels are close together 
when the quantum number n is large. This leads us to a slightly different statement of 
Bohr’s correspondence principle: In the region of very large quantum numbers (n in 
this case) quantum calculation and classical calculation must yield the same results. 
To see that the Bohr model of the hydrogen atom does indeed obey the correspon-
dence principle, let us compare the frequency of a transition between level ni 5 n and 
level nf 5 n 2 1 for large n with the classical frequency, which is the frequency of 
revolution of the electron. From Equation 4-22 we have

f =
c

l
=

Z2
 mk2

 e4

4pU3  c 1

1n - 122 -
1

n2 d =
Z2

 mk2
 e4

4pU3  
2n - 1

n21n - 122

For large n we can neglect the ones subtracted from n and 2n to obtain

	 f =
Z2

 mk2
 e4

4pU3  
2

n3 =
Z2

 mk2
 e4

2pU3
 n3 	 4-28

The classical frequency of revolution of the electron is (see Equation 4-13)

frev =
v

2pr

Using v = nU>mr from Equation 4-17 and r = n2U2>mkZe2 from Equation 4-18, 
we obtain

 frev =
1nU>mr2

2pr
=

nU

2pmr 2 =
nU

2pm1n2U2>mkZe222

 frev =
m2

 k2
 Z2

 e4
 nU

2pmn4U4 =
mk2

 Z2
 e4

2pU3
 n3 	 4-29

which is the same as Equation 4-28.
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Fine-Structure Constant
The demonstration of the correspondence principle for large n in the preceding para-
graph was for Dn 5 ni 2 nf 5 1; however, we have seen (see Figure 4-16) that transi-
tions occur in the hydrogen atom for Dn  1 when n is small, and such transitions 
should occur for large n, too. If we allow Dn 5 2, 3, . . . for large values of n, then the 
frequencies of the emitted radiation would be, according to Bohr’s model, integer 
multiples of the frequency given in Equation 4-28. In that event, Equations 4-28 and 4-29 
would not agree. This disagreement can be avoided by allowing elliptical orbits.14 A 
result from Newtonian mechanics, familiar from planetary motion, is that in an 
inverse-square force field, the energy of an orbiting particle depends only on the 
major axis of the ellipse and not on its eccentricity. There is consequently no change 
in the energy at all unless the force differs from inverse square or unless Newtonian 
mechanics is modified. A. Sommerfeld considered the effect of special relativity on 
the mass of the electron in the Bohr model in an effort to explain the observed fine 
structure of the hydrogen spectral lines.15 Since the relativistic corrections should be 
of the order of v2>c2 (see Chapter 2), it is likely that a highly eccentric orbit would 
have a larger correction because v becomes greater as the electron moves nearer the 
nucleus. The Sommerfeld calculations are quite complicated, but we can estimate the 
order of magnitude of the effect of special relativity by calculating v>c for the first 
Bohr orbit in hydrogen. For n 5 1, we have from Equation 4-17 that mvr1 = U. Then, 
using r1 = a0 = U2>mke2, we have

v =
U

mr1
=

U

m1U2>mke22 =
ke2

U

and

	
v
c
=

ke2

Uc
=

1.44 eV # nm

197.3 eV # nm


1

137
= 	 4-30

where we have used another convenient combination

	 Uc =
1.24 * 103 eV # nm

2
= 197.3 eV # nm	 4-31

The dimensionless quantity ke2>Uc =  is called the fine-structure constant because 
of its first appearance in Sommerfeld’s theory, but, as we will see, it has much more 
fundamental importance.

Though v2>c2 is very small, an effect of this magnitude is observable. In Som-
merfeld’s theory, the fine structure of the hydrogen spectrum is explained in the fol-
lowing way. For each allowed circular orbit of radius rn and energy En, a set of n 
elliptical orbits is possible of equal major axes but different eccentricities. Since the 
velocity of a particle in an elliptical orbit depends on the eccentricity, so then will the 
mass and momentum, and therefore the different ellipses for a given n will have 
slightly different energies. Thus, the energy radiated when the electron changes orbit 
depends slightly on the eccentricities of the initial and final orbits as well as on their 
major axes. The splitting of the energy levels for a given n is called fine-structure 
splitting, and its value turns out to be of the order of v2>c2 = 2, just as Sommerfeld 
predicted. However, the agreement of Sommerfeld’s prediction with the observed fine-
structure splitting was quite accidental and led to considerable confusion in the early 
days of quantum theory. Although he had used the relativistic mass and momentum, 
he computed the energy using classical mechanics, leading to a correction much 

CCR

13
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174	 Chapter 4  The Nuclear Atom

larger than that actually due only to relativistic effects. As we will see in Chapter 7, 
fine structure is associated with a completely nonclassical property of the electron 
called spin.

A lasting contribution of Sommerfeld’s effort was the introduction of the fine-
structure constant a = ke2>Uc  1>137. With it we can write the Bohr radius a0 and 
the quantized energies of the Bohr model in a particularly elegant form. Equations 4-24 
and 4-19 for hydrogen become

 En = -  
mk2

 e4

2U2
 n2  

c2

c2 = -  
mc2

2
 a 2 

1

n2	 4-32

 a0 =
U2

mke2 
c
c
=

U

mc
 
1
a

	 4-33

Since a is a dimensionless number formed of universal constants, all observers will 
measure the same value for it and find that energies and dimensions of atomic sys-
tems are proportional to a2 and 1/a, respectively. We will return to the implications of 
this intriguing fact later in the book.

EXPLORING
Giant Atoms

Giant atoms called Rydberg atoms, long understood to be a theoretical possibility and 
first detected in interstellar space in 1965, are now being produced and studied in the 
laboratory. Rydberg atoms are huge! They are atoms that have one of the valence 
electrons in a state with a very large quantum number n (see Figure 4-17). Notice in 
Equation 4-18 that the radius of the electron orbit rn = n2

 a0>Z  n2 and n can be any 
positive integer, so the diameter of a hydrogen atom (or any other atom, for that matter) 
could be very large, a millimeter or even a meter! What keeps such giant atoms from 
being common is that the energy difference between adjacent allowed energy states is 
extremely small when n is large and the allowed states are very near the E 5 0 level 
where ionization occurs, because En  1>n2. For example, if n 5 1000, the diameter 
of a hydrogen atom would be r1000 5 0.1 mm, but both E1000 and the difference in 
energy DE 5 E1001 2 E1000 are about 1025 eV! This energy is far below the average 
energy of thermal motion at ordinary temperatures (about 0.025 eV), so random colli-
sions would quickly ionize an atom whose electron happened to get excited to a level 
with n equal to 20 or so with r still only about 1028 m.

The advent of precisely tunable dye lasers in the 1970s made it possible to nudge 
electrons carefully into orbits with larger and larger n values. The largest Rydberg 
atoms made so far, typically using sodium, potassium, or other alkali metal atoms, are 

Figure 4-17  A lithium (Z 5 3) Rydberg atom. The outer electron occupies a small 
volume and follows a nearly classical orbit with a large value of n. The two inner electrons 
are not shown.

NucleusElectron
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10,000 times the diameter of ordinary atoms, about 20 mm across or the size of a red blood 
cell or a fine grain of sand, and exist for several milliseconds inside vacuum chambers. 
For hydrogen, this corresponds to quantum number n  600. An electron moving so 
far from the nucleus is bound by a minuscule force. It also moves rather slowly, since 
the classical period of T = 1>f  n3 and follows an elliptical orbit. These character-
istics of very large n orbits provide several intriguing possibilities. For example, very 
small electric fields might be studied, making possible the tracking of chemical reac-
tions that proceed too quickly to be followed otherwise. More dramatic is the possibil-
ity of directly testing Bohr’s correspondence principle by directly observing the slow 
(since v  1>n) movement of the electron around the large n orbits—the transition 
from quantum mechanics to classical mechanics. Computer simulations of the classical 
motion of a Rydberg electron “wave” (see Chapter 5) in orbit around a nucleus are aid-
ing the design of experiments to observe the correspondence principle.

Very recent experiments have led to the discovery of Rydberg molecules. These 
molecules can be formed by nudging an electron in one atom into a high-n quantum 
state with a precisely tuned laser. The resulting strong Coulomb force between that 
atom and a similarly excited atom nearby leads to a bond between them—they form a 
giant molecule. Their large size makes them ideally suited for probing the properties 
of electromagnetic fields. Rydberg molecules formed by a Rydberg atom and a second 
atom in the ground state offer the potential for constructing quantum logic gates that 
will facilitate the development of quantum computers.

Questions

6.	 If the electron moves in an orbit of greater radius, does its total energy increase 
or decrease? Does its kinetic energy increase or decrease?

7.	 What is the energy of the shortest-wavelength photon that can be emitted by the 
hydrogen atom?

8.	 How would you characterize the motion and location of an electron with E 5 0 
and n S  in Figure 4-16?

4-4  X-Ray Spectra 
The extension of the Bohr theory to atoms more complicated than hydrogen proved 
difficult. Quantitative calculations of the energy levels of atoms of more than one 
electron could not be made from the model, even for helium, the next element in the 
periodic table. However, experiments by H. Moseley in 1913 and J. Franck and 
G. Hertz in 1914 strongly supported the general Bohr-Rutherford picture of the atom 
as a positively charged core surrounded by electrons that moved in quantized energy 
states relatively far from the core. Moseley’s analysis of x-ray spectra will be dis-
cussed in this section, and the Franck-Hertz measurement of the transmission of elec-
trons through gases will be discussed in the chapter’s concluding section.

Using the methods of crystal spectrometry that had just been developed by 
W. H. Bragg and W. L. Bragg, Moseley16 measured the wavelengths of the character-
istic x-ray line spectra for about 40 different target elements. (Typical x-ray spectra 
are shown in Figure 3-15.) He noted that the x-ray line spectra varied in a regular way 
from element to element, unlike the irregular variations of optical spectra. He sur-
mised that this regular variation occurred because characteristic x-ray spectra were 
due to transitions involving the innermost electrons of the atoms (see Figure 4-18). 
Because the inner electrons are shielded from the outermost electrons by those in 

Henry G.-J. Moseley. 
[Courtesy of University of 
Manchester.]
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intermediate orbits, their energies do not depend on the complex interactions of the 
outer electrons, which are responsible for the complicated optical spectra. Further-
more, the inner electrons are well shielded from the interatomic forces that are respon-
sible for the binding of atoms in solids.

According to the Bohr theory (published earlier the same year, 1913), the energy 
of an electron in the first Bohr orbit is proportional to the square of the nuclear 
charge (see Equation 4-20). Moseley reasoned that the energy, and therefore the fre-
quency, of a characteristic x-ray photon should vary as the square of the atomic 
number of the target element in the x-ray tube. Accordingly, he plotted the square 
root of the frequency of a particular characteristic line in the x-ray spectrum of vari-
ous target elements versus the atomic number Z of the element. Such a plot, now 
called a Moseley plot, is shown in Figure 4-19. These curves can be fitted by the 
empirical equation

	 f 1>2 = An1Z - b2	 4-34

where An and b are constants for each characteristic x-ray line. One family of lines, 
called the K series, has b 5 1 and slightly different values of An for each line in the 
graph. The other family shown in Figure 4-19, called the L series,17 could be fitted by 
Equation 4-34 with b 5 7.4.

Moseley’s Discoveries
If the bombarding electron in the x-ray tube causes ejection of an electron from the 
innermost orbit (n 5 1) in a target atom completely out of the atom, photons will be 
emitted corresponding to transitions of electrons in other orbits (n 5 2, 3, . . . ) to 
fill the vacancy in the n 5 1 orbit (see Figure 4-18). (Since these lines are called the 

Figure 4-18  A stylized picture of the Bohr circular 
orbits for n 5 1, 2, 3, and 4. The radii rn  n2. In a
high-Z element (elements with Z  12 emit x rays), 
electrons are distributed over all the orbits shown. 
Should an electron in the n 5 1 orbit be knocked 
from the atom, for example, by being hit by a fast 
electron accelerated by the voltage across an x-ray 
tube, the vacancy thus produced is filled by an 
electron of higher energy (i.e., n 5 2 or higher). 
The difference in energy between the two orbits is 
emitted as a photon, according to the Bohr frequency 
condition, whose wavelength will be in the x-ray 
region of the spectrum if Z is large enough.

Ejected
electron

Nucleus
+Ze

n = 1

n = 2

n = 3

n = 4

–

Kα x ray

Lα x ray
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K series, the n 5 1 orbit came to be called the K shell.) The lowest-frequency line 
corresponds to the lowest energy transition (n 5 2 S n 5 1). This line is called the 
Ka line. The transition n 5 3 S n 5 1 is called the Kb line. It is of higher energy, and 
hence higher frequency, than the Ka line. A vacancy created in the n 5 2 orbit by 
emission of a Ka x ray may then be filled by an electron of higher energy, for exam-
ple, one in the n 5 3 orbit, resulting in the emission of a line in the L series, and so on. 
The multiple L lines in the Moseley plot (Figure 4-19) are due in part to the fact that 
there turn out to be small differences in the energies of electrons with a given n that 
are not predicted by the Bohr model. Moseley’s work gave the first indication of these 

Figure 4-19  Moseley’s plots of the square root of frequency versus Z for characteristic 
x rays. When an atom is bombarded by high-energy electrons, an inner atomic electron is 
sometimes knocked out, leaving a vacancy in the inner shell. The K-series x rays are produced 
by atomic transitions to vacancies in the n 5 1 (K ) shell, whereas the L series is produced by 
transitions to the vacancies in the n 5 2 (L) shell. [From H. Moseley, Philosophical Magazine (6),
27, 713 (1914).]
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differences, but the explanation will have to await our discussion of more advanced 
quantum theory in Chapter 7.

Using the Bohr relation for a one-electron atom (Equation 4-21) with nf 5 1, and 
using (Z 2 1) in place of Z, we obtain for the frequencies of the K series

	 f =
mk2

 e4

4pU3 1Z - 122a 1

12 -
1

n2 b = cR  1Z - 122a1 -
1

n2 b 	 4-35

where R is the Rydberg constant. Comparing this with Equation 4-34, we see that An 
is given by

	 A2
n = cR  a1 -

1

n2 b 	 4-36

The wavelengths of the lines in the K series are then given by

	 l =
c

f
=

c

A2
n1Z - 122 =

1

R  1Z - 122a1 -
1

n2 b
	 4-37

EXAMPLE 4-8	 Ka for Molybdenum ​ Calculate the wavelength of the Ka line of 
molybdenum (Z 5 42), and compare the result with the value l 5 0.0721 nm mea-
sured by Moseley and with the spectrum in Figure 3-15b.

SOLUTION
Using n 5 2, R 5 1.097  107 m21 and Z 5 42, we obtain

l = c 11.097 * 107 m-12 14122a1 -
1

4
b d

-1

= 7.23 * 10-11 m = 0.0723 nm

This value is within 0.3 percent of Moseley’s measurement and agrees well with 
that in Figure 3-15b.

The fact that f is proportional to (Z 2 1)2 rather than to Z 2 is explained by the 
partial shielding of the nuclear charge by the other electron remaining in the K shell 
as “seen” by electrons in the n 5 2 (L) shell.18 Using this reasoning, Moseley con-
cluded that, since b 5 7.4 for the L series, these lines involved electrons farther from 
the nucleus, which “saw” the nuclear charge shielded by more inner electrons. Assum-
ing that the L series was due to transitions to the n 5 2 shell, the frequencies for this 
series are given by

	 f = cR  a 1

22 -
1

n2 b 1Z - 7.422	 4-38

where n 5 3, 4, 5, . . . .
Before Moseley’s work, the atomic number was merely the place number of the 

element in Mendeleev’s periodic table of the elements arranged by weight. The experi-
ments of Geiger and Marsden showed that the nuclear charge was approximately A>2, 
while x-ray scattering experiments by Barkla showed that the number of electrons in 
an atom was also approximately A>2. These two experiments are consistent since the 
atom as a whole must be electrically neutral. However, several discrepancies were 
found in the periodic table as arranged by weight. For example, the 18th element in 
order of weight is potassium (39.102), and the 19th is argon (39.948). Arrangement by 
weight, however, puts potassium in the column with the inert gases and argon with the 
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active metals, the reverse of their known chemical properties. Moseley showed that for 
these elements to fall on the line f 1>2 versus Z, argon had to have Z 5 18 and potas-
sium Z 5 19. Arranging the elements by the Z number obtained from the Moseley plot, 
rather than by weight, gave a periodic chart in complete agreement with the chemical 
properties. Moseley also pointed out that there were gaps in the periodic table at 
Z 5 43, 61, and 75, indicating the presence of undiscovered elements. All have subse-
quently been found. Figure 4-20 illustrates the discovery of promethium (Z 5 61).

Auger Electrons
The process of producing x rays necessarily results in the ionization of the atom since 
an inner electron is ejected. The vacancy created is filled by an outer electron, produc-
ing the x rays studied by Moseley. In 1923 Pierre Auger discovered that, as an alter-
native to x-ray emission, the atom may eject a third electron from a higher-energy 
outer shell via a radiationless process called the Auger effect. In the Auger (pro-
nounced oh-zhay) process, the energy difference DE 5 E2 2 E1 that could have 
resulted in the emission of a Ka x ray is removed from the atom by the third electron, 
for example, one in the n 5 3 shell. Since the magnitude of E3 , DE, the n 5 3 elec-
tron would leave the atom with a characteristic kinetic energy DE - 0E3 0 , which is 
determined by the stationary-state energies of the particular atom.19 Thus, each ele-
ment has a characteristic Auger electron spectrum (see Figure 4-21a). Measurement 
of the Auger electrons provides a simple and highly sensitive tool for identifying 
impurities on clean surfaces in electron microscope systems and investigating elec-
tron energy shifts associated with molecular bonding (see Figure 4-21b).

Question

9.	 Why did Moseley plot f 1>2 versus Z rather than f versus Z?

Figure 4-20  ​Characteristic x-ray 
spectra. (a) Part of the spectra of 
neodymium (Z 5 60) and samarium 
(Z 5 62). The two pairs of bright lines 
are the Ka and Kb lines. (b) Part of 
the spectrum of the artificial element 
promethium (Z 5 61). This element was 
first positively identified in 1945 at the 
Clinton Laboratory (now Oak Ridge). 
Its Ka and Kb lines fall between those 
of neodymium and samarium, just as 
Moseley predicted. (c) Part of the spectra 
of all three of the elements neodymium, 
promethium, and samarium. [Courtesy 
of J. A. Swartout, Oak Ridge National 
Laboratory.]

(a)

(b)

(c)
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4-5  ​The Franck-Hertz Experiment 
We conclude this chapter with discussion of an important experiment that provided 
strong support for the quantization of atomic energies, thus helping to pave the way for 
modern quantum mechanics. While investigating the inelastic scattering of electrons, 
J. Franck and G. Hertz20 made a discovery that confirmed by direct measurement Bohr’s 
hypothesis of energy quantization in atoms. First done in 1914, it is now a standard 
undergraduate laboratory experiment. Figure 4-22a is a schematic diagram of the appa-
ratus. A small heater heats the cathode. Electrons are ejected from the heated cathode 
and accelerated toward a grid, which is at a positive potential V0 relative to the cathode. 
Some electrons pass through the grid and reach the plate P, which is at a slightly lower 
potential Vp 5 V0 2 DV. The tube is filled with a low-pressure gas of the element being 
investigated (mercury vapor, in Franck and Hertz’s original experiment). The experi-
ment involves measuring the plate current as a function of V0. As V0 is increased from 0, 
the current increases until a critical value (about 4.9 V for Hg) is reached, at which point 
the current suddenly decreases. As V0 is increased further, the current rises again.

The explanation of this result is a bit easier to visualize if we think for the moment 
of a tube filled with hydrogen atoms instead of mercury (see Figure 4-22b). Electrons 
accelerated by V0 that collide with hydrogen electrons cannot transfer energy to the latter 
unless they have acquired kinetic energy eV0 5 E2 2 E1 5 10.2 eV since the hydrogen 
electron according to Bohr’s model cannot occupy states with energies intermediate 

E
 d

N
(E

)/
dE

E
 d

N
(E

)/
dE

0 200

14201400138013601340132013001280

Kinetic energy (eV)

400 600

Kinetic energy (eV)

Elemental Al

Al oxide

800 1000

(a) (b )

Copper
Atomic number

Cu 
29

110

Ar

66

679

734

778

842

942

969
1086

922

Figure 4-21  (a) The Auger spectrum of Cu 
bombarded with 10 keV electrons. The energy of 
the Auger electrons is more precisely determined by 
plotting the weighted derivative E dN1E2 >dE of the 
electron intensity rather than the intensity N(E). (b) A 
portion of the Auger spectrum of Al from elemental 
Al and Al oxide. Note the energy shift in the largest 
peaks resulting from adjustments in the Al electron 
shell energies in the Al2O3 molecule.
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between E1 and E2. Such a collision will thus be elastic; that is, the incident electron’s 
kinetic energy will be unchanged by the collision, and thus it can overcome the poten-
tial DV and contribute to the current I. However, if eV0  10.2 eV, then the incoming 
electron can transfer 10.2 eV to the hydrogen electron in the ground state (n 5 1 orbit), 
putting it into the n 5 2 orbit (called the first excited state). The incoming electron’s 
energy is thus reduced by 10.2 eV; it has been inelastically scattered. With insufficient 
energy to overcome the small retarding potential DV, the incoming electrons can no 
longer contribute to the plate current I, and I drops sharply.

The situation with Hg in the tube is more complicated since Hg has 80 electrons. 
Although Bohr’s theory is not capable of predicting their individual energies, we still 
expect the energy to be quantized with a ground state, first excited state, and so on for 
the atom. Thus, the explanation of the observed 4.9 V critical potential for Hg is that 
the first excited state is about 4.9 eV above the lowest level (ground state). Electrons 
with energy less than this cannot lose energy to the Hg atoms, but electrons with 
energy greater than 4.9 eV can have inelastic collisions and lose 4.9 eV. If this hap-
pens near the grid, these electrons cannot gain enough energy to overcome the small 
back voltage DV and reach the plate; the current therefore decreases. If this explana-
tion is correct, the Hg atoms that are excited to an energy level of 4.9 eV above the 
ground state should return to the ground state by emitting light of wavelength

l =
c

f
=

hc

hf
=

hc

eV0
= 253 nm

There is indeed a line of this wavelength in the mercury spectrum. When the tube is 
viewed with a spectroscope, this line is seen when V0 is greater than 4.9 eV, while no 
lines are seen when V0 is less than this amount. For further increases in V0, additional 
sharp decreases in the current are observed, corresponding either to excitation of other 

Figure 4-22  (a) Schematic diagram of the Franck-Hertz experiment. Electrons ejected from the heated cathode C at zero 
potential are drawn to the positive grid G. Those passing through the holes in the grid can reach the plate P and thereby 
contribute to the current I if they have sufficient kinetic energy to overcome the small back potential DV. The tube contains 
a low-pressure gas of the element being studied. (b) Results for hydrogen. If the incoming electron does not have sufficient 
energy to transfer DE 5 E2 2 E1 to the hydrogen electron in the n 5 1 orbit (ground state), then the scattering will be elastic. 
If the incoming electron does have at least DE kinetic energy, then an inelastic collision can occur in which DE is transferred 
to the n 5 1 electron, moving it to the n 5 2 orbit. The excited electron will typically return to the ground state very quickly, 
emitting a photon of energy DE.
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levels in Hg (e.g., the second excited state of Hg is at 6.7 eV above the ground state) 
or to multiple excitations of the first excited state; that is, due to an electron losing 
4.9 eV more than once. In the usual setup, multiple excitations of the first level are 
observed and dips are seen every 4.9 V.21 The probability of observing such multiple 
first-level excitations, or excitations of other levels, depends on the detailed variation 
of the potential of the tube. For example, a second decrease in the current at V0 5 2  
4.9 5 9.8 V results when electrons have inelastic collisions with Hg atoms about half-
way between the cathode and grid (see Figure 4-22a). They are re-accelerated, reach-
ing 4.9 eV again in the vicinity of the grid. A plot of the data of Franck and Hertz is 
shown in Figure 4-23.

The Franck-Hertz experiment was an important confirmation of the idea that dis-
crete optical spectra were due to the existence in atoms of discrete energy levels that 
could be excited by nonoptical methods. It is particularly gratifying to be able to 
detect the existence of discrete energy levels directly by measurements using only 
voltmeters and ammeters.

Electron Energy Loss Spectroscopy
The Franck-Hertz experiment was the precursor of a highly sensitive technique for 
measuring the quantized energy states of atoms in both gases and solids. The technique, 
called electron energy loss spectroscopy (EELS), is particularly useful in solids, 
where it makes possible measurement of the energy of certain types of lattice vibra-
tions and other processes. It works like this. Suppose that the electrons in an incident 
beam all have energy Einc. They collide with the atoms of a material, causing them to 
undergo some process (e.g., vibration, lattice rearrangement, electron excitation) which 
requires energy El. Then, if a beam electron initiates a single such process, it will exit 
the material with energy Einc 2 El —that is, it has been inelastically scattered. The exit 
energy can be measured very accurately with, for example, a magnetic spectrometer 
designed for electrons.22 Figure 4-24a illustrates a typical experimental arrangement 
for measuring an energy-loss spectrum.

As an example of its application, if an incident beam of electrons with Einc 5 2 keV 
is reflected from a thin Al film, the scattered electron energies measured in the magnetic 
spectrometer result in the energy-loss spectrum shown in Figure 4-24b, which directly 
represents the quantized energy levels of the target material. The loss peaks in this par-
ticular spectrum are due to the excitation of harmonic vibrations in the thin film sample, 
as well as some surface vibrations. The technique is also used to measure the vibrational 
energies of impurity atoms that may be absorbed on the surface and, with higher incident 
electron energies, to measure energy losses at the atomic inner levels, thus yielding infor-
mation about bonding and other characteristics of absorbed atoms. Inelastic scattering 
techniques, including those using particles in addition to electrons, provide very power-
ful means for probing the energy structure of atomic, molecular, and nuclear systems. 
We will have occasion to refer to them many times throughout the rest of the book.

�More
�Here and in Chapter 3 we have discussed many phenomena that were 
“explained” by various ad hoc quantum assumptions. A Critique of
Bohr Theory and the “Old Quantum Mechanics” contrasts some of its
successes with some of its failures on the home page: www.whfreeman 
.com/tiplermodernphysics6e.

More

Figure 4-23  Current versus 
accelerating voltage in the 
Franck-Hertz experiment. 
The current decreases 
because many electrons lose 
energy due to inelastic 
collisions with mercury 
atoms in the tube and 
therefore cannot overcome 
the small back potential 
indicated in Figure 4-21a. 
The regular spacing of the 
peaks in this curve indicates 
that only a certain quantity of 
energy, 4.9 eV, can be lost to 
the mercury atoms. This 
interpretation is confirmed by 
the observation of radiation 
of photon energy 4.9 eV 
emitted by the mercury 
atoms, when V0 is greater 
than this energy. [From
J. Franck and G. Hertz, 
Verband Deutscher 
Physiklischer Gesellschaften, 
16, 457 (1914).]
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Atomic spectra
1

lmn

= Ra 1

m2 -
1

n2 b  n 7 m� 4-2

This empirical equation computes the correct wavelengths of observed 
spectral lines. The Rydberg constant R varies in a regular way from element
to element.

2.	 Rutherford scattering

	 Impact parameter

	 Scattered fraction f

	 Number of scattered 
  alphas observed:

	 Size of nucleus

b =
kqa Q

ma v2  cot 
u

2
� 4-3

f = pb2
 nt� 4-5

for a scattering foil with n nuclei/unit volume and thickness t

DN = a I0 Ascnt

r 2 b a kZe2

2Ek

b
2 1

sin4 
u

2

� 4-6

rd =
kqa Q

1

2
 ma v2

� 4-11

Figure 4-24  ​Energy-loss spectrum 
measurement. (a) A well-defined electron 
beam impinges on the sample. Electrons 
inelastically scattered at a convenient angle 
enter the slit of the magnetic spectrometer, 
whose B field is directed out of the paper, 
and turn through radii R determined by their 
energy Einc 2 El via Equation 3-2 written in 
the form R = [2m(Einc - El)]

1>2>eB.
(b) An energy-loss spectrum for a thin Al 
film. [From C. J. Powell and J. B. Swan, 
Physical Review, 115, 869 (1954).]
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3.	 Bohr model

	 Bohr’s postulates

	 Correspondence principle

	 Bohr radius

	 Allowed energies

	 Reduced mass

	 Fine-structure constant

1. � Electrons occupy only certain nonradiating, stable, circular orbits selected 
by quantization of the angular momentum L.

L = mvr =
nh

2p
= nU for integer n� 4-17

2. � Radiation of frequency f occurs when the electron jumps from an allowed orbit
of energy Ei to one of lower energy Ef. f is given by the frequency condition

hf = Ei - Ef � 4-15

In the region of very large quantum numbers classical and quantum calculations 
must yield the same results.

a0 =
U2

mke2 =
U

mca
= 0.0529 nm� 4-19

En = -
Z2

 E0

n2   for  n = 1, 2, 3,c � 4-20

where E0 = mk2
 e4>2U2 = 13.6 eV

m =
mM

m + M
� 4-25

a =
ke2

Uc
 1>137� 4-30

4.	 x-ray spectra Moseley
equation

f 1>2 = An1Z - b2� 4-34

5.	 Franck-Hertz experiment Supported Bohr’s theory by verifying the quantization of atomic energies in absorption.

General References 
The following general references are written at a level appro-
priate for the readers of this book.

Boorse, H., and L. Motz (eds.), The World of the Atom, Basic 
Books, New York, 1966. This two-volume, 1873-page 
work is a collection of original papers, translated and 
edited. Much of the work referred to in this chapter and 
throughout this book can be found in these volumes.

Cline, B., The Questioners: Physicists and the Quantum The-
ory, Thomas Y. Crowell, New York, 1965.

Gamow, G., Thirty Years That Shook Physics: The Story of 
the Quantum Theory, Doubleday, Garden City, NY, 
1965.

Herzberg, G., Atomic Spectra and Atomic Structure, Dover 
Publications, New York, 1944. This is without doubt one 
of the all-time classics of atomic physics.

Melissinos, A., and J. Napolitano, Experiments in Modern 
Physics, 2d ed., Academic Press, New York, 2003. Many 
of the classic experiments that are now undergraduate 

laboratory experiments are described in detail in this 
text.

Mohr, P. J., B. N. Taylor, and D. B. Newell, “The Fundamen-
tal Physical Constants,” Reviews of Modern Physics 80, 
633–730 (April 2008).

Shamos, M. H. (ed.), Great Experiments in Physics, Holt, 
Rinehart & Winston, New York, 1962.

Virtual Laboratory (PEARL), Physics Academic Software, 
North Carolina State University, Raleigh, 1996. Includes 
an interactive model of the Bohr atom.

Virtual Spectroscope, Physics Academic Software, North 
Carolina State University, Raleigh, 2003. Several sources 
can be viewed with a spectroscope to display the cor-
responding spectral lines.

Visual Quantum Mechanics, Kansas State University, 
Manhattan, 1996. The atomic spectra component of this 
software provides an interactive construction of the 
energy levels for several elements, including hydrogen 
and helium.
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Notes 
1.	 Joseph von Fraunhofer (1787–1826). German physicist. 

Although he was not the first to see the dark lines in the solar 
spectrum that bears his name (Wollaston had seen seven, 
12 years earlier), he systematically measured their wavelengths, 
named the prominent ones, and showed that they always 
occurred at the same wavelength, even if the sunlight were 
reflected from the Moon or a planet.

2.	 To date more than 10,000 Fraunhofer lines have been 
found in the solar spectrum.

3.	 Although experimentalists preferred to express their mea-
surements in terms of wavelengths, it had been shown that 
the many empirical formulas being constructed to explain the 
observed regularities in the line spectra could be expressed 
in simpler form if the reciprocal wavelength, called the wave 
number and equal to the number of waves per unit length, was 
used instead. Since c 5 f l, this was equivalent to expressing 
the formulas in terms of the frequency.

4.	 Ernest Rutherford (1871–1937), English physicist, an 
exceptional experimentalist and a student of J. J. Thomson. 
He was an early researcher in the field of radioactivity and 
received the Nobel Prize in 1908 for his work in the transmu-
tation of elements. He bemoaned the fact that his prize was 
awarded in chemistry, not in physics, as work with the elements 
was considered chemistry in those days. He was Thomson’s 
successor as director of the Cavendish Laboratory.

5.	 Alpha particles, like all charged particles, lose energy by 
exciting and ionizing the molecules of the materials through 
which they are moving. The energy lost per unit path length 
(-dE>dx) is a function of the ionization potential of the mol-
ecules, the atomic number of the atoms, and the energy of the 
a particles. It can be computed (with some effort) and is rela-
tively simple to measure experimentally.

6.	 Notice that 2p sin u du 5 dV, the differential solid 
angle subtended at the scattering nucleus by the surface in 
Figure 4-11. Since the cross section s 5 pb2, then ds 5 2pb db 
and Equation 4-9 can be rewritten as

ds

dV
= a kZe2

ma v2 b
1

sin4 
u

2

ds>dV is called the differential cross section.
7.	 H. Geiger and E. Marsden, Philosophical Magazine (6), 

25, 605 (1913).
8.	 The value of Z could not be measured directly in this 

experiment; however, relative values for different foil materi-
als could be found and all materials heavier than aluminum 
had Z approximately equal to half the atomic weight.

9.	 This also introduces a deviation from the predicted DN 
associated with Rutherford’s assumption that the nuclear mass 
was much larger than the a particle mass. For lighter-atomic-
weight elements that assumption is not valid. Correction for 

the nuclear mass effect can be made, however, and the data in 
Figure 4-9b reflect the correction.
10.	 Niels H. D. Bohr (1885–1962), Danish physicist and first-
rate soccer player. He went to the Cavendish Laboratory to 
work with J. J. Thomson after receiving his Ph.D.; however, 
Thomson is reported to have been impatient with Bohr’s 
soft, accented English. Happily, the occasion of Thomson’s 
annual birthday banquet brought Bohr in contact with Ruther-
ford, whom he promptly followed to the latter’s laboratory at 
Manchester, where he learned of the nuclear atom. A giant of 
twentieth-century physics, Bohr was awarded the Nobel Prize 
in Physics in 1922 for his explanation of the hydrogen spec-
trum. On a visit to the United States in 1939, he brought the 
news that the fission of uranium atoms had been observed. 
The story of his life makes absolutely fascinating reading.
11.	 N. Bohr, Philosophical Magazine (6), 26, 1 (1913).
12.	 Mohr, P. J., B. N. Taylor, and D. B. Newell, “The Funda-
mental Physical Constants,” Reviews of Modern Physics 80, 
633–730 (April 2008). Only eight of the 14 current significant 
figures are given in Equation 4-27. The relative uncertainty in 
the value is about 1 part in 1012!
13.	 Harold C. Urey (1893–1981), American chemist. His work 
opened the way for the use of isotopic tracers in biological 
systems. He was recognized with the Nobel Prize in 1934.
14.	 The basic reason that elliptical orbits solve this prob-
lem is that the frequency of the radiation emitted classically 
depends on the acceleration of the charge. The acceleration 
is constant for a circular orbit but varies for elliptical orbits, 
being dependent on the instantaneous distance from the focus. 
The energy of a particle in a circular orbit of radius r is the 
same as that of a particle in an elliptical orbit with a semi-
major axis of r, so one would expect the only allowed ellipti-
cal orbits to be those whose semimajor axis was equal to an 
allowed Bohr circular orbit radius.
15.	 Viewed with spectrographs of high resolution, the spectral 
lines of hydrogen in Figure 4-2a—and, indeed, most spectral 
lines of all elements—are found to consist of very closely 
spaced sets of lines, that is, fine structure. We will discuss this 
topic in detail in Chapter 7.
16.	 Henry G.-J. Moseley (1887–1915), English physicist, 
considered by some the most brilliant of Rutherford’s 
students. He would surely have been awarded the Nobel 
Prize had he not been killed in action in World War I. His 
father was a naturalist on the expedition of the HMS Chal-
lenger, the first vessel ever devoted to the exploration of 
the oceans.
17.	 The identifiers L and K were assigned by the English 
physicist C. G. Barkla, the discoverer of the characteristic 
x-ray lines, for which he received the Nobel Prize in Phys-
ics in 1917. He discovered two sets of x-ray lines for each of 
several elements, the longer wavelength of which he called 
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the L series, the other the K series. The identifiers stuck and 
were subsequently used to label the atomic electron shells.
18.	 That the remaining K electron should result in b 5 1, that 
is, shielding of exactly 1e, is perhaps a surprise. Actually it 
was a happy accident. It is the combined effect of the remain-
ing K electron and the penetration of the electron waves of the 
outer L electrons that resulted in making b 5 1, as we will see 
in Chapter 7.
19.	 Since in multielectron atoms the energies of the station-
ary states depend in part on the number of electrons in the 
atom (see Chapter 7), the energies En for a given atom change 
slightly when it is singly ionized, as in the production of char-
acteristic x-ray lines, or doubly ionized, as in the Auger effect.
20.	 James Franck (1882–1964), German-American physicist; 
Gustav L. Hertz (1887–1975), German physicist. Franck won 

an Iron Cross as a soldier in World War I and later worked 
on the Manhattan Project. Hertz was a nephew of Heinrich 
Hertz, discoverer of the photoelectric effect. For their work 
on the inelastic scattering of electrons, Franck and Hertz 
shared the 1925 Nobel Prize in Physics.
21.	 We should note at this point that there is an energy state 
in the Hg atom at about 4.6 eV, slightly lower than the one 
found by Franck and Hertz. However, transitions from the 
ground state to the 4.6 eV level are not observed, and their 
absence is in accord with the prediction of more advanced 
quantum mechanics, as we will see in Chapter 7.
22.	 Since q>m for electrons is much larger than for ionized 
atoms, the radius for an electron magnetic spectrometer need 
not be as large as for a mass spectrometer, even for electron 
energies of several keV (see Equation 3-2).

Problems 
Level I
Section 4-1  Atomic Spectra
4-1.	 Compute the wavelength and frequency of the series limit for the Lyman, Balmer, 
and Paschen spectral series of hydrogen.
4-2.	 The wavelength of a particular line in the Balmer series is measured to be 379.1 nm. 
What transition does it correspond to?
4-3.	 An astronomer finds a new absorption line with l 5 164.1 nm in the ultraviolet 
region of the Sun’s continuous spectrum. He attributes the line to hydrogen’s Lyman series. 
Is he right? Justify your answer.
4-4.	 The series of hydrogen spectral lines with m 5 4 is called Brackett’s series. Com-
pute the wavelengths of the first four lines of Brackett’s series.
4-5.	 In a sample that contains hydrogen, among other things, four spectral lines are 
found in the infrared with wavelengths 7460 nm, 4654 nm, 4103 nm, and 3741 nm. Which 
one does not belong to a hydrogen spectral series?

Section 4-2  Rutherford’s Nuclear Model
4-6.	 A gold foil of thickness 2.0 mm is used in a Rutherford experiment to scatter a par-
ticles with energy 7.0 MeV. (a) What fraction of the particles will be scattered at angles 
greater than 90? (b) What fraction will be scattered at angles between 45 and 75?
(c) Use NA, r, and M for gold to compute the approximate radius of a gold atom. (For 
gold, r 5 19.3 gm/cm3 and M 5 197 gm/mol.)
4-7.	 (a) What is the ratio of the number of particles per unit area on the screen scattered 
at 10 to those at 1? (b) What is the ratio of those scattered at 30 to those at 1?
4-8.	 For a particles of 7.7 MeV (those used by Geiger and Marsden), what impact 
parameter will result in a deflection of 2 for a thin gold foil?
4-9.	 What will be the distance of closest approach rd to a gold nucleus for an a particle 
of 5.0 MeV? 7.7 MeV? 12 MeV?
4-10.	 What energy a particle would be needed to just reach the surface of an Al nucleus 
if its radius is 4 fm?
4-11.	 If a particle is deflected by 0.01 in each collision, about how many collisions would 
be necessary to produce an rms deflection of 10? (Use the result from the one-dimensional 
random walk problem in statistics stating that the rms deflection equals the magnitude of 
the individual deflections times the square root of the number of deflections.) Compare 
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this result with the number of atomic layers in a gold foil of thickness 1026 m, assuming 
that the thickness of each atom is 0.1 nm 5 10210 m.
4-12.	 Consider the foil and a particle energy in Problem 4-6. Suppose that 1000 of those 
particles suffer a deflection of more than 25. (a) How many of these are deflected by 
more than 45? (b) How many are deflected between 25 and 45? (c) How many are 
deflected between 75 and 90?

Section 4-3  The Bohr Model of the Hydrogen Atom
4-13.	 The radius of the n 5 1 orbit in the hydrogen atom is a0 5 0.053 nm. (a) Compute 
the radius of the n 5 6 orbit. (b) Compute the radius of the n 5 6 orbit in singly ionized 
helium (He+), which is hydrogenlike, that is, it has only a single electron outside the 
nucleus.
4-14.	 Show that Equation 4-19 for the radius of the first Bohr orbit and Equation 4-20 for 
the magnitude of the lowest energy for the hydrogen atom can be written as

a0 =
Uc

amc2 =
lc

2pa
  E1 =

1

2
 a2

 mc2

where lc = h>mc is the Compton wavelength of the electron and a = ke2>Uc is the fine-
structure constant. Use these expressions to check the numerical values of the constants 
a0 and E1.
4-15.	 Calculate the three longest wavelengths in the Lyman series (nf 5 1) in nm, and 
indicate their position on a horizontal linear scale. Indicate the series limit (shortest wave-
length) on this scale. Are any of these lines in the visible spectrum?
4-16.	 If the angular momentum of Earth in its motion around the Sun were quantized like 
a hydrogen electron according to Equation 4-17, what would Earth’s quantum number be? 
How much energy would be released in a transition to the next lowest level? Would that 
energy release (presumably as a gravity wave) be detectable? What would be the radius of 
that orbit? (The radius of Earth’s orbit is 1.50  1011 m.)
4-17.	 On the average, a hydrogen atom will exist in an excited state for about 1028 s 
before making a transition to a lower energy state. About how many revolutions does an 
electron in the n 5 2 state make in 1028 s?
4-18.	 An atom in an excited state will on the average undergo a transition to a state 
of lower energy in about 1028 seconds. If the electron in a doubly ionized lithium
atom (Li+2, which is hydrogenlike) is placed in the n 5 4 state, about how many rev-
olutions around the nucleus does it make before undergoing a transition to a lower 
energy state?
4-19.	 It is possible for a muon to be captured by a proton to form a muonic atom. 
A muon is identical to an electron except for its mass, which is 105.7 MeV>c2. (a) Cal-
culate the radius of the first Bohr orbit of a muonic atom. (b) Calculate the magnitude 
of the lowest energy state. (c) What is the shortest wavelength in the Lyman series for 
this atom?
4-20.	 In the lithium atom (Z 5 3) two electrons are in the n 5 1 orbit and the third is in 
the n 5 2 orbit. (Only two are allowed in the n 5 1 orbit because of the exclusion prin-
ciple, which will be discussed in Chapter 7.) The interaction of the inner electrons with the 
outer one can be approximated by writing the energy of the outer electron as

E = -Z92E1>n2

where E1 5 13.6 eV, n 5 2, and Z9 is the effective nuclear charge, which is less than 3 
because of the screening effect of the two inner electrons. Using the measured ionization 
energy of 5.39 eV, calculate Z9.
4-21.	 Draw to careful scale an energy-level diagram for hydrogen for levels with n 5 1, 
2, 3, 4, . Show the following on the diagram: (a) the limit of the Lyman series, (b) the
Hb line, (c) the transition between the state whose binding energy (5 energy needed to 
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remove the electron from the atom) is 1.51 eV and the state whose excitation energy is 
10.2 eV, and (d ) the longest wavelength line of the Paschen series.
4-22.	 A hydrogen atom at rest in the laboratory emits the Lyman a radiation. (a) Compute 
the recoil kinetic energy of the atom. (b) What fraction of the excitation energy of the
n 5 2 state is carried by the recoiling atom? (Hint: Use conservation of momentum.)
4-23.	 (a) Draw accurately to scale and label completely a partial energy-level diagram 
for C5+ including at minimum the energy levels for n 5 1, 2, 3, 4, 5, and . (b) Compute 
the wavelength of the spectral line resulting from the n 5 3 to the n 5 2 transition, the 
C5+Ha line. (c) In what part of the EM spectrum does this line lie?
4-24.	 The electron-positron pair that was discussed in Chapter 2 can form a hydrogenlike 
system called positronium. Calculate (a) the energies of the three lowest states and (b) the 
wavelength of the Lyman a and b lines. (Detection of those lines is a “signature” of posi-
tronium formation.)
4-25.	 With the aid of tunable lasers, Rydberg atoms of sodium have been produced 
with n  100. The resulting atomic diameter would correspond in hydrogen to n  600.
(a) What would be the diameter of a hydrogen atom whose electron is in the n  600 
orbit? (b) What would be the speed of the electron in that orbit? (c) How does the result 
in (b) compare with the speed in the n  1 orbit?

Section 4-4  X-Ray Spectra
4-26.	 (a) Calculate the next two longest wavelengths in the K series (after the Ka line) 
of molybdenum. (b) What is the wavelength of the shortest wavelength in this series?
4-27.	 The wavelength of the Ka x-ray line for an element is measured to be 0.0794 nm. 
What is the element?
4-28.	 Moseley pointed out that elements with atomic numbers 43, 61, and 75 should exist 
and (at that time) had not been found. (a) Using Figure 4-19, what frequencies would 
Moseley’s graphical data have predicted for the Ka x ray for each of these elements?
(b) Compute the wavelengths for these lines predicted by Equation 4-37.
4-29.	 What is the approximate radius of the n 5 1 orbit of gold (Z 5 79)? Compare this 
with the radius of the gold nucleus, about 7.1 fm.
4-30.	 An electron in the K shell of Fe is ejected by a high-energy electron in the target 
of an x-ray tube. The resulting hole in the n 5 1 shell could be filled by an electron from 
the n 5 2 shell, the L shell; however, instead of emitting the characteristic Fe Ka x ray, 
the atom ejects an Auger electron from the n 5 2 shell. Using Bohr theory, compute the 
energy of the Auger electron.
4-31.	 In a particular x-ray tube, an electron approaches the target moving at 2.25  108 m/s. 
It slows down on being deflected by a nucleus of the target, emitting a photon of energy 
32.5 keV. Ignoring the nuclear recoil, but not relativity, compute the final speed of the 
electron.
4-32.	 (a) Compute the energy of an electron in the n 5 1 (K shell) of tungsten, using Z 2 1 
for the effective nuclear charge. (b) The experimental result for this energy is 69.5 keV. 
Assume that the effective nuclear charge is Z 2 s, where s is called the screening con-
stant, and calculate s from the experimental result.
4-33.	 Construct a Moseley plot similar to Figure 4-19 for the Kb x rays of the elements 
listed below (the x-ray energies are given in keV):

Al 
1.56

Ar 
3.19

Sc 
4.46

Fe 
7.06

Ge 
10.98

Kr 
14.10

Zr 
17.66

Ba 
36.35

Determine the slope of your plot, and compare it with the Kb line in Figure 4-19.
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Section 4-5  The Franck-Hertz Experiment
4-34.	 Suppose that, in a Franck-Hertz experiment, electrons of energy up to 13.0 eV can 
be produced in the tube. If the tube contained atomic hydrogen, (a) what is the shortest-
wavelength spectral line that could be emitted from the tube? (b) List all of the hydrogen 
lines that can be emitted by this tube.
4-35.	 Using the data in Figure 4-24b and a good ruler, draw a carefully scaled energy-
level diagram covering the range from 0 eV to 60 eV for the vibrational states of this solid. 
What approximate energy is typical of the transitions between adjacent levels correspond-
ing to the larger of each pair of peaks?
4-36.	 The transition from the first excited state to the ground state in potassium 
results in the emission of a photon with l 5 770 nm. If potassium vapor is used in a 
Franck-Hertz experiment, at what voltage would you expect to see the first decrease in 
current?
4-37.	 If we could somehow fill a Franck-Hertz tube with positronium, what cathode-grid 
voltage would be needed to reach the second current decrease in the positronium equiva-
lent of Figure 4-23? (See Problem 4-24.)
4-38.	 Electrons in the Franck-Hertz tube can also have elastic collisions with the Hg atoms. 
If such a collision is a head-on, what fraction of its initial kinetic energy will an electron 
lose, assuming the Hg atom to be at rest? If the collision is not head-on, will the fractional 
loss be greater or less than this?

Level II
4-39.	 A Rydberg hydrogen atom is in the n 5 45 energy state. (a) What is the energy dif-
ference (in eV) between this state and the n 5 46 level? (b) What is the ionization energy 
of the atom in the n 5 45 level? (c) What are the frequency and wavelength of a photon 
emitted in the n 5 46 S n 5 45 transition? (d ) What is the radius of the atom in the
n 5 45 level? How does this compare with the Bohr radius?
4-40.	 Three isotopes of hydrogen occur in nature; ordinary hydrogen, deuterium, and tri-
tium. Their nuclei consist of, respectively, 1 proton, 1 proton and 1 neutron (deuteron), 
and 1 proton and 2 neutrons (triton). The masses of the three nuclei are given in Table 11-1. 
(a) Use Equation 4-26 to determine Rydberg constants for deuterium and tritium.
(b) Determine the wavelength difference between the Balmer a lines of deuterium and 
tritium. (c) Determine the wavelength difference between the Balmer a lines of hydro-
gen and tritium.
4-41.	 Derive Equation 4-8 along the lines indicated in the paragraph that immediately 
precedes it.
4-42.	 Geiger and Marsden used a particles with 7.7 MeV kinetic energy and found that 
when they were scattered from thin gold foil, the number observed to be scattered at all 
angles agreed with Rutherford’s formula. Use this fact to compute an upper limit on the 
radius of the gold nucleus.
4-43.	 (a) The current i due to a charge q moving in a circle with frequency frev is q frev. 
Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of 
a current loop is iA, where A is the area of the loop. Find the magnetic moment of the 
electron in the first Bohr orbit in units A-m2. This magnetic moment is called a Bohr 
magneton.
4-44.	 Use a spreadsheet to calculate the wavelengths (in nm) of the first five spectral lines 
of the Lyman, Balmer, Paschen, and Brackett series of hydrogen. Show the positions of 
these lines on a linear scale and indicate which ones lie in the visible.
4-45.	 Show that a small change in the reduced mass of the electron produces a small 
change in a spectral line given by Dl>l = Dm>m. Use this to calculate the difference 
Dl in the Balmer red line l 5 656.3 nm between hydrogen and deuterium, which has a 
nucleus with twice the mass of hydrogen.
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4-46.	 Consider the Franck-Hertz experiment with Hg vapor in the tube and the voltage 
between the cathode and the grid equal to 4.0 V, that is, not enough to for the electrons 
to excite the Hg atom’s first excited state. Therefore, the electron–Hg atom collisions are 
elastic. (a) If the kinetic energy of the electrons is Ek, show that the maximum kinetic 
energy that a recoiling Hg atom can have is approximately 4mEk>M, where M is the Hg 
atom mass. (b) What is the approximate maximum kinetic energy that can be lost by an 
electron with Ek 5 2.5 eV?
4-47.	 The Li2+ ion is essentially identical to the H atom in Bohr’s theory, aside from the 
effect of the different nuclear charges and masses. (a) What transitions in Li2+ will yield 
emission lines whose wavelengths are very nearly equal to the first two lines of the 
Lyman series in hydrogen? (b) Calculate the difference between the wavelength of the 
Lyman a line of hydrogen and the emission line from Li2+ that has very nearly the same 
wavelength.
4-48.	 In an a scattering experiment, the area of the a particle detector is 0.50 cm2. The 
detector is located 10 cm from a 1.0-mm-thick silver foil. The incident beam carries a cur-
rent of 1.0 nA, and the energy of each a particle is 6.0 MeV. How many a particles will be 
counted per second by the detector at (a) u 5 60? (b) u 5 120?
4-49.	 The Ka, La, and Ma x rays are emitted in the n 5 2 S n 5 1, n 5 3 S n 5 2, and
n 5 4 S n 5 3 transitions respectively. For calcium (Z 5 20) the energies of these transi-
tions are 3.69 keV, 0.341 keV, and 0.024 keV, respectively. Suppose that energetic pho-
tons impinging on a calcium surface cause ejection of an electron from the K shell of the 
surface atoms. Compute the energies of the Auger electrons that may be emitted from the 
L, M, and N shells (n 5 2, 3, and 4) of the sample atoms, in addition to the characteristic 
x rays.
4-50.	 Figure 3-15b shows the Ka and Kb characteristic x rays emitted by a molybdenum 
(Mo) target in an x-ray tube whose accelerating potential is 35 kV. The wavelengths are 
Ka 5 0.071 nm and Kb 5 0.063 nm. (a) Compute the corresponding energies of these 
photons. (b) Suppose we wish to prepare a beam consisting primarily of Ka x rays by pass-
ing the molybdenum x rays through a material that absorbs Kb x rays more strongly than
Ka x rays by photoelectric effect on K-shell electrons of the material. Which of the materi-
als listed in the accompanying table with their K-shell binding energies would you choose? 
Explain your answer.

Element Zr Nb Mo Tc Ru

Z 40 41 42 43 44

EK (keV) 18.00 18.99 20.00 21.04 22.12

Level III
4-51.	 A small shot of negligible radius hits a stationary smooth, hard sphere of radius 
R, making an angle b with the normal to the sphere, as shown in Figure 4-25. It is 
reflected at an equal angle to the normal. The scattering angle is u 5 180 2 2b, as 
shown. (a) Show by the geometry of the figure that the impact parameter b is related 
to u by b = R cos1

2u. (b) If the incoming intensity of the shot is I0 particles/s # area, 
how many are scattered through angles greater than u? (c) Show that the cross section 
for scattering through angles greater than 0 is pR2. (d) Discuss the implication of the 
fact that the Rutherford cross section for scattering through angles greater than 0 is 
infinite.
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Figure 4-25  Small particle scattered 
by a hard sphere of radius R.
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4-52.	 Singly ionized helium He+ is hydrogenlike. (a) Construct a carefully scaled energy-
level diagram for He+ similar to that in Figure 4-16, showing the levels for n 5 1, 2, 3,
4, 5, and . (b) What is the ionization energy of He+? (c) Compute the difference in wave-
length between each of the first two lines of the Lyman series of hydrogen and the first 
two lines of the He+ Balmer series. Be sure to include the reduced mass correction for both 
atoms. (d ) Show that for every spectral line of hydrogen, He+ has a spectral line of very 
nearly the same wavelength. (Mass of He+ 5 6.65  10227 kg.)
4-53.	 Listed in the table are the La x-ray wavelengths for several elements. Construct a 
Moseley plot from these data. Compare the slope with the appropriate one in Figure 4-19. 
Determine and interpret the intercept on your graph, using a suitably modified version of 
Equation 4-35.

Element P Ca Co Kr Mo I

Z 15 20 27 36 42 53

Wavelength (nm) 10.41 4.05 1.79 0.73 0.51 0.33

4-54.	 In this problem you are to obtain the Bohr results for the energy levels in hydrogen 
without using the quantization condition of Equation 4-17. In order to relate Equation 4-14 
to the Balmer-Ritz formula, assume that the radii of allowed orbits are given by rn 5 n2r0, 
where n is an integer and r0 is a constant to be determined. (a) Show that the frequency of 
radiation for a transition to nf 5 n 2 1 is given by f  kZe2>hr0 n3 for large n. (b) Show 
that the frequency of revolution is given by

f 2
rev =

kZe2

4p2
 mr 3

0n
6

(c) Use the correspondence principle to determine r0 and compare with Equation 4-19.
4-55.	 Calculate the energies and speeds of electrons in circular Bohr orbits in a hydrogen-
like atom using the relativistic expressions for kinetic energy and momentum.
4-56.	 (a) Write a computer program for your personal computer or programmable calcu-
lator that will provide you with the spectral series of H-like atoms. Inputs to be included 
are ni, nf , Z, and the nuclear mass M. Outputs are to be the wavelengths and frequencies 
of the first six lines and the series limit for the specified nf , Z, and M. Include the reduced 
mass correction. (b) Use the program to compute the wavelengths and frequencies of the 
Balmer series. (c) Pick an nf . 100, name the series the [your name] series, and use your 
program to compute the wavelengths and frequencies of the first three lines and the limit.
4-57.	 Figure 4-26 shows an energy loss spectrum for He measured in an apparatus such as 
that shown in Figure 4-24a. Use the spectrum to construct and draw carefully to scale an 
energy-level diagram for He.
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Figure 4-26  Energy-loss spectrum of 
helium. Incident electron energy was 
34 eV. The elastically scattered electrons 
cause the peak at 0 eV.
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4-58.	 If electric charge did not exist and electrons were bound to protons by the gravi-
tational force to form hydrogen, derive the corresponding expressions for a0 and En and 
compute the energy and frequency of the Ha line and the limit of the Balmer series. Com-
pare these with the corresponding quantities for “real” hydrogen.
4-59.	 A sample of hydrogen atoms are all in the n 5 5 state. If all the atoms return to the 
ground state, how many different photon energies will be emitted, assuming all possible 
transitions occur? If there are 500 atoms in the sample and assuming that from any state all 
possible downward transitions are equally probable, what is the total number of photons 
that will be emitted when all of the atoms have returned to the ground state?
4-60.	 Consider muonic atoms (see Problem 4-19). (a) Draw a correctly scaled and labeled 
partial energy level diagram including levels with n 5 1, 2, 3, 4, 5, and  for muonic hydro-
gen. (b) Compute the radius of the n 5 1 muon orbit in muonic H, He1+, Al12+, and Au78+. 
(c) Compare the results in (b) with the radii of these nuclei. (d ) Compute the wavelength of 
the photon emitted in the n 5 2 to n 5 1 transition for each of these muonic atoms.
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In 1924, a French graduate student, Louis de Broglie,1 proposed in his doctoral dis-
sertation that the dual—that is, wave-particle—behavior that was by then known 

to exist for radiation was also a characteristic of matter, in particular, electrons. This 
suggestion was highly speculative, since there was yet no experimental evidence 
whatsoever for any wave aspects of electrons or any other particles. What had led him 
to this seemingly strange idea? It was a “bolt out of the blue,” like Einstein’s “happy 
thought” that led to the principle of equivalence (see Chapter 2). De Broglie described 
it with these words:

After the end of World War I, I gave a great deal of thought to the theory 
of quanta and to the wave-particle dualism. . . . It was then that I had a 
sudden inspiration. Einstein’s wave-particle dualism was an absolutely 
general phenomenon extending to all physical nature.2

Since the visible universe consists entirely of matter and electromagnetic radiation, de 
Broglie’s hypothesis is a fundamental statement about the grand symmetry of nature. 
(There is currently strong observational evidence that ordinary matter makes up only 
about 4 percent of the visible universe. About 22 percent is some unknown form of 
invisible “dark matter” and approximately 74 percent consists of some sort of equally 
mysterious “dark energy.” See Chapter 13.)

5-1  The de Broglie Hypothesis 
De Broglie stated his proposal mathematically with the following equations for the 
frequency and wavelength of the electron waves, which are referred to as the de Broglie 
relations:

	 f =
E

h
� 5-1

	 l =
h
p

� 5-2

where E is the total energy, p is the momentum, and l is called the de Broglie wave-
length of the particle. For photons, these same equations result directly from Einstein’s 
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194	 Chapter 5  The Wavelike Properties of Particles

quantization of radiation E 5 hf and Equation 2-31 for a particle of zero rest energy
E 5 pc as follows:

E = pc = hf =
hc

l

By a more indirect approach using relativistic mechanics, de Broglie was able to dem-
onstrate that Equations 5-1 and 5-2 also apply to particles with mass. He then pointed 
out that these equations lead to a physical interpretation of Bohr’s quantization of the 
angular momentum of the electron in hydrogenlike atoms, namely, that the quantiza-
tion is equivalent to a standing-wave condition (see Figure 5-1). We have

mvr = nU =
nh

2p
  for  n = integer

2pr =
nh
mv

=
nh
p

= nl = circumference of orbit� 5-3

The idea of explaining discrete energy states in matter by standing waves thus seemed 
quite promising.

De Broglie’s ideas were expanded and developed into a complete theory by 
Erwin Schrödinger late in 1925. In 1927, C. J. Davisson and L. H. Germer verified 
the de Broglie hypothesis directly by observing interference patterns, a characteristic 
of waves, with electron beams. We will discuss both Schrödinger’s theory and the 
Davisson-Germer experiment in later sections, but first we have to ask ourselves why 
wavelike behavior of matter had not been observed before de Broglie’s work. We can 
understand why if we first recall that the wave properties of light were not noticed, 
either, until apertures or slits with dimensions of the order of the wavelength of light 
could be obtained. This is because the wave nature of light is not evident in experi-
ments where the primary dimensions of the apparatus are large compared with the 
wavelength of the light used. For example, if A represents the diameter of a lens or the 
width of a slit, then diffraction effects3 (a manifestation of wave properties) are limited to 
angles u around the forward direction (u 5 0) where sin u = l>A. In geometric (ray) 
optics l>A S 0, so u  sin u S 0, too. However, if a characteristic dimension of the 
apparatus becomes of the order of (or smaller than) l, the wavelength of light passing 

Figure 5-1  Standing waves 
around the circumference of a 
circle. In this case the circle is 
3l in circumference. If the 
vibrator were, for example, a 
steel ring that had been 
suitably tapped with a 
hammer, the shape of the ring 
would oscillate between the 
extreme positions represented 
by the solid and broken lines.

λ

Louis V. de Broglie, who 
first suggested that electrons 
might have wave properties. 
[Courtesy of Culver Pictures.]
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through the system, then l>A S 1. In that event sin u  l>A and u is readily observ-
able, and the wavelike properties of light become apparent. Because Planck’s con-
stant is so small, the wavelength given by Equation 5-2 is extremely small for any 
macroscopic object. This point is among those illustrated in the following section.

5-2  Measurements of Particle Wavelengths 
Although we now have diffraction systems of nuclear dimensions, the smallest-scale 
systems to which de Broglie’s contemporaries had access were the spacings between 
the planes of atoms in crystalline solids, about 0.1 nm. This means that even for an 
extremely small macroscopic particle, such as a grain of dust (m  0.1 mg) moving 
through air with the average kinetic energy of the atmospheric gas molecules, the 
smallest diffraction systems available would have resulted in diffraction angles u only 
of the order of 10210 radians, far below the limit of experimental detectability. The 
small magnitude of Planck’s constant ensures that l will be smaller than any readily 
accessible aperture, placing diffraction beyond the limits of experimental observation. 
For objects whose momenta are larger than that of the dust particle, the possibility of 
observing particle, or matter, waves is even less, as the following example illustrates.

EXAMPLE 5-1	 De Broglie Wavelength of a Ping-Pong Ball ​ What is the
de Broglie wavelength of a Ping-Pong ball of mass 2.0 g after it is slammed across 
the table with speed 5 m/s?

SOLUTION

 l =
h

mv
=

6.63 * 10-34 J # s
12.0 * 10-3 kg2 15 m>s2

 = 6.6 * 10-32 m = 6.6 * 10-23 nm

This is 17 orders of magnitude smaller than typical nuclear dimensions, far below 
the dimensions of any possible aperture.

The case is different for low-energy electrons, as de Broglie himself realized. At 
his soutenance de thèse (defense of the thesis), de Broglie was asked by Perrin4 how his 
hypothesis could be verified, to which he replied that perhaps passing particles, such as 
electrons, through very small slits would reveal the waves. Consider an electron that has 
been accelerated through V0 volts. Its kinetic energy (nonrelativistic) is then

E =
p2

2m
= eV0

Solving for p and substituting into Equation 5-2,

l =
h
p
=

hc
pc

=
hc

12mc2
 eV021>2

Using hc 5 1.24  103 eV # nm and mc2 5 0.511  106 eV, we obtain

	 l =
1.226

V 1>2
0

 nm  for  eV0 V mc2	 5-4

The following example computes an electron de Broglie wavelength, giving a measure 
of just how small the slit must be.
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EXAMPLE 5-2	 De Broglie Wavelength of a Slow Electron ​ Compute the
de Broglie wavelength of an electron whose kinetic energy is 10 eV.

SOLUTION
	 1.	 The de Broglie wavelength is given by Equation 5-2:

l =
h
p

	 2.	 Method 1: Since a 10 eV electron is nonrelativistic, we can use the classical 
relation connecting the momentum and the kinetic energy:

Ek =
p2

2m

		  or

 p = 22mEk

 = 2122 19.11 * 10-31 kg2 110 eV2 11.60 * 10-19 J>eV2
 = 1.71 * 10-24 kg # m>s

	 3.	 Substituting this result into Equation 5-2:

 l =
6.63 * 10-34 J # s

1.71 * 10-24 kg # m>s
 = 3.88 * 10-10 m = 0.39 nm

	 4.	 Method 2: The electron’s wavelength can also be computed from Equation 5-4 
with V0 5 10 V:

 l =
1.226

V 1>2 =
1.226210

 = 0.39 nm

Remarks:  Though this wavelength is small, it is just the order of magnitude of the 
size of an atom and of the spacing of atoms in a crystal.

The Davisson-Germer Experiment
In a brief note in the August 14, 1925, issue of the journal Naturwissenschaften, Wal-
ter Elsasser, at the time a student of Franck’s (of the Franck-Hertz experiment), pro-
posed that the wave effects of low-velocity electrons might be detected by scattering 
them from single crystals. The first such measurements of the wavelengths of elec-
trons were made in 1927 by Davisson5 and Germer, who were studying electron 
reflection from a nickel target at Bell Telephone Laboratories, unaware of either 
Elsasser’s suggestion or de Broglie’s work. After heating their target to remove an 
oxide coating that had accumulated during an accidental break in their vacuum system, 
they found that the scattered electron intensity as a function of the scattering angle 
showed maxima and minima. The surface atoms of their nickel target had, in the pro-
cess of cooling, formed relatively large single crystals, and they were observing elec-
tron diffraction. Recognizing the importance of their accidental discovery, they then 
prepared a target consisting of a single crystal of nickel and extensively investigated 
the scattering of electrons from it. Figure 5-2 illustrates their experimental arrangement. 

Figure 5-2  The Davisson-
Germer experiment. 
Low-energy electrons 
scattered at angle  from a 
nickel crystal are detected in 
an ionization chamber. The 
kinetic energy of the 
electrons could be varied by 
changing the accelerating 
voltage on the electron gun.

ϕ

Electron gun

Ni crystal

Ionization
chamber
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Their data for 54 eV electrons, shown in Figure 5-3, indicate a strong maximum of 
scattering at w 5 50. Consider the scattering from a set of Bragg planes, as shown in 
Figure 5-4. The Bragg condition for constructive interference is nl 5 2d sin u 5
2d cos a. The spacing of the Bragg planes d is related to the spacing of the atoms D 
by d 5 D sin a; thus

nl = 2D sin a cos a = D sin 2a

or

	 nl = D sin � 5-5

where w 5 2a is the scattering angle. The spacing D for Ni is known from x-ray dif-
fraction to be 0.215 nm. The wavelength calculated from Equation 5-5 for the peak 
observed at w 5 50 by Davisson and Germer is, for n 5 1,

l = 0.215 sin 50 = 0.165 nm

Figure 5-3  Scattered intensity versus detector angle for 54 eV electrons. (a) Polar plot of the 
data. The intensity at each angle is indicated by the distance of the point from the origin. 
Scattering angle  is plotted clockwise starting at the vertical axes. (b) The same data plotted 
on a Cartesian graph. The intensity scales are arbitrary but the same on both graphs. In each 
plot there is maximum intensity at  5 50, as predicted for Bragg scattering of waves having 
wavelength l = h>p. [From Nobel Prize Lectures: Physics (Amsterdam and New York: Elsevier, 
© Nobel Foundation, 1964).]
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Figure 5-4  Scattering of 
electrons by a crystal. 
Electron waves are strongly 
scattered if the Bragg 
condition nl 5 2d sin u is 
met. This is equivalent to the 
condition nl 5 D sin .
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The value calculated from the de Broglie relation for 
54 eV electrons is

l =
1.226

15421>2 = 0.167 nm

The agreement with the experimental observation is 
excellent! With this spectacular result Davisson and 
Germer then conducted a systematic study to test the de 
Broglie relation using electrons up to about 400 eV and 
various experimental arrangements. Figure 5-5 shows a 
plot of measured wavelengths versus V -1>2

0 . The wave-
lengths measured by diffraction are slightly lower than 
the theoretical predictions because the refraction of the 
electron waves at the crystal surface has been neglected. 
We have seen from the photoelectric effect that it takes 
work of the order of several eV to remove an electron 
from a metal. Electrons entering a metal thus gain kinetic 
energy; therefore, their de Broglie wavelength is slightly 
less inside the crystal.6

A subtle point must be made here. Notice that the 
wavelength in Equation 5-5 depends only on D, the inter-
atomic spacing of the crystal, whereas our derivation of 
that equation included the interplane spacing as well. The 
fact that the structure of the crystal really is essential 
shows up when the energy is varied, as was done in col-

lecting the data for Figure 5-5. Equation 5-5 suggests that a change in l, resulting 
from a change in the energy, would mean only that the diffraction maximum would 
occur at some other value of w such that the equation remains satisfied. However, as 
can be seen from examination of Figure 5-4, the value of w is determined by a, the 
angle of the planes determined by the crystal structure. Thus, if there are no crystal 
planes making an angle a = >2 with the surface, then setting the detector at 
 = sin-11l>D2 will not result in constructive interference and strong reflection for 
that value of l even though Equation 5-5 is satisfied. This is neatly illustrated by 
Figure 5-6, which shows a series of polar graphs (like Figure 5-3a) for electrons of 
energies from 36 eV through 68 eV. The building to a strong reflection at w 5 50 is 
evident for V0 5 54 V, as we have already seen. But Equation 5-5 by itself would also 

Figure 5-5  ​Test of the de Broglie formula l = h>p. The 
wavelength is computed from a plot of the diffraction data 
plotted against V 0

-1>2, where V0 is the accelerating voltage. 
The straight line is 1.226V 0

-1>2 nm as predicted from 
l = h12mE2 -1>2. These are the data referred to in the 
quotation from Davisson’s Nobel lecture. ( From
observations with diffraction apparatus;  same, 
particularly reliable;  same, grazing beams.  From 
observations with reflection apparatus.) [From Nobel Prize 
Lectures: Physics (Amsterdam and New York: Elsevier, 
© Nobel Foundation, 1964).]

λ,
 Å

2.0

1.5

1.0

0.5

0
0.250.200.150.10

V0
–1/2
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Figure 5-6  A series of 
polar graphs of Davisson and 
Germer’s data at electron 
accelerating potentials from 
36 V to 68 V. Note the 
development of the peak at 
 5 50 to a maximum when 
V0 5 54 V.
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lead us to expect, for example, a strong reflection at w 5 64 when V0 5 40 V, which 
obviously does not occur.

In order to show the dependence of the diffraction on the inner atomic layers, 
Davisson and Germer kept the detector angle w fixed and varied the accelerating volt-
age rather than search for the correct angle for a given l. Writing Equation 5-5 as

	 l =
D sin 

n
=

D sin 12a2
n

	 5-6

and noting that l  V -1>2
0 , we find that a graph of intensity versus V 1>2

0 (1>l) for a 
given angle w should yield (1) a series of equally spaced peaks corresponding to suc-
cessive values of the integer n if a = >2 is an existing angle for atomic planes or 
(2) no diffraction peaks if >2 is not such an angle. Davisson and Germer’s measure-
ments verified the dependence of the intensity on the interplane spacing, the agreement 
with the prediction being about {1 percent. Figure 5-7 illustrates the results for w 5 50. 

The diffraction pattern 
formed by high-energy 
electron waves scattered 
from nuclei provides a 
means by which nuclear 
radii and the internal 
distribution of the nuclear 
charge (the protons) are 
measured (see Chapter 11).

Clinton J. Davisson (left) 
and Lester H. Germer at 
Bell Laboratories, where 
electron diffraction was first 
observed. [Bell Telephone 
Laboratories, Inc.]

Figure 5-7  Variation of the scattered 
electron intensity with wavelength for constant 
. The incident beam in this case was 10 from 
the normal, the resulting refraction causing the 
measured peaks to be slightly shifted from the 
positions computed from Equation 5-5, as 
explained in note 6. [After C. J. Davisson and
L. H. Germer, Proceedings of the National 
Academy of Sciences, 14, 619 (1928).]
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200	 Chapter 5  The Wavelike Properties of Particles

Thus, Davisson and Germer showed conclusively that particles with mass moving at 
speeds v V c do indeed have wavelike properties, as de Broglie had proposed.

Here is Davisson’s account of the connection between de Broglie’s predictions 
and their experimental verification:

Perhaps no idea in physics has received so rapid or so intensive devel-
opment as this one. De Broglie himself was in the van of this develop-
ment, but the chief contributions were made by the older and more 
experienced Schrödinger. It would be pleasant to tell you that no sooner 
had Elsasser’s suggestion appeared than the experiments were begun 
in New York which resulted in a demonstration of electron diffraction—
pleasanter still to say that the work was begun the day after copies of 
de Broglie’s thesis reached America. The true story contains less of per-
spicacity and more of chance. . . . It was discovered, purely by accident, 
that the intensity of elastic scattering [of electrons] varies with the ori-
entations of the scattering crystals. Out of this grew, quite naturally, an 
investigation of elastic scattering by a single crystal of predetermined 
orientation. . . . Thus the New York experiment was not, at its inception, 
a test of wave theory. Only in the summer of 1926, after I had discussed 
the investigation in England with Richardson, Born, Franck and others, 
did it take on this character.7

A demonstration of the wave nature of relativistic electrons was provided in 
the same year by G. P. Thomson, who observed the transmission of electrons with 
energies in the range of 10 to 40 keV through thin metallic foils (G. P. Thomson, 
the son of J. J. Thomson, shared the Nobel Prize in Physics in 1937 with Davisson). 
The experimental arrangement (Figure 5-8a) was similar to that used to obtain 
Laue patterns with x rays (see Figure 3-11). Because the metal foil consists of 

Figure 5-8  (a) Schematic 
arrangement used for producing 
a diffraction pattern from a 
polycrystalline aluminum target. 
(b) Diffraction pattern produced by
x rays of wavelength 0.071 nm 
and an aluminum foil target.  
(c) Diffraction pattern produced
by 600 eV electrons (de Broglie 
wavelength of about 0.05 nm) and 
an aluminum foil target. The pattern 
has been enlarged by 1.6 times 
to facilitate comparison with (b).
[Courtesy of Film Studio, Education 
Development Center.]
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many tiny crystals randomly oriented, the diffraction pattern consists of concen-
tric rings. If a crystal is oriented at an angle u with the incident beam, where u sat-
isfies the Bragg condition, this crystal will strongly scatter at an equal angle u; 
thus, there will be a scattered beam making an angle 2u with the incident beam. 
Figure 5-8b and c show the similarities in patterns produced by x rays and electron 
waves.

Diffraction of Other Particles
The wave properties of neutral atoms and molecules were first demonstrated by Stern 
and Estermann in 1930 with beams of helium atoms and hydrogen molecules dif-
fracted from a lithium fluoride crystal. Since the particles are neutral, there is no pos-
sibility of accelerating them with electrostatic potentials. The energy of the molecules 
was that of their average thermal motion, about 0.03 eV, which implies a de Broglie 
wavelength of about 0.10 nm for these molecules, according to Equation 5-2. Because 
of their low energy, the scattering occurs just from the array of atoms on the surface 
of the crystal, in contrast to Davisson and Germer’s experiment. Figure 5-9 illustrates 
the geometry of the surface scattering, the experimental arrangement, and the results. 
Figure 5-9c indicates clearly the diffraction of He atom waves.

Since then, diffraction of other atoms, of protons, and of neutrons has been 
observed (see Figures 5-10, 5-11, and 5-12 on page 200). In all cases the measured 
wavelengths agree with de Broglie’s prediction. Thus, there is no doubt that all matter 
has wavelike as well as particlelike properties, in symmetry with electromagnetic 
radiation.

The diffraction patterns 
formed by helium atom 
waves are used to study 
impurities and defects on 
the surfaces of crystals. 
Being a noble gas, helium 
does not react chemically 
with molecules on the 
surface or “stick” to the 
surface.

Figure 5-9  (a) He atoms impinge 
on the surface of the LiF crystal at 
angle u (u 5 18.5 in Estermann and 
Stern’s experiment). The reflected 
beam makes the same angle u with 
the surface but is also scattered at 
azimuthal angles  relative to an axis 
perpendicular to the surface. (b) The 
detector views the surface at angle u 
but can scan through the angle .
(c) At angle , where the path 
difference (d sin ) between adjacent 
“rays” is nl, constructive interference, 
that is, a diffraction peak, occurs. 
The n 5 1 peaks occur on either side 
of the n 5 0 maximum.
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202	 Chapter 5  The Wavelike Properties of Particles

An Easy Way to Determine de Broglie Wavelengths
It is frequently helpful to know the de Broglie wavelength for particles with a specific 
kinetic energy. For low energies where relativistic effects can be ignored, the equa-
tion leading to Equation 5-4 can be rewritten in terms of the kinetic energy as follows:

	 l =
h
p
=

h22mEk

� 5-7

Figure 5-10  Diffraction pattern produced 
by 0.0568 eV neutrons (de Broglie 
wavelength of 0.120 nm) and a target of 
polycrystalline copper. Note the similarity in 
the patterns produced by x rays, electrons, and 
neutrons. [Courtesy of C. G. Shull.]

Figure 5-11  ​Neutron Laue pattern of NaCl. 
Compare this with the x-ray Laue pattern in 
Figure 3-11. [Courtesy of E. O. Wollan and
C. G. Shull.]

Figure 5-12  Nuclei provide 
scatterers whose dimensions are 
of the order of 10215 m. Here the 
diffraction of 1 GeV protons from 
oxygen nuclei result in a pattern 
similar to that of a single slit.
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To find the equivalent expression that covers both relativistic 
and nonrelativistic speeds, we begin with the relativistic equation 
relating the total energy to the momentum.

	 E2 = 1pc22 + 1mc222� 2-31

Writing E0 for the rest energy mc2 of the particle for convenience, 
this becomes

	 E2 = 1pc22 + E2
0� 5-8

Since the total energy E 5 E0 1 Ek, Equation 5-8 becomes

1E0 + Ek22 = 1pc22 + E2
0

that, when solved for p, yields

p =
12E0 Ek + E2

k21>2

c

from which Equation 5-2 gives

	 l =
hc

12E0 Ek + E2
k21>2� 5-9

This can be written in a particularly useful way applicable to any 
particle of any energy by dividing the numerator and denominator 
by the rest energy E0 5 mc2 as follows:

l =
hc>mc2

12E0 Ek + E2
k21>2>E0

=
h>mc

321Ek>E02 + 1Ek>E02241>2

Recognizing h>mc as the Compton wavelength lc of the particle 
of mass m (see Section 3-4), we have that, for any particle,

	 l>lc =
1

321Ek>E02 + 1Ek>E02241>2� 5-10

A log-log graph of l>lc versus Ek>E0 is shown in Figure 5-13. It has two sections of 
nearly constant slope, one for Ek V mc2 and the other for Ek W mc2, connected by 
a curved portion lying roughly between 0.1 6 Ek>E0 6 10. The following example 
illustrates the use of Figure 5-13.

EXAMPLE 5-3	 The de Broglie Wavelength of a Cosmic-Ray Proton ​ Detec-
tors on board a satellite measure the kinetic energy of a cosmic-ray proton to be 
150 GeV. What is the proton’s de Broglie wavelength, as read from Figure 5-13?

SOLUTION
The rest energy of the proton is mc2 5 0.938 GeV and the proton’s mass is 1.67  
10227 kg. Thus, the ratio Ek>E0 is

Ek

E0
=

150 GeV

0.938 GeV
= 160

Figure 5-13  The de Broglie wavelength l 
expressed in units of the Compton wavelength lc 

for a particle of mass m versus the kinetic energy 
of the particle Ek expressed in units of its rest 
energy E0 5 mc2. For protons and neutrons
E0 5 0.938 GeV and lc 5 1.32 fm. For electrons 
E0 5 0.511 MeV and lc 5 0.00234 nm.
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204	 Chapter 5  The Wavelike Properties of Particles

This value on the curve corresponds to about 6  1023 on the l>lc axis. The Comp-
ton wavelength of the proton is

lc =
h

mc
=

6.63 * 10-34 J # s
11.67 * 10-27 kg2 13 * 108 m>s2 = 1.32 * 10-15 m

and we have then for the particle’s de Broglie wavelength

l = 16 * 10-32 11.32 * 10-15 m2 = 7.9 * 10-18 m = 7.9 * 10-3 fm

Questions

1.	 Since the electrons used by Davisson and Germer were low energy, they 
penetrated only a few atomic layers into the crystal, so it is rather surprising that 
the effects of the inner layers show so clearly. What feature of the diffraction is 
most affected by the relatively shallow penetration?

2.	 How might the frequency of de Broglie waves be measured?

3.	 Why is it not reasonable to do crystallographic studies with protons?

5-3  ​Wave Packets 
In any discussion of waves the question arises, “What’s waving?” For some waves 
the answer is clear: for waves on the ocean, it is the water that “waves”; for sound 
waves in air, it is the molecules that constitute the air; for light, it is the  and the B. 
So what is waving for matter waves? For matter waves as for light waves, there is no 
“ether.” As will be developed in this section and the next, the particle is in a sense 
“smeared out” over the extent of the wave, so for matter it is the probability of finding 
the particle that waves.

Classical waves are solutions of the classical wave equation

	
0 

2
 y

0 x2 =
1

v2 
0 

2
 y

0 t2 � 5-11

Important among classical waves is the harmonic wave of amplitude y0, frequency f, 
and period T, traveling in the 1x direction as written here:

	 y1x, t2 = y0 cos1kx - vt2 = y0 cos 2pa x

l
-

t

T
b = y0 cos 

2p

l
1x - vt2� 5-12

where the angular frequency v and the wave number 8 k are defined by

	 v = 2pf =
2p

T
� 5-13a

and

	 k =
2p

l
� 5-13b

and the velocity v of the wave, the so-called wave or phase velocity vp, is given by

	 vp = f  l� 5-14

A familiar wave phenomenon that cannot be described by a single harmonic 
wave is a pulse, such as the flip of one end of a long string (Figure 5-14a), a sudden 
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noise, or the brief opening of a shutter in front of a light source. The main characteris-
tic of a pulse is localization in time and space; whereas a single harmonic wave is not 
localized in either time or space. The description of a pulse can be obtained by the 
superposition of a group of harmonic waves of different frequencies and wavelengths. 
Such a group is called a wave packet (see Figure 5-14b). The mathematics of repre-
senting arbitrarily shaped pulses by sums of sine or cosine functions involves Fourier 
series and Fourier integrals. We will illustrate the phenomenon of wave packets by 
considering some simple and somewhat artificial examples and discussing the general 
properties qualitatively. Wave groups are particularly important because a wave 
description of a particle must include the important property of localization.

Consider a simple group consisting of only two waves of equal amplitude and 
nearly equal frequencies and wavelengths. Such a group occurs in the phenomenon of 
beats and is described in most introductory textbooks. The quantities k, v, and v are 
related to one another via Equations 5-13 and 5-14. Let the wave numbers be k1 and k2, 
the angular frequencies v1 and v2, and the speeds v1 and v2. The sum of the two 
waves is

y1x, t2 = y0 cos1k1 x - v1t2 + y0 cos1k2 x - v2 t2
which, with the use of a bit of trigonometry, becomes

y1x, t2 = 2y0 cosa Dk

2
 x -

Dv

2
 tb  cosa k1 + k2

2
 x -

v1 + v2

2
 tb

where Dk 5 k2 2 k1 and Dv 5 v2 2 v1. Since the two waves have nearly equal val-
ues of k and v, we will write k = 1k1 + k22 >2 and v = 1v1 + v22 >2 for the mean 
values. The sum is then

	 y1x, t2 = 2y0 cosa 1

2
 Dk x -

1

2
 Dv tb  cos1kx - vt2� 5-15

Figure 5-15 shows a sketch of y(x, t0) versus x at some time t0. The dashed curve is the 
envelope of the group of two waves, given by the first cosine term in Equation 5-15. 
The wave within the envelope moves with the speed v>k, the phase velocity vp due to 
the second cosine term. (Be aware that vp may exceed c.) If we write the first (amplitude 
modulating) term as cos51

2Dk3x - 1Dv>Dk2t4 6  we see that the envelope moves 
with speed Dv>Dk. The speed of the envelope is called the group velocity vg.

A more general wave packet can be constructed if, instead of adding just two 
sinusoidal waves as in Figure 5-15, we superpose a larger, finite number with slightly 

Figure 5-14  (a) Wave
pulse moving along a string. 
A pulse has a beginning and 
an end; that is, it is localized, 
unlike a pure harmonic wave, 
which goes on forever in 
space and time. (b) A wave 
packet formed by the 
superposition of harmonic 
waves.

(a)

(b)

Figure 5-15  Two waves of slightly different wavelength and frequency 
produce beats. (a) Shows y(x) at a given instant for each of the two waves. 
The waves are in phase at the origin, but because of the difference in 
wavelength, they become out of phase and then in phase again. (b) The sum 
of these waves. The spatial extent of the group Dx is inversely proportional 
to the difference in wave numbers Dk, where k is related to the wavelength 
by k = 2p>l. Identical figures are obtained if y is plotted versus time t at a 
fixed point x. In that case the extent in time Dt is inversely proportional to 
the frequency difference Dv.

(a)

(b)
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y

x
x1
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206	 Chapter 5  The Wavelike Properties of Particles

different wavelengths and different amplitudes. For example, Figure 5-16a illustrates 
the superposing of seven cosines with wavelengths from 9 = 1>9 to 15 = 1>15 
(wave numbers from k9 5 18p to k15 5 30p) at time t0. The waves are all in phase at 

x 5 0 and again at x 5 {12, x 5 {24,… Their sum y1x, t02 = a
15

i=9
yi1x, t02 oscillates 

with maxima at those values of x, decreasing and increasing at other values as a result 
of the changing phases of the waves (see Figure 5-16b). Now, if we superpose an infi-
nite number of waves from the same range of wavelengths and wave numbers as in 
Figure 5-16 with infinitesimally different values of k, the central group around
x 5 0 will be essentially the same as in that figure. However, the additional groups 
will no longer be present since there is now no length along the x axis into which an 
exactly integral number of all of the infinite number of component waves can fit. 
Thus, we have formed a single wave packet throughout this (one-dimensional) space. 
This packet moves at the group velocity vg = dv>dk. The mathematics needed to 

30π
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12

1

1/2

y0

k

k

1/4
1/3

3/4

16π 20π 24π

4π

28π 32π

y9 18π

y10 20π

y11 22π

y12 24π

y13 26π

y14

y15

28π

y = Σ yii

x (units of 1/12)

(a)

(b)

(c)

Figure 5-16  (a) Superposition of seven sinusoids yk(x, t) 5 y0k cos(kx 2 vt) with uniformly 
spaced wave numbers ranging from k 5 (2p)9 to k 5 (2p)15 with t 5 0. The maximum 
amplitude is 1 at the center of the range (k 5 (2p)12), decreasing to 1/2, 1/3, and 1/4, 

respectively, for the waves on each side of the central wave. (b) The sum y1x, 02 = a
15

i=9
yi1x, 02 

is maximum at x 5 0 with additional maxima equally spaced along the {x axis. (c) Amplitudes 
of the sinusoids yi versus wave number k.
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demonstrate the above involves use of the Fourier integral described in the Classical 
Concept Review.

The phase velocities of the individual harmonic waves are given by Equation 5-14:

vp = f  = a v

2p
b a 2p

k
b =

v

k

Writing this as v 5 kvp, the relation between the group and phase velocities is given 
by Equation 5-16:

	 vg =
dv

dk
= vp + k 

dvp

dk
	 5-16

If the phase velocity is the same for all frequencies and wavelengths, then dvp>dk = 0 
and the group velocity is the same as the phase velocity. A medium for which the 
phase velocity is the same for all frequencies is said to be nondispersive. Examples 
are waves on a perfectly flexible string, sound waves in air, and electromagnetic 
waves in a vacuum. An important characteristic of a nondispersive medium is that, 
since all the harmonic waves making up a packet move with the same speed, the 
packet maintains its shape as it moves; thus, it does not change its shape with time. 
Conversely, if the phase velocity is different for different frequencies, the shape of the 
pulse will change as it travels. In that case, the group velocity and phase velocity are 
not the same. Such a medium is called a dispersive medium; examples are water waves, 
waves on a wire that is not perfectly flexible, light waves in a medium such as glass or 
water, in which the index of refraction has a slight dependence on frequency, and 
electron waves. It is the speed of the packet, the group velocity vg, that is normally 
seen by an observer.

Classical Uncertainty Relations
Notice that the width of the group9 Dx of the superposition y(x, t0) in Figure 5-16b is 
just a bit larger than 1>12. Similarly, the graph of the amplitude of these waves versus 
k has width Dk 5 4p, which is a bit more than 12 (Figure 5-16c), so we see that

	 Dk Dx  1� 5-17

By a similar analysis, we would also conclude that

	 Dv Dt  1� 5-18

The range of wavelengths or frequencies of the harmonic waves needed to form a 
wave packet depends on the extent in space and duration in time of the pulse. In gen-
eral, if the extent in space Dx is to be small, the range Dk of wave numbers must be 
large. Similarly, if the duration in time Dt is small, the range of frequencies Dv must 
be large. We have written these as order-of-magnitude equations because the exact 
value of the products Dk Dx and Dv Dt depends on how these ranges are defined, as 
well as on the particular shape of the packets. Equation 5-18 is sometimes known as 
the response time–bandwidth relation, expressing the result that a circuit component 
such as an amplifier must have a large bandwidth (Dv) if it is to be able to respond to 
signals of short duration.

There is a slight variation of Equation 5-17 that is also helpful in interpreting the 
relation between Dx and Dk. Differentiating the wave number in Equation 5-13b yields

	 dk =
- 2p d 

2 	 5-19

CCR

The classical uncertainty 
relations define the range 
of signal frequencies 
to which all kinds 
of communications 
equipment and computer 
systems must respond, 
from cell phones to 
supercomputers.

25
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208	 Chapter 5  The Wavelike Properties of Particles

Replacing the differentials by small intervals and concerning ourselves only with 
magnitudes, Equation 5-19 becomes

Dk =
2p Dl

l2

which when substituted into Equation 5-17 gives

	 Dx Dl 
l2

2p
	 5-20

Equation 5-20 says that the product of the spatial extent of a classical wave Dx 
and the uncertainty (or “error”) in the determination of its wavelength Dl will always 
be of the order of l2>2p. The following brief examples will illustrate the meaning of 
Equations 5-17 and 5-18, often referred to as the classical uncertainty relations, and 
Equation 5-20.

EXAMPLE 5-4	 Dl for Ocean Waves ​ Standing in the middle of a 20-m-long 
pier, you notice that at any given instant there are 15 wave crests between the two 
ends of the pier. Estimate the minimum uncertainty in the wavelength that could be 
computed from this information.

SOLUTION
	 1.	 The minimum uncertainty Dl in the wavelength is given by Equation 5-20:

Dx Dl =
l2

2p

	 2.	 The wavelength l of the waves is

l =
20 m

15 waves
= 1.3 m

	 3.	 The spatial extent of the waves used for this calculation is

Dx = 20 m

	 4.	 Solving Equation 5-20 for Dl and substituting these values gives

 Dl =
l2

2p Dx
=
11.3 m22

2p * 20 m

 = 0.013 m

 Dl  0.01 m = 1 cm

Remarks:  This is the minimum uncertainty. Any error that may exist in the mea-
surement of the number of wave crests and the length of the pier would add further 
uncertainty to the determination of l.

EXAMPLE 5-5	 Frequency Control ​ The frequency of the alternating voltage 
produced at electric generating stations is carefully maintained at 60.00 Hz (in North 
America). The frequency is monitored on a digital frequency meter in the control 
room. For how long must the frequency be measured and how often can the display 
be updated if the reading is to be accurate to within 0.01 Hz?
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SOLUTION
Since v 5 2pf, then Dv 5 2pDf 5 2p(0.01) rad/s and

 Dt  1>Dv = 1>2p10.012
 Dt  16 s

Thus, the frequency must be measured for about 16 s if the reading is to be accurate to 
0.01 Hz and the display cannot be updated more often than once every 16 seconds.

Questions

4.	 Which is more important for communication, the group velocity or the phase 
velocity?

5.	 What are D  x and Dk for a purely harmonic wave of a single frequency and 
wavelength?

Particle Wave Packets
The quantity analogous to the displacement y(x, t) for waves on a string, to the pres-
sure P(x, t) for a sound wave, or to the electric field 1x, t2 for electromagnetic waves 
is called the wave function for particles and is usually designated C1x, t2. It is C1x, t2 
that we will relate to the probability of finding the particle and, as we alerted you ear-
lier, it is the probability that waves. Consider, for example, an electron wave consist-
ing of a single frequency and wavelength; we could represent such a wave by any of 
the following, exactly as we did the classical wave: C(x, t) 5 A cos(kx 2 vt), C(x, t) 5 
A sin(kx 2 vt), or C1x, t2=A ei1kx-vt2.

The phase velocity for this wave is given by

vp = f l = 1E>h2 1h>p2 = E>p
where we have used the de Broglie relations for the wavelength and frequency. Using 
the nonrelativistic expression for the energy of a particle moving in free space (i.e., no 
potential energy) with no forces acting on it,

E =
1

2
 mv2 =

p2

2m

we see that the phase velocity is

vp = E>p = 1p2>2m2 >p = p>2m = v>2
that is, the phase velocity of the wave is half the velocity of an electron with momen-
tum p. The phase velocity does not equal the particle velocity. Moreover, a wave of a 
single frequency and wavelength is not localized but is spread throughout space, 
which makes it difficult to see how the particle and wave properties of the electron 
could be related. Thus, for the electron to have the particle property of being local-
ized, the matter waves of the electron must also be limited in spatial extent—that is, 
realistically, C1x, t2 must be a wave packet containing many more than one wave 
number k and frequency v. It is the wave packet C1x, t2 that we expect to move at a 
group velocity equal to the particle velocity, which we will show below is indeed the 
case. The particle, if observed, we will expect to find somewhere within the spatial 
extent of the wave packet C1x, t2, precisely where within being the subject of the 
next section.
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To illustrate the equality of the group velocity vg and the particle velocity v, it is 
convenient to express de Broglie’s relations in a slightly different form. Writing 
Equation 5-1 as follows,

	 E = hf = hv>2p  or  E = Uv� 5-21

and Equation 5-2 as

	 p =
h

l
=

h

2p>k =
hk

2p
  or  p = Uk� 5-22

the group velocity is then given by

vg = dv>dk = 1dE>U2 > 1dp>U2 = dE>dp

Again using the nonrelativistic expression E = p2>2m, we have that

vg = dE>dp = p>m = v

and the wave packet C1x, t2 moves with the velocity of the electron. This was, in fact, 
one of de Broglie’s reasons for choosing Equations 5-1 and 5-2. (De Broglie used the 
relativistic expression relating energy and momentum, which also leads to the equal-
ity of the group velocity and particle velocity.)

5-4  The Probabilistic Interpretation
of the Wave Function 
Let us consider in more detail the relation between the wave function C1x, t2 and the 
location of the electron. We can get a hint about this relation from the case of light. 
The wave equation that governs light is Equation 5-11, with, y 5 , the electric field, 
as the wave function. The energy per unit volume in a light wave is proportional to 2, 
but the energy in a light wave is quantized in units of hf for each photon. We expect, 
therefore, that the number of photons in a unit volume is proportional to 2, a connec-
tion first pointed out by Einstein.

Consider the famous double-slit interference experiment (see Figure 5-17). The 
pattern observed on the screen is determined by the interference of the waves from the 
slits. At a point on the screen where the wave from one slit is 180 out of phase with 
that from the other, the resultant electric field is zero; there is no light energy at this 
point, and this point on the screen is dark. If we reduce the intensity to a very low 
value, we can still observe the interference pattern if we replace the ordinary screen 
with a scintillation screen or a two-dimensional array of tiny photon detectors (e.g., a 
CCD camera) and wait a sufficient length of time.

The interaction of light with the detector or scintillator is a quantum phenome-
non. If we illuminate the scintillators or detectors for only a very short time with a 
low-intensity source, we do not see merely a weaker version of the high-intensity 
pattern; we see, instead, “dots” caused by the interactions of individual photons 
(see Figure 5-18). At points where the waves from the slits interfere destructively, 
there are no dots, and at points where the waves interfere constructively, there are 
many dots. However, when the exposure is short and the source weak, random fluc-
tuations from the average predictions of the wave theory are clearly evident. If the 
exposure is long enough that many photons reach the detector, the fluctuations 
average out and the quantum nature of light is not noticed. The interference pattern 
depends only on the total number of photons interacting with the detector and not 

An application of phase 
and particle speeds by 
nature: produce a wave 
on a still pond (or in a 
bathtub) and watch the 
wavelets that make up 
the wave appear to “climb 
over” the wave crest at 
twice the speed of the 
wave.
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on the rate. Even when the intensity is so low that only one photon at a time reaches 
the detector, the wave theory predicts the correct average pattern. For low intensi-
ties, we therefore interpret 2 as proportional to the probability of detecting a pho-
ton in a unit volume of space. At points on the detector where 2 is zero, photons 
are never observed, whereas they are most likely to be observed at points where 2 
is large.

Figure 5-17  Two-source 
interference pattern. If the 
sources are coherent and 
in phase, the waves from 
the sources interfere 
constructively at points for 
which the path difference 
(d sin u) is an integral
number of wavelengths.

S1

S2
S1

S2

θ

θ

d sin θ

d

I

Figure 5-18  Growth of two-slit interference pattern. The photo (d ) is an actual two-slit electron interference pattern in which 
the film was exposed to millions of electrons. The pattern is identical to that usually obtained with photons. If the film were to 
be observed at various stages, such as after being struck by 28 electrons, then after about 1000 electrons and again after about 
10,000 electrons the patterns of individually exposed grains would be similar to those shown in (a), (b), and (c), except that the 
exposed dots would be smaller than the dots drawn here. Note that there are no dots in the region of the interference minima. 
The probability of any point of the film being exposed is determined by wave theory, whether the film is exposed by electrons or 
photons. [Parts (a), (b), and (c) from E. R. Huggins, Physics 1, © by W. A. Benjamin, Inc., Menlo Park, California. Photo (d) courtesy 
of C. Jonsson.]

(a)

(b)

(c)

(d )
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It is not necessary to use light waves to produce an interference pattern. Such pat-
terns can be produced with electrons and other particles as well. In the wave theory of 
electrons the de Broglie wave of a single electron is described by a wave function C. 
The amplitude of C at any point is related to the probability of finding the particle 
at that point. In analogy with foregoing interpretation of 2, the quantity  C  2 is 
proportional to the probability of detecting an electron in a unit volume, where 
 C  2 K C*C, the function C* being the complex conjugate of C. In one dimension, 
 C  2

 dx is the probability of an electron being in the interval dx10 (see Figure 5-19.) 
If we call this probability P(x)dx, where P(x) is the probability distribution function, 
we have

	 P1x2dx =  C  2
 dx� 5-23

In the next chapter we will more thoroughly discuss the amplitudes of matter waves 
associated with particles, in particular developing the mathematical system for com-
puting the amplitudes and probabilities in various situations. The uneasiness that you 
may feel at this point regarding the fact that we have not given a precise physical 
interpretation to the amplitude of the de Broglie matter wave can be attributed in part 
to the complex nature of the wave amplitude; that is, it is in general a complex func-
tion with a real part and an imaginary part, the latter proportional to i = 1-121>2. 
We cannot directly measure or physically interpret complex numbers in our world of 

Figure 5-19  A three-dimensional wave packet 
representing a particle moving along the x axis. The
dot indicates the position of a classical particle. Note 
that the packet spreads out in the x and y directions. 
This spreading is due to dispersion, resulting from the 
fact that the phase velocity of the individual waves 
making up the packet depends on the wavelength of 
the waves. (For a four-dimensional packet—not 
shown—spreading would also occur in the z direction.)
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real numbers. However, as we will see, defining the probability in terms of  C  2, 
which is always real, presents no difficulty in its physical interpretation. Thus, even 
though the amplitudes of the wave functions C have no simple meaning, the waves 
themselves behave just as do classical waves, exhibiting the wave characteristics of 
reflection, refraction, interference, and diffraction and obeying the principles of 
superposition.

5-5  The Uncertainty Principle 
The uncertainty relations for classical wave packets (Equations 5-17 and 5-18) have 
very important matter wave analogs.

Consider a wave packet C(x, t) representing an electron. The most probable posi-
tion of the electron is the value of x for which  C1x, t2  2 is a maximum. Since 
 C1x, t2  2 is proportional to the probability that the electron is at x, and  C1x, t2  2 is 
nonzero for a range of values of x, there is an uncertainty in the value of the position 
of the electron (see Figure 5-19). This means that if we make a number of position 
measurements on identical electrons—electrons with the same wave function—we 
will not always obtain the same result. In fact, the distribution function for the results 
of such measurements will be given by  C1x, t2  2. If the wave packet is very narrow, 
the uncertainty in position will be small. However, a narrow wave packet must con-
tain a wide range of wave numbers k. Since the momentum is related to the wave 
number by p 5 Uk, a wide range of k values means a wide range of momentum values. 
We have seen that for all wave packets the ranges D x and Dk are related by

	 Dk Dx  1	 5-17

Similarly, a packet that is localized in time Dt must contain a range of frequencies 
Dv, where the ranges are related by

	 Dv Dt  1	 5-18

Equations 5-17 and 5-18 are inherent properties of waves. If we multiply these equa-
tions by U and use p = Uk and E = Uv, we obtain

	 Dx Dp  U	 5-24

and

	 DE Dt  U	 5-25

Equations 5-24 and 5-25 provide a statement of the uncertainty principle first enunci-
ated in 1927 by Werner K. Heisenberg.11 Equation 5-24 expresses the physical reality 
that the distribution functions for position and momentum cannot both be made 
arbitrarily narrow simultaneously (see Figure 5-16); thus, measurements of position 
and momentum will have similar uncertainties that are related by Equation 5-24. 
Of course, because of inaccurate measurements, the product of Dx and Dp can be and 
usually is much larger than U. The lower limit is not due to any technical problem in 
the design of measuring equipment that might be solved at some later time; it is 
instead due to the wave and particle nature of both matter and light.

If we define precisely what we mean by the uncertainty in the measurements of 
position and momentum, we can give a precise statement of the uncertainty principle. 
For example, if sx is the standard deviation for measurements of position and sk is the 
standard deviation for measurements of the wave number, the product sx sk has its 
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minimum value of 1/2 when the distribution functions are Gaussian. If we define Dx 
and Dp to be the standard deviations, the minimum value of their product is U>2. Thus

	 Dx Dp Ú
1

2
 U	 5-26

Similarly,

	 DE Dt Ú
1

2
 U	 5-27

Question

6.	 Does the uncertainty principle say that the momentum of a particle can never be 
precisely known?

EXPLORING
The Gamma-Ray Microscope

Let us see how one might attempt to make a measurement so accurate as to violate the 
uncertainty principle. A common way to measure the position of an object such as an 
electron is to look at it with light, that is, scatter light from it and observe the diffraction 
pattern. The momentum can be obtained by looking at it again a short time later and 
computing what velocity it must have had the instant before the light scattered from it. 
Because of diffraction effects, we cannot hope to make measurements of length (posi-
tion) that are smaller than the wavelength of the light used, so we will use the shortest-
wavelength light that can be obtained, gamma rays. (There is, in principle, no limit to 
how short the wavelength of electromagnetic radiation can be.) We also know that light 
carries momentum and energy, so that when it scatters off the electron, the motion of the 
electron will be disturbed, affecting the momentum. We must therefore use the mini-
mum intensity possible so as to disturb the electron as little as possible. Reducing the 
intensity decreases the number of photons, but we must scatter at least one photon to 
observe the electron. The minimum possible intensity, then, is that corresponding to one 
photon. The scattering of a photon by a free electron is, of course, a Compton scattering 
event, which was discussed in Section 3-4. The momentum of the photon is hf>c = h>l.
The smaller l that is used to measure the position, the more the photon will disturb the 
electron, but we can correct for that with a Compton-effect analysis, provided only that 
we know the photon’s momentum and the scattering angles of the event.

Figure 5-20 illustrates the problem. (This illustration was first given as a gedanken 
experiment, or thought experiment, by Heisenberg. Since a single photon doesn’t form 
a diffraction pattern, think of the diffraction pattern as being built up by photons from 
many identical scattering experiments.) The position of the electron is to be determined 
by viewing it through a microscope. We will assume that only one photon is used. We 
can take for the uncertainty in position the minimum separation distance for which two 
objects can be resolved; this is12

Dx =
l

2 sin u

where u is the half angle subtended by the lens aperture, as shown in Figure 5-20a and b. 
Let us assume that the x component of momentum of the incoming photon is known 

Heisenberg’s uncertainty 
principle is the key to 
the existence of virtual 
particles that hold the 
nuclei together (see 
Chapter 11) and is the root 
of quantum fluctuations 
that may have been the 
origin of the Big Bang (see 
Chapter 13).
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precisely from a previous measurement. To reach the screen and contribute to the dif-
fraction pattern in Figure 5-20c, the scattered photon need only go through the lens 
aperture. Thus, the scattered photon can have any x component of momentum from 0 to 
px 5 p sin u, where p is the total momentum of the scattered photon. By conservation of 
momentum, the uncertainty in the momentum of the electron after the scattering must 
be greater than or equal to that of the scattered photon (it would be equal, of course, if 
the electron’s initial momentum were known precisely); so we write

Dpx Ú p sin u =
h

l
 sin u

Light
source

x component of electron’s
recoil momentum
(h /λ) sin θ�

x component of photon’s
recoil momentum   (h /λ) sin θ�

Scattered
photon

Incident
photon

Electron

Lens

Screen

θ

Photons that
go through lens
are restricted to
this region

pγ = hf /c = h /λ

θ
θ�

Intensity

x
∆x

Diffraction pattern
seen on screen

(a)

(b)

(c)

Figure 5-20  (a) “Seeing an electron” 
with a gamma-ray microscope. 
(b) Because of the size of the lens, the 
momentum of the scattered photon is 
uncertain by Dpx  p sin u = h sin u>l. 
Thus, the recoil momentum of the 
electron is also uncertain by at least this 
amount. (c) The position of the electron 
cannot be resolved better than the width 
of the central maximum of the diffraction 
pattern Dx  l>sin u. The product of 
the uncertainties Dpx Dx is therefore of 
the order of Planck’s constant h.
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and

Dx Dpx Ú
l

2 sin u
 
h sin u

l
=

1

2
h

Thus, even though the electron prior to our observation may have had a definite posi-
tion and momentum, our observation has unavoidably introduced an uncertainty in the 
measured values of those quantities. This illustrates the essential point of the uncer-
tainty principle—that this product of uncertainties cannot be less than about h in prin-
ciple, that is, even in an ideal situation. If electrons rather than photons were used to 
locate the object, the analysis would not change since the relation l = h>p is the same 
for both.

5-6  ​Some Consequences of 
the Uncertainty Principle 
In the next chapter we will see that the Schrödinger wave equation provides a 
straightforward method of solving problems in atomic physics. However, the solution 
of the Schrödinger equation is often laborious and difficult. Much semi-quantitative 
information about the behavior of atomic systems can be obtained from the uncer-
tainty principle alone without a detailed solution of the problem. The general 
approach used in applying the uncertainty principle to such systems will first be 
illustrated by considering a particle moving in a box with rigid walls. We then use 
that analysis in several numerical examples and as a basis for discussing some addi-
tional consequences.

Minimum Energy of a Particle in a Box
An important consequence of the uncertainty principle is that a particle confined to a 
finite space cannot have zero average kinetic energy. Let us consider the case of a 
one-dimensional “box” of length L. If we know that the particle is in the box, Dx is 
not larger than L. This implies that Dp is at least U>L. (Since we are interested in 
orders of magnitude, we will ignore the 1>2 in the minimum uncertainty product. In 
general, distributions are not Gaussian anyway, so Dp D x will be larger than U>2.) Let 
us take the standard deviation as a measure of Dp:

1Dp22 = 1p - p22
av = 1p2 - 2pp + p22av = p2 - p2

If the box is symmetric, p will be zero since the particle moves to the left as often as 
to the right. Then

1Dp22 = p2 Ú a U
L
b

2

and the average kinetic energy is

	 E =
p2

2m
Ú

U2

2mL2	 5-28

Thus, we see that the uncertainty principle indicates that the minimum energy of a 
particle (any particle) in a “box” (any kind of “box”) cannot be zero. This minimum 
average kinetic energy given by Equation 5-28 for a particle in a one-dimensional box 
is called the zero point energy.
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EXAMPLE 5-6	 A Macroscopic Particle in a Box ​ Consider a small but mac-
roscopic particle of mass m 5 1026 g confined to a one-dimensional box with
L 5 1026 m, for example, a tiny bead on a very short wire. Compute the bead’s 
minimum kinetic energy and the corresponding speed.

SOLUTION
	 1.	 The minimum kinetic energy is given by Equation 5-28:

 E =
U2

2mL2 =
11.055 * 10-34 J # s22

122 110-9 kg2 110-6 m22

 = 5.57 * 10-48 J

 = 3.47 * 10-29 eV

	 2.	 The speed corresponding to this kinetic energy is

 v = A2E
m

= B215.57 * 10-48 J2
10-9 kg

 = 1.06 * 10-19 m>s

Remarks:  We can see from this calculation that the minimum kinetic energy implied 
by the uncertainty principle is certainly not observable for macroscopic objects, 
even ones as small as 1026 g.

EXAMPLE 5-7	 An Electron in an Atomic Box ​ If the particle in a one-
dimensional box of length L 5 0.1 nm (about the diameter of an atom) is an electron, 
what will be its zero-point energy?

SOLUTION
Again using Equation 5-28, we find that

E =
1Uc22

2mc2
 L2 =

1197.3  eV # nm22

210.511 * 106 eV2 10.1 nm22 = 3.81 eV

This is the correct order of magnitude for the kinetic energy of an electron in an atom.

Size of the Hydrogen Atom
The energy of an electron of momentum p a distance r from a proton is

E =
p2

2m
-

ke2

r

If we take for the order of magnitude of the position uncertainty D x 5 r, we have

1Dp22 = p2 Ú
U2

r 2

The energy is then

E =
U2

2mr 2 -
ke2

r
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There is a radius rm at which E is a minimum. Setting dE>dr = 0 yields rm and Em:

rm =
U2

ke2
 m

= a0 = 0.0529 nm

and

Em = -
k2

 e4
 m

2U2 = -13.6 eV

The fact that rm came out to be exactly the radius of the first Bohr orbit is due to the 
judicious choice of Dx 5 r rather than 2r or r>2, which are just as reasonable. It 
should be clear, however, that any reasonable choice for D x gives the correct order of 
magnitude of the size of an atom.

Widths of Spectral Lines
Equation 5-27 implies that the energy of a system cannot be measured exactly unless 
an infinite amount of time is available for the measurement. If an atom is in an excited 
state, it does not remain in that state indefinitely but makes transitions to lower energy 
states until it reaches the ground state. The decay of an excited state is a statistical 
process.

We can take the mean time for decay t, called the lifetime, to be a measure of the 
time available to determine the energy of the state. For atomic transitions, t is of the 
order of 1028 s. The uncertainty in the energy corresponding to this time is

DE Ú
U

t
=

6.58 * 10-16 eV # s
10-8 s

 10-7 eV

This uncertainty in energy causes a spread Dl in the wavelength of the light emit-
ted. For transitions to the ground state, which has a perfectly certain energy E0 
because of its infinite lifetime, the percentage spread in wavelength can be calcu-
lated from

 E - E0 =
hc

l

 dE = -hc 
d l

l2

  DE   hc 
 Dl 

l2

thus,

Dl

l


DE

E - E0

The energy width DE = U>t is called the natural line width and is represented by G0. 
Other effects that cause broadening of spectral lines are the Doppler effect, the recoil 
of the emitting atom, and atomic collisions. For optical spectra in the eV energy 
range, the Doppler width D is about 1026 eV at room temperature, that is, roughly
10 times the natural width G0, and the recoil width is negligible. For nuclear transi-
tions in the MeV range, both the Doppler width and the recoil width are of the order 
of eV, much larger than the natural line width. We will see in Chapter 11 that in some 
special cases of atoms in solids at low temperatures, the Doppler and recoil widths are 
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essentially zero and the width of the spectral line is just the natural width. This effect, 
called the Mössbauer effect after its discoverer, is extremely important since it provides 
photons of well-defined energy, which are useful in experiments demanding extreme 
precision. For example, the 14.4 keV photon from 57Fe has a natural width of the 
order of 10211 of its energy.

Questions

7.	 What happens to the zero-point energy of a particle in a one-dimensional box as 
the length of the box L S ?

8.	 Why is the uncertainty principle not apparent for macroscopic objects?

EXAMPLE 5-8	 Emission of a Photon ​ Most excited atomic states decay, that is, 
emit a photon, within about t 5 1028 s following excitation. What is the minimum 
uncertainty in the (1) energy and (2) frequency of the emitted photon?

SOLUTION
	 1.	 The minimum energy uncertainty is the natural line width G0 = U>t; therefore,

G0 =
6.63 * 10-34 J # s

2p * 10-8 s
=

4.14 * 10-15 eV # s
2p * 10-8 s

= 6.6 * 10-8 eV

	 2.	 From de Broglie’s relation E = Uv, we have

DE = U  Dv = U12p Df2 = h Df

		  so that Equation 5-27 can be written as

DE Dt = h DfDt Ú U

		  and the minimum uncertainty in the frequency becomes

 Df Ú
1

2p Dt
=

1

2p * 10-8

 Df Ú 1.6 * 107 Hz

Remark:  The frequency of photons in the visible region of the spectrum is of the 
order of 1014 Hz.

5-7  Wave-Particle Duality 
We have seen that electrons, which were once thought of as simply particles, exhibit 
the wave properties of diffraction and interference. In earlier chapters we saw that 
light, which we previously had thought of as a wave, also has particle properties in 
its interaction with matter, as in the photoelectric effect or the Compton effect. All 
phenomena—electrons, atoms, light, sound—have both particle and wave charac-
teristics. It is sometimes said that an electron, for example, behaves both as a 
wave and a particle. This may seem confusing since, in classical physics, the con-
cepts of waves and particles are mutually exclusive. A classical particle behaves like 
a pellet or BB shot from an air-powered rifle. It can be localized and scattered, it 
exchanges energy suddenly in a lump, and it obeys the laws of conservation of 
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energy and momentum in collisions, but it does not exhibit interference and diffrac-
tion. A classical wave behaves like a water wave. It exhibits diffraction and inter-
ference patterns and has its energy spread out continuously in space and time, not 
quantized in lumps. Nothing, it was thought, could be both a classical particle and a 
classical wave.

We now see that the classical concepts do not adequately describe either waves 
or particles. Both matter and radiation have both particle and wave aspects. When 
emission and absorption are being studied, it is the particle aspects that are dominant. 
When matter and radiation propagate though space, wave aspects dominate. Notice 
that emission and absorption are events characterized by exchange of energy and dis-
crete locations. For example, light strikes the retina of your eye and a photon is 
absorbed, transferring its energy to a particular rod or cone: an observation has 
occurred. This illustrates the point that observations of matter and radiation are 
described in terms of the particle aspects. On the other hand, predicting the intensity 
distribution of the light on your retina involves consideration of the amplitudes of 
waves that have propagated through space and been diffracted at the pupil. Thus, pre-
dictions, that is, a priori statements about what may be observed, are described in 
terms of the wave aspects. Let’s elaborate on this just a bit.

Every phenomenon is describable by a wave function that is the solution of a 
wave equation. The wave function for light is the electric field (x, t) (in one space 
dimension), which is the solution of a wave equation such as Equation 5-11. We have 
called the wave function for an electron C(x, t). We will study the wave equation of 
which C is the solution, called the Schrödinger equation, in the next chapter. The 
magnitude squared of the wave function gives the probability per unit volume that the 
electron, if looked for, will be found in a given volume or region. The wave function 
exhibits the classical wave properties of interference and diffraction. In order to pre-
dict where an electron, or other particle, is likely to be, we must find the wave func-
tion by methods similar to those of classical wave theory. When the electron (or light) 
interacts and exchanges energy and momentum, the wave function is changed by the 
interaction. The interaction can be described by classical particle theory, as is done in 
the Compton effect. There are times when classical particle theory and classical wave 
theory give the same results. If the wavelength is much smaller than any object or 
aperture, particle theory can be used as well as wave theory to describe wave propa-
gation, because diffraction and interference effects are too small to be observed. 
Common examples are geometrical optics, which is really a particle theory, and the 
motion of baseballs and jet aircraft. If one is interested only in time averages of energy 
and momentum exchange, the wave theory works as well as the particle theory. For 
example, the wave theory of light correctly predicts that the total electron current in 
the photoelectric effect is proportional to the intensity of the light.

More
�That matter can exhibit wavelike characteristics as well as parti-
clelike behavior can be a difficult concept to understand. A won-
derfully clear discussion of wave-particle duality was given by 
R. P. Feynman, and we have used it as the basis of our explanation 
on the home page of the Two-Slit Interference Pattern for electrons: 
www.whfreeman.com/tiplermodernphysics6e. See also Figures 5-21 
and 5-22 and Equation 5-29 here.

More
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 De Broglie relations f = E>h� 5-1

l = h>p� 5-2

Electrons and all other particles exhibit the wave properties of 
interference and diffraction.

2.	 Detecting electron waves

	 Davisson and Germer

Showed that electron waves diffracted from a single Ni crystal 
according to Bragg’s equation.

nl 5 D sin � 5-5

3.	 Wave packets

	 Wave equation

	 Uncertainty relations

	 Wave speed

	 Group (packet) speed

	 Matter waves

d2
 y

dx 2 =
1

v2 
d2

 y

dt2 � 5-11

Dk Dx  1� 5-17
Dv Dt  1� 5-18

vp = f l = v>k

vg =
dv

dk
= vp + k 

dvp

dk
� 5-16

The wave packet moves with the particle speed; that is, the particle 
speed is the group speed vg.

4.	 Probabilistic interpretation The magnitude square of the wave function is proportional to the 
probability of observing a particle in the region dx at x and t.

P1x2dx =  C  2
 dx� 5-23

5.	 Heisenberg uncertainty principle

	 Particle in a box

	 Energy of H atom

Dx Dp Ú
1

2
 U� 5-26

DE Dt Ú
1

2
 U� 5-27

where each of the uncertainties is defined to be the standard deviation.

E Ú
U2

2mL2� 5-28

The minimum energy of any particle in any “box” cannot be zero.

The Heisenberg principle predicts Emin 5 213.6 eV in agreement with the 
Bohr model.

General References 
The following general references are written at a level 
appropriate for the readers of this book.

De Broglie, L., Matter and Light: The New Physics, Dover, 
New York, 1939. In this collection of studies is de Bro-
glie’s lecture on the occasion of receiving the Nobel 
Prize, in which he describes his reasoning leading to the 
prediction of the wave nature of matter.

Feynman, R., “Probability and Uncertainty—The Quantum-
Mechanical View of Nature,” filmed lecture, available 
from Educational Services, Inc., Film Library, 
Newton, MA.

Feynman, R. P., R. B. Leighton, and M. Sands, Lectures on 
Physics, Addison-Wesley, Reading, MA, 1965.

Fowles, G. R., Introduction to Modern Optics, Holt, Rinehart & 
Winston, New York, 1968.
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Hecht, E., Optics, 2d ed., Addison-Wesley, Reading, MA, 
1987.

Jenkins, F. A., and H. E. White, Fundamentals of Optics, 
4th ed., McGraw-Hill, New York, 1976.

Mehra, J., and H. Rechenberg, The Historical Development of
Quantum Theory, vol. 1, Springer-Verlag, New York, 1982.

Resnick, R., and D. Halliday, Basic Concepts in Relativity and 
Early Quantum Theory, 2d ed., Wiley, New York, 1992.

Tipler, P. A., and G. Mosca, Physics for Scientists and Engi-
neers, 6th ed., W. H. Freeman and Co., New York, 2008. 
Chapters 15 and 16 include a complete discussion of 
classical waves.

Notes 
1.	 Louis V. P. R. de Broglie (1897–1987), French physi-

cist. Originally trained in history, he became interested in 
science after serving as a radio engineer in the French army 
(assigned to the Eiffel Tower) and through the work of his 
physicist brother Maurice. The subject of his doctoral disser-
tation received unusual attention because his professor, Paul 
Langevin (who discovered the principle on which sonar is 
based), brought it to the attention of Einstein, who described 
de Broglie’s hypothesis to Lorentz as “the first feeble ray of 
light to illuminate . . . the worst of our physical riddles.” He 
received the Nobel Prize in Physics in 1929, the first person 
so honored for work done for a doctoral thesis.

2.	 L. de Broglie, New Perspectives in Physics, Basic Books, 
New York, 1962.

3.	 See, for example, Tipler, Physics for Scientists and 
Engineers, 5th ed. (New York: W. H. Freeman and Co., 
2008), Section 35-5.

4.	 Jean-Baptiste Perrin (1870–1942), French physicist. He was 
the first to show that cathode rays were actually charged par-
ticles, setting the stage for J. J. Thomson’s measurement of their 
q>m ratio. He was also the first to measure the approximate size 
of atoms and molecules and determined Avogadro’s number. He 
received the Nobel Prize in Physics for that work in 1926.

5.	 Clinton J. Davisson (1881–1958), American physicist. 
He shared the 1937 Nobel Prize in Physics with G. P. Thom-
son for demonstrating the diffraction of particles. Davisson’s 
Nobel Prize was the first ever awarded for work done some-
where other than at an academic institution. Germer was one 
of Davisson’s assistants at Bell Telephone Laboratory.

6.	 Matter (electron) waves, like other waves, change their 
direction in passing from one medium (e.g., Ni crystal) into 
another (e.g., vacuum,) in the manner described by Snell’s 
law and the indices of refraction of the two media. For normal 
incidence Equation 5-5 is not affected, but for other incident 
angles it is altered a bit, and that change has not been taken 
into account in either Figure 5-6 or 5-7.

7.	 Nobel Prize Lectures: Physics (Amsterdam and New York: 
Elsevier, 1964).

8.	 In spectroscopy, the quantity k 5 l21 is called the wave 
number. In the theory of waves, the term wave number is used 
for k = 2p>l.

9.	 Following convention, the “width” is defined as the full 
width of the pulse or envelope measured at half the maximum 
amplitude.
10.	 This interpretation of  C  2 was first developed by the 
German physicist Max Born (1882–1970). One of his posi-
tions early in his career was at the University of Berlin, where 
he was to relieve Planck of his teaching duties. Born received 
the Nobel Prize in Physics in 1954, in part for his interpreta-
tion of  C  2.
11.	 Werner K. Heisenberg (1901–1976), German physicist. 
After obtaining his Ph.D. under Sommerfeld, he served as an 
assistant to Born and to Bohr. He was the director of research 
for Germany’s atomic bomb project during World War II. His 
work on quantum theory earned him the Nobel Prize in Phys-
ics in 1932.
12.	 The resolving power of a microscope is discussed in 
some detail in Jenkins and White, Fundamentals of Optics, 
4th ed. (New York: McGraw-Hill, 1976), pp. 332–334. The 
expression for Dx used here is determined by Rayleigh’s cri-
terion, which states that two points are just resolved if the 
central maximum of the diffraction pattern from one falls at 
the first minimum of the diffraction pattern of the other.
13.	 Richard P. Feynman (1918–1988), American physicist. 
This discussion is based on one in his classic text Lectures on 
Physics (Reading, MA: Addison-Wesley, 1965). He shared 
the 1965 Nobel Prize in Physics for his development of quan-
tum electrodynamics (QED). It was Feynman who, while a 
member of the commission on the space shuttle Challenger 
disaster, pointed out that the booster stage O-rings were at 
fault. A genuine legend in American physics, he was also an 
accomplished bongo drummer and safecracker.

Problems 
Level I
Section 5-1  The de Broglie Hypothesis
5-1.	 (a) What is the de Broglie wavelength of a 1 g mass moving at a speed of 1 m per 
year? (b) What should be the speed of such a mass if its de Broglie wavelength is to be 1 cm?

TIPLER_05_193-228hr.indd   222 8/22/11   11:40 AM



	 Problems	 223

5-2.	 If the kinetic energy of a particle is much greater than its rest energy, the relativistic 
approximation E  pc holds. Use this approximation to find the de Broglie wavelength of 
an electron of energy 100 MeV.
5-3.	 Electrons in an electron microscope are accelerated from rest through a potential 
difference V0 so that their de Broglie wavelength is 0.04 nm. What is V0?
5-4.	 Compute the de Broglie wavelengths of (a) an electron, (b) a proton, and (c) an alpha 
particle of 4.5 keV kinetic energy.
5-5.	 According to statistical mechanics, the average kinetic energy of a particle at tem-
perature T is 3kT>2, where k is the Boltzmann constant. What is the average de Broglie 
wavelength of nitrogen molecules at room temperature?
5-6.	 Find the de Broglie wavelength of a neutron of kinetic energy 0.02 eV (this is of the 
order of magnitude of kT at room temperature).
5-7.	 A free proton moves back and forth between rigid walls separated by a distance L 5 
0.01 nm. (a) If the proton is represented by a one-dimensional standing de Broglie wave 
with a node at each wall, show that the allowed values of the de Broglie wavelength are 
given by l = 2L>n, where n is a positive integer. (b) Derive a general expression for the 
allowed kinetic energy of the proton and compute the values for n 5 1 and 2.
5-8.	 What must be the kinetic energy of an electron if the ratio of its de Broglie wave-
length to its Compton wavelength is (a) 102, (b) 0.2, and (c) 1023?
5-9.	 Compute the wavelength of a cosmic-ray proton whose kinetic energy is (a) 2 GeV 
and (b) 200 GeV.

Section 5-2  Measurements of Particle Wavelengths
5-10.	 What is the Bragg scattering angle w for electrons scattered from a nickel crystal if 
their energy is (a) 75 eV, (b) 100 eV?
5-11.	 Compute the kinetic energy of a proton whose de Broglie wavelength is 0.25 nm. 
If a beam of such protons is reflected from a calcite crystal with crystal plane spacing of 
0.304 nm, at what angle will the first-order Bragg maximum occur?
5-12.	 (a) The scattering angle for 50 eV electrons from MgO is 55.6. What is the crystal 
spacing D? (b) What would be the scattering angle for 100 eV electrons?
5-13.	 A certain crystal has a set of planes spaced 0.30 nm apart. A beam of neutrons 
strikes the crystal at normal incidence and the first maximum of the diffraction pattern 
occurs at  5 42. What are the de Broglie wavelength and kinetic energy of the neutrons?
5-14.	 Show that in Davisson and Germer’s experiment with 54 eV electrons using the D 5 
0.215 nm planes, diffraction peaks with n 5 2 and higher are not possible.
5-15.	 A beam of electrons with kinetic energy 350 eV is incident normal to the surface 
of a KCl crystal, which has been cut so that the spacing D between adjacent atoms in the 
planes parallel to the surface is 0.315 nm. Calculate the angle  at which diffraction peaks 
will occur for all orders possible.

Section 5-3  Wave Packets
5-16.	 Information is transmitted along a cable in the form of short electric pulses at 
100,000 pulses/s. (a) What is the longest duration of the pulses such that they do not over-
lap? (b) What is the range of frequencies to which the receiving equipment must respond 
for this duration?
5-17.	 Two harmonic waves travel simultaneously along a long wire. Their wave functions 
are y1 5 0.002 cos (8.0x 2 400t) and y2 5 0.002 cos (7.6x 2 380t), where y and x are in 
meters and t in seconds. (a) Write the wave function for the resultant wave in the form of 
Equation 5-15. (b) What is the phase velocity of the resultant wave? (c) What is the group 
velocity? (d) Calculate the range Dx between successive zeros of the group and relate it to Dk.
5-18.	 (a) Starting from Equation 5-1, show that the group velocity can also be expressed as

vg = vp - l1dvp>dl2
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(b) The phase velocity of each wavelength of white light moving through ordinary glass 
is a function of the wavelength; that is, glass is a dispersive medium. What is the general 
dependence of vp on l in glass? Is dvp>d l positive or negative?
5-19.	 A radar transmitter used to measure the speed of pitched baseballs emits pulses of 
2.0 cm wavelength that are 0.25 ms in duration. (a) What is the length of the wave packet 
produced? (b) To what frequency should the receiver be tuned? (c) What must be the 
minimum bandwidth of the receiver?
5-20.	 A certain standard tuning fork vibrates at 880 Hz. If the tuning fork is tapped, caus-
ing it to vibrate, then stopped a quarter of a second later, what is the approximate range of 
frequencies contained in the sound pulse that reached your ear?
5-21.	 If a phone line is capable of transmitting a range of frequencies Df 5 5000 Hz, what 
is the approximate duration of the shortest pulse that can be transmitted over the line?
5-22.	 (a) You are given the task of constructing a double-slit experiment for 5 eV elec-
trons. If you want the first minimum of the diffraction pattern to occur at 5, what must be 
the separation of the slits? (b) How far from the slits must the detector plane be located if 
the first minima on each side of the central maximum are to be separated by 1 cm?

Section 5-4  The Probabilistic Interpretation of the Wave Function
5-23.	 A 100 g rigid sphere of radius 1 cm has a kinetic energy of 2 J and is confined to move 
in a force-free region between two rigid walls separated by 50 cm. (a) What is the probabil-
ity of finding the center of the sphere exactly midway between the two walls? (b) What is the 
probability of finding the center of the sphere between the 24.9 and 25.1 cm marks?
5-24.	 A particle moving in one dimension between rigid walls separated by a distance L 
has the wave function C1x2 = A sin1px>L2. Since the particle must always be located 
between the walls, what must be the value of A?
5-25.	 The wave function describing a state of an electron confined to move along the x 
axis is given at time zero by

C1x, 02 = Ae - x2>4s2

Find the probability of finding the electron in a region dx centered at (a) x 5 0, (b) x 5 s, 
and (c) x 5 2s. (d ) Where is the electron most likely to be found?

Section 5-5  The Uncertainty Principle
5-26.	 A tuning fork of frequency f0 vibrates for a time Dt and sends out a waveform that 
looks like that in Figure 5-23. This wave function is similar to a harmonic wave except 
that it is confined to a time Dt and space D x 5 v Dt, where v is the phase velocity. Let 
N be the approximate number of cycles of vibration. We can measure the frequency by 
counting the cycles and dividing by Dt. (a) The number of cycles is uncertain by approxi-
mately {1 cycle. Explain why (see the figure). What uncertainty does this introduce in 
the determination of the frequency f ? (b) Write an expression for the wave number k in 
terms of Dx and N. Show that the uncertainty in N of {1 leads to an uncertainty in k of 
Dk = 2p>Dx.

t

y

∆t

Figure 5-23  Problem 5-26.
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5-27.	 If an excited state of an atom is known to have a lifetime of 1027 s, what is the 
uncertainty in the energy of photons emitted by such atoms in the spontaneous decay to 
the ground state?
5-28.	 A ladybug 5 mm in diameter with a mass of 1.0 mg being viewed through a low-
power magnifier with a calibrated reticule is observed to be stationary with an uncertainty 
of 1022 mm. How fast might the ladybug actually be walking?
5-29.	 222Rn decays by the emission of an a particle with a lifetime of 3.823 days. The 
kinetic energy of the a particle is measured to be 5.490 MeV. What is the uncertainty in 
this energy? Describe in one sentence how the finite lifetime of the excited state of the 
radon nucleus translates into an energy uncertainty for the emitted a particle.
5-30.	 If the uncertainty in the position of a wave packet representing the state of a quantum-
system particle is equal to its de Broglie wavelength, how does the uncertainty in momen-
tum compare with the value of the momentum of the particle?
5-31.	 In one of G. Gamow’s Mr. Tompkins tales, the hero visits a “quantum jungle” 
where h is very large. Suppose that you are in such a place where h 5 50 J # s. A cheetah 
runs past you a few meters away. The cheetah is 2 m long from nose to tail tip and its mass 
is 30 kg. It is moving at 40 m/s. What is the uncertainty in the location of the “midpoint” 
of the cheetah? Describe in one sentence how the cheetah would look different to you than 
when h has its actual value.
5-32.	 In order to locate a particle, for example, an electron, to within 5  10212 m using 
electromagnetic waves (“light”), the wavelength must be at least this small. Calculate the 
momentum and energy of a photon with l 5 5  10212 m. If the particle is an electron 
with Dx 5 5  10212 m, what is the corresponding uncertainty in its momentum?
5-33.	 The decay of excited states in atoms and nuclei often leave the system in another, 
albeit lower-energy, excited state. (a) One example is the decay between two excited 
states of the nucleus of 48Ti. The upper state has a lifetime of 1.4 ps, the lower state 3.0 ps. 
What is the fractional uncertainty DE>E in the energy of 1.3117 MeV gamma rays con-
necting the two states? (a) Another example is the Ha line of the hydrogen Balmer series. 
In this case the lifetime of both states is about the same, 1028 s. What is the uncertainty in 
the energy of the Ha photon?
5-34.	 Laser pulses of femtosecond duration can be produced, but for such brief pulses 
it makes no sense to speak of the pulse’s color. To demonstrate this, compute the time 
duration of a laser pulse whose range of frequencies covers the entire visible spectrum 
(4.0  1014 Hz to 7.5  1014 Hz).

Section 5-6  Some Consequences of the Uncertainty Principle
5-35.	 A neutron has a kinetic energy of 10 MeV. What size object is necessary to observe 
neutron diffraction effects? Is there anything in nature of this size that could serve as a 
target to demonstrate the wave nature of 10 MeV neutrons?
5-36.	 Protons and neutrons in nuclei are bound to the nucleus by exchanging pions 
(p mesons) with each other (see Chapter 11). This is possible to do without violating 
energy conservation provided the pion is re-absorbed within a time consistent with the 
Heisenberg uncertainty relations. Consider the emission reaction p S p 1 p where 
mp = 135 MeV>c2. (a) Ignoring kinetic energy, by how much is energy conservation vio-
lated in this reaction? (b) Within what time interval must the pion be re-absorbed in order 
to avoid violation of energy conservation?
5-37.	 Show that the relation Dps Ds 7 U can be written DL D 7 U for a particle moving 
in a circle about the z axis, where ps is the linear momentum tangential to the circle, s is 
the arc length, and L is the angular momentum. How well can the angular position of the 
electron be specified in the Bohr atom?
5-38.	 An excited state of a certain nucleus has a half-life of 0.85 ns. Taking this to be 
the uncertainty Dt for emission of a photon, calculate the uncertainty in the frequency Df, 
using Equation 5-25. If l 5 0.01 nm, find Df>f .
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5-39.	 The lifetimes of so-called resonance particles cannot be measured directly but is 
computed from the energy width (or uncertainty) of the scattering cross section versus 
energy graph (see Chapter 12). For example, the scattering of a pion (p meson) and a 
proton can produce a short-lived D resonance particle with a mass of 1685 MeV/c2 and 
an energy width of 250 MeV as shown in Figure 5-24: p 1 p S D. Compute the lifetime
of the D.

Section 5-7  Wave-Particle Duality
5-40.	 A particle with a mass of 4 g is moving at 100 m/s. What size aperture would be 
needed in order to observe diffraction of this particle wave? Explain why no common 
object could pass through such an aperture.
5-41.	 Recalling that an object smaller than the wavelength illuminating it cannot be 
“seen,” what is the minimum kinetic energy of electrons needed in an electron microscope 
in order to “see” an atom whose diameter is 0.1 nm, about the size of a silicon atom?

Level II
5-42.	 Neutrons and protons in atomic nuclei are confined within a region whose diameter 
is about 10215 m. (a) At any given instant, how fast might an individual proton or neutron 
be moving? (b) What is the approximate kinetic energy of a neutron that is localized to 
within such a region? (c) What would be the corresponding energy of an electron localized 
to within such a region?
5-43.	 Using the relativistic expression E 2 5 p2c2 1 m2c4, (a) show that the phase velocity 
of an electron wave is greater than c; (b) show that the group velocity of an electron wave 
equals the particle velocity of the electron.
5-44.	 Show that if y1 and y2 are solutions of Equation 5-11, the function y3 5 C1y1 1 C2y2 
is also a solution for any values of the constants C1 and C2.
5-45.	 The London “bobby” whistle has a frequency of 2500 Hz. If such a whistle is given 
a 3.0 s blast, (a) what is the uncertainty in the frequency? (b) How long is the wave train 
of this blast? (c) What would be the uncertainty in measuring the wavelength of this blast? 
(d) What is the wavelength of this blast?
5-46.	 A particle of mass m moves in a one-dimensional box of length L. (Take the poten-
tial energy of the particle in the box to be zero so that its total energy is its kinetic energy 
p2>2m.) Its energy is quantized by the standing-wave condition n1l>22 = L, where l is 
the de Broglie wavelength of the particle and n is an integer. (a) Show that the allowed 
energies are given by En 5 n2E1, where E1 = h2>8mL2. (b) Evaluate En for an electron in 
a box of size L 5 0.1 nm and make an energy-level diagram for the state from n 5 1 to
n 5 5. Use Bohr’s second postulate f = DE>h to calculate the wavelength of electro-
magnetic radiation emitted when the electron makes a transition from (c) n 5 2 to n 5 1,
(d) n 5 3 to n 5 2, and (e) n 5 5 to n 5 1.
5-47.	 (a) Use the results of Problem 5-46 to find the energy of the ground state
(n 5 1) and the first two excited stated of a proton in a one-dimensional box of length
L 5 10215 m 5 1 fm. (These are of the order of magnitude of nuclear energies.) Calculate 
the wavelength of electromagnetic radiation emitted when the proton makes a transition 
from (b) n 5 2 to n 5 1, (c) n 5 3 to n 5 2, and (d) n 5 3 to n 5 1.
5-48.	 (a) Suppose that a particle of mass m is constrained to move in a one-dimensional 
space between two infinitely high barriers located A apart. Using the uncertainty principle, 
find an expression for the zero-point (minimum) energy of the particle. (b) Using your 
result from (a), compute the minimum energy of an electron in such a space if A 5 10210 m 
and A 5 1 cm. (c) Calculate the minimum energy for a 100 mg bead moving on a thin wire 
between two stops located 2 cm apart.
5-49.	 A proton and a bullet each move with a speed of 500 m/s, measured with an 
uncertainty of 0.01 percent. If measurements of their respective positions are made 

Figure 5-24  Problem 5-39.
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simultaneous with the speed measurements, what is the minimum uncertainty possible in 
the position measurements?

Level III
5-50.	 Show that Equation 5-11 is satisfied by y 5 f (w), where w 5 x 2 vt for any
function f.
5-51.	 An electron and a positron are moving toward each other with equal speeds of 
3  106 m/s. The two particles annihilate each other and produce two photons of equal 
energy. (a) What were the de Broglie wavelengths of the electron and positron? Find the 
(b) energy, (c) momentum, and (d ) wavelength of each photon.
5-52.	 It is possible for some fundamental particles to “violate” conservation of energy 
by creating and quickly re-absorbing another particle. For example, a proton can emit a 
p1 according to p 5 n 1 p1, where the n represents a neutron. The p1 has a mass of
140 MeV/c2. The re-absorption must occur within a time Dt consistent with the uncertainty 
principle. (a) Considering the example shown, by how much DE is energy conservation 
violated? (Ignore kinetic energy.) (b) For how long Dt can the p1 exist? (c) Assuming 
that the p1 is moving at nearly the speed of light, how far from the nucleus could it get in 
the time Dt? (As we will discuss in Chapter 11, this is the approximate range of the strong 
nuclear force.) (d ) Assuming that as soon as one pion is re-absorbed, another is emitted, 
how many pions would be recorded by a “nucleon camera” with a shutter speed of 1 ms?
5-53.	 De Broglie developed Equation 5-2 initially for photons, assuming that they had 
a small but finite mass. His assumption was that RF waves with l 5 30 m traveled at a 
speed of at least 99 percent of that of visible light with l 5 500 nm. Beginning with the 
relativistic expression hf 5 gmc2, verify de Broglie’s calculation that the upper limit of the 
rest mass of a photon is 10244 g. (Hint: Find an expression for v>c in terms of hf and mc2 

and then let mc2 V hf ; (g = 1>21 - v2>c2.)
5-54.	 Suppose that you drop BBs onto a bull’s-eye marked on the floor. According to the 
uncertainty principle, the BBs do not necessarily fall straight down from the release point 
to the center of the bull’s-eye but are affected by the initial conditions. (a) If the location 
of the release point is uncertain by an amount D x perpendicular to the vertical direction 
and the horizontal component of the speed is uncertain by Dvx, derive an expression for 
the minimum spread DX of impacts at the bull’s-eye if it is located a distance y0 below the 
release point. (b) Modify your result in (a) to include the effect on DX of uncertainties Dy 
and Dvy at the release point.
5-55.	 Using the first-order Doppler-shift formula f = f011 + v>c2, calculate the energy 
shift of a 1 eV photon emitted from an iron atom moving toward you with energy 13>22kT  
at T 5 300 K. Compare this Doppler line broadening with the natural line width calculated 
in Example 5-9. Repeat the calculation for a 1 MeV photon from a nuclear transition.
5-56.	 Calculate the order of magnitude of the shift in energy of a (a) 1 eV photon and 
(b) 1 MeV photon resulting from the recoil of an iron nucleus. Do this by first calculating 
the momentum of the photon and then by calculating p2>2m for the nucleus using that 
value of momentum. Compare with the natural line width calculated in Example 5-9.
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The success of the de Broglie relations in predicting the diffraction of electrons and 
other particles, and the realization that classical standing waves lead to a discrete 

set of frequencies, prompted a search for a wave theory of electrons analogous to the 
wave theory of light. In this electron wave theory, classical mechanics should appear 
as the short-wavelength limit, just as geometric optics is the short-wavelength limit of 
the wave theory of light. The genesis of the correct theory went something like this, 
according to Felix Bloch,1 who was present at the time.

. . . in one of the next colloquia [early in 1926], Schrödinger gave a beauti-
fully clear account of how de Broglie associated a wave with a particle 
and how he [i.e., de Broglie] could obtain the quantization rules . . . by 
demanding that an integer number of waves should be fitted along a 
stationary orbit. When he had finished Debye2 casually remarked that he 
thought this way of talking was rather childish . . . [that to] deal properly 
with waves, one had to have a wave equation.

Toward the end of 1926, Erwin Schrödinger3 published his now-famous wave 
equation, which governs the propagation of matter waves, including those of elec-
trons. A few months earlier, Werner Heisenberg had published a seemingly different 
theory to explain atomic phenomena. In the Heisenberg theory, only measurable 
quantities appear. Dynamical quantities such as energy, position, and momentum are 
represented by matrices, the diagonal elements of which are the possible results of 
measurement. Though the Schrödinger and Heisenberg theories appear to be differ-
ent, it was eventually shown by Schrödinger himself that they were equivalent, in that 
each could be derived from the other. The resulting theory, now called wave mechan-
ics or quantum mechanics, has been amazingly successful. Though its principles may 
seem strange to us whose experiences are limited to the macroscopic world and 
though the mathematics required to solve even the simplest problem is quite involved, 
there seems to be no alternative to describe correctly the experimental results in 
atomic and nuclear physics. In this book we will confine our study to the Schrödinger 
theory because it is easier to learn and is a little less abstract than the Heisenberg theory. 
We will begin by restricting our discussion to problems with a single particle moving 
in one space dimension.
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230	 Chapter 6  The Schrödinger Equation

6-1  The Schrödinger Equation
in One Dimension 
The wave equation governing the motion of electrons and other particles with mass, 
which is analogous to the classical wave equation (Equation 5-11), was found by 
Schrödinger late in 1925 and is now known as the Schrödinger equation. Like the 
classical wave equation, the Schrödinger equation relates the time and space deriva-
tives of the wave function. The reasoning followed by Schrödinger is somewhat dif-
ficult and not important for our purposes. In any case, it must be emphasized that we 
can’t derive the Schrödinger equation just as we can’t derive Newton’s laws of 
motion. Its validity, like that of any fundamental equation, lies in its agreement with 
experiment. Just as Newton’s second law is not relativistically correct, neither is 
Schrödinger’s equation, which must ultimately yield to a relativistic wave equation. 
But as you know, Newton’s laws of motion are perfectly satisfactory for solving a 
vast array of nonrelativistic problems. So, too, will be Schrödinger’s equation when 
applied to the equally extensive range of nonrelativistic problems in atomic, molecu-
lar, and solid-state physics. Schrödinger tried without success to develop a relativistic 
wave equation, a task accomplished in 1928 by Dirac.

Although it would be logical merely to postulate the Schrödinger equation, we 
can get some idea of what to expect by first considering the wave equation for pho-
tons, which is Equation 5-11 with speed v 5 c and with y(x, t) replaced by the electric 
field j(x, t).

	
02j

0x2 =
1

c2 
02j

0t2 	 6-1

As discussed in Chapter 5, a particularly important solution of this equation is the 
harmonic wave function j1x, t2 = j0 cos1kx - vt2. Differentiating this function 
twice, we obtain

02j

0t2 = -v2
 j0 cos 1kx - vt2 = -v2j1x, t2

and

02j

0x2 = -k2j1x, t2

Substitution into Equation 6-1 then gives

-k2 = -  
v2

c2

or

	 v = kc� 6-2

Using v = E>U and p = Uk for electromagnetic radiation, we have

	 E = pc� 6-3

which, as we saw earlier, is the relation between the energy and momentum of a photon.
Now let us use the de Broglie relations for a particle such as an electron to find 

the relation between v and k, which is analogous to Equation 6-2 for photons. We can 
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then use this relation to work backward and see how the wave equation for electrons 
must differ from Equation 6-1. The total energy (nonrelativistic) of a particle of 
mass m is

	 E =
p2

2m
+ V 	 6-4

where V is the potential energy. Substituting the de Broglie relations in Equation 6-4, 
we obtain

	 Uv =
U2

 k2

2m
+ V 	 6-5

This differs from Equation 6-2 for a photon because it contains the potential energy V 
and because the angular frequency v does not vary linearly with k. Note that we get a 
factor of v when we differentiate a harmonic wave function with respect to time and a 
factor of k when we differentiate with respect to position. We expect, therefore, that 
the wave equation that applies to electrons will relate the first time derivative to the 
second space derivative and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a differential 
equation that is linear in the wave function C(x, t). This ensures that, if C1(x, t) and 
C2(x, t) are both solutions of the wave equation for the same potential energy, then any 
arbitrary linear combination of these solutions is also a solution—that is, C(x, t) 5 
a1C1(x, t) 1 a2C2(x, t) is a solution, with a1 and a2 being arbitrary constants. Such a 
combination is called linear because both C1(x, t) and C2(x, t) appear only to the first 
power. Linearity guarantees that the wave functions will add together to produce con-
structive and destructive interference, which we have seen to be a characteristic of 
matter waves as well as all other wave phenomena. Note in particular that (1) the lin-
earity requirement means that every term in the wave equation must be linear in C(x, t) 
and (2) that any derivative of C(x, t) is linear in C(x, t).4

Erwin Schrödinger. [Courtesy of the 
Niels Bohr Library, American Institute 
of Physics.]
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232	 Chapter 6  The Schrödinger Equation

The Schrödinger Equation
We are now ready to postulate the Schrödinger equation for a particle of mass m. In 
one dimension, it has the form

	 -  
U2

2m
 
02C1x, t2

0x2 + V1x, t2C1x, t2 = iU 
0C1x, t2

0t
	 6-6

We will now show that this equation is satisfied by a harmonic wave function in the 
special case of a free particle, one on which no net force acts, so that the potential 
energy is constant, V(x, t) 5 V0. First note that a function of the form cos(kx 2 vt) 
does not satisfy this equation because differentiation with respect to time changes the 
cosine to a sine but the second derivative with respect to x gives back a cosine. Simi-
lar reasoning rules out the form sin(kx 2 vt). However, the exponential form of the 
harmonic wave function does satisfy the equation. Let

 C1x, t2 = Aei1kx-vt2

 = A3cos1kx - vt2 + i sin1kx - vt2 4 � 6-7

where A is a constant. Then

0C

0t
= - ivA ei1kx-vt2 = - ivC

and

02C

0x2 = 1ik22
 A ei1kx-vt2 = -k2C

Substituting these derivatives into the Schrödinger equation with V(x, t) 5 V0 gives

-U2

2m
1-k2C2 + V0C = iU1- iv2C

or

U2
 k2

2m
+ V0 = Uv

which is Equation 6-5.
An important difference between the Schrödinger equation and the classical 

wave equation is the explicit appearance5 of the imaginary number i = 1-121>2. The 
wave functions that satisfy the Schrödinger equation are not necessarily real, as we 
see from the case of the free-particle wave function of Equation 6-7. Evidently the 
wave function C(x, t) that solves the Schrödinger equation is not a directly measur-
able function like the classical wave function y(x, t) since measurements always yield 
real numbers. However, as we discussed in Section 5-4, the probability of finding the 
electron in some region dx is certainly measurable, just as is the probability that a 
flipped coin will turn up heads. The probability P(x) dx that the electron will be found 
in the volume dx was defined by Equation 5-23 to be equal to C2dx. This probabilistic 
interpretation of C was developed by Max Born and was recognized, over the early 
and formidable objections of both Schrödinger and Einstein, as the appropriate way 
of relating solutions of the Schrödinger equation to the results of physical measure-
ments. The probability that an electron is in the region dx, a real number, can be mea-
sured by counting the fraction of time it is found there in a very large number of 
identical trials. In recognition of the complex nature of C(x, t), we must modify 
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slightly the interpretation of the wave function discussed in Chapter 5 to accommo-
date Born’s interpretation so that the probability of finding the electron in dx is real. 
We take for the probability

	 P1x, t2dx = C*1x, t2C1x, t2dx =  C1x, t2  2
 dx	 6-8

where C*, the complex conjugate of C, is obtained from C by replacing i with 2i 
wherever it appears.6 The complex nature of C serves to emphasize the fact that we 
should not ask or try to answer the question “What is waving in a matter wave?” or 
inquire as to what medium supports the motion of a matter wave. The wave function 
is a computational device with utility in Schrödinger’s theory of wave mechanics. 
Physical significance is associated not with C itself, but with the product 
C*C =  C  2, which is the probability distribution P(x, t) or, as it is often called, the 
probability density. In keeping with the analogy with classical waves and wave func-
tions, C(x, t) is also sometimes referred to as the probability density amplitude, or just 
the probability amplitude.

The probability of finding the electron in dx at x1 or in dx at x2 is the sum of sepa-
rate probabilities, P(x1) dx 1 P(x2) dx. Since the electron must certainly be somewhere 
in space, the sum of the probabilities over all possible values of x must equal 1. That is,7

	 L
+ 

- 

C*C dx = 1	 6-9

Equation 6-9 is called the normalization condition. This condition plays an important 
role in quantum mechanics, for it places a restriction on the possible solutions of the 
Schrödinger equation. In particular, the wave function C(x, t) must approach zero suf-
ficiently fast as x S { so that the integral in Equation 6-9 remains finite. If it does 
not, then the probability becomes unbounded. As we will see in Section 6-3, it is this 
restriction together with boundary conditions imposed at finite values of x that leads 
to energy quantization for bound particles.

In the chapters that follow, we are going to be concerned with solutions to the 
Schrödinger equation for a wide range of real physical systems, but in what follows in 
this chapter our intent is to illustrate a few of the techniques of solving the equation and 
to discover the various, often surprising properties of the solutions. To this end we will 
focus our attention on single-particle, one-dimensional problems, as noted earlier, and 
use some potential energy functions with unrealistic physical characteristics, for exam-
ple, infinitely rigid walls, which will enable us to illustrate various properties of the 
solutions without obscuring the discussion with overly complex mathematics. We will 
find that many real physical problems can be approximated by these simple models.

Separation of the Time and Space Dependencies 
of C(x, t )
Schrödinger’s first application of his wave equation was to problems such as the 
hydrogen atom (Bohr’s work) and the simple harmonic oscillator (Planck’s work), in 
which he showed that the energy quantization in those systems can be explained natu-
rally in terms of standing waves. We referred to these in Chapter 4 as stationary states, 
meaning they did not change with time. Such states are also called eigenstates. For 
such problems that also have potential energy functions that are independent of time, 
the space and time dependence of the wave function can be separated, leading to a 
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greatly simplified form of the Schrödinger equation.8 The separation is accomplished 
by first assuming that C(x, t) can be written as a product of two functions, one of x 
and one of t, as

	 C1x, t2 = c1x21t2� 6-10

If Equation 6-10 turns out to be incorrect, we will find that out soon enough, but if 
the potential function is not an explicit function of time, that is, if the potential is 
given by V(x), our assumption turns out to be valid. That this is true can be seen as 
follows:

Substituting C(x, t) from Equation 6-10 into the general, time-dependent 
Schrödinger equation (Equation 6-6) yields

	
-U2

2m
 
02c1x21t2

0x2 + V1x2c1x21t2 = iU 
0c1x21t2

0t
� 6-11

which is

	
-U2

2m
 1t2  

d2c1x2
dx2 + V1x2c1x21t2 = iUc1x2  

d1t2
dt

� 6-12

where the derivatives are now ordinary rather than partial ones. Dividing Equation 6-12 
by C in the assumed product form c gives

	
-U2

2m
 

1

c1x2  
d2c1x2

dx2 + V1x2 = iU 
1

1t2  
d1t2

dt
	 6-13

Notice that each side of Equation 6-13 is a function of only one of the independent 
variables x and t. This means that, for example, changes in t cannot affect the value of 
the left side of Equation 6-13, and changes in x cannot affect the right side. Thus, both 
sides of the equation must be equal to the same constant C, called the separation con-
stant, and we see that the assumption of Equation 6-10 is valid—the variables have 
been separated. In this way we have replaced a partial differential equation containing 
two independent variables, Equation 6-6, with two ordinary differential equations 
each a function of only one of the independent variables:

	
-U2

2m
 

1

c1x2  
d2c1x2

dx2 + V1x2 = C� 6-14

	 iU 
1

1t2  
d1t2

dt
= C� 6-15

Let us solve Equation 6-15 first. The reason for doing so is twofold: (1) Equation 6-15 
does not contain the potential energy V(x); consequently, the time-dependent part 
1t2 of all solutions C(x, t) to the Schrödinger equation will have the same form 
when the potential is not an explicit function of time, so we only have to do this once. 
(2) The separation constant C has particular significance that we want to discover 
before we tackle Equation 6-14. Writing Equation 6-15 as

	
d1t2
1t2 =

C

iU
 dt = -  

iC

U
 dt	 6-16

the general solution of Equation 6-16 is

	 1t2 = e-iCt>U	 6-17a
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which can also be written as

1t2 = e-iCt>U = cosaCt

U
b - i sinaCt

U
b = cosa2p

Ct

h
b - i sina2p

Ct

h
b � 6-17b

Thus, we see that (t), which describes the time variation of C(x, t), is an oscillatory 
function with frequency f = C>h. However, according to the de Broglie relation 
(Equation 5-1), the frequency of the wave represented by C(x, t) is f = E>h; there-
fore, we conclude that the separation constant C 5 E, the total energy of the particle, 
and we have

	 1t2 = e-iEt>U	 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14 
then becomes, on multiplication by c(x),

	
-U2

2m
 
d2c1x2

dx2 + V1x2c1x2 = E c1x2	 6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the 
general form of Equation 6-6. The normalization condition of Equation 6-9 can be 
expressed in terms of the time-independent c(x), since the time dependence of the 
absolute square of the wave function cancels. We have

	 C*1x, t2C1x, t2 = c*1x2e + iEt>Uc1x2e-iEt>U = c*1x2c1x2� 6-19

and Equation 6-9 then becomes

	 L
+ 

- 

c*1x2c1x2dx = 1� 6-20

Conditions for Acceptable Wave Functions
The form of the wave function c(x) that satisfies Equation 6-18 depends on the form 
of the potential energy function V(x). In the next few sections we will study some 
simple but important problems in which V(x) is specified. Our example potentials will 
be approximations to real physical potentials, simplified to make calculations easier. 
In some cases, the slope of the potential energy may be discontinuous, for example, 
V(x) may have one form in one region of space and another form in an adjacent 
region. (This is a useful mathematical approximation to real situations in which V(x) 
varies rapidly over a small region of space, such as at the surface boundary of a 
metal.) The procedure in such cases is to solve the Schrödinger equation separately in 
each region of space and then require that the solutions join smoothly at the point of 
discontinuity.

Since the probability of finding a particle cannot vary discontinuously from 
point to point, the wave function c(x) must be continuous.9 Since the Schrödinger 
equation involves the second derivative d2c>dx2 = c, the first derivative c9 (which 
is the slope) must also be continuous; that is, the graph of c(x) versus x must be 
smooth. (In a special case in which the potential energy becomes infinite, this restric-
tion is relaxed. Since no particle can have infinite potential energy, c(x) must be zero 
in regions where V(x) is infinite. Then at the boundary of such a region, c9 may be 
discontinuous.)
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236	 Chapter 6  The Schrödinger Equation

If either c(x) or dc>dx were not finite or not single valued, the same would be 
true of C(x, t) and d C>dx. As we will see shortly, the predictions of wave mechanics 
regarding the results of measurements involve both of those quantities and would thus 
not necessarily predict finite or definite values for real physical quantities. Such 
results would not be acceptable since measurable quantities, such as angular momentum 
and position, are never infinite or multiple valued. A final restriction on the form of 
the wave function c(x) is that in order to obey the normalization condition, c(x) must 
approach zero sufficiently fast as x S { so that normalization is preserved. For 
future reference, we may summarize the conditions that the wave function c(x) must 
meet in order to be acceptable as follows:

1.	 c(x) must exist and satisfy the Schrödinger equation.

2.	 c(x) and dc>dx must be continuous.

3.	 c(x) and dc>dx must be finite.

4.	 c(x) and dc>dx must be single valued.

5.	 c(x) S 0 fast enough as x S{ so that the normalization integral, Equation 6-20,
remains bounded.

Questions

1.	 Like the classical wave equation, the Schrödinger equation is linear. Why is this 
important?

2.	 There is no factor i = 1-121>2 in Equation 6-18. Does this mean that c(x) must 
be real?

3.	 Why must the electric field j(x, t) be real? Is it possible to find a nonreal wave 
function that satisfies the classical wave equation?

4.	 Describe how the de Broglie hypothesis enters into the Schrödinger wave 
equation.

5.	 What would be the effect on the Schrödinger equation of adding a constant rest 
energy for a particle with mass to the total energy E in the de Broglie relation 
f = E>h?

6.	 Describe in words what is meant by normalization of the wave function.

EXAMPLE 6-1	 A Solution to the Schrödinger Equation ​ Show that for a free 
particle of mass m moving in one dimension the function c(x) 5 A sin kx 1 B cos kx 
is a solution to the time-independent Schrödinger equation for any values of the 
constants A and B.

SOLUTION
A free particle has no net force acting on it, for example, V(x) 5 0, in which case 
the kinetic energy equals the total energy. Thus, p = Uk = 12mE21>2. Differentiat-
ing c(x) gives

dc

dx
= kA cos k x - kB sin k x
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and differentiating again,

 
d2c

dx2 = -k2
 A sin k x - k2

 B cos k x

 = -k21A sin k x + B cos k x2 = -k2 c1x2
Substituting into Equation 6-18,

-U2

2m
3 1-k22 1A sin k x + B cos k x2 4 = E1A sin k x + B cos k x2

U2
 k2

2m
 c1x2 = E c1x2

and, since U2
 k2 = 2mE, we have

E c1x2 = E c1x2
and the given c(x) is a solution of Equation 6-18.

6-2  The Infinite Square Well 
A problem that provides several illustrations of the properties of wave functions 
and is also one of the easiest problems to solve using the time-independent, one-
dimensional Schrödinger equation is that of the infinite-square well, sometimes called 
the particle in a box. A macroscopic example is a bead free to move on a frictionless 
wire between two massive stops clamped to the wire. We could also build such a 
“box” for an electron using electrodes and grids in an evacuated tube as illustrated in 
Figure 6-1a. The walls of the box are provided by the increasing potential between 
the grids G and the electrode C as shown in Figures 6-1b and c. The walls can be 

Potential
energy

C CG G x

(c)

(a)

Potential
energy

C CG

C C

VV

G G

G x

(b)

Electron

––

Figure 6-1  (a) The electron 
placed between the two sets 
of electrodes C and grids G 
experiences no force in the 
region between the grids, 
which are at ground potential. 
However, in the regions 
between each C and G is a 
repelling electric field whose 
strength depends on the 
magnitude of V. (b) If V is 
small, then the electron’s 
potential energy versus x has 
low, sloping “walls.” (c) If
V is large, the “walls” 
become very high and steep, 
becoming infinitely high for 
V S .
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made arbitrarily high and steep by increasing the potential V and reducing the separa-
tion between each grid-electrode pair. In the limit such a potential energy function 
looks like that in Figure 6-2, which is a graph of the potential energy of an infinite 
square well. For this problem the potential energy is of the form

V1x2 = 0  0 6 x 6 L

V1x2 =   x 6 0 and x 7 L
� 6-21

Although such a potential is clearly artificial, the problem is worth careful study for 
several reasons: (1) exact solutions to the Schrödinger equation can be obtained with-
out the difficult mathematics that usually accompanies its solution for more realistic 
potential functions; (2) the problem is closely related to the vibrating-string problem 
familiar in classical physics; (3) it illustrates many of the important features of all 
quantum-mechanical problems; and finally, (4) this potential is a relatively good 
approximation to some real situations, for example, the motion of a free electron 
inside a metal.

Since the potential energy is infinite outside the well, the wave function is 
required to be zero there; that is, the particle must be inside the well. (As we proceed 
through this and other problems, keep in mind Born’s interpretation: the probability 
density of the particle’s position is proportional to  c  2.) We then need only to solve 
Equation 6-18 for the region inside the well 0 , x , L, subject to the condition that 
since the wave function must be continuous, c(x) must be zero at x 5 0 and x 5 L. 
Such a condition on the wave function at a boundary (here, the discontinuity of the 
potential energy function) is called a boundary condition. We will see that, mathemat-
ically, it is the boundary conditions together with the requirement that c(x) S  0 as
x S  { that leads to the quantization of energy. A classical example is that of a 
vibrating string fixed at both ends. In that case the wave function y(x, t) is the dis-
placement of the string. If the string is fixed at x 5 0 and x 5 L, we have the same 
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero 
at x 5 0 and x 5 L. These boundary conditions lead to discrete allowed frequencies of 
vibration of the string. It was this quantization of frequencies (which always occurs 
for standing waves in classical physics), along with de Broglie’s hypothesis, that 
motivated Schrödinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends 
is that an integer number of half wavelengths fit into the length L:

	 n 
l

2
= L  n = 1, 2, 3,c � 6-22

We will see below that the same condition follows from the solution of the Schrödinger 
equation for a particle in an infinite square well. Since the wavelength is related to the 
momentum of the particle by the de Broglie relation p = h>l and the total energy of 
the particle in the well is just the kinetic energy p2>2m (see Figure 6-2), this quantum 
condition on the wavelength implies that the energy is quantized and the allowed val-
ues are given by

	 E =
p2

2m
=

h2

2ml2 =
h2

2m12L>n22 = n2 
h2

8mL2	 6-23

Since the energy depends on the integer n, it is customary to label it En. In terms of 
U = h>2p, the energy is given by

	 En = n2 
p2U2

2mL2 = n2 E1  n = 1, 2, 3,c 	 6-24

Figure 6-2  Infinite square 
well potential energy. For 
0 , x , L, the potential 
energy V(x) is zero. Outside 
this region, V(x) is infinite. 
The particle is confined to the 
region in the well 0 , x , L.

L0

V(x )

x
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where E1 is the lowest allowed energy10 and is given by

	 E1 =
p2U2

2mL2� 6-25

We now derive this result from the time-independent Schrödinger equation (Equa-
tion 6-18), which for V(x) 5 0 is

-  
U2

2m
 
d2c1x2

dx2 = Ec1x2

or

	 c1x2 = -  
2mE

U2  c(x) = -k2c(x)� 6-26

where we have substituted the square of the wave number k, since

	 k2 = a p

U
b

2

=
2mE

U2 	 6-27

and we have written c1x2 for the second derivative d2c1x2 >dx2. Equation 6-26 has 
solutions of the form

	 c1x2 = A sin kx� 6-28 a

and

	 c1x2 = B cos kx� 6-28b

where A and B are constants. The boundary condition c(x) 5 0 at x 5 0 rules out the 
cosine solution (Equation 6-28b) because cos 0 5 1, so B must equal zero. The bound-
ary condition c(x) 5 0 at x 5 L gives

	 c1L2 = A sin kL = 0� 6-29

This condition is satisfied if kL is any integer times p, that is, if k is restricted to the 
values kn given by

	 kn = n 
p

L
  n = 1, 2, 3, c � 6-30

If we write the wave number k in terms of the wavelength l = 2p>k, we see that 
Equation 6-30 is the same as Equation 6-22 for standing waves on a string. The quan-
tized energy values, or energy eigenvalues, are found from Equation 6-27, replacing k 
by kn as given by Equation 6-30. We thus have

En =
U2

 k2
n

2m
= n2 

U2p2

2mL2 = n2
 E1

which is the same as Equation 6-24. Figure 6-3 shows the energy-level diagram and 
the potential energy function for the infinite square well potential.

The constant A in the wave function of Equation 6-28a is determined by the nor-
malization condition.

	 L
+ 

- 

c*ncn dx = L
L

0

A2
n sin2a npx

L
bdx = 1	 6-31
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240	 Chapter 6  The Schrödinger Equation

Since the wave function is zero in regions of space where the potential energy is infi-
nite, the contributions to the integral from 2 to 0 and from L to 1 will both be 
zero. Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain 
An = 12>L21>2 independent of n. The normalized wave function solutions for this 
problem, also called eigenfunctions, are then

	 cn1x2 = A 2

L
 sin 

npx

L
  n = 1, 2, 3,c 	 6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for 
the vibrating-string problem. The wave functions and the probability distribution 
functions Pn(x) are sketched in Figure 6-4 for the lowest energy state n 5 1, called the 
ground state, and for the first two excited states, n 5 2 and n 5 3. (Since these wave 
functions are real, Pn1x2 = c*ncn = c2

n.) Notice in Figure 6-4 that the maximum 
amplitudes of each of the cn(x) are the same, 12>L21>2, as are those of Pn(x), 2>L. 
Note, too, that both cn(x) and Pn(x) extend to {. They just happen to be zero for
x , 0 and x . L in this case.

The number n in the equations above is called a quantum number. It specifies 
both the energy and the wave function. Given any value of n, we can immediately 
write down the wave function and the energy of the system. The quantum number n 
occurs because of the boundary conditions c(x) 5 0 at x 5 0 and x 5 L. We will see 
in Section 7-1 that for problems in three dimensions, three quantum numbers arise, 
one associated with boundary conditions on each coordinate.

Figure 6-3  Graph of energy versus x for a particle in an infinitely deep well. The potential 
energy V(x) is shown with the colored lines. The set of allowed values for the particle’s total 
energy En as given by Equation 6-24 form the energy-level diagram for the infinite square well 
potential. Classically, a particle can have any value of energy. Quantum mechanically, only 
the values given by En = n21U2p2>2mL22 yield well-behaved solutions of the Schrödinger 
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.
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Comparison with Classical Results
Let us compare our quantum-mechanical solution of this problem with the classical 
solution. In classical mechanics, if we know the potential energy function V(x), we 
can find the force from Fx = -dV>dx and thereby obtain the acceleration 
ax = d2

 x>dt2 from Newton’s second law. We can then find the position x as a func-
tion of time t if we know the initial position and velocity. In this problem there is no 
force when the particle is between the walls of the well because V 5 0 there. The par-
ticle therefore moves with constant speed in the well. Near the edge of the well the 
potential energy rises discontinuously to infinity—we may describe this as a very 
large force that acts over a very short distance and turns the particle around at the wall 
so that it moves away with its initial speed. Any speed, and therefore any energy, is 
permitted classically. The classical description breaks down because, according to the 
uncertainty principle, we can never precisely specify both the position and momen-
tum (and therefore velocity) at the same time. We can therefore never specify the ini-
tial conditions precisely and cannot assign a definite position and momentum to the 
particle. Of course, for a macroscopic particle moving in a macroscopic box, the 
energy is much larger than E1 of Equation 6-25, and the minimum uncertainty of 
momentum, which is of the order of U>L, is much less than the momentum and less 
than experimental uncertainties. Then the difference in energy between adjacent 
states will be a small fraction of the total energy, quantization will be unnoticed, and 
the classical description will be adequate.11

Let us also compare the classical prediction for the distribution of measure-
ments of position with those from our quantum-mechanical solution. Classically, the 
probability of finding the particle in some region dx is proportional to the time spent 
in dx, which is dx>v, where v is the speed. Since the speed is constant, the classical 
distribution function is just a constant inside the well. The normalized classical distri-
bution function is

PC1x2 =
1

L

Figure 6-4  Wave functions 
cn(x) and probability densities 
Pn1x2 = c2

n1x2 for n 5 1, 2, 
and 3 for the infinite square 
well potential. Though not 
shown, cn(x) 5 0 for x , 0 
and x . L.
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242	 Chapter 6  The Schrödinger Equation

In Figure 6-4 we see that for the lowest energy states the quantum distribution function 
is very different from this. According to Bohr’s correspondence principle, the quantum 
distributions should approach the classical distribution when n is large, that is, at large 
energies. For any state n, the quantum distribution has n peaks. The distribution for
n 5 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if 
there are many peaks in a small distance D x, only the average value will be observed. 
But the average value of sin2kn x over one or more cycles is 1/2. Thus

3c2
n1x2 4 av = c 2

L
 sin2 kn  x d

av
=

2

L
 
1

2
=

1

L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying 
the space part by

e-ivt = e-i1En>U2t

according to Equation 6-17. As mentioned previously, a wave function corresponding 
to a single energy oscillates with angular frequency vn = En>U, but the probability 
distribution  Cn1x, t2  2 is independent of time. This is the wave-mechanical justifica-
tion for calling such a state a stationary state or eigenstate, as we have done earlier. It 
is instructive to look at the complete wave function for a particular state n:

Cn1x, t2 = A 2

L
 sin kn  x e-ivn t

If we use the identity

sin kn  x =
1eikn x - e-ikn x2

2i

we can write this wave function as

Cn1x, t2 =
1

2iA 2

L
3ei1kn x-vn t2 - e-i1kn x+vn t2 4

Figure 6-5  Probability distribution for n 5 10 for the infinite square well potential. The 
dashed line is the classical probability density P = 1>L, which is equal to the quantum-
mechanical distribution averaged over a region D x containing several oscillations. A physical 
measurement with resolution D x will yield the classical result if n is so large that c2(x) has 
many oscillations in D x.

0 < x < L

0 L x

ψ2

Quantum-mechanical
distribution

Classical distribution

1––
L

P = 
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Just as in the case of the standing-wave function for the vibrating string, we can con-
sider this stationary-state wave function to be the superposition of a wave traveling to 
the right (first term in brackets) and a wave of the same frequency and amplitude trav-
eling to the left (second term in brackets).

EXAMPLE 6-2	 An Electron in a Wire ​ An electron moving in a thin metal wire is 
a reasonable approximation of a particle in a one-dimensional infinite well. The poten-
tial inside the wire is constant on average but rises sharply at each end. Suppose the 
electron is in a wire 1.0 cm long. (a) Compute the ground-state energy for the electron. 
(b) If the electron’s energy is equal to the average kinetic energy of the molecules in a 
gas at T 5 300 K, about 0.03 eV, what is the electron’s quantum number n?

SOLUTION
	 1.	 For question (a), the ground-state energy is given by Equation 6-25:

 E1 =
p2U2

2mL2

 =
p211.055 * 10-34 J # s22

122 19.11 * 10-31 kg2 110-2 m22

 = 6.03 * 10-34 J = 3.80 * 10-15 eV

	 2.	 For question (b), the electron’s quantum number is given by Equation 6-24:

En = n2
 E1

	 3.	 Solving Equation 6-24 for n and substituting En 5 0.03 eV and E1 from above 
yields

n2 =
En

E1
		  or

 n = AEn

E1
= A 0.03 eV

3.80 * 10-15 eV

 = 2.81 * 106

Remarks:  The value of E1 computed above is not only far below the limit of mea-
surability, but also smaller than the uncertainty in the energy of an electron con-
fined into 1 cm.

EXAMPLE 6-3	 Calculating Probabilities ​ Suppose that the electron in Exam-
ple 6-2 could be “seen” while in its ground state. (a) What would be the prob-
ability of finding it somewhere in the region 0 6 x 6 L>4? (b) What would be 
the probability of finding it in a very narrow region D x 5 0.01L wide centered at 
x = 5L>8?

SOLUTION
(a) The wave function for the n 5 1 level, the ground state, is given by Equation 6-32 as

c11x2 = A 2

L
 sin 

px

L
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244	 Chapter 6  The Schrödinger Equation

The probability that the electron would be found in the region specified is

L
L>4

0

P11x2dx = L
L>4

0

2

L
 sin2 apx

L
b  dx

Letting u = px>L, hence dx = L du>p, and noting the appropriate change in the 
limits on the integral, we have that

L
p>4

0

2
p

 sin2 u du =
2
p
a u

2
-  

sin 2u

4
b `

p>4

0
=

2
p
ap

8
-  

1

4
b = 0.091

Thus, if one looked for the particle in a large number of identical searches, the elec-
tron would be found in the region 0 , x , 0.25 cm about 9 percent of the time. This 
probability is illustrated by the shaded area on the left side in Figure 6-6.

(b) Since the region D x 5 0.01L is very small compared with L, we do not need to 
integrate but can calculate the approximate probability as follows:

P = P1x2Dx =
2

L
 sin2 

px

L
 Dx

Substituting D x 5 0.01L and x = 5L>8, we obtain

 P =
2

L
 sin2

p15L>82
L

 10.01L2

 =
2

L
10.8542 10.01L2 = 0.017

This means that the probability of finding the electron within 0.01L around 
x = 5L>8 is about 1.7 percent. This is illustrated in Figure 6-6, where the area of 
the shaded narrow band at x = 5L>8 is 1.7 percent of the total area under the curve.

EXAMPLE 6-4	 An Electron in an Atomic-Size Box ​ (a) Find the energy in the 
ground state of an electron confined to a one-dimensional box of length L 5 0.1 nm. 
(This box is roughly the size of an atom.) (b) Make an energy-level diagram and 
find the wavelengths of the photons emitted for all transitions beginning at state 
n 5 3 or less and ending at a lower energy state.

Figure 6-6  ​The probability density c2(x) versus x for a particle in the ground state of
an infinite square well potential. The probability of finding the particle in the region 
0 6 x 6 L>4 is represented by the larger shaded area. The narrow shaded band illustrates 
the probability of finding the particle within D x 5 0.01L around the point where x = 5L>8.

xL /4 3L /4L /20 L
ψ

2 
=

si
n

2
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SOLUTION
(a) The energy in the ground state is given by Equation 6-25. Multiplying the 
numerator and denominator by c2>4p2, we obtain an expression in terms of hc and 
mc2, the energy equivalent of the electron mass (see Chapter 2):

E1 =
1hc22

8mc2
 L2

Substituting hc 5 1240 eV # nm and mc2 5 0.511 MeV, we obtain

E1 =
11240 eV # nm22

815.11 * 105 eV2 10.1 nm22 = 37.6 eV

This is of the same order of magnitude as the kinetic energy of the electron in the 
ground state of the hydrogen atom, which is 13.6 eV. In that case, the wavelength of 
the electron equals the circumference of a circle of radius 0.0529 nm, or about 
0.33 nm, whereas for the electron in a one-dimensional box of length 0.1 nm, the 
wavelength in the ground state is 2L 5 0.2 nm.

(b) The energies of this system are given by

En = n2
 E1 = n2137.6 eV2

Figure 6-7 shows these energies in an energy-level diagram. The energy of the first 
excited state is E2 5 4 # (37.6 eV) 5 150.4 eV, and that of the second excited state is 
E3 5 9 # (37.6 eV) 5 338.4 eV. The possible transitions from level 3 to level 2, from 
level 3 to level 1, and from level 2 to level 1 are indicated by the vertical arrows on 
the diagram. The energies of these transitions are

 DE3S2 = 338.4 eV - 150.4 eV = 188.0 eV
 DE3S1 = 338.4 eV - 37.6 eV = 300.8 eV
 DE2S1 = 150.4 eV - 37.6 eV = 112.8 eV

The photon wavelengths for these transitions are

 l3S2 =
hc

DE3S2
=

1240 eV # nm

188.0 eV
= 6.60 nm

1

2

3

4

5

n

E3 = 9E1 = 338.4 eV

E2 = 4E1 = 150.4 eV

E4 = 16E1 = 601.6 eV

E5 = 25E1 = 940 eV

E

E1 = 37.6 eV

Figure 6-7  ​Energy-level diagram for 
Example 6-4. Transitions from the state n 5 3 
to the states n 5 2 and n 5 1 and from the state 
n 5 2 to n 5 1 are indicated by the vertical 
arrows.
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 3S1 =
hc

E3S1
=

1240 eV # nm

300.8 eV
= 4.12 nm

 2S1 =
hc

E2S1
=

1240 eV # nm

112.8 eV
= 11.0 nm

6-3  ​The Finite Square Well 
The quantization of energy that we found for a particle in an infinite 
square well is a general result that follows from the solution of the 
Schrödinger equation for any particle confined in some region of space. 
We will illustrate this by considering the qualitative behavior of the 
wave function for a slightly more general potential energy function, the 
finite square well shown in Figure 6-8. The solutions of the Schrödinger 
equation for this type of potential energy are quite different, depending 
on whether the total energy E is greater or less than V0. We will defer 
discussion of the case E . V0 to Section 6-5 except to remark that in that 
case the particle is not confined and any value of the energy is allowed, 
that is, there is no energy quantization. Here, we will look first at states 
with E , V0.

Inside the well, V(x) 5 0 and the time-independent Schrödinger 
equation (Equation 6-18) becomes Equation 6-26, the same as for the 
infinite well:

c1x2 = -k2c1x2  k2 =
2mE

U2

The solutions are sines and cosines (Equation 6-28) except that now we 
do not require c(x) to be zero at the well boundaries but rather that c(x) 
and c9(x) be continuous at these points. Outside the well, that is, for 0 . 
x . L, Equation 6-18 becomes

	 c1x2 =
2m

U2 1V0 - E2c1x2 = 2c1x2� 6-33

where

	 2 =
2m

U2 1V0 - E2 7 0	 6-34

L0

V(x )

V0

x

+a–a 0

V(x )

V0

x

(a)

(b)

Figure 6-8  (a) The finite square well 
potential. (b) Region I is that with x , 2a,
II with 2a , x , 1a, and III with x . 1a.

Figure 6-9  ​(a) Positive function with positive curvature; (b) negative function with 
negative curvature.

f (x )

x

(b)

f (x )

x

(a)
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The straightforward method of finding the wave functions and 
allowed energies for this problem is to solve Equation 6-33 for 
c(x) outside the well and then require that c(x) and c9(x) be con-
tinuous at the boundaries. The solution of Equation 6-33 is not dif-
ficult (it is of the form c(x) 5 Ce2ax for positive x), but applying 
the boundary conditions involves a method that may be new to 
you; we describe it in the More section on the Graphical Solution 
of the Finite Square Well.

First, we will explain in words unencumbered by the mathe-
matics how the conditions of continuity of c and c9 at the bound-
aries and the need for c S 0 as x S { leads to the selection of 
only certain wave functions and quantized energies for values 
of E within the well, that is, 0 , E , V0. The important feature of 
Equation 6-33 is that the second derivative c, which is the curva-
ture of the wave function, has the same sign as the wave function 
c. If c is positive, c is also positive and the wave function curves 
away from the axis, as shown in Figure 6-9a. Similarly, if c is 
negative, c is negative and again, c curves away from the axis. 
This behavior is different from that inside the well, where 0 , x , L. 
There, c and c have opposite signs so that C always curves 
toward the axis like a sine or cosine function. Because of this 
behavior outside the well, for most values of the energy the wave 
function becomes infinite as x S  {, that is, c(x) is not well behaved. Such func-
tions, though satisfying the Schrödinger equation, are not proper wave functions 
because they cannot be normalized.

Figure 6-10 shows the wave function for the energy E = p2>2m = h2>2ml2 for 
l 5 4L. Figure 6-11 shows a well-behaved wave function corresponding to wave-
length l 5 l1, which is the ground-state wave function for the finite well, and the 
behavior of the wave functions for two nearby energies and wavelengths. The exact 

Figure 6-10  The function that satisfies the 
Schrödinger equation with l 5 4L inside the well 
is not an acceptable wave function because it 
becomes infinite at large x. Although at x 5 L
the function is heading toward zero (slope is 
negative), the rate of increase of the slope c is
so great that the slope becomes positive before 
the function becomes zero, and the function then 
increases. Since c has the same sign as c, the 
slope always increases and the function increases 
without bound. [This computer-generated plot 
courtesy of Paul Doherty, The Exploratorium.]

–0.5L 1.5L0 L

ψ(x )

λ = 4L

x

0 L

ψ(x )
λ1λ

λ1λ

λ1

x

Figure 6-11  Functions satisfying the Schrödinger equation with wavelengths near the 
critical wavelength l1. If l is slightly greater than l1, the function approaches infinity like 
that in Figure 6-10. At the wavelength l1, the function and its slope approach zero together. 
This is an acceptable wave function corresponding to the energy E1 = h2>2ml2

1. If l is 
slightly less than l1, the function crosses the x axis while the slope is still negative. The slope 
becomes more negative because its rate of change c is now negative. This function 
approaches negative infinity at large x. [This computer-generated plot courtesy of Paul Doherty, 
The Exploratorium.]
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determination of the allowed energy levels in a finite square well can be obtained 
from a detailed solution of the problem. Figure 6-12 shows the wave functions and 
the probability distributions for the ground state and for the first two excited states. 
From this figure we see that the wavelengths inside the well are slightly longer than 
the corresponding wavelengths for the infinite well of the same width, so the corre-
sponding energies are slightly less than those of the infinite well, as Figure 6-13 
illustrates. Another feature of the finite-well problem is that there are only a finite 
number of allowed energies, depending on the size of V0. For very small V0 there is 
only one allowed energy level; that is, only one bound state can exist. This will be 
quite apparent in the detailed solution in the More section.

Note that, in contrast to the classical case, there is some probability of finding the 
particle outside the well, in the regions x . L or x , 0. In these regions, the total 
energy is less than the potential energy, so it would seem that the kinetic energy must 
be negative. Since negative kinetic energy has no meaning in classical physics, it is 
interesting to speculate about the meaning of this penetration of wave function beyond 
the well boundary. Does quantum mechanics predict that we could measure a nega-
tive kinetic energy? If so, this would be a serious defect in the theory. Fortunately, we 
are saved by the uncertainty principle. We can understand this qualitatively as follows 
(we will consider the region x . L only). Since the wave function decreases as e2ax, 
with a given by Equation 6-34, the probability density c2 5 e22ax becomes very 
small in a distance of the order of Dx  a21. If we consider c(x) to be negligible 
beyond x 5 L 1 a21, we can say that finding the particle in the region x . L is 
roughly equivalent to localizing it in a region Dx  a21. Such a measurement intro-
duces an uncertainty in momentum of the order of Dp  h>Dx = ha and a minimum 
kinetic energy of the order of 1Dp22>2m = h2a2>2m = V0 - E. This kinetic energy 
is just enough to prevent us from measuring a negative kinetic energy! The penetration 
of the wave function into a classically forbidden region does have important conse-
quences in tunneling or barrier penetration, which we will discuss in Section 6-6.

Much of our discussion of the finite-well problem applies to any problem in 
which E . V(x) in some region and E , V(x) outside that region. Consider, for exam-
ple, the potential energy V(x) shown in Figure 6-14. Inside the well, the Schrödinger 
equation is of the form

	 c1x2 = -k2c1x2� 6-35

0

ψ1

ψ2

L x

0

L

x

x

x

x

x

ψ3

0 L 0 L

0 L

0 L

ψ3
2

ψ2
2

ψ1
2

Figure 6-12  Wave 
functions cn(x) and 
probability distributions 
c2

n1x2 for n 5 1, 2, and 3
for the finite square well. 
Compare these with 
Figure 6-4 for the infinite 
square well, where the wave 
functions are zero at x 5 0 
and x 5 L. The wavelengths 
are slightly longer than the 
corresponding ones for the 
infinite well, so the allowed 
energies are somewhat 
smaller.
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where k2 = 2m3E - V1x2 4 >U2 now depends on x. The solutions of this equation are 
no longer simple sine or cosine functions because the wave number k = 2p>l varies 
with x, but since c and c have opposite signs, c will always curve toward the axis 
and the solutions will oscillate. Outside the well, c will curve away from the axis so 
there will be only certain values of E for which solutions exist that approach zero as
x approaches infinity.

More
�In most cases the solution of finite-well problems involves transcen-
dental equations and is very difficult. For some finite potentials, 
however, graphical solutions are relatively simple and provide both 
insights and numerical results. As an example, we have included 
the Graphical Solution of the Finite Square Well on the home page: 
www.whfreeman.com/tiplermodernphysics6e. See also Equations 
6-36 through 6-43 and Figure 6-15 here.

More

Figure 6-13  ​Comparison of the lowest four energy levels of an infinite square well (broken 
lines) with those of a finite square well (solid lines) of the same width. As the depth of the 
finite well decreases, it loses energy levels out of the top of the well; however, the n 5 1 level 
remains even as V0 S 0.Tipler: Modern Physics 6/e

Perm fig.: 613  New fig.: 6-13
First Draft: 2011-05-16
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Figure 6-14  Arbitrary well-
type potential with possible 
energy E. Inside the well
[E . V(x)], c(x) and c(x) 
have opposite signs, and the 
wave function will oscillate. 
Outside the well, c(x) and 
c(x) have the same sign, and, 
except for certain values of E, 
the wave function will not be 
well behaved.
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E
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6-4  Expectation Values and Operators 
Expectation Values
The objective of theory is to explain experimental observations. In classical mechanics 
the solution of a problem is typically specified by giving the position of a particle or 
particles as a function of time. As we have discussed, the wave nature of matter pre-
vents us from doing this for microscopic systems. Instead, we find the wave function 
C(x, t) and the probability distribution function  C1x, t2  2. The most that we can 
know about a particle’s position is the probability that a measurement will yield vari-
ous values of x. The expectation value of x is defined as

	 8x9 = L
+ 

- 

C*1x, t2  x C1x, t2  dx� 6-44

The expectation value of x is the average value of x that we would expect to obtain 
from a measurement of the positions of a large number of particles with the same wave 
function C(x, t). As we have seen, for a particle in a state of definite energy the proba-
bility distribution is independent of time. The expectation value of x is then given by

	 8x9 = L
+ 

- 

c*1x2  x c1x2  dx� 6-45

For example, for the infinite square well, we can see by symmetry (or by direct calcu-
lation) that 8x9 is L>2, the midpoint of the well.

In general, the expectation value of any function f(x) is given by

	 8f1x2 9 = L
+ 

- 

c* f1x2c dx� 6-46

For example, 8x29 can be calculated as above, for the infinite square well of width L. 
It is left as an exercise (see Problem 6-58) to show that

	 8x29 =
L2

3
-  

L2

2n2p2	 6-47

You may recognize the expectation values defined by Equations 6-45 and 6-46 as 
being weighted average calculations, borrowed by physics from probability and sta-
tistics. We should note that we don’t necessarily expect to make a measurement 
whose result equals the expectation value. For example, for even n, the probability of 
measuring x = L>2 in some range dx around the midpoint of the well is zero because 
the wave function sin1npx>L2 is zero there. We get 8x9 = L>2 because the proba-
bility density function c*c is symmetrical about that point. Remember that the expec-
tation value is the average value that would result from many measurements.

Operators
If we knew the momentum p of a particle as a function of x, we could calculate the 
expectation value 8 p9 from Equation 6-46. However, it is impossible in principle to 
find p as a function of x since, according to the uncertainty principle, both p and x 
cannot be determined at the same time. To find 8 p9, we need to know the distribution 
function for momentum. If we know c(x), it can be found by Fourier analysis. The 8 p9 
also can be found from Equation 6-48, where a U

i
 
0

0x
b  is the mathematical operator 

acting on C that produces the x component of the momentum (see also Equation 6-6).
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	 8p9 = L
+ 

- 

C*a U
i
 
0

0x
bC dx	 6-48

Similarly, 8p29 can be found from

8p29 = L
+ 

- 

C*a U
i
 
0

0x
b a U

i
 
0

0x
bC dx

Notice that in computing the expectation value, the operator representing the physical 
quantity operates on C(x, t), not on C*(x, t); that is, its correct position in the integral 
is between C* and C. This is not important to the outcome when the operator is sim-
ply some f (x), but it is critical when the operator includes a differentiation, as in the 
case of the momentum operator. Note that 8 p29 is simply 2mE since, for the infinite 

square well, E = p2>2m. The quantity a U
i
 
0

0x
b , which operates on the wave function 

in Equation 6-48, is called the momentum operator pop:

	 pop =
U

i
 
0

0x
� 6-49

EXAMPLE 6-5	 Expectation Values for p and p2 ​ Find 8 p9 and 8 p29 for the 
ground-state wave function of the infinite square well. (Before we calculate them, 
what do you think the results will be?)

SOLUTION
We can ignore the time dependence of C, in which case we have

 8p9 = L
L

0

aA 2

L
 sin 

nx

L
b a U

i
 
0

0x
b aA 2

L
 sin 

nx

L
b  dx

 =
U

i
 
2

L
 
p

L L
L

0

 sin 
px

L
 cos 

px

L
 dx = 0

The particle is equally as likely to be moving in the 2x as in the 1x direction, so its 
average momentum is zero.

Similarly, since

 
U

i
 
0

0x
a U

i
 
0

0x
bc = -U2 

02c

0x2 = -U2a -  
p2

L2A 2

L
 sin 

px

L
b

 = +  
U2p2

L2  c

we have

8p29 =
U2p2

L2 L
L

0

c*c dx =
U2p2

L2

The time-independent Schrödinger equation (Equation 6-18) can be written conveniently 
in terms of pop:

	 a 1

2m
bp2

op c1x2 + V1x2c1x2 = Ec1x2� 6-50
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where

p2
op c1x2 =

U

i
 
0

0x
c U

i
 
0

0x
c1x2 d = -U2 

02c

0x2

In classical mechanics, the total energy written in terms of the position and 
momentum variables is called the Hamiltonian function H = p2>2m + V . If we 
replace the momentum by the momentum operator pop and note that V 5 V(x), we 
obtain the Hamiltonian operator Hop:

	 Hop =
p2

op

2m
+ V1x2� 6-51

The time-independent Schrödinger equation can then be written

	 Hopc = Ec� 6-52

The advantage of writing the Schrödinger equation in this formal way is that it 
allows for easy generalization to more complicated problems such as those with 
several particles moving in three dimensions. We simply write the total energy 
of the system in terms of position and momentum and replace the momentum vari-
ables by the appropriate operators to obtain the Hamiltonian operator for the 
system.

Table 6-1 summarizes the several operators representing physical quantities 
that we have discussed thus far and includes a few more that we will encounter 
later on.

 Table 6-1  Some quantum-mechanical operators

Symbol Physical quantity Operator

f(x) �Any function of x—the position x,
the potential energy V(x), etc.

f(x)

px x component of momentum
U

i
 
0

0x

py y component of momentum
U

i
 
0

0y

pz z component of momentum
U

i
 
0

0z

E Hamiltonian (time independent)
p2

op

2m
+ V1x2

E Hamiltonian (time dependent) iU 
0

0t

Ek Kinetic energy -  
U2

2m
 
02

0x2

Lz z component of angular momentum - iU 
0

0
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Questions

7.	 Explain (in words) why 8p9 and 8p29 in Example 6-5 are not both zero.

8.	 Can 8x9 ever have a value that has zero probability of being measured?

More
�In order for interesting things to happen in systems with quantized 
energies, the probability density must change in time. Only in this way 
can energy be emitted or absorbed by the system. Transitions Between 
Energy States on the home page (www.whfreeman.com/tiplermod 
ernphysics6e) describes the process and applies it to the emission of 
light from an atom. See also Equations 6-52a–e and Figure 6-16 here.

More

6-5  The Simple Harmonic Oscillator 
One of the problems solved by Schrödinger in his first publications on wave mechan-
ics was that of the simple harmonic oscillator potential, such as that of a pendulum, 
given by

V1x2 =
1

2
 Kx2 =

1

2
 mv2

 x2

where K is the force constant and v the angular frequency of vibration defined by 
v = 1K>m21>2 = 2f . The solution of the Schrödinger equation for this potential is 
particularly important, as it can be applied to such problems as the vibration of mole-
cules in gases and solids. This potential energy function is shown in Figure 6-17, with 
a possible total energy E indicated.

In classical mechanics, a particle in such a potential is in equilibrium at the origin 
x 5 0, where V(x) is minimum and the force Fx = -dV>dx is zero. If disturbed, the 
particle will oscillate back and forth between x 5 2A and x 5 1A, the points at 
which the kinetic energy is zero and the total energy is just equal to the potential 
energy. These points are called the classical turning points. The distance A is related 
to the total energy E by

	 E =
1

2
 mv2

 A2� 6-53

Classically, the probability of finding the particle in dx is proportional to the time 
spent in dx, which is dx>v. The speed of the particle can be obtained from the conser-
vation of energy:

1

2
 mv2 +

1

2
 mv2

 x2 = E

The classical probability is thus

	 Pc1x2  dx r 
dx
v

=
dxB12>m2 aE -  

1

2
 mv2

 x2b
� 6-54

CCR

Figure 6-17  Potential 
energy function for a simple 
harmonic oscillator. 
Classically, the particle is 
confined between the 
“turning points” 2A and 1A.

V(x )

E

x0 +A–A

1––
2

mω2x 2

30
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Any value of the energy E is possible. The lowest energy is E 5 0, in which case the 
particle is at rest at the origin.

The Schrödinger equation for this problem is

	 -  
U2

2m
 
02c1x2

0x2 +
1

2
 mv2

 x2c1x2 = Ec1x2� 6-55

The mathematical techniques involved in solving this type of differential equation are 
standard in mathematical physics but unfamiliar to many students at this level. We 
will, therefore, discuss the problem qualitatively. We first note that since the potential 
is symmetric about the origin x 5 0, we expect the probability distribution function 
 c1x2  2 also to be symmetric about the origin, that is, to have the same value at 2x 
as at 1x.

 c1-x2  2 =  c1x2  2

The wave function c(x) must then be either symmetric c1-x2 = +c1x2, or anti-
symmetric c1-x2 = -c1x2. We can therefore simplify our discussion by consider-
ing positive x only and find the solutions for negative x by symmetry. (The symmetry 
of C is discussed further in the Exploring section “Parity”; see page 257.)

Consider some value of total energy E. For x less than the classical turning point A 
defined by Equation 6-53, the potential energy V(x) is less than the total energy E, 
whereas for x . A, V(x) is greater than E. Our discussion in Section 6-3 applies 
directly to this problem. For x , A, the Schrödinger equation can be written

c1x2 = -k2c1x2
where

k2 =
2m

U2
3E - V1x2 4

and c(x) curves toward the axis and oscillates. For x . A, the Schrödinger equation 
becomes

c1x2 = +a2c1x2
with

a2 =
2m

U2
3V1x2 - E4

and c(x) curves away from the axis. Only certain values of E will lead to solutions 
that are well behaved, that is, they approach zero as x approaches infinity. The allowed 
values of E for the simple harmonic oscillator must be determined by rigorously solv-
ing the Schrödinger equation; in this case they are given by

	 En = an +
1

2
bUv  n = 0, 1, 2,c � 6-56

Thus, the ground-state energy is 1
2 Uv and the energy levels are equally spaced, each 

excited state being separated from the levels immediately adjacent by Uv.
The wave functions of the simple harmonic oscillator in the ground state and in 

the first two excited states (n 5 0, n 5 1, and n 5 2) are sketched in Figure 6-18. The 
ground-state wave function has the shape of a Gaussian curve, and the lowest energy 
E =

1
2 Uv is the minimum energy consistent with the uncertainty principle. The 
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allowed solutions to the Schrödinger equation, the wave functions for the simple 
harmonic oscillator, can be written

	 cn1x2 = Cn  e-mvx2>2UHn1x2� 6-57

where the constants Cn are determined by normalization and the functions Hn(x) are 
polynomials of order n called the Hermite polynomials.13 The solutions for n 5 0, 1, 
and 2 (see Figure 6-18) are

 c01x2 = A0 e-mvx2>2U

 c11x2 = A1Amv

U
 e-mvx2>2U � 6-58

 c21x2 = A2a1 -  
2mvx2

U
b  e-mvx2>2U

Notice that for even values of n, the wave functions are symmetric about the origin; 
for odd values of n, they are antisymmetric. In Figure 6-19 the probability distribu-
tions c2

n1x2 are sketched for n 5 0, 1, 2, 3, and 10 for comparison with the classical 
distribution.

A property of these wave functions that we will state without proof is that

	 L
+ 

- 

c*n  x cm   dx = 0  unless  n = m { 1� 6-59

This property places a condition on transitions that may occur between allowed states. 
This condition, called a selection rule, limits the amount by which n can change for 
(electric dipole) radiation emitted or absorbed by a simple harmonic oscillator:

The quantum number of the final state must be 1 less than or 1 greater 
than that of the initial state.

Molecules vibrate as 
harmonic oscillators. 
Measuring vibration 
frequencies (see Chapter 9) 
makes possible 
determination of force 
constants, bond strengths, 
and properties of solids.

CCR

Figure 6-18  ​Wave functions for the ground 
state and the first two excited states of the 
simple harmonic oscillator potential, the 
states with n 5 0, 1, and 2.

x0

ψ

n = 0

x0

ψ

n = 1

x0

ψ

n = 2

17
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This selection rule is usually written

	 n = {1� 6-60

Since the difference in energy between two successive states is U, this is the energy 
of the photon emitted or absorbed in an electric dipole transition. The frequency of the 
photon is therefore equal to the classical frequency of the oscillator, as was assumed 
by Planck in his derivation of the blackbody radiation formula. Figure 6-20 shows an 
energy-level diagram for the simple harmonic oscillator, with the allowed energy 
transitions indicated by vertical arrows.

More
�Solution of the Schrödinger equation for the simple harmonic oscil-
lator (Equation 6-55) involves some rather advanced differential 
equation techniques. However, a simple exact solution is also pos-
sible using an approach invented by Schrödinger himself that we 
will call Schrödinger’s Trick. With the authors’ thanks to Wolfgang 
Lorenzon for bringing it to our attention, we include it on the home 
page, www.whfreeman.com/tiplermodernphysics6e, so that you, too, 
will know the trick.

More

Figure 6-19  ​Probability 
density 2

n for the simple 
harmonic oscillator plotted 
against the dimensionless 
variable u = 1m>U21>2

 x, 
for n 5 0, 1, 2, 3, and 10.
The dashed curves are the 
classical probability densities 
for the same energy, and the 
vertical lines indicate the 
classical turning points 
x 5 {A.

u

n = 10

n = 1

0 1 2 3–1–3 –2

0 1 2 3–1–3 –2

n = 2

0 1 2 3–1–3 –2

n = 3

0 1 2 3–1–3 –2

0 1 2 3 4 5–1–3 –2–5 –4

n = 0

ψn
2
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EXPLORING
Parity

We made a special point of arranging the simple harmonic oscillator potential sym-
metrically about x 5 0 (see Figure 6-17), just as we had done with the finite square 
well in Figure 6-8b and will do with various other potentials in later discussions. The 
usual purpose in each case is to emphasize the symmetry of the physical situation and 
to simplify the mathematics. Notice that arranging the potential V(x) symmetrically 
about the origin means that V(x) 5 V(2x). This means that the Hamiltonian operator 
Hop, defined in Equation 6-51, is unchanged by a transformation that changes x S 2x. 
Such a transformation is called a parity operation and is usually denoted by the opera-
tor P. Thus, if c(x) is a solution of the Schrödinger equation

	 Hopc1x2 = Ec1x2� 6-52

then a parity operation P leads to

Hopc1-x2 = Ec1-x2
and c1-x2 is also a solution to the Schrödinger equation and corresponds to the 
same energy. When two (or more) wave functions are solutions corresponding to the same 
value of the energy E, that level is referred to as degenerate. In this case, where two 
wave functions, c(x) and c(2x), are both solutions with energy E, we call the energy 
level doubly degenerate.

It should be apparent from examining the two equations above that c(x) and c(2x) 
can differ at most by a multiplicative constant C, that is,

c1x2 = Cc1-x2  c1-x2 = Cc1x2
or

c1x2 = Cc1-x2 = C2c1x2

Figure 6-20  ​Energy levels in the simple harmonic oscillator potential. Transitions obeying 
the selection rule Dn 5 {1 are indicated by the arrows (those pointing up indicate absorption). 
Since the levels have equal spacing, the same energy Uv is emitted or absorbed in all allowed 
transitions. For this special potential, the frequency of the emitted or absorbed photon equals 
the frequency of oscillation, as predicted by classical theory.

V(x )

x0

V(x ) =V(x ) = 1––
2

1––
2

Kx 2 = mω2x 2

1––
2

E5 = (5 + ) ω

1––
2

E4 = (4 + ) ω

1––
2

E3 = (3 + ) ω

1––
2

E2 = (2 + ) ω

1––
2

E1 = (1 + ) ω

1––
2

E0 = ω
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258	 Chapter 6  The Schrödinger Equation

from which it follows that C 5 {1. If C 5 1, c(x) is an even function, that is,
c(2x) 5 c(x). If C 5 21, then c(x) is an odd function, that is, c(2x) 5 2c(x). Par-
ity is used in quantum mechanics to describe the symmetry properties of wave func-
tions under a reflection of the space coordinates in the origin, that is, under a parity 
operation. The terms even and odd parity describe the symmetry of the wave functions, 
not whether the quantum numbers are even or odd. We will have more on parity in 
Chapter 12.

6-6  Reflection and Transmission 
of Waves 
Up to this point, we have been concerned with bound-state problems in which the 
potential energy is larger than the total energy for large values of x. In this section, we 
will consider some simple examples of unbound states for which E is greater than 
V(x) as x gets larger in one or both directions. For these problems d2c1x2 >dx2 and 
c(x) have opposite signs for those regions of x where E . V(x), so c(x) in those 
regions curves toward the axis and does not become infinite at large values of  x  ; 
therefore, any value of E is allowed. Such wave functions are not normalizable since 
c(x) does not approach zero as x goes to infinity in at least one direction and, as a 
consequence,

L
+ 

- 

 c1x2  2
 dx S 

A complete solution involves combining infinite plane waves into a wave packet 
of  finite width. The finite packet is normalizable. However, for our purposes it is 
sufficient to note that the integral above is bounded between the limits a and b, pro-
vided only that  b - a  6  . Such wave functions are most frequently encountered, 
as we are about to do, in the scattering of beams of particles from potentials, so it is 
usual to normalize such wave functions in terms of the density of particles r in the 
beam. Thus,

L
b

a

 c1x2  2
 dx = L

b

a

r dx = L
b

a

dN = N

where dN is the number of particles in the interval dx and N is the number of particles 
in the interval (b 2 a).14 The wave nature of the Schrödinger equation leads, even so, 
to some very interesting consequences.

Step Potential
Consider a region in which the potential energy is the step function

 V1x2 = 0  for  x 6 0
 V1x2 = V0  for  x 7 0

as shown in Figure 6-21. We are interested in what happens when a beam of particles, 
each with the same total energy E, moving from left to right encounters the step.

The classical answer is simple. For x , 0, each particle moves with speed 
v = 12E>m21>2. At x 5 0, an impulsive force acts on it. If the total energy E is less 
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than V0, the particle will be turned around and will move to the left at its original speed; 
that is, it will be reflected by the step. If E is greater than V0, the particle will continue 
moving to the right but with reduced speed, given by v = 321E - V02 >m41>2. We 
might picture this classical problem as a ball rolling along a level surface and coming 
to a steep hill of height y0, given by mgy0 5 V0. If its original kinetic energy is less 
than V0, the ball will roll partway up the hill and then back down and to the left along 
the level surface at its original speed. If E is greater than V0, the ball will roll up the 
hill and proceed to the right at a smaller speed.

The quantum-mechanical result is similar to the classical one for E , V0 but 
quite different when E . V0, as in Figure 6-22a. The Schrödinger equation in each of 
the two space regions shown in the diagram is given by

Region I

	 1x 6 02  d2c1x2
dx2 = -k2

1c1x2� 6-61

Region II

	 1x 7 02  d2c1x2
dx2 = -k2

2c1x2� 6-62

k1 =
22mE

U
  and  k2 =

22m1E - V02
U

The general solutions are

Region I

	 1x 6 02  cI1x2 = Aeik1 x + Be-ik1 x� 6-63

Region II

	 1x 7 02  cII1x2 = Ceik2 x + De-ik2 x� 6-64

Figure 6-21  ​Step potential. 
A classical particle incident 
from the left, with total 
energy E greater than V0,
is always transmitted. The 
potential change at x 5 0 
merely provides an impulsive 
force that reduces the speed 
of the particle. However, 
a wave incident from the left 
is partially transmitted and 
partially reflected because the 
wavelength changes abruptly 
at x 5 0.

0

V(x )

V0

x

Figure 6-22  (a) A potential step. Particles 
are incident on the step from the left toward 
the right, each with total energy E . V0.
(b) The wavelength of the incident wave 
(region I) is shorter than that of the 
transmitted wave (region II). Since k2 , k1, 
 C  2 7  A  2; however, the transmission 
coefficient T , 1.

ψ(x )

Energy

E

0 x

0
I II

I II

V(x ) = V0 

V(x ) = 0

x

(a)

(b)
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Specializing these solutions to our situation where we are assuming the incident beam 
of particles to be moving from left to right, we see that the first term in Equation 6-63 
represents that beam since multiplying Aeik1 x by the time part of C(x, t), e2ivt, yields 
a plane wave (i.e., a beam of free particles) moving to the right. The second term, 

Be-ik1 x, represents particles moving to the left in Region I. In Equation 6-64, D 5 0 
since that term represents particles incident on the potential step from the right and 
there are none. Thus, we have that the constant A is known or at least obtainable 
(determined by normalization of Aeik1 x in terms of the density of particles in the beam 
as explained above) and the constants B and C are yet to be found. We find them by 
applying the continuity condition on c(x) and dc1x2 >dx at x 5 0, that is, by requiring 
that cI(0) 5 cII(0) and dc102 >dx = dcII102 >dx. Continuity of c at x 5 0 yields

cI102 = A + B = cII102 = C

or

	 A + B = C� 6-65a

Continuity of dc>dx at x 5 0 gives

	 k1 A - k1 B = k2 C� 6-65b

Solving Equations 6-65a and b for B and C in terms of A (see Problem 6-49), 
we have

 B =
k1 - k2

k1 + k2
 A =

E1>2 - 1E - V021>2

E1>2 + 1E - V021>2 A� 6-66

 C =
2k1

k1 + k2
 A =

2E1>2

E1>2 + 1E - V021>2   A� 6-67

where Equations 6-66 and 6-67 give the relative amplitude of the reflected and trans-
mitted waves, respectively. It is usual to define the coefficients of reflection R and 
transmission T, the relative rates at which particles are reflected and transmitted, in 
terms of the squares of the amplitudes A, B, and C as15

 R =
 B  2

 A  2 = a k1 - k2

k1 + k2
b

2

� 6-68

 T =
k2

k1
 
 C  2

 A  2 =
4k1k2

1k1 + k222� 6-69

from which it can be readily verified that

	 T + R = 1� 6-70

Among the interesting consequences of the wave nature of the solutions to Schrödinger’s 
equation, notice the following:

1.	 Even though E . V0, R is not 0; that is, in contrast to classical expectations, 
some of the particles are reflected from the step. (This is analogous to the 
internal reflection of electromagnetic waves at the interface of two media.)

2.	 The value of R depends on the difference between k1 and k2 but not on which
is larger; that is, a step down in the potential produces the same reflection as 
a step up of the same size.
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Since k = p>U = 2p>l, the wavelength changes as the beam passes the step. We 
might also expect that the amplitude of cII will be less than that of the incident 
wave; however, recall that the  c  2 is proportional to the particle density. Since 
particles move more slowly in Region II (k2 , k1),  cII  2 may be larger than  cI  2. 
Figure 6-22b illustrates these points. Figure 6-23 shows the time development of a 
wave packet incident on a potential step for E . V0.

Now let us consider the case shown in Figure 6-24a, where E , V0. Classically, 
we expect all particles to be reflected at x 5 0; however, we note that k2 in Equa-
tion 6-64 is now an imaginary number since E , V0. Thus,

	 cII1x2 = Ceik2 x = Ce-ax� 6-71

is a real exponential function where a = 22m1V0 - E2 >U. (We choose the positive 
root so that cII S  0 as x S .) This means that the numerator and denominator of 
the right side of Equation 6-66 are complex conjugates of each other; hence 
 B  2 =  A  2, R 5 1, and T 5 0. Figure 6-25 is a graph of both R and T versus energy 

Figure 6-23  ​Time development of a 
one-dimensional wave packet representing a 
particle incident on a step potential for E . V0. 
The position of a classical particle is indicated by 
the dot. Note that part of the packet is transmitted 
and part is reflected. The reflected wave indicates 
that there is some probability that the particle is 
reflected by the step, even though E . V0 . The 
sharp spikes that appear are artifacts of the 
discontinuity in the slope of V(x) at x 5 0.

x

t

Ψ(x, t )2

ψ(x )

Energy

E

0 x

0

V(x ) = V0 

V(x ) = 0

x

(a)

(b)

Figure 6-24  ​(a) A potential 
step. Particles are incident 
on the step from the left 
moving toward the right, each 
with total energy E , V0.
(b) The wave transmitted
into region II is a decreasing 
exponential. However, the 
value of R in this case is 1 
and no net energy is 
transmitted.
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for a potential step. In agreement with the classical prediction, all of the particles 
(waves) are reflected back into Region I. However, another interesting result of our 
solution of Schrödinger’s equation is that the particle waves do not all reflect at x 5 0. 
Since cII is an exponential decreasing toward the right, the particle density in 
Region II is proportional to

	  cII  2 =  C  2
 e-2ax� 6-72

Figure 6-24b shows the wave function for the case E , V0. The wave function does 
not go to zero at x 5 0 but decays exponentially, as does the wave function for the 
bound state in a finite square well problem. The wave penetrates slightly into the clas-
sically forbidden region x . 0 but eventually is completely reflected. (As discussed in 
Section 6-3, there is no prediction that a negative kinetic energy will be measured in 
such a region because to locate the particle in such a region introduces an uncertainty 
in the momentum corresponding to a minimum kinetic energy greater than V0 2 E.) 
This situation is similar to that of total internal reflection in optics.

EXAMPLE 6-6	 Reflection from a Step with E , V0 ​ A beam of electrons, each 
with energy E 5 0.1 V0, are incident on a potential step with V0 5 2 eV. This is of 
the order of magnitude of the work function for electrons at the surface of metals 
(see Section 3-4). Graph the relative probability  c  2 of particles penetrating the 
step up to a distance x 5 1029 m, or roughly five atomic diameters.

SOLUTION
For x . 0, the wave function is given by Equation 6-71. The value of  C  2 is, from 
Equation 6-67,

 C  2 = ` 210.1V021>2

10.1 V021>2 + 1-0.9 V021>2 `
2

= 0.4

where we have taken  A  2 = 1. Computing e22ax for several values of x from 0 to 
1029 m gives, with 2a = 232m10.9 V02 41>2>U, the first two columns of Table 6-2. 
Taking e22ax and then multiplying by  C  2 = 0.4 yields  c  2, which is graphed in 
Figure 6-26.
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Figure 6-25  Reflection 
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step V0 high versus energy E 
(in units of V0).

Figure 6-26 

x84

0.3

0

0.2

0.4

0.1

1020 6

ψ
2

(10–10 m)

TIPLER_06_229-276hr.indd   262 8/22/11   11:57 AM



	 6-6  Reflection and Transmission of Waves	 263

Barrier Potential
Now let us consider another of the many interesting quantum-mechanical potentials, 
the barrier, illustrated by the example in Figure 6-27. The potential is

	 V1x2 = bV0 for 0 6 x 6 a
0   for 0 7 x and x 7 a

� 6-73

Classical particles incident on the barrier from the left in Region I with E . V0 will all 
be transmitted, slowing down while passing through Region II but moving at their 
original speed again in Region III. For classical particles with E , V0 incident from 
the left, all are reflected back into Region I. The quantum-mechanical behavior of 
particles incident on the barrier in both energy ranges is much different!

First, let us see what happens when a beam of particles, all with the same energy 
E , V0, as illustrated in Figure 6-27, are incident from the left. The general solutions 
to the wave equation are, following the example of the potential step,

 cI1x2 = Aeik1 x + Be-ik1 x   x 6 0

 cII1x2 = Ce-ax + Deax    0 6 x 6 a� 6-74

 cIII1x2 = Feik1 x + Ge-ik1 x   x 7 a

 Table 6-2  2

x (m) 2ax 2

0 0 0.40

0.1  10210 0.137 0.349

1.0  10210 1.374 0.101

2.0  10210 2.748 0.026

5.0  10210 6.869 0.001

10.0  10210 13.74  0

Figure 6-27  ​(a) Square 
barrier potential. (b) Pene
tration of the barrier by a 
wave with energy less than 
the barrier energy. Part 
of the wave is transmitted 
by the barrier even though, 
classically, the particle cannot 
enter the region 0 , x , a in 
which the potential energy is 
greater than the total energy.

ψ(x )

Energy

E

x

x

0 a

0 a
I II III

V0 
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where, as before, k1 = 22mE>U and a = 22m1V0 - E2 >U. Note that cII involves 
real exponentials, whereas cI and cIII contain complex exponentials. Since the parti-
cle beam is incident on the barrier from the left, we can set G 5 0. Once again, the 
value of A is determined by the particle density in the beam and the four constants B, 
C, D, and F are found in terms of A by applying the continuity condition on c and 
dc>dx at x 5 0 and at x 5 a. The details of the calculation are not of concern to us 
here, but several of the more interesting results are.

As we discovered for the potential step with E , V0, the wave function incident 
from the left does not decrease immediately to zero at the barrier but instead will 
decay exponentially in the region of the barrier. On reaching the far wall of the barrier, 
the wave function must join smoothly to a sinusoidal wave function to the right of the 
barrier, as shown in Figure 6-27b. This implies that there will be some probability of 
the particles represented by the wave function being found on the far right side of 
the barrier, although classically they should never be able to get through; that is, there 
is a probability that the particles approaching the barrier can penetrate it. This 
phenomenon is called barrier penetration or tunneling (see Figure 6-28). The relative 
probability of its occurrence in any given situation is given by the transmission 
coefficient.

The transmission coefficient T from Region I into Region III is found to be (see 
Problem 6-64)

	 T =
 F  2

 A  2 = £ 1 +
sinh aa

4
E

V0
a1 -  

E

V0
b §

-1

	 6-75

If aa . 1, Equation 6-75 takes on the somewhat simpler form to evaluate

	 T  16 
E

V0
a1 -  

E

V0
be-2aa	 6-76

An important application of tunneling is the scanning tunneling microscope (STM), 
developed in the 1980s by Gerd Binnig and Heinrich Rohrer. In this device a narrow 
gap between a conducting specimen and the tip of a tiny probe acts as a potential bar-
rier to electrons bound in the specimen, as illustrated in Figure 6-29. A small bias 
voltage applied between the probe and the specimen causes the electrons to tunnel 

An important application 
of tunneling is the 
tunnel diode, a common 
component of electronic 
circuits. Another is field 
emission, tunneling of 
electrons facilitated by an 
electric field, now being 
used in wide-angle, flat-
screen displays on some 
laptop computers.

Figure 6-28  Optical barrier 
penetration, sometimes called 
frustrated total internal 
reflection. Because of the 
presence of the second prism, 
part of the wave penetrates 
the air barrier even though 
the angle of incidence in the 
first prism is greater than the 
critical angle. This effect can 
be demonstrated with two 
45° prisms and a laser or 
a microwave beam and 
45° prisms made of paraffin.

• •

+
∆V

–

–

+

e–

Microtip

Figure 6-29  Schematic illustration of the path of the probe 
of an STM (dashed line) scanned across the surface of a 
sample while maintaining constant tunneling current. The 
probe has an extremely sharp microtip of atomic dimensions. 
Tunneling occurs over a small area across the narrow gap, 
allowing very small features (even individual atoms) to be 
imaged, as indicated by the dashed line.
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through the barrier separating the two surfaces if the surfaces are close enough 
together. The tunneling current is extremely sensitive to the size of the gap, that is, the 
width of the barrier, between the probe and specimen. A change of only 0.5 nm (about 
the diameter of one atom) in the width of the barrier can cause the tunneling current to 
change by as much as a factor of 104. As the probe scans the specimen, a constant tun-
neling current is maintained by a piezoelectric feedback system that keeps the gap 
constant. Thus, the surface of the specimen can be mapped out by the vertical motions 
of the probe. In this way, the surface features of a specimen can be measured by 
STMs with a resolution of the order of the size of a single atom (see Figure 6-29 and 
the accompanying STM images of gold nanoparticles).

EXPLORING
Alpha Decay

Barrier penetration was used by Gamow, Condon, and Gurney in 1928 to explain the 
enormous variation in the mean lifetime for a decay of radioactive nuclei and the 
seemingly paradoxical very existence of a decay.16 While radioactive a decay will 
be discussed more thoroughly in Chapter 11, in general, the smaller the energy of 
the emitted a particle, the larger the mean lifetime. The energies of a particles from 
natural radioactive sources range from about 4 to 7 MeV, whereas the mean lifetimes 
range from about 1010 years to 1026 s. Gamow represented the radioactive nucleus by 
a potential well containing an a particle, as shown in Figure 6-30a. For r less than 
the nuclear radius R, the a particle is attracted by the nuclear force. Without knowing 

Scanning tunneling microscopy images of size- and shape-selected platinum nanoparticles 
supported on TiO2(110) [Source: Farza Behafarid and Beatriz Roldan Cuenya, Department of 
Physics, University of Central Florida.]

TIPLER_06_229-276hr.indd   265 8/22/11   11:57 AM



266	 Chapter 6  The Schrödinger Equation

much about this force, Gamow and his coworkers represented it by a square well. Out-
side the nucleus, the a particle is repelled by the Coulomb force. This is represented by 
the Coulomb potential energy +kZze2>r, where z 5 2 for the a particle and Ze is the 
remaining nuclear charge. The energy E is the measured kinetic energy of the emitted
a particle, since when it is far from the nucleus, its potential energy is zero. We see 
from the figure that a small increase in E reduces the relative height of the barrier V 2 E 
and also reduces the thickness. Because the probability of transmission varies expo-
nentially with the relative height and barrier thickness, as indicated by Equation 6-76, 
a small increase in E leads to a large increase in the probability of transmission and in 
turn to a shorter lifetime. Gamow and his coworkers were able to derive an expression 
for the a decay rate and the mean lifetime as a function of energy E that was in good 
agreement with experimental results as follows:

The probability that an a particle will tunnel through the barrier in any one 
approach is given by T from Equation 6-76. In fact, in this case aa is so large than the 
exponential dominates the expression and

	 T  e-222m1V0 -E2  a>U� 6-77

which is a very small number; that is, the a particle is usually reflected. The number of 
times per second N that the a particle approaches the barrier is given roughly by

	 N 
v

2R
� 6-78

Figure 6-30  (a) Model of potential energy function for an a particle and a nucleus. The 
strong attractive nuclear force for r less than the nuclear radius R can be approximately 
described by the potential well shown. Outside the nucleus the nuclear force is negligible, 
and the potential is given by Coulomb’s law, V1r2 = +kZze2>r, where Ze is the nuclear 
charge and ze is the charge of the a particle. An a particle inside the nucleus oscillates
back and forth, being reflected at the barrier at R. Because of its wave properties, when the 
a particle approaches the barrier, there is a small chance that it will penetrate and appear 
outside the well at r 5 r1. The wave function is similar to that shown in Figure 6-27b.
(b) The decay rate for the emission of a particles from radioactive nuclei. The solid line is 
the prediction of Equation 6-79; the points are experimental results.
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where v equals the particle’s speed inside the nucleus. Thus, the decay rate, or the prob-
ability per second that the nucleus will emit an a particle, which is also the reciprocal 
of the mean life t, is given by

	 decay rate =
1
t
=

v

2R
e-222m1V0 -E2  a>U	 6-79

Figure 6-30b illustrates the good agreement between the barrier penetration calculation 
and experimental measurements.

EXPLORING
NH3 Atomic Clock

Barrier penetration also takes place in the case of the periodic inversion of the ammo-
nia molecule. The NH3 molecule has two equilibrium configurations, as illustrated in 
Figure 6-31a. The three hydrogen atoms are arranged in a plane. The nitrogen atom 
oscillates between two equilibrium positions equidistant from each of the H atoms 
above and below the plane. The potential energy function V(x) acting on the N atom 
has two minima located symmetrically about the center of the plane, as shown in Fig-
ure 6-31b. The N atom is bound to the molecule, so the energy is quantized and the 
lower states lie well below the central maximum of the potential. The central maximum 
presents a barrier to the N atoms in the lower states through which they slowly tunnel 
back and forth.17 The oscillation frequency f 5 2.3786  1010 Hz when the atom is in 
the state characterized by the energy E1 in Figure 6-31b. This frequency is quite low 
compared with the frequencies of most molecular vibrations, a fact that allowed the N 
atom tunneling frequency in NH3 to be used as the standard in the first atomic clocks, 
devices that now provide the world’s standard for precision timekeeping.

Figure 6-31  (a) The NH3 molecule oscillates between the two equilibrium positions 
shown. The H atoms form a plane; the N atom is colored. (b) The potential energy of the
N atom, where x is the distance above and below the plane of the H atoms. Several of the 
allowed energies, including the two lowest shown, lie below the top of the central barrier 
through which the N atom tunnels.

V(x )x

E2

E1

x0

(a) (b)

More
�Quantum-mechanical tunneling involving two barriers is the basis 
for a number of devices such as the tunnel diode and the Josephson 
junction, both of which have a wide variety of useful applications. 
As an example of such systems, the Tunnel Diode is described on the 
home page: www.whfreeman.com/tiplermodernphysics6e. See also 
Equation 6-80 and Figure 6-32 here.

More

In the event that E/V0 . 1,
there is no reflected 
wave for aa 5 p, 2p, . . . 
as a result of destructive 
interference. For electrons 
incident on noble gas 
atoms, the resulting 100 
percent transmission 
is called the Ramsauer-
Townsend effect and is a 
way of measuring atomic 
diameters for those 
elements.
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Schrödinger equation

	 Time dependent, one space dimension

	 Time independent, one space dimension

	 Normalization condition

	 Acceptability conditions

-  
U2

2m
 
02C1x, t2

0x 2 + V1x, t2C1x, t2 = iU 
0C1x, t2

0t
� 6-6

-U2

2m
 
d2c1x2

dx 2 + V1x2c1x2 = E c1x2� 6-18

L
+ 

- 

C*1x, t2C1x, t2dx = 1� 6-9

and

L
+ 

- 

c*1x2c1x2dx = 1� 6-20

1. c(x) must exist and satisfy the Schrödinger equation.

2. c(x) and dc>dx must be continuous.

3. c(x) and dc>dx must be finite.

4. c(x) and dc>dx must be single valued.

5. �c(x) S 0 fast enough as x S {  so that the normalization
integral, Equation 6-20, remains bounded.

2.	 Infinite square well

	 Allowed energies

	 Wave functions 

En = n2 p2U2

2mL2 = n2 E1  n = 1, 2, 3,c � 6-24

cn1x2 = A 2

L
 sin 

npx

L
  n = 1, 2, 3,c � 6-32

3.	 Finite square well For a finite well of width L the allowed energies En in the
well are lower than the corresponding levels for an infinite well. 
There is always at least one allowed energy (bound state) in a 
finite well.

4.	 Expectation values and operators The expectation or average value of a physical quantity represented 
by an operator, such as the momentum operator pop, is given by

8p9 = L
+ 

- 

C*popCdx = L
+ 

- 

C*a U
i
 
0

0x
bC dx� 6-48

5.	 Simple harmonic oscillator

	 Allowed energies En = an +
1

2
bUv  n = 0, 1, 2,c � 6-56

6.	 Reflection and transmission When the potential changes abruptly in a distance small compared 
to the de Broglie wavelength, a particle may be reflected even 
though E . V(x). A particle may also penetrate into a region where
E , V(x).
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General References 
The following general references are written at a level 
appropriate for the readers of this book.

Brandt, S., and H. D. Dahmen, The Picture Book of Quantum 
Mechanics, Wiley, New York, 1985.

Eisberg, R., and R. Resnick, Quantum Physics, 2d ed., Wiley, 
New York, 1985.

Feynman, R. P., R. B. Leighton, and M. Sands, Lectures on 
Physics, Addison-Wesley, Reading, MA, 1965.

Ford, K. W., The Quantum World, Harvard University Press, 
Cambridge, MA, 2004.

French, A. P., and E. F. Taylor, An Introduction to Quantum 
Physics, Norton, New York, 1978.

Mehra, J., and H. Rechenberg, The Historical Development of 
Quantum Theory, Vol. 1, Springer-Verlag, New York, 1982.

Park, D., Introduction to the Quantum Theory, 3d ed., 
McGraw-Hill, New York, 1992.

Visual Quantum Mechanics, Kansas State University, 
Manhattan, 1996. Computer simulation software allows 
the user to analyze a variety of one-dimensional poten-
tials, including the square wells and harmonic oscilla-
tor discussed in this chapter.

Notes 
1.	 Felix Bloch (1905–1983), Swiss American physicist. He 

was a student at the University of Zurich and attended the col-
loquium referred to. The quote is from an address before the 
American Physical Society in 1976. Bloch shared the 1952 
Nobel Prize in Physics for measuring the magnetic moment 
of the neutron, using a method he invented that led to the 
development of the analytical technique of nuclear magnetic 
resonance (NMR) spectroscopy.

2.	 Peter J. W. Debye (1884–1966), Dutch American physi-
cal chemist. He succeeded Einstein in the chair of theoretical 
physics at the University of Zurich and received the Nobel 
Prize in Chemistry in 1936.

3.	 Erwin R. J. A. Schrödinger (1887–1961), Austrian physi-
cist. He succeeded Planck in the chair of theoretical physics 
at the University of Berlin in 1928 following Planck’s retire-
ment and two years after publishing in rapid succession six 
papers that set forth the theory of wave mechanics. For that 
work he shared the Nobel Prize in Physics with P. A. M. Dirac 
in 1933. He left Nazi-controlled Europe in 1940, moving his 
household to Ireland.

4.	 To see that this is indeed the case, consider the effect 
on 02C1x, t2 >0x 2 of multiplying C(x, t) by a factor C. Then 
02

 CC1x, t2 >0x 2 = C02C1x, t2 >0x 2, and the derivative is 
increased by the same factor. Thus, the derivative is propor-
tional to the first power of the function, that is, it is linear in 
C(x, t).

5.	 The imaginary i appears because the Schrödinger equa-
tion relates a first time derivative to a second space deriv-
ative as a consequence of the fact that the total energy is 
related to the square of the momentum. This is unlike the 
classical wave equation (Equation 5-11), which relates two 
second derivatives. The implication of this is that, in general, 
the C(x, t) will be complex functions, whereas the y(x, t)
are real.

6.	 The fact that C is in general complex does not mean that 
its imaginary part doesn’t contribute to the values of mea-
surements, which are real. Every complex number can be 
written in the form z 5 a 1 bi, where a and b are real numbers 
and i = 1-121>2. The magnitude or absolute value of z is 
defined as 1a2 + b221>2. The complex conjugate of z is z* 5 
a 2 bi, so z*z = 1a - bi2 1a + bi2 = a2 + b2 =  z  2; 
thus the value of  C  2 will contain a contribution from its 
imaginary part.

7.	 Here we are using the convention of probability and sta-
tistics that certainty is represented by a probability of 1.

8.	 This method for solving partial differential equations 
is called separation of variables, for obvious reasons. Since 
most potentials in quantum mechanics, as in classical mechan-
ics, are time independent, the method may be applied to the 
Schrödinger equation in numerous situations.

9.	 We should note that there is an exception to this in the 
quantum theory of measurement.
10.	 E 5 0 corresponding to n 5 0 is not a possible energy 
for a particle in a box. As discussed in Section 5-6, the uncer-
tainty principle limits the minimum energy for such a particle 
to values 7  U2>2mL2.
11.	 Recalling that linear combinations of solutions to 
Schrödinger’s equation will also be solutions, we should 
note here that simulation of the classical behavior of a mac-
roscopic particle in a macroscopic box requires wave func-
tions that are the superpositions of many stationary states. 
Thus, the classical particle never has definite energy in the 
quantum-mechanical sense.
12.	 To simplify the notation in this section, we will some-
times omit the functional dependence and merely write cn for 
cn(x) and Cn for Cn(x).
13.	 The Hermite polynomials are known functions that are 
tabulated in most books on quantum mechanics.
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Problems 
Level I
Section 6-1  The Schrödinger Equation in One Dimension
8-1.	 Show that the wave function C(x, t) 5 Aekx 2 vt does not satisfy the time-dependent 
Schrödinger equation.
8-2.	 Show that C(x, t) 5 Aei(kx 2 vt) satisfies both the time-dependent Schrödinger equa-
tion and the classical wave equation (Equation 6-1).
8-3.	 In a region of space, a particle has a wave function given by c1x2 = Ae-x2>2L2

 and 
energy U2>2mL2, where L is some length. (a) Find the potential energy as a function of x, 
and sketch V versus x. (b) What is the classical potential that has this dependence?
8-4.	 (a) For Problem 6-3, find the kinetic energy as a function of x. (b) Show that x 5 L 
is the classical turning point. (c) The potential energy of a simple harmonic oscillator in 
terms of its angular frequency v is given by V1x2 =

1
2 mv2

 x2. Compare this with your 
answer to part (a) of Problem 6-3, and show that the total energy for this wave function 
can be written E =

1
2  Uv.

8-5.	 (a) Show that the wave function C(x, t) 5 A sin(kx 2 vt) does not satisfy the time-
dependent Schrödinger equation. (b) Show that C(x, t) 5 A cos(kx 2 vt) 1 iA sin(kx 2 vt) 
does satisfy this equation.
8-6.	 The wave function for a free electron, that is, one on which no net force acts, is given 
by c(x) 5 A sin(2.5  1010x), where x is in meters. Compute the electron’s (a) momentum, 
(b) total energy, and (c) de Broglie wavelength.
8-7.	 A particle with mass m and total energy zero is in a particular region of space where 
its wave function is c1x2 = Ce-x2>L2

. (a) Find the potential energy V(x) versus x and
(b) make a sketch of V(x) versus x.
8-8.	 Normalize the wave function in Problem 6-2 between 2a and 1a. Why can’t that 
wave function be normalized between 2 and 1?

Section 6-2 The Infinite Square Well
8-9.	 A particle is in an infinite square well of size L. Calculate the ground-state energy if 
(a) the particle is a proton and L 5 0.1 nm, a typical size for a molecule; (b) the particle is 
a proton and L 5 1 fm, a typical size for a nucleus.
8-10.	 A particle is in the ground state of an infinite square well potential given by Equa-
tion 6-21. Find the probability of finding the particle in the interval Dx 5 0.002 L at 
1a2 x = L>2, 1b2 x = 2L>3, and (c) x 5 L. (Since Dx is very small, you need not do any 
integration.)

14.	 It is straightforward to show that the only difference 
between a c(x) normalized in terms of the particle density and 
one for which  c1x2  2 is the probability density is a multipli-
cative constant.
15.	 T and R are derived in terms of the particle currents, that is, 
particles/unit time, in most introductory quantum mechanics 
books.
16.	 Rutherford had shown that the scattering of 8.8 MeV 
a particles from the decay of 212Po obeyed the Coulomb 
force law down to distances of the order of 3  10214 m, 
that is, down to about nuclear dimensions. Thus, the Cou-
lomb barrier at that distance was at least 8.8 MeV high; 
however, the energy of a particles emitted by 238U is only 

4.2 MeV, less than half the barrier height. How that could 
be possible presented classical physics with the paradox 
referred to in the text.
17.	 Since the molecule’s center of mass is fixed in an inertial 
reference frame, the plane of H atoms also oscillates back and 
forth in the opposite direction to the N atom; however, their 
mass being smaller than that of the N atom, the amplitude of 
the plane’s motion is actually larger than that of the N atom. 
It is the relative motion that is important.
18.	 See, for example, F. Capasso and S. Datta, “Quantum 
Electron Devices,” Physics Today, 43, 74 (1990). Leo Esaki 
was awarded the Nobel Prize in Physics in 1973 for inventing 
the resonant tunnel diode.
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8-11.	 Do Problem 6-10 for a particle in the second excited state (n 5 3) of an infinite 
square well potential.
8-12.	 A mass of 1026 g is moving with a speed of about 1021 cm/s in a box of length 
1 cm. Treating this as a one-dimensional infinite square well, calculate the approximate 
value of the quantum number n.
8-13.	 (a) For the classical particle of Problem 6-12, find D x and Dp, assuming that 
Dx>L = 0.01 percent and Dp>p = 0.01 percent. (b) What is 1DxDp2 >U?
8-14.	 A particle of mass m is confined to a tube of length L. (a) Use the uncertainty rela-
tionship to estimate the smallest possible energy. (b) Assume that the inside of the tube 
is a force-free region and that the particle makes elastic reflections at the tube ends. Use 
Schrödinger’s equation to find the ground-state energy for the particle in the tube. Com-
pare the answer to that of part (a).
8-15.	 (a) What is the wavelength associated with the particle of Problem 6-14 if the par-
ticle is in its ground state? (b) What is the wavelength if the particle is in its second excited 
state (quantum number n 5 3)? (c) Use de Broglie’s relationship to find the magnitude for 
the momentum of the particle in its ground state. (d ) Show that p2>2m gives the correct 
energy for the ground state of this particle in the box.
8-16.	 The wavelength of light emitted by a ruby laser is 694.3 nm. Assuming that the 
emission of a photon of this wavelength accompanies the transition of an electron from the 
n 5 2 level to the n 5 1 level of an infinite square well, compute L for the well.
8-17.	 The allowed energies for a particle of mass m in a one-dimensional infinite square 
well are given by Equation 6-24. Show that a level with n 5 0 violates the Heisenberg 
uncertainty principle.
8-18.	 Suppose we construct a simple model of a neutral uranium atom as a collection 
of electrons confined in a one-dimensional box of width 0.05 nm with one electron per 
energy level. (a) Compute the energy of the most energetic electron in the model atom. 
(b) Compare the result in (a) with the rest energy of the electron.
8-19.	 Suppose a macroscopic bead with a mass of 2.0 g is constrained to move on a 
straight frictionless wire between two heavy stops clamped firmly to the wire 10 cm apart. 
If the bead is moving at a speed of 20 nm/y (i.e., to all appearances it is at rest), what is the 
value of its quantum number n?
8-20.	 An electron moving in a one-dimensional infinite square well is trapped in the n 5 5 
state. (a) Show that the probability of finding the electron between x 5 0.2 L and x 5 0.4 L 
is 1>5. (b) Compute the probability of finding the electron within the “volume” D x 5 0.01 L 
at x = L>2.
8-21.	 In the early days of nuclear physics before the neutron was discovered, it was thought 
that the nucleus contained only electrons and protons. If we consider the nucleus to be a 
one-dimensional infinite well with L 5 10 fm and ignore relativity, compute the ground-
state energy for (a) an electron and (b) a proton in the nucleus. (c) Compute the energy 
difference between the ground state and the first excited state for each particle. (Differences 
between energy levels in nuclei are found to be typically of the order of 1 MeV.)
8-22.	 An electron is in the ground state with energy En of a one-dimensional infinite 
well with L 5 10210 m. Compute the force that the electron exerts on the wall during an 
impact on either wall. (Hint: F = -dEn>dL. Why?) How does this result compare with 
the weight of an electron at the surface of Earth?
8-23.	 The wave functions of a particle in a one-dimensional infinite square well are given 
by Equation 6-32. Show that for these functions cn(x)cm(x) dx 5 0, that is, that cn(x) and 
cm(x) are orthogonal.

Section 6-3  The Finite Square Well
8-24.	 Sketch (a) the wave function and (b) the probability distribution for the n 5 4 state 
for the finite square well potential.
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8-25.	 A finite square well 1.0 fm wide contains one neutron. How deep must the well be if 
there are only two allowed energy levels for the neutron?
8-26.	 An electron is confined to a finite square well whose “walls” are 8.0 eV high. If the 
ground-state energy is 0.5 eV, estimate the width of the well.
8-27.	 Using arguments concerning curvature, wavelength, and amplitude, sketch very 
carefully the wave function corresponding to a particle with energy E in the finite poten-
tial well shown in Figure 6-33.

Figure 6-33  Problem 6-27.

Energy

0

V1 

V2 V2 

V = 0

x

8-28.	 For a finite square well potential that has six quantized levels, if a 5 10 nm (a) sketch 
the finite well, (b) sketch the wave function from x 5 22a to x 5 12a for n 5 3, and 
(c) sketch the probability density for the same range of x.

Section 6-4  Expectation Values and Operators
8-29.	 Compute the expectation value of the x component of the momentum of a particle of 
mass m in the n 5 3 level of a one-dimensional infinite square well of width L. Reconcile 
your answer with the fact that the kinetic energy of the particle in this level is 9p2U2>2mL2.
8-30.	 Find (a) 8x9 and (b) 8x29 for the second excited state (n 5 3) in an infinite square 
well potential.
8-31.	 (a) Show that the classical probability distribution function for a particle in a one-
dimensional infinite square well potential of length L is given by P1x2 = 1>L. (b) Use 
your result in (a) to find 8x9 and 8x29 for a classical particle in such a well.
8-32.	 Show directly from the time-independent Schrödinger equation that 8p29 5
82m[E 2 V(x)]9 in general and that 8p29 5 82mE9 for the infinite square well. Use this 
result to compute 8p29 for the ground state of the infinite square well.

8-33.	 Find sx = 28x29 - 8x92, sp = 28p29 - 8p92, and sxsp for the ground-state 
wave function of an infinite square well. (Use the fact that 8  p9 5 0 by symmetry and 
8  p29 5 82mE9 from Problem 6-32.)
8-34.	 Compute 8x9 and 8x2 9 for the ground state of a harmonic oscillator (Equation 6-58). 
Use A0 = 1mv>Up21>4.
8-35.	 Use conservation of energy to obtain an expression connecting x2 and p2 for a har-
monic oscillator, then use it along with the result from Problem 6-34 to compute 8p29 for 
the harmonic oscillator ground state.
8-36.	 (a) Using A0 from Problem 6-34, write down the total wave function C0(x, t) for 
the ground state of a harmonic oscillator. (b) Use the operator for px from Table 6-1 to 
compute 8 p29.

Section 6-5  The Simple Harmonic Oscillator
8-37.	 For the harmonic oscillator ground state n 5 0, the Hermite polynomial Hn(x) in 
Equation 6-57 is given by H0 5 1. Find (a) the normalization constant C0, (b) 8x29, and 
(c) 8V(x)9 for this state. (Hint: Use the Probability Integral in Appendix B1 to compute the 
needed integrals.)
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8-38.	 For the first excited state, H1(x) 5 x. Find (a) the normalization constant C1, (b) 8x9, 
(c) 8x2 9, (d ) 8V(x)9 for this state (see Problem 6-36).
8-39.	 A quantum harmonic oscillator of mass m is in the ground state with classical turn-
ing points at {A. (a) With the mass confined to the region D x  2A, compute D p for this 
state. (b) Compare the kinetic energy implied by D p with (1) the ground-state total energy 
and (2) the expectation value of the kinetic energy.
8-40.	 Compute the spacing between adjacent energy levels per unit energy, that is, 
DEn>En, for the quantum harmonic oscillator and show that the result agrees with Bohr’s 
correspondence principle (see Section 4-3) by letting n S .
8-41.	 Compute 8x9 and 8x29 for (a) the ground state, (b) the first excited state, and (c) the 
second excited state of the harmonic oscillator.
8-42.	 The period of a macroscopic pendulum made with a mass of 10 g suspended from 
a massless cord 50 cm long is 1.42 s. (a) Compute the ground-state (zero-point) energy. 
(b) If the pendulum is set into motion so that the mass raises 0.1 mm above its equilibrium 
position, what will be the quantum number of the state? (c) What is the frequency of the 
motion in (b)?
8-43.	 Show that the wave functions for the ground state and the first excited state of 
the simple harmonic oscillator, given in Equation 6-58, are orthogonal, that is, show that 
c0(x)c1(x) dx 5 0.

Section 6-6  Reflection and Transmission of Waves
8-44.	 A free particle of mass m with wave number k1 is traveling to the right. At x 5 0, 
the potential jumps from zero to V0 and remains at this value for positive x. (a) If the total 
energy is E = U2

 k2
1>2m = 2V0, what is the wave number k2 in the region x . 0? Express 

your answer in terms of k1 and V0 . (b) Calculate the reflection coefficient R at the poten-
tial step. (c) What is the transmission coefficient T ? (d) If one million particles with wave 
number k1 are incident on the potential step, how many particles are expected to continue 
along in the positive x direction? How does this compare with the classical prediction?
8-45.	 A proton with energy 44 MeV is in a nuclear potential well 50 MeV deep. The pro-
ton “sees” a Coulomb barrier 10215 m wide at the nuclear surface. (a) Use Equation 6-76 to 
compute the probability that the proton will tunnel through the barrier on a single approach. 
(b) Assuming that the radius R of the nucleus is 10215 m and the proton is nonrelativistic, 
compute the rate at which protons would be emitted (i.e., decay) from a sample of these 
nuclei. (c) By what factor does your answer to part (b) change if the width of the barrier is 
2  10215 m?
8-46.	 In Problem 6-44, suppose that the potential jumps from zero to 2V0 at x 5 0 so that 
the free particle speeds up instead of slowing down. The wave number for the incident 
particle is again k1, and the total energy is 2V0. (a) What is the wave number for the par-
ticle in the region of positive x? (b) Calculate the reflection coefficient R at the potential 
step. (c) What is the transmission coefficient T? (d ) If one million particles with wave 
number k1 are incident on the potential step, how many particles are expected to continue 
along in the positive x direction? How does this compare with the classical prediction?
8-47.	 In a particular semiconductor device an oxide layer forms a barrier 0.6 nm wide 
and 9 eV high between two conducting wires. Electrons accelerated through 4 V approach 
the barrier. (a) What fraction of the incident electrons will tunnel through the barrier?
(b) Through what potential difference should the electrons be accelerated in order to increase 
the tunneling fraction by a factor of 2?
8-48.	 For particles incident on a step potential with E , V0, show that T 5 0 using Equa-
tion 6-70.
8-49.	 Derive Equations 6-66 and 6-67 from those that immediately precede them.
8-50.	 A beam of electrons, each with kinetic energy E 5 2.0 eV, is incident on a potential 
barrier with V0 5 6.5 eV and width 5.0  10210 m (see Figure 6-26). What fraction of the 
electrons in the beam will be transmitted through the barrier?
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8-51.	 A beam of protons, each with kinetic energy 40 MeV, approaches a step potential 
of 30 MeV. (a) What fraction of the beam is reflected and transmitted? (b) How does your 
answer change if the particles are electrons?

Level II
8-52.	 A proton is in an infinite square well potential given by Equation 6-21 with L 5 1 fm.
(a) Find the ground-state energy in MeV. (b) Make an energy-level diagram for this sys-
tem. Calculate the wavelength of the photon emitted for the transitions (c) n 5 2 to n 5 1, 
(d ) n 5 3 to n 5 2, and (e) n 5 3 to n 5 1.
8-53.	 A particle is in the ground state of an infinite square well potential given by 
Equation 6-21. Calculate the probability that the particle will be found in the region 
(a) 0 6 x 6

1
2L, (b) 0 6 x 6

1
3L, and (c) 0 6 x 6

3
4L.

8-54.	 (a) Show that for large n, the fractional difference in energy between state n and 
state n 1 1 for a particle in an infinite square well is given approximately by

En+1 - En

En


2
n

(b) What is the approximate percentage energy difference between the states n1 5 1000 
and n2 5 1001? (c) Comment on how this result is related to Bohr’s correspondence 
principle.
8-55.	 Compute the expectation value of the kinetic energy of a particle of mass m moving 
in the n 5 2 level of a one-dimensional infinite square well of width L.
8-56.	 A particle of mass m is in an infinite square well potential given by

 V =   x 6 -L>2
 V = 0  -L>2 6 x 6 +L>2
 V =   +L>2 6 x

Since this potential is symmetric about the origin, the probability density  c1x2  2 must
also be symmetric. (a) Show that this implies that either c(2x) 5 c(x) or c(2x) 5 2c(x). 
(b) Show that the proper solutions of the time-independent Schrödinger equation can be 
written

c1x2 = A 2

L
 cos 

npx

L
  n = 1, 3, 5, 7,c

and

c1x2 = A 2

L
 sin 

npx

L
  n = 2, 4, 6, 8,c

(c) Show that the allowed energies are the same as those for the infinite square well given 
by Equation 6-24.
8-57.	 The wave function c01x2 = Ae-x2>2L2

 represents the ground-state energy of a har-
monic oscillator. (a) Show that c11x2 = L dc01x2 >dx is also a solution of Schrödinger’s 
equation. (b) What is the energy of this new state? (c) From a look at the nodes of this 
wave function, how would you classify this excited state?
8-58.	 For the wave functions

c1x2 = A 2

L
 sin 

npx

L
  n = 1, 2, 3,c

corresponding to an infinite square well of length L, show that

8x29 =
L2

3
-  

L2

2n2p2
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8-59.	 A 10 eV electron is incident on a potential barrier of height 25 eV and width 1 nm. 
(a) Use Equation 6-76 to calculate the order of magnitude of the probability that the elec-
tron will tunnel through the barrier. (b) Repeat your calculation for a width of 0.1 nm.
8-60.	 A particle of mass m moves in a region in which the potential energy is constant,
V 5 V0. (a) Show that neither C(x, t) 5 A sin(kx 2 vt) nor C(x, t) 5 A cos(kx 2 vt) 
satisfies the time-dependent Schrödinger equation. (Hint: If C1 sin w 1 C2 cos w 5 0 for 
all values of w, then C1 and C2 must be zero.) (b) Show that C(x, t) 5 A[cos(kx 2 vt) 1
isin(kx 2 vt)] 5 Aei(kx 2 vt) does satisfy the time-independent Schrödinger equation pro-
vided that k, V0, and v are related by Equation 6-5.

Level III
8-61.	 A particle of mass m on a table at z 5 0 can be described by the potential energy

 V = mgz   for  z 7 0
 V =   for  z 6 0

For some positive value of total energy E, indicate the classically allowed region on a 
sketch of V(z) versus z. Sketch also the kinetic energy versus z. The Schrödinger equation 
for this problem is quite difficult to solve. Using arguments similar to those in Section 6-3 
about the curvature of a wave function as given by the Schrödinger equation, sketch your 
“educated guesses” for the shape of the wave function for the ground state and the first 
two excited states.
8-62.	 Use the Schrödinger equation to show that the expectation value of the kinetic energy 
of a particle is given by

8Ek9 = L
+ 

- 

c1x2 a -  
U2

2m
 
d2c1x2

dx2 b  dx

8-63.	 An electron in an infinite square well with L 5 10212 m is moving at relativistic 
speed; hence, the momentum is not given by p = 12mE21>2. (a) Use the uncertainty 
principle to verify that the speed is relativistic. (b) Derive an expression for the electron’s 
allowed energy levels and (c) compute E1. (d) By what fraction does E1 computed in
(c) differ from the nonrelativistic E1?
8-64.	 (a) Derive Equation 6-75. (b) Show that, if aa W1, Equation 6-76 follows from 
Equation 6-75 as an approximation.
8-65.	 A beam of protons, each with energy E 5 20 MeV, is incident on a potential step
40 MeV high. Graph the relative probability of finding protons at values of x . 0 from
x 5 0 to x 5 5 fm. (Hint: Take  A  2 = 1 and refer to Example 6-6.)
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In this chapter we will apply quantum mechanics to atomic systems. For all neutral 
atoms except hydrogen the Schrödinger equation cannot be solved exactly. Despite 

this, it is in the realm of atomic physics that the Schrödinger equation has had its 
greatest success because the electromagnetic interaction of the electrons with each 
other and with the atomic nucleus is well understood. With powerful approximation 
methods and high-speed computers, many features of complex atoms such as their 
energy levels and the wavelengths and intensities of their spectra can be calculated, 
often to whatever accuracy is desired. The Schrödinger equation for the hydrogen 
atom was first solved in Schrödinger’s first paper on quantum mechanics, published 
in 1926. This problem is of considerable importance not only because the Schrödinger 
equation can be solved exactly in this case, but also because the solutions obtained 
form the basis for the approximate solutions for other atoms. We will therefore dis-
cuss this problem in some detail. Although the mathematics that arises in solving the 
Schrödinger equation is a bit difficult in a few places, we will be as quantitative as 
possible, presenting results without proof and discussing important features of these 
results qualitatively only when necessary. Whenever possible, we will give simple 
physical arguments to make important results plausible.

7-1  The Schrödinger Equation in
Three Dimensions 
In Chapter 6 we considered motion in just one dimension, but of course the real world 
is three-dimensional. While there are many cases in which the one-dimensional form 
brings out the essential physical features, there are some considerations introduced in 
three-dimensional problems that we want to examine. In rectangular coordinates, the 
time-independent Schrödinger equation for a single particle of mass m is

	 -  
U2

2m
a 0

2c

0x2 +
02c

0y 2 +
02c

0z 2 b + Vc = Ec	 7-1

The wave function and the potential energy are generally functions of all three coordi-
nates x, y, and z.
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Infinite Square Well in Three Dimensions
Let us consider the three-dimensional version of the particle in a cubical box. The 
potential energy function V(x, y, z) = 0 for 0 6 x 6 L, 0 6 y 6 L, and 0 6 z 6 L. V is 
infinite outside this cubical region. For this problem, the wave function must be zero 
at the walls of the box and will be a sine function inside the box. In fact, if we consider 
just one coordinate such as x, the solution will be the same as in the one-dimensional 
box discussed in Section 6-2. That is, the x dependence of the wave function will be 
of the form sin k1x with the restriction k1L = n1p, where n1 is an integer. The complete 
wave function c(x, y, z) can be written as a product of a function of x only, a function 
of y only, and a function of z only:

	 c1x, y, z2 = c11x2  c21y2  c31z2	 7-2

where each of the functions cn is a sine function as in the one-dimensional problem. 
For example, if we try the solution

	 c1x, y, z2 = A sin k1 x sin k2  y sin k3 z	 7-3

we find by inserting this function into Equation 7-1 that the energy is given by

E =
U2

2m
1k2

1 + k2
2 + k2

32

which is equivalent to

E =
1p2

x + p2
y + p2

z2
2m

with px = Uk1, and so forth. Using the restrictions on the wave numbers ki = nip>L 
from the boundary condition that the wave function be zero at the walls, we obtain for 
the total energy

	 En1 n2 n3
=

U2p2

2mL2 1n2
1 + n2

2 + n2
32	 7-4

where n1, n2, and n3 are integers greater than zero, as in Equation 6-24.
Notice that the energy and wave function are characterized by three quantum 

numbers, each arising from a boundary condition on one of the coordinates. In this 
case the quantum numbers are independent of one another, but in more general prob-
lems the value of one quantum number may affect the possible values of the others. 
For example, as we will see in a moment, in problems such as the hydrogen atom that 
have a spherical symmetry, the Schrödinger equation is most readily solved in spheri-
cal coordinates r, u, and . The quantum numbers associated with the boundary con-
ditions on these coordinates are interdependent.

The lowest energy state, the ground state for the cubical box, is given by Equa-
tion 7-4 with n1 = n2 = n3 = 1. The first excited energy level can be obtained in three 
different ways: either n1 = 2, n2 = n3 = 1 or n2 = 2, n1 = n3 = 1 or n3 = 2, n1 = n2 = 1 since 
we see from Equation 7-4 that E211 = E121 = E112. Each has a different wave function. 
For example, the wave function for n1 = 2 and n2 = n3 = 1 is of the form

c211 = A sin 
2px

L
 sin 

py

L
 sin 

pz

L

An energy level that has more than one wave function associated with it is said to be 
degenerate. In this case there is threefold degeneracy, because there are three wave 
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functions c(x, y, z) corresponding to the same energy. The degeneracy is related to the 
symmetry of the problem, and anything that destroys or breaks the symmetry will also 
destroy or remove the degeneracy.1 If, for example, we considered a noncubical box 
V = 0 for 0 6 x 6 L1, 0 6 y 6 L2, and 0 6 z 6 L3, the boundary condition at the walls 
would lead to the quantum conditions k1L1 = n1p, k2L2 = n2p, and k3L3 = n3p, and the 
total energy would be

	 En1 n2 n3
=

U2p2

2m
a n2

1

L2
1

+
n2

2

L2
2

+
n2

3

L2
3

b 	 7-5

Figure 7-1a shows the energy levels for the ground state and first two excited states 
when L1 = L2 = L3, for which the excited states are degenerate. Figure 7-1b illustrates 
the case when L1, L2, and L3 are slightly different, in which case the degeneracy is 
removed and the excited levels are slightly split apart.

The Schrödinger Equation in Spherical Coordinates
In the next section we are going to consider another, different potential, that of a real 
atom. Assuming the proton to be at rest, we can treat the hydrogen atom as a single 
particle, an electron moving with kinetic energy p2>2me and a potential energy V(r) 
due to the electrostatic attraction of the proton:

	 V1r2 = -  
Zke2

r
	 7-6

As in the Bohr theory, we include the atomic number Z, which is 1 for hydrogen, so 
we can apply our results to other similar systems, such as ionized helium He+, where 
Z = 2. We also note that we can account for the motion of the nucleus by replacing the 
electron mass me by the reduced mass m = me>(1 + me>MN), where MN is the mass 
of the nucleus. The time-independent Schrödinger equation for a particle of mass m 
moving in three dimensions is Equation 7-1, with m replaced by m:

	 -  
U2

2m
a 0

2c

0x2 +
02c

0y 2 +
02c

0z 2 b + Vc = Ec	 7-7

Hydrogenlike atoms, those 
with a single electron, 
have been produced 
from elements up to and 
including U911. Highly 
ionized atomic beams 
are used to further 
our understanding of 
relativistic effects and 
atomic structure. Collision 
of two completely ionized 
Au atoms, each moving 
at nearly the speed of 
light, produced the “star” 
of thousands of particles 
reproduced on page 580 in 
Chapter 12.

Figure 7-1  Energy-level diagram for (a) cubic infinite square well potential and (b) noncubic 
infinite square well. In the cubic well, the energy levels above the ground state are threefold 
degenerate; that is, there are three wave functions having the same energy. The degeneracy is 
removed when the symmetry of the potential is removed, as in (b). The diagram is only 
schematic, and none of the levels in (b) necessarily has the same value of the energy as any 
level in (a).

(a) (b)

E122 = E212 = E221 = 9E1

E221

L1 < L2 < L3L1 = L2 = L3

E212
E122

E211 = E121 = E112 = 6E1

E111 = 3E1

E211
E121
E112
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Since the potential energy V(r) depends only on the radial distance r = (x2 + y2 + z2)1>2, 
the problem is most conveniently treated in spherical coordinates r, u, and . These are 
related to x, y, and z by

 x = r sin u cos 

 y = r sin u sin � 7-8

 z = r cos u

These relations are shown in Figure 7-2. The transformation of the three-dimensional 
Schrödinger equation into spherical coordinates is straightforward but involves much 
tedious calculation, which we will omit. The result is

-  
U2

2m
 
1

r 2 
0

0r
ar 20c

0r
b -

U2

2mr 2 c 1

sin u
 
0

0u
asin u 

0c

0u
b +

1

sin2 u
 
02c

02 d + V1r2c = Ec

� 7-9

Despite the formidable appearance of this equation, it was not difficult for 
Schrödinger to solve because it is similar to other partial differential equations that 
arise in classical physics, and such equations had been thoroughly studied. We will 
present the solution of this equation in detail, taking care to point out the origin of the 
quantum number associated with each dimension. As was the case with the three-
dimensional square well, the new quantum numbers will arise as a result of boundary 
conditions on the solution of the wave equation, Equation 7-9 in this case.

7-2  Quantization of Angular Momentum
and Energy in the Hydrogen Atom 
In this section we will solve the time-independent Schrödinger equation for hydrogen 
and hydrogenlike atoms. We will see how the quantization of both the energy and the 
angular momentum arise as natural consequences of the acceptability conditions on 
the wave function (see Section 6-1) and discover the origin and physical meaning of 
the quantum numbers n, l, and m.

The first step in the solution of a partial differential equation such as Equation 7-9 
is to search for separable solutions by writing the wave function c(r, u, ) as a product 
of functions of each single variable. We write

	 c1r, u, 2 = R1r2f1u2g12	 7-10

Figure 7-2  ​Geometric 
relations between spherical 
(polar) and rectangular 
coordinates.

y

z

x

P

θ

φ

r

r sin θ

z = r cos θ

x = r sin θ cos φ

y = r sin θ sin φ

Range of variables

Cartesian
x, y, z: –∞ → +∞

Spherical
r : 0 → +∞
θ: 0 → π
φ: 0 → 2π
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where R depends only on the radial coordinate r, f depends only on u, and g depends 
only on . When this form of c(r, u, ) is substituted into Equation 7-9, the partial 
differential equation can be transformed into three ordinary differential equations, 
one for R(r), one for f (u), and one for g(). Most of the solutions of Equation 7-9 are, 
of course, not of this separable product form; however, if enough product solutions of 
the form of Equation 7-10 can be found,2 all solutions can be expressed as superposi-
tions of them. Even so, the separable solutions given by Equation 7-10 turn out to be 
the most important ones physically because they correspond to definite values (eigen-
values) of both energy and angular momentum. When Equation 7-10 is substituted 
into Equation 7-9 and the indicated differentiations are performed, we obtain

-  
U2

2m
  fg 

1

r 2 
d

dr
ar 2 

dR

dr
b -

U2

2mr 2   Rg 
1

sin u
 

d

du
 asin u 

df

du
b

-
U2

2mr 2 
Rf

sin2 u
 
d2g

d2 + VRfg = ERfg  7-11

since derivatives with respect to r do not affect f (u) and g(), derivatives with respect 
to u do not affect R(r) and g(), and those with respect to  do not affect R(r) and f (u). 
Separation of the r-dependent functions from the u- and -dependent ones is accom-
plished by multiplying Equation 7-11 by -2mr 2> 1U2

 Rfg2 and rearranging slightly to 
obtain

1

R1r2  
d

dr
ar 2 

dR1r2
dr
b +

2mr 2

U2
3E - V1r2 4 =

- c 1

f1u2 sin u
 

d

du
asin u

df1u2
du
b +

1

g12 sin2 u
 
d2

 g12
d2 d   7-12

Note two points about Equation 7-12: (1) The left side contains only terms that are 
functions of r, while the right side has only terms depending on u and . Since the 
variables are independent, changes in r cannot change the value of the right side of 
the equation, nor can changes in u and  have any effect on the left side. Thus, the 
two sides of the equation must be equal to the same constant. Any symbol for the con-
stant would work, but we will use, with foresight, /1/ + 12. (2) The potential is a 
function only of r so the solution of the right side, the angular part, of Equation 7-12 
will be the same for all potentials that are only functions3 of r.

In view of the second point above, we will first solve the angular equation so that 
its results will be available to us as we consider solutions to the r-dependent equation, 
referred to usually as the radial equation, for various V(r). Setting the right side of 
Equation 7-12 equal to /1/ + 12, multiplying by sin2 u and rearranging slightly, we 
obtain

	
1

g12  
d2

 g12
d2 = -/1/ + 12 sin2 u -

sin u

f1u2  
d

du
c sin u 

df1u2
du
d 	 7-13

Once again we see that the two sides of the relation, Equation 7-13, are each a func-
tion of only one of the independent variables; hence both sides must be equal to the 
same constant, which we will, again with foresight, call 2m2. Setting the left side of 
Equation 7-13 equal to 2m2 and solving for g() yields

	 gm12 = eim	 7-14

The single valued condition on c (see Section 6-1) implies that g( 1 2p) = g(), 
which in turn requires that m be a positive or negative integer or zero.
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Now letting the right side of Equation 7-13 equal 2m2 and solving for f (u), we 
obtain (not intended to be obvious; for the detailed solution see Weber and Arfken, 
Chapter 11)

	 f/m1u2 =
1sin u2 m

2//!
 c d

d1cos u2 d
/+ m

1cos2 u - 12/	 7-15

The condition that c be finite requires that f (u) be finite at u = 0 and u = p, which 
restricts the values of / to zero and positive integers and limits  m  … /. The nota-
tion reflects the link between / and m, namely, that each value of / has associated 
values of m ranging up to {/. The functions f/m1u2, given by Equation 7-15, are 
called the associated Legendre functions. The subset of those with m = 0 is referred to 
as the Legendre polynomials.

The product of f/m1u2 and gm(), which describes the angular dependence of 
c(r, u, ) for all spherically symmetric potentials, forms an often-encountered family 
of functions Y/m1u, 2,
	 Y/m1u, 2 = f/m1u2gm12	 7-16

called the spherical harmonics. The first few of these functions, which give the com-
bined angular dependence of the motion of the electron in the hydrogen atom, are 
given in Table 7-1. The associated Legendre functions and the Legendre polynomials 
(m = 0) can, if needed, be easily taken from the same table. (Extended tables of both 

 Table 7-1  Spherical harmonics

/ = 0 m = 0 Y00 = A 1

4p

/ = 1 m = 1 Y11 = -  A 3

8p
 sin u ei

m = 0 Y10 = A 3

4p
 cos u

m = 21 Y1-1 = A 3

8p
 sin u e - i

/ = 2 m = 2 Y22 = A 15

32p
 sin2 u e2i

m = 1 Y21 = -  A 15

8p
 sin u cos u ei

m = 0 Y20 = A 5

16p
 13 cos2 u - 12

m = 21 Y2-1 = A 15

8p
 sin u cos u e - i

m = 22 Y2-2 = A 15

32p
 sin2 u e -2i
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functions can be found in Weber and Arfken.) In the following section we will dis-
cover the physical significance of / and m.

Quantization of the Angular Momentum
The definition of the angular momentum L of a mass m moving with velocity v, hence 
momentum p, at some location r relative to the origin, given in most introductory 
physics textbooks, is

L = r * p

where the momentum p = m1dr>dt2. In cases where V = V(r), such as the electron 
in the hydrogen atom, L is conserved (see Problem 7-15) and the classical motion of 
the mass m lies in a fixed plane perpendicular to L, which contains the coordinate 
origin. The momentum p has components (in that plane) pr along r and pt perpen-
dicular to r, as illustrated in Figure 7-3, whose magnitudes are given by

pr = ma dr

dt
b and pt = m ra dA

dt
b

and the magnitude of the conserved (i.e., constant) vector L is

L = rp sin A = rpt

The kinetic energy can be written in terms of these components as

p2

2m
=

p2
r + p2

t

2m
=

p2
r

2m
+

L2

2mr 2

from which the classical total energy E is given by

	
p2

r

2m
+

L2

2mr 2 + V1r2 = E	 7-17

Rewriting Equation 7-17 in terms of the “effective” potential Veff (r) = L2>2mr 2 + V(r), 
as is often done, we obtain

	
p2

r

2m
+ Veff1r2 = E	 7-18

Figure 7-3  ​The orbit of a classical 
particle with V = V(r) lies in a plane 
perpendicular to L. The components
of the momentum p parallel and 
perpendicular to r are pr and pt , 
respectively. pr makes an angle A with 
the momentum p.

A

Orbit

r

ppt

pr
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which is identical in form to Equation 6-4, which we used as a basis for our introduc-
tion to the Schrödinger equation.

Equation 7-17 can be used to write the Schrödinger equation, just as we did in 
Chapter 6 by inserting de Broglie’s relation and the appropriate differential operators 
in spherical coordinates for p2

r  and L2. Doing so is a lengthy though not particularly 
difficult exercise whose details we will omit here. For p2

r  the operator turns out to be

	 1p2
r2op = -U2 1

r 2 
0

0r
ar 2 

0

0r
b 	 7-19

which, divided by 2m and operating on c, you recognize as the first term (kinetic 
energy) of the Schrödinger equation in spherical coordinates (Equation 7-9). Simi-
larly, the operator for L2 turns out to be

	 1L22op = -U2 c 1

sin u
 
0

0u
asin u 

0

0u
b +

1

sin2 u
 
02

02 d 	 7-20

which, divided by 2mr 2 and operating on c, is the second term of the Schrödinger equa-
tion in spherical coordinates (Equation 7-9). The right side of Equation 7-12, which 
equals /1/ + 12, can now be written as follows when multiplied by U2

 f1u2g12, 
remembering that f/m1u2gm12 = Y/m1u, 2:

-U2 c 1

sin u
 
0

0u
asin u 

0

0u
b +

1

sin2 u
 
02

02 dY/m1u, 2 = /1/ + 12U2
 Y/m1u, 2� 7-21a

or

	 1L22op Y/m1u, 2 = /1/ + 12U2
 Y/m1u, 2� 7-21b

or, since c1r, u, 2 = R1r2Y1u, 2,
	 1L22opc1r, u, 2 = /1/ + 12U2c1r, u, 2� 7-21c

Thus, we have the very important result that, for all potentials where V = V(r), the 
angular momentum is quantized and its allowed magnitudes (eigenvalues) are given by

	  L  = L = 2/1/ + 12U for / = 0, 1, 2, 3, c 	 7-22

where / is referred to as the angular momentum quantum number or the orbital quantum 
number.

In addition, if we use the same substitution method on Lz, the z component of L, 
we find that the z component of the angular momentum is also quantized and its allowed 
values are given by

	 Lz = mU for m = 0, {1, {2, c , {/	 7-23

The physical significance of Equation 7-23 is that the angular momentum L, 
whose magnitude is quantized with values 2/1/ + 12U, can only point in those 
directions in space such that the projection of L on the z axis is one or another of the 
values given by mU. Thus, L is also space quantized. The quantum number m is 
referred to as the magnetic quantum number. (Why “magnetic”? See Section 7-4.)

Figure 7-4 shows a diagram, called the vector model of the atom, illustrating the 
possible orientations of the angular momentum vector. Note the perhaps unexpected 
result that the angular momentum vector never points in the z direction since the max-
imum z component mU is always less than the magnitude 2/1/ + 12  U. This is a 
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consequence of the uncertainty principle for angular momentum (which we will not 
derive), which implies that no two components of angular momentum can be precisely 
known simultaneously,4 except in the case of zero angular momentum. It is worth 
noting that for a given value of / there are 2/ + 1 possible values of m, ranging from 
-/ to +/ in integral steps. Operators for Lx and Ly can also be obtained by the substi-
tution method; however, operating with them on c does not produce eigenvalues. 
This is mainly because specifying rotation about the x and y axes requires simultane-
ous measurement of both u and , a violation of the uncertainty principle.

EXAMPLE 7-1	 Quantized Values of L ​ If a system has angular momentum char-
acterized by the quantum number / = 2, what are the possible values of Lz, what is 
the magnitude L, and what is the smallest-possible angle between L and the z axis?

solution

	 1.	 The possible values of Lz 
are given by Equation 7-23:

Lz = mU

	 2.	 The values of m for / = 2 are m = 0, {1, {2

	 3.	 Thus, allowed values of 
Lz are

Lz = -2U, -1U, 0, 1U, 2U

	 4.	 The magnitude of L is given 
by Equation 7-22. For 
/ = 2:

 L  = 2/1/ + 12U = 26 U = 2.45U

	 5.	 From Figure 7-4, the angle 
u between L and the z axis 
is given by

cos u =
Lz

L
=

mU2/1/ + 12  U
=

m2/1/ + 12

	 6.	 The smallest-possible angle 
u between L and the z axis 
is that for m =  {/, which 
for / = 2 gives

cos u =
226

= 0.816

or

u = 35.5°

Figure 7-4  Vector model 
illustrating the possible 
orientations of L in space
and the possible values of 
Lz for the case where / = 2.

L = l (l + 1) = = 2(2 + 1) 6

z

2

1

–1

–2

0
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Quantization of the Energy
The results discussed so far apply to any system that is spherically symmetric, that is, 
one for which the potential energy depends on r only. The solution of the radial equa-
tion for R(r), on the other hand, depends on the detailed form of V(r). The new quantum 
number associated with the coordinate r is called the principal quantum number n. 
This quantum number, as we will see, is related to the energy in the hydrogen atom. 
Figure 7-5 shows a sketch of the potential energy function of Equation 7-6. If the total 
energy is positive, the electron is not bound to the atom. We are interested here only 
in bound-state solutions, for which the values of E are negative. For this case, the 
potential energy function becomes greater than E for large r, as shown in the figure. 
As we have discussed previously, for bound systems only certain values of the energy 
E lead to well-behaved solutions. These values are found by solving the radial equa-
tion, which is formed by equating the left side of Equation 7-12 to the constant
/1/ + 12. For V(r) of hydrogen and hydrogenlike atoms, given by Equation 7-6, the 
radial equation is

	 -  
U2

2mr 2 
0

0r
ar 2 

0R1r2
0r
b + c - kZe2

r
+

U2/1/ + 12
2mr 2 dR1r2 = ER1r2	 7-24

The radial equation can be solved using standard methods of differential equations 
whose details we will omit here, except to note that (1) we expect a link to appear 
between the principal quantum number n and the angular momentum quantum num-
ber / (since the latter already appears in Equation 7-24) and (2) in order that the solu-
tions of Equation 7-24 be well behaved, only certain values of the energy are allowed, 
just as we discovered for the square well and the harmonic oscillator. The allowed 
values of E are given by

	 En = - a kZe2

U
b

2 m

2n2 = -  
Z2

 E1

n2 	 7-25

where E1 = 11>22 1ke2>U22m  13.6 eV and the principal quantum number n can 
take on the values n = 1, 2, 3, . . . , with the further restriction that n must be greater 
than /. These energy values are identical with those found from the Bohr model and, 

Figure 7-5  Potential energy of an electron in a 
hydrogen atom. If the total energy is greater than zero, 
as E9, the electron is not bound and the energy is not 
quantized. If the total energy is less than zero, as E, 
the electron is bound. Then, as in one-dimensional 
problems, only certain discrete values of the total 
energy lead to well-behaved wave functions.

r

E�

E

Energy

0

V(r ) = – kZe2
––––

r
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like those, are in good agreement with experiment. The radial functions resulting from 
the solution of Equation 7-24 for hydrogen are given by Equation 7-26, where the 
n/1r>a02 are standard functions called Laguerre polynomials

	 Rn/1r2 = An/ e - r>a0 n r / n/1r>a02	 7-26

and the Bohr radius a0 = U2> 1ke2m2. The radial functions Rn/1r2 for n = 1, 2, and 3 
are given in Table 7-2. (For a detailed solution of Equation 7-24 and an extended 
table of Laguerre polynomials see Weber and Arfken, Chapter 13.)

Summary of the Quantum Numbers
The allowed values of and restrictions on the quantum numbers n, /, and m associated 
with the variables r, u, and  are summarized as follows:

 n = 1, 2, 3,c
 / = 0, 1, 2, c,1n - 12

 m = -/, 1-/ + 12, c, 0, 1, 2, c, +/� 7-27

The fact that the energy of the hydrogen atom depends only on the principal quantum 
number n and not on / is a peculiarity of the inverse-square force. It is related to the 
result in classical mechanics that the energy of a mass moving in an elliptical orbit in an 
inverse-square force field depends only on the major axis of the orbit and not on the 
eccentricity. The largest value of angular momentum (/ = n - 1) corresponds most 
nearly to a circular orbit, whereas a small value of / corresponds to a highly eccentric 
orbit. (Zero angular momentum corresponds to oscillation along a line through the force 
center, i.e., through the nucleus in the case of the hydrogen atom.) For central forces 
that do not obey an inverse-square law, the energy does depend on the angular momen-
tum (both classically and quantum mechanically) and thus depends on both n and /.

 Table 7-2  Radial functions for hydrogen

n = 1 / = 0 R10 =
22a3

0

 e - r>a0

n = 2 / = 0 R20 =
122a3

0

 a1 -
r

2a0
be - r>2a0

/ = 1 R21 =
1

226a3
0

 
r

a0
 e - r>2a0

n = 3 / = 0 R30 =
2

323a3
0

 a1 -
2r

3a0
+

2r 2

27a2
0

be - r>3a0

/ = 1 R31 =
8

2726a3
0

 
r

a0
a1 -

r

6a0
be - r>3a0

/ = 2 R32 =
4

8230a3
0

 
r 2

a2
0

 e - r>3a0
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The quantum number m is related to the z component of angular momentum. 
Since there is no preferred direction for the z axis for any central force, the energy 
cannot depend on m. We will see later that if we place an atom in an external mag-
netic field, there is a preferred direction in space, and the energy then does depend on 
the value of m. (This effect, called the Zeeman effect, is discussed in a More section 
on the Web site. See also page 312.)

Figure 7-6 shows an energy-level diagram for hydrogen. This diagram is similar 
to Figure 4-16a except that states with the same n but different / are shown sepa-
rately. These states are referred to by giving the value of n, along with a code letter:
S standing for / = 0, P for / = 1, D for / = 2 and F for / = 3. These code letters 
are remnants of the spectroscopist’s descriptions of various series of spectral lines as 
Sharp, Principal, Diffuse, and Fundamental. (For values of / greater than 3, the letters 
follow alphabetically; thus G for / = 4, etc.) The allowed electric dipole transitions 
between energy levels obey the selection rules

 Dm = 0 or {1

 D/ = {1� 7-28

The fact that the quantum number / of the atom must change by {1 when the atom 
emits or absorbs a photon results from conservation of angular momentum and the 
fact that the photon itself has an intrinsic angular momentum of 1U. For the principal 
quantum number, Dn is unrestricted.

Figure 7-6  Energy-level diagram for the 
hydrogen atom, showing transitions obeying 
the selection rule D/ = {1. States with the 
same n value but different / value have the 
same energy, -E1>n2, where E1 = 13.6 eV,
as in the Bohr theory. The wavelengths of 
the Lyman a (n = 2 S n = 1) and Balmer
a (n = 3 S n = 2) lines are shown in nm. Note 
that the latter has three possible transitions due 
to the / degeneracy.
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Questions

1.	 Why wasn’t quantization of angular momentum noticed in classical physics?

2.	 What are the similarities and differences between the quantization of angular 
momentum in the Schrödinger theory and in the Bohr model?

3.	 Why doesn’t the energy of the hydrogen atom depend on /? Why doesn’t it 
depend on m?

For YOU An Opportunity to Contribute Investigations of atomic spectra 
were the genesis of our understanding of atomic and molecular structure. In the 
search for and observations of habitable extrasolar planets, leading edge and yet-to-
be-developed astronomical, theoretical, and laboratory spectroscopic investigations 
will play a central role in the interpretation of data that will identify and characterize 
those planets. Novel methods for the spectroscopic detection of extrasolar planets 
are needed, particularly those that might have Earth-like environments. Needed, too, 
are planetary atmosphere models that can reliably predict planetary conditions based 
on low-resolution, full disk spectra in the visible, IR, and thermal wavelength ranges 
that will be available from orbiting telescope observations. Validating those models 
with atmospheric spectral data from Earth, Venus, and Mars will be essential.

7-3  The Hydrogen Atom Wave Functions 
The wave functions cn/m1r, u, 2 satisfying the Schrödinger equation for the hydrogen 
atom are rather complicated functions of r, u, and . In this section we will write some 
of these functions and display some of their more important features graphically.

As we have seen, the  dependence of the wave function, given by Equation 7-14, 
is simply eim. The u dependence is described by the associated Legendre functions 
f/m1u2 given by Equation 7-15. The complete angular dependence is then given by 
the spherical harmonic functions Y/m1u, 2, the product of gm() and f/m1u2 as indi-
cated by Equation 7-16 and, for the first few, tabulated in Table 7-1. The solutions to 
the radial equation Rn/1r2 are of the form indicated by Equation 7-26 and are listed in 
Table 7-2 for the three lowest values of the principal quantum number n. Referring to 
Equation 7-10, our assumed product solutions of the time-independent Schrödinger 
equation, we have that the complete wave function of the hydrogen atom is

	 cn/m1r, u, 2 = Cn/m  Rn/1r2f/m1u2gm12	 7-29

where Cn/m is a constant determined by the normalization condition.
We see from the form of this expression that the complete wave function depends 

on the quantum numbers n, /, and m that arose because of the boundary conditions 
on R(r), f (u), and g(). The energy, however, depends only on the value of n.
From Equation 7-27 we see that for any value of n there are n possible values of
/ (/ = 0, 1, 2, . . . , n - 1) and for each value of / there are 2/ + 1 possible values 
of m 1m = -/, -/ + 1, . . . , +/2. Except for the lowest energy level (for which
n = 1 and therefore / and m can only be zero), there are generally many different 
wave functions corresponding to the same energy. As discussed in the previous sec-
tion, the origins of this degeneracy are the 1>r dependence of the potential energy and 
the fact that there is no preferred direction in space.
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The Ground State
Let us examine the wave functions for several particular states beginning with the low-
est-energy level, the ground state, which has n = 1. Then / and m must both be zero. 
The Laguerre polynomial 10 in Equation 7-26 is equal to 1, and the wave function is

	 c100 = C100 e -Zr>a0	 7-30

The constant C100 is determined by normalization:

Lc*cdt = L


0 L
p

0 L
2p

0

c*c r
2 sin u d du dr = 1

using for the volume element in spherical coordinates (see Figure 7-7)

dt = 1r sin u d2 1r du2 1dr2
Because c*c for this state is spherically symmetric, the integration over angles 
gives 4p. Carrying out the integration over r gives5

	 C100 =
12p

 a Z
a0
b

3>2
=

12p
 a 1

a0
b

3>2
  for  Z = 1	 7-31

The probability of finding the electron in the volume dt is c*cdt.
The probability density c*c is illustrated in Figure 7-8. The probability density 

for the ground state is maximum at the origin. It is often of more interest to determine 
the probability of finding the electron in a thin spherical shell between r and r 1 dr. 
This probability, P(r)dr, is just the probability density c*c times the volume of the 
spherical shell of thickness dr:

	 P1r2dr = c*c 4pr 2
 dr = 4pr 2

 C2
100 e -2Zr>a0

 dr	 7-32

Figure 7-9 shows a sketch of P(r) versus r>a0. It is left as a problem (see Problem 7-22) 
to show that P(r) has its maximum value at r = a0>Z. In contrast to the Bohr model 
for hydrogen, in which the electron stays in a well-defined orbit at r = a0, we see that 
it is possible for the electron to be found at any distance from the nucleus. However, 
the most probable distance is a0, and the chance of finding the electron at a much 

The angular dependence 
of the electron probability 
distributions is critical 
to our understanding of 
the bonding of atoms into 
molecules and solids (see 
Chapters 9 and 10).

Figure 7-7  ​Volume element dt in spherical coordinates.
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different distance is small. It is useful to think of the electron as a charged cloud of 
charge density r = ec*c. (We must remember, though, that the electron is always 
observed as one charge.) Note that the angular momentum in the ground state is zero, 
contrary to the Bohr model assumption of 1U.

The Excited States
In the first excited state, n = 2 and / can be either 0 or 1. For / = 0, m = 0, and again 
we have a spherically symmetric wave function, given by

	 c200 = C200a2 -
Zr
a0
be -Zr>2a0	 7-33

For / = 1, m can be 11, 0, or 21. The corresponding wave functions are (see 
Tables 7-1 and 7-2)

 c210 = C210 
Zr
a0

 e -Zr>2a0 cos u � 7-34

c21{1 = C21{1 
Zr
a0

 e -Zr>2a0 sin u e{ i� 7-35

Figure 7-10a shows P(r) for these wave functions. The distribution for n = 2, 
/ = 1 is maximum at the radius of the second Bohr orbit,

rmax = 22
 a0

Figure 7-8  Probability density c*c for the ground state in hydrogen. The quantity
ec*c can be thought of as the electron charge density in the atom. (a) The density is 
spherically symmetric, is greatest at the origin, and decreases exponentially with r. This 
computer-generated plot was made by making hundreds of “searches” for the hydrogen 
electron in the x-z plane (i.e., for  = 0), recording each finding with a dot. (b) The more 
conventional graph of the probability density  c100  2 vs. r>a0. Compare the two graphs 
carefully. [This computer-generated plot courtesy of Paul Doherty, The Exploratorium.]
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Figure 7-9  Radial 
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while for n = 2 and / = 0, P(r) has two maxima, the larger of which is near this 
radius.

Radial probability distributions can be obtained in the same way for the other 
excited states of hydrogen. For example, those for the second excited state n = 3 are 
shown in Figure 7-10b. The main radial dependence of P(r) is contained in the factor 
e -Zr>na0, except near the origin. A detailed examination of the Laguerre polynomials 
shows that c S r / as r S  0. Thus, for a given n, cn/m is greatest near the origin 
when / is small.

An important feature of these wave functions is that for / = 0, the probability 
densities are spherically symmetric, whereas for /  0, they depend on the angle u. 
The probability density plots of Figure 7-11 illustrate this result for the first excited 
state n = 2. These angular distributions of the electron charge density depend only on 
the value of / and not on the radial part of the wave function. Similar charge distribu-
tions for the valence electrons in more complicated atoms play an important role in 
the chemistry of molecular bonding.

Question

4.	 At what value of r is c*c maximum for the ground state of hydrogen? Why is 
P(r) maximum at a different value of r?

Figure 7-10  (a) Radial probability density P(r) vs. r>a0 for the n = 2 states in hydrogen. 
P(r) for / = 1 has a maximum at the Bohr value 22a0. For / = 0, there is a maximum near 
this value and a smaller submaximum near the origin. The markers on the r>a0 axis denote
the values of 8r>a09 . (b) P(r) vs. r>a0 for the n = 3 states in hydrogen.
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7-4  Electron Spin 
As was mentioned in Chapter 4, when a spectral line of hydrogen or other atoms (see 
Figure 4-2) is viewed with high resolution, it shows a fine structure; that is, it is seen 
to consist of two or more closely spaced lines. As we noted then, Sommerfeld’s rela-
tivistic calculation based on the Bohr model agrees with the experimental measure-
ments of this fine structure for hydrogen, but the agreement turned out to be accidental 
since his calculation predicts fewer lines than are seen for other atoms. In order to 
explain fine structure and to clear up a major difficulty with the quantum-mechanical 
explanation of the periodic table (Section 7-6), W. Pauli6 in 1925 suggested that in 
addition to the quantum numbers n, /, and m, the electron has a fourth quantum num-
ber, which could take on just two values.

As we have seen, quantum numbers arise from boundary conditions on some 
coordinate (see Equations 7-14 and 7-15). Pauli originally expected that the fourth 
quantum number would be associated with the time coordinate in a relativistic theory, 
but this idea was not pursued. In the same year, S. Goudsmit and G. Uhlenbeck,7 
graduate students at Leiden, suggested that this fourth quantum number was the z 
component, ms , of an intrinsic angular momentum of the electron, euphemistically 
called spin. They represented the spin vector S with the same form that Schrödinger’s 
wave mechanics gave for L:

	  S  = S = 2s1s + 12  U	 7-36

Figure 7-11  Probability densities c*c for the n = 2 states in hydrogen. The probability is 
spherically symmetric for / = 0. It is proportional to cos2 u for / = 1, m = 0, and to sin2 u for 
/ = 1, m = {1. The probability densities have rotational symmetry about the z axis. Thus, the 
three-dimensional charge density for the / = 1, m = 0 state is shaped roughly like a dumbbell, 
while that for the / = 1, m = {1 states resembles a doughnut, or toroid. The shapes of these 
distributions are typical for all atoms in S states (/ = 0) and P states (/ = 1) and play an 
important role in molecular bonding. [This computer-generated plot courtesy of Paul Doherty, 
The Exploratorium.]
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Since this intrinsic spin angular momentum S is described by a quantum number s 
like the orbital angular momentum quantum number /, we expect 2s 1 1 possible 
values of the z component just as there are 2/ + 1 possible z components of the 
orbital angular momentum L. If ms is to have only two values as Pauli had suggested, 
then s could only be 12 and ms only {  12. In addition to explaining fine structure and the 
periodic table, this proposal of electron spin explained the unexpected results of an 
interesting experiment that had been preformed by O. Stern and W. Gerlach in 1922, 
which is described briefly in an Exploring section later on (see pages 296–297). To 
understand why the electron spin results in the splitting of the energy levels needed to 
account for the fine structure, we must first consider the connection between the 
angular momentum and the magnetic moment of any charged particle system. The 
classical connection is described in a Classical Concept Review unit. The extension to 
quantum mechanics is explained below.

Magnetic Moment
If a particle of mass M carrying a charge q is rotating in a circle as in Figure 7-12, it 
has a magnetic moment  that is proportional to its angular momentum L as given by 
Equation 7-37.8

	  =
q

2M
 L	 7-37

Applying Equation 7-37 to the orbital motion of the electron in the hydrogen 
atom and substituting the magnitude of L from Equation 7-22, we have for the magni-
tude of 

	 m =
e

2me

 L =
e U

2me

2/1/ + 12 = 2/1/ + 12  mB	 7-38

and, from Equation 7-23, a z component of

	 mz = -  
e  U

2me

 m = -mmB	 7-39

where me is the mass of the electron, mU is the z component of the angular momen-
tum, and mB is a natural unit of magnetic moment called the Bohr magneton, which 
has the value

 mB =
e U

2me

= 9.27 * 10-24 joule>tesla

 = 5.79 * 10-9 eV>gauss = 5.79 * 10-5 eV>tesla� 7-40

The particular relation expressed by Equation 7-37 is for a single charge q rotat-
ing in a circle; however, the proportionality between  and L is a general property of 
rotating charge distributions. To allow the same mathematical form to be used for 
other, more complicated situations, it is customary to express the magnetic moment in 
terms of mB and a dimensionless quantity g called the gyromagnetic ratio, or simply 
the g factor, where the value of g is determined by the details of the charge distribu-
tion. In the case of the orbital angular momentum L of the electron, gL = 1 and Equa-
tion 7-37 can be written

	  =
-gLmBL

U
 	 7-41

CCR

Figure 7-12  A particle 
moving in a circle has angular 
momentum L. If the particle 
has a positive charge, the 
magnetic moment due to the 
current is parallel to L.
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and Equations 7-38 and 7-39 as

 m = 2/1/ + 12  gLmB� 7-42

 mz = -mgLmB � 7-43

There are minus signs in Equations 7-41 and 7-43 because the electron has a negative 
charge. The magnetic moment and the angular momentum vectors associated with the 
orbital motion are therefore oppositely directed, and we see that quantization of angu-
lar momentum implies quantization of magnetic moments. Other magnetic moments 
and g factors that we will encounter will have the same form.

The behavior of a system with a magnetic moment in a magnetic field can be 
visualized by considering a small bar magnet (Figure 7-13). When placed in an exter-
nal magnetic field B, there is a torque  =  * B that tends to align the magnet with 
the field B. If the magnet is spinning about its axis, the effect of the torque is to make 
the spin axis precess about the direction of the external field, just as a spinning top or 
gyroscope precesses about the direction of the gravitational field. The potential 
energy of a magnetic moment  in a magnetic field B is given by Equation 7-44:

	 U = - # B	 7-44

If B is in the z direction, the potential energy is

	 U = -mz  B	 7-45

Applying these arguments to the intrinsic spin of the electron results in the pre-
dictions (with s =

1
2) that

	 m = 2s1s + 12  mB = A3

4
 mB and mz = msmB = {

1

2
 mB	 7-46

Because in its rest frame the atomic electron is in a magnetic field B arising from the 
apparent motion of the nuclear charge around the electron, the two values of ms cor-
respond to two different energies, according to Equation 7-45. It is this splitting of the 
energy levels that results in the fine structure of the spectral lines.

The restriction of the spin, and hence the intrinsic magnetic moment, to two ori-
entations in space with ms = {1

2 is another example of space quantization. The mag-
nitude of the magnetic moment due to the spin angular momentum can be determined 
from quantitative measurement of the deflection of the beam in a Stern-Gerlach 
experiment. Surprisingly (at the time), the result is not 12 Bohr magneton, as predicted 
by Equation 7-39 with m = ms =

1
2, but twice this value. (This type of experiment is 

not an accurate way to measure magnetic moments, although the measurement of 
angular momentum this way is accurate because that involves simply counting the 
number of lines.) The g factor for the electron, gs in Equation 7-47, has been precisely 
measured to be gs = 2.002319.

	 mz = -ms  gs  mB	 7-47

This result, and the fact that s is a half integer rather than an integer like the orbital 
quantum number /, makes it clear that the classical model of the electron as a spin-
ning ball is not to be taken literally. Like the Bohr model of the atom, the classical 
picture is useful in describing results of quantum-mechanical calculations, and it 
often gives useful guidelines as to what to expect from an experiment. The phenom-
enon of spin, while not a part of Schrödinger’s wave mechanics, is included in the 
relativistic wave mechanics formulated by Dirac. In its nonrelativistic limit, Dirac’s 
wave equation predicts gs = 2, which is approximately correct. The exact value of gs 
is correctly predicted by quantum electrodynamics (QED), the relativistic quantum 

The orbital motion and 
spin of electrons are 
the origin of magnetism 
in metals, such as iron, 
cobalt, and nickel (see 
Chapter 10). Devices 
ranging from giant 
electricity transformers 
to decorative refrigerator 
magnets rely on these 
quantum properties of 
electrons.

Figure 7-13  ​Bar-magnet 
model of magnetic moment. 
(a) In an external magnetic 
field, the moment experiences 
a torque that tends to align it 
with the field. If the magnet is 
spinning (b), the torque 
causes the system to precess 
around the external field.
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theory that describes the interaction of electrons with electromagnetic fields. 
Although beyond the scope of our discussions, QED is arguably the most precisely 
tested theory in physics.

EXPLORING
Stern-Gerlach Experiment

If a magnetic moment  is placed in an inhomogeneous external magnetic field B, the 
 will feel an external force that depends on mz and the gradient of B. This is because 
the force F is the negative gradient of the potential energy function, so

	 F = -U = - 1-m # B2	 7-48

from Equation 7-44. If we arrange the inhomogeneous B field so that it is homoge-
neous in the x and y directions, then the gradient has only 0B>0z  0 and F has only a 
z component, that is,

	 Fz = mz1dB>dz2 = -mgLmB1dB>dz2	 7-49

This effect was used by Stern and Gerlach9 in 1922 (before spin) to measure the pos-
sible orientations in space, that is, the space quantization, of the magnetic moments of 
silver atoms. The experiment was repeated in 1927 (after spin) by Phipps and Taylor 
using hydrogen atoms.

The experimental setup is shown in Figure 7-14. Atoms from an oven are col-
limated and sent through a magnet whose poles are shaped so that the magnetic field 
Bz increases slightly with z, while Bx and By are constant in the x and y directions, 
respectively. The atoms then strike a collector plate. Figure 7-15 illustrates the effect 
of the dB>dz on several magnetic moments of different orientations. In addition to the 
torque, which merely causes the magnetic moment to precess about the field direction, 
there is the force Fz in the positive or negative z direction, depending on whether mz is 
positive or negative, since dB>dz is always positive. This force deflects the magnetic 
moment up or down by an amount that depends on the magnitudes of both dB>dz and 
the z component of the magnetic moment mz. Classically, one would expect a con-
tinuum of possible orientations of the magnetic moments. However, since the mag-
netic moment is proportional to L, which is quantized, quantum mechanics predicts 
that mz also can have only the 2/ + 1 values corresponding to the 2/ + 1 possible 

Figure 7-14  ​In the 
Stern-Gerlach 
experiment, atoms 
from an oven are 
collimated, passed 
through an 
inhomogeneous 
magnetic field, and 
detected on a 
collector plate.
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values of m. We therefore expect 2/ + 1 deflections (counting 0 as a deflection). For 
example, for / = 0, there should be one line on the collector plate corresponding to no 
deflection, and for / = 1 there should be three lines corresponding to the three values
m = 21, m = 0, and m = 11. The / = 1 case is illustrated in Figure 7-15b.

Using neutral silver atoms, Stern and Gerlach expected to see only a single line, 
the middle line in Figure 7-15b, because the ground state of silver was known to be 
an / = 0 state; therefore, m = 0 and mz = 0. The force Fz would then be zero and no 
deflection of the atomic beam should occur. However, when the experiment was done with 
either silver or hydrogen atoms, there were two lines, as shown in Figure 7-15c. Since 
the ground state of hydrogen also has / = 0, we should again expect only one line, 
were it not for the electron spin. If the electron has spin angular momentum of mag-
nitude  S  = 2s1s + 12  U, where s =

1
2, the z component can be either +U>2 or 

-U>2. Since the orbital angular momentum is zero, the total internal angular momen-
tum of the atom is simply the spin10 and two lines would be expected. Stern and Ger-
lach had made the first direct observation of electron spin and space quantization.

The Complete Hydrogen Atom Wave Functions
Our description of the hydrogen atom wave functions in Section 7-3 is not complete 
because we did not include the spin of the electron. The hydrogen atom wave func-
tions are also characterized by the spin quantum number ms, which can be +  12 or -  12. 
(We need not include the quantum number s because it always has the value s =

1
2.) 

A general wave function is then written n/m/ ms
, where we have included the subscript 

/ on m/ to distinguish it from ms. There are now two wave functions for the ground 

Figure 7-15  (a) In an inhomogeneous magnetic field the magnetic moment  experiences 
a force Fz whose direction depends on the direction of the z component mz of  and whose 
magnitude depends on those of mz and dB>dz. The beam from an oven (not shown) is 
collimated into a horizontal line. (b) The pattern for the / = 1 case illustrated in (a).
The three images join at the edges and have different detailed shapes due to differences in 
the field inhomogeneity. (c) The pattern observed for silver and hydrogen.
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298	 Chapter 7  Atomic Physics

state of the hydrogen atom, c100+1>2 and c100-1>2, corresponding to an atom with its 
electron spin “parallel” or “antiparallel” to the z axis (as defined, for example, by an 
external magnetic field). In general, the ground state of a hydrogen atom is a linear 
combination of these wave functions:

c = C1c100+1>2 + C2c100-1>2

The probability of measuring ms = +  12 (for example, by observing to which spot the 
atom goes in the Stern-Gerlach experiment) is  C1  2. Unless atoms have been prese-
lected in some way (such as by passing them through a previous inhomogeneous 
magnetic field or by their having recently emitted a photon),  C1  2 and  C2  2 will 
each be 1

2, so that measuring the spin “up” 1ms = +  122 and measuring the spin 
“down” 1ms = -  122 are equally likely.

Questions

5.	 Does a system have to have a net charge to have a magnetic moment?

6.	 Consider the two beams of hydrogen atoms emerging from the magnetic field 
in the Stern-Gerlach experiment. How does the wave function for an atom in 
one beam differ from that of an atom in the other beam? How does it differ from 
the wave function for an atom in the incoming beam before passing through the 
magnetic field?

7-5  Total Angular Momentum and
the Spin-Orbit Effect 
In general, an electron in an atom has both orbital angular momentum characterized 
by the quantum number / and spin angular momentum characterized by the quantum 
number s. Analogous classical systems that have two kinds of angular momentum are 
Earth, which is spinning about its axis of rotation in addition to revolving about the 
Sun, or a precessing gyroscope, which has angular momentum of precession in addi-
tion to its spin. Classically the total angular momentum

	 J = L + S	 7-50

is an important quantity because the resultant torque on a system equals the rate of 
change of the total angular momentum, and in the case of central forces, the total angu-
lar momentum is conserved. For a classical system, the magnitude of the total angular 
momentum J may have any value between L 1 S and  L - S  . We have already seen 
that in quantum mechanics, angular momentum is more complicated: both L and S 

Photographs made by Stern 
and Gerlach with an atomic 
beam of silver atoms. 
(a) When the magnetic field 
is zero, all atoms strike in a 
single, undeviated line. 
(b) When the magnetic field 
is nonzero, the atoms strike 
in upper and lower lines, 
curved due to differing 
inhomogeneities. [From
O. Stern and W. Gerlach, 
Zeitschr. f. Physik 9,
349 (1922).]

(a) (b)
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are quantized and their relative directions are restricted. The quantum-mechanical 
rules for combining orbital and spin angular momenta or any two angular momenta 
(such as for two particles) are somewhat difficult to derive, but they are not difficult 
to understand. For the case of orbital and spin angular momenta, the magnitude of the 
total angular momentum J is given by

	  J  = 2j1  j + 12  U	 7-51

where the total angular momentum quantum number j can be either

	 j = / + s or j =  / - s  	 7-52

and the z component of J is given by

	 Jz = mj U where mj = - j, - j + 1, c,  j - 1,  j	 7-53

(If / = 0, the total angular momentum is simply the spin, and j = s.) Figure 7-16a is a 
simplified vector model illustrating the two possible combinations j = 1 +

1
2 =

3
2 

and j = 1 -
1
2 =

1
2 for the case of an electron with / = 1. The lengths of the vectors 

are proportional to 3/1/ + 12 41>2, 3s1s + 12 41>2, and 3   j1  j + 12 41>2. The spin and 
orbital angular momentum vectors are said to be “parallel” when j = / + s and 
“antiparallel” when j =  / - s  . A quantum mechanically more accurate vector addi-
tion is shown in Figure 7-16b. The quantum number mj can take on 2j 1 1 possible 
values in integer steps between 2j and 1j, as indicated by Equation 7-53. Equation 7-53 
also implies that mj = ml 1 ms, since Jz = Lz 1 Sz.

Figure 7-16  (a) Simplified vector model illustrating the addition of orbital and spin angular 
momenta. Case shown is for / = 1 and s =

1
2. There are two possible values of the quantum 

number for the total angular momentum: j = / + s =
3
2 and j = / - s =

1
2. (b) Vector 

addition of the orbital and spin angular momenta, also for the case / = 1 and s =
1
2. According 

to the uncertainty principle, the vectors can lie anywhere on the cones corresponding to the 
definite values of their z components. Note in the middle sketch that there are two ways of 
forming the states with j =

3
2, mj =

1
2 and j =

1
2, mj =

1
2.
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Equation 7-52 is a special case of a more general rule for combining two angular 
momenta that is useful when dealing with more than one particle. For example, there are 
two electrons in the helium atom, each with spin, orbital, and total angular momentum. 
The general rule is

If J1 is one angular momentum (orbital, spin, or a combination) and J2 is 
another, the resulting total angular momentum J 5 J1 1 J2 has the value 
[ j ( j + 1)]1/2 U for its magnitude, where j can be any of the values

j1 + j2, j1 + j2 - 1, . . . ,  j1 - j2 

EXAMPLE 7-2	 Addition of Angular Momenta I ​ Two electrons each have zero 
orbital angular momentum. What are the possible quantum numbers for the total 
angular momentum of the two-electron system? (For example, these could be the 
He atom electrons in any of the S states.)

SOLUTION
In this case j1 = j2 =

1
2. The general rule then gives two possible results, j = 1 

and j = 0. These combinations are commonly called parallel and antiparallel, 
respectively.

EXAMPLE 7-3	 Addition of Angular Momenta II ​ An electron in an atom has 
orbital angular momentum L1 with quantum number /1 = 2, and a second electron 
has orbital angular momentum L2 with quantum number /2 = 3. What are the pos-
sible quantum numbers for the total orbital angular momentum L = L1 1 L2?

SOLUTION
Since /1 + /2 = 5 and  /1 - /2  = 1, the possible values of / are 5, 4, 3, 2, and 1.

Spectroscopic Notation
Spectroscopic notation, a kind of shorthand developed in the early days of spectros-
copy to condense information and simplify the description of transitions between 
states, has since been adopted for general use in atomic, molecular, nuclear, and par-
ticle physics. The notation code appears to be arbitrary,11 but it is easy to learn and, as 
you will discover, convenient to use. For single electrons we have

1.	 For single-electron states the letter code s p d f g h . . . is used in one-to-one 
correspondence with the values of the orbital angular momentum quantum 
number /: 0 1 2 3 4 5. . . . For example, an electron with / = 2 is said to be a
d electron or in a d state.

2.	 The single-electron (Bohr) energy levels are called shells, labeled K L M N O . . .
in one-to-one correspondence with the values of the principal quantum number n:
1 2 3 4 5. . . . For example, an electron with n = 3 in an atom is said to be in the 
M shell. (This notation is less commonly used.)

For atomic states that may contain one or more electrons, the notation includes the 
principal quantum number and the angular momenta quantum numbers. The total 
orbital angular momentum quantum number is denoted by a capital letter in the same 
sequence as in rule 1 above, that is, S P D F . . . correspond to / values 0 1 2 3. . . . The 

CCR

19
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value of n is written as a prefix and the value of the total angular momentum quantum 
number j by a subscript. The magnitude of the total spin quantum number s appears as 
a left superscript in the form 2s 1 1.12 Thus, a state with / = 1, a P state, would be 
written as

n2s+1
 Pj

For example, the ground state of the hydrogen atom (n = 1, / = 0, s = 1>2) is writ-
ten 12

 S1>2, read “one doublet S one-half.” The n = 2 state can have / = 0 or / = 1, 
so the spectroscopic notation for these states is 22

 S1>2, 2
2

 P3>2, and 22
 P1>2. (The princi-

pal quantum number and spin superscript are sometimes not included if they are not 
needed in specific situations.)

Spin-Orbit Coupling
Atomic states with the same n and / values but different j values have slightly differ-
ent energies because of the interaction of the spin of the electron with its orbital 
motion. This is called the spin-orbit effect. The resulting splitting of the spectral lines 
such as that resulting from the splitting of the 2P level in the transition 2P S  1S in 
hydrogen is called fine-structure splitting. We can understand the spin-orbit effect 
qualitatively from a simple Bohr model picture, as shown in Figure 7-17. In this pic-
ture, the electron moves in a circular orbit with speed v around a fixed proton. In the 
figure, the orbital angular momentum L is up. In the frame of reference of the elec-
tron, the proton moves in a circle around it, thus making a circular loop current that 
produces a magnetic field B at the position of the electron. The direction of B is also 
up, parallel to L. Recall that the potential energy of a magnetic moment in a magnetic 
field depends on its orientation relative to the field direction and is given by

	 U = - # B = -z  B	 7-54

The potential energy is lowest when the magnetic moment is parallel to B and highest 
when it is antiparallel. Since the intrinsic magnetic moment of the electron is directed 
opposite to its spin (because the electron has a negative charge), the spin-orbit energy 
is highest when the spin is parallel to B and thus to L. The energy of the 22

 P3>2 state in 
hydrogen, in which L and S are parallel, is therefore slightly higher than the 22

 P1>2 
state, in which L and S are antiparallel (Figure 7-18).13 The measured splitting is 

CCR

Figure 7-17  (a) An 
electron moving about a 
proton with angular 
momentum L up. (b) The 
magnetic field B seen by the 
electron due to the apparent 
(relative) motion of the 
proton is also up. When the 
electron spin is parallel to L, 
the magnetic moment is 
antiparallel to L and B, so the 
spin-orbit energy has its 
largest value.
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Figure 7-18  Fine-structure energy-level diagram. On the 
left, the levels in the absence of a magnetic field are shown. 
The effect of the magnetic field due to the relative motion of 
the nucleus is shown on the right. Because of the spin-orbit 
interaction, the magnetic field splits the 2P level into two 
energy levels, with the j = 3>2 level having slightly greater 
energy than the j = 1>2 level. The spectral line due to the 
transition 2P S  1S is therefore split into two lines of 
slightly different wavelengths. (Diagram is not to scale.)
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about 4.5 * 1025 eV for the 22
 P1>2 and 22

 P3>2 levels in hydrogen. For other atoms, 
the fine-structure splitting is larger than this; for example, for sodium it is about 
2 * 1023 eV, as will be discussed in Section 7-7. Recalling that transitions resulting in 
spectral lines in the visible region are of the order of 1.5 to 3.0 eV, you can see that 
the fine-structure splitting is quite small.

EXAMPLE 7-4	 Fine-Structure Splitting ​ The fine-structure splitting of the 22
 P3>2 

and 22
 P1>2 levels in hydrogen is 4.5 * 1025 eV. From this, estimate the magnetic 

field that the 2p electron in hydrogen experiences. Assume B is parallel to the 
z axis.

SOLUTION

	 1.	 The energy of the 2p electrons is shifted
in the presence of a magnetic field by an 
amount given by Equation 7-54:

U = - # B = -mz  B

	 2.	 U is positive or negative depending on
the relative orientation of  and B, so the 
total energy difference DE between the 
two levels is

DE = 2U = 2mz  B

	 3.	 Since the magnetic moment of the 
electron is mB, mz  mB and

DE  2mB B

	 4.	 Solving this for B and substituting for 
mB and the energy-splitting DE gives

 B 
DE

2mB

 
4.5 * 10-5 eV

122 15.79 * 10-5 eV>T2
  0.39 T

Remarks:  This is a substantial magnetic field, nearly 10,000 times Earth’s aver-
age magnetic field.

When an atom is placed in an external magnetic field B, the total angular momen-
tum J is quantized in space relative to the direction of B and the energy of the atomic 
state characterized by the angular momentum quantum number j is split into 2j 1 1 
energy levels corresponding to the 2j 1 1 possible values of the z component of J and 
therefore to the 2j 1 1 possible values of the z component of the total magnetic 
moment. This additional splitting of the energy levels in the atom gives rise to a 
corresponding splitting of the spectral lines emitted by the atom. The splitting of 
the spectral lines of an atom placed in an external magnetic field was discovered by 
P. Zeeman and is known as the Zeeman effect. (See the More section on page 312 and 
Section 3-1.) Zeeman and Lorentz shared the 1902 Nobel Prize in Physics for the dis-
covery and explanation of the Zeeman effect.

Lamb Shift
Although not shown in Figure 7-18, the n = 2, / = 0, j =

1
2 level 122S1>22 would 

have the same energy as the n = 2, / = 1, j =
1
2122P1>22 level because the fine struc-

ture energies of the hydrogen atom are dependent on n and j, but not on /. The only 
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energy level that lies below these states is the 12S1>2 ground state, and transitions from 
the 22S1>2 level to that state are strongly forbidden by the D/ = {1 selection rule, 
making the 22S1>2 level a metastable state. However, in 1947 Willis Lamb showed 
experimentally that the two n = 2, j =

1
2 states actually have different energies, with 

the / = 1 level lying very slightly below the / = 0 level. This provides for an 
allowed transition 22S1>2 S 22P1>2. Lamb measured the photon energy emitted in the 
transition to be 4.372 * 1026 eV (l in the RF region of the electromagnetic spectrum). 
The theoretical explanation of this phenomenon, called the Lamb shift, was provided 
by quantum electrodynamics as being a result of energy level fluctuations of the vac-
uum, a subject that is beyond the level of this book but is currently a field of active 
research. For his discovery Lamb shared the 1955 Nobel Prize in Physics.

7-6  The Schrödinger Equation for
Two (or More) Particles 
Our discussion of quantum mechanics so far has been limited to situations in which a 
single particle moves in some force field characterized by a potential energy function V. 
The most important physical problem of this type is the hydrogen atom, in which a 
single electron moves in the Coulomb potential of the proton nucleus. This problem is 
actually a two-body problem, as the proton also moves in the Coulomb potential of 
the electron. However, as in classical mechanics, we can treat this as a one-body 
problem by considering the proton to be at rest and replacing the electron mass with 
the reduced mass. When we consider more complicated atoms we must face the prob-
lem of applying quantum mechanics to two or more electrons moving in an external 
field. Such problems are complicated by the interaction of the electrons with each 
other, and also by the fact that the electrons are identical.

The interaction of the electrons with each other is electromagnetic and essentially 
the same as that expected classically for two charged particles. The Schrödinger equa-
tion for an atom with two or more electrons cannot be solved exactly, and approxima-
tion methods must be used. This is not very different from the situation in classical 
problems with three or more particles. The complication arising from the identity of 
electrons is purely quantum mechanical and has no classical counterpart.

Identical Particles in Quantum Mechanics
The indistinguishability of identical particles has important consequences related to 
the Pauli exclusion principle. We will illustrate the origin of this important principle 
by considering the simple case of two noninteracting identical particles in a one-
dimensional infinite square well.

The time-independent Schrödinger equation for two particles of mass m is

	 -  
U2

2m
 
02c1x1, x22

0x2
1

-
U2

2m
 
02c1x1, x22

0x2
2

+ Vc1x1, x22 = Ec1x1, x22	 7-55

where x1 and x2 are the coordinates of the two particles. If the particles are interacting, 
the potential energy V contains terms with both x1 and x2, which cannot usually be 
separated. For example, if the particles are charged, their mutual electrostatic poten-
tial energy (in one dimension) is +ke2>  x2 - x1  . If they do not interact, however, 
we can write V as V1(x1) 1 V2(x2). For the case of an infinite square well potential, we 
need solve the Schrödinger equation only inside the well where V = 0 and require the 
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wave function to be zero at the walls of the well. Solutions of Equation 7-55 can be 
written as products of single-particle solutions and linear combinations of such solu-
tions. The single-particle product solutions are

	 cnm1x1, x22 = cn1x12cm1x22	 7-56

where cn(x1) and cm(x2) are the single-particle wave functions for an infinite square 
well given by Equation 6-32. Thus, for n = 1, and m = 2,

	 c12 = C sin 
px1

L
 sin 

2px2

L
	 7-57

The probability of finding particle 1 in dx1 and particle 2 in dx2 is  c1x1, x22  2
 

 dx1  dx2 
which is just the product of the separate probabilities  c1x12  2

 

 dx1 and  c1x22  2 
 dx2. 

However, even though we have labeled the particles 1 and 2, if they are identical, we 
cannot distinguish which is in dx1 and which is in dx2. For identical particles, there-
fore, we must construct the wave function so that the probability density is the same if 
we interchange the labels:

	  c1x1, x22  2 =  c1x2, x12  2	 7-58

Equation 7-58 holds if c(x1, x2) is either symmetric or antisymmetric on exchange 
of particles—that is,

 c1x2, x12 = +c1x1, x22 symmetric

 c1x2, x12 = -c1x1, x22 antisymmetric

We note that the general wave function of the form of Equation 7-56 and the example 
(Equation 7-57) are neither symmetric nor antisymmetric. If we interchange x1 and x2, 
we get a different wave function, implying that the particles can be distinguished. 
These forms are thus not consistent with the indistinguishability of identical particles. 
However, from among all of the possible linear combination solutions of the single-
product functions, we see that, if cnm and cmn are added or subtracted, we form sym-
metric or antisymmetric wave functions necessary to preserve the indistinguishability 
of the two particles:

 cS = C3cn1x12cm1x22 + cn1x22cm1x12 4 symmetric

 cA = C3cn1x12cm1x22 - cn1x22cm1x12 4 antisymmetric

Pauli Exclusion Principal
There is an important difference between the antisymmetric and symmetric combina-
tions. If n = m, the antisymmetric wave function is identically zero for all x1 and x2, 
whereas the symmetric function is not. More generally, it is found that electrons (and 
many other particles, including protons and neutrons) can only have antisymmetric 
total wave functions, that is,

	 n/m/ ms
= Rn/ Y/m/

 Xms
	 7-59

where Rn/ is the radial wave function, Y/m/
 is the spherical harmonic, and Xms

 is the 
spin wave function. Thus, single-particle wave functions such as cn(x1) and cm(x1) for 
two such particles cannot have exactly the same set of values for the quantum num-
bers. This is an example of the Pauli exclusion principle. For the case of electrons in 
atoms and molecules, four quantum numbers describe the state of each electron, one 
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for each space coordinate and one associated with spin. The Pauli exclusion principle 
for electrons states that

No more than one electron may occupy a given quantum state specified 
by a particular set of single-particle quantum numbers n, /, m/, ms.

The effect of the exclusion principal is to exclude certain states in the many-
electron system. It is an additional quantum condition imposed on solutions of the 
Schrödinger equation and will be applied to the development of the periodic table in 
the following section. Particles such as a particles, deuterons, photons, and mesons 
have symmetric wave functions under exchange of particle labels and do not obey the 
exclusion principle.

7-7  Ground States of Atoms:
The Periodic Table 
We now consider qualitatively the wave functions and energy levels for atoms more 
complicated than hydrogen. As we have mentioned, the Schrödinger equations for 
atoms other than hydrogen cannot be solved exactly because of the interaction of the 
electrons with one another, so approximate methods must be used. We will discuss 
the energies and wave functions for the ground states of atoms in this section and con-
sider the excited states and spectra for some of the less complicated cases in the next 
two sections. We can describe the wave function for a complex atom in terms of single-
particle wave functions. By neglecting the interaction energy of the electrons, that 
description can be simplified to products of the single-particle wave functions. These 
wave functions are similar to those of the hydrogen atom and are characterized by the 
quantum numbers n, /, m/, ms. The energy of an electron is determined mainly by the 
quantum number n, which is related to the radial part of the wave function, and /, 
which characterizes the orbital angular momentum. Generally, the lower the value of 
n and /, the lower the energy of the state (see Figure 7-19). The specification of n and 
/ for each electron in an atom is called the electron configuration. Customarily, the 
value of / and the various electron shells are specified with the same code defined in 
the subsection “Spectroscopic Notation” in Section 7-5. The electron configurations 
of the atomic ground states are given in Appendix C.

Helium (Z 5 2)
The energy of the two electrons in the helium atom consists of the kinetic energy of 
each electron, a potential energy of the form -kZe2>ri for each electron corresponding 
to its attraction to the nucleus, and a potential energy of interaction Vint corresponding 
to the mutual repulsion of the two electrons. If r1 and r2 are the position vectors for 
the two electrons, Vint is given by

	 Vint = +
ke2

 r2 - r1 
	 7-60

Because this interaction term contains the position variables of the two electrons, its 
presence in the Schrödinger equation prevents the separation of the equation into 
separate equations for each electron. If we neglect the interaction term, however, the 
Schrödinger equation can be separated and solved exactly. We then obtain separate 

Figure 7-19  ​Relative 
energies of the atomic 
shells and subshells.
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equations for each electron, with each equation identical to that for the hydrogen atom 
except that Z = 2. The allowed energies are then given by

	 E = -  
Z2

 E0

n2
1

-
Z2

 E0

n2
2

 where E0 = 13.6 eV	 7-61

The lowest energy, E1 = 22(2)2E0  2108.8 eV, occurs for n1 = n2 = 1. For this case, 
/1 = /2 = 0. The total wave function, neglecting the spin of the electrons, is of
the form

	 c = c1001r1, u1, 12c1001r2, u2, 22	 7-62

The quantum numbers n, /, and m/ can be the same for the two electrons only if 
the fourth quantum number ms is different, that is, if one electron has ms = +  12 and 
the other has ms = -  12.

We can obtain a first-order correction to the ground-state energy by using the 
approximate wave function of Equation 7-62 to calculate the average value of the 
interaction energy Vint, which is simply the expectation value HVint I. The result of this 
calculation is

	 8Vint9 = +34 eV	 7-63

With this correction, the ground-state energy is

	 E  -108.8 + 34 = -74.8 eV	 7-64

This approximation method, in which we neglect the interaction of the electrons to 
find an approximate wave function and then use this wave function to calculate the 
interaction energy, is called first-order perturbation theory. The approximation can 
be continued to higher orders; for example, the next step is to use the new ground-
state energy to find a correction to the ground-state wave function. This approxima-
tion method is similar to that used in classical mechanics to calculate the orbits of 
the planets about the Sun. In the first approximation the interaction of the planets is 
neglected and the elliptical orbits are found for each planet. Then, using this result 
for the position of each planet, the perturbing effects of the nearby planets can be 
calculated.

The experimental value of the energy needed to remove both electrons from 
the helium atom is about 79 eV. The discrepancy between this result and the value 
74.8 eV is due to the inaccuracy of the approximation used to calculate HVintI, as indi-
cated by the rather large value of the correction (about 30 percent). (It should be 
pointed out that there are better methods of calculating the interaction energy for 
helium that give much closer agreement with experiment.) The helium ion He+, 
formed by removing one electron, is identical to the hydrogen atom except that Z = 2; 
so the ground state energy is

-Z2113.62 = -54.4 eV

The energy needed to remove the first electron from the helium atom is 24.6 eV. The 
corresponding potential, 24.6 V, is called the first ionization potential of the atom. 
The ionization energies are given in Appendix C.

The configuration of the ground state of the helium atom is written 1s2.
The 1 signifies n = 1, the s signifies / = 0, and the 2 signifies that there are two 
electrons in this state. Since / can only be zero for n = 1, the two electrons fill the 
K shell (n = 1).
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Lithium (Z 5 3)
Lithium has three electrons. Two are in the K shell (n = 1), but the third cannot have
n = 1 because of the exclusion principle. The next-lowest energy state for this elec-
tron has n = 2. The possible / values are / = 1 or / = 0.

In the hydrogen atom, these / values have the same energy because of the degen-
eracy associated with the inverse-square nature of the force. This is not true in lithium 
and other atoms because the charge “seen” by the outer electron is not a point charge.14 
The positive charge of the nucleus 1Ze can be considered to be approximately a point 
charge, but the negative charge of the K-shell electrons 22e is spread out in space over 
a volume whose radius is of the order of a0>Z. We can in fact take for the charge den-
sity of each inner electron r = -e  c  2, where c is a hydrogenlike 1s wave function 
(neglecting the interaction of the two electrons in the K shell). The probability distribu-
tion for the outer electron in the 2s or 2p states is similar to that shown in Figure 7-10. 
We see that the probability distribution in both cases has a large maximum well out-
side the inner K-shell electrons but that the 2s distribution also has a small bump near 
the origin. We could describe this by saying that the electron in the 2p state is nearly 
always outside the shielding of the two 1s electrons in the K shell, so that it sees an 
effective central charge of Zeff  1; whereas in the 2s state the electron penetrates this 
“shielding” more often and therefore sees a slightly larger effective positive central 
charge. The energy of the outer electron is therefore lower in the 2s state than in the
2p state, and the lowest energy configuration of the lithium atom is 1s22s.

The total angular momentum of the electrons in this atom is 12 U due to the spin of 
the outer electron since each of the electrons has zero orbital angular momentum and 
the inner K-shell electrons are paired to give zero spin. The first ionization potential 
for lithium is only 5.39 V. We can use this result to calculate the effective positive 
charge seen by the 2s electron. For Z = Zeff and n = 2, we have

E =
Z2

 E0

n2 =
Z2

eff113.6 eV2
22 = 5.39 eV

which gives Zeff  1.3. It is generally true that the smaller the value of /, the greater 
the penetration of the wave function into the inner shielding cloud of electrons: the 
result is that in a multielectron atom, for given n, the energy of the electron increases 
with increasing / (see Figure 7-19).

Beryllium (Z 5 4)
The fourth electron has the least energy in the 2s state. The exclusion principle 
requires that its spin be antiparallel to the other electron in this state so that the total 
angular momentum of the four electrons in this atom is zero. The electron configura-
tion of beryllium is 1s22s2. The first ionization potential is 9.32 V. This is greater than 
that for lithium because of the greater value of Z.

Boron to Neon (Z 5 5 to Z 5 10)
Since the 2s subshell is filled, the fifth electron must go into the 2p subshell; that is,
n = 2 and / = 1. Since there are three possible values of ml (11, 0, and 21) and two 
values of ms for each, there can be up to six electrons in this subshell. The electron 
configuration for boron is 1s22s22p. Although it might be expected that boron would 
have a greater ionization potential than beryllium because of the greater Z, the 2p 
wave function penetrates the shielding of the core electrons to a lesser extent and the 

George Gamow and 
Wolfgang Pauli in 
Switzerland in 1930. 
[Courtesy of George Gamow.]
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ionization potential of boron is actually about 8.3 V, slightly less than that of beryllium. 
The electron configuration of the elements carbon (Z = 6) to neon (Z = 10) differs 
from boron only by the number of electrons in the 2p subshell. The ionization poten-
tial increases slightly with Z for these elements, reaching the value of 21.6 V for the 
last element in the group, neon. Neon has the maximum number of electrons allowed 
in the n = 2 shell. The electron configuration of neon is 1s22s22p6. Because of its very 
high ionization potential resulting from its closed shell configuration, neon, like 
helium, is chemically inert. Fluorine, the element just before neon, has a “hole” in this 
shell; that is, it has room for one more electron. It readily combines with elements 
such as lithium, which has one outer electron that is donated to the fluorine atom to 
make an F2 ion and a Li+ ion, which bond together. This is an example of ionic bond-
ing, to be discussed in Chapter 9.

Sodium to Argon (Z 5 11 to Z 5 18)
The 11th electron must go into the n = 3 shell. Since this electron is weakly bound in 
the Na atom, Na combines readily with atoms such as F. The ionization potential for 
sodium is only 5.14 V. Because of the lowering of the energy due to penetration of the 
electronic shield formed by the other 10 electrons—similar to that discussed for  
Li—the 3s state is lower than the 3p or 3d state. (With n = 3, / can have the values 
0, 1, or 2.) This energy difference between subshells of the same n value becomes greater 
as the number of electrons increases. The configuration of Na is thus 1s22s22p63s. As 
we move to higher-Z elements, the 3s subshell and then the 3p subshell begin to fill up. 
These two subshells can accommodate 2 + 6 = 8 electrons. The configuration of argon 
(Z = 18) is 1s22s22p63s23p6. There is another large energy difference between the 18th 
and 19th electrons, and argon, with its full 3p subshell, is stable and inert.

Atoms with Z + 18
One might expect that the 19th electron would go into the 3d subshell, but the shield-
ing or penetration effect is now so strong that the energy is lower in the 4s shell than 
in the 3d shell. The 19th electron in potassium (Z = 19) and the 20th electron in 

Figure 7-20  First 
ionization energy vs. Z up to 
Z = 90. The energy is the 
binding energy of the last 
electron in the atom. This 
energy increases with Z until 
a shell is closed at Z values of 
2, 10, 18, 36, 54, and 86. The 
next electron must go into the 
next-higher shell and hence is 
farther from the center of core 
charge and so less tightly 
bound. The ionization 
potential (in volts) is 
numerically equal to the 
ionization energy (in eV).
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calcium (Z = 20) go into the 4s rather than the 3d subshell. The electron configura-
tions of the next 10 elements, scandium (Z = 21) through zinc (Z = 30), differ only in 
the number of electrons in the 3d subshell except for chromium (Z = 24) and copper
(Z = 29), each of which has only one 4s electron. These elements are called transition 
elements. Since their chemical properties are mainly due to their 4s electrons, they are 
quite similar chemically.

Figure 7-20 shows a plot of the first ionization potential of an atom versus Z up to 
Z = 90. The sudden decreases in ionization potential after the Z numbers 2, 10, 18, 36, 
and 54 mark the closing of a shell or subshell. A corresponding sudden increase 
occurs in the atomic radii, as illustrated in Figure 7-21. The ground-state electron con-
figurations of the elements are tabulated in Appendix C.

Questions

7.	 A particular excited state of the H atom has j = 1>2. What can you say about 
the possible values of /?

8.	 Why is the energy of the 3s state considerably lower than that of the 3p state for 
sodium, whereas in hydrogen these states have essentially the same energy?

9.	 Discuss the evidence from the periodic table of the need for a fourth quantum 
number. How would the properties of He differ if there were only three quantum 
numbers, n, /, and m?

7-8  Excited States and Spectra of
Alkali Atoms 
In order to understand atomic spectra, we need to understand the excited states of 
atoms. The situation for an atom with many electrons is, in general, much more 
complicated than that of hydrogen. An excited state of the atom usually involves a 
change in the state of one of the electrons or, more rarely, two or even more electrons. 
Even in the case of the excitation of only one electron, the change in state of this elec-
tron changes the energies of the others. Fortunately, there are many cases in which 
this effect is negligible, and the energy levels can be calculated accurately from a 

The concept of shell 
structure for the electrons 
in the atomic systems 
was a significant aid to 
the later understanding 
of molecular bonding (see 
Chapter 9) and the complex 
structure of the atomic 
nuclei (see Chapter 11).

Figure 7-21  The atomic radii versus Z shows a sharp 
rise following the completion of a shell as the next 
electron must have the next-larger n. The radii then 
decline with increasing Z, reflecting the penetration of 
wave functions of the electrons in the developing shell. 
The recurring patterns here and in Figure 7-20 are 
examples of the behavior of many atomic properties that 
give the periodic table its name.
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relatively simple model of one electron plus a stable core. This model works particu-
larly well for the alkali metals: Li, Na, K, Rb, and Cs. These elements are in the first 
column of the periodic table. The optical spectra of these elements are similar in many 
ways to that of hydrogen.

Another simplification is possible because of the wide difference between the 
excitation energy of a core electron and the excitation energy of an outer electron. 
Consider the case of sodium, which has a neon core (except Z = 11 rather than Z = 10) 
and an outer 3s electron. If this electron did not penetrate the core, it would see an 
effective nuclear charge of Zeff = 1 resulting from the 111e nuclear charge and the 
210e of the completed electron shells. The ionization energy would be the same as 
the energy of the n = 3 electron in hydrogen, about 1.5 eV. Penetration into the core 
increases Zeff and so lowers the energy of the outer electron, that is, binds it more 
tightly, thereby increasing the ionization energy. The measured ionization energy of 
sodium is about 5 eV. The energy needed to remove one of the outermost core elec-
trons, a 2p electron, is about 31 eV, whereas that needed to remove one of the 1s 
electrons is about 1041 eV. An electron in the inner core cannot be excited to any of 
the filled n = 2 states because of the exclusion principle. Thus, the minimum excita-
tion of an n = 1 electron is to the n = 3 shell, which requires an energy only slightly 
less than that needed to remove this electron completely from the atom. Since the 
energies of photons in the visible range (about 400 to 800 nm) vary only from about 
1.5 to 3 eV, the optical (i.e., visible) spectrum of sodium must be due to transitions 
involving only the outer electron. Transitions involving the core electrons produce 
line spectra in the ultraviolet and x-ray regions of the electromagnetic spectrum.

Figure 7-22 shows an energy-level diagram for the optical transitions in sodium. 
Since the spin angular momentum of the neon core adds up to zero, the spin of each 
state in sodium is 12. Because of the spin-orbit effect, the states with j = / -

1
2 have a 

slightly lower energy than those with j = / +
1
2. Each state is therefore a doublet 

(except for the S states). The doublet splitting is very small and is not evident on the 
energy scale of Figure 7-22 but is shown in Figure 7-18. The states are labeled by the 
usual spectroscopic notation, with the superscript 2 before the letter indicating that 
the state is a doublet. Thus, 2P3>2, read as “doublet P three-halves,” denotes a state in 
which / = 1 and j = 3>2. (The S states are customarily labeled as if they were dou-
blets even though they are not. This is done because they belong to the set of levels 
with S =

1
2 but, unlike the others, have / = 0 and so are not split. The number indi-

cating the n value of the electron is often omitted.) In the first excited state, the outer 
electron is excited from the 3s level to the 3p level, which is about 2.1 eV above the 
ground state. The spin-orbit energy difference between the P3>2 and P1>2 states due to 
the spin-orbit effect is about 0.002 eV. Transitions from these states to the ground 
state give the familiar sodium yellow doublet:

 3p12P1>22S 3s12S1>22 l = 589.6 nm

 3p12P3>22S 3s12S1>22 l = 589.0 nm

The energy levels and spectra of other alkali atoms are similar to those for sodium.
It is important to distinguish between doublet energy states and doublet spectral 

lines. All transitions beginning or ending on an S state give double lines because they 
involve one doublet state and one singlet state (the selection rule D/ = {1 rules out 
transitions between two S states). There are four possible energy differences between 
two doublet states. One of these is ruled out by a selection rule on j, which is15

	 Dj = {1 or 0 1but no j = 0 S j = 02	 7-65

Among the many 
applications of atomic 
spectra is their 
innumerable contributions 
to our understanding of 
the composition of stars 
and the evolution of the 
universe (see Chapter 13).
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Transitions between pairs of doublet energy states therefore result in three spectral 
lines, that is, a triplet. Under relatively low resolution the three lines look like two, as 
illustrated in Figure 7-23, because two of them are very close together. For this reason 
they are often referred to as a compound doublet to preserve the verbal hint that they 
involve doublet energy states.

Question

10.	 Referring to Figure 7-22, why aren’t the S states also doublets?

More
�Atoms with more than one electron in the outer shell have more com-
plicated energy-level structures. Additional total spin possibilities 
exist for the atom, resulting in multiple sets of nearly independent 
energy states and multiple sets of spectral lines. Multielectron Atoms 
and their spectra are described on the home page: www.whfreeman 
.com/tiplermodernphysics6e. See also Equations 7-66 and 7-67 and 
Figures 7-24 through 7-27 here.

More

Figure 7-22  Energy-level diagram for sodium (Na) with 
some transitions indicated. Wavelengths shown are in 
nanometers. The spectral lines labeled D1 and D2 are very 
intense and are responsible for the yellow color of lamps 
containing sodium. The energy splittings of the D and F 
levels, also doublets, are not shown.
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More
�Our tradition tells us that Mrs. Bohr encountered an obviously sad 
young Wolfgang Pauli sitting in the garden of Bohr’s Institute for 
Theoretical Physics in Copenhagen and asked considerately if he was 
unhappy. His reply was, “Of course I’m unhappy! I don’t under-
stand the anomalous Zeeman effect!” On the home page we explain 
The Zeeman Effect so you, too, won’t be unhappy: www.whfreeman 
.com/tiplermodernphysics6e. See also Equations 7-68 through 7-72 
and Figures 7-28 through 7-31 here.

More

EXPLORING
Frozen Light

Using the quantum properties of atomic energy states, tunable lasers, and a Bose-
Einstein (BE) condensate of sodium atoms (see Chapter 8), physicists have been able 
to slow a light pulse to a dead stop, then regenerate it sometime later and send it on its 
way. Here is how it’s done.

Consider the 3s and 3p energy levels of sodium in Figure 7-22. L-S coupling does 
not cause splitting of the 3s state because the orbital angular momentum of that state 
is zero; however, we will discover in Chapter 11 (see also Problem 7-76) that protons 
and neutrons also have intrinsic spins and magnetic moments, resulting in a nuclear 
spin and magnetic moment. Although the latter is smaller than the electron’s magnetic 
moment by a factor of about 1000, it causes a very small splitting of the 3s level exactly 
analogous to that due to L-S coupling in states with nonzero orbital angular momenta. 
Called hyperfine structure (because it’s smaller than the fine-structure splitting dis-
cussed earlier), the 3s level is split into two levels spaced about 3.5 * 1026 eV above 
and below the original 3s state.

Producing the BE condensate results in a cigar-shaped “cloud” about one centi-
meter long suspended by a magnetic field in a vacuum chamber. The cloud contains 
several million sodium atoms all with their spins aligned and all in the lower of the 
two 3s hyperfine levels, the new ground state (see Figure 7-32a). The light pulse that 
we wish to slow (the probe beam) is provided by a laser precisely tuned to the energy 
difference between the lower of the 3s hyperfine levels (the new ground state) and the 
3p state. A second laser (the coupling beam) is precisely tuned to the energy difference 
between the higher of the 3s hyperfine levels and the 3p state and illuminates the BE 
condensate perpendicular to the probe beam.

If the probe beam alone were to enter the sample, all of the atoms would be excited 
to the 3p level, absorbing the beam completely. As the atoms relaxed back to the ground 
state, sodium yellow light would be emitted randomly in all directions. If the coupling 
beam alone entered the sample, no excitation of the 3p level would result because the 
coupling-beam photons do not have enough energy to excite electrons from the ground 
state to the 3p state. However, if the coupling beam is illuminating the sample with all 
atoms in the ground state and the probe beam is turned on as the leading edge of the 
probe pulse enters the sample (Figure 7-32b), the two beams together shift the sodium 
atoms into a quantum superposition of both states, meaning that in that region of the 
sample each atom is in both hyperfine states (Figure 7-32c). Instead of both beams now 
being able to excite those atoms to the 3p level, the two processes cancel, a phenom-
enon called quantum interference, and the BE condensate becomes transparent to the 
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probe beam, as in Figure 7-32c. A similar cancellation causes the index of refraction of 
the sample to change very steeply over the narrow frequency range of the probe pulse, 
slowing the leading edge from 3 * 108 m>s to about 15 m/s. As the rest of the probe 
pulse (still moving at 3 * 108 m>s) enters the sample and slows, it piles up behind the 
leading edge, dramatically compressing the pulse to about 0.05 mm in length, which 
fits easily within the sample. Over the region occupied by the compressed pulse the 
quantum superposition shifts the atomic spins in synchrony with the superposition as 
illustrated in Figure 7-32d.

At this point the coupling beam is turned off. The BE condensate immediately 
becomes opaque to the probe beam, the pulse comes to a stop and turns off! The 

Figure 7-32  ​(a) The coupling beam illuminates the sodium Bose-Einstein condensate, whose 
atoms are in the ground state with spins aligned. (b) The leading edge of the probe beam pulse 
enters the sample. (c) Quantum superposition shifts the spins and the rapidly changing 
refractive index dramatically slows and shortens the probe beam inside the condensate. (d ) Now 
completely contained inside the sample, the speed of the probe pulse is about 15 m/s. (e) The 
coupling beam is turned off and the probe pulse stops, its information stored in the shifted spins 
of the atoms. (  f  ) The coupling beam is turned back on and the probe pulse regenerates, moves 
slowly to the edge of the sample, then leaves at 3 * 108 m/s.

Coupling beam

(a ) Probe
beam

(b )

(c )

(d )

(e )

(f )
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light has “frozen”! The information imprinted on the pulse is now imprinted like a 
hologram on the spins of the atoms in the superposition states (see Figure 7-32e). 
When the coupling pulse is again turned on, the sample again becomes transparent to 
the probe pulse. The “frozen” probe pulse is regenerated carrying the original infor-
mation, moves slowly to the edge of the sample, then zooms away at 3 * 108 m>s 
(see Figure 7-32f ).

The ability to slow and stop light raises new opportunities in many areas. For 
example, it may make possible the development of quantum communications that can-
not be eavesdropped on. Building large-scale quantum computers may depend on the 
ultra-high-speed switching potential of quantum superpositions in slow light systems. 
Astrophysicists may be able to use BE condensates in vortex states, already achieved 
experimentally, with slow light to simulate in the laboratory the dragging of light into 
black holes. Stay tuned!

Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Schrödinger equation in 
three dimensions

The equation is solved for the hydrogen atom by separating it into three 
ordinary differential equations, one for each coordinate r, u, . The quantum
numbers n, /, and m arise from the boundary conditions to the solutions of
these equations.

2.	 Quantization

	 Angular momentum

	 z component of L

	 Energy

 L  = 2/1/ + 12  U for / = 0, 1, 2, 3,c � 7-22

Lz = mU for m = 0, {1, {2, c, {/� 7-23

En = - a kZe2

U
b

2 m

2n2 = -13.6 
Z2

n2 eV� 7-25

3.	 Hydrogen wave functions n/m = Cn/m Rn/1r2Y/m1u, 2
where Cn/m are normalization constants, Rn/ are the radial functions, and Y/m are
the spherical harmonics.

4.	 Electron spin

	 Magnitude of S

	 z component of S

	 Stern-Gerlach experiment

The electron spin is not included in Schrödinger’s wave equation. 

 S  = 2s1s + 12  U s =
1

2
� 7-36

Sz = msU ms = {
1

2
This was the first direct observation of the electron spin.

5.	 Spin-orbit coupling L and S add to give the total angular momentum J = L 1 S, whose magnitude is
given by

 J  = 2j1  j + 12  U� 7-51

where j = / + s or  / -  s  . This interaction leads to the fine-structure splitting
of the energy levels.

6.	 Exclusion principle No more than one electron may occupy a given quantum state specified by a particular 
set of the single-particle quantum numbers n, /, m/, and ms.
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General References 
The following general references are written at a level 
appropriate for the readers of this book.

Brehm, J. J., and W. J. Mullin, Introduction to the Structure 
of Matter, Wiley, New York, 1989.

Eisberg, R., and R. Resnick, Quantum Physics, 2d ed., Wiley, 
New York, 1985.

Herzberg, G., Atomic Spectra and Atomic Structure, Dover, 
New York, 1944.

Kuhn, H. G., Atomic Spectra, Academic Press, New York, 1962.
Mehra, J., and H. Rechenberg, The Historical Development 

of Quantum Theory, vol. 1, Springer-Verlag, New York, 
1982.

Pauling, L., and S. Goudsmit, The Structure of Line Spectra, 
McGraw-Hill, New York, 1930.

Weber, H. J., and G. B. Arfken, Essential Mathematical 
Methods for Physicists, Elsevier Academic Press,
New York, 2004.

Notes 
1.	 Degeneracy may arise because of a particular symmetry 

of the physical system, such as the symmetry of the potential 
energy described here. Degeneracy may also arise for com-
pletely different reasons and can certainly occur for nonprod-
uct wave functions. The latter are sometimes called accidental 
degeneracies, and both types can exist in the same system.

2.	 “Enough” means a complete set in the mathematical sense.
3.	 Such potentials are called central field or, sometimes, con-

servative potentials. The Coulomb potential and the gravita-
tional potential are the most frequently encountered examples.

4.	 Lz =  L   would mean that Lx = Ly = 0. All three com-
ponents of L would then be known exactly, a violation of the 
uncertainty principle.

5.	 The functions Y/m and Rn/ listed in Tables 7-1 and 7-2 are 
normalized. The Cn/m are simply the products of those cor-
responding normalization constants.

6.	 Wolfgang Pauli (1900–1958), Austrian physicist. A 
bona fide child prodigy, while a graduate student at Munich 
he wrote a paper on general relativity that earned Einstein’s 
interest and admiration. Pauli was 18 at the time. A brilliant 
theoretician, he became the conscience of the quantum physi-
cists, assaulting “bad physics” with an often devastatingly 
sharp tongue, one of his oft-quoted dismissals of a certain 
poor paper being, “It isn’t even wrong.” He belatedly won the 
Nobel Prize in Physics in 1945 for his discovery of the exclu-
sion principle.

7.	 Samuel A. Goudsmit (1902–1978) and George E. 
Uhlenbeck (1900–1988), Dutch-American physicists. While 
graduate students at Leiden, they proposed the idea of elec-
tron spin to their thesis adviser Paul Ehrenfest, who suggested 
that they ask H. A. Lorentz his opinion. After some delay, 
Lorentz pointed out that an electron spin of the magnitude 
necessary to explain the fine structure was inconsistent with 
special relativity. Returning to Ehrenfest with this disturb-
ing news, they found that he had already sent their paper to a 
journal for publication.

8.	 Since the same symbol m is used for both the reduced mass 
and the magnetic moment, some care is needed to keep these 
unrelated concepts clear. The symbol m is sometimes used to 

designate the magnetic moment, but there is confusion enough 
between the symbol m of the quantum number for the z compo-
nent of angular momentum and me as the electron mass.

9.	 Otto Stern (1888–1969), German-American physicist, 
and Walther Gerlach (1899–1979), German physicist. After 
working as Einstein’s assistant for two years, Stern devel-
oped the atomic/molecular beam techniques that enabled 
him and Gerlach, an excellent experimentalist, to show the 
existence of space quantization in silver. Stern received the 
1943 Nobel Prize in Physics for his pioneering molecular-
beam work.
10.	 The nucleus of an atom also has angular momentum and 
therefore a magnetic moment; but the mass of the nucleus 
is about 2000 times that of the electron for hydrogen and 
greater still for other atoms. From Equation 7-37 we expect 
the magnetic moment of the nucleus to be on the order of 
1/2000 of a Bohr magneton since M is now mp rather than 
me. This small effect does not show up in the Stern-Gerlach 
experiment.
11.	 The letters first used, s, p, d, f, weren’t really arbitrary. 
They described the visual appearance of certain groups of 
spectral lines: sharp, principle, diffuse, and fundamental. 
After improved instrumentation vastly increased the number 
of measurable lines, the letters went on alphabetically. As we 
noted in Chapter 4, the K, L, etc., notation was assigned by 
Barkla.
12.	 This particular form for writing the total spin was chosen 
because it also corresponded to the number of lines in the fine 
structure of the spectrum; for example, hydrogen lines were 
doublets and s =

1
2, so 2s 1 1 = 2.

13.	 A more precise interpretation is that the electron, possess-
ing an intrinsic magnetic moment due to its spin, carries with 
it a dipole magnetic field. This field varies in time due to the 
orbital motion of the electron, thus generating a time-varying 
electric field at the (stationary) proton, which produces the 
energy shift.
14.	 Actually, it’s not quite true for hydrogen either. As was 
described at the end of Section 7-5, Lamb showed that the 
2S and 2P levels of hydrogen differ slightly in energy. That 
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Problems 
Level I
Section 7-1  The Schrödinger Equation in Three Dimensions
7-1.	 Find the energies E311, E222, and E321 and construct an energy-level diagram for the 
three-dimensional cubic well that includes the third, fourth, and fifth excited states. Which 
of the states on your diagram are degenerate?
7-2.	 A particle is confined to a three-dimensional box that has sides L1, L2 = 2L1, and
L3 = 3L1. Give the sets of quantum numbers n1, n2, and n3 that correspond to the lowest
10 energy levels of this box.
7-3.	 A particle moves in a potential well given by V(x, y, z) = 0 for -L>2 6 x 6 L>2, 
0 6 y 6 L, and 0 6 z 6 L and V =  outside these ranges. (a) Write an expression for the 
ground-state wave function for this particle. (b) How do the allowed energies compare 
with those for a box having V = 0 for 0 6 x 6 L, rather than for -L>2 6 x 6 L>2?
7-4.	 Write down the wave functions for the five lowest energy levels of the particle in 
Problem 7-2.
7-5.	 (a) Repeat Problem 7-2 for the case L2 = 2L1 and L3 = 4L1. (b) What sets of quantum 
numbers correspond to degenerate energy levels?
7-6.	 Write down the wave functions for the lowest 10 quantized energy states for the 
particle in Problem 7-5.
7-7.	 Suppose the particle in Problem 7-1 is an electron and L = 0.10 nm. Compute the 
energy of the transitions from each of the third, fourth, and fifth excited states to the 
ground state.
7-8.	 Consider a particle moving in a two-dimensional space defined by V = 0 for 0 6 x 6 L 
and 0 6 y 6 L and V =  elsewhere. (a) Write down the wave functions for the particle in 
this well. (b) Find the expression for the corresponding energies. (c) What are the sets of 
quantum numbers for the lowest-energy degenerate state?

Section 7-2  Quantization of Angular Momentum and 
Energy in the Hydrogen Atom
7-9.	 If n = 3, (a) what are the possible values of /? (b) For each value of / in (a), list the 
possible values of m. (c) Using the fact that there are two quantum states for each combina-
tion of values of / and m because of electron spin, find the total number of electron states 
with n = 3.

difference together with the spin-orbit splitting of the 2P state 
puts the 22

 P1>2 level about 4.4 * 1026 eV below the 22
 S1>2 

level, an energy difference called the Lamb shift. It enables 
the 22

 S1>2 state, which would otherwise have been metastable 
due to the D/ = {1 selection rule, to deactivate to the 12

 S1>2 
ground state via a transition to the 22

 P1>2 level.
15.	 We can think of this rule in terms of the conservation of 
angular momentum. The intrinsic spin angular momentum of 
a photon has the quantum number s = 1. For electric dipole 
radiation, the photon spin is its total angular momentum rela-
tive to the center of mass of the atom. If the initial angular 
momentum quantum number of the atom is j1 and the final
is j2, the rules for combining angular momenta imply that
j2 = j1 1 1, j1, or j1 2 1, if j1 Z 0. If j1 = 0, j2 must be 1.
16.	 This is true for nearly all atoms with two electrons out-
side a closed shell or subshell, such as He, Be, Mg, and Ca, 
except for the triplet P states in the very heavy atom mercury, 

where fine-structure splitting is of about the same order of 
magnitude as the singlet-triplet splitting.
17.	 Pieter Zeeman (1865–1943), Dutch physicist. His 
discovery of the Zeeman effect, which so enlightened our 
understanding of atomic structure, was largely ignored until 
its importance was pointed out by Lord Kelvin. Zeeman 
shared the 1902 Nobel Prize in Physics with his professor 
H. A. Lorentz for its discovery.
18.	 The terminology is historical, arising from the fact 
that the effect in transitions between singlet states could be 
explained by Lorentz’s classical electron theory and hence 
was “normal,” while the effects in other transitions could not 
and were thus mysterious or “anomalous.”
19.	 This calculation can be found in Herzberg (1944).
20.	 After Alfred Landé (1888–1975), German physicist. His 
collaborations with Born and Heisenberg led to the correct 
interpretation of the anomalous Zeeman effect.
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7-10.	 Determine the minimum angle that L can make with the z axis when the angular 
momentum quantum number is (a) / = 4 and (b) / = 2.
7-11.	 The moment of inertia of a compact disc is about 1025 kg-m2. (a) Find the angular 
momentum L = Iv when the disc rotates at v>2p = 735 rev>min and (b) find the approx-
imate value of the quantum number /.
7-12.	 Draw an accurately scaled vector model diagram illustrating the possible orientations 
of the angular momentum vector L for (a) / = 1, (b) / = 2, (c) / = 4. (d ) Compute the 
magnitude of L in each case.
7-13.	 For / = 2, (a) what is the minimum value of Lx

2 + Ly
2? (b) What is the maximum 

value of Lx
2 + Ly

2? (c) What is Lx
2 + Ly

2 for / = 2 and m = 1? Can either Lx or Ly be deter-
mined from this? (d ) What is the minimum value of n that this state can have?
7-14.	 For / = 1, find (a) the magnitude of the angular momentum L and (b) the possible 
values of m. (c) Draw to scale a vector diagram showing the possible orientations of L 
with the z axis. (d ) Repeat the above for / = 3.
7-15.	 Show that, if V is a function only of r, then dL>dt = 0, that is, L is conserved.
7-16.	 What are the possible values of m and the smallest value of n if (a) / = 3, and
(b) / = 4, and (c) / = 0? (d ) Compute the minimum possible energy for each case.
7-17.	 A hydrogen atom electron is in the 6f state. (a) What are the values of n and /?
(b) Compute the energy of the electron. (c) Compute the magnitude of L. (d ) Compute the 
possible values of Lz in this situation.
7-18.	 At what values of r>a0 is the radial function R30 equal to zero? (See Table 7-2.)
7-19.	 Use dimensional analysis to show that the expression for the energy levels of hydro-
genlike atoms given by Equation 7-25 has the units of energy.

Section 7-3  The Hydrogen Atom Wave Functions
7-20.	 For the ground state of the hydrogen atom, find the values of (a) c, (b) c2, and
(c) the radial probability density P(r) at r  =  a0. Give your answers in terms of a0.
7-21.	 For the ground state of the hydrogen atom, find the probability of finding the elec-
tron in the range Dr = 0.03a0 at (a) r = a0 and at (b) r = 2a0.
7-22.	 The radial probability distribution function for the hydrogen ground state can be 
written P1r2 = Cr 2

 e -2Zr>a0 where C is a constant. Show that P(r) has its maximum value 
at r = a0>Z.
7-23.	 Compute the normalization constant C210 in Equation 7-34.
7-24.	 Find the probability of finding the electron in the range Dr = 0.02a0 at (a) r = a0 and 
(b) r = 2a0 for the state n = 2, / = 0, m = 0 in hydrogen. (See Problem 7-26 for the value 
of C200.)
7-25.	 Show that the radial probability density for the n = 2, / = 1, m = 0 state of a
one-electron atom can be written as

P1r2 = A cos2 u r 4
 e -Zr>a0

where A is a constant.
7-26.	 The value of the constant C200 in Equation 7-33 is

C200 =
122p

 a Z
a0
b

3>2

Find the values of (a) c, (b) c2, and (c) the radial probability density P(r) at r = a0 for the 
state n = 2, / = 0, m = 0 in hydrogen. Give your answers in terms of a0.
7-27.	 Show that an electron in the n = 2, / = 1 state of hydrogen is most likely to be 
found at r = 4a0.
7-28.	 Write down the wave function for the hydrogen atom when the electron’s quantum 
numbers are n = 3, / = 4, and m/ = -1. Check to be sure that the wave function is 
normalized.

TIPLER_07_277-324hr.indd   317 8/22/11   12:01 PM



318	 Chapter 7  Atomic Physics

7-29.	 Verify that the wave function found in Problem 7-28 is a solution of the time-
independent Schrödinger equation, Equation 7-9.

Section 7-4  Electron Spin
7-30.	 If a classical system does not have a constant charge-to-mass ratio throughout the 
system, the magnetic moment can be written

m = g 
Q

2M
 L

where Q is the total charge, M is the total mass, and g Z 1. (a) Show that g = 2 for a solid 
cylinder 1I =

1
2 MR22 that spins about its axis and has a uniform charge on its cylindrical 

surface. (b) Show that g = 2.5 for a solid sphere 1I = 2MR2>52 that has a ring of charge 
on the surface at the equator, as shown in Figure 7-33.
7-31.	 Assuming the electron to be a classical particle, a sphere of radius 10215 m 
and a uniform mass density, use the magnitude of the spin angular momentum 
 S  = 3s1s + 12 41>2 U = 13>421>2 U to compute the speed of rotation at the electron’s 
equator. How does your result compare with the speed of light?
7-32.	 How many lines would be expected on the detector plate of a Stern-Gerlach 
experiment (see Figure 7-15) if we use a beam of (a) potassium atoms, (b) calcium atoms, 
(c) oxygen atoms, and (d ) tin atoms?
7-33.	 The force on a magnetic moment with z component mz moving in an inhomo-
geneous magnetic field is given by Equation 7-51. If the silver atoms in the Stern- 
Gerlach experiment traveled horizontally 1 m through the magnet and 1 m in a field-free 
region at a speed of 250 m/s, what must have been the gradient of Bz, dBz>dz, in order 
that the beams each be deflected a maximum of 0.5 mm from the central, or no-field, 
position?
7-34.	 (a) The angular momentum of the yttrium atom in the ground state is characterized 
by the quantum number j = 3>2. How many lines would you expect to see if you could 
do a Stern-Gerlach experiment with yttrium atoms? (b) How many lines would you expect 
to see if the beam consisted of atoms with zero spin, but / = 1?

Section 7-5  Total Angular Momentum and the Spin-Orbit Effect
7-35.	 The spin-orbit effect removes a symmetry in the hydrogen atom potential, splitting 
the energy levels. (a) Considering the state with n = 4, write down in spectroscopic nota-
tion the identification of each state and list them in order of increasing energy. (b) If a 
weak external magnetic field is applied to the atoms, into how many levels will each state 
in (a) be split?
7-36.	 Suppose the outer electron in a potassium atom is in a state with / = 2. Compute 
the magnitude of L. What are the possible values of j and the possible magnitudes of J?
7-37.	 A hydrogen atom is in the 3d state (n = 3, / = 2). (a) What are the possible values 
of j? (b) What are the possible values of the magnitude of the total angular momentum? 
(c) What are the possible z components of the total angular momentum?
7-38.	 Compute the angle between L and S in (a) the d5>2 and (b) the d3>2 states of atomic 
hydrogen.
7-39.	 Write down all possible sets of quantum numbers for an electron in a (a) 4f, (b) 3d, 
and (c) 2p subshell.
7-40.	 Consider a system of two electrons, each with / = 1 and s =

1
2. (a) What are

the possible values of the quantum number for the total orbital angular momentum 
L = L1 1 L2? (b) What are the possible values of the quantum number S for the total spin 
S = S1 1 S2? (c) Using the results of parts (a) and (b), find the possible quantum numbers 
j for the combination J = L 1 S. (d ) What are the possible quantum numbers j1 and j2

for the total angular momentum of each particle? (e) Use the results of part (d ) to 

Figure 7-33  Solid sphere 
with charge Q uniformly 
distributed on ring.
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calculate the possible values of j from the combinations of j1 and j2. Are these the same 
as in part (c)?
7-41.	 The Lamb shift energy difference between the 22S1>2 and 22P1>2 levels in atomic 
hydrogen is 4.372 * 1026 eV. (a) What is the frequency of the photon emitted in this 
transition? (b) What is the photon’s wavelength? (c) In what part of the electromagnetic 
spectrum does this transition lie?
7-42.	 The prominent yellow doublet lines in the spectrum of sodium result from transi-
tions from the 3P3>2 and 3P1>2 states to the ground state. The wavelengths of these two 
lines are 589.0 nm and 589.6 nm. (a) Calculate the energies in eV of the photons corre-
sponding to these wavelengths. (b) The difference in energy of these photons equals the 
difference in energy DE of the 3P3>2 and 3P1>2 states. This energy difference is due to the 
spin-orbit effect. Calculate DE. (c) If the 3p electron in sodium sees an internal magnetic 
field B, the spin-orbit energy splitting will be of the order of DE = 2mBB, where mB is the 
Bohr magneton. Estimate B from the energy difference DE found in part (b).

Section 7-6  The Schrödinger Equation for Two (or More) Particles
7-43.	 Show that the wave function of Equation 7-57 satisfies the Schrödinger equation 
(Equation 7-55) with V = 0 and find the energy of this state.
7-44.	 Two neutrons are in an infinite square well with L = 2.0 fm. What is the minimum 
total energy that the system can have? (Neutrons, like electrons, have antisymmetric wave 
functions. Ignore spin.)
7-45.	 Five identical noninteracting particles are place in an infinite square well with 
L = 1.0 nm. Compare the lowest total energy for the system if the particles are (a) electrons 
and (b) pions. Pions have symmetric wave functions and their mass is 264 me.

Section 7-7  Ground States of Atoms: The Periodic Table
7-46.	 Write the ground-state electron configuration of (a) carbon, (b) oxygen, and (c) argon.
7-47.	 Using Figure 7-34, determine the ground-state electron configurations of tin 
(Sn, Z = 50), neodymium (Nd, Z = 60), and ytterbium (Yb, Z = 70). Check your answers 
with Appendix C. Are there any disagreements? If so, which one(s)?

Figure 7-34  Energy of electron
ground-state configurations versus Z.
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7-48.	 In Figure 7-20 there are small dips in the ionization potential curve at Z = 31 (gallium), 
Z = 49 (indium), and Z = 81 (thallium) that are not labeled in the figure. Explain these 
dips, using the electron configuration of these atoms given in Appendix C.
7-49.	 Which of the following atoms would you expect to have its ground state split by the 
spin-orbit interaction: Li, B, Na, Al, K, Ag, Cu, Ga? (Hint: Use Appendix C to see which 
elements have / = 0 in their ground state and which do not.)
7-50.	 If the 3s electron in sodium did not penetrate the inner core, its energy would be 
-13.6 eV>32 = -1.51 eV. Because it does penetrate, it sees a higher effective Z and its 
energy is lower. Use the measured ionization potential of 5.14 V to calculate Zeff for the 3s 
electron in sodium.
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7-51.	 What elements have these ground-state electron configurations? (a) 1s22s22p63s23p2 
and (b) 1s22s22p63s23p64s2?
7-52.	 Give the possible values of the z component of the orbital angular momentum of 
(a) a d electron, (b) an f electron, and (c) an s electron.

Section 7-8  Excited States and Spectra of Alkali Atoms
7-53.	 Which of the following elements should have an energy-level diagram similar to 
that of sodium and which should be similar to mercury: Li, He, Ca, Ti, Rb, Ag, Cd, Mg, 
Cs, Ba, Fr, Ra?
7-54.	 The optical spectra of atoms with two electrons in the same outer shell are similar, 
but they are quite different from the spectra of atoms with just one outer electron because 
of the interaction of the two electrons. Separate the following elements into two groups 
such that those in each group have similar spectra: lithium, beryllium, sodium, magne-
sium, potassium, calcium, chromium, nickel, cesium, and barium.
7-55.	 Which of the following elements should have optical spectra similar to that of 
hydrogen and which should have optical spectra similar to that of helium: Li, Ca, Ti, Rb, 
Ag, Cd, Ba, Hg, Fr, Ra?
7-56.	 The quantum numbers n, /, and j for the outer electron in potassium have the values 
4, 0, and 1

2 respectively in the ground state; 4, 1, and 1
2 in the first excited state; and 4, 1, 

and 3>2 in the second excited state. Make a table giving the n, l, and j values for the 12 
lowest energy states in potassium (see Figure 7-24).
7-57.	 Which of the following transitions in sodium do not occur as electric dipole transi-
tions? (Give the selection rule that is violated.)

4S1>2 S 3S1>2  4S1>2 S 3P3>2  4P3>2 S 3S1>2  4D5>2 S 3P1>2
4D3>2 S 3P1>2  4D3>2 S 3S1>2  5D3>2 S 4S1>2  5P1>2 S 3S1>2

7-58.	 Transitions between the inner electron levels of heavier atoms result in the emission 
of characteristic x rays, as was discussed in Section 4-4. (a) Calculate the energy of the 
electron in the K shell for tungsten using Z 2 1 for the effective nuclear charge. (b) The 
experimental result for this energy is 69.5 keV. Assume that the effective nuclear charge is 
(Z 2 s), where s is called the screening constant, and calculate s from the experimental 
result for the energy.
7-59.	 Since the P states and the D states of sodium are all doublets, there are four possible 
energies for transitions between these states. Indicate which three transitions are allowed 
and which one is not allowed by the selection rule of Equation 7-65.
7-60.	 The relative penetration of the inner-core electrons by the outer electron in sodium 
can be described by the calculation of Zeff from E = - 3Z2

eff113.62 eV4 >n2 and compar-
ing with E = -13.6 eV>n2 for no penetration (see Problem 7-47). (a) Find the energies of 
the outer electron in the 3s, 3p, and 3d states from Figure 7-22. (Hint: An accurate method 
is to use 25.14 eV for the ground state as given and find the energy of the 3p and 3d states 
from the photon energies of the indicated transitions.) (b) Find Zeff for the 3p and 3d states. 
(c) Is the approximation -13.6 eV>n2 good for any of these states?
7-61.	 A hydrogen atom in the ground state is placed in a magnetic field of strength 
Bz = 0.55 T. (a) Compute the energy splitting of the spin states. (b) Which state has the 
higher energy? (c) If you wish to excite the atom from the lower- to the higher-energy 
state with a photon, what frequency must the photon have? In what part of the electromag-
netic spectrum does this lie?
7-62.	 Show that the change in wavelength Dl of a transition due to a small change in 
energy is

Dl  -
l2

hc
 DE

(Hint: Differentiate E = hc>l.)
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7-63.	 (a) Find the normal Zeeman energy shift DE = e U B>2me for a magnetic field 
of strength B = 0.05 T. (b) Use the result of Problem 7-62 to calculate the wave-
length  changes for the singlet transition in mercury of wavelength l = 579.07 nm.
(c) If the smallest wavelength change that can be measured in a spectrometer is 0.01 nm, 
what is the strength of the magnetic field needed to observe the Zeeman effect in this 
transition?

Level II
7-64.	 If the outer electron in lithium moves in the n = 2 Bohr orbit, the effec-
tive nuclear charge would be Zeff e = 1e, and the energy of the electron would be 
-13.6 eV>22 = -3.4 eV. However, the ionization energy of lithium is 5.39 eV, not 3.4 eV. 
Use this fact to calculate the effective nuclear charge Zeff seen by the outer electron in 
lithium. Assume that r = 4a0 for the outer electron.
7-65.	 Show that the expectation value of r for the electron in the ground state of a one-
electron atom is 8r9 = 13>22a0>Z.
7-66.	 If a rigid body has moment of inertia I and angular velocity v, its kinetic energy is

E =
1

2
 Iv2 =

1Iv22

2I
=

L2

2I

where L is the angular momentum. The solution of the Schrödinger equation for this prob-
lem leads to quantized energy values given by

E/ =
/1/ + 12U2

2I

(a) Make an energy-level diagram of these energies, and indicate the transitions that 
obey the selection rule D/ = {1. (b) Show that the allowed transition energies are E1, 
2E1, 3E1, 4E1, etc., where E1 = U2>I. (c) The moment of inertia of the H2 molecule is 
I =

1
2 mp r 2, where mp is the mass of the proton and r  0.074 nm is the distance between 

the protons. Find the energy of the first excited state / = 1 for H2, assuming it is a rigid 
rotor. (d ) What is the wavelength of the radiation emitted in the transition / = 1 to / = 0 
for the H2 molecule?
7-67.	 In a Stern-Gerlach experiment hydrogen atoms in their ground state move with 
speed vx = 14.5 km>s. The magnetic field is in the z direction and its maximum gradi-
ent is given by dBz>dz = 600 T>m. (a) Find the maximum acceleration of the hydrogen 
atoms. (b) If the region of the magnetic field extends over a distance D x = 75 cm and there 
is an additional 1.25 m from the edge of the field to the detector, find the maximum dis-
tance between the two lines on the detector.
7-68.	 Find the minimum value of the angle between the angular momentum L and the
z axis for a general value of /, and show that for large values of /, umin  1>/1>2.
7-69.	 The wavelengths of the photons emitted by potassium corresponding to transi-
tions from the 4P3>2 and 4P1>2 states to the ground state are 766.41 nm and 769.90 nm.
(a) Calculate the energies of these photons in electron volts. (b) The difference in ener-
gies of these photons equals the difference in energy DE between the 4P3>2 and 4P1>2 
states in potassium. Calculate DE. (c) Estimate the magnetic field that the 4p electron 
in potassium experiences.
7-70.	 The radius of the proton is about R0 = 10215 m. The probability that the electron is 
inside the volume occupied by the proton is given by

P = L
R0

0

 P1r2dr

where P(r) is the radial probability density. Compute P for the hydrogen ground state. 
(Hint: Show that e-2r>a0  1 for r V a0 is valid for this calculation.)

TIPLER_07_277-324hr.indd   321 8/22/11   12:01 PM



322	 Chapter 7  Atomic Physics

7-71.	 (a) Calculate the Landé g factor (Equation 7-72) for the 2P1>2 and 2S1>2 levels in a 
one-electron atom and show that there are four different energies for the transition between 
these levels in a magnetic field. (b) Calculate the Landé g factor for the 2P3>2 level and show 
that there are six different energies for the transition 2P3>2 S 2S1>2 in a magnetic field.
7-72.	 (a) Show that the function

 = A 
r

a0
 e - r>2a0 cos 

is a solution of Equation 7-9, where A is a constant and a0 is the Bohr radius. (b) Find the 
constant A.

Level III
7-73.	 Consider a hypothetical hydrogen atom in which the electron is replaced by a K2 
particle. The K2 is a meson with spin 0; hence, no intrinsic magnetic moment. The only 
magnetic moment for this atom is that given by Equation 7-41. If this atom is placed in 
a magnetic field with Bz = 1.0 T, (a) what is the effect on the 1s and 2p states? (b) Into 
how many lines does the 2p S  1s spectral line split? (c) What is the fractional separation 
> between adjacent lines? (See Problem 7-59.) The mass of the K2 is 493.7 MeV>c2.
7-74.	 If relativistic effects are ignored, the n = 3 level for one-electron atoms consists of 
the 32

 S1>2, 3
2

 P1>2, 3
2

 P3>2, 3
2

 D3>2, and 32
 D5>2 states. Compute the spin-orbit-effect splittings 

of 3P and 3D states for hydrogen.
7-75.	 In the anomalous Zeeman effect, the external magnetic field is much weaker than 
the internal field seen by the electron as a result of its orbital motion. In the vector model 
(Figure 7-29) the vectors L and S precess rapidly around J because of the internal field 
and J precesses slowly around the external field. The energy splitting is found by first cal-
culating the component of the magnetic moment mJ in the direction of J and then finding 

the component of mz in the direction of B. (a) Show that mJ =
 # J

J
 can be written

mJ = -  
mB

U J
1L2 + 2S2 + 3S # L2

(b) From J 2 = (L 1 S) # (L 1 S) show that S # L =
1
2 1J 2 - L2 - S22. (c) Substitute your 

result in part (b) into that of part (a) to obtain

mJ = -  
mB

2 U J
13J 2 + S2 - L22

(d ) Multiply your result by Jz>J to obtain

mz = -mBa1 +
J 2 + S2 - L2

2 J 2 b Jz

U

7-76.	 If the angular momentum of the nucleus is I and that of the atomic electrons is J, 
the total angular momentum of the atom is F = I 1 J, and the total angular momentum 
quantum number f ranges from I 1 J to  I - J  . Show that the number of possible f 
values is 2I 1 1 if I 6 J or 2J 1 1 if J 6 I. (If you can’t find a general proof, show it for 
enough special cases to convince yourself of its validity.) (Because of the very small inter-
action of the nuclear magnetic moment with that of the electrons, a hyperfine splitting of 
the spectral lines is observed. When I 6 J, the value of I can be determined by counting the 
number of lines.)
7-77.	 Because of the spin and magnetic moment of the proton, there is a very small split-
ting of the ground state of the hydrogen atom called hyperfine splitting. The splitting can 
be thought of as caused by the interaction of the electron magnetic moment with the mag-
netic field due to the magnetic moment of the proton or vice versa. The magnetic moment 
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of the proton is parallel to its spin and is about 2.8mN, where mN = e U>2mp is called the 
nuclear magneton. (a) The magnetic field at a distance r from a magnetic moment varies 
with angle, but it is of the order of B  2kmm>r 3, where km = 1027 in SI units. Find B at 
r = a0 if m = 2.8mN. (b) Calculate the order of magnitude of the hyperfine splitting energy 
DE  2mBB, where mB is the Bohr magneton and B is your result from part (a). (c) Cal-
culate the order of magnitude of the wavelength of radiation emitted if a hydrogen atom 
makes a “spin flip” transition between the hyperfine levels of the ground state. [Your 
result is greater than the actual wavelength of this transition, 21.22 cm, because 8r -39  is 
appreciably smaller than a -3

0 , making the energy DE found in part (b) greater. The detec-
tion of this radiation from hydrogen atoms in interstellar space is an important part of 
radio astronomy.]
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325  

The physical world that we experience with our senses consists entirely of macro-
scopic objects, that is, systems that are large compared with atomic dimensions 

and, thus, are assembled from very large numbers of atoms. As we proceed to the 
description of such systems from our starting point of studying single-electron atoms, 
then multielectron atoms and molecules, we expect to encounter increasing complex-
ity and difficulty in correctly explaining the observed properties of those systems. 
Classically, the behavior of any macroscopic system could, in principle, be predicted 
in detail from the solution of the equation of motion for each constituent particle, 
given its state of motion at some particular time; however, the obvious problems with 
such an approach soon become intractable. For example, consider the difficulties that 
would accompany the task of accounting for the measured properties of a standard 
liter of any gas by simultaneously solving the equations of motion for all of the 1022 
atoms or molecules of which the system is composed. Fortunately, we can predict 
the values of the measurable properties of macroscopic systems without the need to 
track the motions of each individual particle. This remarkable shortcut is made pos-
sible by the fact that we can apply general principles of physics, such as conservation 
of energy and momentum, to large ensembles of particles, ignoring their individual 
motions, and determine the probable behavior of the system from statistical consid-
erations. We then use the fact that there is a relation between the calculated prob-
able behavior and the observed properties of the system. This successful, so-called 
microscopic approach to explaining the behavior of large systems is called statistical 
mechanics. It depends critically on the system containing a sufficiently large number 
of particles so that ordinary statistical theory is valid.1

In this chapter we will investigate how this statistical approach can be applied to 
predict the way in which a given amount of energy will most likely be distributed 
among the particles of a system. You may have already encountered kinetic theory, 
the first successful such microscopic approach, in introductory physics. Since the 
assumptions, definitions, and basic results of kinetic theory form the foundation of 
classical statistical physics, we have included a brief review of kinetic theory in the 
Classical Concept Review. We will see how, in an isolated system of particles in ther-
mal equilibrium, the particles must be able to exchange energy, one result of which is 
that the energy of any individual particle may sometimes be larger and sometimes 
smaller than the average value for a particle in the system. Classical statistical 
mechanics requires that the values of the energy taken on by an individual particle 
over time, or the values of the energy assumed by all of the particles in the system at 
any particular time, be determined by a specific probability distribution, the Boltzmann 
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distribution. In the first section of the chapter we will briefly review the principal 
concepts of classical statistical physics, noting some of the successful applications 
and some of the serious failures. We will then see how quantum considerations 
require modification of the procedures used for classical particles, obtaining in the 
process the quantum-mechanical Fermi-Dirac distribution for particles with antisym-
metric wave functions, such as electrons, and the Bose-Einstein distribution for parti-
cles with symmetric wave functions, such as He4 atoms. Finally, we will apply the 
distributions to several physical systems, comparing our predictions with experimen-
tal observations and gaining an understanding of such important phenomena and 
properties as superfluidity and the specific heat of solids.

8-1  Classical Statistics: A Review 
Statistical physics, whether classical or quantum, is concerned with the distribution of 
a fixed amount of energy among a large number of particles, from which the observ-
able properties of the system may then be deduced. Classically, the system consists of 
a large ensemble of identical but distinguishable particles; that is, the particles are all 
exactly alike, but in principle they can be individually tracked during interactions. 
Boltzmann2 derived a distribution relation that makes possible prediction of the prob-
able numbers of particles that will occupy each of the available energy states in such a 
system in thermal equilibrium.

Boltzmann Distribution
The Boltzmann’s distribution fB1E2 given by Equation 8-1 is the fundamental distri-
bution function of classical statistical physics.

	 fB1E2 = Ae-E>kT� 8-1

where A is a normalization constant whose value depends on the particular system being 
considered, e-E>kT is called the Boltzmann factor, and k is the Boltzmann constant:

k = 1.381 * 10-23 J>K = 8.617 * 10-5 eV>K
Boltzmann’s derivation was done to establish the fundamental properties of a 

distribution function for the velocities of molecules in a gas in thermal equilibrium 
that had been obtained by Maxwell a few years before and to show that the velocity 
distribution for a gas that was not in thermal equilibrium would evolve toward 
Maxwell’s distribution over time. Boltzmann’s derivation is more complex than is 
appropriate for our discussions, but in the Classical Concept Review we present a 
straightforward numerical derivation that results in an approximation of the correct 
distribution and then show by a simple mathematical argument that the form obtained 
is exact and is the only one possible. Here we will illustrate application of the 
Boltzmann distribution with some examples by way of providing a basis for compar-
ing classical and quantum statistical physics later in the chapter.

The number of particles with energy E is given by

	 n1E2 = g1E2fB1E2 = Ag1E2e-E>kT� 8-2

where g(E ) is the statistical weight (degeneracy) of the state with energy E. Classically, 
the energy E is a continuous function and so is n(E ) (see Figure 8-1). Consequently, 
g(E ) and fB(E ) are also continuous functions in which case g(E ) in Equation 8-2 is 
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referred to as the density of states, meaning that g(E ) dE is the number of states with 
energy between E and E 1 dE. The next two examples illustrate how to apply the 
Boltzmann distribution and how the results explain observations of physical systems.

EXAMPLE 8-1	 The Law of Atmospheres ​ Consider an ideal gas in a uniform 
gravitational field. (a) Find how the density of the gas depends on the height above 
ground. (b) Assuming that air is an ideal gas with molecular weight 28.6, compute 
the density of air 1 km above the ground when T = 300 K. (The density at the 
ground is 1.292 kg>m3 at 300 K.)

SOLUTION
(a) � Let the force of gravity be in the negative z direction and consider a column of 

gas of cross-sectional area A. The energy of a gas molecule is then

E =
p2

x

2m
+

p2
y

2m
+

p2
z

2m
+ mgz =

p2

2m
+ mgz

where p2 = p2
x + p2

y + p2
z  and mgz is the potential energy of a molecule at 

height z above the ground. The density r is proportional to fB, since r is pro
portional to N, the number of molecules in a unit volume at height z, and N is 
proportional to fB.

From Equation 8-1 we have

fB = Ae-p2>2mkT
 e-mgz>kT

Since we are interested only in the dependence on z, we can integrate over the 
other variables px, py, and pz. The integration merely gives a new normaliza-
tion constant A9; that is, the result is equivalent to ignoring these variables. The 
fraction of the molecules between z and z + dz is then

	 fB1z2dz = A9 e-mgz>kT
 dz� 8-3

The constant A9 is obtained from the normalization condition 1q

0  fB1z2dz = 1. 
The result is A9 = mg>kT . The density, therefore, also decreases exponen-
tially with the distance above the ground. Equation 8-3 is known as the law 
of atmospheres.
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Figure 8-1  n(E ) versus E for data
from Table 1 in the CCR Boltzmann 
distribution derivation. The solid curve 
is the exponential n(E ) = Be-E>Ec,
where the constants B and Ec have
been adjusted to give the best fit to 
the data points.
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(b) � The ratio of the density at z = 1000 m to that at z = 0 m is the same as 
fB110002 >fB102, where fB1z2 is given by Equation 8-3. Thus,

r110002
r102 =

fB110002
fB102 =

e-mg110002>k13002

e-mg102>k13002 = e-mg110002>k13002

Substituting m = 28.6 * 1.67 * 10-27 kg and g = 9.8 m>s2 yields

r110002 = r102e-0.113 = 1.292 * 0.893 = 1.154 kg>m3

EXAMPLE 8-2	 H Atoms in the First Excited State ​ The first excited state E2 of 
the hydrogen atom is 10.2 eV above the ground state E1. What is the ratio of the num-
ber of atoms in the first excited state to the number in the ground state at (a) T = 300 K 
and (b) T = 5800 K? The latter is the temperature at the surface of the Sun.

SOLUTION
	 1.	 The number of atoms in a state with energy E is given by Equation 8-2:

n1E2 = g1E2fB1E2 = Ag1E2e-E>kT

	 2.	 The ratio of the number in the first excited state to the number in the ground 
state is then

n2

n1
=

Ag2 e-E2>kT

Ag1 e-E1>kT
=

g2

g1
  e-1E2-E12>kT

	 3.	 The statistical weight (= degeneracy) of the ground state g1, including electron 
spin, is 2; the degeneracy of the first excited state g2 is 8 (one / = 0 and three 
/ = 1 states, each with two spin states). Therefore:

g2

g1
=

8

2
= 4

		  and
n2

n1
= 4e-1E2-E12>kT

	 4.	 For question (a), at T = 300 K, kT  0.026 eV. Substituting this and 
E2 - E1 = 10.2 eV from above gives

n2

n1
= 4e-110.22>10.0262 = 4e-392  10-171  0

	 5.	 For question (b), at the surface of the Sun where T = 5800 K, kT  0.500. 
Substituting this and E2 - E1 = 10.2 eV gives

n2

n1
= 4e-110.22>10.5002 = 4e-20.4

 e-19  10-8

Remarks:  The result in step 4 illustrates that, because of the large energy difference 
between the two states compared with kT, very few atoms are in the first excited state. 
Even fewer would be in the higher excited states, which explains why a container of 
hydrogen gas sitting undisturbed at room temperature does not spontaneously emit 
the visible Balmer series. At the surface of the Sun (step 5 above) about 1015 atoms of 
every mole of atomic hydrogen are in the first excited state at any given time.
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More
�In learning about systems containing large numbers of particles, the 
meaning of the temperature needs to be more carefully defined. It 
is closely related to another descriptor of such systems, the entropy. 
To help you understand both concepts better, we have included 
Temperature and Entropy on the home page: www.whfreeman.com/
tiplermodernphysics6e. See also Equations 8-4 a, b, c, and d here.

More

Maxwell Distribution of Molecular Speeds
The Boltzmann distribution is a very fundamental relation from which many proper-
ties of classical systems, both gases and condensed matter, can be derived. Two of the 
most important are Maxwell’s distribution of the speeds of molecules in a gas and the 
equipartition theorem. Considering the first of these, Maxwell derived the velocity 
and speed distributions of gases in 1859, some five years before Boltzmann derived 
Equation 8-1. As with the Boltzmann distribution, we will present the results here, 
illustrating their application with examples and including fuller descriptions and deri-
vations in the Classical Concept Review. Maxwell obtained the velocity distribu-
tion, F1vx, vy, vz2, which can also be used to obtain the speed distribution, by assuming 
that the components vx, vy, and vz of the velocity were independent and that, therefore, 
the probability of a molecule having a certain vx, vy, vz could be factored into the prod-
uct of the separate probabilities of its having vx, vy, and vz. He also assumed that the 
distribution could depend only on the speed; that is, the velocity components could 
occur only in the combination v2

x + v2
y + v2

z . He thus wrote for the distribution func-
tion for vx

	 f1vx2 = Ce-mv2
x>2kT	 8-5

where f1vx2 is the distribution function for vx only; that is, f1vx2dvx is the fraction of 
the total number of molecules that have their x component of velocity between vx and 
vx + dvx.

3 Similar expressions can be written for f1vy2 and f1vz2. The constant C is 
determined by the normalization condition. The complete normalized velocity distri-
bution is

	 F1vx, vy, vz2 = f1vx2f1vy2f1vz2 = a m

2kT
b

3>2
 e-m1v2

x+ v2
y+ v2

z2>2kT	 8-6

The utility of distribution functions is that they make possible the calculation of aver-
age or expectation values of physical quantities; that is, they allow us to make predic-
tions regarding the physical properties of systems. For example, the observation from 
Figure 8-2 that the average value of vx is zero can be verified by computing 8vx9  as 
indicated by Equation 8-6.

	 8vx9 = L
+q

-q

 vx  f1vx2dvx = L
+q

-q

 vxa m

2kT
b

1>2
 e-mv2

x>2kT
 dvx	 8-7

Writing l = m>2kT , we have

8vx9 = 1l>2L
+q

-q

 vx e-lv2
x

 

  dvx

8

CCR

9

CCR

Figure 8-2  The distribution 
function f1vx2 for the x 
component of velocity. 
This is a Gaussian curve 
symmetric about the origin.

f (vx)

vx
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From Table B1-1 we see that the value of the 
integral is zero, so 8vx9 = 0, as expected.

The probability distribution function for the 
speeds of the molecules in a classical ideal gas can 
be derived from the Boltzmann distribution. The 
result is the famous Maxwell distribution of molec-
ular speeds:

	 n1v2dv = 4Na m

2kT
b

3>2
 v2

 e-mv2>2kT
 dv	 8-8

The distribution of speeds is shown graphically in 
Figure 8-3. The most probable speed vm, the average 
speed 8v9, and the rms speed vrms are indicated in the 
figure. Although the velocity distribution function 
F (see Equation 8-6 and Figures 8-4 and 8-5) is a 
maximum at the origin (where vx = vy = vz = 0), 
the speed distribution function n(v) approaches zero 
as v S 0 because the latter is proportional to the vol-

ume of the spherical shell 4v2
 dv (see Equation 8-8), which approaches zero. At very 

high speeds, the speed distribution function again approaches zero because of the 
exponential factor e-mv2>2kT.

The most probable speed vm is that where n(v) has its maximum value. It is left as 
an exercise (see Problem 8-9) to show that its value is

	 vm = a 2kT
m
b

1>2
� 8-9

The average speed 8v9 is obtained in general and for a specific situation in the 
next example.

7, 8, 9

CCR

One of the ways used to 
separate 235U from the 
far more abundant 238U 
isotope is to react the 
uranium metal with 
fluorine, forming UF6, a 
gas. 235UF diffuses through 
a membrane just a bit 
faster than 238U since 
both molecules have the 
same average kinetic 
energy. After several 
stages of diffusion, the 
concentration of 235U is 
high enough for making 
nuclear reactor fuel (see 
Chapter 11).

Figure 8-4  Velocity vectors 
in velocity space. The 
velocity distribution function 
gives the fraction of 
molecular velocities whose 
vectors end in a cell of 
volume dvx dvy dvz.

vz

vy

vx

dvz

dvy

dvx

Figure 8-5  Two-dimensional representation of velocity distribution in velocity space. Each 
molecular velocity with components vx, vy, and vz is represented by a point in velocity space. 
The velocity distribution function is the density of points in this space. The density is 
maximum at the origin. The speed distribution is found by multiplying the density times the 
volume of the spherical shell 4v2 dv. [This computer-generated plot courtesy of Paul Doherty, 
The Exploratorium.]

2v0v0

v

dv

vx

vy

2v0

v0

v0 = kT/m

Figure 8-3  ​Maxwell speed distribution function 
n(v). The most probable speed vm, the average
speed 8v9, and the rms speed vrms are indicated.

n(v )

v

〈v 〉 = 8kT /πm

vm = 2kT /m

vrms =

vrmsvm

3kT /m

〈v 〉
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EXAMPLE 8-3	 Average Speed of N2 Molecules ​ Obtain the average speed 8v9 
of the Maxwell distribution and use it to compute the average speed of nitrogen 
molecules at 300 K. The mass of the N2 molecule is 4.68 * 10-26 kg.

SOLUTION
	 1.	 The average speed 8v9 is found by multiplying the distribution of speeds 

(Equation 8-8) by v, integrating over all possible speeds, and dividing by the 
total number of molecules N:

8v9 =
1

N
 L

q

0

 vn1v2dv = L
q

0

 Av3
 e-lv2

 dv

		  where l = m>2kT  and A = 41m>2kT23>2.
	 2.	 Writing this as

8v9 = AI3

		  where

I3 = L
q

0

 v3
 e-lv2

 dv

	 3.	 And using Table B1-1 for evaluating I3, we have

 8v9 = Al-2>2

 =
4

2
a m

2kT
b

3>2
a 2kT

m
b

2

 = a 8kT
m
b

1>2

	 8-10

	 4.	 The 8v9  found in step 3 can now be used to find the average speed of nitrogen 
molecules at T = 300 K. Substituting the mass of a nitrogen molecule into 
Equation 8-10 yields

 8v9 = c 8 * 1.38 * 10-23 * 300

 * 4.68 * 10-26 d
1>2

 = 475 m>s
 = 1700 km>h

The average speed is about 8 percent less than vrms = 13kT>m21>2, as indicated 
in Figure 8-3. The rms speed can be computed from the speed distribution following 
the same procedure as in Example 8-3 or, as we will see below, from the equipartition 
theorem. Figure 8-6, a plot of Equation 8-8 for H2 and O2 molecules at 300 K, illus-
trates the effect of mass on the speed distribution. 18

CCR

Figure 8-6  Graph of 
n1v2 >N versus v from 
Equation 8-8 for O2 and H2 
molecules, both at 
T = 300 K.
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Maxwell’s speed distribution has been precisely verified by many experiments, 
so there is little incentive to perform additional measurements. One of the more recent 
experiments, that of Miller and Kusch illustrated in Figures 8-7 and 8-8, is applicable 
to the measurement of any sort of molecular speed distribution, and variations of it 
are used to measure the speeds in jet or nozzle molecular beams.

Evaporation is a cooling 
process, even at very 
low temperatures! The 
sample from which a BE 
condensate will form, 
confined at about 1 mK, 
is cooled further by 
allowing the atoms in the 
high-speed “tail” of the 
Maxwell distribution to 
“leak” from the sample, 
taking kinetic energy with 
them and thus reducing 
the temperature (see 
Section 8-3).

Figure 8-7  Schematic sketch of apparatus
of Miller and Kusch for measuring the speed 
distribution of molecules. Only one of the 
720 helical slits in the cylinder is shown. For a 
given angular velocity v, only molecules of a 
certain speed from the oven pass through the 
helical slits to the detector. The straight slit is 
used to align the apparatus. [From R.C. Miller 
and P. Kusch, Physical Review, 99, 1314 (1955).]

Oven source

Detector

ωφ

Figure 8-8  Data of Miller and Kusch 
showing the distribution of speed of thallium 
atoms from an oven at 870 K. The data have 
been corrected to give the distribution inside 
the oven since the faster molecules approach 
the exit slit more frequently and skew the 
external distribution slightly. The measured 
value for vm at 870 K is 376 m>s. The solid 
curve is that predicted by the Maxwell speed 
distribution. [From R. C. Miller and P. Kusch, 
Physical Review, 99, 1314 (1955).]
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Question

1.	 How does vrms for H2 molecules compare with vrms for O2 molecules under 
standard conditions?
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Maxwell Distribution of Kinetic Energy
Maxwell’s distribution of molecular speeds also provides, as a bonus, the distribution 
of the molecular translational kinetic energy and the average kinetic energy of a mol-
ecule. These can also be determined from Equation 8-2. Since E =

1
2 mv2, v2 = 2E>m 

and dv = 12mE2-1>2
 

 dE, g(E) dE is

	 g1E2  dE = 4C12E>m2 12mE2-1>2 
 dE	 8-11

Substituting the above into Equation 8-2, we have

	 n1E2  dE = 4A912>m321>2
 E1>2

 eE>kT
 

 dE	 8-12

Evaluating A9 using the fact that 1q

0  n1E2  dE = N, the total number of parti-
cles, allows us to write Maxwell’s distribution of kinetic energy as

	 n1E2  dE =
2N

1kT23>2  E1>2
 e-E>kT

 

 dE	 8-13

The kinetic energy distribution is sketched in Figure 8-9. The average kinetic energy 
is computed in the same manner as the average speed; that is, the distribution is mul-
tiplied by E (the quantity being averaged), and the result is integrated4 over all values 
of E (from 0 S ) and divided by the number of molecules N.

	 8E9 =
1

N L
q

0

 E n1E2  dE =
2

1kT23>2 L
q

0

 E3>2
 e-E>kT

 

 dE =
3

2
 kT � 8-14

7, 8, 9

CCR

Figure 8-9  Maxwell distribution of 
kinetic energies for the molecules of an 
ideal gas. The average energy 
8E9 = 3kT>2 is shown.

n
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2

〈E 〉 = kT

EXAMPLE 8-4	 Escape of H2 from Earth’s Atmosphere ​ A rule of thumb used 
by astrophysicists is that a gas will escape from a planet’s atmosphere in 108 years 
if the average speed of its molecules is one-sixth of the escape velocity. Compute 
the average speed from the average kinetic energy and show that the absence of 
hydrogen in Earth’s atmosphere suggests that Earth must be older than 108 years 
(mass of H2 molecules = 3.34 * 10-27 kg).

SOLUTION
The escape speed at the bottom of the atmosphere, that is, at Earth’s surface, is 
11.2 km>s, and one-sixth of that value is 1.86 km>s. If we assume that T = 300 K, 
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the average energy of a hydrogen molecule (or any other molecule, since 8E 9 is 
independent of mass) is

8E9 =
3

2
 kT =

3 * 1.38 * 10-23 * 300

2
= 6.21 * 10-21 J

Thus,

81
2 mv29 = 6.21 * 10-21 J

or, for hydrogen molecules,

8v29 =
2 * 6.21 * 10-21

3.34 * 10-27 = 3.72 * 106

Therefore,

vrms = 1.93 km>s

Remarks:  Since vrms  (1>6)vesc = 1.86 km>s, the absence of hydrogen in the 
atmosphere suggests that the age of Earth is greater than 108 years.

Questions

2.	 How does 8Ek9  for He molecules compare with 8Ek9  for Kr molecules under 
standard conditions?

3.	 H2 molecules can escape so freely from Earth’s gravitational field that H2 is not 
found in Earth’s atmosphere (see Example 8-4). Yet the average speed of H2 
molecules at ordinary atmospheric temperatures is much less than the escape 
speed. How, then, can all of the H2 molecules escape?

4.	 Why wouldn’t you expect all molecules in a gas to have the same speed?

Heat Capacities of Gases and Solids
The second important property of classical systems derivable from the Boltzmann 
distribution is one that applies to both gases and solids. Called the equipartition theo-
rem, it states that

In equilibrium, each degree of freedom contributes 1
2 kT to the average 

energy per molecule.

A degree of freedom is a coordinate or a velocity component that appears squared in 
the expression for the total energy of a molecule. For example, the one-dimensional 
harmonic oscillator has two degrees of freedom, x and vx, a monatomic gas molecule 
has three degrees of freedom, vx, vy, and vz.

More
�That each degree of freedom in a classical material should have the 
same average energy per molecule is not at all obvious. On the home 
page we have included A Derivation of the Equipartition Theorem 
for a special case, the harmonic oscillator, to illustrate how the more 
general result arises: www.whfreeman.com/tiplermodernphysics6e. 
See also Equations 8-15 through 8-23 here.

More
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CV for Gases
The power of the equipartition theorem is its ability to accurately predict the heat 
capacities of gases and solids, but therein is also found its most dramatic failures. As 
an example, consider a rigid-dumbbell model of a diatomic molecule (Figure 8-10a) 
that can translate in the x, y, and z directions and can rotate about axes x9 and y9 
through the center of mass and perpendicular to the z9 axis along the line joining the 
two atoms.5 The total energy for this rigid-dumbbell model molecule is then

E =
1
2 mv2

x +
1
2 mv2

y +
1
2 mv2

z +
1
2 Ix9v

2
x9 +

1
2 Iy9v

2
y9

where Ix9 and Iy9 are the moments of inertia about the x9 and y9 axes. Since this mole-
cule has 5 degrees of freedom, 3 translational and 2 rotational, the equipartition 
theorem predicts the average energy to be 15>22kT  per molecule. The energy per 
mole U is then 15>22NA kT = 15>22RT  and the molar heat capacity at constant vol-
ume CV = 10U>0T2V is 15>22R. The observation that CV for both nitrogen and oxy-
gen is about 15>22R enabled Clausius to speculate (in about 1880) that these gases 
must be diatomic gases, which can rotate about two axes as well as translate (see 
Table 8-1).

Figure 8-10  (a) Rigid-
dumbbell model of a diatomic 
gas molecule that can 
translate along the x, y, or z 
axis and rotate about the x9 or 
y9 axis fixed to the center of 
mass. If the spheres are 
smooth or are points, rotation 
about the z9 axis can be 
neglected. (b) Nonrigid-
dumbbell model of a diatomic 
gas molecule that can 
translate, rotate, and vibrate.
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x 9

y 9 z 9y
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 Table 8-1 ​ CV for some gases at 15°C and 1 atm

Gas CV (cal/mol-deg) CV/R

Ar 2.98 1.50

He 2.98 1.50

CO 4.94 2.49

H2 4.87 2.45

HCl 5.11 2.57

N2 4.93 2.49

NO 5.00 2.51

O2 5.04 2.54

Cl2 5.93 2.98

CO2 6.75 3.40

CS2 9.77 4.92

H2S 6.08 3.06

N2O 6.81 3.42

SO2 7.49 3.76

R = 1.987 cal>mol@deg

From J. R. Partington and W. G. Shilling, The Specific Heats of 
Gases (London: Ernest Benn, Ltd., 1924).
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If a diatomic molecule is not rigid, the atoms can also vibrate along the line join-
ing them (Figure 8-10b). Then, in addition to the translational energy of the center of 
mass and rotational energy, there can be vibrational energy. The vibration, a simple 
harmonic motion, adds two more squared terms to the energy, one for the potential 
energy and one for kinetic energy. For a diatomic molecule that is translating, rotat-
ing, and vibrating, the equipartition theorem thus predicts a molar heat capacity of 
13 + 2 + 22  12 R, or 17>22R. However, measured values of CV for diatomic mole-
cules (see Table 8-1) show no contribution from the vibrational degrees of freedom. 
The equipartition theorem provides no explanation for their absence.

Experimental values of CV for several diatomic gases are included in Table 8-1. 
For all of these except Cl2, the data are consistent with the equipartition theorem pre-
diction assuming a rigid nonvibrating molecule. The value for Cl2 is about halfway 
between that predicted for a rigid molecule and that predicted for a vibrating mole-
cule. The situation for molecules with three or more atoms, several of which are also 
listed in Table 8-1, is more complicated and will not be examined in detail here.

The equipartition theorem in conjunction with the point-atom, rigid-dumbbell 
model was so successful in predicting the molar heat capacity for most diatomic mol-
ecules that it was difficult to understand why it did not do so for all of them. Why 
should some diatomic molecules vibrate and not others? Since the atoms are not 
points, the moment of inertia about the line joining the atoms, while small, is not zero, 
and there are three terms for rotational energy rather than two. Assuming no vibra-
tion, CV should then be 16>22R. This agrees with the measured value for Cl2 but not 
for the other diatomic gases. Furthermore, monatomic molecules would have three 
terms for rotational energy if the atoms were not points, and CV should also be 
16>22R for these atoms rather than the 13>22R that is observed. Since the average 
energy is calculated by counting terms, it should not matter how small the atoms are 
as long as they are not merely points. In addition to these difficulties, it is found 
experimentally that the molar heat capacity depends on temperature, contrary to the 
predictions from the equipartition theorem. The most spectacular case is that of H2, 
shown in Figure 8-11. It seems as if at very low temperatures, below about 60 K, 
H2 behaves like a monatomic molecule and does not rotate. It seems to undergo a 
transition, and between about 250 K and 700 K it has CV = 15>22R, thus behaving 

Figure 8-11  Temperature dependence of molar heat capacity of H2. Between about 250 and 
700 K, CV is 15>22R, as predicted by the rigid-dumbbell model. At low temperatures, CV is 
only 13>22R, as predicted for a nonrotating molecule. At high temperatures CV seems to be 
approaching 17>22R, as predicted for a dumbbell model that rotates and vibrates, but the 
molecule dissociates before this plateau is reached.
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like a rotating rigid dumbbell. At very high temperatures H2 begins to vibrate, but the 
molecule dissociates before CV reaches 17>22R. Other diatomic gases show similar 
behavior except that at low temperatures, they liquefy before CV reaches 13>22R. 
The failure of the equipartition theorem to account for these observations occurs 
because classical mechanics itself fails when applied to atoms and molecules. As we 
will see, it must be replaced by quantum mechanics.

CV for Solids
The equipartition theorem is also useful in understanding the heat capacity of solids. 
In 1819, Dulong and Petit pointed out that the molar heat capacity of most solids was 
very nearly equal to 6 cal>K@mole  3R. This result was used by them to obtain 
unknown molecular weights from the experimentally determined heat capacities. The 
empirical Dulong-Petit law is readily derived from the equipartition theorem by 
assuming that the internal energy of a solid consists entirely of the vibrational energy 
of the molecules (see Figure 8-12). If the force constants in the x, y, and z directions 
are 1, 2, and 3, respectively, the vibrational energy of each molecule is

E =
1
2 mv2

x +
1
2 mv2

y +
1
2 mv2

z +
1
21 x2 +

1
22  y 2 +

1
23 z 2

Since there are six squared terms, the average energy per molecule is 6(1
2 kT), and the 

total energy of 1 mole is 3NA kT = 3RT , giving CV = 3R.
At high temperatures, all solids obey the Dulong-Petit law. For temperatures 

below some critical value, CV drops appreciably below the value of 3R and approaches 
zero as T approaches zero. The critical temperature is a characteristic of the solid. It is 
lower for soft solids such as lead than for hard solids such as diamond. The tempera-
ture dependence of CV for several solids is shown in Figure 8-13.

The fact that CV for metals is not appreciably different from that for insulators is 
puzzling. The classical model of a metal is moderately successful in describing the 
conduction of electricity and heat. It assumes that approximately one electron per atom 
is free to move about the metal, colliding with the atoms much as the molecules do in a 
gas. According to the equipartition theorem, this “electron gas” should have an aver-
age kinetic energy of 13>22kT  per electron; thus the molar heat capacity should be 
about 13>22R greater for a conductor than for an insulator. Although the molar heat 
capacity for metals is slightly greater than 3R at very high temperatures, the difference 
is much less than the 13>22R predicted for the contribution of the electron gas.

Figure 8-12  Simple model 
of a solid consisting of atoms 
connected to each other by 
springs. The internal energy 
of the solid then consists of 
kinetic and potential 
vibrational energy.

Figure 8-13  ​Temperature 
dependence of molar heat 
capacity of several solids. At 
high temperatures CV is 3R, 
as predicted by the 
equipartition theorem. 
However, at low temperatures 
CV approaches zero. The 
critical temperature at which 
CV becomes nearly 3R is 
different for different solids.
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The Boltzmann distribution and statistical mechanics were enormously success-
ful in predicting the observed thermal properties of physical systems; however, the 
failure of the theory to account correctly for the heat capacities of gases and solids 
was a serious problem for classical physics, constituting as it did a failure of classical 
mechanics itself. The search for an understanding of specific heats was instrumental 
in the discovery of energy quantization in the early years of the twentieth century. 
The following sections show how quantum mechanics provides a basis for the com-
plete understanding of the experimental observations.

EXAMPLE 8-5	 Broadening of Spectral Lines ​ In Chapter 5 we saw that spec-
tral lines emitted by atoms had a certain natural width due to the uncertainty prin-
ciple. However, in luminous gases, such as sodium and mercury vapor lamps and 
the visible surface of the Sun, the atoms are moving with the Maxwell velocity dis-
tribution. The velocity distribution results in a Doppler effect that Rayleigh showed 
was proportional to the Boltzmann factor and led to a broadening D of spectral lines 
equal to

D = 0.72 * 10-6 l2T>M
where l is the wavelength of the line, T is the absolute temperature, and M is the 
molecular weight in amu. From this, compute the velocity (Doppler) broadening of 
the hydrogen H line emitted by H atoms at the surface of the Sun, where T = 5800 K.

SOLUTION
The wavelength of the H line is 656.3 nm and the atomic weight of H is 1, so

D = 0.72 * 10-6 * 656.325800>1 = 0.036 nm

For comparison, the natural width of the H line is about 0.0005 nm. Note that the 
effect of the pressure of the gas in causing spectral line broadening via collisions 
is also an important factor and, in fact, at high pressures is the dominant cause. 
Collisions reduce the level lifetime and so broaden the energy width (uncertainty 
principle). This is the reason that the Sun’s visible spectrum is a continuous one.

8-2  Quantum Statistics 
Bose-Einstein and Fermi-Dirac Distributions
The classical systems that were the subject of Section 8-1 consisted of identical but 
distinguishable particles. They were treated like billiard balls: exactly the same as one 
another, but with numbers painted on their sides. Indeed, that was the point of the first 
assumption on the first page of the kinetic theory review in the Classical Concept 
Review on the Web site. However, the wave nature of particles in quantum mechanics 
prevents identical particles from being distinguished from one another. The finite 
extent and the overlap of wave functions makes identical particles indistinguishable. 
Thus, if two identical particles 1 and 2 pass within a de Broglie wavelength of each 
other in some event, we cannot tell which of the emerging particles is 1 and which 
is 2—that is, we cannot distinguish between the several possible depictions of the 
event in Figure 8-14. The treatment of classical particles that led to the Boltzmann 
distribution can be extended to systems containing large numbers of identical indis-
tinguishable particles.

8

CCR
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The first such theoretical treatment for particles with zero or integer spins—that 
is, those that do not obey the exclusion principle, such as helium atoms (spin 0) and 
photons (spin 1), was done by Bose6 in 1924 when he realized that the Boltzmann 
distribution did not adequately account for the behavior of photons. Bose’s new sta-
tistical distribution for photons was generalized to massive particles by Einstein 
shortly thereafter. The resulting distribution function, called the Bose-Einstein distri-
bution fBE1E2, is given by

	 fBE1E2 =
1

ea
 eE>kT - 1

	 8-24

where ea is a system-dependent normalization constant. Particles whose statistical 
distributions are given by Equation 8-24 are called bosons.

Following the discovery of electron spin and Dirac’s development of relativistic 
wave mechanics for spin 1

2 particles, Fermi7 and Dirac8 completed the statistical 
mechanics for quantum mechanical particles by deriving the probability distribution 
for large ensembles of identical indistinguishable particles that obey the exclusion 
principle. The result is called the Fermi-Dirac distribution fFD1E2 and is given by

	 fFD1E2 =
1

ea
 eE>kT + 1

	 8-25

where, again, ea is a system-dependent normalization constant. Particles whose 
behavior is described by Equation 8-25 are called fermions or Fermi-Dirac particles.

Comparison of the Distribution Functions
We can write the Boltzmann distribution (Equation 8-1) in the form

	 fB1E2 =
1

ea
 eE>kT

	 8-26

where the normalization constant A in Equation 8-1 is replaced by e-a. After doing so, 
one is immediately struck by the very close resemblance between the three distribu-
tions (Equations 8-24, 8-25, and 8-26), the Fermi-Dirac and Bose-Einstein probability 
functions differing from that of Boltzmann only by the {1 in the denominator. The 
question immediately arises as to the significance of this seemingly small difference. 
In particular, since integrals of the form 1q

0  F1E2fBE1E2  dE and 1q

0  F1E2fFD1E2  dE 
require the use of numerical methods for their solutions, it would be helpful to know if 
and under what conditions the Boltzmann distribution can be used for indistinguish-
able quantum mechanical particles.

Figure 8-14  ​The wave nature of 
quantum-mechanical particles prevents 
us from determining which of the four 
possibilities shown actually occurred 
when the two identical, indistinguishable 
particles passed within a de Broglie 
wavelength of each other.

Particle 1

Particle 1

Particle 2

Particle 2

Particle 2

Particle 2

Particle 1

Particle 1

Enrico Fermi on a picnic in 
Michigan in July 1935. The 
bandage covers a cut on his 
forehead received when he 
accidentally hit himself with 
his racket while playing 
tennis.
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Let us first examine the physical meaning of the difference between the distribu-
tions. Consider a system of two identical particles, 1 and 2, one of which is in state n 
and the other in state m. As we discussed in Section 7-6, there are two possible single-
particle-product solutions to the Schrödinger equation. They are

	 nm11, 22 = n112m122	 8-27a

	 nm12, 12 = n122m112	 8-27b

where the numbers 1 and 2 represent the space coordinates of the two particles. If the 
two identical particles are distinguishable from each other, that is, if they are classical 
particles, then we can tell the difference between the two states represented by Equa-
tions 8-27a and 8-27b. However, for indistinguishable particles we have seen that the 
solutions must be the symmetric or antisymmetric combinations given in Section 7-6:

	 S =
122
3n112m122 + n122m112 4 	 8-28a

	 A =
122
3n112m122 - n122m112 4 	 8-28b

The factor 1>22 is the normalization constant. As we have discussed earlier, the 
antisymmetric function A describes particles that obey the exclusion principle, that 
is, fermions. The symmetric function S describes indistinguishable particles that do 
not obey the exclusion principle, that is, bosons.

Writing A K FD and S K BE to keep us reminded of the probability distribu-
tions followed by the fermions and bosons, respectively, let us now consider the prob-
ability that, if we look for the two particles, we will find them both in the same state, 
say state n. For two distinguishable particles Equations 8-27a and 8-27b both become

	 nn11, 22 = nn12, 12 = n112n122 = n122n112 = B	 8-29

where we have written nn11, 22 K B to remind us that distinguishable particles fol-
low the Boltzmann distribution. Thus, the probability density of finding both distin-
guishable particles in state n is

	 *
BB = *

n112*
n122n112n122	 8-30

Turning to indistinguishable particles, the wave function for two bosons both 
occupying state n is, from Equation 8-28a,

	 BE =
122
3n112n122 + n122n112 4 =

222
 n112n122	 8-31

and the probability density of finding both bosons in state n is then

	 *
BE BE = 2*

n112*
n122n112n122 = 2*

BB	 8-32

Thus, the probability that both bosons would be found by an experiment to be occu-
pying the same state is twice as large as for a pair of classical particles. This surpris-
ing discovery can be generalized to large ensembles of bosons as follows:

The presence of a boson in a particular quantum state enhances the 
probability that other identical bosons will be found in the same state.

It is as if the presence of the boson attracts other identical bosons. Hence, the 21 
that appears in the denominator of Equation 8-24 results physically in an increased 
probability that multiple bosons will occupy a given state, compared with the proba-
bility for classical particles in the same circumstances. The laser is the most common 
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example of this phenomenon (see Chapter 9). We will consider another result of this 
intriguing behavior in Section 8-3.

If the two indistinguishable particles are fermions, the wave function for both 
occupying the same state is, as we have previously discussed in Section 7-6,

	 FD =
122
3n112n122 - n122n112 4 = 0	 8-33

And, of course, the probability density *
FDFD = 0, also. This result, too, can be gen-

eralized to large ensembles of fermions as follows:

The presence of a fermion in a particular quantum state prevents any 
other identical fermions from occupying the same state.

It is as if identical fermions actually repel one another. The 11 in the denominator of 
Equation 8-25 is thus due to the exclusion principle. We will consider consequences 
of this peculiar property of fermions further in Chapter 10. Figure 8-15 compares the 
distributions of bosons and fermions.

With the physical discussion above in mind, now let’s compare the three func-
tions. Figure 8-16 shows a comparison of the three distributions for a = 0 over the 
energy range from zero up to 5kT. Notice that for any given energy the fBE curve for 
bosons lies above that for fB for classical particles, reflecting the enhanced probability 
pointed out by Equation 8-32. Similarly, the fFD curve for fermions lies below those 
for both fBE and fB, a consequence of the exclusion of identical fermions from states 
that are already occupied. Notice that Equations 8-24 and 8-25 both approach the 
Boltzmann distribution when ea W eE>kT. For this situation fBE1E2  fB1E2 = 1 
and fFD1E2  fB1E2 = 1. Thus, fBE1E2 and fFD1E2 both approach the classical 
Boltzmann distribution when the probability that a particle occupies the state with 
energy E is much less than 1. The same is also clearly the case when, for a given a,
E W kT, as Figure 8-16 illustrates.

Figure 8-15  n(E) versus E for a system of six identical, 
indistinguishable particles. nBE1E2 is for particles with
zero or integer spin (bosons). nFD1E2 is for particles with
1
2-integer spin (fermions). Compare with Figure 8-1.
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Figure 8-16  Graph of the distributions fB, fBE, and fFD 
versus energy for the value a = 0. fBE always lies above fB, 
which in turn is always above fFD. All three distributions are 
approximately equal for energies larger than about 5kT.
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At the beginning of this section we noted that identical quantum particles were 
rendered indistinguishable from one another by the overlap of their de Broglie waves. 
This provides another means of determining for a given system when the Boltzmann 
distribution may be used that can be shown to be equivalent to the fB1E2 = 1 condi-
tion above but that is sometimes easier to apply. If the de Broglie wavelength l is 
much smaller than the average separation (d ) of the particles, then we can neglect the 
overlap of the de Broglie waves, in which case the particles can be treated as if they 
were distinguishable.

	 l V 8d9 	 8-34

where

	 l =
h
p

=
h22mEk

=
h22m13kT>22

=
h23mkT

	 8-35

The average separation of the particles is 8d9 = 1V>N21>3, where N>V  is the number 
of particles per unit volume in the system. Thus, the condition stated by Equation 8-34 
becomes

h23mkT
V aV

N
b

1>3

which, when cubed and rearranged, becomes

	 aN

V
b h3

13mkT23>2 V 1	 8-36

Equation 8-36 gives the condition under which the Boltzmann distribution can be 
used. Note that, in general, the condition requires low particle densities and high tem-
peratures for particles of a given mass. The next example illustrates the application of 
the condition.

EXAMPLE 8-6	 Statistical Distribution of He in the Atmosphere ​ 4He atoms 
have spin 0 and, hence, are bosons. He makes up 5.24 * 10-6 of the molecules in 
the atmosphere. (a) Can the Boltzmann distribution be used to predict the thermal 
properties of atmospheric helium at T = 273 K? (b) Can it be used for liquid helium 
at T = 4.2 K?

SOLUTION
(a) � NA atoms of air occupy 2.24 * 10-2 m3 at standard conditions. The number of 

4He atoms per unit volume is then

NA

V
=

6.02 * 1023 * 5.24 * 10-6

2.24 * 10-2 m3 = 1.41 * 1020 molecules He>m3

The left side of Equation 8-36 is then

11.41 * 10202 16.63 * 10-3423

13 * 1.66 * 10-27 * 4 * 1.38 * 10-23 * 27323>2 = 6.3 * 10-11 V 1

The behavior of the helium in the atmosphere can therefore be described by the 
Boltzmann distribution.
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(b) � The density of liquid helium at its boiling point T = 4.2 K is 0.124 g>cm3. The 
particle density N>V  is then

N

V
=

NA molecules

4 g
* 10.124 g>cm32 * 1102 cm>m23 = 1.87 * 1028 He atoms>m3

The left side of Equation 8-36 is then

11.87 * 10282 16.63 * 10-3423

13 * 1.66 * 10-27 * 4 * 1.38 * 10-23 * 4.223>2 = 4.39

which is not V 1. Therefore, the Boltzmann distribution does not adequately 
describe the behavior of liquid helium, so the Bose-Einstein distribution must 
be used.

Using the Distribution: Finding n(E )
In order to find the actual number of particles n(E) with energy E, each of the three 
distribution functions given by Equations 8-24, 8-25, and 8-26 must be multiplied by 
the density of states as indicated by Equation 8-2:

nB1E2 = gB1E2fB1E2 � 8-37a

nBE1E2 = gBE1E2fBE1E2 � 8-37b

nFD1E2 = gFD1E2fFD1E2� 8-37c

Finding g(E) makes possible determination of the constant ea for particular systems 
from the normalization condition that we have used several times, namely, the total 
number of particles N = 1q

0  n1E2  dE.

Density of States
As an example of determining g(E), consider an equilibrium system of N classical par-
ticles confined in a cubical volume of sides L. Treating the cube as a three-dimensional 
infinite square well, in Chapter 7 we found the energy of a particle in such a well 
to be

	 En1 n2 n3
=

U22

2mL2 1n2
1 + n2

2 + n2
32	 7-4

which we will for the convenience of our present discussion write as

	 En = E01n2
x + n2

y + n2
z2	 8-38

where x, y, and z replace 1, 2, and 3 and E0 = U22>2mL2. The three quantum num-
bers nx, ny, and nz specify the particular quantum state of the system. Recalling that 
g(E) is the number of states with energy between E and (E 1 dE), our task is to find 
an expression for the total number of states from zero energy up to E, then differenti-
ate that result to find the number within the shell dE. This is made quite straightfor-
ward by (1) observing that Equation 8-38 is the equation of a sphere of radius 
R = 1E>E021>2 in nx ny nz “space” and (2) recalling that the quantum numbers must 
be integers, each combination of which represents a particular energy and corresponds 
to a point in the “space.” (See Figure 8-17.) Since the quantum numbers must all be 
positive, the “space” is confined to that octant of the sphere, as Figure 8-17 shows. 

Figure 8-17 
A representation of the 
allowed quantum states for a 
system of particles confined 
in a three-dimensional infinite 
square well. The radius 
R  E1>2.

nz

ny

nx

R
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The number of states N within radius R (equal to the number of different combina-
tions of the quantum numbers) in the volume is given by

	 N = a 1

8
b a 4R3

3
b =



6
a E

E0
b

3>2
	 8-39

The density of states in nx ny nz “space” is

	 g1E2 =
dN

dE
=



4
 E-3>2

0  E1>2 =
12m23>2

 L3

42U3  E1>2	 8-40

or

	 g1E2 =
12m23>2

 V

42U3  E1>2 =
212m23>2

 V

h3  E1>2	 8-41

where the volume V = L3. If the particles were electrons, then each state could 
accommodate two (one with spin up and one with spin down) and the density of states 
ge1E2 would be twice that given by Equation 8-41, or

	 ge1E2 =
412me23>2

 V

h3  E1>2	 8-42

We can compute the constant ea in the Boltzmann distribution for these two cases 
from the normalization condition

	 N = L
q

0

 nB1E2  dE = L
q

0

 gB1E2fB1E2  dE = L
q

0

 gB1E2e-a
 e-E>kT

 

 dE	 8-43

If the distinguishable particles are electrons, gB1E2 = ge1E2 and we have that

N = e-a 
412me23>2

 V

h3  L
q

0

 E1>2
 e-E>kT

 

 dE

which, when evaluated, yields

N =
212me kT23>2

 V

h3  e-a

or

	 e-a =
Nh3

212me kT23>2
 V
 or ea =

212me kT23>2
 V

Nh3 	 8-44

For particles that do not obey the exclusion principle, the 2 multiplying the parenthe-
ses in Equation 8-44 is not present. Note that e-a depends on the number density of 
particles N>V . Note, too, that e-a is essentially the quantity on the left side of Equa-
tion 8-36, which was obtained from de Broglie’s relation for classical particles. Thus, 
the test for when the Boltzmann distribution may be used given by Equation 8-36 is 
equivalent to the condition that e-a = 1.

Questions

5.	 How can identical particles also be distinguishable classically?

6.	 What are the physical conditions under which the Boltzmann distribution holds 
for a system of particles?
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7.	 Do the opposite spins of two electrons in the same state make them 
distinguishable from each other?

8.	 What is a boson? A fermion?

8-3  The Bose-Einstein Condensation 
We saw in Section 8-2 that, for ordinary gases, the Bose-Einstein distribution differs 
very little from the classical Boltzmann distribution, basically because there are many 
quantum states per particle due to the low density of gases and the large mass of the 
particles. However, for liquid helium, there is approximately one particle per quan-
tum state at very low temperatures, and the classical distribution is invalid, as was 
illustrated in Example 8-6. The somewhat daring idea that liquid helium can be 
treated as an ideal gas obeying the Bose-Einstein distribution was suggested in 1938 
by F. London in an attempt to understand the amazing properties of helium at low 
temperatures. When liquid helium is cooled, several remarkable changes take place in 
its properties at a temperature of 2.17 K. In 1924, H. Kamerlingh Onnes and J. Boks 
measured the density of liquid helium as a function of temperature and discovered a 
cusp in the curve at that temperature, as illustrated in Figure 8-18. In 1928, W. H. 
Keesom and M. Wolfke suggested that this discontinuity in the slope of the curve was 
an indication of a phase transition. They used the terms “helium I” for the liquid 
above 2.17 K, called the lambda point (Figure 8-19), and “helium II” for the liquid 
below that temperature. In London’s theory, called the two-fluid model, helium II is 
imagined to consist of two parts, a normal fluid with properties similar to helium I 
and a superfluid (i.e., a fluid with viscosity  0) with 
quite different properties. The density of liquid helium II 
is the sum of the densities of the normal fluid and the 
superfluid:

	 r = rs + rn� 8-45

As the temperature is lowered from the lambda point, the 
fraction consisting of the superfluid increases and that of 
the normal fluid decreases until, at absolute zero, only the 
superfluid remains. The superfluid corresponds to the 
helium atoms being in the lowest-possible quantum state, 
the ground state. These atoms are not excited to higher 
states, so the superfluid cannot contribute to viscosity. 
When the viscosity of helium II is measured by the 
rotating-disk method, only the normal-fluid component 
exerts a viscous force on the disk. As the temperature is 
lowered, the fraction of helium in the normal component 
decreases from 100 percent at the lambda point to 0 per-
cent at T = 0 K; thus the viscosity decreases rapidly with 
temperature in agreement with experiment.

It is not at all obvious that liquid helium should 
behave like an ideal gas, because the atoms do exert 
forces on one another. However, these are weak van der 
Waals forces (to be discussed in Chapter 9) and the fairly 
low density of liquid helium (0.145 g>cm3 near the 
lambda point) indicate that the atoms are relatively far 

Figure 8-18  Plot of density of liquid helium versus 
temperature, by Kamerlingh Onnes and Boks. Note the 
discontinuity at 2.17 K. [From F. London, Superfluids
(New York: Dover Publications, Inc., 1964). Reprinted by 
permission of the publisher.]
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apart. The ideal-gas model is therefore a reasonable first approximation. It is used 
mainly because it is relatively simple and because it yields qualitative insight into the 
behavior of this interesting fluid.

EXPLORING
Liquid Helium

In a classic experiment conducted in 1908 H. Kamerlingh Onnes9 succeeded in liquefy-
ing helium, condensing the last element that had steadfastly remained in gaseous form 
and culminating a determined effort that had consumed nearly a quarter of a century 
of his life. Even then, he nearly missed seeing it. After several hours of cooling, the 
temperature of the helium sample, being measured by a constant-volume helium gas 
thermometer, refused to fall any further. The liquid hydrogen being used to precool the 
system was gone and it appeared that the experiment had failed, when one of the sev-
eral interested visitors gathered in Kamerlingh Onne’s lab suggested that perhaps the 
temperature was steady because the thermometer was immersed in boiling liquid that 
was so completely transparent as to be very hard to see. At the visitor’s suggestion, a 
light was shined from below onto the glass sample vessel and the gas-liquid interface 
became clearly visible! Condensation to the very low-density, transparent liquid had 
occurred at 4.2 K.

The liquid helium must have been boiling vigorously. Soon afterward Kamerlingh 
Onnes was able to reduce the temperature further, passing below 2.17 K, at which point 
the vigorous boiling abruptly ceased. He must have observed the sudden cessation of 
the violent boiling, yet he made no mention of it then or in the reports of any of his 
many later experiments. Indeed, it was another quarter century before any mention of 
this behavior would appear in the literature,10 even though many investigators must 
have surely seen it. The abrupt halt in boiling at 2.17 K signaled a phase transition 
in which helium changed from a normal fluid to a superfluid, that is, bulk matter that 
flows essentially without resistance (viscosity  0). Of all the elements, only the two 
naturally occurring isotopes of helium exhibit this property. The transition to the super-
fluid phase in 4He occurs at 2.17 K. In 3He, which accounts for only 1.3 * 10-4 percent 

Figure 8-19  Specific heat of liquid helium 
versus temperature. Because of the 
resemblance of this curve to the Greek letter l, 
the transition point is called the lambda point. 
[From F. London, Superfluids (New York: Dover 
Publications, Inc., 1964). Reprinted by 
permission of the publisher.]
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of natural helium, the transition occurs at about 2 mK. This difference should not be 
interpreted as due in some way to a peculiarity in the structure of helium. Liquid phases 
of other bosons do not become superfluids because all other such systems solidify at 
temperatures well above the critical temperature for Bose-Einstein condensation. Only 
helium remains liquid under its vapor pressure at temperatures approaching absolute 
zero.11 The fundamental reason that it does not solidify is that the interaction poten-
tial energy (see Section 9-3) between helium molecules is quite weak. Since helium 
atoms have small mass, their zero-point motion (i.e., their motion in the lowest allowed 
energy level—see Section 5-6) is large, in fact so large that its kinetic energy exceeds 
the interaction potential energy, thus melting the solid at low pressure. It is the super-
fluid phase of 4He that we will be referring to throughout the remainder of this section. 
It turns out that 3He becomes a superfluid for a different reason. (Hint: 4He has spin 0 
and so is a boson; 3He has spin 12 and so is a fermion.)

Experimental Characteristics of Superfluid 4He
In 1932 Keesom and K. Clusius measured the specific heat as a function of 
temperature and made a dramatic discovery of an enormous discontinuity, obtaining 
the curve shown in Figure 8-19. Because of the similarity of this curve to the Greek 
letter l, the transition temperature 2.17 K is called the lambda point. Figure 8-20 
shows this same curve measured with much greater resolution. Just above the lambda 
point, He boils vigorously as it evaporates. The bubbling immediately ceases at the 
lambda point, although evaporation continues. This effect is due to the sudden large 
increase in the thermal conductivity at the lambda point. In normal liquid helium, like 
other liquids, the development of local hot spots causes local vaporization resulting in 
the formation of bubbles. Below the lambda point the thermal conductivity becomes 
so large, dissipating heat so rapidly, that local hot spots cannot form. Measurements 
of thermal conductivity show that helium II conducts heat better than helium I by a 
factor of more than a million; in fact, helium II is a better heat conductor than any 
metal, exceeding that of copper at room temperature by a factor of 2000. This con-
duction process is different from ordinary heat conduction, for the rate of conduc-
tion is not proportional to the temperature difference. Bubble formation ceases (even 
though evaporation continues) because all parts of the fluid are at exactly the same 
temperature.

This lambda point transition is clearly visible on the surface of the liquid shown 
in Figures 8-21a and b, which also illustrates the phenomenon largely responsible for 

Liquid helium, because 
of its extremely low 
boiling temperature, is 
the standard coolant 
for superconducting 
magnets throughout the 
world. Medical diagnostic 
MRI systems use such 
magnets. The large 
particle accelerators at, 
for example, CERN and 
Fermilab, use hundreds of 
them (see Chapter 11).

Figure 8-20  The lambda 
point with high resolution. 
The specific heat curve 
maintains its shape as the 
scale is expanded. [From
M. J. Buckingham and 
W. M. Fairbank, “The Nature 
of the l-Transition,” Progress 
in Low Temperature Physics, 
edited by C. J. Gorter, vol. III 
(Amsterdam: North-Holland 
Publishing Company, 1961).]
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applying the name superfluid to helium II. The small container of liquid helium sus-
pended above the surface has a bottom made of tightly packed, ultrafine powder (fine 
emery powder or jeweler’s rouge). The microscopic channels through the powder are 
too small for the ordinary liquid to pass through, but when the temperature drops below 
the lambda point, the superfluid flows through essentially unimpeded, the viscosity 
suddenly dropping at that point by a factor of about one million.12

Figures 8-22a and b illustrating the creeping film effect. A container containing 
liquid helium has a thin film (several atomic layers thick) of helium vapor coating the 
walls, just as is the case with any other enclosed liquid. However, if the level of liquid 
helium in the container is raised above the general level in the reservoir, such as the 
cup in the photo of Figure 8-22a, the superfluid film on the walls creeps up the inner 
walls, over the top, and down the outside and returns to the reservoir until both surfaces 
are level or the cup is empty! In the thermomechanical effect, which involves two con-
tainers of liquid helium II connected by a superleak, if heat is added to one side, for 
example, by a small heater as illustrated in Figure 8-23a, the superfluid on the other 
side migrates toward the heated side, where the level of liquid (still superfluid) rises. 
If the system is suitably arranged as in Figure 8-23b, the rising liquid can jet out a fine 
capillary in the so-called fountain effect.13

Superfluid 3He
Physicists thought for a long time that 3He could not form a superfluid since its nucleus 
consists of two protons and one neutron. It thus has 1>2@integer spin and obeys Fermi-
Dirac statistics, which prohibits such particles from sharing the same energy state. 
However, early in the 1970s Lee, Osheroff, and Richardson showed that when cooled 
to 2.7 mK, the spins of pairs of 3He atoms can align parallel, creating, in effect, a boson 
of spin 1 and enabling the liquid to condense to a superfluid state. Two additional 
superfluid states were subsequently discovered, a spin-0 state (antiparallel spins) at 1.8 
mK and a second spin-1 state that is created when an external magnetic field aligns the 
spins of the 3He pairs. The three scientists shared the 1996 Nobel Prize in Physics for 
their discovery.

Figure 8-21  (a) Liquid 
helium being cooled by 
evaporation just above the 
lambda point boils 
vigorously. (b) Below the 
lambda point the boiling 
ceases and the superfluid runs 
out through the fine pores in 
the bottom of the vessel 
suspended above the helium 
bath. [Courtesy of Clarendon 
Laboratory. From K. 
Mendelssohn, The Quest for 
Absolute Zero: The Meaning 
of Low Temperature Physics, 
World University Library 
(New York: McGraw-Hill 
Book Company, 1966).]

Figure 8-22  (a) The creeping film. The liquid helium in the dish is at a temperature of 
about 1.6 K. A thin film creeps up the sides of the dish, over the edge, and down the outside 
to form the drop shown, which then falls into the reservoir below. [Courtesy of A. Leitner, 
Rensselaer Polytechnic Institute.] (b) Diagram of creeping film. If the dish is lowered until 
partially submerged in the reservoir, the superfluid creeps out until the levels in the dish and 
reservoir are the same. If the level in the cup is initially lower than that of the reservoir, 
superfluid creeps into the dish.

(b)
(a)

(b)

(a)
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In the Bose-Einstein distribution the number of particles in the energy range dE 
is given by n(E) dE, where we have from Equation 8-37b

	 n1E2 =
g1E2

ea
 eE>kT - 1

	 8-46

where g(E) is given by Equation 8-41. The constant a, which is determined by nor-
malization, cannot be negative, for if it were, n(E) would be negative for low values 
of E. This situation would make no sense physically since, if a were negative for 
small energies (i.e.,  a  7 E>kT2, then fBE1E2 would be negative. But fBE1E2 is the 
number of particles in the state with energy E and a negative value would be mean-
ingless. The normalization condition is

N = L
q

0

 n1E2dE =
2V12m23>2

h3 L
q

0

 
E1>2

 dE

ea
 eE>kT - 1

=
2V

h3 12mkT23>2L
q

0

 
x1>2

 dx

ea+ x - 1
� 8-47

where x = E>kT  and the integral in this equation is a function of a.
The usual justification for using a continuous energy distribution to describe a 

quantum system with discrete energies is that the energy levels are numerous and 
closely spaced. In this case, as we have already seen, for a gas of N particles in a 

Liquid
helium II

Superleak Heater

(a)

Heater

Fountain

(c)

Superfluid
reservoir

Superleak

(b)

Figure 8-23  (a) Diagram of the thermomechanical effect. The level of the fluid rises in the container where the heat is 
being added. (b) A bulb containing liquid helium is in a cold bath of liquid helium II at 1.6 K. When light containing
infrared radiation is focused on the bulb, liquid helium rises above the ambient level. The height of the level depends on 
the narrowness of the tube. If the tube is packed with powder and the top drawn out into a fine capillary, the superfluid spurts 
out in a jet as shown, hence the name “fountain effect.” (c) Diagram showing the components in the photograph in (b). 
[Photo courtesy of Helix Technology Corporation.]
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macroscopic box of volume V (the container), this condition holds, as you can 
demonstrate for yourself by computing the spacing using Equation 7-4 for a three-
dimensional box. However, in replacing the discrete distribution of energy states by 
a continuous distribution, we ignore the ground state. This is apparent from Equa-
tion 8-41, where we see that g(E)  E1>2; therefore, if E = 0, g(E) = 0 also. This has 
little effect for a gas consisting of Fermi-Dirac particles since there can be only two 
particles in any single state, and ignoring two particles out of 1022 causes no diffi-
culty. In a Bose-Einstein gas, however, there can be any number of particles in a sin-
gle state. If we ignore the ground state as we have up to now, the normalization 
condition expressed by Equation 8-47 cannot be satisfied below some minimum criti-
cal temperature Tc corresponding to the minimum possible value of a, a = 0. This 
implies that at very low temperatures there are a significant number of particles in the 
ground state.

The critical temperature Tc can be found by evaluating Equation 8-47 numeri-
cally. The integral has a maximum value of 2.315 when a has its minimum value of 0. 
This results in a maximum value for N>V  given by

N

V
…

2

h3 12mkT23>212.3152

Since N>V  is determined by the density of liquid helium, this implies a value for the 
critical temperature, given by

	 T Ú
h2

2mk
 c N

212.3152V d
2>3

= Tc� 8-48

Inserting the known constants and the density of helium, we find for the critical 
temperature

	 Tc = 3.1 K� 8-49

For temperatures below 3.1 K the normalization Equation 8-47 cannot be satisfied for 
any value of a. Evidently at these temperatures there are a significant number of par-
ticles in the ground state, which we have not included.

We can specifically include the ground state by replacing Equation 8-47 with

	 N = N0 +
2V

h3 12mkT23>2 L
q

0

 
x1>2

 

 dx

ea+ x - 1
� 8-50

where N0 is the number in the ground state. If we choose E0 = 0 for the energy of the 
ground state, this number is

	 N0 =
g0

ea
 eE0>kT - 1

=
1

ea - 1
� 8-51

where g0, the density of states or statistical weight, is 1 for a single state. We see that 
N0 becomes large as a becomes small. With the inclusion of N0, which depends on a, 
the normalization condition (Equation 8-50) can be met and a can be computed 
numerically for any temperature and density. For temperatures below the critical tem-
perature Tc we see from Equation 8-51 that ea = 1 + 1>N0. Expanding ea for small 
a yields ea = 1 + a + g, and we thus conclude that a is of the order of N-1

0  and 
that the fraction of molecules in the ground state is given approximately by

	
N0

N
 1 - a T

Tc

b
3>2

� 8-52
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In the London two-fluid model the N0 atoms that we added in Equation 8-50 have 
condensed to the ground state. These particles in the ground state constitute the super-
fluid. The remaining 1N - N02 atoms are the normal fluid. That fraction of the fluid 
which is superfluid for T … Tc is shown in Figure 8-24. The value Tc = 3.1 K is not 
very different from the observed lambda-point temperature T = 2.17 K, especially 
considering that our calculation is based on the assumption that the liquid helium is 
an ideal gas. The process of atoms dropping into the ground state as the temperature is 
lowered below Tc is called Bose-Einstein condensation. Such an occurrence was pre-
dicted by Einstein in 1924, before there was any evidence that such a process could 
occur in nature.

The Bose-Einstein Condensate
As for all atoms, the constituents of 4He (protons, neutrons, and electrons) are fermi-
ons; however, they are assembled in such a way that the total spin of the ground state 
is an integer (zero), so that the 4He atom is a boson. Indeed, a review of the periodic 
table shows that, although atoms can be either fermions or bosons, the ground-state 
spins are mostly integer, so in their lowest energy state most atoms are bosons. This 
fact is of no great consequence in determining the prop-
erties of a gas in a macroscopic container because the 
spacing between the quantized energies is extremely 
small, so the probability that any particular level is occu-
pied by an atom is also small. For example, the spacing 
between adjacent levels in a cubical box with a volume of 
1 cm3 containing sodium gas is about 10-20 eV (see Equa-
tion 8-38), so even at relatively low temperatures the 
atoms in a sample of a few billion would be widely spread 
among the allowed levels, as in Figure 8-25a. In addition, 
the average distance between atoms in the box would be 
about 110-6 m3>109 atoms21>3 = 10-5 m, or tens of thou-
sands of atomic diameters, so the interactions between 
the atoms are minuscule.

If our goal is to form a Bose-Einstein condensate 
(BEC) from the widely separated atomic bosons of the 
gas sample in the box, the obvious approach is that used 
to condense any gas; that is, the sample is cooled and the 
density is increased until the gas liquefies. However, this 
approach presents us with a formidable problem: as the 
gas liquefies, the atoms get very close together, the den-
sity approximating that of the solid. The atoms now inter-
act strongly, mainly via their outer electrons, and thus all 
begin to act like fermions! (This is essentially what hap-
pens in liquid helium II, where even at very low tempera-
tures the fraction of the atoms in the ground state 
[superfluid phase] is only about 10 percent or so.)

This problem was solved by C. E. Wieman and 
E. Cornell in 1995, more than 70 years after Einstein’s 
prediction. They did it by forming the BEC directly from 
a supersaturated vapor, cooling the sample but never 
allowing it to reach ordinary thermal equilibrium.14 This 
was done with standard cooling methods and a very neat 

Figure 8-24  Graph of the 
fraction superfluid in a sample 
of liquid helium as a function 
of temperature.
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Figure 8-25  (a) The atoms in a sample of dilute gas in 
any macroscopic container are distributed over a very large 
number of levels, making the probability of any one level 
being occupied quite small. (b) Cooled to the point where 
the de Broglie wavelength becomes larger than the 
interatomic spacing, atoms fall into the ground state, all 
occupying the same region of space.

(a)  Hot atoms

(b)  Cold atoms
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352	 Chapter 8  Statistical Physics

“trick.” First, a sample of rubidium vapor at room temperature was illuminated by the 
beams from six small diode lasers of appropriate frequency. Collisions of the laser 
photons with atoms in the low-speed tail of the Maxwell distribution (see Figure 8-3) 
slowed those atoms, and within a second or two a sample of about 107 atoms collected 
in the volume defined by the intersecting laser beams, about 1.5 cm in diameter. The 
temperature of this laser-cooled sample was about 1 mK. Then a special magnetic 
trap (i.e., a magnetic field shaped so as to confine the atoms) was used to “squeeze” 
the cooled sample, whose atomic spins (= 2U) had been polarized in the m = 2 direc-
tion. (Polarizing the spins was the “trick” referred to above. Equilibrium is reached in 
the spin-polarized vapor very rapidly, long before the true thermal equilibrium state—
the solid—can form, thus maintaining the sample as a supersaturated vapor.) The 
warmer atoms on the high-speed tail of the Maxwell distribution of the trapped atoms 
are allowed to escape through a “leak” in the magnetic trap, taking with them a sub-
stantial amount of the kinetic energy and evaporatively cooling the remaining few 
thousand atoms to less than 100 nK, just as water molecules evaporating from the 
surface of a cup of hot coffee cool what remains in the cup. These remaining cold 
atoms fall into the ground state of the confining potential and have, within the experi-
mental uncertainties, reached absolute zero. They are the condensate. The BEC is 
illustrated in Figure 8-25b. The condensate, if left undisturbed in the dark, lives for
15 to 20 seconds, its destruction eventually resulting from collisions with impurity 
atoms in the vacuum that are also colliding with the hot (room temperature) walls of 

Figure 8-26  Two-dimensional velocity distributions of the trapped cloud of Rb atoms for 
three experimental runs with different amounts of cooling. The axes are the x and z velocities, 
and the third axis is the number density of atoms per unit velocity-space volume. This density 
is extracted from the measured optical thickness of the shadow. The distribution on the left 
shows a gentle hill and corresponds to a temperature of about 200 nK. The middle picture is 
about 100 nK and shows the central condensate spire on the top of the noncondensed 
background hill. In the picture on the right, only condensed atoms are visible, indicating that 
the sample is at absolute zero, to within experimental uncertainty. The gray bands around the 
peaks are an artifact left over from the conversion of false-color contour lines into the present 
black and white. [From C. E. Wieman, American Journal of Physics 64(7), 853 (1996).]
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the experimental cell. The peak in Figure 8-26 is a macroscopic quantum wave func-
tion of the condensate.

Since the discovery of Wieman and Cornell, several other physicists have pro-
duced Bose-Einstein condensates. One of the largest produced (by Ketterle and 
coworkers) contained 9 * 107 sodium atoms, was about a millimeter long, and lived 
for half a minute. Its direct photograph is shown in Figure 8-27. As of this writing, the 
largest condensates are made of about 109 hydrogen atoms.

Does this discovery have any potential use? The answer is probably many that 
we can’t even imagine yet, but here is one possibility. The BEC can form the basis of 
an atomic laser. This was demonstrated in late 1996, also by Ketterle and his col-
leagues, and is illustrated in Figure 8-28. The condensate is coherent matter, just as 
the laser beam is coherent light. It could place atoms on substrates with extraordinary 
precision, conceivably replacing microlithography in the production of microcir-
cuitry. Here is another: it could form the basis for atomic interferometers, making 
possible measurements far more precise than those made with visible lasers since the 
de Broglie wavelengths are much shorter than those of visible light. Ketterle, Cornell, 
and Wieman shared the 2001 Nobel Prize in Physics for their work.

Figure 8-27  ​Successive 
images show the shadow of 
a millimeter-long cloud of 
Na atoms containing 
Bose-Einstein condensate as 
it expands from its initial 
cigar shape (top). [From
D. S. Durfee, Science 272, 
1587 (1996).]

Figure 8-28  (a) When the two identical condensates of sodium atoms, each containing about 
5 * 106 atoms, were allowed to expand freely and overlapped, phase contrast imagery 
revealed interference fringes, the “signature” of coherent waves—the first atomic laser. 
(b) Optical lasers amplify light by stimulating atoms to emit photons. Atom lasers amplify by 
stimulating more atoms to join the “beam.” [(a) From D. S. Durfee, Science 275, 639 (1997).
(b) From Science 279, 986 (1998). Courtesy of L. Carroll.]
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Questions

  9.	 Explain how the escaping “hot” rubidium atoms cool those remaining in the 
sample.

10.	 What is Bose-Einstein condensation?

11.	 Would you expect a gas or liquid of 3He atoms to be much different from one 
of 4He atoms? Why or why not?
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8-4  The Photon Gas: An Application 
of Bose-Einstein Statistics 
Photon Gas
Planck’s empirical expression for the energy spectrum of the blackbody radiation in a 
cavity (Equation 3-18) can now be derived by treating the photons in the cavity as a 
gas consisting of bosons. The distribution is then given by

	 fBE1E2 =
1

ea
 eE>kT - 1

	 8-24

As we saw in Section 8-2 and in particular in the discussion of Equation 8-44, the 
value of a is determined by the total number of particles that the system contains. 
However, in the case of photons contained in a cavity, which we are discussing, this 
seems to present a problem, since the total number of photons is not constant. Photons 
are continually being created (emitted by the oscillators in the cavity walls) and 
destroyed (absorbed by the oscillators). Even so, this does indeed specify the value of a: 
it tells us that Equation 8-24 for photons cannot be a function of ea, that is,

	 fph1E2 =
1

eE>kT - 1
	 8-53

The fact that the total number of photons is not constant makes it necessary that a = 0 
so that ea = 1. We will see in a moment that this must be true.

The number of photons with energy E is found by substituting Equation 8-53 into 
Equation 8-37b, which yields

nph1E2 = gph1E2fph1E2
or

	 nph1E2 =
gph1E2

eE>kT - 1
	 8-54

The density of states gph1E2 is derived in the same manner as it was for massive par-
ticles in Section 8-2. The result, which we first encountered as n1l2 = 8l-4 in our 
discussion of Planck’s derivation of the blackbody spectrum, is given in terms of the 
photon frequency f as

	 gph1E2  dE =
8Vf 2

 

 df

c3 =
8VE2

 

 dE

c3
 h3 	 8-55

where V is the volume of the cavity. The energy density u(E) dE in the energy interval 
between E and E 1 dE is then given by

	 u1E2  dE =
Egph1E2fph1E2  dE

V
=

8E3
 

 dE

c3
 h31eE>kT - 12 	 8-56

or, in terms of the photon frequency f, using E = hf for the conversion, we have

	 u1  f 2  df =
8f  2

c3  
hf df

ehf>kT - 1
	 8-57

Equation 8-57 is identical to Equation 3-18 when the latter is converted from 
wavelength l to frequency f as the variable using c = f  l. We saw in Chapter 3 that 
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Equation 3-18 is in precise agreement with experimental observations. This agree-
ment serves as justification for the Bose-Einstein distribution function for photons 
given by Equation 8-53 that resulted from our argument that a = 0 for photons. Notice 
that Planck’s derivation presented in Chapter 3, in which the radiation in the black-
body cavity was treated as a set of distinguishable standing electromagnetic waves to 
which he (correctly) applied the Boltzmann distribution, agrees exactly with the deri-
vation presented here, in which the radiation is treated as indistinguishable particles 
to which the Bose-Einstein distribution must be applied. This is an example of the 
wave-particle duality of photons.

EXAMPLE 8-7	 Photon Density of the Universe ​ The high temperature of the 
early universe implied a thermal (i.e., blackbody) electromagnetic radiation field 
that has, over eons, cooled to the present 2.7 K. This cosmic background radiation 
was discovered in 1965 (see Chapter 13). Compute the number of these photons per 
unit volume in the universe.

SOLUTION

	 1.	 The number of photons with 
energy E is given by Equation 
8-54:

nph1E2 =
gph1E2

eE>kT - 1

	 2.	 The total number per unit 
volume N>V  is then given by

N

V
=

1

V
 L

q

0

 nph1E2  dE =
1

V
 L

q

0

 
gph1E2  dE

eE>kT - 1

	 3.	 Substituting the density 
of states gph1E2 from
Equation 8-55 yields

N

V
= L

q

0

 
8E2 dE

1ch231eE>kT - 12

=
81kT23

1ch23  L
q

0

 
1E>kT221dE>kT2

eE>kT - 1

	 4.	 Letting x = E>kT , this can
be written

N

V
= 8a kT

ch
b

3

 L
q

0

 
x2

 

 dx

ex - 1

	 5.	 Evaluating the integral from 
standard tables: L

q

0

 
x2

 

 dx

ex - 1
 2.40

	 6.	 Substituting values into the expression for N>V  in step 4 yields:

N

V
= 8a 1.38 * 10-23 J>K * 2.7 K

3.00 * 108 m>s * 6.63 * 10-34 J # s
b

3

12.402
= 3.97 * 108 photons>m3

Quantization of the Energy States of Matter
It was pointed out earlier that the molar heat capacity CV for solids falls appreciably 
below the classical Dulong-Petit value of 3R when the temperature falls below some 
critical value. In 1908 Einstein showed that the failure of the equipartition theorem in 
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predicting the specific heats of solids at low temperatures could be understood if it 
were assumed that the atoms of the solid could have only certain discrete energy val-
ues. Einstein’s calculation is closely related to Planck’s calculation of the average 
energy of a harmonic oscillator, assuming the oscillator can take on only a discrete set 
of energies. The calculation itself presents no real problem, as we have seen in Chap-
ter 3. Einstein’s most important contribution in this area was the extension of the idea 
of quantization to any oscillating system, including matter. We will see in this subsec-
tion how the idea of quantized energy states for matter also explains the puzzling 
behavior of the heat capacities of diatomic gases that was pointed out in Section 8-1. 
In particular we will be able to understand why the H2 molecule seems to have only 
3 degrees of freedom (corresponding to translation) at low temperatures, 5 degrees 
of freedom at intermediate temperatures (corresponding to translation and rotation), 
and 7 degrees of freedom at high temperature (corresponding to translation, rotation, 
and vibration).

Consider 1 mole of a solid consisting of NA molecules, each free to vibrate in 
three dimensions about a fixed center. For simplicity, Einstein assumed that all the 
molecules oscillate at the same frequency f in each direction. The problem is then 
equivalent to 3NA distinguishable one-dimensional oscillators, each with frequency f. 
The classical distribution function for the energy of a set of one-dimensional oscilla-
tors is the Boltzmann distribution, given by Equation 8-1. Following Planck, Einstein 
assumed that the energy of each oscillator could take on only the values given by

	 En = nhf � 8-58

where n = 0, 1, 2, . . . , rather than have an average value of kT as predicted by the equi-
partition theorem. He then used the Boltzmann distribution15 to compute the average 
energy 8E 9 for the distinguishable oscillators, just as we have done previously, from

	 8E9 = L


0

 EnB1E2dE� 8-59

obtaining

	 8E9 =
hf

ehf>kT - 1
� 8-60

which is, of course, the same as Equation 3-17. We can expand the exponential, using 
ex  1 + x + 1x2>2!2 + g  for x V 1, where x = hf>kT (see Appendix B2). 
At high temperatures the quantity hf>kT V 1 and then, keeping only the first two 
terms of the expansion,

ehf>kT - 1  a1 +
hf

kT
+ g b - 1 

hf

kT

and 8E9  approaches kT, in agreement with the equipartition theorem from classical 
statistics (see Equation 8-14).

The total energy for 3NA oscillators is now

	 U = 3NA8E9 =
3NA hf

ehf>kT - 1
� 8-61

and the heat capacity is

	 CV =
dU

dT
= 3NA ka hf

kT
b

2

 
ehf>kT

1ehf>kT - 122
� 8-62

23

CCR

TIPLER_08_325-372hr.indd   356 8/22/11   12:44 PM



	 8-4  The Photon Gas: An Application of Bose-Einstein Statistics	 357

It is left as an exercise (see Problem 8-29) to show directly from Equation 8-62 that 
Cv S 0 as T S 0 and Cv S 3NA k = 3R as T S  .

By comparing the Einstein calculation of the average energy per molecule, 
Equation 8-60, with the classical one, we can gain some insight into the problem of 
when the classical theory will work and when it will fail. Let us define the critical 
temperature,

	 TE =
hf

k
� 8-63

called the Einstein temperature. The energy distribution in terms of this temperature is

fB1En2 = Ae-En>kT = Ae-nhf>kT = Ae-nTE>T

For temperatures T much higher than TE, small changes in n have little effect on 
the exponential in the distribution; that is fB1En2  fB1En+12. Then E can be treated 
as a continuous variable. However, for temperatures much lower than TE, even the 
smallest-possible change in n, Dn = 1, results in a significant change in e-nTE>T, and 
we would expect that the discontinuity of possible energy values becomes significant. 
Since hard solids have stronger binding forces than soft ones, their frequencies of 
molecular oscillation and therefore their Einstein temperatures are higher. For lead 
and gold, TE is of the order of 50 to 100 K; ordinary temperatures of around 300 K are 
“high” for these metals, and they obey the classical Dulong-Petit law at these tem-
peratures. For diamond, TE is well over 1000 K; in this case 300 K is a “low” tempera-
ture, and Cv is much less than the Dulong-Petit value of 3R at this temperature.

The agreement between Equation 8-62 and experimental measurements justifies 
Einstein’s approach to understanding the molar heat capacity of solids. Figure 8-29 
shows a comparison of this equation with experiments. The curve fits the experimen-
tal points well except at very low temperatures, where the data fall slightly above the 
curve. The lack of detailed agreement of the curve with the data at low T is due to the 
oversimplification of the model. A refinement of this model was made by P. Debye, 
who gave up the assumption that all molecules vibrate at the same frequency. He 
allowed for the possibility that the motion of one molecule could be affected by that 
of the others and treated the solid as a system of coupled oscillators. The effect was to 
allow a range of vibrational frequencies from f = 0 up to a maximum fD called the 
Debye frequency, used to define the Debye temperature TD = hfD>k. This contrasts 
with the infinite range of oscillation modes in the blackbody cavity. Debye’s argu-
ment was that the number of vibrational modes or frequencies cannot exceed the 
number of degrees of freedom of the atoms that constitute the solid. Calculations with 

Figure 8-29  ​Molar heat 
capacity of diamond versus 
reduced temperature T>TE. 
The solid curve is that 
predicted by Einstein. [From 
Einstein’s original paper, 
Annalen der Physik 22(4), 180 
(1907).]
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the Debye model are somewhat more involved and will not be considered here. The 
improvement of the Debye model over the Einstein model is shown by Figure 8-30. 
Note that all solids fall on the same curve.

Understanding Specific Heats of Gases
Let us now see if we can understand the specific heats of diatomic gases on the basis 
of discrete, or quantized, energies. In Section 8-1 we wrote the energy of a diatomic 
molecule as the sum of translational, rotational, and vibrational energies. If f is the 
frequency of vibration and the vibrational energy is quantized by Evib = nhf , as we 
assumed for solids, we know from the previous calculation (see Equation 8-62) that 
for low temperatures, the average energy of vibration approaches zero and vibration 
will not contribute to CV. We can define a critical temperature for vibration of a 
diatomic gas molecule by

	 Tv =
hf

k
� 8-64

where f is the frequency of vibration. Apparently Tv 7 15C for all the diatomic gases 
listed in Table 8-1 except for Cl2. From Figure 8-11 we can see that Tv is of the order 
of 1000 to 5000 K for H2.

The rotational energy of a diatomic molecule is

ER =
1
2 Iv2

where I is the moment of inertia and v is the angular velocity of rotation. It is not 
obvious how the rotational energy is quantized, or even if it is; however, let us make 
use of a result from Section 7-2, where we learned that the angular momentum is 
quantized. If L is the angular momentum of a diatomic molecule, L = Iv and we can 
write the energy as

ER =
L2

2I

Equation 7-22 tells us that L2 = /1/ + 12U2, where O = 0, 1, 2, c. Thus, the rota-
tional energy becomes

	 ER = /1/ + 12 h2

82
 I
� 8-65
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Figure 8-30  ​Molar heat capacity of several 
solids versus reduced temperature T>TD, where 
TD is the Debye temperature defined as 
TD = hfD>k. The solid curve is that predicted by 
Debye. The data are taken from Debye’s original 
paper. Cv>3R = 1 is the Dulong-Petit value. 
[From Annalen der Physik 39(4), 789 (1912), as 
adapted by David MacDonald, Introductory 
Statistical Mechanics for Physicists (New York: 
John Wiley & Sons, Inc., 1963); by permission.]
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The energy distribution function will contain the factor

e-ER>kT = e-/1/+12h2>82
 IkT

and we can define a critical temperature for rotation similar to that for vibration as

	 TR =
ER

k
=

h2

82
 Ik

� 8-66

If this procedure is correct, we expect that for temperatures T W TR, that is, ER W kT, 
the equipartition theorem will hold for rotation and the average energy of rotation will 
approach 11

22kT  for each axis of rotation, while for low temperatures, T = TR, the aver-
age energy of rotation will approach 0. Let us examine TR, for some cases of interest:

1.	 H2. For rotation about the x or y axis as in Figure 8-10a, taking the z axis as the 
line joining the atoms, the moments of inertia Ix and Iy through the center of 
mass are

Ix = Iy =
1
2 MR2

	 The separation of the atoms is about R  0.08 nm. The mass of the H atom is 
about M  940 * 106 eV>c2. We first calculate kTR:

kTR =
h2

82
 I

=
1hc22

42
 Mc2

 R2 =
11.24 * 103 eV # nm22

421940 * 106 eV2 10.08 nm22  6.4 * 10-3 eV

	 Using k  2.6 * 10-2 eV>300 K, we obtain

TR =
6.4 * 10-3

2.6 * 10-2  300 K  74 K

	 As can be seen from Figure 8-11, this is indeed the temperature region below 
which the rotational energy does not contribute to the heat capacity.

2.	 O2. Since the mass of the oxygen atom is 16 times that of the hydrogen atom 
and the separation is roughly the same, the critical temperature for rotation will 
be TR  174>162  4.6 K. For all temperatures at which O2 exists as a gas, 
T W TR.

3.	 A monatomic gas, or rotation of diatomic gas about the z axis. We will take the 
H atom for calculation. The moment of inertia of the atom is mainly due to the 
electron since the radius of the nucleus is extremely small (about 10-15 m). The 
distance from the nucleus to the electron is about the same as the separation of 
atoms in the H2 molecule. Since the mass of the electron is about 2000 times 
smaller than that of the atom, we have

IH 
1

2000
 IH2

	 and

TR  2000 * 74 K  1.5 * 105 K

	 This is much higher than the dissociation temperature for any gas. Thus, 
8ER9  0 for monatomic gases and for rotation of diatomic gases about the 
line joining the atoms for all attainable temperatures.

We see that energy quantization explains, at least qualitatively, the temperature 
dependence of the specific heats of gases and solids.
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EXAMPLE 8-8	 Average Vibrational Energy ​ What is the average energy 
of vibration of the molecules in a solid if the temperature is (a) T = hf>2k,
(b) T = 4hf>k?

SOLUTION
(a) � This is lower than the critical temperature for vibration hf>k given by Equa-

tion 8-64, so we expect a result considerably lower than the high temperature 
limit of kT given by the equipartition theorem. From Equation 8-60 we have

8E9 =
hf

ehf>kT - 1
=

2kT

e2 - 1
= 0.31kT

(b) � This temperature is four times the critical temperature, so we expect a result 
near the high temperature limit of kT. Using hf>kT = 1>4 in Equation 8-60, 
we have

8E9 =
0.25kT

e0.25 - 1
= 0.880kT

EXAMPLE 8-9	 Number of Oscillators ​ At the “low” and “high” temperatures of 
Example 8-8, find the ratio of the number of oscillators with energy E1 = hf  to the 
number with E0 = 0.

SOLUTION
At any temperature T, the Boltzmann distribution for the fraction of oscillators 
with energy En = nhf  is fB1En2 = Ae-En>kT = Ae-nhf>kT. For n = 0, this gives 
f0 = Ae0 = A. The ratio fn>f0 is then fn>f0 = e-nhf>kT.

(a) � For n = 1 and kT =
1
2 hf , we have f1>f0 = e-hf>kT = e-2 = 0.135. Most of the 

oscillators are in the lowest energy state E0 = 0.

(b) � For the higher temperature kT = 4hf, we get f1>f0 = e-hf>kT = e-0.25 = 0.779. 
At the higher temperature the states are more nearly equally populated and the 
average energy is larger.

EXAMPLE 8-10	 Debye Frequency ​ Note from Figure 8-30 that the Debye tem-
perature of silver is 215 K. Compute the Debye frequency for silver and predict the 
Debye temperature for gold. Silver and gold have identical crystal structures and 
similar physical properties.

SOLUTION
	 1.	 From the definition of the Debye temperature TD, the Debye frequency fD for 

silver can be computed:

TD =
hfD

k
		  or

fD =
kTD

h
=

1.38 * 10-23 J>K * 215 K

6.63 * 10-34 J # S
= 4.48 * 1012 Hz
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	 2.	 We would expect the interatomic forces of silver and gold to be roughly the 
same and so their vibrational frequencies to be in inverse ratio to the square 
root of their atomic masses:

fD1Ag2
fD1Au2 = BM1Au2

M1Ag2 =
kTD1Ag2 >h
kTD1Au2 >h =

TD1Ag2
TD1Au2

	 3.	 Solving this for TD1Au2 yields

 TD1Au2 = TD1Ag2BM1Au2
M1Ag2 = 215 A108

197

 = 159 K

Remarks:  This estimate is in reasonable agreement with the measured value
of 164 K.

8-5  Properties of a Fermion Gas 
The fact that metals conduct electricity so well led to the conclusion that they must 
contain electrons free to move about through a lattice of more or less fixed positive 
metal ions. Indeed, this conclusion had led to the development of a free-electron the-
ory to explain the properties of metals within three years after the electron’s discovery 
by Thomson and long before wave mechanics was even a glimmer in Schrödinger’s 
eye. The free-electron theory of metals was quite successful in explaining a number 
of metallic properties, as we will discuss further in Chapter 10; however, it also suf-
fered a few dramatic failures. For example, in a conductor at temperature T the lattice 
ions have average energy 3kT, consisting, as we have seen, of 3kT>2 of kinetic energy 
and 3kT>2 of potential energy, leading to a molar heat capacity CV = 3R (rule of 
Dulong-Petit). Interactions (i.e., collisions) between the free electrons and lattice 
ions would be expected to provide the electrons with an average translational 
kinetic energy of 3kT>2 at thermal equilibrium, resulting in a total internal energy 
U for metals of 3kT + 3kT>2 = 9kT>2. Thus, metals should have CV = 4.5R. In 
fact, they do not. The heat capacity of conductors is essentially the same as that of 
other solids, except for a slight temperature-dependent increase that is much smaller 
than 3R>2. The problems with the classical free-electron theory are due mainly to 
the fact that electrons are indistinguishable particles that obey the exclusion princi-
ple, and as a consequence they have the Fermi-Dirac distribution of energies rather 
than the Boltzmann distribution. In this section we will investigate the general char-
acteristics of systems consisting of fermions. In Chapter 10 we will see how the 
absence of a significant electron contribution to the heat capacity of conductors is 
explained.

Systems of Fermions
In the Fermi-Dirac distribution given by

	 fFD1E2 =
1

ea
 eE>kT + 1

� 8-25
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it is convenient to write a as

	 a =
-EF

kT
� 8-67

where EF is called the Fermi energy. Doing so allows Equation 8-25 to be
written as

	 fFD1E2 =
1

e1E-EF2>kT + 1
	 8-68

The Fermi energy is an important quantity in systems of fermions, such as the elec-
tron gas in metals (discussed in Chapter 10) and the neutron gas in a neutron star (see 
Chapter 13). Notice in particular that for E = EF, the quantity e1E-EF2>kT = 1 for all 
values of the temperature greater than zero and, hence, fFD1EF2 =

1
2. If we consider a 

system of fermions at T = 0 K, we find that

For E * EF:

fFD1E2 =
1

e1E-EF2>kT + 1
= 1

and

For E + EF:

fFD1E2 =
1

eq + 1
= 0

In other words, at absolute zero all energy states from the ground state up to the Fermi 
energy are occupied and all energy states above the Fermi energy are empty. This is 
in sharp contrast with a system of bosons, such as the rubidium BE condensate, where 
all particles condense to the ground state at T = 0 K. This situation is illustrated in 
Figure 8-31a. If the system contains N fermions, we can find its Fermi energy by fill-
ing the energy states in increasing order starting with the ground state. The energy 
state occupied by the Nth particle will be the Fermi energy. We can find the total 
energy of the system simply by adding up the energies of all N particles and their 
average energy by dividing that total by N. Each of these calculations will be done for 
electrons in Section 10-3.

Figure 8-31  Fermi-Dirac distribution function fFD1E2 for three different temperatures.
(a) At T = 0 K, all levels above EF are unoccupied. (b) For T 7 0 K with kT 6 EF some 
particles near the Fermi energy can move to levels within about kT above EF. (c) For high 
temperatures where kT 7 EF even particles in the lower energy states may move to higher 
levels so that fFD102 6 1.
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If the temperature of the system is increased to some temperature T 7 0 K, 
but with kT remaining smaller than EF, fermions within about kT of the Fermi 
energy could now move to previously unoccupied levels lying within about kT 
above the Fermi energy in response to collisions with the lattice ions. However, 
fermions occupying levels much lower than kT below EF would not be able to 
move since the additional kT of energy that they might acquire in a collision would 
not be enough to move them past levels occupied by other fermions in order to 
reach the unoccupied levels near or above EF. Figure 8-31b illustrates this situa-
tion. At temperatures so high that kT 7 EF, fermions in even the very low-lying 
energy states will be able to move to higher states. Only then can fFD102 drop 
below 1, as shown in Figure 8-31c. This latter situation also corresponds to the 
lowest curve in Figure 8-16.

The number nFD1E2 of fermions with energy E is given by Equation 8-37c. 
The density of states was computed for fermions in Section 8-3 and is given by 
Equation 8-42, so we have for fermions that

	 nFD1E2 =


2
a 8m

h2 b
3>2

 
VE1>2

e1E-EF2>kT + 1
	 8-69

Figure 8-32 is a graph of Equation 8-69 for three different temperatures. The T = 0 K 
curve is the result of multiplying fFD1E2 in Figure 8-31a by the gFD1E2 function, 
which increases as E1>2. The curves for T = 300 K and T = 1200 K result from 
multiplying gFD1E2 by appropriate versions of Figure 8-31b. The shaded areas for
T 7 0 K represent those electrons near the Fermi energy, a very small number, that are 
able to move into the empty states above EF at each temperature.

Quantum Degenerate Fermion Gas
Since fermions have half-integer spins, the Pauli exclusion principle prohibits two 
identical fermions from occupying the same quantum state. Thus, a system of half-
integer-spin atoms cannot all occupy the ground state to form a fermion version of 
the Bose-Einstein condensate as is possible for integer-spin bosons. The fermion 
analog of the BEC occurs when the atoms fill all of the energy states from the ground 
state up to the Fermi energy. The transition to this quantum degenerate state for a 
gas of fermions is a gradual one, quite unlike the sudden phase transition to the BEC. 

Figure 8-32  ​The 
distribution of fermion 
energies at three different 
temperatures for a material 
whose Fermi energy is 
4.8 eV. Curves are plots 
of Equation 8-69 for the 
indicated values of 
temperature. (See text for 
explanation of shaded area.)
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This makes it harder to detect, in addition to which the 
exclusion principle makes evaporative cooling that is so 
important in producing the BEC much less effective as 
the temperature of the fermion gas decreases. In 1999 
these problems were solved by Deborah Jin and Brian 
DeMarco, four years after the first BEC was produced. 
They loaded a magnetic trap with 40K (total atomic spin

= 9>2), dividing the atoms between two magnetic 
substates to solve the evaporative-cooling problem. One 
of several ways used to detect the quantum degenerate 
state of the 40K atoms was to determine the total energy 
(from the momentum distribution) of the approximately 
8 * 105 atoms in the sample (see Figure 8-33). Classi-
cally, the total energy 13>22NA kT S 0 as T S 0. 
Quantum mechanically, however, the total energy 
should be higher than expected classically as T 
decreases and remain finite as T S 0. This is exactly 
what Jin and DeMarco observed. High on the list of 
new things their discovery may make possible is the 
study of Cooper pairs (see Section 10-8) as they con-
dense into a superconductor.

More recently, scientists have been successful in forming Bose-Einstein conden-
sates from paired fermions using 6Li and 40K. The very loosely bonded 6Li@6Li and 
40K@40K are bosons and dropped into their respective ground states when the tempera-
ture reached about 50 * 10-9 K.

Questions

12.	 Why does the exclusion principle make evaporative cooling less effective as
T decreases for fermions in a single-spin state?

13.	 Why does the total energy of the fermion gas not approach zero as T S 0?

Figure 8-33  Quantum degenerate state of a Fermi gas. The 
images show that more of the atoms of the ultracold gas lie 
below the Fermi energy (black circles) than above it in the 
right sample than in the left one. The colder cloud on the 
right contains 0.78 million  40K atoms at T = 0.29 mK. The 
cloud on the left contains 2.5 million atoms at T = 2.4 mK.

T/TF = 3

EFERMI EFERMI

T/TF = 0.5

Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Boltzmann distribution

	 Boltzmann’s constant

	 Maxwell distribution of molecular speeds

	 Equipartition theorem

fB1E2 = Ae-E>kT� 8-1

where the distribution fB12 is the probability that the state with
energy e will be occupied.

k = 1.381 * 10-23 J>K = 8.617 * 10-5 eV>K

n1v2dv = 4Na m

2kT
b

3>2
 v2

 e-mv2>2kT
 

 dv� 8-8

In equilibrium, each degree of freedom contributes 12 kT  to the
average energy per molecule.
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TOPIC RELEVANT EQUATIONS AND REMARKS

	 Average kinetic energy

	 Dulong-Petit law

8E9 =
3

2
 kT � 8-14

where 8E9  is the average translational kinetic energy per
molecule.

Cv = 3R

2.	 Quantum statistics

	 Bose-Einstein distribution

	 Fermi-Dirac distribution

fBE1E2 =
1

ea
 eE>kT - 1

� 8-24

fFD1E2 =
1

ea
 eE>kT + 1

� 8-25

In all three distributions fB, fBE, and fFD, ea is a normalization
constant that depends on the particle density. The FD distribution 
applies to particles with 12-integral spin, the BE distribution to
particles with zero or integral spin. At high energies both fBE and
fFD approach fB.

The Boltzmann distribution will be a good approximation of 
either fBE or fFD if ea V 1.

3.	 Applications

	 Liquid helium

	 Bose-Einstein condensate

	 Degenerate Fermi gas

4He becomes a superfluid at 2.17 K, called the lambda point.
3He, the only other naturally occurring isotope that has this property, 
becomes superfluid at about 2 mK.

Bosons undergo a phase transition, condensing to the lowest 
quantum state.

Fermions condensed to states from the ground state to the 
Fermi energy.
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in Chapter 11 of this book.
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Problems 
Level I
Section 8-1  Classical Statistics: A Review
8-1.	 (a) Calculate vrms for H2 at T = 300 K. (b) Calculate the temperature T for which vrms 
for H2 equals the escape speed of 11.2 km>s.
8-2.	 (a) The ionization energy for hydrogen atoms is 13.6 eV. At what temperature is 
the average kinetic energy of translation equal to 13.6 eV? (b) What is the average kinetic 
energy of translation of hydrogen atoms at T = 107 K, a typical temperature in the interior 
of the Sun?

Notes 
1.	 The statistical approach may also be used as an approxi-

mation in systems where the number of particles is not par-
ticularly large. For example, in Chapter 11 we will discuss 
briefly a statistical model of the atomic nucleus, a system 
containing only of the order of 100 particles.

2.	 Ludwig E. Boltzmann (1844–1906), Austrian physicist. 
His pioneering statistical interpretation of the second law of 
thermodynamics earned for him recognition as the founder of 
statistical mechanics. He explained theoretically the experi-
mental observations of Josef Stefan, whom he served as 
an assistant while in college, that the quantity of radiation 
increases with the fourth power of the temperature. He even-
tually succeeded Stefan in the chair of physics at Vienna. A 
strong proponent of the atomic theory of matter, his suicide 
was apparently motivated in part by opposition to his views 
by others.

3.	 To avoid having to repeat this rather long phrase fre-
quently, which will occur for E as well as v, we will hereafter 
use the expression “the number in dvx at vx” or simply “the 
number in dvx.”

4.	 Or refer to a table of integrals.
5.	 Historically, rotation about the z9 axis of the dumbbell 

was ruled out by assuming either that the atoms are points and 
the moment of inertia about this axis is therefore zero (not 
true) or that the atoms are hard smooth spheres, in which case 
rotation about this axis cannot be changed by collisions and 
therefore does not participate in the exchange of energy (also 
not true). Either of these assumptions also rules out the pos-
sibility of rotation of a monatomic molecule.

6.	 Satyendra Nath Bose (1894–1974), Indian physicist. 
Following publication of his paper on the statistics of indis-
tinguishable particles, which was translated into German 
for publication by Einstein himself, Bose spent two years in 
Europe, then returned to India to devote himself to teaching. 
Lacking a Ph.D., he was denied a professorship until a one-
sentence postcard from Einstein was received at Dacca Uni-
versity in his support.

7.	 Enrico Fermi (1901–1954), Italian-American physicist. 
An exceedingly prolific scientist and intrepid amateur tennis 
player whose work encompassed solid-state, nuclear, and par-
ticle physics, he is perhaps best known as the “father” of the 
nuclear reactor. He was awarded the Nobel Prize in Physics in 
1938 for his work in nuclear physics.

8.	 Paul A. M. Dirac (1902–1984), English physicist. His 
development of relativistic wave mechanics for spin-1

2 par-
ticles led to his prediction in 1930 of the existence of the 
positron. Its discovery by Anderson two years later resulted 
in Dirac’s being awarded (along with Schrödinger) the 1933 
Nobel Prize in Physics. From 1932 until his retirement he 
occupied the Lucasian Chair of Mathematics at Cambridge 
University, which had been held 250 years earlier by Newton 
and most recently by Stephen Hawking.

9.	 Heike Kamerlingh Onnes (1853–1926), Dutch physi-
cist. His success in liquefying helium enabled him to inves-
tigate the properties of other materials at liquid helium 
temperatures. This, in turn, led to his discovery of super-
conductivity in 1911. His work on the behavior of materials 
at low temperatures earned him the Nobel Prize in Physics 
in 1913.
10.	 J. C. McLennan, H. D. Smith, and J. O. Wilhelm, Philo-
sophical Magazine, 14, 161 (1932).
11.	 At very low temperatures liquid 4He does solidify at a 
pressure of about 25 atm, liquid 3He at about 30 atm.
12.	 Narrow channels that permit only the superfluid to pass 
are, of course, called superleaks.
13.	 These and many other properties are elegantly displayed 
in the film Liquid Helium II: The Superfluid. See the A. Leit-
ner entry in the General References above.
14.	 In the thermodynamic equilibrium state their sample, 
rubidium, is a solid metal at room temperature.
15.	 Einstein used the Boltzmann distribution in its discrete 

form fB1E2 = a


n = 0
 Ae-En>kT.
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8-3.	 The molar mass of oxygen gas 1O22 is about 32 g>mol and that of hydrogen gas 
1H22 about 2 g>mol. Compute (a) the rms speed of O2 and (b) the rms speed of H2 when 
the temperature is 0°C.
8-4.	 Show that the SI units of 13RT>M21>2 are m>s.
8-5.	 (a) Find the total kinetic energy of translation of 1 mole of N2 molecules at T = 273 K. 
(b) Would your answer be the same, greater, or less for 1 mole of He atoms at the same 
temperature? Justify your answer.
8-6.	 Use the Maxwell distribution of molecular speeds to calculate 8v29  for the mol-
ecules of a gas.
8-7.	 Neutrons in a nuclear reactor have a Maxwell speed distribution when they are in 
thermal equilibrium. Find 8v9  and vm for neutrons in thermal equilibrium at 300 K. Show 
that n(v) (Equation 8-8) has its maximum value at v = vm = 12kT>m21>2.
8-8.	 A container holds 128 identical molecules whose speeds are distributed as follows:

No. of molecules 4 12 20 24 20 16 12 8 6 4

Speed range (m>s) 0.0–1.0 1.0–2.0 2.0–3.0 3.0–4.0 4.0–5.0 5.0–6.0 6.0–7.0 7.0–8.0 8.0–9.0 9.0–10.0

Graph these data and indicate on the graph vm, 8v9 , and vrms.
8-9.	 Show that the most probable speed vm of the Maxwell distribution of speeds is given 
by Equation 8-9.
8-10.	 Compute the total translational kinetic energy of one liter of oxygen held at a pres-
sure of one atmosphere and a temperature of 20°C.
8-11.	 From the absorption spectrum it is determined that about one out of 106 hydrogen 
atoms in a certain star is in the first excited state, 10.2 eV above the ground state (other 
excited states can be neglected). What is the temperature of the star? (Take the ratio of 
statistical weights to be 4, as in Example 8-2.)
8-12.	 The first excited rotational energy state of the H2 molecule 1g2 = 32 is about 
4 * 10-3 eV above the lowest energy state 1g1 = 12. What is the ratio of the numbers of 
molecules in these two states at room temperature (300 K)?
8-13.	 A monatomic gas is confined to move in two dimensions so that the energy of an 
atom is Ek =

1
2 mv2

x +
1
2 mv2

y. What are CV, CP, and g for this gas? (CP, the heat capacity at 
constant pressure, is equal to CV + nR and g = CP>CV.)
8-14.	 Use the Dulong-Petit law that CV = 3R for solids to calculate the specific heat 
cv = CV>M in cal>g for (a) aluminum, M = 27.0 g>mol, (b) copper, M = 63.5 g>mol, 
and (c) lead, M = 207 g>mol, and compare your results with the values given in a hand-
book. (Include the handbook reference in your answer.)
8-15.	 Calculate the most probable kinetic energy Em from the Maxwell distribution of 
kinetic energies (Equation 8-13).
8-16.	 (a) Show that the speed distribution function can be written n1v2=

4-1>21v>vm22
 v-1

m  e-1v>vm22, where vm is the most probable speed. Consider 1 mole of mol-
ecules and approximate dv by Dv = 0.01 vm. Find the number of molecules with speeds in 
dv at (b) v = 0, (c) v = vm, (d ) v = 2vm, and (e) v = 8vm.
8-17.	 Consider a sample containing hydrogen atoms at 300 K. (a) Compute the number of 
atoms in the first (n = 2) and second (n = 3) excited states compared to those in the ground 
state (n = 1). Include the effects of degeneracy in your calculations. (b) At what tempera-
ture would 1 percent of the atoms be in the n = 2 state? (c) At the temperature found in (b), 
what fraction of the atoms will be in the n = 3 state?
8-18.	 Consider a sample of non-interacting lithium atoms (Li, Z = 3) with the third (outer) 
electron in the 3p state in a uniform 4.0 T magnetic field. (a) Determine the fraction of the 
atom in the m1 = +1,  0, and 21 states at 300 K. (b) In the 3p S 2s transition, what will 
be the relative intensities of the three lines of the Zeeman effect?
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Section 8-2  Quantum Statistics
8-19.	 Find the number density N>V  for electrons such that (a) e-a = 1 and (b) e-a = 10-6.
8-20.	 (a) Compute e-a from Equation 8-44 for O2 gas at standard conditions. (b) At what 
temperature is e-a = 1 for O2?
8-21.	 Given three containers all at the same temperature, one filled with a gas of classical 
molecules, one with a fermion gas, and one with a boson gas, which will have the highest 
pressure? Which will have the lowest pressure? Support your answer.
8-22.	 (a) For T = 5800 K, at what energy will the Bose-Einstein distribution function 
fBE1E2 equal one (for a = 0)? (b) Still with a = 0, to what value must the temperature 
change if fBE1E2 = 0.5 for the energy in part (a)?
8-23.	 A container at 300 K contains H2 gas at a pressure of one atmosphere. At this tem-
perature H2 obeys the Boltzmann distribution. To what temperature must the H2 gas be 
cooled before quantum effects become important and the use of the Boltzmann distribu-
tion is no longer appropriate? (Hint: Equate the de Broglie wavelength at the average 
energy to the average spacing between molecules, using the ideal gas law to compute the 
density.)

Section 8-3  The Bose-Einstein Condensation
8-24.	 Compute N0>N from Equation 8-52 for (a) T = 3Tc>4, (b) T =

1
2 Tc, (c) T = Tc>4, 

and (d ) T = Tc>8.
8-25.	 Show that N0  1>a for small values of a as asserted in the paragraph above 
Equation 8-52.
8-26.	 Like 4He, the most common form of neon, 20Ne, is a rare gas and the 20Ne atoms 
have zero spin and so are bosons. But unlike helium, neon does not become superfluid at 
low temperatures. Show that this is to be expected by computing neon’s critical tempera-
ture and comparing it with the element’s freezing point of 24.5 K.

Section 8-4  The Photon Gas: An Application of 
Bose-Einstein Statistics
8-27.	 If the Sun were to become cooler (without changing its radius), the energy density 
at the surface would decrease according to Equation 8-56. Suppose the Sun’s temperature 
were to decrease by 5 percent. Compute the fractional change in the rate at which solar 
energy arrives at Earth. (Assume that the Sun’s surface is in equilibrium and radiates as a 
blackbody.)
8-28.	 Find the average energy of an oscillator at (a) T = 10hf>k, (b) T = hf>k, and
(c) T = 0.1hf>k, and compare your results with those from the equipartition theorem.
8-29.	 (a) Show that the rule of Dulong-Petit follows directly from Einstein’s specific heat 
formula (Equation 8-62) as T S q. (b) Show that CV S 0 as T S 0.
8-30.	 Using Figure 8-13, compute the (approximate) frequency of atomic oscillations in 
silicon and in aluminum at 200 K.
8-31.	 Use Equation 8-62 to calculate the value of CV for a solid at the Einstein tempera-
ture TE = hf>k.

Section 8-5  Properties of a Fermion Gas
8-32.	 Use Equation 8-69 to plot an accurate graph of nFD1E2 >V  for electrons whose 
Fermi energy is 4.8 eV from E = 4.5 eV to E = 5.1 eV at T = 300 K. Determine from the 
graph the number of electrons per unit volume just below the Fermi energy that can move 
to states just above the Fermi energy.
8-33.	 Consider a gas of electrons (fermions) and a gas of photons (bosons). Which has 
more states available at T = 1 K? Explain why.
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Level II
8-34.	 The molar heat capacity data given in Table 8-2 are taken from AIP Handbook, 2d ed. 
(McGraw-Hill, New York, 1963). Plot the data for these solids all on one graph and sketch 
in the curves CV versus T. Estimate the Einstein temperature for each of the solids using 
the result of Problem 8-31.
8-35.	 Recalling that the Fermi-Dirac distribution function applies to all fermions, includ-
ing protons and neutrons, each of which have spin 1

2, consider a nucleus of 22Ne consist-
ing of 10 protons and 12 neutrons. Protons are distinguishable from neutrons, so two 
of each particle (spin up, spin down) can be put into each energy state. Assuming that 
the radius of the 22Ne nucleus is 3.1 * 10-15 m, estimate the Fermi energy and the aver-
age energy of the nucleus in 22Ne. Express your results in MeV. Do the results seem 
reasonable?
8-36.	 What is the ground-state energy of 10 non-interacting bosons in a one-dimensional 
box of length L?
8-37.	 Make a plot of fFD1E2 versus E for (a) T = 0.1TF and (b) T = 0.5TF, where 
TF = EF>k.
8-38.	 Compute the fraction of helium atoms in the superfluid state at (a) T = Tc>2 and 
(b) T = Tc>4.
8-39.	 The depth of the potential well for free electrons in a metal can be accurately 
determined by observing that the photoelectric work function is the energy necessary to 
remove an electron at the top of the occupied states from the metal; an electron in such 
a state has the Fermi energy. Assuming each atom provides one free electron to the gas, 
compute the depth of the well for the free electrons in gold. The work function for gold 
is 4.8 eV.

 Table 8-2  Heat capacities in cal>mol # K for Au, diamond, Al, and Be

T, K Au Diamond Al Be

20 0.77 0.00 0.05 0.003

50 3.41 0.005 0.91 0.04

70 4.39 0.016 1.85 0.12

100 5.12 0.059 3.12 0.43

150 5.62 0.24 4.43 1.36

200 5.84 0.56 5.16 2.41

250 5.96 0.99 5.56 3.30

300 6.07 1.46 5.82 3.93

400 6.18 2.45 6.13 4.77

500 6.28 3.24 6.42 5.26

600 6.40 3.85 6.72 5.59

800 6.65 4.66 7.31 6.07

1000 6.90 5.16 7.00 6.51
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8-40.	 An early method testing Maxwell’s theoretical prediction for the distribution of 
molecular speeds is shown in Figure 8-34. In 1925 Otto Stern used a beam of Bi2 mol-
ecules emitted from an oven at 850 K. The beam defined by slit S1 was admitted into the 
interior of a rotating drum via slit S2 in the drum wall. The identical bunches of molecules 
thus formed struck and adhered to a curved glass plate fixed to the interior drum wall, the 
fastest molecules striking near A, which was opposite S2, the slowest near B, and the oth-
ers in between depending on their speeds. The density of the molecular deposits along the 
glass plate was measured with a densitometer. The density (proportional to the number of 
molecules) plotted against distance along the glass plate (dependent on v) made possible 
determination of the speed distribution. If the drum is 10 cm in diameter and is rotating 
at 6250 rpm, (a) find the distance from A where molecules traveling at vm, 8v9 , and vrms 
will strike. (b) The plot in (a) must be corrected slightly in order to be compared with 
Maxwell’s distribution equation. Why? (c) Would N2 molecules work as well as Bi2 mol-
ecules in this experiment? Why or why not?
8-41.	 The speed distribution of molecules in a container is the Maxwell distribution 
vm, 8v9 , and vrms. The number with speed v that hit the wall in a given time is pro-
portional to the speed v and to f1v2. Thus, if there is a very small hole in the wall (too 
small to have much effect on the distribution inside), the speed distribution of those that 
escape is F1v2  vf1v2  v3

 e-mv2>2kT. Show that the mean energy of those that escape 
is 2kT.

Level III
8-42.	 This problem is related to the equipartition theorem. Consider a system in which the 
energy of a particle is given by E = Au2, where A is a constant and u is any coordinate or 
momentum that can vary from 2 to 1. (a) Write the probability of the particle having 
u in the range du and calculate the normalization constant C in terms of A. (b) Calculate 
the average energy 8E9 = 8Au29  and show that 8E9 =

1
2 kT .

8-43.	 Calculate the average value of the magnitude of vx from the Maxwell distribution.
8-44.	 Show that fFD1E2S fB1E2 for E W EF.
8-45.	 Carry out the integration indicated in Equation 8-43 to show that a is given by 
Equation 8-44.
8-46.	 Consider a system of N particles that has only two possible energy states, E1 = 0 
and E2 = . The distribution function is fi = Ce-Ei>kT. (a) What is C for this case?

Figure 8-34  [Problem 8-40.]
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(b) Compute the average energy 8E9  and show that 8E9 S 0 as T S 0 and 8E9 S >2 as
T S q. (c) Show that the heat capacity is

CV = Nka 

kT
b

2

 
e->kT

11 + e->kT22

(d ) Sketch CV versus T.
8-47.	 If the assumptions leading to the Bose-Einstein distribution are modified so that 
the number of particles is not assumed constant, the resulting distribution has ea = 1. 
This distribution can be applied to a “gas” of photons. Consider the photons to be in a 
cubic box of side L. The momentum components of a photon are quantized by the
standing-wave conditions kx = n1>L, ky = n2>L, ky = n2>L, and kz = n3>L,
where p = U1k2

x + k2
y + k2

z21>2 is the magnitude of the momentum. (a) Show that the 
energy of a photon can be written E = N1Uc>L2, where N2 = n2

1 + n2
2 + n2

3. (b) Assum-
ing two photons per space state because of the two possible polarizations, show that the 
number of states between N and N 1 dN is N2

 

 dN. (c) Find the density of states and show 
that the number of photons in the energy interval dE is

n1E2  dE =
81L>hc23

 E2
 

 dE

eE>kT - 1

(d) The energy density in dE is given by u1E2  dE = En1E2  dE>L3. Use this to obtain the 
Planck blackbody radiation formula for the energy density in d l, where l is the wave-
length:

u1l2 =
8hcl-5

ehc>lkT - 1
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373

Applications of 
Quantum Mechanics 
and Relativity

Part 1 introduced the principles of the special and general relativity theories and 
illustrated how they led to profound alterations of our classical views of space 

and time. We then saw how the ideas and methods of quantum mechanics devel-
oped and how their application to atomic physics provides us with an understanding 
of atomic structure and spectra that is in excellent accord with our observations. In 
Part 2 we extend the applications of quantum theory and relativity to a wider variety 
of physical systems and phenomena that are, like atomic physics, of great interest 
to engineers, chemists, and physicists.

The topics we will discuss form the foundation of a broad range of theoretical 
and experimental research by physicists, chemists, and mathematicians and provide 
the basic understanding of the principles underlying many practical devices devel-
oped by engineers. These topics include molecular bonding and spectra (Chapter 
9); the structure of solids and their thermal and electrical properties (Chapter 10); 
superconductors (Chapter 10); nuclear structure, radioactivity, and nuclear reactions 
(Chapter 11); and elementary particles, the quarks and leptons, which are the con-
stituents of all visible matter (Chapter 12). Practical applications include the study of 
lasers (Chapter 9); semiconductors, semiconductor junctions, and transistors (Chap-
ter 10); and radioactive dating and elemental analysis, nuclear fission and fusion, 
and reactors (Chapter 11). Many of these applications have revolutionized contem-
porary society. Part 2 concludes with a look outward into the cosmos from our 
solar system to the Big Bang, the realm of astrophysics and cosmology (Chapter 13) 
and, increasingly, particle physics (Chapter 12), all topics that stimulate the imagina-
tion of everyone. These chapters are independent of one another and can be studied 
in any order.

PART 2
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375  

In this chapter we will study the bonding of molecules—systems of two or more 
atoms. Properly, a molecule is the smallest constituent of a substance that retains 

its chemical properties. The study of the properties of molecules forms the basis for 
theoretical chemistry. The application of quantum mechanics to molecular physics 
has been spectacularly successful in explaining the structure of molecules and the 
complexity of their spectra and in answering such puzzling questions as why two H 
atoms join together to form a molecule but three H atoms do not. As in atomic phys-
ics, the detailed quantum-mechanical calculations are often difficult. When the dif-
ficulty would tend to obscure understanding of the physics, we will, as before, make 
our discussions semi-quantitative or qualitative. In the final sections we will discuss 
the interaction of electromagnetic radiation with molecules, concluding with discus-
sions of the common types of lasers and recent developments of both high-powered 
and ultrasmall lasers.

There are essentially two extreme views we can take of a molecule. Consider, 
for example, H2. We can think of it either as two H atoms somehow joined together 
or as a quantum-mechanical system of two protons and two electrons. The latter pic-
ture is more fruitful in this case because neither of the electrons in the H2 molecule 
can be considered as belonging to either proton. Instead, the wave function for each 
electron is spread out in space about the whole molecule. For more complicated mol-
ecules, however, an intermediate picture is useful. Consider the N2 molecule as an 
example. We need not consider the complicated problem of 2 nuclei and 14 elec-
trons. The electron configuration of an N atom in the ground state is 1s2

 2s2
 2p3. Of 

the three electrons in the 2p state, two are in an m/ = -1 state with their spins paired 
(that is, with spins antiparallel so that the resultant spin for those two is zero). The 
third one is in an m/ = 0 level and its spin is, of course, unpaired. Only the electron 
with the unpaired spin is free to take part in the bonding of the N2 molecule. We 
therefore can consider this molecule as two N 

+ ions and two electrons that belong to 
the molecule as a whole. The molecular wave functions for these bonding electrons 
are called molecular orbitals. In many cases these molecular wave functions can be 
constructed from linear combinations of the atomic wave functions with which we 
are familiar.

Another type of bonding involves the transfer of one or more electrons between 
atoms, the bond resulting from Coulomb attraction between the ions, an example 
being NaCl. Again in this case, as in all four types of molecular bonding, it is the 
wave properties of the spin-1

2 electrons that are the key to understanding.

9-1	 The Ionic
Bond� 376

9-2	 The Covalent
Bond� 381

9-3	 Other Bonding 
Mechanisms� 387

9-4	 Energy Levels
and Spectra 
of Diatomic 
Molecules� 392

9-5	 Scattering, 
Absorption, and 
Stimulated 
Emission� 402

9-6	 Lasers and
Masers� 408

Molecular Structure 
and Spectra

CHAPTER 9

TIPLER_09_373-426hr1.indd   375 11/2/11   11:09 AM
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9-1  The Ionic Bond 
The two principal types of bonds that join two or more atoms together to form a mole-
cule are called ionic and covalent bonds. Other types of bonds that are important in the 
bonding of liquids and solids are dipole-dipole bonds and metallic bonds. In many 
cases the bonding is a mixture of these mechanisms. We will discuss all of these in this 
chapter and the next, but it is important to recognize that all types of molecular bond-
ing arise for the same fundamental reasons: the total energy of the stable bound mole-
cule is lower than the total energy of the constituent atoms when they are widely 
separated, and there is a net attractive force between constituent atoms when their sep-
aration becomes larger than some equilibrium value. The bonding mechanisms are pri-
marily due to electrostatic forces between the atoms or ions of the system together with 
the wave properties of electrons and the fact that they obey the exclusion principle. 
The complete description of molecular bonding is in most cases quite complex, involv-
ing as it does the mutual interactions of many electrons and nuclei; consequently, we 
will discuss each type using simplified models consisting of two or a few atoms, then 
illustrate qualitatively the extension of the results to more complex molecules.

The easiest type of bond to understand is the ionic bond, typically the strongest of 
the bonds and the one found in most salts. Consider KCl as an example. For the mol-
ecule to be stable, we must be able to show that E(KCl) 6 E(K) 1 E(Cl) when the K 
and Cl atoms are far apart and at rest. Let us define the energy of the system to be zero 
when the neutral atoms are widely separated (see Figure 9-1). The potassium atom 
has one 4s electron outside an argon core, 1s2

 2s2
 2p6

 3s2
 3p6. The ionization energy for 

K is low, as it is for all the alkali metals; for K only 4.34 eV is required to remove the 
outer electron from the atom (see Table 9-1). The removal of one electron from K 
leaves a positive ion with a spherically symmetric, closed-shell core. Chlorine, on the 
other hand, is only one electron short of having a closed argon core. The energy 
released by the acquisition of one electron is called the electron affinity, which in the 
case of Cl is 3.62 eV. Energy is released because the wave function of the “extra” 
electron penetrates the outer shell to a degree (see Figure 7-10b) and thus sees a net 
positive charge. The acquisition of one electron by chlorine leaves a negative ion with 

E
, e

V

5.0

4.0

3.0

2.0

1.0

0
K, Cl atoms
(far apart)

K+, 1 electron
and Cl atom

K+, Cl–

(far apart)

Ionization
energy
K

4.34 eV

3.62 eV
electron
affinity
Cl

0.72 eV

Cl Cl Cl–

+4.34 eV –3.62 eV

K+K K+

e–

Figure 9-1  Net energy 
required to ionize a K and a Cl 
atom. An addition of 4.34 eV is 
required to remove the 4s 
electron from the neutral K atom, 
forming K 

+ and a free electron. 
That electron (or some electron) 
can then occupy the vacancy in 
the 3p shell of the Cl atom, 
forming a Cl 

- ion. The electron 
is positively bound, with the 
release of 3.62 eV. Formation of 
the widely separated K 

+ and Cl 

- 
ions thus requires a net addition 
of 0.72 eV.

TIPLER_09_373-426hr1.indd   376 11/2/11   11:09 AM



	 9-1  The Ionic Bond	 377

a spherically symmetric, closed-shell electron core. Thus, the formation of a K 

+ ion 
and a Cl 

- ion by the donation of one electron of K to Cl requires just 4.34 – 3.62 = 
0.72 eV. If this were the whole story, the KCl molecule would not form; however, the 
electrostatic potential energy of the two ions separated by a distance r is -ke2>r. 
When the separation of the ions is less than about 2.8 nm, the negative potential 
energy of attraction is of greater magnitude than the energy needed to create the ions, 
and the ions move toward each other.

Since the electrostatic attraction increases as the ions get closer, it would seem 
that equilibrium could not exist. For very small separation of the ions, however, the 
wave function of the 3p electrons in the K 

+ ion and the 3p electrons in the Cl 

- ion 
begin to overlap. Since the 3p shells in each ion contain electrons with sets of quantum 
numbers identical to those in the other, a strong repulsion develops due to the exclu-
sion principle. This “exclusion principle repulsion” is primarily responsible for the 
repulsion of the atoms in all molecules (except H2) as the separation of the atoms 
becomes very small, no matter which type of bonding occurs. When the ions are very 
far apart, the wave function for a core electron of one ion does not significantly overlap 
that of the other ion. We can distinguish the electrons by the ion to which they belong, 
and the electrons of one ion can have the same quantum numbers as in the other ion. 
However, when the ions are close, the wave functions of their core electrons begin to 
overlap, and some of the electrons must go into higher-energy quantum states because 
of the exclusion principle, thus increasing the total energy of the system. This is not a 
sudden process; the energy states of the electrons are gradually changed as the ions 
move closer together. The total potential energy U of the KCl system can be expressed 
in terms of the separation r of the ion centers as the sum of the electrostatic potential, 
the net ionization energy, and the exclusion principle repulsion:

	 U1r2 = -  
ke2

r
+ Eex + Eion� 9-1

where Eion = 0.72 eV for K 

+ and Cl 

-, as was found above. The exclusion principle 
repulsion Eex can be written as

	 Eex =
A

r n	 9-2

 Table 9-1 � Ionization energies of alkali metal atoms and
electron affinities of halogen atoms

Alkali metal Ionization energy (eV) Halogen Electron affinity (eV)

Li 5.39 F 3.40

Na 5.14 Cl 3.62

K 4.34 Br 3.36

Rb 4.18 I 3.06

Cs 3.89 At 2.8

Fr 4.07

Source:  Data from Handbook of Chemistry and Physics, 90th ed. (New York: Chemical 
Rubber Co., 2009).
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where A and n are constants for each ionic molecule. Figure 9-2a is a sketch of the 
potential energy of the K 

+ and Cl 

- ions versus their separation. The energy is lowest 
at an equilibrium separation r0 of about 0.27 nm. At smaller separations, the energy 
rises steeply as a result of the exclusion principle. The energy Ed required to separate 
the ions and form K and Cl atoms, called the dissociation energy, is about 4.40 eV. 
Figure 9-2b shows the total potential energy of another ionically bonded molecule, 
NaCl. Note the differences between the two total potential energy curves, which are 
due to the higher ionization potential and smaller closed-shell core of Na compared 
to K. Example 9-1 illustrates calculations used to construct curves like those in the 
diagram. Example 9-2 describes how the constants A and n in Equation 9-2 are found.

EXAMPLE 9-1	 Ionic Bonding in NaF ​ The ionization potential of sodium is 
5.14 eV, the electron affinity of fluorine is 3.40 eV, and the equilibrium separation 
of sodium fluoride (NaF) is 0.193 nm. (a) How much energy is needed to form Na 

+ 
and F 

- ions from neutral sodium and fluorine atoms? (b) What is the electrostatic 
potential energy of the Na 

+ and F 

- ions at their equilibrium separation? (c) The dis-
sociation energy of NaF is 4.99 eV. What is the energy due to repulsion of the ions 
at the equilibrium separation?

SOLUTION
(a) � Since the energy needed to ionize sodium is 5.14 eV and the electron affinity of 

F is 3.40 eV, the energy needed to form Na 

+ and F 

- ions from neutral sodium 
and fluorine atoms is 5.14 eV - 3.40 eV = 1.74 eV = Eion.

(b) � The electrostatic potential energy of the Na 

+ and F 

- ions at their equilibrium 
separation (with -ke2>r = 0 at infinite separation) is

Figure 9-2  (a) Potential 
energy for K 

+ and Cl 

- ions
as a function of separation 
distance r. The energy at 
infinite separation was 
chosen to be 0.72 eV, 
corresponding to the energy 
needed to form the ions from 
neutral atoms. The minimum 
energy for this curve is at the 
equilibrium separation 
r0 = 0.27 nm for the ions in 
the molecule. (b) Potential 
energy for Na 

+ and Cl 

- ions 
as a function of r. Differences 
between the two similar 
molecules are due to the 
higher ionization potential 
and smaller core of Na.
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 -  
ke2

r0
= -  

18.99 * 109 N # m2>C22 11.60 * 10-19  C22

1.93 * 10-10 m

 = -1.19 * 10-18 J = -7.45 eV

(c) � Choosing the total potential energy at infinity to be 1.74 eV (the net ionization 
energy needed to form Na 

+ and F 

- from the neutral atoms), the net electrostatic 
(Coulomb) potential UC is

UC = -  
ke2

r
+ 1.74 eV

At the equilibrium separation r0, this energy is UC = -7.45 eV + 1.74 eV =

-5.71 eV. Since the measured dissociation energy is 4.99 eV, the potential energy 
due to exclusion principle repulsion Eex of the Na 

+ and F 

- at equilibrium separa-
tion, from Equation 9-1, must be 5.71 eV 2 4.99 eV = 0.72 eV.

EXAMPLE 9-2	 Contribution from Exclusion-Principle Repulsion ​ Find the 
values of A and n in Equation 9-2 for NaF.

SOLUTION
From Example 9-1 we have that the potential energy due to exclusion principle-
repulsion at equilibrium separation of the ions is

Eex1r02 =
A

r n
0

=
A

10.193 nm2n = 0.72 eV

At r = r0 the net force on each ion must be zero because the potential energy has 
its minimum value at that point. This means that at r = r0, the net Coulomb force 
FC is equal in magnitude and opposite in sign to the exclusion-principle repulsive 
force, that is,

FC = - a dUC

dr
b

r = r0

= a nA

r n+1 b
r = r0

At r = r0,

FC =
UC1r02

r0
=

ke2

r 2
0

= 38.7 eV>nm

Thus, we have that

nA

r n+1
0

=
n
r0

 
A

r n
0

=
n
r0
10.72 eV2 = 38.7 eV>nm

or

n =
38.7 eV>nm

0.72 eV
* 10.193 nm2 = 10.4  10

and, therefore, A = 5.4 * 10-8 eV@nm10. Finally, for NaF, Eex is given by

Eex =
15.4 * 10-8 eV # nm102

r 10

It should be emphasized that our discussion of ionic bonding and, in particular, the 
graphs of potential energy in Figure 9-2 apply to the ground states of the molecules. 
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The outer (valence) electrons of molecules may occupy excited states, just as they do 
in atoms. Since the electron wave functions of the excited states tend to extend further 
from the ions than do those of the ground state, the potential energy curve is broader 
and more shallow than for the ground state, resulting in a slightly weaker bond and a 
larger equilibrium separation of the ions. In our discussion we have ignored two addi-
tional contributions to the total energy of the molecule: (1) the zero-point energy (see 
Section 5-6), which decreases the magnitude of Ed, and (2) the van der Waals attrac-
tion, which increases the magnitude of Ed. Both are small and tend to partially offset 
each other. The latter, which arises from induced dipole moments, is the only form of 
bonding available for certain molecules and will be discussed later in this chapter.

The KCl equilibrium separation of 0.27 nm noted earlier is for gaseous diatomic 
KCl (which can be obtained by evaporation of solid KCl). Normally, KCl exists in a 
cubic crystal structure, with K 

+ and Cl 

- at alternate corners of a cube. The separation 
of the ions in a crystal is somewhat larger—about 0.32 nm. Because of the presence of 
neighboring ions of opposite charge, the Coulomb energy per ion pair is lower when 
the ions are in a crystal. This energy is usually expressed as ake2>r0, where r0 is the 
equilibrium separation distance or bond length and a, called the Madelung constant, 
depends on the crystal structure, as will be discussed further in Chapter 10. For 
KCl, a is about 1.75. The values of Ed and r0 listed in Table 9-2 are for several 
ionically bonded (gaseous) molecules. One final comment concerning ionic bonding: 

 Table 9-2 ​� Dissociation energies Ed and equilibrium separations
r0 for several ionic molecules* in the gaseous state

Molecule Dissociation energy (eV) Equilibrium separation (nm)

NaCl 4.27 0.236

NaF 5.34 0.193

NaH 1.92 0.189

NaBr 3.81 0.250

LiCl 4.86 0.202

LiH 2.47 0.159

LiI 3.58 0.239

KCl 4.49 0.267

KBr 3.94 0.282

RbF 5.12 0.227

RbCl 4.43 0.279

CsI 3.50 0.332

*The two entries of molecules formed by an alkali atom and a hydrogen atom may seem 
odd, but hydrogen atoms, like those of a number of other elements, may form molecules as 
either positive or negative ions. The ionization energy of H is, of course, 13.6 eV; its electron 
affinity is 0.75 eV.

Source: Data from Handbook of Chemistry and Physics, 90th ed. (New York: Chemical 
Rubber Co., 2009).
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Few of the molecules in Table 9-2 are bonded exclusively by the ionic mechanism. 
As we will see in the next section, they may also be partially covalently bonded.

9-2  The Covalent Bond 
A completely different mechanism is responsible for the bonding of such molecules 
as H2, N2, H2O, and CO and also leads to bonding of many of the molecules in 
Table 9-2. If we calculate the energy needed to form the ions H 

+ and H 

- by the trans-
fer of an electron from one atom to the other, we find the net ionization energy to be 
more than 12 eV. Adding this energy to the electrostatic energy (including the repul-
sion of the protons), we find that there is no separation distance for which the total 
energy is negative. The bond of H2 thus cannot be ionic. The attraction of two hydro-
gen atoms is instead an entirely quantum-mechanical effect. The decrease in energy 
when two hydrogen atoms approach each other is due to the sharing of the two elec-
trons by both atoms and is intimately connected with the symmetry properties of the 
electron wave functions. We can gain some insight into this phenomenon by first 
studying a simple one-dimensional quantum-mechanics problem—that of two finite 
square wells each of width L.

Consider first a single electron that is equally likely to be in either well. Since the 
wells are identical, symmetry requires that  C  2 be symmetric about the midpoint of 
the wells. Then C must be either symmetric or antisymmetric about that point. These 
two possibilities for the ground state are shown in Figure 9-3. Previously, we did not 
distinguish between these two possibilities when superimposing (i.e., adding) wave 
functions because the energies 2U2>2mL2 and the probability densities C2 for both of 
these wave functions are the same when the wells are far apart. Figure 9-4 shows the 
symmetric and antisymmetric wave functions when the wells are very close together. 
Now the parts of the wave function describing the electron in one well or the other 
overlap, and the symmetric and antisymmetric resultant wave functions are quite 
different. Notice that for the symmetric wave functions the probability of the electron 
being found in the region between the wells is much larger than for the antisymmetric 
wave function. In the limiting case of no separation, the symmetric wave function CS 

(a)

(b)

(c)

ΨS

ΨA

Figure 9-3  (a) Two square wells far apart.
The electron wave function can be either 
(b) symmetric or (c) antisymmetric. The 
probability distributions and energies are the 
same for the two wave functions when the wells 
are far apart.

ΨS

ΨA

Figure 9-4  ​Symmetric and antisymmetric space wave 
functions for two square wells close together. The probability 
distributions and energies are not the same for the two wave 
functions in this case. The symmetric space wave function 
(and therefore the probability density) is larger between the 
wells than the antisymmetric space wave function.
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approaches the ground-state wave function for a particle in a well of size 2L and the 
antisymmetric wave function CA approaches that for the first excited state in such a 
well; thus CS is a lower energy state than CA. There are two important results from 
this discussion:

1.	 The originally equal energies for CA and CS are split into two different energies 
as the wells become close.

2.	 The wave function for the symmetric state is large in the region between the 
wells, whereas that for the antisymmetric state is small.

Now consider adding a second electron to the two wells. The total wave function 
for the two electrons must be antisymmetric on exchange of the electrons since they 
obey the Pauli exclusion principle. Note that exchanging the electrons in the wells is 
the same as exchanging the wells; that is, for a two-particle system, exchange sym-
metry is the same as space symmetry. The two electrons can therefore be in the space-
symmetric state if the spins are antiparallel (S = 0) or in the space-antisymmetric state 
if their spins are parallel (S = 1).

H2
1 Molecule

Now let us consider a real physical system with one electron, the hydrogen molecule 
ion H 

+
2 . For a one-dimensional model, the double potential well formed by the two 

protons is illustrated in Figure 9-5. The Hamiltonian (total energy) operator for this 
system is (see Equation 6-51 and Figure 9-5b)

Hop =
p2

op

2m
+ ke2a -  

1
r1

-
1
r2

+
1
r0
b

Figure 9-5  (a) Coulomb 
potential for an electron 
resulting from two protons 
separated by a distance r0. 
The solid line is the total 
potential for a one- 
dimensional model. The 
circled plus signs mark the 
locations of the protons.  
(b) Definitions of r1 and r2.

+ +
Proton 1 Proton 2

r0

r1 r2

r0

(a) (b)

1 2

Electron

In the ground state, the hydrogen atom wave function is proportional to e-r>a0. For 
our one-dimensional model, we will write this as e-x>a0. The symmetric and antisym-
metric combinations for two values of the distance between the protons are shown in 
Figure 9-6. In general,

CS = a 122
b 1C1001r12 + C1001r222

and

CA = a 122
b 1C1001r12 - C1001r222
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The results are similar to the square-well case: CS is large in the region between 
the protons, while CA is small in that region. Only in the case where the electron wave 
function and, hence, the probability density is large near the center of the molecule do 
we expect a stable molecular bond to form. This concentration of negative charge 
between the protons for CS holds the protons together. Similarly, we would not expect 
CA to result in a stable molecule. The justification of this conclusion would be the 
solution of the Schrödinger equation and calculation of  C  2 for H 

+
2 .

The solution and calculation are quite difficult, so we will simply state the results 
for the energy of the molecule as a function of the separation r of the protons, describ-
ing in the process how, in general, the potential energy function arises. Referring first 
to Figure 9-6a, when the protons are far apart, the electron’s energy is 213.6 eV. The 
potential energy Up (repulsion) of the protons is negligibly small for large r and, since 
there is only a single electron in the system, there is no exclusion-principle repulsion. 
As the two protons are brought closer together as in Figure 9-6b, Up increases and the 
energy of the electron decreases since the electron experiences a greater Coulomb 
force and becomes more tightly bound. Consider what is happening to the energy of the 
electron as the separation r of the protons is reduced. As r S 0, the electron’s wave 
function is approaching that of an atom with Z = 2. The symmetric wave function CS 
has a maximum at r = 0 and thus corresponds to the 1s (ground) state of the Z = 2 
atom. As we have already seen (Equation 7-25), its energy is E1 = -13.6 Z2>n2 =
-54.4 eV. For our discussion here, let us call the electron’s energy ES for the
wave function CS. Thus, ES = -13.6 eV for r S  and ES = -54.4 eV for r S 0. 

ΨA 2

Ψ2

Ψ2

Ψ1

Ψ1Ψ1

Ψ1 Ψ2

Ψ2

ΨA = Ψ1 – Ψ2  

ΨA = Ψ1 – Ψ2  ΨS = Ψ1 + Ψ2  

ΨS = Ψ1 + Ψ2  

ΨS 2

r

r

(a)

(b)

(c)

Figure 9-6  One-dimensional symmetric and antisymmetric electron space wave functions for (a) two protons far
apart and (b) two protons close together. (c) Probability distributions for wave functions in (b). Computer-drawn 
electron density around the protons is shown above the probability densities.
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The antisymmetric wave function CA is zero at r = 0 and 
thus corresponds to the 2p (first excited) state of the Z = 2 
atom, this state being the lowest energy state with a 
wave function that vanishes at r = 0 (see Equation 7-26 
and Table 7-2). The energy of this state is 
E2 = -13.6 Z2>n2 = -13.6 eV. As above, if we call EA 
the energy of the electron for the wave function CA, then 
EA = -13.6 eV for r S  (where  CS  2 and  CA  2 are 
the same) and EA = -13.6 eV for r S 0. Recall that the 
smaller average slope of CS compared to CA as r S 0 
implies a smaller energy for the symmetric state. The 
variation of both ES and EA are shown in Figure 9-7.

The potential energy Up of the protons as a function 
of their separation is, of course, Up = ke2>r, and the total 
energy of the H 

+
2  molecule is then Up + ES or Up + EA, 

depending on which of the electronic wave functions 
happens to exist. As can be seen in Figure 9-7, only one 
of the total energy functions has a minimum and can, 
therefore, result in bonding of the H 

+
2  molecule. The 

potential energy function Etotal = Up + ES has a 
minimum at r = 0.106 nm. This tells us that the H 

+
2  mol-

ecule is stable, with equilibrium separation r0 = 0.106 nm 
and binding energy = Etotal1r S  2 - Etotal1r02=

-13.6 - 1-16.32 = 2.7 eV. In contrast, the potential 
energy function Etotal = Up + EA has no minimum; 
therefore, the antisymmetric wave function does not 
result in a stable molecule, as we expected at the outset of 
this discussion. Note that the H 

+
2 -type bond will tend to 

be unstable unless both nuclei have the same Z.

H2 Molecule
Formation of the H2 molecule is very similar to that of H 

+
2 . We can think of it as two 

H atoms in their ground states, initially far apart. Each has a 1s electronic orbital,1 
that is, an electron the space part of whose wave function is C100, with an energy
of 213.6 eV. Thus, the total energy of the H2 system for large r (i.e., r S ) is
227.2 eV. As the two atoms approach each other, the wave functions begin to over-
lap, again as illustrated by Figure 9-6a and b, so that the two atoms (protons) share 
both electrons. Just as was discussed above, the two wave functions may add to pro-
duce a symmetric total wave function CS that results in a stable bound H2 molecule or 
an antisymmetric one CA, which does not lead to a stable molecule. Since the total 
wave function C must always be antisymmetric to an exchange of the electrons, the 
space wave function CS1=  Rn/ Y/m2 must be associated with an antisymmetric spin 
function A (see Section 7-6). Thus, CS is a singlet state (S = 0) and CA is a triplet 
state (S = 1).

There is a difference between the H2 molecule and the H 

+
2  molecule that needs 

explanation. Just as H 

+
2 , the H2 molecule has two molecular states whose total energy 

at large r is, as we have seen, 227.2 eV. As r gets smaller, the molecule still has two 
states, but their energies separate, as sketched in Figure 9-8a. The lower energy ES is, 
as before, associated with CS, the electronic wave function of the stable molecule, 
known also as the bonding orbital. The wave function CA associated with the energy 

Figure 9-7  ​Dependence of the molecular potential energy 
on the separation of the protons and on the symmetry of the 
electron wave function for the H 

+
2  system.
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EA that does not result in bonding is also called the antibonding orbital. The differ-
ence is that there are now two electrons whose probability density is large in the 
region between the protons, both in the CS molecular orbital. Since electrons obey the 
exclusion principle, their spins must be antiparallel (S = 0). Thus, a molecular orbital, 
just like an atomic orbital, can be occupied by no more than two electrons. For H2 
both electrons can therefore occupy the bonding orbital. Both electrons being in s 
states, H2 is referred to as being s-bonded.

Figure 9-8b illustrates the potential energy functions for H2. The energy 
corresponding to CS, the bonding orbital, has a minimum of E = 231.7 eV at
r = 0.074 nm—that is, the equilibrium separation r0 = 0.074 nm—and the binding 
energy is E1r S  2 - E1r02 = -27.2 - 1-31.72 = 4.5 eV. The effect of add-
ing the second electron to H 

+
2  to form H2 is evident from a comparison of Figure 9-7 

and 9-8b. The increased charge concentration between the protons binds them more 
tightly, the binding energy increasing from 2.7 eV to 4.5 eV and the equilibrium 
separation decreasing by 30 percent. The sharing of the outer, or valence, electrons 
in a molecule, as in our H2 example, is the mechanism of the covalent molecular 
bond. The basic requirement for covalent bonding is that the wave functions of 
the valence electrons of the participating atoms overlap as much as possible. Unlike 
the H 

+
2  case, the covalent bond is just as strong for nonidentical nuclei as it is for 

identical nuclei.2

We can now see why three H atoms do not bond to form H3. If a third H atom is 
brought near an H2 molecule, the third electron cannot be in a 1s state and have its 
spin antiparallel to both the other electrons. It must, therefore, occupy the higher-
energy, antibonding orbital. If it is in an antisymmetric state with respect to exchange 
with one of the electrons, the repulsion of this atom is greater than the attraction of 
the other. Thus, as the three atoms are pushed together, the third electron is, in effect, 
forced into a higher quantum state by the exclusion principle. The bond between two 
H atoms is called a saturated bond because there is no room for another electron. 
The two electrons being shared essentially fill the 1s states of both atoms. This is 

Figure 9-8  (a) The two levels of the H2 system, which have the same energy for r S  and have different energies as the 
atoms approach each other. (b) Potential energy versus separation for two hydrogen atoms. Up + ES is for the symmetric 
(bonding) space wave function, and Up + EA is for the antisymmetric (antibonding) space wave function. As the separation 
approaches zero, both curves approach 1 .
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basically the reason why covalent bonds involving three (or more) electrons are typi-
cally unstable. However, be aware that the H 

+
3  ion is stable. Discovered by

J. J. Thomson in 1911, this simplest of all polyatomic molecules provides important 
cosmic spectral lines for astrophysicists and a calculation benchmark for quantum 
chemists.

It should also be clear now why He atoms do not bond together to form He2. 
There are no valence electrons that can be shared. As two He atoms approach each 
other, the bonding and antibonding molecular orbitals form, just as they do for H2; 
however, each orbital can accommodate only two electrons (with spins antiparallel), 
so two of the four electrons in the He2 system cannot remain in the 1s atomic states 
but must be in the higher-energy antibonding orbital. The net effect is that He2 does 
not form as a stable bond. At low temperatures or high pressures, He atoms do bond 
together, but the bonds are very weak and are due to van der Waals forces, which we 
will discuss in Section 9-3. The bonding is so weak that at atmospheric pressure He 
boils at 4.2 K, and it does not form a solid at any temperature unless the pressure is 
greater than about 20 atm.

Covalent or Ionic?
When two identical atoms bond, as in homonuclear diatomic molecules such as O2 or 
N2, the bonding is purely covalent. Since the wave functions of the two atoms are 
exactly alike, neither atom dominates and the electrons are completely shared between 
them. However, the bonding of two dissimilar atoms is often a mixture of covalent 
and ionic bonding. Even in NaCl, the electron donated by sodium to chlorine has 
some probability of being near the sodium atom because its wave function does not 
suddenly fall to zero. Thus, this electron is partially shared in a covalent bond, 
although this bonding is only a small part of the total bond, which is mainly ionic.

A measure of the degree to which a bond is ionic or covalent can be obtained from 
the electric dipole moment of the molecule. For example, if the bonding in NaCl were 
purely ionic, the center of positive charge would be at the Na 

+ ion and the center of 
negative charge would be at the Cl 

- ion. The electric dipole moment would have the 
magnitude

	 pionic = er0� 9-3

where r0 is the equilibrium separation of the ions. Thus, the dipole moment of NaCl 
would be

pionic = er0 = 11.60 * 10-19 C2 12.36 * 10-10 m2 = 3.78 * 10-29 C # m

The actual measured electric dipole moment of NaCl is

pmeasured = 3.00 * 10-29 C # m

A purely covalent molecule would be expected to have an electric dipole moment of 
zero. We can define the ratio of pmeasured to pionic as the fractional amount of ionic 
bonding. For NaCl, this ratio is 3.00>3.78 = 0.79. Thus, the bonding in NaCl is 
about 79 percent ionic and 21 percent covalent.

EXAMPLE 9-3	 Bonding in LiH ​ The measured electric dipole moment of LiH is 
1.96 * 10-29 C # m. This molecule is among those listed in Table 9-3 (in the More 
section Other Covalent Bonds on the home page) as being covalent s-bonded. What 
portion of the LiH bond is covalent?

Although the H3 molecule 
is not bound, the H+

3 
ion is! Discovered by 
J. J. Thomson in 1911 
and lacking a stable 
excited state, H+

3  is used 
as a probe in Jupiter’s 
atmosphere and serves 
as the benchmark for 
quantum chemistry 
calculations for 
polyatomic molecules.

Covalently bonded 
fullerene molecules have 
been assembled into 
nanotubes, that is, tubes 
with diameters in the 
nanometer range. Adding 
a few impurity atoms per 
molecule turns fullerene 
into a superconductor 
(see Section 10-8).
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SOLUTION
The equilibrium separation of LiH from the table is 0.159 nm. If it were a purely 
ionically bonded molecule, its dipole moment pionic would be

pionic = 11.60 * 10-19 C2 10.159 * 10-9 m2 = 2.54 * 10-29 C # m

The fractional amount of the bond that is ionic is 1.96>2.54 = 0.77. Thus, LiH is 
only about 23 percent covalently s-bonded.

More
�In addition to the s-bonded H2 molecule, there are many other cova-
lently bonded molecules involving shared pairs of s electrons, s and p 
electrons, and p electrons. Important among these are the s-p bonds 
involving carbon that are the basis for the vast array of hydrocarbon 
molecules and compounds. Several examples, including the remark-
able fullerenes, are discussed in Other Covalent Bonds on the home 
page: www.whfreeman.com/tiplermodernphysics6e. See also Equa-
tions 9-4 and 9-5 here, as well as Tables 9-3 through 9-6 and Fig-
ures 9-9 through 9-17.

More

Exploring
9-3  Other Bonding Mechanisms

The two bonding mechanisms that we have discussed thus far, ionic and covalent, 
account for a large fraction of the cases in which atoms combine to form molecules. 
As is described in Chapter 10, when atoms combine on a larger scale to form solids, 
these exact same mechanisms are responsible for the bonding in many solids. In addi-
tion to these types of bonding, two other types of bonding occur in solids. One of these, 
molecular bonding, or dipole-dipole bonding, also occurs in the formation of many 
large molecules from smaller molecules and will be discussed in this section. The sec-
ond type, metallic bonding, is responsible for the structure of metals in the solid state 
and has no single-molecule version or counterpart. For that reason, our discussion of 
metallic bonding will be deferred to Chapter 10.

Dipole-Dipole Bonding

It was first suggested by J. D. van der Waals5 in 1873 that any two separated molecules 
will be attracted toward each other by electrostatic forces. Similarly, atoms that do not 
otherwise form ionic or covalent bonds will be attracted to one another by the same 
sort of weak electrostatic forces. The practical result of this is that at temperatures low 
enough so that the disruptive effects of thermal agitation are negligible, all substances 
will condense into a liquid and then a solid form. (Recall that helium is the only ele-
ment that does not solidify at any temperature under its own vapor pressure.) The rel-
atively weak electrostatic forces responsible for this sort of intermolecular attraction 
arise because of the electrostatic attraction of electric dipoles.

The electric field due to an electric dipole is illustrated in Figure 9-18a. The elec-
tric field Ed at point A due to the dipole is given by

	 Ed = k c p

r 3 -
31p # r2

r 5  r d 	 9-6

A few of many 
applications: most 
adhesives (glues) depend 
on dipole-dipole bonding 
for their action. Thousands 
of tiny ( 2 * 10-7 m) 
spatula-shaped hairs 
on the feet of geckos 
(small lizards) bond to 
surfaces with dipole-dipole 
forces, enabling them to 
easily walk on walls and 
ceilings. Some asteroids 
less than about 100 m 
across consisting of dust 
and rocks are too small 
to be bound by gravity; 
dipole-dipole forces hold 
them together.
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whose magnitude for r W a is

	 Ed =
kqa

r 3 =
kp1

r 3 	 9-7

where  p1  = qa is the dipole moment.6 Thus, the electric field of the dipole, and 
hence the electric force on a charge, falls off as 1>r 3. This result, which is correct 
even if the point A is not on the perpendicular, is to be compared with the 1>r 2 depen-
dence of the Coulomb force that occurs in the covalent and ionic bonds: the force on 
a test charge due to the dipole qa is weaker at a distance r than that due to a charge q.
A second dipole p2 that happens into the vicinity of p1 will then orient itself along 
the Ed field lines as illustrated in Figure 9-18b as a result of the electric force on the 
charges.

The potential energy of the second dipole p2 in the field of p1 is given by

	 U = -p2
# Ed	 9-8

and, since Ed falls off like 1>r 3, the electric force F1=  -0U>0r2 between two perma-
nent dipoles falls off as 1>r 4. Thus, it is attractive (F is negative), relatively weak, and 
of short range.

Polar Molecules
It is then not hard to see physically why molecules with permanent electric dipole 
moments—so-called polar molecules such as H2O and NaCl—will attract other polar 
molecules. Consider the H2O molecule as an example. Although the molecule is elec-
trically neutral, its bonding is partially ionic, so the electrons tend to be concentrated 
nearer the oxygen atom, making it look like the negative end of a dipole. The two 
protons then look like the positive end of the dipole. There will then be a mutual attrac-
tion between the molecule and other nearby molecules with potential energy given by 
Equation 9-8 (see Figure 9-19). Pairs of polar molecules will thus move closer to each 
other, decreasing their potential energy, until the combined effects of the increasing 
nuclear repulsion and the exclusion principle produce a minimum in the total potential 
energy similar to those of Figures 9-2 and 9-8b. For H2O the resulting bonding energy 
is about 0.5 eV per molecule. Although this is only about 10 percent of the strength of 
the H2OH bond in the water molecule, it is this dipole-dipole force that bonds H2O 
molecules to one another to form ice and is responsible in part for the beautiful hexago-
nal patterns that we see in snowflakes (see Figure 9-19c).

When dipole-dipole bonds between molecules with permanent dipole moments 
involve hydrogen, as is the case for water, the bond is referred to as a hydrogen bond. 
The hydrogen bond is of enormous importance since it is the bonding mechanism 
responsible for the cross-linking that allows giant biological molecules and polymers 

Figure 9-18  (a) The electric field Ed at a point A on a line perpendicular to the axis of an 
electric dipole p1 = qa. (b) The field of Ed acts on a second dipole p2 to orient it along the 
field lines. The force on a charge due to p1 is  1>r 3.
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to hold their fixed shape. For example, it is the hydrogen bond that forms the linkage 
between the two strands of the double helix DNA molecule. It is the weakness of 
the hydrogen bonds relative to the covalent/ionic bonds along each strand that 
allows the two strands to unwind from each other in the DNA molecular replication 
process. Notice that the hydrogen bond can be viewed as the sharing of a proton by two 
negatively charged atoms, oxygen atoms in the case of water (see Figure 9-19). In this 
way it is similar to the sharing of electrons that is responsible for the covalent bond. 
Hydrogen bonding is facilitated by the small mass of the proton and the absence of 
inner-core electrons.

Nonpolar Molecules
A nonpolar molecule will be polarized by the field of a polar molecule and thus have an 
induced dipole moment and be attracted to the polar molecule. If p2 in Figure 9-18b is 
an induced dipole, then

	 p2 = aEd	 9-9

where a is a constant characteristic of the nonpolar molecule called the polarizability. 
In this case we expect the potential energy of the interaction to fall off as 1>r 6 since we 
have from Equations 9-8 and 9-9 that

	 U = -p2
# Ed = -aE2

d = -ak2
 p2

1>r 6	 9-10

Once again, the energy is negative, signifying that the force between the dipoles is 
attractive. The force F = -0U>0r is thus proportional to 1>r 7; that is, the force is very 
short range, dropping rapidly with increasing r. Indeed, increasing the separation of the 
molecules by a factor of 2 reduces the attractive force between them to only 0.008 of 
its original value.

Perhaps surprisingly, two molecules, neither of which has a permanent dipole 
moment, can also attract each other via the mechanism just described. It is somewhat 
harder to see why an attractive force exists between two nonpolar molecules. Though 
the average dipole moment p of a nonpolar molecule is zero, the average square dipole 
moment p2 is not because the electrons are in constant motion and at any given instant 
there will be an excess or deficiency of them in one part or another of the molecule. 
A measurement that we might do in the laboratory reveals the average value (zero), 
not the instantaneous value. The instantaneous dipole moment of a nonpolar molecule 
is, in general, not zero. When two nonpolar molecules are nearby, the fluctuations in 
the instantaneous dipole moments tend to be correlated so as to produce attraction, 

Figure 9-19  (a) Schematic of four H2O molecules. The water molecules’ permanent 
dipole moments are shown by the vectors p. (b) The four polar water molecules
represented as electric dipoles. Notice that the attractive dipole-dipole force tends to align 
the dipoles so that the nearest neighbors of each charge are charges of the opposite sign. 
(c) A snowflake—one result of dipole-dipole bonding.
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as illustrated in Figure 9-20. The potential energy is again given approximately by 
Equation 9-10, so that the potential energy is proportional to 1>r 6 and the attractive 
force is proportional to 1>r 7. This attractive force between nonpolar molecules is 
called the van der Waals force7 or, occasionally, the London dispersion force after 
Fritz London, the German physicist who in 1930 first explained the physical origin of 
the interaction.

As van der Waals first suggested, dipole-dipole forces act between all molecules 
and, in addition, between all atoms. They are the only forces that occur between rare 
gas atoms, without which the atoms of these elements would not condense into liquids 
or form solids. (The single exception to the latter is He, whose quantum mechanical 
zero-point energy exceeds the minimum of the potential energy resulting from Equa-
tion 9-10 and core repulsion.) The dipole-dipole forces between molecules, although 
relatively weak, are also responsible for the physical phenomena of surface tension 
and friction.

EXAMPLE 9-4	 Predicting Relative Boiling Points ​ Chemists and biologists 
predict the relative boiling points of compounds on the basis of their dipole-dipole 
interactions. Figure 9-21a illustrates three structural forms of the molecule dichlo-
robenzene (DCB), C6H4Cl2. The form o-DCB is a termite insecticide; m-DCB 
is an organic solvent; p-DCB is a pesticide and a base for some deodorants.
(a) Which of the two compounds o-DCB and m-DCB would be expected to have 
the higher boiling point? (b) Which of the two compounds o-DCB and p-DCB 
would be expected to have the higher boiling point?

Scientists have recently 
succeeded in trapping 
a sample of molecules
in a single quantum 
level at a temperature 
in the millikelvin range. 
This ability raises the 
possibilities for, 
among other things, 
high-precision molecular 
spectroscopy and 
producing molecular 
Bose-Einstein 
condensates.

Figure 9-20  ​Nonpolar molecules have, 
on average, symmetric charge 
distributions, as illustrated by the pair of 
molecules at the top of the figure. 
However, instantaneous fluctuations in 
the electron distribution are asymmetric 
and tend to be correlated with those of 
nearby molecules as shown in the other 
three examples. The correlated 
distributions lead to an attractive force 
proportional to 1>r 7 that draws the 
molecules closer to one another as shown.

+
+ –
–

+–

+
– +
–

+–

+
– +
–

+–

–
+ –
+

–+

–
+ –
+

–+

–

++
– –

+ –

++
– –

+

+
+ –
–

+–

r

The 2 nm height of DNA molecules is 
readily imaged by an atomic force 
microscope (AFM). [Taken from
www.di.com, Digital Instruments, Veeco 
Metrology Group, Santa Barbara, CA.]
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SOLUTION
Molecules with dipole moments interact via dipole-dipole forces: the larger 
the dipole moments, the stronger the interaction (see Equations 9-7 and 9-8). In 
Figure 9-21b the dipole moments of the individual C–Cl bonds are represented by 
small arrows.
(a) � The dipole moments of the o-DCB and m-DCB molecules are each shown by 

the vector diagrams in Figure 9-21b. The magnitude of the dipole moment of 
o-DCB is larger than that of m-DCB; therefore, o-DCB would be expected to 
have the higher boiling point. (The experimental values for the compounds are 
given in Table 9-7.)

(b) � The dipole moments of the o-DCB and p-DCB molecules are each shown
by the vector diagrams in Figure 9-21b. The dipole moments of the individual 
CiCl bonds in p-DCB cancel each other, so the p-DCB molecule has no 
dipole moment. (It is a nonpolar molecule.) The magnitude of the dipole 
moment of o-DCB is greater than zero; therefore, o-DCB would again be 
expected to have the higher boiling point.

 Table 9-7  DCB Dipole Moments

 
Compound

Dipole moment 
C ~m

Boiling point 
(C)

Melting point 
(C)

ortho-DCB 8.35 * 10-30 180 217

meta-DCB 5.74 * 10-30 173 225

para-DCB 0 174    53

Source:  Data from Handbook of Chemistry and Physics, 90th ed. (New York: Chemical
Rubber Co., 2009).

Figure 9-21  (a) Structural 
forms of dichlorobenzene 
C6H4Cl2. (b) Dipole moments 
of the CiCl bonds.

Tipler: Modern Physics 6/e
Perm fig.: 921,  New fig.: 09-21
First Draft: 2011-06-08
2nd Pass: 2011-06-13
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Questions

1.	 Why would you expect the separation distance between the two protons to be 
larger in the H 

+
2  ion than in the H2 molecule?

2.	 Would you expect the NaCl molecule to be polar or nonpolar?

3.	 Would you expect the N2 molecule to be polar or nonpolar?

4.	 Why does the H 

+
2 -type bond tend to be unstable unless the nuclei have the

same Z?

5.	 Does neon occur naturally as Ne or Ne2? Why?

9-4  Energy Levels and Spectra
of Diatomic Molecules 
As is the case with an atom, a molecule often emits electromagnetic radiation when it 
makes a transition from an excited energy state to a state of lower energy. Conversely, 
a molecule can absorb radiation and make a transition from a lower energy state to a 
higher energy state. The study of molecular emission and absorption spectra provides 
us with information about the energy states and structures of molecules. For simplic-
ity, we will consider only diatomic molecules here. The spectra of larger molecules 
can be analyzed using similar techniques.

As might be expected, the energy levels of molecular systems are even more 
complex that those of atoms. The energy of a molecule can be conveniently separated 
into three parts: electronic, due to the excitation of its electrons; vibrational, due to 
the oscillations of the atoms of the molecule; and rotational, due to the rotation of the 
molecule about an axis through its center of mass. Fortunately, the magnitudes of 
these energies are sufficiently different that they can be treated separately. Electrons 
in molecules can be excited to higher states, just as those in atoms. For example, a 1s 
electron in the H2 molecule can be excited to a 2p level, emitting a photon as it returns 
to the ground state. The energies due to the electronic excitations of a molecule are of 
the order of magnitude of 1 eV, the same as for the excitation of atoms. We have 
already discussed such transitions and will not consider them further in this section. 
The energies of vibration and rotation are about 1>100 to 1>1000 times smaller and 
will be the focus of our attention.

Rotational Energy Levels
Classically, the kinetic energy of rotation is

	 E =
1

2
 Iv2 =

1Iv22

2I
=

L2

2I
	 9-11

where I is the moment of inertia, v the angular velocity of rotation, and L = Iv the 
angular momentum. The solution of the Schrödinger equation for the rotation of a 
rigid body leads to the quantization of the angular momentum, with values given by

	 L2 = /1/ + 12U2  / = 0, 1, 2,c 	 9-12

where / is the rotational quantum number. This is the same quantum condition on 
angular momentum that holds for the orbital angular momentum of an electron in an 
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atom. Note, however, that L in Equation 9-11 refers to the angular momentum of the 
entire molecule rotating about an axis through its center of mass. The energy levels of 
a rotating molecule are therefore given by

	 E =
/1/ + 12U2

2I
= /1/ + 12E0r / = 0, 1, 2,c 	 9-13

where E0r is the characteristic rotational energy of a particular molecule, which is 
inversely proportional to its moment of inertia:

	 E0r =
U2

2I
	 9-14

The rotational-energy level scheme is shown in Figure 9-22. Transitions between these 
levels produce the pure rotational spectrum of a molecule. Although all diatomic mole-
cules have rotational energy levels, those without permanent dipole moments (symmetric 
molecules such as H2, Cl2, or CO2) cannot emit or absorb electric dipole radiation by 
only changing the rotational quantum state and thus do not have a pure rotational spec-
trum. For molecules that do have dipole moments and emit pure rotational spectra, the 
quantum number / is subject to the selection rule D/ = {1, just as it was for the atomic 
electrons. Thus, the energy separation between adjacent rotation states is given by

	 DE/, /+1 =
3 1/ + 12 1/ + 22 - /1/ + 12 4U2

2I
=
1/ + 12U2

I
	 9-15

A measurement of the rotational energy of a molecule from its rotational spectrum 
can be used to determine the moment of inertia of the molecule, which can then be 
used to find the equilibrium separation of the atoms in the molecule, that is, the bond 
length. The moment of inertia about an axis through the center of mass of a diatomic 
molecule (see Figure 9-23) is

I = m1 r 2
1 + m2 r 2

2

Using m1 r1 = m2 r2, which relates the distances r1 and r2 from the atoms to the center 
of mass, and r0 = r1 + r2 for the separation of the atoms, we can write the moment of 
inertia as

	 I = m r 2
0� 9-16

where m, the reduced mass, is

	 m =
m1 m2

m1 + m2
� 9-17

If the masses are equal (m1 = m2), as in H2 and O2, the reduced mass m = m>2 and

	 I =
1

2
 mr 2

0� 9-18

A unit of mass convenient for discussing atomic and molecular masses is the unified 
mass unit u, which is defined as 1>12 of the mass of neutral carbon-12 (12C) atom. 
The mass of one 12C atom is thus 12 u. The mass of an atom in unified mass units is 
therefore numerically equal to the molar mass of the atom in grams. The unified mass 
unit is related to the gram and kilogram by

	 1 u =
1g

NA

=
10-3 kg

6.0221 * 1023 = 1.6605 * 10-27 kg = 931.5 * 106 eV	 9-19

where NA is Avogadro’s number.

Figure 9-22  Energy levels 
and allowed transitions for a 
rotating rigid body as given 
by Equation 9-13.
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Figure 9-23  Diatomic 
molecule rotating about 
an axis through its center 
of mass.
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EXAMPLE 9-5	 The Reduced Mass of HCl ​ Compute the reduced mass of the 
HCl molecule.

SOLUTION

	 1.	 The reduced mass m is given by 
Equation 9-17:

m =
m1 m2

m1 + m2

	 2.	 From the periodic table on the inside 
back cover of this book, the mass of 
the hydrogen atom is 1.01 u and that 
of the chlorine atom is 35.5 u. 
Substituting these gives

 m =
11.01 u2 135.5 u2
1.01 u + 35.5 u

 m = 0.982 u

Remarks:  Note that the reduced mass of the HCl molecule is less than that of a 
single hydrogen atom.

EXAMPLE 9-6	 Equilibrium Separation in CO ​ The energy difference DE between 
the / = 0 and / = 1 rotational levels in the CO molecule is found experimentally 
from measurement of the wavelength l = 2.6 mm of the corresponding transition. 
For CO, DE is equal to 4.77 * 10-4 eV. Find the equilibrium separation, or bond 
length r0, of the CO molecule.

SOLUTION

	 1.	 The bond length r0 is given
in terms of the moment of 
inertia I of the molecule by 
Equation 9-16:

I = m r 2
0 or r0 = A I

m

	 2.	 I in terms of DE is given by 
Equation 9-15:

DE/, /+1 =
1/ + 12U2

I
 or I =

1/ + 12U2

DE/, /+1

	 3.	 Substituting / = 0 and 
DE = 4.77 * 10-4 eV
into step 2 gives

I =
U2

4.77 * 10-4 eV

	 4.	 The reduced mass of the 
CO molecule is computed 
from Equation 9-17 using 
atomic mass values from 
the periodic table:

 m =
m1 m2

m1 + m2
=
112 u2 116 u2
12 u + 16 u

 = 6.86 u

	 5.	 Substituting these results into step 1 gives

 r0 = a U2

4.77 * 10-4 eV * 6.86 u
b

1>2

 r0 =
1.055 * 10-34

3 14.77 * 10-4 eV2 11.60 * 10-19 J>eV2 16.86 u2 11.66 * 10-27 kg>u2 41>2

 r0 = 0.133 nm
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The rotational energy levels are several orders of magnitude smaller than those 
due to electron excitation, which have energies of the order of 1 eV or higher. For 
example, the characteristic rotational energy of the O2 molecule, whose equilibrium 
separation is about 0.1 nm, is 2.59 * 10-4 eV calculated from Equation 9-14. Transi-
tions within a given set of rotational energy levels yield photons in the far infrared 
region of the electromagnetic spectrum. Notice that the rotational energies are also 
small compared with the typical thermal energy kT at normal temperatures. For T = 
300 K, for example, kT is about 2.6 * 10-2 eV. Thus, at ordinary temperatures, a 
molecule can easily be excited to the lower rotational energy levels by collisions with 
other molecules. But such collisions cannot excite the molecule to electronic energy 
levels above the ground state.

Vibrational Energy Levels
The molecular vibrational energies are a bit harder to estimate than were the rota-
tional energies. Our discussion is aided by the fact that the molecular potential energy 
functions of Figures 9-2, 9-7, and 9-8b can be closely approximated by parabolas in 
the vicinity of the equilibrium point (see Figure 9-24b). Thus, we can use the results 
of our study of the simple harmonic oscillator in Chapter 6. The energy levels are 
given by

	 Ev = 1n + 1>22hf  n = 0, 1, 2, 3,c � 9-20

where f is the frequency of the vibration and v is the vibrational quantum number.8 
An interesting feature of this result is that the energy levels are equally spaced with 
intervals DEn, n+1 = hf  as shown in Figure 9-24a. The frequency of vibration of a 
diatomic molecule can be related to the force exerted by one atom on the other. 

Figure 9-24  (a) The energy levels of the molecular vibrations are equally spaced in the vicinity of the equilibrium spacing
of the atoms. (b) A harmonic oscillator potential fitted to the actual potential energy function of the NaCl molecule shown in 
Figure 9-2b.
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Consider two objects of mass m1 and m2 connected by a spring of force constant K. 
The frequency of oscillation of this system is (see Section 6-5)

	 f =
1

2AK
m

� 9-21

where m is the reduced mass given by Equation 9-17. The effective force constant of a 
diatomic molecule can thus be determined from a measurement of the frequency of 
oscillation of the molecule.

We could get a good estimate of f by fitting the one-dimensional parabolic har-
monic oscillator potential energy function for the molecule as illustrated in Figure 9-24b, 
but for simplicity we can get a rough idea of the order of magnitude of the vibrational 
energies by observing that the energy of an atom of mass m in a square well of width 
r0 is (Figure 9-25)

En = n2 
h2

8mr 2
0

= n2 
42U2

8mr 2
0

= n2 
2

2
 

U2

mr 2
0

Except for the factor 2>2  5 (and the n2), this expression is the same as the 
characteristic rotational energy E0r; thus we expect the vibrational energies to be 
somewhat larger than the rotational energies.

The selection rule for transitions between vibrational states (of the same electronic 
state) requires that n change only by {1, so the energy of a photon emitted by such a 
transition is hf and the frequency is the same as the frequency of vibration. A typical 
measured frequency of a transition between vibrational states is 5 * 1013 Hz, which 
gives for the order of magnitude of vibrational energies

E  hf = 14.14 * 10-15 eV # s2 15 * 1013 s-12 = 0.2 eV

Thus, a typical vibrational energy is actually about 1000 times greater than the typical 
rotational energy E0r of the O2 molecule we noted above and about 8 times greater 
than the typical thermal energy kT = 0.026 eV at T = 300 K. In contrast with the 

Figure 9-25  Molecular potential. The simple harmonic oscillator approximation, used to 
calculate the energy levels, and a square well approximation, used to estimate the order of 
magnitude of the energy levels, are each indicated by dashed curves.
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rotational levels, the molecular vibrational states are not readily excited by collisions 
between molecules at ordinary temperatures.

EXAMPLE 9-7	 Force Constant of CO ​ The observed vibrational frequency of 
the CO molecule is 6.42 * 1013 Hz. What is the effective force constant for this 
molecule?

SOLUTION

	 1.	 The force constant K is given in terms of the
vibrational frequency f by Equation 9-21:

f =
1

2
 AK

m

	 2.	 The reduced mass m of the CO molecule was
computed in step 4 of Example 9-6: m = 6.86 u

	 3.	 Solving Equation 9-21 for K and substituting the values of f and m gives

 K = 12f22m

 = 12 * 6.42 * 1013 Hz2216.86 u2 11.66 * 10-27 kg>u2
 = 1.86 * 103 N>m

Emission Spectra
Figure 9-26 shows schematically some electronic, vibrational, and rotational energy 
levels of a diatomic molecule. The vibrational levels are labeled with the quantum 
number v and the rotational levels with the quantum number /. The lower vibrational 
levels are evenly spaced, with DE = hf. For higher vibrational levels, the approxima-
tion that the vibration is simple harmonic is not valid and the levels are not quite 
evenly spaced. The actual potential spreads somewhat more rapidly, as can be seen in 

Figure 9-26  Electronic, 
vibrational, and rotational 
energy levels of a diatomic 
molecule. The rotational 
levels are shown in an 
enlargement of the v = 0
and v = 1 vibrational levels
of the electronic ground state.
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Figure 9-25, and the spacing of the vibrational levels becomes closer for large values 
of the quantum number v. Notice in Figure 9-26 that the potential energy curves 
representing the force between the two atoms in the molecule do not have exactly the 
same shape for the electronic ground and excited states. This implies that the funda-
mental frequency of vibration f is different for different electronic states. For transi-
tions between vibrational states of different electronic states, the selection rule 
Dv = {1 does not hold. Such transitions result in the emission of photons of wave-
length in or near the visible spectrum.

The spacing of the rotational levels increases with increasing values of /. Since 
the energies of rotation are so much smaller than those of vibrational or electronic 
excitations of a molecule, molecular rotation shows up in molecular spectra as a fine-
structure splitting of the spectral lines. When the fine structure is not resolved, the 
spectrum appears as bands as shown in Figure 9-27a. Close inspection of these bands 
reveals that they have a fine structure due to the rotational energy levels, as shown in 
the enlargement in Figure 9-27b.

Absorption Spectra
Much molecular spectroscopy is done using infrared absorption techniques in which 
only the vibrational and rotational energy levels of the ground-state electronic level 
are excited. Consequently, we will now direct our attention to what is called the 
vibration-rotation spectrum. For ordinary temperatures, the vibrational energies are 
sufficiently large in comparison with the thermal energy kT that most of the mole-
cules are in the lowest vibrational state v = 0, for which the energy is E0 =

1
2 hf . The 

transition from v = 0 to v = 1 is the predominant transition in absorption. The rota-
tional energies, however, are sufficiently smaller than kT that the molecules are dis-
tributed among several rotational energy states, the relative number in each state 
being determined by the Boltzmann factor. If the molecule is originally in a rotational 
state characterized by the quantum number /, its initial energy, in addition to that of 
the electronic state, is

	 E/ =
1
2 hf + /1/ + 12E0r� 9-22

where E0r is given by Equation 9-14. From this state, two transitions are permitted by 
the selection rules. For a transition to the next highest vibrational state v = 1 and a 
rotational state characterized by / + 1, the final energy is

	 E/+1 =
3
2 hf + 1/ + 12 1/ + 22E0r� 9-23

For a transition to the next-highest vibrational state and to a rotational state character-
ized by / - 1, the final energy is

	 E/-1 =
3
2 hf + 1/ - 12/E0r� 9-24

The energy differences are

	 DE/S/+1 = E/+1 - E/ = hf + 21/ + 12E0r� 9-25

where / = 0, 1, 2, c, and

	 DE/S/-1 = E/-1 - E/ = hf - 2/E0r� 9-26
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where / = 1, 2, 3, c. (In Equation 9-26, / begins at / = 1 because from / = 0, 
only the transition / S / + 1 is possible.) Figure 9-28 illustrates these transitions. 
The frequencies of these transitions are given by

	 f/S/+1 =
DE/S/+1

h
= f +

21/ + 12E0r

h
  / = 0, 1, 2,c � 9-27

and

	 f/S/-1 =
DE/S/-1

h
= f -

2/E0r

h
  / = 1, 2, 3,c � 9-28

Figure 9-27  Part of the emission spectrum of N2. (a) These components of the band are due to transitions 
between the vibrational levels of two electronic states, as indicated in the diagram. (b) An enlargement of
part of (a) shows that the apparent lines in (a) are in fact band heads with structure caused by rotational levels. 
[Courtesy of J. A. Marquisee.]
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The frequencies for the transitions / S / + 1 are thus f + 21E0r>h2, f + 41E0r>h2, 
f + 61E0r>h2, and so forth; those corresponding to the transition / S / - 1 are 
f - 21E0r>h2, f - 41E0r>h2, f - 61E0r>h2, and so forth. We therefore expect the 
absorption spectrum to contain frequencies equally spaced by 2E0r>h except for a 
gap of 4E0r>h at the vibrational frequency f as shown in Figure 9-29. A measure-
ment of the position of the gap gives f and a measurement of the spacing of the 
absorption peaks gives E0r, which is inversely proportional to the moment of inertia 
of the molecule.

Figure 9-28  Absorptive transitions between the lowest vibrational states v = 0 and v = 1 in a 
diatomic molecule. These transitions obey the selection rule D/ = {1 and fall into two bands.
The energies of the / S / + 1 band are hf + 2E0r, hf + 4E0r, hf + 6E0r, and so forth, whereas 
the energies of the / S / - 1 band are hf - 2E0r, hf - 4E0r, hf - 6E0r, and so forth.

 = 4

 = 3

 = 2

 = 1
 = 0

Energy

ν = 1

 = 4

 = 3

 = 2

 = 1
 = 0

 →  + 1  →  – 1

ν = 0

hf

20E0r

12E0r

6E0r

2E0r
0

Figure 9-29  Expected absorption spectrum of a diatomic molecule. The right branch 
corresponds to the transitions / S / + 1 and the left branch to the transitions / S / - 1.
The lines are equally spaced by 2E0r. The energy midway between the branches is hf, where f 
is the frequency of vibration of the molecule.
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Figure 9-30 shows the absorption spectrum of HCl. The double-peak structure 
results from the fact that chlorine occurs naturally in two isotopes, 35Cl and 37Cl, 
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which results in slightly different moments of inertia. If all of the rotational levels 
were equally populated initially, we would expect the intensities of each absorption 
line to be equal. However, the population n1E/2 of a rotational level / is proportional 
to the density of states g1E/2, which equals the degeneracy of the level in this case, 
that is, the number of states with the same value of /, which is 2/ + 1, and to the 
Boltzmann factor e-E/>kT, where E/ is the energy of the state.

	 n1E/2 = g1E/2e-E/>kT� 9-29

or

	 n1E/2 = 12/ + 12e-312 hf+/1/+12E0r4� 9-30

The (2/ + 1)-fold degeneracy of the rotational state with angular momentum
/U makes the thermal equilibrium population proportional to 12/ + 12
exp3-/1/ + 12U2>2IkT4 . Therefore, the / = 0 state is usually not the most densely 
populated state at room temperature. For low values of /, the population increases 
slightly because of the degeneracy factor, whereas for higher values of /, the population 
decreases because of the Boltzmann factor. The intensities of the absorption lines there-
fore increase with / for low values of / and then decrease with / for high values of /, as 
can be seen from the figure. We can find out where the maximum population of the 
rotational states is located and, hence, which lines will be the most intense by differenti-
ating Equation 9-30 with respect to / and setting dn>d/ equal to zero. The result is

	 /max =
1

2
 cA 4kT

h2>mr 2 - 1 d � 9-31

For a measurement made at room temperature, kT = 0.026 eV and thus /max  3. 
This, too, can be seen in Figure 9-30.

Notice also in Figure 9-30 that the spacing between adjacent peaks, which we 
expected to be constant and equal to 2E0r on the basis of our calculation above, is in 

Figure 9-30  Absorption spectrum of the diatomic molecule HCl. The double-peak structure results from the two 
isotopes of chlorine, 35Cl (abundance 75.5 percent) and 37Cl (abundance 24.5 percent). The intensities of the peaks 
vary because the population of the initial state depends on /.
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402	 Chapter 9  Molecular Structure and Spectra

fact not constant. The reason for this is our assumption that the moment of inertia of 
the molecule is constant. The rotation of the molecule tends to increase the separation 
of the atoms and hence increase the moment of inertia and decrease the rotational 
energy. As might be expected and the figure also shows, this effect becomes larger as / 
increases.

As mentioned above, the gap in the spectrum in Figure 9-30 is due to the absence 
of a transition beginning on the / = 0 level in the / S / - 1 group of peaks. The cen-
ter of the gap is at the characteristic oscillation frequency f of the molecule given by 
Equation 9-21. From the figure we see that f for HCl is about 8.56 * 1013 Hz, or about 
0.36 eV, corresponding to a force constant K of about 476 N>m. Table 9-8 lists the rota-
tional and vibrational constants for several diatomic molecules. All diatomic molecules9 
have a gap at f in their vibration-rotation spectra; however, many polyatomic molecules 
have more complex vibrations and rotations, one result of which is that D/ = 0 may be 
allowed; that is, vibrational energy may change without an accompanying rotational 
transition. In that event, a line will occur in the vibration-rotation spectrum at the fre-
quency f. Such lines are given the rather enigmatic name of Q branch.10

9-5  Scattering, Absorption,
and Stimulated Emission 
Scattering
In the interactions between radiation incident on atomic or molecular systems, pho-
tons may be scattered both elastically and inelastically. The process by which photons 
scatter elastically, that is, without a change in their frequency, is called elastic or

 Table 9-8 � Rotational and vibrational constants for
selected diatomic molecules

Molecule
Equilibrium 

separation r0 (nm)
Frequency f

(Hz) E0r (eV)

H2 0.074 1.32 * 1014 7.56 * 10-3

Li2 0.267 1.05 * 1013 8.39 * 10-5

O2 0.121 4.74 * 1013 1.78 * 10-4

LiH 0.160 4.22 * 1013 9.27 * 10-4

H35Cl 0.127 8.97 * 1013 1.32 * 10-3

Na35Cl 0.251 1.14 * 1013 2.36 * 10-5

K35Cl 0.279 8.40 * 1012 1.43 * 10-5

K79Br 0.294 6.93 * 1012 9.1 * 10-6

Symmetric molecules such as H2 or O2 have no electric dipole moment. The
vibration or rotation of these molecules does not involve a changing dipole moment, 
and there is no vibrational-rotational electric dipole absorption or radiation for these 
molecules.
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Rayleigh scattering since it was first described adequately by a classical scattering 
theory derived by Rayleigh in about 1900. Rayleigh scattering is illustrated in 
Figure 9-31d. In the classical theory, the oscillating electric field of the incident radi-
ation produces an oscillating acceleration of the atomic electrons, causing them to 
radiate electromagnetic waves of the same frequency as and in phase with the incident 
wave. Thus, the electrons of the target atoms and molecules absorb energy from the 
incident wave and re-emit, or scatter it, in all directions without changing its frequency. 

3
2

1

0
l

hf – ∆E01 = hf �

hf + ∆E01 = hf �

(a) (b)hf �

hf

hfhf

hf �

hf �

Fluorescence Resonance absorption

(c) (d )

Stimulated emission Rayleigh scattering

(e) (f )

Compton effect

(g)

Photoelectric effect

Raman scattering
hf

hf

Figure 9-31  Description of photon interactions with an atom. (a) The photon is absorbed and the atom, in 
an excited state, later emits one or more photons as it decays to a state of lower energy. This is a two-step 
process called fluorescence, and the emitted photons are uncorrelated with the incident photon. (b) If the 
energy of the incident photon matches one of the excitation energies of the atom, resonance radiation results. 
(c) The atom, in an excited state, is stimulated to make a transition to a lower state by an incident photon of 
just the right energy. The emitted and incident photons have the same energy and are coherent. The Rayleigh 
scattering process (d ) and Raman scattering (  f  ) differ from (a) and (b) in that they are single-step processes 
and there is a correlation between the incident and emitted photons. Parts (e) and (g) illustrate Compton 
scattering and the photoelectric effect, discussed in Chapter 3.
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Rayleigh scattering is the origin of the unmodified line in our discussion of the 
Compton scattering of x rays in Section 3-4 (see Figure 3-17). We saw there that if 
the incident wavelength l1 was large compared with the Compton shift l2 - l1, that 
is, visible wavelengths or larger, then the scattered wave always had a wavelength 
equal to the incident wavelength to within experimental accuracy regardless of 
whether the electron or atomic mass is used in Equation 3-25. So as l S , the quan-
tum explanation of Chapter 3 and Rayleigh’s classical explanation of elastic scatter-
ing agree. However, for incident wavelengths in the x-ray and gamma-ray regions of 
the spectrum, Compton scattering, shown in Figure 9-31e, becomes increasingly 
important for low-Z atoms whose electron binding energies are not large. In the 
gamma-ray region as l S 0, the photon energy becomes so large that even the most 
tightly bound electrons are freed in the process and the Compton effect becomes the 
dominate process.

The incident and scattered photons are also correlated in the inelastic scattering 
process illustrated in Figure 9-31f. Such scattering of light from molecules was first 
observed by the Indian physicist C. V. Raman11 and is known as Raman scattering or 
sometimes as the Raman effect. The scattered photon may have less energy than the 
incident photon or it may have greater energy if the molecule is initially in an excited 
vibrational or rotational energy state. Both possibilities are illustrated in Figure 9-31f. 
Thus, the scattered frequency is not the same as the incident frequency, nor is it 
related to a characteristic frequency of the molecule. It is found that for incident 
monochromatic radiation of frequency f, the scattered radiation contains not only the 
frequency f (Rayleigh scattering; see Figure 9-32), but also much weaker lines on 
either side of the Rayleigh line with frequencies given by

	 f 9 = f { Df 	 9-32

These are the Raman lines illustrated in Figure 9-32. If the incident frequency is var-
ied, the Raman lines are observed to move along the frequency axis at the same rate 
so that the difference Df between f and f 9 remains constant. It is this difference Df that 
corresponds to characteristic transitions of the scattering molecule.

Although the measurements of Df for each line in the Raman spectrum makes 
possible construction of the rotational levels for a given molecule,12 its quantum-
mechanical explanation is different than that of the rotational spectrum. In particular, 
the selection rule for the rotational quantum number in the Raman effect is D/ = 0, 
{2. The D/ = 0 value yields Rayleigh scattering, whereas D/ = {2 yields the 

Figure 9-32  The rotational Raman spectrum 
of N2. The alternating intensities, determined 
by the nuclear spins, are in the ratio of 1>2, 
corresponding with the I = 1 spin of the 
nitrogen nucleus. The dark central area is 
the result of the much more intense Rayleigh-
scattered portion of the incident wave. 
[R. Eisberg and R. Resnick, Quantum Physics,
2d ed. (New York: Wiley, 1985), p. 436.]

N2
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Raman lines. One can see how this comes about physically by studying the transitions 
shown in Figure 9-31f. An electron initially in the / = 0 state absorbs energy 
DE01 + DE12 from the incident photon of frequency f and emits energy DE12. Thus, 
the energy of the scattered photon is

	 hf 9 = hf - 1DE01 + DE122 + DE12 = hf - DE01� 9-33

or

f 9 = f - Df

where Df = DE01>h. If the electron is initially in the / = 1 state, then it absorbs 
DE12 from the incident photon and emits DE12 + DE01. Thus, the scattered photon 
has energy

	 hf 9 = hf - DE12 + 1DE12 + DE012 = hf + DE01� 9-34

or

f 9 = f + Df

Many Raman spectra have been studied. They provide a valuable source of infor-
mation regarding molecular quantum states, including, as was pointed out earlier, the 
structure of the rotational levels for homonuclear diatomic molecules. For example, 
the detailed understanding of the complex vibrations and rotations of the ammonia 
molecule referred to in Section 6-6 that enabled the development of the first atomic 
clocks was made possible by studies of the Raman rotational-vibrational spectrum of 
the NH3 molecule, the so-called ammonia inversion spectrum. Finally, Figure 9-31g 
illustrates the photoelectric effect, the final example of the interaction of radiation 
with matter, in which the absorption of the photon ionizes the atom or molecule. Like 
Compton scattering, this effect was discussed in Chapter 3 and will not be considered 
further here.

Absorption
Information about the energy levels of an atom or molecule is usually obtained from 
the radiation emitted when the atom or molecule makes a transition from an excited 
state to a state of lower energy. As mentioned in Section 9-4, we can also obtain 
information about such energy levels from the absorption spectrum. When atoms and 
molecules are irradiated with a continuous spectrum of radiation, the transmitted radi-
ation shows dark lines corresponding to absorption of light at discrete wavelengths. 
Absorption spectra of atoms were the first line spectra observed. Fraunhofer in 1817 
labeled the most prominent absorption lines in the spectrum of sunlight, among them 
the wavelengths absorbed by sodium in the Sun’s atmosphere. It is for this reason that 
the two intense yellow lines in the spectrum of sodium are called the Fraunhofer D 
lines. Since at normal temperatures atoms and molecules are in their ground states or 
in low-lying excited states, the absorption spectra are usually simpler than the emis-
sion spectra. For example, only those lines corresponding to the Lyman emission 
series are seen in the absorption spectrum of atomic hydrogen because nearly all the 
atoms are originally in their ground states. In a section on the home page in Chapter 6 
More section “Transitions Between Energy States,” we described how transitions 
between quantum states in an atomic system occur as a result of interaction with oscil-
lating electromagnetic fields. In particular, if the frequency greater than f12 is present 
in radiation incident on an atom whose ground-state and an excited-state energies 
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are respectively E1 and E2, then there is a probability that the atom will undergo a 
transition from the lower energy state E1, absorbing the energy hf12 = E2 - E1 from 
the radiation. This absorption of energy resulting from the interaction between the 
electric field of the radiation oscillating at f12 and the charge on the atomic electrons 
was first described quantum mechanically by Einstein, who expressed the probability 
of absorption per atom per unit time as B12 u1f2, where u(   f   ) is the energy density of 
the radiation per unit frequency and B12 is Einstein’s coefficient of absorption.

In addition to absorption, several other interesting phenomena occur when elec-
tromagnetic radiation—that is, photons—are incident on atoms or molecules. These, 
too, are illustrated in Figure 9-31. In Figure 9-31a a photon of energy hf is absorbed 
and the system makes a transition to the excited state. Later, the system makes a tran-
sition to a lower state and/or back to the ground state with the spontaneous emission 
of one or more photons via the mechanism described on the home page in the More 
section “Transitions Between Energy States” in Chapter 6. The radiation thus emitted 
is called fluorescence. If state 2 happens to be the first excited state, then this two-step 
process is called resonance absorption and the photon emitted is called resonance 
radiation, as shown in Figure 9-31b. As a result of motions that occur while the sys-
tem is in state 2, there is no correlation in direction or phase between the incident and 
emitted photons. While in state 2 the system has definite probabilities of making 
spontaneous transitions to each of the lower states as determined by the probability 
density given by Equation 6-52d in the More section. For example, the probability per 
atom per unit time of returning to state 1 with the spontaneous emission of a photon 
can be expressed by the quantity A21 (transitions per unit time). Notice that the recip-
rocal 1>A21 has the units of time per transition; that is, it is a measure of how long 
the system stays in state 2 before returning to state 1. This is ts, the mean lifetime
of the state defined as ts = 1>A21. For most atomic (electric dipole) transitions this 
characteristic time is of the order of 10-8 s. A21 is called Einstein’s coefficient of 
spontaneous emission.

Stimulated Emission
In addition to the spontaneous emission of fluorescent and resonant radiation with 
probability A21, which is independent of the energy density u(  f  ) of the incident radia-
tion, emission can also be induced to occur by the oscillating electromagnetic field of 
the incident radiation. Called stimulated emission, its probability does depend on 
u(  f  ). This phenomenon, like absorption and spontaneous emission, was first ana-
lyzed by Einstein (in 1917). The probability of stimulated emission per atom per unit 
time (transition rate) can be written as B21 u1  f 2, where B21 is called Einstein’s coeffi-
cient of stimulated emission. In this process the electric field of an incident photon 
with energy hf equal to the energy difference E2 - E1 in Figure 9-31c stimulates the 
atom or molecule in state 2 to emit a photon with energy E2 - E1 = hf , which is 
propagated in the same direction and with the same phase as the incident photon. 
Such photons (or radiation) are said to be coherent.

The relation between the three Einstein coefficients can be found as follows: 
Consider a system of atoms and radiation in thermal equilibrium at temperature T. Let 
N1 and N2 be the number of atoms occupying the states with energies E1 and E2. The 
ratio N2>N1 is determined by the Boltzmann factor, given by Equation 8-2 assuming 
the two states have the same degeneracy:

	
N2

N1
= e-1E2-E12>kT = e-hf>kT� 9-35

CCR

24
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This ratio represents a dynamic equilibrium in which the number of absorption transi-
tions 1E1 S E22 per unit time equals the sum of the number of spontaneous and stim-
ulated emissions 1E2 S E12 per unit time. Since the number of atoms making a 
transition (of any type) is proportional to the population of the state on which the tran-
sition begins and to the probability, we can express the dynamic equilibrium as

	 N1 B12 u1  f 2 = N21A21 + B21 u1  f 22� 9-36

Solving Equation 9-36 for the energy density u(  f  ) of the radiation yields

	 u1   f 2 =

A21

B21

N1

N2
 
B12

B21
- 1

� 9-37

Inserting N1>N2 from Equation 9-35, we have that

	 u1   f 2 =

A21

B21

B12

B21
 ehf>kT - 1

� 9-38

This expression for the energy density of radiation of frequency f in thermal equilib-
rium at temperature T with atoms of energies E1 and E2 must be consistent with 
Planck’s law for a blackbody spectrum at temperature T given by Equation 8-57:

	 u1  f  2 =
8hf 3

c3  a 1

ehf>kT - 1
b � 9-39

Comparing Equation 9-38 and 9-39, we conclude that

	
B12

B21
= 1� 9-40

and that

	
A21

B21
=

8hf 3

c3 � 9-41

Although this analysis gives us only the ratios of the coefficients, A21 can be com-
puted from quantum mechanics, as was discussed in the home page More section 
“Transitions Between Energy States” in Chapter 6, and the other coefficients may 
then be computed from the result.

There are several points of interest in these equations. For instance, Equation 9-40 
tells us that the coefficients for absorption and stimulated emission are the same for 
the same pair of states. Notice, too, that Equation 9-41 says that the ratio of the spon-
taneous emission coefficient to that for stimulated emission is proportional to f 3. This 
means that the larger DE = E2 - E1, the more likely spontaneous emission will be 
comparable to stimulated emission. Rewriting Equation 9-39 as

	
A21

B21 u1  f 2 = ehf>kT - 1� 9-42

yields the result that, in equilibrium situations, spontaneous emission is far more prob-
able than stimulated emission for hf  W kT. Since this is usually the case for elec-
tronic transitions in both atoms and molecules, de-excitation of excited electronic 
states by stimulated emission is normally ignored in these transitions. Stimulated 
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emission does become important when hf  kT and may dominate de-excitation of 
excited states when hf V kT. This latter condition exists for ordinary temperatures in 
the microwave region of the spectrum. We will return to these matters in Section 9-6 
in connection with the discussion of lasers and masers.

EXAMPLE 9-8	 Spontaneous versus Stimulated Emission ​ Compare the rela-
tive probabilities of spontaneous and stimulated emission in an equilibrium system 
at room temperature (T = 300 K) for transitions that occur in (a) the visible and 
(b) the microwave regions of the spectrum.

SOLUTION
Equation 9-42 gives the ratio of the probability for spontaneous emission A21 to that 
for stimulated emission B21 u1  f 2. At T = 300 K, kT = 0.026 eV.
(a) � In the visible region of the spectrum hf  2 eV, so hf>kT = 2>0.026 = 77. 

Therefore,

A21

B21 u1  f 2 = e77 - 1

Clearly, under these conditions spontaneous emission is favored over stimu-
lated emission by an enormous factor.

(b) � In the microwave region of the spectrum hf  10-4 eV, so hf>kT = 10-4>
0.026 = 0.0038  1>260 and stimulated emission is rather heavily favored.

Questions

6.	 How does Rayleigh scattering differ from resonance absorption?

7.	 How does the photoelectric effect differ from all the other processes illustrated 
in Figure 9-31?

8.	 Why is stimulated emission usually not observed?

9-6  Lasers and Masers 
The laser (light amplification by stimulated emission of radiation) is a device that 
produces an intense beam of coherent photons by stimulated emission. The maser, 
where microwave replaces light in the definition from which the acronym is formed, 
was the laser’s predecessor. We will discuss stimulated emission more fully in this 
section because of its application to these important devices. Stimulated emission 
occurs if the atom is initially in an excited state and if the energy of the photon inci-
dent on the atom is just E2 - E1, where E2 is the excited energy of the atom and E1 is 
the energy of a lower state or the ground state. In this case, the oscillating electromag-
netic field of the incident photon accelerates the electron(s) at a rate that matches the 
photon’s frequency and thus, we say, stimulates the excited atom, which may then 
emit a photon in the same direction as the incident photon and with the same phase. 
We have seen that the relative probabilities of stimulated emission and absorption B21 
and B12 are equal (Equation 9-40). Ordinarily, at normal temperatures, nearly all 
atoms will initially be in the ground state, so absorption will be the main effect. That 
is, N1 W N2, so

N1 u1  f 2B12 W N2 u1  f 2B21
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where N1 and N2 are the populations of the two states. To produce more stimulated 
emission transitions than absorption transitions, we must arrange to have more atoms 
in the excited state than in the ground state (N2 7 N1). This condition is called popula-
tion inversion. It can be achieved if the excited state E2 is a metastable state. Once 
population inversion is achieved, any light emitted by a spontaneous E2 S E1 transi-
tion is amplified by stimulated emission from the excited atoms that it encounters. 
Population inversion is often obtained by a method called optical pumping, in which 
atoms are “pumped” up to energy levels greater than E2 by the absorption of an intense 
auxiliary radiation. The atoms then decay down to the metastable state E2 by either 
spontaneous emission or by nonradiative transitions such as those due to collisions.

Masers
The maser was the first of the stimulated emission devices to be constructed, an 
accomplishment of Charles Townes and his coworkers in 1953. The first maser pro-
duced stimulated emission in ammonia molecules at the tunneling frequency of 
2.3786 * 1010 Hz (see Chapter 6, Exploring: NH3 Atomic Clock). Currently, the 
most important type of maser is the hydrogen maser, which is used as an atomic-
frequency standard, one type of atomic clock. The hydrogen transition used in these 
masers is that between the hyperfine levels of the ground state, f = 1.4204 * 109 Hz, 
the same transition used to map the large clouds of hydrogen in interstellar space (see 
Chapter 13). Figure 9-33a illustrates this transition between the 100+1>2 and the 
100-1>2 states. A beam of hydrogen atoms produced in an rf discharge (Figure 9-33b) 

Figure 9-33  (a) Hyperfine levels used in the hydrogen maser. (b) A hydrogen radio-frequency discharge, the first element 
inside a hydrogen maser. (c) Schematic diagram of the first ruby laser. (d ) Energy levels of chromium in ruby, Al2O3. [Photo 
courtesy of NASA/Jet Propulsion Laboratory—Caltech.]
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passes through an inhomogeneous magnetic field that steers those atoms in the higher 
hyperfine state into a resonant cavity precisely tuned to the transition frequency. The 
microwaves emitted are repeatedly re-injected into the beam, stimulating additional 
coherent emissions. A fraction of the beam is coupled to an external receiver for fur-
ther amplification and use. Townes shared the 1964 Nobel Prize in Physics for his 
contributions to the development of masers and lasers.

Stimulated emission also occurs in interstellar space from molecules such as SiO, 
H2O, and CH3OH. The original definition of the acronym maser is now a bit outdated 
because contemporary masers emit radiation throughout a broad band of microwave 
and radio frequencies.

The Ruby Laser
Figure 9-33c shows a schematic diagram of the first laser, a ruby laser built by 
Theodore Maiman in 1960.13 It consists of a small rod of ruby (a few centimeters 
long) surrounded by a helical gaseous flashtube. The ends of the ruby rod are flat and 
perpendicular to the axis of the rod. Ruby is a transparent crystal of Al2O3 containing 
a small amount (about 0.05 percent) of chromium. It appears red because the chro-
mium ions 1Cr3+2 have strong absorption bands in the blue and green regions of the 
visible spectrum. The energy levels of chromium that are important for the operation 
of a ruby laser are shown in Figure 9-33d.

When the mercury- or xenon-filled flashtube is fired, there is an intense burst of 
light lasting a few milliseconds. Absorption excites many of the chromium ions to the 
bands of energy levels called pump levels in Figure 9-33d. The excited chromium 
ions give up their energy to the crystal in nonradiative transitions and drop down to a 
pair of metastable states labeled E2 in the figure. These metastable states are about 

1.79 eV above the ground state. If the flash is intense enough, 
more atoms will make the transition to the states E2 than remain in 
the ground state. As a result, the populations of the ground state 
and the metastable states become inverted. When some of the 
atoms in the states E2 decay to the ground state by spontaneous 
emission, they emit photons of energy 1.79 eV and wavelength 
694.3 nm. Some of these photons then stimulate other excited 
atoms to emit photons of the same energy and wavelength, moving 
in the same direction with the same phase.

The ruby laser, like other conventional lasers, acts as a resonating 
optical cavity. In the ruby laser, both ends of the crystal are silvered 
such that one end is almost totally reflecting (about 99.9 percent) 
and the other end is only partially reflecting (about 99 percent) so 
that some of the beam is transmitted through that slightly transpar-
ent end. If the ends are parallel, standing waves are set up, as shown 
in Figure 9-34, and an intense beam of coherent light emerges 
through the partially silvered end. Figure 9-35 illustrates the buildup 
of the beam inside the laser. When photons traveling parallel to the 
axis of the crystal strike the silvered ends, all are reflected from the 
back face and most are reflected from the front face, with a few 
escaping through the partially silvered front face. During each pass 
through the crystal, the photons stimulate more and more atoms so 
that an intense photon beam is developed.

Modern ruby lasers generate intense light beams with energies 
ranging from 50 J to 100 J in pulses lasting a few milliseconds. 

Figure 9-34  Laser as a resonating optical 
cavity. If mirror 1 is the partially reflecting end, 
then (a) illustrates the longitudinal standing-wave 
modes, for which L = ml>2, where l is the
laser wavelength and m is integral. If the sides of 
the cavity are also reflective, as in (b), then 
standing-wave modes transverse to the long axis 
are also possible. Notice that the exit beam for 
these modes is not parallel to the long axis of 
the laser.
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This pulse length is approximately equal to that of the flash tube, whose output excites 
atoms into the pump levels shown in Figure 9-33d. The output of the laser during that 
time is actually a series of very short pulses, each of the order of a microsecond long, 
as illustrated in Figure 9-36. This is because the pump levels depopulate quickly com-
pared to the pump rate. Therefore, the flash requires some time to reestablish the pop-
ulation inversion that generates the next short pulse.

Notice in Figure 9-36 that the first of the very brief laser pulses, or “spikes,” 
begins very soon after the population inversion N2 7 N1 occurs and ends when N2 
falls back to N1 due to stimulated emissions. Extremely intense spikes can be gener-
ated via a technique called Q-switching, whereby the resonating property of the cavity 
is temporarily destroyed in order to sharply reduce the stimulated emissions so as to 
allow the pumping radiation to make N2 W7 N1. The resonant status is then suddenly 
restored and an extremely intense laser pulse results. This is how the very high-energy 
pulses mentioned above are typically produced. The Q in Q-switching refers to the 
cavity’s quality factor, or its ability to maintain the intensity of the reverberating 
wave. If the end mirrors are low loss and the medium very transparent to the laser 
frequency, then the wave will die out slowly and the cavity is of high quality, or high 
Q. If Q is low, then substantial light is lost in each pass and the wave will die out 
quickly. If Q is too low, lasing will not occur at all. Q can be made very low, for 
example, by replacing the totally reflecting end mirror with an external one of equal 
reflectivity that rotates. When the rotating mirror is not parallel to the one on the other 
end of the cavity, Q is very low and little stimulated emission occurs as the pumping 
flash builds the population of state E2 so that N2 W7 N1. When the rotating mirror 
becomes parallel to the other, Q suddenly becomes very high (hence the name 
Q-switch) and the extremely intense laser pulse is generated as E2 depopulates.

Sustaining laser action requires that the increase in the number of coherent pho-
tons produced by stimulated emission per round trip through the resonating cavity to 
be greater than or equal to the decrease resulting from all losses, such as transmission 
through the partially reflecting end mirror and scattering. Although it is a bit difficult, 
we have the information needed to calculate the population inversion density neces-
sary for lasing with the aid of the Einstein coefficients from Section 9-5, so let’s try it. 
To begin, we will combine all of the various ways by which photons may be lost into 
a single characteristic time tp; that is, the intensity of radiation I of a particular fre-
quency f in the resonant cavity will decay due to the losses according to

	 I = I0 e-t>tp	 9-43

Figure 9-35  Buildup of photon 
beam in a laser. (a) Some of the 
atoms spontaneously emit 
photons, some of which travel to 
the right and stimulate other 
atoms to emit photons parallel to 
the axis of the crystal. The others 
are absorbed, transmitted through 
the walls, or otherwise lost to the 
lasing process. (b) Four photons 
strike the partially silvered right 
face of the laser. (c) One photon 
has been transmitted and the 
others have been reflected. As 
these photons traverse the laser 
crystal, they stimulate other 
excited atoms to emit photons 
and the beam intensity increases. 
By the time the beam reaches the 
right face again (d ), it comprises 
many photons. (e) Some of these 
photons are transmitted to 
become part of the external laser 
beam and the rest are reflected to 
sustain the process.
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Partially
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end

(a)

(e)

(d)
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Figure 9-36  A single output pulse 
from a ruby laser. The pulse actually 
consists of a series of very short pulses 
each about 1 ms long. Flashlamp 
intensities below the threshold do not 
produce a sufficient population inversion 
to initiate lasing. Not shown is a weak 
background of incoherent spontaneous 
emission that accompanies the coherent 
laser light.
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where I0 is the intensity at t = 0. Thus, the rate at which intensity is lost is given by

	 a dI

dt
b

loss
= -  

I0

tp

 e-t>tp = -  
I

tp

� 9-44

The net rate at which the intensity of the frequency f gains due to the difference between 
the gain from stimulated emissions E2 S E1 and offsetting loss from absorptions 
E1 S E2 is equal to the difference in the populations 1N2 - N12 times the intensity per 
photon times the transition probability u1  f 2B21. The transition probability u1  f 2B21 
must be corrected for the width Df of the spectral line emitted in the E2 S E1 transition 
arising from the finite width of the level E2 as described in Chapter 5.14 The correction is 
a multiplicative factor approximately equal to 2>Df . Taking these together, we obtain

	 a dI

dt
b

gain
= 1N2 - N12  

hfc

V
 

2

Df
 u1  f 2B21� 9-45

where V is the volume of the resonant cavity and hfc>V  is the intensity per photon. 
Using Equation 9-38 and the fact that A21 is the reciprocal of the lifetime for sponta-
neous emission ts, Equation 9-45 can be written as

	 a dI

dt
b

gain
=
1N2 - N12

V
1hfc2 c u1  f 2c3

42
 hf 3Df ts

d � 9-46

or

	 a dI

dt
b

gain
= 1n2 - n12  

c3
 I

42
 f 2Df ts

� 9-47

where n2 = N2>V  and n1 = N1>V  are the population densities of the states and
cu(    f    ) = I, the intensity.15 If the density of states (degeneracies) g(E) of E2 and E1 are 
not equal, then Equation 9-47 must be modified to

	 a dI

dt
b

gain
= c n2 - n1a

g1E22
g1E12 b d

c3
 I

42
 f 2Df ts

� 9-48

Thus, the condition for laser action becomes

	 a dI

dt
b

gain
Ú a dI

dt
b

loss
� 9-49

or

	 c n2 - n1a
g1E22
g1E12 b d

c3
 I

42
 f 2Df ts

Ú
I

tp

� 9-50

The equal sign provides the threshold condition for the initiation of lasing. The 
greater-than sign represents sustained laser action. Solving the threshold condition 
yields the critical population inversion density Dnc:

	 Dnc =
42

 f 2Df ts

c3
 tp

� 9-51

where

n2 - n1a
g1E22
g1E12 b = Dnc

Equation 9-51 describes the population inversion that must be established if laser 
action is to be achieved for a given frequency and spontaneous emission lifetime. 
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It also points out that the only property of the cavity that affects Dnc is its characteris-
tic decay lifetime tp.

The ruby laser is an example of a three-level laser, referring to the energy levels 
in Figure 9-33d. Such lasers have a practical disadvantage for many applications in 
that more than half of the atoms must be pumped from E1 S E3 in order to obtain the 
necessary population inversion between levels E2 and E1. In addition, the source of 
the excitation energy, the flashlamp, produces light over a broad range of frequencies, 
most of which do not contribute to exciting the level E3 and are thus wasted. The 
large pumping requirement and relatively low excitation efficiency means that 
substantial energy must be dissipated as heat, so three-level solid-state lasers such as 
the ruby laser must be pulsed in order to allow the system time to cool periodically. 
A more advantageous system is one that does not require that such a large fraction of 
the atoms be excited at any one time and avoids the excess heat produced by optical 
pumping. Such lasers provide continuous output and are called continuous wave or 
cw lasers.

Helium-Neon Lasers
In 1961, the first successful operation of a cw laser, a continuous helium-neon gas 
laser, was announced by Ali Javan, W. R. Bennet, Jr., and D. R. Herriott.16 Figure 9-37 
shows a schematic diagram of the type of helium-neon laser commonly used in physics 
lecture demonstrations and laser pointers and by land surveyors and carpenters. It con-
sists of a gas tube containing 15 percent helium gas and 85 percent neon gas. A totally 
reflecting flat mirror is mounted on one end of the gas tube and a partially reflecting 
concave mirror is placed at the other end. The concave mirror focuses parallel light at 
the flat mirror and also acts as a lens that transmits part of the light so that it emerges as 
a parallel beam.

Population inversion is achieved somewhat differently in the helium-neon laser 
than in the ruby laser. Figure 9-38 shows the energy levels of helium and neon that 
are important for operation of the laser. (The complete energy level diagrams for 
helium and neon are considerably more complicated.) Helium has excited states, the 
23

 S and 21
 S levels, which lie 19.72 eV and 20.61 eV, respectively, above the 11

 S 
ground state. Both are metastable because of the D/ = {1 selection rule, the 23

 S 
level being more strongly forbidden due to the DS = 0 selection rule, discussed in 
the Chapter 7 home-page More section “Multielectron Atoms,” which prohibits inter-
combination lines. Helium atoms are excited to these states by an electric discharge. 
Neon has closely spaced groups of excited states at 19.83 eV and 20.66 eV above its 

Figure 9-37  ​Schematic drawing of a helium-neon laser. The use of a concave mirror rather 
than a second plane mirror makes the alignment of the mirrors less critical than it is for the 
ruby laser. The concave mirror on the right also serves as a lens that focuses the emitted light 
into a parallel beam.

Rear
Laser tube

Flat mirror:
99.9% reflective

Front Parallel
laser beam

Concave mirror:
reflects 99%,
transmits 1%
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ground state—the energies of these neon states almost exactly match the excited states 
of helium. The neon atoms are excited to these levels by collisions with excited helium 
atoms. The kinetic energy of the helium atoms provides the extra energy, about 
0.05 eV, needed to excite the neon atoms. There is another excited state of neon that is 
18.70 eV above its ground state and 1.96 eV below the 20.66 eV state. Since this state 
is normally unoccupied, population inversion between these states is obtained immedi-
ately. The stimulated emission that occurs between these states results in photons of 
energy 1.96 eV and wavelength 632.8 nm, which produces a bright red light. After 
stimulated emission, the atoms in the 18.70 eV state decay to the ground state by spon-
taneous emission of a photon with a wavelength of about 600 nm followed by a non
radiative de-excitation, typically collision with the cavity wall. The collisions are an 
important part of the laser process since, if the diameter of the tube (see Figure 9-37) is 
too large, the probability of collision with the wall decreases and the 600 nm radiation 
may re-excite the 18.70 eV level. This reduces the population inversion and decreases 
the laser gain. Stimulated emission also occurs from the state at 19.83 eV to the 
18.70 eV level, producing laser light with wavelength of 1100 nm (infrared). Helium-
neon lasers have recently been developed that lase at a number of other visible and 
infrared wavelengths. The several possible laser wavelengths are not present simulta-
neously since each device is designed to operate at a particular wavelength.

Note that there are four energy levels involved in producing the 632.8-nm 
helium-neon laser line, whereas the ruby laser involved only three levels. In a 

Figure 9-38  ​Energy levels of helium and neon that are important for the helium-neon laser. 
The helium atoms are excited by electrical discharge to energy states 19.72 eV and 20.61 eV 
above the ground state. They collide with neon atoms, exciting some neon atoms to energy 
states 19.83 eV and 20.66 eV above the ground state. Population inversion is thus achieved 
between these levels and one at 18.70 eV above the ground state. The spontaneous emission 
of photons of energy 1.96 eV from the upper state stimulates other atoms in the upper state to 
emit photons of energy 1.96 eV, producing the characteristic He-Ne red laser light. Emission 
from the 19.83 eV neon state to the 18.70 eV level also produces laser output at about 1100 nm.
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three-level laser, population inversion is difficult to achieve because more than half 
the atoms in the ground state must be excited, that is, N2 7 N1>2 in Equation 9-46. 
In a four-level laser, population inversion is easily achieved because the state after 
stimulated emission is not the ground state but an excited state that is normally unpop-
ulated, so that N1  0.

Questions

  9.	 What are the advantages of a four-level laser over a three-level laser?

10.	 Why is helium needed in a helium-neon laser? Why not just use neon?

EXAMPLE 9-9	 Critical Population Inversion Comparison ​ Compare the crit-
ical population inversion necessary for laser action in the ruby and He-Ne lasers. 
Compute the corresponding power requirements.

SOLUTION
The critical population density Dnc is given by Equation 9-51. The typical parame-
ters of these systems are given in Table 9-9 below:

 Table 9-9  Typical laser parameters

Parameter Ruby laser He-Ne laser

l 694.3 nm 632.8 nm

f 4.32 * 1014 s-1 4.74 * 1014 s-1

n (refractive index) 1.76 1.00

ts    3 * 10-3 s 10-7 s

tp   2.9 * 10-8 s 3.3 * 10-7 s

Df   3.3 * 1011 s-1     9 * 108 s-1

N (Cr3+ concentration)    2 * 1019>cm3 2

For ruby laser:

 Dnc =
42

 f 2Df ts

c3
 tp

=
4214.32 * 10142213.3 * 10112 13 * 10-32

13.00 * 108>1.762312.9 * 10-82
 Dnc = 5.08 * 1022 atoms>m3 = 5.08 * 1016 atoms>cm3

For He-Ne laser:

 Dnc =
42

 f 2Df ts

c3
 tp

=
4214.74 * 10142219 * 1082 110-72
13.00 * 1082313.3 * 10-72

 Dnc = 8.96 * 1013 atoms>m3 = 8.96 * 107 atoms>cm3

Thus, the critical population density is far smaller for the He-Ne laser.
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The minimum power input P needed to maintain the laser action in the helium-
neon system is approximately equal to Dnc1hf>ts2, since N1  0, or

P1He@Ne2  Dnc1hf>ts2 
18.96 * 1072 16.63 * 10-342 14.74 * 10142

10-7

 2.8 * 10-4 W>cm3

For the ruby laser, about one-half of the Cr3+ ions must be in the pumped level E3 in 
Figure 9-33b and the power per unit volume necessary to maintain that population 
is approximately

P1ruby2 
N

2
a hf

ts

 b 
12 * 10192 16.63 * 10-342 14.32 * 10142

2 * 3 * 10-3

 955 W>cm3

New Lasers and Applications
A laser beam is coherent, very narrow, and intense. Its coherence makes the laser 
beam useful in the production of holograms, such as those used on credit cards and 
“heads-up” displays; that is, transparent data displays that do not obstruct the user’s 
view. The precise direction and small angular spread of the beam make it useful as a 
surgical tool for destroying cancer cells or reattaching detached retinas. Lasers are 
also used by land surveyors and carpenters to ensure precise alignment over large 
distances. Distances can be accurately measured by reflecting a laser pulse from a 
mirror and measuring the time the pulse takes to travel to the mirror and back. For 
example, the slowly varying distance from Earth to the Moon is regularly measured to 
within a few millimeters using corner reflectors placed on the Moon by Apollo astro-
nauts for that purpose. And, of course, CD and DVD burners and readers and laser 
bar-code readers are ubiquitous throughout the world. Laser beams are also used in 
nuclear fusion-research as part of the search for future sources of energy. Intense laser 
pulses are focused on tiny pellets of deuterium-tritium in a combustion chamber. The 
beam heats the pellets to temperatures of the order of 108 K in a very short time, caus-
ing the deuterium and tritium to fuse and release energy (see Section 11-8). At the 
other end of the temperature scale, using advanced cooling techniques that included 
focusing three orthogonal pairs of lasers on a sample containing 2500 cesium 
atoms, in 2003 W. Ketterle and his group achieved a record low temperature of 450 pK17 
(see photo below). Orthogonal pairs of laser beams, called optical traps, capable of 

Three counterpropagating pairs of orthogonal 
laser beams illuminate about 100 million 
sodium atoms at their intersection. The pressure 
of the laser light cools the atoms, slowing them 
to rms velocities comparable to those resulting 
from recoil due to emission or absorption of a 
single photon. Systems incorporating laser 
cooling of sodium atoms have achieved a record 
low temperature of 450 pK. [National Institute of 
Science and Technology.]
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cooling samples containing millions of atoms down to the sub-microkelvin range are 
used in creating Bose-Einstein condensates and the degenerate Fermi gas, discussed 
in Chapter 8, and antihydrogen atoms, as described in Chapter 12.

Although cw lasers are the lasers of choice for many applications, many others 
require pulsed lasers, particularly those where very high power levels are important or 
even essential. For these applications the current state of the art is chirped pulse ampli-
fication. With this technique, invented in the 1980s by Gérhard Mourou, an input ultra-
short pulse is stretched out (in time) by dispersing the wavelengths (frequencies) with 
a suitable arrangement of gratings or prisms together with mirrors (see Figure 9-39). 
After passing through the optical stretcher, the pulse duration is up to 105 times longer 
than the original pulse and the intensity has been correspondingly lowered as a result 
to avoid nonlinear effects that would damage or destroy the amplification medium. 
The long laser pulse is amplified by a factor of 106 or more and is then recompressed 
by an optical system that is essentially the reverse of the stretcher. Off-the-shelf 
chirped pulse lasers are available with peak power in the 10- to 100-gigawatt range. 
Several major research facilities operate chirped lasers with peak power in the petawatt 
range. A few examples are described briefly in the next paragraph.

Laser technology is advancing so fast that it is possible to mention only a few of 
the recent developments. The recent (2006) advent of Blu-ray DVD technology that 
uses a blue laser to facilitate the storage of 25 gigabytes of data on the disc—more 
than five times the capacity of a standard DVD—is an example of such developments. 

Optical tweezers use 
the extremely small 
electromagnetic forces 
associated with a laser 
beam that has been 
very sharply focused 
by passing through 
the objective lens of a 
microscope to manipulate 
nanometer- and 
micrometer-size beads to 
which single molecules 
such as DNA have been 
attached. Extremely 
sensitive, they are used, 
for example, to sort 
biological cells and cool 
neutral atoms to ultralow 
temperatures.

Figure 9-39  ​The initial ultrashort laser pulse is stretched in time by the first pair of reflection 
gratings, which introduce about a 10 cm path length difference between the lower frequencies 
and higher frequencies of the laser pulse (positive dispersion), stretching the pulse by 300 to 
500 ps. The stretched pulse is amplified and then effectively re-compressed in time by the 
second pair of reflection gratings that reverse the path-length difference introduced by the first 
pair (negative dispersion). An ultrashort, very high-powered output pulse results.

Tipler: Modern Physics 6/e
Perm fig.: 939,  New fig.: 09-39
First Draft: 2011-06-08

Ultrashort
high-power
output
pulse

High-power
pulse, still
stretched

Stretched
low-power pulse

Power amplifiers

Initial short
pulse

Reflection
grating

1/2 Silvered mirror

Full Silvered mirror

Lens

Laser

TIPLER_09_373-426hr1.indd   417 11/2/11   11:10 AM



418	 Chapter 9  Molecular Structure and Spectra

In addition to the ruby laser, there are many other solid-state lasers with output wave-
lengths ranging from about 18 nm (soft x rays) to about 3900 nm (infrared). Lasers 
that generate more than 1 kW of continuous power have been constructed. Pulsed 
lasers can now deliver nanosecond pulses of power exceeding 109 W. A chirped-pulse 
titanium-sapphire laser at the University of Michigan (USA) set a recent intensity 
record with a power of 300 * 1012 W focused on a spot only 1.2 mm in diameter and 
pulse duration of 10-15 s to deliver an intensity of about 2 * 1023 W>m2, a hundred 
times larger than the previous record. Even so, more powerful pulsed lasers exist, for 
example, the Astra Gemini laser at the Rutherford Appleton Laboratory (UK) pro-
duces about 0.5 * 1015 W.18 The proposed European Extreme Light Infrastructure 
(ELI) is being planned around a laser producing 2 * 1017 W, two hundred times the 
power of the most powerful lasers in existence at this writing. Applications of these 
powerful lasers include the development of “tabletop” (i.e., small) particle accelera-
tors whose secondary radiations (x rays and gamma rays) would aid advanced bio-
medical and materials research.

Various gas lasers and tunable dye lasers produce wavelengths ranging from the 
far infrared to the ultraviolet. Semiconductor lasers (also known as diode lasers or 
junction lasers; these are discussed further in Chapter 10) the size of a pinhead can 
develop 200 mW of power. In addition to their ubiquitous use in supermarket check-
out counters, compact disc players, copiers, and computer printers, very recent devel-
opments in materials physics have enabled scientists to construct reliable diode lasers 
that emit in the blue to ultraviolet region of the spectrum, a development that, as 
noted above, has significantly increased high-density optical storage on DVDs. Liq-
uid lasers using chemical dyes can be tuned over a range of wavelengths (about 70 nm 
for continuous lasers and more than 170 nm for pulsed lasers). Very recently (2011) 
Gather and Yun demonstrated live, single-cell biological lasers, opening the door to 
new forms of intercellular sensing. The free-electron laser extracts light energy from 
a beam of free electrons moving through a spatially varying magnetic field. The free-
electron laser has the potential for very high power and high efficiency and can be 
tuned over a large range of wavelengths. There appears to be no limit to the variety 
and uses of modern lasers.

Long-range fiber optic 
communication lines are 
being enhanced by the 
recent development of the 
erbium-doped fiber optic 
amplifier. Light from a 
diode laser “pumps up” a 
segment of erbium-doped 
optical fiber in the line. 
A signal moving down the 
line stimulates emission 
from the erbium atoms, 
resulting in amplification 
of the signal.

A p-n junction tunable laser 
diode (see Section 10-8) 
shown on the eye of a needle 
for scale. [NASA/Jet 
Propulsion Laboratory.] 
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For YOU, An Opportunity to Contribute  In April 2009 a new kind of light 
source was “turned on” at SLAC National Accelerator Laboratory. It was a free 
electron laser, which produces the world’s first coherent x-ray pulses—an x-ray 
laser. Formally called the Linac Coherent Light Source (LCLS), it is a tool available 
for users worldwide. X rays have long been used to study the structure of materials 
at the atomic and molecular levels by materials scientists and structural biologists. 
With the LCLS’s x-ray intensity 109 times that of existing x-ray sources and its abil-
ity to produce pulses as short as 2 * 10-15 s comes a myriad of opportunities. For 
example, the LCLS can take “snapshots” of chemical reactions as they are in prog-
ress, follow the rearrangement of electrons as molecules are formed, and study the 
structure of complex materials and molecules such as DNA and nanosystems. The 
uses for this new tool are limited only by the expanse of our imaginations.

Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 The ionic bond The bonding mechanism typical of most salts, it involves the transfer of one or 
more electrons to form ions that are attracted by the Coulomb force. The exclusion 
principle limits the close approach of the ions, resulting in a minimum in the 
potential energy U(r). For a diatomic molecule,

U1r2 = -  
ke2

r
+ Eex + Eion� 9-1

where Eion is the net ionization energy and Eex is the exclusion-principle energy.
The latter is given by 

Eex =
A

r n� 9-2

where A and n are constants.

2.	 The covalent bond

	 Other covalent bonds

This bond is a quantum-mechanical effect arising from the sharing of one or more 
electrons by identical or similar atoms. The symmetry of the molecular wave functions 
resulting from their superposition of electron orbitals determines whether bonding will 
occur. The wave function for the symmetric state CS is large between the atomic potential 
wells, resulting in minimum potential energy and bonding. The antisymmetric wave 
function CA is small in that region. Bonding of two nonidentical atoms is often a mixture 
of ionic and covalent bonding. 

Covalent bonds differ in detail, depending up which electrons are shared. For example, 
H2 with only s-electrons, is s-bonded. O2 is p-p bonded. There are also s-p bonds of
which H2O is one example.

3.	 Dipole-dipole bonds Bonding between atoms and molecules may arise due to interactions between dipole 
moments. The interaction may involve molecules with either permanent electric dipole 
moments (polar molecules) or induced dipole moments (nonpolar molecules). The 
potential energy U of a dipole p2 in the electric field Ed of dipole p1 is given by

U = -p2
# Ed� 9-8

The force between permanent dipoles decreases as 1>r 4. If one or both of the dipoles 
is an induced dipole, the force between them decreases as 1>r 7.

TIPLER_09_373-426hr1.indd   419 11/2/11   11:10 AM



420	 Chapter 9  Molecular Structure and Spectra

TOPIC RELEVANT EQUATIONS AND REMARKS

4.	 Molecular spectra

	 Rotational energies

	 Vibrational energies

The energy states of diatomic molecules consist of rotational bands superimposed 
on more widely spaced vibrational levels, which are in turn superimposed on the 
much more widely spaced atomic electron levels.

The rotational energies of a diatomic molecule are

E =
/1/ + 12U2

2I
= /1/ + 12E0r / = 0, 1, 2,c � 9-13

where I is the moment of inertia, E0r = U2>2I is the characteristic rotational
energy, and / is the rotational quantum number, which obeys the selection rule
D/ = {1.

The vibrational energies of a diatomic molecule are

En = 1n + 1>22hf n = 0, 1, 2,c � 9-20

where f is the vibrational frequency and n is the vibrational quantum number,
which obeys the selection rules Dn = {1.

5.	 Scattering, absorption,
and stimulated emission

A photon incident on an atom can be absorbed, producing fluorescence or 
resonance radiation, or scattered elastically (Rayleigh scattering) or inelastically 
(Raman scattering). If the photon energy is greater than the ionization energy of the 
atom, Compton scattering or the photoelectric effect can occur. If the atom in initially 
in an excited state, an incident photon of the proper energy can stimulate emission of 
another photon of the same energy. The incident and emitted photons are in 
phase and travel parallel to each other. In an equilibrium system the probabilities 
(Einstein coefficients) for absorption and for stimulated emission between two states 
are equal.

6.	 Lasers and masers Lasers and masers are important applications of stimulated emission, differing only 
in the wavelengths of their outputs. Amplification by stimulated emission depends on 
the possibility of obtaining population inversion, in which there are more atoms in an 
excited state than in the ground state or other excited states of lower energy. Population 
inversion is usually obtained by optical pumping, and is produced more readily in 
four-level systems than in three-level systems.
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Problems 
Level I
Section 9-1 The Ionic Bond
9-1.	 The dissociation energy is sometimes expressed in kilocalories per mole. (a) Find 
the relation between electron volts per molecule and kilocalories per mole. (b) Find the 
dissociation energy of molecular NaCl in kilocalories per mole. (c) The dissociation 
energy of the Li2 molecule is 106 kJ>mole. Find the value in eV per molecule.

Notes 

1.	 The term orbital is frequently used in molecular phys-
ics and in chemistry to refer to the space part of the electron 
wave functions, that is, the quantum numbers n, /, and m/. In 
molecular physics the electrons of interest are usually the 
outermost (valence) ones of the constituent atoms, which 
become associated with the entire molecule rather than their 
original atoms, so we speak of “molecular orbitals” as well as 
“atomic orbitals.”

2.	 Molecules whose atoms are identical, such as H2, are some-
times called homopolar or homonuclear. Those whose atoms 
are not identical are called heteropolar or heteronuclear.

3.	 C60 and the other fullerenes are named after the philoso-
pher and engineer R. Buckminster Fuller, who invented the 
architectural geodesic dome structure. Such domes, as Fuller 
pointed out, can be considered as networks of pentagons and 
hexagons.

4.	 Leonhard Euler (1707–1783), Swiss mathematician. 
Arguably the most prolific mathematician of all time, he pub-
lished 866 papers during his lifetime and, despite having lost 
his sight in 1766 (in part due to his earlier observations of 
the Sun), he left so many manuscripts at his death that it took 
another 35 years to get them all published. He introduced the 
symbol e as the base of the natural logarithms and i as the 
square root of 21.

5.	 Johannes D. van der Waals (1837–1923), Dutch physi-
cist. Largely self-taught, he became interested in the fact that 
the ideal gas law derived from kinetic theory does not hold 
exactly for real gases. This led him to question the assump-
tion that no forces act between individual gas molecules 
except during collisions, which resulted in his development 
of an equation, the van der Waals equation, which more accu-
rately describes real gases. He was awarded the 1910 Nobel 
Prize in Physics for his work.

6.	 This result is derived in most introductory physics books. 
See, for example, P. A. Tipler and G. Mosca, Physics for Sci-
entists and Engineers, 6th ed., W. H. Freeman and Co., New 
York, 2008, page 671.

7.	 Terminology concerning the dipole-dipole forces is a bit 
confused. Some textbooks use van der Waals to describe all 
three types of dipole-dipole forces. We will follow the more 
common (and traditional) use, reserving van der Waals for 
the attractive force between induced dipoles only.

8.	 We use v (the Greek letter nu) here rather than n so as not 
to confuse the vibrational quantum number with the principal 
quantum number n for electronic energy levels.

9.	 The nitric oxide (NO) molecule is an exception due to its 
odd electron.
10.	 Also, the / S / - 1 group of lines are called the P 
branch and the / S / + 1 group the R branch.
11.	 Chandrasekhara V. Raman (1888–1970), Indian physi-
cist. Graduating from college at the age of 16, like Einstein 
he became a civil servant and worked at science in his spare 
time. He had predicted that visible light should be inelasti-
cally scattered even before Heisenberg predicted it and before 
Compton had found the effect for x rays. He was awarded the 
1930 Nobel Prize in Physics for his work, becoming the first 
Asian to be so recognized in the sciences.
12.	 There is also a Raman effect for the vibrational and elec-
tronic levels of molecules.
13.	 T. H. Maiman, “Stimulated Optical Radiation in Ruby,” 
Nature, 187, 493 (1960).
14.	 The correction essentially accounts for the fact that, due 
to the finite line width, the energy density u(    f    ) in the transi-
tion probability must include a narrow range of frequencies 
Df rather than just the single frequency f.
15.	 Recall that the energy per unit volume u(    f    ) times c is the 
intensity, for example, W>m2 in SI units.
16.	 A. Javan, W. B. Bennet, Jr., and D. R. Herriott, Physical 
Review Letters, 6, 106 (1961).
17.	 W. Ketterle et al., Science, 301, 1513 (2003).
18.	 To keep things in perspective, although the power of 
these pulsed lasers is extremely high, the duration of the 
pulses is very brief, so the total energy delivered in a single 
pulse is quite small, in the range of 5 J to 100 J.
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9-2.	 The dissociation energy of Cl2 is 2.48 eV. Consider the formation of an NaCl mol-
ecule by the reaction

Na +
1
2Cl2 S NaCl

Is this reaction endothermic (requiring energy) or exothermic (giving off energy)? How 
much energy per molecule is required or given off?
9-3.	 Using the data in Table 9-1, compute the net energy required to transfer an electron 
between the following pairs of atoms: Cs to F, Li to I, and Rb to Br.
9-4.	 Using the data in Tables 9-1 and 9-2, estimate the dissociation energy of the three 
ionically bonded molecules CsI, NaF, and LiI. Your results are probably all higher than 
those in Table 9-2. Explain why.
9-5.	 The equilibrium separation of the Rb 

+ and Cl 

- ions in RbCl is about 0.267 nm.
(a) Calculate the potential energy of attraction of the ions, assuming them to be point 
charges. (b) The ionization energy of rubidium is 4.18 eV, and the electron affinity of 
Cl is 3.62 eV. Find the dissociation energy, neglecting the energy of repulsion. (c) The 
measured dissociation energy is 4.37 eV. What is the energy due to repulsion of the ions?
9-6.	 Compute the Coulomb energy of the KBr molecule at the equilibrium separation. 
Use that result to compute the exclusion-principle repulsion at r0.
9-7.	 If the exclusion-principle repulsion in Problem 9-6 is given by Equation 9-2, com-
pute the coefficient A and the exponent n.
9-8.	 Compute the dissociation energy of molecular NaBr in kilocalories per mole.
9-9.	 Note in Table 9-2 that the equilibrium separation of the KBr and RbCl molecules is 
very nearly equal. Compute the exclusion-principle repulsion for these molecules.

Section 9-2  The Covalent Bond
9-10.	 Hydrogen can bond covalently with many atoms besides those listed in Tables 9-3 
and 9-5, including sulfur, tellurium, phosphorus, and antimony. What would you expect 
to be the chemical formula of the resulting molecules? (Hint: Use the table of electron 
configurations in Appendix C.)
9-11.	 What kind of bonding mechanism would you expect for (a) the KCl molecule,
(b) the O2 molecule, and (c) the CH4 molecule?
9-12.	 The equilibrium separation of the atoms in the HF molecule is 0.0917 nm, and its 
measured electric dipole moment is 6.40 * 10-30 C # m. What percentage of the bonding 
is ionic?
9-13.	 The equilibrium separation of CsF is 0.2345 nm. If its bonding is 70 percent ionic, 
what should its measured electric dipole moment be?
9-14.	 Ionic bonding in the BaO molecule involves the transfer of two electrons from 
the Ba atom. If the equilibrium separation is 0.193 nm and the measured electric dipole 
moment is 26.7 * 10-30 C # m, to what extent is the bond actually ionic?

Section 9-3  Other Bonding Mechanisms
9-15.	 Find three other elements with the same subshell electron configuration in the two 
outermost orbits as carbon. Would you expect the same kind of hybrid bonding for these 
elements as for carbon? Support your answer.
9-16.	 The dipole moment p of the water molecule, illustrated in Figure 9-19, is actu-
ally the vector sum of two equal dipoles p1 and p2 directed from the oxygen atom to 
each of the hydrogen atoms. The measured value of the angle between the two hydro-
gen atoms is 104.5°, the O–H bond length is 0.0956 nm, and the magnitude of p is 
6.46 * 10-30 C # m. Compute the fraction of the electron charge that is transferred from 
each hydrogen to the oxygen.
9-17.	 The polarizability of Ne is 1.1 * 10-37 m # C2>N. (a) At what separation would the 
dipole-dipole energy between a molecule of H2O and an atom of Ne in the atmosphere 
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be sufficient to withstand collision with an N2 molecule moving with the average kinetic 
energy for T = 300 K? (b) At what separation does this energy occur for a typically 
bonded molecule? (c) On the basis of these results, do you expect H2OiNe bonds to be 
very likely? Explain your answer.
9-18.	 The hydrogen bonds linking the two helical strands of the DNA have bond strengths 
of about 0.3 eV, or approximately 15 percent of the strengths of the ionic/covalent bonds 
along the strands. (a) What is the wavelength of a photon with sufficient energy to break 
this bond? (b) In what part of the spectrum does this wavelength lie? (c) Since a sig-
nificant intensity exists at this wavelength in the environment, why haven’t all the DNA 
hydrogen bonds long since broken?
9-19.	 Would you expect the following molecules to be polar or nonpolar? Explain your 
answer in each case. (a) NaCl; (b) O2.

Section 9-4  Molecular Spectra
9-20.	 The characteristic rotational energy E0r for the N2 molecules is 2.48 * 10-4 eV. 
From this, find the separation distance of the nitrogen atoms in N2.
9-21.	 For the O2 molecule, the separation of the atoms is 0.121 nm. Calculate the charac-
teristic rotational energy E0r = U2>2I in eV.
9-22.	 The CO molecule undergoes a transition from the v = 1 vibrational state to the
v = 0 state. (a) What is the wavelength of the emitted photon? (b) At what temperature 
would 1 percent of the CO molecules be in the v = 1 vibrational state?
9-23.	 Using data from Table 9-8, (a) compute the vibrational energy of the LiH mol-
ecule in its lowest vibrational state. (b) Compute the reduced mass of LiH. (c) Determine 
the force constant for LiH. (d ) From those results, compute an estimate of the LiH bond 
length and compare your result with the value in the table.
9-24.	 Calculate the reduced mass in unified mass units for (a) H2, (b) N2, (c) CO, and
(d ) HCl.
9-25.	 The characteristic rotational energy E0r = U2>2I for KCl is 1.43 * 10-5 eV.
(a) Find the reduced mass for the KCl molecule. (b) Find the separation distance of the
K 

+ and Cl 

- ions.
9-26.	 Use the data from Table 9-8 to find the force constant for (a) the H35Cl and (b) the 
K79Br molecules.
9-27.	 The vibration frequency of the NO molecule is 5.63 * 1013 Hz. Compute the force 
constant for NO.
9-28.	 The equilibrium separation of HBr is 0.141 nm. Treating the Br atom as fixed, com-
pute the four lowest rotational energies of the HBr molecule and show them in a carefully 
sketched energy-level diagram.
9-29.	 The vibrational spectrum of Li2 consists of a series of equally spaced lines in the 
microwave region 1.05 * 1013 Hz apart. Compute the equilibrium separation for Li2.
9-30.	 Compute the difference in the rotational energy E0r for K35Cl and K37Cl.
9-31.	 What type of bonding mechanism would you expect for (a) NaF, (b) KBr, (c) N2, 
and (d ) Ne?
9-32.	 For NaCl compute (a) the energy in eV necessary to excite the first rotational state 
and (b) the wavelength and frequency of the photon emitted in the transition back to the 
ground state. (Assume that the molecule is in the electronic and vibrational ground states.)

Section 9-5  Absorption, Stimulated Emission, and Scattering
9-33.	 The five lowest levels of a certain monatomic gas have the values E1 = 0, 
E2 = 3.80 eV, E3 = 4.30 eV, E4 = 7.2 eV, and E5 = 7.5 eV. (a) If the temperature is 
high enough that all levels are occupied and the gas is illuminated with light of wave-
length 2400 nm, what transitions can occur? (b) Which of those found in part (a) will still 
occur if the temperature is so low that only the state E1 is occupied? (c) Repeat (a) and (b) 
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for light of 250 nm wavelength. (d ) What wavelength of the incident light would stimulate 
emission from state E4?
9-34.	 A hydrogen discharge tube is operated at about 300 K in the laboratory in order to 
produce the Balmer series. Compute the ratio of the probability for spontaneous emission 
of the Ha line to that for stimulated emission.
9-35.	 Determine the ratio of the number of molecules in the v = 1 state to the number in 
the v = 0 state for a sample of O2 molecules at 273 K. Repeat the calculation for 77 K. 
(Ignore rotational motion.)
9-36.	 The nuclei in the F2 molecule are separated by 0.14 nm. (a) Compute the energy 
separations and sketch an energy-level diagram for the lowest four rotational levels with 
v = 0. (b) What are the wavelengths of possible transitions between these levels?

Section 9-6  Lasers and Masers
9-37.	 A pulse from a ruby laser has an average power of 10 MW and lasts 1.5 ns. (a) What 
is the total energy of the pulse? (b) How many photons are emitted in this pulse?
9-38.	 A helium-neon laser emits light of wavelength 632.8 nm and has a power output of 
4 mW. How many photons are emitted per second by this laser?
9-39.	 A laser beam is aimed at the Moon from a distance 3.84 * 108 m away. The 
angular spread of the beam is given by the diffraction formula (Rayleigh’s criterion), 
sin  = 1.22l>D, where D is the diameter of the laser tube or rod. (a) Calculate the size 
of the beam on the Moon for D = 10 cm and l = 600 nm. (b) Repeat the calculation if the 
laser beam is projected toward the Moon through a 1.0-m-diameter telescope.
9-40.	 A particular atom has two energy levels with a transition wavelength of 420 nm. 
At 297 K there are 2.5 * 1021 atoms in the lower state. (a) How many atoms are in the 
upper state? (b) Suppose that 1.8 * 1021 of the atoms in the lower state are pumped to the 
upper state. How much energy could this system release in a single laser pulse?

Level II
9-41.	 (a) Calculate the electrostatic potential energy of Na 

+ and Cl 

- ions at their equilib-
rium separation distance of 0.24 nm, assuming the ions to be point charges. (b) What is 
the energy of repulsion at this separation? (c) Assume that the energy of repulsion is given 
by Equation 9-2. From Figure 9-2b, this energy equals ke2>r at about r = 0.14 nm. Use 
this and your answer to part (b) to calculate n and A. (Although this calculation is not very 
accurate, the energy of repulsion does vary much more rapidly with r than does the energy 
of attraction.)
9-42.	 The angular width of a ruby laser beam is determined by Rayleigh’s criterion 
(see Problem 9-39). For this laser the diameter of the ruby rod is 1.0 cm and l = 694.3 nm. 
(a) What is the diameter of the spot projected by the ruby laser at a distance of 1.0 km?
(b) If the laser is emitting 1018 photons>s, what is the power deposited per square centime-
ter on the target at 1.0 km?
9-43.	 The equilibrium separation of the K 

+ and Cl 

- ions in KCl is about 0.267 nm.
(a) Calculate the potential energy of attraction of the ions assuming them to be point 
charges at this separation. (b) The ionization energy of potassium is 4.34 eV and the elec-
tron affinity of chlorine is 3.61 eV. Find the dissociation energy for KCl, neglecting any 
energy of repulsion (see Figure 9-2a). (c) The measured dissociation energy is 4.40 eV. 
What is the energy due to repulsion of the ions at the equilibrium separation?
9-44.	 Use the equilibrium separation for the K 

+ and Cl 

- ions given in Problem 9-43 and 
the reduced mass of KCl to calculate the characteristic rotational energy E0r of KCl.
9-45.	 In this problem, you are to find how the van der Waals force between a polar and a 
nonpolar molecule depends on the distance between the molecules. Let the dipole moment 
of the polar molecule be in the x direction and the nonpolar molecule be a distance x away. 
(a) How does the electric field due to an electric dipole depend on the distance x? (b) Use 
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the facts that the potential energy of an electric dipole of moment p in an electric field E is 
U = -p # E and that the induced dipole moment of the nonpolar molecule is proportional 
to E to find how the potential energy of interaction of the two molecules depends on sepa-
ration distance. (c) Using Fx = -dU>dx, find the x dependence of the force between the 
two molecules.
9-46.	 The force constant of the covalent bond in the H2 molecule is 580 N>m. Determine 
the energies of the lowest four vibrational levels of the H2, HD, and D2 molecules. Com-
pute the wavelengths of photons emitted in transitions between adjacent states for each of 
these molecules.
9-47.	 The microwave spectrum of CO has lines at 0.86 mm, 1.29 mm, and 2.59 mm. 
(a) Compute the photon energies and carefully sketch the energy-level diagram that corre-
sponds. What molecular motion produces these lines? (b) Compute the equilibrium sepa-
ration (bond length) of CO.
9-48.	 Carefully draw a potential energy curve for a diatomic molecule (like Figure 9-2b) 
and indicate the mean values of r for two vibrational levels. Show that because of the 
asymmetry of the curve, rav increases with increasing vibrational energy and therefore 
solids expand when heated.
9-49.	 A sample of HCl is illuminated with light of wavelength 435.8 nm. (a) Compute the 
wavelengths of the four lines in the rotational Raman spectrum that are closest to that of 
the incident light. (b) Compare the difference in their frequencies with the corresponding 
lines in Figure 9-30.
9-50.	 Use data from Table 9-8 to compute the first excited vibrational and the first excited 
rotational states of (a) the Li2 and (b) the K79Br molecules.
9-51.	 Calculate the effective force constant for HCl from its reduced mass and the funda-
mental vibrational frequency obtained from Figure 9-30.
9-52.	 Notice in Figure 9-33d that the level E2 in Cr3+ is a doublet, the pair of states being 
separated by only 0.0036 eV. (a) Assume that all of the Cr3+ ions in a certain laser are in 
the three states E1 and E2 (doublet) and compute the relative populations of these levels. 
(b) If only the lower state of the E2 doublet can produce laser light but both levels must be 
pumped together, determine the pumping power necessary for laser action to occur. The 
density of states (degeneracy) of level E1 is 4 and for each of the E2 levels is 2.
9-53.	 The central frequency for the absorption band of HCl shown in Figure 9-30 is at 
f = 8.66 * 1013 Hz, and the absorption peaks are separated by about Df = 6 * 106 Hz. 
Using this information, find (a) the lowest (zero-point) vibrational energy for HCl, (b) the 
moment of inertia of HCl, and (c) the equilibrium separation of the atoms.

Level III
9-54.	 The potential energy between two atoms in a molecule can often be described rather 
well by the Lenard-Jones potential, which can be written

U1r2 = U0 c aa
r
b

12

- 2aa
r
b

6

d

where U0 and a are constants. (a) Find the interatomic separation r0 in terms of a for 
which the potential energy is minimum. (b) Find the corresponding value of Umin. (c) Use 
Figure 9-8b to obtain numerical values for r0 and U0 for the H2 molecule. Express your 
answer in nanometers and electron volts. (d ) Make a plot of the potential energy U(r) ver-
sus the internuclear separation r for the H2 molecule. Plot each term separately, together 
with the total U(r).
9-55.	 (a) Find the exclusion-principle repulsion for NaCl. (b) Use Equation 9-2 to find A 
and n.
9-56.	 Show that the H 

+iH 

- system cannot be ionically bonded. (Hint: Show that U(r) 
has no negative minimum.)
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9-57.	 (a) Calculate the fractional difference Dm>m for the reduced masses of the H35Cl 
and H37Cl molecules. (b) Show that the mixture of isotopes in HCl leads to a fractional 
difference in the frequency of a transition from one rotational state to another given by 
Df>f = -Dm>m. (c) Compute Df>f  and compare your result with Figure 9-30.
9-58.	 For a molecule such as CO, which has a permanent electric dipole moment, radia-
tive transitions obeying the selection rule D/ = {1 between two rotational energy levels 
of the same vibrational energy state are allowed; that is, the selection rule Dn = {1 does 
not hold. (a) Find the moment of inertia of CO for which r0 = 0.113 nm, and calculate the 
characteristic rotational energy E0r in electron volts. (b) Make an energy-level diagram for 
the rotational levels for / = 0 to / = 5 for some vibrational level. Label the energies in 
electron volts, starting with E = 0 for / = 0. (c) Indicate on your diagram transitions that 
obey D/ = -1 and calculate the energy of the photons emitted. (d ) Find the wavelength 
of the photon emitted for each transition in (c). In what region of the electromagnetic 
spectrum are these photons?
9-59.	 An H2 in its ground electronic, vibrational, and rotational state absorbs a photon 
of frequency 1.356 * 1014 Hz, undergoing a transition to the v = 1, / = 1 state while 
remaining in the electronic ground state. It then undergoes a transition to the v = 0, 
/ = 2 state, emitting a photon of frequency 1.246 * 1014 Hz. (a) Compute the moment 
of inertia of the H2 molecule about an axis through the center of mass. (b) Determine the 
vibrational frequency and r0 for H2 and compare these with the values in Table 9-8.
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The many and varied properties of solids have intrigued us for centuries. Tech-
nological developments involving metals and alloys have shaped the courses of 

civilizations, and the symmetry and beauty of naturally occurring, large single crys-
tals have consistently captured our imaginations. However, the origins of the physical 
properties of solids were not understood even in rudimentary form until the develop-
ment of quantum mechanics. The application of quantum mechanics to solids has 
provided the basis for much of the technological progress of modern times. We will 
study briefly some aspects of the structure of solids in Section 10-1 and then concen-
trate on the electrical and magnetic properties of solids.

10-1  The Structure of Solids 
In our everyday world we see matter in three phases: gases, liquids, and solids. In a 
gas the average distance between two atoms or molecules is large compared with the 
size of an atom or molecule. The molecules have little influence on one another 
except during their frequent but brief collisions. In a liquid or solid the atoms or mol-
ecules are close together and exert forces on one another comparable to the forces that 
bind atoms into molecules. (There is a fourth phase of matter, plasma, which occurs 
when the matter consists largely or entirely of ions and free electrons. Usually this 
condition exists only at very high temperatures, such as inside stars, in intense electri-
cal discharges—for example, lightning—and in the laboratory. The properties of a 
plasma are very different from those of an ordinary gas because of the long-range 
electrical and magnetic effects arising from the charges of the particles. The recently 
discovered low-temperature gas phase of matter, the Bose-Einstein condensate, was 
discussed in Chapter 8.) In a liquid, the molecules form temporary short-range bonds 
that are continually broken and re-formed as the result of the thermal kinetic energy 
of the molecules. The strength of the bonds depends on the type of molecule. For 
example, as we discussed in Section 9-3, the bonds between helium atoms are very 
weak van der Waals bonds, and He does not liquefy at atmospheric pressure until the 
very low temperature of 4.2 K is reached.

If a liquid is slowly cooled, the kinetic energy of its molecules is reduced and the 
molecules will arrange themselves in a regular crystalline array, producing the maxi-
mum number of bonds and leading to a minimum potential energy. However, if the 
liquid is cooled rapidly so that its internal energy is removed before the molecules 
have a chance to arrange themselves, a solid is often formed that is not crystalline but 
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resembles a “snapshot” of a liquid. Such a solid is called amorphous; it displays short-
range order but not the long-range order (over many atomic diameters) characteristic 
of a crystal. Glass is a typical amorphous solid. A characteristic of the long-range 
ordering of a crystal is that it has a well-defined melting point, whereas an amorphous 
solid merely softens as its temperature is increased, like the asphalt on a roadway. 
Many materials may solidify in either an amorphous or a crystalline state, depending 
on how they are prepared. Others exist only in one form or the other. Most common 
solids are polycrystalline; that is, they are collections of single crystals. The size of 
such single crystals is typically a fraction of a millimeter; however, large single crys-
tals occur naturally and can be produced artificially (see Figure 10-1). We will dis-
cuss only simple crystalline solids in this chapter.

The most important property of a single crystal is its symmetry and regularity of 
structure: it can be thought of as a single unit structure repeated throughout the solid. 
The smallest unit of a crystal is called the unit cell. The structure of the unit cell 
depends on the type of bonding between the atoms, ions, or molecules in the crystal. 
If more than one kind of atom is present, the structure will also depend on 
their relative size. The structure may also change in response to changes in pressure 
and/or temperature. The bonding mechanisms are those discussed in Chapter 9: ionic, 

Figure 10-1  (a) A single crystal of quartz, 
one of several naturally occurring crystalline 
forms of SiO2. [Courtesy of Sawyer Research 
Products, Inc.] (b) A synthetic silicon crystal 
is created beginning with a raw material 
containing silicon (for instance, common 
beach sand), purifying out the silicon, and 
melting it. From a seed crystal, the molten 
silicon grows into a cylindrical crystal, such 
as the one shown here. The crystals 
(typically about 1.3 m long) are formed 
under highly controlled conditions to ensure 
that they are flawless and sliced into 
thousands of thin wafers, onto which the 
layers of an integrated circuit are etched. 
[Courtesy of the Museum of Modern Art,
New York City.] (c) Natural gypsum (CaSO4) 
crystals in Mexico’s Cave of Crystals. 
Some are more than 25 m long. [Carsten 
Peter/Speleoresearch & Films/National 
Geographic/Getty Images.]

(a) (b)

(c)

TIPLER_10_427-492hr.indd   428 11/2/11   2:43 PM



	 10-1  The Structure of Solids	 429

covalent and dipole-dipole, the latter including the hydrogen and van der Waals 
bonds. In addition, a quantum-mechanical mechanism responsible for bonding metals 
in the solid state, metallic bonding, will be described later in this section.

Ionic and Covalent Solids
Figure 10-2 shows the structure of the ionic crystal NaCl. The Na+ and Cl- ions are 
spherically symmetric (see Section 9-1) with the Cl- ion approximately twice as large 
as the Na+ ions. The minimum potential energy of this crystal occurs when an ion of 
either kind has six nearest neighbors of the other kind. This structure is called face-
centered cubic ( fcc) because the unit cell is a cube and an ion, in this case Cl-, occu-
pies the center of each face. Note that the Na+ and Cl- ions are not paired into NaCl 
molecules in solid NaCl.

The net attractive part of the potential energy of an ion in a crystal can be written

	 Uatt = -a 
ke2

r
	 10-1

where r is the separation distance between neighboring ions (which is 0.282 nm for 
the Na+ and Cl- ions in crystalline NaCl), and a, called the Madelung constant, 
depends on the geometry of the crystal. If only the six nearest neighbors of each ion 
were important, a would be 6. However, in addition to the 6 neighbors of the oppo-
site charge at a distance r there are 12 ions of the same charge at a distance 21>2r, 8 
ions of opposite charge at distance 31>2

 r, and so on. The Madelung constant is thus 
an infinite sum:

	 a = 6 -
1222

+
823

-
6

2
+

2025
- g 	 10-2

Unfortunately, the sum in Equation 10-2 does not converge! We are saved by the fact 
that NaCl crystals are not spherical, as the analysis above implies. A better physical 
approach is to use cubic shells rather than spherical ones; then the cubic-shell equiva-
lent of Equation 10-2 does converge, albeit slowly. The result for face-centered-cubic 
structures such as NaCl is a = 1.7476. The geometric details of other ionic arrange-
ments results in slightly different values for a (see Table 10-1).

When Na+ and Cl- ions are very close together, they repel each other because of 
the overlap of the wave functions of their electrons and the exclusion-principle repulsion 

Figure 10-2  Structure of 
the face-centered-cubic (fcc) 
NaCl crystal.

Na+

Cl–

Na+

Cl–
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discussed in Section 9-1. A simple empirical expression for the potential energy asso-
ciated with this repulsion that works fairly well is

Urep =
A

rn

where A and n are constants.1 The total potential energy of an ion is then

	 U = - 
ke2

r
+

A

rn� 10-3

The equilibrium separation r = r0 is that at which the force F = -dU>dr is zero. 
Differentiating Equation 10-3 and setting dU>dr = 0 at r = r0, we obtain

	 A =
ke2

 rn-1
0

n
� 10-4

The total potential energy of an ion in the crystal can thus be written

	 U = - 
ke2

r0
 c r0

r
-  

1
n
a  

r0

r
b

n

d 	 10-5

 Table 10-1 ​ Properties of selected crystalline solids

Solid Bonding

Equilibrium 
separation 

(nm)
Crystal 

symmetry
Madelung 
constant

Cohesive 
energy 

(eV/atom)

Melting 
point 

(K)

NaCl ionic 0.282 fcc 1.7476 3.19 1074

LiBr ionic 0.275 fcc 1.7476 3.10 823

KCl ionic 0.315 fcc 1.7476 3.24 1043

RbF ionic 0.282 fcc 1.7476 3.55 1068

CsCl ionic 0.348 sc 1.7627 3.27 918

ZnO ionic 0.222 hcp 1.4985 7.22 2248

Li metallic 0.302 bcc – 1.63 454

Fe metallic 0.248 bcc – 4.28 1811

Au metallic 0.288 fcc – 3.81 1338

Zn metallic 0.266 hcp – 1.35 693

C covalent 0.154 fcc – 7.37 †

Si covalent 0.235 fcc – 4.63 1687

Ge covalent 0.245 fcc – 3.85 1211

H2O dipole-dipole 0.367 hcp – 0.52* 273

C60 dipole-dipole 1.00 fcc – 1.5* ?

Ne dipole-dipole 0.313 fcc – 0.020 24

*eV/molecule.
† Diamond transforms to graphite at high temperature. The latter then sublimes at about 3800 K.
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At r = r0, we have

	 U1r02 = -a 
ke2

r0
 c 1 -

1
n
d 	 10-6

If we know the equilibrium separation r0, which can be found from x-ray diffraction 
experiments or computed from the crystal density, the value of n can be found approx-
imately from the dissociation energy or lattice energy of the ionic crystal, which is 
the energy needed to break up the crystal into its constituent ions. In the case of 
NaCl the measured dissociation energy is 770 kJ>mol. Using 1 eV = 1.602 * 10219 J 
and the fact that 1 mol of NaCl contains NA pairs of ions, we can express the dissocia-
tion energy in electron volts per ion pair, which makes possible an easier comparison 
with, for example, the binding energy per molecule. The conversion between electron 
volts per ion pair and kilojoules per mole is

	 1 
eV

ion pair
*

6.022 * 1023 ion pairs

mol
*

1.602 * 10-19 J

1 eV
= 96.47 

kJ

mol
� 10-7

Thus, 770 kJ>mol = 7.98 eV per ion pair. Substituting 27.98 eV for U(r0), 0.282 nm 
for r0 (see Example 10-1), and 1.75 for a in Equation 10-6, we can solve for n. The 
result is n = 9.35  9.

The dissociation energy is also used to compute the cohesive energy of a crystal, 
which is the potential energy per atom or per atomic pair rather than per ion pair and 
is the term used for all crystalline bonding mechanisms. For the NaCl illustration 
above, 7.98 eV is the energy needed to remove an Na+ and Cl- pair from the crystal. 
Forming Cl from Cl- requires the input of 3.62 eV, and forming Na from Na+ releases 
5.15 eV. Therefore, the energy necessary to remove the neutral Na and Cl pair from 
the crystal is 7.98 eV 1 3.62 eV 2 5.14 eV = 6.46 eV, and the cohesive energy of 
NaCl is 6.46 eV per Na and Cl pair. This result is in good agreement with the observed 
value of 3.19 eV>atom in Table 10-1. A large cohesive energy implies a high melting 
point and vice versa.

EXAMPLE 10-1	 DNA Bond Energy ​ In the early days of the studies of heredity 
H. Muller measured the upper limit of the diameter of the then unknown genetic 
material in a chromosome to be … 0.025 mm. (We now know the diameter of that 
material, DNA, to be less than 1>10 of that value.) Muller’s measurement showed 
that the carrier of the hereditary information was of molecular dimensions—
a molecule. Why doesn’t the random thermal motion of molecules readily break 
bonds in DNA molecules, breaks that would result in frequent random mutations in 
living organisms?

SOLUTION
The double helix DNA molecule is a very stable molecule. It is rather like a zipper 
with the atoms along the intertwined strands covalently bonded and the two strands 
connected via dipole-dipole hydrogen bonds. The strong carbon-oxygen double 
covalent bonds in DNA have bond energy of approximately 732 kJ>mol. The 
hydrogen bond energy is about 10 kJ>mol.

	 1.	 The dissociation energy for a DNA covalent bond is

Edis = 732 
kJ

mol
*

1 eV>ion pair

96.47 kJ>mol
= 7.59 

eV

ion pair
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	 2.	 The dissociation energy for a DNA hydrogen bond is

Edis = 10 
kJ

mol
*

1 eV>ion pair

96.47 kJ>mol
= 0.10 

eV

ion pair

	 3.	 At 300 K, approximately “room” temperature, the average energy of molecular 
thermal motion is

 8Etherm9 =
3

2
 kT = 13>22 11.38 * 10-23 J>K2 1300 K2 *

1 eV

1.60 * 10-19 J

 8Etherm9 = 0.039 eV

Thus, the average energy available in the random thermal motion of molecules at 
temperatures typical of Earth’s environment is insufficient by more than two orders 
of magnitude to cause significant dissociation of the covalent bonds in DNA, bond 
breaks that could lead to random mutations.

EXAMPLE 10-2	 Equilibrium Spacing r0 in an NaCl Crystal ​ Calculate the 
equilibrium spacing r0 for NaCl from the measured density of NaCl, which is 
r = 2.16 g>cm3.

SOLUTION
We consider each ion to occupy a cubic volume of side r0. The mass of 1 mol of 
NaCl is 58.4 g, which is the sum of the atomic masses of sodium and chlorine. The 
ions occupy a volume of 2NA r 3

0, where NA = 6.02 * 1023 is Avogadro’s number.
The density is thus related to r0 by

r =
m

V
=

m

2NA r 3
0

Then

 r 3
0 =

m

2NA r
=

58.4 g

216.02 * 10232 12.16 g>cm32 = 2.24 * 10-23 cm3

 r0 = 2.82 * 10-8 cm = 0.282 nm

EXAMPLE 10-3	 Measuring r0 from X-Ray Diffraction ​ Molybdenum Ka

x rays (l = 0.071 nm) strike the diagonal Bragg planes of the NaCl crystal shown 
on the right in Figure 3-12 such that a diffraction maximum (a bright Laue spot) is 
observed for u = 10.25°. Determine the value of r0.

SOLUTION
	 1.	 Since NaCl is a cubic crystal, the distance d between the diagonal Bragg planes 

is related to the equilibrium separation r0 by

d =
r022

	 2.	 The x-ray diffraction maxima satisfy the Bragg condition, Equation 3-23:

2d sinu = ml
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	 3.	 For m = 1 and substituting d from above:

2a r022
b  sin u = l

	 4.	 Solving this for r0 and substituting values from above gives

 r0 =
22 l

2 sin u

 =
1222 10.071 nm2
122 1sin 10.252

 = 0.282 nm

Remarks:  This result agrees with the value calculated from the density of NaCl in 
Example 10-2.

Most ionic crystals, such as LiF, KF, KCl, KI, AgCl, and others formed by mol-
ecules in Table 9-2, have a face-centered-cubic structure. Some elemental solids that 
also have this structure are Ag, Al, Au, Ca, Cu, Ni, and Pb.

Figure 10-3 illustrates the structure of another ionic crystal, CsCl, which is called 
simple cubic (sc) because it can be considered as two interpenetrating cubic struc-
tures, one of Cs+ ions and the other of Cl- ions. In this structure, each ion has eight 
nearest-neighbor ions of the opposite charge. The Madelung constant for ionic crys-
tals with simple cubic structure is 1.7627. Other crystals with this structure include 
CsI, TlI, TlBr, LiHg, and NH4Cl. Some elemental solids, such as Ba, Cs, Fe, K, Li, 
Mo, and Na, also crystallize with the structure shown in Figure 10-3; when the atoms 
are the same at the vertices and in the center of the cube, the structure is called body-
centered cubic (bcc).

Figure 10-3  Structure of the simple-cubic (sc) crystal CsCl.

Cl–

Cs+

Cs+

Cl–

Figure 10-4  Hexagonal-
close-packed (hcp) crystal 
structure.

Figure 10-4 illustrates another important crystal structure called hexagonal close-
packed (hcp). This is the structure obtained by stacking identical spheres such as 
Ping-Pong balls. In one layer, each ball touches six others; hence the name hexago-
nal. In the next layer, each balls fits into the triangular depressions of the first layer. 
In the third layer, each ball fits into a triangular depression of the second layer such 
that it lies directly over a ball in the first layer. Elements with hexagonal-close-packed 
crystal structure include Be, Cd, Ce, Mg, Os, Zn, and Zr. There are a total of 14 dif-
ferent types of three-dimensional crystal lattice structures; we have discussed only a 
few of the most common ones. (See Appendix B3.)
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EXAMPLE 10-4	 Madelung Constant for a Two-Dimensional Crystal ​ Cal-
culate out to four terms in the series the Madelung constant for the hypothetical 
univalent, two-dimensional ionic crystal shown in Figure 10-5.

SOLUTION
The net attractive potential is given by Equation 10-1. Considering the negative ion 
at the origin of Figure 10-5, there are four positive ions located a distance r away, as 
indicated by circle A in the diagram. There are four negative ions lying on circle B 
whose radius is 21>2

 r. Four negative ions are located on circle C, whose distance 
from the ion at the origin is 2r, and, finally, eight positive ions lie on circle D at 
51>2

 r from the origin. Therefore, to four terms the net attractive potential is

Uatt = -ke2a 4
r

-
422r

-
4

2r
+

825r
b

or

Uatt = -
ke2

r
a4 -

422
- 2 +

825
b

The quantity in parentheses is the Madelung constant a correct to four terms in the 
infinite expansion; thus we have that a  2.749.

Figure 10-5  A hypothetical 
univalent two-dimensional 
ionic crystal.

x

y

+ + +– – – –

+ + + +– – –

+ + +– – – –

+ + + +– – –

+ + +– – – –

+ + + +– – –

+ + +– – – –

A

B

C

D r

In covalently bonded crystals the nature of the individual bonds is just like that in 
covalently bonded molecules, as was described in Section 9-2. The electron-sharing 
character of the bond enhances its effectiveness in crystals, for example, allowing 
tetravalent carbon atoms to form bonds with as many as four other carbon atoms. The 
crystal structure is determined by the directional nature of the bonds. Figure 10-6 
illustrates the diamond structure of carbon (which is also the structure of Ge and Si), 
in which each atom is bonded to four others located at the vertices of a regular 
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tetrahedron as a result of the sp3 hybridization discussed in the Chapter 9 More section 
Other Covalent Bonds on the home page. The diamond structure can be considered to 
be two interpenetrating face-centered-cubic structures. This arrangement with equal 
bond angles is particularly tightly bound and results in the carbon diamond structure 
having one of the largest atomic cohesive energies of all solids, about 7.37 eV per 
carbon atom. Carbon has two other well-defined crystalline structures, graphite and 
solid fullerenes,2 both the result of carbon orbitals hybridized in the sp2 configuration. 
In graphite, illustrated in Figure 10-7a, three of the valence electrons link each atom 
to three near neighbors via directed bonds, forming a planar hexagonal structure. The 
planes thus formed are connected by much weaker dipole-dipole forces. This results 
in a structure consisting of strong sheets that can be readily separated from one 
another. The structure of the fullerenes, using solid C60 as an example, is quite differ-
ent from both diamond and graphite. As described in Section 9-2, the C60 molecule 
achieves its spheroid shape by incorporating 12 pentagons into the hexagonal structure, 
distorting the graphite planes into the soccer-ball configuration. The C60 molecules 

Racing bicycles and 
Formula 1 race cars are 
constructed from woven 
carbon fibers. They absorb 
shock extremely well and 
are lighter and stronger 
than older bikes and race 
cars made of steel or 
aluminum.

(a)

(b)
1 mm

Figure 10-6  (a) Diamond crystal structure 
showing how this structure can be 
considered to be a combination of two 
interpenetrating face-centered-cubic 
structures. (b) Synthetic diamonds 
magnified about 50,000 times. In diamond, 
each carbon atom is at the center of a 
tetrahedron formed by four other carbon 
atoms. [Courtesy of Chris Kovach/Discover 
Publications.]

Figure 10-7  (a) An atomic-force micrograph of graphite. The brighter spots at each vertex are single carbon atoms. In 
graphite, carbon atoms are arranged in sheets, each sheet made up of atoms in hexagonal rings. The sheets slide easily across 
one another, a property that allows graphite to function as a lubricant. [Courtesy of Srinivas Manne, University of California at 
Santa Barbara.] (b) This high-resolution transmission electron micrograph shows clearly the close-packed fcc arrangement of 
the C60 molecules in the solid fullerene. [Courtesy of P. R. Buseck, Science, 257, 215 (1992).] (c) Carbon nanotubes grown on a 
titanium substrate. The nanotubes are perpendicular to the substrate and range between 40 nm and 100 nm in diameter. 
[Courtesy of Z. F. Ren et al., Boston College.]

(a) (b) (c)
3 nm
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are then bonded to each other by dipole-dipole forces, just as are the sheets of graph-
ite. As a result, the cohesive energy per atom is quite high, about 7.4 eV, or nearly 
equal to that of diamond, but the cohesive energy per molecule is low, only 1.5 eV. The 
C60 crystal, shown in Figure 10-7b, is face-centered cubic. The equilibrium separation 
between the molecules is 1.00 nm. The nanotubes shown in Figure 10-7c are a 
remarkable example of carbon’s possible bonding configurations.

Metallic Bonding in Solids
All solid metals, formed from the metal elements that make up more than half of the 
periodic table, are bonded by the metallic bond, which, as was noted earlier, has no 
single-molecule counterpart. It is somewhat analogous to the covalent bond, in which 
the atoms of the molecule share one or more electrons. In the metallic bond one or 
two of the valence electrons of each atom are free to move throughout the solid, and 
all of the atoms share all of those electrons. Thus, the metallic crystal can be pictured 
as a lattice of fixed, positive ions immersed in an electron gas. It is the attraction 
between the positively charged lattice and the negatively charged electron gas that 
results in bonding of the solid.3

To see how metallic bonding occurs, let us consider a specific simple example, 
bonding in solid lithium. The electron structure of the lithium atom is 1s22s and the 
radial wave function of the 2s electron, which “sees” a hydrogenlike core consisting 
of the nucleus and the completed 1s shell, is

	 c20 = C20a2 -
r

a0
be-r>2a0	 10-8

Figure 10-8  (a) Probability 
density for the 2s electron
in an isolated Li atom. 
(b) Probability density for
the 2s electrons in a 
(one-dimensional) Li crystal. 
The large dots on the r axis 
represent Li nuclei. Note that 
 c  2 is compressed relative 
to  c  2 of the single atom
and that an electron is, on 
average, confined to within 
about {0.3 nm of a Li nucleus 
rather than between {.

0.1 0.10.2 0.20.3 0.30

ψ202

r, nm

(a)

0.60.300.6 0.3 r, nm

ψ2(b )
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where C20 is a normalization constant and a0 is the Bohr radius. The probability den-
sity corresponding to this wave function for a single lithium atom located at r = 0 is 
shown in one dimension in Figure 10-8a. The probability density decays exponen-
tially to zero as r approaches {. Figure 10-8b illustrates the probability density of 
the electrons in the metal, which must be the same around each Li ion core. The peaks 
of the probability density are now closer to the positive Li ion core than was the case 
for the isolated atom. Thus, the potential energy of the electrons has been reduced. 
However, the effect of assembling the atoms into a lattice has also been to effectively 
confine the electrons to within about {0.3 nm of the ion core rather than the larger 
volume of the isolated atom. The uncertainty principle implies an increase in the 
momentum, hence kinetic energy, of the electrons. The metallic bond is stable because 
the rise in kinetic energy is more than offset by the decrease in the potential energy, 
thus lowering the total energy of the system of atoms. The net effect is greatest when 
the difference in size between the atom and the core is large (so that the magnitude of 
the potential energy reduction is large) and when the number of valence electrons is 
small (so that the increase in kinetic energy is as small as possible). These conditions 
are increasingly satisfied as one moves toward the left across the periodic table.

Questions

1.	 Why is r0 different for solid NaCl than for the diatomic molecule?

2.	 Why would you not expect NaCl to have an hcp structure?

3.	 How can you account for the difference in the Madelung constants of NaCl 
and CsCl?

4.	 Although it is in the same column of the periodic table as Li, why is it that solid 
hydrogen is not metallically bonded?

10-2  ​Classical Theory of Conduction 
Because metals conduct electricity so readily, there must be charges in metals that 
are relatively free to move. The idea that metals contain electrons free to move about 
through a lattice of relatively fixed positive ions was proposed by the German physi-
cist Paul Drude around 1900, just three years after Thomson’s discovery of the elec-
tron, and was developed by H. A. Lorentz about 1909. This microscopic model, now 
called the classical model of electrical conduction, successfully predicts Ohm’s law 
and relates electrical conduction and heat conduction to the motion of free electrons 
in conductors. However, the model gives the wrong temperature dependence for 
electrical conductivity, and it predicts that the heat capacity of metals should be 
greater than that of insulators by 13>22R per mole, which is not observed. Despite 
these failures, the classical free-electron theory is a good starting point for a more 
sophisticated treatment of metals based on quantum mechanics. For that reason a 
discussion of the classical theory is included in the Classical Concept Review on the 
Web page. In this section we will briefly outline those predictions from classical 
theory that are pertinent to our subsequent discussion of the quantum-mechanical 
theory of conduction. As we will see, the main defects in the classical theory are the 
use of the classical Maxwell-Boltzmann distribution function for electrons in a con-
ductor and the treatment of the scattering of electrons by the lattice as a classical 
particle scattering.

Even hydrogen becomes 
a metal under ultrahigh 
pressure. The pressure 
reduces the conduction-
valence band gap (see 
Section 10-6) from 
about 15 eV to 0.3 eV. 
Understanding metallic 
hydrogen will be of 
significant benefit to 
fusion energy research 
(see Section 11-8).

3, 11

CCR
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Electrical Conduction
The classical model of a metal is a regular three-dimensional array of atoms or ions 
with a large number of electrons free to move throughout the entire metal. In the 
absence of an applied electric field the average speed of these electrons is quite high. 
For example, at T = 300 K, their average speed is

	 8v9 = A 8kT
pme

= B811.38 * 10-23 J>K2 1300 K2
p19.11 * 10-31 kg2 = 1.08 * 105 m>s� 10-9

Applying an electric field  superimposes a drift velocity vd on the free electrons 
that is opposite to the field direction. For n electrons per unit volume, the resulting 
current I in the conductor, the charge DQ passing through a cross-sectional area A per 
unit time (see Figure 10-9), is

	 I =
DQ

Dt
= neAvd	 10-10

In contrast to the average speed of the electrons due to their thermal motion, the drift 
velocity is quite low, as Example 10-5 illustrates for copper.

EXAMPLE 10-5	 Drift Velocity of Electrons in Copper ​ What is the magnitude 
of the drift velocity of electrons in a typical copper wire of radius 0.815 mm carrying 
a current of 1 A?

SOLUTION
If we assume one free electron per copper atom, the density of free electrons is the 
same as the density of atoms na, which is related to the mass density r, Avogadro’s 
number NA, and the molar mass M by

na =
rNA

M

For copper r = 8.92 g>cm3 and M = 63.5 g>mol. Then

na =
18.93 g>cm32 16.02 * 1023 atoms>mol2

63.5 g>mol
= 8.47 * 1022 atoms>cm3

The density of electrons n is then

n = 8.47 * 1022 electrons>cm3 = 8.47 * 1028 electrons>m3

The magnitude of the drift velocity is therefore

vd =
I

Ane
=

1 C>s
p10.000815 m2218.47 * 1028 m-32 11.60 * 10-19 C2

 3.54 * 10-5 m>s

We see that typical drift velocities are of the order of 0.01 mm>s, which is quite 
small. Notice in particular that the magnitude of the drift velocity is very small com-
pared with the average speed of the electrons due to their thermal energy as given by 
Equation 10-9. Indeed, the difference is approximately 10 orders of magnitude.

Figure 10-9  In time Dt,
all the charges in the shaded 
volume pass through A.
If there are n charge carriers
per unit volume, each with 
charge e, the total charge
in this volume is DQ =
nevd A Dt, where vd is the
drift velocity of the charge 
carriers. The total current is 
then I = DQ>Dt = nevd  

 

A.

A
e

vd

vd ∆t
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According to Ohm’s law, the current in a conducting wire segment is proportional 
to the voltage drop across the segment I  V. The constant of proportionality is 1>R, 
so that I = V>R. The resistance R of the wire is independent of both I and V, being 
proportional to the length of the wire L divided by its cross-sectional area A: 
R = rL>A. The constant of proportionality r is called the resistivity of the conductor 
material. Combining these two expressions and recalling that the electric field in the 
wire is  = V>L, Equation 10-10 allows us to write

	 vd =
j

ne
� 10-11

where j = I>A is the current density. For materials that obey Ohm’s law, the resistiv-
ity and, of course, its reciprocal the conductivity s must be independent of .

Mean Free Path l
The objective of the classical theory of conduction is to find an expression for r in 
terms of the properties of the conductor, a task that is aided by a consideration of the 
average distance an electron travels in the conductor between collisions, called the 
mean free path l. It is the product of the average speed 8v9  and the average time 
between collisions t, called the relaxation time:

	 l = 8v9t = 1>napr 2� 10-12

where na is the number of ions per unit volume and r is the ion radius. As an example, l 
for copper is about 0.38 nm. In terms of l, the resistivity and conductivity are given by

	 r =
me8v9
ne2l

 and s =
ne2l

me8v9 � 10-13

In Example 10-6 we compute the classical values for the resistivity and conductivity 
for copper, which illustrates a basic defect in the classical theory of conduction. 
Defects in the classical theory of conduction are discussed further in a unit of the 
Classical Concept Review on the Web page.

EXAMPLE 10-6	 Conductivity and Resistivity of Copper ​ Calculate the values 
of the resistivity and the conductivity of copper at 300 K.

SOLUTION
Using Equation 10-13 together with the results of Example 10-5, we have

 r =
me8v9
ne2l

=
me

ne2t

 =
9.11 * 10-31 kg

18.47 * 1028 electrons>m32 11.60 * 10-19 C2213.5 * 10-15 s2
 = 1.20 * 10-7 V # m

and

s = 1>r = 8.33 * 1061V # m2-1

Remarks:  This value for the resistivity is about 7 times greater than the measured 
value of 1.7 * 1028 V # m.

10

CCR

28

CCR
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Heat Capacity
If the electron gas in metals were a classical ensemble of identical distinguishable 
particles, it would obey Boltzmann statistics (see Chapter 8) and have the Maxwell 
distribution of speeds. It should then have an average kinetic energy 13>22kT , and 
we would expect the molar heat capacity of a metal to be 13>22R greater than that 
of an insulator—that is, 3R from the lattice vibrations (rule of Dulong and Petit;
see Section 8-1) and 13>22R from the electron gas:

Cv = 13R2lattice vibrations + 13>22Relectron gas = 19>22R
As was noted in Section 8-5, this is not observed. The molar heat capacity of met-
als is very nearly 3R. At higher temperatures it is slightly greater, but the increase 
is no where near the value of 13>22R predicted by the classical theory. The 
increase is, in fact, proportional to temperature, and at T = 300 K, it is only about 
0.02R.

10-3  Free-Electron Gas in Metals 
Classically, at T = 0 K, all the electrons in a metal would have zero kinetic energy. As 
a conductor is heated, the lattice ions acquire an average kinetic energy of 13>22kT , 
which is imparted to the electron gas by interactions of the lattice with the electrons. 
The electrons classically would be expected to have a mean kinetic energy of 
13>22kT  in equilibrium. Quantum mechanically, however, since the electrons are 
confined to the space occupied by the metal, it is clear from the uncertainty principle 
that even at T = 0 K, an electron cannot have zero kinetic energy. Furthermore, the 
exclusion principle prevents more than two electrons (with opposite spins) from being 
in the lowest energy level. At T = 0 K, we expect the electrons to have the lowest 
energies consistent with the exclusion principle. This is illustrated clearly by first 
considering a one-dimensional model that provides us with the foundation needed for 
the quantum theory of conduction in Section 10-4.

One-Dimensional Model
To simplify visualization, let us first consider N electrons in a one-dimensional infi-
nite square well of width L. The physical analog of such a model could be a long, thin 
metal wire. As we have seen previously, the allowed energies are given by

	 En =
n2

 h2

8mL2 = n2
 E1� 10-14

where m is the electron mass and E1 = h2>8mL2 is the energy of the ground state. 
Since two electrons can be put in the n = 1 level, two in the n = 2 level, and so on at
T = 0 K, the N electrons in the system will fill N>2 levels; that is, from the n = 1
to the n = N>2 state (see Figure 10-10a). The energy of the last filled level (or 
half-filled level, if N happens to be odd) is the Fermi energy, which for our one-
dimensional system is

	 EF = EN>2 =
1N>222

 h2

8mL2 =
h2

32m
aN

L
b

2

	 10-15

TIPLER_10_427-492hr.indd   440 10/24/11   11:19 AM



	 10-3  Free-Electron Gas in Metals	 441

We see that the Fermi energy is a function of the number of electrons per unit length, 
which is the number density or number per unit volume in one dimension. The number 
density of electrons in copper, computed in Example 10-5, is 8.47 * 1028>m3. In one 
dimension this corresponds to

N

L
= 18.47 * 1028>m321>3 = 4.40 * 109>m = 0.440>A = 4.40>nm

Using this value, we see that the Fermi energy for a one-dimensional copper system, 
such as a wire, is

EF =
1hc22

32mc2 a
N

L
b

2

=
11240 eV # nm2214.40>nm22

1322 15.11 * 105 eV2 = 1.82 eV

This value is much larger than the room temperature value of kT, which is about 
0.026 eV. The average energy of the electrons is the total energy divided by N:

8E9 =
1

N
 a
N>2

n=1
2n2

 E1

where the factor of 2 accounts for the two electrons in each energy state. Since 
N>2 W 1, the summation can be replaced by an integral, so we have that

	 8E9 =
E1

N
 L

N>2

0

 2n2
 

 dn =
E1

N
 
2

3
aN

2
b

3

=
h2

8mL2 
2

3N
aN

2
b

3

=
1

3
 EF� 10-16

Our one-dimensional calculation thus gives an average energy for copper’s free elec-
trons of about 0.6 eV at T = 0 K. This is 15 times the room-temperature average 
kinetic energy of molecules in the atmosphere. The temperature at which the aver-
age energy would be 0.6 eV for a one-dimensional Boltzmann distribution is about 
14,000 K, obtained from 12kT = 0.6 eV.

Figure 10-10  (a) A one-dimensional infinite square well for N electrons at T = 0 K. Two 
electrons, one with spin up and one with spin down, occupy each level. The Fermi energy is 
the energy of the level with n = N>2, the highest occupied level. (b) The levels are so closely 
spaced they can be assumed to be continuous. The density of states g(E) is the number of states 
between E and E 1 dE divided by dE.

x

E

L0

(a) (b)

n = (N/2) + 1
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The expression for the number n(E) of electrons with energy E in the one-
dimensional system follows from Equation 8-37c:

n1E2dE = g1E2fFD1E2dE

where fFD(E) = 1 for T = 0 K and E 6 EF and fFD(E) = 0 for T = 0 K and E 7 EF. 
The density of states g(E) is the number dn of states between E and E 1 dE divided 
by dE and multiplied by 2 to account for the two spin states per space state (see 
Figure 10-10b):

g1E2 = 2
dn

dE

Since E = n2E1, then dE = 2E1 n  dn = 2E1>2
1  E1>2

 dn and we have that

g1E2 = E-1>2
1  E-1>2

The number of electrons with energy E at T = 0 K in the one-dimensional conductor 
is then

	 n1E2 = bE1
- 1 >2

 E- 1 >2  for E 6 EF

0       for  E 7 EF
� 10-17

Three-Dimensional Electron Gas
Now let us extend the discussion to three-dimensional systems. The Fermi energy can 
be computed from the general expression for the number of fermions nFD(E) given by 
Equation 8-37c. The number density N>V  of electrons in three dimensions, where V 
is the volume of the metal, is

	
N

V
=

1

V
 L



0

 nFD1E2dE =
p

2
a 8m

h2 b
3>2

 L


0

 
E1>2

 dE

e1E - EF2>kT + 1
� 10-18

For arbitrary values of T, Equation 10-18 must be evaluated numerically, but for
T = 0 K, the solution is straightforward since, as noted above, fFD(E) = 0 or 1 as E is 
greater than or less than EF. In that event we have that

	
N

V
=

p

2
a 8m

h2 b
3>2

 L
E F

0

 E1>2
 dE =

p

2
a 8m

h2 b
3>2

 
2

3
 E3>2

F � 10-19

Solving for EF we have for T = 0 K that

	 EF =
h2

2m
a 3N

8pV
b

2>3
� 10-20

Table 10-2 lists the number density of free electrons for several elements. Notice that 
EF increases slowly with N>V , as would be expected at T = 0 K, since all states up to 
EF are being filled and an increasing N>V  requires more states to be filled, that is, a 
larger value of EF. The number n(E) of electrons with energy E is then given by

	 n1E2 =
p

2
a 8m

h2 b
3>2

 VE1>2 =
3N

2
 E-3>2

F  E1>2	 10-21
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and the average energy of an electron at T = 0 K by

	 8E9 =
1

N
 L

E F

0

 E n1E2dE =
3

2
 E-3>2

F  L
E F

0

 E3>2
 dE =

3

5
 EF	 10-22

At temperatures greater than zero, some electrons will gain energy and occupy higher 
energy states. However, electrons cannot move to a higher or lower energy state 
unless the state is unoccupied. Since the kinetic energy of the lat-
tice ions is of the order of kT, electrons cannot gain much more 
energy than kT in collisions with the lattice; therefore, only those 
electrons with energies within about kT of the Fermi energy can 
gain energy as the temperature is increased.

At T = 300 K, kT is only 0.026 eV, so the exclusion principle 
prevents all but a very few electrons near the top of the energy 
distribution from gaining energy by random collisions. Figure 10-11 
shows the small fraction of the free electrons that move at T =
300 K (shaded rectangle at the Fermi energy of the T = 0 K curve). 
Even for temperatures as high as several thousand degrees, the 
energy distribution of an electron gas does not differ very much 
from that at T = 0 K.

For values of T 7 0, we must remember that the Fermi energy 
is defined by Equation 8-68, since for T 7 0 there is no state 
below which all states are full and above which all states are 

 Table 10-2 � Free-electron number densities, Fermi energies,
and Fermi temperatures for selected elements

Element
N>V

(: 1028 m23)
Fermi energy 

(eV)
Fermi temperature  

(: 104 K)

Al 18.1 11.7 13.6

Ag   5.86   5.49   6.38

Au   5.90   5.53   6.42

Cu   8.47   7.00   8.16

Fe 17.0 11.1 13.0

K   1.40   2.12   2.46

Li   4.70   4.74   5.51

Mg   8.61   7.08   8.23

Mn 16.5 10.9 12.7

Na   2.65   3.24   3.77

Sn 14.8 10.2 11.8

Zn 13.2   9.47 11.0

Source: Data from Handbook of Chemistry and Physics, 90th ed. (New York: 
Chemical Rubber Co., 2009).

Figure 10-11  ​The fraction of the N electrons in 
the metal that contribute to Cv is the ratio of the 
shaded rectangle to the total area under the n(E) 
versus E curve.

EF

n
(E

)

E

T > 0

kT
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empty. Equation 8-68 defines the Fermi energy as that energy for which fFD1E2 =
1
2. 

For all but extremely high temperatures, the difference between the Fermi energy at 
temperature T, EF (T ) and that at T = 0 K, EF (0) is essentially negligible. As is clear 
from Equation 8-68 and Figure 8-31b, the value of fFD (E) at arbitrary T differs from 
that at T = 0 K only for those energies within about kT of the Fermi energy.

Fermi Temperature
It is convenient to define the Fermi temperature TF by

	 EF = kTF� 10-23

For temperatures much lower than the Fermi temperature, the average energy of the 
lattice ions will be much less than the Fermi energy; thus the electron energy distribu-
tion will not differ greatly from that at T = 0 K. The Fermi temperature corresponding 
to EF = 7.0 eV for copper is about 81,900 K. Table 10-2 lists the Fermi temperatures 
for several elements. At temperatures much larger than the Fermi temperature (e.g., 
much larger than 81,900 K for copper) fFD(E) can be shown to approach e-E>kT and the 
Fermi-Dirac distribution approaches the Boltzmann distribution. This result is not 
very important for the understanding of the behavior of conductors since there are no 
conductors that remain as solids or even liquids at such extreme temperatures.

EXAMPLE 10-7	 Fermi Energy and Temperature of Silver ​ Compute (a) the 
Fermi energy and (b) the Fermi temperature for silver at 0 K.

SOLUTION
The density of silver is 10.50 g>cm3 and its molecular weight is 107.9 g>mol. 
Assuming that each silver atom contributes one electron to the Fermi gas, the num-
ber density N>V  is computed as follows:

 
N

V
= 110.50 g>cm32 11>107.9 g>mol2 16.02 * 1023 electrons>mol2

 = 5.84 * 1022 electrons>cm3 = 5.84 * 1028 electrons>m3

which agrees with the entry in Table 10-2.
	 (a)  The Fermi energy is then, from Equation 10-20,

 EF =
16.63 * 10-34 J # s22

219.11 * 10-31 kg2 a
3 * 5.84 * 1028

8p
b

2>3

 = 8.82 * 10-19 J = 5.51 eV

		 in good agreement with the entry for Ag in Table 10-2.
	 (b)  The Fermi temperature is then

TF =
EF

k
=

8.82 * 10-19 J

1.38 * 10-23 J>K = 6.39 * 104 K

		   again, in good agreement with Table 10-2.

10-4  Quantum Theory of Conduction 
With two relatively simple but important quantum-mechanical modifications of the 
classical free-electron theory, we can understand the electrical conductivity, heat 
capacity, and thermal conductivity of metals. First, we must replace the classical 

TIPLER_10_427-492hr.indd   444 10/24/11   11:19 AM



	 10-4  Quantum Theory of Conduction	 445

Boltzmann distribution with the Fermi distribution of energies in the electron gas, as 
was discussed in Section 8-5. Second, we must consider the effect of the wave proper-
ties of the electrons on their scattering by the lattice ions. We will discuss the latter 
modification qualitatively.

Electrical Conduction
We might expect that most of the electrons would not participate in the conduction of 
electricity because of the exclusion principle, but this is not the case because the elec-
tric field accelerates all the electrons together. Figure 10-12 shows the Fermi-Dirac 
distribution function versus velocity for some temperature T that is small compared 
with TF (such as T = 300 K). The function is approximately 1 for 2uF 6 vx 6 1uF, 
where the Fermi speed uF is the speed corresponding to the Fermi energy:

	 uF = a 2EF

me
b

1>2
� 10-24

EXAMPLE 10-8	 Fermi Speed in Al ​ Compute the Fermi speed of electrons in 
aluminum.

SOLUTION
From Table 10-2, the Fermi energy EF of Al is 11.7 eV. Thus,

uF1Al2 = a 2 * 11.7 eV * 1.60 * 10-19 J>eV

9.11 * 10-31 kg
b

1>2
= 2.03 * 106 m>s

The dashed curve in Figure 10-12 shows the Fermi distribution after the electric 
field has been acting for some time t. Although all of the electrons have been shifted 
to higher velocities, the net effect is equivalent to shifting only the electrons near the 
Fermi level; therefore, we can use the classical equations for the resistivity and con-
ductivity (Equations 10-13) if we use the Fermi speed uF in place of 8v9 :

	 r =
1
s

=
me uF

ne2l
	 10-25

We now have two problems. First, since uF is independent of temperature (to a very 
good approximation), the above expression for s and r is independent of temperature 
unless the mean free path depends on it. The second problem concerns the magni-
tudes. We saw in Example 10-5 that the classical expression for s yielded a result that 
was too small by a factor of 7, using 8v9  calculated from the Maxwell-Boltzmann 
distribution. Since uF is about 19 times the value of 8v9 , the magnitude of s predicted 

Figure 10-12  Occupation 
probability fFD(E) versus 
velocity in one dimension, 
with no electric field and with 
an electric field in the 1x 
direction. The difference is 
greatly exaggerated.

fFD(E )

0

No electric field With electric field
1

–uF +uF vx
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from Equation 10-25 will be even smaller by another factor of 19 and the magnitude 
of r will, correspondingly, be larger than the observed value by the same factor.

The resolution of both of these problems lies in the way that the value of the 
mean free path is calculated. If we use uF from Equation 10-24 and the experimental 
value r  1.7 * 1028 V # m for copper in Equation 10-25, we obtain for the mean free 
path l  39 nm, about 100 times the value of 0.38 nm that was noted in Section 10-2 
for Cu ions.

We shouldn’t be too surprised that the mean free path of electrons in the copper 
lattice is not given correctly by classical kinetic theory. The reason for this large dis-
crepancy between the classical calculation of the mean free path and the “experimental” 
result calculated from Equation 10-25 is that the wave nature of the electron must be 
taken into account. The collision of an electron with a lattice ion is not similar to the 
collision of a baseball and a tree. Instead, it involves the scattering of the electron 
wave by the regularly spaced ions of the lattice. If the wavelength is long compared 
with the crystal spacing, as is approximately the case here (see Problem 10-57), Bragg 
scattering cannot occur. Detailed calculations of the scattering of electron waves by a 
perfectly ordered crystal of infinite extent show that there is no scattering, and the 
mean free path is infinite. The scattering of electron waves arises from imperfections 
in the crystal lattice. The most common imperfections are due to impurities and to 
thermal vibrations of the lattice ions.

In Equation 10-12 for the classical mean free path, the quantity pr 2 can be thought 
of as the cross-sectional area of the lattice ions as seen by the electron, where r is the 
ion radius. Figure 10-13a depicts the classical picture in which the lattice ions have 
area pr 2. According to quantum mechanics applied to the scattering of electron waves, 
however, the “area” of the ion’s cross section seen by the electron wave has nothing to 
do with the size of the ion. Instead, it depends on the deviations of the lattice ions from 
a perfectly ordered array. We can estimate the magnitude of the deviations and thus 
compute a more accurate value for the mean free path in the following way.

Let us assume that the lattice ions are points that are vibrating because of their 
thermal energy (see Figure 10-13b). We will take for the scattering cross section pr 2, 

where r 2 = x2 + y 2 is the mean-square displacement of the point atom in a plane 
perpendicular to the direction of the electron’s motion and represents a measure of the 
deviation of the ion from its equilibrium location. We can calculate r 2 from the equi-
partition theorem. We have

	
1

2
 Kr 2 =

1

2
 Mv2r 2 = kT � 10-26

where K is the force constant, M is the mass of the ion, and v = 1K>M21>2 is the 
angular frequency of vibration. The mean free path is then

	 l =
1

npr 2
=

Mv2

2pnk
 
1

T
� 10-27

We thus see that this argument gives the correct temperature dependence for s and r; 
that is, r  1>l (Equation 10-25), then r  T rather than r  T 1>2, as was obtained 
from the classical calculation.

We can then calculate the magnitude of r 2, and therefore l, using the Einstein 
model of a solid, which is fairly accurate except at very low temperatures. In the Ein-
stein model (see Section 8-4) all the atoms vibrate with the same frequency. The Ein-
stein temperature was defined by Equation 8-63 as

kTE = hf = Uv

10

CCR

Figure 10-13  ​(a) Classical 
picture of the lattice ions as 
spherical balls of radius r that 
present an area pr 2 to the 
electrons. (b) Quantum-
mechanical picture of the 
lattice ions as points that are 
vibrating in three dimensions. 
The area presented to the 
electrons is pr 2

0, where r0 is 
the amplitude of oscillation of 
the ions.

Area = πr 2

r
(a)

(b) r0

Area = πr 2
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Using this for v, we have

	 r 2 =
2kT

Mv2 =
2T U2

Mk T 2
E

=
21Uc22

Mc2
 kTE

 
T

TE

	 10-28

The Einstein temperature for copper is about 200 K, corresponding to an energy of 
kTE = 0.0172 eV. Using this and Mc2 = 63.5 * 931 MeV for the mass of a copper ion, 
the value of r 2 at T = 300 K is

r 2 =
21197.3 eV # nm22

163.5 * 931 * 106 eV2 10.0172 eV2  
300 K

200 K
= 1.14 * 10-4 nm2

Since this is about 100 times smaller than the area presented by a copper ion of 
radius 0.1 nm, the mean free path is about 100 times larger than that calculated from 
the classical model, in agreement with that calculated from the measured value of the 
conductivity. We see, therefore, that the free-electron model of metals gives a good 
account of electrical conduction if the classical average speed is replaced by the 
Fermi speed uF and if collisions are interpreted in terms of the scattering of electron 
waves for which only deviations from a perfectly ordered lattice are important.

The presence of impurities in a metal also causes deviations from perfect regular-
ity in the crystal. The effects of impurities on resistivity are approximately indepen-
dent of temperature. The resistivity of a metal containing impurities can be written 
r = rt 1 rI, where rt is due to the thermal motion of the lattice and rI is due to impuri-
ties. Figure 10-14 shows a typical resistance versus temperature curve for a metal 
with impurities. As the temperature approaches zero, rt approaches zero and the resis-
tivity approaches the constant rI.

Heat Capacity
Next, let’s estimate the contribution of the electron gas to the molar heat capacity. At 
T = 0 K, the average energy of the electron, given by Equation 10-22, is 13>52EF, 
so the total energy for N electrons is U = 13>52NEF. At a temperature T, only those 
electrons near the Fermi level can be excited by random collisions with the lattice 
ions, which have an average energy of the order of kT. The fraction of the electrons 

Figure 10-14  ​Relative 
resistance vs. temperature for 
three samples of sodium. The 
three curves have the same 
temperature dependence but 
have different magnitudes 
because of differing amounts 
of impurities in the samples. 
[From D. MacDonald and
K. Mendelssohn, Proceedings 
of the Royal Society, A202, 103 
(1950).]
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that are excited is of the order kT>EF, and their energy is increased from that at
T = 0 K by an amount of the order of kT. We can thus write for the energy of the
N electrons at temperature T,

	 U =
3

5
 NEF + aN 

kT

EF

 kT 	 10-29

where a is some constant, which we expect to be of the order of 1 if our reasoning is 
correct. The calculation of a requires the use of the complete Fermi electron distribu-
tion at an arbitrary temperature T and is quite difficult. Such a calculation, first carried 
out by A. A. Sommerfeld, shows that this equation is correct with a = p2>4. Using 
this result, the contribution of the electrons to the molar heat capacity is

	 Cv1electrons2 =
dU

dT
= 2aNk 

kT

EF

=
p2

2
 R 

T

TF

� 10-30

where Nk = R for 1 mole and TF = EF>k is the Fermi temperature. We see that 
because of the large value of TF, the contribution of the electron gas is a small fraction 
of R at ordinary temperatures. Using TF = 81,900 K for copper, the molar heat capac-
ity of the electron gas at T = 300 K is

Cv =
p2

2
a 300

81,900
bR = 0.018R

which is in reasonable agreement with the value estimated from the small fraction of 
electrons with energies greater than EF in Figure 10-11 and in good agreement with 
experiment.

More
�Quantum theory readily accounts for heat conduction, predicting 
results in good agreement with observations. Thermal Conduc-
tion—The Quantum Model is outlined briefly on the home page: www.
whfreeman.com/tiplermodernphysics6e. See also Equations 10-31 
and 10-32 here.

More

Questions

5.	 When the temperature is lowered from 300 K to 4 K, the resistivity of pure 
copper drops by a much greater factor than that of brass. Why?

6.	 Explain why, physically, you would expect the mean free path of electrons in a 
metal to decrease as the temperature increases.

10-5  Magnetism in Solids 
Electron spins with their associated magnetic moments are the origin of magnetism in 
solids. If the atoms of the solid have unpaired spins, the solid itself may have a net 
magnetic moment. Since the atoms are effectively fixed in one or another of the several 
crystalline structures, the interactions between them may have a substantial effect on the 
magnetism exhibited by the solid. Several types of magnetism are observed in solids, 
ferromagnetism being perhaps the most familiar, though hardly the most common among 
elements and compounds. In this section we will describe each of the several types.

Understanding quantum 
theory of heat conduction 
and heat capacity has 
made possible such 
devices as “high-tech” 
frozen yogurt/ice cream 
makers for consumers. 
Using specially designed 
working fluids, they 
are replacing the old 
salt/ice-in-a-bucket 
freezers because of their 
convenience. Stationary 
fluid trainers containing a 
variable viscosity fluid are 
used by racing cyclists to 
simulate road training.

TIPLER_10_427-492hr.indd   448 10/24/11   11:19 AM

http://www.whfreeman.com/tiplermodernphysics6e
http://www.whfreeman.com/tiplermodernphysics6e


	 10-5  Magnetism in Solids	 449

Paramagnetism
Consider a solid consisting of atoms that each have an unpaired electron spin; that is, 
each atom has a net spin of 1

2 (actually 23>4 U, of course) and the atoms do not 
interact magnetically. Examples of such solids are the rare earth elements and many 
of the transition elements. In that event, the only magnetic energy the system may 
have results from interaction with an applied external field B. Such a solid, one with 
no net magnetic moment in the absence of an applied external field, is called 
paramagnetic.

The magnetic moment of each atom is thus that of the unpaired electron 
 = gsmss>U. Its z component is given by Equation 7-47:

	 mz = -ms  gsmB� 7-47

where gs is the g factor for the electron and mB is the Bohr magneton. In an applied 
field B, whose direction provides the atom with an external z axis, the possible ener-
gies of the magnetic moment are

	 U = -mz  B� 7-45

or

	 U = ms  gsmB B� 10-33

Since ms = {1>2, the ms = -1>2 orientation of s (called “spin down” because s is 
antiparallel to B) is of lower energy than the ms = +1>2 orientation (called “spin 
up,” of course). Thus, in a thermal distribution the spin-down states will contain more 
atoms than the spin-up states and the solid will have a net magnetic moment per unit 
volume M whose magnitude is given by

M = m1r+ - r-2
where r1 are r2 are the densities of electrons with spin up and spin down, respec-
tively. Since r2 7 r1 and m is negative, M is positive. For sufficiently small fields M 
is proportional to B:

	 m0M = xB� 10-34

where x is called the magnetic susceptibility. For high temperatures such that mB V kT, 
it can be shown that (see Problem 10-62)

	 x =
m0 M

B
=

rm2

kT
� 10-35

where r = (r1 1 r2) is the total electron density. Equation 10-35 is known as Curie’s 
law, after Pierre Curie. Thus, as T increases, the ability of the magnetic field to align 
the spins decreases. Many solids exhibit Curie’s law behavior. For low temperatures 
where mB W kT, M S mr as T S 0, corresponding to the alignment of all the mag-
netic moments with the field.

Equation 10-35 does not apply to the magnetism arising from electrons in 
metals. The reason is that T = TF since TF = 104 2 105 K for metals. Thus, the elec-
trons are highly degenerate, each allowed level containing two with paired spins. 
When an external B field is applied, spins cannot just “flip” to align with the field 
since doing so would violate the exclusion principle. A spin flip must be accompa-
nied by raising that electron to a higher, unoccupied energy state. Thus, even at  
T = 0 K, metals have a finite susceptibility. This type of magnetic behavior is called 
Pauli paramagnetism.
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Ferromagnetism
The first magnetic effect discovered, a result of its existence in iron that led to its 
early use as a compass, ferromagnetism is the consequence of a phase transition in 
certain materials. At high temperatures a piece of iron is unmagnetized, the spin 
directions of the atoms having rotational symmetry—all spin directions are equally 
probable. (In an applied B field iron is paramagnetic at high temperatures.) As the 
temperature decreases, at a certain temperature TC, called the Curie temperature, 
the magnetic interaction between the atoms exceeds the randomizing effect of ther-
mal agitation, spontaneously breaking the rotational symmetry and causing a phase 
transition in the solid that tends to align the spins parallel to each other, converting 
the sample into a permanent magnet. Only four elements besides iron exhibit ferro-
magnetism: nickel, cobalt, gadolinium, and dysprosium. There are also several fer-
romagnetic compounds, including some that contain none of the ferromagnetic 
elements.

In certain compounds the magnetic interaction between the atoms tends to align 
the spins on adjacent atoms antiparallel below a certain temperature, analogous to the 
Curie temperature, called the Neel temperature TN. Such materials are called antifer-
romagnetic. Examples are FeO, NiCl2, MnO, and MnS. In a few other materials the 
spins on adjacent sites are antiparallel below TN, but because they contain two differ-
ent types of positive ions, the spins do not exactly cancel and the material is left with 
a small net magnetization. Such materials are called ferrimagnetic. The most common 
example is the iron ore magnetite, FeO # Fe2O3.

Figure 10-15  Electrons
1 and 2 orbit the atomic core 
(not shown) in opposite 
directions. The magnetic 
field B is perpendicular to
the plane of the orbits. The 
magnetic forces F1 and F2 
increase the orbital magnetic 
moment of electron 2 and 
decrease that of electron 1, 
resulting in a net moment 
opposite to B.

F1

F2

B

S1
S2

v1

v2

µL1

µL2

Electron 2 

Electron 1

Diamagnetism
Recall that a free electron moving perpendicular to a magnetic field experiences a 
magnetic force F = 2e(v * B). The resulting circular motion produces a current 
loop with a magnetic moment opposite to the direction of the applied field. (To see 
this, use the right-hand rule.) Now consider two electrons with paired spins orbiting 
in opposite directions in an atom (see Figure 10-15). If an external B field perpen-
dicular to the plane of the orbits is turned on, the net force (FCoulomb 2 Fmagnetic) on 
electron 1 is reduced, reducing its orbital magnetic moment, which is parallel to B. 
The net force on electron 2 is increased, increasing its magnetic moment. The result 
is a net magnetic moment opposite to the direction of the applied field. This 
magnetic behavior is called diamagnetism. The diamagnetic effect is seen only in 
solids consisting of atoms whose electron spins are all paired. As we will see in 
Section 10-9, the “test” of superconductivity is that the material exhibit perfect 
diamagnetism.
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EXPLORING
Spintronics

A relatively new field of research with almost immediate applications, spintronics, or 
spin electronics, is the manipulation of electron spin currents rather than charge cur-
rents. N. F. Mott was the first to suggest the possibility of spin-polarized currents in 
ferromagnetic materials more than 35 years ago. Utilization of spin currents was first 
realized with the discovery of the giant magnetoresistance (GMR) of magnetic multi-
layers in 1988. A magnetic multilayer film consists of a stack of alternate ferromag-
netic and nonmagnetic layers. The resistance to current flow is low when the electron 
spins, hence magnetic moments, of the ferromagnetic layers are aligned parallel. The 
resistance is high when the spins of the ferromagnetic layers are aligned antiparallel, a 
result of spin-dependent scattering. The resulting relative resistance change can be as 
large as 200 percent (although 10 to 20 percent is more typical); hence the name giant 
magnetoresistance. Depending on the design of the layers, the direction of the spins 
(magnetic moments), and so the resistance, can be changed very quickly by an applied 
magnetic field of only about 1026 tesla. These so-called spin valves can detect very 
small magnetic fields, such as those of the magnetic bits on CDs and DVDs.

Another spintronic device with enormous potential applications is the magnetic tun-
nel junction. In these devices the ferromagnetic layers are separated by very thin insulat-
ing layers, typically aluminum oxide (see Figure 10-16). Electrons can tunnel through 
the insulating layer (see Sections 6-6 and 10-8) and, since the tunneling probability from 
a ferromagnetic layer depends on the spin direction, the resistance of the junction is dif-
ferent by as much as 75 percent between the parallel and antiparallel configurations. 
Extremely small junctions can be mass-produced, making possible random access mem-
ory for portable permanent computer memory with write speeds three orders of magni-
tude faster than current flash memory devices. The magnetic tunnel junction was also the 
key element in the direct electrical detection of the potential due to the spin Hall effect 
(see page 466), opening opportunities for controlling spin currents with electric fields.

Yet another intriguing future possibility is the application of spintronic devices 
to the development of quantum computers. The use of electron charge states for infor-
mation storage is currently a barrier to their development since such states are readily 
destroyed by scattering. Spin states, on the other hand, have very long relaxation times.

Spin valves, the first 
spintronic devices, form 
the read/write heads 
on the hard drives of 
essentially all modern 
computers. In addition, 
magnetoresistive random 
access memory (MRAM) 
chips commercially 
available have read/write 
speeds much faster than 
flash memory and, like the 
latter, do not degrade over 
time.

Figure 10-16  ​A magnetic tunnel 
junction consists of two ferromagnetic 
layers separated by a very thin 
nonmagnetic insulating layer. (a) The 
probability of electrons tunneling 
through the barrier layer is dependent 
on the spin direction, being highest 
when the spins, hence the magnetic 
moments of the electrons in the 
ferromagnetic layers, are parallel. This 
is the configuration of low resistance. 
(b) The tunneling probability is low 
when the spins are antiparallel, 
resulting in high resistance. Thus, each 
junction can store one bit of data, 
(a) representing, for example, “0”
and (b) representing “1.”

Nonmagnetic
layer

Current

Spins parallel
Low resistance

Ferromagnetic
layers

Nonmagnetic
layer

Ferromagnetic
layers

Spins antiparallel
High resistance

(a)

(b)
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10-6  Band Theory of Solids 
We have seen that, if the electron gas is treated as a Fermi gas and the electron-lattice 
collisions treated as the scattering of electron waves, the free-electron model gives a 
good account of the electrical and thermal properties of conductors. This simple 
model, however, gives no indication why one material is a good conductor and 
another is an insulator. The conductivity (and its reciprocal, the resistivity) vary enor-
mously from the best insulators to the best conductors. For example, the resistivity of 
a typical insulator (such as quartz) is of the order of 1016 V # m, whereas that of a 
typical conductor (most metals) is of the order of 1028 V # m and that of a supercon-
ductor is less than 10219 V # m.

To understand why some materials conduct and others do not, we must refine the 
free-electron model and consider the effect of the lattice on the electron energy levels. 
There are two standard approaches to this problem of determining the energy levels of 
electrons in a crystal. One is to consider the problem of an electron moving in a peri-
odic potential and to determine the possible energies by solving the Schrödinger 
equation. The other is to determine the energy levels of the electrons in a solid by fol-
lowing the behavior of the energy levels of individual atoms as they are brought 
together to form the solid, in much the same way that we did in Section 9-2 in the 
explanation of the covalent bonding in the H2 molecule. Both approaches lead to the 
result that the energy levels are grouped into allowed and forbidden bands. The details 
of the band structure of a particular material determine whether that material is a con-
ductor, an insulator, or a semiconductor. Qualitative discussion of the first of these 
methods is given in this section. The second is described in the More section Energy 
Bands in Solids—An Alternate Approach on the home page.

Kronig-Penney Model
Consider first the problem of an electron moving in a periodic potential. Figure 10-17a 
shows a one-dimensional sketch of the potential energy function for a lattice of posi-
tive ions. The most important feature of this potential is not the shape, but the fact that 
it is periodic. A simpler periodic potential consisting of finite square wells is shown in 
Figure 10-17b. The model based on this potential is called the Kronig-Penney model. 
It has the important feature of periodicity and is easier to treat mathematically; how-
ever, even for this model the mathematical solution of the Schrödinger equation is 
quite involved, and we will only outline it here. For both potential functions shown in 
Figure 10-17, for certain ranges of energy traveling-wave-type solutions of the 

(b)

(a)

Figure 10-17  (a) One-dimensional potential energy of an electron in a crystal. U(x) 
approaches 2 at the atom sites. (b) Simplified (Kronig-Penney) model of potential energy of 
an electron in a crystal.
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Schrödinger equation exist. This result is based on an important discovery made by 
Felix Bloch4 that solutions to the Schrödinger equation for periodic potentials must be 
of the form (in one dimension)

	 c1x2 = uk1x2eikx� 10-36

where uk(x) = uk(x 1 L) = uk(x 1 nL), L is the periodic spacing of the potential wells, 
and n is an integer. The function eikx is a plane wave, that is, a free electron (see Sec-
tion 6-6) with wave number k = 2p>l. As Bloch himself described it:

I felt that the main problem was to explain how the electrons could sneak 
by all the ions in a metal. . . . I found to my delight the wave differed from 
the plane wave of free electrons only by a periodic modulation.

Thus, we require that the solutions of the Schrödinger equation

	 -  
U2

2m
 
d2c1x2

dx2 + U1x2c1x2 = Ec1x2	 10-37

with U(x) being the Kronig-Penney potential of periodic square wells and c1x2 hav-
ing the form of the Bloch function given by Equation 10-36. The solution for the 
region 0 6 x 6 a in Figure 10-18 is

	 c1x2 = A1 eik9x + A2 e-ik9x� 10-38

where k9 = 2p>l = 12mE21>2>U2. In the region 2b 6 x 6 0 the solutions are of 
the form

	 c1x2 = B1 eax + B2 e-ax� 10-39

where a = 32m1U0 - E2 41>2>U2. The requirement that c(x) have the form of Equa-
tion 10-36 means that

 c1x + a + b2 = uk1x + a + b2eik1x + a + b2

 c1x + a + b2 = uk1x2eikx
 eik1a + b2

 c1x + a + b2 = c1x2eik1a + b2� 10-40a

where a 1 b is the periodic spacing of the wells. In general,

	 c1x + n1a + b22 = c1x2eikn1a + b2� 10-40b

As was done in Section 6-3 for solving the finite one-dimensional square well, the 
constants A1, A2, B1, and B2 are chosen so as to make c(x) and dc>dx continuous at 
x = 0 and x = a. Obtaining the constants is beyond the scope of our discussion here, 
but as in Chapter 6, doing so yields a conditional equation connecting k, k9, and a 
with a and b, the parameters of the lattice. The result is that, in order to satisfy the 
requirement of Equation 10-40, only certain ranges of electron energies are allowed. 

Figure 10-18  A part of the 
Kronig-Penney potential of 
Figure 10-17b showing the 
width of the square wells a 
and their periodic spacing 
(a 1 b).a + b–(a + b) –b a0

U(x )

U0

x
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These energy ranges, called bands, are separated by forbidden energy regions called 
energy gaps, in which no traveling wave can exist. Figure 10-19a shows the energy 
versus the wave number k for a completely free electron. This is, of course, merely a 
sketch of E = U2

 k2>2m. Figure 10-19b shows E versus k for an electron in the peri-
odic potential of Figure 10-18. The energy gaps occur at

	 ka = {np� 10-41

where n is an integer and a is the lattice spacing.5 We can understand this result in 
terms of the Bragg reflection of the electron waves. Consider E to be small (near zero 
in Figure 10-19b) so that k is small, hence l is large. As E increases, k eventually 
becomes large enough so that l becomes small enough to suffer a Bragg reflection 
(constructive interference) from the lattice (see Section 3-4). Bragg reflection is gov-
erned by the Bragg condition (Equation 3-23)

nl = 2a sin u

In a one-dimensional system such as we are considering here, reflection means u = 90°. 
Since k = 2p>l, Equation 10-41 becomes the condition for Bragg reflection. The 
reason that traveling waves cannot exist for these wave numbers is that the amplitude 
of the reflection from one atom in the chain becomes equal to and in phase with the 
forward electron wave from the preceding atom, so that standing waves are set up. 
Figure 10-20 shows a sketch of the electron probability density  c  2 for the two types 
of standing waves for the lowest energy gap, where the value k = p>a:

c1 = sin kx = sin 
px
a
  c2 = cos kx = cos 

px
a

Since c2 gives a higher electron charge density near the ion sites than c1, the potential 
energy is less for c2 than for c1. The difference in the potential energies corresponds 
to the magnitude of the energy gap. Within the allowed energy bands, the energy has 
a continuous range if the number of atoms in the chain is infinite; for N atoms, there 

Figure 10-19  (a) Energy 
vs. k for a free electron.
(b) Energy vs. k for a nearly 
free electron in the 
one-dimensional periodic 
potential of Figure 10-18 
with b = 0 and U0 S . 
Energy gaps occur at the 
k values that satisfy the Bragg 
scattering condition. In each 
case only the parts with k 7 0 
are shown. The complete 
curves are symmetric about 
k = 0.
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k

Allowed
bands

Energy gap
Eg

0 π /a 2π /a 3π /a 4π /a
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are N allowed energy levels in each band. Since the number of atoms is very large in 
a macroscopic solid, the energy bands can be considered continuous. Calculations in 
three dimensions are more difficult, of course, but the results are similar. The allowed 
ranges of the wave vector k are called Brillouin zones. Referring to Figure 10-19b, the 
first Brillouin zone has -p>a 6 k 6 +p>a, the second has -2p>a 6 k 6 -p>a 
and p>a 6 k 6 2p>a, and so on.

Conductors, Insulators, and Semiconductors
Conductors  We can now understand why some solids are conductors and others 
are insulators. Consider sodium. There is room for two electrons in the 3s state of 
each atom, but each sodium atom has only one 3s electron. Therefore, when N sodium 
atoms are bound in a solid, the 3s energy band is only half filled. In addition, the 
empty 3p band overlaps the 3s band. The allowed energy bands of sodium are shown 
schematically in Figure 10-21. We can see that many allowed energy states are avail-
able immediately above the filled lower half of the 3s band, so the valence electrons 
can easily be raised to a higher energy state by an electric field. Accordingly, sodium 
is a good conductor. Magnesium, on the other hand, has two 3s electrons, so the 3s 
band is filled. However, like sodium, the empty 3p band overlaps the 3s band, so 
magnesium is also a conductor. The band occupied by the outer, or valence, electrons 
is called the valence band. The next (higher) allowed band is called the conduction 
band. Thus, a conductor is a solid whose valence band is only partly filled or whose 
conduction band overlaps its valence band. There are a few elements, notably anti-
mony, arsenic, and bismuth, whose conduction band overlaps the valence band only 
very slightly, limiting the number of available empty states. These materials are called 
semimetals (see Figures 10-22a and b).

Insulators  A solid that has a completely filled valence band is an insulator if the 
energy gap between the valence band and the empty conduction band is larger than 
about 2 eV, as illustrated in Figure 10-22c. For example, ionic crystals are insulators. 
The band structure of an ionic crystal, such as NaCl, is quite different from that of a 
metal. The energy bands arise from the energy levels of the Na+ and Cl- ions. Both of 
these ions have a closed-shell configuration, so the highest occupied band in NaCl is 
completely full. The next allowed band, which is empty, arises from the excited states 
of Na+ and Cl-. There is a large energy gap between the filled band and this empty 
band. Typical electric fields applied to NaCl will be too weak to excite an electron 
from the upper energy levels of the filled valence band across the large gap into the 
lower energy levels of the empty conduction band, so NaCl is an insulator. When an 
applied electric field is sufficiently strong to cause an electron to be excited to the 
empty band, the phenomenon called dielectric breakdown occurs.

Figure 10-20  Probability density (proportional to the charge distribution) for standing waves 
of wave number k = p>a in a one-dimensional crystal. The solid curve  c2  2 is a maximum at 
the lattice ion sites and has a lower potential energy than the dashed curve  c1  2.

x

ψ12ψ22

Probability
density

a

Figure 10-21  Energy-band 
structure of sodium. The 
empty 3p band overlaps the 
half-filled 3s band. Just above 
the filled states are many 
empty states into which 
electrons can be excited by an 
electric field, so sodium is a 
conductor.
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Intrinsic Semiconductors  If the gap between a filled valence band and an 
empty conduction band is small, the solid is a semiconductor. Consider carbon, which 
has two 2s electrons and two 2p electrons. We might expect carbon to be a conductor 
because of the four unfilled 2p states. However, the 2s and 2p levels mix when carbon 
forms covalent bonds.6 Figure 10-23 shows the splitting of the eight 2s-2p levels when 
carbon bonds in the diamond structure. This splitting is due to the nature of the cova-
lent bond and is similar to the splitting of the 1s levels in hydrogen discussed in 
Section 9-2. The energy of the levels corresponding to the four space-symmetric wave 
functions (one for the 2s levels and three for the 2p levels) is lowered while the 
energy of the other four levels (one 2s and three 2p) is raised. The valence band there-
fore contains four levels per atom that are filled, and the conduction band is empty. 
At the diamond lattice spacing of about 0.154 nm, the energy gap between the filled 
valence band and the empty conduction band is about 7 eV. Since this gap is large 

Figure 10-22  Four possible band structures for a solid. (a) The allowed band is only partially 
full, so electrons can be excited to nearby energy states. At 0 K the Fermi level is at the top 
of the filled states. (a) is a conductor; (b) is a conductor because the allowed bands overlap.
In (c) there is a forbidden band with a large energy gap between the filled band and the next 
allowed band; this is an insulator. (d ) The energy gap between the filled band and the next 
allowed band is very small, so some electrons are excited to the conduction band at normal 
temperatures, leaving holes in the valence band. The Fermi level is approximately in the 
middle of the gap. (d ) is a semiconductor.
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Allowed,
empty

Forbidden

(a) (c) (d)(b)

Conductor Insulator SemiconductorConductor

Figure 10-23  Splitting of the 2s and 2p 
states of carbon, the 3s and 3p states of 
silicon, or the 4s and 4p states of germanium 
vs. separation of the atoms. The energy gap 
between the four filled states in the valence 
band and the empty states in the conduction 
band is 7 eV for the diamond-lattice 
spacing, RC = 0.154 nm. For the silicon 
spacing RSi = 0.235 nm, the energy gap is 
1.09 eV. The splitting is similar for the 4s 
and 4p levels in germanium, which has an 
atom spacing of 0.243 nm, giving an energy 
gap of only 0.7 eV.
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compared to the energy that an electron might receive by thermal excitation due to scat-
tering from the lattice ions, which on the average is of the order of kT  0.026 eV at
T = 300 K, very few electrons can reach the conduction band. Thus, diamond is an 
insulator. The band structure is similar for silicon, which has two 3s and two 3p elec-
trons, and for germanium, which has two 4s and two 4p electrons. At the silicon lattice 
spacing of 0.235 nm the energy gap is about 1 eV; at the germanium lattice spacing 
of 0.243 nm the energy gap is only about 0.7 eV. For these gaps, at ordinary tem-
peratures there are an appreciable number of electrons in the conduction band due to 
thermal excitation, although the number is still small compared with the number in a 
typical conductor. Solids such as these are called intrinsic semiconductors. Figure 
10-22d illustrates the band structure of intrinsic semiconductors.

In the presence of an electric field, the electrons in the conduction band of an 
intrinsic semiconductor can be accelerated because there are empty states nearby. 
Also, for each electron that has been excited to the conduction band, there is a 
vacancy, or hole, in the nearby filled valence band. In the presence of an electric field, 
other electrons in this band can be excited to the vacant energy level, thus filling that 
hole, but creating another hole. This contributes to the electric current and is most 
easily described as the motion of a hole in the direction of the field and opposite to the 
motion of the electrons. The hole thus acts like a positive charge. An analogy of a 
two-lane, one-way road with one lane full of parked cars and the other empty may 
help to visualize the conduction of holes. If a car moves out of the filled lane into the 
empty lane, it can move ahead freely. As the other cars move up to occupy the space 
left, the empty space propagates backwards in the direction opposite the motion of the 
cars. Both the forward motion of the car in the nearby empty lane and the backward 
propagation of the empty space contribute to a net forward propagation of the cars.

An interesting characteristic of semiconductors is that the conductivity increases 
(and the resistivity decreases) as the temperature increases, which is contrary to the 
case for normal conductors. The reason is that as the temperature is increased, the 
number of free electrons is increased because there are more electrons in the conduc-
tion band. The number of holes in the valence band is also increased, of course. In 
semiconductors, the effect of the increase in the number of charge carriers, both elec-
trons and holes, exceeds the effect of the increase in resistivity due to the increased 
scattering of the electrons by the lattice ions due to thermal vibrations. Semiconduc-
tors therefore have negative temperature coefficients of resistivity.

Whether a solid with a filled valence band will be a semiconductor or an insula-
tor depends critically on the width of the energy gap Eg, as Figure 10-23 suggests. A 
comparison of the relative numbers of electrons with various energies that could be 
above the Fermi level (located at the center of the band gap) at ordinary temperatures 
illustrates why this is true. Those numbers are given by the Fermi-Dirac distribution 
fFD(E) given by Equation 8-68:

	 fFD1E2 =
1

E 1E - EF2>kT + 1
� 8-68

At T = 293 K, kT = 0.025 eV. Recall that for E = EF, fFD1E2 = 1>2 (see Section 
8-5). For (E 2 EF) = 0.10, or 4(kT), we have

fFD1E2 =
1

e0.10>0.025 + 1
= 0.018

Repeating this calculation for several additional values of (E 2 EF) yields the relative 
numbers of electrons in Table 10-4. From the numbers in the table we see that, if a 

TIPLER_10_427-492hr.indd   457 10/24/11   11:19 AM



458	 Chapter 10  Solid State Physics

certain material has an energy gap Eg between the valence and conduction bands of 
0.25 eV, for example, then approximately 1025 of the electrons within kT of the Fermi 
level would be excited to the conduction band and thus able to participate in the con-
duction of electricity. This is a sizable number, given the numbers of electrons near 
the Fermi level, so we expect this material to have a higher electrical conductivity 
than materials with larger values of Eg.

For a gap of 1.0 eV, just four times that of the previous example, the relative 
number of electrons excited to the conduction band decreases by more than 12 orders 
of magnitude, illustrating the sharp decline of fFD(E) as the energy gap increases. The 
calculation of fFD(E) above also illustrates the increased conductivity of semiconduc-
tors as the temperature increases described earlier. If the temperature of a material 
with an energy gap of 1.0 eV is increased to 393 K from 293 K, as in Table 10-4, 
fFD(E) increases to 1.5 * 10213, thus increasing the relative number of electrons in the 
conduction band by nearly four orders of magnitude. Table 10-5 lists the energy gaps 
for several semiconducting elements and compounds. Notice that the energy gap is 
slightly temperature dependent.

A concept that is helpful in understanding a number of characteristics of semi-
conductors is that of effective mass. As pointed out above, Figure 10-19a is a graph of 
E = U2

 k2>2me, the energy of a free electron of wavelength l = 2p>k. The curvature 
of the E versus k graph is given by d2

 E>dk2 = U2>me, and we may say that the curva-
ture is determined by 1>me, the reciprocal mass. In Figure 10-19a 1>me is of course 
constant; however, in regions near the energy gaps in Figure 10-19b the curvature is 
much higher than that for the free electron. Since the behavior of electrons near the 
band-gap boundary is of considerable interest, particularly in the discussion of impu-
rity semiconductors and devices in Section 10-7, it is helpful to continue to describe 

 Table 10-5 � Energy gap Eg and dielectric constant k
for selected semiconductors

Eg (eV) Eg (eV)

Material 0 K 293 K k Material 0 K 293 K k

Si 1.15 1.11 11.8 CdTe 1.56 1.44 10.2

Ge 0.74 0.67 15.9 PbS 0.28 0.37 17.0

Te – 0.33 – InP 1.41 1.27 12.4

GaAs 1.53 1.35 13.1 CdSe 1.85 1.74 10.1

InSb 0.23 0.16 17.8 GaP 2.40 2.24 11.1

ZnS – 3.54   5.2 PbTe 0.19 0.25 30.1

 Table 10-4  Values of fFD(E ) for T = 293 K

E 2 EF (eV) 0.05 0.10 0.25 1.0 2.5 7.5

Multiple of kT 2 4 10 40 100 300

fFD(E) 1.2 * 1021 1.8 * 1022 5.1 * 1025 6.5 * 10218 1.1 * 10243 1.3 * 102129
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the curvature of the E versus k curve near the boundary in terms of a reciprocal mass. 
Accordingly, we define the effective mass m* as

	
1

m*
=

1

U2 
d2E

dk2 	 10-42

Then, as in the case of the free electron, the curvature of E versus k for electrons 
bound in the crystal energy bands is also described in terms of a reciprocal mass, 
1>m*. For a free electron m* = me, as is also the case for electrons that are not close 
to the boundaries in Figure 10-19b. Close to the band-gap boundaries, however, is a 
different matter. Starting from k = 0 in the figure, the curvature is initially constant 
and equal to that of a free electron, thus m* = me, but near the boundary where 
k = p>a, the curvature becomes large and, very close to the boundary, negative; 
hence m* becomes smaller than me and also eventually negative! Just above the gap, 
the curvature is large and positive, so m* 6 me and positive. For the situation where 
Eg is small compared to the width of the band, the values of the effective mass are 
typically of the order of 0.01 2 0.1 of the mass of a free electron. We will make fur-
ther use of the effective mass in Section 10-7.

Questions

7.	 How does the change in resistivity of copper compare with that of silicon when 
the temperature increases?

8.	 Suppose an electron is excited from the valence band of a semiconductor to 
a state several levels above the lower edge of the conduction band. Devise 
an explanation for why it will quickly “decay” to a level at the bottom of the 
conduction band.

EXPLORING
Quantum Wells

Development of techniques for fabricating devices whose dimensions are of the order 
of nanometers, called nanostructures, has made possible the construction of quantum 
wells. These are finite potential wells of one, two, and three dimensions that can chan-
nel electron movement in selected directions. A one-dimensional quantum well is a thin 
layer of material that confines electrons to motions within the dimension perpendicular 
to the layer’s surface but does not restrict motion in the other two dimensions. The con-

Figure 10-24  (a) Electron 
motion constrained in one 
dimension, for example, a thin 
conducting sheet sandwiched 
between two insulators, forms 
a quantum well. (b) In a quantum 
wire electron motion is 
constrained in two dimensions. 
(c) In a quantum dot electron 
motion is restricted in all three 
dimensions.

Tipler: Modern Physics 6/e
Perm fig.: 1024,  New fig.: 10-24
First Draft: 2011-06-15

(a)  Quantum well (b)  Quantum wire (c)  Quantum dot
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fined dimension is rather like an infinite one-dimensional square well (see Section 6-2 
and Figure 10-24a). A quantum wire restricts electron motion in two dimensions 
but not in the third, as shown in Figure 10-24b. In a quantum dot electron motion is 
restricted in all three dimensions similar to the three-dimensional square well discussed 
in Section 7-1 and illustrated in Figure 10-24c. Just like an atom or a molecule, a quan-
tum dot has quantized energy levels and electrons in the dot absorb and emit radiation 
in appropriately quantized amounts.

A ubiquitous current application of quantum wells is the diode lasers that read CDs, 
DVDs, and bar codes. Quantum dots have potential applications in data storage and in 
quantum computers, devices that may greatly enhance computing power and speed. 
Quantum wires offer the possibility of dramatically increasing the speed at which elec-
trons move through devices in selected directions. This in turn would increase the speed 
with which signals move between circuit elements in computer systems.

More
�An alternative to the Kronig-Penny model of a solid is based on the 
molecular bonding model discussed in Section 9-2 for hydrogen. 
Energy Bands in Solids—An Alternate Approach is described briefly 
on the home page: www.whfreeman.com/tiplermodernphysics6e. 
See also Figures 10-25 and 10-26 here.

More

10-7  Impurity Semiconductors 
Most semiconductor devices, such as the semiconductor diode and the transistor, 
make use of impurity semiconductors, which are created through the controlled addi-
tion of certain impurities to intrinsic semiconductors. This process is called doping. 

Figure 10-27a illustrates the lattice structure 
of pure silicon; the electron density of the 
covalent bond between two Si atoms is 
shown in Figure 10-27b. Figure 10-28a is a 
schematic illustration of silicon doped with 
a small amount of arsenic such that arsenic 
atoms replace a few of the silicon atoms in 
the crystal lattice. Arsenic has five valence 
electrons in the n = 4 shell, whereas silicon 
has four valence electrons in the n = 3 shell. 
Four of the five arsenic electrons take part 
in covalent bonds with the four neighboring 
silicon atoms, and the fifth electron is very 
loosely bound to the atom. This extra elec-
tron occupies an energy level that is just 
slightly below the conduction band in the 
solid and is easily excited into the conduc-
tion band, where it can contribute to electri-
cal conduction. The fifth arsenic valence 
electron and the arsenic ion core form a 
hydrogenlike system. Thus, Bohr theory 
(see Section 4-3) can be used to calculate 

Figure 10-27  ​(a) A two-dimensional schematic illustration of solid 
silicon. Each atom forms a covalent bond with four neighbors, sharing one 
of its four valence electrons with each neighbor. (b) X-ray scattering 
measurement of electron density in the vicinity of two atoms in an Si 
crystal. The arrow points to the high electron density of the covalent bond. 
[Adapted from Y.W. Yang, P. Coppens, Solid State Comm., 15, 1555 (1974).]
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the approximate values of the energies available to it, provided only that we make 
allowance for the fact that the electron-arsenic ion system is embedded in the semi-
conductor crystal rather than being isolated from other atoms. First, the crystal is a 
medium with a high dielectric constant; thus the potential energy function in the 
Schrödinger equation for a hydrogenlike atom (Equation 7-6) becomes7 
V1r2 = 1-Zke2>R2 11>k2 where k is the dielectric constant of the material and 
k = 1>4p0. Second, the electron mass in the Schrödinger equation must be replaced 
by the effective mass m*, which accounts for the fact that the electron “sees” a three-
dimensional version of the periodic potential of Figure 10-17. With these two modifi-
cations the solution of the Schrödinger equation is carried out just as in Chapter 7. 
The results for the allowed energies and average values of the radii of the Bohr orbits 
for the fifth arsenic electron are given by

 En = -
1

2
a ke2

U
b

2

 
me

n2 *
m*

me
*

1

k2 = -
1

2
a ke2

U
b

2

 
m*

k2  
1

n2� 10-43

 8rn9 = a0 n2 *
me

m*
* k � 10-44

where a0 is the Bohr radius, equal to 0.0529 nm (see Equation 4-19), and n is the prin-
cipal quantum number.

To understand where these energy levels lie relative to the bands and gap of the 
silicon, consider that when the arsenic atom is ionized by removing the fifth electron, 
that electron is then free to move about and to participate in electrical conduction; that 
is, it is then in the conduction band. Thus, we conclude that E = 0 is at the bottom 
edge of the conduction band and the other En hydrogenlike levels lie below it in the 
gap. The energy of the ground state E1 can be calculated from the experimentally 
determined value of the electron’s effective mass in silicon, about 0.2 me, and the 
dielectric constant of silicon given in Table 10-5. Substituting these into Equation 10-43 
yields E1 = 20.020 eV below the conduction band, which is substantially smaller 
than the 213.6 eV ground state for hydrogen. Similarly, substitution into Equation 
10-44 yields 8r19 = 3.1 nm, or about 60 times the ground-state radius of hydrogen.8 
These energies are quite close to the conduction band, as illustrated in Figure 10-28b; 

Figure 10-28  (a) A two-dimensional schematic illustration of silicon doped with arsenic. 
Because arsenic has five valence electrons, there is an extra, weakly bound electron that is 
easily excited to the conduction band, where it can contribute to electrical conduction. (b) Band 
structure of an n-type semiconductor such as silicon doped with arsenic. The impurity atoms 
provide filled energy levels that are just below the conduction band. These levels donate 
electrons to the conduction band.
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thus these electrons can be easily excited to the conduction band since their ionization 
energy is comparable to kT at room temperature.

These hydrogenlike levels just below the conduction band are called donor levels 
because they donate electrons to the conduction band without leaving holes in the 
valence band. Such a semiconductor is called an n-type semiconductor because the 
major charge carriers are negative electrons. The conductivity of a doped semiconduc-
tor can be controlled by controlling the amount of impurity added. The addition of just 
one part per million can increase the conductivity by several orders of magnitude.

Another type of impurity semiconductor can be made by replacing a silicon 
atom in the crystal lattice with a gallium atom, which has three electrons in its 
valence level rather than four (see Figure 10-29a). The gallium atom accepts elec-
trons from the valence band of the silicon in order to complete its four covalent 
bonds, thus creating a hole in the valence band. The effect on the band structure of 
silicon achieved by doping it with gallium is shown in Figure 10-29b. The empty 
levels shown just above the valence band are due to the holes resulting from the ion-
ization of the gallium atoms. These levels are called acceptor levels because they 
accept electrons from the filled valence band when these electrons are thermally 
excited to a higher energy state. They arise because the holes, which act like positive 
charges, may be bound to the negative gallium core much like the fifth electron was 
bound to the positive arsenic core. Thus, the hole-gallium ion system also forms a 
hydrogenlike system and the energy levels of the hole can also be calculated approx-
imately using the Bohr model with results similar to Equation 10-43. Since the 
energy-band diagrams like Figure 10-28b and 10-29b are drawn with electron energy 
increasing upward, hole energy in those diagrams increases downward. Ionizing the 
hole-gallium system means returning the hole to the valence band; hence these levels 
are just above the top of the valence band as shown in the figure and their magni-
tudes are of the same order as those of the donor levels discussed previously. Increas-
ing the energy of holes is equivalent to promoting electrons from the valence band 
into the acceptor levels. This creates holes in the valence band that are free to propa-
gate in the direction of an electric field. Such a semiconductor is called a p-type 
semiconductor because the charge carriers are positive holes. The fact that conduc-
tion is due to the motion of holes can be verified by the Hall effect described in the 
Exploring section on the next page.

Figure 10-29  (a) Two-dimensional schematic illustration of silicon doped with gallium. 
Because gallium has only three valence electrons, there is a hole in one of its bonds. As 
electrons move into the hole, the hole moves about, contributing to the conduction of electrical 
current. (b) Band structure of a p-type semiconductor such as silicon doped with gallium. The 
impurity atoms provide empty energy levels just above the filled valence band that accept 
electrons from the valence band.
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EXAMPLE 10-9	 Donor Ionization Energy in Ge ​ If phosphorus is used to dope 
germanium to form an n-type semiconductor, what is the ionization energy of the 
levels? What is the radius of the electron’s orbit? Phosphorus has five valence elec-
trons. (The effective mass for electrons in germanium is about 0.1 me.)

SOLUTION

	 1.	 The magnitude of the ionization energy 
is computed from Equation 10-43 with 
n = 1:

E1 =
1

2
a ke2

U
b

2

 
m*

k2

	 2.	 The dielectric constant k for germanium 
is given in Table 10-5:

k = 15.9

	 3.	 Substituting values into Equation 10-43 gives

 E1 =
1

2
a 9 * 109 N # m2>C2 * 11.60 * 10-19 C22

1.055 * 10-34 J # s
b

2

 
10.1 * 9.11 * 10-31 kg2

115.922

 = 8.6 * 10-22 J = 5.4 * 10-3 eV

	 4.	 The orbit radius 8r19  of the fifth 
phosphorus electron is computed from 
Equation 10-44 with n = 1:

8r19 = a0 
me

m*
 k

	 5.	 Substituting values, where the Bohr 
radius a0 = 0.0529 nm, gives

 8r19 = 0.0529 *
me

0.1me

* 15.9

 = 8.4 nm

Remarks:  The value computed above for E1 is very close to the experimental value 
of 12.0 * 1023 eV even though our calculation is a Bohr model approximation.

EXPLORING
Hall Effect

The number of donated electrons in a doped n-type semiconductor or holes in a doped 
p-type semiconductor is typically much greater than the intrinsic number of electron-
hole pairs created by thermal excitation of electrons from the valence band to the 
conduction band. In an electric field, the current will therefore consist of both major-
ity carriers (electrons in an n-type or holes in a p-type semiconductor) and minority 
carriers. The reality of conduction by motion of positive holes is clearly evident in the 
Hall effect, illustrated in Figure 10-30a. In this figure a thin strip of a doped semicon-
ductor is connected to a battery (not shown) so that there is a current to the right. A 
uniform magnetic field B is applied perpendicular to the current. For the direction of 
the current and magnetic field shown, the magnetic force on a moving charged particle 
q vd * B is upward (where vd is the drift velocity) independent of whether the current 
is due to a positive charge moving to the right or a negative charge moving to the 
left. Let us assume for the moment that the charge carriers are electrons, as in Figure 
10-30b. The magnetic force will then cause the electrons to drift up to the top of the 
strip, leaving the bottom of the strip with an excess positive charge. This will continue 
until the electrostatic field  caused by the charge separation produces an electric 
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force on the charge carriers just balancing the magnetic force. The condition for bal-
ance is q  = q vd B. If w is the width of the strip, there will be a potential difference 
called the Hall voltage

	 VH = w = vd Bw	 10-45

between the top and bottom of the strip. This potential difference can be measured 
with a high-resistance voltmeter. A measurement of the sign of the potential difference 
(i.e., whether the top of the strip is at a higher potential due to positive charge or lower 
potential due to negative charge) determines the sign of the majority carriers. Such 
measurements reveal that, indeed, the charge carriers are negative in n-type and posi-
tive in p-type semiconductors. The value of the Hall voltage provides a measurement 
of the drift velocity vd. Since the current density j = nqvd can be easily measured from 
the total current and cross-sectional area of the strip, measurement of the drift velocity 
determines n, the number of charge carriers per unit volume.

EXAMPLE 10-10	 Hall Effect in Aluminum ​ A strip of aluminum of width w = 
1.5 cm and thickness t = 250 mm is placed in a uniform magnetic field of 0.55 T 
oriented perpendicular to the plane of the strip. When a current of 25 A is estab-
lished in the strip, a voltage of 1.64 mV is measured across the width of the strip. 
What is the density of charge carriers in aluminum and how many charge carriers 
are provided, on average, by each atom?

SOLUTION
Substituting for the drift velocity vd in terms of the current density (Equation 10-11) 
in Equation 10-45 yields

	 VH = vd  Bw =
jBw

nq
=

iB

qnt
� 10-46

since j = i>wt. The density of the charge carriers in aluminum is then given by

 n =
iB

qtVH

=
125 A2 10.55 T2

11.60 * 10-19 C2 1250 * 10-6 m2 11.64 * 10-6 V2
 = 2.10 * 1029 carriers>m3

Hall-effect probes are 
frequently used to 
measure magnetic field 
strengths. A current is 
established in a calibrated 
metal strip. Measuring 
the Hall voltage then 
yields the value of B (see 
Equation 10-46).

Figure 10-30  The Hall effect. The force on the charge carriers is up whether the carriers 
are positive charges moving to the right (a) or negative charges moving to the left (b). The 
sign of the charge carriers can be determined by the sign of the potential difference between 
the top and bottom of the strip, and the drift velocity can be determined by the magnitude of 
this potential difference. The thickness t of the strip is not shown.
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The density of atoms N in aluminum is given by the following, where the density 
r1Al2 = 2.72 * 103 kg>m3 and the molar mass M = 26.98 kg>mol:

 N =
NAr

M
=
16.02 * 1026 atoms>mol2 12.702 * 103 kg>m32

26.98 kg>mol

 = 6.02 * 1028 atoms>m3

Thus, each aluminum atom contributes on the average n>N = 3.5 charge carriers.

The Quantum Hall Effect
According to Equation 10-46, the Hall voltage should increase linearly with the 
magnetic field B for a given current. In 1980, while studying the Hall effect in thin 
semiconductors at very low temperatures and very large magnetic fields, von Klitzing9 
discovered that a plot of VH versus B was not linear, but included a series of plateaus, as 
shown in Figure 10-31a; that is, the Hall voltage is quantized. More specifically, if we 
define the Hall resistance RH = VH>i, it is the Hall resistance that is quantized, taking 
on only the values

	 RH =
VH

i
=

RK

n
	 10-47

where RK, called the von Klitzing constant, is related to the fundamental electron 
charge e and Planck’s constant h by

	 RK =
h

e2 =
6.626 * 10-34 J # s

11.602 * 10-19 C22 = 25,813 V	 10-48

The values of n found by von Klitzing were small positive integers (n = 1, 2, 3, . . .), 
as indicated in Figure 10-31a. Then, in 1982, Tsui and his coworkers,10 while investi-
gating the quantum Hall effect in ultrapure semiconductors, discovered quantized val-
ues of the Hall resistance for values of n that were rational fractions formed from small 
integers. Values of RH have been found thus far for more than 30 values of v = a>b,
where a and b are integers with no common factors. Several of these are seen in 
Figure 10-31b.

Figure 10-31  (a) A plot of the Hall voltage vs. applied magnetic field shows plateaus, indicating that the Hall voltage 
is quantized. These data were taken at a temperature of 1.39 K with the current i held fixed at 25.52 mA. (b) The 
fractional quantum Hall effect. The Hall resistance RH (the curve with the plateaus) is read on the left vertical axis, the 
normal resistance RN (the curve with the peaks) on the right vertical axis. [Data collected by Y.W. Suen and coworkers at 
Princeton University.]
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Von Klitzing’s discovery is referred to as the integral quantized Hall effect (IQHE) 
and that of Tsui and his colleagues as the fractional quantized Hall effect (FQHE). 
The theoretical models that have been developed to explain these phenomena are as 
yet incomplete and, in any case, beyond the scope of our discussion here; however, 
we can give a brief qualitative description of the IQHE. In the “normal” Hall effect the 
material carries a current i due to an applied electric field . The electric field is per-
pendicular to the applied magnetic field B and, as a result, the charge carriers move in 
a circular path, or orbit, of radius r = m*v>qB. The fact that electrons obey the Pauli 
exclusion principle prevents the orbits from overlapping and determines how closely 
the electrons can group together on the negative side of the sample. Recalling that the 
orbital motion of electrons is quantized with only certain radii being allowed—namely, 
those for which the orbit circumference equals an integral number of de Broglie wave-
lengths—we know that increasing the magnetic field decreases the orbit radius, but 
such decreases must occur suddenly and result in another, smaller allowed radius. 
Thus, more electron orbits can fit without overlapping in a given area and the density of 
charge carriers increases on the edges of the semiconductor sample. This increases the 
frequency of collisions and hence the Hall resistance. Since the orbit radii change only 
in quantized steps, so must the Hall resistance. Surprisingly, when the Hall resistance 
is on one of the plateaus, the ordinary resistance R = V>i falls to zero, as illustrated by 
the multiple peaked curve in Figure 10-31b. The additional plateaus that occur in the 
FQHE are due to electron-electron spin interactions.

Because the von Klitzing constant can be measured with a precision of better than 
1 part in 1010, the quantum Hall effect is now used to define the standard of resistance. 
The ohm is now defined so that RK has the value 25,812.807 V exactly.

Spin Hall Effect
A new vista in spintronics was opened in 2004 with the observation of the spin Hall 
effect in GeAs at 20 K by David Awschlom and his group. In the spin Hall effect 
the electrons of a charge current flow in a nonmagnetic conducting material in the 
absence of an external magnetic field. An applied external electric field separates 
the electrons perpendicular to the conventional current direction into spin-up and 
spin-down populations that accumulate on opposite sides of the conducting mate-
rial. The same phenomenon was detected at 295 K (room temperature) in ZnSe in 
2006 by the same researchers. Although the effect is small, the potential applications, 
for example, injecting spin-polarized electrons into semiconductor devices, would 

Figure 10-32  Two thin 
magnetized Fe strips are laid 
parallel to each other on the 
In-doped GaAs sample. An 
applied B field separates the 
spins and aligns them with the 
magnetization of the Fe strips. 
The spin Hall effect signal is 
extracted from the measured 
voltage difference Va 2 Vb . 
[Adapted from J. Spinova, 
Physics 3, 82, (2010).]
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be enormous if further experiments to increase the size of the effect are successful. 
More recently, in 2010 E. S. Garlid and his coworkers successfully detected the spin 
Hall effect directly in indium-doped GaAs using electrical measurements, a tech-
nique completely different and simpler than that used in the earlier experiments (see 
Figure 10-32). The new technique is accessible to more investigators and offers addi-
tional potential applications.

10-8  Semiconductor Junctions and Devices 
Semiconductor devices such as diodes and transistors make use of n-type and p-type 
semiconductors joined as shown in Figure 10-33. In practice, the two types of semi-
conductors are often a single silicon crystal doped with donor impurities on one side 
and acceptor impurities on the other. The region in which the semiconductor changes 
from a p-type to an n-type is called a junction.

When an n-type and a p-type semiconductor are placed in contact, the initially 
unequal concentrations of electrons and holes result in the diffusion of electrons 
across the junction from the n side to the p side until equilibrium is established. The 
result of this diffusion is a net transport of positive charge from the p side to the n 
side. Unlike the case when two different metals are in contact, there are fewer elec-
trons available to participate in this diffusion because the semiconductor is not a par-
ticularly good conductor. The diffusion of electrons and holes creates a double layer 
of charge at the junction similar to that on a parallel-plate capacitor. There is thus a 
potential difference V across the junction, which tends to inhibit further diffusion. In 
equilibrium, the n side with its net positive charge will be at a higher potential than the 
p side with its net negative charge. In the junction region, there will be very few charge 
carriers of either type, so the junction region has a high resistance. Figure 10-34 
shows the energy-level diagram for a pn junction. The junction region is also called 
the depletion region because it has been depleted of charge carriers.

Diodes
A semiconductor with a pn junction can be used as a simple diode rectifier. In Fig-
ure 10-35, an external potential difference has been applied across the junction by 
connecting a battery and resistor to the semiconductor. When the positive terminal of 
the battery is connected to the p side of the junction as shown in Figure 10-35a, the 
diode is said to be forward biased. Forward biasing lowers the potential across the 
junction. The diffusion of electrons and holes is 
thereby increased as they attempt to reestablish 
equilibrium, resulting in a current in the circuit. If 
the positive terminal of the battery is connected to the 
n side of the junction as shown in Figure 10-35b, the 
diode is said to be reverse biased. Reverse biasing 
tends to increase the potential difference across the 
junction, thereby further inhibiting diffusion. Figure 
10-36 shows a plot of current versus voltage for a 
typical semiconductor junction. Essentially, the 
junction conducts only in one direction, the same as 
a vacuum-tube diode. Junction diodes have replaced 
vacuum diodes in nearly all applications except 
when a very high current is required.

Figure 10-33  A pn junction. 
Because of the difference in 
their concentrations, holes 
diffuse from the p side to the 
n side and electrons diffuse 
from the n side to the p side. 
As a result, there is a double 
layer of charge at the 
junction, with the p side 
negative and the n side 
positive.
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Figure 10-34  Electron 
energy levels for an unbiased 
pn junction.
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Figure 10-35  A pn-junction 
diode. (a) Forward-biased pn 
junction. The applied potential 
difference enhances the diffusion 
of holes from the p side to the n 
side and electrons from the n 
side to the p side, resulting in a 
current I. (b) Reverse-biased pn 
junction. The applied potential 
difference inhibits the further 
diffusion of holes and electrons, 
so there is no current.
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We can get an idea of how the current depends on applied voltage quantitatively 
if we note that the electrons and holes, being at the high energy end of the distribu-
tion, are approximately described by the Maxwell-Boltzmann distribution. Let Ne be 
the number of conduction electrons in the n region. With no external voltage, only a 
small fraction given by Ne e-eV>kT will have enough energy to diffuse across the contact 
potential difference. When a forward bias Vb is applied, the number that can cross the 
barrier becomes

Nee
-e1V - Vb2>kT = 1Ne e-eV>kT2e+eVb>kT

The current due to the majority electron carriers in the n region will be

I = I0 e+eVb>kT

where I0 is the current with no bias. The current due to the minority carriers, the holes 
from the n side, will be merely I0, the same as with no bias. (The minority carriers are 
swept across the junction by the contact potential V with or without a bias voltage.) 
The net current due to carriers from the n side will therefore be

	 Inet = I01e + eVb>kT - 12� 10-49

If we now consider the current due to the majority and minority carriers from the 
p side, we obtain the same results. We can use Equation 10-49 for the total current if 
we interpret I0 as the total current due to both kinds of minority carriers, holes in the n 
region and electrons in the p region. For positive Vb the exponential quickly domi-
nates. For Vb = 0 the current is 0, and for Vb less than zero, the current saturates at 2I0 
due to the flow of minority carriers. Note that the current in Figure 10-37 suddenly 
increases in magnitude at extreme values of reverse bias. In such large electric fields, 
two things can happen: either electrons are stripped from their atomic bonds or 
the few free electrons that exist in a reversed-biased junction are accelerated across the 
junction and gain enough energy to cause others to break loose. The first effect is 
called Zener breakdown; the second, avalanche breakdown. Although such a break-
down can be disastrous in a circuit where it is not intended, the fact that it occurs at a 
sharp voltage value makes it of use in a special voltage reference standard known as a 
Zener diode.

An interesting effect that we can discuss only qualitatively occurs if both the n 
side and the p side of a pn-junction diode are so heavily doped that the bottom of the 
conduction band lies below the top of the valence band. Figure 10-38a shows the 

Figure 10-36  ​Current vs. 
applied voltage across a pn 
junction. Note the different 
scales for the forward- and 
reverse-bias conditions.
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energy-level diagram for this situation. Since there are states on the p side with the 
same energy as states on the n side and the depletion region is now so narrow, elec-
trons can tunnel across the potential barrier (see Section 6-6). This flow of electrons is 
called tunneling current, and such a heavily doped diode is called a tunnel diode. At 
equilibrium with no bias, there is an equal tunneling current in each direction. When a 
small bias voltage is applied across the junction, the energy-level diagram is as shown 
in Figure 10-38b, and the tunneling of electrons from the n to the p side is increased, 
whereas that in the opposite direction is decreased. This tunneling current in addition 
to the usual current due to diffusion results in a considerable net current. When the 
bias voltage is increased slightly, the tunneling current decreases because there are 
fewer states on the p side with the same energy as states on the n side. Although the 
diffusion current is increased, the net current is decreased. At large bias voltages 
the energy-level diagram is as shown in Figure 10-38c, the tunneling current is com-
pletely negligible, and the total current increases with increasing bias voltage due to 
diffusion as in an ordinary pn-junction diode. Figure 10-37 shows the current versus 
voltage curve for a tunnel diode. Such diodes are used in electric circuits because of 
their very fast response time. When an electric circuit is operated near the peak in the 
current versus voltage curve, a small change in bias voltage results in a large change 
in the current.

Among the many applications of semiconductors with pn junctions are particle 
detectors called surface-barrier detectors. These consist of a pn-junction semicon-
ductor with a large reverse bias so that there is ordinarily no current. When a high-
energy particle, such as an electron, passes through the semiconductor, it excites 
electrons into the conduction band, creating many electron-hole pairs as it loses 
energy. The intrinsic electric field sweeps the electrons toward the positive (n) side of 
the junction and the holes toward the negative ( p) side. The resulting current pulse 
signals the passage of the particles and records the energy lost by the particle in the 
detector. The pulses are of short duration (1028 to 1027 seconds), making possible 
high-energy-resolution measurements.

Light emitting and absorbing pn-junction semiconductors function similarly to 
gaseous atoms emitting and absorbing light, with the conduction and valence bands 
analogous to the atomic energy levels. The light-absorbing pn-junction semiconduc-
tor diode, or solar cell, is illustrated schematically in Figure 10-39a. When photons 
with energy greater than the gap energy (1.1 eV in silicon) strike the pn-junction, they 
can excite electrons from the valence band into the conduction band, leaving holes in 

Figure 10-38  Electron energy levels for a heavily doped pn-junction tunnel diode. (a) With no bias voltage, some electrons 
tunnel in each direction. (b) With a small bias voltage, the tunneling current is enhanced in one direction, making a sizable 
contribution to the net current. (c) With further increases in the bias voltage, the tunneling current decreases dramatically.
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the valence band. This region is already rich in 
holes. Some of the electrons created by the photons 
will recombine with holes, but some will migrate to 
the junction. From there they are accelerated into the 
n-type region by the intrinsic electric field between 
the double layers of charge. This creates an excess 
negative charge in the n-type region and excess pos-
itive charge in the p-type region. The result is a 
potential difference, a photovoltage, between the 
two regions, which in practice is about 0.6 V. If a 
load resistance is connected across the two regions, 
a charge flows through the resistance. Some of the 
incident light energy is thus converted into electrical 
energy. The current in the resistor is proportional to 
the number of incident photons, which is in turn 
proportional to the intensity of the incident light.

Light-emitting diodes (LEDs) are pn-junction 
semiconductors with a large forward bias that pro-
duces a large excess concentration of electrons on 
the p side and holes on the n side of the junction (see 

Figure 10-39b). Under these conditions, the diode emits light as the electrons and 
holes recombine. This is essentially the reverse of the process that occurs in a solar 
cell. Following the first practical demonstration of an LED (in 1962), the performance 
of LEDs has steadily improved (see Figure 10-40). They can be fabricated in all of the 
primary colors and, more recently, white light as well, portending them as a common 
source of white light in the future. LEDs already provide a viable alternative to 

The development of 
InGaAlP HB LEDs in the 
early 1990s led to their 
rapid application to 
automotive rear lighting. 
The development of 
high-powered, large-area, 
white GaN HB LEDs makes 
automobile headlights 
using these LEDs a 
possibility for the future.

Figure 10-40  Summary of the performance improvements in LEDs over the span of their 
existence. The  marks the current performance of small-molecule OLEDs; the  marks that 
of the polymer OLEDs. A few performance benchmarks are indicated on the vertical axis.
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Figure 10-39  (a) A pn junction as a solar cell. Radiation 
striking the junction produces electrons and holes. The electrons 
are swept from the p side and holes from the n side by the 
intrinsic electric field. The accumulated charge results in a 
potential difference that produces a current through an external 
load. (b) A pn junction as an LED. Large forward bias produces a 
current of electrons moving to the left and holes moving to the 
right. When they recombine, radiation is emitted.
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filtered incandescent lighting in applications requiring monochromatic light. They are 
used, for example, as indicator lamps in appliances, electronic equipment, calculators, 
and digital watches. In automobiles they are used in instrument panel lighting, and 
high-brightness (HB) LEDs are now often used for rear, stop, and turn lights. In traf-
fic signals the red, amber, and green LED arrays now in common use require only 
10 percent of the power consumed by the standard 140 W incandescent lamps, are 
brighter, and have a much longer lifetime. Rapid development of organic semicon-
ductor light-emitting diodes (OLEDs) in the 1990s was catalyzed by worldwide 
efforts to construct large, full-color, flat-screen displays. Fabricated from small 
organic molecules and various polymers, OLEDs have an advantage over LEDs in 
that they can be produced on a large scale at very low cost. In LEDs high forward cur-
rents result in a very large population inversion, that is, electrons on the p side and 
holes on the n side, so that stimulated emission dominates the light emission process 
and lasing results. By appropriate construction of the diode, a resonant cavity can be 
formed, leading to the production of a coherent beam of laser light in a selected direc-
tion (see Figure 10-41).

Transistors
The transistor, invented in 1948 by William Shockley, John Bardeen, and Walter 
Brattain,11 has revolutionized the electronics industry and our everyday world. A simple 
junction transistor consists of three distinct semiconductor regions called the emitter, 
the base, and the collector. The base is a very thin region of one type of semiconduc-
tor sandwiched between two regions of the opposite type. The emitter semiconductor 
is much more heavily doped than either the base or the collector. In an npn transistor, 
the emitter and collector are n-type semiconductors and the base is a p-type semicon-
ductor; in a pnp transistor, the base is an n-type semiconductor and the emitter and 
collector are p-type semiconductors. In a pnp transistor holes are emitted by the emit-
ter; in an npn transistor electrons are emitted.

Figures 10-42 and 10-43 show, respectively, a pnp transistor and an npn transis-
tor with the symbols used to represent each transistor in circuit diagrams. Notice that 
a transistor consists of two pn junctions. The operation of a pnp transistor is described 

Figure 10-41  The resonant 
cavity is formed by cleaving 
the ends of the diode crystal 
parallel to each other and 
with the proper separation. 
Gallium arsenide and similar 
compounds, which have 
much higher photon-
production efficiency than 
silicon, are typically used as 
diode laser semiconductors. 
Their light-energy-out to 
electrical-energy-in ratios are 
greater than 50 percent.
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p type

n type

Coherent
light

Figure 10-42  (a) A pnp transistor. The heavily doped 
emitter emits holes that pass through the thin base to the 
collector. (b) Symbol for a pnp transistor in a circuit. The 
arrow points in the direction of the conventional current, 
which is the same as that of the emitted holes.
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Figure 10-43  (a) An npn transistor. The heavily doped 
emitter emits electrons that pass through the thin base to 
the collector. (b) Symbol for an npn transistor. The arrow 
points in the direction of the conventional current, which 
is opposite the direction of the emitted electrons.
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in the More section How Transistors Work. The operation of an npn transistor is 
similar.

More
�How Transistors Work on the home page at www.whfreeman.com/
tiplermodernphysics6e. describes the way transistors function in 
electronic circuits. Also here are Equations 10-50 through 10-54, 
Example 10-11, and Figures 10-44 and 10-45.

More

Questions

  9.	 Why is a semiconductor diode less effective at high temperatures?

10.	 Explain why adding impurities to metals decreases their conductivity
but adding impurities to semiconductors increases their 
conductivity.

11.	 What would you expect to be the effect on the conductivity when impurities 
are added to an insulator?

10-9  Superconductivity 
In 1911, just a few years after he had succeeded in liquefying helium and while he 
was investigating the properties of materials at liquid helium temperatures, the Dutch 
physicist H. Kamerlingh Onnes discovered that for some materials, a certain tem-
perature exists, called the critical temperature Tc, below which the resistivity is zero 
and the conductivity s = 1>r S q. He called this phenomenon superconductivity. 
Figure 10-46 shows the plot Kamerlingh Onnes obtained of the resistance of mercury 

(a) LED traffic lights use 10 percent of the power of the old 140 W signal lamps, last far 
longer, and are collectively brighter. (b) Automobile LED rear lighting and brake lights have 
become ubiquitous, as have LED traffic signals. Pictured here are examples of the scores of 
different colors, shapes, and sizes of vehicle clearance and safety LED lights one sees every 
day on the streets and highways. [Photos by Francisco Roman.]

(a) (b)
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versus temperature. The critical temperature for mercury is 4.2 K. The crit-
ical temperature varies from material to material, but below this tempera-
ture the electrical resistance of the material is zero. Critical temperatures 
for other superconducting elements range from less than 0.1 K for hafnium 
and iridium to 9.2 K for niobium. The critical temperatures of several 
superconducting materials are given in Table 10-6. In the presence of a 
magnetic field B, the critical temperature is lower than it is when there is 
no field. As the magnetic field increases, the critical temperature decreases, 
as illustrated in Figure 10-47. If the magnetic field is greater than some 
critical field Bc, superconductivity does not exist at any temperature. The 
values of Tc in the table are for B = 0.

Many metallic compounds are also superconductors. For example the 
superconducting alloy Nb3Ge, discovered in 1973, has a critical tempera-
ture of 23.2 K, which was the highest known until 1986, when the first of 
the complex high Tc cuprate ceramic superconductors was discovered. 
More recently, in 2001 Jun Akimitsu discovered that the metal compound 
MgB2, available “off the shelf ” for about $2>g, became superconducting at 
39 K, as of this writing the highest Tc yet for a conventional superconduc-
tor (see Table 10-6). Despite the cost and inconvenience of refrigeration 
with expensive liquid helium, which boils at 4.2 K, many superconducting 
magnets have been built using such materials.

The conductivity of a superconductor cannot be defined since its resis-
tance is zero. There can be a current in a superconductor even when the electric field 
in the superconductor is zero; such currents are called supercurrents. Indeed, steady 
currents have been observed to persist for years without apparent loss in supercon-
ducting rings in which there was no electric field.

Electromagnets wound 
with superconducting wire 
are used in applications 
ranging from medical 
diagnostic MRI systems 
to beam focusing and 
bending magnets at large 
particle accelerators 
worldwide.

Figure 10-46  Plot by Kamerlingh 
Onnes of the resistance of mercury 
versus temperature, showing a sudden 
decrease at the critical temperature 
T = 4.2 K, signifying the onset of 
superconductivity.

0.00

0.15

0.125

0.10

0.075

0.05

0.025

4.00 4.304.204.10 4.40

T, K

R
, Ω

10–5 Ω

 Table 10-6 � Tc and Bc values for some type I and
type II superconductors

Type I 
element

Tc

(K)
Bc

(at 0 K; T)
Type II 
compound

Tc

(K)
Bc2

(at 0 K; T)

Al 1.175 0.0105 Nb3Sn 18.1 24.5

Cd 0.517 0.0028 Nb3Ge 23.2 34.0

Hg 4.154 0.0411 NbN 16.0 15.3

In 3.408 0.0282 V3Ga 16.5 35.0

Nb 9.25 0.2060 V3Si 17.1 15.6

Os 0.66 0.0070 PbMoS 14.4   6.0

Pb 7.196 0.0803 CNb2   9.1   0.06

Sn 3.722 0.0305 MgB2 39.0 16

Tl 2.38 0.0178 Rb3C60 29.0 ?

Zn 0.85 0.0054 Cs2RbC60 33.0 ?
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Meissner Effect
Consider a superconducting material that is originally at 
a temperature greater than the critical temperature and is 
in the presence of a small external magnetic field B 6 Bc. 
We now cool the material below the critical temperature 
so that it becomes superconducting. Since the resistance 
is now zero, there can be no emf in the superconductor. 
Thus, from Faraday’s law, the magnetic field in the 
superconductor cannot change. We therefore expect 
from classical physics that the magnetic field in the 
superconductor will remain constant. However, it is 
observed experimentally that when a superconductor is 
cooled below the critical temperature in an external mag-
netic field, the magnetic field lines are expelled from 
the superconductor and thus the magnetic field inside the 
superconductor is zero (see Figure 10-48). This effect 
was discovered by H. W. Meissner and R. Ochsenfeld in 

1933 and is now known as the Meissner effect. It, not zero resistance, is the criterion 
that determines if a material is a superconductor. The mechanism by which the 
magnetic field lines are expelled or, more specifically, canceled within the bulk of 
the superconductor is that a supercurrent (called a screening current) is induced on 
the surface in such a direction as to exactly cancel the external field within the 

Figure 10-47  ​Variation of the critical temperature with 
magnetic field for lead. Note that Bc approaches zero as T 
approaches Tc.
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Figure 10-48  (a) The Meissner effect in a superconducting sphere cooled in a constant 
applied magnetic field. As the temperature drops below the critical temperature Tc, the 
magnetic field lines are expelled from the sphere. (b) Demonstration of the Meissner effect.
A superconducting tin cylinder is situated with its axis perpendicular to a horizontal magnetic 
field. The directions of the field lines near the cylinder are indicated by weakly magnetized 
compass needles mounted in a Lucite sandwich so that they are free to turn. [Courtesy of
A. Leitner, Rensselaer Polytechnic Institute.]
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material.12 Establishing the supercurrent “costs” the superconductor an amount of 
energy per unit volume equal to B2>2m0, where m0 is the permeability of the vacuum. 
When the field B becomes larger than Bc, there is insufficient energy available and 
the material reverts to its “normal” resistive state. The magnetic levitation shown in the 
photograph below results from the repulsion between the permanent magnet produc-
ing the external field and the magnetic field produced by the currents induced in the 
superconductor. Only certain superconductors called type I, or “soft,” superconduc-
tors exhibit the complete Meissner effect. Type I superconductors are primarily very 
pure metal elements. Figure 10-49a shows a plot of the magnetization M times m0 
versus the applied magnetic field Bapp for a type I superconductor. For a magnetic 
field less than the critical field Bc, the magnetic field 
m0M induced in the superconductor is equal and opposite 
to the external magnetic field; that is, the superconductor 
is a perfect diamagnet. The values of Bc for type I 
superconductors are all too small for such materials to be 
useful in the coils of a superconducting magnet (see 
Table 10-6).

Other materials, known as type II, or “hard,” super-
conductors, have a magnetization curve similar to that 
in  Figure 10-49b. Such materials are usually alloys or 
metals that have large resistivities in the normal state. 
Type II superconductors exhibit two critical magnetic 
fields, Bc1 and Bc2, as shown in Figure 10-50 for tanta-
lum. Applied fields less than Bc1 result in the Meissner 
effect of total magnetic flux cancellation and the entire 
sample is superconducting, as in type I superconductors. 
Applied fields greater than Bc2 result in complete pene-
tration of the magnetic field throughout the sample, and 
the resistivity of the material returns to normal. How-
ever, in the region between Bc1 and Bc2 there is partial 
penetration of the magnetic field, the field lines being 
confined to flux tubes, also called vortices, in which the 

Figure 10-49  ​Plots of m0 times the magnetization M vs. applied magnetic field for type I 
and type II superconductors. (a) In a type I superconductor, the resultant magnetic field is 
zero below a critical applied field Bc because the field due to induced currents on the surface 
of the superconductor exactly cancels the applied field. Above the critical field, the material 
is a normal conductor and the magnetization is too small to be seen on this scale. (b) In a
type II superconductor, the magnetic field starts to penetrate the superconductor at a field Bc1, 
but the material remains superconducting up to the field Bc2, after which it becomes a normal 
conductor.

(a ) (b )

Bapp

Type I
superconductor

Bc

µ0M = –Bapp

Bapp

Type II
superconductor
Bc1 Bc2

µ0M µ0M

A small, cubical permanent magnet levitates above a disk of 
the superconductor yttrium-barium-copper oxide, cooled by 
liquid nitrogen to 77 K. At temperatures below 92 K, the 
disk becomes superconducting. The magnetic field of the 
cube sets up circulating electric supercurrents in the 
superconducting disk, such that the resultant magnetic field 
in the superconductor is zero. These currents produce a 
magnetic field opposite to that of the cube, and thus the 
cube is repelled. [Courtesy of IBM Research.]
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material has normal resistivity. The surrounding material remains field free and 
superconducting, as illustrated schematically in Figure 10-51. Each flux tube con-
tains one quantized unit of magnetic flux, as will be described later in this section. 
For many type II superconductors the critical field Bc2 may be several hundred times 
larger than the typical values of critical fields for type I superconductors (see Table 
10-6). For example, the alloy Nb3Ge has a critical field Bc2 = 34 T. Such materials 
can be used to construct high-field superconducting magnets.

Figure 10-50  Critical magnetic fields Bc1 and Bc2 for Ta (99.95 percent) as a function of 
temperature. Below the Bc1 curve Ta exhibits the Meissner effect. Between the two curves is a 
mixed, or vortex, state with filaments of normal Ta penetrating the superconducting state. 
Above the Bc2 curve there is complete magnetic field penetration and the entire sample has 
normal resistivity.
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Figure 10-51  (a) Below Bc1 the type II material shows the Meissner effect. For temperatures below Tc the material is 
superconducting and B = 0 throughout the volume. (b) For Bc1 6 B 6 Bc2, magnetic field lines penetrate the material but are 
confined to flux tubes of normally resistive material that form the so-called vortex lattice. For a given T 6 Tc, as the applied field 
B approaches Bc2, the size of the superconducting region shrinks as more flux tubes occupy the volume. When B 7 Bc2, the entire 
material has normal resistivity. (c) The lattice of magnetic vortices in UPt3, a strongly type II superconductor, is shown clearly 
by neutron diffraction.
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EXPLORING
Flux Quantization

Consider a superconducting loop of area A carrying a current. There can be a magnetic 
flux m = Bn A through the loop due to the current in the loop. According to Faraday’s 
law of induction, if the flux changes, an emf will be induced in the loop that is propor-
tional to the rate of change of the flux. But for a superconductor there can be no emf 
in the loop because there is no resistance. Therefore, the flux through the ring is frozen 
and cannot change. Indeed, the quantum-mechanical treatment of superconductivity 
reveals that the total flux through the loop is quantized and is given by

m = n 
h

2e
  n = 1, 2, 3,c

The quantum of flux, called a fluxoid, is

0 =
h

2e
= 2.0678 * 10-15 T # m2

Each flux tube in a type II superconductor with Bc1 6 B 6 Bc2 contains one quantum of flux.

BCS Theory
Our discussion of the classical free-electron theory in Section 10-2 considered the 
ions of the crystal lattice to be fixed. Resistivity was due to the interactions of 
the electrons with the ions of the lattice, and both electron-electron interactions and 

(a) Fluxoids penetrating a superconducting film. The image has been formed by the technique of electron holography, in which 
coherent electron beams are used in place of coherent light beams to create a hologram. Electrons passing by a magnetic field 
are phase shifted; that is, the phase term in their wave function changes. (The shift arises from a phenomenon known as the 
Aharonov-Bohm effect.) By superposing such a phase-shifted beam with an unshifted reference beam, an interference pattern is 
created that can be interpreted as an image of the magnetic field. For the upper images, a magnetic field was applied 
perpendicular to a thin superconducting lead film. When the field was weak, it was expelled by the Meissner effect. A stronger 
field, however, penetrated the film. The fluxoids shown arose from vortices of current set up in the superconductor—not from 
the applied field directly. In the upper right is an isolated fluxoid; in the upper left is an antiparallel pair of fluxoids. The lower 
micrograph, in which the lead film is thicker, shows penetration by bundles of fluxoids. [Courtesy of Akira Tonomura, Hitachi 
Ltd., Saitama, Japan.] (b) A lattice of fluxoid vortices penetrating the surface of a superconductor. They were made visible for 
the photograph by a dusting of fine ferromagnetic particles. [Courtesy of U. Essmann.]
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the effects of lattice vibrations, that is, electron-phonon interactions, were ignored. In 
the quantum theory of conduction, lattice vibrations were explicitly taken into account 
(see Equations 10-26 to 10-28). Lattice vibrations are also responsible for the isotope 
effect13 in superconductivity, discovered in 1950. This experimental observation 
revealed that the critical temperature depends on the isotopic mass of the crystal 
according to

	 Ma
 Tc = constant� 10-55

where M is the average isotopic mass and a varies from material to material. For 
example, for mercury a = 0.50 and Tc = 4.185 K for samples of average isotopic mass 
M = 199.5 u, whereas Tc = 4.146 K for samples with M = 203.4 u. Table 10-7 lists 
experimental values for a for a few superconductors.

The importance of the discovery represented by Equation 10-55 is to tell us that 
the lattice vibrations, hence the electron-phonon interactions, cannot be ignored. The 
assumption of fixed lattice ions is equivalent to assuming that M S  for electron-
lattice ion interactions. But if M S , then Tc would be zero for all materials.

It had been recognized for some time that superconductivity is due to a collective 
behavior of the conducting electrons. Discovery of the isotope effect pointed to the 
crucial interaction as being with the phonons. In 1957, John Bardeen, Leon Copper, 
and Bob Schrieffer published a successful theory of superconductivity now known as 
the BCS theory.14 According to this theory, the electrons in a superconductor are 
coupled in pairs at low temperatures. The coupling comes about because of the inter-
action between electrons and the crystal lattice. An electron moving through the lat-
tice of positive ions interacts with and perturbs it as illustrated in Figure 10-52. The 
electron attracts the positive ions nearby, displacing them slightly, resulting in a 
region of increased positive charge density. Because the ions are bound to the lattice 
by elastic forces, this region of increased charge density propagates through the mate-
rial as a vibrational wave in the lattice, that is, a phonon. The momentum of the pho-
non has been provided by the electron, and we can think of the electron as having 
emitted a phonon.

A second electron that encounters the wave of increased positive charge concen-
tration is attracted toward it by the Coulomb interaction and can absorb the momen-
tum carried by the wave; that is, it may absorb the phonon. Thus, the two electrons 
can interact via the phonon and (very important) the interaction is an attractive one 
since both electrons experience an attractive force toward the region of increased pos-
itive charge density. At low temperatures (T 6 Tc) the attraction between the two 
electrons can exceed the Coulomb repulsion between them. Thus, the electrons can 
form a bound state called a Cooper pair, provided that the temperature is low enough 

 Table 10-7  Experimental values of a for a few superconductors

Material a Material a

Cd 0.32 Nb3Sn 0.08

Hg 0.50 Os 0.15

Pb 0.49 Zn 0.45

Data from C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Wiley, 2005).

Figure 10-52  ​An electron 
traveling through the lattice 
of positive ions generates a 
wave of increased charge 
density, shown in two 
dimensions by the dotted 
lines. The momentum of the 
wave comes at the expense 
of the electron’s momentum. 
A second electron may 
encounter the wave and 
absorb its momentum. The 
net effect is an attraction 
between the two electrons and 
the production, for T 6 Tc, of 
a Cooper pair.
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so that the number and energy of randomly generated thermal phonons will not dis-
rupt its formation. The electrons in a Cooper pair have opposite spins and equal and 
opposite linear momenta. Therefore, they form a system with zero spin and zero 
momentum. Each Cooper pair may be considered as a single particle with zero spin. 
Such a particle does not obey the Pauli exclusion principle, so any number of Copper 
pairs may be in the same quantum state with the same energy.15 In the ground state 
of a superconductor (at T = 0), all the electrons are in Cooper pairs and all the 
Cooper pairs are in the same energy state. In the superconducting state, the Cooper 
pairs are correlated so that they all act together. In order for the electrons in a super-
conducting state to absorb or emit energy, the binding of the Cooper pairs must be 
broken. The energy needed to break up a Cooper pair is analogous to that needed to 
break up a molecule into its constituent atoms. This energy is called the supercon-
ducting energy gap Eg. In the BCS theory, this energy at absolute zero is predicted
to be

	 Eg = 3.5kTc	 10-56

In agreement with experimental observations, BCS theory also predicts the flux 
quantization described in the Exploring section on page 477 and the temperature 
dependence of Bc:

Bc1T2 >Bc102 = 1 - 1T>Tc22

EXAMPLE 10-12	 Energy Gap of Cadmium ​ (a) Calculate the superconducting 
energy gap at T = 0 K predicted by the BCS theory for cadmium and compare the 
result with the measured result of 1.50 * 1024 eV. (b) Compute the wavelength of a 
photon whose energy is just sufficient to break up a Cooper pair in cadmium.

SOLUTION
(a) � From Table 10-6, we have that Tc = 0.517 K for cadmium. The BCS prediction 

of the energy gap is then

Eg = 3.5kTc =
3.511.38 * 10-23 J>K2 10.517 K2

11.60 * 10-19 J>eV2 = 1.56 * 10-4 eV

	 This differs from the measured values of 1.50 * 1024 eV by about 4 percent.
(b)  Eg = hf = hc>l, or we have that

l = hc>Eg =
16.63 * 10-34 J # s2 13.00 * 108 m>s2
11.56 * 10-4 eV2 11.60 * 10-19 J>eV2 = 7.97 * 10-3 m

Remarks:  This wavelength is in the short-wavelength microwave region of the 
electromagnetic spectrum.

Note that the energy gap for a typical superconductor is much smaller than the 
energy gap for a typical semiconductor, which is of the order of 1 eV. As the tempera-
ture is increased from T = 0, some of the Cooper pairs are broken. The resulting indi-
vidual (unpaired) electrons interact with the remaining Cooper pairs, reducing the 
energy gap until at T = Tc the energy gap is zero (see Figure 10-53). Notice, too, that 
the gap energy is typically larger than that available from the thermal energy of the 
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system. For example, for T = 0.5Tc, Eg(T) = (0.95) Eg(0)  (3.3)kTc, 
whereas the thermal energy kT = (0.5)kTc.

The Cooper pairs that we have discussed so far have zero momen-
tum, so there are as many electrons traveling in one direction as the other 
and there is no current. Cooper pairs can also be formed with a net 
momentum p rather than zero momentum, but all the pairs have the same 
momentum. In this state, current is carried by the Cooper pairs. In ordi-
nary conductors, resistance is present because the current carriers can be 
scattered with a change in momentum. As we have discussed, this scatter-
ing may be due to impurity atoms or thermal vibrations of the lattice ions. 
In a superconductor, the Cooper pairs are constantly scattering each other, 
but since the total momentum remains constant in this process, there is no 
change in the current. A Cooper pair cannot be scattered by a lattice ion 
because all the pairs act together. The only way that the current can be 
decreased by scattering is if a pair is broken up, which requires energy 

greater than or equal to the energy gap Eg. At reasonably low currents, scattering 
events in which the total momentum of a Cooper pair is changed are completely pro-
hibited, so there is no resistance.

EXAMPLE 10-13	 How Big Is a Cooper Pair? ​ Calculate an estimate of the sep-
aration D x of the electrons forming a Cooper pair, assuming that the binding energy 
of the pair equals the gap energy Eg and that, like semiconductors, the gap is cen-
tered on the Fermi energy EF.

SOLUTION
The energy of either electron is, with the aid of the de Broglie relation, given by

E =
p2

2m*
=

U2
 k2

2m*
and

DE =
2kU2Dk

2m*

If we associate E with the Fermi energy and DE with the gap, then

DE

E


Eg

EF


2k U2Dk

2m*
*

2m*

U2
 k2 

2Dk

k

Since the Fermi energy is typically of the order of 1 eV and the gap of the order 
1024 eV, as computed in Example 10-12, then Eg>EF  10-4 and

Dk  0.5 * 10-4
 k

where k refers to the value at the Fermi level. As was discussed in Section 10-6 and 
illustrated in Figure 10-19, k = p>a 12 at the top of the first allowed band, where the 
energy is approximately EF. The lattice spacing a  0.1 nm, so we have that 
k  p>0.1 nm-1, and Dk = 1023 nm21. From the classical uncertainty relation 
(Equation 5-17), we then have that the uncertainty in the location of either electron, 
that is, the extent of their wave functions in space, is

Dx =
1

Dk
= 103 nm

or roughly equal to 10,000 atomic diameters and approximately equal to the wave-
length of visible light.
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Figure 10-53  Ratio of the 
energy gap at temperature T 
to that at T = 0 as a function 
of the relative temperature 
T>Tc. The solid curve is that 
predicted by the BCS theory.
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High-Temperature Superconductivity
For many years, the highest known critical temperature for a superconductor was 
23.2 K for the alloy Nb3Ge. Then in 1986 Bednorz and Muller found that an oxide of 
lanthanum, barium, and copper became superconducting at 30 K. Soon afterward, in 
1987, superconductivity with a critical temperature of 92 K was found in a ceramic of 
copper oxide containing yttrium and barium (YBa2Cu3O7). Since then, several copper 
oxides have been found with critical temperatures as high as 138 K. Table 10-8 lists 
some of the high-temperature superconductors along with their critical temperatures. 
These discoveries have revolutionized the study of superconductivity because rela-
tively inexpensive liquid nitrogen, which boils at 77 K, can be used for a coolant. 
However, there are many problems, such as the brittleness of ceramics, that thus far 
make these new superconductors difficult to use.

In 2008, H. Hosono discovered that the Fe-based compound LaFeAsO1 - xFx 
becomes superconducting at 26 K. Within a few months of his discovery physicists 
substituting other rare earth elements for La in the compound had produced additional 
Fe-based superconductors with critical temperatures up to 55 K. As of this writing, 
four classes of Fe-based superconductors have been discovered with critical tempera-
tures ranging from 20 K to 56 K.

High-temperature superconductors are all type II, with very high upper critical 
fields. For some, Bc2 is estimated to be as high as 100 T. Although the BCS theory 
appears to be the correct starting place for understanding these new superconductors, 
they have many features that are not clearly understood. In addition, the Cu- and Fe-
based superconductors have both similarities and differences in their crystal struc-
tures that hold keys to understanding the mechanisms of their superconductivity. 
Thus, there is much work, both experimental and theoretical, to be done.

South Korea is using 
3 * 106 m of high-Tc 
superconducting wire 
(YBa2Cu3O7) to replace old 
transmission lines as part 
of a program to modernize 
the country’s electricity 
network.

 Table 10-8 � Critical temperatures of some high
Tc Cu- and Fe-based superconductors

Material Tc (K)

LaFeAs(O,F)   26

LaBaCuO   30

La2CuO4   40

CeFeAs(O,F)   41

SmFeAs(O,F)   55

Liquid N2 boils   77

YBa2Cu3O7   92

DyBa2Cu3O7   92.5

C601CHBr32 117

BiSrCaCuO 120

Tl2Ba2Ca2Cu3O10 120

Hg.8Tl.2Ba2Ca2Cu3O8.33 138
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For YOU,  An Opportunity to Contribute  The magnetic field established by 
the screening supercurrent on the surface of a superconductor cancels that part of 
an external magnetic field that lies within the superconductor (the Meissner effect). 
This phenomenon is a possible source of magnetic levitation and has become a 
focus of research on the potential for markedly enhancing the efficiency of existing 
and proposed magnetic levitation applications. Important among these are mag-
netically levitated (maglev) railroad trains, a transportation system that suspends, 
guides, and propels the train using permanent magnets and electromagnets for lift 
and propulsion. They are characterized by extremely low friction and high potential 
maximum speeds. Incorporating superconducting magnets could substantially 
reduce power needs but first requires that solutions be found for a number of tech-
nical problems. Not the least of these is the development of suitable high-temperature 
superconducting materials that retain their physical and chemical properties over 
many, many years and can be fabricated into very long, flexible cables. If the 
history of the transistor is a reliable guide, appropriate high-temperature supercon-
ductors will become a reality in the foreseeable future and many opportunities to 
contribute will appear.

EXPLORING
Josephson Junction

In Section 6-6, we discussed barrier penetration—the tunneling of a single particle 
through a potential barrier. The tunneling of electrons from one metal to another can 
be observed by separating the two metals with a thin layer only a few nanometers thick 
of an insulating material such as aluminum oxide. When both metals are normal met-
als (not superconductors), the current resulting from the tunneling of electrons through 
the insulating layer obeys Ohm’s law for low applied voltages (see Figure 10-54a). 
When one of the metals is a normal metal and the other is a superconductor, there is 
no current (at absolute zero) unless the applied voltage V is greater than a critical volt-
age Vc = Eg>2e, where Eg is the superconductor energy gap. Figure 10-54b shows the 
plot of current versus voltage for this situation. The current jumps abruptly when V is 
great enough to break up a Cooper pair. (At temperatures above absolute zero, there is a 
small current because some of the electrons in the superconductor are thermally excited 

Figure 10-54  Tunneling current vs. voltage for a junction of two metals separated by a 
thin oxide layer. (a) When both metals are normal metals, the current is proportional to the 
voltage as predicted by Ohm’s law. (b) When one metal is a normal metal and one is a 
superconductor, the current is approximately zero until the applied voltage exceeds the 
critical voltage Vc = Eg>2e.

(a ) (b )

V

I

VVc

I
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above the energy gap and therefore are not paired.) The superconducting energy gap 
can thus be accurately measured by measuring the critical voltage Vc.

In 1962, Brian Josephson16 proposed that when two superconductors form a junc-
tion, now called a Josephson junction, Cooper pairs could tunnel from one supercon-
ductor to the other with no resistance. The current is observed with no voltage applied 
across the junction and is given by

	 I = Imax sin12 - 12	 10-57

where Imax is the maximum current, which depends on the thickness of the barrier, 1 is 
the phase of the wave function for the Cooper pairs in one of the superconductors, and 
2 is the phase of the corresponding wave function in the other superconductor. (The 
phase of a wave function is the exponent Et>U = vt of the time part of the total wave 
function; see Section 6-1.) This result has been observed experimentally and is known 
as the dc Josephson effect.

Josephson also predicted that if a dc voltage were applied across a Josephson junc-
tion, there would be a current that alternates with frequency f given by

	 f =
2eV

h
	 10-58

This result, known as the ac Josephson effect, has also been observed experimentally, 
and careful measurement of the frequency allows a precise determination of the ratio 
e>h. Because frequency can be measured so accurately, the ac Josephson effect is also 
used to establish precise voltage standards. The inverse effect, in which the application 
of an alternating voltage across a Josephson junction results in a dc current, has also 
been observed.

EXAMPLE 10-14	 AC Josephson Effect ​ Using e = 1.602 * 10219 C and

h = 6.626 * 10234 J # s, calculate the frequency of the Josephson current if the 
applied voltage is 1 mV.

SOLUTION
From Equation 10-58, we obtain

 f =
2eV

h
= a 211.602 * 10-19 C2 110-6 V2

6.616 * 10-34 J # s
= 4.836 * 108 Hz

 = 483.6 MHz

There is a third effect observed with Josephson junctions. When a dc magnetic 
field is applied through a superconducting ring containing two Josephson junctions, 
the total supercurrent shows interference effects that depend on the intensity of the 
magnetic field (see Figure 10-55). This effect can be used to measure very weak mag-
netic fields and is the basis for a device called a SQUID (for Superconducting Quan-
tum Interference Device) that can detect magnetic fields as low as 10214 T. This 
makes the SQUID-based magnetometer by far the most sensitive magnetic-field mea-
suring device currently available.

An extremely small high-Tc SQUID mounted on a suitable probe tip forms the 
basis of the scanning SQUID microscope that makes possible the imaging of surface 
magnetic-field strengths with unparalleled resolution. Scanning SQUID microscopes 
have been used to confirm superconductivity in several recently discovered high-Tc 
superconductors via the Meissner effect.

Medical applications of 
SQUIDs include magnetic 
cardiography (MCG), 
which measures the weak 
magnetic fields generated 
by bioelectric currents in 
the heart, and dielectric 
spectroscopy, which 
measures the magnetic 
fields produced by 
currents that flow in living 
cells.
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Structure of solids

	 Ionic and covalent solids

Solids are often found in crystalline form in which a small structure called the 
unit cell is repeated over and over. The structure of the unit cell depends on the
type of bonding between the atoms, ions, or molecules forming the crystal.

The attractive part of the potential energy of an ion in an ionic crystal is

Uatt = -a
ke2

r
� 10-1

where r is the separation between neighboring ions and a is the Madelung
constant, which depends on the crystal geometry. The constant a is 1.7476 for
face-centered-cubic crystals.

In covalently bonded crystals the individual bonds are just like those in 
covalently bonded molecules.

The metallic bond has no single-molecule counterpart. One or more valence 
electrons are free to move throughout the solid and all of the atoms share
all of the free electrons, making this bond roughly analogous to the covalent 
bond.

2.	 Classical free-electron theory Electrical resistivity r and conductivity s are given by

r =
me8v9
ne2l

 and s =
ne2l

me8v9 � 10-13

where 8v9  is the mean speed of the electrons and l is the mean free path
between collisions. The latter is given by

l =
1

napr 2� 10-12

where na is the ion density. These yield Ohm’s law correctly but result in the
wrong temperature dependence of the resistivity.

Figure 10-55  A superconducting ring with two Josephson junctions. When there is no applied 
magnetic field through the ring, the currents I1 and I2 are in phase. A very small applied magnetic
field produces a phase difference in the two currents that produces interference in the total 
current exiting the ring.

Tipler: Modern Physics 6/e
Perm fig.: 1055,  New fig.: 10-55
First Draft: 2011-06-15
2nd Pass: 2011-06-21
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TOPIC RELEVANT EQUATIONS AND REMARKS

3.	 Electron gas in metals The average energy of the electrons at ordinary temperatures is much larger 
than kT:

8E9 =
3

5
 EF� 10-22

where typical values of the Fermi energy EF are 1 to 2 eV.

4.	 Quantum theory of conduction This theory results from making two important corrections to the classical 
free-electron theory. First, the Fermi-Dirac distribution of electron energies is 
used rather than the Maxwell-Boltzmann distribution. Second, the effect of the 
wave characteristics of the electrons is considered in their scattering from the 
lattice ions. The resulting theory is in good agreement with observations.

5.	 Magnetism in solids The origin of magnetism in solids is the electron spins and their associated 
magnetic moments.

6.	 Band theory of solids

	 Kronig-Penney model

When many atoms are brought together to form a solid, the individual energy 
levels are split into bands of allowed energies. The splitting depends on the 
type of bonding and the lattice separation. In a conductor, the uppermost 
band containing electrons is only partially full, so there are many available  
states for excited electrons. In an insulator, the uppermost band containing 
electrons, the valence band, is completely full and there is a large energy 
gap between it and the next allowed band, the conduction band. In a 
semiconductor, the energy gap between the filled valence band and the 
empty conduction band is small, so at ordinary temperatures an appreciable 
number of electrons are thermally excited into the conduction band.

The solid is modeled as a periodic potential. The wave functions are then

c1x2 = uk1x2eikx� 10-36

where the function uk(x) is periodic with a period equal to that of the spacing
of the potential wells and eikx is a free electron, that is, a plane wave. The energy
gaps occur at

ka = {np� 10-41

for integer n and a equal to the lattice spacing.

7.	 Impurity semiconductors The conductivity of a semiconductor can be greatly increasing by doping. 
In an n-type semiconductor, the doping adds electrons just below the
conduction band. In a p-type semiconductor, holes are added just above the
valence band. A junction between an n-type and p-type semiconductors has 
applications in many devices, such as diodes, solar cells, and light-emitting 
diodes. A transistor consists of a very thin semiconductor of one type 
sandwiched between two semiconductors of the opposite type. Transistors 
are used in amplifiers because a small variation in the base current results 
in a large variation in the collector current.

8.	 Superconductivity In a superconductor the resistance drops suddenly to zero below a critical 
temperature Tc. Magnetic field lines are expelled and B = 0 inside a type I 
semiconductor, a phenomenon called the Meissner effect. Superconductivity at 
low temperatures is described by the BCS theory, in which free electrons form 
Cooper pairs. Recently discovered high-temperature semiconductors are only 
partially understood in terms of BCS theory.
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Notes 
1.	 The constant n is often called the Born exponent.
2.	 Carbon also has a fourth solid form, charcoal, which has no 

well-defined crystalline structure.
3.	 Notice that this view of the metal fits the definition of 

a plasma set forth in the opening paragraph of the chapter. 
Though not usually thought of in that way, metals are indeed 
low-temperature plasmas.

4.	 Felix Bloch (1905–1983), Swiss-American physicist. 
He devised a method for measuring atomic magnetic fields 
in liquids and solids that led to the development of nuclear 
magnetic resonance (NMR) spelctroscopy and earned for him 
a share (with E. M. Purcell) of the 1952 Nobel Prize in Phys-
ics. He was the first director-general of CERN, the European 
Organization for Nuclear Research.

5.	 The graph of the energy bands and gaps of Figure 10-19b 
results from a simplified version of the conditional equation 
connecting k, k9, and a in which b S 0 and U0 S . In that limit 
the lattice spacing is a rather than a 1 b, as in Figure 10-18.

6.	 This mixing, called hybridization, was discussed in 
Section 9-2.

7.	 See, for example, Section 25-5 in P. Tipler and G. Mosca, 
Physics for Scientists and Engineers, 6th ed. (W. H. Freeman 
and Co., New York, 2008.)

8.	 The fact that the radius of the bound electron is sev-
eral times the equilibrium spacing of the atoms helps justify 
our tacit assumption that the fifth electron “sees” a uniform 
dielectric constant in the crystal.

9.	 Klaus von Klitzing (b. 1943), German physicist. He 
received the 1985 Nobel Prize in Physics for this discovery.
10.	 Daniel C. Tsui (b. 1939), Chinese-American physicist. 
He received the 1998 Nobel Prize in Physics with H. L. 
Stormer and R. B. Laughlin for their discovery.

11.	 William B. Shockley (1910–1989), John Bardeen (1908–
1991), and Walter H. Brattain (1902–1987), American physi-
cists. Shockley discovered that doped germanium crystals were 
excellent rectifiers and subsequently the three Bell Laboratories 
colleagues discovered that two such “solid-state rectifiers” com-
bined would amplify current. The discovery of this device, the 
transistor, earned them the 1956 Nobel Prize in Physics.
12.	 Actually, the field decreases exponentially across the sur-
face, reaching zero at a depth of about 10 nm.
13.	 Isotopes are atoms with the same atomic number Z but 
different atomic mass numbers A. Isotopes will be discussed 
in Chapter 11.
14.	 John Bardeen (1908–1991), Leon N. Cooper (b. 1930), 
and J. Robert Schrieffer (b. 1931), American physicists. 
Developed at the University of Illinois, the BCS theory 
earned the collaborators the 1972 Nobel Prize in Physics and 
Bardeen became the only person thus far to win two physics 
Nobel Prizes (see note 11).
15.	 This may make it seem like the Cooper pair is a boson 
and superconductivity another example of Bose-Einstein 
condensation (see Section 8-3); however, the large size of 
the Cooper pair (see Example 10-13) means that many pairs 
overlap and that the symmetry of the pair with respect to an 
exchange of electrons must also take into account exchanges 
involving electrons in different pairs. The result is that the 
Cooper pair is neither a pure boson nor a pure fermion.
16.	 Brian D. Josephson (b. 1940), Welsh physicist. For this dis-
covery, made while he was still a graduate student, he shared 
the 1973 Nobel Prize in Physics with L. Esaki and I. Giaever. 
Bardeen had strongly opposed Josephson’s tunneling prediction 
until experiments, led by those of Giaever (also done while he 
was a graduate student), confirmed tunneling by Cooper pairs.

Problems 
Level I
Section 10-1  The Structure of Solids
10-1.	 Find the value of n in Equation 10-6 that gives the measured dissociation
energy of 741 kJ>mol for LiCl, which has the same structure as NaCl and for which
r0 = 0.257 nm.
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10-2.	 Calculate the distance r0 between the K+ and Cl- ions in KCl, assuming that each 
ion occupies a cubic volume of side r0. The molar mass of KCl is 74.55 g>mol and its 
density is 1.984 g>cm3.
10-3.	 The distance between the Li+ and Cl- ions in LiCl is 0.257 nm. Use this and the 
molecular mass of LiCl (42.4 g>mol) to compute the density of LiCl.
10-4.	 The crystal structure of KCl is the same as that of NaCl. (a) Calculate the electro-
static potential energy of attraction of KCl, assuming that r0 is 0.314 nm. (b) Assuming 
that n = 9 in Equation 10-6, calculate the dissociation energy in eV per ion pair and in 
kcal/mol. (c) The measured dissociation energy is 165.5 kcal>mol. Use this to determine 
n in Equation 10-6.
10-5.	 The observed dissociation energy of solid LiBr is 788 kJ>mol. Compute the cohe-
sive energy of LiBr and compare the result with the value in Table 10-1. (Ionization ener-
gies for Li and Br are in Table 9-1.)
10-6.	 The density of NaCl (an fcc crystal) is 2.16 g>cm3. Find the distance between ions 
that are nearest neighbors.
10-7.	 The separation of nearest-neighbor ions in the KCl crystal (an fcc structure) is 
0.315 nm. Use this information to determine the density of KCL.
10-8.	 Using the data for ionic and metallic crystals from Table 10-1, (a) graph cohesive 
energy versus melting point and put the best straight line through the points. (b) Deter-
mine the cohesive energies of cobalt, silver, and sodium, whose melting temperatures are 
1495°C, 962°C, and 98°C, respectively. (The measured values are cobalt 4.43 eV, silver 
2.97 eV, and sodium 1.13 eV.)
10-9.	 Figure 10-56 shows a one-dimensional ionic lattice consisting of doubly charged 
positive ions and twice as many singly charged negative ions. Compute the Madelung 
constant for this “crystal” to within 1 percent.

Figure 10-56  ​Problem 10-9.

+ +− − +− − +− −

a

Section 10-2  Classical Theory of Conduction
10-10.	 (a) Given a mean free path l = 0.4 nm and a mean speed 8v9 = 1.17 * 105 m>s 
for the current flow in copper at a temperature of 300 K, calculate the classical value for 
the resistivity r of copper. (b) The classical model suggests that the mean free path is tem-
perature independent and that 8v9  depends on temperature. From this model, what would 
r be at 100 K?
10-11.	 Find (a) the current density and (b) the drift velocity if there is a current of 1 mA 
in a No. 14 copper wire. (The diameter of No. 14 wire, which is often used in household 
wiring, is 0.064 in = 0.163 cm.)
10-12.	 A measure of the density of the free-electron gas in a metal is the distance rs, 
which is defined as the radius of the sphere whose volume equals the volume per conduc-
tion electron. (a) Show that rs = 13>4pna2, where na is the free-electron number density. 
(b) Calculate rs for copper in nanometers.
10-13.	 Calculate the number density of free electrons in (a) Ag (r = 10.5 g>cm3) and 
(b) Au (r = 19.3 g>cm3), assuming one free electron per atom, and compare your results 
with the values listed in Table 10-3.
10-14.	 Calculate the number density of free electrons for (a) Mg (r = 1.74 g>cm3) and 
(b) Zn (r = 7.1 g>cm3), assuming two free electrons per atom, and compare your results 
with the values listed in Table 10-3.
10-15.	 (a) Using l = 0.37 nm and 8v9 = 1.08 * 105 m>s at T = 300 K, calculate s and r
for copper from Equations 10-13. Using the same value of l, find s and r at (b) T = 200 K 
and (c) T = 100 K.
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Section 10-3  Free-Electron Gas in Metals
10-16.	 Find the average energy of the electrons at T = 0 K in (a) copper (EF = 7.06 eV) 
and (b) Li (EF = 4.77 eV).
10-17.	 Calculate the Fermi energy for magnesium in a long, very thin wire.
10-18.	 Compute (a) the Fermi energy and (b) the Fermi temperature for silver and for 
iron and compare your results with the corresponding values in Table 10-3.
10-19.	 Show that for T = 300 K, about 0.1 percent of the free electrons in metallic silver 
have an energy greater than EF.

Section 10-4  Quantum Theory of Conduction
10-20.	 What is the Fermi speed, that is, the speed of a conduction electron whose energy 
is equal to the Fermi energy EF, for (a) Na, (b) Au, and (c) Sn? (See Table 10-3.)
10-21.	 The resistivities of Na, Au, and Sn at T = 273 K are 4.2 mV # cm, 2.04 mV # cm,
and 10.6 mV # cm, respectively. Use these values and the Fermi speeds calculated 
in Problem 10-20 to find the mean free paths l for the conduction electrons in these
elements.
10-22.	 At what temperature is the heat capacity due to the electron gas in copper equal to 
10 percent of that due to lattice vibrations?
10-23.	 Use Equation 10-29 with a = p2>4 to calculate the average energy of an electron 
in copper at T = 300 K. Compare your result with the average energy at T = 0 and the clas-
sical result of 13>22kT .
10-24.	 Compute the maximum fractional contribution to the heat capacity of solid iron 
that can be made by the electrons.

Section 10-5  Magnetism in Solids
10-25.	 The magnetic polarization P of any material is defined as P = 1r+ - r-2 >r. 
Compute the high-temperature polarization of a paramagnetic solid at T = 200 K in a 
magnetic field of 2.0 T.
10-26.	 Show that the magnetic susceptibility x is a dimensionless quantity.

Section 10-6  Band Theory of Solids
10-27.	 (a) The energy gap between the valence band and the conduction band in silicon is 
1.14 eV at room temperature. What is the wavelength of a photon that will excite an elec-
tron from the top of the valence band to the bottom of the conduction band? Do the same 
calculation for (b) germanium, for which the energy gap is 0.72 eV, and (c) for diamond, 
for which the energy gap is 7.0 eV.
10-28.	 (a) The energy-band gap in germanium is 0.72 eV. What wavelength range of 
visible light will be transmitted by a germanium crystal? (Think about it carefully!) 
(b) Now consider a crystal of an insulator whose energy-band gap is 3.6 eV. What wave-
length range of visible light will this crystal transmit? (c) Justify each of your answers to
(a) and (b).
10-29.	 A photon of wavelength 3.35 mm has just enough energy to raise an electron from 
the valence band to the conduction band in a lead sulfide crystal. (a) Find the energy gap 
between these bands in lead sulfide. (b) Find the temperature T for which kT equals this 
energy gap.
10-30.	 Consider a small silicon crystal measuring 100 nm on each side. (a) Compute the 
total number N of silicon atoms in the crystal. (The density of silicon is 2.33 g>cm3.) (b) If 
the conduction band in silicon is 13 eV wide and recalling that there are 4N states in this 
band, compute an approximate value for the energy spacing between adjacent conduction-
band states for the crystal.
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Section 10-7  Impurity Semiconductors
10-31.	 Arsenic has five valence electrons. If arsenic is used as a dopant in silicon, com-
pute (a) the ionization energy and (b) the orbit radius of the fifth arsenic electron. The 
effective mass for electrons in silicon is 0.2 me. (c) What is the ratio of the ionization 
energy of the fifth electron to the energy gap in silicon?
10-32.	 Gallium has three valence electrons. If gallium is used to dope germanium, com-
pute (a) the ionization energy of the hole and (b) the orbit radius of the hole. The effective 
mass of holes in germanium is 0.34 me.
10-33.	 What type of semiconductor is obtained if silicon is doped with (a) aluminum and 
(b) phosphorus? (See Appendix C for the electron configurations of these elements.)
10-34.	 The donor energy levels in an n-type semiconductor are 0.01 eV below the con-
duction band. Find the temperature for which kT = 0.01 eV.
10-35.	 A strip of tin is 10 mm wide and 0.2 mm thick. When a current of 20 A is estab-
lished in the strip and a uniform magnetic field of 0.25 T is oriented perpendicular to the 
plane of the strip, a Hall voltage of 2.20 mV is measured across the width of the strip. 
Compute (a) the density of charge carriers in tin and (b) the average number of charge 
carriers contributed by each tin atom. The density of tin is 5.75 * 103 kg>m3 and its 
molecular mass is 118.7.

Section 10-8  Semiconductor Junctions and Devices
10-36.	 For a temperature of 300 K, use Equation 10-49 to find the bias voltage Vb for 
which the exponential term has the value (a) 10 and (b) 0.1.
10-37.	 For what value of bias voltage Vb does the exponential in Equation 10-49 have the 
value (a) 5 and (b) 0.5 for T = 200 K?
10-38.	 Compute the fractional change in the current through a pn junction diode when the 
forward bias is changed from 10.1 V to 10.2 V.
10-39.	 For T = 300 K, use Equation 10-49 to find the bias voltage Vb for which the expo-
nential term had the value (a) 10 and (b) 0.1.
10-40.	 When light of wavelength no larger than 484 nm illuminates a CdS solar cell, the 
cell produces electric current. Determine the energy gap in CdS.

Section 10-9  Superconductivity
10-41.	 Three naturally occurring isotopes of lead are 206Pb, 207Pb, and 208Pb. Using the 
value of a from Table 10-7 and the isotopic masses from Appendix A, compute the criti-
cal temperatures of these isotopes.
10-42.	 Compute (a) the superconducting energy gap for indium and (b) the wavelength of 
a photon that could just break up a Cooper pair in indium at T = 0 K.
10-43.	 (a) Use Equation 10-56 to calculate the superconducting energy gap for tin and 
compare your result with the measured value of 6 * 1024 eV. (b) Use the measured value 
to calculate the wavelength of a photon having sufficient energy to break up a Cooper pair 
in tin at T = 0 K.
10-44.	 Use the BCS curve in Figure 10-53 to estimate the energy gaps in (a) tin,
(b) niobium, (c) aluminum, and (d ) zinc, all at T = 0.5Tc.
10-45.	 Expressing the temperature T as a fraction of the critical temperature Tc, according to 
BCS theory at what temperature is (a) Bc(T ) = 0.1Bc(0), (b) Bc(T ) = 0.5Bc(0), (c) Bc(T ) = 
0.9Bc(0)?

Level II
10-46.	 Approximating atoms in an fcc crystal as hard spheres of radius r with a being the 
length of each side of the unit cube, what fraction of the volume of the cube (and hence the 
crystal) is occupied by atoms?
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10-47.	 Estimate the fraction of free electrons in copper that are in excited states above the 
Fermi energy at (a) room temperature of 300 K and (b) 1000 K.
10-48.	 A one-dimensional model of an ionic crystal consists of a line of alternating posi-
tive and negative ions with distance r0 between adjacent ions. (a) Show that the potential 
energy of attraction of one ion in the line is

V = -  
2ke2

r0
 a1 -

1

2
+

1

3
-

1

4
+

1

5
- g b

(b) Using the result that

ln11 + x2 = x -
x2

2
+

x3

3
-

x4

4
+ g

show that the Madelung constant for this one-dimensional model is a = 2 ln 2 = 1.386.
10-49.	 Estimate the Fermi energy of zinc from its electronic molar heat capacity of 
13.74 * 10-4 J>mol # K2T .
10-50.	 The density of the electron states in a metal can be written g1E2 = AE

1
2,

where A is a constant and E is measured from the bottom of the conduction band.
(a) Show that the total number of states is 12>32A1EF23>2. (b) About what fraction of 
the conduction electrons is within kT of the Fermi energy? (c) Evaluate this fraction for 
copper at T = 300 K.
10-51.	 High-purity germanium (HPGe) crystals are used as detectors for x rays and 
gamma rays. On interacting with the crystal, incoming photons produce electron-hole 
pairs, exciting many electrons across the 0.72 eV energy gap into the conduction band. 
The decay of the radioisotope 60Co results in the emission of two gamma rays with ener-
gies 1.17 MeV and 1.33 MeV (see Chapter 11). (a) Compute the numbers of electrons 
N1 and N2 excited across the energy gap by each of the two gamma rays. (b) The numbers 

N1 and N2 are subject to statistical fluctuations of {2N1 and {2N2. Compute the frac-
tional uncertainties in N1 and N2. (c) Compute the corresponding fractional uncertainties 
in the energies of the two gamma rays. This is a measure of the energy resolution of the 
HPGe crystal.
10-52.	 A doped n-type silicon sample with 1016 electrons per cubic centimeter in the con-
duction band has a resistivity of 5 * 1023 V # m at 300 K. Find the mean free path of the 
electrons, using 0.2 me for the effective mass of the electron. Compare your result with the 
mean free path of electrons in copper at 300 K.
10-53.	 Crystallographers and materials scientists use the density of a metallic sample to 
infer its likely crystal structure. The density of copper (Cu) is 8.96 g>cm3 and its atomic 
radius is 0.128 nm. Is the copper crystal more likely to be face-centered cubic or body-
centered cubic? (See Figure 10-57.)

Figure 10-57  ​Problem 10-53.

Tipler: Modern Physics 6/e
Perm fig.: 1057,  New fig.: 10-57
First Draft: 2011-06-15
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10-54.	 A “good” silicon diode has a current-voltage characteristic given by

I = I01eeVb>kT - 12
Let kT = 0.025 eV (room temperature) and the saturation current I0 = 1 nA. (a) Show that 
for small reverse-bias voltages, the resistance is 25 MV. (Hint: Do a Taylor expansion of 
the exponential function, or use your calculator and enter small values for Vb.) (b) Find 
the dc resistance for a reverse bias of 0.5 V. (c) Find the dc resistance for a 0.5 V forward 
bias. What is the current in this case? (d) Calculate the ac resistance dV>dI for a 0.5 V 
forward bias.
10-55.	 The relative binding of the extra electron in the arsenic atom that replaces an atom 
in silicon or germanium can be understood from a calculation of the first Bohr orbit of this 
electron in these materials. Four of arsenic’s outer electrons form covalent bonds, so the 
fifth electron “sees” a singularly charged center of attraction. This model is a modified 
hydrogen atom. In the Bohr model of the hydrogen atom, the electron moves in free space 
at a radius a0 given by

a0 =
0 h2

pme e2

When an electron moves in a crystal, we can approximate the effect of the other atoms by 
replacing 0 with k0 and me with an effective mass for the electron. For silicon k is 12 
and the effective mass is about 0.2me, and for germanium k is 16 and the effective mass is 
about 0.1me. Estimate the Bohr radii for the outer electron as it orbits the impurity arsenic 
atom in silicon and germanium.
10-56.	 InSb is a semiconductor. The energy gap Eg between its valence and conduction 
bands is 0.23 eV, and its dielectric constant k = 18. In the InSb crystal the electron’s 
effective mass m* = 0.015me. (a) Compute the ionization energy for an electron donor in 
InSb. (b) What is the radius of the ground-state orbit? (c) At approximately what donor 
concentration will the orbits of adjacent donor atoms begin to overlap?
10-57.	 The mean free path of an electron in a metal depends on both the lattice oscillations of 
the metal ions and those of any impurity ions according to 1>l = 1>lm + 1>li . The resis-
tivity of pure copper is increased by about 1.2 * 1028 V # m by the addition of 1 percent (by 
number of atoms) of a certain impurity dispersed evenly throughout the metal. (a) Estimate li 
from this information. (b) The impurity atoms are “seen” by the electrons to have an effective 
diameter d. Estimate the scattering cross section d 2 from Equation 10-12, where d = 2r.

Level III
10-58.	 When arsenic is used to dope silicon, the fifth arsenic electron and the As+ ion 
act like a hydrogen atom system, except that the potential function V(r) and the electron 
mass must be modified as described in Section 10-7 to account for the crystal lattice. With 
these modifications, (a) solve the Schrödinger equation, using the solution in Chapter 7 as 
a guide. (b) Obtain Equation 10-43, and (c) sketch a properly scaled energy-level diagram 
for the fifth electron for n = 1 through 5.
10-59.	 The quantity k is the force constant for a “spring” consisting of a line of alternat-
ing positive and negative ions. If these ions are displaced slightly from their equilibrium 
separation r0, they will vibrate with a frequency

f =
1

2pAK
m

(a) Use the values of a, n, and r0 for NaCl and the reduced mass for the NaCl molecule to 
calculate this frequency. (b) Calculate the wavelength of electromagnetic radiation corre-
sponding to this frequency, and compare your result with the characteristic strong infrared 
absorption bands in the region of about l = 61 mm that are observed for NaCl.
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10-60.	 Consider a model for a metal in which the lattice of positive ions forms a container 
for a classical electron gas with n electrons per unit volume. In equilibrium, the average 
electron velocity is zero, but the application of an electric field produces an acceleration 
of the electrons. If we use a relaxation time t to account for the electron-lattice collisions, 
then we have the equation

m 
dv

dt
+

m
t

 v = -eE

(a) Solve the equation for the drift velocity in the direction of the applied electric field. 
(b) Verify that Ohm’s law is valid, and find the resistivity as a function of n, e, m, and the 
relaxation time t.
10-61.	 Imagine a cubic crystal like NaCl, with a negative charge at the center of a Car-
tesian coordinate system with scale units equal to the interatomic distance. (a) Show that 
an ion at a position r units along the x axis, s units along the y axis, and t units along the
z axis has a charge of e(21)r # (21)s # (21)t = e(21)r 1 s 1 t, where e is the electron charge. 
(b) Using Equation 10-2 as a guide, calculate the Madelung constant for a cube 2 units on 
a side. Do the same for cubes of sides 4, 6, 8, 10, 12, 16, and 20 units. (You will probably 
want to use a computer spreadsheet to write a program to do the calculations for the larger 
cubes.) Are your answers approaching the value a = 1.7476?
10-62.	 (a) Show that for a paramagnetic solid with electron energies given by Equation 
10-33, the magnetization per unit volume M is given by

M = mr tanh1mB>kT2
(b) For mB V kT show that the susceptibility is given by Equation 10-35.
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The first information about the atomic nucleus came with the discovery of radio-
activity by A. H. Becquerel1 in 1896. Intrigued by Roentgen’s discovery of

x rays the previous year, Becquerel was investigating the possibility that minerals that 
exhibit fluorescence after exposure to sunlight might also be emitting x rays. He was 
using the simple technique of placing a sample of such a mineral, potassium uranyl 
sulfate, on top of a photographic plate wrapped in black paper lying in the sunlight 
on a window ledge. Sure enough, an image of the sample appeared on the developed 
plate, and he concluded that x rays had indeed been emitted. But when a similar sam-
ple lying on a wrapped photographic plate in a drawer without exposure to sunlight 
during a period of cloudy weather produced an image just as dark, he investigated 
further and found that the sample was spontaneously emitting a previously unknown 
penetrating radiation. He had discovered radioactivity.2

The rays emitted by radioactive nuclei were first classified by Rutherford as a, b, 
and g, according to their ability to penetrate matter and to ionize air: a radiation 
penetrates the least and produces the most ionization, g radiation penetrates the most 
with the least ionization, and b radiation is intermediate between them. In a classic 
experiment, Rutherford soon found that a rays are 4He nuclei. It was also quickly 
discovered that b rays are electrons and g rays are very short-wavelength electromag-
netic radiation. Geiger and Marsden’s a-particle-scattering experiments in 1911 (see 
Section 4-2) and the successes of the Bohr model of the atom led to the modern view 
of an atom as consisting of a tiny, massive nucleus with a radius of 1 to 10 fem-
tometer (fm; 1 fm = 10215 m) surrounded by a cloud of electrons at a relatively great 
distance, of the order of 0.1 nm = 100,000 fm, from the nucleus.

In 1928, the correct explanation of a radioactivity as a quantum-mechanical, 
barrier-penetration phenomenon was given by G. Gamow, R. W. Gurney, and 
E. U. Condon. Then, in rapid succession in 1932, the neutron was discovered by
J. Chadwick and the positron by C. D. Anderson, and the first nuclear reaction using 
artificially accelerated particles (protons) was observed by J. D. Cockcroft and E. T. S. 
Walton.3 Thus, it is quite reasonable to mark that year as the beginning of modern 
nuclear physics. Much of the information about nuclei is obtained by bombarding them 
with various particles and observing the results. The advent of particle accelerators, the 
Van de Graaff electrostatic generator in 1931 and the cyclotron in 1932, made many 
experimental studies possible without the severe limitations on particle type and energy 
imposed by the particles from naturally occurring radioactive sources. Since then, an 
enormous technology has been developed for accelerating and detecting particles, and 
many nuclear reactions and fundamental particle interactions have been studied.
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Among the myriad of nuclear reactions that have been investigated are two types 
of special interest: fission and fusion. Both are processes by which nuclear mass is 
converted into other forms of energy, such as thermal energy, just as some atomic 
mass is converted in chemical reactions such as oxidation. Fission reactions currently 
provide a significant albeit controversial means of producing electrical energy in 30 
countries, accounting for 5.2 percent of the world’s total consumption of primary 
energy in 2010.4 The similar potential of fusion reactions has not yet been realized
at a practical level; however, of far more intrinsic importance is the role of fusion in 
the production of energy in stars. The grim reality that both fission and fusion are 
also the basis for weapons of enormous destructive power means that this application 
of nuclear reactions influences political debate to a greater degree than has perhaps 
any other scientific discovery in history.

In this chapter we will discuss some of the general properties of atomic nuclei and 
the important features of radioactivity. While our discussions will of necessity be only 
semi-quantitative, we will consider the nature of the nuclear force as it is currently 
understood and describe one of the most useful models in terms of which many nuclear 
properties may be explained. The applications of radioactivity and nuclear reactions 
are by no means limited to fission and fusion. The radiations emitted by radioisotopes 
have long been used in medical diagnosis and treatment. These contributions were 
measurably enhanced with the development of computer-assisted tomography5 (CAT) 
in the 1970s, which made possible not only x-ray CAT scans, but also the more recent 
development of positron emission tomography, called PET. Neutron-induced nuclear 
reactions provide an extremely sensitive technique, called neutron activation analysis 
(NAA), for measuring trace amounts of certain isotopes for most elements in the peri-
odic table. These and many other applications will also be discussed in this chapter.

11-1  The Composition of the Nucleus 
The experiments of Moseley (see Section 4-4) showed that the nuclear charge is Z 
times the proton charge, where Z is the atomic number, which is about half the atomic 
mass number A (except for hydrogen, for which Z = A). Thus, the nucleus has a mass 
about equal to that of A protons but a charge of only Z   12 A protons. Before the 
discovery of the neutron, it was difficult to understand this unless there were 
A 2 Z electrons in the nucleus to balance the charge without changing the mass very 
much. The idea that the nucleus contained electrons was supported by the observation 
of b decay, in which electrons are ejected by certain radioactive nuclei. However, 
there were serious difficulties with this model. A relatively simple calculation from the 
uncertainty principle (see Problem 11-2) shows that an electron has a minimum kinetic 
energy of about 100 MeV if it is confined in the nucleus, a region of r 6 10214 m; 
however, the energies of the electrons emitted in b decay are only of the order of 1 or 
2 MeV. There is, in addition, no evidence for such a strong attractive force between 
nuclei and electrons as would be implied by a negative potential energy of 50 to 
100 MeV inside the nucleus. Furthermore, since the electrostatic potential energy of 
the electron and nucleus is negative, there is no barrier to be overcome, as there is in 
a decay (see Figure 11-1). If the electron’s total energy were positive, as required for 
b decay, the electron should escape from the nucleus immediately and most naturally 
occurring b emitters should have long since disappeared. A further difficulty is the 
observation that the magnetic moments of nuclei are of the order of nuclear magne-
tons, mN = e U>2mp, about 2000 times smaller than a Bohr magneton mB = e U>2me, 
which would be expected if there were electrons inside the nucleus.
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A further convincing argument against electrons existing in the nucleus concerns 
angular momentum. Protons and neutrons are fermions with spins of 1>2 and, as such, 
both obey the exclusion principle. The angular momentum of the nitrogen nucleus has 
a quantum number of 1, which can be inferred from a very small splitting of atomic 
spectral lines called hyperfine structure (see Section 11-2). It is also known (from 
molecular spectra—see Section 9-4) that the nitrogen nucleus obeys Bose-Einstein 
rather than Fermi-Dirac statistics. If 14N contained 14 protons and 7 electrons, each with 
spin 1>2, the resultant angular momentum would have to be 1>2, 3>2, 5>2, and so on, 
and the nucleus would obey Fermi-Dirac statistics. 14N actually contains 7 protons and
7 neutrons, giving it the observed angular momentum quantum number of 1.

In 1920 Rutherford suggested that there might be a neutral particle, possibly a 
proton and an electron tightly bound together, which he called a neutron. When such a 
particle was found by Chadwick in 1932, the idea that electrons were permanent con-
stituents of nuclei was abandoned. Instead, the nucleus was assumed to contain N neu-
trons and Z protons, a total of A = N 1 Z particles. N is referred to as the neutron 
number. The notion of the neutron being a proton and electron bound together has also 
been abandoned since the spin of the neutron is 1>2. Thus, the nucleus is composed of 
protons and neutrons, the nucleons, which collectively occupy a volume whose radius 
is of the order of 1 to 10 fm. All of the large variety of nuclei with their broad diversity 
of properties are assembled from various numbers of these two particles. The funda-
mental properties of the individual nucleons are given in Table 11-1. We should note at 
this point that the nucleons are not fundamental particles. Each of the two types of 
nucleons is composed of a set of three quarks, fundamental particles that interact with 
each other via the strong force, which accounts for the fact that the nucleons also feel 
that force. Quarks and their interactions will be discussed in Chapter 12.

Figure 11-1  (a) Potential 
barrier for an a particle 
compared with (b) potential 
for a negative electron. 
Because there is no barrier 
for the electron, it will not be 
bound at all unless the total 
energy is negative, in which 
case it can never escape. The 
very narrow steep rise to the 
potential in (a) as r S 0 
represents the “hard core” of 
the nucleus.

(a ) (b )

Positive Coulomb
barrier

Negative Coulomb
potential between
electron and nucleus

Energy

Nuclear potential well
in which α particle is
confined

Eα
Ee > 0

Ee < 0
rr

 Table 11-1  Fundamental properties of atomic constituents

Particle Charge Mass (u) Mass (kg) Spin
Magnetic 
moment

Proton 1e 1.007276 1.6726 * 10227 1>2 2.79285 mN

Neutron 0 1.008665 1.6749 * 10227 1>2 21.91304 mN

Deuteron 1e 2.013553 3.3436 * 10227 1 0.85744 mN

Triton 1e 3.015501 5.0074 * 10227 1>2 2.97896 mN

Electron 2e 5.4858 * 1024 9.1094 * 10231 1>2 1.00116 mB
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11-2  Ground-State Properties of Nuclei 
Understanding nuclei, like atoms, requires the application of quantum theory. It was 
the study of nuclear spectra, the energy and particles emitted spontaneously by radio-
active nuclei, that provided the first indication of the existence of quantized energy 
levels, angular momenta, and magnetic moments in nuclei, just as the regularities in 
atomic spectra had earlier pointed the way to Bohr’s theory and, ultimately, to wave 
mechanics. Interpreting the nuclear studies presents more complex problems due to 
the existence of two nucleons, the possible emission of several different particles in 
addition to photons from excited energy states, and our incomplete knowledge of the 
nuclear potential function. In this section we will discuss some of the properties of 
nuclei in the ground state and mention a few methods of determining these properties. 
In Section 11-3 we will study radioactivity, which provides information about the 
excited states of nuclei. Several of the general references at the end of this chapter 
contain good discussions of the experimental methods used in measuring nuclear 

properties. In our discussions we will use the following 
standard terminology: the letter N stands for the number 
of neutrons in a nucleus and Z for the number of protons 
(the atomic number); A = N 1 Z is the total number of 
nucleons, the mass number. The mass number is an inte-
ger approximately equal to the atomic weight. A particu-
lar nuclear species is called a nuclide. Nuclides are 
denoted by the chemical symbol with a pre-superscript 
giving the value of A, such as 16O or 15O. Sometimes Z is 
given as a pre-subscript, such as 15

8O, though this is not 
necessary because each element (Z number) has a unique 
chemical symbol. Occasionally, N is also given as a sub-
script, such as 15

8O7, although this, too, is unnecessary 
since N = A 2 Z. Nuclides with the same Z, such as 15O 
and 16O, are called isotopes. Nuclides with the same N, 
such as 13

6C7 and 14
7N7, are called isotones, while nuclides 

with the same A, such as 14C and 14N, are called isobars.

Size and Shape of Nuclei
Nuclear Radii  All of the methods for measuring 
nuclear radii are in agreement that the radii are propor-
tional to the cube root of the mass number. The nuclear 
radius can be determined by scattering experiments simi-
lar to the first ones of Rutherford or in some cases from 
measurements of radioactivity. Indeed, as we discussed in 
Section 4-2 and as illustrated in Figure 11-2, Rutherford’s 
original a-particle-scattering experiment furnished the 
first measurement of the nuclear radius. An interest-
ing, nearly classical method of determining the nuclear 
radius involves the measurement of the energy of b decay 
between mirror nuclides, which are nuclides whose Z 
and N numbers are interchanged (see Figure 11-3). For 
example, 15O, with eight protons and seven neutrons, 
and 15N, with eight neutrons and seven protons, are mirror 
nuclides. Assuming that the nuclear force between nucleons 

Figure 11-2  Rutherford’s a scattering formula
(Equation 4-6) is shown by the dashed line. Alpha particles 
of increasing energy incident on the nuclei of a Pb target 
scattered as would be expected by the Rutherford formula 
until their energy reaches about 27 MeV. At greater energies 
the a particles approach the Pb nuclei closely enough so that 
the nucleons of the a and the Pb interact via the attractive 
nuclear force and the scattered intensity falls below that 
predicted by the Rutherford equation. [Data from R. M. 
Eisberg and C. E. Porter, Rev. Mod. Phys., 33, 190 (1961).]
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is independent of the kind of nucleons, the only difference in energy between 15O and 
15N is electrostatic. The electrostatic energy of a ball of uniform charge can be shown 
to be given by

	 U =
3

5
 

1

4p0
 
q2

R
� 11-1

where q is the charge and R is the radius. 15O is radioactive and, as we 
will discuss further in a later section, decays to 15N by emitting a positron 
and a neutrino. The energy difference between 15O and 15N, the beta-decay 
energy, is then

	 DU =
3

5
 

1

4p0
 
e2

R
3Z2 - 1Z - 1224 � 11-2

with Z = 8. A measurement of the energy of decay, equal to DU, thus 
gives a measurement of R. Assuming a uniform charge distribution, 
measurements of the positron decay energies (see Section 11-4) for 18 
pairs of mirror nuclides give for the nuclear radius

	 R = R0 A1>3 with R0 = 1.2 { 0.2 fm� 11-3

where A is the atomic mass number. The value of R0 in Equation 11-3 
includes the effect of a quantum-mechanical correction using a charge 
distribution calculated from the nuclear-shell model discussed in 
Section 11-6. The consistency of these results with other methods of 
determining R is a strong indication that the nuclear part 
of the potential energy is the same for each pair of mir-
ror nuclei.

The most extensive measurements of nuclear radii 
were carried out by Robert Hofstadter and his cowork-
ers in a series of experiments begun in 1953.6 In these 
experiments at the Stanford Linear Accelerator (SLAC), 
nuclei were bombarded with electrons having energies 
of about 200 to 500 MeV. The wavelength of a 500 
MeV electron is about 2.5 fm, which is smaller than the 
radius of heavy nuclei. It is thus possible to learn some-
thing about the detailed structure of the charge distribu-
tion of nuclei by analyzing the diffraction pattern that 
results from the scattering of these electrons. The analy-
sis is fairly complicated because the electrons are rela-
tivistic. Figure 11-4 shows the diffraction pattern of 
high-energy electrons scattered by 16O and 12C nuclei. If 
we consider the incoming electron beam to be a plane 
wave of wavelength l, the scattering process is similar 
to the diffraction of light from a circular hole of radius 
R, discussed in most introductory physics textbooks, 
where R in this case is the nuclear radius. The first mini-
mum of the diffraction pattern is then given approxi-
mately by

	 sin u = 0.16l>R� 11-4

20

CCR

Figure 11-3  Mirror nuclides. If all the 
neutrons are changed to protons and all 
the protons are changed to neutrons, 15N 
becomes its mirror, 15O. The ground-state 
energy of mirror pairs differs only in the 
electrostatic energy.
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Figure 11-4  ​Diffraction pattern of high-energy electrons 
scattered by 16O and 12C. The angle at which the minimum 
occurs in each pattern is given by Equation 11-4.
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Example 11-2 shows how the nuclear radius can be calculated from Equation 11-4 with 
the aid of Figure 11-4. Figure 11-5a shows some charge distributions obtained from 
detailed analysis of these experiments. The mean electromagnetic radius R and the 
surface thickness t, indicated in Figure 11-5b, are given by

R = 11.07 { 0.022A1>3 fm

t = 2.4 { 0.3 fm 	 11-5

These results are consistent with those obtained from the b decay studies of mirror 
nuclides.

Figure 11-5  (a) Charge 
density versus distance for 
several nuclei as determined 
by high-energy electron 
scattering experiments. 
(b) Definitions of parameters 
R0 and t used to describe 
nuclear charge density. The 
skin thickness t is measured 
from 10 percent to 90 percent 
of the central core density. 
[From R. Hofstadter, Annual 
Review of Nuclear Science, 7, 
231 (1957).]
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EXAMPLE 11-1	 Nuclear Radii of 4He and 238U ​ Use Equation 11-3 to compute 

the radii of 4He and 238U.

SOLUTION
For 4He:

RHe = 1.21421>3 = 1.90 fm

For 238U:

RU = 1.2123821>3 = 7.42 fm

Thus, the nuclear radius varies only by a factor of about 4 from the lightest nuclides 
to the heaviest.

EXAMPLE 11-2	 Nuclear Radius of 16O ​ Using the data for 420 MeV electrons 
scattered from 16O in Figure 11-4, compute a value for the radius of the 16O nucleus.

SOLUTION

	 1.	 The radius R of the 16O 
nucleus is computed from 
Equation 11-4:

sin u =
0.61l

R
 or R =

0.61l

sin u

	 2.	 The angle u in Equation 11-4
is the first minimum of the 
diffraction pattern. From 
Figure 11-4 we see that the 
first minimum occurs at 
about

u = 44°

	 3.	 The de Broglie wavelength l 
of the electrons is

l =
h
p

	 4.	 The momentum p of the
420 MeV electrons is 
computed from the relativistic 
expression, Equation 2-32:

 p2
 c2 = E2 - 1mc222

= 142022 - 10.51122

  1420 MeV22

or

p = 420 MeV>c = 2.24 * 10-19 kg # m>s

	 5.	 Substituting this value in l 
from step 3 gives

 l =
6.63 * 10-34 J # s

2.24 * 10-19 kg # m>s
 = 2.96 * 10-15 m = 2.96 fm

	 6.	 The radius R is computed by 
substituting the values for u 
and l into Equation 11-4:

R =
10.612 12.96 fm2

sin 44
= 2.60 fm

Remarks:  This result agrees well with the values of R0 for the low-Z nuclei in 
Figure 11-5a.
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A different kind of measurement of the nuclear radius can be made using the 
attenuation of a beam of fast neutrons as it moves through a sample. The total cross 
section for attenuation can be shown to be

	 s = 2paR +
l

2p
b

2

	 11-6

where R is the nuclear radius and l is the de Broglie wavelength of the neutron. The 
neutrons must be fast enough so that l>2p 6 R in order to gain information about R 
from measurement of s. Since the neutron has no charge, these experiments do not 
measure the charge distribution but, instead, measure the “radius” of the nuclear force 
between a neutron and the nucleus. The results of these measurements are

	 R = R0  A
1>3 with R0 = 1.4 fm	 11-7

These different types of experiments thus give comparable but not identical results, 
depending on whether the particular experiment measures the nuclear force radius 
(neutrons) or the nuclear charge radius (electrons). The fact that the radius is propor-
tional to A1>3 implies that the volume of the nucleus is proportional to A. Since the 
mass of the nucleus is also approximately proportional to A, the densities of all nuclei 
are approximately the same. A drop of liquid also has a constant density independent 
of its size, and this fact has led to a model in which the nucleus is viewed as analo-
gous to a liquid drop. This model has been helpful in computing nuclear masses and 
in understanding certain types of nuclear behavior, particularly the fission of heavy 
elements. The numerical value of the nuclear density is about 1017 kg>m3. This fan-
tastically high density, compared with about 103 kg>m3 for atoms, is a consequence 
of the fact that nearly all the mass of the atom is concentrated in a region whose 
radius is only about 1025 that of the atom. A cubic millimeter of nuclear matter has a 
mass of about 200,000 metric tonnes, or about the same mass as a supertanker filled 
with petroleum!

EXAMPLE 11-3	 Radius of a Neutron Star ​ In certain supernova events, the 
envelope of the star is blown away, leaving a core consisting entirely of neutrons. 
This stellar remnant is called a neutron star, and its density is approximately the 
same as that of atomic nuclei. Compute the radius of a neutron star whose mass is 
equal to that of the Sun, 1.99 * 1030 kg.

SOLUTION
The mass of the neutron star is M = rV, where V is the volume and the density
r is approximately 1017 kg>m3. Assuming the neutron star to be a sphere, we have 
that

M = 1.99 * 1030 kg = rV = 11017 kg>m32 14pR3>32
where R is the radius of the star in meters. Solving for R3 yields

R3 =
132 11.99 * 1030 kg2
14p2 11017 kg>m32 = 4.75 * 1012 m3

and taking the cube root

R = 1.68 * 104 m = 16.8 km

Remarks:  By way of comparison, the mean diameter of the Sun is 1.39 * 106 km.
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Nuclear Shape  With a few exceptions, nuclei are nearly spherical. Most of the 
exceptions occur in the rare earth elements (the transition region in the periodic table, 
Z = 57 to Z = 71), in which the shape is ellipsoidal, with the major axis differing from 
the minor axis by about 20 percent or less. In these heavy nuclides, the inner atomic 
electron wave functions penetrate the nucleus, and deviations from spherical shape, 
which correspond to deviations in the nuclear charge distributions, show up as small 
changes in the atomic energy levels. In direct analogy with the fact that the potential 
at points outside a static distribution of charges is determined by the dimensions of the 
distribution7 and, conversely, that measuring the potential yields information about 
the distribution, measuring these small changes in the atomic energy levels yields 
information about the nuclear charge distribution, even though it can’t be measured 
directly. If the nucleus is shaped like a watermelon (see Figure 11-6a), with the extent 
of the distribution larger along the z axis than along the x and y axes, the average value 
of z2 is larger than the average values of x2 and y2. In this case the electric quadrupole 
moment Q, which is proportional to 31z 22av - 1x2 + y2 + z 22av, is positive. This 
is the most common case for nonspherical nuclei. Nuclei with negative quadrupole 
moments are shaped more like flattened pumpkins, with the two equal axes longer 
than the third axis, as in Figure 11-6b. The average value of the electric quadrupole 
moment is given by

 8Q9 = Z3c*331z 22av - 1x2 + y2 + z 22av4c dV

 7 0 for z 2 7 x2, y 2  1Figure 11@6a2
 = 0 for z 2 = x2 = y 2  1spherical2

� 11-8

 6 0 for z 2 6 x2, y 2  1Figure 11@6b2
Figure 11-7 shows the measured values of the electric quadrupole moment for 

the odd A nuclei; that is, those for which either Z or N is odd. Equation 11-8 is evalu-
ated for wave functions corresponding to the nuclear charge distributions of various 
theoretical models of the nucleus and compared with the values in Figure 11-7. As 
you might imagine, the calculations are formidable!

Figure 11-6  Nonspherical 
nuclear shapes. Nuclei with 
positive quadrupole moments 
have (z2)av greater than
(x2)av or (y2)av and are of 
watermelon shape, as in (a). 
Nuclei with negative 
quadrupole moments have 
(z2)av less than (x2)av or ( y2)av 
and are shaped like flattened 
pumpkins, as in (b).

(a)

(b)
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x

Figure 11-7  The
electric quadrupole 
moment Q divided by
Z and R2, where R is the 
average nuclear radius, 
is plotted versus the 
number of nucleons of 
the odd type (Z or N ). The 
arrows indicate the points 
where Q>ZR2 = 0, 
corresponding to spherical 
shape.
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Nuclear Stability
Among the more than 3000 known nuclides, there are only 257 whose ground states 
are stable.8 All of the rest have unstable ground states, which eventually undergo 
radioactive decay, that is, transition to some lower-energy state of a different element. 
Figure 11-8 shows a plot of the neutron number N versus the proton number Z for the 

Figure 11-8  Plot of neutron number N versus proton number Z for the known nuclides.
The 257 stable nuclides are indicated by the black dots. The area between the irregular colored 
lines represents the known unstable, or radioactive, nuclides whose lifetimes are longer than 
about a millisecond. The curved line through the stable nuclides is called the line of stability.
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stable nuclides and the known unstable ones whose lifetimes are longer than about a 
millisecond. The straight line is N = Z. The general shape of the line of stability, 
shown by the curve tracing through the stable nuclides in Figure 11-8, can be under-
stood in terms of the exclusion principle and the electrostatic energy of the protons. 
Consider the kinetic energy of A particles in a one-dimensional square well, which is 
an adequate model for demonstrating this point. The energy is smallest if A>2 are 
neutrons and A>2 are protons and greatest if all the particles are of one type (see 
Figure 11-9). There is therefore a tendency, due to the exclusion principle, for N and 
Z to be equal. If we include the electrostatic energy of repulsion of the protons, the 
result is changed somewhat. This potential energy is proportional to Z2. At large A, 
the energy is increased less by adding two neutrons than by adding one neutron and 
one proton; so the difference N 2 Z increases with increasing Z.

There is also a tendency for nucleons to pair with other identical nucleons. Of the 
257 nuclides whose ground states are stable, 150 have even Z and even N, 48 have 
odd Z and even N, 54 have even Z and odd N, and only 5 have both odd N and Z. (See 
Table 11-2.)

Figure 11-9  (a) Seven neutrons in an infinite square well. In accordance with the
exclusion principle, only two neutrons can be in a given space state. The total energy is 
16E1 1 (2 * 9E1) 1 (2 * 4E1) 1 (2 * 1E1) = 44E1. (b) Four neutrons and three protons
in the same infinite square well. Because protons and neutrons are not identical, four 
particles (two neutrons and two protons) can be in the state n = 1. The total energy is
(3 * 4E1) 1 (4 * 1E1) = 16E1. This is much less than in (a). The integers on the left of each 
well are infinite square well principal quantum numbers.
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 Table 11-2 ​� N versus Z for
stable isotopes

Z

N Even Odd

Even 150 48

Odd   54   5
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Since there are about 100 different elements and about 260 stable nuclides, there 
is an average of about 2.6 stable isotopes per element. There is a larger-than-average 
number of stable isotopes for nuclei with Z equal to 20, 28, 50, and 82. For example, 
tin, with Z = 50, has 10 stable isotopes. Similarly, nuclides with these same numbers 
of neutrons have a larger-than-average number of isotones. These numbers, called 
magic numbers, are a manifestation of shell structure in very much the same way that 
the atomic “magic numbers” 2, 10, 18, and 36 correspond to closed-electron-shell 
structure. As we will discuss further in Section 11-6, the nuclear magic numbers, 
which also include 2, 8, and 126, represent configurations of particular stability. An 
island of stability is hypothesized to exist around Z = 126. In the search for it thus far, 
a few atoms with atomic numbers up to 118 have been created in that region.

Nuclides that fall between the irregular colored lines in Figure 11-8, except 
those  marked by the black dots, are radioactive. We will discuss radioactivity in 
Section 11-3.

Masses and Binding Energies
The mass of an atom can be accurately measured in a mass spectrometer, which 
measures q>M for ions by bending them in a magnetic field.9 The mass of an atom
is slightly smaller than the mass of the nucleus plus the mass of the electrons 
because of the binding energy of the electrons. The binding energy of the electrons is 
defined by

	 Batomic = MN  c2 + Zme c2 - MA c2 = Dmc2	 11-9

where MN is the mass of the nucleus, MA is the mass of the atom, me is the mass of 
an electron, and Dm is the mass equivalent of Batomic (see Section 2-3). Because 
the binding energies of atoms are only of the order of keV, compared with nuclear 
binding energies of many MeV, atomic binding energies are usually neglected in 
nuclear physics. The binding energy of a nucleus with Z protons and N neutrons is 
defined as

	 Bnuclear = Zmp  c2 + Nmn  c2 - MA c2	 11-10

where mp is the mass of a proton, mn the mass of a neutron, and MA the mass of the 
nucleus of mass number A. Since the mass of an atom is very nearly equal to the mass 
of the nucleus plus the mass of the electrons (neglecting the atomic binding energy), 
the nuclear binding energy can be accurately computed from

	 Bnuclear = ZMH c2 + Nmn  c2 - MA c2	 11-11

where MA is the atomic mass and MH is the mass of a hydrogen atom. Note that the 
masses of the Z electrons cancel out. This expression is more convenient to use because 
it is the mass of the atom that is usually measured in mass spectrometers. The atomic 
masses of all stable nuclides and of many unstable ones are listed in Appendix A.

Once the mass of a nucleus or atom is determined, the binding energy can be 
computed from Equation 11-10 or 11-11. The binding energy per nucleon B>A is 
plotted against A for the most stable isotope of each element in Figure 11-10. The 
mean value is about 8.3 MeV>nucleon. The fact that this curve is approximately 
constant (for A 7 16) indicates that the nuclear force is a saturated force. This is par-
tially explained by the short range of the nuclear force (see Section 11-5). If each 
nucleon interacted with every other nucleon, there would be A 2 1 interactions for 
each nucleon, and the binding energy per nucleon would be proportional to A 2 1 
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rather than constant. Figure 11-10 indicates that, instead, there is a fixed number of 
interactions per nucleon, as would be the case if each nucleon were attracted only to 
its nearest neighbors. Such a situation also leads to a constant nuclear density, consis-
tent with the radius measurements. If the binding energy per nucleon were instead 
proportional to the number of nucleons, then the nuclear radius would be approxi-
mately constant, as is the case for the atomic radii.

More
�Of the several models of the nucleus physicists have developed, 
the liquid-drop model has been one of the most useful. It has been 
successful in describing the fission process and nuclear reactions 
and, in particular, predicting the binding energies (i.e., masses) of 
isotopes and individual nucleons within the nucleus. These topics 
are discussed in Liquid-Drop Model and the Semiempirical Mass 
Formula on the home page: www.whfreeman.com/tiplermodern
physics6e. See also Equations 11-12 through 11-14 and Table 11-3 
here, as well as Examples 11-4 through 11-6.

More

Nuclear Angular Momenta and Magnetic Moments
The spin quantum number of both the neutron and the proton is 1>2, which means that 
the nucleons are fermions. The angular momentum of the nucleus is a combination of 
the spin angular momenta of the nucleons plus any orbital angular momentum due to 
the motion of the nucleons. This resultant angular momentum is usually called nuclear 
spin and designated by the symbol I. The nucleons individually have magnetic moments, 
which also combine to produce the nuclear magnetic moment. Evidence for nuclear 
spin and magnetic moment was first found in atomic spectra. The nuclear spin adds to 
the angular momentum J = L 1 S of the electrons to form a total angular momentum F:

	 F = I + J	 11-15

Figure 11-10  ​The binding 
energy per nucleon versus 
atomic mass number A. The 
solid curve represents the 
Weizsäcker semiempirical 
binding-energy formula, 
Equation 11-12.
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The possible quantum numbers for F are 1I + J2,1I + J - 12, c,  I - J  , 
according to the usual rule for combining angular momenta. F obeys the selection rule 
DF = {1, 0, but no F = 0 S F = 0. The number of possible values of F is (2 J 1 1) or 
(2I 1 1), whichever is the smaller. Because of the energy of the interaction between 
the electronic magnetic moment and the nuclear magnetic moment associated with I, 
each atomic spectral line is split into (2 J 1 1) or (2I 1 1) components. This splitting 
is one of several effects that are the result of interactions of the nuclear spins and 
moments with the environment of the nucleus, including its own atomic electrons, 
collectively called hyperfine structure.11 The hyperfine splitting of the spectral lines 
associated with the nuclear magnetic moment occurs for a reason that is exactly 
analogous to the spin-orbit coupling discussed in Section 7-5 that is the origin of the 
fine structure of the atomic spectral lines. The coupling between I and J expressed 
by Equation 11-15 results in a splitting of the atomic energy levels by an amount DE, 
in addition to the spin-orbit splitting of Equation 7-68, given by the analogous 
relation

	 DE = gN 

 mI 

mN  
 

Be	 11-16

where gN is the nuclear Landé factor, mI is the magnetic quantum number of the z 
component of I, mN = e U>2mp is the nuclear magneton, and Be is the magnetic field 
at the nucleus produced by the electrons (see Table 11-4). The product gN mI mN is the 
nuclear magnetic moment. Except for mN, the quantities on the right side of Equa-
tion 11-16 are all of the same order of magnitude as the corresponding ones in 
Equation 7-68; however, the ratio mN>mB  10-3. Thus, the hyperfine splitting for a 
given atom is very small, about 1023 times the fine-structure splitting. Using as an 
example the sodium doublet levels 2P1>2,

2P3>2, and 2S1>2 shown in Figure 7-30 that 
produce the yellow D lines, we see that Figure 11-11 illustrates the hyperfine splitting 
of these levels resulting from I 2 J coupling. It can be observed only with extremely 
high resolution. The use of tunable dye lasers and atomic beam fluorescence spec-
troscopy have made high-precision measurements of these extremely small energy 
splittings possible in recent years.

 Table 11-4 � Magnetic field Be at the nucleus due to
electrons for selected alkali elements

Element n Be , 2S1/2 (T) Be , 2P1/2 (T) Be , 2P3/2 (T)

H 1   17   –   –

Li 2   13   –   –

Na 3   44   4.2   2.5

K 4   63   7.9   4.6

Rb 5 130 16   8.6

Cs 6 210 28 13

Source: Data are from E. Segrè, Nuclei and Particles, 2d ed. (Menlo Park, CA: 
Benjamin/Cummings 1977), p. 259.
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For the case I 6 J, there are (2I 1 1) different F states; thus the nuclear spin can 
be determined by counting the number of lines in the hyperfine splitting. The spin 
of all even-even nuclides (those with even Z and even N) is zero in the ground state. 
Evidently the nucleons couple together in such a way that their angular momenta add 
to zero in pairs, as is often the case for electrons in atoms. There is no such simple 
rule for other nuclides with either odd N or odd Z or both. Some of the successes of 
the shell model to be discussed in Section 11-6 are the correct prediction of nuclear 
spins for many nuclei.

The magnetic moment of the nucleus gN mI mN is of the order of the nuclear mag-
neton, mN = eU>2mp, since the magnitude of gN is typically between 1 and 5 and the 
maximum value of  mI  = I. The exact value is difficult to predict because it depends 
on the detailed motion of the nucleons. If the proton and neutron obeyed the Dirac 
relativistic wave equation, as does the electron, the magnetic moment due to spin 
would be 1 nuclear magneton for the proton because its charge is 1e and 0 for the 
neutron because it has no charge.12 The experimentally determined moments of the 
nucleons are

1mp2z = +2.79285 mN

1mn2z = -1.91304 mN

As we will see in Chapter 12, the proton and neutron are more complex particles than 
the electron. It is interesting that the deviations of these moments from those pre-
dicted by the Dirac equation are about the same magnitude, 1.91 for the neutron and 
1.79 for the proton. The reason that the magnetic moments of the nucleons have these 

The degeneracy of the 
hyperfine levels in nuclei 
with nonzero spins, for 
example, the proton in 1H, 
is removed by an external 
B field, a nuclear analog 
of the Zeeman effect. 
Transitions between these 
levels, separated (in 1H) by 
2mpB, oscillate at the spin 
precession rate. Detection 
of the resulting absorption 
or emission of radiation 
makes possible “mapping” 
of the hydrogen-
containing soft tissue, 
the basis for medical 
magnetic resonance 
imaging (MRI).

Figure 11-11  (a) Transitions 
between the sodium doublet 
levels produce the yellow D 
lines, 2P1>2 S 2S1>2 being D1 
and 2P3>2 S 2S1>2 being D2. 
Coupling between the atomic 
angular momentum J and the 
nuclear spin I = 3>2 results 
in the hyperfine splitting, each 
level having total angular 
momentum F = I 1 J. Note 
that the hyperfine splitting of 
each of the doublet levels is 
about 1023 times that of the 
fine-structure splitting of the 
2P level. (b) The selection rule 
DF = {1, 0 leads to the D2 
line being split into six 
components. The D1 line is 
correspondingly split into four 
components (not shown).
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particular values is not yet completely understood, the current theoretical predictions 
of mp and mn agreeing with high-precision, experimentally measured values only to 
within about 1 percent.

EXAMPLE 11-7	 Nuclear Spin of Thallium-205 ​ High-resolution spectroscopic
study of the spectrum of 205Tl reveals that each component of the doublet 
2P1>2 S 2S1>2 (377.7 nm), 2P3>2 S 2S1>2 (535.2 nm) consists of three hyperfine com-
ponents. This requires that there be two hyperfine levels for each J. Determine the 
spin of the 205Tl nucleus.

SOLUTION
If I … J, then there are (2I 1 1) different F levels, and if I 7 J, there are (2J 1 1) 
different F levels. Since the hyperfine spectrum indicates that there are two levels 
for each J, then for the 2P3>2 level either

2I + 1 = 2 or 2J + 1 = 2

But we already know that J = 13>22, so (2J 1 1) cannot equal 2; therefore
(2I 1 1) = 2 and the spin of the 205Tl nucleus (in its ground state) must be 1>2.

Note that for the 2P1>2 and 2S1>2 levels both of the equations above are satisfied 
since in these two cases I = J.

Questions

1.	 Why is N approximately equal to Z for stable nuclei? Why is N greater than Z 
for heavy nuclei?

2.	 Why are there no stable isotopes with Z 7 83?

3.	 The mass of 12C, which contains 6 protons and 6 neutrons, is exactly 12.000 u
by the definition of the unified mass unit. Why isn’t the mass of 16O, which 
contains 8 protons and 8 neutrons, exactly 16.000 u?

11-3  Radioactivity 
Except for the 257 stable nuclides noted earlier, of the more than 3000 nuclides 
known, all of the rest are radioactive; that is, they decay into other nuclides by 
emitting radiation. The term radiation here refers to particles as well as electromag-
netic radiation. In 1900 Rutherford discovered that the rate of emission of radiation 
from a substance was not constant but decreased exponentially with time. This 
exponential time dependence is characteristic of all radioactivity and indicates that it 
is a statistical process. Because each nucleus is well shielded from others by the 
atomic electrons, pressure and temperature changes have no effect on nuclear 
properties.13

For a statistical decay (in which the decay of any individual nucleus is a random 
event), the number of nuclei decaying in a time interval dt is proportional to dt and
to the number of nuclei present. If N(t) is the number of radioactive nuclei at time t 
and 2dN is the number that decay in dt (the minus sign is necessary because N 
decreases), we have

	 -dN = lN dt	 11-17
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where the constant of proportionality, l, is called the decay constant. l is the 
probability per unit time of the decay of any given nucleus. The solution of this 
equation is

	 N1t2 = N0 e-lt	 11-18

where N0 is the number of nuclei present at time t = 0. The decay rate is

	 R = -
dN

dt
= lN0 e-lt = R0 e-lt� 11-19

Note that both the number of nuclei and the rate of decay decrease exponentially 
with time. It is the decrease in the rate of decay that is determined experimentally. 
Figure 11-12 shows N versus t. If we multiply the numbers on the N axis by l, this 
becomes a graph of R versus t.

We can calculate the mean lifetime from Equation 11-18. The number of nuclei 
with lifetimes between t and t 1 dt is the number that decay in dt, which is lN dt; thus 
the fraction with lifetimes in dt is

	 f1t2  dt =
lN dt

N0
= le-lt

 

 dt� 11-20

When we use this distribution function, the mean lifetime t is

	 t = L


0

t f1t2  dt = L


0

t le-lt
 

 dt =
1

l
� 11-21

which is the reciprocal of the decay constant l. The half-life t1>2 is defined as the time 
after which the number of radioactive nuclei has decrease to half its original value. 
From Equation 11-18,

1

2
 N0 = N0 e

-lt1>2 or elt1>2 = 2

t1>2 =
ln 2

l
= 1ln 22t =

0.693

l
= 0.693 t� 11-22

After each time interval of one half-life, the number of nuclei left in a given sample 
and the decay rate have both decreased to half of their previous values. For example, 
if the decay rate is R0 initially, it will be 11>22R0 after one half-life, 11>22 11>22R0 
after two half-lives, and so on. During one mean lifetime, the number of nuclei 
remaining in the sample and the decay rate have decreased to 1>e of their previous 
values. Thus, if the initial decay rate is R0, it will be 11>e2R0 after time t has elapsed, 
11>e2 11>e2R0 after time 2t, and so on. The SI unit of radioactivity is the becquerel 
(Bq), which is defined as one decay per second:

	 1 Bq = 1 decay>s� 11-23

A historical unit of activity, the curie (Ci), is also frequently used. The curie is 
defined as

	 1 Ci = 3.7 * 1010 decay>s = 3.7 * 1010 Bq� 11-24

The curie is the disintegration rate of 1 g of radium. Since this is a very large unit, the 
millicurie (mCi), microcurie (mCi), and picocurie ( pCi) are also often used.

Figure 11-12  Exponential 
radioactive decay law. The 
number of nuclei remaining at 
time t decreases exponentially 
with time t. The half-life t1>2 
and the mean life t = 1>l 
are indicated. The decay rate 
R1t2 = lN1t2 has the same 
time dependence.

tτ
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EXAMPLE 11-8	 Counting Rate of a Radioactive Sample ​ A radioactive 
source has a half-life of 1 minute. At time t = 0, it is placed near a detector and the 
counting rate (the number of decay particles detected per unit time) is observed to 
be 2000 counts>s. (a) Find the mean life and the decay constant. (b) Find the count-
ing rate at times t = 1 min, 2 min, 3 min, and 10 min.

SOLUTION

	 1.	 For question (a), the
mean life t is related
to the half-life t1>2 by 
Equation 11-22:

t1>2 = 1ln 22t
or

t =
t1>2
ln 2

=
1 min

0.693
= 1.44 min = 86.6 s

	 2.	 From Equation 11-21, 
the decay constant is 
given by

l =
1
t

=
1

86.6 s
= 1.16 * 10-2 s-1

	 3.	 Method 1. For question 
(b), the counting rate is 
proportional to the decay 
rate R in Equation 11-19. 
The counting rate at 
t = 0 has the same 
proportionality to R0,
so we can write the 
counting rate as R, 
substituting values for l 
and for t1>2:

 R = 2000e-lt = 2000e-11.16*10-22t

 = 2000e-1ln 22 t>t1>2

 = 2000e-10.6932t

where t is now expressed in minutes

	 4.	 The counting rate R can now be computed for each of the times t = 1 min,
2 min, 3 min, and 10 min as follows:

R11 min2 = 2000e-10.6932112 = 2000 * 0.50 = 1000 counts>s
R12 min2 = 2000e-10.6932122 = 500 counts>s

		  and similarly

R13 min2 = 250 counts>s
R110 min2 = 1.95 counts>s

	 5.	 Method 2. Since the 
half-life is 1 min, the 
counting rate at t = 1 min 
will be half that at t = 0; 
at t = 2 min it will be
half of that at t = 1 min, 
and so on. In general, at 
t = n min the count rate 
will be

R = 11>22n
 R0

and again

R11 min2 = 11>221 2000 = 1000 counts>s
and

 R110 min2 = 11>2210 2000
 = 10.00102 120002 = 1.95 counts>s
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More
�Very often the decay of a radioactive nucleus results in a new nucleus 
that is also radioactive and that, in general, has a different decay con-
stant. In some cases such sequential decays may result in a dozen 
or more different radioactive isotopes. Production and Sequential 
Decays on the home page describes the way to calculate the total 
activity and the net rate at which new isotopes are produced. Home 
page: www.whfreeman.com/tiplermodernphysics6e. See Equations 
11-25 through 11-29 and Figures 11-13 and 11-14 here, as well as 
Examples 11-9 and 11-10 and Questions 4 and 5.

More

11-4  Alpha, Beta, and Gamma Decay 
From the time when Becquerel’s discovery of radioactivity gave the first hint of the 
existence of the nucleus, much of what physicists have learned about nuclear struc-
ture has resulted from studies of radioactive nuclides, 
that is, by studying the transitions of nuclei from one 
quantum state to another of lower energy. In addition to 
the nearly 2800 radioactive isotopes, nearly all of a the-
oretically estimated 2000 more possible isotopes that 
have yet to be created are radioactive. The radioiso-
topes decay by one or another of at least nine different 
modes; however, most decays occur via one or, some-
times, two of the most common modes: alpha, beta, and 
gamma. Others occur by more unusual routes, such as 
emission of a proton or neutron or by spontaneous fis-
sion. A few may decay by modes that are exceedingly 
rare, such as double beta decay, which is the focus of 
considerable current theoretical and experimental inter-
est. The fundamental purpose of these studies is to 
obtain information about nuclear structure, the nature 
of the strong nuclear force, and the properties of ele-
mentary particles.

In the subsections that follow we will discuss the 
three most common types of decay in some detail, 
touching on certain of the others when pertinent. In 
these discussions it will be helpful to keep two points 
in mind. The first of these is that the line of stability in 
Figure 11-8 is the floor of an energy valley formed by 
plotting the binding energy for each isotope on an 
energy scale perpendicular to the N and Z axes as illus-
trated in Figure 11-15a. In Figure 11-15a the energy is 
artificially truncated; however, there are theoretical lim-
itations placed on the numbers of protons and neutrons 
that can be assembled into a nucleus, even a highly 
unstable one. These limits, given the whimsical name 
driplines, are shown in Figure 11-15b and define the 
N-Z boundaries within which lie the 5000 or so isotopes 
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Figure 11-15  (a) The graph of Z versus N with the nuclear 
binding energy B (in MeV) plotted upward. The surface thus 
formed is truncated at 100 MeV to make the energy valley 
more clearly visible. (b) More than 5000 theoretically predicted 
nuclei lie between the proton and neutron driplines. Only 
about 3000 (those between the inner irregular colored lines) 
are found in nature or have been created in the laboratory, and 
only 257 of those are stable (black dots). The edges of the 
truncation in (a) are analogous to artificial driplines.
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512	 Chapter 11  Nuclear Physics

that may, in principle, exist. The limits are set by the energies at which the nuclei will 
spontaneously emit a proton or neutron.

The second point to bear in mind is that radioactive decay processes conform to 
the same conservation laws that are obeyed by all physical processes. In particular, 
(1) relativistic mass-energy, (2) electric charge, (3) linear momentum, (4) angular 
momentum, (5) nucleon number, and (6) lepton number14 are all conserved quanti-
ties. The first four of these are already familiar to you from your previous study 
of physics. The last two relate specifically to the interactions and decays of funda-
mental particles and will be discussed in Chapter 12. As we discuss the three most 
common modes of radioactive decay, consequences of each of the conservation laws 
will be illustrated.

Alpha Decay
In order for a radioactive substance to be found in nature, either it must have a half-
life that is not much shorter than the age of Earth (about 4.5 * 109 years) or it must be 
continually produced by the decay of another radioactive substance or by a nuclear 
reaction. For a nucleus to be radioactive at all, its mass must be greater than the sum 
of the masses of the decay products. Many heavy nuclei are unstable to a decay. 
Because the Coulomb barrier inhibits the decay process (the a particle must “tunnel” 
through a region in which its energy is less than the potential energy, as shown in 
Figure 11-1a), the half-life for a decay can be very long if the decay energy is small, 
that is, if the width of the barrier to be tunneled through is large. Indeed, the relation 
between the half-life of an a emitter and the energy of the a particle is so striking that 
it was first noticed by two research assistants in Rutherford’s laboratory, H. Geiger 
and G. Nuttall, in 1911, the same year that Rutherford discovered the nucleus. The 
general relation, called the Geiger-Nuttall rule, is illustrated in Figure 11-16 and given 
by Equation 11-30:

	 log t1>2 = AE -1>2
a + B� 11-30

where Ea is the kinetic energy of the emitted a particle and A and B are experimen-
tally determined constants.

The a particles emitted 
by a tiny amount of 241Am 
are used to ionize the air 
inside smoke detectors. 
When smoke is present, 
the ionized air molecules 
stick to the smoke 
particles, reducing a 
trickle current maintained 
in the ionized air, thereby 
triggering an alarm. 
Ionization-type smoke 
detectors are considerably 
more sensitive than 
those using photoelectric 
sensors.

Figure 11-16  The Geiger-Nuttall relation is 
illustrated by the semilogarithmic graph of the 
a-decay half-life versus the kinetic energy of the 
emitted a particle for the naturally occurring
a emitters. The broken line represents the 
empirical Geiger-Nuttall rule given by 
Equation 11-30.
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Subsequently, an expression for the half-life of an a emitter was derived from the 
Schrödinger equation treating a decay as a barrier-penetration phenomenon. Its good 
agreement with experimental results was one of the earliest successful applications of 
wave mechanics. Briefly, the derivation considered an a particle confined within the 
nucleus with energy Ea as was shown in Figure 11-1. The wave functions for two 
such particles are illustrated in Figure 11-17. The potential for r 7 R is taken to be the 
Coulomb function V1r2 = z Ze2>4p0 r, where z = 2 for the a particle, with a smooth 
transition to the nuclear potential. The probability that the a particle will penetrate the 
barrier on any one approach is the transmission coefficient T that was derived in Sec-
tion 6-6, Equations 6-75 and 6-76. The decay constant l = 1>t = 0.693>t1>2 is then 
given by the product of the transmission coefficient T and the frequency with which 
the nuclear a particle approaches the barrier. The latter, given by Equation 6-78, 
depends on the a particle’s speed v, determined by its kinetic energy for r 6 R in 
Figure 11-17, and the value of the nuclear radius. Thus,

	 l =
Tv

2R
� 11-31

The result of the wave mechanical derivation, done by B. Taagepera and 
M. Nurmia, is

	 log t1>2 = 1.611ZE -1>2
a - Z2>32 - 28.9� 11-32

where t1>2 is in years, Ea is in MeV, and Z refers to the daughter nucleus. Notice that 
the dependence of t1>2 on the nuclear radius provides a method of measuring nuclear 
radii that is independent of the methods mentioned in Section 11-2.

All very heavy nuclei (Z 7 82) are theoretically unstable to a decay because the 
mass of the parent radioactive nucleus is greater than the sum of the masses of the 
decay products—the daughter nucleus and an a particle. When a nucleus emits an a 
particle, both N and Z decrease by 2, and A decreases by 4. There are four possible 
a-decay chains or sequences, depending on whether A equals 4n: (4n 1 1), (4n 1 2), 
or (4n 1 3), where n is an integer. For the longest-lived nucleus in each sequence, 
n = 58 for the first and fourth and n = 59 for the second and third. All but one of 
these series are found in nature. The (4n 1 1) series is not because its longest-lived 
member, 237Np, has a half-life of only 2 * 106 years, which is much shorter than the 
age of Earth; hence 237Np present when Earth was formed has long since decayed away. 

Figure 11-17  ​Schematic representations 
of the wave functions of two a particles 
with energies Ea1 and Ea2 within the 
nuclear potential well. The probability of 
a1 penetrating the barrier is larger than 
that for a2 since the barrier is narrower at 
Ea1. Thus, the amplitude of c(a1) is larger 
outside the nucleus than that of c(a2). 
Hence, l(a1) 7 l(a2) and therefore 
t1>21a12 6 t1>21a22.

V(r )

Eα1

Eα2

R r
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The end product of the (4n 1 1) series, 209Bi, long considered 
to be stable, was recently found to be an a emitter with a
half-life of 2.0 * 1018 y. That time is substantially longer than 
the age of the universe, so for all practical purposes 209Bi is
stable.

Figure 11-18 illustrates the thorium series, which has 
A = 4n and begins with an a decay from 232Th to 228Ra. Decreas-
ing n successively by 1 generates A for possible daughter 
nuclides until a stable one is reached. The daughter nuclide of 
an a decay is on the left or neutron-rich side of the stability 
curve (dashed line), so it often decays by b2 decay, in which 
one neutron changes to a proton by emitting an electron. In 
Figure 11-18 228Ra decays by b2 decay to 228Ac, which in turn 
decays to 228Th. There are then four a decays to 212Pb, which 
b2 decays to 212Bi. There is a branch point at 212Bi, which 
decays either by a decay to 208Tl or by b2 decay to 212Po. The 
branches meet at the stable lead isotope 208Pb. The (4n 1 2) 
series begins with 238U and ends with 206Pb. The (4n 1 3) series 
starts with 235U and ends with 209Pb. Figure 11-19 shows a typi-
cal a decay spectrum.

Figure 11-18  ​The thorium 
(4n) a-decay series. The 
broken line is the line of 
stability (floor of the energy 
valley) shown in Figures 11-8 
and 11-15.
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Figure 11-19  Alpha-
particle spectrum from 227Th. 
The highest-energy a 
particles correspond to decay 
to the ground state of 223Ra 
with a transition energy of 
Q = 6.04 MeV. The next 
highest energy particles, a30, 
result from transitions to the 
first excited state of 223Ra,
30 keV above the ground 
state. The energy levels of 
the daughter nucleus, 223Ra, 
can be determined by 
measurement of the 
a-particle energies.
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More
�The energy spectrum of the alpha particles emitted by a heavy 
nucleus such as 232Th shows a number of sharp peaks with ener-
gies less than the decay energy Q. The highest energy of these cor-
responds to the transition from the parent’s ground state to that of 
the daughter. The others are the result of alpha transitions to excited 
states of the daughter. In Energetics of Alpha Decay on the home 
page we describe how alpha transitions can be used to construct the 
excited levels of the daughter nucleus. Home page: www.whfree 
man.com/tiplermodernphysics6e. See also Figures 11-19 and 11-20 
repeated, Equations 11-33 through 11-36, and Example 11-11 here.

More
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Beta Decay
There are three radioactive decay processes in which the mass number A remains 
unchanged while Z and N change by {1. These are b2 decay, in which a neutron 
inside a nucleus changes into a proton with the emission of an electron; b1 decay, 
in which a proton inside a nucleus changes into a neutron with the emission of a 
positron; and electron capture (EC), in which a proton in a nucleus changes to a 
neutron by capturing an atomic electron, usually a 1s electron from the K shell 
since these have the highest probability density in the vicinity of the nucleus. 
Those nuclei on the neutron-rich side of the energy valley in Figure 11-15 will 
tend to decay by b2 emission, while those on the proton-rich side will most 
probably decay by b1 emission or electron capture. We will discuss each of these 
processes briefly.

b2 Decay  The simplest example of b2 decay is that of the free neutron, which decays 
into a proton plus an electron with a half-life of about 10.8 minutes. The energy of 
decay is 0.78 MeV, which is the difference between the rest energy of the neutron 
(939.57 MeV) and that of the proton plus electron (938.28 1 0.511 MeV). More 
generally, in b2 decay, a nucleus of mass number A, atomic number Z, and neutron 
number N changes into one with mass number A, atomic number Z9 = Z 1 1, and 
neutron number N9 = N 2 1, conserving charge with the emission of an electron. The 
energy of decay Q is c2 times the difference between the mass of the parent nucleus 

Figure 11-20  Energy levels of 
223Ra determined by measurement 
of a-particle energies from 227Th, 
as shown in Figure 11-19. Only 
the lowest-lying levels and some 
of the g-ray transitions are shown.
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and that of the decay products. If we add the mass of Z electrons to both the parent 
nucleus and the decay products, we can write Q in terms of the atomic masses of the 
parent and daughter atoms:

	
Q

c2 = MP - MD� 11-37

Another way of understanding this result is to note that in b2 decay, an electron of 
mass me leaves the atom, which is now a daughter ion of nuclear charge (Z 1 1) and Z 
atomic electrons. To obtain the mass of the neutral daughter atom, we must add the 
mass of an electron me so the total mass change is just the difference in mass between 
the parent and daughter atoms. If the decay energy Q were shared only by the daugh-
ter atom and the emitted electron, the energy of the electron would be uniquely deter-
mined by conservation of energy and momentum, just as in a decay. Experimentally, 
however, the energies of the electrons emitted in b decay are observed to vary from 
zero to the maximum energy available Emax. A typical energy spectrum is shown in 
Figure 11-21; compare this with the discrete spectrum of a-particle energies of
Figure 11-19. Thus, in a particular decay event in which the electron carried away less 
than the energy Emax, it would appear that energy was not conserved since in that 
decay Q>c2 6 MP - MD. A moment of reflection will persuade you that linear 
momentum would not be conserved either and, recalling that the neutron, proton, and 
electron are all spin-1>2 particles, neither would the angular momentum. A solution 
to this apparent multiple failure of conservation laws was first suggested by Wolfgang 
Pauli in 1930. He proposed that a third particle was emitted in b decay that carried the 
energy, linear momentum, and angular momentum needed to conserve these quantities 
in each individual decay. It would carry no electric charge since charge was already 
conserved in b decay. Its mass would be much less than that of the electron since the 
maximum energy of electrons emitted in b decay is observed to be very nearly equal 
to the value of Q, the total energy available for the decay. In 1933 Enrico Fermi 
developed a highly successful quantum theory of b decay that incorporated Pauli’s 
proposed particle, which Fermi called the neutrino (“little neutral one,” in Italian) to 
distinguish it from the massive neutron, which had been discovered by Chadwick ear-
lier that same year. It was not until 1956 in an experiment performed by Clyde Cowan 
and Frederick Reines that neutrinos were first observed in the laboratory. It is now 
known that there are six kinds of neutrinos, one (ne) associated with electrons, one 
(nm) associated with muons, one (nt) associated with the tau particle, and the antipar-
ticles of each of those, written ne, nm, and nt. The electrons, muons, and taus together 
with the neutrinos constitute a family of particles called leptons, which will be dis-
cussed further in Chapter 12. The decay of the free neutron is then expressed by

	 n S p + b- + ne� 11-38

and that of 198Au, a more or less typical b2 emitter, by

	 198Au S 198Hg + b- + ne� 11-39

where the lepton conservation law (see Section 12-3) dictates the emission of an 
electron antineutrino to accompany a b2 decay. Presently the subject of intense 
experimental and theoretical research, current results require the electron neutrino’s 
mass to be greater than zero and place the upper limit of its mass at about 2.2 eV>c2, 
or no more than about 4 * 1026 times the mass of the electron.

Figure 11-21  ​Energy 
spectrum of electrons emitted 
in b decay. The number of 
electrons per unit energy 
interval N is plotted versus 
kinetic energy. The fact that 
all the electrons do not have 
the same kinetic energy Emax 
suggests that there is another 
particle emitted that shares 
the energy available for 
decay.
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b1 Decay  In b1 decay, a proton changes into a neutron with the emission of a 
positron and a neutrino. A free proton cannot decay by positron emission because of 
conservation of energy (the rest energy of the neutron is greater than that of the proton), 
but because of binding energy effects, a proton inside a nucleus may emit a positron. 
A typical b1 decay is

	 13
7N S 13

6C + b+ + ne� 11-40

The only naturally occurring positron emitter known to exist is 40K, which also may 
decay by b2 emission or electron capture! The b1 decay equation is

	 40
19K S 40

18Ar + b+ + ne� 11-41

As in all nuclear transformations, the decay energy Q is related to the difference in 
mass between the parent nucleus and the decay products. Note that if we add the mass 
of Z electrons to the nuclear masses (Z = 7 in the case of Equation 11-40 and Z = 19 
in Equation 11-41), we obtain on the right side of each equation the mass of the 
daughter atom plus two extra electron masses (the positron and electron have identi-
cal mass). The decay energy for b1 decay is thus related to the atomic mass of the 
parent and daughter atoms by

	
Q

c2 = MP - 1MD + 2me2� 11-42

Again, we can understand this by noting that in b1 decay, a positron of mass me 
leaves the system, which is now a negative daughter ion of nuclear charge (Z 2 1) 
and Z atomic electrons. To obtain the mass of the neutral daughter atom, we must 
subtract the mass of another electron, giving a net change of 2me in addition to the dif-
ference in mass of the parent and daughter atoms. Thus, b1 decay cannot occur unless 
that energy difference is at least 2mec

2 = 1.022 MeV.
As we have mentioned, neither electrons nor positrons exist inside the nucleus 

prior to the decay. They are created in the process of decay by the conversion of 
energy to mass, just as photons are created when an atom makes a transition from a 
higher to a lower energy state. In this regard b decay differs from a decay. There is, 
however, a fundamental difference between the emission of electrons (and neutrinos) 
that de-excite the bound states of nucleons that compose a nucleus and the emission 
of photons accompanying the de-excitation of the electrons bound to a nucleus. The 
latter bonding is due to the electromagnetic interaction, whereas the nucleons are 
bound by the strong nuclear force. However, electrons and neutrinos are not affected 
by the strong nuclear force and, since the neutron is uncharged, the electromagnetic 
interaction is not involved in its decay. Thus, in order to explain b decay, we must 
invoke a new interaction. Since b-decay lifetimes are typically quite long compared 
to the characteristic nuclear time scale (10223 s, the time for a particle moving at 
near the speed of light to cross the nucleus), the new interaction must act for a long 
(nuclear) time in order to generate the decay. In other words, it is weaker than the 
strong attractive force between the nucleons and is, therefore, called the weak interac-
tion or the weak force. So we now have two nuclear forces, a strong one and a weak 
one. Like the former, the latter also has a short range.

Electron Capture  In electron capture, a proton inside a nucleus captures an 
atomic electron and changes into a neutron with the emission of a neutrino; thus the 

PET scanners used 
in medical diagnosis 
detect photons emitted 
in electron-positron 
annihilation following 
b1 decay.
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effect on the atomic number is the same as in b1 decay. The energy available for this 
process is given by

	
Q

c2 = MP - MD� 11-43

Whenever the mass of an atom of atomic number Z is greater than that of the adjacent 
atom with atomic number (Z 2 1), electron capture is possible. If the mass difference 
is greater than 2me, b

1 decay is also possible, and these two processes compete. The 
probability of electron capture is negligible unless the atomic electron is in the imme-
diate vicinity of the nucleus. This probability is proportional to the square of the elec-
tron wave function integrated over the volume of the nucleus. It is significant only for 
the 1s electrons of the K shell or, with much lower probability, the 2s electrons of the 
L shell. A typical example of electron capture is

	 51
24Cr S 51

23V + ne� 11-44

which has Q = 0.751 MeV. Note that the emission of the neutrino conserves leptons 
since the captured electron has disappeared.

Further understanding of the b-decay processes can be gained by considering 
their relation to the energy valley of the N versus Z graphs shown in Figure 11-15, 
with the energy scale computed from the Weizsäcker formula (Equation 11-14). Cuts 
through Figure 11-15a at constant mass number A yield parabolas since Equation 11-14 
is quadratic in Z, one parabola for a5 = 0 (odd A) and two parabolas for 
a5 = {12 MeV>c2 (even A). Figure 11-22 illustrates an example of each case. The 
b decays always proceed down the sides of the energy valley toward the lowest-
energy, stable isotope on the valley floor. Notice in Figure 11-22b the possible double 
b decay from 60Fe to 60Ni. Since b decay proceeds via the weak interaction, the 
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Figure 11-22  Profiles of constant atomic mass show the cross section of the energy valley of the N versus Z graph. The energy 
axes are expressed in mass units as computed from the Weizsäcker mass formula. (a) Odd-A nuclei, such as A = 101 shown, 
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a5 = -12 MeV>c2. The even-even parabola lies below the odd-odd one.
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probability of the weak force producing two b2 particles simultaneously is indeed 
small, as you might imagine. Prior to 1985 its existence had been inferred only indi-
rectly by abundance measurements on decay products in geologic materials. In 1985 
Steven Elliott and his coworkers made the first direct observation of double beta 
decay using 82Se as the source. The decay equation is

	 82
34Se S 82

36Kr + b- + b- + e + e� 11-45

The half-life for the double b decay measured by Elliott is 1.1 * 1020 years! Double 
beta decay has subsequently been observed in several other nuclides. Since recent 
experiments show that the neutrino has a very small mass, current theory would allow 
the decay in Equation 11-45 to proceed without the emission of neutrinos, albeit with 
an even lower probability (see Section 12-1). The implications of a neutrino-less 
double beta decay are profound for both particle physics and cosmology. Although 
active searches are currently under way, no such decays have yet been observed.

EXAMPLE 11-12	 Maximum b1 Energy from 40K ​ We noted earlier that one of 
the decay modes of 40K is positron emission, shown in Equation 11-41. What is the 
maximum energy of the positrons?

SOLUTION

	 1.	 The maximum energy Q of the positrons is 
given by Equation 11-42, where 40K is the 
parent and 40Ar is the daughter:

Q

c2 = MP - 1MD + 2me2

	 2.	 The atomic masses are given in Appendix A:  M140K2 = 39.964000 u

 M140Ar2 = 39.962384 u

 me = 5.4858 * 10-4 u

	 3.	 Substituting these into Equation 11-42 yields

 
Q

c2 = 39.964000 u - 339.962384 + 2 * 3.4858 * 10-44  u

 = 0.000519 u * 931.5 MeV>c2 # u
 = 0.483 MeV>c2

Remarks:  Neglecting the recoil of the Ar nucleus, the decay energy Q = 0.483 MeV 
is the maximum energy of the emitted positrons.

EXAMPLE 11-13	 The Decay of 233
93Np ​ Determine which decay mode or modes 

among a decay and the three types of b decay are allowed for 233
93Np.

SOLUTION
The four decays whose possibility of occurrence we are to find are

 a decay: 233
93Np h 229

91Pa + a

 b- decay: 233
93Np h 233

94Pu + b- + e

 b+  decay: 233
93Np h 233

92U + b+ + e

 electron capture: 233
93Np h 233

92U + e
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The decay energy Q for each of these is computed as follows:

a decay (Equation 11-34):

 
Q

c2 = 233.040805 - 1229.032085 + 4.0026032
 = 0.006117 u = 5.70 MeV>c2

which is greater than zero; therefore, a decay is allowed.

b2 decay (Equation 11-37):

 
Q

c2 = 233.040805 - 233.042963

 = -0.002158 u = -2.01 MeV>c2

b2 decay is forbidden.

b1 decay (Equation 11-42):

 
Q

c2 = 233.040805 - 1233.039630 + 2 * 5.4858 * 10-42
 = 0.000078 u = 0.073 MeV>c2

b1 decay is allowed.

Electron capture (Equation 11-43):

 
Q

c2 = 233.040805 - 233.039630

 = 0.001175 u = 1.09 MeV>c2

Electron capture is allowed.
Thus, the available decay energy would allow a decay, b1 decay, and electron 

capture, although the energy for b1 decay is very small. b2 decay is forbidden. 
Experimentally, 233Np decays more than 99 percent of the time by electron capture 
and about 0.3 percent of the time by a decay. b1 decay has not been observed.

Gamma Decay
In g decay, a nucleus in an excited state decays to a lower energy state of the same 
isotope by the emission of a photon. This decay is the nuclear analog of the emission of 
light by atoms. Since the spacing of the nuclear energy levels is of the order of MeV 
(as compared with eV in atoms), the wavelength of the emitted photons are of the order of

l =
hc

E


1240 eV # nm

1 MeV
= 1.24 * 10-3 nm

Gamma-ray emission usually follows beta decay or alpha decay. For example, if 
a radioactive parent nucleus decays by beta decay to an excited state of the daughter 
nucleus, the daughter nucleus often decays to its ground state by emission of one or 
more g rays. The mean life for g decay is usually very short. Direct measurements of 
mean lives as short as 10211 s are possible. Measurements of lifetimes smaller than 
10211 s are difficult but can sometimes be accomplished by determining the natural 
line width G and using the uncertainty relation t = U>G. A few g emitters have very 
long lifetimes, of the order of hours and even, in a few cases, years. Nuclear energy 
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states with such long lifetimes are called isomers or metastable states. The differ-
ences in g-ray lifetimes are a consequence of the quantum-mechanical selection rules 
that govern transitions between the energy levels of nuclei, just as they do between 
atomic energy levels. For example, large angular momentum (spin) changes are for-
bidden for g transitions; that is, they have very low probability. This is the major rea-
son that, for instance, the first excited state of 93Nb, an isomer, decays to the ground 
state with a half-life of 13.6 years. The spin of the isomeric state is 1>2, while that of 
the ground state is 9>2. The decay requires the g ray to carry away 4U of angular 
momentum, a very unlikely occurrence, which accounts for the long half-life.

Decay Energy  The energy hf of a gamma-ray photon is the difference in energy 
of the states between which the transition occurs. That is,

	 hf = Ehigh - Elow� 11-46

where Ehigh is the energy of the upper level and Elow is that of the lower level. Several 
gamma decays are shown in Figure 11-20 between some of the excited states of 223Ra 
that resulted from the a decay of 227Th. For example, a g ray is emitted from the
174-keV level of 223Ra, reducing the excitation energy of that nucleus to 61 keV above 
the ground state. Using Equation 11-46, we see that the energy of that g ray is equal to 
174 keV 2 61 keV = 113 keV. To be more precise, conservation of momentum requires 
that the 223Ra nucleus carry a small part of this energy as it recoils from the emission of 
the photon (see Figure 11-23). The energy of the nuclear recoil Er is given by

	 Er =
p2

2M
=
1hf 22

2Mc2 � 11-47

where M is the nuclear mass. All gamma-ray energies are small compared with atomic 
and nuclear rest energies; that is, hf V Mc2 or hf>Mc2 V 1; therefore, Er V hf . 
Thus, Equation 11-46 is an excellent approximation of the gamma ray’s energy.

Internal Conversion  An important alternative to gamma-ray emission for the 
de-excitation of an excited nuclear state, particularly low-lying states, is the process of 
internal conversion. In this process the excitation energy of the state rather than being 
emitted as a photon is transferred to an orbital electron, which is ejected from the atom. 
Those electrons with the highest probabilities of being close to the nucleus, the K and
L electrons, are the ones most likely to be emitted. The ejected electron has kinetic 
energy equal to the nuclear transition energy minus the electron’s binding energy. Since 
the latter are accurately known for nearly all elements, measuring the kinetic energies 
of the conversion electrons makes possible determination of many nuclear excited 
states. While internal conversion is quantum mechanically a one-step process, it was 
initially pictured as the emission of a photon followed by a photoelectric-effect inter-
action with an orbital electron of the same atom, hence the name internal conversion.

More
�In 1958 Rudolf Mössbauer15 observed a remarkable feature of gamma 
decay, the recoilless emission of gamma rays from 191Ir. A discovery 
made while he was still a graduate student, it made possible high-
precision-frequency measurements leading to a host of applications 
(see Figures 11-24 through 11-26 here). It is described on the home 
page: www.whfreeman.com/tiplermodernphysics6e.

More

Figure 11-23  A nucleus of 
rest energy Mc2 emits 
a photon of energy hf and 
momentum p = hf>c. 
Conservation of momentum 
requires that the nucleus also 
recoil with momentum p.

p

Mc2hf

p = hf/c

The exceptional 
precision of frequency 
measurements made 
possible by the Mössbauer 
effect has applications 
in a broad range of areas, 
such as measurements 
of gravitational red 
shift, impurities and 
imperfections in 
crystalline solids, and the 
transverse Doppler effect 
(see Section 1-5), to name 
just three.
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Questions

6.	 De-excitation of the first excited state of 93Nb requires the gamma ray to 
carry away 4U of angular momentum. Since the gamma ray’s intrinsic angular 
momentum is 1U, how could it carry away 4U?

7.	 Why is the decay series A = (4n 1 1) not found in nature?

8.	 A decay by a emission is often followed by a b decay. When this occurs, it is 
usually a b2 decay. Why?

9.	 How can the application of very high pressure affect the lifetime of a sample 
that decays by electron capture? Why are other types of decay not affected?

11-5  The Nuclear Force 
The study of nuclear physics is quite different from that of atomic physics. The 
simplest atom, the hydrogen atom, can be completely understood by solving the 
Schrödinger equation using the known potential energy of interaction between 
the electron and proton, V1r2 = -ke2>r (though, as we have seen, the mathematics 
needed is fairly complicated). The simplest nucleus (other than a single proton) is the 
deuteron, consisting of a proton and a neutron. We cannot solve the Schrödinger 
equation for this problem and then compare with the experiment because, although 
many of its characteristics have been determined, the exact mathematical form of 
the potential energy of interaction V is not known. There is no macroscopic way to 
measure the force between a neutron and a proton. It is clear from the fact that many 
nuclei are stable that there are other forces much stronger than electromagnetic or 
gravitational forces between nucleons. Considering 4He as an example, the electro-
static potential energy of two protons separated by 1 fm is

	 V =
ke2

r
=

1.44 MeV # fm
1 fm

= 1.44 MeV�

and note that it is positive—that is, the electrostatic force between the protons is, of 
course, repulsive. However, the energy needed to remove a proton or neutron from 
4He is about 20 MeV. The force responsible for such a large binding energy must be 
attractive and significantly stronger than the electrostatic force. This must certainly 
be the case since the neutrons are electrically neutral and hence do not feel the 
Coulomb force and the protons are all positively charged and thus feel a repulsive 
electrostatic force. Nor can we appeal to the gravitational attractive force between 
the protons to offset their Coulomb repulsion since, as Example 11-14 illustrates, the 
gravitational force between pairs of protons in the nucleus is insignificantly small 
compared to their Coulomb repulsion. Thus, the attractive force that holds the nucle-
ons together must be strong, stronger even than the electromagnetic interaction. It is 
called the nuclear or hadronic force or often simply the strong force.

Characteristics of the Nuclear Force
Determination of the characteristics of the nuclear force is one of the central prob-
lems  of nuclear physics. Much information about this force can be and has been 
obtained from scattering experiments involving protons, neutrons, and other particles. 
Although the results of a scattering experiment can be predicted unambiguously from 
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knowledge of the force law, the force law cannot be completely determined from the 
results of such experiments. The results of scattering experiments do indicate that 
(1) the nuclear force has the same strength between any two nucleons—that is, n-n, 
p-p, or n-p; (2) the force is strong when the particles are close together and drops rap-
idly to zero when the particles are separated by a few fm; and (3) it is a saturated 
force. The potential energy of the nucleon-nucleus interaction can be roughly repre-
sented by a square well of about 40 MeV depth and a few fm width.

EXAMPLE 11-14	 Ratio of Fgrav/FCoul Between Protons ​ Compare the gravita-
tional attractive force between two protons in an atomic nucleus (or anywhere else, 
for that matter) with the electrostatic repulsion between them.

SOLUTION
The electrostatic repulsion for two protons separated by a distance r is

FCoul =
1

4p0
 
e2

r 2 =
11.60 * 10-19 C22

4p0 r 2

and the gravitational attraction between them is

Fgrav = G 
m2

p

r 2 =
G11.67 * 10-27 kg22

r 2

The ratio is independent of r and equal to

 
Fgrav

FCoul
=

Gm2
p

11>4p02e2 =
16.67 * 10-11 N # m2>kg22 11.67 * 10-27 kg22

18.99 * 109 N # m2>C22 11.60 * 10-1922

 
Fgrav

FCoul
= 8.1 * 10-37  10-36

Solution of the nuclear wave equation presents all of the mathematical com
plexities of our earlier studies of atomic and molecular systems plus some truly mon-
umental new ones. Like the atomic and molecular systems, the nucleus (except for 
1H and 2H) is a many-body system with all of the accompanying computational diffi-
culties. In addition, the nuclear interaction is far more complex than the electromag-
netic interaction and, even worse, it is not yet known how the nuclear interaction can 
be expressed in closed, analytic form; that is, we do not know the nuclear force law 
equivalent of Coulomb’s law for the electrostatic force. This means that we cannot 
yet write down the exact form of the nuclear potential function that must be included 
in the wave equation in order to solve for the nuclear wave functions and allowed 
energies.

Substantial progress has been made in recent years toward obtaining the analytic 
expression for the interaction. For instance, an estimate of the depth of the nuclear 
potential can be made by assuming its shape to be approximated by a square well and 
computing the ground-state energy of a nucleon, based on a reasonable assumption of 
the well width. Using 2 fm as a typical width for light nuclei (see Figure 11-5), the 
potential 2V for a nucleon is approximately

 -V  E1 
h2

8ma2 =
16.63 * 10-34 J # s22

182 11.67 * 10-27 kg2 12 * 10-15 m2211.60 * 10-13 J>MeV2
 V  -50 MeV 	
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Two protons separated by that same distance experience an electrostatic Coulomb 
repulsive potential given by

 VCoulomb =
1

4p0
 
e2

a
=
19 * 109 N # m2>C22 11.60 * 10-19 C22

12 * 10-15 m2 11.60 * 10-13 J>MeV2
 VCoulomb = 0.72 MeV

Thus, our square-well approximation suggests that at 2 fm, the attractive nuclear 
potential exceeds the Coulomb repulsion experienced by a proton by nearly two 
orders of magnitude.16

More detailed understanding of the nature of the nuclear force and the shape and 
depth of the potential is provided by two types of experiments. First, just as atomic 
spectroscopy yielded information that made possible the determination of such things 
as the energies, spins, and magnetic moments of the electronic structure of the atoms, 
nuclear spectroscopy—that is, the study of the emission and absorption of particles 
and radiation by the nuclei—yields valuable information concerning the ground and 
excited states of nuclei, including energies, magnetic moments, electric quadrupole 
moments, and spins. The second source of our detailed information comes from the 
analysis of scattering experiments. These are experiments in which particles that feel 
the nuclear force, such as protons or alpha particles, are used as projectiles “fired” at 
target nuclei. The de Broglie wavelength of projectile protons with kinetic energies of 
20 MeV (or more) are of the order of nuclear dimensions:

 l =
h
p
=

h22mE
=

6.63 * 10-34 J # s22 * 1.67 * 10-27 kg * 1.60 * 10-13 J>MeV

 l = 6 * 10-15 m = 6 fm

Thus, such protons will experience considerable diffraction in collisions with the tar-
get nuclei. Analysis of the resulting diffraction pattern yields detailed information 
concerning the interaction between the particles. Many such experiments, particularly 
protons scattered from protons, called p-p scattering, and neutrons scattered from pro-
tons, or n-p scattering, reveal that the nuclear potential for proton-proton pairs and 
neutron-proton pairs are of the form sketched in Figure 11-27. Although the shape of 
the potential for neutron-neutron pairs can only be determined indirectly, since free 
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(a) (b)Figure 11-27  ​(a) The 
approximate shape of the 
potential between n-p and 
n-n pairs. The hard core 
suggested by the nearly 
constant central density of the 
nucleus has a radius of about 
0.5 fm. (b) The p-p potential 
differs from those in (a) by 
the added Coulomb repulsion, 
which dominates beyond 
about 3 fm. Notice the n-p 
and n-n potential well is 
slightly deeper than the p-p 
potential due to the absence 
of the Coulomb repulsion.
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neutrons are radioactive and we do not know how to make targets consisting only 
of neutrons (such as the matter of neutron stars), it appears to be identical to that 
of n-p pairs. In fact, when the Coulomb repulsion component of the p-p pair potential 
in Figure 11-27b is subtracted from the total potential V(r), the remaining nuclear 
p-p potential is also the same as those for n-p and n-n pairs. This leads to the very 
important conclusion that the nuclear force is independent of the charge of the 
nucleons. This suggests that the proton and neutron can be considered as different 
charge states of the same particle, the nucleon. We will pursue this suggestion further 
in Chapter 12.

As described in Section 11-2, the charge radius of the proton is about 1 fm. The 
neutron is approximately the same size. As Figure 11-27 illustrates, two nucleons 
experience the attractive nuclear force as long as they are within about 2.5 fm of 
each other, but the force diminishes rapidly over the next 1>2 fm of separation and is 
essentially zero beyond 3 fm. Thus, we also conclude that the nuclear force is a 
short-range force. Nucleon pairs also experience an extremely strong repulsive 
component of the nuclear force when they approach within about 0.5 fm. This hard 
core is consistent with the observation that the central density is nearly the same 
for all nuclei (see Figure 11-27); that is, as more and more nucleons are added, the 
size of the nucleus increases in such a way that the density remains approximately 
constant, so something must prevent the nucleons from crowding too closely 
together. The short range of the nuclear force together with the repulsion of the hard 
core means that, as the size of the nucleus increases beyond the 2.5 to 3 fm range 
of the force, an individual nucleon will be able to interact with only a limited number 
of the other particles in the nucleus, namely its nearby neighbors, which are within 
range of its force. This is analogous to the limited number of bonds associated with 
each atom in the covalent bonding of solids. For example, each carbon atom in 
diamond bonds with only four of its nearest neighbors, and we could describe the 
carbon covalent bond as being a saturated bond. Similarly, the nuclear force is a 
saturated force.

The Nuclear Exchange Force
Without knowing the analytic form of the nuclear potential function, we have 
been  able to conclude that the nuclear force is a short-range, saturated, charge-
independent, spin-dependent force with a hard core and a small noncentral compo-
nent and is about two orders of magnitude stronger than the electrostatic force. What 
could be the origin or mechanism for such a force was first suggested by H. Yukawa17 
in 1935.

Yukawa proposed that the nuclear force resulted from an exchange of particles 
between the nucleons. He based his theory on an analogy with the quantum-mechanical 
explanation of the electrostatic interaction, one of two exchange mechanisms that you 
have previously studied, though perhaps not by that name. Classically, any distribu-
tion of charges produces an electric field  and the force felt by another charge q 
located in the field is the product q. Any change in the charge distribution changes ; 
however, the information that a change has occurred does not appear instantaneously 
throughout the field but is propagated outward at the speed of light. Time-dependent 
changes in the charge distribution create time-dependent changes in , that is, electro-
magnetic radiation, or waves.18 We have seen that the particle representation of the 
electromagnetic radiation is the photon. Quantum mechanically, every charge is con-
tinually emitting and absorbing photons, even when it is not moving. They are called 
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virtual photons, meaning that they are not directly observable. A charge can emit a 
virtual photon of energy hf without changing its energy or recoiling, that is, without 
violating conservation of energy and momentum, provided that the photon exists for 
no longer than Dt = U>DE, where DE = hf, as required by the uncertainty principle. 
The distance that the virtual photon can travel during the time Dt, called the range R, 
is given by

	 R = cDt = cU>DE	 11-48

and substituting for DE,

	 R = cU>hf = c>2pf = l>2p	 11-49

A second charge located up to a distance R from the first can absorb the photon and a 
similar photon emitted by the second charge may be absorbed by the first, all without 
violating energy and momentum conservation. It is this exchange of virtual photons 
that results in the electrostatic Coulomb force between the two stationary charges in 
quantum mechanics. Note that there is no limit to the wavelength of the photon in 
Equation 11-49 since the energy of the photon may be arbitrarily small, the photon 
having no rest mass. Thus, the distance separating the two charges, the range R of the 
Coulomb force, may also be infinite, as you have already learned.

An exchange mechanism was also used in BCS theory to account for the attrac-
tive force between the electrons of the Cooper pairs (see Section 10-8). In that case 
the exchange particles were the phonons and the range of the force was not infinite 
but determined by the fact that DE  the energy gap.

Yukawa proposed that the nuclear force could also be 
explained in terms of the exchange of virtual particles by the nucle-
ons. These particles, which he called mesons, were pictured as the 
analogs of the virtual photons in the electromagnetic interaction 
and established the meson field in analogy with the electromagnetic 
field. The mechanism for the nuclear force was proposed to be an 
exchange of a meson between a pair of nucleons, as illustrated by 
Figure 11-28. Yukawa accounted for the observed short range of 
the nuclear force by assigning mass to the meson. Thus, the energy 
uncertainty DE in Equation 11-48 would be

DE Ú mc2

where m is the mass of the meson and mc2 is its rest energy. The 
range R of the meson and, therefore, the nuclear force that it medi-
ates cannot be larger than

	 R = cDt = cU>DE = U>mc	 11-50

since the speed of the meson must be less than the speed of light. 
Recall that h>mc is the Compton wavelength lc of the particle 
whose mass is m, so R = lc>2p. The range of the nuclear force 
was known to be about 1 fm, which made possible an approxima-
tion of the meson’s expected mass from Equation 11-50:

m  3.5 * 10-28 kg  380me  200 MeV>c2

x

t

Nucleon

Nucleon

Meson

∆t

Figure 11-28  Schematic representation of the 
exchange of a meson by a pair of nucleons. The 
meson is emitted by the nucleon on the left, 
which recoils as a result and is absorbed after a 
time Dt by the nucleon on the right, which also 
recoils. The effect on the nucleons is as if they 
had interacted with each other. This kind of 
spacetime diagram of the exchange interaction is 
called a Feynman diagram. The x and t axes are 
normally omitted.
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The observed charge independence of the nuclear force was incorporated by 
Yukawa into the theory by allowing the mesons to carry 1e, 0, or 2e charge. Thus, 
referring to Figure 11-28, the exchange of a neutral meson would leave both of the 
nucleons with their original charge, while the exchange of a charged meson would 
interchange their charges. Note that m = 0 for photons in Equation 11-50 implies the 
infinite range of the electromagnetic force.

If the nucleon that emits the meson happens to interact with another particle 
(or nucleus) that has sufficient kinetic energy in the emitting nucleon’s rest system to 
supply the meson’s rest energy and also provide the recoil momentum to the emit-
ting nucleon, thus conserving both energy and momentum, the virtual meson can 
become real and be observable in the laboratory. Such a situation is shown schemati-
cally in Figure 11-29. Note the analogy to the emission of photons (bremstrahlung) 
by accelerated electrons in an x-ray tube (see Section 3-4). It was interactions such 
as shown in Figure 11-29 in which Yukawa’s mesons, now called p mesons or pions, 
were first seen in cosmic rays in 1947, more than a decade after they were pro-
posed.19 The mass measured for the pions is 140 MeV>c2, in quite good agreement 
with Yukawa’s predicted approximate value of about 200 MeV>c2, and all three 
charge versions were subsequently discovered, providing beautiful confirmation of 
Yukawa’s theory. Since then additional mesons have been discovered and our under-
standing of the nuclear force has been modified to include the effect of their being 
exchanged by nucleons as well, but the pions remain as the dominant carrier of the 
force between nucleons and the cornerstone of our understanding of it. As we will 
discuss further in Chapter 12, the Standard Model of particle physics describes the 
nucleons and the mesons as both composites of other, more fundamental particles, 
called quarks. The interaction between quarks to form these particles is mediated by 
a field particle, the gluon, carrying the strong force between quark pairs in analogy 
with our discussion above.

EXAMPLE 11-15	 Range of the Nuclear Force ​ Using the experimentally mea-
sured mass of the pion, 140 MeV>c2, estimate the range of the nuclear force.

SOLUTION
The range R cannot be larger than Uc>mc2 according to Equation 11-50. We then 
have that

 R =
Uc

mc2 =
11.06 * 10-34 J # s2 13.00 * 108 m>s2

1140 MeV>c22 1c22 11.60 * 10-13 J>MeV2
 R = 1.4 * 10-15 m = 1.4 fm

Questions

10.	 What property of the nuclear force is indicated by the fact that all nuclei have 
about the same density?

11.	 How does the nuclear force differ from the electromagnetic force?

12.	 Mesons that have been discovered in recent years are all more massive than 
the pion. What does that mean regarding the range of the force that they 
mediate?

t

x

Nucleon

Nucleus

π Meson

Figure 11-29  A Feynman-
like diagram of a nucleon 
emitting a virtual pion in the 
vicinity of a nucleus. If the 
nucleus can provide at least 
the pion’s rest energy and 
participate in the conservation 
of momentum, the pion may 
become real, that is, visible in 
the laboratory.
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For YOU, An Opportunity to Contribute  These are exciting times in nucle-
ar physics. Of the 5000 or more nuclei included in Figure 11-15, only about half 
have been experimentally studied thus far. Not until very recently have experimen-
tal studies of nuclei with unusually high neutron-to-proton ratios (so-called exotic 
nuclei), particularly those with extremely short lifetimes, been possible. With this 
new capability, frontier theoretical as well as experimental questions are brought 
into focus. The rapid neutron capture path, called the r-process by astrophysicists, is 
important in stellar nucleosynthesis and lies almost entirely in unexplored territory 
of exotic nuclei near the neutron dripline. They are probes into the detailed nature 
of the nuclear force, the dense nuclear matter, and the interiors of neutron stars. By 
illuminating physics beyond the shell model, they may be the key catalyst in the 
development of future nuclear energy sources and contribute significantly to medi-
cine. Opportunities exist for both theoretical and experimental work that may lead 
to the long-sought comprehensive understanding of all nuclei.

EXPLORING
Probability Density of the 
Exchange Mesons

A nucleon continually emits and absorbs virtual mesons. The time Dt during which a 
virtual meson exists can be estimated from Equation 11-50:

 Dt =
U

mc2 =
11.055 * 10-34 J # s2

1140 MeV>c22 1c22 11.60 * 10-13 J>MeV2
 Dt = 5 * 10-24 s

This is not a very long time! Thus, a 10220 second time-exposure “snapshot” of a 
nucleon would show a cloud consisting of more than 10,000 mesons surrounding the 
nucleon! The probability density of the mesons can be determined using the results that 
we obtained from relativity and wave mechanics in Chapters 2 and 6, respectively. The 
relativistic expression connecting the total energy E and momentum p, the magnitude 
of the energy/momentum four vector, is

	 1mc222 = E2 - 1pc22� 2-32

Using the appropriate operator substitutions from Table 6-1,

	 E S iU
0

0 t
  p2 S -U22� 11-51

Equation 2-32 can be written as

	 2F1r, t2 -
1

c2 
0 

2F1r, t2
0 t2 = amc

U
b

2

 F1r, t2� 11-52

where F(r, t) is the wave function of the meson. Equation 11-52 is a relativistic wave 
equation. It was first obtained by Oskar Klein and Walter Gordon in 1926, the same 
year that Schrödinger developed his nonrelativistic wave equation.

That the extent of the meson field is related to the range of the nuclear force given 
by Equation 11-50 can be illustrated by computing the probability density of the meson 
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 F  2 for a static, or time-independent, distribution. This is roughly analogous to the 
virtual photon distribution, or the electric field intensity, for a stationary charge. In this 
case the time derivative of F vanishes and Equation 11-52 can be written as

	 2F1r2 = amc

U
b

2

F1r2 =
1

R
  F1r2	 11-53

whose solution is

	 F1r2 =
Ae-r>R

r
	 11-54

where A is a factor determined by the normalization condition. The probability density 
is then

	  F1r2  2 =
 A  2

 e-2r>R

r2 	 11-55

and we see that the probability density of the mesons falls off exponentially at a rate 
determined by R. In other words, R determines the range of the exchange mesons as we 
had interpreted it in Equation 11-50. Figure 11-30 illustrates the probability distribu-
tion function P1r2 =  F  2

 r 2 for the virtual mesons. For values of r greater than about 
0.5R, the curve agrees well with experimental results; however, for small values of r,
the measured meson density is much lower than Figure 11-30 would suggest. Indeed, 
if the predicted values at very small r values actually existed, they would lead to some 
quite unusual nuclear properties that are, in fact, not observed. Nuclear theorists con-
clude that the number of pions at very small r is somehow suppressed, likely as a result of 
the quark-gluon interaction mentioned above. This is an area of active current research.

11-6  The Shell Model 
Although the general features of the binding energy of nuclei are well accounted for by 
the semiempirical mass formula, which was based on modeling the nucleus as a liquid 
drop, the binding energy and other properties do not vary with perfect smoothness 
from nucleus to nucleus. It is not surprising that the smooth curve predicted by Equa-
tion 11-12 does not fit the data for very small A, for which the addition of a single 
proton or a neutron makes a drastic difference. However, even for medium and large A 
there are some substantial fluctuations of nuclear properties in neighboring nuclei. 
Consider the binding energy of the last neutron in a nucleus. (Note that this is not the 
same as the average binding energy per nucleon.) We can calculate this from the semiem-
pirical mass formula by computing the difference in mass M [(A 2 1), Z] 1 mn 2 M(A, Z). 

Existence of 126 as 
a magic number has 
prompted searches 
for unusually stable 
(but still radioactive) 
isotopes with Z in the 
vicinity of 126. Finding 
them will strengthen 
our understanding 
of nuclear structure. 
Thus far, the highest 
Z discovered is 118.

0
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P
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) 
(=

 
Φ
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r

Figure 11-30  Probability P(r), 
equal to  F  2

 r 2, for the virtual 
mesons emitted by a nucleon. The 
range R = U>mc, the Compton 
wavelength of the mesons divided 
by 2p. There are essentially no 
mesons beyond about 3R.
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530	 Chapter 11  Nuclear Physics

Figure 11-31 shows a plot of the difference between the 
experimentally measured binding energy and that calcu-
lated from Equation 11-12 as a function of the neutron 
number N. There are large fluctuations near N = 20, 28, 
50, 82, and 126. These are also the neutron numbers of the 
nuclei that have an unusually large number of isotones. 
Nuclei with these proton numbers (except that no element 
with Z = 126 has been observed) have an unusually large 
number of isotopes.

These numbers are the “magic numbers” that were 
referred to in Section 11-2. In the regions between these 
magic numbers, the binding energy of the last neutron is 
predicted quite accurately by the semiempirical mass for-
mula. Figure 11-31 should be compared with Figure 7-20, 
which shows the binding energy of the last electron in an 
atom as a function of the atomic number Z. The similar-
ity of these two figures suggests a shell structure of the 

nucleus analogous to the shell structure of atoms. There is considerable additional 
evidence for these magic numbers, such as the electric quadrupole moments 
(Figure 11-7), the neutron capture cross sections illustrated in Figure 11-32, and the 
binding energies of the last neutron for isotopes of a given Z as shown in
Figure 11-33. Additional evidence of nuclear shell structure is discussed in Mayer 
and Jensen (1955).

Although the unusual stability of the nuclei with N or Z equal to one of the 
magic  numbers was noticed in the 1930s, there was no successful explanation in 
terms of shell structure until 1949. In the discussion of atoms in Chapter 7, we started 
with a fixed positive charge 1Ze and computed the energies of individual electrons, 
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Figure 11-31  Difference in the measured binding energy 
of the last neutron and that calculated from mass formula 
versus neutron number. Note the similarity of this curve and 
the ionization energy of atoms versus Z (see Figure 7-20). 
The neutron numbers 28, 50, 82, and 126 correspond to 
closed shells. These data show that the neutron with N = 
magic number 11 is much less tightly bound than that with 
N = magic number.
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Figure 11-32  The capture cross section measures the 
probability that a neutron approaching a nucleus will be 
captured, or bound to the nucleus. The solid line traces the 
average value. Notice the sharp drop in capture probability 
of nearly two orders of magnitude at N = 50, 82, and 126.
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Figure 11-33  Binding energy B for the last neutron of the 
isotopes of Ce (Z = 58). These data are typical of nuclei with 
Z 7 20. B decreases sharply (about 2 MeV) for N = 82 1 1. 
This graph also shows the pairing energy associated with a5 
in the Weizsächer formula (see Section 11-2), where the last 
neutron is more tightly bound if N is even than if N is odd.
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assuming first that each electron was independent of the others as 
long as the exclusion principle was not violated. The interaction of 
the outer electrons with the inner core could be taken care of by 
assuming an effective nuclear charge that is less than Z because of 
the screening of the nuclear charge by the inner electrons. This 
works quite well since the electrons are fairly far from each other 
in an atom. We could therefore use the individual electron quan-
tum states of the hydrogen atom described by n, l, ml, and ms as a 
first approximation for the electrons in complex atoms. The atomic 
magic numbers come about naturally due to the large energy dif-
ference between one shell or subshell and the next. The actual cal-
culations of atomic wave functions and atomic energies require 
powerful approximation or numerical techniques, but they can be 
done reliably because the forces involved are well known.

The situation is not the same for the nuclear-shell model. In 
the first place, there is no central potential analogous to the fixed 
positive charge of the atom. The interaction of the nucleons with 
one another is the only interaction present. In addition to being 
noncentral, the situation is further complicated by the fact that we 
know little about the strong force between nucleons beyond what 
we have discussed: that it is saturated, has a short range, is charge 
independent, and is spin dependent. At first sight, it is difficult to 
imagine a neutron or proton moving almost freely in a well-defined 
orbit when there are A 2 1 particles nearby exerting very strong 
forces on it. Despite these difficulties, the observed properties, 
such as are illustrated in Figures 11-7, 11-31, 11-32, and 11-33, 
give strong motivation to try a model in which each nucleon moves 
about more or less freely in an average potential field produced by 
the other nucleons. Figure 11-34 shows how such an average 
potential could be produced. The assumption that the nucleon can 
move in an orbit without making many collisions can be rational-
ized by using the exclusion principle. Consider N neutrons in some 
potential well. In the ground state, the N lowest energy levels will 
be filled. A collision between two neutrons that does not result in 
their merely exchanging states is forbidden by the exclusion prin-
ciple if there are no accessible unfilled states. A collision involving 
the exchange of identical particles has no effect. Thus, only those 
nucleons in the highest filled levels, where there are empty states 
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Figure 11-34  (a) A single nucleon moving in one dimension sees the 
potential due to a second nucleon located at x1. (b) The potential seen by the 
single nucleon due to four other nucleons located along the x axis fluctuates 
rapidly; however, the average of the four potentials can be reasonably well 
approximated by the dashed curve, a finite well with sloping sides.
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Figure 11-35  Energy levels for a single particle 
in a nuclear well, including spin-orbit splitting. 
The maximum number of particles in each level is 
given at the right, followed by the total number 
through that level in brackets. The total numbers 
just before the large energy gaps are the magic 
numbers. The spacing shown here is for protons; 
the spacing for neutrons is slightly different (lower).
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available nearby, can collide with one another. This is analogous to the result that 
most of the free electrons in a metal cannot absorb energy in random collisions with 
the lattice because all the nearby energy levels are full. Like the electrons, the nucle-
ons also have a Fermi level.

The first shell-model calculations attempted to use a square well about 40 MeV 
deep to fit the nuclear energy levels, but they failed to produce the correct magic 
numbers. In 1949, M. Mayer and J. H. D. Jensen20 independently showed that, with a 
modification in these calculations, the magic numbers do follow directly from a rela-
tively simple shell model. Mayer and Jensen resolved the problem by proposing that 
the spin dependence of the nuclear force results in a very strong spin-orbit interaction, 
coupling the spin of each nucleon to its own orbital angular momentum. Thus, the 
nuclear spin-orbit effect depends on j-j coupling21 rather than L-S coupling, which 
characterizes the electron spin-orbit interaction (see Section 7-5). This strong 
spin-orbit interaction results in a decrease in the energy if the spin and the orbital 
angular momentum of the nucleon are parallel and an increase if they are antiparallel. 
Figure 11-35 illustrates the nuclear-shell model of Mayer and Jensen that yields the 
correct magic numbers. Depending on the details of the spin-orbit interaction in the 
superheavy elements, the island of stability may begin to be evident at Z = 114 or 120 
with metastable states whose lifetimes may be as long as hours or days. In the More 
section on the Web site we consider some of the more detailed qualitative aspects of 
the nuclear-shell model. Detailed calculation of energies and wave functions require 
many approximations, the understanding of which is a major area of continuing study 
in nuclear physics.

(a)

(b)

(a) The Cockcroft-Walton accelerator. Walton is 
sitting in the shielded enclosure in the foreground. 
J. D. Cockcroft and E. T. S. Walton produced the 
first transmutation of nuclei with artificially 
accelerated particles in 1932, for which they 
received the Nobel Prize (1951). (b) M. S. 
Livingston and E. O. Lawrence standing in front 
of their 27-inch cyclotron in 1934. Lawrence won 
the Nobel Prize in Physics (1939) for the invention 
of the cyclotron. [(a) Courtesy of Cavendish 
Laboratory. (b) Courtesy of Lawrence Radiation 
Laboratory, University of California, Berkeley.]
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More
�Finding the “Correct” Shell Model describes some of the quali-
tative aspects of the several approaches to developing the nuclear-
shell model and its successes (and some failures) in predicting 
nuclear spins and magnetic moments. It is on the home page: 
www.whfreeman.com/tiplermodernphysics6e. See also Equations 
11-56 and 11-57 and Figures 11-36 through 11-38.

More

11-7  Nuclear Reactions 
When a particle is incident on a nucleus, any of several different things can happen. 
The particle may be scattered elastically or inelastically (in which case the nucleus is 
left in an excited state and decays by emitting photons or other particles) or the origi-
nal particle may be absorbed and another particle or particles emitted.

Figure 11-39 illustrates schematically the several possible stages of a nuclear 
reaction. Elastic scattering refers to the reflection of the incident particle’s wave at 
the edge of the nuclear potential well. This is the kind of scattering for a particles that 
was described by Rutherford’s theory in Section 4-2. If the incident particle interacts 
with a single nucleon in the nucleus so that the nucleon leaves the nucleus, the reac-
tion is called a direct interaction. Direct interactions are more probable at high ener-
gies since the incident particle can penetrate deeper into the nucleus. If the nucleon 
does not leave the nucleus but interacts with several other nucleons, complicated 
excited states can be formed in the nucleus. In such a case, when the energy carried 
by the incident particle is shared by many nucleons, the excited nucleus is called a 
compound nucleus. The compound nucleus can decay by emitting a particle identical 
to the incident particle and with the same kinetic energy (also elastic scattering) or by 
emission of one or more other particles (including photons). The decay of the 
compound nucleus can be treated as a statistical process independent of the detailed 
manner of formations, just as in the case of a radioactive nucleus.

In this section we will examine some of the systematics of nuclear reactions and 
some typical reactions produced by incident neutrons, protons, or deuterons. We will 
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Figure 11-39  Schematic representation of the several possible stages of the nuclear reaction 
X (x, y) Y, according to the theory developed by V. Weisskopf and H. Feshbach.
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534	 Chapter 11  Nuclear Physics

limit the discussion to energies of less than 140 MeV. At higher energies, mesons and 
other particles can be created. The study of higher-energy reactions is generally 
undertaken to reveal the properties of fundamental particles and of the nuclear force 
rather than the structure of the nucleus and will be discussed further in Chapter 12.

Energy Conservation
Consider a general reaction of particle x incident on nucleus X resulting in nucleus Y 
and particle y. The reaction may be written

	 x + X S Y + y + Q	

or, as we will usually write it, X(x, y)Y. The quantity Q, defined by

	 Q = 1mx + mX - my - mY2c2	 11-58

is the energy released in the reaction and is called the Q value of the reaction.
When energy is released by a nuclear reaction, the reaction is said to be exother-

mic. In an exothermic reaction, the total mass of the initial particles is greater than 

+

+

+ 50 kV
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Negative-ion beam

Steel pressure tank

Metal rings

+Very high voltage
metal terminal

Charging belt

Accelerating tube

Charge exchange
canal

Gas inlet

(a) (b)

(a) Schematic diagram of a two-stage, or tandem, Van de 
Graaff accelerator. Negative ions at ground potential (atoms 
of a large fraction of the elements in the periodic table form 
stable negative ions) enter the beam tube at the top and are 
accelerated to the positive high-voltage terminal in the center, 
acquiring eV of kinetic energy. In the charge exchange canal, 
electrons are stripped from the negative ions in collisions 
with gas molecules, producing positive ions with charges up 
to 1Ze. The positive ions are accelerated back to ground 
potential, acquiring an additional kinetic energy as large as 
ZeV. Large Van de Graaff accelerators have terminal 
voltages V over 16 million volts. Thus, for example, oxygen 
atoms stripped of all their electrons may be accelerated to 
energies of 100 MeV or more. (b) A portion of the tandem 
Van de Graaff laboratory at Purdue University. The high-
voltage terminal is in the tank at the right rear, insulated 
from the surroundings by inert gas under high pressure. The 
beam travels in the tube and is deflected to experimental 
areas by the bending magnets. The Purdue accelerator is 
used extensively in accelerator mass spectrometry. 
[Courtesy of David Elmore, Purdue University.]
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that of the final particles and the Q value is positive. If the total mass of the initial 
particles is less than that of the final particles, the Q value is negative and energy is 
required for the reaction to take place. The reaction is then endothermic.

Examples are

n + 1H S 2H + g + 2.22 MeV 1exothermic2
g + 2H S 1H + n - 2.22 MeV 1endothermic2

Thus, an endothermic reaction cannot take place unless a certain threshold energy is 
supplied to the system. In the reference frame in which the total momentum is zero 
(the center-of-mass frame), the threshold energy is just  Q  . However, many reac-
tions occur with nucleus X at rest relative to the laboratory. In this frame, called the 
laboratory frame, the incident particle x must have energy greater than  Q   because, 
by conservation of momentum, the kinetic energy of y and Y cannot be zero. Consider 
the nonrelativistic case of x, of mass m, incident on X, of mass M (see Figure 11-40). 
In the center-of-mass frame, both particles have momenta of equal magnitude, and the 
total kinetic energy is

	 ECM =
p2

2m
+

p2

2M
=

1

2
  p2am + M

mM
b � 11-59

where p = mv = MV. We transform to the lab frame by adding V to each velocity so 
that M is at rest and m has velocity v 1 V. The momentum of m in the lab frame is then

	 plab = m1v + V2 = mva1 +
m

M
b = pam + M

M
b 	

and its energy is

	 Elab =
p2

lab

2m
=

p2

2m
am + M

M
b

2

=
m + M

M
 ECM	 11-60

The threshold for an endothermic reaction in the lab frame is thus

	 Eth =
m + M

M
 Q  	 11-61

(If the incident particle is a photon, the Lorentz transformation must be used. For low 
energies, the momentum of a photon is small and approximate methods can be used. 
For a photon, pc = E, whereas for a proton or neutron, pc = 12mc2

 E21>2 W E for
E V 940 MeV.)

Elab =

plab = m(v + V ) = mv (1 + m/M ) =

ECM=
pL

2
–––
2m

p2
–––
2m

M + m
–––––

M
M + m
–––––

M
=

M + m
–––––

M
p

2

Lab system

m

M

ECM = p2/2m + p2/2M = (m + M)p2/2mM 

p = mv = MV

v = p/m v + V

CM system

m V = p/M

M

Figure 11-40  Energetics of nuclear reaction in center-of-mass system and laboratory system. 
The energies are related by Elab = 3 1M + m2 >M4ECM.
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EXAMPLE 11-16	 Q Value of a Nuclear Reaction ​ Find the Q value of the 
reaction

	 p + 7Li S 4He + 4He	

and state whether the reaction is exothermic or endothermic. The atomic mass of 
7Li is 7.016003 u.

SOLUTION
Using 1.007825 u for the mass of 1H and 4.002602 u for the mass of 4He from 
Appendix A, we have for the total mass of the initial particles

mi = 1.007825 u + 7.016003 u = 8.023828 u

and for the total mass of the final particles

mf = 214.002602 u2 = 8.005204 u

Since the initial mass is greater than the final mass by

Dm = mi - mf = 8.023828 u - 8.005204 u = 0.018624 u

mass is converted into energy and the reaction is exothermic. The Q value is posi-
tive and given by

Q = 1Dm2c2 = 10.018624 u2c21931.5 MeV>u # c22 = 17.35 MeV

Note that we used the mass of atomic hydrogen rather than that of the proton and 
the atomic masses of the 7Li and 4He atoms rather than the masses of the individual 
nuclei so that the masses of the four electrons on each side of the reaction cancel.

EXAMPLE 11-17	 Threshold Energy in Lab Frame ​ Compute the minimum 

kinetic energy of protons incident on 13C nuclei at rest in the laboratory that will 
produce the endothermic reaction 13C( p, n)13N.

SOLUTION

	 1.	 The minimum, or 
threshold, energy of 
the incident protons in 
the lab frame is given 
by Equation 11-61:

Eth =
m + M

M
 Q 

	 2.	 The magnitude of the 
Q value of the 
reaction is

 
 Q 
c2 = mfinal - minitial

= 3M113N2 + mn4 - 3M113C2 + M11H2 4
	 3.	 The masses of the 

particles involved are 
tabulated in Appendix A:

M113C2 = 13.003355 u M11H2 = 1.007825 u

M113N2 = 13.005738 u  mn = 1.008665 u

	 4.	 Substituting these into 
the expression for | Q | 
gives

 Q  = 114.014403 - 14.0111802 u # c2

= 0.003223 u # c2 * 931.5 MeV>u # c2

= 3.00 MeV

	 5.	 Substituting this value,  
m = M(1H), and M = 
M(13C) into Equation 
11-61 gives

Eth =
1.007825 + 13.003355

13.003355
* 3.00

= 3.23 MeV
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Cross Section
The probability that a particle incident on a nucleus will scatter or induce a reaction 
depends on the particle’s energy and what particular particle and nucleus are involved. 
It is as if different kinds of particles approaching a given nucleus “see” targets of dif-
ferent sizes. Similarly, identical particles with different energies “see” the same target 
nucleus larger or smaller than actual size. This effect is a consequence of the detailed 
arrangement of the allowed energy states of the target nucleus. A useful measure 
of  the effective size of a nucleus for a particular scattering or nuclear reaction is 
the cross section s. If I is the number of particles incident per unit time per unit area 
(the incident intensity) and R is the number of reactions per unit time per nucleus, the 
cross section is defined as

	 s =
R

I
	 11-62

Consider, for example, the bombardment of 13C by protons. A number of reactions 
might occur. Elastic scattering is written 13C( p, p)13C; the first p indicates an incident 
proton, the second indicates that the particle that leaves is also a proton. If the scatter-
ing is inelastic, the outgoing proton is indicated by p9 and the nucleus in the resulting 
excited state by 13C* and one writes 13C( p, p9)13C*. Some other possible reactions are

1p, n2 13C1p, n213N

capture 13C1p, g214N

1p, a2 13C1p, a210B

Each possible scattering or reaction has its own cross section, called the partial cross 
section. The partial cross section is also defined by Equation 11-62 with R equal to 
the number of events of the specific kind per unit time per nucleus. The total cross 
section is the sum of the partial cross sections:

s = sp, p + sp, p9 + sp, n + sp, g + sp, a + g

Cross sections have the dimensions of area. Since nuclear cross sections are of the 
order of the square of the nuclear radius, that is, (10214 m)2, a convenient unit for 
them is the barn, defined by

	 1 barn = 10-24 cm2 = 10-28 m2� 11-63

The cross section for a particular reaction is a function of energy. For an endothermic 
reaction, it is zero for energies below the threshold.

Compound Nucleus
In 1936, Niels Bohr pointed out that many low-energy reactions could be described as 
two-stage processes—the formation of a compound nucleus and its subsequent decay. 
In this description, the incident particle is absorbed by the target nucleus and the 
energy is shared by all the nucleons of the compound nucleus. After a time that is 
long compared with the time necessary for the incident particle to cross the nucleus, 
enough of the excitation energy of the compound nucleus becomes concentrated in 
one particle for it to escape. The emission of a particle is a statistical process that 
depends only on the state of the compound nucleus and not on how it was produced. 
An incident 1 MeV proton has a speed of about 107 m>s, so that it takes time 
R>v  10-14>107 = 10-21 s to cross a nucleus. The lifetime of a compound nucleus 
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can be inferred to be about 10216 s. This is too short to be measured directly, but it is 
so long compared with 10221 s that it is reasonable to assume that the decay is inde-
pendent of how it was formed.

The compound nucleus for the reactions on 13C shown above is 14N*. This 
nucleus can be formed by many other reactions, such as

10B + a S 14N* S 12C + d

13N + n S 14N* S 10B + a

	 14N + g S 14N* S 14N + g

� 11-64

12C + d S 14N* S 13N + n

The reactions on the left are called the entrance channels and the decays on the right 
are called the exit channels.

Since the decay of 14N* is independent of the formation, we can write the cross 
section for a particular reaction such as 13C(p, n)13N as the product of the cross section 
for the formation of the compound nucleus, sc, and the relative probability of decay 
by neutron emission, Pn:

	 sp, n = sc Pn� 11-65

An illustration of the statistical decay of the compound nucleus is afforded by the 
energy distribution of neutrons from reactions such as (see Figure 11-41)

g + 209Bi S 208Bi + n

where s shows a broad peak at 14 to 20 MeV and neutrons “evaporate” as 209Bi 
decays to the ground state.

Excited States of Nuclei from Nuclear Reactions
The excited states of a nucleus can be determined in two ways from nuclear reactions. 
A peak in the cross section s(E) as a function of energy indicates an excited state 
of  the compound nucleus, corresponding to the relatively large probability of the 
incident particle giving up all its energy in the single event of exciting an allowed 
energy level. (Think of the Franck-Hertz experiment as an analogy.) Information 
about the lifetimes t of the excited states of the compound nucleus is obtained by 
measuring the energy width G of these peaks, or resonances, and using the uncer-
tainty principle tG  U. Figure 11-42 shows the cross section for formation of 14N by 
the reaction p 1 14N S 14N* 1 p9 as a function of the a-particle energy. The peaks 
in this curve indicate energy levels in the 14N nucleus. The Q value for this reaction 
is M(10B)c2 1 M(a)c2 2 M(14N)c2 = 11.61 MeV. The Q value is the binding energy 
of the incident particle in the compound nucleus, which is always of the order of 6 to 
10 MeV; thus levels of energy less than 6 MeV cannot be reached in the compound 
nucleus.

The kinetic energy in the center-of-mass frame is related to the lab energy of the 
a particle by

	 ECM =
M

M + m
 Elab =

10

14
 Elab	

The peak in Figure 11-42 at Elab = 1.63 MeV corresponds to an excited state in 14N of 
energy E = 11.61 + 110>142 11.632 = 12.77 MeV. The same level can be excited 

209Bi

209Bi*

“Hot” or excited
compound
nucleus

Neutrons and photons 
with energies of a few 
MeV boil off

16 MeV
γ

γn

n

Figure 11-41  Nuclear 
reaction via formation of 
compound nucleus. The 
16 MeV photon is absorbed 
by the 209Bi nucleus, 
producing an excited nucleus 
that lives so long excitation 
energy is shared by many 
nucleons. The excited nucleus 
then decays by emitting 
neutrons and photons, each 
with energy of the order of a 
few MeV.
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by the reaction 12C 1 2H S 14N*. For this case, the Q value is 10.26 MeV. Thus, the 
deuteron energy in the lab must be

Ed = a 14

12
b 112.77 - 10.262 = 2.93 MeV

A second way to determine the energy levels in a nucleus is to observe the ener-
gies of particles scattered inelastically. In this case, the energy levels of the target 
nucleus are determined. Figure 11-43 shows the energy spectrum of protons from the 
reaction p 1 14N S 14N* 1 p9 using 6.92 MeV protons. (The horizontal scale in this 
figure is proportional to the momentum of the protons since this is what is measured 
experimentally.) The two peaks in the curve correspond to energy losses of 2.31 and 
3.75 MeV, which indicated energy levels in 14N of 2.31 and 3.75 MeV. The excited 
product nucleus decays from these states by g emission. The method of inelastic scat-
tering can determine energy levels of the target nucleus lying relatively close to the 
ground state, whereas the levels excited in the compound nucleus must be much 
higher because of the Q values for formation of the compound nucleus.

Reactions with Neutrons
Nuclear reactions involving neutrons are important for understanding the elemen-
tal analytical technique of neutron activation analysis and the operation of nuclear 

Figure 11-42  Cross section 
for the reaction 10B 1 a S 
14N* versus energy. The 
resonances indicate energy 
levels in the compound 
nucleus 14N*.
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Figure 11-43  Spectrum of 
protons scattered from 14N, 
indicating energy levels in 
14N.
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reactors. The most likely reaction with a nucleus for a neutron of more than about
1 MeV is scattering. However, even if the scattering is elastic, the neutron loses some 
energy to the nucleus because conservation of momentum requires that the nucleus 
recoil. If a neutron is scattered many times in a material, its energy decreases until it 
is of the order of the energy of thermal motion kT, where k is the Boltzmann constant 
and T is the absolute temperature. (At ordinary room temperatures, kT is about 
0.025 eV.) The neutron is then equally likely to gain or lose energy from a nucleus 
when it is elastically scattered. A neutron with energy of the order of kT is called a 
thermal neutron.

At low energies, a neutron is more likely to be captured, with the emission of a 
g ray from the excited nucleus:

n + A
ZM S A+1

ZM + g

For example,

	 n + 107
47Ag S 108

47Ag + g	

Since the binding energy of a neutron is of the order of 6 to 10 MeV and the kinetic 
energy of the neutron is negligible by comparison, the excitation energy of the com-
pound nucleus is from 6 to 10 MeV, and g rays of this energy are emitted. Figure 11-44 
shows the neutron capture cross section for silver as a function of the energy of the 
neutron. Except for the resonances, the cross section s (n, g) varies smoothly with 
energy, decreasing with increasing energy approximately as 1>v, where v is the speed 
of the neutron. This energy dependence can be understood as follows: Consider a neu-
tron moving with speed v near a nucleus of diameter 2R. The time it takes the neutron 
to pass the nucleus is 2R>v. Thus, the neutron capture cross section is proportional to 
the time spent by the neutron in the vicinity of the nucleus. The dashed line in Figure 
11-44 indicates this 1>v dependence.22 At the maximum of the large resonance, the 
value of the cross section is very large (s 7 5000 barns) compared with a value of 
only about 10 barns just past the resonance. Many elements show similar resonances 
in the neutron capture cross sections. For example, the maximum cross section for 
113Cd is about 57,000 barns. Thus, 113Cd is a strong absorber, which makes it very 
useful as a shield against low-energy neutrons.23

Neutrons are used to dope 
silicon with phosphorus 
more uniformly than the 
conventional diffusion 
method. Irradiating Si with 
neutrons produces the P 
dopant via the reaction 
and subsequent decay 
n  30Si S 31Si S 31P 
  –. Silicon doped with 
P in this way can operate 
at higher power levels in 
rectifier applications than 
diffusion-doped silicon.

1

10,000

100
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Figure 11-44  Neutron capture cross 
section for Ag versus energy. The 
dashed-line extension would be expected 
if there were no resonances and the cross 
section were merely proportional to the 
time spent near the nucleus, that is, 
proportional to 1>v. The resonance 
widths of a few eV indicate states with 
lifetimes of the order of h>G  10-16 s.
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Questions

13.	 What is meant by the cross section for a nuclear reaction? Why is that term 
used to describe it?

14.	 Why is the neutron capture cross section (excluding resonances) proportional 
to 1>v?

15.	 What is meant by the Q value of a reaction? Why is the reaction threshold not 
equal to Q?

16.	 Why can’t low-lying energy levels (1 to 2 MeV above the ground state) be 
studied using neutron capture?

EXAMPLE 11-18	 Determination of Reaction Rates ​ The cross section for 
the reaction 91Zr(n, g)92Zr is 900 millibarns for thermal neutrons. This reaction is 
produced in the so-called thermal column of a reactor where the flux of thermal 
neutrons is 6.5 * 1012 neutrons>cm2 # s. The sample of natural Zr is a circular foil 
1.0 cm in diameter and 20.0 mm thick. The density of Zr is 6.506 g>cm3, and 91Zr 
makes up 11.27 percent of natural Zr. Compute the rate of this reaction.

SOLUTION
First we need to compute the number of 91Zr atoms in the sample. This number is 
given by

N191Zr2 =
NA VrZr

MZr
* 0.1127

where the volume of the sample V = 2.00 * 10-3 * 1p>42 cm3 and the mole
cular weight of Zr, MZr = 91.22 g>mol. Thus,

N191Zr2 =

16.02 * 1023 atoms>mol2 a2.00 * 10-3 *
p

4
 cm3b * 6.506 g>cm3

91.22 g>mol

N191Zr2 = 1.04 * 1019 atoms

From the definition of the cross section given by Equation 11-62, the number of 
(n, g) reactions per unit time per 91Zr nucleus is

R = sI = 1900 * 10-3 barns * 10-24 cm2>barn2 * 6.5 * 1012 neutrons>cm2 # s

R = 5.85 * 10-12 s-1 per 91Zr nucleus

The rate  at which the reaction 91Zr(n, g)92Zr proceeds is then

 = N191Zr2R = 11.04 * 1019 91Zr nuclei2 15.85 * 10-12 s-1 per 91Zr nucleus2
 = 6.08 * 107 s-1

Remarks:  This is a low reaction rate, given the high neutron flux. It is the result 
of the low neutron capture cross section of 91Zr and the other naturally occurring 
Zr isotopes. This is the principal reason why zirconium is used to enclose nuclear 
reactor fuel elements.
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11-8  Fission and Fusion 
Two nuclear reactions, fission and fusion, are of particular importance. In the fission 
of 235U, for example, the uranium nucleus is excited by the capture of a neutron and 
splits into two nuclei, each with very roughly half of the original total mass. A typical 
fission reaction is

	 235U + n S 92Kr + 142Ba + 2n + 179.4 MeV� 11-66

The Coulomb force of repulsion drives the fission fragments apart, giving them very 
large kinetic energies. As a result of collisions with other atoms, this energy eventu-
ally shows up as thermal energy. In fusion, two light nuclei such as those of deute-
rium and tritium (2H and 3H) fuse together to form a heavier nucleus (in this case 4He 
plus a neutron). A typical reaction is

	 2H + 3H S 4He + n + 17.6 MeV	 11-67

Figure 11-45 shows a plot of the mass difference per nucleon 1M - Zmp - Nmn2 >A 
versus A in units of MeV>c2. This curve is just the negative of the binding energy 
curve of Figure 11-10. From Figure 11-45 we see that the rest energy per particle of 
both very heavy nuclides (A … 200) and very light nuclides (A … 20) is more than 
that for nuclides of intermediate mass. Thus, in both fission and fusion the total mass 
decreases and energy is released. Since for A = 200, the rest energy is about 1 MeV 
per nucleon greater than for A = 100, about 200 MeV is released in the fission of a 
heavy nucleus. The energy release in fusion depends on the particular reaction. For 
the 2H 1 3H reaction in Equation 11-67, 17.6 MeV is released. Although this is less 
than the energy released in a single fission, it is a greater amount of energy per unit 
mass, as Example 11-19 illustrates. In this section, we will look at some of the fea-
tures of fission and fusion that are important for their application in reactors to gener-
ate electricity.
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Figure 11-45  Plot of mass difference per nucleon 1M - Zmp - Nmn2 >A in units of 
MeV>c2 versus A. The rest energy per nucleon is smaller for intermediate-mass nuclei 
than for either very light or very heavy nuclei.
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EXAMPLE 11-19	 Energy Release in Fission and Fusion ​ Compare the energy 
release per unit mass in the fusion of deuterium and tritium (Equation 11-67) with 
that of a typical fission reaction, such as that of 235U given by Equation 11-66.

SOLUTION
(a) A quick approximate comparison can be made by noting that the energy differ-
ence per nucleon between 235U and its fission products is about 1.0 MeV. In the 
fusion of 2H 1 3H, it is 17.6 MeV>5 nucleons = 3.5 MeV, or about 3.5 times 
larger. Thus, the energy released per kilogram will also be about 3.5 times larger in 
the fusion reaction.
(b) The mass differences per nucleon for 235U and the two fission products in Equa-
tion 11-66 can be estimated from Figure 11-45. A more accurate calculation of the 
total binding energy can be made with the aid of Equation 11-12 and used to com-
pute the total mass differences as follows:

235U: -7.6 MeV>c2 per nucleon S -1797.1 MeV>c2 per nucleus

92Kr: -8.7 MeV>c2 per nucleon S -800.9 MeV>c2 per nucleus

142Ba: -8.4 MeV>c2 per nucleon S -1189.5 MeV>c2 per nucleus

The difference between the mass of 235U and the sum of masses for the fission 
products is 193.3 MeV>c2. Thus, the energy release per fission event (with these 
particular products) is 193.3 MeV. The mass of 235U (see Appendix A) is 235.043924 
u = 3.9030 * 10225 kg. Therefore, the energy release per kilogram in the fission of 
235U is

a 193.3 MeV
235U

b

a 3.903 * 10-25 kg
235U

b
= 4.95 * 1026 MeV>kg

The energy release in the deuterium/tritium fusion reaction is

17.6 MeV

Md + M t

=
17.6 MeV

8.353 * 10-27 kg
= 2.11 * 1027 MeV>kg

Thus, the fusion reaction releases about 4.3 times the energy/kg released by the 
fission reaction.

Fission
The fission of uranium was discovered in 1938 by O. Hahn and F. Strassmann,24 who 
found, by careful chemical analysis, that medium-mass elements (in particular, bar-
ium) were produced in the bombardment of uranium with neutrons. The discovery 
that several neutrons are emitted in the fission process led to speculation concerning 
the possibility of using these neutrons to cause further fissions, thereby producing a 
chain reaction. When 235U captures a thermal neutron, the resulting 236U nucleus 
undergoes fission about 85 percent of the time and emits gamma rays as it de-excites 
to the ground state about 15 percent of the time. The fission process is somewhat 
analogous to the oscillation of a liquid drop, as shown in Figure 11-46. If the oscilla-
tions are violent enough, the drop splits in two. Using the liquid-drop model, A. Bohr 
and J. Wheeler calculated the critical energy Ec needed by the 236U nucleus to undergo 
fission. (236U is the compound nucleus formed by the capture of a neutron by 235U.) 

236U

236U

236U

Fission
fragments

235U
n

n

n

n

(a)

(b)

(c)

(d )

(e)

Figure 11-46  Schematic 
illustration of nuclear fission. 
(a) The absorption of a 
neutron by 235U leads to 
(b) 236U in an excited state. 
(c) Oscillation deforms the 
excited 236U nucleus. (d ) The 
oscillation of 236U has 
become unstable. (e) The 
nucleus splits apart into two 
nuclei of medium mass and 
emits several neutrons that 
can produce fission in other 
nuclei.
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The critical energy is the magnitude of the Coulomb barrier seen by the fragments, as 
illustrated in Figure 11-47. For this nucleus, the critical energy is about 6.2 MeV, 
which is less than the 6.5 MeV of excitation energy produced when 235U captures a 
neutron. The capture of a neutron by 235U therefore produces an excited state of the 
236U nucleus that has more than enough energy to break apart. On the other hand, the 
critical energy for the fission of the 239U nucleus is 5.9 MeV. The capture of a neutron 
by a 238U nucleus produces an excitation energy of only 5.2 MeV. Therefore, when a 
thermal neutron is captured by 238U to form 239U, the excitation energy is not great 
enough for fission to occur. In this case the excited 239U nucleus de-excites by g or a 
emission. Nuclides that may fission on capturing a slow neutron are called fissile.

We noted earlier that all nuclei with Z 7 82 are radioactive. Among the possible 
decay modes of the very heavy nuclei (Z 7 90) is that of spontaneous fission. These 
nuclei may break apart into two nuclei even if left to themselves without absorbing a 
neutron. We can also understand spontaneous fission using the analogy of a liquid 
drop of positive charges. If the drop is not too large, surface tension can overcome the 
repulsive forces of the charges and hold the drop together. There is, however, a cer-
tain maximum size beyond which the drop will be unstable and will spontaneously 
break apart since the repulsive force is proportional to the number of protons, which 
is proportional to the volume and so to R3, whereas the surface tension is proportional 
to the surface area and so increases only as R2 (see Section 11-2). Spontaneous fission 
puts an upper limit on the size of a nucleus and therefore on the number of elements 
that are possible. It should be noted that the probability for spontaneous fission in 
naturally occurring nuclides is quite low compared with the other possible decay 
modes. For example, the half-life of 238U for a decay is 4.5 * 109 years, while that for 
spontaneous fission is about 1016 years. The reason is that fission, like a decay, is 
inhibited by the Coulomb barrier. Even though the process is energetically possible, 
the large positively charged fission fragments have a very low probability of tunnel-
ing through the Coulomb barrier part of the nuclear potential.

A fissioning nucleus can break into two medium-mass fragments in many different 
ways, as shown in Figure 11-48. Depending on the particular reaction, one, two, or 
three neutrons may be emitted. The average number of neutrons emitted in the ther-
mal neutron-induced fission of 235U is about 2.4. Equation 11-66 is a typical fission 
reaction. The reason that several neutrons are emitted is that the fission fragments 
are typically neutron rich and far off the line of stability, as shown in Figure 11-49. 

Critical energy

Total energy
of fragments

Separation

Separation of the fragments
Nuclear potential

E
ne
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Figure 11-47  The nucleus 
may exist instantaneously as 
two fragments as shown on 
the left; however, the 
Coulomb potential barrier 
prevents their fission. To 
overcome the barrier, energy 
equal to the critical energy 
must be provided.
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As a result, neutrons are spontaneously emitted during fission and the fragments 
b2 decay toward stability. The Coulomb force of repulsion drives the fission frag-
ments apart with very large kinetic energies. This energy is transferred to other nearby 
atoms via collisions, eventually showing up as thermal energy of the surroundings. 
We have seen that about 200 MeV per nucleus is released in such a fission, a large 
amount of energy. By contrast, in the chemical combustion reaction, only about 4 eV 
is released per molecule of oxygen consumed.

The fission fragments 
and their decay products 
that build up in reactors 
are the source of many 
radioisotopes used 
in medical diagnosis, 
treatment, and research. 
Important among these is 
99Mo, the source of 99Tc, 
the most widely used 
radioisotope in nuclear 
medicine.

Figure 11-48  Distribution of fission 
fragments from the thermal-neutron-induced 
fission of 235U. Symmetric fission, in which 
the uranium nucleus splits into two nuclei of 
nearly equal mass, is much less probable than 
asymmetric fission, in which the fragments 
have unequal masses. Note the symmetry of 
the light and heavy lobes of the distribution, 
including the small variations in the tops of the 
peaks and the convex outer edges. [Data from 
G. J. Dilorio, Direct Physical Measurement of 
Mass Yields in Thermal Fission of Uranium-
235, Garland, New York, 1979.]
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Figure 11-49  Fission of 236U1235U + n2 produces fragments that are neutron rich and well 
to the left of the line of stability. As a result, the fission is accompanied by the prompt emission 
of one or more of the excess neutrons followed by b2 decay of the fission fragments to further 
reduce their neutron numbers.
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EXAMPLE 11-20	 Kilowatt-hours from 235U ​ Calculate the total energy in 
kilowatt-hours released in the fission of 1 g of 235U, assuming that 200 MeV is 
released per fission.

SOLUTION
Since 1 mol of 235U has a mass of 235 g and contains NA = 6.02 * 1023 nuclei, the 
number of 235U nuclei in 1 g is

N =
6.02 * 1023 nuclei>mol

235 g>mol
= 2.56 * 1021 nuclei>g

The energy released per gram is then

200 MeV

nucleus
*

2.56 * 1021 nuclei

1 g
*

1.6 * 10-13 J

1 MeV
*

	
1 h

3600 s
*

1 kW

1000 J>s = 2.28 * 104 kW # h>g

Remarks:  This is approximately equal to the amount of electrical energy used by 
a typical U.S. household in 15 months.

The discovery that several neutrons were emitted in the fission process led to specula-
tion concerning the possibility of using these neutrons to initiate other fissions, 
thereby producing a chain reaction. On December 2, 1942, less than four years after 
Hahn and Strassmann’s discovery of fission, a group led by Enrico Fermi produced 
the first self-sustaining chain reaction in a nuclear reactor that they had constructed at 
the University of Chicago.25

The application of both fission and fusion to the development of nuclear weap-
ons has had a profound effect on our lives for nearly 70 years. The peaceful applica-
tion of these reactions to the development of energy resources may well have an 
even greater effect in the future, provided that satisfactory solutions are found to 
problems concerning safety, environmental protection, and the spread of nuclear 
weapons technology. Indeed, as world demand for energy increases, the diminishing 
finite reserves of fossil fuels will undoubtedly result in increasing use of nuclear 
reactors to provide the primary energy for the generation of electricity. The More 
section Nuclear Power is a comprehensive primer on fission reactors and closely 
related issues.

More
�Nuclear fission reactors provided 5.2 percent of the energy con-
sumed worldwide in 2010. Nuclear Power on the home page at 
www.whfreeman.com/tiplermodernphysics6e. is a thorough review 
of existing and possible future types of fission reactors, the nuclear 
fuel cycle, reactor control, and safety issues. See also Equations 
11-68 through 11-70 here as well as Tables 11-5 and 11-6, Figures 
11-50 through 11-54, and Examples 11-21 through 11-23.

More
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Fusion
The production of power from the fusion of light nuclei has the potential for future 
use because of the relative abundance of the fuel and the absence of some of the haz-
ards presented by fission reactors. In fusion, two light nuclei such as deuterium (2H) 
and tritium (3H) fuse together to form a heavier nucleus. A typical fusion reaction is

	 2H + 3H S 4He + n + 17.6 MeV	 11-71

As was shown in Example 11-19, the energy released in this fusion reaction is 
117.6 MeV2 > 15 nucleons2 = 3.52 MeV per nucleon, or about 3.5 times as great as 
the 1 MeV per nucleon released in fission. The technology necessary to make fusion a 
practical source of energy has not yet been developed. We will consider the fusion 
reaction of Equation 11-71; other reactions present similar problems.

(a)

(b)

(c)

(a) A sketch of the world’s first nuclear 
reactor, the CP-1 (for Chicago Pile number 1). 
Projecting from the near face next to the top 
of the ladder is one of the cadmium-plated 
rods used to control the chain reaction by 
absorbing neutrons. The cubical balloon 
surrounding the reactor, open on the near 
side, was to contain neutron-activated 
radioactive air. News of the reactor’s 
successful test was transmitted by A. H. 
Compton, one of those present, to President 
Roosevelt’s advisor (and Harvard University 
president) J. B. Conant in a phone call thus: 
“The Italian navigator [i.e., Fermi] has landed 

in the New World,” said Compton. “How were the natives?” asked Conant. “Very friendly,” 
was Compton’s reply. (b) The only photograph of CP-1 known to exist, taken during addition 
of the 19th layer of graphite. Alternate layers of graphite, containing uranium metal and/or 
uranium oxide, were separated by layers of solid-graphite blocks. Layer 18, almost covered, 
contained uranium oxide. (c) Enrico Fermi, leader of the group of scientists who succeeded in 
initiating the first man-made nuclear chain reaction, on December 2, 1942. [(a) and (b) 
American Institute of Physics, Emilio Segrè Visual Archives; courtesy of Argonne National 
Laboratory, University of Chicago. (c) Courtesy of Argonne National Laboratory.]
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Controlled Fusion Experiments  Because of the Coulomb repulsion between 
the 2H and 3H nuclei, very large kinetic energies, of the order of 1 MeV, are needed 
to get the nuclei close enough together for the attractive nuclear forces to become 
effective and cause fusion. Such energies can be obtained in an accelerator, but since 
the scattering of one nucleus by the other is much more probable than fusion, the 
bombardment of one nucleus by the other in an accelerator requires the input of more 
energy than is recovered. Therefore, to obtain energy from fusion, the particles must 
be heated to a temperature great enough for the fusion reaction to occur as the result of 
random thermal collisions. Because a significant number of particles have kinetic ener-
gies greater than the mean kinetic energy 13>22kT  and because some particles can 
tunnel through the Coulomb barrier, a temperature T corresponding to kT   10 keV
is adequate to ensure that a reasonable number of fusion reactions will occur if the 
density of particles is sufficiently high. The temperature corresponding to kT =
10 keV is of the order of 108 K. Such temperatures occur in the interiors of stars, 
where such reactions are common. At these temperatures, a gas consists of positive 
ions and negative electrons called a plasma (see Chapter 10). One of the problems 
arising in attempts to produce controlled fusion reactions is that of confining the plas-
ma long enough for the reactions to take place. In the interior of the Sun the plasma 
in confined by the enormous gravitational field of the Sun. In a laboratory on Earth, 
confinement is a difficult problem.

The energy required to heat a plasma is proportional to the density of its ions n, 
whereas the fusion rate is proportional to n2, the square of the density (since the rate 
is the product of the Maxwell energy distribution and the fusion cross section, both 
of which are proportional to n). If t is the confinement time, the output energy is 
thus proportional to n2t. If the output energy is to exceed the input energy, we must 
have

	 C1 n2t 7 C2 n	

where C1 and C2 are constants. In 1957, the British physicist J. D. Lawson evaluated 
these constants from estimates of the efficiencies of various hypothetical fusion reac-
tors and derived the following relation between density and confinement time, known 
as Lawson’s criterion:

	 nt 7 1020 s # particles>m3	 11-72

If Lawson’s criterion is met and the thermal energy of the ions is great enough 
(kT  10 keV), the energy released by a fusion reactor will just equal the energy 
input; that is, the reactor will just break even. For the reactor to be practical, much 
more energy must be released.

Two schemes for achieving Lawson’s criterion are currently under investigation. 
In one scheme, magnetic confinement, a magnetic field is used to confine the plasma.26 
In the most common arrangement, first developed in Russia and called the tokamak, 
the plasma is confined in a large toroid. The magnetic field is a combination of the 
doughnut-shaped magnetic field due to the current in the windings of the toroid and 
the self-field due to the current of the circulating plasma. An international consortium 
of nations is currently constructing the ITER experimental tokamak in France. Pro-
duction of the first plasma is scheduled for 2016. The Chinese EAST experimental 
tokamak, using superconducting windings recognized as essential for continuous energy 
production, began operation late in 2006. The break-even point using magnetic 
confinement was achieved a few years ago, but we are still a long way from building 
a practical fusion reactor.

TIPLER_11_493-578hr.indd   548 10/24/11   5:00 PM



	 11-8  Fission and Fusion	 549

In a second scheme, called inertial confinement, a pellet of frozen-solid deute-
rium and tritium is bombarded from all sides by intense pulsed laser beams of ener-
gies of the order of 106 J lasting about 1028 s. (Intense ion and electron beams are also 
used.) Computer simulation studies indicate the momentum absorbed by the hydro-
gen nuclei from the beams should compress the pellet to about 104 times its normal 
density and heat it to a temperature greater than 108 K. This should produce about 106 J 
of fusion energy in 10210 s, which is so brief that confinement is achieved by inertia 
alone (see Figure 11-55a and b). In theory, after this burst of fusion energy is radiated 
away from the site to be absorbed by a heat-transfer fluid, such as liquid lithium, 
another pellet is injected at the confluence of the beams and the process repeats.

Because the breakeven point has only been just barely achieved in magnetic con-
finement fusion, and because the building of a fusion reactor involves many practical 
problems that have not yet been solved, including, for example, activation of the reac-
tor walls, the availability of fusion to meet world energy needs is not expected for 
several decades.

Central solenoid

Toroidal field coil

Poloidal field coil

Blanket module

Vacuum vessel

Cryostat

Divertor

Torus cryopump

Outer intercoil 
structure

Machine  
gravity supports

Port plug  
(IC heating)

Schematic of the ITER tokamak experimental fusion reactor currently under construction in 
the south of France. The 18 toroidal field coils, each weighing 360 tons, that encircle the 6.2 m 
maximum diameter doughnut-shaped tritium-deuterium plasma contained in the vacuum vessel 
are designed to conduct current for 300 s up to, eventually, steady state. The design plasma 
current is 15 * 106 A, producing a magnetic field of 5.3 T. This field is the principal means of 
confining the deuterium-tritium plasma that circulates within the vacuum vessel. Sets of 
poloidal field coils, perpendicular to the toroidal coils, carry an oscillating current that 
generates a current through the confined plasma itself, heating it ohmically. Additional 
poloidal fields help stabilize the confined plasma. Design total fusion power is 15 MW. ITER’s 
first plasma is expected to be produced in 2016. You can follow the development of ITER at 
www.iter.org. [ITER Organization.]
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Figure 11-55  (a) Schematic diagram of a possible fusion reactor using inertial confinement 
and the 2H 1 3H S 4He 1 n reaction. This reaction produces 17.6 MeV per fusion, and the 
neutron produced reacts with either 6Li (slow neutron) or 7Li (fast neutron) to produce the 
3H needed for the reaction. The latter reaction produces an additional slow neutron; thus, 
every two neutrons produced by fusion have the potential for generating three 3H nuclei; that 
is, this system may also be a tritium breeder. (b) The Nova inertial confinement fusion reactor 
uses 10 powerful laser beams focused on a hydrogen-containing pellet 0.5 mm in diameter. 
The resulting fusion reaction, visible here as a tiny bright star, lasts 10210 s and releases 1013 
neutrons. (c) The proton-proton reaction is the primary source of the Sun’s energy. The 
neutrino produced in the initial reaction escapes from the core. The net energy produced per 
cycle is about 26.7 MeV. [(b) Courtesy of Lawrence Livermore National Laboratory,
U.S. Department of Energy.]
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EXAMPLE 11-24	 Fusion Temperature for 1H 1 1H S 2H 1 e1 1 n ​ The 
fusion of two protons requires that two particles be separated by no more than about 
10214 m in order for the attractive force of the nuclear potential to overcome the 
repulsive force of the Coulomb potential. Compute (a) the minimum temperature of 
a hydrogen plasma that will allow a proton with the average energy of those in the 
plasma to overcome the Coulomb barrier and (b) the energy released in the fusion.

SOLUTION
(a) The height of the potential energy barrier “seen” by the protons is given by

 U =
1

4p0
 
e2

r
=
19 * 109 N # m2>C22 11.60 * 10-19 C22

3.0 * 10-15 m

 U = 7.76 * 10-14 J = 0.48 MeV

In order to overcome this barrier, the average energy of the protons in the plasma, 
13>22kT , must equal at least half this amount; that is, each of the two fusing pro-
tons must have 3.84 * 10214 J.

13>22kT = 3.84 * 10-14 J

where k is Boltzmann’s constant. Thus,

T =
2 * 3.84 * 10-14 J

3 * 1.38 * 10-23 J>K = 1.9 * 109 K

	 (b) The energy released, equal to the Q value of the fusion reaction, is

 Q = 32m11H2 - m12H2 - 2me4c2

	 = 32 * 1.007825 u - 2.014102 u - 0.001097 u4c2

	 = 0.000451 u # c2 * 931.5 MeV>u # c2 = 0.42 MeV

where the atomic mass values are given in Appendix A. Thus, the energy release per 
1H 1 1H fusion is 0.42 MeV. That of the 2H 1 3H fusion illustrated in Figure 11-55a 
is 17.6 MeV, which explains why the latter reaction is used in controlled fusion 
experiments.

The Source of the Sun’s Energy  The present energy content of the Sun as 
calculated from thermodynamics would be radiated away in about 3 * 107 years. Since 
life has existed on Earth for approximately 100 times that long, we can conclude 
that the Sun has been radiating at close to its present rate for at least 3 * 109 years. 
Therefore, the Sun must have a supply of energy far larger than that represented by the 
hot plasma and the observed radiation field. The source of the Sun’s energy is nuclear 
fusion. Current theory proposes that, as the young Sun contracted, its temperature 
rose. Eventually the temperature of the core reached about 1.5 * 107 K, which is high 
enough for the hydrogen nuclei (protons) in the plasma to have sufficient energy on 
the average (about 1 keV) to fuse into helium nuclei. This reaction, actually a chain 
of reactions, was first proposed by H. A. Bethe and is referred to as the proton-proton 
cycle. The first reaction in the chain is (see Example 11-24)

	 1H + 1H S 2H + e + + ne + 0.42 MeV	
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The probability for this reaction is very low except for those protons in the high-
energy tail of the Maxwell-Boltzmann distribution. This sets a limit on the rate at 
which the Sun can produce energy and thus ensures a long lifetime for the Sun and 
similar stars. This limit is sometimes called the “bottleneck” of the solar fusion cycle. 
Once 2H (deuterium) is formed, the following reaction becomes very probable:

	 2H + 1H S 3He + g + 5.49 MeV	

It is followed by

	 3He + 3He S 4He + 2 1H + g + 12.86 MeV	

This process by which hydrogen nuclei are “burned” to helium nuclei is shown sche-
matically in Figure 11-55c. There are other possible reactions for converting 3He to 
4He, all of which have the same net Q value. Their rates, however, differ depending 
on the composition and temperature of the interior.

The neutrinos produced in the proton-proton cycle escape from the core, pro
viding our only means for direct observation of the Sun’s interior. The measured 
value of the total power radiated by the Sun and the known total Q value of the 
proton-proton cycle make possible a calculation of the total reaction rate. In addi-
tion, the alternative reactions for 4He have different neutrino energy spectra, thus 
providing a way of determining the relative contributions of each reaction and gain-
ing information about the composition and temperature of the core. However, the 
measured rate at which solar neutrinos arrive at Earth is less than half that predicted 
by theoretical calculations based on the standard solar model. This discrepancy is 
referred to as the solar-neutrino problem. Solving this problem was the focus of a 
recent major international research effort. Results from the Sudbury (Canada) and 
Super-Kamiokande (Japan) Neutrino Observatories show that neutrinos have a 
small  mass and may transform from one type to another, leading to the observed 
discrepancy (see Section 12-5).

Questions

17.	 Explain why water is more effective than lead in slowing down fast 
neutrons.

18.	 What happens to the neutrons produced in fission that do not produce another 
fission?

19.	 Why does fusion occur spontaneously in the Sun but not on Earth?

More
�The Interaction of Particles and Matter is of central importance 
in understanding the biological effects of ionizing radiation, in 
the  development and use of nuclear radiation detectors, and in 
protecting the environment from potential radiation hazards. This 
topic is discussed for charged particles, neutrons, and photons on 
the home page: www.whfreeman.com/tiplermodernphysics6e. See 
also Equations 11-73 through 11-83 here as well as Figures 11-56 
through 11-61 and Example 11-25.

More
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For YOU, An Opportunity to Contribute  Discovery of new materials has 
been a key factor in the progress of societies since stone arrow points replaced point-
ed sticks. In about 1400 B.C. humans learned to mix molten copper and tin to make 
a hard, durable alloy (bronze) and found soon afterward that iron heated with char-
coal (carbon) formed an even harder and stronger material (steel). These discoveries 
still contribute essentially to our lives even after 3500 years. The world’s renewed 
interest in solving looming energy supply problems in part with nuclear energy from 
fission and fusion reactors raises questions of what materials they should be built 
from. That focuses attention on the resistance of materials to radiation damage, 
particularly from neutrons. In conventional materials radiation-induced defects mi-
grate to the surface, causing the material to expand or swell. The vacancies left 
behind by the migrating, damaged material slowly collect into voids, causing the 
material to become brittle with increasing exposure. How these processes occur is not 
well understood, but what seems to be needed is some sort of self-healing materials. 
What those materials might be demands imaginative theoretical and experimental 
efforts. The quality of our future depends on our success in developing these and 
other new materials. There are many opportunities to make invaluable contributions.

11-9  Applications 
Certainly among the most important of the applications of nuclear reactions and inter-
actions have been those developed in the field of nuclear medicine, particularly in the 
area of diagnosis, but also including the treatment of cancer and certain other dis-
eases. State-of-the-art detectors and computer-based data analysis have made critical 
contributions to these developments. Also important to a broad spectrum of disci-
plines ranging from art through chemistry and geology to zoology are the precision 
isotope-specific analytical techniques of accelerator mass spectrometry and neutron 
activation analysis. Anthropologists, archeologists, and geologists routinely rely on 
the decay properties of a number of radioisotopes to determine the age of artifacts and 
samples and to assess the potential of petroleum deposits. Examples of these applica-
tions will be discussed briefly in the concluding section of the chapter.

Neutron Activation Analysis
This isotope-specific analytical method for elements is capable of very high sensi-
tivity and accuracy. While some elements are more readily analyzed by activation 
analysis than others, it is particularly useful for the many elements that cannot be con-
veniently assayed by the more standard chemical methods of trace analysis. It has a 
wide range of applications, from identifying trace pollutants in the environment 
through semiconductor processing and materials science to the analysis and authenti-
cation of works of art.

The method consists of exposing the sample to be analyzed to a high flux of slow 
neutrons. Isotope A

ZM of the element of interest undergoes the reaction A
ZM1n, g2A+1

ZM,
as described in Section 11-7, where A+1

ZM is radioactive. A+1
ZM can be identified by its 

half-life and the energy of its beta- and gamma-ray emissions. The activity R(t) after 
the beginning of the neutron irradiation is given by

	 R1t2 = lN1t2 = R011 - e-lt2	 11-84

Potential oil- and gas-
bearing regions in 
exploratory oil wells are 
identified by lowering an 
intense source of neutrons 
(usually a mixture of 239Pu 
and 9Be or 241Am and 9Be) 
into the well along with a 
gamma-ray detector. The 
neutrons produce gamma 
rays via X(n, g)Y reactions 
in the surrounding rock. 
Analysis of the gamma-
ray spectra identifies 
elements in the rock that 
are typical indicators of 
the presence of oil and 
natural gas.
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where l is the decay constant of A+1
ZM and R0 is the constant production rate of that 

isotope. R(t) is measured and R0 is computed from Equation 11-62 since R0 = N0R, 
where N0 is the number of A

ZM nuclei in the sample. Thus,

	 R0 = N0 R = N0sI	 11-85

where s is the cross section for the reaction A
ZM1n, g2A+1

ZM in cm2 and I is the neu-
tron flux in neutrons>s # cm2. Equation 11-84 can then be written

	 R1t2 = N0sI11 - e-lt2	 11-86

When the half-life is short enough, irradiation is usually continued to saturation; 
that is, until R(t) = R(q) = N0sI. Table 11-7 gives saturation activities per mg for
a few isotopes. The number of atoms of A

ZM in the sample is, at the saturation
activity,

N0 =
R1q2

sI

and the mass of A
ZM in the sample is

	 m1A
ZM2 =

N0 W

NA

=
R1q2W

NAsI
	 11-87

where W is the atomic weight of the element and NA is Avogadro’s number.

(a) (b) (c)

An application of neutron activation analysis. Hidden layers in paintings are analyzed by bombarding the painting with neutrons 
and observing the radiative emissions from nuclei that have captured a neutron. Different elements used in the painting have 
different half-lives. (a) Van Dyck’s painting Saint Rosalie Interceding for the Plague-Stricken of Palermo. The black-and-white 
images in (b) and (c) were formed using a special film sensitive to electrons emitted by the radioactively decaying elements. 
Image (b), taken a few hours after the neutron irradiation, reveals the presence of manganese, found in umber, a dark earth 
pigment used for the painting’s base layer. (Blank areas show where modern repairs, free of manganese, have been made.) The 
image in (c) was taken four days later, after the umber emissions had died away and when phosphorus, found in charcoal and 
boneblack, was the main radiating element. Upside down is revealed a sketch of Van Dyck himself. The self-portrait, executed 
in charcoal, had been over painted by the artist (see Problem 11-83). [(a) Courtesy of Metropolitan Museum of Art, New York 
City. (b) and (c) Courtesy of Paintings Conservation Department, Metropolitan Museum of Art, New York City.]
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EXAMPLE 11-26	 The “Gold” Chain ​ After buying a chain advertised as 10 per-
cent pure gold, the suspicious purchaser irradiates one 25 mg link in a constant 
neutron flux of 1010 neutrons>s # cm2 for a time long enough for any gold activity to 
saturate. She then measures the activity of the link to be 7.5 * 104 decays>s with 
a detector whose efficiency is 12 percent. What is the percent by weight of gold in 
the link? (s for 197Au is 98.8 barns.)

SOLUTION
Since the detector efficiency is 12 percent, the actual value of R() is

R1q2 =
7.5 * 104 decays>s

0.12
= 6.3 * 105 decays>s

From Equation 11-87 we can then compute

 m1197Au2 =
16.3 * 105 decays>s2 1197 g>mol2

16.02 * 1023 atoms>mol2 198.8 * 10-24 cm22 11010 neutrons>s>cm22
 m1197Au2 = 2.1 * 10-4 g

The weight percent of gold in the link is then

%Au = a 2.1 * 10-4 g

25 * 10-3 g
b * 100 = 0.8%

or less than 1>10 of the advertised amount.

Nuclear Magnetic Resonance
In Section 7-7, we saw that the energy levels of the atom were split in the presence of 
an external magnetic field (the Zeeman effect) because of the interaction of the atomic 
magnetic moment and the field. Since nuclei also have magnetic moments, the energy 
levels of a nucleus are also split in the presence of a magnetic field. We can readily 
understand this by considering the simplest case, the hydrogen atom, for which the 
nucleus is a single proton.

The potential energy of a magnetic moment m in an external magnetic field B is 
given by

	 U = -m # B	 11-88

The potential energy is lowest when the magnetic moment is aligned with the field 
and highest when it is in the opposite direction. Since the spin quantum number of the 

Table 11-7  Selected saturation activities ( I 5 1012 neutrons>s # cm2)

A
ZM A11

ZM Saturation activity R(ˆ)decays>min # mg

55Mn 56Mn 8.8 * 106

63Cu 64Cu 1.7 * 106

127I 128I 1.6 * 106

197Au 198Au 1.7 * 107
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proton is 1>2, the proton’s magnetic moment has two possible orientations in an 
external magnetic field: parallel to the field (spin up) or antiparallel to the field (spin 
down). The difference in energy of these two orientations (Figure 11-62) is

	 DE = 21mz2p  B� 11-89

When hydrogen atoms are irradiated with photons of energy DE, some of the nuclei 
are induced to make transitions from the lower state to the upper state by resonance 
absorption. These nuclei then decay back to the lower state, emitting photons of 
energy DE. The frequency of the photons absorbed and emitted is found from

	 hf = DE = 21mz2p  B	

In a magnetic field of 1 T, this energy is

 DE = 21mz2p  B

= 212.79 mN2 a
3.15 * 10-8 eV>T

1 mN

b 11 T2

= 1.76 * 10-7 eV

and the frequency of the photons is

 f =
DE

U
=

1.76 * 10-7 eV

4.14 * 10-15 eV # s

= 4.25 * 107 Hz = 42.5 MHz

This frequency is in the radio band of the electromagnetic spectrum; hence the radia-
tion is called RF (radio-frequency) radiation. The measurement of this resonance fre-
quency for free protons can be used to determine the magnetic moment of the proton.

When a hydrogen atom is in a molecule, the magnetic field at the proton is the 
sum of the external magnetic field and the local magnetic field due to the electrons 
and nuclei of the surrounding material. Since the resonance frequency is proportional 
to the total magnetic field seen by the proton, a measurement of this frequency can 
give information about the internal magnetic field seen in the molecule. This is called 
nuclear magnetic resonance. It is a sensitive tool for probing the internal magnetic 
structure of materials.

Nuclear magnetic resonance is also used as an alternative to x rays or ultrasound 
for medical imaging, in which case it is called magnetic resonance imaging (MRI).
A patient can be placed in a magnetic field (provided by superconducting magnets) 
that is constant in time but not in space. When the patient is irradiated by a broadband 
RF source, the resonance frequency of the absorbed and emitted RF photons is then 
dependent on the value of the magnetic field, which can be related to specific posi-
tions in the body of the patient. Since the energy of the photons is much less than the 
energy of molecular bonds and the intensity used is low enough so that it produces 
negligible heating, the RF photons produce little, if any, biological damage. Diagno-
sis with MRI requires no surgical procedure and is more sensitive than other methods 
in detecting tumors in soft tissue.

Computer-Assisted Tomography
Wilhelm Roentgen received the first Nobel Prize in Physics in 1901 for his discov-
ery of x rays in 1895, an event that also marked the beginning of radiography, the use
of radiation and particle beams to produce images that are otherwise inaccessible. 

∆E = 2µBB µ

B µ

Figure 11-62  A proton has 
two energy states in the 
presence of a magnetic field, 
corresponding to whether the 
magnetic moment of the 
proton is aligned parallel or 
antiparallel to the field.
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For half a century x rays were the probing beam of medical imaging. Then in the late 
1940s the introduction of radioisotopes into a patient’s body made it possible for phy-
sicians to target particular organs and produce images that recorded their behavior, 
a  technique now a part of the specialty of nuclear medicine. The isotopes used are 
typically relatively short-lived gamma emitters since a and b particles have ranges 
in biological tissue that are too short to be useful. The detector normally employed is 
a collimated (to provide directional information) scintillation crystal viewed by a pho-
tomultiplier (see Figure 11-63). The image is then constructed by a computer from the 
output of the photomultiplier.

Just as with ordinary x-ray radiographs, the images formed by the gamma camera 
are two-dimensional projections of a three-dimensional distribution. Thus, radio-
graphs provide no depth information, a very serious disadvantage. G. Hounsfield and 
A. Cormack solved this problem in 1972 with the invention of the computer-assisted 
tomography (CT or CAT) scanner.27 A fan-shaped x-ray beam collimated to a thick-
ness of a few millimeters is rotated about the patient and the transmitted fan beam 
is recorded by an arc of detectors opposite the source, as illustrated in Figure 11-64. 
The measurements are then reconstructed into an image of a two-dimensional image 

Figure 11-63  Schematic drawing of a 
scintillation crystal with a Pb collimator 
to define a focus, a gamma camera. As 
the detector is moved around the patient, 
the intensity of the gamma radiation 
yields information about the location and 
concentration of the source radioisotope 
in the body, which can be used by a 
computer to produce an image of the 
distribution. Actual gamma cameras 
incorporate collimators with hundreds or 
even thousands of tiny channels for the 
gamma rays to reach the crystal.

Focus

Pb collimator/shield

NaI(Tl)
crystal

X-ray tube

Detectors

Collimator

Figure 11-64  Sections of the patient’s body transverse to the long axis are imaged by the 
CT scanner. The fan-shaped x-ray beam, a few millimeters thick, and the bank of detectors, 
typically proportional or wire counters, rotate about the long axis to produce each complete 
image. The patient is moved slowly along the axis while the scanner produces successive 
images, their sum constituting a full three-dimensional composite.
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(not a projection) of a transverse slice of the body—a tomograph. By simultaneously 
making a series of two-dimensional projections with a gamma camera and combin-
ing the results with the CT scan, the distribution of the trace radioisotopes in two-
dimensional transverse sections can be constructed. The combination system is called 
single-photon emission computer tomography, or SPECT.

It had been recognized early on that the collimators that were essential to the 
operation of CT scanners and gamma cameras placed a serious restriction on their 
sensitivity. It was also recognized that the collimators could be eliminated and the 
sensitivity significantly enhanced if the trace radioisotope employed was a positron 
emitter. The reason is that the positron is stopped within a few millimeters in the tis-
sue and its subsequent annihilation results in two 0.511 MeV photons emitted in 
opposite directions. Detection of the photons by counters 180° apart whose outputs 
are analyzed by a time-of-flight coincidence spectrometer yields a precise location for 
the decay (see Figure 11-65). However, this idea did not find its way into a useful 
diagnostic scanner until the mid-1980s because of the absence of detectors with good 
efficiency for the 0.511 MeV photons and small enough to localize the incident pho-
tons to within a millimeter or so. This problem was solved with the invention by C. 
Thompson and his coworkers of the bismuth germanate (BGO) crystal. Currently, 
nearly all commercial positron emission tomography (PET) scanners rely on detector 
rings made of BGO crystals, as illustrated in Figure 11-65a. A PET scan of brain activ-
ity made with BGO detectors is shown in Figure 11-65b. The availability of PET scans 
is limited to locations in the proximity of cyclotron facilities because most biologically 
useful positron emitters, those that readily participate in reactions in the body, are 11C, 
13N, 15O, and 18F. They have short half-lives of 20 min, 10 min, 2 min, and 110 min, 
respectively, and supplies must be regularly replenished by nuclear reactions.

Radioactive Dating
Radioactivity occurs in nature as a result of (1) decays within the three naturally 
occurring decay chains originating with long-lived a emitters discussed in Section 11-4, 
(2) the existence of isolated long-lived primordial radioisotopes such as 40K, 

99Tc is by far the most 
widely used radioisotope 
in nuclear medicine 
research, diagnosis, and 
treatment. Its decay 
produces a 140 keV 
gamma ray that is easily 
detected by scintillation 
and germanium detectors. 
Technetium (Z = 43) does 
not occur in nature. It was 
predicted by Moseley in 
1914 and first produced 
by Segré in 1937.

0.511 MeV
photon

31

2
4

B

A

(a)

(b)

Figure 11-65  (a) Nuclei emit positrons at A and B. The oppositely directed 0.511 MeV photons from each annihilation are 
detected by a pair of BGO crystal detectors in the annular ring around the subject (not shown). Electronic coincidence circuits 
establish the line along which each pair of photons traveled. (b) The pattern of coincidence measurements is used by a computer 
to construct an image of the distribution of the radioisotope in the plane of the detector ring. This sequence of PET scans shows 
the utilization of glucose in the brain, traced by 7 mCi of a positron emitter. The sequence begins in the upper left. [Courtesy of 
D. W. Townsend, Division of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland.]
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(t1>2 = 1.25 * 109 y), and (3) the production of isolated radioisotopes due to reac-
tions between cosmic-ray protons and neutrons and nuclei in the atmosphere. Each of 
these provides a means by which the age of materials, such as rocks and archeological 
artifacts, can be measured. As one might guess, the very long-lived isotopes, such as 40K 
and 232Th (t1>2 = 1.24 * 1010 y), are used in determining the ages of “old” rocks, while 
shorter-lived isotopes are employed in determining the ages of “younger” rocks, other 
inorganic materials, and archeological samples containing carbon, such as charcoal.

The general technique used in determining the age of a sample by radioactive 
dating is to measure the present abundance ratio of two isotopes, at least one of 
which is either radioactive or the stable end product of a radioactive decay, relative to 
the abundance ratio that is known (or assumed) to have existed at the time when the 
material was formed. Table 11-8 lists the present isotopic abundances of a few of the 
naturally occurring isolated radioisotopes used in dating.

“Group of Stags” from the Lascaux caves in France. Prehistoric paintings such as this are 
14C-dated, the oldest found so far having been painted 33,000 to 38,000 B.C., depending on the 
14C>12C ratio used for that period. [Art Resource.]

 Table 11-8 � Selected naturally occurring isolated
radioactive nuclides

Nuclide t1/2 (y) Abundance (%) Daughter

14C 5730 1.35 * 10210 14N
40K 1.25 * 109 0.0117 40A

87Rb 4.88 * 1010 27.83 87Sr
147Sm 1.06 * 1011 15.0 143Nd
176Lu 3.59 * 1010 2.59 176Hf
187Re 4.30 * 1010 62.60 187Os
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14C Dating  An important example, used in dating archeological materials con-
taining carbon such as bone and charcoal, measures the abundance ratio 14C>12C. 
Radioactive 14C is continuously produced in the atmosphere by the reaction 14N(n, p) 
14C. The neutrons are produced by cosmic rays. 14C is a b2 emitter, which decays back 
to 14N via the reaction

	 14C S 14N + b- + ne	 11-90

with t1>2 = 5730 years.28

The chemical behavior of 14C atoms is the same as that of ordinary 12C atoms. 
For example, atoms with 14C nuclei combine with oxygen to form CO2 molecules. 
Since living organisms continually exchange CO2 with the atmosphere, the ratio of 
14C to 12C in a living organism is the same as the equilibrium ratio in the atmosphere, 
which is presently about 1.35 * 10212. When an organism dies, it no longer absorbs 
14C from the atmosphere. The ratio 14C>12C in a dead sample continually decreases 
due to the radioactive decay of 14C. A measurement of the decay rate per gram of car-
bon thus allows the calculation of the time of death of the organism, as illustrated by 
Example 11-27.

EXAMPLE 11-27	 14C Decay Rate in Living Organisms ​ Calculate the 
decay rate of 14C per gram of carbon in a living organism, assuming the ratio 
14C>12C = 1.35 * 10-12. The half-life of 14C is 5730 years.

SOLUTION

	 1.	 Combining Equation 11-19 
with Equation 11-22, the 
decay rate R can be written 
in terms of the half-life and 
the number of radioactive 
atoms N as

R = -
dN

dt
= lN =

0.693

t1>2
 N

	 2.	 N is computed from the 
14C>12C ratio by first 
computing the number of 
12C in a unit mass, for 
example, in 1 g:

 N12C =
NA

M
=

6.02 * 1023 atoms>mol

12 g>mol

= 5.02 * 1022 nuclei>g

	 3.	 The number N of 14C nuclei 
per gram is then given by

 N14C = 1.35 * 10-12 
 N12C

= 11.35 * 10-122 15.02 * 10222
= 6.78 * 1010 nuclei>g

	 4.	 The decay rate is then  R =
10.6932 16.78 * 1010 g-12 160 s>min2

15730 y2 13.16 * 107 s>y2
= 15.6 decays>min # g

Remarks:  Thus, the decay rate for a living organism is 15.6 decays per minute 
per gram of carbon. The human body is about 18 percent carbon, so the carbon 
in a 68 kg (150 lb) person decays at the rate of about 1.9 * 105 decays>min. See 
Example 11-28.
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EXAMPLE 11-28	 Basal Metabolic Rate versus 14C Power ​ In Example 11-27 

the decay rate of 14C in living organisms was found to be 15.6 decays per minute 
per gram of carbon. How does the power emitted by the beta decay of 14C in the 
human body compare with the basal metabolic rate (BMR), the power emitted by 
an average resting adult person?

SOLUTION
	 1.	 Human metabolism (the “burning” of food in the body) releases approximately 

4.75 kcal per liter of O2 consumed, and the average resting adult uses about
16 liters of O2 per hour.* The power emitted by the resting adult is

 PBMR = 4.75 
kcal

/O2
* 16 

/O2

h
* 103 

cal

kcal
*

1 h

3600 s
* 4.186 

J

cal

 PBMR = 88 J>s = 88 W 1roughly that of a 100 W lightbulb2
	 2.	 Assuming the mass of an average person to be about 68 kg (150 lbs), 

18 percent of which is carbon, the decay rate of 14C in the average person is

 R = 68 kg * 103 
g

kg
* 15.6 

decays

min # g
*

1 min

60 s
* 0.18

 R = 3.18 * 103 decays>s = 3.18 * 103 Bq

	 3.	 The beta decay energy of 14C is 157 keV. 14C emits no gamma rays. The power 
emitted by the average resting adult due to the decay of 14C is

 P14 C = 3.18 * 103 
decays

s
* 157 * 103 

eV

decay
* 1.60 * 10-19 

J

eV

 P14 C = 8.00 * 10-11 J>s = 8.00 * 10-11 W

		  Clearly, the power emitted by the decay of 14C is negligible compared to the 
BMR of a resting adult human.

*Values are based on data from P. Nelson, Biological Physics (New York, W. H. Freeman and 
Co., 2003), page 31.

EXAMPLE 11-29	 Age of a Bone Fragment ​ A fragment of human bone found 

in central Mexico was thought to be associated with the army of Cortés, who con-
quered the Aztecs in the early 1500s. The fragment contains 200 g of carbon and 
has a b-decay rate of 400 decays>min. Could the sample have come from a person 
who died during the 16th century?

SOLUTION
First we obtain a rough estimate. If the bone were from a living organism, we would 
expect the decay rate to be 200 g * 15.6 decays>min # g = 3120 decays>min. 
Since 400>3120 is roughly 1>8 = 1>23 (actually 1>7.8), the sample must have 
decayed for about 3 half-lives or be about 3 * 5730 years old. To find the age more 
accurately, we note that after n half-lives, the decay rate has decreased by a factor 
of 11>22n. We therefore find n from

a 1

2
b

n

=
400

3120
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or

	  2n =
3120

400
= 7.8

	  n ln 2 = ln 7.8

	  n =
ln 7.8

ln 2
= 2.96

The age is therefore t = nt1>2 = 2.9615730 years2 = 16,980 years. Thus, the bone 
fragment is much older than 500 years and cannot be related to Cortés’s conquests. 
Instead, it places early humans in Mesoamerica at least 17,000 years ago.

Note that the calculation in Example 11-29 assumes that the 14N concentration in 
the atmosphere and the cosmic-ray intensity 17,000 years ago were essentially the 
same as they are today. Actually, neither has remained unchanged over that time. 
Accurate 14C measurements must include corrections for (1) the variations of Earth’s 
magnetic field, which affects the cosmic-ray intensity, and (2) the changing composi-
tion of the atmosphere, which depends on global geological and chemical activity and 
on the average temperature of the atmosphere. For example, current evidence sug-
gests that just prior to 9000 years ago, the 14C>12C ratio was about 1.5 times as large 
as the current value. The ratio has also been significantly altered over the past century 
by the burning of fossil fuels, which adds 14C-free carbon to the atmosphere, and by 
atmospheric testing of hydrogen weapons, which added 14C during the 1950s. Accel-
erator mass spectrometry, which was originally developed for just this purpose, makes 
possible determination of the 14C>12C ratio with sufficient accuracy to extend the 
applicability of 14C dating back 50,000 years before the present with samples as small 
as a few milligrams. Calibration of the ratio for earlier periods requires cross-dating 
with other methods, such as U-Th dating.

Dating Ancient Rocks  Starting with Equation 11-18, a useful relation can be 
derived for the age of a sample that initially contains N0 radioactive parent nuclei 
that decay to a stable daughter with a half-life t1>2. Assuming there are no daughter 
nuclei present initially, after a time t has elapsed, there will be NP parent nuclei and 
ND daughter nuclei in the sample. From Equation 11-18,

	 t =
1

l
 lnaN0

NP

b =
t1>2
ln 2

 lnaN0

NP

b 	 11-91

Since NP 1 ND = N0 at any time, Equation 11-91 can be written as

	 t =
t1>2
ln 2

 lna1 +
ND

NP

b 	 11-92

where ND>NP is the isotopic ratio at age t.
Several isotopic abundance ratios are used as “rock clocks” for samples of 

geologic age. These include 238U>206Pb, 87Rb>87Sr, 40K>40Ar, and the dual ratio 
238U>234U>230Th. These have been used to determine the age of Earth rocks, Moon 
rocks, meteorites, and, by inference, the solar system itself. The oldest rocks on Earth 
have been dated at about 4.5 * 109 years. At that time the molten surface froze, fixing 
the isotopic ratios, which thereafter changed only as a result of decay. Surprisingly, 
perhaps, all meteorites turn out to be about the same age, 4.5 * 109 years, regardless 
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of their composition or when they collided with Earth. This suggests that they origi-
nated in or are the debris of other bodies within the solar system that formed at 
the same time as Earth. This value for the age of the Earth is supported by a number 
of independent ratio measurements, initially the relative abundances of 238U and 235U 
and the 238U>206Pb ratio and corroborated more recently by measurements of the 
40K>40Ar and 87Rb>87Sr ratios.

EXAMPLE 11-30	 87Rb/87Sr Dating ​ The 87Rb>87Sr ratio for a particular rock is 
found to be 40.0. How old is the rock?

SOLUTION
Note first that in Equation 11-92 the radioactive parent appears in the denominator 
of the ratio; therefore, in this case ND>NP = 1> 187Rb>87Sr2 = 1>40.0 = 0.025. 
Substituting this value and the half-life of 87Rb from Table 11-8 into Equation 11-92, 
we have

t =
4.88 * 1010 y

ln 2
 ln11 + 0.0252 =

4.88 * 1010 y

0.693
* 0.0247 = 1.74 * 108 y

This is a young rock, considerably younger than the 4.5 * 109 y age of Earth.

Rocks found on Earth’s surface have a range of ages from zero up to 3.7 * 109 
years. None are older. In contrast, rocks brought back from the surface of the Moon 
by Apollo astronauts have ages ranging from 3.1 to 4.5 * 109 years; none are younger. 
The implications of these results from radioactive dating are (1) Earth surface rocks 
older than 3.7 * 109 years have weathered, eroded, and been recycled into other rocks 
or into the mantle and (2) the Moon’s internal heat source (gravity and radioactivity) 
cooled sufficiently to solidify all its material and fix the initial isotopic ratios about 
1.5 * 109 years after it was formed. The Earth’s internal heat source has not yet 
reached that point.

Accelerator Mass Spectrometry
Originally developed to extend the usable time span and improve the accuracy of 14C 
dating of archeological materials, accelerator mass spectrometry (AMS) is an ultra-
sensitive analytical technique in which the atoms of interest in a sample are counted 
directly rather than irradiating the sample with slow neutrons, then counting the 
gamma rays emitted by the radioactive daughter produced or measuring the radiations 
emitted by long-lived, naturally occurring radionuclides. To understand how AMS 
works, we will use its application to 14C dating as an illustration. At the present time 
the 14C>12C ratio in living organic material is about 10212. Thus, a 1-g sample of car-
bon contains about 5 * 1010 14C atoms. Since the half-life of 14C is 5730 y, a 1.0 g 
sample of 20,000-year-old charcoal would emit about one b2 per minute. To record 
10,000 decays (the number needed for a statistical accuracy of 1 percent) would 
require counting for one week and involve only 2 * 1026 of the 14C atoms present in 
the sample, a very inefficient method.

Mass spectrometry, which records every atom in the sample, provides a possible 
alternative (see Section 3-1). However, conventional mass spectrometers do not 
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have the capability of measuring isotope ratios at the level of 14C>12C (or the other 
radioisotopes listed in Table 11-9) due to the presence of isobars and molecules with 
nearly the same mass. In the case of 14C these include 14N from residual air within the 
spectrometer and 12CH2 and 13CH, both from the sample itself or contamination. AMS 
works in part like a conventional mass spectrometer but reduces background due to 
mass ambiguities by taking advantage of the operational characteristics of medium-
energy accelerators, particularly cyclotrons and tandem Van de Graaffs. Using the 
latter as the basis of our discussion and referring to the photograph and diagram on 
page 534 and to Figure 11-66, the positive high-voltage terminal is in the middle of 
the accelerator with the two ends of the beam tube essentially at ground potential. The 
atoms of the sample are converted to negative ions in the ion source. The atoms of 
most elements can form stable negative ions, a notable exception being nitrogen. 
Thus, AMS immediately removes background due to 14N. A bending magnet deflects 
the ions according to their radii of curvature. The negative ions are accelerated to the 
positive terminal, where a stripper removes several electrons, thus forming positive 
ions. If more than three electrons are removed, most molecules break apart. The ions 
are then accelerated further (to 50–100 MeV), emerging from the machine into 
another bending magnet, which effectively removes the molecular fragments that in 
general do not have the same radii of curvature as do the atomic ions. After passing 
through another 90° bending magnet that cleans the beam of any residual molecular 
fragments, the high-energy beam enters the detector, a so-called E-DE counting 

6

CCR

 Table 11-9  Radioisotopes measurable with AMS

Nuclide Half-life (y) Stable isobar Sensitivity

3H 12.3 3He 10214

10Be 1.5 * 106 10B 10215

14C 5.730 * 103 14N 2 * 10215

26Al 7.40 * 105 26Mg 10215

36Cl 3.01 * 105 36S 2 * 10215

41Ca 1.0 * 105 41K 10215

129I 1.6 * 107 129Xe 10214

Figure 11-66  Schematic 
drawing of a tandem Van de 
Graaff accelerator configured 
as an accelerator mass 
spectrometer.

High-energy
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telescope (see Figure 11-66). The very thin DE 
detector measures the energy loss by the atoms, 
which for particles with the same energy is 
approximately proportional to Z2, thus rejecting 
atoms with a different atomic number than that 
of interest. The high-energy ions are then 
stopped in the E detector, which measures the 
energy of each one. The product E * DE for each 
atom is approximately proportional to mZ2. 
Thus, requiring sample masses of only a few 
milligrams, AMS measures the mass and atomic 
number of each atom, and it does so with very 
high precision and extremely low background.

Table 11-9 lists several long-lived radio-
isotopes that can be effectively assayed with 
AMS. For example, the technique has been 
used to time the migration of surface water into 
deep aquifers by measuring the concentration 
of 36Cl, produced by cosmic-ray bombardment 
of argon in the atmosphere. Using only a few 
strands, AMS 14C-dated the famous Shroud of 
Turin as having been made in the Middle Ages, 
around 1300. Ötzi (the Iceman) discovered in 
1991 in the Tyrolean Alps, was found to have 
lived during the late Neolithic age, about 5200 years ago. Some meteorites have 
been found to contain relatively short-lived 26Al in excess of the concentration 
attributable to cosmic-ray production, raising the intriguing question of its origin in 
the cosmos.

Particle-Induced X-ray Emission
An elemental analysis technique similar to neutron activation analysis (NAA), 
particle-induced x-ray emission (PIXE) involves bombarding the material of interest 
with low-energy (a few MeV) ions, such as protons or alpha particles. Coulomb 
interaction between the ions and the target atoms ionize the latter by ejecting a K- or 
L-shell electron. Since the interactions occur over atomic dimensions, the cross sec-
tions are quite high, as much as 1000 b for low-Z atoms and decreasing smoothly to 
about 1 b at Z = 82 (Pb). The vacancies produced are quickly filled by electrons from 
higher-energy shells, emitting K and L x rays or Auger electrons in the process that 
are characteristic of the elements in the target (see Section 4-4). Since the bombard-
ing particles are relatively low energy, they do not penetrate far into matter, so the 
interactions occur near the surface. That fact, together with the low energy of the 
emitted x rays, 10 to 100 keV, dictates the use of thin samples. Figure 11-67a is a 
schematic of a typical PIXE experimental arrangement. The sensitivity of PIXE is 
comparable to NAA and has the advantage of being applicable to all elements above 
Z = 20, whereas NAA is restricted to those nuclides with sufficiently large thermal 
neutron absorption cross sections. The main disadvantage of PIXE is x-ray energy 
ambiguities. For example, the energy of the La x ray from Pb is 10.55 keV, whereas 
that of the Ka line of As is 10.54 keV. The resolution of the cooled Si(Li) detectors 
used for x rays is about 100 eV, insufficient to resolve the two lines. Figure 11-67b 
shows a typical PIXE spectrum.

The perfectly preserved mummy of Ötzi the Iceman was found in the 
Tyrolean Alps in 1991. Accelerator mass spectrometry places his date 
of death between 3300 and 3200 years B.C. Recent (2003) 
measurements of oxygen isotopic ratios in his teeth and bones have 
pinpointed the area where he lived. [© South Tyrol Museum of 
Archeology, Italy. www.iceman.it.]
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Questions

20.	 If the 14C>12C ratio was 1.5 times larger than that used in Example 11-28, is 
the calculated age too large or too small? Explain.

21.	 Some meteorites are found to contain measurable amounts of 26Al, whose t1>2 
is only 7.4 * 105 years. Devise a scenario that would account for its presence.

22.	 40Ar is a gas at ordinary temperatures. Explain why solid rocks can be 
accurately dated using the 40K>40Ar ratio in spite of that fact.

23.	 Explain why accelerator mass spectrometry can achieve reliable results using 
samples of only 1 mg.

More
�The biological effects of ionizing radiation were largely unknown in 
the early days of atomic and nuclear physics. It took such things as the 
plight of the radium watch dial painters, x-ray crystallographers with 
missing fingertips, and young cyclotron physicists with cataracts to 
focus scientific attention on the risks that attend exposure to ion-
izing radiation in the home, the workplace, and the environment. 
Questions of radiation dosage, its definition, origin, and effects, are 
discussed in the More section Radiation Dosage on the home page: 
www.whfreeman.com/tiplermodernphysics6e. See also Equations 
11-93 through 11-95 here as well as Tables 11-10 through 11-13.

More
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Figure 11-67  (a) 
Schematic drawing of a 
typical particle-induced x-ray 
emission system. (b) PIXE 
spectrum from an aerosol 
bombarded with 2 MeV 
protons. [S. A. E. Johansson 
and T. B. Johansson, Nuclear 
Instruments and Methods, 
137, 473, 1976.]
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Composition of the 
nuclei

Nuclei have Z protons, N neutrons, and mass number A = Z 1 N. Nuclei with the same Z but 
different N (and A) are called isotopes. The nucleons are Fermi-Dirac (spin-1>2) particles,
and both have intrinsic magnetic moments.

2.	 Ground-state 
properties of nuclei

	 Size and shape

	 Binding energy and 
mass

	 Magnetic moments

The mean radius of the nuclear charge distribution is

R = 11.07 { 0.022A1>3 fm	 11-5

The radii thus vary from about 1 fm for the proton to about 10 fm for the heaviest nuclei. 
With few exceptions, nuclei are nearly spherical.

The binding energy of the nucleus is given by

Bnuclear = ZMH c2 + Nmn  c2 - MA c2	 11-11

The moments of the proton and neutron are

(mp)z = 12.79285 mN

(mn)z = 21.91304 mN

where mN = e U>2mp is the nuclear magneton.

3.	 Radioactivity

	 Half-life

	 Units

The decay rate R of radioactive nuclei is

R = -
dN

dt
= lN0 e-lt = R0 e-lt	 11-19

where l is the decay constant. N0 and R0 are the number of nuclei present and the
decay rate at t = 0.

t1>2 =
ln 2

l
= 0.693t	 11-22

where t = 1>l is the mean life.

1 decay>s = 1 becquerel = 1 Bq	 11-23

4.	 Alpha, beta, and 
gamma decay

These are the three most common forms of radioactive decay. Alpha particles are 4He
nuclei, beta particles are electrons and positrons, and gamma rays are very short 
wavelength electromagnetic radiation.

5.	 The nuclear force The nuclear force is

(a) About 102 stronger than the Coulomb force

(b) Short-range (0 beyond 3 fm)

(c) Charge independent

(d ) Saturated

(e) Dependent on spin orientation

The nuclear force is considered to be an exchange force in which the attraction between a 
pair of nucleons is due to an exchange of virtual pions. The range R of the force, determined
by the uncertainty principle, is

R = cDt = c U>DE = U>mc	 11-50

where m is the mass of the virtual pion.
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TOPIC RELEVANT EQUATIONS AND REMARKS

6.	 The shell model An independent particle model, similar to that used for assigning energy states to the atomic 
electrons, but one that makes use of a strong spin-orbit coupling for each nucleon accounts for 
the shell-like structure of the protons and neutrons. It explains the magic numbers 2, 8, 20, 28, 
50, 82, and 126 in terms of the completion of the shells. Shell-model calculations are relatively 
successful in predicting nuclear spins and magnetic moments, particularly in the vicinity of 
closed shells.

7.	 Nuclear reactions

	 Cross section

The Q value of a reaction X(x, y)Y determines if energy is released or must be supplied. Q is 
given by

Q = 1mx + mX - my - mY2c2	 11-58

The cross section s measures the effective size of a nucleus for a particular nuclear reaction.

s =
R

I
	 11-58

where R is the number of reactions per unit time per nucleus and I is the incident particle 
intensity.

8.	 Fission and fusion Fission is the process by which heavy elements such as 235U and 239Pu capture a neutron and 
split into two medium-mass nuclei. Each event releases about 1 MeV>nucleon.

Fusion is the reaction in which two light nuclei, such as 2H and 3H, fuse together to produce a 
heavier nucleus. Each event releases 1 to 4 MeV>nucleon.

9.	 Applications The applications of nuclear reactions in medicine include the use of nuclear radiation in 
the treatment of diseases and the use of nuclear-based imaging techniques in diagnosis and 
research. Nuclear magnetic resonance imaging (MRI) is an alternative to x-ray imaging with the 
advantage that the RF photons involved produce little damage to biological tissue. Computer-
assisted tomography using short-lived positron emitters (PET) provides rapid, three-dimensional 
images. Radioactive dating employs a number of naturally occurring radioisotopes to determine 
the age of rocks and artifacts. Accelerator mass spectrometry and neutron activation analysis 
are highly sensitive means of measuring the concentration of particular isotopes of nearly every 
element in the periodic table.
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Notes 
1.	 Antoine Henri Becquerel (1852–1908), French physicist. 

He held the scientific post at the Museum of Natural History 
in Paris that had been held by his father and grandfather before 
him, and his research on the fluorescence of potassium uranyl 
sulfate was a continuation of work that his father had begun. 
His discovery of radioactivity, which revolutionized existing 
theories of atomic structure, earned him a share of the 1903 
Nobel Prize in Physics, together with Marie and Pierre Curie.

2.	 The phenomenon was named radioactivity by Marie 
Curie in 1898.

3.	 These accomplishments were of such importance to the 
development of nuclear physics that all four men were subse-
quently awarded Nobel Prizes in Physics, James Chadwick 
in 1935, Carl Anderson in 1936 (shared with Victor Hess, the 
discoverer of cosmic rays), and John Cockcroft and Ernest 
Walton in 1951.

4.	 The United States produced about 31 percent of the 
world’s nuclear-generated electric power in 2010.

5.	 The term tomography is from the Greek tomos, meaning 
“slice,” and graphé, meaning “picture.” Thus, a tomograph 
is the pictorial representation of a slice through the object or 
body being studied.

6.	 Robert Hofstadter (1915–1990), American physicist. His 
electron-scattering measurements also revealed that the pro-
ton and neutron possess internal structure, opening the way to 
a more fundamental understanding of the structure of matter. 
For his work he shared the 1961 Nobel Prize in Physics with 
Rudolf Mössbauer.

7.	 See, for example, Section 23-2 in P. A. Tipler and 
G. Mosca, Physics for Scientists and Engineers, 6th ed.,
W. H. Freeman and Co., New York, 2008.

8.	 This number (257) can change (decrease) as the experi-
mental ability to measure very long decay lifetimes improves. 
For example, 209Bi, once considered to be the heaviest stable 
nuclide, has recently been found to decay by alpha emission 
with a half-life of 2.0 * 1018 y.

9.	 See, for example, Section 26-2 in P. A. Tipler and 
G. Mosca, Physics for Scientists and Engineers, 6th ed., W. H. 
Freeman and Co., New York, 2008.
10.	 See P. A. Seeger, Nuclear Physics, 25, 1 (1961).
11.	 The electric quadrupole moment of the nucleus, dis-
cussed earlier in this section, also causes hyperfine split-
ting, as do externally applied magnetic and electric fields. 
The effect of the reduced mass (isotope effect) mentioned in 
Chapter 4 is also considered a hyperfine effect.
12.	 Actually, the electron’s magnetic moment deviates 
slightly from that predicted by the Dirac wave equation, one 

Bohr magneton. Quantum electrodynamics is able to account 
for the small deviation observed experimentally with an error 
of less than 1 part in 108, one of the most remarkable agree-
ments between quantum theory and experiment in physics.
13.	 This statement requires a small qualification. An alter-
native to b1 decay, discussed in Section 11-4, is electron 
capture, in which an orbital electron may be captured by the 
nucleus. The probability of its occurrence depends on the 
probability density of the electrons, which can be affected 
slightly by very high external pressures.
14.	 Leptons include the electrons and neutrinos that are emit-
ted in b decay (see Chapter 12).
15.	 Rudolf Ludwig Mössbauer (b. 1929), German physicist. 
His discovery while he was a graduate student in Munich of 
the recoilless emission and absorption of gamma rays made 
possible the verification (by R. V. Pound and G. A. Rebka 
in 1960) of the gravitational red shift predicted by general 
relativity. Mössbauer shared the 1961 Nobel Prize in Physics 
with Robert Hofstadter.
16.	 Note that this electrostatic potential corresponds to a 
force of nearly 60 N, or the weight of a 6 kg mass! It is acting 
not on 6 kg, however, but on only 1.67 * 10227 kg.
17.	 Hideki Yukawa (1907–1981), Japanese physicist. His 
paper presenting the exchange meson theory of the nuclear 
force was his first publication. He was awarded the 1949 
Nobel Prize in Physics for the discovery.
18.	 See, for example, Section 30-3 in P. A. Tipler and 
G. Mosca, Physics for Scientists and Engineers, 6th ed., W. H. 
Freeman and Co., New York, 2008.
19.	 Previously unknown particles had been observed in cos-
mic rays at about the same time that Yukawa proposed the 
meson exchange theory. He sent an article to the journal 
Nature in 1937 suggesting that these particles might be the 
mesons, but the journal rejected the article. The particles were 
later found to be muons, a product of the decay of Yukawa’s 
pi mesons.
20.	 Maria Goeppert-Mayer (1906–1972), German-American 
physicist, and Johannes Hans Daniel Jensen (1907–1973), 
German physicist. Goeppert-Mayer’s antecedents for many 
generations had been university professors, while Jensen was 
the son of a gardener. They co-authored a famous (among 
physicists, at least) book explaining their nuclear-shell model 
and for that work shared the 1963 Nobel Prize in Physics with 
Eugene Wigner.
21.	 In j-j coupling the spin and orbital angular momentum of 
each particle add to give a total angular momentum j for that 
particle, and then J equals the sum of the individual j vectors. 
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In L-S coupling the spins of all the particles and the orbital 
angular momenta of all the particles add to yield total S and 
total L, which then add to yield J.
22.	 This dependence, which occurs only for (n, g) reactions 
with relatively low-energy neutrons, was first measured by 
Emilio Segré in 1935.
23.	 The first such resonance was observed unexpectedly 
in the results of a neutron irradiation of silver conducted by 
Edoardo Amaldi and others on the morning of October 22, 
1934. By 3:00 p.m. that day, Enrico Fermi had developed 
the correct explanation of the strange phenomenon. The 
paper describing the discovery was written that evening and 
delivered to the scientific journal Ricerca Scientifica the next 
morning, less than 24 hours after the discovery!
24.	 Otto Hahn (1879–1968), German physical chemist, 
and Fritz Strassmann (1902–1980), German chemist. Hahn 
recognized that uranium nuclei bombarded with neutrons were 
breaking apart but carefully avoided characterizing the event 
as fission since no such thing had been recorded before. He 
received the 1944 Nobel Prize in Chemistry for the discovery.
25.	 Actually, Fermi’s reactor was the first constructed fis-
sion reactor. About 2 billion years ago several deposits of 

natural uranium near what is now Oklo, Gabon (west-central 
Africa) began chain reactions that continued intermittently 
for several hundred thousand years at an average power of 
100 kW before naturally shutting themselves off. The evi-
dence that verified the discovery of the first of these (in 
1972), a fascinating example of scientific detective work, 
may be found in G. A. Cowan, “A Natural Fission Reac-
tor,” Scientific American, July 1976. Some of the sites are 
currently being mined, and efforts to preserve one of the 
natural reactors as an international historic site are currently 
under way.
26.	 An elementary discussion of a magnetic bottle can be 
found in Section 26-2 in P. A. Tipler and G. Mosca, Physics 
for Scientists and Engineers, 6th ed., W. H. Freeman and Co., 
New York, 2008.
27.	 Godfrey Hounsfield (1919–2004), English engineer, 
and Allan Cormack (1924–1998), American physicist. They 
shared the 1979 Nobel Prize in Medicine for the invention of 
the CT scanner.
28.	 The radiocarbon dating technique was developed by 
Willard F. Libby (1908–1980), an American chemist. He 
received the 1960 Nobel Prize in Chemistry for his work.

Problems 
Level I
Section 11-1  The Composition of the Nucleus
11-1.	 What are the number of protons and the number of neutrons in each of the follow-
ing isotopes? 18F, 25Na, 51V, 84Kr, 120Te, 148Dy, 175W, and 222Rn.
11-2.	 Electrons emitted in b decay have energies of the order of 1 MeV or smaller. 
Use this fact and the uncertainty principle to show that electrons cannot exist inside the 
nucleus.
11-3.	 The spin of the ground state of 6Li, which constitutes 7.5 percent of natural lith-
ium, is zero. Show that this value is not compatible with a model of the nucleus that con-
sists of protons and electrons.
11-4.	 The magnetic moment of 14N is 0.4035 mN. Show that this value is not compatible 
with a model of the nucleus that consists of protons and electrons.
11-5.	 Suppose that the deuteron really did consist of two protons and one electron. (It 
doesn’t!) Compute the spin and magnetic moment of such a deuteron’s ground state and 
compare the results with the values in Table 11-1.

Section 11-2  Ground-State Properties of the Nuclei
11-6.	 Give the symbols for at least two isotopes and two isotones of each of the follow-
ing nuclides: (a) 18F, (b) 208Pb, and (c) 120Sn.
11-7.	 Give the symbols for at least two isobars and one isotope of each of the following 
nuclides: (a) 14O, (b) 63Ni, and (c) 236Np.
11-8.	 Approximating the mass of a nucleus with mass number A as A * u and using 
Equation 11-3, compute the nuclear density in SI units.
11-9.	 Use the masses in the table in Appendix A to compute the total binding energy and 
the binding energy per nucleon of the following nuclides: (a) 9Be, (b) 13C, and (c) 57Fe.
11-10.	 Use Equation 11-3 to compute the radii of the following nuclei: (a) 16O, (b) 56Fe, 
(c) 197Au, and (d ) 238U.
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11-11.	 Find the energy needed to remove a neutron from (a) 4He, (b) 7Li, and (c) 14N.
11-12.	 Use the Weizsäcker formula to compute the mass of 23Na. Compute the percent 
difference between the result and the value in the table in Appendix A.
11-13.	 Compute the “charge distribution radius” from Equation 11-5 and the “nuclear 
force radius” from Equation 11-7 for the following nuclides: (a) 16O, (b) 63Cu, and
(c) 208Pb.
11-14.	 39Ca and 39K are a mirror pair, 39Ca decaying into 39K. Use Equations 11-1 and 
11-2 to compute the radius of 40Ca.

Section 11-3  Radioactivity
11-15.	 The counting rate from a radioactive source is 4000 counts per second at time 
t = 0. After 10 s, the counting rate is 1000 counts per second. (a) What is the half-life?
(b) What is the counting rate after 20 s?
11-16.	 A certain source gives 2000 counts per second at time t = 0. Its half-life is 2 min. 
(a) What is the counting rate after 4 min? (b) After 6 min? (c) After 8 min?
11-17.	 A sample of a radioactive isotope is found to have an activity of 115.0 Bq imme-
diately after it is pulled from the reactor that formed it. Its activity 2 h 15 min later is 
measured to be 85.2 Bq. (a) Calculate the decay constant and the half-life of the sample.
(b) How many radioactive nuclei were there in the sample initially?
11-18.	 The half-life of radium is 1620 years. (a) Calculate the number of disintegra-
tions per second of 1 g of radium and show that the disintegration rate is approximately 
1 Ci. (b) Calculate the approximate energy of the a particle in the decay 226Ra S 
222Rn 1 a, assuming the energy of recoil of the Rn nucleus is negligible. (Use the mass 
table of Appendix A.)
11-19.	 The counting rate from a radioactive source is 8000 counts per second at time 
t = 0. Ten minutes later the rate is 1000 counts per second. (a) What is the half-life?
(b) What is the decay constant? (c) What was the counting rate after 1 minute?
11-20.	 The counting rate from a radioactive source is measured every minute. The 
resulting number of counts per second are 1000, 820, 673, 552, 453, 371, 305, 250, . . . 
(a) Plot the counting rate versus time and (b) use your graph to estimate the half-life.
(c) What would be the approximate result of the next measurement after the 250 counts 
per second?
11-21.	 62Cu is produced at a constant rate [e.g., by the (g, n) reaction on 63Cu placed in a 
high-energy x-ray beam] and decays by b1 decay with a half-life of about 10 min. How 
long does it take to produce 90 percent of the equilibrium value of 62Cu?
11-22.	 The decay constant of 235U is 9.8 * 10210 y21. (a) Compute the half-life. (b) How 
many decays occur each second in a 1.0 mg sample of 235U? (c) How many 235U atoms will 
remain in the 1.0 mg sample after 106 years?
11-23.	 The decay constant of 22Na is 0.266 y21. (a) Compute the half-life. (b) What is the 
activity of a sample containing 1.0 g of 22Na? (c) What is the activity of the sample after 
3.5 years have passed? (d ) How many 22Na atoms remain in the sample at the time?

Section 11-4  Alpha, Beta, and Gamma Decay
11-24.	 The stable isotope of sodium is 23Na. What kind of radioactivity would you expect 
of (a) 22Na and (b) 24Na?
11-25.	 Using Figure 11-16, find the parameters A and B in Equation 11-30.
11-26.	 Make a diagram like Figure 11-18 for the (4n 1 1) decay chain that begins with 
237Np, a nuclide that is no longer present in nature. (Use Appendix A.)
11-27.	 Show that the a particle emitted in the decay of 232Th carries away 4.01 MeV, or 
98 percent, of the total decay energy.
11-28.	 7Be decays exclusively by electron capture to 7Li with a half-life of 53.3 d. Would 
the characteristics of the decay be altered and, if so, how if (a) a sample of 7Be were 
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placed under very high pressure or (b) all four electrons were stripped from each 7Be atom 
in the sample?
11-29.	 Compute the energy carried by the neutrino in the electron capture decay of 67Ga 
to the ground state of 67Zn.
11-30.	 Compute the maximum energy of the b2 particle emitted in the decay of 72Zn.
11-31.	 In Example 11-13 we saw that 233Np could decay by emitting an a particle. Show 
that decay by emission of a nucleon of either type is forbidden for this nuclide.
11-32.	 With the aid of Figures 11-19 and 11-20, list the energies of all of the possible g 
rays that may be emitted by 223Ra following the a decay of 227Th.
11-33.	 8Be is very unusual among low-Z nuclides: it decays by emitting two a particles. 
Show why 8Be is unstable toward a decay.
11-34.	 80Br can undergo all three types of b decay. (a) Write down the decay equation in 
each case. (b) Compute the decay energy for each case.

Section 11-5  The Nuclear Force
11-35.	 Assuming that the average separation between two protons in 12C is equal
to the nuclear diameter, compute the Coulomb force of repulsion and the gravitational 
force of attraction between the protons. If the nuclear potential “seen” by the protons 
is 50 MeV for separations up to 3 fm, compare the nuclear force to the other two 
forces.
11-36.	 Suppose the range of the nuclear force was 5 fm. Compute the mass (in MeV>c2) 
of an exchange particle that might mediate such a force.
11-37.	 The repulsive force that results in the “hard core” of the nucleus might be due to 
the exchange of a particle, just as the strong attractive force is. Compute the mass of such 
an exchange particle if the range of the repulsive force equals about 0.25 fm, the radius of 
the core.

Section 11-6  The Shell Model
11-38.	 The nuclei listed below have filled j shells plus or minus one nucleon. (For exam-
ple, 29

14Si has the 1d5>2 shell filled for both neutrons and protons plus one neutron in the 
2s1>2 shell.) Use the shell model to predict the orbital and total angular momentum of these 
nuclei:

	 29
14Si 37

17Cl 71
31Ga 59

27Co 73
32Ge 33

16S 
87
38Sr

11-39.	 Use the shell model to predict the nuclear magnetic moments of the isotopes listed 
in Problem 11-38.
11-40.	 The atomic spectral lines of 14N exhibit a hyperfine structure indicating that the 
ground state is split into three closely spaced levels. What must be the spin of the 14N 
ground state?
11-41.	 Which of the following nuclei have closed neutron shells? 36S, 50V, 50Ca, 53Mn, 
61Ni, 82Ge, 88Sr, 93Ru, 94Ru, 131In, and 145Eu?
11-42.	 Sketch diagrams like Figure 11-9 for the ground states of 3H, 3He, 14N, 14C, 15N, 
15O, and 16O.
11-43.	 Which of the following nuclei have closed proton shells: 3He, 19F, 12C, 40Ca, 50Ti, 
56Fe, 60Ni, 60Cu, 90Zr, 124Sn, 166Yb, and 204Pb?
11-44.	 (a) Use Figure 11-35 to draw a diagram like Figure 11-9 for 13N. (b) What value 
would you predict for the value of j? (c) What value would you predict for j for the first 
excited state? (d ) Draw a diagram like Figure 11-9 for the first excited state. (Is there only 
one possible?)
11-45.	 Use Figure 11-35 to predict the values of j for the ground states of 30Si, 37Cl, 55Co, 
90Zr, and 107In.
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Section 11-7  Nuclear Reactions
11-46.	 Using data from Appendix A, find the Q values for the following reactions:
(a) 2H 1 2H S 3H 1 1H 1 Q, (b) 3He(d, p)4He, and (c) 6Li 1 n S 3H 1 4He 1 Q.
11-47.	 (a) Find the Q value for the reaction 3H 1 1H S 3He 1 n 1 Q. (b) Find the 
threshold for this reaction if stationary 1H nuclei are bombarded with 3H nuclei from an 
accelerator. (c) Find the threshold for this reaction if stationary 3H nuclei are bombarded 
with 1H nuclei from an accelerator.
11-48.	 What is the compound nucleus for the reaction of deuterons on 14N? What are the 
possible product nuclei and particles for this reaction?
11-49.	 Using data from Appendix A, compute the Q value for the reaction (a) 12C(a, p) 
15N, and (b) 16O(p, d)17O.
11-50.	 The cross section for the reaction 75As(n, g)76As is 4.5 b for thermal neutrons.
A sample of natural As in the form of a crystal 1 cm * 2 cm that is 30 mm thick is exposed 
to a thermal neutron flux of 0.95 * 1013 neutrons>cm2 # s. Compute the rate at which this 
reaction proceeds. (Natural arsenic is 100 percent 75As. Its density is 5.73 gm>cm3.)
11-51.	 Write three different reactions that could produce the products (a) n 1 23Na,
(b) p 1 14C, and (c) d 1 31P.
11-52.	 Write down the correct symbol for the particle or nuclide represented by 
the x in the following reactions: (a) 14N(n, p)x, (b) 208Pb(n, x)208Pb, (c) x(a, p)61Cu,
(d) 9Be(x, n)12C, (e) 16O(d, a)x, ( f ) 162Dy(a, 6n)x, (g) x(d, n)4He, (h) 90Zr(d, x)91Zr.

Section 11-8  Fission and Fusion
11-53.	 A few minutes after the Big Bang the first fusion reaction occurred in the early 
universe. It was n 1 p S d 1 g. Compute the Q for this reaction.
11-54.	 Assuming an average energy release of 200 MeV per fission, calculate the number 
of fissions per second needed for a 500 MW reactor.
11-55.	 If the reproduction factor of a reactor is k = 1.1, find the number of generations 
needed for the power level to (a) double, (b) increase by a factor of 10, and (c) increase 
by a factor of 100. Find the time needed in each case if (d ) there are no delayed neutrons, 
so the time between generations is 1 ms, and (e) there are delayed neutrons that make the 
average time between generations 100 ms.
11-56.	 Write down the several reactions possible when 235U captures a thermal neutron 
and 1n, 2n, 3n, or 4n are produced.
11-57.	 Assuming an average energy release of 17.6 MeV>fusion, calculate the rate at 
which 2H must be supplied to a 500 MW fusion reactor.
11-58.	 From Figure 11-52, the cross section for the capture of 1.0 MeV neutrons by 238U 
is 0.02 b. A 5 g sample of 238U is exposed to a total flux of 1.0 MeV neutrons of 5.0 * 1011 
per m2. Compute the number of 239U atoms produced.
11-59.	 Compute the total energy released in the following set of fusion reactions. This is 
the proton-proton cycle, the primary source of the Sun’s energy.

 1H + 1H S 2H + e+ + ne

 2H + 1H S 3He + g

 3He + 3He S 4He + 21H + g

11-60.	 A particular nuclear power reactor operates at 1000 MWe (megawatts electric) 
with an overall efficiency in converting fission energy to electrical energy of 30 percent. 
What mass of 235U must fission in order for the power plant to operate for (a) one day,
(b) one year? (c) If the energy were provided by burning coal instead of 235U, what would 
be the answers to (a) and (b)? (Burning coal produces approximately 3.15 * 107 J>kg.)
11-61.	 (a) Assuming that the natural abundance of deuterium given in Appendix A is 
reflected in the formation of water molecules, compute the energy that would be released 
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if all the deuterons in 1.0 m3 of water were fused via the reaction 2H 1 1H S 3He 1 g.
(b) Given that the world’s 5.9 * 109 people used 3.58 * 1020 J in 1999, how long (in hours) 
would the result in part (a) have lasted a “typical” person?
11-62.	 Consider the possible fission reaction

n + 235
92U S 120

48Cd + 112
44Ru + 3n

(a) Compute the energy released in the reaction. (b) Is this reaction likely to occur? 
Explain.

Section 11-9  Applications
11-63.	 A bone claimed to be 10,000 years old contains 15 g of carbon. What should the 
decay rate of 14C be for this bone?
11-64.	 A sample of animal bone unearthed at an archeological site is found to contain 
175 g of carbon, and the decay rate of 14C in the sample is measured to be 8.1 Bq. How 
old is the bone?
11-65.	 The 87Rb>87Sr ratio for a particular rock is measured to be 36.5. How old is the 
rock?
11-66.	 In a PIXE experiment, an element with A = 80 forms 0.001 percent by weight of 
a thin foil whose mass is 0.35 mg>cm2. The foil is bombarded with a 250 nA proton beam 
for 15 minutes. The cross section for exciting the L shell is 650 b. If the probability that 
the excited atom will emit an L x ray is 0.60 and the overall efficiency of the x-ray detector 
is 0.0035, how many counts will the detector record during the 15-minute bombardment?
11-67.	 The naturally occurring A = 4n decay series begins with 232Th and eventually ends 
on 208Pb (see Figure 11-18). A particular rock is measured to contain 4.11 g of 232Th and 
0.88 g of 208Pb. Compute the age of the rock.
11-68.	 Compute the resonance frequency of free protons in a magnetic field of (a) 0.5 * 
1024 T (the approximate strength of Earth’s field), (b) 0.25 T, and (c) 0.5 T.
11-69.	 A small piece of papyrus is to be 14C-dated using AMS. During a 10-minute run 
with the system set to record 14C, 1500 ions are counted. With the system set to transmit 
12C13 ions, the beam current is 12 mA. (a) Compute the 14C>12C ratio, assuming both 
isotopes are transmitted with the same efficiency. (b) If the entire sample is consumed in
75 minutes, what was the mass of 12C it contained? (Assume a constant consumption rate 
and an efficiency of 0.015. (c) How old is the sample?
11-70.	 A wooden spear thrower found in the mountains of southeastern Spain had 14C 
activity of 2.05 disintegrations per minute per gram. How old is it? (The 14C activity of 
live wood is 15.6 disintegrations per minute per gram.)

Level II
11-71.	 Using Equation 11-14 and the constants in Table 11-3, find the Z for which 
dM>dZ = 0, that is, the minimum of curves like Figure 11-22a for (a) A = 27, (b) A = 65, 
and (c) A = 139. Do these calculations give the correct stable isobars 27Al, 65Cu, and 139La?
11-72.	 An empirical expression for distance that a particles can travel in air, called the 
range, is R1cm2 = 10.312E3>2 for E in MeV and 4 6 E 6 7 MeV. (a) What is the range in 
air of a 5 MeV a particle? (b) Express this range in g>cm2, using r = 1.29 * 10-3 g>cm3 
for air. (c) Assuming the range in g>cm2 is the same as that of aluminum 1r = 2.70 g>cm32, 
find the range in aluminum in cm for a 5 MeV a particle.
11-73.	 Show that the average electrostatic energy of a proton-proton pair is about 
6ke2>5R, where R is the separation of the pair and k = 1>4p0.
11-74.	 A sample of 114Nd has a mass of 0.05394 kg and emits an average of 2.36 a par-
ticles per second. Determine the decay constant and the half-life.
11-75.	 A sample of radioactive material is found initially to have an activity of 
115.0 decays>minute. After 4 d 5 h, its activity is measured to be 73.5 decays>minute.
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(a) Calculate the half-life of this material. (b) How long (after t = 0) will it take for the 
sample to reach an activity of 10.0 decays>minute? (c) How long after the time in (b) will 
it take for the activity to reach 2.5 decays>minute?
11-76.	 The half-life of 227Th is 18.72 days. It decays by a emission to 223Ra, an a emit-
ter whose half-life is 11.43 days. A particular sample contains 106 atoms of 227Th and no 
223Ra at time t = 0. (a) How many atoms of each type will be in the sample at t = 15 days? 
(b) At what time will the number of atoms of each type be equal?
11-77.	 The Mössbauer effect was discovered using the decay of the 0.12939 MeV second 
excited state of 191Ir. The lifetime of this isomer is 0.13 ns. (a) Compute the width G of 
this level. (b) Compute the recoil energy of a free 191Ir atom that emits the 0.12939 MeV 
photon. (c) Resonant (recoilless) absorption occurs when 191Ir is bound into a lattice. If a 
Doppler shift equal to G destroys the resonance absorption, show that the Doppler velocity 
v necessary is given by

n 
cG

e

11-78.	 3He and 3H are a pair of mirror nuclei. Compute the difference in total binding 
energy between the two nuclides and compare the result to the electrostatic repulsion of 
the protons in 3He. Let the protons be separated by the radius of the helium nucleus.
11-79.	 Use the masses in Appendix A to compute the energy necessary to separate a neu-
tron from 47Ca and 48Ca. From those results determine a value for a5 in the Weizsäcker 
formula (Equation 11-14) and compare it with the value in Table 11-3.
11-80.	 The centripetal force of a nucleus with I Z 0 makes it more stable toward a decay. 
Use Figure 11-1a and a (classical) argument to show why this is the case.
11-81.	 (a) Calculate the radii of 141

56Ba and 92
36Kr from Equation 11-3. (b) Assume that after 

the fission of 235U into 141Ba and 92Kr, the two nuclei are momentarily separated by a dis-
tance r equal to the sum of the radii found in (a) and calculate the electrostatic potential 
energy for these two nuclei at this separation. Compare your result with the measured fis-
sion energy of 175 MeV.
11-82.	 Consider a neutron of mass m moving with speed vL and colliding head-on with 
a nucleus of mass M. (a) Show that the speed of the center of mass in the lab frame is 
V = mvL> 1m + M2. (b) What is the speed of the nucleus in the center-of-mass frame 
before the collision? After the collision? (c) What is the speed of the nucleus in the original 
lab frame after the collision? (d ) Show that the energy of the nucleus after the collision is

1

2
 M12V22 = c 4mM

1m + M22 d
1

2
 mv2

L

and use this to obtain Equation 11-82.
11-83.	 Suppose that the Van Dyck painting shown in the photographs on page 554 was 
irradiated with a thermal neutron flux of 1012 neutrons>cm2 # s for 2 h. In terms of the 
numbers of manganese and phosphorus atoms initially present, determine the activity 
(a) 2 hours and (b) 2 days after the irradiation stopped. The (n, g) cross section for 31P is 
0.180 b and for 55Mn is 13.3 b. (Both isotopes are 100 percent of the naturally occurring 
elements.)
11-84.	 The total energy consumed in the United States in 1 y is about 7.0 * 1019 J. How 
many kilograms of 235U would be needed to provide this amount of energy if we assume 
that 200 MeV of energy is released by each fissioning uranium nucleus, that 3 percent 
of the uranium atoms undergo fission, and that all of the energy-conversion mechanisms 
used are 25 percent efficient?
11-85.	 The rubidium isotope 87Rb is a b emitter with a half-life of 4.9 * 1010 y that decays 
into 87Sr. It is used to determine the age of rocks and fossils. Rocks containing the fossils 
of early animals contain a ratio of 87Sr to 87Rb of 0.010. Assuming that there were no 87Sr 
present when the rocks were formed, calculate the age of these fossils.
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11-86.	 In 1989, researchers claimed to have achieved fusion in an electrochemical cell at 
room temperature. They claimed a power output of 4 W from deuterium fusion reactions 
in the palladium electrode of their apparatus. (a) If the two most likely reactions are

2H + 2H S 3He + n + 3.27 MeV

and

2H + 2H S 3H + 1H + 4.03 MeV

with 50 percent of the reactions going by each branch, how many neutrons per second 
would we expect to be emitted in the generation of 4 W of power? (b) If one-tenth of these 
neutrons were absorbed by the body of an 80.0 kg worker near the device and if each 
absorbed neutron carries an average energy of 0.5 MeV with an RBE of 4, to what radia-
tion dose rate in rems per hour would this correspond? (c) How long would it take for a 
person to receive a total dose of 500 rems? (This is the dose that is usually lethal to half of 
those receiving it.)
11-87.	 Neutron activation analysis is used to study a small sample of automotive enamel 
found at the scene of a hit-and-run collision. The sample was exposed to a thermal neutron 
flux of 3.5 * 1012 neutrons>cm2 # s for 2.0 minutes. Placed immediately in a gamma-ray 
detector, it was found to have an activity of 35 Bq due to 60Co and 115 Bq due to 51Ti. 
Compute the total amount of each metal in the original sample. (The cross section for 59Co 
is 19 b; that for 50Ti is 0.15 b.)
11-88.	 A fusion reactor using only deuterium for fuel would have the following two reac-
tions taking place in it:

2H + 2H S 3He + n + 3.27 MeV

and

2H + 2H S 3H + 1H + 4.03 MeV

The 3H produced in the second reaction reacts immediately with another 2H to produce

3H + 2H S 4He + n + 17.7 MeV

The ratio of 2H to 1H atoms in naturally occurring hydrogen is 1.5 * 1024. How much 
energy would be produced from 4 liters of water if all of the 2H nuclei undergo fusion?
11-89.	 (a) Using the Compton scattering result that the maximum change in wavelength 
is Dl = 2hc>Mc2 and the approximation DE  hcDl>l2, show that for a photon 
to lose an amount of energy Ep to a proton, the energy of the photon must be at least 
E = 3 11>22Mc2

 Ep41>2. (b) Calculate the photon energy needed to produce a 5.7 MeV 
proton by Compton scattering. (c) Calculate the energy given a 14N nucleus in a head-on 
collision with a 5.7 MeV neutron. (d ) Calculate the photon energy needed to give a 14N 
nucleus this energy by Compton scattering.
11-90.	 A photon of energy E is incident on a deuteron at rest. In the center-of-mass refer-
ence frame, both the photon and the deuteron have momentum p. Prove that the approxi-
mation p  E>c is good by showing that the deuteron with this momentum has energy 
much less than E. If the binding energy of the deuteron is 2.22 MeV, what is the threshold 
energy in the lab for photodisintegration?

Level III
11-91.	 (a) Compute the binding-energy differences between the two nuclides of the mir-
ror pairs (7Li, 7Be), (11B, 11C), and (15N, 15O). (b) From each value computed in (a), deter-
mine a value of the constant a3 in Equation 11-14. Compare each value and their average 
with the value given in Table 11-3.
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11-92.	 (a) Differentiate the Weizsäcker empirical mass formula with respect to Z, as in 
Problem 11-46, and show that the minima of the constant A curves that result, that is, Z 
values for the most stable isotopes, are given by

Z =
A

2
≥

1 +
1mn - mp2c2

4a4

1 +
a3 A2>3

4a4

¥

(a) Determine the atomic number for the most stable nuclides for A = 29, 59, 78, 119,
and 140. (c) Compare the results in (b) with the data in Appendix A and discuss any 
differences.
11-93.	 (a) Use Figure 11-35 to make a diagram like Figure 11-9 for the ground state of 
11B. What do you predict for the value of j for this state? (b) The first excited state of 11B 
involves excitation of a proton. Draw the diagram for this state and predict its j value.
(c) The j value for the second excited state is 5>2. Draw a diagram of the nucleons like 
Figure 11-9 that could account for that value. (d ) Repeat parts (a) and (b) for 17O, where 
the excitation of the first excited state involves a neutron. (e) The j value for the second 
excited state of 17O is 1>2. Draw a diagram like Figure 11-9 that would explain that value.
11-94.	 Approximately 2000 nuclides remain to be discovered between the proton and 
neutron driplines in Figure 11-15b. Consider those that lie on the energy parabola (see 
Figure 11-22a) for A = 151, whose only stable isotope is 151Eu. (a) From the data in 
Appendix A, draw an accurate diagram of the A = 151 parabola showing known nuclides 
and those yet to be discovered between Z = 50 and Z = 71. (b) Determine where the edges 
of the driplines lie for A = 151, that is, the lowest mass isotopes for which spontaneous 
proton or neutron emission becomes possible.
11-95.	 There are theoretical reasons to expect that a cluster of relatively long-lived 
nuclides will exist in the neighborhood of the doubly magic nucleus with Z = 126 and
N = 184, the latter being the next magic number beyond 126 predicted by the shell model. 
(a) Compute the mass of this exotic nucleus using Equation 11-14. (b) Computing the 
necessary masses of the nearby nuclei, predict the decay modes that would be available to 
the doubly magic nucleus.
11-96.	 Assume that a neutron decays into a proton plus an electron without the emission 
of a neutrino. The energy shared by the proton and electron is then 0.782 MeV. In the rest 
frame of the neutron, the total momentum is zero, so the momentum of the proton must 
be equal and opposite that of the electron. This determines the relative energies of the 
two particles, but because the electron is relativistic, the exact calculation of these rela-
tive energies in somewhat difficult. (a) Assume that the kinetic energy of the electron is
0.782 MeV and calculate the momentum p of the electron in units of MeV>c. (Hint: Use 
Equation 2-32.) (b) From your result for (a), calculate the kinetic energy p2>2mp of the 
proton. (c) Since the total energy of the electron plus proton is 0.782 MeV, the calculation 
in (b) gives a correction to the assumption that the energy of the electron is 0.782 MeV. 
What percentage of 0.782 MeV is this correction?
11-97.	 Radioactive nuclei with a decay constant of l are produced in an accelera-
tor at a constant rate Rp. The number of radioactive nuclei N then obeys the equation 
dN>dt = Rp - lN. (a) If N is zero at t = 0, sketch N versus t for this situation. (b) The 
isotope 62Cu is produced at a rate of 100 per second by placing ordinary copper (63Cu) in a 
beam of high-energy photons. The reaction is

g + 63Cu S 62Cu + n

62Cu decays by b decay with a half-life of 10 minutes. After a time long enough so that 
dN>dt  0, how many 62Cu nuclei are there?
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11-98.	 The (4n 1 3) decay chain begins with 235U and ends on 207Pb. (a) How many a 
decays are there in the chain? (b) How many b decays are there? (c) Compute the total 
energy released when one 235U atom decays through the complete chain. (d ) Assuming no 
energy escapes, determine the approximate temperature rise of 1 kg of 235U metal over the 
period of 1 year.
11-99.	 Energy is generated in the Sun and other stars by fusion. One of the fusion cycles, 
the proton-proton cycle, consists of the following reactions:

 1H + 1H S 2H + b+ + ne

 1H + 2H S 3He + g

followed by either

3He + 3He S 4He + 1H + 1H

or

1H + 3He S 4He + b+ + ne

(a) Show that the net effect of these reactions is

4 1H S 4He + 2b+ + 2ne + g

(b) Show that the rest mass energy of 24.7 MeV is released in this cycle, not counting the 
2 * 0.511 MeV released when each positron meets an electron and is annihilated accord-
ing to e1 1 e2 S 2g. (c) The Sun radiates energy at the rate of about 4 * 1026 W. Assum-
ing that this is due to the conversion of four protons into helium plus g rays and neutrinos, 
which releases 26.7 MeV, what is the rate of proton consumption in the sun? How long 
will the Sun last if it continues to radiate at its present level? (Assume that protons consti-
tute about half the total mass of the Sun, which is about 2 * 1030 kg.)
11-100.	 The fusion reaction between 2H and 3H is

3H + 2H S 4He + n + 17.7 MeV

Using the conservation of momentum and the given Q value, find the final energies of 
both the 4He nucleus and the neutron, assuming that the initial momentum of the system 
is zero.
11-101.	 (a) A particular light-water 235U-fueled reactor had a reproduction factor of 1.005 
and an average neutron lifetime of 0.08 s. By what percentage will the rate of energy pro-
duction by the reactor increase in 5 s? (b) By what fraction must the neutron flux in the 
reactor be reduced in order to reduce the reproduction factor to 1.000?
11-102.	 Compute the reproduction factor for uranium enriched to (a) 5 percent and
(b) 95 percent in 235U. Compute the corresponding fission rate doubling time in each case. 
Assuming no loss of neutrons and the release of 200 MeV>fission, at what rate will energy 
be produced in each case 1.0 s after the first fission occurs?
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Notwithstanding the speculations of the ancient Greek natural philosopher 
Democritus (about 450 b.c.) and Dalton’s atomic theory of matter (1808),1 the 

story of particle physics really began with the discovery of the electron by Thomson 
in 1897 (see Section 3-1). That event was followed in 1913 by Rutherford’s discovery 
of the atomic nucleus, whose lightest example, that of hydrogen, he named the proton 
(see Section 4-2). As one moved upward through the periodic table of the elements, a 
dilemma arose caused by the more rapid increase of the atomic mass compared to that 
of the nuclear charge, even though both were presumably due to the protons bound 
together in the nucleus. That problem was solved in 1932 by Chadwick’s discovery of 
the neutron (see Section 11-1). In the meantime Einstein had proposed (in 1905) that 
Planck’s quantization of blackbody radiation was in fact a quite general property of 
the electromagnetic field (see Sections 3-2 and 3-3). Einstein’s suggestion was not 
widely accepted until, over the next 20 years, Millikan’s thorough experimental 
investigation of the photoelectric effect and Compton’s discovery and explanation of 
the Compton effect provided incontrovertible evidence for the quantization of electro-
magnetic radiation, the field quantum being a particle we now call the photon. For a 
brief time, it was thought these four were the “elementary” particles from which all 
matter was formed. But then Anderson discovered the positron, or antielectron, later 
in 1932. Shortly thereafter, the muon, pion, and many other particles were discovered 
in searches that have intensified and continued down to the present.

During the past 50 years several nations have constructed increasingly larger and 
more sophisticated particle accelerators capable of producing greater and greater 
energies with the goals of testing the predictions of current theories and searching for 
additional particles predicted by them. Initially, an important consideration in such 
complex experiments, which often involve hundreds of scientists from many nations, 
was the question of how to tell if a particle is truly elementary or composed of a com-
bination of other particles. For example, both the proton and neutron were once 
thought to be elementary, but probing with high-energy (short-wavelength) electron 
beams revealed that the nucleons have internal structure, just as do atoms and nuclei. 
Each of the nucleons was found to be a composite particle consisting of three still 
more fundamental particles called quarks. Several hundred particles have at one time 
or another been considered to be elementary, but a series of brilliant theoretical 
achievements over that same 50-year period vastly expanded our understanding of the 
“particle zoo.” The culmination of these achievements is the Standard Model, which 
has been spectacularly successful in explaining and predicting the properties and 
interactions of particles by describing them in terms of a relatively small number of 
truly (for now, at least) elementary particles. Research at universities and at the giant 
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accelerator laboratories around the world continues to strengthen our understanding 
of the structure of matter. In addition to the usual particle properties of mass, charge, 
and spin, research has unveiled new properties that have no classical analogs, some 
given whimsical names such as strangeness, charm, and color. Coincident with the 
construction of the large accelerators has been the development and deployment of 
larger and more sensitive particle detectors at the big machines and, for neutrinos, 
deep underground, within the oceans, and buried in the polar ice cap.

In this chapter, we will first look at a few basic concepts that will enable us to 
classify and describe particles. We will then consider the fundamental interactions 
between particles and the conservation laws that apply to them. Central to our discus-
sions will be the current theory of elementary particles, the Standard Model, in which 
all matter in nature—from the most exotic particles produced in the giant accelerator 
laboratories to ordinary grains of sand—is constructed from just three groups of elemen-
tary particles: leptons, quarks, and the particles that mediate interactions between them.

12-1  Basic Concepts 
Antiparticles
The Positron  In the same year that the neutron was discovered, the positron 
was discovered (and named) by Carl Anderson.2 This particle has the same mass 
and intrinsic angular momentum as the electron but has positive charge; therefore, 
its intrinsic magnetic moment is parallel, rather than antiparallel, to its spin. It is 
the antiparticle of the electron and is represented by the symbol e1, or sometimes in 
radioactive decay equations by b1. The existence of the positron had been predicted 
by Dirac from his relativistic wave equation,3 though at the time there was some 
difficulty about the interpretation of this prediction (see Section 2-4).

The energy of a relativistic particle is given by Equation 2-31:

	 E2 = 1pc22 + 1mc222	 2-31

from which we can write

	 E = { 3 1pc22 + 1mc22241>2	 12-1

The construction of large 
particle accelerators 
in various countries 
has, over the years, 
been an impetus for 
developing bigger and 
better superconducting 
electromagnets. The LHC 
at CERN has 1232 large, 
superconducting dipoles 
among its 9300 liquid-
helium cooled magnets. 
High-field, efficient 
superconducting magnets 
are used in applications 
ranging from medical 
diagnostic magnetic 
resonance imaging (MRI) 
systems to magnetically 
levitated (maglev) trains.

(a) (b) (c) (d ) (e)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory began colliding gold nuclei (fully ionized gold 
atoms) late in 2000, each of the ions moving at 99.99 percent of the speed of light. (a) through (d ) are simulations of the 
accelerating Au nuclei at several stages. (a) Two Lorentz-contracted ions approach each other. (b) The collision “melts” the 
protons and neutrons and (c) for an instant releases the quarks and gluons from which the nucleons were formed. (d ) From the 
enormous energy of the collision thousands more are caused, creating in turn thousands of particles. (e) Computer construction 
of the tracks of the thousands of particles created in a single collision of two gold ions. [Courtesy Brookhaven National 
Laboratory, STAR experiment.]
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Though we can usually choose the plus sign and ignore the negative-energy solution 
with a “physical argument,” the mathematics of the Dirac equation requires the exis-
tence of wave functions corresponding to these negative-energy states. Dirac postu-
lated that all the negative-energy states were filled with electrons. Electrons in the 
negative-energy states would exert no net force on anything and thus would not be 
observable. Dirac invoked the exclusion principle to suggest that only holes in this 
“infinite sea” of negative-energy states would be observable. The holes would act as 
positive charges with positive energy. Anderson’s discovery of a particle with mass 
identical to that of the electron but with positive charge seemed to indicate that this 
interpretation was reasonable, since the positron is produced simultaneously with an 
electron in pair production (see Figure 12-1).

Air view of the European 
Organization for Nuclear 
Research (CERN) just 
outside of Geneva, 
Switzerland. The large 
circle marks the Large 
Hadron Collider (LHC) 
tunnel, which is 27 kilo
meters in circumference. 
The irregular dashed line is 
the border between France 
and Switzerland (in the 
foreground). Following 
repairs necessitated by a 
serious accident during 
initial start-up tests, the 
LHC began operations in 
2010. [CERN.]

γ

e–e+

γ

e–e+

γ

e–e+

Figure 12-1  Tracks of electron-positron pairs produced by 300 MeV synchrotron x rays at 
the Lawrence Livermore Laboratory. The magnetic field in the chamber points out of the page. 
[Photo courtesy of Lawrence Radiation Laboratory, University of California, Berkeley.]
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For Every Particle, an Antiparticle  The notion that we are immersed in 
an infinite sea of negative-energy electrons is an unsettling one, however. It was 
rendered unnecessary with the development of quantum electrodynamics (QED) by 
Feynman4 and others in the late 1940s. The negative-energy solutions of the Dirac 
equation were re-expressed as positive-energy solutions of a new particle—the 
positron—and the need for the invisible “sea” of electrons with its mysterious “holes” 
vanished. However, Dirac’s prediction of an antielectron turned out to be farsighted. 
QED, whose predictions have been verified to the highest precision of any physical 
theory, requires that every particle must have a corresponding antiparticle with the 
same mass but opposite electric charge. For example, the theory predicts that protons 
and neutrons, which are both spin@1>2 particles whose wave functions are solutions 
of the Dirac equation, should have antiparticles. The creation of a proton-antiproton 
pair requires at least 2mp c2 = 1877 MeV, which was not available except in cosmic 
rays until the development of high-energy accelerators in the 1950s. The antiproton 
(designated p) was discovered by Segrè5 and Chamberlain at Berkeley in 1955 using 
a beam of protons with kinetic energy 6.2 GeV from the Bevatron particle accelerator 
(see Figure 12-2). The antineutron (n), a particle with the same mass as the neutron 
but with a positive magnetic moment, was discovered two years later. (The standard 
notation for an antiparticle is the overbar; however, in many cases it is customary to 
specify the charge instead, as we did for the positron.)

Particles with integral spin, whose wave functions are not solutions of the Dirac 
equation, also have antiparticles. For example, those with zero spin, which are 
described by the Klein-Gordon relativistic wave equation (see Equation 11-52), 
include the pions, thought in the early days (circa 1940) to be the mediating exchange 
particle, or force carrier, of the nuclear force. In general, an antiparticle has exactly 
the same mass as the particle but with electric charge, baryon number, and strange-
ness (see Section 12-4) opposite in sign to that of the particle.

Although the positron is stable, it has only a short-term existence in our universe 
because of the large supply of electrons in matter. The fate of the positron is annihila-
tion according to the reaction

	 e+ + e- S g + g  or  e+ + e- S g + g + g	 12-2

Whether bound (as positronium—see Section 2-4) or unbound, annihilation occurs 
from S states (zero orbital angular momentum), the antiparallel spins 1S state produc-
ing two quanta as on the left in Equation 12-2, the parallel spins 3S state producing 

Figure 12-2  Bubble chamber tracks showing 
creation of proton-antiproton pair in the 
collision of an incident 25 GeV proton from 
the Brookhaven Alternating Gradient 
Synchrotron with a liquid hydrogen nucleus 
(stationary proton). The reaction is 
p + p S p + p + p + p. The energy 
necessary to create the pair is 2mpc

2 =

1.877 GeV in the center of mass system. 
A relativistic calculation in the laboratory 
frame shows that the beam protons must 
have at least 6mpc

2  5.6 GeV to reach 
the reaction threshold. [Photo courtesy of 
R. Ehrlich.]
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three photons. The fact that we call electrons particles and positrons antiparticles 
does not imply that positrons are less fundamental than electrons but was initially 
merely an arbitrary choice reflecting the nature of our part of the universe. If our mat-
ter were made up of negative protons, positive electrons, and neutrons with positive 
magnetic moments, then particles such as positive protons, negative electrons, and 
neutrons with negative magnetic moments would suffer quick annihilation and would 
probably be called the antiparticles. Antihydrogen atoms (an antiproton and a posi-
tron) were first produced “hot” in the antiproton beam at the European Organization 
for Nuclear Research (CERN) in 1995. In 2010 the CERN ALPHA experiment pro-
duced substantial numbers of “cold” (slow) antihydrogen using the atom’s magnetic 
moment to trap the anti-atoms in a magnetic field for more than 170 ms. Very recently 
(2011) the CERN ALPHA experiment successfully produced and trapped more than 
300 antihydrogen atoms for 1000 s (just over 16 min). This new ability should make 
possible definitive comparisons of the physical properties of antihydrogen with those 
of ordinary hydrogen; for example, whether matter and antimatter are affected identi-
cally by the gravitational force. The matter-antimatter asymmetry of the universe, that 
is, why our universe consists of matter with essentially no antimatter despite the pre-
diction of QED and the symmetry of the relativistic wave equation, is a question we 
will return to later in this chapter and in Chapter 13. The STAR experiment at the 
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has pro-
duced the heaviest antinucleus as of this writing (mid-2011), 18 antihelium-4 nuclei, 
by colliding fully ionized relativistic gold nuclei (see photo on page 580).

EXAMPLE 12-1	 Proton-Antiproton Annihilation ​ A proton and an antiproton 
at rest annihilate according to the reaction (standard particle physics notation typi-
cally omits the 1 signs in reaction equations):

p p S g g

Find the energies and wavelengths of the photons.

SOLUTION
Since the proton and the antiproton are at rest, conservation of momentum requires 
that the two photons created in their annihilation have equal and opposite momenta 

The tunnel of the Large 
Hadron Collider at CERN 
showing the beam pipe, 
cryogenic piping, and a few 
of the 9300 superconducting 
magnets that encircle the 
27 km accelerator ring. The 
same bending and focusing 
magnets can be used for 
positively or negatively 
charged particles moving 
in opposite directions. 
Technicians move through 
the long tunnel on bicycles 
and electric carts. The LHC, 
the largest machine in the 
world, began scientific 
operations in 2010. [CERN.]
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and therefore equal energies. Since the total energy on the left side of the reaction is 
2mp  c2, the energy of each photon is

Eg = mp  c2 = 938 MeV

The wavelength is

 =
c

f
=

hc

hf
=

hc

Eg

=
1240 eV # nm

9.38 * 108 eV
= 1.32 * 10-15 m = 1.32 fm

Feynman Diagrams
As a part of quantum electrodynamics Feynman developed a wonderfully clear yet 
powerful technique for describing all electromagnetic phenomena. Like QED itself, 
the technique of Feynman diagrams is so good that it is used as a model by other 
quantum field theories (notably quantum chromodynamics, or QCD, which we will 
discuss in Section 12-4). The detailed rules for drawing Feynman diagrams are 
directly related to the equations of QED and are beyond the scope of our discussions 
here; however, a brief description of a simplified version of the diagrams and a few 
basic rules will be ample for our use in illustrating the phenomena of interest in this 
chapter. (For a more complete discussion of Feynman diagrams refer to D. J. Griffiths, 
Chapter 2, cited in the General References section.)

Feynman diagrams are spacetime diagrams, that is, ct versus x graphs, similar to 
those developed and used in Chapters 1 and 2. In particle physics Feynman diagrams 
are used to describe interactions at the level of quarks, leptons, and the mediators of 
the interactions and to compute lifetimes and cross sections for events. As noted in 
Figure 11-28, where a Feynman-like diagram was used to illustrate the early view of 
the p meson as the mediator of the nuclear force, the ct and x axes are normally not 
drawn. In this chapter, as in the earlier relativity chapters, time (ct) is positive upward. 
(Particle physicists often draw the diagrams with time flowing horizontally toward 
the right; there is no convention.) Particles are represented by straight lines with 
an arrow. A particle line whose arrow points backward in time is interpreted as the 
corresponding antiparticle moving forward in time. The arrows allow us to omit the 
overbars in the diagrams. The lines are symbolic and do not represent the particle tra-
jectories. The rules for analyzing the diagrams, the details of which are beyond the 
scope of our discussions, force conservation of energy and momentum at each vertex. 
It is the interactions that we are interested in describing. Particles that are their own 
antiparticles, such as the photon, have no arrows and are represented by wiggly or 
broken lines of various sorts. All electromagnetic phenomena can be represented by 
the combinations of the process illustrated in Figure 12-3, called the primitive vertex. 
Interactions occur at the vertices. This diagram is read as follows: a moving charged 
particle enters, emits (or absorbs) a photon, and leaves. The primitive vertex is not 
itself a complete Feynman diagram but rather the basic unit from which complete 
diagrams are constructed.

Let’s examine the Feynman diagrams for a few familiar events. In Figure 12-4a, 
two electrons enter, exchange a photon, and then leave. That’s Coulomb repulsion of 
like charges.6 Figure 12-4b represents Coulomb attraction of opposite charges. These 
serve to illustrate one more rule: Particle lines that both begin and end within the dia-
gram are virtual particles; that is, like Yukawa’s exchange pion in Section 11-5, they 
are not, indeed, cannot be observed in the laboratory. Note that a virtual particle need 
not have the same mass as the corresponding real particle: it is energy and momentum 
that are conserved at vertices, not mass. Only lines that enter or leave the diagram 

Richard Feynman, who 
called himself a “curious 
character,” shared the 1965 
Nobel Prize in Physics for 
his contributions to the 
development of quantum 
electrodynamics. [American 
Institute of Physics, Emilio 
Segrè Visual Archives, 
Physics Today Collection.]

γ
e

e

Figure 12-3  The primitive 
vertex of the Feynman 
diagram. The particle, shown 
as an electron, could be a 
proton or any other particle 
that feels the electromagnetic 
force. Note that the photon line 
has no arrow. The primitive 
vertex should be thought of 
as a “building block,” 
combinations of which form 
complete Feynman diagrams.
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represent real, observable particles and these do, of course, have the proper mass. The 
diagram makes clear why we say that the electromagnetic force is mediated by pho-
tons. Figure 12-5a illustrates Compton scattering. Figure 12-5b is another diagram 
that describes electron-positron scattering (Coulomb attraction) and includes both 
pair production (upper part) and pair annihilation (lower part). This points up the fact 
that there may be many diagrams representing any given reaction.7 For example, 
Figure 12-5c is also a possible pair annihilation. With this introduction we will now 
use simple Feynman diagrams throughout the remainder of this chapter to visualize 
interactions that might otherwise be very difficult to understand.

EXAMPLE 12-2	 Feynman Diagram of Particle-Antiparticle Creation ​ In 
Section 2-4 we described the production of an electron-positron pair. Construct a 
Feynman diagram that illustrates this process.

SOLUTION
Consider the primitive vertex as an electron-photon interaction as below, left. Using 
the rules outlined above and noting that the now-virtual electron exists for too short 
a time to be measured, we draw its line horizontal; that is, with D(ct) = 0. The 
positron interacts with a photon at the second primitive vertex. Together the two 
diagrams depict the creation of an electron-positron pair.

e
ee

e e
��

γ γ γ γ

e

Other, so-called higher-order diagrams representing pair production are also 
possible. Can you draw one?

γ
e

e

e
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γ
e
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Figure 12-4  Feynman diagrams 
describing (a) Coulomb repulsion 
of charges of the same sign and 
(b) Coulomb attraction between 
charges of opposite signs.
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(b)
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Figure 12-5  (a) The Compton effect. A photon enters and is absorbed by an electron, 
which then emits a photon and leaves. (Note that time, ct, is positive to the right in this 
diagram.) (b) At the lower vertex an electron and a positron enter and annihilate, producing 
a photon. At the upper vertex the photon creates a particle-antiparticle pair. (c) Another 
possible pair annihilation process.
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Questions

1.	 What problem might arise in using Dirac’s filled infinite sea of negative energy 
states to explain the existence of particle-antiparticle pairs of pions, whose spins 
are zero?

2.	 Why do electron-positron pairs annihilate mainly from S states?

Leptons and Quarks
Since Thomson discovered the electron, theoretical and experimental research in 
particle physics has revealed the existence of 62 fundamental particles and antiparti-
cles, fundamental in the sense that they have no internal structure as far as we can tell 
with current technology. This is not to say that this is all that exist. In fact, an impor-
tant task of CERN’s Large Hadron Collider is to search for the predicted Higgs boson, 
which may be the key to explaining the origin of mass, and to test current theoretical 
predictions of supersymmetry (SUSY) that suggest the existence of a “superpartner” 
for each of the known fundamental particles (see Section 12-5).

Many particles with electric charge were first “seen” in the particle detectors 
of  experimental searches. The existence of many electrically neutral particles was 
deduced indirectly by applying conservation laws, particularly energy and momen-
tum, to interactions that included charged particles recorded by particle detectors. 
Still others, both charged and neutral, remain unseen directly or indirectly. These 
are the quarks and the force carriers that bind them together, the gluons. Nevertheless, 
we are confident of their existence because their properties and interactions are so 
successfully explained by the Standard Model of particle physics, which is second 
only to QED in the precision of its predictions. We will be discussing the Standard 
Model and its relation to the fundamental interactions and conservation laws through-
out the rest of this chapter. In this section we will introduce the classifications of 
the quarks and leptons in generations and flavors and list a few of their physical 
properties. Once you are familiar with general characteristics, we will discuss their 
properties and interactions more thoroughly.

Leptons  There are three generations of leptons,8 each consisting of a charged lepton 
and its related neutrino, as shown in Table 12-1. The electron is the most familiar of 
the charged leptons and the only one that is stable. Each charged lepton has a distinct 
antiparticle. The Standard Model assigns each lepton a weak isospin Tz, the z com-
ponent of a quantum mechanical property represented by the vector T that is loosely 
analogous to spin (see Section 12-3). For each neutrino there is also an antineutrino, 
although at this point in time it is possible that the two are not distinct; that is, each 
neutrino may be its own antiparticle (a so-called Majorana neutrino), much as the 
photon is its own antiparticle. Investigating that possibility is an active area of current 
research. Unlike the quarks, as we will see, there are no lepton-lepton bound states. 
We also refer to leptons as having three flavors: electron, muon, and tau. We will use 
this terminology in Section 12-5 in a discussion of neutrino mass.

Quarks  As with leptons, the six quarks are grouped into three generations. All have 
fractional electric charge and distinct antiparticles. As we will learn in the following 
sections, it is the quarks and antiquarks that bind together in a multitude of ways to 
form more than 200 particles, accounting for the vast majority of the visible mass of 
the universe. The bound states of the quarks and antiquarks are called hadrons (from 
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the Greek hadros, meaning “robust”). There are two subgroups of hadrons. Three-
quark combinations are called baryons (from the Greek barys, meaning “heavy”), of 
which the proton and neutron are the two most common examples. Quark-antiquark 
pairs form the mesons. The term meson, derived from the Greek mesos, meaning 
“middle,” was chosen because the first mesons discovered (the pions) had masses 
intermediate between those of the electron and the proton; however, many mesons 
heavier than the proton were subsequently discovered, so the name is no longer an 
indicator of the masses of these hadrons. For reasons we will discuss in Section 12-4, 
single, or “free” quarks have not been nor seem likely to be observed. Table 12-2 
records basic descriptions of the quarks.

Each quark in the table also has an additional property, analogous to electric 
charge, called color, or color charge. Color has three possible values: red, blue, 
and green. So, for example, there are three different u quarks, each carrying one unit 
of color (positive): ur , ub, and ug. The antiquarks each carry one unit of anticolor 
(negative), just as they have opposite electric charge, so the three anti-u quarks are the 
ur, ub, and ug. Of course, these terms have nothing to do with the usual meanings of 

 Table 12-1  The leptons

Lepton (l) Symbol Charge (e)
Weak 

isospin Tz

Mass  
(MeV/c 2 ) Lifetime (s) Spin (U)

1st generation electron e 21 -  12 0.5110 stable 1
2

electron neutrino ne 0 1
2 …2.2 eV>c2 stable 1

2

2nd generation muon m 21 -  12 105.659 2.197 * 1026 1
2

muon neutrino nm 0 1
2 …3.5 eV>c2 stable 1

2

3rd generation tau t 21 -  12 1784 3.3 * 10213 1
2

tau neutrino nt 0 1
2 …8.4 eV>c2 stable 1

2

 Table 12-2  The quarks

Quark (q) Symbol Charge (e)
Weak  

isospin Tz

Mass  
(MeV/c  2  ) Spin (U)

Baryon 
number

1st generation up u 2
3

1
2

336 1
2

1
3

down d -  13 -  12 338 1
2

1
3

2nd generation charm c 2
3

1
2

1,500 1
2

1
3

strange s -  13 -  12 540 1
2

1
3

3rd generation top t 2
3

1
2

174,000 1
2

1
3

bottom b -  13 -  12 5,000 1
2

1
3
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the words color, red, blue, and green. They are simply labels that are used to describe 
a particular quantum-mechanical property of the particles, a choice that will turn out, 
perhaps unexpectedly, to be very convenient (see Section 12-4). Like electric charge, 
color charge is conserved. Quarks with 2e>3 electric charge (see Table 12-2) are 
up-type quarks (up, charm, and top), and those with -e>3 are referred to as down-
type quarks (down, strange, and bottom). As with the leptons, the Standard Model also 
assigns each quark a weak isospin Tz. The up-type quarks have Tz = 1>2; the down-
type quarks have Tz = -1>2. Notice in Table 12-2 that each of the quark generations 
is an isospin doublet. The Standard Model provides for an equal number of lepton and 
quark generations, as you see are contained in Tables 12-1 and 12-2. We refer to the 
quarks as being of six flavors (up, down, charm, strange, top, bottom); for example, 
the down quark and antiquark are of the “down flavor.” Altogether, Table 12-2 repre-
sents 36 quarks and antiquarks. Like the leptons, the quarks are all fermions.

12-2  Fundamental Interactions and 
the Force Carriers 
All the different forces observed in nature, from ordinary friction to the tremendous 
forces involved in supernova explosions, can be understood in terms of the four basic 
interactions that occur among elementary particles. In order of decreasing strength, 
these are

1.	 The strong interaction

2.	 The electromagnetic interaction

3.	 The weak interaction

4.	 The gravitational interaction

Molecular forces and most of the everyday forces that we observe between macro-
scopic objects (for example, friction, contact forces, and forces exerted by springs 
and  strings) are complex manifestations of the electromagnetic interaction, which 
occurs between all particles that carry electric charge. Although gravity, the inter
action between all particles with mass, plays an important role in our lives, it is so 
weak compared with other forces that its role in the interactions between elementary 
particles is essentially negligible. The weak interaction acts between particles that 
carry weak charge and describes, among others, the interaction between electrons or 
positrons and nucleons that results in beta decay, which we discussed in Chapter 11. 
The strong interaction acts between particles that carry color charge and describes, 
for example, the force between nucleons that holds nuclei together. Some particles 
participate in all four interactions, whereas others participate in only some of them.

In 1979, Glashow, Salam, and Weinberg shared the Nobel Prize in Physics for 
development of the electroweak theory, successfully unifying theories of the electro-
magnetic and the weak interactions. This event, which came exactly 100 years after 
Maxwell had accomplished unification of the theories of electricity and magnetism, 
was a major advance toward achieving unification of the theoretical descriptions 
of the four basic interactions. Developing such a unified field theory has been a goal 
of physics for a long time, one that was vigorously sought without success by Einstein, 
among many others. As we will discuss in Section 12-4, the electroweak unification 
occurs only at high particle energies. Current efforts to unify the electroweak, strong, 
and gravitational interaction will be discussed in Section 12-5.
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The term “strength” of the interactions refers specifically to the relative mag
nitudes of the dimensionless coupling constants that multiply the fundamental 
space-dependent part of the potential energy function whose gradient determines 
the  particular force. The relative strengths stated below are only approximate 
since there is no unambiguous method of comparison, particularly for the weak inter-
action. As an example, the electric (Coulomb) potential energy of two charges is 
U1r2 = - 11>4p02e2>r. The multiplier of the space-dependent function 1>r is 
made dimensionless9 by dividing both sides of the equation by the quantity Uc:

	 V1r2 = U1r2 >Uc = -  
e2

4p0 U c
 
1
r

� 12-3

where V(r) is in m21. The quantity 1e2>4p0Uc2 you will recognize as the fine-
structure constant a  1>137, first encountered in our discussion of Bohr’s model of 
the hydrogen atom (see Section 4-3). The fine-structure constant is thus the coupling 
constant of the electromagnetic interaction. As we discovered in Chapter 4, energies 
resulting from this interaction are proportional to a2 and characteristic dimensions 
(e.g., the Bohr radius a0) are proportional to 1>a (see Equations 4-32 and 4-33). 
Moreover, the probability densities for atomic phenomena discussed in Chapter 7 are 
all directly dependent on the value of a (see Equation 7-32).

Just as Yukawa postulated the pion as the mediator, or carrier, of the force 
between nucleons (see Section 11-5), the Standard Model postulates one or more 
particles as the force carrier, or mediator, of each fundamental interaction. Each of 
these mediators, all of which the theory requires to be bosons, will be introduced in 
the following paragraphs concerned with each of the interactions.

Strong Interaction
All hadrons interact via the strong interaction. Of the two subgroups of hadrons, 
baryons (the three-quark combinations) have 1>2@integral spins (1>2, 3>2, 5>2, etc.). 
Mesons (the quark-antiquark combinations) have zero or integral spins. The range of 
the strong force is about 10215 m, or one fm (see Chapter 11). The coupling constant 
as of the strong interaction is approximately 1, or about 102 larger than the fine-
structure constant a of the electromagnetic force. Within the framework of the 
Standard Model, the strong force is due to color charge, analogous to the electromag-
netic force being due to electric charge. The mediator of the strong force is the gluon. 
Like the quarks, the gluons carry color charge, but with a difference. Each quark car-
ries one unit of one of the three color charges, but each gluon carries one unit of one 
of the three color charges (positive) and one unit of one of the three anticolor charges 
(negative). Since there are nine possible combinations of r, b, and g with r, b, and g, 
we expect nine different gluons; however, a technicality reduces that number to eight. 
One consequence of color-charged gluons is that the emission of a gluon by a quark 
can change the color (but not the flavor) of the quark. Another is that gluons can 
couple to other gluons (see Section 12-3). Since leptons do not carry color charge, 
they don’t participate in the strong interaction. Note, too, that the photon, the electro-
magnetic interaction’s counterpart to the gluon, does not carry electric charge.

The characteristic interaction time of the strong interaction is extremely short, 
only about 10223 s, meaning that an event caused by this interaction “happens” in this 
length of time. Thus, if the probability is to be high that two particles will interact via 
the strong force by exchanging a virtual particle, the two must remain within the 
range of the force for at least 10223 s. Similarly, particles that change into another 
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particle or particles, that is, decay due to the action of the strong force, do so within 
about 10223 s. This is about the time it takes light to travel a distance equal to the 
diameter of a nucleus.

Table 12-3 lists some of the properties of the hadrons that are stable against 
decay via the strong interaction, that is, those with lifetimes significantly longer than 
10223 s. Those that decay via the electromagnetic and weak interactions have much 
longer lifetimes, typically of the order of 10218 s and 10210 s, respectively. Notice that 
all baryons ultimately decay to a proton. Note, too, that the baryons cluster into 
“charge multiplets” of about the same mass: the nucleons (n and p) of mass about
939 MeV, the lambda mass about 1116 MeV, the S particles of mass about 1190 MeV, 
the J particles of mass about 1315 MeV, and the V of mass 1672 MeV. The differ-
ences in masses within multiplets (such as between the neutron and proton) are due 
primarily to differences in the masses of the constituent quarks (see Section 12-4). 
The energy of the electromagnetic field also makes a contribution to the mass differ-
ences. There are six mesons in Table 12-3: three pions, two kaons, and the eta parti-
cle. The mesons also cluster into charge multiplets. As with the baryons, the mass 
differences within each multiplet are due primarily to the mass differences of the 
constituent quarks. Note, however, that the mass of the p1 is exactly equal to that of 
the p2, as it must be since these particles are antiparticles of each other.

Being complex particles composed of other, more fundamental particles (quarks), 
the hadrons each have a ground state and a set of quantized excited states directly 

Lead sheet

π–

π0

e+
e+ e–

e–

γ γ

K –

A negative kaon (K2) enters a bubble chamber from the bottom and decays into a p2, which 
moves off to the right, and a p0, which immediately decays into two photons, whose paths are 
indicated by the dashed lines in the drawing. Each photon interacts in the lead sheet, producing 
an electron-positron pair. The spiral at the right is an electron that has been knocked out of an 
atom in the chamber. (Other extraneous tracks have been removed from the photograph.)
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analogous to the allowed energy levels of atoms and nuclei, which are of course 
also complex particles composed of other, more fundamental particles. These excited 
hadron states usually decay via the strong interaction and thus have large energy 
widths, as required by the uncertainty principle 1DE  U>Dt2 and in contrast to 
the  much slower atomic transitions and nuclear decays. Excited hadron states are 
usually observed as resonances in the cross section for scattering of one hadron on 
another and are for that reason also called resonance particles. We describe resonance 

 Table 12-3  Hadrons that are stable against decay via the strong interaction

Name Symbol
Mass  

(MeV/c  2  ) Spin (U)
Charge 

(e) Antiparticle
Mean  

lifetime (s)
Typical decay 

products*

Baryons

  Nucleon p (proton) or N1 938.3 1>2 11 p 71032 y

n (neutron) or N 0 939.6 1>2 0 n 930 p + e- + ve

  Lambda L0 1116 1>2 0 L 0 2.5 * 10210 p 1 p2

  Sigma S1 1189 1>2 11 S- 0.8 * 10210 n 1 p1

S0 1192 1>2 0 S  0 10220 L0 1 g

S2 1197 1>2 21 S+ 1.7 * 10210 n 1 p2

  Xi† J0 1315 1>2 0 J 0 3.0 * 10210 L0 1 p0

J2 1321 1>2 21 J+ 1.7 * 10210 L0 1 p2

  Omega V2 1672 3>2 21 V1 1.3 * 10210 J0 1 p2

 � Charmed 
lambda

L+
c 2285 1>2 11 Lc 1.8 * 10213 p 1 K 2 1 L1

Mesons

  Pion p1 139.6 0 11 p2 2.6 * 1028 m1 1 vm

p0 135 0 0 self 0.8 * 10216 g 1 g

p2 139.6 0 21 p1 2.6 * 1028 m- + vm

  Kaon K1 493.7 0 11 K2 1.24 * 1028 p1 1 p0

K 0 497.7 0 0 K 0 0.88 * 10210

and

5.2 * 1028 ‡

p1 1 p2

p+ + e- + ve

  Eta  0 549 0 0 self 2 * 10219 g 1 g

*Other decay modes also occur for most particles.
†The J particle is sometimes called the cascade.
‡The K 0 has two distinct lifetimes, sometimes referred to as K 0

short and K 0
long. All other particles have a unique lifetime.
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particles more thoroughly in the More section Resonances and Excited States on the 
home page (see page 609).

Electromagnetic Interaction
This is the dominant interaction at scales larger than subatomic, the realm of the 
strong interaction, and smaller than astronomical, where the gravitational interaction 
rules. All particles that carry electric charge or have a magnetic moment participate 
in  the electromagnetic interaction. In addition, neutral particles without magnetic 
moments may also participate in the interaction if the emission of virtual particles 
results in charged particles. A neutron emitting and re-absorbing a virtual p2 as 
shown in Figure 12-6 is an example of a neutral particle involved in an electro
magnetic interaction. The range of the electromagnetic force is infinite, and its 
strength is about 1>137 times that of the strong interaction, as we discussed earlier. 
Its characteristic interaction time is about 10218 s. According to QED, the mediator 
of the electromagnetic force is the photon. In contrast to the gluon, the photon does 
not carry electric charge. Decays via the electromagnetic interaction generally result 
in the emission of one or more photons, although there are a few exceptions; for 
example, p0 S  e1e2. Notice in Table 12-3 that the S0, p0, and 0 decay via the elec-
tromagnetic interaction.

Weak Interaction
All quarks and leptons participate in the weak interaction. The range of the weak 
force is about 10218 m or about 1023 fm, considerably smaller than the strong force. 
Example 12-3 shows how the range of the weak force is determined. Its characteristic 
interaction time varies from about 10216 s to about 10210 s. No particular name is 
given to the source of the weak force, although it is occasionally called the weak 
charge or flavor charge, in analogy with electric charge. The strength of the weak 
interaction relative to the strong interaction is about 1025. The weak force is carried 
by three particles, the charged weak force by the W1 and W2 (W for “weak”) and the 
neutral weak force by the Z 0 (Z for “zero”). All three have spin 1 and thus are bosons. 
A very important aspect of the weak force is that interactions mediated by the W { 
turn one quark flavor into another. The weak interaction does not, however, change 
the lepton flavor. The mediation of three typical weak interactions, the scattering of a 
muon neutrino by an electron, the scattering of an electron neutrino and a muon, and 
the inverse beta decay of a proton are illustrated in Figure 12-7.

The need to transfer 
rapidly enormous 
volumes of data 
collected by detectors 
at the major particle 
physics laboratories 
throughout the world 
to the thousands of 
collaborating scientists in 
many countries led to the 
development of the World 
Wide Web at CERN.

p

n

n

π–

Figure 12-6  A neutron 
emits a virtual p2. During 
the time Dt that the positive 
proton and the p2 exist, 
they can interact with other 
charged particles. After time 
Dt the p2 is reabsorbed by 
the proton.

(a)
e

e

νµ

νµ

Z 0

(c)
p

n

e

νe

W –

(b) µ

µνe

νe

W +

Figure 12-7  (a) The scattering of a muon neutrino from an electron involves the exchange of a Z 0. Such an exchange is called
a neutral current interaction. The interaction does not convert the electron into a muon neutrino. (b) The scattering of an electron 
neutrino from a muon may also occur via a neutral current interaction as in (a), but a charged current interaction in which a 
charged W is exchanged is also possible, and both would contribute to the cross section. Measuring the cross sections thus 
provides a means of testing the standard model. (c) Inverse beta decay also proceeds via a charged current interaction.
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The mediators of the weak interaction were all discovered in 1983 by C. Rubbia 
and a large international team of coworkers after a long search using the pp collider at 
CERN10 that was specifically designed for the task (see Figures 12-8 and 12-9). The 
Z 0 is the second-heaviest elementary particle known, with a mass of 91 GeV>c2 or 
nearly 100 times that of the proton. The W {, with masses of 80 GeV>c2, are the next 
heaviest.

(b)

300360
140

90
θ
40

60120180
φ

240
0

(a)

Figure 12-8  (a) The production and subsequent decay of one of the first W bosons ever detected was 
recorded by the UA1 detector at the CERN SppS proton-antiproton collider. A pp collision occurs at the 
center. A W1 is produced, which decays by W1 S  t1 1 nt. The tau decays into charged particles, clearly 
seen as the thicker pencil jet in the central detector directed nearly vertically downward. Conservation of 
energy and momentum for all particle tracks produced yield results consistent with a missing nt from the 
decay. [CERN.] (b) The UA1’s energy detectors surrounding the beam pipe recorded the energetic t1 and 
its angular position relative to the decay event. Energy is plotted vertically upward.

(b)

e1
e2

φ θ

10 GeV

360°
140°

90°
40°

270° 180° 90° 0°
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Figure 12-9  (a) This computer reconstruction of the CERN UA1 detector shows the first Z 0 decay ever recorded, obtained by 
Rubbia’s group in 1983. Millions more such events have since been seen. [CERN Courier, 33, 4 (1993).] (b) The energy plot of 
the electron-positron pair from the Z 0 S  e1 1 e2 decay. Energy, plotted vertically, is measured by individual detectors that 
“wrap around” the central cylinder of the UA1. The angular locations of the recorded electron and positron are measured relative 
to the position of the Z 0. Graphs such as this are called “Lego plots.”
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EXAMPLE 12-3	 Range of the Weak Interaction ​ The mass of the Z 0 has been 
accurately measured to be 91.16 GeV>c2. What range does that value imply for the 
neutral current weak interaction mediated by the Z 0?

SOLUTION

	 1.	 The range, the distance 
R traveled in time 
Dt = U>DE by a particle 
moving at about c, is given 
by Equation 11-50:

R =
U

mc
=

Uc

mc2

	 2.	 Substituting the mass of  
the Z0 into this expression 
for R gives

 R =
11.055 * 10-34 J # s2 13.00 * 108 m>s2
191.16 GeV>c22 11.60 * 10-10 J>GeV2

 = 2.17 * 10-18 m = 2.17 * 10-3 fm

	 3.	 An alternate calculation  
of R:

 R =
1197.3 eV # nm2

191.16 GeV2 1107 eV>GeV2 1109 nm>m2
 = 2.17 * 10-3 fm

Gravitational Interaction
All particles participate in the gravitational interaction, but this interaction is so weak as 
to be unimportant in the discussion of elementary particles. As we have seen previously, 
its strength relative to the strong interactions is about 10238. The interaction has infinite 
range, with the force decreasing as 1>r 2, as does the electrostatic force. The mediating 
particle for this force is the graviton, which is expected to be uncharged, massless, and 
have spin 2. This particle has not yet been observed, nor does the experimental capabil-
ity to do so yet exist. Experiments with the objective of detecting gravity waves are cur-
rently under way (see Section 2-5). The gravitational interaction is produced by mass, 
which is the “gravitational charge” corresponding to the color charge, electric charge, 
and weak charge of the strong, electromagnetic, and weak interactions, respectively. 
Table 12-4 summarizes the characteristics of the four fundamental interactions.

 Table 12-4  Characteristics of the fundamental interactions

Interaction
Force 

carrier
Mass  

(GeV/c2)
Spin  
(U) Source

Particles 
carrying 
charge

Range  
(m)

Interaction 
time (s)

Coupling 
constant

Strong gluon 0 1 color charge q, g 10215 10223 as  1

Electromagnetic photon 0 1 electric charge q, e, m, 
t, W  {

 10218 a = 1>137

Weak W{, Z 0 80, 91 1, 1 weak charge q, e, m, t, 
W  {, Z 0

10218 10216 to 
10210

aw  1025

Gravity graviton 0 2 mass q, e, m, t, n, 
W  {, Z 0

 ? ag  10238
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EXPLORING
A Further Comment about Interaction 
Strengths

At the beginning of this section we defined the strengths of the interactions in terms 
of the coupling constants, relating their approximate values to the most familiar one, 
which is the fine-structure constant a = e2>4p0 U c. In QED the electric charge

	 e = 24p0Uca r 2a	

is the amplitude of the coupling of the photon (the exchange boson) to the electron 
(the particle). Thus, the probability of events involving that coupling, such as the pho-
toelectric effect (illustrated in Figure 12-3), is proportional to e2 r a.

The time-independent solution to the Klein-Gordon equation (Equation 11-52) 
can also be interpreted as the static potential U(r) of the field of a point charge repre-
sented by the exchange particles. We then have

	 U1r2 =
Ae-r>R

r
	 12-4

where A is a constant of integration and R = U>mc is both the range of the force and 
the Compton wavelength c>2p of the exchange boson. For the electromagnetic inter-
action the range R is infinite and U(r) becomes

	 U1r2 =
A
r

	 12-5

Recalling from classical electromagnetism that the electrostatic potential of a point 
charge q is U1r2 = q>4p0 r, we see that the constant A in Equation 12-5 plays 
the  same role as the charge. In this manner a coupling constant proportional to A2, 
just as a r e2, can be obtained for each of the interactions, albeit not without some 
difficulty. Doing so for the strong and weak interactions involves mathematics beyond 
the scope of our discussions but, as we will see in Section 12-4, this use of QED as a 
model is a powerful aid in understanding both the weak and the strong interactions. 
The coupling constants and other characteristics of the four interactions are given in 
Table 12-4.

One last comment before we leave this topic: The coupling constants are not actu-
ally constants. Again, this can be most clearly illustrated using the electromagnetic 
interaction. Consider a positive point charge q embedded in a dielectric as shown in 
Figure 12-10. The charge q polarizes the nearby molecules of the dielectric. As a result, 
the charge q is partially screened by the negative ends of the polarized molecules and 
the electric field of q at a distance r away is correspondingly reduced. Thus, the value 
measured for q is the effective charge qeff, which depends on how far from q the mea-
surement is made, where qeff is given by

	 qeff =
q


	 12-6

and  is the dielectric constant of the material, which you remember is a measure of 
how difficult it is to polarize the material. Only by measuring very close to q, roughly 
speaking within the molecular equilibrium separation r0 (closer than the closest mole-
cule so that there is no screening), will you actually measure the value q. This is shown 
in Figure 12-10b. Notice also that (1) measurements made at large values of r yield 
q>, not q, and (2) the value of qeff increases for very small values of r.
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The production and absorption of virtual particles in QED results in the vacuum 
behaving like a dielectric. The positive charge q (or any charge) is continually emitting 
and absorbing virtual photons. Some of the photons occasionally create electron-positron 
pairs, which then annihilate, as the Feynman diagram in Figure 12-10c illustrates. The 
virtual electron and positron are attracted and repelled, respectively, by q, resulting 
in vacuum polarization, which partially screens q, just as it was screened when embed-
ded in the dielectric. And just as in the dielectric, the full value of the charge q is not 
seen, or measured, until you get inside the screen. In vacuum polarization the role of 
the equilibrium separation r0 is played by the Compton wavelength of the electron 
c = h>mc = 2.43 * 10-12 m. Thus, even in a vacuum the “actual” value of q can 
only be measured at distances closer than about 2.43 * 10-12 m. What we measure 
experimentally and refer to as “the charge of the electron” is actually the completely 
screened effective charge. Thus, the fine-structure constant a, which is proportional to 
the square of the electric charge, will increase at very small distances from q.

A corresponding discussion can be given for the weak and strong interactions, 
but there are significant differences. The photon, which mediates the electromagnetic 
interaction, does not carry electric charge. However, the W { and Z 0, which mediate 
the weak interaction, have mass and carry weak charge. (The W { also carry electric 
charge.) The gluons, which mediate the strong force, carry color charge. This latter 
difference results in an important characteristic of the strong force called quark con-
finement, which we will discuss further in Section 12-4.
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Figure 12-10  (a) A positive charge q placed in a dielectric material polarizes the dielectric 
by orienting the nearby molecules with their negative ends closest to q. An observer at some 
distance r from q sees a reduced electric field because of the screen of negative charges. 
(b) The value qeff is measured for the charge. At small distances, those less than the 
equilibrium separation r0 of the molecules of the dielectric, the value of qeff approaches 
the value of q. (c) The vacuum also polarizes like a dielectric due to production of virtual 
electron-positron pairs by virtual photons. The effect is to increase the value of the fine-
structure constant at very short interaction distances.
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Questions

3.	 How are baryons and mesons similar? How are they different?

4.	 What properties do all leptons have in common?

5.	 The mass of the muon is nearly equal to that of the pion. How do these particles 
differ?

6.	 All baryons are hadrons. Why are not all hadrons baryons?

7.	 The bonding of the electrons to nuclei to form atoms is an example of the 
electromagnetic interaction. Use the interaction’s properties to explain why the 
dimensions of atoms are of the order of 10210 m.

8.	 Describe a way the world would be different if electrons felt the strong 
interaction.

9.	 What might be the “technicality” that results in there being eight gluons instead 
of the expected nine?

EXAMPLE 12-4	 Neutron Decay ​ The free neutron decays via the weak inter
action with a half-life of 10.4 min according to the reaction

	 n S p + e- + ne	

Use a Feynman diagram to illustrate the details of this decay.

SOLUTION
Since this decay involves a change in the charge of the hadron, the mediating boson 
is a W 2. The W 2 then decays to the e2 and ne. The Feynman diagram describing 
these events is therefore as shown below; recall that particles shown moving back-
ward in time are to be interpreted as the corresponding antiparticle moving forward 
in time. Notice that, as mentioned earlier, the charged weak interaction changes the 
quark flavor.

 

uproton: d u

uneutron: d d

W�

v e

In words, this diagram is read like this: A d quark in the neutron emits a W 2, chang-
ing (decaying) to a u quark, thus changing the neutron into a proton. The W 2 then 
decays to an e2 and an ne.

Remarks:  The mediating boson could also be a W1. What would the diagram 
look like in that case?
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EXAMPLE 12-5	 Estimate of Cross Section for Strong Interaction ​ Obtain 
a rough estimate for the cross section of a typical strong-interaction scattering of 
two hadrons, such as pions by protons or protons by protons.

SOLUTION

	 1.	 The cross section s for an interaction or 
reaction is given approximately by the area 
of a circle whose radius is the range of the 
interaction (see Section 11-7). For the strong 
interaction we can write, therefore, that sS = pR2

S

	 2.	 From Example 11-15 we found the range 
of the strong interaction Therefore, sS is
equal to

 sS = p110-15 m22

 = 3.1 * 10-30 m2 = 31 mb

Remarks:  The cross section, as noted in Section 11-7, is actually dependent on 
the collision energy, but typical values are of the order of tens of millibarns, in 
agreement with our approximation.

12-3  Conservation Laws and Symmetries 
One of the maxims of nature, sometimes referred to as the totalitarian principle, is 
“anything that can happen does happen.” If a conceivable decay or reaction does 
not occur, then there must be a reason. The reason is usually expressed in terms of a 
conservation law. You are already familiar with several such laws. The conservation 
of energy rules out the decay of any particle for which the total mass of the decay 
products would be greater than the initial mass of the particle before decay. The 
conservation of linear momentum requires that when an electron and a positron anni-
hilate, two photons (at least) must be emitted. Angular momentum must also be con-
served in a reaction or decay. A fourth conservation law that restricts the possible 
particle decays and reactions is that of electric charge. The net electric charge before 
a decay or reaction must equal the net charge after the decay or reaction.

Every conservation law is a consequence of a particular symmetry in the laws of 
physics that govern the universe. This is a paraphrased statement of a theorem proven 
in 1918 by Emmy Noether11 for conjugate variables in classical mechanics. For instance, 
the laws of physics are symmetric (i.e., invariant) with respect to translations in time. 
That means they work the same today as they have in the past. Noether’s theorem relates 
this particular invariance of the physical laws to the conservation of energy. The fact that 
the physical laws are symmetric under translations in space leads to the conservation of 
linear momentum. If a system is symmetric to rotations about a point, then the angular 
momentum is conserved. The conservation of electric charge is a consequence of the 
invariance of the laws of electrodynamics under a gauge (i.e., scale) transformation.

There is a quantum theory analog of Noether’s theorem; however, as was the 
case in classical physics, the conservation law is often discovered empirically before 
the symmetry that is its origin is identified. For example, Herman von Helmholtz 
set forth the law of conservation of energy primarily on the basis of James Joules’s 
experiments long before Emmy Noether had proven her theorem. This is also the 
situation today in particle physics: most of the conservation laws discussed in this 
section are empirical discoveries since no symmetry has yet been identified that pro-
vides their foundation. We will point out a few of these as we proceed.
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Baryon Number
In Section 11-4 we mentioned two conservation laws in our discussion of radioactive 
decay, conservation of nucleon number and of lepton number. We now need to state 
these more explicitly. The first is a special case of the following more general law:

The baryon number is conserved.

All baryons have baryon quantum number B = 11, all antibaryons have B = 21, 
and all other particles are assigned B = 0. Conservation of baryon number requires 
that the total B for all particles before a decay or reaction occurs must be equal to that 
for all particles afterward. As an example of baryon conservation, consider the pro-
duction of the antiproton in Figure 12-2 again. The reaction is

	 pp S ppp p	 12-7

The total baryon number before the reaction is B = 11 1 1 = 12. That after the 
reaction is B = 11 1 1 1 1 2 1 = 12. Thus, conservation of B requires that three 
protons appear on the right side of Equation 12-7; that is, the production of an anti-
proton is always accompanied by the production of a proton. Conservation of baryon 
number together with the conservation of energy implies that the least massive 
baryon, the proton, must be stable. Whether that is in fact true is currently an active 
experimental question among particle physicists. There is no known symmetry requir-
ing conservation of baryon number. There are several conceivable proton decay 
modes, all involving the proton decaying to a lepton and a meson, both of which have 
B = 0. To date, non-conservation of baryon number has never been observed. 
Current experiments place the lower limit of the proton lifetime at about 1032 years. 
We will return to this matter later in this chapter.

Lepton Number
In the original version of the Standard Model neutrinos have no mass and are polar-
ized. Experiments had shown that neutrinos were left-handed, that is, their spin direc-
tion was antiparallel to their momentum, and antineutrinos were right-handed, their 
spin being parallel to their momentum (see Figure 12-11a). In the Standard Model 
mass arises from interaction with the Higgs boson. That interaction also changes 
right-handedness to left-handedness and vice versa, so the fact that neutrinos were 
always detected as left-handed meant that, like the photon, they did not interact with 
the Higgs and therefore had no mass. This in turn means that lepton number is con-
served in the weak interactions and conservation of leptons applies independently to 
each of the three flavors.

The lepton number for each flavor of leptons is independently conserved.

The lepton quantum number for the electron and the electron neutrino is Le = 11 
and that for the positron and electron antineutrino is Le = 21. All other particles, 
including the other leptons, have Le = 0. In a similar fashion the lepton quantum 
numbers Lm are assigned for the muon generation and Lt for the tau generation. To see 
how conservation of lepton number works, consider the following decays:

	 p S p0
 e+	 12-8

	 m+ S e+nenm	 12-9a
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	 m+ S e+g	 12-9b

	 n S pe- ne	 12-10

The decay shown in Equation 12-8 (one of the conceivable proton decay modes) 
would conserve energy, charge, angular momentum, and linear momentum, but it has 
not been observed. It conserves neither baryon number B nor lepton number Le. The 
decay of the m1, given by Equation 12-9a, results in both an electron neutrino and a 
muon antineutrino. The m1 has Lm = 21 and Le = 0. The decay products also have 
Lm = 21 (the nm) and Le = 21 1 1 = 0 (the e1 and ve). The m1 decay given in 
Equation 12-9b had been searched for by many groups without success for many 
years. Its absence was the first indicator that Le and Lm were independently conserved. 
Equation 12-10, the decay of the neutron, conserves both B and Le. Conservation of 
lepton number implies that the neutrino emitted in the beta decay of a free neutron is 
an electron antineutrino.

However, during the past several years experiments at the Sudbury Neutrino 
Observatory and Super-Kamiokande (Super-K) have shown that neutrinos do in fact 
have mass and oscillate, albeit slowly, from one flavor to another as they travel. This 
discovery was the first experimental evidence that the thus far very successful 
Standard Model is an approximation of a more comprehensive, as yet unknown 
theory. We will speculate briefly on what that theory might be in Section 12-5, but for 
our discussion here the implications are considerable. Since neutrinos have mass, 
their speeds are less than c. This implies that a left-handed neutrino can become a 
right-handed neutrino with respect to an observer and vice versa. Since we know of 
no fundamental symmetry that requires conservation of leptons, if lepton number is 
not conserved, then we have no way to distinguish between neutrinos and anti
neutrinos, as was alluded to in Section 12-1. A number of theoretical extensions of 
the Standard Model have been suggested to deal with this problem, but as yet there is 
no clear solution. With this caveat in mind, we will for the remainder of this section 
use the lepton and baryon conservation laws stated above and defer discussion of the 
possible consequences of their violation until Section 12-5.

EXAMPLE 12-6	 Conservation Laws ​ What conservation laws (if any) are violated 
by the following reactions?

1a2 n S pp-        1b2 L0 S pp+      1c2 p- S m- nm

SOLUTION
(a) There are no leptons in this decay, so there is no problem with the conservation 
of lepton number. The net charge is zero before and after the decay, so charge is 
conserved. Also the baryon number is 11 before and after the decay. However, the 
rest energy of the proton (938.3 MeV) plus that of the pion (139.6 MeV) is greater 
than the rest energy of the neutron (939.6 MeV). Thus, this decay violates the 
conservation of energy.

(b) Again, there are no leptons involved, and the net charge is zero before and after 
the decay. Also, the rest energy of the L0 (1116 MeV) is greater than the rest energy 
of the antiproton (938.3 MeV) plus that of the pion (139.6 MeV), so energy is con-
served with the loss in rest energy equaling the gain in kinetic energy of the decay 
products. However, this decay does not conserve baryon number, which is 11 for 
the L0, 21 for the antiproton, and 0 for the pion.
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(c) There are no baryons involved, so conservation of baryon number is not a prob-
lem. The net charge is 21 before and after the decay, so charge is conserved. Also, the 
rest energy of the p2 (139.6 MeV) is greater than that of the m2 (105.7 MeV) and the 
nm, so energy is conserved, the difference appearing as kinetic energy of the muon and 
neutrino. Finally, Lm = 0 on the left side and Lm = 1 2 1 = 0 on the right side, so 
lepton number is also conserved. This is the reaction by which the p2 decays.

More
�Each conservation law results from a particular symmetry in the 
laws that govern the physical universe. Since it is not necessarily 
obvious under what mathematical operations the laws of physics 
will be symmetric, on a pragmatic level it is fair to ask, quantum 
mechanically, When is a physical quantity conserved? We provide an
answer to this question on the home page: www.whfreeman.com 
/tiplermodernphysics6e. See also Equations 12-11 through 12-22 
and Note 12 here, as well as Example 12-7.

More

More Conservation Laws
The quantum numbers and corresponding conservation laws of the hadrons described 
in this section arise logically from combinations of so-called internal quantum num-
bers of the quarks. These are listed in Table 12-5. They are the electric charge Q, 
baryon number B, strangeness S, charm C, bottom B9, and top T. As we have noted 
above, electric charge and baryon number are conserved in all interactions. 
Strangeness, charm, bottom, and top are conserved in the strong and electromagnetic 
interactions but are not conserved in the weak interaction.

Strangeness  There are some conservation laws that are not universal but apply 
only to certain kinds of interactions. In particular, there are quantities that are con-
served in decays and reactions that occur via the strong interaction but not in decays or 
reactions that occur via the weak interaction. This is somewhat analogous to the selec-
tion rules discussed in atomic transitions. For example, the selection rule D/ = {1 
holds for electric dipole transitions from one atomic state to another. An atom in a 

 Table 12-5  Internal quantum numbers of the quarks

Quark Q B U D C S T B

u 2
3

1
3

1 0 0 0 0 0

d -  13
1
3

0 21 0 0 0 0

c 2
3

1
3

0 0 1 0 0 0

s -  13
1
3

0 0 0 21 0 0

t 2
3

1
3

0 0 0 0 1 0

b -  13
1
3

0 0 0 0 0 21
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state with / = 2 cannot decay to a lower energy state with / = 0 via electric dipole 
radiation because of this selection rule, but it can decay via an electric quadrupole 
transition, which is generally much slower than electric dipole transitions. One of the 
particularly important quantities conserved in strong interactions is strangeness. This 
quantity was introduced by M. Gell-Mann13 and K. Nishijima in 1952 to explain the 
seemingly strange behavior of the heavy baryons and mesons. Consider the reaction 
in which a high-energy p2 interacts with a proton,

	 pp- S L0
 K 0	 12-23

shown in Figure 12-11b. The cross section for this reaction is large, as would be 
expected since it takes place via the strong interaction (see Example 12-5). However, 
the decay times for both L0 and K 0 are of the order of 10210 s, which is characteristic 
of the weak interaction. When first discovered, their unexpectedly long lifetimes were 
very strange, so these and other particles showing similar behavior were called 
strange particles. An early success of the quark model explained these unexpectedly 
long lifetimes. For example, the L0 is a uds quark combination, which corresponds to 
a particular set of the internal quark quantum numbers. If no lighter (i.e., lower-
energy) hadron with that exact set of quantum numbers exists, then decay via the 
strong or electromagnetic interactions is not possible. Decay can only occur via the 
much slower weak interaction.

These particles are always produced in pairs and never singly, even when all 
other conservation laws are met. This behavior is described by assigning to them a new 
quantum number called strangeness. The strangeness of the ordinary hadrons—the 
nucleons and pions—was arbitrarily chosen to be zero. The strangeness of the K 0 was 
arbitrarily chosen to be 11. Therefore, the strangeness of the L0 particle must be 21 
so that strangeness is conserved in the reaction of Equation 12-23. The strangeness of 

π–

π– →

π–

π–

π+

K 0

K 0

Λ0

Λ0 ++

p

p

(b)(a)

s

p

ν

s

p

ν

–

Figure 12-11  (a) The spin of antineutrinos is parallel to their momentum; the spin of neutrinos is antiparallel to their 
momentum. Described in terms of helicity = ms>s with the z axis in the direction of p, antineutrinos have helicity 
11 and neutrinos have helicity 21. (b) An early photograph of bubble chamber tracks at the Lawrence Berkeley 
Laboratory, showing the production, represented by Equation 12-23, and decay of two strange particles, the K 0 and 
the L0. These neutral particles are identified by the tracks of their decay particles. The lambda particle was named 
because of the similarity of the tracks of its decay particles and the Greek letter L. The incident p2 meson had 
energy of 1 GeV. [(b) Lawrence Berkeley Laboratory/Photo Researchers.]
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other particles could then be assigned by looking at their various reactions and decays. 
In reactions and decays that occur via the strong and electromagnetic interactions, 
strangeness is conserved. In those that occur via the weak interaction, strangeness is 
not conserved but can only change by {1.

Isospin  As pointed out earlier, a striking feature of the hadrons is that they cluster 
into charge multiplets, groups of particles with nearly the same mass, such as the 
multiplet consisting of the proton ( p = uud ) and neutron (n = udd ). Within each 
multiplet all of the particles have the same spin, parity (see below), baryon number, 
strangeness, charm, and bottom but differ in their electric charges. In addition, we 
learned in Section 11-5 that the strong (nuclear) force is independent of electric 
charge. Were it not for the masses of the quarks and the electromagnetic interaction, 
the masses of the particles in a given charge multiplet would be the same. We are thus 
led to the view that the members of the multiplet are simply different charge states of 
the same particle. The “splitting” of particle mass states is analogous to the splitting 
of atomic energy states due to the spin-orbit interaction (see Section 7-5). Because 
of the analogy with isotopes (atoms with the same Z but slightly different masses) 
and with the splitting of different spin states, the term isospin is used to describe this 
multiplicity. The isospin I is treated as a vector in a three-dimensional “charge space,” 
just as the orbital angular momentum L is a vector in real space. The component of I 
in the “z direction” is called I3 and is quantized, just as the z components of the orbital 
and intrinsic angular momenta of atomic electrons are quantized. Similarly, there are 
(2I 1 1) different I3 states. The charge q on a particle is related to its value of I3 by

	 q = eQ = ea I3 +
B + S

2
b 	 12-24

where Q is the charge quantum number. The value of I of the nucleon is 1>2, with the 
two possible values I3 = +1>2 for the proton and I3 = -1>2 for the neutron. The 
isospin I is also 1>2 for the Xi doublet and 0 for the lambda and omega singlets. It is 
1 for the S triplet (with I3 = 11 for S1, 0 for S0, and 21 for S2). In the case of the 
mesons, the pion isospin triplet has I = 1, the kaon doublet I = 1>2, and the eta 
singlet I = 0. The rules for combining isospin are the same as those for combining 
real spin or angular momentum. If only the strong interaction is present, then Iop and 
Hop commute and I is conserved. Decays and reactions in which the total isospin of 
the system is not conserved do not proceed via the strong interaction.

Hypercharge  Four of the quantum numbers that we have discussed thus far turn 
out to be related to one another. These are strangeness, charge, isospin, and baryon 
number. The relation is

	 S = 21Q - I32 - B	 12-25

Strangeness is now used less frequently than a simpler quantity called hypercharge Y, 
which is defined as

	 Y K B + S + C + B9 + T 	 12-26

With the aid of Equation 12-25 the hypercharge quantum number Y is then given by

	 Y = S + B = 21Q - I32	 12-27

Stated simply, the hypercharge is twice the average charge of a given multiplet. For 
example, the average charge of the nucleon multiplet is 11e + 02 >2 = 11>22e. 
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Thus, for the nucleon, Y = 1, as given by Equation 12-27. Since baryon number is 
strictly conserved and strangeness is conserved only in strong interactions, hypercharge, 
too, is conserved only in strong interactions. Since DS = {1 or 0 in weak interactions, 
changes in hypercharge are similarly restricted to DY = {1 or 0. Table 12-6 lists the 
values of these additional quantum numbers for those hadrons that are stable against 
decay via the strong interaction. Note that, if it were not for the conservation of strange-
ness or hypercharge in the strong interaction, all the baryons except the nucleons would 
decay via the strong interaction and live only for about 10223 s.

The singlet, doublet, and triplet charge multiplets discussed above are clearly 
represented in graphs of Y versus I3. Studies of the regularities apparent in such graphs 
(Figure 12-12) were instrumental in the development of the quark model of funda-
mental particles to be discussed in Section 12-4. The regularities are analogous to 
those observed in the multiplet structure of atomic energy states that ultimately led  
to the understanding of atomic structure.

The conservation laws and the properties of charge Q, lepton number L, baryon 
number B, and strangeness S give us some insight into the relation between particles 
and their antiparticles. A particle and its antiparticle must have opposite signs for the 
values of each of these properties. Any particle that has a nonzero value for any of 
these properties will therefore have a distinct antiparticle. The photon, graviton, and 
p0 have Q = 0, L = 0, B = 0, and S = 0 and are therefore in some sense their own 
antiparticles. The p1 and p2 mesons are somewhat special because they have charge 

 Table 12-6 � Some quantum numbers of the hadrons that are
stable against decay via the strong interaction

Particle Spin, h I I3 B S Y

p 1>2 1>2 +1>2 1 0 1

n 1>2 1>2 -1>2 1 0 1

L0 1>2 0 0 1 21 0

S1 1>2 1 11 1 21 0

S0 1>2 1 0 1 21 0

S2 1>2 1 21 1 21 0

J0 1>2 1>2 +1>2 1 22 21

J2 1>2 1>2 -1>2 1 22 21

V2 3>2 0 0 1 23 22

p1 0 1 11 0 0 0

p0 0 1 0 0 0 0

p2 0 1 21 0 0 0

K1 0 1>2 +1>2 0 11 11

K 0 0 1>2 -1>2 0 11 11

0 0 0 0 0 0 0
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but have zero values for L, B, and S. They are therefore antiparticles of each other, but 
since there is no conservation law for mesons, it is impossible to say which is the par-
ticle and which is the antiparticle.

EXAMPLE 12-8	 Applying the Conservation Laws ​ State whether the follow-
ing decays can occur via the strong interaction, via the electromagnetic interaction, 
via the weak interaction, or not at all:

1a2 S+ S pp0       1b2 S0 S L0g       1c2 J0 S np0

SOLUTION
We first note the mass of each decaying particle is greater than that of the decay 
products, so there is no problem with energy conservation in any of the decays. In 
addition, there are no leptons involved in any of the decays, and charge and baryon 
number are both conserved in all the decays.

(a) From Figure 12-12, we can see that the hypercharge of the S1 is 0, whereas the 
hypercharge of the proton is 11 and that of the pion is zero. This decay is possible 
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Figure 12-12  Graphs of hypercharge Y versus the
I3 component of the isospin. (a) Baryons with spin 1>2. 
(b) Mesons with spin 0. (c) Baryons with spin 3>2.
Except for the V2, these are resonance particles as 
discussed in Section 12-3 and on the home page. 
Masses in parentheses are in MeV>c2. Notice in each 
case that particles of like charge lie along downward-
sloping diagonals and particles of like strangeness 
(and hypercharge) lie along horizontal lines.

TIPLER_12_579-638hr.indd   605 10/24/11   12:21 PM



606	 Chapter 12  Particle Physics

via the weak interaction but not the strong interaction. It is, in fact, one of the decay 
modes of the S1 particle with a lifetime of the order of 10210 s.

(b) Since the hypercharge of both the S0 and L0 is 0, this decay can proceed via the 
electromagnetic interaction. It is, in fact, the dominant mode of decay of the S0 par-
ticle with a lifetime of about 10220 s.

(c) The hypercharge of the J0 is 21, whereas that of the neutron is 11 and that of 
the pion is zero. Since hypercharge cannot change by 2 in a decay or reaction, this 
decay cannot occur.

Questions

10.	 How can you tell if a decay proceeds via the strong, electromagnetic, or weak 
interactions?

11.	 Can the strangeness or hypercharge of a new particle be determined even if the 
number of particles in the multiplet is unknown? How, or why not?

Parity  The parity of a nucleus or particle is defined in the same way as for an atom 
(see Section 6-5). If the parity operator acting on the wave function changes the sign 
of the wave function, the parity is said to be odd, or 21. If the wave function does not 
change sign, the parity is even, or 11. The parity operation reflects the space variables 
in the coordinate origin. The parity quantum number P is different from the other 
quantum numbers we have been considering in that it can have only the values 11 or 
21. If the value of the parity of a system changes, the new value is 21 times the old 
value. Parity is therefore a multiplicative property rather than an additive property like 
baryon number, strangeness, or hypercharge. The parity of an atomic wave function 
is related to the orbital angular momentum by P = 1-12/. The parity is odd or even 
depending on whether / is odd or even. In our discussion of radiation from atoms, 
we saw that the parity of an atom can change just as the angular momentum of the 
atom changes when the atom emits light. For electric dipole transitions, D/ = {1, 
so the parity and angular momentum quantum numbers always change. However, if 
the complete system including the photon is considered, the total angular momentum 
and the total parity do not change in atomic transitions; that is, parity in conserved in 
electromagnetic interactions. Parity is also conserved in the strong interaction.

Until 1956 it was assumed that parity is conserved in all nuclear reactions and 
radioactive decays. In that year, T. D. Lee and C. N. Yang suggested that parity might 
not be conserved in weak interactions. This suggestion grew out of attempts to under-
stand the peculiar behavior of what were then known as the t and u mesons. These 
particles were identical in every way except that the u meson decayed into two pions 
with positive parity, whereas the t decayed into three pions with negative parity. 
(Each elementary particle can be assigned an intrinsic parity. That of the pion is nega-
tive.) The t 2 u puzzle was this: Are there two different particles with all properties 
identical except parity, or is it possible that parity is not conserved in some reactions? 
After careful study Lee and Yang found that all the experimental evidence for parity 
conservation pertained to strong or electromagnetic interactions and not for weak 
interactions. They suggested that the nonconservation of parity could be observed 
experimentally by measuring the angular distribution of electrons emitted in b decay 
of nuclei that have their spins aligned. Such an experiment was performed in 
December 1956 by a group led by C. S. Wu and E. Ambler. The results confirmed 
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Lee and Yang’s predictions, for which they received the Nobel Prize in Physics 
in1957. The t and u mesons are a single particle, now known as the K 0 meson, which 
has two distinct modes of decay. The significance of the K 0 decay will be discussed 
further in the TCP Invariance section below.

The conservation of parity essentially means that a process described by the coor-
dinates x, y, and z appears the same if described by the coordinates x9 = 2x,
y9 =  2y, and z9 = 2z. The system x, y, z is called a right-handed coordinate system 
because x * y is in the 1z direction. Similarly, the system x9, y9, z9 is called a left-
handed coordinate system because x9 * y9 is in the negative z9 direction. No rotation 
can change a right-handed coordinate system into a left-handed one, but reflection in 
a mirror does, as shown in Figure 12-13a. We can thus state the law of conservation 
of parity in more physical terms: If parity is conserved, the mirror image of a process 
cannot be distinguished from the process itself. Figure 12-13b shows a spinning 
nucleus emitting an electron in the direction of its spin. In the mirror, the nucleus 
appears to be emitting the electron in the direction opposite to that of its spin. If parity 
is conserved in b decay, the chance of emission in the direction of the nuclear spin 
must equal the chance of emission in the opposite direction; that is, there can be no 
preferred direction. Whether or not one direction is actually preferred in b decay is 
usually not observable because the nuclear spins are randomly oriented. Wu and 
Ambler aligned the nuclei in 60Co by placing their sample in a magnetic field at a very 
low temperature (about 0.01 K). They found that more particles were emitted oppo-
site to the spin of the nucleus than in the direction of the spin, indicating that parity is 
not conserved in weak interactions. Table 12-7 summarizes the conservation laws 
discussed in this section.

TCP Invariance  It can be shown that in any relativistic quantum theory in which 
signal speeds cannot exceed the vacuum speed of light, the combined operations 

Spin

Spin

y

z

x

y

z

x

Mirror

(a)

(b)

Figure 12-13  (a) The 
mirror image of a right-
handed coordinate system 
(x * y in the z direction) is 
a left-handed coordinate 
system (x * y in the 2z 
direction). No combination 
of translation and rotation 
can change a right-handed 
coordinate system into a left-
handed system. (b) Spinning 
nucleus emitting an electron 
in the direction of its spin. In 
the mirror, the image nucleus 
is emitting the electron in the 
direction opposite to its spin 
because the mirror reverses 
the direction of the spin 
vector.
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of Time reversal (t S 2t), Charge conjugation (particle S antiparticle), and Parity 
(r S 2r), leave any wave function unchanged:

	 TCP 1r, t2 = +11r, t2  or  TCP = +1	 12-28

It makes no difference in what order the operations are performed. Invariance under 
these combined operations requires that particles and their antiparticles have the same 
masses and lifetimes. It was long thought that the invariance under the combined 
operations was the result of invariance of physical laws under each of the operations 
independently; that is, T = 11, P = 11, and C = 11.

However, as we described in the previous section, it was discovered that parity 
was not conserved in weak interactions. For the weak interaction the parity operation 
yields P = 21. That immediately implies that one of the other operations must not 
be conserved in the weak interaction. Lee and Yang’s solution to the t 2 u puzzle 
revealed that there are two K 0 mesons (kaons) with nearly identical masses but very 
different decay modes and lifetimes. The K 0

S (S for “short”) decays to two pions with 
a lifetime of about 0.9 * 10210 s. The K 0

L (L for “long”) decays to three pions with a 
lifetime of about 0.5 * 1027 s (see Table 12-3).

Then in 1964 J. H. Christenson and his collaborators showed that in about 1 of 
every 1000 decays, the K 0

L also decayed into just two pions. This result means that for 
the K 0

L decay, the combined operation CP = 21 because the two-pion final system 
has CP = 11 and the three-pion final system has CP = 21.

The implications of this result are enormous and continue to be a focus of intense 
theoretical and experimental research. For example, within the framework of the 
Standard Model, CP violation requires that there be three generations of quarks and, 
correspondingly, the very large number of hadrons that can be assembled from them. 
The observed matter-antimatter asymmetry in the universe also requires CP violation. 
If TCP = 11 and CP = 21, T = 21 also, which establishes an absolute direction 
for the flow of time.

 Table 12-7 � Conserved quantities in fundamental particle
interactions

Conserved quantity

Interaction

Strong Electromagnetic Weak

Energy

Momentum

Charge (Q)

Baryon number (B)

Lepton number (L)

Yes Yes Yes

Isospin (I ) Yes No No 1DI = {1, 02
Hypercharge (Y ) Yes Yes No 1DY = {1, 02
Strangeness (S ) Yes Yes No 1DS = {1, 02
Parity (P) Yes Yes No
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Questions

12.	 Suppose a new uncharged meson is discovered. What condition is necessary 
for it to have a distinct antiparticle?

13.	 How might Table 12-7 be different if strangeness were not conserved in 
interactions between hadrons?

More
�Particles and excited states of particles that decay via the strong inter-
action have mean lives of only 10223 s or so, not nearly long enough to 
be tracked by a particle detector. Such particles are instead detected by 
measuring resonances in the scattering cross sections in a way analo-
gous to J. Franck and G. Hertz’s detection of the first excited state of the 
Hg atom by measuring the resonances in the electron scattering from 
Hg atoms. Many fundamental particles have been found in this way, 
as is described on the home page (www.whfreeman.com/tiplermodern 
physics6e) in Resonances and Excited States, which also includes a 
partial list of meson and baryon resonances. See also Figures 12-14 
through 12-16, Table 12-8, Equations 12-29 through 12-31, and 
Examples 12-9 and 12-10 here.

More

12-4  The Standard Model 
The Standard Model is currently (since 1978) the accepted theory of elementary 
particle physics. It includes the quark model of particle structure that had been devel-
oped earlier, the unified theory of electromagnetic and weak interactions called the 
electroweak theory, and the strong-interaction analog of quantum electrodynamics 
called quantum chromodynamics (QCD). It has been remarkably though not totally 
successful in explaining the character of fundamental particles and the interactions 
between them and is second only to QED in the accuracy of its predictions. In our 
discussions thus far in this chapter we have had occasion to allude to a number of 
specific features of the Standard Model. In this section we will consider the three of 
its constituents noted above in further detail. Since the complexity of the Standard 
Model’s mathematical detail is beyond the level of this book, our discussion will be 
largely qualitative and conceptual.

Quark Model of the Hadrons
The Eightfold Way  The construction of large high-energy particle accelerators 
beginning in the 1950s made possible the production of a flood of previously unseen 
hadrons.14 Among the many attempts at understanding and classifying the jumble 
of hadrons, the most successful scheme is known as the eightfold way.15 It was sug-
gested independently by M. Gell-Mann and Y. Ne’eman in 1961 and subsequently 
justified by the Standard Model. In this scheme, hadrons that make up the charge 
multiplets were arranged in groups, called supermultiplets, in which each member had 
the same intrinsic spin and parity, J P, where J is the intrinsic spin and P is the parity. 
Three of Gell-Mann’s hadron supermultiplets are shown in Figure 12-12: (a) the eight 

Searches for experimental 
support for the Standard 
Model led to the 
development of many 
new types of particle 
detectors. Several have 
found applications beyond 
particle physics, one 
example being BGO crystal 
detectors, used in medical 
diagnostic PET scanners 
(see Figure 11-65).
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lightest baryons, called the baryon octet; (b) the eight lightest mesons, the 
meson octet (actually a nonet); and (c) the next 10 heavier baryons, the 
baryon decuplet. Figure 12-17 shows the energies of the baryon octet in 
a diagram analogous to the fine-structure splitting of atomic states. The 
energy splittings between the isospin multiplets (from 78 to 176 MeV) 
are about 20 times the splitting within the multiplets. There are no com-
pleted baryon supermultiplets beyond the octet and decuplet, although 
there are several partially completed ones. The known mesons complete 
six nonets. Note that there is also an antibaryon octet, decuplet, and 
so on, but the mesons and their antiparticles are members of the same 
nonet. Gell-Mann’s accomplishment is the elementary particle analog of 
Mendeleev’s development of the periodic table of the chemical elements, 
which was first published in 1869, nearly 100 years earlier, far in advance 
of the theoretical foundation for the periodic table provided much later by 
atomic theory and quantum mechanics.

The eightfold way is based on the mathematical theory of continuous 
groups,16 in particular a version developed by Norwegian mathematician 
S. Lie, among others, in which the members of the group are multiplied 
by parameters that are analytic functions, referred to as Lie groups. Most 
of the groups of interest in physics can be conveniently expressed as 
matrices. For example, the four-vectors we discussed in Chapter 2 can be 
written as a group of 4 * 4 matrices called the Lorentz group. The sim-
plest Lie group is known as SU(2), for special unitary group of 2 * 2 
matrices. A special condition on the 2 * 2 arrays reduces the number of 
independent components from 4 to 3. The three independent components 
of these arrays correspond to the three components of angular momen-
tum (or isospin). As we have seen previously, the various possible values 
of angular momentum J have corresponding states that occur in multi-
plets having 1, 2, 3, 4, . . . , (2 J 1 1) elements, which we describe as 
having angular momentum of 0, 1>2, 1, 3>2, . . . U units. The next-higher 

Lie group is known as SU(3), for special unitary group of 3 * 3 arrays. Again, a 
special condition reduces the number of components from 9 to 8 (hence the name 
eightfold way). The eight quantities in the application of SU(3) group theory to had-
rons consist of the three components of isospin, the hypercharge, and four that are as 
yet unnamed. Without going into the details of group theory, we will simply state that 
the SU(3) group leads to multiplets of 1, 3, 8, 10, . . . elements. Rather than assigning 
a single number to these multiplets analogous to the angular momentum quantum 
number of SU(2), it is more useful to make two-dimensional diagrams called weight 
diagrams, which are the geometric patterns of points, triangles, and hexagons shown 
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Figure 12-17  The energy-level diagram 
of the baryon octet, the supermultiplet 
of the hadronically stable J P = 11>22+ 
baryons. In the absence of any interactions, 
all these particles should have the same 
mass. The different numbers of s quarks 
splits the mass state into four states, 
corresponding to the nucleon (N ), lambda 
(L), sigma (S), and xi (J) particles. The 
different quark masses and the weaker 
electromagnetic interaction further splits 
the particles into the N doublet, S triplet, 
and J doublet.
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Figure 12-18  Weight diagrams occurring in SU(3) group theory. The circle and dot at the 
origin in the hexagon indicate two particles at the origin, making this pattern an octet.
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in Figure 12-18. In the application of SU(3) to particle theory, the axes are Y and I3. 
Figure 12-12 illustrates some examples of weight diagrams.

In the plot of Y versus I3 for the JP = 3>2+ baryons (the decuplet shown in 
Figure 12-12c), neither the J nor the V2 had been discovered before 1961. Note that 
the difference in rest energy between each line of the decuplet is about 140 MeV. A 
constant energy difference between successive multiplets in the decuplet is predicted 
by SU(3) theory. The prediction of the V2 particle by Gell-Mann in 1961 and its dis-
covery in 1964 with just the mass and spin Gell-Mann had predicted was one of the 
spectacular successes of the pre–Standard Model eightfold way. The V2 is the only 
particle in the decuplet that is not a resonance particle. The mass of the V2 is just 
small enough that energy conservation prevents it from decaying via a strangeness-
conserving strong interaction such as V2 S  J0 1 K2.

Other supermultiplets can be formed from the unstable baryons and mesons, but 
there are no observed groups of three hadrons corresponding to the triplet allowed by 
SU(3) theory illustrated in Figure 12-18. This fact and the absence of a reason for the 
supermultiplets of the eightfold way led Gell-Mann and G. Zweig in 1964 to indepen-
dently propose that all hadrons are composed of even more fundamental constituents 
called quarks.17 Their proposal is the basis of the quark model, one of the most impor-
tant advances in our understanding of elementary particles.

In the original quark model, quarks came in three types labeled u, d, and s (for 
up, down, and strange). Later discoveries, as we have seen, added three more quarks, 
labeled c, b, and t for charm, bottom, and top. Recall that the charge of the u quark is 
2e>3 and that of the d and s quarks is -e>3. Each quark has B =

1
3. Each quark has 

spin 12 U. The strangeness of the u and d quark is 0, and that of the s quark is 21. Each 
quark has an antiquark with the opposite electric charge, baryon number, and strange-
ness. The three types up, down, and strange form the triangular SU(3) weight diagram 
of Figure 12-18, as shown in detail in Figure 12-19. The properties of the quarks are 
listed in Table 12-7. The basic assertion of the quark model is that all baryons consist 
of three quarks (or three antiquarks for antiparticles), whereas mesons consist of a 
quark and an antiquark. The mesons thus have baryon number B = 0, as required. The 
proton consists of the combination uud and the neutron udd. Baryons with a strange-
ness S = 21 contain one s quark. All the particles listed in Table 12-3 can be con-
structed from the three original quarks and the corresponding three antiquarks.18

A great success of the quark model was that all of the allowed combinations 
of  the three quarks and quark-antiquark pairs resulted in known hadrons. Strong 
evidence for the existence of quarks inside a nucleon is provided by high-energy 
scattering experiments called deep inelastic scattering. In these experiments, a 
nucleon is bombarded with electrons or muons of energies from 15 to 200 GeV. 
Analyses of particles scattered at large angles indicate the presence within the nucleon 
of spin@1>2 particles of sizes much smaller than that of the nucleon. These experi-
ments are analogous to Rutherford’s scattering of a particles by atoms in which the 

Murray Gell-Mann, who 
proposed the existence of 
strangeness, developed the 
classification system for 
hadrons [SU(3)] and 
postulated the existence 
of fractionally charged 
particles, which he called 
quarks. He won the Nobel 
Prize in 1969. [American 
Institute of Physics, Neils 
Bohr Library.]

Figure 12-19  The SU(3) 
weight diagrams (Y vs. I3) 
for the three light quarks and 
their antiquarks. As in the 
supermultiplet diagrams of the 
eightfold way, the downward-
sloping lines are constant 
charge and the horizontal lines 
are constant strangeness.
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presence of a tiny nucleus in the atom was inferred from the large-angle scattering of 
the a particles.

Since the conservation laws represented by the several quantum numbers in 
Table 12-5 are additive, it is simply a matter of arithmetic to determine the properties 
of the hadrons. For example, a particle formed by the combination uds can have a 
spin of either 1>2 or 3>2, charge equal to +2>3 - 1>3 - 1>3 = 0, and baryon 
number B = 1>3 + 1>3 + 1>3 = 1. Table 12-9 lists the possible three-quark 

 Table 12-9  Properties of three-quark combinations

Combination Spin (h)
Charge 

(e)
Baryon 
number Strangeness Hypercharge I3

uuu 3>2 12 1 0 11 +3>2
uud 1>2, 3>2 11 1 0 11 +1>2
udd 1>2, 3>2 0 1 0 11 -1>2
uus 1>2, 3>2 11 1 21 0 11

uss 1>2, 3>2 0 1 22 21 +1>2
uds 1>2, 3>2 0 1 21 0 0

ddd 3>2 21 1 0 11 -3>2
dds 1>2, 3>2 21 1 21 0 21

dss 1>2, 3>2 21 1 22 21 -1>2
sss 3>2 21 1 23 22 0

 Table 12-10 � Properties of quark-antiquark combinations
for three quarks

Combination
Spin  
(h)

Charge 
(e)

Baryon 
number Strangeness Hypercharge I3

uu 0, 1 0 0 0 0 0

ud 0, 1 11 0 0 0 11

us 0, 1 11 0 11 11 +1>2
d u 0, 1 21 0 0 0 21

dd 0, 1 0 0 0 0 0

d  s 0, 1 0 0 11 11 -1>2
su 0, 1 21 0 21 21 -1>2
sd 0, 1 0 0 21 21 +1>2
ss 0, 1 0 0 0 0 0
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(u, d, and s) combinations (baryons), and Table 12-10 lists the possible quark-anti-
quark combinations (mesons).

The eight spin@1>2 baryons constitute the baryon octet of Figure 12-12a. The 
three quarks of which each member is composed are shown in Figure 12-20a. Notice 
that Table 12-9 lists nine quark-antiquark combinations, rather than eight, as given by 
the eightfold way. The ninth meson identified by the quark model as a part of this 
group, the 9, had already been found but had been thought to be a singlet in the 
eightfold way. Figure 12-20b shows the quark-antiquark composition of the first of 
the several meson nonets, the one illustrated in Figure 12-12b.

EXPLORING
Where Does the Proton Get Its Spin?

In the quark model of the hadrons the proton consists of two up quarks and a down 
quark, uud. The electric charge and quantum numbers of the proton, as with the 
neutron and other composite particles, are correctly given by summing the corre-
sponding quantities for the constituent quarks. For example, the proton’s charge is 
+ 12>32e + 12>32e - 11>32e = +1e and its spin is the +1>2 U combination of the 
three spin@1>2 quarks. Models of the proton predict that about 60 percent of its spin is 
provided by the three quarks and the rest by their angular momentum as they fly around 
inside the proton. However, a series of deep-elastic-scattering experiments of electrons 
and muons on polarized protons have yielded a surprising result. Begun in 1987 at 
CERN and continued up to the present there and at Brookhaven (RHIC), the Jefferson 
Laboratory, SLAC (Stanford Linear Accelerator Center), and DESY (Deutsches Elek-
tronen-Synchrotron), the experiments consist of scattering extremely high-energy 
(=  very short wavelength) muons, electrons, or protons whose spins are polarized 
from protons and 3He nuclei whose spins are also polarized. Measuring the exit 
angles and energies of the scattered particles is a rich source of information concern-
ing the spin structure of both the proton and the neutron. Surprisingly, the experi-
mental results indicate that the spins of the three constituent, or “valence,” quarks 
account for only about 30 percent of the proton’s spin! Polarized gluons that medi-
ate the strong force between the quarks contribute a small amount, likely less than 
10 percent. The experiments show that the spins of the u quarks are aligned parallel 
with the proton’s spin, but this is not true for the spin of the d quark, which is as one 
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Figure 12-20  (a) The 
graph of Y versus I3 for the 
spin@1>2 three-quark 
combinations—the baryon 
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antiquark combinations 
that form the lightest 
meson nonet.
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would expect it to be. These results suggest that the orbital angular momentum of the 
valence quarks makes a significant contribution to the nucleon spin. An explanation 
of this possibility was provided recently by a theory suggested by F. Myhres and A. 
Thomas, which shows that about half of the proton’s spin comes from orbital angular 
momentum of u and u quarks. Aptly called “the proton spin crisis,” the results have 
underscored that our understanding of nucleon structure and quantum chromodynam-
ics is incomplete in some important respect and sets a high priority on experimental 
tests of that theory.

Nor does the spin crisis stop there. The results also show that the “sea” of virtual 
quark-antiquark pairs that surround the valence quarks (just as virtual pions surround 
the nucleons themselves in the nucleus) is strongly polarized, with its collective spin 
direction opposite to the proton’s net spin. Even more mysterious, the “sea” turns out 
to contain a significant number of strange (s) quarks. As one scientist put it, there is no 
simple “gee whiz” explanation for the spin crisis. Several theories have been advanced 
to account for this discovery, but so far none have been successfully tested. The spin 
crisis is currently the focus of vigorous experimental and theoretical research.

EXAMPLE 12-11	 Predicting the Properties of Particles ​ What are the prop-
erties of the particles made up of the following quarks: (a) ud, (b) ud, (c) dds, and 
(d ) uss?

SOLUTION
	 (a)	Since ud is a quark-antiquark combination, it has baryon number 0 and is 

therefore a meson. There is no strange quark here, so the strangeness of the 
meson is zero. The charge of the up quark is +2e>3 and that of the anti-down 
quark is +e>3, so the charge of the meson is 11e. This is the quark combina-
tion of the p1 meson.

	 (b)	The particle ud is also a meson with zero strangeness. Its electric charge is 
-2e>3 + 1-e>32 = -1e. This is the quark combination of the p2 meson.

	 (c)	 The particle dds is a baryon with strangeness 21 since it contains one strange 
quark. Its electric charge is -e>3 - e>3 - e>3 = -1e. This is the quark 
combination for the S2 particle.

	 (d )	The particle uss is a baryon with strangeness 22. Its electric charge is 
+2e>3 - e>3 - e>3 = 0. This is the quark combination for the J0 particle.

Color  In Section 12-1 we briefly introduced the concept of the color charge of the quarks 
and gluons. In this section we will extend that discussion to include some important 
quark and hadron properties related to color. The quark model as described thus far in 
Section 12-4, essentially that developed over the decade following the introduction of 
the Gell-Mann’s quark hypothesis, contained two serious problems: (1) despite numer-
ous experimental searches, no free quarks or gluons had been found (the so-called 
confinement problem), and (2) the model’s construction of baryons was inconsistent 
with the Pauli exclusion principle; for example, the D11(1232) has spin 3>2 and thus 
contains three u quarks (fermions) with exactly the same set of quantum numbers.

The solution to the exclusion-principle dilemma came from O. W. Greenberg, 
who postulated that each quark flavor (u, d, and s) came in three colors in addition to 
their other properties. The color charge of a quark has three possible values: red, blue, 
and green. Thus, a blue quark would have blueness 11, redness 0, and greenness 0, 
its antiquark would have blueness 21, and so on. The terms “color” and “color charge” 
are, of course, simply labels to describe a quark property analogous to electric charge 
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and are in no way related to the usual meanings of the words. The use of the three 
primary colors for this purpose did, however, provide a very simple rule to ensure that 
the exclusion principle was obeyed:

All particles that occur in nature are colorless.

The term colorless means that either

1.	 The total amount of color (i.e., the sum of the color quantum numbers) is zero, 
or

2.	 There are equal amounts of all three colors present (in analogy with the 
combining of the three primary colors to produce white).

Thus, for example, the three up quarks that compose the D11 (1232) are one each 
of ur , ub, and ug.

The J/ Puzzle  The solution provided by color seemed an artificial one, as did 
the explanation for seeing no free quarks described in the next subsection, but strong 
support for the model came late in 1974 from an unexpected quarter. Two groups 
independently discovered a new meson. The first group, S. Ting and his coworkers at 
Brookhaven, called it the J, while the second group, B. Richter and his coworkers at 
SLAC,19 called it the c. Now referred to as the J>c, the new meson had three times 
the mass of the proton and a lifetime of 10220 s, extraordinarily long for a strongly 
interacting particle. The exceptionally long lifetime pointed to new physics,20 and 
within months after its discovery it was recognized that the J>c was composed of 
a fourth quark and its antiquark. The fourth quark, which had been proposed by 
S. Glashow and others for compelling theoretical reasons some years earlier to make 
equal numbers of quarks and leptons (before discovery of the t and vt), is called the 
charm quark and J>c = 1cc2.21 Discovery of the first charm baryon, the L+

c , is 
shown in Figure 12-21. Figure 12-22 shows some supermultiplets formed with four 

(a)
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 n

b

hadronse+e–

(b)

Figure 12-21  (a) Discovery of the first charm baryon, the L+
c . The reaction is nm + p S L+

c + m- + p+ + p-. The charm 
baryon decays via L+

c S L0 + p+ too soon to leave a track, but the subsequent decay of the L0 is easily seen. [Brookhaven 
National Laboratory.] (b) A portion of the experimental data obtained by B. Richter and his coworkers at SLAC showing the 
J>c resonance.
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Figure 12-22  Supermultiplets formed from u, d, s, and c quarks. The circles indicate that there are two particles with the same 
quark composition and different energies.

quarks. This discovery made two nicely symmetric sets of four leptons (e, ve, m, vm) 
and four quarks (u, d, s, c) and, of course, their antiparticles. Then in 1975 a new 
lepton was found! The new lepton, the t, presumably had an associated neutrino,
the vt, and the numerical symmetry of the generations of particles was again upset. 
But within two years a new heavy meson, the upsilon , was discovered and quickly 
recognized as being composed of a fifth quark-antiquark pair. The fifth quark is 
called the bottom (or sometimes beauty) quark and  = 1bb2. The theory then 
predicts a sixth quark, called as you might guess the top (or sometimes truth) quark. 
The t quark was found in 1995 by two groups at Fermilab, thus restoring Glashow’s 
symmetry of fundamental quarks and leptons and completing the new periodic table 
of the three generations of the quark and lepton constituents of fundamental particles 
(see Figure 12-23). At 176 MeV>c2, the t quark is the most massive fundamental 
particle that has been discovered. There are substantial theoretical and experimental 
reasons to believe no more quarks or leptons are to be found (see Figure 12-24). 
Table 12-5 lists the up, down, strangeness, charm, top, and bottom internal quantum 
numbers for the six flavors of quarks. The quantum numbers of the antiquarks have 
opposite signs.
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Quantum Chromodynamics
Quantum chromodynamics (QCD) is the modern theory that describes the strong 
interaction between quarks and gluons. It is directly analogous to quantum electrody-
namics (QED), which so successfully accounts for the electromagnetic interaction. 
Indeed, QCD was modeled on QED. As explained earlier, the particle (boson) that 
mediates the strong quark-quark interaction is the gluon. The gluons are the QCD 
analog of the photon in QED. Like photons, they are massless and have spin 1 U; 
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Charge Quarks

Leptons

+2/3

–1/3

First generation Second generation Third generation

ur ub ug
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br bb
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Figure 12-23  Periodic table of elementary particle constituents.

0

5

40

35

30

25

20

15

10

92 94 9593908988 91 96

Energy, GeV

C
ro

ss
 s

ec
tio

n,
 n

b

Three generations

Two generations

Four generations

Figure 12-24  Both the shape and height of Z 0 resonance are theoretically related to the 
number of generations of the leptons and quarks. As that number increases, the maximum 
cross section decreases and the energy width (at half the maximum height) becomes larger. 
Current measurements, shown by the black circles, are fully consistent with three generations, 
excluding both two and four.
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however, the crucial difference between the two particles is that gluons carry color 
charge, whereas photons do not carry electric charge. In fact, gluons are bicolored, 
each carrying one unit of a color charge (positive) and one unit of an anticolor charge 
(negative), and so are not color neutral. They form an octet in the SU(3) group theory 
representation, just as the mesons do22 (see Figure 12-25). Thus, in the process q S  
q 1 g, the quark may change color (but not flavor), as shown in Figure 12-26a. Since 
the gluons carry net color charge, they can also interact with one another via the 
strong interaction, as illustrated in Figure 12-26b. Figures 12-26a and 12-26b are the 
Feynman diagram QCD vertices analogous to Figure 12-4 for QED. The gluon-gluon 
interaction means that, in addition to the increase in the strong interaction coupling 
constant as at very short distances analogous to the vacuum polarization in QED dis-
cussed in Section 12-2 and shown in Figure 12-10, there are gluon-gluon loops, as 
shown in Figure 12-27. The effect of such gluon loops is to, in a sense, dilute the 
strong force and decrease the value of the strong-interaction coupling constant as at 
extremely short distances (10218 m). As it turns out, this latter effect predominates 
at very small quark separations. Thus, as a pair of quarks move extremely close to 
each other, their coupling decreases, a condition called asymptotic freedom, a prop-
erty predicted by QCD. The result is that inside the nucleon, the quarks fly around 
more or less as free particles, a phenomenon that has been confirmed by electron-
deep-scattering experiments. Indeed, hundreds of experiments have confirmed the 
property of asymptotic freedom.

One of the possible potential functions for the strong interaction has the approxi-
mate form

	 VQCD1r2 = -  
4aS

3r
+ kr	 12-32

where k is an adjustable constant. Equation 12-32 has been 
reasonably well tested experimentally at short distances. 
Notice that VQCD increases indefinitely with r (Figure 12-28), 
that is, the strong force at large r, FQCD = 2VQCD = con-
stant, rather than going to zero, as do the Coulomb and grav-
itational forces. The result is to prevent the quarks from 
getting too far apart, effectively containing them inside the 
hadrons, a result called quark confinement. This is the QCD 
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Figure 12-25  The nine possible combinations 
of gluon colors and anticolors. Symmetry 
considerations in SU(3) result in eight linear 
combinations of those in the top two rows—the 
gluon octet. A linear combination of those in the 
bottom row forms a singlet.
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Figure 12-26  Examples of the fundamental 
vertices in QCD. (a) Emission of a gluon may also 
change the color of the quark. Here a dg quark 
emits a virtual ggr gluon, changing the quark to a 
dr . (b) Since gluons carry color charge, they also 
interact with each other.

Tipler: Modern Physics 6/e
Perm fig.: 1227,  New fig.: 12-27
First Draft: 2011-07-11
2nd Pass: 2011-07-19

g g
g

gq

q

q

q

Figure 12-27  Feynman diagram of a quark emitting 
a gluon, which then creates two gluons—a gluon loop 
or bubble—that recombine, the resulting gluon being 
absorbed by another quark.
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explanation for why free quarks have not yet been found. When a 
large amount of energy is added to a quark system such as a 
nucleon, a quark-antiquark pair is created and the original quarks 
remain confined within the original system. This is the origin 
of the virtual pions that were postulated by the Yukawa model of 
the nuclear force as the mediator of that interaction (see 
Figure 12-29, page 621).

During particle decays and interactions quarks transform into 
one another. For example, the b2 decay of the neutron given by 
Equation 11-38 proceeds according to the quark model in which a 
d quark turns into a u quark, as illustrated by Example 12-4. All 
baryons eventually decay in one or more steps to the lightest (lowest-
energy) baryon, the proton. The decay of the proton is prohibited 
by conservation of energy and baryon number, but searches for 
proton decay are continuing. Example 12-12 illustrates the decay 
of another baryon, the L0.

Questions

14.	 How can you tell whether a particle is a meson or a baryon 
by looking at its quark content?

15.	 Are there any quark-antiquark combinations that result in 
non-integral electric charge?

16.	 What experimental evidence exists to support the assertion 
that natural particles are colorless?

EXAMPLE 12-12	 Decay of L0 ​ Draw a Feynman diagram that shows the quarks 
involved in the decay of the L0, which goes according to

	 L0 S p e- ne	

u�0 d s

up d u

ve e–

W�

SOLUTION
From Table 12-11 we see that the L0 is composed of a u quark, a d quark, and an
s quark. The proton consists of two u quarks and a d quark. The decay results from 
the weak interaction, the s quark decaying to a u quark and a W 2. Note that strange-
ness is not conserved in the weak interaction that transforms the s quark into the
u quark.

1
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V
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k = 1 GeV · fm–1

Figure 12-28  The potential “seen” by quarks in 
QCD. In this diagram the strong coupling constant 
as = 0.3 and k = 1 GeV>fm in Equation 12-32.
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The Electroweak Theory
In the electroweak theory, the electromagnetic and weak interactions are considered 
to be two different manifestations of a more fundamental electroweak interaction. At 
very high energies (W100 GeV), the electroweak interaction is mediated by four 
bosons. From symmetry considerations, these would be a triplet consisting of W1, 
W 0, and W 2, all of equal mass, and a singlet boson B0 of some other mass. Neither the 
W 0 nor the B0 would be observed directly, but one linear combination of the W 0 and 
the B0 would be the Z 0 and another would be the photon. At ordinary energies, the 
symmetry is spontaneously broken.

By “spontaneously broken symmetry” we mean the following: The Hamiltonian 
Hop retains the complete symmetry, but the ground state computed from that Hop does 
not, or, as we say, the symmetry is broken. For example, magnetism in solids arises 
due to interaction of the spins of the atoms of the crystal lattice. For a ferromagnet, 
such as iron, the Hop describing that interaction is invariant under rotation, but in the 
ground state magnetic domains are spontaneously formed in the sample. The spin 
direction changes from domain to domain but is the same inside each domain. A domain 
is certainly not invariant to a rotation of the spins. Thus, the ground state spontane-
ously breaks the rotational symmetry. (To further help you visualize what “spon-
taneously broken symmetry” means, think of a small plastic strip, like a short 
ruler, gripped at the ends between your thumb and index finger. As you squeeze, the 
strip will snap into a curve to one side or the other, breaking the original left-right 
symmetry. See Figure 12-30.)

 Table 12-11  Quark composition of selected hadrons

Baryons Quarks Mesons Quarks

p uud p1 ud

n udd p2 ud

L0 uds K1 us

D11 uuu K 0 d s

S1 uus K 0 sd

S0 uds K2 su

S2 dds J>c cc

J0 uss D1 cd

J2 dss D0 cu

V2 sss D +
s cs

L+
c udc B1 ub

S++
c uuc B0 db

S+
c udc B0 db

J+
c usc B2 ub

TIPLER_12_579-638hr.indd   620 10/24/11   12:21 PM



	 12-4  The Standard Model	 621

The broken symmetry in the electroweak interaction leads to the separation of the 
electromagnetic interaction mediated by the photon and the weak interaction medi-
ated by the W1, W 2, and Z 0 particles. The fact that the photon is massless and that the 
W and Z particles have masses of the order of 100 GeV>c2 shows that the symmetry 
assumed in the electroweak theory does not exist at lower energies. The symmetry-
breaking agent is called a Higgs field, which requires a new boson, the Higgs boson, 
whose rest energy is expected to be of the order of 1 TeV (1 TeV = 1012 eV). 
According to the Standard Model, it is by interacting with the Higgs field that parti-
cles acquire their masses. The Higgs boson has not yet been observed. Calculations 
show that Higgs bosons (if they exist) should be produced in a head-on collision 
between protons of energies of the order of 20 TeV. While such energies are not 
available with existing accelerators, the Large Hadron Collider (LHC) that began 
operation at CERN in 2010 will be able to reach and exceed that energy by accelerat-
ing beams of a variety of nuclei. Searching for the Higgs boson is a primary goal for 
the LHC.

The Standard Model—A Summary
The Standard Model is a theoretical model of elementary particles and their inter
actions. It is based on a combination of the quark model, the electroweak theory, and 
quantum chromodynamics. In this model, the fundamental particles are the leptons and 
quarks, each of which comes in three generations, as shown in Tables 12-1 and 12-2. 
The force carriers are the photon, the W { and Z 0 particles, and eight types of gluons. 
The leptons and quarks are all spin@1>2 fermions, which obey the Pauli exclusion 
principle. The force carriers are integral-spin bosons, which do not obey the Pauli 
exclusion principle. Every force in nature is due to one of the four basic interactions: 
strong, electromagnetic, weak, and gravitational. A particle experiences one of the 
basic interactions if it carries a charge associated with that interaction. Electric charge 
is the familiar charge that you have studied previously. It is carried by the quarks and 
charged leptons. Weak charge, sometimes called flavor charge, is carried by leptons 
and quarks. The charge associated with the strong interaction is called color charge 
and is carried by quarks and gluons but not by leptons. The charge associated with the 
gravitational force is mass. It is important to note that the photon, which mediates the 
electromagnetic interaction, does not carry electric charge. The W { and Z 0 particles, 
which mediate the weak interaction, do carry weak charge, and the gluons, which 

(a)

(b)

(c)

Figure 12-30  The plastic 
strip in (a) has left-right 
symmetry. Increased vertical 
force on the ends of the strip 
breaks the symmetry, causing 
the strip to take one or the 
other of the positions (b) or
(c), neither of which has
left-right symmetry. [Eric 
Llewellyn Photography.]
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Figure 12-29  Shown is one possible illustration of quark confinement. If energy is added to 
remove a d quark from a neutron, a (u, u) pair is created. The u and one of the d quarks 
combine to form a p2, while the u from the pair and the original u and d combine to produce a 
proton and no free quark appears.
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mediate the strong interaction, carry color charge. This latter fact is related to the con-
finement of quarks.

All matter is made up of leptons and quarks. There are no known composite par-
ticles consisting of leptons bound together by the weak force. Leptons exist only as 
isolated particles. Hadrons (baryons and mesons) are composite particles consisting 
of quarks bound together by the color charge. A result of the QCD theory   is that only 
color-neutral combinations of quarks are allowed. Three quarks of different colors 
can combine to form color-neutral baryons, such as the neutron and proton. Mesons 
contain a quark and an antiquark and are also color neutral. Excited states of hadrons 
are considered to be different particles. For example, the D11 particle is produce 
by p1 p S D11. The D11 must have the exact same set of internal quantum numbers 
as the p1p: B = 1, C = S = T = B9 = 0, which from Equations 12-26 and
12-27 means Y = 1 and I3 = 3>2. The three u quarks can be in the same spin state
in the D11 without violating the exclusion principle because they have different 
colors.

The strong interaction can manifest itself in two ways: the fundamental or color 
interaction and the residual strong interaction. The fundamental interaction is respon-
sible for the force exerted by one quark on another and is mediated by gluons. The 
residual strong interaction is responsible for the force between color-neutral nucleons, 
such as the neutron and proton. This force is due to the residual strong interactions 
between the color-charged quarks that make up the nucleons and can be viewed as 
being mediated by the exchange of mesons. The residual strong interaction between 
color-neutral nucleons is analogous to the residual electromagnetic interaction 
between neutral atoms that bind them together to form molecules.

For each particle there is an antiparticle. A particle and its antiparticle have iden-
tical mass and spin but opposite electric charge. For leptons, the leptons numbers Le, 
Lm, and Lt of the antiparticles are the negatives of the corresponding numbers for the 
particles. For example, the lepton number for the electron is Le = 11 and that for 
the positron is Le = 21. For hadrons, the baryon number, strangeness, charm, top-
ness, and bottomness are the sums of those quantities for the quarks that make up the 
hadron. The number for each antiparticle is the negative of the number for the corre-
sponding particle. For example, the lambda particle L0, which is made up of the uds 
quarks, has B = 1 and S = 21, whereas its antiparticle, L 0, which is made up of the 
uds quarks, has B = 21 and S = 11. Particles such as the photon g and the Z 0 that 
have zero electric charge, B = 0, L = 0, S = 0 and zero charm, top, and bottom, are 
each their own antiparticle. Note that the K 0 meson (d s) has a zero value for all of 
these quantities except strangeness, which is 11. Its antiparticle, the K  0 meson 
(ds), has strangeness 21, which makes it distinct from the K 0. The p1 (ud) and p2 
(ud) have electric charge but zero values for L, B, and S. They are antiparticles of 
each other, but since there is no conservation law for mesons, it is impossible to say 
which is the particle and which is the antiparticle. Similarly, the W1 and W2 are anti-
particles of each other. Table 12-11 lists the quark compositions of several particles.

EXAMPLE 12-13	 Decay of the V2 ​ The V2 decays according to the equation

	 V- S L0 + K -	

and the resulting L0 and K2 usually decay according to

	 L0 S p + p- and K - S m- + nm	

Write each of these reactions in terms of quarks.
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SOLUTION
From Table 12-11, the V2 decay is given by

sss S uds + su

in which an s is changed to a d and a uu pair is created. The L0 and K2 decay 
according to, for the L0,

uds S uud + ud

where again an s is changed to a d and a uu pair is created, and, for the K2 meson,

su S m- + nn

where the s and u annihilate, producing a W 2, which decays to the leptons.

12-5  Beyond the Standard Model 
Grand Unification Theories
At the beginning of Section 12-4 we noted that the Standard Model of particle phys-
ics, while correctly accounting for a wide range of observations, has left a number 
of fundamental questions unanswered. Of premier importance among these are why 
nature requires four interactions, rather than one, and why their strengths and proper-
ties should be so different. The successful unification of the electromagnetic and 
weak interactions into the electroweak theory discussed earlier has led to a number of 
efforts to include the strong interaction and, ultimately, the gravitational interaction 
into a single, so-called grand unification theory, or GUT.23 As in the electroweak 
theory, the different strengths at energies well below the rest energies of the mediat-
ing bosons would be accounted for by spontaneous symmetry breaking. GUTs also 
explain the equality of the electron and proton charges.

A central feature of current GUTs is that the coupling constants of all four inter-
actions approach the same value, approximately that of the fine-structure constant a, 
at some very high energy. It is a remarkable experimental observation that the mea-
sured values of the coupling constants do appear to be tending toward a common value. 
Unfortunately, extrapolation to the common point must be made over an extraordi-
narily large energy range, that point of common value being at about 1016 GeV, com-
pared with about 104 GeV that can be reached with the largest existing accelerator, 
the LHC at CERN (see Figure 12-31). To assume that nature has no surprises or 
new physics to await us somewhere in that colossal energy range ignores the lessons 
of history.

Supersymmetry (SUSY)
A number of GUTs include a proposed new symmetry in addition to those we have 
discussed previously. Called supersymmetry (with acronym SUSY), it assigns to each 
elementary particle a superpartner. The superpartner is in every way identical to the 
particle except for its spin. The leptons and quarks, both spin@1>2 fermions, have 
superpartners with spin 0. The spin-1 bosons have spin-1>2 superpartners. The super-
partners of the fermions are given the same names with a prefix s; for example, the 
electron’s superpartner is the selectron. The superpartners of the bosons have the same 
names with a suffix ino added (sort of ); for example, the gluon’s superpartner is the 
gluino. The particles and their superpartners are listed in Table 12-12.
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Exact supersymmetry would equate the masses of the particles and their super-
partners. However, this is apparently not true in nature or the superpartners would 
have been detected long ago. So SUSY is modified to account for that absence by 
postulating that the mass of the lightest superpartner would be very large, indeed, of 
the order of the masses of the W { and the Z 0 bosons. Doing so ultimately predicts the 
GUT unification energy in the vicinity of the current extrapolated projections, pre-
dicts the proton lifetime in agreement with current experimental limits, and keeps the 
GUT unification coupling constant in line with current extrapolations. An important 
goal of CERN’s Large Hadron Collider is to test predictions of supersymmetry.

SUSY is also a component of current theories designed to include gravity within 
GUTs. These are the string and superstring theories. String theories replace point-like 
elementary particles with tiny, quantized strings and require 10 or more dimensions. 
Their purpose is to surmount current theoretical problems in quantizing gravity. 
Currently, particle physicists are sharply divided over string theories, some heralding 

 Table 12-12  Elementary particles and their superpartners

Particle Symbol Spin Superpartner Symbol Spin

Quark q 1
2

Squark q 0

Electron e 1
2

Selectron e 0

Muon m 1
2

Smuon m 0

Tau t 1
2

Stau t 0

W W 1 Wino W 1
2

Z Z 1 Zino Z 1
2

Photon g 1 Photino g 1
2

Gluon g 1 Gluino g 1
2

Higgs H 0 Higgsino H 1
2
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Figure 12-31  The coupling 
constants of the four 
interactions appear to be 
approaching a common value 
at some energy in the range to 
1016 to 1018 GeV. Since the 
largest existing accelerator, 
the Large Hadron Collider at 
CERN, can reach only about 
14 TeV, the extrapolation to 
the unification energy Ex is 
highly uncertain.
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them as the “theory of everything,” others dismissing them as “not even wrong.” As 
of this date, there is no experimental evidence supporting any of the string theories.

Proton Decay
In GUTs the quarks and leptons are states of one particle, the leptoquark, and occur 
symmetrically in the same multiplet. This would account for why there are equal num-
bers of quark and lepton flavors and also lead to the prediction that each type of par-
ticle can be changed into the other. If that is the case, then baryon number is no longer 
a conserved quantity and the proton should not be stable. Current versions of GUTs 
place the lifetime of the proton at about 1030 to 1033 years, the long lifetime being the 
result of the large energy at which unification of the interactions occurs. Current 
experiments have placed the lower limit on the proton lifetime at about 1032 years; to 
date, no proton decays have been detected. Searches for proton decay, such as that at 
Super-K, generally involve monitoring very large volumes of pure water, watching 
for one of the several possible proton decay “signatures”; for example, p S  p0 e1 or 
p S  p1 ne. The nonconservation of baryon number in the early universe, when ener-
gies were very high, provides an explanation of a major cosmological problem, 
namely, why the present universe has many more baryons than antibaryons.

(a) (b)

The Sudbury Neutrino Observatory (SNO) in Canada and the Super-Kamiokande (Super-K) neutrino detector in Japan collected 
data on neutrino interactions that confirmed neutrino oscillations. (a) The SNO neutrino detector is a spherical acrylic vessel 
12 m in diameter and contains 1000 tonnes of ultra-pure heavy water (D2O) 2000 m below ground. Čherenkov light produced 
by neutrino reactions in the water is viewed by 9456 photomultipliers, each 20 cm in diameter. (b) The Super-K neutrino 
detector, a cylindrical structure 41 m tall and 39 m in diameter, contains 45,000 tonnes of pure water (H2O) viewed by
11,200 photomultipliers. [(a) Courtesy of Sudbury Neutrino Observatory; (b) courtesy of Kamioka Observatory, University
of Tokyo.]

TIPLER_12_579-638hr.indd   625 10/24/11   12:21 PM



626	 Chapter 12  Particle Physics

Lepton numbers would no longer be conserved at the unification energy, and 
currently forbidden reactions such as m2 S  e2 1 g and m1 S  e1 1 e1 1 e2 would 
be allowed. Experimental searches have been made, but no lepton-number non-
conserving events have been found.

Massive Neutrinos
From the time Pauli first suggested their existence in 1930, neutrinos were thought 
to have zero mass. Then, based on Bahcall’s theoretical calculation of the solar neu-
trino flux and Davis’s remarkable measurement24 of the flux at only about 30 percent 
of Bahcall’s prediction, the solar neutrino problem emerged (see Section 11-8). Its 
solution by the detection of neutrino oscillations by the Sudbury Neutrino Observatory 
(SNO) and Super-K experiments gives support to GUTs since most GUTs require that 
neutrinos have mass. The theories predict their mass to be given approximately by

	 mn 
M2

eW

Mx

	 12-33

where MeW is a characteristic mass of the electroweak interaction, roughly 102 GeV>c2, 
and Mx is the unification mass Ex>c2  1016 GeV>c2 (see Figure 12-31). Nearly all 
GUTs project Mx values of this order of magnitude, which in turn means that all 
neutrinos would have mv less than about 1 eV. The theories also predict m(ve) V 
m(vm) V m(vt). The impact of massive neutrinos on both the solar neutrino problem 
described briefly in Chapter 11 and the universe’s “missing energy” (or “missing 
mass”) problem discussed in Chapter 13 is substantial. Mikheyev, Smirnov, and 
Wolfenstein proposed a solution to the solar neutrino problem in particular in which 
an ve can oscillate to a vm or vt while propagating through the Sun’s mass. For this 
complex process, called the MSW effect, to occur, the neutrino wave functions c(ve), 
c(vm), and c(vt) must each consist of superpositions of all three neutrino mass states. 
Similar processes can be described for neutrinos moving through space and the 
atmosphere (see Exploring: Neutrino Oscillations and Mass). The relative phases 
of the mass-state wave functions may change for two reasons: (1) in passing through 
the solar matter (electrons and protons), the three mass states scatter differently; 
hence their relative phases change, and (2) while propagating through space and the 
atmosphere, the mass states move at slightly different speeds, which also results in a 
change in the relative phase. The phase changes result in interference of the neutrino 
matter waves and, as a consequence, a neutrino emitted in the Sun as a ve may oscil-
late to a vm or vt before reaching Earth and therefore not be detected by experiments 
searching for electron neutrinos. Experimental evidence supporting the existence of 
oscillations was provided by the SNO and Super-K measurements.

Magnetic Monopoles
Magnetic monopoles, first suggested by Dirac in 1929, are also proposed by GUTs. 
Dirac showed that their existence in relativistic quantum mechanics leads to the quan-
tization of both the electric charge e and the magnetic charge qm. The magnetic charge 
of a monopole would be

	 qm = n 
Uc

2e
 for n = 1, 2, 3,c 	 12-34

It is important to note that q2
m>Uc  Uc>e2 r 1>a. In the unified theories the quanti-

zation of electric charge occurs naturally in units of e, and magnetic monopoles of 
charge qm and mass Mm are then predicted. The predicted values of Mm, are very large, 
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about 1016 GeV>c2, far beyond the energy achievable in any accelerator. Cosmic-ray 
searches for monopoles place an upper limit on their flux at about 10215 cm22 s21 per 
unit solid angle. Coincidentally, this value corresponds approximately to the maxi-
mum flux that could exist in the Milky Way without having long since destroyed the 
galactic magnetic field. As of this writing, only a single possible observation of a 
magnetic monopole has been reported in the literature, by B. Cabrera in 1982. This 
observation is inconsistent with current limits.

FOR YOU An Opportunity to Contribute  Everyone knows that cutting a bar 
magnet in half does not produce separate N and S poles. It simply results in two 
magnets, each with an N pole and an S pole. Even so, in 1929 Dirac pointed out that 
relativistic quantum mechanics predicted the quantization of magnetic charge, that is, 
the existence of magnetic monopoles. Though many experimental searches for iso-
lated separate N and S magnetic poles have been made, none have been found—yet. 
Then in 2009 two research groups succeeded in creating inside magnetic crystals 
“quasi-particles” (things that seem to be particles but are not) that acted as theory 
suggests monopoles would behave. The magnetic crystals inside of which the quasi-
monopoles appeared are called spin ice because their crystal structure is similar to 
that of water ice. The quasi-monopoles provide an opportunity for both experimen-
talists and theorists to learn how real monopoles might behave, perhaps suggesting a 
path toward detecting evidence of the existence of monopoles in the cosmos.

Quantum Gravity
The addition of quantum gravity to grand unified theories is a formidable task. Called 
superstring theories because of their basic view of fundamental particles as strings 
rather than points, perhaps the most promising of the current versions is based on a 
10-dimensional universe (nine space and one time dimension) in which six of the 
space dimensions have been collapsed or curled up on themselves. The string 
“lengths” are much shorter than can be measured, about 10235 m. Besides the inclu-
sion of quantum gravity, superstring theories also produce the gauge theories25 with 
the correct exchange bosons; however, although they are the subject of considerable 
interest to theoretical physicists, there is as yet no experimental support for these the-
ories and it is not clear to what extent, if any, they represent physical reality. Many 
questions are still unanswered. For example, do the quarks have internal structure? 
What is the origin of isospin? There is some indication that hadrons are surrounded 
by a “sea” of quark-antiquark pairs. What is their role? Is the fractional electric charge 
of the quarks related to color? Investigating these problems experimentally will 
require new, higher-energy accelerators and more advanced detectors than currently 
exist anywhere in the world. Obviously, there is much to be done.

EXPLORING
Neutrino Oscillations and Mass

Quantum mechanics requires that, if neutrinos oscillate from one type, or flavor, to 
another, then they must have mass, whether they originate in the Sun, the atmosphere, 
a nuclear power reactor, an accelerator, or somewhere else in the cosmos. Although 
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the detailed justification of this requirement is beyond the scope of our discussions, an 
outline of why this must be true is presented here. The relationship between neutrino 
(flavor) wave functions and the mass eigenfunctions is given by

	 ca = a
i

U *
ai ci	

	 ci = a
a

Uai ca

	 12-35

where the ca are the wave functions of the neutrino flavors (a = ne, nm, nt), the ci are 
the mass eigenfunctions (i = n1, n2, n3), and Uai (and its complex conjugate) is a func-
tion that describes the extent to which mixing of the flavors or masses occurs, that is, 
the phases of the oscillations. Note that, if there were no oscillations, Uai = 1 and the 
ca would equal the mass eigenfunction for na; however, the experiments noted above 
show that Uai  1. The states with different mass eigenfunctions propagate at differ-
ent speeds, the less massive moving faster than the more massive ones. Since the mass 
eigenfunctions are combinations of neutrino (flavor) wave functions, the difference in 
speeds results in interference between the neutrino waves in each mass eigenfunction. 
When, eventually, constructive interference occurs, one neutrino flavor has changed 
into another.

The mass eigenfunctions are plane wave solutions of the time-dependent 
Schrödinger equation (see Equation 6-7):

	 ci1x, t2 = ei1px - Et2>U	 12-36

The dependence of the energy on the mass is given by Equation 2-31 and the 
extremely relativistic approximation of Equation 2-36,

	 E = 21pc22 + 1mc222	 2-31

written as

	 E = 1pc2 c 1 +
1mc222

1pc22 d
1>2

	

Since for each of the neutrinos under discussion the total energy E W mc2, the bino-
mial expansion enables us to write

	 E  pc +
1mc222

2 pc
+ g 	 12-37

After time t moving at v  c, the neutrino has traveled a distance x  ct = L and the 
mass wave functions become

	 ci1L2 = e
-

 
iL

Uc  
1mc222

2E  ci102	 12-38

and the probability that a neutrino of flavor a at t = 0 will be observed to have changed 
or oscillated to flavor b is given by

	 PaSb =  cb ca  2 = ` a
i

U *
ai  Ubi  e

-
 
iL

Uc
 1mc222

2E `
2

	 12-39

If we confine our attention to the two-neutrino case (the three-neutrino case being    	
more complex to describe), Equation 12-39 becomes (after some work!)
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	 PaSb, a  b = sin2
 

 2u sin2a1.267 
Dm2

 L

E
 

GeV

eV2km
b 	 12-40

where u is the neutrino mixing angle and Dm is the difference in the masses of the 
two neutrinos. Although Equation 12-40 applies to a two-neutrino world, it is a decent 
approximation for the nm 4 nt oscillations in the atmosphere since electron neutrinos 
do not contribute significantly in this case. It is also reasonable for solar electron neu-
trinos oscillating to superpositions of nm and nt (see Figure 12-32).

From Equation 12-40 we now can see why flavor-changing neutrinos must 
have mass. Since experiments show that PaSb  0 and measure for solar neutrinos 
u1ne, nm2 = 33.91  02 and for atmospheric neutrinos u1nm, nt2 = 45, then in both 
cases Dm2  0. Thus, neutrinos have mass. The current values of Dm2 are

	 Dm2
solar  6.0 * 10-5 eV2	

	 Dm2
atmo  2.4 * 10-3 eV2	

More
�GUTs are not the only avenue being actively explored by physicists 
in search of a deeper understanding of the structure of matter than we 
now have. These so-called theories of everything that seek to account 
for all of physics within a single theoretical construct are highly 
speculative, and none yet have any experimental support. String 
Theory on the home page at www.whfreeman.com/tiplermodern
physics6e. will give you a brief look at one of those currently under 
theoretical study.

More

Tipler: Modern Physics 6/e
Perm fig.: 1232,  New fig.: 12-32
First Draft: 2011-07-11
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Figure 12-32  A plot of Pee = 1 2 Pem 
(from Equation 12-40) illustrates the 
probability that a 4 MeV solar electron 
neutrino ne will still be detected as a ne 
after traveling a distance L from its point 
of origin. Beyond 1000 km the 
oscillations are extremely close together 
on this logarithmic scale. At large 
distances from the Sun, for example, 
at Earth, the average value of Pee is 
about 0.6. [Adapted from Chris Waltham, 
“Teaching Neutrino Oscillations,” 
American Journal of Physics 729, 
6 (June 2004.)]
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Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 Basic concepts

	 Antiparticles

	 Feynman diagrams

	 Leptons and quarks

Each fundamental particle found in nature has an antiparticle; some are distinct, 
for example, the electron and positron; some are the antiparticles of themselves, 
for example, the photon.

These are spacetime diagrams that provide a useful way of visualizing interactions 
between particles—for example, Coulomb repulsion of like charges.

All visible matter is made of two types of elementary particles, leptons and quarks, 
each consisting of three generations.

2.	 Fundamental interactions

	 Force carriers

	 Interaction “strengths”

1.	 Strong interaction—gluons
2.	 Electromagnetic interaction—photons
3.	 Weak interaction—W  {, Z 0

4.	 Gravitational interaction—graviton

This term refers to the magnitudes of the dimensionless coupling constants that 
multiply the space-dependent part of the potential energy functions.

3.	 Conservation laws and 
symmetries

Every symmetry of the particle Hamiltonians leads to a conservation law and vice versa 
(Noether’s theorem). Energy, momentum, electric charge, and angular momentum are 
conserved in all interactions. Some quantities are conserved in some interactions but not 
in others. For example, isospin is conserved in the strong interaction but not in the weak 
interaction.

4.	 Standard Model

	 Color

	 QCD

The Standard Model seeks to explain all matter in terms of the interactions between 
three types of elementary particles: quarks, leptons, and force carriers.

All quarks and gluons have color charge with one of three possible values: red, blue, and 
green. The exclusion principle requires that all particles that occur in nature are colorless.

The potential function of the strong interaction has the approximate form

VQCD1r2 = -  
4as

3r
+ kr� 12-32

5.	 Beyond the Standard 
Model

Grand unification theories (GUTs) attempt to unify all four basic interactions mathematically. 
While thus far unsuccessful, some predict, among other things, proton decay, magnetic 
monopoles, and massive neutrinos. The latter has been verified by experiments.
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1.	 The word atom comes from the Greek word atomos, 
meaning “indivisible,” which was coined by the philosopher 
Democritus, a contemporary of Socrates, about 2400 years 
ago. In addition to suggesting that matter consisted of a vari-
ety of tiny atoms, he suggested that the Milky Way was made 
of a large number of individual stars and that the Moon had 
mountains and valleys just like Earth.

2.	 Carl David Anderson (1905–1991), Swedish-American 
physicist. His discovery of the positron in cosmic-ray cloud 
chamber tracks was followed three years later by his discov-
ery of the muon in cloud chamber tracks recorded on Pikes 
Peak in Colorado. The former earned him a share of the 1936 
Nobel Prize in Physics.

3.	 The Dirac equation for particles with 1>2@integral spin, 
such as the electron, is the relativistic analog of the Schrödinger 
equation; however, it is not obtained by operator substitution 
into Equation 2-31 since the wave function resulting from that 
substitution does not include the effects of spin.

4.	 Richard Phillips Feynman (1918–1988), American phys-
icist who described himself as a “curious character.” An 
almost-legendary figure among physicists in the United 
States, he was one of many who worked on the Manhattan 
Project at Los Alamos during World War II, where he also 
became an accomplished safecracker. An excellent bongo 
drummer and a passable artist, he shared the 1965 Nobel 
Prize in Physics with Julian Schwinger and Sin-Itiro 
Tomonaga, all of whom independently contributed to the 
development of quantum electrodynamics. His books Surely 
You’re Joking, Mr. Feynman! and What Do You Care What 
People Think? provide delightful insights into his life.

5.	 Emilio Gino Segrè (1905–1989), Italian-American physi-
cist. A lifelong friend and colleague of Fermi, Segrè shared 
the 1959 Nobel Prize in Physics with Owen Chamberlain, a 
member of his Berkeley research group, for the discovery of 
the antiproton. Of greater interest to most people might be his 
discovery of technetium (Z = 43), the first chemical element 
to be artificially created. The isomeric state of the isotope of 
technetium, 99Tc, is by far the most widely used radioisotope 
in medical diagnosis, treatment, and research.

6.	 This process is called Møller scattering in QED.
7.	 In fact, an infinite number. The contribution that each 

possible diagram makes to the total process decreases sharply 
as the number of vertices increases, so complex diagrams 
may typically be ignored.

8.	 The name lepton, which means “light particle,” was 
originally selected to reflect the small mass of these particles 
relative to that of the hadrons; however, the t (discovered by 
M. Perl in 1975) has a mass nearly twice that of the proton, so 
the name is no longer an indicator of the mass of these 
particles.

9.	 The reason for making the coupling constant dimension-
less is so all observers will measure comparable values, inde-
pendent of the units they may have used.

10.	 Carlo Rubbia (b. 1934), Italian physicist. He shared the 
1984 Nobel Prize in Physics with Simon van der Meer for 
their contributions to the discovery of the W { and Z 0.
11.	 Emmy A. Noether (1882–1935), German mathematician. 
Her contributions provided the framework that enabled 
Einstein to establish conservation of energy and momentum 
in general relativity. She is recognized by mathematicians as 
the “mother of modern algebra.” Dismissed from her position 
at Göttigen by the Nazi regime, she came to the United States 
in 1933. Her obituary in the New York Times was written by 
Einstein.
12.	 Operators, like Hop, that result in real (i.e., observable) 
values are called Hermitian operators. They obey the rule

	 3a1x2Fop b1x2  dx = 3b1x2F*
op a1x2  dx

13.	 Murray Gell-Mann (b. 1929), American physicist. He 
received the 1969 Nobel Prize in Physics for this and other 
work on fundamental particles and their interactions.
14.	 The rate of discovery became so large that one physicist 
quipped that “. . . by 1990 all  physicists would be famous 
because there would be a particle named for each physicist” 
(30,000). Most “discoveries” turned out to be spurious.
15.	 From a saying attributed to the Buddha: “Now this, O 
monks, is the noble truth of the way that leads to the cessation 
of pain: this is the noble Eightfold Way: namely, right views, 
right intention, right speech, right action, right living, right 
effort, right mindfulness, and right concentration.”
16.	 There are many kinds of groups. There are finite groups, 
such as the triangle group of six members, infinite groups, 
such as the set of positive integers, and continuous groups, in 
which the members of the group depend on one (or more) 
continuous parameters. (See Griffiths in the list of General 
References for additions descriptions.)
17.	 The name “quark” was suggested to Gell-Mann by a quo-
tation from Finnegans Wake by James Joyce: “Three quarks 
for Master Mark.” Joyce did not tell us and the context does 
not make clear exactly what a quark is.
18.	 The correct quark combinations of hadrons are not 
always obvious because of the symmetry requirements on the 
total wave function. For example, the p0 meson is represented 
by a linear combination of uu and dd.
19.	 Samuel Chao Chung Ting (b. 1936), American physicist, 
and Burton Richter (b. 1931), American physicist, shared the 
1976 Nobel Prize in physics for this important discovery.
20.	 One physicist put the long lifetime of the J>c in biologi-
cal terms by comparing it with someone coming upon a 
remote mountain village where the average age of the inhabit-
ants was 70,000 years. That would be a definite indication of 
new biology.
21.	 Particle physicists call the discovery of the J>c the 
“November revolution,” referring to the enormous support of 
the quark model that its November 1974 publication provided.

Notes 
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Problems 
Level I

Section 12-1  Basic Concept
12-1.	 Two pions at rest annihilate according to the reaction p1 1 p2 S  g 1 g.
(a) Why must the energies of the two gamma rays be equal? (b) Find the energy of each 
gamma ray. (c) Find the wavelength of each gamma ray.
12-2.	 Find the minimum energy of the photon needed for the following reactions: 
(a) g S  L1 1 p2, (b) g S p + p, and (c) g S  m2 1 m1.
12-3.	 Draw two different Feynman diagrams for each of the following events. (a) e1 1 
e2 S  e1 1 e2; (b) g 1 e2 S  g 1 e2.
12-4.	 Draw a Feynman diagram illustrating each of the following scattering events: 
(a) electron-electron, (b) electron-positron, and (c) Compton effect.
12-5.	 Find (a) the energy of the electron, (b) the energy of the 32S nucleus, and (c) the 
momentum of each in the decay 32P S  32S 1 e2, assuming no neutrino in the final state 
(n S  p 1 e2). (The rest mass of 32P is 31.973762 u.)
12-6.	 The fate of an antiproton is usually annihilation via the reaction p + p S g + g.
Assume that the proton and antiproton annihilate at rest. (a) Why must there be two 
photons rather than just one? (b) What is the energy of each photon? (c) What is the wave-
length of each photon? (d ) What is the frequency of each photon?
12-7.	 Figure 12-2 shows the production of the first antiproton. It was produced by the 
reaction p + p S p + p + p + p and required a minimum kinetic energy of 5.6 GeV. 
(The proton beam energy was actually 25 GeV.) Less energy would be required by either 
of the following reactions. Why is neither of them a possible alternative? Justify your 
answer. (a) p + p S p + e- + e+ + p    (b) p + p S p + p
12-8.	 Positronium is a bound state of an electron and a positron (see Section 2-4). Its 
lifetime expressed in natural units used by particle physicists (U = c = 1) is t = 2>ma5, 
where m = electron mass and a = the fine structure constant. Use dimensional analysis 
(a) to include U and c in the expression for t and (b) to compute the value of t.

Section 12-2  Fundamental Interactions and the Force Carriers
12-9.	 Name the interaction responsible for each of the following decays:
(a)	 n S p + e- + ne

(b)	 p0 S  g 1 g
(c)	 D1 S  p0 1 p
(d )	p1 S  m1 1 vm

12-10.	 Which of the following decays—p0 S g + g or p- S m- + nm —would you 
expect to have the longer lifetime? Why?
12-11.	 Of the following reactions, which are allowed to proceed via the weak interaction 
and which are forbidden? Justify your answer.

22.	 They form nine combinations, just like the mesons, but 
for the gluons the ninth combination is really a singlet and, 
hence, is independent.
23.	 Since no theory of quantum gravity complementing QED 
and QCD exists, current efforts to develop GUTs include only 
the strong and electroweak interactions.
24.	 Raymond Davis, Jr. (1914–2006), American physicist, and 
John Bahcall (1934–2005) American physicist. His measure-
ments won Davis a share of the 2002 Nobel Prize in Physics.

25.	 Theories in which the interaction is determined by the 
invariance of the theory (i.e., its mathematical equations) 
under particular transformations are called gauge theories. 
For example, classical electrodynamics is a gauge theory 
(although not usually referred to as such), as are QED and 
QCD. Historically, interactions were “figured out” by clever 
physicists on the basis of experimental evidence. A bit of 
a  surprise, Schrödinger’s wave mechanics is not a gauge 
theory.
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(a)	 K + S p0 + m+ + nm

(b)	 p + e- + ne S e- + p+ + p
(c)	 L0 S p+ + e- + ne

(d )	p + nm S m+ + n
12-12.	 Which of the four fundamental interactions is most likely responsible for the 
following reactions?
(a)	 16O (excited state) S  16O (ground state) 1 g
(b)	 ve 1 e S  ve 1 e
(c)	 p + p S g + g
(d )	p + ne S n + e+

(e)	 p0 1 p S  p0 1 p
(f  )	 3H S 3He + e- + ne

12-13.	 Using the information concerning the neutrinos from SN1987A, including Figure 
12-33, compute an upper limit to the mass of the electron neutrino.
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Figure 12-33  Electron 
antineutrino energy versus 
arrival time in the Kamiokande 
detector in Japan for 
antineutrinos emitted by the 
supernova 1987A. The spread 
in arrival times (about 13 s) 
permits a calculation of an 
upper limit to the mass of 
the ne.

12-14.	 The rest energies of the S1 and S2 are slightly different, but those of the p1 and 
p2 are exactly the same. Explain this difference in behavior.
12-15.	 Draw Feynman diagrams of the following decays:
(a)	 m+ S e+ + ve + nm

(b)	 p- S m- + nm

(c)	 t- S m- + nm + vt

Section 12-3  Conservation Laws and Symmetries
12-16.	 What is the uncertainty in the rest energies of the following particles? (a) L(1670), 
(b) S(2030), (c) D(1232).
12-17.	 State which of the decays or reactions that follow violate one or more of the con-
servation laws, and give the law or laws violated in each case.
(a)	 p S n + e+ + ne

(b)	 n S  p 1 p2

(c)	 e1 1 e2 S  g
(d )	p + p S g + g
(e)	 ve 1 p S  n 1 e1

(f  )	 p S  p1 1 e1 1 e2

12-18.	 The neutral pion decays 99 percent of the time by the reaction p0 S  2g. The p2 
decays by the reaction p- S m- + nm. (a) Assuming the p0 to consist of a uu quark pair, 
show how the 2g occurs. (b) Why is a p0 decay to a single photon not possible? (c) The 
p2 is a ud quark combination. Draw a Feynman diagram for the p2 decay.
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12-19.	 Determine the change in strangeness in each reaction that follows, and state 
whether the reaction can proceed via the strong interaction, the electromagnetic interac-
tion, the weak interaction, or not at all:
(a)	 V2 S  J0 1 p2,  (b)	 J0 S  p 1 p2 1 p0, and (c) L0 S  p 1 p2

12-20.	 Determine the change in strangeness for each decay, and state whether the decay 
can proceed via the strong interaction, the electromagnetic interaction, the weak inter
action, or not at all:
(a)	 V- S L0 + ne +  e-, (b) S1 S  p 1 p0, and (c) S0 S  L0 1 g
12-21.	 The rules for determining the isospin of two or more particles are the same as those 
for combining angular momentum. For example, since T = 1>2 for nucleons, the com-
bination of two nucleons can have either T = 1 or T = 0 or may be a mixture of these 
isospin states. Since T3 = +1>2 for the proton, the combination p 1 p has T3 = 11 and 
therefore must have T = 1. Find T3 and the possible values of T for the following:
(a)	 n 1 n
(b)	 n 1 p
(c)	 p1 1 p
(d )	p2 1 n
(e)	 p1 1 n
12-22.	 Which of the following decays are allowed and which are forbidden? If the decay 
is allowed, state which interaction is responsible. If it is forbidden, state which conserva-
tion law its occurrence would violate.
(a)	 p2 S  e2 1 g
(b)	 p0 S e- + e+ + ve + ne

(c)	 p1 S  e2 1 e1 1 m1 1 vm

(d )	L0 S  p1 1 p2

(e)	 n S p + e- + ne

12-23.	 For each of the following particles, write down two possible decays that satisfy all 
conservation laws: (a) V2, (b) S1, (c) L0, (d ) p0, and (e) K1.
12-24.	 Consider the following reactions:

K - + p S K 0 + K + + V-

followed by

V- S J0 + p-

Given that B = 1 for the proton and B = 0 for mesons and that baryon number is con-
served, determine the baryon number of the V2 and the J0.
12-25.	 Which of the following decays and reactions conserve strangeness?
(a)	 p + p S g + g
(b)	 J2 S  p2 1 L0

(c)	 S1 S  L0 1 p1

(d ) p2 1 p S  p2 1 S1

(e)	 V2 S  J2 1 p0

Section 12-4  The Standard Model
12-26.	 Find the baryon number, charge, isospin, and strangeness for the following quark 
combinations and identify the corresponding hadron: (a) uud, (b) udd, (c) uuu, (d ) uss,
(e) dss, (f  ) suu, and (g) sdd.
12-27.	 Find the baryon number, charge, isospin, and strangeness for the following quark 
combinations and identify the corresponding hadron (the charge and strangeness of the 
antiquarks are the negatives of those of the corresponding quarks, as with any other parti-
cle-antiparticle pair): (a) ud, (b) ud, (c) us, (d) ss, and (e) ds.
12-28.	 Draw two Feynman diagrams that represent the decay of the anti-bottom quark.
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12-29.	 Some quark combinations can exist in two or more isospin states, with each state 
corresponding to a different hadron. One such combination is uds. (a) What is the value of 
T3 for this combination? (b) What are the possible values of total isospin T for this com-
bination? (c) Find the baryon number, charge, and strangeness of this combination, and 
identify the hadron corresponding to each isospin state.
12-30.	 The D11 particle is a baryon that decays via the strong interaction. Its strangeness, 
charm, topness, and bottomness are all zero. What combination of quarks gives a particle 
with these properties?
12-31.	 Compute the approximate range of a weak interaction mediated by a W 1.
12-32.	 One mode of weak decay of the K 0 is

K  0 S p+ + m- + nm

Showing the quark content of the particles, draw the Feynman diagram of this so-called 
semileptonic decay.
12-33.	 The L0 undergoes a weak decay as follows: L0 S  p 1 p2. Showing the quark 
content of the particles, draw the Feynman diagram of this so-called nonleptonic decay.
12-34.	 Show that the neutron cannot undergo the weak decay shown for the L0 in Prob-
lem 12-32.
12-35.	 The decay of the L0 shown in Problem 12-33 can also proceed via the strong 
interaction. Showing the quark content of the particles, draw the Feynman diagram that 
illustrates the strong decay of the L0.
12-36.	 The X 0 (1193) can be produced by the reaction K - + p S p0 + 0. (a) Deter-
mine the baryon, strangeness, charm, and bottom quantum numbers of the X 0 (1193).
(b) From your answer to (a), what is the quark content of the X 0 (1193)?
12-37.	 Find a possible combination of quarks that gives the correct values for electric 
charge, baryon number, and strangeness for (a) K1 and (b) K 0.
12-38.	 The D1 meson has strangeness 0, but it has charm of 11. (a) What is a possible 
quark combination that will give the correct properties for this particle? (b) Repeat (a) for 
the D2 meson, which is the antiparticle of the D1.
12-39.	 The lifetime of the S0 is 6 * 10220 s. The lifetime of the S1 is 0.8 * 10210 s and 
that of the S2 is 1.48 * 10210 s, nearly twice as long. How can these differences in life-
times between members of the same isospin multiplet be explained?

Section 12-5  Beyond the Standard Model
12-40.	 Grand unification theories predict that the proton is unstable. If that turns out to 
be true, why does it mean that baryon number is not conserved? If leptons and quarks are 
interchangeable at the unification energy, does this mean that there is a new, conserved 
“leptoquark number”?
12-41.	 GUTs predict a lifetime of about 1032 y for the proton. If that is the case, how 
many protons will decay each year in the world’s oceans? (Assume the average depth of 
the oceans to be 1 km and that they cover 75 percent of Earth’s surface.)
12-42.	 Protons might decay via a number of different modes. What conservation laws are 
violated by the following possibilities?
(a)	 p S  e1 1 L0 1 ve

(b)	 p S  p1 1 g
(c)	 p S  p1 1 K0

Level II
12-43.	 Find a possible quark combination for the following particles: (a) n, (b) J0,
(c) S1, (d ) V2, and (e) J2.
12-44.	 State the properties of the particles made up of the following quarks: (a) ddd,
(b) uc, (c) ub, and (d ) sss.
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12-45.	 Show that the Z0 cannot decay into two identical zero-spin particles.
12-46.	 Consider the following decay chain:

J0 S L0 + p0

L0 S p + p-

p0 S g + g

p- S m- + nm

m- S e- + ne + nm

(a) Are all the final products shown stable? If not, finish the decay chain. (b) Write the 
overall decay reaction for J0 to the final products. (c) Check the overall decay reaction for 
the conservation of electric charge, baryon number, lepton number, and strangeness. (d ) In 
the first step of the chain, could the L0 have been a S0?
12-47.	 There are six hadrons with quantum numbers (Q,U,S,C,B) = (2,1,0,1,0); 
(0,1,22,1,0); (0,0,1,0,21); (0,21,1,0,0); (0,1,21,1,0); (21,1,23,0,0). Determine the 
quark content of each hadron.
12-48.	 Two neutrinos of different energies E1 and E2 emitted by supernova SN1987A 
arrive at Earth at different times. Let E1 = 20 MeV and E2 = 5 MeV and assume that 
the mass of the neutrino is 2.2 eV>c2. Because their total energy is much greater than 
their rest energy, the neutrinos are moving at very nearly c and their energies are E  pc.
(a) Show that the time difference in their arrival at Earth is given by

Dt = t2 - t1 = x 
u1 - u2

u1 u2


xDu

c2

where u1 and u2 are the respective speeds of the neutrinos and x is the distance traveled.
(b) Show that when E W mc2, the speed u is given by

u
c

 1 -
1

2
 a  

mc2

E
b

2

(c) Using the result of (b) above, compute u1 2 u2 for the energies and mass above and 
calculate Dt for x = 1.7 * 105 c # y.
12-49.	 Show that the following decays conserve all lepton numbers.
(a)	 m+ S e+ + ne + nm

(b)	 t- S m- + nm + nt

(c)	 n S p + e- + ne

(d )	t- S m- + nm

12-50.	 A p0 with energy 850 MeV decays in flight via the reaction p0 S  g 1 g. Com-
pute the angles made by the momenta of the gammas with the original direction of the p0.
12-51.	 Test the following decays for violation of the conservation of energy, electric 
charge, baryon number, and lepton number:
(a)	 L0 S  p 1 p2

(b)	 S2 S  n 1 p2

(c)	 m- S e- + ve + vm

Assume that linear and angular momentum are conserved. State which conservation laws 
(if any) are violated in each decay.
12-52.	 Consider the following decay chain:

V- S J0 + p-

J0 S S+ + e- + ne

p- S m- + nm

S+ S n + p+

p+ S m+ + nm
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m+ S e+ + ne + nm

m- S e- + ne + nm

(a) Are all the final products shown stable? If not, finish the decay chain. (b) Write the 
overall decay reaction for V2 to the final products. (c) Check the overall decay reaction 
for the conservation of electric charge, baryon number, lepton number, and strangeness.

Level III
12-53.	 The mass of the hydrogen atom is smaller than the sum of the masses of the 
proton and the electron, the difference being the binding energy. The mass of the p1 is 
139.6 MeV>c2; however, the masses of the quarks of which it is composed are only a few 
MeV>c2. How can that be explained?
12-54.	 (a) Calculate the total kinetic energy of the decay products for the decay L0 S

p 1 p2. Assume the L0 is initially at rest. (b) Find the ratio of the kinetic energy of the 
pion to the kinetic energy of the proton. (c) Find the kinetic energies of the proton and the 
pion for this decay.
12-55.	 A S0 particle at rest decays into a L0 plus a photon. (a) What is the total energy 
of the decay products? (b) Assuming that the kinetic energy of the L0 is negligible com-
pared with the energy of the photon, calculate the approximate momentum of the photon. 
(c) Use your result for (b) to calculate the kinetic energy of the L0. (d ) Use your result for (c) 
to obtain a better estimate of the momentum and the energy of the photon.
12-56.	 In this problem, you will calculate the difference in the time of arrival of two 
neutrinos of different energy from a supernova that is 170,000 light-years away. Let the 
energies of the neutrinos be E1 = 20 MeV and E2 = 5 MeV, and assume that the mass 
of a neutrino is 2.4 eV>c2. Because their total energy is so much greater than their rest 
energy, the neutrinos have speeds that are very nearly equal to c and energies that are 
approximately E  pc. (a) If t1 and t2 are the times it takes for neutrinos of speeds u1 and 
u2 to travel a distance x, show that

Dt = t2 - t1 = x 
u1 - u2

u1 u2


xDu

c2

(b) The speed of a neutrino of mass m0 and total energy E can be found from Equation 2-10. 
Show that when E W m0c

2, the speed u is given by

u
c

 1 -
1

2
 a  

m0 c2

E
b

2

(c) Use the result for (b) to calculate u1 2 u2 for the energies and mass given, and calcu-
late Dt from the result (a) for x = 170,000 c # y. (d ) Repeat the calculation in (c) using
m0c

2 = 40 eV for the rest energy of a neutrino.
12-57.	 There are three possible decay modes for the t2. (a ) Draw the Feynman diagrams 
for each mode. (b) Which mode is the most probable? Explain why.
12-58.	 In a large accelerator, such as the Large Hadron Collider at CERN, the momentum 
of a proton in a circular orbit of radius R is given by p = 0.3 RB GeV>c, where B is the 
magnetic field. Derive this expression.
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639  

Physics is an experimental science. The formulation and acceptance of our current 
understanding of the physical world, from Newton’s laws and Maxwell’s equa-

tions to relativity theory and quantum mechanics, are based on countless experimen-
tal observations. In this chapter, we look outward from Earth into the cosmos and 
apply the principles and techniques of physics first to the composition and evolution 
of stars, a branch of physics called astrophysics, and then to the large-scale structure 
and evolution of the universe, a field called cosmology. In doing so the scale of our 
discussions expands from the nanometer and femtometer dimensions of the mole-
cules, atoms, and nuclei to the light-year and parsec dimensions of galaxies and space, 
a span of more than 40 orders of magnitude.

When observing stars and galaxies, astrophysicists and cosmologists are limited 
to examining the electromagnetic radiation and occasional particles emitted at times 
past that happen to have traveled to the vicinity of Earth so as to arrive at the moment 
of observation. The information thus gained, together with the fundamental assump-
tion that the laws of physics discovered here on Earth are also valid throughout the 
universe, forms the basis for their work. During most of history, the instrument used 
for studying the cosmos was the human eye. Though well adapted to life on Earth, the 
eye is a relatively poor instrument for the scientific examination of the sky because it 
stores information for only a small fraction of a second before transmitting it to the 
brain for analysis, is sensitive to a very limited part of the electromagnetic spectrum, 
and has limited resolution and light-gathering capacity. Today, most of our informa-
tion about the distant universe is received through telescopes.

13-1  The Sun 
As we look outward from Earth and beyond the Moon, the most obvious object in the 
sky is, of course, the Sun. It is important to us for several reasons. First, the light that 
reaches us from the Sun is responsible for life on Earth. It sustains a comfortable 
average temperature on Earth’s surface and is the ultimate source of virtually all of 
our energy. Since the Sun contains nearly all of the mass of the solar system, it also 
provides the gravitational force that binds our planet to the system. But most impor-
tant for our purposes in this section, the Sun is the only star of the 100 billion or so in 
the Milky Way that is close enough for us to examine its surface in detail. The others 
are so far away that they appear only as point sources when viewed by even the 
largest telescopes. High-resolution imaging by the Hubble Space Telescope and long-
baseline interferometry have produced a few recent exceptions to this limitation, one 
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example being Alpha Orionis—Betelgeuse (the red star on the shoulder of the con-
stellation Orion). What we learn from studies of our star not only provides a more 
complete understanding of the processes taking place in it, but surely applies to other 
stars as well.

The Surface and Atmosphere of the Sun
We can see only the thin outer layer of the Sun, the photosphere, which emits the 
light that makes the Sun visible. The photosphere is generally considered to be the 
surface of the Sun. The energy per second per square meter that arrives from the Sun 
at the top of Earth’s atmosphere is called the solar irradiance or the solar constant f. 
It has been measured to be

	 f = 1.365 * 103 W>m2	 13-1

The corresponding quantity for stars other than the Sun is called the radiant flux, as 
we will see in Section 13-2. Using the solar constant, the mean Earth-Sun distance of 
1 astronomical unit (AU) = 1.496 * 108 km = 1.496 * 1011 m, and conservation of 
energy, we can calculate the luminosity L, which is the total power radiated by the 
Sun or by any star. The area A of a sphere of 1 AU radius is

	 A = 4pr 2 = 4p11.496 * 101122 m2	

At that radius, each square meter receives energy from the Sun at the rate given by the 
solar constant. Therefore, the Sun’s luminosity L } is given by

	  L } = Af = 4p11.496 * 1011 m2211.365 * 103 W>m22	
	  L } = 3.84 * 1026 W 	 13-2

This is truly enormous power. If we could put a 1000 MW electricity-generating plant 
on each square meter of Earth’s surface, all of them combined would produce only 
0.1 percent of the power produced by the Sun. The pressure produced by solar radia-
tion is being explored as a possible solution to the eventual propellant exhaustion 
problem of future interplanetary spacecraft.

If we assume that the Sun radiates as a blackbody, we can use the luminosity of 
the Sun along with its radius (6.96 * 108 m) to calculate the effective temperature at 
the surface of the Sun from the Stefan-Boltzmann law. It states that the power per unit 
area R (= intensity) radiated by a blackbody in thermal equilibrium is proportional to 
the fourth power of its surface temperature:

	 R = T 4	 3-4

where Stefan’s constant  = 5.67 * 10-8 W>m2 # K4 and T is the absolute tempera-
ture. If the radius of the Sun is R}, the intensity radiated from the surface of the Sun 
that we see, the photosphere, is

	 R =
L }

4pR2
}

	 13-3

Take care not to confuse the intensity R with the solar radius R}. The effective tem-
perature Teff  for the surface of the Sun is defined as the temperature for which the 
intensity radiated satisfies the Stefan-Boltzmann law for a blackbody:

	 R =
L }

4pR2
}

= T 4
eff	

26

CCR
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Solving for Teff, we obtain

	 Teff = aR

b

1>4
= a L }

4pR2
}

b
1>4

	 13-4

EXAMPLE 13-1	 The Temperature of the Sun’s Photosphere ​ Use the 
Stefan-Boltzmann law to calculate the effective temperature of the photosphere.

SOLUTION
Using L } = 3.84 * 1026 W from Equation 13-2 in Equation 13-4, we have

Teff = a
L }

4pR2
}

b
1>4

= c 3.84 * 1026 W

4p15.67 * 10-8 W>m2 # K42 16.96 * 108 m22 d
1>4

	 = 5780 K	

The intensity of solar radiation has been measured at wavelengths ranging 
from about 10213 m in the gamma-ray region to nearly 10 m in the radio region, a 
range accounting for over 99 percent of the Sun’s emitted power. Over much of this 
span, the solar spectrum is quite well predicted by 
Planck’s law of blackbody radiation (see Chapter  3) 
with T  =  5800 K, as shown in Figure   13-1. The 
distribution peaks in about the middle (yellow) 
region of the visible spectrum. This agreement 
between the measured and theoretical spectra is very 
constant and is one of the characteristics of the 
quiet Sun.

If we examine the edge of the solar disc, 
called the limb, we see that it is sharply demar-
cated and darker than the rest of the Sun. From the 
sharpness of the limb, we conclude from the fol-
lowing reasoning that the photosphere is very thin. 
Atmospheric turbulence during daylight limits the 
angular resolution of optical telescopes to about 
1 arc second (1>3600 of a degree). At the distance 
of the Sun, this corresponds to about 700 km. As 
we look at the Sun, the angle over which the gas of 
the photosphere changes from rarified and trans-
parent to optically dense and opaque is smaller 
than we can resolve. Therefore, the photosphere 
must be less than 700 km thick, which is only 
about 0.1 percent of the solar radius.
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Figure 13-1  The spectral distribution of energy emitted by the Sun matches 
closely that of a blackbody at 5800 K. The discrepancy between the measured and 
theoretical curves in the region illustrated is due mainly to the fact that the 
photosphere is not in thermal equilibrium. The hump at short wavelengths is due to 
x rays emitted by the corona, which is at a much higher temperature. (In this figure 
m = 1026 m.)
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The relatively dark appearance of the limb tells us about the temperature gradient 
in the Sun’s atmosphere. Figure 13-2a shows two paths A and B for viewing the Sun. 
Because the photosphere is more transparent when viewed at normal incidence than 
when viewed at a grazing angle, the light traveling along path B originates deeper in the 
Sun than light traveling along path A. Since the interior is hotter than the outer layers, 
the light traveling path B originates in a hotter (brighter) part of the Sun than light travel-

ing path A. Thus, the light from the limb appears less intense, hence darker 
(cooler). By measuring the change in brightness from path A to path B, we 
can determine the temperature gradient in the photosphere. It is shown in the 
left part of Figure 13-3. Notice in the right part of Figure 13-3 that the tem-
perature begins to rise sharply, accompanying the transition from the Sun’s 
surface, the photosphere, into the solar atmosphere.

Outside the photosphere are two layers of the Sun’s atmosphere 
that are not generally seen because of the brightness of the photosphere. 
The inner most of the two layers of the solar atmosphere, the chromo-
sphere, is visible for a few seconds just before totality during a solar 
eclipse. Under high resolution, the chromosphere resembles a field of 
burning grass, although each burning “blade” is about 700 km thick and 
7000 to 10,000 km high and lasts for only 5 to 15 minutes. Spectral 
examination indicates that the temperature of the chromosphere increases 
with distance above the photosphere to about 20,000 K (see Figures 13-3 
and 13-4).

When the totality of the eclipse blocks out the chromosphere, the 
outer layer of the Sun’s atmosphere, the corona, becomes visible. It is 
decidedly non-uniform in thickness, consisting of faint white streamers 
extending 2 to 3 solar diameters into space. The temperature of the corona 

(b )

Protective
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Figure 13-2   (a) Two sight lines of equal optical path length, A and B. Along B the observer 
sees deeper (= hotter = brighter) into the Sun than along A; therefore, path B looks brighter 
than path A, so the limb looks darker than the disk of the Sun. For paths C and D, the angle 
over which the gas of the photosphere changes from transparent to opaque is smaller than we 
can resolve, so the limb looks sharp. (b) A full disk image taken in the visible spectrum or 
white light at the National Solar Observatory/Sacramento Peak, New Mexico, on October 28, 
2003. This image shows sunspot groups and evidence of limb darkening. [SOHO (ESA & NASA).]
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Figure 13-3  The temperature of the 
Sun decreases from the base of the 
photosphere outward to a minimum 
at about 1200 km just beyond the 
photosphere-chromosphere boundary, 
then increases rather rapidly to about 
20,000 K at the top of the chromosphere.
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is approximately 2,000,000 K. Radiation from the corona would overpower that from 
the 5800 K photosphere except for the fact that the gas of the corona is so rarified that 
the total energy it emits is minuscule compared to that of the photosphere. It does, 
however, account for the relatively high intensity of x rays emitted by the Sun, which 
shows up in Figure 13-1 as a deviation from the spectral distribution of the blackbody 
at short wavelengths. Recent research suggests that the extreme temperatures in the 
corona are produced in part by jets of high-energy particles generated in the Sun’s 
surface colliding with particles in the corona. These shock waves heat the gases of the 
Sun’s outer atmosphere and give the particles so much energy that even the Sun’s 
enormous gravity cannot confine them. These high-energy particles, mostly protons 
and electrons, stream outward from the corona continuously. They form the solar 
wind that pervades the entire solar system.

The Sun’s Interior
We cannot see through the photosphere into the interior of the Sun. Consequently, 
our understanding of the processes there is purely theoretical. With the single excep-
tion of solar neutrinos, no radiation or particles originating in the interior reach us 
directly. To understand the principal features of the current theory, we need to first 
determine the Sun’s mass, as we can do easily with the aid of Newton’s law of uni
versal gravitation and the second law of motion. The result is that the Sun’s mass  
M} = 1.99 * 1030 kg.

For simplicity, theoretical models usually consider the Sun to be a nonrotating 
star in hydrostatic equilibrium. This means that the outward pressure at any point, 
which is presumed to be due to energy conversion processes occurring in the Sun’s 
interior, is exactly balanced by the inward pressure of gravity. Although the mean 
density of the Sun (1.4 g>cm3) is not much different from that of Earth (5.5 g>cm3), 
the enormous pressures that exist in the solar interior substantially exceed those that 
correspond to the electrodynamic forces that bind the electrons to the nuclei. Thus, 
the matter in the interior of the Sun—and certainly within the core, the central region 
in which temperatures are high enough to allow hydrogen fusion—must surely be in 
the plasma (ionized) state.

Figure 13-4  This ultraviolet image shows a loop in the magnetic field, seen circling back 
toward the Sun, trapping hot gas in the chromosphere. [SOHO (ESA & NASA).]
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EXAMPLE 13-2	 Hydrogen in the Sun’s Core ​ Show that neutral hydrogen is 
unlikely to exist in the Sun’s interior.

SOLUTION
The pressure at the center of the Sun Pc is of the order Pc = mg, where

m = mass>unit surface area  aM}

R2
}

b
and

g =
1

2
 GaM}

R2
}

b
is the average acceleration due to gravity in the Sun. The pressure turns out to be 
about 1015 N>m2. This is the pressure pushing on the surface of a hydrogen atom 
near the Sun’s center. The resistance to this gravitational pressure would come from 
the Coulomb force tending to hold the atom together. That pressure is given by the 
Coulomb attraction between the proton and electron per unit surface area of the 
atom. Using the Bohr radius a0 for hydrogen, we have

F

A
=

ke2>a2
0

4pa2
0

=
ke2

4pa4
0

=
19 * 109 N # m2>C22 11.6 * 10-19 C22

4p10.5 * 10-10 m24

= 2.9 * 1012 N>m2

Thus, the gravitational pressure in the Sun’s interior, at least near the center, exceeds 
that tending to hold the hydrogen atoms together by a factor of about 1000—making 
it unlikely that neutral hydrogen atoms could exist there.

Remarks:  Given the Sun’s density, even the particles in the depths of the core are 
still relatively far apart, so that the plasma behaves much like an ideal gas. This 
allows calculation of the core temperature from the ideal-gas law. It is found to be 
about 1.5 * 10 7 K.

The Source of the Sun’s Energy
Using the value for the luminosity of the Sun that we computed earlier, Lord Kelvin 
was the first to point out that the present energy content of the Sun as calculated 
from thermodynamics would be radiated away in about 3 * 107 years. Since life has 
existed on Earth for approximately 100 times that long, we can conclude that the Sun 
has been radiating at close to its present luminosity for at least 3 * 109 years. 
Therefore, the Sun must have a supply of energy far larger than that represented by 
gravitational potential energy, the hot plasma, and the observed radiation field. The 
source of the Sun’s energy is nuclear fusion. Current theory proposes that, as the 
young Sun contracted, its temperature rose. To understand why the Sun contracted 
and why that caused its temperature to rise, we start with Newton’s law of universal 
gravitation:

	 Fgrav = G 
Mm

R2 	

where Fgrav is the attractive gravitational force between the masses M and m, which 
are separated by a distance R, and G is the constant of gravitation. Notice that, as 
R  becomes smaller, Fgrav becomes larger, which means that the masses M and m 
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move toward each other with increasing acceleration. Conservation 
of energy requires that the resulting increase in kinetic energy 
must  come from somewhere. That “somewhere” is the gravita-
tional potential energy Ugrav of the masses in their original positions; 
Ugrav must decrease correspondingly. How might this account for 
the energy emitted by the Sun (and other stars)? A star is a huge 
ball of gas. The gas atoms near the surface feel the gravitational 
force attracting them toward the inner atoms of the star’s core. The 
core atoms feel that force too, but they are also attracted in the 
opposite direction by the gas atoms near the surface on the other 
side; hence, the core atoms don’t move (see Figure 13-5). However, 
the entire surface of the star accelerates toward the core—the star 
undergoes gravitational contraction. The increasing kinetic energy 
of the accelerated atoms (heat) increases the star’s temperature, 
radiating energy into space.

Eventually the temperature of the core reached about 1.5 * 107 K, 
which is high enough for the hydrogen nuclei (protons) in the plasma to have 
sufficient energy on the average (about 1 keV) to fuse into helium nuclei. This reac-
tion, actually a chain of reactions, was first proposed by H. A. Bethe1 and is referred 
to as the proton-proton cycle. The first reaction in the chain is

	 1H + 1H S 2H + e+ + e + 0.42 MeV	 13-5

Due to the height of the Coulomb barrier the probability for this reaction is very low 
except for those protons in the high-energy tail of the Maxwell-Boltzmann distribu-
tion. Fusion is possible only because of quantum-mechanical tunneling. This sets a 
limit on the rate at which the Sun can produce energy and thus ensures a long lifetime 
for the Sun and similar stars. This limit is sometimes called the “bottleneck” of the 
solar fusion cycle. Once 2H (deuterium) is formed via Equation 13-5, the following 
reaction becomes very probable:

	 2H + 1H S 3He +  + 5.49 MeV	 13-6

It is followed by

	 3He + 3He S 4He + 2 1H +  + 12.86 MeV	 13-7

This process by which hydrogen nuclei are “burned” to helium nuclei is shown sche-
matically in Figure 13-6a. There are other possible reactions for converting 1H to 4He, 
all of which have the same net Q value. Their rates, however, differ depending on the 
composition and temperature of the Sun’s interior. The most important of these is 
the CNO (carbon-nitrogen-oxygen) cycle, which accounts for about 1.5 percent of 
the total solar luminosity. The CNO cycle is very temperature dependent and is the 
dominant H-fusion cycle for stars slightly more massive than the Sun.

The neutrinos produced in the proton-proton cycle escape from the core, provid-
ing our only means for direct observation of the Sun’s interior. The measured lumi-
nosity L } and the known total Q value of the proton-proton cycle make possible a 
calculation of the total reaction rate. In addition, the alternative reactions for 3He have 
different neutrino energy spectra, thus providing a way of determining the relative 
contributions of each reaction and gaining further information about the composition 
and temperature of the core. The neutrino flux arriving at Earth from all reactions in 
the proton-proton fusion cycle determined by John Bahcall’s2 definitive theoretical 
analysis of the solar neutrino spectrum based on the standard solar model is shown 

Core
atom Surface

atom
Surface

atom FgFg FgFg

Figure 13-5  Atoms in the outer areas of stars 
feel a net gravitational force directed toward the 
core. The net gravitational force on the atoms 
in the core is essentially zero. In the absence of 
an outward-directed pressure, the star collapses.
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in Figure 13-6b. For those neutrinos resulting from the 8B + p S 8Be* + e+ + e 
reaction (see Table 13-1), the predicted intensity is 8.1 ; 1.3 solar neutrino units 
(1 SNU = 1 event per 1036 target atoms per second). However, experiments conducted 
by Ray Davis and his coworkers over more than 30 years using a chlorine radiochem-
ical detector deep inside a gold mine in South Dakota, which was sensitive primarily 
to the 8B-produced neutrinos,3 found the measured rate at which solar neutrinos from 
this reaction arrive at Earth to be 2.56 ; 0.16 SNU, only about 32 percent of the 
expected rate. Subsequently, experiments sensitive to other reactions in the p-p cycle 
performed at six other laboratories around the world have confirmed this discrepancy. 
This discrepancy is referred to as the solar-neutrino problem. Davis shared the 2002 
Nobel Prize in Physics for this discovery.

The discrepancy between the theoretical prediction of the standard solar model 
and the experimental results presented a very serious problem for both astrophysics 
and particle physics. In the words of John Bahcall, whose calculations provided the 
solar model prediction:

Is the solar neutrino problem caused by unknown properties of neutrinos 
or by a lack of understanding of the interior of the Sun? In other words, is 
this a case of new physics or faulty astrophysics?

It turned out to be a case of “new physics.” As was described in Section 12-5, the 
discovery of neutrino oscillations that allow neutrinos of one flavor to change into 
neutrinos of another flavor means that electron neutrinos emitted in the Sun’s p-p 
fusion cycle may oscillate to muon or tau neutrinos during their trip from the Sun to 
Earth. Davis’s neutrino telescope was sensitive only to electron neutrinos. This 
accounts for the discrepancy and also, according to the Standard Model of particle 
physics, requires that neutrinos have a nonzero mass.
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Figure 13-6  (a) The proton-proton cycle is the primary source of the Sun’s energy. The neutrino created in the initial step 
escapes from the core. The net energy produced, including that released from orbital electron binding and e2e1 annihilation, is 
about 26.7 MeV per 4He produced. (b) Neutrino flux at Earth predicted by the standard solar model. Neutrinos produced in the 
p-p cycle are shown by solid lines; those produced in the CNO cycle are shown by dotted lines. [J. Bahcall and A. Serenilli, 
ApJ, 621, L85 (2005).]

TIPLER_13_639-702hr.indd   646 10/24/11   12:37 PM



	 13-1  The Sun	 647

The Active Sun
In addition to the relatively stable phenomena that we have discussed, the Sun exhib-
its a number of transient phenomena, most of them associated with its magnetism. We 
noted earlier that the solar interior must be primarily a plasma composed of protons 
and electrons. The Sun rotates with different angular velocities at different latitudes. 
At any given latitude, it probably has different angular velocities at different distances 
from the spin axis as well. The complex motions resulting from this differential rota-
tion and from the rise and fall of charged particles in the convection zone between the 
core and the photosphere are probably the source of the Sun’s chaotic magnetic field 
structure (see Figure 13-7). This transient structure may have localized magnetic field 
strengths exceeding 1 T on occasion.

The transient structure is superimposed onto a general average magnetic field of 
about 1024 T, roughly twice Earth’s average magnetic field. The origin of this general 
field is not known, except that it is not a remnant of the Sun’s formation since a pri-
meval field would likely have decayed away by now. Its presence poses formidable 
problems for any theoretical solar model. Not only must the model explain the origin 
of the general field, but it must also account for the fact that its polarity reverses every 
11 years, in step with the sunspot cycle.

 Table 13-1  Proton-proton nuclear fusion cycle

Reaction % of events Y energy (MeV)

1. p + p S 2H + e+ + e

or

p + e- + p S 2H + e

99.96

0.04

… 0.423

1.445

2. 2H + p S 3He +  100

3. 3He + 3He S 4He + 2p

or
3He + 4He S 7Be + 

85

15

4. 7Be + e- S 7Li + e 15 0.863 (90%)

0.385 (10%)

5. 7Li + p S 2 4He

or
7Be + p S 8B +  0.02

6. 8B S 8Be* + e+ + e 615

7. 8Be* S 2 4He

or
3He + p S 4He + e+ + e 0.00003 618.8

Source: Data from J. Bahcall, Phys. Rev. C, 56, 3391 (1997).

Figure 13-7  The field 
lines that describe the Sun’s 
magnetic field structure at any 
given time are derived from 
ground-based measurements, 
for example, the Zeeman 
effect and the transport of 
charged matter. The high-
intensity, chaotic structure is 
superimposed onto a constant 
general magnetic field of 
about 1024 T.
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Sunspots, dark blemishes on the solar disk, were first reported in pre-telescope 
times and were observed by Galileo in 1610. They originate in the following way, 
according to one of the current models. As shown in Figure 13-8, the Sun’s magnetic 
field lines are distorted into bundles or tubes by the Sun’s differential rotation. 
Occasionally vertical movements in the convection zone may push a bundle through 
the surface. The area where it leaves the surface and the area where it returns to the 
surface become the sunspots. They appear darker than the adjacent photosphere, which 
means that they are cooler, typically around 3800 K. One of the pair of spots will have 
a magnetic north pole, the other a south pole. If the bundle of field lines does not pro-
trude completely through the photosphere, only a single sunspot is formed.

The number of spots per year varies regularly from about 50 to about 150 in a 
cycle of 11 years, as can be seen in Figure 13-9. Early in each new cycle, the sunspots 
form at a latitude of about 30°. As the Sun progresses through its 11-year cycle, the 
spots form progressively closer to the equator. There is an additional cyclical varia-
tion in the annual number of sunspots with a period of about 100 years that is also 
apparent in Figure 13-9. Currently, the theoretical explanation for these regularities, 
while in agreement with some features of the observations, is not complete.

Solar flares are violent, stormlike phenomena that appear to be associated with 
the large magnetic fields in the vicinity of sunspots. There is, however, no generally 
accepted model to explain them. Solar flares erupt explosively, ejecting particles and 
emitting radiation ranging from the x-ray through the radio regions of the spectrum. 
They last anywhere from a few minutes to a few hours and can have temperatures 
as high as 5 * 106 K. The particles ejected by solar flares reach Earth within a day 
or so and often produce auroras as they accelerate in Earth’s magnetic field. Solar 
flares can disrupt some types of radio transmissions and on rare occasions can gener-
ate surges in high-voltage transmission lines. A flare that happened to be directed 
toward Earth in 1996 caused, among other things, the failure of a communications 
satellite.

(a) (b) (c)

S

S

S
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N

Figure 13-8  (a) Magnetic flux lines are distorted by the Sun’s differential rotation and pushed 
up out of the surface by motion in the convection zone. (b) A sunspot occurs where a bundle of 
field lines leaves and reenters the surface. The areas where they leave and return to the surface 
become sunspots. This very large spot is about 20 arc seconds in diameter. The granular appearance 
of the Sun’s surface is very apparent. (c) Sunspot activity on March 29, 2001. [(b) Institute of 
Solar Physics of the Royal Swedish Academy of Sciences. (c) SOHO (ESA & NASA).]
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Two other transient solar phenomena related to sunspots are plages and fila-
ments. Plages are bright (hotter) areas adjacent to the dark sunspots. The evolution of 
plages suggests that they are areas of increased mass density, resulting perhaps from 
the movement of the magnetic field bundles generated from the sunspots. Filaments 
are dark, thin lines that seem to thread their way across the disk, sometimes for thou-
sands of kilometers. They do not lie on the surface but extend out into space, some-
times more than 100,000 kilometers, in graceful loops and swirls. Filaments that are 
seen projecting into space at the Sun’s edge are called prominences. They may erupt 
and disappear quickly or persist for several weeks. While prominences appear closely 
related to the shape of the magnetic field, as with other transient features, there is as 
yet no model that fully accounts for them.
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Figure 13-9  The number of sunspots that occur each year has varied regularly on an 11-year 
cycle for more than 280 years. The unexplained absence of spots between about 1650 and 1700, 
referred to as the Maunder minimum, approximately coincides with a period of unusually low 
temperatures in Europe referred to as the “Little Ice Age.” Whether a causal connection exists 
between the two phenomena is a matter of scientific debate. Sunspot cycle 23 began in 1996 
and ended in 2007. Cycle 24 began in 2008 and is predicted by the National Oceanic and 
Atmospheric Administration (NOAA) to peak in about May 2013. (Counting the cycles 
began in 1775.)

The huge handle-shaped prominence shown 
on the upper right was photographed in 304 Å 
[30.4 nm] light on September 14, 1999. It 
consists of charged particles confined by 
the magnetic field of the Sun. [SOHO 
(ESA & NASA).]
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EXPLORING
Is There Life Elsewhere?

We are certainly not the first to ask that question. The Greek philosophers beginning 
with Thales and continuing through Plato and his student Aristotle thought and won-
dered about the structure of the heavens and the mysteries they might contain. Many 
scientists in the nineteenth century assumed that the other planets of the solar system, 
particularly Mars and Venus, were inhabited. In the twentieth century the term Martian 
became synonymous with “beings from outer space.” An entire movie and television 
genre has flourished based on time travel, spaceships, aliens from outer space, and a 
plethora of weird science—pseudoscience.

The real issue, however, is much more serious: Is life “out there” possible? The 
answer is surely, Yes. Consider: With the development and evolution of telescopes we 
have learned that the motions of stars and galaxies obey the same laws of physics that 
have been discovered on Earth. Our location is in no way special. The physical pro-
cesses that occur on Earth occur throughout the universe. All of the chemical elements 
discovered in our studies of the near and distant universe also occur on Earth. The 
relativistic and quantum physics we have developed work in the cosmos, too. So, then, 
must our biology—an application of physics and chemistry—work throughout the uni-
verse. On Earth we have learned that life-forms can survive and prosper in seemingly 
hostile environments. Sea animals thrive in the scalding hot water and enormous pres-
sures of the deep-ocean volcanic vents. Some organisms live in the rocks of deep mines 
and in the permanent ice of the Antarctic. Other organisms have been discovered that 
use sulfur in their metabolism rather than oxygen. And the complex organic molecules 
that are the building blocks of life as we know it have been found in meteorites and 
identified in interstellar gas clouds. Thus, it would appear that the development of life 
elsewhere in the Galaxy and the universe may not be all that unusual.

If intelligent life has developed elsewhere, where is it and how do we find it? 
Since 1995 new technology and techniques have led to the indirect discovery (e.g., via 
stellar motion perturbations) of 565 extrasolar planets (called exoplanets) orbiting rela-
tively nearby stars (as of July 6, 2011). While most of the discovered planets are hot 
and large, Neptune to Jupiter in size, at least 25 are cooler and no more than 10 times 
Earth’s mass. As of this writing, only about 10 exoplanets are large enough and far 
enough from their star to have been imaged directly (see the photo below). If intelligent 
life exists on any of the known exoplanets (or on any of the millions of others that must 
exist throughout the Galaxy and the universe) and if they are sending electromagnetic 

Shown are four directly imaged 
exoplanets orbiting a relatively 
young star, HR8799A, about 129 
light-years from Earth. Each of 
the planets in the system is large, 
between 5 and 7 times the mass 
of Jupiter. [NRC-HIA, Christian 
Maroir and the W. M. Keck 
Observatory.]
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signals into space, as we are, detecting those signals could provide the first clue that we 
are not the only intelligent life that has existed in the universe. Listening for those sig-
nals is the objective of the Search for Extraterrestrial Intelligence (SETI) project. Look 
for SETI online to learn more.

13-2  The Stars 
On clear, dark nights, we can see about 6000 stars without the aid of telescopes. The 
sight is incredibly beautiful and must surely have been just as awesome to our forebears. 
A cursory glance at the night sky reveals the following features: the distribution of stars 
is not uniform, the stars do not all have the same brightness, and there is a dim irregular 
band of light bisecting the sky. In this section, we will investigate these features.

The hazy band of light that stretches across the entire sky is the Milky Way. With 
the aid of a small telescope or even binoculars, the band is resolved into a mass of 
individual stars. It is part of a huge Galaxy4 containing an estimated 1011 stars that are 
bound together gravitationally in our region of the universe. Most of the stars visible 
to the unaided eye seen in any direction are simply those members of the Galaxy 
close enough to Earth to be individually resolved by the eye.

Constellations
Chance groupings in the celestial pattern, usually among the brighter individual stars, 
are called constellations. Ancient peoples associated them with persons, gods, and 
objects from their histories, religions, and myths, probably as mnemonic devices. The 
constellations, as well as several prominent stars, have always had practical uses. For 
centuries, seafarers have used the Pole Star (in the northern hemisphere) and the 
Southern Cross (in the southern hemisphere) as aids in navigation. In ancient Egypt 
the pharaoh’s advisers learned to predict the life-sustaining annual flooding of the 
Nile by watching for the first appearance of the bright star Sirius5 above the horizon 
in the early spring. Today, 88 constellations (see Figure 13-10 for some of them) are 
used by astronomers to identify sections of the sky. For example, the center of the 
Milky Way is said to be “in Sagittarius,” meaning it is in the direction of the constel-
lation Sagittarius. (The center of the Galaxy is actually more than 10 times farther 
from the Sun than are the stars that form that constellation.)

Stellar Populations
One characteristic of our Galaxy is that certain regions of it have many more stars than 
other nearby regions. Such concentrations are called star clusters. There are two types 
of star clusters. Galactic clusters, also called open clusters, may contain from about 20 
to several hundred stars. All stars in galactic clusters appear to have very similar com-
positions, as inferred from studies of their optical spectra. About 70 percent of their 
mass is hydrogen, another 28 percent or so is helium, and 2 to 3 percent consists of ele-
ments heavier than helium. Stars with this characteristic composition, like our Sun, are 
referred to as population I stars. Globular clusters may consist of 103 to 106 stars in a 
compact, roughly spherical group. Their concentrations of elements heavier than 
helium are all very similar and much lower than that of population I stars, typically 0.1 
to 0.01 percent. These are called population II stars. One such cluster, photographed 
by the Hubble Space Telescope, is shown in the photograph on page 652.

Population I stars are thought to be current generation stars that formed after the 
gas and dust that exists between these stars had been enriched by the products of 
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Figure 13-10  Star chart 
of the sky as it appears on a 
spring evening at latitude 40° 
north, showing many of the 
constellations visible. During 
the night, the entire pattern 
revolves about 120° about 
Polaris, the Pole Star. To use 
the chart, hold it (or a copy) 
in front of you with south at 
the bottom while you face 
south. Match the lower half 
of the chart to the stars that 
you see. Then rotate the chart, 
putting west at the bottom, 
face west and again match 
the lower half to the stars 
you see, and so on. [R. A. 
Freedman and W. J. 
Kaufmann III, Universe, 8e 
(New York: W.H. Freeman 
and Co., 2008, p. S-6.)]

Globular cluster G1 in galaxy M31 contains more 
than 300,000 stars. G1 orbits the Andromeda 
galaxy, the nearest large spiral to Earth. The two 
bright stars with “spikes” are in the Milky Way. 
[Michael Rich, Kenneth Mighell, and James D. 
Neill (Columbia University); Wendy Freedman 
(Carnegie Observatories); and NASA.]
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ancient fusion reactions in the early universe. The lower concentration of heavier 
elements in the population II stars suggests that they are of a previous generation, 
hence older than those of population I. The fact that they are found in regions of space 
where there is little dust or gas tends to support that interpretation.

Classification of Stars  Stars are grouped into classes based primarily on the 
spectral lines each emits and absorbs. That different stars have different spectra was 
discovered nearly 200 years ago by Joseph Fraunhofer, who also measured numer-
ous absorption lines in the solar spectrum. Over the years, advances in spectroscopy, 
instrumentation, and atomic theory enabled astrophysicists Edward Pickering and 
Annie Jump Cannon6 to systematically rearrange the earlier classification scheme into 
a temperature sequence. Stars are grouped according to temperature categories (or 
spectral types) ranging from hot blue, so-called O stars, to cool red, so-called M stars. 
The seven categories are: O B A F G K M. Generations of students have memorized 
the classifications by using the phrase “Oh Be A Fine Girl/Guy, Kiss Me.” Table 13-2 
lists some of their important characteristics. Cannon also added 10 subdivisions (0 to 9) 
within each category to provide for finer distinctions between the stars in each group. 
For example, B0 stars are hotter (called early type) than B9 stars (called late type). The 
physical basis for the distinction between the groups and early/late types lies in the 
quantum-mechanical details of the spectra and the atomic electron excitations and ion-
izations of the elements constituting each star. Improved observational techniques and 
analytical methods have led to a number of additional classifications, including several 
for hot blue emission stars and classes L, T, and Y for cool red stars and brown dwarfs.

Stellar Magnitudes  The Greek astronomer Hipparchus7 devised the first clas-
sification of stars based on how bright each appeared. Called apparent magnitude 
and represented with the letter m, the values he assigned ranged from m = 1 for the 
brightest stars to m = 6 for the dimmest visible to his eye. (The telescope had not yet 
been invented.) As time passed and technology was developed and improved, astrono-
mers extended and refined the apparent magnitude scale. The modern definition of 
the apparent magnitude scale is that a difference of 5 in the value of m corresponds 
to a factor of 100 in brightness; that is, a difference of 1 in the value of m between 
two stars means the ratio of their respective brightness is 1001>5 = 2.51. Thus, star 
A with m = 2 is 2.51 times brighter than star B with m = 3, 2.51 * 2.51 = 6.31 times 
brighter than star C with m = 4, and so on. (Note that smaller m values mean brighter, 

 Table 13-2  Characteristics of star categories

Spectral type Important characteristics

O Hottest blue-white stars; helium absorption lines

B Hot blue-white stars; helium and hydrogen absorption lines

A White stars; hydrogen and calcium absorption lines

F Yellow-white stars; calcium and some metal absorption lines

G Yellow stars; solar-type spectra with calcium and iron 
absorption lines (The Sun is a G2 star.)

K Cool orange stars; strong metal absorption lines

M Coolest red stars; strong metal absorption lines
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larger m values mean dimmer.) Modern technology enables scientists to measure 
apparent magnitude with an accuracy of ; 0.01 and has vastly extended the range of 
m values. For example, the brightest star in the sky, the Sun, has m = 226.81 and the 
faintest objects that can be observed have about m = 29.

Of course, apparent magnitudes are not the whole story. Two stars with the same 
luminosity but located at different distances from us will have different m values, the 
farthest away being the dimmer and, therefore, having the larger m value. So we 
define a new, more basic quantity, the absolute magnitude M, in terms of the radiant 
flux F, which includes both the star’s luminosity L and its distance R from Earth (see 
Section 13-1). The radiant flux F is defined as

	 F =
L

4pR2	 13-8

Recall that 4pR2 is the surface area of a sphere of radius R and has SI units of 
meter squared (m2). The units of radiant flux are then J>s # m2. Using Equation 
13-8, we can define the absolute magnitude M of a star as being equal to the 
apparent magnitude the star would have if it were located at a distance of 10 
parsecs (pc; see Section 13-3) from Earth. Using the expression for the radi-
ant flux and the definitions for the apparent and absolute magnitudes, one can 
eventually obtain the expression below connecting F, m, M, and R:

	 1001m-M2>5 =
F10 pc

F
= a R

10 pc
b

2

	 13-9

where R is the actual distance between the star and Earth (measured in pc).

The Structure of the Milky Way
Figure 13-11 is a map of the Milky Way viewed from the location of the Sun. 
The size and shape of the Galaxy are not at all obvious in the picture—hardly 
surprising from the perspective of an observer inside the Galaxy itself.8 
However, painstaking counts of the number of stars per unit volume in vari-
ous directions have revealed that the Milky Way is basically a huge disk. 
Up until the early 1900s, astronomers thought that the Sun was at the disk’s 

Figure 13-11  Infrared view 
of the Milky Way taken by 
the COBE satellite showing 
the disk and central bulge. 
[The COBE Project, DIRBE/
NASA.]

Globular cluster
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Sun
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2000 c · y
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Figure 13-12  A diagram of the 
presently accepted structure of the 
Milky Way based on the work of Harlow 
Shapley. The Milky Way is brighter in 
the summer night sky in the northern 
hemisphere than in the winter because 
the summer night sky looks toward the 
center of the Galaxy, while the winter 
night sky is toward its outer edge.
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center. The true size and shape of the Galaxy (Figure 13-12) were deduced by 
H. Shapley9 through a brilliant analysis of the distribution of globular clusters. He dis-
covered that 200 or so globular clusters are distributed approximately spherically in space 
and proposed that the center of that distribution coincided with the center of our Galaxy. 
That center lies about 28,000 c # y (8 kpc; see Equation 13-12) from the Sun, which is 
approximately one-third of the way out from the center. The Milky Way is roughly 1.63 * 
105 c # y in diameter. It has been said that Shapley dethroned the Sun from the center of 
the Galaxy much like Copernicus had dethroned Earth from the center of the universe.

Following Shapley’s work, astronomers studying other nearby galaxies with the 
aid of new, high-resolution telescopes found that the distribution of stars within those 
systems, many of which had open spiral structures such as shown in Figure 13-25b 
(page 676), depends in part on the ages and compositions of the stars, with open clus-
ters being found mainly in the arms of the spirals. Making the reasonable assumption 
that such distribution patterns would also hold for the Milky Way and with meticu-
lous measurements of the distances to about 200 galactic clusters, astronomers have 
identified several spiral arms, although some of them may not be complete, and a bar 
associated with the central bulge for the Milky Way. Thus, if we could look down on 
the Milky Way from the Galactic north pole, it might look much like Figure 13-13a. 
Of course, from our perspective on Earth we see spiral galaxies in all sorts of orienta-
tions from directly above (like Figure 13-13a) to edge on (like Figure 13-11).

(a) (b)

Figure 13-13  (a) The combination of observations in the visible and radio regions of the spectrum reveal a spiral structure with 
a faint bar for the Milky Way. To an observer looking down on the Galaxy from about 1 million parsecs, the Milky Way might 
look something like this. The Sun is about 28,000 c # y from the center in one of the spiral arms. (b) Viewed from Earth, the center 
of the Galaxy is obscured by clouds of dust and gas that prevent most visible light from reaching us; however, it contains several 
areas of strong radio emission, the strongest of which is Sagittarius A*, a compact radio source that appears to dominate the large-
scale motion of the galactic center. This radio image (taken at 6 cm wavelength) is of the inner 8 c # y of the Milky Way. The dark 
spot at the very center is Sagittarius A, which is very likely a huge black hole (see Section 13-5). This image was made using the 
Very Large Array, a radio frequency interferometer made of 27 synchronized antennae with an effective diameter of about 40 km, 
in New Mexico. Its resolution is better than that of the best ground-based optical telescopes by about a factor of five. [(a) Gemini 
Observatory-GMOS Team. (b) HST Astronomy Imaging Workbench/Farhad Yusef-Zadeh/Northwestern University.]
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EXPLORING
The Celestial Sphere

Copernicus’s refined heliocentric model of the solar system and its subsequent veri-
fication by observations laid to rest for all time the geocentric model of Aristotle and 
Ptolemy. However, we still use one feature of the latter. Putting aside the motions of 
the planets and a few interplanetary space probes, our observations of the stars and 
specification of their locations in the sky are normally referred to a coordinate system 
centered on Earth, not the Sun. The distances to the stars are so great that the stars 
appear to us to be fixed relative to one another and collectively form the surface of a 
huge sphere—the celestial sphere—with Earth at its center.

The celestial sphere rotates regularly each night from east to west, its axis of rota-
tion coinciding with Earth’s rotational axis and its north and south poles oriented just 
like Earth’s poles. The locations of the stars on the celestial sphere, like towns on a 
road map and points on the surface of Earth, are specified with two coordinates. For 
locations on Earth the coordinates are called latitude and longitude. The former speci-
fies how many degrees north or south of the equator (which is defined as zero degrees, 
0° latitude) the point is; the latter tells how many degrees west of zero degrees lon-
gitude the point lies. The longitude line (also called a meridian) that passes through 
Greenwich, United Kingdom, is defined as 0° (see Figure 13-14a).

Since there are 360° around Earth and our planet rotates on its axis once every 
24  hours (1440 min), longitude is often expressed in time units (hours) rather than 
angle units (degrees or radians):

	
1440 min

360 deg
= 4.0 

min

deg
	

For example, Orlando, Florida, is located at 28.4° N latitude, 81.3° W longitude. In 
time units 81.3° W longitude is

	 81.3 deg * 4.0 min>deg = 325.2 min = 5.42 h	

Thus, Orlando is 5.42 hours west of (i.e., earlier than) Greenwich.
On the celestial sphere the locations of stars are described in an exactly analogous 

way. The analog of longitude on the celestial sphere is right ascension.10 It is represented 
by the lowercase Greek letter a. Right ascension is measured in hours, rather than 
degrees, from zero up to 24 as on Earth. The analog of latitude is declination, repre-
sented by the lowercase Greek letter d. Declination is measured in degrees north (1) or 
south (2) of the celestial equator (see Figure 13-14b).

Figure 13-14 
(a) Diagrammatic definition 
of longitude and latitude on 
Earth. (b) Corresponding 
definition of right ascension 
a and declination d on the 
celestial sphere.  marks 
the celestial sphere analog 
of Earth’s 0° longitude, 
the meridian through 
Greenwich, U.K. Longitude

NP

SP

0˚ Equator

Latitude

Orlando,
U.S.A.

Greenwich,
U.K.

(a) Earth

Celestial
equator

NCP

SCP

Star

(b) Celestial sphere

Earth
δ

α

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Choosing the analog of the Greenwich meridian, that is, the 0° longitude, for 
the celestial sphere requires a bit of explanation. Since Earth rotates on its axis from 
west toward east, the stars fixed on the celestial sphere continually move across the 
sky from east toward west. Also, Earth orbits the Sun once every 365.26 days. This 
means that while Earth rotates on its axis once every 24 hours, it also advances along 
its orbit around the Sun slightly less than 1° during that 24-hour period. To bring the 
Sun directly over the same meridian as on the day before, Earth must rotate very nearly 
361°; however, doing the same thing with a star on the celestial sphere requires only a 
360° rotation because the distances to the stars are so vastly greater than Earth’s daily 
motion in its orbit. As we noted above, 1° corresponds to 4.0 minutes, so a given star 
rises in the east each night 4.0 minutes earlier than it did the night before as a result of 
Earth’s orbital motion around the Sun.

In addition to the nightly advance of star rise, there is a gradual change in the orien-
tation of the celestial sphere that varies with the seasons. This change is due to the fact 
that Earth’s rotational axis is tilted at about 23.5° with respect to the plane of our orbit 
around the Sun. This means that over the course of one year as viewed from Earth, the 
Sun follows a path, called the ecliptic, on the celestial sphere that ranges from 23.5° north 
to 23.5° south of the celestial equator. Thus, the ecliptic intersects 0° declination twice 
each year (Figure 13-15), once on about March 20, the vernal (or spring) equinox, and 
again on about September 23, the autumnal equinox. The Sun reaches its maximum north 
declination of 23.5° N on about June 21, the summer solstice and its maximum south 
declination of 23.5° S on about December 21, the winter solstice11 (see Figure 13-15).

By international agreement, the point at which the Sun’s path projected against the 
celestial sphere (the ecliptic) crosses the celestial equator (0° declination) in the spring, the 
vernal equinox, is defined as zero hours (and 0°) right ascension. On the celestial sphere 
the vernal equinox is designated with the Greek capital letter  (see Figure  13-14b).
There are a number of other small motions of Earth that affect the appearance of the 
celestial sphere over very long periods of time, for example, the slow wander of Earth’s 
poles; however, those are beyond the scope of our discussions in this chapter.
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Figure 13-15  The Sun’s path as projected onto the celestial sphere.
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The Mass (and Missing Mass) of the Milky Way
Using the Doppler effect, J. Oort and B. Lindblad first demonstrated in 1926 that the 
Galaxy is rotating. The Sun is apparently moving in a circular orbit at a speed of 
about 2.5 * 105 m>s toward the constellation Cygnus. Assuming that the Sun’s speed 
is constant, we can compute the time for the Sun to complete one revolution around 
the center of the Milky Way (a “Sun year”) and the mass of the Galaxy. Since the Sun 
is 28,000 c # y from the galactic center, a Sun year is 2.1 * 108 Earth years (see 
Problem 13-4).

EXAMPLE 13-3	 The Mass of the Galaxy ​ Calculate an approximate value for 
the mass of the Galaxy. Include in the calculation the mass that lies inside the Sun’s 
orbit in the Milky Way.

SOLUTION

	 1.	 Use Newton’s law of gravitation, where the 
gravitational force acting on the solar mass  
M} by the mass of the Galaxy MG is given by

F = G 
M}  MG

R2

	 2.	 This gravitational force provides the centripetal 
force that holds the Sun in its galactic orbit of 
radius R. Thus,

GM}  MG

R2 =
M}  v2

R

	 3.	 Solving for MG gives MG =
Rv2

G

	 4.	 Substituting values for the Sun’s orbital radius R and speed v and for the 
universal gravitational constant G gives

MG =
128,000 c # y2 19.46 * 1015 m>c # y2 12.5 * 105 m>s22

6.67 * 10-11 Nm2>kg2

 = 2.48 * 1041 kg

Remarks:  Thus, if the Sun’s mass is a representative average for the stars of the 
Milky Way, the Galaxy contains about 1.3 * 1011 stars.

A problem arises in that, if we add together the masses of all of the visible stars 
in the Galaxy, including those beyond the Sun’s orbit, plus all of the dust and gas 
clouds, we can account for only about 4 percent of the gravitational mass necessary to 
hold the Galaxy together. This discrepancy is referred to as the missing mass or dark 
matter problem. It exists for all galaxies and, indeed, for the universe itself. The first 
hint of the problem came in 1933. Based on his studies of the motions of the galaxies 
in the Coma Cluster of galaxies (see Section 13-6), F. Zwicky found that the mass of 
the cluster, estimated from the brightness and number of galaxies it contained, was 
too small by a factor of about 400 to account for the observed motions. He inferred 
that there must be some kind of unseen gravitational mass in the cluster—dark matter. 
Various solutions to the problem, such as black holes and dark matter, are under 
intense investigation and debate. Possible dark matter candidates include massive 
neutrinos and weakly interacting massive particles (call WIMPs). Among the WIMP 
candidates (out of many suggested possibilities) are axions and neutralinos, hypo-
thetical elementary particles that many astrophysicists and cosmologists think may be 
the best choices. Although it is now certain that neutrinos have mass, they probably 
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do not contribute significantly to solution of the dark matter problem because, being 
relativistic, they don’t clump together into clouds like cold interstellar hydrogen does.

Axions were postulated more than 30 years ago as part of an elegant theoretical 
solution to a problem with quantum chromodynamics (QCD), namely that QCD pre-
dicted a large electric dipole moment for the neutron (that experiments show it does 
not have). The axion resulted from the breaking of a symmetry (see Section 12-4) in 
the theory that explained the absence of an electric dipole moment for the neutron. As 
proposed, the axion would have no electric charge and interact only minimally with 
ordinary matter. As a contributor to the solution of the dark matter problem, its value 
may be limited since recent experiments place an upper limit to its mass, if it exists, 
of 10-6 eV>c2.

The neutralino is considered by many astrophysicists and cosmologists as per-
haps the best candidate to solve the dark matter problem. The neutralinos (there may 
be four of them) are the mass eigenstates that result from the quantum mixing of the 
supersymmetry partners of the W, Z, and Higgs bosons, the Wino, Zino, and Higgsino 
(see Table 12-12). One of the neutralinos may be the lightest-possible supersymmet-
ric particle and would, therefore, be stable. In some cosmological models it was pro-
duced copiously in the early universe and, with no decay channel available, it may 
have a relic abundance that could account for the dark matter. The lightest neutralinos 
mass is estimated at 10 to 104 GeV>c2. (The proton mass is 0.938 GeV>c2.) It would 
couple to other particles only via the weak interaction, so its behavior would be simi-
lar to that of the neutrino in that it would not be directly observable in existing detec-
tors at the big accelerators. A significant portion of the experimental runs of the Large 
Hadron Collider will be searches for supersymmetry particles, including the energy/
momentum discrepancy signature of the neutralinos.

13-3  The Evolution of Stars 
While no universally accepted theory of stellar formation exists, it is generally agreed 
that stars are formed from massive clouds of dust and gas that exist throughout space. 
At some point in the swirling cloud, gravitational attraction begins to cause aggrega-
tions of matter to collect. These contract further due to gravity, attracting still more 
matter to them, and eventually—if the cloud has sufficient mass—increasing the tem-
perature to that necessary to initiate fusion as was described earlier, and a star is born.

Stellar Luminosity
In this section, we discuss how stars evolve once they have been formed. Two charac-
teristics of stars are important for this discussion, the luminosity L and the effective 
temperature Te. The effective temperature of a star is difficult to measure. It is usually 
inferred from a comparison of the spectral distribution of its radiation with that of a 
blackbody or from measurements of the absorption lines of hydrogen and helium in 
the atmosphere of the star.

The luminosity is the total power radiated by the star. It is determined from the 
radiant flux F of the star at Earth (remember, this is called the solar constant  f for the 
Sun) and the distance r from Earth to the star (see Equation 13-2):

	 L = 4pr 2
 F	 13-10

Determining the distance to a star is generally a very difficult task. For stars that are 
relatively close, the distance can be determined from the apparent motion of the star 
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in the sky due to the motion of Earth around the Sun. During one complete 
revolution of Earth, a star appears to move in an ellipse of angular radius u 
along the major axis, called the parallax angle, as shown in Figure 13-16. 
The parallax angle is given by

	 u =
1 AU

r
	 13-11

Astronomical distances are measured in parsecs or light-years. One parsec 
(pc, short for parallax-second ) is that distance at which 1 AU subtends an 
angle of 1 arc second (1fl), which equals 1>3600 of a degree. Setting u = 1fl in 
Equation 13-11, we obtain

	 1 parsec =
1 AU

10
*

36000

1
*

180

p rad
= 2.60 * 105 AU	 13-12

Using 1 AU = 1.496 * 1011 m and 1 c # y = 9.461 * 1015 m, we can express 
the parsec in terms of meters or light-years:

	 1 pc = 3.086 * 1016 m = 3.26 c # y	 13-13

EXAMPLE 13-4	 Distance to Proxima Centauri ​ Proxima Centauri is the star 
closest to the Sun. By measuring the maximum apparent change in the direction to 
Proxima Centauri between two observations made six months apart, the parallax 
angle is found to be 0.77233fl. How far is it to Proxima Centauri? (Proxima 
Centauri’s location: R.A. 14h29m43s, Dec. 16° 419580)

SOLUTION
Since 1 AU>10 = 1 parsec, we have for u = 0.77233fl,

r =
1 AU

u
=

1 AU

0.772330
=

1 AU

10
 

10

0.772330
= 1 pc *

10

0.772330
= 1.2948 pc

= 4.22 c # y

Parallax angles as small as 0.001fl can be measured using data from space-
based instruments such as the Hipparcos satellite, which means that the parallax 
method of Example 13-4 can be used to measure stellar distances from the Sun out to 
about 1 kpc. Measurements made by Earth-based telescopes are not as precise as 
those. Since it is about 8 kpc to the center of the Galaxy, the method can be used for 
only about 10,000 stars that are relatively close to the Sun and, thus, in the Milky 
Way. For the rest, the parallax angle is immeasurably small. In other situations, more 
indirect measurements of distance are necessary. One involves complex analyses of 
intensity variations over time for particular types of pulsating stars (Cepheid vari-
ables) found primarily in star clusters. Distances to clusters as far away as about 
29 Mpc have been measured by this method. Supernovae (see Section 13-4) provide 
several methods for determining distances to the galaxies in which they are located. 
The most important of these makes use of the similarity of the light curves, that is, the 
emitted light intensity versus time, of so-called Type Ia supernovae. Such measure-
ments make possible calculations of the distances to supernovae that are accurate to 
within about 5 percent and recently provided the crucial evidence that the expansion 
of the universe is accelerating.

Sun

Parallax
angle

1 AU

Orbit

Earth

Star

θ

r

Figure 13-16  The parallax method 
of finding distances to nearby stars. 
A parsec is the distance r for which 
the parallax angle u subtended by 
1 AU is 1 arc second.
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Hertzprung-Russell 
Diagram
The various states of stars can be conveniently 
displayed by plotting the luminosity L versus 
the effective temperature Te. The result is 
called the Hertzprung-Russell (H-R) diagram. 
Figure 13-17a shows an H-R diagram for 
some stars of representative masses. The large 
majority of stars on an H-R diagram fall in the 
broad central band called the main sequence. 
Main sequence stars are normal in that they 
are homogeneous mixtures (except in the 
core), they have essentially the same chemical 
composition, and they are fusing hydrogen 
into helium via one or another of the nuclear 
reactions discussed earlier. Stars expand as 
they leave the main sequence. For that reason, 
stars in the main sequence are often called main 
sequence dwarfs. Between 80 and 90 percent 
of all stars are on the main sequence.

The location of a star along the main 
sequence in the H-R diagram depends on its 
luminosity, which is primarily dependent on 
the mass of the star. The masses of stars range 
from about 0.08 M} to more than 100 M}, 
where M} is the mass of the Sun. Gaseous 
objects with less than about 0.08 M} do not 
have enough gravity for their central cores 
to be compressed sufficiently to generate 
the temperature necessary to sustain the 
nuclear fusion reactions needed for energy 
emission. Objects with masses much greater 
than 100 M} would likely generate such 
enormous internal temperatures that the out-
ward radiation pressure would exceed the 
gravity-generated inward pressure. Such a 
system would be very unstable, if indeed it 
could form at all.

For stars on the main sequence, evalua-
tion of the masses of binary stars has shown 
that the luminosity of a star is approximately 
proportional to the 3.5 power of its mass:

	 L  M  3.5� 13-14

The lifetime of a star tL is proportional to the total available energy, which is propor-
tional to the star’s mass (E = Mc2) and inversely proportional to the rate of energy 
emission, which is the luminosity:

	 tL =
E

L


Mc2

M3.5  M  -2.5	 13-15
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Figure 13-17  (a) The Hertzprung-Russell (H-R) diagram for stars in the 
solar neighborhood. Most stars (80 to 90 percent) fall on the main sequence. 
Stars in the lower right end of the main sequence are cool and dim; those in 
the upper left are hot and bright. (b) The Sun’s evolutionary track from the 
time it entered the main sequence at point 1. The Sun is currently between 
points 1 and 2. It will leave the main sequence at point 4. The time between 
successive points is approximately 109 years.
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Thus, more massive stars burn their hydrogen more quickly than do less massive 
stars. For example, a star with twice the Sun’s mass would be expected to have a life-
time only 1>8 as long as that of the Sun. (Equation 13-15 doesn’t work for very small 
or very large stars because the luminosity-mass relationship of Equation 13-14 is only 
an average result. The exponent in Equation 13-15 is larger in magnitude for very 
small stars and smaller for very large stars.)

Considerations of energy balance for stars on the main sequence lead to the 
approximate proportionality of the radius and the mass, as can be demonstrated using 
the data in Table 13-3 (see Problem 13-6):

	 R  M	 13-16

Combining this with Equation 13-5, which relates the effective temperature to the 
luminosity per unit area, we can relate the effective temperature to the mass of the star:

	 Te = a L

4pR2
b

1>4
 aM3.5

M2 b
1>4

 M3>8	 13-17

Thus, stars with larger masses have higher effective temperatures and, hence, higher 
luminosities than those with lower masses. It is on the basis of Equations 13-15 
and 13-17 that the stellar masses were plotted on the H-R diagram in Figure 13-17a. 
Table 13-3 lists properties of stars by spectral type. The following values for the 
Sun’s characteristics will allow calculation of numerical values for the correspond-
ing characteristics of individual stars: L } = 3.83 * 1026 J>s; R} = 6.96 * 108 m; 
M} = 1.99 * 1030 kg.

As the star ages, it consumes its primary fuel, hydrogen. What happens to it 
as  the hydrogen supply in the core becomes exhausted depends on its initial mass. 
Low-mass and high-mass stars follow somewhat different evolutionary paths. In 
either case, however, the fundamental processes involved are successive nuclear 
reactions fueled by the product of the previous cycle. Thus, after the hydrogen in the 
core has fused to helium, the star must begin fusing helium in a cycle that eventually 
forms carbon. Before this can occur, the core must heat up still further to the 108 K 
necessary to initiate helium fusion. The chain of events involved in this process is 

 Table 13-3  Selected properties of stars

Spectral type Surface temperature (K) L/L } R/R } M/M }

O5 44,500 790,000 15 60

B0 30,000 52,000 8 18

A0 9,520 54 3 3

F0 7,200 6 2 2

G0 6,030 1.5 1.1 1.1

Sun (G2) 5,800 1.0 1.0 1.0

K0 5,300 0.4 0.8 0.8

M0 3,900 0.08 0.6 0.5

M8 2,600 0.001 0.17 0.06
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complex and beyond the scope of this book. However, its result for low-mass stars is 
that the radius  (and therefore the surface area) increases while luminosity remains 
nearly constant. Thus, the intensity (luminosity per unit area) and, consequently, the 
effective temperature decrease and the radiation emitted shifts to longer wave-
lengths as the star expands to become a red subgiant. The photosphere rapidly 
becomes more transparent as Te and the density r decrease, increasing the luminos-
ity and effectively limiting the decrease in temperature. The star is then a red giant. 
The track of a typical evolving low-mass star such as the Sun is shown on the H-R 
diagram in Figure 13-17b.

Helium ignition results in the star again increasing its effective temperature and 
moving to the horizontal branch. When the helium in the core is exhausted, the star 
begins fusing carbon and ascends the red giant branch again, becoming a red supergiant. 
Betelgeuse, the bright star in the shoulder of the constellation Orion, is a red supergi-
ant. Its density is about 1.5 * 10-5 kg>m3, a hundred thousand times less than the air 
we breathe! What happens after this is not completely clear. Through a combination 
of events that includes the loss of considerable mass, perhaps including the ejection 
of an expanding shell of gas (called a planetary nebula), such as that  shown in 
Figure  13-18, the star may become a white dwarf, slowly cooling toward thermal 
equilibrium with the universe. We will discuss white dwarfs further in Section 13-5.

High mass stars—those with masses greater than about 6 M}—evolve much more 
quickly than low mass ones, as predicted by Equation 13-15. In addition, they have 
sufficient initial mass to generate gravitationally the high pressures and temperatures 
necessary to ignite the fusion reactions with oxygen, neon, and then silicon to produce, 
ultimately, iron. These reactions occur with phenomenal speed and lead to catastrophic 
events that will be discussed in the next section. An extremely massive star, such as 
Betelgeuse, may become a supernova via core collapse (see Section 13-4).

(a) (b)

Figure 13-18  The nebula 30 Doradus (a), also known as the Tarantula nebula, is believed to be older than nebula NGC 7293 
(b), also known as the Helix nebula. The Tarantula nebula’s rapidly expanding gas cloud consequently shows a greater degree 
of diffusion. Located in the Large Magellanic Cloud, the Tarantula contains one of the most massive stars known, as well as 
supernova SN1987A, the very bright star slightly below the center (of the left-hand photo). Ultraviolet radiation from stars 
heats the gas of a nebulae, causing it to radiate. [(a) The Hubble Heritage Team (AURA/STScI/NASA). (b) NASA, NOAO, 
ESA, the Hubble Helix Nebula Team, M. Meisner (STScI), and T. A. Rector (NRAO).]
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13-4  Cataclysmic Events 
Huge explosions and other sorts of cataclysmic events are a natural part of the life 
cycle of stars. Stars formed in swirling clouds of gas move along the H-R diagram, 
incorporating such occurrences into their evolution and forming in the process the 
elements needed to form new stars. Why these cataclysmic events occur is the subject 
of this section.

More than half of all stars are members of binary pairs or even larger associations. 
These stars orbit their common center of mass as the group moves with the rotation of 
the galaxy. The periods of binaries vary from a few hours for those with the compan-
ions very close to each other to millions of years for those with the companions sepa-
rated by thousands of astronomical units. Here, we are interested in close binaries.

A complete analysis of the interactions between the two stars forming a close 
binary is beyond the scope of this book, but a qualitative explanation will suffice. 
Consider a binary whose stars of masses M1 and M2 rotate about their common center 
of mass in circular orbits. An observer at rest in the rotating system experiences a net 
force that is the sum of the gravitational forces due to the two stars and the pseudo-
forces due to the rotation. Figure 13-19 shows an equipotential surface about a binary 
pair. It is easy to visualize that there is a point along the line joining the centers of the 
two stars where the net potential is a minimum. At this point, the net force due to the 
combined effects of the rotation and the gravitational attraction by the masses M1 and 
M2 is zero. This point is a Lagrangian point. The three-dimensional equipotential sur-
face that includes the Lagrangian point L forms an envelope around each star called 
the Roche lobe.12

Now consider what happens when, through natural evolution, one of the stars, 
say M1, begins expanding and fills its Roche lobe. The photosphere of the star feels a 
vacuum outside the surface, the outward pressure at any point being balanced by 
gravity. But at the Lagrangian point there is no net gravity. Thus, material from M1 
pours through the Langrangian point into the Roche lobe of M2. Once inside it is 
gravitationally attracted toward M2. Since the system is rotating, the material from M1 
doesn’t simply move directly toward M2 but, because of the Coriolis effect, forms a 
spiraling accretion disk (see Figure 13-20).

Novae
If M2 is a normal star, nothing of great consequence occurs, but if it is a white dwarf, 
then cataclysmic events called novae can occur. We will mention two possibilities. 
Material flowing through the Lagrangian point into the accretion disk is stored there 
until some instability occurs in the disk that results in the dumping of material onto 
the surface of the white dwarf. The impact heats the surface, causing a sudden lumi-
nosity increase by a factor of 10 to 100. Such events recur at intervals of a few weeks 
for dwarf novae to hundreds or thousands of years for recurrent novae. Between 
these sudden bursts in intensity, the novae flicker as described in the caption of 
Figure 13-20.

For classical novae, which eject substantial material into space and can brighten 
by a factor of a million within a few days, astrophysicists suggest that the sudden 
dumping of material from the accretion disk onto the hot surface may result in the 
buildup of sufficient hydrogen to initiate a thermonuclear explosion. After the blast 
the system returns to a more quiescent state, pending the accumulation of more hydro-
gen in the disk. The theoretical problems involved in explaining such an event are 
formidable, however, and no general agreement on the mechanism exists.
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Figure 13-19  Cross 
sections of two gravitational 
equipotential surfaces for 
stars M1 and M2. The point 
labeled L is one of five 
Lagrangian points where 
the net gravitational potential 
is an extremum (a saddle 
point in this case) and the 
net force is zero.

M1
M2

L

Matter falling from
M1 toward M2

Accretion
disk

Figure 13-20  Material 
from M1 pouring through the 
Lagrangian point into the 
Roche lobe of M2 forms an 
accretion disk in M2’s 
equatorial plane. Material 
arriving later hits the disk, 
generating a high-temperature 
impact area. This causes 
novae to flicker irregularly.
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Supernovae
A supernova—the catastrophic explosion of an entire star—is, perhaps surprisingly, 
somewhat more clearly understood than the nova. Supernovae are classified as Type I 
or Type II mainly on the basis of their spectra (see Figure 13-21). The spectra of 
Type I supernovae do not contain hydrogen lines, indicating that they are devoid of 
hydrogen, or nearly so. In contrast, Type II supernovae exhibit strong hydrogen lines. 
Type I supernovae are further divided into Type Ia, which show a strong line of singly 
ionized Si at 615 nm, Type Ib, whose spectra include strong He lines, and Type Ic, 
whose spectra do not include He lines. Because H and He are in that order the most 
abundant elements in the universe, these spectral differences indicated that there are 
significant differences in the progenitors of the Type I and Type II supernovae. Type II 
supernovae are subdivided into two groups based on the shape of their light intensity 
versus time curves following peak brightness. The light curves of Type II-L superno-
vae decline linearly with time; the light curves of Type II-P exhibit an intermediate 
plateau lasting 30 days or more before the intensity decline resumes.

Supernovae are not just big novae. Their origin is completely different. In 
Section 13-3, we saw what occurs in a star as it uses up the hydrogen in the core and 
begins moving off the main sequence of the H-R diagram. The star begins to fuse 
helium, then carbon. If it were a low-mass star, it would have insufficient gravitational 
energy to ignite the fusion of heavier nuclei in quantity. For massive stars, however, 
the situation is different. Type Ia supernovae originate in binary systems where one 
star is a massive white dwarf rich in carbon and oxygen (see Section 13-5). An expand-
ing companion that fills its Roche lobe may dump a huge amount of gas directly onto 
the dwarf’s surface, increasing the gravitational pressure in the core. If the pressure 
increases the core temperature enough to trigger carbon fusion, a runaway fusion reac-
tion results, producing a massive thermonuclear explosion—a huge “carbon bomb.” 
Depending on the characteristics of the particular binary, it may be possible that Type 
Ib and Type Ic supernovae result from gravitational core collapse. Type I supernovae 
occur among population II stars. (Don’t be confused by the apparent inconsistency in 
nomenclature.) As noted earlier, Type Ia supernovae all have very similar maximum 
intensities and light curves, which makes it possible for them to be identified even at 
very large distances, allowing them to be used as “standard candles” by astronomers. It 
is these features that have made it possible for astronomers to measure much greater 
distances to host galaxies than was previously possible.

Figure 13-21  Schematic 
of the classifications of 
supernovae. Type I subgroups 
are based on their spectra at 
maximum brightness. Type II 
subgroups are based on the 
existence or absence of a 
plateau in the light curve.

Supernova
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No Si lines
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If a star’s mass is greater than about 8 M}, evolution toward a Type II supernova 
proceeds approximately as follows. Gravity is strong enough to continue to draw 
mass from the middle layers into the core as the core uses up fuel. The increasing 
temperatures, exceeding 108 K, are sufficient to ignite fusion in neon and silicon, ulti-
mately producing iron. As we saw in Chapter 11, the specific binding energy of iron 
is the highest in the periodic table. Fusing elements above iron doesn’t produce 
energy; it absorbs energy. Thus, when the core has been fused to iron, there is nowhere 
else to go via thermonuclear reactions. With no counteracting outward pressure from 
nuclear reactions, gravitational contraction continues even more rapidly and the core 
consequently continues to heat up until it exceeds 109 K. At that point, the radiation 
within the star is intense and the iron nuclei undergo photodisintegration into helium and 
neutrons, absorbing energy from the core and accelerating the gravitational collapse:

	 56
26Fe S 13 42He + 4n	 13-18

The helium nuclei then begin to photodisintegrate, absorbing enormous amounts of 
energy to overcome the nuclear binding energy of helium:

	 4
2He S 2p + 2n	 13-19

The core is now in gravitational free fall, compressing the electrons and protons into 
neutrons via inverse beta decay:

	 p + e- S n + e	 13-20

What happens next to the core is a matter of intense theoretical conjecture that we 
will explore further in Section 13-5.

What happens to the envelope of the star—the material outside the core—although 
unclear theoretically is certainly apparent visually. The entire envelope is blown away 
in an incredibly massive explosion. This is a Type II supernova. Supernovae are 
extremely rare, but scientists were fortunate enough to observe one in 1987 only 

170,000 c # y away in the Large Magellanic Cloud, a small irregular 
galaxy that is a companion to the Milky Way. Called SN1987A (see 
Figure 13-18), it was the first to occur close enough to be visible to 
the unaided eye since 1604, when both Kepler and Galileo saw one. 
Two others were recorded earlier, in 1006 and 1054, the latter docu-
mented by Chinese astronomers and still visible as the Crab Nebula. 
Several others have been observed with telescopes. As a result of the 
enormous number of nuclear reactions and decays initiated by the 
supernova, the radiation emitted in the explosion is accompanied by a 
flood of neutrinos. Neutrinos emitted by SN1987A were detected by 
the Kamiokande neutrino observatory, bringing with them information 
about the core-collapse model of supernovae and a hint of the non-
zero neutrino mass (see Problem 12-13).

At its peak light output, a supernova typically shines more 
brightly than the entire galaxy in which it is. The spectra of superno-
vae reveal the presence of elements throughout the entire periodic 
table. This indicates that some of the energy removed from the core 
following the production of iron is used to produce elements of even 
higher atomic numbers. The supernova ejects some of this material 
into space, where it eventually contributes to the formation of a new 
generation of stars and their planets via condensation. Such events 
undoubtedly preceded the birth of the Sun and the formation of 
Earth. We are, as has been said before, “made of the stuff of stars.”

Supernova 1987A developed a set of rings 
some weeks after it was first seen. The rings 
are likely caused by a beam of high-energy 
radiation or particles sweeping across the gas. 
The source of the beam may be a previously 
unseen companion of the star that exploded. 
This Hubble Space Telescope photo was made 
with hydrogen Balmer alpha light. [NASA, 
ESA, P. Challis, and R. Kirshner (Harvard-
Smithsonian Center for Astrophysics).]
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13-5  Final States of Stars 
The cataclysmic events that occur near the end of the life of a star lead to one of only 
three possible final states: a white dwarf, a neutron star, or a black hole. The mass of 
the star, particularly that of the core, appears to be the primary factor in determining 
the final state.

White Dwarfs
Stars whose masses are less than about 6 M} follow an evolutionary track on the H-R 
diagram that takes them through one or more periods of substantial mass loss from 
the outer layers of gas. How this occurs is not clear, but the ejected mass, which is 
heated to a glowing planetary nebula by the hot core, leaves behind a white dwarf, a 
term used because many, though by no means all, are literally white hot. Its mass is 
typically about 1 M} and its radius of the order of 107 m, which is about the same as the 
radius of Earth. Thus, the density of a typical white dwarf is about 5 * 105  g>cm3 
compared to Earth’s average density of about 5.5 g>cm3. A coin the size of a penny 
made from white dwarf material would have a mass of over 200 kg, one the size of a 
euro over 400 kg.

Thermonuclear reactions have ceased in the white dwarf, leaving it with a core 
consisting primarily of carbon and oxygen, so there is no outward pressure due to 
them from within the star. The star therefore collapses because of the inward gravita-
tional pressure until the exclusion principle prevents the atomic electrons from com-
ing any closer together. This effect is similar to the exclusion-principle repulsion 
between atoms in a molecule that we discussed in Chapter 9. It results in an outward 
pressure that is larger even than the thermal pressure of the hot core. It is this electron 
degeneracy pressure that supports the white dwarf. When the outward electron degen-
eracy pressure equals the inward pressure due to gravity, the star stops contracting.

Explicit derivation of the expression for the electron degeneracy pressure leads to 
a nonrelativistic relation between the dwarf ’s radius R and mass M:

	 R = 13.1 * 1017 m # kg1>32 a Z

A
b

5>3
 M-1>3	 13-21

where Z is the atomic number and A is the atomic mass number of the material of the 
star. Note the interesting result that the larger the mass, the smaller the radius, a con-
sequence of the gravitational contraction that was discussed earlier. For example, a 
white dwarf with a mass of 1 M} will have a radius smaller than one with a mass of 
0.5 M}! Equation 13-21 raises the interesting question of whether, when the electrons 
become relativistic, the mass might become large enough for the radius of the dwarf 
to shrink to zero. Although Equation 13-21 does not formally allow that possibility 
until M approaches infinity, S. Chandrasekhar13 derived the corresponding relativis-
tic relation and found that the radius would go to zero when the mass reached about 
1.4 M}. This quantity is called the Chandrasekhar limit. Its validity is strongly sup-
ported by the fact that the masses of all white dwarfs that have been measured are 
less than that value.

A lone white dwarf continually radiates heat to space and, without a nuclear fur-
nace, slowly cools and dims. When it is no longer visible, it has become a black 
dwarf. It continues to cool toward thermal equilibrium with the universe. It is not 
likely that any white dwarfs have yet reached this final stage. However, if the white 
dwarf is a part of a binary, then in addition to the possibility of a nova described ear-
lier, mass may flow from the companion directly onto the surface of the white dwarf. 
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When the degenerate electron pressure can no longer support the white dwarf (at the 
Chandrasekhar limit), the star implodes, suddenly raising the core temperature and 
detonating fusion in the carbon-oxygen core. The sudden energy release causes the 
white dwarf to explode as a Type Ia supernova. The common mass limit, 1.4 M}, at 
which the white dwarfs explode is a major factor in the resulting similarity of the 
Type Ia supernovae light curves that makes possible their use as a luminosity standard 
for measuring astronomical distances. Following the supernova explosion, about half 
of the residual core of the star is iron.

Neutron Stars
In the discussion of supernovae, we saw that the enormous pressures developed in the 
core forced inverse beta decay to occur, converting the core into neutrons. If the mass 
of the core following the explosion is greater than the Chandrasekhar limit, what hap-
pens? We can get an idea by considering the neutrons to be an ideal gas of fermions 
and derive a nonrelativistic expression for the mass-radius relation analogous to 
Equation 13-21. The result is

	 R = 11.6 * 1014  m # kg1>32M-1>3	 13-22

where M is the mass in kilograms and R is the radius of the core in meters. Such a star 
is called a neutron star, since the envelope was blown away in the supernova and all 
that is left is the core consisting of neutrons. For M = 1.0 M}, Equation 13-22 yields 
the radius R = 1.27 * 104 m = 12.7 km.

The density of the neutron star is about 1.2 * 1014  g>cm3. This is only slightly 
less than the density of the neutron itself, which is about 4 * 1014 g>cm3. Thus, we 
can conclude that the gravitational pressure of the neutron star is balanced by the 
repulsive component (due to the exclusion principle) of the strong nuclear force 
between the neutrons. As you might guess from our earlier discussion, gravity can 
overcome even this resisting pressure. The mass corresponding to the gravity at which 
that occurs would be the maximum mass possible for a neutron star, a mass analogous 
to the Chandrasekhar limit for white dwarfs. Current theory puts the maximum mass 
of a neutron star at about 2 M}. The largest neutron star yet recorded (as of early 
2011) has a mass of (1.97 ; 0.04) M} and a radius of 13 km.

HSTGround

White dwarfs identified by 
the Hubble Space Telescope 
in M4, the globular cluster 
closest to Earth (7000 c # y). 
M4 contains more than 
100,000 stars. [(left) Kitt 
Peak National Observatory 
0.9 m telescope, National 
Optical Astronomy 
Observatories; courtesy 
M. Bolte (University of 
California, Santa Cruz). 
(right) Harvey Richer 
(University of British 
Columbia, Vancouver, 
Canada) and NASA.]
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Regularly pulsing radio sources, called pulsars, discovered in 1967 in nebulae 
such as the Crab Nebula that are remnants of supernovae, are thought to be neutron 
stars. Current theory suggests that the radiation is emitted as the result of charged par-
ticles emitted by the neutron star that are accelerated along the star’s magnetic field 
lines as a consequence of the star’s rapid rotation, as illustrated in Figure 13-22. The 
Crab pulsar also corresponds to an optical variable, as illustrated in Figures 13-22b 
and c. It emits energy at an incredible 3 * 1031 W. Its period is equally incredible, 

A lone neutron star, the first 
seen in visible light, is very 
hot (about 650,000 K at the 
surface) and may be no larger 
than 28 km in diameter. 
[Courtesy of F. Walter (State 
University of New York at 
Stony Brook) and NASA.]
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Figure 13-22  (a) The neutron star acquires much of the original star’s angular momentum and magnetic field, causing it to 
rotate rapidly while dragging along a distorted magnetosphere. Accelerated charged particles radiate in a cone about the rotating 
magnetic axis like a cosmic lighthouse. (b) The pulsar in the Crab Nebula. As the cone of radiation swings to face Earth, light 
emitted from accelerated electrons becomes visible (the bright spot in the image). (c) A fraction of a second later, the pulsar has 
turned and this light is no longer directed toward Earth. Currently rotating about 30 times a second, the pulsar has a period that 
is increasing by about 1025 s per year. [(b) and (c) Harvard/Smithsonian Center for Astrophysics.]
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0.033 second, one of the shortest known. As it 
emits energy into space, the neutron star’s rotation 
rate slows (i.e., its period gradually lengthens) 
and it slowly cools, approaching thermal equilib-
rium with the universe. Cooling neutron stars that 
are in binary systems are providing an important 
test of general relativity.

Black Holes
What happens when the mass of the remaining 
core of a supernova exceeds the upper limit of 
approximately 2 M} for the formation of a neu-
tron star? The velocity necessary for an object 
with mass to escape from an object of mass M is 
found by equating the gravitational potential 
energy at the surface of M to the kinetic energy 
necessary to escape. This results in the escape 
velocity:

	 e = a 2GM

R
b

1>2
	 13-23

For a neutron star with M = 1.0 M}, ne =  
1.3 * 108 m>s, more than 40 percent of the 
speed of light. If there were no relativistic and 
quantum-mechanical effects, the escape velocity 
would equal c when

	 RS =
2GM

c2 	 13-24

where RS is called the Schwarzschild radius. Thus, if an incipient neutron star is so 
massive that its radius is less than RS , no object with mass can escape from its surface. 
In addition, radiation of wavelength l0 emitted at some distance R from mass M is 
shifted to a longer wavelength l according to the gravitational redshift described in 
Section 2-5; the ratio is given by

	
l

l0
= a1 -

v2
e

c2 b
-1>2

= a1 -
2GM

c2
 R
b

-1>2
= a1 -

RS

R
b

-1>2
	 13-25

If R shrinks to the Schwarzschild radius, then l approaches infinity and the energy 
(E = hf = hc>l) approaches zero. Thus, if R is less than RS, no energy can escape 
the surface as radiation, either. Such an object is called a black hole, because it neither 
emits nor reflects radiation or mass and, hence, appears absolutely black.14

The radius of a black hole with a mass of 1 M}, if there is such an object, would 
be only about 3 km. There is a significant body of evidence supporting the existence 
of a massive compact object, likely a black hole, at the center of the Milky Way. 
During the past 15 years astronomers at the Max Planck Institute (Germany) have 
tracked about a dozen individual stars (called the S group) of more than 300 stars 
orbiting Sagittarius A* (usually written SgrA* and pronounced Sagittarius A star). 
SgrA* is a strong radio source near the center of the Milky Way (see Figure 13-23a). 
One of these, called S2, has been tracked over more than two-thirds of its orbit 

2

CCR

This composite image of the Crab Nebula was made from an x-ray 
image recorded by the Chandra X-Ray Observatory and an optical 
image from the Hubble Space Telescope. The inner ring is about  
1 c # y across. [X-ray image: NASA/CXC/ASU/J. Hester et al.; optical 
image: NASA/HST/ASU/J. Hester et al.]
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(see Figure 13-23b). In the spring of 2002 S2 passed within 17 light-hours of SgrA*, 
about three times the diameter of our solar system, and was moving at about 5000 km>s. 
Determining S2’s orbital period to be 15.2 y allowed calculation of the mass of SgrA* 
to be about 3 * 106 M}. S2’s observed orbit “confines” the mass of SgrA* to such a 
small volume that there can be little doubt it is an enormous black hole. Unlike white 

The series of Chandra X-Ray Observatory images on the left show jets of high-energy particles being produced near a 
black hole in a binary system, first on the left (top image), then on the right (middle image). The jets are moving away 
from each other at about 0.5c. In the lower image the left jet has disappeared. The schematic on the right illustrates how 
the jets originate. The black hole draws mass from the normal companion, then intense electromagnetic forces in the 
accretion disk expel the jets of high-energy particles. [Left: X ray (NASA/CXC). Right: Illustration (CXC/M. Weiss).]

Black hole in the center of galaxy 
NGC 7052. The disk is 3700 c # y in 
diameter. The black hole, whose mass 
is about 300 million solar masses, 
will swallow the disk in a few billion 
years. [Roeland P. van der Marel 
(STSci), Frank C. van den Bosch 
(University of Washington) and 
NASA.]
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dwarfs and neutron stars, black holes are not cooling toward thermal equilibrium with 
the universe; however, they are predicted to be emitting Hawking radiation, a quantum-
mechanical effect potentially resulting in the evaporation of the black hole.15

Gamma-Ray Bursts
Flashes of gamma rays (and x rays) that occur about once a day at apparently random 
locations in the sky were discovered by Vela military satellites in 1967. They are 
short, lasting from less than a second to as long as a few minutes. During the burst 
they are by far the brightest gamma-ray sources in the sky, their fluxes exceeding 
those of the brightest steady sources, such as the Sun and the Crab Nebula, by a factor 
of 1000 or more. Their brief lifetime makes it difficult to attempt to identify the bursts 
with individual stars or galaxies because of the inherent delay in processing the burst 
information and re-aiming the large telescopes. With a bit of good fortune, that prob-
lem was first solved in 1997 when the Dutch-Italian BeppoSAX satellite detector dis-
covered an x-ray afterglow following burst GRB970228.16 Then in 1999 burst 
GRB990510 was seen simultaneously by the Compton Gamma Ray Observatory and 
BeppoSAX satellites within the field of view of the Very Large Telescope (VLT) in 
Chile, the largest telescope in the southern hemisphere. The subsequent x-ray, optical, 
and radio wavelength afterglows told astronomers what to look for and, since then, 
many bursts have been studied more thoroughly via their afterglows, some observa-
tions lasting for several months.

Since that time the all-sky surveys of the Burst and Transient Source Experiment 
(BATSE) and Swift satellites have recorded more than 8000 gamma-ray bursts dis-
tributed isotropically over the sky (see photograph on page 673). The uniform distri-
bution of the GRBs across the sky is strong evidence that they occur in the distant 
universe since only at great distances does the cosmos appear uniform. The VLT 
measured the redshift z of GBR990510 to be 1.61, implying a recession speed that 
places the source about halfway to the edge of the visible universe. The origin of the 
bursts and the mechanism for the enormous energy release implied by the gamma-ray 

Figure 13-23  (a) Infrared 
image of stars orbiting the 
strong radio source SgrA*, 
indicated by the small 1, at 
the center of the Milky Way. 
SgrA* is thought to be a 
supermassive black hole. 
(b) The orbit of S2. The 
orbital data and Kepler’s 
third law makes possible a 
calculation of the mass of 
SgrA*. [(a) European 
Southern Observatory. 
(b) Max Planck Institute for 
Extraterrestrial Physics.]
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flux are not yet clear. As of this writing approximately 100 afterglows have been 
located, and for most of these a host galaxy has been identified. The GRBs in many 
cases appear to be the result of the supernova collapse of very large stars becoming 
neutron stars or black holes. This is an area of active current research.

13-6  Galaxies 
In Section 13-2 we saw that the Milky Way is shaped like a spiral disk with a central 
bulge that is about 28,000 c # y from the Sun. The disk is surrounded by a roughly 
spherical “halo” of globular clusters made up mostly of population II stars, which 
are also part of our galaxy. We will now look at some of the characteristics of 
galaxies.

Material Between the Stars
“Holes in the sky”—regions where no stars are seen—have been observed since the 
early days of astronomy and were assumed to be empty space. However, studies of 
open clusters about 75 years ago led to the discovery of a more or less continuous 
distribution of tiny dust particles, called interstellar dust, between the stars. Consisting 
of solid specks of silicates and carbides averaging only a few hundred nanometers 
in diameter (approximately matching the wavelength of visible light), the interstellar 
dust both absorbs and scatters some of the starlight striking it. Thus, dust in the 
interstellar medium (ISM) dims starlight coming toward Earth and, since blue light 
scatters more efficiently than red light, starlight is reddened on its trip to us, just as 
sunlight is reddened at sunset. Although the dust seems to pervade the entire Galaxy, 
the concentrations are very low and its total mass makes only a very small contribu-
tion to the total mass of the ISM. The vacuum in interstellar space is far better than 
the best obtainable in the laboratory.

The ISM consists primarily of hydrogen and helium. Hydrogen as atomic hydro-
gen, ionized hydrogen (protons), and hydrogen molecules (H2) makes up about 
70  percent of the mass of the ISM. Atomic helium is most of the rest, while the 
carbide and silicate dust contribute only a few percent of the ISM’s total mass. 
Spectroscopic studies of binaries reveal some absorption lines that are not Doppler 

22

CCR

This map shows the locations of more 
than 2700 gamma-ray bursts recorded by 
BATSE aboard the Compton Gamma-Ray 
Observatory during its 9 years of operation. 
The projection is in galactic coordinates, 
the plane of the Milky Way being the 
horizontal line through the middle of the 
figure. The burst locations are color-coded 
based on the integrated energy over the 
duration of the burst. [Image courtesy of 
the BATSE team, http://gammaray.nsstc 
.nasa.gov.]
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shifted. In 1904, J. F. Hartmann reasoned correctly, 
although not to universal acceptance, that the unshifted 
lines result from absorption of light from the binary by 
an intervening gas cloud, rather than by gas in the atmo-
sphere of the star. Though still difficult to demonstrate 
conclusively in all cases, the existence of interstellar gas 
clouds is now generally accepted. As a result of temper-
ature variations in the early universe and the subsequent 
continuous action of gravity, huge clouds of primarily 
hydrogen have formed throughout the ISM. They range 
in mass from about 1 to 1000 times the mass of the Sun 
and have temperatures of about 30 to 150 K. At these 
temperatures the hydrogen atoms in the clouds are in 
their ground states.

Even though the atoms are in their ground states, it is 
possible to see the clouds as a result of the hyperfine split-
ting of the hydrogen ground state due to the spins (i.e., 

magnetic moments) of the electrons and protons. If the spins of the electron and the 
proton in a particular atom are antiparallel, the atom’s ground state energy is very slightly 
lower that it would be if the spins were parallel. (See Section 7-4 and Figure 13-24.) 
The energy difference between the two states is so small, 5.9 * 1026 eV, that a colli-
sion with another atom or a dust grain can result in the atom absorbing enough energy 
to “flip” the electron’s spin into the parallel configuration. Once the electron’s spin is 
flipped, the atom has only two ways to return to the ground state: it can have another 
collision enabling the atom to release the excess energy as heat or it can spontane-
ously flip the spin back antiparallel to that of the proton, emitting a photon with wave-
length 21 cm in the process. The likelihood of either of these occurring is very small. 
For a given atom, collisions only occur every few hundred years and spontaneous 
return to the lower state may take millions of years. Even so, the number of atoms 
in the huge clouds is so large that there is a faint continuous emission of the 21-cm 
photons that enables mapping of the clouds by radiotelescopes.

Together, the interstellar dust and the clouds of gas account for an estimated 2 
to 3 percent of the total mass (ordinary and dark matter) of our Galaxy. It is nearly 
certain that there is not enough unseen gas and dust to account for the Galaxy’s dark 
matter.

Gaseous Nebulae
Though most gas clouds, or nebulae, in interstellar space are irregular in shape, a few 
are circular, leading to speculation that they are self-gravitating and represent the very 
early stages of new star formation. Some large hydrogen clouds have spherical inner 
regions of ionized hydrogen, with a quite sharp demarcation between the H and H1 
regions. Astrophysicists believe that the ionized region is maintained by ultraviolet 
photons with frequencies above the Lyman limit emitted by a hot, newly formed star 
at the center of the region. The view that new stars form in the nebulae in an ongoing 
process is strongly supported by the observation that, although the Galaxy is of the 
order of 1010 years old, our Galaxy contains main sequence stars that are no more than 
2 to 3 * 106 years old. Furthermore, high-resolution radioastronomy has in recent 
years located numerous newly forming stars embedded in clouds of dust and gas that 
are completely opaque to optical wavelengths.

Energy (eV)

5.88 × 10–6

Photon
λ = 21 cm

0
Electron

Electron
Proton

Proton

Figure 13-24  The hyperfine spitting of the hydrogen atom 
ground state is the origin of the 21 cm radiation used to map 
gas clouds in the ISM.
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Classification of Galaxies
Although fuzzy, extended objects, at one time called “nebulae” (not to be confused 
with planetary nebulae defined in Section 13-3), that were obviously not stars had 
been observed in the night sky since the 1700s, what and where they were was a mat-
ter of active scientific debate until well into the twentieth century. The answer had to 
await the development of telescopes with sufficient resolution and light-gathering 
power and a theoretical means of computing distances from observations made with 
them. These came together in the mid-1920s when Edwin Hubble17 used the 2.5 m 
telescope on Mount Wilson, the largest in existence at the time, to measure the inten-
sities of rare stars, called Cepheid variables,18 that he discovered in three “nebulae.” 
One of those nebulae, the great spiral galaxy Andromeda, he measured to be 2 * 106 
light-years away. In one stroke, he was able to demonstrate that the “nebulae” were in 
fact galaxies much like our own, as had first been suggested by the philosopher 
Emmanuel Kant 150 years earlier, and that they were far outside the Milky Way. 
Exploring Hubble’s discovery will take us into the realm of cosmology, the study of 
the large-scale structure of the universe.

Following his discovery that these “nebulae” were in reality distant galaxies, 
Hubble conducted a systematic study of the enormous number that were visible. He 
found that all but a very few fit into four general categories. Most had regular geo-
metrical shapes and occur in two varieties: ellipticals, which are roundish, rather 
like a football, and disks. The disks in turn had two subgroups, ordinary spirals and 
barred spirals (i.e., spirals with a “bar” of stars across the center). The small per-
centage that did not have regular shapes he called irregular galaxies. Figure 13-25 
shows an example of each type of galaxy. The Milky Way is a large barred spiral.

In addition to their geometrical differences, the four types of galaxies have other dis-
similarities. A large fraction of the motion of the stars in spirals is rotational about the 
galactic center, whereas the motion of stars in ellipticals is generally random with only a 
relatively small rotational component. Ellipticals also seem to have very little interstel-
lar gas and dust, while spirals and many irregulars have a substantial amount. The fact 
that most ellipticals have no young stars is probably a consequence of that absence. 
With a few exceptions, ellipticals are much smaller than spirals, typically having only 
about 20 percent of the diameter of an average spiral and only a thousandth of the mass.

Quiet and Active Galaxies
Most of the approximately 1010 galaxies in the observable universe appear to be quiet 
galaxies—that is, there is very little activity other than what might be expected for 
such dynamic systems. The vast majority of these galaxies are so distant that our 
instruments cannot resolve internal details. Therefore, only the composite spectra and 
radiant flux F for the entire galaxy can be observed. The range of velocities Dv that 
exists in the stars of the regular galaxies, measured by the Doppler broadening of the 
spectral lines, turns out to be related to the total luminosity L by

	 L  1D24	 13-26

Since L is related to F and r, the distance to the galaxy, by Equation 13-8, the distance 
r can be found from measurements of the redshift and the apparent brightness of the 
galaxy, assuming that L is known.

In a very small percentage of galaxies something extremely violent, even by com-
parison with stellar supernovae, is occurring. Such systems are called active galaxies. 
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There are several distinct types, some of which may not even be galaxies at all. The 
first discovered were Seyfert galaxies, named after Carl Seyfert, who first identified 
many of them. They are spirals with extremely bright, central starlike cores, or nuclei. 
In many of them, light coming from the core exceeds that from all of the stars in the 
galaxy and may vary in intensity by a factor of two or more in less than a year. Such a 
rapid variation in the total intensity means that the source must be less than one light-
year in extent while producing as much energy as 1011 stars. Even more incredible, 
if possible, is the fact that the light emitted by a Seyfert galaxy consists of broad 
emission lines originating in both allowed and forbidden transitions in highly ionized 
atomic systems superimposed on a continuum, but without the absorption lines typi-
cal of stars. That suggests that its enormous energy is not coming from thermonuclear 
reactions (fusion). The source is not yet understood.

A similar sort of extreme activity occurs in a few ellipticals called N galaxies and 
BL Lac objects. N galaxies are elliptical counterparts of Seyfert galaxies; that is, they 

Figure 13-25  In Hubble’s galaxy classification scheme, (a) is an example of an elliptical galaxy, (b) illustrates an ordinary 
spiral, (c) is a barred spiral, and (d ) is an irregular galaxy. The Milky Way is thought to be a spiral with a faint bar. [(a) 
NASA, ESA, and The Hubble Heritage Team (STScI/AURA). (b)NASA and ESA. (c) NASA, ESA, and The Hubble Heritage 
Team (STScI/AURA). (d) NASA, ESA, and The Hubble Heritage Team (STScI/AURA).]

(a) (b)

(c) (d )
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have very bright centers. BL Lac objects seem to be like N galaxies but exhibit sub-
stantial short-term intensity variations. In these, an intensity variation of a factor of 
two can occur within a week and a complete reversal of the polarization of the emitted 
light within one day, suggesting that the energy source is only one light-day in diam-
eter. BL Lac objects are now thought to be giant ellipticals about 109 c · y from Earth.

Some of the giant ellipticals are also strong emitters in the radio region of the 
spectrum. Study of these radio galaxies has been intense, and the results have been 
astonishing. For example, the radio source Centaurus A is double lobed with a small 
radio-emitting nucleus midway between the lobes. It is one of the brightest radio-
emitting objects in the universe. Analyses of its spectra indicate that the initial energy 
release represented by the radiation that we see amounted to 1056 J, which is about the 
equivalent of all the stars in the Milky Way undergoing supernova explosions simul-
taneously! The nature of such a colossal event is not currently understood.

In a universe of strange phenomena, quasars, short for quasi-stellar radio sources, 
are among the strangest. Discovered as radio sources, their optical images look like 
stars; that is, they have no resolved structure. Their spectra resemble that of a Seyfert 
galaxy. Resolved radio images of some quasars show that a few of them are double 
lobed, like the radio galaxies, which makes their identification ambiguous. The Sloan 
Digital Sky Survey (SDSS), begun in 2000 and to continue through 2014, has of this 
writing cataloged 120,000 quasars; of those, more than 11,000 have redshifts 72.3, 
the most distant at a redshift of z = 5.8. There is also a group of objects about 10 times 
more numerous than quasars, radio sources that were earlier called quasi-stellar 
objects. These are like quasars in every major way except that they are not radio 
emitters. Current terminology refers to both types as quasars, the radio sources as 
radio-loud quasars (QSRs) and the others as radio-quiet quasars (QSOs).

Perhaps the strangest thing about the quasars is the magnitude of the redshift of 
their spectra, which is very large. It implies that some quasars are receding directly 
away from us at greater than 0.95c. This would make them the most distant massive 
objects, of the order of 1010 c # y from Earth. Their radiant flux F together with the 
great distance imply power outputs of 1040 W, greater than that of 1012 Suns. Not only 
that, but the intensities of some quasars vary over only a few hours, suggesting dimen-
sions of only a few light-hours.

Radio galaxy 3C368. The 
contours show the centers 
of strong radio emission. 
The bright knots may be 
regions of star formation in 
this elliptical galaxy. [NASA, 
NRAO, VLA, HST, WFPC 2, 
M. Longair (University of 
Cambridge).]

Debris from the catastrophic collision of two galaxies may 
be fueling quasar IRAS04505-2958. The quasar is about  
3 * 109 c # y from Earth. Astronomers believe the collision 
ripped out the core of a spiral galaxy (bottom of the picture). 
The ring lies in front of the quasar (the bright object in the 
middle) at a distance of 15,000 c · y (about one-tenth of the 
diameter of the Milky Way). The bright object just above the 
quasar is a foreground star. [John Bahcall (Institute for 
Advanced Study, Princeton University), Mike Disney 
(University of Wales), and NASA.]
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Hubble’s Law
In viewing distant galaxies our telescopes cannot resolve the individual stars. We are 
seeing the light emitted by all of the stars they contain. Just as with the Fraunhofer 
absorption lines in the Sun’s visible spectrum, the continuous spectra of the galax-
ies contain absorption lines produced in the cooler (relatively!) stellar atmospheres. 
In general, the wavelengths of the absorption lines seen in a galaxy’s spectrum are 
longer than the corresponding absorption lines measured on Earth; that is, the absorp-
tion lines of the distant galaxies are redshifted. The redshift z, defined in Section 1-5, 
is given by

	 z =
f0 - f

f
=

l - l0

l0
	 13-27

where f0 and l0 are measured in the rest system of the star or galaxy (the emitter) and 
f and l are measured at Earth (the observer). Figure 13-26 shows the redshifted spec-
tra of five galaxies whose distances from us range from 2.6 to 287.5 Mpc. Note that z 
is dimensionless.

Edwin Hubble was the first astronomer to recognize that there is a relation 
between the redshifts of the spectra of galaxies and their distances from us. Hubble’s 
analysis (see Figure 13-27a), published in 1929, disclosed a linear relation between 
redshift z and distance from Earth r for the 20 or so “nebula” (i.e., galaxies) for which 

Figure 13-26  The redshifts 
of the Ca, H, and K 
absorption spectral lines are 
shown for five galaxies at 
different distances from us. 
The line spectra above and 
below the absorption 
spectrum are standards used 
for determining the amount of 
shift accurately. [California 
Institute of Technology.]

NGC 221 v  210 km/s d  2.6 Mpc

NGC 4473 v  2 300 km/s d  28.8 Mpc

NGC 379 v  5 500 km/s d  68.8 Mpc

Galaxy in the Ursa Major Cluster v  15 000 km/s d  187.5 Mpc

Galaxy in the Gemini Cluster v  23 000 km/s d  287.5 Mpc
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both distance estimates and redshifts were known at the time. The relation, now called 
Hubble’s law, is

	 z =
H0

c
 r	 13-28

where H0 is the Hubble constant. Hubble interpreted the redshift as being due to the 
Doppler effect (see Section 1-5). Because the redshift values he had available for pre-
paring the graph in Figure 13-27a were all small (z 6 0.004), he was able to use the 
equation   H0 r, the nonrelativistic approximation of Equation 13-28 obtainable 
with the aid of Equation 1-37:

	 z =
l

l0
- 1 = A1 + 

1 - 
- 1  11 + 2 - 1 =  =

v
c

	

	 or zc  v 1 v  H0 r	

Figure 13-27  (a) Hubble’s 
original graph showing the 
relation between redshift 
(vertical axis) and distance 
from Earth (horizontal axis). 
The solid dots and line are 
for individual nebula. The 
open dots and broken line 
plot the nebula assembled 
into groups. The vertical 
axis actually plots cz and is 
labeled with the wrong units, 
km instead of km>s.
(b) Hubble diagram using 
distances determined from 
Type Ia supernovae. Distance 
uncertainties (horizontal error 
bars) are less than 10 percent 
for each object. The small 
square at the origin represents 
the area covered by Hubble’s 
analysis in (a). [(a) The Realm 
of the Nebulae, Yale 
University Press, New Haven, 
CT © 1936. (b) S. Jha, Ph.D. 
thesis, Harvard University, 
2002.]
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Figure 13-27b shows Hubble’s law using distances determined from Type Ia superno-
vae (see Section 13-3). Notice that the recessional velocity v determined this way may 
easily exceed the velocity of light.

In principle, the value of H0 is easy to obtain since it relies on the direct calcula-
tion of z from wavelength measurements. However, recall that astronomical distances 
are very difficult to obtain and that they have been measured for only a minuscule 
fraction of the 1010 or so galaxies in the observable universe. Thus, the value of H0 
changes as the interpretation of distance calibration data is refined. The currently 
accepted value of the Hubble constant, given in Equation 13-29, is computed by 
NASA based on measurements made by the Wilkinson Microwave Anisotropy Probe 
(WMAP), the Hubble Space Telescope, and the Chandra X-Ray Observatory:

	 H0 = 70.8 { 1.6 km s-1 Mpc-1 = 21.2 { 0.7 km s-11106 c # y2-1	 13-29

Notice that the somewhat unusual basic unit of H0 is just reciprocal time. The quantity 
1>H0 is called the Hubble time and equals about 14 * 109 years. This would corre-
spond to the age of the universe if gravitational pull on the receding galaxies were 
ignored.

EXAMPLE 13-5	 Distance to a Galaxy in Virgo ​ Redshift measurements on a 
galaxy in the constellation Virgo yield a recession velocity of 1200 km>s. What is 
the approximate redshift of this galaxy? How far is it to Virgo?

SOLUTION

zc  v 1  z  v>c = 1.2 * 106 ms-1>3.0 * 108 ms-1 = 0.004

Using Hubble’s law, we obtain

r =
v

H0
=

1200 km>s
21.2 km s-11106 c # y2-1 =

11200 km>s2 1106 c # y2
21.2 km>s

= 56.6 * 106 c # y = 16.9 Mpc

Remarks:  Compare this result with distance measurements to Virgo made by some 
of the standard astronomical distance-measuring methods given in Table 13-4.

Hubble’s law tells us that the galaxies are all receding from us, with those the 
farthest away moving the fastest. However, there is no reason why our location in the 
universe should be special. An observer in any galaxy would make the same observa-
tions and compute the same Hubble constant (see Problem 13-26). Thus, Hubble’s 
law states that all of the galaxies are receding from one another at an average speed of 
70.8 km s21 per Mpc of separation. In other words, the universe—space itself—is 
expanding. This is a profound discovery with enormous theoretical implications.

 Table 13-4  Distance measurements to Virgo

Method Cepheids Novae Brightness fluctuations Type Ia supernovae

Distance to Virgo (Mpc) 15–25 21.1 ; 3.9 15.9 ; 0.9 19.4 ; 5.0

Maximum useful distance (Mpc) 6 29 6 20 6 50 71000
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All galaxies participate in the general expansion of the universe. As a result, the 
wavelengths of light emitted toward Earth by galaxies (and stars and anything else 
out there) is lengthened or stretched along with the space through which it is mov-
ing, producing the cosmological redshift. It is the cosmological redshift that is 
described by Hubble’s law. This redshift is not related to the galaxy’s recessional 
velocity by the relativistic Doppler effect equation that we developed in Chapter 1 
(Equation 1-38), even though astronomers often use that equation to express a mea-
sured redshift z as the radial velocity of a galaxy as if it were moving through space 
rather than the actual velocity with which it is receding from us due to the expansion 
of space. That this practice provides a reasonable estimate of relatively nearby dis-
tances can be seen as follows: Substituting v = H0r into Equation 1-38 and solving 
for r yields

	 r 
c

H0
 
1z + 122 - 1

1z + 122 + 1
	 13-30

For example, for z … 2, Equation 13-30 yields values of r within about 5 percent of 
the values measured by the methods listed in Table 13-4. However, always remember 
that the cosmological redshift has nothing to do with the Doppler effect.

The fractional change in the wavelength for the cosmological redshift is equal to 
the fractional change in the “size” or scale R of the universe since the time when the 
light was emitted. This allows us to also write the redshift as

    z =
l - l0

l0
=

R - R0

R0
=

Robserved - Remitted

Remitted
 1 

Robserved

Remitted
= 1 + z	 13-31

Equation 13-31 says, for example, that at z = 2 space is now three times larger than it 
was when the observed light was emitted. Looking at regions in space that are cosmo-
logically nearby or close to us provides a “snapshot” of what the universe looks like 
everywhere now. At Earth at the present time (t0), z = 0. That is, galaxies close by the 
Milky Way have no (measurable) cosmological redshift. Looking at objects with 
higher z values corresponds to looking back in time. Thus, at redshift z we are seeing 
the universe as it appeared when it was 1> 11 + z2 of its size now.

The discovery and analysis of the redshifts and luminosities of the quasars has 
significantly furthered our understanding of the expansion and evolution of the uni-
verse. Observations show that bright quasars are more numerous at large z than at 
small z, that is, the space or volume density of bright quasars was larger at earlier 
times than it is now. This could be because there were more of them in earlier times or 
their luminosities could have been higher or both. Or it could be that the observations 
are simply the result of the general expansion of space and the volume density and 
luminosities of the quasars have not changed over time. To remove the complicating 
effect of the expansion, astrophysicists and cosmologists define co-moving coordi-
nates and, correspondingly, for our purposes here, co-moving space density. The for-
mer we will return to in Section 13-8. The latter removes the effect of the expanding 
universe by dividing the number density of objects per cubic Mpc at redshift z by 
(1 1 z)3. This converts the number density of objects to the value it would have at 
z = 0 (today). Thus, if the number density and/or brightness have been constant over 
time, their co-moving space density and brightness will be constant. Changes signal a 
change in the number density or an evolution of the quasars or both.

Observations of the co-moving space density of bright quasars show that they are 
more than 1000 times more numerous at z = 2 than they are today (at z = 0), but the 
total number of quasars has not changed back to about z = 2. Therefore, observations 
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indicate that the luminosity of quasars evolves over time, but not 
their co-moving space density. That is, at least back to z = 2, there 
appears to be a constant number of quasars growing dimmer as the 
universe expands. Farther back than z = 2, measurements have 
reached about z = 6. In this range the picture is more complicated: 
the co-moving space density declines after about z  3, diminish-
ing by approximately a factor of 10 by z = 4. The significance of 
the decrease is a focus of continuing research.

An obvious question is whether there are other observational 
results that support Hubble’s conclusion. For example, is the 
observed expansion general, or could it be a statistical accident—a 
consequence of our having measured distances to only a fraction of 
the 250,000 galaxies (out of the 1010 galaxies in the observable 
universe) whose redshifts have been measured to date? Thus, red-
shift surveys of the universe are an important first step in studying 
Hubble’s expansion. Redshift surveys establish the existence of 
large-scale structure in the universe and, together with independent 
distance measurements for individual galaxies, determine the 
Hubble constant. Such surveys have been under way for several 
years, and about 1025 of the volume of the visible universe has 
now been mapped. These surveys have yielded several unexpected 
discoveries but have not yet answered the question above conclu-
sively. There are huge voids in space—regions where the density 
of galaxies is only 20 percent or so of the average for the universe. 
In addition, the galaxies themselves tend to be grouped into clus-
ters and the clusters into superclusters. For example, the Milky 
Way is a part of the Local Cluster, which contains about a dozen 
galaxies. The galaxies also tend to lie on thin, sheetlike structures. 

The circled image in the enlarged square of this 
Hubble Space Telescope Ultra Deep Field camera 
is the most distant galaxy yet discovered (as of 
2011). Sixteen hours of follow-up observations 
measuring the redshift with the SINFONI 
spectrograph on the Very Large Telescope in 
Chile confirmed the galaxy, UDFy-38135539, 
to be 13.1 * 109 c # y from Earth, receding at 
about 0.97c, or about 30 * 106 c # y farther than 
the next most distant galaxy. The galaxy probably 
formed about 600 million years after the Big 
Bang. [M. Lehnert (Paris Observatory) et al., 
Nature, Oct. 21, 2010.]

Figure 13-28  The 2dF Galaxy 
Redshift Survey (2dFGRS) is a 
major spectroscopic survey utilizing 
unique facilities built by the 
Anglo-Australian Observatory. 
By the survey’s completion in 
2002, it had recorded precise 
spectra for 245,591 objects 
making possible a wide range 
of new analyses, including, 
for example, the first direct 
comparison with the microwave 
background anisotropy on the 
same spatial scale and studies 
of galaxy clustering to test 
inflationary cosmological models 
of the early universe. The survey 
is integrated with the 2dF Quasi 
Stellar Objects survey. [Matthew 
Colless and the 2dF Galaxy 
Redshift Survey Team.]
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How such structures might have evolved in the general expansion described by 
Hubble’s law presents a challenge to cosmological models. The most successful thus 
far has been the L Cold Dark Matter (LCDM) model, where L is Einstein’s cosmo-
logical constant. One of the largest of the galaxy-mapping projects has been the 2dF 
Galaxy Redshift Survey (2dF GRS; see Figure 13-28). The project, completed in 
2002, obtained high-quality spectra and redshifts for 245,591 objects, mainly galax-
ies. Still under way is the largest survey, the Sloan Digital Sky Survey. The SDSS 
second phase was completed in 2008. The first two phases measured the spectra of 
930,000 galaxies, 120,000 quasars, and 225,000 individual stars. The SDSS third 
phase of measurements, currently under way at the project’s dedicated 2.5 m tele-
scope in New Mexico, will be completed in 2014.

13-7  Cosmology and Gravitation 
The Cosmological Principle
We have seen that applying Hubble’s law to the observations of galaxies leads ines-
capably to the conclusion that the universe is expanding and provides us with a mea-
sure, 1>H0, of how long ago that expansion began. In this section, we will examine 
the basic theoretical framework that suggests possible tests of that conclusion. The 
basis for this discussion is the philosophical view that at large scale, the universe is 
homogeneous and isotropic at any instant in time. That is, at any given instant the 
universe has the same physical properties everywhere and looks the same in all direc-
tions from every location. This is called the cosmological principle. Note that Hubble’s 
law is consistent with the cosmological principle.

We have already seen that the cosmological principle clearly does not hold on a 
local scale. Galaxies are clustered into local groups. Even on a scale of 108 c # y, the 
dimension typical of galactic superclusters, the universe is neither homogeneous nor 
isotropic. However, when maps of very distant space are examined (Figure 13-29), 
the distribution does appear to be statistically homogeneous and isotropic. Redshift 
survey maps such as Figure 13-28, which extend to about 4 * 109 c # y, do indeed 
show homogeneity and isotropy in a statistical sense.

Figure 13-29  A map showing 
approximately 2 million galaxies ranging 
up to 2 * 109 c # y away. The distribution of 
the galaxies looks essentially 
homogeneous and isotropic. This is a 
composite of 185 contiguous photos taken 
by the Schmidt telescope at the European 
Southern Observatory. The south Galactic 
pole is at the bottom center. [S. Maddox 
(Nottingham University) et al., APM 
Survey, Astrophys. Dept., Oxford University]
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The Critical Energy Density of the Universe
Noting that the Hubble age 1>H0 = 14 * 109 years ignores the effect of gravity and 
ignoring for the moment the recently discovered acceleration of the expansion, the 
expectation is that gravity tends to slow the expansion over time. Is the gravity in 
the universe strong enough to eventually reverse the expansion and cause the uni-
verse to collapse? Or will the expansion continue forever? The answer depends on 
the mass density r0 of the universe. We can understand this by considering the 
motion of a single galaxy of mass m at a very large distance R from Earth. Let M be 
the total mass of all the galaxies within the spherical volume of radius R. The gravi-
tational potential energy of our single galaxy is -GMm>R. The total energy of the 
galaxy is

	 E = K + U =
1

2
 mv2 -

GMm

R
	 13-32

If we project an object with some speed v from Earth, the object will escape if its total 
energy is greater than or equal to zero, but if the total energy is negative, the particle 
will eventually stop and fall back to Earth. Similarly, if the total energy of the galaxy 
is greater than or equal to zero, it will continue to move away from Earth forever, but 
if the total energy is negative, the galaxy will eventually stop moving away from Earth 
and eventually start moving back toward Earth. We can see from Equation 13-32 that 
the total energy of the galaxy depends on the mass density r = M> 14>3pR32. We 
can find the critical mass density of the universe rc by setting the total energy in 
Equation 13-32 equal to zero:

	
1

2
 mv2 =

GMm

R
	

Substituting v  H0 R, the nonrelativistic version of Hubble’s law (Equation 13-28), 
we obtain

	  
1

2
 m1H0 R22 =

GMm

R
	

	  
1

2
 H2

0 =
GM

R3 	

Then

	 rc =
M

a 4

3
bpR3

=
3H2

0

8pG
	 13-33

Substituting the values for H0 and G, we obtain for the critical mass density of the 
universe:

	 rc  10-26 kg>m3	

This corresponds to about five hydrogen atoms per cubic meter of space.
Determining the present mass density r0 of the universe is thus an important goal. 

If it is larger than rc , the expansion will reverse and the universe will collapse. If it is 
smaller, then the expansion will continue forever. If it should happen that r0 = rc , the 
expansion will coast to a stop but will not begin to contract. It should also be clear 
that if r0 is greater than rc now, it will always be so because it is actually the conser-
vation of energy that determines whether contraction or continued expansion will 
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occur. Since r0 must decline over time as expansion progresses, the Hubble constant 
must also decline over time to ensure that r0 remains larger than rc. In other words, 
the Hubble constant must be a function of time H(t); that is, H0 ; H(t0). The value of 
r0 based on the visible (baryonic matter) universe is only about 4 percent of rc, sug-
gesting that the universe will expand forever. However, the dark matter of the uni-
verse discussed earlier affects the value of r0. Together, the visible matter and dark 
matter account for about 26 percent of the mass necessary to make r0 = rc. 
Examination of the recession rates of the Type Ia “standard candle” supernovae sug-
gests that dark energy provides the additional 74 percent needed. Because they have 
very similar brightness and light curves, the discovery that for a given brightness the 
redshifts of distant Type Ia supernovae are less than expected implies that the uni-
verse was expanding at less than the expected rate in the past. Therefore, the universe 
is expanding at an accelerated rate today. The implication is that dark energy corre-
sponds to a repulsive force that is speeding up the expansion. Very recent research 
that compares the temperature fluctuations in the cosmic microwave background 
shown in Figure 13-30b with their origin in the “lumpiness” of matter in the 2dF GRS 
(Figure 13-28) has independently supported the speeding up of the expansion.

Figure 13-30  (a) The 
spectrum of the cosmic 
background radiation 
measured by NASA’s 
Cosmic Background Explorer 
(COBE) spacecraft. The dots 
are the data points. The solid 
curve is the Planck radiation 
curve for a blackbody at 
2.725 K. [CERN Courier, 
June 1991, p. 2, courtesy of 
NASA.] (b) This detailed all-
sky picture of the infant 
universe includes three years 
of WMAP data. It shows 13.7 
* 109-year-old temperature 
fluctuations that were the 
seeds that eventually became 
the galaxies and provides new 
clues regarding events that 
occurred in the first trillionth 
of a second following the 
Big Bang. The range of the 
temperature fluctuations is 
; 200 mK. [NASA/WMAP 
Science Team.]
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13-8  Cosmology and the Evolution 
of the Universe 
Following his completion of general relativity in 1915, Einstein turned to cosmology. 
He based his early work on the assumption that the universe was not only homoge-
neous and isotropic, but also constant in time. This is sometimes called the perfect 
cosmological principle. He quickly discovered that, like that described by Newton’s 
gravitational theory, only an empty (no mass) universe can be static. He found that a 
static or steady-state universe could be metastable if it contained mass and a cosmo-
logical constant, thereby committing what he later described as the biggest blunder of 
his life. On learning of Hubble’s discovery of the expansion of the universe, he aban-
doned the cosmological constant. However, dark energy is essentially a revision of 
the cosmological constant for an expanding universe. Since the constant, in effect, 
generated the mass of the universe, adjusting its value could shift some of the pre-
dicted mass into energy, thereby accounting for the unseen mass.

One difficulty with the steady-state model is a problem known as Olber’s para-
dox, first posed by Edmund Halley in 1720 but named after the nineteenth-century 
physician-astronomer Wilhelm Olbers, who publicized it widely. If there is a 
uniform distribution of stars throughout an infinite space, then no matter in which 
direction you look, you will eventually see a star. Since stars are bright, the night sky 
should look as bright as the surface of the average star. (This is analogous to stand-
ing in an infinitely large forest in which all the trees are painted white. Along any 
line of sight, you will eventually see a white tree, so you should see white in all 
directions.) Why then is the night sky dark? The solution offered by Olber him-
self  was that interstellar dust absorbs the light from distant stars. But this is no 
help since the dust would eventually be heated to glowing, so the night sky should 
still be bright.

The solution to this problem came in part with Hubble’s discovery of the expan-
sion of the universe. The point is not that light is redshifted out of the visible region,19 
but that the energy of every photon is diminished since E = hc>l. However, redshift 
can account for only a very small part of the solution. The key is that, since the veloc-
ity of light is finite, looking into space means looking back in time. Looking deeper 
into space, we eventually would be looking at a time before the stars began to form, 
that is, at a time greater than the Hubble age. (In terms of our forest analogy, the 
distant trees have not yet been painted white; therefore, if the separation of the trees is 
great enough, many lines of sight will end on dark trees.)

A Simple Cosmology Model20

To a considerable extent descriptions of the origin and evolution of the universe 
depend on the cosmology model that is used to interpret observations. The appear-
ance of galaxies at cosmological distances is directly affected by the curvature of 
spacetime through which the light travels on its trip to Earth. One would reasonably 
expect that the distortion of spacetime would be more complex at higher redshifts, 
when the visible universe was smaller and the mass density larger than now, which is 
understandably a region of high interest to cosmologists. A proper interpretation of 
observations at high redshifts necessarily requires the use of the general theory of 
relativity. Such an application is beyond the scope of our discussions; however, we 
can develop a useful, albeit approximate view of the expansion of the universe with 
the aid of a cosmological model based on Newtonian mechanics and the cosmological 
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principle, then follow up with a very brief look at the current state of the theory based 
on general relativity and measurements from the WMAP.

Consider a thin spherical shell of radius r in our homogeneous, isotropic universe 
(see Figure 13-31). The shell contains a uniformly distributed total mass m. Our shell, 
like all such shells, expands along with the general expansion of the universe, becom-
ing both large and thicker; however, m remains constant. Assuming gravity to be the 
only interaction present, the total energy of the mass m within the shell is the kinetic 
energy plus the gravitational potential energy:

	 E = K + U =
1

2
 mv21t2 -

GMr m

r1t2 	 13-34

where v(t) is the recessional velocity of the shell and Mr is the mass within the sphere that 
is enclosed by the shell. Like m, Mr also remains constant because Mr = 14>32r 3r 
and, although r and r are both functions of time, r  r -3. The mass of our universe 
outside the shell exerts no net gravitational force on m. (Why not?) As the shell 
expands, the gravitational force due to Mr causes the kinetic energy of m to decrease 
and the gravitational potential energy to increase, that is, to become less negative. 
Conservation of energy requires that the total energy E be unchanged, so we will, in 
order to focus our attention on the geometry, write the total energy of the shell as 
(think about this!)

	 E = -  
1

2
 kmc2

 r 21t02	 13-35

where r(t0) is the radius of the shell at t0 = now and k is a constant with units (length)22. 
As we will see, the constant k determines the geometry of the universe. Combining 
Equations 13-34 and 13-35, substituting for Mr , and canceling m yields

	
v21t2 -

8

3
 Gr1t2r 21t2 = -kc2

 r 21t02 	 13-36

Referring to Equations 13-35 and 13-36, note that

•	 If k 7 0, then the total energy of the mass m is negative. In that event there is a 
radius r(t) beyond which the shell cannot expand because v is (instantaneously) 
zero, and we say that the universe is closed or bounded. The shell will then begin 
to contract due to the mass Mr interior to the shell and undergo a time-reversed 
copy of the expansion back to what is sometimes called the “Big Crunch.”

Figure 13-31  (a) Cross 
section of a thin spherical 
shell containing mass m in 
an isotropic, homogeneous 
universe. (b) The same shell 
as it has expanded from its 
size at time t1 to time t2. The 
thickness of the shell also 
expands; however, the mass 
in the shell is constant. The 
shell’s co-moving coordinate 
r (t0) remains unchanged.

Universe

(a) (b)

Mass m

r

Universe

Expansion

Mass m
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•	 If k = 0, then the total energy of the mass m is zero. In that case as t S q, 
r(t) S q, the recession velocity v(t) S 0, and the shell (and universe) 
coast forever toward a halt. We refer to such a universe as f lat.

•	 If k 7 0, then the total energy of the mass m is positive. In that event, as r(t) 
increases, the gravitational potential energy becomes steadily less negative. 
But v2(t) must continually increase in order to keep the total energy positive. 
We then say that the universe is open and will continue to expand forever.

Since the cosmological principle requires that all shells, including ours in Figure 13-31a, 
must expand in the same way, that is, the time required for the radii of all shells to, say, 
triple, must be the same, we can express the radius r (t) of our shell (or any shell) as

	 r1t2 = R1t2r1t02	 13-37

where r (t) is the distance from the coordinate origin to the shell (see Figure 13-31a) 
and R(t) is the scale factor first introduced in Equation 13-31, which describes the 
expansion or contraction of the universe. Since there is nothing special about our 
shell, R(t) is the same for all shells. The constant r (t0) that in effect labels our shell is 
called the co-moving coordinate (see Figure 13-31b). Assuming that the present is t0, 
R(t0)  = 1 and, as we have noted, the present radius of our shell is r (t0). In 
Equation 13-31 R refers to the rest frame of the observer and R0 to that of the emitting 
star or galaxy. Since R(t0) = 1, the scale factor R(t) and the redshift z are related by

	 1 + z =
1

R1t2 	 13-38

For example, looking back in time to redshift z = 2, the scale factor R = 1>3; 
that is, the universe was 1>3 of its present size. Hubble’s law can now be written as

	 v1t2 = H1t2r1t2 = H1t2R1t2r1t02	 13-39

Squaring Equation 13-39, substituting for v2(t) in Equation 13-36, and canceling r 2(t0) 
yields an expression for k:

	 aH21t2 -
8

3
 pGr1t2 bR21t2 = -kc2	 13-40

Cosmologists define the density parameter V = r1t2 >rc1t2, whose present 
value is

	 V0 =
r0

rc0
=

8pGr0

3H3
0

	 13-41

and since, as you will show in Problem 13-28, r1z2 = r11 + z23,

	
V

V0
= 11 + z23 

H2
0

H2	 13-42

In relativistic cosmology models, universes are described in terms of three com-
ponents: matter (including dark matter) Vm, relativistic particles (e.g., neutrinos) Vrel, 
and dark energy (the cosmological constant) VL. Current data suggest that relativistic 
particles do not contribute significantly to the energy density at the present time. 
Cosmologists, like all scientists, use graphical representations whenever possible, in 
this situation employing a 2-dimensional graph of VL0 versus Vm0 to assess the cur-
rent state of the universe. It is reproduced as Figure 13-32. The coordinates (VL0, 
Vm0) for the best values of the density parameters based on current WMAP observa-
tions are (0.73 ; 0.04, 0.27 ; 0.04). Delving further into this and related issues on the 
leading edge of cosmological research, while enormously exciting, is regretfully 
beyond the scope of this book.
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The Big Bang
Cosmologists have developed a well-defined standard model of the 
universe that fits a comprehensive set of very precise, constraining 
measurements and observations. The foundation of the standard 
model is the Big Bang theory. It is the observational foundation of 
the theory that (13.7 ; 0.2) * 109 years ago21 the universe was in a 
hot, dense state and at that particular time a single event, the Big 
Bang,22 initiated an expansion and cooling that has continued to the 
present time. Two major astrophysical discoveries made in the 1960s 
were the first of several that have convinced most scientists the 
model is correct. The first of the two discoveries that supported the 
evolving universe model was Martin Ryle’s23 observations revealing 
that there is a higher co-moving space density of distant radio galax-
ies than nearby ones. Since distant observations correspond to earlier 
times, this meant that the universe had looked different at earlier 
times than it does now; that is, it has evolved over time.

The second discovery was monumental, as important as 
Hubble’s discovery of the expansion of the universe itself. In inves-
tigating ways of accounting for the cosmic abundance of elements 
heavier than hydrogen, cosmologists recognized that nucleo
synthesis in stars could explain the abundance of those heavier than 
helium but not that of helium (see Figure 13-33). Helium must there-
fore have been formed during the Big Bang. Synthesizing the amount 
of helium that would account for its present abundance requires that 
the Big Bang occurred at an extremely high initial temperature to 
provide the necessary reaction rate before the fusion was shut down 
by the decreasing density due to the very rapid initial expansion. 
The high temperature implies a corresponding thermal (blackbody) 
radiation field that would cool as the expansion progressed. 
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Figure 13-32  Every point in the V¶0 2 Vm0 
plane represents a possible universe. The lines 
drawn are based on various parameters from 
general relativity analyses. The line with 
negative slope starting in the lower-right corner 
corresponds to the geometry parameter k = 0 
(see Equation 13-36).

Figure 13-33  The abundances, relative to 
hydrogen, of elements in the Milky Way up to 
Z = 50 (tin). Note the peak at Z = 26 (iron), the 
sharp decline in abundances after iron, and the 
extremely low relative abundances of lithium, 
beryllium, and boron.
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Theoretical analysis predicted that from the Big Bang to the present, the remnants of the 
radiation field should have cooled to a temperature of about 3 K, corresponding to a 
blackbody spectrum with peak wavelength lmax in the microwave region. In 1965, the 
predicted Cosmic Microwave Background (CMB) radiation was discovered by Arno 
Penzias and Robert Wilson24 at Bell Labs. Since this landmark discovery, analysis of 
data from the Cosmic Background Explorer (COBE) satellite by John Mather and 
George Smoot25 and by the WMAP collaborators have established the temperature of 
the background field at 2.725 ; 0.001 K with deviations from that value of no more 
than a few thousandths of a percent. These results show that the CMB has the isotro-
pic distribution in space that is absolutely essential for a universe that satisfies the 
cosmological principle. Indeed, the CMB is the most precise blackbody known in 
nature (see Figure 13-30a). In addition, the WMAP detection of temperature fluc-
tuations in the range of 30 mK (see Figure 13-30b) provided the first evidence for 
density inhomogeneities that cosmologists believe seeded all of the galactic structure 
of the universe.

The Very Early History of the Universe
What was the Big Bang like? The singular event that initiated the expansion of the 
universe must have been a huge explosion of space that occurred throughout the entire 
hot, dense state. Most cosmologists favor the standard model as the theoretical 
description of the evolution of the universe following the Big Bang. It relies heavily 
on recent experimental discoveries and theoretical advances in particle physics and 
reflects the increasing overlap of frontier research in those areas of physics over the 
past several years. The standard model’s account of how the universe evolved from 
t = 0 to now, when t  1010 years, is outlined in the following discussion and illus-
trated in Figure 13-34.

In the beginning the universe was dominated by energy at negative pressure, which 
led to an early exponentially accelerated expansion referred to as inflation. The theoreti-
cal basis for inflation comes from general relativity and the cosmological principle, 
which together give the acceleration equation (not intended to be obvious) below:

	
1

R1t2  
d2

 R

dt2 = -  
4pG

3c2 1rc2 + 3P2	 13-43

where R(t) is the dimensionless scale factor discussed earlier, rc2 is the energy den-
sity of the universe, and P is the pressure. Notice that in situations where negative 
pressure dominates, the expansion has positive acceleration. This very early period of 
inflation for which, bear in mind, we have no direct evidence, is nonetheless success-
ful in resolving several cosmological questions, including, (1) Why is the CMB tem-
perature so uniform in every direction? (2) Why is the geometry of the universe so 
close to being flat? (3) Why do we not see magnetic monopoles? (4) What is the ori-
gin of the anisotropies measured by WMAP? Following that brief but extremely rapid 
inflation, the universe was dominated by radiation, then subsequently by matter. 
Recently, cosmologically speaking, it has again become dominated by a negative 
energy pressure that is driving a new but slower acceleration of the general expan-
sion. Today, as we have alluded to earlier, matter accounts for only about 26 percent 
of the energy density of the universe, only 4 percent being ordinary matter (see 
Figure 13-35a). The other 22 percent is the cold dark matter (CDM) discussed earlier 
that neither emits nor reflects light or is affected by radiation pressure but does 
participate in the gravitational interaction. Figure 13-35c shows what may be the 
first indirect observation of dark matter. Dark energy, the remaining 74 percent of 
the energy density of the universe, is apparently driving the new acceleration.
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Initially, the four forces of nature (strong, electromagnetic, weak, and gravity) 
were unified into a single force. Physicists have been successful in developing theo-
retical descriptions that unify the first three, but a theory of quantum gravity, needed 
for the extreme densities of the single-force period, does not yet exist. Consequently, 
until the cooling universe “froze” or “condensed out” the gravitational force about 
10243 second after the Big Bang when the temperature was still 1032 K, we have no 
means of describing what was occurring. At this point the average energy of the par-
ticles would have been about 1019 GeV. As the universe continued to cool below 1032 
K, the three forces other than gravity remained unified and are described by grand uni-
fication theories (GUTs). Quarks and leptons were indistinguishable, and particle 
quantum numbers were not conserved. It was during this period that a slight excess 
of quarks over antiquarks occurred, roughly 1 in 109, that ultimately resulted in the 
matter that we now observe in the universe.

Dark matter
22%

Atoms
4%

Dark energy
74%

(a) (c)

(b)

Figure 13-35  (a) The mass-energy content of the universe. Recent observations indicate that the dark energy is 
driving a renewed acceleration of the general expansion of the universe. (b) Stellar velocities in M31. Newton’s law 
of gravitation requires that constant velocity implies M r r. Thus, in M31 much of the mass lies well beyond the 
visible extent of the galaxy. (c) Galaxy cluster 1E0657-558 resulted from a small cluster passing through a larger one 
sometime in the past. Using this cluster as a gravitational lens for more distant galaxies made possible the mapping of 
the gravitational potential of 1E0657-588 (the large fuzzy “cloud”). X-ray emission recorded by the Chandra X-Ray 
Observatory of the two central, darker parts of the “cloud” reveal the hot gases (ordinary matter) of the two original 
colliding clusters. The lighter parts to the outside of the “cloud” are inferred to be dark matter. [The authors thank 
Vera Rubin for permission to use image (b). (b) Vera Rubin and Janice Dunlap. (c) X ray courtesy NASA/CXC/CfA/M 
Markevitch et al.; optical courtesy NASA/STScl; Magellan/University of Arizona/D Clowe et al.; lensing map courtesy 
NASA/STScl; ESO WFI; Magellan/University of Arizona/D Clowe et al.]
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At 10235 second, the universe had expanded sufficiently to cool to about 1027 K, 
at which point another phase transition occurred as the strong force condensed out of 
the GUTs group, leaving only the electromagnetic and weak forces still unified as the 
electroweak force. During this period the previously free quarks in the dense mixture 
of roughly equal numbers of quarks, leptons, their antiparticles, and photons began to 
combine into hadrons and their antiparticles, including the nucleons. By the time the 
universe had cooled to about 1013 K, at about t = 1026 s, the hadrons had mostly dis-
appeared through annihilation. This is because 1013 K corresponds to kT ' 1 GeV, 
which is the minimum energy needed to create nucleons and antinucleons from the 
photons present via the reactions

	  S p+ + p-	 13-44a

and

	  S n + n	 13-44b

The particle-antiparticle pairs annihilated, and there was no new production to replace 
them. Only the slight earlier excess of quarks led to a slight excess of protons and 
neutrons over their antiparticles. The annihilations resulted in photons and leptons, 
and after about t = 1024 second, those particles in roughly equal numbers dominated 
the universe. This was the lepton era. At about t = 10 seconds the temperature had 
fallen to 1010 K (kT ' 1 MeV). Further expansion and cooling dropped the average 
photon energy below that needed to form an electron-positron pair. Annihilation then 
removed all of the positrons as it had the antiprotons and antineutrons earlier, leaving 
only the small excess of electrons arising from charge conservation, and the radiation 
era began. The particles present were primarily photons and neutrinos.

Within a few more minutes, the temperature dropped sufficiently to allow fusing 
protons and neutrons to form nuclei that were not immediately photodisintegrated. 
Deuterium, helium, and a bit of lithium were produced in this nucleosynthesis period, 
but the rapid expansion soon dropped the temperature too low for the fusion to 
continue, and the formation of heavier elements had to await the birth of stars.

A long time later, when the temperature dropped to about 3000 K as the universe 
grew to about 1>1000 of its present size, kT dropped below typical atomic ionization 
energies and atoms were formed. By then the expansion had cooled the radiation field, 
so that the total radiation energy was now about equal to the energy represented by the 
remaining mass. This occurred when the scale factor R(t) reached about 2.8 * 1024. 
As expansion and cooling continued, the energy of the steadily redshifting radiation 
declined until matter came to dominate the universe, its energy density exceeding that 
of today’s 2.725 K radiation remaining from the Big Bang by about a factor of 1000. 
Now, once again, energy at negative pressure appears to dominate.

Unanswered Questions and the Limits 
of Knowledge
The standard model of the evolution of the universe and the current theories of stellar 
and galactic genesis and evolution have been amazingly successful. Still, some funda-
mental questions that have arisen during our discussions remain unanswered. Will the 
universe expand forever or rebound to its initial state and repeat the Big Bang? The 
answer depends on whether the present average matter density is greater or less than 
the critical density of about 10-26 kg>m3. The uncertainty in the current measure-
ments would allow either possibility, but the value is tantalizingly close to the critical 
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value. If it does equal the critical value, an intriguing additional question is, Why? We 
have noted the serious problem of the dark matter and how it might be explained. 
Answering some of these questions requires that we probe at the current limits of phys-
ical knowledge. For example, near a mass m, general relativity prevents our seeing 
events occurring at dimensions less than the Schwarzschild radius, the event horizon:

	 RS =
2Gm

c2 	 13-45

On the other hand, the uncertainty principle in quantum theory places this limit at the 
Compton wavelength lc :

	 lc =
h

mc
	 13-46

Equating these, m = 2hc>2G, an expression for m that depends only on universal 
constants, where m  1028 kg. That relation for m together with Equation 13-46 
allows the corresponding definition of a length unit dependent only on universal con-
stants. That length L = lc  10-35 m, and the time for light to travel across that 
length can be similarly expressed as

	 t = aGh

c5 b
1>2

= 1.35 * 10-43 s	 13-47

In terms of these units the mass density of the universe is such that a mass m is con-
tained within a volume of dimensions L3 ' (10235)3 m3. The definition of the units of 
mass, length, and time in terms of fundamental constants was originally pointed out 
by Planck26 and is the basis for Planck units, the topic of the Exploring section that 
follows.

Some cosmologists have suggested that, if the universe had evolved even slightly 
differently than it has, perhaps due to a slightly different value for h or e or some 
other fundamental constant, life on Earth and maybe Earth itself would be impossible. 
This can be attributed to the anthropic principle, that the universe looks as it does 
because we are here to see it.

EXPLORING
“Natural” Planck Units

Not long after Max Planck had introduced the constant h in fitting physical theory to the 
emission spectrum of a blackbody, he pointed out that a system of “natural” units for 
the fundamental quantities of mass, length, time, and temperature could be constructed 
from the three fundamental constants U, c, and G, where U = Planck’s constant>2p, 
c = speed of light, and G = Newton’s gravitation constant:

Planck mass:         MP = 1Uc>G21>2 = 2.2 * 10-8 kg	

Planck length:         lP = 1UG>c321>2 = 1.6 * 10-35 m	

Planck time:          tP = 1UG>c521>2 = 5.4 * 10-44 s	

Planck energy:	       EP = MP c2 = 2.0 * 109 J = 1.2 * 1022 MeV	

Planck temperature:	  TP =
EP

kB

=
U1>2

 c5>2

G 1>2
 kB

= 1.4 * 1032 K	
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If length, mass, temperature, and time are measured in Planck units, the result is the 
“natural” units often used by particle physicists, astrophysicists, and cosmologists: 
c = kB = U = G = 1.

When first proposed, Planck’s suggested units had little basis in fundamental 
physics, but over time, that has changed. As Frank Wilczek27 has pointed out, Planck’s 
proposal has now become compelling: the constant U is now the fundamental unit of 
action and c the fundamental unit of velocity. These are the primary units of measure-
ment in the two great theories of modern physics, quantum mechanics and special 
relativity. The corresponding unit in general relativity is G (actually 1>Gc4).

As Wilczek speculates, with the natural units of measure it may soon be possible 
to understand why, compared to the other forces in nature, the gravitational force is 
so  weak and how we can account for the value of the proton’s mass. In addition, 
he suggests that we have the beginnings of a quantum theory of gravity that agrees 
accurately with all existing experimental data. Thus, Einstein’s goal of the unification 
of the four natural forces may be just over the horizon.

Summary 
TOPIC RELEVANT EQUATIONS AND REMARKS

1.	 The Sun

	 Surface temperature

	 Source of Sun’s energy

The solar energy received at the top of Earth’s atmosphere, solar constant, is

f = 1.365 * 103 W>m2� 13-1

The rate at which the Sun emits energy is the luminosity L }:

L } = 3.85 * 1026 W� 13-2

Assuming that the Sun radiates as a blackbody, its effective surface temperature Te 
can be computed from the Stefan-Boltzmann law:

Te = 5780 K

The source of the Sun’s energy in nuclear fusion is mainly via the proton-proton cycle,  
which starts with the reaction

1
 H + 1

 H S 2
 H + e+ + ve + 0.42 MeV� 13-5

2.	 The stars

	 The Milky Way

Stars are classed as either population I or population II, based on their composition. The 
former have 2 to 3 percent of their mass composed of elements heavier than helium; 
 the latter are nearly devoid of those elements.

Our galaxy, the Milky Way, consists of about 1010 stars. The Sun is about 28,000 c · y
from the center of the Galaxy, which is in the direction of the constellation Sagittarius  
from us. Only about 4 percent of the mass of the Galaxy is accounted for by the visible 
stars and the gas and dust of the ISM.

3.	 Evolution of the stars The Hertzsprung-Russell diagram displays the evolution of stars, relating their luminosities  
to their effective temperatures. Both quantities are related to the stellar mass:

L  M4� 13-14

Te = a L

4R2
b

1>4
 M1>2� 13-17

Stars “burning” hydrogen to helium fall on the main sequence of the HR diagram.
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General References 

TOPIC RELEVANT EQUATIONS AND REMARKS

	 Final states of stars Following exhaustion of their hydrogen fuel, stars evolve to one of three possible final states, 
dependent on their mass: white dwarf, neutron star, or black hole. It is in cataclysmic events 
accompanying evolution to these states that elements heavier than Fe are formed.

4.	 Galaxies

	 Hubble’s law

Edwin Hubble grouped galaxies into four general categories: ellipticals, spirals, barred spirals, 
and irregulars.

Hubble showed that the universe was expanding and, using spectral redshifts to determine the 
velocities of galaxies, that the recession velocities were proportional to the distance r from us 
according to

z =
H0

c
 r� 13-28

where the Hubble constant H0 is

H0 = 70.8 { 1.6 km s-1 Mpc-1 = 21.2 { 0.7 km s-11106 c # y2-1� 13-29

The quantity 1>H0  14 * 109 y is the Hubble age. It would correspond to the age of 
the universe under a constant velocity expansion if gravitational pull on receding galaxies 
were ignored.

4.	 Gravitation and 
cosmology

	 Inflation

The cosmological principle states that the universe has the same physical properties 
everywhere and looks the same in every direction from every location. The current theory of 
cosmology, called the standard model, describes the universe as having begun with the Big 
Bang 13.7 * 109 years ago. It has substantial theoretical and observational support.

The standard model holds that the very early universe underwent a period of exponentially 
accelerated growth, which explains many features of the current universe. Recently, after a 
long period of slowing, the expansion of the universe is again accelerating.

The following general references are written at a level  
appropriate for the readers of this book.

Akerlof, C. W., and M. A. Srednicki, Relativistic Astrophys-
ics and Particle Cosmology, New York Academy of Sci-
ences, New York, 1993.

Bahcall, J. N., Neutrino Astrophysics, Cambridge University 
Press, New York, 1989.

Bennett, J., M. Donahue, N. Schneider, and M. Voit, Stars, 
Galaxies, and Cosmology, 2d ed., Addison Wesley, San 
Francisco, 2002.

Carroll, B. W., and D. A. Ostlie, An Introduction to Modern 
Astrophysics, 2d ed., Pearson Addison Wesley, San 
Francisco, 2007.

Comins, N. F., and W. J. Kaufmann III, Discovering the Uni-
verse, 6th ed., W. H. Freeman and Co., New York, 2003.

Frauenfelder, H., and E. M. Henley, Subatomic Physics, 
2d ed. Prentice Hall, Englewood Cliffs, NJ, 1991.

Pasachoff, J. M., Contemporary Astronomy, Saunders, Phila-
delphia, 1977.

Rees, M., Before the Beginning, Addison Wesley, San Fran-
cisco, 1997.

Ryden, B., Introduction to Cosmology, Addison Wesley, San 
Francisco, 2003.

Shu, F. H., The Physical Universe, University Science Books, 
Mill Valley, CA, 1982.

Weinberg, S., The First Three Minutes, updated ed., Basic 
Books, New York, 1993.
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1.	 Hans Albrecht Bethe (1906–2005), American physicist. 
He made the proposal concerning stellar energy sources in 
1938. One of those who worked on the Manhattan Project 
during World War II, he received the Nobel Prize in Physics 
for his work on the Sun’s energy source in 1967.

2.	 John Bahcall (1934–2005), American physicist. His 
definitive theoretical analysis of the solar neutrino spectrum 
provided the benchmark for experimentalists whose measure-
ments ultimately confirmed neutrino oscillations.

3.	 The reaction by which Davis’s detector detected neutri-
nos is 37

17Cl + e S
37
18Ar + e-. Seventy-seven percent of the 

neutrinos producing this reaction were from the 8B decay, 
step 6 of the p-p cycle shown in Table 13-1.

4.	 The term galaxy is derived from the Greek word for milk.
5.	 Apart from the Sun, Sirius is the brightest star in the sky.
6.	 Annie Jump Cannon (1863–1941). An astronomer at the 

Harvard Observatory, her work on stellar classification sys-
tems forms the basis of the Henry Draper Catalogue, which 
contains the spectral classifications of 225,300 stars.

7.	 Hipparchus (circa 190 b.c.– circa 120 b.c.). The greatest 
of the Greek astronomers, he created the stellar magnitude sys-
tem of classifying stars by brightness. He measured the size and 
distance to the Sun and Moon and made the first accurate star 
map showing the positions of about 1000 of the brightest stars.

8.	 Astronomers customarily capitalize the word Galaxy 
when it refers to the Milky Way.

9.	 Harlow Shapley (1885–1972). A longtime director of the 
Harvard Observatory, he was an early and vocal supporter of 
civil liberties and peace movements in the United States.
10.	 The term right ascension for the celestial longitude 
apparently comes from the appearance of the stars as rising 
vertically, that is, at a right angle to the line of sight to the 
horizon each night.
11.	 Equinox means day and night are equal; solstice means 
“standing Sun.”
12.	 Edouard A. Roche (1820–1883). A French astronomer, 
he also showed that a small body orbiting a large body would 
be broken up by tidal forces if it comes within 2.5 times the 
radius of the larger body. The distance is referred to as 
Roche’s limit. It corresponds approximately to the outer limit 
of planetary ring systems in the solar system.
13.	 Subrahmanyan Chandrasekhar (1910–1995). He received 
his Ph.D. under P. A. M. Dirac and spent most of his career at 
the University of Chicago. He shared the 1983 Nobel Prize in 
Physics for his work on the evolution of stars. The Chandra 
X-Ray Observatory is named for him.
14.	 The possibility of black holes was first suggested by Rev. 
John Mitchell, an English amateur astronomer, in 1783. He 
observed that a star with the same density but 500 times the 
radius of the Sun would have an escape velocity greater than 
the speed of light. He speculated that light could not leave 
such a star. The name black hole was coined by physicist 
John Wheeler.

15.	 First suggested by Stephen Hawking, a simplified expla-
nation is that a vacuum fluctuation creates a virtual particle-
antiparticle pair near the event horizon of the black hole. One 
particle tunnels through the event horizon and becomes real, 
while the other falls back into the black hole. To conserve 
energy, the latter particle must have negative energy and thus 
the black hole has lost mass. An observer far from the black 
hole would interpret this event as the emission of Hawking 
radiation. If the mass lost via this process exceeds the mass 
gained by accretion, the black hole will eventually evaporate.
16.	 Gamma-ray bursts are named according to the first date 
of observation: GRB yymmdd.
17.	 Edwin P. Hubble (1889–1953). Trained as a lawyer, he 
was influenced to take up astronomy partly by R. A. Millikan. 
In recognition of his many contributions, he was accorded the 
honor of being the first user of the 5 m Hale telescope on 
Palomar Mountain.
18.	 Cepheid variables are rare stars for which a relation exists 
connecting the period of intensity variation to the brightness 
and, hence, to the distance from the Sun. They were one of 
the earliest means of measuring astronomical distances. 
Polaris, the current Pole Star, is a Cepheid variable.
19.	 Light beyond the blue of the visible region would be 
shifted into the visible. Indeed, the visible region might even 
get brighter!
20.	 This discussion is based on the development in the early 
part of Chapter 29 of Carroll and Ostlie (see General 
References).
21.	 The age of the universe results from measurements made 
by the Wilkinson Microwave Anisotropy Probe.
22.	 The term Big Bang was coined by the eminent astronomer 
Fred Hoyle, a steadfast proponent of the steady-state universe, 
intending the term as derision of the expanding universe 
cosmology.
23.	 Sir Martin Ryle (1918–1984). His invention of long-
baseline radiointerferometry resulted in his sharing the Nobel 
Prize in Physics in 1974.
24.	 Arno Allan Penzias (b. 1933), German-American physi-
cist, and Robert Woodrow Wilson (b. 1936), American radio-
astronomer. Their discovery of the cosmic microwave 
background radiation, first predicted by George Gamow 20 
years earlier, earned each of them a share of the 1978 Nobel 
Prize in Physics.
25.	 Frank C. Mather (b. 1946) and George F. Smoot  
(b. 1945), American physicists, shared the 2006 Nobel Prize 
in Physics for this work, which provides very strong support 
for the Big Bang theory.
26.	 M. Planck, “Sitzungsber. Dtsch. Akad. Wiss., Berlin,” 
Math-Phys Tech. Kl., 440 (1899).
27.	 Frank Wilczek, American physicist, in the series “Scaling 
Mount Planck” in Physics Today, June 2001, November 
2001, and August 2002. He shared the Nobel Prize in Physics 
in 2004 for his contributions to quark theory.

Notes 
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Problems 
Level I
Section 13-1  The Sun
13-1.	 Measurement of the Doppler shift of spectral lines in light from the east and west 
limbs of the Sun at the solar equator reveal that the tangential velocities of the limbs dif-
fer by 4 km>s. Use this result to compute the approximate period of the Sun’s rotation 
(R} = 6.96 * 105 km).
13-2.	 The gravitational potential energy U of a self-gravitating spherical body of 
mass M and radius R is a function of the details of the mass distribution. For the Sun, 
U} = -2GM2

}  R}. What would be the approximate lifetime of the Sun, radiating at its 
present rate, if the source of its emitted energy were entirely derived from gravitational 
contraction? (M} = 1.99 * 1030 kg.)

Section 13-2  The Stars
13-3.	 Lithium, beryllium, and boron (Z = 3, 4, and 5, respectively) have very low abun-
dances in the cosmos compared to many heavier elements (see Figure 13-33). Considering 
the fusion of He to C, explain these low abundances.
13-4.	 The Sun is moving with speed 2.5 * 105 m>s in a circular orbit about the center 
of the Galaxy. How long (in Earth years) does it take to complete one orbit? How many 
orbits has it completed since it was formed?
13-5.	 The reason that massive neutrinos were considered as a candidate for solving the 
missing mass problem is that, at the conclusion of the lepton era, the universe contained 
about equal numbers of photons and neutrinos. They are still here, for the most part. The 
former can be observed and their density is measured to be about 500 photons>cm3; thus, 
there must be about that number density of neutrinos in the universe, too. If neutrinos have 
a nonzero mass and if the cosmological expansion has reduced their average speed so that 
their energy is now primarily mass, what would be the individual neutrino mass (in eV>c2) 
necessary to account for the missing mass of the universe? Recall that the observed mass 
of the stars and galaxies (including the dust and gas) accounts for only about 4 percent of 
that needed to close the universe.
13-6.	 Using data from Table 13-3, construct a graph that demonstrates the validity of 
Equation 13-17.
13-7.	 Recalling that the light-year c # y is the distance light travels in one year, com-
pute in meters the distance equivalent to 1 light-second, 1 light-minute, 1 light-hour, and  
1 light-day.

Section 13-3  The Evolution of Stars
13-8.	 A unit of length often used by astronomers to measure distances in “nearby” space 
is the parsec (pc), defined as the distance at which a star subtends a parallax angle of one 
arc second due to Earth’s orbit around the Sun (see Equation 13-11 and Example 13-4). 
The practical limit of such measurements is 0.01 arc second. (a) How many light-years is 
1 pc? (b) If the density of stars in the Sun’s region of the Milky Way is 0.08 star>pc3, how 
many stars could, in principle, have their distances from us measured by the trigonometric 
parallax method?
13-9.	 Astronomers often use the apparent magnitude m as a means of comparing the 
visual brightness of stars and relating the comparison to the luminosity and distance to 
“standard” stars, such as the Sun (see Equation 13-9). The difference in the apparent mag-
nitudes of two stars m1 and m2 is defined as m2 2 m1 = 2.5 log 1f1>f22, a relation based 
on the logarithmic response of the human eye to the brightness of objects. Pollux, one of 
the “twins” in the constellation Gemini, has apparent magnitude 1.16 and is 12 pc away. 
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Betelgeuse, the star at Orion’s right shoulder, has apparent magnitude 0.41. How far away 
is Betelgeuse if they have the same luminosity?
13-10.	 Using the H-R diagram (Figure 13-17), determine the effective temperature and 
the luminosity of a star whose mass is (a) 0.3 M} and (b) 3 M}. (c) Compute the radius of 
each star. (d ) Determine their expected lifetimes relative to that of the Sun.
13-11.	 Two stars in a binary system are 100 c # y from Earth and separated from each 
other by 108 km. What is the angular separation of the stars in arc seconds? In degrees?

Section 13-4  Cataclysmic Events
13-12.	 Compute the energy required (in MeV) to produce each of the photodisintegration 
reactions in Equations 13-18 and 13-19.
13-13.	 The gas shell of the planetary nebula shown in Figure 13-18 is expanding at 
24 km>s. Its diameter is 1.5 c # y. (a) How old is the gas shell? (b) If the central star of the 
planetary nebula is 12 times as luminous as the Sun and 15 times hotter, what is the radius 
of the central star in units of R}?

Section 13-5  Final States of Stars
13-14.	 Calculate the Schwarzschild radius of a star whose mass is equal to that of (a) the 
Sun, (b) Jupiter, (c) Earth. (The mass of Jupiter is approximately 318 times that of Earth.)
13-15.	 Consider a neutron star whose mass equals 2 M}. (a) Compute the star’s radius. 
(b) If the neutron star is rotating at 0.5 rev>s and assuming its density to be uniform, what 
is its rotational kinetic energy? (c) If its rotation slows by 1 part in 108 per day and the lost 
kinetic energy is all radiated, what is the star’s luminosity?
13-16.	 If the 90 percent of the Milky Way’s mass that is “missing” resides entirely in a 
large black hole at the center of the Galaxy, what would be the black hole’s (a) mass and 
(b) radius?

Section 13-6  Galaxies
13-17.	 Redshift measurements for a particular galaxy indicate that it has a recession 
velocity of 72,000 km>s. (a) Compute the distance to the galaxy. (b) The value of Hub-
ble’s constant depends critically on calibration distance measurements, which are difficult 
to make. If the calibration distance measurements are in error by 10 percent, by how much 
is the age calculated from Equation 13-28 in error?
13-18.	 The bright core of a certain Seyfert galaxy had a luminosity of 1010 L }. The lumi-
nosity increased by 100 percent in a period of 18 months. Show that this means that the 
energy source of the core is less than 9.45 * 104 AU in diameter. How does this compare 
to the diameter of the Milky Way?
13-19.	 The wavelength of the Ha line in the hydrogen spectrum is 656.3 nm. Use Hub-
ble’s law to determine the wavelength of the Ha line emitted from galaxies at distances of 
(a) 5 * 106 c # y, (b) 50 * 106 c # y, (c) 500 * 106 c # y, and (d) 5 * 109 c # y from Earth.

Section 13-7  Cosmology and Gravitation
13-20.	 Evaluate Equation 13-33 for the critical density of the universe.

Section 13-8  Cosmology and the Evolution of the Universe
13-21.	 Cosmological theory suggests that the average separation of galaxies, that is, 
the scale of the universe, is inversely proportional to the absolute temperature. If that is 
true, relative to the present size, how large was the universe compared to the scale today  
(a) 2000 years ago, (b) 106 years ago, (c) t = 10 s after the Big Bang, (d ) when t = 1 s, and 
(e) when t = 1026 s?
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13-22.	 Determine the value of the mass density of the universe for t = Planck time. How 
does this compare to the density of the proton? Of osmium?
13-23.	 At what wavelength is the blackbody radiation distribution of the cosmic micro-
wave background at a maximum?
13-24.	 How long after the Big Bang did it take the universe to cool to the threshold tem-
perature for the formation of muons? What would be the mass of a particle-antiparticle pair 
that could be formed by the average energy of the current 2.725 K background radiation?
13-25.	 Show that the present mass density of the universe r0 = R1t2r1t2.

Level II
13-26.	 If Hubble’s law is true for an observer in the Milky Way (i.e., us), prove that it 
must also be true for observers in other galaxies. (Hint: Use the vector property of the 
velocity.)
13-27.	 Find the minimum magnitude of the radius a that a dust particle in orbit around the 
Sun may have in order to avoid being blown out of the solar system by the Sun’s radiation 
pressure. Assume that the particle is a sphere of mass m with the same density r as Earth, 
5500 kg>m3. Ignore the solar wind and the solar magnetic field.
13-28.	 Show that the mass density of the universe at redshift z is given by 
r1z2 = r11 + z23.
13-29.	 When the Sun was formed, about 75 percent of its mass was hydrogen, of which 
only about 13 percent ever becomes available for fusion. (The rest is in regions of the 
Sun where the temperature is too low for fusion reactions to occur.) M} = 2 * 1030 kg and 
the Sun fuses about 6 * 1011 kg>s. (a) Compute the total mass of hydrogen available for 
fusion during the Sun’s lifetime. (b) How long (in years) will the Sun’s initial supply of 
hydrogen last? (c) Since the solar system is currently about 4.6 * 109 y old, when should 
we begin to worry about the Sun running out of hydrogen for fusion?
13-30.	 Supernova SN1987A was first visible at Earth in 1987. (a) How many years b.p. 
(before present) did the explosion occur? (b) If protons with 100 GeV of kinetic energy 
were produced in the event, when should they arrive at Earth?
13-31.	 Assume that the Sun when it first formed was composed of 70 percent hydrogen. 
How many hydrogen nuclei were there in the Sun at that time? How much energy would 
ultimately be released if all of the hydrogen nuclei fused into helium? Astrophysicists 
have predicted that the Sun can radiate energy at its current rate until about 23 percent 
of the hydrogen has been “burned.” What total lifetime for the Sun does that prediction 
imply? Compare these results with the corresponding ones from Problem 13-29.
13-32.	 Kepler’s third law states that the square of a planet’s orbital speed is proportional 
to the cube of its average orbital radius. Use Kepler’s third law to answer each of the 
following questions. (a) The Moon’s orbital radius is 3.84 * 105 km and it orbits Earth 
once every 27.3 d. Neglecting the moon’s mass, compute the mass of Earth. (b) Io (one 
of Jupiter’s moons) orbits Jupiter once every 42.5 h in a near-circular orbit of average 
radius 4.22 * 105 km. Neglecting Io’s mass, compute the mass of Jupiter. (c) Compute the 
orbital period of the International Space Station as it orbits 300 km above Earth’s surface.  
(d ) Charon, a moon of Pluto, orbits that body once every 6.4 d at an average distance of 
1.97 * 104 km. Compute the total mass of Pluto and Charon. What fraction of Earth’s mass 
is this? (e) Using the data for the star S2, compute the volume (upper limit) that confines the 
black hole at the center of the Milky Way. Compare the result with the volume of the Sun.
13-33.	 Consider an eclipsing binary whose orbital plane is parallel to our line of sight. 
Doppler measurements of the radial velocity of each component of the binary are shown 
in Figure 13-36. Assume that the mass m1 7 m2 and that the orbits of each component 
about the center of mass are circular. (a) What is the period T and the angular frequency 
of the binary? (b) Show that in this case 1m1 + m22 = 12

 r 32 >G, where r = separation 
of the binary. (c) Compute the values of m1, m2, and r from the data in the v versus t graph.
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Figure 13-36

13-34.	 Prove that the total energy of Earth’s orbital motion E = 1mv2>22 + 1-GM}  m>r2 
is equal to one-half of its gravitational potential energy 1-GM}  m>r2, where r is Earth’s 
orbit radius.
13-35.	 Given the currently accepted value of the Hubble constant and the fact that the 
average matter density of the universe is one H atom>m3, what creation rate of new H 
atoms would be necessary in a steady-state model to maintain the present mass density, 
even though the universe is expanding? (Give your answer in H atoms>m3 per 106 years.) 
Would you expect such a spontaneous creation rate to be readily observable?

Level III
13-36.	 The ability of a planet to retain particular gases in an atmosphere depends on the 
temperature that its atmosphere has (or would have) and the escape velocity for the planet. 
In general, if the average speed of a particular gas molecule exceeds 1>6 of the escape 
velocity, that gas will disappear from the atmosphere in about 108 years. (a) Graph the 
average speed of H2O, CO2, O2, CH4, H2, and He from 50 K to 1000 K. On the same graph 
show the points representing 1>6 of the escape velocity versus average temperature of the 
atmosphere for the planets in Table 13-5 below. (b) Show that the escape speed v from a 
planet is given by



vEarth
= B 1M>MEarth2

1R>REarth2
(c) Which of the six gases plotted probably would and would not currently be found in the 
atmospheres of the solar system bodies in the table? Explain each answer briefly.

 Table 13-5  Atmospheric temperatures

Average Tatm (K) Planet M/M Earth R/R Earth

300 Earth 1.00 1.00

390 Venus 0.81 0.95

600 Mercury 0.06 0.38

150 Jupiter 318.00 11.00

60 Neptune 17.00 3.90

290 Mars 0.11 0.53
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13-37.	 Using the parallax technique, compute the distance to (a) Alpha Centauri (parallax 
angle 0.742 arc second) and (b) Procyon (parallax angle 0.0286 arc second). Express each 
answer in both light-years and parsecs.
13-38.	 As the Sun evolves into a red giant star, suppose that its luminosity increases by 
a factor of 102. Show that Earth’s oceans will evaporate, but that the water vapor will not 
escape from the atmosphere.
13-39.	 The approximate mass of dust in the Galaxy can be computed from the observed 
extinction of starlight. Assuming the mean radius of dust grains to be R with a uniform 
number density n grains>cm3, (a) show that the mean free path d0 of a photon in interstel-
lar dust is given by d0 = 1> 1npR22. (b) Starlight traveling toward an Earth observer a 
distance d from the star has intensity

I = I0 e-d>d0

In the vicinity of the Sun a measurement of I yields d0 = 3000 c # y. If R = 1025 cm, calcu-
late n. (c) The average mass density of solid material in the Galaxy is 2 g>cm3 and in the 
disk the density of stars is about 1 M} >300 (c # y)3. Compute the ratio of the mass density 
of dust to the mass density of stars, assuming 1 M} in 300 (c # y)3.
13-40.	 The supernova SN1987A certainly produced some heavy elements. Compared to 
the energy released in fusing 56 1H atoms into one 56Fe atom starting from the proton-
proton cycle, how much energy would be required to fuse two 56Fe atoms into one 112Cd 
atom?
13-41.	 Current theory suggests that black holes evaporate by the emission of Hawking 
radiation in a time t that depends on the mass M of the black hole according to the follow-
ing relation:

t = 11.024 * 104p2 m3>s22G 2
 M2>hc4

(a) Explain without calculating anything why the formula implies that high-mass black 
holes have longer lifetimes than low-mass ones and why the rate of evaporation acceler-
ates as the black hole loses mass. (b) Compute the lifetime of a black hole whose mass 
equals 1 M}. Compare this time with the current age of the universe. (c) According to 
some theories, the largest black hole that could conceivably form would have a mass  
1012 M}, of the order of the mass of an entire galaxy. What would be the lifetime of a 
black hole that large?
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AP-1  

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

0 (Neutron) n 1* 1.008665 10.4 m b2

1 Hydrogen
Deuterium
Tritium

H
D
T

1.00798 1
2
3*

1.007825
2.014102
3.016049

99.985
0.015

12.33 y b2

2 Helium He 4.00260 3
4
6*
8*

3.016029
4.002602
6.018886
8.033922

0.00014
99.99986

0.81 s
0.12 s

b2

b2

3 Lithium Li 6.941 6
7
8*
9*

11*

6.015121
7.016003
8.022486
9.026789

11.043897

7.5
92.5

0.84 s
0.18 s

8.7 ms

b2

b2

b2

4 Beryllium Be 9.0122 7*
9

10*
11*
12*
14*

7.016928
9.012174

10.013534
11.021657
12.026921
14.042866

100
53.3 d

1.5 * 106 y
13.8 s

23.6 ms
4.3 ms

ec

b2

b2

b2

b2

5 Boron B 10.811 8*
10
11
12*
13*
14*
15*

8.024605
10.012936
11.009305
12.014352
13.017780
14.025404
15.031100

19.9
80.1

0.77 s

0.0202 s
17.4 ms
13.8 ms
10.3 ms

b1

b2

b2

b2

b2

6 Carbon C 12.011 9*
10*
11*
12
13
14*
15*
16*
17*

9.031030
10.016854
11.011433
12.000000
13.003355
14.003242
15.010599
16.014701
17.022582

98.90
1.10

0.13 s
19.3 s

20.4 m

5730 y
2.45 s
0.75 s
0.20 s

b1

b1

b1

b2

b2

b2

b2

Table of Atomic Masses

Appendix A

(Continued )
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AP-2	 Appendix A

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

7 Nitrogen N 14.0067 12*
13*
14
15
16*
17*
18*
19*

12.018613
13.005738
14.003074
15.000108
16.006100
17.008450
18.014082
19.017038

99.63
0.37

0.0110 s
9.96 m

7.13 s
4.17 s
0.62 s
0.24 s

b1

b1

b2

b2

b2

b2

8 Oxygen O 15.9994 13*
14*
15*
16
17
18
19*
20*
21*

13.024813
14.008595
15.003065
15.994915
16.999132
17.999160
19.003577
20.004076
21.008595

99.71
0.039
0.20

8.6 ms
70.6 s
122 s

26.9 s
13.6 s
3.4 s

b1

b1

b1

b2

b2

b2

9 Fluorine F 18.99840 17*
18*
19
20*
21*
22*
23*

17.002094
18.000937
18.998404
19.999982
20.999950
22.003036
23.003564

100

64.5 s
109.8 m

11.0 s
4.2 s
4.2 s
2.2 s

b1

b1

b2

b2

b2

b2

10 Neon Ne 20.180 18*
19*
20
21
22
23*
24*
25*

18.005710
19.001880
19.992435
20.993841
21.991383
22.994465
23.993999
24.997789

90.48
0.27
9.25

1.67 s
17.2 s

37.2 s
3.38 m
0.60 s

b1

b1

b2

b2

b2

11 Sodium Na 22.98977 21*
22*
23
24*
25*
26*

20.997650
21.994434
22.989767
23.990961
24.989951
25.992588

100

22.5 s
2.61 y

14.96 h
59.1 s
1.07 s

b1

b1

b2

b2

b2
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	 Appendix A� AP-3

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

12 Magnesium Mg 24.3051 23*
24
25
26
27*
28*
29*

22.994124
23.985042
24.985838
25.982594
26.984341
27.983876
28.375346

78.99
10.00
11.01

11.3 s

9.46 m
20.9 h
1.30 s

b1

b2

b2

b2

13 Aluminum Al 26.98154 25*
26*
27
28*
29*
30*

24.990429
25.986892
26.981538
27.981910
28.980445
29.982965

100

7.18 s
7.4 * 105 y

2.24 m
6.56 m
3.60 s

b1

b1

b2

b2

b2

14 Silicon Si 28.086 27*
28
29
30
31*
32*
33*

26.986704
27.976927
28.976495
28.973770
30.975362
31.974148
32.977928

92.23
4.67
3.10

4.16 s

2.62 h
172 y
6.13 s

b1

b2

b2

b2

15 Phosphorus P 30.97376 30*
31
32*
33*
34*

29.978307
30.973762
31.973762
32.971725
33.973636

100
2.50 m

14.26 d
25.3 d

12.43 s

b1

b2

b2

b2

16 Sulfur S 32.066 31*
32
33
34
35*
36

30.979554
31.972071
32.971459
33.967867
34.969033
35.967081

95.02
0.75
4.21

0.02

2.57 s

87.5 d

b1

b2

17 Chlorine Cl 35.453 34*
35
36*
37
38*

33.973763
34.968853
35.968307
36.965903
37.968010

75.77

24.23

32.2 m

3.0 * 105 y

37.3 m

b1

b2

b2

18 Argon Ar 39.948 36
37*
38
39*
40
42*

35.967547
36.966776
37.962732
38.964314
39.962384
41.963049

0.337

0.063

99.600

35.04 d

269 y

33 y

ec

b2

b2

(Continued )
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AP-4	 Appendix A

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

19 Potassium K 39.0983 39
40*
41
42*
43*

38.963708
39.964000
40.961827
41.962404
42.960716

93.2581
0.0117
6.7302

1.28 * 109 y

12.4 h
22.3 h

b1, ec, b2

b2

b2

20 Calcium Ca 40.078 40
41*
42
43
44
46
48

39.962591
40.962279
41.958618
42.958767
43.955481
45.953687
47.952534

96.941

0.647
0.135
2.086
0.004
0.187

1.0 * 105 y ec

21 Scandium Sc 44.9559 41*
43*
45
46*

40.969250
42.961151
44.955911
45.955170

100

0.596 s
3.89 h

83.8 d

b1

b1 

b2

22 Titanium Ti 47.88 44*
46
47
48
49
50

43.959691
45.952630
46.951765
47.947947
48.947871
49.944792

8.0
7.3

73.8
5.5
5.4

49 y ec

23 Vanadium V 50.9415 48*
50*
51

47.952255
49.947161
50.943962

0.25
99.75

15.97 d
1.5 * 1017 y

b1

b1

24 Chromium Cr 51.996 48*
50
52
53
54

47.954033
49.946047
51.940511
52.940652
53.938883

4.345
83.79
9.50
2.365

21.6 h ec

25 Manganese Mn 54.93805 53*
54*
55
56*

52.941292
53.940361
54.938048
55.938908

100

3.74 * 106 y
312.1 d

2.58 h

ec
ec

b2

26 Iron Fe 55.847 54
55*
56
57
58
60*

53.939613
54.938297
55.934940
56.935396
57.933278
59.934078

5.9

91.72
2.1
0.28

2.7 y

1.5 * 106 y

ec

b2
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	 Appendix A� AP-5

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

27 Cobalt Co 58.93320 57*
58*
59
60*
61*

56.936294
57.935755
58.933198
59.933820
60.932478

100

271.8 d
70.9 h

5.27 y
1.65 h

ec
ec, b1

b2

b2

28 Nickel Ni 58.693 58
59*
60
61
62
63*
64

57.935346
58.934350
59.930789
60.931058
61.928346
62.929670
63.927967

68.077

26.223
1.140
3.634

0.926

7.5 * 104 y

100 y

ec, b1

b2

29 Copper Cu 63.546 63
64*
65
66*

62.929599
63.929765
64.927791
65.928871

69.17

30.83
12.7 h

5.1 m

ec

b2

30 Zinc Zn 65.39 64
66
67
68
70

63.929144
65.926035
66.927129
67.924845
69.925323

48.6
27.9
4.1

18.8
0.6

31 Gallium Ga 69.723 69
70*
71
72*

68.925580
69.926027
70.924703
71.926367

60.108

39.892
21.1 m

14.1 h

b2

b2

32 Germanium Ge 72.61 69*
70
72
73
74
76
77*

68.927969
69.924250
71.922079
72.923462
73.921177
75.921402
76.923547

21.23
27.66
7.73

35.94
7.44

39.1 h

11.3 h

ec, b1

b2

33 Arsenic As 74.9216 73*
74*
75
76*
77*

72.923827
73.923928
74.921594
75.922393
76.920645

100

80.3 d
17.8 d

1.1 d
38.8 h

ec
ec, b1

b2

b2

(Continued )
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AP-6	 Appendix A

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

34 Selenium Se 78.96 74
76
77
78
79*
80
82*

73.922474
75.919212
76.919913
77.917307
78.918497
79.916519
81.916697

0.89
9.36
7.63

23.78

49.61
8.73

…6.5 * 104 y

1.4 * 1020 y

b2

2b2

35 Bromine Br 79.904 79
80*
81
82*

78.918336
79.918528
80.916287
81.916802

50.69

49.31
17.7 m

35.3 h

b1

b2

36 Krypton Kr 83.80 78
80
81*
82
83
84
85*
86

77.920400
79.916377
80.916589
81.913481
82.914136
83.911508
84.912531
85.910615

0.35
2.25

11.6
11.5
57.0

17.3

2.11 * 105 y

10.76 y

ec

b2

37 Rubidium Rb 85.468 85
86*
87*
88*

84.911793
85.911171
86.909186
87.911325

72.17

27.83
18.6 d

4.75 * 1010 y
17.8 m

b2

b2

b2

38 Strontium Sr 87.62 84
86
87
88
90*

83.913428
85.909266
86.908883
87.905618
89.907737

0.56
9.86
7.00

82.58
29.1 y b2

39 Yttrium Y 88.9058 88*
89
90*

87.909507
88.905847
89.914811

100
106.6 d

2.67 d

ec, b1

b2

40 Zirconium Zr 91.224 90
91
92
93*
94
96

89.904702
90.905643
91.905038
92.906473
93.906314
95.908274

51.45
11.22
17.15

17.38
2.80

1.5 * 106 y b2

41 Niobium Nb 92.9064 91*
92*
93
94*

90.906988
91.907191
92.906376
93.907280

100

6.8 * 102 y
3.5 * 107 y

2 * 104 y

ec
ec

b2
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	 Appendix A� AP-7

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

42 Molybdenum Mo 95.94 92
93*
94
95
96
97
98

100

91.906807
92.906811
93.905085
94.905841
95.904678
96.906020
97.905407
99.907476

14.84

9.25
15.92
16.68
9.55

24.13
9.63

3.5 * 103 y ec

43 Technetium Tc 97*
98*
99*

96.906363
97.907215
98.906254

2.6 * 106 y
4.2 * 106 y
2.1 * 105 y

ec
b2

b2

44 Ruthenium Ru 101.07 96
98
99

100
101
102
104

95.907597
97.905287
98.905939
99.904219

100.905558
101.904348
103.905428

5.54
1.86

12.7
12.6
17.1
31.6
18.6

45 Rhodium Rh 102.9055 102*
103
104*

101.906794
102.905502
103.906654

100
207 d

42 s

ec

b2

46 Palladium Pd 106.42 102
104
105
106
107*
108
110

101.905616
103.904033
104.905082
105.903481
106.905126
107.903893
109.905158

1.02
11.14
22.33
27.33

26.46
11.72

6.5 * 106 y b2

47 Silver Ag 107.868 107
108*
109
110*

106.905091
107.905953
108.904754
109.906110

51.84

48.16
2.39 m

24.6 s

ec, b1, b2

b2

48 Cadmium Cd 112.41 106
108
109*
110
111
112
113*
114
116

105.906457
107.904183
108.904984
109.903004
110.904182
111.902760
112.904401
113.903359
115.904755

1.25
0.89

12.49
12.80
24.13
12.22
28.73
7.49

462 d

9.3 * 1015 y

ec

b2

(Continued )
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AP-8	 Appendix A

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

49 Indium In 114.82 113
114*
115*
116*

112.904060
113.904916
114.903876
115.905258

4.3

95.7
1.2 m

4.4 * 1014 y
54.4 m

b2

b2

b2

50 Tin Sn 118.71 112
114
115
116
117
118
119
120
121*
122
124

111.904822
113.902780
114.903345
115.901743
116.902953
117.901605
118.903308
119.902197
120.904237
121.903439
123.905274

0.97
0.65
0.36

14.53
7.68

24.22
8.58

32.59

4.63
5.79

55 y b2

51 Antimony Sb 121.76 121
123
125*

120.903820
122.904215
124.905251

57.36
42.64

2.7 y b2

52 Tellurium Te 127.60 120
122
123*
124
125
126
128*
130*

119.904040
121.903052
122.904271
123.902817
124.904429
125.903309
127.904463
129.906228

0.095
2.59
0.905
4.79
7.12

18.93
31.70
33.87

1.3 * 1013 y

78 * 1024 y
1.2 * 1021 y

ec

2b2

2b2

53 Iodine I 126.9045 126*
127
128*
129*

125.905619
126.904474
127.905812
128.904984

100
13 d

25 m
1.6 * 107 y

ec, b1, b2

b2, ec, b1

b2

54 Xenon Xe 131.29 124
126
128
129
130
131
132
134
136

123.905894
125.904268
127.903531
128.904779
129.903509
130.905069
131.904141
133.905394
135.907215

0.10
0.09
1.91

26.4
4.1

21.2
26.9
10.4
8.9
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	 Appendix A� AP-9

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

55 Cesium Cs 132.9054 133
134*
135*
137*

132.905436
133.906703
134.905891
136.907078

100
2.1 y

2 * 106 y
30 y

b2

b2

b2

56 Barium Ba 137.33 130
132
133*
134
135
136
137
138

129.906289
131.905048
132.905990
133.904492
134.905671
135.904559
136.905816
137.905236

0.106
0.101

2.42
6.593
7.85

11.23
71.70

10.5 y ec

57 Lanthanum La 138.905 137*
138*
139

136.906462
137.907105
138.906346

0.0902
99.9098

6 * 104 y
1.05 * 1011 y

ec
ec, b1

58 Cerium Ce 140.12 136
138
140
142

135.907139
137.905986
139.905434
141.909241

0.19
0.25

88.43
11.13

59 Praseodymium Pr 140.9076 140*
141
142*

139.909071
140.907647
141.910040

100
3.39 m

25.0 m

ec, b1

b2

60 Neodymium Nd 144.24 142
143
144*
145
146
148
150

141.907718
142.909809
143.910082
144.912568
145.913113
147.916888
149.920887

27.13
12.18
23.80
8.30

17.19
5.76
5.64

2.3 * 1015 y a

61 Promethium Pm 143*
145*
146*
147*

142.910928
144.912745
145.914698
146.915134

265 d
17.7 y
5.5 y

2.623 y

ec
ec
ec
b2

62 Samarium Sm 150.36 144
146*
147*
148*
149
150
151*
152
154

143.911996
145.913043
146.914894
147.914819
148.917180
149.917273
150.919928
151.919728
153.922206

3.1

15.0
11.3
13.8
7.4

26.7
22.7

1.0 * 108 y
1.06 * 1011 y

7 * 1015 y

90 y

a
a
a

b2

(Continued )

TIPLER_APP_AP1–AP38-hr.indd   9 11/2/11   2:15 PM



AP-10	 Appendix A

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

63 Europium Eu 151.96 151
152*
153
154*
155*

150.919846
151.921740
152.921226
153.922975
154.922888

47.8

52.2
13.5 y

8.59 y
4.7 y

ec, b1

b2

b2

64 Gadolinium Gd 157.25 148*
150*
152*
154
155
156
157
158
160

147.918112
149.918657
151.919787
153.920862
154.922618
155.922119
156.923957
157.924099
159.927050

0.20
2.18

14.80
20.47
15.65
24.84
21.86

75 y
1.8 * 106 y

1.1 * 1014 y

a
a
a

65 Terbium Tb 158.9253 158*
159
160*

157.925411
158.925345
159.927551

100
180 y

72.3 d

ec, b1, b2

b2

66 Dysprosium Dy 162.50 156
158
160
161
162
163
164

155.924277
157.924403
159.925193
160.926930
161.926796
162.928729
163.929172

0.06
0.10
2.34

18.9
25.5
24.9
28.2

67 Holmium Ho 164.9303 165
166*

164.930316
165.932282

100 1.2 * 103 y b2

68 Erbium Er 167.26 162
164
166
167
168
170

161.928775
163.929198
165.930292
166.932047
167.932369
169.935462

0.14
1.61

33.6
22.95
27.8
14.9

69 Thulium Tm 168.9342 169
171*

168.934213
170.936428

100 1.92 y b2

70 Ytterbium Yb 173.04 168
170
171
172
173
174
176

167.933897
169.934761
170.936324
171.936380
172.938209
173.938861
175.942564

0.13
3.05

14.3
21.9
16.12
31.8
12.7
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	 Appendix A� AP-11

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

71 Lutetium Lu 174.967 173*
175
176*

172.938930
174.940772
175.942679

97.41
2.59

1.37 y

3.8 * 1010 y

ec

b2

72 Hafnium Hf 178.49 174*
176
177
178
179
180

173.940042
175.941404
176.943218
177.943697
178.945813
179.946547

0.162
5.206

18.606
27.297
13.629
35.100

2.0 * 1015 y a

73 Tantalum Ta 180.9479 180
181

179.947542
180.947993

0.012
99.988

74 Tungsten 
(Wolfram)

W 183.85 180
182
183
184
186

179.946702
181.948202
182.950221
183.950929
185.954358

0.12
26.3
14.28
30.7
28.6

75 Rhenium Re 186.207 185
187*

184.952951
186.955746

37.40
62.60 4.4 * 1010 y b2

76 Osmium Os 190.2 184
186*
187
188
189
190
192
194*

183.952486
185.953834
186.955744
187.955744
188.958139
189.958439
191.961468
193.965172

0.02
1.58
1.6

13.3
16.1
26.4
41.0

2.0 * 1015 y

6.0 y

a

b2

77 Iridium Ir 192.2 191
193

190.960585
192.962916

37.3
62.7

78 Platinum Pt 195.08 190*
192
194
195
196
198

189.959926
191.961027
193.962655
194.964765
195.964926
197.967867

0.01
0.79

32.9
33.8
25.3
7.2

6.5 * 1011 y a

79 Gold Au 196.9665 197
198*
199*

196.966543
197.968217
198.968740

100
2.70 d
3.14 d

b2

b2

(Continued )
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Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

80 Mercury Hg 200.59 196
198
199
200
201
202
204

195.965806
197.966743
198.968253
199.968299
200.970276
201.970617
203.973466

0.15
9.97

16.87
23.10
13.10
29.86
6.87

81 Thallium Tl

(Ra E0)
(Ac C0)
(Th C0)
(Ra C0)

204.383 203
204*
205
206*
207*
208*
210*

202.972320
203.973839
204.974400
205.976084
206.977403
207.981992
209.990057

29.524

70.476
3.78 y

4.2 m
4.77 m

3.053 m
1.30 m

b2

b2

b2

b2

b2

82 Lead Pb

(Ra D)
(Ac B)
(Th B)
(Ra B)

207.2 202*
204
205*
206
207
208
210*
211*
212*
214*

201.972134
203.973020
204.974457
205.974440
206.975871
207.976627
209.984163
210.988734
211.991872
213.999798

1.4

24.1
22.1
52.4

5 * 104 y

1.5 * 107 y

22.3 y
36.1 m
10.64 h
26.8 m

ec

ec

b2

b2

b2

b2

83 Bismuth Bi

(Ra E)
(Th C)
(Ra C)

208.9803 207*
208*
209
210*
211*
212*
214*
215*

206.978444
207.979717
208.980374
209.984096
210.987254
211.991259
213.998692
215.001836

100

32.2 y
3.7 * 105 y

5.01 d
2.14 m
60.6 m
19.9 m
7.4 m

ec, b1

ec

a, b2

a
a, b2

b2

b2

84 Polonium Po
(Ra F)
(Ac C9)
(Th C9)
(Ra C9)
(Ac A)
(Th A)
(Ra A)

209*
210*
211*
212*
214*
215*
216*
218*

208.982405
209.982848
210.986627
211.988842
213.995177
214.999418
216.001889
218.008965

102 y
138.38 d

0.52 s
0.30 ms
164 ms

0.0018 s
0.145 s
3.10 m

a
a
a
a
a
a
a
a

85 Astatine At 215*
218*
219*

214.998638
218.008685
219.011297

L100 ms
1.6 s

0.9 m

a
a
a
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Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

86 Radon Rn
(An)
(Tn)
(Rn)

219*
220*
222*

219.009477
220.011369
222.017571

3.96 s
55.6 s

3.823 d

a
a
a

87 Francium
Fr

(Ac K)

221*
222*
223*

221.01425
222.017585
223.019733

4.18 m
14.2 m

22 m

a
b2

b2

88 Radium Ra
(Ac X)
(Th X)

(Ra)
(MsTh1)

221*
223*
224*
225*
226*
228*

221.01391
223.018499
224.020187

226.025402
228.031064

29 s
11.43 d
3.66 d
14.9 d
1600 y
5.75 y

a
a
a
b2

a
b2

89 Actinium Ac
(Ms Th2)

225*
227*
228*
229*

227.027749
228.031015

10 d
21.77 y
6.15 h
1.04 h

a
b2

b2

b2

90 Thorium Th
(Rd Ac)
(Rd Th)

(Io)
(UY)
(Th)

(UX1)

232.0381
227*
228*
229*
230*
231*
232*
234*

227.027701
228.028716
229.031757
230.033127
231.036299
232.038051
234.043593

100

18.72 d
1.913 y
7300 y

75,000 y
25.52 h

1.40 * 1010 y
24.1 d

a
a
a
a, sf
b2

a
b2

91 Protactinium Pa
(UZ)

231*
234*

231.035880
234.043300

32,760 y
6.7 h

a
b2

92 Uranium U

(UII)
(Ac U)

(UI)

238.0289 231*
232*
233*
234*
235*
236*
238*
239*

231.036264
232.037131
233.039630
234.040946
235.043924
236.045562
238.050784
239.054290

0.0055
0.720

99.2745

4.2 d
69 y

1.59 * 105 y
2.45 * 105 y
7.04 * 108 y
2.34 * 107 y
4.47 * 109 y

23.5 m

b1

a
a
a
a
a
a
b2

93 Neptunium Np 235*
236*
237*

235.044057
236.046559
237.048168

396 d
1.54 * 105 y
2.14 * 106 y

a
ec
a

(Continued )
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Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

94 Plutonium Pu 236*
238*
239*
240*
241*
242*
244*

236.046033
238.049555
239.052157
240.053808
241.056846
242.058737
244.064200

2.87 y
87.7 y

24,120 y
6560 y
14.4 y

3.7 * 105 y
8.1 * 107 y

a, sf
a, sf
a, sf
a, sf
b2

a, sf
a, sf

95 Americium Am 240*
241*

240.055285
241.056824

2.12 d
432 y

ec
a, sf

96 Curium Cm 247*
248*

247.070347
248.072344

1.56 * 107 y
3.4 * 105 y

a
a, sf

97 Berkelium Bk 247*
249*

247.070300
249.074979

1380 y
327 d

a
b2

98 Californium Cm 250*
251*

250.076400
251.079580

13.1 y
898 y

a, sf
a

99 Einsteinium Es 252*
253*

252.082974
253.084817

1.29 y
2.02 d

a
a, sf

100 Fermium Fm 253*
254*

253.085173
254.086849

3.00 d
3.24 h

ec
a, sf

101 Mendelevium Md 256*
258*

256.093988
258.098594

75.6 m
55 d

ec, b1

a

102 Nobelium No 257*
259*

257.096855
259.100932

25 s
58 m

a
a, sf

103 Lawrencium Lr 259*
260*

259.102888
260.105346

6.14 s
3.0 m

a, sf
a, sf

104 Rutherfordium Rf 260*
261*

260.160302
261.108588

24 ms
65 s

sf
a, sf

105 Dubnium Db 261*
262*

261.111830
262.113763

1.8 s
35 s

a
a

106 Seaborgium Sg 263* 263.118310 0.78 s a, sf

107 Bohrium Bh 262* 262.123081 0.10 s a, sf

108 Hassium Hs 265*
267*

265.129984
267.131770

1.8 ms
60 ms

a
a

109 Meitnerium Mt 266*
268*

266.137789
268.138820

3.4 ms
70 ms

a, sf
a

TIPLER_APP_AP1–AP38-hr.indd   14 11/2/11   2:15 PM



	 Appendix A� AP-15

Z Element Symbol

Chemical 
atomic 
weight

Mass number 
(*indicates 

radioactive)
Atomic  
mass

Percent 
abundance

Half-life and  
decay mode 
(if unstable)

110 Darmstadtium Ds 269*
271*
273*

269.145140
271.146080
272.153480

0.17 ms
1.1 ms
8.6 ms

a
a
a

111 Roentgenium Rg 272* 272.153480 1.5 ms a

112 Copernicium Cn 277* ? 0.2 ms a

113 Ununtrium Unt 284* ? ? a

114 Ununquadium Unq 289* ? ? a

115 Ununpentium Unp 288* ? ? a

116 Ununhexium Unh 292* ? ? a

117 Ununseptium Uus

118 Ununoctium Uno 294* ? ? a
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Appendix B1

When calculating various average values using the Maxwell-Boltzmann distribution, 
integrals of the following type occur:

	 In = 3


0

 xn
 e-lx2

 dx	

where n is an integer. These can be obtained from I0 and I1 by differentiation. Consider 
In to be a function of l and take the derivative with respect to l:

	
dIn

dl
= 3



0

-x2
 xn e-lx2

 dx = -In + 2	 B1-1

Thus, if I0 is known, all the In for even n can be obtained, and if I1 is known, all the In 
for odd n can be obtained from Equation B1-1. I1 can easily be evaluated. Using the 
substitution u = lx2, then du = 2lx dx and

	 I1 = 3


0

 xe-lx2

 dx =
1

2
 l-1 3



0

e-u du =
1

2
 l-1	

Then I3 and I5 are

	 I3 = -  

da 1

2
 l-1b

d l
=

1

2
 l-2 and I5 = -  

dI3

d l
= l-3	

The evaluation of I0 is more difficult, but it can be done using a trick. We 
evaluate I2

0:

	 I2
0 = 3



0

 e-lx2

 dx 3


0

 e-ly2

 dy = 3


0

 3


0
 e-l1x2 + y22 dx dy	 B1-2

where we have used y as the dummy variable of integration in the second integral. If 
we now consider this to be an integration over the xy plane, we can change to polar 
coordinates r2 = x2 1 y2 and tan  = y>x. The element of area dx dy becomes r dr d 
and the integration over positive x and y becomes an integration from r = 0 to r = ∞ 
and from  = 0 to  = p>2. Then we have

	 I2
0 = 3



0

 3
p>2

0

 e-lr2

 r dr d =
p

2
 I1 =

p

4
 l-1	

and

	 I0 =
1

2
2pl-1>2	

We then obtain I2, I4, . . . by differentiation. For example,

	 I2 = -  
dI0

dl
=

1

4
2pl-3>2	

Probability Integrals
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Table B1-1 lists the values of the integral In calculated as above for values of n 
from 0 to 5.

 Table B1-1 � Values of the integral In = 3
0

q 

xne-lx2

 dx 
for n = 0 to n = 5

n In

0
1

2
 p1>2 l-1>2

1
1

2
 l-1

2
1

4
 p1>2 l-3>2

3
1

2
 l-2

4
3

8
 p1>2 l-5>2

5 l23

If n is even 3
+

-

 xn e-lx2

 dx = 2In

If n is odd 3
+

-

 xn e-lx2

 dx = 0
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APPENDIX B2

Binomial and Exponential Series

Binomial Series

	 11 + x2m = 1 + mx +
m1m - 12

2!
 x2 +

m1m - 12 1m - 22
3!

 x3 + g 	

+
m1m - 12 1m - 22g 1m - n + 22

1n - 12!  xn - 1 + Rn	

where

	 Rn =
m1m - 12 1m - 22g 1m - n + 12

n!
 xn11 + ax2m - n	

for all cases where 0 6 a 6 1.

Rn 6 ` m1m - 12 1m - 22g 1m - n + 12
n!

 xn ` if x 7 0	

	 Rn 6 ` m1m - 12 1m - 22g 1m - n + 12
n!

 
xn

11 + x2n - m ` for x 6 0, n 7 m	

Rn 6  xn  11 + x2m if -1 6 m 6 0	

If m is a negative integer or a positive or negative fraction, the binomial expan-
sion is valid only when  x  6 1. Except when m is a positive integer, a binomial such 
as (a 1 b)m must be written in one of the following forms before expanding it:

	 am a1 +
b
a
b

m

 if a 7 b  bm a1 +
a

b
b

m

 if b 7 a	

Exponential Series
	 ex = 1 + x +

x2

2!
+

x3

3!
+ g +

xn - 1

1n - 12! +
xn

n!
+ g 	

	 ax = 1 + x log a +
1x log a22

2!
+ g +

1x log a2n - 1

1n - 12! +
1x log a2n

n!
+ g 	
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APPENDIX B3

Diagrams of Crystal Unit Cells
Crystalline solids are classified according to their symmetries into 7 crystal systems 
and 14 lattices. A lattice is defined as an infinite array of points each of which has 
surroundings identical to those of all other points. In three dimensions this definition 
is expressed by three translation vectors a, b, and c, such that the array of atoms in 
the crystal when viewed from point r looks the same when viewed from any other 
point r9, where r9 is reached by translations of integer multiples of the ai, that is,

	 r9 = r + m1a + m2b + m3c	

where mi are integers. The translation vectors are usually (but not always) used to 
specify the three axes of the crystal’s unit cell. The volume of the unit cell is a #  (b * c), 
and no cell of smaller volume can serve as the unit to assemble the crystal.

Figure B3-1 illustrates the orientations of the translation vectors and the stan-
dard designations of the angles between them. Figure B3-2 illustrates diagrams of the 
14 lattices.

c→

a→

b
→

β α

γ

Figure B3-1  The directions 
of the translation vectors 
are often used to define the 
directions of the crystal axes, 
the angles between each axis 
pair defining the shape of 
the cell.

Orthorhombic Trigonal

rhombohedralprimitive body-centered face-centered base-centered

Cubic Tetragonal

body-centered face-centered primitive body-centeredprimitive

Monoclinic Triclinic Hexagonal

primitive base-centered primitive primitive
Figure B3-2  The 14 
crystal lattices.
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Appendix C

Z Element
Ionization 

energy (eV)

K
n : 1
I : s

L
2

s p

M
3

s  p  d

N
4

s  p  d  f

O
5

s  p  d  f

P
6

s  p  d

Q
7

s p

  1 H (hydrogen) 13.6 1

  2 He (helium) 24.5 2

  3 Li (lithium) 5.4 2 1

  4 Be (beryllium) 9.3 2 2

  5 B (boron) 8.3 2 2 1

  6 C (carbon) 11.3 2 2 2

  7 N (nitrogen) 14.5 2 2 3

  8 O (oxygen) 13.6 2 2 4

  9 F (flourine) 17.4 2 2 5

10 Ne (neon) 21.6 2 2 6

11 Na (sodium) 5.1 2 2 6 1

12 Mg (magnesium) 7.6 2 2 6 2

13 Al (aluminum) 6.0 2 2 6 2 1

14 Si (silicon) 8.1 2 2 6 2 2

15 P (phosphorus) 10.5 2 2 6 2 3

16 S (sulfur) 10.4 2 2 6 2 4

17 Cl (chlorine) 13.0 2 2 6 2 5

18 Ar (argon) 15.8 2 2 6 2 6

19 K (potassium) 4.3 2 2 6 2 6 . 1

20 Ca (calcium) 6.1 2 2 6 2 6 . 2

21 Sc (scandium) 6.5 2 2 6 2 6 1 2

22 Ti (titanium) 6.8 2 2 6 2 6 2 2

Electron Configurations
Electron configurations of the atoms in their ground states. For a few of the rare earth elements (Z = 57 to 71) and 
the heavy elements (Z 7 89), the configurations are not firmly established.
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(Continued )

Z Element
Ionization 

energy (eV)

K
n : 1
I : s

L
2

s p

M
3

s  p  d

N
4

s  p  d  f

O
5

s  p  d  f

P
6

s  p  d

Q
7

s  p

23 V (vanadium) 6.7 2 2 6 2 6 3 2

24 Cr (chromium) 6.8 2 2 6 2 6 5 1

25 Mn (manganese) 7.4 2 2 6 2 6   5 2

26 Fe (iron) 7.9 2 2 6 2 6  6 2

27 Co (cobalt) 7.9 2 2 6 2 6  7 2

28 Ni (nickel) 7.6 2 2 6 2 6  8 2

29 Cu (copper) 7.7 2 2 6 2 6 10 1

30 Zn (zinc) 9.4 2 2 6 2 6 10 2

31 Ga (gallium) 6.0 2 2 6 2 6 10 2 1

32 Ge (germanium) 7.9 2 2 6 2 6 10 2 2

33 As (arsenic) 9.8 2 2 6 2 6 10 2 3

34 Se (selenium) 9.8 2 2 6 2 6 10 2 4

35 Br (bromine) 11.8 2 2 6 2 6 10 2 5

36 Kr (krypton) 14.0 2 2 6 2 6 10 2 6

37 Rb (rubidium) 4.2 2 2 6 2 6 10 2 6 . . 1

38 Sr (strontium) 5.7 2 2 6 2 6 10 2 6 . . 2

39 Y (yttrium) 6.4 2 2 6 2 6 10 2 6 1 . 2

40 Zr (zirconium) 6.8 2 2 6 2 6 10 2 6 2 . 2

41 Nb (niobium) 6.9 2 2 6 2 6 10 2 6 4 . 1

42 Mo (molybdenum) 7.1 2 2 6 2 6 10 2 6 5 . 1

43 Tc (technetium) 7.3 2 2 6 2 6 10 2 6 6 . 1

44 Ru (ruthenium) 7.4 2 2 6 2 6 10 2 6 7 . 1

45 Rh (rhodium) 7.5 2 2 6 2 6 10 2 6 8 . 1

46 Pd (palladium) 8.3 2 2 6 2 6 10 2 6 10 .

47 Ag (silver) 7.6 2 2 6 2 6 10 2 6 10 . 1

48 Cd (cadmium) 9.0 2 2 6 2 6 10 2 6 10 . 2

49 In (indium) 5.8 2 2 6 2 6 10 2 6 10 . 2 1

50 Sn (tin) 7.3 2 2 6 2 6 10 2 6 10 . 2 2
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Z Element
Ionization 

energy (eV)

K
n : 1
I : s

L
2

s p

M
3

s  p  d

N
4

s  p  d  f

O
5

s  p  d  f

P
6

s  p  d

Q
7

s  p

51 Sb (antimony) 8.6 2 2 6 2 6 10 2 6 10 . 2 3

52 Te (tellurium) 9.0 2 2 6 2 6 10 2 6 10 . 2 4

53 I (iodine) 10.5 2 2 6 2 6 10 2 6 10 . 2 5

54 Xe (xenon) 12.1 2 2 6 2 6 10 2 6 10 . 2 6

55 Cs (cesium) 3.9 2 2 6 2 6 10 2 6 10 . 2 6 . . 1

56 Ba (barium) 5.2 2 2 6 2 6 10 2 6 10 . 2 6 . . 2

57 La (lanthanum) 5.6 2 2 6 2 6 10 2 6 10 . 2 6 1 . 2

58 Ce (cerium) 5.6 2 2 6 2 6 10 2 6 10 1 2 6 1 . 2

59 Pr (praseodymium) 5.5 2 2 6 2 6 10 2 6 10 3 2 6 . . 2

60 Nd (neodymium) 5.5 2 2 6 2 6 10 2 6 10 4 2 6 . . 2

61 Pm (promethium) 5.5 2 2 6 2 6 10 2 6 10 5 2 6 . . 2

62 Sm (samarium) 5.6 2 2 6 2 6 10 2 6 10 6 2 6 . . 2

63 Eu (europium) 5.7 2 2 6 2 6 10 2 6 10 7 2 6 . . 2

64 Gd (gadolinium) 6.2 2 2 6 2 6 10 2 6 10 7 2 6 1 . 2

65 Tb (terbium) 6.0 2 2 6 2 6 10 2 6 10 9 2 6 . . 2

66 Dy (dysprosium) 6.8 2 2 6 2 6 10 2 6 10 10 2 6 . . 2

67 Ho (holmium) 6.0 2 2 6 2 6 10 2 6 10 11 2 6 . . 2

68 Er (erbium) 6.1 2 2 6 2 6 10 2 6 10 12 2 6 . . 2

69 Tm (thulium) 5.8 2 2 6 2 6 10 2 6 10 13 2 6 . . 2

70 Yb (ytterbium) 6.2 2 2 6 2 6 10 2 6 10 14 2 6 . . 2

71 Lu (lutetium) 5.1 2 2 6 2 6 10 2 6 10 14 2 6 1 . 2

72 Hf (hafnium) 7.0 2 2 6 2 6 10 2 6 10 14 2 6 2 . 2

73 Ta (tantalum) 7.9 2 2 6 2 6 10 2 6 10 14 2 6 3 . 2

74 W (tungsten) 8.0 2 2 6 2 6 10 2 6 10 14 2 6 4 . 2

75 Re (rhenium) 7.9 2 2 6 2 6 10 2 6 10 14 2 6 5 . 2

76 Os (osmium) 8.5 2 2 6 2 6 10 2 6 10 14 2 6 6 . 2

77 Ir (iridium) 9.0 2 2 6 2 6 10 2 6 10 14 2 6 7 . 2

78 Pt (platinum) 9.0 2 2 6 2 6 10 2 6 10 14 2 6 9 . 1

79 Au (gold) 9.2 2 2 6 2 6 10 2 6 10 14 2 6 10 . 1

80 Hg (mercury) 10.4 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2
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(Continued )

Z Element
Ionization 

energy (eV)

K
n : 1
I : s

L
2

s p

M
3

s  p  d

N
4

s  p  d  f

O
5

s  p  d  f

P
6

s  p  d

Q
7

s  p

  81 Tl (thallium) 6.1 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 1

  82 Pb (lead) 7.4 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 2

  83 Bi (bismuth) 7.3 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 3

  84 Po (polonium) 8.4 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 4

  85 At (astatine) 9.5 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 5

  86 Rn (radon) 10.7 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6

  87 Fr (francium) 4.0 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 . 1

  88 Ra (radium) 5.3 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 . 2

  89 Ac (actinium) 6.9 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 1 2

  90 Th (thorium) 7.0 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 2 2

  91 Pa (protactinium) 2 2 6 2 6 10 2 6 10 14 2 6 10 1 2 6 2 2

  92 U (uranium) 6.1 2 2 6 2 6 10 2 6 10 14 2 6 10 3 2 6 1 2

  93 Np (neptunium) 2 2 6 2 6 10 2 6 10 14 2 6 10 4 2 6 1 2

  94 Pu (plutonium) 5.8 2 2 6 2 6 10 2 6 10 14 2 6 10 6 2 6 . 2

  95 Am (americium) 6.0 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 . 2

  96 Cm (curium) 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 1 2

  97 Bk (berkelium) 2 2 6 2 6 10 2 6 10 14 2 6 10 8 2 6 1 2

  98 Cf (californium) 2 2 6 2 6 10 2 6 10 14 2 6 10 10 2 6 . 2

  99 Es (einsteinium) 2 2 6 2 6 10 2 6 10 14 2 6 10 11 2 6 . 2

100 Fm (fermium) 2 2 6 2 6 10 2 6 10 14 2 6 10 12 2 6 . 2

101 Md (mendelevium) 2 2 6 2 6 10 2 6 10 14 2 6 10 13 2 6 . 2

102 No (nobelium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 . 2

103 Lw (lawrencium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 1 2

104 Rf (rutherfordium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 2 2

105 Du (dubnium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 3 2

106 Sg (seaborgium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 4 2

107 Bh (bohrium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 5 2

108 Hs (hassium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 6 2

109 Mt (meitnerium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 7 2

110 Ds (darmstadtium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 9 1
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Z Element
Ionization 

energy (eV)

K
n : 1
I : s

L
2

s p

M
3

s  p  d

N
4

s  p  d  f

O
5

s  p  d  f

P
6

s  p  d

Q
7

s  p

111 Rg (roentgenium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 1

112 Cn (copernicium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2

113 Unt (ununtrium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 1

114 Unq (ununquadium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 2

115 Unp (ununpentium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 3

116 Unh (ununhexium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 4

117 Uus (ununseptium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 5

118 Uno (ununoctium) 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 2 6
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Quantity Symbol Value Units

Universal constants 
Speed of light in vacuum (exact)
Permeability of vacuum 
  (magnetic constant) (exact)
Permittivity of vacuum 
  (electric constant) (exact)
Newtonian constant of gravitation
Planck constant
  in electron volts, h>{e}
  h>2p
  in electron volts, U>{e}
Planck mass, 1Uc>G21>2

Planck temperature, 1Uc5>G21>2>k
Planck length, U>mp  c = 1UG>c321>2

Planck time, 1lp>c2 = 1UG>c521>2

c
m0

P0

G
h

U

mp

Tp

lp

tp

299,792,458
4p * 1027 = 12.566370614 * 1027

1>m0 c2 = 8.854187817

6.6742 (10)
6.6260693 (11)
4.13566743 (35)
1.05457168 (18)
6.58211915 (56)
2.17654 (16)
1.41679 (11)
1.61624 (12)
5.39121 (40)

m # s21

N # A22

10212 F # m21

10211 m3 # kg21 # s22

10234 J # s
10215 eV # s
10234 J # s
10216 eV # s
1028 kg
1032 K
10235 m
10244 s

Electromagnetic constants
Elementary charge

Magnetic flux quantum, h>2e
Josephson constant 2e>h
von Klitzing constant, h>e2 = m0 c>2a
Bohr magneton, eU>2me

  in eV>T
Nuclear magneton, eU>2mp 
  in eV>T

e
e>h
F0

KJ

RK

mB

mN

1.60217653 (14)
2.41798940 (21)
2.06783372 (18)
483597.879 (41)
25812.807449 (86)
927.400949 (80)
5.788381804 (39)
5.05078343 (43)
3.152451259 (24)

10219 C
1014 A # J21

10215 Wb
109 Hz # V21

V
10224 J # T21

1025 eV # T21

10227 J # T21

1028 eV # T21

Fundamental Physical Constants
This set of fundamental physical constants consists of selected values recommended by CODATA, the Committee 
on Data for Science and Technology of the International Council of Scientific Unions, resulting from the most 
recent (2008) compilation and computations. The digits in parentheses are the one-standard-deviation uncertain-
ties in the last digits. (Reference: P. J. Mohr, B. N. Taylor, and D. B. Newell, http://www.physicstoday.org/guide/
fundconst.pdf.)

Appendix D

(Continued )
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Quantity Symbol Value Units

Atomic constants
Fine-structure constant, e2>4p0Uc 
  inverse fine-structure constant
Rydberg constant, me ca2>2h
  in hertz, R c
  in joules, R hc
  in eV, R   hc>{e}
Bohr radius

a
a21

R 

a0

7.297352568 (24)
137.03599911 (46)
10,973,731.568525 (73)
3.289841960360 (22)
2.17987209 (37)
13.6056923 (12)
0.5291772108 (18)

1023

m21

1015 Hz
10218 J
eV
10210 m

Electron
Mass

  in electron volts, me c2>{e}
Electron-muon mass ratio
Electron-tau mass ratio
Electron-proton mass ratio
Electron-deuteron mass ratio
Electron-a-particle mass ratio
Specific charge
Molar mass
Compton wavelength, h>me c
  lC>2p = aa0 = a2>4pR 

Classical radius, a2a0

Thomson cross section, 18p>32r 2
e

Magnetic moment
  in Bohr magnetons
  in nuclear magnetons
Magnetic moment anomaly,  me  >mB - 1
g factor, 22(1 1 ae)
Electron-muon magnetic moment ratio
Electron-proton magnetic moment ratio

me

me>mm

me>mt

me>mp

me>md

me>ma

-e>me

M(e)
lC

lC

re

se

me

me>mB

me>mN

ae

ge

me>mm

me>mp

9.1093826 (16)
5.4857990945 (24)
0.510998918 (44)
4.83633167 (13)
2.87564 (47)
5.4461702173 (25)
2.7244371095 (13)
1.37093355575 (61)
21.75882012 (15)
5.4857990945 (24)
2.426310238 (16)
386.1592678 (26)
2.817940325 (28)
0.665245873 (13)
2928.476412 (80)
21.0011596521859 (38)
21838.28197107 (85)
1.1596521859 (38)
22.0023193043718 (75)
206.7669894 (54)
2658.2106862 (66)

10231 kg
1024 u
MeV
1023

1024

1024

1024

1024

1011 C # kg21

1027 kg # mol21

10212 m
10215 m
10215 m
10228 m2

10226 J # T21

1023

Muon
Mass

  in electron volts, mm  c2>{e}
Muon-electron mass ratio
Muon-tau mass ratio
Molar mass
Magnetic moment
  in Bohr magnetons
  in nuclear magnetons
Magnetic moment anomaly,  
   mm  > 1eU>2 mm2 - 1
g factor, 22(1 1 am)
Muon-proton magnetic moment ratio

mm

mm>me

mm>mt
M(m)
mm

mm>mB

mm>mN

am

gm

mm>mp

1.88353140 (33)
0.1134289264(30)
105.6583692 (94)
206.7682838 (54)
5.94592 (97)
1.134289264 (34)
24.49044799 (40)
4.84197085 (15)
8.89059770 (27)
1.16591981 (62)

22.0023318396 (12)
23.183345118 (89)

10228 kg
u
MeV

1024 kg # mol21

10226 J # T21

1023

1023
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Quantity Symbol Value Units

Tau
Mass

  in electron volts

mt 3.16777 (52)
1.90768(31)
1776.99 (29)

10227 kg
u
MeV

Proton
Mass

  in electron volts
Proton-electron mass ratio
Proton-muon mass ratio
Specific charge
Molar mass
Compton wavelength, h>mp  c
  lC, p>2p
Magnetic moment
  in Bohr magnetons
  in nuclear magnetons
Diamagnetic shielding correction for protons  
  (H2O spherical sample, 25°C), 1 - m=

p>mp

Shielded proton moment 
  (H2O spherical sample, 25°C)
  in Bohr magnetons
  in nuclear magnetons
Gyromagnetic ratio

  uncorrected 
    (H2O, spherical sample, 25°C)

mp

mp>me

mp>mm

e>mp

M(p)
lC, p

lC

mp

mp>mB

mp>mN

sH2 O

m=
p

m=
p>mB

m=
p>mN

gp

gp>2p

g=p
g=p>2p

1.67262171 (29)
1.00727646688(13)
938.272029 (80)
1836.15267261 (85)
8.88024333 (23)
9.57883376 (82)
1.00727646688 (13)
1.3214098555 (88)
2.103089104 (14)
1.41060671 (12)
1.521032206 (15)
2.792847351 (28)

25.687 (15)
1.41057047 (12)
1.520993132 (16)
2.792775604 (30)
26,752.2205 (23)
42.5774813 (37)

26,751.5333 (23)
42.5763875 (37)

10227 kg
u
MeV

107 C # kg21

1023 kg # mol21

10215 m
10216 m
10226 J # T21

1023

1026

10226 J # T21

1023

104 sec21 # T21

MHz # T21

104 sec21 # T21

MHz # T21

Neutron
Mass

  in electron volts, mn  c2>{e}
Neutron-electron mass ratio
Neutron-proton mass ratio
Molar mass
Compton wavelength, h>mn  c
  lC, n>2p
Magnetic moment
  in Bohr magnetons
  in nuclear magnetons
Neutron-electron magnetic moment ratio
Neutron-proton magnetic moment ratio

mn

mn>me

mn>mp

M(n)
lC, n

lC, n

mn

mn>mB

mn>mN

mn>me

mn>mp

1.67492728 (29)
1.00866491560 (55)
939.565360 (81)
1838.6836598 (13)
1.00137841870 (58)
1.00866491560 (55)
1.3195909067 (88)
2.100194157 (14)
20.96623645 (24)
21.04187563 (25)
21.91304273 (45)
1.04066882 (25)
20.68497934 (16)

10227 kg
u
MeV

1023 kg # mol21

10215 m
10216 m
10226 J # T21

1023

1023

(Continued )
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Quantity Symbol Value Units

Deuteron
Mass

  in electron volts, md  c2>{e}
Deuteron-electron mass ratio
Deuteron-proton mass ratio
Molar mass
Magnetic moment
  in Bohr magnetons
  in nuclear magnetons
Deuteron-electron magnetic moment ratio
Deuteron-proton magnetic moment ratio

md

md>me

md>mp

M(d)
md

md>mB

md>mN

md>me

md>mp

3.34358335 (57)
2.01355321270 (35)
1875.61282 (16)
3670.4829652 (18)
1.99900750082 (41)
2.01355321270 (35)
0.433073482 (38)
0.4669754567 (50)
0.8574382329 (92)
20.4664345548 (50)
0.3070122084 (45)

10227 kg
u
MeV

1023 kg # mol21

10226 J # T21

1023

1023

Alpha particle
Mass
  in electron volts

ma 6.6446565 (11)
3727.37917 (32)

10227 kg
MeV

Physiochemical constants
Avogadro constant
Atomic mass constant, m1C122 >12
  in electron volts, mu  c2>{e}
Faraday constant
Molar Planck constant

Molar gas constant
Boltzmann constant, R>NA

  in electron volts, k>{e}
  in hertz, k>h
  in wavenumbers, k>hc
Molar volume (ideal gas),   
  RT>p (at 273.15 K, 101 325 Pa)
Loschmidt constant, NA>Vm

Stefan-Boltzmann constant,  
  1p2>602k4>h3

 c2

First radiation constant, 2phc2

Second radiation constant, hc>k
Wien displacement law constant,  
  lmax T = c2>4.96511423c

NA, L
mu

F
NAh
NAhc
R
k

Vm

n0

s

c1

c2

b

6.0221415 (10)
1.66053886 (28)
931.494043 (80)
96,485.3383 (83)
3.990312716 (27)
0.11962656572 (80)
8.314472 (15)
1.3806505 (24)
8.617343 (15)
2.0836644 (36)
69.50356 (12)

22.413996 (39)
2.6867773 (47)
5.670400 (40)

3.74177138 (64)
1.4387752 (25)

2.8977686 (51)

1023 mol21

10227 kg
MeV
C # mol21

10210 J # s # mol21

J # m # mol21

J # mol21 # K21

10223 J # K21

1025 eV # K21

1010 Hz # K21

m21 K21

1023 m23 # mol21

1025 m23

1028  W # m22 # K24

10216 W # m2

1022 m # K

1023 m # K

Conversion factors and units
Electron volt, 1e>C2J = {e} J
Atomic mass unit (unified),  
  mu = m1C122 >12
Standard atmosphere
Standard acceleration of gravity

eV
u

atm
gn

1.60217653 (14)
1.66053886 (28)

101,325
9.80665

10219 J
10227 kg

Pa
m # s22
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Length
1 km = 0.6215 mi
1 mi = 1.609 km
1 m = 1.0936 yd = 3.281 ft = 39.37 in

*1 in = 254 cm
*1 ft = 12 in = 30.48 cm
*1 yd = 3 ft = 91.44 cm
1 light-year = 1 c #  y = 9.467 * 1015 m

*1 Å = 0.1 nm

Area
*1 m2 = 104 cm2

1 km2 = 0.3861 mi2 = 247.1 acres
1 hectare = 104 m2 = 2.471 acres

*1 in2 = 6.4516 cm2

1 ft2 = 9.29 * 1022 m2

1 m2 = 10.76 ft2

*1 acre = 43,560 ft2

1 mi2 = 640 acres = 2.590 km2

Volume
*1 m3 = 106 cm3

*1 L = 1000 cm3 = 1023 m3 

1 gal = 3.786 L
1 gal = 4 qt = 8 pt = 128 oz = 231 in3

1 in3 = 16.39 cm3

1 ft3 = 1728 in3 = 28.32 L = 2.83 2 * 104 cm3

Time
*1 h = 60 min = 3.6 ks
*1 d = 24 h = 1440 min = 86.4 ks
1 y = 365.24 d = 31.56 Ms

Speed
1 km>h = 0.2778 m>s = 0.6215 m>h
1 mi>h = 0.4470 m>s = 1.609 km>h
1 mi>h = 1.467 ft>s

Angle and angular speed
*p rad = 180°
1 rad = 57.30°

1° = 1.745 * 1022 rad
1 rev>min = 0.1047 rad>s
1 rad>s = 9.549 rev>min

Mass
*1 kg = 1000 g
*1 metric ton = 1000 kg = 1 Mg
1 u = 1.6606 * 10227 kg
1 kg = 6.022 * 1026 u
1 slug = 14.59 kg
1 kg = 6.852 * 1022 slug
1 u = 931.50 MeV>c2

Density
*1 g>cm3 = 1000 kg>m3 = 1 kg>L
  11 g>cm32g = 62.4 lb>ft3

Force
1 N = 0.2248 lb = 105 dyn
1 lb = 4.4482 N
(1 kg)g = 2.2046 lb

Pressure
*1 Pa = 1 N>m2

*1 atm = 101.325 kPa = 1.01325 bars
1 atm = 14.7 lb>in2 = 760 mmHg

= 29.9 inHg = 33.8 ftH2O
1 lb>in2 = 6.895 kPa
1 torr = 1 mmHg = 133.32 Pa
1 bar = 100 kPa

Energy
*1 kW #  h = 3.6 MJ
*1 cal = 4.1840 J
1 ft #  lb = 1.356 J = 1.286 * 1023 Btu

*1 L #  atm = 101.325 J
1 L #  atm = 24.217 cal
1 Btu = 778 ft #  lb = 252 cal = 1054.35 J
1 eV = 1.602 * 10219 J
1 u #  c2 = 931.50 MeV

*1 erg = 1027 J

Conversion Factors
Conversion factors are written as equations for simplicity; relations marked with an asterisk are exact.

Appendix E
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Power
1 horsepower = 550 ft # lb>s = 745.7 W
1 Btu>min = 17.58 W
1 W = 1.341 * 10-3 horsepower

= 0.7376 ft # lb>s
1 W = 1 J>s

Magnetic field
*1 G = 1024 T
*1 T = 104 G

Thermal conductivity
1 W>m # K = 6.938 Btu # in>h # ft2 # F
1 Btu # in>h # ft2 # F = 0.1441 W>m # K
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Year Nobel Laureate  Citation For

1901 Wilhelm Konrad Röentgen 1845–1923 discovery of X rays

1902 Hendrik Antoon Lorentz
Pieter Zeeman

1853–1928
1865–1943

their researches into the influence of magnetism upon radiation
phenomena

1903 Antoine Henri Bequerel
Pierre Curie
Marie Sklowdowska-Curie

1852–1908
1859–1906
1867–1934

his discovery of spontaneous radioactivity
their joint researches on the radiation phenomena discovered by
Prof. Henri Bequerel

1904 Lord Rayleigh 
(John William Strutt)
Sir William Ramsay (C)

1842–1919

1851–1939

investigations of the densities of the most important gases and 
his discovery of argon
his discovery of the inert gaseous elements in air and his 
determination of their place in the periodic system

1905 Philipp Eduard Anton von 
Lenard

1862–1947 his work on cathode rays

1906 Joseph John Thomson 1856–1940 his theoretical and experimental investigations on the 
conduction of electricity by gases

1907 Albert Abraham Michelson 1852–1931 his optical precision instruments and the spectroscopic and 
metrological investigations carried out with their aid

1908 Gabriel Lippman

Ernest Rutherford (C)

1845–1921

1871–1937

his method of reproducing colors photographically based on 
the phenomena of interference
his investigations into the disintegration of the elements and 
the chemistry of radioactive substances

1909 Guglielmo Marconi
Carl Ferdinand Braun

1874–1937
1850–1918

their contributions to the development of wireless telegraphy

1910 Johannes Diderik van der 
Waals

1837–1923 his work on the state of equations of gases and liquids

1911 Wilhelm Wien
Marie Curie (C)

1864–1928
1867–1934

his discoveries regarding the laws governing the radiation of heat
her services to the advancement of chemistry by the discovery 
of the elements radium and polonium and by the isolation of 
radium and the study of its nature and compounds

Nobel Laureates in Physics
Listed are the names and a brief quotation from the award citation for all Nobel Laureates in physics. Included, too, 
are a few Nobel Laureates in chemistry whose work was very closely related to physics, this latter group with a (C) 
following their names. (The Royal Swedish Academy of Sciences, which awards the prizes, has generally consid-
ered the discovery of new elements to be chemistry rather than physics.)

Appendix F
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Year Nobel Laureate  Citation For

1912 Nils Gustaf Dalén 1869–1937 his invention of automatic regulators for use in conjunction 
with gas accumulators for illuminating lighthouses and buoys

1913 Heike Kamerlingh Onnes 1853–1926 his investigations of the properties of matter at low 
temperatures, which led, inter alia, to the production of liquid 
helium

1914 Max von Laue 1879–1960 his discovery of the diffraction of X rays by crystals

1915 Sir William Henry Bragg

William Lawrence Bragg

1862–1942

1890–1971

their service in the analysis of crystal structure by means of X rays

1917 Charles Glover Barkla 1877–1944 his discovery of the characteristic X rays of the elements

1918 Max Planck 1858–1947 his discovery of energy quanta

1919 Johannes Stark 1874–1957 his discovery of the Doppler effect in canal rays and of the 
splitting of spectral lines in electric fields

1920 Charles-Édouard 
Guillaume

1861–1938 the service he has rendered to precise measurement in physics 
by his discovery of anomalies in nickel steel alloys

1921 Albert Einstein

Frederick Soddy (C)

1879–1955

1877–1956

his services to Theoretical Physics, and especially for his 
discovery of the law of the photoelectric effect
his contributions to our knowledge of the chemistry of 
radioactive substances, and his investigations into the origin 
and nature of isotopes

1922 Neils Bohr

Francis W. Aston (C)

1885–1962

1877–1945

his investigation of the structure of atoms and the radiation 
emanating from them
his discovery, by means of his mass spectrograph, of isotopes 
in a large number of nonradioactive elements, and for his 
enunciation of the whole-number rule

1923 Robert Andrews Millikan 1868–1953 his work on the elementary charge of electricity and on the 
photoelectric effect

1924 Karl Manne Georg 
Siegbahn

1886–1978 his discoveries and researches in the field of X ray 
spectroscopy

1925 James Franck
Gustav Hertz

1882–1964
1887–1975

their discovery of the laws governing the impact of an electron
upon an atom

1926 Jean-Baptiste Perrin 1870–1942 his work on the discontinuous structure of matter, and 
especially for his discovery of sedimentation equilibrium

1927 Arthur Holly Compton
Charles Thomson Rees 
Wilson

1892–1962
1869–1959

his discovery of the effect named after him
his method of making the paths of electrically charged particles 
visible by condensation of vapor

1928 Owen Willans Richardson 1879–1959 his work on the thermionic phenomenon, and especially for the 
discovery of the law named after him

1929 Prince Louis-Victor de 
Broglie

1892–1987 his discovery of the wave nature of electrons
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1930 Sir Chandrasekhara 
V. Raman

1888–1970 His work on the scattering of light and the discovery of the 
effect named after him

1932 Werner Heisenberg 1901–1976 the creation of quantum mechanics, the application of which 
has, inter alia, led to the discovery of the allotropic forms of 
hydrogen

1933 Erwin Schrödinger 1887–1961 their discovery of new productive forms of atomic theory

Paul Adrien Maurice Dirac 1902–1984

1934 Harold C. Urey (C) 1893–1991 his discovery of heavy hydrogen

1936 Victor Franz Hess
Carl David Anderson
Peter Debye (C)

1883–1964
1905–1991
1884–1966

his discovery of cosmic radiation
his discovery of the positron
his contributions to our knowledge of molecular structure 
through his investigations on dipole moments and on the 
diffraction of X rays and electrons in gases

1937 Clinton Joseph Davisson
George Paget Thomson

1881–1958
1892–1975

their experimental discovery of the diffraction of electrons
by crystals

1938 Enrico Fermi 1901–1954 his demonstrations of the existence of new radioactive 
elements produced by neutron irradiation, and for his related 
discovery of nuclear reactions brought about by slow neutrons

1939 Ernest Orlando Lawrence 1901–1958 the invention and development of the cyclotron and for results 
obtained with it, especially with regard to artificial radioactive 
elements

1943 Otto Stern 1888–1969 his contributions to the development of the molecular ray 
method and his discovery of the magnetic moment of the 
proton

1944 Isidor Issac Rabi

Otto Hahn (C)

1898–1988

1879–1968

his resonance method for recording the magnetic properties of 
atomic nuclei
his discovery of the fission of heavy nuclei

1945 Wolfgang Pauli 1900–1958 his discovery of the Exclusion Principle, also called the Pauli 
Principle

1946 Percy Williams Bridgman 1882–1961 the invention of an apparatus to produce extremely high 
pressures and for the discoveries he made in the field of high 
pressure physics

1947 Sir Edward Victor 
Appleton

1892–1965 his investigations of the physics of the upper atmosphere, 
especially for the discovery of the Appleton layer

1948 Patrick Maynard Stuart 
Blackett

1897–1974 his development of the Wilson cloud chamber method and 
his discoveries therewith in nuclear physics and cosmic 
radiation

1949 Hideki Yukawa 1907–1981 his prediction of the existence of mesons on the basis of 
theoretical work on nuclear forces

(Continued )
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1950 Cecil Frank Powell 1903–1969 his development of the photographic method of studying 
nuclear processes and his discoveries regarding mesons made 
with this method

1951 Sir John Douglas Cockcroft
Ernest Thomas Sinton 
Walton
Edwin M. McMillan (C)
Glenn T. Seaborg (C)

1897–1967
1903–1995

1907–1991
1912–1999

their pioneer work on the transmutation of atomic nuclei by
artificially accelerated atomic particles

their discoveries in the chemistry of the transuranium elements

1952 Felix Bloch
Edward Mills Purcell

1905–1983
1912–1997

the development of new methods for nuclear magnetic precision
measurements and discoveries in connection therewith

1953 Frits Zernike 1888–1966 his demonstration of the phase contrast method, especially for 
his invention of the phase contrast microscope

1954 Max Born

Walter Bothe

1882–1970

1891–1957

his fundamental research in quantum mechanics, especially his 
statistical interpretation of the wave function
the coincidence method and his discoveries made therewith

1955 Willis Eugene Lamb Jr.

Polykarp Kusch

1913–2008

1911–1993

his discoveries concerning the fine structure of the hydrogen 
spectrum
his precision determination of the magnetic moment of the 
electron

1956 William Shockley
John Bardeen
Walter Houser Brattain

1910–1989
1908–1991
1902–1987

their investigations on semiconductors and their discovery of the
transistor effect

1957 Chen Ning Yang
Tsung Dao Lee

b. 1922
b. 1926

their penetrating investigation of the parity laws, which led to
important discoveries regarding elementary particles

1958 Pavel Alekseyevich 
Cherenkov
Ilya Mikhaylovich Frank
Igor Yevgenyevich Tamm

1904–1990

1908–1990
1895–1971

their discovery and interpretation of the Cherenkov effect

1959 Emilio Gino Segrè
Owen Chamberlain

1905–1989
1920–2006

their discovery of the antiproton

1960 Donald Arthur Glaser
Willard F. Libby (C)

b. 1926
1908–1980

the invention of the bubble chamber
his method to use 14C for age determination in several branches 
of science

1961 Robert Hofstadter

Rudolf Ludwig Mössbauer

1915–1990

b. 1929

his pioneering studies of electron scattering in atomic nuclei 
and for his discoveries concerning the structure of the nucleon 
achieved thereby
his researches concerning the resonance absorption of g rays 
his discovery in this connection of the effect that bears his name

1962 Lev Davidovich Landau 1908–1968 his pioneering theories of condensed matter, especially liquid 
helium
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1963 Eugene Paul Wigner

Maria Goeppert Mayer
J. Hans D. Jensen

1902–1995

1906–1972
1907–1973

his contributions to the theory of the atomic nucleus and the 
elementary particles, particularly through the discovery and 
application of fundamental symmetry principles
their discoveries concerning nuclear shell structure

1964 Charles H. Townes
Nikolai G. Basov
Alexander M. Prokhorov

b. 1915
1922–2001
1916–2002

fundamental work in the field of quantum electronics, which
has led to the construction of oscillators and amplifiers
based on the maser-laser principle

1965 Shin’ichiro Tomonaga
Julian Schwinger
Richard P. Feynman

1906–1979
1918–1994
1918–1988

their fundamental work in quantum electrodynamics, 
with profound consequences for the physics of elementary 
particles

1966 Alfred Kastler 1902–1984 the discovery and development of optical methods for studying 
Hertzian resonance in atoms

1967 Hans Albrecht Bethe 1906–2005 his contributions to the theory of nuclear reactions, especially 
his discoveries concerning the energy production in stars

1968 Luis W. Alvarez 1911–1988 his decisive contributions to elementary particle physics, in 
particular the discovery of a large number of resonance states 
made possible through his development of the techniques of 
using the hydrogen bubble chamber and data analysis

1969 Murray Gell-Mann b. 1929 his contributions and discoveries concerning the classification 
of elementary particles and their interactions

1970 Hannes Alfvén

Louis-Eugène-Félix Néel

1908–1995

1904–2000

fundamental work and discoveries in magnetohydrodynamics 
with fruitful applications in different parts of plasma physics
fundamental work and discoveries concerning antiferromagnetism 
and ferrimagnetism, which have led to important applications 
in solid-state physics

1971 Dennis Gabor 1900–1979 his invention and development of the holographic method

1972 John Bardeen
Leon N. Cooper
J. Robert Schrieffer

1908–1991
b. 1930
b. 1931

their theory of superconductivity, usually called the BCS theory

1973 Leo Esaki
Ivar Giaever
Brian D. Josephson

b. 1925
b. 1929
b. 1940

their experimental discoveries of tunneling phenomena in
semiconductors and superconductors, respectively
his theoretical predictions of the properties of a supercurrent 
through a tunnel barrier, in particular those phenomena which 
are generally known as Josephson effects

1974 Antony Hewish
Sir Martin Ryle

b. 1924
1918–1984

the discovery of pulsars
his observations and inventions in radio astronomy

1975 Aage Bohr
Ben R. Mottleson
L. James Rainwater

1922–2009
b. 1926
1917–1986

the discovery of the connection between collective motion
and particle motion in atomic nuclei and for the theory of the
structure of the atomic nucleus based on this connection

1976 Burton Richter
Samuel Chao Chung Ting

b. 1931
b. 1936

their pioneering work in the discovery of a heavy elementary
particle of a new kind

(Continued )
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1977 Philip Warren Anderson
Nevill Francis Mott
John Hasbrouck Van Vleck

b. 1923
1905–1996
1899–1980

their fundamental theoretical investigations of the electronic
structure of magnetic and disordered systems

1978 Pyotr L. Kapitza

Arno A. Penzias
Robert Woodrow Wilson

1894–1984

b. 1933
b. 1936

his basic inventions and discoveries in the area of 
low-temperature physics
their discovery of cosmic microwave background radiation

1979 Sheldon Lee Glashow
Abdus Salam
Steven Weinberg

b. 1932
1926–1996
b. 1933

their contributions to the theory of the unified weak and
electromagnetic interaction between elementary particles,
including, inter alia, the prediction of the weak neutral current

1980 James W. Cronin
Val L. Fitch

b. 1931
b. 1923

the discovery of violations of fundamental symmetry principles
in the decay of neutral K-mesons

1981 Nicolaas Bloembergen
Arthur L. Schawlow
Kai M. Siegbahn

b. 1920
1921–1999
1918–2007

their contributions to the development of laser spectroscopy

his contribution to the development of high-resolution electron 
spectroscopy

1982 Kenneth G. Wilson b. 1936 his theory for critical phenomena in connection with phase 
transitions

1983 Subrahmanyan 
Chandrasekhar
William A. Fowler

1910–1995

1911–1995

his theoretical studies of the physical processes of importance 
to the structure and evolution of the stars
his theoretical and experimental studies of the nuclear 
reactions of importance in the formation of the chemical 
elements in the universe

1984 Carlo Rubbia
Simon van der Meer

b. 1934
1925–2011

their decisive contributions to the large project, which led to the
discovery of the field particles W and Z, communicators of the 
weak interaction

1985 Klaus von Klitzing b. 1943 the discovery of the quantized Hall effect

1986 Ernst Ruska

Gerd Binnig
Heinrich Rohrer

1906–1988

b. 1947
b. 1933

his fundamental work in electron optics and for the design of 
the first electron microscope
their design of the scanning tunneling microscope

1987 J. Georg Bednorz
Karl Alex Müller

b. 1950
b. 1927

their important breakthrough in the discovery of 
superconductivity in ceramic materials

1988 Leon M. Lederman
Melvin Schwartz
Jack Steinberger

b. 1922
1932–2006
b. 1921

the neutrino beam method and the demonstration of the
doublet structure of the leptons through the discovery of
the muon neutrino

1989 Hans G. Dehmelt
Wolfgang Paul
Norman F. Ramsey

b. 1922
1913–1993
1915–2011

their development of the ion trap technique

the invention of the separated oscillatory fields method and its 
use in the hydrogen maser and other atomic clocks
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1990 Jerome I. Friedman
Henry W. Kendall
Richard E. Taylor

b. 1930
1926–1999
b. 1929

their pioneering investigations concerning deep inelastic
scattering of electrons on protons and bound neutrons which
have been of essential importance for the development of the 
quark model in particle physics

1991 Pierre-Gilles de Gennes 1932–2007 his discovering that methods developed for studying ordered 
phenomena in simple systems can be generalized to more 
complex forms of matter, in particular, to liquid crystals and 
polymers

1992 Georges Charpak 1924–2010 his invention and development of particle detectors, 
particularly multi-wire proportional counters

1993 Joseph H. Taylor, Jr.
Russell A. Hulse

b. 1941
b. 1950

their discovery of rare binary pulsars

1994 Bertram N. Brockhouse
Clifford G. Shull

1918–2003
1915–2001

their pioneering contributions to the development of neutron
scattering techniques for studies of condensed matter

1995 Martin Perl
Frederick Reines

b. 1927
1918–1998

for his discovery of the tau lepton
for his discovery of the neutrino

1996 David Lee
Douglas Osheroff
Robert Richardson

b. 1931
b. 1945
b. 1937

for their discovery of the superfluid phase of 3He

1997 Steven Chu
Claude Cohen-Tannoudji
William Phillips

b. 1948
b. 1933
b. 1948

for their development of techniques to chill atoms to millionths
of a kelvin above absolute zero and to trap them with laser light

1998 Robert B. Laughlin
Horst L. Störmer
Daniel C. Tsui

b. 1950
b. 1949
b. 1939

for their discovery of a new form of quantum fluid with
fractiionally charged excitations

1999 Gerardus’t Hooft
Martinus J. G. Veltman

b. 1946
b. 1931

for elucidating the quantum structure of electroweak interactions
in physics

2000 Zhores I. Alferov
Herbert Kroemer
Jack S. Kilby

b. 1930
b. 1928
1923–2005

for basic work on information technology

for his part in the invention of the integrated circuit

2001 Eric A. Cornell
Wolfgang Ketterle
Carl E. Wieman

b. 1961
b. 1957
b. 1951

for the achievement of Bose-Einstein condensation in dilute
gases of alkali atoms and early fundamental studies of the
properties of the condensates

2002 Raymond Davis, Jr.
Masatoshi Koshiba
Riccardo Giacconi

1914–2006
b. 1926
b. 1931

their pioneering contributions to astrophysics, in particular the
detection of cosmic neutrinos
his pioneering contributions to astrophysics, which have led to 
the discovery of cosmic x-ray sources

2003 Alexei A. Abrikosov
Vitaly L. Ginzburg
Anthony J. Leggett

b. 1928
1916–2009
b. 1938

for pioneering contributions to the theory of superconductors 
and superfluids

(Continued )
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2004 David J. Gross
H. David Politzer
Frank Wilczek

b. 1941
b. 1949
b. 1951

for the discovery of asymptotic freedom in the theory of the
strong interaction

2005 Roy J. Glauber
John L. Hall
Theodor W. Hänsch

b. 1925
b. 1934
b. 1941

for his contribution to the quantum theory of optical coherence
for their contributions to the development of laser-based 
precision spectroscopy, including the optical frequency combo 
technique

2006 John C. Mather
George F. Smoot

b. 1946
b. 1945

for their discovery of the blackbody form and anisotropy of the
cosmic microwave background radiation

2007 Albert Fert
Peter Grünberg

b. 1938
b. 1939

the discovery of Giant Magnetoresistance

2008 Yoichiro Nambu

Makoto Kobayashi
Toshihide Maskawa

b. 1921

b. 1944
b. 1940

for the discovery of the mechanism of spontaneous broken 
symmetry in subatomic physics
for the discovery of the origin of the broken symmetry which 
predicts the existence of at least three families of quarks in 
nature

2009 Charles Kuen Kao

Willard S. Boyle
George E. Smith

b. 1933

b. 1924
b. 1930

for groundbreaking achievements concerning the transmission 
of light fibers for optical communication
for the invention of an imaging semiconductor circuit – the 
CCD sensor

2010 Andre Geim
Konstantin Novoselov

b. 1958
b. 1974

for groundbreaking experiments regarding the two-dimensional 
material graphene

2011 Saul Perlmutter
Brian P. Schmidt
Adam G. Riess

b. 1959
b. 1967
b. 1969

for the discovery of the accelerating expansion of the universe 
through observations of distant supernovae
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AN-1  

Answers

This section gives answers to selected problems at the end of each chapter. The 
results are usually rounded to three significant figures. Differences in the third 
significant figure may result from rounding and are not important. Complete 
solutions to the selected problems are given in the Student’s Solution Manual (SSM). 
When the answer to a given problem is a diagram, graph, derivation, or proof, 
reference is made to the SSM where the solution appears.

Chapter 1	 1-1	 (a) 4.4 * 108 m>s;  (b) no, since the droid is moving faster than light speed relative to Hoth.

	 1-5.	 (a) At t = 2 s, a bright circle reflected from a great circle perpendicular to the motion; 
(b) at t = 2 s, the entire interior lights up.

	 1-9.	 Dt  4.63 * 10-13 s.

	 1-13.	 (a) 3.76 * 1025 s;  (b) 2.0 * 1025 s.

	 1-17.	 (a) See Student’s Solution Manual (SSM);  (b) when 10 s have passed on the rocket’s clock, 
only 6 s have passed on the lab clock.

	 1-21.	 0.14c.

	 1-25.	 0.527c.

	 1-29.	 (a) In S9 : V9 = 16 m3; in S : V = 12.2 m3;   (b) see SSM.

	 1-33.	 657.0 nm, 662.9 nm, 725.6 nm.

	 1-37.	 3.0 m.

	 1-42.	 9.6 ms.

	 1-46.	 (a) See SSM;   (b) v = 1.44 * 108 m>s;   (c) 4.39 ms;   (d) 4.39 ms.

	 1-50.	 (a) v = 0.5c in the 2x direction;   (b) 1.7 y;   (c) 0.866c # y;   (d) spacelike; 
(e) 0.866c # y.

	 1-54.	 9 = 0.494vy>c.

	 1-58.	 (a) 120 min;   (b) 240 min;   (c) identical.

	 1-62.	 (a) A S B: T>2 + 2vL> 1c2 - v22; B S A: T>2 + 2vL> 1c2 - v22; 
(b) 4vL> 1c2 - v22.

Chapter 2	 2-1.	 See SSM.

	 2-5.	 1.1 * 10216 kg

	 2-9.	 (a) 0.99998898c;   (b) 3.94 * 104 GeV>c;   (c) 1.68 * 107 GeV; 1.68 * 107 GeV>c.

	 2-13.	 (a) 3.5 * 1027;   (b) 0.0079.

	 2-17.	 6.26 MeV.

	 2-21.	 280 MeV.

	 2-25.	 See SSM.

	 2-29.	 m = 1673 MeV>c2, u = 0.286c.
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AN-2	 Answers

	 2-34.	 (c) is correct.

	 2-39.	 8.62 ms.

	 2-43.	 (a) 1.73 * 105 m>s;   (b) 1.5 * 105 m>s;   (c) 155 kg.

	 2-47.	 See SSM.

	 2-51.	 (a) v = E>Mc;   (b) Dx = EL>Mc2;   (c) m  E>c2.

	 2-55.	 (a) See SSM;   (b) see SSM.

Chapter 3	 3-1.	 Proton, 6.5 * 1022 m; electron, 3.6 * 1025 m; deuteron, 0.13 m; H2, 0.13 m; 
helium, 0.26 m.

	 3-5.	 (a) 2.2 mm;   (b) 9.1 * 109 Hz, 1.1 * 10210 s.

	 3-9.	 See SSM.

	 3-13.		 5.67 * 10-8 W>m2 K4.

	 3-17.	 16 R1.

	 3-21.	 278.3 K (5.3 °C).

	 3-25.	 (a) 255 nm;   (b) 1.4 * 1024.

	 3-29.	 (a) 1.03 * 1015 Hz;   (b) ultraviolet.

	 3-33.	 4.14 * 1023 nm; 5.8 %.

	 3-38.	 0.243 nm.

	 3-42.	 (a) Electron, 0.00243 nm; proton, 1.32 fm;   (b) electron, 0.510 MeV; proton, 939 MeV.

	 3-47.	 (a) 2.08 eV;   (b) 4.95 * 1014 Hz;   (c) 4.19 * 10-15 eV>Hz.

	 3-51.	 See SSM.

	 3-55.	 See SSM.

	 3-59.	 (a) 0.0309 nm, 0.1259 nm;   (b) 9.90 keV.

Chapter 4	 4-1.	 Lyman, 91.16 nm; Balmer, 364.6 nm; Paschen, 820.4 nm.

	 4-5.	 4103 nm.

	 4-9.	 45.5 fm; 29.5 fm; 19.0 fm.

	 4-13.	 (a) 1.91 nm;   (b) 0.95 nm.

	 4-17.	 8.22 * 1014 Hz; 8.22 * 106 revolutions.

	 4-21.	 See SSM.

	 4-25.	 (a) 19.0 mm;   (b) 3.65 * 103 m>s.

	 4-29.	 680 fm.

	 4-33.	 1.90 * 10-8 Hz-1>2.

	 4-37.	 10.2 V.

	 4-43.	 (a) 1.054 * 1023 A;   (b) 9.27 * 10224 A # m2.

	 4-47.	 (a) Lyman a: n = 6 S n = 3; Lyman b: n = 9 S  n = 3;   (b) Dl = 0.056 nm.

	 4-51.	 (a) b = R cos1>22;   (b) I0 R2
 cos21>22;   (c) pR2;   (d) see SSM.

	 4-55.	 For n = 1: v = 0.0075cZ1>2; E = -14.4Z eV.

	 4-59.	 10; 1,042.

Chapter 5	 5-1.	 (a) 2.1 * 10-23 m;   (b) 2.1 * 10-21 m>y.

	 5-5.	 0.0276 nm.

	 5-9.	 (a) 0.445 fm;   (b) 6.18 * 1023 fm.

	 5-13.	 3.0 * 1023 eV.
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Answers       AN-3

	 5-17.	 (a) See SSM;   (b) 50 m>s;   (c) 50 m>s;   (d) Dx = 5p m; Dk = 0.4 m21.

	 5-21.	 3.2 * 1025 s.

	 5-25.	 (a) A2dx;   (b) 0.61A2dx;   (c) 0.14A2dx;   (d) x = 0.

	 5-29.	 1.99 * 10221 eV.

	 5-33.	 (a) 5.3 * 10221 eV;   (b) 1.32 * 1027 eV.

	 5-37.	 See SSM.

	 5-43.	 See SSM.

	 5-47.	 (a) 1840 MeV;   (b) 2.02 fm;   (c) 1.22 fm;   (d) 0.76 fm.

	 5-51.	 (a) 0.243 nm;   (b) 0.511 MeV;   (c) 0.511 MeV>c;   (d) 2.43 * 1023 nm.

	 5-55.	 1.2 * 1026 eV, 1.2 eV.

Chapter 6	 6-1.	 See SSM.

	 6-5.	 See SSM.

	 6-9.	 (a) 0.021 eV;   (b) 205 MeV.

	 6-13.	 (a) Dx = 1026 m; Dp = 10-16 kg # m>s;   (b) 9 * 1011.

	 6-17.	 See SSM.

	 6-22.	 1.21 * 1027 N.

	 6-26.	 0.87 nm.

	 6-30.	 (a) L>2;   (b) 0.328L2.

	 6-34.	 8x9 = 0; 8x 29 = U> 12m2
	 6-38.	 (a) See SSM;   (b) 8x9 = 0;   (c) 8x 29 = 3U> 12m2;   (d) 8V1x2 9 = 3U>4.

	 6-42.	 (a) 2.33 * 10234 J;   (b) 2.1 * 1028;   (c) 0.70 Hz.

	 6-47.	 (a) 4.3 * 1026 is the transmitted fraction;   (b) see SSM.

	 6-51.	 (a) R = 0.111; T = 0.889;   (b) ) R = 0.111; T = 0.889.

	 6-55.	 8Ek9 = U2> 12mL22.
	 6-59.	 (a) 4.95 * 10213;   (b) 0.197.

	 6-63.	 (a) 0.39c;   (b) see SSM;   (c) 8.03 * 105 eV;   (d) 3.76 * 105 eV.

Chapter 7	 7-1.	 11E0, 12E0, 14E0. The 1st, 2nd, 3rd, and 5th excited states are degenerate.

	 7-5.	 (a) See SSM;   (b) 1, 1, 4 and 1, 2, 2.

	 7-9.	 (a) 0, 1, 2;   (b) for / = 0, m = 0; for / = 1, m = {1,0; for / = 2, m = {2, {1,0; 
(c) 18.

	 7-13.	 (a) 2U2;   (b) 6U2;   (c) 5U2;   (d) n = 3.

	 7-17.	 (a) n = 6, / = 3;   (b) 20.38 eV;   (c) 3.65 * 10234 J # s;   (d) {3U, {2U, {U, 0.

	 7-22.	 See SSM.

	 7-26.	 (a) 0.60611>a023>2>232p;   (b) 0.36811>a023> 132p2;   (c) 0.368> 18a02.
	 7-30.	 See SSM.

	 7-34.	 (a) 4;   (b) 3.

	 7-38.	 See SSM.

	 7-43.	 See SSM.

	 7-47.	 Sn: 1s22s22p63s23p63d104s24p64d105s25p2

		  Nd: 1s22s22p63s23p63d104s24p64d105s25p64f46s2

		  Yb: 1s22s22p63s23p63d104s24p64d104f145s25p66s2

	 7-51.	 (a) Silicon, Si;   (b) calcium, Ca.
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	 7-55.	 Similar to H: Li, Rb, Ag, and Fr.

		  Similar to He: Ca, Ti, Cd, Ba, Hg, and Ra.

	 7-59.	 D5>2 S P1>2 is j forbidden.

	 7-63.	 (a) 2.90 * 1026 eV;   (b) 7.83 * 1024 nm;   (c) 0.638 T.

	 7-67.	 (a) 1.67 * 106 m>s2;   (b) 1.95 cm.

	 7-71.	 (a) See SSM;   (b) see SSM.

	 7-75.	 (a) through   (e) see SSM.

Chapter 8	 8-1.	 (a) 1930 m>s;   (b) 1.01 * 104 K.

	 8-5.	 (a) 3400 J;   (b) one mole of any gas has the same translational energy at the same 
temperature.

	 8-9.	 See SSM.

	 8-13.	 Cv = R, Cp = 2R, and g = 2.

	 8-17.	 (a) n2>n1 and n3>n1 are both  0;   (b) 19,760 K;   (c) 0.7%.

	 8-21.	 See SSM.

	 8-25.	 See SSM.

	 8-29.	 See SSM.

	 8-33.	 See SSM.

	 8-37.	 (a) fFD1E2 = 3e101E-EF2>EF + 14 -1;   (b) see SSM.

	 8-41.	 8EK1escape2 9 = 2kT .

	 8-45.	 See SSM.

Chapter 9	 9-1.	 (a) 23.06 kcal>mol;   (b) 98.5 kcal>mol;   (c) 1.08 eV>molecule.

	 9-5.	 (a) 25.39 eV;   (b) 4.83 eV;   (c) 0.46 eV.

	 9-9.	 For KBr: 0.19 eV; for RbCl: 0.23 eV.

	 9-13.	 2.63 * 10229 C # m.

	 9-17.	 (a) 0.67 nm;   (b) 55 nm;   (c) see SSM.

	 9-21.	 1.78 * 1024 eV.

	 9-25.	 (a) 18.6 u;   (b) 0.280 nm.

	 9-30.	 0.04 * 1025 eV.

	 9-34.	 About 5.5 * 1031.

	 9-38.	 1.28 * 1016>s.

	 9-42.	 (a) 8.47 * 1025 radians;   (b) 5.08 * 10-3 W>cm2.

	 9-47.	 (a) E3 = 1.44 * 1023 eV, E2 = 9.61 * 1024 eV, E1 = 4.79 * 1024 eV, vibrational states 
(note equal spacing); see SSM;   (b) 0.215 nm.

	 9-51.	 480 N>m.

	 9-55.	 (a) 0.31 eV;   (b) 8.9 * 10214 eV # nm20.

	 9-59.	 (a) 4.58 * 10248 kg # m2;   (b) 1.32 * 1014 Hz.

Chapter 10	 10-1.	 4.64.

	 10-5.	 4.09 eV>atom.

	 10-9.	 4.18.

	 10-13.	 (a) 5.86 * 1022>cm3;   (b) 5.90 * 1022>cm3.

	 10-17.	 1.87 eV.
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Answers       AN-5

	 10-21.	 (a) 34.2 nm;   (b) 41.4 nm;   (c) 43.1 nm.

	 10-25.	 6.7 * 1023.

	 10-29.	 (a) 0.37 eV;   (b) 4300 K.

	 10-33.	 See SSM.

	 10-37.	 (a) 27.8 mV;   (b) 212.0 mV.

	 10-41.	 For 206Pb: 7.217 K; for 207Pb: 7.200 K; for 208Pb: 7.183 K.

	 10-45.	 (a) 0.95;   (b) 0.71;   (c) 0.32.

	 10-50.	 (a) See SSM;   (b) see SSM;   (c) 0.0055.

	 10-55.	 silicon: 3.17 nm; germanium: 8.46 nm.

	 10-59.	 (a) 1.28 * 1013 Hz;   (b) 23.4 mm.

Chapter 11	 11-1.	 See SSM.

	 11-5.	 See SSM.

	 11-9.	 (a) 6.46 MeV>nucleon;   (b) 7.47 MeV>nucleon;   (c) 8.77 MeV>nucleon.

	 11-13.	 (a) 2.70 fm, 3.53 fm;   (b) 4.26 fm, 5.57 fm;   (c) 6.34 fm, 8.30 fm.

	 11-17.	 (a) 5.21 h;   (b) 3.11 * 106 atoms.

	 11-21.	 33.2 min.

	 11-25.	 A = 191; B = –72.2.

	 11-29.	 1.00 MeV.

	 11-33.	 93 keV.

	 11-37.	 789 MeV>c2.

	 11-41.	 36S, 53Mn, 82Ge, 88Sr, 94Ru, 131In, 145Eu.

	 11-45.	 30
14 Si, j = 0; 37

17 Cl, j = 3>2; 55
27 Co, j = 7>2; 90

40 Zr, j = 0; 107
49 In, j = 9>2.

	 11-49.	 (a) 24.97 MeV;   (b) 1.92 MeV.

	 11-53.	 224 MeV.

	 11-57.	 1.78 * 1014 atoms>s.

	 11-61.	 (a) 8.78 * 1012 J;   (b) 145 y.

	 11-65.	 1.90 * 109 y.

	 11-69.	 (a) 10213;   (b) 0.149 mg;   (c) 2.15 * 104 y.

	 11-73.	 See SSM.

	 11-77.	 (a) 5.06 * 1026 eV;   (b) 4.71 * 1022 eV;   (c) 1.17 cm>s.

	 11-81.	 (a) 141Ba: 6.24 * 10215 m; 92Kr: 5.42 * 10215 m;   (b) 249 MeV.

	 11-85.	 7.03 * 108 y.

	 11-89.	 (a) See SSM;   (b) 51.7 MeV;   (c) 1.43 MeV;   (c) 96.5 MeV.

	 11-93.	 (a) See SSM;   (b) see SSM;   (c) see SSM;   (d) see SSM;   (e) see SSM.

	 11-97.	 (a) See SSM;   (b) 8.66 * 104.

	 11-101.	 (a) 137%;   (b) 0.00498.

Chapter 12	 12-1.	 (a) See SSM;   (b) 139.6 MeV;   (c) 8.88 fm.

	 12-5.	 (a) 1.711 MeV;   (b) 78.5 eV;   (c) 2.16 MeV>c.

	 12-9.	 (a) Weak;   (b) electromagnetic;   (c) strong;   (d) weak.

	 12-13.	 m  22 eV>c2.   

	 12-17.	 (a) Conservation of energy and lepton number are violated.   (b) Conservation of energy is 
violated.  
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AN-6	 Answers

(c) Conservation of linear momentum is violated.   (d) No conservation laws are violated.  
(e) Conservation of lepton number is violated.   (f) Conservation of baryon number is 
violated.

	 12-22.	 (a) Conservation of lepton number is violated.   (b) Allowed.   (c) Allowed.  
(d) Conservation of baryon number and angular momentum are violated.  
(e) Allowed.

	 12-26.	 See SSM.

	 12-30.	 uuu.

	 12-34.	 2138.3 MeV; energy is not conserved.

	 12-38.	 (a) cd;   (b) cd.

	 12-42.	 (a) Energy is not conserved.   (b) Angular momentum is not conserved.   (c) Angular 
momentum is not conserved.

	 12-46.	 (a) The final products are all stable.   (b) See SSM.   (c) See SSM.   (d) No. Energy is not 
conserved.

	 12-51.	 (a) No conservation laws are violated.   (b) Conservation of energy and baryon number are 
violated.   (c) No conservation laws are violated.

	 12-55.	 (a) 1193 MeV;   (b) 77 MeV>c;   (c) 2.66 MeV;   (d) 74.3 MeV.

Chapter 13	 13-1.	 25.3 d.

	 13-5.	 16.9 eV>c2.

	 13-9.	 17.0 pc.

	 13-13.	 (a) 9400 y;   (b) Rstar = 1.96R} using the Te relation.

	 13-17.	 (a) 3.60 * 109 c # y;   (b) 10%.

	 13-22.	 5.5 * 1097 kg>m3; 1.67 * 1018 kg>m3; 2.45 * 104 kg>m3.

	 13-26.	 See SSM.

	 13-31.	 (a) 8.33 * 1056;   (b) 8.89 * 1044 J;   (c) 1.7 * 1010 y.

	 13-35.	 0.001 “new” H atoms>m3 # 106 y; no.

	 13-39.	 (a) See SSM;   (b) 1.1 * 10212 cm3;   (c)  0.1%M}.

TIPLER_ANS_AN1–AN6-hr.indd   6 11/10/11   3:53 PM



I-1  

A
A Cold Dark Matter, 690
Abell 2218, 106
Absolute magnitude (M), 654
Absorption, 405
Absorption spectra. See Spectra
ac Josephson effect, 483
Accelerator mass spectroscopy (AMS), 553, 

563–565, 564, 565
Accelerators, particle, 71, 493, 532, 580–581

and liquid helium, 347
and the quark model of hadrons, 609
and relativistic momentum, 67
and superconductivity, 475

Acceptor levels, 462
Accretion disks, 664, 664
Active galaxies, 675–676, 677
Active Sun, 647–649
Advanced Laser Interferometer 

Gravitational-Wave Observatory 
(LIGO), 111, 111

Akimitsu, Jun, 473
Alkali atoms, excited states of, 309–311, 311
Alley, C.O., 33
Alpha decay, 265–267, 512–514

and decay chains, 512–513, 513
energetics of, 514*

Alpha particles (a), 185, 493
scattering of, and atomic models, 156–165, 

157, 158, 159, 160, 163, 164, 493
Amaldi, Edoardo, 570
Ambler, E., 606, 607
Ammonia inversion spectra, 405
Amorphous solids, 428
AMS. See Accelerator mass spectroscopy 

(AMS)
Anderson, Carl David, 366, 493, 569, 579, 

580, 631
Anglo-Australian Observatory, 682
Angular frequency (v), 204
Angular momentum (L), 358, 392, 495, 598

conservation of, 283
nuclear (I), 505–508
quantization of, 167, 283, 283–285
relativistic (L), 80–81
spin (S), 293–298
and spin-orbit effect, 298–301

total (J), 298–300
Angular momentum operators, 252t
Angular momentum quantum number (l), 

284
spin (ms ), 294
total (j), 299

Annihilation of particles, 90–93, 92, 583–584
Feynman diagram for, 584

Anthropic principle, 694
Antibaryons, 610
Antibonding orbitals, 385, 385
Antielectrons. See Positrons (e +)
Antiferromagnetism, 450
Antihydrogen, 583

and lasers, 417
Antineutrons, 582
Antiparticles, 90, 516, 580–583, 587t, 591t, 

622
Antiprotons, 118, 631
Apparent magnitude (m), 653–654, 698
Approximations

first-order perturbation theory, 306
in nuclear physics, 523, 531, 535
in relativity, 42–43, 94–96, 628
and the Schrödinger equation, 236, 239, 

277, 303–304, 306
in statistical physics, 366

Aristotelian physics, 3
Aristotle, 6, 650, 656
Artwork

authentication of, 554, 559
dating of, 559, 559

Associated Legendre functions, 282, 289
Astra Gemini laser, 418
Astronomical units (AU), 640
Astrophysics, 639–702. See also Cosmology; 

Stars; Sun
and cataclysmic events, 664–666
and galaxies, 673–683
and radiometric dating, 558–560
and stars, 651–663
and the Sun, 639–651
and surface temperature of stars, 125

Asymptotic freedom, 618
Atomic beam fluorescence spectroscopy, 506
Atomic clocks, 267, 405, 409

testing relativity with, 33

Atomic lasers, 353, 353
Atomic mass number (A), 494
Atomic mass units (u), 83
Atomic models, 153–192

and atomic spectra, 154–156
Bohr, 165–171, 174, 182*
and the Franck-Hertz experiment, 180–183
Sommerfeld, 173
Thomson, 156–157, 157
and x-ray spectra, 175–179

Atomic number (Z), 178, 494
Atomic physics, 277–323

and electron spin, 293–298
and hydrogen atom wave functions, 

289–293
and the periodic table, 305–309
and quantization of angular momentum 

and energy, 280–289
and the Schrödinger equation for multiple 

particles, 303–305
and the Schrödinger equation in spherical 

coordinates, 279–280, 280
and the Schrödinger equation in three 

dimensions, 277–280
and the spin-orbit effect, 298–303

Atomic radii, 309, 309
Atomic spectra, 154–156, 155, 186

and excited states, 309–311, 311
Atoms and ionization energy, 308, 308–309
Auger, Pierre, 179
Auger effect, 179, 180
Auger electrons, 179, 565
Auroras, 648
Autumnal equinox, 657, 657
Avalanche breakdown, 468
Average speed (v), 330, 330
Avogadro’s hypothesis, 119
Avogadro’s number (NA ), 120, 222
Awschlom, David, 465
Axions, 658, 659

B
Bahcall, John, 626, 632, 645, 646, 697
Balmer, Johann, 155
Balmer series, 155, 155, 169, 170, 171

and density of states, 328
redshift of, 44

Index
boldface indicates a definition
italics indicates a figure
t indicates a table
* indicates a More section on the home page: www.whfreeman.com/tiplermodernphysics6e
# indicates a Classical Concept Review section on the home page: www.whfreeman.com/tiplermodernphysics6e
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I-2	 Index

Balmer’s formula, 155
Band spectra, 153
Band theory of solids, 452*–460*, 454, 454

and conductors, 455, 455
and impurity semiconductors, 460–463
and insulators, 455, 456
and intrinsic semiconductors, 456, 

456–459
Kronig-Penney model of, 452, 452–455, 

453, 485
Bands. See Band theory of solids
Bardeen, John, 471, 478, 486
Barkla, Charles G., 178, 185, 315
Barns, 537
Barred spiral galaxies, 675–676, 676
Barrier penetration. See Tunneling
Barrier potentials, 263, 263–265
Baryon decuplet, 605, 610
Baryon number, 582, 587t, 601, 601t, 604t, 

612t
conservation of, 599
nonconservation of, 625

Baryon octet, 605, 610, 610, 613
Baryons, 587, 589, 590, 591t, 605, 612t

supermultiplets of, 615, 616
Basal metabolic rate, 561
Bases, transistor, 471, 471
BATSE. See Burst and Transient Source 

Experiment (BATSE)
BCS theory of superconductivity, 477–480, 

478
BEC. See Bose-Einstein condensates (BECs)
Becquerel, Antoine Henri, 493, 511, 569
becquerels (Bq ), 509
Bednorz, Johannes G., 481
Bennet, W.R., Jr., 413
BeppoSAX satellite, 672
Beryllium, 307
Beta decay, 515–520, 516

b +, 517, 519, 520
b-, 515–516, 520
double, 519
electron capture, 517–519
energy, 497
inverse, 666, 668

Beta particles (b), 493
Betelgeuse, 640, 663
Bethe, Hans Albrecht, 551, 645, 697
Big Bang, 689–690, 692, 697

and blackbody radiation, 130–131, 685, 
685, 689–690

fusion reactions during, 568, 689, 689
and inflation, 690
and quantum fluctuations, 214

Big Crunch, 687
Binary pairs, 664, 664
Binding energy (Eb ), 81, 81–84, 83, 170

nuclear (B), 511, 504–505, 505, 511, 529, 
530

Binnig, Gerd, 264

BL Lac objects, 676–677
Black dwarf, 667
Black holes, 108–109, 670–672, 671

at center of the Milky Way, 655, 670–671, 
672

simulating, 314
Blackbody radiation, 123–131, 133, 147

from Big Bang, 130–131, 689–690
energy density in, 126, 126
ideal, 124
as photon gas, 354–361
solar, 640–641, 641

Bloch, Felix, 229, 269, 453, 486
Bloch function, 453
Blu-ray technology, 417
Blue laser, 417
Blueshift, 42, 43

gravitational, 107–108
Body-centered cubic (bcc) crystal symmetry, 

433
Bohr, Aage N., 543
Bohr, Niels H.D., 166, 185, 222

and atomic model, 165–171, 174, 182*, 
233

and nuclear reactions, 537
Bohr frequency condition, 167, 176
Bohr magneton (mB), 294, 569

and magnetism, 449
Bohr radius (a0), 168, 287

and probability density, 290–291
Boiling points, relative, 390–391
Boks, J., 345
Boltzmann, Ludwig, 366

and kinetic theory, 326, 329
and thermodynamics, 124

Boltzmann constant (k), 126, 326
Boltzmann distributions (  fB (E)), 326, 327, 

338–339
and conduction, 437, 441
and quantization of energy states, 365
vs. other distributions, 339–343, 341

Boltzmann factor (e -E/k T), 326
and energy-level populations, 398, 401, 

406
Bond lengths (ro ), 380, 380t

and rotational spectra, 393
Bonding orbitals, 384, 385
Bonds, molecular, 375. See also Covalent 

bonds; Ionic bonds
dipole, 376, 387–388, 388, 389
and electron configurations, 375
hydrogen, 388–389
metallic, 376, 387, 429, 436–437
other types, 387*–390
saturated, 385
and wave functions, 292, 292

Born, Max, 200, 222, 232, 316
Born exponents (n), 486
Boron, 307–308
Bose, Satyendra Nath, 339, 366

Bose-Einstein condensates (BECs), 345–353, 
351–353, 353, 355

fermion analog of, 363–364, 364
and lasers, 417
and photon gases, 354–361
and slowing of light, 312–313, 313

Bose-Einstein distributions (fBE (E)), 339–
343, 341

and composition of the nucleus, 495
vs. other distributions, 339–343, 341

Bosons, 339–342
as force mediators, 589, 620
Higgs, 586, 599, 621
W; and Z 0, 593, 593, 594t, 620–621

Bottom (B¿), 587t, 588, 601
Boundary conditions, 238

and energy quantization, 233
in three dimensions, 278

Bounded universe, 687
Brackett, F.S., 170
Brackett series, 186
Bragg, William H., 145, 175
Bragg, William L., 139, 145, 175
Bragg condition, 139, 140

and band theory of solids, 454–455
for electrons, 197, 197

Bragg planes, 139, 139, 140, 197
Brattain, Walter H., 471, 486
Bremsstrahlung, 138, 140, 141
Brillouin zones, 455
Brookhaven National Laboratory, 580, 582, 

613
Bubble chambers, 582, 590, 602
Burst and Transient Source Experiment 

(BATSE), 672

C
Cabrera, B., 627
Cannon, Annie Jump, 653, 697
Carbon dating, 559, 560–562

and accelerator mass spectroscopy, 
563–564

Cartesian coordinates, 101
CAT. See Computer assisted tomography 

(CAT)
Cathode-ray tubes (CRTs), 120–121, 121
Causality, and special relativity, 53–54, 54
CEBAF. See Continuous Electron Beam 

Accelerator Facility (CEBAF)
Celestial sphere, 656, 656–657
Center-of-mass reference frames, 535, 576
Cepheid variables, as standard candles, 660, 

675, 697
CERN. See European Organization for 

Nuclear Research (CERN)
Chadwick, James, 493, 495, 516, 569, 579
Chain reactions, 543, 546
Chamberlain, Owen, 582, 631
Chandra X-Ray Observatory, 671, 680
Chandrasekhar, Subrahmanyan, 667, 697
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Chandrasekhar limit, 667, 668
Characteristic rotational energy (E0r ), 393, 

402t
Characteristic spectra, 140, 141
Charge

color, 587–589, 594t, 614–615
density of, in nucleus, 498
electric, 120, 122–123, 591t, 594t, 601t
flavor, 586, 587t, 592
gravitational, 594, 594t
magnetic, 626
weak, 588, 592, 594t

Charge multiplets, 590, 603
Charged current, 592
Charged weak force, 592
Charm (C), 587t, 588, 601, 615, 615
Chirped pulse amplification, 417, 418
Chou, J.C.-W., 33, 108
Christenson, J.H., 608
Chromosphere, 642, 642, 643
Classical Concept Reviews. See also 

Exploring; MORE
angular momentum, 294#
charge-to-mass ratio (e/m) of electrons, 

120#
conduction, 437#, 439#
Fourier integrals, 207#
Galilean transformation of coordinates, 

4–6#
harmonic oscillators, 255#
inertial reference frames, 4–6#
interference fringes, 9#
kinetic theory, 326#, 329#, 330#, 333#
Millikan oil-drop experiment, 123#
relativity, 4–6#
spectroscopic notation, 300#
spin-orbit coupling, 301#
turning points, 253#

Classical free-electron theory, 484
Classical novae, 664
Classical physics. See also Newtonian 

physics
dynamics, 65
failures of, 335, 337, 357, 437
history of, 3, 4
particles, 219
and relativistic approximations, 94–95
statistical, 326–338
uncertainty relations, 207–209, 208
wave equation, 204, 209, 220

Classical relativity, 4–6#, 11
Classical time lag, 135–136
Classical uncertainty relations, 207–209, 208
Clausius, Rudolf, 335
Clock paradox, 45
Clocks, 23–24. See also Time

atomic, 33, 267, 405, 409
in gravitational fields, 101, 101–102, 

107–108
light, 7, 29, 30

local, 15
reference, 13, 14

Closed universe, 687
Clusius, K., 347
COBE. See Cosmic Background Explorer 

(COBE) satellite
Coblenz, W.W., 127
Cockcroft, John D., 493, 532, 569
Coefficient of reflection (R), 260, 262
Coefficient of transmission (T), 261, 262

and alpha decay, 267, 513
and tunneling, 264

Coherent radiation, 403, 406
Cohesive energy, 431, 435
Collectors, transistor, 471, 471
Collisions. See also Scattering

and atomic energy levels, 181, 181–182
elastic, 66–67, 67
between electromagnetic radiation and 

matter, 141–143
inelastic, 76, 76–77
and relativistic energy, 76, 76–77
and relativistic momentum, 66–68, 67

Color charge, 587–588, 594t
of quark model of hadrons, 614–615
and strong interaction, 589, 590

Coma Cluster, 658
Comoving coordinates, 681, 687, 688
Comoving space density, 681, 688
Complex conjugates, 212, 233, 261
Complex numbers, 212, 232–233, 269
Compound doublets, 311
Compound nucleus, 533, 537–538, 538
Compton, Arthur H., 137, 141, 143, 145, 

421, 547, 579
Compton edge, 150
Compton effect, 141–144, 142, 143, 148–

149, 403, 404
Feynman diagram for, 585

Compton Gamma Ray Observatory, 672, 673
Compton wavelength

and limits of knowledge, 694
and range of strong interaction, 526, 596

Compton wavelength (lc ), 142, 203
Compton’s equation, 142, 143*
Computer assisted tomography (CAT), 494, 

556–558, 557, 558
Conant, James B., 547
Condon, Edward U., 265, 493
Conduction

and band theory of solids, 455, 455
classical, 437#, 437
electrical, 438–439, 445–447
quantum, 444–448, 484
thermal, 347, 448*

Conduction bands, 455, 455, 456
Conductivity (s), 437–439. See also 

Superconductivity
Conservation laws, 601*, 608t

of electric charge, 598

of energy, 76–81, 534–536, 598, 684, 
687

and invariant quantities, 66, 73, 598
of linear and angular momentum, 598
in particle physics, 512, 516–517, 586, 

598–609, 608t, 612
in radioactive decay, 516

Constellations, 651, 652
Constituent particles, 92
Continuity conditions, 247, 269
Continuous Electron Beam Accelerator 

Facility (CEBAF), 71
Continuous spectra, 153–154
Continuous wave lasers, 413
Conversion electrons, 521
Cooper, Leon N., 486
Cooper pairs, 478, 478–480

and exchange forces, 516
in Josephson junction, 482–483

Coordinate systems
celestial, 656, 656–657
comoving, 681, 687, 688
polar, 104
right-handed vs. left-handed, 607, 607
spherical, 279–280, 280, 290

Copernicus, Nicolaus, 3, 656
Copper, Leon N., 478
Core, solar, 643
Cormack, Allan, 557, 570
Cornell, Eric A., 351, 353
Corona, 642–643
Corpuscles, 122
Correspondence principle, 167–168

and Bohr atoms, 172
for infinite square wells, 242–243
and Rydberg atoms, 174

Cosmic Background Explorer (COBE) 
satellite, 131, 685, 690

Cosmic background radiation, 130, 130–131, 
685, 685

anisotropies in, 685, 685, 690
Cosmic rays, 145

and carbon dating, 559–560
as charged particles, 143
de Broglie wavelength of, 203–204
and pair-production, 90–91
relativistic speeds of, 22, 22–23

Cosmological constant (A), 683, 686
Cosmological principle, 683, 683, 686–688

perfect, 686
Cosmological redshift, 681–683
Cosmology, 639, 683–685. See also 

Astrophysics
and the Big Bang, 130–131, 214
and evolution of the universe, 686–695, 

691
and expansion of the universe, 43
and general relativity, 103–106, 106
and gravitation, 684
and headlight effect, 51
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Coulomb’s law
and alpha decay, 266, 266
and atomic models, 166, 167
and covalent bonds, 382, 382–383
Feynman diagrams for, 584–585, 585
and fission, 544, 544
and fusion, 644
and phonons, 478
and scattering of charged particles, 160, 

160, 162*
Coupling constants, 589, 595–596, 618, 624

for electromagnetic interactions (a), 589, 
595

for strong interactions, 589, 618
Covalent bonds, 376, 381–392

other types, 387*, 435*
vs. ionic bonds, 386

Covalent solids, 429–436
Cowan, Cyde, 516
CP violations, 608
Crab Nebula, 669, 669–670, 670, 672
Crab nebula, 666
Creation of particles. See Pair production of 

particles
Creeping films, 348, 348
Critical magnetic fields (Bc ), 473, 473t, 474, 

476
Critical mass density (rc ) of the universe, 

684–685, 694
Critical population inversion density (Dnc ), 

412, 415–416
Critical temperature (Tc )

and Bose-Einstein condensates, 347
for superconductivity, 472, 473t, 474, 476, 

481t
Cross sections (s), 160, 160, 537, 540

differential (ds/dV), 185
for neutron capture, 530, 530
partial, 537
for strong interaction, 598

CRT. See Cathode-ray tubes (CRTs)
Crystals, 427–428, 428, 430t

symmetry of, 429, 429–436, 430t, 434, 
435

Curie, Marie, 569
Curie, Pierre, 449, 569
Curie temperature (Tc ), 450
curies (Ci), 509
Curie’s law, 449
Current, charged vs. neutral, 592
Current density ( j ), 439
Curvature of wave functions, 246, 247
Cyclotrons, 493, 532

and accelerator mass spectroscopy, 564
and medical isotopes, 557

Cylindrical coordinates, 101

D
Dalton, John, 579
Dark energy, 193, 685, 691, 692

Dark matter, 193, 658–659, 685, 688, 692
and black holes, 670
and interstellar dust, 673

Darwin, C.G., 47
Davis, Raymond, Jr., 626, 632, 646, 697
Davisson, Clinton J., 194, 196–201, 199, 222
Davisson-Germer experiment, 196, 196–201
dc Josephson effect, 483
de Broglie, Louis, 193–196, 194, 200, 210, 

222
de Broglie, Maurice, 222
de Broglie relations, 193–195, 198

and Bose-Einstein condensates, 351, 353
and distinguishability of particles, 339, 

342
and Schrödinger equation, 230

de Broglie wavelength (l), 193, 195–196
determining, 202–204, 203

Debye, Peter J.W., 229, 269, 357
Debye frequency ( f D ), 357, 358, 360–361
Debye temperature (TD ), 357, 358
Decay, radioactive, 511*. See also 

Radioactivity
alpha, 265–267, 512–514
beta, 515–520
electron capture, 517–519
energy, 521, 521
gamma, 520–522
hadron, 590, 590
internal conversion, 521–522

Decay constant (l), 509, 513
Declination (d), 656, 656
Deep inelastic scattering, 611
Degeneracy, 257–258, 278–279, 328

of energy eigenvalues, 257
in fermion gases, 363–364, 364
and molecular spectra, 401–402

Degeneracy pressure, electron, 667
Degrees of freedom, 334, 356, 357
DeMarco, Brian, 364
Democritus, 119, 145, 579, 631
Density. See also Probability density (P(x,t))

comoving space, 681, 688
critical (Dnc ) of population inversions, 

412, 415–416
critical mass (r0 ), of the universe, 684–685
current ( j ), 439
energy, 126, 127
nuclear, 498, 500
number, 442, 443t, 444
photon, 355

Density of states (g(E)), 327
and distribution functions, 343–344
and electron gases, 441–442

Density parameter (V), 688, 689
Depletion regions, 467, 467
Deuterium, 171

fusion of, 542, 547, 549
Deuterons, 495t

binding energy of, 84

Deutsches Elektronen-Synchroton (DESY), 
613

2dF Galaxy Redshift Survey, 682, 683
Diamagnetism, 450

and superconductivity, 475
Diamond crystal structure, 435, 435
Dichlorobenzene, 391, 391t
Dielectric breakdown, 455
Dielectric constant (k or e), 459t, 595
Differential cross section (s/dV), 185
Diffraction. See also Interference; 

Superposition
of atoms, 200, 201, 201–202, 202
of electrons, 194, 197, 197–201, 199, 497, 

497
of x rays, 138–139, 139

Digital versatile discs (DVDs), 100
Diode lasers, 418, 418, 471, 471
Diodes, 467–471

light-emitting (LEDs), 470, 470–471, 471, 
472

solar cells, 469, 470
tunnel, 264, 267*, 468, 469, 469
Zener, 468, 468

Dipole-dipole bonds, 376, 387–388, 388, 389
Dipole moment. See Electric dipole moment 

(p)
Dirac, Paul A.M., 269, 366, 607

and Fermi-Dirac distributions, 339
and magnetic monopoles, 626
and positrons, 91, 580–582
and relativistic wave equation, 230, 295, 

507
Direct interactions, 533
Disk galaxies, 675–676, 676
Dispersion, 153, 153

of wave packets, 212, 212
Dispersive media, 207
Dissociation energy (Ed ), 378, 380t, 431
Distortion of shapes, relativistic, 35, 35–36
Distribution functions. See Boltzmann 

distributions (fB (E)); Bose-Einstein 
distributions (fBE (E)); Energy density 
distributions; Fermi-Dirac distributions 
(fFD (E)); Maxwell-Boltzmann 
distributions; Maxwell distributions; 
Probability distribution functions (P(x))

DNA bond energy, 431–432
DNA molecules, 389, 390
Donor levels, 462, 462
Doped semiconductors. See under 

Semiconductors
Doping, 460, 461, 462
Doppler effect, 40–45

applications of, 42
and gravitational redshift, 106
for light, 12, 41
for sound, 7
transverse, 41, 44–45
and twin paradox, 47–48
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Down (D), 587t, 588
Down-type quarks, 587t, 588
Drift velocity (vd ), 438, 438–439

and Hall effect, 463–465
Driplines, 511, 511
Drude, Paul, 437
Duane-Hunt rule, 140
Dulong, P., 337
Dulong-Petit law, 337, 357, 361, 440
DVDs. See Digital versatile discs (DVDs)
Dwarf novae, 664
Dynamic states, 85

E
Early type stars, 653
EAST. See Experimental Advanced 

Superconducting Tokamak (EAST)
Ecliptic, 657, 657
Eddington, Arthur, 102, 104, 113
EELS. See Electron energy loss spectroscopy 

(EELS)
Effective mass (m*), 458, 461
Effective nuclear charge (Zeff ), 307, 310
Ehrenfest, Paul, 57, 315
Eigenfunctions (cn (x)), 240, 628
Eigenstates, 233
Eigenvalues, 281

angular momentum, 281
energy, 239, 281

Eightfold way, 609–613, 631
Einstein, Albert, 13, 108*, 109, 129, 131

and absorption, 406
and atomic spectra, 154, 165
and Bose-Einstein condensates, 351
and Bose-Einstein distributions, 339
career of, 111, 145, 269, 315, 366, 421, 

631
and cosmological constant, 683, 686
and de Broglie relations, 222
and general relativity, 3, 97–102, 104, 

109, 113
and heat capacities, 355–356, 366
and mass-energy equivalence, 81
and photoelectric effect, 129, 131–132, 

134, 140, 579
and quantization of energy, 356
and relativistic mass, 68
and special relativity, 3, 11–12, 15, 34
and stimulated emission, 406
and transverse Doppler effect, 45
and unified field theories, 588, 695
and wave equations, 210
and wave functions, 232
and x rays, 140

Einstein temperature (TE ), 357, 357, 446–447
Einstein’s coefficients of absorption and 

emission, 406
and lasers, 411

Einstein’s postulates, 11–17

Elastic collisions and relativistic momentum, 
66–67, 67

Elastic scattering, 402, 403, 533–534, 534
Electric charge (e), 120, 122–123, 594t

of hadrons, 591t
quantization of, 119–123, 146
of quarks, 587t, 601, 601t

Electric dipole moment (p), 387–389, 388
average, 389
average square, 389
and boiling point, 390–391, 391t
and bond character, 386–387
and rotational spectra, 392

Electric field (E), 438, 465
Electric quadrupole moment (Q), 501, 501, 

569
Electrical conduction, 438–439, 445–447. 

See also Conduction
Electrodynamics and special relativity, 11
Electromagnetic interaction, 526, 592, 592, 

594t. See also Fundamental 
interactions

and cosmology, 692
Electromagnetic radiation

detection of, 131
particle description of, 131
slowing, 312–313, 313
transmission of, 89–90
wave description of, 131

Electromagnets, 473
Electron affinity, 376–377, 377
Electron capture, 517–520, 569
Electron configurations, 305–309

and bonding, 375
Electron energy loss spectroscopy (EELS), 

182–183, 183
Electron gases, 362, 440–444, 443. See also 

Band theory of solids
Electron holography, 477
Electron-positron pair, 92
Electron spin. See Spin angular momentum 

(S)
Electron volts (eV), 83
Electrons (e-), 120, 122, 495t, 579

in an atomic box, 217
Auger, 179
charge-to-mass ratio (e/m) of, 120#–122
conversion, 521
diffraction of, 194, 197, 197–201, 199
intrinsic angular momentum, 293–298
in magnetic fields, 94–95, 95
orbitals of, 165–166
and photoelectric effect, 131–132, 133
relativistic mass of, 78, 79
speed of relativistic, 86–88

Electroweak force, 693
Electroweak theory, 588, 609, 620–621
Elliott, Steven, 519
Elliptical galaxies, 675–676, 676, 677
Elsasser, Walter, 196, 200

Emission. See also Radiation
field, 264
spontaneous, 406
stimulated, 403, 406–410

Emission spectra. See Spectra
Emissivity (e), 124
Emitters, transistor, 471, 471
Endothermic reaction, 535
Energy (E). See also Kinetic energy (Ek ); 

Potential energy (U)
binding (Eb ), 81, 81–84, 83
characteristic rotational energy (E0r ), 393, 

402t
cohesive, 431, 435
conservation of, 76–81, 534–536, 684, 687
density, blackbody, 126
dissociation (Ed ), 378, 380t, 431
Fermi (EF ), 362–363, 363, 440–444, 443t
first ionization, 306, 308
lattice, 431
Lorentz transformation of, 73–76, 74, 85
quantization of, 127–129, 233, 239, 241, 

286–287
relativistic (E), 70–81, 305, 577
release in fission and fusion, 543
rest (mc 2), 72–73, 83t, 85–86, 90, 94
in Schrödinger equation, 232–233
zero point, 216–217

Energy bands. See Band theory of solids
Energy density distributions, 126#

and Planck’s law, 127
Energy eigenvalues, 239

degenerate, 257
Energy gaps (Eg ), 454, 454–455

and conductivity, 456–458, 459t
and superconductivity (Eg ), 479–480, 480

Energy-level diagrams, 170
and alpha decay, 514, 515
for atomic spectra, 311
for atoms, 305
for baryon octet, 610
for fine-structure splitting, 301
for helium-neon lasers, 414
for hydrogen, 169, 288, 288t
for infinite square wells, 240, 245, 279
for nuclei, 531
for quantum wells, 249
for simple harmonic oscillators, 257
for tunnel diodes, 468–469, 469

Energy levels for diatomic molecules, 
392–402

rotational, 392–395
vibrational, 395–397

Entrance channels, 538
Entropy, 329*
Equilibrium separations (ro ), 378–379, 380t

and rotational spectra, 394–395, 402t
in solids, 430t, 432–433

Equinoxes, 657, 657, 697
Equipartition theorem, 334*
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Equivalence, principle of, 98–100, 99, 100
and gravitational redshift, 106–107

Esaki, Leo, 270, 486
Escape velocity (ve )

and planetary atmospheres, 333–334, 697
and Schwarzschild radius, 109, 670

Estermann, I., 201
Estermann and Stern’s experiment, 201, 201
Ether, 6–7
Ether drag, 60
Euler, Leonhard, 421
European Extreme Light Infrastructure 

(ELI), 418
European Organization for Nuclear Research 

(CERN), 91, 347, 581, 583, 593
European Southern Observatory, 672
Evaporation, 332
Event horizon, 694
Events, in special relativity, 13–14, 23, 26, 

54
spatial separation of, 31–32

Excited states (En )
and atomic spectra, 309–311, 311
and fission, 543–544
of hadrons, 590–591
of the hydrogen atoms, 328
of molecules, 380
of nuclei, 523–524, 538–539

Exclusion principle. See Pauli exclusion 
principle

Exclusion-principle repulsion, 377, 379–380, 
429–430

Exit channels, 538
Exoplanets, 650, 650
Exothermic reactions, 534–535
Expectation values x, 250, 251

in kinetic theory, 329–330
Experimental Advanced Superconducting 

Tokamak (EAST), 548
Experiments. See Burst and Transient Source 

Experiment (BATSE); Davisson-
Germer experiment; Franck-Hertz 
experiment; Ice Cube experiment; 
Michelson-Morley experiment; Millikan 
oil-drop experiment; Stern-Gerlach 
experiment; Thomson experiment

Exploring. See also Classical Concept 
Reviews; MORE

alpha decay, 265–267
atomic clocks, 267
calibration spacetime axes, 26–27
celestial sphere, 656, 656–657
deflection of light in a gravitational field, 

103–105, 104, 105
extraterrestrial life, 650
fluxoids, 477
frozen light, 312–314, 313
gamma-ray microscopes, 214–216, 215
gravitational redshift, 106–108, 107
Hall effect, 463–467, 464, 465, 466

interaction strengths, 595–596
Josephson junctions, 482–483, 484
liquid helium, 345, 346, 346–351
neutrino oscillations and mass, 627–629
other bonding mechanisms, 387–392
parity, 257–258
Planck units, 694–695
probability density of exchange mesons, 

528–529, 529
proton spin, 613–614
quantum wells, 459–460
Rydberg atoms, 174, 174–175
spintronics, 437, 437
Stern-Gerlach experiment, 296, 296–297, 

297
superluminal speeds, 51–52, 53
transverse Doppler effect, 44–45

Exponential radioactive decay law, 509
Eye, photon sensitivity of, 136–137

F
Fabry-Pérot cavities, 110
Face-centered cubic (fcc) crystal symmetry, 

429, 429, 435
Face-centered cubic structure, 139
Faraday, Michael, 119–120
faradays (F), 120
Faraday’s law, 119–120

and flux quantization, 474
Fermi, Enrico, 339, 339, 366, 516, 546, 547, 

570, 631
Fermi-Dirac distributions (fFD (E)), 326, 

338–339
and band theory of solids, 457–458, 458t
and conduction, 444
and fermion gases, 361–363, 362, 363
vs. other distributions, 339–343, 341

Fermi-Dirac particles. See Fermions
Fermi energy (EF ), 362–363, 363

and band theory of solids, 456, 457, 458
and Cooper’s pairs, 480
and free-electron gas in metals, 441–444, 

443
of nucleons, 532

Fermi speed (UF ), 445, 447
Fermi temperature (TF ), 443, 444
Fermilab, 347, 616
Fermion gases, 361–365, 364

and lasers, 417
neutron stars as, 668

Fermions, 339–343, 442
Ferrimagnetism, 450
Ferromagnetism, 448
Feynman, Richard P., 220*, 222, 584, 631

and quantum electrodynamics, 582
Feynman diagrams, 584, 584–586, 585

examples of, 526, 527, 596, 597, 618
Field emission, 264
Filaments, 648, 649

Fine-structure constant (a), 173–174, 589, 
595

Fine-structure splitting, 173, 301, 301–302
and emission spectra, 398, 399

Fine structures, 173, 293, 295
Finite square wells, 246, 246–249, 248

and alpha decay, 265–267, 266
and covalent bonding, 381, 381
graphical solution of, 249*
and Kronig-Penney model, 452, 452–453
and quantum wells, 250
and strong interaction, 523–524, 524
and vibrational energy levels, 395, 395–

396, 396
First excited state, 181
First ionization energies, 308
First ionization potentials, 306
First-order perturbation theory, 306
Fissile nuclides, 544
Fission, 494, 543, 543–547, 544, 545

and energy conversion, 81
FitzGerald, George F., 34
Flash memory, 451
Flash of light inside a sphere, 58
Flavor charge, 586, 587t, 592, 616, 628
Fluorescence, 403, 406
Flux lines, 648
Flux quantization, 476
Flux tubes, 475, 476, 477
Fluxoids (f0 ), 477, 477
Force carriers. See Mediation of forces
Force constants (K), 397

and vibrational energy levels, 395, 396, 
397

Forces (F). See also Electromagnetic 
interaction; Fundamental interactions; 
Gravitational interaction; Strong 
interaction; Weak interaction

coupling constants for, 589
inverse-square, 287
relativistic, 70–71, 95
saturated, 504, 523, 525
short-range, 525

Forward biasing, 467, 467, 468
Fountain effect, 348, 349
Four vectors, 84–85
Fourier analysis, 205–207#
FQHE. See Fractional quantized Hall effect 

(FQHE)
Fractional quantized Hall effect (FQHE), 466
Frames of reference. See Reference frames
Franck, James, 175, 180, 186, 196, 200, 609
Franck-Hertz experiment, 180–183, 181, 182
Fraunhofer, Joseph von, 153, 185, 405, 653
Fraunhofer D lines, 405. See also Sodium 

(Na)
Free-electron lasers, 418, 419
Free-electron theory, 440–444

failures of, 361
and Fermi temperature, 446
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one-dimensional, 440–442
three-dimensional, 442–444

Frequency (  f  )
control of, 208–209
Debye (  fp ), 357, 358, 360–361
proper (  f0 ), 42
quantization of, 236
shift of starlight, 43–44

Frequency condition, 167
Friction, 390
Fringes, interference, 9#, 10. See also 

Interference
Fuller, R. Buckminister, 421
Fullerenes, 386, 387*, 421, 435, 435
Fundamental interactions, 588–598, 594t. 

See also Electromagnetic interaction; 
Gravitational interaction; Strong 
interaction; Weak interaction

unification of, 692
Fundamental particles, 495
Fusion, 494, 547–551. See also Proton-

proton cycle
during the early universe, 573, 689, 689, 

693
and metallic hydrogen, 437
as stellar energy source, 644, 662–663
and supernovae, 665–666, 668

Fusion temperature, 551

G
g factor (g), 294–295

and magnetism, 449
Galactic clusters, 651
Galaxies, 106, 651, 673–683. See also Milky 

Way
classification of, 675–677
and interstellar medium, 673–674
quiet vs. active, 675–676, 676, 677

Galilean transformation of coordinates, 4–6#, 
6, 18

Galilei, Galileo, 3, 4, 648, 666
Gamma decay, 520–522
Gamma-ray bursts (GRBs), 672–673, 673
Gamma-ray microscopes, 214–216, 215
Gamma rays (g), 91, 493
Gamow, George, 225, 265–266, 307, 493, 

697
Garlid, E.S., 467
Gas lasers, 418
Gaseous nebulae, 674
Gases

electron, 362, 440
fermion, 361–364, 364
free-electron, 440–444, 443
heat capacities of (Cn), 335–337, 335t, 

358–361
kinetic theory of, 119, 333–337
photon, 354–361

Gassendi, Pierre, 119
Gauge theories, 598, 627, 632

Gedanken experiments, 113
Geiger, Hans W., 157

and alpha decay, 512
and nuclear charge, 178
and Rutherford scattering, 158, 159, 161, 

161–162, 165, 493
and size of nucleus, 163

Geiger-Nuttall rule, 512, 512
Gell-Mann, Murray, 602, 609–611, 611, 

614, 631
General relativity, 3, 33, 47, 97–108

and cosmology, 686
Generations of leptons, 586, 587t, 615
Geometry of space, 45, 84, 98, 687
Geosynchronous satellites, 5, 116
Gerlach, Walther, 294, 315
Germer, Lester H., 194, 196–201, 199, 222, 

294
Giaever, I., 486
Giant magnetoresistance (GMR), 451
Glashow, Sheldon L., 588, 615, 616
Glass, 428
Global positioning systems (GPS), 3
Globular clusters, 651, 652

and the structure of the Milky Way, 655
Glucons, 90
Gluon-gluon loops, 618, 618
Gluons, 527, 586

and force mediators, 589, 591t, 621
and quantum chromodynamics, 617–618, 

618
GMR. See Giant magnetoresistance (GMR)
Goeppert-Mayer, Maria, 569. See also 

Mayer, M.
Gordon, Walter, 528
Goudsmit, Samuel A., 293, 315
GPS. See Global positioning systems (GPS)
Grand unification theories (GUTs), 623–630

and the early universe, 692
Graphite, 435, 435
Gravitational blueshift, 107–108
Gravitational charge, 594, 594t. See also 

Mass (m)
Gravitational interaction, 594, 594t. See also 

Fundamental interactions
and astrophysics, 644–645, 645
and cosmology, 684–685, 692
deflection of light by, 103, 103–105, 104, 

105
and invariant interval, 100–102, 101
quantum, 628, 692
transmission of, 90

Gravitational length contraction, 104
Gravitational lensing, 104, 105, 105
Gravitational redshift, 102, 106–108, 107, 

107, 670
Gravitational time dilation, 100, 104, 108*
Gravitational waves, 109, 109–111, 594
Gravitons, 90, 594, 594t
GRBs. See Gamma-ray bursts (GRBs)

Greenberg, O.W., 614
Griffiths, D.J., 584
Ground states (E0 ), 169, 169, 181, 240

of hadrons, 590–591
of the hydrogen atom, 290–291
of molecules, 379
of nuclei, 496–508
and the periodic table, 305–309

Group theory, 610
Group velocity (vg ), 205, 206, 210

for particle waves, 210
Gurney, R.W., 265, 493
GUTs. See Grand unification theories 

(GUTs)
Gyromagnetic ratio (x), 294–295

H
h-bar (U), 167. See also Planck’s constant (h)
H-R diagrams. See Hertzsprung-Russell 

(H-R) diagrams
Hadronic force. See Strong interaction
Hadrons, 586–587, 591t, 620t

quantum numbers of, 604t
quark model of, 609–613
and the strong interaction, 589–592

Hahn, Otto, 543, 546, 570
Hale, George, 113
Half-life (t1/2 ), 509, 559t, 564t

quantum, 465, 465–466
spin, 451, 466

Hall effect, 463–467, 464, 465, 466
Hall resistance (RH ), 465, 465
Hall voltage, 464
Halley, Edmund, 686
Hamiltonian operators (Hop ), 252, 252t, 257, 

382
and symmetry breaking, 620

Hanford Observatory, 109–110, 110
Hard core, 525
Hard superconductors, 475, 575
Harmonic waves, 204, 230, 232
Hartmann, J.F., 674
Hawking, Stephen, 366, 697
Hawking radiation, 672, 697
Headlight effect, 50–53, 52
Heat capacities (Cv ), 334–338, 369t

for gases, 335–337, 335t, 358–361
for metals, 440, 447–448
and phase transitions, 346, 347
for solids, 337, 337–338, 356–357, 357

Heisenberg, Werner K., 213, 214, 222, 229, 
316, 421

Helicity, 602
Helium (He)

distribution in the atmosphere, 342–343
formation of, 689, 689
in interstellar medium, 673
liquid, 345, 345–348, 346
wave functions for, 305–306

Helium-neon lasers, 413, 413–415, 414
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Helix nebula, 663
Helmholtz, Hermann von, 113, 145, 598
Hermite polynomials, 255, 269
Hermitian operators, 631
Herriott, D.R., 413
Hertz, Gustav L., 175, 180, 186, 609
Hertz, Heinrich R., 131, 132, 137, 145, 186
Hertzsprung-Russell (H-R) diagrams, 661, 

661–663
Hess, Victor, 569
Heteropolar (heteronuclear) molecules, 421
Hexagonal close-packed (hcp) crystal 

symmetry, 433, 433
Higgs bosons, 586, 599, 621
Higgs field, 621
High-temperature superconductivity, 481–

482, 481t
Hipparchus, 653, 697
Hofstadter, Robert, 497, 569
Holes, 457, 462
Holography, electron, 447
Homopolar (homonuclear) molecules, 421
Hooke, Robert, 119
Horizontal branch, in stellar evolution, 663
Hosono, H., 481
Hounsfield, Godfrey, 557, 570
Hoyle, Fred, 697
Hubble, Edwin P., 43, 675, 676, 678, 686, 

697
Hubble constant (H0 ), 679–680, 682, 685
Hubble Space Telescope, 639, 651, 666, 668, 

670, 680
Hubble time, 680
Hubble’s law, 678–683, 679, 679, 684
Hulse, R.A., 109
Hybridization of orbitals, 435, 486
Hydrogen (H) atoms

binding energy of, 84
Bohr model of, 165–175, 182*
energy-level diagrams for, 169, 286, 288, 

288t
excited states of, 291–293, 328
fine-structure splitting in, 301, 301–302
probability density (P(x,t)) in, 290–292, 

291, 292, 293
quantization of angular momentum in, 

283–285
quantization of energy in, 286–287
radial functions for, 287t
Schrödinger equation, 280–282
size of, 217–218
spectra of, 155, 156
in sun’s core, 644
wave functions for, 289–293, 297–298
wavelength of, 170–171

Hydrogen bonds, 388–389, 389
Hydrogen (H2 ) molecules

escape of, from Earth’s atmosphere, 
333–334

in interstellar medium, 673–674

wave functions for, 381–384, 384
Hypercharge (Y  ), 603–605, 605, 606

and group theory, 610
Hyperfine splitting, 322, 507, 507

and interstellar dust, 673–674, 674
and masers, 409, 409–410

Hyperfine structure, 312, 495, 505

I
Ice, dipole-dipole bonds in, 388, 389
Ice Cube experiment, 133
Ideal blackbodies, 124
Imaginary numbers. See Complex numbers
Impact parameters (b), 160, 160
Impurity semiconductors. See under 

Semiconductors
Incident photon intensity, 136
Index of refraction, 104
Indistinguishable particles, 303–304, 338, 

339, 340–342
Inelastic collisions and relativistic energy, 

76, 76–77, 82
Inelastic scattering, 404
Inertial confinement, 549
Inertial reference frames, 4, 4–6#, 24

and simultaneity, 14–17
and special relativity, 12, 12–14, 46, 49

Infinite square wells, 237–246, 238
complete wave function, 242–246
energy levels of, 238–240, 240
and free-electron gas in metals, 440, 441
and line of stability, 503
minimum energy of, 216–217
in three dimensions, 278–279

Inflation, 690
Insulators, and band theory of solids, 455, 

456
Integral quantized Hall effect (IQHE), 466
Intensity (I), 418, 537

of electron diffraction, 197, 199
and photoelectric effect, 135

Interaction times, 589
Interactions. See also Fundamental 

interactions
and Feynman diagrams, 584

Interference. See also Diffraction; 
Superposition

double-slit, 210–211, 211, 220*
by electrons, 194, 196–198, 197, 211
fringes produced by, 9#, 10
and linear equations, 229
quantum, 312–313, 313

Interferometers, Michelson, 7, 9, 9–11, 10, 
109, 110

Internal conversion, 521–522
Internal quantum numbers, 601, 601t
International Thermonuclear Experimental 

Reactor (ITER), 548, 549
Interstellar dust, 673–674
Interstellar medium (ISM), 673–674

Intrinsic semiconductors. See under 
Semiconductors

Invariance, 4
and conservation laws, 66, 73, 598
and gauge theories, 632
interval and gravitational interactions, 

100–102, 101
of masses, 84–97
TCP, 607–608

Inverse beta decay, 666, 668
Ionic bonds, 376–381

vs. covalent bonds, 386–387
Ionic solids, 429–436
Ionization energy, 170

and ionic bonds, 307–309, 308, 376–377, 
377t, 378

Ionization potential, 307–309
Ionizing radiation, 552*, 566*
IQHE. See Integral quantized Hall effect 

(IQHE)
Irregular galaxies, 675–676, 676
Island of stability, 504, 532
ISM. See Interstellar medium (ISM)
Isobars, 496
Isomers, 521
Isospin (I), 603, 605, 608t

and group theory, 610
weak (Tz ), 586, 587t, 588

Isotones, 496, 530
Isotope effect, 478
Isotopes, 171, 478, 496
ITER. See International Thermonuclear 

Experimental Reactor (ITER)

J
J/c puzzle, 615–617
Javan, Ali, 413
Jefferson National Accelerator Facility, 613
Jensen, Johannes Hans Daniel, 530, 532, 569
Jin, Deborah, 364
Josephson, Brian D., 483, 486
Josephson effect

ac, 483
dc, 483

Josephson junctions, 482–483, 483, 484
Joule, James, 113, 598
Junction lasers, 418
Junctions

Josephson, 482–483, 483, 484
semiconductors, 467, 467

K
K series, 176–178, 177
K shell, 177
Kamerlingh Onnes, Heike, 345, 346, 346, 

366, 472, 473
Kant, Emmanuel, 675
Kaons (K 0), 590, 608
Keesom, William H., 345, 347
Kelvin, William Thompson, Lord, 316, 644
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Kepler, Johannes, 666
Ketterle, Wolfgang, 353, 416
Kilowatt-hours, 546
Kinematic states, 85
Kinetic energy (Ek )

Maxwell distributions of, 333, 333–334
minimum, 216–217
negative, 248, 262
nonrelativistic, 95–96
in nuclear reactions, 538
and photoelectric effect, 132
relativistic, 71–72, 72
of rotation, 392–393
vs. potential energy, 81–83

Kinetic energy operators, 252t
Kinetic theory, 326#, 329#, 330#, 333#

and blackbody radiation, 123–125
of gases, 119, 329–330
and Planck’s law, 127

Klein, Oskar, 528
Klein-Gordon relativistic wave equation, 

582, 595
Klitzing, Klaus von, 455–456, 486
Knowledge creation paradox, 54, 54
Kronig-Penney model, 452, 452–455, 453, 

485
Kündig, Walter, 45
Kusch, P., 332, 332

L
L series, 176–177, 177
Laboratory frames of reference, 535, 535, 

536
Lagrangian points, 664, 664
Laguerre polynomials, 287, 287t, 290, 292
Lamb, W., 315
Lamb, Willis, 303
Lamb shift, 302–303
Lambda points, 345, 346, 347, 347
Landé, Alfred, 316
Landé factor (gN ), 506
Langevin, Paul, 222
Laplace, Pierre, 109
Large Hadron Collider (LHC), 581, 583, 

586, 621, 624, 659
Laser Interferometer Gravitational-Wave 

Observatory (LIGO), 109–111, 110, 111
Lasers, 408–419

applications of, 416–419
atomic, 353, 353
blue, 417
continuous wave, 312
diode, 418, 418, 471, 471
gas, 418
helium-neon, 413, 413–415, 414
liquid, 418
other types of, 417–418
parameters, 415t
ruby, 409, 410–413, 411
semiconductor, 418

tunable dye, 418
Late type stars, 653
Latitude, 656, 656
Lattice energy, 431
Lattice ions, 446, 446
Laue, Max von, 80, 138
Laue patterns, 139, 200, 202, 432
Laughlin, R.B., 486
Law of atmospheres, 327–328
Law of inertia, 4
Lawrence, Ernest O., 532
Lawrence Berkeley Laboratory, 602
Lawrence Livermore Laboratory, 581
Laws of motion, Newtonian, 4–6
Lawson, J.D., 548
Lawson’s criterion, 548
LEDs. See Light-emitting diodes (LEDs)
Lee, David M., 348
Lee, T.D., 606, 607, 608
Left-handed coordinate system, 607, 607
Legendre polynomials, 282
Lego plots, 593
Lenard, Philipp, 131, 132
Lenard-Jones potential, 425
Length, proper (Lp ), 33, 34, 85
Length contraction, 33–36, 34

gravitational, 102
Lepton era, 693
Lepton number

conservation of, 599–600
nonconservation of, 625

Leptons, 516, 586, 587t, 616, 617, 631
and weak interaction, 592

Leptoquarks, 625
Leucippus, 119
Lever paradox, 80, 80–81
LHC. See Large Hadron Collider (LHC)
Libby, Willard F., 570
Lie, S., 610
Life, extraterrestrial, 651
Lifetime (t), 218, 509

of excited energy states, 406
and force ranges, 590
of protons, 615–616
of quasars, 681
for spontaneous emission (tp ), 412–413
of strange particles, 602
and tunneling, 266

Light. See Electromagnetic radiation; Speed 
of light (c)

Light clocks, 29, 30
Light curves, 660
Light-emitting diodes (LEDs), 470, 470–471, 

471, 472
Lightlike spacetime intervals, 37, 38–39
LIGO. See Laser Interferometer 

Gravitational-Wave Observatory 
(LIGO)

Limbs, solar, 641, 642
Linac Coherent Light Source (LCLS), 419

Lindblad, Bertil, 658
Line of stability, 502, 503

and fission, 544, 545
Line spectra, 153–154, 154
Linear combinations, 231
Liquid-drop model, 505*

and fission, 543, 543
Liquid lasers, 418
Liquids

helium, 346–351, 348, 349, 351
structure of, 427
surface tension of, 390

Little Ice Age, 649
Livingston, M.S., 532
Livingston Observatory, 109
Local clocks, 15
London, Fritz, 345, 390
London dispersive forces, 390. See also van 

der Waals attraction
Longitude, 656, 656
Lorentz, Hendrik A., 34, 104, 222, 315

and coordinate transformations, 18
and electrons, 122, 145
and Michelson-Morley experiment, 57
and Zeeman effect, 302, 316

Lorentz, Henrik A.
and conduction, 437

Lorentz-FitzGerald contraction, 34
Lorentz transformation, 17

and dynamics, 65, 73, 73–76
of four-vectors, 84–85
of mass-energy, 88
and nuclear reactions, 535
of space and time coordinates, 17–29

Luminosity (L), 640, 659–660
of galaxies, 675
and Hertzsprung-Russell diagrams, 661, 

661–663
Lyman, Theodore, 156, 170
Lyman series, 156, 169, 170

M
Macroscopic quantum wave functions, 353, 

353
Madelung constant (a), 380, 429, 430t, 433, 

434, 484
Magic numbers, 504, 529–530
Magnetic confinement, 548
Magnetic fields (B)

charged particles in, 120–121
critical (Bc ), 473, 473t, 474, 476
and fine-structure splitting, 301–302
inhomogeneous, 296, 296
at the nucleus, 506t
relativistic electrons in, 94–95, 95
solar, 627, 629, 647, 647–648, 648

Magnetic levitation, 475, 482
Magnetic moment (m), 294–297, 449

nuclear, 505–508
quantization of, 295
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Magnetic monopoles, 626–627, 690
Magnetic quantum number (m), 284, 506
Magnetic resonance imaging (MRI), 507, 

556
and superconductivity, 473

Magnetic susceptibility (x), 449
Magnetic traps, 352
Magnetic tunnel junction, 451, 451
Magnetism, 295, 448–451
Magnetization (M), 492
Magnetons

Bohr (mB ), 189, 295
nuclear (mN ), 323

Magnetoresistance, giant (GMR), 451
Magnetoresistive random access memory 

(MRAM), 451
Magnitude, stellar

absolute (M), 654
apparent (m), 653–654, 698

Maiman, Theodore, 410
Main sequence dwarfs, 661, 661
Main sequence stars, 661, 661
Majorana neutrinos, 586
Marsden, Ernest

and nuclear charge, 178
and Rutherford scattering, 157–159, 158, 

161, 161–162, 165, 493
and size of nucleus, 163

Masers, 408, 409, 409–410. See also 
Lasers

Mass (m)
conversion from energy, 91–92
effective (m*), 458, 461
gravitational vs. inertial, 98–99, 99
and Higgs boson, 621
invariance of, 84–97
of the Milky Way, 658–659
of neutrinos, 516, 552, 599–600, 626–629, 

633
of nuclei, 504–505, 505
reduced (m), 171–172
relativistic (m(u)), 67–70, 68
rest (m), 78
stellar, 644, 661–662
units of, 78, 83, 393, 694

Mass number, 496
Massless particles, 89–90. See also Gluons; 

Gravitons; Photons
Mather, Frank C., 697
Mather, John C., 690
Matter-antimatter asymmetry

and CP violations, 608
Matter waves, 195–204
Maunder minimum, 649
Max Planck Institute, 670
Maxwell, James Clerk, 6, 326, 329, 588
Maxwell-Boltzmann distributions

and diode currents, 468
and fusion, 552
and Planck’s law, 127–128

Maxwell distributions
and Bose-Einstein condensates, 352
and electromagnetism, 588
and fusion, 548, 645
of kinetic energy, 333, 333–334
of molecular speeds, 329–332, 330, 330, 

370
Maxwell’s equations, 6, 6, 11, 141
Mayer, M., 530, 532
Mean free path (l), 439, 445
Mean lifetime, 509
Mediation of forces, 588–598

and Feynman diagrams, 584–585, 585
and the uncertainty principle, 526

Medicine
nuclear, 483, 494, 545, 556–558, 631
and x rays, 138, 141

Meissner, H. Walther, 474
Meissner effect, 474, 474–477, 476
Mendeleev, Dimitri, 176, 610
Mercury [element], spectra of, 155, 181
Mercury [planet], precession of orbit of, 

102–103, 108*
Meson fields, 526
Meson octet (nonet), 605, 610, 610
Mesons, 526, 526, 587, 589, 591t, 606–607, 

612t, 615
as force mediators, 622
probability density of, 528–529, 529
supermultiplets of, 616

Metallic bonds, 376, 387, 429, 436–437, 484
Metals, free electron gases in, 361, 440–444, 

443, 485
Metastable states, 303, 521

and lasers, 409, 409, 410, 413
Michelson, Albert A., 7, 7, 9, 10, 11, 131
Michelson interferometer, 7, 9, 9–11, 10

and gravity waves, 110, 110–111
Michelson-Morley experiment, 7–11*
Microscopes

gamma-ray, 214–216, 215
photoelectric-effect, 137
resolving power of, 222
scanning tunneling (STMs), 264, 264–265

Mikheyev, S., 626
Milky Way, 627, 651, 654, 655, 677, 689. 

See also Galaxies
mass of, 658–659
structure of, 654, 654–655

Miller, R.C., 332, 332
Millikan, Robert A., 131, 145, 697

and electron charge, 120, 122–123
and photoelectric effect, 134, 134, 579

Millikan oil-drop experiment, 122–123#, 123
Minimum time interval, 20
Minkowski, Hermann, 113
Mirror nuclides, 496, 497
Missing mass. See Dark matter
Mitchell, John, 697
Molecular orbitals. See Orbitals

Molecules, 375–426
and covalent bonds, 381–392
energy levels and spectra of, 392–402
and ionic bonds, 376–381
and lasers and masers, 408–420
and other bonds, 387–390
polar, 388–389, 389
and scattering, absorption, and simulated 

emission, 402–408
Moment of inertia (I), 394

and rotational spectra, 392, 393
Momentum (p)

of electromagnetic radiation, 141
Lorentz transformation of, 73–76, 74
relativistic (p), 66–70, 67, 68, 82, 94–95, 

95
Momentum operators (pop ), 251, 252t
MORE. See also Classical Concept Reviews; 

Exploring
alpha-decay energetics, 514*
Bohr atomic model, 182*
conservation laws, 601*
delay of light in a gravitational field, 108*
derivation of Compton’s equation, 143*
double-slit interference, 220*
energy bands, 452*, 460*
entropy, 329*
equipartition theorem, 334*
graphical solution of the finite square well, 

249*
ionization radiation, 552*
liquid-drop model, 505*
Michelson-Morley experiment, 11*
Mössbauer effect, 521*
multielectron atoms, 311*, 413*
nuclear power, 546*
other covalent bonds, 387*, 435*
perihelion of Mercury’s orbit, 108*
radiation dosages, 566*
radioactive decay, 511*
relativity of simultaneity, 48*
resonances and excited states, 609*
Rutherford scattering, 162*
Schrödinger’s differential equation trick, 

256*
shell model, 533*
temperature, 329*
theories of everything, 629*
thermal conduction, 448*
transistors, 472*
transitions between energy states, 253*, 

405*, 406*
tunnel diodes, 267*
twin paradox, 48*
wave-particle duality, 220*
Weizsäcker formula, 505*
Zeeman effect, 312*

Morley, Edward W., 9, 11, 56
Moseley, Henry G.-J., 175, 175–178, 185, 

188, 494, 558
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Moseley plots, 176, 177
Mössbauer, Rudolf Ludwig, 521*, 569
Mössbauer effect, 219, 521*, 575

measuring gravitational red- and blueshift 
with, 102, 108, 521

measuring natural line widths with, 218
measuring transverse Doppler effect with, 

45, 521
Most probable speed (vm ), 330, 330
Mott, M.F., 451
Mourou, Gérhard, 417
Moving square, shape of, 36
MRAM. See Magnetoresistive random 

access memory (MRAM)
MRI. See Magnetic resonance imaging
MSW effect, 626
Muller, H., 431
Muller, Karl A., 481
Multielectron atoms, 307, 311*, 413
Multiplets, charge, 590, 603, 625
Muons (mu (m) mesons), 516, 569, 579

decay of, 36, 36–37
mass of, 78

Myhres, F., 614

N
N galaxies, 676
n-type semiconductors, 462, 462, 467
NAA. See Neutron activation analysis 

(NAA)
Nanostructures, 459, 459
Natural line width (G0), 218–219

and gamma decay, 520–521
and nuclear resonances, 570

Neel temperature (TN ), 450
Ne’eman, Yuval, 609
Neon, 308
Neutral current, 592
Neutral weak force, 492
Neutralinos, 658, 659
Neutrinos (n), 90

as dark matter, 659
and density parameter, 688
discovery of, 516, 579
Majorana, 586
mass of, 516, 552, 599–600, 626–629,  

658
oscillations of, 600, 627–629, 658
in proton-proton cycle, 552, 646
and solar-neutrino problem, 552, 625, 

625–626
from supernovae, 666
types of, 516, 586, 587t

Neutron activation analysis (NAA), 494, 
539, 553–555, 554

Neutron capture, 530, 530–531
cross section for, 530, 530, 540

Neutron number, 495
Neutron stars, 109, 109, 362, 500, 668–670, 

669

Neutrons (n), 495t
decay of, 597
diffraction, 201, 202
discovery of, 493, 495, 495t, 579
reactions of, 539–540
thermal, 540

Newton, Isaac, 3, 4, 153, 366, 686
Newtonian physics, 4–6, 70–71. See also 

Classical physics
Nichols, Ernest F., 141
Nicholson, J.W., 167
Nishijima, K., 602
NMR. See Nuclear magnetic resonance
Noether, Emmy, 598, 631
Nondispersive media, 207
Nonpolar molecules, 389–391, 390
Normalization

of Bose-Einstein distribution, 349
and hydrogen atom wave functions, 290
of Maxwell-Boltzmann distribution, 128
of probability amplitude, 233, 235, 236, 

239–240, 247, 529
Novae, 664, 664
npn transistors, 471, 471
Nuclear binding energy (B), 504–505, 505

and driplines, 511, 511
and shell model, 529, 529–530

Nuclear exchange force, 525–527
Nuclear force. See Strong interaction
Nuclear magnetic moment, 505–508
Nuclear magnetic resonance (NMR), 486, 

555–556. See also Magnetic resonance 
imaging (MRI)

Nuclear magneton (mN ), 323
Nuclear physics, 493–578

applications of, 553–566
and composition of the nucleus,  

494–495
and fission and fusion, 542–552
and ground properties of nuclei, 496–508
history of, 493–494
and nuclear decay, 511–522
and nuclear reactions, 533–541
and radioactivity, 508–511
and the shell model, 529–532
and the strong interaction, 522–529

Nuclear power, 493, 546*
Nuclear radii, 496–500
Nuclear reactions, 533, 533–541
Nuclear reactors

fission, 81, 542, 546, 547
fusion, 549, 550
natural, 570

Nuclear spectra, 496, 539
Nuclear spin angular momentum (I), 312, 

505, 508
Nuclear weaponry, 494, 546
Nucleons, 495, 525, 531

mass differences between, 542, 542
Nucleosynthesis period, 693

Nucleus
composition of, 494–495
compound, 533, 537–538, 538
decay of, 508–509
density of, 500, 505
discovery of, 159–162
excited states of, 538, 538–539
ground state of, 496–508
radius of, 165
shape of, 501
size of, 163–164, 496–500
stability of, 502, 502–504
structure of, 199

Nuclides, 496, 559t
fissile, 544
mirror, 496, 497

Null interval, 38–39
Number density, 441–442, 443t
Nurmia, M., 513
Nuttall, John Mitchell, 512

O
Observers

in special relativity, 13–14
and wave-particle duality, 220

Occupation probability (fFP (E)), 445
Ochsenfeld, Robert, 474
Ohm’s law, 437, 438, 439, 484

and Josephson junction, 482
Oil-drop experiment. See Millikan oil-drop 

experiment
Olbers, Wilhelm, 686
Olber’s paradox, 686
OLEDs. See Organic semiconductor light-

emitting diodes (OLEDs)
Oort, Jan, 658
Open clusters, 651
Open universe, 688
Operators, 250–251, 252t
Oppenheimer, J. Robert, 108
Optical barrier penetration, 264
Optical pumping, 409
Optical traps, 416
Optical tweezers, 417
Orbital quantum number. See Angular 

momentum quantum number
Orbitals, 375, 384, 421, 485

bonding vs. antibonding, 385, 385
elliptical atomic, 285
hybridization of, 435

Orbits
circular atomic, 165–166, 166
elliptical atomic, 173–174

Ordinary spiral galaxies, 675–676, 676, 677
Organic semiconductor light-emitting diodes 

(OLEDs), 471, 471
Oscillators, number of, 360
Oscilloscopes, 121
Osheroff, Douglas D., 348
Ötzi the Iceman, 565, 565
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P
P branches, 421
p mesons. See Pions (p)
p-type semiconductors, 462, 462, 467, 467
Pair production of particles, 90–93, 91, 92, 

581, 581, 582, 585
Paradoxes in relativity. See Gedanken 

experiments
Parallax angles (u), 660, 660
Paramagnetism, 449, 492
Parity (P), 606–607, 607

nonconservation of, 606
Parity operations, 257–258, 606
Parsecs (pc), 654, 655, 660
Partial cross sections, 537
Particle-in-a-box. See Infinite square wells
Particle-induced x-ray emission (PIXE), 

565–566, 566
Particle physics, 579–637

basic concepts for, 580–588
conservation laws and symmetries in, 

598–609
fundamental interactions and force carriers 

in, 588–598
and grand unified theories, 623–630
history of, 579–580
Standard Model of, 609–617

Particle waves, 193–227, 195
and the de Broglie hypothesis, 193–195
measurements of, 195–196
probabilistic interpretation of, 210–213
and the uncertainty principle, 207–209
and wave packets, 204–210
and wave-particle duality, 219–221

Particles. See also Alpha particles (a); 
Antiparticles; Beta particles (b); Virtual 
particles

annihilation of, 90–93, 91, 583–584, 584
indistinguishable, 303–304, 338, 339, 

340–342
macroscopic, 217
massless, 89–90
pair production of, 90–93, 91, 92, 581, 

581, 582, 585
predicting properties of, 614–617

Paschen, Friedrich, 156, 170
Paschen series, 156, 169, 170
Pauli, Wolfgang, 307, 312, 315

and electron spin, 293
and neutrinos, 516, 626

Pauli exclusion principle, 303, 304–305
and baryons, 614
and bosons, 340
and fermions, 363, 382, 445, 495
and line of stability, 503
and neutron stars, 667
and white dwarfs, 668

Pauli paramagnetism, 449
Penzias, Arno Allan, 131, 690, 697
Perfect cosmological principle, 686

Periodic table, 175
and ground states of atoms, 305–309

Perl, M., 631
Perrin, Jean-Baptiste, 120, 195, 222
Perturbation theory, first-order, 306
PET. See Positron emission tomography 

(PET)
Petit, A., 337
Pfund, A.H., 170
Phase transitions, 345, 693
Phase velocity (vp ), 204, 207

for particle waves, 209
Phonons, 478–480, 526
Photodisintegration, 666
Photoelectric effect, 129, 131–137, 147, 403, 

405
and de Broglie wavelength, 198
in potassium, 135

Photomultiplier, 133
Photon gases, 354–361
Photons, 89–90, 133, 145, 579

as force mediators, 591t, 592
incident intensity, 136
and Schrödinger equation, 230–231
sensitivity of the human eye, 136–137
time lag, 135–136
virtual, 526

Photosphere, 640–641, 642
Photovoltages, 470
Photovoltaics. See Solar cells
Pickering, Edward, 653
Pions (p), 527, 579, 582, 584, 587

in Feynman diagrams, 584
virtual, 614, 619

PIXE. See Particle-induced x-ray emission 
(PIXE)

Plages, solar, 649, 649
Planck, Max K.E.L., 145, 222, 269

and energy distribution, 127–129, 354–355
and energy quantization, 133–134, 154, 

165, 233, 256, 355, 579
and fundamental constants, 694–695

Planck’s constant (h), 128, 129, 166
Planck’s law, 127, 127–131, 128, 130

and stellar temperatures, 641
and stimulated emission, 407

Planetary nebula, 663, 663
Plasma, 548

confinement of, 548–549
metals as, 486
solar, 644–645, 647
structure of, 427

Plato, 650
pn junctions, 467, 467
pnp transistors, 471, 471
Polar coordinates, 104
Polar molecules, 388–389, 389
Polaris, 652, 697
Polarizability (a), 389
Pole and barn paradox, 48–50, 49

Polycrystalline solids, 428
Polyelectrons, 113
Polynomials

Hermite, 255, 269
Lagendre, 282
Laguerre, 287, 287t

Population densities (n), 412
Population I stars, 651
Population II stars, 651
Population inversions, 409, 413–414, 414

critical density (Dnc ), 412, 415–416
Positron emission tomography (PET), 494, 

517, 558
Positronium, 113, 188
Positrons (e +), 16, 90–91, 91

discovery of, 493, 580
Potassium

photoelectric effect in, 135
Potential energy (U), 81. See also Finite 

square wells; Infinite square wells; 
Simple harmonic oscillators

and alpha decay, 512, 512
and coupling constants, 589, 595
and covalent bonding, 382–386, 384, 385
of electric dipoles, 386, 387
gravitational, 644
and ionic bonding, 378, 378–379
Kronig-Penney, 452, 452–453
Lenard-Jones, 425
of massless particles, 90
of moving objects, 85–86, 88
for quarks, 619, 619
and Schrödinger equation, 232, 237–238
and solids, 429–432
of strong interaction, 495, 522, 524, 531
and vibrational energy levels, 395, 395–

396, 396
vs. kinetic energy, 81–83

Pound, R.V., 102, 108, 569
Pregnant elephant, 32
Primitive vertices, 580, 580, 585
Principal quantum number (n), 167, 286
Principle of equivalence, 98–100, 99, 100

and gravitational redshift, 106–107
Probability, and particle waves, 204, 210–

213, 232–233
Probability amplitude (C (x, t)), 233
Probability density (P(x,t)), 233

in band theory of solids, 455
for electron solids, 436, 436–437
of exchange mesons, 528–529, 529
in finite square wells, 244, 244
for the hydrogen atom, 290–292, 291, 

292, 293
and indistinguishable particles, 303–304, 

338, 339, 340–342
in infinite square wells, 241, 242, 243–

244, 244
in simple harmonic oscillators, 255, 256
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Probability distribution functions (P(x)), 
211–213, 254

for exchange mesons, 528–529, 529
for infinite square wells, 243–244, 244

Promethium, 179, 179
Prominences, solar, 649, 649
Proper frequency (  f0 ), 42
Proper Length (Lp ), 33, 48

as four-vector, 85
Proper time interval, 30, 33, 38

as four-vector, 85
Proper time interval (t), 20–21, 23–24
Proportionality constant, 126
Proton-proton cycle, 551–552, 645–646, 

646, 647t
Proton spin, 613–614
Proton spin crisis, 614
Protons (  p), 96–97, 495t, 579

decay of, 625–626
diffraction of, 201, 202
in interstellar medium, 673
strong interaction, 523–524

Proxima Centauri, 660
Ptolemy, 656
Pulsars, 109, 669, 669
Pulsed lasers, 418
Pump level in lasers, 410, 411
Purcell, E.M., 486
Pure rotational spectra, 393

Q
Q branches, 402
Q-switching, 411
Q values, 534–536, 539, 551
QED. See Quantum electrodynamics (QED)
QSOs. See Radio-quiet quasars (QSOs)
QSRs. See Radio-loud quasars (QSRs)
Quality factors (Q), 411
Quantization, 119–152

of angular momentum, 167, 283, 283–285
and blackbody radiation, 123–131
and the Compton effect, 141–144
of electric charge, 119–123, 146
of energy, 128–129, 132, 233, 239, 241, 

286–287
of energy states of matter, 355–358
of magnetic flux, 477
of magnetic moment, 295
and the photoelectric effect, 131–137

Quantum chromodynamics (QCD), 609, 
617–619, 618, 659

and dark matter, 659
failures of, 614
and Feynman diagrams, 584

Quantum computers, 264, 451, 460
Quantum dots, 247, 459, 460
Quantum electrodynamics (QED), 295–296, 

582
and antiparticles, 582
and interaction strengths, 595–596

and mediation of forces, 592
Quantum fluctuations, 210
Quantum gravity, 627, 692, 695
Quantum Hall effect, 465, 465
Quantum interference, 312–313, 313
Quantum mechanics, 229
Quantum numbers, 167, 240, 278, 287–289

angular momentum (l), 284
energy (n), 167, 243
internal, 601, 601t
magnetic (m), 284, 288
in particle physics, 598–609
and Pauli exclusion principle, 304–305
principle (n), 286
rotational (O), 392
spin (ms ), 293
total angular momentum (j), 299
vibrational (y), 395

Quantum statistics, 338–345
Quantum wells, 459, 459
Quantum wires, 459, 460
Quark confinement, 596, 618, 621
Quark model of hadrons, 609–613
Quarks, 90, 495, 527, 586–588, 587t, 611, 

616, 620t
antiquark combinations, 612t, 613
discovery of, 160, 579
internal quantum numbers of, 601, 601t
naming of, 631
and quantum chromodynamics, 617–620
up-type vs. down-type, 587t, 588
and weak interaction, 592

Quartz, 428
Quasars, 677, 681
Quiet galaxies, 675
Quiet Sun, 641

R
R branches, 421
Radial Schrödinger equation, 281
Radiant flux (F), 640, 654, 659

of quasars, 677
Radiation, 130, 508. See also Blackbody 

radiation; Cosmic background radiation; 
Electromagnetic radiation; Emission; 
Radioactivity

coherent, 403, 406
dispersion, 124
Hawking, 672, 697
ionizing, 552*, 566*
radio-frequency (RF), 556
resonance, 403, 406
thermal, 123

Radiation dosages, 566*
Radiation era, 693
Radio-frequency (RF) radiation, 556
Radio galaxies, 677, 677
Radio-loud quasars (QSRs), 677
Radio-quiet quasars (QSOs), 677
Radioactivity, 508–511, 569

counting rate of, 510
dating, 558–563
decay modes of, 265–267, 511–522
discovery of, 493
statistical nature of, 36–37, 508–510
units of, 509

Radiography, 556–558, 557, 558
Radioisotopes, 564
Radiometric dating, 558–560, 559
RAM. See Random access memory (RAM)
Raman

spectra, 404, 404
Raman, Chandrasekhara V., 404, 421
Raman scattering, 403, 404, 404–405, 421
Raman spectra, 404, 404
Ramsauer-Townsend effect, 267
Random access memory (RAM), 451
Rayleigh, John W. Strutt, Lord, 126, 127, 

145, 338, 403
Rayleigh-Jeans equation, 126, 127, 128
Rayleigh scattering, 403, 403
Rayleigh’s criterion, 222
Reactors. See Nuclear reactors
Rebka, G.A., 569
Recurrent novae, 664
Red giants, 663
Red subgiants, 663
Red supergiants, 663
Redshift, 42, 43–44

cosmological, 681–683
of galaxies, 677, 678
of gamma-ray bursts, 672
gravitational, 102, 106–108, 107, 107, 670
and Hubble’s law, 678–680, 679
of quasars, 681

Reduced mass (m), 171–172
in moments of inertia, 393, 394
in Schrödinger equation, 279
in simple harmonic oscillators, 393

Reference clocks, in special relativity, 13, 14
Reference frames, 58, 99, 99–100

center-of-mass, 535, 576
inertial, 4, 4–6#
laboratory, 535, 535, 536
non-inertial, 97, 98
rest, 688
zero momentum (S'), 74

Reflection of wave functions, 258–268
Refraction

by electromagnetic waves, 153
index of, 313

Reines, Frederick, 516
Relative boiling points, 390–391
Relativistic force (F), 70–71
Relativistic Heavy Ion Collider (RHIC), 114, 

580, 583
Relativistic kinetic energy (Ek ), 71–72, 72
Relativistic mass (m(u)), 67–70, 68
Relativistic mechanics, 230, 293

and de Broglie relations, 194
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Relativistic momentum (p), 66–70, 67, 68
and fine-structure splitting, 173

Relativistic multiplier (g), 19
Relativistic speed ratio (b), 21, 43
Relativistic wave equations, 295, 507, 528, 

580, 582
Relativity, 3–64

classical, 4–6#, 7–10, 11
and coordinate transformations, 17–29
and the Doppler effect, 40–45
and dynamics, 65–97
and Einstein’s postulates, 11–17
and energy, 70–81
experimental basis of, 4–11
and Gedanken experiments, 45–51
general, 33, 47, 97–108, 108*
and invariant mass, 84–97
and the Lorentz transformation, 17–29
and mass/energy conversion, 81–84
and momentum, 66–70
and motion, 3–64
of simultaneity, 14–17, 15, 16, 17, 48*, 49
special, 3–97
and time dilation and length contraction, 

29–40
Relaxation time (t), 439
Residual strong interaction, 622
Resistance (R), 439

standard of, 466
Resistivity (r), 439

and superconductivity, 472
temperature dependence of, 447, 447–448, 

457
Resonance absorption, 406
Resonance radiation, 403, 406
Resonances, 538–539, 539

of hadrons, 591, 605, 609*, 617
Response time-bandwidth relation, 207
Rest energy (mc 2), 72–73
Rest mass (m), 78

and conservation of energy, 81–83
of moving objects, 85–86

Reverse biasing, 467, 467, 468
RHIC. See Relativistic Heavy Ion Collider 

(RHIC)
Richardson, Robert C., 348
Richter, Burton, 615, 631
Right ascension (a), 656, 656, 697
Right-handed coordinate system, 607, 607
Rindler, W., 48, 50
Ritz, Walter, 156
Roche, Edouard A., 697
Roche lobes, 664, 664, 665
Rocks, radiometric dating of, 559–560, 

562–563
Roentgen, Wilhelm K., 138, 145, 493, 556
Rohrer, Heinrich, 264
Roosevelt, Franklin D., 547
Rotational energy levels, 358, 392–395, 393
Rotational quantum number (l), 392

Rubbia, Carlo, 593, 631
Ruby lasers, 409, 410–413, 411
Rumford, Benjamin Thompson, Count, 89
Rutherford, Ernest, 157, 185, 186

and atomic model, 145, 156–159, 158, 
162, 270

and the atomic model, 165
and the nucleus, 163, 163–164, 493, 495, 

496, 508, 533
and radiation, 512

Rutherford Appleton Laboratory, 418
Rutherford scattering, 159–162*, 164
Rydberg, Johannes R., 156
Rydberg atoms, 174, 174–175
Rydberg constant (R), 156, 168, 171–172
Rydberg-Ritz equation, 168
Rydberg-Ritz formula, 156
Ryle, Martin, 689, 697

S
s-bonding, 385
Sagittarius A*, 655, 670–671, 672
Salam, Abdus, 588
Satellites

BeppoSAX, 672
Cosmic Background Explorer (COBE), 

131, 685, 690
geosynchronous, 5

Saturated bonds, 385
Saturated forces, 504, 523, 525
Scale factor (R(t )), 688
Scanning tunneling microscopes (STMs), 

264, 264–265
Scattered fraction (  f  ), 161
Scattering, 402–405. See also Collisions

deep inelastic, 611
elastic, 402, 403, 533–534, 534
and the nucleus, 524

Scattering angles (u), 159, 160, 164
Schrieffer, J. Robert, 478, 486
Schrödinger, Erwin R.J.A., 231, 256, 269

and de Broglie relations, 194
and wave equation, 229–230, 253, 280, 

295
Schrödinger equation, 229–275, 452–453. 

See also Wave equations
and acceptable wave functions, 235–237
and expectation values and operators, 

250–253
and the finite square well, 246–249
and the infinite square well, 237–246
for multiple particles, 303–305
in one dimension, 230–237
radial, 281
and reflection and transmission of waves, 

258–268
and the simple harmonic oscillator, 

253–257
in spherical coordinates, 279–280, 280
in three dimensions, 277–280

time-independent, 233–235
and wave equations, 232–233
and wave-particle duality, 220

Schwarzschild radius (RG ), 109, 670
and limits of knowledge, 695

Schwinger, Julian, 631
Scissors paradox, 52, 52
SDSS. See Sloan Digital Sky Survey (SDSS)
Search for Extraterrestrial Intelligence 

(SETI), 651
Seasons, 657
Second-order Doppler effect, 44
Segrè, Emilio, 547, 558, 570, 582, 631
Selection rules, 255

for hydrogen atoms, 288
and molecular spectra, 393, 395, 396, 398
for nuclear transitions, 506, 601
for simple harmonic oscillators, 255–256, 

256
Semiconductor lasers, 418
Semiconductors

devices of, 467–472
impurity, 460, 460–463, 484
intrinsic, 456, 456–459, 457
junctions of, 467, 467
n-type, 462, 462, 467
p-type, 462, 462, 467, 467

Semimetals, 455
Separation of variables, 234–235, 269, 281

constant for (C), 234–235
Series limits, 155, 155, 169, 169
SETI. See Search for Extraterrestrial 

Intelligence (SETI)
Seyfert, Carl, 676
Seyfert galaxies, 676
Shapiro, I.I., 103
Shapley, Harlow, 655, 697
Shells

electronic, 300, 307, 308
nuclear, 497, 529–532, 533*

Shielding, 307
Shock waves, 643
Shockley, William B., 471, 486
Short-range forces, 525
Shroud of Turin, 565
Signal processing, 207
Silicon (Si), and impurity semiconductors, 

456, 456–468
Simple cubic (sc) crystal symmetry, 433, 433
Simple harmonic oscillators, 253, 253–257

and correspondence principle for, 255, 255
and equipartition theorem, 334*
and heat capacities, 356–358, 358
and Planck’s law, 127
and vibrational energy levels, 395

Simultaneity
relativity of, 14–17, 15, 16, 17, 48*, 49
in spacetime, 28, 28

Single-cell biological lasers, 418
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Single-photon emission computer 
tomography (SPECT), 558

Sinusoids, 206
Sirius, 651
SLAC. See Stanford linear accelerator 

(SLAC)
Sloan Digital Sky Survey (SDSS), 677
Smirnov, A., 626
Smoke detectors, 512
Smoot, George F., 690, 697
SN1987A [supernova], 633, 663, 663
Snell’s law, 222
SNO neutrino observatory, 90, 133
Snyder, H., 108
Socrates, 631
Sodium (Na)

and band theory of solids, 455, 455
spectra of, 310–311, 311, 506, 507

Soft superconductors, 475, 475
Solar cells, 469, 470
Solar constant (  f  ), 147, 640, 659
Solar flares, 648, 649
Solar irradiance, 640
Solar-neutrino problem, 552, 626, 645–646
Solar wind, 643
Solid angle (V), 185
Solid state physics, 427–492

and band theory of solids, 452–460
and conduction, classical, 437–440
and conduction, quantum, 444–448
and the free-electron gas in metals, 

440–444
and impurity semiconductors, 460–463
and magnetism, 448–451
and semiconductor junctions and devices, 

467–472
and the structure of solids, 427–437
and superconductivity, 472–484

Solids
amorphous, 428
covalent, 429–436
heat capacities (Cv ), 337, 337–338
ionic, 429–436
magnetism in, 448–451
polycrystalline, 428
structure of, 427–437

Solstices, 657, 657, 697
Sommerfeld, Arnold, 173, 222, 293, 448
Southern Cross, 651
sp 2 and sp 3 hybridization, 435
Spacelike spacetime intervals, 37, 38
Spacetime, 13

simultaneity in, 28, 28
worldlines in, 24–28

Spacetime diagrams, 23–29, 24, 32, 46. See 
also Feynman diagrams

calibrating axes of, 27, 28–29
Spacetime intervals (Ds), 37–40, 40

as four-vector, 84–85
lightlike, 37, 38–39

spacelike, 37, 38
timelike, 37–38, 39

Special relativity, 3–64, 5
Specific heat. See Heat capacities (Cv )
SPECT. See Single-photon emission 

computer tomography (SPECT)
Spectra, 153

absorption, of diatomic molecules, 398–
402, 400, 401

ammonia inversion, 405
atomic, 154–156, 155
band, 153
continuous, 153–154
emission, of diatomic molecules, 397, 

397–398, 399
line, 153–154, 154
nuclear, 496, 539
pure rotational, 393
and supernovae, 665
vibrational-rotational, 398, 399
x ray, 175–179, 179

Spectral distributions, 124–125, 125
Spectral lines, 120

Doppler broadening of, 338, 675
and Hubble’s law, 679
natural width (G0 ) of, 218–219, 520–521, 

538
and stellar classification, 653

Spectroscopic notation, 300*–301
Spectroscopy, 153

accelerator mass (AMS), 553, 562, 563–
565, 564, 565

atomic beam fluorescence, 506
electron energy loss (EELS), 182–183, 

183
Speed. See also Velocity

of a fast electron, 86–88
Fermi (mF ), 445, 447
molecular, 329–332
superluminal, 51–54, 52, 53

Speed of light (c), 6–7
and the Doppler effect, 41
and ether, 6–11
slowing of, 102–103, 312–313, 313
and special relativity, 12
and time dilation, 30–31
and worldlines, 24–25, 25

Spherical coordinates, 279–280, 280, 290
Spherical harmonic functions, 289
Spherical harmonics, 282, 282t
Spin, 174
Spin angular momentum (S), 293–298

of antineutrinos, 602
of hadrons, 591t, 604t
and magnetism, 449–451
nuclear (I), 312, 505
of protons, 613–614
of quarks, 587t

Spin Hall effect, 451, 466, 466–467
Spin-orbit coupling, 301–302

Spin-orbit effect, 298–302, 310
nuclear, 531, 532

Spin quantum numbers (ms ), 293
Spin valves, 451
Spintronics, 451, 451
Spontaneous emission, 406

vs. stimulated emission, 408
Spontaneously broken symmetry, 620
Spring equinox, 657, 657
SQUIDs. See Superconducting quantum 

interference devices (SQUIDs)
Standard candles, 660, 665, 668, 685
Standard Model, 552, 579, 580, 609–617

and conservation laws, 599, 608
failures of, 623
and mass, 621
and mediation of forces, 589, 621
and quarks and gluons, 586, 588
summary of, 621–622

Standard model of the universe, 689
Standing waves

and de Broglie relations, 194, 194
and lasers, 410, 410
and Planck’s law, 127
and Schrödinger equation, 229

Stanford linear accelerator (SLAC), 116, 
497, 613

Star clusters, 651
Stars, 651–663, 653t. See also Astrophysics; 

Cosmology; Galaxies; Sun
and cataclysmic events, 664–666
classification of, 653, 653t
composition of, 155, 310
constellations of, 651, 652
evolution of, 659–663
final states of, 667–673
and Hertzsprung-Russell diagrams, 661, 

661–663
magnitude of, 653–654
neutron, 668–670, 669
populations of, 651–653
surface temperature of, 125, 659, 661, 661

Stationary states, 166, 233
Statistical mechanics, 325
Statistical physics, 181, 240, 325–371

and atomic spectra, 309–311, 311
and Bose-Einstein condensates, 345–353
classical, 326–338
and fermion gases, 361–365
of the hydrogen atom, 291–293
and nuclear reactions, 538–539
and photon gases, 354–361
quantum mechanical, 338–345

Stefan, Josef, 124, 366
Stefan-Boltzmann law, 124, 130

and stellar temperatures, 641
Stefan’s constant (s), 124, 130, 640
Stellar aberration, 60
Stellar populations, 651–653
Step potentials, 258–262, 259, 261, 262, 263
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Stern, Otto, 201, 294, 296–297, 315, 370
Stern-Gerlach experiment, 294, 296, 296–

298, 297, 298
Stimulated emission, 403, 406–408. See also 

Lasers
vs. spontaneous emission, 408

STMs. See Scanning tunneling microscopes 
(STMs)

Stoney, George J., 120, 145
Stopping potential (V0 ), 132–134, 133
Stormer, H.L., 486
Strange particles, 602
Strangeness (S), 582, 601–603, 601t, 602, 

604t
Strassmann, Fritz, 543, 546, 570
String theories, 624
Strong force, 495
Strong interaction, 522–529, 589–592, 591t, 

594t. See also Fundamental interactions
alpha decay, 265–267
and beta decay, 517
and cosmology, 692
range of, 500, 527, 594t, 598
residual, 622
transmission of, 90

Strutt, John W. Lord Rayleigh, 126, 127, 
145, 338, 403

SU(2) group theory, 610
SU(3) group theory, 610, 610–612, 611
Sudbury Neutrino Observatory, 552, 600, 

625, 626
Summer solstice, 657, 657
Sun, 639–651. See also Astrophysics; Stars

active, 647–649
change in mass of, 79
chromosphere of, 642, 642, 643
core of, 643
corona of, 642–643
energy source of, 551–552, 644–646
interior of, 643–644
limbs of, 641, 642
magnetic field of, 643, 647, 647–648, 648
mass of, 79, 643
photosphere of, 640–641, 642
proton-proton cycle in, 551–552, 645–646, 

646, 647t
quiet, 641
rotation of, 43
spectrum of, 338
surface and atmosphere of, 129, 640–643, 

641, 642
x rays from, 641, 643

Sunspot cycle, 647–648, 648
Sunspots, 642, 648, 648, 649
Super-Kamiokande Neutrino Observatory, 

90, 133, 552, 600, 625, 625, 626, 666
Superclusters, 682, 683
Superconducting energy gaps (Eg ), 479–480, 

480

Superconducting quantum interference 
devices (SQUIDs), 483, 484

Superconductivity, 472–484
BCS theory of, 477–480, 478
high-temperature, 481–482, 481t
type I vs. type II, 475, 475

Supercurrents, 473
Superfluids, 346–351, 348, 349
Superleaks, 366
Superluminal speeds, 51–54, 52, 53
Supermultiplets, 609, 610, 610
Supernovae, 500, 663, 665–666, 666

as standard candles, 660, 665, 668, 685
Superpartners, 586, 623–624, 624t

and dark matter, 659
Superposition. See also Diffraction; 

Interference
and stationary states, 243, 269
and wave packets, 205, 205

Superstring theories, 624, 627
Supersymmetry (SUSY), 586, 623–625

and wave-particle duality, 193
Surface-barrier detectors, 469
Surface tension, 390
Symmetry

breaking of, 620–621, 621
and conservation laws, 66, 598–609
and crystallography, 429, 429–436, 430t, 

434, 435
and three-dimensional square wells, 279, 

279
Synchronization, in special relativity, 13, 14, 

14–15

T
Taagepera, B., 513
Tachyons, 53–54, 54
Tarantula nebula, 663
Taylor, E.E., 48
Taylor, J.H., 109
TCP invariance, 607–608
Temperature (T  ), 329*

critical (Tc ), for Bose-Einstein 
condensates, 350–351

critical (Tc ), for superconductivity, 472, 
473t, 474, 476, 481t

Curie (Tc ), 450
Debye (TB ), 357, 358
Einstein (TE ), 357, 357, 446–447
Fermi (TF ), 443, 444
fusion, 551
Neel (TN ), 450
stellar, 653, 659, 661, 661–662
of the Sun, 125, 641, 641–642, 642

Thales, 650
Theories of everything, 629*
Thermal conduction, 347, 448*
Thermal equilibrium, 123–124
Thermal neutrons, 540
Thermal radiation, 123

Thermochemical effect, 348, 349
Thomas, A., 614
Thompson, Benjamin, Count Rumford, 89
Thompson, C., 558
Thompson, William, Lord Kelvin, 316
Thomson, George P., 200, 222
Thomson, Joseph J., 121, 145, 185, 200

and atomic model, 156–157
and discovery of electrons, 120–121, 131, 

222, 437, 579, 586
and polyatomic molecules, 386

Thomson experiment, 120, 120–122, 121, 
122

Thought experiment, 214
Time. See also Clocks

absolute direction of, 608
interaction, 589
relativistic, 17–21
relaxation (t), 439

Time dilation, 29–33, 30, 30, 31, 32
and the Doppler effect, 42
gravitational, 100

Time-independent Schrödinger equation, 
233–235, 251

Time intervals, proper (t), 20–21
Timelike spacetime intervals, 37–38, 39
Timelike worldlines, 37
Ting, Samuel Chao Chung, 615, 631
Tokamaks, 548, 549
Tomography, 569. See also Computer 

assisted tomography (CAT); Positron 
emission tomography (PET); Single-
photon emission computer tomography 
(SPECT)

Tomonaga, Sin-Itiro, 631
Top (T  ), 587t, 588
Torque (t)

and magnetic moments, 295, 295
and precession, 298
relativisitic, 80–81

Total angular momentum quantum numbers 
(j), 299, 299

Totalitarian principle, 598
Townes, Charles, 409
Townsend, John S.E., 122
Tracers, isotopic, 186
Transcendental equations, 249*
Transformation of coordinates. See 

also Coordinate systems; Lorentz 
transformation

Galiliean, 4–6#, 6, 18
Transistors, 471, 471–472, 472*
Transition elements, 309
Transitions between energy states, 253*, 

405*, 406*
Transmission coefficient (T  ), 513
Transmission of wave functions, 258–268
Tritium, 543, 547, 549
Tsui, Daniel C., 465, 466, 486
Tunable dye lasers, 418
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Tunnel diodes, 264, 267*, 468, 469, 469
Tunneling, 248, 264, 264–265

and alpha decay, 266–267, 513, 513
and fission, 544
and fusion, 548, 645
and Josephson junctions, 482–483
and scanning tunneling microscopes 

(STMs), 264, 264–265
and semiconductor devices, 468, 469, 469

Tunneling current, 469, 469
Turning points, 253
Twin paradox, 45–48*, 46
Two-slit interference experiment, 210–211, 

211
Type I superconductors, 475, 475
Type I supernovae, 665
Type II superconductors, 475, 475
Type II supernovae, 665–666, 666

U
Uhlenbeck, George E., 293, 315
Ultraviolet catastrophe, 126
Uncertainty principle, 213–216

angular momentum, 285, 299
classical, 207–209, 208
consequences of, 216–219
and finite square wells, 248
and infinite square wells, 241
and limits of knowledge, 694
and mediation of forces, 526

Unified mass unit (u), 393
Unit cells, 428, 484
Universe. See also Big Bang

acceleration of expansion of, 660, 680
critical energy density of, 684–685
evolution of, 310, 691
expansion of, 680–681, 687
geometry of, 687
history of, 690–693
photon density of, 355

Up (U), 587t, 588, 601
Up-type quarks, 587t, 588
Uranium

diffusion of, 330
fission of, 543, 544–546, 545

Urey, Harold C., 171, 185

V
Vacuum polarization, 596, 596, 618
Valence bands, 455, 455, 456
Van de Graaff generators, 493, 534

and accelerator mass spectroscopy, 564, 
564

van der Meer, Simon, 631
van der Waals, Johannes D., 346, 387, 390, 

421
van der Waals attraction, 387, 390, 421
Vector models, 284, 285, 299
Velocity. See also Speed

drift (vd) , 438, 438–439

escape (ve ), 109, 333–334, 670, 697
group (vg ), 205, 206, 210
nonrelativistic, 96
phase (vp ), 204, 209
relativistic transformations of, 21–23

Velocity distribution function, 330–331, 331
Vernal equinox, 657, 657
Very Large Array, 655
Very Large Telescope (VLT), 672
Vessot, R.F.C., 108
Vibrational energy levels, 360, 395, 395–397
Vibrational quantum numbers (v), 395
Vibrational-rotational spectra, 398, 399
Virtual particles, 214

and exchange forces, 525–526
Feynman diagrams for, 584, 585, 592
and vacuum polarization, 596, 596

Virtual photons, 526
VLT. See Very Large Telescope (VLT)
von Fraunhofer, Joseph, 153, 185, 405, 653
von Helmholtz, Hermann, 113, 145, 598
von Klitzing, Klaus, 455–456, 486
von Klitzing constant (Rk ), 465–466
von Laue, Max, 80, 138
Vortices, 475, 476, 477

W
W; bosons, 593, 593, 594t
Walsh, D., 105
Walton, Ernest T.S., 493, 532, 569
Wave equations, 230. See also Schrödinger 

equation
classical, 204, 210, 220
relativistic, 230, 297–298, 507, 528, 580, 

582
Wave functions (c (x, t)), 209

and alpha decay, 513, 513
for barrier potentials, 263, 263–264
and covalent bonding, 381, 381–382
for finite square wells, 247, 247–249, 

248
for the hydrogen atom, 289–293
for hydrogen molecules, 382–386, 384
for infinite square wells, 237–240, 241, 

242–246, 244
macroscopic, 353, 353
for neutrinos, 628
probabilistic interpretation of, 210–213
reflection and transmission of, 258–268
for simple harmonic oscillators, 254–256, 

255
and step potentials, 258–263, 259, 262
and TCP invariance, 607–608

Wave mechanics, 229
Wave number (k), 204, 205, 206, 213, 222
Wave packets

dispersion of, 212, 212
for particles, 204–210
reflection and transmission of, 261
for waves (c (x, t)), 204–207, 205, 206

Wave-particle duality, 193, 219–220
and Compton effect, 142
and photon gases, 355
and uncertainty principle, 214

Wave vectors (k), 455
Wave velocity. See Phase velocity (vp )
Wavelength, 43–44
Waves. See also Particle waves

gravitational, 106, 106–108
harmonic, 204, 230, 232
matter, 195–204
shock, 643

Weak charge, 588, 592, 594t
Weak interaction, 517, 592–594, 594t. See 

also Fundamental interactions
and beta decay, 517
charged vs. neutral, 592
and cosmology, 692
Feynman diagrams for, 592
mediation, 592
range of, 594

Weak isospin Tz , 586, 587t, 588
Weakly interacting massive particles 

(WIMPs), 658–659
Weight diagrams, 610, 610, 611
Weinberg, Steven, 588
Weizsächer semiempirical binding-energy 

formula, 505*, 505
Weizsächer semiempirical mass formula, 

518, 518, 577
Wheeler, John A., 48, 543, 697
White dwarfs, 663, 667–668, 668
Wieman, Carl E, 351, 353
Wien, Wilhelm, 125
Wien’s displacement law, 125, 128
Wigner, Eugene, 569
Wilczek, Frank, 697
Wilkinson Microwave Anisotropy Project 

(WMAP), 131, 680, 685, 690, 697
Wilson, Robert Woodrow, 131, 690, 697
WIMPs. See Weakly interacting massive 

particles (WIMPs)
Winter solstice, 657, 657
WMAP. See Wilkinson Microwave 

Anisotropy Project (WMAP)
Wolfenstein, L., 626
Wolfke, Miwczyslaw, 345
Wollaston, William H., 185
Work

and relativity, 72, 79–80
and torque, 298

Work function (f), 133, 134, 135t, 140
World Wide Web, 592
Worldlines, 24–28, 25, 27, 28, 46

and event analysis, 26
of tachyons, 54
timelike, 37

Wu, C.S., 606, 607
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X

X rays, 137–141, 138, 139

discovery of, 493

and particle-induced x-ray analysis 

(PIXE), 565–566, 566

from solar corona, 641, 643

spectra of, 141, 175–179, 179

Y
Yang, C.N., 606, 607, 608
Yukawa, Hideki, 569

and exchange forces, 525–527, 584, 589

Z
Z 0 bosons, 593, 593, 594t, 595
Zeeman, Pieter, 56, 120, 122, 302, 316

Zeeman effect, 120, 288, 302, 312*
nuclear analog of, 507

Zener breakdown, 468, 468
Zener diode, 468, 468
Zero momentum frames (S¿), 76–77
Zero point energy, 216–217, 341, 380
Zweig, George, 611
Zwicky, Fritz, 658
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The Greek Alphabet Alpha A a Iota  i Rho  r

Beta  b Kappa   Sigma S s

Gamma G g Lambda L l Tau  t

Delta D d Mu  m Upsilon  

Epsilon   Nu  n Phi F 

Zeta  z Xi J j Chi  x

Eta  x Omicron   Psi C c

Theta  u Pi P p Omega V v

Prefixes for Powers of 10 Multiple Prefix Abbreviation

1018 exa E
1015 peta P
1012 tera T
109 giga G

    106 mega M
103 kilo k
102 hecto h
101 deka da
1021 deci d
1022 centi c
1023 milli m
1026 micro m

1029 nano n
10212 pico p
10215 femto f
10218 atto a

Mathematical Symbols  is equal to Dx change in x

 is not equal to 0 x 0 absolute value of x

 is approximately equal to n! n   1n - 12  1n - 22g 1

 is of the order of  sum

 is proportional to lim limit

 is greater than Dt S  0 Dt approaches zero

 is greater than or equal to
dx

dt

derivative of x with 
respect to t

W



is much greater than

is less than

0 x 

 0 t

partial derivative of x with 
respect to t

 is less than or equal to  integral

V is much less than
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Abbreviations for Units A ampere keV kilo-electron volts

Å angstrom (10210 m) L liter

atm atmosphere m meter

Btu British thermal unit MeV mega-electron volts

Bq becquerel min minute

C coulomb mm millimeter

°C degree Celsius ms millisecond

cal calorie N newton

Ci curie nm nanometer (1029 m)

cm centimeter rev revolution

eV electron volt R roentgen

°F degree Fahrenheit Sv seivert

fm femtometer, fermi (10215 m) s second

G gauss T tesla

Gy gray u unified mass unit

g gram V volt

H henry W watt

h hour Wb weber

Hz hertz y year

J joule mm micrometer (1026 m)

K kelvin ms microsecond

kg kilogram mC microcoulomb

km kilometer V ohm

Some Useful Combinations hc  1.9864  10225 J # m = 1239.8 eV # nm

Uc = 3.1615 * 10-26 J # m = 197.33 eV # nm

Bohr radius a0 =
4p0U

2

mee
2 = 5.2918 * 10-11 m

ke2  1.440 eV # nm

Fine structure constant  =
e2

4p0Uc
= 0.0072974 

1

137

kT = 2.5249 * 10-2 eV  1
40 eV at T = 293 K
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Some Physical 
Constants
(See Appendix D 
for a complete list of 
fundamental constants.)

Avogadro’s number

Boltzmann’s constant

Bohr magneton

Coulomb constant

Compton wavelength

Fundamental charge

Gas constant

Gravitational constant

Mass, of electron

  of proton

  of neutron

Permeability of free  
  space

Planck’s constant

Speed of light

Unified mass unit

NA

k

mB = eU>2me

k = 1>4p0

lc = h>mec

e

R  NAk

G

me

mp

mn

m 0

h

U

c

u

6.022142 * 1023 particles>mol

1.380650 * 10-23 J>K
9.2740095 * 10-24 J>T
8.987551788 * 109 N # m2>C2

2.42631024  10212 m

1.602176  10219 C

8.31447 J>mol # K = 1.987 22 cal>mol # K
= 8.20578 * 10-2 L # atm>mol # K

6.6742 * 10-11 N # m2>kg2

9.109382  10231 kg

= 510.9989  keV>c2

1.672622  10227 kg

= 938.2722 MeV>c2

1.674927  10227 kg

= 939.5653 MeV>c2

4p * 10-7 N>A2

6.626069  10234 J # s
4.135667  10215 eV # s

1.054572  10234 J # s
6.582119  10216 eV # s

2.99792458 * 108 m>s
1.660539  10227 kg

= 931.49401 MeV>c2

Some Conversion 
Factors 1 yr  3.156  107 s 1 T  104 G

1 light-year  9.461  1015 m 1 Ci  3.7  1010 Bq
1 cal  4.186 J 1 barn  10228 m2

1 MeV>c = 5.344 * 10-22  kg # m>s 1 u  1.66054  10227 kg

1 eV  1.6022  10219 J 1 parsec  3.26 light-years
1 kW # h  3.6 MJ 1 rad  57.30°

Some Particle 
Masses and 
Rest Energies

kg MeV>c2 u

Electron 9.1094  10231 0.51100 5.4858  1024

Muon 1.8835  10228 105.66 0.11343

Proton 1.6726  10227 938.27 1.00728
Neutron 1.6749  10227 939.57 1.00866
Deuteron 3.3436  10227 1875.61 2.01355
a particle 6.6447  10227 3727.38 4.00151
W 1.43  10225 80  103 85.9
Z° 1.63  10225 91.2  103 97.9
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