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PREFACE

n preparing this new edition of Modern Physics, we have again relied heavily on the

many helpful suggestions from alarge team of reviewers and from a host of instruc-
tor and student users of the earlier editions. Their advice reflected the discoveries that
have further enlarged modern physicsin the first decade of the new century, took note
of the evolution that is occurring in the teaching of physicsin colleges and universities,
and recognized the growing role of modern physics in the biological sciences. As the
term modern physics has come to mean the physics of the modern era—relativity and
guantum theory—we have heeded the advice of many users and reviewers and pre-
served the historical and cultural flavor of the book while being careful to maintain the
mathematical level of the earlier editions. We continue to provide the flexibility for
instructors to match the book and its supporting ancillaries to a wide variety of teach-
ing modes, including both one- and two-semester courses and media-enhanced courses.

New and Enhanced Features

The successful features of the earlier editions have been retained, many have been
augmented, and new ones have been added. Among them are the following:

* The logical structure—beginning with an introduction to relativity and quantiza-
tion and following with applications—has been continued. Opening the book
with relativity has been endorsed by many reviewers and instructors.

* As in the earlier editions, the end-of-chapter problems are separated into three

sets based on difficulty, the least difficult also grouped by chapter section.

New problems have been added in every chapter as we continue to offer more

problems than any other book in the field.

The first edition’s Instructors’ Solutions Manual with solutions, not just answers,

to all end-of-chapter problems was the first such aid to accompany a physics (and

not just a modern physics) textbook, and that leadership has been continued in
this edition. The Instructors’ Solutions Manual (ISM) is available in print or on

CD for those adopting Modern Physics, sixth edition, for their classes. As with

the previous editions, the popular paperback Student’s Solution Manual, contain-

ing one-quarter of the solutionsin the ISM, is also available.

* We have continued to include many worked-out examples in every chapter, a
feature singled out by many instructors as a strength of the book. Several new
examples at the interface between modern physics and the biological sciences
have been added. As before, we frequently use combined quantities such as hc,
#ic, and ke? in eV - nm to simplify many numerical calculations.

* The summaries and reference lists at the end of every chapter have, of course,
been retained and augmented, including the two-column format of the summaries
that improves their clarity.

ix
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* We have continued the use of real data in figures, photos of real people and appa-
ratus, and short quotations by many scientists who were key participants in the
development of modern physics. These features, along with the Notes at the
end of each chapter, bring to life many events in the history of science and help
counter the too-prevalent view among students that physicsis a dull, impersonal
collection of facts and formulas. o

* More than two dozen Exploring sections, identified by an atom icon V’?ﬁ and
dealing with text-related topics that captivate student interest such as superlumi-
nal speed, giant atoms, and spintronics, are distributed throughout the text.

e The book’s Web site includes 31 More sections, which expand in depth on
many text-related topics. These have been enthusiastically endorsed by both
students and instructors and often serve as springboards for projects and alter-
nate credit assignments. Identified by an icon , each isintroduced with a brief
text box.

* More than 125 questions intended to foster discussion and review of concepts are
distributed throughout the book, including several new onesin this edition. These
have received numerous positive comments from many instructors over the
years, often citing how the questions encourage deeper thought about the topic.

* A number of new Application Notes have been added to the sixth edition. These brief
notes in the margins of many pages point to afew of the many benefitsto society that
have been made possible by a discovery or development in modern physics.

* Also new in the sixth edition are the For You text boxes. These text boxes high-
light current and future research and development activity toward which today’s
students may consider directing their own career interests.

* Recognizing the need for students on occasion to be able to quickly review key
concepts from classical physicsthat relate to topics devel oped in modern physics,
the Classical Concept Review (CCR) was introduced in the book’s fifth edition.
Found on the book’s Web site and identified by a numbered icon " in the mar-
gin near the pertinent modern physics discussion, the CCR can be printed out to
provide a convenient study-support booklet. Several new CCRs have been added
to the sixth edition. The CCRs provide concise reviews of pertinent classical con-
cepts just amouse click away.

Organization and Coverage

This edition, like the earlier editions, is divided into two parts. Part 1, “ Relativity and
Quantum Mechanics: The Foundations of Modern Physics,” and Part 2, “Applications
of Quantum Mechanics and Relativity.” We continue to open Part 1 with the two rela-
tivity chapters. This location for relativity is firmly endorsed by users and reviewers.
Therationale is that this arrangement avoids separation of the foundations of quantum
mechanics in Chapters 3 through 8 from its applicationsin Chapters 9 through 12. The
two-chapter format for relativity provides instructors the flexibility to cover only the
basic concepts or to go deeper into the subject. Chapter 1 covers the essentials of spe-
cial relativity and includes discussions of several paradoxes, such as the twin paradox
and the pole-in-the-barn paradox, that never fail to excite student interest. Relativistic
energy and momentum are covered in Chapter 2, which concludes with amostly quali-
tative section on genera relativity that emphasizes experimental tests. Many instruc-
tors use this section as an opener for Chapter 13, Astrophysics and Cosmology. Since
the relation E? = p’c® + (mc?)? is the result most needed for the later applications
chapters, it is possible to omit Chapter 2 without disturbing continuity.



Chapters 1 through 8 have been updated with several improved explanations and
new diagrams. Many quantitative topics are included as More sections on the Web
site. Examples of these topics are the derivation of Compton’s equation (Chapter 3),
the details of Rutherford’s alpha-scattering theory (Chapter 4), the graphical solution
of the finite square well (Chapter 6), and the excited states and spectra of two-electron
atoms (Chapter 7). The comparisons of classical and quantum statistics are illustrated
with several examplesin Chapter 8, and, unlike the other chaptersin Part 1, it isarranged
to be covered briefly and qualitatively, if desired. This chapter, like Chapter 2, is not
essential to the understanding of the applications chapters of Part 2 and may be used
as an application chapter or omitted without loss of continuity.

Preserving the approach used in the previous edition, in Part 2 the ideas and
methods discussed in Part 1 are applied to the study of molecules, solids, nuclei, par-
ticles, and the cosmos. Also in Part 2 severa explanations have been improved and
new diagrams added. Chapter 9 (Molecular Structure and Spectra) is a broad, detailed
discussion of molecular bonding and the basic types of lasers. Chapter 10 (Solid State
Physics) includes sections on bonding in metals, magnetism, and superconductivity.
Chapter 11 (Nuclear Physics) is an integration of the nuclear theory and applications.
It focuses on nuclear structure and properties, radioactivity, and the applications of
nuclear reactions. Included in the last topic are fission, fusion, and several techniques
of age dating and elemental analysis. The material on nuclear power and the discus-
sion of radiation dosage continue as More sections. Chapter 12 (Particle Physics) was
substantially reorganized and rewritten with a focus on the Standard Model in the
fifth edition and has been revised for the sixth edition to reflect the recent advances of
that field. The emphasis is on the fundamental interactions of quarks, leptons, and
force carriers and includes discussions of the conservation laws, neutrino oscillations,
and supersymmetry. Finally, Chapter 13 (Astrophysics and Cosmology) examines the
current observations of stars and galaxies and qualitatively integrates our discussions
of quantum mechanics, atoms, nuclei, particles, and relativity to explain our present
understanding of the origin and evolution of the universe from the Big Bang to dark
energy and to highlight the enormity of what is not yet known.

The Research Frontier

Research over the past century has added abundantly to our understanding of our
world, forged strong links from physics to virtually every other discipline, and mea-
surably improved the tools and devices that enrich life. As was the case at the begin-
ning of the last century, it is hard for us to foresee in the early years of this century
how scientific research will deepen our understanding of the physical universe and
enhance the quality of life. Here are just a few of the current subjects of frontier
research included in Modern Physics, sixth edition, that you will hear more of in the
years just ahead. Beyond these years there will be many other discoveries that no one
has yet dreamed of.

» The Higgs boson, the harbinger of mass, may now be within our reach at
Brookhaven’s Relativistic Heavy Ion Collider and at CERN with the successful
start-up and early experimental runs of the Large Hadron Collider. (Chapter 12)

» The discovery of Fe-based superconductors, including some that are high T,
has opened an entirely new area of experimental and theoretical research.
(Chapter 10)

» The neutrino mass question has been solved by the discovery of neutrino oscil-
lations at the Super Kamiokande and SNO neutrino observatories (Chapters 2,
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11, and 12), but the magnitudes of the masses and whether the neutrino is a

Majorana particle remain unanswered.

Discovery of single-cell biological lasers points the way to new forms of inter-

cellular sensing and imaging. (Chapter 9)

The origin of the proton’s spin, which may include contributions from virtual

strange quarks, still remains uncertain. (Chapter 11)

e The Bose-Einstein condensates, which suggest atomic lasers and superatomic

clocks are in our future, were joined in 2003 by Fermi-Dirac condensates, in

which pairs of fermions act like bosons at very low temperatures. (Chapter 8)

Antihydrogen atomstrapped for 1000 seconds at the CERN ALPHA detector

brings closer definitive comparison experiments on the stability, mass, and spec-

trawith ordinary hydrogen. (Chapters 4, 11, and 12)

e The evidence is now clear that dark energy accounts for 74 percent of the
mass/energy of the universe. Only 4 percent is baryonic (visible) matter. The
remaining 22 percent consists of as yet unidentified dark matter particles.
(Chapter 13)

e The predicted fundamental particles of supersymmetry (SUSY), an integral
part of grand unification theories, will be a priority search at the Large Hadron
Collider. (Chapters 12 and 13)

« High-temperature superconductors reached critical temperatures greater
than 130 K a few years ago and doped fuller enes compete with cuprates for
high-T, records, but a theoretical explanation of the phenomenon is not yet in
hand. (Chapter 10)

« Gravity waves from space may soon be detected by the upgraded Laser Inter-
ferometric Gravitational Observatory (LIGO) and several similar laboratories
around the world. (Chapter 2)

« Adaptive-optics telescopes, large baseline arrays, and the Hubble telescope
are providing new views deeper into space of the very young universe, revealing
that the expansion is speeding up, a discovery supported by results from the
Sloan Digital Sky Survey and the Wilkinson Microwave Anisotropy Project.
(Chapter 13)

« Giant Rydberg atoms, made accessible by research on tunable dye lasers, are
now of high interest and may provide the first direct test of the correspondence
principle. (Chapter 4)

 Discovery of new elements has filled all the gaps in the periodic table and
reached Z = 118, tantalizingly near the edge of the “island of stability.”
(Chapter 11)

Many more discoveries and developmentsjust as exciting as these are to be found
throughout Modern Physics, sixth edition.

Some Teaching Suggestions

This book is designed to serve well in either one- or two-semester courses. The chap-
tersin Part 2 are independent of one another and can be covered in any order. Some
possible one-semester courses might consist of

e Part 1, Chapters 1, 3,4, 5, 6, 7, and Part 2, Chapters 11, 12

e Part 1, Chapters 3, 4, 5, 6, 7, 8, and Part 2, Chapters 9, 10

e Part 1, Chapters 1, 2, 3,4, 5, 6, 7, and Part 2, Chapter 9

e Part 1, Chapters 1, 3, 4, 5, 6, 7, and Part 2, Chapters 11, 12, 13



Possible two-semester courses might be made up of

e Part 1, Chapters 1, 3,4, 5, 6, 7, and Part 2, Chapters 9, 10, 11, 12, 13
 Part 1, Chapters 1, 2, 3,4, 5, 6, 7, 8, and Part 2, Chapters 9, 10, 11, 12, 13

There is tremendous potential for individual student projects and alternate credit
assignments based on the Exploring and, in particular, the More sections. The latter
will encourage students to search for related sources on the Web.
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Relativity and Quantum
Mechanics: The Foundations
of Modern Physics

he earliest recorded systematic efforts to assemble knowledge about motion as

a key to understanding natural phenomena were those of the ancient Greeks. Set
forth in sophisticated form by Aristotle in about 350 B.C., thelrs was a natural phi-
losophy (i.e., physics) of explanations deduced from assumptions rather than expert-
mentation. For example, it was a fundamental assumption that every substance had
a “natural place” in the universe; motion then resulted when a substance was try-
Ing to reach its natural place. Time was given a similar absolute meaning, as mov-
ng from some nstant n the past (the creation of the unwverse) toward some end
goal 1n the future, its natural place. The remarkable agreement between the deduc-
tions of Aristotelian physics and motions observed throughout the physical universe,
together with a nearly total absence of accurate instruments to make contradictory
measurements, made possible acceptance of the Greek view for nearly 2000 years.
During the latter part of that time a few Arab scholars, notably Ibn al-Haytham, had
begun to deliberately test some of the predictions of theory, but it was the Italian
sclentist Galileo Galilet, who, with his brilliant experiments on motion near the end
of that period, established for all time the absolute necessity of experimentation
n physics and, coincidentally, initiated the disintegration of Aristotelian physics.
Within 100 years Isaac Newton had generalized the results of Galileo’s experiments
into his three spectacularly successful laws of motion, and the natural philosophy of
Aristotle was gone.

With the burgeoning of experimentation, the succeeding 200 years saw a mul-
titude of major discoveries and a concomitant development of physical theories to
explain them. Most of the latter, then as now, falled to survive increasingly sophisti-
cated experimental tests, but by the dawn of the twentieth century Newton’s theo-
retical explanation of the motion of mechanical systems had been joined by equally
impressive laws of electromagnetism and thermodynamics as expressed by Max-
well, Carnot, and others. The remarkable success of these laws led many scientists to
believe that description of the physical universe was complete. Indeed, A. A. Michel-
son, speaking to sclentists near the end of the nineteenth century, said, “The grand



underlying principles have been firmly established . .. The future truths of physics are
to be looked for in the sixth place of decimals.”

Such optimism (or pessimism, depending on your pownt of view) turned out to
be premature, as there were already vexing cracks in the foundation of what we
now refer to as classical physics. Two of these were described by Lord Kelvin, in his
famous Baltimore Lectures in 1900, as the “two clouds” on the horizon of twentieth-
century physics: the fatlure of theory to account for the radiation spectrum emit-
ted by a blackbody and the inexplicable results of the Michelson-Morley experiment.
Indeed, the breakdown of classical physics occurred in many different areas: the
Michelson-Morley null result contradicted Newtonian relativity, the blackbody radia-
tion spectrum contradicted predictions of thermodynamics, the photoelectric effect
and the spectra of atoms could not be explained by electromagnetic theory, and the
exclting discoveries of x rays and radioactivity seemed to be outside the framework
of classical physics entirely. The development of the theories of quantum mechanics
and relativity in the early twentieth century not only dispelled Kelvin's “dark clouds”
but provided answers to all of the puzzles listed above and many more. The applica-
tion of these theories to such microscopic systems as atoms, molecules, nuclet, and
fundamental particles and to macroscopic systems of solids, liquids, gases, and plas-
mas has given us a deep understanding of the intricate workings of nature and has
revolutionized our way of life.

In Part 1 we discuss the foundations of the physics of the modern era, relativity
theory and quantum mechantics. Chapter 1 examines the apparent conflict between
Einstein’s principle of relativity and the observed constancy of the speed of light and
shows how accepting the validity of both ideas led to the special theory of relativity.
Chapter 2 concerns the relations connecting mass, energy, and momentum in spectal
relativity and concludes with a brief discussion of general relativity and some expert-
mental tests of its predictions. In Chapters 3, 4, and 5 the development of quantum
theory 1s traced from the earliest evidence of quantization to de Broglie’s hypothesis
of electron waves. An elementary discussion of the Schrodinger equation is provided
in Chapter 6, Wustrated with applications to one-dimensional systems. Chapter 7
extends the application of qguantum mechanics to many-particle systems and intro-
duces the important new concepts of electron spin and the exclusion principle. Con-
cluding the development, Chapter 8 discusses the wave mechanics of systems of
large numbers of 1dentical particles, underscoring the importance of the symmetry
of wave functions. Beginning with Chapter 3, the chapters in Part 1 should be stud-
led 1n sequence because each of Chapters 4 through 8 depends on the discussions,
developments, and examples of the previous chapters.



Relativity I

he relativistic character of the laws of physics began to be apparent very early

in the evolution of classical physics. Even before the time of Galileo and
Newton, Nicolaus Copernicus® had shown that the complicated and imprecise
Aristotelian method of computing the motions of the planets, based on the assump-
tion that Earth was located at the center of the universe, could be made much sim-
pler, though no more accurate, if it were assumed that the planets move about the
Sun instead of Earth. Although Copernicus did not publish his work until very late
in life, it became widely known through correspondence with his contemporaries
and helped pave the way for acceptance a century later of the heliocentric theory
of planetary motion. While the Copernican theory led to a dramatic revolution in
human thought, the aspect that concerns us here is that it did not consider the loca-
tion of Earth to be special or favored in any way. Thus, the laws of physics discov-
ered on Earth could apply equally well with any point taken as the center—that is,
the same equations would be obtained regardless of the origin of coordinates. This
invariance of the equations that express the laws of physics is what we mean by the
term relativity.

We will begin this chapter by investigating briefly the relativity of Newton’s
laws and then concentrate on the theory of relativity as developed by Albert Einstein
(1879-1955). The theory of relativity consists of two rather different theories, the
special theory and the general theory. The special theory, developed by Einstein and
others in 1905, concerns the comparison of measurements made in different frames of
reference moving with constant velocity relative to each other. Contrary to popular
opinion, the special theory is not difficult to understand. Its consequences, which can
be derived with a minimum of mathematics, are applicable in a wide variety of situa-
tions in physics and engineering. On the other hand, the general theory, also devel-
oped by Einstein (around 1916), is concerned with accelerated reference frames and
gravity. Although a thorough understanding of the general theory requires more
sophisticated mathematics, such as tensor analysis, a number of its basic ideas and
important predictions can be discussed at the level of this book. The general theory is
of great importance in cosmology and in understanding events that occur in the vicin-
ity of very large masses, such as stars. Thanks to advances in our ability to make
accurate measurements, the general theory is increasingly encountered in other areas
of physics, engineering, and daily life, for example, the global positioning system
(GPS). We will devote this chapter entirely to the special theory (often referred to as
special relativity) and discuss the general theory in the final section of Chapter 2, fol-
lowing the sections concerned with special relativistic mechanics.
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FIGURE 1-1 Inertial
reference frame S is attached
to Earth (the palm tree)

and S’ to the cyclist. The
corresponding axes of the
frames are parallel, and S’
moves at speed v in the +x
direction of S.

1-1 The Experimental Basis of Relativity

Classical Relativity

In 1687, with the publication of the Philosophiae Naturalis Principia Mathematica,
Newton became the first person to generalize the observations of Galileo, al-Haytham,
and others into the laws of motion that occupied much of your attention in introduc-
tory physics. The second of Newton’s three laws is

dv
P
where dv/dt = a is the acceleration of the mass m when acted on by a net force F.
Equation 1-1 also includes the first law, the law of inertia, by implication: if F =0,
then dv/dt = 0 also; that is, a = 0. (Recall that letters and symbols in boldface type
are vectors.)

As it turns out, Newton’s laws of motion only work correctly in inertial refer-
ence frames, that is, reference frames in which the law of inertia holds.? They also
have the remarkable property that they are invariant, or unchanged, in any reference
frame that moves with constant velocity relative to an inertial frame. Thus, all iner-
tial frames are equivalent—there is no special or favored inertial frame relative to
which absolute measurements of space and time could be made. Two such inertial
frames are illustrated in Figure 1-1, arranged so that corresponding axes in S and S’
are parallel and S’ moves in the +x direction at velocity v for an observer in S (or S
moves in the —x’ direction at velocity —v for an observer in S’). Figures 1-2 and 1-3
illustrate the conceptual differences between inertial and noninertial reference
frames. Transformation of the position coordinates and the velocity components of S
into those of S’ is the Galilean transformation, Equations 1-2 and 1-3, respectively.

ma 1-1

X" =x—wvt y' =y 7' =12 t' =t 1-2

U, =uU, — V uy = uy u, = u, 1-3
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FIGURE 1-2 A mass suspended by a cord from the roof of a railroad boxcar illustrates the
relativity of Newton’s second law F = ma. The only forces acting on the mass are its weight
mg and the tension T in the cord. (a) The boxcar sits at rest in S. Since the velocity v and
the acceleration a of the boxcar (i.e., the system S’) are both zero, both observers see the
mass hanging vertically at rest with F =F’ = 0. (b) As S’ moves in the +x direction with

v constant, both observers see the mass hanging vertically but moving at v with respect to

O in S and at rest with respect to the S” observer. Thus, F=F' =0. (c) As S’ moves in the
+x direction with a > 0 with respect to S, the mass hangs at an angle 6 > 0 with respect to
the vertical. However, it is still at rest (i.e., in equilibrium) with respect to the observer in S,
who now “explains” the angle 6 by adding a pseudoforce F,, in the —x’ direction to Newton’s
second law.

(0]
>
y
~ [0}
> Satellite
z' N\
_ e
y -
Earth Geosynchronous
orbit
S
X

z

FIGURE 1-3 A geosynchronous satellite has an orbital angular velocity equal to that of
Earth and, therefore, is always located above a particular point on Earth; that is, it is at rest
with respect to the surface of Earth. An observer in S accounts for the radial, or centripetal,
acceleration a of the satellite as the result of the net force Fg. For an observer O’ at rest on
Earth (in S’), however, a’ =0and Fg # ma’. To explain the acceleration being zero,
observer O’ must add a pseudoforce F, = —Fg.
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The concepts

1 of classical
relativity, frames of
reference, and coordinate
transformations—all
important background
to our discussions of
special relativity—may not
have been emphasized
in many introductory
courses. As an aid to a
better understanding of
the concepts of modern
physics, we have included
the Classical Concept
Review on the book’s
Web site. As you proceed
through Modern Physics,

the icon @ in the

margin will alert you to
potentially helpful classical
background pertinent to
the adjacent topics.
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Notice that differentiating Equation 1-3 yields the result a’ = a since dv/dt = 0 for
constant v. Thus, F=ma = ma’ = F'. This is the invariance referred to above. Gen-
eralizing this result:

Any reference frame that moves at constant velocity with respect to
an inertial frame is also an inertial frame. Newton’s laws of mechan-
ics are invariant in all reference systems connected by a Galilean
transformation.

Speed of Light

In about 1860 James Clerk Maxwell summarized the experimental observations of
electricity and magnetism in a consistent set of four concise equations. Unlike Newton’s
laws of motion, Maxwell’s equations are not invariant under a Galilean transforma-
tion between inertial reference frames (see Figure 1-4). Since the Maxwell equations
predict the existence of electromagnetic waves whose speed would be a particular
value, ¢ = 1/V e, = 3.00 X 10® m/s, the excellent agreement between this num-
ber and the measured value of the speed of light® and between the predicted polariza-
tion properties of electromagnetic waves and those observed for light provided strong
confirmation of the assumption that light was an electromagnetic wave and, therefore,
traveled at speed c.*

That being the case, it was postulated in the nineteenth century that electromag-
netic waves, like all other waves, propagated in a suitable material medium. The
implication of this postulate was that the medium, called the ether, filled the entire
universe, including the interior of matter. (The Greek philosopher Aristotle had first
suggested that the universe was permeated with “ether” 2000 years earlier.) In this
way the remarkable opportunity arose to establish experimentally the existence of the
all-pervasive ether by measuring the speed of light ¢’ relative to Earth as Earth moved
relative to the ether at speed v, as would be predicted by Equation 1-3. The value of ¢
was given by the Maxwell equations, and the speed of Earth relative to the ether,
while not known, was assumed to be at least equal to its orbital speed around the Sun,
about 30 km/s. Since the maximum observable effect is of the order v?/c? and given
this assumption v2/c® = 1078, an experimental accuracy of about 1 part in 10 is nec-
essary in order to detect Earth’s motion relative to the ether. With a single exception,

FIGURE 1-4 The observersin Sand S’ see identical electric fields 2k /y, at a distance

y, = yji froman infinitely long wire carrying uniform charge \ per unit length. Observers in
both S and S’ measure a force 2kg\ /y; on g due to the line of charge; however, the S’ observer
measures an additional force —wo\v2q/(2my,) due to the magnetic field at y; arising from

the motion of the wire in the —x’ direction. Thus, the electromagnetic force does not have the
same form in different inertial systems, implying that Maxwell’s equations are not invariant
under a Galilean transformation.
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equipment and techniques available at the time had experimental accuracy of only
about 1 part in 10, woefully insufficient to detect the predicted small effect. That
single exception was the experiment of Michelson and Morley.®

Questions

1. What would the relative velocity of the inertial systems in Figure 1-4 need to
be in order for the S’ observer to measure no net electromagnetic force on the
charge g?

2. Discuss why the very large value for the speed of the electromagnetic waves
would imply that the ether be rigid, that is, have a large bulk modulus.

The Michelson-Morley Experiment

All waves that were known to nineteenth-century scientists required a medium in
order to propagate. Surface waves moving across the ocean obviously require the
water. Similarly, waves move along a plucked guitar string, across the surface of
a struck drumhead, through Earth after an earthquake, and, indeed, in all materials
acted on by suitable forces. The speed of the waves depends on the properties of
the medium and is derived relative to the medium. For example, the speed of sound
waves in air, that is, their absolute motion relative to still air, can be measured. The
Doppler effect for sound in air depends not only on the relative motion of the source
and listener, but also on the motion of each relative to still air. Thus, it was natural for
scientists of that time to expect the existence of some material like the ether to sup-
port the propagation of light and other electromagnetic waves and to expect that the
absolute motion of Earth through the ether should be detectable, despite the fact that
the ether had not been observed previously. )
Michelson realized that, although the effect of Earth’s motion on the results of any ~ Albert A. Michelson, here
“out and back” speed of light measurement, such as shown generically in Figure 1-5, Playing pool in his later
would be too small to measure directly, it should be possible to measure v /c? by a dif- )rf:;:h:foeentthjf?rzztsaceceudrif
ference measurement, using the interf_erence property of the light waves as a sensitive light while an instrucfor at the
“clock.” The apparatus that he designed to make the measurement is called the s Naval Academy, where
Michelson interferometer. The purpose of the Michelson-Morley experiment was t0 e had earlier been a cadet.
measure the speed of light relative to the interferometer (i.e., relative to Earth), thereby  [AIP Emilio Segre Visual
detecting Earth’s motion through the ether and, thus, verifying the latter’s existence.  Archives.]
To illustrate how the interferometer works and the reasoning behind the experiment,
let us first describe an analogous situation set in more familiar surroundings.

Light source Mirror
c-v v
—_— = — — —=
O A < f— < f— < — < —
c+v
Observer A B
1 1 |
T | 1

FIGURE 1-5 Light source, mirror, and observer are moving with speed v relative to the ether.
According to classical theory, the speed of light c, relative to the ether, would be ¢ — v relative
to the observer for light moving from the source toward the mirror and ¢ + v for light reflecting
from the mirror back toward the source.
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A Boat Race Two equally matched rowers race each other over
courses as shown in Figure 1-6a. Each oarsman rows at speed c in still water; the
current in the river moves at speed v. Boat 1 goes from A to B, a distance L, and
back. Boat 2 goes from A to C, also a distance L, and back. A, B, and C are marks
on the riverbank. Which boat wins the race, or is it a tie? (Assume ¢ > v.)

a
@) Be Ground

{1 River

L E—
©
b -
1C Ground

(b) v
C A [CZ _VZ
C; A/ 2 _ v 2
\
A—B B—A

FIGURE 1-6 (a) The rowers both row at speed c in still water. The current in the river
moves at speed v. Rower 1 goes from A to B and back to A, while rower 2 goes from
Ato C and back to A. (b) Rower 1 must point the bow upstream so that the sum of

the velocity vectors ¢ + v results in the boat moving from A directly to B. His speed

relative to the banks (i.e., points A and B) is then (c? — v?)*2. The same is true on the
return trip.

SOLUTION

The winner is, of course, the boat that makes the round trip in the shortest time,
so0 to discover which boat wins, we compute the time for each. Using the classical
velocity transformation (Equations 1-3), the speed of 1 relative to the ground is
(c? — v¥)¥2, as shown in Figure 1-6b; thus the round trip time t, for boat 1 is

L L 2L
t, = thog + tgop = + =
bR ETA Ve — v Ve —vE Ve — 2
2L 2L 2\"12 gL 1 v?
::<1—V2> ~ 1+t 1-4
v2 c c c 2¢c
Ot 2
C

where we have used the binomial expansion (see Appendix B2). Boat 2 moves
downstream at speed ¢ + v relative to the ground and returns at ¢ — v, also relative
to the ground. The round trip time t, is thus

- L N L  2c
2 c+v C—Vv ¢2—y?
2L 1 2L v2
== s~ 1+ S5+ 1-5
cl—L c C
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which, you may note, is the same result obtained in our discussion of the speed of
light experiment in the Classical Concept Review.
The difference At between the round-trip times of the boats is then

2L v? 2L 1v? Lv2
At—tz—tl~C<1+Cz>—c<1+202>~03 1-6

The quantity Lv?/c? is always positive; therefore, t, > t, and rower 1 has the faster
average speed and wins the race.

The Results Michelson and Morley carried out the experiment in 1887, repeat-
ing with a much-improved interferometer an inconclusive experiment that Michelson
alone had performed in 1881 in Potsdam. The path length L on the new interferometer
(see Figure 1-7) was about 11 meters, obtained by a series of multiple reflections.
Michelson’s interferometer is shown schematically in Figure 1-8a. The field of view
seen by the observer consists of parallel alternately bright and dark interference bands,
called fringes, as illustrated in Figure 1-8b. The two light beams in the interferometer
are exactly analogous to the two boats in Example 1-1, and Earth’s motion through the
ether was expected to introduce a time (phase) difference as given by Equation 1-6.
Rotating the interferometer through 90° doubles the time difference and changes the
phase, causing the fringe pattern to shift by an amount AN. An improved system for

. Adjustable
Light source migror

Mirrors Silvered
glass plate

Unsilvered
glass plate

FIGURE 1-7 Drawing of Michelson-Morley apparatus used in their 1887 experiment. The
optical parts were mounted on a 5 ft square sandstone slab, which was floated in mercury,
thereby reducing the strains and vibrations during rotation that had affected the earlier
experiments. Observations could be made in all directions by rotating the apparatus in the
horizontal plane. [From R.S. Shankland, “The Michelson-Morley Experiment.”” Copyright ©
November 1964 by Scientific American, Inc. All rights reserved.]
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FIGURE 1-8  Michelson interferometer. (a) Yellow light from the sodium source is divided
into two beams by the second surface of the partially reflective beam splitter at A, at which
point the two beams are exactly in phase. The beams travel along the mutually perpendicular
paths 1 and 2, reflect from mirrors M, and M,, and return to A, where they recombine and are
viewed by the observer. The compensator’s purpose is to make the two paths of equal optical
length, so that the lengths L contain the same number of light waves, by making both beams
pass through two thicknesses of glass before recombining. M, is then tilted slightly so that it is
not quite perpendicular to M,. Thus, the observer O sees M, and M5, the image of M, formed
by the partially reflecting second surface of the beam splitter, forming a thin wedge-shaped
film of air between them. The interference of the two recombining beams depends on the
number of waves in each path, which in turn depends on (1) the length of each path and (2) the
speed of light (relative to the instrument) in each path. Regardless of the value of that speed,
the wedge-shaped air film between M; and M} results in an increasing path length for beam
2 relative to beam 1, looking from left to right across the observer’s field of view; hence, the
observer sees a series of parallel interference fringes as in (b), alternately yellow and black
from constructive and destructive interference, respectively.

rotating the apparatus was used in which the massive stone slab on which the inter-
ferometer was mounted floated on a pool of mercury. This dampened vibrations and
enabled the experimenters to rotate the interferometer without introducing mechanical
strains, both of which would cause changes in L, and hence a shift in the fringes. Using
a sodium light source with A =590 nm and assuming v = 30 km/s (i.e., Earth’s orbital
speed), AN was expected to be about 0.4 of the width of a fringe, about 40 times the
minimum shift (0.01 fringe) that the interferometer was capable of detecting.

To Michelson’s immense disappointment, and that of most scientists of the time,
the expected shift in the fringes did not occur. Instead, the shift observed was only
about 0.01 fringe, that is, approximately the experimental uncertainty of the appara-
tus. With characteristic reserve, Michelson described the results thus:®

The actual displacement [of the fringes] was certainly less than the
twentieth part [of 0.4 fringe], and probably less than the fortieth part.
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But since the displacement is proportional to the square of the velocity,
the relative velocity of the earth and the ether is probably less than one-
sixth the earth’s orbital velocity and certainly less than one-fourth.

Michelson and Morley had placed an upper limit on Earth’s motion relative to the
ether of about 5 km/s. From this distance in time it is difficult for us to appreciate the
devastating impact of this result. The then-accepted theory of light propagation could
not be correct, and the ether as a favored frame of reference for Maxwell’s equations
was not tenable. The experiment was repeated by a number of people more than a
dozen times under various conditions and with improved precision, and no shift has
ever been found. In the most precise attempt, the upper limit on the relative velocity
was lowered to 1.5 km/s by Georg Joos in 1930 using an interferometer with light
paths much longer than Michelson’s. Recent, high-precision variations of the experi-
ment using laser beams have lowered the upper limit to 15 m/s.

The Conclusions More generally, on the basis of this and other experiments, we
must conclude that Maxwell’s equations are correct and that the speed of electromag-
netic radiation is the same in all inertial reference systems independent of the motion
of the source relative to the observer. This invariance of the speed of light between
inertial reference frames means that there must be some relativity principle that applies
to electromagnetism as well as to mechanics. That principle cannot be Newtonian
relativity, which implies the dependence of the speed of light on the relative motion
of the source and observer. It follows that the Galilean transformation of coordinates
between inertial frames cannot be correct, but must be replaced with a new coordinate
transformation whose application preserves the invariance of the laws of electromag-
netism. We then expect that the fundamental laws of mechanics, which were consistent
with the old Galilean transformation, will require modification in order to be invariant
under the new transformation. The theoretical derivation of that new transformation
was a cornerstone of Einstein’s development of special relativity.

S More
A more complete description of the Michelson-Morley experiment, its
interpretation, and the results of very recent versions can be found on
the home page: www.whfreeman.com/tiplermodernphysics6e. See also
Figures 1-9 through 1-11 here, as well as Equations 1-7 through 1-10.

1-2 Einstein’s Postulates

In 1905, at the age of 26, Albert Einstein published several papers, among which was
one on the electrodynamics of moving bodies.?* In this paper, he postulated a more
general principle of relativity that applied to the laws of both electrodynamics and
mechanics. A consequence of this postulate is that absolute motion cannot be detected
by any experiment. We can then consider the Michelson apparatus and Earth to be at
rest. No fringe shift is expected when the interferometer is rotated 90° since all direc-
tions are equivalent. The null result of the Michelson-Morley experiment is therefore
to be expected. It should be pointed out that Einstein did not set out to explain the
Michelson-Morley experiment. His theory arose from his considerations of the theory
of electricity and magnetism and the unusual property of electromagnetic waves that

Michelson interferometers
with arms as long as 4 km
are currently being used
in the search for gravity
waves. See Section 2-5.
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FIGURE 1-12 (a) Stationary
light source S and a stationary
observer R,, with a second
observer R, moving toward
the source with speed v.

(b) In the reference frame in
which the observer R, is at
rest, the light source S and
observer R, move to the right
with speed v. If absolute
motion cannot be detected,
the two views are equivalent.
Since the speed of light does
not depend on the motion

of the source, observer R,
measures the same value for
that speed as observer R;.

they propagate in a vacuum. In his first paper, which contains the complete theory of
special relativity, he made only a passing reference to the experimental attempts to
detect Earth’s motion through the ether, and in later years he could not recall whether
he was aware of the details of the Michelson-Morley experiment before he published
his theory.

The theory of special relativity was derived from two postulates proposed by
Einstein in his 1905 paper:

Postulate 1. The laws of physics are the same in all inertial reference
frames.
The speed of light in a vacuum is equal to the value c,

independent of the motion of the source.

Postulate 2.

Postulate 1 is an extension of the Newtonian principle of relativity to include all
types of physical measurements (not just measurements in mechanics). It implies that
no inertial system is preferred over any other; hence, absolute motion cannot be
detected. Postulate 2 describes a common property of all waves. For example, the
speed of sound waves does not depend on the motion of the sound source. When an
approaching car sounds its horn, the frequency heard increases according to the Dop-
pler effect, but the speed of the waves traveling through the air does not depend on the
speed of the car. The speed of the waves depends only on the properties of the air,
such as its temperature. The force of this postulate was to include light waves, for
which experiments had found no propagation medium, together with all other waves,
whose speed was known to be independent of the speed of the source. Recent analysis
of the light curves of gamma-ray bursts that occur near the edge of the observable
universe has shown the speed of light to be independent of the speed of the source to
a precision of one part in 10%°.

Although each postulate seems quite reasonable, many of the implications of the
two together are surprising and seem to contradict common sense. One important
implication of these postulates is that every observer measures the same value for the
speed of light independent of the relative motion of the source and observer. Consider
a light source S and two observers R;, at rest relative to S, and R,, moving toward S
with speed v, as shown in Figure 1-12a. The speed of light measured by R, is ¢ =
3 X 10® m/s. What is the speed measured by R,? The answer is not ¢ + v, as one
would expect based on Newtonian relativity. By postulate 1, Figure 1-12a is equiva-
lent to Figure 1-12b, in which R, is at rest and the source S and R, are moving with
speed v. That is, since absolute motion cannot be detected, it is not possible to say
which is really moving and which is at rest. By postulate 2, the speed of light from
a moving source is independent of the motion of the source. Thus, looking at
Figure 1-12b, we see that R, measures the speed of light to be c, just as R; does. This
result, that all observers measure the same value c for the speed of light, is often con-
sidered an alternative to Einstein’s second postulate.

This result contradicts our intuition. Our intuitive ideas about relative velocities
are approximations that hold only when the speeds are very small compared with the
speed of light. Even in an airplane moving at the speed of sound, it is not possible to
measure the speed of light accurately enough to distinguish the difference between
the results c and ¢ + v, where v is the speed of the plane. In order to make such a distinc-
tion, we must either move with a very great velocity (much greater than that of sound)
or make extremely accurate measurements, as in the Michelson-Morley experiment,
and when we do, we will find, as Einstein pointed out in his original relativity paper,
that the contradictions are “only apparently irreconcilable.”
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Events and Observers

In considering the consequences of Einstein’s postulates in greater depth, that is, in
developing the theory of special relativity, we need to be certain that meanings of
some important terms are crystal clear. First, there is the concept of an event. A physi-
cal event is something that happens, such as the closing of a door, a lightning strike,
the collision of two particles, your birth, or the explosion of a star. Every event occurs
at some point in space and at some instant in time, but it is very important to rec-
ognize that events are independent of the particular inertial reference frame that we
might use to describe them. Events do not “belong” to any reference frame.

Events are described by observers, who do belong to particular inertial frames of
reference. Observers could be people (as in Section 1-1), electronic instruments, or
other suitable recorders, but for our discussions in special relativity we are going to be
very specific. Strictly speaking, the observer will be an array of recording clocks
located throughout the inertial reference system. It may be helpful for you to think of
the observer as a person who goes around reading out the memories of the recording
clocks or receives records that have been transmitted from distant clocks, but always
keep in mind that in reporting events, such a person is strictly limited to summarizing
the data collected from the clock memories. The travel time of light precludes him
from including in his report distant events that he may have seen by eye! It is in this
sense that we will be using the word observer in our discussions.

Each inertial reference frame may be thought of as being formed by a cubic three-
dimensional lattice made of identical measuring rods (e.g., meter sticks) with a record-
ing clock at each intersection, as illustrated in Figure 1-13. The clocks are all identical,
and we, of course, want them all to read the “same time” as one another at any instant;
that is, they must be synchronized. There are many ways to accomplish synchroniza-
tion of the clocks, but a very straightforward way, made possible by the second postu-
late, is to use one of the clocks in the lattice as a standard, or reference clock. For
convenience we will also use the location of the reference clock in the lattice as the
coordinate origin for the reference frame. The reference clock is started with its indica-
tor (hands, pointer, digital display) set at zero. At the instant it starts, it also sends out
a flash of light that spreads out as a spherical wave in all directions. When the flash
from the reference clock reaches the lattice clocks one meter away (notice that in Fig-
ure 1-13 there are six of them, two of which are off the edges of the figure), we want
their indicators to read the time required for light to travel 1 m (= 1/299,792,458 s).
This can be done simply by having an observer at each clock set that time on the indi-
cator and then having the flash from the reference clock start them as it passes. The
clocks 1 m from the origin now display the same time as the reference clock; that is,
they are all synchronized. In a similar fashion, all of the clocks throughout the inertial
frame can be synchronized since the distance of any clock from the reference clock can
be calculated from the space coordinates of its position in the lattice and the initial set-
ting of its indicator will be the corresponding travel time for the reference light flash.
This procedure can be used to synchronize the clocks in any inertial frame, but it does
not synchronize the clocks in reference frames that move with respect to one another.
Indeed, as we will see shortly, clocks in relatively moving frames cannot in general be
synchronized with one another.

When an event occurs, its location and time are recorded instantly by the nearest
clock. Suppose that an atom located at x =2 m, y =3 m, z=4 m in Figure 1-13 emits a
tiny flash of light at t =21 s on the clock at that location. That event is recorded in space
and in time, or, as we will henceforth refer to it, in the spacetime coordinate system with
the numbers (2, 3, 4, 21). The observer may read out and analyze these data at his

(top) Albert Einstein in 1905
at the Bern, Switzerland,
patent office. [Hebrew
University of Jerusalem Albert
Einstein Archives, courtesy AIP
Emilio Segre Visual Archives.]
(bottom) Clock tower and
electric trolley in Bern on
Kramstrasse, the street on
which Einstein lived. If you
are on the trolley moving
away from the clock and look
back at it, the light you see
must catch up with you. If
you move at nearly the speed
of light, the clock you see
will be slow. In this Einstein
saw a clue to the variability
of time itself.

[Underwood & Underwood/
CORBIS.]
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FIGURE 1-13 Inertial reference frame formed
from a lattice of measuring rods with a clock at
each intersection. The clocks are all synchronized
using a reference clock. In this diagram the
measuring rods are shown to be 1 m long, but
they could all be 1 cm, 1 wm, or 1 km as required
by the scale and precision of the measurements
being considered. The three space dimensions
are the clock positions. The fourth spacetime
dimension, time, is shown by indicator readings
on the clocks.
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leisure, within the limits set by the information transmission time (i.e., the light travel
time) from distant clocks. For example, the path of a particle moving through the lattice
is revealed by analysis of the records showing the particle’s time of passage at each
clock’s location. Distances between successive locations and the corresponding time
differences enable the determination of the particle’s velocity. Similar records of the
spacetime coordinates of the particle’s path can, of course, also be made in any inertial
frame moving relative to ours, but to compare the distances and time intervals measured
in the two frames requires that we consider carefully the relativity of simultaneity.

Relativity of Simultaneity

Einstein’s postulates lead to a number of predictions regarding measurements made
by observers in inertial frames moving relative to one another that initially seem very
strange, including some that appear paradoxical. Even so, these predictions have been
experimentally verified, and nearly without exception, every paradox is resolved by
an understanding of the relativity of simultaneity, which states that

Two spatially separated events simultaneous in one reference frame are
not, in general, simultaneous in another inertial frame moving relative
to the first.

A corollary to this is that

Clocks synchronized in one reference frame are not, in general, synchro-
nized in another inertial frame moving relative to the first.



1-2 Einstein’s Postulates

What do we mean by simultaneous events? Suppose two observers, both in the
inertial frame S at different locations A and B, agree to explode bombs at time t,
(remember, we have synchronized all of the clocks in S). The clock at C, equidistant
from A and B, will record the arrival of light from the explosions at the same instant,
that is, simultaneously. Other clocks in S will record the arrival of light from A or B
first, depending on their locations, but after correcting for the time the light takes to
reach each clock, the data recorded by each would lead an observer to conclude that
the explosions were simultaneous. We will thus define two events to be simultaneous
in an inertial reference frame if the light signals for the events reach an observer
halfway between them at the same time as recorded by a clock at that location, called
a local clock.

Einstein’s Example To show that two events that are simultaneous in frame
S are not simultaneous in another frame S’ moving relative to S, we use an example
introduced by Einstein. A train is moving with speed v past a station platform. We
have observers located at A’, B’, and C’ at the front, back, and middle of the train.
(We consider the train to be at rest in S’ and the platform in S.) We now suppose
that the train and platform are struck by lightning at the front and back of the train
and that the lightning bolts are simultaneous in the frame of the platform (S; see
Figure 1-14a). That is, an observer located at C halfway between positions A and B,
where lightning strikes, observes the two flashes at the same time. It is convenient to
suppose that the lightning scorches both the train and the platform so that the events
can be easily located in each reference frame. Since C' is in the middle of the train,
halfway between the places on the train that are scorched, the events are simultaneous

@ /

(b)

©

FIGURE 1-14 Lightning bolts strike

the front and rear of the train, scorching
both the train and the platform, as the
train (frame S") moves past the platform
(system S) at speed v. (a) The strikes are
simultaneous in S, reaching the C observer
located midway between the events at

B 7,\ A the same instant as recorded by the clock

15

/ \ at C as shown in (c). In S’ the flash from
the front of the train is recorded by the C’

@) / ey ‘§, - Aé\}> v clock, located midway between the scorch
L

marks on the train, before that from the
S I rear of the train (b and d, respectively).

Ex\ 71‘ Thus, the C’ observer concludes that the
\ / strikes were not simultaneous.
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in S’ only if the clock at C’ records the flashes at the same time. However, the clock
at C’ records the flash from the front of the train before the flash from the back. In
frame S, when the light from the front flash reaches the observer at C’, the train has
moved some distance toward A, so that the flash from the back has not yet reached
C, as indicated in Figure 1-14h. The observer at C’' must therefore conclude that the
events are not simultaneous, but that the front of the train was struck before the back.
Figures 1-14c and 1-14d illustrate, respectively, the subsequent simultaneous arrival
of the flashes at C and the still later arrival of the flash from the rear of the train at C’.
As we have discussed, all observers in S’ on the train will agree with the observer C’
when they have corrected for the time it takes light to reach them.

Corollary to Einstein’s Example The corollary can also be demonstrated
with a similar example. Again consider the train to be at rest in S’, which moves past
the platform that is at rest in S, with speed v. Figure 1-15 shows three of the clocks
in the S lattice and three of those in the S’ lattice. The clocks in each system’s lattice
have been synchronized in the manner that was described earlier, but those in S are
not synchronized with those in S’". The observer at C midway between A and B on the
platform announces that light sources at A and B will flash when the clocks at those
locations read t, (Figure 1-15a). The observer at C’, positioned midway between A’
and B’, notes the arrival of the light flash from the front of the train (Figure 1-15b)
before the arrival of the one from the rear (Figure 1-15d). Observer C’ thus concludes
that, if the flashes were each emitted at t, on the local clocks, as announced, then the
clocks at A and B are not synchronized. All observers in S’ would agree with that
conclusion after correcting for the time of light travel. The clock located at C records
the arrival of the two flashes simultaneously, of course, since the clocks in S are
synchronized (Figure 1-15c¢). Notice, too, in Figure 1-15 that C" also concludes that
the clock at A is ahead of the clock at B. This is important, and we will return to it in

(a) S’ @B’ G?C, @Az,\}> v o
S ®B Cl)c MDA
(b)

FIGURE 1-15 (a) Light flashes originate
simultaneously at clocks A and B,
synchronized in S. (b) The clock at C’,
midway between A" and B’ on the moving
train, records the arrival of the flash from
A before the flash from B shown in (d).
Since the observer in S announced that the
flashes were triggered at t, on the local
clocks, the observer at C’ concludes that
the local clocks at A and B did not read

t, simultaneously; that is, they were not
synchronized. The simultaneous arrival of
the flashes at C is shown in (c).
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(a) Earth view of Earth clocks (b) Spaceship view of spaceship clocks

T—

(c) Earth view of spaceship clocks (d) Spaceship view of Earth clocks

FIGURE 1-16 A light flash occurs on Earth midway between two Earth clocks. At the instant
of the flash the midpoint of a passing spaceship coincides with the light source. (a) The Earth
clocks record the lights’ arrival simultaneously and are thus synchronized. (b) Clocks at both
ends of the spaceship also record the lights” arrival simultaneously (Einstein’s second postulate)
and they, too, are synchronized. (c) However, the Earth observer sees the light reach the

clock at B" before the light reaches the clock at A’. Since the spaceship clocks read the same
time when the light arrives, the Earth observer concludes that the clocks at A" and B” are not
synchronized. (d) Illustrates that the spaceship observer similarly concludes that the Earth
clocks are not synchronized.

more detail in the next section. Figure 1-16 illustrates the relativity of simultaneity
from a different perspective.

Questions

3. In addition to the method described above, what would be another possible
method of synchronizing all of the clocks in an inertial reference system?

4. Using Figure 1-16d, explain how the spaceship observer concludes that the
Earth clocks are not synchronized.

1-3 The Lorentz Transformation

We now consider a very important consequence of Einstein’s postulates, the general
relation between the spacetime coordinates X, y, z and t of an event as seen in refer-
ence frame S and the coordinates x’, y’, z" and t’ of the same event as seen in reference

17
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frame S’, which is moving with uniform velocity relative to S. For simplicity we will
consider only the special case in which the origins of the two coordinate systems are
coincident at time t =t = 0 and S’ is moving, relative to S, with speed v along the
x (or x") axis and with the y" and z’ axes parallel, respectively, to the y and z axes as
shown in Figure 1-17. As we discussed earlier (Equation 1-2), the classical Galilean
coordinate transformation is

! !

X"=x—vt y' =y 7' =1z t' =1t 1-2

which expresses coordinate measurements made by an observer in S’ in terms of
those measured by an observer in S. The inverse transformation is

X = X"+ vt’ y =y’ z=17 t=1t

and simply reflects the fact that the sign of the relative velocity of the reference
frames is different for the two observers. The corresponding classical velocity trans-
formation was given in Equation 1-3, and the acceleration, as we saw earlier, is
invariant under a Galilean transformation. (For the rest of the discussion we will
ignore the equations for y and z, which do not change in this special case of motion
along the x and x’ axes.) These equations are consistent with experiment as long as v
is much less than c.

It should be clear that the classical velocity transformation is not consistent with
the Einstein postulates of special relativity. If light moves along the x axis with speed
c in S, Equation 1-3 implies that the speed in S’ is u; = ¢ — v rather than uj; = c.
The Galilean transformation equations must therefore be modified to be consistent
with Einstein’s postulates, but the result must reduce to the classical equations when v
is much less than ¢. We will give a brief outline of one method of obtaining the rela-
tivistic transformation that is called the Lorentz transformation, so named because
of its original discovery by H. A. Lorentz.!? We assume the equation for x’ to be of
the form

X" = y(x — vt) 1-11

where +y is a constant that can depend on v and ¢ but not on the coordinates. If this
equation is to reduce to the classical one, y must approach 1 as v/c approaches 0. The
inverse transformation must look the same except for the sign of the velocity:

X =y(x" + vt") 1-12

With the arrangement of the axes in Figure 1-17, there is no relative motion of the
frames in the y and z directions; hence y’ =y and z’ = z. However, insertion of the as yet
unknown multiplier y modifies the classical transformation of time, t' =t. To see this,
we substitute x” from Equation 1-11 into Equation 1-12 and solve for t". The result is

2
t = ’y{t + wx] 1-13
v \'

FIGURE 1-17 Two inertial frames S and S’ with the latter moving y s y’ 5/
at speed v in the +x direction of system S. Each set of axes shown o v
is simply the coordinate axes of a lattice like that in Figure 1-13. . (Xp» ty)
Remember, there is a clock at each intersection. A short time before (Xa ta) '
the times represented by this diagram, O and O’ were coincident and o) o) ‘
the lattices of S and S’ were intermeshed.
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Now let a flash of light start from the origin of S at t = 0. Since we have assumed
that the origins coincide at t =t’ = 0, the flash also starts at the origin of S’ att’ = 0.
The flash expands from both origins as a spherical wave. The equation for the wave
front according to an observer in S is
x2 +y?+ 22 =c%? 1-14
and according to an observer in S’ it is
X2+ y'2+7%2=c%? 1-15

where both equations are consistent with the second postulate. Consistency with the
first postulate means that the relativistic transformation that we seek must transform
Equation 1-14 into Equation 1-15, and vice versa. For example, substituting Equa-
tions 1-11 and 1-13 into 1-15 results in Equation 1-14 if

1 1

":\/1_v2:v1_gz

CZ

1-16

where 3 =v/c. Notice that y = 1 for v= 0 and -y — o for v = c. How this is done is
illustrated in Example 1-2 below.

2 GBS Relativistic Transformation Multiplier v Show that y must
be given by Equation 1-16 if Equation 1-15 is to be transformed into Equation 1-14
consistent with Einstein’s first postulate.

SOLUTION
Substituting Equations 1-11 and 1-13 into 1-15 and noting thaty’ =y and z’' =z in
this case yields

]__’YZX:|2 1_17

q{z(x _ vt)2 + yz + 72 = szz{t + )
v Vv
To be consistent with the first postulate, Equation 1-15 must be identical to
Equation 1-14. This requires that the coefficient of the x? term in Equation 1-17 be
equal to 1, that of the t2 term be equal to ¢?, and that of the xt term be equal to O.
Any of those conditions can be used to determine v, and all yield the same result.
Using, for example, the coefficient of x?, we have from Equation 1-17 that

(1-+%)°
Voo viv? =1
which can be rearranged to
(1—+)?
_CZT =(1-+v)

Canceling 1 — y? on both sides and solving for -y yields

1

1_7
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With the value for y found in Example 1-2, Equation 1-13 can be written in a
somewhat simpler form and with it the complete Lorentz transformation becomes

X =y(x=w) Y =y

t' = (t = VX) 7' =1 e
Y 2

and the inverse

X=y(x W) y=y

t=y<t’+vxz,> z=17 e
c
with
B 1
Y= /71 — Bz

Transformation of Time Intervals The arrivals of two cosmic-
ray . mesons (muons) are recorded by detectors in the laboratory, one at time t, at
location x, and the second at time t,, at location x,, in the laboratory reference frame,
S in Figure 1-17. What is the time interval between those two events in system S,
which moves relative to S at speed v?

SOLUTION
Applying the time coordinate transformation from Equation 1-18,

b a— Y\ b 2 Y\ L 2 1-20

Yv
th= =y~ ) — (%~ %)

We see that the time interval measured in S’ depends not just on the corre-
sponding time interval in S, but also on the spatial separation of the clocks in S that
measured the interval. This result should not come as a total surprise since we have
already discovered that, although the clocks in S are synchronized with each other,
they are not, in general, synchronized for observers in other inertial frames.

Special Case 1

If it should happen that the two events occur at the same location in S, that is,
Xa = X;, then (t, — t,), the time interval measured on a clock located at the events, is
called the proper time interval. Notice that, since y > 1 for all frames moving rela-
tive to S, the proper time interval is the minimum time interval that can be measured
between those events.

Special Case 2

Does there exist an inertial frame for which the events described above would be
measured to be simultaneous? Since the question has been asked, you probably sus-
pect that the answer is yes, and you are right. The two events will be simultaneous
in a system S” for which tj — t; = 0, that is, when

Yt —t) = (% — X)
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or when

B=—= (tbta>c 121
c Xo — Xa
Notice that (x, — X,)/c = time for a light beam to travel from x, to X,; thus we
can characterize S” as being that system whose speed relative to S is that fraction of
c given by the time interval between the events divided by the travel time of light
between them. (Note, too, that c(t, — t,) > (X, — X,) implies that 8 > 1, a nonphysi-
cal situation that we will discuss in Section 1-4.)

While it is possible for us to get along in special relativity without the Lorentz
transformation, it has an application that is quite valuable: it enables the spacetime
coordinates of events measured by the measuring rods and clocks in the reference
frame of one observer to be translated into the corresponding coordinates determined
by the measuring rods and clocks of an observer in another inertial frame. As we will
see in Section 1-4, such transformations lead to some startling results.

Relativistic Velocity Transformations

The transformation for velocities in special relativity can be obtained by differen-
tiation of the Lorentz transformation, keeping in mind the definition of the velocity.
Suppose a particle moves in S with velocity u whose components are u, = dx/dt,
u, = dy/dt, and u, = dz/dt. An observer in S’ would measure the components
uy = dx’/dt’, uy = dy’/dt’, and u; = dz’/dt’. Using the transformation equations,
we obtain

dx’ = y(dx — vdt) dy’ = dy
dt’ = y(dt - V:f‘) dz' = dz

from which we see that u; is given by

_dx’ y(dx — vdt) (dx/dt — v)

’

u = = =
T (dt_vdX) L
Y c? c? dt
or
U, — Vv
Uy = 1-22
VU,
1 - ?

and, if a particle has velocity components in the y and z directions, it is not difficult to
find the components in S’ in a similar manner.

uy u,

W) u;=7vux
e W

Remember that this form of the velocity transformation is specific to the
arrangement of the coordinate axes in Figure 1-17. Note, too, that when v << c, that

1 —
Uy =

21
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is, when B =v/c = 0 the relativistic velocity transforms reduce to the classical veloc-
ity addition of Equation 1-3. Likewise, the inverse velocity transformation is

up +v uy u;
=2 u=———-— Uu=———— 123

vu,, y VU, z vu,
1-i-c2 'yl-i-cz 'yl—l—c2

Relative Speeds of Cosmic Rays Suppose that two cosmic-ray
protons approach Earth from opposite directions as shown in Figure 1-18a. The
speeds relative to Earth are measured to be v; = 0.6¢ and v, = —0.8c. What is Earth’s
velocity relative to each proton, and what is the velocity of each proton relative to
the other?

SOLUTION

Consider each particle and Earth to be inertial reference frames S’, S”, and S, with
their respective x axes parallel as in Figure 1-18h. With this arrangement v, = u;, =
0.6¢ and v, = u,, = —0.8c. Thus, the speed of Earth measured in S" is v, = —0.6¢
and the speed of Earth measured in $” is vg, = 0.8c.

To find the speed of proton 2 with respect to proton 1, we apply Equation 1-22
to compute u,, that is, the speed of particle 2 in S'. Its speed in S has been mea-
sured to be u,, = —0.8c, where the S’ system has relative speed v, = 0.6¢ with
respect to S. Thus, substituting into Equation 1-22, we obtain

—0.8c — (0.6¢ 14
(06c) _ —Lldc g5

!

Y2 T (0.60)(—0.8c)/c? 148

and the first proton measures the second to be approaching (moving in the —x’
direction) at 0.95c.

The observer in S” must of course make a consistent measurement, that is, find
the speed of proton 1 to be 0.95c in the +x" direction. This can be readily shown by
a second application of Equation 1-22 to compute uj,.

0.6c — (-0.8c)  1l4c
1 — (0.6c)(—0.8c)/c®>  1.48

@
oO—> --+—O0
Vi Vo

1 Earth

FIGURE 1-18 (a) Two cosmic-ray protons approach Earth from opposite directions at
speeds v, and v, with respect to Earth. (b) Attaching an inertial frame to each particle and
Earth enables one to visualize the several relative speeds involved and apply the velocity
transformation correctly.

= 0.95¢c
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ulx -




1-3 The Lorentz Transformation

Questions

5. The Lorentz transformation for y and z is the same as the classical result: y =y’
and z=72'. Yet the relativistic velocity transformation does not give the classical
result u, = ujand u, = u;. Explain.

6. Since the velocity components of a moving particle are different in relatively
moving frames, the directions of the velocity vectors are also different, in
general. Explain why the fact that observers in S and S’ measure different
directions for a particle’s motion is not an inconsistency in their observations.

Spacetime Diagrams

The relativistic discovery that time intervals between events are not the same for
observers in different inertial reference frames underscores the four-dimensional
character of spacetime. With the diagrams that we have used thus far, it is difficult to
depict and visualize on the two-dimensional page events that occur at different times
since each diagram is equivalent to a snapshot of spacetime at a particular instant.
Showing events as a function of time typically requires a series of diagrams, such
as Figures 1-14, 1-15, and 1-16, but even then our attention tends to be drawn to the
space coordinate systems rather than the events, whereas it is the events that are fun-
damental. This difficulty is removed in special relativity with a simple, yet powerful
graphing method called the spacetime diagram. (This is just a new name given to the
t vs. x graphs that you first began to use when you discussed motion in introductory
physics.) On the spacetime diagram we can graph both the space and time coordinates
of many events in one or more inertial frames, albeit with one limitation. Since the
page offers only two dimensions for graphing, we suppress, or ignore for now, two of
the space dimensions, in particular y and z. With our choice of the relative motion of
inertial frames along the x axis, y’ =y and z’ = z anyhow. (This is one of the reasons
we made that convenient choice a few pages back, the other reason being mathemati-
cal simplicity.) This means that for the time being, we are limiting our attention to
one space dimension and to time, that is, to events that occur, regardless of when,
along one line in space. Should we need the other two dimensions, for example, in
a consideration of velocity vector transformations, we can always use the Lorentz
transformation equations.

In a spacetime diagram the space location of each event is plotted along the x axis
horizontally and the time is plotted vertically. From the three-dimensional array of
measuring rods and clocks in Figure 1-13, we will use only those located on the x axis
as in Figure 1-19. (See, things are simpler already!) Since events that exhibit relativis-
tic effects generally occur at high speeds, it will be convenient to multiply the time
scale by the speed of light (a constant), which enables us to use the same units and
scale on both the space and time axes, for example, meters of distance and meters of
light travel time.*® The time axis is, therefore, ¢ times the time t in seconds, that is, ct.
As we will see shortly, this choice prevents events from clustering about the axes and
makes possible the straightforward addition of other inertial frames into the diagram.

As time advances, notice that in Figure 1-19 each clock in the array moves verti-
cally upward along the dotted lines. Thus, as events A, B, C, and D occur in space-
time, one of the clocks of the array is at (or very near) each event when it happens.
Remembering that the clocks in the reference frame are synchronized, you will see
that the difference in the readings of clocks located at each event records the proper
time interval between the events (see Example 1-3). In the figure, events A and D

23
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FIGURE 1-19 Spacetime diagram for ct (m)
an inertial reference frame S. Two of the
space dimensions (y and z) are suppressed. | | | 3T | | |
The units on both the space and time axes ! ! ! ! I I
- | I B I I 1A |
are the same, meters. A meter of time R il R B R Hnits Bl bty it
means the time required for light to travel : : : : : :
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occur at the same place (x =2 m), but at different times. The time interval between
them measured on clock 2 is the proper time interval since clock 2 is located at both
events. Events A and B occur at different locations, but at the same time (i.e., simulta-
neously in this frame). Event C occurred before the present since ct = —1 m. For this
discussion we will consider the time that the coordinate origins coincide, ct = ct’ =0,
to be the present.

Worldlines in Spacetime Particles moving in space trace out a line in the
spacetime diagram called the worldline of the particle. The worldline is the “trajectory”
of the particle on a ct versus x graph. To illustrate, consider four particles moving in
space (not spacetime) as shown in Figure 1-20a, which shows the array of synchro-
nized clocks on the x axis and the space trajectories of four particles, each starting at
x = 0 and moving at some constant speed, during 3 m of time. Figure 1-20b shows
the worldline for each of the particles in spacetime. Notice that constant speed means
that the worldline has constant slope; that is, it is a straight line (slope = At/Ax =
1/(Ax/At) = 1/speed). That was also the case when you first encountered elapsed
time versus displacement graphs in introductory physics. Even then, you were plot-
ting spacetime graphs and drawing worldlines! If the particle is accelerating—either
speeding up like particle 5 in Figure 1-20c or slowing down like particle 6—the
worldlines are curved. Thus, the worldline is the record of the particle’s travel through
spacetime, giving its speed (= 1/slope) and acceleration (= 1/rate at which the slope
changes) at every instant.

DONIHASNESE Computing Speeds in Spacetime Find the speed u of particle
3 in Figure 1-20.

SOLUTION

The speed u = Ax/At = 1/slope where we have Ax =1.5 — 0 =15m and cA =
¢ * At=3.0 — 0=23.0 m (from Figure 1-20). Thus, At=(3.0/c) = (3.0/3.0 X 10%) =
10 %sandu=15m/10"®s=1.5 X 108 m/s = 0.5c.

The speed of particle 4, computed as shown in Example 1-5, turns out to be c,
the speed of light. (Particle 4 is a light pulse.) The slope of its worldline A(ct)/Ax =
3 m/3 m = 1. Similarly, the slope of the worldline of a light pulse moving in the



(@) #4
o #3
H) -——o
o #1
o ® B @ )
1~/ o~ 1~/ "/ 33—/ x (M)
(b) ct(m)
#2 #1 #3 #4
—_—_—————————— — — — F——p ————
2_-
l_-
(o) (o) (o) (o) (o)
1~/ [o) 4 1~/ "/ I~/ X (m)
(c) ct (m)
_____ G || __#
3
2_-
1_-
(o) (o) (o) (o) (o)
1/ oo/ N 2 3~ x (m)

1-3 The Lorentz Transformation 25

FIGURE 1-20 (a) The space trajectories of four
particles with various constant speeds. Note
that particle 1 has a speed of zero and particle

2 moves in the —x direction. The worldlines of
the particles are straight lines. (b) The worldline
of particle 1 is also the ct axis since that particle
remains at x = 0. The constant slopes are a
consequence of the constant speeds. (c) For
accelerating particles 5 and 6 [not shown in (a)],
the worldlines are curved, the slope at any point
yielding the instantaneous speed.

—x direction is —1. Since relativity limits the speed of particles with mass to less than c,
as we will see in Chapter 2, the slopes of worldlines for particles that move through
x =0 at ct=0 are limited to the larger shaded triangle in Figure 1-21. The same limits
to the slope apply at every point along a particle’s worldline, such as point A on the
curved spacetime trajectory in Figure 1-21. This means that the particle’s possible
worldlines for times greater than ct = 2 m must lie within the heavily shaded triangle.

ct (m)
\\ \\ // //
N N 4 e
AN 27T X e
~ -
N 7
\\ //
AN 8 14 / -
AN e
N //
(o) (o) o (o) (o)
o _1~/ o~ 1~/ " X (m)

FIGURE 1-21  The speed-of-light limit to the speeds of particles limits the slopes of
worldlines for particles that move through x = 0 at ct = 0 to the shaded area of spacetime,

that is, to slopes < —1 and > +1. The dashed lines are worldlines of light flashes moving in
the —x and +x directions. The curved worldline of the particle shown has the same limits at
every instant. Notice that the particle’s speed = 1/slope.
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Event Analysis Using Worldlines Analyzing events and motion in inertial
systems that are in relative motion can now be accomplished more easily than with
diagrams such as Figures 1-14 through 1-18. Suppose we have two inertial frames
S and S’ with S’ moving in the +x direction of S at speed v as in those figures. The
clocks in both systems are started at t =t" = 0 (the present) as the two origins x=0 and
x" = 0 coincide, and, as before, observers in each system have synchronized the
clocks in their respective systems. The spacetime diagram for S is, of course, like
that in Figure 1-19, but how does S’ appear in that diagram, that is, with respect to an
observer in S? Consider that, as the origin of S’ (i.e., the point where x’ = 0) moves
in S, its worldline is the ct’ axis since the ct’ axis is the locus of all points with x’ =0
(just as the ct axis is the locus of points with x = 0). Thus, the slope of the ct” axis as
seen by an observer in S can be found from Equation 1-18, the Lorentz transforma-
tion, as follows

X" =y —vt)=0 for X" =20
or
X = vt = (v/c)(ct) = Bct
and

ct = (1/B)x

which says that the slope (in S) of the worldline of the point x’ = 0, the ct’ axis, is 1/
(see Figure 1-22a).

In the same manner, the x’ axis can be located using the fact that it is the locus
of points for which ct’ = 0. The Lorentz transformation once again provides the
slope:

or

Thus, the slope of the x” axis as measured by an observer in S is 3, as shown in
Figure 1-22a. Don’t be confused by the fact that the x axes don’t look parallel any-
more. They are still parallel in space, but this is a spacetime diagram. It shows
motion in both space and time. For example, the clock at X’ = 1 m in Figure 1-22b
passed the point x = 0 at about ct = —1.5 m as the x" axis of S’ moved both upward
and to the right in S. Remember, as time advances, the array of synchronized clocks
and measuring rods that are the x axis also moves upward, so that, for example, when
ct = 1, the origin of S'(x’ = 0, ct’ = 0) has moved vt = (v/c)ct = Bct to the right
along the x axis.

Question

7. Explain how the spacetime diagram in Figure 1-22b would appear drawn by an
observer in S'.
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ct’ (m)

ct (m)

(b) 7

FIGURE 1-22 Spacetime diagram of S showing S’ moving at speed v = 0.5c in the +x
direction. The diagram is drawn with t =1t" = 0 when the origins of S and S’ coincided.
The dashed line shows the worldline of a light flash that passed through the point x =0 at
t =0 heading in the +x direction. Its slope equals 1 in both Sand S’. The ct” and x’ axes of
S’ have slopes of 1/B8 =2 and 3 = 0.5, respectively. (a) Calibrating the axes of S’ as
described in Exploring (pages 26-27) allows the grid of coordinates to be drawn on S'.
Interpretation is facilitated by remembering that (b) shows the system S’ as it is observed
in the spacetime diagram of S.
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FIGURE 1-23 Spacetime equivalent of ct ct’
Figure 1-15, showing the spacetime diagram

for the system S in which the platform is at rest.

Measurements made by observers in S’ are read 2
from the primed axes.

Train
(S’ frame)

Simultaneity in Spacetime Use the train-platform example of
Figure 1-15 and a suitable spacetime diagram to show that events simultaneous in
one frame are not simultaneous in a frame moving relative to the first. (This is the
corollary to the relativity of simultaneity that we first demonstrated in the previous
section using Figure 1-15.)

SOLUTION

Suppose a train is passing a station platform at speed v and an observer C at the
midpoint of the platform, system S, announces that light flashes will be emitted at
clocks A and B located at opposite ends of the platform at t = 0. Let the train, sys-
tem S’, be a rocket train with v = 0.5c. As in the earlier discussion, clocks at C and
C’ both read 0 as C’ passes C. Figure 1-23 shows this situation. It is the spacetime
equivalent of Figure 1-15.

Two events occur; the light flashes. The flashes are simultaneous in S since both
occur at ct =0. In S’, however, the event at A occurred at ct’(A") (see Figure 1-23),
about 1.2 ct’ units before ct’ = 0, and the event at B occurred at ct’(B’), about 1.2 ct’
units after ct’ = 0. Thus, the flashes are not simultaneous in S’ and A occurs before B,
as we also saw in Figure 1-15.

EXPLORING
Calibrating the Spacetime Axes

By calibrating the coordinate axes of S’ consistent with the Lorentz transformation,
we will be able to read the coordinates of events and calculate space and time intervals
between events as measured in both S and S’ directly from the diagram, in addition
to calculating them from Equations 1-18 and 1-19. The calibration of the S’ axes is
straightforward and is accomplished as follows. The locus of points, for example, with
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x"=1m, is a line parallel to the ct’ axis through the point x’ =1 m, ct" =0, just as we
saw earlier that the ct’ axis was the locus of those points with x" = 0 through the point
x" =0, ct’ = 0. Substituting these values into the Lorentz transformation for x’, we see
that the line through x’ = 1 m intercepts the x axis, that is, the line where ct =0 at

X' = y(x —vt) = y(x — Bet) 1-24
1= X or x=1/y = m
or, in general,
X = x’m

In Figure 1-22b, where B = 0.5, the line X’ = 1 m intercepts the x axis at

x=0.866 m. Similarly, if X’ =2m, x= 173 m; if X’ =3 m, x=2.60 m, and so on.

The ct’ axis is calibrated in a precisely equivalent manner. The locus of points with

ct’ =1 miis a line parallel to the x" axis through the point ct’ =1 m, x’ = 0. Using the

Lorentz transformation, the intercept of that line with the ct axis (where x = 0) is found
as follows.

t' = y(t — vx/c?)
which can also be written as
ct” = y(ct — Bx) 1-25

or ct’ =~ct for x="0. Thus, for ct’ =1 m, we have 1 =-yct or ct= (1 — p?)*? and, again,
in general, ct=ct'(1 — %2 The x’ - ct’ coordinate grid is shown in Figure 1-22b.

Notice in Figure 1-22b that the clocks located in S” are not found to be synchro-
nized by observers in S, even though they are synchronized in S’. This is exactly the
conclusion that we arrived at in the discussion of the lightning striking the train and
platform. In addition, those with positive x" coordinates are behind the S’ reference
clock and those with negative x" coordinates are ahead, the differences being greatest
for those clocks farthest away. This is a direct consequence of the Lorentz transforma-
tion of the time coordinate—that is, when ct = 0 in Equation 1-25, ct’ = —yBx. Note,
too, that the slope of the worldline of the light beam equals 1 in S’, as well as in S, as
required by the second postulate.

1-4 Time Dilation and Length Contraction

The results of correct measurements of the time and space intervals between events
do not depend on the kind of apparatus used for the measurements or on the events
themselves. We are free therefore to choose any events and measuring apparatus that
will help us understand the application of the Einstein postulates to the results of mea-
surements. As you have already seen from previous examples, convenient events in
relativity are those that produce light flashes. A convenient, simple such clock is a
light clock, pictured schematically in Figure 1-24. A photocell detects the light pulse
and sends a voltage pulse to an oscilloscope, which produces a vertical deflection of
the oscilloscope’s trace. The phosphorescent material on the face of the oscilloscope
tube gives a persistent light that can be observed visually, photographed, or recorded
electronically. The time between two light flashes is determined by measuring the
distance between pulses on the scope and knowing the sweep speed. Such clocks can
easily be calibrated and compared with other types of clocks. Although not drawn as
in Figure 1-24, the clocks used in explanations in this section may be thought of as
light clocks.

29
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FIGURE 1-24 Light clock for measuring time intervals. The  \\//

time is measured by reading the distance between pulses on ///\\
the oscilloscope after calibrating the sweep speed.
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Time Dilation (or Time Stretching)

We first consider an observer A" at rest in frame S’ a distance D from a mirror, also
in S’, as shown in Figure 1-25a. He triggers a flash gun and measures the time inter-
val At" between the original flash and the return flash from the mirror. Since light
travels with speed c, this time is At’ = (2D) /c.

We now consider these same two events, the original flash of light and the return-
ing flash, as observed in reference frame S, with respect to which S’ is moving to the
right with speed v. The events happen at two different places, x; and x,, in frame S
because between the original flash and the return flash observer A’ has moved a hori-
zontal distance vAt, where At is the time interval between the events measured in S. In
Figure 1-25b, a space diagram, we see that the path traveled by the light is longer in S
than in S’. However, by Einstein’s postulates, light travels with the same speed ¢ in
frame S as is does in frame S’. Since it travels farther in S at the same speed, it takes
longer in S to reach the mirror and return. The time interval between flashes in S is
thus longer than it is in S’. We can easily calculate At in terms of At’. From the trian-
gle in Figure 1-25c, we see that

cAt\? VAL)?
= :D2+ =
() -0+ (7

Af— 20 1
Vie? — v2 C V1 -—v?c?

Using At’ =2D/c, we have

or

At/
At = ———— = YAt = 7 1-26

V1 - v?/c?
where T = At’ is the proper time interval that we first encountered in Example 1-3.
Equation 1-26 describes time dilation; that is, it tells us that the observer in frame S
always measures the time interval between two events to be longer (since y > 1) than
the corresponding interval measured on the clock located at both events in the frame
where they occur at the same location. Thus, observers in S conclude that the clock



1-4 Time Dilation and Length Contraction

(@) vy’ () vy
Mirror

Mirror

s/

FIGURE 1-25 (a) Observer A’ and the mirror are in a spaceship at rest in frame S’. The time

it takes for the light pulse to reach the mirror and return is measured by A’ to be 2D /c. (b) In
frame S, the spaceship is moving to the right with speed v. If the speed of light is the same in
both frames, the time it takes for the light to reach the mirror and return is longer than 2D /c in
S because the distance traveled is greater than 2D. (c) A right triangle for computing the time
At in frame S.

at A" in S’ runs slow since that clock measures a smaller time interval between the two
events. Notice that the faster S’ moves with respect to S, the larger is -y, and the slower
the S’ clocks will tick. It appears to the S observer that time is being stretched out in S'.

Be careful! The same clock must be located at each event for At’ to be the proper
time interval 7. We can see why this is true by noting that Equation 1-26 can be obtained
directly from the inverse Lorentz transformation for t. Referring again to Figure 1-25 and
calling the emission of the flash event 1 and its return event 2, we have that

VX5 VX}
At:tz—tlz’y t’z"‘? -y t,1+?

! ! 'yv ! !
At = y(t; —t3) + 2 (x5 — x1)
or
! ‘yv !
At = ’yAt + ?AX 1-27

If the clock that records t; and t} is located at the events, then Ax’ = 0. If that is not
the case, however, Ax" # 0 and At’, though certainly a valid measurement, is not a
proper time interval. Only a clock located at an event when it occurs can record a proper
time interval.

S CHRSNEVA Spatial Separation of Events Two events occur at the same
point xg at times t; and t5 in S’, which moves with speed v relative to S. What is the
spatial separation of these events measured in S?

SOLUTION

1. The location of the events in S is given x = y(x’ + vt')
by the Lorentz inverse transformation,
Equation 1-19:

2. The spatial separation of the two AX = y(xg + vty) — y(Xp + vty)
events AX =x, — X, is then

(©
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ct (m) ct’ (m) 3. The yxg terms cancel: Ax = yv(t; — t}) = yvAt’
4. Since At’ is the proper time interval T, Ax = vyt = VAt
Equation 1-26 yields

5. Using the situation in Figure 1-26 as AX = v!A(ct’) = (1.15)(0.5)(2)
a numerical example, where 3 =0.5 ¢
and y = 1.15, we have = 115m

®
~ § =2 x(m)  EEIENUIRSE:R The Pregnant Elephant'® Elephants have a gestation period of
21 months. Suppose that a freshly impregnated elephant is placed on a spaceship

FIGURE 1-26 Spacetime and sent toward a distant space jungle at v = 0.75c. If we monitor radio transmis-
diagram illustrating time sions from the spaceship, how long after launch might we expect to hear the first
dilation. The dashed line is squealing trumpet from the newborn calf?

the worldline of a light flash
emitted at x’ = 0 and reflected SOLUTION
back to that point by a mirror

atx’=1m.B=0.5. 1. InS’, the rest frame of the elephant, the At = vr = 1
time interval from launch to birth is L= YT /1 — B2 T
7= 21 months.
In the Earth frame S the time interval is = ————— (21 months)
At, given by Equation 1-26: 1-1(079)
= 31.7 months
2. At that time the radio signal announcing AX = yvt = ypBcT
the happy event starts toward Earth at = (1.51)(0.75)(21 c - months)
speed c, but from where? Using the = 23.8¢ - months
result of Example 1-7, since launch where ¢ - month is the distance
the spaceship has moved Axin S light travels in one month.
given by
3. Notice that there is no need to convert At, = Ax/c
Ax into meters since our interest is in = 23.8c-months/c
how long it will take the radio signal to = 23.8 months
ct travel this distance in S. That time is
(c *mo) ct’ At, given by
Radio 4. Thus, the good news will arrive at Earth at At = At; + At,
5554 signal time At after launch where = 31.7 + 238
\\/ = 55.5 months

Remarks: This result, too, is readily obtained from a spacetime diagram. Fig-
ure 1-27 illustrates the general appearance of the spacetime diagram for this
example, showing the elephant’s worldline and the worldline of the radio signal.

FIGURE 1-27 Sketch of

the spacetime diagram for Question

Example 1-8. 3 =0.75. The

T . 8. You are standing on a corner and a friend is driving past in an automobile.
colored line is the worldline

Both of you note the times when the car passes two different intersections and
of the pregnant elephant. The q ine f h readi he ti hat el b h
worldline of the radio signal etermine rom your watch rea ings the time t at_e apses etween the two
is the dashed line at 45° events. Which of you has determined the proper time interval?

toward the upper left.
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The time dilation of Equation 1-26 is easy to see in a spacetime diagram such as
Figure 1-26, using the same round trip for a light pulse used above. Let the light
flash leave x’ =0 at ct’ = 0, when the S and S’ origins coincided. The flash travels to
x" =1 m, reflects from a mirror located there, and returns to x’ =0. Let 3 =0.5. The
dotted line shows the worldline of the light beam, reflecting at (x’ = 1, ct’ = 1) and
returning to x’ = 0 at ct’ = 2 m. Note that the S observer records the latter event at
ct > 2 m; that is, the observer in S sees the S’ clock running slow.

Experimental tests of the time dilation prediction have been performed using
macroscopic clocks, in particular, accurate atomic clocks. In 1975, C. O. Alley con-
ducted a test of both general and special relativity in which a set of atomic clocks
were carried by a U.S. Navy antisubmarine patrol aircraft while it flew back and forth
over the same path for 15 hours at altitudes between 8000 m and 10,000 m over Ches-
apeake Bay. The clocks in the plane were compared by laser pulses with an identical
group of clocks on the ground. (See Figure 1-13 for one way such a comparison might
be done.) Since the experiment was primarily intended to test the gravitational effect
on clocks predicted by general relativity (see Section 2-5), the aircraft was deliber-
ately flown at the rather sedate average speed of 270 knots (140 m/s) = 4.7 X 107 "c
S0 as to minimize the time dilation due to the relative speeds of the clocks. Even so,
after deducting the effect of gravitation as predicted by general relativity, the airborne
clocks lost an average of 5.6 X 107° s due to the relative speed during the 15-hour
flight. This result agrees with the prediction of special relativity, 5.7 X 107° s to
within 2 percent, even at this low relative speed. More recently, in 2010 J. C.-W. Chou
and his coworkers at the National Institute of Science and Technology (NIST) used
precision optical clocks to detect the minuscule time dilation at a speed of only 10 m/s,
about the speed of a collegiate track sprinter. These and other experimental results
leave little basis for further debate as to whether traveling clocks of all kinds lose
time. They do.

Length Contraction

A phenomenon closely related to time dilation is length contraction. The length of
an object measured in the reference frame in which the object is at rest is called its
proper length L. In a reference frame in which the object is moving, the measured
length parallel to the direction of motion is shorter than its proper length. Consider
a rod at rest in the frame S’ with one end at x5 and the other end at x; as illustrated
in Figure 1-28. The length of the rod in this frame is its proper length L, = x5 — 3.
Some care must be taken to find the length of the rod in frame S. In this frame, the
rod is moving to the right with speed v, the speed of frame S’. The length of the rod in
frame S is defined as L = x, — x;, where X, is the position of one end at some time t,
and x; is the position of the other end at the same time t; = t, as measured in frame S.
Since the rod is at rest in S’, t5 need not equal t;. Equation 1-18 is convenient to use to
calculate x, — x; at some time t because it relates x, x’, and t, whereas Equation 1-19
is not convenient because it relates x, x’, and t':

X; = y(X — V) and xi = y(X — vty)
Since t, =t,, we obtain
Xy = X1 = y(X = %)

1 2
Xz_xlzg(xlz_xll) =4/1 — (X3 —x1)
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FIGURE 1-28 A measuring rod, a meter
stick in this case, lies at rest in S’ between
X5 = 2mand x; = 1m. System S’
moves with 8 = 0.79 relative to S. Since
the rod is in motion, S must measure the
locations of the ends of the rod x, and x;
simultaneously in order to have made a
valid length measurement. L is obviously
shorter than L,,. By direct measurement
from the diagram (use a millimeter scale)
L/IL,=0.62=1/y.

ct (m)

2 —

ct’ (m)

x” (m)

i l’ ’
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/ / /
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or

—L, 1-28

Thus, the length of a rod is smaller when it is measured in a frame with respect to
which it is moving. Before Einstein’s paper was published, Lorentz and FitzGerald
had independently shown that the null result of the Michelson-Morley experiment
could be explained by assuming that the lengths in the direction of the interferome-
ter’s motion contracted by the amount given in Equation 1-28. For that reason, the
length contraction is often called the Lorentz-FitzGerald contraction.

D ONIHRSEER Speed of S' A stick that has a proper length of 1 m moves in a
direction parallel to its length with speed v relative to you. The length of the stick as
measured by you is 0.914 meter. What is the speed v?

SOLUTION
1. The length of the stick measured in a L

frame relative to which it is moving - 7

with speed v is related to its proper

length by Equation 1-28:

L
2. Rearranging to solve for vy: vy = Tp
3. Substituting the values of L, and L: SN LU
. Substituting the values of L, and L: Y= o91am m

4. Solving for v: V1 —v2/c2 = 0914

1 —v?/c? = (0.914)? = 0.835
v2/c2 =1 — 0.835 = 0.165
vZ = 0.165¢?2
v = 0.406c
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It is important to remember that the relativistic contraction of moving lengths
occurs only parallel to the relative motion of the reference frames. In particular,
observers in relatively moving systems measure the same values for lengths in the y
and y’ and in the z and z’ directions perpendicular to their relative motion. The result
is that observers measure different shapes and angles for two- and three-dimensional
objects (see Example 1-10 and Figures 1-29 and 1-30).

FIGURE 1-29 The appearance of rapidly moving objects depends on both length contraction
in the direction of motion and the time when the observed light left the object. (a) The array

of clocks and measuring rods that represents S’ as viewed by an observer in S with 3 =0.

(b) When S’ approaches the S observer with g = 0.9, the distortion of the lattice becomes
apparent. This is what an observer on a cosmic-ray proton might see as it passes into the lattice
of a face-centered-cubic crystal such as NaCl. [P.-K. Hsiung, R. Dunn, and C. Cox. Courtesy of
C. Cox, Adobe Systems, Inc., San Jose, CA.]

’ ’ b
@ vy S 7 0sc ®) y S

FIGURE 1-30 Length contraction distorts the shape and orientation of two- and three-
dimensional objects. The observer in S measures the square shown in S’ as a rotated
parallelogram.
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(&) Muon

FIGURE 1-31 Although
muons are created high
above Earth and their mean
lifetime is only about 2 s
when at rest, many appear at
Earth’s surface. (a) In Earth’s
reference frame, a typical
muon moving at 0.998¢ has
a mean lifetime of 30 ws and
travels 9000 m in this time.
(b) In the reference frame

of the muon, the distance
traveled by Earth is only
600 m in the muon’s lifetime
of 2 ps. (c) L varies only
slightly from L, until v is of
the order of 0.1c.L — Oas
vV — C.

D OVILEEE The Shape of a Moving Square Consider the square in the X'y’
plane of S with one side making a 30° angle with the x’ axis as in Figure 1-30a. If S’
moves with B = 0.5 relative to S, what is the shape and orientation of the figure in S?

SOLUTION
The S observer measures the x components of each side to be shorter by a factor 1 /y
than those measured in S’. Thus, S measures

A = [c0s?30 + sin?30/v%]*2A’ = 0.968A’
B = [sin?30 + cos?30/v?]/?B’ = 0.901B’

Since the figure is a square in S’, A" = B’. In addition, the angles between B
and the x axis and between A and the x axis are given by, respectively,

B’sin 30 sin 30

an [B’cosBO/y} an ycosSO
A’cos 30 cos 30

¢ = mn [A’S|n30/y} a1 Ysin 30

Thus, S concludes from geometry that the interior angle at vertex 1 is not 90°,
but 180° — (63.4° + 33.7°) = 82.9°—that is, the figure is not a square, but a paral-
lelogram whose shorter sides make 33.7° angles with the x axis! Its shape and ori-
entation in S are shown in Figure 1-30b.

Muon Decay

An interesting example of both time dilation and length contraction is afforded by the
appearance of muons as secondary radiation from cosmic rays. Muons decay accord-
ing to the statistical law of radioactivity:

N(t) = Noel ™Y 1-29

where N, is the original number of muons at time t =0, N(t) is the number remaining
attime t, and 7 is the mean lifetime (a proper time interval), which is about 2 s for
muons. Since muons are created (from the decay of pions) high in the atmosphere,
usually several thousand meters above sea level, few muons should reach sea level.
A typical muon moving with speed 0.998c would travel only about 600 m in 2 ps.
However, the lifetime of the muon measured in Earth’s reference frame is increased
according to time dilation (Equation 1-26) by the factor 1/(1 — v?/c®?, which is
15 for this particular speed. The mean lifetime measured in Earth’s reference frame
is therefore 30 ws, and a muon with speed 0.998c travels about 9000 m in this time.
From the muon’s point of view, it lives only 2 s, but the atmosphere is rushing
past it with a speed of 0.998c. The distance of 9000 m in Earth’s frame is thus con-
tracted to only 600 m in the muon’s frame as indicated in Figure 1-31.

It is easy to distinguish experimentally between the classical and relativistic pre-
dictions of the observations of muons at sea level. Suppose that we observe 108 muons
at an altitude of 9000 m in some time interval with a muon detector. How many would
we expect to observe at sea level in the same time interval? According to the nonrela-
tivistic prediction, the time it takes for these muons to travel 9000 m is (9000 m)/
0.998¢c ~ 30 s, which is 15 lifetimes. Substituting N, = 108 and t = 157 into Equa-
tion 1-29, we obtain

N = 10% ™ = 30.6
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We would thus expect all but about 31 of the original 200 million muons to decay
before reaching sea level.

According to the relativistic prediction, Earth must travel only the contracted dis-
tance of 600 m in the rest frame of the muon. This takes only 2 ws = 17. Therefore,
the number of muons expected at sea level is

N = 10% ' = 3.68 x 10’

Thus, relativity predicts that we would observe 36.8 million muons in the same
time interval. Experiments of this type have confirmed the relativistic predictions.

The Spacetime Interval

We have seen earlier in this section that time intervals and lengths (= space intervals),
quantities that were absolutes, or invariants, for relatively moving observers using the
classical Galilean coordinate transformation, are not invariants in special relativity.
The Lorentz transformation and the relativity of simultaneity lead observers in iner-
tial frames to conclude that lengths moving relative to them are contracted and time
intervals are stretched, both by the factor y. The question naturally arises: Is there any
quantity involving the space and time coordinates that is invariant under a Lorentz
transformation? The answer to that question is yes, and as it happens, we have already
dealt with a special case of that invariant quantity when we first obtained the correct
form of the Lorentz transformation. It is called the spacetime interval, or usually just
the interval, As, and is given by

(As)? = (cAt)® — [Ax? + Ay? + Az?] 1-30
or, specializing it to the one-space-dimensional systems that we have been discussing,
(As)? = (cAt)® — (Ax)? 1-31
It may help to think of Equations 1-30 and 1-31 like this:
[interval]*> = [separation in time]?> — [separation in space]?

The interval As is the only measurable quantity describing pairs of events in
spacetime for which observers in all inertial frames will obtain the same numerical
value. The negative sign in Equations 1-30 and 1-31 implies that (As)? may be positive,
negative, or zero depending on the relative sizes of the time and space separations.
With the sign of (As)?, nature is telling us about the causal relation between the two
events. Notice that whichever of the three possibilities characterizes a pair for one
observer, it does so for all observers since As is invariant. The interval is called time-
like if the time separation is the larger and spacelike if the space separation predomi-
nates. If the two terms are equal, so that As =0, then it is called lightlike.

Timelike Interval Consider a material particle®® or object, such as, the elephant
in Figure 1-27, that moves relative to S. Since no material particle has ever been mea-
sured traveling faster than light, particles always travel less than 1 m of distance in
1 m of light travel time. We saw that to be the case in Example 1-8, where the time
interval between launch and birth of the baby elephant was 31.7 months on the S
clock, during which time the mother elephant had moved a distance of 23.8¢c - months.
Equation 1-31 then yields (cAt)? — (Ax)? = (31.7¢)? — (23.8¢)* = (21.0c)? = (As)? and
the interval in S is As = 21.0c - months. The time interval term being the larger, As is
a timelike interval and we say that material particles have timelike worldlines. Such

Experiments with muons
moving near the speed

of light are performed

at many accelerator
laboratories throughout
the world despite their
short mean life. Time
dilation results in much
longer mean lives
relative to the laboratory,
providing plenty of time to
do experiments.
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worldlines lie within the shaded area of the spacetime diagram in Figure 1-21. Note
that in the elephant’s frame S’ the separation in space between the launch and birth is
zero and At is 21.0 months. Thus, As=21.0c - months in S’ too. That is what we mean
by the interval being invariant: observers in both S and S’ measure the same number
for the separation of the two events in spacetime.

The proper time interval T between two events can be determined from Equa-
tions 1-31 using space and time measurements made in any inertial frame since we
can write that equation as

As
— = V(A2 = (Ax/c)?
Since At =1 when Ax = 0—that is, for the time interval recorded on a clock in a
system moving such that the clock is located at each event as it occurs—in that case
2 2 _ 2 ___As
V(A2 — (Ax/c)? = V7 —0=r="" 1-32
Notice that this yields the correct proper time = = 21.0 months in the elephant
example.

Spacelike Interval When two events are separated in space by an interval
whose square is greater than the value of (CAt)?, then As is called spacelike. In that
case it is convenient for us to write Equation 1-31 in the form

(As)? = (Ax)? — (cAt)? 1-33

so that, as with timelike intervals, (As)? is not negative.® Events that are spacelike occur
sufficiently far apart in space and close together in time that no inertial frame could move
fast enough to carry a clock from one event to the other. For example, suppose two
observers in Earth frame S, one in San Francisco and one in London, agree to each
generate a light flash at the same instant, so that cAt=0m in S and Ax=1.08 X 10" m.
For any other inertial frame (cAt)> > 0, and we see from Equation 1-33 that (Ax)?
must be greater than (1.08 X 107)2 in order that As be invariant. In other words,
1.08 X 10" m is as close in space as the two events can be in any system; conse-
quently, it will not be possible to find a system moving fast enough to move a clock
from one event to the other. A speed greater than c, in this case infinitely greater,
would be needed. Notice that the value of As = L, the proper length. Just as with the
proper time interval T, measurements of space and time intervals in any inertial sys-
tem can be used to determine L,,.

Lightlike (or Null) Interval The relation between two events is lightlike if As
in Equation 1-31 equals zero. In that case

cAt = AX 1-34

and a light pulse that leaves the first event as it occurs will just reach the second as it
occurs.

The existence of the lightlike interval in relativity has no counterpart in the world
of our everyday experience, where the geometry of space is Euclidean. In order for the
distance between two points in space to be zero, the separation of the points in each of
the three space dimensions must be zero. However, in spacetime the interval between
two events may be zero, even though the intervals in space and time may individually
be quite large. Notice, too, that pairs of events separated by lightlike intervals have
both the proper time interval and proper length equal to zero since As = 0.
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ct ct’ FIGURE 1-32 The relative temporal order
of events for pairs characterized by timelike
Absolute , . .
il B ctg |nte:rval§, such as A and B, is Fhe same for
ctgd o~ . allinertial observers. Events in the upper
shaded area will all occur in the future of
A, those in the lower shaded area occurred
Clel [/ 2 _ac in A’s past. Events whose intervals are
A s spacelike, such as A and C, can be measured
- X as occurring in either order, depending on
e the relative motion of the frames. Thus, C
o d occurs after Ain S, but before Ain S'.
cte
Absolute
past
Worldline of Worldline of
light moving in light moving in
+x direction —x direction

Things that move at the speed of light!’ have lightlike worldlines. As we saw
earlier (see Figure 1-22), the worldline of light bisects the angles between the ct and x
axes in a spacetime diagram. Timelike intervals lie in the shaded areas of Figure 1-32
and share the common characteristic that their relative order in time is the same for
observers in all inertial systems. Events A and B in Figure 1-32 are such a pair.
Observers in both S and S’ agree that A occurs before B, although they of course mea-
sure different values for the space and time separations. Causal events, that is, events
that depend on or affect one another in some fashion, such as your birth and that of
your mother, have timelike intervals. On the other hand, the temporal order of events
with spacelike intervals, such as A and C in Figure 1-32, depends on the relative
motion of the systems. As you can see in the diagram, A occurs before C in S, but C
occurs first in S’. Thus, the relative order of pairs of events is absolute in the shaded
areas but elsewhere may be in either order.

Question

9. In 1987 light arrived at Earth from the explosion of a star (a supernova) in the
Large Magellanic Cloud, a small companion galaxy to the Milky Way, located
about 170,000 c - y away. Describe events that together with the explosion of
the star would be separated from it by (a) a spacelike interval, (b) a lightlike
interval, and (c) a timelike interval.

D GCVILNSNEYN Characterizing Spacetime Intervals Figure 1-33 is the

spacetime diagram of a laboratory showing three events, the emission of light from

an atom in each of three samples.

1. Determine whether the interval between each of the three possible pairs of
events is timelike, spacelike, or lightlike.

2. Would it have been possible in any of the pairs for one of the events to have
been caused by the other? If so, which?
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FIGURE 1-33 A spacetime diagram of
8- Event3 three events whose intervals As are found in
r Example 1-11.
6 —
E T Event 2.
C 4
2o
Event 1
0 A I T S T I BN |
0 2 4 6 8 10
x (m)
SOLUTION
1. The spacetime coordinates of the events are
event ct X
1 2 1
2 5 9
3 8 6

and for the three possible pairs 1 and 2, 2 and 3, and 1 and 3 we have

pair cAt Ax (cAt)? (Ax)?

1&2 5-2 9-1 9 64 spacelike
2&3 8-5 6-9 9 9 lightlike
1&3 8-2 6-1 36 25 timelike

2. Yes, event 3 may possibly have been caused by either event 1, since 3 is in the
absolute future of 1, or event 2, since 2 and 3 can just be connected by a flash
of light.

1-5 The Doppler Effect

In the Doppler effect for sound the change in frequency for a given velocity v depends
on whether it is the source or receiver that is moving with that speed. Such a dis-
tinction is possible for sound because there is a medium (the air) relative to which
the motion takes place, and so it is not surprising that the motion of the source or
the receiver relative to the still air can be distinguished. Such a distinction between
motion of the source or receiver cannot be made for light or other electromagnetic
waves in a vacuum as a consequence of Einstein’s second postulate; therefore, the
classical expressions for the Doppler effect cannot be correct for light. We will now
derive the relativistic Doppler effect equations that are correct for light.

Consider a light source moving toward an observer or a receiver at A in Figure 1-34a
at velocity v. The source is emitting a train of light waves toward receivers A and B
while approaching A and receding from B. Figure 1-34b shows the spacetime diagram
of S, the system in which A and B are at rest. The source is located at x’ = 0 (the
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FIGURE 1-34 Doppler effect in light, as in sound, arises from the relative motion of the
source and receiver; however, the independence of the speed of light on that motion leads to
different expressions for the frequency shift. (a) A source approaches observer A and recedes
from observer B. (b) The spacetime diagram of the system S in which A and B are at rest and
the source moves at velocity v illustrates the two situations. The source located at x’ =0

(the x” axis is omitted) moves along its worldline, the ct” axis. The N waves emitted toward A
in time At occupy space Ax = cAt — vAt, whereas those headed for B occupy Ax = cAt + vAt.
In three dimensions the observer in S may see light emitted at some angle 6 with respect to the
x axis as in (c). In that case a transverse Doppler effect occurs. (d) Kiindig’s apparatus for
measuring the transverse Doppler effect.

X' axis is not shown), and, of course, its worldline is the ct’ axis. Let the source emit a
train of N electromagnetic waves in each direction beginning when the S and S’ ori-
gins were coincident. First, let’s consider the train of waves headed toward A. During
the time At over which the source emits the N waves, the first wave emitted will have
traveled a distance cAt and the source itself a distance vAt in S. Thus, the N waves are
seen by the observer at A to occupy a distance cAt — vAt and, correspondingly, their
wavelength \ is given by

_ CAt — VAt

N
N

and the frequency f=c/\ is
c cN 1 N

N T c—vat 1-pat
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The use of Doppler radar
to track weather systems
is a direct application of
special relativity.

The frequency of the source in S', called the proper frequency, is given by f,=c/\' =
N/At’, where At’ is measured in S’, the rest system of the source. The time interval
At’ = 71 is the proper time interval since the light waves, in particular the first and the
Nth, are all emitted at x’ = 0; hence Ax" = 0 between the first and the Nth in S’. Thus,
At and At’ are related by Equation 1-26 for time dilation, so At = yAt’. So when the
source and receiver are moving toward each other, the observer A in S measures the
frequency

1 fAU fy 1
f = = — 1_
1-p At 1-Bv 3
or
V1 - g? 1T
f=—" BB fo= 72 Efo (approaching) 1-36

This differs from the classical equation only in the addition of the time dilation factor.
Note that f > f, for the source and observer approaching each other. Since for visible
light this corresponds to a shift toward the blue part of the spectrum, it is called a
blueshift.

Suppose the source and receiver are moving away from each other, as for
observer B in Figure 1-34b. Observer B, in S, sees the N waves occupying a distance
cAt + vAt, and the same analysis shows that observer B in S measures the frequency

V1 — p? 1 - .
f= 1+[3Bf0 =7 Efo (receding) 1-37

Notice that f < f, for the observer and source receding from each other. Since for vis-
ible light this corresponds to a shift toward the red part of the spectrum, it is called a
redshift. It is left as a problem for you to show that the same results are obtained when
the analysis is done in the frame in which the source is at rest.

Some Useful Approximations

In the event that v << ¢ (i.e., B << 1), as is often the case for light sources moving
on Earth, useful (and easily remembered) approximations of Equations 1-36 and 1-37
can be obtained. Using Equation 1-36 as an example and rewriting it in the form

f=1(1+B)"(1—-B)""
the two quantities in parentheses can be expanded by the binomial theorem to yield
f=f0(1+;[3—;[32+ ><1+;B+232+ )
Multiplying out and discarding terms of higher order than 3 yields
f/fo = 1+ B (approaching)
and, similarly,

f/fo = 1 —B (receding)
and | Af/fy| = B in both situations, where Af=f, — f.
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Rotation of the Sun The Sun rotates at the equator once in
about 25.4 days. The Sun’s radius is 7.0 X 10 m. Compute the Doppler effect that
you would expect to observe at the left and right limbs (edges) of the Sun near the
equator for light of wavelength A =550 nm =550 X 10~° m (yellow light). Is this
a redshift or a blueshift?

SOLUTION
The speed of limbs v = (circumference) / (time for one revolution) or

2vR  2m(7.0 X 10°) m
T  254d-3600s/h-24h/d

v = = 2000 m/s

v << ¢, S0 we may use the approximation equations. Using Af/f, = B, we have
that Af = Bfy = Bc/Ng = V/\, Or Af = 2000/550 X 10~ = 3.64 X 10° Hz. Since
fo=1c/N\o = (3 X 10° m/s)/(550 X 10~°%) = 5.45 X 10 Hz, Af represents a frac-
tional change in frequency of B, or about one part in 10°. It is a redshift for the
receding limb, a blueshift for the approaching one.

Wavelength/Frequency Shift of Starlight

In 1929 E. P. Hubble became the first astronomer to suggest that the universe is
expanding.’® He made that suggestion and offered a simple equation (Equation 13-28)
to describe the expansion on the basis of measurements of the shifted frequencies
of spectral lines emitted toward us by relatively nearby galaxies for which distance
data were available at the time, a phenomenon he attributed to the Doppler effect.
Spectral lines from distant galaxies are always shifted toward frequencies lower than
those emitted by similar sources on Earth. Since the general expression connecting
the frequency f and wavelength A of light is ¢ = f\, the shift is toward longer wave-
lengths. As noted earlier, red is on the longer-wavelength side of the visible spectrum
(see Chapter 4), so the redshift is used to describe a receding source. Similarly, blue-
shift describes light emitted by stars that are approaching us, typically ones relatively
nearby in our galaxy.

As we will explain in Chapter 13, the observed redshift of light from astronomi-
cal sources is due to the general expansion of space, not to the Doppler effect as
Hubble believed. It just happens that the redshift due to the Doppler effect agrees with
that due to the expansion of space to within a few percent for the nearby, small z gal-
axies for which Hubble had data. Astronomers define the redshift by the expression
z = (f, — ) /f, where f, = frequency measured in the frame of the star or galaxy and
f = frequency measured at the receiver on Earth. This allows us to write 3 =v/c in
terms of z as

B_(z+1)2+1 i

Equation 1-37 is the appropriate one to use for such calculations, rather than the
approximations, since galactic recession velocities can be quite large. For example,
the quasar 2000-330 has a measured z = 3.78, which implies from Equation 1-38 that
it is receding from Earth at 0.91c due to the expansion of space.
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Redshift of Starlight The longest wavelength of light emitted
by hydrogen in the Balmer series (see Chapter 4) has a wavelength of A\, = 656 nm.
In light from a distant galaxy, this wavelength is measured as A = 1458 nm. Find
the speed at which the galaxy is receding from Earth, assuming the shift to be due
to Doppler effect.

SOLUTION
1. The recession speed isthe vin g = _/1-B
v/c. Since N > ), this is a redshift = 1+ Bfo
and Equation 1-37 applies:
2. Rewriting Equation 1-37 in terms of 1-B  f N
the wavelengths: 1+ f, A
3. Squaring both sides and substituting 1-B (N
values for Ay and \: 1+8 N
656 nm \?
=|——] =0.202
(1458 nm)
4. Solving for B: 1-pB8=(0202)(1+B)
1.2028 = 1 — 0.202 = 0.798
0.798
B = 1202 0.664
5. The galaxy is thus receding at speed v, v = ¢ = 0.664c

where

EXPLORING
Transverse Doppler Effect

Our discussion of the Doppler effect in Section 1-5 involved only one space dimension
wherein the source, observer, and the direction of the relative motion all lie on the x axis.
In three space dimensions, where they may not be co-linear, a more complete anal-
ysis, though beyond the scope of our discussion, makes only a small change in Equa-
tion 1-35. If the source moves along the positive x axis but the observer views the
light emitted at some angle 8 with the x axis, as shown in Figure 1-34c, Equation 1-35
becomes

fo 1

f=——7-—
vy1—pBcosH

1-35a
When 6 = 0, this becomes the equation for the source and receiver approaching, and
when 6 = 1, it becomes the equation for the source and the receiver receding. Equa-
tion 1-35a also makes the quite surprising prediction that even when viewed perpendic-
ular to the direction of motion, where 6 = = /2, the observer will still see a frequency
shift, the so-called transverse Doppler effect, f =f, /. Note that f < f; since y > 1. The
transverse Doppler effect is sometimes referred to as the second-order Doppler effect
and is the result of time dilation of the moving source. (The general derivation of Equa-
tion 1-35a can be found in the French (1968), Resnick (1992), and Ohanian (2001)
references at the end of the chapter.)
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Following a suggestion first made by Einstein in 1907, Walter Kiindig in 1962
made an excellent quantitative verification of the transverse Doppler effect.’® He used
14.4 keV gamma rays emitted by a particular isotope of Fe as the light source (see
Chapter 11). The source was at rest in the laboratory, on the axis of an ultracentrifuge,
and the receiver (an Fe absorber foil) was mounted on the ultracentrifuge rim, as shown
in Figure 1-34d. Using the extremely sensitive frequency measuring technique called
the Mossbauer effect (see Chapter 11), Kiindig found a transverse Doppler effect in
agreement with the relativistic prediction within =1 percent over a range of relative
speeds up to about 400 m/s.

1-6 The Twin Paradox and Other Surprises

The consequences of Einstein’s postulates—the Lorentz transformation, relativistic
velocity addition, time dilation, length contraction, and the relativity of simultaneity—
lead to a large number of predictions that are unexpected and even startling when
compared with our experiences in a macroscopic world where 8 = 0 and geometry
obeys the Euclidean rules. Still other predictions seem downright paradoxical, with
relatively moving observers obtaining equally valid but apparently totally inconsis-
tent results. This chapter concludes with the discussion of a few such examples that
will help you hone your understanding of special relativity.

Twin Paradox

Perhaps the most famous of the paradoxes in special relativity is that of the twins or,
as it is sometimes called, the clock paradox. It arises out of time dilation (Equation 1-26)
and goes like this. Homer and Ulysses are identical twins. Ulysses travels at a con-
stant high speed to a star beyond our solar system and returns to Earth while his twin,
Homer, remains at home. When the traveler Ulysses returns home, he finds his twin
brother much aged compared to himself—in agreement, we will see, with the predic-
tion of relativity. The paradox arises out of the contention that the motion is relative
and either twin could regard the other as the traveler, in which case each twin should
find the other to be younger than he and we have a logical contradiction—a paradox.
Let’s illustrate the paradox with a specific example. Let Earth and the destination star
be in the same inertial frame S. Two other frames S’ and S” move relative to S at
v = +0.8c and v = —0.8c, respectively. Thus, v = 5/3 in both cases. The spaceship
carrying Ulysses accelerates quickly from S to S’, then coasts with S’ to the star, again
accelerates quickly from S’ to S”, coasts with S” back to Earth, and brakes to a stop
along side Homer.

It is easy to analyze the problem from Homer’s point of view on Earth. Suppose,
according to Homer’s clock, Ulysses coasts in S’ for a time interval At=5y and in S”
for an equal time. Thus, Homer is 10 y older when Ulysses returns. The time interval
in S’ between the events of Ulysses’ leaving Earth and arriving at the star is shorter
because it is a proper time interval. The time it takes to reach the star by Ulysses’
clock is

, At 5y

At Y 5/3 3y

Since the same time is required for the return trip, Ulysses will have recorded 6 y for
the round trip and will be 4 y younger than Homer upon his return.
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The difficulty in this situation seems to be for Ulysses to understand why his twin
aged 10 y during his absence. If we consider Ulysses as being at rest and Homer as
moving away, Homer’s clock should run slow and measure only 3/y = 1.8y, and it
appears that Ulysses should expect Homer to have aged only 3.6 years during the
round trip. This is, of course, the paradox. Both predictions can’t be right. However,
this approach makes the incorrect assumption that the twins’ situations are symmetri-
cal and interchangeable. They are not. Homer remains in a single inertial frame,
whereas Ulysses changes inertial frames, as illustrated in Figure 1-35a, the spacetime
diagram for Ulysses’ trip. While the turnaround may take only a minute fraction of
the total time, it is absolutely essential if the twins’ clocks are to come together again
so that we can compare their ages (readings).

A correct analysis can be made using the invariant interval As from Equation 1-31

rewritten as
2 2
<AS> — (At)z _ (AX>
c c

where the left side is constant and equal to (t)?, the proper time interval squared, and
the right side refers to measurements made in any inertial frame. Thus, Ulysses along
each of his worldlines in Figure 1-35a has Ax = 0 and, of course, measures At =1 =
3y, or 6y for the round trip. Homer, on the other hand, measures

(At)2 = ()% + (AX)Z

c
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and since (Ax/c) is always positive, he always measures At > 7. In this situation
Ax = 0.8cAt, so

(At)2 = (3y)2 + (0.8cAt/c)?
or (At)?(0.36) = (3)?

_ 3 _

06

or 10 y for the round trip as we saw earlier. The reason that the twins’ situations can-
not be treated symmetrically is because the special theory of relativity can predict the
behavior of accelerated systems, such as Ulysses at the turnaround, provided that in
the formulation of the physical laws we take the view of an inertial, that is, unacceler-
ated, observer such as Homer. That’s what we have done. Thus, we cannot do the same
analysis in the rest frame of Ulysses’ spaceship because it does not remain in an inertial
frame during the round trip; hence, it falls outside of the special theory, and no paradox
arises. The laws of physics can be reformulated so as to be invariant for accelerated
observers, which is the role of general relativity (see Chapter 2), but the result is the
same: Ulysses returns younger than Homer by just the amount calculated above.

At S5y

Twin Paradox and the Doppler Effect This example, first
suggested by C. G. Darwin,® may help you understand what each twin sees during
Ulysses’ journey. Homer and Ulysses agree that once each year, on the anniversary
of the launch date of Ulysses’ spaceship (when their clocks were together), each twin
will send a light signal to the other. Figure 1-35b shows the light signals each sends.
Based on our discussion above, Homer sends 10 light flashes (the ct axis, Homer’s
worldline, is divided into 10 equal intervals corresponding to the 10 years of the jour-
ney on Homer’s clock) and Ulysses sends 6 light flashes (each of Ulysses’ worldlines
is divided into 3 equal intervals corresponding to 3 years on Ulysses’ clock). Note
that each transmits his final light flash as they are reunited at B. Although each trans-
mits light signals with a frequency of 1 per year, they obviously do not receive them
at that frequency. For example, Ulysses sees no signals from Homer during the first
three years! How can we explain the observed frequencies?

SOLUTION

The Doppler effect provides the explanation. As the twins (and clocks) recede from
one another, the frequency of their signals is reduced from the proper frequency f,
according to Equation 1-37 and we have

f_\/l—B_\/1—0.8_1
fo 1+8 1+08 3
which is exactly what both twins see (refer to Figure 1-35b): Homer receives 3
flashes in the first 9 years and Ulysses 1 flash in his first 3 years; that is, f = (1/3)f,

for both.
After the turnaround they are approaching each other and Equation 1-38 yields

1‘_\/1+B_\/1+0.8_3
f, Vi-p VN1-08
and again this agrees with what the twins see: Homer receives 3 flashes during the

final (10th) year and Ulysses receives 9 flashes during his final 3 years; that is,
f = 3f, for both.
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Question

10. The different ages of the twins on being reunited are an example of the
relativity of simultaneity that was discussed earlier. Explain how that accounts
for the fact that their biological clocks are no longer synchronized.

MORE

It is the relativity of simultaneity, not their different accelerations, that is
responsible for the age difference between the twins. This is readily illus-
trated in The Case of the Identically Accelerated Twins, which can be
found on the home page: www.whfreeman.com/tiplermodernphysicsée.
See also Figure 1-36 here.

The Pole and Barn Paradox

An interesting problem involving length contraction, reported initially by W. Rindler,
involves putting a long pole into a short barn. One version, owing to E. F. Taylor and
J. A. Wheeler,?? goes as follows. A runner carries a pole 10 m long toward the open
front door of a small barn 5 m long. A farmer stands near the barn so that he can see
both the front and the back doors of the barn, the latter being a closed swinging door,
as shown in Figure 1-37a. The runner carrying the pole at speed v enters the barn, and
at some instant the farmer sees the pole completely contained in the barn and closes
the front door, thus putting a 10 m pole into a 5 m barn. The minimum speed of the
runner v that is necessary for the farmer to accomplish this feat may be computed
from Equation 1-28, giving the relativistic length contraction L = Lp/'y, where L, =
proper length of the pole (10 m) and L = length of the pole measured by the farmer, to
be equal to the length of the barn (5 m). Therefore, we have
1 L, 10

VIV e L
1 —v?/c? = (5/10)2
vZ/c? =1 — (5/10)? = 0.75
v = 0.866c or B = 0.866

A paradox seems to arise when this situation is viewed in the rest system of the runner.
For him the pole, being at rest in the same inertial system, has its proper length of 10 m.
However, the runner measures the length of the barn to be

L=Lp/~y=5v1—B2
L=25m

How can he possibly fit the 10 m pole into the length-contracted 2.5 m barn? The
answer is that he can’t, and the paradox vanishes, but how can that be? To understand
the answer, we need to examine two events—the coincidences of both the front and
back ends of the pole, respectively, with the rear and front doors of the barn—in the
inertial frame of the farmer and in that of the runner.

These are illustrated by the spacetime diagrams of the inertial frame S of the
farmer and barn (Figure 1-37b) and that of the runner S’ (Figure 1-37c). Both
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(b) ct (c) ct’
Front door Rear door Back of pole Front of pole
Rear door
Pole entirely 0T / of barn 10+
within barn Back of pol
(ct=5.8m) Front end e:t%rsobg?ne
\ A of pole
Back end Front of pole
Front door
of pole of barn leaves barn
S s/
f f f f } } f
5 0 \ 5 10 x(m) 10 /-5 0 \ 5
Pole Front end of pole Pole Front of pole

enters barn door
atct=0

enters barn door

atct’ =0

FIGURE 1-37 (a) A runner carrying a 10 m pole moves quickly enough so that the farmer will
see the pole entirely contained in the barn. The spacetime diagrams from the point of view of
the farmer’s inertial frame (b) and that of the runner (c). The resolution of the paradox is in the
fact that the events of interest, shown by the large dots in each diagram, are simultaneous in S,
butnnotin§’.

diagrams are drawn with the front end of the pole coinciding with the front door of
the barn at the instant the clocks are started. In Figure 1-37b the worldlines of the barn
doors are, of course, vertical, while those of the two ends of the pole make an angle
6 =tan"*(1/B) = 49.1° with the x axis. Note that in S the front of the pole reaches the
rear door of the barn at ct =5 m/0.866 = 5.8 m simultaneous with the arrival of the
back end of the pole at the front door; that is, at that instant in S the pole is entirely
contained in the barn.

In the runner’s rest system S’ it is the worldlines of the ends of the pole that are
vertical, while those of the front and rear doors of the barn make angles of 49.1° with
the —x’ axis (since the barn moves in the —x’ direction at v). Now we see that the rear
door passes the front of the pole at ct’ = 2.5 m/0.866 = 2.9 m, but the front door of the
barn doesn’t reach the rear of the pole until ct’ =10 m/0.866 = 11.5 m. Thus, the first
of those two events occurs before the second, and the runner never sees the pole
entirely contained in the barn. Once again, the relativity of simultaneity is the key—
events simultaneous in one inertial frame are not necessarily simultaneous when
viewed from another inertial frame.
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Now let’s consider a different version of this paradox, the one initially due to
W. Rindler. Suppose the barn’s back wall was made of thick, armor-plate steel and
had no door. What do the farmer and the runner see then? Once again, in the farmer’s
(and the barn’s) rest frame, the instant the front of the pole reaches the armor plate,
the farmer shuts the door and the 10 m pole is instantaneously contained in the 5 m
barn. However, in the next instant (assuming that the pole doesn’t break) it must either
bend (i.e., rotate in spacetime) or break through the armor plate. Since this is relativ-
ity, the runner must come to the same conclusion in his rest frame as the 2.5 m barn
races toward him at 3 = 0.866. But now when the armor plate back wall contacts the
front of the pole, the barn continues to move at B = 0.866, taking the front of the pole
with it and leaving at that instant 7.5 m of the pole still outside the barn. Yet like the
farmer, the runner must also see the 10 m pole entirely contained within the 2.5 m
barn. How can that be? Like this: the instant the tip of the pole hits the steel plate, that
information (an elastic shock wave) begins to propagate down the pole. Even if the
wave were to propagate at the speed of light c, it would take 10 m/3.0 X 108 m/s =
3.33 X 107® s to reach the back of the pole. In the meantime, the barn door must
move only 7.5 m to reach the back of the pole and does so in only 7.5 m/(0.866 X 3.0
X 108 m/s) =2.89 x 10¢s. Thus, the runner, in agreement with the farmer, sees the
10 m pole entirely contained within the 2.5 m barn—at least briefly!

Question

11. In the discussion where the barn’s back wall was made from armor plate
steel and had no door, do the farmer and the runner both see the pole entirely
contained in the barn, no matter what their relative speed is? Explain.

Headlight Effect

We have made frequent use of Einstein’s second postulate asserting that the speed of
light is independent of the source motion for all inertial observers; however, the same
is not true for the direction of light. Consider a light source in S’ that emits light uni-
formly in all directions. A beam of that light emitted at an angle 6’ with respect to the
X' axis is shown in Figure 1-38a. During a time At’ the x" displacement of the beam is
Ax’, and these are related to 6’ by

Ax"  AX’

= = cos 6’ 1-39
cAt”  A(ct’) 50
The direction of the beam relative to the x axis in S is similarly given by
A
X_ _ cosh 1-40
A(ct)

Applying the inverse Lorentz transformation to Equation 1-40 yields

AX v(AX" + vAt")

CAt cy (At + vAX'/c?)
Dividing the numerator and denominator by At’ and then by c, we obtain
(AX"/At" +v)  Ax"/A(ct’) +v/c

(c
% v AXx’

+ SAX' /At 1+ -
c(l CzAx /At> ¢ A (ct)

cos6 =
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(@) y’ (b) y
v=0.7c

—_—-8'=36° — -0 =15°

and substituting from Equation 1-39 yields

cos’ + B
cosp = ————
1+ Bcosb’

Considering the half of the light emitted by the source in S’ into the forward
hemisphere, that is, rays with 8" between £ /2, note that Equation 1-41 restricts the
angles 6 measured in S for those rays (50 percent of all the light) to lie between
6 = +cos* B. For example, for § = 0.5, the observer in S would see half of the total
light emitted by the source in S’ to lie between 6 = +60°, that is, in a cone of half
angle 60° whose axis is along the direction of the velocity of the source. For values of
B near unity 6 is very small; for example, 3 = 0.99 yields 6 = 8.1°. This means that
the observer in S sees half of all the light emitted by the source to be concentrated into
a forward cone with that half angle (see Figure 1-38b). Note, too, that the remaining
50 percent of the emitted light is distributed throughout the remaining 344° of the
two-dimensional diagram.® As a result of the headlight effect, light from a directly
approaching source appears more intense than that from the same source at rest. For
the same reason, light from a directly receding source will appear dimmer than that
from the same source at rest. This result has substantial applications in experimental
particle physics and astrophysics.

1-41

Question

12. Notice from Equation 1-41 that some light emitted by the moving source into
the rear hemisphere is seen by the observer in S as having been emitted into the
forward hemisphere. Explain how that can be, using physical arguments.

EXPLORING
Superluminal Speeds

We conclude this chapter with a few comments about things that move faster than light.
The Lorentz transformations (Equations 1-18 and 1-19) have no meaning in the event
that the relative speeds of two inertial frames exceed the speed of light. This is gener-
ally taken to be a prohibition on the moving of mass, energy, and information faster
than c. However, it is possible for certain processes to proceed at speeds greater than
¢ and for the speeds of moving objects to appear to be greater than ¢ without contra-
dicting relativity theory. A common example of the first of these is the motion of the

FIGURE 1-38 (a) The source at rest in S’ moves

with 8 = 0.7 with respect to S. (b) Light emitted

uniformly in S’ appears to S concentrated into a

cone in the forward direction. Rays shown in

(a) are 18° apart. Rays shown in (b) make angles

" calculated from Equation 1-41. The two colored
rays shown are corresponding ones.

In determining the
brightness of stars

and galaxies, a

critical parameter in
understanding them,
astronomers must correct
for the headlight effect,
particularly at high
velocities relative to
Earth.
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Meteorite
first glow

Last glow
wave front

(c—v) At

First glow
wave front

Ve

FIGURE 1-40 A meteorite
moves directly toward the
observer’s eye at speed v.
The spatial distance between
the wave fronts is (¢ — v)At
as they move at c, so the time
interval between their arrival
at the observer is not At, but
At,y,, Which is (¢ — V)At/c=
(1 — B)At, and the apparent
speed of approach is v, =
VAt/Atye = Bc/(1 — B).

FIGURE 1-39 As the long, straight
Ay YVy Xﬁa

rod moves vertically downward, the
[ X
AX
Vy

intersection of the “blades,” point P,
moves toward the right at speed

v, = Ax/At. In terms of v, and 6,

Vv, =V, /tan 6.

point where the blades of a giant pair of scissors intersect as the scissors are quickly
closed, sometimes called the scissors paradox. Figure 1-39 shows the situation. A long
straight rod (one blade) makes an angle 6 with the x axis (the second blade) and moves
in the —y direction at constant speed v, = Ay/At. During time At, the intersection of
the blades, point P, moves to the right a distance Ax. Note from the figure that Ay /Ax =
tan 6. The speed with which P moves to the right is

AX v, AX

Y = Ax/At= Ay /v, ~ Axtano 142
or
_ W
%~ tane

Sincetan § — 0as 6 — 0, it will always be possible to find a value of 6 close enough
to zero so that v, > c for any (nonzero) value of v,. As real scissors are closed, the angle
gets progressively smaller, so in principle all that one needs for v, > c are long blades
so that & — 0.

Question

13. Use a diagram like Figure 1-32 to explain why the motion of point P cannot
be used to convey information to observers along the blades.

The point P in the scissors paradox is, of course, a geometrical point, not a mate-
rial object, so it is perhaps not surprising that it could appear to move at speeds greater
than c. As an example of an object with mass appearing to do so, consider a tiny mete-
orite moving through space directly toward you at high speed v. As it enters Earth’s
atmosphere, about 9 km above the surface, frictional heating causes it to glow and the
first light from the glow starts toward your eye. After some time At the frictional heat-
ing has evaporated all of the meteorite’s matter, the glow is extinguished, and its final
light starts toward your eye, as illustrated in Figure 1-40. During the time between the
first and the final glow, the meteorite traveled a distance vAt. During that same time
interval light from the first glow has traveled toward your eye a distance cAt. Thus, the
space interval between the first and final glows is given by

Ay = cAt — vAt = At(c — v)
and the visual time interval at your eye At,., between the arrival of the first and final
light is
_ At(c —v)

Aty = Ay/C c

= At(1 - )
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Superluminal Motion in M87 Jet FIGURE 1-41 Superluminal motion
has been detected in a number of
cosmic objects. This sequence of
images taken by the Hubble Space
Telescope shows apparent motion
at six times the speed of light in
galaxy M87. The jet streaming from
the galaxy’s nucleus (the bright,
round region at the far left in the bar
image at the top) is about 5000 c - y
long. The boxed region is enlarged.
The slanting lines track the moving
features and indicate the apparent
speeds in each region. [John Biretta,
Space Telescope Science Institute.]

1994
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and, finally, the apparent visual speed v, that you record is

_ VAt _ VAt _ Bc
Ateye At(l - B) 1-8

Clearly, B = 0.5 yields v, = ¢ and any larger B yields v, > c. For example, a
meteorite approaching you at v = 0.8c is perceived to be moving at v, = 4c. Certain
galactic structures may also be observed to move at superluminal speeds, as the
sequence of images of the jet from galaxy M87 in Figure 1-41 illustrates.

As a final example of things that move faster than c, it has been proposed that
particles with mass might exist whose speeds would always be faster than light speed.
One basis for this suggestion is an appealing symmetry: ordinary particles always have
v < ¢, and photons and other massless particles have v = c, so the existence of par-
ticles with v > ¢ would give a sort of satisfying completeness to the classification of
particles. Called tachyons, their existence would present relativity with serious but not
necessarily insurmountable problems of infinite creation energies and causality para-
doxes, for example, alteration of history (see the next example.) No compelling theo-
retical arguments preclude their existence and eventual discovery; however, to date all
experimental searches for tachyons?* have failed to detect them, and the limits set by
those experiments indicate that it is highly unlikely they exist.

1-43

Va

D GCVILNSNEYEN Tachyons and Reversing History Use tachyons and an
appropriate spacetime diagram to show how the existence of such particles might
be used to change history and hence alter the future, leading to a paradox.

SOLUTION

In a spacetime diagram of the laboratory frame S the worldline of a particle with v > ¢
created at the origin traveling in the +x direction makes an angle less than 45° with
the x axis; that is, it is below the light worldline as shown in Figure 1-42. After
some time the tachyon reaches a tachyon detector mounted on a spaceship moving
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FIGURE 1-43 The
knowledge creation
paradox illustrates

a causality problem
associated with time
travel, one possible
consequence of material
objects moving faster than
light speed. [The authors
thank Costas Efthimiou for
this example.]

the knowledge

ct Light worldline FIGURE 1-42 A tachyon emitted at
IS O in S, the laboratory frame, catches up
ct’ with a spaceship moving at high speed
,  at P. Its detection triggers the emission
of a second tachyon at P back toward
the laboratory at x = 0. The second
S’ tachyon arrives at the laboratory at
P ct < 0, that is, before the emission of
o the first tachyon.

rapidly away at v < ¢ in the +x direction. The spaceship frame S’ is shown in the
figure at P. The detector immediately creates a new tachyon, sending it off in the —x’
direction and, of course, into the future of S’, that is, with ct” > 0. The second
tachyon returns to the laboratory at x = 0 but at a time ct before the first tachyon
was emitted, having traveled into the past of S to point M, where ct < 0. Having
sent an object into our own past, we would then have the ability to alter events that
occur after M and produce causal contradictions. For example, the laboratory tachyon
detector could be coupled to equipment that created the first tachyon via a computer
programmed to cancel emission of the first tachyon if the second tachyon is detected
(shades of the Terminator!). It is logical contradictions such as this that, together
with the experimental results referred to above, lead to the conclusion that faster-
than-light particles do not exist.

As mentioned above, one attraction (or specter) associated with objects moving

faster than light is the prospect of altering history via time travel. We close this chap-
ter on relativity by illustrating one such paradox in Figure 1-43.

p <— January 1, 1906: Aristotle leaves for the past.

Where did ¢ —— Aristotle studies the new paper.

March 1, 1905: Aristotle finds the famous paper
titled “On the Electrodynamics of Moving Bodies,”
by Albert Einstein, published in the journal

O Annals of Physics earlier in 1905.

come from?

> —~— February 1, 1905: Aristotle arrives in the future.
[ ]

——January 1, 1905: Einstein publishes the paper.

Aristotle . . . .
travels to —— March 1, 1904: Aristotle explains the paper to Einstein.
the future February 1, 1904: Aristotle meets Einstein, and they start
discussing physics.
January 1, 1904: Aristotle returns before the publication
@ =-—
Avristotle

J of the paper.
travels - .
—=—e <— January 1, 350 B.c.: Time traveler Aristotle leaves for the future.

to the past
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RELEVANT EQUATIONS AND REMARKS

’

X" =x—vt y' =y 7' =1z t =t 1-2

Newton’s laws are invariant in all systems connected by a Galilean
transformation.

2. Einstein’s postulates The laws of physics are the same in all inertial reference frames. The speed of
light is c, independent of the motion of the source.
3. Relativity of simultaneity Events simultaneous in one reference frame are not in general simultaneous in
any other inertial frame.
4. Lorentz transformation X" = y(x — vt) y' =y 7' =12 1-18

t=y(t—vx/c®)  with vy = (1—v?/c?)?

5. Time dilation

Proper time is the time interval T between two events that occur at the same
space point. If that interval is At" = T, then the time interval in S is

At = yAt' =yt where v = (1 — v2/c?)Y? 1-26
6. Length contraction The proper length of a rod is the length L, measured in the rest system of the rod.
In S, moving at speed v with respect to the rod, the length measured is
L=Ly/y 1-28
7. Spacetime interval All observers in inertial frames measure the same interval As between pairs of
events in spacetime, where
(As)? = (cAt)? — (Ax)? 1-31
8. Doppler effect
. 1+8
Source/observer approaching f= 1= Bf0 1-36
. 1-B
Source/observer receding f= fo 1-37
1+
General References
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priate for readers of this book.

visits a dream world where the speed of light is
only about 10 mi/hr and relativistic effects are quite
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relativity.
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1. Polish astronomer, 1473-1543. His book describing
heliocentric (i.e., sun-centered) orbits for the planets was
published only a few weeks before his death. He had hesi-
tated to release it for many years, fearing that it might be
considered heretical. It is not known whether or not he saw
the published book.

2. Events are described by measurements made in a coor-
dinate system that defines a frame of reference. The ques-
tion was, Where is the reference frame in which the law of
inertia is valid? Newton knew that no rotating system, for
example, Earth or the Sun, would work and suggested the
distant “fixed stars” as the fundamental inertial reference
frame.

3. The speed of light is exactly 299,792,458 m/s. The value
is set by the definition of the standard meter as being the dis-
tance light travels in 1/299,792,458 s.

4. Over time, an entire continuous spectrum of electromag-
netic waves has been discovered, ranging from extremely
low-frequency (radio) waves to extremely high-frequency
waves (gamma rays), all moving at speed c.

5. Albert A. Michelson (1852-1931), an American experi-
mental physicist whose development of precision optical
instruments and their use in precise measurements of the
speed of light and the length of the standard meter earned
him the Nobel Prize in Physics in 1907. Edward W. Morley
(1838-1923), American chemist and physicist and professor
at Western Reserve College during the period when Michel-
son was a professor at the nearby Case School of Applied
Science.

6. Albert A. Michelson and Edward W. Morley, American
Journal of Science, XXXI1V, no. 203, November 1887.

7. Note that the width depends on the small angle between
M5 and M;. A very small angle results in relatively few wide
fringes, a larger angle in many narrow fringes.

8. Since the source producing the waves, the sodium lamp,
was at rest relative to the interferometer, the frequency would
be constant.

9. T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes,
Physical Review, 133, A1221 (1964).

10. A. Brillet and J. Hall, Physical Review Letters, 42, 549
(1979).
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Rindler, W., Essential Relativity, Van Nostrand Reinhold,
New York, 1969.

Taylor, E. F., and J. A. Wheeler, Spacetime Physics, 2d ed.,
W. H. Freeman and Co., 1992. This is a good book with
many examples, problems, and diagrams.

papers Lorentz, Einstein, Minkowski, and Weyl (Dover,
New York, 1923).

12. Hendrik Antoon Lorentz (1853-1928), Dutch theoretical
physicist, discovered the Lorentz transformation empirically
while investigating the fact that Maxwell’s equations are not
invariant under a Galilean transformation, although he did not
recognize its importance at the time. An expert on electro-
magnetic theory, he was one of the first to suggest that atoms
of matter might consist of charged particles whose oscilla-
tions could account for the emission of light. Lorentz used
this hypothesis to explain the splitting of spectral lines in a
magnetic field discovered by his student Pieter Zeeman, with
whom he shared the 1902 Nobel Prize in Physics.

13. One meter of light travel time is the time for light to travel
1m, thatis,ct=1m,ort=1m/3.00 X 10° m/s=3.3 X 10 °s.
Similarly, 1 cm of light travel time isct=1cm, ort=3.3 X
107, and so on.

14. This example is adapted from a problem in H. Ohanian,
Modern Physics, Prentice Hall, Englewood Cliffs, N.J., 1987.
15. Any particle that has mass.

16. Equation 1-31 would lead to imaginary values of As for
spacelike intervals, an apparent problem. However, the geom-
etry of spacetime is not Euclidean, but Lorentzian. While a
consideration of Lorentz geometry is beyond the scope of this
chapter, suffice it to say that it enables us to write (As)? for
spacelike intervals as in Equation 1-33.

17. There are only two such things: photons (including those
of visible light), which will be introduced in Chapter 3, and
gravitons, which are the particles that transmit the gravita-
tional force.

18. Edwin P. Hubble, Proceedings of the National Academy
of Sciences, 15, 168 (1929).

19. Walter Kiindig, Physical Review, 129, 2371 (1963).

20. C. G. Darwin, Nature, 180, 976 (1957).

21. S. P. Boughn, American Journal of Physics, 57, 791
(1989).

22. E.F. Taylor and J. A. Wheeler, Spacetime Physics, 2d ed.
(New York: W. H. Freeman and Co., 1992).

23. Seen in three space dimensions by the observer in S,
50 percent of the light is concentrated in 0.06 steradian of
4r-steradian solid angle around the moving source.

24. T. Alvdger and M. N. Kreisler, “Quest for Faster-Than-
Light Particles,” Physical Review, 171, 1357 (1968).



25. Paul Ehrenfest (1880-1933), Austrian physicist and pro-
fessor at the University of Leiden (The Netherlands), long-
time friend and correspondent of Einstein about whom, upon
his death, Einstein wrote, “[He was] the best teacher in our
profession | have ever known.”
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26. This experiment is described in J. C. Hafele and R. E.
Keating, Science, 177, 166 (1972). Although not as accurate
as the experiment described in Section 1-4, its results sup-
ported the relativistic prediction.

27. R. Shaw, American Journal of Physics, 30, 72 (1962).

Problems

LEVEL I
Section 1-1 The Experimental Basis of Relativity

1-1. In episode 5 of Star Wars the Empire’s spaceships launch probe droids through-
out the galaxy to seek the base of the Rebel Alliance. Suppose a spaceship moving at
2.3 X 10® m/s toward Hoth (site of the rebel base) launches a probe droid toward Hoth at
2.1 X 108 m/s relative to the spaceship. According to Galilean relativity: (a) What is the
speed of the droid relative to Hoth? (b) If rebel astronomers are watching the approaching
spaceship through a telescope, will they see the probe before it lands on Hoth?

1-2.  In one series of measurements of the speed of light, Michelson used a path length L
of 27.4 km (17 mi). (a) What is the time needed for light to make the round trip of distance
2L? (b) What is the classical correction term in seconds in Equation 1-5, assuming Earth’s
speed is v = 10"%c? (c) From about 1600 measurements, Michelson arrived at a result for
the speed of light of 299,796 =+ 4 km/s. Is this experimental value accurate enough to be
sensitive to the correction term in Equation 1-5?

1-3. A shift of one fringe in the Michelson-Morley experiment would result from a differ-
ence of one wavelength or a change of one period of vibration in the round-trip travel of the
light when the interferometer is rotated by 90°. What speed would Michelson have com-
puted for Earth’s motion through the ether had the experiment seen a shift of one fringe?
1-4. In the “old days” (circa 1935) pilots used to race small, relatively high-powered
airplanes around courses marked by a pylon on the ground at each end of the course. Sup-
pose two such evenly matched racers fly at airspeeds of 130 mph. (Remember, this was
a long time ago!) Each flies one complete round trip of 25 miles, but their courses are
perpendicular to each other and there is a 20 mph wind blowing steadily parallel to one
course. (a) Which pilot wins the race and by how much? (b) Relative to the axes of their
respective courses, what headings must the two pilots use?

1-5.  Paul Ehrenfest® suggested the following thought experiment to illustrate the dra-
matically different observations that might be expected, dependent on whether light
moved relative to a stationary ether or according to Einstein’s second postulate:

Suppose that you are seated at the center of a huge dark sphere with a radius of
3 X 10® m and with its inner surface highly reflective. A source at the center
emits a very brief flash of light which moves outward through the darkness with
uniform intensity as an expanding spherical wave.

What would you see during the first 3 seconds after the emission of the flash if (a) the
sphere moved through the ether at a constant 30 km/s and (b) if Einstein’s second postu-
late is correct?

1-6. Einstein reported that as a boy he wondered about the following puzzle. If you hold
a mirror at arm’s length and look at your reflection, what will happen as you begin to run?
In particular, suppose you run with speed v = 0.99c. Will you still be able to see yourself?
If so, what would your image look like, and why?

1-7.  Verify by calculation that the result of the Michelson-Morley experiment places an
upper limit on Earth’s speed relative to the ether of about 5 km/s.
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1-8. Consider two inertial reference frames. When an observer in each frame measures
the following quantities, which measurements made by the two observers must yield the
same results? Explain your reason for each answer.

(a) The distance between two events

(b) The value of the mass of a proton

(c) The speed of light

(d) The time interval between two events

(e) Newton’s first law

(f) The order of the elements in the periodic table

(9) The value of the electron charge

Section 1-2 Einstein’s Postulates

1-9.  Assume that the train shown in Figure 1-14 is 1.0 km long as measured by the
observer at C" and is moving at 150 km/h. What time interval between the arrival of the
wave fronts at C’ is measured by the observer at C in S?

1-10. Suppose that A", B, and C' are at rest in frame S’, which moves with respect to S
at speed v in the +x direction. Let B’ be located exactly midway between A" and C’. At
t" =0, a light flash occurs at B’ and expands outward as a spherical wave. (a) According
to an observer in S’, do the wave fronts arrive at A" and C" simultaneously? (b) Accord-
ing to an observer in S, do the wave fronts arrive at A’ and C’ simultaneously? (c) If you
answered no to either (a) or (b), what is the difference in their arrival times and at which
point did the front arrive first?

Section 1-3 The Lorentz Transformation

1-11. Make a graph of the relativistic factor y=1/(1 — v?/c?? as a function of  =v/c.
Use at least 10 values of B ranging from 0 up to 0.995.

1-12. Two events happen at the same point xg in frame S’ at times t; and t5. (a) Use Equa-
tions 1-19 to show that in frame S the time interval between the events is greater than
t5 — tj by a factor . (b) Why are Equations 1-18 less convenient than Equations 1-19 for
this problem?

1-13. Suppose that an event occurs in inertial frame S with coordinates x = 75 m, y =
18m,z=4.0matt=2.0 X 10~°s. The inertial frame S’ moves in the +x direction with
v =0.85c. The origins of S and S’ coincided at t =t" = 0. (a) What are the coordinates of
the event in S'? (b) Use the inverse transformation on the results of (a) to obtain the origi-
nal coordinates.

1-14. Show that the null effect of the Michelson-Morley experiment can be accounted for
if the interferometer arm parallel to the motion is shortened by a factor of (1 — v?/c?)¥2,
1-15. Two spaceships are approaching each other. (a) If the speed of each is 0.9c relative
to Earth, what is the speed of one relative to the other? (b) If the speed of each relative to
Earth is 30,000 m/s (about 100 times the speed of sound), what is the speed of one relative
to the other?

1-16. Starting with the Lorentz transformation for the components of the velocity (Equa-
tion 1-23), derive the transformation for the components of the acceleration.

1-17. Consider a clock at rest at the origin of the laboratory frame. (a) Draw a spacetime
diagram that illustrates that this clock ticks slow when observed from the reference frame
of a rocket moving with respect to the laboratory at v = 0.8c. (b) When 10 s have elapsed
on the rocket clock, how many have ticked by on the lab clock?

1-18. A light beam moves along the y’ axis with speed c in frame S’, which is moving to
the right with speed v relative to frame S. (a) Find u, and uy, the x and y components of the
velocity of the light beam in frame S. (b) Show that the magnitude of the velocity of the
light beam in S'is c.



1-19. A particle moves with speed 0.9c along the x” axis of frame S”, which moves with
speed 0.9c in the positive x’ direction relative to frame S’. Frame S’ moves with speed
0.9c¢ in the positive x direction relative to frame S. (a) Find the speed of the particle rela-
tive to frame S’. (b) Find the speed of the particle relative to frame S.

Section 1-4 Time Dilation and Length Contraction

1-20. Use the binomial expansion to derive the following results for values of v << c and
use when applicable in the problems that follow in this section.

1v?
a ~1+-——
() Y 2C2
1 1v?
h)y —=1--—
() v 2C2
1 1V
C —-1l=1-—=——
() Y v 2C2

1-21. How great must the relative speed of two observers be for their time-interval mea-
surements to differ by 1 percent (see Problem 1-20)?

1-22. A nova is the sudden, brief brightening of a star (see Chapter 13). Suppose Earth
astronomers see two novas occur simultaneously, one in the constellation Orion (The
Hunter) and the other in the constellation Lyra (The Lyre). Both nova are the same dis-
tance from Earth, 2.5 X 10%-y, and are in exactly opposite directions from Earth. Observ-
ers on board an aircraft flying at 1000 km/h on a line from Orion toward Lyra see the same
novas but note that they are not simultaneous. (a) For the observers on the aircraft, how
much time separates the novas? (b) Which one occurs first? (Assume Earth is an inertial
reference frame.)

1-23. A meter stick moves parallel to its length with speed v = 0.6¢ relative to you.
(a) Compute the length of the stick measured by you. (b) How long does it take for the
stick to pass you? (c) Draw a spacetime diagram from the viewpoint of your frame with
the front of the meter stick at x = 0 when t = 0. Show how the answers to (a) and (b) are
obtained from the diagram.

1-24. The proper mean lifetime of « mesons (pions) is 2.6 X 1078 s. Suppose a beam
of such particles has speed 0.9c. (a) What would their mean life be as measured in the
laboratory? (b) How far would they travel (on the average) before they decay? (c) What
would your answer be to part (b) if you neglected time dilation? (d) What is the interval in
spacetime between creation of a typical pion and its decay?

1-25. You have been posted to a remote region of space to monitor traffic. Near the end
of a quiet shift, a spacecraft streaks past. Your laser-based measuring device reports the
spacecraft’s length to be 85 m. The identification transponder reports it to be the NCXXB-12,
a cargo craft of proper length 100 m. In transmitting your report to headquarters, what
speed should you give for this spacecraft?

1-26. The light clock in the spaceship in Figure 1-25 uses a light pulse moving up the y
axis to reflect back from a mirror as the ship moves along the x axis. Suppose instead the
light pulse moves along the x’ axis between x’ = 0 and a mirror at x’ = L. (a) What is the
time required for the pulse to make a round trip in the rest system of the spaceship? (b) What
is the round-trip time in the laboratory frame? (c) Does the result in (b) agree with that
expected from time dilation? Justify your answer.

1-27. Two spaceships pass each other traveling in opposite directions. A passenger on
ship A, which she knows to be 100 m long, notes that ship B is moving with a speed of
0.92c relative to A and that the length of B is 36 m. What are the lengths of the two space-
ships measured by a passenger in B?
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FIGURE 1-44 [Problem 1-29.]

1-28. A meter stick at rest in S’ is tilted at an angle of 30° to the x’ axis. If S’ moves at
B = 0.8, how long is the meter stick as measured in S and what angle does it make with
the x axis?

1-29. A rectangular box at rest in S” has sidesa’ =2 m, b’ =2m, and ¢’ =4 m and is
oriented as shown in Figure 1-44. S’ moves with B = 0.65 with respect to the laboratory
frame S. (a) Compute the volume of the box in S” and in S. (b) Draw an accurate diagram
of the box as seen by an observer in S.

Section 1-5 The Doppler Effect

1-30. How fast must you be moving toward a red light (A = 650 nm) for it to appear yel-
low (A =590 nm)? Green (A =525 nm)? Blue (A = 460 nm)?

1-31. A distant galaxy is moving away from us at speed 1.85 X 107 m/s. Calculate the
fractional redshift (\" — \o) /A, of the light from this galaxy.

1-32. The light from a nearby star is observed to be shifted toward the blue by 2 percent;
that is, f,,s = 1.02f,. Is the star approaching or receding from Earth? How fast is it
moving? (Assume motion is directly toward or away from Earth so as to avoid superlumi-
nal speeds.)

1-33. Stars typically emit the red light of atomic hydrogen with wavelength 656.3 nm
(called the H, spectral line). Compute the wavelength of that light observed at Earth from
stars receding directly from us with relative speed v =10"%, v =10"2c, and v = 10"'c.

Section 1-6 The Twin Paradox and Other Surprises

1-34. Heide boards a spaceship and travels away from Earth at a constant velocity 0.45c
toward Betelgeuse (a red giant star in the constellation Orion). One year later on Earth
clocks, Heide’s twin, Hans, boards a second spaceship and follows her at a constant veloc-
ity of 0.95c in the same direction. (a) When Hans catches up to Heide, what will be the
difference in their ages? (b) Which twin will be older?

1-35. You point a laser flashlight at the Moon, producing a spot of light on the Moon’s
surface. At what minimum angular speed must you sweep the laser beam in order for the
light spot to streak across the Moon’s surface with speed v > c¢? Why can’t you transmit
information between research bases on the Moon with the flying spot?

1-36. A clock is placed in a satellite that orbits Earth with a period of 108 min. (a) By
what time interval will this clock differ from an identical clock on Earth after 1 y? (b) How
much time will have passed on Earth when the two clocks differ by 1.0 s? (Assume special
relativity applies and neglect general relativity.)

1-37. Einstein used trains for a number of relativity thought experiments since they were the
fastest objects commonly recognized in those days. Let’s consider a train moving at 0.65c
along a straight track at night. Its headlight produces a beam with an angular spread of 60°
according to the engineer. If you are standing alongside the track (rails are 1.5 m apart), how
far from you is the train when you see its approaching headlight suddenly disappear?

LEVEL II

1-38. In 1971 four portable atomic clocks were flown around the world in jet aircraft, two
eastbound and two westbound, to test the time dilation predictions of relativity.? (a) If the
westbound plane flew at an average speed of 1500 km/h relative to the surface, how long
would it have had to fly for the clock on board to lose 1 second relative to the reference
clock on the ground at the U.S. Naval Observatory? (b) In the actual experiment the planes
circumflew Earth once and the observed discrepancy of the clocks was 273 ns. What was
the average speed of each plane?

1-39. “Ether drag” was among the suggestions made to explain the null result of the
Michelson-Morley experiment (see the More section). The phenomenon of stellar aber-
ration refutes this proposal. Suppose Earth moves relative to the ether at velocity v and a



light beam (e.g., from a star) approaches Earth at an angle 6 with respect to v. (a) Show
that the angle of approach in Earth’s reference frame 6’ is given by

sin 6

tang’' = ————

cosf + v/c
(b) 6" is the stellar aberration angle. If 8 = 90°, by how much does 8" differ from 90°?
1-40. Arod of proper length L moves past you a speed v. You reach out and grab the back
end of the rod, bringing that point instantly to rest in your frame of reference. Assuming
that this information, that the back of the rod has stopped, travels toward the front of the
rod at the speed of light (it actually travels at the speed of sound), (a) show that for any
v > 0 the length of the rod always extends beyond the proper length L, before the front
of the rod comes to rest and the rod assumes its proper length. (b) Defining a “coefficient
of extension” A as 1/L, times the difference between its maximum length and its proper
length, plot a graph of A versus v/c for the following values v/c: 0, 0.10, 0.25, 0.40,
0.50, 0.65, 0.80, 0.85, 0.90, 0.95, 0.98. (c) What is the maximum length the rod can attain
asv — c?
1-41. A friend of yours who is the same age as you travels to the star Alpha Centauri,
which is 4c-y away, and returns immediately. She claims that the entire trip took just
6 years. (a) How fast did she travel? (b) How old are you when she returns? (c) Draw a
spacetime diagram that verifies your answer to (a) and (b).
1-42. A clock is placed in a satellite that orbits Earth with a period of 90 min. By what
time interval will this clock differ from an identical clock on Earth after 1 year? (Assume
that special relativity applies.)
1-43. In frame S, event B occurs 2 ps after event A and at Ax = 1.5 km from event A.
(a) How fast must an observer be moving along the +x axis so that events A and B occur
simultaneously? (b) Is it possible for event B to precede event A for some observer?
(c) Draw a spacetime diagram that illustrates your answers to (a) and (b). (d) Compute the
spacetime interval and proper distance between the events.
1-44. A burst of =+ mesons (pions) travels down an evacuated beam tube at Fermilab mov-
ing at B = 0.92 with respect to the laboratory. (a) Compute -y for this group of pions. (b) The
proper mean lifetime of pions is 2.6 X 107 s. What mean lifetime is measured in the lab?
(c) If the burst contained 50,000 pions, how many remain after the group has traveled 50 m
down the beam tube? (d) What would be the answer to (c) ignoring time dilation?
1-45. H. A. Lorentz suggested 15 years before Einstein’s 1905 paper that the null effect of
the Michelson-Morley experiment could be accounted for by a contraction of that arm of
the interferometer lying parallel to Earth’s motion through the ether to a length L = L(1 —
v?/c?) Y2, He thought of this, incorrectly, as an actual shrinking of matter. By about how
many atomic diameters would the material in the parallel arm of the interferometer have
had to shrink in order to account for the absence of the expected shift of 0.4 of a fringe
width? (Assume the diameter of atoms to be about 1071° m.)
1-46. Observers in reference frame S see an explosion located at x; = 480 m. A second
explosion occurs 5 s later at x, = 1200 m. In reference frame S’, which is moving along
the +x axis at speed v, the explosions occur at the same point in space. (a) Draw a spacetime
diagram describing this situation. (b) Determine v from the diagram. (c) Calibrate the ct’
axis and determine the separation in time in s between the two explosions as measured
in S’. (d) Verify your results by calculation.
1-47. Two spaceships, each 100 m long when measured at rest, travel toward each other
with speeds of 0.85c relative to Earth. (a) How long is each ship as measured by someone
on Earth? (b) How fast is each ship traveling as measured by an observer on the other?
(c) How long is one ship when measured by an observer on the other? (d) At timet=10
on Earth, the fronts of the ships are together as they just begin to pass each other. At what
time on Earth are their ends together? (e) Sketch accurately scaled diagrams in the frame
of one of the ships showing the passing of the other ship.
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1-48. If v is much less than c, the Doppler frequency shift is approximately given by
Af/fy = X, both classically and relativistically. A radar transmitter-receiver bounces
a signal off an aircraft and observes a fractional increase in the frequency of Af/f, =
8 X 1077. What is the speed of the aircraft? (Assume the aircraft to be moving directly
toward the transmitter.)

1-49. The null result of the Michelson-Morley experiment could be explained if the speed
of light depended on the motion of the source relative to the observer. Consider a binary
eclipsing star system, that is, a pair of stars orbiting their common center of mass with
Earth lying in the orbital plane of the system, as is very nearly the case for the binary sys-
tem Algol (see the More section). Assume that the stars in the system have circular orbits
with a period of 115 days and that one of the star’s orbital speeds is 32 km/s (about the
same as Earth’s orbital speed around the Sun). If the suggestion above were true, astrono-
mers would simultaneously see two images of the star in opposition, that is, on opposite
sides of its orbit. What is the minimum distance L from Earth to the binary for this phe-
nomenon to occur?

1-50. Frames S and S’ are moving relative to each other along the x and x” axes. They set
their clocks to t =t = 0 when their origins coincide. In frame S, event 1 occurs at X, =
lc-yandt, =1y and event 2 occurs at x, = 2.0c-y and t, = 0.5 y. These events occur
simultaneously in frame S’. (a) Find the magnitude and direction of the velocity of S’ rela-
tive to S. (b) At what time do both of these events occur as measured in S’? (c) Compute
the spacetime interval As between the events. (d) Is the interval spacelike, timelike, or
lightlike? (e) What is the proper distance L, between the events?

1-51. Do Problem 1-50 parts (a) and (b) using a spacetime diagram.

1-52. An observer in frame S standing at the origin observes two flashes of colored light
separated spatially by Ax = 2400 m. A blue flash occurs first, followed by a red flash 5 ps
later. An observer in S” moving along the x axis at speed v relative to S also observes the
flashes 5 ws apart and with a separation of 2400 m, but the red flash is observed first. Find
the magnitude and direction of v.

1-53. A cosmic-ray proton streaks through the lab with velocity 0.85c at an angle of
50° with the +x direction (in the xy plane of the lab). Compute the magnitude and direc-
tion of the proton’s velocity when viewed from frame S’ moving with B = 0.72.

LEVEL III

1-54. A meter stick is parallel to the x axis in S and is moving in the +y direction at con-
stant speed v,. From the viewpoint of S" show that the meter stick will appear tilted at an
angle 6’ with respect to the x” axis of S" moving in the +x direction at § = 0.65. Compute
the angle 6" measured in S'.

1-55. The equation for the spherical wave front of a light pulse that begins at the origin at
time t=0is x2 +y2 + z2 — (ct)2= 0. Using the Lorentz transformation, show that such a
light pulse also has a spherical wave front in S’ by showing that x'2 +y’? +z'2 — (ct')? =
0insS".

1-56. An interesting paradox has been suggested by R. Shaw?’ that goes like this. A very
thin steel plate with a circular hole 1 m in diameter centered on the y axis lies parallel to
the xz plane in frame S and moves in the +y direction at constant speed v, as illustrated
in Figure 1-45. A meter stick lying on the x axis moves in the +x direction with B =v/c.
The steel plate arrives at the y = 0 plane at the same instant that the center of the meter
stick reaches the origin of S. Since the meter stick is observed by observers in S to be
contracted, it passes through the 1 m hole in the plate with no problem. A paradox appears
to arise when one considers that an observer in S’, the rest system of the meter stick, mea-
sures the diameter of the hole in the plate to be contracted in the x dimension and, hence,
becomes too small to pass the meter stick, resulting in a collision. Resolve the paradox.
Will there be a collision?



FIGURE 1-45 [Problem 1-56.]

1-57. Two events in S are separated by a distance D =x, — x; and atime T =1t, — t,.
(a) Use the Lorentz transformation to show that in frame S’, which is moving with speed
v relative to S, the time separation is t) — t; = y(T — vD/c?). (b) Show that the events
can be simultaneous in frame S’ only if D is greater than cT. (c) If one of the events is the
cause of the other, the separation D must be less than cT since D/c is the smallest time
that a signal can take to travel from x; to x, in frame S. Show that if D is less that T, t5 is
greater than t in all reference frames. (d) Suppose that a signal could be sent with speed
¢’ > c so that in frame S the cause precedes the effect by the time T = D/c’. Show that
there is then a reference frame moving with speed v less than ¢ in which the effect pre-
cedes the cause.
1-58. Two observers agree to test time dilation. They use identical clocks, and one
observer in frame S’ moves with speed v = 0.6c relative to the other observer in frame S.
When their origins coincide, they start their clocks. They agree to send a signal when
their clocks read 60 min and to send a confirmation signal when each receives the other’s
signal. (a) When does the observer in S receive the first signal from the observer in S'?
(b) When does he receive the confirmation signal? (c) Make a table showing the times in S
when the observer sent the first signal, received the first signal, and received the confirma-
tion signal. How does this table compare with one constructed by the observer in S'?
1-59. The compact disc in a CD-ROM drive rotates with angular speed w. There is a clock
at the center of the disk and one at a distance r from the center. In an inertial reference frame,
the clock at distance r is moving with speed u = rw. Show that from time dilation in special
relativity, time intervals At, for the clock at rest and At for the moving clock are related by

— 2 2

At — A _ o if ro<<c

Aty 2c?
1-60. Two rockets A and B leave a space station with velocity vectors v, and vg relative to
the station frame S, perpendicular to each other. (a) Determine the velocity of A relative
to B, vga. (b) Determine the velocity of B relative to A, vag. (€) Explain why v,g and vga
do not point in opposite directions.
1-61. Suppose a system S consisting of a cubic lattice of meter sticks and synchronized
clocks, for example, the eight clocks closest to you in Figure 1-13, moves from left to
right (the +x direction) at high speed. The meter sticks parallel to the x direction are, of
course, contracted and the cube would be measured by an observer in a system S’ to be
foreshortened in that direction. However, recalling that your eye constructs images from
light waves that reach it simultaneously, not those leaving the source simultaneously,
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sketch what your eye would see in this case. Scale contractions and show any angles accu-
rately. (Assume the moving cube to be farther than 10 m from your eye.)

1-62. Figure 1-11b (in the More section about the Michelson-Morley experiment) shows
an eclipsing binary. Suppose the period of the motion is T and the binary is a distance
L from Earth, where L is sufficiently large so that points A and B in Figure 1-11b are
a half orbit apart. Consider the motion of one of the stars and (a) show that the star
would appear to move from A to B in time T/2 + 2Lv/(c®> — v?) and from B to A in time
T/2 — 2Lv/(c* — v?), assuming classical velocity addition applies to light, that is, that
emission theories of light were correct. (b) What rotational period would cause the star to
appear to be at both A and B simultaneously?

1-63. Show that if a particle moves at an angle 6 with respect to the x axis with speed u in
system S, it moves at an angle 6’ with the x” axis in S’ given by

sin 6

tan' = —————
v(cos® — v/u)

1-64. Like jets emitted from some galaxies (see Figure 1-41), some distant astronomi-
cal objects can appear to travel at speeds greater than ¢ across our line of sight. Suppose
distant galaxy AB15 moving with velocity v at an angle 6 with respect to the direction
toward Earth emits two bright flashes of light separated by time At on the galaxy AB15
local clock. Show that (a) the time interval Atg,, = At(1 — B cos 0) and (b) the apparent
AXEarth _ B sin 6

Ate,y 1 — BCoOsO

speed of AB15 measured by observers on Earth is v,,, = (c) For

B = 0.75, compute the value of 6 for which v,,, =c.



Relativity II

n the opening section of Chapter 1 we discussed the classical observation that, if
Newton’s second law F = ma holds in a particular reference frame, it also holds in
any other reference frame that moves with constant velocity relative to it, that is, in any
inertial frame. As shown in Section 1-1, the Galilean transformation (Equations 1-2)
leads to the same accelerations a;, = a, in both frames, and forces such as those due
to stretched springs are also the same in both frames. However, according to the
Lorentz transformation, accelerations are not the same in two such reference frames.
If a particle has acceleration a, and velocity u, in frame S, its acceleration in S,
obtained by computing duy/dt" from Equation 1-22, is
= = 2-1
TN - /e
Thus, F/m must transform in a similar way, or else Newton’s second law, F = ma,
does not hold.

It is reasonable to expect that F = ma does not hold at high speeds, for this equa-
tion implies that a constant force will accelerate a particle to unlimited velocity if it
acts for a long enough time. However, if a particle’s velocity were greater than c in
some reference frame S, we could not transform from S to the rest frame of the parti-
cle because y becomes imaginary when v > c¢. We can show from the velocity trans-
formation that, if a particle’s velocity is less than c in some frame S, it is less than c in
all frames moving relative to S with v < c. This result leads us to expect that particles
never have speeds greater than c. Thus, we expect that Newton’s second law F = ma
is not relativistically invariant. We will, therefore, need a new law of motion, but one
that reduces to Newton’s classical version when B(= v/c) — 0, since F = ma is
consistent with experimental observations when § << 1.

In this chapter we will explore the changes in classical dynamics that are
dictated by relativity theory, directing particular attention to the same concepts
around which classical mechanics was developed, namely mass, momentum, and
energy. We will find these changes to be every bit as dramatic as those we encoun-
tered in Chapter 1, including a Lorentz transformation for momentum and energy
and a new invariant quantity to stand beside the invariant spacetime interval As.
Then, in the final section of the chapter, we will direct our attention to noninertial, or
accelerated, reference frames—the theory of general relativity, Einstein’s theory of
gravity that underlies our contemporary understanding of the origin and evolution of
the universe.
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Relativistic
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2-1 Relativistic Momentum

Among the most powerful fundamental concepts that you have studied in physics
until now have been the ideas of conservation of momentum and conservation of total
energy. As we will discuss a bit further in Chapter 12, each of these fundamental laws
arises because of a particular symmetry that exists in the laws of physics. For exam-
ple, the conservation of total energy in classical physics is a consequence of the sym-
metry, or invariance, of the laws of physics to translations in time. As a consequence,
Newton’s laws work exactly the same way today as they did when he first wrote then
down. The conservation of momentum arises from the invariance of physical laws to
translations in space. Indeed, Einstein’s first postulate and the resulting Lorentz trans-
formation (Equations 1-18 and 1-19) guarantee this latter invariance in all inertial
frames.

The simplicity and universality of these conservation laws leads us to seek equa-
tions for relativistic mechanics, replacing Equation 1-1 and others, that are consistent
with momentum and energy conservation and are also invariant under a Lorentz
transformation. However, it is straightforward to show that the momentum, as formu-
lated in classical mechanics, does not result in relativistic invariance of the law of
conservation of momentum. To see that this is so, we will look at an isolated collision
between two masses, where we avoid the question of how to transform forces because
the net external force is zero. In classical mechanics, the total momentum p = m; u; is
conserved. We can see that relativistically, conservation of the quantity >m; u; is an
approximation that holds only at low speeds.

Consider one observer in frame S with a ball A and another in S” with ball B. The
balls each have mass m and are identical when measured at rest. Each observer throws
his ball along his y axis with speed u, (measured in his own frame) so that the balls
collide.r Assuming the balls to be perfectly elastic, each observer will see his ball
rebound with its original speed u,. If the total momentum is to be conserved, the y
component must be zero because the momentum of each ball is merely reversed by
the collision. However, if we consider the relativistic velocity transformation, we can
see that the quantity mu, does not have the same magnitude for each ball as seen by
either observer.

Let us consider the collision as seen in frame S (Figure 2-1a). In this frame ball A
moves along the y axis with velocity uy, = u,. Ball B has x component of velocity
u,s = vandy component

Ug = Ujg/y = —UyV1 — v?/c? 2-2

Here we have used the velocity transformation (Equation 1-22) and the facts that ug
is just —uy and uy = 0. We see that the y component of the velocity of ball B is
smaller in magnitude than that of ball A. The quantity (1 — v?/c?? comes from the
time dilation factor. The time taken for ball B to travel a given distance along the y
axis in S is greater than the time measured in S’ for the ball to travel this same dis-
tance. Thus, in S the total y component of classical momentum is not zero. Since the y
components of the velocities are reversed in an elastic collision, momentum as
defined by p = Smu is not conserved in S. Analysis of this problem in S’ leads to the
same conclusion (Figure 2-1b) since the roles of A and B are simply interchanged.? In
the classical limit v<< ¢, momentum is conserved, of course, because in that limit
vy~ land ug = Up.

The reason for defining momentum as ~mu in classical mechanics is that this
quantity is conserved when there is no external force, as in our collision example.
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We now see that this quantity is conserved only in the approximation v << ¢. We will
define relativistic momentum p of a particle to have the following properties:

1. pis conserved in collisions.
2. p approaches mu as u/c approaches zero.

Let’s apply the first of these conditions to the collision of the two balls that we
just discussed, noting two important points: First, for each observer in Figure 2-1,
the speed of each ball is unchanged by the elastic collision. It is either u, (for the
observer’s own ball) or (uZ + v2)¥2 = u (for the other ball). Second, the failure
of the conservation of momentum in the collision we described can’t be due to the
velocities because we used the Lorentz transformation to find the y components.
It must have something to do with the mass! Let us write down the conservation of
the y component of the momentum as observed in S, keeping the masses of the two
balls straight by writing m(u,) for the S observer’s own ball and m(u) for the S’
observer’s ball.

M (Ug)Up + M(U)ug = —M(Ug)Uy — M(U)Uyg 2-3
(before collision) (after collision)
Equation 2-3 can be readily rewritten as
m(u u
(W _ »
m (Uo) Uys

If u, is small compared to the relative speed v of the reference frames, then it follows
from Equation 2-2 that ug = v and, therefore, u =~ v.

If we can now imagine the limiting case where u, — 0, that is, where each ball
is at rest in its “home” frame so that the collision becomes a “grazing” one as B moves
past A at speed v = u, then we conclude from Equations 2-2 and 2-4 that in order for
Equation 2-3 to hold, that is, for the momentum to be conserved,

m(u=v) _ Uo
m(Uuo =0)  y, V1 — v?/c?
or
" i e 25

Equation 2-5 says that the observer in S measures the mass of ball B, moving relative
to him at speed u, as equal to 1/(1 — u?/c®)? times the rest mass of the ball, or its
mass measured in the frame in which it is at rest. Notice that observers always mea-
sure the mass of an object that is in motion with respect to them to be larger than the
value measured when the object is at rest.

Thus, we see that the law of conservation of momentum will be valid in relativ-
ity, provided that we write the momentum p of an object with rest mass m moving
with velocity u relative to an inertial system S to be

mu

p=——
V1 - u?/c?

2-6
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FIGURE 2-1 (a) Elastic
collision of two identical
balls as seen in frame S. The
vertical component of the
velocity of ball Bis uy/vyin S
ifitisuginS’. (b) The same
collision as seen in S’. In this
frame ball A has vertical
component of velocity uy /7.

The design and
construction of large
particle accelerators
throughout the world,
such as CERN’s LHC, are
based directly on the
relativistic expressions for
momentum and energy.
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where u is the speed of the particle. We therefore take this equation as the definition
of relativistic momentum. It is clear that this definition meets our second criterion
because the denominator approaches 1 when u is much less than ¢. From this defini-
tion, the momenta of the two balls A and B in Figure 2-1 as seen in S are

muy Muyg

p = ——--- p =
VI T VL= (U + ug)

where ug = ug(1 — v?/c?) and u,g = v. It is similarly straightforward to show that

Pys = —Pya Because of the similarity of the factor 1/V1 — u®/c® and v in the
Lorentz transformation, Equation 2-6 is often written

. 1
p=vymu with v=———-— 2-7

V1-—u?/c?

This use of the symbol vy for two different quantities causes some confusion; the
notation is standard, however, and simplifies many of the equations. We will use this
notation except when we are also considering transformations between reference
frames. Then, to avoid confusion, we will write out the factor 1/(1 — u?/c?)Y? and
reserve vy for 1/(1 — v¥c?)¥2, where v is the relative speed of the frames. Figure 2-2
shows a graph of the magnitude of p as a function of u/c. The quantity m(u) in Equa-
tion 2-5 is sometimes called the relativistic mass; however, we will avoid using the
term or a symbol for relativistic mass: in this book m always refers to the mass mea-
sured in the rest frame of the mass. In this we are following Einstein’s view. In a letter
to a colleague in 1948 he wrote:®

It is not good to introduce the concept of mass M= m/(1 — v2/c???of a
body for which no clear definition can be given. It is better to introduce
no other mass than “the rest mass” m. Instead of introducing M, it is
better to mention the expression for the momentum and energy of a
body in motion.

ame — :

I

|

3mc — |

a Relativistic :

momentum |

2me — :

I

I

FIGURE 2-2 Relativistic momentum as given by me - //ﬂ'
Equation 2-6 versus u/c, where u = speed of the ~ =" I
object relative to an observer. The magnitude of == :
the momentum p is plotted in units of mc. The 0 PR T ST MR

fainter dashed line shows the classical momentum 0 0.2 0.4 0.6 0.8 1.0
mu for comparison. ulc
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1 GV B N Measured Values of Mass Moving Relative to an Observer
For what value of u/c will the mass of an object measured by an observer, ym,
exceed the rest mass m by a given fraction f ?

SOLUTION
From Equation 2-5 we see that
(_oym-m I S
m V1 —u?/c?

Solving for u/c,

1

202 —
1-we (f+ 1)

;—u?/cP =1~

1
(f+1)
V(T + 2)

f+1

or
u/c =

from which we can compute the table of values below or the value of u/c for
any other f. Note that the value of u/c that results in a given fractional increase f
in the measured value of the mass is independent of m. A diesel locomotive mov-
ing at a particular u/c will be observed to have the same f as a proton moving
with that u/c.

f u/c Example

10712 1.4 x 107 jet fighter aircraft
5x10°° 0.0001 Earth’s orbital speed
0.0001 0.014 50 eV electron

0.01 (1%) 0.14 quasar 3C273

1.0 (100%) 0.87 quasar 0Q172

10 0.996 muons from cosmic rays
100 0.99995 some cosmic-ray protons

Momentum of a Rocket A high-speed interplanetary probe
with a mass m = 50,000 kg has been sent toward Pluto at a speed u = 0.8c. What is
its momentum as measured by Mission Control on Earth? If, preparatory to landing
on Pluto, the probe’s speed is reduced to 0.4c, by how much does its momentum
change?

SOLUTION
1. Assuming that the probe travels in a straight line toward Pluto, its momentum
along that direction is given by Equation 2-6:

mu (50,000 kg) (0.8¢c)

P V1 - u?/c? CVi- (0.8¢)?/c?

= 6.7 X 10%-kg = 2.0 X 10 kg-m/s
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2. When the probe’s speed is reduced, the momentum declines along the relativis-
tic momentum curve in Figure 2-2. The new value is computed from the ratio:

Pose _ M(0.40)/\V1 — (0.4)?
Posc  m(0.8¢)/\V1— (0.8)2

_1V1- (0.8)2
2\/1 - (0.4)?

= 0.33

3. The reduced momentum py 4 is then given by
Poac = 0.33posgc
(0.33) (6.7 X 10%-kg)
= 2.2 X 10%-kg
= 6.6 X 10 kg-m/s

Remarks: Notice from Figure 2-2 that the incorrect classical value of pgg.
would have been 4.0 X 10% - kg. Also, while the probe’s speed was decreased to
one-half its initial value, the momentum was decreased to one-third of the initial
value.

Question

1. In our discussion of the inelastic collision of balls A and B, the collision was
a “grazing” one in the limiting case. Suppose instead that the collision is a
“head-on” one along the x axis. If the speed of S’ (i.e., ball B) is low, say,

v = 0.1c, what would a spacetime diagram of the collision look like?

2-2 Relativistic Energy

As noted in the preceding section, the fundamental character of the principle of con-
servation of total energy leads us to seek a definition of total energy in relativity that
preserves the invariance of that conservation law in transformations between inertial
systems. As with the definition of the relativistic momentum, Equation 2-6, we will
require that the relativistic total energy E satisfy two conditions:

1. The total energy E of any isolated system is conserved.
2. E will approach the classical value when u/c approaches zero.

Let us first find a form for E that satisfies the second condition and then see if it
also satisfies the first. We have seen that the quantity mu is not conserved in colli-
sions but that ymu is, with y = 1/(1 — u?/c?"2 We have also noted that Newton’s
second law in the form F = ma cannot be correct relativistically, one reason being
that it leads to the conservation of mu. We can get a hint of the relativistically correct
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Aerial view of the Jefferson Laboratory’s
Continuous Electron Beam Accelerator
Facility (CEBAF) in Virginia. The dashed
line indicates the location of the
underground accelerator, where electrons
are accelerated to 6 GeV, reaching speeds
of more than 99.99 percent of the speed of
light. The circles outline the experiment
halls, also underground. [Thomas Jefferson
National Accelerator Facility/U.S.
Department of Energy.]

form of the second law by writing it F = dp/dt. This equation is relativistically cor-
rect if relativistic momentum p is used. We thus define the force in relativity to be

_ dp _ d(ymu)
Todt o dt
Now, as in classical mechanics, we will define kinetic energy E, as the work done by
a net force in accelerating a particle from rest to some velocity u. Considering motion
in one dimension only, we have

= 2-8

u Ud mu u
E, = / Fdx = /(ydt)dxz /ud(ymu)
u=0 0 0

using u = dx/dt. The computation of the integral in this equation is not difficult but
requires a bit of algebra. It is left as an exercise (Problem 2-2) to show that

u2\ 32
d(ymu) = m(l - (:2) du

Substituting this into the integrand of the equation for E, above, we obtain

, , u2\ 32
E,= /ud(ymu) = /m<1 - <:2> udu
0 0

1
)
1 —u?/c?
or
E, = ymc? — mc? 2-9

Equation 2-9 defines the relativistic kinetic energy. Notice that, as we warned earlier,
E, is not mu?/2 or even ymu?/2. This is strikingly evident in Figure 2-3. However,
consistent with our second condition on the relativistic total energy E, Equation 2-9
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FIGURE 2-3 Experimental confirmation of the
relativistic relation for kinetic energy. Electrons were
accelerated to energies up to several MeV in large
electric fields and their velocities were determined -
by measuring their time of flight over 8.4 m. Note T ) R O R A S S S
that when the velocity u << c, the relativistic L
and nonrelativistic (i.e., classical) relations are I
indistinguishable. [W. Bertozzi, American Journal of o
Physics, 32, 551 (1964).] 3le

Relativistic
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does approach mu?/2 when u << c. We can check this assertion by noting that for
u/c << 1, expanding -y by the binomial theorem yields

2\-1/2 2
u lu

and thus

1 u? 1
Ec=me?(1+ >S5+ - —1) = Zmu?
“ ( 2 ¢? > 2
The expression for kinetic energy in Equation 2-9 consists of two terms. One
term, ymc?, depends on the speed of the particle (through the factor +y), and the other
term, mc?, is independent of the speed. The quantity mc? is called the rest energy of
the particle, that is, the energy associated with the rest mass m. The relativistic total
energy E is then defined as the sum of the kinetic energy and the rest energy.
mc?
E=E +mc?=yme® = ——— 2-10
V1 - u?/c?
Thus, the work done by a net force increases the energy of the system from the rest
energy mc? to ymc? (or increases the measured value of the moving mass from m to ym).
For a particle at rest relative to an observer, E, = 0, Equation 2-10 becomes
perhaps the most widely recognized equation in all of physics, Einstein’s famous
E = mc®. When u = ¢, Equation 2-10 can be written as

1
E =~ Emu2 + mc?

Before the development of relativity theory it was thought that mass was a
conserved quantity;* consequently, m would always be the same before and after an
interaction or event and mc? would therefore be constant. Since the zero of energy is
arbitrary, we are always free to include an additive constant; therefore, our definition
of the relativistic total energy reduces to the classical kinetic energy for u = ¢ and our
second condition on E is thus satisfied.
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Be very careful to understand Equation 2-10 correctly. It defines the total energy
E, and E is what we are seeking to conserve for isolated systems in all inertial frames,
not E, and not mc2. Remember, too, the distinction between conserved quantities and
invariant quantities. The former have the same value before and after an interaction in
a particular reference frame. The latter have the same value when measured by
observers in different reference frames. Thus, we are not requiring observers in rela-
tively moving inertial frames to measure the same values for E, but rather that E be
unchanged in interactions as measured in each frame. To assist us in showing that E
as defined by Equation 2-10 is conserved in relativity, we will first see how E and p
transform between inertial reference frames.

Lorentz Transformation of Eand p

Consider a particle of rest mass m that has an arbitrary velocity u with T TR
respect to frame S as shown in Figure 2-4. System S’ is a second iner-
tial frame moving in the +x direction. The particle’s momentum and -
energy are given in the S and S’ systems, respectively, by
InS: N
E = ymc?
Px i Yimuy 211 X, X'
Py = ymuy
P, = ymu, 7 7
where FIGURE 2-4 Particle of mass m moves with
v =1/ /1 — UZ/CZ velocity u measured in S. System S’ moves
, in the +x direction at speed v. The Lorentz
InS’": velocity transformation makes possible
E’ = ~'mc2 determination of the relations connecting
= ~vy'mc
, S measurements of the total energy and the
Px = v MUy 5.qp Components of the momentum in the two
py = y'muy . frames of reference.
p; = y'mu;
where

v =1/V1—-u?/c?

Developing the Lorentz transformation for E and p requires that we first express y' in
terms of quantities measured in S. (We could just as well express vy in terms of primed
quantities. Since this is relativity, it makes no difference which we choose.) The result is
! (1 = vu,/c?) where now ! 2-13
= ’Y 'y = -
V1—u?/c? V1 - u?/c? V1 —v?/c?

Substituting Equation 2-13 into the expression for E’ in Equation 2-12 yields

mc? mc? mc?vu, /c?

V1-—u?/c? - V1 —u?/c? CVi- u?/c?

The first term in the brackets you will recognize as E and the second term, canceling
the ¢? factors in the numerator, as vp, from Equation 2-11. Thus, we have

E' = v(E - vp,) 2-14

E' =
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Similarly, substituting Equation 2-13 and the velocity transformation for u; into the
expression for p; in Equations 2-12 yields

muy mv

, mu,
pj = = -
V1 - u?/c? V1-u?/c? V1-—u?/c?

The first term in the brackets is p, from Equation 2-11, and, since m(1 — u?/c?) 12 =
E/c?, the second term is VE /c?. Thus, we have

Py = v(px — VE/c?) 2-15

Using the same approach, it can be shown (Problem 2-48) that

py=p, and p;=p,
Together these relations are the Lorentz transformation for momentum and energy:

= ~(p, — VE/C? L=
P =v(p /%) Py = By 216
E'=~v(E —vpy) p; = P:
The inverse transformation is
P =v(px T VE'/C®)  p, =y 017
E=~(E"+ vpy) P = Pz
with
1 1

TTVI- Ve Vi- g

Note the striking similarity between Equations 2-16 and 2-17 and the Lorentz trans-
formation of the space and time coordinates, Equations 1-18 and 1-19. The momen-
tum p(p,, Py, ;) transforms in relativity exactly like r(x, y, z), and the total energy E
transforms like the time t. We will return to this remarkable result and related mat-
ters shortly, but first let’s do some examples and then, as promised, show that the
energy as defined by Equation 2-10 is conserved in relativity.

Transforming Energy and Momentum Suppose a micromete-
orite of mass 10™° kg moves past Earth at a speed of 0.01c. What values will be
measured for the energy and momentum of the particle by an observer in a system
S’ moving relative to Earth at 0.5¢ in the same direction as the micrometeorite?

SOLUTION

Taking the direction of the micrometeorite’s travel to be the x axis, the energy and
momentum as measured by the Earth observer are, using the u << ¢ approximation
of Equation 2-10:

1
E~ Emu2 + mc? = 107%kg[ (0.01¢)?/2 + c?]

E =~ 1.00005 X 107°c%J

U
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and
py = mu, = (107°kg) (0.01c) = 10 *ckg-m/s

For this situation y = 1.1547, so in S’ the measured values of the energy and
momentum will be

E' = +v(E — vp,) = (1.1547)[1.00005 X 10~%?2 — (0.5¢) (10 *c) ]
EI

(1.1547) (1.00005 X 107° — 0.5 x 1071)c?

E’ = 1.14898 X 10°c?)J

and
py = v(py — VE/c?) = (1.1547)[107*c — (0.5¢) (1.00005 x 10 °c?)/c?]
p, = (1.1547) (107 — 5.00025 X 107°)c
p; = —5.66 X 10 °%ckg-m/s = —56.6 X 10 *ckg-m/s

Thus, the observer in S’ measures a total energy nearly 15 percent larger and a
momentum more than 50 times greater and in the —x direction.

More Difficult Lorentz Transformation of Energy Suppose
that a particle with mass m and energy E is moving toward the origin of a system
S such that its velocity u makes an angle o with the y axis as shown in Figure 2-5.
Using the Lorentz transformation for energy and momentum, determine the
energy E’ of the particle measured by an observer in S’, which moves relative to
S so that the particle moves along the y' axis.

SOLUTION

System S’ moves in the —x direction at speed u sina, as determined from the
Lorentz velocity transformation for u; = 0. Thus, v = —u sina. Also,

E=me?/V1-uc? p=mu/V1-u?c?
and from the latter,
Py = —(mu/m)sina
In S’ the energy will be
E"=~(E — vpy)

— L _[E— (usina) (-mu/ V1 - v/c)sina]

_ 1 _ —u2/ct)ulsinta
W[E (m/V1— u?/c?)u?sin’a |

75

FIGURE 2-5 The system
discussed in Example 2-4.
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FIGURE 2-6 Inelastic collision
of two particles of equal rest
mass m. (a) In the zero
momentum frame S’ the particles
have equal and opposite
velocities and, hence, momenta.
After the collision the composite
particle of mass M is at restin S'.
The diagram on the far right is
the spacetime diagram of the
collision from the viewpoint

of S'. (b) In system S the frame
S’ is moving to the right at speed
u so that the particle on the right
is at rest in S, while the left one
moves at 2u/ (1 + u?/c?). After
collision, the composite particle
moves to the right at speed u.
Again, the spacetime diagram of
the interaction is shown on the
far right. All diagrams are drawn
with the collision occurring at
the origin.

Multiplying the second term in the brackets by ¢?/c? and factoring an E from both
terms yields

E'=EV1— (u¥/c?)sin’a

Since u < ¢ and sina = 1, we see that E’ < E, except for « = 0 when E’ = E,
in which case S and S’ are the same system. Note, too, that for « > 0, ifu — ¢,
E’ — E cosa. As we will see later, this is the case for light.

Question

2. Recalling the results of the measurements of time and space intervals by
observers in motion relative to clocks and measuring rods, discuss the results
of corresponding measurements of energy and momentum changes.

Conservation of Energy

As with our discussion of momentum conservation in relativity, let us consider a col-
lision of two identical particles, each with rest mass m. This time, for a little variety,
we will let the collision be completely inelastic—that is, when the particles collide,
they stick together. There is a system S’, called the zero momentum frame, in which
the particles approach each other along the x” axis with equal speeds u—hence equal
and opposite momenta—as illustrated in Figure 2-6a. In this frame the collision
results in the formation of a composite particle of mass M at rest in S’. If S" moves
with respect to a second frame S at speed v = u in the x direction, then the particle on

(a) ct’ s
M Y (before) Y o (after) )
/Worldllne
of M
u —u M f\M
b e ’ ’ ’
m m X T X X
m m
(b) cth
¥ s (before) ¥ s (after) M
Worldline
2u/(1+u?/c?) u | of M
m Tm X M X m X
m
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the right before the collision will be at rest in S and the composite particle will move
to the right at speed u in that frame. This situation is illustrated in Figure 2-6b.
Using the total energy as defined by Equation 2-10, we have in S’;

Before collision:

2 2

e mc N mc
bef -
VI - V1 -yl

- V11— u?/c? -

After collision:
Ler = Mc? 2-19

Energy will be conserved in S’ if Efgtore = Ejfier, that is, if

2mc?

V11— u?/c?
This is ensured by the validity of conservation of momentum, in particular by Equa-
tion 2-5, and so energy is conserved in S’. (The validity of Equation 2-20 is important
and not trivial. We will consider it in more detail in Example 2-7.) To see if energy as
we have defined it is also conserved in S, we transform to S using the inverse trans-
form, Equation 2-17. We then have in S:

= Mc? 2-20

Before collision:

Epetore = ¥ (Epefore + Vpx)

(
Ebetore = V(

+ up’)
W ”
mc? .
Epetore = (m) since p, =0 2-21
After collision:
Eater = v(Mc? + up}) = yMc? since again p; = 0 2-22

The energy will be conserved in S and, therefore, the law of conservation of energy
will hold in all inertial frames if Eyeore = Eapers that is, if

2mc® ) )
—— | = vMc 2-23
Y( V11— u?/c? !

which, like Equation 2-20, is ensured by Equation 2-5. Thus, we conclude that the energy
as defined by Equation 2-10 is consistent with a relativistically invariant law of conserva-
tion of energy, satisfying the first of the conditions set forth at the beginning of this sec-
tion. While this demonstration has not been a general one, that being beyond the scope of
our discussions, you may be assured that our conclusion is quite generally valid.

Question

3. Explain why the result of Example 2-4 does not mean that energy conservation
is violated.
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DG HRSECE Mass of Cosmic-Ray Muons In Chapter 1, muons produced

as secondary particles by cosmic rays were used to illustrate both the relativis-
tic length contraction and time dilation resulting from their high speed relative
to observers on Earth. That speed is about 0.998c. If the rest energy of a muon
is 105.7 MeV, what will observers on Earth measure for the total energy of a
cosmic-ray-produced muon? What will they measure for its mass as it moves rela-
tive to them?

SOLUTION

The electron volt (eV), the amount of energy acquired by a particle with electric
charge equal in magnitude to that on an electron (e) accelerated through a potential
difference of 1 volt, is a convenient unit in physics, as you may have learned. It is
defined as

1.0eV = 1.602 X 10°C X 1.0V = 1.602 X 107%°J 2-24

Commonly used multiples of the eV are the keV (10° eV), the MeV (10° eV), the
GeV (10° eV), and the TeV (10 eV). Many experiments in physics involve the
measurement and analysis of the energy and/or momentum of particles and sys-
tems of particles, and Equation 2-10 allows us to express the masses of particles in
energy units rather than the SI unit of mass, the kilogram. That and the convenient
size of the eV facilitate® numerous calculations. For example, the mass of an elec-
tron is 9.11 X 1073 kg. Its rest energy is given by

E=mc?=911 X 10%kg-c?2 =819 x 10°1J
or

1

— = 5.11 X 10°eV
1.602 X 107°J/eV

E =819 X 10 x

or
E = 0.511 MeV rest energy of the electron

The mass of the particle is often expressed with the same number thus:

E
m = 2= 0.511 MeV/c? mass of the electron

Now, applying the above to the muons produced by cosmic rays, each has a total
energy E given by

1
V1 — (0.998¢)?/c?
E = 1670 MeV

MeV
E =ymc® = X 105.7 —— X ¢?
c

and a mass as measured by Earth observers (see Equation 2-5) of

ym = E/c? = 1670 MeV//c?

The dependence of the measured mass on the speed of the particle has been verified
by numerous experiments. Figure 2-7 illustrates a few of those results.
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6.0 FIGURE 2-7 A few of the many experimental
measurements of the mass of electrons as a
function of their speed u/c. The data points are
plotted onto Equation 2-5, the solid line. The data
points represent the work of Kaufmann (<, 1901),
L Bucherer (A, 1908), and Bertozzi (@, 1964). Note
that Kaufmann’s work preceded the appearance of
4.0 Einstein’s 1905 paper on special relativity.

50

= X Kaufmann used an incorrect mass for the electron
g i [ and interpreted his results as support for classical
30k theory. [Adapted from Figure 3-4 in R. Resnick
' and D. Halliday, Basic Concepts in Relativity and
L v Early Quantum Theory, 2d ed. (New York:
[ Macmillan, 1992).]
20 P 4
X
B X
X
L ] ppe=f T | I | I
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D CVIHESPEGE Change in the Solar Mass Compute the rate at which the Sun is
losing mass, given that the mean radius R of Earth’s orbit is 1.5 X 108 km and the
intensity of solar radiation at Earth (called the solar constant) is 1.36 X 10° W/m?.

SOLUTION
1. The conversion of mass into energy, a consequence of conservation of energy
in relativity, is implied by Equation 2-10. With u = 0, that equation becomes
E = mc?
2. Assuming that the Sun radiates uniformly over a sphere of radius R, the total
power radiated by the Sun is given by
P = (area of the sphere) (solar constant)
(4mR?) (1.36 X 10°W/m?)
= 41 (1.50 X 10" m)?(1.36 X 10°W/m?)
= 3.85 X 10%J/s
3. Thus, every second the Sun emits 3.85 X 10% J, which, from Equation 2-10, is
the result of converting an amount of mass given by
m = E/c?
3.85 X 10%J
(3.00 X 10°m/s)?
4.3 X 10°kg

Remarks: Thus, the Sun is losing 4.3 X 10° kg of mass (about 4 million metric tons)
every second! If this rate of mass loss were to remain constant (which it will for
the next few billion years) and considering the fusion mass-to-energy conversion
efficiency of about 1 percent, the Sun’s present mass of about 2.0 X 10% kg would
“only” last for about 10** more years!
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EXPLORING
Another Surprise

One consequence of the fact that Newton’s second law F = ma is not relativistically
invariant is yet another surprise—the lever paradox. Consider a lever of mass m at rest
in S (see Figure 2-8). Since the lever is at rest, the net torque 7, due to the forces F,
and F, is zero, that is (using magnitudes):

Tt =Tt 17, = —FRb+FRa=0
and, therefore,
Fb=Fa

An observer in system S’ moving with B = 0.866 (y = 2) with respect to S sees the
lever moving in the —x’ direction and measures the torque to be

T = T + 7y = —Fib" + Fla=—-FKb + (Fy/2)(a/2)
—Fb + —Fb/4 = —(3/4)Fb # 0

where F; = F,and F;, = F,/2 (see Problem 2-55) and the lever is rotating!

The resolution of the paradox was first given by the German physicist Max von
Laue (1879-1960). Recall that the net torque is the rate of change of the angular
momentum L. The S’ observer measures the work done per unit time by the two forces as

For F: —Fyv = —-FRyv
For Fy: zero, since Fy is perpendicular to the motion

and the change in mass Am per unit time of the moving lever as

Am _ AE/c® 1 AE _ .
At At’ c? At c?
(@ vy (b) vy’
Pin Pin
\ a—|Fy | a—|Fy
b [S { 3
b s b’ s
——
{ v
7 y=2
Fx Fx B =0.866
0 X 0’ X'

FIGURE 2-8 (a) A lever in the xy plane of system S is free to rotate about the pin P but is
held at rest by the two forces F, and F,. (b) The same lever as seen by an observer in S',
which is moving with instantaneous speed v in the +x direction. For the S’ observer the
lever is moving in the —x’ direction.
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The S’ observer measures a change in the magnitude of angular momentum per unit

time given by

AL’ —Fyv v? 3
Tﬁet = F = hv sz = —beg = —bFXBZ = —ZFXb

As a result of the motion of the lever relative to S’, an observer in that system sees the
force F, doing net work on the lever, thus changing the angular momentum over time,
and the paradox vanishes. (The authors thank Costas Efthimiou for bringing this para-

dox to our attention.)

2-3 Mass/Energy Conversion and
Binding Energy

The identification of the term mc? as rest energy is not merely a conve-
nience. Whenever additional energy AE in any form is stored in an
object, the mass of the object is increased by AE /c?. This is of particu-
lar importance whenever we want to compare the mass of an object
that can be broken into constituent parts with the mass of the parts (for
example, an atom containing a nucleus and electrons, or a nucleus
containing protons and neutrons). In the case of the atom, the mass
changes are usually negligibly small (see Example 2-8). However, the
difference between the mass of a nucleus and that of its constituent
parts (protons and neutrons) is often of great importance.

As an example, consider Figure 2-9a, in which two particles, each
with mass m, are moving toward each other with speeds u. They col-
lide with a spring that compresses and locks shut. (The spring is
merely a device for visualizing energy storage.) In the Newtonian
mechanics description, the original kinetic energy E, = 2(%amu?) is
converted into potential energy of the spring U. When the spring is
unlocked, the potential energy reappears as kinetic energy of the par-
ticles. In relativity theory, the internal energy of the system, E, = U,
appears as an increase in the rest mass of the system. That is, the mass
of the system M is now greater than 2m by E,/c?. (We will derive this
result in the next example.) This change in mass is too small to be
observed for ordinary-size masses and springs, but it is easily observed
in transformations that involve nuclei. For example, in the fission of
a 2®U nucleus, the energy released as kinetic energy of the fission
fragments is an appreciable fraction of the rest energy of the original
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FIGURE 2-9 Two objects colliding with a
massless spring that locks shut. The total rest
mass of the system M is greater than that of
the parts 2m by the amount E, /c?, where E,
is the internal energy, which in this case is
the original kinetic energy. (a) The event as
seen in a reference frame S in which the final
mass M is at rest. (b) The same event as seen
in a frame S’ moving to the right at speed u
relative to S, so that one of the initial masses
is at rest.

nucleus (see Example 11-19). This energy can be calculated by measuring the differ-

ence between the mass of the original system and the total mass of the fragments.
Einstein was the first to point out this possibility in 1905, even before the discovery
of the atomic nucleus, at the end of a very short paper that followed his famous arti-
cle on relativity.” After deriving the theoretical equivalence of energy and mass,

he wrote:

It is not impossible that with bodies whose energy content is variable
to a high degree (e.g., with radium salts) the theory may be successfully

put to the test.

The relativistic conversion
of mass into energy

is the fundamental

energy source in the
nuclear-reactor-based
systems that produce
electricity in 30 nations
and in large naval vessels
and nuclear submarines.
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DGV EVE Change in the Rest Mass of the Two-Particle and Spring

System of Figure 2-9 Derive the increase in the rest mass of a system of two
particles in a totally inelastic collision. Let m be the mass of each particle so that the
total mass of the system is 2m when the particles are at rest and far apart, and let M
be the rest mass of the system when it has internal energy E,. The original kinetic
energy in the reference frame S (Figure 2-9a) is

Ex

Am = 2 2m(y — 1) 2-25

SOLUTION

In a perfectly inelastic collision, momentum conservation implies that both par-
ticles are at rest after collision in this frame, which is the center-of-mass frame. The
total kinetic energy is therefore lost. We wish to show that, if momentum is to be
conserved in any reference frame moving with a constant velocity relative to S, the
total mass of the system must increase by Am, given by

Ex
Am =?=2m(y—1) 2-26
We therefore wish to show that the total mass of the system with internal energy is
M, given by

M =2m + Am = 2ym 2-27

To simplify the mathematics, we chose a second reference frame S’ moving to the
right with speed v = u relative to frame S so that one of the particles is initially at rest,
as shown in Figure 2-9b. The initial speed of the other particle in this frame is
u-—v —2u
u' = = 2-28
1—uv/c® 1+ u?/c?

After collision, the particles move together with speed u toward the left (since they
are at rest in S). The initial momentum in S’ is

!

mu
pi = —————— totheleft
1—u?/c?
The final momentum is
Mu
pf = —————— tothe left
V11— u?/c?

Using Equation 2-28 for u’, squaring, dividing by c?, and adding —1 to both sides
gives

- u’? . 4u?/c? _ (1 — u?/c?)?
c? (1 + u?/c?)? (1 + u?/c?)?
Then
of = ml2u/ (1 + u?/c?)] 2mu

(1 —u?/ch)/(1+ u?/c®) (1 —u?/c?)
Conservation of momentum in frame S’ requires that p; = pj, or

Mu _ 2mu
1—u?c? 1-u?c?
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Solving for M, we obtain

2m
M= ———=2ym

V1-—u?/c?

which is Equation 2-27. Thus, the measured value of M would be 2ym.

If the latch in Figure 2-9b were to suddenly come unhooked, the two particles
would fly apart with equal momenta, converting the rest mass Am back into kinetic
energy. The derivation is similar to that in Example 2-7.

Mass and Binding Energy

When a system of particles is held together by attractive forces, energy is required to
break up the system and separate the particles. The magnitude of this energy E, is
called the binding energy of the system. An important result of the special theory of
relativity, which we will illustrate by example in this section, is

The mass of a bound system is less than that of the separated particles
by E,/c?, where Ej is the binding energy.

In atomic and nuclear physics, masses and energies are typically given in atomic
mass units (u) and electron volts (eV) rather than in standard SI units of kilograms
and joules. The u is related to the corresponding Sl units by

1u = 1.66054 X 107%" kg = 931.494 MeV /c? 2-29

(The eV was defined in terms of the joule in Equation 2-24.) The rest energies of some
elementary particles and a few light nuclei are given in Table 2-1, from which you can
see by comparing the sums of the masses of the constituent particles with the nuclei
listed that the mass of a nucleus is not the same as the sum of the masses of its parts.

Table 2-1 Rest energies of some elementary particles

and light nuclei
Particle Symbol Rest energy (MeV)
Photon v 0
Neutrino (antineutrino) v(v) <1x10°®
Electron (positron) eore” (e 0.5110
Muon ot 105.7
Pi mesons (pions) w (m0) 139.6 (135) 139.6
Proton p 938.272
Neutron n 939.565
Deuteron ’Hord 1875.613
Helion *He or h 2808.391

Alpha ‘He or o 3727.379
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Binding Energy of the Deuteron

The simplest example of nuclear binding energy is that of the deuteron 2H, which
consists of a neutron and a proton bound together. Its rest energy is 1875.613 MeV.
The sum of the rest energies of the proton and neutron is 938.272 + 939.565 =
1877.837 MeV. Since this is greater than the rest energy of the deuteron, the deuteron
cannot spontaneously break up into a neutron and a proton without violating conser-
vation of energy. The binding energy of the deuteron is 1877.837 — 1875.613 =
2.224 MeV. In order to break up a deuteron into a proton and a neutron, at least
2.224 MeV must be added. This can be done by bombarding deuterons with energetic
particles or electromagnetic radiation. If a deuteron is formed by combination of a
neutron and a proton, the same amount of energy is released.

Binding Energy of the Hydrogen Atom The binding energies
of atomic electrons to the nuclei of atoms are typically of the order of 107° times
those characteristic of particles in the nuclei; consequently, the mass differences
are correspondingly smaller. The binding energy of the hydrogen atom (the energy
needed to remove the electron from the atom) is 13.6 eV. How much mass is lost
when an electron and a proton form a hydrogen atom?

SOLUTION
The mass of the proton plus that of the electron must be greater than that of the
hydrogen atom by
13.6eV
931.5 MeV/u

This mass difference is so small that it is usually neglected.

= 1.46 X 108u

2-4 Invariant Mass

In Chapter 1 we discovered that, as a consequence of Einstein’s relativity postu-
lates, the coordinates for space and time are linearly dependent on one another in
the Lorentz transformation, which connects measurements made in different inertial
reference frames. Thus, the time t became a coordinate, in addition to the space
coordinates x, y, and z, in the four-dimensional relativistic “world” that we call
spacetime. We note in passing that the geometry of spacetime was not the familiar
Euclidean geometry of our three-dimensional world, but the four-dimensional
Lorentz geometry. The difference became apparent when one compared the compu-
tation of the distance r between two points in space with that of the interval between
two events in spacetime. The former is, of course, the vector r, whose magnitude is
given by r? = x2 + y? 4+ z2. The vector r is unchanged (invariant) under a Galilean
transformation in space, and quantities that transform like r are also vectors. The
latter we called the spacetime interval As, and its magnitude, as we have seen, is
given by

(As)? = (CAt)? — [(Ax)* + (Ay)? + (A2)7] 2-30

The interval As is the four-dimensional analog of r and, therefore, is called a four
vector. Just as x, y, and z are the components of the three vector r, the components of
the four vector As are Ax, Ay, Az, and ¢ At. We have seen that As is also invariant under
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a Lorentz transformation in spacetime. Correspondingly, any quantity that transforms
like As—that is, is invariant under a Lorentz transformation—will also be a four
vector. The physical significance of the invariant interval As is quite profound: for
timelike intervals As/c = 7 (the proper time interval), for spacelike intervals As = L,
(the proper length), and the proper intervals could be found from measurements made
in any inertial frame.®

In the relativistic energy and momentum we have components of another four
vector. In the preceding sections we saw that the momentum and energy, defined by
Equations 2-6 and 2-10, respectively, were not only both conserved in relativity,
but also together satisfied the Lorentz transformation, Equations 2-16 and 2-17,
with the components of the momentum p(p,, py, p,) transforming like the space
components of r(x, y, z) and the energy transforming like the time t. The questions
then are, What invariant four vectors are they components of? and, What is its
physical significance? The answers to both turn out to be easy to find and yield for
us yet another relativistic surprise. By squaring Equations 2-6 and 2-10, you can
readily verify that

E? = (pc)? + (mc?)? 2-31
This very useful relation we will rearrange slightly to
(mc?)? = E? — (pc)? 2-32

Comparing the form of Equation 2-32 with that of Equation 2-30 and knowing that
E and p transform according to the Lorentz transformation, we see that the magnitude
of the invariant energy-momentum four vector is the rest energy of the mass m! Thus,
observers in all inertial frames will measure the same value for the rest energy of
isolated systems and, since ¢ is constant, the same value for the mass. Note that
only in the rest frame of the mass m, that is, the frame where p = 0, are the rest
energy and the total energy equal. Even though we have written Equation 2-31 for a
single particle, we could as well have written the equations for momentum and
energy in terms of the total momentum and total energy of an entire ensemble of
non-interacting particles with arbitrary velocities. We would only need to write
down Equations 2-6 and 2-10 for each particle and add them. Thus, the Lorentz
transformation for momentum and energy, Equations 2-16 and 2-17, holds for any
system of particles, and so, therefore, does the invariance of the rest energy expressed
by Equation 2-32.

We can state all of this more formally by saying that the kinematic state of the
system is described by the four vector As where

(As)? = (cAt® — [(Ax)* + (Ay)® + (A2)’]
and its dynamic state is described by the energy-momentum four vector mc?, given by
(me?)? = E? — (pc)®

The next example illustrates how this works.

Rest Mass of Moving Object A particular object is observed to
move through the laboratory at high speed. Its total energy and the components of
its momentum are measured by lab workers to be (in SI units) E = 4.5 X 107 J,
Py = 3.8 X 10°kg - m/s, p, = 3.0 X 10° kg - m/s, and p, = 3.0 X 10° kg - m/s. What
is the object’s rest mass?
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SOLUTION A
From Equation 2-32 we can write

(mc?)? = (4.5 X 10Y)> — [(3.8 X 10%c)?> + (3.0 X 10%c)? + (3.0 X 10%)?]
= (45 X 10")? — [1.4 X 10%7 + 9.0 X 10* + 9.0 x 10']c?
= 2.0 x 10® — 2.9 x 10*
= 1.74 X 10%

(1.74 x 10%)%2/c? = 4.6 kg

m

SOLUTION B
A slightly different but sometimes more convenient calculation that doesn’t involve
carrying along large exponentials makes use of Equation 2-32 divided by c*:

2 2
m? = <|52> - <p> 2-33
C C

Notice that this is simply a unit conversion, expressing each term in (mass)? units—
for example, kg? when E and p are in Sl units:

, (45 x10'7\? 3.8 X 10%\? (3.0 x 10%\? (/3.0 x 10%)?
m=\————| [\ ——) + |\ ——) +{——
C C C C

= (5.0 — [(1.25)> + (1.0)> + (1.0)7]
= 25 — 3.56
m = (21.4)Y% = 4.6 kg

In the example, we determined the rest energy and mass of a rapidly moving
object using measurements made in the laboratory without the need to be in the
system in which the object was at rest. This ability is of enormous benefit to
nuclear, particle, and astrophysicists, whose work regularly involves particles
moving at speeds close to that of light. For particles or objects whose rest mass
is known, we can use the invariant magnitude of the energy/momentum four
vector to determine the values of other dynamic variables, as illustrated in the next
example.

Speed of a Fast Electron The total energy of an electron pro-
duced in a particular nuclear reaction is measured to be 2.40 MeV. Find the elec-
tron’s momentum and speed in the laboratory frame. (The rest mass of an electron
is9.11 X 1073 kg and its rest energy is 0.511 MeV.)

SOLUTION
The magnitude of the momentum follows immediately from Equation 2-31.:

pc = VEZ — (mc2)2 = V/(2.40 MeV)? — (0.511 MeV)?
= 2.34 MeV
p =234MeV/c
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where we have again made use of the convenience of the eV as an energy unit. The
resulting momentum unit MeV/c can be readily converted to Sl units by converting
the MeV to joules and dividing by c, that is,

1.602 X 1071
1MeV/c = —————— =534 X 10%kg-m/s
2.998 X 10°m/s
Therefore, the conversion to Sl units is easily done, if desired, and yields
5.34 X 107 kg-m/s

1MeV/c

p = 2.34MeV/c X
p= 125X 102 kg-m/s

The speed of the particle is obtained by noting from Equation 2-32 or from Equa-
tions 2-6 and 2-10 that

u_pc  234MeV
c E 240MeV 0.975 2-34
or
u = 0.975¢c

It is extremely important to recognize that the invariant rest energy in Equation 2-32
is that of the system and that its value is not the sum of the rest energies of the par-
ticles of which the system is formed, if the particles move relative to one another.
Earlier we used numerical examples of the binding energy of atoms and nuclei that
illustrated this fact by showing that the masses of the atoms and nuclei were less than
the sum of the masses of their constituents by an amount Amc? that equaled the
observed binding energy, but those were systems of interacting particles—that is,
there were forces acting between the constituents. A difference exists, even when the
particles do not interact. To see this, let us focus our attention on specifically what
mass is invariant.

Consider two identical non-interacting particles, each of rest mass m = 4 k mov-
ing toward each other along the x axis of S with momentum p, = 3c kg, as illustrated
in Figure 2-10a. The energy of each particle, using Equation 2-33, is

E = c?Vm? + (p/c)? = ¢*V/(4)? + (3)? = 5ckg

Thus, the total energy of the system is 5¢? + 5¢2 = 10c? kg, since the energy is a scalar.
Similarly, the total momentum of the system is 3c — 3c = 0 since the momentum is a
vector and the momenta are equal and opposite. The rest mass of the system is then

m =V (E/c?)? - (p/c)’ = V/(10)2 — 0> = 10kg

Thus, the system mass of 10 kg is greater than the sum of the masses of the two particles,
8 kg. (This is in contrast to bound systems, such as atoms, where the system mass is
smaller than the total of the constituents.) This difference is not binding energy, since the
particles are non-interacting. Neither does the 2 kg “mass difference” reside equally with
the two particles. In fact, it doesn’t reside in any particular place, but is a property of the
entire system. The correct interpretation is that the mass of the system is 10 kg.

While the invariance of the energy/momentum four vector guarantees that
observers in other inertial frames will also measure 10 kg as the mass of the system,
let us allow for a skeptic or two and transform to another system S’, for example, the
one shown in Figure 2-10c, just to be sure.
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other with equal but oppositely directed momenta. The rest mass of the
system made up of the two particles is not 4 kg + 4 kg because the system’s
rest mass includes the mass equivalent of its internal motions. (b) That
value, 10 kg, would be the result of a measurement of the system’s mass
made by an observer in S, for whom the system is at rest, or by observers in

Chapter 2 Relativity II

@

y by vy
S S System
u=0.6¢c u=-0.6¢c
m =10 kg
m=4kg m =4 kg
X X
FIGURE 2-10 (a) Two identical particles with rest mass 4 kg approach each © Y ,
System v =0.6c
—_—
m =10 kg
M

any other inertial frames. (c) Transforming to S’ moving at v = 0.6¢ with
respect to S, as described in Example 2-11, also yields m = 10 kg.

DN LNl Lorentz Transformation of System Mass For the system

illustrated in Figure 2-10, show that an observer in S’, which moves relative to S at
B = 0.6, also measures the mass of the system to be 10 kg.

SOLUTION
1. The mass m measured in S’ is given by Equation 2-33, which in this case is

m = [(E'/c*)? = (p/c)"?
2. E'isgiven by Equation 2-16:

E'= 'Y(E - Vpx)
1

V1 - (0.6)2(
= (1.25) (10c?)
= 12.5¢2- kg

10c? — 0.6c X 0)

3. pyisalso given by Equation 2-16:

Py = v(px — VE/c?)
(1.25)[0 — (0.6¢) (10c?) /c?]
= —7.5c-kg

4. Substituting E’ and py into Equation 2-33 yields
m = [(12.5¢%/c?)? — (—7.5¢/c)4Y?
= [(12.5)2 — (—7.5)%"?
= 10kg
Remarks: This result agrees with the value measured in S. The speed of S’ chosen

for this calculation, v = 0.6c, is convenient in that one of the particles constituting
the system is at rest in S’; however, that has no effect on the generality of the solution.
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Thus, we see that it is the rest energy of any isolated system that is invariant,
whether that system is a single atom or the entire universe. And, based on our discus-
sions thus far, we note that the system’s rest energy may be greater than, equal to, or
less than the sum of the rest energies of the constituents depending on their relative
velocities and the detailed character of any interactions between them.

Questions

4. Suppose two loaded boxcars, each of mass m = 50 metric tons, roll toward each
other on level track at identical speeds u, collide, and couple together. Discuss
the mass of this system before and after the collision. What is the effect of the
magnitude of u on your discussion?

5. In 1787 Count Rumford (1753-1814) tried unsuccessfully to measure an
increase in the weight of a barrel of water when he increased its temperature
from 29°F to 61°F. Explain why, relativistically, you would expect such an
increase to occur, and outline an experiment that might, in principle, detect the
change. Since Count Rumford preceded Einstein by about 100 years, why might
he have been led to such a measurement?

Massless Particles

Equation 2-32 formally allows positive, negative, and zero values for (mc?)?, just as
was the case for the spacetime interval (As)2. We have been tacitly discussing positive
cases thus far in this section; a discussion of possible negative cases we will defer
until Chapter 12. Here we need to say something about the mc? = 0 possibility. Note
first of all that the idea of zero rest mass has no analog in classical physics since clas-
sically E, = mu?/2 and p = mu. If m = 0, then the momentum and Kinetic energy are
always zero too and the “particle” would seem to be nothing at all, experiencing no
second-law forces, doing no work, and so forth. However, for mc? = 0, Equation 2-32
states that, in relativity,

E=pc (form=0) 2-35

and, together with Equation 2-34, that u = c, that is, a particle whose mass is zero
moves at the speed of light. Similarly, a particle whose speed is measured to be ¢ will
have m = 0 and satisfy E = pc.

We must be careful, however, because Equation 2-32 was obtained from the rela-
tivistic definitions of E and p,

2

mc mu
E=ymt’= ——— p=ymu=———
V11— u?/c? V11— u?/c?

Asu — ¢, 1/V1 — u?/c? — o; however, since m is also approaching zero, the
quantity ym, which is tending toward 0/0, can (and does) remain defined. Indeed,
there is ample experimental evidence for the existence of particles with m¢? = 0.
Current theories suggest the existence of three such particles. Perhaps the most
important of these and the one thoroughly verified by experiment is the photon, a par-
ticle of electromagnetic radiation (i.e., light). Classically, electromagnetic radiation
was interpreted via Maxwell’s equations as a wave phenomenon, its energy and
momentum distributed continuously throughout the space occupied by the wave. It
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was discovered around 1900 that the classical view of light required modification in
certain situations, the change being a confinement of the energy and momentum of
the radiation into many tiny packets or bundles, which were referred to as photons.
Photons move at light speed, of course, and, as we have noted, are required by relativ-
ity to have mc? = 0. Recall that the spacetime interval As for light is also zero. Strictly
speaking, of course, the second of Einstein’s relativity postulates prevents a Lorentz
transformation to the rest system of light since light moves at c relative to all inertial
frames. Consequently, the term rest mass has no operational meaning for light.

Rest Energy of a System of Photons Remember that the rest
energy of a system of particles is not the sum of the rest energies of the individual
particles if they move relative to one another. This applies to photons too! Suppose
two photons, one with energy 5 MeV and the second with energy 2 MeV, approach
each other along the x axis. What is the rest energy of this system?

SOLUTION

The momentum of the 5 MeV photon is (from Equation 2-35) p, = 5 MeV/c and
that of the 2 MeV photon is p, = —2 MeV/c. Thus, the energy of the system is
E = 5MeV +2 MeV = 7 MeV and its momentum isp = 5 MeV/c — 2 MeV/c =
3 MeV/c. From Equation 2-32, the system’s rest energy is

me2 = V (7MeV)? — (3MeV)2 = 6.3 MeV!!

A second particle whose rest energy is zero is the gluon. This massless particle
transmits or carries the strong interaction between quarks, which are the “building
blocks” of all fundamental particles, including protons and neutrons. The existence of
gluons is well established experimentally. We will discuss quarks and gluons further
in Chapter 12. Finally, there are strong theoretical reasons to expect that gravity is
transmitted by a massless particle called the graviton, which is related to gravity in
much the same way that the photon is related to the electromagnetic field. Gravitons,
too, move at speed c. While direct detection of the graviton is beyond our current and
foreseeable experimental capabilities, major international cooperative experiments
are currently under way to detect gravity waves (see Section 2-5).

Until about the beginning of this century a fourth particle, the neutrino, was also
thought to have zero rest energy. However, substantial experimental evidence col-
lected by the Super-Kamiokande (Japan) and SNO (Canada) imaging neutrino detec-
tors, among others, made it clear that neutrinos are not massless. We discuss neutrino
mass and its implications further in Chapters 11 and 12.

Creation and Annihilation of Particles

The relativistic equivalence of mass and energy implies still another remarkable
prediction that has no classical counterpart. As long as momentum and energy are
conserved in the process,” elementary particles with mass can combine with their
antiparticles, the masses of both being completely converted to energy in a process
called annihilation. An example is that of an ordinary electron. An electron can orbit
briefly with its antiparticle, called a positron,'® but then the two unite, mutually anni-
hilating and producing two or three photons. The two-photon version of this process
is shown schematically in Figure 2-11. Positrons are produced naturally by cosmic
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FIGURE 2-11 (a) A positron orbits with an electron about their common center of mass,
shown by the dot between them. (b) After a short time, typically of the order of 10~2° s for the
case shown here, the two annihilate, producing two photons. The orbiting electron-positron
pair, suggestive of a miniature hydrogen atom, is called positronium.

rays in the upper atmosphere and as the result of the decay of certain radioactive
nuclei. P. A. M. Dirac had predicted their existence in 1928 while investigating the
invariance of the energy/momentum four vector.

If the speeds of both the electron and the positron u << ¢ (not a requirement for
the process, but it makes the following calculation clearer), then the total energy of
each particle is E = mc? = 0.511 MeV. Therefore, the total energy of the system in
Figure 2-11a before annihilation is 2mc? = 1.022 MeV. Noting also from the diagram
that the momenta of the particles are always opposite and equal, we see that the total
momentum of the system is zero. Conservation of momentum then requires that the
total momentum of the two photons produced also be zero; that is, that they move in
opposite directions relative to the original center of mass and have equal momenta.
Since E = pc for photons, then they must also have equal energy. Conservation of
energy then requires that the energy of each photon be 0.511 MeV. (Photons are usu-
ally called gamma rays when their energies are a few hundred keV or higher.) Notice
from Example 2-12 that the magnitude of the energy/momentum four vector (the rest
energy) is not zero, even though both of the final particles are photons. In this case it
equals the rest energy of the initial system. Analysis of the three-photon annihilation,
although the calculation is a bit more involved, is similar.

By now it will not be a surprise to learn that the reverse process, the creation of
mass from energy, can also occur under the proper circumstances. The conversion of
mass and energy works both ways. The energy needed to create the new mass can be
provided by the Kinetic energy of another massive particle or by the “pure” energy of
a photon. In either case, in determining what particles might be produced with a given
amount of energy, it is important to be sure, as was the case with annihilation, that the
appropriate conservation laws are satisfied. As we will discuss in detail in Chapter 12,

Decay of a Z into an
electron-positron pair in the
UAL detectors at CERN. This
is the computer image of the
first Z event recorded (April
30, 1983). The newly created
pair leave the central detector
in opposite directions at
nearly the speed of light.
[CERN]
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FIGURE 2-12 (a) A photon of energy E and momentum p = E/c encounters an electron at

rest. The photon produces an electron-positron pair (b), and the group move off together at
speed u = 0.8c.

this restricts the creation process for certain kinds of particles (including electrons,
protons, and neutrons) to producing only particle-antiparticle pairs. This means, for
example, that the energy in a photon cannot be used to create a single electron, but
must produce an electron-positron pair.

To see how relativistic creation of mass goes, let us consider a particular situa-
tion, the creation of an electron-positron pair from the energy of a photon. The photon
moving through space encounters, or “hits,” an electron at rest in frame S as illus-
trated in Figure 2-12a.'! Usually the photon simply scatters, but occasionally a pair is
created. Encountering the existing electron is important, since it is not possible for the
photon to spontaneously produce the two rest masses of the pair and also conserve
momentum (see Problem 2-47). Some other particle must be nearby, not to provide
energy to the creation process, but to acquire some of the photon’s initial momentum.
In this case we have selected an electron for this purpose because it provides a neat
example, but almost any particle would do (see Example 2-13).

While near the electron, the photon suddenly disappears, and an electron-positron
pair appears. The process must occur very fast since the photon, moving at speed c,
will travel cross a region as large as an atom in about 10™%° s. Let’s suppose that the
details of the interaction that produced the pair are such that the three particles all
move off together toward the right in Figure 2-12b with the same speed u—that is,
they are all at rest in S’, which moves to the right with speed u relative to S.** What
must the energy E, of the photon be in order that this particular electron-positron pair
is created? To answer this question, we first write the conservation of energy and
momentum:

Before Pair Creation After Pair Creation

Ei=E, + mc® E; = E; = E, + mc?
EY EV

Pi = Y Pr = Pi = S

where mc? = rest energy of an electron. In the final system after pair creation the total
rest energy is 3mc? in this case. We know this because the invariant rest energy equals
the sum of the rest energies of the constituent particles (the original electron and the
pair) in the system where they do not move relative to one another, that is, in S’. So in
S’ we have for the system after pair creation:

(3me?)? = E* — (pc)?
(E, + mc?)? — <Eyc)2

2\2
9(mc?) c

9(me?)® = E2 + 2E,mc* + (mc?)® — EZ
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Noting that the E§ terms cancel, and dividing the remaining terms by mc? we
see that

E, = 4mc?

Thus, the initial photon needs energy equal to 4 electron rest energies in order to cre-
ate 2 new electron rest masses in this case. Why is the “extra” energy needed? Because
the three electrons in the final system share momentum E, /c, they must also have
kinetic energy E, given by

E, = E — 3mc¢? = (E, + mc®) — 3mc?
= 4mc?® + mc? — 3me? = 2mc?
or the initial photon must provide the 2mc® necessary to create the electron and
positron masses and the additional 2mc? of kinetic energy that they and the existing

electron share as a result of momentum conservation. The speed u at which the group
of particles moves in S can be found from u/c = pc/E (Equation 2-34):

—xc
c _4mc?

(E, + mc?)  5mc?
The portion of the incident photon’s energy that is needed to provide kinetic
energy in the final system is reduced if the mass of the existing particle is larger than

that of an electron and, indeed, can be made negligibly small, as illustrated in the fol-
lowing example.

u/c = =028

2 GNP ECE Threshold for Pair Production What is the minimum or
threshold energy that a photon must have in order to produce an electron-positron
pair?

SOLUTION
The energy E, of the initial photon must be

E, = mc® + E + mc? + Ey. + Egy

where mc? = electron rest energy, E,- and E,. are the Kinetic energies of the elec-
tron and positron, respectively, and E,,, = Kinetic energy of the existing particle of
mass M. Since we are looking for the threshold energy, consider the limiting case
where the pair is created at rest in S, that is, E,- = E,~ = 0 and correspondingly
p_ = p. = 0. Therefore, momentum conservation requires that

Mu
Pinitial = Ey/C = Prinal = ﬁ

where u = speed of recoil of the mass M. Since the masses of single atoms are in
the range of 10° to 10° MeV/c? and the value of E, at the threshold is clearly less
than 2 MeV (i.e., it must be less than the value E, = 4mc* = 2.044 MeV), the
speed with which M recoils from the creation event is quite small compared with c,
even for the smallest M available, a single proton! (See Table 2-1.) Thus, the kinetic
energy Egw = %Mu2 becomes negligible, and we conclude that the minimum
energy E, of the initial photon that can produce an electron-positron pair is 2mc?,
that is, that needed just to create the two rest masses.
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E = +(pc)? + (mc?)?

pc

mc2

FIGURE 2-13 Triangle
showing the relation
between energy, momentum,
and rest mass in special
relativity. Caution:
Remember that E and pc are
not relativistically invariant.
The invariant is mc?,

14

Some Useful Equations and Approximations

E® = (pc)? + (mc?)? 2-31

Extremely Relativistic Case The triangle shown in Figure 2-13 is sometimes
useful in remembering this result. If the energy of a particle is much greater than its
rest energy mc?, the second term on the right of Equation 2-31 can be neglected, giv-
ing the useful approximation

E ~pc for E > mc? 2-36

This approximation is accurate to about 1 percent or better if E is greater than about
8mc?. Equation 2-36 is the exact relation between energy and momentum for particles
with zero rest mass.

From Equation 2-36 we see that the momentum of a high-energy particle is
simply its total energy divided by c. A convenient unit of momentum is MeV/c.
The momentum of a charged particle is usually determined by measuring the
radius of curvature of the path of the particle moving in a magnetic field. If the
particle has charge q and a velocity u, it experiences a force in a magnetic field B
given by

F=quXB

where F is perpendicular to the plane formed by u and B and, hence, is always
perpendicular to u. Since the magnetic force is always perpendicular to the velocity,
it does no work on the particle (the work-energy theorem also holds in relativity),
so the energy of the particle is constant. From Equation 2-10 we see that if the
energy is constant, y must be a constant, and therefore the speed u is also constant.
Therefore,
dp  d(ymu) du
TAMXBE T T T M
For the case u L B, the particle moves in a circle of radius R with centripetal accel-
eration u®/R. (If u is not perpendicular to B, the path is a helix. Since the compo-
nent of u parallel to B is unaffected, we will only consider motion in a plane.) We

then have
UB = m ‘du o <UZ>
q Y dt Y R

or
BgR = myu = p 2-37

This is the same as the nonrelativistic expression except for the factor of . Figure 2-14
shows a plot of BqR/mu versus u/c. It is useful to rewrite Equation 2-37 in terms of
practical but mixed units; the result is

p = 300 BR(Z) 2-38

where p is in MeV/c, B is in tesla, and R is in meters.
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20— FIGURE 2-14 BgR/mu
19 B versus u/c for particle of

L charge g and mass m moving
18— in a circular orbit of radius R
171 in a magnetic field B. The

- agreement of the data with
16~ the curve predicted by

% 2150 reIativit;_/ theory supports the

N assumption that the force
14 B equals the time rate of change
13+ of relativistic momentum.

r [Adapted from I. Kaplan,
121~ Nuclear Physics, 2d ed.
1.1 (Reading, MA: Addison-

10 | Wesley Publishing Company,
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Inc., 1962); by permission.]
ulc

S CNHESEEE Electron in a Magnetic Field What is the approximate radius
of the path of a 30 MeV electron moving in a magnetic field of 0.05 tesla(= 500

gauss)?
SOLUTION
1. The radius of the path is given by rearranging Equation 2-38 and substituting
q=e:
_ b
R= 3008

2. In this situation the total energy E is much greater than the rest energy mc?:
E = 30 MeV >> mc? = 0.511 MeV
3. Equation 2-36 may then be used to determine p:
p =~ E/c=30MeV/c
4. Substituting this approximation for p into Equation 2-38 yields

~ 30MeV/c
~(300) (0.05)

=2m

Remarks: In this case the error made by using the approximation, Equation 2-36,
rather than the exact solution, Equation 2-31, is only about 0.01 percent.

Nonrelativistic Case Nonrelativistic expressions for energy, momentum, and
other quantities are often easier to use than the relativistic ones, so it is important
to know when these expressions are accurate enough. As y— 1, all the relativistic
expressions approach the classical ones. In most situations, the kinetic energy or the
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total energy is known, so that the most convenient expression for calculating v is,
from Equation 2-10,
E Ey
=—=1+— 2-39
YT me? mc?
When the kinetic energy is much less than the rest energy, v is approximately 1 and
nonrelativistic equations can be used. For example, the classical approximation E, =
(1/2)mu? = p?/2m can be used instead of the relativistic E, = (y — 1)mc? if E, is
much less than mc2. We can get an idea of the accuracy of these expressions by
expanding vy, using the binomial expansion as was done in Section 2-2 and examining
the first term that is neglected in the classical approximation. We have

_ ut\"2 1u®  3uf
v=(1-5) =1+, 5tgat

2 8c
and
1 22
—mu
L a(pm)
Ex=(y—1)mc® = -mu® + — + o
==l 2 2 mc?
Then
1
E, — =mu?
2 3B
E, 2 mc?

For example, if E,/mc? ~ 1 percent, the error in using the approximation E, ~
(1/2)mu? is about 1.5 percent.

At very low energies, the velocity of a particle can be obtained from its Kinetic
energy E, = (1/2)mu? just as in classical mechanics. At very high energies, the veloc-
ity of a particle is very near ¢ and the following approximation is sometimes useful
(see Problem 2-28):

u 1
—=1—--= for y>1 2-40
c 2'y
An exact expression for the velocity of a particle in terms of its energy and momen-
tum was obtained in Example 2-10:
i 2-41
c E
This expression is, of course, not useful if the approximation E = pc has already
been made.

DRSS Different Particles, Same Energy An electron and a proton
are each accelerated through 10 X 10° V. Find v, the momentum, and the speed for
each.

SOLUTION

Since each particle has a charge of e, each acquires a kinetic energy of 10 MeV.
This is much greater than the 0.511 MeV rest energy of the electron and much less
than the 938.3 MeV rest energy of the proton. We will calculate the momentum and
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speed of each particle exactly and then by means of the nonrelativistic (proton) or
the extreme relativistic (electron) approximations.

1. We first consider the electron. From Equation 2-39 we have

= 10 MeV
=1+—=1+_———=2057
K mc? 0.511 MeV
Since the total energy is E, + mc? = 10.511 MeV, we have, from the magnitude
of the energy/momentum four vector (Equation 2-31),

pc = VE2 — (mc2)2 = V/(10.511)2 — (0.511)2
= 10.50 MeV

The exact calculation then gives p = 10.50 MeV/c. The high-energy or extreme
relativistic approximation p = E /c = 10.50 MeV is in good agreement with the
exact result. If we use Equation 2-34, we obtain for the speed u/c = pc/E =
10.50 MeV/10.51 MeV = 0.999. On the other hand, the approximation of
Equation 2-40 gives

u 1/1)? 1/ 1 Y
—=1-2(2) =1-3(s-=) =099
c 2<v> 2(20.57)

2. For the proton, the total energy is E, +mc? = 10 MeV + 938.3 MeV = 948.3
MeV. From Equation 2-39 we obtain y = 1+ E,/mc? = 1+ 10/938.3 = 1.01.
Equation 2-31 gives for the momentum

pc = VE? — (mc?)2 = V/(948.3)2 — (938.3)2
p = 137.4MeV/c
The nonrelativistic approximation gives
1 , (mu)z pz B pzcz

Ex = S mu =
k2 2m 2m  2mc?

or

pc ~ V2mc%E, = V/(2)(938.3) (10)
p = 137.0 MeV/c

The speed can be determined from Equation 2-34 exactly or from p = mu
approximately. From Equation 2-34 we obtain
u_pc 1374

S === 0144
¢ E w3 O

From p = mu, the nonrelativistic expression for p, we obtain

u _ pc _ 137.0

~ = = 0.1460
c mc®> 9383

2-5 General Relativity

The generalization of relativity to noninertial reference frames by Einstein in 1916 is
known as the general theory of relativity or, commonly, general relativity. It is the
theory that describes gravity, one of the four fundamental forces of nature. As such,
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The exceptional
sensitivity of modern
electronic devices is such
that general relativistic
effects are included in the
design of such systems
as the global positioning
system and orbiting
atomic clocks.

it is the basis of our understanding of the Big Bang, black holes, quasars, the life
cycles of stars, and the evolution of the universe—all topics among those we will
discuss in Chapter 13. General relativity, the idea that gravity is the geometry of our
four-dimensional spacetime, is at once one of the most elegant and revolutionary
ideas in modern physics. This theory generally requires the use of higher mathe-
matics than did our discussion of special relativity, and there are fewer situations in
which it can be tested. Nevertheless, its importance in the areas of astrophysics and
cosmology and the need to take account of its effects in the design of such things as
global navigation systems, atomic clocks, space probe communications, and yet-to-
be-developed precision systems of the future calls for its inclusion here. A full
description of the general theory uses tensor analysis at a sophisticated level, well
beyond the scope of this book, so we will be limited to qualitative or, in some
instances, semi-quantitative discussions.

Einstein’s development of the general theory of relativity was not motivated by
any experimental enigma. Instead, it grew out of his desire to include the descriptions
of all natural phenomena within the framework of the special theory. By 1907 he real-
ized that he could accomplish that goal with the single exception of gravitation. About
that exception he said,*

[ felt a deep desire to understand the reason behind this [exception].

The “reason” came to him, as he said later, while he was sitting in a chair in the patent
office in Bern. He described it like this:**

Then there occurred to me the happiest thought of my life, in the fol-
lowing form. The gravitational field has only a relative existence in a
way similar to the electric field generated by electromagnetic induc-
tion. Because for an observer falling freely from the roof of a house
there exists—at least in his immediate surroundings—no gravitational
field. [Einstein’s italics] . .. The observer then has the right to interpret
his state as “at rest.”

Out of this “happy thought” grew the principle of equivalence that became Einstein’s
fundamental postulate for general relativity.

Principle of Equivalence

The basis of the general theory of relativity is what we may call Einstein’s third
postulate, the principle of equivalence, which states:

A homogeneous gravitational field is completely equivalent to a uni-
formly accelerated reference frame.

This principle arises in a somewhat different form in Newtonian mechanics because
of the apparent identity of gravitational and inertial mass. In a uniform gravitational
field, all objects fall with the same acceleration independent of their mass because the
gravitational force is proportional to the (gravitational) mass while the acceleration
varies inversely with the (inertial) mass. That is, the mass m in

F =ma (inertialm)
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and that in

GMm

F == f (gravitational m)

appear to be identical in classical mechanics, although classical theory provides no
explanation for this equality. For example, near Earth’s surface, Fy,, = GMmy,, / r=
Mgrav 9 = Minertiat & = Finertiar- RECENT €Xperiments have shown that Mg = Myrgy 10
better than one part in 10*2,

To understand what the equivalence principle means, consider a compartment in
space far away from any matter and undergoing uniform acceleration a as shown in
Figure 2-15a. If people in the compartment drop objects, they fall to the “floor” with
acceleration g = —a. If they stand on a spring scale, it will read their “weight” of
magnitude ma. No mechanics experiment can be performed within the compartment
that will distinguish whether the compartment is actually accelerating in space or is at
rest (or moving with uniform velocity) in the presence of a uniform gravitational field
g = —a as in Figure 2-15b. Like the centripetal force and the Coriolis force, the
gravitational force is a pseudo- or apparent force;*® that is, it can be transformed away
by a suitable choice of coordinates.

Einstein broadened the principle of equivalence to apply to all physical experi-
ments, not just to those in mechanics. In effect, he assumed that there is no experi-
ment of any kind that can distinguish uniformly accelerated motion from the presence
of a gravitational field. A direct consequence of the principle is that M, = Myray IS
a requirement, not a coincidence. The principle of equivalence extends Einstein’s first
postulate, the principle of relativity, to all reference frames, noninertial (i.e., acceler-
ated) as well as inertial. It follows that there is no absolute acceleration of a reference
frame. Acceleration, like velocity, is only relative.

@) t a (b)

Planet
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FIGURE 2-15 Results from
experiments in a uniformly
accelerated reference frame
(a) cannot be distinguished
from those in a uniform
gravitational field (b) if the
acceleration a and
gravitational field g have the
same magnitude.
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Question

6. For his 76th (and last) birthday Einstein received a present designed to
demonstrate the principle of equivalence. It is shown in Figure 2-16. The object
is, starting with the ball hanging down as shown, to put the ball into the cup with
a method that works every time (as opposed to random shaking). How would
you do it? (Note: When it was given to Einstein, he was delighted and did the
experiment correctly immediately.)

The Invariant Interval Revisited

In general relativity the invariant interval As, defined in Equation 1-30, has a more
central role than it did in our discussions of special relativity, as indeed do proper
time 7 and proper length L. Rewriting Equation 1-30 in differential form,

Transparent
plastic sphere

Small
brass ball

String

Weak spring

Broomstick —__ |

=4 ft

o

O

FIGURE 2-16 Principle of equivalence
demonstrator given to Einstein by E. M. Rogers.
The object is to put the hanging brass ball into the
cup by a technique that always works. The spring
is weak, too weak to pull the ball in as it stands,
and is stretched even when the ball is in the cup.
The transparent sphere, about 10 cm in diameter,
does not open. [From A. P. French, Albert
Einstein: A Centenary Volume, Harvard
University Press (Cambridge, MA, 1979).]

ds? = c?dt? — (dx? + dy? + dz?) 2-42

consider a cosmic-ray proton moving through the laboratory, iner-
tial frame S, at speed v. Transforming to S’, the rest frame of the
proton, dx’ = dy’ = dz’ = 0 and dt’ = dr, proper time; therefore,
ds? = c?d?. Because dx = vdt and dy = dz = 0, Equation 2-42
reduces to

ds? = c2d7® = c¢?dt? — v2dt? = (¢? — v?)dt?
or
o
V1 —v?/c?
which is the differential version of Equation 1-36 that describes
time dilation. In a similar fashion length contraction and the
Lorentz transformation equations can also be obtained from the
invariant interval.

Now consider a noninertial system such as a rotating refer-
ence frame attached to a spinning CD or DVD. In the rotating sys-
tem the centripetal force is an apparent force, like the force of
gravity. It provides a more familiar example that will help us bet-
ter understand the motion of relativistic particles in a gravitational
field. In considering the spinning disk, it is more convenient to use

cylindrical rather than Cartesian coordinates (see Figure 2-17). In
S Equation 2-42 then becomes

ds? = c2dt? — (dr® + r2de? + dz?) 2-43

If the disk is rotating with constant angular velocity o about
the z axis in the inertial frame S, then a fixed point on the disk,
system S’, has coordinates (r, ¢, z) inSand (r', ¢’,z') in S’, where
r=r,2 =z and ¢’ = ¢ — ot. Therefore, dr’ = dr, dz’ = dz,
and d¢’ = de — wdt. Substituting into Equation 2-43, the invari-
ant interval becomes (see Problem 2-32)

ds? = (¢? — r2w?)dt? — (dr? + r?de’? + 2r2wde’dt + dz?)
2-44

dt = dr = vydr
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The time interval between two events that both occur at a particular location
(r', ¢’, z") on the rotating disk as measured on a clock located at that point is, of
course, the proper time interval dr. Since for these events dr’ = d¢’ = dz' = 0, Equa-
tion 2-44 reduces to

ds? = c2dr® = (¢® — r?e?)dt?
which on rearranging and taking the square root becomes
Y
V1 — riw?/c?

Because ro = v in the inertial system S, this relation is once again the time dila-
tion equation; however, now v (the tangential velocity) increases with increasing r, so
time dilation increases correspondingly. Similarly, for smaller values of r the time
dilation effect is reduced.

If we now establish a grid of measuring rods with a clock at each intersection in
the rotating system S’ analogous to that in the inertial system illustrated in Figure 1-13,
the clocks in S’ can be synchronized in the same manner that we described in Sec-
tion 1-2. However, the de’dt cross term in Equation 2-44 presents a problem since it
is a mixture of space and time variables. To solve the problem, consider two clocks
with the same r’'(=r) and ¢’ but different z' (= z). Their tangential velocities v are the
same in S, so S and S’ observers both see them synchronized. Similarly, clocks with
the same ¢’ and z’ but slightly different r" are seen as synchronized by observers in
both systems. Now consider two clocks with the same r'(=r) and z'(= z) but different
¢' as in Figure 2-18a. The clocks at A" and B’ are synchronized because light flashes
emitted simultaneously from them reach C" midway between them simultaneously. But
wait! Viewed from the inertial frame, the two clocks clearly have different tangential
velocities. What that means for observers in S we can better understand by considering
the two clocks to be separated by a very small (infinitesimal) distance as in Figure 2-18b
with C’ again midway between them. Now we know the answer! Just as in Einstein’s
train example illustrated in Figure 1-15, the clock at A’ leads that at B” and observers in
the inertial system S conclude that clocks at different ¢’ are not synchronized. Thus,
clocks synchronized in S” are not synchronized in S if they have different ¢.

From our discussion in Sections 1-3 and 1-4 we also know the magnitude of
the effect. It is (see Equation 1-18) yvx/c?, where for the observer in S in our present
discussion v = rw and the distance between the rotating clocks is yr de’. The time
difference is then

dt =

CZ

yVX=>'yzr2wd<p' B 1 rlwde’ _ rlwde’

c? 1-r2w?/c® ¢? c? — r’o?

*P(r, 9,2)
iz

r : y

[0 \\1

X

X =1rCOoS @

y=rsin ¢

z=z

FIGURE 2-17 Geometrical
relations between cylindrical
and Cartesian (rectangular)
coordinates.

FIGURE 2-18 (a) Looking in the —z direction,
clocks A" and B’ are at rest in the rotating
frame S’ with different values of ¢’ and A’
leading B’. (b) Clocks A" and B’ are separated
by an infinitesimal angle with A’ still leading
B’. In each case C’ (not shown) is midway
between A" and B’ and has the same value of r.
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This is the difference between the time interval dt” measured by the synchronized
clocks in S’ and dt, measured by an observer in the inertial system S. That is,
. rwde’

Substituting dt from Equation 2-45 into Equation 2-44 yields (see Problem 2-36)

2,2 12
ds? = (c® — rlw®)dt’? — (dr2 + Czridq;z + dzz> 2-46
C"—rmw
Now, just as in Equation 1-30, the interval consists of a time part and a space part and
the cross term is gone. (Recall that in the development above r’ = r, dr’ =dr, 2z’ = z,
and dz' = dz.)

Equation 2-46 expresses the invariant interval in a particular noninertial refer-
ence frame, a system rotating at constant angular velocity o with respect to an inertial
frame. For a clock at rest in S’, ds? = (¢ — r’w?)dt’2. Comparing the time intervals
measured on this clock to those measured on a clock at rest in the inertial frame S
where ds? = c’dr?, we have

c2dr® = (¢® — rw?)dt’?
dr = V1 — riw?/c?dt’

which describes time dilation in the rotating system. For length measurements in S’,
consider a rod at rest in S” a distance r from the axis and oriented parallel to the tan-
gential velocity v at that point. For the rod in S’, ds? = —c?r’de'?/(c® — r’w?) where
r de’ = L is the length of the rod. An identical rod oriented the same way at rest in S
has ds®> = —r’de?® where r d¢ = L, is the proper length of the rod in S. We then have
—rzdcpz — _Czrzdcp;z/(cz _ rzmz)
rde’ B L
V1-r%w?/c2 V1 - rl?/c?

which describes length contraction.

rde = L, =

Some Predictions of General Relativity

In his first paper on general relativity, in 1916, Einstein was able to explain quantita-
tively a discrepancy of long standing between the measured and (classically) com-
puted values of the advance of the perihelion of Mercury’s orbit, about 43 arc
seconds/century. It was the first success of the new theory. A second prediction, the
bending of light in a gravitational field, would seem to be more difficult to measure
owing to the very small effect. However, it was accurately confirmed less than five
years later when Arthur Eddington measured the deflection of starlight passing near
the limb of the Sun during a total solar eclipse. The theory also predicts the slowing
of light itself and the slowing of clocks—that is, frequencies—in gravitational fields,
both effects of considerable importance to the determination of astronomical
distances and stellar recession rates. The predicted slowing of clocks, called gravita-
tional redshift, was demonstrated by Pound and coworkers in 1960 in Earth’s gravi-
tational field using the ultrasensitive frequency-measuring technique of the
Mdossbauer effect (see Chapter 11). The slowing of light was conclusively measured



2-5 General Relativity 103

in 1971 by Shapiro and coworkers using radar signals reflected from several planets.
Two of these experimental tests of relativity’s predictions, bending of light and grav-
itational redshift, are discussed in the Exploring sections that follow. The perihelion
of Mercury’s orbit and the delay of light are discussed in More sections on the web
page. Many other predictions of general relativity are subjects of active current
research. Two of these, black holes and gravity waves, are discussed briefly in the
concluding paragraphs of this chapter.

EXPLORING
Deflection of Light in a Gravitational Field

With the advent of special relativity, several features of the Newtonian law of gravita-
tion, Fg = GMm/r?, became conceptually troublesome. One of these was the implica-
tion from the relativistic concept of mass-energy equivalence that even particles with
zero rest mass should exhibit properties such as weight and inertia, thought of classi-
cally as masslike; classical theory does not include such particles. According to the
equivalence principle, however, light, too, would experience the gravitational force.
Indeed, the deflection of a light beam passing through the gravitational field near a
large mass was one of the first consequences of the equivalence principle to be tested
experimentally.

To see why a deflection of light would be expected, consider Figure 2-19, which
shows a beam of light entering an accelerating compartment. Successive positions of
the compartment are shown at equal time intervals. Because the compartment is accel-
erating, the distance it moves in each time interval increases with time. The path of the
beam of light, as observed from inside the compartment, is therefore a parabola. But
according to the equivalence principle, there is no way to distinguish between an accel-
erating compartment and one with uniform velocity in a uniform gravitational field. We
conclude, therefore, that a beam of light will accelerate in a gravitational field as do
objects with rest mass. For example, near the surface of Earth light will fall with accel-
eration 9.8 m/s?. This is difficult to observe because of the enormous speed of light. For
example, in a distance of 3000 km, which takes about 0.01 second to cover, a beam of
light should fall about 0.5 mm. Einstein pointed out that the deflection of a light beam
in a gravitational field might be observed when light from a distant star passes close to

(@) L
@ I (b)
Light [ ] L
—— O — e — | e e e | @ b e G
beam
vttty

FIGURE 2-19 (a) Light beam moving in a straight line through a compartment that is
undergoing uniform acceleration. The position of the light beam is shown at equally spaced
times t;, t,, t3, t,. (b) In the reference frame of the compartment, the light travels in a
parabolic path, as would a ball were it projected horizontally. Note that in both (a) and (b)
the vertical displacements are greatly exaggerated for emphasis.

This relativistic effect
results in gravitational
lenses in the cosmos that
focus light from extremely
distant galaxies, greatly
improving their visibility in
telescopes, both on Earth
and in orbit.
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Apparent
position of star

| Star

Apparent
light path

Earth

FIGURE 2-20 Deflection
(greatly exaggerated) of a
beam of starlight due to the
gravitational attraction of
the Sun.

the Sun.® The deflection, or bending, is computed as follows. Rewriting the spacetime
interval (Equation 2-42) in polar coordinates,

ds? = ¢?dt? — (dr? + r2de? + r?sin*0de?) 2-47

Since the deflection of the light beam occurs in a plane, the two-dimensional version of
Equation 2-47 is

ds? = c?dt® — (dr® + r?de?) 2-48

Einstein showed that Equation 2-48 is modified in the presence of a (spherical, nonro-
tating) mass M to become

ds? = y(r)%c?dt®> — dr?/y(r)? — r2de? 2-49

where y(r) = (1 — 2GM/c?r)"?, with G = universal gravitational constant and r =
distance from the center of mass M. The factor (r) is roughly analogous to the y of
special relativity. In the following Exploring section on gravitational redshift, we will
describe how v(r) arises. For now, y(r) can be thought of as correcting for gravitational
time dilation (the first term on the right of Equation 2-49) and gravitational length con-
traction (the second term).

This situation is illustrated in Figure 2-20, which shows the light from a distant
star just grazing the edge of the Sun. The gravitational deflection of light (with mass
ym = E/c?) can be treated as a refraction of the light. The speed of light is reduced to
v(r)c in the vicinity of the mass M since y(r) < 1 (see Equation 2-49), thus bending
the wave fronts, and hence the beam, toward M. This is analogous to the deflection of
starlight toward Earth’s surface as a result of the changing density—hence index of
refraction—of the atmosphere. By integrating Equation 2-49 over the entire trajectory
of the light beam (recall that ds = 0 for light) as it passes by M, the total deflection o
is found to be'’

a = 4GM/c’R 2-50

where R = distance of closest approach of the beam to the center of M. For a beam just
grazing the Sun, R = Ry, = solar radius = 6.96 X 10® m. Substituting the values for G
and the solar mass (M = 1.99 X 10% kg) yields o = 1.75 arc second.®

Ordinarily, of course, the brightness of the Sun prevents astronomers (or any-
one else) from seeing stars close to the limbs (edges) of the Sun, except during a total
eclipse. Einstein completed the calculation of « in 1915, and in 1919 expeditions were
organized by Eddington® at two points along the line of totality of a solar eclipse, both
of which were successful in making measurements of « for several stars and testing the
predicted 1/R., dependence of a. The measured values of « for grazing beams at the
two sites were

At Sobral (South America): « = 1.98 + 0.12 arc seconds
At Principe Island (Africa): « = 1.61 * 0.30 arc seconds

their average agreeing with the general relativistic prediction to within about 2 percent.
Figure 2-21 illustrates the agreement of the 1/R., dependence with Equation 2-50.
(Einstein learned of the successful measurements via a telegram from H. A. Lorentz.)
Since 1919, many measurements of « have been made during eclipses. Since the
development of radio telescopes, which are not blinded by sunlight and hence
don’t require a total eclipse, many more measurements have been made. The lat-
est data agree with the deflection predicted by general relativity to within about
0.1 percent.

The gravitational deflection of light is being put to use by modern astrono-
mers via the phenomenon of gravitational lensing to help in the study of galaxies



and other large masses in space. Light from very distant galax-
ies passing near or through other galaxies or clusters of galaxies
between the source and Earth can be bent so as to reach Earth
in much the same way that light from an object on a bench in
the laboratory can be refracted by a glass lens and thus reach the
eye of an observer. An intervening galaxy or cluster of galaxies
can thus produce images of the distant source, even ones magni-
fied and distorted, just as the glass lens can. Figure 2-22a will
serve as a reminder of a refracting lens in the laboratory, while
Figure 2-22b illustrates the corresponding action of a gravita-
tional lens. The accompanying photograph shows the images of
several distant galaxies drawn out into arcs by the lens effect of
the cluster of galaxies in the center. The first confirmed discovery
of images formed by a gravitational lens, the double image of
the quasar QSO 0957, was made in 1979 by D. Walsh and his
coworkers. Since then astronomers have found many such images.
Their discovery and interpretation is currently an active area of
research (see Chapter 13).
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FIGURE 2-21 The deflection angle o depends on
the distance of closest approach R according to
Equation 2-50. Shown here is a sample of the data
for 7 of the 13 stars measured by the Eddington
expeditions. The agreement with the relativistic
prediction is apparent.
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Viewer

FIGURE 2-22 (a) Ordinary
refracting lens bends light,
causing many rays that would
not otherwise have reached
the observer’s eye to do so.
Their apparent origin is the
image formed by the lens.
Notice that the image is not
the same size as the object
(magnification) and, although
not shown here, the shape

of the lens can cause the
image shape to be different
from that of the object.

(b) Gravitational lens has the
same effects on the light from
distant galaxies seen at Earth.
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Images of distant galaxies are drawn out into arcs by the massive cluster of galaxies

Abell 2218, whose enormous gravitational field acts as a lens to magnify, brighten, and
distort the images. Abell 2218 is about 2 billion ¢ - y from Earth. The arcs in this January
2000 Hubble Space Telescope photograph are images of galaxies 10 to 20 billion c - y away.
[NASA, A. Fruchter; ERO Team.]

EXPLORING
Gravitational Redshift

A second prediction of general relativity concerns the rates of clocks and the frequen-
cies of light in a gravitational field. As a specific case that illustrates the gravitational
redshift as a direct consequence of the equivalence principle, suppose we consider
two identical light sources (A and A") and detectors (B and B') located in identical
spaceships (S and S’) as illustrated in Figure 2-23. The spaceship S’ in Figure 2-23b is
located far from any mass. At time t = 0, S’ begins to accelerate, and simultaneously
an atom in the source A’ emits a light pulse of its characteristic frequency f,. During the
time t(= h/c) for the light to travel from A’ to B’, B" acquires a speed v = at = gh/c,
and the detector B, receding from the original location of A’, measures the frequency of
the incoming light to be f redshifted by a fractional amount (f, — f)/f, = g forv =c
(see Section 1-5). Thus,

(fo — f)/fy = Af/f = B = v/c = gh/c? 2-51

Notice that the right side of Equation 2-51 is equal to the gravitational potential (i.e., the
gravitational potential energy per unit mass) Ad = gh between A and B, divided by c?.
According to the equivalence principle, the detector at B in S must also measure the fre-
quency of the arriving light to be f, even though S is at rest on the planet and, therefore,
the shift cannot be due to the Doppler effect! Since the vibrating atom that produced the
light pulse at A can be considered to be a clock, and since no “cycles” of the vibration
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(a) (b)

il

FIGURE 2-23 (a) System S is at rest in the gravitational field of the planet.
(b) Spaceship S’, far from any mass, accelerates with a = —g.

Planet

are lost on the pulse’s trip from A to B, the observer at B must conclude that the clock at
A runs slow, compared with an identical clock (or an identical atom) located at B. Since
A is at the lower potential, the observer concludes that clocks run more slowly the lower
the gravitational potential. This shift of clock rates to lower frequencies, hence longer
wavelengths in lower gravitational potentials, is the gravitational redshift.

In the more general case of a spherical, nonrotating mass M, the change in gravi-
tational potential between the surface at some distance R from the center and a point at
infinity is given by

GM

M
Adp = /%drz@M(—l/r)H’f == 2-52
R

and the factor by which gravity shifts the light frequency is found from
Af/fy = (f, — f)/f = GM/c?R
or
f/fy =1 — GM/c’R (gravitational redshift) 2-53

Notice that if the light is moving the other way, that is, from high to low gravitational
potential, the limits of integration in Equation 2-52 are reversed and Equation 2-53
becomes

f/f, =1+ GM/c?R (gravitational blueshift) 2-54

Analyzing the frequency of starlight for gravitational effects is exceptionally dif-
ficult because several shifts are present. For example, the light is gravitationally red-
shifted as it leaves the star and blueshifted as it arrives at Earth. The blueshift near
Earth is negligibly small with current measuring technology; however, the redshift
due to the receding of nearby stars and distant galaxies from us as a part of the gen-
eral expansion of the universe is typically much larger than gravitational effects and,
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together with thermal frequency broadening in the stellar atmospheres, results in large
uncertainties in measurements. Thus, it is quite remarkable that the relativistic predic-
tion of Equation 2-54 has been tested in the relatively small gravitational field of Earth.
R. V. Pound and his coworkers,? first in 1960 and then again in 1964 with improved
precision, measured the shift in the frequency of 14.4 keV gamma rays emitted by >'Fe
falling trough a height h of only 22.5 m. Using the Mdssbauer effect, an extremely
sensitive frequency-shift-measuring technique developed in 1958, their measure-
ments agreed with the predicted fractional blueshift gh/c? = 2.45 X 10~* to within
1 percent. Equations 2-53 and 2-54 have been tested a number of times since then—
using atomic clocks carried on aircraft, as described in Section 1-4, and, in 1980, by
R. F. C. Vessot and his coworkers, using a precision microwave transmitter carried to
10,000 km from Earth by a space probe. These, too, agree with the relativistically pre-
dicted frequency shift, the latter to one part in 14,000. More recently, in 2010 J. C.-W.
Chou and his coworkers at the National Institute of Science and Technology (NIST)
used precision optical clocks to detect the minuscule shift in a transition in an 2’Al ion
between optical clocks differing in elevation by only 33 cm.

Question

7. The frequency f in Equation 2-53 can be shifted to zero by an appropriate value
of M/R. What would be the corresponding value of R for a star with the mass of
the Sun? Speculate on the significance of this result.

More

The inability of Newtonian gravitational theory to correctly account
for the observed rate at which the major axis of Mercury’s orbit
precessed about the Sun was a troubling problem, pointing as it did
to some subtle failure of the theory. Einstein’s first paper on general
relativity quantitatively explained the advance of the Perihelion of
Mercury’s Orbit, setting the stage for general relativity to supplant the
old Newtonian theory. A clear description of the relativistic explana-
tion is on the home page: www.whfreeman.com/tiplermodernphys-
ics6e. See also Equations 2-55 through 2-57 here, as well as Figure
2-24 and Table 2-2.

More

General relativity includes a gravitational interaction for particles with
zero rest mass, such as photons, which are excluded in Newtonian
theory. One consequence is the prediction of a Delay of Light in a
Gravitational Field. This phenomenon and its subsequent observation
are described qualitatively on the home page: www.whfreeman.com/
tiplermodernphysics6e. See also Equation 2-58 here, as well as Figures
2-25 and 2-26.

Black Holes Black holes were first predicted by Oppenheimer and Snyder in
1939.2* According to the general theory of relativity, if the density of an object such as a
star is great enough, the gravitational attraction will be so large that nothing can escape


http://www.whfreeman.com/tiplermodernphys-ics6e.See
http://www.whfreeman.com/tiplermodernphys-ics6e.See
http://www.whfreeman.com/tiplermodernphys-ics6e.See
http://www.whfreeman.com/
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from its surface, not even light or other electromagnetic radiation. It is as if space itself
were being drawn inward faster than light could move outward through it. A remarkable
property of such an object is that nothing that happens inside it can be communicated to
the outside world. This occurs when the gravitational potential at the surface of the mass
M becomes so large that the frequency of radiation emitted at the surface is redshifted to
zero. From Equation 2-53 we see that the frequency will be zero when the radius of the
mass has the critical value Rg = GM/c?. This result is a consequence of the principle
of equivalence, but Equation 2-53 is a v << ¢ approximation. A precise derivation of
the critical value of the radius Rg, called the Schwarzschild radius, yields

_2MG

R
G CZ

2-59

For an object with mass equal to that of our Sun to be a black hole, its radius
would be about 3 km. A large number of black holes have been identified by astrono-
mers in recent years, one of them in the center of the Milky Way (see Chapter 13).

An interesting historical note is that Equation 2-59 was first derived by the
nineteenth-century French physicist Pierre Laplace using Newtonian mechanics to
compute the escape velocity v, from a planet of mass M before anyone had ever heard
of Einstein or black holes. The result, derived in first-year physic courses by setting
the kinetic energy of the escaping object equal to the gravitational potential energy at
the surface of the planet (or star), is

2GM
Ve = [T,

Setting v, = ¢ gives Equation 2-59. Laplace obtained the correct result by making two
fundamental errors that just happened to cancel each other!

Gravitational Waves Einstein’s formulation of general relativity in 1916 explic-
itly predicted the existence of gravitational radiation. He showed that, just as acceler-
ated electric charges generate time-dependent electromagnetic fields in space—that
is, electromagnetic waves—accelerated masses would create time-dependent gravita-
tional fields in space—that is, gravitational waves—that propagate
from their source at the speed of light. The gravitational waves are
propagating ripples, or distortions of spacetime. Figure 2-27 illus-

stars orbiting each other, one of which was emitting periodic
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trates gravitational radiation emitted by two merging black holes

distorting the otherwise flat “fabric” of spacetime. _ ‘
The best experimental evidence that exists thus far in support

of the gravitational wave prediction is indirect. In 1974 Hulse and : )

Taylor?® discovered the first binary pulsar, that is, a pair of neutron 2

flashes of electromagnetic radiation (pulses). In an exquisitely pre-
cise experiment they showed that the gradual decrease in the
orbital period of the pair was in good agreement with the general
relativistic prediction for the rate of loss of gravitational energy via
the emission of gravitational waves.

Experiments are currently under way in several countries to

FIGURE 2-27 Gravitational waves, intense
ripples in the fabric of spacetime, are expected to
be generated by a merging binary system of
neutron stars or black holes. The amplitude

directly detect gravitational waves arriving at Earth. One of the most  gecreases with distance due to the 1/R falloff and

promising is LIGO (Laser Interferometer Gravitational-Wave because waves farther from the source were

Observatory), a pair of large Michelson interferometers, one at the  emitted at an earlier time, when the emission was

Livingston Observatory in Louisiana and one at the Hanford  weaker. [Courtesy of Patrick Brady.]
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FIGURE 2-28 The LIGO
detectors are equal-arm
Michelson interferometers.

The mirrors, each 25 cm in
diameter by 10 cm thick and
isolated from Earth’s motions,
are also the test masses of the
gravitational wave detector.
Avrrival of a gravitational wave
would change the length of each
arm by about the diameter of an
atomic nucleus and result in a
light signal at the photodetector.

Aerial view of the LIGO
gravity wave interferometer
near Hanford, Washington.
Each of the two arms is 4 km
long. [CalTech/LIGO]

T Im
4 km Light storage arm
M are mirrors/test masses
- Im
M M
I:i] T Light storage arm
Laser Beam L
splitter [ 4 km 1

U Photodetector

Observatory 3002 km away in Washington, operating in coincidence. Figure 2-28 illus-
trates one of the LIGO interferometers. Each arm is 4 km long. The laser beams are
reflected back and forth making about 75 round trips along each arm and recombining
at the photodetector, so that the effective lengths of the arms is about 400 km. (A half-
size but equally sensitive instrument using Fabry-Perot cavities is also housed at the
Hanford Observatory.) The arrival of a gravitational wave would stretch one arm of the
interferometer by about 1/1000 of the diameter of a proton and squeeze the other arm by
the same minuscule amount! Nonetheless, that tiny change in the lengths is sufficient to
very slightly change the relative phase of the recombining laser beams and produce a
shift in interference fringes. The two LIGO interferometers must record the event within
10 ms of each other for the signal to be interpreted as a gravitational wave, that being
the travel time between the two observatories for a gravitational wave moving at
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speed c. LIGO completed its two-year, low-sensitivity initial operational phase and
went online in mid-2002. By 2008 LIGO had completed five science runs, the fifth (S5)
including coincidence operations with the GEO 600 interferometer near Hannover, Ger-
many, and the Virgo interferometer in Cascina, Italy. At this writing a sixth science run
(S6) is under way. These instruments are by far the most sensitive scientific instruments
ever built. Thus far, none of the half-dozen or so experiments under way around the
world has confirmed detection of a gravitational wave.?® On completion of S6 at the end
of 2010 the LIGO interferometers were shut down and disassembled in preparation for
the installation of Advanced LIGO. The new instruments will increase the system’s
sensitivity by a factor of 10 and its range into the cosmos by a factor of 1000, as Figure
2-29 illustrates. Advanced LIGO is scheduled to begin operation in 2014.

There is still an enormous amount to be learned about the predictions and impli-
cations of general relativity—not just about such things as black holes and gravity
waves, but also, for example, about gravity and spacetime in the very early universe,
when forces were unified and the constituents were closely packed. These and other
fascinating matters are investigated more specifically in the areas of particle physics
(Chapter 12) and astrophysics and cosmology (Chapter 13), fields of research linked
by general relativity, perhaps the grandest of Einstein’s great scientific achievements.

Question

8. Speculate on what the two errors made by Laplace in deriving Equation 2-59
might have been.

Ophiuchus
superclustel . .
“Hercules

Capricornus  *
void 100 million ly

=
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supercluster

Canes-Major -
. void i
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This application of
Michelson’s interferometer
may well lead to the

first direct detection

of “ripples” or waves in
spacetime.

FIGURE 2-29 Comparison of
the ranges of LIGO and
Advanced LIGO. Each dot in
the diagram represents a
galaxy. [LIGO/Cal Tech]
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Summary
TOPIC RELEVANT EQUATIONS AND REMARKS
1. Relativistic momentum p = ymu 2-7
The relativistic momentum is conserved and approaches mu for
v << ¢.y = (1 — u¥c® Y2 in Equation 2-7, where u = particle
speed in S.
2. Relativistic energy E = ymc? 2-10
Total energy The relativistic total energy is conserved.
Kinetic energy E, = ymc? — mc? 2-9
mc? is the rest energy. y = (1 — u%c?) Y2 in Equations 2-9 and 2-10.
3. Lorentz transformation for Eand p.  p; = vy(p, — VE/c?) p; = p, 5
E'=~v(E-w) pi=p
where v = relative speed of the systems and y = (1 — v#/c?) "2
4. Mass/energy conversion Whenever additional energy AE in any form is stored in an object,
the rest mass of the object is increased by Am = AE/c%
5. Invariant mass (mc?) = E2 — (pc)? 2-32
The energy and momentum of any system combine to form an
invariant four vector whose magnitude is the rest energy of the
mass m.
6. Force in relativity The force F = ma is not invariant in relativity. Relativistic force is
defined as
Fodp_ d(ymu) 2.8
dt dt
7. General relativity
Principle of equivalence A homogeneous gravitational field is completely equivalent to a
uniformly accelerated reference frame.
Invariant interval ds? = c?dt? — (dx? + dy? + dz?) 2-42

General References

The following general references are written at a level appro-
priate for readers of this book.

Alder, R., M. Bazin, and M. Schiffer, Introduction to General
Relativity, McGraw-Hill, New York, 1965.

Bohm, D., The Special Theory of Relativity, W. A. Benjamin,
New York, 1965.

French, A. P., Albert Einstein: A Centenary Volume, Harvard
University Press, Cambridge, MA, 1979. This is an

excellent collection of contributions from many people
about Einstein’s life and work.

Kogut, J. B., Introduction to Relativity, Harcourt/Academic
Press, San Diego, CA, 2001. Our discussion of the invari-
ant interval was based in part on that in section 7.2 in
this excellent book.

Lorentz, H. A., A. Einstein, H. Minkowski, and W. Weyl, The
Principle of Relativity: A Collection of Original Memoirs
on the Special and General Theory of Relativity (trans.



W. Perrett and J. B. Jeffery), Dover, New York, 1923.
Two of Einstein’s papers reprinted here are of interest
in connection with this chapter: “On the Electrodynam-
ics of Moving Bodies” [Annalen der Physik, 17 (1905)]
and “Does the Inertia of a Body Depend upon Its Energy
Content?” [Annalen der Physik, 17 (1905)].

Ohanian, H. C., Special Relativity: A Modern Introduction,
Physics Curriculum & Instruction, 2001.

Notes

1. This gedankenexperiment (thought experiment) is based
on one first suggested by G. N. Lewis and R. C. Tolman,
Philosophical Magazine, 18, 510 (1909).

2. You can see that this is so by rotating Figure 2-1a through
180° in its own plane; it then matches Figure 2-1b exactly.

3. C. G. Adler, American Journal of Physics, 55, 739 (1987).

4. This idea grew out of the results of the measurements
of masses in chemical reactions in the nineteenth century,
which, within the limits of experimental uncertainties of the
time, were always observed to conserve mass. The conser-
vation of energy had a similar origin in the experiments of
James Joule (1818-89) as interpreted by Hermann von Helm-
holtz (1821-94). This is not an unusual way for conservation
laws to originate; scientists still do it this way.

5. The approximation of Equation 2-10 used in this discus-
sion was, of course, not developed from Newton’s equations.
The rest energy mc? has no classical counterpart.

6. “Facilitates” means that we don’t have to make frequent
unit conversions or carry along large powers of 10 with nearly
every factor in many calculations. However, a word of cau-
tion is in order. Always remember that the eV is not a basic S
unit. When making calculations whose results are to be in Sl
units, don’t forget to convert the eV!

7. A. Einstein, Annalen der Physik, 17 (1905).

8. Strictly speaking, the time component should be written
icAt, where i = (—1)¥2. The i is the origin of the minus sign
in the spacetime interval, as well as in Equation 2-32 for the
energy/momentum four vector and other four vectors in both
special and general relativity. Its inclusion was a contribu-
tion of Hermann Minkowski (1864-1909), a Russian-German
mathematician, who developed the geometric interpretation of
relativity and who was one of Einstein’s professors at Zurich.
Consideration of the four-dimensional geometry is beyond
the scope of our discussions, so we will not be concerned with
the i.

9. Other conservation laws must also be satisfied, for exam-
ple, electric charge, angular momentum.

10. The positron is a particle with the same mass as an ordi-
nary electron but with a positive electric charge of the same
magnitude as that carried by the electron. It and other antipar-
ticles will be discussed in Chapters 11 and 12.

11. Since electrons are thought to be point particles, that is,
they have no space dimensions, it isn’t clear what it means to
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Pais, A., Subtle is the Lord ..., Oxford University Press,
Oxford, 1982.

Resnick, R., Introduction to Relativity, Wiley, New York, 1968.

Rosser, W. G. V., The Theory of Relativity, Butterworth,
London, 1964.

Taylor, E. F., and J. A. Wheeler, Spacetime Physics, 2d ed.,
W. H. Freeman and Co., 1992. This is a good book with
many examples, problems, and diagrams.

“hit” an electron. Think of it as the photon close to the elec-
tron’s location, hence within its strong electric field.

12. Such a system is called a polyelectron. It is analogous to
an ionized hydrogen molecule much as positronium is analo-
gous to a hydrogen atom (see the caption for Figure 2-12).
13. From Einstein’s lecture in Kyoto in late 1922. See Pais
(1982).

14. From an unpublished paper now in the collection of the
Pierpont Morgan Library in New York. See Pais (1982).

15. Apparent forces are inertial in nature, that is, they are
proportional to mass and do not exist in an appropriately cho-
sen coordinate system. Actual, or “real” forces, such as the
spring force and the Coulomb force, are independent of mass.
16. Einstein inquired of the astronomer George Hale (after
whom the 5 m telescope on Palomar Mountain is named) in
1913 whether such minute deflections could be measured
near the Sun. The answer was no, but a corrected calculation
two years later doubled the predicted deflection and brought
detection to within the realm of possibility.

17. This is not a simple integration. See, for example, Adler
et al., Introduction to General Relativity (McGraw-Hill,
New York, 1963).

18. Both Newtonian mechanics and special relativity pre-
dict half this value. The particle-scattering formula used in
Chapter 4 to obtain Equation 4-3 applied to the gravitational
deflection of a photon of mass hv/c? by the solar mass M, at
impact parameter b equal to the solar radius R shows how
this value arises.

19. A copy of Einstein’s work (he was then in Berlin) was
smuggled out of Germany to Eddington in England so that
he could plan the project. Germany and England were then at
war. Arthur S. Eddington was at the time director of the pres-
tigious Cambridge Observatory. British authorities approved
the eclipse expeditions to avoid the embarrassment of putting
such a distinguished scientist as Eddington, a conscientious
objector, into a wartime internment camp.

20. See, for example, R. V. Pound and G. A. Rebka, Jr.,
Physical Review Letters, 4, 337 (1960).

21. These values are relative to the fixed stars.

22. A. Einstein, “The Foundation of the General Theory of
Relativity,” Annalen der Physik, 49, 769 (1916).

23. 1. 1. Shapiro et al., Physical Review Letters, 26, 1132
(1971).
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24. Actually, the first recorded suggestion of the possibility of
stars so massive that light could not escape from them—*"dark
stars”—was made by John Mitchell, an English rector, in 1783.
The term black hole was coined by John Wheeler in 1968.

25. R. A. Hulse and J. H. Taylor, Astrophysical Journal, 195,
L51 (1975).

Problems
LEVEL I

26. Gravity wave detectors outside the United States are the
TAMA 300 (Japan), GEO 600 (Germany), and Virgo (ltaly).
NASA and the European Space Agency are designing a
space-based gravity wave detector, LISA, that will have arms
5 million kilometers long. The three satellites that will consti-
tute LISA are scheduled for launch in about 2020.

Section 2-1 Relativistic Momentum and Section 2-2 Relativistic

Energy

2-1.  Show that p,, = —pys, Where py, and p,g are the relativistic momenta of the balls in

Figure 2-1, given by

Muyg

p = - p =
" V1 — u3/c? ® V1 - (ufs + ujg)/c?

— 2 /n2
ugp = —UyV1—v?/c

Ug =V

2-2. Show that d(ymu) = m(1 — u?/c?) ¥ du.

2-3.  An electron of rest energy mc? = 0.511 MeV moves with respect to the laboratory
at speed u = 0.6¢. Find (a) v, (b) p in units of MeV/c, (c) E, and (d) E,.

2-4. How much energy would be required to accelerate a particle of mass m from rest to
a speed of (a) 0.5¢, (b) 0.9¢c, and (c) 0.99c? Express your answers as multiples of the rest

energy.

2-5. Two 1 kg masses are separated by a spring of negligible mass. They are pushed
together, compressing the spring. If the work done in compressing the spring is 10 J, find
the change in mass of the system in kilograms. Does the mass increase or decrease?

2-6. At what value of u/c does the measured mass of a particle exceed its rest mass by
(a) 10 percent, (b) a factor of 5, and (c) a factor of 20?

2-7. A cosmic-ray proton is moving at such a speed that it can travel from the Moon to
Earth in 1.5 s. (a) At what fraction of the speed of light is the proton moving? (b) What
is its kinetic energy? (c) What value would be measured for its mass by an observer in
Earth’s reference frame? (d) What percent error is made in the Kinetic energy by using the
classical relation? (The Earth-Moon distance is 3.8 X 105 km. Ignore Earth’s rotation.)
2-8.  How much work must be done on a proton to increase its speed from (a) 0.15c to
0.16c¢? (b) 0.85c to 0.86¢? (c) 0.95c to 0.96c? Notice that the change in the speed is the

same in each case.

2-9. The Relativistic Heavy lon Collider (RHIC) at Brookhaven is colliding fully ionized
gold (Au) nuclei accelerated to an energy of 200 GeV per nucleon. Each Au nucleus con-
tains 197 nucleons. (a) What is the speed of each Au nucleus just before collision? (b) What
is the momentum of each at that instant? (c) What energy and momentum would be mea-
sured for one of the Au nuclei by an observer in the rest system of the other Au nucleus?

2-10. (a) Compute the rest energy of 1 g of dirt. (b) If you could convert this energy
entirely into electrical energy and sell it for 10 cents per kilowatt-hour, how much money
would you get? (c) If you could power a 100 W lightbulb with the energy, for how long

could you keep the bulb lit?

2-11. An electron with rest energy of 0.511 MeV moves with speed u = 0.2c. Find its
total energy, kinetic energy, and momentum.



2-12. A proton with rest energy of 938 MeV has a total energy of 1400 MeV. (a) What is
its speed? (b) What is its momentum?

2-13. The orbital speed of the Sun relative to the center of the Milky Way is about 250 km/s.
By what fraction do the relativistic and Newtonian values differ for (a) the Sun’s momen-
tum and (b) the Sun’s kinetic energy?

2-14. An electron in a hydrogen atom has a speed about the proton of 2.2 X 10° m/s.
(a) By what percent do the relativistic and Newtonian values of E, differ? (b) By what
percent do the momentum values differ?

2-15. Suppose that you seal an ordinary 60 W lightbulb and a suitable battery inside a
transparent enclosure and suspend the system from a very sensitive balance. (a) Compute
the change in the mass of the system if the lamp is on continuously for one year at full
power. (b) What difference, if any, would it make if the inner surface of the container
were a perfect reflector?

Section 2-3 Mass/Energy Conversion and Binding Energy

2-16. Use Appendix A and Table 2-1 to find how much energy is needed to remove one
proton from a “He atom, leaving a ®H atom plus a proton and an electron.

2-17. Use Appendix A and Table 2-1 to find how much energy is required to remove one
of the neutrons from a *H atom to yield a 2H atom plus a neutron.

2-18. The energy released when sodium and chlorine combine to form NaCl is 4.2 eV.
(a) What is the increase in mass (in unified mass units) when a molecule of NaCl is dissociated
into an atom of Na and an atom of CI? (b) What percentage of error is made in neglecting this
mass difference? (The mass of Na is about 23 u and that of Cl is about 35.5 u.)

2-19. In a nuclear fusion reaction two ?H atoms are combined to produce one *He.
(a) Calculate the decrease in rest mass in unified mass units. (b) How much energy is
released in this reaction? (c) How many such reactions must take place per second to pro-
duce 1 W of power?

2-20. An elementary particle of mass M completely absorbs a photon, after which its mass
is 1.01M. (a) What was the energy of the incoming photon? (b) Why is that energy greater
than 0.01Mc??

2-21. When a beam of high-energy protons collides with protons at rest in the laboratory
(e.g., in a container of water or liquid hydrogen), neutral pions (w°) are produced by the
reaction p+p — p -+ p + w°. Compute the threshold energy of the protons in the beam
for this reaction to occur (see Table 2-1 and Example 2-13).

2-22. The energy released in the fission of a 2*U nucleus is about 200 MeV. How much
rest mass (in kg) is converted to energy in this fission?

2-23. The temperature of the sun’s core is about 1.5 X 107 K. Assuming the core to consist
of atomic hydrogen gas and recalling that temperature measures the average kinetic energy
of the atoms, compute (a) the thermal energy of 1 kg of the gas and (b) the mass associated
with this energy. [E, = 3KT /2], where k is the Boltzmann constant (see Chapter 3).]

Section 2-4 Invariant Mass

2-24. Compute the force exerted on the palm of your hand by the beam from a 1.0 W
flashlight (a) if your hand absorbs the light and (b) if the light reflects from your hand.
What would be the mass of a particle that exerts that same force in each case if you hold
it at Earth’s surface?

2-25. An electron-positron pair combined as positronium is at rest in the laboratory. The
pair annihilate, producing a pair of photons (gamma rays) moving in opposite directions
in the lab. Show that the invariant rest energy of the gamma rays is equal to that of the
electron pair.

2-26. Show that Equation 2-31 can be written E = mc?(1 + p?/m?c?)Y2 and use the bino-
mial expansion to show that, when pc is much less than mc?, E = mc? + p?/2m.

Problems
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2-27. An electron of rest energy 0.511 MeV has a total energy of 5 MeV. (a) Find its
momentum in units of MeV /c. (b) Find u/c.

2-28. Make a sketch of the total energy of an electron E as a function of its momentum p.
(See Equations 2-36 and 2-40 for the behavior of E at large and small values of p.)

2-29. What is the speed of a particle that is observed to have momentum 500 MeV/c and
energy 1746 MeV? What is the particle’s mass (in MeV /c¢?)?

2-30. An electron of total energy 4.0 MeV moves perpendicular to a uniform magnetic
field along a circular path whose radius is 4.2 cm. (a) What is the strength of the magnetic
field B? (b) By what factor does ym exceed m?

2-31. A proton is bent into a circular path of radius 2 m by a magnetic field of 0.5 T.
(a) What is the momentum of the proton? (b) What is its kinetic energy?

Section 2-5 General Relativity

2-32. For a spinning disk, such as a CD or DVD, show that in the reference frame of the
disk Equation 2-44 follows from Equation 2-43.

2-33. Compute the deflection angle « for light from a distant star that would, according
to general relativity, be measured by an observer on the Moon as the light grazes the edge
of Earth.

2-34. A set of twins work in the Sears Tower, a very tall office building in Chicago. One
works on the top floor and the other works in the basement. Considering general relativity,
which twin will age more slowly? (a) They will age at the same rate. (b) The twin who works
on the top floor will age more slowly. (c) The twin who works in the basement will age more
slowly. (d) It depends on the building’s speed. (e) None of the previous choices is correct.
2-35. Jupiter makes 8.43 orbits/century and exhibits an orbital eccentricity e = 0.048.
Jupiter is 5.2 AU from the Sun (see footnote for Table 2-2) and has a mass 318 times the
Earth’s 5.98 X 10?* kg. What does general relativity predict for the rate of precession of
Jupiter’s perihelion? (It has not yet been measured.) (The astronomical unit AU = the
mean Earth-Sun distance = 1.50 X 10** m.)

2-36. Show that the substitution of dt from Equation 2-45 into Equation 2-44 removes the
spacetime cross term de’dt, resulting in Equation 2-46.

2-37. A synchronous satellite “parked” in orbit over the equator is used to relay micro-
wave transmissions between stations on the ground. To what frequency must the satellite’s
receiver be tuned if the frequency of the transmission from Earth is exactly 9.375 GHz?
(Ignore all Doppler effects.)

2-38. A particular distant star is found to be 92c - y from Earth. On a direct line between us
and the star and 35c¢ - y from the distant star is a dense white dwarf star with a mass equal to
3 times the Sun’s mass M, and a radius of 104 km. Deflection of the light beam from the
distant star by the white dwarf causes us to see it as a pair of circular arcs like those shown
in Figure 2-22(b). Find the angle 2« formed by the lines of sight to the two arcs.

LEVEL II

2-39. A clock is placed on a satellite that orbits Earth with a period of 90 min at an alti-
tude of 300 km. By what time interval will this clock differ from an identical clock on
Earth after 1 year? (Include both special and general relativistic effects.)

2-40. Referring to Example 2-11, find the total energy E’ as measured in S’ where p’ = 0.
2-41. In the Stanford linear collider, small bundles of electrons and positrons are fired at
each other. In the laboratory’s frame of reference, each bundle is about 1 cm long and 10 pm
in diameter. In the collision region, each particle has energy of 50 GeV, and the electrons
and positrons are moving in opposite directions. (a) How long and how wide is each bundle
in its own reference frame? (b) What must be the minimum proper length of the accelera-
tor for a bundle to have both its ends simultaneously in the accelerator in its own reference
frame? (The actual length of the accelerator is less than 1000 m.) (c) What is the length of



a positron bundle in the reference frame of the electron bundle? (d) What are the momen-
tum and energy of the electrons in the rest frame of the positrons?

2-42. The rest energy of a proton is about 938 MeV. If its Kinetic energy is also 938 MeV,
find (a) its momentum and (b) its speed.

2-43. A spaceship of mass 10° kg is coasting through space when suddenly it becomes
necessary to accelerate. The ship ejects 10° kg of fuel in a very short time at a speed of
c/2 relative to the ship. (a) Neglecting any change in the rest mass of the system, calculate
the speed of the ship in the frame in which it was initially at rest. (b) Calculate the speed
of the ship using classical Newtonian mechanics. (c) Use your results from (a) to estimate
the change in the rest mass of the system.

2-44. A clock (or a light-emitting atom) located at Earth’s equator moves at about 463 m/s
relative to one located at the pole. The equator clock is also about 21 km farther from the
center of Earth than the pole clock due to Earth’s equatorial bulge. For an inertial refer-
ence frame centered on Earth, compute the time dilation effect for each clock as seen by
an observer at the other clock. Show that the effects nearly cancel and that, as a result, the
clocks read very close to the same time. (Assume that g is constant over the 21 km of the
equatorial bulge.)

2-45. Professor Spenditt, oblivious to economics and politics, proposes the construction
of a circular proton accelerator around Earth’s circumference using bending magnets that
provide a magnetic field of 1.5 T. (a) What would be the kinetic energy of protons orbit-
ing in this field in a circle of radius Rg? (b) What would be the period of rotation of these
protons?

2-46. In ancient Egypt the annual flood of the Nile was predicted by the rise of Sirius (the
Dog Star). Sirius is one of a binary pair whose companion is a white dwarf. Orbital analy-
sis of the pair indicates that the dwarf’s mass is 2 X 10% kg (i.e., about one solar mass).
Comparison of spectral lines emitted by the white dwarf with those emitted by the same
element on Earth show a fractional frequency shift of 7 X 10™* Assuming this to be due
to a gravitational redshift, compute the density of the white dwarf. (For comparison, the
Sun’s density is 1409 kg/m®.)

2-47. Show that the creation of an electron-positron pair (or any particle-antiparticle pair,
for that matter) by a single photon is not possible in isolation, that is, that additional mass
(or radiation) must be present. (Hint: Use the conservation laws.)

2-48. With inertial systems S and S arranged with their corresponding axes parallel and
S’ moving in the +x direction, it was apparent that the Lorentz transformation for y and
z would be y" = y and z’ = z. The transformation for the y and z components of the
momentum are not so apparent, however. Show that, as stated in Equations 2-16 and 2-17,

py = pyand p; = p,.

LEVEL III

2-49. Two identical particles of rest mass m are each moving toward the other with speed
u in frame S. The particles collide inelastically with a spring that locks shut (Figure 2-9)
and come to rest in S, and their initial kinetic energy is transformed into potential energy.
In this problem you are going to show that the conservation of momentum in reference
frame S’, in which one of the particles is initially at rest, requires that the total rest mass of
the system after the collision be 2m /(1 — u?/c?)2. (a) Show that the speed of the particle

not at rest in frame S’ is
_ 2u
1+ u?/c?

’

and use this result to show that
u? 11— u?/c?
@ 1+ u?c?
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(b) Show that the initial momentum in frame S’ is p’ = 2mu/(1 — u?/c?). (c) After the
collision, the composite particle moves with speed u in S” (since it is at rest in S). Write
the total momentum after the collision in terms of the final rest mass M, and show that the
conservation of momentum implies that M = 2m /(1 — u?/c?)Y2 (d) Show that the total
energy is conserved in each reference frame.
2-50. An antiproton p has the same rest energy as a proton. It is created in the reaction
p+p—p+p+p+p Inan experiment, protons at rest in the laboratory are bom-
barded with protons of kinetic energy E,, which must be great enough so that kinetic energy
equal to 2mc? can be converted into the rest energy of the two particles. In the frame of the
laboratory, the total kinetic energy cannot be converted into rest energy because of conser-
vation of momentum. However, in the zero-momentum reference frame in which the two
initial protons are moving toward each other with equal speed u, the total kinetic energy can
be converted into rest energy. (a) Find the speed of each proton u such that the total kinetic
energy in the zero-momentum frame is 2mc?. (b) Transform to the laboratory’s frame in
which one proton is at rest, and find the speed u’ of the other proton. (c) Show that the
kinetic energy of the moving proton in the laboratory’s frame is E, = 6mc?.
2-51. In a simple thought experiment, Einstein showed that there is mass associated with
electromagnetic radiation. Consider a box of length L and mass M resting on a frictionless
surface. At the left wall of the box is a light source that emits radiation of energy E, which
is absorbed at the right wall of the box. According to classical electromagnetic theory, this
radiation carries momentum of magnitude p = E/c. (a) Find the recoil velocity of the box
such that momentum is conserved when the light is emitted. (Since p is small and M is
large, you may use classical mechanics.) (b) When the light is absorbed at the right wall of
the box, the box stops, so the total momentum remains zero. If we neglect the very small
velocity of the box, the time it takes for the radiation to travel across the box is At = L /c.
Find the distance moved by the box in this time. (c) Show that if the center of mass of the
system is to remain at the same place, the radiation must carry mass m = E /c?,
2-52. A pion spontaneously decays into a muon and a muon antineutrino according to
(among other processes) m~ — .~ + v,,. Recent experimental evidence indicates that the
mass m of the v, is no larger than about 190 keV/c? and may be as small as zero. Assum-
ing that the pion decays at rest in the laboratory, compute the energies and momenta of
the muon and muon antineutrino (a) if the mass of the antineutrino were zero and (b) if
its mass were 190 keV/c?. The mass of the pion is 139.56755 MeV/c? and the mass of the
muon is 105.65839 MeV/c?. (See Chapters 11 and 12 for more on the neutrino mass.)
2-53. Use Equation 2-47 to obtain the gravitational redshift in terms of the wavelength \.
Use that result to determine the shift in wavelength of light emitted by a white dwarf star
at 720.00 nm. Assume the white dwarf has the same mass as the Sun (1.99 x 10% kg) but
a radius equal to only 1 percent of the solar radius Re. (Re = 6.96 X 10® m.)
2-54. For a particle moving in the xy plane of S, show that the y’ component of the accel-
eration is given by

o a, . a,uyv/c?
/ 72(1 - uxV/C2)2 'Yz(l - UXV/CZ)B

2-55. Consider an object of mass m at rest in S acted on by a force F with components F,
and F,. System S’ moves with instantaneous velocity v in the +x direction. Defining the
force with Equation 2-8 and using the Lorentz velocity transformation, show that
(@) Fy = Feand (b) Fy = F,/v. (Hint: See Problem 2-54.)

2-56. An unstable particle of mass M decays into two identical particles, each of
mass m. Obtain an expression for the velocities of the two decay particles in the lab frame
(a) if M is at rest in the lab and (b) if M has total energy 4mc? when it decays and the decay
particles move along the direction of M.




Quantization of
Charge, Light,
and Energy

he idea that all matter is composed of tiny particles, or atoms, dates to the specu-

lations of the Greek philosopher Democritus and his teacher Leucippus in about
450 B.c. However, there was little attempt to correlate such speculations with obser-
vations of the physical world until the seventeenth century. Pierre Gassendi, in the
middle of the seventeenth century, and Robert Hooke, somewhat later, attempted
to explain states of matter and the transitions between them with a model of tiny,
indestructible solid objects flying in all directions. But it was Avogadro’s hypothesis,
advanced in 1811, that all gases at a given temperature contain the same number of
molecules per unit volume, that led to great success in the interpretation of chemical
reactions and to development of kinetic theory in about 1900. It made possible quanti-
tative understanding of many bulk properties of matter and led to general (though not
unanimous) acceptance of the molecular theory of matter. Thus, matter is not continu-
ous, as it appears, but is quantized (i.e., discrete) on the microscopic scale. Scientists
of the day understood that the small size of the atom prevented the discreteness of
matter from being readily observable.

In this chapter, we will study how three additional great quantization discoveries
were made: (1) electric charge, (2) light energy, and (3) energy of oscillating mechan-
ical systems. The quantization of electric charge was not particularly surprising to
scientists in 1900; it was quite analogous to the quantization of mass. However, the
quantization of light energy and mechanical energy, which are of central importance
in modern physics, were revolutionary ideas.

3-1 Quantization of Electric Charge
Early Measurements of eand e/m

The first estimates of the order of magnitude of the electric charges found in atoms
were obtained from Faraday’s law. The work of Michael Faraday (1791-1867) in
the early to mid-1800s stands out even today for its vision, experimental ingenuity,
and thoroughness. The story of this self-educated blacksmith’s son who rose from
errand boy and bookbinder’s apprentice to become the director of the distinguished
Royal Institution of London and the foremost experimental investigator of his time
is a fascinating one. One aspect of his work concerned the study of the conduction

3-1

3-2

3-3

Quantization
of Electric
Charge
Blackbody
Radiation

The
Photoelectric
Effect

X-Rays and
the Compton
Effect

119

123

131

137

119



120

Chapter 3 Quantization of Charge, Light, and Energy

12

56

of electricity in weakly conducting solutions. His discovery that the same quantity
of electricity, F, now called the faraday and equal to about 96,500 C, always decom-
poses one gram-ionic weight; that is, Avogadro’s number N,, of monovalent ions
leads to the reasonable conclusion that each monovalent ion carries the same electric
charge, e, and therefore

F= NAe 3-1

Equation 3-1 is called Faraday’s law of electrolysis. While F was readily measur-
able, neither N, nor e could be experimentally determined at the time. Faraday was
aware of this but could not determine either quantity. Even so, it seemed logical to
expect that electric charge, like matter, was not continuous but consisted of particles
of some discrete minimum charge. In 1874, G. J. Stoney? used an estimate of N,
from Kinetic theory to compute the value of e from Equation 3-1 to be about 10~ % C;
however, direct measurement of the value of e had to await an ingenious experiment
conducted by R. A. Millikan a third of a century later.

Meanwhile, Pieter Zeeman, in 1896, obtained the first evidence for the existence
of atomic particles with a specific charge-to-mass ratio by looking at the changes in
the discrete spectral lines emitted by atoms when they were placed in a strong mag-
netic field. He discovered that the individual spectral lines split into three very closely
spaced lines of slightly different frequencies when the atoms were placed in the mag-
netic field. (This phenomenon is called the Zeeman effect and will be discussed fur-
ther in Chapter 7.) Classical electromagnetic theory relates the slight differences in
the frequencies of adjacent lines to the charge-to-mass ratio of the oscillating charges
producing the light.

From his measurements of the splitting, Zeeman calculated g/m to be about
1.6 X 10" C/kg, which compares favorably with the presently accepted value 1.759 X
10* C/kg. From the polarization of the spectral lines, Zeeman concluded that the
oscillating particles were negatively charged.

Discovery of the Electron: J. J. Thomson’s Experiment

The year following Zeeman’s work, J. J. Thomson® measured the g/m value for the
so-called cathode rays that were produced in electrical discharges in gases and pointed
out that, if their charge was Faraday’s charge e as determined by Stoney, then their
mass was only a small fraction of the mass of a hydrogen atom. Two years earlier
J. Perrin had collected cathode rays on an electrometer and found them to carry a
negative electric charge.* Thus, with his measurement of q/m for the cathode rays,
Thomson had, in fact, discovered the electron. That direct measurement of e/m of
electrons by J. J. Thomson in 1897, a little over a century ago, can be justly consid-
ered to mark the beginning of our understanding of atomic structure.

When a uniform magnetic field of strength B is established perpendicular to the
direction of motion of charged particles, the particles move in a circular path. The
radius R of the path can be obtained from Newton’s second law, by setting the mag-
netic force quB equal to the mass m times the centripetal acceleration u?/R, where u
is the speed of the particles:

mu?

q u
B=— or R
qu R

mu

= — and — = 3-2
qB m RB

Thomson performed two e /m experiments of somewhat different designs. The second,

more reproducible of the two has become known as the J. J. Thomson experiment

(see Figure 3-1). In this experiment he adjusted perpendicular B and € fields so that
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FIGURE 3-1 J.J. Thomson’s tube for measuring e/m. Electrons from the cathode C pass
through the slits at A and B and strike a phosphorescent screen. The beam can be deflected by
an electric field between the plates D and E or by a magnetic field (not shown) whose direction
is perpendicular to the electric field between D and E. From the deflections measured on a
scale on the tube at the screen, e/m can be determined. [From J. J. Thomson, “Cathode Rays,”
Philosophical Magazine (5), 44, 293 (1897).]

the particles were undeflected. This allowed him to determine the speed of the elec-
trons by equating the magnitudes of the magnetic and electric forces and then to com-
pute e/m(= q/m) from Equation 3-2:

3-3

quB = g¢é or u=—

B
Thomson’s experiment was remarkable in that he measured e /m for a subatomic par-
ticle using only a voltmeter, an ammeter, and a measuring rod, obtaining the result
0.7 X 10" C/kg. Present-day particle physicists routinely use the modern equivalent
of Thomson’s experiment to measure the momenta of elementary particles.

Thomson repeated the experiment with different gases in the tube and different met-
als for cathodes and always obtained the same value for e/m within his experimental

J. J. Thomson in his laboratory. He is facing the screen end of an e/m tube; an
older cathode-ray tube is visible in front of his left shoulder. [Courtesy of Cavendish
Laboratory.]

Thomson’s technique for
controlling the direction
of the electron beam
with “crossed” electric
and magnetic fields was
subsequently applied

in the development of
cathode-ray tubes used
in oscilloscopes and the
picture tubes of older
television receivers.
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uncertainty, thus showing that these particles were common to all metals. The agree-
ment of these results with Zeeman’s led to the unmistakable conclusion that these par-
ticles—called corpusles by Thomson and later called electrons by Lorentz—having
one unit of negative charge e and mass about 2000 times less than the mass of the
lightest known atom, were constituents of all atoms.

Questions

1. One advantage of Thomson’s evidence over others (such as Faraday’s or
Zeeman’s) was its directness. Another was that it was not just a statistical
inference. How is it shown in the Thomson experiment that e /m is the same
for a large number of particles?

2. Thomson noted that his values for e /m were about 2000 times larger than those
for the lightest known ion, that of hydrogen. Could he distinguish from his data
between the possibility that this was the result of the electron having either a
greater charge or a smaller mass than the hydrogen ion?

Measuring the Electric Charge: Millikan’s Experiment

The fact that Thomson’s e /m measurements always yielded the same results regardless
of the materials used for the cathodes or the kind of gas in the tube was a persuasive
argument that the electrons all carried one unit e of negative electric charge. Thomson
initiated a series of experiments to determine the value of e. The first of these experi-
ments, which turned out to be very difficult to do with high precision, were carried
out by his student J. S. E. Townsend. The idea was simple: A small (but visible)
cloud of identical water droplets, each carrying a single charge e was observed to
drift downward in response to the gravitational force. The total charge on the cloud
Q = Ne was measured, as were the mass of the cloud and the radius of a single drop.
Finding the radius allowed calculation of N, the total number of drops in the cloud
and, hence, the value of e.

The accuracy of Thomson’s method was limited by the uncertain rate of evapo-
ration of the cloud. In addition, the assumption that each droplet contained a single
charge could not be verified. R. A. Millikan tried to eliminate the evaporation prob-
lem by using a field strong enough to hold the top surface of the cloud stationary so
that he could observe the rate of evaporation and correct for it. That, too, turned out
to be very difficult, but then he made a discovery of enormous importance, one that
allowed him to measure directly the charge of a single electron! Millikan described
his discovery in the following words:

It was not found possible to balance the cloud as had been originally
planned, but it was found possible to do something much better: namely,
to hold individual charged drops suspended by the field for periods vary-
ing from 30 to 60 seconds. I have never actually timed drops which
lasted more than 45 seconds, although I have several times observed
drops which in my judgment lasted considerably longer than this. The
drops which it was found possible to balance by an electric field always
carried multiple charges, and the difficulty experienced in balancing
such drops was less than had been anticipated.®
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The discovery that he could see individual droplets
and that droplets suspended in a vertical electric field
sometimes suddenly moved upward or downward, evi-
dently because they had picked up a positive or nega- (J;)\/,
tive ion, led to the possibility of observing the charge ©)
of a single ion. In 1909, Millikan began a series of
experiments that not only showed that charges occurred
in integer multiples of an elementary unit e, but mea- )
sured the value of e to about 1 part in 1000. To elimi-
nate evaporation, he used oil drops sprayed into dry air
between the plates of a capacitor (Figure 3-2). These
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drops were already charged by the spraying process,  FIGURE 3-2 Schematic diagram of Millikan’s oil-drop

that is, by friction in the spray nozzle, and during the  experiment. The drops are sprayed from an atomizer and pick
course of the observation they picked up or lost addi-  up astatic charge, a few falling through the hole in the top
tional charges. By switching the direction of the electric ~ Plate. Their fall due to gravity and their rise due to the electric
field between the plates, a drop could be moved up or field between the capacitor plates can be observed with the

down and observed for several hours. When the charge
on a drop changed, the velocity of the drop with the field
“on” changed also. Assuming only that the terminal
velocity of the drop was proportional to the force acting
on it (this assumption was carefully checked experimen-
tally), Millikan’s oil drop experiment® gave conclusive evidence that electric charges
always occur in integer multiples of a fundamental unit e, whose value he determined
to be 1.601 X 107!° C. The currently accepted value’ is 1.60217653 x 107 C. An
expanded discussion of Millikan’s experiment is included in the Classical Concept
Review.

3-2 Blackbody Radiation

The first clue to the quantum nature of radiation came from the study of thermal radi-
ation emitted by opaque bodies. When radiation falls on an opaque body, part of it
is reflected and the rest is absorbed. Light-colored bodies reflect most of the visible
radiation incident on them, whereas dark bodies absorb most of it. The absorption part
of the process can be described briefly as follows. The radiation absorbed by the body
increases the kinetic energy of the constituent atoms, which oscillate about their equi-
librium positions. Because the average translational kinetic energy of the atoms deter-
mines the temperature of the body, the absorbed energy causes the temperature to
rise. However, the atoms contain charges (the electrons), and they are accelerated by
the oscillations. Consequently, as required by electromagnetic theory, the atoms emit
electromagnetic radiation, which reduces the kinetic energy of the oscillations and
tends to reduce the temperature. When the rate of absorption equals the rate of emis-
sion, the temperature is constant and we say that the body is in thermal equilibrium
with its surroundings. A good absorber of radiation is therefore also a good emitter.
The electromagnetic radiation emitted under these circumstances is called ther-
mal radiation. At ordinary temperatures (below about 600°C) the thermal radiation
emitted by a body is not visible; most of the energy is concentrated in wavelengths
much longer than those of visible light. As a body is heated, the quantity of thermal
radiation emitted increases, and the energy radiated extends to shorter and shorter
wavelengths. At about 600°~700°C there is enough energy in the visible spectrum so

telescope. From measurements of the rise and fall times, the
electric charge on a drop can be calculated. The charge on a
drop could be changed by exposure to x rays from a source
(not shown) mounted opposite the light source.
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FIGURE 3-3 Radiation emitted by the object Radiation

at temperature T that passes through the slit is
dispersed according to its wavelengths. The prism
shown would be an appropriate device for that
part of the emitted radiation in the visible region.
In other spectral regions other types of devices or
wavelength-sensitive detectors would be used.

Prism

Dispersed
radiation

2~

Detector

Object

that the body glows and becomes a dull red. At higher temperatures it becomes bright
red or even “white hot.”

A body that absorbs all radiation incident on it is called an ideal blackbody. In
1879 Josef Stefan found an empirical relation between the power radiated by an ideal
blackbody and the temperature:

R=oT* 3-4

where R is the power radiated per unit area, T is the absolute temperature, and o =
5.6703 X 10~® W/m?K* is a constant called Stefan’s constant. This result was also
derived on the basis of classical thermodynamics by Ludwig Boltzmann about five
years later, and Equation 3-4 is now called the Stefan-Boltzmann law. Note that the
power per unit area radiated by a blackbody depends only on the temperature and not
on any other characteristic of the object, such as its color or the material of which
it is composed. Note, too, that R tells us the rate at which energy is emitted by the
object. For example, doubling the absolute temperature of an object, for example, a
star, increases the energy flow out of the object by a factor of 2* = 16. An object at
room temperature (300°C) will double the rate at which it radiates energy as a result
of a temperature increase of only 57°C. Thus, the Stefan-Boltzmann law has an enor-
mous effect on the establishment of thermal equilibrium in physical systems.

Objects that are not ideal blackbodies radiate energy per unit area at a rate less
than that of a blackbody at the same temperature. For those objects the rate does
depend on properties in addition to the temperature, such as color and the composition
of the surface. The effects of those dependencies are combined into a factor called the
emissivity €, which multiplies the right side of Equation 3-4. The values of €, which is
itself temperature dependent, are always less than unity.

Like the total radiated power R, the spectral distribution of the radiation emitted
by a blackbody is found empirically to depend only on the absolute temperature T.
The spectral distribution is determined experimentally as illustrated schematically in
Figure 3-3. With R(\) d\ the power emitted per unit area with wavelength between A
and \ + dA, Figure 3-4 shows the measured spectral distribution function R(\) versus
\ for several values of T ranging from 1000 K to 6000 K.

The R(\) curves in Figure 3-4 are quite remarkable in several respects. One is
that the wavelength at which the distribution has its maximum value varies inversely
with the temperature:

Ay % =
moT
or
AT = constant = 2.898 X 10 °*m-K 3-5
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This result is known as Wien’s displacement law. It was obtained by Wien in 1893.
Examples 3-1 and 3-2 illustrate its application.

How Big Is a Star? Measurement of the wavelength at which
the spectral distribution R(\) from a certain star is maximum indicates that the
star’s surface temperature is 3000 K. If the star is also found to radiate 100 times
the power P, radiated by the Sun, how big is the star? (The symbol ® = Sun.)
The Sun’s surface temperature is 5800 K.

SOLUTION

Assuming the Sun and the star both radiate as blackbodies (astronomers nearly
always make that assumption, based on, among other things, the fact that the solar
spectrum is very nearly that of an ideal blackbody), their surface temperatures have
been determined from Equation 3-5 to be 5800 K and 3000 K, respectively. Mea-
surement also indicates that Py, = 100 P,. Thus, from Equation 3-4 we have that

_ Pstar _ 100 Py, — oT¢
s (area)sgar 4ar gtar s
and
P P
Ro ~ o = oT4

 (area),  4mry

Thus, we have
T 4
e = 100 ré<®>
Tstar

To 2 5800 \2
oo = 10 re(Tsm) - 10(3000> fo

Mo = 374715

Since r, = 6.96 X 10® m, this star has a radius of about 2.6 X 10'° m, or about
half the radius of the orbit of Mercury. This star is a red giant (see Chapter 13).
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FIGURE 3-4 Spectral
distribution function R(\)
measured at different
temperatures. The R(\)

axis is in arbitrary units for
comparison only. Notice

the range of \ in the visible
spectrum. The Sun emits
radiation very close to that of
a blackbody at 5800 K. \, is
indicated for the 5000 K and
6000 K curves.
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FIGURE 3-5 A small hole
in the wall of a cavity
approximating an ideal
blackbody. Radiation
entering the hole has little
chance of leaving before it is
completely absorbed within
the cavity.

16

Rayleigh-Jeans Equation

The calculation of the distribution function R(\) involves the calculation of the
energy density of electromagnetic waves in a cavity. Materials such as black velvet
or lampblack come close to being ideal blackbodies, but the best practical realiza-
tion of a ideal blackbody is a small hole leading into a cavity (such as a keyhole in a
closet door; see Figure 3-5). Radiation incident on the hole has little chance of being
reflected back out of the hole before it is absorbed by the walls of the cavity. The
power radiated out of the hole is proportional to the total energy density U (the energy
per unit volume of the radiation in the cavity). The proportionality constant can be
shown to be ¢ /4, where c is the speed of light.?
1

R 4cU 3-6
Similarly, the spectral distribution of the power emitted from the hole is proportional
to the spectral distribution of the energy density in the cavity. If u(\) dX is the frac-
tion of the energy per unit volume in the cavity in the range d\, then u(\) and R(\)
are related by

R(\) = %cu(h) 3-7

The energy density distribution function u(\) can be calculated from classical
physics in a straightforward way. The method involves finding the number of modes
of oscillation of the electromagnetic field in the cavity with wavelengths in the inter-
val d\ and multiplying by the average energy per mode. The result is that the number
of modes of oscillation per unit volume, n(\), is independent of the shape of the cav-
ity and is given by

n(\) = 8w\ * 3-8

According to classical kinetic theory, the average energy per mode of oscillation is
KT, the same as for a one-dimensional harmonic oscillator, where k is the Boltzmann
constant. Classical theory thus predicts for the energy density distribution function

u(\) = KkTn(\) = 8mkTA™* 3-9

This prediction, initially derived by Lord Rayleigh,® is called the Rayleigh-Jeans
equation. It is illustrated in Figure 3-6.

At very long wavelengths the Rayleigh-Jeans equation agrees with the experi-
mentally determined spectral distribution, but at short wavelengths this equation pre-
dicts that u(\) becomes large, approaching infinity as N — 0, whereas experiment
shows (see Figure 3-4) that the distribution actually approaches zero as A — 0. This
enormous disagreement between the experimental measurement of u(\) and the pre-
diction of the fundamental laws of classical physics at short wavelengths was called
the ultraviolet catastrophe. The word catastrophe was not used lightly; Equation 3-9
implies that

/ U(N)dN — o 3-10
0

That is, every object would have an infinite energy density, which observation assures
us is not true.
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Planck’s Law

In 1900 the German physicist Max Planck'® announced that by making somewhat
strange assumptions, he could derive a function u(\) that agreed with the experimen-
tal data. He first found an empirical function that fit the data and then searched for a
way to modify the usual calculation so as to predict his empirical formula. We can see
the type of modification needed if we note that, for any cavity, the shorter the wave-
length, the more standing waves (modes) there will be possible. Therefore, as A — 0
the number of modes of oscillation approaches infinity, as evidenced in Equation 3-8.
In order for the energy density distribution function u(\) to approach zero, we expect
the average energy per mode to depend on the wavelength N and approach zero as \
approaches zero, rather than be equal to the value kT predicted by classical theory.

Parenthetically, we should note that those working on the ultraviolet catastrophe
at the time—and there were many besides Planck—had no a priori way of knowing
whether the number of modes n(\) or the average energy per mode kT (or both) was
the source of the problem. Both were correct classically. Many attempts were made to
re-derive each so as to solve the problem. As it turned out, it was the average energy
per mode (that is, kinetic theory) that was at fault.

Classically, the electromagnetic waves in the cavity are produced by accelerated
electric charges in the walls of the cavity vibrating as simple harmonic oscillators.
Recall that the radiation emitted by such an oscillator has the same frequency as the
oscillation itself. The average energy for a one-dimensional simple harmonic oscil-
lator is calculated classically from the energy distribution function, which in turn is
found from the Maxwell-Boltzmann distribution function. That energy distribution
function has the form (see Chapter 8)

f(E) = Ae FAT 3-11

where A is a constant and f(E) is the fraction of the oscillators with energy equal to E.
The average energy E is then found, as is any weighted average, from

E=/ Ef(E)dE=/ EAe ®XTdE 3-12
0 0

with the result E = KT, as was used by Rayleigh and others.

/X T Rayleigh-Jeans
u() 9 \ law
Q
e}
Q
0,
9™ Plancks o
law 0
o
Q9 Q o
&
| | | | | |
0 2000 4000 6000 A,nm

FIGURE 3-6 Comparison of Planck’s law and the Rayleigh-Jeans equation with experimental
dataat T = 1600 K obtained by W. W. Coblenz in about 1915. The u(\) axis is linear. [Adapted
from F. K. Richmyer, E. H. Kennard, and J. N. Cooper, Introduction to Modern Physics, 6th ed.,
McGraw-Hill, New York (1969), by permission.]
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Planck found that he could derive his empirical formula by calculating the aver-
age energy E assuming that the energy of the oscillating charges, and hence the radia-
tion that they emitted, was a discrete variable; that is, that it could take on only the
values 0, €, 2¢, . . . ne, where n is an integer, and further, that e was proportional to the
frequency of the oscillators and, hence, to that of the radiation. Planck therefore wrote
the energy as

E, = ne = nhf n=20,12... 3-13

where the proportionality constant h is now called Planck’s constant. The Maxwell-
Boltzmann distribution (Equation 3-11) then becomes

f, = Ae B/ = pg ne/kT 3-14

where A is determined by the normalization condition that the sum of all fractions f,,
must, of course, equal one, that is,

S =Ade M =1 3-15
n=0 n=0

The average energy of an oscillator is then given by the discrete sum equivalent of
Equation 3-12:

E= DE,f, = DEAe &N 3-16
n=0
Calculating the sums in Equations 3-15 and 3-16 (see Problem 3-60) yields the

result:

_ c hf he /A
E=— = nikT = he/nkT 3-17
e/ — 1 eMAT —1 e

Multiplying this result by the number of oscillators per unit volume in the interval d\
given by Equation 3-8, we obtain for the energy density distribution function of the
radiation in the cavity:

8mhen™°

UM = o — 1 318

This function, called Planck’s law, is sketched in Figure 3-6. It is clear from the fig-
ure that the result fits the data quite well.

For very large \, the exponential in Equation 3-18 can be expanded using e* =
1+x+ - forx << 1, where x = hc/NKT. Then
hc
he/\KT 1 o %
e 1=
NKT

and
u(N) — 8N kT

which is the Rayleigh-Jeans formula. For short wavelengths, we can neglect the 1 in
the denominator of Equation 3-18, and we have

u(\) — 8mheh e AT — @

as A — 0. The value of the constant in Wien’s displacement law also follows from
Planck’s law, as you will show in Problem 3-23.
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The value of Planck’s constant, h, can be determined by fitting the function
given by Equation 3-18 to the experimental data, although direct measurement (see
Section 3-3) is better, but more difficult. The presently accepted value is

h = 6.626 X 10°*J-s = 4.136 X 10 ®eV-s 3-19

Planck tried at length to reconcile his treatment with classical physics but was unable
to do so. The fundamental importance of the quantization assumption implied by
Equation 3-13 was suspected by Planck and others but was not generally appreciated
until 1905. In that year Einstein applied the same ideas to explain the photoelectric
effect and suggested that, rather than being merely a mysterious property of the oscil-
lators in the cavity walls and blackbody radiation, quantization was a fundamental
characteristic of light energy.

Peak of the Solar Spectrum The surface temperature of the
Sun is about 5800 K, and measurements of the Sun’s spectral distribution show that
it radiates very nearly like a blackbody, deviating mainly at very short wavelengths.
Assuming that the Sun radiates like an ideal blackbody, at what wavelength does
the peak of the solar spectrum occur?

SOLUTION
1. The wavelength at the peak, or maximum intensity, of an ideal blackbody is
given by Equation 3-5;

N\, T = constant = 2.898 X 10 *m- K
2. Rearranging and substituting the Sun’s surface temperature yields

2.898 X 10*m-K
5800 K

Ap = (2.898 X 107°*m-K)/T =

2898 X 10°nm- K
5800 K

where 1 nm = 107 m.

= 499.7 nm

Remarks: This value is near the middle of the visible spectrum.

2 C\HRSCEel Average Energy of an Oscillator What is the average energy
E of an oscillator that has a frequency given by hf = kT according to Planck’s
calculation?

SOLUTION
From Equation 3-17 with e = hf = kT, we have
— € KT
E= G 1 el_1_ 0.582kT

Remarks: Recall that according to classical theory, E = kT regardless of the
frequency.
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The electromagnetic
spectrum emitted by
incandescent bulbs is

a common example of
blackbody radiation,

the amount of visible
light being dependent

on the temperature

of the filament. Other
applications include
infrared thermometers
used to detect hot spots
in electrical circuits and
mechanical equipment
and the pyrometer, a
device that measures the
temperature of a glowing
object, such as molten
metal in a steel mill.
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FIGURE 3-7 The energy
density spectral distribution
of the cosmic microwave
background radiation. The
solid line is Planck’s law
with T = 2.725 K. These
measurements (the black
dots) were made by the
COBE satellite.

D CVHASEEE Stefan-Boltzmann from Planck Show that the total energy

density in a blackbody cavity is proportional to T* in accordance with the Stefan-
Boltzmann law.

SOLUTION
The total energy density is obtained from the distribution function (Equation 3-18)
by integrating over all wavelengths:

x * 8wheh ™

U= A U()\)d)\ = /0 Wd)\
Define the dimensionless variable x = hc/NKT. Then dx = —(hc/A’kT)d\ or
d\ = —\*(KT/hc)dx. Then

“8mhen 3 (kT) (kT)“/OO x3

Uu=- ———— | — Jdx = 8whc| — ——dx
/0 e*—1 \hc ™\ he o &0—1

Since the integral is now dimensionless, this shows that U is proportional to T*. The
value of the integral is w*/15. Then U = (8m°k*/15h3c®)T*. This result can be com-

bined with Equations 3-4 and 3-6 to express Stefan’s constant in terms of r, k, h,
and c (see Problem 3-13).

A dramatic example of an application of Planck’s law on the current frontier of

physics is in tests of the Big Bang theory of the formation and present expansion of
the universe. Current cosmological theory suggests that the universe originated in an
extremely high-temperature explosion of space, one consequence of which was to fill
the infant universe with radiation whose spectral distribution must surely have been that
of an ideal blackbody. Since that time, the universe has expanded to its present size and
cooled to its present temperature T,,,. However, it should still be filled with radiation
whose spectral distribution should be that characteristic of a blackbody at T,
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3-3 The Photoelectric Effect

In 1965, Arno Penzias and Robert Wilson discovered radiation of wavelength
7.35 cm reaching Earth with the same intensity from all directions in space. It was
soon recognized that this radiation could be a remnant of the Big Bang fireball, and
measurements were subsequently made at other wavelengths in order to construct an
experimental energy density u(\) versus A graph. The most recent data from the Cosmic
Background Explorer (COBE) satellite, shown in Figure 3-7, and by the Wilkinson
Microwave Anisotropy Probe (WMAP) have established the temperature of the back-
ground radiation field at 2.725 + 0.001 K. The excellent agreement of the data with
Planck’s equation, indeed, the best fit that has ever been measured, is considered to be
very strong support for the Big Bang theory (see Chapter 13).

3-3 The Photoelectric Effect

It is one of the ironies in the history of science that in the famous experiment of
Heinrich Hertz! in 1887 in which he produced and detected electromagnetic waves,
thus confirming Maxwell’s wave theory of light, he also discovered the photoelectric
effect, which led directly to the particle description of light. Hertz was using a spark
gap in a tuned circuit to generate the waves and another similar circuit to detect them.
He noticed accidentally that when the light from the generating gap was shielded
from the receiving gap, the receiving gap had to be made shorter in order for the spark
to jump the gap. Light from any spark that fell on the terminals of the gap facilitated
the passage of the sparks. He described the discovery with these words:

In a series of experiments on the effects of resonance between very rapid
electric oscillations that I had carried out and recently published, two elec-
tric sparks were produced by the same discharge of an induction coil, and
therefore simultaneously. One of these sparks, spark A, was the discharge
spark of the induction cotl, and served to excite the primary oscillation.
I occasionally enclosed spark Bin a dark case so as to make observations
more easily, and in so doing I observed that the maximum spark length
became decidedly smaller inside the case than it was before.!?

The unexpected discovery of the photoelectric effect annoyed Hertz because it
interfered with his primary research, but he recognized its importance immediately
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Albert A. Michelson, Albert Einstein, and
Robert A. Millikan at a meeting in Pasadena,
California, in 1931. [AP/Wide World Photos.]
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and interrupted his other work for six months in order to study it in detail. His results,
published later that year, were then extended by others. It was found that negative
particles were emitted from a clean surface when exposed to light. P. Lenard in 1900
deflected them in a magnetic field and found that they had a charge-to-mass ratio
of the same magnitude as that measured by Thomson for cathode rays: the particles
being emitted were electrons.

Figure 3-8 shows a schematic diagram of the basic apparatus used by Lenard. When
light L is incident on a clean metal surface (cathode C), electrons are emitted. If some
of these electrons that reach the anode A pass through the small hole, a current results
in the external electrometer circuit connected to «. The number of the emitted electrons
reaching the anode can be increased or decreased by making the anode positive or nega-
tive with respect to the cathode. Letting V be the potential difference between the cath-
ode and anode, Figure 3-9a shows the current versus V for two values of the intensity
of light incident on the cathode. When V is positive, the electrons are attracted to the
anode. At sufficiently large V all the emitted electrons reach the anode and the current
reaches its maximum value. Lenard observed that the maximum current was propor-
tional to the light intensity, an expected result since doubling the energy per unit time
incident on the cathode should double the number of electrons emitted. Intensities too
low to provide the electrons with the energy necessary to escape from the metal should
result in no emission of electrons. However, in contrast with the classical expectation,
there was no minimum intensity below which the current was absent. When V is nega-
tive, the electrons are repelled from the anode. Then, only electrons with initial kinetic
energy mv2/2 greater than e|V| can reach the anode. From Figure 3-9a we see that if
V is less than —V,, no electrons reach the anode. The potential V, is called the stopping
potential. It is related to the maximum Kinetic energy of the emitted electrons by

1
<2mv2) = eV, 3-20
The experimental result, illustrated by Figure 3-9a, that V, is independent of the incident
light intensity was surprising. Apparently, increasing the rate of energy falling on the
cathode does not increase the maximum Kinetic energy of the emitted electrons, con-
trary to classical expectations. In 1905, Einstein offered an explanation of this result

FIGURE 3-8 Schematic diagram of the apparatus used by P. Lenard to demonstrate the
photoelectric effect and to show that the particles emitted in the process were electrons. Light from
the source L strikes the cathode C. Photoelectrons going through the hole in anode A are recorded
by the electrometer connected to «. A magnetic field, indicated by the circular pole piece, could
deflect the particles to a second electrometer connected to 3, making possible the establishment of
the sign of the charges and their e /m ratio. [P. Lenard, Annalen der Physik, 2, 359 (1900).]
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FIGURE 3-9 (a) Photocurrent i versus anode voltage V for light of frequency f with two
intensities 1, and 1,, where 1, > ;. The stopping voltage V, is the same for both. (b) For
constant I, Einstein’s explanation of the photoelectric effect indicates that the magnitude of
the stopping voltage should be greater for f, than f;, as observed, and that there should be

a threshold frequency f; below which no photoelectrons were seen, also in agreement with
experiment. (c) Electric potential energy curve across the metal surface. An electron with the
highest energy in the metal absorbs a photon of energy hf. Conservation of energy requires that
its kinetic energy after leaving the surface be hf — ¢.

in a remarkable paper in the same volume of Annalen der Physik that contained his
papers on special relativity and Brownian motion.

Einstein assumed that the energy quantization used by Planck in solving the black-
body radiation problem was, in fact, a universal characteristic of light. Rather than
being distributed evenly in the space through which it propagated, light energy con-
sisted of discrete quanta, each of energy hf. When one of these quanta, called a photon,
penetrates the surface of the cathode, all of its energy may be absorbed completely by
a single electron. If ¢ is the energy necessary to remove an electron from the surface
(¢ is called the work function and is a characteristic of the metal), the maximum kinetic
energy of an electron leaving the surface will be hf — ¢ as a consequence of energy
conservation; see Figure 3-9c. (Some electrons will have less than this amount because
of energy lost in traversing the metal.) Thus, the stopping potential should be given by

1
eV = <2mv2) =hf— ¢
max

Equation 3-21 is referred to as the photoelectric effect equation. As Einstein noted,

3-21

If the derived formula is correct, then V,, when represented in Cartesian
coordinates as a function of the frequency of the incident light, must be
a straight line whose slope is independent of the nature of the emitting
substance.!®

As can be seen from Equation 3-21, the slope of V, versus f should equal h/e. At
the time of this prediction there was no evidence that Planck’s constant had anything
to do with the photoelectric effect. There was also no evidence for the dependence of
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Among the many
applications of the
photoelectric effect is the
photomultiplier, a device
for making possible the
accurate measurement

of the energy of the

light absorbed by the
photosensitive surface.
The SNO, Kamiokande

and Ice Cube neutrino
observatories (see
Chapter 12) use thousands
of photomultipliers.
Hundreds more have been
deployed in a number of
deep-water high-energy-
neutrino experiments.
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FIGURE 3-10 Millikan’s
data for stopping potential
versus frequency for the
photoelectric effect. The data
fall on a straight line with
slope h/e, as predicted by
Einstein a decade before the
experiment. The intercept on
the stopping potential axis

is —¢/e. [R. A. Millikan,
Physical Review, 7, 362
(1915)]
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the stopping potential V, on the frequency. Careful experiments by Millikan, reported
in 1914 and in more detail in 1916, showed that Equation 3-21 was correct and that
measurements of h from it agreed with the value obtained by Planck. A plot taken
from this work is shown in Figure 3-10.

The minimum, or threshold, frequency for photoelectric effect, labeled f, in this
plot and in Figure 3-9b, and the corresponding threshold wavelength \, are related
to the work function ¢ by setting V, = 0 in Equation 3-21:

hc
¢ = hf; n
Photons of frequencies lower than f, (and therefore having wavelengths greater than \,)
do not have enough energy to eject an electron from the metal. Work functions for
metals are typically on the order of a few electron volts. The work functions for sev-
eral elements are given in Table 3-1.

3-22

Table 3-1 Photoelectric work functions

Element Work function (eV)
Na 2.28
Cs 1.95
Cd 4.07
Al 4.08
Ag 4.73
Pt 6.35
Mg 3.68
Ni 5.01
Se 511

Pb 4.14
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2 CVIHESCECE Photoelectric Effect in Potassium The threshold wavelength
of potassium is 558 nm. What is the work function for potassium? What is the stop-
ping potential when light of 400 nm is incident on potassium?

SOLUTION
1. Both questions can be answered with the aid of Equation 3-21:

1
eVp = (2mv2> =hf—¢
max

hf
VO = — — E
e e
2. At the threshold wavelength the photoelectrons have just enough energy to
. . 1
overcome the work function barrier, so (2 mvz) = 0, hence V, = 0, and
max
¢ _hk_ he
e e e
1240 eV -nm
= mem oY
3. When 400 nm light is used, V, is given by Equation 3-21:
hf hc
oM & _hc_ o
e e en €
1240 eV -nm
= W — 2.22eV

3.10eV — 2.22eV = 0.88V

Another interesting feature of the photoelectric effect that is contrary to classical
physics but is easily explained by the photon hypothesis is the lack of any time lag
between the turning on of the light source and the appearance of photoelectrons. Classi-
cally, the incident energy is distributed uniformly over the illuminated surface; the time
required for an area the size of an atom to acquire enough energy to allow the emission
of an electron can be calculated from the intensity (power per unit area) of the incident
radiation. Experimentally, the incident intensity can be adjusted so that the calculated
time lag is several minutes, or even hours. But no time lag is ever observed. The photon
explanation of this result is that although the rate at which photons are incident on the
metal is very small when the intensity is low, each photon has enough energy to eject
an electron, and there is some chance that a photon will be absorbed immediately. The
classical calculation gives the correct average number of photons absorbed per unit time.

D CGVIHESREGH Classical Time Lag Light of wavelength 400 nm and intensity
1072 W/m? is incident on potassium. Estimate the time lag for the emission of pho-
toelectrons expected classically.

SOLUTION

According to Example 3-5, the work function for potassium is 2.22 eV. If we
assume r = 107'° m to be the typical radius of an atom, the total energy falling on
the atom in time t is

E= (102W/m?) (mr?)t = (1072W/m?) (w10 ® m?)t
— (314 X 10°2]/s)t
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Setting this energy equal to 2.22 eV gives
(3.14 X 1072]/s)t = (2.22eV) (1.60 X 1072 J/eV)

_ (222eV)(1.60 X 1077 J/eV)

— 113 X 10%s = 188 mi
(3.14 x 10 21/s) ° min

According to the classical prediction, no atom would be expected to emit an elec-
tron until 18.8 min after the light source was turned on. According to the photon
model of light, each photon has enough energy to eject an electron immediately.
Because of the low intensity, there are few photons incident per second, so the
chance of any particular atom absorbing a photon and emitting an electron in any
given time interval is small. However, there are so many atoms in the cathode that
some emit electrons immediately.

m Incident Photon Intensity In Example 3-6, how many photons
are incident per second per square meter?

SOLUTION
The energy of each photon is
E = hf = hc/N = (1240eV-nm) /(400 nm)
= (3.10eV)(1.60 X 107°J/eV) = 4.96 X 1071

Since the incident intensity is 1072 W/m? = 1072 J/s - m?, the number of photons per
second per square meter is

1072J/s-m?
4,96 X 107 J/photon
= 2.02 X 10" photons/s - m?

This is, of course, a lot of photons, not a few; however, the number n per atom at
the surface is quite small. n = 2.02 X 10 photons/s - m? X 1 (10~1%)2 m?/atom =
6.3 X 10~ * photons/s - atom, or about 1 photon for every 1000 atoms.

1D CY LRl Photon Sensitivity of the Human Eye A 100 W point source

radiates light with wavelength 555 nm (yellowish green) uniformly in all direc-
tions. This is the wavelength at which the human eye has peak sensitivity, a dark-
adapted eye capable of detecting as few as 10 photons per second. Assuming that
the pupil of the dark-adapted eye has a diameter of 7 mm, how far from the source
could the light be detected? (The answer will astound you!)

SOLUTION
1. Each 555 nm photon has energy Ej, given by

_hc  (6.63 X 107*J+5)(3.00 X 10°m/s)
N 555 X 107°m
2. The 100 W point source emits

= 3.58 X 107*°J/photon

1 photon

100)/s X ——————
/ 3.58 x 10719

= 2.79 x 10% photons/s
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3. Since 10 photons/s must pass through the 7 mm diameter pupil in order to be
detected, the minimum flux, photons per second per square meter of pupil area,

is given by
. hotons 1 10 hotons
minimum flux = 10 © X —— = =3 i 5
S TerUp” TT(35 X 10 ) S'm
hotons
= 2.60 X 10° P

s-m?

4. That flux of photons radiated uniformly by the point source is reached at a
distance r from the source given by

L m2
4mr? = 2,79 x 10 PIOIONS 1s-m
S 2.60 X 10° photons

) 279 x 10
= —F——— M
4m(2.60 X 10°)
r=9.24 X 10°m = 9.24 x 10°km

Questions

3. How is the result that the maximum photoelectric current is proportional to the
intensity explained in the photon model of light?

4. What experimental features of the photoelectric effect can be explained by
classical physics? What features cannot?

5. Referring to Example 3-8, why are you not able to actually see such a source at
that distance?

The photoemission of electrons has developed into a significant technique for
investigating the detailed structure of molecules and solids, making possible discov-
eries far beyond anything that Hertz may have imagined. The use of x-ray sources
(see Section 3-4) and precision detectors has made possible precise determination of
valence electron configurations in chemical compounds, leading to detailed under-
standing of chemical bonding and the differences between the bulk and surface atoms
of solids. Photoelectric-effect microscopes will show the chemical situation of each
element in a specimen, a prospect of intriguing and crucial importance in molecular
biology and microelectronics. And they are all based on a discovery that annoyed
Hertz—at first.

3-4 X Rays and the Compton Effect

Further evidence of the correctness of the photon concept was furnished by Arthur H.
Compton, who measured the scattering of x rays by free electrons and, by his anal-
ysis of the data, resolved the last lingering doubts regarding special relativity (see
Chapter 1). Before we examine Compton scattering in detail, we will briefly describe
some of the early work with x rays since it provides a good conceptual understanding
of x-ray spectra and scattering and the images of astronomical objects obtained from
orbiting observatories (see Chapter 13).
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(a) Early x-ray tube.
[Courtesy of Cavendish
Laboratory.]

(b) x-ray tubes became more
compact over time. This
tube was a design typical of
the mid-twentieth century.
[Courtesy of Schenectady
Museum, Hall of Electrical
History, Schenectady, NY.]

(c) Diagram of the
components of a modern
x-ray tube. Design
technology has advanced
enormously, making possible
very high operating voltages,
beam currents, and x-ray
intensities, but essential
elements of the tubes remain
unchanged.

X Rays

The German physicist Wilhelm K. Roentgen discovered x rays in 1895 when he was
working with a cathode-ray tube. Coming five years before Planck’s explanation of
the blackbody emission spectrum, Roentgen’s discovery turned out to be the first
significant development in quantum physics. He found that “rays” originating from
the point where the cathode rays (electrons) hit the glass tube, or a target within the
tube, could pass through materials opaque to light and activate a fluorescent screen
or photographic film. He investigated this phenomenon extensively and found that
all materials were transparent to these rays to some degree and that the transparency
decreased with increasing density. This fact led to the medical use of x rays within
months after the publication of Roentgen’s first paper.'*

Roentgen was unable to deflect these rays in a magnetic field, nor was he able
to observe refraction or the interference phenomena associated with waves. He thus
gave the rays the somewhat mysterious name of x rays. Since classical electromag-
netic theory predicts that accelerated charges will radiate electromagnetic waves, it is
natural to expect that x rays are electromagnetic waves produced by the acceleration
of the electrons when they are deflected and stopped by the atoms of a target. Such
radiation is called bremsstrahlung, German for “braking radiation.” The slight dif-
fraction broadening of an x-ray beam after passing through slits a few thousandths of
a millimeter wide indicated their wavelengths to be of the order of 107 m = 0.1 nm.
In 1912, Laue suggested that since the wavelengths of x rays were of the same order

(© Pyrex glass
envelope Electron
beam
:Zilament
g =;
+ [ Cathode —

Tungsten
target

X rays
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An x-ray of Mrs. Roentgen’s hand taken by Roentgen shortly after his discovery.

of magnitude as the spacing of atoms in a crystal, the regular array of atoms in a crys-
tal might act as a three-dimensional grating for the diffraction of x rays. Experiments
(see Figure 3-11) soon confirmed that x rays are a form of electromagnetic radiation
with wavelengths in the range of about 0.01 to 0.10 nm and that atoms in crystals are
arranged in regular arrays.

W. L. Bragg, in 1912, proposed a simple and convenient way of analyzing the
diffraction of x rays by crystals.® He examined the interference of x rays due to scat-
tering from various sets of parallel planes of atoms, now called Bragg planes. Two
sets of Bragg planes are illustrated in Figure 3-12 for NaCl, which has a simple cubic
structure called face-centered cubic. Consider Figure 3-13. Waves scattered from the
two successive atoms within a plane will be in phase and thus interfere constructively,
independent of the wavelength, if the scattering angle equals the incident angle. (This
condition is the same as for reflection.) Waves scattered at equal angles from atoms in
two different planes will be in phase (constructive interference) only if the difference
in path length is an integral number of wavelengths. From Figure 3-13 we see that this

condition is satisfied if
2dsin® = mA  where m = an integer 3-23

Equation 3-23 is called the Bragg condition.
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Xrays

Crystal ST

Photographic
plate with
Laue spots

(b)

FIGURE 3-11 (a) Schematic
sketch of a Laue experiment.
The crystal acts as a
three-dimensional grating,
which diffracts the x-ray
beam and produces a regular
array of spots, called a Laue
pattern, on photographic
film or an x-ray-sensitive
charge-coupled device (CCD)
detector. (b) Laue x-ray
diffraction pattern using a
niobium boride crystal and
20 keV molybdenum x rays.
[General Electric Company.]

FIGURE 3-12 A crystal of
NaCl showing two sets of
Bragg planes.
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Measurements of the spectral distribution of the intensity of

x rays as a function of the wavelength using an experimental arrange-

ment such as shown in Figure 3-14 produces the x-ray spectrum

and, for classical physics, some surprises. Figure 3-15a shows two

typical x-ray spectra produced by accelerating electrons through

two voltages V and bombarding a tungsten target mounted on the

. . g S . . anode of the tube. In this figure I1(\) is the intensity emitted within
i 7 d the wavelength interval d\ for each value of \. Figure 3-15b shows

dsin®

the short wavelength lines produced with a molybdenum target and
35 keV electrons. Three features of the spectra are of immediate
interest, only one of which could be explained by classical physics.
(1) The spectrum consists of a series of sharp lines, called the char-

FIGURE 3-13 Bragg scattering from two
successive planes. The waves from the two atoms

shown have a path length difference of 2d sin 6. acteristic spectrum, superimposed on (2) the continuous brems-
They will be in phase if the Bragg condition 2d strahlung spectrum. The line spectrum is characteristic of the target
sin ® = mX\ is met. material and varies from element to element. (3) The continuous

spectrum has a sharp cutoff wavelength, \,,, which is independent

of the target material but depends on the energy of the bombarding
electrons. If the voltage on the x-ray tube is V volts, the cutoff wavelength is found
empirically to be given by

1.24 x 10°

m= Tnm
Equation 3-24 is called the Duane-Hunt rule, after its discoverers. It was pointed out
rather quickly by Einstein that x-ray production by electron bombardment was an
inverse photoelectric effect and that Equation 3-21 should apply. The Duane-Hunt A,
simply corresponds to a photon with the maximum energy of the electrons, that is, the
photon emitted when the electron loses all of its kinetic energy in a single collision.
Since the kinetic energy of the electrons in an x-ray tube is 20,000 eV or higher, the
work function ¢ (a few eV) is negligible by comparison. That is, Equation 3-21

3-24

+ Lead
Xrays  collimator
Anode Crystal
Electron
beam
X-ray tube

lonization chamber

FIGURE 3-14 Schematic diagram of a Bragg crystal spectrometer. A collimated x-ray beam
is incident on a crystal and scattered into an ionization chamber. The crystal and ionization
chamber can be rotated to keep the angles of incidence and scattering equal as both are
varied. By measuring the ionization in the chamber as a function of angle, the spectrum

of the x rays can be determined using the Bragg condition 2d sin 6 = m\, where d is the
separation of the Bragg planes in the crystal. If the wavelength X\ is known, the spacing d can
be determined.
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FIGURE 3-15 (a) x-ray spectra from tungsten at two accelerating voltages and (b) from
molybdenum at one. The names of the line series (K and L) are historical and explained in
Chapter 4. The L-series lines for molybdenum (not shown) are at about 0.5 nm (5 A). The
cutoff wavelength N, is independent of the target element and is related to the voltage on the
x-ray tube V by \, = hc/eV. The wavelengths of the lines are characteristic of the element.

becomes eV =~ hf = hc/\,, or \,, = hc/eV = 1.2407 X 1076V 'm = 1.24 x 10*°V *
nm. Thus, the Duane-Hunt rule is explained by Planck’s quantum hypothesis. (Notice
that the value of \,, can be used to determine h/e.)

The continuous spectrum was understood as the result of the acceleration (i.e.,
“braking”) of the bombarding electrons in the strong electric fields of the target
atoms. Maxwell’s equation predicted the continuous radiation. The real problem for
classical physics was the sharp lines. The wavelengths of the sharp lines were a func-
tion of the target element, the set for each element being always the same. But the
sharp lines never appeared if V was such that A, was larger than the particular line,
as can be seen from Figure 3-15a, where the shortest-wavelength group disappears
when V is reduced from 80 keV to 40 keV so that N\, becomes larger. The origin of the
sharp lines was a mystery that had to await the discovery of the nuclear atom. We will
explain them in Chapter 4.

Compton Effect

It had been observed that scattered x rays were “softer” than those in the incident
beam, that is, were absorbed more readily. Compton'® pointed out that if the scat-
tering process were considered a “collision” between a photon of energy hf; (and
momentum hf,/c) and an electron, the recoiling electron would absorb part of the
incident photon’s energy. The energy hf, of the scattered photon would therefore be
less than the incident one and thus of lower frequency f, and momentum hf,/c. (The
fact that electromagnetic radiation of energy E carried momentum E/c was known
from classical theory and from experiments of Nichols and Hull in 1903. This rela-
tion is also consistent with the relativistic expression E? = p?c? + (mc?)? for a particle
with zero rest energy.) Compton applied the laws of conservation of momentum and
energy in their relativistic form (see Chapter 2) to the collision of a photon with an
isolated electron to obtain the change in the wavelength A\, — A, of the photon as a

06 08 1.0 1.2
A A

Well-known applications
of x rays are medical

and dental x rays (both
diagnostic and treatment)
and industrial x ray
inspection of welds and
castings. Perhaps not so
well known is their use in
determining the structure
of crystals, identifying
black holes in the cosmos,
and “seeing” the folded
shapes of proteins in
biological materials.
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FIGURE 3-17 Intensity versus
wavelength for Compton
scattering at several angles.
The left peak in each case
results from photons of the
original wavelength that are
scattered by tightly bound
electrons, which have an
effective mass equal to that
of the atom. The separation

in wavelength of the peaks

is given by Equation 3-25.
The horizontal scale used by
Compton “angle from calcite”
refers to the calcite analyzing
crystal in Figure 3-16.
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function of the scattering angle 6. The result, called Compton’s equation and derived
in a More section on the home page, is

N — N = 1 — cosH) 3-25

o
The change in wavelength is thus predicted to be independent of the original wavelength.

The quantity h/mc has the dimensions of length and is called the Compton wave-
length of the electron. Its value is

h _ hc _ 124 X10°eV-nm

A‘ = — =
©  mc  mc? 5.11 X 10°eV

= 0.00243 nm

Because N, — A, is small, it is difficult to observe unless \, is very small so that the
fractional change (N, — \;)/\; is appreciable. For this reason Compton effect is gen-
erally only observed for x rays and gamma radiation.

Compton verified his result experimentally using the characteristic x-ray line of
wavelength 0.0711 nm from molybdenum for the incident monochromatic photons
and scattering these photons from electrons in graphite. The wavelength of the scat-
tered photons was measured using a Bragg crystal spectrometer. His experimental
arrangement is shown in Figure 3-16; Figure 3-17 shows his results. The first peak at
each scattering angle corresponds to scattering with no shift in the wavelength due
to scattering by the inner electrons of carbon. Since these are tightly bound to the atom,
it is the entire atom that recoils rather than the individual electrons. The expected shift
in this case is given by Equation 3-25, with m being the mass of the atom, which is
about 10* times that of the electron; thus, this shift is negligible. The variation of
AN =\, — \; with 6 was found to that predicted by Equation 3-25.

We have seen in this and the preceding two sections that the interaction of elec-
tromagnetic radiation with matter is a discrete interaction that occurs at the atomic
level. It is perhaps curious that after so many years of debate about the nature
of light, we now find that we must have both a particle (i.e., quantum) theory to
describe in detail the energy exchange between electromagnetic radiation and mat-
ter and a wave theory to describe the interference and diffraction of electromag-
netic radiation. We will discuss this so-called wave-particle duality in more detail
in Chapter 5.

Defining
slit . B
s s Calcite ragg
1 2 crystal spectrometer
Ro-wll | 2=
|\
Shutter A
lonization
X-ray tube chamber

(Mo target)

FIGURE 3-16 Schematic sketch of Compton’s apparatus. x rays from the tube strike the
carbon block R and are scattered into a Bragg-type crystal spectrometer. In this diagram,
the scattering angle is 30°. The beam was defined by slits S, and S,. Although the entire
spectrum is being scattered by R, the spectrometer scanned the region around the K, line of
molybdenum.
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Arthur Compton. After discovering the
Compton effect, he became a world
traveler seeking an explanation for cosmic
rays. He ultimately showed that their
intensity varied with latitude, indicating
an interaction with Earth’s magnetic field,
and thus proved that they were charged
particles. [Courtesy of American Institute of
Physics, Niels Bohr Library.]

More

Derivation of Compton’s Equation, applying conservation of
energy and momentum to the relativistic collision of a photon and
an electron, is included on the home page: www.whfreeman.com
[tiplermodernphysics6e. See also Equations 3-26 and 3-27 and Figure
3-18 here.

Questions

6. Why is it extremely difficult to observe the Compton effect using visible light?

7. Why is the Compton effect unimportant in the transmission of television and
radio waves? How many Compton scatterings would a typical FM signal have
before its wavelengths were shifted by 0.01 percent?

Compton Effect In a particular Compton scattering experiment
it is found that the incident wavelength A, is shifted by 1.5 percent when the scatter-
ing angle 6 = 120°. (a) What is the value of A\;? (b) What will be the wavelength \,
of the shifted photon when the scattering angle is 75°?

SOLUTION
1. For question (a), the value of \, is found from Equation 3-25:
h
N — N = AN = R(l — c0s0)

= 0.00243(1 — c0s120°)


http://www.whfreeman.com�/tiplermodernphysics6e
http://www.whfreeman.com�/tiplermodernphysics6e
http://www.whfreeman.com�/tiplermodernphysics6e
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Summary
TOPIC

2. That the scattered wavelength \, is shifted by 1.5 percent from \; means that

AN _ 0.015
A
3. Combining these yields

AN 0.00243(1 — cos120)

T 0015 0.015
= 0.243 nm

A

4. Question (b) is also solved with the aid of Equation 3-25, rearranged as
N, = \; + 0.00243(1 — cos9)
5. Substituting 6 = 75° and \, from above yields

N\, = 0.243 + 0.00243(1 — cos75)
0.243 + 0.002
= 0.245 nm

A Final Comment

In this chapter together with Section 2-4 of the previous chapter we have introduced
and discussed at some length the three primary ways by which photons interact with
matter: (1) the photoelectric effect, (2) the Compton effect, and (3) pair production.
As we proceed with our explorations of modern physics throughout the remainder of
the book, we will have many occasions to apply what we have learned here to aid in
our understanding of a myriad of phenomena, ranging from atomic structure to the
fusion “furnaces” of the stars.

RELEVANT EQUATIONS AND REMARKS

1. J.J. Thomson’s experiment

Thomson’s measurements with cathode rays showed that the same
particle (the electron), with e /m about 2000 times that of ionized
hydrogen, exists in all elements.

2. Quantization of electric charge e = 1.60217653 X 107°C
3. Blackbody radiation
Stefan-Boltzmann law R=oT* 3-4
Wein’s displacement law AMT =2.898 X 10°m- K 3-5
. 8mhen°
Planck’s radiation law u(A) = ST — 1 3-18
Planck’s constant h=6.626 X 107%#J-s 3-19
4. Photoelectric effect eVo=hf — ¢ 3-21
: h
5. Compton effect Ny — A = E(l ~ cosh) 3.5

6. Photon-matter interaction

The (1) photoelectric effect, (2) the Compton effect, and (3) pair
production are the three ways of interaction.
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Problems

LEVEL I
Section 3-1 Quantization of Electric Charge

3-1. A beam of charged particles consisting of protons, electrons, deuterons, and singly
ionized helium atoms and H, molecules all pass through a velocity selector, all emerging
with speeds of 2.5 X 10° m/s. The beam then enters a region of uniform magnetic field
B = 0.40 T directed perpendicular to their velocity. Compute the radius of curvature of the
path of each type of particle.

3-2. Consider Thomson’s experiment with the electric field turned “off.” If the elec-
trons enter a region of uniform magnetic field B and length ¢, show that the electrons are
deflected through an angle 6 = e¢B/mu for small values of €. (Assume that the electrons
are moving at nonrelativistic speeds.)

3-3. Equation 3-3 suggests how a velocity selector for particles or mixtures of dif-
ferent particles all having the same charge can be made. Suppose you wish to make a
velocity selector that allows undeflected passage for electrons whose kinetic energy is
5.0 X 10* eV. The electric field available to you is 2.0 X 10° VV/m. What magnetic field
will be needed?

3-4. A cosmic-ray proton approaches Earth vertically at the equator, where the hori-
zontal component of Earth’s magnetic field is 3.5 X 107° T. If the proton is moving at
3.0 X 10° m/s, what is the ratio of the magnetic force to the gravitational force on the proton?
3-5. An electron of kinetic energy 45 keVV moves in a circular orbit perpendicular to a
magnetic field of 0.325 T. (a) Compute the radius of the orbit. (b) Find the period and
frequency of the motion.

3-6. If electrons have kinetic energy of 2000 eV, find (a) their speed, (b) the time needed
to traverse a distance of 5 cm between plates D and E in Figure 3-1, and (c) the verti-
cal component of their velocity after passing between the plates if the electric field is
3.33 X 10° V/m.

3-7. In J. J. Thomson’s first method (see Problem 3-46), the heat capacity of the beam
stopper was about 5 X 1072 cal/°C and the temperature increase was about 2°C. How
many 2000 eV electrons struck the beam stopper?

3-8.  On drop #16, Millikan measured the following total charges, among others, at dif-
ferent times:

2541 X 107 C 17.47 X 107°C 12.70 X 107¥C
20.64 X 107 C 19.06 X 107 C 14.29 X 107 C

What value of the fundamental quantized charge e do these numbers imply?

3-9.  Show that the electric field needed to make the rise time of the oil drop equal to its
field-free fall time is € = 2mg/q.

3-10. One variation of the Millikan oil-drop apparatus arranges the electric field horizon-
tal, rather than vertical, giving charged droplets acceleration in the horizontal direction.
The result is that the droplet falls in a straight line that makes an angle 6 with the vertical.
Show that

sin® = q¢é/bv{

where v/ is the terminal speed along the angled path.

3-11. A charged oil droplet falls 5.0 mm in 20.0 s at terminal speed in the absence
of an electric field. The specific gravity of air is 1.35 X 1072 and that of oil is 0.75.
The viscosity of air is 1.80 X 107° N - s/m2. (a) What are the mass and radius of the
drop? (b) If the droplet carries two units of electric charge and is in an electric field of
2.5 X 10° V/m, what is the ratio of the electric force to the gravitational force on the
droplet?



Section 3-2 Blackbody Radiation

3-12. Find \,, for blackbody radiation at (a) T = 3 K, (b) T = 300 K, and (c) T = 3000 K.
3-13. Use the result of Example 3-4 and Equations 3-4 and 3-6 to express Stefan’s constant
in terms of h, ¢, and k. Using the known values of these constants, calculate Stefan’s constant.
3-14. Show that Planck’s law, Equation 3-18, expressed in terms of the frequency f, is

_ 8uf?  hf
u(f) - cd ehtkT _ 1

3-15. As noted in the chapter, the cosmic microwave background radiation fits the
Planck equation for a blackbody at 2.7 K. (a) What is the wavelength at the maximum
intensity of the spectrum of the background radiation? (b) What is the frequency of the
radiation at the maximum? (c) What is the total power incident on Earth from the back-
ground radiation?

3-16. Find the temperature of a blackbody if its spectrum has its peak at (a) \,, = 700 nm
(visible), (b) \,, = 3 cm (microwave region), and (c) A, = 3 m (FM radio waves).

3-17. If the absolute temperature of a blackbody is doubled, by what factor is the total
emitted power increased?

3-18. Calculate the average energy E per mode of oscillation for (a) a long wavelength
N = 10 hc/KT, (b) a short wavelength X = 0.1 hc/KT, and compare your results with the
classical prediction kT (see Equation 3-9). (The classical value comes from the equiparti-
tion theorem discussed in Chapter 8.)

3-19. A particular radiating cavity has the maximum of its spectral distribution of radiated
power at a wavelength of 27.0 wm (in the infrared region of the spectrum). The temperature is
then changed so that the total power radiated by the cavity doubles. (a) Compute the new tem-
perature. (b) At what wavelength does the new spectral distribution have its maximum value?
3-20. A certain very bright star has an effective surface temperature of 20,000 K.
(a) Assuming that it radiates as a blackbody, what is the wavelength at which u(\) is
maximum? (b) In what part of the electromagnetic spectrum does the maximum lie?

3-21. The energy reaching Earth from the Sun at the top of the atmosphere is 1.36 X
10°® W/m?, called the solar constant. Assuming that Earth radiates like a blackbody at uni-
form temperature, what do you conclude is the equilibrium temperature of Earth?

3-22. A 40 W incandescent bulb radiates from a tungsten filament operating at 3300 K.
Assuming that the bulb radiates like a blackbody, (a) what are the frequency f,, and the
wavelength A, at the maximum of the spectral distribution? (b) If f,, is a good approximation
of the average frequency of the photons emitted by the bulb, about how many photons is the
bulb radiating per second? (c) If you are looking at the bulb from 5 m away, how many pho-
tons enter your eye per second? (The diameter of your pupil is about 5.0 mm.)

3-23. Use Planck’s law, Equation 3-18, to derive the constant in Wien’s law, Equation 3-5.

Section 3-3 The Photoelectric Effect

3-24. The wavelengths of visible light range from about 380 nm to about 750 nm.
(a) What is the range of photon energies (in eV) in visible light? (b) A typical FM radio
station’s broadcast frequency is about 100 MHz. What is the energy of an FM photon of
that frequency?

3-25. The orbiting space shuttle moved around Earth well above 99 percent of the atmo-
sphere, yet it still accumulated an electric charge on its skin due, in part, to the loss of
electrons caused by the photoelectric effect with sunlight. Suppose the skin of the shuttle
were coated with Ni, which has a relatively large work function ¢ = 4.87 eV at the tem-
peratures encountered in orbit. (a) What is the maximum wavelength in the solar spectrum
that could result in the emission of photoelectrons from the shuttle’s skin? (b) What is
the maximum fraction of the total power falling on the shuttle that potentially could have
produced photoelectrons?

Problems
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3-26. The work function for cesium is 1.9 eV, the lowest of any metal. (a) Find the thresh-
old frequency and wavelength for the photoelectric effect. Find the stopping potential if
the wavelength of the incident light is (b) 300 nm and (c) 400 nm.

3-27. (a) If 5 percent of the power of a 100 W bulb is radiated in the visible spectrum,
how many visible photons are radiated per second? (b) If the bulb is a point source radiating
equally in all directions, what is the flux of photons (number per unit time per unit area) at
a distance of 2 m?

3-28. The work function of molybdenum is 4.22 eV. (a) What is the threshold frequency
for the photoelectric effect in molybdenum? (b) Will yellow light of wavelength 560 nm
cause ejection of photoelectrons from molybdenum? Prove your answer.

3-29. The NaCl molecule has a bond energy of 4.26 eV; that is, this energy must be sup-
plied in order to dissociate the molecule into neutral Na and Cl atoms (see Chapter 9).
(a) What are the minimum frequency and maximum wavelength of the photon necessary
to dissociate the molecule? (b) In what part of the electromagnetic spectrum is this photon?
3-30. Using apparatus similar to that in Figure 3-8, the photoelectric effect data below
were measured.

A nm 544 594 604 612 633

Ecmx€V 0360 0199 0156 0.117 0.062

(a) From a graph of E, . versus f, find a value for Planck’s constant. (b) By what percent-
age (+ or —) does the value found in (a) differ from the accepted value? (c) Based on the
graph plotted in (a), what is the approximate value of the work function of the metal used in
the cathode of the apparatus? (d) What metal was most likely used for the cathode?

3-31. Under optimum conditions, the eye will perceive a flash if about 60 photons arrive
at the cornea. How much energy is this in joules if the wavelength of the light is 550 nm?
3-32. The longest wavelength of light that will cause emission of electrons from cesium
is 653 nm. (a) Compute the work function for cesium. (b) If light of 300 nm (ultraviolet)
were to shine on cesium, what would be the energy of the ejected electrons?

Section 3-4 X Rays and the Compton Effect

3-33. Use Compton’s equation (Equation 3-25) to compute the value of A\ in Figure 3-17d.
To what percent shift in the wavelength does this correspond?

3-34. x-ray tubes currently used by dentists often have accelerating voltages of 80 kV.
What is the minimum wavelength of the x rays they produce?

3-35. Find the momentum of a photon in eV/c and in kg-m/s if the wavelength is (a) 400 nm,
(b) 1A =0.1nm, (c) 3cm, and (d) 2 nm.

3-36. Gamma rays emitted by radioactive nuclei also exhibit measurable Compton scat-
tering. Suppose a 0.511 MeV photon from a positron-electron annihilation scatters at 110°
from a free electron. What are the energies of the scattered photon and the recoiling
electron? Relative to the initial direction of the 0.511 MeV photon, what is the direction of
the recoiling electron’s velocity vector?

3-37. A Compton scattering experiment yielded the data in the table below.

AN pm 0.647 167 245 398 4.80

¢ degrees 45 75 90 135 170

(a) Using Equation 3-25 as a guide, construct an appropriate graph that enables you to obtain
a value for the Compton wavelength of the electron. (b) By what percent (+ or —) does
your result differ from the accepted value?

3-38. The wavelength of Compton-scattered photons is measured at 6 = 90°. If AN/ is
to be 1 percent, what should the wavelength of the incident photon be?



3-39. Compton used photons of wavelength 0.0711 nm. (a) What is the energy of these
photons? (b) What is the wavelength of the photons scattered at 6 = 180°? (c) What is the
energy of the photons scattered at 6 = 180°? (d) What is the recoil energy of the electrons
if 6 = 180°?

3-40. Compute AN for photons scattered at 120° from (a) free protons, (b) free electrons,
and (c) N, molecules in air.

3-41. Compton’s equation (Equation 3-25) indicates that a graph of X\, versus (1 — cos6)
should be a straight line whose slope h/mc allows a determination of h. Given that the
wavelength of A\, in Figure 3-17 is 0.0711 nm, compute \, for each scattering angle in the
figure and graph the results versus (1 — cos6). What is the slope of the line?

3-42. (a) Compute the Compton wavelength of an electron and a proton. (b) What is the
energy of a photon whose wavelength is equal to the Compton wavelength of (1) the elec-
tron and (2) the proton?

LEVEL II

3-43. In the Compton scattering of a photon with energy E, from an electron at rest, show
that the energy of the scattered photon E, is given by

_ E.
~ (Ey/mc)(1 — cosd) + 1

3-44. When light of wavelength 450 nm is incident on potassium, photoelectrons with
stopping potential of 0.52 V are emitted. If the wavelength of the incident light is changed
to 300 nm, the stopping potential is 1.90 V. Using only these numbers together with the
values of the speed of light and the electron charge, (a) find the work function of potas-
sium and (b) compute a value for Planck’s constant.

3-45. Assuming that the difference between Thomson’s calculated e /m in his second exper-
iment (see Figure 3-19) and the currently accepted value was due entirely to his neglect-
ing the horizontal component of Earth’s magnetic field outside the deflection plates, what
value for that component does the difference imply? (Thomson’s data: B = 5.5 X 107* T,
€ =15 X 10*V/m, x; = 5¢cm, y,/x, = 8/110.)

Ex

Deflection FIGURE 3-19 Deflection of the
plates I electron beam in Thomson’s apparatus.
Uy \e The deflection plates are D and E in
u l Uy _{Yz Figure 3-1. Deflection is shown with
-— _____::::::::::}':: - the magnetic field off and the top plate
T positive. The magnetic field is applied
| | "1 perpendicular to the plane of the diagram
| Xy | Xo | and directed into the page.

3-46. In his first e /m experiment Thomson determined the speed of electrons accelerated
through a potential AV by collecting them in an insulated beam stopper and measuring
both the total collected charge Q and the temperature rise AT of the beam stopper.
(a) Show that with those measurements, he could obtain an expression for e /m in terms of
the speed of the electrons and the directly measured quantities. (b) Show that the expres-
sion obtained in (a) together with the result of Problem 3-2 enabled Thomson to compute
e/m in terms of directly measured quantities.

3-47. Data for stopping potential versus wavelength for the photoelectric effect using
sodium are

Anm 200 300 400 500 600

VoV 420 206 105 041 0.03
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Plot these data in such a way as to be able to obtain (a) the work function, (b) the threshold
frequency, and (c) the ratio h/e.

3-48. Prove that the photoelectric effect cannot occur with a completely free electron,
that is, one not bound to an atom. (Hint: Consider the reference frame in which the total
momentum if the electron and the incident photon is zero.)

3-49. When a beam of monochromatic x rays is incident on a particular NaCl crystal,
Bragg reflection in the first order (i.e., with m = 1) occurs at 6 = 20°. The value of d =
0.28 nm. What is the minimum voltage at which the x-ray tube can be operating?

3-50. A 100 W beam of light is shined onto a blackbody of mass 2 X 10~° kg for
10* s. The blackbody is initially at rest in a frictionless space. (a) Compute the total
energy and momentum absorbed by the blackbody from the light beam, (b) calculate the
blackbody’s velocity at the end of the period of illumination, and (c) compute the final
kinetic energy of the blackbody. Why is the latter less than the total energy of the absorbed
photons?

3-51. Show that the maximum kinetic energy E,, called the Compton edge, that a recoil-
ing electron can carry away from a Compton scattering event is given by

hf 2E}

E, = =
“7 1+ mc?/2hf  2E, + mc?

3-52. The x-ray spectrometer on board a satellite measures the wavelength at the maximum
intensity emitted by a particular star to be A, = 82.8 nm. Assuming that the star radiates
like a blackbody, (a) compute the star’s surface temperature. (b) What is the ratio of the
intensity radiated at A = 70 nm and at A = 100 nm to that radiated at \,?

3-53. Determine the fraction of the energy radiated by the Sun in the visible region of the
spectrum (350 nm to 700 nm). Assume that the Sun’s surface temperature is 5800 K.
3-54. Millikan’s data for the photoelectric effect in lithium are shown in the table.

Incident N (nm) 2535 3125 365.0 4047 433.9

Stopping Voltage V, (V) 2.57 1.67 1.09 0.73 0.55

(a) Graph the data and determine the work function for lithium. (b) find the value of
Planck’s constant directly from the graph in (a). (c) The work function for lead is 4.14 eV.
Which, if any, of the wavelengths in the table would not cause emission of photoelectrons
from lead?

LEVEL III

3-55. This problem is to derive the Wien displacement law, Equation 3-5. (a) Show that
the energy density distribution function can be written u = CA~%(e* — 1)*, where C is
a constant and a = hc/KT. (b) Show that the value of A for which du/d\ = 0O satisfies
the equation 5, (1 — e ®") = a. (c) This equation can be solved with a calculator by the
trial-and-error method. Try A = « a for various values of « until X /a is determined to four
significant figures. (d) Show that your solution in (c) implies \,,T = constant and calculate
the value of the constant.

3-56. This problem is one of estimating the time lag (expected classically but not observed)
for the photoelectric effect. Assume that a point light source emits 1 W = 1 J/s of light
energy. (&) Assuming uniform radiation in all directions, find the light intensity in eV/s - m?
at a distance of 1 m from the light source. (b) Assuming some reasonable size for an atom,
find the energy per unit time incident on the atom for this intensity. (c) If the work func-
tion is 2 eV, how long does it take for this much energy to be absorbed, assuming that all
of the energy hitting the atom is absorbed?

3-57. A photon can be absorbed by a system that can have internal energy. Assume that
a 15 MeV photon is absorbed by a carbon nucleus initially at rest. The recoil momentum



of the carbon nucleus must be 15 MeV/c. (a) Calculate the kinetic energy of the carbon
nucleus. What is the internal energy of the nucleus? (b) The carbon nucleus comes to rest
and then loses its internal energy by emitting a photon. What is the energy of the photon?
3-58. The maximum kinetic energy given to the electron in a Compton scattering event
plays a role in the measurement of gamma-ray spectra using scintillation detectors. The
maximum is referred to as the Compton edge. Suppose that the Compton edge in a par-
ticular experiment is found to be 520 keV. What were the wavelength and energy of the
incident gamma rays?

3-59. An electron accelerated to 50 keV in an x-ray tube has two successive collisions in
being brought to rest in the target, emitting two bremsstrahlung photons in the process.
The second photon emitted has a wavelength 0.095 nm longer than the first. (a) What are
the wavelengths of the two photons? (b) What was the energy of the electron after emis-
sion of the first photon?

3-60. Derive Equation 3-17 from Equations 3-15 and 3-16.
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The Nuclear Atom

mong his many experiments, Newton found that sunlight passing through a small

opening in a window shutter could be refracted by a glass prism so that it would fall
on a screen. The white sunlight thus refracted was spread into a rainbow-colored band—
a spectrum. He had discovered dispersion, and his experimental arrangement was the
prototype of the modern spectroscope (Figure 4-1a). When, 150 years later, Fraunhofer*
dispersed sunlight using an experimental setup similar to that shown in Figure 4-1b to
test prisms made of glasses that he had developed, he found that the solar spectrum was
crossed by more than 600 narrow, or sharp, dark lines.? Soon after, a number of scientists
observed sharp bright lines in the spectra of light emitted by flames, arcs, and sparks.
Spectroscopy quickly became an important area of research.

It soon became clear that chemical elements and compounds emit three general
types of spectra. Continuous spectra, emitted mainly by incandescent solids, show no
lines at all, bright or dark, in spectroscopes of the highest-possible resolving power.
Band spectra consist of very closely packed groups of lines that appear to be continu-
ous in instruments of low resolving power. These are emitted when small pieces of
solid materials are placed in the source flame or electrodes. The line spectra men-
tioned above arise when the source contains unbound chemical elements. The lines
and bands turned out to be characteristic of individual elements and chemical com-
pounds when excited under specific conditions. Indeed, the spectra could be (and are
today) used as a highly sensitive test for the presence of elements and compounds.
Line spectra raised an enormous theoretical problem: although classical physics could
account for the existence of a continuous spectrum (if not its detailed shape, as we
saw with blackbodies), it could in no way explain why sharp lines and bands should

.
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@) Prism Screen

} Spectrum

Source

(b)

Source of
wavelengths
A and A,
(h2> 1)

FIGURE 4-1 (a) Light from the source passes through a small hole or a narrow slit before
falling on the prism. The purpose of the slit is to ensure that all the incident light strikes the
prism face at the same angle so that the dispersion by the prism causes the various frequencies
that may be present to strike the screen at different places with minimum overlap. (b) The
source emits only two wavelengths, A, > \;. The source is located at the focal point of the lens
so that parallel light passes through the narrow slit, projecting a narrow line onto the face of
the prism. Ordinary dispersion in the prism bends the shorter wavelength through the larger
total angle, separating the two wavelengths at the screen. In this arrangement each wavelength
appears on the screen (or on CCD detectors replacing the screen) as a narrow line, which is an
image of the slit. Such a spectrum was dubbed a “line spectrum” for that reason. Prisms have
been almost entirely replaced in modern spectroscopes by diffraction gratings, which have
much higher resolving power.

exist. Explaining the origin of the sharp lines and accounting for the primary features
of the spectrum of hydrogen, the simplest element, was a major success of the so-called
old quantum theory begun by Planck and Einstein and will be the main topic in this
chapter. Full explanation of the lines and bands requires the later, more sophisticated
guantum theory, which we will begin studying in Chapter 5.

4-1 Atomic Spectra

The characteristic radiation emitted by atoms of individual elements in a flame or in a
gas excited by an electrical discharge was the subject of vigorous study during the late
nineteenth and early twentieth centuries. When viewed or photographed through a
spectroscope, this radiation appears as a set of discrete lines, each of a particular
color or wavelength; the positions and intensities of the lines are characteristic of the
element. The wavelengths of these lines could be determined with great precision,



4-1 Atomic Spectra

and much effort went into finding and interpreting regularities in the spectra. A major
breakthrough was made in 1885 by a Swiss schoolteacher, Johann Balmer, who found
that the lines in the visible and near ultraviolet spectrum of hydrogen could be repre-
sented by the empirical formula

2

N, = 364.6 2 nm 4-1

n? —
where n is a variable integer that takes on the valuesn = 3, 4,5, . ... Figure 4-2a is a
photo of the set of spectral lines of hydrogen (now known as the Balmer series) whose
wavelengths are given by Balmer’s formula. For example, the wavelength of the H,
line could be found by letting n = 3 in Equation 4-1 (try it!), and other integers each
predicted a line that was found in the spectrum. Balmer suggested that his formula
might be a special case of a more general expression applicable to the spectra of other
elements when ionized to a single electron, that is, hydrogenlike elements. Such an
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The uniqueness of the
line spectra of the
elements has enabled
astronomers to determine
the composition of stars,
chemists to identify
unknown compounds,

and theme parks and
entertainers to have
laser shows.

FIGURE 4-2 (a) Emission
line spectrum of hydrogen

in the visible and near
ultraviolet. The lines appear
dark because the spectrum
was photographed; hence,
the bright lines are exposed
(dark) areas on the film.

The names of the first five
lines are shown, as is the
point beyond which no lines
appear, H.,, called the limit
of the series. (b) A portion
of the emission spectrum of
sodium. The two very close
bright lines at 589 nm are
the D, and D, lines. They are
the principal radiation from
sodium street lighting.

(c) A portion of the emission
spectrum of mercury. (d) Part
of the dark line (absorption)
spectrum of sodium. White
light shining through sodium
vapor is absorbed at certain
wavelengths, resulting in no
exposure of the film at those
points. Notice that the line at
259.4 nm is visible here in
both the bright and dark line
spectra. Note that frequency
increases toward the right,
wavelength toward the left in
the four spectra shown.
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expression, found independently by J. R. Rydberg and W. Ritz and thus called the
Rydberg-Ritz formula, gives the reciprocal wavelength® as

1 1 1
=R<2—2) for n>m 4-2
Nin m n

where m and n are integers and R, the Rydberg constant, is the same for all series of
spectral lines of the same element and varies only slightly, and in a regular way, from
element to element. For hydrogen, the value of R is R, = 1.096776 X 10’ m~*. For very
heavy elements, R approaches the value of R,, = 1.097373 X 10" m~*. Such empirical
expressions were successful in predicting other series of spectral lines, such as other
hydrogen lines outside the visible region.

D CNIHRSESE Hydrogen Spectral Series The hydrogen Balmer series recip-
rocal wavelengths are those given by Equation 4-2 withm = 2andn = 3,4,5, .. ..
For example, the first line of the series, H,, would be form = 2,n = 3:

1 1 1 5
— =Rl=>—-=)=-—R=1523x10°m™
W (22 32> 36 m

or
)\23 = 656.5nm

Other series of hydrogen spectral lines were found for m = 1 (by Lyman) and m = 3
(by Paschen). Compute the wavelengths of the first lines of the Lyman and Paschen
series.

SOLUTION
For the Lyman series (m = 1), the first lineisform = 1,n = 2.

1 1 1 3
— = R(2 - 2) =—R=2822x10°m™
Ao 12 2 4

Ny = 121.6 nm  (in the ultraviolet)

For the Paschen series (m = 3), the first line is form = 3, n = 4.

1 1 1 7
— =Rl 5)=-R=5332x10m"
A3 (32 42> 144

Ng; = 1876 nm  (iin the infrared)

All of the lines predicted by the Rydberg-Ritz formula for the Lyman and Paschen
series are found experimentally. Note that no lines are predicted to lie beyond
N.. = 1/R = 91.2 nm for the Lyman series and \.,, = 9/R = 820.6 nm for the
Paschen series and none are found by experiments.

4-2 Rutherford’s Nuclear Model

Many attempts were made to construct a model of the atom that yielded the Balmer and
Rydberg-Ritz formulas. It was known that an atom was about 10~ m in diameter (see
Problem 4-6), that it contained electrons much lighter than the atom (see Section 3-1),
and that it was electrically neutral. The most popular model was J. J. Thomson’s
model, already quite successful in explaining chemical reactions. Thomson attempted
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(@) (b)

FIGURE 4-3 Thomson’s model of the atom: (a) A sphere of positive charge with electrons
embedded in it so that the net charge would normally be zero. The atom shown would have
been phosphorus. (b) An « particle scattered by such an atom would have a scattering
angle 6 much smaller than 1°.

various models consisting of electrons embedded in a fluid that contained most of the
mass of the atom and had enough positive charge to make the atom electrically neu-
tral (see Figure 4-3a). He then searched for configurations that were stable and had
normal modes of vibration corresponding to the known frequencies of the spectral
lines. One difficulty with all such models was that electrostatic forces alone cannot
produce stable equilibrium. Thus, the charges were required to move and, if they
stayed within the atom, to accelerate; however, the acceleration would result in con-
tinuous emission of radiation, which is not observed. Despite elaborate mathematical
calculations, Thomson was unable to obtain from his model a set of frequencies of
vibration that corresponded with the frequencies of observed spectra.

The Thomson model of the atom was replaced by one based on the results of a set
of experiments conducted by Ernest Rutherford* and his students H. W. Geiger and
E. Marsden. Rutherford was investigating radioactivity and had shown that the radia-
tions from uranium consisted of at least two types, which he labeled « and B. He
showed, by an experiment similar to that of J. J. Thomson, that q/m for the o was half
that of the proton. Suspecting that the « particles were doubly ionized helium, Ruther-
ford and his coworkers in a classic experiment let a radioactive substance « decay in a
previously evacuated chamber; then, by spectroscopy, they detected the spectral lines
of ordinary helium gas in the chamber. Realizing that this energetic, massive « particle
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Hans Geiger and Ernest Rutherford in
. their Manchester laboratory. [Courtesy
= of University of Manchester.]
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would make an excellent probe for “feeling about” within the interiors of other atoms,
Rutherford began a series of experiments with this purpose.

In these latter experiments, a narrow beam of « particles fell on a zinc sulfide
screen, which emitted visible light scintillations when struck (Figure 4-4). The distri-
bution of scintillations on the screen was observed when various thin metal foils were

(a) Radioactive
source R

Au foil F

\

Pbshield ¢ beam

Microscope M

Scintillation

screen S p

=
Observer
Rotation
(b) I |
| — — 1
F

N\ i

FIGURE 4-4 Schematic diagram of the apparatus used by Geiger and Marsden to test
Rutherford’s atomic model. (a) The beam of « particles is defined by the small hole D in
the shield surrounding the radioactive source R of 2“Bi (called RaC in Rutherford’s day).
The o beam strikes an ultrathin gold foil F (about 2000 atoms thick), and the « particles are
individually scattered through various angles. Those scattering at the angle 6 shown strike
a small screen S coated with a scintillator, that is, a material that emits tiny flashes of light
(scintillations) when struck by an « particle. The scintillations were viewed by the observer
through a small microscope M. The scintillation screen—microscope combination could be
rotated about the center of the foil. The region traversed by the « beam is evacuated. The
experiment consisted of counting the number of scintillations as a function of 6. (b) A diagram
of the actual apparatus as it appeared in Geiger and Marsden’s paper describing the results.
The letter key is the same as in (a). [Part (b) from H. Geiger and E. Marsden, Philosophical
Review, 25, 507 (1913).]
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placed between it and the source. Most of the « particles were either undeflected or
deflected through very small angles of the order of 1°. Quite unexpectedly, however, a
few « particles were deflected through angles as large as 90° or more. If the atom con-
sisted of a positively charged sphere of radius 1071° m, containing electrons as in the
Thomson model, only a very small deflection could result from a single encounter
between an « particle and an atom, even if the « particle penetrated into the atom.
Indeed, calculations showed that the Thomson atomic model could not possibly
account for the number of large-angle scatterings that Rutherford saw. The unexpected
scatterings at large angles were described by Rutherford with these words:

It was quite the most incredible event that ever happened to me in my
life. It was as incredible as if you fired a 15-inch shell at a piece of tissue
paper and it came back and hit you.

Rutherford’s Scattering Theory and the Nuclear Atom

The question is, then, Why would one obtain the large-angle scattering that Rutherford
saw? The trouble with the Thomson atom is that it is too “soft”—the maximum force
experienced by the « is too weak to give a large deflection. If the positive charge of
the atom is concentrated in a more compact region, however, a much larger force will
occur at near impacts. Rutherford concluded that the large-angle scattering obtained
experimentally could result only from a single encounter of the « particle with a mas-
sive charge confined to a volume much smaller than that of the whole atom. Assum-
ing this “nucleus” to be a point charge, he calculated the expected angular distribution
for the scattered « particles. His predictions of the dependence of scattering probabil-
ity on angle, nuclear charge, and kinetic energy were completely verified in a series of
experiments carried out in his laboratory by Geiger and Marsden.

We will not go through Rutherford’s derivation in detail but merely outline the
assumptions and conclusions. Figure 4-5 shows the geometry of an « particle being
scattered by a nucleus, which we take to be a point charge Q at the origin. Initially,
the « particle approaches with speed v along a line a distance b from a parallel line

/
/B
m
v
—_— \\/)
C A

FIGURE 4-5 Rutherford scattering geometry. The nucleus is assumed to be a point charge Q
at the origin O. At any distance r the « particle experiences a repulsive force kg, Q/r2 The a
particle travels along a hyperbolic path that is initially parallel to line COA a distance b from it
and finally parallel to line OB, which makes an angle 6 with OA. The scattering angle 6 can be
related to the impact parameter b by classical mechanics.
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F COA through the origin. The force on the o particle is

F = kg,Q/r? given by Coulomb’s law (Figure 4-6). After scat-
! tering, when the « particle is again far from the nucleus, it is mov-
| ing with the same speed v parallel to the line OB, which makes an
: FocQr2 angle 6 with line COA. (Since the potential energy is again zero,
: ~ the final speed must be equal to the initial speed by conservation of
: energy, assuming, as Rutherford did, that the massive nucleus
|
|
T
|
|
|

remains fixed during the scattering.) The distance b is called the
impact parameter and the angle 0, the scattering angle. The path of
the a particle can be shown to be a hyperbola, and the scattering
angle 6 can be related to the impact parameter b from the laws of

e classical mechanics. The result is
N
kg, Q 6

b cot— 4-3
myv? 2

FIGURE 4-6 Force on a point charge versus Of course, it is not possible to choose or know the impact
distance r from the center of a uniformly charged parameter for any particular o particle, but when one recalls the
sphere of radius R. Outside the sphere the force is values of the cotangent between 0° and 90°, all such particles with

proportional to Q/r?, where Q is the total charge. impact parameters less than or equal to a particular b will be scat-
Inside the sphere, the force is proportional to tered through an angle 6 greater than or equal to that given by
q'/r? = Qr/R® whereq’ = Q(r/R)*is the Equation 4-3; that is, the smaller the impact parameter, the larger

charge within a sphere of radius r. The maximum  the scattering angle (Figure 4-7). Let the intensity of the incident «

force occursatr =R. particle beam be I, particles per second per unit area. The number
per second scattered by one nucleus through angles greater than 6 equals the number
per second that have impact parameters less than b(6). This number is mh?l,.

The particle-scattering The quantity mh?, which has the dimensions of an area, is called the cross section &

technique devised by for scattering through angles greater than 6. The cross section o is thus defined as the
Rutherford to “look” at

atoms now has wide
application throughout
physics. Scattering of
high-energy electrons
from protons and
neutrons provided our
first experimental hint

of the existence of
quarks. Rutherford back-
scattering spectroscopy
is widely used as a highly
sensitive surface analysis o b,

technique. ! ( )
by
\}\Area nh?
Area ntb3

FIGURE 4-7 Two « particles with equal kinetic energies approach the positive charge

Q = +Ze with impact parameters b, and b,, where b; < b,. According to Equation 4-3, the
angle 6, through which «; is scattered will be larger than 6,. In general, all « particles with
impact parameters smaller than a particular value of b will have scattering angles larger than
the corresponding value of 6 from Equation 4-3. The area wb? is called the cross section for
scattering with angles greater than 6.

O




number scattered per nucleus per unit time divided by the incident
intensity. The total number of particles scattered per second is
obtained by multiplying wb?l, by the number of nuclei in the scat-
tering foil (this assumes the foil to be thin enough to make the
chance of overlap negligible). Let n be the number of nuclei per
unit volume:

_ p(g/cm?)N, (atoms/mol) _ PN, atoms

4-4
M (g/mol) M cm?

For a foil of thickness t, the total number of nuclei “seen” by the beam
is nAt, where A is the area of the beam (Figure 4-8). The total number
scattered per second through angles greater than @ is thus wb?lntA. If
we divide this by the number of « particles incident per second 1A,
we get the fraction f scattered through angles greater than 6:

f = wh?nt 4-5

4-2 Rutherford’s Nuclear Model 161

Number of foil nuclei
in beam is nAt

FIGURE 4-8 The total number of nuclei of foil
atoms in the area covered by the beam is nAt,
where n is the number of foil atoms per unit
volume, A is the area of the beam, and t is the
thickness of the foil.

2\ HES 528 Scattered Fraction f Calculate the fraction of an incident beam

of « particles of kinetic energy 5 MeV that Geiger and Marsden
6 = 90° from a gold foil (Z = 79) 10 ® m thick.

SOLUTION

1. The fraction f is f = wh’nt
related to the impact
parameter b, the
number density of
nuclei n, and the
thickness t by
Equation 4-5:

expected to see for

pN,  (19.3g/cm®) (6.02 X 10% atoms/mol)

2. The particle density n=— =

n is given by M 197 gm/mol
Equation 4-4: = 5.90 X 10? atoms/cm® = 5.90 X 10°® atoms/m?
K, 0 2)(79)ke*  90°
3. Theimpact param- b = a %coti = %cot >

eter b is related to MqV o

i -3: 2)(79)(1.44eV-nm
6 by Equation 4-3: _ (2)(79) : ) _ 598 % 10-5nm

(2) (5 x 10°eV)
=228 X 10%m

4. Substituting these ~ f = w(2.28 X 10‘14m)2<5.9 X 10°

into Equation 4-5
yields f: =96 X 1075 = 1074

¢ atoms

~ )(10‘6m)

Remarks: This outcome is in good agreement with Geiger and Marsden’s mea-
surement of about 1 in 8000 in their first trial. Thus, the nuclear model is in good

agreement with their results.
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FIGURE 4-9 (a) Geiger and Marsden’s data for « scattering from thin gold and silver foils. The graph is a log-log plot to show

the data over several orders of magnitude. Note that scattering angle increases downward along the vertical axis. (b) Geiger and
Marsden also measured the dependence of AN on t predicted by Equation 4-6 for foils made from a wide range of elements, this
being an equally critical test. Results for four of the elements used are shown.

On the strength of the good agreement between the nuclear atomic model and the
measured fraction of the incident « particles scattered at angles 6 = 90°, Rutherford
derived an expression, based on the nuclear model, for the number of « particles AN
that would be scattered at any angle 6. That number, which also depends on the
atomic number Z and thickness t of the scattering foil, on the intensity I, of the inci-
dent o particles and their kinetic energy E,, and on the geometry of the detector (A is
the detector area and r is the foil-detector distance), is given by

1,A, Nt 2\3
AN = ( . )(kze ) L 4-6
r 2B/ . ,6

sin
2

Within the uncertainties of their experiments, which involved visually observing
several hundred thousand « particles, Geiger and Marsden verified every one of the
predictions of Rutherford’s formula over four orders of magnitude of AN. The
excellent agreement of their data with Equation 4-6 firmly established the nuclear
atomic model as the correct basis for further studies of atomic and nuclear phenomena
(Figure 4-9).

More

Rutherford’s derivation of Equation 4-6 was based on his atomic
model and the well-known Coulomb scattering process of charged
particles. Rutherford’s Prediction and Geiger and Marsden’s Results
are described on the home page: www.whfreeman.com/tiplermodern
physics6e. See also Equations 4-7 through 4-10 here, as well as Figures
4-10 through 4-12.
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4-2 Rutherford’s Nuclear Model

The Size of the Nucleus

The fact that the force law is shown to be correct, confirming Rutherford’s model, does
not imply that the nucleus is a mathematical point charge, however. The force law
would be the same even if the nucleus were a ball of charge of some radius Ry, as long
as the « particle did not penetrate the ball (see Figures 4-6 and 4-13). For a given scat-
tering angle, the distance of closest approach of the « particle to the nucleus can be cal-
culated from the geometry of the collision. For the largest angle, near 180°, the collision
is nearly “head-on.” The corresponding distance of closest approach r is thus an exper-
imental upper limit on the size of the target nucleus. We can calculate the distance of
closest approach for a head-on collision ry by noting that conservation of energy requires
the potential energy at this distance to equal the original kinetic energy:

(V+ Ek)larger = (V+ Ek)rd

ki
(o + 1muv2> = (an + 0)
2 large r fg ry

1 k

ER )

2 ry

or

ki

ry = .0 4-11
1m v2
2 o

For the case of 7.7 MeV « particles, the distance of closest approach for a head-on
collision is

(2)(79)(1.44eV-nm)
7.7 X 10%eV

For other collisions, the distance of closest approach is somewhat greater, but for o par-
ticles scattered at large angles it is of the same order of magnitude. The excellent agree-
ment of Geiger and Marsden’s data at large angles with the prediction of Equation 4-6
thus indicates that the radius of the gold nucleus is no larger than about 3 X 10~ m. If
higher-energy particles could be used, the distance of closest approach would be
smaller, and as the energy of the « particles increased, we might expect that eventually
the particles would penetrate the nucleus. Since, in that event, the
force law is no longer F = kg, Q/r?, the data would not agree with

=3X10°mm =3 X 10%m

I‘d=
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(a)

(b)

FIGURE 4-13 (a) If the «
particle does not penetrate
the nuclear charge, the
nucleus can be considered a
point charge located at the
center. (b) If the particle
has enough energy to
penetrate the nucleus, the
Rutherford scattering law
does not hold but would
require modification to
account for that portion of the
nuclear charge “behind” the
penetrating « particle.

the point-nucleus calculation. Rutherford did not have higher-energy Aluminum

« particles available, but he could reduce the distance of closest

approach by using targets of lower atomic numbers.® For the case of g ?g Lo <% Hoxexex
aluminum, with Z = 13, the most energetic « particles that he had 28 ;

available (7.7 MeV from ?Bi) scattered at large angles did not fol- 5|3 5| 7

low the predictions of Equation 4-6. However, when their Kinetic

energy was reduced by passing the beam through thin mica sheets of B
various thicknesses, the data again followed the prediction of Equa- 0006 0.8 1.0 1.2 1.4 16 18
tion 4-6. Rutherford’s data are shown in Figure 4-14. The value of ry rg, 104 m

(calculated from Equation 4-11) at which the data begin to deviate
from the prediction can be thought of as the surface of the nucleus.
From these data, Rutherford estimated the radius of the aluminum
nucleus to be about 1.0 X 10~ m. (The radius of the Al nucleus is
actually about 3.6 X 10~ m; see Chapter 11.)

FIGURE 4-14 Data from Rutherford’s group
showing observed « scattering at a large fixed
angle versus values of ry computed from
Equation 4-11 for various Kinetic energies.
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A unit of length convenient for describing nuclear sizes is the fermi, or femtom-
eter (fm), defined by 1 fm = 107> m. As we will see in Chapter 11, the nuclear radius
varies from about 1 to 10 fm from the lightest to the heaviest atoms.

Rutherford Scattering at Angle 6 In a particular experiment,
a particles from 22°Ra are scattered at & = 45° from a silver foil and 450 particles
are counted each minute at the scintillation detector. If everything is kept the same
except that the detector is moved to observe particles scattered at 90°, how many
will be counted per minute?

SOLUTION

Using Equation 4-6, we have that AN = 450 when 6 = 45°, but we don’t have any
of the other parameters available. Letting all of the quantities in the parenthesis
equal a constant C, we have that

.44
AN = 450 = Csin™ 5

45°
C= 4505in4< > )

When the detector is moved to 6 = 90°, the value of C is unchanged, so

90° 45° 90°
— P4 — ind P4
AN = Csin ( 2 ) 450sin ( 2 )sm ( 2 )

= 38.6 = 39 particles/min

or

Alpha Scattering A beam of o particles with E, = 6.0 MeV
impinges on a silver foil 1.0 wm thick. The beam current is 1.0 nA. How many «
particles will be counted by a small scintillation detector of area equal to 5 mm?
located 2.0 cm from the foil at an angle of 75°? (For silver Z = 47, p = 10.5 gm/cm®,

and M = 108.)
SOLUTION
loAsnt 2\?
1. The number counted AN = ( r= )(kZZEe ) !
AN is given by r K/ g
Equation 4-6: 2
2. Since each lo = (1.0 X 10°A)(2 X 1.60 X 107°C/a)?
particle has =312 X 10°a/s
O, = 26, lyis
3. Thekineticenergy  E, = (6.0 MeV)(1.60 X 102 J/MeV)
of each o is — 960 X 10722
4. Forsilvernis n = pNy/M
given by ~ (105g/cm®) (6.02 X 10% atoms/mol )
B 108 g/mol

5.85 X 10%atoms/cm?® = 5.85 X 10% atoms/m?
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5. Substituting the given values and computed results into Equation 4-6 gives AN:
(3.12 X 10%«/s) (5 X 107°m?) (5.85 X 10% atoms/m?) (10 °m)
(2 X 107?)?sin* (75°/2)

(9 X 10%) (47)(1.60 x 107%%)272
(2)(9.60 x 107%)

AN =

528 a/s

Radius of the Au Nucleus The radius of the gold (Au) nucleus
has been measured by high-energy electron scattering as 6.6 fm. What kinetic
energy « particles would Rutherford have needed so that for 180° scattering, the «
particle would just reach the nuclear surface before reversing direction?

SOLUTION
From Equation 4-11, we have
1, kg,Q (9X 10%)(2) (79) (1.60 x 107%9)2

—mv? = =
2 Iy 6.6 X 1071

= 552 X 102] = 34.5 MeV

Alpha particles of such energy are not emitted by naturally radioactive materials
and hence were not accessible to Rutherford. Thus, he could not have performed an
experiment for Au equivalent to that for Al illustrated by Figure 4-14.

Questions

1. Why can’t the impact parameter for a particular « particle be chosen?
2. Why is it necessary to use a very thin target foil?

3. Why could Rutherford place a lower limit on the radius of the Al nucleus but not
on the Au nucleus?

4. How could you use the data in Figure 4-9a to determine the charge on a silver
nucleus relative to that on a gold nucleus?

5. How would you expect the data (not the curve) to change in Figure 4-9 if the foil
were so thick that an appreciable number of gold nuclei were hidden from the
beam by being in the “shadow” of the other gold nuclei?

4-3 The Bohr Model of the Hydrogen Atom

In 1913, the Danish physicist Niels H. D. Bohr® proposed a model of the hydrogen
atom that combined the work of Planck, Einstein, and Rutherford and was remarkably
successful in predicting the observed spectrum of hydrogen. The Rutherford model
assigned charge and mass to the nucleus but was silent regarding the distribution of
the charge and mass of the electrons. Bohr, who had been working in Rutherford’s
laboratory during the experiments of Geiger and Marsden, made the assumption that
the electron in the hydrogen atom moved in an orbit about the positive nucleus, bound
by the electrostatic attraction of the nucleus. Classical mechanics allows circular or
elliptical orbits in this system, just as in the case of the planets orbiting the Sun. For
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simplicity, Bohr chose to consider circular orbits. Such a
model is mechanically stable because the Coulomb poten-

tial V = —kZe?/r provides the centripetal force
kze?  mv?
F=—=— 4-12
r r

necessary for the electron to move in a circle of radius r at
speed v, but it is electrically unstable because the electron
is always accelerating toward the center of the circle. The
laws of electrodynamics predict that such an accelerating
charge will radiate light of frequency f equal to that of the
periodic motion, which in this case is the frequency of
revolution. Thus, classically,

(MY (ke L
2mr rm 2mr 47°m r3/2 r3/2

4-13

Niels Bohr explains a point
in front of the blackboard
(1956). [American Institute of 1, kZe?
Physics, Niels Bohr Library, E= Emv + <— . )
Margrethe Bohr Collection.]

The total energy of the electron is the sum of the kinetic and the potential energies:

From Equation 4-12, we see that %mv2 = kZe?/2r (a result that holds for circular
motion in any inverse-square force field), so the total energy can be written as
kze?  kze? kzZe? 1

E = — = _ ~ =
2r r 2r r

Thus, classical physics predicts that, as energy is lost to radiation, the electron’s orbit
will become smaller and smaller while the frequency of the emitted radiation will
become higher and higher, further increasing the rate at which energy is lost and end-
ing when the electron reaches the nucleus (see Figure 4-15a). The time required for
the electron to spiral into the nucleus can be calculated from classical mechanics and
electrodynamics; it turns out to be less than a microsecond. Thus, at first sight, this
model predicts that the atom will radiate a continuous spectrum (since the frequency
of revolution changes continuously as the electron spirals in) and
will collapse after a very short time, a result that fortunately does
not occur. Unless excited by some external means, atoms do not
radiate at all, and when excited atoms do radiate, a line spectrum is
emitted, not a continuous one.

Bohr “solved” these formidable difficulties with two decidedly
nonclassical postulates. His first postulate was that electrons could
move in certain orbits without radiating. He called these orbits sta-
tionary states. His second postulate was to assume that the atom
radiates when the electron makes a transition from one stationary
state to another (Figure 4-15b) and that the frequency f of the emit-

4-14

(@) (b) Y

Y

FIGURE 4-15 (a) In the classical orbital model,
the electron orbits about the nucleus and spirals
into the center because of the energy radiated.

(b) In the Bohr model, the electron orbits without
radiating until it jumps to another allowed radius of
lower energy, at which time radiation is emitted.

ted radiation is not the frequency of motion in either stable orbit but
is related to the energies of the orbits by Planck’s theory

hf = E, — E 4-15

where h is Planck’s constant and E; and E; are the energies of the
initial and final states. The second assumption, which is equivalent
to that of energy conservation with the emission of a photon, is
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crucial because it deviated from classical theory, which requires the frequency of
radiation to be that of the motion of the charged particle. Equation 4-15 is referred to
as the Bohr frequency condition.

In order to determine the energies of the allowed, nonradiating orbits, Bohr made
a third assumption, now known as the correspondence principle, which had profound
implications:

In the limit of large orbits and large energies, quantum calculations must
agree with classical calculations.

Thus, the correspondence principle says that, whatever modifications of classical physics
are made to describe matter at the submicroscopic level, when the results are extended
to the macroscopic world, they must agree with those from the classical laws of phys-
ics that have been so abundantly verified in the everyday world. While Bohr’s detailed
model of the hydrogen atom has been supplanted by modern quantum theory, which
we will discuss in later chapters, his frequency condition (Equation 4-15) and the cor-
respondence principle remain as essential features of the new theory.

In his first paper,*! in 1913, Bohr pointed out that his results implied that the angular
momentum of the electron in the hydrogen atom can take on only values that are integral
multiples of Planck’s constant divided by 2, in agreement with a discovery made a year
earlier by J. W. Nicholson. That is, angular momentum is quantized; it can assume only
the values nh/2w, where n is an integer. Rather than follow the intricacies of Bohr’s
derivation, we will use the fundamental conclusion of angular momentum quantization
to find his expression for the observed spectra. The development that follows applies not
only to hydrogen, but to any atom of nuclear charge +Ze with a single orbital electron—
for example, singly ionized helium He™ or doubly ionized lithium Li?".

If the nuclear charge is +Ze and the electron charge —e, we have noted (Equa-
tion 4-12) that the centripetal force necessary to move the electron in a circular orbit
is provided by the Coulomb force kZe?/r2. Solving Equation 4-12 for the speed of

the orbiting electron yields
kZe2\1/2
v = ( ¢ > 4-16

mr

Bohr’s quantization of the angular momentum L is
nh

o =
where the integer n is called a quantum number and # = h/2. (The constant 4, read
“h-bar,” is often more convenient to use than h itself, just as the angular frequency

o = 2 f is often more convenient than the frequency f.) Combining Equations 4-16
and 4-17 allows us to write for the circular orbits

p_ Mo _ Ml orm v
S mv m \ kze?

2 nzﬁz( rm >
m? \ kze?

and canceling common quantities yields

L=mvr = nf n=123,... 4-17

Squaring this relation gives

232 2

N n<a,
r, = = 4-18
" mkze? Z
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where

2

fi o
ap, = > = 0.529 A = 0.0529 nm 4-19
mke

is called the Bohr radius. The A, a unit commonly used in the early days of spectros-
copy, equals 107*° m or 10~ nm. Thus, we find that the stationary orbits of Bohr’s
first postulate have quantized radii, denoted in Equation 4-18 by the subscript on r,,.
Notice that the Bohr radius a, for hydrogen (Z = 1) corresponds to the orbit radius
with n = 1, the smallest Bohr orbit possible for the electron in a hydrogen atom.
Since r, ~ Z %, the Bohr orbits for single-electron atoms with Z > 1 are closer to the
nucleus than the corresponding ones for hydrogen.

The total energy of the electron (Equation 4-14) then becomes, on substitution of
r, from Equation 4-18,

£ _kZe2 _ _kZeZ/mee2>
n 2r, 2 \ n2h?
mk2Z2e* zZ?
E, = _W:_Eoﬁ n=123,... 4-20

where E, = mk?e*/242 Thus, the energy of the electron is also quantized; that is, the
stationary states correspond to specific values of the total energy. This means that
energies E; and E; that appear in the frequency condition of Bohr’s second postulate
must be from the allowed set E, and Equation 4-15 becomes

z2 z?
hf = En = En= —Eo3 — <_E02)

or

E,Z%/ 1 1
f = 0 (2 - 2) 4-21
n; n;

which can be written in the form of the Rydberg-Ritz equation (Equation 4-2) by sub-
stituting f = ¢/\ and dividing by c to obtain

LoE(L_ 1
A hc \n? n?

or
1 1 1
X = ZzR(n2 - nz) 4-22
f i
where
_ B _ ket 4-23
hc  4mci®

is Bohr’s prediction for the value of the Rydberg constant.

Using the values of m, e, ¢, and # known in 1913, Bohr calculated R and found
his result to agree (within the limits of uncertainties of the constants) with the value
obtained from spectroscopy, 1.097 X 10’ m~*. Bohr noted in his original paper that
this equation might be valuable in determining the best values for the constants e, m,
and % because of the extreme precision possible in measuring R. This has indeed
turned out to be the case.
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The possible values of the energy of the hydrogen atom predicted by Bohr’s
model are given by Equation 4-20 with Z = 1:

mk2e* Eo
o T T W v
where
mk?2e*
Eo = 7 = 218X 107°) = 136V

is the magnitude of E, with n = 1. E;(=—E,) is called the ground state. It is conve-
nient to plot these allowed energies of the stationary states as in Figure 4-16. Such a
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FIGURE 4-16 (a) Energy-level diagram for hydrogen showing the seven lowest stationary states and the four lowest energy
transitions each for the Lyman, Balmer, and Paschen series. There are an infinite number of levels. Their energies are given by
E, = —13.6/n?eV, where n is an integer. The dashed line shown for each series is the series limit, corresponding to the energy
that would be radiated by an electron at rest far from the nucleus (n — ) in a transition to the state with n = n; for that series.
The horizontal spacing between the transitions shown for each series is proportional to the wavelength spacing between the lines
of the spectrum. (b) The spectral lines corresponding to the transitions shown for the three series. Notice the regularities within
each series, particularly the short-wavelength limit and the successively smaller separation between adjacent lines as the limit is
approached. The wavelength scale in the diagram is not linear.
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A bit different sort of
application, the Bohr-
Rutherford model of

the nuclear atom and
electron orbits is the
picture that, for millions
of people, provides their
visual link to the world of
the atom and subatomic
phenomena.

plot is called an energy-level diagram. Three series of transitions between the station-
ary states are shown in this diagram by vertical arrows drawn between the levels. The
frequency of light emitted in each of these transitions is the energy difference divided
by h according to Bohr’s frequency condition, Equation 4-15. The energy required to
remove the electron from the atom, 13.6 eV, is called the ionization energy, or bind-
ing energy, of the electron.

At the time Bohr’s paper was published, there were two spectral series known for
hydrogen: the Balmer series, corresponding to n; = 2, n; = 3,4, 5, ..., and a series
named after its discoverer, Paschen (1908), correspondington; = 3,n; = 4,5, 6, .. ..
Equation 4-22 indicated that other series should exist for different values of n;. In
1916 Lyman found the series corresponding to n; = 1, and in 1922 and 1924 Brackett
and Pfund, respectively, found series corresponding to n; = 4 and n; = 5. As can be
easily determined by computing the wavelengths for these series, only the Balmer
series lies primarily in the visible portion of the electromagnetic spectrum. The
Lyman series is in the ultraviolet, the others in the infrared.

D GVIHRFEEER Wavelength of the Hy Line Compute the wavelength of the
H, spectral line, that is, the second line of the Balmer series predicted by Bohr’s
model. The Hg line is emitted in the transition from n; = 4 to n; = 2.

SOLUTION
1. Method 1: The wavelength is given by Equation 4-22 with Z = 1:

1 1 1
= R(z - 2)
A n; n;

2. Substituting R = 1.097 X 10’ m~! and the values of n; and n;:
1
o (1.097 x 10’ m1)<212 - ;)
or
N = 4.86 X 107 = 486 nm
3. Method 2: The wavelength may also be computed from Equation 4-15:
hf = hc/N = E; — E;
or
1_1
N he
4. The values of E; and E; are given by Equation 4-24:

(Ei — Ep)

13.6 eV 13.6eV
= —< ° > = —( ° ) — —0.85¢eV
n; 4
13.6eV 13.6eV
£ - _( 362e ) _ _( 362e ) 34y
ng 2

5. Substituting these into Equation 4-15 yields
1 [—085eV — (—3.4eV)](1.60 X 10*J/eV)

A (6.63 X 104J-5)(3.00 X 10°m/s)
=2.051 X 10°m™
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or

N\ = 4.87 X 107" m = 487 nm

Remarks: The difference in the two results is due to rounding of the Rydberg con-
stant to three decimal places.

Reduced Mass Correction

The assumption by Bohr that the nucleus is fixed is equivalent to the assumption that
it has infinite mass. In fact, the Rydberg constant in Equation 4-23 is normally written
as R.., as we will do from now on. If the nucleus has mass M, its kinetic energy will be
IMv2 = p2/2M, where p = Mv is the momentum. If we assume that the total momen-
tum of the atom is zero, conservation of momentum requires that the momenta of the
nucleus and electron be equal in magnitude. The total kinetic energy is then

P> M+m

:pi_i_i_ p2:p7
oM 2m  2mM 21

2 2

Ex

where

mM m
m+M 1+m/M

w = 4-25
This is slightly different from the kinetic energy of the electron because ., called
the reduced mass, is slightly different from the electron mass. The results derived
earlier for a nucleus of infinite mass can be applied directly to the case of a nucleus
of mass M if we replace the electron mass in the equations by reduced mass .,
defined by Equation 4-25. (The validity of this procedure is proven in most inter-
mediate and advanced mechanics books.) The Rydberg constant (Equation 4-23) is

then written
k?e*  mk?e* 1 1
g = e _ mkel/ ) = Rm<> 4-26
Amct®  AmciP\1 + m/M 1+m/M

This correction amounts to only 1 part in 2000 for the case of hydrogen and to even
less for other nuclei; however, the predicted variation in the Rydberg constant from
atom to atom is precisely that which is observed. For example, the spectrum of a sin-
gly ionized helium atom, which has one remaining electron, is just that predicted by
Equations 4-22 and 4-26 with Z = 2 and the proper helium mass. The current value
for the Rydberg constant R, from precision spectroscopic measurements'? is

R., = 1.0973732 X 10" m™* = 1.0973732 X 10 2nm™* 4-27

Urey™ used the reduced mass correction to the spectral lines of the Balmer series to
discover (in 1931) a second form of hydrogen whose atoms had twice the mass of
ordinary hydrogen. The heavy form was called deuterium. The two forms, atoms with
the same Z but different masses, are called isotopes.

S CHRSEEA Rydberg Constants for H and He® Compute the Rydberg con-
stants for H and He™ applying the reduced mass correction (m = 9.1094 x 10~ % kg,
m, = 1.6726 X 10"?" kg, m, = 6.6447 X 10~ % kg).

29
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SOLUTION
For hydrogen:

1 1
Ry=R,——)=R.
H (1 + m/MH> (1 + 9.1094 X 107%/1.6726 X 1027)
= 1.09677 X 10'm™*

For helium: Since M in the reduced mass correction is the mass of the nucleus, for
this calculation we use M equal to the « particle mass:

1 1
Rue = R.|——+ ] =R,
He (1 + m/MH> (1 + 9.1094 X 107%1/6.6447 X 10-27>
1.09722 X 10’ m™*

Thus, the two Rydberg constants differ by about 0.04 percent.

Correspondence Principle

According to the correspondence principle, which applies also to modern quantum
mechanics, when the energy levels are closely spaced, quantization should have little
effect; classical and quantum calculations should give the same results. From the
energy-level diagram of Figure 4-16, we see that the energy levels are close together
when the quantum number n is large. This leads us to a slightly different statement of
Bohr’s correspondence principle: In the region of very large quantum numbers (n in
this case) quantum calculation and classical calculation must yield the same results.
To see that the Bohr model of the hydrogen atom does indeed obey the correspon-
dence principle, let us compare the frequency of a transition between level n; = n and
level n; = n — 1 for large n with the classical frequency, which is the frequency of
revolution of the electron. From Equation 4-22 we have

B 1} _ Z’mk%* 2n -1
4wk n?(n — 1)?

f_C_ szkze“{ 1
A 4mh® | (n—1)2 n?

For large n we can neglect the ones subtracted from n and 2n to obtain
Z’mk?%* 2 Z’mk2e*
= 5= 33 4-28
dwh® N 27h°n
The classical frequency of revolution of the electron is (see Equation 4-13)

v
2wr

rev

Using v = nA/mr from Equation 4-17 and r = n%?/mkZe? from Equation 4-18,
we obtain

P (nh/mr)  nh nf
i 27r 2mmr?  2am(n%?/mkZe?)?
m?k%Z%e*ns  mk?Z%e*
frev = 424 = 3.3 4'29
2mTmn A 27h°n

which is the same as Equation 4-28.
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Fine-Structure Constant

The demonstration of the correspondence principle for large n in the preceding para-
graph was for An = n; — n; = 1; however, we have seen (see Figure 4-16) that transi-
tions occur in the hydrogen atom for An = 1 when n is small, and such transitions
should occur for large n, too. If we allow An = 2, 3, . .. for large values of n, then the
frequencies of the emitted radiation would be, according to Bohr’s model, integer
multiples of the frequency given in Equation 4-28. In that event, Equations 4-28 and 4-29
would not agree. This disagreement can be avoided by allowing elliptical orbits.2* A
result from Newtonian mechanics, familiar from planetary motion, is that in an
inverse-square force field, the energy of an orbiting particle depends only on the
major axis of the ellipse and not on its eccentricity. There is consequently no change
in the energy at all unless the force differs from inverse square or unless Newtonian
mechanics is modified. A. Sommerfeld considered the effect of special relativity on
the mass of the electron in the Bohr model in an effort to explain the observed fine
structure of the hydrogen spectral lines.!® Since the relativistic corrections should be
of the order of v?/c? (see Chapter 2), it is likely that a highly eccentric orbit would
have a larger correction because v becomes greater as the electron moves nearer the
nucleus. The Sommerfeld calculations are quite complicated, but we can estimate the
order of magnitude of the effect of special relativity by calculating v/c for the first
Bohr orbit in hydrogen. For n = 1, we have from Equation 4-17 that mvr; = #. Then,
using r, = a, = #*/mke?, we have

# # ke?

mr, m (#?/mke?) h

and
v ke? 1.44 eV -nm 1
—_ — = — = = 4-30
¢ Ac  197.3eV-nm 137 ©
where we have used another convenient combination
1.24 x 10%eV -
c = 0%eV-nm = 197.3eV-nm 4-31

27

The dimensionless quantity ke?/Ac = o is called the fine-structure constant because
of its first appearance in Sommerfeld’s theory, but, as we will see, it has much more
fundamental importance.

Though v?/c? is very small, an effect of this magnitude is observable. In Som-
merfeld’s theory, the fine structure of the hydrogen spectrum is explained in the fol-
lowing way. For each allowed circular orbit of radius r, and energy E,, a set of n
elliptical orbits is possible of equal major axes but different eccentricities. Since the
velocity of a particle in an elliptical orbit depends on the eccentricity, so then will the
mass and momentum, and therefore the different ellipses for a given n will have
slightly different energies. Thus, the energy radiated when the electron changes orbit
depends slightly on the eccentricities of the initial and final orbits as well as on their
major axes. The splitting of the energy levels for a given n is called fine-structure
splitting, and its value turns out to be of the order of v2/c? = o?, just as Sommerfeld
predicted. However, the agreement of Sommerfeld’s prediction with the observed fine-
structure splitting was quite accidental and led to considerable confusion in the early
days of quantum theory. Although he had used the relativistic mass and momentum,
he computed the energy using classical mechanics, leading to a correction much

13

173



174

Chapter 4 The Nuclear Atom

larger than that actually due only to relativistic effects. As we will see in Chapter 7,
fine structure is associated with a completely nonclassical property of the electron
called spin.

A lasting contribution of Sommerfeld’s effort was the introduction of the fine-
structure constant « = ke?/#ic =~ 1/137. With it we can write the Bohr radius a, and
the quantized energies of the Bohr model in a particularly elegant form. Equations 4-24
and 4-19 for hydrogen become

mk?e* ¢? me? .1

B i T 2 Y 4-32
" c hol

ao = = 4'33

mke2C  mC
Since « is a dimensionless number formed of universal constants, all observers will
measure the same value for it and find that energies and dimensions of atomic sys-

tems are proportional to o and 1/, respectively. We will return to the implications of
this intriguing fact later in the book.

EXPLORING
Giant Atoms

Giant atoms called Rydberg atoms, long understood to be a theoretical possibility and
first detected in interstellar space in 1965, are now being produced and studied in the
laboratory. Rydberg atoms are huge! They are atoms that have one of the valence
electrons in a state with a very large quantum number n (see Figure 4-17). Notice in
Equation 4-18 that the radius of the electron orbit r, = n?a,/Z c« n®and n can be any
positive integer, so the diameter of a hydrogen atom (or any other atom, for that matter)
could be very large, a millimeter or even a meter! What keeps such giant atoms from
being common is that the energy difference between adjacent allowed energy states is
extremely small when n is large and the allowed states are very near the E., = 0 level
where ionization occurs, because E,, = 1/n? For example, if n = 1000, the diameter
of a hydrogen atom would be ryp, = 0.1 mm, but both E,q, and the difference in
energy AE = Ejg; — Ejo00 are about 107° eV! This energy is far below the average
energy of thermal motion at ordinary temperatures (about 0.025 eV), so random colli-
sions would quickly ionize an atom whose electron happened to get excited to a level
with n equal to 20 or so with r still only about 1078 m.

The advent of precisely tunable dye lasers in the 1970s made it possible to nudge
electrons carefully into orbits with larger and larger n values. The largest Rydberg
atoms made so far, typically using sodium, potassium, or other alkali metal atoms, are

Electron

FIGURE 4-17 A lithium (Z = 3) Rydberg atom. The outer electron occupies a small
volume and follows a nearly classical orbit with a large value of n. The two inner electrons
are not shown.
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10,000 times the diameter of ordinary atoms, about 20 wm across or the size of a red blood
cell or a fine grain of sand, and exist for several milliseconds inside vacuum chambers.
For hydrogen, this corresponds to quantum number n = 600. An electron moving so
far from the nucleus is bound by a minuscule force. It also moves rather slowly, since
the classical period of T = 1/f « n®and follows an elliptical orbit. These character-
istics of very large n orbits provide several intriguing possibilities. For example, very
small electric fields might be studied, making possible the tracking of chemical reac-
tions that proceed too quickly to be followed otherwise. More dramatic is the possibil-
ity of directly testing Bohr’s correspondence principle by directly observing the slow
(since v o 1/n) movement of the electron around the large n orbits—the transition
from quantum mechanics to classical mechanics. Computer simulations of the classical
motion of a Rydberg electron “wave” (see Chapter 5) in orbit around a nucleus are aid-
ing the design of experiments to observe the correspondence principle.

Very recent experiments have led to the discovery of Rydberg molecules. These
molecules can be formed by nudging an electron in one atom into a high-n quantum
state with a precisely tuned laser. The resulting strong Coulomb force between that
atom and a similarly excited atom nearby leads to a bond between them—they form a
giant molecule. Their large size makes them ideally suited for probing the properties
of electromagnetic fields. Rydberg molecules formed by a Rydberg atom and a second
atom in the ground state offer the potential for constructing quantum logic gates that
will facilitate the development of quantum computers.

Questions

6. If the electron moves in an orbit of greater radius, does its total energy increase
or decrease? Does its kinetic energy increase or decrease?

7. What is the energy of the shortest-wavelength photon that can be emitted by the
hydrogen atom?

8. How would you characterize the motion and location of an electron with E = 0
and n — < in Figure 4-16?

4-4 X-Ray Spectra

The extension of the Bohr theory to atoms more complicated than hydrogen proved
difficult. Quantitative calculations of the energy levels of atoms of more than one
electron could not be made from the model, even for helium, the next element in the
periodic table. However, experiments by H. Moseley in 1913 and J. Franck and
G. Hertz in 1914 strongly supported the general Bohr-Rutherford picture of the atom
as a positively charged core surrounded by electrons that moved in quantized energy
states relatively far from the core. Moseley’s analysis of x-ray spectra will be dis-
cussed in this section, and the Franck-Hertz measurement of the transmission of elec-
trons through gases will be discussed in the chapter’s concluding section.

Using the methods of crystal spectrometry that had just been developed by
W. H. Bragg and W. L. Bragg, Moseley'® measured the wavelengths of the character-
istic x-ray line spectra for about 40 different target elements. (Typical x-ray spectra
are shown in Figure 3-15.) He noted that the x-ray line spectra varied in a regular way
from element to element, unlike the irregular variations of optical spectra. He sur-
mised that this regular variation occurred because characteristic x-ray spectra were
due to transitions involving the innermost electrons of the atoms (see Figure 4-18).
Because the inner electrons are shielded from the outermost electrons by those in

Henry G.-J. Moseley.
[Courtesy of University of
Manchester.]
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FIGURE 4-18 A stylized picture of the Bohr circular
orbits forn = 1,2, 3,and 4. The radiir, ~ n Ina
high-Z element (elements with Z = 12 emit x rays),
electrons are distributed over all the orbits shown.
Should an electron in the n = 1 orbit be knocked
from the atom, for example, by being hit by a fast
electron accelerated by the voltage across an x-ray
tube, the vacancy thus produced is filled by an
electron of higher energy (i.e., n = 2 or higher).

The difference in energy between the two orbits is
emitted as a photon, according to the Bohr frequency
condition, whose wavelength will be in the x-ray
region of the spectrum if Z is large enough.

Ejected
electron

L, X ray

Kg X ray

intermediate orbits, their energies do not depend on the complex interactions of the
outer electrons, which are responsible for the complicated optical spectra. Further-
more, the inner electrons are well shielded from the interatomic forces that are respon-
sible for the binding of atoms in solids.

According to the Bohr theory (published earlier the same year, 1913), the energy
of an electron in the first Bohr orbit is proportional to the square of the nuclear
charge (see Equation 4-20). Moseley reasoned that the energy, and therefore the fre-
quency, of a characteristic x-ray photon should vary as the square of the atomic
number of the target element in the x-ray tube. Accordingly, he plotted the square
root of the frequency of a particular characteristic line in the x-ray spectrum of vari-
ous target elements versus the atomic number Z of the element. Such a plot, now
called a Moseley plot, is shown in Figure 4-19. These curves can be fitted by the
empirical equation

f2 = A (Z — b) 4-34

where A, and b are constants for each characteristic x-ray line. One family of lines,
called the K series, has b = 1 and slightly different values of A, for each line in the
graph. The other family shown in Figure 4-19, called the L series,*” could be fitted by
Equation 4-34 withb = 7.4,

Moseley’s Discoveries

If the bombarding electron in the x-ray tube causes ejection of an electron from the
innermost orbit (n = 1) in a target atom completely out of the atom, photons will be
emitted corresponding to transitions of electrons in other orbits (n = 2,3,...) to
fill the vacancy in the n = 1 orbit (see Figure 4-18). (Since these lines are called the
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FIGURE 4-19 Moseley’s plots of the square root of frequency versus Z for characteristic

x rays. When an atom is bombarded by high-energy electrons, an inner atomic electron is
sometimes knocked out, leaving a vacancy in the inner shell. The K-series x rays are produced
by atomic transitions to vacancies in the n = 1 (K) shell, whereas the L series is produced by
transitions to the vacancies in the n = 2 (L) shell. [From H. Moseley, Philosophical Magazine (6),
27,713 (1914).]

K series, the n = 1 orbit came to be called the K shell.) The lowest-frequency line
corresponds to the lowest energy transition (n = 2—n = 1). This line is called the
K, line. The transition n = 3 —n = 1is called the Kg line. It is of higher energy, and
hence higher frequency, than the K, line. A vacancy created in the n = 2 orbit by
emission of a K, x ray may then be filled by an electron of higher energy, for exam-
ple, one in the n = 3 orbit, resulting in the emission of a line in the L series, and so on.
The multiple L lines in the Moseley plot (Figure 4-19) are due in part to the fact that
there turn out to be small differences in the energies of electrons with a given n that
are not predicted by the Bohr model. Moseley’s work gave the first indication of these
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differences, but the explanation will have to await our discussion of more advanced
quantum theory in Chapter 7.

Using the Bohr relation for a one-electron atom (Equation 4-21) with n; = 1, and
using (Z — 1) in place of Z, we obtain for the frequencies of the K series

2,4
S P 1)2(1 ~ nlz) = CR..(Z - 1)2(1 - nlz> 4-35

Aniti® 12
where R,, is the Rydberg constant. Comparing this with Equation 4-34, we see that A,
is given by

1
A2 = ch<1 ~ 2) 4-36
n

The wavelengths of the lines in the K series are then given by

C c 1

Nt TNz R..(Z - 1)2(1 _nlz)

4-37

DONIHRSERE K, for Molybdenum Calculate the wavelength of the K, line of
molybdenum (Z = 42), and compare the result with the value A = 0.0721 nm mea-
sured by Moseley and with the spectrum in Figure 3-15b.

SOLUTION
Using n = 2, R,, = 1.097 X 10’ m~* and Z = 42, we obtain

1 -1
N =1 (1.097 X 10'm™) (41)2<1 - 4)} =723 X 10" m = 0.0723nm

This value is within 0.3 percent of Moseley’s measurement and agrees well with
that in Figure 3-15b.

The fact that f is proportional to (Z — 1)? rather than to Z?2 is explained by the
partial shielding of the nuclear charge by the other electron remaining in the K shell
as “seen” by electrons in the n = 2 (L) shell.® Using this reasoning, Moseley con-
cluded that, since b = 7.4 for the L series, these lines involved electrons farther from
the nucleus, which “saw” the nuclear charge shielded by more inner electrons. Assum-
ing that the L series was due to transitions to the n = 2 shell, the frequencies for this
series are given by

f= ch<212 - nlz)(z —7.4)? 4-38
wheren =3,4,5,....

Before Moseley’s work, the atomic number was merely the place number of the
element in Mendeleev’s periodic table of the elements arranged by weight. The experi-
ments of Geiger and Marsden showed that the nuclear charge was approximately A/2,
while x-ray scattering experiments by Barkla showed that the number of electrons in
an atom was also approximately A/2. These two experiments are consistent since the
atom as a whole must be electrically neutral. However, several discrepancies were
found in the periodic table as arranged by weight. For example, the 18th element in
order of weight is potassium (39.102), and the 19th is argon (39.948). Arrangement by
weight, however, puts potassium in the column with the inert gases and argon with the
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active metals, the reverse of their known chemical properties. Moseley showed that for
these elements to fall on the line f*/2 versus Z, argon had to have Z = 18 and potas-
sium Z = 19. Arranging the elements by the Z number obtained from the Moseley plot,
rather than by weight, gave a periodic chart in complete agreement with the chemical
properties. Moseley also pointed out that there were gaps in the periodic table at
Z = 43, 61, and 75, indicating the presence of undiscovered elements. All have subse-
quently been found. Figure 4-20 illustrates the discovery of promethium (Z = 61).

Auger Electrons

The process of producing x rays necessarily results in the ionization of the atom since
an inner electron is ejected. The vacancy created is filled by an outer electron, produc-
ing the x rays studied by Moseley. In 1923 Pierre Auger discovered that, as an alter-
native to x-ray emission, the atom may eject a third electron from a higher-energy
outer shell via a radiationless process called the Auger effect. In the Auger (pro-
nounced oh-zhay) process, the energy difference AE = E, — E; that could have
resulted in the emission of a K x ray is removed from the atom by the third electron,
for example, one in the n = 3 shell. Since the magnitude of E; < AE, the n = 3 elec-
tron would leave the atom with a characteristic kinetic energy A , Which is
determined by the stationary-state energies of the particular atom.® Thus, each ele-
ment has a characteristic Auger electron spectrum (see Figure 4-21a). Measurement
of the Auger electrons provides a simple and highly sensitive tool for identifying
impurities on clean surfaces in electron microscope systems and investigating elec-
tron energy shifts associated with molecular bonding (see Figure 4-21b).

Question

9. Why did Moseley plot /2 versus Z rather than f versus Z?

179

FIGURE 4-20 Characteristic x-ray
spectra. (a) Part of the spectra of
neodymium (Z = 60) and samarium

(Z = 62). The two pairs of bright lines
are the K, and Kj lines. (b) Part of

the spectrum of the artificial element
promethium (Z = 61). This element was
first positively identified in 1945 at the
Clinton Laboratory (now Oak Ridge).
Its K,, and K lines fall between those

of neodymium and samarium, just as
Moseley predicted. (c) Part of the spectra
of all three of the elements neodymium,
promethium, and samarium. [Courtesy
of J. A. Swartout, Oak Ridge National
Laboratory.]
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Copper

Atomic number 29

4-5 The Franck-Hertz Experiment

We conclude this chapter with discussion of an important experiment that provided
strong support for the quantization of atomic energies, thus helping to pave the way for
modern quantum mechanics. While investigating the inelastic scattering of electrons,
J. Franck and G. Hertz?® made a discovery that confirmed by direct measurement Bohr’s
hypothesis of energy quantization in atoms. First done in 1914, it is now a standard
undergraduate laboratory experiment. Figure 4-22a is a schematic diagram of the appa-
ratus. A small heater heats the cathode. Electrons are ejected from the heated cathode
and accelerated toward a grid, which is at a positive potential V, relative to the cathode.
Some electrons pass through the grid and reach the plate P, which is at a slightly lower
potential V, =V, — AV. The tube is filled with a low-pressure gas of the element being
investigated (mercury vapor, in Franck and Hertz’s original experiment). The experi-
ment involves measuring the plate current as a function of V,,. As V; is increased from 0,
the current increases until a critical value (about 4.9 V for Hg) is reached, at which point
the current suddenly decreases. As V, is increased further, the current rises again.

The explanation of this result is a bit easier to visualize if we think for the moment
of a tube filled with hydrogen atoms instead of mercury (see Figure 4-22b). Electrons
accelerated by V, that collide with hydrogen electrons cannot transfer energy to the latter
unless they have acquired kinetic energy eV, = E, — E; = 10.2 eV since the hydrogen
electron according to Bohr’s model cannot occupy states with energies intermediate

(b) I I I I
Cu

Elemental Al

L
3
m
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©
L
Al oxide
|
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FIGURE 4-21 (a) The Auger spectrum of Cu
bombarded with 10 keV electrons. The energy of
the Auger electrons is more precisely determined by
plotting the weighted derivative E dN (E) /dE of the
electron intensity rather than the intensity N(E). (b) A
992 portion of the Auger spectrum of Al from elemental
| | | | | Al and Al oxide. Note the energy shift in the largest
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peaks resulting from adjustments in the Al electron
shell energies in the Al,O; molecule.
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(a) V=0 (b)
Incoming
electron

Proton

—|I|I}s

Electron
after
scattering

_@’—>

FIGURE 4-22 (a) Schematic diagram of the Franck-Hertz experiment. Electrons ejected from the heated cathode C at zero
potential are drawn to the positive grid G. Those passing through the holes in the grid can reach the plate P and thereby
contribute to the current I if they have sufficient kinetic energy to overcome the small back potential AV. The tube contains
a low-pressure gas of the element being studied. (b) Results for hydrogen. If the incoming electron does not have sufficient
energy to transfer AE = E, — E; to the hydrogen electron in the n = 1 orbit (ground state), then the scattering will be elastic.
If the incoming electron does have at least AE kinetic energy, then an inelastic collision can occur in which AE is transferred
to the n = 1 electron, moving it to the n = 2 orbit. The excited electron will typically return to the ground state very quickly,

emitting a photon of energy AE.

between E; and E,. Such a collision will thus be elastic; that is, the incident electron’s
kinetic energy will be unchanged by the collision, and thus it can overcome the poten-
tial AV and contribute to the current I. However, if eV, = 10.2 eV, then the incoming
electron can transfer 10.2 eV to the hydrogen electron in the ground state (n = 1 orbit),
putting it into the n = 2 orbit (called the first excited state). The incoming electron’s
energy is thus reduced by 10.2 eV; it has been inelastically scattered. With insufficient
energy to overcome the small retarding potential AV, the incoming electrons can no
longer contribute to the plate current I, and I drops sharply.

The situation with Hg in the tube is more complicated since Hg has 80 electrons.
Although Bohr’s theory is not capable of predicting their individual energies, we still
expect the energy to be quantized with a ground state, first excited state, and so on for
the atom. Thus, the explanation of the observed 4.9 V critical potential for Hg is that
the first excited state is about 4.9 eV above the lowest level (ground state). Electrons
with energy less than this cannot lose energy to the Hg atoms, but electrons with
energy greater than 4.9 eV can have inelastic collisions and lose 4.9 eV. If this hap-
pens near the grid, these electrons cannot gain enough energy to overcome the small
back voltage AV and reach the plate; the current therefore decreases. If this explana-
tion is correct, the Hg atoms that are excited to an energy level of 4.9 eV above the
ground state should return to the ground state by emitting light of wavelength
¢ hc he
A f hf eV 253 nm
There is indeed a line of this wavelength in the mercury spectrum. When the tube is
viewed with a spectroscope, this line is seen when V, is greater than 4.9 eV, while no
lines are seen when Vj is less than this amount. For further increases in V,, additional
sharp decreases in the current are observed, corresponding either to excitation of other
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FIGURE 4-23 Current versus
accelerating voltage in the
Franck-Hertz experiment.
The current decreases
because many electrons lose
energy due to inelastic
collisions with mercury
atoms in the tube and
therefore cannot overcome
the small back potential
indicated in Figure 4-21a.
The regular spacing of the
peaks in this curve indicates
that only a certain quantity of
energy, 4.9 eV, can be lost to
the mercury atoms. This
interpretation is confirmed by
the observation of radiation
of photon energy 4.9 eV
emitted by the mercury
atoms, when V, is greater
than this energy. [From

J. Franck and G. Hertz,
Verband Deutscher
Physiklischer Gesellschaften,
16, 457 (1914).]
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levels in Hg (e.g., the second excited state of Hg is at 6.7 eV above the ground state)
or to multiple excitations of the first excited state; that is, due to an electron losing
4.9 eV more than once. In the usual setup, multiple excitations of the first level are
observed and dips are seen every 4.9 V.2 The probability of observing such multiple
first-level excitations, or excitations of other levels, depends on the detailed variation
of the potential of the tube. For example, a second decrease in the currentat V, = 2 X
4.9 = 9.8 V results when electrons have inelastic collisions with Hg atoms about half-
way between the cathode and grid (see Figure 4-22a). They are re-accelerated, reach-
ing 4.9 eV again in the vicinity of the grid. A plot of the data of Franck and Hertz is
shown in Figure 4-23.

The Franck-Hertz experiment was an important confirmation of the idea that dis-
crete optical spectra were due to the existence in atoms of discrete energy levels that
could be excited by nonoptical methods. It is particularly gratifying to be able to
detect the existence of discrete energy levels directly by measurements using only
voltmeters and ammeters.

Electron Energy Loss Spectroscopy

The Franck-Hertz experiment was the precursor of a highly sensitive technique for
measuring the quantized energy states of atoms in both gases and solids. The technique,
called electron energy loss spectroscopy (EELS), is particularly useful in solids,
where it makes possible measurement of the energy of certain types of lattice vibra-
tions and other processes. It works like this. Suppose that the electrons in an incident
beam all have energy E;... They collide with the atoms of a material, causing them to
undergo some process (e.g., vibration, lattice rearrangement, electron excitation) which
requires energy E,. Then, if a beam electron initiates a single such process, it will exit
the material with energy E;,. — E,—that is, it has been inelastically scattered. The exit
energy can be measured very accurately with, for example, a magnetic spectrometer
designed for electrons.?? Figure 4-24a illustrates a typical experimental arrangement
for measuring an energy-loss spectrum.

As an example of its application, if an incident beam of electrons with E;,. = 2 keV
is reflected from a thin Al film, the scattered electron energies measured in the magnetic
spectrometer result in the energy-loss spectrum shown in Figure 4-24b, which directly
represents the quantized energy levels of the target material. The loss peaks in this par-
ticular spectrum are due to the excitation of harmonic vibrations in the thin film sample,
as well as some surface vibrations. The technique is also used to measure the vibrational
energies of impurity atoms that may be absorbed on the surface and, with higher incident
electron energies, to measure energy losses at the atomic inner levels, thus yielding infor-
mation about bonding and other characteristics of absorbed atoms. Inelastic scattering
techniques, including those using particles in addition to electrons, provide very power-
ful means for probing the energy structure of atomic, molecular, and nuclear systems.
We will have occasion to refer to them many times throughout the rest of the book.

More

Here and in Chapter 3 we have discussed many phenomena that were
“explained” by various ad hoc quantum assumptions. A Critique of
Bohr Theory and the “Old Quantum Mechanics’ contrasts some of its
successes with some of its failures on the home page: www.whfreeman
.com/tiplermodernphysicsée.



http://www.whfreeman

(@)
Incident

electron

beam H H

(b)

Summary 183

Detector IGURE 4-24 Energy-loss spectrum

~_Sample plane measurement. (a) A well-defined electron
NS beam impinges on the sample. Electrons
inelastically scattered at a convenient angle
enter the slit of the magnetic spectrometer,
/ / whose B field is directed out of the paper,
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and turn through radii R determined by their
energy E;,. — E, via Equation 3-2 written in
the form R = [2m(E;,. — E|)]V/?/eB.

(b) An energy-loss spectrum for a thin Al
film. [From C. J. Powell and J. B. Swan,
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3. Bohr model
Bohr’s postulates 1. Electrons occupy only certain nonradiating, stable, circular orbits selected
by quantization of the angular momentum L.
nh .
L =mvr = — = ni forintegern 4-17
2T

2. Radiation of frequency f occurs when the electron jumps from an allowed orbit
of energy E; to one of lower energy E;. f is given by the frequency condition

hf = E; — E; 4-15
Correspondence principle In the region of very large quantum numbers classical and quantum calculations
must yield the same results.
. #? f
Bohr radius ay = 7 = —— = 0.0529 nm 4-19
mke mca
) Z’E,
Allowed energies E,=-— 2 for n=123,... 4-20
where E, = mk?e*/2#? = 13.6 eV
Reduced m _ MM 4-25
educed mass Y
) ke?
Fine-structure constant o = e ~ 1/137 4-30
4. x-ray spectra Moseley f12 = A (Z — b) 4-34
equation

5. Franck-Hertz experiment

General References

The following general references are written at a level appro-
priate for the readers of this book.

Boorse, H., and L. Motz (eds.), The World of the Atom, Basic
Books, New York, 1966. This two-volume, 1873-page
work is a collection of original papers, translated and
edited. Much of the work referred to in this chapter and
throughout this book can be found in these volumes.

Cline, B., The Questioners: Physicists and the Quantum The-
ory, Thomas Y. Crowell, New York, 1965.

Gamow, G., Thirty Years That Shook Physics: The Story of
the Quantum Theory, Doubleday, Garden City, NY,
1965.

Herzberg, G., Atomic Spectra and Atomic Structure, Dover
Publications, New York, 1944. This is without doubt one
of the all-time classics of atomic physics.

Melissinos, A., and J. Napolitano, Experiments in Modern
Physics, 2d ed., Academic Press, New York, 2003. Many
of the classic experiments that are now undergraduate

Supported Bohr’s theory by verifying the quantization of atomic energies in absorption.

laboratory experiments are described in detail in this
text.

Mohr, P. J., B. N. Taylor, and D. B. Newell, “The Fundamen-
tal Physical Constants,” Reviews of Modern Physics 80,
633-730 (April 2008).

Shamos, M. H. (ed.), Great Experiments in Physics, Holt,
Rinehart & Winston, New York, 1962.

Virtual Laboratory (PEARL), Physics Academic Software,
North Carolina State University, Raleigh, 1996. Includes
an interactive model of the Bohr atom.

Virtual Spectroscope, Physics Academic Software, North
Carolina State University, Raleigh, 2003. Several sources
can be viewed with a spectroscope to display the cor-
responding spectral lines.

Visual Quantum Mechanics, Kansas State University,
Manhattan, 1996. The atomic spectra component of this
software provides an interactive construction of the
energy levels for several elements, including hydrogen
and helium.



Notes

1. Joseph von Fraunhofer (1787-1826). German physicist.
Although he was not the first to see the dark lines in the solar
spectrum that bears his name (Wollaston had seen seven,
12 years earlier), he systematically measured their wavelengths,
named the prominent ones, and showed that they always
occurred at the same wavelength, even if the sunlight were
reflected from the Moon or a planet.

2. To date more than 10,000 Fraunhofer lines have been
found in the solar spectrum.

3. Although experimentalists preferred to express their mea-
surements in terms of wavelengths, it had been shown that
the many empirical formulas being constructed to explain the
observed regularities in the line spectra could be expressed
in simpler form if the reciprocal wavelength, called the wave
number and equal to the number of waves per unit length, was
used instead. Since ¢ = f A, this was equivalent to expressing
the formulas in terms of the frequency.

4. Ernest Rutherford (1871-1937), English physicist, an
exceptional experimentalist and a student of J. J. Thomson.
He was an early researcher in the field of radioactivity and
received the Nobel Prize in 1908 for his work in the transmu-
tation of elements. He bemoaned the fact that his prize was
awarded in chemistry, not in physics, as work with the elements
was considered chemistry in those days. He was Thomson’s
successor as director of the Cavendish Laboratory.

5. Alpha particles, like all charged particles, lose energy by
exciting and ionizing the molecules of the materials through
which they are moving. The energy lost per unit path length
(—dE/dx) is a function of the ionization potential of the mol-
ecules, the atomic number of the atoms, and the energy of the
« particles. It can be computed (with some effort) and is rela-
tively simple to measure experimentally.

6. Notice that 2w sin 6 d6 = d(), the differential solid
angle subtended at the scattering nucleus by the surface in
Figure 4-11. Since the cross section o = b2, then do = 2mh db
and Equation 4-9 can be rewritten as

di_(kZeZ) 1
do  \my?/ . 6
smE

do/dQ is called the differential cross section.

7. H. Geiger and E. Marsden, Philosophical Magazine (6),
25, 605 (1913).

8. The value of Z could not be measured directly in this
experiment; however, relative values for different foil materi-
als could be found and all materials heavier than aluminum
had Z approximately equal to half the atomic weight.

9. This also introduces a deviation from the predicted AN
associated with Rutherford’s assumption that the nuclear mass
was much larger than the « particle mass. For lighter-atomic-
weight elements that assumption is not valid. Correction for
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the nuclear mass effect can be made, however, and the data in
Figure 4-9b reflect the correction.

10. Niels H. D. Bohr (1885-1962), Danish physicist and first-
rate soccer player. He went to the Cavendish Laboratory to
work with J. J. Thomson after receiving his Ph.D.; however,
Thomson is reported to have been impatient with Bohr’s
soft, accented English. Happily, the occasion of Thomson’s
annual birthday banquet brought Bohr in contact with Ruther-
ford, whom he promptly followed to the latter’s laboratory at
Manchester, where he learned of the nuclear atom. A giant of
twentieth-century physics, Bohr was awarded the Nobel Prize
in Physics in 1922 for his explanation of the hydrogen spec-
trum. On a visit to the United States in 1939, he brought the
news that the fission of uranium atoms had been observed.
The story of his life makes absolutely fascinating reading.

11. N. Bohr, Philosophical Magazine (6), 26, 1 (1913).

12. Mohr, P.J., B. N. Taylor, and D. B. Newell, “The Funda-
mental Physical Constants,” Reviews of Modern Physics 80,
633-730 (April 2008). Only eight of the 14 current significant
figures are given in Equation 4-27. The relative uncertainty in
the value is about 1 part in 102!

13. Harold C. Urey (1893-1981), American chemist. His work
opened the way for the use of isotopic tracers in biological
systems. He was recognized with the Nobel Prize in 1934.
14. The basic reason that elliptical orbits solve this prob-
lem is that the frequency of the radiation emitted classically
depends on the acceleration of the charge. The acceleration
is constant for a circular orbit but varies for elliptical orbits,
being dependent on the instantaneous distance from the focus.
The energy of a particle in a circular orbit of radius r is the
same as that of a particle in an elliptical orbit with a semi-
major axis of r, so one would expect the only allowed ellipti-
cal orbits to be those whose semimajor axis was equal to an
allowed Bohr circular orbit radius.

15. Viewed with spectrographs of high resolution, the spectral
lines of hydrogen in Figure 4-2a—and, indeed, most spectral
lines of all elements—are found to consist of very closely
spaced sets of lines, that is, fine structure. We will discuss this
topic in detail in Chapter 7.

16. Henry G.-J. Moseley (1887-1915), English physicist,
considered by some the most brilliant of Rutherford’s
students. He would surely have been awarded the Nobel
Prize had he not been killed in action in World War 1. His
father was a naturalist on the expedition of the HMS Chal-
lenger, the first vessel ever devoted to the exploration of
the oceans.

17. The identifiers L and K were assigned by the English
physicist C. G. Barkla, the discoverer of the characteristic
x-ray lines, for which he received the Nobel Prize in Phys-
ics in 1917. He discovered two sets of x-ray lines for each of
several elements, the longer wavelength of which he called
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the L series, the other the K series. The identifiers stuck and
were subsequently used to label the atomic electron shells.
18. That the remaining K electron should result in b = 1, that
is, shielding of exactly 1e, is perhaps a surprise. Actually it
was a happy accident. It is the combined effect of the remain-
ing K electron and the penetration of the electron waves of the
outer L electrons that resulted in making b = 1, as we will see
in Chapter 7.

19. Since in multielectron atoms the energies of the station-
ary states depend in part on the number of electrons in the
atom (see Chapter 7), the energies E, for a given atom change
slightly when it is singly ionized, as in the production of char-
acteristic x-ray lines, or doubly ionized, as in the Auger effect.
20. James Franck (1882-1964), German-American physicist;
Gustav L. Hertz (1887-1975), German physicist. Franck won

Problems
LEVEL I

an lron Cross as a soldier in World War | and later worked
on the Manhattan Project. Hertz was a nephew of Heinrich
Hertz, discoverer of the photoelectric effect. For their work
on the inelastic scattering of electrons, Franck and Hertz
shared the 1925 Nobel Prize in Physics.

21. We should note at this point that there is an energy state
in the Hg atom at about 4.6 eV, slightly lower than the one
found by Franck and Hertz. However, transitions from the
ground state to the 4.6 eV level are not observed, and their
absence is in accord with the prediction of more advanced
quantum mechanics, as we will see in Chapter 7.

22. Since g/m for electrons is much larger than for ionized
atoms, the radius for an electron magnetic spectrometer need
not be as large as for a mass spectrometer, even for electron
energies of several keV (see Equation 3-2).

Section 4-1 Atomic Spectra

4-1. Compute the wavelength and frequency of the series limit for the Lyman, Balmer,
and Paschen spectral series of hydrogen.

4-2.  The wavelength of a particular line in the Balmer series is measured to be 379.1 nm.
What transition does it correspond to?

4-3.  An astronomer finds a new absorption line with A = 164.1 nm in the ultraviolet
region of the Sun’s continuous spectrum. He attributes the line to hydrogen’s Lyman series.
Is he right? Justify your answer.

4-4.  The series of hydrogen spectral lines with m = 4 is called Brackett’s series. Com-
pute the wavelengths of the first four lines of Brackett’s series.

4-5. In a sample that contains hydrogen, among other things, four spectral lines are
found in the infrared with wavelengths 7460 nm, 4654 nm, 4103 nm, and 3741 nm. Which
one does not belong to a hydrogen spectral series?

Section 4-2 Rutherford’s Nuclear Model

4-6. A gold foil of thickness 2.0 wm is used in a Rutherford experiment to scatter o par-
ticles with energy 7.0 MeV. (a) What fraction of the particles will be scattered at angles
greater than 90°? (b) What fraction will be scattered at angles between 45° and 75°?
(c) Use Ny, p, and M for gold to compute the approximate radius of a gold atom. (For
gold, p = 19.3 gm/cm® and M = 197 gm/mol.)

4-7.  (a) What is the ratio of the number of particles per unit area on the screen scattered
at 10° to those at 1°? (b) What is the ratio of those scattered at 30° to those at 1°?

4-8. For « particles of 7.7 MeV (those used by Geiger and Marsden), what impact
parameter will result in a deflection of 2° for a thin gold foil?

4-9.  What will be the distance of closest approach ry to a gold nucleus for an « particle
of 5.0 MeV? 7.7 MeV? 12 MeV?

4-10. What energy « particle would be needed to just reach the surface of an Al nucleus
if its radius is 4 fm?

4-11. If a particle is deflected by 0.01° in each collision, about how many collisions would
be necessary to produce an rms deflection of 10°? (Use the result from the one-dimensional
random walk problem in statistics stating that the rms deflection equals the magnitude of
the individual deflections times the square root of the number of deflections.) Compare



this result with the number of atomic layers in a gold foil of thickness 10~® m, assuming
that the thickness of each atom is 0.1 nm = 1071 m,

4-12. Consider the foil and « particle energy in Problem 4-6. Suppose that 1000 of those
particles suffer a deflection of more than 25°. (a) How many of these are deflected by
more than 45°? (b) How many are deflected between 25° and 45°? (c) How many are
deflected between 75° and 90°?

Section 4-3 The Bohr Model of the Hydrogen Atom

4-13. The radius of the n = 1 orbit in the hydrogen atom is a, = 0.053 nm. (a) Compute
the radius of the n = 6 orbit. (b) Compute the radius of the n = 6 orbit in singly ionized
helium (He™), which is hydrogenlike, that is, it has only a single electron outside the
nucleus.
4-14. Show that Equation 4-19 for the radius of the first Bohr orbit and Equation 4-20 for
the magnitude of the lowest energy for the hydrogen atom can be written as

hic e 1

a, = = E, = Za®mc?
O ame?  2ma )

where A, = h/mc is the Compton wavelength of the electron and « = ke?/4c is the fine-
structure constant. Use these expressions to check the numerical values of the constants
ag and E;.

4-15. Calculate the three longest wavelengths in the Lyman series (n; = 1) in nm, and
indicate their position on a horizontal linear scale. Indicate the series limit (shortest wave-
length) on this scale. Are any of these lines in the visible spectrum?

4-16. If the angular momentum of Earth in its motion around the Sun were quantized like
a hydrogen electron according to Equation 4-17, what would Earth’s quantum number be?
How much energy would be released in a transition to the next lowest level? Would that
energy release (presumably as a gravity wave) be detectable? What would be the radius of
that orbit? (The radius of Earth’s orbit is 1.50 X 10 m.)

4-17. On the average, a hydrogen atom will exist in an excited state for about 1072 s
before making a transition to a lower energy state. About how many revolutions does an
electron in the n = 2 state make in 1078 s?

4-18. An atom in an excited state will on the average undergo a transition to a state
of lower energy in about 108 seconds. If the electron in a doubly ionized lithium
atom (Li*2, which is hydrogenlike) is placed in the n = 4 state, about how many rev-
olutions around the nucleus does it make before undergoing a transition to a lower
energy state?

4-19. It is possible for a muon to be captured by a proton to form a muonic atom.
A muon is identical to an electron except for its mass, which is 105.7 MeV /c?. (a) Cal-
culate the radius of the first Bohr orbit of a muonic atom. (b) Calculate the magnitude
of the lowest energy state. (c) What is the shortest wavelength in the Lyman series for
this atom?

4-20. In the lithium atom (Z = 3) two electrons are in the n = 1 orbit and the third is in
the n = 2 orbit. (Only two are allowed in the n = 1 orbit because of the exclusion prin-
ciple, which will be discussed in Chapter 7.) The interaction of the inner electrons with the
outer one can be approximated by writing the energy of the outer electron as

E = —2"%,/n?

where E; = 13.6 eV, n = 2, and Z' is the effective nuclear charge, which is less than 3
because of the screening effect of the two inner electrons. Using the measured ionization
energy of 5.39 eV, calculate Z'.

4-21. Draw to careful scale an energy-level diagram for hydrogen for levels with n = 1,
2, 3, 4, «. Show the following on the diagram: (a) the limit of the Lyman series, (b) the
H, line, (c) the transition between the state whose binding energy (= energy needed to
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remove the electron from the atom) is 1.51 eV and the state whose excitation energy is
10.2 eV, and (d) the longest wavelength line of the Paschen series.

4-22. A hydrogen atom at rest in the laboratory emits the Lyman « radiation. (a) Compute
the recoil kinetic energy of the atom. (b) What fraction of the excitation energy of the
n = 2 state is carried by the recoiling atom? (Hint: Use conservation of momentum.)
4-23. (a) Draw accurately to scale and label completely a partial energy-level diagram
for C* including at minimum the energy levels for n = 1, 2, 3, 4, 5, and <. (b) Compute
the wavelength of the spectral line resulting from the n = 3 to the n = 2 transition, the
C®"H, line. (c) In what part of the EM spectrum does this line lie?

4-24. The electron-positron pair that was discussed in Chapter 2 can form a hydrogenlike
system called positronium. Calculate (a) the energies of the three lowest states and (b) the
wavelength of the Lyman « and B lines. (Detection of those lines is a “signature” of posi-
tronium formation.)

4-25. With the aid of tunable lasers, Rydberg atoms of sodium have been produced
with n = 100. The resulting atomic diameter would correspond in hydrogen to n = 600.
(a) What would be the diameter of a hydrogen atom whose electron is in the n = 600
orbit? (b) What would be the speed of the electron in that orbit? (c) How does the result
in (b) compare with the speed in the n = 1 orbit?

Section 4-4 X-Ray Spectra

4-26. (@) Calculate the next two longest wavelengths in the K series (after the K, line)
of molybdenum. (b) What is the wavelength of the shortest wavelength in this series?
4-27. The wavelength of the K, x-ray line for an element is measured to be 0.0794 nm.
What is the element?

4-28. Moseley pointed out that elements with atomic numbers 43, 61, and 75 should exist
and (at that time) had not been found. (a) Using Figure 4-19, what frequencies would
Moseley’s graphical data have predicted for the K, x ray for each of these elements?
(b) Compute the wavelengths for these lines predicted by Equation 4-37.

4-29. What is the approximate radius of the n = 1 orbit of gold (Z = 79)? Compare this
with the radius of the gold nucleus, about 7.1 fm.

4-30. An electron in the K shell of Fe is ejected by a high-energy electron in the target
of an x-ray tube. The resulting hole in the n = 1 shell could be filled by an electron from
the n = 2 shell, the L shell; however, instead of emitting the characteristic Fe K, X ray,
the atom ejects an Auger electron from the n = 2 shell. Using Bohr theory, compute the
energy of the Auger electron.

4-31. Ina particular x-ray tube, an electron approaches the target moving at 2.25 X 108 m/s.
It slows down on being deflected by a nucleus of the target, emitting a photon of energy
32.5 keV. Ignoring the nuclear recoil, but not relativity, compute the final speed of the
electron.

4-32. (a) Compute the energy of an electron in the n = 1 (K shell) of tungsten, using Z — 1
for the effective nuclear charge. (b) The experimental result for this energy is 69.5 keV.
Assume that the effective nuclear charge is Z — o, where o is called the screening con-
stant, and calculate o from the experimental result.

4-33. Construct a Moseley plot similar to Figure 4-19 for the Kg x rays of the elements
listed below (the x-ray energies are given in keV):

Al Ar Sc Fe
1.56 3.19 4.46 7.06

Ge Kr Zr Ba
10.98 | 14.10 | 17.66 | 36.35

Determine the slope of your plot, and compare it with the K, line in Figure 4-19.



Section 4-5 The Franck-Hertz Experiment

4-34. Suppose that, in a Franck-Hertz experiment, electrons of energy up to 13.0 eV can
be produced in the tube. If the tube contained atomic hydrogen, (a) what is the shortest-
wavelength spectral line that could be emitted from the tube? (b) List all of the hydrogen
lines that can be emitted by this tube.

4-35. Using the data in Figure 4-24b and a good ruler, draw a carefully scaled energy-
level diagram covering the range from 0 eV to 60 eV for the vibrational states of this solid.
What approximate energy is typical of the transitions between adjacent levels correspond-
ing to the larger of each pair of peaks?

4-36. The transition from the first excited state to the ground state in potassium
results in the emission of a photon with A = 770 nm. If potassium vapor is used in a
Franck-Hertz experiment, at what voltage would you expect to see the first decrease in
current?

4-37. If we could somehow fill a Franck-Hertz tube with positronium, what cathode-grid
voltage would be needed to reach the second current decrease in the positronium equiva-
lent of Figure 4-23? (See Problem 4-24.)

4-38. Electrons in the Franck-Hertz tube can also have elastic collisions with the Hg atoms.
If such a collision is a head-on, what fraction of its initial kinetic energy will an electron
lose, assuming the Hg atom to be at rest? If the collision is not head-on, will the fractional
loss be greater or less than this?

LEVEL II

4-39. A Rydberg hydrogen atom is in the n = 45 energy state. (a) What is the energy dif-
ference (in eV) between this state and the n = 46 level? (b) What is the ionization energy
of the atom in the n = 45 level? (c) What are the frequency and wavelength of a photon
emitted in the n = 46 — n = 45 transition? (d) What is the radius of the atom in the
n = 45 level? How does this compare with the Bohr radius?

4-40. Three isotopes of hydrogen occur in nature; ordinary hydrogen, deuterium, and tri-
tium. Their nuclei consist of, respectively, 1 proton, 1 proton and 1 neutron (deuteron),
and 1 proton and 2 neutrons (triton). The masses of the three nuclei are given in Table 11-1.
(a) Use Equation 4-26 to determine Rydberg constants for deuterium and tritium.
(b) Determine the wavelength difference between the Balmer « lines of deuterium and
tritium. (c) Determine the wavelength difference between the Balmer « lines of hydro-
gen and tritium.

4-41. Derive Equation 4-8 along the lines indicated in the paragraph that immediately
precedes it.

4-42. Geiger and Marsden used « particles with 7.7 MeV Kkinetic energy and found that
when they were scattered from thin gold foil, the number observed to be scattered at all
angles agreed with Rutherford’s formula. Use this fact to compute an upper limit on the
radius of the gold nucleus.

4-43. (a) The current i due to a charge g moving in a circle with frequency f, is qfe.
Find the current due to the electron in the first Bohr orbit. (b) The magnetic moment of
a current loop is iA, where A is the area of the loop. Find the magnetic moment of the
electron in the first Bohr orbit in units A-m?2 This magnetic moment is called a Bohr
magneton.

4-44. Use a spreadsheet to calculate the wavelengths (in nm) of the first five spectral lines
of the Lyman, Balmer, Paschen, and Brackett series of hydrogen. Show the positions of
these lines on a linear scale and indicate which ones lie in the visible.

4-45. Show that a small change in the reduced mass of the electron produces a small
change in a spectral line given by AN/N = Ap/p. Use this to calculate the difference
AN in the Balmer red line A = 656.3 nm between hydrogen and deuterium, which has a
nucleus with twice the mass of hydrogen.
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4-46. Consider the Franck-Hertz experiment with Hg vapor in the tube and the voltage
between the cathode and the grid equal to 4.0 V, that is, not enough to for the electrons
to excite the Hg atom’s first excited state. Therefore, the electron—Hg atom collisions are
elastic. (a) If the kinetic energy of the electrons is E,, show that the maximum Kinetic
energy that a recoiling Hg atom can have is approximately 4mE, /M, where M is the Hg
atom mass. (b) What is the approximate maximum Kinetic energy that can be lost by an
electron with E, = 2.5 eV?

4-47. The Li*" ion is essentially identical to the H atom in Bohr’s theory, aside from the
effect of the different nuclear charges and masses. (a) What transitions in Li*" will yield
emission lines whose wavelengths are very nearly equal to the first two lines of the
Lyman series in hydrogen? (b) Calculate the difference between the wavelength of the
Lyman o line of hydrogen and the emission line from Li?* that has very nearly the same
wavelength.

4-48. In an « scattering experiment, the area of the « particle detector is 0.50 cm?. The
detector is located 10 cm from a 1.0-pwm-thick silver foil. The incident beam carries a cur-
rent of 1.0 nA, and the energy of each « particle is 6.0 MeV. How many « particles will be
counted per second by the detector at (a) 6 = 60°? (b) 8 = 120°?

4-49. The K, L, and M, x rays are emitted inthen =2—n=1,n=3—n = 2, and
n = 4 —n = 3 transitions respectively. For calcium (Z = 20) the energies of these transi-
tions are 3.69 keV, 0.341 keV, and 0.024 keV, respectively. Suppose that energetic pho-
tons impinging on a calcium surface cause ejection of an electron from the K shell of the
surface atoms. Compute the energies of the Auger electrons that may be emitted from the
L, M, and N shells (n = 2, 3, and 4) of the sample atoms, in addition to the characteristic
X rays.

4-50. Figure 3-15b shows the K, and K characteristic x rays emitted by a molybdenum
(Mo) target in an x-ray tube whose accelerating potential is 35 kV. The wavelengths are
K, = 0.071 nm and K, = 0.063 nm. (a) Compute the corresponding energies of these
photons. (b) Suppose we wish to prepare a beam consisting primarily of K, x rays by pass-
ing the molybdenum x rays through a material that absorbs Kg x rays more strongly than
K, x rays by photoelectric effect on K-shell electrons of the material. Which of the materi-
als listed in the accompanying table with their K-shell binding energies would you choose?
Explain your answer.

Element 7Zr Nb Mo Tc Ru

z 40 41 42 43 44
Ex (kev) 18.00 1899 20.00 21.04 2212

LEVEL III

4-51. A small shot of negligible radius hits a stationary smooth, hard sphere of radius
R, making an angle B with the normal to the sphere, as shown in Figure 4-25. It is
reflected at an equal angle to the normal. The scattering angle is 8 = 180° — 28, as
shown. (a) Show by the geometry of the figure that the impact parameter b is related
todbyb=R cos%e. (b) If the incoming intensity of the shot is I, particles/s - area,
how many are scattered through angles greater than 6? (c) Show that the cross section
for scattering through angles greater than 0° is wR2. (d) Discuss the implication of the
fact that the Rutherford cross section for scattering through angles greater than 0° is
infinite.



FIGURE 4-25 Small particle scattered
by a hard sphere of radius R.

4-52. Singly ionized helium He™ is hydrogenlike. (a) Construct a carefully scaled energy-
level diagram for He™ similar to that in Figure 4-16, showing the levels for n = 1, 2, 3,
4,5, and . (b) What is the ionization energy of He™? (c) Compute the difference in wave-
length between each of the first two lines of the Lyman series of hydrogen and the first
two lines of the He" Balmer series. Be sure to include the reduced mass correction for both
atoms. (d) Show that for every spectral line of hydrogen, He™ has a spectral line of very
nearly the same wavelength. (Mass of He™ = 6.65 X 10~%" kg.)

4-53. Listed in the table are the L, x-ray wavelengths for several elements. Construct a
Moseley plot from these data. Compare the slope with the appropriate one in Figure 4-19.
Determine and interpret the intercept on your graph, using a suitably modified version of
Equation 4-35.

Element P Ca Co Kr Mo I

z 15 20 27 36 42 53
Wavelength (nm) 1041 4.05 179 0.73 051 0.33

4-54. In this problem you are to obtain the Bohr results for the energy levels in hydrogen
without using the quantization condition of Equation 4-17. In order to relate Equation 4-14
to the Balmer-Ritz formula, assume that the radii of allowed orbits are given by r, = nr,,
where n is an integer and ry is a constant to be determined. (a) Show that the frequency of
radiation for a transition to n; = n — 1 is given by f =~ kZe?/hryn® for large n. (b) Show
that the frequency of revolution is given by

2 kze?
o 4m®mrin®
(c) Use the correspondence principle to determine ry and compare with Equation 4-19.
4-55. Calculate the energies and speeds of electrons in circular Bohr orbits in a hydrogen-
like atom using the relativistic expressions for kinetic energy and momentum.
4-56. (a) Write a computer program for your personal computer or programmable calcu-
lator that will provide you with the spectral series of H-like atoms. Inputs to be included
are n;, n;, Z, and the nuclear mass M. Outputs are to be the wavelengths and frequencies
of the first six lines and the series limit for the specified n;, Z, and M. Include the reduced
mass correction. (b) Use the program to compute the wavelengths and frequencies of the
Balmer series. (c) Pick an n; > 100, name the series the [your name] series, and use your
program to compute the wavelengths and frequencies of the first three lines and the limit.
4-57. Figure 4-26 shows an energy loss spectrum for He measured in an apparatus such as
that shown in Figure 4-24a. Use the spectrum to construct and draw carefully to scale an
energy-level diagram for He.

Problems

191



192

Chapter 4 The Nuclear Atom

)
‘3 21.21
c
Q
E / 23.07
()
% 20.61
© 19.82
g O\
FIGURE 4-26 Energy-loss spectrum of
helium. Incident electron energy was | | |
34 eV. The elastically scattered electrons 0 10 20
cause the peak at 0 eV. Energy loss, eV —

4-58. If electric charge did not exist and electrons were bound to protons by the gravi-
tational force to form hydrogen, derive the corresponding expressions for a, and E, and
compute the energy and frequency of the H, line and the limit of the Balmer series. Com-
pare these with the corresponding quantities for “real”” hydrogen.

4-59. A sample of hydrogen atoms are all in the n = 5 state. If all the atoms return to the
ground state, how many different photon energies will be emitted, assuming all possible
transitions occur? If there are 500 atoms in the sample and assuming that from any state all
possible downward transitions are equally probable, what is the total number of photons
that will be emitted when all of the atoms have returned to the ground state?

4-60. Consider muonic atoms (see Problem 4-19). (a) Draw a correctly scaled and labeled
partial energy level diagram including levels withn = 1, 2, 3, 4, 5, and o for muonic hydro-
gen. (b) Compute the radius of the n = 1 muon orbit in muonic H, He'*, AI**", and Au™®".
(c) Compare the results in (b) with the radii of these nuclei. (d) Compute the wavelength of
the photon emitted in the n = 2 to n = 1 transition for each of these muonic atoms.



The Wavelike
Properties of Particles

In 1924, a French graduate student, Louis de Broglie,* proposed in his doctoral dis-
sertation that the dual—that is, wave-particle—behavior that was by then known
to exist for radiation was also a characteristic of matter, in particular, electrons. This
suggestion was highly speculative, since there was yet no experimental evidence
whatsoever for any wave aspects of electrons or any other particles. What had led him
to this seemingly strange idea? It was a “bolt out of the blue,” like Einstein’s “happy
thought” that led to the principle of equivalence (see Chapter 2). De Broglie described
it with these words:

After the end of World War I, I gave a great deal of thought to the theory
of quanta and to the wave-particle dualism. . . . It was then that I had a
sudden inspiration. Einstein’s wave-particle dualism was an absolutely
general phenomenon extending to all physical nature.?

Since the visible universe consists entirely of matter and electromagnetic radiation, de
Broglie’s hypothesis is a fundamental statement about the grand symmetry of nature.
(There is currently strong observational evidence that ordinary matter makes up only
about 4 percent of the visible universe. About 22 percent is some unknown form of
invisible “dark matter” and approximately 74 percent consists of some sort of equally
mysterious “dark energy.” See Chapter 13.)

95-1 The de Broglie Hypothesis

De Broglie stated his proposal mathematically with the following equations for the
frequency and wavelength of the electron waves, which are referred to as the de Broglie
relations:

5-1

5-2

where E is the total energy, p is the momentum, and \ is called the de Broglie wave-
length of the particle. For photons, these same equations result directly from Einstein’s

5-2

5-3
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FIGURE 5-1 Standing waves
around the circumference of a
circle. In this case the circle is
3\ in circumference. If the
vibrator were, for example, a
steel ring that had been
suitably tapped with a
hammer, the shape of the ring
would oscillate between the
extreme positions represented
by the solid and broken lines.

quantization of radiation E = hf and Equation 2-31 for a particle of zero rest energy
E = pc as follows:

_ne
A

By a more indirect approach using relativistic mechanics, de Broglie was able to dem-
onstrate that Equations 5-1 and 5-2 also apply to particles with mass. He then pointed
out that these equations lead to a physical interpretation of Bohr’s quantization of the
angular momentum of the electron in hydrogenlike atoms, namely, that the quantiza-
tion is equivalent to a standing-wave condition (see Figure 5-1). We have

E = pc = hf

nh .
mvr = nk = — for n = integer
27
nh nh . .
2mr = — = — = n\ = circumference of orbit 5-3
mv p

The idea of explaining discrete energy states in matter by standing waves thus seemed
quite promising.

De Broglie’s ideas were expanded and developed into a complete theory by
Erwin Schrédinger late in 1925. In 1927, C. J. Davisson and L. H. Germer verified
the de Broglie hypothesis directly by observing interference patterns, a characteristic
of waves, with electron beams. We will discuss both Schrodinger’s theory and the
Davisson-Germer experiment in later sections, but first we have to ask ourselves why
wavelike behavior of matter had not been observed before de Broglie’s work. We can
understand why if we first recall that the wave properties of light were not noticed,
either, until apertures or slits with dimensions of the order of the wavelength of light
could be obtained. This is because the wave nature of light is not evident in experi-
ments where the primary dimensions of the apparatus are large compared with the
wavelength of the light used. For example, if A represents the diameter of a lens or the
width of a slit, then diffraction effects® (a manifestation of wave properties) are limited to
angles 6 around the forward direction (6 = 0°) where sin & = \/A. In geometric (ray)
optics A\/A— 0, so 6 = sin6 — 0, too. However, if a characteristic dimension of the
apparatus becomes of the order of (or smaller than) \, the wavelength of light passing

Louis V. de Broglie, who

first suggested that electrons
might have wave properties.
[Courtesy of Culver Pictures.]




5-2 Measurements of Particle Wavelengths

through the system, then A\/A — 1. In that event sin® = \/Aand 6 is readily observ-
able, and the wavelike properties of light become apparent. Because Planck’s con-
stant is so small, the wavelength given by Equation 5-2 is extremely small for any
macroscopic object. This point is among those illustrated in the following section.

-2 Measurements of Particle Wavelengths

Although we now have diffraction systems of nuclear dimensions, the smallest-scale
systems to which de Broglie’s contemporaries had access were the spacings between
the planes of atoms in crystalline solids, about 0.1 nm. This means that even for an
extremely small macroscopic particle, such as a grain of dust (m = 0.1 mg) moving
through air with the average kinetic energy of the atmospheric gas molecules, the
smallest diffraction systems available would have resulted in diffraction angles 6 only
of the order of 107° radians, far below the limit of experimental detectability. The
small magnitude of Planck’s constant ensures that N will be smaller than any readily
accessible aperture, placing diffraction beyond the limits of experimental observation.
For objects whose momenta are larger than that of the dust particle, the possibility of
observing particle, or matter, waves is even less, as the following example illustrates.

DGR De Broglie Wavelength of a Ping-Pong Ball What is the
de Broglie wavelength of a Ping-Pong ball of mass 2.0 g after it is slammed across
the table with speed 5 m/s?

SOLUTION

h 6.63 X 107%#J-s
mv (2.0 X 107%kg) (5m/s)
=66 X 107%m = 6.6 X 107®nm

This is 17 orders of magnitude smaller than typical nuclear dimensions, far below
the dimensions of any possible aperture.

The case is different for low-energy electrons, as de Broglie himself realized. At
his soutenance de thése (defense of the thesis), de Broglie was asked by Perrin* how his
hypothesis could be verified, to which he replied that perhaps passing particles, such as
electrons, through very small slits would reveal the waves. Consider an electron that has
been accelerated through V, volts. Its Kinetic energy (nonrelativistic) is then

p2
E=_—=¢eV
2m 0
Solving for p and substituting into Equation 5-2,

h_he_  he
P PC  (2mc2eV,)*?
Using hc = 1.24 X 10 eV - nm and mc? = 0.511 X 10° eV, we obtain

1.226
A= nm
V2

The following example computes an electron de Broglie wavelength, giving a measure
of just how small the slit must be.

for eV, << mc? 5-4
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196 Chapter 5 The Wavelike Properties of Particles

DGV LN LR De Broglie Wavelength of a Slow Electron Compute the
de Broglie wavelength of an electron whose kinetic energy is 10 eV.

SOLUTION
1. The de Broglie wavelength is given by Equation 5-2:
h
N=—
p

2. Method 1: Since a 10 eV electron is nonrelativistic, we can use the classical
relation connecting the momentum and the kinetic energy:

or

p = V2mE
V(2)(9.11 x 10 % kg) (10eV) (1.60 X 10 2 J/eV)
=171 X 10"**kg-m/s

3. Substituting this result into Equation 5-2:
6.63 X 107 *J-s

A’ =
1.71 X 107**kg-m/s
Electron gun =388 x 107m = 0.39nm
Y j o 4. Method 2: The electron’s wavelength can also be computed from Equation 5-4
lonization .
Chamb,%/ with Vg = 10 V:
/
// | _ 1226 _ 1.206
"~ V¥ V1o
= 0.39nm
/
V4

Remarks: Though this wavelength is small, it is just the order of magnitude of the
size of an atom and of the spacing of atoms in a crystal.

The Davisson-Germer Experiment

In a brief note in the August 14, 1925, issue of the journal Naturwissenschaften, Wal-
ter Elsasser, at the time a student of Franck’s (of the Franck-Hertz experiment), pro-
posed that the wave effects of low-velocity electrons might be detected by scattering
them from single crystals. The first such measurements of the wavelengths of elec-
trons were made in 1927 by Davisson® and Germer, who were studying electron
reflection from a nickel target at Bell Telephone Laboratories, unaware of either
Elsasser’s suggestion or de Broglie’s work. After heating their target to remove an
oxide coating that had accumulated during an accidental break in their vacuum system,
they found that the scattered electron intensity as a function of the scattering angle
an ionization chamber. The showed maxima and minima. The surface atoms of their nickel target had, in the pro-
Kinetic energy of the cess of cooling, formed relatively large single crystals, and they were observing elec-
electrons could be varied by~ tron diffraction. Recognizing the importance of their accidental discovery, they then
changing the accelerating prepared a target consisting of a single crystal of nickel and extensively investigated
voltage on the electron gun. the scattering of electrons from it. Figure 5-2 illustrates their experimental arrangement.

Ni crystal

FIGURE 5-2 The Davisson-
Germer experiment.
Low-energy electrons
scattered at angle ¢ from a
nickel crystal are detected in
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FIGURE 5-3 Scattered intensity versus detector angle for 54 eV electrons. (a) Polar plot of the
data. The intensity at each angle is indicated by the distance of the point from the origin.
Scattering angle ¢ is plotted clockwise starting at the vertical axes. (b) The same data plotted
on a Cartesian graph. The intensity scales are arbitrary but the same on both graphs. In each
plot there is maximum intensity at ¢ = 50°, as predicted for Bragg scattering of waves having
wavelength A = h/p. [From Nobel Prize Lectures: Physics (Amsterdam and New York: Elsevier,
© Nobel Foundation, 1964).]

Their data for 54 eV electrons, shown in Figure 5-3, indicate a strong maximum of
scattering at ¢ = 50°. Consider the scattering from a set of Bragg planes, as shown in
Figure 5-4. The Bragg condition for constructive interference is n\ = 2d sinf =
2d cosa. The spacing of the Bragg planes d is related to the spacing of the atoms D
by d = D sin «; thus

n\ = 2Dsinacosa = Dsin2a
or
n\ = Dsing 5-5

where ¢ = 2a is the scattering angle. The spacing D for Ni is known from x-ray dif-
fraction to be 0.215 nm. The wavelength calculated from Equation 5-5 for the peak
observed at @ = 50° by Davisson and Germer is, forn = 1,

N = 0.215sin50° = 0.165nm

Incident
beam

¢ =20
Intense

reflected
beam

FIGURE 5-4 Scattering of
electrons by a crystal.
Electron waves are strongly
scattered if the Bragg
condition n\ = 2d sin6 is
met. This is equivalent to the
condition n\ = D sine.
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FIGURE 5-5 Test of the de Broglie formula X = h/p. The
wavelength is computed from a plot of the diffraction data
plotted against V, /2, where V, is the accelerating voltage.
The straight line is 1.226V ; /2 nm as predicted from

N = h(2mE) 2, These are the data referred to in the
quotation from Davisson’s Nobel lecture. (X From
observations with diffraction apparatus; &) same,
particularly reliable; [J same, grazing beams. © From
observations with reflection apparatus.) [From Nobel Prize
Lectures: Physics (Amsterdam and New York: Elsevier,
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The value calculated from the de Broglie relation for
54 eV electrons is

1.226
(54)*?

The agreement with the experimental observation is
excellent! With this spectacular result Davisson and
Germer then conducted a systematic study to test the de
Broglie relation using electrons up to about 400 eV and
various experimental arrangements. Figure 5-5 shows a
plot of measured wavelengths versus V2. The wave-
lengths measured by diffraction are slightly lower than
the theoretical predictions because the refraction of the
electron waves at the crystal surface has been neglected.
We have seen from the photoelectric effect that it takes
work of the order of several eV to remove an electron
from a metal. Electrons entering a metal thus gain kinetic
energy; therefore, their de Broglie wavelength is slightly
less inside the crystal.®

A subtle point must be made here. Notice that the
wavelength in Equation 5-5 depends only on D, the inter-
atomic spacing of the crystal, whereas our derivation of

A= = 0.167 nm

© Nobel Foundation, 1964).]

FIGURE 5-6 A series of
polar graphs of Davisson and
Germer’s data at electron
accelerating potentials from
36 V to 68 V. Note the
development of the peak at
¢ = 50° to a maximum when
Vo =54 V.

that equation included the interplane spacing as well. The
fact that the structure of the crystal really is essential
shows up when the energy is varied, as was done in col-
lecting the data for Figure 5-5. Equation 5-5 suggests that a change in A, resulting
from a change in the energy, would mean only that the diffraction maximum would
occur at some other value of ¢ such that the equation remains satisfied. However, as
can be seen from examination of Figure 5-4, the value of ¢ is determined by «, the
angle of the planes determined by the crystal structure. Thus, if there are no crystal
planes making an angle a = ¢/2 with the surface, then setting the detector at
¢ = sin"*(\/D) will not result in constructive interference and strong reflection for
that value of N even though Equation 5-5 is satisfied. This is neatly illustrated by
Figure 5-6, which shows a series of polar graphs (like Figure 5-3a) for electrons of
energies from 36 eV through 68 eV. The building to a strong reflection at ¢ = 50° is
evident for V, = 54 V, as we have already seen. But Equation 5-5 by itself would also

36V 50° ~

40V 44V 48V 60V 64V 68V
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lead us to expect, for example, a strong reflection at ¢ = 64° when V, = 40 V, which
obviously does not occur.

In order to show the dependence of the diffraction on the inner atomic layers,
Davisson and Germer kept the detector angle ¢ fixed and varied the accelerating volt-
age rather than search for the correct angle for a given \. Writing Equation 5-5 as

_ Dsing  Dsin (2a)

n n
and noting that A = V2, we find that a graph of intensity versus V§/?(=<1/\) for a
given angle ¢ should yield (1) a series of equally spaced peaks corresponding to suc-
cessive values of the integer n if « = ¢/2 is an existing angle for atomic planes or
(2) no diffraction peaks if ¢/2 is not such an angle. Davisson and Germer’s measure-
ments verified the dependence of the intensity on the interplane spacing, the agreement
with the prediction being about +1 percent. Figure 5-7 illustrates the results for ¢ = 50°.

5-6
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Clinton J. Davisson (left)
and Lester H. Germer at
Bell Laboratories, where
electron diffraction was first
observed. [Bell Telephone
Laboratories, Inc.]

The diffraction pattern
formed by high-energy
electron waves scattered
from nuclet provides a
means by which nuclear
radit and the internal
distribution of the nuclear
charge (the protons) are
measured (see Chapter 11).
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FIGURE 5-7 Variation of the scattered
electron intensity with wavelength for constant
¢. The incident beam in this case was 10° from
the normal, the resulting refraction causing the
measured peaks to be slightly shifted from the
positions computed from Equation 5-5, as
explained in note 6. [After C. J. Davisson and

L. H. Germer, Proceedings of the National
Academy of Sciences, 14, 619 (1928).]
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Thus, Davisson and Germer showed conclusively that particles with mass moving at

speeds v << ¢ do indeed have wavelike properties, as de Broglie had proposed.

Here is Davisson’s account of the connection between de Broglie’s predictions

and their experimental verification;

FIGURE 5-8 (a) Schematic
arrangement used for producing

a diffraction pattern from a
polycrystalline aluminum target.
(b) Diffraction pattern produced by
x rays of wavelength 0.071 nm

and an aluminum foil target.

(c) Diffraction pattern produced

by 600 eV electrons (de Broglie
wavelength of about 0.05 nm) and
an aluminum foil target. The pattern
has been enlarged by 1.6 times

to facilitate comparison with (b).
[Courtesy of Film Studio, Education
Development Center.]

Perhaps no idea in physics has received so rapid or so intensive devel-
opment as this one. De Broglie himself was in the van of this develop-
ment, but the chief contributions were made by the older and more
experienced Schrédinger. It would be pleasant to tell you that no sooner
had Elsasser’'s suggestion appeared than the experiments were begun
in New York which resulted in a demonstration of electron diffraction—
pleasanter still to say that the work was begun the day after copies of
de Broglie’s thesis reached America. The true story contains less of per-
spicacity and more of chance. ... It was discovered, purely by accident,
that the intensity of elastic scattering [of electrons] varies with the ori-
entations of the scattering crystals. Out of this grew, quite naturally, an
investigation of elastic scattering by a single crystal of predetermined
orientation. . .. Thus the New York experiment was not, at its inception,
a test of wave theory. Only in the summer of 1926, after I had discussed
the investigation in England with Richardson, Born, Franck and others,
did it take on this character.”

A demonstration of the wave nature of relativistic electrons was provided in
the same year by G. P. Thomson, who observed the transmission of electrons with
energies in the range of 10 to 40 keV through thin metallic foils (G. P. Thomson,
the son of J. J. Thomson, shared the Nobel Prize in Physics in 1937 with Davisson).
The experimental arrangement (Figure 5-8a) was similar to that used to obtain
Laue patterns with x rays (see Figure 3-11). Because the metal foil consists of

(b)

(@) Screen or

Incident
beam \'6
(x rays or 0
electrons)
Al foil
target \
Circular
diffraction
ring
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many tiny crystals randomly oriented, the diffraction pattern consists of concen-
tric rings. If a crystal is oriented at an angle 6 with the incident beam, where 6 sat-
isfies the Bragg condition, this crystal will strongly scatter at an equal angle 6;
thus, there will be a scattered beam making an angle 26 with the incident beam.
Figure 5-8b and ¢ show the similarities in patterns produced by x rays and electron
waves.

Diffraction of Other Particles

The wave properties of neutral atoms and molecules were first demonstrated by Stern
and Estermann in 1930 with beams of helium atoms and hydrogen molecules dif-
fracted from a lithium fluoride crystal. Since the particles are neutral, there is no pos-
sibility of accelerating them with electrostatic potentials. The energy of the molecules
was that of their average thermal motion, about 0.03 eV, which implies a de Broglie
wavelength of about 0.10 nm for these molecules, according to Equation 5-2. Because
of their low energy, the scattering occurs just from the array of atoms on the surface
of the crystal, in contrast to Davisson and Germer’s experiment. Figure 5-9 illustrates
the geometry of the surface scattering, the experimental arrangement, and the results.
Figure 5-9c indicates clearly the diffraction of He atom waves.

Since then, diffraction of other atoms, of protons, and of neutrons has been
observed (see Figures 5-10, 5-11, and 5-12 on page 200). In all cases the measured
wavelengths agree with de Broglie’s prediction. Thus, there is no doubt that all matter
has wavelike as well as particlelike properties, in symmetry with electromagnetic
radiation.

(a) Incident
He beam
(plane wave)

The diffraction patterns
formed by helium atom
waves are used to study
impurities and defects on
the surfaces of crystals.
Being a noble gas, helium
does not react chemically
with molecules on the
surface or “stick” to the
surface.

FIGURE 5-9 (a) He atoms impinge

on the surface of the LiF crystal at
angle 6 (6 = 18.5° in Estermann and

© ] Stern’s experiment). The reflected
(b) Q beam makes the same angle 6 with
- the surface but is also scattered at
§ bt azimuthal angles o relative to an axis
£ o perpendicular to the surface. (b) The
é N °° detector views the surface at angle 6
He 21 4 g but can scan through the angle ¢.
Slits ‘E)“eoaTT:C el 3 / \ (c) Atangle ¢, where the path
y Ll Q difference (d sin ¢) between adjacent
o oo “rays” is n\, constructive interference,
T I I B that is, a diffraction peak, occurs.

—20°-10° 0° 10° 20° Then = 1 peaks occur on either side

LiF crystal Detector setting ¢ of the n = 0 maximum.
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FIGURE 5-10 Diffraction pattern produced
by 0.0568 eV neutrons (de Broglie

wavelength of 0.120 nm) and a target of FIGURE 5-11 Neutron Laue pattern of NaCl.
polycrystalline copper. Note the similarity in Compare this with the x-ray Laue pattern in
the patterns produced by x rays, electrons, and Figure 3-11. [Courtesy of E. O. Wollan and
neutrons. [Courtesy of C. G. Shull.] C. G. Shull.]
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scatterers whose dimensions are
of the order of 10~ ** m. Here the

FIGURE 5-12 Nuclei provide 10-5 ]Jr

diffraction of 1 GeV protons from 1061 | | | | | |
oxygen nuclei result in a pattern 0 2 4 6 8 1012 14 16 18 20 22 24 26 28
similar to that of a single slit. Scattering angle, degrees

An Easy Way to Determine de Broglie Wavelengths

It is frequently helpful to know the de Broglie wavelength for particles with a specific

kinetic energy. For low energies where relativistic effects can be ignored, the equa-

tion leading to Equation 5-4 can be rewritten in terms of the Kinetic energy as follows:
h h

AN=—=— 5-7

P V2mE,
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To find the equivalent expression that covers both relativistic
and nonrelativistic speeds, we begin with the relativistic equation
relating the total energy to the momentum.

E? = (pc)? + (mc?)? 2-31

Writing E, for the rest energy mc? of the particle for convenience,
this becomes

E® = (pc)? + E} 5-8
Since the total energy E = E; + E,, Equation 5-8 becomes
(Eo + Ex)* = (pc)* + EG
that, when solved for p, yields
(2EoEy + Ef)Y?
c
from which Equation 5-2 gives

he
A= 5-9
(2EoEy + ER)Y?

This can be written in a particularly useful way applicable to any
particle of any energy by dividing the numerator and denominator
by the rest energy E, = mc? as follows:
N hc/mc? B h/mc
- (2EE+ ED'P/Ey  [2(Ei/Eo) + (Ei/Eg)?]"?

Recognizing h/mc as the Compton wavelength \. of the particle
of mass m (see Section 3-4), we have that, for any particle,

1
[2(Ey/Eo) + (Ex/Ep)?]"?

)\/)\c =

108

102
Ae =h/mc
Eq = mc2
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FIGURE 5-13 The de Broglie wavelength A
expressed in units of the Compton wavelength A
for a particle of mass m versus the kinetic energy
of the particle E, expressed in units of its rest
energy E, = mc?. For protons and neutrons

E, = 0.938 GeV and \, = 1.32 fm. For electrons
E, = 0.511 MeV and A, = 0.00234 nm.

5-10

A log-log graph of A /N, versus E,/E, is shown in Figure 5-13. It has two sections of
nearly constant slope, one for E, << mc? and the other for E, >> mc?, connected by
a curved portion lying roughly between 0.1 < E,/E, < 10. The following example

illustrates the use of Figure 5-13.

DGV JNEECE The de Broglie Wavelength of a Cosmic-Ray Proton Detec-
tors on board a satellite measure the kinetic energy of a cosmic-ray proton to be
150 GeV. What is the proton’s de Broglie wavelength, as read from Figure 5-13?

SOLUTION

The rest energy of the proton is mc? = 0.938 GeV and the proton’s mass is 1.67 X

107" kg. Thus, the ratio E,/E, is

E
B _ 150GeV _ .
E, 0.938GeV
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This value on the curve corresponds to about 6 X 10~% on the X /\. axis. The Comp-
ton wavelength of the proton is
h 6.63 X 107*J-s
A= == — 5 =132x10%m
mc  (1.67 X 107“"kg) (3 X 10°m/s)
and we have then for the particle’s de Broglie wavelength

A= (6x107%) (132 X 107%m) = 7.9 X 107 Bm = 7.9 X 103 fm

Questions

1. Since the electrons used by Davisson and Germer were low energy, they
penetrated only a few atomic layers into the crystal, so it is rather surprising that
the effects of the inner layers show so clearly. What feature of the diffraction is
most affected by the relatively shallow penetration?

2. How might the frequency of de Broglie waves be measured?

3. Why is it not reasonable to do crystallographic studies with protons?

B-3 Wave Packets

In any discussion of waves the question arises, “What’s waving?” For some waves
the answer is clear: for waves on the ocean, it is the water that “waves”; for sound
waves in air, it is the molecules that constitute the air; for light, it is the & and the B.
So what is waving for matter waves? For matter waves as for light waves, there is no
“ether.” As will be developed in this section and the next, the particle is in a sense
“smeared out” over the extent of the wave, so for matter it is the probability of finding
the particle that waves.
Classical waves are solutions of the classical wave equation
o’y 1 0%
ax2 V2 gt?
Important among classical waves is the harmonic wave of amplitude y,, frequency f,
and period T, traveling in the +x direction as written here:

5-11

t 2
y(x,t) = ypcos(kx — wt) =y, cosZw(i - > = yocosTTr(x —vt) 5-12

T
where the angular frequency » and the wave number® k are defined by
2
o = 2mf = - 5-13a
T
and
2
k=" 5-13b
A
and the velocity v of the wave, the so-called wave or phase velocity v,, is given by
v, =X 5-14

A familiar wave phenomenon that cannot be described by a single harmonic
wave is a pulse, such as the flip of one end of a long string (Figure 5-14a), a sudden
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noise, or the brief opening of a shutter in front of a light source. The main characteris-
tic of a pulse is localization in time and space; whereas a single harmonic wave is not
localized in either time or space. The description of a pulse can be obtained by the
superposition of a group of harmonic waves of different frequencies and wavelengths.
Such a group is called a wave packet (see Figure 5-14b). The mathematics of repre-
senting arbitrarily shaped pulses by sums of sine or cosine functions involves Fourier
series and Fourier integrals. We will illustrate the phenomenon of wave packets by
considering some simple and somewhat artificial examples and discussing the general
properties qualitatively. Wave groups are particularly important because a wave
description of a particle must include the important property of localization.

Consider a simple group consisting of only two waves of equal amplitude and
nearly equal frequencies and wavelengths. Such a group occurs in the phenomenon of
beats and is described in most introductory textbooks. The quantities k, w, and v are
related to one another via Equations 5-13 and 5-14. Let the wave numbers be k; and k,,
the angular frequencies w; and w,, and the speeds v, and v,. The sum of the two
waves is

y(X,t) = Yo COS(klx - (l)lt) + Yo COS(kZX - (,l)zt)

which, with the use of a bit of trigonometry, becomes

B Ak Aw k, + k, 0, + o, )
y(x,t) = 2yocos< > X 2 t) cos( > X > t

where Ak = k; — k; and Ao = 0, — ;. Since the two waves have nearly equal val-
ues of k and w, we will writek = (k; + k;)/2and ® = (o, + w,)/2 for the mean
values. The sum is then

1 1 _
y(x,t) = 2y, cos(zAkx - zAwt) cos (kx — ot) 5-15

Figure 5-15 shows a sketch of y(x, tp) versus x at some time t,. The dashed curve is the
envelope of the group of two waves, given by the first cosine term in Equation 5-15.
The wave within the envelope moves with the speed o /k, the phase velocity v, due to
the second cosine term. (Be aware that v, may exceed c.) If we write the first (amplitude
modulating) term as cos {3Ak[x — (Aw/Ak)t]} we see that the envelope moves
with speed Aw/Ak. The speed of the envelope is called the group velocity v,.

A more general wave packet can be constructed if, instead of adding just two
sinusoidal waves as in Figure 5-15, we superpose a larger, finite number with slightly

@ Y

|
|
|
OB |
|
|

the frequency difference Aw.

@ —

FIGURE 5-14 (a) Wave
pulse moving along a string.
A pulse has a beginning and
an end; that is, it is localized,
unlike a pure harmonic wave,
which goes on forever in
space and time. (b) A wave
packet formed by the
superposition of harmonic
waves.

FIGURE 5-15 Two waves of slightly different wavelength and frequency
produce beats. (a) Shows y(x) at a given instant for each of the two waves.
The waves are in phase at the origin, but because of the difference in
wavelength, they become out of phase and then in phase again. (b) The sum
of these waves. The spatial extent of the group Ax is inversely proportional
to the difference in wave numbers Ak, where k is related to the wavelength
by k = 2w /\. Identical figures are obtained if y is plotted versus time t at a
fixed point x. In that case the extent in time At is inversely proportional to
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(b)

different wavelengths and different amplitudes. For example, Figure 5-16a illustrates
the superposing of seven cosines with wavelengths from Ay = 1/9 to \;s = 1/15

(wave numbers from ky = 18 to k;5 = 307r) at time t,. The waves are all in phase at
15

x =0andagainatx = 12, x = £24,... Theirsumy(x,t;) = Eyi(x,to) oscillates
i=9

with maxima at those values of x, decreasing and increasing at other values as a result
of the changing phases of the waves (see Figure 5-16b). Now, if we superpose an infi-
nite number of waves from the same range of wavelengths and wave numbers as in
Figure 5-16 with infinitesimally different values of k, the central group around
x = 0 will be essentially the same as in that figure. However, the additional groups
will no longer be present since there is now no length along the x axis into which an
exactly integral number of all of the infinite number of component waves can fit.
Thus, we have formed a single wave packet throughout this (one-dimensional) space.
This packet moves at the group velocity v, = dw/dk. The mathematics needed to

AANANNNNANNANNNANANNNNNNNAN s/ar
Vs APAAAAAIAAAAARAAA A s0n
6-5-4-3-2-10 12 3 4 5 6 7 8 9 1011 12 Yo
X (units of 1/12) —»= 1/2 +
\ |
[ [ [
13 } }
1/4 + \ \
[ [
[ [
[ [
y=2y.‘,:\,:\’:‘/:\: ’\’\AA"‘AI\’\/\ ——— % ; % L
iIVVVV VVVVVVVV 16m 2015‘2415‘281'5 32n
| |
4n

FIGURE 5-16 (a) Superposition of seven sinusoids y,(X,t) = Yo Cos(kx — wt) with uniformly
spaced wave numbers ranging from k = (21)9 to k = (21r)15 with t = 0. The maximum
amplitude is 1 at the center of the range (k = (2m)12), decreasing to 1/2, 1/3, and 1/4, y

respectively, for the waves on each side of the central wave. (b) The sumy(x,0) = Eyi (x,0)
i=9

i<
is maximum at x = 0 with additional maxima equally spaced along the *x axis. (c) Amplitudes
of the sinusoids y; versus wave number k.
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demonstrate the above involves use of the Fourier integral described in the Classical
Concept Review.
The phase velocities of the individual harmonic waves are given by Equation 5-14:

_ [ w 2m\ o
Vp—f)\— g ? —I

Writing this as o = kv, the relation between the group and phase velocities is given
by Equation 5-16:

dw av,

vgzazv“kd—kp 5-16
If the phase velocity is the same for all frequencies and wavelengths, then dv,/dk = 0
and the group velocity is the same as the phase velocity. A medium for which the
phase velocity is the same for all frequencies is said to be nondispersive. Examples
are waves on a perfectly flexible string, sound waves in air, and electromagnetic
waves in a vacuum. An important characteristic of a nondispersive medium is that,
since all the harmonic waves making up a packet move with the same speed, the
packet maintains its shape as it moves; thus, it does not change its shape with time.
Conversely, if the phase velocity is different for different frequencies, the shape of the
pulse will change as it travels. In that case, the group velocity and phase velocity are
not the same. Such a medium is called a dispersive medium; examples are water waves,
waves on a wire that is not perfectly flexible, light waves in a medium such as glass or
water, in which the index of refraction has a slight dependence on frequency, and
electron waves. It is the speed of the packet, the group velocity vg, that is normally
seen by an observer.

Classical Uncertainty Relations

Notice that the width of the group® Ax of the superposition y(x,t,) in Figure 5-16b is
just a bit larger than 1/12. Similarly, the graph of the amplitude of these waves versus
k has width Ak = 4+, which is a bit more than 12 (Figure 5-16c¢), so we see that

AkAx ~ 1 5-17
By a similar analysis, we would also conclude that
AwAt ~ 1 5-18

The range of wavelengths or frequencies of the harmonic waves needed to form a
wave packet depends on the extent in space and duration in time of the pulse. In gen-
eral, if the extent in space Ax is to be small, the range Ak of wave numbers must be
large. Similarly, if the duration in time At is small, the range of frequencies Aw must
be large. We have written these as order-of-magnitude equations because the exact
value of the products AkAx and Aw At depends on how these ranges are defined, as
well as on the particular shape of the packets. Equation 5-18 is sometimes known as
the response time—bandwidth relation, expressing the result that a circuit component
such as an amplifier must have a large bandwidth (Aw) if it is to be able to respond to
signals of short duration.

There is a slight variation of Equation 5-17 that is also helpful in interpreting the
relation between Ax and Ak. Differentiating the wave number in Equation 5-13b yields

— 2mwd\

dk = T 5-19

The classical uncertainty
relations define the range
of signal frequencies

to which all kinds

of communications
equipment and computer
systems must respond,
from cell phones to
supercomputers.



208

Chapter 5 The Wavelike Properties of Particles

Replacing the differentials by small intervals and concerning ourselves only with
magnitudes, Equation 5-19 becomes

Ak = 2“;?)‘

which when substituted into Equation 5-17 gives

)\2
AXAN = — 5-20
2T

Equation 5-20 says that the product of the spatial extent of a classical wave Ax
and the uncertainty (or “error”) in the determination of its wavelength AN will always
be of the order of \?/2mr. The following brief examples will illustrate the meaning of
Equations 5-17 and 5-18, often referred to as the classical uncertainty relations, and
Equation 5-20.

DVIHASEES AN for Ocean Waves Standing in the middle of a 20-m-long
pier, you notice that at any given instant there are 15 wave crests between the two
ends of the pier. Estimate the minimum uncertainty in the wavelength that could be
computed from this information.

SOLUTION

1. The minimum uncertainty A\ in the wavelength is given by Equation 5-20:
)\2

AXAN = —

21

2. The wavelength A of the waves is

20m
= ——=13m
15 waves

3. The spatial extent of the waves used for this calculation is

Ax = 20m
4. Solving Equation 5-20 for AN and substituting these values gives
AN = N2 _ (1.3m)?
2mAx 2w X 20m
= 0.013m
AN = 0.01m =1cm

Remarks: This is the minimum uncertainty. Any error that may exist in the mea-
surement of the number of wave crests and the length of the pier would add further
uncertainty to the determination of A.

Frequency Control The frequency of the alternating voltage
produced at electric generating stations is carefully maintained at 60.00 Hz (in North
America). The frequency is monitored on a digital frequency meter in the control
room. For how long must the frequency be measured and how often can the display
be updated if the reading is to be accurate to within 0.01 Hz?
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SOLUTION

Since w = 2«f, then Aw = 2wAf = 21(0.01) rad/s and
At ~ 1/Aw = 1/2w(0.01)
At ~ 16

Thus, the frequency must be measured for about 16 s if the reading is to be accurate to
0.01 Hz and the display cannot be updated more often than once every 16 seconds.

Questions

4. Which is more important for communication, the group velocity or the phase
velocity?

5. What are Ax and Ak for a purely harmonic wave of a single frequency and
wavelength?

Particle Wave Packets

The quantity analogous to the displacement y(x,t) for waves on a string, to the pres-
sure P(x,t) for a sound wave, or to the electric field £(x,t) for electromagnetic waves
is called the wave function for particles and is usually designated W (x,t). Itis W (x,t)
that we will relate to the probability of finding the particle and, as we alerted you ear-
lier, it is the probability that waves. Consider, for example, an electron wave consist-
ing of a single frequency and wavelength; we could represent such a wave by any of
the following, exactly as we did the classical wave: W(x,t) = A cos(kx — wt), W(x,t) =
Asin(kx — wt), or ¥ (x,t)=Ae'eb,
The phase velocity for this wave is given by

v, =fx = (E/h)(h/p) = E/p

where we have used the de Broglie relations for the wavelength and frequency. Using
the nonrelativistic expression for the energy of a particle moving in free space (i.e., no
potential energy) with no forces acting on it,

1 p?
E=_-mv?=_—
2 2m

we see that the phase velocity is

v, = E/p = (p?/2m)/p = p/2m = v/2

that is, the phase velocity of the wave is half the velocity of an electron with momen-
tum p. The phase velocity does not equal the particle velocity. Moreover, a wave of a
single frequency and wavelength is not localized but is spread throughout space,
which makes it difficult to see how the particle and wave properties of the electron
could be related. Thus, for the electron to have the particle property of being local-
ized, the matter waves of the electron must also be limited in spatial extent—that is,
realistically, W (x,t) must be a wave packet containing many more than one wave
number k and frequency w. It is the wave packet W (x,t) that we expect to move at a
group velocity equal to the particle velocity, which we will show below is indeed the
case. The particle, if observed, we will expect to find somewhere within the spatial
extent of the wave packet W (x,t), precisely where within being the subject of the
next section.

209
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An application of phase
and particle speeds by
nature: produce a wave
on a still pond (or in a
bathtub) and watch the
wavelets that make up
the wave appear to “climb
over” the wave crest at
twice the speed of the
wave.

To illustrate the equality of the group velocity v, and the particle velocity v, it is
convenient to express de Broglie’s relations in a slightly different form. Writing
Equation 5-1 as follows,

E = hf = ho/27 or E = fo 5-21
and Equation 5-2 as
h h _ hk

N 2w/k 2w
the group velocity is then given by
vy = do/dk = (dE/A)/(dp/A) = dE/dp

Again using the nonrelativistic expression E = p?/2m, we have that

or p = Ak 5-22

Vg = dE/dp = p/m =v

and the wave packet W (x,t) moves with the velocity of the electron. This was, in fact,
one of de Broglie’s reasons for choosing Equations 5-1 and 5-2. (De Broglie used the
relativistic expression relating energy and momentum, which also leads to the equal-
ity of the group velocity and particle velocity.)

9-4 The Probabilistic Interpretation
of the Wave Function

Let us consider in more detail the relation between the wave function W (x,t) and the
location of the electron. We can get a hint about this relation from the case of light.
The wave equation that governs light is Equation 5-11, with, y = £, the electric field,
as the wave function. The energy per unit volume in a light wave is proportional to £,
but the energy in a light wave is quantized in units of hf for each photon. We expect,
therefore, that the number of photons in a unit volume is proportional to €2, a connec-
tion first pointed out by Einstein.

Consider the famous double-slit interference experiment (see Figure 5-17). The
pattern observed on the screen is determined by the interference of the waves from the
slits. At a point on the screen where the wave from one slit is 180° out of phase with
that from the other, the resultant electric field is zero; there is no light energy at this
point, and this point on the screen is dark. If we reduce the intensity to a very low
value, we can still observe the interference pattern if we replace the ordinary screen
with a scintillation screen or a two-dimensional array of tiny photon detectors (e.g., a
CCD camera) and wait a sufficient length of time.

The interaction of light with the detector or scintillator is a quantum phenome-
non. If we illuminate the scintillators or detectors for only a very short time with a
low-intensity source, we do not see merely a weaker version of the high-intensity
pattern; we see, instead, “dots” caused by the interactions of individual photons
(see Figure 5-18). At points where the waves from the slits interfere destructively,
there are no dots, and at points where the waves interfere constructively, there are
many dots. However, when the exposure is short and the source weak, random fluc-
tuations from the average predictions of the wave theory are clearly evident. If the
exposure is long enough that many photons reach the detector, the fluctuations
average out and the quantum nature of light is not noticed. The interference pattern
depends only on the total number of photons interacting with the detector and not
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I FIGURE 5-17 Two-source
interference pattern. If the
sources are coherent and
in phase, the waves from
the sources interfere
constructively at points for

Sy which the path difference

(dsin®) is an integral

number of wavelengths.

M
Sz dsin®

on the rate. Even when the intensity is so low that only one photon at a time reaches
the detector, the wave theory predicts the correct average pattern. For low intensi-
ties, we therefore interpret £ as proportional to the probability of detecting a pho-
ton in a unit volume of space. At points on the detector where &2 is zero, photons
are never observed, whereas they are most likely to be observed at points where &2
is large.

(b) ' )

FIGURE 5-18 Growth of two-slit interference pattern. The photo (d) is an actual two-slit electron interference pattern in which
the film was exposed to millions of electrons. The pattern is identical to that usually obtained with photons. If the film were to
be observed at various stages, such as after being struck by 28 electrons, then after about 1000 electrons and again after about
10,000 electrons the patterns of individually exposed grains would be similar to those shown in (a), (b), and (c), except that the
exposed dots would be smaller than the dots drawn here. Note that there are no dots in the region of the interference minima.
The probability of any point of the film being exposed is determined by wave theory, whether the film is exposed by electrons or
photons. [Parts (a), (b), and (c) from E. R. Huggins, Physics 1, © by W. A. Benjamin, Inc., Menlo Park, California. Photo (d) courtesy
of C. Jonsson.]
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It is not necessary to use light waves to produce an interference pattern. Such pat-
terns can be produced with electrons and other particles as well. In the wave theory of
electrons the de Broglie wave of a single electron is described by a wave function .
The amplitude of W at any point is related to the probability of finding the particle
at that point. In analogy with foregoing interpretation of &, the quantity |W|? is
proportional to the probability of detecting an electron in a unit volume, where
| |2 = W, the function W* being the complex conjugate of W. In one dimension,
| W |2dx is the probability of an electron being in the interval dx™° (see Figure 5-19.)
If we call this probability P(x)dx, where P(x) is the probability distribution function,
we have

P(x)dx = |¥|%dx 5-23

In the next chapter we will more thoroughly discuss the amplitudes of matter waves
associated with particles, in particular developing the mathematical system for com-
puting the amplitudes and probabilities in various situations. The uneasiness that you
may feel at this point regarding the fact that we have not given a precise physical
interpretation to the amplitude of the de Broglie matter wave can be attributed in part
to the complex nature of the wave amplitude; that is, it is in general a complex func-
tion with a real part and an imaginary part, the latter proportional to i = (—1)%2
We cannot directly measure or physically interpret complex numbers in our world of
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FIGURE 5-19 A three-dimensional wave packet y
representing a particle moving along the x axis. The
dot indicates the position of a classical particle. Note
that the packet spreads out in the x and y directions.
This spreading is due to dispersion, resulting from the
fact that the phase velocity of the individual waves
making up the packet depends on the wavelength of
the waves. (For a four-dimensional packet—not
shown—spreading would also occur in the z direction.)
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real numbers. However, as we will see, defining the probability in terms of | W |2,
which is always real, presents no difficulty in its physical interpretation. Thus, even
though the amplitudes of the wave functions ¥ have no simple meaning, the waves
themselves behave just as do classical waves, exhibiting the wave characteristics of
reflection, refraction, interference, and diffraction and obeying the principles of
superposition.

5-5 The Uncertainty Principle

The uncertainty relations for classical wave packets (Equations 5-17 and 5-18) have
very important matter wave analogs.

Consider a wave packet W(x,t) representing an electron. The most probable posi-
tion of the electron is the value of x for which |¥(x,t)|? is a maximum. Since
|W (x,t) |? is proportional to the probability that the electron is at x, and | W (x,t) |? is
nonzero for a range of values of X, there is an uncertainty in the value of the position
of the electron (see Figure 5-19). This means that if we make a number of position
measurements on identical electrons—electrons with the same wave function—we
will not always obtain the same result. In fact, the distribution function for the results
of such measurements will be given by | W (x,t) |2 If the wave packet is very narrow,
the uncertainty in position will be small. However, a narrow wave packet must con-
tain a wide range of wave numbers k. Since the momentum is related to the wave
number by p = #k, a wide range of k values means a wide range of momentum values.
We have seen that for all wave packets the ranges Ax and Ak are related by

AkAx ~ 1 5-17

Similarly, a packet that is localized in time At must contain a range of frequencies
Aw, where the ranges are related by

AwAt ~ 1 5-18

Equations 5-17 and 5-18 are inherent properties of waves. If we multiply these equa-
tions by 72 and use p = ik and E = fw, we obtain

AXAp ~ % 5-24
and
AEAt ~ % 5-25

Equations 5-24 and 5-25 provide a statement of the uncertainty principle first enunci-
ated in 1927 by Werner K. Heisenberg.!! Equation 5-24 expresses the physical reality
that the distribution functions for position and momentum cannot both be made
arbitrarily narrow simultaneously (see Figure 5-16); thus, measurements of position
and momentum will have similar uncertainties that are related by Equation 5-24.
Of course, because of inaccurate measurements, the product of Ax and Ap can be and
usually is much larger than 4. The lower limit is not due to any technical problem in
the design of measuring equipment that might be solved at some later time; it is
instead due to the wave and particle nature of both matter and light.

If we define precisely what we mean by the uncertainty in the measurements of
position and momentum, we can give a precise statement of the uncertainty principle.
For example, if o, is the standard deviation for measurements of position and o is the
standard deviation for measurements of the wave number, the product o, oy has its
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Heisenberg’s uncertainty
principle is the key to

the existence of virtual
particles that hold the
nuclel together (see
Chapter 11) and is the root
of quantum fluctuations
that may have been the
origin of the Big Bang (see
Chapter 13).

minimum value of 1/2 when the distribution functions are Gaussian. If we define Ax
and Ap to be the standard deviations, the minimum value of their product is #/2. Thus

AxAp = >4 5-26

N |~

Similarly,

AEAt = 4 5-27

Question

6. Does the uncertainty principle say that the momentum of a particle can never be
precisely known?

EXPLORING
The Gamma-Ray Microscope

Let us see how one might attempt to make a measurement so accurate as to violate the
uncertainty principle. A common way to measure the position of an object such as an
electron is to look at it with light, that is, scatter light from it and observe the diffraction
pattern. The momentum can be obtained by looking at it again a short time later and
computing what velocity it must have had the instant before the light scattered from it.
Because of diffraction effects, we cannot hope to make measurements of length (posi-
tion) that are smaller than the wavelength of the light used, so we will use the shortest-
wavelength light that can be obtained, gamma rays. (There is, in principle, no limit to
how short the wavelength of electromagnetic radiation can be.) We also know that light
carries momentum and energy, so that when it scatters off the electron, the motion of the
electron will be disturbed, affecting the momentum. We must therefore use the mini-
mum intensity possible so as to disturb the electron as little as possible. Reducing the
intensity decreases the number of photons, but we must scatter at least one photon to
observe the electron. The minimum possible intensity, then, is that corresponding to one
photon. The scattering of a photon by a free electron is, of course, a Compton scattering
event, which was discussed in Section 3-4. The momentum of the photon is hf/c = h/\.
The smaller \ that is used to measure the position, the more the photon will disturb the
electron, but we can correct for that with a Compton-effect analysis, provided only that
we know the photon’s momentum and the scattering angles of the event.

Figure 5-20 illustrates the problem. (This illustration was first given as a gedanken
experiment, or thought experiment, by Heisenberg. Since a single photon doesn’t form
a diffraction pattern, think of the diffraction pattern as being built up by photons from
many identical scattering experiments.) The position of the electron is to be determined
by viewing it through a microscope. We will assume that only one photon is used. We
can take for the uncertainty in position the minimum separation distance for which two
objects can be resolved; this is'?

‘= N
2sin®

where 6 is the half angle subtended by the lens aperture, as shown in Figure 5-20a and b.
Let us assume that the x component of momentum of the incoming photon is known
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(a) A FIGURE 5-20 (a) “Seeing an electron”
&=

with a gamma-ray microscope.
(b) Because of the size of the lens, the
: ) Screen momentum of the scattered photon is
uncertain by Ap, = psin6 = hsin6/\.
o Lens Thus, the recoil momentum of the
Photons that electron is also uncertain by at least this
g?et?égtti%?elng amount. (c) The position of the electron
cannot be resolved better than the width

this region . . -

of the central maximum of the diffraction

S Electron pattern Ax = \/sin®. The product of
the uncertainties Ap, Ax is therefore of
the order of Planck’s constant h.

Light
O source
(b) ~—— x component of photon’s
Sﬁg&eﬂred \ | recoil momentum (h/A) sin 6’

x component of electron’s
recoil momentum
(h/A) sin ®’

Incident

photon
py =hfic=h/x

© Intensity

- AX ——»

Diffraction pattern
seen on screen

precisely from a previous measurement. To reach the screen and contribute to the dif-
fraction pattern in Figure 5-20c, the scattered photon need only go through the lens
aperture. Thus, the scattered photon can have any x component of momentum from 0 to
px = p sin 6, where p is the total momentum of the scattered photon. By conservation of
momentum, the uncertainty in the momentum of the electron after the scattering must
be greater than or equal to that of the scattered photon (it would be equal, of course, if
the electron’s initial momentum were known precisely); so we write

. h .
Ap, = psing = Xsme
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and

AN hsing 1

2sin6 A\ 2

AXAp, =

Thus, even though the electron prior to our observation may have had a definite posi-
tion and momentum, our observation has unavoidably introduced an uncertainty in the
measured values of those quantities. This illustrates the essential point of the uncer-
tainty principle—that this product of uncertainties cannot be less than about h in prin-
ciple, that is, even in an ideal situation. If electrons rather than photons were used to
locate the object, the analysis would not change since the relation A = h/p is the same
for both.

9-6 Some Consequences of
the Uncertainty Principle

In the next chapter we will see that the Schrédinger wave equation provides a
straightforward method of solving problems in atomic physics. However, the solution
of the Schrdédinger equation is often laborious and difficult. Much semi-quantitative
information about the behavior of atomic systems can be obtained from the uncer-
tainty principle alone without a detailed solution of the problem. The general
approach used in applying the uncertainty principle to such systems will first be
illustrated by considering a particle moving in a box with rigid walls. We then use
that analysis in several numerical examples and as a basis for discussing some addi-
tional consequences.

Minimum Energy of a Particle in a Box

An important consequence of the uncertainty principle is that a particle confined to a
finite space cannot have zero average kinetic energy. Let us consider the case of a
one-dimensional “box” of length L. If we know that the particle is in the box, Ax is
not larger than L. This implies that Ap is at least A /L. (Since we are interested in
orders of magnitude, we will ignore the 1/2 in the minimum uncertainty product. In
general, distributions are not Gaussian anyway, so Ap Ax will be larger than 7/2.) Let
us take the standard deviation as a measure of Ap:

(Ap)z = (p - ﬁ)gv = (p2 - 2p§ + ﬁz)av = F - ﬁz
If the box is symmetric, p will be zero since the particle moves to the left as often as

to the right. Then
_ \2
2 2= (=
(Ap)*=p (L>

and the average Kkinetic energy is

- 2
E-P -1
2m  2mL?

5-28

Thus, we see that the uncertainty principle indicates that the minimum energy of a
particle (any particle) in a “box” (any kind of “box”) cannot be zero. This minimum
average kinetic energy given by Equation 5-28 for a particle in a one-dimensional box
is called the zero point energy.
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A Macroscopic Particle in a Box Consider a small but mac-
roscopic particle of mass m = 107° g confined to a one-dimensional box with
L = 107® m, for example, a tiny bead on a very short wire. Compute the bead’s
minimum kinetic energy and the corresponding speed.

SOLUTION
1. The minimum Kinetic energy is given by Equation 5-28:
E_ w* (1055 X 107*J-s)?
2mL?  (2)(107°kg) (107°m)?
=557 X 1074

= 3.47 X 107 ¥ eV

2. The speed corresponding to this Kinetic energy is

[2E \/2(5.57 X 107%7)
VvV = _——=
m 10 °kg

= 1.06 X 107®m/s

Remarks: We can see from this calculation that the minimum kinetic energy implied
by the uncertainty principle is certainly not observable for macroscopic objects,
even ones as small as 107 g.

SDCVNLESEVA An Electron in an Atomic Box If the particle in a one-
dimensional box of length L = 0.1 nm (about the diameter of an atom) is an electron,
what will be its zero-point energy?

SOLUTION
Again using Equation 5-28, we find that
(fic)? (197.3 eV -nm)?
= >y = 5 > =3.8leV
2me“L 2(0.511 X 10°eV) (0.1 nm)

This is the correct order of magnitude for the kinetic energy of an electron in an atom.

Size of the Hydrogen Atom

The energy of an electron of momentum p a distance r from a proton is

The energy is then
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There is a radius r,, at which E is a minimum. Setting dE /dr = 0 yields r,, and E,;:

a, = 0.0529 nm

and

k2e*m

En =~

= —13.6eV

The fact that r,, came out to be exactly the radius of the first Bohr orbit is due to the
judicious choice of Ax = r rather than 2r or r/2, which are just as reasonable. It
should be clear, however, that any reasonable choice for Ax gives the correct order of
magnitude of the size of an atom.

Widths of Spectral Lines

Equation 5-27 implies that the energy of a system cannot be measured exactly unless
an infinite amount of time is available for the measurement. If an atom is in an excited
state, it does not remain in that state indefinitely but makes transitions to lower energy
states until it reaches the ground state. The decay of an excited state is a statistical
process.

We can take the mean time for decay T, called the lifetime, to be a measure of the
time available to determine the energy of the state. For atomic transitions, T is of the
order of 10~ s. The uncertainty in the energy corresponding to this time is

-16
AE = hi_ 658 X 1(_) eVv-s
T 1078s
This uncertainty in energy causes a spread A\ in the wavelength of the light emit-
ted. For transitions to the ground state, which has a perfectly certain energy E,
because of its infinite lifetime, the percentage spread in wavelength can be calcu-
lated from

~ 107 7eV

hc
E—-—E,=—
Y
d\
dE —hC?
| AN
|AE[ = he- 5
thus,
AN AE
)\ E_EO

The energy width AE = 7 /7 is called the natural line width and is represented by I
Other effects that cause broadening of spectral lines are the Doppler effect, the recoil
of the emitting atom, and atomic collisions. For optical spectra in the eV energy
range, the Doppler width D is about 10°° eV at room temperature, that is, roughly
10 times the natural width I"y, and the recoil width is negligible. For nuclear transi-
tions in the MeV range, both the Doppler width and the recoil width are of the order
of eV, much larger than the natural line width. We will see in Chapter 11 that in some
special cases of atoms in solids at low temperatures, the Doppler and recoil widths are
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essentially zero and the width of the spectral line is just the natural width. This effect,
called the Mdésshauer effect after its discoverer, is extremely important since it provides
photons of well-defined energy, which are useful in experiments demanding extreme
precision. For example, the 14.4 keV photon from *'Fe has a natural width of the
order of 107! of its energy.

Questions

7. What happens to the zero-point energy of a particle in a one-dimensional box as
the length of the box L — «?

8. Why is the uncertainty principle not apparent for macroscopic objects?

=2 CVIHESGEEE Emission of a Photon Most excited atomic states decay, that is,
emit a photon, within about = 10~% s following excitation. What is the minimum
uncertainty in the (1) energy and (2) frequency of the emitted photon?

SOLUTION
1. The minimum energy uncertainty is the natural line width Iy = #/; therefore,

_ 663 xX107*J-s 414 X 107 "®eV-s
0 2m X 107%s 27 X 10785
2. From de Broglie’s relation E = 7w, we have
AE = idw = (2w Af) = hAf

=6.6 X 10 %eV

so that Equation 5-27 can be written as
AEAt = hAfAt = 7
and the minimum uncertainty in the frequency becomes

1 1
= =
2w At 27 X 1078
Af = 1.6 X 10" Hz

Af

Remark: The frequency of photons in the visible region of the spectrum is of the
order of 10* Hz.

9-7 Wave-Particle Duality

We have seen that electrons, which were once thought of as simply particles, exhibit
the wave properties of diffraction and interference. In earlier chapters we saw that
light, which we previously had thought of as a wave, also has particle properties in
its interaction with matter, as in the photoelectric effect or the Compton effect. All
phenomena—electrons, atoms, light, sound—have both particle and wave charac-
teristics. It is sometimes said that an electron, for example, behaves both as a
wave and a particle. This may seem confusing since, in classical physics, the con-
cepts of waves and particles are mutually exclusive. A classical particle behaves like
a pellet or BB shot from an air-powered rifle. It can be localized and scattered, it
exchanges energy suddenly in a lump, and it obeys the laws of conservation of
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energy and momentum in collisions, but it does not exhibit interference and diffrac-
tion. A classical wave behaves like a water wave. It exhibits diffraction and inter-
ference patterns and has its energy spread out continuously in space and time, not
quantized in lumps. Nothing, it was thought, could be both a classical particle and a
classical wave.

We now see that the classical concepts do not adequately describe either waves
or particles. Both matter and radiation have both particle and wave aspects. When
emission and absorption are being studied, it is the particle aspects that are dominant.
When matter and radiation propagate though space, wave aspects dominate. Notice
that emission and absorption are events characterized by exchange of energy and dis-
crete locations. For example, light strikes the retina of your eye and a photon is
absorbed, transferring its energy to a particular rod or cone: an observation has
occurred. This illustrates the point that observations of matter and radiation are
described in terms of the particle aspects. On the other hand, predicting the intensity
distribution of the light on your retina involves consideration of the amplitudes of
waves that have propagated through space and been diffracted at the pupil. Thus, pre-
dictions, that is, a priori statements about what may be observed, are described in
terms of the wave aspects. Let’s elaborate on this just a bit.

Every phenomenon is describable by a wave function that is the solution of a
wave equation. The wave function for light is the electric field &(x,t) (in one space
dimension), which is the solution of a wave equation such as Equation 5-11. We have
called the wave function for an electron W(x,t). We will study the wave equation of
which W is the solution, called the Schrédinger equation, in the next chapter. The
magnitude squared of the wave function gives the probability per unit volume that the
electron, if looked for, will be found in a given volume or region. The wave function
exhibits the classical wave properties of interference and diffraction. In order to pre-
dict where an electron, or other particle, is likely to be, we must find the wave func-
tion by methods similar to those of classical wave theory. When the electron (or light)
interacts and exchanges energy and momentum, the wave function is changed by the
interaction. The interaction can be described by classical particle theory, as is done in
the Compton effect. There are times when classical particle theory and classical wave
theory give the same results. If the wavelength is much smaller than any object or
aperture, particle theory can be used as well as wave theory to describe wave propa-
gation, because diffraction and interference effects are too small to be observed.
Common examples are geometrical optics, which is really a particle theory, and the
motion of baseballs and jet aircraft. If one is interested only in time averages of energy
and momentum exchange, the wave theory works as well as the particle theory. For
example, the wave theory of light correctly predicts that the total electron current in
the photoelectric effect is proportional to the intensity of the light.

More

That matter can exhibit wavelike characteristics as well as parti-
clelike behavior can be a difficult concept to understand. A won-
derfully clear discussion of wave-particle duality was given by
R. P. Feynman, and we have used it as the basis of our explanation
on the home page of the Two-Slit Interference Pattern for electrons:
www.whfreeman.com/tiplermodernphysicsée. See also Figures 5-21
and 5-22 and Equation 5-29 here.
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Summary
TOPIC RELEVANT EQUATIONS AND REMARKS
1. De Broglie relations f=E/h 5-1
N=nh/p 5-2
Electrons and all other particles exhibit the wave properties of
interference and diffraction.
2. Detecting electron waves Showed that electron waves diffracted from a single Ni crystal
according to Bragg’s equation.
Davisson and Germer n\ = Dsing 5-5
3. Wave packets
d?y 1 d?
Wave equation == === 5-11
! dx?  v2 dt?
Uncertainty relations AkAx ~ 1 5-17
Ao At ~1 5-18
Wave speed v, = A = w/k
Group (packet) speed vy = do _ v, + k% 5-16
A R 9Tk T Nk
Matter waves The wave packet moves with the particle speed; that is, the particle
speed is the group speed v,
4. Probabilistic interpretation The magnitude square of the wave function is proportional to the
probability of observing a particle in the region dx at x and t.
P(x)dx = |¥|%dx 5-23
1
5. Heisenberg uncertainty principle AxAp = Eﬁ 5-26
AEAt = %h 5-27
where each of the uncertainties is defined to be the standard deviation.
- 2
Lo E = 5-28
Particle in a box L2

The minimum energy of any particle in any “box” cannot be zero.

Energy of H atom
Bohr model.
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Notes

1. Louis V. P. R. de Broglie (1897-1987), French physi-
cist. Originally trained in history, he became interested in
science after serving as a radio engineer in the French army
(assigned to the Eiffel Tower) and through the work of his
physicist brother Maurice. The subject of his doctoral disser-
tation received unusual attention because his professor, Paul
Langevin (who discovered the principle on which sonar is
based), brought it to the attention of Einstein, who described
de Broglie’s hypothesis to Lorentz as “the first feeble ray of
light to illuminate . . . the worst of our physical riddles.” He
received the Nobel Prize in Physics in 1929, the first person
so honored for work done for a doctoral thesis.

2. L. de Broglie, New Perspectives in Physics, Basic Books,
New York, 1962.

3. See, for example, Tipler, Physics for Scientists and
Engineers, 5th ed. (New York: W. H. Freeman and Co.,
2008), Section 35-5.

4. Jean-Baptiste Perrin (1870-1942), French physicist. He was
the first to show that cathode rays were actually charged par-
ticles, setting the stage for J. J. Thomson’s measurement of their
q/m ratio. He was also the first to measure the approximate size
of atoms and molecules and determined Avogadro’s number. He
received the Nobel Prize in Physics for that work in 1926.

5. Clinton J. Davisson (1881-1958), American physicist.
He shared the 1937 Nobel Prize in Physics with G. P. Thom-
son for demonstrating the diffraction of particles. Davisson’s
Nobel Prize was the first ever awarded for work done some-
where other than at an academic institution. Germer was one
of Davisson’s assistants at Bell Telephone Laboratory.

6. Matter (electron) waves, like other waves, change their
direction in passing from one medium (e.g., Ni crystal) into
another (e.g., vacuum,) in the manner described by Snell’s
law and the indices of refraction of the two media. For normal
incidence Equation 5-5 is not affected, but for other incident
angles it is altered a bit, and that change has not been taken
into account in either Figure 5-6 or 5-7.

Problems
LEVEL I

Resnick, R., and D. Halliday, Basic Concepts in Relativity and
Early Quantum Theory, 2d ed., Wiley, New York, 1992.

Tipler, P. A., and G. Mosca, Physics for Scientists and Engi-
neers, 6th ed., W. H. Freeman and Co., New York, 2008.
Chapters 15 and 16 include a complete discussion of
classical waves.

7. Nobel Prize Lectures: Physics (Amsterdam and New York:
Elsevier, 1964).

8. In spectroscopy, the quantity k = A~ is called the wave
number. In the theory of waves, the term wave number is used
fork = 2m/\.

9. Following convention, the “width” is defined as the full
width of the pulse or envelope measured at half the maximum
amplitude.

10. This interpretation of |¥|? was first developed by the
German physicist Max Born (1882-1970). One of his posi-
tions early in his career was at the University of Berlin, where
he was to relieve Planck of his teaching duties. Born received
the Nobel Prize in Physics in 1954, in part for his interpreta-
tion of | W |2,

11. Werner K. Heisenberg (1901-1976), German physicist.
After obtaining his Ph.D. under Sommerfeld, he served as an
assistant to Born and to Bohr. He was the director of research
for Germany’s atomic bomb project during World War I1. His
work on quantum theory earned him the Nobel Prize in Phys-
ics in 1932.

12. The resolving power of a microscope is discussed in
some detail in Jenkins and White, Fundamentals of Optics,
4th ed. (New York: McGraw-Hill, 1976), pp. 332-334. The
expression for Ax used here is determined by Rayleigh’s cri-
terion, which states that two points are just resolved if the
central maximum of the diffraction pattern from one falls at
the first minimum of the diffraction pattern of the other.

13. Richard P. Feynman (1918-1988), American physicist.
This discussion is based on one in his classic text Lectures on
Physics (Reading, MA: Addison-Wesley, 1965). He shared
the 1965 Nobel Prize in Physics for his development of quan-
tum electrodynamics (QED). It was Feynman who, while a
member of the commission on the space shuttle Challenger
disaster, pointed out that the booster stage O-rings were at
fault. A genuine legend in American physics, he was also an
accomplished bongo drummer and safecracker.

Section 5-1 The de Broglie Hypothesis

5-1. (a) What is the de Broglie wavelength of a 1 g mass moving at a speed of 1 m per
year? (b) What should be the speed of such a mass if its de Broglie wavelength is to be 1 cm?



5-2.  If the kinetic energy of a particle is much greater than its rest energy, the relativistic
approximation E = pc holds. Use this approximation to find the de Broglie wavelength of
an electron of energy 100 MeV.

5-3.  Electrons in an electron microscope are accelerated from rest through a potential
difference V, so that their de Broglie wavelength is 0.04 nm. What is V,?

5-4.  Compute the de Broglie wavelengths of (a) an electron, (b) a proton, and (c) an alpha
particle of 4.5 keV Kinetic energy.

5-5. According to statistical mechanics, the average kinetic energy of a particle at tem-
perature T is 3kT /2, where k is the Boltzmann constant. What is the average de Broglie
wavelength of nitrogen molecules at room temperature?

5-6.  Find the de Broglie wavelength of a neutron of kinetic energy 0.02 eV (this is of the
order of magnitude of kT at room temperature).

5-7. A free proton moves back and forth between rigid walls separated by a distance L =
0.01 nm. (a) If the proton is represented by a one-dimensional standing de Broglie wave
with a node at each wall, show that the allowed values of the de Broglie wavelength are
given by A = 2L/n, where n is a positive integer. (b) Derive a general expression for the
allowed kinetic energy of the proton and compute the values for n = 1 and 2.

5-8.  What must be the kinetic energy of an electron if the ratio of its de Broglie wave-
length to its Compton wavelength is (a) 102 (b) 0.2, and (c) 103?

5-9.  Compute the wavelength of a cosmic-ray proton whose kinetic energy is (a) 2 GeV
and (b) 200 GeV.

Section 5-2 Measurements of Particle Wavelengths

5-10. What is the Bragg scattering angle ¢ for electrons scattered from a nickel crystal if
their energy is (a) 75 eV, (b) 100 eV?

5-11. Compute the kinetic energy of a proton whose de Broglie wavelength is 0.25 nm.
If a beam of such protons is reflected from a calcite crystal with crystal plane spacing of
0.304 nm, at what angle will the first-order Bragg maximum occur?

5-12. (a) The scattering angle for 50 eV electrons from MgO is 55.6°. What is the crystal
spacing D? (b) What would be the scattering angle for 100 eV electrons?

5-13. A certain crystal has a set of planes spaced 0.30 nm apart. A beam of neutrons
strikes the crystal at normal incidence and the first maximum of the diffraction pattern
occurs at ¢ = 42°. What are the de Broglie wavelength and kinetic energy of the neutrons?
5-14. Show that in Davisson and Germer’s experiment with 54 eV electrons using the D =
0.215 nm planes, diffraction peaks with n = 2 and higher are not possible.

5-15. A beam of electrons with kinetic energy 350 eV is incident normal to the surface
of a KClI crystal, which has been cut so that the spacing D between adjacent atoms in the
planes parallel to the surface is 0.315 nm. Calculate the angle ¢ at which diffraction peaks
will occur for all orders possible.

Section 5-3 Wave Packets

5-16. Information is transmitted along a cable in the form of short electric pulses at
100,000 pulses/s. (a) What is the longest duration of the pulses such that they do not over-
lap? (b) What is the range of frequencies to which the receiving equipment must respond
for this duration?

5-17. Two harmonic waves travel simultaneously along a long wire. Their wave functions
are y; = 0.002cos(8.0x — 400t) and y, = 0.002cos(7.6x — 380t), where y and x are in
meters and t in seconds. (a) Write the wave function for the resultant wave in the form of
Equation 5-15. (b) What is the phase velocity of the resultant wave? (c) What is the group
velocity? (d) Calculate the range Ax between successive zeros of the group and relate it to Ak.
5-18. (a) Starting from Equation 5-1, show that the group velocity can also be expressed as

Vg =V, — A(dv,/d\)

Problems
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(b) The phase velocity of each wavelength of white light moving through ordinary glass
is a function of the wavelength; that is, glass is a dispersive medium. What is the general
dependence of v, on \ in glass? Is dv,/d\ positive or negative?

5-19. A radar transmitter used to measure the speed of pitched baseballs emits pulses of
2.0 cm wavelength that are 0.25 ws in duration. (a) What is the length of the wave packet
produced? (b) To what frequency should the receiver be tuned? (c) What must be the
minimum bandwidth of the receiver?

5-20. A certain standard tuning fork vibrates at 880 Hz. If the tuning fork is tapped, caus-
ing it to vibrate, then stopped a quarter of a second later, what is the approximate range of
frequencies contained in the sound pulse that reached your ear?

5-21. If a phone line is capable of transmitting a range of frequencies Af = 5000 Hz, what
is the approximate duration of the shortest pulse that can be transmitted over the line?
5-22. (a) You are given the task of constructing a double-slit experiment for 5 eV elec-
trons. If you want the first minimum of the diffraction pattern to occur at 5°, what must be
the separation of the slits? (b) How far from the slits must the detector plane be located if
the first minima on each side of the central maximum are to be separated by 1 cm?

Section 5-4 The Probabilistic Interpretation of the Wave Function

5-23. A 100 g rigid sphere of radius 1 cm has a kinetic energy of 2 J and is confined to move
in a force-free region between two rigid walls separated by 50 cm. (a) What is the probabil-
ity of finding the center of the sphere exactly midway between the two walls? (b) What is the
probability of finding the center of the sphere between the 24.9 and 25.1 cm marks?

5-24. A particle moving in one dimension between rigid walls separated by a distance L
has the wave function W (x) = Asin(wx/L). Since the particle must always be located
between the walls, what must be the value of A?

5-25. The wave function describing a state of an electron confined to move along the x
axis is given at time zero by

W (x,0) = Ae /4

Find the probability of finding the electron in a region dx centered at (a) x = 0, (b) X = o,
and (c) x = 20. (d) Where is the electron most likely to be found?

Section 5-5 The Uncertainty Principle

5-26. A tuning fork of frequency f, vibrates for a time At and sends out a waveform that
looks like that in Figure 5-23. This wave function is similar to a harmonic wave except
that it is confined to a time At and space Ax = v At, where v is the phase velocity. Let
N be the approximate number of cycles of vibration. We can measure the frequency by
counting the cycles and dividing by At. (a) The number of cycles is uncertain by approxi-
mately =1 cycle. Explain why (see the figure). What uncertainty does this introduce in
the determination of the frequency f? (b) Write an expression for the wave number K in
terms of Ax and N. Show that the uncertainty in N of =1 leads to an uncertainty in k of
Ak = 2m/AXx.

FIGURE 5-23 Problem 5-26.



5-27. If an excited state of an atom is known to have a lifetime of 1077 s, what is the
uncertainty in the energy of photons emitted by such atoms in the spontaneous decay to
the ground state?

5-28. A ladybug 5 mm in diameter with a mass of 1.0 mg being viewed through a low-
power magnifier with a calibrated reticule is observed to be stationary with an uncertainty
of 1072 mm. How fast might the ladybug actually be walking?

5-29. ?22Rn decays by the emission of an « particle with a lifetime of 3.823 days. The
kinetic energy of the « particle is measured to be 5.490 MeV. What is the uncertainty in
this energy? Describe in one sentence how the finite lifetime of the excited state of the
radon nucleus translates into an energy uncertainty for the emitted « particle.

5-30. If the uncertainty in the position of a wave packet representing the state of a quantum-
system particle is equal to its de Broglie wavelength, how does the uncertainty in momen-
tum compare with the value of the momentum of the particle?

5-31. In one of G. Gamow’s Mr. Tompkins tales, the hero visits a “quantum jungle”
where h is very large. Suppose that you are in such a place where h = 50 J - s. A cheetah
runs past you a few meters away. The cheetah is 2 m long from nose to tail tip and its mass
is 30 kg. It is moving at 40 m/s. What is the uncertainty in the location of the “midpoint”
of the cheetah? Describe in one sentence how the cheetah would look different to you than
when h has its actual value.

5-32. In order to locate a particle, for example, an electron, to within 5 X 10~ m using
electromagnetic waves (“light”), the wavelength must be at least this small. Calculate the
momentum and energy of a photon with A = 5 X 1072 m. If the particle is an electron
with Ax = 5 X 1072 m, what is the corresponding uncertainty in its momentum?

5-33. The decay of excited states in atoms and nuclei often leave the system in another,
albeit lower-energy, excited state. (a) One example is the decay between two excited
states of the nucleus of “*Ti. The upper state has a lifetime of 1.4 ps, the lower state 3.0 ps.
What is the fractional uncertainty AE/E in the energy of 1.3117 MeV gamma rays con-
necting the two states? (a) Another example is the H,, line of the hydrogen Balmer series.
In this case the lifetime of both states is about the same, 108 s. What is the uncertainty in
the energy of the H, photon?

5-34. Laser pulses of femtosecond duration can be produced, but for such brief pulses
it makes no sense to speak of the pulse’s color. To demonstrate this, compute the time
duration of a laser pulse whose range of frequencies covers the entire visible spectrum
(4.0 X 10* Hzto 7.5 X 10" Hz).

Section 5-6 Some Consequences of the Uncertainty Principle

5-35. A neutron has a kinetic energy of 10 MeV. What size object is necessary to observe
neutron diffraction effects? Is there anything in nature of this size that could serve as a
target to demonstrate the wave nature of 10 MeV neutrons?

5-36. Protons and neutrons in nuclei are bound to the nucleus by exchanging pions
(m mesons) with each other (see Chapter 11). This is possible to do without violating
energy conservation provided the pion is re-absorbed within a time consistent with the
Heisenberg uncertainty relations. Consider the emission reaction p—p+« where
m, = 135 MeV/c?. (a) Ignoring kinetic energy, by how much is energy conservation vio-
lated in this reaction? (b) Within what time interval must the pion be re-absorbed in order
to avoid violation of energy conservation?

5-37. Show that the relation Ap;As > 7 can be written AL Ag > 7 for a particle moving
in a circle about the z axis, where p, is the linear momentum tangential to the circle, s is
the arc length, and L is the angular momentum. How well can the angular position of the
electron be specified in the Bohr atom?

5-38. An excited state of a certain nucleus has a half-life of 0.85 ns. Taking this to be
the uncertainty At for emission of a photon, calculate the uncertainty in the frequency Af,
using Equation 5-25. If A = 0.01 nm, find Af/f.
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FIGURE 5-24 Problem 5-39.

5-39. The lifetimes of so-called resonance particles cannot be measured directly but is
computed from the energy width (or uncertainty) of the scattering cross section versus
energy graph (see Chapter 12). For example, the scattering of a pion (m meson) and a
proton can produce a short-lived A resonance particle with a mass of 1685 MeV/c? and
an energy width of 250 MeV as shown in Figure 5-24: w + p — A. Compute the lifetime
of the A.

Section 5-7 Wave-Particle Duality

5-40. A particle with a mass of 4 g is moving at 100 m/s. What size aperture would be
needed in order to observe diffraction of this particle wave? Explain why no common
object could pass through such an aperture.

5-41. Recalling that an object smaller than the wavelength illuminating it cannot be
“seen,” what is the minimum Kinetic energy of electrons needed in an electron microscope
in order to “see” an atom whose diameter is 0.1 nm, about the size of a silicon atom?

LEVEL II

5-42. Neutrons and protons in atomic nuclei are confined within a region whose diameter
is about 107*° m. (a) At any given instant, how fast might an individual proton or neutron
be moving? (b) What is the approximate kinetic energy of a neutron that is localized to
within such a region? (c) What would be the corresponding energy of an electron localized
to within such a region?

5-43. Using the relativistic expression E2 = p%? + m2c?, (a) show that the phase velocity
of an electron wave is greater than c; (b) show that the group velocity of an electron wave
equals the particle velocity of the electron.

5-44. Show that if y; and y, are solutions of Equation 5-11, the function y; = Cyy; + Cyy,
is also a solution for any values of the constants C; and C,.

5-45. The London “bobby” whistle has a frequency of 2500 Hz. If such a whistle is given
a 3.0 s blast, (a) what is the uncertainty in the frequency? (b) How long is the wave train
of this blast? (c) What would be the uncertainty in measuring the wavelength of this blast?
(d) What is the wavelength of this blast?

5-46. A particle of mass m moves in a one-dimensional box of length L. (Take the poten-
tial energy of the particle in the box to be zero so that its total energy is its kinetic energy
p?/2m.) Its energy is quantized by the standing-wave condition n(\/2) = L, where \ is
the de Broglie wavelength of the particle and n is an integer. (a) Show that the allowed
energies are given by E, = n’E,, where E; = h?/8mL2 (b) Evaluate E, for an electron in
a box of size L = 0.1 nm and make an energy-level diagram for the state fromn = 1 to
n = 5. Use Bohr’s second postulate f = AE/h to calculate the wavelength of electro-
magnetic radiation emitted when the electron makes a transition from (c) n = 2ton = 1,
(dn=3ton=2,and(e)n=5ton=1.

5-47. (a) Use the results of Problem 5-46 to find the energy of the ground state
(n = 1) and the first two excited stated of a proton in a one-dimensional box of length
L = 10" m = 1 fm. (These are of the order of magnitude of nuclear energies.) Calculate
the wavelength of electromagnetic radiation emitted when the proton makes a transition
from()n=2ton=1(c)n=3ton=2,and(d)n=3ton=1.

5-48. (a) Suppose that a particle of mass m is constrained to move in a one-dimensional
space between two infinitely high barriers located A apart. Using the uncertainty principle,
find an expression for the zero-point (minimum) energy of the particle. (b) Using your
result from (a), compute the minimum energy of an electron in such a space if A = 107 m
and A = 1 cm. (c) Calculate the minimum energy for a 100 mg bead moving on a thin wire
between two stops located 2 cm apart.

5-49. A proton and a bullet each move with a speed of 500 m/s, measured with an
uncertainty of 0.01 percent. If measurements of their respective positions are made



simultaneous with the speed measurements, what is the minimum uncertainty possible in
the position measurements?

LEVEL III

5-50. Show that Equation 5-11 is satisfied by y = f(¢), where ¢ = x — vt for any
function f.

5-51. An electron and a positron are moving toward each other with equal speeds of
3 X 10°% m/s. The two particles annihilate each other and produce two photons of equal
energy. (a) What were the de Broglie wavelengths of the electron and positron? Find the
(b) energy, (c) momentum, and (d) wavelength of each photon.

5-52. It is possible for some fundamental particles to “violate” conservation of energy
by creating and quickly re-absorbing another particle. For example, a proton can emit a
™ according to p = n + ", where the n represents a neutron. The =" has a mass of
140 MeV/c?. The re-absorption must occur within a time At consistent with the uncertainty
principle. (a) Considering the example shown, by how much AE is energy conservation
violated? (Ignore kinetic energy.) (b) For how long At can the " exist? (c) Assuming
that the " is moving at nearly the speed of light, how far from the nucleus could it get in
the time At? (As we will discuss in Chapter 11, this is the approximate range of the strong
nuclear force.) (d) Assuming that as soon as one pion is re-absorbed, another is emitted,
how many pions would be recorded by a “nucleon camera” with a shutter speed of 1 us?
5-53. De Broglie developed Equation 5-2 initially for photons, assuming that they had
a small but finite mass. His assumption was that RF waves with A = 30 m traveled at a
speed of at least 99 percent of that of visible light with A = 500 nm. Beginning with the
relativistic expression hf = ymc?, verify de Broglie’s calculation that the upper limit of the
rest mass of a photon is 10™* g. (Hint: Find an expression for v/c in terms of hf and mc?
and then let mc? << hf; (y = 1/V1 — v?/c?)

5-54. Suppose that you drop BBs onto a bull’s-eye marked on the floor. According to the
uncertainty principle, the BBs do not necessarily fall straight down from the release point
to the center of the bull’s-eye but are affected by the initial conditions. (a) If the location
of the release point is uncertain by an amount Ax perpendicular to the vertical direction
and the horizontal component of the speed is uncertain by Av,, derive an expression for
the minimum spread AX of impacts at the bull’s-eye if it is located a distance y, below the
release point. (b) Modify your result in (a) to include the effect on AX of uncertainties Ay
and Av, at the release point.

5-55. Using the first-order Doppler-shift formula f' = f,(1 + v/c), calculate the energy
shift of a 1 eV photon emitted from an iron atom moving toward you with energy (3/2)kT
at T = 300 K. Compare this Doppler line broadening with the natural line width calculated
in Example 5-9. Repeat the calculation for a 1 MeV photon from a nuclear transition.
5-56. Calculate the order of magnitude of the shift in energy of a (a) 1 eV photon and
(b) 1 MeV photon resulting from the recoil of an iron nucleus. Do this by first calculating
the momentum of the photon and then by calculating p?/2m for the nucleus using that
value of momentum. Compare with the natural line width calculated in Example 5-9.
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227



this page left intentionally blank



The Schrodinger
Equation

he success of the de Broglie relations in predicting the diffraction of electrons and

other particles, and the realization that classical standing waves lead to a discrete
set of frequencies, prompted a search for a wave theory of electrons analogous to the
wave theory of light. In this electron wave theory, classical mechanics should appear
as the short-wavelength limit, just as geometric optics is the short-wavelength limit of
the wave theory of light. The genesis of the correct theory went something like this,
according to Felix Bloch,* who was present at the time.

...in one of the next colloquia [early in 1926], Schrodinger gave a beauti-
fully clear account of how de Broglie associated a wave with a particle
and how he [i.e.,, de Broglie] could obtain the quantization rules...by
demanding that an integer number of waves should be fitted along a
stationary orbit. When he had finished Debye? casually remarked that he
thought this way of talking was rather childish...[that to] deal properly
with waves, one had to have a wave equation.

Toward the end of 1926, Erwin Schrédinger® published his now-famous wave
equation, which governs the propagation of matter waves, including those of elec-
trons. A few months earlier, Werner Heisenberg had published a seemingly different
theory to explain atomic phenomena. In the Heisenberg theory, only measurable
quantities appear. Dynamical quantities such as energy, position, and momentum are
represented by matrices, the diagonal elements of which are the possible results of
measurement. Though the Schrédinger and Heisenberg theories appear to be differ-
ent, it was eventually shown by Schrédinger himself that they were equivalent, in that
each could be derived from the other. The resulting theory, now called wave mechan-
ics or quantum mechanics, has been amazingly successful. Though its principles may
seem strange to us whose experiences are limited to the macroscopic world and
though the mathematics required to solve even the simplest problem is quite involved,
there seems to be no alternative to describe correctly the experimental results in
atomic and nuclear physics. In this book we will confine our study to the Schrodinger
theory because it is easier to learn and is a little less abstract than the Heisenberg theory.
We will begin by restricting our discussion to problems with a single particle moving
in one space dimension.
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Chapter 6 The Schrodinger Equation

6-1 The Schrodinger Equation
in One Dimension

The wave equation governing the motion of electrons and other particles with mass,
which is analogous to the classical wave equation (Equation 5-11), was found by
Schrodinger late in 1925 and is now known as the Schrddinger equation. Like the
classical wave equation, the Schrodinger equation relates the time and space deriva-
tives of the wave function. The reasoning followed by Schrddinger is somewhat dif-
ficult and not important for our purposes. In any case, it must be emphasized that we
can’t derive the Schrodinger equation just as we can’t derive Newton’s laws of
motion. Its validity, like that of any fundamental equation, lies in its agreement with
experiment. Just as Newton’s second law is not relativistically correct, neither is
Schrddinger’s equation, which must ultimately yield to a relativistic wave equation.
But as you know, Newton’s laws of motion are perfectly satisfactory for solving a
vast array of nonrelativistic problems. So, too, will be Schrédinger’s equation when
applied to the equally extensive range of nonrelativistic problems in atomic, molecu-
lar, and solid-state physics. Schrodinger tried without success to develop a relativistic
wave equation, a task accomplished in 1928 by Dirac.

Although it would be logical merely to postulate the Schrédinger equation, we
can get some idea of what to expect by first considering the wave equation for pho-
tons, which is Equation 5-11 with speed v = ¢ and with y(x, t) replaced by the electric

field £(x, 1).
1 o
ax?  c?at?

As discussed in Chapter 5, a particularly important solution of this equation is the
harmonic wave function &£(x,t) = &cos(kx — wt). Differentiating this function
twice, we obtain

%

2 = 0008 (ke — at) = 0% (x1)
and
0%
P —k2E(x,t)

Substitution into Equation 6-1 then gives
I
c
or
o = kc 6-2
Using o = E/A and p = ik for electromagnetic radiation, we have
E =pc 6-3

which, as we saw earlier, is the relation between the energy and momentum of a photon.
Now let us use the de Broglie relations for a particle such as an electron to find
the relation between w and k, which is analogous to Equation 6-2 for photons. We can
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Erwin Schrédinger. [Courtesy of the
Niels Bohr Library, American Institute
of Physics.]

then use this relation to work backward and see how the wave equation for electrons
must differ from Equation 6-1. The total energy (nonrelativistic) of a particle of

mass m is
2
E = L +V 6-4
2m
where V is the potential energy. Substituting the de Broglie relations in Equation 6-4,
we obtain
h2k?
fw=——+V 6-5
2m

This differs from Equation 6-2 for a photon because it contains the potential energy V
and because the angular frequency w does not vary linearly with k. Note that we get a
factor of w when we differentiate a harmonic wave function with respect to time and a
factor of k when we differentiate with respect to position. We expect, therefore, that
the wave equation that applies to electrons will relate the first time derivative to the
second space derivative and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a differential
equation that is linear in the wave function W(x,t). This ensures that, if ¥,(x,t) and
,(x,t) are both solutions of the wave equation for the same potential energy, then any
arbitrary linear combination of these solutions is also a solution—that is, W(x,t) =
a,Wi(x, 1) + a,W,(x,t) is a solution, with a; and a, being arbitrary constants. Such a
combination is called linear because both W;(x,t) and W,(x,t) appear only to the first
power. Linearity guarantees that the wave functions will add together to produce con-
structive and destructive interference, which we have seen to be a characteristic of
matter waves as well as all other wave phenomena. Note in particular that (1) the lin-
earity requirement means that every term in the wave equation must be linear in W(x, t)
and (2) that any derivative of W(x,t) is linear in W(x,t).*
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The Schrodinger Equation

We are now ready to postulate the Schrodinger equation for a particle of mass m. In
one dimension, it has the form

1 () + V(x, )W (xt 'ﬁaq’(x’t) 6-6
———= X, Xt) = ih——- -

2m o> (¥ (x1) at
We will now show that this equation is satisfied by a harmonic wave function in the
special case of a free particle, one on which no net force acts, so that the potential
energy is constant, V(x,t) = V,. First note that a function of the form cos(kx — wt)
does not satisfy this equation because differentiation with respect to time changes the
cosine to a sine but the second derivative with respect to x gives back a cosine. Simi-
lar reasoning rules out the form sin(kx — wt). However, the exponential form of the
harmonic wave function does satisfy the equation. Let

W(x,t) = Ae't ey

= Alcos(kx — wt) + isin(kx — wt) ] 6-7
where A is a constant. Then

o .

— = —jwAe'®* ) = _ju
and

A

aXZ — (ik)eri(kx—wt) = —k2p

Substituting these derivatives into the Schrodinger equation with V(x,t) = V, gives

_ﬁ2
%(—kz‘lf) + W = Ih(—lw)\lf
or
#2k?
% + VO = fiw

which is Equation 6-5.

An important difference between the Schrodinger equation and the classical
wave equation is the explicit appearance® of the imaginary number i = (—1)%2 The
wave functions that satisfy the Schrédinger equation are not necessarily real, as we
see from the case of the free-particle wave function of Equation 6-7. Evidently the
wave function W(x,t) that solves the Schrédinger equation is not a directly measur-
able function like the classical wave function y(x,t) since measurements always yield
real numbers. However, as we discussed in Section 5-4, the probability of finding the
electron in some region dx is certainly measurable, just as is the probability that a
flipped coin will turn up heads. The probability P(x) dx that the electron will be found
in the volume dx was defined by Equation 5-23 to be equal to W?dx. This probabilistic
interpretation of ¥ was developed by Max Born and was recognized, over the early
and formidable objections of both Schrddinger and Einstein, as the appropriate way
of relating solutions of the Schrddinger equation to the results of physical measure-
ments. The probability that an electron is in the region dx, a real number, can be mea-
sured by counting the fraction of time it is found there in a very large number of
identical trials. In recognition of the complex nature of W(x,t), we must modify
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slightly the interpretation of the wave function discussed in Chapter 5 to accommo-
date Born’s interpretation so that the probability of finding the electron in dx is real.
We take for the probability

P(x,t)dx = W*(x,t)¥(x,t)dx = | ¥ (x,t) |?dx 6-8

where W*, the complex conjugate of W, is obtained from W by replacing i with —i
wherever it appears.® The complex nature of W serves to emphasize the fact that we
should not ask or try to answer the question “What is waving in a matter wave?” or
inquire as to what medium supports the motion of a matter wave. The wave function
is a computational device with utility in Schrédinger’s theory of wave mechanics.
Physical significance is associated not with W itself, but with the product
W#P = | W2 which is the probability distribution P(x,t) or, as it is often called, the
probability density. In keeping with the analogy with classical waves and wave func-
tions, W(x,t) is also sometimes referred to as the probability density amplitude, or just
the probability amplitude.

The probability of finding the electron in dx at x; or in dx at X, is the sum of sepa-
rate probabilities, P(x;)dx + P(x,)dx. Since the electron must certainly be somewhere
in space, the sum of the probabilities over all possible values of x must equal 1. That is,”’

+oo

/‘If*\lfdx =1 6-9

— o0

Equation 6-9 is called the normalization condition. This condition plays an important
role in quantum mechanics, for it places a restriction on the possible solutions of the
Schrédinger equation. In particular, the wave function W(x,t) must approach zero suf-
ficiently fast as x — ®oo so that the integral in Equation 6-9 remains finite. If it does
not, then the probability becomes unbounded. As we will see in Section 6-3, it is this
restriction together with boundary conditions imposed at finite values of x that leads
to energy quantization for bound particles.

In the chapters that follow, we are going to be concerned with solutions to the
Schrédinger equation for a wide range of real physical systems, but in what follows in
this chapter our intent is to illustrate a few of the techniques of solving the equation and
to discover the various, often surprising properties of the solutions. To this end we will
focus our attention on single-particle, one-dimensional problems, as noted earlier, and
use some potential energy functions with unrealistic physical characteristics, for exam-
ple, infinitely rigid walls, which will enable us to illustrate various properties of the
solutions without obscuring the discussion with overly complex mathematics. We will
find that many real physical problems can be approximated by these simple models.

Separation of the Time and Space Dependencies
of V(x, 1)

Schradinger’s first application of his wave equation was to problems such as the
hydrogen atom (Bohr’s work) and the simple harmonic oscillator (Planck’s work), in
which he showed that the energy quantization in those systems can be explained natu-
rally in terms of standing waves. We referred to these in Chapter 4 as stationary states,
meaning they did not change with time. Such states are also called eigenstates. For
such problems that also have potential energy functions that are independent of time,
the space and time dependence of the wave function can be separated, leading to a
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greatly simplified form of the Schrédinger equation.? The separation is accomplished
by first assuming that W(x,t) can be written as a product of two functions, one of x
and one of t, as

T (x,t) = y(x)b(t) 6-10

If Equation 6-10 turns out to be incorrect, we will find that out soon enough, but if
the potential function is not an explicit function of time, that is, if the potential is
given by V(x), our assumption turns out to be valid. That this is true can be seen as
follows:

Substituting W(x,t) from Equation 6-10 into the general, time-dependent
Schrodinger equation (Equation 6-6) yields

12 PY(X)d(t) ()b (1)

2m 8X2 + V(X)lj}(X)d)(t) = Ik p 6-11
which is

_ 32 d2 d

%dJ(t) ;bx(zx) + V) (X)d (1) = il (x) d;(tt) 610

where the derivatives are now ordinary rather than partial ones. Dividing Equation 6-12
by W in the assumed product form ysb gives

—#? 1 da(x) _ 1 do(Y)
+V(X)—Iﬁm7

Notice that each side of Equation 6-13 is a function of only one of the independent
variables x and t. This means that, for example, changes in t cannot affect the value of
the left side of Equation 6-13, and changes in x cannot affect the right side. Thus, both
sides of the equation must be equal to the same constant C, called the separation con-
stant, and we see that the assumption of Equation 6-10 is valid—the variables have
been separated. In this way we have replaced a partial differential equation containing
two independent variables, Equation 6-6, with two ordinary differential equations
each a function of only one of the independent variables:

2m §(x) dx?

6-13

1 dy(x) -

2m $s(x) dx? vig =¢ o1
L1 do(t)
Iﬁm dt =C 6-15

Let us solve Equation 6-15 first. The reason for doing so is twofold: (1) Equation 6-15
does not contain the potential energy V(x); consequently, the time-dependent part
¢ (t) of all solutions W(x,t) to the Schrodinger equation will have the same form
when the potential is not an explicit function of time, so we only have to do this once.
(2) The separation constant C has particular significance that we want to discover
before we tackle Equation 6-14. Writing Equation 6-15 as

do (1)
$ (1)

the general solution of Equation 6-16 is

C iC
= —dt = ——dt 6-16
ih h

d(t) = e 6-17a
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which can also be written as

. Ct Ct Ct Ct
= 7|Ct/h = —_— — 1S —_— = — — 1isi — -
b(t) =e cos( P ) |sm< % ) cos(Zw h ) |sm(2w h ) 6-17b

Thus, we see that ¢(t), which describes the time variation of W(x,1t), is an oscillatory
function with frequency f = C/h. However, according to the de Broglie relation
(Equation 5-1), the frequency of the wave represented by W(x,t) is f = E/h; there-
fore, we conclude that the separation constant C = E, the total energy of the particle,
and we have

d(t) = e ™ 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14
then becomes, on multiplication by ys(x),

—#2 % (x)
2m  dx?

Equation 6-18 is referred to as the time-independent Schrddinger equation.

The time-independent Schroédinger equation in one dimension is an ordinary dif-
ferential equation in one variable x and is therefore much easier to handle than the
general form of Equation 6-6. The normalization condition of Equation 6-9 can be
expressed in terms of the time-independent s(x), since the time dependence of the
absolute square of the wave function cancels. We have

W ()W (1) = §* (x)e Wy (x)e B = () u(x) 619

and Equation 6-9 then becomes

+ V(X)) (x) = Ev(x) 6-18

/Mq;*(x)qj(x)dx =1 6-20

Conditions for Acceptable Wave Functions

The form of the wave function s(x) that satisfies Equation 6-18 depends on the form
of the potential energy function V(x). In the next few sections we will study some
simple but important problems in which V(x) is specified. Our example potentials will
be approximations to real physical potentials, simplified to make calculations easier.
In some cases, the slope of the potential energy may be discontinuous, for example,
V(x) may have one form in one region of space and another form in an adjacent
region. (This is a useful mathematical approximation to real situations in which V(x)
varies rapidly over a small region of space, such as at the surface boundary of a
metal.) The procedure in such cases is to solve the Schrodinger equation separately in
each region of space and then require that the solutions join smoothly at the point of
discontinuity.

Since the probability of finding a particle cannot vary discontinuously from
point to point, the wave function s(x) must be continuous.® Since the Schrodinger
equation involves the second derivative d%s/dx? = ", the first derivative s’ (which
is the slope) must also be continuous; that is, the graph of ys(x) versus x must be
smooth. (In a special case in which the potential energy becomes infinite, this restric-
tion is relaxed. Since no particle can have infinite potential energy, ys(x) must be zero
in regions where V(x) is infinite. Then at the boundary of such a region, " may be
discontinuous.)
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If either ys(x) or dys/dx were not finite or not single valued, the same would be

true of W(x,t) and dW¥ /dx. As we will see shortly, the predictions of wave mechanics
regarding the results of measurements involve both of those quantities and would thus
not necessarily predict finite or definite values for real physical quantities. Such
results would not be acceptable since measurable quantities, such as angular momentum
and position, are never infinite or multiple valued. A final restriction on the form of
the wave function {s(x) is that in order to obey the normalization condition, {s(x) must
approach zero sufficiently fast as x — to so that normalization is preserved. For
future reference, we may summarize the conditions that the wave function {s(x) must
meet in order to be acceptable as follows:

g b~ W0 DN -

P(X) must exist and satisfy the Schrédinger equation.
Ys(x) and dis/dx must be continuous.

U(x) and dis/dx must be finite.

Ys(x) and dis/dx must be single valued.

U5(x) — 0 fast enough as x — too so that the normalization integral, Equation 6-20,
remains bounded.

Questions

1.

Like the classical wave equation, the Schrodinger equation is linear. Why is this
important?

There is no factor i = (—1)%? in Equation 6-18. Does this mean that s(x) must
be real?

Why must the electric field &(x, t) be real? Is it possible to find a nonreal wave
function that satisfies the classical wave equation?

Describe how the de Broglie hypothesis enters into the Schrédinger wave
equation.

What would be the effect on the Schrédinger equation of adding a constant rest
energy for a particle with mass to the total energy E in the de Broglie relation
f=E/h?

. Describe in words what is meant by normalization of the wave function.

A Solution to the Schrodinger Equation Show that for a free
particle of mass m moving in one dimension the function ¢s(x) = Asinkx + Bcoskx
is a solution to the time-independent Schrddinger equation for any values of the
constants A and B.

SOLUTION
A free particle has no net force acting on it, for example, V(x) = 0, in which case
the kinetic energy equals the total energy. Thus, p = #k = (2mE)Y/2. Differentiat-

ing Y(x) gives

dys .
— = kAcoskx — kBsinkx
dx
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and differentiating again,

dy
dx?
= —k2(Asinkx + Bcoskx) = —k?yi(x)

= —k2Assinkx — kB coskx

Substituting into Equation 6-18,
_ﬁZ
ﬂ[ (—k?) (Asinkx + Bcoskx) ] = E(Asinkx + B coskx)
h2k?
Sm V(X)) = Ed(x)

and, since #2k? = 2mE, we have

Eg(x) = Eg(x)

and the given {s(x) is a solution of Equation 6-18.

6-2 The Infinite Square Well

A problem that provides several illustrations of the properties of wave functions
and is also one of the easiest problems to solve using the time-independent, one-
dimensional Schrédinger equation is that of the infinite-square well, sometimes called
the particle in a box. A macroscopic example is a bead free to move on a frictionless
wire between two massive stops clamped to the wire. We could also build such a
“box” for an electron using electrodes and grids in an evacuated tube as illustrated in
Figure 6-1a. The walls of the box are provided by the increasing potential between
the grids G and the electrode C as shown in Figures 6-1b and c. The walls can be

(a) Electron
_/C| IG Gl |C\_
| (s, |
| |
| |
Vv |II 4 Ill vV
()
Potential
energy
| | »
CG GC X
(c)
Potential
energy
L1 1 |
CG GC X

FIGURE 6-1 (a) The electron
placed between the two sets
of electrodes C and grids G
experiences no force in the
region between the grids,
which are at ground potential.
However, in the regions
between each Cand G is a
repelling electric field whose
strength depends on the
magnitude of V. (b) If V is
small, then the electron’s
potential energy versus x has
low, sloping “walls.” (c) If
Vs large, the “walls”
become very high and steep,
becoming infinitely high for
V —> oo,
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V(x) T

FIGURE 6-2 Infinite square
well potential energy. For

0 < x <L, the potential
energy V(X) is zero. Outside
this region, V(x) is infinite.
The particle is confined to the
region in the well 0 < x < L.

made arbitrarily high and steep by increasing the potential V and reducing the separa-
tion between each grid-electrode pair. In the limit such a potential energy function
looks like that in Figure 6-2, which is a graph of the potential energy of an infinite
square well. For this problem the potential energy is of the form

V(x) =0 0<x<lL
V(x) = Xx<0 and x>1L

6-21

Although such a potential is clearly artificial, the problem is worth careful study for
several reasons: (1) exact solutions to the Schrodinger equation can be obtained with-
out the difficult mathematics that usually accompanies its solution for more realistic
potential functions; (2) the problem is closely related to the vibrating-string problem
familiar in classical physics; (3) it illustrates many of the important features of all
quantum-mechanical problems; and finally, (4) this potential is a relatively good
approximation to some real situations, for example, the motion of a free electron
inside a metal.

Since the potential energy is infinite outside the well, the wave function is
required to be zero there; that is, the particle must be inside the well. (As we proceed
through this and other problems, keep in mind Born’s interpretation: the probability
density of the particle’s position is proportional to |s|2.) We then need only to solve
Equation 6-18 for the region inside the well 0 < x < L, subject to the condition that
since the wave function must be continuous, {s(x) must be zero at x = 0 and x = L.
Such a condition on the wave function at a boundary (here, the discontinuity of the
potential energy function) is called a boundary condition. We will see that, mathemat-
ically, it is the boundary conditions together with the requirement that ys(x) — 0 as
x — too that leads to the quantization of energy. A classical example is that of a
vibrating string fixed at both ends. In that case the wave function y(x,t) is the dis-
placement of the string. If the string is fixed at x = 0 and x = L, we have the same
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero
atx = 0 and x = L. These boundary conditions lead to discrete allowed frequencies of
vibration of the string. It was this quantization of frequencies (which always occurs
for standing waves in classical physics), along with de Broglie’s hypothesis, that
motivated Schrddinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends
is that an integer number of half wavelengths fit into the length L:

A

nE:L n=123,... 6-22

We will see below that the same condition follows from the solution of the Schrédinger
equation for a particle in an infinite square well. Since the wavelength is related to the
momentum of the particle by the de Broglie relation p = h/\ and the total energy of
the particle in the well is just the kinetic energy p?/2m (see Figure 6-2), this quantum
condition on the wavelength implies that the energy is quantized and the allowed val-
ues are given by

p2 h2 h2 5 h2

= — = = =N
2m  2m\*  2m(2L/n)? 8mL?

Since the energy depends on the integer n, it is customary to label it E,. In terms of
fi = h/2m, the energy is given by

6-23

——=n’E;, n=123... 6-24
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where E; is the lowest allowed energy’® and is given by
w22
- 2mL?

6-25

1

We now derive this result from the time-independent Schrédinger equation (Equa-
tion 6-18), which for V(x) = 0 is

# A _
_% dx2 - E¢(X)
or
2mE
W00 = =TT = K 6-26

where we have substituted the square of the wave number k, since

pP\2 2mE
K=(=]) = 6-27
(ﬁ) 1
and we have written " (x) for the second derivative d}s(x) /dx? Equation 6-26 has
solutions of the form

P(x) = Asinkx 6-28a
and
P(X) = Bcoskx 6-28b

where A and B are constants. The boundary condition {s(x) = 0 at x = 0 rules out the
cosine solution (Equation 6-28b) because cos 0 = 1, so B must equal zero. The bound-
ary condition ys(x) = O at x = L gives

Y(L) = AsinkL =0 6-29

This condition is satisfied if kL is any integer times r, that is, if k is restricted to the
values k,, given by

kn:n% n=123,... 6-30

If we write the wave number k in terms of the wavelength A = 2 /k, we see that
Equation 6-30 is the same as Equation 6-22 for standing waves on a string. The quan-
tized energy values, or energy eigenvalues, are found from Equation 6-27, replacing k
by k, as given by Equation 6-30. We thus have

_ thﬁ _ hZ,ﬂ_Z

n
2m 2mL2

En - n2E1
which is the same as Equation 6-24. Figure 6-3 shows the energy-level diagram and
the potential energy function for the infinite square well potential.

The constant A in the wave function of Equation 6-28a is determined by the nor-
malization condition.

+ o0 L
/ by dx = / Aﬁsinz(mLTX>dx =1 6-31
— 0
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Energy
V = oo
n
25E4 5
E,=n%E,
242
n“h
16E 4 E,=2
! Y ome?
9E, 3
4E, 2
Eq 1
—_—
0 V=0 L X

FIGURE 6-3 Graph of energy versus x for a particle in an infinitely deep well. The potential
energy V(x) is shown with the colored lines. The set of allowed values for the particle’s total
energy E, as given by Equation 6-24 form the energy-level diagram for the infinite square well
potential. Classically, a particle can have any value of energy. Quantum mechanically, only
the values given by E, = n?(#2m?/2mL?) yield well-behaved solutions of the Schrodinger
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.

Since the wave function is zero in regions of space where the potential energy is infi-
nite, the contributions to the integral from —oc to 0 and from L to +o will both be
zero. Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain
A, = (2/L)Y? independent of n. The normalized wave function solutions for this
problem, also called eigenfunctions, are then

2 . nmX
P (X) = \ﬂsmL n=123,... 6-32

These wave functions are exactly the same as the standing-wave functions y,(x) for
the vibrating-string problem. The wave functions and the probability distribution
functions P,(x) are sketched in Figure 6-4 for the lowest energy state n = 1, called the
ground state, and for the first two excited states, n = 2 and n = 3. (Since these wave
functions are real, P,(x) = ¥*5, = {2.) Notice in Figure 6-4 that the maximum
amplitudes of each of the s,(x) are the same, (2/L)Y?, as are those of P,(x), 2/L.
Note, too, that both ys,(x) and P,(x) extend to t. They just happen to be zero for
x < 0and x > L in this case.

The number n in the equations above is called a quantum number. It specifies
both the energy and the wave function. Given any value of n, we can immediately
write down the wave function and the energy of the system. The quantum number n
occurs because of the boundary conditions {s(x) = 0 at x = 0 and x = L. We will see
in Section 7-1 that for problems in three dimensions, three quantum numbers arise,
one associated with boundary conditions on each coordinate.
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Comparison with Classical Results

Let us compare our quantum-mechanical solution of this problem with the classical
solution. In classical mechanics, if we know the potential energy function V(x), we
can find the force from F, = —dV/dx and thereby obtain the acceleration
a, = d?x/dt? from Newton’s second law. We can then find the position x as a func-
tion of time t if we know the initial position and velocity. In this problem there is no
force when the particle is between the walls of the well because V = 0 there. The par-
ticle therefore moves with constant speed in the well. Near the edge of the well the
potential energy rises discontinuously to infinity—we may describe this as a very
large force that acts over a very short distance and turns the particle around at the wall
so that it moves away with its initial speed. Any speed, and therefore any energy, is
permitted classically. The classical description breaks down because, according to the
uncertainty principle, we can never precisely specify both the position and momen-
tum (and therefore velocity) at the same time. We can therefore never specify the ini-
tial conditions precisely and cannot assign a definite position and momentum to the
particle. Of course, for a macroscopic particle moving in a macroscopic box, the
energy is much larger than E; of Equation 6-25, and the minimum uncertainty of
momentum, which is of the order of /L, is much less than the momentum and less
than experimental uncertainties. Then the difference in energy between adjacent
states will be a small fraction of the total energy, quantization will be unnoticed, and
the classical description will be adequate.™*

Let us also compare the classical prediction for the distribution of measure-
ments of position with those from our quantum-mechanical solution. Classically, the
probability of finding the particle in some region dx is proportional to the time spent
in dx, which is dx/v, where v is the speed. Since the speed is constant, the classical
distribution function is just a constant inside the well. The normalized classical distri-
bution function is
1
Pe(x) = L

FIGURE 6-4 Wave functions
{5,(X) and probability densities
P,(x) = Y&(x) forn=1,2,
and 3 for the infinite square
well potential. Though not
shown, ys,(x) = 0 forx <0
and x > L.
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\j
Quantum-mechanical
distribution
Classical distribution

———————————————————— P = 1 O<x<L
L
0 L X

FIGURE 6-5 Probability distribution for n = 10 for the infinite square well potential. The
dashed line is the classical probability density P = 1/L, which is equal to the quantum-
mechanical distribution averaged over a region Ax containing several oscillations. A physical
measurement with resolution A x will yield the classical result if n is so large that J%(x) has
many oscillations in Ax.

In Figure 6-4 we see that for the lowest energy states the quantum distribution function
is very different from this. According to Bohr’s correspondence principle, the quantum
distributions should approach the classical distribution when n is large, that is, at large
energies. For any state n, the quantum distribution has n peaks. The distribution for
n = 10 is shown in Figure 6-5. For very large n, the peaks are close together, and if
there are many peaks in a small distance Ax, only the average value will be observed.
But the average value of sin’k,x over one or more cycles is 1/2. Thus

2 . _e1 1
[‘J"ﬁ(x) ]av = {LSII’IanX:LV - L2 L

which is the same as the classical distribution.

The Complete Wave Function
The complete wave function, including its time dependence, is found by multiplying
the space part by

giot — gi(Ex/)t
according to Equation 6-17. As mentioned previously, a wave function corresponding
to a single energy oscillates with angular frequency w, = E,/#, but the probability
distribution | W, (x,t) | is independent of time. This is the wave-mechanical justifica-

tion for calling such a state a stationary state or eigenstate, as we have done earlier. It
is instructive to look at the complete wave function for a particular state n:

2 :
W, (xt) = \ﬂsinknx gt

(eiknx _ efikHX)
2i

If we use the identity
sink,x =

we can write this wave function as

1 /2, . )
‘Pn(X,t) — 2i\/I[e|(kHant) _ e*'(anernt)J
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Just as in the case of the standing-wave function for the vibrating string, we can con-
sider this stationary-state wave function to be the superposition of a wave traveling to
the right (first term in brackets) and a wave of the same frequency and amplitude trav-
eling to the left (second term in brackets).

An Electron in a Wire An electron moving in a thin metal wire is
a reasonable approximation of a particle in a one-dimensional infinite well. The poten-
tial inside the wire is constant on average but rises sharply at each end. Suppose the
electron is in a wire 1.0 cm long. (a) Compute the ground-state energy for the electron.
(b) If the electron’s energy is equal to the average kinetic energy of the molecules in a
gasat T = 300 K, about 0.03 eV, what is the electron’s quantum number n?

SOLUTION
1. For question (a), the ground-state energy is given by Equation 6-25:
2ﬁ2
E,=
2mL

72 (1.055 X 107 ]-5)2
(2)(9.11 X 10 kg) (107%m)?
=6.03 X 10J = 3.80 X 10 ®eV

2. For question (b), the electron’s quantum number is given by Equation 6-24:

En = nZEl
3. Solving Equation 6-24 for n and substituting E, = 0.03 eV and E; from above

yields

n? = En

E
or
= [En 0.03 eV
= 3.80 X 107 eV
= 2.81 x 10°

Remarks: The value of E; computed above is not only far below the limit of mea-
surability, but also smaller than the uncertainty in the energy of an electron con-
fined into 1 cm.

Calculating Probabilities Suppose that the electron in Exam-
ple 6-2 could be *“seen” while in its ground state. (a) What would be the prob-
ability of finding it somewhere in the region 0 < x < L/4? (b) What would be
the probability of finding it in a very narrow region Ax = 0.01L wide centered at
x = 5L/8?

SOLUTION
(a) The wave function for the n = 1 level, the ground state, is given by Equation 6-32 as
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| | | |
0 L/4 L/2 3L/4 L X

FIGURE 6-6 The probability density s*(x) versus x for a particle in the ground state of

an infinite square well potential. The probability of finding the particle in the region

0 < x < L/4is represented by the larger shaded area. The narrow shaded band illustrates
the probability of finding the particle within Ax = 0.01L around the point where x = 5L /8.

The probability that the electron would be found in the region specified is

L/4 L/4
2 X
P (x)dx = / sin2< >dx
A ' 0 L L

Letting u = mx/L, hence dx = L du/r, and noting the appropriate change in the
limits on the integral, we have that
—— —] =0.001
4) 0.09

1T/Algsinzudu = 2(“ - sin2u>
o m\ 2 4 8

Thus, if one looked for the particle in a large number of identical searches, the elec-
tron would be found in the region 0 < x < 0.25 cm about 9 percent of the time. This
probability is illustrated by the shaded area on the left side in Figure 6-6.

" z(w 1

0 I

(b) Since the region Ax = 0.01L is very small compared with L, we do not need to
integrate but can calculate the approximate probability as follows:

2 ., TX

P=P(x)Ax = A
(x) Ax [ Sin® 1~ Ax

Substituting Ax = 0.01L and x = 5L /8, we obtain

2 5L/8
p= Esinzw (0.01L)

2
-(0.854) (0.01L) = 0017

This means that the probability of finding the electron within 0.01L around
x = 5L/8 is about 1.7 percent. This is illustrated in Figure 6-6, where the area of
the shaded narrow band at x = 5L /8 is 1.7 percent of the total area under the curve.

D OGVIHRSEER An Electron in an Atomic-Size Box (a) Find the energy in the

ground state of an electron confined to a one-dimensional box of length L = 0.1 nm.
(This box is roughly the size of an atom.) (b) Make an energy-level diagram and
find the wavelengths of the photons emitted for all transitions beginning at state
n = 3 or less and ending at a lower energy state.



6-2 The Infinite Square Well

SOLUTION

(a) The energy in the ground state is given by Equation 6-25. Multiplying the
numerator and denominator by ¢?/4m?, we obtain an expression in terms of hc and
mc?, the energy equivalent of the electron mass (see Chapter 2):

~ (hc)?

~ 8mc?L?

Substituting hc = 1240 eV - nm and m¢? = 0.511 MeV, we obtain

(1240eV -nm)?
E.= 5 ; = 37.6eV
8(5.11 x 10°eV) (0.1 nm)

1

This is of the same order of magnitude as the kinetic energy of the electron in the
ground state of the hydrogen atom, which is 13.6 eV. In that case, the wavelength of
the electron equals the circumference of a circle of radius 0.0529 nm, or about
0.33 nm, whereas for the electron in a one-dimensional box of length 0.1 nm, the
wavelength in the ground state is 2L = 0.2 nm.

(b) The energies of this system are given by
E, = n’E;, = n?(37.6eV)

Figure 6-7 shows these energies in an energy-level diagram. The energy of the first
excited state is E, = 4 - (37.6 eV) = 150.4 eV, and that of the second excited state is
E; =9-(37.6eV) = 338.4 eV. The possible transitions from level 3 to level 2, from
level 3 to level 1, and from level 2 to level 1 are indicated by the vertical arrows on
the diagram. The energies of these transitions are

AE;,, = 338.4eV — 150.4eV = 188.0eV
AE;,; = 338.4¢eV — 37.6eV = 300.8eV
AE,_,;, = 1504¢eV — 37.6eV = 112.8eV

The photon wavelengths for these transitions are

hc ~ 1240eV-nm

Ngp = = = 6.60 nm
72 AEsL, 188.0 eV
n E
5 Es=25E, = 940 eV
4 E,=16E, = 601.6 eV
3 E,=OF, = 338.4 eV FIGURE 6-7 Energy-.level diagram for
Example 6-4. Transitions from the state n = 3
5 E,= 4E, = 150.4 eV to the states n = 2 gnd_n = land from t_he state
n = 2ton = lare indicated by the vertical
B, =376V arrows.
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N = hc  1240eV-nm — 4121m
1 AEs L, 300.8 eV '

N = hc _1240eV-nm_110nrn
=1 AE,, 112.8 eV '

6-3 The Finite Square Well

(@) V(x)
Vo
0 L X
(b) V(x)
Vo
—-a 0 +a X

FIGURE 6-8 (a) The finite square well
potential. (b) Region | is that with x < —a,
Il with —a < x < +a, and Il with x > +a.

where

The quantization of energy that we found for a particle in an infinite
square well is a general result that follows from the solution of the
Schrédinger equation for any particle confined in some region of space.
We will illustrate this by considering the qualitative behavior of the
wave function for a slightly more general potential energy function, the
finite square well shown in Figure 6-8. The solutions of the Schrédinger
equation for this type of potential energy are quite different, depending
on whether the total energy E is greater or less than V,. We will defer
discussion of the case E > V, to Section 6-5 except to remark that in that
case the particle is not confined and any value of the energy is allowed,
that is, there is no energy quantization. Here, we will look first at states
with E < V.

Inside the well, V(x) = 0 and the time-independent Schrddinger
equation (Equation 6-18) becomes Equation 6-26, the same as for the
infinite well:

_ 2mE
==

Pr(x) = —kAp(x)  K?

The solutions are sines and cosines (Equation 6-28) except that now we
do not require Ys(x) to be zero at the well boundaries but rather that ys(x)
and {s'(x) be continuous at these points. Outside the well, that is, for 0 >
x > L, Equation 6-18 becomes

2m
P(x) = ?(Vo — E)U(x) = oA (x) 6-33
o = Z?T(VO -E)>0 6-34
f(x) f(x)
X X
(@) (b)

FIGURE 6-9 (a) Positive function with positive curvature; (b) negative function with
negative curvature.



The straightforward method of finding the wave functions and
allowed energies for this problem is to solve Equation 6-33 for
i(x) outside the well and then require that {s(x) and {’(x) be con-
tinuous at the boundaries. The solution of Equation 6-33 is not dif-
ficult (it is of the form ys(x) = Ce™** for positive x), but applying
the boundary conditions involves a method that may be new to
you; we describe it in the More section on the Graphical Solution
of the Finite Square Well.

First, we will explain in words unencumbered by the mathe-
matics how the conditions of continuity of {s and {s" at the bound-
aries and the need for ¢s — 0 as x — * o leads to the selection of
only certain wave functions and quantized energies for values
of E within the well, that is, 0 < E < V,. The important feature of
Equation 6-33 is that the second derivative {s”, which is the curva-
ture of the wave function, has the same sign as the wave function
Y. If s is positive, Y” is also positive and the wave function curves
away from the axis, as shown in Figure 6-9a. Similarly, if ¢ is
negative, {" is negative and again, s curves away from the axis.
This behavior is different from that inside the well, where 0 < x < L.
There, ¢ and " have opposite signs so that ¥ always curves
toward the axis like a sine or cosine function. Because of this
behavior outside the well, for most values of the energy the wave
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W(x)

| | |
—-0.5L 0 L

FIGURE 6-10 The function that satisfies the
Schrodinger equation with X = 4L inside the well
is not an acceptable wave function because it
becomes infinite at large x. Althoughatx = L
the function is heading toward zero (slope is
negative), the rate of increase of the slope " is
so great that the slope becomes positive before
the function becomes zero, and the function then
increases. Since " has the same sign as s, the
slope always increases and the function increases
without bound. [This computer-generated plot
courtesy of Paul Doherty, The Exploratorium.]

function becomes infinite as x — =oo, that is, {s(x) is not well behaved. Such func-
tions, though satisfying the Schrédinger equation, are not proper wave functions

because they cannot be normalized.

Figure 6-10 shows the wave function for the energy E = p?/2m = h?/2m\? for
N = 4L. Figure 6-11 shows a well-behaved wave function corresponding to wave-
length A\ = \,, which is the ground-state wave function for the finite well, and the
behavior of the wave functions for two nearby energies and wavelengths. The exact

W(x)

A= Aq

A=Ay

FIGURE 6-11 Functions satisfying the Schradinger equation with wavelengths near the
critical wavelength \,. If \ is slightly greater than \,, the function approaches infinity like
that in Figure 6-10. At the wavelength \,, the function and its slope approach zero together.
This is an acceptable wave function corresponding to the energy E, = h?/2m\2. If \ is
slightly less than A4, the function crosses the x axis while the slope is still negative. The slope
becomes more negative because its rate of change " is now negative. This function
approaches negative infinity at large x. [This computer-generated plot courtesy of Paul Doherty,

The Exploratorium.]
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FIGURE 6-12 Wave
functions vs,(x) and
probability distributions
P2(x) forn=1,2,and 3
for the finite square well.
Compare these with

Figure 6-4 for the infinite
square well, where the wave
functions are zeroatx = 0
and x = L. The wavelengths
are slightly longer than the
corresponding ones for the
infinite well, so the allowed
energies are somewhat
smaller.
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determination of the allowed energy levels in a finite square well can be obtained
from a detailed solution of the problem. Figure 6-12 shows the wave functions and
the probability distributions for the ground state and for the first two excited states.
From this figure we see that the wavelengths inside the well are slightly longer than
the corresponding wavelengths for the infinite well of the same width, so the corre-
sponding energies are slightly less than those of the infinite well, as Figure 6-13
illustrates. Another feature of the finite-well problem is that there are only a finite
number of allowed energies, depending on the size of V,. For very small V, there is
only one allowed energy level; that is, only one bound state can exist. This will be
quite apparent in the detailed solution in the More section.

Note that, in contrast to the classical case, there is some probability of finding the
particle outside the well, in the regions x > L or x < 0. In these regions, the total
energy is less than the potential energy, so it would seem that the kinetic energy must
be negative. Since negative kinetic energy has no meaning in classical physics, it is
interesting to speculate about the meaning of this penetration of wave function beyond
the well boundary. Does quantum mechanics predict that we could measure a nega-
tive kinetic energy? If so, this would be a serious defect in the theory. Fortunately, we
are saved by the uncertainty principle. We can understand this qualitatively as follows
(we will consider the region x > L only). Since the wave function decreases as e %,
with o given by Equation 6-34, the probability density |® = e 2 becomes very
small in a distance of the order of Ax = . If we consider s(x) to be negligible
beyond x = L + o %, we can say that finding the particle in the region x > L is
roughly equivalent to localizing it in a region Ax =~ «~*. Such a measurement intro-
duces an uncertainty in momentum of the order of Ap = h/Ax = ha and a minimum
kinetic energy of the order of (Ap)?/2m = h?«?/2m =\, — E. This Kinetic energy
is just enough to prevent us from measuring a negative Kinetic energy! The penetration
of the wave function into a classically forbidden region does have important conse-
quences in tunneling or barrier penetration, which we will discuss in Section 6-6.

Much of our discussion of the finite-well problem applies to any problem in
which E > V(x) in some region and E < V(x) outside that region. Consider, for exam-
ple, the potential energy V(x) shown in Figure 6-14. Inside the well, the Schrodinger
equation is of the form

(X)) = —KA(x) 635
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FIGURE 6-13 Comparison of the lowest four energy levels of an infinite square well (broken
lines) with those of a finite square well (solid lines) of the same width. As the depth of the
finite well decreases, it loses energy levels out of the top of the well; however, the n = 1 level
remains even as V, — 0.

where k? = 2m[E — V(x) ] /4% now depends on x. The solutions of this equation are
no longer simple sine or cosine functions because the wave number k = 21 /\ varies
with x, but since " and {s have opposite signs, s will always curve toward the axis
and the solutions will oscillate. Outside the well, s will curve away from the axis so
there will be only certain values of E for which solutions exist that approach zero as
x approaches infinity.

More

In most cases the solution of finite-well problems involves transcen-
dental equations and is very difficult. For some finite potentials,
however, graphical solutions are relatively simple and provide both
insights and numerical results. As an example, we have included
the Graphical Solution of the Finite Square Well on the home page:
www.whfreeman.com/tiplermodernphysicsée. See also Equations
6-36 through 6-43 and Figure 6-15 here.

V(x)

FIGURE 6-14 Arbitrary well-
type potential with possible
energy E. Inside the well

[E > V(] ¥(x) and §"(x)
have opposite signs, and the
wave function will oscillate.
Outside the well, ys(x) and
U"(x) have the same sign, and,
except for certain values of E,
the wave function will not be
well behaved.
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6-4 Expectation Values and Operators

Expectation Values

The objective of theory is to explain experimental observations. In classical mechanics
the solution of a problem is typically specified by giving the position of a particle or
particles as a function of time. As we have discussed, the wave nature of matter pre-
vents us from doing this for microscopic systems. Instead, we find the wave function
W(x,t) and the probability distribution function | W (x,t) |2 The most that we can
know about a particle’s position is the probability that a measurement will yield vari-
ous values of x. The expectation value of x is defined as

+ o0
(x) = / W (x,1) x W (x,1) dx 6-44
The expectation value of x is the average value of x that we would expect to obtain
from a measurement of the positions of a large number of particles with the same wave
function W(x,t). As we have seen, for a particle in a state of definite energy the proba-
bility distribution is independent of time. The expectation value of x is then given by
+

(x) = U (X) X (x) dx 6-45
For example, for the infinite square well, we can see by symmetry (or by direct calcu-
lation) that (x) is L/2, the midpoint of the well.

In general, the expectation value of any function f(x) is given by

(f(x)) = /+mlll*f(X)llldX 6-46

For example, (x?) can be calculated as above, for the infinite square well of width L.
It is left as an exercise (see Problem 6-58) to show that

2 2

0 =5 - i
3 2n“ar
You may recognize the expectation values defined by Equations 6-45 and 6-46 as
being weighted average calculations, borrowed by physics from probability and sta-
tistics. We should note that we don’t necessarily expect to make a measurement
whose result equals the expectation value. For example, for even n, the probability of
measuring x = L/2 in some range dx around the midpoint of the well is zero because
the wave function sin (nmx/L) is zero there. We get (x) = L/2 because the proba-
bility density function ys*ys is symmetrical about that point. Remember that the expec-
tation value is the average value that would result from many measurements.

6-47

Operators

If we knew the momentum p of a particle as a function of x, we could calculate the
expectation value (p) from Equation 6-46. However, it is impossible in principle to
find p as a function of x since, according to the uncertainty principle, both p and x
cannot be determined at the same time. To find ( p), we need to know the distribution
function for momentum. If we know ys(x), it can be found by Fourier analysis. The (p)

. hoa\ . .
also can be found from Equation 6-48, where (iax) is the mathematical operator
acting on W that produces the x component of the momentum (see also Equation 6-6).
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+ oo
fo
= ¥ —— =
(p) /_w i <i 6X)‘Ifdx 6-48

Similarly, (p?) can be found from

= [ ()G

Notice that in computing the expectation value, the operator representing the physical
quantity operates on W(x,t), not on W*(x, t); that is, its correct position in the integral
is between W* and W. This is not important to the outcome when the operator is sim-
ply some f(x), but it is critical when the operator includes a differentiation, as in the
case of the momentum operator. Note that ( p?) is simply 2mE since, for the infinite

L (R . .
square well, E = p?/2m. The quantity <i ax) which operates on the wave function
in Equation 6-48, is called the momentum operator p,:

i d

Pop = D ox 6-49

DN NLTCN Expectation Values for p and p? Find {p) and (p?) for the
ground-state wave function of the infinite square well. (Before we calculate them,

what do you think the results will be?)

SOLUTION
We can ignore the time dependence of W, in which case we have

(p) /OL( isinT)(?(&)(ﬁsinT)dx

h2m L.Trx
=—-—— [ sin—
iLLJ, L

X
cos—dx =0

L
The particle is equally as likely to be moving in the —x as in the +x direction, so its

average momentum is zero.
Similarly, since

hofho Gl <1722.Trx>
T T = = P [ osine—
i ax<| ax)ljJ ax? L2VL L

h2m?
= 4 LZ ll,]
we have
K2 - hem?
2y = —— FdX = ——
(p*) =13 /0 P E

The time-independent Schrédinger equation (Equation 6-18) can be written conveniently
in terms of pg,:

(5 o0 + V00u00 = B0 6-50
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where

holho &
Pa U (x) = iax[iax‘b(x)} = —ﬁZ%

In classical mechanics, the total energy written in terms of the position and
momentum variables is called the Hamiltonian function H = p?/2m + V. If we
replace the momentum by the momentum operator p,, and note that V = V(x), we
obtain the Hamiltonian operator H,:

P

Hop % + V(X) 6-51

The time-independent Schrodinger equation can then be written
Hoplh = Eis 6-52

The advantage of writing the Schrddinger equation in this formal way is that it
allows for easy generalization to more complicated problems such as those with
several particles moving in three dimensions. We simply write the total energy
of the system in terms of position and momentum and replace the momentum vari-
ables by the appropriate operators to obtain the Hamiltonian operator for the
system.

Table 6-1 summarizes the several operators representing physical quantities
that we have discussed thus far and includes a few more that we will encounter
later on.

Table 6-1 Some quantum-mechanical operators

Symbol Physical quantity Operator
f(x) Any function of x—the position x, f(x)
the potential energy V(x), etc.
hd
Px x component of momentum T
hd
Py y component of momentum T@
fh o
n, z component of momentum o
N Pop
E Hamiltonian (time independent) om + V(x)
. . . 0
E Hamiltonian (time dependent) |ﬁ§
I h? &
E Kinetic ener ————s
X oy 2m ox2
J
L, z component of angular momentum —ih—
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Questions

7. Explain (in words) why (p) and (p?) in Example 6-5 are not both zero.
8. Can (x) ever have a value that has zero probability of being measured?

More

In order for interesting things to happen in systems with quantized
energies, the probability density must change in time. Only in this way
can energy be emitted or absorbed by the system. Transitions Between
Energy States on the home page (www.whfreeman.com/tiplermod
ernphysicsée) describes the process and applies it to the emission of

light from an atom. See also Equations 6-52a—e and Figure 6-16 here.

6-5 The Simple Harmonic Oscillator

One of the problems solved by Schrédinger in his first publications on wave mechan-
ics was that of the simple harmonic oscillator potential, such as that of a pendulum,
given by
V(x) = %sz = %mwzx2

where K is the force constant and w the angular frequency of vibration defined by
o = (K/m)¥2 = 2xf. The solution of the Schrodinger equation for this potential is
particularly important, as it can be applied to such problems as the vibration of mole-
cules in gases and solids. This potential energy function is shown in Figure 6-17, with
a possible total energy E indicated.

In classical mechanics, a particle in such a potential is in equilibrium at the origin
x = 0, where V(x) is minimum and the force F, = —dV/dx is zero. If disturbed, the
particle will oscillate back and forth between x = —A and x = +A, the points at
which the Kinetic energy is zero and the total energy is just equal to the potential
energy. These points are called the classical turning points. The distance A is related
to the total energy E by

1
E= EmeAZ 6-53

Classically, the probability of finding the particle in dx is proportional to the time
spent in dx, which is dx/v. The speed of the particle can be obtained from the conser-
vation of energy:

1 2 1 2y2
—mv° + —mowXx° =E
2 2

The classical probability is thus

d d
Pc(x)chxvx = X 6-54

\/(Z/m)<E - ;mw2x2>

V(x) 1
2,2
=mw?x
Smo
E
| |
-A 0 +A X

FIGURE 6-17 Potential
energy function for a simple
harmonic oscillator.
Classically, the particle is
confined between the
“turning points” —A and +A.
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Any value of the energy E is possible. The lowest energy is E = 0, in which case the
particle is at rest at the origin.
The Schrédinger equation for this problem is

W) L o
Tom ol + Emw X (x) = Eg(x) 6-55

The mathematical techniques involved in solving this type of differential equation are
standard in mathematical physics but unfamiliar to many students at this level. We
will, therefore, discuss the problem qualitatively. We first note that since the potential
is symmetric about the origin x = 0, we expect the probability distribution function
|45 (x) |? also to be symmetric about the origin, that is, to have the same value at —x
as at +x.

[ (=x) [2 = [b(x)[*

The wave function ys(x) must then be either symmetric s (—x) = +u(x), or anti-
symmetric ¢ (—x) = —{(x). We can therefore simplify our discussion by consider-
ing positive x only and find the solutions for negative x by symmetry. (The symmetry
of W is discussed further in the Exploring section “Parity”; see page 257.)

Consider some value of total energy E. For x less than the classical turning point A
defined by Equation 6-53, the potential energy V(x) is less than the total energy E,
whereas for x > A, V(x) is greater than E. Our discussion in Section 6-3 applies
directly to this problem. For x < A, the Schrddinger equation can be written

P (x) = —kA(x)

where

and ¥s(x) curves toward the axis and oscillates. For x > A, the Schrddinger equation
becomes

P (x) = +af(x)

with

and ys(x) curves away from the axis. Only certain values of E will lead to solutions
that are well behaved, that is, they approach zero as x approaches infinity. The allowed
values of E for the simple harmonic oscillator must be determined by rigorously solv-
ing the Schrédinger equation; in this case they are given by

1
En=<n+2>hw n=2012... 6-56

Thus, the ground-state energy is %hw and the energy levels are equally spaced, each
excited state being separated from the levels immediately adjacent by #iw.

The wave functions of the simple harmonic oscillator in the ground state and in
the first two excited states (n = 0, n = 1, and n = 2) are sketched in Figure 6-18. The
ground-state wave function has the shape of a Gaussian curve, and the lowest energy
E= %hm is the minimum energy consistent with the uncertainty principle. The
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" % FIGURE 6-18 Wave functions for the ground

allowed solutions to the Schrodinger equation, the wave functions for the simple
harmonic oscillator, can be written

Un (X) = Che™¥/2H_ (x) 6-57

where the constants C,, are determined by normalization and the functions H,(x) are
polynomials of order n called the Hermite polynomials.®® The solutions for n = 0, 1,
and 2 (see Figure 6-18) are

Yo (X) = Age ™2

miwefmwxz/Zﬁ 6-58

a
2mwx? 2
by (X) = Az(l - :X )emmx/zﬁ

Notice that for even values of n, the wave functions are symmetric about the origin;
for odd values of n, they are antisymmetric. In Figure 6-19 the probability distribu-
tions 2 (x) are sketched for n = 0, 1, 2, 3, and 10 for comparison with the classical
distribution.

A property of these wave functions that we will state without proof is that

+ o0
/ P X P, dx = 0 unless n=m=1 6-59
This property places a condition on transitions that may occur between allowed states.
This condition, called a selection rule, limits the amount by which n can change for

(electric dipole) radiation emitted or absorbed by a simple harmonic oscillator:

The quantum number of the final state must be 1 less than or 1 greater
than that of the initial state.

state and the first two excited states of the
simple harmonic oscillator potential, the
states withn = 0, 1, and 2.

Molecules vibrate as
harmonic oscillators.
Measuring vibration
frequencies (see Chapter 9)
makes possible
determination of force
constants, bond strengths,
and properties of solids.

17
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FIGURE 6-19 Probability

; . v
density 2 for the simple "
harmonic oscillator plotted
against the dimensionless
variable u = (mw /#%)Y2x, h=0
forn=0,1,2, 3, and 10. -
The dashed curves are the | | | | | | |
classical probability densities -3 -2 -1 0 1 2 3
for the same energy, and the
vertical lines indicate the
classical turning points n=1
x= 1A
| { | | ! | | |
-3 -2 -1 0 1 2 3
n=2
J | } | | | | |
-3 -2 -1 0 1 2 3
n=3
| | | | | | | |
-3 -2 -1 0 1 2 3
n=10
t | | | I I | | | }

This selection rule is usually written
An= t1 6-60

Since the difference in energy between two successive states is #w, this is the energy
of the photon emitted or absorbed in an electric dipole transition. The frequency of the
photon is therefore equal to the classical frequency of the oscillator, as was assumed
by Planck in his derivation of the blackbody radiation formula. Figure 6-20 shows an
energy-level diagram for the simple harmonic oscillator, with the allowed energy
transitions indicated by vertical arrows.

More

Solution of the Schridinger equation for the simple harmonic oscil-
lator (Equation 6-55) involves some rather advanced differential
equation techniques. However, a simple exact solution is also pos-
sible using an approach invented by Schrodinger himself that we
will call Schrédinger’s Trick. With the authors’ thanks to Wolfgang
Lorenzon for bringing it to our attention, we include it on the home
page, www.whfreeman.com/tiplermodernphysics6e, so that you, too,
will know the trick.
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V(x)
_1lp2_1_ 202
V(x)= 2Kx 2mco X
E5=(5+%)f7m
E, = 1
4-(4+§)f’®
_ 1
E3—(3+§)fl(x)
E2=(2+%)f7m
E1:(1+%)fm)
E0=%ﬁw
0 X

FIGURE 6-20 Energy levels in the simple harmonic oscillator potential. Transitions obeying
the selection rule An = *1 are indicated by the arrows (those pointing up indicate absorption).
Since the levels have equal spacing, the same energy A is emitted or absorbed in all allowed
transitions. For this special potential, the frequency of the emitted or absorbed photon equals
the frequency of oscillation, as predicted by classical theory.

EXPLORING
Parity

We made a special point of arranging the simple harmonic oscillator potential sym-
metrically about x = 0 (see Figure 6-17), just as we had done with the finite square
well in Figure 6-8b and will do with various other potentials in later discussions. The
usual purpose in each case is to emphasize the symmetry of the physical situation and
to simplify the mathematics. Notice that arranging the potential V(x) symmetrically
about the origin means that V(x) = V(—x). This means that the Hamiltonian operator
H,p, defined in Equation 6-51, is unchanged by a transformation that changes x — —x.
Such a transformation is called a parity operation and is usually denoted by the opera-
tor P. Thus, if ys(x) is a solution of the Schrddinger equation

Hopli (X) = Ei(x) 6-52
then a parity operation P leads to

Hop“’(_x) = EL"(_X)

and s (—x) is also a solution to the Schrodinger equation and corresponds to the
same energy. When two (or more) wave functions are solutions corresponding to the same
value of the energy E, that level is referred to as degenerate. In this case, where two
wave functions, s(x) and {s(—x), are both solutions with energy E, we call the energy
level doubly degenerate.

It should be apparent from examining the two equations above that s(x) and {s(—x)
can differ at most by a multiplicative constant C, that is,

b(x) =C(—x) (%) = Ch(x)
or

P(x) = C(=x) = CA(x)

257
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from which it follows that C = +1. If C = 1, {s(x) is an even function, that is,
P(—X) = P(x). If C = —1, then Ys(x) is an odd function, that is, $s(—x) = —ys(x). Par-
ity is used in quantum mechanics to describe the symmetry properties of wave func-
tions under a reflection of the space coordinates in the origin, that is, under a parity
operation. The terms even and odd parity describe the symmetry of the wave functions,
not whether the quantum numbers are even or odd. We will have more on parity in
Chapter 12.

6-6 Reflection and Transmission
of Waves

Up to this point, we have been concerned with bound-state problems in which the
potential energy is larger than the total energy for large values of x. In this section, we
will consider some simple examples of unbound states for which E is greater than
V(x) as x gets larger in one or both directions. For these problems d?js(x) /dx? and
(X) have opposite signs for those regions of x where E > V(x), so {s(x) in those
regions curves toward the axis and does not become infinite at large values of |x]|;
therefore, any value of E is allowed. Such wave functions are not normalizable since
s(x) does not approach zero as x goes to infinity in at least one direction and, as a
consequence,

IR

A complete solution involves combining infinite plane waves into a wave packet
of finite width. The finite packet is normalizable. However, for our purposes it is
sufficient to note that the integral above is bounded between the limits a and b, pro-
vided only that |b — a| <. Such wave functions are most frequently encountered,
as we are about to do, in the scattering of beams of particles from potentials, so it is
usual to normalize such wave functions in terms of the density of particles p in the

beam. Thus,
b b b
/|¢(x)|2dx= /pdx= /szN
a a a

where dN is the number of particles in the interval dx and N is the number of particles
in the interval (b — a).** The wave nature of the Schrodinger equation leads, even so,
to some very interesting consequences.

Step Potential

Consider a region in which the potential energy is the step function

V(x) =0 for x<0
V(x) =V, for x>0

as shown in Figure 6-21. We are interested in what happens when a beam of particles,
each with the same total energy E, moving from left to right encounters the step.

The classical answer is simple. For x < 0, each particle moves with speed
v = (2E/m)*¥2 At x = 0, an impulsive force acts on it. If the total energy E is less
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than V,, the particle will be turned around and will move to the left at its original speed;
that is, it will be reflected by the step. If E is greater than V,, the particle will continue
moving to the right but with reduced speed, given by v = [2(E — \,)/m ]2 We
might picture this classical problem as a ball rolling along a level surface and coming
to a steep hill of height y,, given by mgy, = V,. If its original kinetic energy is less
than V,, the ball will roll partway up the hill and then back down and to the left along
the level surface at its original speed. If E is greater than V,, the ball will roll up the
hill and proceed to the right at a smaller speed.

The quantum-mechanical result is similar to the classical one for E < V, but
quite different when E > V,, as in Figure 6-22a. The Schrodinger equation in each of
the two space regions shown in the diagram is given by

259
V(X)T
Vo

O‘ X

FIGURE 6-21 Step potential.
A classical particle incident
from the left, with total
energy E greater than V,,,

is always transmitted. The
potential change at x = 0
merely provides an impulsive
force that reduces the speed
of the particle. However,

a wave incident from the left
is partially transmitted and
partially reflected because the
wavelength changes abruptly
atx =0.

FIGURE 6-22 (a) A potential step. Particles
are incident on the step from the left toward
the right, each with total energy E > V.

(b) The wavelength of the incident wave
(region 1) is shorter than that of the
transmitted wave (region I1). Since k, < ky,
[C|? > | A|% however, the transmission

Region |
d?y(x)
(x <0) o —k2ys (x) 6-61
Region 11
d?y(x)
(x >0) ol —k3ls (x) 6-62
~ VomE _ Va2m(E — Vo)
k, = P and k, = %
The general solutions are
Region |
(x <0) U (x) = Ae™* 4 Be 6-63
Region 11
(x>0) ¥ (x) = Ce™* + De 6-64
(a) Energy
E
V(x)=Vq
V(x)=0
o 0 X
[ I
(b) W(x)
0 X
[ I
coefficient T < 1.
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Specializing these solutions to our situation where we are assuming the incident beam
of particles to be moving from left to right, we see that the first term in Equation 6-63
represents that beam since multiplying Ae'* by the time part of W(x,t), e !, yields
a plane wave (i.e., a beam of free particles) moving to the right. The second term,
Be ™ represents particles moving to the left in Region I. In Equation 6-64, D = 0
since that term represents particles incident on the potential step from the right and
there are none. Thus, we have that the constant A is known or at least obtainable
(determined by normalization of Ae™: in terms of the density of particles in the beam
as explained above) and the constants B and C are yet to be found. We find them by
applying the continuity condition on ys(x) and dis (x) /dx at x = 0, that is, by requiring
that 45,(0) = ¢,,(0) and dys (0) /dx = dus;; (0) /dx. Continuity of {s at x = 0 yields

Y, (0) =A+B=1q,(0)=C
or
A+B=C 6-65a
Continuity of dys/dx at x = 0 gives
k;A — k;B = k,C 6-65b

Solving Equations 6-65a and b for B and C in terms of A (see Problem 6-49),
we have

ok —k, EYP = (E - V)Y
okt ky E¥2 4 (E - \,)Y2
2k, A 2EY?

Dkt ke EY2 4 (E - \p)Y2

B 6-66

c 6-67

where Equations 6-66 and 6-67 give the relative amplitude of the reflected and trans-
mitted waves, respectively. It is usual to define the coefficients of reflection R and
transmission T, the relative rates at which particles are reflected and transmitted, in
terms of the squares of the amplitudes A, B, and C as™®

R = BI° _ (kl_ kz)z 6-68
ARkt ke

k, |C|? 4k,k
:i| | _ 1K2 6-69

ki [A] (ks + ko)?
from which it can be readily verified that
T+R=1 6-70

Among the interesting consequences of the wave nature of the solutions to Schrodinger’s
equation, notice the following:

1. Even though E > V,, R is not 0; that is, in contrast to classical expectations,
some of the particles are reflected from the step. (This is analogous to the
internal reflection of electromagnetic waves at the interface of two media.)

2. The value of R depends on the difference between k; and k, but not on which
is larger; that is, a step down in the potential produces the same reflection as
a step up of the same size.
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[p(x, 1)]2 == FIGURE 6-23 Time development of a
=T _ one-dimensional wave packet representing a
s e | === particle incident on a step potential for E > V/,,
"’;;//// /=l =T The position of a classical particle is indicated by
T T W AT . the dot. Note that part of the packet is transmitted
T =T X and part is reflected. The reflected wave indicates
T s == that there is some probability that the particle is
T 7 e ) reflected by the step, even though E >V, . The
-7 e ’/’j - s el sharp spikes that appear are artifacts of the
P == discontinuity in the slope of V(x) at x = 0.
- Pt - / ;‘;; ==
s
P ==
- ",—’ - "/‘;!/
,—”//// _ ,?’/”

Since k = p/A = 2w /\, the wavelength changes as the beam passes the step. We
might also expect that the amplitude of s, will be less than that of the incident
wave; however, recall that the [ys|? is proportional to the particle density. Since
particles move more slowly in Region Il (k, < k;), |Us,|? may be larger than |y |2.
Figure 6-22b illustrates these points. Figure 6-23 shows the time development of a
wave packet incident on a potential step for E > V.

Now let us consider the case shown in Figure 6-24a, where E < V. Classically,
we expect all particles to be reflected at x = 0; however, we note that k, in Equa-
tion 6-64 is now an imaginary number since E < V. Thus,

Py (x) = Ce'* = Ce ™ 6-71

is a real exponential function where « = V2m(\, — E) /#. (We choose the positive
root so that {s;, — 0 as x — o.) This means that the numerator and denominator of
the right side of Equation 6-66 are complex conjugates of each other; hence
|B|? = |A|?, R =1,and T = 0. Figure 6-25 is a graph of both R and T versus energy

(@) Energy
V(x)=Vgq
V(x)=0 E
0 X
FIGURE 6-24 (a) A potential
Wy(x) step. Particles are incident
(o) on the step from the left

moving toward the right, each
with total energy E < V,,.

(b) The wave transmitted

0 X into region Il is a decreasing
exponential. However, the
value of R in this case is 1
and no net energy is
transmitted.
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FIGURE 6-25 Reflection
coefficient R and transmission
coefficient T for a potential
step V, high versus energy E
(in units of V).
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FIGURE 6-26
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for a potential step. In agreement with the classical prediction, all of the particles
(waves) are reflected back into Region I. However, another interesting result of our
solution of Schrédinger’s equation is that the particle waves do not all reflect at x = 0.
Since s, is an exponential decreasing toward the right, the particle density in
Region Il is proportional to

[ |? = [C|e™ 6-72

Figure 6-24b shows the wave function for the case E < V,. The wave function does
not go to zero at x = 0 but decays exponentially, as does the wave function for the
bound state in a finite square well problem. The wave penetrates slightly into the clas-
sically forbidden region x > 0 but eventually is completely reflected. (As discussed in
Section 6-3, there is no prediction that a negative kinetic energy will be measured in
such a region because to locate the particle in such a region introduces an uncertainty
in the momentum corresponding to a minimum Kinetic energy greater than V, — E.)
This situation is similar to that of total internal reflection in optics.

Reflection from a Step with E < V, A beam of electrons, each
with energy E = 0.1 V,, are incident on a potential step with V, = 2 eV. This is of
the order of magnitude of the work function for electrons at the surface of metals
(see Section 3-4). Graph the relative probability |is|? of particles penetrating the
step up to a distance x = 10~ m, or roughly five atomic diameters.

SOLUTION
For x > 0, the wave function is given by Equation 6-71. The value of |C|? is, from
Equation 6-67,

2(0.1v,)Y? 2

Cl? = =04
€] (0.1Vy)¥2 + (—=0.9V,)Y?

where we have taken |A|? = 1. Computing e > for several values of x from 0 to
10 m gives, with 2a = 2[2m(0.9V,) ]¥?/#, the first two columns of Table 6-2.
Taking e ?** and then multiplying by |C|? = 0.4 yields |{s|?, which is graphed in
Figure 6-26.
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Table 6-2 |W|?
x (m) 20X [¥?
0 0 0.40
0.1x 1071 0.137 0.349
1.0 X 10710 1.374 0.101
2.0 x 10710 2.748 0.026
5.0 x 1071 6.869 0.001
10.0 X 10710 13.74 ~

Barrier Potential

Now let us consider another of the many interesting quantum-mechanical potentials,
the barrier, illustrated by the example in Figure 6-27. The potential is

V(x) = {g

Classical particles incident on the barrier from the left in Region | with E > V, will all
be transmitted, slowing down while passing through Region Il but moving at their
original speed again in Region Ill. For classical particles with E < V, incident from
the left, all are reflected back into Region I. The quantum-mechanical behavior of
particles incident on the barrier in both energy ranges is much different!

First, let us see what happens when a beam of particles, all with the same energy
E <V, as illustrated in Figure 6-27, are incident from the left. The general solutions
to the wave equation are, following the example of the potential step,

U (x) = Ae™* 4 Be
Y (x) = Ce™™ + De*
P (x) = Fe' + Ge™*

for0<x<a

for0 > xandx > a 6-73

Xx<0
0<x<a
X > a

6-74
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FIGURE 6-27 (a) Square
barrier potential. (b) Pene-
tration of the barrier by a
wave with energy less than
the barrier energy. Part

of the wave is transmitted

by the barrier even though,
classically, the particle cannot
enter the region 0 < x < ain
which the potential energy is
greater than the total energy.
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FIGURE 6-28 Optical barrier
penetration, sometimes called
frustrated total internal
reflection. Because of the
presence of the second prism,
part of the wave penetrates
the air barrier even though
the angle of incidence in the
first prism is greater than the
critical angle. This effect can
be demonstrated with two
45° prisms and a laser or

a microwave beam and

45° prisms made of paraffin.

An important application
of tunneling is the
tunnel diode, a common
component of electronic
circuits. Another is field
emission, tunneling of
electrons facilitated by an
electric field, now being
used in wide-angle, flat-
screen displays on some
laptop computers.

FIGURE 6-29 Schematic illustration of the path of the probe
of an STM (dashed line) scanned across the surface of a
sample while maintaining constant tunneling current. The
probe has an extremely sharp microtip of atomic dimensions.
Tunneling occurs over a small area across the narrow gap, OO0

allowing very small features (even individual atoms) to be S ) g § ) f § é § é E :
imaged, as indicated by the dashed line.

where, as before, k;, = V2mE/fiand a« = V2m(V, — E) /%. Note that s, involves
real exponentials, whereas s, and s, contain complex exponentials. Since the parti-
cle beam is incident on the barrier from the left, we can set G = 0. Once again, the
value of A is determined by the particle density in the beam and the four constants B,
C, D, and F are found in terms of A by applying the continuity condition on s and
dys/dx at x = 0 and at x = a. The details of the calculation are not of concern to us
here, but several of the more interesting results are.

As we discovered for the potential step with E < V,, the wave function incident
from the left does not decrease immediately to zero at the barrier but instead will
decay exponentially in the region of the barrier. On reaching the far wall of the barrier,
the wave function must join smoothly to a sinusoidal wave function to the right of the
barrier, as shown in Figure 6-27b. This implies that there will be some probability of
the particles represented by the wave function being found on the far right side of
the barrier, although classically they should never be able to get through; that is, there
is a probability that the particles approaching the barrier can penetrate it. This
phenomenon is called barrier penetration or tunneling (see Figure 6-28). The relative
probability of its occurrence in any given situation is given by the transmission
coefficient.

The transmission coefficient T from Region | into Region Il is found to be (see
Problem 6-64)

F|? sinhaa |
1= EL [y sinhoa 6-75
Al 4E(1 . E)
Vo Vo
If aa > 1, Equation 6-75 takes on the somewhat simpler form to evaluate

E E

T = 16(1 - >e‘2°‘a 6-76
Vo Vo

An important application of tunneling is the scanning tunneling microscope (STM),
developed in the 1980s by Gerd Binnig and Heinrich Rohrer. In this device a narrow
gap between a conducting specimen and the tip of a tiny probe acts as a potential bar-
rier to electrons bound in the specimen, as illustrated in Figure 6-29. A small bias
voltage applied between the probe and the specimen causes the electrons to tunnel

Microtip
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Scanning tunneling microscopy images of size- and shape-selected platinum nanoparticles
supported on TiO,(110) [Source: Farza Behafarid and Beatriz Roldan Cuenya, Department of
Physics, University of Central Florida.]

through the barrier separating the two surfaces if the surfaces are close enough
together. The tunneling current is extremely sensitive to the size of the gap, that is, the
width of the barrier, between the probe and specimen. A change of only 0.5 nm (about
the diameter of one atom) in the width of the barrier can cause the tunneling current to
change by as much as a factor of 10*. As the probe scans the specimen, a constant tun-
neling current is maintained by a piezoelectric feedback system that keeps the gap
constant. Thus, the surface of the specimen can be mapped out by the vertical motions
of the probe. In this way, the surface features of a specimen can be measured by
STMs with a resolution of the order of the size of a single atom (see Figure 6-29 and
the accompanying STM images of gold nanoparticles).

EXPLORING
Alpha Decay

Barrier penetration was used by Gamow, Condon, and Gurney in 1928 to explain the
enormous variation in the mean lifetime for o decay of radioactive nuclei and the
seemingly paradoxical very existence of o decay.® While radioactive o decay will
be discussed more thoroughly in Chapter 11, in general, the smaller the energy of
the emitted « particle, the larger the mean lifetime. The energies of « particles from
natural radioactive sources range from about 4 to 7 MeV, whereas the mean lifetimes
range from about 10° years to 10 ° s. Gamow represented the radioactive nucleus by
a potential well containing an « particle, as shown in Figure 6-30a. For r less than
the nuclear radius R, the « particle is attracted by the nuclear force. Without knowing
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FIGURE 6-30 (a) Model of potential energy function for an « particle and a nucleus. The
strong attractive nuclear force for r less than the nuclear radius R can be approximately
described by the potential well shown. Outside the nucleus the nuclear force is negligible,
and the potential is given by Coulomb’s law, V (r) = +kZze?/r, where Ze is the nuclear
charge and ze is the charge of the « particle. An « particle inside the nucleus oscillates
back and forth, being reflected at the barrier at R. Because of its wave properties, when the
« particle approaches the barrier, there is a small chance that it will penetrate and appear
outside the well at r = r;. The wave function is similar to that shown in Figure 6-27b.

(b) The decay rate for the emission of « particles from radioactive nuclei. The solid line is
the prediction of Equation 6-79; the points are experimental results.

much about this force, Gamow and his coworkers represented it by a square well. Out-
side the nucleus, the « particle is repelled by the Coulomb force. This is represented by
the Coulomb potential energy +kZze?/r, where z = 2 for the « particle and Ze is the
remaining nuclear charge. The energy E is the measured kinetic energy of the emitted
« particle, since when it is far from the nucleus, its potential energy is zero. We see
from the figure that a small increase in E reduces the relative height of the barrier V — E
and also reduces the thickness. Because the probability of transmission varies expo-
nentially with the relative height and barrier thickness, as indicated by Equation 6-76,
a small increase in E leads to a large increase in the probability of transmission and in
turn to a shorter lifetime. Gamow and his coworkers were able to derive an expression
for the o decay rate and the mean lifetime as a function of energy E that was in good
agreement with experimental results as follows:

The probability that an « particle will tunnel through the barrier in any one
approach is given by T from Equation 6-76. In fact, in this case aa is so large than the
exponential dominates the expression and

T = e—2v2m(V0—E)a/h 6-77

which is a very small number; that is, the « particle is usually reflected. The number of
times per second N that the « particle approaches the barrier is given roughly by

N=_ 6-78
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where v equals the particle’s speed inside the nucleus. Thus, the decay rate, or the prob-
ability per second that the nucleus will emit an « particle, which is also the reciprocal
of the mean life 7, is given by

—2V2m(Vo—E)a/h

1 v
decay rate = T —Re 6-79

2
Figure 6-30b illustrates the good agreement between the barrier penetration calculation
and experimental measurements.

EXPLORING
NH; Atomic Clock

Barrier penetration also takes place in the case of the periodic inversion of the ammo-
nia molecule. The NH; molecule has two equilibrium configurations, as illustrated in
Figure 6-31a. The three hydrogen atoms are arranged in a plane. The nitrogen atom
oscillates between two equilibrium positions equidistant from each of the H atoms
above and below the plane. The potential energy function V(x) acting on the N atom
has two minima located symmetrically about the center of the plane, as shown in Fig-
ure 6-31b. The N atom is bound to the molecule, so the energy is quantized and the
lower states lie well below the central maximum of the potential. The central maximum
presents a barrier to the N atoms in the lower states through which they slowly tunnel
back and forth.!” The oscillation frequency f = 2.3786 X 10%° Hz when the atom is in
the state characterized by the energy E, in Figure 6-31b. This frequency is quite low
compared with the frequencies of most molecular vibrations, a fact that allowed the N
atom tunneling frequency in NH; to be used as the standard in the first atomic clocks,
devices that now provide the world’s standard for precision timekeeping.

@ x T (b) V(x)

ZQEJ'

0 X

FIGURE 6-31 (a) The NH,; molecule oscillates between the two equilibrium positions
shown. The H atoms form a plane; the N atom is colored. (b) The potential energy of the
N atom, where x is the distance above and below the plane of the H atoms. Several of the
allowed energies, including the two lowest shown, lie below the top of the central barrier
through which the N atom tunnels.

More

Quantum-mechanical tunneling involving two barriers is the basis
for a number of devices such as the tunnel diode and the Josephson
junction, both of which have a wide variety of useful applications.
As an example of such systems, the Tunnel Diode is described on the
home page: www.whfreeman.com/tiplermodernphysics6e. See also

Equation 6-80 and Figure 6-32 here.
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In the event that E/V, > 1,
there is no reflected

wave for aa = m, 2, . ..
as a result of destructive
interference. For electrons
incident on noble gas
atoms, the resulting 100
percent transmission

is called the Ramsauer-
Townsend effect and is a
way of measuring atomic
diameters for those
elements.
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Summary

TOPIC

. Schrédinger equation

RELEVANT EQUATIONS AND REMARKS

. N 12 PV (xt) oV (xt)
Time dependent, one space dimension — 5 t V(X)W (xt) =ik 6-6
2m X at
o N —#2 %y (x)
Time independent, one space dimension om + V(X)) (x) = E¥(x) 6-18
+
Normalization condition / W (x, 1) W (xt)dx = 1 6-9
and
+ o
/ P* (X)) (x)dx = 1 6-20
Acceptability conditions 1. s(x) must exist and satisfy the Schrédinger equation.
2. y(x) and dys/dx must be continuous.
3. Y(x) and dys/dx must be finite.
4. s(x) and dys/dx must be single valued.
5. §s(x) — 0 fast enough as x — = o so that the normalization
integral, Equation 6-20, remains bounded.
. Infinite square well
w2h2
Allowed energies E.=n>—5=n*E;, n=123,... 6-24
2mL
. 2 . nmx
Wave functions Yo (X) = IsmT n=123,... 6-32
. Finite square well For a finite well of width L the allowed energies E,, in the
well are lower than the corresponding levels for an infinite well.
There is always at least one allowed energy (bound state) in a
finite well.
. Expectation values and operators The expectation or average value of a physical quantity represented
by an operator, such as the momentum operator p,, is given by
+ + oo ﬁ a
(p) = / Wip,Wdx = / \If*(T &>\If dx 6-48
. Simple harmonic oscillator
1
Allowed energies E, = (n + E)hm n=2012... 6-56

. Reflection and transmission

When the potential changes abruptly in a distance small compared
to the de Broglie wavelength, a particle may be reflected even
though E > V(x). A particle may also penetrate into a region where
E < V(x).
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Notes

1. Felix Bloch (1905-1983), Swiss American physicist. He
was a student at the University of Zurich and attended the col-
loquium referred to. The quote is from an address before the
American Physical Society in 1976. Bloch shared the 1952
Nobel Prize in Physics for measuring the magnetic moment
of the neutron, using a method he invented that led to the
development of the analytical technique of nuclear magnetic
resonance (NMR) spectroscopy.

2. Peter J. W. Debye (1884-1966), Dutch American physi-
cal chemist. He succeeded Einstein in the chair of theoretical
physics at the University of Zurich and received the Nobel
Prize in Chemistry in 1936.

3. Erwin R. J. A. Schrédinger (1887-1961), Austrian physi-
cist. He succeeded Planck in the chair of theoretical physics
at the University of Berlin in 1928 following Planck’s retire-
ment and two years after publishing in rapid succession six
papers that set forth the theory of wave mechanics. For that
work he shared the Nobel Prize in Physics with P. A. M. Dirac
in 1933. He left Nazi-controlled Europe in 1940, moving his
household to Ireland.

4. To see that this is indeed the case, consider the effect
on W (x, t) /ox? of multiplying W(x,t) by a factor C. Then
FPCW(x, t) /ox? = CPW(x,1)/ox?, and the derivative is
increased by the same factor. Thus, the derivative is propor-
tional to the first power of the function, that is, it is linear in
W(x,t).

5. The imaginary i appears because the Schrddinger equa-
tion relates a first time derivative to a second space deriv-
ative as a consequence of the fact that the total energy is
related to the square of the momentum. This is unlike the
classical wave equation (Equation 5-11), which relates two
second derivatives. The implication of this is that, in general,
the W(x,t) will be complex functions, whereas the y(x,t)
are real.
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French, A. P., and E. F. Taylor, An Introduction to Quantum
Physics, Norton, New York, 1978.

Mehra, J., and H. Rechenberg, The Historical Development of
Quantum Theory, Vol. 1, Springer-Verlag, New York, 1982.

Park, D., Introduction to the Quantum Theory, 3d ed.,
McGraw-Hill, New York, 1992.

Visual Quantum Mechanics, Kansas State University,
Manhattan, 1996. Computer simulation software allows
the user to analyze a variety of one-dimensional poten-
tials, including the square wells and harmonic oscilla-
tor discussed in this chapter.

6. The fact that W is in general complex does not mean that
its imaginary part doesn’t contribute to the values of mea-
surements, which are real. Every complex number can be
written in the form z = a + bi, where a and b are real numbers
and i = (—1)¥2 The magnitude or absolute value of z is
defined as (a? + b?)Y2 The complex conjugate of z is 7* =
a — bi, so z¥z = (a — bi)(a + bi) = a®+ b= |z|%
thus the value of |¥|? will contain a contribution from its
imaginary part.

7. Here we are using the convention of probability and sta-
tistics that certainty is represented by a probability of 1.

8. This method for solving partial differential equations
is called separation of variables, for obvious reasons. Since
most potentials in quantum mechanics, as in classical mechan-
ics, are time independent, the method may be applied to the
Schrédinger equation in numerous situations.

9. We should note that there is an exception to this in the
quantum theory of measurement.

10. E = 0 corresponding to n = 0 is not a possible energy
for a particle in a box. As discussed in Section 5-6, the uncer-
tainty principle limits the minimum energy for such a particle
to values >#2/2mL2,

11. Recalling that linear combinations of solutions to
Schrédinger’s equation will also be solutions, we should
note here that simulation of the classical behavior of a mac-
roscopic particle in a macroscopic box requires wave func-
tions that are the superpositions of many stationary states.
Thus, the classical particle never has definite energy in the
guantum-mechanical sense.

12. To simplify the notation in this section, we will some-
times omit the functional dependence and merely write s, for
U, (x) and W, for W, (x).

13. The Hermite polynomials are known functions that are
tabulated in most books on quantum mechanics.
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14. 1t is straightforward to show that the only difference
between a ys(x) normalized in terms of the particle density and
one for which |s(x) |2 is the probability density is a multipli-
cative constant.

15. T and R are derived in terms of the particle currents, that is,
particles/unit time, in most introductory quantum mechanics
books.

16. Rutherford had shown that the scattering of 8.8 MeV
a particles from the decay of 2Po obeyed the Coulomb
force law down to distances of the order of 3 X 107 * m,
that is, down to about nuclear dimensions. Thus, the Cou-
lomb barrier at that distance was at least 8.8 MeV high;
however, the energy of o particles emitted by 2*U is only

Problems
LEVEL I

4.2 MeV, less than half the barrier height. How that could
be possible presented classical physics with the paradox
referred to in the text.

17. Since the molecule’s center of mass is fixed in an inertial
reference frame, the plane of H atoms also oscillates back and
forth in the opposite direction to the N atom; however, their
mass being smaller than that of the N atom, the amplitude of
the plane’s motion is actually larger than that of the N atom.
It is the relative motion that is important.

18. See, for example, F. Capasso and S. Datta, “Quantum
Electron Devices,” Physics Today, 43, 74 (1990). Leo Esaki
was awarded the Nobel Prize in Physics in 1973 for inventing
the resonant tunnel diode.

Section 6-1 The Schrodinger Equation in One Dimension
8-1. Show that the wave function ¥(x,t) = Ae ~ “! does not satisfy the time-dependent

Schrodinger equation.

8-2.  Show that W(x,t) = Ae'®™ ~ “Y satisfies both the time-dependent Schrédinger equa-
tion and the classical wave equation (Equation 6-1).

8-3. In aregion of space, a particle has a wave function given by §s(x) = Ae

/2 and

energy #°/2mL?, where L is some length. (a) Find the potential energy as a function of x,
and sketch V versus x. (b) What is the classical potential that has this dependence?

8-4. (a) For Problem 6-3, find the kinetic energy as a function of x. (b) Show that x = L
is the classical turning point. (c) The potential energy of a simple harmonic oscillator in
terms of its angular frequency  is given by V(x) = %mmzxz. Compare this with your
answer to part (a) of Problem 6-3, and show that the total energy for this wave function

can be written E = 1.

8-5. (a) Show that the wave function W(x,t) = Asin(kx — wt) does not satisfy the time-
dependent Schrodinger equation. (b) Show that W(x,t) = Acos(kx — wt) + iAsin(kx — wt)

does satisfy this equation.

8-6. The wave function for a free electron, that is, one on which no net force acts, is given
by U(x) = Asin(2.5 X 10%x), where x is in meters. Compute the electron’s (a) momentum,
(b) total energy, and (c) de Broglie wavelength.

8-7. A particle with mass m and total energy zero is in a particular region of space where
its wave function is ¥(x) = Ce™/V. (a) Find the potential energy V(x) versus x and
(b) make a sketch of V(x) versus x.

8-8. Normalize the wave function in Problem 6-2 between —a and +a. Why can’t that
wave function be normalized between —oc and +o?

Section 6-2 The Infinite Square Well

8-9. A particle is in an infinite square well of size L. Calculate the ground-state energy if
(a) the particle is a proton and L = 0.1 nm, a typical size for a molecule; (b) the particle is
aproton and L = 1 fm, a typical size for a nucleus.

8-10. A particle is in the ground state of an infinite square well potential given by Equa-
tion 6-21. Find the probability of finding the particle in the interval Ax = 0.002 L at
(a)x = L/2, (b) x = 2L/3, and (c) x = L. (Since Ax is very small, you need not do any

integration.)



8-11. Do Problem 6-10 for a particle in the second excited state (n = 3) of an infinite
square well potential.

8-12. A mass of 107° g is moving with a speed of about 10~ cm/s in a box of length
1 cm. Treating this as a one-dimensional infinite square well, calculate the approximate
value of the quantum number n.

8-13. (a) For the classical particle of Problem 6-12, find Ax and Ap, assuming that
Ax/L = 0.01 percent and Ap/p = 0.01 percent. (b) What is (AxAp) /A?

8-14. A particle of mass m is confined to a tube of length L. (a) Use the uncertainty rela-
tionship to estimate the smallest possible energy. (b) Assume that the inside of the tube
is a force-free region and that the particle makes elastic reflections at the tube ends. Use
Schrédinger’s equation to find the ground-state energy for the particle in the tube. Com-
pare the answer to that of part (a).

8-15. (a) What is the wavelength associated with the particle of Problem 6-14 if the par-
ticle is in its ground state? (b) What is the wavelength if the particle is in its second excited
state (quantum number n = 3)? (c) Use de Broglie’s relationship to find the magnitude for
the momentum of the particle in its ground state. (d) Show that p?/2m gives the correct
energy for the ground state of this particle in the box.

8-16. The wavelength of light emitted by a ruby laser is 694.3 nm. Assuming that the
emission of a photon of this wavelength accompanies the transition of an electron from the
n = 2 level to the n = 1 level of an infinite square well, compute L for the well.

8-17. The allowed energies for a particle of mass m in a one-dimensional infinite square
well are given by Equation 6-24. Show that a level with n = 0 violates the Heisenberg
uncertainty principle.

8-18. Suppose we construct a simple model of a neutral uranium atom as a collection
of electrons confined in a one-dimensional box of width 0.05 nm with one electron per
energy level. (a) Compute the energy of the most energetic electron in the model atom.
(b) Compare the result in (a) with the rest energy of the electron.

8-19. Suppose a macroscopic bead with a mass of 2.0 g is constrained to move on a
straight frictionless wire between two heavy stops clamped firmly to the wire 10 cm apart.
If the bead is moving at a speed of 20 nm/y (i.e., to all appearances it is at rest), what is the
value of its quantum number n?

8-20. An electron moving in a one-dimensional infinite square well is trapped inthe n = 5
state. (@) Show that the probability of finding the electron between x = 0.2 Land x = 0.4 L
is 1/5. (b) Compute the probability of finding the electron within the “volume” Ax = 0.01 L
atx = L/2.

8-21. Inthe early days of nuclear physics before the neutron was discovered, it was thought
that the nucleus contained only electrons and protons. If we consider the nucleus to be a
one-dimensional infinite well with L = 10 fm and ignore relativity, compute the ground-
state energy for (a) an electron and (b) a proton in the nucleus. (c) Compute the energy
difference between the ground state and the first excited state for each particle. (Differences
between energy levels in nuclei are found to be typically of the order of 1 MeV.)

8-22. An electron is in the ground state with energy E, of a one-dimensional infinite
well with L = 1071 m. Compute the force that the electron exerts on the wall during an
impact on either wall. (Hint: F = —dE, /dL. Why?) How does this result compare with
the weight of an electron at the surface of Earth?

8-23. The wave functions of a particle in a one-dimensional infinite square well are given
by Equation 6-32. Show that for these functions [is,(X)Us,(x) dx = 0, that is, that ys,(x) and
Um(x) are orthogonal.

Section 6-3 The Finite Square Well

8-24. Sketch (a) the wave function and (b) the probability distribution for the n = 4 state
for the finite square well potential.

Problems
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8-25. A finite square well 1.0 fm wide contains one neutron. How deep must the well be if
there are only two allowed energy levels for the neutron?

8-26. An electron is confined to a finite square well whose “walls” are 8.0 eV high. If the
ground-state energy is 0.5 eV, estimate the width of the well.

8-27. Using arguments concerning curvature, wavelength, and amplitude, sketch very
carefully the wave function corresponding to a particle with energy E in the finite poten-
tial well shown in Figure 6-33.

Energy
Vs

FIGURE 6-33 Problem 6-27.

8-28. For a finite square well potential that has six quantized levels, if a = 10 nm (a) sketch
the finite well, (b) sketch the wave function from x = —2ato x = +2a forn = 3, and
(c) sketch the probability density for the same range of x.

Section 6-4 Expectation Values and Operators

8-29. Compute the expectation value of the x component of the momentum of a particle of
mass m in the n = 3 level of a one-dimensional infinite square well of width L. Reconcile
your answer with the fact that the kinetic energy of the particle in this level is 97%:2/2mL2
8-30. Find (a) (x) and (b) (x?) for the second excited state (n = 3) in an infinite square
well potential.

8-31. (a) Show that the classical probability distribution function for a particle in a one-
dimensional infinite square well potential of length L is given by P(x) = 1/L. (b) Use
your result in (a) to find (x) and (x?) for a classical particle in such a well.

8-32. Show directly from the time-independent Schrodinger equation that (p?) =
(2m[E — V(x)]) in general and that (p?) = (2mE) for the infinite square well. Use this
result to compute (p?) for the ground state of the infinite square well.

8-33. Find o, = V (x?) — (x)% o, = V(p?) — (p)? and 0,0, for the ground-state
wave function of an infinite square well. (Use the fact that (p) = 0 by symmetry and
(p®) = (2mE) from Problem 6-32.)

8-34. Compute (x) and (x? ) for the ground state of a harmonic oscillator (Equation 6-58).
Use Ay = (Mo /fim) Y4,

8-35. Use conservation of energy to obtain an expression connecting x and p? for a har-
monic oscillator, then use it along with the result from Problem 6-34 to compute (p?) for
the harmonic oscillator ground state.

8-36. (a) Using A, from Problem 6-34, write down the total wave function Wy(x,t) for
the ground state of a harmonic oscillator. (b) Use the operator for p, from Table 6-1 to
compute ( p?).

Section 6-5 The Simple Harmonic Oscillator

8-37. For the harmonic oscillator ground state n = 0, the Hermite polynomial H,(x) in
Equation 6-57 is given by H, = 1. Find (a) the normalization constant C,, (b) (x?), and
(c) (V(x)) for this state. (Hint: Use the Probability Integral in Appendix B1 to compute the
needed integrals.)



8-38. For the first excited state, Hy(x) = x. Find (a) the normalization constant C,, (b) (x),
(€) (x*), (d) (V(x)) for this state (see Problem 6-36).

8-39. A quantum harmonic oscillator of mass m is in the ground state with classical turn-
ing points at +A. (a) With the mass confined to the region Ax = 2A, compute Ap for this
state. (b) Compare the Kinetic energy implied by Ap with (1) the ground-state total energy
and (2) the expectation value of the kinetic energy.

8-40. Compute the spacing between adjacent energy levels per unit energy, that is,
AE, /E,, for the quantum harmonic oscillator and show that the result agrees with Bohr’s
correspondence principle (see Section 4-3) by letting n — o,

8-41. Compute (x) and (x?) for (a) the ground state, (b) the first excited state, and (c) the
second excited state of the harmonic oscillator.

8-42. The period of a macroscopic pendulum made with a mass of 10 g suspended from
a massless cord 50 cm long is 1.42 s. (a) Compute the ground-state (zero-point) energy.
(b) If the pendulum is set into motion so that the mass raises 0.1 mm above its equilibrium
position, what will be the quantum number of the state? (c) What is the frequency of the
motion in (b)?

8-43. Show that the wave functions for the ground state and the first excited state of
the simple harmonic oscillator, given in Equation 6-58, are orthogonal, that is, show that

JUo(W(x) dx = 0.

Section 6-6 Reflection and Transmission of Waves

8-44. A free particle of mass m with wave number k; is traveling to the right. At x = 0,
the potential jumps from zero to V, and remains at this value for positive x. (a) If the total
energy is E = #%k3/2m = 2\j,, what is the wave number k, in the region x > 0? Express
your answer in terms of k; and V, . (b) Calculate the reflection coefficient R at the poten-
tial step. (c) What is the transmission coefficient T? (d) If one million particles with wave
number Kk, are incident on the potential step, how many particles are expected to continue
along in the positive x direction? How does this compare with the classical prediction?
8-45. A proton with energy 44 MeV is in a nuclear potential well 50 MeV deep. The pro-
ton “sees” a Coulomb barrier 10~*° m wide at the nuclear surface. (a) Use Equation 6-76 to
compute the probability that the proton will tunnel through the barrier on a single approach.
(b) Assuming that the radius R of the nucleus is 107*® m and the proton is nonrelativistic,
compute the rate at which protons would be emitted (i.e., decay) from a sample of these
nuclei. (c) By what factor does your answer to part (b) change if the width of the barrier is
2x 107 m?

8-46. In Problem 6-44, suppose that the potential jumps from zero to —V; at x = 0 so that
the free particle speeds up instead of slowing down. The wave number for the incident
particle is again k;, and the total energy is 2V,. (a) What is the wave number for the par-
ticle in the region of positive x? (b) Calculate the reflection coefficient R at the potential
step. (c) What is the transmission coefficient T? (d) If one million particles with wave
number Kk, are incident on the potential step, how many particles are expected to continue
along in the positive x direction? How does this compare with the classical prediction?
8-47. In a particular semiconductor device an oxide layer forms a barrier 0.6 nm wide
and 9 eV high between two conducting wires. Electrons accelerated through 4 V approach
the barrier. (a) What fraction of the incident electrons will tunnel through the barrier?
(b) Through what potential difference should the electrons be accelerated in order to increase
the tunneling fraction by a factor of 2?

8-48. For particles incident on a step potential with E < V,, show that T = 0 using Equa-
tion 6-70.

8-49. Derive Equations 6-66 and 6-67 from those that immediately precede them.

8-50. A beam of electrons, each with kinetic energy E = 2.0 eV, is incident on a potential
barrier with V, = 6.5 eV and width 5.0 X 10~ m (see Figure 6-26). What fraction of the
electrons in the beam will be transmitted through the barrier?

Problems
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8-51. A beam of protons, each with kinetic energy 40 MeV, approaches a step potential
of 30 MeV. (a) What fraction of the beam is reflected and transmitted? (b) How does your
answer change if the particles are electrons?

LEVEL II

8-52. A proton is in an infinite square well potential given by Equation 6-21 with L = 1 fm.
(a) Find the ground-state energy in MeV. (b) Make an energy-level diagram for this sys-
tem. Calculate the wavelength of the photon emitted for the transitions (c)n = 2ton = 1,
(dyn=3ton=2,and(e)n=3ton = 1.
8-53. A particle is in the ground state of an infinite square well potential given by
Equation 6-21. Calculate the probability that the particle will be found in the region
(@0 <x<3L()0<x<iLand(c)0 < x < 3L
8-54. (a) Show that for large n, the fractional difference in energy between state n and
state n + 1 for a particle in an infinite square well is given approximately by

Evi =B 2

E, n

(b) What is the approximate percentage energy difference between the states n; = 1000
and n, = 1001? (c) Comment on how this result is related to Bohr’s correspondence
principle.
8-55. Compute the expectation value of the kinetic energy of a particle of mass m moving
in the n = 2 level of a one-dimensional infinite square well of width L.
8-56. A particle of mass m is in an infinite square well potential given by

V=owo x<-L/2

V=0 -L/2<x<+L/2

V=owo +L/2<x
Since this potential is symmetric about the origin, the probability density |is(x)|? must
also be symmetric. (a) Show that this implies that either ys(—x) = Us(x) or Ys(—x) = —U(X).

(b) Show that the proper solutions of the time-independent Schroédinger equation can be
written

2
B(X) = [ Zcos = 0 =1,357,...

and

2 . nmX
= [Fsin—— =2,4,6,8, ...
P (x) \/Ism 3 n=2458,38,

(c) Show that the allowed energies are the same as those for the infinite square well given
by Equation 6-24.

8-57. The wave function {5y (x) = Ae /2 represents the ground-state energy of a har-
monic oscillator. (a) Show that {5, (x) = Ldysp(x) /dx is also a solution of Schrédinger’s
equation. (b) What is the energy of this new state? (c) From a look at the nodes of this
wave function, how would you classify this excited state?

8-58. For the wave functions

2 . nmX
= /—sin— =123...
P(X) \/:sm 1 n , 2,3,

corresponding to an infinite square well of length L, show that

L2 L2
2\ _ = __
() =3~ 2




8-59. A 10 eV electron is incident on a potential barrier of height 25 eV and width 1 nm.
(a) Use Equation 6-76 to calculate the order of magnitude of the probability that the elec-
tron will tunnel through the barrier. (b) Repeat your calculation for a width of 0.1 nm.
8-60. A particle of mass m moves in a region in which the potential energy is constant,
V =V, (a) Show that neither W(x,t) = Asin(kx — wt) nor ¥(x, t) = Acos(kx — wt)
satisfies the time-dependent Schrodinger equation. (Hint: If C, sing + C, cose = 0 for
all values of ¢, then C; and C, must be zero.) (b) Show that W(x,t) = A[cos(kx — wt) +
isin(kx — wt)] = Ae'®™ ~ Y does satisfy the time-independent Schrédinger equation pro-
vided that k, V,, and w are related by Equation 6-5.

LEVEL III
8-61. A particle of mass m on a table at z = 0 can be described by the potential energy

V = mgz forz >0
V= forz <0

For some positive value of total energy E, indicate the classically allowed region on a
sketch of V(z) versus z. Sketch also the kinetic energy versus z. The Schrédinger equation
for this problem is quite difficult to solve. Using arguments similar to those in Section 6-3
about the curvature of a wave function as given by the Schrédinger equation, sketch your
“educated guesses” for the shape of the wave function for the ground state and the first
two excited states.

8-62. Use the Schrodinger equation to show that the expectation value of the kinetic energy
of a particle is given by

e 72 d3(x

©) = [ oo Jox
8-63. An electron in an infinite square well with L = 107 m is moving at relativistic
speed; hence, the momentum is not given by p = (2mE)¥2. (a) Use the uncertainty
principle to verify that the speed is relativistic. (b) Derive an expression for the electron’s
allowed energy levels and (c) compute E;. (d) By what fraction does E; computed in
(c) differ from the nonrelativistic E;?
8-64. (a) Derive Equation 6-75. (b) Show that, if aa >>1, Equation 6-76 follows from
Equation 6-75 as an approximation.
8-65. A beam of protons, each with energy E = 20 MeV, is incident on a potential step
40 MeV high. Graph the relative probability of finding protons at values of x > 0 from
x = 0tox = 5fm. (Hint: Take |A|?> = 1 and refer to Example 6-6.)
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Atomic Physics

In this chapter we will apply quantum mechanics to atomic systems. For all neutral
atoms except hydrogen the Schrddinger equation cannot be solved exactly. Despite
this, it is in the realm of atomic physics that the Schrddinger equation has had its
greatest success because the electromagnetic interaction of the electrons with each
other and with the atomic nucleus is well understood. With powerful approximation
methods and high-speed computers, many features of complex atoms such as their
energy levels and the wavelengths and intensities of their spectra can be calculated,
often to whatever accuracy is desired. The Schrodinger equation for the hydrogen
atom was first solved in Schrodinger’s first paper on quantum mechanics, published
in 1926. This problem is of considerable importance not only because the Schrddinger
equation can be solved exactly in this case, but also because the solutions obtained
form the basis for the approximate solutions for other atoms. We will therefore dis-
cuss this problem in some detail. Although the mathematics that arises in solving the
Schradinger equation is a bit difficult in a few places, we will be as quantitative as
possible, presenting results without proof and discussing important features of these
results qualitatively only when necessary. Whenever possible, we will give simple
physical arguments to make important results plausible.

7-1 The Schrodinger Equation in
Three Dimensions

In Chapter 6 we considered motion in just one dimension, but of course the real world
is three-dimensional. While there are many cases in which the one-dimensional form
brings out the essential physical features, there are some considerations introduced in
three-dimensional problems that we want to examine. In rectangular coordinates, the
time-independent Schrédinger equation for a single particle of mass m is

s a%p)
+— )+ Vi =E
oxz o ay? oz v v

_ M Zr 7-1
2m

K2 (azlp

The wave function and the potential energy are generally functions of all three coordi-
nates x, y, and z.
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Infinite Square Well in Three Dimensions

Let us consider the three-dimensional version of the particle in a cubical box. The
potential energy function V(x,y,z) =0for 0 <x<L,0<y<L,and 0<z<L.Vis
infinite outside this cubical region. For this problem, the wave function must be zero
at the walls of the box and will be a sine function inside the box. In fact, if we consider
just one coordinate such as x, the solution will be the same as in the one-dimensional
box discussed in Section 6-2. That is, the x dependence of the wave function will be
of the form sin k;x with the restriction k,L = n,7, where n; is an integer. The complete
wave function ys(x,y, z) can be written as a product of a function of x only, a function
of y only, and a function of z only:

U(xY,2) = by (X) b (y) b3 (2) 7-2

where each of the functions s, is a sine function as in the one-dimensional problem.
For example, if we try the solution

U(XxY,2) = Asink;xsink,y sinkj;z 7-3

we find by inserting this function into Equation 7-1 that the energy is given by

ﬁZ
E= E(k% + k3 + Kk3)
which is equivalent to
(i + pj + pi)
2m

with p, = 7#k,, and so forth. Using the restrictions on the wave numbers k; = nyw/L
from the boundary condition that the wave function be zero at the walls, we obtain for
the total energy
tm’ 2 2 2
Ennn, = szz(nl + n3 + n3) 7-4

where ny, n,, and n; are integers greater than zero, as in Equation 6-24.

Notice that the energy and wave function are characterized by three quantum
numbers, each arising from a boundary condition on one of the coordinates. In this
case the quantum numbers are independent of one another, but in more general prob-
lems the value of one quantum number may affect the possible values of the others.
For example, as we will see in a moment, in problems such as the hydrogen atom that
have a spherical symmetry, the Schrédinger equation is most readily solved in spheri-
cal coordinates r, 6, and ¢. The quantum numbers associated with the boundary con-
ditions on these coordinates are interdependent.

The lowest energy state, the ground state for the cubical box, is given by Equa-
tion 7-4 with n; = n, = n; = 1. The first excited energy level can be obtained in three
different ways: eithern;=2,n,=n;=1o0rn,=2,n,=ny;=10rn;=2,n; =n, =1since
we see from Equation 7-4 that E,;; = E;,; = E;4,. Each has a different wave function.

For example, the wave function for n; = 2 and n, = ny = 1 is of the form
L 2mX . my . @z

= Asin——sin —sin—

4‘211 L L L

An energy level that has more than one wave function associated with it is said to be
degenerate. In this case there is threefold degeneracy, because there are three wave
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L=ly=Lly Li<ly<l,
Ezop
E122 = Ep12 = Eppy = 9E; Ez1n
—E»
Eop1
Eo11 = Eq21 = Eq12 = 6E; Ei21
—Euw»
Ei111=3E;
(@ (b)

FIGURE 7-1 Energy-level diagram for (a) cubic infinite square well potential and (b) noncubic
infinite square well. In the cubic well, the energy levels above the ground state are threefold
degenerate; that is, there are three wave functions having the same energy. The degeneracy is
removed when the symmetry of the potential is removed, as in (b). The diagram is only
schematic, and none of the levels in (b) necessarily has the same value of the energy as any
level in (a).

functions ys(x, y, z) corresponding to the same energy. The degeneracy is related to the
symmetry of the problem, and anything that destroys or breaks the symmetry will also
destroy or remove the degeneracy." If, for example, we considered a noncubical box
V=0for0<x<L;,0<y<L, and 0 <z <L, the boundary condition at the walls
would lead to the quantum conditions k;L; = ny, k,L, = n,r, and ksL; = ngmr, and the

total energy would be
ﬁz 2 n2 nZ nZ
_ W (1 L Nons
2m \L? L3 L3

nyn,ng 7-5
Figure 7-1a shows the energy levels for the ground state and first two excited states
when L, = L, = L5, for which the excited states are degenerate. Figure 7-1b illustrates
the case when L;, L,, and L; are slightly different, in which case the degeneracy is
removed and the excited levels are slightly split apart.

The Schrodinger Equation in Spherical Coordinates

In the next section we are going to consider another, different potential, that of a real
atom. Assuming the proton to be at rest, we can treat the hydrogen atom as a single
particle, an electron moving with kinetic energy p?/2m, and a potential energy V(r)
due to the electrostatic attraction of the proton:

_ Zke?
r

V(r) = 7-6
As in the Bohr theory, we include the atomic number Z, which is 1 for hydrogen, so
we can apply our results to other similar systems, such as ionized helium He*, where
Z = 2. We also note that we can account for the motion of the nucleus by replacing the
electron mass m, by the reduced mass p. = m,/(1 + m,/My), where My is the mass
of the nucleus. The time-independent Schrodinger equation for a particle of mass
moving in three dimensions is Equation 7-1, with m replaced by p.:

#? (azq; G R

- +— ) +Vs=E
2u\ox?  ay? 622> v v

7-7
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FIGURE 7-2 Geometric
relations between spherical
(polar) and rectangular
coordinates.
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Since the potential energy V(r) depends only on the radial distance r = (x* + y? + z2)*/2,
the problem is most conveniently treated in spherical coordinates r, 6, and ¢&. These are
related to x, y, and z by

= rsin6 cosd
y =rsinfsind 7-8
Z =rcosf

These relations are shown in Figure 7-2. The transformation of the three-dimensional
Schrédinger equation into spherical coordinates is straightforward but involves much
tedious calculation, which we will omit. The result is

71 a( 0 1 9 d 1 &
—2(r2¢> = 2{_<sine¢> e ﬂ + V(r)y = Eg
2w reoar\  ar 2urssin® 96 90 sin“6 d¢d

7-9

Despite the formidable appearance of this equation, it was not difficult for
Schrodinger to solve because it is similar to other partial differential equations that
arise in classical physics, and such equations had been thoroughly studied. We will
present the solution of this equation in detail, taking care to point out the origin of the
quantum number associated with each dimension. As was the case with the three-
dimensional square well, the new quantum numbers will arise as a result of boundary
conditions on the solution of the wave equation, Equation 7-9 in this case.

7-2 Quantization of Angular Momentum
and Energy in the Hydrogen Atom

In this section we will solve the time-independent Schrdédinger equation for hydrogen
and hydrogenlike atoms. We will see how the quantization of both the energy and the
angular momentum arise as natural consequences of the acceptability conditions on
the wave function (see Section 6-1) and discover the origin and physical meaning of
the quantum numbers n, I, and m.

The first step in the solution of a partial differential equation such as Equation 7-9
is to search for separable solutions by writing the wave function ys(r, 6, ) as a product
of functions of each single variable. We write

P(r,0,0) = R(r)f(6)g(db) 7-10
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where R depends only on the radial coordinate r, f depends only on 6, and g depends
only on &. When this form of s(r, 6, ) is substituted into Equation 7-9, the partial
differential equation can be transformed into three ordinary differential equations,
one for R(r), one for f(0), and one for g(¢). Most of the solutions of Equation 7-9 are,
of course, not of this separable product form; however, if enough product solutions of
the form of Equation 7-10 can be found,? all solutions can be expressed as superposi-
tions of them. Even so, the separable solutions given by Equation 7-10 turn out to be
the most important ones physically because they correspond to definite values (eigen-
values) of both energy and angular momentum. When Equation 7-10 is substituted
into Equation 7-9 and the indicated differentiations are performed, we obtain

__ﬁ2f1d<r2dR)<_ "o 1‘j(5m9(“)
2w 9rzar\" dar ) T 22 sing do \" do
# Rf d%g
-t = =9 | VRfg = ERfg 7-11
2pre sin“6 do

since derivatives with respect to r do not affect f(6) and g(&), derivatives with respect
to 6 do not affect R(r) and g(¢), and those with respect to ¢ do not affect R(r) and f(6).
Separation of the r-dependent functions from the 8- and ¢&-dependent ones is accom-
plished by multiplying Equation 7-11 by —2ur?/ (#°Rfg) and rearranging slightly to
obtain

1 d/ ,dR(r) 2ur? B
R(r)dr(r dr )+ 72 [E-Vv(n]=

_{He)ﬁnede

Note two points about Equation 7-12: (1) The left side contains only terms that are
functions of r, while the right side has only terms depending on 6 and ¢. Since the
variables are independent, changes in r cannot change the value of the right side of
the equation, nor can changes in 6 and ¢ have any effect on the left side. Thus, the
two sides of the equation must be equal to the same constant. Any symbol for the con-
stant would work, but we will use, with foresight, €¢(¢ + 1). (2) The potential is a
function only of r so the solution of the right side, the angular part, of Equation 7-12
will be the same for all potentials that are only functions® of r.

In view of the second point above, we will first solve the angular equation so that
its results will be available to us as we consider solutions to the r-dependent equation,
referred to usually as the radial equation, for various V(r). Setting the right side of
Equation 7-12 equal to ¢ (¢ + 1), multiplying by sin?6 and rearranging slightly, we
obtain

1 d( due)>+_ 1 d%g (&) .
g(d

sing——
ST )sin?6  dd?

— = —0(€+ 1)sin?0 — ———sing——~

g(d) dd? ( ) f(6) do de
Once again we see that the two sides of the relation, Equation 7-13, are each a func-
tion of only one of the independent variables; hence both sides must be equal to the
same constant, which we will, again with foresight, call —m?. Setting the left side of
Equation 7-13 equal to —m? and solving for g(¢) yields

gn($) = e 714

The single valued condition on ¢ (see Section 6-1) implies that g(¢ + 2m) = g(d),
which in turn requires that m be a positive or negative integer or zero.

1 d’g() sin® d{ dﬂe)} 713
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Now letting the right side of Equation 7-13 equal —m? and solving for f(8), we
obtain (not intended to be obvious; for the detailed solution see Weber and Arfken,
Chapter 11)

_ (sing)m
2

The condition that {s be finite requires that f(0) be finite at 6 = 0 and 6 = r, which
restricts the values of € to zero and positive integers and limits |m| =< ¢. The nota-
tion reflects the link between ¢ and m, namely, that each value of ¢ has associated
values of m ranging up to £ ¢. The functions f,,(6), given by Equation 7-15, are
called the associated Legendre functions. The subset of those with m =0 is referred to
as the Legendre polynomials.

The product of f,,(6) and g,(db), which describes the angular dependence of
U(r, 0, &) for all spherically symmetric potentials, forms an often-encountered family
of functions Y, (6,¢),

ffm

d +|m|
{d(cosa)} (cos? — 1)° 7-15

Y{?m(eld)) = f(m(e)gm(d)) 7-16

called the spherical harmonics. The first few of these functions, which give the com-
bined angular dependence of the motion of the electron in the hydrogen atom, are
given in Table 7-1. The associated Legendre functions and the Legendre polynomials
(m =0) can, if needed, be easily taken from the same table. (Extended tables of both

Table 7-1 Spherical harmonics

1
=0 m=0 Yon = o=
00 47t

——sinf e

(35
I
=
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Il
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oo
Sf w

m=20 Yig = +/-—C0S6
Vil
3 I
m=—1 Vi, — : —singe '
T
15
=2 m=2 Yy, = /=—=—sin%0 e%®
2 32w
15
m=1 Y, = — 5 == sin6 cosf e
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functions can be found in Weber and Arfken.) In the following section we will dis-
cover the physical significance of ¢ and m.

Quantization of the Angular Momentum

The definition of the angular momentum L of a mass m moving with velocity v, hence
momentum p, at some location r relative to the origin, given in most introductory
physics textbooks, is

L=rXp

where the momentum p = m(dr/dt). In cases where V = V(r), such as the electron
in the hydrogen atom, L is conserved (see Problem 7-15) and the classical motion of
the mass m lies in a fixed plane perpendicular to L, which contains the coordinate
origin. The momentum p has components (in that plane) p, along r and p, perpen-
dicular to r, as illustrated in Figure 7-3, whose magnitudes are given by

= (dr) and = r<dA>
pr=w dt Pt = dt

and the magnitude of the conserved (i.e., constant) vector L is
L =rpsinA = rp,

The Kinetic energy can be written in terms of these components as
2

Pt _prtpt_pr L
2w 2w 2u  2ur?
from which the classical total energy E is given by
2 2
L
=tV =E 7-17
2 2ur

Rewriting Equation 7-17 in terms of the “effective” potential Vg (r) = L?/2ur? + V(r),
as is often done, we obtain

L 4 V(r) = E 7-18

FIGURE 7-3 The orbit of a classical
particle with V =V/(r) lies in a plane
perpendicular to L. The components
of the momentum p parallel and
perpendicular to r are p, and py,

Orbit respectively. p, makes an angle A with
the momentum p.
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which is identical in form to Equation 6-4, which we used as a basis for our introduc-
tion to the Schrédinger equation.

Equation 7-17 can be used to write the Schrédinger equation, just as we did in
Chapter 6 by inserting de Broglie’s relation and the appropriate differential operators
in spherical coordinates for p2 and L2. Doing so is a lengthy though not particularly
difficult exercise whose details we will omit here. For p? the operator turns out to be

19 0
2)op = —ﬁ2<r2> 7-19
(Pr)op r2or\" or

which, divided by 2p and operating on s, you recognize as the first term (kinetic
energy) of the Schrddinger equation in spherical coordinates (Equation 7-9). Simi-
larly, the operator for L? turns out to be

1 9 B 1 &
L2)yp = —hz[,< i 6> + } 7-20

(L) sin6 a0\ "" " 30 sin0 a2
which, divided by 2ur? and operating on s, is the second term of the Schrodinger equa-
tion in spherical coordinates (Equation 7-9). The right side of Equation 7-12, which

equals ¢(¢ + 1), can now be written as follows when multiplied by #%f(0)g (),
remembering that f,, (60)gn(d) = Y (0,d):

2
_ﬁZ[ 1 d (Sine a) + 1 d :|Y(m(e:¢) = €(€ + 1)ﬁ2Y(m(6,¢) 7-21a

sing 9o 90 sin?0 ad?
or
(Lz)oprm(e,d)) =€(€ + 1A (0,0) 7-21b
or,since Y (r,0,0) = R(r)Y(6,d),
(L)ool (1,0,d) = €(€ + 1)FA(r,0,) 7-21c

Thus, we have the very important result that, for all potentials where V = V(r), the
angular momentum is quantized and its allowed magnitudes (eigenvalues) are given by

Ll =L=Vel+Dr for €=01,23,... 7-22

where ¢ is referred to as the angular momentum quantum number or the orbital quantum
number.

In addition, if we use the same substitution method on L,, the z component of L,
we find that the z component of the angular momentum is also quantized and its allowed
values are given by

L,=ma for m=0, 1, £2, ..., ¢ 7-23

The physical significance of Equation 7-23 is that the angular momentum L,
whose magnitude is quantized with values V¢ (¢ + 1)7#, can only point in those
directions in space such that the projection of L on the z axis is one or another of the
values given by m#z. Thus, L is also space quantized. The quantum number m is
referred to as the magnetic quantum number. (Why “magnetic”? See Section 7-4.)

Figure 7-4 shows a diagram, called the vector model of the atom, illustrating the
possible orientations of the angular momentum vector. Note the perhaps unexpected
result that the angular momentum vector never points in the z direction since the max-
imum z component m# is always less than the magnitude V€(€ + 1)#. This is a
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L=AI(l +1) =Ay22 + 1) =h6

consequence of the uncertainty principle for angular momentum (which we will not
derive), which implies that no two components of angular momentum can be precisely
known simultaneously, except in the case of zero angular momentum. It is worth
noting that for a given value of ¢ there are 2¢ + 1 possible values of m, ranging from
—<{to +¢ inintegral steps. Operators for L, and L, can also be obtained by the substi-
tution method; however, operating with them on s does not produce eigenvalues.
This is mainly because specifying rotation about the x and y axes requires simultane-
ous measurement of both 6 and ¢, a violation of the uncertainty principle.

S GIHRSVAE Quantized Values of L If a system has angular momentum char-
acterized by the quantum number ¢ = 2, what are the possible values of L,, what is
the magnitude L, and what is the smallest-possible angle between L and the z axis?
SOLUTION

mh

1. The possible values of L, L,
are given by Equation 7-23:

2. Thevaluesof mfor£=2are m =0, 1, £2

3. Thus, allowed values of L, = =24, —14,0, 14, 24
L, are

4. The magnitude of Lisgiven |L| = V(¢ + 1)k = V6# = 2.451
by Equation 7-22. For

€= 2:
5. From Figure 7-4, the angle cosf = L. _ m = m
0 between L and the z axis L Ve + D)a Ve(e +1)
is given by
. 2
6. The smallest-possible angle  cos6 = —= = 0.816
6 between L and the z axis V6

is that for m = £ ¢, which or

for ¢ = 2 gives 6 =35.5°

FIGURE 7-4 Vector model
illustrating the possible
orientations of L in space
and the possible values of
L, for the case where ¢ = 2.
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FIGURE 7-5 Potential energy of an electron in a
hydrogen atom. If the total energy is greater than zero,

Chapter 7 Atomic Physics

Quantization of the Energy

The results discussed so far apply to any system that is spherically symmetric, that is,
one for which the potential energy depends on r only. The solution of the radial equa-
tion for R(r), on the other hand, depends on the detailed form of V/(r). The new quantum
number associated with the coordinate r is called the principal quantum number n.
This quantum number, as we will see, is related to the energy in the hydrogen atom.
Figure 7-5 shows a sketch of the potential energy function of Equation 7-6. If the total
energy is positive, the electron is not bound to the atom. We are interested here only
in bound-state solutions, for which the values of E are negative. For this case, the
potential energy function becomes greater than E for large r, as shown in the figure.
As we have discussed previously, for bound systems only certain values of the energy
E lead to well-behaved solutions. These values are found by solving the radial equa-
tion, which is formed by equating the left side of Equation 7-12 to the constant
€(¢ + 1). For V(r) of hydrogen and hydrogenlike atoms, given by Equation 7-6, the
radial equation is

# o ,0R(r) kze?  A%0(€ + 1)
————r + + 5
2urear ar r 2ur

R(r) = ER(r) 7-24

The radial equation can be solved using standard methods of differential equations
whose details we will omit here, except to note that (1) we expect a link to appear
between the principal quantum number n and the angular momentum quantum num-
ber ¢ (since the latter already appears in Equation 7-24) and (2) in order that the solu-
tions of Equation 7-24 be well behaved, only certain values of the energy are allowed,
just as we discovered for the square well and the harmonic oscillator. The allowed
values of E are given by

|<Ze2>2 0 Z%E,
E = — —_— = — 7-25
" ( ho ) 2n? n’
where E; = (1/2) (ke?/h)?w =~ 13.6 eV and the principal quantum number n can
take on the valuesn=1, 2, 3, . . ., with the further restriction that n must be greater

than ¢. These energy values are identical with those found from the Bohr model and,

Energy

kze?

as E’, the electron is not bound and the energy is not [ —V(r)=- ¥

quantized. If the total energy is less than zero, as E,
the electron is bound. Then, as in one-dimensional
problems, only certain discrete values of the total
energy lead to well-behaved wave functions.
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Table 7-2 Radial functions for hydrogen

n=1 ¢=0 Ry = \fa?e—'/ao
0
1 r
n=2 ¢ =0 Ry = 1 — — |e "2
V 2a8< 230)
1 r
=1 Ry = —e /%
2 2v/6al o
2 2r 2r2 )
n=3 ¢ =20 R., = | = —= & e~ 1/3
0 34 /3ag< 3a, 27a}
8 r r
g = 1 R = <l — )er/?)ao
o7 \V6a3 o 6a,
4  r?
€=2 Ry = ———= ¢ 7%
# 7 g\/30a3 a}

like those, are in good agreement with experiment. The radial functions resulting from
the solution of Equation 7-24 for hydrogen are given by Equation 7-26, where the
$ne(r/ay) are standard functions called Laguerre polynomials

Roe(r) = Ay 72" %, (r/a,) 7-26

and the Bohr radius a, = %2/ (ke?w). The radial functions R, (r) forn=1, 2, and 3
are given in Table 7-2. (For a detailed solution of Equation 7-24 and an extended
table of Laguerre polynomials see Weber and Arfken, Chapter 13.)

Summary of the Quantum Numbers

The allowed values of and restrictions on the quantum numbers n, €, and m associated
with the variables r, 6, and ¢ are summarized as follows:

n=123...
€=012...,(n—1)
m=—¢(—€+1),...,01,2 ..., +¢ 7-27

The fact that the energy of the hydrogen atom depends only on the principal quantum
number n and not on ¢ is a peculiarity of the inverse-square force. It is related to the
result in classical mechanics that the energy of a mass moving in an elliptical orbit in an
inverse-square force field depends only on the major axis of the orbit and not on the
eccentricity. The largest value of angular momentum (¢ = n — 1) corresponds most
nearly to a circular orbit, whereas a small value of ¢ corresponds to a highly eccentric
orbit. (Zero angular momentum corresponds to oscillation along a line through the force
center, i.e., through the nucleus in the case of the hydrogen atom.) For central forces
that do not obey an inverse-square law, the energy does depend on the angular momen-
tum (both classically and quantum mechanically) and thus depends on both n and ¢.
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The quantum number m is related to the z component of angular momentum.
Since there is no preferred direction for the z axis for any central force, the energy
cannot depend on m. We will see later that if we place an atom in an external mag-
netic field, there is a preferred direction in space, and the energy then does depend on
the value of m. (This effect, called the Zeeman effect, is discussed in a More section
on the Web site. See also page 312.)

Figure 7-6 shows an energy-level diagram for hydrogen. This diagram is similar
to Figure 4-16a except that states with the same n but different ¢ are shown sepa-
rately. These states are referred to by giving the value of n, along with a code letter:
S standing for ¢ = 0, P for ¢ = 1, D for ¢ = 2 and F for ¢ = 3. These code letters
are remnants of the spectroscopist’s descriptions of various series of spectral lines as
Sharp, Principal, Diffuse, and Fundamental. (For values of ¢ greater than 3, the letters
follow alphabetically; thus G for ¢ = 4, etc.) The allowed electric dipole transitions
between energy levels obey the selection rules

Am =0 or %1

A¢ = +1 7-28
The fact that the quantum number ¢ of the atom must change by 1 when the atom
emits or absorbs a photon results from conservation of angular momentum and the

fact that the photon itself has an intrinsic angular momentum of 17%. For the principal
quantum number, An is unrestricted.

A Energy, eV
S P D F G
n 1=0 1 2 3 4
© = = —— — — —— 0.00
4 = AR F—— -0.85
/T /- -1.51
Y
&
2 e T -3.40
©
FIGURE 7-6 Energy-level diagram for the 5‘
hydrogen atom, showing transitions obeying
the selection rule A¢ = =+ 1. States with the
same n value but different ¢ value have the
same energy, —E,/n? where E; =13.6 eV,
as in the Bohr theory. The wavelengths of
the Lyman « (n=2 — n=1) and Balmer
a (n=3—n=2) lines are shown in nm. Note
that the latter has three possible transitions due

to the ¢ degeneracy. 1 == - -136eV



7-3 The Hydrogen Atom Wave Functions

Questions

1. Why wasn’t quantization of angular momentum noticed in classical physics?

2. What are the similarities and differences between the quantization of angular
momentum in the Schrédinger theory and in the Bohr model?

3. Why doesn’t the energy of the hydrogen atom depend on ¢? Why doesn’t it
depend on m?

FOR YOU An Opportunity to Contribute Investigations of atomic spectra
were the genesis of our understanding of atomic and molecular structure. In the
search for and observations of habitable extrasolar planets, leading edge and yet-to-
be-developed astronomical, theoretical, and laboratory spectroscopic investigations
will play a central role in the interpretation of data that will identify and characterize
those planets. Novel methods for the spectroscopic detection of extrasolar planets
are needed, particularly those that might have Earth-like environments. Needed, too,
are planetary atmosphere models that can reliably predict planetary conditions based
on low-resolution, full disk spectra in the visible, IR, and thermal wavelength ranges
that will be available from orbiting telescope observations. Validating those models
with atmospheric spectral data from Earth, Venus, and Mars will be essential.

7-3 The Hydrogen Atom Wave Functions

The wave functions {5, (1, 6, ¢ ) satisfying the Schrodinger equation for the hydrogen
atom are rather complicated functions of r, 6, and &. In this section we will write some
of these functions and display some of their more important features graphically.

As we have seen, the ¢ dependence of the wave function, given by Equation 7-14,
is simply €™ The 6 dependence is described by the associated Legendre functions
fun (6) given by Equation 7-15. The complete angular dependence is then given by
the spherical harmonic functions Y, (6, ¢ ), the product of g,,(¢) and f,,,(6) as indi-
cated by Equation 7-16 and, for the first few, tabulated in Table 7-1. The solutions to
the radial equation R, (r) are of the form indicated by Equation 7-26 and are listed in
Table 7-2 for the three lowest values of the principal quantum number n. Referring to
Equation 7-10, our assumed product solutions of the time-independent Schrédinger
equation, we have that the complete wave function of the hydrogen atom is

Pnem (1,0,0) = CrmRne (1) (0)gm () 7-29

where C,,, is a constant determined by the normalization condition.

We see from the form of this expression that the complete wave function depends
on the quantum numbers n, €, and m that arose because of the boundary conditions
on R(r), f(0), and g(¢d). The energy, however, depends only on the value of n.
From Equation 7-27 we see that for any value of n there are n possible values of
€ =20,1,2,...,n — 1) and for each value of ¢ there are 2¢ + 1 possible values
ofm (m=—¢ —¢+1,...,+¢€). Except for the lowest energy level (for which
n = 1 and therefore ¢ and m can only be zero), there are generally many different
wave functions corresponding to the same energy. As discussed in the previous sec-
tion, the origins of this degeneracy are the 1/r dependence of the potential energy and
the fact that there is no preferred direction in space.
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The angular dependence
of the electron probability
distributions is critical

to our understanding of
the bonding of atoms into
molecules and solids (see
Chapters 9 and 10).

Chapter 7 Atomic Physics

The Ground State

Let us examine the wave functions for several particular states beginning with the low-
est-energy level, the ground state, which has n = 1. Then ¢ and m must both be zero.
The Laguerre polynomial &,, in Equation 7-26 is equal to 1, and the wave function is

g0 = Cigo 2% 7-30

The constant C,, is determined by normalization:

© ™ 2w
/\p*qde = / / / PHprisingdd dodr = 1
0 0 0

using for the volume element in spherical coordinates (see Figure 7-7)
dr = (rsin6dd) (rde) (dr)

Because {*{s for this state is spherically symmetric, the integration over angles
gives 4. Carrying out the integration over r gives®

C ——1 (Z)3/2—1 (1)3/2 for Z=1
SEVEACY VAL

The probability of finding the electron in the volume dr is y*ysdr.

The probability density y*s is illustrated in Figure 7-8. The probability density
for the ground state is maximum at the origin. It is often of more interest to determine
the probability of finding the electron in a thin spherical shell between r and r + dr.
This probability, P(r)dr, is just the probability density s*{s times the volume of the
spherical shell of thickness dr:

P(r)dr = §*{ 4mr?dr = 4mr?Cy e 2/%dr

7-31

7-32

Figure 7-9 shows a sketch of P(r) versus r/a,. It is left as a problem (see Problem 7-22)
to show that P(r) has its maximum value at r = a,/Z. In contrast to the Bohr model
for hydrogen, in which the electron stays in a well-defined orbit at r = a,, we see that
it is possible for the electron to be found at any distance from the nucleus. However,
the most probable distance is a,, and the chance of finding the electron at a much

z rsin o
T == rsinedo
————————— \\\
““““““ ~X
/// AN dr
( 9 "\
N
\\\\ /¢/ -7 rde
- - .
\ \
0 de \ r
\
\
|
|
|

dt=(rsin®do)(rde)dr
=r2sin0drdedo

FIGURE 7-7 Volume element dr in spherical coordinates.
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(@ z (0) lwig0l?

—5ay T

FIGURE 7-8 Probability density s for the ground state in hydrogen. The quantity
ey*ys can be thought of as the electron charge density in the atom. (a) The density is
spherically symmetric, is greatest at the origin, and decreases exponentially with r. This
computer-generated plot was made by making hundreds of “searches” for the hydrogen
electron in the x-z plane (i.e., for ¢ =0), recording each finding with a dot. (b) The more
conventional graph of the probability density | 5,00 |2 Vs. r/a,. Compare the two graphs
carefully. [This computer-generated plot courtesy of Paul Doherty, The Exploratorium.]

different distance is small. It is useful to think of the electron as a charged cloud of
charge density p = ey*{. (We must remember, though, that the electron is always
observed as one charge.) Note that the angular momentum in the ground state is zero,
contrary to the Bohr model assumption of 17.

The Excited States

In the first excited state, n =2 and ¢ can be either 0 or 1. For ¢ = 0, m=0, and again
we have a spherically symmetric wave function, given by

Zr
Yoo = C200(2 - )e_zr/zao 7-33

a
For ¢ = 1, m can be +1, 0, or —1. The corresponding wave functions are (see
Tables 7-1 and 7-2)
Zr —Zr/2
45210 == 0210;e a°C059 7'34
0

Zr . :
Py 41 = Czula—efzr/z%smeei"i’ 7-35
0

Figure 7-10a shows P(r) for these wave functions. The distribution for n = 2,
¢ = 1 is maximum at the radius of the second Bohr orbit,

— 92
Max = 2 a

é Ir/ao

P(r)

P(r) o r2 2]

I O B |
123456 rfa
FIGURE 7-9 Radial
probability density P(r)

versus r/a, for the ground
state of the hydrogen atom. P(r)
is proportional to r?|s;g0 |2

The most probable distance r
is the Bohr radius a,.
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FIGURE 7-10 (a) Radial probability density P(r) vs. r/a, for the n = 2 states in hydrogen.
P(r) for ¢ = 1 has a maximum at the Bohr value 2%a,. For £ = 0, there is a maximum near
this value and a smaller submaximum near the origin. The markers on the r/a, axis denote
the values of (r/a,). (b) P(r) vs. r/a, for the n = 3 states in hydrogen.

while for n =2 and ¢ = 0, P(r) has two maxima, the larger of which is near this
radius.

Radial probability distributions can be obtained in the same way for the other
excited states of hydrogen. For example, those for the second excited state n = 3 are
shown in Figure 7-10b. The main radial dependence of P(r) is contained in the factor
e Z/"% except near the origin. A detailed examination of the Laguerre polynomials
shows that ¢y —r¢ as r — 0. Thus, for a given n, s, i greatest near the origin
when ¢ is small.

An important feature of these wave functions is that for ¢ = 0, the probability
densities are spherically symmetric, whereas for ¢ # 0, they depend on the angle 6.
The probability density plots of Figure 7-11 illustrate this result for the first excited
state n = 2. These angular distributions of the electron charge density depend only on
the value of ¢ and not on the radial part of the wave function. Similar charge distribu-
tions for the valence electrons in more complicated atoms play an important role in
the chemistry of molecular bonding.

Question

4. At what value of r is y*{s maximum for the ground state of hydrogen? Why is
P(r) maximum at a different value of r?
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FIGURE 7-11 Probability densities y*ys for the n = 2 states in hydrogen. The probability is
spherically symmetric for ¢ = 0. It is proportional to cos?6 for ¢ = 1, m=0, and to sin?@ for
¢ = 1, m= £1. The probability densities have rotational symmetry about the z axis. Thus, the
three-dimensional charge density for the ¢ = 1, m = 0 state is shaped roughly like a dumbbell,
while that for the ¢ = 1, m = *1 states resembles a doughnut, or toroid. The shapes of these
distributions are typical for all atoms in S states (¢ = 0) and P states (¢ = 1) and play an
important role in molecular bonding. [This computer-generated plot courtesy of Paul Doherty,

The Exploratorium.]

7-4 Electron Spin

As was mentioned in Chapter 4, when a spectral line of hydrogen or other atoms (see
Figure 4-2) is viewed with high resolution, it shows a fine structure; that is, it is seen
to consist of two or more closely spaced lines. As we noted then, Sommerfeld’s rela-
tivistic calculation based on the Bohr model agrees with the experimental measure-
ments of this fine structure for hydrogen, but the agreement turned out to be accidental
since his calculation predicts fewer lines than are seen for other atoms. In order to
explain fine structure and to clear up a major difficulty with the quantum-mechanical
explanation of the periodic table (Section 7-6), W. Pauli® in 1925 suggested that in
addition to the quantum numbers n, €, and m, the electron has a fourth quantum num-
ber, which could take on just two values.

As we have seen, quantum numbers arise from boundary conditions on some
coordinate (see Equations 7-14 and 7-15). Pauli originally expected that the fourth
quantum number would be associated with the time coordinate in a relativistic theory,
but this idea was not pursued. In the same year, S. Goudsmit and G. Uhlenbeck,’
graduate students at Leiden, suggested that this fourth quantum number was the z
component, mg, of an intrinsic angular momentum of the electron, euphemistically
called spin. They represented the spin vector S with the same form that Schrédinger’s
wave mechanics gave for L:

S| =s=Vs(s+ 1) 7-36

7-4 Electron Spin
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27

FIGURE 7-12 A particle
moving in a circle has angular
momentum L. If the particle
has a positive charge, the
magnetic moment due to the
current is parallel to L.

Since this intrinsic spin angular momentum S is described by a quantum number s
like the orbital angular momentum quantum number ¢, we expect 2s + 1 possible
values of the z component just as there are 2¢ + 1 possible z components of the
orbital angular momentum L. If m, is to have only two values as Pauli had suggested,
then s could only be % and monly * . In addition to explaining fine structure and the
periodic table, this proposal of electron spin explained the unexpected results of an
interesting experiment that had been preformed by O. Stern and W. Gerlach in 1922,
which is described briefly in an Exploring section later on (see pages 296-297). To
understand why the electron spin results in the splitting of the energy levels needed to
account for the fine structure, we must first consider the connection between the
angular momentum and the magnetic moment of any charged particle system. The
classical connection is described in a Classical Concept Review unit. The extension to
guantum mechanics is explained below.

Magnetic Moment

If a particle of mass M carrying a charge q is rotating in a circle as in Figure 7-12, it
has a magnetic moment w that is proportional to its angular momentum L as given by
Equation 7-37.8

—L 7-37
"= 2|v|
Applying Equation 7-37 to the orbital motion of the electron in the hydrogen
atom and substituting the magnitude of L from Equation 7-22, we have for the magni-
tude of

fi
—L_ ¢ VD) = Vi + e 7.38

2m,
and, from Equation 7-23, a z component of

eh
=—_-—m=-m 7-39
Mz 2m, ;]
where m, is the mass of the electron, m# is the z component of the angular momen-
tum, and g is a natural unit of magnetic moment called the Bohr magneton, which
has the value

eh .
e = = 9.27 X 10~ joule/tesla
e
= 5.79 X 107 %eV/gauss = 5.79 X 10 °eV/tesla 7-40

The particular relation expressed by Equation 7-37 is for a single charge q rotat-
ing in a circle; however, the proportionality between p and L is a general property of
rotating charge distributions. To allow the same mathematical form to be used for
other, more complicated situations, it is customary to express the magnetic moment in
terms of g and a dimensionless quantity g called the gyromagnetic ratio, or simply
the g factor, where the value of g is determined by the details of the charge distribu-
tion. In the case of the orbital angular momentum L of the electron, g, = 1 and Equa-
tion 7-37 can be written

~ ~Ouusl
h

7-41



and Equations 7-38 and 7-39 as
p= V(€ +1)gps
Mz = ~IMYLp

There are minus signs in Equations 7-41 and 7-43 because the electron has a negative
charge. The magnetic moment and the angular momentum vectors associated with the
orbital motion are therefore oppositely directed, and we see that quantization of angu-
lar momentum implies quantization of magnetic moments. Other magnetic moments
and g factors that we will encounter will have the same form.

The behavior of a system with a magnetic moment in a magnetic field can be
visualized by considering a small bar magnet (Figure 7-13). When placed in an exter-
nal magnetic field B, there is a torque + = p X B that tends to align the magnet with
the field B. If the magnet is spinning about its axis, the effect of the torque is to make
the spin axis precess about the direction of the external field, just as a spinning top or
gyroscope precesses about the direction of the gravitational field. The potential
energy of a magnetic moment p in a magnetic field B is given by Equation 7-44:

7-42
7-43

U=-pn-B 7-44
If B is in the z direction, the potential energy is
U= —uB 7-45

Applying these arguments to the intrinsic spin of the electron results in the pre-
dictions (with s = 3) that

3 1
p=Vs(s+1)pg = \/;P“B and  p, = Mipg = £ e

Because in its rest frame the atomic electron is in a magnetic field B arising from the
apparent motion of the nuclear charge around the electron, the two values of m, cor-
respond to two different energies, according to Equation 7-45. It is this splitting of the
energy levels that results in the fine structure of the spectral lines.

The restriction of the spin, and hence the intrinsic magnetic moment, to two ori-
entations in space with my = J_r% is another example of space quantization. The mag-
nitude of the magnetic moment due to the spin angular momentum can be determined
from quantitative measurement of the deflection of the beam in a Stern-Gerlach
experiment. Surprisingly (at the time), the result is not 2 Bohr magneton, as predicted
by Equation 7-39 with m = m, = 3, but twice this value. (This type of experiment is
not an accurate way to measure magnetic moments, although the measurement of
angular momentum this way is accurate because that involves simply counting the
number of lines.) The g factor for the electron, g, in Equation 7-47, has been precisely
measured to be g, = 2.002319.

7-46

Mz = ~MsYshp 7-47

This result, and the fact that s is a half integer rather than an integer like the orbital
quantum number ¢, makes it clear that the classical model of the electron as a spin-
ning ball is not to be taken literally. Like the Bohr model of the atom, the classical
picture is useful in describing results of quantum-mechanical calculations, and it
often gives useful guidelines as to what to expect from an experiment. The phenom-
enon of spin, while not a part of Schrédinger’s wave mechanics, is included in the
relativistic wave mechanics formulated by Dirac. In its nonrelativistic limit, Dirac’s
wave equation predicts g, = 2, which is approximately correct. The exact value of g,
is correctly predicted by quantum electrodynamics (QED), the relativistic quantum

7-4 Electron Spin
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The orbital motion and
spin of electrons are
the origin of magnetism
in metals, such as iron,
cobalt, and nickel (see
Chapter 10). Devices
ranging from giant
electricity transformers
to decorative refrigerator
magnets rely on these
quantum properties of
electrons.
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FIGURE 7-13 Bar-magnet
model of magnetic moment.
(a) In an external magnetic
field, the moment experiences
a torque that tends to align it
with the field. If the magnet is
spinning (b), the torque
causes the system to precess
around the external field.
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theory that describes the interaction of electrons with electromagnetic fields.
Although beyond the scope of our discussions, QED is arguably the most precisely
tested theory in physics.

EXPLORING
Stern-Gerlach Experiment

If a magnetic moment p is placed in an inhomogeneous external magnetic field B, the
1 will feel an external force that depends on ., and the gradient of B. This is because
the force F is the negative gradient of the potential energy function, so

F=-VU=-V(-p-B) 7-48

from Equation 7-44. If we arrange the inhomogeneous B field so that it is homoge-
neous in the x and y directions, then the gradient has only 9B /dz # 0 and F has only a
z component, that is,

F, = u,(dB/dz) = —mg pg(dB/dz) 7-49

This effect was used by Stern and Gerlach® in 1922 (before spin) to measure the pos-
sible orientations in space, that is, the space quantization, of the magnetic moments of
silver atoms. The experiment was repeated in 1927 (after spin) by Phipps and Taylor
using hydrogen atoms.

The experimental setup is shown in Figure 7-14. Atoms from an oven are col-
limated and sent through a magnet whose poles are shaped so that the magnetic field
B, increases slightly with z, while B, and B, are constant in the x and y directions,
respectively. The atoms then strike a collector plate. Figure 7-15 illustrates the effect
of the dB/dz on several magnetic moments of different orientations. In addition to the
torque, which merely causes the magnetic moment to precess about the field direction,
there is the force F, in the positive or negative z direction, depending on whether p, is
positive or negative, since dB/dz is always positive. This force deflects the magnetic
moment up or down by an amount that depends on the magnitudes of both dB/dz and
the z component of the magnetic moment p,. Classically, one would expect a con-
tinuum of possible orientations of the magnetic moments. However, since the mag-
netic moment is proportional to L, which is quantized, quantum mechanics predicts
that w, also can have only the 2¢ + 1 values corresponding to the 2¢ + 1 possible

4
L
Zz FIGURE 7-14 In the
= Stern-Gerlach
Collector experiment, atoms
plate

from an oven are

collimated, passed
Collimator through an
2 inhomogeneous
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FIGURE 7-15 (a) In an inhomogeneous magnetic field the magnetic moment . experiences
a force F, whose direction depends on the direction of the z component ., of . and whose
magnitude depends on those of p, and dB/dz. The beam from an oven (not shown) is
collimated into a horizontal line. (b) The pattern for the ¢ = 1 case illustrated in (a).

The three images join at the edges and have different detailed shapes due to differences in
the field inhomogeneity. (c) The pattern observed for silver and hydrogen.

values of m. We therefore expect 2¢ + 1 deflections (counting O as a deflection). For
example, for ¢ = 0, there should be one line on the collector plate corresponding to no
deflection, and for ¢ = 1 there should be three lines corresponding to the three values
m=—1 m=0,and m= +1. The ¢ = 1 case is illustrated in Figure 7-15b.

Using neutral silver atoms, Stern and Gerlach expected to see only a single line,
the middle line in Figure 7-15b, because the ground state of silver was known to be
an € = 0 state; therefore, m =0 and w, = 0. The force F, would then be zero and no
deflection of the atomic beam should occur. However, when the experiment was done with
either silver or hydrogen atoms, there were two lines, as shown in Figure 7-15c. Since
the ground state of hydrogen also has ¢ = 0, we should again expect only one line,
were it not for the electron spin. If the electron has spin angular momentum of mag-
nitude |S| = V's(s + 1)#, where s = 3, the z component can be either +7%/2 or
—7/2. Since the orbital angular momentum is zero, the total internal angular momen-
tum of the atom is simply the spin'® and two lines would be expected. Stern and Ger-
lach had made the first direct observation of electron spin and space quantization.

The Complete Hydrogen Atom Wave Functions

Our description of the hydrogen atom wave functions in Section 7-3 is not complete
because we did not include the spin of the electron. The hydrogen atom wave func-
tions are also characterized by the spin quantum number m, which can be + % or —%.
(We need not include the quantum number s because it always has the value s = %.)
A general wave function is then written s, m,, Where we have included the subscript
£ on i, to distinguish it from m,. There are now two wave functions for the ground
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Photographs made by Stern
and Gerlach with an atomic
beam of silver atoms.

(a) When the magnetic field
is zero, all atoms strike in a
single, undeviated line.

(b) When the magnetic field
is nonzero, the atoms strike
in upper and lower lines,
curved due to differing
inhomogeneities. [From

O. Stern and W. Gerlach,
Zeitschr. f. Physik 9,

349 (1922).]

state of the hydrogen atom, Ws;0941/, and s;09-1/,, COrresponding to an atom with its
electron spin “parallel” or “antiparallel” to the z axis (as defined, for example, by an
external magnetic field). In general, the ground state of a hydrogen atom is a linear
combination of these wave functions:

U = Culigor12 T Coligo-1/2

The probability of measuring m; = + 3 (for example, by observing to which spot the
atom goes in the Stern-Gerlach experiment) is | C, | Unless atoms have been prese-
lected in some way (such as by passing them through a previous inhomogeneous
magnetic field or by their having recently emitted a photon), |C,|® and |C,|? will
each be % so that measuring the spin “up” (mg = +%) and measuring the spin
“down” (m, = —3) are equally likely.

Questions

5. Does a system have to have a net charge to have a magnetic moment?

6. Consider the two beams of hydrogen atoms emerging from the magnetic field
in the Stern-Gerlach experiment. How does the wave function for an atom in
one beam differ from that of an atom in the other beam? How does it differ from
the wave function for an atom in the incoming beam before passing through the
magnetic field?

7-5 Total Angular Momentum and
the Spin-Orbit Effect

In general, an electron in an atom has both orbital angular momentum characterized
by the quantum number ¢ and spin angular momentum characterized by the quantum
number s. Analogous classical systems that have two kinds of angular momentum are
Earth, which is spinning about its axis of rotation in addition to revolving about the
Sun, or a precessing gyroscope, which has angular momentum of precession in addi-
tion to its spin. Classically the total angular momentum

J=L+S 7-50

is an important quantity because the resultant torque on a system equals the rate of
change of the total angular momentum, and in the case of central forces, the total angu-
lar momentum is conserved. For a classical system, the magnitude of the total angular
momentum J may have any value between L + Sand |L — S|. We have already seen
that in quantum mechanics, angular momentum is more complicated: both L and S
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are quantized and their relative directions are restricted. The quantum-mechanical
rules for combining orbital and spin angular momenta or any two angular momenta
(such as for two particles) are somewhat difficult to derive, but they are not difficult
to understand. For the case of orbital and spin angular momenta, the magnitude of the
total angular momentum J is given by

|13 = Vij(j +1)n 7-51
where the total angular momentum quantum number j can be either
j=¢+s or j=|€—s] 7-52

and the z component of J is given by
J,=m#h where mj=—j—-j+1...,j-1] 7-53

(If € = 0, the total angular momentum is simply the spin, and j =s.) Figure 7-16a is a
simplified vector model illustrating the two possible combinations j = 1 + % = %
and j = 1 — § =  for the case of an electron with ¢ = 1. The lengths of the vectors
are proportional to [€(¢ + 1) ]¥2 [s(s + 1) ]¥% and [ j(j + 1) ]¥ The spin and
orbital angular momentum vectors are said to be “parallel” when j = ¢ + s and
“antiparallel” when j = |¢ — s|. A quantum mechanically more accurate vector addi-
tion is shown in Figure 7-16b. The quantum number m; can take on 2j + 1 possible
values in integer steps between —j and +j, as indicated by Equation 7-53. Equation 7-53

also implies that m; =m, + m,, since J,=L, + S,.
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FIGURE 7-16 (a) Simplified vector model illustrating the addition of orbital and spin angular
momenta. Case shown isfor ¢ = lands = % There are two possible values of the quantum
number for the total angular momentum: j = ¢ + s = % andj=+¢—s= % (b) Vector
addition of the orbital and spin angular momenta, also for the case ¢ = 1 ands = % According
to the uncertainty principle, the vectors can lie anywhere on the cones corresponding to the
definite values of their z components. Note in the middle sketch that there are two ways of
forming the states with j = 3, m; = 3and j = 3, m; = 3.
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Equation 7-52 is a special case of a more general rule for combining two angular
momenta that is useful when dealing with more than one particle. For example, there are
two electrons in the helium atom, each with spin, orbital, and total angular momentum.
The general rule is

If 3; s one angular momentum (orbital, spin, or a combination) and 3, is
another, the resulting total angular momentum J = J; + J, has the value
[j (j+ 1)]*2# for its magnitude, where j can be any of the values

j1+j2’j1+j271""7 jlijZ‘

Addition of Angular Momenta I Two electrons each have zero
orbital angular momentum. What are the possible quantum numbers for the total
angular momentum of the two-electron system? (For example, these could be the
He atom electrons in any of the S states.)

SOLUTION
In this case j; = j, = % The general rule then gives two possible results, j = 1
and j = 0. These combinations are commonly called parallel and antiparallel,
respectively.

Addition of Angular Momenta II An electron in an atom has
orbital angular momentum L, with quantum number ¢, = 2, and a second electron
has orbital angular momentum L, with quantum number ¢, = 3. What are the pos-
sible quantum numbers for the total orbital angular momentum L =1L, + L,?

SOLUTION
Since ¢, + ¢, = 5and | ¢, — €,| = 1, the possible values of ¢ are 5, 4, 3, 2, and 1.

Spectroscopic Notation

Spectroscopic notation, a kind of shorthand developed in the early days of spectros-
copy to condense information and simplify the description of transitions between
states, has since been adopted for general use in atomic, molecular, nuclear, and par-
ticle physics. The notation code appears to be arbitrary,™ but it is easy to learn and, as
you will discover, convenient to use. For single electrons we have

1. For single-electron states the letter code spdfgh...isused in one-to-one
correspondence with the values of the orbital angular momentum quantum
number €:012345. ... Forexample, an electron with € = 2 is said to be a
d electron or in a d state.

2. The single-electron (Bohr) energy levels are called shells, labeled KLMNO . ..
in one-to-one correspondence with the values of the principal quantum number n:
12345....Forexample, an electron with n= 3 in an atom is said to be in the
M shell. (This notation is less commonly used.)

For atomic states that may contain one or more electrons, the notation includes the
principal quantum number and the angular momenta quantum numbers. The total
orbital angular momentum quantum number is denoted by a capital letter in the same
sequence as in rule 1 above, thatis, SPD F . .. correspond to ¢ values0123. ... The
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value of n is written as a prefix and the value of the total angular momentum quantum
number j by a subscript. The magnitude of the total spin quantum number s appears as
a left superscript in the form 2s + 1.12 Thus, a state with ¢ = 1, a P state, would be
written as

n2$+lpj

For example, the ground state of the hydrogen atom (n=1, ¢ = 0, s = 1/2) is writ-
ten 1281/2, read “one doublet S one-half.” The n = 2 state can have ¢ = 0 or ¢ = 1,
so the spectroscopic notation for these states is 2S, ,, 2°Py, and 2°P; ,. (The princi-
pal quantum number and spin superscript are sometimes not included if they are not
needed in specific situations.)

Spin-Orbit Coupling

Atomic states with the same n and ¢ values but different j values have slightly differ-
ent energies because of the interaction of the spin of the electron with its orbital
motion. This is called the spin-orbit effect. The resulting splitting of the spectral lines
such as that resulting from the splitting of the 2P level in the transition 2P — 1S in
hydrogen is called fine-structure splitting. We can understand the spin-orbit effect
qualitatively from a simple Bohr model picture, as shown in Figure 7-17. In this pic-
ture, the electron moves in a circular orbit with speed v around a fixed proton. In the
figure, the orbital angular momentum L is up. In the frame of reference of the elec-
tron, the proton moves in a circle around it, thus making a circular loop current that
produces a magnetic field B at the position of the electron. The direction of B is also
up, parallel to L. Recall that the potential energy of a magnetic moment in a magnetic
field depends on its orientation relative to the field direction and is given by

U=-pn-B=—unB 7-54

The potential energy is lowest when the magnetic moment is parallel to B and highest
when it is antiparallel. Since the intrinsic magnetic moment of the electron is directed
opposite to its spin (because the electron has a negative charge), the spin-orbit energy
is highest when the spin is parallel to B and thus to L. The energy of the 22P3/2 state in
hydrogen, in which L and S are parallel, is therefore slightly higher than the 22P1/2
state, in which L and S are antiparallel (Figure 7-18).* The measured splitting is

2P

AU = 2uB

1S
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FIGURE 7-17 (a) An
electron moving about a
proton with angular
momentum L up. (b) The
magnetic field B seen by the
electron due to the apparent
(relative) motion of the
proton is also up. When the
electron spin is parallel to L,
the magnetic moment is
antiparallel to L and B, so the
spin-orbit energy has its
largest value.

27

FIGURE 7-18 Fine-structure energy-level diagram. On the
left, the levels in the absence of a magnetic field are shown.
The effect of the magnetic field due to the relative motion of
the nucleus is shown on the right. Because of the spin-orbit
interaction, the magnetic field splits the 2P level into two
energy levels, with the j = 3/2 level having slightly greater
energy than the j = 1/2 level. The spectral line due to the
transition 2P — 1S is therefore split into two lines of
slightly different wavelengths. (Diagram is not to scale.)
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about 4.5 X 107° eV for the 2°P; , and 2°P3, levels in hydrogen. For other atoms,
the fine-structure splitting is larger than this; for example, for sodium it is about
2x 1072 eV, as will be discussed in Section 7-7. Recalling that transitions resulting in
spectral lines in the visible region are of the order of 1.5 to 3.0 eV, you can see that
the fine-structure splitting is quite small.

2D CVHASVARE Fine-Structure Splitting The fine-structure splitting of the 22P3/2
and 22P1/2 levels in hydrogen is 4.5 X 10~° eV. From this, estimate the magnetic
field that the 2p electron in hydrogen experiences. Assume B is parallel to the
zZ axis.

SOLUTION

1. The energy of the 2p electrons is shifted U= -—pnB=—p,B
in the presence of a magnetic field by an
amount given by Equation 7-54:

2. U is positive or negative depending on AE =2U = 2u,B
the relative orientation of w and B, so the
total energy difference AE between the

two levels is
3. Since the magnetic moment of the AE = 2ugB
electron is g, v, = pg and
. . _— AE
4. Solving this for B and substituting for B = o
and the energy-splitting AE gives He
Pe gy-spiiting 2= 9 45X 107V
(2)(5.79 X 10 °eV/T)
~ 039T

Remarks: This is a substantial magnetic field, nearly 10,000 times Earth’s aver-
age magnetic field.

When an atom is placed in an external magnetic field B, the total angular momen-
tum J is quantized in space relative to the direction of B and the energy of the atomic
state characterized by the angular momentum quantum number j is split into 2j + 1
energy levels corresponding to the 2j + 1 possible values of the z component of J and
therefore to the 2j + 1 possible values of the z component of the total magnetic
moment. This additional splitting of the energy levels in the atom gives rise to a
corresponding splitting of the spectral lines emitted by the atom. The splitting of
the spectral lines of an atom placed in an external magnetic field was discovered by
P. Zeeman and is known as the Zeeman effect. (See the More section on page 312 and
Section 3-1.) Zeeman and Lorentz shared the 1902 Nobel Prize in Physics for the dis-
covery and explanation of the Zeeman effect.

Lamb Shift

Although not shown in Figure 7-18, the n =2, ¢ = 0, j =  level (2S,,) would
have the same energy asthen=2,¢ =1, j = %(22P1/2) level because the fine struc-
ture energies of the hydrogen atom are dependent on n and j, but not on ¢. The only
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energy level that lies below these states is the 12S; /2 ground state, and transitions from
the 2281/2 level to that state are strongly forbidden by the A¢ = 1 selection rule,
making the 2281/2 level a metastable state. However, in 1947 Willis Lamb showed
experimentally that thetwon=2, j = % states actually have different energies, with
the ¢ = 1 level lying very slightly below the ¢ = 0 level. This provides for an
allowed transition 2281/2 — 22P1/2. Lamb measured the photon energy emitted in the
transition to be 4.372 X 10~ % eV (\ in the RF region of the electromagnetic spectrum).
The theoretical explanation of this phenomenon, called the Lamb shift, was provided
by quantum electrodynamics as being a result of energy level fluctuations of the vac-
uum, a subject that is beyond the level of this book but is currently a field of active
research. For his discovery Lamb shared the 1955 Nobel Prize in Physics.

7-6 The Schrodinger Equation for
Two (or More) Particles

Our discussion of quantum mechanics so far has been limited to situations in which a
single particle moves in some force field characterized by a potential energy function V.
The most important physical problem of this type is the hydrogen atom, in which a
single electron moves in the Coulomb potential of the proton nucleus. This problem is
actually a two-body problem, as the proton also moves in the Coulomb potential of
the electron. However, as in classical mechanics, we can treat this as a one-body
problem by considering the proton to be at rest and replacing the electron mass with
the reduced mass. When we consider more complicated atoms we must face the prob-
lem of applying quantum mechanics to two or more electrons moving in an external
field. Such problems are complicated by the interaction of the electrons with each
other, and also by the fact that the electrons are identical.

The interaction of the electrons with each other is electromagnetic and essentially
the same as that expected classically for two charged particles. The Schrodinger equa-
tion for an atom with two or more electrons cannot be solved exactly, and approxima-
tion methods must be used. This is not very different from the situation in classical
problems with three or more particles. The complication arising from the identity of
electrons is purely quantum mechanical and has no classical counterpart.

Identical Particles in Quantum Mechanics

The indistinguishability of identical particles has important consequences related to
the Pauli exclusion principle. We will illustrate the origin of this important principle
by considering the simple case of two noninteracting identical particles in a one-
dimensional infinite square well.

The time-independent Schrddinger equation for two particles of mass m is

_Lzazdj(xll XZ) _ LZ82¢(X1, XZ)

+V , =E , 7-55
om aX% om aX% LI’(Xl XZ) ll*'(xl XZ)

where X; and x, are the coordinates of the two particles. If the particles are interacting,
the potential energy V contains terms with both x; and x,, which cannot usually be
separated. For example, if the particles are charged, their mutual electrostatic poten-
tial energy (in one dimension) is +ke?/|x, — x,|. If they do not interact, however,
we can write V as V;(X;) + Va(X,). For the case of an infinite square well potential, we
need solve the Schrédinger equation only inside the well where V = 0 and require the
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wave function to be zero at the walls of the well. Solutions of Equation 7-55 can be
written as products of single-particle solutions and linear combinations of such solu-
tions. The single-particle product solutions are

lIJnm(XerZ) = llfn(xl)lljm()(Z) 7-56
where {s,(x;) and {s,(x,) are the single-particle wave functions for an infinite square
well given by Equation 6-32. Thus, forn=1, and m = 2,

Yy = CsinLXlsin 28
12 L L

7-57

The probability of finding particle 1 in dx; and particle 2 in dx, is | s (X, X, ) |2 dx; dx,
which is just the product of the separate probabilities |{s(x,) |>dx; and | (X,) |? dx,.
However, even though we have labeled the particles 1 and 2, if they are identical, we
cannot distinguish which is in dx, and which is in dx,. For identical particles, there-
fore, we must construct the wave function so that the probability density is the same if
we interchange the labels:

|L’!(X1,X2) |2 = |¢(X21Xl) |2 7-58

Equation 7-58 holds if ys(x,, X,) is either symmetric or antisymmetric on exchange
of particles—that is,

(%, X) = +U (X, %) Symmetric
U (X% ) = = (X, %) antisymmetric

We note that the general wave function of the form of Equation 7-56 and the example
(Equation 7-57) are neither symmetric nor antisymmetric. If we interchange x; and x,,
we get a different wave function, implying that the particles can be distinguished.
These forms are thus not consistent with the indistinguishability of identical particles.
However, from among all of the possible linear combination solutions of the single-
product functions, we see that, if {s,, and {s,,, are added or subtracted, we form sym-
metric or antisymmetric wave functions necessary to preserve the indistinguishability
of the two particles:

le = C[\hn(xl)‘bm(XZ) + lbn(XZ)q’m(Xl)} Symmetric
Ua = ClUn (X)) Um (%) — W (%) (X1) ] antisymmetric

Pauli Exclusion Principal

There is an important difference between the antisymmetric and symmetric combina-
tions. If n = m, the antisymmetric wave function is identically zero for all x, and X,,
whereas the symmetric function is not. More generally, it is found that electrons (and
many other particles, including protons and neutrons) can only have antisymmetric
total wave functions, that is,

wn€m¢m5 = Rn(,Yém‘,XmS 7-59

where R, is the radial wave function, Y,y is the spherical harmonic, and X, is the
spin wave function. Thus, single-particle wave functions such as Us,(X;) and ys,,(x,) for
two such particles cannot have exactly the same set of values for the quantum num-
bers. This is an example of the Pauli exclusion principle. For the case of electrons in
atoms and molecules, four quantum numbers describe the state of each electron, one
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for each space coordinate and one associated with spin. The Pauli exclusion principle
for electrons states that

No more than one electron may occupy a given quantum state specified
by a particular set of single-particle quantum numbers n, ¢, m,, m..

The effect of the exclusion principal is to exclude certain states in the many-
electron system. It is an additional quantum condition imposed on solutions of the
Schrédinger equation and will be applied to the development of the periodic table in
the following section. Particles such as « particles, deuterons, photons, and mesons
have symmetric wave functions under exchange of particle labels and do not obey the
exclusion principle.

7-7 Ground States of Atoms:
The Periodic Table

We now consider qualitatively the wave functions and energy levels for atoms more
complicated than hydrogen. As we have mentioned, the Schrddinger equations for
atoms other than hydrogen cannot be solved exactly because of the interaction of the
electrons with one another, so approximate methods must be used. We will discuss
the energies and wave functions for the ground states of atoms in this section and con-
sider the excited states and spectra for some of the less complicated cases in the next
two sections. We can describe the wave function for a complex atom in terms of single-
particle wave functions. By neglecting the interaction energy of the electrons, that
description can be simplified to products of the single-particle wave functions. These
wave functions are similar to those of the hydrogen atom and are characterized by the
quantum numbers n, €, m,, mg. The energy of an electron is determined mainly by the
quantum number n, which is related to the radial part of the wave function, and ¢,
which characterizes the orbital angular momentum. Generally, the lower the value of
n and ¢, the lower the energy of the state (see Figure 7-19). The specification of n and
¢ for each electron in an atom is called the electron configuration. Customarily, the
value of ¢ and the various electron shells are specified with the same code defined in
the subsection “Spectroscopic Notation” in Section 7-5. The electron configurations
of the atomic ground states are given in Appendix C.

Helium (Z = 2)

The energy of the two electrons in the helium atom consists of the kinetic energy of
each electron, a potential energy of the form —kZe?/r; for each electron corresponding
to its attraction to the nucleus, and a potential energy of interaction V;,, corresponding
to the mutual repulsion of the two electrons. If r; and r, are the position vectors for
the two electrons, V;, is given by
2
Vint = +L 7-60
Ir; — 1y

Because this interaction term contains the position variables of the two electrons, its
presence in the Schrddinger equation prevents the separation of the equation into
separate equations for each electron. If we neglect the interaction term, however, the
Schrédinger equation can be separated and solved exactly. We then obtain separate

Energy

FIGURE 7-19 Relative
energies of the atomic
shells and subshells.
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equations for each electron, with each equation identical to that for the hydrogen atom
except that Z=2. The allowed energies are then given by

Z’E, Z°E,
o - 2

E =
n ns

where E, = 13.6eV 7-61

The lowest energy, E; = —2(2)?E, = —108.8 eV, occurs for n; = n, = 1. For this case,
¢, = £, = 0. The total wave function, neglecting the spin of the electrons, is of
the form

U = Uiy00 (11, 01, 1) Wi (12,0, ) 7-62

The quantum numbers n, ¢, and m, can be the same for the two electrons only if
the fourth quantum number my is different, that is, if one electron has m; = +% and
the other has m; = —3.

We can obtain a first-order correction to the ground-state energy by using the
approximate wave function of Equation 7-62 to calculate the average value of the
interaction energy Vi, which is simply the expectation value (V;, ). The result of this
calculation is

(Vi) = +34eV 7-63
With this correction, the ground-state energy is
E =~ —108.8 + 34 = —74.8eV 7-64

This approximation method, in which we neglect the interaction of the electrons to
find an approximate wave function and then use this wave function to calculate the
interaction energy, is called first-order perturbation theory. The approximation can
be continued to higher orders; for example, the next step is to use the new ground-
state energy to find a correction to the ground-state wave function. This approxima-
tion method is similar to that used in classical mechanics to calculate the orbits of
the planets about the Sun. In the first approximation the interaction of the planets is
neglected and the elliptical orbits are found for each planet. Then, using this result
for the position of each planet, the perturbing effects of the nearby planets can be
calculated.

The experimental value of the energy needed to remove both electrons from
the helium atom is about 79 eV. The discrepancy between this result and the value
74.8 eV is due to the inaccuracy of the approximation used to calculate (Vim>, as indi-
cated by the rather large value of the correction (about 30 percent). (It should be
pointed out that there are better methods of calculating the interaction energy for
helium that give much closer agreement with experiment.) The helium ion He,
formed by removing one electron, is identical to the hydrogen atom except that Z = 2;
so the ground state energy is

~7%(13.6) = —54.4eV

The energy needed to remove the first electron from the helium atom is 24.6 eV. The
corresponding potential, 24.6 V, is called the first ionization potential of the atom.
The ionization energies are given in Appendix C.

The configuration of the ground state of the helium atom is written 1s
The 1 signifies n = 1, the s signifies ¢ = 0, and the 2 signifies that there are two
electrons in this state. Since ¢ can only be zero for n = 1, the two electrons fill the
K shell (n =1).
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Lithium (Z = 3)

Lithium has three electrons. Two are in the K shell (n = 1), but the third cannot have
n = 1 because of the exclusion principle. The next-lowest energy state for this elec-
tron has n = 2. The possible ¢ values are ¢ = 1 or ¢ = 0.

In the hydrogen atom, these ¢ values have the same energy because of the degen-
eracy associated with the inverse-square nature of the force. This is not true in lithium
and other atoms because the charge “seen” by the outer electron is not a point charge.**
The positive charge of the nucleus +Ze can be considered to be approximately a point
charge, but the negative charge of the K-shell electrons —2e is spread out in space over
a volume whose radius is of the order of a,/Z. We can in fact take for the charge den-
sity of each inner electron p = —e| s |, where s is a hydrogenlike 1s wave function
(neglecting the interaction of the two electrons in the K shell). The probability distribu-
tion for the outer electron in the 2s or 2p states is similar to that shown in Figure 7-10.
We see that the probability distribution in both cases has a large maximum well out-
side the inner K-shell electrons but that the 2s distribution also has a small bump near
the origin. We could describe this by saying that the electron in the 2p state is nearly
always outside the shielding of the two 1s electrons in the K shell, so that it sees an
effective central charge of Z.+ = 1; whereas in the 2s state the electron penetrates this
“shielding” more often and therefore sees a slightly larger effective positive central
charge. The energy of the outer electron is therefore lower in the 2s state than in the
2p state, and the lowest energy configuration of the lithium atom is 1s22s.

The total angular momentum of the electrons in this atom is %h due to the spin of
the outer electron since each of the electrons has zero orbital angular momentum and
the inner K-shell electrons are paired to give zero spin. The first ionization potential
for lithium is only 5.39 V. We can use this result to calculate the effective positive
charge seen by the 2s electron. For Z = Z and n = 2, we have

2 2
E_ z Izzo _ Zeff(13é6 eV) — £39ev
n 2
which gives Z = 1.3. It is generally true that the smaller the value of ¢, the greater
the penetration of the wave function into the inner shielding cloud of electrons: the
result is that in a multielectron atom, for given n, the energy of the electron increases
with increasing ¢ (see Figure 7-19).

Beryllium (Z = 4)

The fourth electron has the least energy in the 2s state. The exclusion principle
requires that its spin be antiparallel to the other electron in this state so that the total
angular momentum of the four electrons in this atom is zero. The electron configura-
tion of beryllium is 1s?2s2. The first ionization potential is 9.32 V. This is greater than
that for lithium because of the greater value of Z.

BorontoNeon (Z=5toZ=10)

Since the 2s subshell is filled, the fifth electron must go into the 2p subshell; that is,
n=2and ¢ = 1. Since there are three possible values of m, (+1, 0, and —1) and two
values of m for each, there can be up to six electrons in this subshell. The electron
configuration for boron is 1s22s?2p. Although it might be expected that boron would
have a greater ionization potential than beryllium because of the greater Z, the 2p
wave function penetrates the shielding of the core electrons to a lesser extent and the

George Gamow and
Wolfgang Pauli in
Switzerland in 1930.
[Courtesy of George Gamow.]
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FIGURE 7-20 First
ionization energy vs. Z up to
Z=90. The energy is the
binding energy of the last
electron in the atom. This
energy increases with Z until
a shell is closed at Z values of
2,10, 18, 36, 54, and 86. The
next electron must go into the
next-higher shell and hence is
farther from the center of core
charge and so less tightly
bound. The ionization
potential (in volts) is
numerically equal to the
ionization energy (in eV).

ionization potential of boron is actually about 8.3 V, slightly less than that of beryllium.
The electron configuration of the elements carbon (Z = 6) to neon (Z = 10) differs
from boron only by the number of electrons in the 2p subshell. The ionization poten-
tial increases slightly with Z for these elements, reaching the value of 21.6 V for the
last element in the group, neon. Neon has the maximum number of electrons allowed
in the n = 2 shell. The electron configuration of neon is 1s?2s22p®. Because of its very
high ionization potential resulting from its closed shell configuration, neon, like
helium, is chemically inert. Fluorine, the element just before neon, has a “hole” in this
shell; that is, it has room for one more electron. It readily combines with elements
such as lithium, which has one outer electron that is donated to the fluorine atom to
make an F~ ion and a Li* ion, which bond together. This is an example of ionic bond-
ing, to be discussed in Chapter 9.

Sodium to Argon (Z=11to Z=18)

The 11th electron must go into the n = 3 shell. Since this electron is weakly bound in
the Na atom, Na combines readily with atoms such as F. The ionization potential for
sodium is only 5.14 V. Because of the lowering of the energy due to penetration of the
electronic shield formed by the other 10 electrons—similar to that discussed for
Li—the 3s state is lower than the 3p or 3d state. (With n = 3, ¢ can have the values
0, 1, or 2.) This energy difference between subshells of the same n value becomes greater
as the number of electrons increases. The configuration of Na is thus 1s22s2p®3s. As
we move to higher-Z elements, the 3s subshell and then the 3p subshell begin to fill up.
These two subshells can accommodate 2 + 6 = 8 electrons. The configuration of argon
(Z = 18) is 1s?2s22p®3s23p°. There is another large energy difference between the 18th
and 19th electrons, and argon, with its full 3p subshell, is stable and inert.

AtomswithZ> 18

One might expect that the 19th electron would go into the 3d subshell, but the shield-
ing or penetration effect is now so strong that the energy is lower in the 4s shell than
in the 3d shell. The 19th electron in potassium (Z = 19) and the 20th electron in

30
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0.3 FIGURE 7-21 The atomic radii versus Z shows a sharp
Cs rise following the completion of a shell as the next
Rb electron must have the next-larger n. The radii then

E decline with increasing Z, reflecting the penetration of
G 02~ Na wave functions of the electrons in the developing shell.
2 Li The recurring patterns here and in Figure 7-20 are
E examples of the behavior of many atomic properties that
g ive the periodic table its name.
50.1— give the periodic table its name
<
) AR M IS A IS SN I R B
03 10 20 30 |40 50 |60 70 80 90 100
11 19 37 55
z

calcium (Z = 20) go into the 4s rather than the 3d subshell. The electron configura-
tions of the next 10 elements, scandium (Z = 21) through zinc (Z = 30), differ only in
the number of electrons in the 3d subshell except for chromium (Z = 24) and copper
(Z = 29), each of which has only one 4s electron. These elements are called transition
elements. Since their chemical properties are mainly due to their 4s electrons, they are
quite similar chemically.

The concept of shell
structure for the electrons
in the atomic systems
was a significant aid to

Figure 7-20 shows a plot of the first ionization potential of an atom versus Z up to
Z=190. The sudden decreases in ionization potential after the Z numbers 2, 10, 18, 36,
and 54 mark the closing of a shell or subshell. A corresponding sudden increase
occurs in the atomic radii, as illustrated in Figure 7-21. The ground-state electron con-

the later understanding

of molecular bonding (see
Chapter 9) and the complex
structure of the atomic

figurations of the elements are tabulated in Appendix C. nuclet (see Chapter 11).

Questions

7. A particular excited state of the H atom has j = 1/2. What can you say about
the possible values of ¢?

8. Why is the energy of the 3s state considerably lower than that of the 3p state for
sodium, whereas in hydrogen these states have essentially the same energy?

9. Discuss the evidence from the periodic table of the need for a fourth quantum
number. How would the properties of He differ if there were only three quantum
numbers, n, €, and m?

7-8 Excited States and Spectra of
Alkali Atoms

In order to understand atomic spectra, we need to understand the excited states of
atoms. The situation for an atom with many electrons is, in general, much more
complicated than that of hydrogen. An excited state of the atom usually involves a
change in the state of one of the electrons or, more rarely, two or even more electrons.
Even in the case of the excitation of only one electron, the change in state of this elec-
tron changes the energies of the others. Fortunately, there are many cases in which
this effect is negligible, and the energy levels can be calculated accurately from a
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Among the many
applications of atomic
spectra is their
innumerable contributions
to our understanding of
the composition of stars
and the evolution of the
universe (see Chapter 13).

relatively simple model of one electron plus a stable core. This model works particu-
larly well for the alkali metals: Li, Na, K, Rb, and Cs. These elements are in the first
column of the periodic table. The optical spectra of these elements are similar in many
ways to that of hydrogen.

Another simplification is possible because of the wide difference between the
excitation energy of a core electron and the excitation energy of an outer electron.
Consider the case of sodium, which has a neon core (except Z = 11 rather than Z = 10)
and an outer 3s electron. If this electron did not penetrate the core, it would see an
effective nuclear charge of Z.; = 1 resulting from the +11e nuclear charge and the
—10e of the completed electron shells. The ionization energy would be the same as
the energy of the n = 3 electron in hydrogen, about 1.5 eV. Penetration into the core
increases Z. and so lowers the energy of the outer electron, that is, binds it more
tightly, thereby increasing the ionization energy. The measured ionization energy of
sodium is about 5 eV. The energy needed to remove one of the outermost core elec-
trons, a 2p electron, is about 31 eV, whereas that needed to remove one of the 1s
electrons is about 1041 eV. An electron in the inner core cannot be excited to any of
the filled n = 2 states because of the exclusion principle. Thus, the minimum excita-
tion of an n = 1 electron is to the n = 3 shell, which requires an energy only slightly
less than that needed to remove this electron completely from the atom. Since the
energies of photons in the visible range (about 400 to 800 nm) vary only from about
1.5 to 3 eV, the optical (i.e., visible) spectrum of sodium must be due to transitions
involving only the outer electron. Transitions involving the core electrons produce
line spectra in the ultraviolet and x-ray regions of the electromagnetic spectrum.

Figure 7-22 shows an energy-level diagram for the optical transitions in sodium.
Since the spin angular momentum of the neon core adds up to zero, the spin of each
state in sodium is 3. Because of the spin-orbit effect, the states with j = ¢ — 3 have a
slightly lower energy than those with j = ¢ + % Each state is therefore a doublet
(except for the S states). The doublet splitting is very small and is not evident on the
energy scale of Figure 7-22 but is shown in Figure 7-18. The states are labeled by the
usual spectroscopic notation, with the superscript 2 before the letter indicating that
the state is a doublet. Thus, 2Pg/z, read as “doublet P three-halves,” denotes a state in
which ¢ = 1and j = 3/2. (The S states are customarily labeled as if they were dou-
blets even though they are not. This is done because they belong to the set of levels
with S = 3 but, unlike the others, have ¢ = 0 and so are not split. The number indi-
cating the n value of the electron is often omitted.) In the first excited state, the outer
electron is excited from the 3s level to the 3p level, which is about 2.1 eV above the
ground state. The spin-orbit energy difference between the P;/, and P, , states due to
the spin-orbit effect is about 0.002 eV. Transitions from these states to the ground
state give the familiar sodium yellow doublet:

3p(*Ps2) —>3s(°S12) N = 589.0 nm
The energy levels and spectra of other alkali atoms are similar to those for sodium.
It is important to distinguish between doublet energy states and doublet spectral
lines. All transitions beginning or ending on an S state give double lines because they
involve one doublet state and one singlet state (the selection rule A¢ = £ 1 rules out

transitions between two S states). There are four possible energy differences between
two doublet states. One of these is ruled out by a selection rule on j, which is*®

Aj = *1or0 (butnoj=0—j=0) 7-65
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FIGURE 7-22 Energy-level diagram for sodium (Na) with
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Transitions between pairs of doublet energy states therefore result in three spectral : 1o

lines, that is,
illustrated in

a triplet. Under relatively low resolution the three lines look like two, as
Figure 7-23, because two of them are very close together. For this reason

they are often referred to as a compound doublet to preserve the verbal hint that they

involve doub

Question

10. Referri

let energy states.

ng to Figure 7-22, why aren’t the S states also doublets?

More

Atoms with more than one electron in the outer shell have more com-
plicated energy-level structures. Additional total spin possibilities
exist for the atom, resulting in multiple sets of nearly independent
energy states and multiple sets of spectral lines. Multielectron Atoms
and their spectra are described on the home page: www.whfreeman
.com/tiplermodernphysicsée. See also Equations 7-66 and 7-67 and
Figures 7-24 through 7-27 here.

—_—

f

FIGURE 7-23 The transitions
between a pair of doublet
energy states in singly ionized
calcium. The transition
represented by the dotted line
is forbidden by the Aj = +1,
0 selection rule. The darkness
of the lines indicates relative
intensity. Under low
resolution the faint line on the
left of the spectrum at the
bottom merges with its
neighbor and the compound
doublet (or triplet) looks like
a doublet.
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More

Our tradition tells us that Mrs. Bohr encountered an obviously sad
young Wolfgang Pauli sitting in the garden of Bohr’s Institute for
Theoretical Physics in Copenhagen and asked considerately if he was
unhappy. His reply was, “Of course I’m unhappy! | don’t under-
stand the anomalous Zeeman effect!” On the home page we explain
The Zeeman Effect so you, too, won’t be unhappy: www.whfreeman
.com/tiplermodernphysicsée. See also Equations 7-68 through 7-72
and Figures 7-28 through 7-31 here.

EXPLORING
Frozen Light

Using the quantum properties of atomic energy states, tunable lasers, and a Bose-
Einstein (BE) condensate of sodium atoms (see Chapter 8), physicists have been able
to slow a light pulse to a dead stop, then regenerate it sometime later and send it on its
way. Here is how it’s done.

Consider the 3s and 3p energy levels of sodium in Figure 7-22. L-S coupling does
not cause splitting of the 3s state because the orbital angular momentum of that state
is zero; however, we will discover in Chapter 11 (see also Problem 7-76) that protons
and neutrons also have intrinsic spins and magnetic moments, resulting in a nuclear
spin and magnetic moment. Although the latter is smaller than the electron’s magnetic
moment by a factor of about 1000, it causes a very small splitting of the 3s level exactly
analogous to that due to L-S coupling in states with nonzero orbital angular momenta.
Called hyperfine structure (because it’s smaller than the fine-structure splitting dis-
cussed earlier), the 3s level is split into two levels spaced about 3.5 X 107° eV above
and below the original 3s state.

Producing the BE condensate results in a cigar-shaped “cloud” about one centi-
meter long suspended by a magnetic field in a vacuum chamber. The cloud contains
several million sodium atoms all with their spins aligned and all in the lower of the
two 3s hyperfine levels, the new ground state (see Figure 7-32a). The light pulse that
we wish to slow (the probe beam) is provided by a laser precisely tuned to the energy
difference between the lower of the 3s hyperfine levels (the new ground state) and the
3p state. A second laser (the coupling beam) is precisely tuned to the energy difference
between the higher of the 3s hyperfine levels and the 3p state and illuminates the BE
condensate perpendicular to the probe beam.

If the probe beam alone were to enter the sample, all of the atoms would be excited
to the 3p level, absorbing the beam completely. As the atoms relaxed back to the ground
state, sodium yellow light would be emitted randomly in all directions. If the coupling
beam alone entered the sample, no excitation of the 3p level would result because the
coupling-beam photons do not have enough energy to excite electrons from the ground
state to the 3p state. However, if the coupling beam is illuminating the sample with all
atoms in the ground state and the probe beam is turned on as the leading edge of the
probe pulse enters the sample (Figure 7-32b), the two beams together shift the sodium
atoms into a quantum superposition of both states, meaning that in that region of the
sample each atom is in both hyperfine states (Figure 7-32c). Instead of both beams now
being able to excite those atoms to the 3p level, the two processes cancel, a phenom-
enon called quantum interference, and the BE condensate becomes transparent to the
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probe beam, as in Figure 7-32c. A similar cancellation causes the index of refraction of
the sample to change very steeply over the narrow frequency range of the probe pulse,
slowing the leading edge from 3 x 10® m/s to about 15 m/s. As the rest of the probe
pulse (still moving at 3 X 108 m/s) enters the sample and slows, it piles up behind the
leading edge, dramatically compressing the pulse to about 0.05 mm in length, which
fits easily within the sample. Over the region occupied by the compressed pulse the
quantum superposition shifts the atomic spins in synchrony with the superposition as
illustrated in Figure 7-32d.

At this point the coupling beam is turned off. The BE condensate immediately
becomes opaque to the probe beam, the pulse comes to a stop and turns off! The

Coupling beam

(@)

(b)

(c)

(d)

fhitsssnniibis

e —

| —
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FIGURE 7-32 (a) The coupling beam illuminates the sodium Bose-Einstein condensate, whose
atoms are in the ground state with spins aligned. (b) The leading edge of the probe beam pulse
enters the sample. (c) Quantum superposition shifts the spins and the rapidly changing
refractive index dramatically slows and shortens the probe beam inside the condensate. (d) Now
completely contained inside the sample, the speed of the probe pulse is about 15 m/s. (e) The
coupling beam is turned off and the probe pulse stops, its information stored in the shifted spins
of the atoms. (f) The coupling beam is turned back on and the probe pulse regenerates, moves
slowly to the edge of the sample, then leaves at 3 X 10% m/s.

313



314

Chapter 7 Atomic Physics

Summary
TOPIC

1. Schrédinger equation in

three dimensions

light has “frozen”! The information imprinted on the pulse is now imprinted like a
hologram on the spins of the atoms in the superposition states (see Figure 7-32¢).
When the coupling pulse is again turned on, the sample again becomes transparent to
the probe pulse. The “frozen” probe pulse is regenerated carrying the original infor-
mation, moves slowly to the edge of the sample, then zooms away at 3 X 108 m/s
(see Figure 7-32f).

The ability to slow and stop light raises new opportunities in many areas. For
example, it may make possible the development of quantum communications that can-
not be eavesdropped on. Building large-scale quantum computers may depend on the
ultra-high-speed switching potential of quantum superpositions in slow light systems.
Astrophysicists may be able to use BE condensates in vortex states, already achieved
experimentally, with slow light to simulate in the laboratory the dragging of light into
black holes. Stay tuned!

RELEVANT EQUATIONS AND REMARKS

The equation is solved for the hydrogen atom by separating it into three
ordinary differential equations, one for each coordinate r, 6, ¢. The quantum
numbers n, ¢, and m arise from the boundary conditions to the solutions of
these equations.

. Quantization
Angular momentum

z component of L

Energy

IL| = Ve(e+ 1)k for €=0,1,23,... 7-22

L,=ma for m=0, %1, £2,..., =¢ 7-23
kze?\? 22

E, = —( )% — —1365 eV 7-25
i/ 2n n

. Hydrogen wave functions

\I,n(m = CnemRne(r)Yﬂm(ev d))

where C,,, are normalization constants, R, are the radial functions, and Y/, are
the spherical harmonics.

. Electron spin

Magnitude of S

z component of S

Stern-Gerlach experiment

The electron spin is not included in Schrodinger’s wave equation.

1
[S| = Vs(s+ 1) s=3 7-36

1
S,=m# mg= iE

This was the first direct observation of the electron spin.

. Spin-orbit coupling

L and S add to give the total angular momentum J= L + S, whose magnitude is
given by

13 = Vi(j + D4 7-51

where j = ¢ + sor |¢ — s|. This interaction leads to the fine-structure splitting
of the energy levels.

. Exclusion principle

No more than one electron may occupy a given quantum state specified by a particular
set of the single-particle quantum numbers n, €, m,, and m;.
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Notes

1. Degeneracy may arise because of a particular symmetry
of the physical system, such as the symmetry of the potential
energy described here. Degeneracy may also arise for com-
pletely different reasons and can certainly occur for nonprod-
uct wave functions. The latter are sometimes called accidental
degeneracies, and both types can exist in the same system.

2. “Enough” means a complete set in the mathematical sense.

3. Such potentials are called central field or, sometimes, con-
servative potentials. The Coulomb potential and the gravita-
tional potential are the most frequently encountered examples.

4. L, = |L| would mean that L, = L, = 0. All three com-
ponents of L would then be known exactly, a violation of the
uncertainty principle.

5. The functions Y,,, and R, listed in Tables 7-1 and 7-2 are
normalized. The C,,, are simply the products of those cor-
responding normalization constants.

6. Wolfgang Pauli (1900-1958), Austrian physicist. A
bona fide child prodigy, while a graduate student at Munich
he wrote a paper on general relativity that earned Einstein’s
interest and admiration. Pauli was 18 at the time. A brilliant
theoretician, he became the conscience of the quantum physi-
cists, assaulting “bad physics” with an often devastatingly
sharp tongue, one of his oft-quoted dismissals of a certain
poor paper being, “It isn’t even wrong.” He belatedly won the
Nobel Prize in Physics in 1945 for his discovery of the exclu-
sion principle.

7. Samuel A. Goudsmit (1902-1978) and George E.
Uhlenbeck (1900-1988), Dutch-American physicists. While
graduate students at Leiden, they proposed the idea of elec-
tron spin to their thesis adviser Paul Ehrenfest, who su