
Algebraic Groups and Number Theory 



This is Volume 139 in the 
PURE AND APPLIED MATHEMATICS series 

H. Bass, A. Borel, J. Moser, and S. -T. Yau, editors 
Paul A. Smith and Samuel Eilenberg, founding editors 

Algebraic Groups 
and Number Theory 

Vladimir Platonov 
Andrei Rapinchuk 
Academy of Sciences 
Belarus, Minsk 

Translated by Rachel Rowen 
Raanana, Israel 

ACADEMIC PRESS, INC. 
Harcourt Brace & Company, Publishers 
Boston San Diego New York 
London Sydney Tokyo Toronto 



Contents 

Preface to the English Edition . . . . . . . . . . . . . . .  ix 

This book is printed on acid-free paper . @ 

English Translation Copyright O 1994 by Academic Press. Inc . 

All rights reserved . 
No part of this publication may be reproduced or 
transmitted in any form or by any means. electronic 
or mechanical. including photocopy. recording. or 
any information storage and retrieval system. without 
permission in writing from the publisher . 

ACADEMIC PRESS. INC . 
1250 Sixth Avenue. San Diego. CA 92101-431 1 

United Kingdom Edition published by 
ACADEMIC PRESS LIMITED 
24-28 Oval Road. London NW17DX 

Library of Congress Cataloging-in-Publication Data 

Platonov. V . P . (Vladimir Petrovich). date- 
[Algebraicheskie gruppy i teoriia chisel . English] 
Algebraic goups and number theory 1 Vladimir Platonov. Andrei 

Rapinchuk ; translated by Rachel Rowen . 
p . cm . - (Pure and applied mathematics ; v . 139) 

Includes bibliographical references . 
ISBN 0-12-5581 80-7 (acid free) 
1 . Algebraic number theory . 2 . Linear algebraic groups . 

I . Rapinchuk. Andrei . I1 . Title . 111 . Series: Pure and applied 
mathematics (Academic Press) ; 139 
QA3.P8 vol . 139 
[QA2471 

CIP 

Preface to the Russian Edition . . . . . . . . . . . . . . .  ix 

. . . . . . . . . . . .  Chapter 1 . Algebraic number theory 1 

1.1. Algebraic number fields. valuations. and completions . . . .  1 
1.2. Adeles and ideles; strong and weak approximation; the 

local-global principle . . . . . . . . . . . . . . . . .  10 
1.3. Cohomology . . . . . . . . . . . . . . . . . . . . .  16 
1.4. Simple algebras over local fields . . . . . . . . . . . . .  27 

. . . . . . .  1.5. Simple algebras over algebraic number fields 37 

. Chapter 2 Algebraic Groups . . . . . . . . . . . . . . . .  47 

. . . . . . . . .  2.1. Structural properties of algebraic groups 47 
2.2. Classification of K-forms using Galois cohomology . . . . .  67 
2.3. The classical groups . . . . . . . . . . . . . . . . . .  78 
2.4. Some results from algebraic geometry . . . . . . . . . .  96 

Chapter 3 . Algebraic Groups over Locally Compact Fields 107 

3.1. Topology and analytic structure . . . . . . . . . . . .  107 
3.2. The Archimedean case . . . . . . . . . . . . . . . .  118 
3.3. The non-Archimedean case . . . . . . . . . . . . . .  133 
3.4. Elements of Bruhat-Tits theory . . . . . . . . . . . .  148 
3.5. Results needed from measure theory . . . . . . . . . .  158 

Chapter 4 . Arithmetic Groups and Reduction Theory . . 171 

Arithmetic groups . . . . . . . . . . . . . . . . . .  171 
Overview of reduction theory: reduction in GL. (R) . . .  175 
Reduction in arbitrary groups . . . . . . . . . . . . .  189 
Grouptheoretic properties of arithmetic groups . . . . .  195 
Compactness of Gw/Gz . . . . . . . . . . . . . . .  207 
The finiteness of the volume of Gw/Gz . . . . . . . . .  213 
Concluding remarks on reduction theory . . . . . . . .  223 
Finite arithmetic groups . . . . . . . . . . . . . . .  229 

Printed in the United States of America 
9 3 9 4 9 5 9 6  BB 9 8 7 6 5 4 3 2 1 



Contents 

Chapter 5 . Adeles . . . . . . . . . . . . . . . . . . . .  243 

5.1. Basic definitions . . . . . . . . . . . . . . . . . . .  243 
5.2. Reduction theory for GA relative to GK . . . . . . . .  253 
5.3. Criteria for the compactness and the finiteness of volume 

. . . . . . . . . . . . . . . . . . . . .  of G A / G ~  260 
5.4. Reduction theory for S-arithmetic subgroups . . . . . .  266 

Chapter 6 . Galois cohomology . . . . . . . . . . . . . .  281 

6.1. Statement of the main results . . . . . . . . . . . . .  281 
6.2. Cohomology of algebraic groups over finite fields . . . . .  286 
6.3. Galois cohomology of algebraic tori . . . . . . . . . .  300 
6.4. Finiteness theorems for Galois cohomology . . . . . . .  316 
6.5. Cohomology of semisimple algebraic groups over local fields 

and number fields . . . . . . . . . . . . . . . . .  325 
6.6. Galois cohomology and quadratic, Hermitian, and other 

forms . . . . . . . . . . . . . . . . . . . . . . .  342 
6.7. Proof of Theorems 6.4 and 6.6. Classical groups . . . . .  356 
6.8. Proof of Theorems 6.4 and 6.6. Exceptional groups . . .  368 

Chapter 7 . Approximation in Algebraic Groups . . . . .  399 

7.1. Strong and weak approximation in algebraic varieties . . 399 
7.2. The Kneser-Tits conjecture . . . . . . . . . . . . . .  405 
7.3. Weak approximation in algebraic groups . . . . . . . .  415 
7.4. The strong approximation theorem . . . . . . . . . .  427 
7.5. Generalization of the strong approximation theorem . . .  433 

Chapter 8 . Class numbers and class groups of algebraic 
groups . . . . . . . . . . . . . . . . . . . .  439 

8.1. Class numbers of algebraic groups 
and number of classes in a genus . . . . . . . . . . .  439 

8.2. Class numbers and class groups of semisimple groups of 
noncompact type; the realization theorem . . . . . . .  450 

8.3. Class numbers of algebraic groups of compact type . . .  471 
8.4. Estimating the class number for reductive groups . . . .  484 

. . . . . . . . . . . . . . . . .  8.5. The genus problem 494 

contents vii 

9.3. The classical groups . . . . . . . . . . . . . . . . .  537 
9.4. Groups split over a quadratic extension . . . . . . . .  546 
9.5. The congruence subgroup problem (a survey) . . . . . .  553 

Appendix A . . . . . . . . . . . . . . . . . . . . . . . .  571 

. Appendix B Basic Notation . . . . . . . . . . . . . . .  579 

. . . . . . . . . . . . . . . . . . . . . .  Bibliography 583 

Index . . . . . . . . . . . . . . . . . . . . . . . . . .  609 

Chapter 9 . Normal subgroup structure of groups of ratio- 
nal points of algebraic groups . . . . . . . .  509 

9.1. Main conjectures and results . . . . . . . . . . . . .  509 
9.2. Groups of type A, . . . . . . . . . . . . . . . . . .  518 



Preface to the English Edition 

After publication of the Russian edition of this book (which came out 
in 1991) some new results were obtained in the area; however, we decided 
not to make any changes or add appendices to the original text, since that 
would have affected the book's balanced structure without contributing 
much to its main contents. 

As the editory fo the translation, A. Bore1 took considerable interest 
in the book. He read the first version of the translation and made many 
helpful comments. We also received a number of useful suggestions from 
G. Prasad. We are grateful to them for their help. We would also like to 
thank the translator and the publisher for their cooperation. 

V. Platonov 
A. Rapinchuk 

Preface to the Russian Edition 

This book provides the first systematic exposition in mathematical liter- 
ature of the theory that developed on the meeting ground of group theory, 
algebraic geometry and number theory. This line of research emerged fairly 
recently as an independent area of mathematics, often called the arithmetic 
theory of (linear) algebraic groups. In 1967 A. Weil wrote in the foreword 
to Basic Number Theory: "In charting my course, I have been careful to 
steer clear of the arithmetical theory of algebraic groups; this is a topic of 
deep interest, but obviously not yet ripe for book treatment." 

The sources of the arithmetic theory of linear algebraic groups lie in 
classical research on the arithmetic of quadratic forms (Gauss, Hermite, 
Minkowski, Hasse, Siegel), the structure of the group of units in algebraic 
number fields (Dirichlet), discrete subgroups of Lie groups in connection 
with the theory of automorphic functions, topology, and crystallography 
(Riemann, Klein, Poincark and others). Its most intensive development, 
however, has taken place over the past 20 to 25 years. During this period 
reduction theory for arithmetic groups was developed, properties of adele 
groups were studied and the problem of strong approximation solved, im- 
portant results on the structure of groups of rational points over local and 
global fields were obtained, various versions of the local-global principle 
for algebraic groups were investigated, and the congruence problem for 
isotropic groups was essentially solved. 

It is clear from this far from exhaustive list of major accomplishments 
in the arithmetic theory of linear algebraic groups that a wealth of impor- 
tant material of particular interest to mathematicians in a variety of areas 
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has been amassed. Unfortunately, to this day the major results in this 
area have appeared only in journal articles, despite the long-standing need 
for a book presenting a thorough and unified exposition of the subject. 
The publication of such a book, however, has been delayed largely due to 
the difficulty inherent in unifying the exposition of a theory built on an 
abundance of far-reaching results and a synthesis of methods from algebra, 
algebraic geometry, number theory, analysis and topology. Nevertheless, 
we finally present the reader such a book. 

The first two chapters are introductory and review major results of al- 
gebraic number theory and the theory of algebraic groups which are used 
extensively in later chapters. Chapter 3 presents basic facts about the 
structure of algebraic groups over locally compact fields. Some of these 
facts also hold for any field complete relative to a discrete valuation. The 
fourth chapter presents the most basic material about arithmetic groups, 
based on results of A. Bore1 and Harish-Chandra. 

One of the primary research tools for the arithmetic theory of algebraic 
groups is adele groups, whose properties are studied in Chapter 5. The pri- 
mary focus of Chapter 6 is a complete proof of the Hasse principle for simply 
connected algebraic groups, published here in definitive form for the first 
time. Chapter 7 deals with strong and weak approximations in algebraic 
groups. Specifically, it presents a solution of the problem of strong approx- 
imation and a new proof of the Kneser-Tits conjecture over local fields. 

The classical problems of the number of classes in the genus of quadratic 
forms and of the class numbers of algebraic number fields influenced the 
study of class numbers of arbitrary algebraic groups defined over a number 
field. The major results achieved to date are set forth in Chapter 8. Most 
are attributed to the authors. 

The results presented in Chapter 9 for the most part are new and rather 
intricate. Recently substantial progress has been made in the study of 
groups of rational points of algebraic groups over global fields. In this 
regard one should mention the works of Kneser, Margulis, Platonov, R a p  
inchuk, Prasad, Raghunathan and others on the normal subgroup structure 
of groups of rational points of anisotropic groups and the multiplicative 
arithmetic of skew fields, which use most of the machinery developed in 
the arithmetic theory of algebraic groups. Several results appear here for 
the first time. The final section of this chapter presents a survey of the 
most recent results on the congruence subgroup problem. 

Thus this book touches on almost all the major results of the arithmetic 
theory of linear algebraic groups obtained to date. The questions related 
to the congruence subgroup problem merit exposition in a separate book, 
to which the authors plan to turn in the near future. It should be noted 
that many well-known assertions (especially in Chapters 5, 6, 7, and 9) are 

presented with new proofs which tend to be more conceptual. In many in- 
stances a geometric approach to representation theory of finitely generated 
groups is effectively used. 

In the course of our exposition we formulate a considerable number of 
unresolved questions and conjectures, which may give impetus to further 
research in this actively developing area of contemporary mathematics. 

The structure of this book, and exposition of many of its results, was 
strongly influenced by V. P. Platonov's survey article, "Arithmetic theory 
of algebraic groups," published in Uspekhi matematicheskikh nauk (1982, 
No. 3, pp. 3-54). Much assistance in preparing the manuscript for print was 
rendered by 0 .  I. Tavgen, Y. A. Drakhokhrust, V. V. Benyashch-Krivetz, 
V. V. Kursov, and I. I. Voronovich. Special mention must be made of the 
contribution of V. I. Chernousov, who furnished us with a complete proof of 
the Hasse principle for simply connected groups and devoted considerable 
time to polishing the exposition of Chapter 6. To all of them we extend 
our sincerest thanks. 

V. P. Platonov 
A. S. Rapinchuk 



1. Algebraic number theory 

The first two sections of this introductory chapter provide a brief over- 
view of several concepts and results from number theory. A detailed expo- 
sition of these problems may be found in the works of Lang [2] and Weil [6] 
(cf. also Chapters 1-3 of ANT). It should be noted that, unlike such math- 
ematicians as Weil, we have stated results here only for algebraic number 
fields, although the overwhelming majority of results also hold for global 
fields of characteristic > 0, i.e., fields of algebraic functions over a finite 
field. In $1.3 we present results about group cohomology, necessary for 
understanding the rest of the book, including definitions and statements of 
the basic properties of noncommutative cohomology. Sections 1.4-1.5 con- 
tain major results on simple algebras over local and global fields. Special 
attention is given to research on the multiplicative structure of division al- 
gebras over these fields, particularly the triviality of the Whitehead groups. 
Moreover, in $1.5 we collect useful results on lattices over vector spaces and 
orders in semisimple algebras. 

The rest of the book presupposes familiarity with field theory, especially 
Galois theory (finite and infinite), as well as with elements of topological 
algebra, including the theory of profinite groups. 

1.1. Algebraic number fields, valuations, and completions. 
1.1.1. Arithmetic of algebraic number fields. Let K be an algebraic 
number field, i.e., a finite extension of the field Q, and OK the ring of 
integers of K.  OK is a classical object of interest in algebraic number the- 
ory. Its structure and arithmetic were first studied by Gauss, Dedekind, 
Dirichlet and others in the previous century, and continue to interest math- 
ematicians today. From a purely algebraic point of view the ring O = OK 
is quite straightforward: if [K : Q] = n, then O is a free Zmodule of 
rank n. For any nonzero ideal a c O the quotient ring O/a is finite; in 
particular, any prime ideal is maximal. Rings with such properties (i.e., 
noetherian, integrally closed, with prime ideals maximal) are known as 
Dedekind rings. It follows that any nonzero ideal a c O can be written 
uniquely as the product of prime ideals: a = pal . . . p a r .  This property is 
a generalization of t,he fundamental theorem of arithmetic on the unique- 
ness (up to associates) of factorization of any integer into a product of 
prime numbers. Nevertheless, the analogy here is not complete: unique 
factorization of the elements of O to prime elements, generally speaking, 
does not hold. This fact, which demonstrates that the arithmetic of O can 
differ significantly from the arithmetic of Z, has been crucial in shaping 
the problems of algebraic number theory. The precise degree of deviation 
is measured by the ideal class group (previously called the divisor class 
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group) of K .  Its elements are fractional ideals of K ,  i.e., 0-submodules a 
of K ,  such that xa c 0 for a suitable nonzero x in 0 .  Define the product 
of two fractional ideals a, b c 0 to be the 0-submodule in K generated 
by all xy, where x E a, y E b. With respect to this operation the set of 
fractional ideals becomes a group, which we denote Id(0),  called the group 
of ideals of K .  The principal fractional ideals, i.e., ideals of the form x 0  
where x E K*, generate the subgroup P ( 0 )  C Id(0) ,  and the factor group 
Cl(0) = Id(O)/P(O) is called the ideal class group of K .  A classic result, 
due to Gauss, is that the group Cl(0) is always finite; its order, denoted 
by hK, is the class number of K .  Moreover, the factorization of elements 
of 0 into primes is unique if and only if hK = 1. Another classic result 
(Dirichlet's unit theorem) establishes that the group of invertible elements 
of O* is finitely generated. These two facts are the starting point for the 
arithmetic theory of algebraic groups (cf. Preface). However generalizing 
classical arithmetic to algebraic groups we cannot appeal to ring-theoretic 
concepts, but rather we develop such number theoretic constructions as 
valuations, completions, and also adeles and ideles, etc. 

1.1.2. Valuations and completions of algebraic number fields. We 
define a valuation of K to be a function I 1, : K -, R satisfying the 
following conditions for all x, y in K:  

If we replace condition 3 by the stronger condition 

then the valuation is called non-archimedean; if not, it is archimedean. 
An example of a valuation is the. trivial valuation, defined as follows: 

1x1, = 1 for all x in K*, and 101, = 0. We shall illustrate nontrivial 
valuations for the case K = Q. The ordinary absolute value ( 1, is an 
archimedean valuation. Also, each prime number p can be associated with 
a valuation I I,, which we call the p-adic valuation. More precisely, writing 
any rational number a # 0 in the form pT . ,017, where r, ,B, 7 E Z and ,0 
and y are not divisible by p, we write lalp = p-' and 101, = 0. Sometimes, 
instead of the padic valuation I I,, it is convenient to use the corresponding 
logarithmic valuation v = up, defined by the formula v(a) = r and v(0) = 
-00, so that la[, = p-u(a). Axiomatically v is given by the following 
conditions: 

(1) v(x) is an element of the additive group of rational integers (or 
another ordered group) and v(0) = -00; 

We shall use both ordinary valuations, as well as corresponding logarithmic 
valuations, and from the context it will be clear which is being discussed. 

It is worth noting that the examples cited actually exhaust all the non- 
trivial valuations of Q. 

THEOREM 1.1 (OSTROWSKI) . Any non-trivial valuation of Q is equivalent 
either to the archimedean valuation I 1, or to a p-adic valuation I 1,. 

(Recall that two valuations I I l  and 1 l 2  on K are called equivalent if 
they induce the same topology on K; in this case I 11 = I 1; for a suitable 
real X > 0). 

Thus, restricting any non-trivial valuation I 1, of an algebraic number 
field K to Q, we obtain either an archimedean valuation I 1, (or its equiv- 
alent) or a padic valuation. (It can be shown that the restriction of a 
non-trivial valuation is always non-trivial.) Thus any non-trivial valuation 
of K is obtained by extending to K one of the valuations of Q. On the 
other hand, for any algebraic extension LIK,  any valuation I 1, of K can 
be extended to L, i.e., there exists a valuation I 1, of L (denoted wlv) 
such that 1x1, = lxlv for a11 x in K .  In particular, proceeding from the 
given valuations of Q we can obtain valuations of an arbitrary number field 
K.  Let us analyze the extension procedure in greater detail. To begin 
with, it is helpful to introduce the completion K, of K with respect to a 
valuation I I,. If we look at  the completion of K as a metric space with 
respect to the distance arising from the valuation I I,, we obtain a complete 
metric space K, which becomes a field under the natural operations and 
is complete with respect to the corresponding extension of I I,, for which 
we retain the same notation. It is well known that if L is an algebraic ex- 
tension of K, (and, in general, of any field which is complete with respect 
to the valuation I I,), then I 1, has a unique extension I 1, to L. Using 
the existence and uniqueness of the extension, we shall derive an explicit 
formula for I I,, which can be taken for a definition of I I,. Indeed, ( 1, 
extends uniquely to a valuation of the algebraic closure K,. It follows 
that la(x)l, = 1x1, for any x in K, and any a in Gal (K,/K,). Now let 
L/K, be a finite extension of degree n and 01, . . . , a, various embeddings 
of L in K, over K,. Then for any a in L and its norm NLIK(a) we have 

n n 
INLIK(a)lU = I n ui(a)l, = n lui(a)l, = lalz. As a result we have the 

i=l i=l 
following explicit description of the extension I 1, 
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Now let us consider extensions of valuations to a finite extension LIK,  
where K is an algebraic number field. Let I 1, be a valuation of K and 
I 1, its unique extension to the algebraic closure K, of K,. Then for any 
embedding T : L -+ K, over K (of which there are n, where n = [L : K]), 
we can define a valuation u over L, given by lxl, = 1r(x) I,, which clearly 
extends the original valuation I 1, of K .  In this case the completion L, 
can be identified with the compositum r(L)K,. Moreover, any extension 
may be obtained in this way, and two embeddings T I , T ~  : L + Kv give 
the same extension if they are conjugate over K,, i.e., if there exists X in 
Gal (Kv/Kv) with 72 = X r 1  . In other words, if L = K(a)  and f (t) is the 
irreducible polynomial of a over K ,  then the extensions I I,, , . . . , I I,,. of 
I 1, over L are in 1 : 1 correspondence with the irreducible factors of f over 
K,, viz. I 1,; corresponds to ri : L -+ K, sending a to a root of fi. Further, 
the completion LUi is the finite extension of K, generated by a root of fi. 
It follows that 

in particular [L : K] is the sum of all the local degrees [LUi : K,]. 
Moreover, one has the following formulas for the norm and the trace of 

an element a in L: 

Thus the set VK of all pairwise inequivalent valuations of K (or, to put 
it more precisely, of the equivalence classes of valuations of K)  is the union 
of the finite set V z  of the archimedean valuations, which are the extensions 
to K of I I,, the ordinary absolute value, on Q, and the set VfK of non- 
archimedean valuations obtained as extensions of the padic valuation I 1, 
of Q, for each prime numher p. The archimedean valuations correspond to 
embeddings of K in R or in C, and are respectively called real or complex 
valuations (their respective completions being R or C). If v E VZ is a real 
valuation, then an element a in K is said to be positive with respect to v 
if its image under v is a positive number. Let s (respectively t)  denote the 
number of real (respectively pairwise nonconjugate complex) embeddings 
of K .  Then s + 2t = n is the dimension of L over K .  

Non-archimedean valuations lead to more complicated completions. To 
wit, if v E VfK is an extension of the padic valuation, then the completion 

K, is a finite extension of the field Q, of padic numbers. Since Qp is a 
locally compact field, it follows that K, is locally compact (with respect 
to the topology determined by the valuation).' The closure of the ring of 
integers 0 in K, is the valuation ring 0, = {a E K, : lal, 5 l), sometimes 
called the ring of v-adic integers. 0, is a local ring with a maximal ideal 
pv = { a E K, : la[, < 1 ) (called the valuation ideal) and the group of 
invertible elements U, = 0, \ p, = { a  E K, : lal, = 1) .  It is easy to 
see that the valuation ring of Q, is the ring of padic integers Z,, and 
the valuation ideal is pZ,. In general 0, is a free module over Z,, whose 
rank is the dimension [K, : Q,], so 0, is an open compact subring of K,. 
Moreover, the powers p i  of p, form a system of neighborhoods of zero in 
0,. The quotient ring k, = O,/p, is a finite field and is called the residue 
field of v. p, is a principal ideal of 0,; any of its generators .rr is called a 
uniformizing parameter and is characterized by v ( ~ )  being the (positive) 
generator of the value group r = v(K,*) - Z. Once we have established 
a uniformizing parameter .rr, we can write any a in K,* as a = .rrru, for 
suitable u E U,; this yields a continuous isomorphism K,* E Z x U,, given 
by a H (r,u), where Z is endowed with the discrete topology. Thus, to 
determine the structure of K,* we need only describe U,. It can be shown 
quite simply that U, is a compact group, locally isomorphic to 0,. It 
follows that U, - F x Z:, where n = [K, : Q,], and F is the group of all 
roots of unity in K,. Thus K,* E Z x F x Z:. 

Two important concepts relating to field extensions are the ramification 
index and the residue degree. We introduce these concepts first for the 
local case. Let Lw/Kv be a finite n-dimensional extension. Then the value 
group I?, = v(K,*) has finite index in I?, = w(LL), and the corresponding 
index e(wlv) = [r, : I?,] is called the ramification index. The residue field 
1, = 0Lw/!$3Lw for L, is a finite extension of the residue field k,, and 
f(wJv) = [l, : k,] is the residue degree. Moreover e(w1v) f (wlv) = n. An 
extension for which e(wlv) = 1 is called unramified and an extension for 
which f (wlv) = 1, is called totally ramified. 

Now let L/K be a finite n-dimensional extension over an algebraic num- 
ber field. Then for any valuation v in v ~ K  and any extension w to L, the 
ramification index e(wlv) and residue degree f (wlv) are defined respec- 
tively as the ramification index and residue degree for the extension of the 
completions L,/K,. (One can also give an intrinsic definition based on 

Henceforth completions of a number field with respect to non-trivial valuations are 
called local fields. It can be shown that the class of local fields thus defined coincides 
with the class of non-discrete locally compact fields of characteristic zero. We note also 
that we shall use the term local field primarily in connection with non-archimedean 
completions, and to stress this property will say non-archimedean local field. 
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the value groups f', = v(K*), f', = w(L*) and the residue fields 

where OK(V), OL(W) are the valuation rings of v and w in K and L, and 
p ~ ( v ) ,  !J~L(w) are the respective valuation ideals, but in fact r, = I',, - - - 
I', = I',, k, = k, and 1, = I,.) [L, : K,] = e(w1v) f (wlv). Thus, if 
wl, . . . , w, are all the extensions of v to L, then 

Generally speaking e(wilv) and f (wilv) may differ for different i, but 
there is an important case when they are the same; namely, when LIK 
is a Galois extension. Let G denote its Galois group. Then all extensions 
wl, .  . . , w, of v to L are conjugate under G, i.e., for any i = 1,.  . . , r  
there exists ai in G such that wi(x) = wl(ai(x)) for all x in L. It follows 
that e(wi(v) and f (wilv) are independent of i (we shall write them merely 
as e and f ) ;  moreover the number of different extensions r is the index 
[G : O(wl)] of the decomposition group G(w1) = {a E G : wl(ax) = wl(x) 
for all x in L). Consequently e f r  = n, and G(w1) is the Galois group of 
the corresponding extension L,, / K, of the completions. 

1.1.3. Unramified and totally ramified extension fields. 
Let v E v ~ K  and assume the associated residue field k, is the finite field 

Fq of q elements. 

PROPOSITION 1.1. For any integer n 2 1 there exists a unique unramified 
n-dimensional extension LIK,. It is generated over K, by all the (qn - 1)- 
roots of unity, and therefore is a Galois extension. Sending a E Gal(L/K,) 
to the corresponding a E Gal(l/k,), where 1 1. Fqn is the residue field of 
L, induces an isomorphism of the Galois groups Gal(L/K,) 1. Gal(Z/k,). 

In defining a corresponding to u E Gal(L/K,) we note that the valuation 
ring OL and its valuation ideal pL are invariant under a and thus a induces 
an automorphism 13 of the residue field 1 = OL/QL. Note further, that 
Gal(l/k,) is cyclic and is generated by the F'robenius automorphism given 
by q(x) = xQ for all x in k,; the corresponding element of Gal(L/K,) is 
also called the F'robenius automorphism (of the extension LIK,) and is 
written as F'r(L/K,). 

The norm properties of unramified extensions give 

PROPOSITION 1.2. Let L/K, be an unrarnified extension. Then U, = 
NL/K(UL); in particular U, C NLI~,(L*) .  

PROOF: We base our argument on the canonical filtration of the group of 
units, which is useful in other cases as well. Namely, for any integer i 2 1 
let u:) = 1 + pk and u!) = 1 +Ti. It is easy to see that these sets 
are open subgroups and actually form bases of the neighborhoods of the 
identity in U, and UL respectively. We have the following isomorphisms: 

(The first isomorphism is induced by the reduction modulo p, map a H a 
(mod p,); to obtain the second isomorphism we fix a uniformizing param- 
eter a of K,, and then take 1 + r i a  H a (mod p,). 

Similarly 

Since LIK, is unramified, 7r is also a uniformizing parameter of L, and 
in what follows we shall also be assuming that the second isomorphism 
in (1.5) is defined by means of a .  For a in UL we have (with bar denoting 
reduction modulo p L )  

N ~ / ~ v  (a) = n a )  = n .(a) = Nllk, (a). 

Thus the norm map induces a homomorphism U L / U ~ )  + u,/u;~), 
which with identifications (1.4) and (1.5) is Nllk,. Further, for any i 2 1 
and any a in OL we have 

N~/n, ( l+a 'a)  = n o( l+r ia )  = l+ai TrLIK, (a) (mod !J3:+')). 
uEGal(L/K,) 

(i+l) u p / u t + l )  It follows that NLjK, induces homomorphisms U:)/UL 7 

which with identifications (1.4) and (1.5) is the trace map TrlIkv . But the 
norm and trace are surjective for extensions of finite fields; therefore the 
group W = N L / ~ " ( U L )  satisfies U, = WU;') for all i > 1. Since ULi) form 
a base of neighborhoods of identity, the above condition means that W 
is dense in U,. On the other hand, since UL is compact and the norm is 
continuous, it follows that W is closed, and therefore W = U,. Q.E.D. 

The proof of Proposition 2 also yields 

COROLLARY. If L/K, is an unramified extension, then NLIK, (@)) = ULi) 
for any integer i 2 1. 
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We need one more assertion concerning the properties of the filtration in 
the group of units under the norm map, in arbitrary extensions. 

PROPOSITION 1.3. For any finite extension L/Kv we have 

(1) u;') n NL/K,, (L*) = NL/K~ ((if)); 
(2) if e is the ramification index of LIK,, then for any integer i 2 1 we 

have NL,K, (u!)) C u;'), where j is the smallest integer 2 i/e. 

PROOF: We begin with the second assertion. Let M be a Galois extension 
of K, containing L. Then for a in L, NLIK(a) = n a(a), where the product 

u 
is taken over all embeddings a : L -t M over K,. Since in the local case v 
extends to a unique valuation w on L, it follows that w(a) = w(a(a)) for 
any a in L and any a ;  in particular, if we choose a uniformizing parameter 
XL in L we have a ( rL)  = nLbU for suitable bu in UM. It follows that for 
a = 1 + 7ric E u!) we have 

But from our definition of the ramification index we have pvOL = vL, 
so that 7riOM n K, = 7 r i O ~  n K, = !J.Vi n 0, c pj, (where j is cho- 
sen as indicated in the assertion) and NLIKu(a) E u;'). In particular 

NL/K,(u~))  C UL1); therefore to prove the first assertion we must show 

that UL1) n NLIKu (L*) c NLlKU ((if)). Let a E L* and NLjKv (a) E (iL1). 

Then (1.1) implies a E UL. Isomorphism (1.5) shows that Uf) is a maxi- 
mal pro-psubgroup in UL for the prime p corresponding to the valuation 
v, from which it follows that UL 2. (iL/Uf) x u;). In particular, a = bc 
where c E UP' and b is an element of finite order coprime to p. We have 

d = NLIKu(b) = NLIK,,(a)NLIKU(~)-l E UL1). Any element of finite order 

taken from uL') has order a power of p; on the other hand, the order of d 
is a divisor of the order of b and hence is coprime to p. Thus d = 1 and 

NL~K,,  (a) = N L / K ~  (c) E N L / K ~  ([I;)). Q.E.D. 

Now we return to the unramified extensions of K,. It can be shown 
that the composite of unramified extensions is unramified; hence there 
exists a maximal unramified extension K y  of K,, which is Galois, and 
Gal(K,n'/K,) is isomorphic to the Galois group Gal(k,/k,) of the alge- 
braic closure of the residue field k,, i.e., is isomorphic to 2, the profinite 
completion of the infinite cyclic group whose generator is the Frobenius 
automorphism. 

Let L/K be a finite extension of a number field K. We know that 
almost all valuations v in v ~ K  are unramified in K,  i.e., the corresponding 
extension of the completions L,/K, is unramified for any wlv; in particular, 
the F'robenius automorphism R(L,/K,) is defined. If LIK is a Galois 
extension, then, as we have noted, Gal(L,/K,) can be identified with 
the decomposition group G(w) of the valuation in the Galois group 8 = 
Gal(L/K), so F'r(Lw/Kv) may be viewed as an element of 6. 

We know that any two valuations w1, w2 extending v are conjugate under 
8, from which it follows that the F'robenius automorphisms F'r(L,/K,) 
corresponding to all extensions of v form a conjugacy class F(v) in 8 .  But 
does this produce all the conjugacy classes in 8 ?  In other words, for any a 
in 8 is there a valuation v in VfK such that for suitable wJv the extension 
Lw/Kv is unramified and F'r(L,/K,) = o? 

THEOREM 1.2 (CHEBOTAREV) . Let L/ K be a finite Galois extension with 
Galois group 8. Then, for any a in 8 there are infinitely many v in VfK such 
that for suitable wlv the extension Lw/Kv is unramified and F'r(L,/K,) = 
a .  In particular, there exist infinitely many v such that L, = K,, i.e., 
L c K,. 

Actually Chebotarev defined a quantitative measure (density) of the set 
of v in v ~ K  such that the conjugacy class F(v) is a given conjugacy class 
C c 8 .  The density is equal to [C] / [G] (and the density of the entire set VfK 
is thereby 1). Therefore, Theorem 1.2 (more precisely, the corresponding 
assertion about the density) is called the Chebotarev Density Theorem. For 
cyclic extensions of K = Q it is equivalent to Dirichlet's theorem on prime 
numbers in arithmetic progressions. We note, further, that the last part of 
Theorem 1.2 can be proven indirectly, without using analytical methods. 

Using geometric number theory one can prove 

THEOREM 1.3 (HERMITE). If K/Q is a finite extension, unramified rel- 
ative to all primes p (i.e., K,/Q, is unramified for all p and all vlp), then 
K = Q. 

We will not present a detailed analysis of totally ramified extensions 
(in particular, the distinction between weakly and strongly ramified exten- 
sions) at this point, but will limit ourselves to describing them using Eisen- 
stein polynomials. Recall that a polynomial e(t) = tn+an-ltn-'+. . .+ao E 
K,[t] is called an Ezsenstezn polynomial if ai E p, for all i = 0,.  . . , n - 1 
and a" $ p:. It is well known that an Eisenstein polynomial is irreducible 
in K, [t] . 

PROPOSITION 1.4. If II is the root of an Eisenstein polynomial e(t), then 
L = K,[II] is a totally ramified extension of K, with uniformizing param- 
eter II. Conversely, if LIK, is totally ramified and II is a uniformizing 
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parameter of L then L = K,[II] and the minimal polynomial of II over K, 
is an Eisenstein polynomial. 

COROLLARY. If LIK, is totally ramified, then NLIK, (L*) contains a uni- 
formizing parameter of K,. 

The ramification groups Qi (i > 0), subgroups of Q, are helpful in study- 
ing ramification in a Galois extension LIK with Galois group Q. If wlv, 
then by definition Q0 is the decomposition group Q(w) of w, which can be 
identified with the local Galois group Gal(L,/K,). Next, 

Q(l) = { D  E Q(O) : a(a) = a (mod PL,) for all a E OL, ) 

is the inertia group. It is the kernel of the homomorphism Gal(L,/K,) + 

Gal(1, /k,) sending each automorphism of L, to the induced automorphism 
of 1,. Therefore Q(') is a normal subgroup of Q(O) and by the surjectivity 
of the above homomorphism Q(O)/Q(') -. Gal(l,/k,). Moreover, the fixed 
field E = L$"' is the maximal unramified extension of K, contained in 
L,, and L,/E is completely ramified. The ramification groups are defined 
as follows: ~ ( ~ 1  = {a E Q(O) : a(a) - a (mod FL,)). They are normal 
in and ~ ( ~ 1  = { e )  for suitably large i. Furthermore, the factors 
G(~) /Q(~+ ' )  for i 2 1 are pgroups where p is the prime corresponding to 
v. Note that the groups Q(i) = ~ ( ~ ) ( v )  thus defined are dependent on 
the particular extension wlv and for other choice of w would be replaced 
by suitable conjugates. In particular, the fixed field Lx of the subgroup 
'H c Q generated by the inertia groups Q(l)(w) for all extensions wlv, is 
the maximal normal subextension in L which is unramified with respect to 
all valuations extending v. 

1.2. Adeles and ideles; strong and weak approximation; the local- 
global principle. 

An individual valuation v in VfK does not have a significant effect on the 
arithmetic of K .  However when several valuations are considered together 
(for example, when taking the entire set VK), we are led to important 
insights in the arithmetic properties of K .  In this section we introduce 
constructions which enable us to study all the completions of K simulta- 
neously. 

1.2.1. Adeles and ideles. The set of adeles AK of the algebraic number 
field K is the subset of the direct product n K, consisting of those 

VEVK 

x = (2,) such that x, E 0, for almost all v in v ~ K  AK is a ring with respect 
to the operations in the direct product. We shall introduce a topology 
on AK; namely, the base of the open sets consists of sets of the form 

n Wv x n O,, where S c vK is a finite subset containing V: and 
v E S  v€VK\S 
W, c K, are open subsets for each v in S. (This topology, called the adele 
topology, is stronger than the topology induced from the direct product 
n K,.) AK is a locally compact topological ring with respect to the 

vEVK 

d e l e  topology. For any finite subset S c VK containing V: the ring of 
S-integral adeles is defined: AK(S) = n K, x n 0,; if S = V: then 

v E S  v @ S  
the corresponding ring is called the ring of integral adeles and is written 
AK(oo). It is clear that AK = US AK(S), where the union is taken over 
all finite subsets S c vK containing v:. It is easy to show that for any a 
in K and almost all v E VfK we have lal, 5 1, i.e., a E 0,. If a E K*, then 
applying this inequality to a-I actually yields a E U, for almost all v E v ~ K .  
Below we shall use the notation V(a) = {v E v ~ K  : a 4 U,). It follows 
that there exists a diagonal embedding K -+ AK, given by x H (x, x, . . . ), 
whose image is called the ring of principal adeles and can be identified with 
K. 

PROPOSITION 1.5. The ring of principal adeles is discrete in AK. 

Note that since O = n ( K  n O,), the intersection K n AK(OO) is 
v E V F  

the ring of integers 0 c K ;  thus to prove our proposition it suffices to 
establish the discreteness of O in n K, = K @q R. Let XI , .  . . , x, be a 

VEVZ 

Zbase of O which is also a Q-base of K ,  and consequently also an R-base 
of K @Q R. O is thereby a Zn-lattice in the space K @Q I%, and the desired 
discreteness follows from the discreteness of Z in R. (Incidentally, we note 
that K n AK(S) (where S > v , )  is the ring of S-integers 

O(S) = { x  E K : 1x1, I 1 for all v E vK \ S), 

and moreover O(V5) is the usual ring of integers 0 . )  
The multiplicative analog of adeles is ideles of K ,  the set JK which, by 

definition, consists of x = (x,) E n K,*, such that x, E U, for almost 
,EVK 

all v in VfK. JK is clearly a subgroup of the direct product; moreover, 
JK actually is the group of invertible elements of AK. We note, however, 
that JK curiously is not a topological group with respect to the topology 
induced from AK (taking the inverse element is not a continuous operation 
in this topology.) The "proper" topology on JK is induced by the topology 
on AK x AK with the embedding JK + AK x AK, x H (x, x-I). Explicitly, 
this topology can be given via a base of open sets, which consists of sets of 
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the form n W, x n U, where S c vK is a finite subset containing 
v E S  vEVK\S 

VE and W, c K,* are open subsets for v in S .  This topology, called the 
idele topology, is stronger than the induced d e l e  topology, and with respect 
to it JK is a locally compact topological group. (One cannot help but note 
the analogy between adeles and ideles. Indeed, both concepts are special 
cases of adeles of algebraic groups and of the more general construction 
of a bounded topological product, which we shall look at in Chapter 5). 
The analogy between adeles and ideles can be taken further. For any finite 
subset S c vK containing V z ,  the group of S-integral ideles is defined: 
JK(S) = n K,* x n U,, which for S = V z  is called the group of integral 

v E S  v v  

ideles and is denoted by JK(w) .  AS we have noted, if a E K*, then 
a E U, for almost all v, and consequently we have the diagonal embedding 
K *  + JK, whose image is called the group of principal ideles. 

PROPOSITION 1.6. The group of principal ideles is discrete in JK.  

The assertion follows from Proposition 1.5 and the fact that the induced 
d e l e  topology on JK is weaker than the idele topology. 

An alternate proof may be presented using the product formula, which 
asserts that n laltv = 1 for any a in K*, where vK consists of the 

VEVK 

extensions of the valuations 1 J p  and 1 1, of 0, and n, = [K, : Qp] (re- 
spectively n, = [K, : R]) is the local dimension with respect to the p 
adic (respectively, Archimedean) valuation v. The product formula can be 
stated more elegantly as n llall, = 1, introducing the normalized valu- 

vEVK 
ation JJaJJ ,  = JaJtu. This defines the same topology on K as the original 
valuation I I,, and actually 1 1  11, is a valuation equivalent to I I,, except 
for the case where v is complex. For non-Archimedean v the normalized 
valuation admits the following intrinsic description: if .rr E K, is a uni- 
formizing parameter, then ll.rr11, = qP1, where q is the number of elements 
of the residue field k,. 

Now let us return to Proposition 1.6. For Archimedean v we shall let 
W, = {x E K,* : Ilx - 111, < i) and shall show that the neighborhood of 
the identity R = n W, x n U, satisfies R n K*  = (1). Indeed, if a E 

v € V ~  VEVF 
RnK*anda#l , thenwewouldhave n Ila-lllv< n i. n 1 < 1 ,  

v € V K  v€V,K ,€VfK 

which contradicts the product formula. 
Using normalized valuations we can define a continuous homomorphism 

JK 4 R+, given by (2,) H n llxV)),, whose kernel J i  is called the group 
N -.  

of special ideles. (Note, that by the product formula Jf( > K*.) Since K 

is discrete in AK and K*  is discrete in JK, naturally the question arises 
of constructing fundamental domains for K in AK and for K* in JK. We 
shall not explore these questions in detail at this point (cf. Lang [2], ANT), 
but will consider them later, more generally, in connection with arbitrary 
algebraic groups. Let us note only that the factor spaces AK/K and J k / K *  
are compact, but JK/K* is not. 

Let us state the fundamental isomorphism from the group JK/JK(w)K* 
to the ideal class group Cl(K) of K .  We can describe it as follows. First, 
establish a bijection between the set v ~ K  of non-Archimedean valuations 
of K and the set P of non-zero prime (maximal) ideals of 0, under which 
the ideal p (v) = 0 n p, corresponds to v. Then the ideal i (x) = n p (v) 

,€VfK 

corresponds to the idele x = (x,). (Note that since x E JK, v(x,) = 0 for 
almost all v in v ~ K ,  so the product is well-defined.) Moreover, the power 
pa of p for a negative integer a is defined in the group Id(K) of fractional 
ideals of K (cf. 51.1, f 1). From the theorem that any fractional ideal in K 
(as well as any non-zero ideal in 0 )  uniquely decomposes as the product 
of powers of prime ideals it is easy to see that i : x H i(x) is a surjection 
of JK onto Id(K), whose kernel is the group JK(w) of integral ideles. In 
view of the fact that i(K*) is the group of principal fractional ideals, i 
induces the requisite isomorphism JK/JK(w)K* N Cl(K). In particular, 
the index [JK : JK(w)K*] is the class number hK of K. This observation 
is fundamental to the definition of the class number of algebraic groups (cf. 
Chapter 8). 

1.2.2. Strong and weak approximation. We shall need truncations 
AK,s of d e l e  rings, where S is a finite subset of vK, which we define 
as the image of A = AK under the natural projection onto the direct 
product n K,. For any finite subset T c vK containing S, we shall let 

4 s  
AKJ(T) denote the image of the ring of T-integral adeles AK(T) in AK,s. 
TO simplify the notation we shall write respectively As,As(T) instead of 

. AK,s,AK,s(T) when the field is clear from the context. In particular, for 
S = V z  the ring A K , V ~  will be written as Af and called the ring of 
finite adeles. A topology is introduced on As in the obvious way: for the 
base of open sets we take the sets of the form n W, x n O,, where 

VET v ~ S U T  
T c vK \ S is a subset, and W, is an open subset of K, for each v in T. 
We have A = Ks x As for Ks = n K,. Ks is given the direct product 

v E S  
topology, and then A is the product of the topological rings K s  and As. 
Moreover, the diagonal embedding of K in A is the product of the diagonal 
embeddings in Ks and As respectively. 

It is worth noting that although the image of the diagonal embedding of 
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K in A is discrete, each embedding K -+ Ks, K + As is dense. 

THEOREM 1.4 (WEAK APPROXIMATION). The image of K under the 
diagonal embedding is dense in Ks. 

THEOREM 1.5 (STRONG APPROXIMATION). If S # 0 then the image of 
K under the diagonal embedding is dense in As. 

Theorem 1.4 holds for any field K and any finite set S of inequivalent 
valuations; but, in contrast, Theorem 1.5 (and all concepts pertaining to 
adeles) is meaningful only for number fields (or, more generally, global 
fields). To elucidate the arithmetic meaning of Theorem 1.4 let us analyze 
in detail the case where K = Q and S = {oo). Since, for any adele x E 
Af = AQ,s we can select an integer m such that mx E Af(oo), we actually 
need only show that Z is densely embedded in the product Af (oo) = n Z p .  

P 

Any open subset of Af (oo) contains a set of the form 

where {pi, . . . , p,) is a finite collection of prime numbers, cui > 0 are in- 
tegers, and ai E Z. Then asking whether Z n W is non-empty is the 
same as asking whether the system of equivalences x = ai (mod p:*) 
(i = 1,2, . . . , r )  is solvable, and, by the classic Chinese remainder the- 
orem, it is. Thus, in the given case the strong approximation theorem 
is equivalent to the Chinese remainder theorem. In Chapter 7 we shall 
examine weak and strong approximation for algebraic groups. 

1.2.3. The local-global principle. Investigating arithmetic questions 
over local fields is considerably simpler than the original task of looking at 
them over number fields. This naturally brings us to the question under- 
lying the local-global method: when does the fact that a given property 
is satisfied over all completions K, of a number field K mean that it is 
satisfied over K?  One of the first results in this area is the classical 

THEOREM 1.6 (MINKOWSKI-HASSE). Let f = f (xi, . . . , x,) be a non- 
degenerate quadratic form over an algebraic number field K .  I f f  is iso- 
tropic2 over all completions K,, then f is isotropic over K as well. 

The assertion on the feasibility of moving from local to global in a given 
case is called the local-global, or Hasse, principle. The local-global princi- 
ple pervades the arithmetic theory of algebraic groups, and various of its 
aspects will come up time and again throughout the book. One should 

i.e., f (zl,. . . ,x,) = 0 has a non-trivial solution. 

not, however, think that the local-global principle for homogeneous forms 
always holds. We shall conclude this section with a classic example. 

First let us point out several aspects of the connection between the d e l e  
ring AK of K and the adele ring AL of a finite extension L of K .  There 
exists a natural isomorphism AK @ L N AL in both the algebraic and the 
topological sense. This isomorphism is obtained from the local isomor- 
phisms (1.2), K, @K L N n[ L,, and we need only note that for almost all 

w Iv 
v in VfK these isomorphisms yield 0, @OL -. n Ow. Further, the formulas 

wb 
in (1.3) show that the norm and trace maps NLIK and nLlK extend to 
maps NLIK : AL -+ AK and nLIK : AL + AK by the formulas 

w Iv 

~ L / K  ((xw)) = ( (CnLw/Kw(xw))v) .  
wlv 

We can easily verify that the norm map NLIK thus obtained induces a 
continuous homomorphism of idele groups, N L I ~  : JL -+ JK.  The Hasse 
norm principle is said to be satisfied for the extension LIK if 

NL/K(JL) n K* = NL/K(L*). 

By Proposition 1.2 for almost all v in v ~ K  any element a in K *  belongs to 
U, and Lw/K, is unramified, hence the condition a E N L I K ( J ~ )  is actually 
equivalent to a E N L I K ( n  L;) = NLIK((L @K Kv)*) for all v in VfK. In 

4, 
the language of algebraic geometry, this means that for all v in vK there 
is a solution over all K, for the equation f (xl , .  . . , x,) = a, where f is the 
homogeneous polynomial of degree n describing the norm of an element x 
in terms of its coordinates X I , .  . . , x, with respect to a given base of LIK;  
and the validity of the Hasse norm principle in this case means that there 
is a solution over K .  (It would be incorrect to formulate the norm principle 
as a E NLIK(L*) * a E NLWIK, (Lk) for all v and all wlv, since in 
general NLIK(L*) < NLwIKv (L*) when L/K is not a Galois extension.) 

Hasse's norm theorem (cf. Hasse [I], also the corollary of Theorem 6.11) 
states that the norm principle holds for cyclic Galois extensions. On the 
other hand, it has been found that the norm principle is not satisfied for 
K = Q, L = Q ( 0 ,  m), i.e., when L/K is an abelian Galois extension 
with Galois group of type (2,2). To be more precise, by a simple compu- 
tation with Hilbert symbols (cf. ANT, ex. 5.3) it can be shown that S2 is 
a local norm at each point, but is not a global norm. (We shall return to 
the Hasse norm principle in Chapter 6 ,  56.3.) 
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1.3. Cohomology. 

1.3.1. Basic concepts. By and large the formalism of cohomology is not 
used extensively in this book. A major exception, however, is the Galois 
cohomology of algebraic groups over local and global fields, to which we 
devote all of Chapter 6. This subject, as a rule, is not handled in most 
courses on cohomological algebra, since it is based on noncommutative 
cohomology, whose definition and fundamental properties will be discussed 
later. For the time being we shall mention some essential properties of 
ordinary (commutative) cohomology, the proof of which may be found in 
Cartan-Eilenberg [I], Serre [2], Brown [I], as well as Chapter 4 of ANT. 

Let A be an abelian group on which G acts by automorphisms (so-called 
G - g r ~ u ~ ) ~ .  This determines a family of abelian groups {Hi(G,A))i>o 
called the cohomology grozlps of G with coefficients in A. Namely, define 
HO(G,A) = to be the subgroup of fixed points of A under G. To 
define higher cohomology groups we consider the groups Ci(G, A) of all 
functions f:  Gi + A, called cochains, (also CO(G, A) = A) and introduce 
the coboundary operators di: Ci(G, A) + Ci+l (G, A) by 

Then Hi  (G, A) = ker di/ im di-1, where the elements of ker di = Zi (G, A) 
are the cocycles and the elements of imdiPl = Bi(G, A) are the cobound- 
aries. A fundamental property of cohomology groups is that they produce 
a cohomological resolution of the fixed point functor F(A) = HO(G, A). 
This means that if 0 -+ A -+ B + C -+ 0 is an exact sequence of G-groups 
and G-homomorphisms (i.e., homomorphisms that commute with G), then 
there exist connecting homomorphisms 6: Hi(G, C) -+ H~+'  (G, A) such 
that the sequence 

is exact. (The remaining homomorphisms are induced naturally by the 
homomorphisms 0 -+ A -+ B -+ C -+ 0.) 

Frequently we shall also use the term G-module, since assigning to A the structure of a 
G-group is equivalent to assigning to A the structure of a module over the integer group 
ring Z[G]. 

Cohomology groups of small dimension have simple interpretations. For 
example, H1(G, A) is the quotient group of the group of skew homomor- 
phisms f:  G -+ A satisfying f (glgp) = f (gl) + gl f (g2), modulo the sub- 
group consisting of maps of the form f (g) = ga - a for some a in A. In 
particular, if G acts trivially on A, then H1 (G, A) = Hom(G, A). On the 
other hand, if G = (a) is a cyclic group of degree n, then for any G-group 
A we have H1 (G, A) = Ao/Al, where A. is the kernel of the operator 
Tr a = a + ga  + . . . + an-'a, and A1 is the subgroup consisting of elements 
of the form a a  - a. 

H2(G, A) is the quotient group of the group of factor sets f :  G x G + A, 
satisfying 

modulo the subgroup of trivial factor sets, consisting of functions of the 
form 

f (g1,92) = cp(g192) - cp(g1) - glcp(g2) 
for a suitable function cp: G -+ A. Factor sets arise in the theory of group 
extensions E of G by A, i.e., of exact sequences 

Using them we can establish that the elements of H2(G, A) are in one- 
to-one correspondence with the isomorphism classes of extensions inducing 
the prescribed action of G on A. In particular, if G acts trivially on A, then 
H2(G, A) parametrizes the central extensions of G by A. In Chapter 9 we 
shall encounter the groups H2(G, J ) ,  where J = Q/Z, which are called the 
Schur multipliers. In this connection we point out several straightforward 
assert ions. 

(1) Let 1 -+ J -+ E 4 G -+ 1 be a ceptral extension. Then for any two 
commuting subgroups A, B c G, the map cp: A x B + J given by 
cp(a,b) = [6,6], where6 E @-'(a), b E Q-'(b) and [z,y] = ~ ~ x - ~ y - ' ,  
is well-defined and bimultiplicative. 

(2) If G is a finitely generated abelian group, then 1 + J + E + G + 1 
is trivial if and only if E is abelian. In particular, if G is cyclic then 
H2(G, J )  = 0. 

The first assertion can be proven by direct computation. The proof 
of the second assertion relies on the divisibility of J and the fact that a 
quotient group of an abstract group by its center cannot be a non-trivial 
cyclic group. 

We also need to compute H~(S,, J )  for the symmetric group S,. 



Chapter 1. Algebraic number theory 1.3. Cohomology 19 

(1) If n 5 3 then for any subgroup H of Sn we have H2(H, J )  = 0; 
(2) if n 2 4 then H2(Sn, J )  has order 2 and for any subgroup C C 

Sn generated by two disjoint transpositions, the restriction map 
H2(Sn, J )  -+ H2 (C, J )  is an isomorphism. 

PROOF: For any finite G and any prime number p dividing the order of G, 
the ppart  of Hi(G, A) is isomorphic to Hi(Gp, A) for each i 2 1, where 
Gp is the Sylow psubgroup of G (cf. ANT, Ch. 4, 96). Therefore assertion 
(1) follows Lemma 1.1 (2) and the fact that for n 5 3 all Sylow subgroups 
of Sn are cyclic. 

The fact that H2(Sn, J )  has order 2 for n 2 4 was discovered by Schur [l] 
(cf. also Huppert [I]). Clearly H 2  (C, J )  has order 2. Therefore it suffices 
to find a cocycle a in H2(Sn, J )  whose restriction to C is non-trivial. We 
can construct it as follows: consider the abstract group S, with generators 
a, ri(i = 1, . . . , n - 1) and relations 

Since Sn is generated by the transpositions (i, i + 1), for i = 1, .  . . , n - 1, 
with the determining set of relations of the form 

e 
(cf. Huppert [I]), there exists a unique homomorphism sn -+ Sn such that 
O(a) = 1, O(ri) = ( i , i  + 1). It follows from (1.7) and (1.8) that ker6 is 
in the center of S, and is the cyclic group of order 2 generated by a .  We 
set a equal to $ + Z E Q/Z and let a denote the cocycle in H2(Sn, J )  

- e corresponding to the extension Sn -+ Sn. In other words, consider an 
arbitrary section cp: Sn -+ S, and let 

Replacing C by a conjugate, we can view C as generated by the trans- 
positions (12) and (34). If the restriction of a to C were trivial, then by 
Lemma 1.1 (2), 6-' (C) must be abelian. However [cp ((l,2)), (p ((3,4))] = 
[TI, r2] = u # 1. Q.E.D. 

Of the higher cohomology groups we shall only encounter the groups 
H3(G, Z), where G is a finite group operating trivially on Z, which arises 
when we study obstructions to the Hasse principle (cf. 96.3). However, as 
the following result shows, their computation reduces to the computation 
of H ~ ( G ,  J). 

LEMMA 1.3. Let G be a fim'te group. Then there exists a natural isomor- 
phism H3(G, Z) - H2(G, J )  of cohomology groups when the action of G is 
trivial. 

Indeed, it is well known (cf. ANT, Ch. 4, 86) that the cohomology groups 
Hi(G, A) are annihilated by multiplication by IGI. Since the additive group 
Q is uniquely divisible, it follows that Hi(G, Q) = 0 for all i 2 1. Thus the 
exact sequence 0 -+ Z -+ Q -+ J -+ 0 yields the exact sequence 

0 = H 2  (G, Q) -+ H 2  (G, J )  -+ H3 (G, Z) -+ H3 (G, Q) = 0, 

which in turn yields the necessary result. 

Clearly Hi(G, A) is a functor in the second argument: any G-homo- 
morphism of abelian G-groups f :  A -+ B yields a corresponding homomor- 
phism of cohomology groups f * : Hi(G, A) -+ H~ (G, B). We shall discuss 
several functorial properties regarding the first argument. If H is a sub- 
group of G, then by restricting cocycles to H we obtain the restriction 
map res: Hi  (G, A) -+ Hi  (H, A). If N is a normal subgroup of G and A 
an abelian G-group, then the group of fixed points AN is a (GIN)-group, 
and the canonical homomorphism G -+ GIN induces the inflation map 
inf: Hi  (GIN, A ~ )  -+ Hi (G, A). Moreover, we can define the action of GIN 
on Hi(N, A); it turns out that the image of res: Hi(G, A) -+ Hi(N, A) lies 
in the group of fixed points Hi(N, A ) ~ I ~ .  Lastly, we can define the trans- 
gression map tra: H1(N, A ) ~ I ~  -+ H2(G, AN) such that &e have the exact 
sequence 

(1.9) 0 --r H'(G/N, A ~ )  5 H'(G, A) H1(H, A ) ~ I ~  

N inf 2 H~(G/N,  A ) -+ H ~ ( G ,  A) 

which is the initial segment of the Hochschild-Serre spectral sequence cor- 
responding to the extension 

(we refer the reader to Koch [l] for the main points in the construction 
of (1.9), which we shall not go into here). 
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There is a method which allows us to replace the cohomology of a sub- 
group H c G by the cohomology of G. To do so, we associate with any 
H-module A an induced G - H-module i n d g ( ~ ) ,  which consists of those 
maps f :  G + A such that f (hg) = hf (g)(h E H, g E G); the action of 
G on i n d g ( ~ )  is given by (g f)(x) = f (xg). We obtain a homomorphism 
indg (A) --+ A by sending each element f E indg (A) to f (1), thereby pro- 
viding a homomorphism 

By Shapiro's lemma, homomorphism (1.10) is an isomorphism. Now let us 
suppose that H has finite index in G and that A is a G-group. Then we 
can define a surjective G-homomorphism T :  i n d g ( ~ )  + A, by 

Passing to cohomology, we then obtain the corestriction map 

cor: Hi(H, A)  hi(^, i n d g ( ~ ) )  + H~(G,  A), 

where 2: denotes the inverse isomorphism of (1.10). Note that for the 0-th 
cohomology groups, cor: + is the trace map Tr(a) = C g(a) 

s E G I H  

(or, in multiplicative notation, the norm). 
Sometimes it is necessary to consider continuous cohomology of a topo- 

logical group G with coefficients in a topological abelian G-group A for 
which the action of G on A is continuous. The definition is obtained by 
considering continuous cochains instead of the usual cochains. With the 
exception of several places in 59.5, where we look at adele group coho- 
mology, in this book we shall deal exclusively with continuous cohomol- 
ogy of a pro-finite (i.e., compact totally disconnected) group G with co- 
efficients in a discrete group A. In this setting the continuity of action 
of G on A means that A = UU AU, where the union is taken over all 
open normal subgroups U c G. A pro-finite group G may be described 
as a projective limit G = l@G/U, where U runs through some funda- 
mental system of neighborhoods of 1 consisting of normal subgroups (the 
basic properties of pro-finite groups will be reviewed in 53.2); then the 
cohomology group Hi(G, A) of a discrete G-group A may be written as 
the inductive limit 15Hi(G/U,AU) with respect to the inflation maps 

Hi(G/u, AU) -+ H'(G/v, AV) for U > V. One of the fundamental exam- 
ples arises from consideration of the absolute Galois group G = G ( ~ / K )  

of a perfect field K and its natural action on the additive or multiplicative 
group of K or on some other object A with a K-structure (cf. 52.2). Then 
the corresponding cohomology groups Hi(g,  A) are Galois and are written 
H ~ ( K ,  A). 

It is easily shown that the cohomology of a pro-finite group G with co- 
eRcients in a discrete group A satisfies all the usual basic properties of 
cohomology. In particular, an exact sequence of discrete G-groups and 
G-homomorphisms 0 + A + B + C + 0 gives rise to the exact coho- 
mological sequence (1.6), and an extension 1 --+ N + G 4 GIN + 1 of 
~ro-finite groups yields the initial segment of the Hochschild-Serre spectral 
sequence (1.9). 

1.3.2. Non-abelian cohomology. In working with algebraic groups, 
we find cocycles which take on values in a group of points over some (finite 
or infinite) Galois extension of the base field, i.e., the range of the cocy- 
cles, generally speaking, is a noncommutative group. Similar situations 
are encountered elsewhere, such as in studying the crossed product of a 
noncommutative algebra with a finite group. By the same token, noncom- 
mutative cohomology fully deserves a study of its own, for which we refer 
the interested reader to Giraud [I]. For the time being we shall review 
some basic concepts relating to noncommutative cohomology, which we 
shall need in our study of Galois cohomology of algebraic groups (cf. Serre 
PI ). 

Let us consider a (discrete or pro-finite) group G acting on some set A, 
assuming in the topological setting the latter to be discrete, and the action 
of G on A to be continuous. In this case A is called a G-set. If A is a group 
and G acts on A by automorphisms, then A is said to be a G-group. For a 
G-set A we define HO(G, A) to be the set of G-fixed elements AG. If A is 
a G-group then HO(G, A) is a group. 

For a G-group A, a continuous map f :  G + A is said to be a 1-cocycle 
with values in A if for any s, t in G we have f (st) = f (s)s(f (t)). Often it 
will be useful to treat 1-cocycles as families indexed by elements of G and 
to write f as { f, : s E G),  bearing in mind that f, = f (s). Sometimes 
the action of G on A is conveniently written in exponential form as 'a 
instead of s(a). With respect to these conventions, the condition on 1- 
cocycles is written as f,t = fSsft. The set of all 1-cocycles will be written 
as Z1(G,A). Z1(G, A) is non-empty; it always contains the unit cocycle 
defined by f, = e, the unit element of A, for all s in G. Two cocycles (a,) 
and (b,) are said to be equivalent if there is an element c in A such that 
b - - c -1 asSc for all s in G. (One can easily verify that the relation thus 

defined between cocycles is indeed an equivalence in Z1(G, A).) The set 
of equivalence classes is called the first cohomology set with coefficients in 
A and is written H1(G, A). If A is an abelian group, then this definition 
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of is equivalent to the one presented in $1.3.1; in particular, (G, A) 
then is an abelian group. In general H1(G, A) does not have any natural 
group structure and is only a set with a distinguished element which is the 
equivalence class of the unit cocycle. As above, if G = l&G/U is a pro- 

finite group then H1(G, A) = 1% H1(G/U, AU) is the direct limit of the sets 

with distinguished element, relative to the inflation maps H1(G/u, AU) --+ 

H~(G/v, A") for U > V, defined in the obvious way. In general, if f :  A -+ 

B is a homomorphism of a G-group A in an H-group B, compatible with 
g: H --+ G, i.e., if f (g(")a) = "f (a) for all s E H ,  a E A, then we may define 
the map Z1(G, A) --+ z ~ ( H ,  B) sending (a,) to (b, = f (ag(,))), which 
induces a morphism of sets with distinguished element 

We shall say that a sequence of cohomology sets is exact if it is exact as 
a sequence of sets with distinguished elements, i.e., if a pre-image of the 
distinguished element is equal to the image of the preceding map. (The 
distinguished element in the zero cohomology set HO(G, A) is the unit 
element of A.) Let us mention the main types of exact sequences that we 
shall use. Let A be a subgroup of a G-group B ,  invariant under the action 
of G. Then there is a natural action of G on BIA, thereby making B/A a G- 
set, and we obtain the set HO(G, B/A), whose distinguished element is the 
class A. For any element of HO(G, B/A) = ( B / A ) ~  choose a representative 
b in B and for s in G let a, = bK1%. It is easily shown that a, E A and (a,) E 
Z1(G, A). Moreover, the equivalence class of this cocycle is independent of 
the choice of b, and we obtain a map 6: HO(G, BIA) + H1(G, A). 

Direct computation shows that we have the exact sequence of sets with 
distinguished element 
(1.11) 

1 -+ H'(G, A) --+ H'(G, B) -+ HO(G, B/A) 5 H'(G, A) 5 H ~ ( G ,  B) 

where a is induced by the embedding A r B. Furthermore, if cl, c2 E 
HO(G, BIA), then 6(cl) = 6(c2) if and only if there exists b in B~ with 
c2 = bcl. Consequently the elements of the kernel of H1 (G, A) -+ H1 (G, B) 
are in one-to-one correspondence with the orbits in (B/A)G under the 
action of B ~ .  If A is a normal subgroup of B, then (1.11) is extendable to 
one more term: 

Special attention should be given to the case where A is a central s u b  
group of B (precisely the situation encountered in examining the universal 

coverings of algebraic groups). Let C = B/A and take the canonical ho- 
momorphism cp: B --+ C. Then H1 (G, A) is a group, and there is a group 
homomorphism 6: HO(G, C) = CG -+ H1(G, A), which we shall refer to as 
the coboundary map. Using the centrality of A we can define the natural 
action of the group H1(G, A) on the set H1(G, B): if a = (a,) E Z1(G, A), 
b = (b,) E Z1(G, B), then a .  b = (a&) E Z1(G, B). The orbits of this ac- 
tion, it turns out, are the fibers of the morphism /3: H1(G, B) --+ H1 (G, C). 
Furthermore, by the commutativity of A the group H2(G, A) is defined, 
and, as we shall presently show, there is a map 8: H1 (G, C)  --+ H2(G, A) 
extending (1.12) to the exact sequence 

Let c = (c,) E Z1(G, C);  for each s in G we can find an element b, in 
B such that cp(b,) = c,. Then put aStt = bSsbtbz1. It is easily shown 
that a,,t E A and that the map G x G --+ A given by (s , t)  ++ a,,t is 
a 2-cocycle (i.e., an element of Z2(G, A)). It turns out that the class 
defined by this cocycle is independent of the choice of elements b, and 
of the choice of cocycle c in its equivalence class in H1(G, C), and thus 
we obtain the well-defined connecting morphism d: H1 (G, C)  -+ H2(G, A). 
The corresponding sequence (1.13) can be shown directly to be exact. Note 
that in the noncommutative case d has no bearing on any group structure; 
moreover, its image in H2(G, A) generally is not a subgroup. 

In the noncommutative case the exact sequences described above carry 
substantially less information than in the commutative case; indeed, know- 
ing something about the kernel of a morphism of sets with distinguished 
element generally does not allow us to draw inferences about all of its fibers. 
This difficulty can be partially overcome with the help of a method based 
on the concept of twisting (cf. Serre [2], Ch. 1, 55). We review some basic 
definitions. Let A be a G-group and F a G-set with a given A-action which 
commutes with the action of G, i.e., s(a . f )  = s(a) . s(f)  for any s E G, 
a E A, f E F.  Then, fking an arbitrary cocycle a = (a,) E Z1(G,A) we 
can define a new action of G on F by the formula 

s ( f )=a , (s( f ) )  for s i n G .  

F with this action is denoted by ,F. We say that ,F is obtained from F 
by twisting by a. It is easy to see that ,F depends functorially on F (with 
respect to A-morphisms F --+ F') and that twisting commutes with direct 
products. For cocycles a and b equivalent in Z1(G, A), the G-sets ,F and 
bF are isomorphic. Moreover, if F has some structure (such as that of a 
group) and the elements of A preserve this structure, then ,F also has this 
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structure. A whole series of examples of twists will be examined in 52.3, but 
for the time being we shall limit ourselves to one example which comes up 
when considering exact sequences. Namely, consider the case where A = F 
acts on itself by inner automorphisms. Then, for any cocycle a in Z1(G, A) 
the twisted group ,A is defined, and moreover the first cohomology sets of 
A and A' = ,A are interrelated in the following way: 

LEMMA 1.4. There is a bijection t, : Z1 (G, A') -+ Z1 (G, A) defined by 
sending a cocycle x = (x,) in Z1(G, A') to the cocycle y = (x,a,) in 
Z1 (G, A). Passing to cohomology, t ,  induces a bijection 7,: H1 (G, A') + 

H1(G, A), which takes the distinguished element of H1(G, A') to the class 
of the cocycle a. 

Thus, we are able to multiply cocycles, however by going over to the 
twisted group. By this method, replacing the sets in sequences (1.11)- 
(1.13) by the corresponding twisted groups (as we shall henceforth say, 
twisting these sequences), one can describe the fibers of all the maps in the 
original sequences. For example, take the case described in the construction 
of sequence (1.11) where a E Z1(G, A), and suppose we wish to describe the 
fiber a-'(a(a)) (the same letter a denotes the corresponding equivalence 
class in H1(G, A)). To do so we must pass to the twisted groups A' = ,A 
and B' = ,B and examine their analog of exact sequence (1.11) 

Then the bijection T, of Lemma 1.4 determines a bijection between the 
elements of kera' and the elements of the fiber a-l(a(a)). On the other 
hand, it follows from (1.11) that the elements of ker a' are in one-to-one 
correspondence with the orbits in (B'/A')G under ( B ' ) ~ .  Let us find a 
criterion for the class of some cocycle b in Z1(G, B) to lie in the image of 
a .  To do so, consider the action of B on B/A (a homogeneous space) by 
translations; then the twisted space b(B/A) is defined for any b in Z1(G, B). 

The fibers of d in the sequence (1.13) are computed in an analogous 
manner. Namely, let c = (c,) E Z1(G, C). Since A is a central subgroup 
of B, then C acts on B by inner automorphisms, these being trivial on 
A. Using c to twist the exact sequence 1 -+ A + B + C -+ 1, we 
obtain the exact sequence 1 -+ A -+ .B -+ .C 4 1, which gives rise to a 
new connecting rnorphism 8,: H1 (G, .C) -+ H2 (G, A). Direct computation 
shows that this morphism bears on the bijection 7,: H1 (G, .C) --+ H1 (G, C)  
of Lemma 1.4 in the following way: d(r,(x)) = dc(x)d(c), multiplication 

taken in H2(G, A). It follows that the elements of the fiber LV1(d(c)) are 
in one-to-one correspondence with the elements of kerd,, which in turn 
correspond bijectively to the elements of the quotient set of H1(G, .B) 
under the action of H1 (G, A). 

If H is a normal subgroup of G (assumed to be closed in the topo- 
logical setting), then, as in the commutative case, the quotient group 
G/H acts on AH, SO one can define H1(G/H, AH) and the inflation map 
H1(G/H, AH) -+ H1(G,A). If H1(G, A) -+ H1(H, A) is the restriction 
map, then the noncommutative analog of the Hochschild-Serre spectral 
sequence (l.9), 

is exact. 
We have yet to consider induced sets and the noncommutative variant 

of Shapiro's lemma. We shall go into these questions in greater detail, 
since they do not appear in Serre [I]. Let H be a (closed) subgroup of 
G. Then for any H-set (respectively H-group) B we can define the G-set 
(respectively G-group) A = i n d z ( ~ )  consisting of all (continuous) maps 
a: G + B satisfying a(ts) = ta(s) for all t in H ,  s in G, and the action 
of G on A is given by ,a(s) = a(sr) for r in G. The G-set (respectively 
G-group) A, or any G-set (G-group) which is isomorphic to A, is said to 
be G-H induced. The map A + B given by a H a(1) is consistent with 
the inclusion H c G, and therefore for i = 0 , l  induces morphisms 

PROPOSITION 1.7 (SHAPIRO'S LEMMA, NONCOMMUTATIVE VERSION). 
The maps pi are bijections. 

PROOF: We shall consider the cases i = 0 and i = 1 separately. First, let 
i = 0. If a E H0 (G, A) then a is a map G -+ A, invariant under the action 
of G, i.e., a = 'a for all r E G. Recalling the definition of the action of 
G on A, we see that the latter equality is equivalent to a(s) = a(sr) for 
all s, r E G. Setting s = 1 we see a is a constant map. By definition 
po(a) = a(1) E BH = HO(H, B),  from which it follows that cpo(a) = cpo(b) 
implies a = b for a ,  b E HO(G, A), in other words cpo is injective. On the 
other hand, for any c in HO(H, B),  the trivial map a: G -+ B given by 
a(s) = c lies in A; moreover it can be easily shown that a E HO(G, A) and 
~ o ( a )  = c. 

Now let i = 1. To prove that cpl is injective we assume that the classes 
of cocycles a = (a,) and b = (b,) E Z1(G, A) are sent to the same element 
by 91. Then for suitable c in B we have a,(l) = ~ - l b , ( l ) ~ c  for all r in 
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H .  Clearly there exists an element d in A for which d(1) = c. Then, 
substituting the equivalent cocycle b1 = (d-'bTTd) for b, we may assume 

(1.14) a,(l) = b,(l) for all r E fl 

The definition of cocycle gives for all r ,  s ,  t E G 

If we set r = t-l ,  then (1.14) implies 

for all s in H. We define the function c: G 4 B by the equation 

ives us Then, for s in H ,  (1.15) g' 

i.e., c E A. On the other hand, we can immediately verify that a, = c-'b,'c 
for all r in G, which means that a and b are equivalent cocycles. This proves 
that cpl is injective. 

To prove that cpl is surjective, we consider an arbitrary cocycle b = (b,) E 

Z'(H, B). Let v: G/H + G be a (continuous) section for which v(H) = 1. 
Then for s in G we set w(s) = sv(Hs)-l E H.  For each s in G we define 
a,: G + B by the formula a,(t) = w(t)bw(v(t),). Direct computation shows 
that a, E A and the family a = (a,) forms a cocycle in Z1(G,A), and 
moreover cpl(a) = b. This completes the proof of the proposition. 

The following straightforward assertion is helpful in applications. 

LEMMA 1.6. Let H be of finite index in G. Then a G-group A is G - H- 
induced if and only if there exists an H-subgroup B c A such that A is a 
direct product of the "B, where s runs over some system of representatives 
of the cosets of H .  

For example, if L is a finite Galois extension of an algebraic number field 
K with Galois group G, u is an extension of v E vK to L, and 7 i  = G(u) is 
the corresponding decomposition group, then as (1.2) shows, the G'-module 
L @K Kv is isomorphic to indgiu) (L,). 

1.4. Simple algebras over local fields. 

1.4.1. Simple algebras and Brauer groups. Let A be a finite-dimen- 
sional central simple algebra over the field K (centrality meaning that the 
center of A is K) .  Then A is a full matrix algebra M,(D) over some 
central division algebra (skew field) D over K ,  and  dim^ A = n2 dimK D. 
dimK D in turn is the square of a positive integer d, called the index of D 
and respectively of A. It is well known that if K is finite or algebraically 
closed, then necessarily d = 1, i.e., there are no noncommutative finite- 
dimensional central division algebras over K .  If K = IR and d > 1, then 
D is isomorphic to the skew field of the usual Hamilton's quaternions W. 
Over non-Archimedean local fields or algebraic number fields there exist 
skew fields of an arbitrary index. To describe them we shall need several 
results from the theory of simple algebras (cf., for example, Herstein [I], 
Pierce [I]). 

One useful result is the Skolem-Noether theorem: given two simple sub- 
algebras B1, B2 of a finite-dimensional central simple K-algebra A, any 
isomorphism 0: B1 + B2 which is trivial on K extends to an inner auto- 
morphism of A. Maximal subfields P C D play an important role in the 
study of a skew field D. They necessarily contain K and have dimension d 
(the index of D)  over K; thus D mK P e Md(P). Conversely, for any field 
P > K ,  if [P : K] = d and D @K P N Md(P) (i.e., P is a splitting field of 
D), then P is isomorphic to a maximal subfield of D. 

Consider an arbitrary splitting field P of a simple algebra A (for example, 
one could take the algebraic closure K of K) ,  and fix a corresponding 
isomorphism cp: A@KP e M,(P). Then the map NrdA/K(x) = det cp(x@l) 
is called the reduced norm, is multiplicative, and is independent of P and cp. 
The reduced norm is given by a homogeneous polynomial of degree r with 
coefficients in K ,  in the coordinates of x with respect to any given base A 
over K ;  in particular NrdAIK(A*) c K*. A property of the reduced norm 
which we shall use often is that for any x in D, NrdD/K(x) is the usual 
norm NpIK(x) from any maximal subfield P c D which contains x. The 
study of the multiplicative group A* essentially reduces to the study of the 
image of N ~ ~ A / K ( A * )  and the corresponding special linear group SL1 (A) = 
{X E A* : NrdAIK(x) = 1). The structure of SL1(A) (especially when 
A = M,(D) for n > 1, cf. 57.2) depends in turn on whether or not SL1(A) 
is the commutator group [A*, A*]. (Note that the inclusion [A*, A*] c 
SLl(A) is a consequence of the multiplicativity of the reduced norm.) This 
problem, raised by Tanaka and Artin in 1943, is equivalent to the question 
of the triviality of the reduced Whitehead group SKI (A) = SL1 (A)/[A*, A*] 
from algebraic K-theory. On the connection between these problems and 
the well-known Kneser-Tits conjecture in the theory of algebraic groups, 
see 57.2. Platonov solved the Tanaka-Artin problem in 1975 and found 
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the answer to be negative. In [13]-[16] he developed a reduced K-theory 
which in many cases makes it possible to calculate SKI (A) and establish its 
connection with other arithmetical problems (cf. Chapter 7). Nevertheless, 
in the cases of interest to us of local and global fields, SK1(A) is always 
trivial (this result was attained for local fields by Nakayama-Matsushima 
[I] in 1943 and for algebraic number fields by Wang [I] in 1950). Since 
this result will be used repeatedly throughout the book, we shall present a 
new proof below, which differs substantially from the original in that it is 
shorter and more conceptual. 

We introduce an equivalence on the set of central simple algebras over 
K ,  regarding A1 = M,, (Dl) A2 = M,, (D2) if the skew fields Dl and 
D2 are isomorphic, and we define the product of the equivalence classes 
as [Al] . [A2] = [A1 @K A2] (note that the tensor product over K of two 
simple K-algebras, one of which is central, is also a simple K-algebra). This 
operation makes the set of equivalence classes of finite-dimensional central 
simple K-algebras into an abelian group (the inverse of [A] is the class of the 
opposite algebra A', which is obtained from A by a new product given by 
a.b = ba, where the product on the right is taken in A). This group is called 
the Brauer group of K and is denoted as Br(K). For any extension L/K the 
equivalence classes of central simple K-algebras for which L is a splitting 
field generate a subgroup of Br(K), denoted as Br(L/K). The order of an 
element [A] in Br(K) is always finite and is called the exponent of A. Note 
that the exponent of A divides the index and in general is distinct from the 
index. An important result in the theory of algebra is that the exponent 
and index coincide over local and global fields, & propos of which let us point 
out a conjecture that this property also holds for C2-fields (cf. M. Artin [I]). 
Note that Br(K) has a cohomological interpretation. Namely, associating 
to a simple algebra its factor set gives the isomorphism 

Br(K) -- H ~ ( K ,  K*). 

1.4.2. Simple algebras over local fields. Throughout this subsection 
D denotes a skew field of index n over a (non-archimedean) local field 
K ,  v denotes a valuation of K, O denotes the valuation ring of v, with 
valuation ideal p, and U = O* denotes the corresponding group of units. 
The valuation v uniquely extends to D by the formula 

1 
(1.16) G(x) = - v ( N ~ d ~ , ~ ( x ) ) ,  for x E D; 

n 

moreover D is complete in the topology given by this valuation. Let 

respectively be the ring of integers and valuation ideal of G. Clearly PD is 
a maximal right and left ideal of OD, thereby yielding a residue skew field 
D. Let f = [D : k] (where k is the residue field of K)  and let e = [f' : r] 
be the corresponding ramification index (where I' = v(K*) and f' = G(D*) 
are the respective value groups of v and G). Then, as in the commutative 
case (cf. $1.1.2), e f =  dim^ D = n2. On the other hand, D, being a finite 
skew field, is commutative, and consequently D = k(a) for a suitable o 
in D. Let ,b E OD be an element whose residue p is cr (henceforth bar 
denotes the image in the residue field or residue skew field). Then for the 
field L = K(P) and its corresponding residue field 1 we have 

It follows from (1.16) that multiplication by n defines a homomorphism 
from f' to r, and since r - Z, we see e = [F : r] 5 n. Therefore e = 

f = n and D is the residue field 1 of a suitable subfield L c D, which 
is automatically a maximal subfield of D and is unramified over K.  The 
value group f' is infinite cyclic, so there exists an element II in Da ,  called 
a unzformizing parameter, such that G(n) = i. We have PD = HOD = 
oDn, and moreover any other uniformizing parameter n' in OD has the 
form II' = nu ,  for u E UD = 0;. Analogously, for any i L 1 we have 
% = niOD = ODni. 

Let us fix a maximal unramified subfield L c D (noting that any maximal 
unrarnified subfield L' c D is isomorphic to L over K and therefore, by 
the Skolem-Noether theorem, is conjugate to L). L/K is cyclic Galois and 
Gal(L/K) is generated by the F'robenius automorphism cp (cf. $1.1.3). By 
the Skolem-Noether theorem, there exists an element g in D* such that 

Then G(g) E :Z in Q/Z, called the invariant of D and written i n v ~ ( D ) ,  
is well defined. The invariant inv(A) of a simple algebra A = M,(D) is 
defined as the invariant of D. 

THEOREM 1.7. A H invlc A defines an isomorphism Br(K) 2 Q/Z. More- 
over, if P / K  is a finite extension of degree m, then we have the following 
commutative diagram, where [m] denotes multiplication by m. 

OD = {x E D : G(x) 2 0) and ! J ~ D  = {x E D : G(x) > 0) 
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Since (1.18) is commutative, if D is a skew field of index n over K ,  then 
for any field extension P / K  of dimension n we have D @K P - M,(P) , 
and consequently P is isomorphic to a maximal subfield of D. Another 
important observation is that over K the exponent of any skew field is its 
index. Indeed, we must show that if G(g) = then (a, n) = 1. To prove this 
we note that by (1.16) OD and pD are invariant relative to conjugation in D 
and therefore any element h in D* induces an automorphism uh: f H hxh-l 
of D over k. Set u = on. Since D is commutative it follows that u, = id for 
u in UD, and thus u is independent of the choice of II. We have observed 
that D is the residue field 1 of the maximal unramified subfield L C D, so 
actually a E Gal(l/k). We have g = nau,  for suitable u E UD, and therefore 
cp = ua (using the same letter to designate the F'robenius automorphism of 
LIK and of l/k). Since cp generates Gal(l/k), necessarily (a, n)  = 1. At 
the same time we have shown that u = un generates Gal(l/k), a fact to be 
used below. 

The above results on the structure of skew fields over padic number 
fields go back to Hasse [l] and Witt [I]. Recently structure theorems have 
been obtained for a broad class of skew fields over arbitrary Henselian fields 
(cf. Platonov, Yanchevski'i [3], [4] ) . 
1.4.3. Multiplicative structure of skew fields over local fields. To 
begin with, we shall establish that for any finite-dimensional skew field 
D over a local field K we have NrdDIK(D*) = K* and SL(1, D)  is the 
commutator group [D*, D*]. (We shall present a more thorough analysis of 
D*, using filtrations by congruence subgroups, in the following subsection.) 

We have already seen that there exists a maximal unramified subfield 
L C D and therefore the group U of units is in NLIK(L*) C NrdDIK(D*) 
(cf. Proposition 1.2). It remains to be shown that NrdDIK(D*) contains 
the uniformizing parameter .rr of K.  To do so we note that tn + (-l)% 
(where n is the index of D )  is an Eisenstein polynomial (cf. §1.1.3), and 
therefore defines an n-dimensional extension P /K,  and .rr E NPIK(P*). 
But,, as we have noted, P is isomorphic to a maximal subfield of D, and 
therefore NPIK(P*) C NrdDIK(D*), i.e. .rr E NrdDIK(D*). This proves 
NrdDIK(D*) = K*. 

To prove that SL1(D) (denoted as D(') for the sake of brevity) is the 
commutator group [D*, D*] is somewhat more complicated. To begin with, 
we note that L(') = L n  D(') is contained in [D*, D*]. Indeed, by Hilbert's 
Theorem 90 (cf. Lang [3], Ch. 8), any element x E L(') = {t E L* : 
NLIK(t) = 1) has the form x = cp(y)y-' for suitable y in L*. Then, 
by (1.17) x = gyg-ly-l E [D*, D*]. Hence the assertion is a consequence 
of the following result. 

THEOREM 1.8 (PLATONOV, YANCHEVSKI~ [2]). The normal subgroup of 

D(') generated by I,(') is D('). 

PROOF: Let x E ~ ( ' 1 .  Then the residue f E 1(') = (a E 1* : Nllk(a) = 1). 
Indeed, x can be written as x = ab, where a is in the group of units UL of L 
and b E l + p D .  Then f = ti. On the other hand, NLIK(a) = NrdDl~(a )  = 

~ r d ~ / ~ ( b - l )  = ~ ~ / ~ ( b ) - l  for a maximal subfield M C D containing b. 
But b E ( l + p D ) n M  = l + p ~ ,  so by Proposition 1.3, ~ ,~ , (b - l )  E l+p ,  
where p is the valuation ideal in K.  Therefore 

Since 1(') is cyclic, there exists an element z in such that f z is a gener- 
ator of I('), and consequently 1 = k(fz). But z = y for suitable y in L('). 
Indeed, by Hilbert's Theorem 90 z = cp(s)/s for suitable s in I*; then if u in 
UL satisfies .ii = s,  it follows that y = cp(u)/u is the element we are looking 
for. Further, note that the extension P = K(xy) is a maximal unramified 
subfield of D, since 

n >  [ P :  k] 2 [k (w) :  k] = [I :  k] = n ,  

from which it follows [P : K] = [k(w)  : k] = n, as desired. Thus P -- L 
over K and consequently, by the Skolem-Noether theorem, P = SLS-' for 
suitable s in D*. Considering that NLIK(L*) = UK*n (Proposition 1.2) 
and that for g in (1.17) v(NrdDIK(g), n) = 1 holds (cf. 91.4.2), we see 
that NrdDIK(s) = N T ~ ~ ~ ~ ( ~ ~ c )  for suitable i in Z and c in L. Writing 
t = s(gic)-', we have P = tgicLc-lg-it-' = tLt-l and NrdDIK(t) = 1. 
Consequently, x E ~ ( ' ) y - l  c tP1 L(')~L('). Q.E.D. 

A noteworthy consequence of Theorem 1.8 is that any element of D(') 
is the product of no more than two commutators. Whether this can be 
lowered to one commutator is unknown. 

1.4.4. Filtrations of D* and ~ ( ' 1 .  (Cf. Riehm [I].) The material in 
this section will be used only in 99.5, and therefore may be skipped on the 
first reading. 

As before, let D be a skew field of index n over a local field K.  We shall 
use the same notation introduced in 91.4.2-1.4.3. Also, we set Ui = 1 +vL, 
Ci = Ui n ~ ( ' 1 ,  for i > 1, and Uo = UD = 0; and Co = D('). It 
follows from (1.16) that Ui and Ci are normal subgroups of D* (called the 
congruence subgroups of D and D(') respectively, of level or simply i). 
Since UD and D(') are clearly compact groups, and Ui and Ci are open in 
UD and D(') respectively (and, moreover, generate a base of neighborhoods 
of the identity), and the indexes [U : Ui] and [D(') : Ci] are finite. We shall 
describe the structure of the factors Ui/Ui+l and Ci/Ci+l. 
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PROPOSITION 1.8. There are natural isomorphisms 

eo: Uo/U1 -$ I* 

ei: Ui/Ui+l -+ 1+ i 2 1 (additive group of 1). 

Moreover eo(Co) = 1(') = {x E I* : Nllk(x) = 1); ei(Ci) = 1 if i $ 0 
(mod n) and pi(Ci) = I(') = {x E 1 : Trllk(x) = 0) if i - 0 (mod n). 

PROOF: As above, for a in OD let a denote its image in 1 = OD/PD. 
Then ~0 is induced by a H a and ei (i 2 1) is induced by 1 + allZ H a. 
(Note that ~i depends on the choice of the uniformizing parameter ll.) We 
computed the image of eo(Co) in the proof of Theorem 1.8. To compute 
ei(Ci) (i 2 1) we shall require 

LEMMA 1.7. + vh) = 1 + pi, where j is the smallest integer 
2 i ln.  The proof follows easily from Proposition 1.3. 

Now for x in 1 take a in OD such that = x. Let z = 1 + an" Then 
t = NrdDIK(2) E 1 + pi where j is the smallest integer 2 2/72. If z $ 0 
(mod n) then j 2 %, and by Lemma 1.7 there is y in Ui+l satisfying 
NrdDIK(y) = t. Setting .Zl = zy-', We have NrdDIK(Z1) = 1, i.e., 21 E Ci 
and ei(zl) = x. Thus ei(Ci) = 1 for i $ 0  (mod n). 

Now let i = jn. Since OD = OL + PD, we have 

(where OL, PL respectively are the ring of integers and valuation ideal of 
L; note that PL = O L r  for the uniformizing parameter .rr in K, since L/K 
is unramified). It follows that Ui = (Ui n L*)Ui+l and Ui n L* = 1 + P i .  
Therefore if z E Ui and z = st, where s E UiflL*, t E Ui+l, then NL/K(s) = 

NrdDIK(t)-l E 1 + Pi+'. o n  the other hand, if s = 1 + r d  for r in OL, 
n-1 

then NLIK(s) = n pm(l  + rxj)  = 1 + n L I K ( ~ ) ~ I T j  (mod pi+'). Thus 
m=O 

n L I K ( r )  = 0 (mod p), whence Trllk(F) = 0 and ei(Ci) C I('). Conversely, 
if RLIK (r)  = 0 (mod p) then for s = 1 + r7ri we have NLIK (s) E 1 + pi+', 
so there is a t in 1 + satisfying NLIK (s) = NLIK (t), and the element 
z = stp1 E ~ ( l )  n (1 + P i )  satisfies ei(z) = r. Q.E.D. 

COROLLARY: For any i > 0 the quotient groups Uo/Ui and Co/Ci are finite 
solvable. 

The solvability of the quotient groups Uo/Ui and Co/Ci is actually a di- 
rect consequence of our proposition. As we have noted above, Ui and Ci are 
a base of the neighborhoods of the identity in Uo and Co respectively, and 

therefore (cf. 53.3) Uo = l& Uo/Ui, and Co = lim Co/Ci are prosolvable 
C 

groups. 
Now, following Riehm [I], we define the mutual commutator groups 

[Co, Ci] and [Cl, Ci] (i L 1). To do so we shall need one computation. 

LEMMA 1.8. Let x = 1 + alli, y = 1 + bl l j ,  where a,b E OD, i , j  1. 
Then the commutator [x, y] = xyx-'y-' has the form 1 + clli+j, where 
c = aai(b) - d ( a ) b  (here, as in 51.4.2, a is the automorphism of 1 over k 
given by d H II61I-I). In particular, [Ui, Uj] c Ui+j. 

PROOF: Write (s, t) for st - ts. Then we can easily verify that 

from which it follows that 

[x, y] = 1 + (allibllj - blliaIIi)x-ly-' = 1 + cIIi+j, 

where c = (aIIibII-i - blljaII-j)(IIi+jx-ly-lII-(i+j)). If we pass to the 
residue and bear in mind that 3 = y = 1, we obtain the necessary result. 

THEOREM 1.9. Let n > 2. Then 

Ci, i f i $ O ( m o d n )  
(2) [Co, c.1 - 

- { C ,  i f i  E O  (mod n). 

In particular, [Co, Co] = Cl 

PROOF: First we shall show that ~i+l( [Cl ,Ci])  = ei+l(Ci+l) Indeed it 
follows from Lemma 1.8 and Proposition 1.8 that the image ei([Cl, Ci]) is 
generated as an abelian group by elements of the form ao(P) - ai(a)P,  
where cr E I, and ,B E 1 or l(O), depending on whether or not i is divisible 
by n. We leave it to the reader to show that these elements generate 1 or 
1(O) respectively, which is Q ~ + ~ ( C ~ + ~ ) .  Thus, for any i 

Now we shall show that actually [Cl, Ci] = Ci+l. We can either ar- 
gue directly, as does Riehm, or use a result presented in Chapter 3 (cf. 
Theorem 3.3) from which it follows, in particular, that any non-central 
normal subgroup of D(') is open (it goes without saying that the proof 
of Theorem 3.3 does not rely on Theorem 1.9). Then for a suitable j we 
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have [C1, Ci] > Cj, and we may take j to be the smallest integer with this 
property. Suppose that j > i + 1; then j - 2 2 i, so that by (1.19) we have 

[Cl, Ci] 3 [cl, Cj-2]cj = cj-1, 

which contradicts the definition of j. Thus, j = i + 1, proving the first 
assertion. 

It follows from assertion (1) that [Co, Ci] > [C1, Ci] = Ci+l, so to prove 
(2) we need only show that 

1, if i $ 0  (modn) 
ei([co,ci]) = { 0, if i = O  (modn). 

Direct computation shows that for x E UD and y = 1 + all" i 2 1, we 
have ei([x, y]) = (&(~)- ' -1)~i .  If i - 0 (mod n), then clearly ei([x, y]) = 
0. But if i $ 0 (mod n), then, using the structure of finite fields, we can 
easily establish the existence of an element a in 1(O)  such that ai(a)  # a. 
Choosing an element x from D(') such that 5 = a ,  we obtain the first 
assertion of (1.20). To complete the proof of Theorem 1.9 we have only to 
note that always [Co, Co] c C1 = [Co, C1], and thus [Co, Co] = C1. 
REMARK: With a slight refinement of the above argument one can also 
consider the case n = 2. The results are as follows (cf. Riehm [I]): 

If p = char K # 2 then the assertions of Theorem 1.9 hold; for n = p = 2 
the analog of assertion (1) assumes the form 

[C1,Czi+l]=Czi+2 i f e i t h e r I k l > 2 o r i > l ;  

[C1,C2i] = C2(i+l) for alli .  

If IkJ = 2 then [C1, Cl] contains C4 but does not contain C3. The second 
assertion of Theorem 1.9 always holds; in particular [Co, Co] = C1. 

COROLLARY: Co = L(')[C~, CO] where L is a maximal unramified subfield 
of D. 

For n > 2 (respectively n = 2) this follows from Theorem 1.9 and Propo- 
sition 1.8 (respectively, from the remark and Proposition 1.8). Another 
proof, which does not distinguish between n > 2 and n = 2, is immediate 
from Theorem 1.8. 

In 59.5 we shall need to view the group F( i )  = Ci/Ci+l (i > 1) as 
a module over the group A = Co/C1, by means of the action of Co by 
conjugation (note by Theorem 1.9 that C1 acts trivially on F(i)).  Using 
and ~i and Proposition 1.8, we can identify A and F( i )  respectively with 
1(l) and 1(O), depending on whether or not i is divisible by n. Then a simple 
computation shows that the A-module structure of F(i) is given by 

(1.21) 6 .  x = 6ai(6)-'x, for 6 E A, x E F(i) 

(the product on the right is taken in 1). 

PROPOSITION 1.9. If i $ 0 (mod n) then F(i)  is a simple A-module, ex- 
cept when l/k is F9/F3 or F64/F4 (where F, is the finite field of q elements). 
In the latter case the A-submodules of F(i)  2 F64 correspond to the vector 
subspaces of F64 over Fa. 

PROOF: Let m denote the subfield of 1 generated over the prime subfield 
by elements of the form 6ai(6)-' for 6 in 1('). Then the assertion is clearly 
equivalent to m = 1 if l/k is distinct from F9/F3, F64/F4, and to m = Fa 
if l/k is F64/F4. The proof is elementary and is left to the reader. 

Using Proposition 1.9, Riehm obtains a complete description of the nor- 
mal subgroups of CO. Since we will not need these results further on, we 
shall confine ourselves to stating the basic theorems without analyzing the 
exceptional cases. For this we shall set E, = (K*nCo)C, and shall say that 
a normal subgroup N C Co has level r if N c E, but N @ E,+l. Since 
n E, = K* nCo, any noncentral normal subgroup in Co has a certain level. 
r 

THEOREM 1.10. Suppose D is not a quaternion algebra over a finite ex- 
tension of &. If N C Co is a normal subgroup of level r, then 

If n + r and the A-module F ( r )  is simple, then the stronger condition 
Cr c N c E, holds. 

Note that C, C N C E, means that N may differ from a congruence 
subgroup only by a central subgroup, and thus we obtain a comprehensive 
description of the normal subgroups. 

Proposition 1.9 can be used for other ends - namely, to help describe 
the module B = B ( F ( ~ ) ,  ~ ( r ) )  of A-bilinear maps b: F ( l )  x F ( r )  -+ F, = 
Z/pZ, where p = char k and the operation of A on F, is trivial. 

THEOREM 1.11 (PRASAD, RAGHUNATHAN [4]). 

(1) If r $ -1 (mod n) then B = 0. 
(2) If r = -1 (mod n), n > 2, then B consists precisely of all maps of 

the following form: 

(1.22) b(X)(x, y) = Trll~p(Xxa(y)) where X E 1 

in case Ilk is distinct from F64/F4; 

in case 1 / k CI F64/F4. 
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(The appearance of the trace in (1.22) and (1.23) is not accidental. In- 
deed, for any finite separable field extension P/M, one has the nonde- 
generate bilinear form f (x, y) = nPIM (xy), SO any M-linear functional 
cp: P + M is given by cp(x) = TrPIM(ax) for suitable a in P.)  

PROOF: Let r , s  > 0 and r + s =. 0 (mod n). Then for any X in 1 the 
bilinear form given by 

is A-invariant. Actually, by (1.21) for any S in A we have 

since r + s = 0 (mod n). If moreover r $ 0 (mod n), then F(r) 1: 1 and 
F(s)  1: 1, so br(s) yields a nondegenerate bilinear map F ( r )  x F(s) - 
Fp, i.e., it defines an isomorphism F ( r )  with the dual module F(s)  = 
Hom(F(s), F,). If also r = 0 (mod n), then F( r )  and F(s) are each trivial 
A-modules, and therefore also F( r )  - F(s).  Since clearly B(F(r) ,  F(s))  = - 
Homa(F(r), F(s)), to prove the theorem's first assertion it suffices to show 
that Homa (F(r) ,  F(s))  = 0 if r $ s (mod n). 

Let cp E Homa (F(r) ,  F(s)), cp $ 0. Then for any a in F ( r )  and any 6 in 
A we have 

Let Fl and F2 denote the additive subgroups of 1 generated by elements 
of the form S(ar(S))-l and 6 ( 0 ~ ( 6 ) ) - ~  respectively. If we choose a in F ( r )  
such that cp(a) # 0, then (1.25) yields that if Si E A and C Gi (a r  (ai))-' = 0 
then C 6i(as(Si))-' = 0; consequently $: 6(ar(S))-' I-+ S(aS(G))-' extends 
to an additive homomorphism from Fl to F2. Moreover, F1 and F2 are 
clearly closed under multiplication, i.e., they are finite fields, and the ex- 
tension of $ is actually an isomorphism from Fl to F2. It follows that 
$(x) = XP' for a suitable integer I. Thus 

for any 6 in A. Let k = Fpa. Then A = {zpa-' : x E 1')  and a(x) =xpab 
for a suitable integer b, so that (1.26) yields 

for all x in l* , whence pZ (pabr - 1) (pa - 1) - pabs - 1 (mod pan - 1). But, 
from the last equation (cf. Prasad, Raghunathan [2], supplement to 97) it 
follows that br M. bs (mod n), which means r = s (mod n) since (b, n) = 1, 
thus proving the first assertion. 

To prove the second assertion let us first suppose that l/k is distinct 
from F64/F4, so that F ( r )  is a simple A-module. Let b = b(x, y) E B. 
Then x I-+ b(x, 1) is an Fp-linear map from 1 to F,, and hence b(x, 1) = 
TrlIF,(Xx) for a suitable in 1. Consider bo = b - bl(X), where bl(X) is 
given by (1.24). Since b and bl (A) are A-invariant, for any x in F ( l )  the 
set x' = {y E F ( r )  : bo(x, y) = 0) is a A-submodule of F(r) containing 1; 
thus xL = F ( r )  so bo = 0, i.e. b = bl(X), as required. 

We have yet to consider the case where 1 = F64, k = F4. Here the 
irreducible A-submodules of F ( r )  correspond to vector subspaces of 1 over 
F8, and the only nontrivial automorphism of F64/F8 has the form x t - i  x8. 
Let z E l/F8. Then, reasoning as above, we can establish the existence of 
8, w E 1 such that 

for all x in 1. Since z8 # Z, one can find A, p in 1 satisfying the equations 

Since in this case S(ar(6))-I E F8 for all 6 in 1('), the bilinear map b(X, p) 
(cf. (1.23)) is A-invariant. Then bo = b - b(X, p) is also A-invariant. It 
follows that for any x in F ( l )  the space xL is a A-submodule of F ( r ) ,  
containing 1 and z and hence x' = F(r). Thus bo = 0 and b = b(X,p). 
Q.E.D. 

1.5. Simple algebras over algebraic number fields. 
1.5.1. The Brauer group. Let A be a simple algebra over an algebraic 
number field K.  For any v E vK, A, = A @K K, is also a simple algebra 
and, according to the notation in 91.4.1, [A] -+ [A,] defines the Brauer 

group homomorphism Br(K) 3 Br(K,). To describe Br(K) we must con- 
sider the product 

In 51.4.2 we saw that for v in v ~ K  we have inv~,,: Br(K,) -+ Q/Z. In order 
to consider all the valuations in a unified manner we stipulate that we shall 
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regard the invariant of the quaternion skew field over K, = R to be the 
class in Q/Z that contains i. Then invKv: Br(K,) -, QDZ is defined for 
all v and is injective. 

THEOREM 1.12 (BRAUER, HASSE, NOETHER). 0 is an injective map, and 
its image consists of a = (a,) E n, Br(K,) such that a, = 0 for almost all 
v and C,  invKv (a,) = 0. 

Thus any finite-dimensional skew field D over K is determined up to 
isomorphism by the invariants invKv [D,] of the algebras D, = D @K K,, 
which for the sake of brevity we shall write as inv, D. Conversely, for any 
choice of invariants, almost all of which equal 0 and the sum of which also 
equals 0, there is a skew field over K which has the given invariants. 

Several consequences follow from the injectivity of 8. Firstly, by fj1.4.1, 
a field extension P of K of degree n equal to the index of D, is isomorphic 
to a maximal subfield of D if and only if D, @K, Pw is a matrix algebra for 
all v in VK and all w lv (the latter condition is equivalent to saying that the 
local dimensions [P, : K,] are divisible by the index of D, for all v in vK 
and all wlv). Then, by applying the Grunwald-Wang theorem from class 
field theory (cf., for example, Artin-Tate [I]), we conclude that D contains 
a maximal subfield L c D which is a cyclic extension of K .  

Taking into account the structure of skew fields over local fields, it is 
natural to pose the more subtle question of whether there always exists a 
maximal subfield L c D which is a cyclic extension of K and for which 
L,/K, are unramified extensions for all v in VfK such that D, is a skew 
field. Unfortunately, it is not always the case (counterexamples do exist 
even over 0 ) ;  however, this condition can be obtained by imposing several 
restrictions on D, used in Platonov, Rapinchuk [4]. 

The Grunwald-Wang theorem, used together with Theorem 1.12, enables 
us to establish that over algebraic number fields, just as over local fields, 
the exponent of a simple algebra is the same as its index, and, in particular, 
the only skew fields of exponent 2 are generalized quaternions. 

1.5.2. Multiplicative structure. Let D be a skew field of index n over 
an algebraic number field K.  We shall describe the image of the reduced 
norm NrdDIK(D*) and shall show that SLl(D) is the commutator group 
[D*, D*] of the multiplicative group D*. 

THEOREM 1.13 (EICHLER) . The group NrdDIK (D*) is the set of elements 
of K *  that are positive under all real valuations v in V: such that D, $ 
Mn (Kv). 

PROOF: See Weil [6], pp. 27S284 (cf. also 56.7). 

THEOREM 1.14 (WANG) . SL1 (D) = [D*, D*]. 

Wang's original proof of this theorem is quite complicated and uses im- 
portant results from number theory. We shall present a modified argument 
(cf. Platonov [15], ~anchevskG [I]), based exclusively on Eichler's theorem. 

First, we shall obtain a reduction of the proof of Theorem 1.14 to skew 
fields having prime power index. We shall need several results about the 
Dieudonn6 determinant (cf. Artin [I], Dieudonn6 [2]). Let GLm(D) be 
the group of invertible elements of a matrix algebra A = Mm(D). Then 

there exists a surjective homomorphism GLm(D) 5 D*/[D*, D*], called 
the Dieudonne' determinant, whose kernel contains the commutator group 
[GLm(D), GLm(D)], and for which 

Also, it is well known that in all cases, with one exception - m = 2, D = F2, 
the field with two elements - ker 6 is [GL, (D), GLm(D)]. In particular, 6 
induces an isomorphism SK1(A) 2. SKI (D) and therefore for any field P 
(distinct from F2 for m = 2) SLm(P)  is the commutator group GLm(P). 

LEMMA 1.9. Let a E SLl(D) and a E [ (D@K B)*,(D@K B)*], where B 
is an associative m-dimensional K-algebra with 1. Then am E [D*, D*]. 

PROOF: The regular representation B - Mm(K) is exact and induces the 
embedding D @ B -+ Mm(D). Moreover, the element a in D goes to the 
matrix 

(: ... ;) 
Now if a E SL1 (D) and a E [(D @K B)*, ( D  @K B)*], then clearly 

so that by applying the Dieudonnk determinant we obtain am E [D*, D*], 
as required. 

Lemma 1.9 yields 

COROLLARY 1.1. For a skew field D of index n, the group SKI (D) has 
exponent n. 

Indeed, if L c D is a maximal subfield, then [L : K] = n and D @K L = 
Mn (L). Therefore, applying Lemma 1.9 to B = L and bearing in mind 
that SL,(L) = [GL, (L), GL,(L)] , we obtain our assertion. 
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Furthermore, it is well known that if n = pyl . . .pFr then 

where Di is a skew field of index pq\ With this notation, we have 

COROLLARY 1.2. If SK1(Di) = 1 for all i = 1, .  . . , r ,  then SK1(D) = 1. 

For the proof, let Bi denote the tensor product Bifi Dli) of the cor- 
d ,  " 

responding opposite algebras. Then Bi is an np-dimensional K-algebra, 
where ni = n/pq" moreover, D BK Bi 2 Mn:(Di) for all i = 1, .  . . , r .  A 
consequence of the properties of the Dieudonne' determinant and the trivi- 
ality of SK1(Di) is that SLnf(Di) = [GLn:(Di), GLnf (Di)]; it follows that 

for any a in SL1(D) we have an: E [D*, D*] by Lemma 1.9. But the num- 
bers n: (i = 1,.  . . , r)  are relatively prime, therefore uinf + . - . + urn: = 1 
for suitable integers ui, whence a = (an:)"l . . . (an:)", E [D*, D*], as we 
wished to show. 

Thus we need only prove Theorem 1.14 for D of index pa, where p is 
a prime number and a >_ 0. We shall do so by induction on a, noting 
that the assertion clearly holds for a = 0. Now, let us suppose that for 
any skew field A of index pa-1 over an algebraic number field we have 
SKl(A) = 1; then we shall show also that SK1(D) = 1 for D of index pa. 
Let a E SL1 (D). It suffices to find an extension F / K  of degree coprime top, 
such that a E [(D @K F)*, ( D  BK F)*], since in that case a[F:K] E [D*, D*], 
by Lemma 1.9, while also ape E [D*, D*] by Corollary 1.1. For then, since 
p and [F : K] are coprime, there exist s, t E Z for which s [F  : K] +tpa = 1, 
and then a = ( ~ [ ~ ' ~ l ) '  E [D* , D*], as required. To construct F let 
us consider a maximal subfield L c D containing a. Let P be a normal 
closure of L over K ,  and G = Gal(P/K) the corresponding Galois group. 
Consider the Sylow psubgroup Gp c S, and take F = p 4 p .  Then, [F : K] 
is clearly coprime to p. We shall show that a E [(D @K F) ,  ( D  @K F)]. 

Gal(P/F) is Gp. Let 'FI c Gp be the subgroup corresponding to the 
subfield L F  c P. A consequence of the properties of pgroups is that there 
exists a normal subgroup N c G of index p, containing 'FI. Then the 

J corresponding fixed field M = P is a cyclic extension of F of degree p, 
contained in LF. 

If a = 1, then M = L F  is itself a cyclic extension of F of degree p. 
Then NMIF(a) = 1 since a E SL1(D), so that by Hilbert's Theorem 90 
a = u(b)/b for suitable b in LF,  where u is the generator of Gal(M/F). 
But by the Skolem-Noether theorem, there is an element g in ( D  @K F)*  
such that u(b) = gbg-l (identifying L F  with L @K F C D @K F ) ,  and 
consequently a = gbgP1b-' E [(D @K F)*, (D @K F)*], as required. (Note 
that we have not yet used the hypothesis that K is an algebraic number 

field, and thus SK1(D) = 1 for any skew field D of index p over an arbitrary 
field K.) 

When a > 1, let A denote the centralizer of M in D @K F. Then A is a 
skew field of index pa-1 with center M (by the double centralizer theorem, 
cf. Pierce [I]). Clearly a E A, and moreover 

Therefore t = NrdAIM (a) has the form 

for some s in M ,  where a is the generator of Gal(M/F). By the Skolem- 
Noether theorem there is a g in ( D  @K F)* satisfying u(b) = gb9-l for 
all b in M.  We see at once that gag-' = A, since A is the centralizer 
of M and ~ r d ~ ~ ~ ( ~ ~ ~ - ~ )  = gNrdAIM(~)g-l for any X in A. NOW Sup 
pose we can choose an element s in (1.27) from the image of NrdAIM(A*) 
(s in (1.27) is determined up to multiplication by an element from F*). 
If s = NrdAIM(z), where z E A, then ~ r d ~ ~ ~ ( g z g - l z - l )  = a(s)/s  = 
NrdAIM(a), so that a' = a(gzg-lz-l)-l E SLl(A). By induction 

SLl(A) = [A*, A*] C [(D @K F)*,  ( D  @K F>*], 

from which we conclude a E [(D @K F)*,  ( D  @K F)*]. 
We have yet to show that s in (1.27) can be taken from NrdAIM(A*). 

To do so we shall use Theorem 1.13. If p is odd, then A, = A @ M  M, is a 
full matrix algebra for all w in V z ;  consequently NrdAIM (A*) = M*, and 
we have nothing to prove. Now let p = 2. In this case M is a quadratic 
extension of F, and NrdAIM(A*) is the subgroup consisting of those rn in 
M which are positive with respect to all real w in V$ such that A, is 
not a full matrix algebra; we shall let S denote the set of all such w. Let 
So consist of the restriction of the valuations w E S to F. Then above 
each v in So there are two valuations w', w" E S ,  and M,I = M,tt = F,; 
moreover w" = w'u. If s is an arbitrary element satisfying (1.27), then by 
t = a(s)/s  E NrdAIM(A*), s has the same sign with respect to w' and w". 
Therefore there is j, in K, such that s j, is positive with respect to w' and 
d'. Using Theorem 1.4 on weak approximation, we choose an element f 
in K such that f and j, have the same sign in K, for all v in So. Now, 
setting sl  = s f ,  we obtain t = u(s)/s = (T(s~) / s~  and s l  E NrdAIM(A*), 
which completes the proof of Theorem 1.14. Q.E.D. 
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1.5.3. Lattices and orders. Let K be an algebraic number field, 0 
be its ring of integers. A lattice (or, to be more precise, an 0-lattice) 
in a finite-dimensional vector space V over K is a finitely generated 0- 
submodule L c V containing some base of V over K .  (Usually we shall 
take V = Kn).  The lattice L c V is said to be free if the 0-module L is 
free, i.e., has a base. If 0 is a principal ideal domain or, equivalently, the 
class number of K equals 1, then any lattice is free. In general any lattice 
L C V has a pseudobase, i.e., if dimK V = n then there exist XI , .  . . ,x, 
such that L = Oxl @ . . . @ @ ax,, where a c 0 is some ideal 
(cf. OIMeara [I]). 

An order in a finite-dimensional K-algebra A is a subring B c A con- 
taining the unit element of A which is an 0-lattice. An order is said to be 
maximal if it is not contained in a larger order. 

The study of lattices and orders essentially reduces to the study of 
the corresponding local structures. Namely, by a local lattice in a finite- 
dimensional vector space VK, over K,, where v v~K, we mean a finitely 
generated Ov-submodule L, c VK, containing a base of VK, . Since 0, is a 
principal ideal domain, any local lattice has a base over 0,. The definition 
of order and maximal order in a finite-dimensional K,-algebra is now for- 
mulated in the obvious way. Clearly, if L is a lattice in a finite-dimensional 
vector space V over K (respectively, if B is an order in a finite-dimensional 
K-algebra A), then L, = LBO 0, (respectively, B, = BgsO,) is a lattice 
in the space VK, = VBK K, (respectively, in the algebra AKu = ABK K,). 
Thus, for each lattice L c V there is a corresponding set of localizations 
{ L, c Vx,, : v E v ~ K  ). This raises the question of how far L is determined 
by its localizations L,. 

(1) L = n,(V n L,), in particular a lattice is uniquely determined by 
its localizations; 

(2) for any two lattices L, M c V we have L, = M, for almost all v; 
(3) if L c V is a lattice and {N, c VK,) is an arbitrary set of local 

lattices such that N, = L, for almost all v, then there exists a lattice 
M c V such that M, = N, for all v. 

PROOF: Let L, M be two lattices, XI, .  . . ,x, a base of V in L, and 
yl, . . . , y, a finite system of generators of M as 0-module. Then yi = 
C:=l aijxj for suitable aij E K .  If we choose an integer m such that 
maij E K for all i, j ,  we obtain m M  c L. By interchanging L and M we 
also have 1 in Z such that 1L c M ,  i.e., L C +M. If v @ V(1m) (notation 
as in §1.2.1), then L,, = M,, thus proving the second assertion. 

To prove assertions (1) and (3) it will be helpful to consider an embedding 

of V in the corresponding adele space V A ~  = V@K A f ,  where Af is the ring 
of finite adeles of K .  From the strong approximation theorem it follows 
that LA, (oo) = L 80 Af (00) = n L, (where Af(w)  = n 0, is the 

v € V F  u€V/ 

ring of integral finite adeles) is the closure of L in VAf. Therefore L' = n (V n L,) is the closure of L in V in the induced topology, so to prove 
v € VfK 

the first assertion we have only to establish that L is closed. To do so, let 
us take our base xi , .  . . , x, of V in L and put M = 0x1  + . . . +Ox,. Since 
0 = nWEvF(K n B,), it follows that M = nVEvF(V n M,). But n M,, 

as well as n L,, is open in V A ~ ,  so M is open, and consequently L c V is 
v 

open and closed. 
Lastly, if a set of local lattices N, c VK~ satisfies N, = L, for almost 

all v, then n N, is an open compact subgroup in V A ~  and therefore 
V €  VfK 

is commensurable with n L, (i.e., their intersection has finite index in 
v €  vfK 

each of them). It follows that M = nVEVF(V n N,) is commensurable 

with L = nvEVF(Vn L,), and therefore M is obviously the desired lattice. 
Q.E.D. 

Next we shall look at orders in algebras, but shall limit ourselves to 
several questions on the existence of maximal orders and the embeddability 
of an arbitrary order in a maximal one, since precisely these questions arise 
in the study of maximal arithmetic and maximal compact subgroups of 
algebraic groups. To begin with, note that a consequence of Theorem 1.15 
is 

PROPOSITION 1.10. An order B C A is maximal if and only if for each v 
in v ~ K  the order B, c AKu is maximal. 

Straightforward examples show that it is possible for arbitrary algebras 
not to have maximal orders. Our object is to prove that maximal or- 
ders always exist in finite-dimensional semisimple algebras. Recall that a 
semisimple K-algebra is the direct sum of a finite number of simple (not 
necessarily central) K-algebras. Thus, a finite-dimensional semisimple al- 
gebra has the form A = M,, (Di), where Di is a finite-dimensional 
division algebra over K. For characteristic 0 the fact that an algebra A is 
semisimple is equivalent to  A @K K = @I=, M,, (K) for suitable integers 
mi (cf. Pierce [I]). Therefore it is natural to begin by considering maximal 
orders in a matrix algebra A = M,(K,). Our discussion will be based on 
the study of the natural action of A on V = Kc, into which we incorporate 
elementary topological concepts related to compactness. For any lattice 
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L c V p u t  AL = {g E Mn(K,) : g(L) c L) ,  the stabilizerof L. Then 
with respect to the base of L this set AL coincides with Mn(O,), so, in 
particular, AL is an order and an open compact subring (indeed, these are 
equivalent concepts). 

(1) For any compact subring B c A there is a lattice L c V such that 
B c AL; 

(2) the ring AL is a maximal order in A, for any lattice L c V; 
(3) any order B c A is contained in some maximal order, and there is 

only a finite number of such maximal orders. 

PROOF: Let Lo = 0," be the lattice spanned by the standard base of V = 
K:. Since AL0 is open and B is compact, there exists a finite set X I , .  . . , x, 
in A such that B c UL=l(xi + AL0) It follows that the 0,-submodule 
of L c V generated by B(Lo) = UzEB x(LO) is actually generated by 
Lo U xl(Lo) U . . . U x,(Lo), or in other words is a lattice. Moreover, clearly 
B(L) c L, which proves the first assertion. 

Now suppose AL is contained in some order B c A. Since any order is 
clearly an open compact subring, B c AM for a suitable lattice M c V 
by (1). Thus AL c AM and our aim is to show that AL = AM. Replacing 
M by a lattice of the form a M  for a in 0, \ (0) does not change the 
ring AM, so we may assume that M c L, but M @ TL, where .rr is a 
uniformizing parameter of K,. Then we can choose a base el , .  . . ,en of 
L such that el,  .rra2e2,. . . , .rranen constitute a base of M for suitable non- 
negative integers a 2 ,  . . . , a,. Consider a transformation gi in AL which 
interchanges the vectors el and ei while leaving fixed ej  for all j # 1, i. 
Since AL c AM we have gi E AM, whence gi(el) = ei E M and ai = 0. 
Consequently L = M, so AL = AM, proving the second assertion. 

From (1) and (2) it follows that any order B c A is contained in some 
maximal order C = AL, so it remains to be shown that the set {Cl) of 
maximal orders in A containing B is finite. We have Cl = AM[, B > .rraC 
for suitable lattices Ml c V and some non-negative integer a .  Then for 
any 1 we have Cl > B > .rraC. We shall show that at  the same time 
.rraCl c C. As in the proof of (2), without loss of generality we may 
assume that the lattices L and Ml have bases of the form el ,  e2,. . . ,en 
and el, .rra2ez,. . . , .rranen for cxi 2 0. Since Cl > .rraC, then C(M1) C 

.rrPC1(Ml) = . r r P  Ml. Again, using the above transformations gi E C, we 
obtain ai 5 a, i.e., r a L  c Ml. Then .rraCl(L) C Cl(Ml) = Mi C L, i.e., 
raC1 c C. Thus r a C  c Cl c T - ~ C ,  from which it follows that there is 
a finite number of distinct Cl since [.rrPaC : .rraC] is finite. This completes 
the proof of the proposition. 

REMARK: A consequence of the description of maximal orders in A = 
Mn(K,) as stabilizers of lattices L C V is that they are conjugate in A. 

It is easy to deduce from this proposition the analogous assertions about 
maximal compact subgroups of G = GLn(K,). For any lattice L c V let 
GL denote the group of automorphisms of L, i.e., GL = {g E G :g(L) = L) 
(in general, for any subgroup c G we set rL = {g E r :g(L) = (L)) and 
call rL the stabilizer of L in r). Clearly GL = (AL)* can be identified 
with GLn(O,) with respect to the base of L, so GL is an open compact 
subgroup of G and det g E U, for any g in GL. 

(1) For any compact subgroup B c G there is a lattice L c V such that 
B c GL; 

(2) GL is a maximal compact subgroup of G for any lattice L c V; 
in particular any compact subgroup is contained in some maximal 
compact subgroup; 

(3) all maximal compact subgroups of G are conjugate. 

The proof follows easily from Proposition 1.11. 
From Proposition 1.11 one can easily derive a fundamental theorem on 

orders in semisimple algebras over local fields. 

THEOREM 1.16. Let A be a semisimple algebra over K,. Then any order 
B c A is contained in some maximal order, and moreover there is a finite 
number of maximal orders containing B. 

PROOF: Writing A as the direct sum of simple algebras, one reduces the 
proof to the case where A is simple. Let F be the center of A and OF 
be the corresponding ring of integers. Then for any 0,-order B C A the 
product OFB is simultaneously an 0,-order and OF-order in A. From this 
remark it follows that we need only consider the case F = K,. Clearly, to 
prove the theorem it suffices to show that the set {Bi} of all orders in A 
containing B is finite. To do so we choose a finite extension P of K, such 
that A @ K ,  P E Mn(P) and put B = B @ow Op, Bi = Bi 180, Op. Then 
B and Bi are orders in Mn(P),  and B C Bi. But Proposition 1.11 implies 
that there is only a finite number of distinct orders Bi; thus it remains to be 
shown that Bi = Bj only if Bi = Bj. To do so choose 0,-bases XI, . . . , xn2 

n2 
and yl, . . . , ynz of Bi and Bj  respectively. Then xl = C almym and yl = 

m=l 
n2 

blmxm for suitable al,, blm E K,. Since X I , .  . . , xn2 and yl, . . . , yn2 
m=l 
are also Op-bases of Bi = Bj, then actually al,, blm E 0 p  n K, = 0,, 
whence Bi = Bj. Q.E.D. 
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If we combine Proposition 1.11 with Theorem 1.16 we see that there exist 
maximal orders in semisimple algebras over an algebraic number field. 

THEOREM 1.17. Let A be a semisimple algebra over an algebraic number 
field K.  Then any order B c A is contained in some maximal order. 

PROOF: As above, this reduces to the case of a central simple K-algebra 
A. It suffices to show that the set {Bi) of orders in A containing B is finite. 
First this assertion is proved for a matrix algebra A = Mn(K). Clearly here 
A has a maximal order C = Mn(0).  Then, by assertion (2) of Theorem 1.15 
it follows that B, = C, is a maximal order in AKv = Mn(Kv) for almost 
all v in v ~ K .  Moreover, for the remaining v the number of orders in AK. 
containing B, is finite. This, together with assertion (1) of Theorem 1.15, 
yields the required result. In general to reduce to the case just considered, 
we choose a finite extension P / K  satisfying A @K P P Mn (P) ,  and replace 
B and Bi with B = B @Q Op and Bi =_ Bi @Q Op in Mn(P). Then there 
exists only a finite number of distinct Bi, and thus of distinct Bi as well. 
Q.E.D. 
REMARK: Although it can be shown that over K, all maximal orders are 
conjugate, over K in general there also exist non-conjugate maximal orders. 

This chapter, like the first, presents introductory material. In 52.1 we set 
forth (generally without proofs) basic results on the structure of algebraic 
groups, including the classification of semisimple groups over algebraically 
closed fields and over arbitrary fields, as well. In 52.2 we consider several 
aspects of the classification of K-groups, using Galois cohomology. In 52.3 
we apply this approach to obtain an explicit classification of the classi- 
cal groups. 52.3 also contains some supplementary material related to the 
classical groups, including, in particular, relative and absolute versions of 
Witt7s theorem. Lastly, 52.4 sets forth essential results from algebraic ge- 
ometry, including the construction of several algebraic varieties which we 
shall need later on. 

2.1. Structural properties of algebraic groups. 

In this section we present some basic definitions and results on algebraic 
groups over algebraically closed fields as well as over arbitrary fields, which 
will be used constantly throughout the book. Actually, we shall not present 
the proofs here, since our main objective is to unify terminology and nota- 
tion; however we shall give precise references for the proofs of key results. 
We recommend the books Borel [8] and Humphreys [l] (for an algebraically 
closed ground field), and the article Borel and Tits [l] as basic references. 
While, strictly speaking, an acquaintance with the results set forth below is 
sufficient in order to understand this book, a preliminary systematic study 
of the above sources, and of the foundations of algebraic geometry, Lie al- 
gebras, and root systems, based on Shafarevich [I] and Bourbaki [4], for 
example, is highly recommended. 

2.1.1. Algebraic groups. For the most part we shall make do with the 
"na'ive" definition of a linear algebraic group as a subgroup of the general 
linear group GLn(R) which is closed in the Zariski topology, where R is 
a universal domain (an algebraically closed field having infinite transcen- 
dence degree over its prime subfield). For example, this is the case with 
reduction theory in Chapter 4, where one can even assume R = C. How- 
ever, in several instances, especially when working with adeles or groups 
of points over various completions, it is natural to take a more abstract 
approach in which an algebraic group G is viewed as an algebraic variety 
with morphisms 

G x G ~ G  given by (x, y) H xy 
(2.1) 

GIG given by x H x-I 
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satisfying the usual group axioms. In principle, when working with groups 
of points over arbitrary rings sometimes a schematic approach is useful, 
too, however we did our best not to use it extensively. It should be noted 
that these sundry approaches actually all lead to the same class of objects, 
since any affine algebraic group (under the second definition) is linear, i.e., 
is isomorphic to a Zariski-closed subgroup of a suitable GL,(R). (By a 
morphism of algebraic groups we mean a morphism of algebraic varieties 
which is also a group homomorphism; an isomorphism is a morphism for 
which there is an inverse morphism.) Since no more general algebraic 
groups than linear ones will be considered in this book, the word "linear" 
will frequently be omitted. 

In several instances it is convenient to view an algebraic group G as a 
Zariski-closed subset not only of GL,(R) but of the matrix algebra M,(R) 
as well. This can always be achieved by increasing n (called the degree of 
G) by 1. Indeed, it suffices to realize GL,(R) 
Mn+l(R). The desired embedding is given by 

0 
0 

0 0 . . . (det g) 

itself as a closed subset of 

the matrix entries of the image defined by the following equations for y = 

(yij) E Mn+l(a): 

It follows that the coordinate ring of GLn(0) is 

and the coordinate ring of an algebraic group G c GLn(R) is Ala, where 
a is the ideal of all polynomials in A vanishing on G. (Several frequently 
used concepts of algebraic geometry are discussed in $2.4.) In particular, 
if f :  G 4 H is a morphism of two algebraic groups G c GL,(R) and H C 
GL,(R), then there also exist polynomials 

In this book we shall study algebraic groups defined over a subfield K 
of R, usually either an algebraic number field or its completion. In this 
regard, recall that an algebraic group G c GL,(R) is said to be defined 
over K(or simply a K-group) if a, the ideal of the coordinate ring A of 
GL,(R) consisting of those polynomials that vanish on G, is generated by 
a~ = a n AK, where AK = K[x11, . . . , x,,, det(xij)-'1. (Henceforth we 
shall use systematically the notation AK, a ~ ,  and analogous symbols to 
denote the corresponding K-objects, even in quite diverse situations. For 
example, GK will always denote the group of K-points of the algebraic 
K-group G C GL,(R), i.e., G n GL,(K).) A morphism f :  G -+ H of 
two K-groups, G C GLn(0) and H C GL,(R), is defined over K (in other 
words, is a K-morphism) if the polynomials (2.2) which define it come from 
AK. 

In this book we shall deal mainly with groups over perfect fields. There- 
fore, unless stated otherwise, K will denote a perfect field (moreover, in 
the context of the theory set forth, K is either finite or has characteristic 
0). Then the test of definition of arbitrary varieties over a Galois extension 
of K ,  which we shall look at in $2.2.4, becomes quite straightforward. Note 
that a K-group can also be defined abstractly as an algebraic K-variety 
whose K-morphisms are K-morphisms (of varieties) satisfying the group 
axioms (2.1). However, it can be shown (cf. Bore1 [8]) that under this 
definition an affine K-group is K-isomorphic to a linear algebraic group 
defined over K.  

2.1.2. Restriction of scalars. Let G c GL,(R) be an algebraic group 
defined over a finite (separable) extension L of K .  We wish to construct an 
algebraic K-group G' whose group of K-points G k  is naturally isomorphic 
to GL. This can be done using RLIK(G), the group obtained from G by 
restricting scalars from L to K.  To construct G' = R L I ~ ( G )  we choose 
a base wl, . . . , wd of L over K and consider the corresponding regular 
representation Q: L + Md(K), which just takes any x in L to the matrix 
of the left translation y ++ xy (with respect to the given base). In order to 
define p(L) c Md(K), take the system of linear equations 

whose coefficients are the matrices y = E Md(K). Also, let q (x i j ) ,  
for 1 = 1,. . . , m, be a finite set of generators of a~ where 

is the ideal of the funct,ions vanishing on G. Identifying &fn(Md(K)) with 
Mnd(K), we may associate to each P1(xij) = a,, ,...,,,, x:;' . . . x z  the ' 
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in the n2d2 variables y~ ' ,  where a,  @ = 1 , .  . , d and i ,  j = 1 , .  . . , j .  Then 
the image of G i  in Mnd(K) under Q is defined by the equations 

(where 0 in the last equation denotes the zero matrix in Md(K)). Let GI 
denote the set of solutions of (2.3) in GLn(R). Then GI is the desired 
algebraic K-group. Note that G = RLIK(G) is independent of the choice 
of the base L/K (up to K-isomorphism). 

The set of equations (2.3) defining GI shows that GI may be interpreted as 
the group of points of G in the I?-algebra L@K K. Note that L@K K 2 Kd, 
the embedding of L in Kd obtained by x H (01 (x), . . . , o ~ ( x ) ) ,  where 
01,. . . ,ad are the distinct embeddings of L in K over K .  Hence there 
exists a K-isomorphism 

(2.4) GI e! Gul x . . . x Godl 

where Gut is the subgroup of GLn(R) determined by the equations from 
a 2 ,  which is obtained by applying ~i to all polynomials in a ~ .  

For any L-morphism f :  G -+ H of algebraic L-groups G and H ,  there 
is a corresponding K-morphism f = RLIK (f ): RLIK (G) 4 RLIK (G) (ob- 
tained analogously to the construction of P from P).  Thus RLIK is a func- 
tor from the category of L-groups and L-homomorphisms to the category 
of K-groups and K-homomorphisms. Note that not every K-morphism 
f :  RLIK(G) 4 RLIK(H) has the form j = RLIK(f)  for a suitable L- 
morphism f :  G 4 H. (Namely, if L/K is a Galois extension, then RLIK (G) 
has K-defined automorphisms induced by automorphisms of LIK, which 
can not be written in the form RLIK(f).) However, using (2.4) it is easy 
to obtain the equality X ( R L I K ( G ) ) ~  = X(G)L for the groups of rational 
characters (cf. $2.2.7 for the definition of characters, and Borel [I,  Propo- 
sition 1.61). 

Restriction of scalars has two noteworthy arithmetic properties. Let LIK 
be an extension of an algebraic number field and let v E VK. Then, writing 

for any L-group G. Now let K = Q and let wl, . . . , wd be a base of O/Z 
where O = OL, the ring of integers of L. Taking the regular representation 
Q with respect to this base, we obtain RLIK(G)z 2 Go, and RLIK(G)zp e! n Go, for any prime number p. 
V I P  
2.1.3. The Lie algebra of an algebraic group. The variety of any 
algebraic group G is homogeneous; i.e. for any two points gl, g2 E G the 
translation map x t+ g2g;1x is a morphism of G as an algebraic variety, 
sending gl to g2. Since a variety always has a simple point, one concludes 
that all the points of G are simple, i.e., G is a smooth variety. (Con- 
cepts related to simple points and tangent spaces are discussed in $52.2.4 
and 2.3.1.) The tangent space T,(G) of G at the identity is called the 
Lie algebra L(G) of G. Clearly dim L(G) = dimG. If G c GLn(R) then 
L(G) c Mn(R) = L(GL,(R)), and the Lie bracket is given by the standard 
formula 

[X, Y] = XY - YX. 

If G C GLn(R) is defined over K ,  then L(G) is an algebra with a K- 
structure, i.e. L(G)K = L(G) n Mn(K) satisfies L(G)K @K R = L(G). For 
explicit determination of the Lie algebra the method of dual numbers can 
be used (cf. Borel [8], Humphreys [I]). 

If G c GLn(R) then for any g in G we have gL(G)g-l = L(G), giving 
rise to a morphism of algebraic groups G -+ GL(L(G)) defined by g H cp,, 
where cp,(X) = gXgP1 for X in L(G); this is called the adjoint representa- 
tion of G and is written Ad. Also, one has the map ad: L(G) + End(L(G)) 
given by adX(Y) = [X, Y], called the adjoint representation of the Lie al- 
gebra L(G). Using dual numbers it is easy to show that ad is the differential 
at 1 of the representation Ad. The Killing form is the symmetric bilinear 
form f on L(G) given by 

f (X, Y) = tr(adXadY), for X, Y E L(G), 

where tr denotes the trace in the matrix algebra End(L(G)); note that f 
is invariant under the adjoint action of G. 

2.1.4. The connected component of 1. Since G is a smooth variety, 
its irreducible components are also its connected components. The con- 
nected component Go of the identity is an open-and-closed normal subgroup 
of G having finite index. Moreover dimG = dim Go and L(G) = L(GO). 
If G is defined over K ,  then Go is also defined over K .  Note that most 
of the groups to be studied in this book are connected. In particular, all 
reductive or semisimple groups will be assumed to be connected. 
2.1.5. The Jordan decomposition. Let g E GLn(R); then there is a 
unique way of writing g = g,g,, where g, is a semisimple matrix (i.e., g, 
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can be diagonalized via conjugation), g, is unipotent (i.e., all the eigen- 
values of g, are I),  and g,g, = g,g,. We call g = g,g, the Jordan de- 
composition. If g E G, where G c GL,(R) is an algebraic group, then 
g,, g, E G. Moreover, if f :  G 4 H is a morphism of algebraic groups, then 
f (g)s = f (g,) and f (g), = f (g,). Thus we see the Jordan decomposition 
is independent of the matrix realization of G. Furthermore, if g E GK 
then g,, g, E GK (recall that K is assumed to be perfect). Analogously, 
any matrix X E M,(R) can be written in the form X = X, + X,, where 
X, and X, are respectively semisimple and nilpotent matrices such that 
X,X, = X,X,. This decomposition, called the additive Jordan decompo- 
sition, is also uniquely determined. If X E L(G) then X,, X, E L(G), 
and the projections X H X, and X w X, are functorial, i.e., they respect 
differentials of morphisms of algebraic groups. Moreover, X,, X, E L(G)K 
for X in L(G) K. 

2.1.6. Quotient varieties. If G is a K-group and H is a K-subgroup 
of G, then the space of cosets G/H can be provided with the structure of 
a quasiprojective variety such that the canonical map G -+ G/H is a K- 
morphism of algebraic varieties (for greater detail, cf. 52.2.4). When H is a 
normal subgroup of G then G/H is an affine variety, and the structure of the 
algebraic variety on G/H is consistent with the natural group operation; 
thus G/H is an algebraic K-group and G 4 G/H is a K-morphism of 
algebraic groups. 

2.1.7. Diagonalizable groups and algebraic tori. An algebraic group 
G is said to be diagonalizable if there is a suitable faithful representation 
f :  G -+ GL,(R) for which the group f (G) is diagonalizable, i.e., is con- 
jugate to a subgroup of the group D, of diagonal matrices. Then the 
image of any representation f :  G -+ GL,(R) is also diagonalizable. It can 
be shown that the diagonalizable groups are those commutative algebraic 
groups which consist only of semisimple elements. Of special importance 
are the connected diagonalizable groups known as algebraic tori. Algebraic 
tori can also be defined as those algebraic groups G for which there is an 
isomorphism G 21 (Gm)d, where 6, = GL1(R) is the multiplicative group 
of R and d = dim G. 

A character of an algebraic group G is a morphism of algebraic groups 
X: G -+ 6,. The characters of G generate a commutative group under the 
operation (xl + x2)(g) = x1(g)x2(g), which we denote as X(G). It is easy 
to see that for the d-dimensional torus G the group X(G) is isomorphic to 
Zd and, in particular, is a finitely generated torsion-free Z-module. 

In general a K-torus G need not have an isomorphism G -- (6m)d defined 
over K;  when it does, however, G is said to be K-split. The following 
conditions are equivalent: 

(1) G is K-split; 
(2) all its characters are defined over K ;  
(3) f (G) is diagonalizable over K ,  i.e., is conjugate to a subgroup of D, 

by a matrix from GL,(K), under any (equivalently, some) faithful 
K-representation f : G -+ GL, (0). 

Note that the latter two conditions also are equivalent for any diagonal- 
izable K-group and thus allow us to define a K-split group. In general 
a diagonalizable K-group splits over some finite field extension L of K ,  
which is called a splitting field of G. From (2) it follows that an extension 
L of K will be a splitting field of G if and only if X(G) = X(G)L. In 
terms of Galois theory this means that if we consider the natural action of 
B = G ~ ~ ( K / K )  on X(G) (recall that we assume K to be perfect), which 
endows the discrete group X(G) with the structure of a continuous module 
over the profinite group G, then the open subgroup H c 6 corresponding 
to L acts trivially on X(G), i.e., X(G) = x ( G ) ~ .  It follows, in particu- 
lar that any given diagonalizable K-group G has a minimal splitting field 
which is automatically a Galois extension of K and is contained in any 
other splitting field. 

Thus, for any K-split torus G we have X(G) = X(G)K. At the other 
extreme, G is a K-anisotropic torus if X(G)K = 0. It is well known that 
any K-torus G has K-subtori G, and Gd, respectively K-split and K- 
anisotropic, such that G = G,Gd and G, n Gd is finite (i.e., G is an almost 
direct product of G, and Gd). 

d The correspondence G --+ X(G) is a contravariant functor from the cate- 
gory A of K-diagonalizable groups split over a finite Galois extension L/K 
with Galois group 3 and of K-morphisms, to the catego y 23 of finitely 
generated modules over the group ring r = Z[3] and of I'\module homo- 
morphisms. 

THEOREM 2.1. @ is a contravariant category equivalence, for which the 
subcategory A. c A consisting of the algebraic tori defined over K, cor- 
responds to the subcategory Co c C of Z-torsion-free finitely generated 
I?-modules. 

Theorem 2.1 is fundamental for the study of algebraic tori, the subject 
of Voskresenkii's book [3]. This theorem makes it possible to define an 
algebraic torus by giving the corresponding character module. Moreover, 
as Voskresenskii has shown, many geometric and arithmetic properties of 
tori can be described in this context. In our book we shall not deal with 
the theory of tori (for which we refer the reader to Voskresenskii [3]) and 
shall limit ourselves to several typical examples and constructions that will 
be needed later on. 
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To begin with, note that there is also a covariant equivalence between 

and B0 given by G 5 X, (G) where X, (G) = Hom(G,, G) is the 
group of cocharacters or one-parameter subgroups of GI provided with the 
structure of a I?-module in the natural way. There is a natural bilinear map 
X,(G) xX(G) 4 Z which is defined as follows: if cp E X,(G) and x E X(G) 
then x o cp is a morphism from 6, to (6,; therefore ( X  o cp)(t) = tm for 
some m in Z (t E Of) and we define (x,cp) = m. This map enables us 
to identify X,(G) with the dual r-module Homz(X(G), Z) of X(G). It 
follows, in particular, that if G is a K-split torus, i.e., X(G) = X(G)K, 
then also X, (G) = X, (G) K. On the other hand, if G is K-anisotropic then 
X,(G) = 0. Conversely, if X,(G) = X,(G)K (respectively X,(G) = 0) 
then G is K-split (respectively K-anisotropic). 
EXAMPLE: Let [L : K] = d. Set G = RLIK((Gm). Then, as follows from 
92.1.2, there exists a K-isomorphism G 21 i.e., G is a d-dimensional 
torus. The explicit description of the restriction of scalars allows G to be 
realized as a K-subgroup of GLd(0). Let cp denote the restriction to G 
of the ordinary determinant. Then cp is a K-morphism G -+ 6,, i.e., an 
element of X(G)K. In terms of field theory the restriction of cp to GK = L* 
is the determinant of the regular representation of L over K ,  i.e., the usual 
norm NLIK: L* -+ K*. Therefore the kernel of cp, usually designated by 
#) LIK(Gm) is called the norm torus corresponding to L/K. 

The minimal splitting field is the normal closure P of L over K .  Set 
3 = Gal(P/K) and 'H = Gal(P/L). Then X(G) as a module over r = 
Z[3] is isomorphic to Z[F/'H], the free Z-module with base consisting of 
cosets g'H for g E F, on which 3 acts by left translation. The norm map 
cp: G -, 6, corresponds to the homomorphism of I'-modules Z 4 Z[F/'H], 
given by z H zo for a = Cg'H,  the sum taken over all cosets. Then 

(1) 
the character module X(H) of the norm torus H = RLIK(Gm) is the 

quotient module Z[F/'H]/Za. Since the module of fixed points Z [ F / R ] ~  
is Za, it follows that X(H)K = 0, i.e., H is anisotropic. The same result 
can be obtained by considering cocharacter modules instead of character 
modules. Namely, X, (G) is isomorphic to Z[F/'H], and X, (H) is the kernel 
of the augmentation map Z[F/'H] 4 Z given by C agg'H -+ C a,. Clearly 
X , ( H ) ~  = X*(H)nZa = (0). Thus we see again that H is a K-anisotropic 
torus. 

The above example may be generalized as follows. Consider finite ex- 
tensions L1, .  . . , L, over K ,  and for each i = 1,. . . , r construct the corre- 
sponding norm map cpi: RLiIK (6,) 4 6,. Then 

is a torus which is naturally called multinorm. 

Tori of the form RLIK((Gm) and their finite direct products are called 
quasisplit (over K) .  They are precisely the K-tori whose groups of charac- 
ters are permutation modules, i.e., free finitely generated Z-modules with a 
base whose elements are permuted by the absolute Galois group. Quasisplit 
tori are the easiest to study, and sometimes when dealing with arbitrary 
tori it turns out to be helpful to cover the torus under consideration by (or 
to embed it in) a suitable quasisplit torus. We present several examples of 
such constructions to be used later on. 

PROPOSITION 2.1. Let F be a diagonalizable K-group split by an extension 
P/K. Then F can be embedded in an exact sequence 

where T and S are K-tori split by P, and T is quasisplit. 

PROOF: Let 'H denote the kernel of the natural action of = G ~ ~ ( K / K )  
on the group of characters X(F) ,  and let L = K" be the corresponding 
fixed field. Then L is a finite Galois extension of K with Galois group 
.F = 613-1, and clearly L c P. Now consider X(F)  as a module over the 
group ring r = Z[F] and write it as  a quotient module of a free module r l .  
Then there is an exact sequence of the form 

Passing from A and I" to the corresponding tori, we obtain the exact 
sequence 

l + F + T + S + l ,  

where T and S are K-tori and T = R ~ / ~ ( G ~ ) ' .  Q.E.D. 
If we assume F is a torus and use the cocharacter module instead of the 

character module, by a similar argument we obtain 

PROPOSITION 2.2. Any K-torus F can be put into an exact sequence 

where S and T are K-tori and T is quasisplit. 

We shall also require 

PROPOSITION 2.3 (ONO [5]). For any K-torus F there exists an integer 
m > 0 and a quasisplit torus T' such that Fm x T' is isogeneous to some 
quasisplit K-torus T. 
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(Recall that by an isogeny of algebraic groups we mean a surjective ho- 
momorphism with a finite kernel. Two groups are said to be isogeneous 
if there is an isogeny between them. The concept of isogeny with respect 
to semisimple groups is taken up in 52.1.13. Isogeny for tori is quite dif- 
ferent; in particular, isogeny is an equivalence relation. In terms of char- 
acter groups this relation is expressed as follows: two tori Ti, T2 from the 
category A. described in Theorem 2.1 are isogeneous if and only if the 
Q[3]-modules X(Tl) @z Q and X(T2) @z Q are isomorphic. 

Proposition 2.3 is actually a restatement of Artin's theorem on induced 
characters in terms of tori. We omit the proof here and refer the reader 
to Ono [5] and to his article in "Arithmetic groups and automorphic func- 
tions." 

2.1.8. Solvable and unipotent groups. Throughout this subsection we 
assume the base field has characteristic 0. An algebraic group G is said to 
be unipotent if all of its elements are unipotent. An example of a unipotent 
group is the additive group of R, i.e. 

If G c GLn(R) is unipotent then (g - En)" = 0 for any g in G, and 
therefore the truncated logarithmic map 

1: G -t Mn(R) given by 

defines a polynomial isomorphism of varieties from G to its Lie algebra 
L(G); the inverse map is the truncated exponential map e: L(G) + G 

x"-l 

given by e(X) = En + X + $ + . . . + -. In particular, G is always 
connected. Now let G C GLn(R) be a unipotent K-group. Then G is 
trigonalizable over K ;  i.e., there exists a matrix g in GLn(K) such that 
gGg-i is contained in the group U n  of upper unitriangular matrices. It 
follows, in particular, that G is nilpotent. Moreover, it can be shown that 
there is a central series 

in G such that Gi/Gi+l .- (6, for i = 0, . . . , n - 1. Note that most of the 
above statements do not carry over for positive characteristic. 

We shall require a technical assertion about unipotent groups. 

LEMMA 2.1. Suppose a K-split torus T acts by automorphisms on a con- 
nected unipotent K-group U. Then for any T-invariant K-subgroup V c U 
we can find a T-invariant Zariski-closed subset P c U defined over K such 
that the product morphism induces K-isomorphisms of varieties P x V 2 U 
and V x P 7 U. Moreover, if U is abelian then P can be chosen to be a 
suitable K-subgroup of U. 

Indeed, if U is abelian then the map I: U + L(U) introduced above is 
a group isomorphism; so it suffices to choose a T-invariant K-complement 
W c L(U) of L(V) and to set P = e(W). The general case is examined 
by induction on dim U/V, and then using central series (2.4) one reduces 
the problem to the case dim U/V = 1. Here again we may put P = e(W), 
where W is a one-dimensional T-invariant K-complement of L(V) in L(U). 

Now let G c GL,(S1) be a connected solvable group. Then G is conjugate 
to a group of upper triangular matrices (Lie-Kolchin Theorem). This yields 
the structure theorem for solvable groups: the set G, of unipotent elements 
of G constitutes a normal subgroup of G, and G is a semidirect product of 
G, by an (arbitrary) maximal torus T c G. If G is a K-group then G, is 
also a K-group and there exists a maximal K-torus T c G; moreover, in 
this case the semidirect decomposition G = TG, is also K-defined. There 
is a composition series (over R) 

such that the factors Gi/Gi+1 are isomorphic to G, or (6,. If there is 
a series (2.5) of K-subgroups such that the Gi/Gi+l are K-isomorphic to 
6 ,  or G,, then G is said to be K-split. Indeed, this is equivalent to the 
existence of a maximal K-split torus T C G, and then any K-torus in G is 
K-split. In particular, any unipotent K-group is K-split, and in this case 
all the factors of the corresponding series (2.5) are K-isomorphic to 6,. 

2.1.9. Connected groups. Two classes of subgroups stand out in the 
study of a connected group G: maximal tori T c G and Borel subgroups 
B c G (i.e., maximal connected solvable subgroups). Since the dimension 
of G is finite, maximal tori and Borel subgroups always exist. Furthermore, 
all maximal tori in G (respectively Borel subgroups) are conjugate in G. 
(In particular, r = dimT is independent of the choice of T, and is called 
the (absolute) rank of G, written rankG). Also, it is well known that 
any Borel subgroup is its own normalizer in G. Consequently, if we fix 
some maximal torus T C G (respectively, Borel subgroup B c G), then 
the set of all maximal tori in G (respectively, of Borel subgroups) can be 
identified with the coset space GIN (respectively G/B), where N = NG(T) 
is the normalizer of T in G. (Cf. also Theorem 2.19 in 52.4.) Subgroups 
P c G containing B are said to be parabolic. They are connected and are 
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characterized by the fact that the quotient variety G / P  (cf. Borel 181) is 
projective. 

If G is a K-group then there exists a maximal torus T c G which is 
defined over K .  However, G as a rule need not have a Borel subgroup 
defined over K ;  those groups for which such a subgroup does exist are 
called quasisplit over K .  G is said to be K-split if there exists a maximal 
K-torus T c G which is K-split. (For connected solvable groups this 
concept coincides with the definition in the previous subsection.) 

THEOREM 2.2. Let G be a connected algebraic group over an infinite per- 
fect field K.  Then GK (cf. 52.1.1) is dense in G in the Zariski topology. 

The maximal connected solvable normal subgroup of G is called the rad- 
ical R(G) of G, and the maximal connected unipotent normal subgroup of 
G is the unipotent radical R,(G) of G. (Obviously R,(G) is the unipotent 
part R(G), of R(G).) A connected group G is said to be reductive (respec- 
tively semisimple if R,(G) = {e) (respectively R(G) = {e)). Evidently for 
G connected, G/R(G) is semisimple and G/R,(G) is reductive. 

If G is a K-group then both the radicals R(G) and R,(G) are K-defined. 
We have 

THEOREM 2.3 (MOSTOW [I]) .  Let K be of characteristic zero and let G 
be a connected K-group. Then there exists a reductive K-subgroup H C G 
such that G is a semidirect product HR,(G). Moreover any reductive K- 
subgroup H' C G is conjugate by an element of R,(G)K to a subgroup 
of H .  

The decomposition G = HR,(G) described in the theorem is called the 
Levi decomposition. One can use it to reduce many problems to reductive 
groups. Theorem 2.3 is the analog of the theorem for Lie groups obtained 
by Levi and Maltsev (cf. Maltsev [1,2]). 

2.1.10. Reductive groups. The basic properties of reductive groups are 
listed in the following theorem. 

THEOREM 2.4. Let G be a reductive K-group. Then 

(1) R(G) is the connected component S = Z(G)O of the center and is a 
torus; 

(2) the commutator subgroup H = [G, GI is a semisimple K-group; 
(3) G = H S  is an almost direct product (i.e. H n S is finite); 
(4) if char K = 0, then any algebraic representation f : G -+ GL, (0)  is 

completely reducible. 

A deeper analysis of reductive, and especially semisimple, groups is based 
on the concept of a root system. To define this concept we consider a 

reductive group G and fix a maximal torus T c G. Let g = L(G) be the 
Lie algebra of G and let Ad: G -+ GL(g) be the adjoint representation. 
Then it follows from 52.1.7 that AdT is diagonalizable in GL(g). This can 
also be expressed as follows: let g, denote the weight space for the weight 
a in X(T), i.e., 

0, = { X  E g : Ad(t)X = a(t)X,Vt E T}, 

and set 
R(T,G) = { a € X ( T )  : a # O a n d g ,  #0} ;  

then g = L(T) @ (@aER(T,G)ga), where L(T) is the Lie algebra of T which 
is the weight 0 space. Then the remarkable fact is that R = R(T, G) is 
an abstract root system in the space V = X(T/S) @z R (cf. Bourbaki [4, 
Ch. 61 for the definition), and so naturally is called the root system of G 
relative to T.  Note that if G is semisimple then S = {e) and we obtain 
a root system in X(T) @z R. Each space g, is one-dimensional and has a 
corresponding one-dimensional unipotent subgroup U, c G (the subgroup 
such that g, = L(U,)). The subgroup G, C G generated by U, and U-, is 
a semisimple group of rank 1; consequently G, E SL2(0) or PSL2(0). We 
also mention an equivalent description of G, as the commutator subgroup 
of the centralizer of the connected component (kera)'. Let II c R be a 
system of simple roots and R? the corresponding system of positive roots 
(cf. Bourbaki [4, Ch. 61). Then the group U(II) generated by all U, for 
a E R? is normalized by T ,  and the semidirect product B(II) = TU(II) is 
a Borel subgroup of G. Moreover 11 -+ B(II) defines a bijection between 
the systems of simple roots in R and the Borel subgroups of G containing 
T. Thus, a given Borel subgroup B c G uniquely determines some system 
II of simple roots, and one can choose an ordering V+ in V such that 
R? = R n V + .  

Associated with a root system R we have the Weyl group of R, written 
W = W(R) (Bourbaki [4]), generated by the set S of reflections with 
respect to the simple roots a E II. Moreover, the pair (W, S )  is a Coxeter 
group (cf. Bourbaki 14, Ch. 4 and 61). W has a unique element w of 
maximal length (with respect to S). It is characterized by w(Ry) = -R?, 
and its length actually equals the number of positive roots. Note that 
W(R) can be identified with the Weyl group W(T, G) of G with respect to 
T,  which is defined as NG(T)/T, where NG(T) is the normalizer of T. We 
review briefly how this is done. The action of NG(T) on T by conjugation 
determines a homomorphism from W (T, G) to Aut (R). For any a in R let 
T, = T r~ G,. Then W(T,, G,) has order 2; and any element n, in NGa \T, 
induces the reflection w, on R. It follows that the image of W(T, G) in 
Aut(R) contains W(R). But W(T,G) and W(R) have the same order, 
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since the first group acts simply transitively on the set of Borel subgroups 
containing T,  while the second group does the same on the systems of 
simple roots in R. 

The Weyl group W(T, G) has another interesting application, bearing on 
the Bruhat decomposition. For each element w in W(T, G) we choose some 
representative nw in NG(T) and consider the double coset B n w B  where B 
is a Borel subgroup of G containing T .  

THEOREM 2.5 (THE BRUHAT DECOMPOSITION). For a reductive group 
G we have a decomposition 

where the right hand side is the disjoint union of the double cosets. 

COROLLARY. The intersection of any two Borel subgroups of G contains a 
maximal torus. 

Indeed, let us consider an arbitrary Borel subgroup B c G and let (2.6) 
be the corresponding Bruhat decomposition. By the conjugacy theorem 
any other Borel subgroup is of the form gBg-l, g E G. Using the Bruhat 
decomposition we can write g as blnba where bi E B (i = 1, 2) and n lies 
in the normalizer of the maximal torus T c B. Then 

and so Tl = b l ~ b l l  is the desired torus. 
Since B n w B  is independent of the choice of n,, often we just write 

BwB instead of Bn,B, and in this way W "parametrizes" the double 
cosets modulo B in the decomposition of G. The double coset Bn,B 
corresponding to the element of maximal length w E W is called a large cell, 
and plays an especially important role. To wit: let B = B(II) where II c R 
is a system of simple roots, and let wo E W be the element of maximal 
length with respect to S = {w, : a E II}. Then wo(Ry) = -Ry is the 
set of negative roots in R,  and W~BW;' = B-, where B- = TU(-II) and 
U(-II) is the subgroup generated by U, for all negative roots a. Putting 
U = U(n) and U- = U(-II) for the sake of brevity, we then have BwoB = 

UTU-wo. Further, consider the product morphism U x T x U- 3 G. 
Computing its differential at  1 and taking into account the decomposition 
g = L(T) @ (@,ERga), one can show that cp is dominant, from which it 
follows that the "large cell" is an open subset of G. Moreover, it is easy to 
verify that cp is injective, i.e., is a birational isomorphism, implying that G 

is a rational variety. Lastly, we have dim G = dim T + [R] = dim T + 21(wo) 
where 1 (wo) is the length of wo. 

EXAMPLE: Let G = GL,(R). Then g = M,(R). The group of all diagonal 
matrices is a maximal torus T of G. Write ~i for the character of T given by 
~ i :  diag(tl,. . . , t,) H ti. Clearly, for any matrix X = ( x , ~ )  E M,(R) and 
any t = diag(tl, . . . , t,) in T we have Ad(t)(X) = (titylxij), and therefore 
R(T, G) = { ~ i  - ~j : i # j ) .  For our simple roots we can take II = 
{ ~ i - ~ i + l  : i = l  , . . . ,  n - l ) , a n d t h e n ~ ?  = { ~ i - ~ j  : i <  j ) .  I t i s  
easy to show that the Borel subgroup B(II) in this case coincides with the 
group of upper triangular matrices. The normalizer of the torus NG(T) is 
the group of monomial matrices; consequently W(T, G) is isomorphic to 
the symmetric group S,. In turn, W(R) is also isomorphic to S, and acts 
on the roots by permuting the indices. The canonical system of generators 
W(R) = S,, corresponding to II, consists of transpositions (i, i + I ) ,  i = 

1, . . . , n - 1. The element of maximal length wo E W (R) sends any i to  
n - i + 1. B- = WOBW;' is the group of lower triangular matrices, and 
the product UTU- consists of those matrices for which all the principal 
minors are nonzero. 

2.1.11. Regular semisimple elements. Let G be a reductive algebraic 
group, let T c G be a maximal torus, and let R(T, G) be the associated 
root system. A semisimple element g in G is said to be regular if the di- 
mension of its centralizer ZG(g) equals the rank of G. In this case the 
connected component ZG(~)O is a torus. Regular elements always exist. 
Moreover, an element t in T is regular if and only if a ( t )  # 1 for all a in 
R. It  follows that the regular semisimple elements of T form a dense open 
subset O c T.  If we then consider the morphism G x O 3 G given by 
(g ,  6) gOgP1 and calculate dimensions we find that the set of semisimple 
regular elements is open in G. Moreover, direct computation shows that 
the differential of cp at  any point is surjective. A semisimple element X in 
L(G) is said to be regular if its centralizer is the Lie algebra of a torus. 
The properties of semisimple regular elements in Lie algebras are analo- 
gous to the corresponding properties in groups. In particular, they form a 
nonempty open subset of L(G). 

2.1.12. Parabolic subgroups. In addition to the notation and conven- 
tions of the previous subsection, let 11 c R be a system of simple roots and 
let B(II) be the corresponding Borel subgroup. It follows from the Bruhat 
decomposition and the properties of the Weyl group W that any subgroup 
P c G containing B has the form PA = BWAB for some subset A c II, 
where WA is the subgroup of W generated by the reflections { w, : a E A }. 
Moreover L(PA) = L(T) @ g,) where O is the union of the set of 
positive roots R? and of those negative roots which are linear combinations 
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of roots from A. Subgroups of the form Pa are called standard parabolic 
subgroups. Since Bore1 subgroups are conjugate, any parabolic subgroup of 
G is conjugate to some standard parabolic subgroup. 

2.1.13. Semisimple groups. The concept of isogeny is useful in analyz- 
ing semisimple groups. We recall that an isogeny is a surjective morphism 
f :  G + H of algebraic groups having finite kernel. (For characteristic > 0 
the class of isogenies admissible as far as the classification of semisimple 
groups is concerned must be restricted somewhat, to the central isogenies. 
These are characterized by the fact that for any 0-algebra A the kernel 
of the induced homomorphism fA: GA -+ HA of groups of A-points lies in 
the center of GA. Since, in characteristic zero any isogeny is central, we 
shall not discuss the characteristic > 0 case in detail.) G is said to be an 
almost direct product of its subgroups GI,  . . . , G, if the product morphism 
GI x . . . x G, -+ G is an isogeny. We call a connected noncommutative 
algebraic group G (absolutely) simple if it has no nontrivial connected nor- 
mal subgroups (here we depart from the traditional terminology "almost 
simple group" ) . 

PROPOSITION 2.4. Let G be a semisimple group and Gi (i E I) the 
minimal connected normal subgroups of G. Then I is a finite set (say 
I = (1,. . . ,r)),  and G is an almost direct product of GI , .  . . ,G,. In 
particular, G is an almost direct product of simple groups. 

In fact, each Gi (i = 1, .  . . , r) corresponds to the irreducible compo- 
nent Ri in the decomposition R = UI='=, Ri of the root system R of G (cf. 
Bourbaki [4, Ch. 61); viz., Gi is generated by U, for a E Ri. In general 
one cannot replace "almost direct product" by "direct product"; however 
we shall describe two cases in which one can. G is said to be simply con- 
nected if, for any connected group H, any (central) isogeny f :  H -+ G is an 
isomorphism; G is said to be adjoint if any (central) isogeny f :  G + H is 
an isomorphism. 

THEOREM 2.6. Let G be a semisimple group. 

(1) There exists a simply connected group G, an adjoint group G and 
(central) isogenies T: G -+ G and 9: G -+ G. 

(2) Any simply connected (resp., adjoint) group is a direct product of 
its minimal connected normal subgroups, which, moreover, are also 
simply connected (resp., adjoint). 

(3) Suppose R = R(T, G) is a root system of G and II c R is the system 
of simple roots. Then G is simply connected (respectively, adjoint) 
if X(T) has a base {A, : a E I I )  such that w,Ap = Ap - &pa, 
where Sap is the Kronecker delta (respectively, II spans X ( T ) ) .  

EXAMPLE: Let G = SLn(0) .  As in the preceding example, for T the 
diagonal torus, R(T, G) consists of ~i - ~ j ,  where ~ i :  diag(t1,. . . , t,) I-+ ti, 
and II = { E ~  - ~ i + l  : i = I , . . .  , n -  1 ) .  For each j = 1 ,... , n -  1, put 
Xj(t) = t l  . . . t j .  Then wai (Aj) = A j  - &ai, and consequently G is simply 
connected. 

The isogeny n: G -+ G of Theorem 2.6 (1) is called a universal covering 
and F = ker T the fundamental group of G. Thus, any semisimple group has 
a universal covering which is a direct product of simply connected simple 
groups. Thus the classification of semisimple groups is completed up to 
isogeny, by the following result: 

THEOREM 2.7. A simply connected simple algebraic group is uniquely de- 
termined up to isomorphism by its root system. 

The root system of a simple group is irreducible and reduced, and there- 
fore either belongs to one of the four classical series A,, B,, C,, D,, or 
is one of the five exceptional systems E6, E7, E8, F4, G2. It is helpful 
to assign to the root system its corresponding Dynkin diagram, the list of 
possible diagrams being: 

The Dynkin diagram of a semisimple group is the union of the Dynkin 
diagrams of its simple components (as explained in Bourbaki [4, Ch. 61). 
We also present a table of the simply connected groups corresponding to 
the classical systems (cf. s2.2.3 for greater detail) and the structure of 
the centers of simple groups, thus providing a complete description of the 
simple groups. 
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Type Realization Structure of the Center 
An SLn+l z/ (n  + 1)Z 
Bn Spinzn+i 2 / 2 2  

c n  S p ~ n  2 / 2 2  
Dn Spinan 2 / 2 2  x 2 / 2 2 ,  n even 

2 / 4 2 ,  n odd 

E6 2 / 3 2  
E7 - 2 / 2 2  

E8 - {el 
F4 - {el 
G2 - {el 

In the Lie algebra g = L(G) of a semisimple group G one can choose a 
canonical base, called the Chevalley base. Namely, there exist X, E g, for 
a E R, and Ha E L(T) for a E II, such that {XaIaER U {Har),En is a base 
of g and the following conditions hold: 

The base satisfying these properties (where c , ~  and dap take on certain 
values depending only on a, P and R; cf. Steinberg [2, Theorem 11 for more 
details) is uniquely determined up to a change of signs of X, and up to an 
automorphism of g. 

In order to describe the K-forms of a semisimple group G, we need to 
know the structure of the automorphism group Aut G. In fact Aut G is 
a semidirect product of the group of inner automorphisms Int G (which 
can be identified with the corresponding adjoint group G), by a certain 
finite group which we shall now define. To begin with, let us assume that 
G is simply connected. Then any symmetry a of the Dynkin diagram of 
the root system R = R(T, G) induces an automorphism f, E Aut G such 
that f,(T) = T,  f,(B) = B, and d, f,(X,) = Xu, for a in II, and X, 
is the corresponding element of the base of the Chevalley Lie algebra g. 
Moreover, a w f, gives an injection of the group Sym(R) of symmetries 
of the Dynkin diagram of R into Aut GI whose image we shall also write 
as Sym(R). 

THEOREM 2.8. For any simply connected semisimple group G, the auto- 
morphism group Aut G is the semidirect product of Int G - G by Sym(R). 
If G is an arbitrary semisimple group and G 5 G is a universal cover- 
ing, then Aut G is isomorphic to the subgroup of Aut G fixing ker T, the 
fundamental group. 

We have reviewed the fundamentals of the theory of semisimple algebraic 
groups over an algebraically closed field. For semisimple groups defined over 
an arbitrary field K the theory is more complicated and not as complete. 
(We shall touch on several aspects of this theory in 92.1.14.) However, for 
semisimple K-split groups the theory can be developed almost in parallel 
with the case of an algebraically closed field. In particular, for any root 
system R there exists a simply connected semisimple K-split group G with 
a maximal K-split torus T C G such that R(T, G) is R. This group is given 
by the Chevalley construction (cf. Steinberg [2]). In general, the theory of 
semisimple K-split groups coincides with the theory of Chevalley groups, 
as set forth in Steinberg's book. In the corresponding Lie algebra g we 
can choose a Chevalley base lying in g ~ .  Aut G is a semidirect product 
Sym(R). G defined over K ,  and moreover all automorphisms from Sym(R) 
are defined over K. Any K-split semisimple group G has a universal cov- 
ering T: G -+ G defined over K .  

2.1.14. Relative root systems. Let G be a semisimple K-group and let 
S c G be a maximal K-split torus. dim S is called the K-rank of G and is 
written rankK G. Since all maximal K-split tori in G are conjugate under 
GK, the K-rank is well-defined. Groups with K-rank > 0 (respectively 
K-rank = 0) are called K-isotropic (respectively K-anisotropic). It  can 
be shown that G being K-anisotropic is equivalent to GK not having any 
unipotent elements other than the identity. 

The theory set forth above for an algebraically closed base field will 
henceforth be called the absolute case. Bore1 and Tits [I] developed a 
structure theory for isotropic groups which, although analogous to the ab- 
solute case, leads to more modest results; viz., it determines the structure 
of the group modulo information about the structure of the anisotropic 
kernel. As in the absolute case, the theory is based on associating a root 
system to the group under consideration. To do so, fix a maximal K-split 
torus S and consider the adjoint action of S on g = L(G). For cw in X(S)  
Put 

gn = { X  ~ g : A d ( s ) X  = a ( s ) X , V s ~  S) 

and define R(S, G) = { a  E X(S)  : a # 0 and g, # 0) .  Then we can 
write g = L(Z(S)) @ (@aER(S,G)ga) where L(Z(S)) is the Lie algebra of 
the centralizer Z(S) of S which coincides with the weight 0 space; moreover, 
all the weight spaces g, are defined over K .  RK = R(S, G) turns out to 
be a root system in V = X(S)  @z R, called the relative system of roots or 
system of K-roots. One difference from the absolute case is that the g, 
( a  E RK) generally are not one-dimensional, and RK need not be reduced. 
The Weyl group W(RK) of the root system RK can be identified with 
the Weyl group W(S, G) of G relative to S ,  defined as  the quotient group 
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N(S)/Z(S) of the normalizer of S modulo its centralizer; moreover, any 
element of W(S, G) has a representative in N(S)K. Suppose II c RK is 
a system of simple roots and ~y~ is the corresponding system of positive 
roots. Let U, for a E RK be the commutative unipotent subgroups having 
g, as its Lie algebra, and let U(II) be the group generated by U, for all 
a E R?,. Then U(n)  is a unipotent group normalized by Z(S),  and the 
semidirect product P(II) = Z(S)U(II) is a minimal parabolic K-subgroup. 
Moreover, II 4 P(II) maps bijectively the systems of simple roots in RK 
to the minimal parabolic K-subgroups of G containing S .  Writing P = 

P(II) and U = U(II) for the sake of brevity, and choosing a representative 
nw E N(S)K for each w in W(S, G), we obtain the Bruhat decomposition 

and moreover PKnwPK = UKnwPK. Note that in the relative case the 
relation between the irreducibility of RK and the K-simplicity of G, which 
means that G has no nontrivial connected normal K-subgroups, goes only 
in one direction; if G is K-simple then RK is irreducible. 

A graphic description of a semisimple K-group G can be conveniently 
given in the form of a Dynkin diagram with additional data--called a Tits 
index, which we now describe (cf. Tits [2], Borel-Tits [I]). Consider a 
maximal K-split torus S c G and a maximal K-torus T C G containing 
S .  Let R = R(T, G) be the root system of G relative to T and let II C R 
be a system of simple roots. Since G and T are defined over K ,  the Galois 
group G = G ~ ~ ( K / K )  acting on X(T) restricts to permutations on R. 

Let us define the induced action (called the *-action) of G on the Dynkin 
diagram, or more precisely on II, since the vertices of the Dynkin diagram 
are in one-to-one correspondence with the elements of II. Namely, for any 
u E G, u(II) is a system of simple roots in R = a(R) ,  and therefore there is 
a unique w in W(R) for which w(a(II)) = II; put a* = w o o :  II 4 n .  G is 
called an inner (respectively, outer) form if the *-action is trivial (respec- 
tively, nontrivial). Furthermore, we call a vertex of the Dynkin diagram 
distinguished (and circle it) if the restriction of the corresponding simple 
root to S is nontrivial. Vertices of the diagram belonging to the same orbit 
of G are placed "close" to each other, and in case they are distinguished a 
common circle is drawn around them. Dynkin diagrams with distinguished 
vertices and the *-action specified are called Tits indexes. For example: 

It is also customary to indicate the order of the homomorphic image of 
G which acts effectively on II. Thus, the second diagram has type 2E6, 
whereas all inner forms have type 'X (where X is the appropriate Dynkin 
diagram). Note that if a diagram has no symmetries (for example, B,), 
then any K-group of this type is automatically an inner form. 

Using Tits indexes it is easy to determine the diagram of the anisotropic 
kernel of G (as we call the commutator group of the centralizer Z(S) 
of a maximal K-split torus, which is a semisimple K-anisotropic group). 
Namely, we discard the distinguished vertices and their corresponding 
edges. (If all the vertices are distinguished, then G is quasisplit.) One 
can also find a maximal K-split torus S and its corresponding relative 
root system. Namely, S is defined in T by the equations a (x )  = 1 where 
a runs through all non-distinguished roots, and also by the equations 
a1 (x) = . . . = al (x) if a1 , . . . , al lie in the same orbit under the *-action. 
It  follows that if a quasisplit group is an inner form (in particular, if the 
corresponding diagram has no symmetries) then it is split. The relative 
roots are obtained by the restriction to S of the roots from R for which 
this restriction is nontrivial. (For examples of the relevant computations, 
cf. Ch. 6.) 

2.2. Classification of K-forms using Galois cohomology. 

2.2.1. LIK-forms. Let X be an object with a K-structure (a  variety, 
algebraic group, etc. defined over K )  and L /K  be a finite Galois extension. 
A K-object Y is said to be an LIK-form of X if there is an L-defined 
isomorphism f :  X Y. The Galois group 3 = Gal(L/K) acts naturally 
on the L-morphisms of K-objects, and, for any a in 3, the morphism 
a, = f -' . f" lies in the group AutL (X)  of L-defined automorphisms of X ;  
moreover a H a, defines a (noncommutative) 1-cocycle on 3 with values 
in AutL(X) (cf. $1.3.2). Thus there is a map 

from the set of classes of K-isomorphic L I K  forms of X to the first coho- 
mology set. 

THEOREM 2.9. If X is an affine K-variety or an algebraic K-group, then 
cp is a bijection. 

Let us give a rough sketch of the main aspects of the proof (cf. Serre [l], 
~oskresenskii [3, Ch. 31). First, cp is shown to be well-defined (i.e., to be 
independent of the choice of Y in its class of K-isomorphic L/K-forms and 
of the choice of L-isomorphism f :  X + Y), and injective. This part of the 
proof is formal and holds for much more general situations. The proof of 
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the surjectivity of cp requires a more subtle line of reasoning and is based 
on the construction of twisting, which we have already encountered. 

Twisting was used in 51.3.2 to study exact sequences in noncommutative 
cohomology, but it can also be used to prove that cp is surjective. Namely, 
as in 51.3.2, consider a group G, a G-group A, and a G-set F acted on by 
A, the action of A being compatible with the action of G. Then for any 
cocycle a in Z1(G, A) we have the "twisted set" 3, depending up to G- 
isomorphism only on the equivalence class of a in H1(G, A). Put H = 3 
and write f :  F + H for the map induced by the identity map of F. Then it 
follows from the definition of 3 that the cocycle { f . f S),EG E Z1 (G, A) 
is our original a. 

Note, however, that if F has more structures (such as an algebraic vari- 
ety) then this abstract argument requires further refinement to prove that 
the twisted object $' also has this structure. In the case described in The- 
orem 2.9, this is obtained by considering the algebra of regular functions, 
also called the coordinate ring. Any affine algebraic variety is determined 
by its coordinate ring, and assigning the structure of an algebraic group is 
equivalent to assigning the structure of a Hopf algebra to the coordinate 
ring (cf. Bore1 181). Accordingly, to construct an L/K-form of X corre- 
sponding to a = {a,) E H'(F, AutL(G)) we consider the coordinate ring 
A = L[X] of L-defined functions, and introduce a new action of 3 on it, 
given by 

~ ' ( f )  = (ff 0 a,)*(f), 

where (a o a,)* denotes the K-automorphism of A corresponding to u o a,. 
The L-algebra B thus obtained will serve as the coordinate ring of L-defined 
functions for the desired variety Y. Moreover, Y will have the structure of 
an algebraic K-group if X has such a structure. Loosely speaking, we say 
that Y is obtained from X by twisting using a, and write Y = J. 
REMARK: Theorem 2.9 also holds for projective varieties. 

EXAMPLE 1: Let X = G, be a one-dimensional K-split torus, let L = 
K(&) be a quadratic extension of K ,  and let T be the generator of F = 
Gal(L/K). Consider the cocycle a = {a,) E Z1(3,  AutL X)  given by 
a, = idx and a, = 0, where O(x) = x-' for all x in X .  Then A = L[X] is 
L[t, t-l] and AK = K[t, t-l]; moreover the automorphisms 0 and T act on 
A as follows: 

e*: f (t) + g(t-l) H f (t-l) + g(t) 

7: f (t) + g(t-l) - f7(t)  + gT(t-l). 

It follows that the action of T on the twisted algebra B = L[t, t-l] is given 
by 

7: f (t) + g(t-l) f7(t--l) + gT(t). 

Direct computation shows that the K-algebra BK = B~ is isomorphic to 
C = K [u, v]/(u2 - cu2 - 1) (for indeterminates u, v), the isomorphism from 
C to BK given by 

(1) But C = K[Y], where Y = RLIK(Gm) is the subtorus of elements of 
norm 1; moreover the isomorphism C -- BK respects the Hopf algebra 
structures on C and BK. Thus J = Y. 

In many cases the description of X itself and of its K-structure is deter- 
mined by the description of the set of K-points XK. (Examples are vector 
spaces; vector spaces with certain bilinear maps, such as quadratic forms; 
algebras, etc.) Then, loosely speaking, by an "object" we frequently mean 
the set XK, and by a twisted object, the corresponding set YK. Such usage 
of the term "object" has obvious limitations. In particular, it cannot be 
applied to algebraic varieties, since one can have XK = YK = 0, with X 
and Y being not K-isomorphic. In many cases, however, this terminology 
is effective, and we shall make use of it. 

EXAMPLE 2: Let V = K 2  be a 2-dimensional space over K ,  provided 
with a quadratic form f which in the standard base el,  ez is given by 
f (xl, x2) = ~ 1 x 2 .  Again consider a quadratic extension L = K(&), and 
let T be the generator of 3 = Gal(L/K). Let Oz(f) be the orthogonal 
group of the quadratic form f and let b = {b,) denote the cocycle in 
Z1(3,  0 2 ( f ) ~ ) ,  given by be = id, b, = g, where g in Oz(f) switches 
el and e2. Consider the space V BK L and, twisting by means of a, set 
W = ,(V@ L) K .  Direct computation shows that the vectors ul = (el +e2) 
and u2 = ;&(el - e2) constitute a K-base of W, and moreover f (or, 
to  be more precise, its extension to V 8 L) in this base has the form 
f(yl ,  y2) = Yf - cy$ Thus, twisting (V, f )  yields (W, h), where h has the 
form h(yl, y2) = Yf - cy;. Note that this example is directly related to 
the preceding one, since S 0 2 ( f )  = 6, and SOz(h) = R$,(G,). We 
recommend that the reader analyze this connection by himself. 

The second example allows the following generalization. 

2.2.2. Spaces wi th  tensors. Consider a pair (V, x), where V is a finite- 
dimensional vector space over K and x is a tensor on V of type (p, q), i.e., 
an element of Tz(V) = TP(V)@Tq(V*) (the reader who is not familiar with 
tensors can take x to be a bilinear form on V, i.e., a tensor of type (0,2); 
we shall not have to deal with tensors of other types in this book). For any 
Galois extension L/K with Galois group 3 we can consider VL = V gK L 
and XL = x @ 1 E T:(VL) = Tq ( V) @K L. A pair (W, y), where W is a 
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space over K of the same dimension as V and y E Tt(W), is called an 
LIK-form of (V, x) if there is an isomorphism (VL, xL) 21 (WL, yL). As in 
52.2.1, there is a map 

PROPOSITION 2.5. cp is a bijection. 

We need only prove the surjectivity of cp, for which we use 

LEMMA 2.2. H1 ( 3 ,  GLn(L)) = 1 for any n > 1. In particular, 

~ ' ( 3 ,  L*) = 1. 

The latter assertion is known as Hilbert's Theorem 90. If L I K  is a cyclic 
extension and a is the generator of its Galois group 3, then, using the 
description of H1(3 ,  L*) in this case (cf. 51.3.1) we can give an equivalent 
reformulation, used repeatedly in 551.3-1.4: any element a in L*, such that 
NLIK(a) = 1, is of the form a E a(b)/b, where b E L*. 

PROOF: Consider the space V = Kn.  Then VL = Ln, and 3 = Gal(L/K) 
acts componentwise. Now let a = {a,) be a 1-cocycle on 3 with values in 
GLn(L). Define a new action of 3 on VL, by putting 

for a in 3 and v in VL, and let U denote the space of fixed points. Clearly, 
for any v in VL the vector b(v) = C a,o(v) lies in U .  We shall show 

~ € 3  

that the b(v) generate VL over L, whence it follows, in particular, that 
U gK L 21 VL. Indeed, let u be any linear form on VL annihilating all b(v). 
Then for any h in L and any v in VL we have 

so it follows that each u(a,a(v)) = 0 by the theorem on the linear inde- 
pendence of characters (cf. Lang [3]), whence u = 0. Thus we can choose 
vectors vl, . . . , v, in VL such that b(vl), . . . , b(vn) are linearly independent. 
Then, writing c for the matrix sending the canonical base to vl, . . . , v,, we 
obtain the nonsingular matrix b = C, a,a(c), and direct calculation shows 
that a, = ba(b)-l, as required. 

Now take an arbitrary cocycle a = {a,) on 3 with values in Au~L(VL, XL). 
Since the latter group is a subgroup of GL(VL), it follows from Lemma 
2.2 that there exists b E GL(VL) such that a, = b-lo(b). Extend b to an 

automorphism of T[(VL) and show that the tensor x' = b(x) lies in T!(V). 
To do so it suffices to show that x' is fixed by 7, indeed, 

a(.') = a(b)(u(x)) = o(b)(x) = b(b-'a(b))(x) = ba,(x) = bx = x', 

as required. Now consider the K-space W = b-'(VK), and let y denote 
the tensor over W corresponding to x'. Then the pair (W, y) corresponds 
to the cocycle a; note that actually W coincides with U (introduced in 
the proof of the lemma), and y coincides with the restriction of x to W. 
Furthermore, as we have shown, y is defined over K. Q.E.D. 

Taking nondegenerate bilinear symmetric (=quadratic) forms on V in 
Proposition 2.5 we obtain 

PROPOSITION 2.6. Let f be a nondegenerate quadratic form defined on 
an n-dimensional vector space V over a field K,  and let O,(f) be the 
orthogonal group of f (cf. 52.3). Then for any Galois extension L I K  
with Galois group 3, H1 ( 3 ,  On (f )L) is in one-to-one correspondence with 
the equivalence classes over K of those quadratic forms on V that are 
L-equivalent to f .  

Taking the nondegenerate bilinear alternating forms on V and bearing 
in mind that all of them are equivalent over K (Bourbaki [I,  Ch. 9, 55]), 
we obtain 

PROPOSITION 2.7. Let f be a nondegenerate bilinear alternating form on 
an n-dimensional vector space V over a field K .  Then for any Galois exten- 
sion LIK we have H1 ( 3 ,  Spn(  f )  L) = 1, where Sp,( f )  is the symplectic 
group of f (cf. 52.3). 

Proposition 2.5 has other applications as well. In particular, the ex- 
tra structure of "algebra" on a vector space is given by a tensor of type 
(1,2); hence the LIK-forms of A are in one-to-one correspondence with 
H 1 ( 3 , A u t ~ ( A ~ ) ) ,  where AutL(AL) is the group of L-automorphisms of 
AL = A @K L. Setting A = Mn(K) and bearing in mind that any 
automorphism of AL is inner, i.e., A u t L ( A ~ )  = PGLn(L), we see that 
H1(3,  PGLn(L)) is in one-to-one correspondence with the LIK-forms of 
A, i.e., with the central simple K-algebras of dimension n2 which are split 
by L. 

In the above examples the groups of L-automorphisms are groups of L- 
points of algebraic groups (this is always the case when dealing with the 
automorphism group of a space with a tensor). This leads us to our next 
topic. 

2.2.3. Cohomology of algebraic groups. Let G be an algebraic group 
and L I K  a finite Galois extension with Galois group F. Then F acts on 
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the group of L-points GL, and we can define H1(F, GL), written henceforth 
as H 1 ( ~ / K ,  G). If M > L are two finite Galois extensions of K ,  then one 

M 

obtains H1(M/K, G) % H1 (L/K, G). This allows us to extend the defini- 
tion of H1(L/K, G) to infinite Galois extensions L/K. Namely, Gal(L/K) 
can be viewed as the inverse limit l@Gal(Li/K) of the Galois groups of 

the finite subextensions, and then we set H1 (LIK, G) = 1 5  H1 (Li/K, G), 

where the direct limit is taken with respect to the system of maps for 

Li > Lj. In this case H1(L/K, G) can be defined equivalently as the set of 
continuous 1-cohomology of the profinite group Gal(L/K) with coefficients 
in the discrete group GL. We shall write H1(K, G) instead of H1 (K/K, G). 

Passing to the direct limit in Theorem 2.9, we see that H1(K, G) in 
general parametrizes the classes of K-isomorphic K/K-forms of a K-object 
X having G as its automorphism group, i.e., K-isomorphism classes of such 
Y that become isomorphic to X over K .  Note also that for any algebraic 
group G defined over K 

HO(K,  G) = GK. 

The exact sequences of noncommutative cohomology, described in 51.3 
yield, as a special case, analogous exact sequences for the Galois cohomol- 
ogy of algebraic groups. In particular, any exact sequence 

1 - F + G - + H - + l  

of K-groups and K-homomorphisms has a corresponding exact sequence 
of sets with distinguished element 

where @K is the coboundary map. In addition, if F lies in the center of G, 
then @K is a group homomorphism, and there is a map 

dK: (K, H) -+ H~ (K, F) 

extending (2.7) to one more term: 

Let us present some examples of computations of the cohomology of 
algebraic groups. Consider the exact sequence 

d 
1 -+ SL, -+ GL, + 6, -+ 1, 

where d is induced by the determinant, and in this case write the corre- 
sponding exact cohomological sequence (2.7) as 

It follows from Lemma 2.2 that H1(K, GL,) = 1. But det: GLn(K) -+ 

K* is surjective. Therefore, a consequence of (2.8) is 

Moreover, the special case of Lemma 2.2 for n = 1 (Hilbert's Theorem 90) 
asserts that H1 (K, 6,) = 1. Then H1 (K, RLIK (6,)) = H ( L,G,) = 1 
for any finite extension L/K, by Shapiro's Lemma. Hence the definition of 
a quasisplit K-torus yields 

LEMMA 2.4. Let T be a quasisplit K-torus. Then H1(K, T) = 1. 

Now consider the exact sequence 

where cp is the norm map. Passing to cohomology, we then have the exact 
sequence 

which implies: 

Now let us consider the exact sequence 

where [n] denotes the morphism of raising to the n-th power, and p, = 

ker[n] is the group of n-th roots of unity. (2.9) yields the exact sequences 

(2.10) K *  9 K *  -+ H 1 ( ~ , p n )  -+ H1(K,6,) = 1 and 

1 = H'(K.G,) - H ~ ( K , ~ , )  -+ H~(K,G,) H~(K,G,). 

Since H1(K, 6,) = 1 and H2(K,6,) is the same as Br(K), (2.10) yields 

LEMMA 2.6. H1 (K, p,) 21 K*/K*n, and H2(K, p,) = Br(K), is the sub- 
group of Br(K) consisting of elements of exponent n. 

Lastly, if in the proof of Proposition 2.6 we use Lemma 2.3 instead of 
Lemma 2.2, then we obtain the following interpretation of the first coho- 
mology set H1(K, SO,(f)) of the special orthogonal group SO,(f) of a 
nonsingular quadratic form f (cf. also 56.6). 

PROPOSITION 2.8. The elements of H1(K, SO,(f)) are in one-to-one cor- 
respondence with the K-equivalence classes of those quadratic forms of 
degree n over K that have the same discriminant as f .  
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Other examples of cohomology computations will occur in Chapter 6, 
which is specifically devoted to the Galois cohomology of algebraic groups. 
For the time being we shall conclude our brief study of this topic by re- 
ducing the computation of the cohomology of connected groups to that of 
reductive groups. 

LEMMA 2.7. Let K be a field of characteristic 0. Then for any unipotent 
group U defined over K we have H1(K, U) = 1. 

PROOF: To begin with, let us establish the additive form of Hilbert's The- 
orem 90, which asserts that H1(K,Ga) = 1, i.e., H1(3,  L) = 1 for any 
finite Galois extension LIK with Galois group 3 .  Let c E L be an element 
such that BLIK(c) # 0. Given a 1-cocycle a = {a,) E Z1(3, L), we put 

Direct computation then shows that a, = b - a(b) for any a E 3 ,  i.e., a 
is trivial. In fact, the normal basis theorem (cf. Lang [3, p. 2291) implies 
that L is an induced 3-module, and therefore H i ( 3 ,  L) = 1 for all i 2 1, 
by Shapiro's Lemma. 

For an arbitrary unipotent K-group U the proof is by induction on dim U. 
Using the series mentioned in 52.1.8, we can find a normal K-subgroup 
W C U isomorphic to (6,. Then the exact sequence 

yields the exact cohomological sequence 

But as proved above, H1(K, W) = 1, and H1(K, UIW) = 1 by the induc- 
tive hypothesis, so H1(K, U) = 1 as desired. 

Note that the lemma remains true for any perfect field K ,  assuming U 
is connected (same proof). In general (i.e., if U is not connected or K is 
not perfect) H1(K, U) # 1 (cf. Serre [I, Ch. 31). 

PROPOSITION 2.9. Let G be a connected group defined over a field K of 
characteristic 0, and let H be a maximal reductive K-subgroup (cf. The- w 

orem 2.3). Then the embedding H c G induces a bijection H1(K, H )  -+ 

H ~ ( K ,  G). 

PROOF: Let G = HU be the corresponding Levi decomposition, where 
U = R,(G) is the unipotent radical of G (cf. 52.1.9) and n: G + H 2 G/U 
is the canonical map. Then the composition H G 2, H I  where cp is 
the natural embedding, is the identity map; so the composition of the 
corresponding cohomology maps 

is also the identity map. Therefore, to prove the proposition it suffices 
to prove that n, is injective. n, can be put into an exact cohomological 
sequence 

arising from the exact sequence 1 -+ U + G + H + 1. By Lemma 2.7, 
H1(K, U) = 1; hence it follows from (2.11) that kern, is trivial. 

Unfortunately, in noncommutative cohomology in general we cannot 
claim that the triviality of ker n, implies the injectivity of n,. Instead, we 
use a standard trick based on twisting. Namely, let n, (g) = n, (h) for g, h E 
Z1(K, G) (we shall use the same letters to denote the corresponding coho- 
mology classes. We write & (respectively JJ) for the group obtained from 
G (respectively U) by twisting using g, and let 7,: H1(K,&) + H1(K, G) 
be the corresponding bijection (cf. Lemma 1.5). Put F = &/JJ = ,&G/U) 
and consider the sequence 

in analogy to (2.11). Obviously f = T,-l (h) E ker g , .  On the other hand 
J J  is isomorphic to U over K and hence is unipotent, so H1(K,JJ) = 1 
by Lemma 2.7. Then, by (2.12), kerg,  is trivial, and therefore f = 1 and 
g = h. Q.E.D. 

2.2.4. Classification of K-forms of algebraic groups. We shall 
consider two special cases: algebraic tori and semisimple groups. 

Let T be a d-dimensional algebraic K-torus with splitting field L and let 
3 = Gal(L/K). Then there is an L-isomorphism T -. G&. Thus all such 
K-tori are LIK-forms of the d-dimensional K-split torus (6;. Therefore, 
according to Theorem 2.9, the K-isomorphism classes of such tori are in 
one-to-one correspondence with the elements of H1(3,  AutL(G&)). But 
Theorem 2.1 implies that 
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from which it follows that the K-isomorphism classes are in one-to-one 
correspondence with the equivalence classes of d-dimensional integral r e p  
resentations of 3 .  For example, if L/K is a quadratic extension, then 
any Ztorsion free finitely generated Z[3]-module M can be written in the 
form M = Z1 @Z[FIm $In, where I is the kernel of the augmentation map 
Z[3] + Z, and 1, m and n are uniquely determined. Therefore any L-split 
K-torus T can be written as 

for some positive, uniquely determined integers 1, m, n; and any K- 
(1) anisotropic torus in this class must have the form T = RLIK(Gm)n. 

We proceed to the semisimple case. First we shall show that for any 
semisimple K-group G there exists a K-split group Go such that G - Go 
over K. To see this, consider a universal K-covering G 5 G (cf. 92.1.13). 
Then there is a K-isomorphism cp: G -. GO where Go is a K-split sim- 
ply connected group of the same type as G, and to prove the existence 
of Go it suffices to show that cp(kerx) is a K-group. But the center Z of 
Go is contained in a maximal K-split torus; hence the Galois group acts 
trivially on the group of characters X(Z), so any subgroup of Z, in par- 
ticular cp(kerx), is defined over K.  Thus any semisimple K-group G can 
be obtained from a suitable K-split group Go by twisting with a cocy- 
cle from H1 (K, AutR(Go)). Since AutR(Go) is precisely the subgroup of 
A U ~ , ( G ~ )  fixing ker x (Theorem 2.8), the universal K-covering Go + Go 
can be twisted using any element from H1(K, AutK(Go)). This yields 

PROPOSITION 2.10. Let G be a semisimple K-group. Then there exists a 
universal covering x: G + G defined over K .  

As we shall see later, the existence of a universal K-covering for arbitrary 
semisimple K-groups is an important tool in the arithmetic theory of alge- 
braic groups. Unfortunately there is no canonical analog of the universal 
covering for arbitrary reductive groups; however in several cases a special 
covering (cf. Sansuc [I]) can be used instead. A K-isogeny f :  H -+ G of 
reductive K-groups is called a special covering if H is a direct product of 
a simply connected semisimple K-group D by a K-quasisplit torus S. Al- 
though straightforward examples show that in general a reductive group 
need not have a special covering, we do have 

PROPOSITION 2.11. For an arbitrary reductive K-group G there is a pos- 
itive integer m and a quasisplit K-torus T such that Gm x T has a special 
covering. 

PROOF: By Theorem 2.4 G is an almost direct product of its semisimple 
part Dl and a maximal central torus S1. Using Proposition 2.3 we find 
m > 0 and a quasisplit K-torus T such that S;" x T is covered by a suitable 
quasisplit torus S, i.e., there is an isogeny S 3 S;" x T defined over K .  
Consider also the universal K-covering D 4 Dl,  and set H = Dm x S.  
Then the composition map 

will be the desired covering. 

By Proposition 2.10 the classification of semisimple K-groups reduces to 
that of simply connected ones. From Theorem 2.6 it follows that a simply 
connected K-group is a direct product of simply connected (almost) K- 
simple groups (i.e., groups containing no proper nontrivial connected nor- 
mal K-subgroups), and, moreover, any simply connected K-simple group 
has the form RLIK (G) where G is an absolutely simple L-group. Therefore 
it suffices to consider K-forms of simply connected simple groups. 

Let G be a given simple, simply connected K-split group and let G = 

G/Z(G) be the corresponding adjoint group. We identify G with IntR G, 
the group of inner automorphisms of G. Then the full automorphism group 
AutK G is a semidirect product of GK by Sym(R), the group of symmetries 
of the Dynkin diagram of the root system R of G (cf. $2.1.13); moreover, 
G = Gal(K/K) acts on Sym(R) trivially. Thus, we have a split exact 
sequence of K-groups 

which yields the exact cohomological sequence 

Since Sym(R) = s y m ( R ) ~ ,  any cocycle a on 6 with values in Sym(R) 
is just a continuous homomorphism G --, Sym(R), and H1(K,Sym(R)) 
is the set of conjugacy classes of such homomorphisms. It is well known 
that $(Sym(R)) c Autk G consists of those automorphisms that fix the 
maximal K-split torus T C G and the Borel K-subgroup B C G contain- 
ing it. Therefore, for any a in H1(K, Sym(R)) the K-form of the group 
corresponding to P(a) E H 1 ( K , A u t ~  G) has a Borel K-subgroup, i.e., is 
quasisplit over K .  Thus, for any a in H1(K, Sym(R)) the fiber aP1(a) con- 
tains a quasisplit K-group ,G which, moreover, is uniquely determined up 
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to K-isomorphism. The groups that correspond to the elements of aP1(a) 
are said to have the same inner type. This term is explained by the fact 
that aP1(a) is the image of the map H1(K, ,G) + H1(K, Aut(,G)) .v 
H1(K, AutK G), where the last isomorphism is a "translation" by @(a) 
(cf. $1.3.2); thus groups of the same inner type are obtained from the cor- 
responding quasisplit group by twisting using an element from H1(K, ,G), 
i.e., using inner automorphisms. The fiber of a over the trivial cocycle in 
H1(K, Sym(R)) consists of what we call inner forms of G, this definition 
being consistent with the definition of inner forms given in the previous 
subsection. Inner forms, and only these, are obtained by means of twisting 
using elements of H1(K, G). In the next section, using these results we 
shall obtain an explicit classification of the groups of classical type. 

2.3. The classical groups. 

The goal of this section is to introduce algebraic groups whose groups 
of rational points are classical groups over skew fields, i.e., special linear, 
symplectic, special orthogonal and special unitary groups. These groups, 
with few exceptions, turn out to be simple algebraic groups related to the 
classical types A,, B,, C, and D,. It is noteworthy that the converse result 
holds: every group of classical type, with the exception of 3 ~ 4  and 6D4 in 
Tits7 notation [2], can be described, up to isogeny, as one of the classical 
groups. Unfortunately, this result, due to A. Weil [3], has not yet appeared 
in book form (except for M. Kneser's lecture notes [12]). Therefore we 
shall present complete proofs of those results. The argument is based on 
the classification of K-forms by means of Galois cohomology and the notion 
of twisting. 

2.3.1. The special linear group. Let D be a finite-dimensional central 
skew field of index d over K ,  and let n 2 1. Then A = M,(D) is a simple 
algebra and we have the reduced norm map NrdA/K: A* + K *  (cf. $1.4.1). 
Set SL,(D) = { x  E A* : NrdA/K(x) = 1 )  and show that this group is 
the group of K-points of a certain algebraic group G, which we denote as 
SL, (D). Let Q: D + Md2 (K)  be the regular representation of D.' Q(D), 
being a linear subspace of Md2 (K), is determined by a system 

of linear equations for the entries xij of a matrix x = (xij), with coefficients 
in K .  Identifying Mnd2 (K)  with Mn(Md2 (K)),  we let A denote the subset 

l i.e., an element z in D is sent to the matrix corresponding (with respect to a fixed 
base) to the K-linear transformation y - zy of D, viewing D as a d2-dimensional vector 
space over K.  

of Mnd2(K) consisting of the elements x = (2:') for i, j = 1,.  . . , d2 and 
a, p =  1, . . .  , n  such that 

(2.14) fk(x$') = O  for a l l a ,  p =  1 , . . .  , n a n d  k =  1 ,... ,1. 

Clearly, Q identifies A with A. Moreover, it is well known (cf. $1.4.1) 
that the reduced norm of x in A can be expressed as a polynomial with 
coefficients in K in the coordinates of x with respect to an arbitrary base 
AIK. It follows that there exists a polynomial g(x?) over K such that 

~ r d ~ ~ ~  ((x"')) = g(Q(~aP)) for a, p = 1,.  . . , n. 

Then obviously the set of matrices x = (x f )  E Mnd2 (K) satisfying (2.14) 
and the equation 

can be identified with SL,(D) in the natural way. Now take G to be the 
set of solutions of (2.14) and (2.15) in Mndz (a) .  Then G is an algebraic K- 
group whose set of K-points is SL,(D). In addition, using isomorphisms 
D @K R E Md(R) and A gK R .v Mnd(R) it is easy to construct an 
R-isomorphism G E SLnd(R), from which it follows that G is a simply 
connected simple K-group of type And-'. 

PROPOSITION 2.12. For G = SL,(D) we have  rank^ G = n - 1. In 
particular, H = SL1(D) is a K-anisotropic group. 

PROOF: Let T denote the set of matrices x = (x:') E G 

for a # p 
xaP = (x:')~,~=~ ,.. ,dz is a scalar matrix for a = p. 

It is easy to see that T is a K-split (n - 1) -dimensional torus in G. More- 
over, its centralizer ZG(T) consists of all matrices x = (x$) E G such that 

2:' = 0 for a # ,f3. Let H = SL1(D). It follows that Hn  = H x . . . x H 
is naturally embedded in ZG(T), and the restriction to H n  of the canon- 
ical morphism ZG(T) + ZG(T)/T is an isogeny. Therefore it suffices to 
establish that H is K-anisotropic. But any maximal K-torus in H has the 
form R $ ~ ( G ~ ) ,  where L c D is a maximal subfield, and therefore K is 
anisotropic (cf. 52.1.7). Q.E.D. 

Now we shall compute the cohomology of G = SL,(D). To do so, first 
consider the algebraic group H = GL,(D) which is defined to be the sub- 
group of GLnd2 (R) consisting of those matrices which satisfy (2.14). Then 
H has as the group of K-points the group GL,(D) of invertible elements 
of A = M,(D), and over K is isomorphic to GLnd(R). Analogously to 
Lemma 2.2 one can prove 
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LEMMA 2.8. H1 (K, GLn(D)) = 1 for any n > 1. 

The cohomology of G is computed using the exact sequence 

where cp is induced by NrdAIK. Corresponding to (2.16) we have the exact 
cohomological sequence 

from which we obtain 

2.3.2. The symplectic and  orthogonal groups. Let f (x, y) be a non- 
degenerate alternating (respectively, symmetric) bilinear form on the vector 
space V = K n  over a field K of characteristic # 2 (for the definition and 
basic properties of bilinear and sesquilinear forms we refer the reader to 
any of the following books: Bourbaki [I], Dieudonn6 [2], Artin [l]). Note 
that if f is a nondegenerate alternating form, then n is necessarily even, 
i.e., n = 2m. The group of automorphisms preserving f , i.e., those linear 
transformations a: V -+ V such that 

when f is an alternating form, is called the symplectic group and is written 
Spzm( f ), and when f is a symmetric form, it is called the orthogonal group 
and is written On( f ) .  (By virtue of the well-known one-to-one correspon- 
dence between symmetric bilinear forms and quadratic forms, the orthogo- 
nal group usually is defined in terms of the corresponding quadratic form, 
and in this case we write f (x) instead of f (x, x).) The determinant of any 
transformation in Sp2m (f ) is always 1, and of any transformation in On (f) 
is f 1, so SO,(f) = {a E On(f)  : deta  = 1) is a subgroup of On(f) of 
index 2. 

Let e l , .  . . , en be a base of V and let F = (f (ei, ej)) be the matrix of f .  
Then, writing transformations by matrices with respect to e l , .  . . , en we 
obtain 

Sp2m(F) = {g E GL2,(K) : $Fg = F), where t~ = -F 
(2.17) On(F) = {g E GLn(K) : $Fg = F) ,  where tF = F 

SO,(F) = { g ~ O , ( f )  : d e t g =  I), 

where denotes the matrix transpose. Now let Sp2,(F), On(F) and 
SOn(F)  denote the set of matrices g E GLn(CI) satisfying the respec- 
tive conditions in (2.17). Then each of these sets is an algebraic K-group, 
whose group of K-points coincides with the corresponding group Sp2,(F), 
On(F) or SOn(F). (Sometimes, for convenience of notation, we shall write 
On ( f )  instead of On (F)  .) 

When the base e l , .  . . ,en is changed to another base e i , .  . . ,ek, F 
changes to the equivalent matrix F' = txFx, where x is the ch~nge of base 
matrix; then Sp2,(F1) = xSp2,x-l, and so on. On the other hand, it is 
well known (cf. Bourbaki [I]) that any nonsingular skew-symmetric matrix 
F in M2,(K) is equivalent over K to the standard skew-symmetric matrix 

so that we have a K-isomorphism Sp2,(F) Y SpBm(J).  Take T to be 

{t = diag(al,. . . , am,P1,. . . ,Dm) E GL2,(CI) : aiPi = 1, i = 1 , .  . . , m). 

It is easy to see that T is a K-split torus in G = Spam(J);  moreover 
direct computation shows that ZG(T) = T. Thus G is K-split and T 
is its maximal K-split torus. Analyzing the root system R = R(T, G) as 
described in Bourbaki [4], we see that R is an irreducible root system of type 
C,. Moreover, using the criterion for the group to be simply connected (cf. 
assertion (3) of Theorem 2.6) it can be shown that G is simply connected. 
Thus we obtain 

PROPOSITION 2.13. Let G = S P ~ ~ ( F )  (m > l ) ,  where F is a nonsingular 
skew-symmetric matrix. Then G is a K-split group of type C,. 

Similarly, over K any nonsingular symmetric matrix is equivalent to one 
of the matrices 
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Then T = { diag(al, . . . , a,, P1, . . . , P,) : a& = 1, i = 1, . . . , m ) (resp., 
T={diag(a l  ,... ,cxm,P1 ,... ,Prn,1):cxiPi= 1, i = 1 ,  . . .  , m ) ) i s a m a x -  
imal torus in G = SOn(Q1) (resp., G = SOn(Q2)) and the corresponding 
root system R(T,G) has type Dm (m > 2) in the first case (under the 
convention that D2 = A1 + A1 and D3 = Ag) and type B, (m 2 1) in 
the second, cf. Bourbaki [4] (G = S02(Q1) is a one-dimensional torus). 
Thus, G = SOn(F)  for n 2 3 is a semisimple group of type B+ (for odd 
n) or Dq  (for even n). (Actually, G is simple except for the case n = 4, 
when D2 = A1 + A').) G is not simply connected; its universal K-covering 
is the spinor group G = Spin,(F) constructed by using Clifford algebras 
(cf. Bourbaki [I], Dieudonnk [2]). The kernel = kern of the universal 
K-covering T :  G -+ G has order 2 and consists of {f 1) in the sense of the 
corresponding Clifford algebra. Hence it follows that for I 5 n we have a 
commutative diagram of universal coverings 

Spin, - SO1 

in which the vertical arrows are embeddings. 

PROPOSITION 2.14. Let G = SO,(F) for n 2 3, where F is a nonsingular 
symmetric matrix. Then G is a nonsimply connected semisimple K-group 
of type Bn-l if n is odd, and of type Dq if n is even. Moreover, rankK G 

2 

is the Witt index of the corresponding quadratic form f .  In particular, G 
is K-anisotropic if and only i f f  is anisotropic. 

All that remains to be proven is the assertion about the K-rank of G. For 
this, recall that the Witt index of a form f is the dimension of a maximal 
totally isotropic subspace W C V = K n  (i.e., of a subspace such that 
f (x) = 0 for all x in W). Set 1 = dim W. Then f is equivalent over K to 
a form xlx,+l + . . . + 21x2, + f0(x21+l, . . . , x,), where fo is K-anisotropic. 
Therefore, without loss of generality, we may assume that f itself is such 
a form. Let 

T = {t = diag(al, . . . , a,, PI, .  . . ,Dl) E GL,(K) : aiPi = 1 for 1 5 i 5 1) 

be a split 1-dimensional torus. It is easy to see that T c SO, (f ), and direct 
computation shows that Zc(T) II T x S0n-21(fo). Therefore it suffices 
to establish that H = SOn-21(fO) is K-anisotropic. But if S C H is a 
nontrivial K-split torus, then there exists a nonzero eigenvector v E K ~ - ~ ~  

for S with a nontrivial character X: S + K .  Thus for any s in S we 
have fo(v) = fo(sv) = fo(x(s)v) = ~ ( s ) ~  fo(v); from which it follows that 
fo(v) = 0, which contradicts fo being K-anisotropic. This completes the 
proof of Proposition 2.14. 

2.3.3. Unitary groups. Let us begin with a few remarks about algebras 
with involution. Let A be a finite-dimensional (associative) algebra over a 
field K and let L = Z(A) be the center of A. By an involution of A we 
mean an arbitrary K-linear antiautomorphism T: A + A of order 2. Then 
r is said to be of the first kind if its restriction to the center is trivial, and 
of the second kind otherwise. An algebra A with involution T is written 
(A, 7). 

Some examples of involution are: 

(1) A = Mn(K), T(X) = tx the matrix transpose; 
(2) A = M, (K),  r (x)  = Jtx J-', where J is given by (2.18); 
(3) A = A1 @ A2, Ai = Mn(K), T(X,Y) = ('y, t ~ ) .  

Our objective is to show that any involution on a simple algebra goes 
over to one of the involutions listed above, after extension of the center to 
an algebraically closed field. So, let (A, T) be an arbitrary simple K-algebra 
with involution. Then its center L is a field. Throughout the remainder of 
the section we shall assume that K is the fixed subfield L7 of L under T. 

Let a be another involution of A such that T I L =  a IL. Then cp = ur-' is 
an automorphism of A which acts trivially on the center, so by the Skolem- 
Noether theorem cp = Int g for a suitable g in A*. Then a(x) = g~(x)g- '  
for x E A and a2 = id yields g ~ ( g ) - '  E L. If we assume that r is an 
involution of the first kind, i.e., that L = K ,  then we immediately obtain 
r(g) = f g. If, however, T is an involution of the second kind, then since 
NLIK(gr(g)-l) = g ~ ( g ) - ~ ~ ( g ~ ( g ) - ' )  = 1, we can find a in L satisfying 
g ~ ( g ) - l  = ar(a)-' by Hilbert's Theorem 90. Then, substituting gap' for 
g, we may assume that r(g)  = g. Thus we obtain 

LEMMA 2.10. Let T and a be two involutions of a simple algebra A whose 
restrictions to the center of A coincide. Then, for suitable g in A* 

(2.20) a(x)  = g~(x)g - '  for x E A, 

where moreover r(g) = f g for T of the first kind and r(g)  = g for T of the 
second kind. Conversely, for any involution T and any g in A* satisfying 
the properties described, the map a given by (2.20) is an involution of A. 

Now let (A, r )  be a simple K-algebra with involution. If r is an involution 

of the first kind, then K is the center of A and therefore A @K K & 
Mn(K).  We shall show that cp can be chosen here in such a way that the 
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K-linear extension of T (which we shall also denote by T) becomes one of 
the involutions (1) or (2). 

Let v = ( p ~ ( p - l .  Applying Lemma 2.10 to the matrix transpose (viewed 
as an involution of M,(K)) and v, we obtain the existence of an element 
F in GL, (K) such that tF = f F and v(x) = F txF-l. Furthermore, there 
exists a matrix B in GL,(K) such that F = B tB if F is symmetric and 
F = tBJB if F is skew-symmetric (where J is the same as in (2.18)). Then 
a direct computation shows that +: A @K K 21 M,(K) for 1C, = Int B-' o cp 
satisfies the required properties. 

If T is an involution of the second kind, then [L : K] = 2, so 

Here A@K K is a semisimple, but not necessarily simple, algebra; neverthe- 
less the proof of Lemma 2.10 goes through without any changes. Reasoning 
as above, we can construct an isomorphism 4: A@K K 2; M ~ ( K )  @ M,(K) 
under which T goes over to the involution described in (3). 

Now let f (x, y) be a nondegenerate Hermitian or skew Hermitian sesqui- 
linear form on an m-dimensional vector space V = Dm over a skew field D 
with involution T, let L be the center of D ,  and let K = LT be the fixed field 
under 7. The group of automorphisms preserving f is called the unitary 
group, denoted by Um(D, f ) ;  its subgroup consisting of automorphisms 
having reduced norm 1 is called the special unitary group SUm(D, f ) .  Let 
e l , .  . . , em be a base of V and let F = (f (ei, ej)) be the matrix of f .  Then 
*F = f F and, with respect to e l , .  . . ,em, 

where *g = ( ~ ( ~ 0 ~ ) )  if g = (gap). (Note that * is an involution of 
A = M,(D) of the same kind as r . )  In order to realize Um(D, f )  and 
SUm(D, f )  as groups of K-rational points of certain algebraic groups as in 
$2.3.1, we consider the regular representation Q: D -+ Mlnz(K) of D over 
K (n is the index of D and 1 = [L : K]),  and the corresponding equa- 
tions of the form (2.14) defining D as a subspace of Mln2(K). Further, 
let ?: Mlnz (K) + Mlnz (K)  be an invertible linear map extending the invo- 
lution ere-1 on e(D), and let Q, = (e(fap)) be the matrix in Mlmn2(K) 
corresponding to F = (f @). Then the image of Um(D, f )  in Mlmn2 (K)  
under the homomorphism induced by Q consists of matrices 

g = (gz$) for a,  /3 = 1 , .  . . , m and i, j = 1 , .  . . , ln2 

satisfying (2.14) and 

(2.21) (?(g;p)) @ (g;p) = @. 

Similarly, the image of Sum (D, f )  is given by (2. Id), (2.21) and an equation 
of the form (2.15). The solutions of these equations over K yield the 
algebraic groups Um(D, f )  and SUm(D, f )  respectively. 

To understand the structure of these groups, we put a(x)  = ~ - l * x F .  
Then a is an involution on A = Mm(D) by Lemma 2.10; moreover 

Above we showed that if T is an involution of the first kind one can choose 
the isomorphism A @K K 21 M,,(K) in such a way that a extends to one 
of the involutions v in (1) or (2). Then the corresponding groups 

become 

G = {g E GL,,(K) : v(g)g = Em,) and 

H = {g E SL,,(K) : v(g)g = Em,), 

which are none other than the orthogonal and special orthogonal groups, 
if v is as in (1) (an involution of the first type) and which coincide with 
the symplectic group if v is as described in (2) (an involution of the second 
type). Note that there is an invariant description of involutions of first and 
second type: T has the first (respectively, second) type if dimK DT = 2 

n(n-1) ). Moreover, v has the same type as T if F is (resp. dimK D7 = - 
Hermitian, and has the opposite type if F is skew Hermitian. 

Now let T be an involution of the second kind. Then we can choose an 
isomorphism A @K K 2~ M,,(K) @ M,,(K) in such a way that r extends 
to an involution v as in (3). Then Um(D, f )  and SUm(D, f )  become the 
groups 

G = { (X, Y) E GLmn(K) x GLmn(K) : ( X ,  Y) (tY, tX) = (Emn, Emn) ) 
and 

H = { (x, Y) E S ~ r n n ( K )  x SL,,(K) : (X, Y)(% tX) = (Em,, Emn) ). 
Now it is evident that 

G ={ (X, t ~ - l )  : X E GL,, (K) ) and 

H ={ (x, t ~ - l )  : X E SLmn(K) ), 
so we conclude that Um(D, f )  and SUm(D, f )  are isomorphic over K to 
GL,,(K) and SLmn(K) respectively. 
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PROPOSITION 2.15. Let G = SU,(D, f) ,  where D is a skew field of index 
n with involution T and f is a nondegenerate Hermitian or skew Hermitian 
form on Dm. Then over K we have: 

(1) G .- Sp,,, i.e., is a simple simply connected group of type C y ,  
if r is an involution of the first kind of the first type and f is skew 
Hermitian, or if r is an involution of the first kind of the second type 
and f is Hermitian; 

(2) G 2 SO,,, i.e., is a semisimple not simply connected group of type 
B- or D? (note that type B occurs only when n = 1, i.e., 
D = K) if r is an involution of the first kind of the first type and f 
is Hermitian, or if T is an involution of the first kind of the second 
type and f is skew Hermitian; 

(3) G .- SL,,, i.e., is a simply connected simple group of type Arnnp1 
if T is an involution of the second kind. 

In all these cases rankK G coincides with the Witt index o f f ,  i.e., with the 
dimension of a maximal totally isotropic subspace in Dm. 

Note that the groups SO,(F) and Sp2,(F) considered in 52.3.2 can be 
treated as unitary groups with respect to the identity involution on D = K.  
Moreover, the Galois cohomology of the unitary groups is computed in 
precisely the same way as that of the orthogonal groups in Proposition 2.6. 
Namely, by using Lemma 2.8 instead of Lemma 2.2 we obtain the following 
result. 

PROPOSITION 2.16. The elements of H'(K, U,(D, f ) )  are in one-to-one 
correspondence with the equivalence classes of m-dimensional nondegen- 
erate forms over D having the same type as f .  Moreover, the proper 
equivalence classes (i.e., equivalence relative to SL,(D)) of those forms 
having the same discriminant as f are in one-to-one correspondence with 
the elements of 

k e r ( ~ ' ( ~ ,  SU,(D, f ) )  -+ H'(K, SL,(D)). 

Instead of giving a proof of Proposition 2.16 in the spirit of Propositions 
2.6-2.8, we point out that all of these assertions stem from the following 
general principle, based on (1.11) in 51.3.2: If X is a homogeneous K- 
space of an algebraic K-group G (i.e., there is a transitive K-defined action 
G x X 4 X),  x is a point in XK,  and H = G(x) is its stabilizer (so X can 
be identified with GIH),  then the orbits of GK on XK are in one-to-one 
correspondence with the elements of k e r ( H 1 ( ~ ,  H )  4 H1(K, G)). 

2.3.4. Classical groups. Our goal is to establish the converse of Proposi- 
tion 2.15, i.e., to show that, except for 3D4 and 6D4, and up to isogeny, any 

simple K-group belonging to one of the classical types is either SL,(D) 
or one of the unitary groups (in particular, the symplectic or orthoge 
nal groups). First we consider inner forms of type A,-'. We know that 
simply connected groups of this type are obtained from G = SL, by twist- 
ing using cocycles from H1(K, G), where G = PSL,. But G is also the 
group of automorphisms of the full matrix algebra M,, and for any cocy- 
cle a = {a,) in H1(K, G) we can consider the twisted algebra A = fin. 

Let B = ~ ~ " ' ( ~ 1 ~ )  be the set of fixed points. Then B @K K .- M,(K), 
whence it follows that B is a simple algebra, and therefore B = M,(D) 
for some central skew field D over K of index d, where md = n. As in the 
definition of the special linear group, we consider the regular representation 
Q: D -+ Md2 (K) and the corresponding representation $: B --+ Mmd2 (K). 
We have a chain of isomorphisms 

Since $ is a K-isomorphism, we have (&~-'($cp)" = cp-'pu = a,. On 
the other hand, since by definition NrdBIK(b) = det(cp-'(b)) for b in B, 
the restriction of $9 to SL,(K) carries SL,(K) isomorphically onto the 
group SL,(D) defined in 52.2.1. Thus we obtain 

PROPOSITION 2.17. The simply connected groups pertaining to inner 
forms of type An-' are the groups SL,(D), where D is a central skew 
field of index d over K and n = md. 

Next we take up outer forms of type A,-'. These forms are obtained 
from G = SL, by twisting using a cocycle a = {a,) from H'(K, Aut G) 
which does not lie in H1(K, G) and consequently has a nontrivial image 
in H1(K, Sym R). But Sym R has order 2, for any root system R of type 
AnP1 (n > 1); moreover cr H -a (where a E R) yields an automorphism 
of R which does not lie in W(R). It follows that Aut G is generated by G 
and the automorphism of order 2 given by x +-+ tx-'. 

As before, let us realize Aut G as the automorphism group of some alge- 
bra A. Take A = M,(K) @ M,(K) with involution T given by T(X, Y) = 
(tY, tX), and consider the embedding GL, --+ A given by X -+ (X, t ~ - l ) .  
We have seen that GL, is thereby identified with U = {Z E A : ZT(Z) = 
E); let S U  denote the image of SL, under this embedding. We claim 
that Aut G can be identified naturally with the group of all algebra auto- 
morphisms of A that commute with T. Indeed it follows from the Skolem- 
Noether theorem that the group of automorphisms of A is generated by 
the inner automorphisms and the automorphism (X, Y) -+ (Y, X )  which, 
clearly, commutes with r ,  and one can easily see that each inner automor- 
phism commuting with r is induced by an element of SU. It follows that by 
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restricting the automorphisms of A to S U  we obtain all the automorphisms 
of S U  1. G; moreover each automorphism of A is uniquely determined by 
its restriction to SU. 

Now let a = {a,) E H1(K, Autg G) be an arbitrary cocycle not lying 
in H1(K, G). Consider a as a cocycle in H1(K, Autg A) and construct the 
twisted algebra B = A. Since the a, commute with T, B has an involution 
v which commutes with the action of Gal(K/K). Set C = ~ ~ ~ ' ( ~ 1 ~ ) .  
Then the restriction of v to C induces an involution 8 of C,  and there 
exists an isomorphism of algebras with involution 

'P 

(A, r )  1 ( C  8 K, 8). 

Let us describe the structure of C. Since C @ K - M,(K) $ M,(K), then 
C is either a direct sum of two central simple algebras over K or a cen- 
tral simple algebra over some quadratic extension L of K .  We shall show 
that in our case the latter holds. Indeed, Z(C) = ,(K $ K ) ~ ~ ' ( ~ I ~ ) .  By 
assumption the image of a in H1 (K, Sym R) is nontrivial, i.e., is a nontriv- 
ial homomorphism from Gal(L/K) = G ~ ~ ( K / K ) /  G ~ ~ ( K / L )  to Sym R for 
some quadratic extension L/K. It is easy to see, then, that the action of 
G ~ ~ ( K / K )  on ,(K $ K) coincides with the action of G ~ ~ ( K / K )  on L 8 K 
(via the second factor); hence Z(C) = L. Moreover, since T acts on K $ K 
by switching the components, the restriction of 8 to L is nontrivial. Thus, 
C is a simple algebra over L wit11 involution 8 of the second kind. 

Now it  is well known (cf. Albert [I]), that C = Mm(D) for some division 
algebra D over L of index d, (md = n), provided with an involution d of 
the second kind such that the restrictions of 8 and d to L coincide. Then, 
by Lemma 2.10, 8(x) = F*xF-' for x in Mn(D), where *(xZ3) = (d(x3,)) 
and *F = F .  Consider the Hermitian form f on the space V = Dm having 
matrix F with respect to the canonical base el,  . . . , en. We claim that ,G - 
SUm(D, f ) .  Indeed consider the regular representation Q: D -+ M2d2(K) 
over K and the corresponding representation $: C -+ M2md2 (K). We have 
a chain of isomorphisms 

Then ($cp)-l($p)" = a,, since cp is defined over K .  Thus $9 and the 
above embedding G + A yield the K-isomorphism &' 1. SUm(D, f ) ,  as 
desired. Thus we have 

PROPOSITION 2.18. The simply connected K-groups pertaining to outer 
forms of type 2An-1 are the groups SUm(D, f ), where D is a skew field 
of index d = nlm, with involution T of the second kind, such that K is 
the fixed subfield under r of the center of D, and f is a nondegenerate 
Hermitian form on Dm. 

Now we shall proceed to describe the K-forms of type Cn. Any simply 
connected split group of this type is G = Spzn(K) = { X  E GL2,(K) : 
t X J X  = J), where J is defined in (2.18). Consider the involution T of 
A = M2n(K) given by T(X) = J - ~ ~ X J .  (This involution is of the first 
kind of the second type.) Any automorphism of G is inner (cf. Theorem 
2.8), so any form arising from G is obtained by twisting using a cocycle 
a = {a,) E H'(K, G). Clearly a, can be regarded as an automorphism 
of A that commutes with the action of T. Then, as above, we conclude 
that the twisted algebra B = has involution u which commutes with 
the action of Gal(K/K), and therefore the restriction to C = ~ ~ " ' ( ~ 1 ~ )  
induces an involution 8 of the latter. We have an isomorphism of algebras 
with involution 

(A, T) - (C @ K  K ,  8). 

Since C is simple over K ,  we have C = Mn(D) for some central skew field 
of index d = % over K ,  having involution of the first kind. (cf. Albert 

PI). 
Note that the last assertion is a straightforward consequence of the fol- 

lowing fact: an algebra E over K has an involution of the first kind if and 
only if it is isomorphic to its opposite algebra EO, in particular a simple 
algebra has an involution of the first kind if and only if it represents an 
element of order 2 in the Brauer group. In our case C has involution of the 
first kind; consequently C, and D as well, represents an element of order 2 
in the Brauer group, implying that D has an involution of the first kind, 
to be denoted by d. We may assume d to be either of the first or of the 
second type, as we wish (indeed, if, say, d is of the first type, then dl, given 
by dl(x) = cd(x)c-l where c is an arbitrary invertible d-skew symmetric 
element, is of the second type; also, x H cx gives a bijection between the 
d-symmetric and dl-skew-symmetric elements of D). Then Lemma 2.10 
yields B(x) = F * x P 1 ,  where *(xij) = (d(xji)), *F = -F if d is of the first 
type, and *F = F if d is of the second type. Now, introducing, respectively, 
a skew Hermitian or Hermitian form f on V = Dm having matrix F, and 
arguing as above, we obtain ,G = SUm(D, f ) .  Thus, we may assert 

PROPOSITION 2.19. The simply connected K-forms of type Cn are pre- 
cisely the groups SUm(D, f ) ,  where D is a central skew field of index 
d = % over K endowed with involution r of the first kind, and f is a 
nondegenerate sesquilinear form which is Hermitian if r is of the second 
type, and skew Hermitian if T is of the first type. 

Lastly, we consider K-forms of type B, and D,, other than 3D4 and 
6D4. A simply connected K-split group of this type is the spin group 
G = Spinm(f ), where f is a quadratic form of maximal Witt index over K 
(whose matrix Q coincides with either Q1 or Q2 in (2.19), depending on 
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whether m is even or odd). However, it will be easier for us to work with 
the corresponding orthogonal group G = SOm(f).  Let T: G -+ G denote 
the universal covering. 

Let us see how Aut G and Aut G are related. It is well known (cf. 52.1, 
Theorem 2.8) that Aut G can be identified with the subgroup of Aut G 
fixing kerx. If G has type B,, then k e r ~  = Z(G), from which it follows 
that Aut G and Aut G coincide. (This also follows from the fact that the 
Dynkin diagram of the root system of type B, has no nontrivial symmetries, 
and therefore all its automorphisms are inner). 

Now suppose G belongs to type D,, i.e., m is even. In this case there 
is an outer automorphism of G, induced by conjugation by a matrix from 
Om(f) \ SOm(f), so [AutG : IntG] > 2. On the other hand, if n # 4, 
then the corresponding Dynkin diagram has exactly two symmetries, so 
[Aut G : Int G] = 2. Thus, in this case, too, Aut G = Aut G; moreover all 
the automorphisms of G are obtained from conjugation by the elements 
of Om(f). In the remaining case, n = 4, the group of symmetries of the 
Dynkin diagram is isomorphic to the symmetric group S3. Then, consid- 
ering the action of S3 on the center of G, it is easy to show that Aut G is 
isomorphic to a subgroup of index 3 in Aut G, and all such subgroups are 
conjugate in Aut G. So, again all the automorphisms of G are induced by 
conjugation by elements of O,(f). 

It follows from this discussion of Aut G and Aut G that if a K-form H 
of G is of type other than 3D4 and 6D4, then H is obtained from G by 
twisting using a cocycle a = (a,) E H1(K,Aut G). In this case H = & is 
a universal covering of ,G. Thus it suffices to describe the K-forms for G. 
Repeating verbatim the argument used to describe K-forms of type C,, 
we conclude that & is SU1(D, f ) ,  where D is a finite-dimensional central 
skew field of index d = m/l over K with involution T of the first kind, and 
f is a nondegenerate Hermitian (resp. skew Hermitian) form on V = D' 
depending on whether T has first (resp. second) type. Now, for groups of 
type B,, on the one hand m must be odd, but on the other, d must be a 
power of 2, since D has exponent 2 in Br(K). Therefore d = 1, i.e., D = K ,  
T = id and f is an ordinary quadratic form. 

(1) The simply connected K-forms of type B, are the spin groups of 
nondegenerate quadratic forms over K of degree m = 2n + 1. 

(2) The simply connected K-forms of type D,, other than 3D4 and 6D4, 
are the universal coverings of the special unitary groups SU1 (D, f ), 
where D is a finite-dimensional central skew field of index d = 
over K with involution T of the first kind, and f is a nondegenerate 
form which is Hermitian if T is of the first type, and skew-Hermitian 

if T is of the second type. (For d = 1 and T = id we obtain the spin 
groups Spin,, ( f )  of nondegenerate quadratic forms). 

When K is a local field or an algebraic number field, the above results 
can be made considerably more precise. It is well known (cf. Albert [l, 
Theorem 10.221) that over a local field there is no skew field of index d > 1 
having an involution of the second kind. Therefore, in this case the sim- 
ply connected K-groups of type are just the special unitary groups 
SUn(L, f ) ,  where L is a quadratic extension of K and f is a nondegener- 
ate form on V = Ln, Hermitian relative to the nontrivial automorphism 
u E Gal(L/K). Taking an orthogonal base e l , .  . . ,en of V we can write f 
as 

f (21, .. . 7 X n ;  Y1, .. . , ~ n )  = a l o ( x l ) ~ l  + ... + anu(xn)~n,  

where the coefficients ai satisfy u(ai) = ai, i.e., ai E K .  In particular, 
writing f (x) = f (x, x) for the sake of brevity, we have 

Furthermore, it is well known (cf. 551.4-1.5) that over local fields and 
algebraic number fields the exponent of a simple algebra in the Brauer 
group equals its index; therefore skew fields with an involution of the first 
kind are quaternion skew fields. Any quaternion skew field D over K has 
a canonical involution T, given with respect to the standard base 1, i, j, k 
of D by T(ao + ali  + a 2 j  + ask) = a0 - ali  - a 2 j  - a3k (cf. Pierce [I]). In 
our terminology, this involution belongs to the second type, and moreover 
the set of symmetric elements coincides with the center K of D. Hence 
any T-Hermitian form f on V = Dm can be written with respect to an 
orthogonal base of V as 

The ai here have to satisfy T(ai) = ai, hence ai E K. Therefore 

Thus any simply connected K-group of type C, (where K is either a local 
field or an algebraic number field) is a special unitary group SU,(D, f ) ,  
corresponding to a bilinear form f as in (2.22). 

Lastly, simply connected K-groups of type D, that are not isomorphic 
to spin groups of quadratic forms are universal coverings of unitary groups 
SU,(D, f) ,  where D is a quaternion skew field over K with the canonical 
involution T and f is a nondegenerate skew Hermitian form on Dn. 
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To summarize, for convenience of reference we list the classical simply 
connected simple algebraic K-groups for the case where K is either a local 
field or an algebraic number field. First of all, we have the groups G = 
SLm(D), where D is a central skew field over K of index d, that are inner 
forms of the type A,, n = md - 1. All the remaining groups, with the 
exceptions of 3D4 and 6D4, are obtained from the special unitary groups 
SUm(D, f ) .  To be more precise, any simply connected K-group G of 
such a type is the universal covering of some special unitary group H = 
SUm(D, f ) ,  where D is a skew field of index d and center L, with an 
involution r such that LT = K ,  and f is a nondegenerate Hermitian or 
skew Hermitian form (relative to r )  on an m-dimensional space W over 
D. We have the following possibilities for D, r and f ,  in the list of which 
we shall introduce a number mo which comes up in the further study of 
classical groups: 

(1) [L : K] = 2, i.e., T is an involution of the second kind, and f is 
Hermitian. In this case G = H is of type 2A,, where n = md - 1 
(mo = 2). 

In the remaining cases L = K ,  i.e., T is an involution of the first kind. 
Then D either coincides with K or is a quaternion skew field over K ,  and 
the list of classical groups continues as follows: 

(2) D = K and f is symmetric. Then H = SOm( f )  and G = Spinm(f); 
moreover these groups have type Be for m odd and type D? for 

2 

m even (mo = 4). 
(3) D = K and f is alternating. Then m is even and G = H is Spm( f ) ,  

which has type C? (mo = 2). 
(4) D is a quaternion skew field over K ,  r is its canonical involution, 

and f is Hermitian. Then G = H has type Cm (mo = 1). 
(5) For D and r as in (4), f is skew Hermitian. Then H is a non-simply 

connected group of type Dm and H E s o n m ( f )  over K (mo = 3). 

2.3.5. Witt's Theorem. We keep the notation G, H ,  f ,  W, . . . intro- 
duced above. H acts on w = W BK K, respecting the natural extension of 
f .  This realization of H induces a realization of G, which we shall use freely 
without further explication, calling m the degree of G. Below we shall need 
Witt's Theorem, which describes the orbits of the action of U,(D, f )  on 
W (relative version) and the orbits of G on w (absolute version). 

THEOREM 2.10 (WITT'S THEOREM, RELATIVE VERSION). Let a ,  b E W 
be two nonzero vectors such that f (a) = f (b). Then there exists an element 
g in Um(D, f )  such that b = ga. 

For the proof, see Bourbaki [l, Ch. 9, pp. 396-3981. Note that Witt's 
Theorem is actually taken to be a more general assertion that any metric 
isomorphism a :  Ul -+ U2 between two subspaces Ul, U2 E W extends to an 
isometry of the entire space W, i.e., is induced by an element of Um(D, f ) .  

Except for (3) in the above list, there always exists a base of W which 
is orthogonal with respect to f .  In particular, there always exists a vector 
a in W such that f (a) # 0 (anisotropic vector). 

THEOREM 2.11 (WITT'S THEOREM, ABSOLUTE VERSION). Let m > 2 
and let a in W be an anisotropic vector. Then for any b in W such that 
f (b) = f (a), there is g in G satisfying b = ga. 

PROOF: It suffices to find h in H satisfying b = ha. In case (2) the existence 
of h follows immediately from Theorem 2.10, applied to W over K, and the 
assumption that m > 2. Now, let us consider the cases (4) and (5). For this 
we include a in an orthogonal base el = a, e2,. . . ,em of W and in what 
follows we shall consider coordinates relative to this base. If f (ei) = di, 
then with respect to this base f can be written as 

Next, we choose a skew-symmetric element c in D*, and pass from r to a 
defined by o(d) = cr(d)c-l. Then a is of first type and therefore we can 
choose an isomorphism D = D @ K  K 1 M2(K) in such a way that a goes 
over to the matrix transpose. It is easy to see that r(d) = f d is equivalent 
to a(cd) = ~ c d ,  for d in D. Therefore the elements cdi correspond to 
symmetric (in case (5)) or skew-symmetric (in case (4)) matrices Di E 
GL2 (K). If b = (bl , . . . , b,), and bi E D correspond to matrices Bi E 
M2(K), then 

We know that under the isomorphism D Y M2(K), H goes over respec- 
tively to H = so2,(f) or H = sp2,(f), where the matrix of j has the 
form diag(D1,. . . , Dm). Let 

Then, it follows from (2.23) that the subspace generated by the vectors 
u1 = (1,0,. . . ,0)  and u2 = (0,1,0,. . . ,0) in K2m is isometric (relative to 
f) to the subspace generated by the vectors wl = (bill), bill), . . . , biy), b i ~ ) )  

(1) (1) and w2 = (b12 , b22 , . . . , bly), biy)). Therefore, by Witt's Theorem for 
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subspaces, it follows that there exists h in H such that h(ui) = wi for 
i = 1,2, or in matrix notation h ( ~ 2 ,  0, .  . . ,0 )  = (B1,. . . , B,). The latter 
means that the element h E H corresponding to h satisfies ha = b, as 
required. 

For case (1) the argument is analogous but of a somewhat different na- 
ture. Again, let el = a,e2,. . . , em be an orthogonal base of W, and 
f (ei) = di, so f (XI,. . . , x,) = ~ ( x 1 ) d 1 q  + . . . + ~ ( x ~ ) d ~ x ~ .  Let us 
choose the isomorphism D @ K  K cz M ~ ( K )  $ M ~ ( K )  in such a way as to 
have the involution (X, Y) -+ (tY, tX) (cf. 52.3.3) corresponding to T (which 
we also are going to denote by 7). Let di = (Ci, tG), b = (bl, . . . , b,) and 

(1) (2) 
bi = (B, , Bi ). Then f (b) = f (a) can be written as one of the two 
equivalent matrix equations 

hrthermore, H corresponds to 

H = { (X, tC-l t ~ - l  %Z') : X E SL,(K) ), 

where n = md, C = diag(C1, . . . , C,), and M, (Md (K)) is viewed as 
M,(K). Therefore we need to show that if B I ~ ) ,  BI2) satisfy (2.24), then 
there is X E SL,(K) satisfying 

The second equation in (2.25) can be rewritten as 

The first equation in (2.25) is satisfied exactly by the matrices of the 
form 

with arbitrary Xij, 2 5 i 5 m, 1 5 j 5 m. In view of (2.24) we see that 
such a matrix satisfies (2.26) if and only if 

In view of the fact that (2.27) actually reduces to m linear equations on 
each column of X beginning with the (m+ 1)-th, it is easy to see that there 
is a solution of (2.27) satisfying 

r a n  ( x . . . . x m . )  = n - m .  
x m 2  x m m  

Since C1 is nondegenerate, then X is also nondegenerate. Moreover, since 
(2.27) are homogeneous and m > 2 we may actually find X E SL,(K). 
Q.E.D. 

REMARK: Since Um(D, f )  = SUm(D, f )  in case (4) for all m > 1, T h e e  
rem 2.11 also holds in this case for m = 1. 

Thus, in all the cases we have examined, the "sphere" X(f,a) = { x E W : 
f (x) = f (a) ) is a homogeneous G-space, and therefore may be identified 
with G/G(a) where G(a) is the stabilizer of a. Below we shall need some 
information on the stabilizers G(a) and G(a, b) of vectors a E W and of 
pairs of vectors a, b E W. 

PROPOSITION 2.21. If m > mo then for any anisotropic vector a in W 
the stabilizer G(a) is of the same type as G and is a simply connected 
semisimple group (not excluding the case G(a) = (e)). Consequently, if 
m > mo + 1 then the same conclusion holds for the stabilizer G(a, b) of 
an arbitrary pair of vectors a, b spanning a nondegenerate 2-dimensional 
su bspace. 

PROOF: It is easy to see that for any anisotropic a in W the stabilizer H(a) 
is SUm-l(D,g), where g is the restriction of f to the orthogonal comple- 
ment of a. On the other hand, G(a) is the pre-image of H(a) under the 
projection r: G -+ H. From the above review of classical groups it follows 
that H(a) is semisimple under our condition on m; thus it remains to be 
shown that K IG(a): G(a) + H(a) is a universal covering. This is obvious 
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for the classical groups listed in (1) and (4) of 52.3.4, since here H and H(a) 
are simply connected (recall that we are excluding (3)). For the remaining 
cases, (2) and ( 5 ) ,  it follows from the compatibility of the universal cov- 
erings of special orthogonal groups for spaces and subspaces provided by 
the corresponding spin groups (cf. 82.3.2). The second assertion of Propo- 
sition 2.21, regarding stabilizers of vector pairs, follows immediately from 
the first. Q.E.D. 

2.4. Some results from algebraic geometry. 

Most of the varieties that we shall work with are either affine or pro- 
jective, i.e., biregularly isomorphic to a closed subset respectively of n- 
dimensional affine space An or n-dimensional projective space IP. We 
shall assume familiarity with standard concepts ranging from regular and 
rational functions on a variety, regular and rational maps of varieties, etc., 
to the concept of dimension (cf. Shafarevich [I], Hartshorne [I], and Borel 
[8, Ch. AG]). Some more specialized material will be presented below. 

2.4.1. The field of definition of an algebraic variety. (Borel [8, Ch. 
AG, 8511-141.) Let K be a subfield of the universal domain R. A closed sub- 
variety X c An is said to be defined over K if the ideal a c R[xl, . . . , x,] of 
polynomials vanishing on X is generated by a n K[xl, . . . , x,], where xi is 
the standard coordinate function on An. A regular (respectively, rational) 
map f :  X -+ Y of two K-subvarieties X c An, Y C An is defined over K if 
there exist polynomials fi E K[xl, . . . , x,] (respectively, rational functions 
fi E K(x1,. . . ,x,)) for i = 1,. . . ,m, such that f (x)  = (fl(x), . . . , f,(x)) 
for all x in X.  For a perfect field K the following Galois criterion for being 
K-defined is known: a closed subvariety X c An is defined over K if and 
only if X is defined over K and X = X u  for all a in Gal(K/K), where X u  
is defined by the ideal ( a n  K[xl, . . . , of K [XI, . . . , x,] . An analogous 
assertion holds for arbitrary varieties and regular (rational) maps. 

2.4.2. Dominant morphisms. A morphism cp: X --, Y is said to be dom- 
inant if cp(X) is dense in Y in the Zariski topology. For such morphisms, 
we have 

THEOREM 2.12 (DIMENSION OF THE FIBERS OF A MORPHISM). Suppose 
cp: X -+ Y is a dominant morphism of irreducible algebraic varieties, and 
let r = dim X - dim Y. Then 

(1) for any point y E cp(X) we have dimcp-'(~) 2 r; 
(2) {Y E Y : dim cp-l(y) = r )  is a nonempty open set. 

PROOF: cf. Shafarevich [I, Ch. 1, $61. 

whether they are considered with respect to some variety X or with respect 
to some neighborhood of a given point in X. Therefore, instead of X we 
may consider an affine neighborhood of a fixed point x in X ,  and thus we 
may assume X to be affine. Let X c An and let a c O[xl,. . . , x,] be 
the ideal of all polynomials vanishing on X.  For an arbitrary polynomial 
f (xl,.  . . ,x,) E R[xl,. . . , x,] and a point x in An we let d, f (XI , .  . . , X,) 
denote the linear form C7=l (x )x i ,  where Xi (i = 1, . . . , n) are the 
coordinates in the n-dimensional vector space associated with An. The 
tangent space of X at a point x in X is the subspace T,(X) of the n- 
dimensional vector space, given by 

(2.28) d,f(X ,X,) = O ,  f E a. 

By Hilbert's basis theorem, a is generated by a finite number of polynomials 
f i ,  . . . , f,; so instead of (2.28) we may consider the equivalent system 

(2.29) dxfi(X l , . . .  ,Xn)=O,  i = l  ,... , r .  

Now if X is defined over K and x E XK, then choosing the fi to be 
elements of a with coefficients from K ,  we see that T,(X) is also defined 
over K .  A regular map cp: X -+ Y of algebraic varieties for any point x 
in X induces the linear map d,cp: T,(X) -+ T,(,) (Y) of the corresponding 
tangent spaces, called the dzfferential of cp at x; moreover d,cp is defined 
over K if cp is defined over K and x E XK. 

In (2.28) and (2.29) x was fixed. If we let x run through all of X ,  i.e., 
if we consider the set of all points (x, t )  in An x An such that x E X and 
t E T,(X), then we obtain the tangent bundle T(X) of X. (2.29) shows 
that T(X) is a variety. Assuming X to be irreducible, and applying The- 
orem 2.12 to the canonical projection T(X) -+ X ,  we see that dimT,(X) 
has a constant value, say dl for all points x of some Zariski-open subset 
U c X ,  and moreover dimTx(X) > d for any point x in X. Furthermore, 
d turns out to be dim X.  Thus dimT,(X) > dimX for all x in X ,  and the 
points for which the equality is achieved (called simple (or non-singular) 
points while the other points are called singular) form a nonempty Zariski 
variety. 

For reducible X ,  a point x in X is simple if it lies on a single irreducible 
component Y c X and is simple on Y. 

PROPOSITION 2.22. A point x of the variety X C An is simple if and only 
if there are polynomials f l ,  . . . , fr E R[xl, . . . , x,], where r = n - dim, X ,  
and a Zariski-open subset U c An such that x E Y = { y E U : fi(y) = 0, 
i = 1,.  . . , r  ) C X and the Jacobian 

2.4.3. Tangent spaces. Simple and singular points. (Shafarevich [I, 
Ch. 21.) These concepts are of a local nature, i.e., they are independent of 
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has rank r. If X is defined over K and x is a simple point belonging to 
XK, then f l ,  . . . , f, can be chosen to have coefficients in K .  

Varieties whose points are all simple are called smooth. Since simple 
points always exist, any homogeneous variety is smooth. In particular, the 
variety of an arbitrary algebraic group is smooth. 

2.4.4. Birational isomorphisms. A rational map cp:X - Y of irre- 
ducible varieties is called a birational isomorphism if there exists an inverse 
rational map cp-l: Y -+ X .  In this case cp induces a biregular isomorphism 
of Zariski-open sets U c X,  V c Y. Varieties that are birationally isc- 
morphic to an affine space are said to be rational. A dominant morphism 
cp: X -+ Y is a birational isomorphism if its comorphism cp* induces an 
isomorphism of the rational function fields R(X) and R(Y). In particular, 
X is rational if and only if the rational function field R(X) is a purely 
transcendental extension of R. Note that all the definitions and properties 
listed have obvious analogs for K-varieties. 

There is one useful sufficient condition for a dominant morphism cp: X - 
Y to be a birational isomorphism. To formulate this condition, recall that 
cp is said to be separable if the comorphism cp* defines a separable field 
extension R(X)/cp*R(Y) (naturally, the condition of separability is autc- 
matically satisfied for char = 0). 

THEOREM 2.13. Let cp: X - Y be an injective dominant separable mor- 
phism of irreducible varieties. Then cp is a birational isomorphism. If, 
moreover, cp is a K-morphism of K-varieties, then it is a K-birational iso- 
morphism. 

PROOF: cf. Humphreys [l, Ch. 1, 54.61. 

It follows from Theorem 2.13 that to prove that a certain variety X 
is K-rational it suffices to construct an injective dominant separable K- 
morphism cp: U + X from some open subset U C An. 

A K-variety X for which there exists a dominant K-morphism cp: U -+ X 
from a Zariski-open subset U c An is called unirational. The question of 
whether every unirational variety is rational is known as Liiroth's problem. 
The answer to Liiroth's problem for the relative case (i.e., over a non-closed 
base field) as well as the absolute case is known now to be negative. The 
variety of a connected (linear) algebraic K-group G is always unirational 
over K if either K is perfect or G is reductive (cf. Borel [8, §18]), from 
which, in particular, the proof of Theorem 2.2 follows. Thus, the ques- 
tion of whether varieties of algebraic K-groups are K-rational is similar to 
the relative version of Liiroth's problem (for a discussion of this question, 
cf. 37.3). 

The following theorem illustrates the extent to which birational mor- 
phisms can differ from biregular morphisms. 

THEOREM 2.14. Let cp: X + Y be a regular map and a birational isomor- 
phism of irreducible varieties, and let x E X .  Assume that y = cp(x) is a 
simple point of Y. If the inverse rational map 6 = cp-' is not regular a t  y, 
then dim cp-' (y) 2 1. 

PROOF: cf. Shafarevich [l, Ch. 2, $41. 

From Theorems 2.13 and 2.14 it follows that if cp: X -+ Y is a bijective 
regular morphism of irreducible varieties in characteristic zero and Y is a 
smooth variety, then cp is a biregular isomorphism. 

2.4.5. Actions of algebraic groups on varieties. An algebraic group 
G is said to act on an algebraic variety X if there is a morphism p: G x X + 

X such that 

(We have given the definition of a left action. Sometimes, however, it is 
useful to consider a right action p: X x G X satisfying p(x, e) = x and 
p(x, gh) = p(p(x, g), h). To shorten the notation, p(g, x) is usually written 
as gx. The action is defined over K if G, X and p are defined over K .  

Of the general results on the action of algebraic groups, we shall need 
only the Closed Orbit Lemma (cf. Borel [8, 51.81). 

PROPOSITION 2.23. Let G be an algebraic group acting on a variety X .  
Then each orbit is a smooth variety which is open in its closure in X .  Its 
boundary is a union of orbits of strictly lower dimension. In particular, the 
orbits of minimal dimension are closed. 

A variety X is a homogeneous G-space if there exists a transitive action 
G x X - X.  Fixing a point x in X ,  we then have a bijection G/G(x) - X 
from the left cosets modulo the stabilizer G(x) to the points of X ,  which can 
be used to endow G/G(x) with the structure of an algebraic variety. (Note: 
it follows from the smoothness of the homogeneous space and the results 
of $2.4.3 that this structure is uniquely defined, at least for characteristic 
0.1 

One may ask whether for any (closed) subgroup H c G there is some 
action of G on a suitable algebraic variety X and some point x in X 
such that G(x) = H. The affirmative answer follows from Chevalley7s 
theorem (cf. Borel [8, 55.11; Humphreys [I]): Let G be an arbitrary K- 
group, H a closed K-subgroup; then there exists a faithful K-representation 
e: G - GL(V) and a one-dimensional K-subspace D c V such that 
H = {g E G : gD = D). Then, considering the induced action of G on 
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the projective space P(V) and a point x in P(V) corresponding to D, we 
obtain a geometric realization of G I H  as the orbit Gx, which is a quasipre 
jective variety, i.e., an open subset of some projective variety. To develop 
the theory presented in Chapters 4 and 5 we shall need the following result, 
elaborating Chevalley's theorem (cf. Bore1 [6, $71). 

THEOREM 2.15 (A STRONGER VERSION OF CHEVALLEY'S THEOREM). 
Let G be a connected algebraic group and H a reductive subgroup, both de- 
fined over a field K of characteristic 0. Then there exists a K-representation 
Q: G - GL(V) and a vector x in VK such that G(x) = H and Gx is closed 
in V. 

Since this result is not as widely known as Chevalley's theorem, let us 
sketch its proof. We consider the action of H on G by left translation 
and the associated representation of H in K[G]. It is well known that this 
representation is locally finite, and the classical argument of Nagata [I] 
from the theory of invariants of reductive groups shows that A = K[GIH 
is finitely generated and separates the disjoint closed H-invariant subsets 
of G (in particular, distinct left cosets). Proceeding from these results, we 
choose a finite set of generators xl ,  . . . , x, of AK, and let V,  denote a finite- 
dimensional G-invariant K-subspace in A containing xi. We shall show that 
the natural representation in V = V,  and the point x = (21,. . . , x,) 
in VK will do. Indeed, by our construction xi E A = K[GIH, whence 
G(x) > H.  On the other hand, if gx = x, then in particular xi(g) = xi(e). 
But since the functions xi generate A, they must separate distinct cosets; 
hence gH = H and g E H.  It remains to be shown that the orbit of Gx is 
closed. Put X = and consider the comorphism 77: K[X] 4 K[G], for the 
morphism G 4 X given by g ++ gx. It follows from our construction that 
77 induces an isomorphism of K[X] and A. Moreover, using the bijection 
from the points of an affine variety to the maximal ideals of the coordinate 
ring, it is easy to show that the fact that X = Gx is equivalent to the 
following assertion: mK[G] is proper for any proper maximal ideal m of A. 
But since H is reductive, there exists an A-linear projection K[G] + A; so 
mK[G] = K[G] would imply that mA = A, a contradiction. 

In applying Theorem 2.15 in Chapters 4 and 5, we shall replace Q by the 
corresponding right representation Q*, given by ~ * ( g )  = Q(s-') and shall 
write the action as XQ* (g); then XQ* (gh) = (XQ* ( g ) ) ~ *  (h). 

In proving several results of the arithmetic theory of algebraic groups 
we shall use a series of concrete varieties, whose construction and whose 
properties we shall now describe. 

2.4.6. Multidimensional conjugacy classes. The orbits of the adjoint 
action of G x G 4 G given by (g, h) ghg-l are the conjugacy classes 
of G. The following fact is well known (cf. Seminar on algebraic groups, 

p. 191): 
The conjugacy class of an element h in the reductive group G is closed 

if and only if h is semisimple. 
Analogously, one can consider the adjoint action of G on the Cartesian 

product Gd, given by (g, (hl, . . . , hd)) H (ghlg-', . . . ,ghdg-l). It is natu- 
ral to call the orbits arising in this way multidimensional conjzlgacy classes. 
We shall need a certain sufficient condition for a multidimensional conju- 
gacy class to be closed. We shall say that H c G (not necessarily closed) 
is reduced if for some faithful representation Q: G -+ GLn(R) the image of 
H is a completely reducible linear group. 

THEOREM 2.16. Let G be a reductive group and let hl, . . . , hd E G gen- 
erate a reduced subgroup. Then the multidimensional conjugacy class of 
(hl, . . . , hd) over G is closed in Gd. 

PROOF: First we consider the special case where G = GLn(R) and H C G, 
generated by hl, . . . , hd, is completely reducible. Then the R-hull of H ,  
i.e., the subalgebra in Mn(R) generated by H ,  which we shall denote by 
A, is semisimple. Let ul ,  . . . , um be a base of A contained in H ,  and 
let wi (i = 1, .  . . , m) be the group of words in d variables, such that 
ui = wi (hl , . . . , hd). We have 

for suitable c$ in R, called the structure constants of A. Moreover, there 
are dij in R (i = 1,.  . . , d; j = 1,.  . . , m) such that 

We shall let F denote the subvariety in G~ given by 
(2.30) 

m 

wi(x1, . . . , xd)wj(x1, . . . , xd) = cfj wk(xI, . . . , xd) (i, j = 1, . . . , m), 
k=l 

and 

and shall show that F coincides with the multidimensional conjugacy class 
C of h = (h l , .  . . , hd). Obviously C c F. Now let f = ( f l , .  . . , fd) E F. 
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Let B denote the subspace spanned by vi = wi(f1,. . . , fd) (i = 1 , .  . . , m). 
From (2.30) it follows that B is a subalgebra of Mn(D) and ui + vi (for 
i = 1 , .  . . , m) extends to a surjective algebra homomorphism cp: A -+ B, 
and from (2.31) that cp(hi) = f j  ( j  = 1 , .  . . ,d). 

Let A = Ai be the decomposition of A into the direct sum of 
simple subalgebras. Then for each i = 1,.  . . , t ,  either cp(Ai) = 0 or the 
restriction of cp to Ai is an isomorphism onto its image. Then, by the 
Skolem-Noether theorem (cf. §1.4.1), there exists g in GL,(R) such that the 
homomorphism $9, where 11, = Int g, satisfies the condition that for each 
i = 1, .  . . , t the restriction of $9 to Ai is either the zero homomorphism 
or the identity. If $cp I A i =  0 for some i, then B = cp(A) consists entirely 
of degenerate matrices. This contradicts fi E B. Thus 11,cp I A =  idA, hence 
fi = cp(hi) = $-'(hi) = g-lhig for all i = 1,.  . . , d, i.e., f E C,  as required. 

The general case of Theorem 2.16 reduces to the special case. We 
choose a faithful representation cp:G -+ GLn(R) under which H maps 
to a completely reducible linear group, and view G as a subgroup of 
Go = GL,(R). Let Co (resp., C)  denote the multidimensional conjugacy 
class of h = (hl, . . . , hd) with respect to Go (resp., G). Clearly C c ConGd. 

LEMMA 2.11. C is an irreducible component of Co n Gd. 

PROOF: Obtained by generalizing the argument in Richardson [I]. Let 
Z denote the irreducible component of Co n Gd containing C;  we shall 
show that Z = C. Since G is reductive and char K = 0, each r e p  
resentation in the Lie algebra go = L(Go) is completely reducible (cf. 
Theorem 2.4), so we can choose a G-invariant complement m of g = 

L(G). Consider the map n: Go + Do, where Do = Cob-', given by 
~ ( g )  = (ghlg-lhl-l,. . . ,ghdg-lhd-l). It is easy to see that r (Go)  = Do, 
d,r(X) = (X - Ad(hl)(X), . . . , X - Ad(hd)(X)), for X in go, and more- 
over d,n(g) coincides with Te(Do), the tangent space at unity of Do. We 
are going to show that 

Indeed, suppose d,n(X) E gd for X in go. Write X as X = Y + Z, where 
Y E g a n d Z E m .  T h e n f o r a n y i = l ,  . . . ,  d 

from which it follows that Z - Ad(hi)(Z) E mng = (0) by the G-invariance 
of m, and d,n(X) = d,n(Y), proving (2.32). Since C is a smooth variety, 
open in its closure (Proposition 2.13), we may consider the tangent space 
T,(D) where D = Ch-l. Then: from (2.32) and 

it follows that T(ChP1), = T(Zh-'),, i.e., C is open in Z. This argument 
can be applied to any multidimensional conjugacy class of elements of G 
contained in Z. Since Z is irreducible, there exists only one such class, so 
C = Z, proving the lemma. 

Since by the lemma the multidimensional conjugacy classes are the ir- 
reducible components of the closed subset Co n Gd, which are closed, the 
proof of Theorem 2.16 is completed. 

We shall apply the theorem over fields of characteristic zero in two 
cases-when H is either a connected reductive group or a finite subgroup. 

Note that for d = 1 the subgroup generated by an element h in G is 
reductive if and only if h is semisimple, so we obtain one direction of the 
above criterion on when the conjugacy class of h is closed. In this regard, 
it would be interesting to see whether the converse of Theorem 2.16 holds. 
2.4.7. Varieties of representations. Let r be an arbitrary finitely 
generated group and let G be some algebraic K-group. We shall show that 
the set of all homomorphisms (i.e., representations) F + G is in one-bone 
correspondence with the points of a K-variety R( r ,  G) called the variety 
of representations of r on G. To do so, consider an arbitrary generating 
set yl, . . . , yd of r and the associated surjective homomorphism n: Fd + r 
from the free group of rank d with generators X I , .  . . , xd, sending xi to yi 
(i = 1, .  . . , d). Let N = ker T be the set of all relations between 71,. . . , yd 
in r .  Then put 

R(r ,G)={(gl , . . .  ,gd) ~ G ~ : w ( g 1 , . . .  ,gd)=e,  
VW = w(xl,.  . . ,xd) E N) .  

Since the algebraic operations on G are regular K-maps, it follows that 
w = e defines a K-closed subset of G ~ ,  for each word w = w(xl, . . . , xd) in 
XI, .  . . , xd, and therefore R ( r ,  G) is a K-closed subset (subvariety) of Gd. 
On the other hand, for any (gl, . . . , gd) in Gd, there is a map r -+ G such 
that yi H gi if and only if (gl, . . . , gd) E R ( r ,  G). Since any homomorphism 
from I' is uniquely determined by the images of the generators, R ( r ,  G) 
thereby provides the parametrization of all representations of in G. 

Note that up to isomorphism R ( r ,  G) is independent of the choice of the 
original system of generators yl, . . . , yd. Indeed, if 61,. . . , Sl is another 
system of generators, and 
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are mutually inverse K-morphisms between the varieties of representations 
R,(F, G) and Rs(r ,  G) constructed using the generating sets 71,. . . , yd and 
61, . . . , Sl . G acts on R ( r ,  G) in the following natural way: 

In this context, the orbits of G correspond to the classes of representations 
that are equivalent relative to G. 

Several interesting results have appeared recently on the varieties R ( r ,  G) 
and associated varieties of characters (cf. Platonov [22], [23], Platonov, 
Benyasch-Krivetz [I]). However, we shall limit ourselves here to proving 
the following assertion. 

THEOREM 2.17. (char K = 0.) Let r be a finite group. Then there is 
only a finite number of orbits under the natural action of G on R(r ,  G); 
moreover these orbits are closed. 

PROOF: The fact that the orbits are closed follows from the theorem on 
the multidimensional conjugacy classes, since char K = 0 implies that the 
image of any homomorphism r + GLn(R) is completely reducible. Proof 
of the finiteness of the number of orbits for G = GLn(R) follows from the 
classical representation theory of finite groups, according to which there are 
only a finite number of non-equivalent irreducible representations of I?. The 
general case is reduced to the case just considered by using Lemma 2.11. 
Indeed, if Co is the equivalence class of some representation Q in R ( r ,  G) 
relative to GLn(R), then the irreducible components of R ( r ,  G) n Co are 
the equivalence classes relative to G. On the other hand, there are only a 
finite number of irreducible components. Q.E.D. 

2.4.8. Toric varieties. Let G be a reductive K-group, T c G a maximal 
K-torus, and N = NG(T) its normalizer. It follows from the conjugacy 
theorem for maximal tori that the map T, = 9 ~ g - l  H gN gives a bijection 
between the maximal tori of G and the points of 7 = GIN, called the 
(maximal) toric variety of G. Moreover, the points of TK correspond to 
the maximal K-tori in G. (Note that up to K-isomorphism 7 does not 
depend on the choice of the original torus T.) 

THEOREM 2.18 (CHEVALLEY [3], BOREL-SPRINGER [I]) .  If char K = 0, 
then 7 is a rational variety over K .  

PROOF: Let g = L(G), t) = L(T) be the Lie algebras of G and T respec- 
tively. Let m denote some K-subspace of g such that g = t) @ m and let X 
be a regular element in bK. Let mo denote the subset of m consisting of 
Z such that X + Z is regular semisimple and its centralizer ae(X + Z) has 
zero intersection with m. 

We claim that mo is an open subset of m. Since it is well known that 
the set of regular semisimple elements is open (cf. 52.1.11), it suffices to 
show that ml = { Z  E m : ae(X + 2 )  n m = (0) ) is also open. To do 
so, we introduce the variety P = { (Y, Z) E m x m : [X + Z, Y] = 0 )  
and consider the projection P 2, m, given by (Y, Z) Z. Clearly, we have 
(0,Z) E P for any Z in m; in particular, T is surjective and T-'(0) = (0, O), 
since by our choice of X ,  a(X) = t) and tl n m = (0). By the theorem on 
the dimension of the fibers of a morphism, we have dim P = dimm and 
{ Z  E m : dimr-l(Z) = 0 )  is open in m. However, it is easy to see that 
the latter set coincides with ml. 

Put W = {(Z,g) ~ m x  G : g P 1 ( X + Z ) g  E t)) and U = (mo x G ) n W .  
Since W is the pre-image of t) under the K-morphism 9:  m x G -+ g given 
by ~ ( z ,  g) = 9-l (X + Z)g, it follows that W is a closed K-subset of m x G. 
On the other hand, (0, l)  E U, so U is a nonempty open subset of W. 
Consider the projections 0: W --, m and 6: W + G. Since for any X in mo, 
ae(X + 2 )  is the Lie algebra of some maximal torus, it follows from the 
conjugacy theorem that there exists g in G such that gP1(X + Z)g E t), 
hence O(U) = mo. Moreover by our construction we have 

and 

Furthermore, if x = (Z,g) E U and x' = (Z1,g') E 6-'(S(x)), then 
g' E gN and X + Z,  X + Z' E 9f)g-l = g1t)(g')-', from which it follows 
that Z - Z' E m n (gt)gP1) and thus Z = Z' by (2.33). Hence, extending 
the natural morphism G + 7 = GIN to a map $: m x G --, m x 7, and 
taking the respective projections 0': $(W) --, m and 6': $(W) + 7, we see 
that 13' I+(U): $(U) + mo is a bijection and 6' I + ( u )  is an injection. Then 
by Theorem 2.13 13' has a K-defined rational inverse map x:mo + p(W) 
(recall that char K = O),  and moreover ( = 6 ' 0 ~  is injective on its domain of 
definition. Since dim m = dim 7, applying Theorem 2.13 again we conclude 
that ( is a birational isomorphism from m to 7, proving the theorem. 

PROPOSITION 2.24. Let G be a connected algebraic group over a field 
K of characteristic zero, and let W c G be the set of regular semisimple 
elements. Then there exists a regular K-map 9:  W + 7 such that x E T,(,) 
for all x in W, i.e., each element is mapped into the ambient torus. 

PROOF: Fix a maximal K-torus T c G, which was used to determine the 
toric variety 7 = GIN, where N = NG(T), and put 

Z = {(x,g) E W x G : gP1xg E T),  
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clearly a closed subset of W x G. Let 0: W x G 4 W x 7 denote the 
regular map extending the natural morphism I): G 4 7. It is easy to see 
that Z = 0-'(0(Z)), so since I) is open (cf. Borel [8, 5 61) it follows that 
Y = B(Z) is closed. Let TI: W x 7 4 Wl and TZ: W x 7 -+ 7 he the 
natural projections. We claim that TI J y : Y  4 W is bijective. Indeed, 
the conjugacy theorem for maximal tori implies that for any x in W there 
exists g in G such that g-'xg E T, and moreover, since x is regular then g 
is unique up to multiplication by an element of N. Since W is open in G 
and consequently smooth, there exists a regular map 6: W -+ Y which is 
the inverse of TI I Y ,  by the results of $2.4.3. Then cp = TZ o 6 is the desired 
map. Q.E.D. 

Note that if we let G act on W by conjugation and on 7 by translation, 
then cp as constructed above will be G-equivariant. 

2.4.9. Varieties of Borel subgroups. In 52.1.9 we saw that the Borel 
subgroups of a connected algebraic group G are in one-to-one correspon- 
dence with the points of the quotient variety B = GIB, where B c G 
is some fixed Borel subgroup; therefore B is naturally called the variety 
of Borel subgroups. If a K-group G has a Borel subgroup defined over K 
then B is obviously a K-variety, and moreover the action of G on B by 
left translation is defined over K .  However, as we know, K-defined Borel 
subgroups are relatively rare, and therefore it is natural to ask whether in 
general B has a K-structure. 

THEOREM 2.19. Let G be a connected algebraic K-group. Then the va- 
riety B of its Borel subgroups has a K-structure such that points of BK 
correspond to K-defined Borel subgroups, and the action of G on B is 
K-defined. 

PROOF: Put H = G/R(G) and H = H/Z(H). Then H is a semisimple 
adjoint group. Let cp: G -+ H denote the natural morphism. If B is a Borel 
subgroup of G, then cp(B) is a Borel subgroup of H and GIB ZY H/cp(B). 
Thus we are reduced to the case of a semisimple adjoint group. Any such 
group G can be obtained from some quasisplit group Go by twisting using 
a suitable cocycle a = {a, = Int g,), lying in Int Go. Let Bo c Go be a 
K-defined Borel subgroup and Bo = Go/Bo the corresponding K-variety 
of Borel subgroups. Then the left translations r, by g, define a cocycle r 
in the group of K-automorphisms of Do. Since Bo is a projective variety, 
there exists a "twisted" variety .&J (cf. the remark following Theorem 2.9) 
which is the B we require. Q.E.D. 

Locally Compact Fields 

In Chapter 2 we considered properties of algebraic groups that are de- 
termined first and foremost by the group itself, independently of the base 
field. In this and subsequent chapters we shall study the effect of properties 
of the base field on the structure of these groups. We begin with groups 
over locally compact fields for several reasons. First, the group of ratio- 
nal points over such a field is provided naturally with the extra structure 
of an analytic Lie group, thereby offering the possibility of applying the 
highly developed structure theory of Lie groups. Second, arithmetic sub- 
groups and generalizations, as well as groups of rational points over number 
fields-the basic objects in the arithmetic theory of algebraic groups-are 
embeddable as discrete subgroups of suitable direct products of groups of 
rational points over appropriate completions; hence the properties of the 
latter have a significant impact on the properties of our original groups. 

In $3.1 we set forth the most straightforward results of a topological and 
analytic nature, a large number of which remain valid over any field which 
is complete (or Henselian) with respect to some discrete valuation. In $3.2 
we study the classical case where the ground field is either IR or C. The key 
result here is the Iwasawa decomposition, which plays an important role in 
Chapter 4. In 553.3-3.4 we investigate groups over non-Archimedean locally 
compact fields. Results obtained by applying the theory of profinite groups 
and the theory of reduction of algebraic varieties are set forth in 53.3, and 
a survey of the results of the Bruhat-Tits theory needed later on is given 
in 53.4. Lastly, in 53.5 we present some aspects of measure theory to be 
used elsewhere in the book. 

3.1. Topology and analytic structure. 

Throughout this chapter K denotes a non-discrete locally compact field 
of characteristic zero. It is well known (cf., for example, Bourbaki [5]), 
that either K is connected (in which case it is either IR or C), or totally 
disconnected (in which case it is a finite extension of the padic number 
field Q,). In particular, K is complete with respect to some nontrivial 
valuation I I,, which is either the usual absolute value of the real numbers 
or the complex numbers, or is discrete, i.e., has a cyclic value group. Then, 
the open balls B(a, e) = { x  E K : la - X I ,  < e ) ,  where a E K and e > 0, 
form a base for the topology of K.  Using the topology on K ,  one can define 
naturally a topology on the set of K-points VK of an arbitrary algebraic 
K-variety V. To do so, consider a Zariski-open K-subset U c V and a 
finite set f l ,  . . . , f,. of regular K-functions on U, and put 
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where E > 0. It is easy to see that the V(fl , .  . . , f,; E) form the base of 
a topology on VK, which we call the topology defined by the valuation v, 
or, more concisely, the v-adic topology. Note that this topology is stronger 
that the Zariski topology. Unlike the Zariski topology, it has the following 
natural property: if V = Vl x Vz is a K-defined product of two K-varieties, 
then the topological space VK is canonically homeomorphic to VIK x VzK 
endowed with the direct product topology. If W is an open (respectively, 
closed) K-subvariety of V, then WK is an open (respectively, closed) s u b  
space of VK. If follows that VK is Hausdorff, for any variety V. Indeed, the 
diagonal A C V x V is closed in the Zariski topology, and therefore AK 
is closed in (V x V)K; since (V x V)K N VK x VK under the direct prod- 
uct topology, and since AK is closed then VK is Hausdorff. Any regular 
K-morphism f:  V + W induces a continuous map fK: VK 4 WK. Hence, 
if G is an algebraic K-group, then GK is a topological group. 

The topology introduced above has a more straightforward description 
for affine or projective varieties; namely, if V c An, it is induced from K n  
via the inclusion VK c Kn.  (We take the direct product topology on K n  = 
K x . . . x K ;  its standard base consists of open n-balls B(a, E) = { x E K n  : 
/la - xll, < E ) ,  for a E K ,  E > 0, where Ilzll, is defined as m*lzil, for 

2 

Z = ( ~ 1 , .  . . , Zn).) 
This rather straightforward remark has several corollaries. Firstly, VK 

is a locally compact space, for any affine variety V. Since any point of 
an arbitrary variety has an open affine neighborhood, it follows that this 
assertion holds for any variety. 

Secondly, if G C GLn(fl) is an algebraic K-subgroup, then the natural 
topology on GLn(K) induces a topology on GK. In particular, if K is 
non-Archimedean with respect to I I,, then the topology on GK can be 
described in the following manner: Let 0 c K be the ring of integers; then 
the group of integral points Go = G n GLn(0)  is a "basic" open compact 
subgroup and its congruence subgroups Go(pa) = G n (En + pa Mn(0)) ,  
where p C 0 is the maximal ideal, constitute a base of the neighborhoods 
of the identity in GK. 

Now let V C Pn be a projective variety. Then the topology on VK is 
induced from I&, the topology on P k  being the quotient topology arising 
from the canonical map Kn+l \ (0) -+ Pk .  It is well known (cf., for exam- 
ple, Bourbaki [2]), that P k  is compact with respect to this topology; and 
therefore VK is also compact, since VK is closed in P k .  

The question of the compactness of VK will not be considered here in 
complete generality; however a compactness criterion will be given for the 
case where V is a homogeneous space. 

THEOREM 3.1. Let G be an algebraic K-group, and H a K-subgroup. 

GK/HK is compact if and only if H contains a maximal connected K-split 
solvable subgroup of the connected component Go. In particular, GK is a 
compact group if and only if Go is reductive and anisotropic over K.  

PROOF: The proof reduces easily to the case where G is connected. 
(+=) Assume H contains a maximal connected K-split solvable subgroup 

B of G. We shall show that GK/BK is compact, thereby implying that 
GK/HK is also compact. According to Chevalley7s theorem (cf. 52.4.4) 
we can choose a K-representation G -+ GL(V) and a one-dimensional 
subspace Vl c V such that the stabilizer of Vl in G is B. Since B is split 
over K ,  its image in GL(V/Vl) is trigonalizable over K.  It follows that in 
V t h e r e i s a K - f l a g F =  {Vl C ... c V,  C . . .  C Vn = V  (dim& = i ) )  
"beginning" with Vl and invariant with respect to B. Let X denote the 
closure of the orbit G F  in the flag variety F(V)  (cf. Bore1 [8]). Since F (V)  
is projective, X is also projective, and therefore the above remark asserts 
that XK is compact. 

Further, as we shall soon see (cf. Corollary 1 of Proposition 3.3), it follows 
from the Inverse Function Theorem that the GK-orbits in (GF)K are open. 
If we show that XK = (GF)  K ,  then all the GK-orbits in XK are open, and 
consequently the orbit G K F ,  being the complement of the union of the 
other orbits, is closed, and consequently compact. Since by construction 
B stabilizes F, the natural map p: G -+ X given by g H g F  induces a 
continuous bijection I): GK/BK 4 GKF.  But (PK: GK -+ XK is an Open 
map (Proposition 3.3, Corollary I) ,  so actually we have a homeomorphism 
G K / B ~  GKF,  as desired. 

Since (GF)K c XK, it remains to show that XK C GF.  If not, let 
L E XK \GF.  Then the dimension of GL must be strictly less than dim G F  
(cf. Proposition 2.23), i.e., the stabilizer G(L) must have dimension strictly 
greater than dim B. On the other hand, G(L) is clearly trigonalizable 
over K ,  so the connected component G(L)O is split over K .  But this 
contradicts the fact that B is a maximal connected K-split subgroup of 
G, and thus has maximal dimension, since all maximal connected K-split 
solvable subgroups of G are conjugate (cf. Borel-Tits [I]). 

(+) Suppose GK/HK is compact. Choose a maximal connected solvable 
K-split subgroup B of G, containing a maximal connected solvable K- 
split subgroup of H .  By the first part of our argument, HK / (H  f l  B)K 
is compact. It follows immediately that BKHK is closed in GK, noting 
( B K H K ) - ~  = HKBK. Therefore B K / ( B n H ) ~  2( BKHK/HK is compact. 
We shall conclude the proof by showing that B = B n H ,  i.e., B c H .  

Indeed, it is well known (cf. $2.1.8) that B contains a normal series 
B = Bo > B1 > . . . > B, = (e) defined over K ,  whose composition factors 
Bi/Bi+l are K-isomorphic to G, or 6,. If B n H # B, then there is 
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i such that Bi(B n H )  = B and F = Bi+l(B n H )  # B. BK/FK is 
compact since BK/ (B  fl H)K is compact. Now consider the action of T = 
Bi/Bi+1, isomorphic to (6, or G,, on B/F.  A consequence of Corollary 2 
of Proposition 3.3 is the openness of all the orbits of TK on (B/F)K,  from 
which it follows that TKe is closed, where e is the class of F in B /F .  This 
means TK/FK is compact, where F is the image of F n Bi in T. But F is 
finite since dim T = 1, hence TK is compact, contradiction. Q.E.D. 
REMARK: Applying the finiteness theorem for Galois cohomology over lo- 
cal fields (cf. §6.4), we can show easily that there are a finite number of 
orbits of GK in (G/H)K, from which it follows that the spaces GK/HK 
and (G/H)K are either both compact or both noncompact. 

Among other topological properties of VK we mention the following: if 
K is totally disconnected then VK is also totally disconnected. In s3.2 we 
shall consider when VK is connected for the case K = R, C. 

Most of the above remarks on the topology of VK apply equally well to 
the case where K is a locally compact field of characteristic p > 0, i.e., 
isomorphic to the field F((t)) of formal power series over a finite field. 
However, our assumption char K = 0 cannot be dropped when we study 
the analytic structure on VK. 

Our next objective is to introduce on VK (or, more precisely, on its 
Zariski-open subset) the structure of an analytic variety. Here, from the 
very outset, it is helpful to assume that VK is Zariski-dense in V, since 
the dimension of VK as an analytic variety will then coincide with dimV 
as an algebraic variety. Note that this condition can always be satisfied 
by passing from VK to its closure W in V; W is defined over K since 
char K = 0 and, clearly, WK = VK. 

We aim to show that each simple point x in VK has a neighborhood which 
is homeomorphic to an open ball in the space Km, where m = dim, V. 
Replacing V by a suitable affine neighborhood of x, we may assume V is 
an affine variety, i.e., V c An. Then Proposition 2.22 and the following 
version of the Inverse Function Theorem can be applied: 

THEOREM 3.2 (INVERSE FUNCTION THEOREM). Let U c K n  be open, 
x E U, and let f = (f l , .  . . , f,): U 4 K n  be a polynomial (or, more 
generally, an analytic) map. Put  y = f(x)  and assume that the Jacobian 

($(~))i , j=l ,  ... ,n is nonsingular. Then f is a locally analytic isomorphism 
at  x, i.e., there exists a neighborhood W c U of x such that f (W) is a 
neighborhood of y and f restricts to an analytic isomorphism from W to 
f (W). 
PROOF: cf. Serre 14, Part 11, Chapter 3 $91. There one can also find the 
definition of an analytic function and a discussion of the properties per- 
taining to them. Note that we do not in fact need these properties, since 

in most applications it suffices to know that f is a local homeomorphism 
at x under the hypotheses of Theorem 3.2. 

Now let x = (xlO, . . . , xnO) be a simple point. (Note that the existence 
of such an x follows from our assumption on the density of VK in V in 
the Zariski topology, since the set of simple points is open.) Also put 
m = dim, V. Then, by Proposition 2.22, some neighborhood of x in V is 
determined by r = n - m equations. More precisely, there are polynomials 
f l , .  . . , fr E K[xl , .  . . ,xn] and a Zariski-open subset U c An such that 
Y = { y E U : fi(y) = 0, i = 1 , .  . . , r ) is contained in V and the Jacobian 

has rank n. Also, we may assume that det (g (x)) i,j=l ,,,, ,r # 0 . Consider 
g = ( g l ,  . . .  , g n ) : K n - + K n w h e r e g i =  f i f o r i L r , a n d g i = x i f o r i > r .  
Clearly 

By Theorem 3.2 there exists a neighborhood U C K n  of x such that W = 
g(U) is a neighborhood of g(x) and g: U 4 W is an analytic isomorphism. 
Let h = (h l , .  . . , h,) = g-l: W 4 U .  Then 

where pi(tl , .  . . , tnPr) = hi(xy, . . . , x:, t l ,  . . . , tn-,) (i = 1, . . . , r )  para- 
metrizes the neighborhood of x in VK by the points of some open set in 
~ n - 7 .  . Moreover, the parametrizing map is actually the inverse map for the 

projection onto the (last) n - r coordinates. From this it follows easily that 
any two parametrizations of a neighborhood of a given point differ by an 
analytic isomorphism. Thus, for the case of V affine, the set of simple points 
of VK carries the natural structure of an analytic variety (cf. Serre [4]). 
This structure is respected by the regular maps of affine varieties; namely, 
any regular K-map f :  V 4 W of affine K-varieties V and W induces an 
analytic map $: VK n f (WK) -+ WK, where vK (resp., WK) is the set 
of simple points of VK (resp., WK) provided with the structure introduced 
above of an analytic variety. 

Using affine neighborhoods of points of an arbitrary variety V, it is easy 
to show that in general VK carries the structure of an analytic variety, and 
any regular K-defined map f of algebraic K-varieties induces an analytic 
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map j, as  indicated above. Indeed, the coordinates of any two affine neigh- 
borhoods of the same point are related to each other by a birational trans- 
formation defined at that point. Therefore two neighborhood parametriza- 
tions of a given point, constructed via these two affine neighborhoods, differ 
by an analytic isomorphism. Furthermore, any regular K-map f :  V --+ W 
induces a regular map of affine neighborhoods, and therefore an analytic 
map j .  We have proven 

PROPOSITION 3.1. Let V be an algebraic K-variety. Then the set VK of 
simple points of VK has the natural structure of an analytic variety over K .  
Any regular K-map f : V + W of algebraic K-varieties induces an analytic 
map j: VK n fpl(WK) --+ w K .  

Thus we can apply the theory of analytic varieties (cf. Serre [4]) to the 
study of VK. We call the reader's attention to several concepts needed for 
our further discussion. Each point x of an analytic variety X has an associ- 
ated tangent space T,(X,,),' which is a vector space over K of dimension 
equal to dimX, i.e., the dimension of the affine space whose domains are 
used to parametrize the neighborhoods of the points of X.  A morphism 
f :  X + Y of analytic varieties is a continuous locally analytic map, in the 
sense that it induces a usual analytic map of the parametrization domains 
for the respective points. Any morphism f :  X + Y gives rise to a linear 
map d, fan: T,(Xan) -t Tf(,)(Yan), called the differential of f at x. f is 
called an immersion at x if d, fan is injective, and simply an immersion 
if this condition holds for all points. If a topological subspace X of the 
variety Y is also provided with the structure of an analytic variety and the 
inclusion map X L) Y is an immersion, then X is said to be a subvariety 
of Y. To illustrate this concept, take the example of "non-subvariety" of 
R2 provided by the set y = 1x1, as in the following diagram. 

The subscript an is used in order to distinguish later on between the tangent space of 
an algebraic variety and the tangent space of the corresponding analytic variety. 

(This set is "unsmoothly" embedded in R2. The subvariety under suit- 
able analytic change of coordinates can be defined by linear equations in 
the neighborhood of any point.) We shall also need the following criterion 
of openness of a map. 

PROPOSITION 3.2. Let f :  X 4 Y be a morphism of analytic varieties, and 
x E X. If d, fan: Tz(Xan) -+ Tf(,)(Yan) is surjective, then f is an open 
map at  x. 

PROOF: The proof follows easily from the Inverse Function Theorem (3.2), 
cf. Serre [4, Part 11, Chapter 3, $91. 

LEMMA 3.1. Let V be an algebraic K-variety, z E VK. Then T,(%~,) = 
T,(V)K, i.e., the "analytic" tangent space is the set of K-elements of the 
"algebraic" tangent space. If f :  V -+ W is a regular K-map of algebraic 
K-varieties, x E VK, and f (x) E wK, then d, fan = (d, f )  IT,(vK,,). 

The proof follows directly from a comparison of the appropriate definitions. 

Lemma 3.1 and Proposition 3.2 can be applied to algebraic varieties as 
follows: 

PROPOSITION 3.3. Let f :V  + W be a dominant K-morphism of irre- 
ducible algebraic K-varieties. If x in VK is a simple point such that f (x) 
is a simple point on W, and d, f :  T,(V) --+ Tf(,)(W) is surjective, then 
fK: VK + WK is open at  x. Consequently there exists a Zariski-open 
subset U c V such that f~ is open at  any point x in UK. 

PROOF: Consider the analytic map f: VK n f -'(wK) --+ wK induced by f .  
The hypothesis and Lemma 3.1 imply x E VK n f - l ( w ~ ) ,  and d,jan is 
a surjective map. Therefore fK is open at x by Proposition 3.2. Further- 
more, since char K = 0, f is automatically a separable morphism, i.e., the 
corresponding extension K(V)/K(W) of fields of rational functions is s e p  
arable. It follows (cf. Bore1 [8, AG $171) that there exists a Zariski-open 
subset U c V such that for any x in U the hypotheses of the first assertion 
hold, and the proof is complete. 

It should be noted that if VK is not assumed to be dense in V then UK 
could be empty and Proposition 3.3 would become meaningless. Therefore 
we shall now describe two cases, of particular interest to us further on, for 
which such degeneracy does not occur. 

COROLLARY 1. Assume V to be smooth and VK # 0. Then the image 
~ K ( F )  of any nonempty open set F C VK contains a nonempty open subset 
of WK. In particular, i f f :  G -+ H is a surjective K-morphism of algebraic 
K-groups, then fK (GK) is an open subgroup of HK. 

To prove it, we need the following lemma: 
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LEMMA 3.2. Let V be an irreducible smooth variety defined over K ,  such 
that VK # 0. Then, for any nonempty Zariski K-open subset U c V, the 
set UK is dense in VK in the v-adic topology. Furthermore, any nonempty 
v-adically open subset F c VK is Zariski-dense in V; in particular, VK is 
Zariski-dense in V. 

PROOF: It is easy to see that both assertions of the lemma reduce to prov- 
ing that U n F is nonempty, where U c V is Zariski-open and F c VK is 
open in the topology given by the valuation. Put X = V \ U. For any x 
in F, we can find a nonzero regular function f E K[W] in a neighborhood 
of W c V defined over K ,  which vanishes on X n W. Since V is a smooth 
variety by hypothesis, x is simple and consequently, by the above, there 
exists an analytic parametrization of some neighborhood of x. If U n F  = 0, 
i.e., F c X I  then the analytic Taylor series for f must be null; but since the 
algebraic and analytic Taylor series coincide, this contradicts the injectiv- 
ity of the map sending a regular function at a simple point to its algebraic 
Taylor series (cf. Shafarevich [I, Ch. 21). Q.E.D. 

Now let U C V be the Zariski-open subset provided by Proposition 3.3. 
Then U n F # 0 by Lemma 3.2. Since fK: VK 4 WK is open at any 
point x in U n F, our first assertion follows easily. The second assertion of 
Corollary 1 follows directly from the first. 

COROLLARY 2. Let G x X --+ X be a K-defined action of a connected 
algebraic K-group G on a K-variety X.  If x E XK and Y is the closure of 
the orbit Gx, then for any open F c GK the set F x  is open in YK. 

PROOF: The morphism cp: G 4 Y, given by cp(g) = gx, is dominant. 
Therefore, applying Proposition 3.3, we can find a Zariski-open set U C G 
with the properties described. Then c p ~  is open at any point g in UK. 
Since cp(hg) = hcp(g) for any h in G, c p ~  actually is open at any point h in 
GK. It follows at once that cp(F) = F x  is open for any open F c GK. 

Let us give an example of how these results apply to examination of the 
structure of the groups of rational points over locally compact fields. 

THEOREM 3.3 (RIEHM [1,2]). Let G be a K-simple algebraic group. 
Then every noncentral normal subgroup of GK is open. 

PROOF: For each g in G put Wg = {[g,h] =g-lh-lgh:  h~ G ) .  All the 
Wg are irreducible varieties, contain the identity, and together generate 
the commutator subgroup [G,G] of G. In our case [G,G] = G, so, by a 
straightforward dimension argument (cf. Bore1 [8, Proposition 2.21) and 
taking into account (Wg)-' = Wg-I, we obtain the existence of a finite set 
of elements gl, . . . , gn in G such that G = Wg, . . . Wgn. 

Consider the morphism 

By the theorem on the dimensions of the fibers of a morphism (cf. §2.4.2), 
for any point y in $(X) we have dim $-'(y) 2 (n - 1) dim G. We 
claim there is y for which dim $-'(y) = (n - 1) dim G. By assumption 
cp,, ,... ,,,, : G x . . . x G -+ G given by - 

n 

is surjective, and therefore there exist points g in G such that 

dim c p ~ t . .  . ,gn (g) = (n - 1) dim G. 

Then y of the form (gl, . . . , g,, g) will do. 
Again, applying the theorem on the dimensions of the fibers of a mor- 

phism, we obtain the existence of a Zariski-open set U C Y such that 
dim$-l(x) = (n - 1) dim G for any x in U. Let V denote the projection 
of U on the first n components. Then V is open in G x x G and for 

n 
any (xl , .  . . , x,) in V we can find g in G satisfying dim cp;; ,,,, ,,n (g) = 
(n - 1) dim G. It follows that cp,, ,,,, ,,, is dominant for (xi, . . . , x,) in V. 

Now let N c GK be a noncentral normal subgroup. Since GK is dense in 
G in the Zariski topology (Theorem 2.2; for a local field it also follows from 
Lemma 3.2), the closure N of N in this topology is a noncentral normal 
K-subgroup of G, and consequently N = G since by assumption G is K- 
simple. Hence it follows from the above argument that there are x i ,  . . . , xn 
in N such that cp,,,... ,,,, is a dominant morphism. Applying Corollary 1 
of Proposition 3.3 we see that cp,, ,... , , n ( G ~  x . . . x GK) contains an open 
subset of GK. But 

VX, ,... , ~ , ( G K  X . . . X GK) = { [xi, hi] .  . . [x,, h,] : hi E GK ) c N; 

hence N is open in GK. Q.E.D. 
REMARK: The proof relies only on Proposition 3.3, which is a formal corol- 
lary of the Inverse Function Theorem, and nowhere relied on the local com- 
pactness of K.  Therefore the assertion of the theorem holds whenever the 
Inverse Function Theorem is true over K, which is the case if K is complete 
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with respect to a nontrivial discrete valuation. This more general version 
will be needed when we investigate the deviation from the weak approxima- 
tion property for simply connected groups over an arbitrary field (cf. 57.3). 
Let us also point out that, as we shall show in 553.2-3.3, Theorem 3.3 
yields a stronger result for locally compact fields: under the hypothesis of 
Theorem 3.3 any noncentral normal subgroup of GK has finite index. 

Thus far, in our exposition of results from the theory of analytic varieties, 
we have ignored the fact that most of the varieties under consideration have 
a group structure. Now we shall present several results obtained by uti- 
lizing this structure. On the whole, the study of analytic group varieties 
pertains to classical Lie group theory, expounded for example in Serre [3], 
Bourbaki [4], and Helgason [I]. We shall limit ourselves to pointing out 
several results relating mainly to Lie groups arising from algebraic groups. 
Thus, let G be an algebraic group defined over K .  As we know, G is a 
smooth variety, and therefore GK has the natural structure of an analytic 
variety over K. Moreoever, the group operations are analytic maps, so 
GK is endowed with the structure of an analytic group or a Lie group (cf. 
Serre [3]). The Lie algebra g* of the analytic group GK is the tangent 
space at  the identity T,*(G). By Lemma 3.1 g* coincides with the sub- 
space of K-elements of the algebraic tangent space T,(G), i.e., of the Lie 
algebra g = L(G) as an algebraic group; moreoever, the Lie bracket on g* 
is induced from g. We can define the exponential and logarithmic maps 
(cf. Bourbaki [4]) which are mutually inverse, local analytic isomorphisms 
between g* and GK. If G c GLn(R) is a matrix realization of G, then exp 
and iog are given by the usual formulas: 

for x E GK. 

In particular, the exponential map for a group restricts to the exponential 
map of its subgroups. If X ,  Y E g (respectively, x, y E G) commute, then 

(assuming that all the expressions here are defined, i.e., that the corre- 
sponding series converge). Hence, in particular, it follows that GK always 

has a neighborhood of the identity which does not contain nontrivial ele- 
ments of finite order (cf. Serre [4]). Also note the following formulas: 

i.e., the exponential and logarithmic maps commute with the adjoint action 
of GK. 

If a subgroup H of GK is also a subvariety of GK, then H is said to 
be a Lie subgroup of GK. It follows from the definition that if H C GK 
is a Lie subgroup, then there is an analogous inclusion b* C g* of the 
corresponding Lie algebra. A Lie subgroup H C GK need not be closed in 
the topology of GK and consequently it need not be closed in the Zariski 
topology either. Let B be the closure of H in the Zariski topology. Then 
BK is a Lie subgroup of GK containing H. How far can BK differ from H? 
We shall answer this question in terms of the corresponding Lie algebras 
b* and b*. 

PROPOSITION 3.4. In the described setting, b* is a Lie ideal of b* .  

PROOF: Consider the adjoint representation Ad: G + GL(g), where g = 
L(G) is the Lie algebra of G, as an algebraic group; g = g* @K R,  where 
g* is the Lie algebra of GK, as an analytic group. The space b*, and 
consequently the space b = b* @K R, are clearly invariant. On the other 
hand S = {g  E G : Ad(g)(b) = b )  is a Zariski-closed subgroup of G. 
Hence, from H c S it follows that B c S. Taking into account that 
the differential of the adjoint representation of an algebraic group is the 
adjoint representation of the corresponding Lie algebra (cf. Bore1 [8, §3]), 
for b = L(B) we have [b, b] C b. Since b* = bK, b* = b K ,  it follows that 
[b*, b*] c b*. Q.E.D. 

We conclude our survey of the necessary results from Lie group theory 
with the statement of a theorem proved by E. Cartan for K = R. 

THEOREM 3.4. Suppose K is either the field of real numbers iR or the field 
of p-adic numbers Qp. Then any closed subgroup of a Lie group over K 
is a Lie group. Every continuous homomorphism of Lie groups over K is 
analytic. 

PROOF: Cf. Serre [3, pp. 260-2631. 

We conclude this subsection with a nice application of techniques of Lie 
groups and analytic varieties to group theory. 

PROPOSITION 3.5. Let G C GL, be a reductive algebraic group defined 
over a non-Archimedean local field K.  Then the group of integral points 



118 Chapter 3. Algebraic Groups over Locally Compact Fields 3.2. The Archimedean case 119 

Go = G n GL,(O) has only a finite number ofpairwise nonconjugate finite 
subgroups. In particular, the number of nonconjugate finite subgroups of 
SL,(Z,) is finite. 

PROOF: From the above remarks about Lie groups it follows that there 
exists a neighborhood of the identity in Go which does not contain non- 
trivial elements of finite order. But the congruence subgroups Go(pa) = 

{ x  E Go : x - En (mod pa) ),2 where p C O is the valuation ideal and 
cr 2 1, constitute a base of the neighborhoods of the identity; hence some 
congruence subgroup (say, Go(pa)) has this property. It follows that any 
finite subgroup of Go is isomorphic to a subgroup of Go/Go(pa), which 
is finite by virtue of the compactness of Go and the openness of Go(pa). 

Therefore Go contains only a finite number of non-isomorphic finite sub- 
groups, and it suffices to show that the finite subgroups of Go  that are 
isomorphic to a given group r partition into a finite number of conjugacy 
classes. To do so, we consider the variety of representations R = R ( r ,  G) 
(cf. 52.4.7) and shall establish the stronger assertion that the set Ro = 
Horn(r, Go) consists of only a finite number of orbits under the natural 
action of Go. It follows from Theorem 2.17 that there are only a finite 
number of orbits in R(r ,G)  under the action of G, and these orbits are 
closed in the Zariski topology. Let X be one of these orbits. It suffices to 
show that Xo consists of a finite number of Go-orbits. This is obvious if 
Xo = 0. If Xo # 0, then X is clearly defined over K and for any point 
x in Xo the orbit Gox is open in Xo by Corollary 2 of Proposition 3.3. 
On the other hand, since X is closed in R and O is compact, then Xo is 
compact. Hence the open covering Xo = U, Gox has a finite subcovering, 
yielding a finite number of orbits of Go on Xo. Q.E.D. 

3.2. The Archimedean case. 

In the previous section several results were obtained concerning elemen- 
tary topological and analytic properties of the space XK, where X is an 
algebraic variety defined over a locally compact field K. Their proofs relied 
only on the Inverse Function Theorem, which works in both the "classical" 
case K = R or @ and in the non-Archimedean case when K is a finite 
extension of Q,. In this section we shall present results which are intrinsic 
only to the Archimedean case. First among these are results pertaining to 
connectedness. 

THEOREM 3.5. Let X be an irreducible algebraic variety defined over C. 
Then the space Xc is connected. 

Two matrices over a ring are congruent modulo its ideal if and only if all the respective 
entries are congruent. 

PROOF: Cf. Shafarevich [l, Ch. 7, $21. However, we shall not need this 
result. 

THEOREM 3.6 (WHITNEY [I]) .  Let X be an algebraic variety defined over 
R. Then the space XR has only a finite number of connected components. 

PROOF: Replacing X by the closure of XR in the Zariski topology (which 
does not affect the R-points), we may assume XR is dense in X. Then the 
real points are dense in each irreducible component of X ,  which thus is 
defined over R. Hence, we may assume X to be irreducible. 

Suppose that the theorem does not hold, and let X be a counterexample 
of minimal dimension (clearly dimX > 0). Choose an affine open R- 
defined subset Y c X. Then T = X \ Y is an algebraic R-variety whose 
dimension is strictly less than dim X.  By assumption TR has a finite number 
of connected components, so the number of connected components of YR 
must be infinite. Therefore we may assume X to be affine. 

Let S be the set of singular points of X (cf. 52.4.3). As we know, S 
is a proper closed subset of X.  Therefore, arguing as above, we see that 
V = Xw \ SR has an infinite number of connected components {V,)jOO=l, and 
that almost all of them, say V, for j 2 1, are connected components of Xw. 
In 83.1 we showed that V is an analytic variety and, in particular, a locally 
connected space. Therefore all V, are disjoint open-and-closed subsets of 
V and each V, for j > 1 is an open-and-closed subset of Xw. Suppose that 
we could find a proper closed R-subset Z c X intersecting almost all V,. 
Then the number of connected components of ZR could not be finite, since 
ZR = U,"_, (ZR n V,) and ZR n V, is a nonempty open-and-closed subset 
of Zw for almost all j. But this would contradict our assumption, since 
dim Z < dim X.  

It remains to construct 2. Suppose X is realized as a Zariski-open subset 
of the affine space An, whose set of real points Rn is endowed with the usual 
metric. Fix an arbitrary point a = (al, . . . , a,) in Vl. The subspace V, 
is closed in Rn for each j 2 1, and therefore we can find a point bj in 
V, which is the nearest to a. We shall construct a proper closed algebraic 
subset Z c X containing all bjls. Its equations are easily obtained by using 
the fact that the bjls are points of the conditional extremum for the function 
g(X1,. . . , X,) = (XI - a1)2 + . . . + (X, - an)2. That is, if r = n - dim X 
and a is the ideal of polynomials that vanish on X ,  then for any fl ,  . . . , fr 
in a~ and any j the linear forms 

dbjfl, . . .  ,db3fr,dbjg 

(cf. 52.4.3) are linearly dependent, which is equivalent to satisfying 
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where Ai ( f l  , . . . , fT, g) (x) runs through the (r  + 1) x ( r  + 1) minors of the 
matrix 

I 
... . . . . . . . . . . .  . . . . . .  
%(XI .. . i& 8.. (x) J 
&y4 . . .  &(x) 

Let Z be the subset of X given by 

By assumption Z contains all the bj, so it remains merely to show that 
Z # X. We shall show that Vl $ Z. Since a is simple on X ,  there 
exist polynomials f l ,  . . . , fT in aw such that d,fl,. . . ,d, f, are linearly 
independent forms for x = a (Proposition 2.1), and hence also for all x 
sufficiently close to a. Furthermore, for d = dimX > 0 let the analytic 
functions ul (tl ,  . . . , td), . . . , un(tl , . . . , td) realize a parametrization of a 
neighborhood of a (cf. $3.1). Since g is the distance squared from a, the 
analytic function 

does not reduce to a constant. Therefore 

on any open domain of parameters. The equations 

fi(ul(tl, .  . . , t d ) , .  .. ,un( t l , .  .. , td) )  = 0, i = I , .  .. , r  

yield 

If d, f l ,  . . . , dxfT, d,g are linearly dependent forms, then d,g is a linear 
combination of d, f l ,  . . . , dxfT for all x sufficiently close to a, since the 
latter are linearly independent by construction. Consequently 

But the left side of (3.4) equals z, so (3.4) contradicts (3.3). We conclude 
that d, f l ,  . . . , d, fT, d,g can not be linearly dependent at all points x in 
Vl. Therefore not all the determinants Ai( f l ,  . . . , f,, g)(x) are identically 
equal tozeroonVl , i .e . ,VlcZ.  Q.E.D. 

COROLLARY 1. Let G be an algebraic W-group. Then Gw has a finite 
number of connected components. If G is connected and Gw is compact, 
then Gw is connected. 

Only the second assertion requires proof. Being compact, GR consists 
entirely of semisimple elements. Therefore any of its elements lies in a 
suitable W-torus T c G. Tw is also a compact group, and therefore T is is* 

(1) morphic to a torus of the form ( R ~ , ~ ( G , ) ) ~ ,  where d = dimT (cf. $2.2.4). 
From this it follows that TR can be identified with the product of d copies 
of the unit circle, which is connected. Thus, the connected component G i  
must contain each of the Tw, and therefore coincides with Gw. An alternate 
proof of the connectedness of Gw may be obtained by using the fact that a 
compact linear group of R is closed in the Zariski topology (cf. Chevalley 
[I, Vol. 3, p. 2961). 

PROPOSITION 3.6. Let G be a connected R-simple algebraic group. Then 
any noncentral normal subgroup of Gw has finite index. If GR is compact, 
then it is (projectively) simple. 

PROOF: By Theorem 3.3 any noncentral normal subgroup N of Gw is open 
and therefore must contain the connected component G i ,  which by Corol- 
lary 1 has finite index in Gw. If Gw is compact, then Gw = G i ,  and 
therefore N = Gw. 

We continue with the corollaries of Theorem 3.6. 

COROLLARY 2. Let G x X + X be a transitive R-action of an algebraic 
R-group G on an R-variety X.  Then Xw is the union of a finite number of 
Gw-orbits. If Xw is connected, then there is exactly one orbit. 

PROOF: For any point x in XR the orbit Gwx is open in Xw (Corollary 2 
of Proposition 3.4). The complement of XR \ Gwx is the union of the 
remaining orbits, and therefore also is open. Thus Gwx is an open-and- 
closed subset of Xw and therefore contains a connected component of the 
latter. Hence the number of distinct orbits does not exceed the number 
of connected components of Xw, which is finite, and is equal to 1 if Xw is 
connected. 

REMARK: Corollary 2 has an obvious cohomological interpretation. To 
wit, if x E Xw, then X can be identified with the homogeneous space GIH, 
where H = G(x) is the stabilizer of x, and then the orbits of Gw on XR 
are in one-tc-one correspondence with the elements of ker(H1(W, H )  + 

H1(R,G)) (cf. $1.3.2). Thus, by Corollary 2, this kernel is finite. Con- 
sidering the embedding of any given R-group H in some R-group G with 
trivial cohomology (for example, using the exact R-representation H r 
G = GL,), we conclude that H1(W, H) is finite, for any R-group H. In 
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Chapter 6, $6.4 we shall present another proof of this fact, which also works 
for the case of non-Archimedean local fields. 

COROLLARY 3. Let f :  G --t H be a surjective R-morphism of algebraic 
groups. Then [Hw : f (Gw)] is finite. If Hw is connected, in particular if H 
is unipotent, then fw : Gw Hw is a surjection. 

The proof follows from Corollary 2, applied to the action G x H + H 
given by (g, h) H f (g)h. The connectedness of the set of R-points of a 
unipotent group H follows from the fact that the "truncated" logarithmic 
map defines a homeomorphism between HR and L(H)w, where L(H) is the 
Lie algebra of H (cf. $2.1.8). 

The subsequent results in this section are aimed at a more precise anal- 
ysis of the algebraic and topological structure of the groups of real and 
complex points of reductive algebraic groups. Namely, we wish to obtain 
the polar decomposition and the Iwasawa decomposition for such groups. 
To elucidate the matter let us start by considering the simplest case, GL,. 
In this case the decompositions under discussion follow easily from well- 
known facts of linear algebra. 

We begin with the polar decomposition of GL,(JR). Let K designate the 
subgroup of GL,(JR) consisting of orthogonal matrices, i.e., of matrices x 
in GLn(R) satisfying 

where tx is the matrix transpose of x. Clearly K coincides with the group 
of R-points O,(f)w of the orthogonal group of the standard quadratic form 
f = x: + . . . + x:. This form is anisotropic over JR, and therefore O,(f) is 
also R-anisotropic (cf. Proposition 2.14). But then it follows from The- 
orem 3.1 that K = O,(f)w is compact. The latter is also easily shown 
directly by writing out the relations arising from (3.5) in terms of the en- 
tries of x. Furthermore, let S denote the set of positive definite symmetric 
matrices of GL,(JR), i.e., a = (aij) E S if aij = aji and the quadratic form 
f = znj-l , - aijxixj is positive definite. With this notation, we have 

PROPOSITION 3.7. GLn(R) = KS,  and for any matrix its factorization on 
the right is unique. S is connected and simply connected. 

PROOF: Let x E GLn(R). Then a = txx E S, which means that the 
eigenvalues al, . . . , a, of a are real and positive. It is well known from 
linear algebra that there exists b in K such that bab-l is the diag- 
onal matrix diag(al,.. . ,a,). Let c denote the matrix b-ldb, where 
d = diag(f i , .  . . ,Jcun) (taking positive square roots). Then c E S 
and = c2 = a. Thus a = txx = 'cc, whence t(xc-l)(xc-l) = en, 

i.e., z = xc-' E K. Hence x = zc E KS. If x = zlcl is another such 
factorization, then applying the transpose to 

(3.6) ZC = Z l C l  

we obtain 

(3.7) cz-I = c lz l l  

Multiplying (3.6) by (3.7) we have 

2 2 
C = C1, 

from which it follows that c = cl. There are various ways to prove this, but 
we prefer to use the following assertion, to which we shall return repeatedly. 

LEMMA 3.3. Let c E S. Then for any integer r the Zariski closure of the 
cyclic subgroup generated by cT contains c. 

PROOF: As we have already noted, c can be brought to diagonal form 
by conjugation, so to begin with we may assume c to be diagonal, i.e., - 
c = diag(y1,. . . , y,), yi > 0. If c @ { c ~ ) , , ~ ,  then one can find a character 
x of the group of diagonal matrices D, such that x(cT) = 1, but ~ ( c )  # 1 
(cf. Bore1 [8]). However ~ ( c )  = yyl . . . ygn for suitable integers ai, and 
therefore ~ ( c )  E JRf. Since x(cT) = ( ~ ( c ) ) '  = 1, it follows that ~ ( c )  = 1, 
contradiction; and the lemma is proved. 

It follows from Lemma 3.3 that the elements c, cl in S satisfying c2 = c: 
must commute. Then, for d = ccll we have d2 = En, so the eigenvalues of 
d are equal to f 1. But any eigenvalue of d is a product of the eigenvalues 
of c and c l l  and therefore must be positive. Thus d = En, c = cl and 
z = zl, proving the uniqueness of the factorization. 

It remains for us to show that S is connected and simply connected. To 
do so we shall use a method which we shall apply later to an arbitrary 
reductive group; namely, we shall show that the exponential map induces 
a homeomorphism from the vector space 5 of symmetric matrices to S. 
Indeed, it follows from (3.1) that exp(X) E S for any matrix X in 5. (It 
is well known that (3.1) is a convergent series.) Bringing elements of S to 
diagonal form and using (3.2), we see easily that exp:s 4 S is surjective. 
Furthermore, using the Inverse Function Theorem, it is easy to show that 
the exponential map actually yields a locally analytic isomorphism of 5 

and S.  Thus it remains to be shown that exp is injective. 
Note that arguing as above one can establish that if cl, c2 E S and 

c y  = for some integer m, then cl = c2. Hence, from exp(X) = exp(Y) 
for X, Y in 5 it follows that 
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for any integer m. Choosing m to be sufficiently large, we can have ;X 
and ;Y arbitrarily close to 0. Then, since exp is a local isomorphism, we 
have AX = &Y, whence X = Y, as required. This completes the proof of 
Proposition 3.7. 

Proposition 3.7 also has the following complex analog. Let B denote 
the subgroup of unitary matrices of GLn(C), i.e., of matrices satisfying 
*xx = En, where *x is the conjugate transpose of x. Writing this relation 
in standard coordinates, we see easily that B is compact. Let E be the 
set of positive definite Hermitian matrices, i.e., a = (aij) E E if aij  = Tiji 
(complex conjugation) and the Hermitian form f = C aij3ixj is positive 
definite. Then we have 

PROPOSITION 3.8. GLn(C) = BE and for any matrix its factorization on 
the right is unique. E is a connected and simply connected space. 

The proof is similar to the proof of Proposition 3.7 and makes use of the 
following generalization of Lemma 3.3: 

LEMMA 3.4. Let e E E .  Then for any integer r the Zariski closure of the 
subgroup generated by er contains e. 

E can be shown to be connected and simply connected as follows. Let e 
denote the space of the Hermitian matrices in Mn(C). Then the exponential 
map yields a homeomorphism between e and E .  

The decompositions in Propositions 3.7 and 3.8 are called the polar de- 
compositions. We shall establish the existence and uniqueness of the anal- 
ogous decompositions for an arbitrary reductive R-subgroup G c GLn(C). 
To do so we must learn to make G well-situated in GLn(C). More precisely, 
we say that a subgroup G C GLn(C) is self-adjoint if it is invariant relative 
to the matrix transpose, i.e., if x E G then tx E G. 

THEOREM 3.7 (MOSTOW). Let G c GLn(C) be a reductive algebraic R- 
group. There exists a matrix a E GL,(R) such that aP1Ga is self-adjoint. 

The proof is based on the following result. 

PROPOSITION 3.9. Let G c GLn(C) be a reductive algebraic R-group. 
Then there exists a Zariski-dense compact subgroup K c G which is in- 
variant under complex conjugation. 

PROOF OF THEOREM 3.7: Suppose we know the proposition to hold, i.e., 
let K c G be a Zariski-dense compact subgroup which is invariant under 
complex conjugation. Put 

where the matrix integral is taken with respect to the Haar measure dk of 
K (cf. 53.5). Since K is invariant under complex conjugation, dk is also 
invariant, from which it follows that m is real. Moreover, *kk is positive 
definite Hermitian, and therefore m is actually a symmetric positive definite 
matrix. In the beginning of the proof of Proposition 3.7 we showed that 
m = a2 for a suitable symmetric positive definite matrix a. It follows from 
(3.8) that K lies in the group of matrices which are unitary with respect 
t o  m, and therefore a - l ~ a  lies in the group B of usual unitary matrices, 
i.e., *xx = en for x in aP1Ka. Thus tx = *Z = 3 - I  E aP1Ka for any x 
in a - l ~ a ,  where bar denotes complex conjugation. We have shown that 
aP1Ka is invariant under transpose. Therefore its Zariski closure, a-'Ga, 
has the same property. This completes the proof of Theorem 3.7. 

PROOF OF PROPOSITION 3.9: G can be written as an almost direct prod- 
uct G = TD,  where T is a central R-torus and D is a semisimple group. In 
case G = T ,  the existence of the required subgroup is clear; indeed, hav- 
ing chosen a C-isomorphism T .- c * ~ ,  we can take K to be the subgroup 
Sd,  where S is the set of complex numbers with absolute value 1. This 
subgroup is the unique maximal compact subgroup of T and therefore is 
invariant relative to all continuous automorphisms of C*. If we can con- 
struct a subgroup K1 c D having the desired property, then K O  = KK1 
will be the desired subgroup of G. Thus in what follows we may assume G 
to  be semisimple. 

We choose a maximal R-torus T c G; let R = R(T, G) be the root system 
of G relative to T ,  and let {Xa)aER be the elements of the corresponding 
Chevalley base in the Lie algebra L(G) (cf. 52.1.13). If we write a for the 
involution arising from complex conjugation, then a(X,) = c,Xe, where 
c, E C and 6 is the character of T conjugate to a. Put T(X,) = Ic, IX-,, 
where Ic, 1 is the absolute value of c,. Straightforward computation, using 
the structural relations for a Chevalley base, shows (cf. Theory of Lie Al- 
gebras. Topology of Lie Groups, (Sophus Lie Seminar), pp. 145-146), that 
T extends to an involution of L(G) which commutes with a .  Let f denote 
the Killing form on L(G) (cf. 52.1.3). By direct computation it is easy to 
establish (loc. cit.) that f (XI  T(X)) < 0 for any X # 0 in L(G). Therefore, 
if we let b designate the fixed subspace (actually, R-subalgebra) of L(G) 
under T, then f (X, X )  = f (X, T(X))  on b is a negative definite form. Let 
K be the subgroup of those g in G for which Adg leaves f j  invariant. Using 
the Ad g invariance of f and the fact that IJ C = L(G), we see easily that 
Ad K is a closed subgroup of the group O ( ~ ) R ,  the orthogonal group of the 
form g = f 11,. Since g is negative definite, O(g)w is compact. Therefore 
K is also compact, since Ad has finite kernel. Furthermore, since IJ is a 
subalgebra, expX E K for any X in b. But & ( e ~ ~ ( t ~ ) ) ~ = o  = X ,  so the 
Lie algebra of K contains f j (note that K is a Lie group over R by T h e e  
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rem 3.1). Therefore, it follows from Lemma 3.1 that the Lie algebra of the 
closure K of K in the Zariski topology must contain Cb = L(G), whence 
K = G. Lastly, since a and T commute, it follows that b is a-invariant and 
therefore K is also a-invariant. Q.E.D. 

REMARK: Proposition 3.9 relies on the technical tool generally known as 
Weyl's unitary trick; namely, when working with algebraic groups over 
fields of characteristic 0, first we reduce the problem to C, then we work 
with the algebraic group's dense compact subgroup, not with the algebraic 
group itself. In such a manner it is easy, for example, to establish the 
complete reducibility of representations of reductive algebraic groups in 
characteristic 0. 

We are now in a position to construct the polar decomposition for an 
arbitrary reductive R-group G. Let G c GLn(C) be a matrix realization of 
G. Without loss of generality, we may assume G to be self-adjoint by Theo- 
rem 3.7. In this case the polar decomposition of GLn(R) (Proposition 3.7) 
will yield the polar decomposition of Gw. 

More precisely, we have 

(1) Notation as in Proposition 3.7, Gw = (G n K)(G n S). Furthermore 
K1 = G n K is a maximal compact subgroup of Gw and S1 = G n S 
is a connected and simply connected space. Consequently Gw/K1 
is connected and simply connected. 

(2) Any compact subgroup of GR is contained in a maximal compact 
subgroup, and all maximal compact subgroups of Gw are conjugate. 

PROOF: 1) Let x E Gw and let x = kc be the polar decomposition in 
GLn(R); we shall show that k E K1, c E S1. Since G is self-adjoint, 
tx E G; consequently c2 = txx E G. Applying Lemma 3.3 we obtain c E G, 
i.e., c E S1. Thus also k E K1. Any subgroup of Gw strictly containing 
K1 must contain a nonidentity element of S1. But since any element of 
S is conjugate to a diagonal matrix with positive entries, it follows that a 
nonidentity element of S cannot be contained in a compact subgroup. Thus 
K1 is maximal compact. To prove Sl is connected and simply connected 
we shall use the same method as in the proof of Proposition 3.7. Let 
51 designate the subspace of symmetric matrices in the Lie algebra g* of 
Gw We shall show that the exponential map induces a homeomorphism 
between 51 and S. In the proof of Proposition 3.7 we established that exp 
induces a homeomorphism from 5 to S; therefore it suffices to show that 
exp(s1) = S1. Obviously exp(sl) c S1. Now let c = exp X E S1, where 
X E 5. It follows from Lemma 3.3 that exp(;x) also lies in S1, for any 

integer n. Therefore exp(QX) c S1 and hence exp(tX) E S1 for any t in 
R. But then 

d 
X = - ( e x ~ ( t X ) ) ~ = ~  E g* n s = sl, 

dt 

as required. 
2) The proof, the details of which we omit (cf. Helgason [I]), is along the 

following lines. The space X = Gw/K1 is provided with a Gw-invariant 
metric, relative to which it becomes a Riemannian variety of negative cur- 
vature. Then, we apply a result of Cartan, according to which any compact 
subgroup acting by isometries on such a variety must have a fixed point. 
Thus, if K' c Gw is a compact subgroup, there exists a point x = gK1 E X 
which is fixed under K'. This means g-lK'g c K1, thereby yielding the 
desired result and completing the proof of Proposition 3.10. 

We shall also need a complex variant of Proposition 3.10. As before, we 
assume the given reductive group G to be self-adjoint. 

(1) Notation as in Proposition 3.8, Gc = ( G n  B ) ( G n  E) .  Furthermore 
B1 = G n B is a maximal compact subgroup of Gc, and exp yields 
a homeomorphism from the space e l  of Hermitian matrices of the 
Lie algebra L(G) to El = G n E. 

(2) Any compact subgroup of Gc is contained in a maximal compact 
subgroup, and all maximal compact subgroups are conjugate. 

The proof is analogous to the proof of Proposition 3.10. (Actually Propo- 
sition 3.11 could then be deduced from Proposition 3.10 using restriction 
of scalars.) 

We mention one more helpful technical assertion. 

LEMMA 3.5. If b E B ,  e E E and e-'be E B,  then eb = be. 

PROOF: We have *x = x-I for x in B,  and *x = x for x in E.  Therefore 
*(e-'be)-' = e-'be = ebe-l, i.e., b and e2 commute. The rest follows from 
Lemma 3.4. 

Now we are in a position to prove the following generalization of Theo- 
rem 3.7. 

THEOREM 3.8 (MOSTOW). Let GI c . . . c G, be a tower of reductive 
]IP-subgroups of GL,(C). Then there exists a matrix a E GLn(R) such that 
all aGia-' are self-adjoint. 

PROOF: Examining the proof of Theorem 3.7, we see that it suffices to 
find maximal compact subgroups Ki  C Gic which are Zariski-dense in Gi, 
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invariant under complex conjugation, and satisfy K1 c . . . C K,. More- 
over, everything reduces to proving the following assertion for two R-groups 
H c G: any maximal compact subgroup B c Hc which is invariant under 
complex conjugation is contained in a maximal compact subgroup C C Gc 
which is also invariant under conjugation. (Since by Proposition 3.9 there 
exists a Zariski-dense maximal compact subgroup, then any maximal com- 
pact subgroup is automatically Zariski-dense.) 

Choose a maximal compact subgroup D c Gc containing B.  It  follows 
from Proposition 3.11 that there exists a unique decomposition Gc = D F ,  
where F = exp(f) and f is an R-subspace of L(G). Let 19 denote the au- 
tomorphism arising from complex conjugation. Then 8(D) is also a max- 
imal compact subgroup of Gc and therefore B(D) = a-lDa for suitable 
a = exp(X), X E f. Put  b = exp(+) and, and note b2 = a. We shall show 
that C = btlDb is the required group. We have 

Thus to prove that C is &invariant it suffices to show that b-'aO(b) lies in 
the center Z of Gc, i.e., 

(3.9) bO(b)-' = az, for z E Z. 

Since O2 = id, 

Write at9(a) = df, where d E D and f E F .  Then f f = D and therefore 
f commutes with D,  by Lemma 3.5; since D is Zariski-dense in G, we have 
f E Z. Let cw denote the automorphism of G which is the composite of O 
and conjugation by a. Then D is a-invariant; hence F is also a-invariant. 
(It suffices to use F = exp(f) and the property that f is the orthogonal 
complement of L(D) (viewing D as a real Lie group) in L(G), under the 
Killing form.) Therefore a8(a)at1 E F .  But a8(a)aP1 = dfa-l; moreover 
i f f  = exp(Y), then fa-' = exp(Y - X )  E F, since f E Z. It  follows that 
d = 1 so aO(a) = f .  

Now we compute O(b). Put t = aO(b)a-l. Since t E F, we have t = 
exp(T), where T E f ,  implying 

t2 = aO(a)a-l = exp(2T) = fa-' = exp(Y - X) ,  

whence T = y. Therefore T commutes with X ,  so t commutes with a 
and O(b) = t = exp(?). It follows that b commutes with B(b) and 

X Y - X  
bO(b)-' = exp(- - - 

Y Y 
2 2 2 2 

) = exp(X - -) = aexp(--), 

so z = exp(- $) E Z, as required. 
It remains to be shown that B c C. We have B = B(B) c 8(D) = 

aP1Da, whence aBa-' C D. Thus a commutes with B,  by Lemma 3.5. 
Since b2 = a, it follows from Lemma 3.4 that b and B commute. Finally, 
B = bP1Bb c C. Q.E.D. 

We move on to our last topic-the Iwasawa decomposition, the essence 
of which is as follows: Let G be a reductive group defined over R, and 
let H c G be a maximal connected solvable R-split subgroup. Gw/Hw is 
compact, by Theorem 3.1, so Hw has a compact complement in Gw. The 
Iwasawa decomposition asserts that the complement actually can be taken 
to be a suitable maximal compact subgroup. Moreover, if instead of Hw we 
consider its connected component of the identity, then the components of 
the corresponding decomposition are uniquely determined. Thus Gw differs 
from a compact group by some solvable group. As usual, first we shall prove 
the Iwasawa decomposition for GLn(R). To do so, let K designate the 
subgroup of orthogonal matrices of GL, (R), and let A and U be subgroups 
of GLn(R) consisting respectively of the diagonal matrices with positive 
coefficients and the upper triangular unipotent matrices. 

PROPOSITION 3.12 (IWASAWA DECOMPOSITION FOR GLn(R)). The nat- 
ural map cp: K x A x U GLn(R), given by cp(k, a ,  u) = kau, is a homeo- 
morphism. 

PROOF: Fix an orthonormal base e = (e l , .  . . , en)  of the space Rn and 
let g E GLn(R). Applying the classical Gram-Schmidt orthogonalization 
procedure, we obtain an orthonormal base d = (dl , .  . . , d,) of Rn such that 
dl = Pllgel, d2 = Plzgel+ P22ge2, . . . , dn = /Angel+ . . . + Pnngen, where 
Pii > 0. Let b denote 

and let k be the change of base matrix from base e to base d. Then clearly 
g = kb-', k is an orthogonal matrix, and b-l belongs to B.  Thus cp is 
surjective. K is defined by txx = En, whence K n  B = {En). In view of the 
fact that B is a group and B = AU is a semi-direct product (as topological 
groups), we see that cp is a continuous bijection. That the inverse map 
is continuous follows easily from the compactness of K. Indeed, if the 
elements g, = k,a,u, - g = kau (k, k, E K ;  a, a, E A; u, urn E U), 

m+m 

then by the compactness of K we may assume k ,  - k' E K. Then 
m+m 

b, = amurn - b' = a'u' E B, since B is closed. Thus g = k'a'u', 
m+oo 
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k - k am + a, Urn + U ,  
m-cc m+cc m-cc 

as required. Q.E.D. 

The presentation of an element g in GL,(R) in the form g = kgagug, 
where kg E K,  a, E A, and u, E U, is called the Iwasawa decomposition 
of g, and the elements kg, a, and ug are its K-, A- and U-components, 
respectively. Our objective is to construct a similar decomposition inside 
an arbitrary reductive R-subgroup G c GL,((C). More precisely, we shall 
show that, passing from G to a suitable conjugate group, we may ensure 
that for g E Gw the components of its Iwasawa decomposition in GL,(R) 
also belong to Gw. From the outset we may assume G to be self-adjoint, 
by Theorem 3.7. Then L(G) is invariant under transpose, too. Let b 
(respectively, p) denote the subspace of skew-symmetric (resp., symmetric) 
matrices in g = L(G)w; clearly g = b @ p (this is the infinitesimal analog 
of the polar decomposition in Proposition 3.10). Let a denote a maximal 
abelian subspace of p. 

LEMMA 3.6. There exists an R-split torus T c G such that a = L(T)w. 
Moreover, T consists of symmetric matrices. 

PROOF: Let T denote the connected component of the Zariski closure of 
the set exp(a). Since any element from p is diagonalizable over R and a is 
an abelian subalgebra of g, we see a is diagonalizable over R, from which it 
follows that T is a subtorus of G split over R. By construction a consists of 
symmetric matrices; therefore the same is true for exp(a), and consequently 
also for T.  

Therefore L(T)w C p and commutes with a, so in fact L(T)w = a. 
Q.E.D. 

By construction Tw consists of symmetric matrices, implying b~wb-' is 
contained in the group of diagonal matrices D,, for suitable b in K ;  thus 
bTbtl c D,. Passing from G to bGb-l, which remains self-adjoint since 
b E K ,  we may assume T c D,. Let R = {a} denote the set of nonzero 
weights of T in the adjoint representation on L(G). Since T is R-split, all 
a are defined over R and we have the R-decomposition 

where L(G)T is the centralizer of T and u, is the eigenspace of a .  Choose 
any ordering on V = X(T) @z R, where X(T) is the character group of T. 
It is easy to see that there exists an ordering on Vo = X(D,) @z R such 
that the natural projection Vo + V, which extends the homomorphism 

X(D,) + X(T) corresponding to T C D,, takes positive roots to positive 
elements. Let & be the root system of GL,((C) relative to D, (explicitly 
Ro = { E ~  - ~j : i, j = 1 , .  . . , n; i # j ), where Ei(diag(al, . . . ,a,)) = ai), 
and let II c Ro be a simple system of roots with respect to Vo (cf. Bourbaki 
[4, Ch. 61). It is well known that the Weyl group W(&) contains an 
element w such that wII coincides with the standard set of simple roots 
no = { ~ i  - ~ i + l  : i = 1 , .  . . , n - 1 ). But W(RO) is naturally isomorphic 
to W, the group of permutation matrices. Thus there is c in W for which, 
taking T' = cTc-l, we have an ordering on X(T1) @z R such that the 
positive roots of GL,(C) remain positive under restriction to T'. Passing 
from G to cGc-l, we may assume that this is also true of T (note that 
W c K and therefore cGc-' remains self-adjoint). Let R+ be the set 
of weights of R that are positive under the specified ordering on V. Put 

= C a E R +  

LEMMA 3.7. u is a Lie R-subalgebra of L(G) normalized by T and con- 
tained in the algebra of all the upper triangular nilpotent matrices u,. 

PROOF: Clearly T normalizes u, and for a ,  ,O E R+ we have 

It follows that u is a subalgebra. Since u, is defined over R, u also is defined 
over R. To prove u C u, it suffices to show that u, c u, for each a in 
R+. If X = (xij) E u, and xij # 0 for some i > j, then the restriction 
to T of ~i - ~j of D, is a. i = j is impossible, since it implies a = 0. 
Thus ~j - ~i is negative with respect to the ordering on Vo, therefore by 
construction its projection on V (which coincides with a )  must also be 
negative, contradiction; and the lemma is proved. 

By a straightforward argument (cf., for example, Bore1 [8, 571) we can 
establish the existence of a unipotent R-subgroup U of G whose Lie algebra 
is u. (Actually U = exp(u), where exp is taken to be the "truncated" 
exponential map, cf. 52.1.8, and Uw = exp(uw).) Clearly U is normalized 
by T and is contained in the group of upper triangular unipotent matrices 
U,. Furthermore, let Al denote the connected component of Tw and put 
K1 = G n K .  

THEOREM 3.9 (IWASAWA DECOMPOSITION). The natural map 

is a homeomorphism. 
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PROOF: First we establish the infinitesimal analog of the Iwasawa decom- 
position: 

notation as above. Let T denote the automorphism of gI, given by r (X)  = 
-tX for X in gIn. By construction r induces an automorphism of g, more- 
over, fi is precisely the subalgebra g' of fixed points and r (X)  = -X for 
X in a. It follows that r(u,) = u-, for any a in R. Let X E (u-,), and 
write X = r(Y),  where Y E (u,)% Then 

In view of (3.10), we see that to prove g = fi + a + uw we have only to 
establish that the right side of (3.11) contains the subalgebra c = L ( G ) ~  
which is the centralizer of a in g. Since a is invariant under T ,  then so is c. 
Any element X in c can be written as 

where +(x + r X )  E fi. But ;(x - TX) E p and centralizes a. Therefore 
actually $(x - TX) E a, yielding X E fi $ a. Thus g = fi + a + UR. If 
X + Y + Z = 0, where X E f ~ ,  Y E a and Z E uw, then by applying T we 
obtain 

X - Y + r Z = O ,  

whence Y = $(-z + 7 2 )  E a n  (EaERua)  = (0). Therefore Z = TZ E 

(CaER+ ~ a )  n (CaER+ u-a) = (o), proving (3.11). 
By the Inverse Function Theorem (3.2), there exist connected neighbor- 

hoods of the identity V c K1 and W c B = AIUw such that the product 
morphism gives a homeomorphism from V x W to a neighborhood of the 
identity in Gw. This means that we can find connected neighborhoods of 
the identity Vl c V, Wl c W and continuous functions cp: Vl x Wl --+ K1, 
$: Vl x Wl --+ B such that 

for all k in Vl and b in Wl. By induction it is easy to show that for any set 
S = {kl , . . . , k,) of elements from Vl we can find a connected neighborhood 
of the identity W(S) c Wl and continuous functions 

such that 
bk(S)k = cpS(b, ~c )$~(b ,  k) 

for all k in Vl and v in W(S), where k(S) = kl . . . kp. Vl generates the 
connected component K? of K1; therefore the compactness of K implies 
the existence of a finite number of sets S, such that K? = Us k(S)Vl. Put 
W2 = n, W(S). Then W2K: c KYB. Since B is a connected group, W2 
generates B and therefore BK: = KYB. But KYB contains a neighborhood 
of the identity in Gw, and therefore generates the connected component 
Gk. Therefore G i  = KYB. To prove GR = K1B we need only note 
that KIG; = GR, since by Proposition 3.11 Gw = KIS1, where S1 is a 
connected set. Thus 0 is shown to be surjective. 

It follows from our construction that a presentation of g E GR in the 
form g = kau, where k E K1, a E A1, u E UR, is actually its Iwasawa 
decomposition in GL,(R). Therefore, since the latter is unique, it follows 
that f3 is bijective. To prove that the inverse map is continuous one argues 
exactly as in the proof of Proposition 3.13. Q.E.D. 

It follows from Theorem 3.9 that H = TU is a maximal connected R-split 
solvable subgroup of G (and, consequently, T is a maximal R-split torus 
and U is a maximal unipotent R-subgroup). Indeed, if H' > H ,  then by 
Theorem 3.9 Hk = (H1nKl)H,, so H ~ / H R  must be compact, which, as we 
have seen in the proof of Theorem 3.1, cannot be the case for a connected 
R-split solvable subgroup H' strictly containing H. As a further corollary 
(not so much to the theorem as to the argument preceding its proof) we 
note 

PROPOSITION 3.13. Let G c GLn(C) be a reductive R-group. There exists 
a E GL,(R) such that H = aGa-l satisfies the following: 

(1) H is self-adjoint; 
(2) the connected component of the intersection of H with D, is a 

maximal R-split torus S in H; 
(3) there exists an ordering on V = X ( T )  @z R such that the restriction 

of the positive roots ~i - ~j (1 5 i < j 5 n) of GL,(C) to S are 
positive with respect to this ordering, and the maximal unipotent 
R-subgroup corresponding to this ordering lies in the group of upper 
triangular unipotent matrices U,; 

(4) the components in the Iwasawa decomposition in GL,(R) of any 
element of HR lie in Hw . 

3.3. The non-Archimedean case. 

Throughout this section K denotes a non-Archimedean locally compact 
field of characteristic 0, i.e., a finite extension of the padic number field Q,. 
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As we have noted in $3.1, if G is an algebraic group defined over K ,  then 
GK is locally compact and totally disconnected in the padic topology. It  is 
well known (cf. Bourbaki [2, Ch. 3, $41) that such locally compact groups 
have a base of the neighborhoods of the identity consisting of subgroups. 
In the case under consideration, they can be described explicitly as the 
congruence subgroups. Let G c GL,(Cl) be a matrix realization, let 0 
be the ring of integers in K ,  and let p be the maximal ideal of 0. Then 
the group of 0-points Go = G n GL,(O) is the "principal" open compact 
subgroup of GK (its openness is a consequence of the openness of 0 in K ,  
and its compactness follows from the compactness of GLn(0 )  since Go is 
closed in GLn(0)) .  The congruence subgroups Go(pd) c Go, given by 

~ ~ ( p ~ )  = { g  E G o  : g - En (mod pd) ), d > 0, 

constitute the required base of the neighborhoods of the identity in GK. 
Since Lie group theory is less effective here than in the Archimedean case, 
in order to obtain results on the structure of GK we shall have to use some 
other tools. 

Several important results, bearing mainly on compact subgroups of G, 
can be obtained using lattices and orders in semisimple algebras (cf. 51.5.3). 
If G c GL,(R) is an algebraic K-group and L c K n  is a lattice, then 
throughout the book G h  will denote the stabilizer of L in G, i.e., 

(This notation reflects the fact that G h  consists of transformations whose 
matrices with respect to some base of L belong to GL,(O).) 

By Proposition 1.12 any compact subgroup B of GL,(K) is contained 
in the stabilizer G h  of some lattice L c Kn.  In particular, this means 
that any compact subgroup of GK is contained in some open compact 
subgroup. Moreover, if B is a maximal compact subgroup, then B = G$. 
Another consequence of Proposition 1.12 is that in the case G = GL, the 
same fundamental results hold for maximal compact subgroups as in the 
Archimedean case: any compact subgroup is contained in some maximal 
compact subgroup, and all maximal compact subgroups are conjugate. In 
this regard, it is somewhat surprising that passing from G = GL, even to 
H = SL, shatters this harmony. 

PROPOSITION 3.14. Let H = SL,. Then Hb is a maximal compact sub- 
group of HK,  for any lattice L C K n .  Any compact subgroup of HK is 
contained in some maximal compact subgroup, and the maximal compact 
subgroups split into n conjugacy classes under HK. 

PROOF: As an exercise for the reader, we suggest slightly modifying the 
proof of Propositions 1.11 and 1.12 to establish the maximality of H$ for 
any lattice L c K n  and, moreover, to  show H i  = Hg implies that L and 
M are proportional. To prove the last assertion we construct a surjection cp 
from the set B of maximal compact subgroups of SL,(K) onto K*/UK*, 
(where U is the group of v-adic units in K ) ,  whose fibers coincide with the 
conjugacy classes of the maximal compact subgroups. Since the order of 
K *  IUK*" is n ,  the desired result follows. 

Let us fix some lattice L C K n  and let B E 23. Then B has the form 
HE for a suitable M c K n ,  and then cp is given as follows: 

If M = g(L), g E GL,(K), then cp(g) = (detg)UK*" 

Since H$ = HF implies M2 = pM1 for ,LL E K*,  clearly cp is well- 
defined and surjective. Now assume that cp(B1) = cp(Bz), where Bi = ~ 2 ,  
Mi c Kn.  It  follows from the definition of cp that in this case M2 = g(M1) 
for some g in GL,(K) such that det g E UK*", i.e., det g = utn for suitable 
u E U, t E K* .  Choose an element s from the stabilizer of M1 satisfying 
det s = u, and put h = t-lgsP1. Then h E SL,(K) and h(M1) = tM2, 
so hBlh-I = H:(~') = HF = B2, which means that B1 and Bg are 
conjugate in HK. Conversely, if Bi = HF (i = 1,2) are conjugate, B2 = 
hBl hK1, then h(M1) and M2 are proportional lattices, from which it follows 
easily that cp(B1) = cp(B2). Q.E.D. 

The detailed analysis of the properties of maximal compact subgroups 
in the non-Archimedean case, carried out by Bruhat and Tits [2-41, shows 
that the last assertion of Proposition 3.14 is a special case of the following 
general result: if G is a simply connected simple K-group of K-rank 1, then 
GK has exactly (1 + 1) conjugacy classes of maximal compact subgroups. 
We shall set forth some results of Bruhat-Tits' theory in the next section, 
but for the time being shall give self-contained proofs of several elementary 
results from which it follows that, for G reductive, any compact subgroup 
of GK is contained in some maximal compact subgroup. Moreover, as the 
following proposition shows, the condition that G be reductive is necessary. 

PROPOSITION 3.15. If GK contains a maximal compact subgroup, then G 
is reductive. 

PROOF: Consider the Levi decomposition G = H U  of G, where U = R,(G) 
is the unipotent radical of G and H is reductive (cf. $2.1.9). Assume 
U # (1). Then the center Z(U) is also nontrivial, and the "truncated" log- 
arithmic map induces a K-isomorphism cp: Z(U) + V, where V = L(Z(U)) 
is the corresponding Lie algebra, dim V > 0. Since U is a normal subgroup 
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of G, Z(U) is also a normal subgroup, and for any g in G, z in Z(U) we 
have 

Let p: G - GL(V) be the adjoint representation. If B c GK is a max- 
imal compact subgroup, then by Proposition 1.12 we can find L c VK 
which is invariant under p(B). Put  Zi = cp- l (~ -~L) ,  where T E K is a 
uniformizing parameter. Clearly the Zi's are compact subgroups of Z(U)K 
whose union coincides with Z(U)K. Moreover, it follows from (3.12) that 
B normalizes all Zi, so any product BZi is also a compact subgroup. By 
the maximality of B we obtain B = BZi for each i. Hence Z(U)K C B,  
contradiction, since Z(U)K is noncompact. Q.E.D. 

Now we shall show that if G is reductive then indeed GK has maximal 
compact subgroups, and any compact subgroup of GK lies in some maximal 
compact subgroup. 

PROPOSITION 3.16. Let G be a reductive K-group. Then 

(1) any open compact subgroup of GK is contained in only a finite 
number of compact subgroups; 

(2) any compact subgroup of GK is contained in some maximal compact 
subgroup. 

Moreover, if G is semisimple, then the normalizer in GK of any open com- 
pact subgroup is compact. 

PROOF: Let G c GLn(R). Embedding GLn(R) in GLn+l (R) by the map 

g --+ ( de!! g )  , we may assume G to be Zariski-closed in Mn (a ) .  

Let A denote the R-span R[G] of G in Mn(R) (i.e., the set of R-linear 
combinations of the elements of G), and B the K-span K[GK] of GK in 
Mn(K).  Since G is reductive, it follows from Theorem 2.4 that A and B 
are semisimple algebras over R and K respectively. Any open compact 
subgroup U c GK is Zariski-dense in G (Lemma 3.2), implying R[U] = A 
and K[U] = B. In particular, P = O[U] is an order in B.  By Theorem 1.16, 
P is contained in a finite number of maximal orders P I , .  . . , P,. Each 
Pi n G is obviously compact and closed under multiplication, so Ui = 
(Pi n G) n (Pi n G)-l is a compact subgroup of GK. 

Now let W c GK be a compact subgroup containing U. Then O[W] is 
an order in B containing P and therefore 0 [ W ]  c Pi for some i.  Conse- 
quently, W c Pi n G and W = W-' c (Pi n G)-l; so W C Ui. We have 
shown that any compact subgroup containing U must be contained in one 
of the groups Ui. The first assertion of Proposition 3.16 follows, since by 

the openness of U the index [Ui : U] is finite and therefore the number of 
intermediate subgroups between U and Ui is also finite. Assertion (1) im- 
plies assertion (2) by virtue of the fact mentioned above that any compact 
subgroup of GK is contained in some open compact subgroup. 

Now let G be semisimple. Consider the adjoint action of G on A, and 
let cp: G --+ Aut A be the corresponding representation, given by 

g i, where ig(x) = gxg-l 

Clearly ker cp is the center of G and therefore is finite. Consider an arbitrary 
open compact subgroup U c GK and write N for its normalizer in GK. AS 
we have established above, P = O[U] is an order in B = K[GK], so, any 
0-base xl ,  . . . , x, in P also is an R-base of A. Since clearly g-lPg = P 
for any g in N, the entries of the transformation matrix cp(g) with respect 
to XI , .  . . , x, lie in 0 .  Thus cp(N) C cp(G)0. Since cp(G)o is compact and 
kercp is finite, it follows that cp-l(cp(G)o) is compact and, consequently, 
N is relatively compact. On the other hand, since U is closed, N is also 
closed, and therefore it is indeed compact. Q.E.D. 

We shall return to the properties of maximal compact subgroups in the 
next section, but for now, using the elementary results contained in Propo- 
sition 3.16, we shall derive some structural results about GK. Our argu- 
ments will be based on the theory of profinite groups. Since profinite groups 
will be encountered repeatedly later on, we shall briefly review their def- 
inition and basic properties (a  more detailed exposition may be found in 
Serre [2] and Bourbaki [2, Ch. 3, $71). 

Let I be a directed set, i.e., a set with partial order 5, such that for any 
i, j in I there is k in I satisfying i < k, j < k. (In our discussion I will 
usually be the set N of positive integers, with its natural ordering.) By a 
projective (or inverse) system G = (Gi, 9:) over I we mean an aggregate 
of objects (sets, groups, rings, etc.) Gi, indexed by the elements of I ,  
and of morphisms cp;: Gj  Gi whenever j 2 i, where cpf is the identity 
map and cp" cpi o cp? for k 2 j 2 i .  The projective (or inverse) limit 

l@Gi (more precisely, l@(Gi, d)) is the subset of n Gi consisting of 
i E I  

those g = (gi) such that cp;(gj) = gi for all j 2 i in I .  Clearly l@Gi 
inherits any type of algebraic structure possessed by all the Gi. Moreover, 
if the Gi are all Hausdorff topological spaces and the v{ are continuous 
maps, then G = l@ Gi is closed in n Gi . 

i E I  
In particular, let all the Gi be finite groups endowed with the discrete 

topology, and let be group homomorphisms. Then G = l@ Gi is called 
a profinite group. Since G is closed in n Gi, which is co&act, G itself 

i E I  
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is a compact group. Moreover, G is totally disconnected. (This can be 
shown most easily by using the restriction ~1 = pl I G  of the canonical pro- 
jections pl: n Gi + GI; for the point is that finite intersections of their 

i E I  
kernels form a fundamental system of neighborhoods of the identity of G 
consisting of subgroups.) Conversely, any compact totally disconnected 
topological group G is profinite, i.e., can be written as a projective limit of 
finite groups. Such a presentation can be obtained if one has a fundamen- 
tal system {Ni)i,I of neighborhoods of unity of G, consisting of normal 
subgroups. (It can be shown that such a system does exist in any com- 
pact totally disconnected group, cf. Koch [l, $1.21). Namely, the natural 
homomorphism 

G-+l@G/Ni, givenby g-(gNi)iEI, 

is an isomorphism of topological groups. Let us apply this result to the 
group of points Go of an algebraic K-group G in the ring of integers (3. 

Since the congruence subgroups Go(pd) (where p is the valuation ideal 
in (3, d > 0) are obviously normal in Go and constitute a base of the 
neighborhoods of the identity, 

We can draw certain specific conclusions about the structure of Go from 
this presentation. Recall that the projective limit of finite pgroups is called 
a pro-p-group. 

LEMMA 3.8. Go(p) is a pro-p-group. 

PROOF: The prime p is determined by the condition Qp c K or equiva- 
lently by p E p. If G = l@G/N is a presentation of a profinite group G 
as the projective limit of its finite factors, then for any closed subgroup 
H c G we have H = l@ H / H  n N. It follows that for Go(p) we have 

We shall show that G ~ ( P ) / G ~ ( ~ ~ )  is a pgroup. It suffices to show for 
any d > 1 that Go(pd) /~o(pd+l)  is a pgroup. Let x E ~ " ( p ~ ) .  Write 
x = En + y, where y = 0 (mod pd). Then 

where the (P) are the binomial coefficients. Since the (P) are divisible 
by p for 0 < i < p, we see that (P)yi - 0 (mod pd+') for any i > 1. 
Therefore xp = En (mod pd+'). Consequently, the order of any element of 
Go(pd) /~o(pdf  l )  divides p. Q.E.D. 

COROLLARY. The order of any element of Go@) is either infinite or is a 
power of p. 

PROOF: It is easy to see that any closed subgroup of a pro-pgroup is 
again a pro-pgroup. Therefore if the order of x in Go(p) is finite, the 
cyclic subgroup H = (x) generated by x must be a finite pro-pgroup, i.e., 
a usual pgroup. 

It follows that Go is a finite extension of the pro-pgroup Go(p). In the 
theory of profinite groups, pro-q-subgroups (where q is an arbitrary prime) 
are the profinite analogs of q-subgroups in the theory of finite groups and 
retain many properties of the latter. In particular, any pro-q-subgroup is 
contained in some maximal (Sylow) pro-q-subgroup, and all of the latter 
are conjugate (cf. Serre (21). 

In the situation under discussion, pro-psubgroups play a special role, 
since their properties yield important results on the structure of GK. Our 
immediate objective is to establish for GK the analog of Sylow's theorem 
on the conjugacy of maximal pro-psubgroups. (In view of the existence of 
nonconjugate maximal compact subgroups, such a result is by no means 
obvious.) 

THEOREM 3.10 (MATSUMOTO [I]). Let G be a semisimple algebraic K- 
group, and let H be an open subgroup of GK. Then H contains a maximal 
open pro-p-subgroup S, and any pro-p-subgroup of H is contained in a 
conjugate of S .  

PROOF: Since H is an open subgroup it contains a suitable congruence 
subgroup Go(pd). Go(pd) is a pro-pgroup by Lemma 3.8. Applying the 
first assertion of Proposition 3.16, we conclude that ~ " ( p ~ )  is contained in 
a maximal pro-psubgroup S c H.  

Next let T c H be a pro-psubgroup. We shall show that T is contained 
in a Sylow pro-psubgroup. Referring again to Proposition 3.16 (I) ,  we 
see that it suffices to find an open pro-psubgroup containing T. To find 
one, note that [T : T n S] is finite since T is compact, and therefore there 
is only a finite number of distinct conjugates t-lSt for t in T. Hence 
So = ntET(t-lSt) is open and is normalized by T,  so To = TSo is the 
desired group. 

Therefore, in proving that a pro-psubgroup T is contained in a subgroup 
conjugate to S, we may assume T to be Sylow. For technical reasons it 
is easier for us to prove not only that S and T are conjugate but also 
the stronger result that there exists x in H such that XTX-' = S and 
[S : S n T] = [S : x(S n T)x-'1. (Actually, by using the existence of a 
Haar measure on GK and its unimodularity (cf. 53.5), we can show that 
the latter equality is satisfied automatically.) 
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We proceed by induction on n = [S : S n TI. If n = 1 then S = T and 
there is nothing to prove. Now take n > 1. Let N denote the normalizer 
of S n T in H;  by Proposition 3.16 N is a compact subgroup of H and 
consequently [N : S n T] is finite. First we show that N1 = N n S = 
Ns(S n T) and N2 = N n T = NT(S n T)  strictly contain S n T. Since 
S n T # S, T ,  this follows from 

LEMMA 3.9. Let P be a pro-p-group, and let H be a proper open subgroup 
of P. Then the normalizer Np(H) is distinct from H.  

PROOF: For finite pgroups this assertion is well known. To reduce to the 
finite case, put F = ngEp(g-'Hg). Then F is an open normal subgroup 
of P, contained in H.  Clearly Np(H) = ~ - ' ( N ~ ~ ~ ( H / F ) ) ,  where T: P -+ 

P/F is the natural homomorphism. But P/F is finite, so NPIF(H/F) # 
H/F,  and hence Np(H) # H.  The lemma is proved. 

To continue the proof of Theorem 3.10, consider the finite group N = 
N/S n T and the natural homomorphism cp: N + N. cp(Nl) and cp(N2) 
are psubgroups of N, so by the classic Sylow theorems there is a Sylow 
psubgroup P of N containing cp(N1) and an element Z E N such that 
I ~ ~ ( N ~ ) Z - '  c P. The inverse image cp-l(P) is a pro-psubgroup of H 
and therefore is contained in some Sylow pro-psubgroup V. Note that 
by assumption Nl, xN2x-' C V, where x in N satisfies cp(x) = 2. Then 
[S : S n V] < n, so by induction S = yVy-' for some y in H such that 
[S : S n V] = [S : y(S n V) y-l]. Consider T' = (yx)T(yx)-l. Clearly 
S n TI 3 (yx) N2 (yx)-l 3 (yx) ( S  n T)  (yx)-l, and moreover x normalizes 
S n T,  implying 

Thus [S : S n TI] < n and again by induction we can find z in H satisfying 
S = zT'z-l and [S : SnT1] = [S : ~ ( S n T ' ) z - ~ l .  Then S = (zyx)~(zyx)- '  
and 

by (3.14). This completes the proof of Theorem 3.10. 

REMARK: The original proof of Theorem 3.10 presented by Matsumoto [I] 
is incomplete: his induction on the pair of indexes [S : SnT]  and [T : S n T ]  
does not work. Our proof is a revision of Matsumoto's argument. 

Theorem 3.10 will be used on more than one occasion in this book. In 
particular, one of its corollaries is the following important structural result: 

PROPOSITION 3.17. Let G be a K-simple algebraic K-group. Then any 
noncentral normal subgroup of GK has finite index. 

PROOF: Let H be a noncentral normal subgroup of GK. By Theorem 3.3 
H is open; therefore GK/H is discrete, and we need only show that it is 
compact. This follows from 

PROPOSITION 3.18. Let H be an open normal subgroup ofGK, where G 
is a semisimple K-group. Then there exists a maximal compact subgroup 
B c GK such that GK = BH. 

PROOF: Let S c H be a Sylow pro-psubgroup, and g E GK. Then 
g-'Sg is also a Sylow pro-psubgroup of g - l ~ g  = H,  and consequently 
g-'Sg = hklSh for suitable h in H by Theorem 3.10. Therefore x = 
gh-l E N = NG,(S), i.e., GK = NH. But by Proposition 3.16 N is 
compact, and by Proposition 3.16 (1) is contained in a maximal compact 
subgroup B, which is the desired group. 

REMARK: Propositions 3.5 and 3.17 together allow one to make the follow- 
ing general conclusion: if K is a locally compact field and G is a K-simple 
algebraic K-group, then any noncentral normal subgroup of GK has fi- 
nite index. (We have not examined explicitly the case K = @, although 
here, as is well known, G = Gc does not have proper noncentral normal 
subgroups (cf. 37.2). There is also a topological proof of this fact: any non- 
central normal subgroup of Gc is open and therefore necessarily contains 
the connected component Gg, but Gc is connected, by Theorem 3.5, i.e., 
Gc = Gg). The analogous result for simply connected groups over number 
fields is far more complicated to prove (cf. 557.2 and 9.1). 

Besides using the theory of profinite groups, the study of algebraic groups 
over non-Archimedean local fields also uses the trick of reducing the variety 
under consideration modulo the maximal ideal p. By means of reduction 
one can associate to a given algebraic variety X defined over K an al- 
gebraic variety X defined over the residue field k = O/p Moreover, if 
some smoothness condition is satisfied, then the points of XI,  are in one- 
to-one correspondence with the congruence classes modulo p of the points 
of X o .  To avoid weighing down the exposition with technical details, we 
shall present the basic definitions and results for the case of affine varieties. 
Later we shall also encounter projective varieties, for which the reasoning 
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is analogous. (Indeed, the case of arbitrary varieties can be reduced to the 
affine case by considering a finite affine covering, cf. Weil [3].) 

It is convenient to define, more generally, the reduction of an affine al- 
gebraic variety X c An defined over P, the field of fractions of an integral 
domain R. Let a c P[xl , .  . . , x,] be the ideal of polynomials that vanish 
on X .  By reduction of X modulo a maximal ideal m C R we mean the 
subvariety x ( ~ )  of An over a universal domain containing the residue field 
k = Rim, defined by the ideal a(m), which is obtained by reducing all the 
polynomials of a n R[xl, . . . , x,] modulo m. (Note that in general x ( ~ )  is 
only k-closed in An but not necessarily defined over k. However, in what 
follows k is going to be a finite field, which is perfect; hence the concepts of 
k-closed and k-defined subvarieties will coincide.) Although this definition 
is quite straightforward, the process of reduction itself is rather delicate 
and must be used with care. For example, if P = Q, R = Z, and X c A1 
consists of a single point x = p-' , then a = (px - I) ,  anZ[x] = (px - l)Z[x]; 
so the reduction of X modulo p is given by 0 . x - 1 = 0, i.e., X(P) = 0. 

Unfortunately there are as yet no books in the literature containing a 
complete exposition of the theory of reduction of algebraic varieties, al- 
though a large number of results pertaining to this subject are referred 
to as "well known." We too, have decided not to include a fully detailed 
discussion of these questions, since they require considerably more commu- 
tative algebra than the rest of this book. Therefore we shall limit ourselves 
to the basic definitions and results and shall present several fundamental 
facts (such as Hensel's lemma) without proofs. On the other hand, be- 
low we shall give several simple patterns of arguments which are typical of 
the theory of reduction, thus enabling the interested reader to reconstruct 
several of the proofs omitted. 

Now we define a smooth reduction. As above, let X C An be an affine 
P-variety all of whose irreducible components have the same dimension m, 
and let ~ ( ~ 1  be the reduction of X modulo a maximal ideal m of a subring 
R c P .  We say that a point x in ~ ( ~ 1  is a simple point of reduction if there 
exist polynomials f l ,  . . . , fT  E a n  R[xl,.  . . ,x,], with r = n - m (where a 
is the ideal of polynomials of P[xl ,  . . . , x,] that vanish on X), such that 
the rank of the Jacobian 

equals r (hereafter bar denotes reduction modulo m). The reduction is said 
to be smooth if all the points of x ( ~ )  are simple. Note that the concept of 
smooth reduction is stronger than the requirements for the variety x ( ~ )  to 
be smooth. Given points x = (xl , .  . . , x,) and y = (yl, . . . , y,) in XR, we 
write x = y (mod m) if xi = yi (mod m) for all i = 1,. . . , n. 

For any x in XR there is a corresponding point 3 E A; lying in xim), 
and hence there is a reduction map Q: XR --t xim) whose nonempty fibers 
are the congruence classes modulo m of points of XR. One may ask what 
is the image of the reduction map. We shall not discuss all aspects of 
this problem here (cf. the survey by Parshin [I]), since for our purposes it 
suffices to present the following result relating to the original case, where 
K is a finite extension of Q,, 0 is the ring of integers in K ,  and p c 0 is 
the maximal ideal. 

THEOREM 3.11 (HENSEL'S LEMMA). If x E @') is a simple point of 
reduction, then x lies in the image of the reduction map. In particular, if 
x ( ~ )  is a smooth reduction, then the reduction map is surjective. - 

Note that in the case of smooth reduction, distinct irreducible compo- 
nents of the variety cannot be "pasted together." In particular, if X consists 
of a finite number of points and the reduction is smooth, then the reduction 
map is injective. 

It is clear that a reduction of a smooth variety need not be smooth. Nev- 
ertheless, if X is a smooth variety defined over a number field K ,  then for 
almost all non-Archimedean valuations v of K the reduction x(") modulo 
the corresponding maximal ideal p(v) of 0 c K is also smooth. 

Another property of an algebraic variety, that of (absolute) irreducibility, 
behaves in a similar way under reduction. Moreover, if the original variety 
is an algebraic group, then all of its reductions will be algebraic groups and 
the corresponding reduction map will be a group homomorphism. The re- 
mainder of this subsection is devoted to the precise formulation and partial 
proof of these facts. 

THEOREM 3.12 (NOETHER). Let X be an irreducible m-dimensional 
&ne variety over a number field K.  Then x(") is also an irreducible 
m-dimensional variety, for almost all v in v ~ K  

Let us make one remark regarding the definition of x("). To begin 
with we can define x(") as the reduction of X modulo the ideal p(v) of 
O c K.  But it can be shown that we obtain the same variety x(") if we 
take the ring 0' of S-integers for any subset S c vK such that v $! S, and 
perform reduction modulo the corresponding maximal ideal pl(v) c 0'. 
To do so, consider b = a n O[xl,.  . . , x,] and 6' = a n O1[xl,. . . , x,]. 
Since 0' is a Noetherian ring, 6' has a finite set of generators f l , .  . . , f T ,  

by Hilbert's basis theorem. Since v $! S, for suitable a in 0 \ p(v) all 
a f l ,  . . . , a f, lie in O[xl,. . . , x,] and consequently in b. Bearing in mind 
that O/p(v) = O'/pl(v), we see that the images of the ideals b(P(")) and 
(b')(pl(")) coincide, i.e. 1 -  x(~(")) = x("'(")). Thus the reduction of a K- 
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variety actually depends only on v rather than on the pair ( 0 ,  p(v)), thereby 
justifying the notation &"I. 

Another remark: if x E XK, then x E Xo, for the ring of S-integers O', 
for S sufficiently large. Then x reduces to 3 of x(P'(")) when v 4 S. But 
since x(~(")) and - x (~ ' (~ ) )  are the same, we may regard 3 as belonging to 
x(~(")) .  In this case we say that for v 4 S the point x can be reduced mod- - 
ulo p(v) and the result of its reduction is the point Z. Similar terminology 
is applied to polynomials, regular maps, etc. 

In what follows an important, although not so apparent, role is played by 
the fact that x(") coincides with the reduction x ( ~ ~ )  modulo the maximal 
ideal p, of the ring of integers 0, of the corresponding completion K, (in 
the latter case X is regarded as a Kv-variety). 

LEMMA 3.10. In the given setting, x(") = x ( ~ " ) .  

PROOF: Put b = a n O[xl, .  . . , x,] and 6' = a, n O,[xl,. . . , x,], where 
a, is the ideal of polynomials in K, [xl, . . . , x,] that vanish on X.  Let 
f l ,  . . . , f, and gl, . . . , g, be finite sets of generators of b and 6' respectively. 
Since X is defined over K ,  there are hij in Kv[xl,.  . . , x,] such that gi = 
x i = l  hij fj .  If we choose tij in K[xl, .  . . ,x,] in such a way that their 
coefficients are sufficiently close to the respective coefficients of hij, we 
obtain g: = tij f j  lying in Ov[xl, . . . , x,] n a, = 6' and satisfying 
gi -- gi (mod p,). Furthermore, we can choose a finite subset S c v ~ K  
with v 4 S, such that the coefficients of g' lie in the ring of S-integers 0 ' .  
Then it is easy to see that x(P'(")) = - X ( ~ W )  for the corresponding ideal 
pf(v) c O', and thus x(~(")) = - X ( ~ V ) .  

The same method can be used to prove the following assertion, which 
shows that reduction relative to a valuation is independent of the base field, 
for almost all valuations. 

LEMMA 3.11. Let LIK be a finite extension of number fields. Then, for 
any affine K-variety X ,  considered also as L-variety, and for almost all v 
in VfC, ~ ( ~ 1  is the same as x("), for each extension w of v to L. 

The following assertion is often useful in working with reductions of 
varieties. 

LEMMA 3.12. Let f l , .  . . , f, E K[xl , .  . . ,x,]. Then if 

(3.15) f i=O,  i = l  ,... , r  

is inconsistent, i.e., has no simultaneous solution over K, then for almost 
all v in VfC the reduction (taken with respect to v) 

(3.16) f i = O ,  i = l  , . . . ,  r 
also is inconsistent. 

PROOF: Since (3.15) is inconsistent, by Hilbert's Nullstellensatz we can 
find polynomials gl , . . . , g, in K[xl, . . . , x,] such that f 1gl + . . . + f,g, = 1. 
Then for almost all v the coefficients of gi are v-integers, and the latter 
equation can be reduced modulo v. We obtain flgl + . . . + f,g, = 1, from 
which it follows that (3.16) is inconsistent. The lemma is proved. 

EXERCISE 1: Using Lemma 3.12, derive a proof of Theorem 3.12 for the 
basic case (from the birational point of view) of a hyperplane in An. In 
other words, show that if f E K[xl, . . . , x,] is an absolutely irreducible 
polynomial, then its reduction f modulo v is also absolutely irreducible for 
almost all v in VfC. (Hint: note that a factorization f = gh can be inter- 
preted as yielding a solution of a certain system of polynomial equations 
in the coefficients of g and h; on the other hand, using Lemma 3.12 prove 
that the latter has no solutions for almost all v.) 

PROPOSITION 3.19. Let X be a smooth affine variety over an algebraic 
number field K ,  all of whose irreducible components have the same dimen- 
sion m. Then the reduction x(") is smooth for almost all v in VfC. 

PROOF: Let X C An, let a c K[xl , .  . . , x,] be the ideal of polynomials 
vanishing on X ,  and let b = a n O[xl, . . . ,x,], where O is the ring of 
integers of K. Choose a finite set of generators f l ,  . . . , fi of b and let 
{ D j ) g l  be the totality of all r x r minors of the Jacobian 

where r = n - m. Since X is smooth, the system of equations 

is inconsistent. Therefore, by Lemma 3.12, the reduction of this system is 
also inconsistent, for almost all v in v~C; i.e., the reduced variety does not 
contain any points for which the Jacobian has rank < r .  But this means 
exactly that x ( ~ )  is smooth. The proposition is proved. 

EXERCISE 2: Derive a projective analog of Proposition 3.19. 

It remains to be shown that the reduction of an algebraic group is an 
algebraic group. To do so we first need to discuss some results relating 
to reduction of morphisms of algebraic varieties. For an arbitrary field 
P, let f :  X 4 Y be a regular P-map of two P-varieties X c An and 
Y c Am. This f is described by the m-tuple of "coordinate" polynomials 
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f l , .  . . , fm from P[x l , .  . . ,x,]. We say that f is defined over a subring 
R c P if it can be given by polynomials from R[xl, . . . , x,]. In this case, 
the reduced regular map f (m) = (A, . . . , f,) is determined for any maximal 
ideal m C R. Likewise we obtain the regular map f (m): x ( ~ )  --+ - Y ( ~ )  of the 
corresponding reductions, as shown by the next result. 

LEMMA 3.13. - f ( m ) ( ~ ( m ) )  c Y ( ~ ) .  

PROOF: Let a x  and ay be the respective ideals of X and Y in the 
rings P[xl ,  . . . , x,] and P[yl, . . . , ym] respectively, and let bx = ax n 
0[x1,. . . , x,] and b y  = ay n O[yl,. . . , ym]. Let f *: P[yl, . . . , ym] - 
P[xl , .  . . ,x,] denote the comorphism associated with f ,  given by yj H 

fj(xl, . . . , x,). Then f (X) c Y means f * (ay ) c ax.  Since f is de- 
fined over R, we also have f*(by) c bx. Reducing modulo m yields 
(f*)(")(bLm)) c &I;"), i.e., f ( m ) ( ~ ( m ) )  C - ~ ( ~ 1 ,  proving the lemma. 

Unlike morphisms over a field (cf. §2.4), morphisms over a ring lack ex- 
plicit criteria of definition. Therefore in general it is difficult to assert that 
a given P-morphism f :  X + Y is defined over a subring R C P, i.e., that 
it can be reduced modulo m c R. We shall deal mainly with morphisms of 
varieties f :  X - Y defined over some number field K,  and then a fortiori 
for almost all v there is a reduction of f to a regular map - f ("I: x(") - Y("). 
In particular, it follows for almost all v that x(") is independent of the ge- 
ometric realization of X as a Zariski-closed subset of an affine space. To be 
more precise, if X and Y are biregularly isomorphic over K ,  then x(") and 
Y(") are also biregularly isomorphic over the corresponding residue field, - 
for almost all v. 

Using the existence of reductions of morphisms, we can define reductions 
of arbitrary varieties via affine covers. We give a rough sketch of this tech- 

d 
nique, and refer the reader to Weil [4] for more detail. Let X = Ui=, Xi be 
a finite affine cover of an arbitrary K-variety X. Fix geometric realizations 
Xi of closed subsets of affine spaces, i.e., K-isomorphisms fi: Xi - X:, 
where X: is closed in hni. Put Kj  = fi(Xi n Xj) c An%. This gives rise 
to K-morphisms gij : Yij + Yij (i, j = 1, . . . , d), and in terms of algebraic 
geometry the original variety X is obtained by pasting the X: along the 
{Kj, gij} (cf. Shafarevich [I]). By Lemma 3.13, for almost all v there ex- 
ist reductions g!v) of the morphisms g.  .; and then, pasting the reductions 

-23 -23 

(xi)(") along the {Y~Y) ,  g ( ~ ) }  (since the necessary conditions for pasting 
-23 

pass from the original morphisms gij to the reductions), we obtain the 
variety x(") which is called the reduction of X.  

PROPOSITION 3.20. Let G c GL, be an algebraic K-group. Then for all 
v in VfC the reduction G(") is an algebraic group defined over the residue 

field kv, and the reduction map Go - G't) is a group homomorphism. 

Moreover, G(") is smooth for almost all v, and for these v the corresponding 
local reduction map Gov - &) is surjective. 

PROOF: Let p: GL, x GL, --+ GL, be the multiplication map p(x, y) = 
xy, and let i: GL, --+ GL, be the inverse map i(x) = xP1. The fact that 
G is an algebraic group is described by p(G x G) C G and i(G) c G. 
Since p and i are defined over Z, they can be reduced for any v; and by 
Lemma 3.13 p(") @("I x - G(")) c - G(") and &")(@")) c @"I, i.e., G(") is an 
algebraic group. Moreover, the reduction map is the restriction to Go of 
GL,(O) 5 GL,(k,), given by the homomorphism C? + k, = C?/p(v). But 
,Q is clearly a homomorphism, so the reduction map is also a homomorphism. 
It remains to be noted that since G is a smooth variety, G(") is a smooth 
reduction for almost all v, by Proposition 3.19, and so the local reduction 
map Go" - &) is surjective by Hensells lemma. Q.E.D. 

PROPOSITION 3.21. Let f : G  -+ H be a K-morphism of algebraic K-  
groups. Then for almost all v in Vf the reduction of f exists and the 

reduced morphism f ("I : G(") 4 H(") is also a morphism of algebraic groups. - - 

PROOF: By Lemma 3.13 and its subsequent remark, the reduction of f 
exists for almost all v in v ~ K ,  yielding a regular map f ( " ) : ~ ( " )  + I$"), 
and we need only establish that it is multiplicative. But the multiplicativity 
of f can be expressed as a set of polynomial identities on G x G, whose 
reduction gives the analogous set of polynomial identities on G(") x @"), 

as required. Q.E.D. 

We conclude this section with 

PROPOSITION 3.22. Let G be a connected algebraic K-group, let H be 
a connected K-subgroup, and let X = G/H. Then x(") coincides with 
G(")/@"), for almost all v in VF. 

PROOF: Consider the natural action f :  G x X 4 X and, for almost all v, 
its reduction f ("1: G(") x x(") + ~ ( " 1 .  We need to show that the following 
hold for almost all v: 

(1) f ("1 is transitive; 

(2) @") is the stabilizer ~ ( " ) ( 3 )  of 3 in x("), where 3 is the reduction 
of the identity coset x = eH. 

Excluding a finite number of v, we may assume that @"), H(") and x(") 
are smooth; moreover, these varieties are irreducible and their dimensions 
coincide respectively with d = dim GI t = dim H and s = dim X. Put Y = 
{ (g ,  y) E G x X : gy = y ) and consider the p-ojection n: Y -+ X. Then it 
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follows from the theorem on the dimension of the fibers of a morphism that 
{ y : dim .rrP1 (y) > t ) is a closed subvariety Z c X. Since in our case Z = 0, 
it follows from Lemma 3.12 that also z(") = 0, i.e., x(") does not contain 
any y for which dim(=(")(y) > t .  It  follows by a calculation of dimension 
and from Proposition 2.23 that condition (1) holds. Furthermore, from 
Theorem 3.12 we obtain that the (=(")(%) must be connected for almost all 
v. On the other hand, (=(")(5) contains H(") and has the same dimension. 
Therefore G(")(%) = @"), proving the proposition. 

3.4. Elements of Bruhat-Tits theory. 

Bruhat-Tits, in [2]-[4], constructed a fundamental theory for studying 
groups of rational points of semisimple algebraic groups over local fields. 
This theory is based on constructing a B-N pair, which turns out to be 
related to an affine root system, in the group of points of a simply connected 
simple group G over a local field K .  Furthermore, using B-N pairs we can 
define a simplicial complex A, called a building, acted on by GK. This 
complex turns out to be contractible, and by using its properties we can 
learn about GK and its subgroups. (Note that a building is actually the 
natural non-Archimedean analog of the symmetric space Gw/K, where K 
is a maximal compact subgroup of Gw in the Archimedean case; cf., in 
particular, Proposition 3.11). 

For example, let B C GK be a compact subgroup. It  can be shown that 
the natural action of B on A leaves a vertex fixed. But the stabilizers of 
vertices (known as maximal parahoric subgroups) themselves are compact, 
hence the set of maximal compact subgroups of GK coincides with the set of 
maximal parahoric subgroups. On the other hand, parahoric subgroups can 
be described in terms of affine root systems, analogously to the description 
of parabolic subgroups noted in 52.2.12, thereby enabling us to determine 
their conjugacy classes and, in particular, to  compute how many there are 
(cf. Theorem 3.13 below). Thus, the Bruhat-Tits theory provides an elegant 
solution of the problem of describing the maximal compact subgroups of 
GK. Unfortunately, we can not go into the details of the Bruhat-Tits theory 
in the present book and therefore refer the reader to the original works cited 
above, as well as to Iwahori-Matsumoto [I], MacDonald [I], Satake [2], and 
Hijikata [2]. An exposition of this theory would require introducing a series 
of new definitions (none of which are needed later on) and relies on several 
independent subtheories, thus making a complete exposition as voluminous 
as this very book. Therefore we shall limit ourselves to describing the basic 
objects (in so doing, indeed, treating results of the theory as definitions) 
and to formulating several theorems. 

Thus, let G be a simple simply connected algebraic group defined over 
a finite extension K of 0,. By an Iwahori subgroup B c GK we mean 

the normalizer of a Sylow pro-psubgroup of GK. Note that since Sylow 
pro-psubgroups are conjugate (Theorem 3.10) then Iwahori subgroups are 
also conjugate. A subgroup P C GK is parahoric if it contains an Iwahori 
subgroup. A building A of GK (or of G over K )  is a simplicia1 complex 
whose vertices are maximal proper parahoric subgroups of GK, moreover 
a collection {Po, P I , .  . . , Ps) of such subgroups defines an s-simplex in A 
if n:=, Pi is also a parahoric subgroup. GK acts on A by conjugation; 
moreover this action preserves the simplicial structure, and the stabilizers 
of simplexes are proper parahoric subgroups. Sometimes by a building we 
mean the geometric realization of the said simplicial complex, which is a 
contractible geometric complex (Solomon-Tits theorem) whose dimension 
equals the K-rank of G. In particular, if  rank^ G = 1 then the complex 
constructed is a tree and the structure theory of groups acting on trees can 
be applied (cf. Serre [lo]). Hence, for example, any torsion-free subgroup 
r of GK is free (for G = SL2 this theorem was obtained by Ihara [I]; note 
also that the example of SL2 is taken up in detail in Humphreys [2]). 

Now we shall move on to the construction of a B-N pair in GK. TO begin 
with, recall (cf. Bourbaki [4, Ch. 41, for more detail) that a B-N pair (or 
Tits system) in an abstract group G is a pair of subgroups B ,  N c G such 
that for some R C N I B  n N the following axioms are satisfied: 

(1) B U N generates G and H = B n N is a normal subgroup of N; 
(2) R generates W = N / H  and consists of elements of order 2; 
(3) rBw C BwBUBrwB for r in R and w in W; 
(4) r B r  @ B for any r in R. 

W = N / H  is the Weyl group of (B,  N).  Although the elements of W are 
cosets with respect to H, the double coset BgB is independent of the choice 
of a representative g in the coset w, and therefore is usually designated by 
BwB, where w = g H  E W; the relations expressed in (3) and (4) are to 
be understood in this sense. Note also that R is uniquely determined by B 
and N ,  for it consists of those w in W for which B U BwB is a subgroup 
of G. 

Again let G be a simply connected algebraic K-group and let S C G 
be a maximal K-split torus. Write NG(S) and ZG(S) respectively for the 
normalizer and centralizer of S, and put N = N G ( S ) ~  and 

H = { x  E ZG(S)K : ~ ( x )  E U for a11 x E X(ZG(S))K),  

where U is the group of v-adic units in K. Then there exists an Iwahori 
subgroup B of GK for which B n N  = H, such that B, N constitute a B-N 
pair of GK. W = N/H then turns out to be the Weyl group of some affine 
root system R of rank 1 = dim S (cf. Bourbaki [4, Ch. 6, $21 for the definition 
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of an affine Weyl group). In particular, there is a subset R of generators 
of W, consisting of (1 + 1) elements r l ,  rz, . . . , rl+l such that TI , .  . . , rl 
generate a subgroup Wo c W isomorphic to the Weyl group of some (usual) 
reduced root system associated with R. Wo is the relative Weyl group 
W(S, G) = NG(S)/ZG(S); however, in general, Ro is distinct from the 
relative root system R(S, G), even if the latter is reduced. Nevertheless, 
every root of Ro is proportional to some root of R(S, G) and vice versa. 
When G is K-split, i.e., when S is a maximal torus in GI then necessarily 
& = R(S, G). 

It follows from the general theory of groups with a B-N pair that any 
subgroup P c GK containing B has the form Ps = BWsB, for suitable 
S C R, where Ws is the subgroup of W generated by S. In addition, 
if PSI and Ps, are conjugate in GK, then S1 = S2. It follows that a 
complete system of representatives of the conjugacy classes of the maximal 
proper parahoric subgroups is given by the Pi = Ps", where Si = R \ {ri), 
i = 1,.  . . , 1+  1. Since the set of maximal proper parahoric subgroups is 
the set of maximal compact subgroups, we have the following result. 

THEOREM 3.13. Let G be a simply connected simple algebraic K-group, 
and 1 = rankK G. Then GK has (1 + 1) conjugacy classes of maximal 
compact subgroups. 

A consequence of Theorem 3.13 in particular is that there are only finitely 
many conjugacy classes of maximal compact subgroups in any simply con- 
nected semisimple K-group. The Bruhat-Tits theory shows that this also 
holds for any reductive K-group. 

For groups of rational points there are several decompositions, some of 
which are non-Archimedean analogs of the decomposition in $3.2. From 
this body of results we shall only need the non-Archimedean analog of the 
Cartan decomposition, which we shall discuss in greater detail. Notation as 
above, let K = BWoB be a maximal compact subgroup. It is well known 
that W is a semidirect product W = WoT, where T is the abelian group 
generated by roots from Ro; T is a free abelian group of rank 1 = dim S .  
Furthermore, we need to introduce the subsemigroup Tf C T of "positive" 
elements (more precisely, consider the system IIo of simple roots in & 
associated with B;  then T+ consists of those t in T for which ( t ,a )  >_ 0 
for all a in no, where ( , ) is a positive definite symmetric bilinear form 
on T Bz R invariant under Wo). Let v: N -t W = N/H be the natural 
homomorphism and put Z+ = v-l(T+). Note that if zl, E ZG(S)K and 
v(zl) = v(z2), then zlz,' E H and therefore KzlK = Kz2K. Thus, for 
z in Z G ( S ) ~  the double coset KzK depends only on t = v(z), so it can 
naturally be designated by Kv-l (t)K. With this notation, we have 

THEOREM 3.14 (CARTAN DECOMPOSITION). GK = KZ+K, and there 

is a one-to-one correspondence from Tf onto the set of double cosets 
K \ GK/K given by t H K v - ' ( t ) ~ .  

EXAMPLE: Let G = SL, and K = 0,. It is easy to see that SLn(Qp) has 
a Sylow pro-pgroup consisting of those matrices x = (xij) in SLn(Zp) for 
which xii - 1 (mod p) and xij - 0 (mod p) for all i, j = 1 , .  . . , n, i > j. 
Therefore the corresponding Iwahori subgroup of SLn(Qp) is 

B = {x = (xij) SLn(Zp) : xij = 0 (mod p) for i > j ) .  

This subgroup, together with the normalizer N of the diagonal torus S c G, 
constitute the B-N pair described above. A standard set of generators of - 
R c W = NIB n N consists of the following matrices: 

Let Wo be generated by r l ,  . . . , r,-1; then the parahoric subgroup P = 

BWoB is SLn(Zp). Other maximal proper parahoric subgroups are of the 
form Pi = BWiB for i = 1, . . .  ,n-1,  where Wi isgenerated by R\{ri). It 
is easy to show that Pi is the stabilizer in SL,(Q,) of the lattice with the 
base el, . . . , en+, pen-i+l , . . . , pen, where el,  . . . , en is the standard base 
of Q,". The reader can verify easily that the classification thus obtained of 
conjugacy classes of maximal compact subgroups of SL,(Q,) is the same 
as that obtained in the proof of Proposition 3.14. 

Finally, let us illustrate the Cartan decomposition for SLn(Qp). As we 
saw above, here K coincides with SL,(Z,). T is isomorphic to 

moreover ai = (0,. . . ,0,1,  -1,O,. . . ,0) (i = 1,.  . . , n - 1) constitute the 
system of simple roots IIo (compare with the description of the root sys- 
tem of G = SL, in 52.1.3). Wo .- Sn acts on T by permuting coefficients; 
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hence the usual scalar product is invariant under Wo. It follows that T+ in 
the given case consists of ( a l , .  . . ,a,) in T such that al < a2 5 . . . < a,. 
Theorem 3.14 then asserts that in any double coset KgK,  g E SL,(Q,), 
we can find a representative g of the form diag(pal,pa2,. . . ,pan),  where 
a1 5 a2 < . . . < a, are uniquely determined. Therefore in the given case 
Theorem 3.14 essentially reduces to the well known Invariant Factor The- 
orem for matrices (cf., for example, Curtis and Reiner [I,  Ch. 3, $16.51): 
if A is a principal ideal domain, then for any matrix X in M,(A) there 
are matrices Yl, Y2 in SL,(A) such that YlXY2 = diag(dl, . . . , d,, 0 . .  .O), 
where di E A, di # 0 and di divides di+1 for all i = 1,. . . , r  - 1; more- 
over, di (known as the invariants of X )  are uniquely determined up to 
multiplication by invertible elements of A. 

In the rest of this section, using Theorem 3.14 we shall establish that 
GK is compactly presented (this result will be used in $5.4 to prove that 
S-arithmetic subgroups are finitely presented). To give a precise statement 
let us fix the following terminology: a subset C of an abstract group is a 
defining set if it generates I? and if any relation in r between the elements 
of C follows from relations of the form ab = c, where a ,  b, c E C. In other 
words, this means that the natural homomorphism f :  F ( C )  + from the 
free group F (C)  generated by C is surjective, and its kernel is generated 
as a normal subgroup of F ( C )  by elements of the form abc-l, where a, b, 
c E C. The topological group I' is said to be compactly presented if there 
exists a compact subset C c r which is a defining set for r as an abstract 
group. 

THEOREM 3.15 (BEHR [2]). Let G be a reductive group defined over a 
non-Archimedean local field K. Then GK is compactly presented. 

PROOF: TO prove that a topological group r is compactly presented it 
suffices to find a compact subset C of r generating r as an abstract group, 
and such that all the relations in I?, written in terms of elements of C ,  follow 
from relations of a bounded length. (This remark will be used repeatedly 
below.) 

First we consider the case where G is a simply connected simple K- 
group. Here the proof that GK is compactly presented is obtained from 
the following assertion. 

LEMMA 3.14. Suppose a topological group has an absolute value I 1, 
which takes on integral values and has the following properties: 

(a) 191 2 0, 111 # 0; 
(b) lgigzl < lgil+ lgzl for all gl, g2 in r; 
(c) l g - ' (  = (gl for all g in I?; 
(d) r, = {g E I? : 191 5 n) is compact, for each n. 

Assume, furthermore, that there are positive integers c, d, and b satisfy- 
ing the following: 

(i) if Jgl > c then there are gl, g2 in r such that g = 9192 and lgl 1 < c, 
1921 < 191 - d; 

(ii) if f ,  g, h E r and fgh = 1, then there are gl, g2,. . . ,gt in r 
such that g = 9192.. .gt, lgil < c (i = 1 , .  . - ,t), t 5 lgl + b and 
Ifgl . . .gjI  <max{lfl,Ihl)+d ( j=1,  . . .  , t - 1 ) .  

Then r is compactly presented. 

PROOF: It follows from (d) and (i) that rc is a compact generating set 
for r, and therefore it suffices to show that all the relations between the 
elements of rc are consequences of relations of length 1, where: 

where [ ] denotes the integral part. Since rc contains 1 and is closed under 
taking inverses, it suffices to consider relations r of the form 

Put  p j  = gjgj+l . - . g, and define the norm llr 1 1  to be max {lpj 1). First 
lsjsn 

we shall show that any such r is a consequence of relations r' of the norm 
llr'll < 2c. The proof is by induction on Ilrll. Suppose llrll > 2c and let j be 
an index such that m a {  Ipj 1 ,  Ipj+l 1 ) = Ilrll. Then min{ lpj 1 Ipj+l 1 ) > c, 
since lgjl < C; SO by (i) we can find g;, g(i+l in rc such that 

1 1 
Put f = p j  g+ g = g;-lgd+,, h = gi;ipj+l. Then fgh = 1 and 
max{Ifl, lhl) < llrll -d .  Applying (ii), wecanfindgl ,  . . .  ,gt i n r ,  such 
t h a t g = g 1 . . . g t  fo r t  5 Ig[+band lfgl . . . g  kI <max{Ifl, I h l )+dfo ra l l  
k = 1 , .  . . , t - 1. Since 191 < 3c, we have t < 3c + b. Consider the relations 

whose length does not exceed lo. Now we replace gj in r with the righthand 
side of rj, for any j such that maxi lpl, lpj+ll ) = llrll (where, of course, in 
case lpj 1 = llr 11  we choose the same gi for the pairs ( j  - 1, j )  and ( j ,  j + 1)). 
Then for any k 5 t we have lgk . . . gtgj$pj1 = I fgl . . . gkPll < Ilrll. Thus 
we obtain an r' which is equivalent to r modulo the relations r j ,  and for 
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which ((rl\( < ((rll. Repeating this procedure, we eventually arrive at  TO for 
which llrol( 5 2c. 

Thus we have only to analyze 

satisfying ((r(( 5 2c. Then for any 1 5 j 5 n we have (pj ( 5 2c and therefore 

by (i) we can write p j  as a product of at most ([&I + 2) elements from 

f ,:. Let us write p ~ '  as a product of the inverses. Substituting these expres- 
sions into gj = pjPZ1 for 1 5 j 5 n -  1 (respectively, in g, = p,, for j = n) 

we arrive at the relations whose lengths are bounded by 2 + 5 5 lo. 
L+l l  

On the other hand, it is clear that r is a consequence of these relations. 
This completes the proof of the lemma. 

To construct a function I I on = GK with the properties described in 
Lemma 3.14 we proceed as follows. Fix a maximal K-split torus S C G 
(note that if S = (e) then GK is compact, by Theorem 3.1, so we may take 
C = GK as the compact defining set). Notation as above, let R(S, G) be 
the relative root system. Then for g = L(G) we have 

where go is the centralizer of A d s  and g, is the weight space for A d s  
of weight a .  Take some lat,tices Lo C ( g O ) ~ ,  La C ( g a ) ~  and put L = 
Lo @ (@aER(S,G) L,). Furthermore, let us introduce a distance between 
any two lattices LI,  L2 C g ~ :  

where .rr E K is a uniformizing parameter. Our objective is to show that all 
the requirements of Lemma 3.14 are met for the absolute value on r = GK 
given by 

191 = d(L7 Ad(g)L). 

Properties (a)-(d) are immediate. To prove that r, is compact for any 
n > 0 we merely note by restricting to 1 I to r, that Ad(r,) is bounded 
and hence also compact; on the other hand, the map r -+ Ad(r)  is open 
(Proposition 3.3, Corollary l ) ,  has finite kernel, and therefore is proper, 
i.e., the preimage of a compact subset is itself compact. 

To verify (i) and (ii) we need a decomposition of GK arising from the 
Cartan decomposition GK = KZ+K.  Recall that Z+  is the preimage of the 

semigroup Tf C W under the natural homomorphism u: N + W = N / H ,  
where T is an abelian group generated by roots of & and T+ is the set of 
all t in T such that (t, a )  > 0 for all simple roots a .  The constructions from 
Bruhat-Tits theory imply that v(SK) C T. But SK N (K*)' T Z1 x U1, 
where 1 = d i m s  and U is the group of units for K .  On the other hand, 
since H = ker v is compact it follows that ker(u IsK) is compact and hence 
ker(u ISK) c U1. Therefore u(SK) contains a free abelian subgroup of 
rank 1. But T itself is a free abelian group of rank I ,  so m = [T : u(SK)] is 
finite. Hence u(SK) 2 m T  and u(SK) n T+ > mT+. 

We leave it as an exercise for the reader to show that T+ is a finitely 
generated semigroup. It follows that u(SK) nT+ is also a finitely generated 
semigroup. Put  S+ = Z+ n SK. We have u(S+) = ~ ( S K )  n T+,  implying 
v(S+) > mT+; consequently there exists a finite subset E C Zf such that 
u(ESC) = T+. Then Z+ = HESf and 

Furthermore, for s in SK and a in Ro we have 

where v is the valuation on K.  Therefore, taking into consideration that 
roots from Ro and R(S, G) are proportional, we obtain that v(a(s)) > 0 
for all s in S+ and all roots a in R(S, G) which are positive relative to the 
order pertaining to the system of simple roots no c &. 

Now it is clear that for Is1 in S+ we have Is1 = v(ao(s)), where (YO E 

R(S, G) is the maximal root; in particular, if s = s l s 2  (s, s l ,  s 2  E S+), 
then Is1 = Isl 1 + Is2 1. As we have seen above, u(S+) is a finitely generated 
semigroup; therefore there exists an integer r > 0 such that the s in S+ 
satisfying Is1 < r generate Sf as a semigroup. 

Let us introduce two more integers from which we shall derive the desired 
constants c, d and b satisfying Lemma 3.14. Namely, since K is compact 
and E finite, it follows that there exist integers cl, c2 such that (k(  5 cl,  
[el 5 c2 for all k in K and e in E .  

In proving (i), we put c = 5cl + 2c2 + r + d, where d will be specified 
later. If 191 > c, and g = klesk2 is a factorization from (3.17), then 

There exist s l ,  s 2  in S+ such that s = sls2 and 3cl + c2 + d < I s l ]  5 
3ci + c2 + r + d. Then for gl = klesl and g2 = s2k2 we have 
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Before we move on to prove (ii), one remark is in order. Note that 
nn Ad(s)L C L for any s in S+ implies nnL C Ad(s)L . It  turns out 
that a somewhat weaker implication holds for any g in GK. Namely, s u p  
pose nn Ad(g)L c L for g in GK. Choose a factorization g = klesk2 as 
in (3.17). Then by properties (b) and (c) of the absolute value function 
we have ~ ~ + ~ ~ 1 + ~ 2  Ad(s)L c L, whence n n f 2 c 1 + c 2 ~  c Ad(s)L, and finally, 
nn+4c1+2c2 L C Ad(g) L. 

Now let f ,  g, h in GK satisfy fgh  = 1. Write g as g = klesk2 and factor 
s into a product s = sl . . . s t ,  where si E Sf and Isi[ I r .  Then, putting 
g1 = klesl, 92 = ~ 2 , .  . . , gt-1 = st-1, gt = stk2, we obtain 

with an arbitrary choice of d. Moreover, we may assume t < Is( I lgl + b, 
where b = 2cl + c2. Given j E (1,. . . , t - 1) we take the segments u = 
s l  . . . sj and v = sj+l . . . s t .  Then it follows from the definition of L that 

hence Ad(fk1eu)L c Ad(fkles)L + Ad(fkle)L, i.e., T" Ad(fkleu)L c L 
for n = max{ I f  klesl, 1 f klel ). Therefore, it follows from our above remark 
that 

l fheul  I max{Ifklesl, Jfklel)  + 4cl+  2 ~ 2 .  

On the other hand, 

and 
lfk1el I If l + lk1el L I f 1  + C l  + C2. 

We conclude that 

Then, setting d = 5cl + 3c2 (so that c = 10cl + 5c2 + r ) ,  we obtain the 
required constants c, d and b. 

We have concluded the proof that GK is compactly presented when G is 
a simply connected simple K-group. The remainder of the proof consists 
of straightforward reductions to this case. 

Indeed, suppose G is a simply connected semisimple K-group. Then 
d 

G can be described as n RLIK(Gi), where the Gi are simply connected 
i=l 

simple groups defined over finite extensions Li of K (i = 1, . . . , d), so 
d 

GK II n It is easy to see that a finite product of compactly 
i=l 

presented groups is compactly presented; on the other hand, according 
to the above, all the (Gi)Li are compactly defined. Therefore G is also 
compactly defined. 

Finally let G be an arbitrary reductive K-group. Then G = D T  is an 
almost direct product, where D is semisimple and T is a maximal central 
torus in G. Let n: D 4 D denote a K-defined universal covering, and 
write T as an almost direct product T = TlT2, where TI is K-split and T2 
is K-anisotropic. Put  H = D x TI x T2, let cp denote the isogeny H -+ G, 
obtained from rr and the product morphism, and let F = ker cp. Then the 
exact sequence 1 4 F + H % G 4 1 yields the exact cohomological 
sequence 

HK % GK 4 H' (K, 8'); 

it follows from Proposition 3.3 and the finiteness theorem for Galois coho- 
mology over local fields (which we shall establish in 56.4) that cp(HK) is an 
open subgroup of GK of finite index (for semisimple G this fact also follows 
from Proposition 3.17). 

We claim cp(HK) is a compactly presented group. Indeed, by assumption 
HK = DK x x ( T ~ ) K .  We showed above that DK is compactly 
presented. It  follows from Theorem 3.1 that ( T 2 ) ~  is compact, and hence 
compactly presented. Lastly, N K*' P Z1 x u', where 1 = dimTl 
and U is the group of units in K ,  from which we clearly see that 
is compactly presented. Without loss of generality we may assume that 
the compact defining set C c HK contains FK. Then it is easy to show 
that cp(C) is a compact defining set for cp(HK). Therefore, the proof of 
Theorem 3.15 is completed by 

LEMMA 3.15. Let r be a locally compact topological group, and A an 
open normal subgroup of finite index. If A is compactly presented, then r 
also is compactly presented. 

PROOF: Let D c A be a compact defining set. From the outset we may 
assume that D contains the unit element. Moreover, passing from D to 
DD-l, we may assume that D = D-'. It suffices to construct a compact 
subset C c I' generating r and having the property that all the relations 
in r between the elements of C are consequences of relations of a bounded 
length. Let {xi):=, be a set of representatives of cosets r / A ,  containing 
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for any X c G such that cp(X) is p-measurable. Since cp takes Borel sets 
to Borel sets and compact sets to compact sets, v will also be a left Haar 
measure on G. Then, by uniqueness, we must have v = cp, where c E E% 
and c > 0, and we define modGcp = c. It is easy to see that modGcp is 
actually independent of the choice of the original Haar measure p. (Exam- 
ple: if Kv is a locally compact field and a € K,', then the module of the 
left translation x ++ ax regarded as an automorphism of the additive group 
K$ is equal to the value llallv of the normalized valuation, cf. $1.2.1.) 

For x E G let AG(x) denote the module of the corresponding inner 
automorphism cp = Innx: g H xgx-l. The function AG: G -+ E%+ which 
then arises is called the module of G and is a continuous homomorphism. 
If AG = 1 then G is said to be unimodular. Every left Haar measure p 
on a unimodular group G is also a right Haar measure; moreover, p(X) = 
p(X-l) for any measurable subset X of G. 

(1) Any Abelian group is unimodular. 
(2) The module of any automorphism of a discrete or compact group 

equals 1; hence such groups are unimodular. 

Now we shall consider the question of obtaining a Haar measure for 
various grouptheoretic constructions, given Haar measures on the groups 
involved. 

Clearly, to obtain a Haar measure on a finite direct product it suffices to 
consider the case of two components. Thus, let G = G1 x Gz, where each 
Gi is a locally compact group with Haar measure pi. Then G has a unique 
measure p = p1 x p2 such that for any pi-measurable subsets Mi of Gi, 
the set M = M1 x M2 is p-measurable and 

moreover, p is a Haar measure. More generally, the product measure p = 
p1 x p2 can be defined by (3.20) on any space of the form X = X1 x Xz, 
where Xi is a locally compact topological space equipped with measure pi 
(i = 1, 2). We can reformulate (3.20) in terms of integrals with respect 
to the corresponding measures. Namely, let fi be a pi-integrable function 
on Xi (i = 1, 2) (i.e., Sxi fi(xi)dp(x,) exists). Then the function f on 
X = X1 x X2, defined by f (xi, x2) = fl(xl) f2(x2), is p-integrable and 

Moreover, for any function f integrable over X we have 

S, f (XI, ~ 2 ) d ~ ( ~ l  1 x2) = J,, (S,, f (~17  xz)d~z(xz) Cl ( x d  ) 

Note that in general one cannot extend the definition of the product 
of measures to an infinite number of factors, since the product of an infi- 
nite number of locally compact, but not compact, groups is not a locally 
compact group. Other constructions must be used here. One of them is 
the restricted topological product, which formalizes the construction used 
when we introduced adeles (cf. 51.2). 

DEFINITION: Let {Xx)xEA be a family of locally compact topological 
spaces, indexed by a countable set of indices A. Assume that open compact 
subsets Kx c Xx are fixed for almost all X E A. Consider the space X 
whose elements are the families x = {xx)xEA where xx E XA and xx E KA 
for almost all A. Introduce a topology on X ,  taking for a fundamental 
system of open sets all sets of the form nux, where Ux c Xx is open for all 
X and Ux = KA for almost all A. The space X with this topology is called 
the restricted topological product of Xx with respect to the distinguished 
subsets Kx. 

Let us point out several straightforward properties of this construction. 

LEMMA 3.16. 

For any finite subset S ofA such that Kx is defined for each X E A\S. 
3 ,  

put Xs = n XA x n Kx; then X s  is open in X and the topology 
X E S  X€A\S 

of X induces the direct product topology on Xs. 
Each Xs is locally compact and X = Us Xs7 where the union is 
taken over all finite subsets S of A such that Kx is given for each 
X E A \ S; consequently X is locally compact. 
If {Gx)xEA is a family of locally compact topological groups and 
open compact subgroups Kx of Gx are given for almost all X, then 
the restricted topological product G of Gx with respect to the Kx 
is a locally compact topological group. 

By (3) there exists a Haar measure on G; we shall show that it can be 
constructed from the Haar measures p~ on Gx. To do so, let us first assume 
that px are normalized in such a way that p ~ ( K x )  = 1 for each X such that 
Kx is defined. Then, for any finite subset S of A such that KA is given 
for each X in A \ S, one has p s  on Gs = n Gx x n Kx, which, in 

XES AtA\S 
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fact, is the "infinite" product of the px. More precisely, it can be defined 
as p1 x p2, where p1 is the usual finite product of px on n GA and p2 

X E S  

is the Haar measure on the compact group Ks = n Kx,  normalized 
X€A\S 

by p2(KS) = 1. It is easy to see that if S1 C S2 then Gs, c Gs2, and 
the restriction of ps, to  Gsl is ps1 . Therefore, using countable additivity 
and representing G as the countable union G = Us Gs, we obtain the 
desired p on G extending ps .  Sometimes, in defining p on G, it will be 
useful to waive the condition px(Kx) = 1 and instead to require absolute 
convergence of n p x ( K x )  over all X for which Kx  is defined. Then the 
measure p constructed above is replaced by cp, where c = n px(Kx). 

Now we take up the problem of constructing an invariant measure on the 
quotient space X = GJH, where G is a locally compact topological group 
and H is a closed subgroup (note that here, of course, invariance is with 
respect to the action of G on X by translations). 

THEOREM 3.17. A nonzero G-invariant Bore1 measure P on X = G / H  
exists if and only if the restriction of the module AG to H coincides with 
A H ;  if p exists, it is uniquely determined up to a positive scalar. 

In particular, if H is a discrete subgroup of G (the basic case of interest 
to us in what follows), then an invariant measure on G / H  exists if and only 
if G is unimodular. Note also that the phrase "G/H has finite invariant 
measure (or volume)" means that there exists an invariant measure on G / H  
and that the volume of G / H  with respect to this measure is finite. 

A connection can be found between the "quotient measure" /3 and the 
Haar measures p and v on G and H respectively. This is best done in terms 
of integrals of functions with respect to these measures. Thus, consider a 
function f integrable over G and, fixing g in G, put cp(g) = S, f (gh)dv(h). 
Then cp is a function on G, constant on cosets modulo H, and therefore 
it can be regarded as a function on X = G/H. In this sense we have the 
following formula: 

On the whole, the definition of P provided by (3.21) is not explicit; how- 
ever, in the basic case of a discrete subgroup H ,  which is of interest to us, 
integration in G / H  with respect to P can be reduced to integration over 
suitable subsets of G with respect to the original measure p (actually, we 
then must impose an extra condition on G of the existence of a count- 
able fundamental system of neighborhoods of the identity, although this 
requirement is automatically satisfied in all the cases of interest to us). 

We shall say that a subset F c G is a fundamental domain with respect 
to H if the restriction to F of the natural map T: G -+ G / H  is bijective. 
This can also be stated in the form of the following two conditions: 

1) G = F H ,  

2) F n F h  = 0 for any h # e in H. 

In the given situation there always exists a p-measurable fundamental 
domain F c G; moreover it can actually be extracted from any measurable 
subset R c G satisfying T(R) = G/H. Then (3.21) yields 

for any function f integrable over X .  
Sometimes it will be helpful to use a more general definition of the fun- 

damental domain, in which 1) of (3.22) remains the same but 2) is replaced 
by the following: 

2') F n F h  has measure 0, for any h # e in H .  

A typical instance of such a situation is the case where F is a closed sub- 
set of G with boundary of measure 0, covering GIH,  and such that the 
translations of F have points in common only at  the boundary; cf., for 
instance, the classic example presented in 54.2 of a fundamental domain of 
SL2(W) with respect to SL2(Z)). Using the countability of H it is easy to 
show that (3.23) still holds even under this more general definition of the 
fundamental domain. If we take f = 1 in (3.23), we obtain that X = G / H  
has finite invariant measure if and only if there exists a measurable fun- 
damental domain F c G (relative to H )  having finite measure, and then 
every measurable fundamental domain has a finite measure. Since we can 
find a fundamental domain in any measurable subset covering X ,  we can 
reformulate this criterion in a manner more useful in applications: X has 
finite measure if and only if it is covered by a set with finite measure. 

EXAMPLE 1: let G = Wn. Then the usual Lebesgue measure on G is both 
a right and left Haar measure. If we view x in GLn(W) as a topological 
automorphism of G, then it follows from the change of variables formula in 
multiple integrals that m o d ~ x  = I det XI. In particular, the transformations 
in SLn(R) are unimodular, i.e., preserve the measure. Now let e l , .  . . ,en 
be a base of Rn, and let H denote the lattice Zel @ . . . @ Zen. Then H 
is a discrete subgroup of Rn, F = {tlel + . . . + tnen : 0 5 ti < 1) is a 
fundamental domain satisfying 1) and 2), and F' = {t el + . . . + t,en : 
0 5 ti 5 1) is a fundamental domain satisfying 1) and 2'). 
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The above example is atypical in the sense that attempts to construct a 
fundamental domain satisfying 1) and 2) or 1) and 2') explicitly in general 
do not succeed. For this reason in Chapters 4 and 5 we shall have to 
resort to a more general treatment of fundamental sets, as we shall call 
(closed) subsets @ c G for which G = @ H  and @-I@ n H is finite. Even 
if such a fundamental set is available, we may not be able to determine 
precisely the volume of X = GIH; nevertheless, we are in a position to 
draw qualitative conclusions about its finiteness or infiniteness. Indeed, 
if @ has finite measure, then it follows from the above remarks that X 
has finite measure. Conversely, if X has finite measure, then, by taking 
a measurable fundamental domain F C a, we could obtain @ C UFh, 
where h runs through some finite subset of H ,  which means that @ also 
has finite measure. Thus, G/H has finite measure if and only if there exists 
a fundamental subset @ c G of finite measure. 

Let us point out one straightforward property of quotient measures: let 
H1 c Hz be two closed subgroups of a locally compact group G, and 
suppose G/H1 has finite G-invariant measure; then G/H2 also has a finite 
G-invariant measure. Using this assertion, we have 

LEMMA 3.17. Let G = G1 x G2 be the direct product of two locally com- 
pact topological groups, G1 noncompact, and let pi: G -+ Gi be the re- 
spective projections. Let H C G be a closed subgroup such that G/H has 
finite invariant measure. Then p2(H) is non-discrete - and there exists a 
finite invariant measure on G2/p2 (H), where denotes closure. 

Indeed, suppose that p2(H) is discrete; then we can find a neighborhood 
of the identity U c G2 such that U-lUnp2(H) = {e). Then the restriction 
to G1 x U of the natural map G -, GIH is one-to-one, and therefore 
G1 x U has finite measure. Let pi denote the Haar measure on Gi (for 
i = 1,2), and put p = p1 x p2. Then p(G1 x U) = p1 (G1)p2 (U), and since 
p2(U) # 0 by the openness of U, we see that ,ul(G1) is finite. But then 
G1 is compact (Proposition 3.23), a contradiction. The assertion about the 
existence of a finite invariant measure for G2/p2(H) follows from the above 
remark amlied to the closed subgroup r c G1 x p2(H) of G, noting that 
G ~ I P ~ ( H ~ - -  G / ( G  x p2(H)). 

Now we move on to the explicit description of Haar measures in the 
cases of interest to us. First, we must present a result which applies to real 
algebraic groups via use of the Iwasawa decomposition (cf. 53.2). 

PROPOSITION 3.25. Let G be a unimodular locally compact topological 
group and let H ,  A and U be closed subgroups of G with left Haar measures 
v, 6' and w respectively, such that the product morphism H x A x U -+ G 
is a homeomorphism. Assume that A normalizes U and that A and U are 

unimodular. Then p = ~ ( a ) v ( h )  x O(a) x w(u) is a left Haar measure on 
G, where @(a) = mod" (Inn a l U ) .  

(This notation for ,u indicates that the measure of E c G is computed 
by 

Other explicit examples of Haar measures can be obtained by integrat- 
ing differential forms. (The necessary background on differential forms, 
although only in the context of real varieties, can be found in any book on 
differential geometry, such as Helgason [I].) Let X be an n-dimensional 
analytic variety over a complete field K,, let xo E X ,  and let XI , .  . . , xn 
be local coordinates for a neighborhood of xo. This means that the xi 
are analytic functions such that cp: x H (xl(x), . . . , xn(x)) gives an ana- 
lytic isomorphism of the neighborhood of xo onto a domain in Kc  (i.e., cp 
is the inverse map of some parametrization of a neighborhood of xO), or, 
equivalently, d,,cp realizes an isomorphism from T,, (X) to K:. A differen- 
tial form of degree n in the neighborhood of xo is an expression of the form 
w = f (x)dxl A. . .Adzn, where f is an analytic function in the neighborhood 
of xo. 

Suppose F :  Y -+ X is an analytic map of two n-dimensional varieties, 
yo E Y is a point satisfying F(y0) = XO, and yl, . . . , yn are local coordinates 
in a neighborhood of yo. If in coordinate notation F is given by 

then the image of the differential form w is defined to be 

n where, as usual, dF i (~ , ,  . . . , yn) = Xj=, z d y j .  In particular, in this way 
we can define the transformation of a local differential form with respect 
to change of local coordinates. Now we can define an n-dimensional dif- 
ferential form on the entire variety X as a family of n-dimensional local 
differential forms in a neighborhood of each point of X,  which agree with 
respect to all the various local coordinates in a neighborhood of the same 
point. We say that a differential form w on X is invariant with respect to 
an analytic automorphism F :  X -+ X if F*(w) = w. 

The discussion which follows below deals, on the whole, with analytic 
varieties that arise from algebraic varieties; therefore we shall now introduce 
the algebraic analogs of the corresponding "analytic" definitions. Let X be 
a smooth n-dimensional algebraic variety defined over K. Then a K-defined 



166 Chapter 3. Algebraic Groups over Locally Compact Fields 3.5. Results needed from measure theory 

system of local parameters in the neighborhood of xo in X is a system of 
K-rational functions XI, .  . . ,x,, defined at xo, such that the differential 
d,,cp of the rational map cp: X -+ An given by cp: x ++ (xl(x), . . . , x,(x)) 
is an isomorphism of tangent spaces. Then an n-dimensional differential 
form over K in the neighborhood of xo is defined as an expression of the 
form w = f (x)dxl A . . . A dx,, where f is a K-rational function on X 
defined at xo. The concepts of transformation of differential forms under 
rational maps, of a differential form defined over the entire variety, and 
of an invariant differential form are analogous to the notions introduced 
above. Note that if X is defined over a complete field K, and x E XKv,  
then any rational differential K,-form in a neighborhood of xo can also be 
viewed as an analytic differential form on XKv in a neighborhood of xo. 

Now let G be a connected algebraic K-group and let n = dim G. Then 
it is well known that there exists a nonzero n-dimensional rational dif- 
ferential K-form w on G which is invariant under left translation (i.e., is 
left-invariant), and moreover this form is uniquely determined up to mul- 
tiplication by a nonzero element of K .  Let us present several examples. 
EXAMPLE 2: Let G = GL,. For a system of local parameters, let us take 
the functions xij (i, j = 1 , .  . . , n), where xij applied to a matrix is the 
i - j  entry of the matrix. Let w = f(X)dxll A . . . A dx,, where X = (xij) 
be a left-invariant differential form. Fix A = (aij) E GL,. Then the left 
translation X A :  X H AX can be written in coordinates as xij = xk aikxkj. 
It follows that the translation XL of f (X1)dxi1 A . .  . A dx;, is 

f ( ~ x ) d ( E  alkxkl)A.. . h d ( E  ankxkn) = f (AX)(det A)"dxllA.. .Adz,,. 
k k 

Therefore, by the invariance condition, we obtain f (X) = f (AX)(det A)". 
Putting X = En, we have f (A) = c(det A)-", where c = f (E,), i.e., 

In particular, for n = 1 we have w = %. 
EXAMPLE 3: Let G = SL2. As a system of local parameters in the neigh- 
borhood of 1 let us take the functions x, y, and z which associate the re- 
spective components with the matrix X = (: !) E G, where t = *. We 
look for a left-invariant differential form of the form w = f (X)dx A dy A dz. 

The left translation by A = (: :) E G in these coordinates is written as 

z' = cx + dz. 

Then by the invariance condition, we obtain 

1 + yz f (x1)dx' A dy' A dz' = f (AX)d(ax + bz) A d(ay + b-) A d(cx + dz) 
x 

= f (X)dx A dy A dz. 

In other words, 

Noting that ax + bz is the element in the 1-1 position of the matrix AX, 
we obtain 

f(AX)(AX)ll = f(X)(X)111 

hence w has the form 
a 

w =  -dxAdyAdz. 
x 

Now we obtain an expression for w = i d x  A dy A dz in another system 
of coordinates. Consider Gw = SL2(R), and use the polar coordinates on 
Gw, provided by the Iwasawa decomposition (cf. 53.2). In this situation the 
Iwasawa decomposition asserts that any matrix from Gw can be uniquely 
presented as a product of three matrices: 

( (a ) ( a > , ) ,  a d  ( y ) .  sincp coscp 0 a - I  

Take cp, a and u as (analytic) coordinates on GR. Then direct computation 
shows that x = a cos cp, y = a u  cos cp - cup' sin cp, z = a sin cp, and therefore 
w  = adcp A da  A du. 

EXAMPLE 4: (Exercise.) Let U, be the group of upper triangular unipo- 
tent matrices of degree n. Show that the differential form n dxii is a 

- -  . 
i<j 

left-invariant form on U,. Derive a generalization of this result for an 
arbitrary unipotent group. 

Now we move on to the determination of the measure corresponding to 
a differential form. Again let X be an n-dimensional analytic variety over 
the field K,, let xo E X, let XI , .  . . , x, be a system of local coordinates in 
a neighborhood of xo, and let w = f (x)dxl A . . . A dx, be a nonzero local 
n-dimensional differential form in some neighborhood of xo. Then on this 
neighborhood we can define the measure p = I f  (x) 1, ldxl 1, x . . . x Idx, 1, 
(which means that p(E) = JE (f(x)l,ldxll,. . . Idx,l,), where Idxl, is the 
(additive) Haar measure on K,, which is the ordinary Lebesgue measure if 
K is IR or C, and in the v-adic case is normalized so that 0, has measure 1.) 
Then one proves that this measure is independent of the choice of the 
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system of local coordinates (in the Archimedean case this follows from 
the change of variables formula in the definite integral, and in the non- 
Archimedean case from its v-adic analog, cf. Weil [4]). Lastly, we establish 
that if w is a differential form defined over the entire variety and nowhere 
vanishing, then the local measures extend to a measure on the entire variety. 
We denote the measure thus obtained by w,. 

THEOREM 3.18. Let G be an algebraic K,-group, let n = dim G, and let w 
be an n-dimensional left-invariant differential form defined over K,. Then 
w, is a left Haar measure on GKv. The group GKv is unimodular if and 
only if w is also right-invariant. 

This theorem and the examples cited above produce explicit descrip 
tions of Haar measures. Thus, the Haar measure on GL,(K,) is given by 

d x  ... dx J , d : : ( x i , ) ~ .  In particular, if we apply this to n = 1 we obtain that for 
an 1-dimensional split torus S = {diag(al,. . . , al)) the Haar measure on 

d a  ... d a l  SK, is defined as J a:...al . Next, for the group of n-dimensional upper 
triangular unipotent matrices U, the Haar measure of UnK has the form 
J n dxij. Therefore if we consider the automorphism cp of UnK, given by 

i< j  
conjugation by the matrix s = diag(al, . . . , a,), then modcp = n lai/aj I,. 

i< j 

This example obviously generalizes to the maximal unipotent K,-subgroup 
of an arbitrary reductive Kv-group. 

Now let G = SL2. For SL2(R) we obtain the expression J adcpdadu for 
the Haar measure, in the coordinates provided by the Iwasawa decomposi- 
tion. Since $ is the Haar measure on A = {diag(a, a - l )  : a E R+), this 
coincides with the expression for the Haar measure obtained from Propo- 
sition 3.25. 

Lastly, to give an example of padic integration, we compute the vol- 
ume of wp(SL2(Zp)), with respect to the Haar measure w, on SL2(Qp) 
corresponding to the differential form w = :dz A dy A dz from Exam- 
ple 3. To do so, note that wp(SL2(Zp)) = (SL2(Fp)lwp(SL2(Zp,p)), and 
all that remains is to compute the volume of the congruence subgroup 
I' = SL2(Zp,p). But x,  y, z map I' onto pZ, x pZp x pZp and on I? we 
have 1$1, = 1. Therefore w,(I') = (pp(pZp))3, where p, is the Haar mea- 
sure on Qp normalized by pp(Zp) = l. Thus, finally, w,(I') = p-3 and 
wP(SL2 (Z,)) = p-3 (SL2 (F,) ( = p-3p(p2 - 1) = 1 - $ . 

In conclusion, we note that Theorem 3.18 yields 

Indeed, let w be a left-invariant rational Kv-differential form on G of 
dimension n = dimG. Let p, denote right translation by g E G. Then 
the fact that left and right translations commute implies that pi(w) is a 
left-invariant form; so, since w is unique, we must have p;(w) = x(g)w, 
where ~ ( g )  is a nonzero constant. Further, it is easy to see that g H ~ ( g )  
is a rational character of G, and therefore x = 1, since G is semisimple. 
Thus, we have shown that w is also a right-invariant form; therefore the 
unimodularity of G K ~  is an immediate consequence of Theorem 3.18. 

COROLLARY. Let G be a semisimple algebraic K,-group. Then GKv is 
unimodular. 



4. Arithmetic Groups 
and Reduction Theory 

Arithmetic groups are one of the basic objects studied in the arithmetic 
theory of algebraic groups. Their properties will be examined or used 
throughout the remainder of the book. The goal of the present chapter is 
to expound the theory of reduction for arithmetic groups, which provides 
the construction of a fundamental set for the group of real points Gw of an 
algebraic Q-group G with respect to the group of integral points Gz. As a 
consequence we obtain several basic grouptheoretic results on arithmetic 
subgroups, especially that they are finitely generated and can be defined 
by finitely many relations. Moreover, we give criteria for Gw/Gz to be 
compact or to have finite Haar measure. The final section of this chapter 
discusses an unsolved problem concerning finite arithmetic groups. 

4.1. Arithmetic groups. 

We begin with 

DEFINITION: Let G C GLn(C) be a linear algebraic group defined over Q. 
A subgroup r c G is arithmetic if it is commensurable with Gz, i.e., if 
I' n Gz has finite index both in r and in Gz.' 

Henceforth Gz denotes Gfl GLn(Z). Gz can also be viewed as the group 
of Z-points of G, as a group scheme. That is, the embedding GL,(C) -, 
GLn+l (C), considered in 92.1.1, identifies GL, (C) with a Zariski-closed 
subset of M,+l(C) = C("+')'. Then G is also closed in Mn+l(C) and 
Gz = G n Mn+l(Z). This will enable us to avoid cumbersome notation, 
such as (det a)-', in the material that follows. Note also, that in accordance 
with the custom originating with the theory of integral automorphisms of 
quadratic forms, occasionally we shall call Gz the group of units of G. 

Clearly (cf. Proposition 4.3) groups of integral points may change con- 
siderably under rational morphisms. Thus, given an algebraic group G of 
transformations of a vector space V, in order to obtain a well-defined group 
of integral points Gz we must fix a base el ,  . . . , en of VQ or, equivalently, 
a lattice L = Zel + . . . + Zen; then Gz is the stabilizer Gh = { g E GQ : 
g(L) = L )  of L in GQ. Nevertheless, the class of arithmetic subgroups 
defined via groups of integral points has the following invariance property. 

PROPOSITION 4.1. Let cp: G + G' be a Q-defined isomorphism of linear 
algebraic Q-groups. If r is an arithmetic subgroup of G, then cp(r) is an 
arithmetic subgroup of G'. 

' Note that the concept of commensurability makes sense for arbitrary subgroups of an 
abstract group. 
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PROOF: First note the following elementary grouptheoretic fact: commen- 
surability is an equivalence relation on the subgroups of a given group (in 
particular, any two arithmetic subgroups are commensurable). Hence to 
prove the proposition it suffices to establish the commensurability of cp(Gz) 
and Gi .  Furthermore, since 

where cp-l: G' -+ G is the inverse rational Q morphism, the problem reduces 
to proving [cp(Gz) : cp(Gz) n G;] finite for any Q-isomorphism cp. We shall 
find a subgroup H c Gz of finite index, whose image cp(H) lies in Gi ;  then 
cp(Gz) n GL 3 cp(H), so that 

as required. It turns out that such a subgroup H exists for any rational 
Q-morphism, and not only for a Q-isomorphism. 

LEMMA 4.1. Let cp: G + GI be a rational Q-morphism. Then there exists 
a subgroup H c Gz of finite index, such that cp(H) C Gi.  

PROOF: Let G c GLn(C) and let GI C GLm(C). Without loss of general- 
ity we may assume that G and GI are Zariski-closed in Mn(C) and Mm(@) 
respectively. Then cp can be written as cp((xij)) = (pkl (xll, . . . , x,,)) for 
i, j = 1 , .  . . ,n and k, 1 = 1,. . . , m ,  where the cpkl are polynomials with 
rational coefficients. We introduce new variables yij = xij - Sij (Sij being 
the Kronecker delta), and put 

Since cp(En) = Em, we have $kl(O,. . . ,0) = 0 for k, 1 = 1,.  . . , m, 
i.e., $kl are polynomials with zero constant term. Since the coefficients 
of $kl are rationals, there is an integer d such that all d+kl have inte- 
gral coefficients. Let H denote the congruence subgroup Gz(d) of level 
d, i.e., the set of matrices of Gz congruent to En modulo d. Then H = 
Gz n GLn(Z, d), where GL,(Z, d) is the congruence subgroup of level d 
in GLn(Z). Clearly GLn(Z, d) is the kernel of the reduction homomor- 
phism GL,(Z) -+ GLn(Z/dZ), which sends each integral matrix to the 
matrix whose entries are the residues of the respective entries modulo d, 
and therefore is a normal subgroup of finite index no greater than the 
order of the finite group GLn(Z/dZ). Consequently H is a normal sub- 
group of Gz of finite index. On the other hand, if h = (hij) € H,  then 
cpkl(h) = $kl(h - En)  + Skl E Z, since all hij - Sij are multiples of d. Thus 
cp(H) c Gk. Q.E.D. 

COROLLARY 1. Let I' be an arithmetic subgroup of an algebraic Q-group 
G. Then gI'g-l is also an arithmetic group, for any g in GQ. 

COROLLARY 2. Let G = H N  be a semidirect product ( N  G) defined 
over Q. Then the subgroup Hz Nz has finite index in Gz. 

Indeed, let us consider the rational Q-morphism cp: G -+ H,  given by 
cp: g = hn I-+ h. By Lemma 4.1, there is a subgroup M c Gz of finite index 
such that cp(M) C HZ. Then m = cp(m)(cp(m)-'m) E HzNz for m in M ;  
so M c HzNz, which gives the required result. 

The congruence groups GL,(Z, d) and Gz(d), introduced in the proof of 
Lemma 4.1, play an important role in the arithmetic theory of algebraic 
groups. We will encounter them time and again, both as a natural technical 
tool and as an object of study per se (cf. 59.5). 

It should be noted that the definition of an arithmetic subgroup does 
not require the condition I' c GQ. Some important classes of arithmetic 
subgroups (such as maximal ones) are not necessarily contained in GQ. On 
the other hand, arithmetic subgroups contained in GQ can naturally be 
described as subgroups of finite index of groups of integral points corre- 
sponding to the various possible realizations of G. Namely, we have the 
following "global" analog of Proposition 1.12. 

PROPOSITION 4.2. Let G c GLn(C) be an algebraic Q-group and let I' c 
GQ be an arithmetic subgroup. Then there exists a I'-invariant lattice 
L c Qn. Moreover, the index of I' in Gg is finite. 

PROOF: Let el,  . . . , en be the standard base of Qn; let M denote the lattice 
elZ + . . . + e,Z. Since by hypothesis [I' : I' n GE] is finite, there are only 
a finite number of distinct lattices of the form y(M), for y in I'. It follows 
that the Z-submodule L c Qn generated by UyEr y(M) will be finitely 
generated, i.e., is a lattice. Obviously, then, I' C Gk. Furthermore, Gg is a 
group of integral points relative to some basis wl, . . . , w, of L, and hence 
is arithmetic by Proposition 4.1. Thus I' C Gk are arithmetic subgroups, 
so [G; : I?] must be finite. Q.E.D. 
REMARK: By the same argument, using Lemma 4.1 we can prove a some- 
what more general result: if Q: G 4 GL(V) is a Q-representation of an 
algebraic Q-group G and I' c GQ is an arithmetic subgroup, then there 
exists a lattice L c VQ which is invariant under Q(I'). Moreover, we may 
assume that L contains a given vector v in VQ. 

By Proposition 4.2, groups of integral points G; provide a general ex- 
ample of arithmetic subgroups, in a certain sense. The question natu- 
rally arises whether there exist arithmetic subgroups distinct from Gg. 
It turns out that there are, and examples of such subgroups can be con- 
structed by examining the proof of Proposition 4.1. Indeed, we showed that 
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groups of the form cp-l(cp(G)z), where (o: G -+ GL,(@) is a rational Q- 
representation, must contain some congruence subgroup Gz(d). Yet there 
are examples of subgroups of finite index, for example, in SL2(Z), that do 
not satisfy this property (cf. 59.5). In this connection, it is interesting to 
note that Gz(d) itself can be realized as Gk. To be more precise, we have 
the following proposition, which will play an important role in Chapter 8. 

PROPOSITION 4.3. Let G c GLn(@) be an algebraic Q-group, and let 
e: G -+ GL2,(@) be the representation given by 

Then, for any positive integer d, there exists a lattice L(d) C Q2" such that 

Gz(d) = e-' ( e ( ~ ) k ( d ) ) .  

PROOF: Let e l , .  . . , en, f l ,  . . . , fn be the b&e of Q2" with respect to which 
e is given by (4.1). Let L(d) denote the lattice having base 

If g = (gij) E G, then 

Therefore, for g in Gz, ~ ( g )  E e ( ~ ) k ( "  if and only if gij = bij (mod d) for 

all i = 1 . . , . The latter means that e ( ~ ) ; ( ~ )  = e(Gz(d)), as required. 
Q.E.D. 

Proposition 4.3 shows that groups of integral points may change consid- 
erably under rational morphisms. In this regard, the class of arithmetic 
subgroups stands out as a natural invariant class containing them. We 
have already established a weak form of invariance (invariance under Q- 
isomorphisms). However, the invariance property turns out to be stronger 
than might have been expected. 

THEOREM 4.1. Let (o: G 4 H be a surjective Q-morphism of algebraic 
groups. If I. is an arithmetic subgroup of G then cp(I') is an arithmetic 
subgroup of H. 

The proof here, unlike Proposition 4.1, is not elementary and can be 
developed only after an exposition of reduction theory (cf. 54.4). Before 
we move on to this deep subject, let us state several grouptheoretic con- 
sequences of reduction theory. 

THEOREM 4.2. Let I. be an arithmetic subgroup of an algebraic Q-group 
G. Then I. is finitely presented as an abstract group, i.e., can be defined 
by a finite number of generators and finitely many defining relations. 

THEOREM 4.3. Let G be an algebraic group defined over Q. Then there 
are only finitely many conjugacy classes of finite subgroups of Gz. 

See 54.4 for the proofs of Theorems 4.2 and 4.3. There the reader will 
also find several other results on arithmetic subgroups (including Borel's 
density theorem and a description of the commensurability subgroup). 

To conclude this section let us indicate some generalizations of arithmetic 
subgroups. To define the latter we started with the group Gz, defined via 
some matrix realization G C GLn(C) of an algebraic Q-group G, and then 
considered the class of all subgroups commensurable with G. We can give 
an analogous definition for algebraic groups defined over an arbitrary field 
K ,  if we fix a subring 0 C K whose field of fractions is K .  Examination of 
the proof of Proposition 4.1 shows that the class of 0-arithmetic subgroups 
thus obtained is invariant under K-isomorphisms if the following condition 
is satisfied: 

(4.2) O/aO is finite for any a in 0 \ (0). 

(Note that a consequence of Proposition 4.3 is that (4.2) is a necessary 
condition for the invariance of the class of 0-arithmetic subgroups, for 
groups G such as GL,, SL,, etc.). 

The most common example of a ring satisfying (4.2) is O(S), the ring 
of S-integers of some algebraic number field (cf. 51.2). The corresponding 
arithmetic subgroups are said to be S-arithmetic. Although the class of 
S-arithmetic subgroups is much broader than the class of ordinary arith- 
metic groups, the subgroups corresponding to S = VZ essentially reduce 
to arithmetic groups. Indeed, here the ring of S-integers is the ring of al- 
gebraic integers 0 of K. Therefore, if we choose a Z-base of 0 and apply 
restriction of scalars to G we obtain a Q-group G' = RKIQG for which 
Go 2 Gk (cf, 52.1.2). Consequently, when we develop reduction theory we 
shall consider the basic case of arithmetic subgroups of a Q-group G. For 
an extension of these results to the general case, cf. 54.7. 

4.2. Overview of reduction theory: reduction in GLn(R). 

Most of the results on the structure of arithmetic subgroups, their co- 
homology, and other properties are obtained by means of a topological 
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approach, using the realization of Gz as a discrete subgroup of the group 
of real points Gw. This aspect of the theory of arithmetic groups is closely 
connected with the theory of discrete subgroups of Lie groups, treated in 
detail in Raghunathan [ 5 ] .  Here we confine ourselves to discussing a range 
of questions relating to the construction of a fundamental set in Ga rel- 
ative to Gz, having certain finiteness properties. Along the way we shall 
obtain the proofs of Theorems 4.1-4.3 and several other results. Moreover, 
we shall find necessary and sufficient conditions for Gw/Gz to be compact 
(and to have finite volume in the Haar measure). 

Since it is impossible to give an explicit description of a fundamental set 
for an arbitrary algebraic group, we shall use the following approach. First 
we consider the cases G = GLn(@), SLn(C), where we give an explicit con- 
struction using the Siegel set C. The decomposition GLn(R) = CGLn(Z) 
arises, from which we can obtain an analogous decomposition for an arbi- 
trary subgroup G c GLn(C). The formal part of the argument relies on 
the following elementary assertion. 

LEMMA 4.2. Let G = C r  be a decomposition of an abstract group G 
as a product of some subset C and a subgroup r .  Furthermore, given 
a right action of G on some set X ,  let H = G(x) denote the stabilizer 
of a point x in X .  Assume that for a suitable a in G the intersection 
(xaC) n x r  is finite, equal to { xbl,. . . , xb, ) (bi E r ) .  Then H = R ( r n  H )  
where R = (UI=, a~b, ' )  n H .  If, in addition, there is some subgroup D l  
r c D c G, for which C-lC n g r h  is finite for any g, h in Dl then 
W13 n g ( r  n H)h  is also finite for any g, h in D n H. 

The proof is an easy verification. 

Thus, constructing a fundamental domain of Gw with respect to Gz 
reduces to two problems: 

(1) constructing a fundamental domain for the case G = GLn((C) and 
(2) creating facilities for the application of Lemma 4.2. 

In this section we shall handle the first of these. 

For the remainder of this section let G denote GLn(R) and let K ,  A, 
U respectively be the subgroups of orthogonal matrices, diagonal matrices 
with positive entries, and upper triangular matrices with 1 on the diag- 
onal (unipotent matrices). Recall that by Proposition 3.12 on the Iwa- 
sawa decomposition in G the product morphism induces a homeomorphism 
K x A x U -+ G. Below the components of the Iwasawa decomposition of 
an element g in G will be denoted as kg, a, and u,. In addition, we shall 

4.2. Reduction in GL, (R) 

assume that a in A, u in U have the form 

a=d iag (a  l , . . .  , an ) ,  u =  

DEFINITION: A Siegel set in G is the set Ct,v = KAtUv (t, v > 0), where 
A t = { a € A : a i i t a i + l ,  i = 1 ,  . . .  , n - l ) a n d U , = { u ~ U : l u ~ ~ l ~ v  
for all 1 < i < j 5 n ) .  

The components in the definition of a Siegel set have been selected in 
such a way that the following property, used repeatedly in the sequel, will 
hold. 

LEMMA 4.3. For any t, v > 0 

{ aua-' : a E At, u E Uv ) 

is relatively compact. 

PROOF: aua-I = ( . . 'r), where fij = 2 u i j .  Moreover 

hence the set under consideration is contained in Us,, where 

as required. 

In what follows 

s = max {tj-i), 
l<i<j<n 

we shall treat "relatively compact" and "bounded" as 
interchangeable terms. Put r = GLn(Z). Then we have 

THEOREM 4.4. G = Ct,J for t 2 2 and v > 
d3 - 

PROOF: Fix an orthonormal base el ,  . . . , en of Wn, and let ( 1  1 1  denote the 
corresponding Euclidean norm. Define a continuous function a :  G -r R+ 
by @(g) = Ilgelll. 'rake any g in G. Then gre l  is contained in the lattice 
g(Zel + .. . + Zen) and therefore for any d > 0 only a finite number of 
elements w in gre l  satisfy ((w(( 5 d. It follows that reaches its positive 
minimum on g r .  Our objective is to show that this minimum is actually 
reached at  some point in C0 = 8%, :. Then g r  n Bo # 0, from which the 

theorem will follow. 
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LEMMA 4.4. If @ takes on a minimal value on g r  at the point g = kau, 
then 

(1) there exists ii in Ui such that h = kau E g r  and O(h) = 

(2) 2 5 5. 
PROOF OF THE LEMMA: First we show that U = U+(U fl r ) .  Take any 

element u = ( . , u: ' )  E U .  Direct calculation shows that 

1 Q1 

1 a 2  0 

0 Qn- 1 

1 

Therefore, by selecting ai suitably in Z we can make all the elements ul2, 
. . . , uii+,, . . . , un-1, not exceed 1 in absolute value. We proceed by 
induction. Assume that luij( 5 whenever 0 < j - i 5 1. If we compute 
the entries of the product 

weseethatmij = uij for j-i 5 1 andmij = uij+,&fori = I , . . .  ,n-(l+l), 
j = i + 1 + 1. Thus, on the (1 + 1)-th step we can satisfy (uijl 5 1 for 
0 < j - i 5 1 + 1, and finally on the (n - 1)-th step we obtain a matrix of 
U1. Thus U = U, (U r l  I?) is proven. 

'TO prove (1) it now suffices to choose u in U4 satisfying u t u(U n r )  
and to note that for h = kau the equalities 

(4.3) @ ( g )  = llgelll = Ilaelll = a1 = @(h) 

hold, since the a-components of g and h coincide. 
Now we move on to the proof of (2). We assume that g = kau and 

u E u,. Put 

By assumption @(gZ) > O(g). Computing @(gZ), we obtain 

since ul2J 5 1. Since (4.3) gives us @(g) = a l ,  we have a: j +a: +a:, and 
hence a1 j %a2. This completes the proof of Lemma 4.4. 

Now we conclude the proof of the theorem. It follows from Lemma 4.4 
that the required assertion holds for n = 2. We proceed by induction on 
n (recall that r = GLn(Z)). Let n 2 3 and suppose @ attains a minimum 
on the coset g r  at g = kau. Put h = bw E GLn-1(R), where 

By induction there exists an element c' in GLn-l(Z) satisfying 
he' = k&a'ul for a' in A("-') and u' in U::;') with the obvious notation. 

2/& 
Put 

6  = di&(al, a;, . . . ,a,-,) E A. 
Then a direct computation shows that gc = k i i ~  for suitable fi in U. More- 
over, cel = el so @(gc) = JJgcel 11 = Jigel 11 = @(g) and gc also yields 
a minimum for @ on g r .  By the lemma we may assume fi E U+ and 

a ~ / a :  5 -&. But by construction a' E A("-~), so a:/a:+, 5 5 for all 
2/& 

i = 1, . . . , n - 2. Therefore 6 E AL . Q.E.D. 
45 
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COROLLARY. Put xi:) = Ct,, n SLn(R). Then SLn(R) = B::)SL,(Z) for 

t 2 3, v 2 1. Moreover = ( K  n SLn(R))(At f l  SLn(R))Uv. 

PROOF: Let g E SL,(R) and g = ah ,  where a E Ct,, and h E GLn(Z). 
(1) If det h = 1 then a E Ct,v, and we have nothing to prove. If, however, 

de th  = -1 then for x = diag(l, . .  . , l , -1)  we have xh E SL,(Z) and 
(1) ax-' E C,,, , since x E K and normalizes At and U,. So 

The decomposition for $; follows from the fact that det K = f 1, det U = 
1, and det A > 0. 

The study of discrete transformation groups is usually begun by con- 
structing the corresponding fundamental domain. Recall that if r acts as 
a discrete transformation group on a space X then a fundamental domain 
of r is an open subset R c X such that 

(1) fir = X ,  where fi is the closure of 0; 
(2) R n Ry = 0, if y # e. 

(Sometimes other definitions of a fundamental domain are used.) 
N.B. In reduction theory we shall consider the right action of r ,  not 

the left, as is usually done. The reason for this lies in the nature of the 
proof of Theorem 4.4. This inconvenience might be avoided by making the 
standard substitution x H x-I; however that would make the form of the 
fundamental domain much less elegant. 

It  follows from Theorem 4.4 that the interior c!,, of any Siegel set with 
t > , v > $ satisfies the first condition of the definition of a fundamental d3 
domain for the natural action of r on G by right translation. The question 
is whether 1,2 is itself a fundamental domain. It turns out that it 

is not, and this is best seen in the case of SL2(R), by means of classic 
geometric arguments. 

First of all, note that Siegel sets C satisfy KC = C ;  therefore, without 
loss of generality, instead of C we may consider its image in X = G/K. For 
SL2(R) there is a classic interpretation of SL2(R)/S02(R) as the upper 
half-plane of the complex plane. If we then denote the upper half-plane by 
P ,  we can define the action of H = SL2(R) on it by 

Note that this right action differs from the traditional left action gz = 3 
(cf., for example, Serre [7, Ch. 71) by the involution 

Direct computation shows that 

. ab+cd i 
zg = --- + --- 

a2 + c2 a2 + c2' 
where i = a. 

It  follows easily that the action under consideration is transitive and that 
the stabilizer of i is S02(R),  which gives the requisite identification 

Straightforward computation also shows that the image in P of xi:) is 
Rt,, = { z  E P : S z  2 l / t ,  (Xrl < v) (3 and X denote respectively the 
real and imaginary parts). Also consider the domain D = { z  E P : 1x1 > 
1, IXzl < ). We shall show that D in fact is a fundamental domain for 
the action of SL2(Z) on P. More precisely, to satisfy the second condition 
of the definition of fundamental domain we need to pass from SL2(Z) 

to r = PSL2(Z) = SL2(Z)/{f E), since (il t SL2(Z) acts on P 
trivially. 

PROPOSITION 4.4. D is a fundamental domain for in P. 

PROOF: Take arbitrary z E P. We shall show that zg E D = { r  E P : 
( z (  > 1, (Xzl I 1 ) for some g in r .  Direct computation shows that if 

Since cz + a lies in the lattice Z @I Zz, then 

below, and we can find (:I;) in SL2(R) for 
Icz + a (  is bounded from 

which S(zg) is maximal. 

Applying a suitable transformqtion of the form (i :) that does not change 

the imaginary part, we may assume that JX(zg)( 5 $. Let us show that 
z' = zg t D. By assumption lX(zl)( < 1; if Jz'l < 1, then for r" = 3, 
obtained from z' by ), we have 01" = f$ > Sz', which contradicts 
the choice of z'. 

Now we verify the second condition of the definition of a fundamental 

domain. Let z, rg  E D l  with g given by (: :) t SL2(Z). By symmetry, 

without loss of generality we may assume that S(zg) 2 B(r). Then by (4.4) 

we have ic.z+al 5 1. Since S z  > 9 ,  we have lcz+al > (9) (el. Switching 
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from (z 1) to (1; 1:) , if necessary, which does not change g, we may 
assume c 2 0. Thus, the only possibilities for c are 0, 1. 

If c = 0, then a = f 1, so we may assume g has the form (i :) . Therefore 

zg = z + b, and using IXzl < i and IXzgl < i, we obtain b = 0. 
Now suppose c = 1, so Iz + a1 5 1. We have lz + aI2 = 1zI2 + 2aXz + a2, 

whence 2aXz + a2 5 0, so IRz( > !$ 2 i if a # 0, in contradiction with 
the assumption z E D. Thus a = 0, and we may assume g has the form 
( )  Then zg = d - !. Since P ( f )  = fi and lz12 > 1, we see 

1% (i) 1 < IXzI < 1. But also IPzgl < 1 ,  so d = 0 and thus zg = -!. But 
1 - $ 1  = lzl-l < 1, contradiction. Q.E.D. 

Geometrically R = RL and D (filled in) are related as in Figure 4.1 
6 ' 2  

(below). 

Comparing R and D l  we may conclude two things. First, the bounds 
t = , v = !j in Theorem 4.4 are the best possible. Secondly, the interior G 
of a Siegel set is not a fundamental domain, since its translations overlap 
(the diagram depicts one of the shifts of D', which intersects 0 ) .  It turns 
out, however, that a Siegel set C satisfies a weaker condition of meeting 
only finitely many r-translations. 

THEOREM 4.5. Let C = Ct,,  be a Siege1 set of GL,(R), and let x, y E 
GL,(Q). Then C-'C n xry is a finite set. 

The proof will be deduced from a theorem of Harish-Chandra, whose 

-1  -1/2 0 1/2 1 

Figure 4.1. 

formulation requires some further notation. First, we introduce functions 
a i ,  analogous to @, by putting Qi(g) = I(g(e1 A . . . A ei)ll for g E G. 
Here el A . . . A ei is viewed as an element of A~(R"), the set of elements 
of degree i in the exterior algebra, on which GLn(R) acts in the nat- 
ural way. The vector norm is taken relative to the orthonormal base 
ej, A . . . A eji ( j l  < . . . < ji) of the space A~(R"). Clearly @l(g) = @(g) 
and @, (9) = I det gl. Moreover, K = On(R) acts on A~(R")  by orthogonal 
transformations (an exercise for the reader); in particular, @i(kg) = Qi(g) 
for any k in K .  

We also need some notation pertaining to the Bruhat decomposition in 
G = GLn(R) (cf. 52.1.10 for more detail). Let D be the group of diagonal 
matrices, and let W be the subgroup of permutation matrices of G, matrices 
in which every row and every column has exactly one non-zero entry, equal 
to 1 (obviously W < K) .  Note that the elements w = (wij) in W can be 
characterized as follows: 

1, for i = rj 
wij = { 

0, fori#.rr j  

where r is a suitable permutation of the indexes 1, . . . , n. Clearly, the map 
w H r = r (w)  gives an isomorphism from W to the symmetric group S,. 
Both products W D  and B = DU are semidirect, the first one being the 
normalizer of D in G and the second one being the group of upper triangular 
matrices. A basic result here (cf. Theorem 2.5) is that G = UWEw UwB, 
i.e., G = UWB = UWDU. Moreover, let U- denote the group of lower 
triangular unipotent matrices; then each g in UwB can be represented 
uniquely in the form g = v;wtgvg, where v; E Uw = ~ ( w - ~ U w n ~ - ) w - ' ,  
t, E D l  and vg E U. 

THEOREM 4.6 (HARISH-CHANDRA). Let C = Ct,, be a Siegel set of G, 
and let M c G satisfy 

I 
(i) M = M-' 

(ii) Qi(t,) 2 c for all i = 1 , .  . . , n and all m in M,  for a suitable c > 0. 

Then ME = { m E M : C m  n C # 0 ) is relatively compact in G. 

The proof uses several properties of Qi, which we formulate as 

LEMMA 4.5. Let g = kgagug = v;wtgvg respectively be the Iwasawa and 
Bruhat decompositions of g in G. Then 

(1) ag = a,-, - at,, SO @i(g) = @i(w-'V,~) . @i(tg) > ai( tg);  
'Jg 

(2) there exists a constant d = d(C) > 0 such that ((gxJJ 2 d l l ~ J J @ ~ ( g )  
for a l lg  E C a n d x  E A~(R,), i = 1 ,... , n .  

In particular, for g in C and h in G we have @i(gh) 2 dai(g)ai(h) .  
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PROOF: (1) We have Qi(g) = Ilg(e1 A . . . A = Ilag(ei A . . . A ei)ll = 

Qi(ag) = a1 . . . ai, where a, = diag(al,. . . ,a,). Furthermore, 

whence a, = a,-lvgwat,. Thus 

It remains to show cPi(w-'v;w) > 1. But w-'v;w E Up, and for any u in 
U -  we have u(elA. . .Aei) = el A. . .Aei+b, where b is a linear combination of 
elements of the canonical base in (Rn) distinct from el A. . . A ei, implying 
Ilu(el A . .  . A ei)ll > 1. 

(2) We may assume 11x11 = 1. The set of all such x is compact, so also 

{ux : u E UV, 11x11 = 1) 

is compact. Therefore there exists S1 > 0 satisfying IIuxII > S1 for all u in U, 
and all x such that llxll = 1. Furthermore, if fj = el, A. . . Ael, (11 < . . . < li) 
is an element of the canonical base of Ai(Rn), then 

a, fj = all . . . al, fj = (a1 . . . ai) (2 ...%) fj. 
In addition, for any Ic = 1 , .  . . , i we have lk > k, so if g E C, then by defi- 
nition of the Siege1 set a lk /ak  > tk-'k. Thus there exists 62 > 0 satisfying 

1 . .  a1 
. %?,I ai > 62 for any l1 < . . . < li, so we have 

where d = S1S2, as desired. Applying this inequality to the vector x = 
h(el A . . . A ei) yields the second assertion. Q.E.D. for lemma. 

An essential part of the continuation of the argument is contained in the 
following assertion. 

LEMMA 4.6. As m runs through ME, the a-components a, in the Iwasawa 
decomposition and the components v; and t, in the Bruhat decomposition 
form relatively compact sets. 

PROOF: Let m E ME, i.e., xm = y for some x, y E C. Applying (2) of the 
previous lemma, we obtain 

i.e., ai(m)Qi(m-') 5 & for all i and all m in ME. Since by hypothesis 
Qi(m) > Qi(t,) > c and M = M-l ,  we see Qi are bounded on M from 
above, i.e., 

for all m in ME. On the other hand, as we saw in the proof of Lemma 4.5, 

where a = diag(al, . . . , a,) and t = diag(t1,. . . , t,). Therefore it follows 
from (4.5) that c 5 a1 5 b and so cb-l 5 ai 5 bc-l, for i > 1; i.e., 
{a, : m E ME ) is a relatively compact set. 

Finally, by Lemma 4.5(1), a, = a,-lv,wtm, SO 

is relatively compact. Hence the elements 

also form a relatively compact set. On the other hand w-'v;w E Up, 
and we leave it to  the reader to show that the product morphism gives 
a homeomorphism from U- x U to a closed subset of G. Therefore the 
w-l v,w, - and hence also the v;, form a relatively compact set. This 
completes the proof of Lemma 4.6. 

Now let us take up the proof of Harish-Chandra's theorem. Since W is 
finite, it suffices to establish that ME n UwB is relatively compact for all 
w in W. Therefore, in the discussion which follows we may (and shall) fix 
w. Let T = T, be the corresponding permutation. There are two possible 
cases: 

(1) there exists A < n satisfying ~ ( ( 1 , .  . . ,A)) = (1,. . . , A);  
(2) for each X < n therc is j E (1, .  . . , A) for which ~ ( j )  > A. 
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Case 1. Naturally, n > 1, and then w, and consequently the entire class 

thus it suffices to establish that McnPx is relatively compact. Furthermore, 
if m E McnPx, then xm = y for some x E AU C PA; and then also y E Ph 
Thus, 

M = ~ P ~ = { ~ E  M : ( c ~ P ~ ) ~ ~ ( c ~ P A ) # ~ ) .  

Now assume Harish-Chandra's theorem has been proven for GL,(R), for 
all r < n. The Levi decomposition (Theorem 2.3) gives PA = SR, where 

is a maximal reductive subgroup and 

is the unipotent radical. 
Let 7, rl and 72 denote the natural projections of PA on S, GLx(@) and 

GLn-*(C) respectively. Also put p(x) = r(x)-lx. Since K = On@) is 
given by tg = g-l, obviously 

Furthermore, AU c PA; therefore if g = kgagug is the Iwasawa decomposi- 
tion of g in PA, then kg E PA, so 

Moreover, if a E A!"), then rl(a) E A!*) and r2(a) E At . By the 

continuity of r, which implies that any set of the form r(U,) is compact, 
it is easy to show that rl(C n PA) and % ( E n  PA) are contained in suitable 
Siegel sets C1 c GLx(R) and C2 c GLn-A@). 

It is obvious that r i ( M ~  n PA) c (Mi)=", where Mi = r i(M n PA). In the 
Bruhat decomposition in GLn((C) of any g in PA, one can easily see that tg 
has the form 

Now M1 and M2 satisfy the conditions given in the statement of Harish- 
Chandra's theorem. Indeed, the first condition is obviously satisfied. The 
second condition is equally evident for MI. We show that it also holds 
for M2. For m in M n PA we have @x(m) = I det r1 (m) 1, so @A(m-') = 
@A(m)-' 2 c by condition (ii). Therefore it remains to note that the func- 
tions @;, . . . , defined in analogy to @i, but for GLn-x (R), are related 
to the original @i by the equation @: = w, from which the desired result 
follows. By induction (Mi)cz are relatively compact, implying ~ ( M X  n PA) 
is also relatively compact. 

It remains to be shown that @(ME n PA) is also relatively compact. 
Let m E ME n PA, so that xm = y for some x, y E C n PA. Then we 
have r(x)e(x)r(m)e(m) = r ( y ) ~ ( y ) ,  from which it follows that e(m) = 

r (m)- lQ(x) - l~ (m)~(y) .  Since x and y were taken from a Siegel set, the 
~ ( x )  and ~ ( y )  run over relatively compact sets. We obtain the required 
result in view of the relative compactness of { r (m)  : m E Me n PA ), which 
we have already established. 

Case 2. Write xm = y for x, y E C and some m E M n UwB; also, we 
may assume det x = 1. Writing the Iwasawa decomposition for x and y 
and the Bruhat decomposition for m, we obtain 

where c = ~-~a,u,v;a;'w. Substituting the Iwasawa decomposition of c 
in (4.6) and equating the a-components, we obtain 

Note that c, and therefore also its a-component a,, runs through a relatively 
compact set; this is seen by applying Lemma 4.3 to the fact that the u, 
and v; run through relatively compact subsets (u,, by definition of a Siegel 
set, and v; by Lemma 4.6). Again by Lemma 4.6, the set of elements of 
the form at, is relatively compact; therefore by (4.7) the a;'w-'a,w are 
bounded. But if a, = diag(al,. . . , an )  and a, = diag(b1,. . . , b,), then 
a;'w-'a,w = diag(b;'a,(l), . . . , bila,(,)), where .rr is the permutation 
corresponding to w. Thus, we can find a, ,O > 0 independent of x, y, such 
that 

(4.8) a < b ~ ' a , ( ~ )  < ,O for all i = 1 ,... ,n .  
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It follows from (4.8) that for any i,  j the b;' bja,(i)a$j) are bounded from 

above. But for i < j the bib;' are bounded from above since a, E At. 
Consequently, we can find a constant y > 0 satisfying 

(4.9) a < y whenever i < j ,  for all a,. 

Next we show a ~ ' a * + ~  are bounded for all k = 1, .  . . , n  - 1. By hypoth- 
esis we can find i 5 k such that s ( i )  2 k + 1. Clearly, we can also find 
j > k satisfying s ( j )  < k. Then i < j and s ( j )  5 k < k + 1 < ~ ( i ) .  We 
have 

- 1 
an(j)aT(i) = (ag&)an(j)+l) . . . (ai$)-lar(i)); 

moreover, since a, E At, the arial+, are bounded from below. Therefore, 
it follows from (4.9) that a i l ak+ ,  for each k is bounded from above (as 
well as from below). Defining 9 :  A -+ R* x . . . x R* by 

we see the ~ ( a , )  are bounded. But since x E SLn(P) we have a, E 

A n SLn(R); on the other hand, q l a n s L n ( a )  is injective, and therefore 
proper. So we conclude that the a, also constitute a relatively compact 
set. 

We deduce from (4.8)that the a, also are bounded. It follows that the 
x = k,a,u, and the y = k,a,u, are contained in relatively compact sets. 
Therefore the m = x-ly also constitute a relatively compact set. 

PROOF OF THEOREM 4.5: Put  M = (xry) U  XI'^)-^, where r = GLn(Z). 
Clearly, M is discrete and closed in G; moreover, the matrix entries of M 
have bounded denominators. Therefore, to prove the finiteness of the cor- 
responding set ME (the assertion of the theorem), it suffices to establish 
its relative compactness. The latter follows from Harish-Chandra's theo- 
rem once we verify its hypotheses. (i) is given. To verify (ii) we need a 
preliminary remark. 

Let g = ub, where u E U- and 

Then for any i = 1, .  . . , n  we have 

(gkl)ll k,l <i = ( ~ k l ) l <  k,l  <_i(bkl)ls k,l  <_i, 

whence det(gkl)l5 k , ~  l i  = b l l  . . . bii. 
Now let m = v;wt,v, E M. Then the entries of the matrix w-'m have 

bounded denominators. On the other hand, w-'m = ~-~v;wt,v, and 
w-l v,w - E U-. From the above remark it follows that @i (t,) = Itl . . . ti 1 
is the absolute value of the principal (i x i )  minor of w-'m, i.e., is a 
rational number with bounded denominator, from which it follows that (ii) 
is satisfied. Q.E.D. 

This section is best summarized using the concept of a fundamental 
set, which is a modification (actually, a weakening) of the concept of a 
fundamental domain, discussed above. 

DEFINITION: R c G is a fundamental set of r if 
(FO) KR = R, where K = 0,; 
(F l )  R r  = G; 
(F2) { y E r : Rg n Ry # 0) is a finite set for each g in GLn(Q). 

At first glance it seems more natural to require, instead of (F2), the 
weaker condition (F2'), that { y E r : R n Ry # 0 )  is finite. However, 
(F2) has several technical advantages. In particular, if we start with a 
fundamental set R for I', it enables us to construct a fundamental set for 
any subgroup r' of GLn(Q) commensurable with r .  It suffices to put 
R' = Ug RJ, where J runs through a set of representatives of P/(r n r'). 

The results of this section can be restated as follows: 

THEOREM 4.7. The Siegel set Ct,u is a fundamental set for I? = GLn(Z) 
in GLn(R) whenever t 2 and v 2 i. d3 
COROLLARY. There exists an open fundamental set for any arithmetic sub- 
group r c GL,(Q). 

Indeed it is easy to see that the interior L';,, of the Siegel set for t > 5, 
v > serves as a fundamental set of I' = GLn(Z). Using this set, with the 
help of the observation above, we can construct an open fundamental set 
for an arbitrary I?. 

4.3. Reduction in arbitrary groups. 
In this section we shall carry out the second step of the plan outlined 

in $4.2 and thus shall establish the existence of a fundamental set for an 
arbitrary connected algebraic Q-group G. Moreover, as the following as- 
sertion shows, we may confine ourselves to the case of a reductive group. 

(1) Let N be a unipotent Q-group. Then there is an open, relatively 
compact subset U c Nw such that Nw = UNz and U-lU n (nNzm) 
is finite, for any n, m in NQ. 
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(2) Let G = H N  be a Levi decomposition of a connected Q-group G, 
where H is a maximal reductive Q-subgroup of G and N = R, is 
the unipotent radical. Suppose C C Hw satisfies: 

(a) Hw = CHz and 
(b) C-'C n (gHzh) is finite for any g, h in HQ. 

If U c NR is as in (I), then fl = CU satisfies: 

(a)  Gw = W E ,  
(p) R-I Q n (xGZy) is finite for any x, y in GQ. 

PROOF: (1) It suffices to establish that Nw/Nz is compact; for then, using 
elementary topological arguments (cf., for example, Bourbaki [2, Ch. 3]), 
we can construct an open, relatively compact set U such that NR = UNz. 
Moreover, the finiteness of U-'U n (nNzm) follows from the fact that 
nNzm is discrete and closed. 

The compactness of Nw/Nz is easily shown by induction on r = dim N 
(as in the proof of Lemma 4.4). If r = 1 then N 2. @+, moreover with 
this isomorphism Nw -- W and Nz -- aZ (a E Q), so NR/Nz r WlaZ is a 
one-dimensional torus and thus is compact. 

Now take r > 1. Since N/[N, N] is abelian and unipotent, the logarith- 
mic map yields a Q-isomorphism N/[N, N] 2 C1, where 1 = dim N/[N, N]. 
(Note that in view of the nilpotency of N we automatically have 1 2 1.) 
It follows that there is an ( r  - 1)-dimensional normal Q-subgroup M a N 
and a one-dimensional Q-subgroup L c N such that N = L M  is a semidi- 
rect product over Q. By induction, Lw/Lz and Mw/Mz are compact, and 
therefore (as above) there exist compact A C Lw and B C Mw such that 
Lw = ALz and Mw = BMz. We shall show that the compact set C = AB 
satisfies Nw = CNz. Indeed, let n = lm E NR = LwMw Then 1 = az for 
suitable a in A and z in Lz, and zmz-' = bx for suitable b in B and x 
in Mz. Thus n = lm = azm = azmz-lz = abxz, whereas xz E Nz. This 
completes the proof of (1). 

(2) The proof of (a)  is obtained by an argument analogous to the final 
part of the proof of (1). Now we shall demonstrate (P). According to 
Corollary 2 of Proposition 4.1, HzNz has finite index in G z  Therefore, 
decomposing Gz into right or left cosets modulo HzNz, we see that (0) 
is equivalent to W I R  n (xHzNzy) being finite for arbitrary x, y in GQ. 
Since GQ = HQNQ, we have x = ab and y = cd, for some a,  c E HQ and b. 
d E NQ. Pick h E Hz and n E Nz. Then 

where U' = (ahc)-'Uabhc is compact and contained in Nw and g = 
c-lncd E Nw Therefore the assertion CU n CU(xhny) # 0 is equivalent 

to the pair of conditions: 

According to (b) there exist only a finite number of h satisfying (4.10). 
The finiteness of the number of possible n = c(gd-')c-' in (4.11) follows 
from the relative compactness of (Uf)-'U and from the fact that g in (4.11) 
belongs to the closed discrete set cNzccld. Q.E.D. 

Thus we shall assume henceforth that G is a reductive group. The strat- 
egy for obtaining a fundamental set in this case has already been discussed 
(cf. Lemma 4.2): if G C GLn((C), then we need: 

(1) to define a (right) action of GL, on some set X ,  such that G will 
be the stabilizer of a suitable point x in X ;  

(2) to find a in GLn(W) for which xaC n xGLn(Z) is finite, where C is 
a Siegel set in GLn(W). 

Then we shall have a fundamental domain for G of the form 

r 

fi = (U a~b;') n G, where bi E GLn(Z). 
i=l 

For X it is natural to take a vector space V for which there is a Q- 
representation Q: GLn(@) + GL(V), and a vector v in VQ satisfying G = 

{g E GL,(C) : v ~ ( g )  = u ). The existence of such Q and u is guaranteed by 
the stronger version of Chevalley's theorem (cf. Theorem 2.15), which also 
asserts that the orbit UQ(GL,(C)) is Zariski-closed. Then, if we choose a 
in GLn(R) such that a-'Ga is self-adjoint, i.e., invariant under transpose 
(cf. Theorem 3.7), we see that the finiteness of the required intersection 
follows from 

PROPOSITION 4.5. Let Q: GLn(C) -+ GL(V) be a Q-representation and let 
L be a lattice in VQ. If v in VR is a point whose stabilizer 

is a self-adjoint group and ve(GL,(C)) is closed in the Zariski topology, 
then UQ(C) n L is finite for any Siegel set C c GLn(R). 
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PROOF: Choose a base in VQ consisting of eigenvectors with respect to 
Q(D,), where D, is the group of diagonal matrices, and take the Eu- 
clidean norm (which we shall denote as IIvII) on VRl with respect to which 
this base is orthonormal. For a character p E X(e(D,)), we let V, = 
{ v E V : gv = p(g)v Vg E @ ( o n )  ) be the weight space of weight p; below 
we shall consider only nonzero subspaces. Then V,, is orthogonal to V,, 
for p1 # p2, SO V = @, V, is an orthogonal direct sum. Let r, denote 
the orthogonal projection of V onto V,. Since V, is defined over Q, the 
Z-submodule generated by all intersections L n V, has finite index in L. 
Thus r,(mL) c L for a suitable integer m, and consequently r,(L) c &L 
is a lattice in V,. Therefore there exists a constant cl > 0 such that 
))r,(w)l) 2 cl, for all w in L and all p such that r,(w) # 0. 

Now let x = k,a,u, E GL,(R). Put  y, = xa;' and z, = x a i 2  and 
write vx instead of VQ(X). The set of elements of the form a,u,a;', where 
x C, is relatively compact by Lemma 4.3. Since y, = k,a,u,a;', it 
follows that there exists c2 > 0 such that llvy,ll 5 c2 for all x in C. We 
claim that A = {vz, : x E C, vx E L )  is also bounded. Indeed, let 

-1 2 c = c, c,; then r,(vy,) = r,(vxa;l) = p(a,)-'r,(vx), and similarly 
r,(vz,) = ,u(a,)-2r,(vx), implying 

Since vGL,(C) is closed in V in the Zariski topology, vGL,(R) is closed 
in Vw in the Euclidean topology (cf. proof of Theorem 3.6, Corollary 2). 
Therefore 

W = {w E vGL,(R) : IIr,(w)II I c for a11 p )  

is compact, and consequently there is a compact U c GL,(R) such that 
W = vU. Hence {z, : vz, E A )  c GwU, since A c W. But 

if x E C = Ct,bl then a: E Atz; so {a:~,a;~ : x E C ) is relatively compact. 
Therefore k,a;' E GwUl for a suitable compact Ul. Applying 0: g H tg-l 
and bearing in mind that k, is an orthogonal matrix and a, a diagonal 
matrix, we obtain k,a, E Gw0(U1); so x = k,a,u, E GU2, where U2 = 

O(U1)U is compact. Thus, vC n L is contained in vU2, and consequently 
is both compact and discrete, or in other words finite. Proposition 4.5 is 
proved. 

This completes the construction of a fundamental set in a reductive 
group. The results obtained are formulated in 

THEOREM 4.8 (BOREL, HARISH-CHANDRA [2]). Let G c GL,(C) be a 
reductive algebraic Q-group, and let C = Ct,v (t > $, v > i) be a Siege1 
set of GL,(R). Then we can find a in GL,(R), bl, . . . , b, in GL,(Z) such 
that 52 = aCbi) n G has the following properties: 

(0) KR = R for a suitable maximal compact subgroup K of Gw ; 
(1) RGz = Gw; 
(2) R-'0 n xGzy is finite for any x, y in GQ. 

It remains only to prove (0). Recall that a in GL,(R) has been chosen 
to satisfy the requirement that a-'Ga be self-adjoint. But then a-'Ga n 
On@) is a maximal compact subgroup of a-lGwa (cf. Proposition 3.10), 
so K = G n (aO,(R)a-') is a maximal compact subgroup of Gw. By 
construction C satisfies O,(R)C = C, from which (0) clearly follows. 

As in 94.2, the results of this section can be restated more concisely 
using the concept of a fundamental set. Its definition for the general case 
is analogous to the definition given in $4.2 for the case of GL,(C), and is 
as follows: 

DEFINITION: Let G be an algebraic Q-group, and let r c GQ be an arith- 
metic subgroup. R C Gw is a fundamental set for r if 

(FO) KO = R for a suitable maximal compact subgroup K c Gw; 
(Fl )  R r  = Gw; 
(F2) R-lR n (xGzy) is finite for any x, y in GQ. 

In view of Lemma 4.7 and the absence of compact subgroups in unipotent 
groups, Theorem 4.8 yields 

COROLLARY. Let G be a connected Q-group, and let C GQ be an arith- 
metic subgroup. Then there exists an open fundamental set for r in Gw. 

The structure theorems for arithmetic groups (cf. 54.4) are based on 
this corollary. There we see the importance of all three conditions (F0)- 
(F2). In particular, (F l )  and (F2) guarantee that r is finitely generated. 
(FO) means that the image of R in the symmetric space X = Gw/K is a 
fundamental set for the induced action of r on X ,  from which it follows, 
in view of X being simply connected, that J? can be defined by a finite 
number of relations. 

Another application of reduction theory lies in the proof of the following 
finiteness theorem for the orbits of arithmetic groups. 

THEOREM 4.9. Let Q: G -+ GL(V) be a Q-representation of a reductive 
Q-group G, and let r c GQ be an arithmetic subgroup and L c VQ a 
I'-invariant lattice. If X = ve(G) is Zariski-closed, then X n L is the union 
of a finite number of orbits of r. 
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PROOF: Let G c GLn(C). First we consider the special case where Q is the 
restriction of a Q-representation n: GL, (C) --+ GL(V), such that the orbit 
Y = v.rr(GL,(C)) is Zariski-closed and the stabilizer of v under .rr lies in G, 
i.e., equals the stabilizer H of v under Q. Xw is the union of a finite number 
of orbits of Gw (cf. Theorem 3.6, Corollary 2), i.e., Xw = Ui vie(Gw). To 
prove the theorem one need consider only those i for which vie(Gw) n L # 0; 
thus we may assume vi E L. 

So, it suffices to show that ve(Gw) n L consists of a finite number of orbits 
of I'. Moreover, without loss of generality, we may assume I' = Gzl and 
L to be invariant under e(GLn(Z)) (cf. Proposition 4.2). By Theorem 4.8, 
we can find a in GLn(R) and bi in GLn(Z) such that 

for a suitable Siege1 set C c GLn(R). Moreover, for a we can take any 
element of GLn(R) for which a-lGa is self-adjoint. Therefore, by Theo- 
rem 3.8, we can choose a such that a-'Ha is also self-adjoint. It follows 
from (4.12) that it suffices to establish that v~(aCb  n Gw) n L is finite 
whenever b E GLn(Z). Since L is invariant under e(GLn(Z)), the latter is 
equivalent to we@) n L being finite, where w = v ~ ( a ) .  But the stabilizer 
of w equals a-'Ha, which is self-adjoint, so the required finiteness follows 
from Proposition 4.5. 

The general case reduces to our special case. Since X is closed, the 
stabilizer H of v in G is a reductive group. Therefore, by the strong ver- 
sion of the Chevalley theorem (Theorem 2. Is), there is a Q-representation 
.rr: GLn(C) -+ GL(W) and a point w in WQ whose stabilizer under .rr is H ,  
and Y = w.rr(GL,(C)) is Zariski-closed. In addition, it follows from Propo- 
sition 4.2 that w is contained in a @(GLn(Z))-invariant lattice M C WQ. 
Then the orbit X' = w.rr(G) is also Zariski-closed, since the canonical map 
GLn(C) --+ Y (given by g I-+ wn(g)) is open. Thus, the set X' n M is the 
union of a finite number of orbits of I'. Moreover, passing from M to :M 
(d E Z), which is also Q(GL,(Z))-invariant, we see that X' n ( i M )  is the 
union of a finite number of orbits of I', for any d in Z. 

It remains to pass from X' to X.  To do so, note that each of X and X' is a 
realization of the homogeneous space GIH,  i.e., there exists a G-equivariant 
isomorphism cp: X -+ X' defined over Q. Since X is closed in V, cp is given 
by polynomials Pi(xl,.  . . , x,) (1 5 i 5 s) with rational coefficients, in the 
coordinates determined by the bases of L and M,  respectively. If d is the 
common denominator of these coefficients, then cp(X n L) C X' n ($M). 
Therefore, since the number of orbits of Gz in X' n ($M) is finite and cp is 
G-equivariant, it follows that the number of orbits of Gz in X n L is finite. 
Q.E.D. 
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To conclude this section we present a variant of condition (F2) from the 
definition of a fundamental set, to be used in the next chapter when we 
develop a reduction theory for adele groups. 

LEMMA 4.8. For R c G,, condition (F2) is equivalent to the following: 

(F2)' 0-'R n xG,y is finite, for any x, y in GQ and any r in Z, where 
G, = {g E GQ : rg, rgP1 E Mn(Z)). 

Indeed, to prove (F2) + (F2)' it suffices to show that G, is contained 
in a finite union of cosets of Gz. But if g E G,, then 

Since there are only finitely many lattices between rZn and r-lZn, there 
are only a finite number of possibilities for g(Zn) (g E G,). Noting that 
g(Zn) = h(Zn) implies h-'g E Gz, we obtain G, C UigiGZ, as desired, 
where the gi are chosen in such a way that gi(Zn) run through all possible 
intermediate lattices of the form g(Zn) for g in G,, between rZn and r-'Zn. 
The converse (F2)' + (F2) is self-evident. 

4.4. Group-theoretic properties of arithmetic groups. 

In this section we shall prove several fundamental results (stated in 54.1) 
on the abstract properties of arithmetic groups. The elegance and relative 
brevity of the proofs may be viewed as compensation for the effort spent 
developing reduction theory. 

We begin with 

THEOREM 4.2. Let I' be an arithmetic subgroup of an algebraic Q-group 
G. Then I' is finitely presented as an abstract group, i.e., can be defined 
using a finite number of generators and defining relations. 

PROOF OF THEOREM 4.2: It suffices to establish that F has a finitely 
presented subgroup of finite index. Therefore, we may assume that G is 
connected and that I' c Gw. We shall work in the space X = Gw/K, 
where K is a maximal compact subgroup of GR. By Proposition 3.10, X 
is connected and simply connected. If C is an open fundamental set for I' 
in Gw (cf. 54.3, and Theorem 4.8 and its Corollary), then since KC = C, 
the following two conditions are satisfied for the image R of C in X: 

(i) OI' = X ;  
(ii) A = { 6 E F : 0 6  n O # 0 ) is finite. 

(We consider the natural action of I' on X by right translations.) We 
shall show that the finite presentability of I' is a formal consequence of the 
connectedness, local connectedness and simple-connectedness of X I  of the 
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openness of R, and of (i) and (ii). Therefore the same result holds for an 
arbitrary group of transformations of any topological space X satisfying 
these hypotheses (note that Behr [I] proves this under somewhat weaker 
hypotheses, i.e., instead of requiring that R be open he requires only that 
R lie in the interior of RA). 

LEMMA 4.9. A generates the group I'. 

PROOF: Let ro be the subgroup generated by A. Then (i) implies X = 
(RI 'o)~(R(r\I 'o)) .  Moreover, if RynRS # 0, where y E r o ,  then Sy-l E A, 
implying 6 E Fo; thus R r o  and R(I' \ r o )  are disjoint. Since both are open 
sets and X is a connected space, we conclude R ( r  \ r o )  = 0, i.e., r = ro, 
proving the lemma. 

Now we proceed to construct the defining relations for r .  Let F denote 
the free group on a replica A of the set A, whose elements are in one-to-one 
correspondence with those of A via a bijection 6 H 6, and let cp: F -+ r 
denote the homomorphism determined by this bijection. To obtain the 
defining relations for I?, first of all consider the local relations, i.e., those of 
the form 

where 61, 62 run through the elements of A for which 6162 E A. 
To understand their role, let L denote the normal subgroup - -  of - F gener- 

ated by the left-hand sides of the local relations. Clearly (P(S162(6162)-1) = 

1, so cp(L) = 1. Let N be a normal subgroup of F containing L and con- 
tained in K = ker cp. Consider H = FIN and the natural homomorphisms 
o: F -t H ,  8: H -+ r, satisfying 0 o cr = cp. Also, endowing H with the 
discrete topology, we introduce the quotient space S of R x H under the 
following relation: 

(xl , hl) N (22, h2) if there is 6 in A such that x2 = x16 and hl = a(6)h2. 

It  is (4.13) that assures N being an equivalence relation, thus enabling us 
to define S. Indeed, the reflexivity of - is obvious (1 E A) and symmetry 
follows from the fact that if 6 E A then 6-I E A (since 0 6  n R # 0 @ 

R n R E 1  # 0); moreover a($)-' = a($-') by virtue of the local relations. 
Let us prove transitivity. If (xl, hl) N (22, h2) and (x2, hz) - (23, h3), then 
there are 61, 62 in A such that 
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Then xs = ~16162, SO 6162 E A, and hl = 0 ( 6 ~ ) 0 ( 6 ~ ) h ~  = o ( m ) h 3 ,  by 
virtue of the local relations. 

Now let a :  R x H --t S denote the canonical map, and /3: R x I' -+ X the 
L L p r ~ d ~ c t 7 7  map. If (XI, hl)  (x2, hz), then x2 = x16 and hl = a(6)h2 for 
some 6 in A, implying 

so there exists a unique continuous map p: S -+ X making the following 
diagram commutative: 

LEMMA 4.10. p is a covering map whose multiplicity equals I ker 81. 

PROOF: Put 9 = a(R x {e)). Then the inverse image 

is an open subset of R x H and hence 9 is open in S .  The restriction 
of p to 9 is injective and yields a homeomorphism Q 1 R; indeed, if 
p(a(x1, e)) = p(a(x2, e)), then x1 = x2 by the commutativity of (4.14). 

Next we show that 

where the union is taken over all h E ker8, and all the 9 h  are disjoint. 
(Henceforth we consider the induced action of H on S; note, in this regard, 
the useful relation p(xh) = p(x)O(h).) If p(a(x, h)) = y E 0, then xB(h) = 

y E R, so O(h) = 6 A, i.e. g = o(6)-'h E ker8. But then by definition 
(x, h) (y,g), as required. Lastly, if a (x ,  e) = a(y, h), where h E ker8, 
then h E A; thus h = e, since cpld is injective. This completes the proof of 
the lemma. 

If R is connected then S is also connected. Indeed S = U h E H  9 h ;  since 
9 is connected, it suffices to note that any translate 9 h  is connected to 9 
via the chain of pairwise intersecting translates 90 = 9, = 9 h l , .  . . , 
9, = Qh,, (where hm = h). If h = o(61 . . . &) then we merely put - - 
hl  = a(&), h2 = a(6d-l&), . . . , hm-1 = a ( & . .  .&),  hm = a ( & .  . .&). 
Since X is simply connected it follows that p is bijective; hence ker 8 is 



198 Chapter 4. Arithmetic Groups and Reduction Theory 

trivial and N = L. Thus, for R connected, the local relations suffice to 
define I?. 

In general we work with the connected components of R, which we denote 
by {fli)i,z. Since X is locally connected and R is open, all the Ri are also 
open in X .  Fix a component X0 = no,  and let ~ ( l )  denote Ui,y Riy, the 
union taken over all (i, y) in I x r for which RiynRo # 0. Inductively, given 
~ ( ' 1 , .  . . , ~ ( ' " 1 ,  put x(~++') = Ui,^, Riy, the union taken pairwise over all 
(i, y) for which Riy n xck) # 0. X' = Upzo x ( ~ )  is clearly open in X .  Its 
complement is a union of sets of the form Riy, and therefore is also open. 
Indeed, 

X = R r  = U Riy, 
iEZ 
^ ,Er  

however, if Oilyl n Rizy2 # 0 for Riyl c x(~)) ,  then Rizy2 c x(~+') c XI. 
Since X is connected, it follows that X' = X, i.e., any Riy is connected 
to Ro by a chain of pairwise intersecting translations in the connected 
components of 0 .  

Now take Rob for S in A. There is a sequence {Rijyj such that io = 

i, = 0, ^/o = 1, ym = 6 and Ri,yj n Ri,+l^lj+l # 0 for all j = 0, .  . . ,m - 1. 
By induction, define wj in F such that cp(wj) = yj  for all j = 0, .  . . , m. To 
do so, put wo = e. If wo, . . . , wk are already defined, then put wk+l = Ekwk, 
where Sk = Y k + l Y i l  E A. (Thus w, depends on 6.) Let N denote the 
normal subgroup of F generated by the left sides of (4.13) and of 

for all 6 in A. 

LEMMA 4.11. N = K, implying r is finitely presented. 

PROOF: Put Qi = a(Ri x {e)). We claim that for any 6 in A and for the 
corresponding elements wj constructed above, we have 

Indeed, take xjyj = xj+lyj+l E RijyjnRi3+,yj+l. Then 6j = Yj+lYjl E A 
and x j  = xj+1Sj1 a(wj+i) = a(6j)a(wj+l), from which (4.16) follows. Let 

denote the union of the Qija(wj) obtained for all 6 in A. Since any 
chain of Qija(wj) begins with Qo, we see is connected. Let Y be the 

connected component of S containing a .  For any 6 in A we have ~ ~ a ( 6 )  = 
Qi,,,a(w,) c a, so n @a($) # 0 and therefore ~ a ( 6 )  = Y. Since the 
a($) (6 E A) generate H, we have Yh = Y for any h in H .  By the local 
connectedness of S it is easy to show that ply: Y 4 X is also a covering 
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Figure 4.2. 

map. Since X is simply connected, pl Y is bijective. On the other hand, all 
QOh (h E kerf3) lie in Y, are disjoint (cf. proof of Lemma 4.10), and their 
images are in Ro. Hence kerf3 = {e), proving the lemma. 

Thus the proof of Theorem 4.2 is complete. 

In principle the proof of Theorem 4.2 enables us to give an explicit pre- 
sentation of an arithmetic group in terms of generators and relations, if a 
"good" fundamental set is known. In this regard, let us take the classical 
example of SL2 (Z). 

EXAMPLE (GENERATORS AND RELATIONS FOR SL2(Z)): As we have seen 
(cf. §4.2), X = SL2(R)/S02(R) can be identified with the upper half- 
plane P. r = PSL2(Z) = SLz(Z)/{fe) acts on the right on P and its 
fundamental domain is D = { z E P : lzl > 1, lsRzl < 112 ) (Proposi- 
tion 4.4). The closure D satisfies conditions (i) and (ii) given in the proof 
of Theorem 4.2, but is not open in P. Nevertheless, we shall consider 
A = AD = {S E r : D n D6 # 0).  The translations of D by elements of 
this set are depicted in Figure 4.2 (above). 

Clearly if we were to pass from D to a slightly larger domain Dl, then 
A,! = ( 6  E r : Dl n D'S # 0) would still be A. On the other hand, the 
proof of Theorem 4.2 can be applied to Dl. From this it follows that A 
is a set of generators of r, and all the relations are consequences of local 
relations. It  is obvious from Figure 4.2 that 1 A1 = 10; therefore, if we were 
to  try to apply the method used in the proof of Theorem 4.2 directly, we 
would have to work with 10 generators and to analyze 10 x 10 = 100 local 
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relations. To shorten this process we shall apply some additional geometric 
considerations. 

Recall that P is a model of the Lobachevsky geometry, in which rays 
perpendicular to Ox and semicircles with centers on Ox serve as straight 
lines. Thus, D is a non-Euclidean triangle with two finite vertices (el, ez) 
and one vertex at infinity. Also, r acts on P by isometry, so the transla- 
tions ~y (y E I?) are also triangles which yield a simplicial partitioning 
of P, i.e., either two triangles do not intersect or they have a common 
vertex; the proof follows from the fact that the triangles adjacent to D in- 
tersect D as required (cf. Figure 4.2). Then, by a slight modification of the 
proof of the first part of the theorem, we can show that r is generated by 
those y for which D and ~y have a common side. (Alternately, one could 
note that the subgroup generated by such y contains A, cf. below.) In 
the case under consideration, the set of such y consists of three elements: 

T = 1: 1 (the transformation corresponding to (: ) ), T-' = [: ;' ] 
and SL [ y  i l ] .  Geometrically, the transformation T is a translation of 

one unit parallel to the Ox axis, and S is the composition of the inver- 
sion with respect to the circle lzl = 1 and the reflection relative to the 
Oy -=is. With this description it is easy to show that triangles adjacent 
to D can be obtained from D by the transformations shown in Figure 4.3 
(below). 

The local relations introduced in the proof of Theorem 4.2 have the form 

-2 - 1 0 1 2 

Figure 4.3. 
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Sl& = $3, where 63 = 6162 and 61, 62, 63 E A. First we shall analyze the 
local relations in which either 61 or 62 equals S .  A quick glance at  the 
various possible relations shows that they are all consequences of S2 = e. 

Before passing to the general case, we must make one remark. If ~1 and ~2 

are finite vertices of D, then for any 6 in A we have { el, e2 )6n{ el, e2 ) # 0, 
which is a consequence of ~6 n D # 0 and of the fact that the action of r 
is simplicial. Since Q ~ S  = ~ 2 ,  e2S = e l ,  then for any 6 in A the following 
condition is satisfied: S6, SS E A and either 6, or S6 and 6 s  stabilize one 
of the points e l ,  ~ 2 .  

Now we shall show that, modulo the relations containing S, any local 
relation reduces to a relation in which 61 and 62 stabilize one of the vertices. 
Indeed, let S162 = 63 and let 61, 62, 63 E A. Multiplying 63 by S if 
necessary, we may assume that el63 = el (or e263 = ~ 2 ,  which can be 
treated analogously). If e1b2 = el, then elSl = el ,  and there remains 
nothing to prove. 

Let us show that the case = ~2 does not occur. It suffices to establish 
that under these conditions 

Obviously b36,' cannot stabilize any of the vertices, so we must show that 
the following relations are impossible: 

If (4.17) were to hold, then ~1 = ,9163 = ,0262 = e2, contradiction. If (4.18) 
were to hold, then ~263  = ~162 ;  but it is easy to verify that { e16 : e26 = e2 ) 
consists of the points el, e3, ~ 4 ,  and is disjoint from { e2S : e16 = el ), 
which consists of the points ~ 2 ,  es, e~ 

So, let 6162 = 63 and el63 = el, but el62 # el .  Let us rewrite the 
corresponding local relation as (61s) (Sb2) = b3. Since e2S2 # ~ 2 ,  then 
el(S6z) = el and el (61s) = el .  Thus, we may assume all 61, 62, S3 
stabilize ~1 or ~ 2 .  

LEMMA 4.12. The stabilizer of el (resp., e2) in r is the cyclic group of 
order three generated by TS (resp., ST). 

PROOF: If g = ( E  :), then zg = s. Then el9 = el can be rewritten 
2 as cel + (a  - d ) @ ~  - b = 0. But el = and the minimal polynomial 

of el over Q has the form t2 + t + 1 = 0. Therefore, if a ,  b, c, d E Z and 
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det (: :) = 1, then either b = c = a - d = 0, which corresponds to the 

identity transformation, or b = f 1, c = ~ 1 ,  a - d = ~ l ,  which corresponds 

to ( y  1:) , f (: il). All that remains is to note that 

The stabilizer of ~2 can then be computed using p1S = pa. This completes 
the proof of the lemma. 

It  follows from Lemma 4.12 that the local relations in which all letters 
stabilize one of the vertices reduce to (ST)3 = e. Thus, PSL2(Z) is given 
by the generators S, T and the relations SZ = (ST)3 = e. Likewise, SL2(Z) 
is given by the generators S, T ,  U and the relations S2 = (ST)3 = U and 
U2 = e .  

It  is clear even from this example that Theorem 4.12 does not completely 
solve the problem of finding an explicit presentation of arithmetic groups in 
terms of their generators and relations. For numerous examples of explicit 
presentations of (arithmetic) groups in terms of generators and relations, 
see Coxeter and Moser [I]. From the point of view of the theory of algebraic 
groups, the explicit presentation of the group Gz for a Chevalley group G 
found by Behr [5] is of interest. Namely, if G is a simply connected almost 
simple Chevalley group, constructed using a root system R, then Gz is 
generated by x,(a E R) and, for the case R # All is defined by 

where, in the first equation a, p range over all roots p # -a; and in the 
second equation a is some long root, [x,, xp] is the commutator of x, and 
xp, and N~:;' is some integer (about which one can obtain more detailed 
information from Lemma 15 of Steinberg [2]). For the case R = Al, i.e., 
G = SLz, the first of the above relations should be replaced by 

If G = SL, then Behr7s result gives the well-known generation of SL,(Z) 
by elementary matrices. In this connection, we should mention a result 
of Carter-Keller [I], according to which any element of SL,(Z) can be 
written as a product of elementary matrices the number of which does not 
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exceed some constant (the result also holds when Z is replaced by the ring 
of integers 0 of an algebraic number field). 0. I. Tavgen [3] generalized 
Carter and Keller7s result to arbitrary Chevalley groups of rank > 1 (taking 
"root" generators x, instead of elementary matrices). An analogous result 
was obtained by K. Ch. Zakiryanov [l] for the case G = Sp2, (n > 3). 
He, however, used a larger system of generators and, moreover, asserted 
erroneously that Sp4(Z) does not have bounded generation with respect to 
the elementary symplectic matrices. 

In general an abstract, finitely generated group r is called a group with 
bounded generation if there is a finite generating set X c r such that any 
g in r can be written as g = xyl . . . xp', where xi E X ,  ai E Z and 1 is 
bounded by a constant, independent of g. 

PROBLEM: What arithmetic groups have bounded generation? 

From Tavgen [3] it follows these are, for example, the arithmetic sub- 
groups of Gz, where G is a Chevalley group of rank > 1. On the other 
hand, he shows there that SLz(Z) and SL2(0d), where C3d is the ring 
of integers of the imaginary quadratic field Q(a) (d > 0), do not 
have bounded generation. A comparison of these facts with known results 
on the congruence problem (cf. $9.5) suggests that, among the arithmetic 
subgroups of simply connected simple algebraic groups, the groups with 
bounded generation are exactly those with the affirmative solution of the 
congruence problem (i.e., for which the corresponding congruence kernel is 
finite). Further development of this line of reasoning will most likely lead 
to a new approach to the congruence problem. 

To complete our discussion of generators and relations of arithmetic 
groups, we must call the reader's attention to the fact that this subject 
can be treated in terms of the general theory of discrete transformation 
groups (cf. the survey of Vienberg and Schwarzman [I]). It  should also be 
emphasized that many groups studied in this theory-in particular, discrete 
groups generated by reflections and groups with a simplicia1 fundamental 
domain (cf. the example above)-turn out to be non-arithmetic. 

The next result goes back to Jordan's classic work (cf. Debone et al. [I]), 
which established that SL,(Z) has only a finite number of non-conjugate 
finite subgroups. 

THEOREM 4.3. Let G be an algebraic group defined over Q. Then there 
are finitely many conjugacy classes of finite subgroups of GZ. 

PROOF: Putting r = Gz, we shall use the notation introduced in proving 
Theorem 4.2 for this situation. In particular, K is a maximal compact 
subgroup of GR, X = GR/K and R c X is a subset such that 

(1) X = RF and 
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(2) A = { 6 E l? : R6 n R # 8 ) is finite. 

Let Q c r be a finite subgroup. By virtue of the fact that any compact 
subgroup of Gw is conjugate to K (Proposition 3.10), there is g in Gw satis- 
fying gQg-' C K .  That means x = K g  E X is fixed by the transformations 
of O. Write x = xoy, where xo E R, y E r .  Then xo is fixed by yQy-l, 
so xo E R n R6 for any 6 in yey-', which means yOy-' c A. Thus, any 
finite subgroup of r is conjugate to a subgroup contained in the finite set 
A. Q.E.D. 

REMARK: Theorem 4.3 can also be proved by using Theorem 4.9 and 
proceeding as in the proof of Proposition 3.5 (cf. also the proof of The- 
orem 5.10). 

Now we are in a position to prove the invariance of the class of arithmetic 
subgroups under arbitrary surjective morphisms. 

THEOREM 4.1. Let cp: G + H be a surjective Q-morphism of algebraic 
groups. If r is an arithmetic subgroup of G then cp(r) is an arithmetic 
subgroup of H.  

PROOF: It suffices t o  show that cp(Gz) is arithmetic in H ;  moreover, if we 
choose a suitable realization of HI we may assume that cp(Gz) C Hz (cf. 
remark following Proposition 4.2). We must prove that [Hz : cp(Gz)] is 
finite. 

First we reduce to the case where G is either reductive or unipotent. Let 
G = CU be the Levi decomposition of G, where U = R,(G) is the unipotent 
radical of G and C is a reductive group. Put D = cp(C) and V = cp(U); 
then H = DV is the Levi decomposition of H .  If we assume [Dz : cp(Cz)] 
and [Vz : cp(Uz)] are finite, then by an elementary argument (cf. proof 
of Lemma 4.7) we can establish the finiteness of [DzVz : cp(CzUz)]. By 
Corollary 2 of Proposition 4.1 [Hz : DzVz] is finite; hence [Hz : cp(CzUz)] 
is finite, and thus [Hz : cp(Gz)] is finite. 

Now let G be unipotent. Then Gw/Gz is compact (Lemma 4.7). Since 
HR = cp(Gw) by Theorem 3.6, Corollary 3, Hw/cp(Gz) is compact. On 
the other hand, Hz/cp(Gz) is closed and discrete in Hw/cp(Gz), whence 
[Hz : cp(Gz)] is finite, as required. 

It  remains to consider the case where G is reductive. Here we appeal 
to Theorem 4.9. So, let H c GL,(C). Using the embedding GL,(C) -+ 

GLnI1(C) given by A r (: (deti)-l) if necessary, we may assume that 

H is Zariski-closed in Mn(C). Let us define an action of G on V = M,(C) 
by Ag = Acp(g), the usual matrix product. Then H = Encp(G) is a closed 
orbit of G, and Hz is the union of a finite number of orbits of Gz, by 
Theorem 4.9. But, as is easily seen, these orbits are the cosets of cp(Gz) in 
Hz, from which it follows that [Hz : cp(Gz)] is finite. Q.E.D. 
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The above results represent the first step towards the study of the ab- 
stract properties of arithmetic groups. In the chapters that follow we shall 
present deeper results related, in particular, to the description of normal 
subgroups of arithmetic groups. Note, however, that they are based on far 
more intricate machinery. 

Before formulating the density theorem we shall specify several classes 
of semisimple groups with basically different arithmetic properties. (These 
classes will occur in the statements of many theorems in this book.) 

DEFINITION: A Q-algebraic group G is said to have compact type if the 
group of real points G H ~  is compact. For G semisimple, G has noncompact 
type if G i  is noncompact for each Q-simple factor Gi of G. If G has neither 
of the above types, then G is said to have mixed type. 

. 2 ,  

semisimple Q-group of noncompact type. Then any arithmetic subgroup 
r c G is Zariski-dense in G. 

PROOF: Suppose we have proven the theorem for Q-simple groups. Then 
i' 3 r n Gi = Gi for each Q-simple factor G%f G; hence F 3 n Gi = GI 

i as desired. Having reduced the theorem to the case G is Q-simple, we need 
the following fact, to  be verified in the next section: 

For G a semisimple Q-group, if GR is noncompact 
(4'19) then Gz is infinite. 

(Note that the converse is also true, since if GR is compact, then Gz, being 
a discrete subgroup, must be finite.) 

Note that if rl C r2 are subgroups of G and [r2 : rl] is finite, then 
[F2 : i'l] is also finite, where i'i denotes the closure of Ti. Indeed, if 

d rz = Ui=, r l y i  then r 2  = (Jzd,' Flyi1 i.e., [r2 : TI] 5 d. It  follows that the 
connected components (i'1)O and (F2)O coincide. More generally, if rl and 
r2 are commensurable, then 

Now we can complete the proof of the theorem. Without loss of generality 
we may assume that r C Gz. Then it follows from (4.19) and the above 
remark that H = i' is an algebraic Qgroup of positive dimension. For any g 
in GQ, the group grg-' is arithmetic (cf. Proposition 4.1, Corollary 1); thus 
grg-' is commensurable with I?. Hence H0 = (F)O = (grg-l)O = gHog-l. 
Thus, HO is normalized by GQ. Since the normalizer Nc(HO) is a closed 
subgroup, and GQ is dense in G (Theorem 2.2), we see Nc(Ho) = G ,  
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i.e., H0  is a normal subgroup of G. Since G does not have any Q-normal 
subgroup of positive dimension, we conclude H0  = G. Q.E.D. 

REMARK: Although the proof of the Density Theorem presented above 
uses the fact that r is arithmetic, and does not carry over to other types of 
subgroups of G, the result itself holds in far more general cases. Namely, 
any closed subgroup r c Ga (in the real topology) for which G w / r  has 
finite invariant volume is Zariski dense in G (cf. Raghunathan [5, Ch. 51). 
In particular, any lattice r c Gw, i.e., any discrete subgroup, for which 
G a / r  has finite volume, is Zariski dense. (The fact that an arithmetic 
subgroup of a semisimple Q-group is a lattice will be established in 54.6.) 

We conclude this section with an amusing converse of Corollary 1 of 
Proposition 4.1. For a semisimple Q-group G and its arithmetic subgroup 
r we define 

C(T) = {g E G : T is commensurate with g-'fg} 

(treating G as Gc). Since commensurability is an equivalence relation, 
it is easy to obtain that C ( r )  is a subgroup of G, which is called the 
commensurability subgroup of r .  It  should be noted that C ( f )  is actually 
independent of f ,  for the same reason. Since clearly r c C(l?), then C ( r )  
stands out as the universal repository of all the arithmetic subgroups of G. 
A description of C ( r )  is given by the following: 

PROPOSITION 4.6. Let G be a semisimple algebraic group over Q,  let N 
be its largest invariant Q subgroup of compact type, and let K: G -+ GIN 
be the corresponding projection. Then C ( r )  = T-' ((G/N)Q). 

PROOF: Let G1,. . . , G' be the Q-simple factors of G. Then N is generated 
by those Gi for which G i  is compact and by the centers of the remaining 
factors. Let H be the normal subgroup generated by those Gi for which Gk 
is noncompact. Clearly G = H . N and H n N is finite; i.e., H x N + G is 
isogeneous. Since H n T  and N n f  are arithmetic in H and N respectively, 
Theorem 4.1 implies ( H n r ) ( N n f )  is arithmetic in G. Since NR is compact, 
N n r is finite, so H n r is a subgroup of finite index in I?. As noted above, 
it follows that C ( f )  = C(f  n H) .  In view of the fact that the restriction of 
T to H is isogeneous, it is easy to see that C ( r  n H) is the inverse image 
under T of the commensurability subgroup of ~ ( f  n H )  in GIN.  

Thus, we have reduced the proof to the case N = {I}; in particular, 
Z(G) = (1). We shall show that in this case C ( r )  = GQ. The Zariski 
closure is G, by the Density Theorem; moreover, without loss of generality 
we may assume r C Gz. Fix an embedding G C GLn(C) and let @[A] 
denote the (C-span of A c G, i.e. the subspace of Mn(@) spanned by A. 
Then, since I? = G, we have @[r] = @[GI. Moreover, if g E C(r ) ,  then 

l? n g-'fg has finite index in I?, and therefore also r n g-'rg = G, whence 
Q[ r ]  = Q[r  n g-lrg]. Therefore for any g in C ( r )  

Consider the adjoint representation Q: G + GL(V) in V = @[GI, given by 
e(g)v = gug-l. Since VQ = Q[r] ,  (4.20) yields e (C(r ) )  c Q(G)Q. But 
Z(G) = {I) by assumption, so Q is faithful and C( r )  c GQ. The reverse 
inclusion is obtained from Corollary 1 of Proposition 4.1. Proposition 4.6 
is proved. 

It  follows from Proposition 4.6 that any arithmetic subgroup of a semi- 
simple adjoint group G of noncompact type must be contained in GQ. On 
the other hand, if G = SL,(C), then the subgroup r generated by SLn(Z) 

/ s  o \  
and ( ... ) ,  where s is a primitive n-th root of unity, is an arithmetic 

\ o  s/ 
subgroup of G. Clearly f @ GQ, for n > 2. Here the commensurability 
subgroup is 

1 { (det A) I/" A : A € G L , ( Q )  

4.5. Compactness of Gw/Gz. 

The reduction theory set forth in 554.2-4.3 has already enabled us to 
derive several structure theorems on arithmetic groups. We shall use time 
and again the construction of fundamental sets, discussed there. However, 
this construction does not enable us to answer all the questions that arise 
in reduction theory. In particular, it does not give a criterion for Gw/Gz 
to be compact, which is important in studying cohomology of arithmetic 
groups. In the present section we examine this problem, beginning with a 
look at algebraic tori. It  turns out that the general case here reduces to 

(1) norm tori S = RKIQ(G,), where K is a finite extension of Q (cf. $2.1.7 
for the definition of a norm torus). Constructing fundamental sets for such 
tori is equivalent to proving Dirichlet's unit theorem. The method which 
we shall use is of a fairly general nature and is applicable to other groups, 
arising from division algebras. 

PROPOSITION 4.7. Let K be a finite field extension of Q, and let S = 

R::~(G,) be the corresponding norm torus. Then SI/Sz is compact. 

PROOF: Put V = K @Q R and let N denote the natural extension of the 
norm map NK/Q to V. It is well known that for any a in V, N(a) coincides 
with the determinant of the left translation x I+ ax (x E V). It follows 
(cf. 53.5) that translations by elements of S = { x  E V : N(x) = 1) 
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preserve the Haar measure p on the additive group V. Let 0 be the 

ring of integers of K .  Then 0 is a lattice in V; in particular, V/O is 
compact and p(V/0) < oo. Choose a compact subset B of V satisfying 
p(B) > p(V/0),  and put C = {b l  - b2 : bl ,b2  E B ) .  If a E SR, then 
p(aB) = p(a-I B) = p(B) > p(VI0);  so the restrictions of the natural map 
V -. V/O to a B  and a-I B cannot be injective. Consequently, there are 
c, d E C such that a = ac and p = a-'d lie in 0 .  Then a@ = cd E C2 f l 0 .  
Since this intersection is both compact and discrete, it is finite. We shall 
need the following straightforward assertion: 

LEMMA 4.13. For any y # 0 in 0 ,  there are only finitely many nonassociate 
factorizations y = ap  (a, ,b' E 0 ) .  

(Recall that two factorizations y = alpl = a2p2 are said to be associate 
if there exists a unit E E O* such that a 2  = E a l  and pl = E P ~ . )  

Lemma 4.13 implies that if we consider all the possible factorizations 
y = ap  of all elements y E C2 n 0, where a ,  p E 0, then there are 
only finitely many non-associate possibilities for ,O. Since the norm of 
any unit E E 0* is f 1, there is a finite number of PI , .  . . , /3, E 0 such 
that any of the p under consideration has the form /3 = Pis for suitable 
E E 0* nS = Sz. On the other hand, by definition P = a-Id, where d E C.  
Hence a = dp,l&-l, and therefore 

Since C is compact, it follows from this decomposition that Sw/S;z is com- 
pact. The proposition is proved. 

Dirichlet's unit theorem can be derived easily from Proposition 4.7; how- 
ever we shall present the appropriate argument somewhat later, after first 
establishing the compactness criterion of Sw/Sz for an arbitrary torus S. 

THEOREM 4.11. Let S be an algebraic torus over Q. Then the following 
conditions are equivalent: 

(1) S is Q-anisotropic, 
(2) SR/Sz is compact. 

PROOF: 2) + 1). Suppose S were not Q-anisotropic. Then there exists a 
Q-epimorphism cp: S -+ G, = T.  Since cp(Sw) has finite index in Tw (Theo- 
rem 3.6, Corollary 3), TR/cp(Sz) must be compact if Sw/S~ is compact. On 
the other hand, cp(Sz) is an arithmetic subgroup of T (Theorem 4.1) and 
thus is a finite group, since Tz 1: Z* = {f 1). Therefore Tw/cp(Sz) cannot 
be compact, since Tw R* is not compact. 

1) + 2). It is well known (cf. Proposition 2.2) that there exists a Q- 
epimorphism cp: T + S, where T is a quasi-split torus, i.e., has the form 

d 
T = I1 RK,/~(G,) ,  where Ki are finite field extensions of Q. Since S is 

i=l 
d 

Q-anisotropic, the restriction of cp to  To = R$!/~(C,) is surjective. By 
i=l 

Proposition 4.7 (To)a/(To)~ is compact, therefore also cp((T~)~)/cp((To))~ 
is compact. But in view of [Sw : cp((To)w)] being finite and p((To)z) being 
arithmetic in S, we conclude that Sw/Sz is compact. Q.E.D. 
COROLLARY 1. (Dirichlet unit theorem) Let S be an algebraic torus over 
Q. Then SZ is isomorphic to the direct product of a finite group and a free 
abelian group of rank equal to rankw S - rankQ S .  

PROOF: Let S1 and S2 respectively be maximal split and maximal Q 
anisotropic subtori of S .  Since ( S I ) ~  is a finite group, applying Theorem 4.1 
to the isogeny SI x S 2  --, S we obtain that the index of ( S 2 ) ~  in Sz is 
finite. However, rankw S -  rank^ S = (rankw SI + rankw S2) - (rankQ S1 + 
rankQ 5'2) = rankw S 2 ,  since rankw S1 = rankQ S1 = dim S1. In view of 
general results on abelian groups, it suffices to establish that (S2)z is the 
direct product of a finite group by Zr, where r = rankR S2. 

Thus, we have reduced the proof to the case S is a Q-anisotropic torus. 
It  follows from the discussion in 52.2.4 that any torus over R is isomorphic 
to the product of copies of G,, &/,(G,) and R:jw(Gm). Hence there 
exists an isomorphism Sw N Rr x D l  where r = rankw S and D is a compact 
group. On the other hand, SR/SZ is compact, by Theorem 4.11. Therefore 
our assertion follows from the following well-known fact, which, in view of 
subsequent applications, we state in a form somewhat more general than 
necessary to prove the corollary. 

LEMMA 4.14. Let T be an abelian topological group of the form Za x 
Rb x Dl  where D is a compact group. Then any discrete subgroup r of G, 
such that G / r  is compact, is isomorphic to Za+b x F for a suitable finite 
group F. 

PROOF: Reduces easily to the case G = Wn, which is handled in Bourbaki 
P I  Ch. 71 §I,  ll 11. 

Now take S to be the torus RKlq(Grn), where K is a finite field extension 
of Q. Over R we have S N G& x &la(G,)t, where s and t are the 
numbers of real valuations and pairwise nonconjugate complex valuations 
of K, respectively; so ranka S = s + t .  But ranka S = 1 and therefore we 
obtain the classic statement of Dirichlet's unit theorem: 
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where F is the group of all roots of unity in K. In the next chapter we 
shall generalize this result for S-units. 

Also we can prove the assertion which we used in the previous section. 

COROLLARY 2. Let G be a semisimple Q-group. Then Gz is infinite if and 
only if Gw is noncompact. 

PROOF: If GR is compact, then Gz is a discrete subgroup of a compact 
group, and consequently is finite. 

To prove the converse, suppose GR is noncompact. If G is isotropic over 
Q, then there is a one-dimensional unipotent Q-subgroup U of G, so Uz 
is infinite and we are done. Now let G be Q-anisotropic. Since Gw is 

noncompact, i.e., R-isotropic, there exists a maximal R-defined R-isotropic 
torus T c G. By Proposition 7.3, Corollary 3, there is a maximal Q-torus 
S c G which is also isotropic over R. (The proof of that assertion follows 
from the rationality of maximal toric varieties and does not depend on any 
results from this chapter.) But then by Corollary 1, Sz is infinite. 

Another proof of Corollary 2 may be found in the next section. 

The conditions in Theorem 4.11 (that Sw/Sz be compact and that S be 
Q-anisotropic) are actually equivalent for arbitrary algebraic groups, as is 
shown by the following theorem. 

THEOREM 4.12. Let G be an algebraic group defined over Q. Then the 
following conditions are equivalent: 

(1) Gw/Gz is compact; 
(2) the reductive part of the connected component of G is anisotropic 

over Q. 

(Note that (2) may also be formulated as X ( G O ) ~  = (1) and each unipo- 
tent element of GQ belongs to the unipotent radical of G.) 

PROOF: It suffices to consider the case G connected; let G = HR,(G) be its 
Levi decomposition. Then Gw/Gz being compact is equivalent to Hw/Hz 
being compact. The latter assertion follows from Lemma 4.7 combined 
with 

LEMMA 4.15. Let H be a reductive subgroup of a connected group G, 
where G and H are defined over Q. Then HR/Hz is closed in Gw/Gz. 

PROOF: By the stronger version of Chevalley's theorem, there is a Q- 
representation Q: G -+ GL(V) and a vector v in VQ such that the stabilizer 
of v under Q is H .  Thus W = ve(Gz) is contained in a lattice in VQ (cf. re- 
mark following Proposition 4.2), and as a result is closed in VR. Therefore 
HwGz = Gw n e-l (W) is also closed in GR. The lemma is proved. 

Thus, it suffices to consider the case where G is reductive. In this case 
1) + 2) follows easily from Lemma 4.15. Indeed, if G is Q-isotropic, 
then it contains a nontrivial Q-split tori S. Then SR/SZ is noncompact 
(cf. Theorem 4.11) and is closed in GR/GZ; so the latter cannot be compact 
either. 

To prove 2) + 1) we first reduce the problem to the case of a semisim- 
ple adjoint group. Let Z = Z(G), the center of G. Then its connected 
component S is a Q-anisotropic torus, and therefore Sw/Sz is compact 
(Theorem 4.11). Since [ZR : SR] is finite, Zw/Zz also is compact. 

Put H = G/Z and let r denote the canonical projection of G on H. 
Consider, moreover, the map p: G R / G ~  -, r(Ga)/r(Gz) induced by T. 
The compact group B = Zw/& acts by translation on GR/GZ, and it is 
easy to see that the orbits of B are precisely the fibers of p. It follows 
easily that cp is proper. In view of the fact that [HR : r(Gw)] is finite and 
p(Gz) is arithmetic, we see that the compactness of Gw/Gz is equivalent 
to the compactness of Hw/Hz. We shall actually prove the latter, but first 
let us establish a criterion for compactness of a subset of GLn(R)/GLn(Z). 

PROPOSITION 4.8 (MAHLER'S CRITERION). A subset R c GLn(R) is 
relatively compact modulo GLn(Z) if and only if 

a) det g is bounded for all g in R, 
b) R(Zn \ (0)) n U = 0 for U a suitable a neighborhood of zero in Rn. 

PROOF: If the image of R in GLn(R)/GLn(Z) is relatively compact, then 
there is a compact D C GLn(B) such that R c D . GLn(Z). It clearly 
follows that det g is bounded for all g in R. Furthermore, 

since Zn is discrete and D is compact, the right hand side is closed in Rn and 
does not contain zero, from which one obtains the required neighborhood 
U .  

Conversely, assume conditions a) and b) hold, and let C = C,,, (for 
t > 2, v > 1) be a Siege1 set of GLn(R). We know (Theorem 4.4) 

%'3 - 
that C . GLn(Z) = GLn(lR); therefore there is a subset 8 c C such that 
8GLn(Z) = RGLn(Z). Hence, R(Zn \ {0)) = 8(Zn  \ {0)), so that a) and 
b) also hold for 8 ,  and it suffices to establish the relative compactness of 
8 .  

Note that b) means there is c > 0 such that 1lg(x)11 > c for all g in 8 
and all x in Zn \ {O), where / 1 1  is the Euclidean norm in Rn. In particular, 
11g(el)ll = Ilas(el)ll = a1 > c, in the notation of 84.2 where g = kgagug is 
the Iwasawa decomposition of g in 8 ,  and e l , .  . . , en is a fixed orthonormal 
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that the second integral is finite. First of all, we note that via the map 

A. is identified with the group (R>O)n-l, and ( A O ) ~  is sent to 

{ ($1,. . . ,xn-1) E ( I W > O ) ~ - ~  : xi < t for all i). 

Furthermore, we can write Q in terms of the coordinates XI , .  . . , xn as 

where the ri are positive integers. Since the (multiplicative) Haar measure 
on IW'O is %, we have 

and each integral xT-'dx = $tT is finite for r > 0. Q.E.D. 

Broadly speaking, the situation for an arbitrary semisimple group G 
is similar. Namely, since GR is unimodular (by the corollary to Theo- 
rem 3.18), GR/Gz carries an invariant measure; and to prove that the 
corresponding volume of Gw/Gz is finite, it suffices to find a measurable 
subset of Ga which covers Gw/Gz and has finite volume. We show first 
that the fundamental set in Gw relative to Gz constructed in $4.3 is actu- 
ally contained in the union of a finite number of translations of a suitable 
Siegel set in Ga, and then we establish that any Siegel set has finite volume. 
(This part of the argument hardly differs from the case of SL,.) 

So, let G c GLn(C) be a semisimple Q-group. In $4.3 we showed that 
for a fundamental set in Ga relative to Gz we can take a set of the form 

where C is a Siegel set in GLn(R), b runs through a finite set of ma- 
trices from GL,(Z), and a E GLn(R) is such that H = a-lGa is self- 
conjugate. To prove Theorem 4.13 our choice of a must be subject to 
stricter constraints, namely it should satisfy all the conditions listed in 
Proposition 3.14. Below we shall use the notation introduced there. In 
particular, let S = H n D n  be a maximal R-split torus of H and U = HnUn 
a maximal unipotent subgroup. Also, let R denote the root system of H 
relative to S,  and let II c R be the system of simple roots corresponding 
to U. Since a-l (aCb n Gw)a = Cba n HR, the finiteness of the volume of R 
follows from 

PROPOSITION 4.9. Cx n HR has finite volume in the Haar measure of HR, 
for any Siegel set C c GL,(W) and any x in GLn(W). 

The proof is based on the construction of relative Siegel sets for H .  Let 
Hw = K*A*U* be the Iwasawa decomposition of HR (cf. Theorem 3.9), 
in which K *  is a maximal compact subgroup of HR, A* is the connected 
component of Sw, and U* = UR. A Siegel set C;,, in HR (where t > 0, 
w c U* is a compact subset) is the product K*A;w, where 

A,* = { a  E A* : a (a )  5 t for all a E II). 

Clearly, for G = SL, a relative Siegel set amounts to some intersection 
G n C, where C is a suitable Siegel set in GLn(R). An easy argument 
shows that under our conditions the same statement also holds for H .  
Indeed, let h E Ct,, fi H .  Then the Iwasawa decompositions of h in HR and 
in GLn(IW) coincide. Since condition (iii) of Proposition 3.14 is satisfied, 
the simple roots of H are of the form a = + ... + dn- l~n- l ,  where 
di > 0 and the ~i are simple roots of GLn(C). Therefore we can find a 
constant s > 0 such that a(ah)  I s for all h in Ct,, n HR and all a in 
II; then Ct,v n HR c CQ*,,, where w = (UnR), n HR. A similar argument 
also proves the converse (although we shall not need it): any Siegel set of 
H is contained in a suitable Siegel set of GLn(IW). Proving the analogous 
assertion for translations of Siegel sets is the most technical and intricate 
step in the proof of Proposition 4.9. 

PROPOSITION 4.10. Let C be a Siegel set of GLn(R), and let x E GLn(W). 
Then there is a Siegel set C* c HR and a finite set of elements xi E HR 
such that 

Cz  n HR c U C*xi. 
i 

Given this result, to  prove Proposition 4.9 we have only to prove 

PROPOSITION 4.11. The volume of any Siegel set C* = C;,, under the 
Haar measure of HR is finite. 

PROOF OF PROPOSITION 4.11: Relies on the formula for the Haar measure 
of HR, which is analogous to the formula for SLn(R) and also can be 
obtained from the results of $3.5: 

where dk*, da* and du* are the Haar measures on K* ,  A* and U*, respec- 
tively, and Q is the sum of the positive roots of R. As in the case of SLn(R), 
we have 
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since the first and third integrals are taken over compact sets, they are 
finite. To compute the second integral let us consider the map cp: A' -+ 

(R>o)d for d = In(, given by p(a) = ( ~ ( a ) ) , ~ ~ .  It  is easy to see that cp is 
a group isomorphism; in addition 

Moreover, Q = Cb,a for positive integers b,. Therefore we have 

The proposition is proved. 

Before proving Proposition 4.10 we must first establish an auxiliary as- 
sertion on translations of Siegel sets in GL,(W). 

LEMMA 4.16. Let C be a Siegel set of GL,(R) and let x E GL,(R). Then 
for any s > 0, Cx n KAs Unn is contained in a Siegel set of GL, (R). 

The proof does not involve H and its subgroups; therefore, in order not 
to complicate the notation, we shall return to the notation used in 54.2. 
In particular, instead of Unn we shall write simply U, and let B = AU. 
Clearly, for any b in B ,  Cb and (KAsU)b are contained respectively in a 
suitable Siegel set and in a set of the form KA,U. Since any x in GL,(R) 
has a Bruhat decomposition x = v;wbx (v; E U, bx E B,  w E W), it 

suffices to prove the lemma for x = w E W. Let n be the permutation of 
{ I , .  . . , n) corresponding to w. Put  I = { (i, j )  : i < j ,  and n i  > n j  }, and 
let S denote the torus { x  = diag(xl, . . . , x,) : xi = x j  for all (i, j )  E I ). 
Let F be the commutator group of the centralizer CGL, (S), let T = D,nF, 
and let U' = U n F .  Also put A' = (TR)O, A" = (SR)O, U" = { u  = (uij) E 

U : uij = 0 for all (i, j )  E I). We shall need the following simple fact, 
whose proof is left as an exercise for the reader: the product morphism 
induces an isomorphism A' x A" - A and a homeomorphism U' x U" -- U. 
Let 6' and 6" denote the projections of A on A' and A" respectively. 

LEMMA 4.17 

(1) w centralizes S ;  
(2) the set G1(wAtw-' n A,) is compact for any s, t > 0. 

PROOF: 1) Let {1, . . . , n) = Jl U . . - U J,  be the partitioning into dis- 
joint orbits under a .  The set of elements of Dn commuting with w is 
{ x  = diag(xl,. . . ,on)  : xi = x j  if i ,  j lie in the same orbit). Now let 
x = diag(al,.. . , an )  E S and let J be an arbitrary orbit. If 1 JJ = 1 ,  

then without loss of generality we may assume that J = (1,. . . ,1). Take 
f I 1 such that a1 = ... = af-,, but af # af-1. Since the subsets 
{ j t J : j < f } and { j E J : j > f } can not be invariant under n, we 
can find j, k E J such that j < f < k and nk I f 5 a; in addition 
~k < .Irj. Clearly (j ,  k) E I; therefore a j  = ak, by definition of S. If 
n ( f )  > n(k), then (f ,k)  E I, whence af = a x  =a, ;  i fn ( f )  I r ( k )  < n ( j ) ,  
then ( j ,  f )  E I and again of = a,. Thus, in all cases af = a,, contradicting 
our assumption, since j < f .  

2) Since A' and A" are invariant under w, we see that 6'(wAtw-'nA,) = 
wbl(At nw-'A,w)w-'; thus we only need to establish that #(At nw-' A,w) 
is bounded. To do so, consider cp: A + (R>o)d, for d = 111, given by 

Clearly kercp = A", so cp I A J  gives an isomorphism A' .- cp(A1). Therefore 
it suffices to show that = cp(At n w-'A,w) is relatively compact. There 
are constants to, s o  > 0 such that 2 5 to (resp., so) for all i < j and 

all a = diag(a1, . . . , a,) E At (resp., A,). We claim that c [SO', tO1ld. 
Indeed, by our construction cp(At) c [-oo, told. But if a E w-'A,w, then 
waw-' = diag(a,-I(,),. . . a , - )  E A .  Let (i, j )  E I, i' = r ( i ) ,  and 

(i j1 = n(j) .  Then i' > j', which means = ' 
aj  a=-1 , 2 s i l ,  as desired, 

(3 completing the proof of Lemma 4.17. 

Now we shall complete the proof of Lemma 4.16. We note at  once that 
the proof only requires the boundedness of the u-component of the elements 
of Cw n KAsU. Let g = kau E C. We shall compute the a-component of 
gw. Put m = aua-'w and let m = kmamum be the corresponding Iwasawa 
decomposition. Then we have 

gw = kauw = kmw-law = (kkm)amumw-law. 

Since w-law normalizes U ,  we may equate the a-components to obtain 

Now let gw run through Cw n KA,U. Then it follows from Lemma 4.3 
that the a,,,-1, constitute a relatively compact set. Since a,, E A,, it 
follows from (4.21) that w-law E A,! for sufficiently large s'. Applying 
the second assertion of Lemma 4.17, we obtain that the 6'(a) are bounded. 
Let u = u'ul', where U' E U', u" E U". Then we have 

gw = k6'(a)6"(a)u'~u"w = (kw) (~-~6'(a)u'w)6"(a)w-'u'~w. 
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Note that w-lFw = F since F = [CGL,(S),CGLn(S)] and w centralizes 
with S;  hence h = w-'6'(a)u1w E FR. Then the components of the Iwasawa 
decomposition h = khahuh also lie in FR. Indeed, it is easy to verify that 
if c = diag(el,... , E,), where ei = *Il and if Zc is the centralizer of c in 
GL, and h E (ZC)l,  then the components of the Iwasawa decomposition of 
h also lie in (ZC)w. On the other hand, F can be written as nc Zc, where 
c runs through a suitable set of elements of this form. Taking this into 
account, we can continue the completions: 

It  follows from the above that h runs through a relatively compact set; 
therefore its components, in particular the uh, also run through relatively 
compact sets. The component u" is also bounded, since g t 8 .  It  follows 
that U ~ W - ~ U ~ ' W  is bounded. I t  remains to note that as follows from the 
definition of U" we have the inclusion w-lU"w c U; so uhw-'u"w is 
exactly the u-component of gw. The lemma is proved. 

We also need to generalize the following remark to apply to an arbitrary 
group. Let a E A; then for a suitable w in W we have w-law E A1 (= A, 
for t = 1). In other words 

Indeed, let a = diag(al, . . . ,a,). We can order ai: ail 5 . - .  5 aim. Let IT 
denote the transposition and let w be the corresponding element 

of W. Then 
- w l aw = diag(ai, , . . . , ai,) E A1. 

To generalize this to H  (at this point we return to the notation introduced 
in the beginning of this section), recall that the relative Weyl group W* of 
H is defined as NH (S)/CH (S), where NH (S) (resp., CH (S)) is the normal- 
izer (resp., centralizer) of S in H ;  moreover, representatives of all the classes 
of W* can be taken from NH(S)l ,  SO that actually W* = N ~ ( s ) n / C ~ ( s ) w .  
Also note that W* naturally acts on S by conjugation. 

LEMMA 4.18. 

(1) Representatives of all the classes of W* can be taken from the max- 
imal compact subgroup K*.  

(2) A* = UWEw. w-'A;w. 

PROOF: 1) Let x E N H ( S ) ~  and let x = kau E K*A*U* be its Iwasawa 
decomposition. Then for any b in S we have 

k-'bk = (au)b(au)-' , 

where b = x-lbx E S .  But k-I = 'k, SO k-'bk = 'kbk is a symmetric 
matrix. On the other hand, (au)b(au)-' is an upper triangular matrix. 
Therefore (au)b(au)-I is actually a diagonal matrix and au E NH(S). 
Since the centralizer of any torus in a connected solvable group coincides 
with its normalizer (cf. Bore1 [8]), in fact au  E CH(S). It  follows that x 
and k represent the same class in W*. 

2) Let a E A*. Put P = {a E R : a(a)  1 1). It is easy to see that if 
a l p  E P and a + @  E R,  then a + p  E P and, moreover, P U  (-P) = R. 
Thus, in the terminology of Bourbaki [4] (cf. Ch. 4, fj1.7), P is a parabolic 
set and therefore contains some system of simple roots II' of R. Since W* 
is naturally isomorphic to W(R), and the latter acts simply transitively on 
systems of simple roots, then there is a G in W(R) such that GII' = II; 
hence G P  3 II. Then, if w is an element of W* corresponding to 6, we 
have a(wP1aw) _< 1 for all a in 11, i.e., w-law E Al. Lemma 4.18 is 
proved. 

The argument continues as follows: let y = zx E Cx n HR, and let 
y = klalul be the corresponding Iwasawa decomposition. By Lemma 4.16 
we can find an element w in NHx (A*) n K* satisfying wplalw E A;. Then 
w-lalw E A1, since by assumption, for any i = 1 , .  . . , n- 1, the restriction 
of ~i to S is positive, i.e., ~i = &al where ck 2 0. Furthermore, in the 

aEH 
proof of Lemma 4.14 we established (cf. (4.21)) that 

If we prove that the elements of the form alula;' constitute a relatively 
compact set, then this formula gives us ayw E A, for sufficiently large s, 
1-e., 

It  follows from Lemma 4.14 that there exists a Siegel set El  of GL,(P), 
such that KAI (Un)I n Cxw C CI; then El  f~ Hw c C* for a suitable Siegel 
set C* of HI. Finally, we have yw E C*, i.e., 

where C* is a sufficiently large Siegel set of H ,  w runs through a system of 
representatives of classes of W*, lying in K*. 
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Before showing that the set of elements of the form alula;' is bounded, 
we shall reduce the   roof of Proposition 4.10 to x's of a more special type. 
First, let x = bwu be the "inverted1' Bruhat decomposition of x,  where b is 
an upper triangular matrix, u is an upper unipotent matrix, and w E W. 
Since Cb is contained in some large Siegel set of GL,(W), we may assume 
that b = 1, i.e., x = wu. Furthermore, by Lemma 2.1, we can find a 
Zariski-closed W-set P C Un, invariant under the adjoint action of S, such 
that the product morphism induces the W-isomorphisms P x U 2 Un and 
U x P Un. Write u = pu where p E fi and u E Ur. If we can show that 
Cwp n HR c UiC*xi, then Cx n HR c UiCxiu. Thus, we may assume 
that x = wp, where p E Pp. We shall prove that for x of such a form the 
set { a1uIa;' : y = klalul E Ex n HI } is bounded, thus completing the 
proof of Proposition 4.10. 

So, let y = t x  E Cx n HR; and let z = kau and y = klalul  be the 
corresponding Iwasawa decompositions. We are going to express a', ul  in 
terms of a ,  u, and then use the fact that z is taken from B. We have 

If we set c = w-'aua-'w and then take the Iwasawa decomposition c = 
kcacuc and substitute it in (4.22), we obtain 

whence 

Therefore 

Since z was chosen from a Siegel set, Lemma 4.3 shows that the elements 
of the form aua-' constitute a relatively compact set. This implies that 
the set {c} is bounded, hence so is the set {acuca;' } Now, to obtain that 
{ o1ula;l ) is bounded we have only to note that alula;' is the projection 
of aCu,a;' on UR under the isomorphism UR x fi 1 (U,)w. This completes 
the proof of Proposition 4.10. 

Thus we have proven 

THEOREM 4.14. Let G be a semisimple Q-group, and let r C GI be an 
arithmetic subgroup. Then G R / r  has finite invariant volume. In other 
words, r is a lattice in Gw. 

(Recall that by a lattice in a locally compact topological group G we mean 
a discrete subgroup F C G such that G/F has finite invariant volume.) 

Theorem 4.14 immediately yields another proof of the infiniteness of an 
arithmetic subgroup of a semisimple algebraic Q-group G for which GR is 
noncompact (Theorem 4.11, Corollary 2). Indeed, if GR is noncompact, 
then it has infinite volume with respect to a Haar measure. Consequently 
Gw/F also has infinite volume for any finite subgroup r of GR. On the 
other hand, for an arithmetic subgroup r this volume must be finite. 

The proof of Theorem 4.13 can be derived from Theorem 4.14 by a 
straightforward argument. Namely, to begin with we may assume G to 
be connected. If G is a torus, then the quotient space Ga/Gz is a group, 
and therefore its having finite volume is equivalent to its being compact 
(Proposition 3.23). The latter holds if and only if G is Q-anisotropic, i.e., 
X(G)q = 1 (Theorem 4.11). Thus, Theorem 4.13 holds for this case. 

Now let G be an arbitrary reductive group. Write G as an almost direct 
product G = F S ,  where F is a semisimple Q-group and S is a maximal cen- 
tral torus of G; note that X(G)q = 1 is equivalent to S being Q-anisotropic. 
Put  H = F x S and consider the isogeny cp: H + G. Then HR = FR x Sw 
is clearly unimodular; therefore the unimodularity of Gw follows from the 
finiteness of [Gw : cp(Hw)]. Taking into account the finiteness of ker cp and 
the arithmeticity of cp(Hz), we can easily show that Gw/Gz and HR/Hz 
both have either finite or infinite volume. Since FR/Fz has finite volume 
by Theorem 4.14; then Hw/Hz has finite volume if and only if Sw/Sz does, 
which, as we have seen, is equivalent to S being Q-anisotropic. 

As usual, the case of an arbitrary connected group G reduces to the 
reductive case by means of the Levi decomposition G = HU, where U is 
the unipotent radical of G and H is a reductive group. Then GR = HwUw 
is a semidirect product, and therefore the Haar measure dg of Gw can be 
written as the direct product dg = dh du of the Haar measures dh and du 
on Hw and 4, respectively (cf. Bourbaki [3, Ch. 7, $11, Proposition 141). 
By Lemma 4.7, Gw contains a fundamental set R (relative to Gz) of the 

form R = C@, where C is a fundamental set in Hw relative to Hz and is 
a compact subset of Uw. Clearly R has finite volume if and only if C does. 
On the other hand, it follows from the results in 53.5 that the existence of 
a finite invariant measure on Gw/Gz is equivalent to the unimodularity of 
Gw together with the existence of a fundamental set F c Gw relative to Gz 
having finite volume; then any fundamental set also has finite volume. If 
X(G)q # 1, then X(H)q # 1, and from our consideration of the reductive 
case we conclude that C has infinite volume. Hence R also has infinite 
volume, which means that Gw/Gz cannot have finite volume. Conversely, 
if X(G)q = 1, then X(H)q = 1; hence C and R both have finite volume. 
Thus, it remains to be shown that in this case Gw is unimodular. But this 
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can be proven in exactly the same way as the corollary of Theorem 3.18. 
Indeed, let w be a left-invariant, rational, differential Q-form on G of degree 
n = dimG. Then, as we have seen in the proof of the above-mentioned 
corollary, ef (w) = x(g)w, where es is the right translation by g in G and 
x is a character of G. Since w is defined over Q, it is easy to see that 
x is also defined over Q. Therefore, in this case x = 1, i.e., w is also a 
right-invariant form, and consequently Gw is unimodular by Theorem 3.18. 
This completes the proof of Theorem 4.13. 

In those cases where Gw/Gz has finite volume, we naturally have the 
problem of its exact computation with respect to some canonical Haar 
measure. As we shall see in the next chapter, this problem is closely related 

(1) 
to computing Tamagawa numbers. For a normed torus S = RK,Q(Gm) 
the value of p(Sw/Sz) can be expressed in terms of the discriminant and 
regulator of K ,  if we normalize the Haar measure in such a way that the 
volume of K,/O equals 1, where K, = K @Q R and 0 is the ring of 
integers in K (cf. Lang [2]). 

For a semisimple simply connected Q-split group G the volume of Gw/Gz 
can be written as the product of the values of the <-function at  certain 
integral points (cf. Langlands [I]). In view of these examples we may say 
that computation of the volume of Gw/Gz is a problem of considerable 
arithmetical interest. On the other hand, as Langlands' work shows, its 
solution is tied to using a complicated analytic technique (such as the theory 
of Eisenstein series). Therefore in this book we shall confine ourselves to 
one example, where the computations can be made explicitly. 

EXAMPLE: Let G = SL2. The Iwasawa decomposition determines coordi- 
nates q ,  a ,  u on Gw = SL2(R) which can be computed for x in Gw from 
the equation 

cosq - ~ i ~ q )  ( a  O ) (t y ) 
= ( s inq  cosq 0 a-I 

In $3.5 (cf. Example 3) we showed that with respect to these coordinates the 
Haar measure on Gw can be written as a dq da du. Therefore the volume 
of Gw/Gz is expressed by JF adqdadu ,  where F c Grip is a measurable 
fundamental domain relative to Gz. We shall construct a fundamental 
domain satisfying conditions 1) and 2) in (3.22), in 53.5. To do so, we 
return to the considerations of 54.2 and again use the projection of SL2(R) 
on the upper half-plane P = S02(R)/SL2(R) of the complex plane given 
by q: ( ) H s. Furthermore, consider the closed domain 

which, as we showed in 54.2, is a fundamental domain for the natural action 
of PSL.(Z) on P. Then it is easy to see that for F we may take F = KoDo, 
where 

cosq - s inq )  

} s in9  cosq 'PE[O,TI , 

Therefore the volume of Gw/Gz relative to the given measure is equal to 
J: dq  Jfl a da du. Direct computation shows that 

and then 

(Note that this value equals <(2), cf. Serre [8].) 

4.7. Concluding remarks on reduction theory. 
The plan we outlined for developing a reduction theory of arithmetic 

subgroups of algebraic groups has been completed. Nevertheless, several 
interesting concepts, not directly related to the topics chosen for detailed 
exposition in this book, have been passed over. This section is included 
in part to remedy this situation. Thus, several supplementary results on 
reduction theory are collected here (without proofs): another construction 
of fundamental sets, the connection with reduction theory of quadratic 
forms, etc. Also, the results obtained are reformulated for 0-arithmetic 
subgroups. 

The construction of fundamental sets in 54.3 is based mainly on the 
properties of Gw and depends relatively little on GQ and Gz. However, 
building further on this construction, we can find another, generally better 
construction, which essentially uses the Q-structure of G. Its advantages 
become apparent in the theory of automorphic functions, since the behavior 
at  infinity of the fundamental sets thereby obtained is similar to the struc- 
ture of cusp points for fundamental domains of Fuchsian subgroups of the 
upper half-plane. This construction also provides a clue to the construction 
of a compactification of Gw/Gz, which is fundamental to the study of the 
cohomology of arithmetic groups. 
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Thus, let G be a semisimple algebraic Q-group. If G is Q-anisotropic, 
then the situation may be regarded as the best possible: Gw/Gz is compact 
(Theorem 4.12), therefore there exists a compact fundamental set with 
respect to Gz. Now let G be Q-isotropic, let S be a maximal Q-split torus 
of G and let P be a minimal parabolic Q-subgroup containing S.  It is well 
known that P is a semidirect product of its unipotent radical U and the 
centralizer ZG(S) of S. In turn, ZG(S) can be written as an almost direct 
product 

where M is the largest connected 0-anisotropic subgroup of ZG(S). Let 
K denote a maximal compact subgroup of Gw and let A be the connected 
component of Sw. Then Gw = K . Pw, so (4.23) yields the following factor- 
ization: 

Gw = KMwAUw 

(note that, as a rule, this factorization is not unique). Since M w / M ~  is 
compact, it makes sense to look for a fundamental set relative to Gz in the 
form of a generalized Siegel set 

where y (resp., w) is a compact subset of Mw (resp., Uw) and At = { a  E 
A : a (a )  5 t V a  E II ), and II is the system of simple roots in the root 
system of G relative to S, associated with P .  

THEOREM 4.15. Let G be a semisimple algebraic Q-group, and let r C GQ 
be its arithmetic subgroup. 

(1) There exists a generalized Siegel set C = Ct,,,, and a finite subset C 
of GQ such that R = CC is a fundamental set for in Gw. Then C 
contains at least one representative of each double coset PQ \ GQ/r  
(in particular, there is a finite number of such double cosets). 

(2) Conversely, if C is a finite subset of GQ containing a representative 
of each coset PQ \ GQ/r ,  then there exists a Siegel set C such that 
R = CC is a fundamental set in Gw relative to I?. 

For the proof, see Borel [6, Q12 and 141. We note only that the proof 
of (1) uses the construction of a fundamental set developed in $4.3 and 
broadly speaking is similar to the proof of Proposition 4.10. 

It is easy to show that the generalized Siegel set C has finite volume 
with respect to the Haar measure on Gw, so Theorem 4.15 (1) enables 
us to obtain another proof of Theorem 4.14. Due to Theorem 4.15, one 

can introduce a new invariant in the theory-the number of double cosets 
PQ \ GQ/r.  It turns out to be the smallest number of translates of C whose 
union can form a fundamental set for r .  

For G = SL2 we have P = {(:a!,) : a € @ ' ,  ~ E C ) ,  so & is the 

stabilizer of the point at infinity with respect to the natural left action of 
SL2(R) on the upper half-plane P (cf. §4.2).2 Then the orbit SL2(Q)(oo) 
is the set of cusp points which is the union of {oo) with the set of points 
on the real axis having rational coordinates. The number of double cosets 
PQ \ GQ/r  in this case is the number of equivalence classes of parabolic 
points relative to r .  This number turns out to be equal to the number of 
points that must be added to the quotient-space P/r to obtain its com- 
pactification, or the number of vertices of the corresponding fundamental 
domain at infinity (cf. Figure 4.4, page 226 for the case where r coincides 
with the congruence-subgroup SL2(Z, 2); here there are 3 vertices). 

In general, the complements to the compact subsets in Ct,,,, have the 
form C,,,,, for s sufficiently small, and they may be regarded as analogs 
of cusps in the case of SL2. In this manner the number of double cosets 

\ GQ& can also be interpreted as the smallest number of cusps of a 
fundamental domain for r .  Note that in the next chapter we shall give 
an adelic interpretation of the number of cosets r \ GQ/PQ. Hence, in 
particular, we shall obtain another proof of its finiteness and its connection 
with the class number of P .  

Generalized Siegel sets are functorial in the sense that if f :  G -+ H 
is a Q-morphism of semisimple Q-groups and C is a generalized Siegel 
set of G, then f (C) is contained in a suitable generalized Siegel set of H. 
This implies that Theorem 4.15 provides a construction of the fundamental 
sets R satisfying the following condition which is stronger than (F2) (on 
page 193) from the definition of fundamental set: 

(F2)bis RPIR fl x r y  is finite, for any x, y E C ( ~ ) R ,  where C( r ) -  is the 
commensurability subgroup of I?. 

Indeed, it suffices to show that C-'C n x r y  is finite, for an arbitrary 
generalized Siegel set C. To do so we use the following description of 
C ( r )  given in Proposition 4.6: C( r )  = nP1( (G/N)~) ,  where N is the 
largest normal Q-subgroup of G of compact type, and x: r + GIN is the 
canonical projection. Let 2 be a Siegel set of GIN such that n(C) c 2. 
Then r(C-lC n xry)  C 5-'C n ~(x)x(I ' )x(y).  But T(x), ~ ( y )  E (G/N)Q 
and ~ ( r )  is an arithmetic subgroup of GIN; since 2 satisfies the usual 
condition (F2) (cf. Borel [6, §14]), it follows that the latter intersection is 

In $4.2 we denoted the upper half-plane by P. Here we have changed the notation to 
P to  avoid confusion with the parabolic subgroup. 
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Figure 4.4. 

finite. It  remains to note that n N is finite since Np. is compact, and 
consequently the finiteness of T(C-'C n xry)  implies that of CP1C n xry ,  
as desired. 

The fundamental sets from Theorem 4.15 have another noteworthy p rop  
erty. Before introducing its general formulation, let us recall one of the es- 
sential steps in the reduction theory for GL, (R) (cf. 54.2). Having fixed an 
orthonormal base el,  . . . , en of Rn,  we introduced the continuous function 
@: GL,(W) -+ R+, given by @(g) = Ilgel((. Then the set of values of @ on 
any coset gGL,(Z) is bounded from below, and the minimal value is taken 
at  some point of C = CL 1, implying that GLn(R) = CGL,(Z). It  turns 

"'3' 2 

out that a similar minimum principle is satisfied for an arbitrary semisimple 
algebraic Q-group G. In describing the corresponding cp we shall retain the 
notation introduced above. Let T: G 4 GL(V) be an absolutely irreducible 
Q-respresentation of G for which there exists an eigenvector v in VQ relative 
to P .  Then put cp, (g) = I l~(g)v(( ,  the norm being taken with respect to an 
orthonormal base of Vw consisting of eigenvectors relative to S. A special 
case of functions of the form cp, are the ai in 54.2, corresponding to the 
fundamental representations of SL,. 

THEOREM 4.16. Let G be a semisimple algebraic Q-group, let cp = cp* be 
the function corresponding to some absolute irreducible Q-representation 
T: G -+ GL(V), and let C be a set of representatives of double cosets 
r \ GQ/PQ, where r c GQ is an arithmetic subgroup. Then there ex- 
ists a generalized Siegel set C of Gw such that cp reaches its minimum on 
x r C  a t  some point of x r C  n C, for an arbitrary x in Gw, implying that 

Note that any semisimple Q-group G has a sufficient supply of represen- 
tations T with the properties described above. Moreover, as is well known, 
any absolutely irreducible representation is defined by its highest weight, 
and any dominant weight can be realized as the highest weight of some 
representation (cf. Humphreys [I]). Furthermore, it turns out that a suit- 
able multiple of any dominant weight can be realized as the highest weight 
of the Q-representation satisfying the above requirements. 

The cp, have the same properties as the ai in 54.2. Relying on these 
properties, we can prove the analogue of Harish-Chandra's theorem for this 
case, and, as a result, also property (F2) in the definition of a fundamental 
set. For details, cf. Bore1 [6, §§13-141. 

Although, throughout this chapter, we have been considering algebraic 
groups defined over Q, the results obtained can be extended to algebraic 
groups defined over an arbitrary algebraic number field K .  Let 0 be the 
ring of integers of K. Then by 0-arithmetic subgroups of G we mean 
subgroups of G that are commensurable with the group Go of points of G 
over 0 .  The group G o  is a discrete subgroup of G, = n GKu , which is 

v E vjm 
the analogue of the group of real points for Q-groups. Naturally, we have 
the problem of developing a reduction theory for G, relative to Go. We 
state the basic results obtained along these lines as 

THEOREM 4.17. Let G be an algebraic group defined over an algebraic 
number field K. Then the following hold: 

(1) there exists an open fundamental set R C G,, relative to Go ,  i.e. 

(FO) KO = R for a suitable maximal compact subgroup K C G,, 
(F l )  RGo = G,, 
(F2) W I R  n xGoy is finite for any x, y E GK; 

(2) Go is a group with a finite number of generators and defining rela- 
tions; 

(3) G,/Go is compact if and only if the reductive part of the connected 
component is anisotropic over K ;  

(4) G,/Go has finite invariant volume if and only if X(GO)K = 1. 

To prove this we take a base of 0 over Z and use it to  construct H = 
R K / ~ ( G )  (cf. 52.1.2). Then G o  - Hz and G, II HR, and by applying 
the appropriate results for Q-groups we can prove (1) and (2). To prove 
(3) we must note that the reductive part of the connected component of 
H has the form RKlq(D), where D is the reductive part of the connected 
component of G; moreover R K / ~ ( D )  is Q-anisotropic if and only if D is 
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K-anisotropic, and then we can use Theorem 4.12. Lastly, (4) follows from 
Theorem 4.13 in view of the fact that X(HO)q = X ( G O ) ~ .  

Other results (such as the density theorem, the description of commen- 
surable subgroups, etc.) can also be extended without much effort to (3- 

arithmetic subgroups. We shall not formulate these results, but shall con- 
fine ourselves to generalizing the concepts involved in their statements to 
the 0-arithmetic case. An algebraic group G, defined over an algebraic 
number field K ,  is said to have compact type if G, = n GK, is com- 

v € V ,  

pact. Now let G be semisimple. Then G is said to have n&compact type 
if GZj, is noncompact for each simple K-subfactor Gi of G. A semisim- 
ple group which has neither compact nor noncompact type is said to have 
mixed type. 

To conclude our exposition of reduction theory for arithmetic subgroups, 
we must note that this theory is rooted in the classical reduction theory of 
quadratic forms (cf., for example, Cassels [I]), which goes back to Hermite 
and Minkowski. In particular, the construction of fundamental sets as the 
union of a finite number of translations of a suitable Siegel set is a gener- 
alization of the construction used by Hermite [I] for the case of indefinite 
rational quadratic forms. Paying tribute to these distinguished predeces- 
sors, we now present several results on the reduction of positive definite 
quadratic forms (the case of indefinite quadratic forms is treated by Bore1 

(16, $51)- 
Let us identify the set of positive definite quadratic forms on Rn with 

the space H of real symmetric positive definite n x n matrices. Then 
G = GL,(R) acts transitively on H from the right by 

The stabilizer of the unit form is the group K = O,(R), so H = G/K,  
where the projection T: G 4 H is given by ~ ( g )  = tgg. Clearly .rr sends 
SL,(R) to the set H(') of elements of H with determinant 1, and H(') = 
SL,(R)/SO,(R). Notation as in $4.2, we shall call a set of the form 

the Siegel set in H .  Since %k = En for any k in K ,  we have 

Since .rr(glgz) = a(gl)[gz], Theorems 4.4 and 4.13 yield 

(i) (Korkin-Zolotarev). H = C:,,[GL,(Z)] for t > 4 ,  v 2 $. 
(ii) (Hermite). If F is a positive definite form on Rn, then 

n-1 

min F(z)  5 (:) (det F) A .  
x€zn\{O) 

(iii) (Minkowski). H(') = (EL,, n H(~))[sL,(z)] for v > f and t > $, 
and H(')/sL,(z) has finite invariant volume. 

4.8. Finite arithmetic groups. 

The arithmetic theory of algebraic groups is mainly concerned with the 
analysis of infinite arithmetic groups, since only in this case may one ex- 
pect a close connection between the properties of an algebraic group G 
and its arithmetic subgroups. The case of finite arithmetic groups was 
thought to be of interest primarily for the theory of finite simple groups. 
Indeed, the group of automorphisms of the 24-dimensional positive def- 
inite Leech lattice (more precisely, the quotient-group modulo its cen- 
ter) turned out to be a new simple sporadic group, discovered by Con- 
way (Conway [I]). However, in the past year an interesting collection 
of purely arithmetic questions have come up regarding finite arithmetic 
groups. For the most part, these questions focus around the following 
conjecture. 

CONJECTURE 1: Let G be an algebraic Q-defined group of compact type. 
Then for any totally real extension K/Q, we have Go = Gz, where 0 is 
the ring of integers of K. 

(Recall that K/Q is said to be totally real if the image of any embed- 
ding K -+ @ is contained in R. For such an extension, in the case under 
consideration G, = n GK, is compact, so Go is finite.) 

v W , K  
In other words, the group of units of a compact algebraic Q-group does 

not change (is "stable") under extension from ring Z to the ring of inte- 
gers 0 of a totally real number field K .  Since any totally real extension is 
clearly contained in a totally real Galois extension, we may assume with- 
out loss of generality that K /Q is a Galois extension. This conjecture 
came up in studying the properties of positive definite quadratic lattices; 
its proof would enable us to obtain a number of interesting corollaries in 
the theory of lattices (cf. below). The following proposition shows that its 
generalization to arbitrary algebraic groups is not essential. 

PROPOSITION 4.12. Let G c GL,(@) be an algebraic Q-group whose 
group of real points GR is compact and Zariski dense in G. Then there 
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exists an n-dimensional positive definite quadratic form f with rational 
coefficients, for which G c On  (f ) . 

PROOF: Let h be an arbitrary n-dimensional positive definite quadratic 
form. Since Gw is compact, the integral S h(gv)dg is defined for each v in 
Rn. We shall denote this integral by ho(v) (here dg is the Haar measure 
on GR). Elementary verification shows that the map Rn -+ R, given by 
v H ho(v), yields a positive definite Gw-invariant quadratic form on Rn. 
Since Gw is Zariski-dense in G, the extension of ho to Cn is invariant 
under G. Let V denote the space of all G-invariant quadratic forms on 
Cn. Since G is defined over Q, V is also defined over Q. Moreover, the 
density of Q in R implies the density of VQ in Vw. On the other hand, 
the subset W of Vw of positive definite forms contains ho and therefore is 
a non-empty open subset of Vw, its openness being a consequence of the 
well-known Silvester criterion. Since VQ is dense in Vw, this implies the 
existence of the desired positive definite form f in VQ. The proposition is 
proved. 

Now we shall show that Conjecture 1 can be restated as follows: 

CONJECTURE 1": Let f be a positive definite quadratic form of dimension 
n with rational coefficients. Then O,(f)" = O n ( f ) ~  for the ring of integers 
0 of any totally real extension KlQ. 

Conjecture 1' is obviously a special case of Conjecture 1. In order to 
obtain the converse, we shall fix the ring of integers 0 of a totally real 
Galois extension K/Q, and let H denote the subgroup generated by Go 
and Go. Since 0 is invariant under all automorphisms of C/Q, we see that 
Go and hence also H = GOGo are defined over Q. Clearly Hw = GtGo; 
consequently, since Gg is Zariski-dense in Go (Theorem 2.2), Hw is dense in 
H .  Therefore, by Proposition 4.12, there exists a positive definite quadratic 
form f with rational coefficients, such that H c O,(f), where n is the 
degree of G as a linear group. Then Go = Ho c On(f )o  = O,(f)z and 
Go = Gz, as required. 

In connection with Conjecture I*, we must mention the following result: 

2 PROPOSITION 4.13. Let f (zl,  . . . , x,) = alx, + . . . + a,x: be a diagonal 
integral positive definite quadratic form. Then O,(f)o = O,(f)z for the 
ring of integers 0 of any totally real extension K/Q. 

PROOF: We show that for any element b = (bij) in O,(f)o, each row and 
each column has only one non-zero element, which, moreover equals f 1. 
Without loss of generality we may assume a1 5 a2 <_ . . - 5 a,. The fact 
that b E O,( f )  means that % F b  = F ,  where F = diag(a1,. . . ,a,), from 

which we obtain the following relations: 

(4.25) 
n x aibijbit = 0 for each j # k between 1 and n. 

i=l 

In the last row of b there will be a nonzero entry bnj  Then, by virtue 
of (4.24) we have 

a , ~ ( b , j ) ~  5 E a i ~ ( b , ) ~  = a j  <_ a,, 
i=l 

for any embedding r :  K - R; so Ibnjl < 1 for any real valuation v of K .  
But 

where NK/Q is the norm map from K to Q. Moreover, since bnj E 0 ,  
we have N ~ / ~ ( b , j )  E Z and INKlq(bnj)l 2 1. Therefore Ibnjl, = 1 for 
any v E VZ, since lblu = lru(b)l, where rv:  K - R is the corresponding 
embedding and ( ( is the absolute value; in fact bnj = f 1. Returning 
to (4.24) and bearing in mind that a j  < a,, we obtain a j  = a, and bij = 0 
for i < n. Furthermore, applying (4.25) we obtain that bnk = 0, for all 
k # j .  A similar argument can be applied to the j-th row, if a j  = a,. Thus 
we obtain that b has the block structure 

where bl is a square 1 x 1 matrix, 1 being the maximal index for which 
al < a,, and b2 is a monomial matrix of dimension (n  - I) x (n - l), all 
of whose nonzero elements equal f 1. (One can have a situation where all 
the ai coincide, but then the above argument completes the proof of the 
proposition.) The proof of Proposition 4.13 can now be completed by an 
obvious inductive procedure. 

Now we present one more equivalent formulation of Conjecture 1. 

CONJECTURE I**: Let K/Q be a totally real Galois extension, let 0 be 
the ring of integers of K, and let r be a finite subgroup of GL,(O), mvari- ' 

ant (as a whole, but not necessarily elementwise) under Gal(K/Q). Then 
I' c GL,(Z). 
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It is easy to see that Conjectures 1 and 1** are equivalent. Indeed, as we 
have already noted, we may assume K/Q in Conjecture 1 to be a Galois 
extension. If G is an algebraic Q-group of compact type, then Go is a finite 
Gal(K/Q)-invariant subgroup of GL,(O); therefore Conjecture 1 follows 
from Conjecture I**. Conversely, if I? c GL,(O) is a finite Gal(K/Q)- 
invariant subgroup, it can be regarded as an algebraic Q-group G for which 
Gw = r is compact. 

At present Conjecture I** has been proved only for some special Galois 
extensions-namely, for nilpotent extensions and for the extensions whose 
Galois group has only cyclic Sylow subgroups (cf. Bartels, Kitaoka [I]). 
The proof for nilpotent extensions contains the most noteworthy aspects of 
the subject; therefore we shall confine ourselves to this case and refer the 
reader to Bartels and Kitaoka to supplement the material presented here. 
We call the reader's attention to two facts which will be used repeatedly in 
working with Hypothesis I**. The first is Hermite's theorem on the non- 
existence of nontrivial totally unramified extensions of Q (cf. Theorem 1.3), 
and the second is the following lemma due to Minkowski [l]: 

LEMMA 4.19 (MINKOWSKI). The congruence subgroup GL, (Z, p) is tor- 

sion-free, for any p # 2. 

PROOF: Using the embedding Z -+ Zp of Lemma 3.8, we obtain that the 
order of any element of GL,(Z,p) is either infinite or is a power of p. 
Therefore it suffices to show that GL,(Z,p) does not contain any elements 
of order p distinct from En. Let En f x E GL,(Z,p) and suppose that 
XP = En. Write x = En +pay, where y E M,(Z) and y f 0 (mod p). Then 

All the binomial coefficients (:), where 0 < i < p, are divisible by p; thus 
we have c)piayi = 0 (mod p2D+1) for each i > 1. 

Since p > 2, we have a p  2 2a + 1, and papyp = 0 (mod p20+') holds. 
Thus, the right side of (4.26) is congruent to 0 (mod P'~+'), while, by 
our construction, this congruence does not hold for the left side, since 
a + 1 < 2a + 1. Lemma 4.19 is proved. 

Now let K/Q be a totally real Galois extension. If K/Q is unramified 
at all points, then by Hermite's theorem K = 0, and there is nothing to 
prove. Thus we may assume that there is at least one ramified prime in 
K/Q. We shall show that to prove Conjecture I** is suffices to consider 
the case when there is only one ramified prime. 

PROPOSITION 4.14. Let K/Q be a totally real Galois extension with Galois 
group G and let r be a finite G-invariant subgroup of GLn(0). Suppose 
that n GL,(L) c GL,(Z) for every proper Galois subextension L of K .  
If r GL, (Z), then there is exactly one prime ramified in K .  

PROOF: Let us suppose that two distinct primes p and q (q # 2) are ram- 
ified in KlQ, and show that then r c GL,(Z). Consider some extensions 
wp 1 p and w, 1 q, and let p = 0 npwp and q = 0 n qwq be the corresponding 
ideals of 0 .  We shall use the ramification groups ~ ( ~ 1 ,  defined at the end 
of 51.1. Let x E r and a E @')(w,). Then x -= a(x) (mod q), and there- 
fore, since r is G-invariant, y = x-'a(x) lies in the congruence subgroup 
r(q). Now take an arbitrary T in G(')(wp). Then, on the one hand, the 
group commutator [y, r(y)] = yr(y) y-'r(y)-l lies in I'(q), since r (q)  is a 
normal subgroup of r; on the other hand, it lies in r(p), by virtue of the 
condition that y = ~ ( y )  (mod p). But, embedding 0 in OWp and OWq, we 
obtain that the order of any element of r(p) (respectively, r(q))  is a power 
of p (respectively, q), by Lemma 3.8; in particular, r (p)  n r (q)  = {En). 
Therefore [y,r(y)] = E n ,  i.e., y and ~ ( y )  commute. Further, since y E F(q), 
the order of y, and hence also of z = y - l ~ ( y ) ,  is q. But at the same time 
z E I'(p), and therefore actually z = En and ~ ( y )  = y. We have shown that 
~ ( y )  = y for any a in G(l)(wP) where wp 1 p. Let 'F1 be the subgroup of G 
generated by the inertia groups G(l)(wP) for all wp ( p, and let L = K x  be 
the corresponding fixed field. As we noted at the end of 51.1, L is a maximal 
Galois extension of Q, contained in K and unramified relative to p. Since 
p is ramified in K ,  then L # K so by hypothesis J? n GL,(L) c GL,(Z). 
But we established above that y E GL,(L), and therefore y E GL,(Z). 
Recalling that y E r(q), we see that y is an element of GL,(Z, q) of finite 
order, which means that y = En, by Minkowski's lemma. By definition 
y = x-'o(x), where x is an arbitrary element of r and o E G(')(w,). It 
follows that indeed r C GL,(P), where P = K~ is the fixed field of the 
subgroup 3 C G generated by the inertia groups G(')(w,), for all exten- 
sions w, I q. Proceeding as above, we obtain that P # K, and hence 
r = I' n GL,(P) C GL,(Z). The proposition is proved. 

Proposition 4.14 shows that if there are counterexamples to Conjec- 
ture I**, then in terms of field extensions a minimal counterexample corre- 
sponds to an extension in which there is exactly one ramified prime. With 
this observation, we shall prove Conjecture 1** for nilpotent extensions. 
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THEOREM 4.19 (BARTELS-KITAOKA). Let K /Q be a totally real Ga- 

lois extension with nilpotent Galois group 6 .  If l? is a finite &invariant 
subgroup of GLn(0),  then r C G L,(Z). 

PROOF: Since any Galois subextension of a nilpotent extension is also 
nilpotent, it follows from the above remark that we need only consider 
extensions K/Q for which there is only one ramified prime p. We shall 
show that in this case Q is cyclic. To do so, we use induction on [K  : Q]. 
The center Z of is nontrivial, and by induction G/Z is cyclic. But then 
Q is abelian, and by the Kronecker-Weber theorem (cf., for example, Iwa- 
sawa 11, 58.11) K c Q(Cpd) for suitable dl  where Cpd is a primitive pd-th 
root of unity. Since K/Q is totally real, actually K c Q(CPr + <;I) and G 
is a quotient-group of (ZlpdZ)*/{f l ) ,  which is cyclic. Now, having proven 
C j  is cyclic, by Kronecker's theorem we can assert that in our case always 
K c Q(ipd + c') for a suitable d > 0, and to prove Theorem 4.19 is 

suffices to examine the case K = Q(Cpd + <G1). 

LEMMA 4.20. Conjecture I** is true for K = Q(Cpr + (2'). 

The proof uses a general construction which may also be useful in other 
situations. Namely, for an arbitrary Galois extension K/Q with Galois 
group we define the Galois subextension M/Q as follows: fix some prime 
p and consider an extension wp ( p; let p = (7 n pWp be the corresponding 
ideal in 0 ,  and let r be the smallest positive integer for which p @ pT(~-'). 
Let 7-t denote the subgroup of G generated by the T-th ramification groups 
G(')(wp) for all extensions wp 1 p, and put M = KH. The subextension 
M/Q thus obtained depends on the choice of p; however for any p it is a 
Galois extension, and for any finite G-invariant subgroup r of GLn(0)  we 
have l? c GLn(OM), where OM is the ring of integers of M.  Indeed, for 
any x in l? and any a in $:), we have a(x)  1 x (mod pT), i.e., z - la (x)  E 

l?(pT). Therefore it suffices to establish the triviality of the congruence 
subgroup l?(pr). TO do so, in turn, it suffices to show that the congruence 
subgroup GLn(O, pT) is torsion-free, which is equivalent to its having no 
elements of order p. The latter can be proven by an argument similar to 
the proof of Minkowski's lemma: 

Namely, let En # x E GLn(O,pT) and let xP = E n  Write x = E n  + y, 
where y I 0 (mod pm) (m > r) ,  but y $ 0  (mod pm+'). Then we have 

Let e denote the ramification index e(wp I p). Then e is the exponent for 
p in the decomposition of PO; therefore, from the definition of r it follows 
that 7 = [A] + 1 (where, as usual, [a] is the integral part of a) ,  and 

P- 1 
so, (p - 1)r  > e. This estimation enables us to reach a contradiction by 
computing the power of p which divides the left and right sides of (4.27) 
respectively. By our construction, for the left side of (4.27) we have 

py = 0 (mod pm+e), but py $ 0  (mod P ~ + ~ + ' ) ) .  

Since the (:) are divisible by p (i # O,p), we have myi 5 0 (mod pim+e) 
for 1 < i < p and imd 2 m + e + 1. Lastly, gP = 0 (mod pmp)) where 
mp = m + m(p - 1) L m + r (p  - 1) > m + d. Thus, the right side of (4.25) 
equals 0 modulo pm+d+l, contradiction. 

To complete the proof of the lemma it suffices to establish that for 
Kd = Q(Cpd + ( > I )  the subextension constructed using p is contained in 
Kd-1 (since KO = Q, this gives the required result). We shall need some 
information about the ramification of p in the cyclotomic extension Ld/Q, 
where Ld = Q(Cpd) (cf. ANT, Ch. 3). 

It is well known that Ld/Q is an abelian Galois extension of degree 
v(pd) = pd-l(p - 1). The ring of integers Od of Ld is Z[&d] and p o d  = 

'p9(pd), where 'p = (1 - Cpa)Od; in other words, the padic valuation has 
a unique extension to Ld. Moreover this extension is totally ramified, and 
the corresponding valuation ideal in o d  is the maximal ideal generated by 
1 - cpd. In particular, for d = 1 we see that the valuation ideal P1 c 0' is 
generated by 1 - 5,. On the other hand, since Ld/Ll is a totally ramified 
extension of degree pd-I, we must have 'plod = !)3pd-', from which it 
follows that 1 - (p E 'ppd-l, i.e., Cp -- 1 (mod ppdpl ) .  This relation is 
more useful to us when put in a slightly different way. Namely, let a, 
denote the automorphism from Gal(Ld/Q) given by o,(C,r) = C, for any 
integer a coprime to p. Then the above relation means that 

aa(&,d) 6. (mod 'ppd-l) for a = 1 (mod pd-l). 

Since Cpd generates Od, we obtain for such a 

a, (x) = x (mod ppd-l ) for all x in Od. 

However, computing r for Kd gives us 
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since the ramification index e of the padic valuation in Kd/Q equals 
cp(pd)/2. Using (4.28) and (4.29), for odd p we obtain 

( x )  (mod pT) when a = 1 (mod pd-l) for all integers x in Kd, 

since the ramification index of Ld/Kd equals 2. 
Let denote Gal(Kd/Q) and let w be the (unique) extension of the p 

adic valuation to Kd. With this notation, the above congruence means that 
the r-th ramification group ~ ( ' 1  (w) contains the subgroup 'H of 4 consisting 
of the restrictions of the automorphisms gar for a 3 1 (mod P~- ' ) .  But 
K: = Kd-l, so M as defined above is contained in Kd-1, as required. 

To dispose of the remaining case, p = 2, we need to elaborate on (4.28) 
by showing that oa(x) = x (mod (;p2d-1+2) for a = 1 (mod 2d-1) and -1 - 
any integer x in Kd. It suffices to show that 0a(C2d + C2d ) = &d + (;dl 
(mod (;p2d-1+2). The latter follows easily from (4.27) and the following 
computations, 

in view of the fact that (C2d - 1)2 + 2C2d E (;p2. This completes the proof 
of Lemma 4.20. 

In studying special cases of Conjecture 1-I**, we can impose additional 
conditions of two types---on the totally real extension K/Q,  and on I' in 
Conjecture I** or on f in Conjecture l*, respectively. Conditions of the 
former type were imposed in Theorem 4.19. Now we present a result il- 
lustrating conditions of the latter type, which shows that there is an open 
subset in the space of real symmetric matrices whose integral matrices (or, 
more precisely, whose corresponding quadratic forms) satisfy Conjecture 1.. 

PROPOSITION 4.15. Let f be an integral positive definite quadratic form 
of dimension n with matrix a = (aij). Suppose aii 5 4X for all i = 1, . . . , n, 
where X is the smallest eigenvalue of a. Then we have On( f )a  = On(f)z 
for any totally real extension K / Q  where 0 is the ring of integers of K .  

PROOF: Let x = (xij) E On(f)a .  We shall show that 

under any real embedding of K. Indeed, let vj denote the vector 

where 1 is in the j-th position. Then xvj = (xlj , .  . . ,xnj) = wj and 
a j j  = f (vj) = f (wj). Also, if we let g denote the quadratic form on Rn 
for which vl, . . . , vn is an orthonormal base, then the left side of (4.30) 
becomes g(wj), and so it suffices to show that f (w) 2 Xg(w) for any w in 
Rn. Putting f into diagonal form using a transformation from O,(S)~, we 
see that it suffices to analyze the case for f diagonal, for which the desired 
assertion is trivial. 

Combining (4.30) with the condition aii 1 4 4  we see that in this case 

n 

1 4 for all j = 1 , .  .. ,n .  
i=l 

In particular, [xij 1, < 2 for all i ,  j = 1,.  . . , n and for any v in V z .  It follows 
that all the xij coincide with the real parts of some roots of unity. Indeed, 
let a be a totally real algebraic number, and let (a(, 5 2 for any v. Then 

b = Jf - 1 is purely imaginary. Also, t = + b satisfies t2 -at + 1 = 0 and 
therefore is an algebraic integer all of whose conjugates have absolute value 
1. It follows easily that t is a root of unity, so a = 28(t) is its real part. 
From what we have shown it follows that the coefficients xij generate an 
abelian extension of Q; therefore we complete the proof of the proposition 
by applying Theorem 4.19. 

We present two more results, also obtained with the help of a metric 
argument (Kitaoka [I], [2]). 

PROPOSITION 4.16. For each dimension n there is a finite set of algebraic 
numbers S such that, if K f l  S = 0, then Conjecture l* holds for K/Q m d  
any quadratic form of dimension n. 

(Using the reduction theory of quadratic forms one can find S explicitly 
for small values of n (cf. Kitaoka [I]).) 

PROPOSITION 4.17. Ifeither [K : Q] or the dimension off does not exceed 
42, then Conjecture 1' holds. 

We have presented virtually all the known results pertaining to the con- 
jectures under consideration. To draw the reader's attention and hopefully 
stimulate further research, we note several possible applications (cf. Bar- 
tels 111, PI). 

PROPOSITION 4.18. Assume Conjecture 1' holds for a certain extension 
K/Q and any positive definite quadratic form. I f f  and g are integral pos- 
itive definite quadratic forms which are equivalent over the ring of integers 
0 of K ,  then in fact they are equivalent over Z. 
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PROOF: Let a E GL,(O) realize f -. g. Take the form h = f @ g and let 
b be the matrix 

( "0') - 

Then b t Oz,(h)o = 0 2 , ( h ) ~ ,  so a E GLn(Z), as desired. 

The next two theorems involve Galois cohomology and adele groups, 
which are systematically studied in Chapters 5 and 6. These results are 
presented here in order to draw together all the material pertaining to the 
conjectures under consideration. The reader may wish to acquaint himself 
first with Chapters 5 and 6 and then return to these results. 

THEOREM 4.20. Let K /Q be a totally real Galois extension, and let G 
be an algebraic Q-group of compact type. Suppose Go = G z  Then the 
kernel of the natural map of Galois cohomology 

is trivial. 

THEOREM 4.21. Under the above hypotheses and the additional assump- 
tion that G be a connected group satisfying the Hasse principle for Galois 
cohomology, we have 

i.e., the kernel of 

is trivial. 

(Here GAQ(,) , GQ (resp., GAK(m) , Gx) are the subgroups of integral 
and orincipal adeles in the adele groups GA, and GA, over Q and K ,  
respectively. Cf. $5.1.) 

For the proofs of Theorems 4.20 and 4.21 and some of their applications, 
cf. $8.4. Here we wish to note that in the context of quadratic forms 
Theorem 4.21 means that if two positive definite forms over Z belong to 
the same genus and enter the same class under - extension of the ring of 
scalars to 0, then they lie in the same class over Z. 

To conclude, let us present an example which shows that the relative 
versions of Conjectures 1, I* and I** ( i.e., where Q is replaced by a totally 
real extension) do not hold. 

EXAMPLE: Let E/F be a nontrivial Galois extension of totally real number 
fields, unramified at all (non-Archimedean) places. Such an extension can 
be constructed by taking F to be any totally real number field with odd 
class number > 1 (for example, for F = Q ( m )  we have hF = 3) and E 
to be its Hilbert class field. Our objective is to construct a finite subgroup 
r of GLn(E), for suitable n, which will be invariant with respect to G = 
Gal(E/F) but will not be in GLn(F). The key to constructing such a group 
lies in the proof of Proposition 4.18. Namely, suppose we could construct 
an n-dimensional vector space V over F provided with a positive definite 
quadratic form f ,  and two free latices L, M C V over the ring of integers 
OF satisfying 

- ,  

(2) L and M are nonisometric, i.e., there is no g in O,(f) for which 
g(L) = M. 

Then, arguing as in the proof of Proposition 4.18, we can show that 

is the desired group. To construct free lattices L, M satisfying (1) and 
(2) we proceed as follows. Let VO denote the group ring F[G]; introduce 
the scalar product on Vo for which the elements of G form an orthonormal 
base. Furthermore, define the action of G on E h  = E[G] by 

Lastly, put Lo = I Opg and Mo = ( O ~ L ~ ) ~  (the fixed points). Lo and 
sEB 

Mo have the following properties: 

(i) OELO = OE Mo; 
(ii) Mo is OF-indecomposable, i.e., cannot be written as an orthogonal 

direct sum of nontrivial OF-sublattices; 
(iii) L r  = Lo I . . . i Lo and M T  = Mo I . . . i Mo are non-isometric, 

for any m 2 1. 

To prove (i) we must recall several results from ramification theory (cf., for 
example, Lang [2, Ch. 31). EIF being unramified at  all points is equivalent 
to the discriminant ideal DE/F being OF, where DEIF is defined as the 
ideal in OF generated by the discriminants of all bases a l ,  . . . , a, of E over 
F (i.e., by the square determinants det (gi(aj))2, where G = { gl, . . . , g, I), 
contained in OE. Since DEIF = OF, then for any w in VIE there are 
a l ,  . . . , a n  in 0~ such that det(gi(aj)) is the unit of OE,. Consider the 
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elements xi = CgeG g(ai)g E Mo (where i = 1,. . . ,n). It follows from 
our construction that all g in 6 can be expressed as linear cornbinations 
of the xi with coefficients from OEw; hence OE,Lo = oE,,,Mo. Since this 
equality holds for any w in v?, necessarily OE Lo = L?, MO (cf. 51.5). 

Now we prove (ii). Suppose, on the contrary, that Mo = MI I M2; then 

In particular, each g in 6 can be written as g = gl + g2, where gi t OEMi. 
In this case we obtain the relation 

from which it follows that (f (gi) l w  5 1 for each real valuation w of E 
(i = 1,2). But f (gi) E OE; therefore for f (gi) # 0 we must have 

It follows that f (gi) is always either 0 or 1, i.e., g lies in one of the com- 
ponents O E ~ i i .  ~ u t  M, c Mo = ( O ~ L ~ ) ' ,  so each component must be 
G-invariant, and eventually one of the components will coincide with Mo 
and the other will reduce to zero, proving (ii). 

Lastly, let t: L;;" -+ M r  be an isometry. Fix some element g in G, and 
put L1 = o F g  and L2 = ( I Oph) I LT-'. Then L;;2 = L1 I L2 and 

h#s 

therefore we must have M r  = t(L1) I t(L2). Now consider an element 
t(g) E M r  and write t(g) = x1 + . . . + x,, where xi E Mo. Applying f ,  
we obtain 

1 = f (t(g)) = f (XI) + . . . + f (x"). 

Therefore, arguing as above, we conclude that t(g) lies in one of the compo- 
nents Mo of M r .  But then Mo = t(L1) I (Mo n t(Lz)), which contradicts 
Mo being indecomposable. 

To complete our construction it remains to choose m such that L;;" and 
M," will be free. To do so it suffices to set m equal to the exponent of 
the ideal class group of F. Indeed, any lattice L in Kn can be written as 
L = Ox1 $ . . . @ Ox,-, @ ax,, where a is an ideal of O (cf. 51.5.3). Then 
Lm can be written as Oyl @ .  . . @ C?Y,,-~ $ amym. But a" is a principal 
ideal, and therefore Lm is free. 

It is worth noting that this example is based on the existence of ex- 
tensions unramified at all points. Therefore, by Hermite's theorem, this 
approach cannot be carried out over Q. 

BIBLIOGRAPHICAL NOTE: The basic results of reduction theory are due to 
Borel and Harish-Chandra 121. The proof of the criterion for compactness 
of GR/Gz presented here is due to Mostow and Tamagawa [I]. The finite 
presentability of arithmetic groups (Theorem 4.2) was deduced from the 
existence of fundamental sets for these groups by Behr [I]. The Density 
Theorem was proved by Borel in [5]. Our exposition of reduction theory 
makes no pretentions of being complete. A more comprehensive exposi- 
tion may be found in Borel [?I and in his lecture notes 161. Humphreys (21 
provides an elementary introduction to reduction theory. As we have men- 
tioned, the origins of the general theory of reduction lie in the reduction 
theory of quadratic forms, a modern exposition of which may be found in 
Cassels [l]. The material in 54.8 is less traditional. The main results here 
are due to Bartels [I], (21, Kitaoka [l], [2] and Bartels-Kitaoka (11. 



5. Adeles 

In this chapter we introduce adele groups, a concept which plays a central 
role in the arithmetic theory of algebraic groups. Just as the basic results 
of class field theory can be expressed in terms of adeles and their cohomol- 
ogy, so too the results of noncommutative arithmetic can be expressed in 
terms of adele groups of algebraic groups and their related constructions 
and concepts. Therefore we shall work with adeles for the remainder of 
the book. This chapter contains basic results on adele groups. In $5.1 we 
define the adele group GA of a linear algebraic group G over a number field 
K ,  and provide it with the corresponding (adele) topology, with respect 
to which the group of K-rational points GK is a discrete subgroup of GA. 
The problem arises of constructing a reduction theory for GA relative to 
GK. We solve this problem in 855.2-5.3. Some of the results here (such as 
the criterion for compactness of GA/GK) are completely analogous to the 
corresponding results in Chapter 4 and, indeed, essentially rely on those re- 
sults. Other results have a specifically adelic nature. First and foremost of 
these is Theorem 5.1, an important theorem asserting the finiteness of the 
number of cosets G A ( ~ ) X G K  in the decomposition of GA modulo the sub- 
groups of integral and principal adeles, respectively. This number, called 
the class number of G, is a very important arithmetic invariant of G, and its 
computation is closely related to classical number-theoretic problems (cf. 
Ch. 8). Another invariant that we encounter h e r e t h e  Tamagawa number 
of G, denoted as r(G)--equals the volume of GA/GK, for G semisimple. 
In 55.4 we use results from reduction theory to carry over structural results 
on arithmetic subgroups (cf. $4.4) to arbitrary S-arithmetic groups. 

5.1. Basic definitions. 
Let us introduce the concept of the adele space XA of an arbitrary variety 

X over an algebraic number field K. To do so, we first assume X affine and 
fix its presentation as a K-closed subset of some affine space An. Then, by 
definition, XA consists of the points of X over the adele ring A = AK of 
K (cf. 51.2). In other words, the elements of XA are n-tuples (a l , .  . . , a,) 
of adeles that satisfy all the equations defining X.  It is natural to endow 
XA with the topology induced by the direct product topology on An = 
h x . . . x A. The same object can be constructed by means of the restricted 
topological product (cf. 53.5). In fact, considering the projection n,: A -4 

K, on the v-component and its n-dimensional extension n;: An --+ Kc,  we 
see that the projection nF(x) of any point x in XA lies in XKu, for any v 
in VK; moreover, for all but a finite number of v, this projection actually 
falls in the set of 0,-points Xov. 

It is easy to see that one can reverse this procedure, i.e., one can define a 
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point x in XA by specifying its projections a t ( x )  provided that the latter 
lie in Xo, for almost all v. Thus, XA is a restricted topological product 
of the spaces XK, with respect to the distinguished open subspaces Xu,, 
in the topological as well as the set-theoretic sense. It follows that XA can 
be written as the union 

taken over all finite subsets S of vK containing vZ, of the spaces of S- 
integral adeles XA(S) = nvEs XK, x nveS XO,. (If S = vZ, then we just 
have integral adeles, denoted X A ( ~ ) . )  Moreover, the topology on X A ( ~ )  is 
the usual direct product topology, and the topology on XA is the inductive- 
limit topology. 

The diagonal embedding K -+ A (cf. 51.2) induces a diagonal embedding . . - 
of the set of K-points XK into XA; the image of this embedding, which 
as a rule we shall identify with XK, is called the space of principal adeles. 
Note that since K is discrete in A, it follows that K n  is discrete in An; 
hence XK is discrete (and closed) in XA. 

The next step in substantiating the construction of adeles is to  prove 
their independence of the choice of a geometric realization of X .  To this 
end we introduce the concept of adelization of a regular K-map f :  X -+ Y 
of two affine closed K-subsets X c An, Y C Am. As we know, f induces a 
continuous map fKV: XK, + YK, , for any v in VK. Consider the product n fK, taken over all a, and let f A  denote its restriction to XA. 
v 

LEMMA 5.1. fA(XA) c YA, and fA: XA -+ YA is continuous. 

PROOF: In coordinates f has the form 

where the fils are polynomials with coefficients from K.  Let So denote 
a finite subset of vK containing VZ, such that the coefficients of all the 
fi's are v-integers for v $! S o  Then clearly fK,(Xo,) C Yo, for v $f So, 
and therefore ~ A ( X A ( ~ ) )  c YA(s) for any subset S of VK containing So. 
Furthermore, in view of the fact that XA(S) inherits the direct product 
topology, we conclude that fa IxA,,, is continuous. It remains to use the 
fact that XA and YA can be written in the form (5.1). The lemma is proved. 

From Lemma 5.1 we easily obtain 

PROPOSITION 5.1. Let f :  X -+ Y be a biregular K-isomorphism of two 
closed K-subsets X c An, Y c Am. Then fA: XA -' YA is a homeomor- 
phism. 

Indeed, if f :  Y -+ X is a regular K-map which is the inverse of f ,  then 
by Lemma 5.1 g ~ :  YA + XA is a continuous map which is obviously the 
inverse of fA. 

The definitions presented above suffice for linear algebraic groups, in 
most cases. However, we shall need several more paragraphs to define 
the adele space XA for an arbitrary K-variety X and to substantiate the 
definition. This will enable us to give a reasonably complete exposition, 
while also describing a.n approach which is used to obtain results of interest 
even in the affine case. 

Thus, let X be an arbitrary K-variety. To define XA we need to specify 
an open compact subset XO, of XK, consisting of v-adic integral points for 
each v E VF,  and to construct the restricted topological product of XK, 
relative to Xuv.  To define Xo, we use a finite covering X = U Xi of X by 
open affine K-sets Xi. (Such a covering exists by definition of a variety.) 
Furthermore, fix a biregular K-isomorphism fi: Xi -+ X: to a K-closed 
subset X? of An*, for each i. Then, define 

for any v E v~X, and take XA to be the corresponding restricted product. 
(Equivalently, one can set XA = Ui fG1(xPA), where fG1(XPA) is viewed 
as a subset of n XK, .) The proof that this construction is invariant rests 

v 
on generalizing Lemma 5.1 to the case of arbitrary varieties. 

LEMMA 5.2. Let f :  X -+ Y be a K-morphism of arbitrary K-varieties. 
Then ~ A ( X A )  c YA and f ~ :  XA + YA is continuous. 

(Note that, just as in the affine case, the adelization of f A  of f is defined 
as the restriction to XA of n fKv .) 

v 
PROOF: As in the proof of Lemma 5.1, we only need to justify the fact that 
f (Xo,) c Yo, for almost all v. Since by definition Xov = Ui f;' (xPOv) 
is a finite union, it suffices to show that 

( f  O f,-l)(x:,, ) c Yo, 

for any i and almost all v. Without loss of generality we may assume i = 1, 
i.e., X is affine. Let Y = UY, be the finite affine covering used to define 
Yo.. Fix embeddings X c An and 1; C Anr in the corresponding affine 
spaces, denoting the corresponding coordinates by 1.1, . . . , x,; dl . . . , gir .  

Then f can be described by expressing the d 7 s  as rational functions of the 
xi's: 
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for any j ,  where qk, $ belong to the ring of regular K-functions K[X]. 
Clearly the presentation in (5.2) is not unique. Therefore, in order to 
consider all presentations, take the ideal of possible denominators 

for each j .  The image f (x) of any point x in X lies in one of the Y,. This 
means that for each x in X there is an index j for which all the functions & 
(k = 1, .  . . , nj)  are defined at x, i.e., there is a presentation dx = qrx/$r of 
the form (5.2) satisfying &(x) # 0. Hence the ideal in K[X] generated by 
all the aj  has no zeros on X ,  and therefore is K[X] (by virtue of Hilbert's 
Nullstellensatz, cf. Humphreys [I].) Thus, there exist $j in aj such that 

$j = 1. Choose the corresponding presentation & = q$/$j of the 
form (5.2), and let and q j  be polynomials in K[xl, . . . , x,] representing 

and $j. Then the coefficients of these polynomials are integers relative 
to v, for almost all v E vF. We claim that f(Xo,) t Yo, = U q O V  
holds for such v. Indeed, let x E Xo, Since $j(x) E 0, for any j, 

and C $ J ~ ( X )  = 1, all the $j(x) cannot lie in the maximal ideal p, of 0,. 
Therefore there is a j for which $j(x) is invertible in 0,. But then the 
corresponding values of & clearly lie in 0,. i.e., f (x) E q,, ,  as desired, 
proving the lemma. 

PROPOSITION 5.2. Let f : X  -+ Y be a K-isomorphism of K-varieties. 
Then fA: XA -+ YA is a homeomorphism. In particular, XA is independent 
of the choice of an affine covering. 

The first assertion follows immediately from Lemma 5.2 (cf. proof of 
Proposition 5.1). The second assertion follows from the first, if we consider 
two affine coverings of X and take f to be the identity map between the 
two copies of X endowed with these respective coverings. It follows, in 
particular, that our two definitions of the adele space are equivalent for 
affine varieties. 

There is, however, one essential topological difference between the gen- 
eral case and the affine case. A principal adele space XK, whose definition 
is perfectly analogous to the one given in the affine case, is not discrete in 
XA, in general. For example, XA is compact for X projective, and therefore 
XK cannot be discrete in XA if it is infinite. 

Let us note one other curious corollary of Proposition 5.2. 

LEMMA 5.3. Let X = U Xi be an arbitrary covering of a K-variety X by 
open K-varieties Xi. Then XA = U Xi,. 

Indeed, taking a finite subcovering of the given open covering, we may 
assume without loss of generality that the original covering is finite. It 

follows from the definition of XA that the assertion holds for affine varieties 
Xi. TO prove the assertion in general, consider for each i some finite open 
affine covering Xi = Uk Xir of Xi. Then X = Ui,* Xik is an open affine 
covering of X.  Since, by Proposition 5.2 the definition of XA is independent 
of the choice of affine covering, we have XA = Ui,k XikA. On the other 
hand, similarly XiA = Uk XiKA for each i, hence the desired result follows. 

Note that the openness of every Xi is essential for the validity of the 
lemma. Indeed, consider A' = X U Y, where X = A' \ (0), Y = {(0)}. 
Then X is biregularly isomorphic to the hyperbola { (x, y) E AZ : xy = 1 }, 
from which it follows that XA is the set of all ideles J, and YA = ((0)). 
Therefore A; = A # XA UYz. (A helpful exercise, which we recommend to 
the reader, is to explain what part of the proof of Lemma 5.3 falls through 
if we do not assume the covering {Xi) to be open.) 

We shall also need 

LEMMA 5.4. Let Y be a closed K-subvariety ofX. Then YA = X A n n  YK,. 

Moreover, the topology on YA is induced from that on XA. v 

PROOF: Let X = Ui Xi be an open affine covering of X.  Then 

is an open affine covering of Y. By the above definition YA = Ui(Y n Xi)A. 
But the lemma clearly holds for a closed subset of an affine variety. (To see 
this, it suffices to consider an arbitrary embedding of X as a closed subset 
of an affine space; then we immediately obtain a closed embedding of Y, 
and the required result follows directly from the definitions.) Therefore 

for any i; hence 

The proof that the topology on YA is induced from XA is left as an 
exercise for the reader (cf. proof of the continuity of fA in Lemma 5.1). 
EXERCISE: Show that if X = Y x Z then XA = YA x ZA as a topological 
space. 
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When working with adelizations of varieties and their morphisms it is 
helpful to know which of the most commonly used properties are retained 
when we pass to adele spaces. It is obvious, for example, that the surjec- 
tivity of f :  X -+ Y is not sufficient for the surjectivity of the corresponding 
adelization fA: XA -+ YA (example?). Nevertheless, if Y is an irreducible 
variety and the morphism fF: XF -+ YF of corresponding F-points is sur- 
jective for every extension F I K ,  then fa is also surjective. Indeed, applying 
surjectivity to the field F = K(Y) of K-rational functions on Y, we obtain 
that for any y in Y there is a local section of f defined at y, i.e., a rational 
K-morphism g,: Y X for which f o gv = idy. Then we can use the 
following assertion: 

PROPOSITION 5.3. Let f :  X - Y be a K-morphism of K-varieties. If 
there is a local section (over K)  o f f  defined at y, for each y in Y, then 
fA: XA -+ YA is surjective. 

PROOF: It follows from our assumptions that there exists an open covering 
Y = U Y, and K-subvarieties X, of X such that f induces a K-isomorphism 
of Xj  onto Y,.  (Indeed, it suffices to take for Y,  the domains of definition 
of appropriate local sections, and for Xj  , their images.) Then, by Proposi- 
tion 5.2 and Lemma 5.3 we have 

Later on we shall encounter various properties of the adelization of mor- 
phisms time and again, however for the time being we shall leave off our 
discussion of adelic points of arbitrary varieties and move on to the more 
important case (for us) of linear algebraic groups. 

Now, let G be a linear algebraic K-group. Then G can be realized as 
a closed K-subgroup of some full linear group GL,, and by Lemma 5.4 
in order to describe GA it actually suffices to describe GL,,. For this, 
consider the standard realization of GL, as a hypersurface in An'+': 

Then GL,, is the set of all matrices of M,(A) whose determinant is in- 
vertible in the adele ring A, i.e., is GL,(A). To view GL,, in terms 
of the restricted topological product, note also that GL,,,, is precisely 
GL,(O,), so GL,, = GL,(A) is the restricted topological product of 
the GLn(Kv) with respect to the distinguished subgroups GL,(O,) for 
u E VfK. In other words, GL,, is the set of all g = (g,) t n G L n ( K v )  21 

for which g, t GL,(O,) for almost all u E VF. The topology on GL,, 
appears as follows: a base of open sets is comprised of sets of the form 

where S is a finite subset of VK containing V z  whose elements index some 
open subsets U, c GL,(K,). (In order to unify notation, some authors 
put L?, = K, for u E V z ;  we, however, will not do this.) The subgroup 
GLnA(sr = GL,(A(S)) = , GLn(Kv) x , GLn(Ov) is called the group 

VES a @ S  
of S-integral adeles; for S = V z  the group GL,A(~) is denoted by GL 

n A ' ~ '  and is called the group of integral adeles. GL,, embeds diagonally in 
GL,,, and its image, which we shall usually identify with it, is called 
the group of princzpal adeles; GL,, is a discrete subgroup of GL,,. Our 
detailed discussion of basic adelic concepts relating to GL, is intended 
for the reader for whom this is the first encounter with adeles of algebraic 
groups. We recommend that such a reader also see Humphreys [2, Ch. 51, 
which presents an introduction to the general theory of adelic groups, just 
using the examples of GL, and SL,. 

Now the above definitions can easily be extended to an arbitrary closed 
subgroup G of GL,. Namely, the adele group GA is defined as the restricted 
topological product of all GKm with respect to the distinguished subgroups 
Gom = G n GLn(0,) for u E VfK, i.e., GA consists of sets of g = (g , )  E , G K ~  such that gv E Gum for almost all u E VF. The topology on GA is 
v 

induced from GL,, and therefore its base is comprised of sets analogous 
to (5.3). GA is a locally compact topological group under this topology, and 
the subgroup GK of principal adeles (i.e., the group of K-rational points 
of GK diagonally embedded in GA) is a discrete subgroup of GA. The 
subgroup of S-integral adeles = Gs x , Gov , where Gs = , GKv , 

v @ S  v E S  is defined for any finite subset S of vK containing V z .  (Obviously GA(s) 
is open in GA.) For S = V: we write GA(,), Gm instead of GA(~:), GVZ. 
Note that Go,,, and hence the group GA(,) of integral adeles, depend on 
the choice of matrix realization of G. Therefore, to emphasize that integral 
points are taken with respect to a lattice L c Kn,  we shall write G:(,), by 

which we mean G, x , ~ 2 ,  where Lv is the corresponding localization 
V €  VfK 

of L (cf. 54.5.3). 
Sometimes it is useful (and necessary) to consider "truncated" adeles. 

More precisely, let S be an arbitrary subset of VK. Then the group of 
5'-adeles Gas (adeles without S components) of an algebraic K-group G 
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is defined as the image of GA under the natural projection of n GK, onto 

n G K U  Thus GAS consists of collections of g = (g,) E n GK, such that 
2" v @ S  

V P 3  

g, E Go, for almost all v E V'\(V; nS),  and also is the restricted product 
of the GKw for v $ S with respect to the subgroups Gov (v E V?\(V?~S), 
both in the set-theoretic and the topological sense. As in the case of full 
adele groups, one can consider for S-adeles the diagonal embedding GK - 
GAS, whose image is called the group of principal S-adeles. Moreover, one 
can define the group of T-integral S-adeles = n GK, x IT GO, 

VET\S v4T 

for any subset T of vK containing S. GAVE is denoted by GAj and is 
called the group of finite adeles; instead of GA f (. "2) we shall write GAf (,). 
With this terminology, we introduce the following important 

DEFINITION: G is said to satisfy the strong approximation property relative 
to S ( or absolute strong approximation property when S = V z )  if the image 
under the diagonal embedding GK - GAS is dense (in terms of the full 
adele group this means that GKGs, where Gs = n GKu, is dense in Ga). 

v E S  

Similarly, there is the concept of a space of S-adeles and a definition 
of strong approximation for arbitrary algebraic varieties (moreover, there 
are analogs to all the above results of this section). However, while the 
criterion of strong approximation is known for the case of algebraic groups 
(cf. $7.4), this property has only recently begun to be investigated for 
arbitrary varieties (cf. Minchev [I], Rapinchuk 181). Nevertheless, with the 
concept itself of strong approximation for arbitrary varieties we can obtain 
several simplifications, as in the proof of the following assertion. 

LEMMA 5.5. Let U be a unipotent group defined over K .  Then U satisfies 
the strong approximation property relative to any nonempty set S. 

The proof rests on the following straightforward remark. If two K- 

varieties X and Y are biregularly isomorphic over K ,  then XK N YK, 
XAs rr. YAs for any S; therefore either both X and Y satisfies the strong 
approximation property, or neither X nor Y satisfy this property. (Ques- 
tion: is the strong approximation property preserved under birational K- 
isomorphisms?) In our case U is biregularly isomorphic to an affine space 
(namely, the corresponding Lie algebra L(U), cf. $2.1.8); therefore it suffices 
to establish strong approximation for an affine space, where it follows di- 
rectly from the strong approximation theorem for K (cf. $1.2). The lemma 
is proved. 

integral and principal adeles. Consider a decomposition 

of GA into double cosets modulo these subgroups. We call h the class 
number of G and denote it by cl(G). The following theorem is one of the 
most important results in this chapter. 

THEOREM 5.1. cl(G) is always finite. 

We shall deal with computation and estimation of cl(G) in Chapter 8. 
There we shall see, in particular, that most of the well-known finiteness 
results follow from Theorem 5.1-namely, finiteness of the class number of 
a field, finiteness of the number of classes in the genus of a quadratic form, 
etc. Theorem 5.1 is a corollary of the reduction theory for adele groups, 
which we shall set forth in $95.2-5.3. In the remainder of this section we 
shall present several straightforward assertions which enable us to reduce 
the proof of Theorem 5.1 to the case of a connected reductive group over Q. 

PROPOSITION 5.4. Let G = H N  be a semidirect product, where N is a 
normal subgroup (everything defined over K). Assume N satisfies the ab- 
solute strong approximation property. Then cl(G) 5 cl (H) . In particular, 
the class number for a group with absolute strong approximation is always 
equal to one. 

The proof uses 

LEMMA 5.6. Under the above assumptions, NA is a normal subgroup of 
GA and GA = HANA is a semidirect product. 

PROOF: AS in Lemma 5.5. Since G 5 H x N,  viewed as a variety, GA 2 

HA x NA, i.e., GA = HANA. The assertion that NA is normal in GA is 
obvious. 

The subgroup x-lNA(,)x is open in rVA, for any x in GA. But, since N 
satisfies absolute strong approximation, N,NK is dense in NA. Therefore 
the open set ( x - l N ~ ( , ) x ) ~  must intersect N,NK, for any y in NA; hence 

since N, is a normal subgroup of GA contained in NA(,). Setting x = 1 
we obtain NA = N A ( ~ ) N K ,  so it follows from (5.4) that 

Another important concept concerns the subgroups GA(,) and GK of 
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for any x in GA. Therefore, using Lemma 5.6, we obtain 

GA = HANA = HANA(,)NK = NA(,)HANK. 

Now if HA = Ui HA(,)xiH~, then GA = Ui NA(,)HA(,)x~HKNK = 
Ui GA(,)xiGK, which yields the required result, completing the proof of 
Proposition 5.4. 

PROPOSITION 5.5. Let G be an algebraic K-group, and let Go be the 
connected component of the identity. Then the quotient group G A / G i  is 
compact. 

PROOF: Since Go has finite index in G, there is a finite subset Cu of G such 
that GKu = CVGgv, for any u.  Moreover, as we shall show below, such a 
subset can be found in Go, for almost all v E VF In this case C = n u Cu 

lies in G A ( ~ )  for a suitable finite S, and consequently it is compact in the 
adele topology, since this topology on GA(s) is precisely the direct product 
topology. On the other hand, clearly GA = C G i ,  yielding the desired 
result. 

Thus it remains to be shown that GKv = GouGOKv for almost all v E Vy . 
To do so, we shall use the following result, which we shall prove in 56.2: 
if H is a connected algebraic group over an algebraic number field K ,  and 
LIK is a finite Galois extension, then H'(L,/K,, HoLW) = 1 for almost 
all v E V r  and wlv, where OLw is the ring of w-adic integers in L,. In 
our case there exists a finite Galois extension L/K and a finite subset C 
of GL such that G = CGO. Excluding from consideration a finite number 
of v E vF, we may assume that G 5 GIGO is defined over O,, and for 
any wlv we have C c GoLw and H1 (L,/Ku, GbLw) = 1. In particular, we 
have the exact sequence 

(5.5) 1 -+ GoLw O + GoLw -+ (G/GO)O~, -+ 1. 

Using the cohomology sequence derived from (5.5) (cf. (1.12) in §1.3), we 
obtain n(Gou) = But by assumption (G/GO)oLw = ( G / G O ) ~ ,  , 
from which it follows that (G/G')~ ,  = ( G / G O ) ~ , .  Therefore ~ ( G K ~ )  C 

= = x(GOu), and hence GK. = GovGg,, completing 

the proof of the proposition. 
Lastly, we shall look at the way restriction of scalars works for adeles 

(cf. 52.1.2). Let G be a linear algebraic group defined over K ,  and let 
[K : Q] = d. Fix a base a = w l ,  . . , wd of the ring of integers 0 over Z, 
and using this base construct H = RKIP(G). In § 2.1.2 we noted that for 
any prime number p we have compatible isomorphisms 

(5.6) HQp 2 n G K V 7  
V I P  

and moreover 

This gives us 

PROPOSITION 5.6. Notation as above, there is a natural isomorphism 
HAQ N GAK extending HQ 2 GK. Moreover,  HA^(^) = G A ~ ( ~ ) .  

Note that for another choice of base w;, . . . , w: of K over Q, H is re- 
placed by H', which is K-isomorphic to H ,  and therefore also HkQ = GAK. 
This is related to the fact that (5.6) and (5.8) also hold for H', and (5.7) 
holds for almost all p. It is clear, also, that if w;, . . . , w& is not a base of 
O/Z, then in general HAQ(..) 74 GAK(,). 

5.2. Reduction theory for GA relative to GK. 

Since GK is a discrete subgroup of GA, as we have seen in the previous 
section, it is natural to ask whether a reduction theory can be developed 
for GA relative to GK. In this section we shall describe construction of 
the corresponding fundamental sets, from which we shall deduce the proof 
of Theorem 5.1 as well as criteria for GA/GK to be compact or to have 
finite measure. We begin with the definition of fundamental sets for adele 
groups. 

DEFINITION: We call a subset R of GA a fundamental set for GK if 

The reader will undoubtedly notice the total analogy between the adelic 
conditions and (Fl)  and (F2) in the definition of a fundamental set for 
arithmetic groups (cf. 54.3). Indeed, the connection here runs deeper than 
mere similarity. The fundamental sets constructed for arithmetic groups 
in Chapter 4 occur as real components of adelic fundamental sets. This is 
readily seen from the easiest case, G = GL, over Q. 

PROPOSITION 5.7. Let G = GL, over Q and let C be a fundamental set 
for Gz in GI. Then R = C x n Gzp is a fundamental set for GQ in GA. 

P 

PROOF: First we show that cl(G) = 1, i.e., GA = GA(,)GQ. G can be 
written as a semidirect product G = SH,  where S = {diag(a, 1, .  . . , I )  ) is 
a one-dimensional torus and H = SL,. Clearly SA can be identified with 
the group JQ of ideles of Q; moreover, Sa(,) corresponds to the group 
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JQ(m) of integral ideles. Since the class number of Q is 1, Jq = JP(m)Q* 
(cf. 91.2.2), and consequently SA = SA(,)SQ, i.e., cl(S) = 1. 

On the other hand, H satisfies the absolute strong approximation prop 
erty. This follows from the criterion for strong approximation which we 
shall establish in 97.4; however, one can also give an elementary direct 
proof. To do so, let Uij (2 ,  j = 1 , .  . . ,n;  i # j) be the subgroup of H 
consisting of appropriate elementary matrices. Since Uij satisfies absolute 
strong approximation (Lemma 5.5), the closure HQ of HQ in HA_ (where 
A, is As for S = V$) contains all the (Uij)~,  Bearing in mind that the 
matrices in (U,)L generate HL, for any field L, we see that Hq contains 
all the Hs = n,,, HQ,, where S is an arbitrary finite set of primes. But 
from the definition of the adele topology it follows that Us Hs is dense in 
HA,, and therefore HQ = HAW. The equality cl(G) = 1 now follows from 
Proposition 5.5. (If we take G = GL, over an arbitrary field K ,  then cl(G) 
equals the class number hK of K ;  cf. 98.1). 

Now we can easily complete the proof. RGz = Gw x n, Gz, = GA(,), 
since CGz = Gw. Therefore RGQ = RGzGq = GA(,)GQ = GA. If 

g E W1RnGQ, then g E Gzp for all p, and consequently g E Gz. However, 
the projection onto the real component gives g E C-lC, and therefore there 
are only finitely many possibilities for g (cf. condition (F2) in the definition 
of a fundamental set for arithmetic subgroups, p. 193). 

It is evident from the proof of Proposition 5.7 that fundamental sets 
of the type described there exist whenever cl(G) = 1. Their distinctive 
feature is the compactness of the projection onto the non-Archimedean 
part. Later on we shall see that fundamental sets with this property can 
also be constructed in the general case; this fact is crucial for the proof of 
the Finiteness Theorem 5.1. 

The method of constructing fundamental sets in the adele groups of 
arbitrary groups is similar to that used in Chapter 4 in the analogous 
problem for arithmetic subgroups, i.e., it is based on Lemma 4.2. The only 
difference is that here, instead of working with the action of a group of 
real points on an appropriate real vector space, we have to work with the 
action of an adele group on the adelization of a vector space. For this, 
note that any action of an algebraic K-group G on an algebraic K-variety 
X ,  i.e., a morphism G x X 4 X ,  induces a continuous map (G x X)A = 
GA x XA 4 XA, i.e., a continuous action of GA on the adelization XA. 
Moreover, for a in GL, (W), we shall let am denote the adele from GL, (AQ) 

PROPOSITION 5.8. Let G c GL, be a reductive Q-group, and let R be the 

fundamental set from Proposition 5.7, corresponding to the Siegel domain 
B = &,,, t 2 5, u 2 4 (cf. 94.2). Then there are a in GL,(R) and 
bl , . . . , b, in GL,(Q) for which 

is a fundamental set for Gq in GA. 

PROOF: By Theorem 2.15 there exist a Q-representation Q: GL, -+ GL, 
and a vector v in Qm such that the GL,-orbit of v is closed and the isotropy 
subgroup is G. Let us choose a in GL,(R) such that a-lGa is self-adjoint 
(Theorem 3.7). Then v(amR) f l  uGL,(Q) is finite. (Henceforth we shall 
consider the action of GL,(A) on the adele space Am induced by Q.) Indeed, 
it suffices to show that M = v(amR) n Qm is finite. It follows from the 
definition of R and the continuity of QA that the projections of all elements 
of v(amR) onto A g  lie in a suitable compact set. Hence M c lzrn for a 
suitable integer I .  But then ZM c (1v)C n Zm, and the latter intersection 
is finite by Proposition 4.5. 

Now if v(amR) n uGL,(Q) = { ub,, . . . , vb, ) (where bi E GL,(Q)), 
then, applying Lemma 4.2 and taking into account Proposition 5.7, we 
conclude that A defined as in (5.9) is a fundamental set for Gq in GA. 
Proposition 5.8 is proved. 

THEOREM 5.2. Let G be a reductive algebraic group defined over an alge- 
braic number field K.  Then there exists a fundamental set for GK in GA 
having compact projection onto the non-Archimedean part. 

PROOF: Let H = R K / ~ ( G )  be the group obtained from G by restriction of 
scalars. Then, by Proposition 5.8, HA, has a fundamental set relative to Hq 
of the form (5.9) which has compact projection onto the non-Archimedean 
part (since R, constructed in Proposition 5.7, has this property). Using the 
isomorphism HA, N GA (cf. Proposition 5.6), we can carry it over to GA, 
and this gives the desired fundamental set for GK in GA. 

~ - 

PROOF OF THEOREM 5.1, CF. PAGE 251: First, let G be connected. Con- 
sider the Levi decomposition G = HU, where U = R,(G) is the unipotent 
radical of G and H is a reductive K-group (Theorem 2.3). Then it follows 
from Proposition 5.4, combined with Lemma 5.5, that cl(G) 5 cl(H), and it 
suffices to establish that cl(H) is finite. To do so we use the fundamental set 
A c HA constructed in Theorem 5.2. Since A has compact projection on 
the non-Archimedean part, A c Ul=, HAloo)xi holds for a suitable finite set 

- - , , - - . - - - - 
z l , .  . . , x, of elements of HA. But then H A  = AHK = UG1 HA(oo)~iHK 
and therefore cl(H) is finite. 
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Now let G be arbitrary. Since we have already shown cl(GO) to be fi- 
nite, there is a finite set x l ,  . . . , x, of elements of G i  such that GO, = 
U:=l Gi(,)xiGO,. However, it follows from Proposition 5.5 that there ex- 
ists a compact set D c GA satisfying GA = D G ~ .  Then D is s contained in 
the union of a finite number of translates of GA(,), i.e., D C Uj=, G~(,)yj , 
where yj E GA. We have 

therefore it suffices to show that for any x, y E GA the set 

is contained in the union of a finite number of double cosets of the form 
GAlmlzGK (Z E G A )  We need the following fact. 

\ z 

LEMMA 5.7. GA(,) and yCA(,)y-' are commensurable, for any y in GA. 

PROOF: Let y, (resp., yf) denote the projection of y onto G, (resp., 
onto GA, = GAVE), and let U = n Go.. Then Gn(,) = Gm x U and 

UEVF 
J 

yGA(,)y-l = (y,G,y~') x (yfuy;') = G, x ( Y ~ U Y ~ ' ) .  But U and 
yf ~ y ; '  are open compact subgroups of GA, , and therefore are commen- 
surable. Therefore GA(,) and yGA(,) y-' are also commensurable. 

Thus, for any y in GA there exists a finite set of elements { .q }I=, C GA 
such that yGA(,) y-' c uiz1 GA(,)zl. Then 

Q.E.D. 
REMARKS: An obvious modification of the argument enables us to prove 
the following generalization of Lemma 5.7: if f :  G - G' is a K-isomorph- 
ism, then G>(,) and f (GA(,)) are commensurable. Since 

we can easily obtain another proof, LLtopological" in nature, of Proposi- 
tion 4.1 on the invariance of arithmetic subgroups. 

Using Theorem 5.1 we can show that the construction of the fundamental 
sets in Proposition 5.7 is actually universal. 

PROPOSITION 5.9. Let G be an arbitrary K-group. If B is a fundamental 
set in G, relative to Go (cf §4.7), then there is a compact subset C of 
G A ~  such that B x C is a fundamental set in GA relative to GK. 

PROOF: Let GA = Ul=, GA(,)xiG~; moreover, without loss of generality 
we may assume (xi), = e for all i, i.e., xi E GAr. Put U = n Go, and 

v €VrK 
C = U:=, UxiU. Then, bearing in mind that G, = BGo, we show easily 
that for R = B x C we have GA = RGK, so ( F ~ ) A  is satisfied. 

Now we shall verify (F2)a. Let x E 0-'0 n GK. Projecting onto Gar,  
we obtain x E D = C-'C. Fix a matrix realization G c GL, of G. Then 
D is a compact subset of Mn(Af), from which it follows easily that there is 
an integer d such that d(Dn M,(K)) c M,(O); in particular dx E M,(O). 
Moreover, obviously x-' E D l  and therefore also dx-' E M,(O). Thus, 
x E Gd = { g  E GK : dx, dx-' E M,(O) ). Now, taking the projection onto 
G,, we obtain x E B-I BnGd. But this intersection is finite by the obvious 
generalization of Lemma 4.8 to rings of algebraic integers. Proposition 5.9 
is proved. 

Besides proving Theorem 5.1, the construction of a fundamental set in 
GA relative to GK enables us to obtain several other important results. The 
results on when GA/GK is compact or has finite volume will be treated in 
the next section; however, in this section we shall develop an adelic version 
of Theorem 4.9. 

THEOREM 5.3. Let H be a reductive K-subgroup of a reductive K-group 
G. Put X = G/H, and let u denote the canonical projection G + X. 
Then UA(GA) n XK consists of a finite number of orbits of GK. 

PROOF: Consider GI = RK/qG and H' = RK/qH, and observe that the 
variety XI = RK/qX is G1/H1; then, in view of Proposition 5.6, the proof 
reduces easily to the case K = Q. The rest of the argument is based on what 
is already a traditional application of the existence of a Q-representation 
Q: GL, -+ GL, (where G c GL,) for which there is a point u E Qm 
with a closed orbit under Q(GL,), whose stabilizer in GL, is H. Then 
the orbit Y = UQ(G) is also closed and is a geometric realization of X;  
i.e., there is a G-equivariant K-isomorphism X E Y. Hence the problem 
reduces to proving that VQA(G~) n Qm consists of a finite number of orbits 
of GQ. But GA = AGq, where A is the fundamental set obtained in 
Proposition 5.8; so it suffices to show that veA(A) n Q m  is finite. To do so, 
recall that A = (U:='=, amRbi) n GA, notation as in Proposition 5.8. The 
matrix a in GL,(W) was chosen here to satisfy a single condition: a-lGa 
must be self-adjoint. Therefore we can make our choice more specific, 
adding the condition that a-'Ha also be self-adjoint (Theorem 3.8). Since 
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But, in our proof of Proposition 5.8 (substituting H for G), we essentially 
showed that this intersection is finite. Q.E.D. 

In Chapter 6 we shall give a cohomological interpretation of Theorem 5.3, 
which essentially claims that, given any algebraic K-group G, the canon- 
ical Galois cohomology map H1(K, G) + n H1(KV, G) has finite kernel 
(cf. 56.4). 

v 

To conclude this section, we shall use Theorem 5.1 to derive an asser- 
tion on the finiteness of the number of double cosets of some special kind 
needed to construct fundamental sets for arithmetic subgroups (cf. 54.7). 
Let G be a connected K-group, and let P be a parabolic K-subgroup 
of G. Then X = G / P  is a projective variety, implying that the corre- 
sponding adele space XA is compact. Indeed, by Lemma 5.4, it suffices 
to establish that for n-dimensional projective space Pn the adele space P; 
is compact. To determine P;, take an affine cover Pn = U;=, Ui, where 
Ui = { x = (xO,. . . , xn) E Pn : xi # 0 )  and the isomorphism Ui -. An 
is given by ( x ~ , .  . . , xn) H (xO/xi,. . . , xi-l/xi, xi+l/xi,. . . , xn/xi). If 

v E VfK, x = (xO,. . . ,xn)  E Pku and (xi/u = maxj lxjlv, then clearly 
x E Uiou ; hence Pku = Pzu .  Thus Pa is the direct product n P k U  I)  

and therefore is compact, since all PZu are compact (cf. 53.1). G t h e r -  
more, it is well known (cf. Borel-Tits [I]) that the canonical projection 
a :  G + X = G / P  has a rational section over K .  Using the density of 
GK in G (Theorem 2.2), we easily see that in our set-up all the conditions 
of Proposition 5.3 are satisfied and therefore aA: GA + XA is surjective. 
Thus, XA can be identified with GA/PA just as XK with GK/PK. NOW 
we have all the necessary tools to prove the following 

THEOREM 5.4. Let G be a connected K-group, and let P be a parabolic 
K-su bgroup of G. Then the number v(G, P )  of double cosets of GK modulo 
Go and PK is finite (or, equivalently, there are only finitely many orbits 
of Go on XK). 

PROOF: First we establish that there are only finitely many distinct double 
cosets in the decomposition 

We saw above that XA (for X = G/P) is compact; yet XA can be identified 
with GA/PA. It follows that GA = CPA for a suitable compact subset C 

of GA. F'urthermore, there are finite sets yl, . . . , yr in GA and 21,. . . , z. 
in PA such that 

and then GA = U;=, UII1 G ~ ( ~ ) y j P ~ ( , ) f l ~ .  Therefore it suffices to 
show that any set of the form GA(,) yPA(_) zpK is contained in the union 
of a finite number of sets of the form GA(,)xPK. We have 

But y ~ ~ ( , ) y - l  is commensurable with GA(,) (Lemma 5.7); therefore 

YGA(,)Y-' C G ~ ( m ) x i  for some finite set {xi)L, C GA. Then 

as desired. Since there are only finitely many distinct cosets in (5.10), it 
follows that there is a finite set {tj};=, c GK such that 

In 84.7 we noted that, for a connected Qgroup G, the number v(G, P )  of 
double cosets Gz \GQ/PQ, where P is a minimal parabolic Qsubgroup, can 
be interpreted as the minimal possible number of vertices of a fundamental 
set in GI relative to Gz. This number turns out to be related to the class 
number of P .  

PROPOSITION 5.10. Assume cl(G) = 1 and GKu = Go. PKu for all v in 
vfK. Then v(G, P )  = cl(P). 

PROOF: First we show that if cl(G) = 1 then v(G, P )  equals the number d 
of double cosets in the decomposition GA = u:==, G A ( ~ ) x ~ P ~ ,  (cf. proof of 
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e 
Theorem 5.4). Indeed, straightforward verification shows that GoxPK H 

GA(,)xPK gives an injection from Go \ G K / P ~  into GA(,) \ GAIPK, and 
the image of 8 consists of those cosets GA(,)xPK which intersect GK. But 
if cl(G) = 1, i.e., GA = GA(,)GK, then every coset of this form intersects 
GK; consequently 8 is surjective. Now let us compute d another way. 
To do so, note that since GKv = Go,PK, for a11 v E v ~ K ,  then we have 
GA = GA(w)PA, and therefore any coset GA(,)xPK has a representative 
from PA. Moreover, if GA(,)xPK = GA(,)yPK, where x, y E PA, then 
PA(,)xPK = PA(,)yPK; consequently d = cl(P), proving the proposition. 

EXAMPLE: Let G = SL2 over a field K.  First show that the conditions of 
Proposition 5.10 hold for G and P = B, the Bore1 subgroup of G consisting 
of upper triangular matrices. cl(G) = 1 is a consequence of Proposition 5.4 
and the strong approximation property for G, which we established in 
the proof of Proposition 5.7. GK, = GO,GK, can be verified by direct 

computation. Indeed, if x = (E  :) E SL2(Kv) then there are 7.6 E 0, 
not both in p,, such that ya + Sc = 0. Furthermore, there are a,  P E 0, 
for which y = (; f ) lies in SL2(O,), and then direct computation shows 

that yx E BK,. Applying Proposition 5.10, we see that in the case under 
consideration we have v(G, B) = cl(B). 

Writing B as the semidirect product of the 1-dimensional torus T = 
{diag(a, ad')) by the group U of upper unipotent matrices, and using the 
obvious equality BA(,) = TA(,)UA(,), we can easily show that cl(B) = 
cl(S) (cf. proof of Proposition 5.4). But S -- Gm, and therefore cl(S) = 

[JK : J K ( ~ ) K * ]  is the class number hK of K.  However, by definition 
v(G, B) is the number of orbits of Go on XK, where X = GIB. Since in 
our case X c! P1, eventually we arrive at the following result: hK equals 
the number of orbits of the natural action of SL2(0)  on P k  over K. (This 
can also be proven directly; cf. Serre [7].) 

5.3. Criteria for the compactness and the finiteness of volume of 
GAIGK. 

(1) GA/GK is compact if and only if the reductive part of the connected 
component Go is anisotropic over K .  

(2) GA/GK has finite invariant volume if and only if X ( G O ) ~  = 1. 

PROOF: Since the subgroup GK is discrete in GA, an invariant measure on 
GA/GK exists if and only if GA is unimodular (cf. 53.5). Let us show that 
the latter is equivalent to G, being unimodular. Since F = GA/G\ is a 
compact topological group (cf. Proposition 5.4), it has finite GA-invariant 

measure; therefore the restriction of the module function AG, to G I  is 
AGi (Theorem 3.17). In particular, if GA is unimodular then so is G i .  
Conversely, if we assume G i  is unimodular, then kerAGA contains G i  
and therefore AGA induces a continuous homomorphism from F to R'O. 
But R'O has no nontrivial compact subgroups; hence A,, = 1. We have 
shown that the unimodularity of GA is equivalent to the unimodularitv of 
G i .  The same can be said of the unimodularity of G, and GO,, since 
G,/GL is finite. 

Therefore we may assume from the outset that G is connected. Then 
the Haar measure on GA can be constructed using a left-invariant rational 
differential K-form w on G of degree n = dim G. More precisely, w induces 
a left-invariant measure w, on GKu, for each v E VK, as described in 53.5. 
Let us choose numbers A, for v E v ~ K  (called convergence coefficients) such 
that n A,w,(Go,) converges absolutely (for example, we can set A, = 

v ' ). Then, treating GA as the restricted topological product of the 
wu (Go, 
GK, with respect to the distinguished subgroups Go,, we can use the 
construction described in 53.5 to obtain a Haar measure T on GA, called 
the Tamagawa measure corresponding to the set of convergence coefficients 
A = (A,). 

Note that T is actually independent of the choice of w. Indeed, any other 
left-invariant rational differential K-form w' can be written as w' = cw for 
some c E K*,  and then for any v E vK the corresponding measures w; 
and w, are related by w; = IIcIICw,, where ( 1  11, is the normalized valuation 
introduced in 51.2.1. Therefore, if we construct T' by using w' and the same 
set of convergence coefficients, then T' = ( n  llc)):)~ = T by the product 

v 
formula (cf. 5 1.2.1). 

From the construction of T it follows that GA is unimodular if and only 
if all the G,yv are unimodular. But by Theorem 3.18, GKu being uni- 
modular for some v is equivalent to w being right-invariant, and then the 
GK, are unimodular for all v. It follows that either both GA and G, are 
unimodular, or neither is unimodular. 

The arguments that follow apply equally to the proof of (1) and of (2). By 
Proposition 5.9, there always exists a fundamental set in GA with respect to 
GK of the form fl = B x C, where B c G, is a closed fundamental set with 
respect to Go and C is a compact open subset of GA(,). The properties 
of fundamental sets imply that GA/GK being compact is equivalent to fl 
being compact, i.e., to B being compact. Analogously, the existence of a 
fundamental set with finite volume is equivalent to B having finite volume. 
Since the unimodularity of G, is equivalent to that of GA, we have the 
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following equivalences: 

{GA/GK is compact) * {G,/Go is compact) 

GA/GK has finite G,/Gc? has finite 
invariant volume invariant volume 

Therefore (1) and (2) of Theorem 5.5 follow from the respective assertions 
in Theorem 4.17. Q.E.D. 

It is well known that the convergence coefficients used in the definition 
of the Tamagawa measure can be chosen canonically; in particular, for G 
semisimple they are not even necessary (i.e., one can put A, = 1 for all v). 
With respect to the Tamagawa measure thus obtained, the invariant volume 
of GA/GK (if it exists) is called the Tamagawa number of G, denoted r(G). 

EXAMPLE: Let G = SL2 over Q. We shall show that r(G) = 1. Consider 
the differential form w on G, which in terms of the coordinates x, y, z of 
X = ( E  y )  E G can be written as w = i d x  A dy A dz. In 53.5 we saw 
that this is a left-invariant rational form on G. There we computed the 
volume wp(SL2(Zp)) with respect to the corresponding Haar measure wp 
on SLz(Qp) to be equal to 1 - p-2. Then n wp(SL2(Zp))-I is exactly the 

P 

Euler product for the %emann zeta function C(s) at s = 2, and therefore n wp(SL2(Zp)) converges absolutely to <(2)-'. (Note that the convergence 
P 
coefficients, indeed, are not necessary in this case.) Now let C be the 
fundamental domain of SL2(R) relative to SL2(Z), as constructed in the 
example in 54.6. We showed in 53.5 that in terms of the coordinates cp, 
a, u on SL2(R) given by the Iwasawa decomposition, w can be written as 
a dp da du, and therefore the computations in 94.6 for the corresponding 
Haar measure w, on SL2(R) give the value w,(F) = $ . It remains to 
note that, arguing as in the proof of Proposition 5.7, we see easily that 
0 = F x n SL2(Zp) is a fundamental domain in GA relative to GK, i.e., it 

P 

satisfies conditions (1) and (2') of 53.5. Thus r(G) = w,(F) x n SL2(Zp) = 
P 

c<(2)- '  = 1, since C(2) = $ (cf. Serre [8]). 

In this example we were able to give an explicit description of the funda- 
mental domain in GA relative to GK and to compute its volume, thereby 
leading to the determination of the Tamagawa number r(G). Although 
such constructions are not feasible in general, the problem of computing 
r(G) is itself quite important. This became particularly clear after Kneser 
and Tarnagawa noted independently that, for G = SO,(f) where f is a 
non-degenerate quadratic form in n variables with rational coefficients, the 

equality r(G) = 2 is essentially one of Siegel's basic results in the an- 
alytic theory of quadratic forms (the formula for the weight of a genus; 
cf. Kneser's lecture in ANT). For G semisimple, by Theorem 5.5 r(G) 
is finite, and its computation quickly became a major problem. As Ono 
has shown [ti], [lo], it suffices in fact to compute one Tamagawa number 
for each isogeny class of groups. More precisely, we have the following 
elegant result: Let G be a semisimple K-group, let n: G -+ G be the 
universal K-covering, let F = kern be the fundamental group of G, and 
let X(F) be its group of characters. Then r(G) = T ( G ) ~ ,  where 
hO(X(F)) = [HO(K, X(F))] = [X(F)K] and i1 (X(F)) is the order of the 
kernel of the canonical map H1(K,X(F)) --+ n H1(Kv, X(F)). 

v 

Thus it suffices to compute r(G) for all the simply connected groups. The 
Weil conjecture asserts that for G simply connected we have r(G) = 1. Weil 
[4], [5] developed a method for computing Tamagawa numbers which uses 
induction, the residues of some analogs of the zeta function, and the Pois- 
son summation formula. This method allows one to prove his conjecture 
for many classical groups and some exceptional groups. Later Mars [3], 
[4] computed the Tamagawa number for unitary groups of type A, and 
thereby completed the proof of the Weil conjecture for classical semisim- 
ple groups over number fields. A unified proof of the Weil conjecture for 
Chevalley groups was given by Langlands [I]. Lai [I], [2] computed r(G) 
for G quasisplit. A complete proof of the Weil conjecture was obtained 
quite recently by Kottwitz [3] modulo the validity of the Hasse principle 
for Galois cohomology of simply connected semisimple algebraic groups. 
Chernousov [6], however, completed the proof of the Hasse principle for 
groups of type Eg (cf. Chapter 6). Thus the Weil conjecture has recently 
been proved in general. 

The above definition of Tamagawa numbers requires some modification 
for reductive groups more general than semisimple groups, since for many 
cases important in applications (such as the 1-dimensional split torus 6,) 
the volume of GA/GK is infinite. This compels us to search for other 
homogeneous spaces that are closely related to adele groups but have fi- 
nite invariant volume. Since the obstruction to the finiteness of the vol- 
ume of GA/GK comes from the existence of nontrivial K-characters, or 
equivalently, of a nontrivial almost direct factor which is a K-split torus, 
it is natural to begin our analysis with the 1-dimensional K-split torus 
S = 6,. Here SA is isomorphic to J K ,  the idele group of K .  Although 
JK/K* is certainly noncompact, a classical result from algebraic num- 
ber theory (cf. Lang [2]) asserts that J k / K *  is compact where J& is the 
group of what we call special ideles (i.e., the kernel of the homomorphism 



264 Chapter 5. Adeles 5.3. Compactness and finiteness of GA/GK 265 

CK: JK - IR>O given by cK ((x,)) = n llxv (cf. $1.2.1)). In general the 
v 

analog of J i  can be defined as follows: We associate with each character 
x in X(G)K the continuous homomorphism CK(X): GA - R'O given by 
C K ( X ) ( ( ~ ~ ) )  = n I X ( ~ ~ ) I ~ .   hen we define 

2) 

Clearly this infinite intersection can be replaced by a finite one, since if 
xl,  . . . , xT constitute a base of XK (G), we have G:) = ker c ~ ( x i ) .  As 

an exercise the reader may show that this relation also holds if XI ,  . . . , XT 

generate a subgroup of XK(G) of finite index. The product formula implies 
G$' 3 GK 

THEOREM 5.6. Let G be a connected K-group. Then ~ 2 )  is unimodular 
and G $ ) / G ~  has finite invariant volume. G2)/GK is compact if and only 
if the semisimple part of G is anisotropic over K. 

Note that the latter requirement can also be formulated as follows: each 
unipotent element of GK lies in the unipotent radical of G. Moreover, if 
G is connected and X(G)K = 1, then ~ 2 )  = GA; hence Theorem 5.6 is a 
generalization of Theorem 5.5 for connected groups. 

PROOF: It is convenient to begin by reducing to the case K = Q. Let 
H = RKIQ(G) be the group obtained from G by restriction of scalars. We 

e 
shall show that the isomorphism GAK N HA, from Proposition 5.6 induces 

(1) (1) an isomorphism GAK z HA, . To do so, note that any K-character X: G -+ 

6, induces a morphism i = RKIQ(x): H - RKIq(Gm). Composing )7: 
with the norm map N: RKIQ(Gm) 4 G,, we obtain the character n = 
N o 2 E X(H)Q. Using factorization (2.4) one can show easily that the 
correspondence x H n defines an isomorphism 1): X(G)K -+ X(H)Q of the 
corresponding groups of characters, which yields the commutative diagram 

for any x in X(G)K. We leave it to the reader to verify that this diagram 
also extends to the respective adele groups. The formulas in $1.2.3 (1) imply (1) 

that cK(x) = q(q(x)) ;  hence Q does induce an isomorphism GAK N HAK. 

Therefore G$:/GK and HY:/H~ are isomorphic, and we may assume 
that K = Q from the outset. Simplification of the argument for this case 
is based on the fact that here we can give a nice description of ~ 2 : ~ )  = 

G$) n GA(,). By definition GA(,) = Gg( x GAf(,), whereas GA,(,) c 
G(l) A(,) since GAf (,I is compact and IW>O contains no compact subgroups. 

Thus G::~) = LR x GAf (,) , where L C G consists of those g for which 
~ ( g )  = f 1 for all x in X(G)q. 

LEMMA 5.8. L is a Zariski-closed Q subgroup of G, and X(L ' )~  = 1. 
Moreover, the semisimple parts of G and Lo are the same. 

PROOF: Let XI , .  . . , xT be a base of X(G)Q, and let 9 :  G -+ Gk be the 
homomorphism defined by ~ ( g )  = (XI (g), . . . , xr (g)). Then L = 9-I (D), 
where D c Gk is the (closed) subgroup consisting of {(f 1,. . . , f 1)); thus 
the first assertion of the lemma is proved. If G = HU is the Levi decompo- 
sition of G, S is the maximal central torus of H ,  and S = SlS2 is its pre- 
sentation as an almost direct product of a Q-split and a Q-anisotropic torus 
respectively, then it is easy to see that Lo = (BSz)U, where B = [H, H] is 
the semisimple part of G. The rest of the lemma follows immediately. 

It follows from Lemma 5.8 and Theorem 4.13 that Lw is unimodular. 
Therefore also G::,) = LR x GAt(,) is unimodular, since GA,(,) is com- 

pact. Our objective is to show that ~ 2 )  is unimodular. To do so, let us 
consider the module function A = Acif): G$) -+ W" and show that actu- 

W 

ally A = 1. Since Gal:,) is open in G$) and unimodular, the restriction 

of A to ~ 2 : ~ )  equals 1. 

We shall show that also hiG, = 1. Since G$) is a normal subgroup 

of GAl  the group GA/G$) has invariant measure, and therefore A is the 

restriction of AG, to G$). But then the Tamagawa measure can be used 
to compute A. Let w be a left-invariant rational differential Q-form on G of 
degree n = dim G, and let Q, be the right translation by the element g of G. 
Then, as in the proof of Theorem 4.13, @i(w) = x(g)w for some x in X(G)Q. 
If v E vV and wv is the corresponding Haar measure on GQv, then AcQu (g) 
equals IIx(g)ll; for g in GQ,. Therefore by the product formula A(g) = n 11x(g) 11," = 1 for g in GQ Furthermore, it follows from Theorem 5.1 that 
v 

there are only finitely many double cosets G!:~) \ G ~ ) / G ~ ;  hence, from 
the above and the fact that A is a homomorphlsm we obtain that the image 
A ( G ~ ) )  is finite. Consequently A ( G ~ ) )  = 1, since W>O has no nontrivial 
finite subgroups. Thus we have proved the unimodularity of G$). 
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Now let us consider the finite decomposition 

1 (1) 
Lemma 5.7 implies that each group x: GA(,)xi is commensurable with 

G?!,); hence there is a finite set yl, . . . , yl in G;) such that GY) = 

u:=, y j ~ $ w ) ~ Q .  Therefore it suffices to establish the conditions for 

G?;,)G~/G~ to have finite volume or, respectively, to be compact. But, in 

view of the factorization G?!,) = Ln x GA,(,) and the fact that Gz = Lz, 
we have 

and since GAf(,) is compact, the latter reduces to the condition of LR/Lz 
having finite volume or, respectively, being compact. But Theorems 4.12 
and 4.13 imply that LR/Lz always has finite volume, and is compact if and 
only if the semisimple part of Lo, which in view of Lemma 5.8 is the same 
as the semisimple part of G, is anisotropic over Q. Q.E.D. 

As in the case of GA/GK, we can define the measure d l )  on G $ ) / G ~  
canonically, and then the volume of ~ ( ' ) ( G ; ) / G ~ )  is also called the Tam- 
agawa number of G. Note that for G connected, GA/GK has finite volume 
if and only if X(G)K = 1 and then G;) = GA. Thus this new definition 
indeed generalizes our former one to arbitrary connected groups. 

Ono [6] computed the Tamagawa number of an algebraic K-torus T 
K 9 X ( T ) ) I ,  where LLI(T) = ker(H1(K,T) + fl H1(Kv,T)) = )iI(T)] v 

is the Shafarevich-Tate group of T.  With this result one can construct 
examples of tori and semisimple groups for which r(T) is not an integer. 
Moreover, one can combine the above formulas for the Tamagawa numbers 
of semisimple groups and of tori into a single formula (noting that the 
Tamagawa number of a unipotent group U is always l ) ,  describing the 
Tamagawa number of any connected K-group G in terms of the cohomology 
of the Picard module Pic G (cf. Sansuc [I]). 

5.4. Reduction theory for S-arithmetic subgroups. 

In this section we shall use the reduction theory which we developed for 
d e l e  groups to obtain analogous results for S-arithmetic subgroups. In 
what follows S will denote a finite subset of VK containing VZ, and O(S) 

will denote the ring of S-integers of K .  If G c GL, is an algebraic K- - 
group, then Go(s) is the group of S-integral points, also called the group 
of S-units of G. 

Recall that a subgroup r C G is said to be S-arithmetic if it is commen- 
surable with It can be shown that the set of S-arithmetic subgroups 
is invariant under K-isomorphisms, either by modifying Proposition 4.2 a p  
propriately or by applying the equality = G A ( ~ )  n GK and using the 
remark following Lemma 5.7. This equality also implies that Go(s) is a 
discrete subgroup of GA(s). Since GA(s) = Gs x and is 
compact, Gos is also a discrete subgroup of Gs  = n GK, (which is eas- 

v E S  
ily seen also without using adeles). Therefore we may pose the problem 
of developing a reduction theory for in G A ( ~ )  as well as in Gs. It 
is natural to define fundamental sets here as follows, in analogy to the 
respective definitions for arithmetic groups and adele groups: 

(1) A subset R of GA(s) is a fundamental set for Go(s) if 

(F~)A(s) RGo(S') = GA(s) 
(F~)A(s) R W 1  n Go(s) is finite. 

(2) A subset R of Gs is a fundamental set for Go(s) if 

(Fl1.9 RGo(s) = Gs, 
(F2)s for any a,  b E GK the set of x in satisfying RaxbnR # 0 

is finite. 

It is easy to see that, for S finite, the problems of constructing fundamen- 
tal sets in GA(S) and in Gs respectively are actually equivalent. Namely, 

if R c Gs is a fundamental set as defined in (2), then R x c GA(,) 
is a fundamental set as defined in (1). For this reason, below we shall con- 
cern ourselves only with constructing fundamental sets in Gs. Note that 
for S infinite, definition (2) becomes meaningless, whereas all the results 
for G A ( ~ )  remain valid (cf. Bore1 [I, $81). 

PROPOSITION 5.11. Let B be a fundamental set for Go in G,. Then 
there is an open compact subset C of Gs,vg such that R = B x C C Gs 
is a fundamental set for Go(s). 

PROOF: analogous to that of Proposition 5.9. Indeed, Theorem 5.1 implies 
that there is a finite decomposition 



268 Chapter 5. Adeles 5.4. Reduction theory for S-arithmetic subgroups 269 

which leads to the decomposition 

where D = G, x U, U = n Go, Put C = UlZl UxiU. Then 
VES\V~K 

one can easily verify that for R = B x C one has Gs = RGo,, so it 
remains to verify that C = { x  E Go(s) : R n Raxb f 8 )  is finite for 
any a ,b  in GK. If x E C, then passing to the projection on the non- 
Archimedean part, we obtain x E a-lC-lCb-'; then x-' E bC-lCa. 
As we have seen earlier, since C-lC is compact, there is r in O such 
that C c GT = { x  E GK : rx,rx-' E Mn(0)}  (assuming G c GL,). 
Therefore the finiteness of C is an immediate consequence of the obvious 
generalization of Lemma 4.8. The proposition is proved. 

Proposition 5.11 easily yields 

(1) G S / G ~ ( ~ )  has finite invariant volume if and only if X ( G O ) ~  = 1; 
(2) Gs/Go(s) is compact if and only if the reductive part of the con- 

nected component of G is anisotropic over K .  

PROOF: In the proof of Theorem 5.5 we established that either all the 
groups GK, for v E VK are unimodular or neither of them is unimodular, 
so the unimodularity of Gs is equivalent to the unimodularity of G,. 
Taking a closed fundamental set for Go in G, in the sense of 53.5 for 
the B in Proposition 5.11, we obtain that Gs/Gqs) has finite invariant 
volume (resp., is compact) if and only if the respective property holds for 
G,/Go. Therefore our assertions follow from the corresponding parts of 
Theorem 4.17. Q.E.D. 

Applying reduction theory, we obtained theorems on finiteness of orbits 
both for arithmetic groups and adele groups (cf. Theorems 5.3 and 4.9). A 
similar theorem also holds for S-arithmetic subgroups. To formulate this 
theorem let an S-lattice on K n  be any finitely generated O(S)-submodule 
of K n  containing a base. 

THEOREM 5.8. Let G be a reductive algebraic K-group, and let Q: G -+ 

GL, be a representation of G defined over K .  For w in Km, if the orbit 
X = wp(G) is Zariski-closed, then for any S-lattice L C K m  invariant 
under Go(s), Xs n L is a union of a finite number of orbits of Go(s). 

The proof follows directly from the following two propositions. 

PROPOSITION 5.12. XS consists of a finite number of orbits of Gs. 

PROPOSITION 5.13. we(Gs) n L is a union of a finite number of orbits of 
Go(s). 

PROOF OF PROPOSITION 5.12: Reduces immediately to the case when 
S consists of a single valuation v (recall that S is always assumed to be 
finite). If v is complex, then GK, acts transitively on XK,, i.e., there is only 
one orbit. For v real, the desired finiteness is established in Theorem 3.6, 
Corollary 2. For the non-Archimedean case the only known way to derive 
the finiteness of the number of orbits is to apply the finiteness theorem for 
Galois cohomology over locally compact fields, which we shall do in 56.3. 

PROOF OF PROPOSITION 5.13: Follows from the construction of funda- 
mental sets, described in Proposition 5.11. More precisely, in 54.7 we 
showed how to construct a fundamental set B C G, relative to Go by 
using restriction of scalars and the construction of fundamental sets in Gw 
relative to Gz (cf. 54.3). Then it follows from the proof of Theorem 5.9 
that B thus obtained has the following property: if Q: G -+ GL, is a 
K-representation, then we(B) n Om is finite, for any w in K m  for which 
X = WQ(G) is closed. Starting with B c G, satisfying this property, we 
then use Proposition 5.11 to find a compact set C C GS\"& such that 
R = B x C is a fundamental set for Go(s) in Gs. Since L is invariant with 
respect to Go(s), it suffices to show that F = we(R) n L is finite. The com- 
pactness of C implies the existence of r in O such that r F  c Om. Then, 
projecting onto the Archimedean component, we see that rF is contained 
in (rw)e(B) n Om, which is finite by assumption. Q.E.D. 

From Theorem 5.8 we can derive that the class of S-arithmetic subgroups 
is closed under arbitrary epimorphisms, and that there are only finitely 
many conjugacy classes of finite subgroups of Go(s). 

THEOREM 5.9. Let f :  G + H be an epimorphism of algebraic groups. 
Then for any S-arithmetic subgroup r of G the image of f (I?) is an S- 
arithmetic subgroup of H. 

PROOF: Barely differs from the proof of Theorem 4.1. Clearly it suffices to 
establish that f (Go(s)) is S-arithmetic, and we may assume f (Go(s)) C 

First we show that the general case reduces to the case of G either 
reductive or unipotent. 

LEMMA 5.9. Let G = F U  be the Levi decomposition. If B and D are sub- 
groups of finite index of Fo(s) and Uo(S), respectively, and if B normalizes 
D, then B D  is a subgroup of Go(s) having finite index. 

PROOF: Repeating verbatim the proof of Corollary 2 to Proposition 4.2, 
we obtain that [Go(s) : Fo(s)Uo(s)] is finite. Now let Fo(s) = U,T=, xiB 

t and UO(S) = u:=~ yjD. Then Fo(s)Uo(s) = U:=, Uj=, xiyjBD. Indeed, 
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if x E Fo(s), y E Uo(s)7 then writing x = r i b  and byb-I = yld for b in B 
and d in D, we see xy = xiby = xiyjdb = xiyjb(b-ldb) E xiyjBD. Thus 
we have shown that B D  has finite index in Fo(s)Uo(s), and consequently 
also in Go(s). This proves the lemma. 

Let G = F U  be the Levi decomposition of G. Then H = f (F)  f (U) 
is the Levi decomposition of H .  If we show that [f ( F ) q s )  : f (Fo(s))] 
and [f(U)o(s) : f(Uo(s))] are finite, then Lemma 5.9 will imply that 
[Hots) : f (Fo(s)Uo(s))] is also finite; hence [Hqs)  : f (Go(s))] is finite. 
This gives the reduction to G either unipotent or reductive. 

Let us consider the case of G unipotent. Then Gs/Go(q is compact, 
by Theorem 5.7. Setting U = kerf, we have H1(K,, U) = 1 for any v in 
V* (Lemma 2.7); therefore, passing to cohomology in the exact sequence 
1 -t U -t G -+ H -+ 1, we obtain f (GK,) = HK,, which yields f (Gs) = 
H s  It follows that Hs/ f (Go(s)) is also compact. Thus Ho(s)/ f (Go(q) 
is both compact and discrete, so [Ho(s) : f (Go(s))] must be finite. 

Now let G be reductive. If H c GL,, then using a well-known trick, we 
may assume without loss of generality that H is closed in M,. Then H can 
be viewed as the (closed) orbit of the identity matrix En under the action 
of G on M, given by Ag = A f (g), with usual matrix multiplication on the 
right-hand side. It remains to note that L = M,(O(S)) is invariant under 
Goes), H o ( ~ )  = H n L, and the orbits of Go(q on H q s )  are the cosets 
Ho(s)/ f (Go(s)). Thus the finiteness of the number of orbits, assured by 
Theorem 5.8, is equivalent to the finiteness of the index [Hqs)  : f (Go(s)]. 
Q.E.D. 

THEOREM 5.10. There are only finitely many conjugacy classes of finite 
subgroups of Go(s). 

PROOF: Taking v $ S and viewing Go(s) as a subgroup of Go,,, as in 
the proof of Proposition 3.5 we obtain the finiteness of the number of is* 
morphism classes of finite subgroups of Go(s). Therefore it suffices to 
show that for a given finite group r there are only finitely many conjugacy 
classes of subgroups of Go(s) isomorphic to r. First we consider the case 
of G reductive. The argument here essentially repeats the proof of Proposi- 
tion 3.5. Let R(r ,  G) be the variety of the representations of I7 in G. Then 
G acts naturally on R( r ,  G) by conjugation, and the assertion is equiva- 
lent to the finiteness of the number of orbits of Go(s) on R ( r ,  G)o(s). By 
Theorem 2.17, G has a finite number of orbits on R ( r ,  G); moreover, these 
orbits are Zariski-closed. Let X be one of the orbits for which X q s )  # 0. 
If G c GL, and Il? = dl then X can be realized as a closed subset of 
V = M, x . . . x M, (d factors), and the action of G extends naturally to 
V. Therefore, applying Theorem 5.8 to L = M,(O(S)) x - . - x M,(O(S)), 

we obtain that there are only finitely many orbits of Go(s) on Xo(s), as 
desired. 

In general let us consider the Levi decomposition G = HU, where U is 
the unipotent radical of GI and H is reductive. Let .rr: G -+ G/U be the 
canonical projection. We can realize G/U in such a way that T ( G ~ ( ~ ) )  c 
(G/U)o(s). Since [(G/U)o(s) : T ( G ~ ( ~ ) ) ]  is finite and the reductive case 
of Theorem 5.10 has already been considered, T ( G ~ ( ~ ) )  has a finite number 
of conjugacy classes of finite subgroups. 

Let us consider an arbitrary finite subgroup T. = { yl , . . . , yd ) of Go(s), 
and define a closed subset A(r)  of G~ as 

Then U acts naturally on A(r) by conjugation. To complete the proof of 
the theorem it suffices to show that A(r)O(s) consists of a finite number 
of orbits of Uo(s). Consider the morphism cp: U -+ A(r), given by 

where y = (71,. . . , ~ d ) .  Also, let Ul denote the centralizer of I7 in U, and 
choose a K-subvariety Uz c U such that the product morphism Ul x U2 + 

U is a K-isomorphism of varieties (cf. Lemma 2.1). (Note that in general 
it is not possible to choose a subgroup U2 of U satisfying this property.) 

LEMMA 5.10. The restriction map cp: U2 + A(r) is a K-isomorphism of 
varieties. 

PROOF: First we show that the action of U on A(r) is transitive. Let 
6 = (61,. . . , 6d) E A(r) and A = (61,. . . ,&). Then A is a subgroup of 
GI and since r and A are reductive subgroups of GI by Theorem 2.3 there 
are x, y E U such that x-'rx c H ,  y-lAy c H.  For any i = 1,. . . , d we 
have 

K ( X - ' ~ ~ X )  = ~ ( y i )  = ~ ( 6 ~ )  = ~ ( ~ - ~ 6 ~ ~ ) ~  

so the injectivity of .rr I H  implies that 

where g = xy-l. Since the stabilizer of y is precisely Ul, the restriction 
map cp: Uz -+ A(r) is one-to-one. It remains to note that since A(r) is a h e  
mogeneous variety and hence is also smooth, then by Zariski's fundamental 
theorem cp is an isomorphism. 

Now let U be an abelian group. Then we can take U2 to be a suitable sub- 
group of U (Lemma 2.1). It follows from Lemma 5.10 that the inverse image 
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(9  IV2)-1(A(r)As(s)) is a compact subset of UzAs and therefore is con- 
tained in the union of a finite number of (left) cosets modulo the subgroup 
U2As,s,. But then p-l(A(r)o(s)) = p-l(A(r)Asis)) n U2, is contained in 
the union of a finite number of cosets modulo U20(s) = U2As(S) n U2K, as 
desired. 

In general we use induction on the dimension of U. Let Z(U) be the 
center of U, and consider G' = G/Z(U). Then in Gb(s) finite subgroups 
partition into a finite number of conjugacy classes. Since, by Theorem 5.9, 
the image of Go(s) under the canonical morphism G -+ G' is an S- 
arithmetic subgroup, it follows that has only a finite number of 
conjugacy classes of subgroups of the form l?Z(U)o(s), where r is a finite 
subgroup of Go(s). To complete the proof of Theorem 5.10 it suffices to 
show that finite subgroups of l?Z(U)o(s) partition into a finite number 
of conjugacy classes with respect to Go(s). But r is contained in a suit- 
able maximal reductive K-subgroup F of G. Then the unipotent radical 
of D = FZ(U) is abelian, and Do(q c G o ( q  Therefore the finite sub- 
groups Do(s) partition into a finite number of conjugacy classes in Go(s). 
Q.E.D. 
REMARK: Theorem 5.10 can be proved for G reductive in the same way 
as the analogous Theorem 4.3 was proved for arithmetic subgroups, us- 
ing the Bruhat-Tits building for groups over non-Archimedean local fields 
(cf. $3.4). 

We conclude with a result on finite presentability of S-arithmetic groups. 

THEOREM 5.11. Any S-arithmetic subgroup of a reductive group G is a 
group with a finite number of generators and a finite number of defining 
relations. 

PROOF: based on Reidemeister-Schreier's method from combinatorial 
group theory (cf. Lyndon-Schupp [I, Ch. 2, $4]), which we apply to Go(s), 
viewed as a subgroup of r = GS\V,K In 53.4 (Theorem 3.15) we showed 
that GK, is compactly presented for any v E VfK; therefore, as one can 
easily see, r = n GK, is also compactly presented. (Recall that this 

v€sW,: 

means that there exists a compact subset D of r which generates r and 
such that the relations ab = c, for a ,  b, c E Dl constitute the defining set of 
relations for I?. Passing from D to D U D-I U {e), where e is the identity 
element of I?, we may assume that e E D and D = D-I.) 

Now, let F (X)  denote a free group on the set X ,  and let D* be the set 
whose elements are in one-to-one correspondence with the elements of D 
under the map d* H d. Then the homomorphism Q: F(D*) -+ r defined via 
the latter bijection is surjective, and N = ker Q is generated by elements of 
the form a*b*c*-l, where a*, b*, c* E D* and ~(a*b*)  = ~ ( c * ) ,  i.e., ab = c. 

The system of representatives of cosets F(D*)/H (where H = e-l(Go(s))), 
which is needed in order to apply Reidemeister-Schreier's method, can be 
chosen as follows: 

According to Proposition 5.11, there exists a compact subset C of r such 
that r = Gois)C; moreover, without loss of generality we may assume that 
e E C. Choose a system T of representatives of the cosets modulo Gois) 
which consists of elements of C and contains e; let T* denote a system of 
representatives of F(D*)/H containing the identity element e* of F(D*), 

such that Q gives a one-to-one correspondence between T* and T. We 
introduce a map F(D*) --t T*, denoted by x H 5, which sends x to the 
representative S of H z  lying in T*, i.e., to 3 in T* such that H z  = HS. 
Nowtakeanyxin Handwritei t  a s x  = dl ,... ,dm, wheredi E D*UD*-l. 
Then 

x = (did;l)(dld2(&&-l). . . (d l . .  . dm-ldm(dl.. .dm)-'), 

since d l . .  .dm = Z = e*. The d l . .  .di-ldi(dl.. . di)-l, provided by the 
Reidemeister-Schreier method, have x as their product, and lie in X = 
(T*(D* u D*-')T*-') n H ,  which thereby is a system of generators for H .  
F'urthermore, by assumption N as a normal subgroup of F(D*) is generated 
by abc-' for those a, b, c E D* for which ~ ( a b )  = ~ ( c ) .  This means that 
any n in N can be written as 

where gi E F(D*) and ~i = f 1. Writing gi = hiti, where hi E H and 
ti E T*, we see that N as a normal subgroup of H is generated by xyz-', 
where x, y, z E T*D*T*-' and ~ ( x y )  = ~ ( z ) .  Since xyz-l = e*, we have 

implying that N, as a normal subgroup of H ,  is generated by elements of 
the form xyz-l, where x, y, i E T * ~ D * T * - ~  n H.  This suggests that it 
is helpful to extend the system of generators X to the following set Y = 
Q-' (BC~DC-~B n G q q ) ,  where B = n Go" (from the definition of 

V E S \ V ~  
X, clearly X c Y). Then N as a normal subgroup of H is generated by 
xgz-l, where x, y, z E Y and e(xy) = e(z). 

Now we show that Y can be diminished to obtain a finite set of generators 
of Go(s). To do so, first we choose a subset Z of Y for which Q induces 
a bijection Z -+ Q(Y), and we define the projection a: Y --t Z by the 
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condition ~ ( x )  = e(a(x)) for any x in Y. Consider the free QI groups F(Y)  and 

F(Z),  and the mutually inverse homomorphisms F(Z)  rt Q Z  F(Y) induced 

by Z c Y and a .  The commutative diagram 

where e2 = o al and is obtained as the compositions of Q and the 

homomorphism r :  F(Y) -+ H, yields ker Q:, = az(ker el).  But ker 
is 

generated by kerr  and elements of the form X Y Z - ~ ,  for x, y, z E Y such 
that ~ ( x y )  = e(z). It follows that ker ~2 is generated by ker(r o a l )  and 
elements of the form xyz-', where x, y, z E Z and e(xy) = @(a). By 
assumption e yields a one-to-one correspondence between Y and E n G q s ) ,  
where E = BC2DCP2B. But E is a compact subset of r and therefore 
can be covered by a finite number of translations of the open subgroup B. 
Therefore there exists a finite set of elements yl, . . . , yT in E n  G q s )  such 
that T T 

E n Go(s1 = U yi(Go(s) n B) = U yiGo- 
i=l i=l 

(Since E = B E  = EB,  note that also E f l  G q s )  = Go(E n Go(s)) = 

i~ n Go(s ) )Go)  
Rv Theorem 4.2 we can choose a finite set zl, . . . , zt of generators of Go. - d 

Thenput U =  {zl ,... , z t )  and W = {yl ,... ,yT)UU; and,usingtheone- 
to-one correspondence between Z and E n Go(s), identify these sets with 
the corresponding subsets of Z. By assumption we have an epimorphism 
p: F(U) 4 Go. Taking some section $: Go -+ F(U) for p which is the 
identity map on U, we can define the map Z 5 F(W), sending yig to yi+(g) 
for g in Go. This map induces a homomorphism D2: F (Z)  -+ F(W),  which 
is the inverse of ,&: F(W) + F(Z), the homomorphism given by W C Z. 
Moreover, we have the commutative diagram 

in which e3 = ~2 o PI, where ~2 is taken from (5.11). Diagram (5.12) yields 
ker e3 = a(ker  e2). Therefore ker e3 is generated by ker(r o az 0 a) and 
elements of the form xyz-' where x, y, z 6 a(Z) and e3(xy) = ~ 3 ( z ) .  

We shall show that all the elements of the form xyz-l or, equivalently, the 
relations xy = z for such x, y, z, can in fact be reduced to a finite number of 
them. To do so, let us first consider the relations where x E $(Go). Since 
G O ( E ~ G ~ ( ~ ) )  = EnG,(,), ziyj = ykwij for all i = 1,.  . . , t ,  j = 1 

7 . . .  7 7 - 7  

with suitable k E { 1, . . . , r ) and wij E Go Now take the relations 

(5.13) 2. zYJ . - - ~ k $ ' ( ~ i j ) ,  for 2 = 1, . . . , t and j = 1, . . . , r .  

Adding (5.13) to a finite system of relations among the zi, defining Go 
(cf. Theorem 4.17(2)), we obtain a finite system of relations from which all 
the relations of the form xy = z for x E $(Go) can be deduced. Indeed, 
any x in +(Go) is a word in zi's. Therefore, writing y = yjb and z = ykc, 
for b, c E +(Go), and using (5.13) an appropriate number of times, we 
reduce xy = z to the form ylab = ykc, where a E $(Go). The equality 
e3(xy) = ~ ~ ( 2 )  implies that k = 1; then, canceling yk, we obtain a relation 
ab = c between the words in the zi's, and by assumption all such relations 
have already been incorporated. 

Now, let us take any x in a(Z)  and write it as x = yia, where a E $(Go). 
By what we proved, any relation of the form xy = z can be reduced to 

where rij E Go is the element of Go(s) determined by yiyj = ykrij. Thus 
all the relations of the form xy = z, where x, y, z E u(Z) and e3(xy) = 
e3(z), can be derived from a finite number of relations. 

Equivalently, the normal subgroup of F(W) generated by all xyzhl for 
such x, y, z, is actually generated by a finite number of these elements. 
Therefore, if we take = a2O2(F(W)), then our computations of ker ~3 

imply that ker Q )I= @ n W is generated as a normal subgroup of by 
a finite number of elements. It remains to note that since @ is a finitely 
generated subgroup of F(D*),  it is a free group of finite rank (by the 
Nielsen-Schreier Theorem); therefore Go(s) z @/@ n N yields the desired 
finite presentation of Go(s). Hence any S-arithmetic subgroup of G, being 
commensurable with Go(s), is also finitely presented. Q.E.D. 

The proof we have given of Theorem 5.11 is a formalized version of the 
original argument due to Kneser [7]. For the reader familiar with combina- 
torial group theory, such formalization at times may appear superfluous; in 
particular, he may prefer not to introduce F(Y), F(Z), etc., but rather to 
argue directly in r (which is possible, and is actually the approach used by 
Kneser). Nevertheless, even our exposition, aimed at the reader without 
appropriate background, clearly evinces the basic line of argument, which 
amounts to a reduction of the general case to the case S = VZ, when 
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Go(s) = Go, with finite presentability already proved in Theorem 4.17. 
This reduction can also be carried out by induction on IS \ vZ(, viewing 
Go(s) as a subgroup of GKv, where v E S \ vZ. In some cases appropri- 
ate modification of this induction argument makes it possible to  determine 
explicit generators and relations for Go(s), once one has a representation 
of Go (for G = SL2, cf. Serre [lo]). 

There is also another proof of Theorem 5.11 in which the case S = VZ in 
no way differs from the other cases (cf. Borel-Serre [4]). This proof is similar 
to the proof of Theorem 4.2 and uses the discrete action of Go(s) on a 
suitable simply connected space, which is the product of the quotient space 
of G, by a maximal compact subgroup, with the Bruhat-Tits buildings 
for the GKv, for v E S \ v:. As we have noted, this approach also yields 
another proof of Theorem 5.10 for reductive groups. 

Note that in Theorem 4.2 we did not require that G be reductive. How- 
ever, for nonreductive groups Theorem 5.11 generally does not hold. If S # 
vZ, then the additive group of O(S) is not finitely generated; therefore any 
S-arithmetic subgroup of the one-dimensional unipotent group G, is not 

finitely generated either. On the other hand, if B = { (1 p, ) : a # 0 )  is 
a Bore1 subgroup of SL2, then any S-arithmetic subgroup of B is finitely 
generated. In this regard, let us point out a criterion (proved by Kneser [7]) 
for a group to be finitely generated (finitely presented): the S-arithmetic 
subgroups of G are finitely generated (resp., finitely presented) if and only 
if GK, is compactly generated (resp., compactly presented) for every v in 
S \ VZ. Since a reductive group is always compactly presented (Theo- 
rem 3.15), the criterion for being compactly generated in general can be 
formulated in terms of the action of G on the unipotent radical R,(G). We 
recommend this as an exercise for the reader. 

We conclude this chapter with a description of S-arithmetic subgroups 
of tori. The theorem below contains as special cases both Dirichlet's classic 
theorem on the structure of S-units in algebraic number fields, as well as 
the description of the usual arithmetic subgroups of tori, given in 94.5. (So, 
this theorem can naturally be called the generalized Dirichlet's theorem.) 
Its proof, published by Shyr [2], is practically identical to the proof of 
Theorem 9 in Chapter 4 of Weil [7]. 

THEOREM 5.12. Let T be a torus defined over an algebraic number field 
K ,  and let S be a finite subset of VK containing v:. Then the group 
of S-units To(s) is isomorphic to the product of a finite group and a free 
abelian group of rank s = Eves rankKv T - rankK T. 

PROOF: Clearly To(s) = TA(S) n TK is a discrete subgroup of T A ( ~ ) .  But, 
this does not immediately yield results about To(s), since TA(s)/To(s) in 
general is noncompact. To obtain a compact quotient space one needs 

to reduce TA(s) to T;$) = Tats) n TY), with T;) defined as in 95.3. 

Indeed, since TK C ~ t ) ,  we also have To(s) = T;',, n TK; and there- 

fore T~ ' , ) /T~(S)  can be identified with an open-and-closed subspace of 

T ~ ) / T ~ ,  which is compact by Theorem 5.6. 
Now we shall describe precisely the structure of T;$) By definition 

TA(s) = n TK, x TC7, We already know the structure of TKv for v 
V E S  v @ S  - 

in VE (cf. proof of Theorem 4.11, Corollary 1): TKv N lRTv x B,  where 
r, = rankKv T and B is compact. Now let v E S \ V$ Consider a 
decomposition T = T1T2, in an almost direct product of a maximal K,- 
split torus Tl and a maximal K,-anisotropic torus T2 (cf. 32.1.7). Let B 
be a maximal compact subgroup of TKv. Then T2KU C B since TZKv is 
compact (Theorem 3.1). Therefore, if cp: T + T3 = TIT2 is the corre- 
sponding quotient map, then T K ~ / B  N cp(T~~)/cp(B). But T3 is K,-split, 
SO (T~)K,  N (K,*)'u N ZTv x U, where r, = dimT3 = rankKv T and U is 
compact. Since B is maximal, it follows that p(B) = U n cp(TK,); hence 
cp(T~,)/cp(B) C ZTv , implying cp(T~~)/cp(B) N Zt for some t < r,. But TI 
is also a K,-split subtorus of rank r,, whence TIK, N ZTu x Ul for some 
compact subgroup UI. Also, the subgroup of TIKv isomorphic to ZTu is 
discrete and therefore does not intersect B; thus T K ~ / B  contains a free 
abelian group of rank r,. Finally, T K ~ / B  N ZTu, from which it follows 
easily that TK, N ZTv x B. Combining our results on the Archimedean 
and non-Archimedean components, we obtain the following factorization 
of TA(s): 

TA(q N lRa x ZP x W, 

where a = EUEVE rankK, T ,  = E,Es,v_w r a n k ~ ,  T,  and W is compact. 

Now it is easy to describe the structure of T!;',). First, recall that 
, . , 

we introduced TY' as the intersection of the kernels of the continuous 
homomorphisms CK (x): TA -+ lR>O for all x in X(T)K where cK (x) ((g,)) = 

n IlX(gu)ll,. Let X I , .  . . , X T  ( r  =  rank^ T) be a base of X(T)K. Then we 
21 

have a continuous homomorphism 6: TA -' (R'O), given by 

moreover TY) = ker6 We claim that 6(TA(s)) = (Kt>')' for any S > 
V z .  Indeed, since X I , .  . . , X, is a base of X(T)K, the morphism cp: T - 
GL given by g d (xl(g), . . . ,xT(g)) is surjective. Therefore, applying 
Corollary 1 of Proposition 3.3, we see, for any v E V z ,  that the image 
of P(TK~) is open and therefore contains the connected component of the 
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identity in (K:)', which for v real is (R>O)' and for v complex is C*'. It 
remains to note that the restriction of 6 to TKv (appropriately embedded in 
TA) is the composite of cp and of the r-th Cartesian power of the normalized 
valuation map 11  (I,: K," -+ R>O, so 6(TKv) is (R'o)T for each v in V z .  Since 
R and R'O are isomorphic, we can apply 

LEMMA 5.11. Let I' = R" x ZP x W, where W is compact. If 6: r -+ RY 
is a continuous surjective homomorphism, then y 5 a and 

PROOF: Left to the reader as an exercise. 
(1) Thus, we can describe TA(S) by 

Above we showed that To(s) is a discrete subgroup of T$L), and moreover 
T(l) A(S) /TO(S) is compact. Therefore Theorem 5.12 follows from Lemma 4.14, 

noting that (a  - r)  + ,f3 is precisely the number s in the statement of the 
theorem. Q.E.D. 

COROLLARY (DIRICHLET'S S-UNITS THEOREM). Let K be an algebraic 
number field, and let S be a finite subset of vK containing V z .  Then the 
group of S-units E(S) = {x  E K* : lxlv = 1 for all v 6 S) is isomorphic 
to the product of the group E of the roots of unity contained in K by a 
free abelian group of rank IS( - 1. 

BIBLIOGRAPHIC NOTE: The basic results of reduction theory for adele 
groups and S-arithmetic subgroups in the number-theoretic case can be 
found in Borel [I]. In his exposition, Borel essentially uses the reduction 
theory for arithmetic groups developed by himself and Harish-Chandra. 
Later Godement [l] showed how the same theorems can be obtained along 
different lines, independent of the reduction theorems for arithmetic groups. 
By elaborating Godement's method, Harder [5] was able to develop a re- 
duction theory for adele groups over global fields of characteristic > 0. 
The basic theorems here are the same as in the number field case, except 
for the fact that the analog of Theorem 5.1 looks as follows: If S is a 
nonempty subset of vK, then there are only finitely many double cosets 
G A ( ~ )  \ GA/GK. However, the question of finite generation and finite 
presentation of S-arithmetic groups is not so clear-cut for global function 
fields as for number fields (in particular, there exist infinitely generated 
S-arithmetic groups). Behr [4] obtained an almost complete answer to the 

question of finite generation; some classical groups had been examined ear- 
lier by OIMeara [2]. The problem of finite presentability of S-arithmetic 
groups over a function field K has been solved affirmatively in general only 
for K-anisotropic groups (cf. Borel-Serre (41). Until recently, the case of K- 
isotropic groups has not been considered in general. However, it is known 
that SL3(k[t]), where k is a finite field, is finitely generated but not finitely 
presented (Behr [GI), and that SL2(0(S)) is finitely presented if and only 
if IS1 > 2 (Stuhler [I]). 



6. Galois cohomology 

This chapter is devoted to results describing the first Galois cohomol- 
ogy set H1(K, G) of an algebraic group G over a field K of arithmetic 
type. Moreover, it includes some indispensable results on the cohomology 
of groups of v-adic integral points and adele groups. The material in this 
chapter will be used in Chapters 7 and 8; hence familiarity with it is es- 
sential for further reading of this book. However, since Galois cohomology 
is not generally speaking the emphasis of this book, we do not cover all 
aspects of cohomology theory, but focus on questions that are either con- 
nected with classical number-theoretic concepts (such as the local-global 
principle) or closely related to other results from the arithmetic theory of 
algebraic groups. In this sense the present chapter supplements Serre's 
well-known book [I] on cohomology theory. We shall refer the reader to 
this book for the proofs of general facts used in our exposition. Several 
results here have not been published before. For example, this is the first 
time a complete proof of the Hasse principle for simply connected groups 
is presented. 

6.1. Statement of the main results. 
This section assembles the main results describing H1(K, G), the first 

Galois cohomology set of an algebraic K-group G, for K a finite, local, or 
number field. The proofs will be given in the sections that follow. Several 
applications of these results and their connection with classical facts about 
the classification of quadratic, Hermitian, and other forms will be described 
in $56.54.6. For the basic definitions relating to noncommutative Galois 
cohomology, see 51.3. (The reader may find a more systematic exposition in 
Serre's book [I]). Note that some proofs of the theorems in this chapter on 
cohomology of semisimple groups are highly technical and may be omitted 
in the first reading. (Actually, familiarity with this section suffices for 
understanding the rest of the book). 

We begin with a finite field K ,  for which a full description of H1(K, G) 
is given by 

THEOREM 6.1  (LANG [I]). Let G be a connected algebraic group defined 
over a finite field K .  Then H1(K,G) = 1. 

The proof will be given in s6.2. There we shall also present several 
corollaries of Theorem 6.1. In particular, we shall show that any connected 
group over a finite field K is quasisplit, i.e., contains a K-defined Bore1 
subgroup. In view of Hensel's lemma, another important result follows: If 
G is a connected group defined over a number field K, then it is quasisplit 
over the completions K,, for almost all v in VfK 
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Moreover, Theorem 6.1 has some implications concerning the cohomol- 
ogy of groups of v-adic integral points and adelic groups, which will be used 
later in our exposition. Note that a result of Steinberg (cf. Theorem 6.23) 
implies that Theorem 6.1 holds even in the more general case of a field K 
of cohomological dimension cd(K) 5 1. In most other cases H1 (K, G) is 
nontrivial in general; and hence there is the problem of describing it. It 
follows from Proposition 2.9 that we need only consider the case of a reduc- 
tive group G. According to Theorem 2.4, such a group is an almost direct 
product of a torus and a semisimple group, and therefore the computation 
of H1(K, G) essentially reduces to two main cases: 

(a) G is a torus; 
(b) G is a semisimple group. 

Note that the results for semisimple groups differ inherently from those for 
tori, and in fact the latter are actually used in the semisimple case. For 
this reason we shall first examine the case of algebraic tori. 

It is well known (see $2.1.7) that any K-torus T is defined up to iso- 
morphism by assigning to the group of characters X(T) the structure of a 
module over the absolute Galois group G a l ( K 1 ~ ) .  (Recall that we always 
assume K to be perfect; moreover, in most cases char K = 0.) There- 
fore it is natural to try to link the cohomology groups H1(K,T) and 
H1(K, X(T)). Here, first of all, it is helpful to replace the cohomology 
of the profinite group G ~ ~ ( K / K )  by the cohomology of a finite quotient 
group. To do so, note (see Lemma 6.8) that H1 (K, T)  = H1 (L/ K, T)  and 
H1(K,T) = H1(L/K, X(T)), where L is a splitting field for T (i.e., a finite 
Galois extension of K over which T becomes split). 

In what follows it is convenient to pass from the usual group cohomology 
to the modified cohomology groups introduced by Tate. A precise definition 
of the Tate cohomology groups I? (G, A) of a finite group G with coefficients 
in a commutative G-module A will be given in $6.3, but for the time being 
we shall limit ourselves to pointing out that k ( G ,  A) are defined for all 
integral values of i, and I?(G, A) = Hi(G, A) for i 2 1. Besides, Tate 
cohomology retains the basic property of the usual cohomology: a short 
exact sequence of G-modules 0 -+ A -+ B 4 C -+ 0 gives rise to the 
following infinite exact sequence going in both directions: 

With this notation we have 

THEOREM 6.2 (NAKAYAMA-TATE; LOCAL VERSION). Let K be a local 
field. Then for any K-torus T with splitting field L and any integer i, we 

have the isomorphism 

In particular, H'(L/K, T)  N (L/K, X(T)). 
It should be noted that the isomorphism in Theorem 6.2 arises as an 

isomorphism of a finite Abelian group with its dual. To obtain a natural iso- 
morphism, instead of using the group of characters X(T) we ought to con- 
sider the dual group of cocharacters (or one-parameter subgroups) X, (T) = 

Horn(&, T)  (cf. $2.1.7), and then H"~(L/K, X, (T)) II &(L/K, T) ,  this 
isomorphism being induced by the cup product with the generator of 
H'(L/K, L*) = Br(L/K) 2 !Z/Z where n = 14: K]  (for details see $6.3). 

It follows from Theorem 6.2 that H'(K, T) is finite for a local field K .  
We shall see below that this result still holds if we replace T by an arbitrary 
algebraic K-group. 

The study of H1(K, T)  for a torus T over a number field K is based 
on analyzing the map H'(L/K,T) + n H1(L,/K,,T) (a single exten- 

sion w(v is selected for each v). It is easy to see that the image lies in 
H1(L/K, TA,), where AL is the adele ring of L, so that we actually have a 
map H1(L/K, T)  9 H 1 ( L / ~ ,  TAL). To compute its kernel and cokernel, 
consider the exact sequence 

where CL(T) = T A ~  /TL is the adele class group of T over L, and the 
corresponding cohomological sequence 

A description of the cohomology groups H ~ L I K ,  Cr,(T)) is given by 

THEOREM 6.3 (NAKAYAMA-TATE; GLOBAL VERSION). Let K be a num- 
ber field. Then, for any integer i and any K-torus T with splitting field L, 
there is an isomorphism 

The remark following Theorem 6.2 applies equally well to Theorem 6.3. 
Moreover, it should be noted that notwithstanding the different objects 
involved in the statement of Theorems 6.2 and 6.3, the proofs of both 
theorems rest on the same cohomological formalism (i.e., the Tate theorem, 
cf. $6.3), whose use is justified respectively by local and global class field 
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theory. Furthermore, note that in 56.3 we shall study the inter-relations 
between the ismorphisms in Theorems 6.2 and 6.3. 

It follows from Theorem 6.3 that the kernel and the cokernel of cp are 
finite. The group ker p is called the Shafarevich-Tate group of T,  denoted 
by III(T). If UI(T) = 1 then T is said to satisfy the local-global, or 
Hasse, principle; in general III(T) expresses the deviation from the local- 
global principle. This terminology is natural since, for the normed torus 
T = R;~(G,) the triviality of UI(T) is equivalent to the classical Hasse 
norm principle for L/K. Using Theorems 6.2 and 6.3, Tate showed that, for 

(1) 
a Galois extension LIK with Galois group 6, and for T = RLIK((Gm), the 
group III(T) is isomorphic to the kernel of the canonical homomorphism 
H3 (6, Z) fl H~ (&, Z), where 4, is the decomposition group of some 

w 

extension of v. Until recently, however, no research had been done on III(T) 
(1) for T = RLIn(G,) when L/K is not a Galois extension. Analysis of this 

case appears in Platonov-Drakokhrust [I], [2], Drakokhrust-Platonov [I] 
and Drakokhrust [I]; these results are set forth in 56.3. 

Qualitatively, Theorems 6.2 and 6.3 provide two basic facts about Galois 
cohomology of algebraic tori: the finiteness of H1(K, T) for tori over a local 
field K ,  and the finiteness of LLI(T) for tori over a number field K .  In s6.4 
we establish that these two facts hold for any algebraic group. Of course, 
the proofs for the general case rely on entirely different arguments from 
those used to prove Theorems 6.2 and 6.3. To be more precise, it turns 
out that the finiteness of H1(K, G) for a local field K (Theorem 6.14) is 
actually independent of the structure of G and is a consequence of a certain 
special property of the absolute Galois group Gal(K/K) of K (which we 
call property (F)). On the other hand, the finiteness of the kernel1 UI(G) 
of the map H1(K, G) -+ n H1(Kw, G) (Theorem 6.15) follows from the 

21 

reduction theory for adele groups, developed in Chapter 5. 
Let us consider the problem of the precise computation of the cohomol- 

ogy. As we have noted, we may confine ourselves to the case of reductive 
groups, which, modulo the results on the cohomology of tori, reduces to 
the case of semisimple groups. 

If G is a semisimple group over a local field K, then, in contrast to 
the situation for a finite field, H1(K, G) need not be trivial; however the 
following is true: 

THEOREM 6.4. Let G be a simply connected semisimple group over a non- 
Archimedean local field K.  Then H1 (K, G) = 1. 

' Recall that in noncommutative cohomology the kernel is the inverse image of the 
distinguished element, i.e., of the equivalence class of the trivial cocycle. 

To compute H'(K, G) for any semisimple group G over a local field K ,  
consider the universal K-covering G G (cf. Proposition 2.10). From the 
exact sequence 1 -+ F -+ G 2, G -+ 1, where F = k e r ~  is the fundamental 
group of G, and by the centrality of F, we obtain a map 6: H1(K, G) -+ 

H2(K, F )  (cf. $2.2.3), and the main result is that 6 is bijective. (Note 
that injectivity of 6 follows from Theorem 6.4, and surjectivity will be 
established in Theorem 6.20). In particular, the set with a distinguished 
element H1(K,G) is endowed with the natural structure of an abelian 
group. The proof of Theorem 6.4, presented in s56.7-6.8, uses structural 
information about semisimple groups and their classification. There is also 
a uniform proof of Theorem 6.4 based on Bruhat-Tits theory (cf. Bruhat- 
Tits [2]). 

In proving Theorem 6.4 the following important result will also be ob- 
tained. 

THEOREM 6.5. Let G be a simply connected simple anisotropic group over 
a local field K .  Then G = SL1(D) for some finite dimensional division 
algebra D over K .  

Although Theorem 6.5 can also be derived from Bruhat-Tits theory, we 
decided to give the proof of Theorems 6.4 and 6.5 which uses a structural 
argument, since it also works in the study of cohomology over number 
fields (where at present there is no alternate proof of the corresponding 
results). Note the conjecture in Serre [I] that the analogous assertion to 
Theorem 6.4 must hold whenever the cohomological dimension cd(K) 5 2. 
On the other hand, the question of the validity of Theorem 6.20 in this 
case (i.e., the question of the surjectivity of the coboundary map 6) re- 
duces to the classical question in the theory of simple algebras of whether 
the exponent and the index of simple K-algebras are the same. Artin [I] 
presents this as a conjecture for C2-fields, which are actually those fields 
having cohomological dimension 5 2. 

Theorem 6.4 also implies several facts about the classification of simple 
groups, which we shall need in Chapter 7 to prove the Kneser-Tits conjec- 
ture over local fields. For example, any group of type 2~~ over a local field 
is quasisplit, and any group of type E7 becomes split over any quadratic 
extension of K .  

AS in the case of tori, computation of H1(K, G) over a number field K 
is based on analysis of a canonical map H1 (K, G) 3 fl H1 (K,, G). If p 

21 is injective it is natural to say that the Hasse principle holds for G, since 
the injectivity of p for G = O , ( f )  is equivalent to the validity of the local- 
global principle for equivalence of quadratic forms. Unfortunately p is not 
always injective; however, it was conjectured quite a while ago (cf. Serre [I]) 
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that Q is injective when G is simply connected. The proof of this fact for 
the classical groups (cf. Kneser [12]) is closely related to classical results on 
the classification of quadratic, Hermitian and other forms. Harder [I], [2] 
studied the exceptional groups of types other than E8; however, groups of 
type E8 remained unexamined for over two decades. The proof presented 
here was obtained quite recently by Chernousov [6]. Thus 596.7-6.8 contain 
the first complete proof of the Hasse principle for simply connected groups. 

According to Theorem 6.4, for a simply connected group G we have 
H1(K,, G) = 1 if v is non-Archimedean, therefore Q actually reduces to 

the map H1 (K, G) 5 n H1 (Kv, G), which is injective by the Hasse 
v € v_lf 

- - 
principle. In fact one has the following result: 

THEOREM 6.6. 6 is bijective for a simply connected K-group G. 

To complete the picture, it remains to describe the real cohomology 
H1(R, G) of a simply connected simple R-group G. For Gw compact, this 
has been done in Serre 11, Ch. 3, 34.51. The general case was recently 
handled by Borovoi [2]. 

As in the local case, to compute H1(K, G) for an arbitrary semisimple 
group G, one has to consider the exact sequence 

where G is simply connected and F = kerx is the fundamental group 
of G. Then one can show that in the resulting exact cohomological se- 

quence H1(K, G) - H1 (K, G) 4 H2(K, F )  the map 6 is surjective (Theo- 
rem 6.20). Furthermore, one can prove an analog of Theorem 6.5 for totally 
imaginary number fields. 

Using the Hasse principle for simply connected groups, we also prove it 
for adjoint groups; whence, in turn, several facts follow about the classifi- 
cation of simple groups over number fields. In particular, any simple group 
of type B,, Cn, E7, E8, F4, or G2 over a number field K splits over some 
quadratic extension of K .  

The results described enable us to compute H1 (K, G) for any connected 
algebraic group G over a local or a number field K.  As Borovoi has noted, 
using his concept of the fundamental group of an arbitrary connected al- 
gebraic group and the results of Kottwitz [1], [2] one can formulate these 
results in a uniform manner similar to Theorems 6.2 and 6.3. 

6.2. Cohomology of algebraic groups over finite fields. 
We begin with the proof of Lang's theorem that H1 (K, G) = 1 for any 

connected algebraic group G defined over a finite field K (cf. Theorem 6.1). 

It suffices to prove that H1(L/K, G) = 1 for any finite extension L/K. It 
is well known that Gal(L/K) is cyclic and is generated by the F'robenius 
automorphism 9: x H xq for x in L, where q = I KI. (Note that the latter 
formula simultaneously defines an automorphism of Gal(K/K), which we 
shall also call the F'robenius automorphism and also denote by 9 .  Clearly 
9 is a topological generator of Gal(K/K).) Let g = {g,} E Z'(L/K, G) 
be a cocycle. We claim that to prove that g is trivial it suffices to find x 
in GR satisfying g, = x-lP(x). Indeed, then 

and analogously, using straightforward induction, we easily obtain g,i = 
x-lPi (x) for any i. If n = [L : K], then g,, = g, = 1; but on the other 
hand, g,n = x-lcpn(x), from which it follows that cpn(x) = x, i.e., x E GL, 
thus establishing that g is a trivial cocycle of Z1(L/K, G). This would 
complete the proof of Lang's theorem. 

LEMMA 6.1. If G is a connected K-group, then X = { X - ' ~ ( X )  : x E GK ) 
is precisely GR . 

PROOF: Based on the interpretation of the action of 9 on GR as a regular 
K-morphism of varieties. Namely, for any K-subvariety V c An and any 
point x = (XI,. . . ,xn)  in VK, put x(4) = (27,. . . ,xz). Then x(q) E VK, 
so fq: x H ~ ( 4 )  yields a regular K-endomorphism of V, which on the K- 
points is the F'robenius automorphism. (Note that fq is bijective and is 
independent of the choice of affine realization of V). Direct computation 
shows that dl fq is the zero map for any point x in V. We apply these facts 
to the connected algebraic K-group G. 

LEMMA 6.2. Let a E G. Then the map sa:G - G, given by sa(g) = 
g-lag(q), is separable. Its image is open and closed. 

PROOF: We have 

so the differential map desa: T,(G) -+ Ta(G) defines an isomorphism of 
the tangent spaces. It follows that s, is a dominant separable morphism 
(cf. Bore1 (8, Ch. AG, Theorem 17.31). In particular, the image of s,(G) 
contains an open subset of G. But s,(G) can be interpreted as an orbit 
under the action G x G -+ G given by (g, h) H g- lhg(~) ,  so the entire set 
sa(G) is open in G. Since this holds for any a, the s,(G) are also closed, 
and Lemma 6.2 is proved. 

Since G is connected, it follows from Lemma 6.2 that sa(G) = G for any 
a in G; in particular, s,(G) = G and se(Gg) = GR. On the other hand, it 
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is easy to see that s,(Gg) is the set X in Lemma 6.1. This completes the 
proof of Lemma 6.1 and Lang's theorem. 

Notwithstanding its simplicity, Lang's theorem has several important 
corollaries. 

PROPOSITION 6.1. Let G be a connected algebraic group over a finite field 
K .  Then G is K-quasisplit, i.e., contains a K-defined Borel subgroup. In 
addition, any two Borel K-subgroups of G are conjugate by an element of 
GK. 

PROOF: Let B be a Borel subgroup of G defined over K ,  let p be the 
Frobenius automorphism in G ~ ~ ( K / K ) ,  and let Bq be the Borel subgroup 
obtained by applying p. By the conjugacy theorem we can find g in G g  
such that g ~ q g - l  = B. However, g = xdlp(x) for some x in GK, by 
Lemma 6.1. Then, putting H = XBX-l, we obtain a Borel subgroup of G 
which, by virtue of Hq = p(x)B'+'p(x)-l = xgBqg-lx-l = H,  is defined 
over K .  

Now let B1, B2 be Borel K-subgroups of G. Then B2 = gBlg-l for a 
suitable g in G g  . Since Bi (i = 1,2) are defined over K ,  we have By = Bi, 
implying 

p ( g ) ~ ? p ( g ) - ~  = @IS-l; 

so g-lp(g) lies in the normalizer NG(B1), which by Chevalley's theorem 
(cf. Borel 18, $111) is B1. Applying Lemma 6.1 to B1, we obtain g-I p(g) = 
bP1p(b) for a suitable b in ( B 1 ) ~ .  Then, putting h = gb-l, we have 
cp(h) = h, i.e., h E GK and hBlh-l = gBlg-' = Bz. This completes the 
proof of the proposition. 

COROLLARY 1 (WEDDERBURN'S THEOREM). Let K be a finite field. 

Then there are no noncommutative finite-dimensional central division a]- 
gebras over K .  

Indeed, let D be a finite-dimensional central division algebra over K. 
Consider G = SL1(D) (cf. 52.3). Suppose D # K ;  then G is a nontrivial 
simple K-anisotropic group (Proposition 2.7). But by Proposition 6.1 this 
group must be quasisplit; in particular, rankK G > 0; contradiction. 

Another proof may be given using the property that the isomorphism 
classes of central simple algebras over K of dimension nZ are in one-to-one 
correspondence with the elements of H'(K, H), where H = PGL,. Since 
H1(K, H) = 1, there exists only one such algebra, viz. Mn(K), which is 
not a division algebra. 

PROPOSITION 6.2. Let G be a connected group over a finite field K,  and let 
W be a nonempty K-variety with a transitive K-defined action of G. Then 
WK # 0. Moreover, if the stabilizer G(x) of a point x in W is connected, 
then GK acts transitively on WK. 

PROOF: Let y E WK. By transitivity, we have g in G g  such that gp(y) = y 
(where, as above, p is the Robenius automorphism) and, by Lemma 6.1, 
we may represent it as g = h-'cp(h), where h E Gg.  Then p(hy) = hy, i.e., 
z = hy E WK. If the stabilizer G(x) of some point x in W is connected, 
then the stabilizer of any point is connected, since W is homogeneous; in 
particular, H = G(z) is connected. As we know (cf. §1.3.2), the orbits of 
GK on WK are in one-to-one correspondence with the elements of 

k e r ( ~ l  (K, H )  -+ H ~ ( K ,  G)). 

But since H1(K, H) = 1, there is in fact only one orbit. 

Note that Proposition 6.1 actually is a direct consequence of Propo- 
sition 6.2, since by Theorem 2.19 the set of all the Borel subgroups of a 
connected K-group G is endowed with the natural structure of a K-defined 
homogeneous space of G. However, we preferred to present a direct proof. 

COROLLARY 2. Let L be a finite extension of a finite field K.  Then the 
norm map NLIK: L* -f K* is surjective. 

Let a E K* . Then W = { x E L BK K : NLIK (x) = a } is a homogeneous 

space of the norm torus T = R ~ ~ ~ ( c , ) ,  and therefore Wx # 0, i.e., 

a E N L / ~ ( L * ) .  One can also use Theorem 6.1 and the fact that H1(K, T) = 
K*/NLIK(L*) (cf. Lemma 2.5). 

COROLLARY 3. Let f be a nondegenerate quadratic form in n 2 2 variables 
over a finite field K.  Then f represents any element of K .  Consequently, 
any form in n 2 3 variables represents zero over K .  

Indeed, if a E K*, then by Witt's theorem (cf. Theorem 2.10), for n 2 2 
the quadric W = { x  E K n  : f (x) = a }  is a homogeneous space of the 
connected group G = SOn(f) ,  and therefore the assertion follows from 
Proposition 6.2. The fact that a nondegenerate quadratic form f in n 2 3 
variables is isotropic follows from Proposition 2.14 since G = SO,(f) is 
K-quasisplit (Proposition 6.1) and, in particular, K-isotropic. 

To complete the description of the basic properties of quadratic forms 
over finite fields, recall (cf. Proposition 2.8) that H1(K, SOn(f))  classifies 
the equivalence classes of n-dimensional quadratic forms over K whose 
discriminants are equal to the discriminant of f .  Therefore, Theorem 6.1 
yields 

COROLLARY 4. TWO nondegenerate n-dimensional quadratic forms over a 
finite field K are equivalent if and only if they have the same discriminant. 
Thus, for any n there are precisely 2 equivalence classes of nondegenerate 
n-dimensional forms. 
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Note that the second assertion follows from the first and from the fact 
that [K* : K * ~ ]  = 2, since K*  is cyclic. 

PROPOSITION 6.3 (LANG'S ISOGENY THEOREM). Let G and H be con- 

nected K-groups, and let n: G --, H be a K-defined isogeny (where K is a 
finite field). Then GK and HK contain the same number of elements. 

PROOF: Put F = kern and consider the exact sequence 

Passing to cohomology, we obtain the exact sequence 

(note that K is perfect). Since H1(K, G) = 1 (Theorem 6.1), we arrive at 
the following equality: 

and it suffices to show that 1 H' (K, F )  I = I FK I. But since G ~ ~ ( K / K )  -- % 
(the profinite completion of Z), this follows from the following 

LEMMA 6.3. For any finite %module F, we have I HO(% F ) (  = I H1 (2, F)I. 

PROOF: The lemma is a direct consequence of the properties of Herbrand's 
index (cf., for example, ANT, Ch. 4, §8), but it can also be proved directly. 
Let a denote a generator of 2. Since F is finite, it follows that there is 

m-1 

some m such that am acts trivially on F. Thus n ai(x) lies in the group i=O 
of fixed points Fu, for any x in F. Therefore, setting n = mf,  where 
f = IFuI, we have 

Now we show that the restriction to n 2  of any cocycle from Z1(k, F )  is 
trivial. Indeed, by assumption the action of m k  on F is trivial, and there- 
fore the restriction of the cocycle ( E Z1(%, F )  to m 2  is a homomorphism 
from m 2  to F .  But then the restriction of ( to n 2  = f (me) is trivial. 

The Hochschild-Serre sequence (cf. (1.9)) implies that 

(Z, F )  = H' (ZInZ, F ) ,  

taking the induced action of Z/nZ = %/n% on F .  Moreover, HO(%, F )  = 
HO(Z/nZ, F). Let T be the image of a in ZlnZ. Since H1(Z/nZ, F )  = 

This completes the proof of the lemma. 

Theorem 6.1 can also be used to classify simple K-groups (in this regard, 
it suffices to consider only simply connected groups). Since by Proposi- 
tion 6.2 any K-group is quasisplit, all the K-forms of a simply connected 
simple K-group with a root system R can be classified by elements of 
H1(K, Sym(R)), where Sym(R) is the group of symmetries of the Dynkin 
diagram of R (cf. 82.2.4). 

Bearing in mind that G ~ ~ ( K / K )  = 2, we obtain that any K-group of 
type Bn, Cn, E7, E8, F4 or G2 is split over K ;  for each of the types 
An (where n 2 2), D, (where n > 5), and E6 there exist precisely two 
nonisomorphic K-groups--one split and the other nonsplit (note that the 
latter is quasisplit and splits over a quadratic extension of K);  for type D4 
there are three nonisomorphic K-groups--one split and two nonsplit, which 
become split over a quadratic and a cubic extension of K ,  respectively. 

The following important result for groups over number fields follows from 
Lang's theorem and Hensel's lemma. 

THEOREM 6.7. Let G be a connected group over a number field K.  Then 
G is Kv-quasisplit for almost all v in Vy. 

PROOF: Let 13 be the variety of Borel subgroups of G (cf. 52.4.6). Then 
it follows from Proposition 3.19 that there exist smooth reductions 
and B('), for almost all v in V f .  We claim that B(') is the variety of 

Borel subgroups of G("), for almost all v. (Note that by Theorem 3.12 
the reduction G(") is a connected group for almost all v, and therefore 
the concept of the "variety of Borel subgroups" is meaningful.) Indeed, 
let LIK be a finite extension for which there exists a Borel L-subgroup 
B of G. Then over L, 8 = G/B, and hence we have @") = G(")/B(") 
for almost all w in V: (cf. Proposition 3.22). Since @") is projective, it 

follows that @"I, being solvable, is a Borel subgroup of G("). Therefore, 
for almost all w in VfL, @") is the variety of Borel subgroups of G("). But 

it is well-known (cf. Lemma 3.11) that G(") = G(") and @") = @"), for 
almost all v in VfK and the corresponding w Jv E VfL By Proposition 6.1, 
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it follows from the above that f3e) # 0, where k, is the residue field of K 

with respect to v. Since @") is smooth, applying the projective analog of 
Hensel7s lemma, we obtain that Bo, # 0; in particular, BK, # 0, i.e., G 
contains a Bore1 K,-subgroup. Q.E.D. 

Lastly, using Lang's theorem we shall now obtain some essential results 
on cohomology of groups of v-adic integral points and adelic groups. Let 
G be an algebraic group defined over a local field K, and let L,/K, be 
a finite Galois extension. Then the group of w-adic integral points Go, 
(where 0, = OLw) is invariant with respect to Gal(L,/K,), so the first 
cohomology set H1(Lw/K,, Go,) is defined. 

THEOREM 6.8. If a connected group G has a connected smooth reduction 
G(,) and the extension L,/K, is unramified, then H1 (L,/K,, Go,) = 1. - 

PROOF: Let p, and 9, be the maximal ideals of 0, and 0, respectively, 
and let k, and 1, be the corresponding residue fields. Since G(") is a smooth 
reduction, by Hensel's lemma we have the exact sequence 

Since L, /K, is unramified, Gal(L, / K,) and Gal(1, / k,) are isomorphic, 
and their actions on the groups in (6.2) are compatible. Therefore (6.2) 
yields the exact cohomological sequence 

The last term of (6.3) is trivial by Lang's theorem, so it suffices to establish 
that H1 (L,/K,, Go, (P,)) is also trivial. 

LEMMA 6.4. For any integer j 2 1 we have 

0 
PROOF: Let G c GL,. Consider the map GLn(0,,P3,) - Mn(l,) given 
by 0(l  + njA) = A, where n is a uniformizing parameter in K, which, 
since L,/K, is unramified, is also a uniformizing parameter in L,, and 
where A denotes the reduction of a matrix A in Mn(O,) modulo P,. It 
is easily verified that 0 is a surjective homomorphism and its kernel is the 
congruence subgroup GL, (Ow, Moreover, it is compatible with the 
natural isomorphism of Gal(L,/K,) and Gal(l,/k,). It follows that there 
exists an isomorphism 

Below we shall show that B = O(Gow ( P i ) )  is the reduction modulo P, 
of go, = g n M,(O,), where g is the Lie algebra of G. This means, 
in particular, that B is a vector space over l,, and to prove Lemma 6.4 
it remains to note that H1(lw/k,, W) = 0 for any finite-dimensional k,- 
defined vector space W over I,. The latter is a consequence of the triviality 
of H1(lw/k,, 1,) (the additive form of Hilbert's Theorem 90, cf. proof of 
Lemma 2.7) and the factorization W = Wo Bk, I,, where Wo = 
is the subspace of fixed points. 

It remains to show that B = go,. To do so, consider the ideal a in the 
coordinate ring K, [GL,] consisting of functions that vanish on G, and take 
a finite set of generators fl  (x), . . . , f,(x) of an  0, [GL,] viewed as an ideal 
of 0, [GL,]. Put Fi (x, t) = t - ' f i (~ ,  + tx). Since fi(E,) = 0, Fi (x, t )  lies 
in 0, [GL,] [t]. Hence Go, ( P i )  consists of elements of the form En + n j  A, 
where A E M, (0,) satisfies 

On the other hand, go, consists of w-adic integral solutions of 

Since G(,) is smooth, the rank of the linear system (6.5) is precisely the rank 
of the respective reduced system. But it is easy to see that the reductions 
of (6.4) and (6.5) are the same, from which it follows that the variety defined 
by (6.4) has a smooth reduction. Therefore, as a result of Hensel7s lemma, 
B and Bow each consist of all the solutions in Mn(l,) of the same system 
which is obtained by reduction of either (6.4) or (6.5). Thus B = go,, 
proving Lemma 6.4. 

It follows from Lemma 6.4 that H1(Lw/K,, Go, (Pw)/Go, ( P i ) )  = 1 
for any j 2 1. Indeed, for j = 2 it is immediate from Lemma 6.4. For 
larger j one considers the exact sequence 

and the associated exact cohomological sequence 

Since the left term of (6.6) is trivial by Lemma 6.4, the desired result is 
obtained by an obvious inductive argument. 
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Thus, for any cocycle a = {a, ) in z~(L,/K,, Go,($,)) and any j 2 1, 
there is some bj in Go,,,($,) such that b;la,bj" E Go,($&) for all 0 
in Gal(Lw/Kv). Since Go,($,) is compact, one can find a subsequence 
{ bj, )El of { bj )gl which converges to some element b in Go, (9,). Then 

for each lo 2 1. Therefore b-'a,bU E nl",, Go,($$) = {En), hence 
a, = b(b-')" and a is trivial. Q.E.D. for Theorem 6.8. 

COROLLARY. Let G be a connected algebraic group over an algebraic num- 
ber field K,  and let L be a finite extension of K .  Then, for almost all v in 
v/K, and any UJ(V we have H1(Lw/K,, Go,) = 1. 

Theorem 6.8 and several other results on the cohomology of groups of w- 
a d i ~  integral points may be found in Rohlfs [I]. Since the other results are 
not absolutely necessary here, we shall only state the following finiteness 
theorem: for any extension Lw/Kv and any group G, the cohomology set 
H 1 ( ~ , / K U ,  Go,) is finite. 

Thus far we have considered Galois cohomology with respect to a finite 
extension Lw/Kv, but one can extend the definition to any Galois extension 
L,/K, by putting 

where the inductive limit is taken over all finite Galois extensions P of K 
contained in L,. One can also define H1 (L,/K,, Go, ) as the continuous 
cohomology group of the profinite group Gal(Lw/Kv) with coefficients in 
the discrete group Go, Bearing this in mind, we can reformulate Theo- 
rem 6.8 as follows: 

THEOREM 6.8'. Let G be a connected algebraic group over Kv with a 
smooth connected reduction. Then 

where K,"' is the maximal unramified extension of K,. (In other words, 
any group of integral points has trivial unramified cohomology.) 

Now from Theorem 6.8 we shall derive an assertion about the image of 
the group of v-adic integral points under the coboundary morphism, which 
we shall need in Chapters 7 and 8. To do so, we begin by looking at a more 
general case. Let 

be an exact sequence of algebraic K,-groups. Consider the following two 
conditions: 

(1) There exist smooth reductions @"), @"), and @"). 

(2) IT is a morphism defined over O,, and the induced sequence 

is exact. 

LEMMA 6.5. If (1) and (2) are satisfied, then 

is exact. 

We need only verify that IT(G~,~, .)  = HoK,'. To see this, note that for 
a E HoK,,, the equality ~ ( x )  = a defines a subvariety of G which by (1) 

and (2) has a smooth reduction. Since the reduced equation d V ) ( x )  = a 
( has a solution in GY), by Hensel's lemma the original equation IT(X) = a 

-k, 
has a solution x in Go,:, , since any finite extension 1 of k, is the residue 
field of a suitable finite unramified extension L of Kv. 

Verification of (1) and (2) for a specific valuation v can be tedious; how- 
ever, if the groups in (6.7) are defined over a number field K ,  then in 
the cases needed in our further discussion these conditions are satisfied for 
almost all v. 

LEMMA 6.6. Suppose F, G, H and IT of (6.7) are defined over a number 
field K ,  and let G be connected. If F is either finite or connected, then (1) 
and (2) hold for almost all v in VfK 

PROOF: In view of Proposition 3.19 and Theorem 3.12, we see that it 
suffices to establish condition (2) for almost all v; moreover, we may assume 
G(") and H(") to be connected. - 

For F finite, the surjectivity of IT(") follows from the fact that @") and 
H ( ~ )  have the same dimension, and the equality ker dU) = F(') is proved - 
as follows. The variety defined by IT(X) = e has a smooth reduction for 
almost all v, and thus by Hensel's lemma one can obtain all the points of 
ker dV) by reduction of the points of ker IT = F; therefore I ker dV) 1 I I FI. 
On the other hand, )E(")) = JFJ and F(") C kerdV) for almost all v; so, 
finally, ker IT(") = @"). 

For F connected the lemma follows immediately from Proposition 3.22. 
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Next we suppose that conditions (1) and (2) hold for (6.7). Then, consid- 
ering the natural action of Gal(KzT/Ku) on the groups in (6.8) and passing 
to cohomology, we obtain the exact sequence 
(6.9) 

1110. 
Go. 5 Ho, -+ H1(K,UT/Ku, Fo,,.) -+ H'(K,Y'/K,, GoKEr) = 1, 

where $o, is the coboundary map. 
Now suppose F is finite. Then, since G is connected, F is central and, 

moreover, F c Go,:. for almost all v. On the other hand, do,, , which is a 
homomorphism since F is central, is the restriction to Hou of the cobound- 
ary morphism $K,: HK, -+ H1(KU, F )  obtained by passing to the usual 
Galois cohomology from the exact sequence 1 -+ F --, G -+ H -+ 1. Iden- 
tifying the unramified cohomology group H1(Ky/Ku,  F )  with a subgroup 
of H1 (K, , F) by means of the inflation map, we obtain the following: 

PROPOSITION 6.4. Let IT: G --t H be an isogeny of connected groups over 
an algebraic number field K,  and let F = ker IT. Then, for almost all v in 
VF, we have (Ho,) = H1(Ky/Ku,  F ) ,  where $xu: HKu -+ H'(K,, F )  
is the coboundary morphism corresponding to the exact sequence 

Consequently, $K,(HL3,) and FK, have the same order for almost all v. 
Moreover, if F c GK,, then $K, (How) = F .  

The first assertion of the proposition has already been proved. The 

second follows immediately from the first and from Lemma 6.3. Lastly, to 
prove the third it suffices to note that H1(Ky/KU,  F )  = ~ o m ( k ,  F )  2 F 
if F c GK,. 

Now consider the case where F is connected. Here we have 

for almost all v, and therefore (6.9) ~ie lds  r(Go,) = How. Recalling the 
definition of the adelic topology and applying Proposition 3.3, Corollary 1, 
we obtain 

PROPOSITION 6.5. Let IT: G -+ H be a surjective morphism of connected 
algebraic groups over an algebraic number field K. Assume ker IT is con- 
nected. Then I T ( G ~ , )  = HOW for almost all v, and hence the corresponding 
adelic map TA: GA -+ HA is open. 

We now pass to cohomology of adele groups. Let G be an algebraic group 
defined over a number field K.  For any finite Galois extension LIK, take 
the ring AL of adeles of L. It is well known (cf. 91.2.3) that one can identify 
AL with AK 8 L and via this identification one can define the action of 
Gal(L/K) on AL. Interpreting the adele group GA, as a group of points 
G over AL, and bearing in mind that G is defined over K ,  we obtain an 
action of Gal(L/K) on GAL. 

Thus, we can define the first cohomology set H1(L/K, GAL). For an ar- 
bitrary Galois extension L/K the adelic cohomology admits two equivalent 
definitions: either as 1% H1(P/K, GAP) taken over all finite Galois subex- 
tensions P / K  contained in L, or as the first continuous cohomology set of 
the profinite group Gal(L/K) with coefficients in the (discrete) group GAL. 
In this regard, the latter group again allows a double description, either as 
the inductive limit (union) of the GAP taken over all finite subextensions P 
of L with respect to the natural embedding GA,~ c GAp2 where Pl c P2, 
or as the group of points G over the ring AL = AK 8~ L. 

We shall not study the formalism of adelic cohomology in detail (cf. 
Kottwitz [I], [2]), since we do not actually need it in this book. However, 
the main results are as follows: Any exact sequence 

of connected K-groups and K-homomorphisms gives rise to the exact se- 
quence 1 -+ FA -, GA -+ HA -+ 1 where A denotes the ring AK (this 
follows easily from Proposition 6.5), and one can consider the correspond- 
ing derived cohomological sequences. (Note that for F disconnected, and 
in particular finite, 1 -+ FA --t GA --+ HA --t 1 is not, generally speaking, 
an exact sequence.) In this regard, the adelic cohomology of a connected 
group G can be described as follows: 

PROPOSITION 6.6. Let G be a connected group over a number field K ,  
and let L be a finite Galois extension of K .  Then H1(L/K,GAL) can 
be identified with the subset X of the direct product2 n H 1 ( L W / ~ , ,  G) 

u 
consisting of those x = (xu) for which xu is trivial in H1(Lw/Ku, G) for 
almost all v in v K .  

(Using the terminology of group theory, we can say that H1(L/K, GA,) 
is a direct sum of the H1(Lw/Ku, G). Note that for G commutative we 
actually have the usual direct sum of groups.) 

PROOF: For each subset S of vK let S be the aggregate of all extensions 
to L of valuations from S. Then GA, = US GAL(Sj, where the union of 

The product is taken over all v in v K ,  and for each v we choose a single extension w 
in VL. 
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groups of $-integral adeles GAL(S) is taken over all finite subsets S of vK 
containing V:; and therefore 

Let us show that H1(L/K,GAL(S)) C X for any S. Without loss of gen- 
erality we may consider only those S such that, for each v $! S, there 
exists a smooth reduction ~ ( ~ 1  and Lw/Kw is unramified. The factoriza- 
tion GAL(S) = G s  x n Go, implies 

wgs 

But Lemma 1.4 implies that n GL, (resp., n Go,) is induced from GI,, 
wlv w lv 

(resp., Go,) for v in S (resp., v $! S), for some fixed extension wlv. More- 
over, by assumption Theorem 6.8 holds for v $! s ,  SO H'(L,/K,, Gow) = 1 
for these v. Together these facts imply 

Passing to the union, we obtain H1 (LIK, GAL) C X. The reverse inclusion 
is obvious. 

COROLLARY 1. H1(K, G1) can be identified with the subset of the direct 
product n H1(Kw, G) consisting of those x = (xu) such that xu is trivial 

v 

in H1(Kv,G) for almost all v in v K .  

If G is commutative, then all the cohomology groups Hi(L/K1 GAL) 
(i 2 0) are defined. It turns out that they can be described analogously to 
Proposition 6.6. 

PROPOSITION 6.7. Let G be a commutative algebraic group over a number 
field K ,  and let L be a finite Galois extension of K .  Then for any i > 1 

PROOF: AS is evident from the proof of Proposition 6.6, it suffices to estab- 
lish that Hi(Lw/Kv, Go,) = 1 for almost all v. We can confine ourselves to 
considering those v for which Lw/Kv is unramified. Then Gal(Lw/Kv) is 

cyclic, and by the periodicity of the cohomology of cyclic groups we obtain 
the isomorphisms 

H ~ ( L ~ / K ~ ,  GO,) r-, H~(L,/K,, GO,) for i odd, 

H~(L,/K,, Go,) 21 H ~ ( L ~ / K ~ ,  Go,) for i even. 

From these isomorphisms and Theorem 6.8 we obtain the triviality for i 
odd of the i-th unramified cohomology groups of the w-adic integral points 
of any connected commutative group, so to prove the proposition it suffices 
to establish the triviality of H2(Lw/Kv, Go,). To do so, we use a trick 
which we shall encounter repeatedly. 

Put H = RLIK(G), and consider the "norm" map cp: H -t G, which is 
the composite of (2.4) in 52.1 (note that G" = G for any a in G = Gal(L/K) 
since G is defined over K )  and the product morphism. (It is easy to see 
that the restriction of cp to HK N GL is the usual norm map NLIK(g) = 

n ~ ( g ) . )  Clearly, cp is defined over K ,  and F = kercp is a connected 
~ € 0  
K-group. Thus, we have the exact sequence of connected K-groups: 

It follows from Proposition 6.5 that for almost all v in V F  and the corre- 
sponding w (v the sequence 

is exact. Passing in (6.10) to cohomology, we obtain the exact sequence 
(6.11) 

It follows from the above that the last term of (6.11) is trivial for almost all 
v, and therefore it suffices to establish the triviality of H2(Lw/Kv, How). 
But this follows from the fact that by our set-up the Gal(Lw/Kw)-module 
How is induced. This proves Proposition 6.7. 

The diagonal embedding L + AL is compatible with the action of 
Gal(L/K); therefore we have a map H1(L/K,G) - H1(L/K,GrL) for 
any algebraic K-group G. Thus the description of adelic cohomology yields 

COROLLARY 2. Let G be a connected algebraic K-group, and let L/K be 
a finite Galois extension. Then any cocycle x in H1 (LIK, G) has trivial 
image in H1 (L,/Kv, G), for almost all v in VfK. In particular, any x in 
H1 (K, G) has trivial image in H1 (K,, G), for almost all v in VfK . 
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Note that if G is commutative, then the analogous assertion holds for all 
cohomology groups. 

EXERCISE: Give examples showing that the connectedness of G in Corol- 
lary 2 is essential. 

6.3. Galois cohomology of algebraic tori. 
As we remarked in $6.1, when working with algebraic tori it is conve- 

nient to use the modified cohomology (Tate cohomology) rather than the 
usual one. We shall briefly review its basic properties and definitions (a 
systematic exposition may be found in Brown [ l ,  Ch. 61 or [ANT, Ch. 41). 

Let G be a finite group, and let A be a G-module. We introduce the 
%orrn1' map N: A -+ A given by N(a) = CgEG ga. Clearly N(A) c AG 
and A' c ker N ,  where A' is the submodule of A generated by elements 
of the form ga - a for all g in G and a in A. Then the Tate cohomology 
groups H ~ ( G ,  A) are defined as follows: 

H i ( c ,  A) = H ~ ( G ,  A), if i 1, 

HO(G, A) = A ~ / N ( A ) ,  

H - ~ ( G ,  A) = ker N/A1, 

H - ~ ( G ,  A) = Hi-l(G, A), if i L 2, 

where Hi denotes the i-th homology group. It is known that the modi- 
fied cohomology retains all the basic properties of the usual cohomology, 
namely: 

(1) Shapiro's lemma, in particular, the cohomology of an induced mod- 
\ ,  

ule is trivial; 
(2) any exact sequence of G-modules 0 - A - B + C + 0 gives rise 

to the following exact sequence which is infinite in both directions: 

The advantage of passing from the usual cohomology to the modified one 
is that for the latter we have Tate's theorem (cf. Theorem 6.9 below) which 
is very useful in our situation. 

Having concluded these preliminary remarks, we now proceed directly to - 
the proof of the Nakayama-Tate theorem. 

Let us begin with the special case T = G,. This case, which is trivial 
from the point of view of the theory of tori, assumes the most significant 
role in the argument, since, for i = 0,1,2, the isomorphisms occurring in 
Theorems 6.2 and 6.3 present the main results of local and global class field 

theory, respectively. Afterwards the case of arbitrary tori can be considered 
rather easily with the aid of Tate's theorem. 

First we consider the case of a local field K.  For i = 0 we must obtain 
the isomorphism HO(L/K, Z) 2 H~(L/K,  L*), since here X ( T )  = Z with 
trivial action of G = Gal(L/K). But clearly HO(L/K,Z) = ZlnZ, where 
n = [L : K]; and H2(L/Kl L*) -- Br(L/K) 2 !z/z, where the last isomor- 
phism is realized by the map inv (cf. Theorem 1.7). The inverse image of 
$ under this isomorphism is the fundamental class of L/K, denoted UWK. 
If F is an intermediate subfield, then UL/F is the image of UL/K under the 
restriction map H ~ ( L / K ,  L*) + H2(L/F, L*). 

For i = 1 both H~(L/K,z )  and H'(L/K, L*) are trivial. 

Lastly, we consider the case i = 2. Here H'(L/K, Z) 2 H'(L/K, Q/Z) 
(cf. Lemma 1.3), and the latter group is the abelianization of G. However, 
HO(L/K, L*) = K*/NL/K(L*). Thus the isomorphism from Theorem 6.2 
assumes the form Gab 1. K*/NLIK(L*), in particular G 2 K*/NLIK(L*) 
if G is abelian. The last fact, supplemented by the existence theorem (any 
open subgroup of K*  having finite index is a norm one, i.e., has the form 
NLIK(L*) for a suitable abelian extension LIK), represents a major result 
in local class field theory (cf. Serrels lecture in [ANT]). Note that although 
the basic objects of local class field theory are non-Archimedean local fields, 
the results still hold formally in the Archimedean case, i.e., when K is R 
or @. 

Similar results also hold for the global case, although the objects used 
and the proofs of the basic theorems are more complicated; in particu- 
lar, the multiplicative group L* is replaced here by the idele class group 
CL = JL/L*. Again, for i = 0 we have H 2 ( L / K , C ~ )  2 !Z/Z, where 
n = [L : K] (here the isomorphism is constructed by proceeding from the 
local inv maps, cf. [ANT, Ch. 7, 5 l l ] ) ,  so for i = 0 the assertion of Theo- 
rem 6.3 holds. As in the local case, the inverse image UL/K of ! under this 
isomorphism is called the fundamental class of LIK. It also has the prop- 
erty that for any intermediate subfield F the fundamental class UL/F is the 
restriction of U L / K  Since H1(L/K, CL) is trivia1 for i = 1, Theorem 6.3 
holds here. (Note that the triviality of H1(L/K, Q) has several important 
arithmetic consequences. In particular, passing to the cohomolog~ sequence 
associated to the exact sequence 1 -+ L* -+ JL -+ CL -) 1, we see that 
the map Br(L/K) = H~(L/K,  L*) + H2(L/K, JL)  = EBr(L,/K,) is 
injective, which is equivalent to the Albert-Brauer-Hasse-Noether theorem 
in 51.5). 

Finally, for i = 2 we must obtain Gab 2 CK/N~/,(CL), and this is the 
basic isomorphism of global class field theory (cf. Tate's lecture in [ANT]). 

We cannot help but note the analogy between the basic results of the 
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local and the global theories, which finds formal expression in the axiomatic 
description of class formations (cf. Serre [3]). 

Now we have all the necessary preliminaries to complete the proof of 
Theorems 6.2 and 6.3 in the general case. The proof is based on the fol- 
lowing 

THEOREM 6.9 (TATE [I]). Let G be a finite group, let M be a G- 

module, and let u be an element of H2(G, M). For each prime p denote by 
Gp a Sylow p-subgroup of G, and assume that the following conditions are 
satisfied: 

(1) H1(Gp,M) = 1, 
(2) H2(Gp, M)  is a cyclic group of the same order as Gpl having gen- 

erator ResE- (u), where Res& (u): HZ (G, M)  -+ H Z  (Gpl M) is the 
restriction morphism. 

Then for any torsion-free finitely generated G-module N and any subgroup 
H of G and any integer i ,  the cup-product coupled with u induces an 
isomorphism  hi(^, N) -+ (H, M @ N). 

(The reader may find the definition of the cup product and the proof of 
Theorem 6.9 in [ANT, Ch. 4, §lo]. These results will not be needed later 
on.) 

In order to use Theorem 6.9 for a given K-torus T,  split over a finite 
Galois extension L/K with Galois group Q = Gal(L/K), consider the group 
of cocharacters (one-parameter subgroups) X,(T) = Horn(&, T)  which is 
also a Q-module (cf. $2.1.7). It turns out that if we know X,(T) it is easy to 
determine the group of L-points TI,. Namely, consider the homomorphism 
8: X.(T) @ L* -+ TL given by O(p @ x) = p(x). The action of G on 
X.(T) @ L* is defined via the action on both factors; and it is easily verified 
that 0 is a homomorphism. However, it is easy to show that, for a split 
torus, 0 is an isomorphism of abstract groups. Therefore, in view of the 
fact that T becomes split over L, we arrive at the following result. 

LEMMA 6.7. The homomorphism 8: X,(T) @ L* -+ TL which we have 
described is an isomorphism of Q-modules. 

Now it is quite easy to prove the local version of the Nakayama-Tate 
theorem. Namely, suppose K is a local field. Then, from our discussion of 
local class field theory it follows that the conditions of the Tate theorem 
are satisfied for M = L* and UL/K E H ~ ( L / K ,  L*). Therefore, applying it 
together with Lemma 6.7, we obtain the isomorphisms 

H'(L/K, X.(T)) 3. H'+~(L/K, X,(T) 8 L*) 3. H'+~(L/K, TI,). 

(Note that this isomorphism is induced by the cupproduct on UL/K and 
therefore has the necessary functorial properties.) On the other hand, the 
duality theorem for cohomology (cf., for example, Cartan-Eilenberg [1]) im- 
plies that the finite abelian groups H'(L/K,x.(T)) and H-'(L/K, X(T)) 
are dual and hence isomorphic, for any i. Theorem 6.2 follows from this 
fact and from the sequence of isomorphisms (6.12). Note that this proof of 
the theorem works for all local fields, including Archimedean ones; how- 
ever, for K = R there is an easy direct proof using classification of real tori 
(cf. §2.2.4), which we recommend the reader to work out as an exercise. 

It should be pointed out that the isomorphism constructed in the proof 
of Theorem 6.2 has the nature of an isomorphism of a finite abelian group 
with its dual. This duality can be described directly, without using X,(T). 
Namely, the cupproduct induces a bilinear map 

and the latter group is sent to H~(L/K,  L*) -- Z/nZ, where n = [L : K], by 
the map TI,@X(T) + L* given by t e x  c ~ ( t ) .  The resulting bilinear map 
H~(L/K, T) x H2-' (L/K, X(T)) + Z/nZ turns out to be a nondegenerate 
pairing, thereby providing the isomorphism in Theorem 6.2. 

The proof of Theorem 6.3 follows the same line as Theorem 6.2, the only 
difference being that for K global one uses M = CL. The fact that the 
conditions of the Nakayama-Tate theorem are satisfied for this M and the 
corresponding fundamental class u ~ / x  in H~(L/K,  M) follows from global 
class field theory. As an exercise, we recommend the reader show that 
the G-modules X. (T) 8 CL and CL (T) = TA, ITL are isomorphic. (Hint: 
imitate the proof of Lemma 6.7.) Then 
(6.13) 

H"L/K, x.(T)) z H'+~(L/K, x.(T) e CL) - & t 2 ( ~ / ~ ,  CI,(T)), 

where the isomorphism is realized by the cupproduct with UL/K. Again, 
using the duality between H'(L/K, x.(T)) and B'(L/K, x(T)), we obtain 
Theorem 6.3. Note that here, too, we have a nondegenerate bilinear pairing 
of B.(L/K, CL (T)) and HZ-'(L/K, X(T)), obtained as the composite map 

where n =  [ L :  K]. 
One important remark is in order. Since the isomorphisms in Theo- 

rems 6.2 and 6.3 involve duality, they are not canonical. Therefore, in 
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studying functorial properties, instead of the isomorphisms in these the- 
orems one ought to analyze the isomorphisms in (6.12) and (6.13) which 
involve the cohomology groups X,(T), since they are induced by the c u p  
product and hence are natural. The relations among the cohomology 
groups of X(T) itself are then obtained from duality. 

As an example, let us consider the connection between the local and 
the global isomorphisms in the Nakayama-Tate theorems. Thus let K be 
a number field, v E vK, let TKVBKL -+ TAF,g,KL = TAL be the natural 
embedding, and let T: H~(L/K,  T K , , ~ ~ ~ )  -+ Hi(L/K, CL(T)) be the coho- 
mology map induced by this embedding and the projection TA, -+ CL(T). 
Since Ku @K L = L,, the various extensions of v being conjugate with 

w lu 

respect to G, we obtain that the group T K , , ~ , ~ L  = n T L ~  is induced; 
wlzf 

therefore by Shapiro's lemma H'(L/K, T K ~ , ~ , ~  L) = Bi (L,/&, T). But 

so naturally one is tempted to describe the map H~-~(L,/K,, X(T)) -+ 

H ~ - ~ ( L / K ,  X(T)), corresponding to T. But it would be incorrect to put 
the problem in this way, since the isomorphisms involved are not defined 
canonically. The correct way to put the problem is as follows: find a ho- 
momorphism a :  H~-~(L,/K,, X, (T)) + H ~ - ~ ( L I  K, X, (T)) which makes 
the following diagram commutative: 

(The vertical arrows are isomorphisms obtained from (6.12) and (6.13).) 

PROPOSITION 6.8. u is the corestriction homomorphism corg(,), where 
G(w) = Gal(Lw/Ku) is the decomposition group of w. 

PROOF: We begin by establishing the connection between the local and 
global fundamental classes. Put P = LG('). Then the results ([ANT, Ch. 7. 
$111) imply that L, -+ CL induces an isomorphism H2(Lw/Pw, L,) = 
H2(L/P, CL) (note that P, = K,); in this regard, the local fundamental 
class U L , , , , ~ ~  = uhw/Kw passes to the global fundamental class u ~ / p  which, 

as we know, is ~ e s &  ( U L , ~ ) .  Consequently, 
w) 

and 

are commutative. (The proof that the second diagram is commutative uses 
the following property of the cupproduct: 

which is established in [ANT, Ch. 4, $71.) Comparing these diagrams and 
bearing in mind the commutativity of 

where i is the isomorphism from Shapiro's lemma, we arrive at the desired 
result. (We leave it to the reader to work out the details.) 

As we noted in 56.1, Theorems 6.2 and 6.3 imply that H1(K, T) is finite 
over a local field K and that the kernel LU(T) of the canonical homomor- 
phism H1(K, T)  - n HL(Ku,  T)  is finite for a number field K .  Actually 

mc1fK 
"L.  

these assertions hold not only for the first cohomology group but also for 
other cohomology groups. 

PROPOSITION 6.9. Let T be an algebraic torus defined over K and split 
over a finite Galois extension L of K .  Then the following hold for all i: 

(1) Hi(L/K, T) is finite if K is a local field; 
(2) P'(L/K, T) = k e r ( B ' ( ~ / ~ ,  T) - n B(L,/K,, T)) is finite if K is 

a number field. 21 
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PF~OOF: Follows easily from the following remark: ~ ( L / K ,  X(T)) is a 
finitely generated abelian group of finite exponent, for any i (cf. (ANT, 
Ch. 4, $6]), and therefore is finite. In view of the isomorphism in Theo- 
rem 6.2, assertion (1) is a direct consequence of this fact. To prove (2), 
consider the exact sequence 

and the following segment of its corresponding cohomology sequence: 

Then Pi(L/K, T)  = ker f is a quotient group of (L/ K, CL(T)), and 

by Theorem 6.3 this group is isomorphic to H~-~(L/K,X(T) )  and conse- 
quently is finite. 

COROLLARY. Keep the assumptions of Proposition 6.9. Then 

(1) H1(K, T) is finite if K is a local field; 
(2) III(T) = ker(H1(K,T) - nH1(Kv,T))  is finite if K is a number 

field. 
v 

The proof follows from Proposition 6.9 and the following: 

LEMMA 6.8. If a K-torus T is split over the Galois extension LIK,  then 
H ~ ( K , T )  = H~(LIK,T) .  

Indeed, by Hilbert's Theorem 90 H1 (L, T) = 1; therefore, writing the initial 
segment of the Hochschild-Serre exact sequence 

1 4 H1(L/K, T)  -+ H1(K, T) -+ H1(L, T) ,  

we obtain the desired result. 

By refining the argument used in the proof of Proposition 6.8 one can 
obtain precise formulas for computing Pi (L/ K ,  T)  . Indeed, (6.16) implies 
that Pi(L/K, T) = ker f is isomorphic to cokerg. But 

(Proposition 6.7); thus, using the isomorphisms 

and Proposition 6.8, we obtain that Pi(L/K, T)  is isomorphic to the cok- 
erne1 of 

induced by  or&^). Passing to the cohomology of X(T) by duality, and 
bearing in mind that in this regard the corestriction morphism passes to 
the restriction, we obtain the following result. 

THEOREM 6.10 (TATE) . 

(Note that the isomorphism in Theorem 6.10 is not canonical, but instead 
is induced by duality.) 

Most applications involve LLI(T) = P1(L/K, T),  the Shafarevich- Tate 
group of T. The Hasse principle is said to hold for T if m ( T )  = 1. Let 
us show that this concept is a natural generalization of the classical Hasse 
norm principle for extensions of number fields. Let P be a finite extension 
of a number field K ,  let S = RpjK(Gm), and let T = R$),(G,) be the 
corresponding norm torus. Passing to cohomology, from the exact sequence 

where N is the norm map, we obtain the exact sequence 

But H1(K, S) = 1 (by Lemma 2.4); therefore H1(K,T) z K*/NpIK(P*). 
Arguing analogously, we obtain H1 (K, TA) z JK/NPIK (Jp).  It follows 
that 

Juxtaposing this fact with the classical definition of when the Hasse norm 
principle holds for P / K  (cf. §1.2.3), we see that in the given situation it is 
equivalent to the validity of the Hasse norm principle for the corresponding 

(1) normed torus T = Rp/n(Gm). Thus, Theorem 6.10 gives an effective way 
of verifying the Hasse norm principle. The relevant computations become 
quite straightforward when P / K  is a Galois extension. In this case. we 
can take P itself for the splitting field L of T = R$~(G,). Let B denote 
Gal(P/K). Then X(T) is given by 
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which is obtained from (6.18). Passing to cohomology in (6.19) we obtain 

But the group ring Z[G] is an induced 6-module, so H~(G,Z[G]) = 0 for 
i = 2,3; therefore H2(G, X(T)) = H3(G, 2) .  Analogously, fixing some ex- 
tension w(v for each v and denoting the respective decomposition group 
G(w) by Gv, we have H2(Gv, X(T)) = H ~ ( & ,  Z). Thus, applying Theo- 
rem 6.10, we obtain the following: 

(1) 
THEOREM 6.11 (TATE) . For the norm torus T = RplK (Gm) correspond- 

ing to a Galois extension P / K ,  III(T) is isomorphic to the kernel of the 
canonical map 

In particular, the Hasse norm principle holds for P / K  if and only if (6.20) 
is injective. 

1f is cyclic, then H3(G, Z) = H1(G, Z) = 0 and we arrive at the follow- 
ing result due to Hasse [2]. 

COROLLARY (HASSE NORM THEOREM). The local-global norm princi- 
ple always holds for a cyclic extension P /K.  

If P / K  is not cyclic, then it may or may not be valid: 

EXAMPLE 1: Put K = Q, P = Q ( n ,  0). Here 6 = 2 /22  x 2 /22  and 
all the Gu are cyclic. Therefore H3(G, Z) = Z/2Z, but H3(Gu, Z) = 0 for 
any v. Then LLI(T) = 2 /22  and the norm principle does not hold for P /K,  
which is consistent with what we said in $1.2.3. 

EXAMPLE 2: Put K = Q, P = Q ( a ,  fi). Then 6 = G2 = 2 /22  x 2/22,  
so (6.20) is injective and the norm principle is satisfied for P / K .  

The question of the validity of the Hasse principle is theoretically re- 
solved for Galois extensions by Theorem 6.11, but until recently very few 
results had been found for non-normal extensions. In this situation, of 

course, Theorem 6.10 can be applied to the corresponding norm torus 
(see below for the computations); on the other hand, various methods re- 
lated to the geometry of algebraic tori (cf. Voskresenskil" [3] and the latter 
part of $7.3) can be used. In this regard, however, one is left with the 
feeling that this solution is inadequate, since the essentially arithmetic 
question of the Hasse norm principle is answered in a purely homologi- 
cal form which actually does not take into account the arithmetic of the 
extension itself. An intricate analysis of the Hasse norm principle for 

arbitrary extensions, combining homological as well as arithmetic meth- 
ods, was recently made in Platonov-Drakokhrust [I], [2], Drakokhrust- 
Platonov [I], and Drakokhrust [I]. The point of departure for this in- 
vestigation was the following problem of Bartels [3, p. 1981: does the 
Hasse principle hold for an extension L/K if L is a maximal subfield of a 
skew field D with center K? Such extensions are said to be K-adequate 
(Shacher [I]). This conjecture seemed quite likely to be true. For exam- 
ple, any extension of prime degree is K-adequate and satisfies the Hasse 
principle (cf. Proposition 6.10 below). Gurak [2] proved Bartels' conjec- 
ture for Galois extensions. (This result can be viewed as an arithmetic 
interpretation of the criterion in Theorem 6.11.) Bartels [4] himself es- 
tablished the validity of the Hasse principle for K-adequate extensions of 
degree 4. (As Example 1 shows, for an arbitrary extension of degree 4 the 
Hasse principle can be violated.) Moreover, the local-global norm princi- 
ple holds for the ambient skew field D containing L (Eichler's theorem, 
cf. $1.4). 

Nevertheless, it turns out that Bartels' conjecture is false in general. 
The first counterexample, constructed in Platonov-Drakokhrust [I], was 
an extension of degree 10. The question naturally arose whether one 
could find any counterexample of a smaller degree, and what the arith- 
metic nature is of the possible values of the degree of extension that 
would satisfy Bartels' conjecture. (Since 10 is the product of two dis- 
tinct primes, and since the Hasse principle always holds for extensions of 
prime degree, one may suggest that Bartels' conjecture holds for exten- 
sions whose degrees are prime powers. Drakokhrust-Platonov [l] studied 
these questions in detail. It is shown there, in particular, that Bartels' 
conjecture holds for extensions L/K of degree p2 (p prime), while for 
[L : K]  = pT, r 2 3, it does not. It also turns out to hold for extensions 
of degree 6. Therefore, the smallest counterexamples are extensions of 
degree 8. 

The analysis of the Hasse principle in the works cited above is based 
on the concept, introduced there, of the first obstruction. In our setting, 
this notion can be described as follows: For a finite extension P /K,  the 

(1) splitting field of the norm torus T = RplK(Gm) can be taken to be any 
Galois extension L of K containing P .  Let G denote Gal(L/K) and let 'FI 
be the subgroup of Q k i n g  P .  Passing to characters in (6.18), we obtain 
the following exact sequence containing X(T): 

To compute III(T) using Theorem 6.10, consider the commutative diagram 
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Since LLI(T) = P1(L/K,T) E kera3, by Theorem 6.10, (6.22) implies 
that there exists an embedding of Q, = u;'(im $Q)/ im p1 in U ( T ) .  Q, is is* 
morphic to the first obstruction to the Hasse principle, defined in Platonov- 
Drakokhrust [I] arithmetically as the quotient group 

The paper cited describes a method for computing the first obstruction, 
which can also be obtained from (6.22). To do so, note that Z[G/'K] = 

1nd6, (z), and therefore H Z  (G,  Z[G/H]) = HZ ('K, Z), by Shapiro's lemma. 
Similarly, for each v, Z[G/'K] = $:zl Z[KY/E] is a direct sum of &- 
modules, where ICY = &xY'?f (i = 1, .  . . , rv )  are distinct double cosets 
in the decomposition of G modulo Gv and 'K. In this regard, clearly 
Z[K,Y/H] = 1ndk: (Z), where HY = xY'K(xY)-' n & .  Thus 

Applying dimension shifting (cf. Lemma 1.3), we see that the first square 
in (6.22) is equivalent to 

where all horizontal arrows are induced by the restrictions; in particular, 
Q, = &l(im$)/ im cp. But for a finite group 3, H1 (F, Q/Z) is the dual of 
the abelianization .Tab = F/[F,3]; therefore (6.23) is the dual of 

where all the arrows are induced by the respective inclusions. By virtue of 
elementary facts about the duality of abelian groups, (6.24) yields 

THEOREM 6.12. Notation as in (6.24), 

Q, 1: ker ,u/S(ker 7). 

Theorem 6.12 enables us to compute Q, effectively. In this regard, if 
# 1, then clearly the Hasse principle does not hold for P IK.  These facts 

underlie the construction of the first counterexample to Bartels' conjecture. 
Namely, first one constructs a Galois extension L/K with Galois group 
G = A6, such that there are at least two valuations of K having a noncyclic 
decomposition group in L and all the noncyclic decomposition groups are 
isomorphic to (Z/22)2. 6 contains a subgroup 7-l of index 10, which is 
generated by the permutations (123), (456), (1425), (36), and hence is 
isomorphic to the semidirect product (2/3Z)2 >a 2/42. Put P = LN. 
Using the criterion from 51.5.1, we infer that P is K-adequate. On the 
other hand, direct computation shows that the first obstruction in this 
case is nontrivial, and consequently the Hasse principle does not hold for 
P /K.  

The first obstruction is useful not only for constructing counterexamples, 
but also for proving the validity of the Hasse principle for extensions of one 
or another type. This is the case, for example, if the first obstruction is 
all of LII(T), which is naturally called the total obstmction. Drakokhrust- 
Platonov [I] established that the first obstruction is precisely the total 
obstruction for extensions of square-free degree and for K-adequate ex- 
tensions of degree p2. From this fact, by computing the first obstruction, 
they deduced the validity of the Hasse principle for K-adequate extensions 
whose degree is either 6 or of the form p2. 

The total obstruction is not always the same as the first obstruction; 
however, as Drakokhrust has shown [I], it can be computed in a similar 
way with the aid of generalized representation groups. The foundation 
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for the theory of representation groups was laid down by Schur [I], and a 
contemporary treatment of the subject may be found in Beyl-Tappe [I]. 

A finite group G is a generalized representation group of a finite group 9 
if there is a central extension 1 - M - G 2 9 - 1, such that M f l  [G, G] 
is isomorphic to H3(G, Z), known as the Schur multiplier of 9 .  (Note that 
H3(9, Z) = H2(G7 Q/Z) by Lemma 1.3. For comparison, we point out that 
the classical definition of a representation group requires that M C [G, GI.) 
Let G be an arbitrary generalized representation group for 6. Given any 
subgroup 3 of 9, let denote the inverse image hw1(3). Consider the 
following diagram, analogous to (6.24): 

Under this notation, we have 

THEOREM 6.13 (DRAKOKHRUST [I]). LII(T) Y ker n /~(ker  Q) for the norm 
(1) torus T = RplK (Gm). 

Drakokhrust [1] provides specific examples of computation of m ( T )  by 
means of this formula. 

We conclude our survey of results related to the Hasse norm princi- 
ple with the following assertion (cf. Bartels [3], Platonov 1201, Platonov- 
Rapinchuk [4]). 

PROPOSITION 6.10. Let P / K  be an extension of prime degree p. Then 
the Hasse norm principle holds for PI K.  

PROOF: Let L denote the minimal Galois extension containing P, and put 
G = Gal(L/K), H = Gal(L/P). Then G is a subgroup of the symmetric 
group S,, and therefore 161 is divisible only by the first power of p. Conse- 
quently, (IH(,p) = 1 and the Sylow psubgroup 9, of 9 is a cyclic group of 
order p. 

(1) 
Now let us return to (6.22), set up for T = RPIK(Gm). Recall that 

Since UI(T) 2 kera3 is a group of exponent p, it suffices to show that 
the ppar t  of H2(G, X(T)) is trivial. But H2(g, z[G/H]) 2 H2(H,Z) is 
annihilated by multiplication by 1x1, and therefore has exponent prime top. 

On the other hand, the ppart  of H3(G, Z) is isomorphic to H3(GP, Z) = 0, 
since Gp is cyclic. Thus, the desired assertion follows from the exactness of 
the top row of (6.22). 

A more arithmetic argument can also be given. Notation as above, also 
put F = LGp. Then, clearly, L = FP and F n P = K.  For an arbitrary a 
in K*  n N P , ~ ( J p )  one has a E F* fl NL/F(JL); and hence a E N L / ~ ( L * )  
by the Hasse norm theorem, since L / F  is cyclic. Therefore 

On the other hand, ap E NPIK(P*). Since [F : K] and p are relatively 
prime, it follows that a E NPIK(P*). This proves Proposition 6.10. 

In practice, in addition to norm tori one also encounters multinorm tori 
(cf. 52.1.7). Recall that this is what we call the kernel T of the morphism 
9: RPlIK(Gm) x . . . x RPlIK(Gm) + Gm which is the product of the norm 
maps for the finite extensions Pi/K (i = 1 , .  . . ,I). 

EXERCISE: Show that any maximal K-torus of G = SL, is multinorm, i.e., 
corresponds to some collection PI, . . . , Pl of finite extensions of K such that 

1 [Pi : K] = n. 

Hence the validity of the Hasse principle for T means that an element a 
in K*,  which is representable locally as the product of norms from Pi, can 
be represented globally in a similar way. Therefore in the given situation 
the local-global principle naturally is said to be multinorm. Although this 
principle has never before been examined in close detail, it plays an im- 
portant role here. In particular, it allows considerable simplification of the 
proof of the Hasse principle for groups of type 2A,. Another application 
has to do with the structure of groups of rational points of simple groups 
of type 'A, (cf. 59.2). For our purposes, the following sufficiency test for 
the validity of the multinorm principle (due to Drakokhrust for the case of 
Galois extensions) is quite adequate. 

PROPOSITION 6.11. Let Pi (i = 1,2) be finite extensions of K ,  and let Li 
be their normal closures. Assume the following conditions are satisfied: 

(1) Ll n L, = K; 
(2) Pl /K satisfies the Hasse norm principle. 
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PROOF: Put P = PIP2, L = L1L2, Gi = Gal(Li/K), 6 = Gal(L/K) = 
G1 x Gz, 'Hi = Gal(Li/Pi) and 3-1 = Gal(L/P) = 3-11 x 3-12. Also, let Mi 
denote the maximal abelian extension of K contained in Pi. We immedi- 
ately note that N[G, G] = 3-11 [GI, GI] x 'Hz [G2, 621, whence by Galois theory 
it follows that the maximal abelian extension M of K contained in P has 
the form M = M1M2. Moreover, it follows from 

that for i = 1,2 the maximal abelian extension of Pi contained in P has 
the form PiM3-i. 

Consider the map 

induced by the product of the norm maps NPIIK and NPZIK. Our goal is 
to show that cp is injective. We shall do this by showing that cp is surjective 
and that the image and the domain of cp have the same order. To this end, 
we consider the analogous map 

Using class field theory isomorphisms JMi/M;NnnlM,(J~) N Gal(M/Mi) 
and JK/K*NMjK(JM) 2 Gal(M/K), and the fact that Gal(M/K) e 
Gal(M/Ml) x Gal(M/M2), we see that $ is an isomorphism. Therefore 
$ is surjective, i.e., 

and the image and the domain of $ have the same order. Now we can 
apply the fact that for any finite extension of number fields E/F we have 
F* NEIF (JE) = F* NNIF (JN),  where N is the maximal abelian extension 
of F contained in E (cf. [ANT, Exercise 81). In particular, K*  NpiIK (Jp,) = 
K*NMtIK(JMi); in view of (6.25) it follows that 

which means that cp is surjective. Furthermore, 

since PI M2 is a maximal abelian extension of Pl contained in P; similarly 

It follows from these equations that 

thus completing the proof that cp is injective. 
Now let a E K *  and a = N P ~ ~ K ( X I ) N P ~ / ~ ( X Z ) ,  where xi E Jp*. Then 

the pair (xi P?Npjp1 (JP), x2P;NpIpz (JP)) lies in the kernel of cp, so xi = 
Y~NP/P~  (xi), where yi E P: and Xi  E Jp (for i = 1,2). Under this notation, 
a = NP~/K(Y~)NP~~K(YZ)NP~K(X~Z~); and therefore 

since the Hasse principle holds for Pl/K. These computations imply that 
a E NPlIK(P;)NP21K (P;) Proposition 6.11 is proved. 

Unfortunately the multinorm principle has not yet been analyzed fully. 
We conclude this section with a technical assertion about P'(L/K, T) 

which we shall need in studying the coboundary map for semisimple groups. 

PROPOSITION 6.12 (KNESER [12]). Let T be a torus defined over a number 
field K and split over a finite Galois extension L/K. Assume that T is Kvo- 
anisotropic for some vo in VK. Then P2 (LIK, T) = 0. 

PROOF: It might seem natural to use Theorem 6.10; however, closer analy- 
sis shows that this approach does not yield the desired result. A preferable 
approach is to use the dual description of P2(L/K, T) as the cokernel of 
the map xu H-'(L,/K,, X, (T)) + H-'(L/K, X,(T)) induced by corgU. 
(This result was obtained in the course of proving Theorem 6.10.) Then, 
to prove the proposition it suffices to establish that 

is surjective. However, X. (T)~WO = 0 since T is Kvo-anisotropic. On the 
other hand, the image of the norm map N,: X,(T) + X,(T) (given by 
NUo(x) = CgtGuo gx) clearly lies in X,(T)"O; therefore ker Nvo = X.(T). 
Let X. (T)' (resp., X. (T)ho) denote the subgroup of X. (T) generated by 
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elements of the form gx - X, for x in X,(T) and g in 6 (resp., G,,). By 
definition H-' (L,,/ K,, , X, (T)) = ker N,,/((X, (T))',, and 

H-'(L/K, X,(T)) = ker N/(X,)T))', 

where N:X,(T) -t X,(T) is the norm map corresponding to 6 .  Then, 
bearing in mind that in the given situation corgu0 is induced by embedding 

ker Nu, in ker N ,  we conclude that corguO is surjective. Proposition 6.12 is 
proved. 

6.4. Finiteness theorems for Galois cohomology. 

In this section we shall extend the finiteness results for Galois cohomol- 
ogy, obtained for the case of algebraic tori in 56.3, to arbitrary algebraic 
groups. 

THEOREM 6.14. Let G be an algebraic group defined over a local field K.  
Then H1 (K, G) is finite. 

THEOREM 6.15. For any algebraic group G defined over a number field K ,  
the kernel of the canonical map H1 (K, G) --t n H 1  (Ku, G) is finite. 

u 

Whereas the proofs of these theorems for tori were fairly standard, the 
proofs in general are totally different. Namely, to prove Theorem 6.15 we 
shall have to appeal to the reduction theory for adele groups developed 
in Chapter 5, while Theorem 6.14 is a formal consequence of a certain 
property of the Galois group of a local field. 

DEFINITION: A profinite group 6 is said to have type (F)  if it has only a 
finite number of open subgroups of index n, for each integer n. A field K 
has type (F) if it is perfect and its absolute Galois group 6 = Gal(K/K) 
has type (F).  

Clearly a perfect field K has type (F)  if and only if for every n it has 
finitely many extensions of degree n. It follows that examples of fields of 
type ( F )  are: 

(a) the field of reals, 
(b) a finite field, 
(c) the field of formal power series P( t )  in one indeterminate over an 

algebraically closed field P of characteristic 0. 

(In the latter case it is well known (Puiseux' theorem) that P( t )  has a 
unique extension of degree n, which has the form P(i/i), for any n. The 
fact that the local fields are of type (F) is crucial for our purposes. 

PROPOSITION 6.13. Any finite extension K of Q p  has type (F) .  

PROOF: Since for every n there is a unique unramified extension of K of 
degree n, and any finite extension of K can be represented as a tower of 
unramified and totally ramified extensions (cf. [ANT, Ch. I]), it suffices to 
show that any local field has finitely many totally ramified extensions. To 
avoid introducing additional notation, we shall prove this fact for K .  

It is well known (cf. Proposition 1.4) that any totally ramified extension 
of K of degree n is given by the root of an Eisenstein polynomial 

But the set M of coefficients (an-',. . . , ao) of all possible Eisenstein poly- 
nomials is obviously a compact subset of Kn.  Therefore the standard ar- 
gument shows that the desired assertion is a consequence of the following 
result, known as Krasner's lemma: if f is an irreducible monic polynomial 
over K of degree n, then any polynomial g over K whose coefficients are 
sufficiently close to those of f is also irreducible; moreover, f and g define 
isomorphic extensions of K .  

The reader may find the usual proof of Krasner's lemma in Lang [2]. 
We shall show how this assertion is obtained in our context. For f ( t )  = 
tn + an-ltn-I + . .. + a0 let a ( f )  denote the companion matrix 

It is easily verified that f (a(f)) = 0. If, in addition, f is irreducible, then 
K [a( f )], the K-algebra generated by a(  f ), is isomorphic to the extension 
Kf of degree n over K given by f .  In this regard, the multiplicative group 
K[a(f)]* is the set of K-points of T = RKfIK(Gm). Put G = GL, and 
let U denote the open subvariety of T consisting of regular elements in G 
(cf. 52.1.11). Also, consider the map cp: G x U i G given by p(g, u) = 
gug-'. Then the image of cp is precisely the set of semisimple regular 
elements of G, and therefore is Zariski-open in G; in particular, cp is a 
dominant morphism. Therefore, it follows from Proposition 3.3 that W = 
~ ( G K  x UK) is an open subset of GK under the v-adic topology. On the 
other hand, it is clear that, for any x in W, K[x] is conjugate to K[a(f)] 
under GK. Since a( f )  E UK c W, clearly a(g) E W for all g sufficiently 
close to f ,  and therefore K[a(f)] and K[a(g)] are conjugate; hence Kf and 
Kg are isomorphic. Proposition 6.13 is proved. 

Theorem 6.14 is a consequence of the following general result. 
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THEOREM 6.16. Let K be a field of type (F) ,  and let G be a linear alge- 
braic group defined over K .  Then H1 (K, G) is finite. 

PROOF: First we prove the theorem for G finite. Let 3-1 denote an open 
normal subgroup of 6 = G ~ ~ ( K / K )  which acts trivially on G = GR. By 
the definition of group of type (F), there are only a finite number of open 
subgroups of 6 contained in 3.1 and having index in 3-1 not exceeding n = /GI. 
Their intersection, which we denote by 3, is an open normal subgroup of 
6 contained in 7-t. We claim that the restriction map cp: H1(6, GK) -+ 

H1(3,  GR) is trivial. Indeed, if f :  6 4 GK is a continuous 1-cocycle, then 
g = f I n  is a continuous homomorphism from 3-1 to GK, since 3-1 acts 
trivially on GK. Then [H : kerg] 5 n, so by assumption 3 c kerg, i.e., 
g(3) = {e), as desired. 

Now let us consider the noncommutative analog of the Hochschild-Serre 
exact sequence (cf. 1.3.2): 

Since cp is trivial and (6.26) is exact, E is surjective. But H1(6/3 ,  G g )  is 
obviously finite; therefore H1(G, GR) = H1(K, G) is also finite. 

The following lemma, applied to N = Go, together with the fact just 
proved, enables us to reduce Theorem 6.16 to the case of connected groups. 

LEMMA 6.9. Let G be an algebraic K-group, and let N be a normal K-  
subgroup. Assume H1(K, GIN) is finite, and that H'(K, ,N) is finite for 
each p in (K, G), where , N is the group obtained from N by twisting 
using p.3 Then H1 (K, G) is also finite. 

Indeed, the exact sequence of K-groups 1 -+ N -+ G -+ GIN 4 1 in- 
duces the map of the first cohomology H1(K, G) 4 H1(K, GIN), which has 
the following property: H1(K, ,N) maps onto the fiber ~ - ~ ( r ( p ) ) ,  for any 
p in H1(K, G) (cf. $1.3.2). Therefore if r(H1(K, G)) = .rr({pl, . . . , p, )), 
then H1(K, G) = r - l ( r (p i ) )  is finite, since each of the r- '(r(pi)) is 
finite by the assumption that H1 (K, ,, N) is finite. 

Thus we may assume G to be connected. In this case, as Proposition 2.9 
shows, H1(K, G) = H1 (K, H )  for a maximal reductive K-subgroup H of G; 
hence we need only consider the case of G connected and reductive. First 
we take the case G = T,  an algebraic torus. (Note that the finiteness of 
H 1 ( ~ ,  T)  for a local field K was established in 56.3, however here we shall 
obtain a general proof, good for all fields of type (F).) Let L denote a finite 
Galois extension of K over which T becomes split, and put n = [L : K]. 
Then H1 (K, T) is precisely H1 (LIK, T)  (by Lemma 6.8), and therefore is a 

We have in mind G acting naturally on N by conjugation. 

group of exponent n. Consider the morphism I): T - T given by q(t )  = tn, 
and let S denote its kernel. We have the exact sequence of cohomology 

groups H1(K, S) - H1(K, T) 5 H1(K, T), where B is the homomorphism 
induced by I). It follows from the above that B is trivial, therefore H1(K, T) 
is precisely the image of H1(K, S). But H1(K, S) is clearly finite; so we 
conclude that H1(K, T) is also finite. 

The case of arbitrary connected reductive groups in Theorem 6.16 can 
be reduced easily to the case of tori. To this end, note that by combining 
Lemma 6.9 with the results obtained on the finiteness of H' for finite groups 
and tori, we obtain the finiteness of H1 for any group whose connected 
component is a torus. This result can be applied, in particular, to the 
normalizer N = NG(T) of an arbitrary K-torus T in a given connected 
reductive K-group G. Therefore, the proof of Theorem 6.16 is completed 
by 

LEMMA 6.10. The natural map H1(K, N)  -+ H1 (K, G) is surjective. 

PROOF: Let 7 = GIN be the variety of maximal tori of G (cf. $2.4.5). For 
an arbitrary cocycle g in Z1(K, G), take the group P and the variety ,7, 
obtained by twisting (noting that G acts on itself by conjugation and on 
7 by translation). Clearly there is a K-action of &' on ,7, moreover the 
stabilizer of a point is the normalizer of a maximal torus. Then, using the 
fact that &' always has a maximal K-torus (cf. 52.1.9), we can show easily 
that ( 7 ) ~  # 0; therefore Lemma 1.6 implies that g lies in the image of 
H1(K, N)  + H 1 ( ~ ,  G). Lemma 6.10 is proved. 

COROLLARY 1. Let K be a field of type (F). Then any given semisimple 
K-group G has only a finite number of K-forms, up to K-isomorphism. 

Indeed, we know (cf. 52.2) that, up to K-isomorphism, the K-forms of 
a given K-group G are classified by the elements of H'(K, Autg(G)). On 
the other hand, for a semisimple group G, Autg(G) is a finite extension 
of the group of inner automorphisms, which is isomorphic to the adjoint 
group, and therefore can be viewed as an algebraic K-group. Then, by The- 
orem 6.14, ~ l ( K , A u t g ( G ) )  is finite; hence the number of nonisomorphic 
K-forms of G is also finite. 

EXERCISE: Find out whether the corollary also holds for an arbitrary con- 
nected group G. (Note that the above proof does not work for an algebraic 
torus T of dimension n > 1, since here AutR(T) Z GL,(Z) is not an 
algebraic group.) 

COROLLARY 2. Let X be a homogeneous space of a linear algebraic group 
G, both defined over a field K of type (F). Then XK is the union of a 
finite number of orbits of GK. 
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For XK = 0 we have nothing to prove. For XK # 0 let s E XK, and 
let H = G(x) be the stabilizer of x. Since K is perfect, H is defined over 
K ,  and it suffices to establish that there are only finitely many orbits of 
GK on (G/H)K. It is well known, however, that these are in one-to-one 
correspondence with the elements of the kernel of H1(K, H) -+ H1(K, G); 
therefore the desired result follows from Theorem 6.16. 

In particular, taking X to be the variety 7 of tori of a given connected 
group G, we obtain 

COROLLARY 3. Let G be a connected linear group over a field K of type 
IF). Then the maximal K-tori of G form a finite number of conjugacy 
\ ,  

classes with respect to GK. 

A special case of Theorem 6.16 is the assertion on the finiteness of the 
first set of real cohomology H1(R, G), for any algebraic R-group G. Actu- 
ally this follows from Whitney's theorem (cf. $3.2, Theorem 3.6). Indeed, 
in $3.2, using Whitney's theorem we gave a proof of Corollary 2 for K = R, 
independent of Theorem 6.16. Now let G be a real algebraic group, and let 
G c GL, be a matrix realization of G defined over R. Applying Corollary 2 
to X = GL,/G, we see that there are only finitely many orbits of GL,(R) 
on XR; hence also the finiteness of the kernel of H1 (R, G) 4 H1 (R, GL,) 
(cf. proof of Corollary 2). But H 1 ( ~ ,  GL,) = (1) (Lemma 2.2); therefore, 
we thus obtain the finiteness of all H1(R, G). (This argument shows that 
Corollary 2 is indeed equivalent to Theorem 6.16 itself. Below we shall 
use the adelic version of this observation in the proof of Theorem 6.15.) 
Actually, for real cohomology there are much more precise results. For 
instance, Serre [I,  Ch. 3, $4.51 proved the following assertion for the case 
of R-anisotropic G: 

THEOREM 6.17. Let G be a connected algebraic R-group with GR compact. 
Then H1(R, G) is in one-to-one correspondence with S/W, where S is the 
set of elements of a fixed maximal R-torus T c G satisfying x2 = 1, and 
W is the Weyl group of T acting on T by conjugation. 

(In classical terms, the theorem means that the elements of H1(R, G) 
are in one-to-one correspondence with the conjugacy classes of involutions 
in Gw.) 

The cohomology of an arbitrary connected reductive real group G was 
recently described by Borovoi [2]. To formulate his resu!t we need to intro- 
duce some notation. Let To be a maximal R-anisotropic torus of G, and let 
T be its centralizer CG(To). Then T is a maximal R-torus of G, and one 
can consider the corresponding Weyl group W = W(T, G) = NIT, where 
N = NG(T) is the normalizer of T in G. We define the action of W on 
H1 (W, T) as follows. Let u E Gal(@/R) be the complex conjugation. Any 

cocycle c in Z1(W, T) can be defined by an element a = & E Tc satisfying 
zu(z) = 1. If w in W is represented by an element n in Nc, then we define 
wc as the cocycle given by n-'za(n). It is easy to verify that this action 
is well defined. With this notation we have 

THEOREM 6.18. The embedding T C G induces a bijection 

The proof of Theorem 6.18 and several of its applications can be found 
in Borovoi [2]. 

Let us proceed to an analysis of finiteness properties for cohomology 
of groups defined over a number field K.  Here K does not have type 
(F) (why?), and actually H'(K, G) now can be infinite. Therefore in this 
situation the finiteness theorems are of a different nature (cf. Theorem 6.15 
and Theorem 6.19 below), and their proofs are based on other arguments. 

Let us begin the proof of Theorem 6.15 by considering a finite group. 

LEMMA 6.11. Let G be a finite K-group. Then the kernel LLI(G) of the 
canonical map H1 (K, G) + n H1(K,, G) is finite. 

v 

PROOF: Let 'H be an open normal subgroup of G = G ~ ~ ( K / K )  acting 
trivially on G = GK, and put L = kN. We shall show that the kernel 
of H1(L, G) 5 n H1(Lw, G) is trivial. It will follow that the image of 

111 - 

U ( G )  under the restriction map H1(K, G) -+ H1(L, G) is trivial, so we 
can conclude from the exact sequence 

that ILI(G) is covered by the finite set H1 (L/K, G) and hence is itself finite. 
To analyze the kernel of 0, note that in the given situation the 1-cocycles 

are continuous homomorphisms a :  'H -, G, and there is only one trivial 
cocycle, which is defined by the unity homomorphism. Now if a E kere, 
then a('H,) = (1) for any valuation w in vL, where 'H, = G~~(L,/L,) 
is identified with the decomposition subgroup of 3.1 = Gal(L/L) of a fixed 
extension ti? of w to L. Note that any two extensions w' and w" are 
conjugate with respect to I f ,  so the corresponding subgroups 'HL and 'HL 
are conjugate in 'H; thus cr(7-i;) = (1) if and only if a('H:) = (1). Hence 
it suffices to show that the closed normal subgroup P of 'H generated by 
all 'H, is 'H. Consider the fixed field P = LP. Then P is a normal 
extension of L having the following property: P c L, for all w in vL. If 
we suppose P # L, then there is a nontrivial finite normal extension F/L 
which also satisfies F c L, for all w in v L .  But this obviously contradicts 
the Chebotarev density theorem. The lemma is proved. 

To reduce Theorem 6.15 to the case of a connected group we also need 
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LEMMA 6.12. Let G be an algebraic K-group, and let Go be its connected 
component. Then GKu/Ggu = for almost all v. Hence, the 

kernel of H1 (K,, Go) -+ H1 (K,, G) is trivial for almost all v. 

PROOF: Consider the exact sequence 1 + Go -+ G 5 GIGo -+ 1 and its 
associated exact cohomological sequence 

(6.27) cKU " ( G / G O ) ~ .  -+ H~(K, ,Go)  3 H~(K,,G).  

In the proof of Proposition 5.5 we showed that n(Gov) = for 

almost all v in VF; in particular a(GKU) = (G/GO)Ku. Therefore (6.27) 
implies that ker lC, is trivial for these v. The lemma is proved. 

Now let us suppose we can prove that LLI of a connected group is finite; 
we shall show that III(G) then is finite for any K-group G. Consider the 
commutative diagram 

H ~ ( K ,  G) H H ~ ( K , ,  G) 

(K, GIGO) ~ H ~ ( K ~ , G / G O )  
u 

By Lemma 6.11 ker0 is finite, whence it follows that u(LLI(G)) is finite. 
Let o(LII(G)) = u({ p1, . . . , pr }), for pi E LLI(G). It follows by a twist- 
ing argument that U ( G )  is covered by the union of the images of mi = 
ker(H1(K, GP) + n H1(K,, Gi)), where Gi = pfl and GP = .,GP are the 

V 

respective twisted groups. But by Lemma 6.12 the kernel of H1 (K,, GP) 4 

H1(K,, Gi) is trivial for almost all v, and, as Theorem 6.14 implies, is fi- 
nite in the remaining cases. Therefore n H1(Ku, GP) -+ n ll H1 (K,, Gi) 

has finite kernel, so the image of LLIi in H1(K,, GP) is finite. But by 

assumption the kernel of H1(K, H) + n H1(K,, H) is finite for any con- 
IJ 

nected group H;  therefore by a twisting argument it follows that the inverse 
image of any element under H1(K, GP) + n H1(K,, GP) is finite. In view 

V 

of the above, we obtain that each of the mi is finite, which means that 
III(G) is also finite. 

It remains to consider the basic case of a connected K-group G which, 
by Proposition 2.9, may also be assumed to be reductive. To do so, let 
us fix a matrix realization of G c GL, and the homogeneous space X = 
GL,/G We saw above that the elements of H1(K, G) are in one-toone 
correspondence with the orbits of GL,(K) on XK;  moreover, proceeding 
from this interpretation, one can establish the finiteness of real cohomology. 
Our proof of the finiteness of m ( G )  is based on an analogous interpretation. 

LEMMA 6.13. Let T :  GL, -+ X be a canonical projection. Then the ele- 
ments of III(G) are in oneto-one correspondence with the orbits of GL,(K) 
on n~ (GL, (A)) n XK, where A is the adele ring of K .  

PROOF: For each extension P / K  we have a map Gp:Xp + H~(P,  G) 
whose fibers are in one-to-one correspondence with the orbits of Gp on 
Xp. Then we may conclude from the commutative diagram 

that the elements of III(G) are in one-to-one correspondence with the orbits 
of GL,(K) on B = ( n n ~ ~  (GL,(K,)))nX,. Therefore it suffices to show 
that B is the intersection nA(GL,(A)) f l  XK given in the statement of 
the lemma. But this follows easily from the fact that n(GLn((7,)) = Xou 
for almost all v in v ~ K ,  the proof of which is analogous to the proof of 
Proposition 6.7 and is left to the reader as an exercise. The lemma is 
proved. 

Combining Lemma 6.13 and Theorem 5.3, we obtain the proof of Theo 
rem 6.15. 

Theorem 6.15 can also be put in the following, sometimes more conve- 
nient, way: 

THEOREM 6.19. Let G be a linear algebraic group defined over a num- 
ber field K,  and let S be a finite subset of v K .  Then the natural map 
es: H1(K, G) -+ n H1(K,, G) is proper, i.e., the inverse image of any 

u@S 
7 - 

finite set is finite. 

Indeed, by the finiteness of local cohomology (Theorem 6.14) everything 
reduces easily to the case S = 0, and it suffices to establish the finiteness of 
the inverse image of any element under Q = p0. But by twisting, it follows 
that for any p in H1(K, G) the fiber @-I(&)) is covered by ILI(,G), which 
is finite by Theorem 6.15. 

ILI(G) can be defined not only for a linear algebraic group, but also, for 
instance, for an abelian variety, where it is an abelian group known as the 
Shafareuich- Tote group. Here, however, the finiteness of UI(G) is a far more 
complicated issue. For a long time not a single elliptic curve was known 
for which UI could be proven to be finite. Quite recently some progress 
has been made on this problem by Rubin [I] and Kolyvagin [I], [2], who 
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established the finiteness of LLI for large families of elliptic curves. (Note 
that one of the reasons the proof given for Theorem 6.15 does not work for 
an abelian variety is that in general it cannot be embedded in an algebraic 
group with trivial cohomology, while for linear groups such an embedding 
is provided by any matrix realization G C GL,.) 

We conclude this section with an example of a semisimple K-group G 
with LU(G) nontrivial. Let us begin with an extension L/K, where K = Q, 
L = Q ( a 7  m), for which the Hasse principle does not hold (cf. 56.3, 
Example 1). Let pn denote the algebraic group of the n-th roots of unity, 
and let us use the construction described in the proof of Proposition 6.7. 
Namely, take the norm map N:RLIK(pn) 4 pn and let F denote its 
kernel. (Clearly F is the set of elements of order n in the norm torus 
S = (0,) .) 

The cohomology group of F can be computed from the exact sequence 

which induces the following commutative diagram with exact rows: 

Note that 

moreover, a1 is induced by NLIK: L* + K*. It follows that a 2  induces an 
embedding of K*/K*nNLIK(L*) in H2(K, F) .  We shall assume that n = 
41 and then K*" C NLIK(L*), i.e., we have an embedding of K*/NLIK(L*) 
in H2(K, F). 

Let x E K*/K*, be an element whose image in K*/NLIK(L*) defines 
a nontrivial element of U ( S )  E (K* fl NLIK(JL))/NLIK(L*), and let y = 
az(x). Then the definitions and the commutativity of diagram (6.29) yield 

LEMMA 6.14. y in H2(K, F )  is nontrivial and lies in im a2 n ker y3. - 
Now we can easily complete the construction of our example. Put G = 

RL/K(SLn). Then Z(G) = RLIK(pn) and we can consider the embedding 

F C z(G). Let G = G/F. We have the commutative diagram with exact 
rows 

Since Z(G) = R L / K ( ~ , ) / F  2 p,, H1 (K, Z(G)) can be identified with 
K*/K*". Viewing x as an element of H1 (K, Z(G)), let z be the image 
of x in H 1 ( ~ , G ) .  Then z # 1, since b2(z) = y # 1. On the other 
hand, <2 ( ~ 2  (2)) = 1 since ~3 is 73; and ~2 (z) = 1 since H' (K,, G) = n H'(L,, SL,) = 1 for any v. Thus, z E ILI(G), proving III(G) # 1. 
W I W  

As above, the Hasse principle is said to hold for G when III(G) = 1. 
Thus, the above example can be viewed as a counterexample to the Hasse 
principle for semisimple groups. The objective of the sections that follow 
is to show that the Hasse principle always holds in the extreme cases of 
simply connected groups and adjoint groups. 

6.5. Cohomology of semisimple algebraic groups over local fields 
and number fields. 

As we mentioned in 96.1, the basic cohomological results for a sim- 
ply connected semisimple K-group G are: H1(K, G) = 1 if K is a non- 
Archimedean local field (Theorem 6.4), and H1(K, G) is isomorphic to n H1(KU, G) if K is a number field (Theorem 6.6). Sections 6.7 and 6.8 
VEV,K 

are devoted to the proofs of these deep theorems. In this section, assum- 
ing these results, we shall learn how to compute the cohomology of any 
semisimple group and shall obtain some applications of these results (in 
particular, we shall establish the validity of the Hasse principle for adjoint 
groups and shall prove that groups of types B,, C,, E7, E8, F4, G2 over a 
number field K are split over a suitable quadratic extension LIK).  In the 
next section, using these results, we shall obtain a local-global classification 
of various types of sesquilinear forms and shall prove Theorem 6.5, that any 
anisotropic group over a local field is of type SL1(D) and the analogous 
assertion over a totally imaginary number field. 

Computation of the cohomology of a nonsimply connected semisimple 
K-group G is based on a universal K-covering 1 -+ F + G 4 G -+ 1 and 
the corresponding exact cohomological sequence 
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The basic result, which, together with Theorems 6.4, 6.6 and 6.18, enables 
us to compute H1(K, G) is as follows: 

THEOREM 6.20. If K is a non-Archimedean local field or a number field, 
then S is surjective. 

COROLLARY. If K is a local field, then S is bijective. 

Indeed, it follows from Theorem 6.4 that H1(K, 6) = 1 for any in 

Z1 (K, G); hence S is injective. 
The proof of Theorem 6.20 is based on the following result, which is 

interesting in its own right. 

THEOREM 6.21. Let G be a semisimple algebraic group over a non- 
Archimedean local field K.  Then G contains a maximal K-torus S, which 
is anisotropic over K .  

Before proving Theorem 6.21, let us note that it does not hold over 
K = R. Indeed, consider the quadratic form 

where g(x, y, I) = x2 + y2 + t 2 .  Then the maximal compact subgroup of 
Gw = S 0 6 ( f )  has the form S03(g) x S03(g), i.e., is a group of rank 2. 
Hence, since G has rank 3, it does not contain a 3-dimensional R-anisotropic 
torus. 

PROOF OF THEOREM 6.21: We use the cohomological characterization 
of all possible K-tori of G. Assuming G adjoint (which may always be 
done in the proof of this theorem), we fix a maximal K-torus T of G 
and take its normalizer N = NG(T). Let T' be another maximal K- 
torus of G. Then T' = gTg-l for suitable g in GK. Since T and T' are 
defined over K it follows that the cocycle f = {&), where I, = g- '~ (9 )  
for a in Gal(K/K), takes on values in N and determines an element of 
M = ker(H1(K, N) - H1(K, G)). In this regard, T' is obtained from T 
by twisting with f ,  where N acts on T by conjugation. Conversely, for any 

in Z1(K, N) the twisted torus $ is a maximal K-torus of ,@. Therefore 
€T will obviously be a maximal K-torus of G if = G, i.e., f E M. In this 
way the proof reduces to finding in M such that €T is K-anisotropic. 

Let W = NIT be the corresponding Weyl group. Viewing W as a 
subgroup of AutK(T), the group of all automorphisms of T,  we can define 
<T for any in Z1(K, W). 

LEMMA 6.15. There is a cocycle in Z1(K, W) for which <T is anisotropic 

over K .  

PROOF: First we reduce the proof to the quasisplit case. Let Go be a 
quasisplit K-group of the same inner type as G, let To c Go be a maximal 
K-torus containing a maximal K-split torus, and let f :  G -+ Go be a K- 
isomorphism such that f (T) = To. Then the cocycle a = {a,), where 
a, = f-' o a( f )  for a E G ~ ~ ( K / K )  with values in IntG = G, actually 

assumes values in N. Clearly Go = &', To = 2 and Wo = where 
,6 is the image of a in Z1(K, W). This being the case, the properties of 
twisting imply that "multiplication" by ,6 induces a bijection Z1(K, Wo) N 

Z1(K, W) and the set of tori obtained from To by twisting with cocycles 
from Z1(K, Wo) coincides with the set of tori obtained from T by twisting 
with cocycles from Z1(K, W); this observation yields the desired reduction. 

Now we take the case where G is split and T is a maximal K-split torus. 
Then G = G ~ ~ ( K / K )  acts on X(T) and W trivially; in particular, the 
cocycles in Z1(K, W) are simply the (continuous) homomorphisms f :  G + 

W. We shall interpret X(<T) as the group of characters X(T), on which an 
element a in G acts as the automorphism fz of X(T) corresponding to f,. 
Thus, it suffices to construct a cocycle f = {f,) such that all the E,: have no 
nonzero fixed points on X(T). (Then X({T)~ = 0, so {T is K-anisotropic.) 
To do so, take a system I1 = {al,  . . . , a,) of simple roots in the root system 
R = R(T, G) and construct the Coxeter element w = w,, . . . w,,. where w,% 
is the reflection associated to ai; it is well known (cf. Bourbaki [4, Ch. 5, 
561) that w has no nonzero fixed points on X(T). Let d be the order of w 
(the Coxeter number of R), let L/K be an unramified extension of degree 
d, and let Gal(L/K) = (u). Then the desired cocycle f in Z1(L/K, W) is 
given by f,i = w2. 

In analyzing the case of a quasisplit but not split group, let L/K denote a 
Galois extension whose Galois group acts faithfully on the Dynkin diagram 
of R. For types 'A,, 2D2n+l, 2 ~ 6  this L is a quadratic extension of K .  Let 
o be a generator of Gal(L/K). By the fact that for groups of these types 
-1 4 W and at the same time u* 4 W (where a* denotes the action of a 
on X(T)), we can define f in Z1(L/K, W) by f: = -a*. Then a acts on 
X(€T) as 0 a* = -1, and consequently it has no nonzero fixed points. 

For the remaining type D2, (including 3D4, 6D4) we construct a quadra- 
tic extension P / K  such that P n L = K (this is always possible, since K 
har at least two quadratic extensions, and Gal(L/K) is isomorphic to a 
subgroup of S3), and let Gal(P/K) = (a). It is easy to see that the desired 
cocycle will be f E Z1(P/K, W) such that f, = -1 (here -1 E W). The 
lemma is proved. 

In view of Lemma 6.15, the proof of Theorem 6.21 reduces to proving 
the following: let Q: H1 (K, N)  -+ H1 (K, W) be the canonical projection; 
then there exists B in ker(H1(K, N) 1, H1(K, G)) satisfying e(B) = I .  For 
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this, let us consider the universal covering 1 -+ F 4 G G -+ 1 and 

the corresponding coboundary morphism 6: H1(K,G) -+ H2(K,  F ) ,  and 
construct the following commutative diagram 

Since H1(K, G) = 1 (Theorem 6.4), it suffices to establish that there exists 
0 in Q-l(f) such that 6(0) = 1. Thus, the proof is completed by 

LEMMA 6.16. Let [ in Z1(K, W) be a cocycle such that <T is anisotropic. 
Then 6 maps @-I([) onto H2(K, F).  

PROOF: Since <T is anisotropic over K ,  Theorem 6.2 implies that 

for any finite extension L of K containing a splitting field of [T; hence 
H2(K, <T) = 1. Therefore, passing to cohomology in the exact sequence 
1 -+ T -+ N -+ W -+ 1, we see that [ lies in the image of Q: H1(K, N) -+ 

H1(K, W), i.e., Q-'([) # 0. Let 0 E Qpl([), and consider the twisted 
groups 8 ,  g = $, and [W. It follows from the twisting argument that 
the assertion of the lemma is equivalent to the surjectivity of 

(Clearly 8 = F and therefore we use the same letter to denote the 
coboundary morphism.) We have the commutative diagram with exact 
upper row: 

Clearly, it suffices to establish that H1(K, g)  3 H2(K, F )  is surjective. 
But this follows from the exact sequence 

where T = aP1(T); indeed 2, as well as $", is K-anisotropic, and conse- 
quently H ~ ( K ,  2 )  = 1. The lemma is proved. 

PROOF OF THEOREM 6.20 (FOR A LOCAL FIELD): Let S be a maximal 
K-anisotropic torus of G, the existence of which is given by Theorem 6.21, 
and let 5' = a-I (S). The commutative diagram 

induces the commutative cohomological diagram 

Since S, as well as S, is K-anisotropic, we have H2(K,S)  = 1, and 
hence the map 6: H1(K, S) -+ H2(K, F) is surjective. Consequently, 
6: H1(K, G) -+ H2(K, F )  is surjective. 

To analyze the case of a number field, we need several additional asser- 
tions. 

LEMMA 6.17. Let G be a semisimple algebraic group defined over an ar- 
bitrary field K of characteristic 0 and containing a Borel subgroup over a 
quadratic extension LIK, and let a be a generator of Gal(L/K). Then 
there exists a Borel L-subgroup B of G such that B n Ba is a maximal 
K-torus of G. 

PROOF: Consider the K-variety B of Borel subgroups of G (cf. §2.4.6), 
and put H = RLIK(G), X = RLIK (B). Over L, we can identify X with 
the direct product B x 8; moreover, the elements of XK correspond to 
pairs of the form (B, B"), where B E BL. Then XK # 0 since BL # 0 
by assumption. On the other hand, X is the variety of Borel subgroups of 
H; in particular, it is a homogeneous space of H. Since HK is dense in H 
(Theorem 2.2), it follows that XK is dense in X.  

Now we show that the subset U of X ,  consisting of pairs (B1, B2) such 
that B1 n B2 is a maximal torus of G, contains an open subset of X.  Then 
U n XK is nonempty, and any of its elements having the form (B, B") 
clearly provides the desired Borel subgroup B. 
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To prove that U contains an open subset, we take the subvariety Y C 

G x B x 23 consisting of points (g, bl, b2) such that gbl = bl, gb2 = b2, 
and show that U can be characterized as the set of those y in B x B for 
which the fiber ~ - l ( ~ )  of the natural projection T: Y -+ B x B has minimal 
dimension; the necessary result will then follow from the theorem on the 
dimension of the fibers of a morphism. If y = (bl , b2) E B x B then T-l (y) = 
(Bl f' B2, bl , b2), where Bi is the Borel subgroup of G corresponding to bi. 
But it is well known (cf. corollary to Theorem 2.5) that Bl n B2 always 
contains a maximal torus T of G; therefore if dimr-'(y) is minimal, then 
the connected component (Bl n ~ 2 ) ~  is a torus. On the other hand, writing 
B1 = TUl as a semidirect product yields BlnB2 = T(UlnB2). Here UlnB2 
is unipotent and therefore is connected; hence Bl n B2 is also connected. 
The lemma is proved. 

LEMMA 6.18. Let G be a simply connected semisimple algebraic group over 
R. Then there exists a maximal R-torus T of G such that H2(R, T) = 1. 

PROOF: Using Lemma 6.17, we choose a Borel C-subgroup B of G such 
that T = B n Bu is a maximal R-torus of G, where a denotes complex 
conjugation. Our objective is to show that H2(R, T) = 1. To do so, let 
us consider the root system R = R(T, G) and fix a system of simple roots 
II c R associated with B (cf. 52.1.10). Since G is simply connected, the 
group X.(T) of cocharacters of T has a base IIV consisting of the dual 
roots aV for a in II. Since B n Bu is T,  Bu is the opposite of B, and 
hence a*(II) = -II, a*(IIv) = -IIV (where a* denotes the induced action 
of a on characters and cocharacters). Thus for aV E ITV we have either 
.*(aV) = -av or a*(aV) = -BY for some PV # aV in IIV. With these 
properties of the base of X. (T) it is easy to obtain that HO(R, X*(T)) = 0. 
But then, by the Nakayama-Tate theorem, it follows that H2(R,T) = 1. 
The lemma is proved. 

PROOF OF THEOREM 6.20 (FOR A NUMBER FIELD): First we establish 
that, for almost all v in v?, the image eU(x) of a given element x in 
H2(K, F )  under the restriction map p,: H 2 ( ~ ,  F )  + H2(Ku, F )  is trivial. 
Indeed, x lies in the image of the inflation map H2 (L/ K, F )  -+ HZ (K, F) . 
where L/K is a suitable finite extension of K. Then L,/Ku is unramified 
for almost all v in VfK, and thus eV(x) falls in the image of the infla- 
tion map H~(K,Y~/K,,  F) H2(KU1F).  But H 2 ( K ~ / K u , F )  = 1, since 
Gal(K,Y'/K,) E 2 is the group of cohomological dimension L; therefore 
pv(x) = 1, as desired. 

Now fix x in H2(K,  F )  and let S be a finite subset of vK contain- 
ing at least one non-Archimedean valuation and all those v for which 
eu(r) # 1 For each v in S we can find a maximal Ku-torus Tw of G 

such that H2(KU,f i )  = 1. Indeed, if v is non-Archimedean, it suffices to 
take a maximal Ku-anisotropic torus TU of G (cf. Theorem 6.21), and if v 
is Archimedean one uses Lemma 6.18. By the weak approximation prop 
erty for varieties of tori (cf. 57.1, Corollary 3) we obtain a K-torus T of 
G which over Ku is isomorphic to TU. (Note that the proof in Chapter 7 
of the existence of such a torus does not rely on any results from Chap  
ter 6.) Put T = n(T). Clearly it suffices to show that x lies in the image of 
the coboundary morphism 6: H1(K, T) -t H ~ ( K ,  F )  corresponding to the 
exact sequence 

We have the commutative diagram with exact rows 

Since x E im 6 and x t ker r are equivalent conditions, we shall verify the 
latter. We have y(r(x)) = l)(e(x)) = 1, since by assumption H 2 ( ~ , ,  T) = 
1 for those v for which ev(x) # 1. But S contains a non-Archimedean 
valuation vo and F is Kuo-anisotropic; it follows from Proposition 6.13 
that ker y is trivial; therefore r (x)  = 1. Q.E.D. 

Note that Theorem 6.20 includes some essential arithmetic results. Thus, 
for G = PSL,, the fundamental group F is the group p, of the n-th 
roots of unity. Then, by Lemma 2.6, H2(K, F )  = Br(K), is the subgroup 
of elements of Br(K) which are annihilated under multiplication by n. 

However, it is easy to see that the image of H'(K, G) d H 2 ( ~ ,  F) consists 
of the elements of Br(K), represented by simple n2-dimensional algebras. 
Therefore, the assertion on the surjectivity of 6 for local fields and number 
fields is actually equivalent to the deep assertion that over these fields the 
exponent of a simple algebra equals its index (cf. 51.4.1). 

For what follows we shall need an explicit computation of the cohomology 
of the centers of simply connected groups. Clearly the structure of the 
center as a module over the Galois group is the same for all groups of the 
same inner type; and, for simple groups we have the following table, where 
L/K denotes a Galois extension of K ,  whose Galois group acts effectively 
on the corresponding Dynkin diagram: 
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( R,/,(r2), n = 2k I 
(Here, for type 6D4, P denotes a subfield of L having degree 3 over K.) 

We are already familiar with the cohomology of pn (Lemma 2.6): 

(1) 
The cohomology of RLIK(pn) is computed starting from the exact sequence 

(1) 
N 

1 + R L K n  + R L K n  -+ p 4 1. Passing to cohomology, we 
obtain the exact sequence 

Thus the HYK, ~ 1 ; ) ~  (p,)) (i = 1.2) enter into the exact sequences 

Using (6.31) we can compute explicitly H2(Kl Z), where Z is the center 
of a simply connected group of one of the types 3 > 6 ~ 4 ,  'E6, i.e., when 

(1) 
Z = R?jK (p2), RplK(pZ), or ~ $ ~ ( p 3 ) ,  notation as in the table above. 

Note that if n is prime to the degree of L/K then K *  = K*"NLIK(L*), 
and therefore the corresponding term in (6.31) is trivial. (This is exactly 
so in the cases under consideration.) 

Now we shall show that for K a local field, B = ker(Br(L), 3 Br(K),) is 
(1) trivial. First we analyze the case of types 316D41 i.e., when Z = R,,,(p2), 

where L/K is any extension of degree 3, and show that in this case 
N Br(L)2 -t Br(K)2 is an isomorphism. The composite map 

Br(K)2 1. Br(L)z 3 Br(K)Z, 

where i is induced by extension of the base field, is multiplication by 3, 
and therefore is the identity map. Since 1 Br(K)21 = (Br(L)2J = 2, i is an 
isomorphism; hence N is also an isomorphism, as desired. 

(1) Now take the case of a group of type 'E6, i.e., Z = RLIK(p3), where 
L/K is a quadratic extension. The elements of B correspond to those 
classes of simple algebras over L of exponent 3, which have involution T of 
second kind such that the field of fixed elements LT is K .  It is well known 
(cf. Albert (1, Ch. lo]), that there are no nontrivial simple algebras with 
involution of second kind over local fields, and therefore in the given case 
again B = 1. Thus, over local fields H ~ ( K ,  Z) = 1 for the types under 
consideration. 

Now let K be a number field. We shall show that here, for any x in 
H'(K, Z), there is an extension E / K  of degree 2 for types 3,6D4 and 
of degree 3 for 2E6, such that the image of r under the restriction map 
H2(K, Z) -+ H 2 ( ~ ,  Z) is trivial. Consider an element y in B correspond- 
ing to x, and let D in Br(L) be the division algebra representing this 
element. Let S denote the finite subset of VL consisting of those w for 
which D, = D @L L, is nontrivial, and let S consist of the restrictions of 
the valuations from S to K. 

First consider the groups of type 3 > 6 ~ 4 .  Then [L : K] = 3 and therefore 
[Lw : K,] < 3 for any v in v K .  Hence it follows easily that there exists 
a quadratic extension E / K  such that [EL, : L,] = 2 for all w in S. 
Then 51.5.1 implies that EL is a splitting field for D and therefore E is 
the desired extension. 

For type ' ~ 6 ,  D is an algebra over L with involution of second type; so 
by the absence of such algebras over local fields it follows that L c Kv for 
v in S. It is easy to see that there exists a cubic extension E = ~ ( a )  
satisfying [Ew : Kv] = 3 for all v in S. Then, as above, we conclude that 
E is the desired extension. Moreover, using the Grunwald-Wang theorem 
from class field theory (cf. Artin-Tate [I]), one can show that there always 
exists a cyclic extension of K of degree 3 satisfying this property. 

Let us gather the results just obtained. 
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PROPOSITION 6.14. Let Z be the center of a simply connected simple K- 
group of type 3D4, 6 ~ 4 ,  or 2E6. Then 

(1) H2(K, Z) = 1 if K is a local field; 
(2) if K is a number field, then for any x in H2(K, 2) there is an 

extension E I K  having degree 2 for types 3'6D4 and degree 3 for type 
' ~ 6 ,  such that the image of x under the restriction map H2(K, Z) - 
H 2 ( ~ ,  Z) is trivial (moreover, for type 'E6 one can choose a cyclic 
extension E I K  of degree 3 having this property). 

Now we show how Proposition 6.14 can be applied to elucidate the struc- 
ture of groups of the types mentioned. Let Go be the corresponding simply 
connected quasisplit group, let Z = Z(Go) be its center, and let Go = Go/Z 
be the adjoint group. Then the elements of H1(K, Go) classify the simply 
connected simple groups belonging to the same inner type as Go, up to 
K-isomorphism. In particular, the group G = corresponding to < in 
H1(K, Go), is quasisplit over K if and only if F is trivial, and becomes 
quasisplit over an extension E of K if the image of < under the restriction 

K,Go) map H ( + H1 (El  Go) is trivial. H1 (K, Go) is a term in the exact 
sequence 

(K, G ~ )  + (K, Go) 5 H ~ ( K ,  z). 
Now assume K is a local field and H1(K, Go) is trivial (we deliberately 

are not using Theorem 6.4 to its fullest extent). Then the kernel of 6 
is trivial. On the other hand, H ~ ( K ,  Z) = 1 by Proposition 6.14 (1). 
Therefore H1 (K, Go) = 1, which means that any group of one of the types 
3?6D4, 2E6 is quasisplit over K .  

Now let K be a number field. Assume H1 (P, Go) is known to be trivial for 
any totally imaginary extension P I K  (again, we are not using Theorem 6.6 
fully). Then, noting that for E in Proposition 6.14 (2) we can choose a 
totally imaginary extension for types 316D4, we arrive at the following 

PROPOSITION 6.15. Let Go be a simply connected quasisplit group of type 
3D4, 6D4, or 'E6 over a non-Archimedean local field or number field K.  
Assume for K a local field that H1(K, Go) is known to be trivial, or for 
K a number field that H'(P, Go) is known to be trivial for each totally 
imaginary extension of K .  Then 

(1) for K a local field, any K-group belonging to one of the above types 
\ ,  

is q uasisplit; 
(21 for K a number field, any K-group belonging to type 3 ~ 4  or 'D4 
\ I 

becomes quasisplit over a quadratic extension of K; 
(3) for K a totally imaginary number field, any K-group of type 'E6 

becomes quasisplit over some (cyclic) extension of K of degree 3. 

Next we establish an important structural result which will play a key 
role in 59.4 in studying the normal structure of groups of rational points. 

PROPOSITION 6.16. Let GO be a simply connected split group of type B,, 
C,, E7 E8 , F 4 ,  or G2 over a non-Archimedean local field or a number field 
K. Assume for K a local field that H1(K, Go) is known to be trivial, and 
for K a number field that H1(P, Go) is trivial for any totally imaginary 
extension P of K .  Then 

any K-group of type Es, F4, or G2 is K-split if K is a local field, and 
split over every totally imaginary extension of K if K is a number 
field; 
any K-group of type B,, C,, or E7 is split over a suitable totally 
imaginary quadratic extension LIK which we may assume to be 
totally imaginary in the number field case. 

In particular, any group belonging to one of the types mentioned in the 
proposition is split over a suitable quadratic extension LIK. 

PROOF: The Dynkin diagrams of the above-mentioned groups do not have 
any nontrivial symmetries; therefore their K-forms are classified by the 
elements of H1(K, Go), where Go is the corresponding adjoint group. Since 
Go = Go for the types in (1), the desired assertion follows easily. For groups 
of the remaining types, Z(Go) = p2, so H2(K, Z) = Br(K)2; thus any x 
in H2(K, Z) becomes trivial over some quadratic extension LIK, which in 
the case of a number field we can assume is totally imaginary. Then the 
exact sequence 

H ~ ( L ,  G ~ )  -+ H'(L, Co) + H ~ ( L ,  Z) 

yields the desired assertion. 

The reader might be perplexed by the seeming inconsistency of Propo- 
sitions 6.15 and 6.16, in that throughout this section we have assumed 
Theorems 6.4 and 6.6 to hold, whereas in these two propositions, for some 
reason, we restricted ourselves to the weaker assumption that H1(K, Go) 
be trivial for a quasisplit group Go over a local or totally imaginary number 
field K. This is because Propositions 6.15 and 6.16 are actually intertwined 
in the complicated scheme of the proofs of Theorems 6.4 and 6.6, and will 
be used in precisely the situation described in their formulation. Needless 
to say, after Theorems 6.4 and 6.6 are proved, Propositions 6.15 and 6.16 
turn from conditional statements to unconditional ones. 

Now we return to our discussion of the Hasse principle for semisimple 
groups. In the preceding section we saw that it does not always hold; 
however, Theorem 6.6 claims it to hold for simply connected groups. We 
shall show that it also holds for another special case-adjoint groups. 
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THEOREM 6.22. Let G be a semisimple adjoint group over a number field 
K .  Then UI(G) = 1. 

PROOF: Clearly it suffices to consider the case when G is simple. Let 
a :  G -+ G denote the universal covering, and let Z = ker a .  We have the 
following commutative diagram with exact rows: 

LEMMA 6.19. kery4 = 1. 

PROOF: If Z = an then 7 4  is the canonical map Br(K), - nBr(KV),, v 

which is injective by the Hasse-Brauer-Noether theorem (cf. Theorem 1.12, 
51.5). Now let Z = R!;, (en) .  Then (6.31) yields the following commuta- 
tive diagram with exact rows: 

Again, kerq3 = 1 by the Hasse-Brauer-Noether theorem. It follows that 
if x E kerq2 then x = E ~ ( Y )  for some y E kerql. Therefore it remains 
to show that in our case k e r ~ l  = 1. First let L/K be a quadratic exten- 
sion. Then, for n odd K*/K*"NLIK(L*) is trivial, and there is nothing to 
prove. On the other hand, for n even, K*" C NLIK(L*), SO reduces to 

K* (L*) -+ n KG/NLla((L @K Ku)*), which is injective, since the , -,-- . 

Hasse norm principle holds for L/ K (cf. Corollary to Theorem 6.11). From 
v 

the table above, we see that it remains to consider the case n = 2 for L/K 
an extension of degree 3. But then again K*/K*"NLIK(L*) = 1, and the 
proof of Lemma 6.19 is complete. 

Now let x E ker 73, notation as in (6.32). Then a3(x) E ker y4, so 
a3(x) is trivial by Lemma 6.19. Since the top row of (6.32) is exact, it 
follows that x E im a2, i.e., x = a2(y) for y in H1 (K, G). Consider "fi(y). 
From the exactness of the bottom row of (6.32), its commutativity, and the 
stipulation that x E ker 73, it is easy to see that 7 2  (y) E im Dl, i.e., y2 (y) = 

D~(z) ,  z = (2,) E n H1(Ku, 2 ) .  Now we use the fact that H1(K, Z) 3 
n H1(Ku, Z) is surjective (cf. Proposition 7.7, Corollary 2; of course the 

U€V,K 

proof of this assertion from Chapter 7 does not depend on Theorem 6.22). 
Then we can choose a in H'(K, Z) satisfying ~ ( a )  = (Z,),,~,K. Since 
H1(KU, G) is trivial for v in VT (Theorem 6.4), by our construction it 
follows that 72(al (a)) = y2(y). But then, applying Theorem 6.6 (the Hasse - 
principle for G), we get y = a1 (a), and hence x = a2 (y) = a2(a l  (a)) = 1. 
Q.E.D. 

REMARK: Actually we have shown that the Hasse principle holds for G 
semisimple if H2(K, F )  -+ n H2(Ku, F )  is injective, where F is the funda- 

mental group of G. In particular, this is always the case for F = p2. We 
shall use this remark in the next section with respect to orthogonal and 
unitary groups. 

To avoid overloading the next section, devoted to proving the Hasse prin- 
ciple, here we shall reduce Theorem 6.6 to the matter of proving III(G) = 1 
for a simply connected semisimple group G over a number field K.  This 
reduction is given by the following 

PROPOSITION 6.17. Let G be a connected group over a number field K 
Then H1 (K, G) -+ n H1 (K,, G) is surjective. 

UEVZ 

PROOF: In Chapter 7 (cf. Corollary 2 in 57.3) we shall establish this result 
for tori, of course without using results from this section. Therefore now 
we show how the general case reduces to the case of tori. To this end, we 
begin by establishing that for any connected real algebraic group G, any 
given element [ in H1(R, G) lies in the image of H1(R, T) -+ H1($, G), 
for a suitable maximal R-torus T of G. Indeed, the cocycle t = {t,) is 
determined by fixing z = Q E Gc, where o denotes complex conjugation, 
satisfying zu(z) = 1. Consider the Jordan decomposition z = zszu. It is 
easy to see that zsu(zs) = 1 and zua(zu) = 1, i.e., the semisimple and 
unipotent parts of z also define cocycles. It is well known that the minimal 
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algebraic group U generated by z, (of course, if z, # 1) is isomorphic to 
(6,; moreover, z,o(z,) = 1 obviously implies that this group is defined over 
R. Since H1(R, U) = 1 (Lemma 2.7) and every element of U commutes 
with z,, it is easy to show that < is equivalent to 8, given by t = z,. 

Furthermore, consider the connected component H0 of the centralizer 
H = Zc(t). Both H and H0 are defined over R, since o(t) = t-'. It is well 
known (cf. Bore1 [8, Ch. 2]), that t E Ho. On the other hand, H0 contains 
a maximal R-torus T which is also maximal in G. But then t E T since t 
is central in HO, and hence 8 lies in the image of H1(R, T) -+ H1(R, G). 

Now let < = (<,) E n H1(K,, G). By what we have already shown, 
u€V,K 

for each v in V ,  one can choose a maximal K,-torus T, of G such that 
<, E im(H1(K,,T,) -+ H1(K,,G)). As noted before, we are entitled to 
use Corollary 3 of Proposition 7.3 here, as a result of which we can find a 
maximal K-torus T of G which, over each K, (v E V,), is GK~-conjugate 
to T,. It is easy to see that if 8 in H1(R, G) is defined by z in Gc, then 
for any g in Gw, gzg-l defines an equivalent cocycle. It follows that the 
images of H1 (K,, T) -+ H1 (K,, G) and H1 (K,, T,) - H1 (K,, G) are the 
same for any v in V,. But then < lies in the image of the composite 
map H1 (K, T) n H1 (K,, T) -+ n H'(K, , G), since we assume 

u€V,K v€VZ 
that the surjectivity of a: has already been established. This proves the 
proposition. 

In ss6.7-6.8 we shall present the proofs of Theorems 6.4 and 6.6. The 
arguments in these sections involve several stages and use diverse tools, 
ranging from the arithmetic properties of sesquilinear forms to quite subtle 
results from algebraic group theory and algebraic number theory. s6.6 is 
devoted specifically to the properties of forms, but here we present some 
cohomological corollaries of Steinberg's theorem which we shall need later 
on. 

THEOREM 6.23 (STEINBERG [I]). Let Go be a simply connected semisim- 
ple group defined and quasisplit over a (perfect) field K.  Then any K- 
defined conjugacy class of semisimple elements of Go contains a K-rational 
point. 

We shall not actually use Steinberg's theorem, but rather its cohomolog- 
ical corollaries. 

PROPOSITION 6.18. Let Go be a semisimple quasisplit K-group (not nec- 
essarily simply connected), let < E Z1(K, Go) and let G = be the 

corresponding twisted group. Then for any maximal K-torus T of G there 
is a cocycle p in Z1(K, T)  such that Go = &. 

PROOF: The assertion is trivial for K finite, by Lang's theorem, so we shall 
assume henceforth that K is infinite. Let no: Go -+ Go be the universal K- 
covering. Twisting by means of t, we obtain a universal K-covering n: G -+ 

G. We shall interpret GR as with twisted action of Gal(R/K): 
u*(x) = 8,,u(x)~;~ for any o in G a l ( K 1 ~ )  and x in = GR7 where 
t = {a,) and 8, is any inverse image of a,. Put i. = a - l ( ~ ) ,  and fix an 
arbitrary regular element x in PK. Then o*(x) = x for all o in Gal(K/K), 
i.e., u(x) = ii;'x8,. It follows that the conjugacy class 

is defined over K .  Therefore, by Steinberg's theorem CK # 0, i.e., there 
is y in ( ~ 0 ) ~  such that o(yxy-') = yxy-'. Then we have yxy-' = 
o(y)~;'xii,o(y)-', whence we obtain y-'o(y)ii;l E TK, since x is regu- 
lar; hence z-'o(z)a;' E TKl where z = no(y). Clearly Go can be obtained 
from G by twisting by {a;') in Z1(K, G). Let us take the equivalent c e  
cycle, p = {b,), where b, = z-'a;'o*(z), and show that b, E TK for all o 
in Gal(K/K). Indeed, 

and the proposition is proved. 

Sometimes the following (essentially equivalent) restatement of Proposi- 
tion 6.18 is helpful: 

PROPOSITION 6.19. Let Go, t and G be as in Proposition 6.18. Then any 
maximal K-torus T of G admits a K-embedding in Go such that t lies in 
the image of H1 (K, T) -+ H1 (K, GO). 

PROOF: Notation remains as in Proposition 6.18. We have established 
the existence of y in ( ~ 0 ) ~  such that yxy-' = o(y)ii;lxiiuo(y)-l. Then 
for z = no(y) we have a; = za,o(z)-I E T' = ZG, (yxy-I). Since TI, 
being the centralizer of the regular semisimple element yoy-' in (GO)K, 
is a maximal K-torus of Go, and t' = {a:) is equivalent to the original 
cocycle, it remains to show that the isomorphism T 2 T' given by p: t c 
rtz-' is defined over K .  To do so it suffices to establish that p commutes 
with any o in G ~ ~ ( K / K )  which acts as u on T' and as o* on T. Since 
a: = za,u(z)-l E TI, we have: 

1 -1 cp(o* (t)) = za,o(t)a, z 

= zauo(z)~lu(ztz~l)o(z)a;lz~l = o(ztz-l) = o ( ~ ( t ) ) ,  

for any t in TK, as desired. 
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The following curious observation stems from Propositions 6.18 and 6.19: 
If G is a semisimple K-group, and Go a quasisplit K-group of the same 
inner type, then any maximal K-torus T of G is K-embeddible in Go. (In 
other words, any quasisplit group is a universal repository for all the K-tori 
that occur in all K-groups of the given inner type.) Indeed, let Q: G - G 
be an isogeny onto the corresponding adjoint group. Since G is obtained 
from Go by twisting with < in H1 (K, Go), Proposition 6.18 yields a cocycle 
p in H1(K, Q(T)) such that Go = &'. But the components of p act on T 
trivially, and therefore T = J is a maximal K-torus of Go = &'. 

The following application of this statement will be needed below. Let L 
be either a quadratic extension of K or the algebra K @ K .  Let * denote 
an involution of L, which in the first instance is a nontrivial automorphism 
of LIK and in the second switches the components. Furthermore, consider 
the algebra A = Mn(L) and let r denote the involution of A given by 

n odd, El = ( i . . . i ) denoting the unit matrix of the appropriate 

\ o  . . .  11 
dimension; 1 is understood as (1 , l )  when L = K @ K.  Then the cor- 
responding special unitary group Go = SU(A, I) is a quasisplit group of 
type 2An-1 in the first case ([L : K] = 2) and is isomorphic to SL, if 
L = K @ K (cf. 52.3). We shall show that any commutative semisimple 
algebra B over L of degree n, equipped with involution o whose restriction 
to L is *, can be embedded in (A, I) as an algebra with involution. Indeed, 
using the regular representation, we embed B in A as an algebra without 
involution. Furthermore, let o also denote the extension of the involution 
to all A (cf. Albert (1, Ch. 101). Let G = SU(A,o) be the correspond- 
ing unitary group. Then T = ( B  @K K) n G is a maximal K-torus of G. 
From the above it follows that Go = J2 for a suitable p in Z1 (K, 6 )  acting 
trivially on T.  Clearly the elements of G = Int G act as automorphisms 
of (A,o) and (A,r)  = dA,o).  In this regard, p act,s trivially on B, SO 

(B, 0)  = p(B, a )  - (A, 7). 
Proposition 6.19 will be used in combination with some results on coho- 

mological dimension. We shall mention only the basic results relating to 
this subject and refer the reader to Serre (11 for the proofs and relevant de- 
tails. Let p be a prime. The cohomological dimension of a profinite group 

G with respect to p is said not to exceed 1 (cdp(P) < 1) if H2(G, A) is p 
torsion free, for any finite P-module A. Moreover, cd(G) 5 1 if cdp(G) 5 1 
for each p. Analogously, for K perfect, cdp(K) < 1 if cdp(G) 5 1, for the 
absolute Galois group G = G ~ ~ ( K / K )  and cd(K) 5 1 if cdp(K) < 1 for any 
p. For char K # p (here generally char K = O), the condition cdp(K) < 1 
can be restated purely in terms of fields: it is equivalent to the triviality of 
the pcomponent Br(L), of the Brauer group of any finite extension L/K. 
This provides important examples of fields satisfying cdp(K) < 1. 

PROPOSITION 6.20. Let K be either a local field or a number field, and 
let II be a set of primes. Let Kn denote the field obtained by adjoining to 
K all the roots of unity whose degrees are divisible only by elements of II. 
Then cdp(Kn) < 1 for any p in II. 

The proof follows from the fact that any division algebra of index n over 
a finite extension L of K has a splitting field of the form L(&.), where C, 
is the m-th root of unity (cf. proof of Proposition 9 on p. 11-11 of Serre [l]). 

LEMMA 6.20. Let cdp(K) < 1. Then H1 (K, T) is p-torsion free, for any 
K-torus T. In particular, if cd(K) < 1, then H1(K, T)  = 0. 

PROOF: First we show that H2(K, S)  is ptorsion free, for an arbitrary 
K-torus S. To do so, consider the exact sequence 

where [p] denotes raising to the p t h  power and Sp = kerb]. Th' is sequence 
has a corresponding exact cohomological sequence 

whence it follows that H 2 ( ~ ,  Sp) covers all the elements of order p in 
H2(K,s ) .  But H2(K,Sp) = 1, since H2(K,Sp) is annihilated by mul- 
tiplication by p and at the same time is ptonion free by the condition 
cdp(K) 5 1; hence H2(K, S), = 1. 

, c 
Now we put the original torus T in the exact sequence 

where S and F are K-tori, and F is quasisplit (cf. Proposition 2.2). Then 
H1 (K, T), = 1 follows from the previous remark and the exact sequence 

~ = H ' ( K , F )  - H ~ ( K , T )  +H~(K,s) .  

Thus the lemma is proved. 
The results set forth above enable us to extend Lang's theorem on the 

triviality of the cohomology of connected groups over finite fields (which, 
obviously, satisfy cd,(K) 5 1) to fields of cohomological dimension 5 1. 
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THEOREM 6.24 (STEINBERG [I]). If cd(K) 5 1, then H1(K,G) = 1 for 

any connected algebraic K-group G. 

PROOF: Indeed, we may confine ourselves to the case where G is reductive. 
Let H = [G, GI be its semisimple part. Then T = G / H  is a torus, and using 
Lemma 6.20 and the exact sequence H1 (K, H) -+ H1 (K, G) + H1(K, T), 
we conclude that the triviality of H1(K1 G) follows from the triviality of 
H1(K, H) .  

Thus the proof of Theorem 6.24 is reduced to the semisimple case. Let Go 
denote a quasisplit K-group of the same inner type as G. Proposition 6.19 
and Lemma 6.20 imply the triviality of H1 (K, B) for any semisimple group 
B quasisplit over K .  Applying this assertion to the corresponding adjoint 
group Go, we see that there exists only one K-form of a given inner type, 
i.e.. G = Go is quasisplit. But then, as we have observed, H1(K, G) = 1. 
Q.E.D. 

6.6. Galois cohomology and quadratic, Hermitian, and other 
forms. 

In this section we shall set forth results, to be used later on, relating to 
some arithmetic properties of sesquilinear forms, and shall give an interpre- 
tation of these results in terms of Galois cohomology. We shall also show 
how the Hasse principle can be used to give a local-global classification of 
forms. The basic results of this section include the proof of Theorem 6.5 
and the analogous result for a totally imaginary number field. 

We begin by analyzing the most well-known and intuitive case, that 
of quadratic forms. Let f be a nondegenerate quadratic K-form on an n- 
dimensional vector space W. Then f represents 0 over K ,  i.e., f (x) = 0 has 
a nonzero solution x in WK, if and only if it represents 0 over all completions 
K,, where v E VK (the Minkowski-Hasse theorem, cf. 32.2.3). Moreover, if 
n > 5 then f automatically represents 0 over all non-Archimedean comple- 
tions K,, where v E V: (Meyer's theorem). Thus, in particular, we have 
the following 

CLAIM 6.1. Let f be a nondegenerate n-dimensional quadratic form over 
a local field or number field K,  where n > 5. Then f represents 0 if: 

(1) K is a local field, or 
(2) K is a number field and f represents 0 over K, for all v E V , .  

Sometimes the following equivalent restatement is useful: 

CLAIM 6.1'. Let f be as in Claim 6.1, let n 2 4 and let a E K*. Then f 
represents a over K, i.e., f (x) = a 7 r  has a solution x in WK, if and only iff  
represents a over K, for all v E V,K 

For future reference, we also formulate the respective claims for the case 
of Hermitian forms over a quadratic extension LIK or over a quaternion 
skew field DIK,  which immediately reduce to the case of quadratic forms. 
Namely, let W be an n-dimensional vector space over L (respectively, D), 
and let f be a nondegenerate u-Hermitian form on W, where a is the non- 
trivial automorphism of L I K  (respectively, the canonical involution of D). 
We shall say that f represents 0 over K if f (x) = 0 has a nonzero solution 
in W, and over K, if a solution exists in W @K K,. The representability of 
a Hermitian element a E L*, D* by a form f is defined analogously. (Note 
that in our case the set of Hermitian elements is K*.) Then we have 

CLAIM 6.2. The situation being as above, assume in addition that n 2 3 
for a quadratic extension L/K and n 2 2 for a quaternion skew field D. 
Then f represents 0 if: 

(1) K is a local field, or 
(2) K is a number field and f represents 0 over K, for all v E V: 

Indeed, there is an orthogonal base of W with respect to which f has 
the form 

f (XI,. - . 1 xn) = a i N r / ~ ( x l )  + . . + ~ ~ N L / K ( x ~ )  

or 

f (XI,. . . xn) = a1 NrdD/K(xl) + ' ' ' + an NrdD/K(xn), 

where ai E K ,  i.e., the values off are those of a quadratic form of dimension 
2n (resp. 4n); therefore everything follows from Claim 6.1. Note also that 
there is an obvious analog for Claim 6.1' on the representability by f of an 
element a in K*, in which the lower bounds on n in 6.1' are reduced by 1. 

It remains to consider the case of a skew-Hermitian form f defined on an 
n-dimensional vector space W over a quaternion skew field D. As before, 
we shall say that a skew-Hermitian element a in D* is represented by f 
over K (resp., over K,), if f(x) = a has a solution x in W (resp., in 
W @K K,). Note that the concept of representability of 0 for forms of this 
type has some delicate points: if D OK K, rr M2(K,), then one should 
require that there exist not merely a nonzero solution of f (x) = 0, but in 
fact a solution x in W @K K, which can be included in a base of W IK K, 
as a module over D @K K,; this condition is equivalent to the quadratic 
form .f, corresponding to f ,  having rank 2 2 over K,. We shall not go into 
detail here, but refer the reader to Scharlau [l, Ch. 101. 

CLAIM 6.3. Let f be a nondegenerate skew-Hermitian form of dimension 
n > 3 over a quaternion skew field D with center K. Then f represents a 
skew-Hermitian element a in D* if: 
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(1) K is a local field, or 
(2) K is a number field and f represents a over all completions Ku, 

where v E v:. 

For the usual proof of this assertion, see Scharlau [l, Ch. 101). We shall 
show that it actually follows from Theorems 6.4 and 6.6 for groups of type 
A1 x Al and type A3. Since, in the next section, these theorems will be 
proved for groups of type A, without using Claim 6.3, this gives a complete 
proof of the assertion, independent of other sources. 

First we consider the case of a local field K ,  where, without loss of 
generality, we may assume that n = 3. We begin by constructing a 3- 
dimensional skew-Hermitian form g over D, which a fortiori represents 
a and has the same discriminant as f .  We shall look for a matrix of 
g having the form diag(a, b, c). Claim 6.1 (cf. also 51.4.3) implies that 
NrdDIK(D*) = K*; in particular, one can find an element d in D* such 
that NrdDIK(d) = d(f) NrdDIK(a), where d(f) is the discriminant of f .  
Also, let us consider the space P = { x  E D : ~ ( x )  = -x)  of "pure" 
quaternions. It is easy to see that dimK P = 3, from which it follows that 
dP n P # (0). Then there are b, c E P satisfying db-l = c, which will be 
the desired elements. 

By Proposition 2.16, f can be obtained from g by twisting using < in 
H1(K,G), where G = SU3(g). Let H denote the stabilizer in G of the 
vector t = (1,0,O) E D3, on which g is defined. Then it follows from Witt's 
theorem (cf. 52.4.5) that the quotient space G/H can be identified with 
the sphere S, = { x  E D3 BK K : g(x) = a) .  By definition, it also follows 
easily that the twisted space dG/H) under the action of G on G/H by left 
translation is Sf = { x  E W @K K : f (x) = a ) .  Therefore, as follows from 
Lemma 1.6, (Sf)K # 0 if and only if < lies in the image of E :  H1(K, H)  4 

H1(K, G), and it suffices to show that in our case E is surjective. To 
do so, note that G and H are semisimple groups of type D3 = A3 and 
D2 = Al x A1 respectively (cf. 52.3), and their universal coverings G and 
H are compatible in the sense that we have the commutative diagram 

where F = {f 1). Diagram (6.33) yields the commutative cohomological 

diagram 

Since we assume Theorem 6.4 to be proved for groups of type D3 and 
D2, if we also take Theorem 6.20 into account we see that bG and bH are 
bijections. Therefore E is also bijective, as desired. 

The argument for K a number field is analogous, but differs in several 
details related to the presence of real valuations. (For totally imaginary 
number fields the above argument requires no modification.) First we re- 
duce to the case n = 3. By our assumptions, for each v in V: we can find xu 
in W @K Ku such that f (xu) = a. The weak approximation theorem for K 
implies that the weak approximation property also holds for W, so by a con- 
tinuity argument there exists x in W such that f (x) € { yaa(y) : y E D: ) 
for all v in V z .  Let W' denote a 3-dimensional subspace of W containing 
x, for which the restriction f' of f to W' is nonsingular. Then clearly the 
existence of a solution of f1(x) = a implies the existence of a solution of 
f (x) = a. 

Thus, henceforth we may assume dim f = 3. Furthermore, in construct- 
ing g representing a and having the same discriminant as f ,  it should be 
noted that on the one hand NrdDIK(D*) = K* fl (nu,, N ~ ~ D , / K ,  (D:)) 
(which follows from Claim 6.1 or Theorem 1. IS), but on the other hand 
d(f)/NrdDIK(a) E NrdDUIK,(D:) for v in v:. Finding d in D* such 
that NrdDIK(d) = d( f ) /  NrdDIK(a) and arguing as above, we can obtain 
a matrix realization of the desired g as diag(a, b, c). 

Again let < in H1(K, G) (where G = SU3(g)) be a cocycle which, by 
twisting, transforms g into f .  It follows from the argument for the local 
case that our task can be restated in terms of Galois cohomology as follows: 
let < E H'(K, G). Whereas, by what we have seen, the image tU of < 
in H1(KU, G) lies in im(H1(Ku, H )  3 H1(Ku, G)), for every v in V z ;  
we must show that < E im(H1(K, H) 5 H1(K, G)). To do so, again 
consider the commutative cohomological diagram with exact rows, obtained 
from (6.33), 
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Since bH is surjective (Theorem 6.20), one can find a cocycle q in H1(K, H )  
such that SH(q) = &([) Twisting (6.34) by means of q, we reduce the 
proof to the case where SG(<) = 1, which we shall assume below without 
change of notation (i.e., without replacing H by $, etc.). Then 5 = $0) 
for suitable 0 in H1 (K, G) . Furthermore, in this set-up, for each v in VE 
one can find a cocycle pv in H1 (K,, H )  such that 5, = E,(P,). Writing a 
diagram analogous to (6.34) but for K,, and using the condition &(5) = 1, 
we obtain that p, = a,(w,), where w, t H1(Kv, H). 

Since ~ ( 0 , )  = ~v(Pv(wv)),  we can write P,(w,) = fwdv for suitable fv in 
H1(Kv, F).  Using the surjectivity of 

we can find f in H1(K, F )  which is mapped onto (fv)VEV,K. Modifying 0 
by f ,  without loss of generality we may assume that P,(wv) = 8, for all v 
in VE. 

Now consider the commutative diagram 

Applying Theorem 6.6 to G and H, which pertain to types A3 and Al x A1, 
respectively, we obtain that and efi are bijections. In particular, one 
can find a (unique) element w in H1(K, H) such that Q ~ ( w )  = 
Then e&(w)) = e6(0), and therefore O(w) = 0. Returning to (6.34), we 
have 5 = y(0) = y(P(w)) = ~ ( a ( w ) ) ,  i.e., 5 t i m ~ .  This completes the 
proof of Claim 6.3. 

The argument used to prove Claim 6.3 can be reversed. More precisely, 
if we start from the properties of sesquilinear forms, we can derive proofs of 
Theorems 6.4 and 6.6 for the simply connected algebraic groups associated 
with them. The proof of these theorems for the classical groups, other than 
An, which we shall present in the next section, is based precisely on this 
approach. Groups of type A, will be considered separately. In particular, 
in proving Theorems 6.4 and 6.6 for groups of type D,, we are entitled to 
use Claim 6.3, since its proof relies on the validity of these theorems only 
for groups of type A3 and A1 x A1. 

Now we shall discuss one other aspect of the relationship between the 
arithmetic of sesquilinear forms and Galois cohomology of algebraic groups 
over local and number fields-the problem of the equivalence of forms of 
the same type. This problem can be subdivided naturally into two: 

(1) classifying forms over local fields (including JR and C); 
(2) justifying the transition from the local to the global, i.e., deducing 

the equivalence of two K-forms f and g over K from their equiva- 
lence over all completions K, . 

When (2) holds we say that forms of the given type satisfy the weak Hasse 
principle, as opposed to the strong Hasse principle which consists of a 
local-global treatment of the question of the representability of 0 (or of 
another element). Note that, in general, the strong Hasse principle does 
not have a direct, unified cohomological interpretation, as is attested, in 
particular, by the ad hoc cohomological proof of Claim 6.3. From the 
point of view of algebraic group theory, the problem is one of analyzing 
the Hasse principle for homogeneous spaces of algebraic groups by using 
cohomological methods. Unfortunately, although this is a problem of long 
standing, it has not yet been fully solved. We note only that the Hasse 
principle for one class of homogeneous spaces (known as symmetric spaces) 
has been studied by Rapinchuk [5]. 

Unlike the strong Hasse principle, the weak principle has a precise and 
explicit interpretation: Since K-forms of the same type as f are classified 
by elements of H1(K,G), where G is the corresponding orthogonal (uni- 
tary) group (Proposition 2.16), the validity of the local-global principle in 
this situation is equivalent to the injectivity of H1 (K, G) + n H1 (K,, G). 

w 
To illustrate concrete computations (and results) we analyze the case of 
quadratic forms and of skew-Hermitian forms over quaternion algebras. 

Let f be a nondegenerate n-dimensional quadratic form over a num- 
ber field K. Then the set of K-equivalence classes of nondegenerate n- 
dimensional quadratic forms over K is in one-to-one correspondence with 
H1 (K, On (f )), where On (f) is the corresponding orthogonal group. Since 
On(f)  is not connected, the results which we have obtained are not imme- 
diately applicable. To pass to the connected group SOn(f) ,  consider the 
exact sequence 

where det denotes the determinant and p2 = {f 1). The above sequence 
gives rise to the corresponding exact cohomological sequence 
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Clearly det: On(f)  -+ p2 is surjective, from which we can infer that ker cp 
is trivial. Since this is true for all quadratic forms, we see by standard 
twisting arguments that cp is injective. 

Furthermore, identifying H1(K, p2) with K*/K*', the reader can easily 
obtain the following description of $: if c E H1(K, On(f))  and [g] is the 
corresponding equivalence class of nondegenerate n-dimensional quadratic 
forms, then $([) is the image in K*/K*' of d(g)/d(f), where d denotes 
the discriminant. Thus, a typical fiber of $ consists of the classes of forms 
having a given fixed discriminant. In particular, again we obtain that 
H1(K, SOn(f) )  classifies the equivalence classes of n-dimensional nonde- 
generate forms having the same discriminant as  f .  

Clearly if f and g are equivalent over all K,, then d = d(g)/d(f) every- 
where locally is a square, and therefore also is a square in K .  Thus, locally 
equivalent forms have the same discriminant. A cohomological interpreta- 
tion of this fact is given in the following diagram: 

Then 0 is injective; so @(El) = @(En) implies $(el) = $(&), as desired. 
This argument shows that to establish the weak Hasse principle it suffices 
to analyze the injectivity of p: H'(K, G) -+ n H'(K,, G), where G = 

SOn( f ) .  For n = 2, G is a 1-dimensional torus; moreover G 2. (6, if f is 
(1) 

isotropic over K (i.e., -d(f) t K*'), and G E RLjK(G,) iff is anisotropic 

over K (i.e., -d(f) f K*'), where L = ~ ( d m ) .  Therefore, the Hasse 
norm principle implies that ,u is injective. 

Now let n 2 3. Then G is semisimple, and its fundamental group F 
is isomorphic to p2. Therefore the remark following the proof of Theo- 
rem 6.22 implies that p is also injective. Thus, the Hasse principle holds 
for the quadratic forms; to complete their classification, it remains to solve 
the analogous local problem. We shall consider forms having the same dis- 
criminant d over K,, whose equivalence classes correspond to the elements 
of H1(K,, G). 

First assume n = 2. If -d E K:', then G = G, and H1(K,, . G) . = I ,  

i.e., in this case all the forms are equivalent to, let us say, f (x, y) = XY. 
Now suppose -d $! K:'. Then G = R ~ ; ~ ( G ~ )  where L = K(-); SO 

H1 (K,, G) = K,*/NLIK, (L*) has order 2. The representatives of the two 

equivalence classes are the forms fl = x2 + dy2, f2 = ax2 + y2, where 
a E K,* and the Hilbert symbol (a, -d), = -1. Thus, here a complete 
system of invariants of the quadratic form f consists of its discriminant 
d(f) and the Hasse-Witt invariant ~ , ( f ) ,  which by definition equals the 
Hilbert symbol (a, b), i f f  = ax2 + by2. (Note that e(f1) = (1, d), = 1, and 

d 4f2) = (a, ,)v = (a, -4, = -1.) 
Now assume n 2 3, and take v E VfK. Then Theorem 6.20 implies 

that there is a one-to-one correspondence H1(K,, G) 3 H2(K,, p2). If 
one identifies H2(K,,p2) = Br(K,)2 with {f 1), then one can show that 
6, is given by 6, ([g]) = E, (g) /E ,  (f) , where E, (f) and E, (g) are the Hasse- 
Witt invariants of f and g, respectively. (Recall that by definition ~ , ( h )  = n (ai, aj),, for h = alx: + . . . + anx:.) The proof of this formula can be 
i<j  
found in Springer [I]). It turns out that also for n 2 3 the equivalence class 
of a quadratic form f is completely determined by d( f )  and E,( f ). On the 
other hand, given any values of d in K,*/K,*' and E = f 1 which satisfy the 
sole condition E = 1, if n = 2 and -d E K,*', there exists an n-dimensional 
quadratic form f over K, with these invariants. 

It remains to interpret the elements of H1 (R, G). For the sake of simplic- 
ity, we shall confine ourselves to forms having positive discriminant, and 
then we may assume that f = x: + . . . + x:. In this case the description of 
H1(R, G) can be deduced easily from Theorem 6.17. Namely, assume for 
convenience that n = 21 is even, and for a maximal R-torus T of G take T = 

SOz(g1) X .  . . x SOn(gl), where gi = +xii. Then the set T2 of elements 
of order 2 in T can be identified with D = {diag(el,. . . , q )  : ~i = f 1 ). 
Moreover, the orbits of the action of the Weyl group W = W(T, G) on T2 
are the orbits of the natural action of the symmetric group Sl on D. Thus, 
the equivalence classes in D/Sl are determined by the numbers r and s of 
those ~i which equal -1 and +1 respectively (clearly r+s  = I ) .  On the other 
hand, it is easy to see that the form corresponding to the class with repre- 
sentative diag(cl,.. . , Q), where = . . . = E, = -1, &,+I = . . . = ~1 = 1 is 
f --+...- r -  xi,. + x & + ~  + . . . + x:, which brings us to the well-known 
classification of real forms by means of signatures. 

(EXERCISE: Using Theorem 6.18, derive the analogous interpretation for 
the elements of H1(R, SOn(f))  when the discriminant of f is -1.) 

To summarize our discussion, we may say that the equivalence class of 
an n-dimensional quadratic form over a number field K is characterized by 

(1) the discriminant d( f ); 
(2) the Hasse-Witt invariants ~ , ( f )  for v in VfK; 
(3) the signatures (r, , s,) for real v in V z .  
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Note that not all these invariants are independent; in particular, it follows 
from Theorem 1.12 that cV(f)  = 1 for almost all v in vfK and n ~ , ( f )  = 1 

1, 

(the product taken over all v, including the Archimedean ones), but for any 
set of invariants obeying these and several other straightforward conditions 
one can find a quadratic form with the prescribed invariants. O'Meara [I] 
and Scharlau [l] give a detailed exposition of this theory, and Serre [8, 
Ch. 41 provides a brilliant introduction to  the subject. 

Now we move on to an analysis of skew-Hermitian forms over a quater- 
nion skew field D. Let f be an n-dimensional nondegenerate skew- 
Hermitian form, and let G = S u n (  f )  be the corresponding special unitary 
group. Then, for n = 1, G is the one-dimensional torus of the form 
R") (G,), where L is a maximal subfield of D; and, for n 2 2, G is a 

L'.K 
semisimple group whose fundamental group is isomorphic to p2. In both 
cases the Hasse principle holds for G. It follows that in this case the weak 
Hasse principle holds for proper equivalence: two skew-Hermitian forms f 
and g are properly equivalent (i.e., transform to one another by a matrix 
from SLn(D)) if and only if they are properly equivalent for all comple- 
tions Kv. However, we are interested in the usual equivalence of forms, and 
therefore must pass from the cohomology of SUn(f)  to the cohomology 
of the full unitary group Un(f) .  We shall need the following well-known 
assertion (cf. Kneser [12]). 

Nrd 
Consider the exact sequence 1 -+ SUn(f)  -+ U,( f )  -+ p2 -+ 1 and its 

corresponding cohomological sequence 

It follows from Lemma 6.21 that €(p2) = ker cp consists of two elements; 
in particular, cp is never injective. Nevertheless, using (6.36) we can ob- 
tain a complete classification of skew-Hermitian forms over a local field 
K .  Namely, since for n 2 2, G is a semisimple group with fundamental 

(1) group p2, and for n = 1, is the one-dimensional torus RLIK(Gm), where 
L/K is a quadratic extension, we see that H1(K, SUn(f)) consists of two 
elements and therefore is precisely ker cp. Hence, applying twisting, we ob- 
tain that $ is injective. Thus, over a local field the equivalence class of a 
skew-Hermitian form is uniquely determined by its discriminant; moreover, 
if n 2 2, the discriminant can take on any value and, if n = 1, a value not 
belonging to - K*' . 

Now we show that the weak Hasse principle for equivalence of skew- 
Hermitian forms does not hold in general; moreover, from a cohomological 

point of view, this is due to the fact that H' (K, S u n (  f ) )  -+ H1 (K, Un(  f ) )  
is not injective. Consider the commutative diagram with exact rows 

where S = { v E vK : Dv = D @K Kv is a skew field ). It follows from this 
diagram that a 2 ( x 1  (im PI)) c ker 73; moreover, clearly 

LEMMA 6.22. /^l ; l ( im~l)l  2 2'-', where t = / S n  vFJ. 
PROOF: Consider the commutative diagram induced by the universal cov- 
ering G-+ G of G =  SUn(f):  

Since E in (6.36), taken for Kv where v E S n v ~ K ,  is a bijection we see 
that it suffices to establish the equality 

But for v in VfK the restriction of 0 to H1(KV,G) is bijective onto 
H2(KV,p2);  therefore, in view of the surjectivity of 6 (Theorem 6.20) 
and Theorem 6.6, with a standard twisting argument we can reduce the 
problem to proving 

(We leave it to the reader to work out the details.) But in view of the iden- 
tifications H2(K, ~ 2 )  = Br(K)2 and H~(K,, ,u2) = Br(K,)2, this equality 
follows from Theorem 1.12. The lemma is proved. 
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Thus, ( ker 731 > 2t-2 and therefore 73 is not injective in general. A 
somewhat more precise computation (cf. Kneser [12], Bartels [2]) shows 
that I kery3( = 2s-2, where s = 15'1. Notwithstanding the violation of 
the weak Hasse principle, a local-global classification of skew-Hermitian 
forms is possible (cf. Bartels [2], Scharlau [I]). The reader who wishes 
to pursue the subject is referred to Bartels [I], [2] for a detailed exposi- 
tion of the cohomological approach to the classification of skew-Hermitian 
forms. 

Using results from the arithmetic of sesquilinear forms, we obtain a proof 
of Theorem 6.5, that any simple simply connected anisotropic group over 
a local field is of type SL1 (D), and the following analog for a totally imag- 
inary field. 

THEOREM 6.25. Let G be a simple anisotropic group over a totally imag- 
inary number field K.  Then G is of type A,. 

(The difference between Theorems 6.5 and 6.25 is that over local fields 
only inner forms of type A, can be anisotropic, whereas, over totally imag- 
inary number fields, outer forms also can be anisotropic.) 

The fact that the groups of type B, (n > 2), C, (n > 2), and 'y2Dn 
(n > 4) are isotropic follows from the description of these groups as con- 
nected components of the groups of automorphisms of quadratic, Hermi- 
tian, or skew-Hermitian forms (cf. 52.3) and from the fact that a group 
is isotropic if and only if the corresponding form is isotropic (cf. Propo- 
sition 2.15 and Claims 6.1-6.3). Note, also, that over local fields there 
are no noncommutative skew fields with involution of the second kind, 
so the outer forms of type 2An (n > 2) correspond to Hermitian forms 
of degree > 3 over a quadratic extension LIK, which are isotropic by 
Claim 6.2. 

For exceptional groups the proofs of Theorems 6.5 and 6.25 use Propo- 
sitions 6.15 and 6.16, and thus in the final analysis depend on Theo- 
rems 6.4 and 6.6. However, Theorems 6.5 and 6.25 will be used in prov- 
ing Theorems 6.4 and 6.6. Therefore, to avoid circular reasoning, we 
shall prove the following conditional statement, which automatically com- 
pletes the proof of Theorems 6.5 and 6.25 after Theorems 6.4 and 6.6 are 
proved. 

THEOREM 6.26. Let G be a simply connected simple group belonging to 
one of the exceptional types and defined over a local or a totally imaginary 
number field K,  and let Go be a quasisplit group of the same inner type. 
If H1(K, Go) = 1, then G is K-isotropic. 

K , G o ) = l  PROOF: If G belongs to one of the types E8, F4, G2, then H ( 
implies that G is K-split (Proposition 6.16 (I)),  and there is nothing to 

prove. 

Consider the remaining types 316~4, 122E6, E7. If K is a local field then 
groups of types 316D4 and 2E6 are quasisplit over K (Proposition 6.15); 
therefore it remains to consider only types and E7. Over a totally 
imaginary number field all these types must be considered. 

GROUPS OF TYPE E7: This is the easiest case to analyze. Proposition 6.16 
implies that G is split over some quadratic extension LIK. Furthermore, 
one can apply 

LEMMA 6.23. Let G be a connected K-group splitting over a quadratic 
extension LIK. Then G has a maximal K-torus T which is split over L. 

Indeed, G has a Borel subgroup defined over L, and hence by Lemma 6.17 
there exists a Borel L-subgroup B of G such that T = B n o(B) is 
a maximal K-torus of G, where o is the generator of Gal(L/K). It 
remains to note that since G is split over L, any L-torus of B is L- 
split. 

Now suppose G is K-anisotropic, and consider the root system R = 
R(T, G), where T is the torus from Lemma 6.23. Since T is K-anisotropic, 
we have X(T)O* = {0}, where o* denotes the action of o on the group 
of characters. Since ( ~ 7 * ) ~  = id, it follows that o * ~  = -X for any 
x in X(T). In particular, o*a = -a for any a in R, and therefore 
the root subgroup G, generated by the one-dimensional unipotent sub- 
groups U, and U-, (cf. 52.1.10) is defined over K .  Hence, for any subset 
C of the system of simple roots II c R, the group Gc generated by 
G,, for all a in C, is defined over K. (This argument works for any 
anisotropic group split by a quadratic extension and will be used repeat- 
edly.) 

Take C to be a subset consisting of two adjacent roots in the Dynkin dia- 
gram. Then H = GE is a K-subgroup of G of type A2, split by a quadratic 
extension LIK. Therefore, from the description of groups of this type 
(cf. 82.3) it follows that H must be a group isogenous to SU3(f), where f 
is a Hermitian form over LIK. But Claim 6.2 implies that over local fields 
or totally imaginary number fields such a form is isotropic. Therefore H,  
and certainly G, are isotropic. 

GROUPS OF TYPE 316D4: By Proposition 6.15 (2), any group G of one of 
these types contains a Borel subgroup B defined over a quadratic extension 
LIK. Suppose G is K-anisotropic and o generates Gal(L/K). Then T = 
B n a(B) is a maximal K-torus of G contained in B. Consider the root 



354 Chapter 6. Galois cohomology 
6.6. Galois cohomology, quadratic and Hermitian forms 355 

system R = R(T, G), and label the simple roots as follows: 
(6.37) 

a3 

The explicit description of roots (cf. Bourbaki (4, Table 41) implies that 
p = a1 + a 2  + a3 + a 4  is a root. Moreover, a = a 2  and p are invariant 
with respect to all the symmetries of (6.37), and therefore are defined 
over L. Then, as above, since G is K-anisotropic we obtain o*a = -a 
and a*P = -p; SO H ,  generated by G, and Gp, is defined over K .  The 
description of the roots implies that H is a group of type A2, split over 
LIK. Therefore, the argument can be concluded as in the previous case. 

GROUPS OF TYPE lE6: We know that Z(G) = p3, therefore, arguing as 
in the proof of Proposition 6.16, we obtain that G is split by some cyclic 
extension LIK of degree 3. Let a be a generator of Gal(L/K). To apply 
the above method here, one would consider B n a(B) n a2(B), where B 
is a Borel L-subgroup of G; however this trick does not work, since this 
intersection might be trivial. Therefore, instead one should use a modifica- 
tion of this trick which essentially amounts to taking parabolic subgroups 
rather than Borel subgroups. Namely, consider a root system R = R(T, G) 
with respect to a maximal L-split torus T of G, and label the simple roots 
in the following manner: 
(6.38) 

012 

Notation as in 82.1.12, put P = Pa, where A = { a 2 , a 3 , a 4 , a 5 , a s  ). 
Then P is a maximal parabolic L-subgroup of G having codimension 16 
(dimG = 78, dim P = 62); the central torus of the reductive part of P 
is one-dimensional, and the semisimple part is a group of type D5. Put 
H = P n o (P)  n a2(P) .  From the dimension theorem it follows that 

codim H < 3 .16 = 48, i.e., dim H 2 78 - 48 = 30. If we assume G to be 
K-anisotropic, then H is a reductive K-subgroup of G. We shall show that 
its semisimple part D contains a simple component of type other than A,. 
Then the fact that D is isotropic follows immediately, since we have already 
proved that the groups of all types other than A, and E6 are isotropic. 

Suppose on the contrary that D has type Ad, x . . . x Ad, Then dl + 
. . + d, < 5 and dl + . . . + d, + m 5 6, where m is the dimension of 

the central torus of H .  Moreover, the case da = 5 is impossible, since 
D must be contained in a group of type D5 (the semisimple part of P )  
and a group of type A5 is not embeddable in D5 (since the order of the 
Weyl group W(A5), which equals 6!, does not divide the order of W(D5), 
which equals Z4. 5!). With elementary estimates one obtains that dim H = 
d: + . . . + d i  + 2(dl + . . . + d,) + rn 5 28, which is impossible, since we 
have seen dim H > 30. 

GROUPS OF TYPE 2E6: Let L/K be a quadratic extension over which G 
becomes an inner form. Then by the previous arguments G is L-isotropic. 
We claim that at least one of the end points ai (i = 1,2,6) in (6.38) is 
distinguished in the L-index of G. Indeed, if not, the L-anisotropic kernel 
of G has a simple component of type Al. But the anisotropic kernel must 
split over an extension L of degree 3, contradiction. Then the corresponding 
parabolic subgroup P = PA, where A = { aj : j # i ) is defined over L and 
has codimension 16 for i = 1,6, and 21 for i = 2. If we assume G to be 
K-anisotropic, then H = P n a(P),  where a is the generator of Gal(L/K), 
is a reductive K-subgroup. In case codim P = 16 we have codim H 5 32, 
i.e., dim H 2 78-32 = 46 and, as above, it is easy to see that all the simple 
components cannot have type A,, thereby yielding the desired result. 

Therefore the only remaining case where G a priori might be K- 
anisotropic is the case where the vertex a 2  is distinguished and the semisim- 
ple part D of H is a group of type A5. (Clearly in this case D is the 
semisimple part of P.) Furthermore, D must split over an extension L of 
degree 3, from which it follows that for the L-index of D there are two 
possibilities: 

Then the L-index of G appears as 

respectively. In the first instance, G is split over L, and the proof that it 
is K-isotropic follows as in the case of groups of type E7. 
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Now we consider the second possibility. Put PI = PA!, where A' = 
{ a, : j # 2,4 }. Then dim P I  = 48, hence for F = P' n o(P1) we obtain the 
estimate dim F > 18. Since F is a reductive K-group whose semisimple 
part S is embeddible in a group of type A2 x A2, a dimension analysis 
shows that S has type A2 x A2 and hence is the semisimple part of P. The 
centralizer C = ZG(S) is a semisimple K-group of type A2 which becomes 
isotropic over L, since even the centralizer of D is L-isotropic. It follows 
that C must be a group of type SU3(f), where f is an Hermitian form over 
the extension L of K .  Since groups of this kind are K-isotropic, the proof 
of Theorem 6.26 is complete. 

6.7. Proof of Theorems 6.4 a n d  6.6: Classical groups. 
Representing a semisimple simply connected K-group G as 

where Gi is a simply connected simple group over a finite extension Li of 
K ,  we can easily reduce the proof of Theorems 6.4 and 6.6, with the help 
of Shapiro's lemma, to the case of simple groups. 

In this section we shall look at groups of type 1>2A1, B1, Cl and 112~1. The 
section is organized as follows: first we take up groups of type 'Al. The- 
orem 6.4 in this case turns out to be equivalent to the surjectivity of the 
reduced norm in a simple algebra over a local field (cf. §1.4.3), and Theo- 
rem 6.6 to Eichler7s norm theorem. Furthermore, in view of Claims 6.1-6.3 
of the previous section, the proof of Theorems 6.4 and 6.6 for groups of 
type B1, Cl and 1:2D1, as well as S u n (  f )  arising from a Hermitian form 
over a quadratic extension L/K, reduces to groups of type B1 = C1 = A1 
and D2 = A1 x A1, which have already been analyzed. Thus, it remains 
to consider forms of type 2A1 associated with noncommutative skew fields 
with involution of the second kind. (Note that over local fields, i.e., in 
the proof of Theorem 6.4, this case does not occur.) The argument here 
is based on a relatively little known theorem due to Landherr, presented 
here with its proof. Note also that in proving Theorem 6.6 for groups of 
all types we only check the triviality of the kernel of 

since its surjectivity has already been proved (Proposition 6.17). 

GROUPS OF TYPE 'Al: Here G = SLn(D), where D is a finite-dimensional 
skew field over K .  Then by Lemma 2.9 

where A = Mn(D). If K is a local field, then NrdDIK(D*) = K *  
(cf. §1.4.3), and hence H1(K, G) = 1, i.e., Theorem 6.4 is proved in this 
case. 

6 Now let K be a number field. Then H 1 ( ~ ,  G) + n H'(K,, G) is 
UEV,K 

equivalent to K*/NrdAIK(A*) -+ n KV+/NrdAUIK,(A:), where A, = 
VEV: 

A @K K,; therefore the triviality of ker S is equivalent to 

It is easy to see for v in VZ that NrdAwIKw (A:) is K,* if A, is a full matrix 
algebra over K, (in particular if K, = C), and is the set of positive elements 
of KV+ if K, = IR and A, is a full matrix algebra over the skew field of the 
real quaternions. Therefore (6.39) follows from the Eichler norm theorem 
(cf. Theorem 1.13). 
GROUPS OF TYPE BI, Cl, l12D1: Since H1(K, Spzn) = 1 for the symplectic 
group Spzn over any K (cf. Proposition 2.7), we can exclude symplectic 
groups from further analysis. The remaining groups pertaining to one of 
the above types are the universal coverings G, of SOn( f )  (resp., S u n  (f )), 
where f is a nondegenerate n-dimensional quadratic form (resp., Hermitian 
or skew-Hermitian form over a skew field D of quaternions). At the same 
time we shall also consider S u n (  f )  corresponding to Hermitian forms over 
a quadratic extension LIK which belong to type 2An-1. 

Let W denote an n-dimensional space over K (resp., D or L) on which 
f is defined. Moreover, we shall designate by mo the integer appearing 
in the list of classical groups (cf. 52.3.4) for each type. Its arithmetic 
interpretation, which follows from Claims 6.11, 6.2 and 6.3 in 96.6, is that, 
for n > mo, f automatically represents a given a in K* (resp., Hermitian 
or skew-Hermitian a in D* or L*) if K is a local field or a number field, and 
the representability holds over K, for all v in v:. Note that mo = 1 for 
quaternionic groups of type C,, and in this case, for the sake of uniformity 
it is convenient to view the group of type Co as the unit group. For the 
remaining types of groups, G,,-l belongs to types B1 = Al and D2 = 
Al x Al, which we have already analyzed. 

First we take K a local field and apply induction. Supposing n > 
mo, we show that the triviality of H1(K,Gn) follows from the trivial- 
ity of H1(K, Gn-1). Fix an anisotropic vector x in W. Its stabilizer in 
Gn is a group of type Gn-1 (cf. Proposition 2.21). We shall show that 
H 1 ( ~ , G n - 1 )  f+ H'(K,G,) is surjective. To do so, note that by Witt's 
theorem the homogeneous space Gn/Gn-1 can be identified with the sphere 

x =  {Y E W B K K :  f(y) =f(~)). 
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Now let < E H1(K,G). Then the twisted space XG,/Gn-i) is isomorphic 
to the sphere Y = { y E W @K K : g ( ~ )  = f (x) }, where g = J is the 
corresponding twisted form. We have YK # 0 since n > ma, and therefore 
< E i m p  (cf. Lemma 2.6), as desired. 

Now let us take the case where K is a number field. For K totally 
imaginary, no modification is needed in the above argument in order to 
establish the triviality of H1(K, G,). In general one needs an additional 
result on weak approximation, which we shall prove in 37.1. Namely, let x 
in W be an anisotropic vector and let X = { y t W OK K : f (Y) = f (x) } 
be the corresponding sphere; then X has the weak approximation property 
with respect to any finite set S c vK, i.e., XK + XS = VES n XK, is dense. 

We shall use this fact in the following context. Since X is a homogeneous 
space of G,, the orbit ( G n ) K v ~ Y  is open in XK. for any v in vK and 
any x, in XKv (Proposition 3.3, Corollary 2), and therefore one can find 
x in XK such that x E ( G n ) K v ~ Y  for a11 v in S. In other words, the 
map XK/(Gn)K + n (XKw /(Gn) K,,) of the corresponding orbit spaces is 

v E S  

surjective. Now consider the "exact sequence" 

1 + Gn-1 + G, 5 x + 1, 

where a(g) = gx, from which one obtains the following commutative dia- 
gram: 

Now let < t ker as. As in the local case, XG,/G,-l) can be identified 
with y = { y E W @K K : g(y) = f (x) }, where g = J is the twisted form. 
Since < E ker a3, it follows that f and g are equivalent over K, for each 
u in vZ; in particular, g(y) = f(x) has a solution, i.e., YK" # 0. But by 
assumption n > ma, and therefore YK # 0. This means that < = b(<) for 
a suitable < in H1(K, G,-l). By assumption the cocycle 

YZ(QZ(<)) = a3(P2(<)) = ~ 3 ( < )  

that a1 is surjective, which means that z = al(a)  for some a E X K / ( G n ) ~ .  
Since (6.40) is commutative, it follows that a 2 ( 0  = az(&(a)); and there- 
fore < = B ( a ) ,  since by the induction hypothesis a 2  is injective. (The 
induction hypothesis consists of the fact that the kernel of a 2  is trivial for 
all groups of the given type of degree n - 1, which by twisting arguments 
is equivalent to rug being injective for the same class of groups.) Finally we 
obtain that < = P2(C) = PZ(Pl(a)) is trivial. 

GROUPS OF TYPE 'Al: The case of special unitary groups associated with a 
quadratic extension L/K was discussed together with the groups of type Bl 
and Dl; therefore now we shall consider special unitary groups G = SU,(f) 
of Hermitian forms f over a (noncommutative) skew field D with involution 
a of the second kind, whose center L is a quadratic extension of the ground 
field K (where K is always a number field). The argument is quite intricate 
and long, therefore we shall break it down into two main stages: first 
we shall prove the Hasse principle for the corresponding unitary group 
H = U,(f); then we deduce the Hasse principle for G from the Hasse 
principle for H .  In the preliminaries to the proof we shall reduce these 
assertions to several properties of algebras with involution, and afterwards 
we shall prove these properties. 

Take the algebra A = Mn(D) and define an involution T by putting 
~ ( ( x i j ) )  = F(a(xji))F-', where F is the matrix of f .  Let B denote 
GL,(D), and let C denote the set of r-symmetric elements of B. Then 
9: B -+ C given by p(x) = XT(X) is surjective and has H as its kernel; 
therefore C can be identified with the homogeneous space BIH.  The exact 
sequence 1 - H + B 5 E - 1 gives rise to the following diagram: 
(6.41) 

Let < E ker a3. Since H1(K, B) = 1, we have < = P2(x) for some x E CK. 
By assumption yz(az(x)) = a3(<) is trivial, which, in view of the exactness 
of the bottom row of (6.41), means that az(x) E im yl. However, the 
triviality of < is equivalent to x t imP1. Thus, the Hasse principle for the 
unitary group H is equivalent to the following 

THEOREM 6.27 (LANDHERR [I]). Suppose y E A* is symmetric. Assume 
for each u in vK the equation y = x . r(x) has a solution xu in A WK K,. 
Then this equation has a solution x in A*. 
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Now assume the Hasse principle has already been proved for H. Put 
(1) S = RLIK(G,). The reduced norm NrdAIL induces the exact sequence 

1 -+ G + H -+ S + 1, which yields: 

As before, for any C in kerb3, the injectivity of 6,4 implies that < = B2(x), 
for suitable x E SK; moreover, the commutativity of (6.42) yields that 
&(x) E im el. To prove < trivial we need to show that x E im 0'. Thus, the 
proof is completed by the following unitary version of Eichler's theorem. 

THEOREM 6.28. Let y E L* and N L I K ( ~ )  = 1. Assume that for all v 
in vK the equation NrdAIL(x) = y has a solution x, in A @K K, such 
that x,T(x,) = 1. Then this equation has a solution x in A* such that 
x7(x) = 1. 

The rest of this section is devoted to proving Theorems 6.27 and 6.28. We 
begin the proof of Theorem 6.27 by reducing it to the case N r d ~ / ~ ( y )  = 1. 
We have a = NrdAiL(y) E LT = K ;  moreover, for any v in v K ,  setting 
tv = N ~ ~ A @ ~ K , / L @ ~  K, (x,), we obtain 

Since the Hasse principle holds for L/K,  it follows that a E NLIK(L*), i.e., 
a = tr(t) for suitable t in L*. 

We shall show that t can be chosen in such a way that t E NrdAiL(A*). 
Indeed, by Eichler's theorem it suffices to show that 

for each w in V&, or, equivalently, 

for each v in V z .  We have a = t ~ ( t )  = tv7(tv), where 

Then r, = tt;' E SK., where S = R $ ~  (G,), and therefore by the weak 

approximation theorem for S one can find z in SK n n z,(SKv f l  U,). 
v€V& 

Putting t' = tz-l, we obtain a = t ~ ( t )  = t1r(t') and t' E U, for all v in vg ,  
as desired. 

Thus, let t = NrdAIL(b), for some b E A*. Then, taking y' = b-ly7(b-'), 
we have NrdAlL(y1) = NrdAIL(b-lY~(b-')) = t - ' a~( t - l )  = 1. If we can 
show that y' = XT(X) for some x in A*, then y = t x ~ ( x ) ~ ( t )  = ( tx )~( tx ) ,  
so we have the desired reduction. 

The next step in the argument is to look for a solution of y = XT(X) not 
in A but in L(y). Thus the problem reduces to establishing that y belongs 
to NL(y)lKcy)(L(y)*). But L(y)/K(y) has degree 2, and therefore satisfies 
the Hasse norm principle; hence it suffices to establish that y is a norm over 
all completions with respect to all w in vK(y). This, as one easily sees, is 
equivalent to y E NL(y)8KK,IK(y)@KK,(~(y) @K K,) for all v in v K .  TO 

realize this situation we must pass from y to y' = t y ~ ( t ) ,  for suitable t in 
SL1(A), which is permissible since either y and y' can both be written as 
XT(X), for suitable x E A*, or neither can be written in this form. 

LEMMA 6.24. Suppose y E SLl(A) is symmetric. If y = XT(X) has a 
solution x, in A @K K, (v E VfK), then this equation also has a solution 
z, in SLl(A @K K,). 

PROOF: It suffices to find t, in A @K K, such that t ,~(t,) = 1 and 
N ~ ~ A @ ~ K , / L @ K K ,  (tv) = N r d ~ @ ~ ~ , / ~ @ ~ ~ ,  we 
sider separately the two cases L @K K, % K, @ K, and L @K K, is a 
field. 

In the first case A @K K, = A1 @I A2 is the direct sum of two simple 
algebras, where there is an anti-isomorphism cp: A1 -+ A2 between them; 
moreover, we may assume that the K,-linear extension of T is given by 

It follows that the t, in A @K K, satisfying t,~(t,) = 1 have the form 
t ,  = (a, cp(a)-l), a E A;, and by 51.4.3 the values of the reduced norm on 
such elements comprise X = { (s, s-l) : s E K,* ). It remains to note that 
N ~ ~ A @ ~ K , / L @ ~ ~ ,  (xu) lies in X ,  by virtue of the conditions y E SL1 (A) 
and y = x,T(x,). 

In the second case A, = A @K K, is a full matrix algebra over L, = 
L @K K,, and one can choose an isomorphism A, 7 Mn(L,) such that 
T can be written as 7((2ij)) = ar(xji))a-l, where a = diag(al,.. . ,an), 
ai E K,*. Then for t, we can take a matrix of the form diag(d, 1, .  . . , I), 
where d = NrdA,I~,(x,)-l. Note that since y E SLl(A) and y = x,~(x,), 
we have d ~ ( d )  = 1; hence t,r(t,) = 1, proving the lemma. 
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Now we shall complete the proof of Theorem 6.27. Let us fix some r- 
invariant order in A, so that one can speak ~roperly of integral points. Let 
So be a finite subset of V" containing all the Archimedean valuations, as 
well as those non-Archimedean valuations for which either y is not a unit 
or L/K is ramified. For each v in So fix a solution z, in SLl(A OK K,) of 
y = x r  (5). 

We claim that there are open subsets W, of SL1(A @ K  K,) such that 
tuYr(tu) is a square in K,[tuyr(tU)] for each t, in W,. Indeed, let us consider 
the algebraic group F = SLl(A @K K) (noting that F = RL/K(SLI (A))), 
and let denote the set of r-symmetric elements of F .  Clearly con- 

tains regular semisimple elments, and the subset 4 of such elements is a 
nonempty Zariski-open subset of Since F 3 a, given by p(t) = to(t), 
is obviously surjective, it follows that Fo = { t  E F : tyr(t) E ma } is a 
nonempty Zariski-open subset of F .  However, Proposition 3.3 implies that 
the map QK,, - eKv, given by p r p2, is open; in particular, there exists 
a neighborhood of the identity U, c aK, contained in We shall show 

that the W, = Fan (p-'(U,)Z;') are the desired sets. (Lemma 3.2 implies 
that W, are nonempty.) By construction we have Y' = t,yr(t,) E U, n ao, 
for t, in W,. Thus y' = s2 for some s in ax,,, and (L @K K,)[Y'] is a 
maximal semisimple commutative subalgebra of A @K Kv. It follows that 
s E (L @K Ku)b']; and since r(s) = S, indeed s E KV[y1], as desired. 

With the Chebotarev density theorem, we now choose a valuation vo $! So 
for which L g K  K,, = KUo Q K,, and, moreover, A@K Kuo is the direct sum 
of two matrix algebras over K,. Then FKv, is noncompact, and therefore 
one can apply strong approximation (Theorem 7.13) to F and {vo}. (Note 
that the proof of Theorem 7.13, given by Platonov [4] and presented here 
in 57.4, does not use any results from cohomolo~ over number fields.) It 
follows from this theorem that there exists t in F such that t E W, for 
v E So, and t E Fo, for v 4 SoU{vo}. 

We shall show that t is the desired element, i.e., for y' = tyr(t) and all 
v in vK the condition 

is satisfied; which, as we noted above, enables us to complete the proof of 
Theorem 6.27. If v E So, then by assumption y' is a square in K(yl) @K Ku 
and (6.43) is obvious. To verify the remaining cases, note that L(Y') @K KU 
is a composite of L and K(yl)gK K,. Hence (6.43) is satisfied automatically 
if L g K  K, 1 Ku K,, in particular for v = uo. Now suppose u 4 S o  U{vo}- 
Then, on the one hand, the extension L(yl) @K KV/K(yt) OK Ku evidently 
is unramified; but, on the other hand, y' is a unit with respect to v, and 
again condition (6.43) holds. This completes the proof of Theorem 6.27. 

REMARK: The following observation greatly simplifies the verification of 
the conditions of Landherr's theorem: for v in vF, a symmetric element 
y can be written as y = x,r(x,), where xu E A IK K,, if and only 
if Nrd~/,(y) 6 NL@~K,,/K((L @I( Kv)*). To prove sufficiency, suppose 
N r d ~ / ~ ( y )  = N L ~ ~ K , / K , ( z ) ,  where z E L @K K,. We take t in A @K K, 
such that NrdABK Ku /L@, Kv (t) = z and consider y' = t-' yr (t) . It suffices 
to show that y' can be written as y' = x,r(x,), where xu E A BK K,. 
But this follows from the result, which we have already established, that 
H' (K,, G) = 1 for G = S u n (  f ) .  Indeed, the map p: F -+ a, introduced 

above, induces the exact sequence 1 -+ G - F % -t 1 and the corre- 
sponding cohomological sequence 

FK, 3 @K, -+ H~(K,,,G). 

Since H1(K,, G) = 1, it follows that p(FKu) = mKW , as desired. 

PROOF OF THEOREM 6.28: The unitary version of the proof of Eichler's 
theorem can be found in Weyl 171. Namely, one constructs an irreducible 
polynomial f (t) = tn + an-ltn" + . . . + ao, over L, whose degree equals 
deg(A) (the square root of  dim^ A), a0 = (- l)"y, and such that the ex- 
tension P = L(x), where x is a root of f ,  can be embedded in A so that 
xr(x) = 1; then Nrd~/L(x) = y. The reader can easily see for himself 
that, without loss of generality, one can assume the local solutions xu of 
NrdA/~(x)  = y are semisimple regular elements of RyK(GL1(A)). The 
required f (t) can be constructed by taking a sufficiently close approxima- 
tion of the characteristic polynomials fv(t) of the xu for some finite set of 
valuations S .  To clarify what we mean by "sufficiently close" some prelim- 
inary arguments are needed. 

Let X: An -+ An be the regular map that sends x = (x,, . . . , x,) to the 
n 

n-tuple of coefficients off (x, t) = n (t-xi) (which, up to the sign, coincide 
i=l 

with the elementary symmetric functions of XI, . . . , xn). 

LEMMA 6.25. If all the coordinates of x = (x,, . . . , x,) are distinct, then 
the differential d , ~  is a linear isomorphism. 

PROOF: We must show that d , ~  is injective. Suppose dZx(X1,. . . , X,) = 
0. In terms of dual numbers this means that 

Putting t = Xi, we obtain 6Xi n ((xi - x,) - 6X.) = 0; and since X, # xi 
j#i  

3 

for i # j ,  it follows that Xi = 0. The lemma is proved. 
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Now let us fix v in VK and consider the Ku-variety 

together with the regular map X: W + B = (L @K K,)", whkh sends an 
element to the coefficients of the corresponding characteristic polynomial. 
It follows from Lemma 6.25 that d , ~  is a linear isomorphism at a regular 
point z in W, which by Proposition 3.3 implies that 

x u :  (L @K Kv)[xu] + (L @K Kv)" 

is open at any regular point. 
An alternate proof of Krasner's lemma (cf. 16.4) is easily obtained along 

these lines. For our purposes we need its unitary version. Let X denote the 
subvariety of W consisting of unitary elements with respect to r, and let Y 
denote the subvariety of B consisting of n-tuples (ao, . .  . , an-1) satisfying 

(6.44) r ( a o ) a o = l ,  aor(a i )=an- i ,  i = l , . . . ,  n - 1 .  

If the characteristic polynomial of x has the form 
tn-1 

f(t) = t n + a n - 1  + . . . + a  o, 

then the characteristic polynomials of x-I and r(x) have the form 

tn + alaoltn-l + . - .  + a;' and 

tn + r(an-i)tn-l + . . . + r(ao), 

respectively. It follows that x induces a morphism x*: X + Y, and it 
is easy to compute that X and Y both have dimension n. Clearly X 
is a (multiplicative) algebraic group, and in particular, a smooth variety. 
Also, straightforward verification shows that Y is smooth. Furthermore, 
for z in X ,  d,x* is the restriction of d , ~  to the tangent space T,X and 
hence is a linear isomorphism to T,.(,)Y, in case z is regular. Applying 
Proposition 3.3, we see that x:: XK, -+ YK, is open at any regular point. 
In particular, one can find a neighborhood U, C YK, of a, = x:(x,) such 
that for any a in U, there is a regular element x in XK, for which x:(x) = a. 

This can be restated in the spirit of Krasner's classic lemma, in terms 
of characteristic polynomials. Let the characteristic polynomial of xu have 
the form fu(t) = tn + ax-,tn-I + . - . + a:. Then if f (t) = tn + an-ltn-' + 
- . + a0 is sufficiently close to f,, in the sense that its corresponding n- 
tuple a = (ao, . . . , an-1) lies in the neighborhood U, of a, = (a:, . . . . a:-1) 
constructed above, and if the conditions in (6.44) are satisfied, then there 
exists a root 1: E (L@KKu)[xu] off such that (L@KK,)[x] = ( L @ K K ~ ) [ x ~ ]  
and xr(x) = 1. 

Now we choose a finite set S with respect to which we shall make an 
approximation of the f, . 

LEMMA 6.26. There exists a finite subset So of VK containing V: such 
that, for v $! SO, any n-dimensional commutative semisimple L OK Kv- 
algebra B, with involution, whose restriction to L is r ,  can be embedded 
in A @K Ku as the algebra with involution. 

PROOF: It is well known (cf. Theorem 6.7). that G = SUn(f)  = SU(A, T )  

is Ku-quasisplit for almost all v in Vf. Then, as Proposition 6.19 and 
the above arguments imply, any algebra with involution of degree n over 
L @K K, can be embedded in (A @K K,, 7). Therefore, for So we can take 
the union of V z  with the set of those non-Archimedean v for which G is 
not K,-quasisplit. The lemma is proved. 

Let us take two more valuations, vl, 112 in vK \SO, having the properties 
that L @K Kvi is a field for i = 1,2, and L @K KUl/Kvl is unramified. 
Let B,, denote the algebra L @K E, where E is an unramified extension 
of K,, of degree n, endowed with involution ol defined by ol I L =  r ( L  and 
ol Is= id. Let us also take the algebra B,, = (L BK K,,)", endowed with 
involution 0 2 ,  which on each component is induced by r .  We shall show 
that there exist xi in B,% (i = 1.2) satisfying the following: 

This is obvious for i = 2, so we consider the case i = 1 Using Hilbert's 
Theorem 90, we can write y = r(z)z-l, where, since LgKKVl is unramified 
over K,,, without loss of generality we may take z to be a vl-unit in 
(L @K K,,)*. Since E/K,, is unramified, one can find t in B,, such that 
NB , L ~ ~ K  (t) = Z. Then s = ol(t)t-' will satisfy N B u l / ~ m K ~ v l  (s) = y "1 "1 
and ol  (s)s = 1. To obtain x,, it remains to multiply s by a unitary element 
with norm 1 to make it regular. Since vi $ So, there exist embeddings of 
the Bus in A @K K,* as algebras with involutions, so henceforth we may 
view the Bvi as subalgebras of A @K KUi . 

Now we can easily complete our construction of f .  Put S = So U {UI, v2}, 
and for each v in S take the corresponding xu, where for v = vi we assume 
that xu is the xi constructed above; and let 

be its characteristic polynomial. Then (6.44) holds for its coefficients; more- 
over, a; = ( - l ) " ~  Put ao = ( - l ) " ~  in (6.44); then for the remaining 
coefficients we obtain a system of linear equations with coefficients in K .  
Therefore, using the weak approximation property for K,  one can find a 
tuple (ao, . . . , a,-,) in Ln satisfying (6.44), with a0 = (-l)"y, which for 
each v in S is sufficiently close to (a:, . . . , a:-,) in the sense indicated 
above. 
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Let P = L[t]/(f (t)), where f (t) = tn + a,-ltn-' + . . . + ao, and let x 
denote the image of t in P. Define an involution u of P as follows: the 
restriction of a to L is 7, and u(x) = x-l. (Such an involution exists, 
by virtue of the conditions in (6.44).) It remains to show there is an L- 
embedding 8: P -+ A as an algebra with involution, since then B(x) will be 
the desired element. 

To do so, note that our construction implies, firstly, that for all v in 
VK there exist embeddings 6,: P @K K, -+ A @K K, as algebras with 
involution; and secondly, that there exists an embedding E :  P -+ A as an 
algebra without involution. Indeed, the existence of 8, for v $! So follows 
from Lemma 6.26. To establish the existence of 6, for v E So, it suffices to 
find x: in A @K K, such that f (x:) = 0, [(L @K Ku)[z:] : L @K K,] = n, 
and r(x:)x: = 1. But by our set-up such an element can already be found 
in (L BK Ku)[xu]. Using the criterion for embeddibility of a field as a 
maximal subfield in a simple algebra (cf. $1.5.1), we can show easily that 
the existence of E follows from the existence of 8,, once it is established 
that P is a field. 

Consider the K-algebra of fixed points F = Pa.  By assumption 

from which it follows that F @K K,, ci E is an unramified extension of 
degree n of K,, ; in particular, F is a field. Let us embed F in the algebraic 
closure K of K and show that the normal closure M of F satisfies M L = 

K .  To do so we use vz. By assumption 

hence F @K K,, 1 K:2, yielding M C K,,, while [L @K K,, : K,,] = 2. 
In particular P = F @K L = F L  is a field. 

Let us identify P with a subalgebra of A by means of E, and extend 
a to an involution of all of A, which we also denote as u. Then there 
exists a symmetric element t in A* such that a(%) = tr(r)t-' for all z in A 
(cf. Lemma 2.10). By the Skolem-Noether theorem, any other embedding 
of P in A has the form x H S-lxs, s E A*, SO our problem reduces to 
realizing the choice of s in such a manner that the embedding obtained 
be compatible with the involutions, i.e., su(z)s-I = ~(szs - ' )  for all z 
in P .  Easy computation shows that the last condition is equivalent to 
sr(s)t-' E ZA(P) = P .  Thus, we must find b in P* for which ST(S) = bt 
has a solution s in A*. To do so, according to Landherr's theorem it suffices 

to choose b in P* such that there exist local solutions s, in (A @K K,)*. 
In this regard, as we noted after the proof of Landherr's theorem, for v in 
vF, the condition for the solvability of s i (s )  = bt in A @K K, (assuming 
that r(bt) = bt) can be written as NrdAIL(bt) E NLBKKUIK,((L@~ Kv)*). 
Thus, it remains to find b in P ,  such that 

are satisfied and, in addition, sr(s) = bt is solvable in A @K K, for v in 
VG. Condition (6.46) is equivalent to a(b) = b, i.e., b E F. Then (6.45) 
can be rewritten as 

In this regard, the existence of 8, implies that the corresponding local 
problem can be solved throughout, i.e., for any v in vK one can find b, 
in ( F  @K K,)* for which sr(s) = but has a solution s, in (A @K K,). In 
particular, 

Now we shall use the fact that the multinorm Hasse principle holds for the 
pair of fields F ,  L, since the conditions of Proposition 6.11 are satisfied. 
(The fact that the normal closure of F intersects L in K was established 
above, and the validity of the norm principle for LIK follows from Hasse's 
theorem.) Therefore (6.48) implies that 

for suitable bo in F* and lo in L*. 
To complete the argument it remains to construct b in F* and I in L* 

such that again r = NFjK(b)NLjK(l) but also sr(s) = bt be solvable in 
( A  @K Ku)* for v in V&. For each v in VK the set a, of elements of the 
form ST($), where s E (A @K K,)*, is open in the set 8, of symmetric 
elements. Therefore, if sr(s) = but is solvable, then also sr(s)  = bt is 
solvable, for b in F @K K,, sufficiently close to b,. It is also clear that 
r = N F ~ ~ K ~ ~ K ~ ( ~ ~ ) N L ~ ~ ~ , / ~ ~ ( ~ ~ )  for suitable 1. in L @K K,. Thus, it 
suffices to prove the following 



Chapter 6. Galois cohomology 6.8. Proof of Theorems 6.4 and 6.6: Exceptional groups 369 

LEMMA 6.27. Let 

Then X = { (b, 1 )  E F* xL* : r = NFIK(b)-lNLIK(l) ) is dense in n X,. VEV,K 

PROOF: The lemma asserts that the weak approximation property holds 
with respect to S = V z  for the variety 

C = { (b, 1) E RF/K (Gm) X RL/K (Gm) : T = N F / K ( ~ - ~ ) N L / K ( ~ )  ). 

We have c = (bo, lo) E CK (cf. (6.49)) and C = cT, where T is the subtorus 
of RFIK(Gm) X RLIK(Gm) given by N F / K ( ~ )  = NLlx(l). In this regard, 
CK being dense in Cs is equivalent to TK being dense in Ts, i.e., to the 
weak approximation property holding for T.  However, when S = V: this 
property holds for any torus (cf. Proposition 7.8). This completes the proof 
of Lemma 6.27, and along with it also Theorem 6.28. 

EXERCISE: 

(1) Modify the above arguments, given for the unitary case, to derive a 
proof of Eichler's norm theorem. 

(2) Obtain the Hermitian analog of Theorem 6.28. More precisely, for 
y in K*, show that NrdnlL(x) = y has a solution x in A* such that 
~ ( x )  = Z, if for each v in VK it has a solution x, in A OK K, such 
that ~ ( x , )  = 2,. 

6.8. Proof of Theorems 6.4 and 6.6: Exceptional groups. 
In this section we shall complete the proof of Theorems 6.4 and 6.6 for 

groups of type 316D4, 112E6, E7, E8, F4 and G 2  Throughout this section G 
denotes a simply connected simple K-group of one of the above types, and 
GO denotes a quasisplit K-group of the same inner type as G. 

First we look at the easiest case, groups of type G2, and then reduce the 
case of groups of type F4 to groups of type Dq. 

GROUPS OF TYPE G2: We begin by showing that if K is a local field or a 
totally imaginary number field, then H1(K, Go) = 1. Let C E H ( K,Go). 
Then by Proposition 6.19 there is a maximal K-torus T of Go such that C 
lies in the image of H1(K, T) 3 H1(K, Go). Let us show that this map is 
actually trivial. Let R = R(T, G) be the corresponding root system, and 
let Ro be the subset of long roots of R. The description of the root system 
of type G2 (Table 9 in Bourbaki 14, Ch. 4-61) implies that RQ comprises a 

closed subsystem of roots in R of type A2. It follows that the subgroup H 
of Go generated by the root groups G,, for a in &, is a simple group of 
type A2. Furthermore, & is clearly invariant under all automorphisms of 
R; therefore the automorphisms o in G a l ( K 1 ~ )  permute the groups G,, 
a E &, and thus H is defined over K .  Finally, an easy computation with 
the roots, omitted here, establishes that H satisfies the criterion for being 
simply connected (cf. Theorem 2.6), so H is simply connected. 

The validity of Theorems 6.4 and 6.6 for the classical groups (cf. $6.7) 
implies that H1(K, H )  = 1. But 9 clearly can be written as the composi- 
tion of maps H1(K, T) + H'(K, H )  -, H1(K, Go), and therefore is trivial. 
Thus H1(K, Go) = 1. Since Go is both simply connected and adjoint, this 
means that Go is a unique K-form of type G2, i.e., any K-group of this 
type is split over K .  Therefore, actually H'(K, G) = 1 for any K-group G 
of type G2. 

It remains to show that the kernel of H1(K, G) 3 n H1(K,,G) is 
v€V,K 

trivial, for any number field K.  This part of the argument is repeated, to 
one or another extent, for groups of all types except E6 and is based on 
the following lemma, which we shall prove in general. 

LEMMA 6.28. Let G be a semisimple algebraic group defined over an ar- 
bitrary field K.  Assume G contains a Borel subgroup B defined over 
a quadratic extension L/K, such that T = B n u(B) is a maximal K-  
torus of G (where O is the generator of Gal(L/K)). Then any cocy- 
cle c in Z1(L/K, G) is equivalent to some F' in Z1(L/K, T). Moreover, 
if K is a number field and I in Z1(L/K, G) represents an element of 
k e r ( ~ ' ( K ,  G) -+ n H'(K,, G)), then also C' in z'(L/K, T)  can be cho- 

V E V E  
sen to represent an element of ker(H1 (K, T) n H1 (Kv, T)). 

w€V,K 

PROOF: is given by a, in GL such that a,u(a,) = 1. Let H denote 
RLIK(G). Then o induces a K-automorphism of H 2 RLIK(G), which 
we shall also designate as u. Consider the K-subvariety Z of H ,  given by 
hu(h) = 1. Then the c in z'(L/K, G) correspond to points from ZK, and 
H acts on Z by (h, z) ++ htlzcr(h); moreover this action is transitive and 
is defined over K .  Since HK is dense in H (Theorem 2.2), it follows that 
the set of cocycles equivalent to [ comprises a Zariski-dense subset of Z. 
On the other hand, T = B n o(B) implies that o(B) is B-, the opposite 
Borel subgroup for B. 

Let U and U denote the unipotent radicals of B and B- respectively. 
The Bruhat decomposition implies that the product morphism 
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is an L-isomorphism onto an open subset W of G. It follows that some 
cocycle equivalent to f is given by b, in WL. Let b, = ultu2, where 
ul E UL, t E TL, and u2 E U i .  Then the condition o(b,) = b;', the 
uniqueness of the Bruhat decomposition, and the fact that o(U) = U- and 
o(U-) = U imply the relations o(ul) = u;', o(u2) = u;' and o(t) = t-'. 
We shall show that the cocycle f' given by a: = t is the desired cocycle. 
Indeed, a: = t = ~ ; ~ u ~ t u ~ u ; '  = u;'b,o(ul), i.e., f' is equivalent to F in 
Z1(L/K, G). 

A slight revision of this argument is necessary in order to obtain the f' in 
Z 1 ( L / ~ ,  T) which gives an element of ker(H1(K, T) - n H1(KV, T)) VEV& 

for K a number field. Namely, let S denote the set of real v of K satisfying 
Lw = LKv # K,. By assumption, for each v in S there is a gv in GL, 
satisfying a, = g;'o(gV). Let us consider B = RLjr (T), a subvariety D 
of B giving cocycles of Z1(L/K, T),  and an action of B on D analogous 
to the action described above of H on Z. Proposition 3.3 implies that 
there exists an open subset Av C TLw e BK. such that, for any t E A, 
with to(t) = 1, the cocycle in z~(L,/K,,T) determined by t is trivial. It 
follows from the Bruhat decomposition that Fv = UL~A,U;~ is open in 
GLw in the w-adic topology. GL is dense in n GL, by Proposition 7.9. 

vES,w(v 

However, if one chooses g sufficiently close to g;', then one can make 
g-la,o(g) arbitrarily close to 1. It follows that there exists g in GL such 
that b, = g-la,o(g) E Fv for all v in S .  If b, = ultu2 is the corresponding 
Bruhat decomposition, then, as we saw above, the cocycle E' given by a: = t 
is equivalent to <.  Moreover, by our construction t E Av, so f'  becomes 
trivial in H1(L,/K,,T). It remains to note that L c Kv for v in VZ \ S,  
and C' is automatically trivial in H1 (K,, T). The lemma is proved. 

Now we return to our K-group G of type Gz. Let f E ker p and 

L = K ( a ) ,  Gal(L/K) = (0). As we have shown, f becomes trivial 
in H1(L,G), i.e., c E H1(L/K,G), and G is L-split. Using Lemma 6.16, 
choose a Bore1 L-subgroup B of G such that T = Bno(B)  is a maximal K- 
torus of G. By Lemma 6.25, passing to an equivalent cocycle, without loss 
of generality we may assume that < E ker(H1(K,T) 5 n H1(Kv,T). v€V,K 

But above we saw that any K-torus T of G is contained in a simply con- 
nected K-subgroup H of G of type A2. Therefore, the validity of the Hasse 
orinciple for H implies that f is a trivial cocycle of H1(K, H) ,  and hence also of H1 (K, G). 

Note that a proof of Theorems 6.4 and 6.6 for G of type G2 could have 
been obtained using a geometric rkalization of G as a group of automor- 
phisms of the Cayley K-algebra of octonions; however we preferred to use 

a structural approach, especially since it contains several typical points. 

GROUPS OF TYPE F4: This type can be reduced to groups of type D4, 
just as G2 was reduced to A2. First, let K be a local or totally imaginary 
number field, and let [ E H1(K, Go). With Proposition 6.19 we find a 
maximal K-torus T of Go such that f lies in the image of H1(K,T) -+ 

H1(K, G o )  Now let us assume that Theorems 6.4 and 6.6 have been proved 
for groups of type D4 (including outer forms of types 3 ~ 4  and 'D4). TO 
prove that E is trivial it suffices to show G has a simply connected K- 
subgroup H > T of type D4. But the explicit description of the root system 
of type F4 (cf. Bourbaki [4, Table 8]), implies that these requirements 
are met by the subgroup generated by the root subgroups G,, where a 
runs through all the long roots of R(T, G). Here, too, Go is both simply 
connected and adjoint; therefore the triviality of H'(K, Go) implies that 
any K-group G of type F 4  is split, and consequently H1(K, G) = 1. 

The proof of the Hasse principle for a group G of type F4 over a num- 
ber field K which is not totally imaginary is a verbatim repetition of the 
corresponding argument for groups of type Gz. 

GROUPS OF TYPES 3 7 6 ~ 4 :  AS before, we show first that H1(K, Go) = 1 if K 
is a local field or a totally imaginary number field. Let < E H1(K, Go) and 
G = Fo. We wish to establish that G is K-quasisplit, i.e., that G 2 Go. 
Suppose the contrary. Then there are two possibilities: G is isotropic over 
K ,  and G is anisotropic over K .  

In the first case the only possible index for G is the following: 

(cf. Tits [2]). Let S denote a maximal K-split torus of G, and let T be 
a maximal K-torus of its centralizer C = Cc(S). By Proposition 6.18, 
Go =p G for a suitable p in H1 (K, T). Therefore it suffices to show that 
H1(K, C) = 1. But the semisimple part H = [C, C] is a simply connected 
K-group of type A1 x Al x All and therefore H1(K, H) = 1. On the 
other hand, C / H  is a one-dimensional K-split torus, so H1(K, C/H) = 1. 
Therefore, the exact sequence H' (K, H) -+ H' (K, C) + H1 (K, C/H) 
implies that H1(K,C) = 1, as desired. 

Now suppose G is K-anisotropic. Let L denote the minimal Galois ex- 
tension of K over which GO becomes an inner form. Then G = Gal(L/K) 
is either cyclic of order 3, or the symmetric group S3 Let us examine the 
first ewe. Since Go becomes a group of type 'D4 over L, by what we have 
already proved H'(L, GO) = 1; hence G - Go is a split group over L. Let 
us label the simple roots of an L-split torus in the following way: 
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and let P denote the parabolic L-subgroup PA where A = { a z ,  a a ,  a d  }. 
Simple calculation shows that dim G = 28 and dim P = 22, i.e., P has codi- 
mension 6. Let o be a generator of G. Put C = P n o(P) n oZ (P). Clearly 
C is a K-subgroup and is reductive, since G is K-anisotropic. Moreover, 
dim C >_ dim G - 3 codim P = 10. 

Let us describe the structure of C. Let H = [C, C] be the semisimple 
part of C. By assumption H must be contained in the semisimple part 
P' of P ,  which is a simple L-split group of type A3. Moreover, since 
Theorems 6.4 and 6.6, and hence also Theorems 6.5 and 6.25, have already 
been proved for groups of smaller dimension, it follows in view of H being 
K-anisotropic that all its simple components have type Al, and therefore 
the only possible types for H are: A1, Al x A1, Az, and A3. The first two 
cases cannot occur because of the dimensions of the groups involved, and 
the last because H here must be P' and consequently is a K-anisotropic 
group of type A3 which becomes split over a cubic extension of K ,  whlch 
is impossible. Thus, H must have type Az, so dim H = 8, which means 
C = H S  is an almost direct product, where S is a 2-dimensional K-torus. 

We claim S is L-split. Otherwise let So denote a maximal L-split 

subtorus of S. It follows from our set-up that So # (e), and therefore 
it remains to exclude the possibility of dimso = 1. Since L/K is a 
Galois extension, So is defined over K and consequently has the form 
s 0 - - R(l) u(6m), where E / K  is a quadratic extension. But such a torus 

- I  - -  
remains anisotropic over L, contradiction. 

Now, embedding S in a maximal L-split torus and noting that H C 
Zc(S), we also obtain that H is L-split. In particular, H is an inner form 
over K ,  since [L : K] = 3, i.e., H = SL1(D), where D is a skew field 
of index 3 over K such that D @K L = M3(L). The latter implies that 
L can be embedded in D and consequently defines a maximal L-split K- 
torus S' = R ( : : ~ ( G ~ )  C H. Then T = SS' is a maximal K-torus of C 
and G which s anisotropic over K and split over L. It follows that for 
any character x in X(T) we have x + o(x) + 02(x) = 0. Therefore, for 
any root o in R(T,G), the group GLa, generated by the root groups G, 
for 7 in C ,  = {a,o(a)), is a simply connected K-group of type A2. Put 
Tza = TnGra, and take two roots a, /3 in R(T, G) such that T = Txa x T ~ ,  . 

(The reader should verify that such roots exist.) We have Go = &' for 
suitable p = {a,} in H 1 ( K , ~ ) ,  by Proposition 6.18. We wish to show 
that p is trivial in G. Let pa = {a:) E H1(K,Txa) and pp = {a!) t 
H'(K, T,,) be the projections of p on Txa and Tx,, respectively. Since 
H1(K, Gx,) = 1, it follows that a! = 9-'r(g) for suitable g in Gn,. We 
have b, = ga,r(g)-' = 9a:g-l E F = gGcag-'. It remains to establish 
that F is defined over K ,  since then H1(K, F) = 1 and {b,) is trivial in 
G. For an arbitrary T in G ~ ~ ( K / K )  we have 

since a! in Tc, normalizes Gra. Thus, the isomorphism G -- Go is estab 
lished for [L : K] = 3. 

Now assume G = Gal(L/K) -- S3. Let E denote a quadratic extension of 
K contained in L. By what has been shown, G becomes quasisplit over E. 
But then, as in the proof of Theorem 6.26, it can be established that G is 
isotropic over K ,  and the isotropic case has already been handled. 

Thus, in all cases G = Po 2 Go. This means that t projects onto the 
trivial cocycle in the corresponding adjoint group, i.e., [ lies in H1(K, Z), 
where Z is the center of Go. But then < E H' (K, To), where To is a maximal 
torus of a Bore1 K-subgroup of G o  Analysis of the index 

of GO shows that To has the form 6, x RM/K(Gm), where M c L is a 
subfield of degree 3 over K; so H1(K, To) = 1 and, therefore, t is trivial in 
H1 (K, Go). This completes the proof that H1 (K, GO) is trivial. 

Now let K be a local field. Since H1(K, Go) has been proved trivial, 
Proposition 6.15 implies that any simply connected simple K-group G of 
type 3 ~ 4  or 6D4 is quaisplit over K ,  i.e., G = Go. Therefore H1(K, G) = 
H1(K, GO) = 1, and Theorem 6.4 is proved. 

To prove Theorem 6.6 we shall need 

LEMMA 6.29. Let G be a simply connected simple group of type 3 , 6 ~ 4  over 
a number field K,  and let E / K  be the minimal Galois extension over which 
G becomes an inner form. Then there exists a quadratic extension L/K 
with the following properties: 

(1) L and E are linearly disjoint over K; 
(2) L is totally imaginary; 
(3) G becomes quasisplit over L. 
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PROOF: Obtained by a straightforward modification of the argument in 
the proof of Proposition 6.15, and left to the reader as an exercise. 

Now let f E ker(H1(K, G) 4 n H1(Ku, G)), and let L /K be the 
- . r , , K  uc V m  

extension given in Lemma 6.29. Since G -- Go over L, by what we have 
shown H1 (L, G) = 1; therefore f E H1(L/K, G). Let B be a Bore1 L- 
subgroup of G such that T = B n o(B) is a maximal K-torus of G, where 
o is the generator of Gal(L/K) (cf. Lemma 6.17). Applying Lemma 6.28, 
we see that by passing to an equivalent cocycle, we may assume that F = 
{a,} E ker(H1(K7 T) -+ n H1 (KU, T)) .  We shall need a description of 

UEV: 

the action of a on the roots in R(T, G). 
More precisely, since the splitting field for T is LE, one should speak of 

the action of Gal(LE/K) on X(T), rather than the action of Gal(L/K). 
So, to define the action of o first we have to extend o to LE; and, since L 
and E are linearly disjoint, we may assume that this extension acts trivially 
on E ,  and we shall also denote it by o. Since G becomes an inner form 
over E, it follows that o must act on X(T) as an element of the Weyl group 
W (T, G). On the other hand, since T = B n o(B), o takes the positive 
roots associated with B to negative ones. But the only element in the Weyl 
group of the root system of type Dl with this property is -1 (cf. Bourbaki 
[A Ta,ble 41). Therefore (T acts on X(T) by multiplication by - 1. Let us 
1 - 7  I I 

label the simple roots of R(T, G) as follows: 

Since the index of G under L has the form 

the description of the action of a implies that the subgroups G1 = G,, 
and G2 generated by G,, (i = 1,3,4) are defined over K .  Put Ti = 
T n Gi. Then T = Tl x T2, and one can apply the trick, used before, of 
"componentwisel~ trivialization of <. Namely, let fi = {a:} E H1 (K, Ti) be 
the projection of < on Ti. Clearly f i  E ker(H1(K, Ti) + n H1 (KU, Ti)). UEVZ 

Since G2 is a group of type Al x Al x Al, it satisfies the Hasse principle. This 
implies that e2 defines a trivial cocycle in H1(K, G2), i.e., a: = g-lr(g) 

for suitable g in G2. Then b, = ga,r(g)-' = ga:g-' t F = gGlg-l. 
As above, one can show that F and Ti = gTlg-' are defined over K .  
Furthermore, we claim that the morphism p: T1 + Ti given by t - gtg-l 
is defined over K .  Indeed, for any t in TI and any T in G ~ ~ ( K / K )  we have 

(rp)(t) = r(g)tr(g)-l = g(g-l~(g))t(g-lr(g))-lg-l = gtg-' = 
cp(t>, 

since g-%(g) = a: t T2; hence r p  = p. It follows that ti = {b,) = p(c1) 
lies in ker(H1(K, Ti) + n H1(Ku, Ti)), and since the Hasse principle 

uEV: 
holds for F ( F  belongs to type Al), ti is trivial in H1(K, F ) .  But then C 
is trivial in H1(K, G), as desired. 

GROUPS OF TYPE E6, E7, E8 (PRELIMINARIES): The analysis of the pre- 
ceding types was based on the fact that for the given group one can easily 
pick a maximal torus which can be embedded either entirely or compo- 
nentwise in a group of smaller rank, for which Theorems 6.4 and 6.6 have 
already been proved. For groups of type E this method runs into con- 
siderable difficulty, since a priori one cannot find a splitting field having a 
relatively small degree over K .  At best, in this situation, one can construct 
a splitting field in the form of a tower of 2-, 3- and 5- extensions. To do 
SO, we need 

PROPOSITION 6.21. Let G be an arbitrary K-group of type 4 ,  E7 or E8, 
and let T be a maximal K-torus of G. Then the order of any element of 
H1(K,T) is of the form 2,3"f G is a group of type 4 or E7, and the 
form 2,3O57 if G is a group of type E8. 

PROOF: Let L be a minimal splitting field of T,  and let G = Gal(L/K). 
Then G acts on R = R(T, G) by automorphisms, thereby yielding a homo- 
morphism from G to Aut(R) which is an embedding since the roots generate 
the vector space X(T) Wz W. In our case Aut R is W(R) if R is a system 
of type E7 or E8, and contains W(R) as a subgroup of index 2 if R is a 
system of type E6. The Weyl groups of these types of root systems have 
the following orders (cf. Bourbaki [4, Tables 5-71): IW(E6)l = 27 3' . 5, 
I W(E7)J = 2'' . 3' 5 .7,  and I W(Eg)I = 2'' - 35 . 52 7. Therefore one can 
assert immediately that the order of any element of H'(K, T)  has the form 

2, 30 . 57 for type E6 and form 2, 3S .57 for types E7 and Eg. Our 
objective is to eliminate from these expressions the power of 5 for E6 and 
E7, and the power of 7 for E7 and Eg. TO this end, first we prove 

LEMMA 6.30. Let H be a K-group of type 1.2Dn (n 2 4), and let S be a 
maximal K-torus of H. Then H1 (K, S) is a %group. 

PROOF: It suffices to prove the lemma in the case where H is either 
S02,(f) or SU,(D, f ) ,  i.e., is isomorphic over K to the special orthogonal 
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group; indeed, any H' of one of the given types occurs in a diagram 

(6.50) 

H H', 

where a and a' are isogenies whose kernels are 2-groups; and then, for 
any K-torus Sf of Hf  and any p # 2, the pcomponents of H1(K7 Sf) and 
H1 (K, S) are isomorphic, where S = n((af )-I (Sf)). In this case, S over K 
can be reduced to the form { s = diag(sl, s;', . . . , s,, s;') ), and therefore 
X(T) = Z E ~  Q. @ Z r n ,  where ri(s) = si. In this situation R(S, H)  consists 
of f r i  f ~j (i # j ) ,  and Aut(R(S, H)) consists of the transformations n that 

send ~i to f s j ,  i.e., is the semidirect product A.B, where B = n {f 1) and i=l 

A = Sn acts on ~i by permuting indexes. We saw above that the Galois 
group H = Gal(E/K) of the minimal splitting field E of S can be embedded 
in Aut(R(S, H)); on the other hand, the lemma is equivalent to the claim 
that H1(Hp, S) is trivial for any p # 2, where 'Tip is a Sylow psubgroup 
of H. Put F = En.. Since p # 2, Hp is conjugate in Aut(R(S, H)) to 
a subgroup of A, and therefore there exists a base of X(S) on which H, 
acts by permutation. It follows that S is quasisplit over F and therefore 
H1 (H,, S) = H1 (E/ F, S) = 1. The lemma is proved. 

Now we return to the proof of Proposition 6.21. We need to show that 
H1(A,T)  = 1 for the systems of type E6 and E7, where L&, is a Sylow 
5-subgroup of P. Analysis of the Dynkin diagrams shows that in this case 
R contains a closed subsystem Ro of type D5. We have [W(D5)] = 28 - 
3 - 5; therefore, analyzing the orders given above of W(E6) and W(E7) we 
conclude that any Sylow 5-subgroup of W(&) is simultaneously a Sylow 
subgroup of W(R). It follows that & is conjugate to a subgroup of W (D5), 
which means one can always find a system Ro C R of type D5 which is 
invariant with respect to A. Let H be the subgroup of G of type Ds, 
generated by the root groups G, for a in &. Clearly H is defined over E = 
~ ~ 5 .  Put S = T n H.  Then it follows from Lemma 6.30 that H1(L/E, S) 
is simultaneously a 2-subgroup and a 5-subgroup, and therefore is trivial. 
However T1 = T / S  must either be one-dimensional or two-dimensional. 
Since GL1(Z) and GL2(Z) have no subgroups of order 5, TI is E-split. 
Therefore H1(L/E,Tl) = 1, and we conclude from the exact sequence 
H1(L/E,S) - H1(L/E,T) 4 H1(L/E,Tl) that H 1 ( ~ / E , T )  = 1, as 
desired. 

Any root system of type E8 contains a subsystem of type D7; more- 
over (W(E8)71 = 1 W(D7)71 = 7, and by the analogous argument one can 
establish that H1 (K, T) has no 7-elements. 

A different argument is needed for the groups of type E7. The extended 
Dynkin diagram for the system of type E7 is as follows: 
(6.51) 

(where p is the maximal root; cf. Bourbaki [4, Table 6]), and -p  and 
ai (i # 2) generate a closed subsystem & of type A7. Since I W(E7)71 = 
I W(A7)71 = 7, we may assume without loss of generality that Ra is invariant 
with respect to (37. But then the root groups G, for a in & generate a 
subgroup H of type A7 which contains T,  is defined over E = L", and 
is split over L. Now one can easily see from the description of groups of 
type An (cf. 52.3) that H - SL8 over E, and consequently T is isomorphic 
to the multinorm torus associated with a set P I , .  . . , Pl of extensions of 
K such that z:=,[Pi : El = 8. Since T becomes split over L, the only 
such torus which is not split over E is associated with the extensions L, 
E in the case where [L : E] = 7, and then T - RLIE(Gm).  In all cases 
H'(L/E, T) = 1. This completes the proof of the proposition. 

COROLLARY. Let K be a perfect field and let cdp(K) 5 1 for p = 2.3. 
Then H'(K, GO) = 1 for any simply connected quasisplit K-group Go of 
type E g  or E7. If furthermore cd5(K) 5 1, then also H1(K, Go) = 1 for 
GO of type E8. 

Indeed, by Proposition 6.19, for any [ in H1(K,Go) one can find a 
maximal K-torus T of Go such that [ lies in the image of H1(K, T) -+ 

H'(K, G o )  However, as we have just shown, the order of any element 
of H1(K,T) has the form 2, . 3O for types E6 and E7, and the form 
2" .3" 55 for type E8. But, the conditions on cohomological dimension 
imply that H1(K, T) does not contain any nontrivial elements of this order 
(Lemma 6.20). Thus H1 (K, T)  = 1, and hence H1 (K, Go) = 1. 

Let us apply the corollary to Kn,  where II = {2,3) for types E6, E7, 
and II = {2,3,5) for type E8. (Recall, that for a set II of prime numbers, 
Kn is the field obtained by adjoining to K the n-th roots of unity Cn for 
all n which are divisible only by primes from II; cf. Proposition 6.20.) 
Then cd,(Kn) < 1 for p in II, by Proposition 6.20; and therefore any F 
in H1 (K, Go) becomes trivial over Kn. In particular, there exists a finite 
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abelian extension L/K of degree 2a3fl for types E6, E7, and of degree 
2"3fl5~ for type E8, such that c becomes trivial in H1(L,Go), i.e., lies in 
H1(L/K, Go). One can arrange L/K in a tower L = L, 3 L,-1 3 . . > 
Ll 1 Lo = K,  where each floor Li+1/Li has degree p, p E n. Therefore 
the triviality of H1(K, Go) over a local or totally imaginary number field 
is obtained by iterative application of the following 

THEOREM 6.29. Let Go be a simply connected quasisplit simple group 
of type E6, E7 or E8 over a field K ,  which is either a local or a totally 
imaginary number field. If L/K is a cyclic extension of degree p, where p = 
2,3 for types E6 and E7, and p = 2,3,5 for type E8, then H1 (LIK, Go) = 1. 

Now we shall analyze the cases p = 2,3, thereby completing the proof of 
the triviality of H1 (K, Go) for groups of type E6 and E7. The case p = 5 
for groups of type 4 requires special consideration and will be taken up 
later. We argue by induction on the rank of the group. The induction is 
based on the following 

PROPOSITION 6.22. Hypotheses as in Theorem 6.29, let c E H1(K,Go) 
and let G = 6 0 .  Assume G is K-isotropic and H1(K, H )  = 1 for any 
simply connected semisimple quasisplit K-subgroup H of Go of lower rank. 
Then c = 1. 

PROOF: First we suppose that G is an inner form, i.e., that Go has type 
other than 2E6. Let S be a maximal K-split torus of G, and let T be a 
maximal K-torus of G containing S. Then by Proposition 6.19 there exists 
an embedding T Go defined over K ,  such that C lies in the image of 
H1 (K, T) - H1 (K, Go). The latter map can be factored into the composi- 
tion H1(KIT) I H1(K, Co) 4 H1(K, Go), where Co = ZG,(S); therefore 
it suffices to show that H1 (K, Co) = 1. To do so note that the K-embedding 
T - Go constructed in Proposition 6.19 is induced by a K-isomorphism 
G 4 Go; in particular Co and C = ZG(S) are isomorphic over K. But the 
connected component of the center of C is S, since G is an inner form; thus 
the connected component of the center of Go also is S. Therefore Co = H S  
is an almost direct product, where H = [C, C] is the semisimple part of 
Co, which is a simply connected semisimple split K-group. By hypothesis 
H1(K, H) = 1. But Co/H is a split torus, and therefore H1(K, Co/H) = 1. 
Thus, the exact sequence H'(K, H) - H1(K,Co) - H'(K, Co/H) yields 
H1(K, Co) = 1, as desired. 

For groups of type 'E6 this argument requires slight modification. In 
fact, it suffices to find a K-split torus S of G such that the connected 
component of the center of C = ZG(S) is S. Let So be a maximal K-split 
torus of G and let T be a maximal K-torus of G containing So. Let us 

label the simple roots of R = R(T, G) as follows: 
(6.52) 

and list all the possibilities for the index of G (cf. Tits (2)): 

In case (b) the anisotropic kernel has type D4. But for groups of this type 
Theorems 6.4 and 6.6, and hence also Theorems 6.5 and 6.25, have already 
been proved; therefore such a group cannot be K-anisotropic. In other 
words, case (b) does not occur in the given situation. In the remaining 
cases put S = (Ui+2 ker ai). Since a 2  is a distinguished vertex throughout, 
S is a one-dimensional K-split torus; moreover, the semisimple part H of 
its centralizer C is a simple group of type As, so computation of the ranks 
yields C = HS,  which means that the connected component of the center 
of C is S. The proposition is proved. 

To apply Proposition 6.22 to our situation we need two lemmas. 

LEMMA 6.31. Let G be a simply connected simple group of type E6, E7 
or E8, defined over K and split over a quadratic extension L of K.  Then 
G is K-isotropic. 
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PROOF: Using Lemma 6.23, we choose a maximal L-split K-torus T of 
G. If we assume G is K-anisotropic, then the nonidentity automorphism 
o of Gal(L/K) acts on X(T) by multiplication by -1. It follows that any 
root subgroup G, generated by one-dimensional unipotent subgroups U, 
and U-, is defined over K .  Let F be the subgroup generated by two root 
subgroups G, and Go for two adjacent roots a and /3 in a Dynkin diagram. 
Then F is a simply connected simple K-group of type A2, split over L. 
The description of groups of type A, implies that F = SU3( f ) ,  where 
f is a nondegenerate three-dimensional Hermitian form associated with 
LIK. But since K by assumption is either local or totally imaginary, F is 
isotropic over K (cf. proof of Theorem 6.26), and hence G is K-isotropic. 

LEMMA 6.32. Let G be a simply connected simple group of type E6, E7 
or E8, defined over K and split over L, a cyclic extension of degree 3 of K.  
Then G is either K-isotropic or contains a proper semisimple K-subgroup 
of a type other than All x Al, x . . . x Al, . 
PROOF: Let T be a maximal L-split torus of G, let R = R(T, G) be the 
corresponding root system, and let II C R be a system of simple roots. 
In each of the respective Dynkin diagrams we choose one root, as shown 

Let P denote the standard parabolic L-subgroup PA, where A = l3 \ {a), 
and put C = P n o(P)  n 02(P).  Clearly dim C 2 dim G - 3 codimc P; 
therefore direct computation using the tables of root systems in Bourbaki 
[4] yields the following table: 

Now let us suppose G is K-anisotropic. Then C is reductive, since it is 
defined over K ;  i.e., C = HS,  where H = [C, C] is the semisimple part 
of C and S is its central torus. Let H I , .  . . , Ht be the absolutely simple 
components of H .  We must show that not all the Hi have type A,. We 
shall show that otherwise the estimates of dim C given in the table do not 
hold. Put li = rank Hi, s = dim S, and r = rank G. Then clearly 

moreover 

Let d be the number of Hi's for which li = 1. Then, with (6.54) and (6.55), 
it is easy to obtain the following inequality: 

(6.56) d i m e <  s + 3 d + ( f  -d)2+2(f  -d)  -4(f -d)(t  - d -  1). 

For E6, we have f 5 5 ;  so, in particular, (6.56) should yield 

For 0 < d < 5 we have d2 - 9d 2 -8, hence s 2 3. But then f < 3 and 
s + 3d + (f - d)2 + 2( f - d) < 30. Thus d = 0 and (6.56) assumes the 
form 35 + s - 4t(t - 1) 2 30. If t > 1, then s > 3 and (6.56) narrows down 
to s + 15 - 4t(t - 1) 2 30, which is impossible. Thus t = 1 and the only 
case that satisfies (6.54) furnishes a simple group of type A5 for H. But H 
must be isomorphically embeddible in the semisimple part of P, which is 
a group of type Ds. However a group of type D5 cannot contain a group 
of type As, since I W(As)l = 24 . 32 . 5  does not divide 1 W(Ds)l = 27 . 3  - 5. 

For E7, we have f 5 6; then 

is possible only if d = 0 and s 2 4. But then f < 2 and s + 3d + (2 - d)2 + 
2(2 - d) < 15, contradiction. 

Lastly, for E8, we have f _< 7; then 

has no integral solutions satisfying 0 < s, d _< 8. The lemma is proved. 

Now we conclude the analysis for p = 2,3 in Theorem 6.29. Let < E 
H'(L/K, Go), where [L : K] = p and G = G o .  Consider the case where 
Go has type ' ~ 6 .  If p = 2 then G is K-isotropic, by Lemma 6.31. If p = 3 
and G is K-anisotropic, then by Lemma 6.32 G must contain a semisimple 
K-subgroup H of a type other than All x . .. x Al,. But Theorems 6.4 
and 6.6, and hence also Theorems 6.5 and 6.25, have already been proved 
for simply connected groups of lower rank; hence H is K-isotropic. Thus, G 
is K-isotropic for p = 3 as well; therefore Proposition 6.22 and the validity 
of Theorems 6.4 and 6.6 for groups of lower rank imply that F = 1, i.e., 
H1(L/K, GO) = 1. But, as we have seen, this implies that H1(K, Go) = 1. 
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Now let Go have type 2E6, and let E / K  be a quadratic extension over 
which Go becomes an inner form. What we have already shown implies that 
H1(E, Go) = 1, from which it follows that G = Go, where F E H1(K, Go), 
becomes split over E .  Therefore, G is K-isotropic by Lemma 6.31, and 
J = 1 by Proposition 6.22, i.e., H1 (K, Go) = 1. 

Now we analyze type E7. Since H1 (K, H) has already been proved trivial 
for all quasisplit simply connected groups H of lower rank, Theorem 6.26 
shows that any semisimple K-group of lower rank having type other than 
All x . . . x Alt , is K-isotropic. Therefore, it follows from Lemmas 6.31 
and 6.32 that G = &'o, where J E H1(L/K,Go), is K-isotropic, and by 

K , G o ) = l .  Proposition 6.22 E = 1. Thus, H'(L/K, Go) = 1, implying H ( 
For groups of type E8 the argument is analogous. 

Let us proceed directly to the proof of Theorems 6.4 and 6.6 for groups 
of the E series. 

GROUPS OF TYPE lE6: First we shall show that H1 (K, G) = 1 for any 
simply connected K-group of type 'E6, if K is a local number field or a 
totally imaginary number field. Let J E H1(K, G), and let G1 = &'. Since 
the triviality of H1 (K, Go) has already been established, G and G1 are 
K-isotropic (Theorem 6.26). Let T C G and TI C G1 be maximal K- 
tori containing maximal K-split tori. All the possible indexes for isotropic 
groups of type lE6 are as follows (cf. Tits [2]): 
(6.57) 

In case (a) the anisotropic kernel must have type D4, which is impossible, 
since all groups of this type are K-isotropic. In the remaining diagrams a 2  

is a distinguished vertex (labelling as in (6.52)). Put 

s = (n ker s1 = (n ker a:)o, 
i#2  i#2 

where II = {al7 . .  . , a6) and 111 = {a!, . . . ,a:} are systems of simple 
roots in R = R(T, G) and R1 = R(Tl, GI), respectively. Then there exists 
a K-isomorphism p: G -+ G1 sending S to S1. 

Consider the cocycle 0 = { a ,  = p-lu(p)) in z l (K,  G), where G is the 
corresponding adjoint group, which, as usual, we identie with the group of 
inner automorphisms. Clearly 0 is equivalent to the image of J in Z1(K, G); 
so, replacing C by an equivalent cocycle, one may assume that 0 is precisely 
the image of [. Since S and Sl are K-split, y 1 s:  S + Sl is defined over K ,  
and therefore a, acts trivially on S.  It follows that J E H1 (K, C),  where 

C = Zc(S). But C = HS,  where H is a simply connected simple group of 
type As. Therefore H'(K, H)  = 1, and the exact sequence 

H'(K, H) -+ H'(K, C) -+ H ~ ( K ,  s )  = 1, 

where S = C / H  = S/Sn H is a split torus, yields H'(K, C) = 1, and thus 
J is trivial in H1(K, G). 

It remains to show that the Hasse principle holds for groups of type 1 ~ 6  

over a number field K.  To do so we shall need two lemmas, generalizing 
Lemmas 6.17 and 6.28. Before we formulate them, recall that P ,  a con- 
jugacy class of the parabolic subgroups of G, is said to be reflexive if, for 
P in P, the opposite parabolic subgroup P- also lies in P (cf. Borel-Tits 
[I, $41. Also note that P- n P is the reductive part of P.)  For example, 
all Borel subgroups constitute a reflexive class. 

LEMMA 6.17'. Let G be a semisimple algebraic group defined over an 
arbitrary infinite perfect field K and having a parabolic subgroup Po over 
a quadratic extension L of K such that its conjugacy class P is reflexive. 
Then there exists a parabolic L-subgroup P of G, P E P, such that 
C = Pnu(P)  is the reductive part of P ,  where u is a generator of Gal(L/K) . 
LEMMA 6.28'. Notation as in Lemma 6.1 7, assume in addition that K is 
a number field. If J is a cocycle in Z1(L/K, G) representing an element of 
ker(H1(K, G) - n H1(Ku, G)), then there exists J' in Z1(L/K, C)  

ucv: 
which is equivalent to J in Z1 (LIK, G) and represents an element of 
ker(H1(K, C)  + n H1 (K,, C)). 

VEV: 

The proof of Lemmas 6.17' and 6.28' is completely analogous to that of 
Lemmas 6.17 and 6.28. We leave it to the reader to work out the details 
of the argument, and note only that in proving Lemma 6.28', instead of 
the usual Bruhat decomposition one uses a generalized decomposition (cf. 
Borel-Tits [I,  $51). 

Now let 2 €-k&(H1 (K,  G) + n H1(K,, G)). Put L = K ( a )  It 
VEVE 

has been shown that H1(L,G) = 1, and therefore one may assume that 
J E z'(L/K, G). G is isotropic over L; moreover its index is either (b) or (c) 
in (6.57). Let Po denote the standard parabolic subgroup PA, where A = 
II\{a2, a,), notation as in (6.52). Since { a 2 ,  a d )  is invariant with respect to 
the symmetries of the Dynkin diagram, the conjugacy class of Po is reflexive 
(cf. Borel-Tits (1, $4.91). The semisimple part of Po is a simply connected 
semisimple group of type A2 x A2, and the simple components correspond 
to the systems {al ,  a3) and {as, as). Using Lemma 6.17' we can find 
a parabolic L-subgroup P of G which is conjugate to Po and for which 
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C = Pno(P) is the reductive part of P .  By Lemma 6.28', I can be replaced 
by an equivalent cocycle in Z1(L/K,G), such that < E ker(H1(K,C) + 

n H1 (K,, C)). To prove I trivial we construct a certain semisimple K- - - 
VEV,K 

subgroup of G containing C. To wit, let H = [C, C] be the semisimple part 
of C. Then we see from analysis of the extended Dynkin diagram 

of the system of type E6, where p is the maximal root (cf. Bourbaki 14, 
Table 5]), that the centralizer B = Zc(H) is a simply connected simple 
group of type A2 corresponding to the system {a2, p} .  Put D = HB. 
Clearly C c D, and therefore the proof is completed by 

LEMMA 6.33. If J E H1(L/K, D) and 

then J = 1 in H1(L/K, D). 

PROOF: Put F = H n B and consider the commutative diagram 

corresponding to the universal covering 1 + F -+ H x B 4 D -t 1. 

Clearly a3(C) lies in the kernel of H2(K,  F) % H2(L, F).  Using the 
map Cor: H2(L, F )  -+ H2(K, F )  and the fact that Cor o Res coincides with 
multiplication by [L : K] = 2, we obtain that a3(I) = 1, since IF1 di- 
vides IZ(B)l = 3. Then 6 = a2((), where ( E H1(K, H x B). We have 

,&(%(C)) = %(a2(()) = 1, so yz(() E imB1. But again, by the fact 
that IF( divides 3 and [Gal(K,/K,)] 5 2 for v E V z ,  we obtain that 
H' (K,, F) = 1, i.e., im Dl = (1). Therefore ( E ker h and hence ( = 1, 
since the Hasse principle has already been proved for groups of type A2. 
Finally, 5 = a2(() = 1, and the lemma is proved. 

GROUPS OF TYPE 2Eg: If K is a local field, then by Proposition 6.15 any 
K-group G of type 2E6 is quasisplit, i.e., G 1. Go, since H ~ ( K ,  Go) has 
already been proved trivial. But then H1(K, G) = H1(K, Go) = 1. 

The proof of the triviality of H1(K, G) for a totally imaginary number 
field K is analogous to the respective argument for lE6. Indeed, the triv- 
iality of H1(K, GO) implies that G is K-isotropic (Theorem 6.26). Then 
its index is one of those indicated in (6.53); moreover, as we noted in the 
proof of Proposition 6.22, case (b) does not occur over a totally imaginary 
number field. In the remaining cases a 2  is a distinguished vertex. The 
argument continues as in the case of type ' ~ 6 .  

The Hasse principle can also be proved similarly to the case of ' ~ 6  if one 
knows that the index of G over a totally imaginary number field L must 
be one of the following: 

i.e., a 2  and a s  must be distinguished vertices. We shall now prove this. 
Let So denote the two-dimensional L-split torus (ni,2,4 ker ai)' of Go, let 
C be its centralizer in Go, and let H = [C, C] be its semisimple part. Put 
H = a(H) ,  where a :  Go - Go is an isogeny on the adjoint group. Since G 
is obtained from Go by twisting using a cocycle 8 in H1(L, Go), it suffices 
to show that H1(L, H) -t H1(L, Go) is surjective. It is easy to show that 
the center Z of Go is contained in H .  We have the commutative diagram 
with exact rows 

By Theorem 6.20, a 2  is surjective. It follows that for a given 13 in H1 (L, Go) 
there is a ( in H1(L, H) such that P2(8) = &(72(()). But since the triv- 
iality of the cohomology of simply connected groups of type 2E6 over a 
totally imaginary number field has already been proved, ,B2 is injective by 
a twisting argument. Therefore 8 = 72((), as desired. 
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GROUPS OF TYPE E7: Since H'(K,Go) = 1, then by Proposition 6.16, 
for any K-group G of type E7 there is a quadratic extension L/K, totally 
imaginary in the case of a number field, over which G becomes split. With 
Lemma 6.17 we find a Borel L-subgroup B of G such that T = Bno(B)  is a 
maximal K-torus of G, split over L (where a is the generator of Gal(L/K)). 

Let us show that T is K-anisotropic, i.e., that o acts on X(T) by multi- 
plication by -1. Indeed, since B n o(B) = T, it follows that o translates 
the positive roots of R(T, G) associated with B to negative roots. But since 
the Dynkin diagram has no nontrivial symmetries, the only automorphism 
with this property is -1. It follows that any root subgroup G, is defined 
over K ,  and hence H constructed in the proof of Proposition 6.21, a simply 
connected subgroup of G of type A7 containing T,  is also defined over K. 

Now let f E H1(K,G), where K is a local field. Since G 2. Go over L, 
it follows that H1(L, G) = H1(L, Go) = 1, and therefore f E H1(L/K, G). 
By Lemma 6.28 there exists a cocycle f' in H1(L/K, T)  which is equivalent 
to f .  But since Theorem 6.4 has already been proved for H ,  the composite 
map H1(K,T) 4 H1(K, H) -+ H1(K, G) is trivial and f = 1. 

For K a number field, take f in ker(H1(K,G) -+ n H1(KV,G)). As 
v€V,K 

above, one can prove that J E H1(L/K, G); so by Lemma 6.28, replacing 
f by an equivalent cocycle, we may assume that 

Then, applying Theorem 6.6 for H ,  we conclude that J = 1. 

GROUPS OF TYPE Es: For groups of this type we actually need only con- 
sider the case p = 5 in Theorem 6.29, since H1(K, G) = 1 over a local or 
totally imaginary number field K. It follows that any group G of type E8 
over such a field splits; one concludes from this that H1(K, G) = 1 for all 
G. The Hasse principle can then be derived exactly as in the case of E7. 

So, let L be a cyclic Galois extension of degree 5 over a local or a totally 
imaginary number field K ,  and let Go be a simple split K-group of type 
E8. Our objective is to show that H'(L/K,Go) = I. Let E denote the 
compositum of all the finite solvable Galois extensions of K having degree 
of the form 2,30 (a maximal solvable {2,3) extension of K ;  note that any 
group of order 2,30 is solvable (Burnside's theorem), so one could actually 
omit "solvable"). It suffices to show that H1(LE/E, Go) = 1, since then 
any f in H1(L/K, Go) lies in H1(E/K, Go) and hence in H1(P/K, Go) for 
some finite solvable extension P / K  of degree 2"30. There exists a tower 
P = Po > P I . .  . > Pn-1 3 Pn = K ,  every floor P,IPi+1 of which is a cyclic 
extension of degree 2 or 3. But the cases p = 2,3 in Theorem 6.29 have 

already been considered; applying this theorem to each floor in turn, we 
obtain that H1(P/K, GO) = 1, which means ( = 1. In this manner we shall 
prove the triviality of H1(L/E, Go), where L I E  is any cyclic extension of 
E of degree 5. We shall need the following property of E (for which we 
actually have to pass from K to E): E has no extensions of degree 2, 3, or 
4; in particular, if a E E, then ,hi, $6 E E .  The following theorem plays 
a key role in the proof. 

THEOREM 6.30 (CHERNOUSOV [6]). Let G be an anisotropic group of 
type Es defined over E and split over a cyclic extension L of E of degree 5. 
Then G has a proper semisimple E-subgroup H which is isotropic over L. 

PROOF: Let o be a generator of Gal(L/E). We shall establish the existence 
of a onedimensional unipotent subgroup U = U, corresponding to a root 
a in R(T, G) with respect to a suitable maximal L-split torus T of G such 
that the subgroup Ho of G generated by oi(U) (i = 0,1,2,3,4) is proper. 
Such an Ho is obviously defined over E and, in particular, is reductive 
since G is E-anisotropic. By construction, Ho over L contains unipotent 
elements; therefore Ho does not reduce to a torus and its commutator 
subgroup H = [Ho, Ho] is the desired group. 

To verify that Ho # G, we shall show that its Lie algebra ho = L(Ho) 
is distinct from g = L(G) To do so note that since char K = 0, ljo is 
generated as a Lie algebra by oi(X), (i = 0,1, 2,3,4), where X E L(U)r 
is any nonzero element (cf. Borel [8, 571). Therefore our task reduces to 
finding X in g~ that generates the Lie algebra of some root unipotent 
subgroup U and for which the subalgebra of g generated by oi(X) (i = 
0,1,2,3,4) is proper. We call the elements satisfying the first condition 
root elements; more precisely, X in g~ is a root element if there exists a 
maximal L-split torus T of G such that X is an eigenvector with respect 
to AdT, i.e., Ad(t)(X) = a( t )X for suitable a # 1 in X(T) and all t in T. 
If X # 0, then a turns out to be a root of G with respect to T,  and the 
one-dimensional space spanned by X has the form L(U,), where U, is the 
unipotent root subgroup corresponding to a .  Thus, it suffices to find a 
nonzero root element X in g~ all of whose translations oi(X) generate a 
proper subalgebra of g. 

We begin by establishing some properties of root elements needed later 
on. Let X E L(U,)L, where a E R = R(T, G). Since all the roots in a 
system of type E8 have the same length, without loss of generality we may 
assume that a is the maximal root under the ordering associated with a 
given system of simple roots II C R. Let { Ha, a E II; X,, a E R ) be a 
Chevalley base of gr  (cf. 52.1.13). Then [X,, X-,I = H,, [X,, Xa] = 0 or 
&X,+B, and the maximality of a implies that for any Y in g~ the expression 
[X,, [X,, Y ] ]  is proportional to X,. Since X in turn is proportional to X,, 
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we see that for any Y in g~ we have 

for suitable (X, Y) in L (putting (X, Y) = 0 if X = 0 )  This property of 
root elements is crucial in later computations. It is easy to see that (X, Y) 
is linear in the second argument. Now suppose that both X and Y are root 
elements of g ~ .  Then, multiplying the equations 

on the left by Y and X respectively, and using 

which follows from the Jacobi identity, we easily obtain that (X,Y) = 
(Y, X).  Thus (X, Y) is linear in X ,  for a root element Y, where X runs 
through a linear space consisting of root elements. 

Let us establish several other properties of root elements. 

LEMMA 6.34. Let X ,  Y, Z E g ~ ,  where X is a root element. Then 

(1) The following identities hold: 

(6.60) 2[X, [Y, [Z, XI]] = ( x ,  z )  [x, yl+ 

(2) If [X, Y] = 0 then (X, [Y, Z]) = 0. 

PROOF: The Jacobi identity implies that 

(6.61) [[X1z].[X,Y11 = [Yl[X7[x7zlIl - 
- - 

Analogously, one obtains that 

[X7 [yl [X7 zlll 
(X, Z)[Y, XI + [X, [Y, [Zl XIII. 

Moreover, 

(6.59) and (6.60) follow easily from (6.61)-(6.63). If [X, Y] = 0 and X # 0, 
then (2) follows immediately from (6.59). The lemma is proved. 

The point of departure for finding the requisite root element X in g~ is 

PROPOSITION 6.23. Let X be a root element ofgL such that [X, a(X)] = 0. 
Then the subalgebra tjo of g generated by the ai(X) (i = 0,.  . . ,4)  has 
dimension 5 25, and therefore is proper. 

PROOF: Put Xi = u ~ ~ - ~ ( X ) .  Then bo is generated by the Xi; furthermore 
[X, a(X)] = 0 implies that [Xi, Xj] = 0, except when i = 3 1 1 (mod 5). 
For the sake of simplicity put 

where 1 5 i t  5 5, 1 5 I 5 s; we call such an expression a monomial of 
length s. Clearly 40 is the linear space spanned by all possible monomials. 
A monomial is said to be reducible if it is a linear combination of mono- 
mials having strictly smaller length. Also, (il, . . . , il) is called a standard 
monomial if i h + l  s ih + 1 (mod 5), h = 1, . . . ,1- 1. There are 5 standard 
monomials of any given length; therefore there are 25 standard monomials 
of length I 5. Thus, the estimate given for the dimension of tjo is obtained 
from the following two assertions: 

(*) any monomial of length 5 5 is a linear combination of standard 
monomials; 

(**) any monomial of length 6 is reducible. 

To prove (*) consider a monomial m = (il, . . . , il) of length 1 5 5, and 
suppose that (*) has already been proved for monomials of smaller length. 
Then we may assume (iz,. . . , il) is a standard monomial; without loss of 
generality we can suppose that ih = h, for 2 2 h 5 1. If il  = 1, then m 
is standard. If i 2  = 2, then it follows from the basic properties of root 
elements that m is proportional to Xi,, and there is nothing to prove. If 
2 < il 5 1, then using the fact that [Xi, Xj] = 0 for i $ j f 1 (mod 5) and 
the Jacobi identity, it is easy to show that 

and the reducibility of this monomial follows from (6.60). If il  = 1 + 1, 
t h e n m =  (1+112 ,... , l )  = (2 ,... , l  - l , l + l , l )  = -(2,. . .  , l  - l , l , l +  1) 
is a standard monomial. Lastly, if il > 1 + 1, then m = 0. 

To prove (**) it suffices to establish that (i, 1,2, . . . ,5) is reducible, which 
can be done by a similar argument. The proposition is proved. 

The most technically intricate part of the proof of Theorem 6.30 is to 
construct a nonzero root element X of g~ for which [X, a(X)] = 0. To do 
so, first one constructs a root element Y in g~ satisfying the following: 
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If in addition [Y, o(Y)] = 0, then X = Y is the desired element. If not, put 
X = [Y, o(Y)]. Then (6.64) and (6.59) imply that 

It remains to show that X is a root element. 

LEMMA 6.35. Let X and Y be root elements of gL. There exists a maximal 
L-split torus T of G such that both X and Y are eigenvectors with respect 
to Ad T.  In addition, if (X, Y) = 0 then [X, Y] is also a root element. 

PROOF: Let Tx be a maximal L-split torus of G, such that X is an eigen- 
vector for AdTx. We saw above that without loss of generality we may 
assume X to be proportional to Xa, where a E Rx = R(Tx, G) is the max- 
imal root with respect to the ordering on Rx given by a system of simple 
roots Itx. Let Bx = TxUx be the Borel subgroup corresponding to IIx. 
Since a is maximal, the unipotent part of Ux centralizes X ,  and therefore 
X is an eigenvector for Ad B x  Similarly, we can find a Borel subgroup 
By of G such that Y is an eigenvector for Ad By. Then Bx n By contains 
a maximal torus T of G, which is the desired torus. 

Let X E L(Ua), Y E L(UII), where a, 4 E R(T,G). If 4 # -a, then 
either [X, Y] = 0 or a + 4 is a root and [X, Y] E L(Ua+~).  We claim that 
4 # -a if (X,Y) = 0. Indeed, if 4 = -a, then [X,Y] is proportional to Ha 
and nonzero. Then [X, [X, Y]] = cX, where c = (X, Y) # 0, contradiction. 
The lemma is proved. 

The proof of the theorem is completed by 

PROPOSITION 6.24. There exists a nonzero root element Y in g~ satisfy- 
ing (6.64). 

PROOF: First we show how to find a root element Z in g~ satisfying the 
first condition of (6.64). To do so, temporarily fix a maximal L-split torus 
T of G, a root system R = R(T7 G), and a system of simple roots II = 
{al, . . . , a s  }, and let p in R be the corresponding maximal root. Recall 
that the extended Dynkin diagram here appears as follows: 

The elements X*,, a E { ai : i # 2 } U { p } ,  generate a subalgebra bL of 
g~ of type Ag. Identifying b~ with the Lie algebra sIg(L) of matrices in 
Mg(L) with zero trace, we see that br. contains an &dimensional subspace 
V consisting entirely of root elements (for example, the subspace 

note that since b and g have the same rank and the elements of V are 
obviously root elements of b ~ ,  these elements will also be root elements of 
g ~ ) .  We show that there exists an element Z in V \ (0)  such that 

Since V is 8-dimensional over L, it has dimension 40 over E .  In this re- 
spect, (6.59) is equivalent to a system of five homogeneous quadratic equa- 
tions for the E-coordinates of Z. Therefore the existence of a nonzero Z 
satisfying (6.65) is a consequence of the following straightforward assertion: 

EXERCISE: Let f l , .  . . , fi be quadratic forms in n variables, with coeffi- 
cients from E .  If n > ;1(1+ I), then fl (x) = . . . = fl(x) = 0 has a nonzero 
solution over E .  (Proof is by induction on 1 and uses the feasibility of 
extracting square roots of elements of E.)  

Fix a nonzero root element Z in g~ satisfying (6.65). To construct a root 
element Y in g~ satisfying both equalities in (6.64) one must reconstruct 
the original T.  Namely, by Lemma 6.35, passing to another torus, one may 
assume that Z and o(Z) are eigenvectors with respect to AdT, i.e., that 
they generate algebras L(Ua) and L(Up) for suitable roots a ,  ,Ll t R(T, G). 
If [Z, o(Z)] = 0, then the Jacobi identity implies that [o(Z), [Z, u2 (Z)]] = 0, 
and Y = Z is the desired element. Therefore, henceforth we shall assume 
that [Z, u(Z)] # 0. Then, in view of (6.65), we obtain 4 # -a, and hence 
a + 4 is also a root. 

We have already noted that one can choose a subsystem II of R(T, G) of 
simple roots such that a is the maximal root with respect to the correspond- 
ing ordering. We show that by changing II one can also satisfy /3 = -a8, 
where 11 = { a,, . . . , as }, with the roots labelled as above. To do so, 
consider the set {h} of all systems of simple roots h c R(T, G) in which 
a is the maximal root, and make the choice of II subject to the condition 
htn /3 = maxa ht= 8, where htn /3 = ni is the height of 4 = niai with respect to II = { a l ,  . . . , a g  }. Since a + 4 is a root and a is maximal, 
0 must be negative. However, if y t { 01,. . . , a 7  }, then necessarily the 
scalar product (7 . 4 )  t 0, since otherwise the height of 4 with respect 
to II' = wT(II) E {fi} (where w, is the corresponding reflection) would 
be greater than htn P. It is clear from the description of the root system 
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of type E8 (cf. Bourbaki (4, Table 71) that P = 6 - as ,  where 6 is a lin- 
ear combination of al, . . . ,a? with non-positive integral coefficients. Then 
(p.p) = (6.6) -2(6.a8)+ (a8'a8), from which it follows that (6.6) = 2(6.as) 
since (Pep) = (asas) ;  therefore (6.6) = (6.P+a8) = (6.P)+(6.at3) 5 1(6.6), 
implying finally (6 .6) = 0, i.e., 6 = 0, as desired. 

Thus, replacing Z by a proportional element, one can assume that Z = 
X,, where a is a maximal root, and o(Z) = cX-,,. 

LEMMA 6.36. There exists a Gdimensional subspace W of g~ such that 
LZ+ W consists of root elements and for any S in W the following relations 
hold: 

(2,  a(S)) = (S, 4 s ) )  = 0 
(6.66) [Z, S] = [Z, a(S)] = 0. 

PROOF: Let Wl denote the subspace of g~ spanned by 

dimWl = 6. If, as above, we identify the algebra of type A8 generated 
by X-, (7 E {ai : i # 2 )  U {a)) with slo(L), we can easily show that 
LX-,, + Wl consists of root elements. The relations for elements of a 
Chevalley base yield the following properties: 

Put W = a-'(W1). Then LX, + W consists of root vectors. All the 
relations in (6.66) follow from (6.67) except for (S, o(S)) = 0 for S in W. 
But [X,, Sl] = 0 for any Sl in Wl, according to (6.67). Therefore, applying 
Lemma 6.34(2), we obtain (Sl , [X, , gL]) = 0. But now (6.67) implies that, 
[X,, gL] contains W, therefore (Wl, W) = 0, whence (W, o(W)) = 0. The 
lemma is proved. 

With the properties of W given above, it is now easy to finish construct- 
ing the desired nonzero element Y, satisfying (6.64). First we find a nonzero 
S in W satisfying the following: 

The S in W satisfying (6.68) form a subspace of dimension >_ 4 over L, 
i.e., dimension 2 20 over E .  In this respect, (6.69) is equivalent to a 

system of 5 homogeneous quadratic equations for the E-coordinates of S. 
Therefore, again applying the assertion in the exercise, we obtain the exis- 
tence of S. Furthermore, we may assume that z = (a(Z), (2, 02(Z)]) # 0, 
s = ( 4 S ) ,  [S7 a2(S)1) # 0. 

Let us put q = -2s-', r = VNL/E(Q) E E, and t = rqo3(q), and show 
that Y = Z + t S  is the desired root element. 

We have 
(Y, a(Y)) = ( Z  + tS, a (Z)  + a(t)a(S)) = 0 

by conditions (6.66) and (6.68). To avoid cumbersome notation in comput- 
ing 

note that by Lemma 6.34(2) and (6.66), all the terms vanish except for 

and 

(ff(S17 IS, a2@)1); 

moreover, these last two terms also vanish by virtue of conditions (6.68) 
and (6.69). It follows that y = z - ta(t)a2(t)s = 0. This completes the 
proof of Proposition 6.24, and along with it Theorem 6.30. 

We now proceed directly to proving that H1(L/E, Go) is trivial. Take 
any < E H'(L/E, Go), and let G = F o .  If G is isotropic over E, then by 
applying Proposition 6.22 and bearing in mind that Theorems 6.4 and 6.6 
have been proved for all groups except type E8, we obtain < = 1. Therefore, 
below we can (and shall) always assume that G is E-anisotropic. Then, by 
Theorem 6.30 there exists a proper semisimple subgroup H of G which is 
L-isotropic and defined over E .  Without loss of generality, we may assume 
that H is E-simple. Then H is isogenous to a group of the form RPIE(F). 
Since Theorem 6.29 has been proved for all groups except those of type E8, 
it follows that F belongs to type A, because G is E-anisotropic. Since by 
construction E does not have any extensions of degree 5 4, a priori the 
only possible cases are: 

(1) [P : El > 5, n = 1; 
(2) P = E .  

In view of the fact that H is E-anisotropic and L-isotropic, it is easy to 
show that actually the only possible case is P = E, n = 4, i.e., H is a simple 
group of type A4. Since E has no quadratic extensions, H automatically is 
an inner form; in other words, H = SL1 (D), where D is a skew field over 
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E of index 5. Moreover, D @E L e M5 (L), so L embeds in D as a maximal 
(1) subfield. Let T1 = RLIE(Gm) be the corresponding norm E-torus of G. 

Since G is L-split, the centralizer C1 = ZG(Tl) is also an L-split E-group. 
If the semisimple part H1 = [C1, C1] is nontrivial, then by applying the 
same argument as we used for H we can establish the existence of a torus 

(1) 
T2 of HI having the form T2 = RLIE(Gm). Then T = T1T2 is an L-split 
E-torus of G. On the other hand, if H1 = 1, then T = C1 will be such a 
torus. 

By Proposition 6.19 there exists an E-embedding T + Go such that ( 
lies in the image of cp: H1(E,T) -+ H1(E7Go); therefore the proof that 
H1 (L/ E, Go) is trivial is completed by 

PROPOSITION 6.25. cp is trivial. 

PROOF: For each root a in R = R(T, G), let G(a) denote the subgroup of 
G generated by the root subgroups Got(,) (i = 0,1,2,3, 4). We claim that 
G(a) is a simply connected simple E-group of type A4. It is easy to see that 
T(a )  = TnG(a)  is a maximal torus of G(a) and R(T(a), G(a)) is precisely 
the subsystem C, of R of all the roots that are integral linear combinations 
of o i (a)  (i = 0,1, . . . ,4). Since T is E-anisotropic, a + o ( a ) +  - .+04(a) = 
0, and hence rank C, 5 4. On the other hand, o induces an automorphism 
of C, of order 5. But the only root system of rank 5 4 having this property 
is A4. In the proof of Proposition 6.24 we showed that any two roots a, /3 
in R for which a + /3 E R are respectively the maximal root and -as with 
respect to a suitable base. By an analogous argument it is easy to show 
that, in a suitable base TI c R, G(n) is the group generated by the root 
subgroups G,, where 7 E { as ,  a i ,  , p } and p is the maximal root. It 
follows that G(a) is simply connected. 

Now form the direct product To = n T(a) ,  and consider the map 
aER 

80: H'(E, TO) 4 H1(E,T) induced by 8,: H1(E,T(a))  4 H1(E,T). Later 
we shall show that 80 is surjective, but meanwhile we use this fact to 
complete the proof of Proposition 6.25. n 

Let F E H'(E, T) and write F = n 8,,(&), where ti E H1(E, T(ai)).  
i=l 

We argue by induction on n. If n = 1, then ( = 8,. (&), and < E 

H1(E,G(al)) = 1. In general we shall use our familiar procedure of 
componentwise trivialization of C. Namely, since H1 (E,  G(an)) = 1, 
we have Fn = {a,), where a, = g-lr(g) for r E G ~ ~ ( E / E )  and suit- 
able g in G(an). Consider the torus T = 9 ~ g - l  and the isomorphism 
$:T + T' given by $(z) = 9x9-'. In view of the fact that 9-'r(g) E 
T ,  it is easy to show that T and $ are defined over E .  Put (' = 

$ 8  ( )  . . . O.,, - 1 E H1 (E, T'). One can immediately verify that 

C = gF~(9)-'7 and therefore it suffices to establish that <' is trivial. 
<' = $'(e~(b)) .. $(@an-l(Fn-l)), and moreover $'(Bat(&))  E 

@a:(H1(E,T'(aj))) where a: = $(ai), SO the triviality of <' follows from 
the induction hypothesis. - - 

To prove $ surjective we give a method of computing H1(L/E, S) for an 
arbitrary E-anisotropic L-split torus S in terms of the group cohomology 
of the group of one-parameter subgroups X.(S). 

LEMMA 6.37. The isomorphism X.(S) @ L* - SL and the cupproduct 
induce an isomorphism 

PROOF: Put r = (o) and let E denote the element 1 + o + . . + o4 of the 
group ring Z[r]. Now take the I'-module I = Z[r]/Z&. First we handle the 
special case X. (S) = I .  The module X. (S) occurs in the exact sequence 

where [E]  denotes multiplication by E ,  and S is a term in the exact sequence 

1 -+ Gm -t RLIE(Gm) + S -+ 1. 

These sequences yield the isomorphisms 

H'(L/E, S) - H~(L/E, L*), 

B-~(L/E ,  I )  - BO(L/E, Z) = Z/5Z, 

which can be combined in the commutative diagram 

Since the bottom row is obviously an isomorphism, as is also an isomor- 
phism. 

Thus it follows that as is an isomorphism in the case X.(S) = I n .  
However I can be identified with the ring Z[G] (where 6 is a primitive 
5-th root of unity) which is a principal ideal domain. But for any E-  
anisotropic torus S we have E X ,  (S) c X,(S)Gal(L/E) = (0 ) ,  so X, (S) can 
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be viewed as a module over Z[~?]/ZE = I -- Z[&], and therefore X,(S) has 
the form X,(S) = Z[k5ln = In, proving the lemma. 

The lemma shows that to prove 190 surjective it suffices to establish that 
H-'(LIE, X,(To)) -+ H - ~  (LIE, X,(T)) is surjective. But by definition 
a - l (L /E ,  X) = ker Nl(1 - o)X, where NX = EX is the norm map. There- 
fore, for the E-anisotropic torus S we have 

hence, in our case, everything follows from the surjectivity of the map 
eaERX, (T(a))  + X, (T), which is self-evident. Q.E.D. 

This completes the proof of Theorems 6.4 and 6.6. 

The validity of Theorem 6.6 for groups of type E8 remained an open 
question for a long time. Theorem 6.30, which made it possible to com- 
plete the proof of Theorem 6.6, was obtained by Chernousov [6]. (Initially, 
Chernousov, in collaboration with Premet, tried to show that in fact any 
five root elements in the Lie algebra of type Es must generate a proper 
subalgebra; however, it turned out that five root elements in the generic 
position do generate the full algebra. Subsequently, Chernousov found the 
conditions on a root element X under which the subalgebra generated by 
ai (x) (i = 0, . . . ,4) (notation as in the proof of Theorem 6.30) is proper, 
and then showed that these can be realized over a certain extension of the 
ground field. Ubdoubtedly, the argument given above was influenced to 
some extent by the initial joint work of Chernousov and Premet, which 
eventually did not prove successful. Note that Premet claims he was able 
to obtain some steps of the proof independently.) Theorem 6.4 for groups 
of type E8, however, was known earlier (Kneser 191). The crucial difference 
between the local case and the global one lies in the existence of the local 
Nakayama-Tate duality, which, combined with a detailed analysis of sub- 
groups of the Weyl group, makes it possible to prove Proposition 6.25 for 
practically any torus, not only for the special tori which we have used. 

BIBLIOGRAPHICAL NOTE: Much of the material set forth in s56.24.3 is 
traditional (cf. Bore1 [8, $161, Voskresenski? [3, Ch. 61); and practically all 
of 56.4 is taken from Borel-Serre [I]. In contrast, this is the first complete 
exposition of results on precise computation of the cohomology of semisim- 
ple groups over local and number fields. The triviality of H1(K, G) for sim- 
ply connected groups over a local field was established by Kneser [9]. In his 
lectures [12] he showed that Theorems 6.4 and 6.6 for the classical groups 
are equivalent to the well-known results on the properties and classification 
of quadratic, Hermitian, and other forms. (Since these results can be ob- 
tained without using cohomological techniques, we thereby obtain a proof 

of Theorems 6.4 and 6.6 for the classical groups.) Our exposition uses only 
one result from the theory of quadratic forms-the Minkowski-Hasse theo- 
rem. We must also point out certain modifications in the proof of the Hasse 
principle for groups of type 2An7 based on using the multinorm principle. 
Theorem 6.6 for the exceptional groups, excluding type Es, was obtained 
by Harder [I], 12); the case of type Es was analyzed by Chernousov 16). 
(Note that for global function fields the triviality of H1(K, G) for semisim- 
ple simply connected groups of all types was established by Harder [ll].) 
Several of the results on Galois cohomology are contained in Sansuc [I]. We 
did not take up the question of Galois cohomology of finite commutative 
groups, which are described by the Poitou-Tate theorems (cf. Serre [I]). 
A detailed exposition of these results may be found in a recent book by 
Milne [2]. 

In studying cohomology of semisimple groups we repeatedly used some 
results on approximation in algebraic groups and varieties, which will be 
treated in detail in the next chapter. Here we provide a complete list of 
these results: 

(1) weak approximation for varieties of tori; 
(2) weak approximation for spheres defined by quadratic, Hermitian, 

and other forms; 
(3) weak approximation for any torus with respect to S = vZ; 
(4) the surjectivity of H'(K, T) - H1(K,, T) for any torus T; 
,- \ v€VE 
(5) strong approximation for G = SL,(D). 

The reader may verify that these results do not rely on any results from 
Galois cohomology of semisimple groups, and therefore it was permissible 
to use them in this chapter. 



7. Approximat ion 
in Algebraic Groups 

This chapter is concerned with the quantitative aspect of the local-global 
principlethe question of when the elements of local groups GK, and their 
products can be approximated with any given accuracy by the elements of 
GK. When such approximation is feasible, G is said to have weak approx- 
imation. Although this concept is meaningful for any field K, naturally 
we shall concern ourselves primarily with number fields (note, however, 
the remark at the end of 57.3). In contrast, strong approximation (i.e., 
approximation using elements which in addition satisfy certain integral 
conditions) applies only to global fields. We shall define weak, as well as 
strong, approximation for arbitrary algebraic varieties, although the most 
substantial results on approximation have been obtained so far only for 
algebraic groups. The existing methods are essentially based on analysis 
of the group structure on the set of rational points; therefore, before our 
exposition of approximation results, we discuss the well-known Kneser-Tits 
hypothesis on isotropic groups (cf. 57.2). Note, also, that beginning with 
this chapter the "synthetic" nature of the arithmetic theory of algebraic 
groups will become clearer still, both vis-&vis basic ideas as well as appli- 
cations. In particular, this chapter uses most of the results of the previous 
chapters. 

7.1. Strong and weak approximation in algebraic varieties. 
Let X be an algebraic variety defined over a number field K. The possi- 

bility of arbitrarily close approximation of the elements of the local spaces 
XK, by the elements of XK actually means that XK is dense under em- 
bedding in certain topological spaces constructed from XK,. Thus, from 
the topological point of view, it is natural to consider the topological direct 
product X = n XK, or a part of it, Xs = n XK,, where S is a subset 

V € V K  VES 

of VK; whereas, from the arithmetic point of view, one should look at the 
space of S-adeles XAs with its appropriate topology (cf. $5.1). In both 
cases there is a natural diagonal embedding XK L-' X (XK -+ XS) and 
XK L-' X A ~ .  With this terminology, we introduce the following 
DEFINITION: 

(1) We say that X satisfies the weak approximation property (resp. weak 
approximation with respect to S C v K )  if the diagonal embedding 
XK - X (resp., XK -+ XS) is dense. 

(2) X satisfies the strong approximation property with respect to a finite 
subset S of vK if the diagonal embedding X K  L-' XAs is dense.l 
- - -- 

I Note that when X is an algebraic group one may say equivalently that X s X K  must 
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When S = V: one speaks of absolute strong approximation. 

We begin by describing the functorial properties of these concepts. 

(1) If X and Y are biregularly isomorphic varieties over K ,  then either 
both have strong (resp., weak) approximation, or neither have. 

(2) If X = X I  x X z  over K ,  then the existence of strong (resp., weak) 
approximation in X is equivalent to the existence of the same type 
of approximation in both factors. 

(3) If X = R L I K  (Y ) ,  then the existence of strong (resp., weak) approx- 
imation in X over K with respect to a subset S of V K  is equivalent 
to the existence of the same type of approximation in Y over L with 
respect to the subset s of vL consisting of all the extensions of 
valuations from S. 

The proof follows from the existence of natural homeomorphisms be- 
tween the spaces involved in the definition of approximation. For example, 
X s  E Ys under the conditions of (I) ,  and X s  -. YS for any S c vK under 
the conditions of (3). (We leave it to the reader to work out the details.) 

It should be noted that for the case X = A1 the definitions given above 
pass to the classical definitions of strong and weak approximation for K. 
In particular, Proposition 7.1 (2) and the relevant approximation theorems 
(cf. Theorems 1.4 and 1.5) imply that the affine space An has weak approx- 
imation and strong approximation with respect to any nonempty S.  Since 
the variety of any unipotent K-group U is biregularly isomorphic over K 
to An, where n = dim U ,  parts (1) and (2) yield 

COROLLARY. Let G = HR,(G) be the Levi decomposition of a connected 
group G. The existence of strong (resp., weak) approximation for G is 
equivalent to the existence of the same type of approximation for H .  

For convenient reference we now present several elementary facts about 
strong and weak approximation. 

(1) The existence of weak approximation in X with respect to an arbi- 
trary subset S of V K  is equivalent to the existence of weak approx- 
imation with respect to all finite subsets S' of S .  

(2) X satisfies strong approximation with respect to a finite subset S of 
vK if and only if, for each finite subset T of V K  containing S U vZ, 

be dense in X A .  
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the set of T-integral points is dense in XT\S (under the di- 
agonal embedding). In particular, if G has strong approximation 
with respect to S, then it has weak approximation with respect to 
vK \ S. If X is projective, then also the converse is true: weak 
approximation with respect to vK \ S implies strong approximation 
with respect to S .  

(3) If X satisfies weak (resp., strong) approximation with respect to an 
arbitrary (resp. finite) subset S of vK, then X satisfies the same 
type of approximation for any S1 c S (resp., finite S1 > S). 

(4) If X satisfies weak approximation with respect to S, then any open 
K-subvariety U of X also has weak approximation with respect to S .  

PROOF: (1) follows from the definition of the topology on the direct prod- 
uct. 

To prove (2) recall that a base of open sets in XAs consists of sets 
of the form W = n U, x n Xu,, where T is a finite subset of V K  

VET\S u@T 

containing S U V Z  and U, is an open subset of XK,, for v in T \S .  Therefore 
strong approximation for X with respect to S amounts to the condition 
X K  nW # 8 for such W, which, obviously, is equivalent to xu(Tlfl n U, 

VET\S 
being nonempty, i.e., to Xu(T) being dense in XT\S. In 53.1 we saw that 
Pg, = P;, for all v in V F ;  therefore for any realization of a projective 
variety X one has XU,, = XK,  for almost all v in VfK Thus, taking the 
topological space XA,  to be precisely X"K\S yields the second assertion. 

(3) follows from the fact that for & c S (resp., S1 > S)  there is a natural 
continuous projection X s  -+ Xsl (resp., XA,  -+ XAs , )  which agrees with 
the corresponding diagonal embeddings of X K .  

Lastly, to prove (4) it suffices to note that since the v-adic topology on 
XK,, defined in 53.1, is stronger than the Zariski topology, any open subset 
W of Us is also open in X s ;  therefore W n X K  is nonempty and obviously 
is contained in UK.  This completes the proof of Proposition 7.2. 

Strong approximation has a manifestly arithmetic character. In the basic 
case where S > vZ, the validity of strong approximation is equivalent to 
the solvability of a certain system of congruences in integral points of X .  
More precisely, let X C An. Then any open subset of XAs contains a 
subset of the form 

T 

W = ~ ( x K . ~  n ((a: + pEi) x . . . x (a; + pEa))) x n XU,,, 
i=l vESl 

where ul, . . . , v, $! S, & = S U { vl, . . . , v, ), ml, . . . , m, are positive 
integers, and ai = (aZ1,. . . , a;) cz XK,. Therefore X K  n W is nonempty if 
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and only if there is a solution in Xo(sl) for the system of congruences 

where a = b (mod p r ) ,  for a = (a l , .  . . , an)  and b = (bl,. . . , b,) lying in 
K: but not necessarily in O;, means that ai - bi E p z  for all i = 1,.  . . , n. 

Therefore the question of strong approximation for X is the algebro- 
geometric version of the Chinese Remainder Theorem. In view of the 
fundamental role the latter plays in classical arithmetic, it is natural to 
expect the strong approximation theorem for algebraic groups, which we 
shall prove in 57.4, to lie at the foundation of important results in our 
theory. In the chapters that follow we shall see that this is indeed the case. 

With this we conclude our discussion of questions of approximation with 
respect to arbitrary varieties. Most of the results which follow apply only 
to algebraic groups. It is completely natural to restrict the subject in this 
way, since if one were to examine the solvability of (7.1) only from the point 
of view of Diophantine geometry, i.e., without using group structure, the 
problem would become exceedingly complicated. Thus, we shall show below 
that absolute strong approximation holds for G = SL2, and therefore (7.1) 
must have a solution. On the other hand, G as  an algebraic variety is 
defined by xy - zt = 1, and we highly recommend that the reader ascertain 
that it is not easy to lift the solutions of the congruences (7.1) to an integral 
solution satisfying those congruences. This example illustrates that it is not 
so much the geometric properties of G, but rather its group structure, that 
holds the key to strong approximation. Weak approximation, in contrast, 
is more closely related to geometry. 

PROPOSITION 7.3. Let X be an irreducible, smooth K-rational variety. 
Then X satisfies the weak approximation property. 

PROOF: The K-rationality of X means there exists a biregular K-iso- 
morphism cp: U + W between open subsets U c A' (1 = dimX) and 
W C X. Propositions 7.1 and 7.2 imply that W has weak approximation, 
i.e., WK is dense in n WK, . However, WK, is dense in XKv for any V ,  

v 
by Lemma 3.2. It follows that WK, and thus certainly XK, are dense in 
n X ~ v .  
v 

This proposition is the first example of the connection between the geom- 
etry and the arithmetic of linear algebraic groups. This interrelationship 
embraces a wide range of questions such as weak approximation, the valid- 
ity of the Hasse principle, computation of the Tamagawa number, etc. A 
detailed analysis of all these questions would take us beyond the scope of 
this book, therefore we shall confine ourselves to some brief remarks in 5'7.3. 
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For our purposes, it suffices to present the corollaries that follow directly 
from Proposition 7.3. 

COROLLARY 1. Let X be a quadric; i.e., a surface in An (n 2 1) defined 
by an equation of the form f (XI, . . . , x,) = a, where f is a nondegener- 
ate quadratic form over K and a E K*. If XK # 0, then X has weak 
approximation. 

Indeed, it is well known that X is smooth and, when XK # 0, is also a 
K-rational variety. Note that the question of strong approximation for X 
is more subtle (cf. Rapinchuk [8]). 

The proposition just proved partially fills in the gap left in the previous 
chapter, where we used the validity of weak approximation for "spheres" 
related to all types of forms, i.e., for varieties given by f (x) = a, where f 
is a quadratic, Hermitian, or other form. As we saw in $6.6, the "spheres" 
corresponding to Hermitian forms over a quadratic extension LIK or over 
a quaternion skew field DIK,  are in fact equivalent to quadrics in higher 
dimension, and therefore one may assume weak approximation to be proved 
for them. On the other hand, for skew-Hermitian forms over a quaternion 
skew field Dl  the rationality of the corresponding spheres is still an open 
question, so Proposition 7.3 is not directly applicable here. For this reason 
one must take a somewhat different approach which enables one to analyze 
all types of forms simultaneously. This approach is based on the following 
generalization of Proposition 7.3. 

PROPOSITION 7.3'. Let X be a smooth irreducible K-variety such that 
X x Y is rational over K ,  for a suitable K-variety Y. Then X satisfies 
weak approximation. 

The proof follows easily from Proposition 7.3 and Proposition 7.1 (2). 

Now let f be a nondegenerate n-dimensional Hermitian (skew-Hermitian) 
form over D, provided with involution T such that K is the fixed subfield 
under T of the center of D. 

PROPOSITION 7.4. Let G be the connected component of the unitary group 
U,( f ). Then G is a rational variety over K. In particular, G has weak 
approxima tion. 

PROOF: Obtained using the well-known Cayley-Dickson parametrization. 
Namely, let g = L(G) be the Lie algebra of G, and consider the correspon- 
dence 
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It turns out that Q gives a birational K-isomorphism between g and G. For 
the proof, note that g = {X E Mn(D) @K K : *XF + F X  = 0 ) ,  since 
Un(f)  = {x  E M n ( D ) g K  K :  *xFx = F), where we put *x = ( ~ ( x p ) )  
for x = (xij), and F is the matrix of f .  Therefore, a direct computation 
using (7.2) shows that the image of Q falls in Un(f), and hence also in G, 
since ~ ( 0 )  = En E G and G is the component of the identity in Un(f) .  In 
addition, the inverse map for Q is given by the same formula (7.2). Thus 
the rationality of G is established. It remains to note that group varieties 
are smooth, and therefore for such varieties weak approximation follows 
automatically from rationality. 

Now we have all the necessary results to complete the proof of weak 
approximation for "spheres". 

COROLLARY 2. Let f be a nondegenerate n-dimensional (n 2 2) Her- 
mitian (skew-Hermitian) form, and let a € D* be a Hermitian (skew- 
Hermitian) element, respectively. Put X = { x € Dn @K K : f (x) = a ). If 
XK # 0, then X has weak approximation. 

Indeed, let x E XK. Consider the map cp: G X given by cp(g) = gx, 
where, as above, G is the identity component of U,(f). It follows from 
Witt's theorem that cp is surjective; i.e., X can be identified with the homo- 
geneous space GIH, where H = G(x) is the stabilizer of x; in particular, X 
is smooth. Moreover, by Witt's theorem one can show that ~ ( G L )  = XL 
for any extension L of K .  Applying this to the field of rational functions 
L = K(X),  we obtain a rational section $: X + G defined over K ,  so 
G E X x H birationally. But G is rational by Proposition 7.4; therefore 
the proof is completed by applying Proposition 7.3'. 

A propos the question of rationality, unfortunately the groups described 
in Proposition 7.4 and the K-split groups basically exhaust the list of group 
varieties for which rationality is known. In particular, the question of ra- 
tionality of the spinor varieties Spin,(f) was open for a long time. These 
varieties are 2-fold covers of SOn(f) ,  whose rationality follows from Propo- 
sition 7.4. It is easy to show that Spinn(f) is K-rational for n 5 5 (cf. 
Platonov [18]); but, as Platonov [18],[19] has shown, over a suitable field 
K there exist nonrational spinor varieties for n of the form 4k + 2, for any 
k > 1. This result was obtained thanks to the development of methods in 
reduced K-theory which, at the time, made it possible to establish the exis- 
tence of nonrational varieties of type SL1 (D) (cf. Platonov [17], Voskresen- 
skii [3]). However, if K is locally compact, then any spinor variety over K is 
always K-rational (cf. Platonov [18], Platonov-Chernousov [I]); moreover 
for K = R, most group K-varieties are known to be rational. For number 
fields, the rationality of Spinn(f)  is known only over Q (cf. Chernousov [I]). 

Nevertheless, the question of weak approximation for algebraic groups over 
number fields is solved by other methods (cf. 57.3). 

One more important application of Proposition 7.3 is 

COROLLARY 3. Let G be a reductive algebraic group over a number field 
K ,  and let 7 be the variety of its maximal tori. Then I has weak ap- 
proximation. In particular, if S is a finite subset of VK and, for each v 
in S, T(v) is a given maximal Kv-torus of G, then there exists a maximal 
K-torus T of G which, for any v in S, is conjugate to T(v) via an element 
of GK, . 

Indeed, 7 is smooth since it is a homogeneous space of G. Its rationality 
over K was established in Theorem 2.18. Therefore 7 satisfies weak a p  
proximation. Furthermore, if xu is the point in 7 (v E S)  corresponding 
to T(v), then the tori from the conjugacy class {gT(v)g-' : g E GKv ) cor- 
respond exactly to the points of the orbit U, = GKvxV. But Uv is open in 
TK, (cf. Proposition 3.3, Corollary 2), therefore by the weak approximation 
property for 7 one can find a point x in TK n n U,. Its corresponding 

v E S  
maximal torus T c G is the desired torus. (We call the reader's attention 
to the fact that weak approximation for the variety of tori always holds, 
independently of the validity of weak approximation for G. This is not t y p  
ical, since usually weak approximation in a homogeneous space is deduced 
from weak approximation in the group (cf. proof of Corollary 2), and not 
the other way around.) 

7.2. T h e  Kneser-Tits conjecture. 

As we remarked above, one cannot make much progress on approximation 
questions for algebraic groups without using the group structure. Therefore 
in this chapter on approximation we must devote a section exclusively to 
analysis of group structure. Since the exposition of such questions could fill 
an entire volume, this section necessarily presents no more than an overview 
of the subject. However, we shall give a complete proof of the basic result, 
validity of the Kneser-Tits conjecture over local fields (Theorem 7.6), which 
is needed later on. 

The structure theory of linear algebraic groups provides a virtually ex- 
haustive description of the structure of an algebraic group G over an alge- 
braically closed field. However, the situation changes drastically when one 
considers groups of rational points GK over a field K which is not alge- 
braically closed. The basic difficulties in this regard arise in the case of G 
simple, which we shall take up here. 

Also, one must distinguish between the cases where G is K-anisotropic 
and K-isotropic, respectively. In the former case the structure of GK es- 
sentially depends not only on the structure of G itself, but also on the 
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arithmetic of K. In particular, choosing G and K appropriately, one can 
have GK residually finite or even prosolvable (cf. $1.4.4). On the other 
hand, in the isotropic case, GK always contains a "large" normal subgroup 
which does not contain any proper noncentral normal subgroups. More 
precisely, for an absolutely simple group G defined and isotropic over K ,  
let G; denote the subgroup (in fact, a normal subgroup of GK) generated 
by the K-rational elements of the unipotent radicals of its parabolic s u b  
groups defined over K (note, that in the basic case where K is perfect, 
G ~ I -  can be defined simply as the subgroup generated by the K-rational 
unipotent elements). Then one has the following 

THEOREM 7.1 (TITS [I]) .  Suppose K contains at  least 4 elements. Then 
any subgroup of GK normalized by G$ either contains G ~ I -  or is central. In 
particular, GfI- does not have any nontrivial noncentral normal subgroups. 

The proof of this theorem, which we will not present here, involves con- 
structing a BN-pair (cf. $3.4) in GK. Note that for the classical groups the 
theorem can be obtained using methods of geometric algebra (cf. Artin [I], 
Dieudonnk [2]). 

Theorem 7.1 tells us the structure (at least of the normal subgroups) 
of GK when G& = GK. This result has been known for some time when 
the simply connected group G is K-split (Chevalley [4]) or K-quasisplit 
(Steinberg [2]). In particular, by virtue of Proposition 6.1 this gives a 
complete picture in case K is finite. 

PROPOSITION 7.5. If G is simply connected and K is finite, then G& = 
GK. In particular, if IKI 2 4, then GK does not have any nontrivial 
noncentral normal subgroups. 

(The exceptional cases of the fields F2 and F3 are analyzed in Tits [I].) 
Below we shall discuss results on when G i  coincides with GK, for other 

types of fields. It is well-known that G& = GK if G is a group of type B,, 
C, (n > I), or a special form of one of the exceptional groups (cf. Tits [4]). 
These results evidently motivated the formulation of the following natural 
conjecture (cf. Tits [I]). 

CONJECTURE (KNESER-TITS). GfI- = GK for any simply connected K-  
simple group G defined and isotropic over an arbitrary field K.  

The assumption that G is simply connected is essential and obviously 
cannot be omitted. First of all, we note that if n: G -+ G is the universal K- 
covering and K is perfect, then T ( G ~ )  = G;. - Indeed, let g be a unipotent 
element of GK, and write g = n(x) for x E G. If x = x,x, is the Jordan de- 
composition, then clearly n ( ~ , )  = 1 and n ( ~ , )  = g, so we may assume x to 
be unipotent. For any a E G ~ ~ ( K / K )  we have n(a(x)) = a(g) = g = ~ ( x ) ,  

so a(x) = fx ,  where f E F = kern. But F consists of semisimple ele- 
ments; therefore it follows from the unipotency of x and a(x) that f = 1, 
i.e., x E GK. We have shown that any unipotent element of Gx is the image 
of a unipotent element of GK. Since K is perfect, any unipotent element 
of GK lies in the unipotent radical of a suitable parabolic K-subgroup, it 
follows that T ( G ~ )  = G g ,  as desired. There is, however, an extensive class 
of K for which n(GK) # GK when ker n # 1. 

THEOREM 7.2 (PLATONOV [lo]). Let K be a finitely generated infinite 
field, and let T: G -+ G be a nontrivial central K-isogeny of connected 
algebraic K-groups. Then T(GK) # GK. In particular, if G is not simply 
connected but is isotropic over an infinite, finitely generated field K ,  then 
GK # G&. 

The Kneser-Tits conjecture is obviously true for K algebraically closed. 
However, even the case of the field of real numbers requires a more subtle 
analysis. 

PROPOSITION 7.6 (E. CARTAN [I]). Let G be a simply connected simple 
algebraic group over R. Then Gw does not have any nontrivial noncentral 
normal subgroups. In particular, Gw is connected, and if in addition G is 
R-isotropic, then G i  = Gw. 

PROOF: The case where G is R-anisotropic, i.e., if G is Gw compact, was 
treated in 53.2 (cf. Proposition 3.6). For the isotropic case the proof uses 
several structural results about G which hold over any K and which we 
shall need again later on (cf. Borel-Tits [I]). Let S be a maximal K- 
split torus of G, let H = ZG(S) be its centralizer, and let U and U -  
be the unipotent radicals of two opposite minimal parabolic K-subgroups 
containing S. Then the product morphism gives a K-isomorphism U x H x 
U -  on a Zariski-open subset W of G. Since G is connected, V = WngW-I 
is nonempty and open for any g in GK; therefore vnGK = wK ng W;' # 0, 
since GK is dense in G (cf. Theorem 2.2). Thus, g E W K W ~ ;  in particular, 
WK generates GK. It follows that 

so Gf; = GK if and only if HK c Gf;. 
Furthermore, let us split H into its components. Let S' be the connected 

component of the center of H (note that generally S' # S). Then S' is 
a torus and S is a maximal K-split subtorus of S'. Therefore S' can be 
written as the almost direct product S' = S . S", where S" is the maximal 
K-anisotropic subtorus of Sf.  In turn, H = D . S', where D = [H, H] is a 
semisimple K-anisotropic group. Put B = D . 5'". Then H = B . S is an 
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almost direct product, and B is anisotropic over K .  It is well known (cf. 
Borel-Tits [2]), that S is contained in a simply connected K-split semisim- 
ple subgroup of G, and consequently SK c Gf;. 

Now we shall use specific properties of R. Let us consider the commuta- 
tive diagram 

and show that &(BR) = ( B / B ~ S ) R .  The group B I B n S  is anisotropic over 
R; therefore (B/BnS)R is compact and hence also connected (Theorem 3.6, 
Corollary 1). Therefore, by Theorem 3.6, Corollary 1, o(Bw) = ( B l B n s ) ~ .  
Hence HR = BwSw. Since Sw c G i ,  it suffices to establish that BR c 
G& However, since BR is also compact, and hence connected, the desired 
inclusion follows from the openness of G; (Theorem 3.3). This completes 
the proof of Proposition 7.6. 

The case K = R is apparently the only one in which the proof of the 
Kneser-Tits conjecture is based on general structural considerations. In 
all the remaining cases, as a rule, one has to examine each type of simple 
group separately. This becomes evident in the case of a non-Archimedean 
locally compact field K (which is the most important case when considering 
approximation problems). In this case the first proof of the Kneser-Tits 
conjecture is due to Platonov. It is based on the classification of simple 
algebraic groups over local fields and consists of reduction to the case of 
classical groups, for which the proof is obtained by other considerations. 
We begin our exposition of the proof with a review of the necessary results 
on the classical groups. 

Groups of type A, hold the dominant place in the classical groups. If 
G is an inner form of type A,, then G = SL,(D), where D is a finite- 
dimensional central skew field over K (cf. 52.3). Then G is K-isotropic if 
and only if m > 2; and in this case we let SLA(D) denote the subgroup 
of GK = SL,(D) generated by transvections, i.e., by those matrices x in 
SL,(D) which in a suitable base of Dm have the form of an elementary 
matrix eij(cr), cr E D, i # j .  It is easy to see that each elementary matrix 
is unipotent (and, moreover, lies in the unipotent radical of a suitable 
parabolic K-subgroup), and therefore SLA(D) c G;. On the other hand, 
SLA(D) is a normal subgroup of SL,(D) (and even of GL,(D)), SO G$ = 
SLA(D), by Theorem 7.1. Thus 

But the Dieudonn6 determinant (cf. Artin [I], Dieudonn6 [2]) induces an 
isomorphism of the latter quotient group on the reduced Whitehead group 
SKl(D)  = SLl(D)/[D*, D*] of D. Thus, for G = SL,(D) (m 2 2) the 
Kneser-Tits conjecture is equivalent to the Tanaka-Artin conjecture on the 
triviality of SKl(D),  formulated in 1943 (cf. also Bass [2, p. 2221). 

Similarly, if G is an outer form of type A,, then G = S u m (  f ) ,  where f is 
a nondegenerate m-dimensional Hermitian form over D with involution T of 
the second kind, and K is the subfield of T-invariant elements of the center 
L of D. Then G is K-isotropic if and only if f is isotropic (cf. 52.3) and in 
this case Gf; is precisely the subgroup TU,(f) generated by the unitary 
transvections. Furthermore, the Wall norm induces an isomorphism of 
Sum( f)/TUm(f) on the reduced unitary Whitehead group SUK1 (D). The 
latter is defined as C1/C, where C is the subgroup of D* generated by all 
T-symmetric elements, and C' consists of elements with symmetric reduced 
norm (for details, cf. Yanchevskii [2]). 

THEOREM 7.3. Let D be a finite-dimensional skew field (resp., a finite- 
dimensional skew field with involution of the second kind) over a local 
or global field. Then the reduced Whitehead group SKl(D)  (resp., the 
reduced unitary Whitehead group SUK1(D)) is trivial. 

The triviality of SKl(D) was proved in Chapter 1 (cf. 51.4-1.5). The 
triviality of SUK1(D) over a local field is obvious, since here D = L. The 
case for a global field is treated in Platonov-Yanchevskii [I]. 

Theorem 7.3 ceases to be true over an arbitrary field, i.e., in general the 
Kneser-Tits conjecture is false. We shall discuss this matter at the end 
of the section, but for now we point out a class of groups for which the 
Kneser-Tits conjecture does hold over an arbitrary field. First of all, there 
are the spinor groups G = Spin,( f ), n 2 3, where f is a nondegenerate 
quadratic form over K. Then G is K-isotropic if and only if f is K- 
isotropic (cf. §2.3), and then well-known results from geometric algebra 
(cf. Artin [I], Dieudonn6 [2]) provide a complete picture of the structure of 
the corresponding special orthogonal group SO,(f). Namely, the image of 
Spin, (f )K in SO, (f )K under the natural 2-fold covering n: Spin, (f) -+ 

SO,(f) (which is the kernel of the spinor norm) has no proper noncentral 
normal subgroups, and 

However, ker n = {f 1) embeds in Spin3(g), where g is a three-dimensional 
isotropic subform of f ;  and since Spins(g) -- SL2 over K ,  
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thereby yielding Spinn( f )f; = Spinn( f ) ~ .  
It remains to examine unitary groups over skew fields with involution of 

the first kind. Thus, let D be a skew field over K with involution T of the 
first kind and the first type (the latter means that if [D : K] = m2, then 
dim D' = w). If a nondegenerate sesquilinear form f of degree n is 
skew-Hermitian, then, as shown in S2.3, G = SUn(f)  is a simply connected 
simple group of type Cl, and the Kneser-Tits conjecture always holds for 
it, as Dieudonnk [I] has shown. For f a Hermitian form, G = S u n (  f )  is a 
non-simply connected group of type Dl, and the Kneser-Tits conjecture is 
known to hold for the simply connected cover G when D is a quaternion 
skew field (cf. SeipHornix [I]). Thus, the Kneser-Tits conjecture holds 
over an arbitrary field for all groups of type B1 and Cl, and for groups of 
type Dl arising from either a field or a quaternion skew field. Since over 
local and global fields these exhaust all the classical groups (cf. §2.3), we 
can sum up our discussion of the Kneser-Tits conjecture for such groups. 

PROPOSITION 7.7. Let K be a local or global field. Then the Kneser-Tits 
conjecture holds for any simple simply connected K-group G of one of the 
types All B1, Cl or Dl (possibly excluding 3D4 and 6D4). 

The proof of the Kneser-Tits conjecture for arbitrary groups can be re- 
duced to the case of the classical groups as follows: Suppose a simply 
connected simple K-group G is isotropic over K ,  and let S be a maximal 
K-split torus of G. In proving Proposition 7.6 we saw that G; = GK is 
equivalent to HK c G;, where H = ZG(S) is the centralizer of S. To 
establish this inclusion one constructs simply connected simple K-isotropic 
subgroups Gi of G normalized by S, for which the Kneser-Tits conjecture 
has already been proved (such as Gi of classical type), and such that the 
groups Hi,, where Hi = ZG, ( S  fl Gi)O, generate HK. (Note that (S fl Gi)O 
is a maximal K-split torus of G and Hi c H.) If such a construction is 
possible, then Hi, C GiK = G:~ C G i ,  and hence HK c G;, as desired. 

This method was first applied by Platonov [4] to prove the Kneser-Tits 
conjecture over a local field. There the Gils were constructed by discarding 
one or more distinguished vertices in the Tits index of G; therefore this 
method was called the vertex elimination procedure. This method was later 
elaborated by Prasad and Raghunathan [3], who showed that for the Gi's 
one could always take groups of K-rank 1. Thus the proof of the Kneser- 
Tits conjecture over arbitrary fields was reduced to groups of rank 1. For a 
precise statement of these results we need to recall several definitions and 
introduce some additional notation. 

Take a maximal K-torus T of G, containing a maximal K-split torus 
S. Let R = R(T, G) be the corresponding root system, and let II be a 
subsystem of simple roots which is (uniquely) defined by fixing a Bore1 

subgroup B of G which contains T and is contained in a minimal parabolic 
K-subgroup. Let IIo denote the subset of II consisting of those roots whose 
restriction to S is trivial; then II \ IIo is precisely the set of distinguished 
vertices in the Tits index of G. In 52.1.14 we defined the natural action of 
6 = G ~ ~ ( K / K )  on II (called the *-action). It turns out that IIo and I I \ &  
are invariant under this action; moreover, the number of G-orbits on II\ IIo 
equals the K-rank of G. 

0 For an arbitrary subset @ of II, put T(8)  = (nOEe(ker0)) and H(@) = 
ZG(T(8)), and let G(@) denote the commutator subgroup of H ( 8 ) .  (In 
particular, H = H(IIo) is the centralizer of a maximal K-split torus, and 
Go = G(IIo) is the anisotropic kernel of G.) For the most part we shall work 
with Ginvariant subsets 8 containing no.  The corresponding group G(8) 
is a simply connected semisimple (but not necessarily simple) K-group 
(Borel-Tits [2], 43), and its K-simple components can be easily found using 
the Tits index: they correspond to the orbits of 6 on the set of connected 
components of the subdiagram of II in which only the vertices of 8 and 
the adjacent edges remain. (For example, if the index looks like 

and 8 = IIo, then G(8) has two K-simple components, 

@ and ( 1 ,  
of which one has type A1 and the other is obtained from a group of type 
A1 by restriction of scalars from a quadratic field extension of K.) Let 
8 1 , .  . . ,0, be all the 6-orbits on II \ no.  Then G(8i U n o )  has K-rank 
equal to 1, and consequently has a unique K-simple K-isotropic component 
Gi. With this notation, we have 

THEOREM 7.4 (PRASAD-RAGHUNATHAN [3]). Suppose G has K-rank 
2 2. Then HK is generated by HiK, where Hi = H n Gi. In particular, if 
the Kneser-Tits conjecture holds for all the Gi, then it also holds for G. 

The proof is obtained by reducing to the following cohomological asser- 
tion, which is interesting in its own right. 

THEOREM 7.5. Let HI , .  . . , IId be G-invariant subsets of II \ IIo such that 
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nf=, IIi = 0. Then the kernel of the natural map 

is trivial. 

The proof of Theorem 7.5, which we omit here, referring the reader to 
Prasad-Raghunathan [3], becomes trivial in the case of non-Archimedean 
local fields, of primary interest to us here, since then H1(K, Go) = 1 (The- 
orem 6.4). 

PROOF OF THEOREM 7.4: Let IIi denote the complement of Oi in II \ no ,  
and put Ci = H(IIi U IIo) and Di = G(IIi U no) .  Note that H c Ci, 
Go c Di for any i = 1, ..., r .  

LEMMA 7.1. The canonical map 

is an isomorphism. 

PROOF: Put T, = TnG,, where G, is the root subgroup coinciding in our 
notation with G({a)). It is well known (cf. Steinberg [2]) that T = n T,, 

a En 
and consequently, for any subset O of II, the subgroup Te generated by T, 
(a  E O) is the direct product n T,. It is easy to see that Te c G(O). 

a E 8  
But 

(7.3) rankG(O) =dimT-dimZ(H(O))  
5 dim T - dim T(O) = dim Te,  

so Te is in fact a maximal torus of G(@), and T n G(O) = T(O). Hence 
the inequality (7.3) is actually an equality, and as a result Z(H(O))O C 

T(@) c T.  Since H(O) = G(O)Z(H(@))O, it follows that H(O) = G(O)T. 
But T = Te x Tn\e and Te c G(@); therefore H(O) = G(0)Tnle. On 
the other hand, 

so H(O) is actually the semidirect product of G(O) and T n \ e  It  follows 
that in the commutative diagram 

induced by the respective embeddings, all the arrows other than a are 
isomorphisms. Therefore also a is an isomorphism. Lemma 7.1 is proved. 

Now the commutative diagram 

induces the following commutative diagram of Galois cohomology with ex- 
act rows: 

Since Di = G(IIi U IIo) and nI=l IIi = 0, Theorem 7.5 implies that the 
kernel of ,B is trivial. Therefore the natural homomorphism 

is an isomorphism. It  follows that HK is generated by the subgroups 
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We have H n G(Qi U no)  = Ai x Hi, where the Ai are the products of the 
K-anisotropic factors of G(Qi U no),  so Fi = AiKHiK. It remains to note 
that Ai c Go, for each i; and since the Tits index of G is connected, every 
K-simple component of Go lies in a suitable Gj and consequently also in 
an Hj. Q.E.D. 

Now we can easily complete the proof of the main result in this section. 

THEOREM 7.6 (PLATONOV [4]). Let K be a non-Archimedean locally 
compact field. Then the Kneser-Tits conjecture holds for any simple simply 
connected K-isotropic group G, i.e GfI. = GK. 

PROOF: Since groups of type 3D4 and 6D4 are quasisplit (cf. Proposi- 
tion 6.15) and hence do not require special consideration, in view of Propo- 
sition 7.7 and Theorem 7.4 it suffices to establish that there are no excep 
tional groups of K-rank 1. Let us apply Propositions 6.15 and 6.16. Then 
all the groups of type E8, F4, G2 are split over K ,  so they need not be 
considered. Any group of type E7 is split over a quadratic extension of 
K ,  so its anisotropic kernel also has this property. On the other hand, as 
Theorem 6.5 implies, the anisotropic kernel is the product of groups which 
are inner forms of type A,. Therefore the anisotropic kernel must have 
type A1 + . . . + A1. But the diagram of such a type cannot be obtained 
from the diagram of type E7 by discarding one vertex, so the K-rank of 
the original group of type E7 must be greater than 1. 

An analogous argument can be applied to inner forms of type E6. These 
forms are split over an extension of K of degree 3, so it follows that the 
anisotropic kernel must have type A2 + . . . + AS But in order to obtain a 
diagram of such a type from E6 one must discard at least two vertices. Any 
outer form of type 2E6 is quasisplit over K and has rank 4. Q.E.D. 

Thus, there are a significant number of results verifying the Kneser- 
Tits conjecture for various groups and for various classes of fields. These 
results led to the opinion that the conjecture ought to hold in general. In 
1975, however, the first author disproved this conjecture. First, in [13] he 
gave examples of skew fields defined over a rational function field Q(x, y) 
for which SKl(D) # 1, and then in subsequent papers (cf. [14]-[16]) he 
developed reduced K-theory for computing SK1(D). It turned out that 
SKl(D) can be any finite, or even infinite, abelian group of finite exponent, 
for suitable D and K.  Following papers [13]-[16], intensive work on reduced 
K-theory was begun by others (cf. Draxl-Kneser [I]). The results obtained 
in these subsequent papers generalize the original theorems somewhat and 
go into greater detail. A survey of the basic results of reduced K-theory 
may be found in Platonov's talk [17] at the Helsinki International Congress 
of Mathematicians, Tits' lecture [4] at the Bourbaki seminar, and in the 
papers of the Draxl-Kneser seminar [I]. 

Analogous results have also been obtained for the reduced unitary White- 
head group. Platonov-Yanchevskii [3] showed that SUK1(D) can be non- 
trivial; later Yanchevskii [2] developed reduced unitary K-theory, which is 
the analog of reduced K-theory for the unitary case and in many instances 
makes it possible to compute SUK1 (D). 

In conclusion, we note that examples have recently been constructed of 
simply connected K-isotropic groups G of type D, for which Gf; # GK (cf. 
Monastyrni-Yanchevskii [I]). Thus, we have quite a complete picture of the 
Kneser-Tits conjecture for the classical groups. Several of the exceptional 
groups are examined in Tits [4]. 

7.3. Weak approximation in algebraic groups. 

In this section we shall show that weak approximation almost always 
holds for a connected algebraic group G. Namely, we have 

THEOREM 7.7. Let G be a connected algebraic group defined over an alge- 
braic number field K. Then there exists a finite subset So of Vf such that 
G has the weak approximation property with respect to vK \ SO. In par- 
ticular, G always satisfies the weak approximation property with respect 
to S = V,K. 

There are examples which show that in general one cannot let So = 0, 
even when G is semisimple. However, weak approximation always holds in 
the "extreme" cases of simply connected and adjoint groups. 

THEOREM 7.8. Let G be a semisimple group, either simply connected or 
adjoint, defined over a number field K.  Then G satisfies the weak approx- 
imation property. 

The proof of this result is based on reduction theory, the validity of 
the Kneser-Tits conjecture for local fields, the Hasse principle for simply 
connected groups, and a single sufficient condition for weak approximation 
in algebraic tori, first noted by Serre (unpublished). 

PROPOSITION 7.8. Let T be an algebraic K-torus, split over a Galois ex- 
tension LIK,  let G = Gal(L/K), and let S be a finite subset ofVK. Assume 
that for each v in S the following condition holds: 

There exists v1 @ S for which the decomposition 
(7.4) groups G(w) and G(wl) of suitable extensions w lv 

and wllv' coincide. 

Then T has weak approximation with respect to S. Condition (7.4) is 
automatically satisfied if the local Galois group Gal(L,/K,) is cyclic for 
wlv. 
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PROOF: Put H = RLIK(T) and let cp: H + T be the norm map (cf. proof 
of Proposition 6.7). It is easy to see that N = ker cp is also an algebraic K- 
torus. We have H1 (K, H )  = H1(L, T) = 1, since T is L-split. Analogously, 
H1(Kv, H )  = 1 for any v in VK. The exact sequence 

for any finite subset S of VK induces the following commutative diagram 
of Galois cohomology with exact rows: 

in which a, ,G' are diagonal embeddings, y is the product of the restriction 
maps H1 (K, N) --t H i  (K,, N) ,  and is induced by cp. Since T is split 
over L, we have 

where d = dimT and s is the aggregate of all the extensions to L of 
valuations from S; so weak approximation for L implies that a is dense. It 
follows that P(cp(HK)) is dense in @(Hs); and since @(Hs) is open in Ts 
(cf. Proposition 3.3, Corollary I), we obtain that weak approximation for 
T relative to S is equivalent to 

This equation, as one easily sees, is precisely equivalent to the surjectivity 
of y. To compute the image of y let us consider the exact sequence 

where NAL is the adele group of N over L, and CL(N) = N A L / N ~  is the 
corresponding adele class group. Passing to cohomology, we obtain the 
exact sequence 

Furthermore, let us write NA, as Ng x N(AL)S and note that 

Therefore, in terms of these identifications 

Imy = { x  E H1(L/K, Ng) : 3y E H1(L/K, N ( A ~ ) ~ )  with S(X + Y) = 0).  

It follows that y is surjective if and only if 

Now we apply the Nakayama-Tate theorems (cf. §6.3), which imply that 
there exist natural isomorphisms 

where X,(N) is the group of cocharacters of N. In addition, as Proposi- 
tion 6.8 shows, the composition map 

induced by the composition n NL,,, + NA, + CL(N) is the corestriction 
wlv 

map  or$(,), which we shall denote as e(w). Taking into account the 
description of the cohomology of adele groups (cf. Proposition 6.6), we 
obtain that (7.6) is equivalent to 

(where a single extension w1v is chosen for each v). Now if condition (7.4) 
holds, then for each v in S one can find a vt not in S and extensions wJv 
and w'lv such that Im ~ ( w )  = Im ~ ( w ' ) ;  and then, clearly, (7.7) holds. Con- 
sequently, T has weak approximation with respect to S. It remains to note 
that if G(w) = Gal(Lw/Kv) is a cyclic group, say G(w) = (a), then by the 
Chebotarev density theorem there exist infinitely many vt in v ~ K  for which 
LWr/Kvt is unramified and the F'robenius automorphism Fr(Lw,/Kv~) = a; 
in particular, such v' can be chosen not in S. Then G(wl) = (u) = G(w). 
This completes the proof of Proposition 7.8. (Note: a different proof of 
Proposition 7.8 may be found in Voskresenskii [3, Theorem 3.361.) 
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COROLLARY 1. Let T be a K-torus. Then there exists a finite subset So 
of v ~ K  such that T has weak approximation with respect to vK \ So. 

Indeed, let L be a splitting field of T.  For So take the set of valuations v 
in VfK which are ramified in L; it is well-known that So is finite. Then any 
v in VK \ So is either Archimedean or unramified on L; and in either case 
the local extension Lw/Kv (for wlv) is cyclic. Therefore Proposition 7.8 
implies that T has weak approximation with respect to any finite subset S 
of vK \ SO, and hence with respect to the entire set vK \ So (cf. Proposi- 
tion 7.1). 

COROLLARY 2. Let F be a diagonalizable K-group. For v in VK, let 
G(F, v) denote the kernel of the action of G(v) = G~~(K, /K, )  on the group 
of characters X(F);  and let So be the set of non-Archimedean valuations 
v for which G(v)/G(F, v) is not cyclic. Then So is a finite set, and for any 
finite subset S of vK \So the canonical map H1 (K, F )  -t n H1(Kv, F )  is 

v E S  

surjective. In particular, H1 (K, F )  -+ n H1 (K,, F )  is always surjective. 
VEV& 

PROOF: Let G(F) denote the kernel of the natural action of G = G ~ ~ ( K / K )  
on X(F) ,  and let P be the fixed field under G(F). Then P is a minimal split- 
ting field for F; in particular, P / K  is finite. Clearly G'/G(F) is Gal(P/K); 
and, for v in vK, clearly G(v)/G(F, v) is the Galois group Gal(Pw/K,) 
of the corresponding local extension. In view of these remarks, the argu- 
ments used to prove Corollary 1 allow us to assert that So finite. Now we 
use Proposition 2.1 and insert F in the exact sequence 

where Tl and T2 are tori split over P, and TI is quasisplit over K .  Then 
for any extension L of K ,  we have H1(L,Tl) = 1, so, for any finite subset 
S of vK, (7.8) yields the following commutative diagram with exact rows: 

Now, if we suppose that S c vK \ So, then Proposition 7.8 implies that 
weak approximation holds for T2 relative to S. In particular, since O(T1,) 
is open in T2s, we obtain that 

To prove that x is surjective it remains to apply cp to both parts of this 
equation and to use the commutativity of (7.9). 

Having analyzed the case of algebraic tori, we now turn to the proof of 
Theorems 7.7 and 7.8. The first step consists of proving Theorem 7.8 for 
simply connected groups. 

PROPOSITION 7.9. Let G be a semisimple simply connected K-group. 
Then G has the weak approximation property with respect to any finite 
subset S of vK. 
PROOF: Using Propositions 7.1 and 7.2, we can easily reduce the proof to 
the case of a simple simply connected K-group G. As we noted in $2.4.3, 
G is a unirational variety over K, i.e., there exists a dominant K-morphism 
f :  U -+ G, where U is an open subset of a suitable affine space Ad. It 
follows from Proposition 3.3 that f (Us) contains an open subset of Gs. 
But by Proposition 7.2 (4), U has weak approximation, so the closure GK 
of GK in Gs contains f (UK) > f (UK) = f (US), and therefore is an open 
subgroup. However, by Theorem 5.5, GA/GK has finite volume; so, writing 
GA = Gs x G A ~  and using Lemma 3.17, we obtain that GS/GK also has 
finite volume. It follows that [Gs : GK] must be finite. (Since in our proof 
we did not assume G to be simple and/or simply connected, this fact holds 
for any semisimple K-group.) 

Now let G be a simply connected simple K-group of type other than 
A,. Then G is K,-isotropic for all non-Archimedean v (Theorem 6.5), and 
therefore it follows from Proposition 7.6 and Theorem 7.6 that, for any v 
in VK, GK, does not have any proper noncentral normal subgroups. This 
implies that Gs does not have any proper subgroups of finite index, which 
means that Gs = GK. 

The case for groups of type A, requires special consideration. 

LEMMA 7.2. Let G be a simple simply connected K-group of type A,. 
Then G has the weak approximation property with respect to any finite S. 

PROOF: There are two possibilities here: G = SLm(D) or G = SUm(f), 
where f is a nondegenerate m-dimensional Hermitian form over a skew field 
D with involution T of the second kind, and the field of T-fixed elements of 
the center of D is K. For these cases, put H = GLm(D) or H = Um(f), 
respectively. We claim that GKv = [HK,, HK,] for any v in v K .  If G 
is isotropic over K, or v E VZ, then this follows from Theorem 7.6 and 
Proposition 7.6. If not, then GK, N SL1 (A) and HK, .- GL1 (A), where 
A is a division algebra over Kv, and the desired result is exactly equiva- 
lent to the triviality of SKl(A) (cf. 51.4.3). Since GLm(D) is obviously a 
rational variety, as is Um(f) by Proposition 7.4, we see that H is always 
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rational over K .  Therefore Proposition 7.3 implies that H has weak a p  
proximation; i.e., HK = Hs. Thus [HK, HK] is dense in [Hs, Hs] = Gs, 
and consequently Gs = [HK, HK] C GK. This completes the proof of 
Lemma 7.2 and Proposition 7.9. 

Now we establish a cohomological criterion (due to Kneser [ 5 ] )  for weak 
approximation in an arbitrary semisimple group G. As one might expect 
after Proposition 7.9, this criterion is stated in terms of the corresponding 
fundamental group F, i.e., the kernel of the universal K-covering T: G + G. 
However, since we wish to prove Theorem 7.7, we shall - present a somewhat 
more general assertion involving special coverings T: H + H of arbitrary 
reductive groups (cf. §2.2.4), i.e., isogenies with H being a direct product 
of a semisimple simply connected group and a quasisplit torus. 

PROPOSITION 7.10. Let T: H -+ H be a special K-covering of a reductive 
group H ,  and let ker T = F .  Then H has weak approximation with respect 
to a finite subset S of vK containing V: if an only if the canonical map 
HI (K, F )  -, n H1 (K,, F )  is surjective. 

u E S  

PROOF: We have the following familiar diagram: 

Since H = D x T,  where D is a semisimple simply connected K-group, 
and T is a quasisplit torus, Proposition 7.9 and Proposition 7.2 (4) imply 
that a is a dense embedding. It follows that weak approximation for H is 
equivalent to Hs = ,O(H~)I I (H~) ,  which in turn reduces to the surjectivity 
of the induced map y': ker 0 -+ ker 0. Note that for any extension P / K  we 
have H1(P, H) = H1(p, D). Therefore, Theorems 6.4 and 6.6 imply that 
H'(K,, H) = 1 for non-Archimedean v, and H'(K, H) - n H'(K,, H) 

vEV~K 

is bijective. In particular, S is injective since S > v:. From this we see 
easily that if y is surjective, then y' is also surjective, which means that 
H has weak approximation relative to S.  Conversely, weak approximation 
for H implies the surjectivity of y'. But then 

Since H1(K, F )  -+ n H1(K,, F )  is always surjective (Proposition 7.8, 
VEV: 

Corollary 2), it follows that y is surjective, and Proposition 7.10 is proved. 

We can now prove Theorem 7.7 easily. If G is semisimple, then its 
universal covering T: G + G is special, and the required assertion follows 
immediately from Proposition 7.9 and Proposition 7.8, Corollary 2. The 
case of an arbitrary connected group easily reduces to the reductive case 
(cf. corollary of Proposition 7.1). Unfortunately, not every reductive group 
G has a special covering, and Proposition 7.10 cannot be used directly. 
However, by Proposition 2.11 one can find a positive integer m and a 
quasisplit torus T such that H = Gm x T has a special covering T: H -+ 

H .  Then, applying Proposition 7.10 and Proposition 7.8, Corollary 2, 
we obtain the existence of a finite exceptional subset So C VfK for H. 
However, it follows from Proposition 7.1 (2) that this set also works for G, 
thus completing the proof of Theorem 7.7. 

The proof of Theorem 7.7 enables us to obtain additional information 
about weak approximation in a reductive group G. To do so, we return 
to the special covering T: H -+ H of H = Gm x T and the corresponding 
diagram (7.10). It follows from the weak approximation property for H 
that the closure HK in Hs contains T(HS) > [Hs, Hs] and therefore is a 
normal subgroup of HS. Moreover, 

where So is the exceptional subset from Corollary 2 of Proposition 7.8, 
i.e., [Hs : HK] is bounded by a number which does not depend on S. It 
follows that the closure HK in N = n, HK, is also a normal subgroup, 
and the (abelian) group A(H) = H/HK, measuring the deviation from 
weak approximation, is finite. Using the canonical projection H + G, one 
can easily show that this assertion remains valid for an arbitrary reduc- 
tive group G. Then it is fairly easy to extend the result to an arbitrary 
connected group (cf. corollary of Proposition 7.1). Thus, one obtains 

THEOREM 7.9. For an arbitrary connected K-group G, the closure GK of 
GK in G = n GK, is a normal subgroup, and the corresponding quotient 

v € V K  
group A(G) = g G K ,  measuring the deviation from weak approximation, 
is a finite abelian group. 

We have yet to complete the proof of Theorem 7.8. To do so, first we 
present two corollaries, of interest in their own right. 
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COROLLARY 3. Let G be a semisimple K-group, for which the automor- 
phism group of the fundamental group F is cyclic. Then G has the weak 
approximation property. 

Indeed, notation as in Corollary 2, for any v in VK, one can embed 
G(v)/G(F, v) in Aut X ( F )  = Aut F ,  and therefore G(v)/G(F, v) is cyclic. 
Then H1(K, F )  n H1(Kv, F )  is surjective, for any finite subset S of 

v E S  

VK; SO G has weak approximation with respect to any such S. 

COROLLARY 4. Let G be a semisimple K-group and let S be a finite subset 
of v K .  Assume, for each v in S ,  that G has a maximal Kv-torus which is 
split over a cyclic extension of Kv (this is true, for example, if G is split 
over K,). Then G has weak approximation with respect to S. 

PROOF: Without loss of generality, we may assume that S > V z ;  SO, as 
above, it suffices to show that G(v)/G(F, v) is cyclic, for any v in S .  Let T 
be the maximal Kv-torus of G whose minimal splitting field L is cyclic over 
K,. Letting G(T, v) denote the kernel of the action of Q(v) on X(T) ,  we see 
G(v) /Q(T, v) is isomorphic to Gal(L/ Kv)  , and consequently is cyclic. On 
the other hand, it follows from F C T that G(T, v) C G(F, v) and therefore 
G(v)/G(F, v) is also cyclic. 

PROPOSITION 7.1 1. Any simple K-group G has weak approximation. 

PROOF: Groups of type E8, F4, G2 are simply connected, and therefore 
for these groups weak approximation follows from Proposition 7.9. The 
center of a simply connected group belonging to type B,, C,, E6, or E7 

has order 5 3; therefore, for any fundamental group F arising here, Aut F 
is cyclic, and one can use Corollary 3. The center of a simply connected 
group of type D2,+1 is isomorphic to 2/42,  so again Aut F is cyclic. 

It  remains to consider types D2, and A,. For G of type A, one can use 
Corollary 4, since for each v in vK it is easy to find a Kv-torus T of G 
with a splitting field which is cyclic over K,. Indeed, if G .- SLm(D) over 
Kv,  then the desired torus will have the form 

where L C D is a maximal subfield which is cyclic over K .  Note that such 
an L always exists. This is obvious if D is a quaternion skew field over 
Kv = R, while for non-Archimedean v one can take a maximal subfield L 
of D which is unramified over Kv.  

It  remains to consider the case of G N SUm(f) over K,, where f is a 
nondegenerate m-dimensional Hermitian form over a quadratic extension 
LIK,. But here G is L-split, and therefore has a maximal Kv-torus T 

which is split over L (Lemma 6.23). Thus we need consider only groups 
G of type D2,. Here special attention is needed only for the case where 
F = 2 /22  x 2 / 2 2  and G/G(F) = Aut F II S3. 

Let P denote a subfield of L = having degree 3 over K .  Then the 
composite 

(K, F )  % HI (P, F) 2 HI (K, F) 

coincides with multiplication by 3, and hence is identical to H1(K, F ) ,  since 
the exponent of F is 2. In particular, Cor is surjective. Analogously, for 
any v in VK, the composite 

where a, is induced by the appropriate restriction map and ,Bv by the 
corestriction map, is also multiplication by 3; hence ,Bv is surjective. On 
the other hand, L is a cyclic extension of P ,  so H1(P, F )  --, n H1(Pw, F )  

W E S  
is surjective, for any finite subset S of vP. Then, the surjectivity of y 
follows from the commutative diagram 

where p = n ,Bv, and from the surjectivity of p. Proposition 7.11 is 
v E S  

proved. 

Since any adjoint K-group is a direct product of its K-simple compo- 
nents, which are obtained from absolutely simple groups by restriction of 
scalars, it follows that Proposition 7.11 completes the proof of Theorem 7.8. 

All the above results have been positive, which might give the impression 
that weak approximation always holds. This, however, is not the case; 
counterexamples exist for algebraic tori as well as for semisimple groups. 

The examples which we present here start with the extension L/K, where 
K = Q and L = Q ( a ,  a), which has the following property: any prime 
p # 2 is unramified on L/K, but p = 2 is totally ramified; moreover, the 
local degree for p # 2 (including p = oo) is 1 or 2, but for p = 2 it is 4. 

(1) Now we put T = RLIK(Gm) and show that TK is not dense in TK2 TO 
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do so, let us show that (7.7), which is a necessary and sufficient condition 
for weak approximation, does not hold here. To this end, we construct the 
exact sequence 

1 + N  - + H ~ T - + I ,  

where H = RLIK(T) and cp is the norm map (cf. proof of Proposition 7.8). 
This sequence has a corresponding exact sequence of cocharacter modules 

0 -+ X,(N) -+ X,(H) 4 X,(T) -+ 0. 

Since X, (H)  is of the form X, (T) @z Z[G], where G = Gal(L/K) - 2/22 x 
2/22, it is induced. Therefore @(L/K,x,(H)) = 0 for any i. Hence from 
the exact cohomological sequence 

o = H - 2 ( ~ / ~ , ~ , ( ~ ) )  H - 2 ( ~ / ~ , ~ , ( ~ ) )  

-+ H-'(L/K, x,(N)) -+ H-'(L/K, X, (H)) = 0 

we obtain a natural isomorphism 

H-'(L/K, X,(N)) E H - 2 ( ~ / ~ , ~ , ( ~ ) ) .  

In turn X,(T) enters the exact sequence 

0 -+ X,(T) + Z[G] -+ 2 -. 0, 

which corresponds to 1 -+ T -+ RLIK((Gm) -+ Gm -+ 1; and by a similar 
argument we obtain that 

H - 2 ( ~ / ~ , ~ , ( ~ ) )  E H - 3 ( ~ / ~ , 2 ) .  

Performing the same computations locally, we arrive at the isomorphism 

H-~(L,/K,, x,(N)) - H-~(L,/K,,z). 

Then (7.7) reduces to the following: 

(7.11) C O ~ ~ ( ~ ) ( H - ~ ( L ~ / K ~ .  2 ) )  C cor:(,) ( f f - 3 ( ~ w / ~ u ,  2)) .  
U E S  u e s  
W I U  wIu 

In our case S = (21, G(2) = G; so the left side of (7.11) is 

~ ~ ~ ( 0 ,  2 )  , H ~ ( G ,  2 )  e 2/22. 

On the other hand, all the local Galois groups on the right side of (7.11) 
are cyclic; so H-~(L,/K,, Z) - H1(Lw/Ku, 2 )  = 0, and the right side of 
(7.11) is trivial. Thus, (7.11) does not hold, which means TK is not dense in 
TK2. (Note that this argument shows, in fact, that T ~ ~ / T ~  is isomorphic 
to 2/22.) 

Using the construction of T ,  now we construct a finite diagonalizable - 
K-group F for which H1(K, F )  -+ H2(K2, F )  is not surjective. Since 

TK # T K ~ ,  there is a positive integer 1 such that TK2 TK - L;'. Then put 
1) n = 41, F = RZ,&~), where pn is the group of the n-th roots of unity 

(note that F is the set of elements in T which have order dividing n). 

LEMMA 7.3. H1(K, F )  3 H1(K2, F )  is not surjective. 

PROOF: By Lemma 2.6 one has the following isomorphisms: 

so H1(K, F )  enters the exact sequence 

where a is induced by the norm map NLIK. In particular, H1(K, F )  maps 
surjectively onto ker a. Analogously, H1 (K2, F )  maps surjectively onto the 
kernel of P: L$/LZn + K,*/KZn induced by NL,IK2. Therefore, if x were 

-. 
surjective, then the canonical map ker a 3 kerP would also be surjective. 
But clearly 

ker a = T ~ K * ' L * ~ / L * ~  

ker p = TK, K;' L ~ ~ / L $ ~ ;  
hence the surjectivity of y would mean in particular that 

contradiction. Lemma 7.3 is proved. 
Now, to obtain an example of a semisimple group G which does not have 

weak approximation, it suffices to take H = RLIK(SLn) and, in view of 
the natural embedding F C RLIK(pn) = Z(H),  to put G = H/F.  Then, 
for S = { G O , ~ ) ,  we see H1(K, F )  -+ n H1(Ku,F) is not surjective; 

UES 

consequently G does not have weak approximation with respect to S (and 
even with respect to (2)). It should be noted that the first examples of 
this sort were constructed by Serre (cf. ANT, ex. 5). 

Regarding weak approximation for simply connected groups and Serre's 
counterexamples, Kneser [5] put forward a conjecture on the validity of 
weak approximation for simply connected semisimple groups over an arbi- 
trary infinite field. In particular, he conjectured that the algebraic group 
G = SLn(D), where D is a finite-dimensional skew field over K ,  always 
satisfies the weak approximation property. Here we have the following 

PROPOSITION 7.12. Let G = SLn(D), and let v be a discrete valuation of 
K. Then: 

(1) GK is a normal subgroup of GK* (bar denotes closure in the v-adic 
topology); 

(2) GK,/GK 2 SKl(D @K Ku)/cp(SK1(D)), where cp is induced by 
D L )  D B K K v .  
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PROOF: The group variety H = GL,(D) is rational over K and therefore 
HK is dense in HK, (the proof is the same as for the case of a number 
field). Since [HK, HK] C GK, the closure GK of GK contains [HK, HK] 3 
[HK,, HK,], implying (1). Note that this inclusion is actually an equality, 
since [HK,, HK,] contains [HK, HK] and is open by the remark following 
Theorem 3.3; consequently it is also closed in GK,. This also implies that 
GK = GK[HK,, HK,]; SO 

where 11, is induced by M,(D) --, Mn(D BK K,). It remains to note that 
the Dieudonne' determinant induces an isomorphism 

Proposition 7.12 is proved. 

Now we apply the following result from reduced K-theory. 

THEOREM 7.10 (PLATONOV [l6]). There exist skew fields D over a 
field K for which SK1(D) is finite (and even trivial); but the orders of 
SKI (D @K K," ) are not bounded, for some infinite set V = {vi) of discrete 
valuations of K .  

Theorem 7.10 and Proposition 7.12 imply the following result, which, in 
particular, provides a negative answer to Kneser's conjecture, stated above. 

THEOREM 7.11 (PLATONOV [16]). There exist skew fields D over a field 
K for which the orders of GK,, /GK (where G = SL,(D)), expressing the 
deviation from weak approximation, are not bounded, for some infinite set 
V = {vi) of discrete valuations of K .  

(The unitary analog of Theorem 7.11 was obtained by Yanchevskii [2].) 
Despite the fact that most of the conjectures regarding algebraic groups 

over an arbitrary field have recently been refuted, we shall be so bold as to 
advance a new conjecture. Namely, several examples show that regarding 
rationality, and in particular regarding weak approximation, the groups 
which behave "well" are those which are adjoint and not, as previously 
thought, simply connected. 

CONJECTURE: Let G be a semisimple adjoint group over an arbitrary infi- 
nite field K.  Then G is a rational variety over K .  In particular, G has the 
weak approximation property with respect to any finite set S of valuations 
of K. 

It is easy to show that this conjecture holds for G = PGL,(D). How- 
ever, to verify the conjecture for PS02,(f), where f = xf + . . - + x;, 
(Chernousov, unpublished) one must use the machinery of the algebraic 
theory of quadratic forms. The general case of PS02,( f )  has not yet been 
studied. 

We conclude with several remarks on the connection between the gec- 
metric and arithmetic properties of linear algebraic groups. Apparently 
this connection was first explicitly formulated for algebraic tori by Voskre- 
senski'i [1],[3]. To state his result, let us consider a K-defined embedding 
T r V(T) in a smooth projective variety (the existence of such an embed- 
ding follows easily from Hironaka's theorem on the resolution of singular- 
ities), and the corresponding Picard group Pic V(T); then, for a number 
field K ,  one has the exact sequence 

(7.12) 0 -+ A(T) -+ H ~ ( K ,  Pic V(T)) + III(T) 0, 

where UT(T) is the Shafarevich-Tate group of T and A(T) is the group 
expressing the deviation from weak approximation. (As Sansuc [l] noted, 
to have a functorial sequence one should replace the middle term of (7.12) 
with the dual group.) Afterwards Sansuc [I] showed that a sequence similar 
to (7.12) holds for any connected K-group. 

7.4. The strong approximation theorem. 

The object of this section is to establish a criterion for strong approxima- 
tion in connected groups over number fields (for the case of global function 
fields, cf. the remark at the end of this section). If G = HR,(G) is the 
Levi decomposition of a connected K-group G, then by Proposition 7.1 
strong approximation for G is equivalent to strong approximation for H 
(with respect to the same finite subset S of VK); therefore, below we may 
assume G to be reductive. Then we have 

THEOREM 7.12. Let G be a reductive algebraic group over an algebraic 
number field K ,  and let S be a finite subset of VK. Then G has the strong 
approximation property with respect to S if and only if 

(1) G is simply connected (in particular, G is semisimple); 
(2) G does not contain any K-simple component Gi with G i  compact. 

In particular, for a K-simple simply connected group G, strong approxi- 
mation with respect to S is equivalent to Gs being noncompact. 

That (1) and (2) are necessary conditions is implied by the following 
more precise assertion. 
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PROPOSITION 7.13. Let G be an algebraic K-group and let S be a non- 
empty finite subset of VK. Assume one of the following conditions holds: 

(1) G is not connected; 
(2) G is connected but not simply connected; 
(3) G is connected, and its semisimple part D has a K-simple component 

Di with D i  compact. 

Then the closure GK of GK in GAS has infinite index. 

PROOF: First we assume that G is not connected. Let P be a finite Galois 
extension of K such that G = GpGO. By the Chebotarev density theory, 
Vo = { v E VF \ S : P c Kv ) is infinite. Fix an integer 1 > 0, and choose 

vl, . . . , vl in Vo. Furthermore, put T = { vl, . . . , vr ) and let GK) denote 
the closure of GK in GT. Since GAS = GT x GAsUT, the projection of GK 
on GT is contained in G:); hence 

However, GOT c GT is a closed normal subgroup of finite index, from which 
it follows easily that B = GKG$ contains GK). Therefore 

since by our choice of P we have G = GK,GO, implying [GK, : GR,] = 

[G : Go] and consequently [GT : GOT] = n [GK, : G;,] = [G : Go]'. If one 
V E T  

chooses 1 sufficiently large, then (7.13) and (7.14) yield that [ G A ~  : GK] 
cannot be finite. 

Next, assume G is connected. If G = HR,(G) is the Levi decomposition, 
then clearly conditions (2) and (3) for G are equivalent to the respective 
conditions for H, and [GAS : GK] = [HAS : HK]. Thus we may assume G 
to be reductive. Put S1 = S U V: and consider the open subgroup 

Then the closure r of r = GK n W in W is GK n W; therefore if [GAS : GK] 
is finite, then [W : r] is also finite. In particular, for any finite subset T of 
VK \ S1 and the respective closure I'(*) of in WT = n Go,, we see that 

V E T  

[WT : r(T)] is bounded from above by some number c, independent of T. 

Now assume that G is not simply connected, i.e., that there is a K- 
covering T: H -+ G, where H is connected and F = ker T # 1. Then for 
any v in VK one can take the exact cohomological sequence 

where +K, is the appropriate coboundary morphism. Since r(HK,) is open 
in GK, (cf. Proposition 3.3, Corollary I), it follows that U = n n(HK,) 

V E T  

is open in GT, for any finite T c VK \ S1; thus r(T) c rU.  Hence, letting 
$T = n +K, , we obtain 

V E T  

But since we have seen that [WT : i?(T)] 5 c for any T,  we obtain 

We note now that r is the group of S1-units Go(s,), and therefore is 
finitely generated (Theorem 5.11); say r = (71,. . . ,y,). Let P denote a 
finite Galois extension of K generated by the coefficients of the matrix F 
and of the matrices 61,. . . ,ST in HK such that T(&) = ~ i ,  (i = 1 , .  . . , r ) .  
Clearly in this case T-'(I') c Hp, i.e., r C r (Hp) .  Furthermore, by 
Proposition 6.4 there is a finite subset S o  of v ~ K  such that +K,(G",) = 

H1(K,"'/Kv, F) for each v in VfK \So. By the Chebotarev density theorem 
Vo = {v E VfK\(S1uSO) : P c KV ) is infinite, and therefore one can choose 
a finite subset T of Vo with an arbitrarily large number of elements. Then 
by construction c T(GK,) for any v in T ,  and consequently + ~ ( r )  = (1). 
On the other hand, +K,(GO,) N F by Proposition 6.4, since F c GK,; 
so +T (WT) N F1, where 1 = ITI. Thus [+T(WT) : $ ~ ~ ( r ) ]  = 1 F I ' ,  and we 
reach a contradiction with (7.15), having chosen 1 sufficiently large. 

Lastly, we show that condition (3) also implies that [GAS : GK] is infinite. 
By what we have already shown, we may assume G to be reductive and 
simply connected and, in particular, semisimple. Then G is a direct product 
of its K-simple components Gi. NOW if [ G A ~  : GK] were finite, it would 
follow that all the [Gas : @k] were finite. On the other hand, (3) implies 
there is a component Gi with G i  compact. Since G$ is discrete in Gk = 

x G i ,  the fact that G$ is compact implies that GZ, is discrete in GL,, 
and consequently @k = GL. But then [GAS : @k] obviously cannot be 
finite (or even countable). The proposition is proved. 

Proving that (1) and (2) in Theorem 7.12 are sufficient conditions for 
strong approximation is far more difficult; the proof of this assertion con- 
stitutes the bulk of the proof of this theorem. Condition (1) implies that G 
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is a direct product of its K-simple components, and by Proposition 7.1 the 
problem reduces to the case of K-simple groups. In turn, a K-simple group 
can be obtained from a simple group by restriction of scalars, so Proposi- 
tion 7.2(3) gives a reduction to the case of simple groups, which we now 
consider. The following straightforward assertion will be used repeatedly. 

LEMMA 7.4. Let r be a subgroup of the direct product B = B1 x B2 of 
two topological groups B1 and B2, and let 7ri: B -+ Bi (i = 1,2) be the 
respective projections. Assume the following conditions hold: 

(1) 7rl (I') is dense in B1; 
(2) B1 has a base U = {U) of the neighborhoods of 1 consisting of 

subgroups, such that for any U in U the projection 7r2 (I' n (U x B2)) 
is dense in B2. 

Then I? is dense in B. 

PROOF: Almost self-evident. Suppose # B. Then there exists an open 
subset W = Wl x W2 c B disjoint from r. By condition (1) one can 
find an element y in r for which 7rl(y) E Wl. Furthermore, by (2) there 
is an open subgroup U of B1 contained in 7rl(y)-1Wl. Since l7 n W = 0 
and yP1W > U x 7r2(y)-lW2, one has 7rz(r n U) n 7r2(y)-'W2 = 0, which 
contradicts (2). 

Let us begin by considering the case where S contains all Archimedean 
valuations and those non-Archimedean valuations v for which G is Kv- 
anisotropic (the latter, as we know, can exist only for groups of type A,).  
By Proposition 7.2(2) we must show that r = Go(susl) is dense in Gs, for 
any finite subset S1 of vK \S. Let S2 be a maximal (possibly empty) subset 
of S1 such that r is dense in Gs2 (always taking the diagonal embedding 
of I'). Our objective is to show that S1 = S2. Let S2 # Sly and let 
u E Sl \ S2. Put S3 = S2 U {v), write GS, = GS2 x GK,, and apply 
Lemma 7.3. Since I' is not dense in Gs,, there is an open subgroup U of 
Gs2 such that A = I? n U is not dense in GKv (moreover, making U smaller 
if necessary, we may assume it to be compact). We shall show that actually 
this is not the case. 

Since I' is a discrete subgroup of Gsusl and Gsusl /I' has finite measure 
(Theorem 5.7), then A is a discrete subgroup of D = G(s,sl)\s2 x U and 
D/A also has finite measure. Writing D = (G(SUS1)\SS x U) x GK,, and 
applying Lemma 3.17, which is possible since Gs is noncompact, we obtain 
that A is not discrete in GK,, and GK, /A has finite measure. 

Furthermore, let p denote the prime corresponding to v. Then Qp C Kv 
and GK, can be viewed as a padic Lie group (cf. s3.1). Its Lie algebra 
over Qp is L(G)K,. Since G is simple, it does not contain any nontrivial 
ideals. By Cartan's theorem (cf. Theorem 3.4), A is a Lie subgroup of 

GK,; moreover, since A is not discrete, its Lie algebra f~ # 0. Furthermore, 
it follows from Theorem 5.7 on the finiteness of the volume of Gs/Go(s) 
that Go(s) is infinite, since Gs is noncompact. Then, repeating the proof 
of Theorem 4.10 verbatim, we obtain that Go(s) is Zariski-dense in G. 
Since U is open and compact, it is commensurable with n Go,; hence 

vES2 
[Go(s) : Go(s)nU] is finite. It follows that Go(s)nU is also Zariski-dense in 
G. Since clearly A > Go(s) n U, it follows finally that A is Zariski-dense in 
G. Applying Proposition 3.4, we obtain that b is a Lie ideal of L(G)K., and 
consequently b = L(G)K,, since b # 0. Then Proposition 3.2 impliesu that 
A is open in GK,. However, we established above that GK,/A has finite 
measure. Therefore A has finite index in GK,; consequently A = GKv, 
since GK,, does not have any nontrivial subgroups of finite index, as follows 
easily from Theorem 7.6. Thus we obtain a contradiction, which completes 
the proof of Theorem 7.12 for the case under consideration. 

Now we shall weaken the constraints on S, keeping only the requirement 
that S contain all Archimedean valuations. Put 

So = { v E v ~ K  \ S : G anisotropic over Kv ). 

So is finite, by Theorem 6.7. It follows from what we have proved above 
that G has strong approximation with respect to S U  So, i.e., GK is dense in 
GAS,,, . On the other hand, G has weak approximation with respect to So 
(Proposition 7.9), i.e., GK is dense in Gso. Since GAS = Gs, x in 
order to use Lemma 7.4 it suffices to show that GK n U is dense in G A ~ ~ ~ ~  
for any open subgroup U of Gso. 

Since GK, is compact for any v in So (Theorem 3. I), Gs, is also compact, 
which implies that U has finite index in Gs,. It follows that GK n U 
has finite index in GK; thus its closure has finite index in GASUS,, and it 
remains to show that GA~,,, does not have any nontrivial closed subgroups 
of finite index. As we noted above, it follows from Theorem 7.6 that GKU 
does not have any proper normal subgroups of finite index, for any v in 
VK \ (SU SO); consequently, the same is true for Gsl , where S1 is any finite 
subset of vK \ ( S  U So). Therefore, any closed subgroup B c Gnsvso of 
finite index must contain the images of all embeddings Gs, : Gsl + G A ~ ~ ~ , .  
But it follows easily from the definition of the adele topology that the union 
U 6s1 (Gsl ), taken over all finite subsets S1 c VK \ ( S  U SO), is dense in 
G A ~ ~ ~ ~  as desired. 

The last remaining constraint to be removed is S 2 V z .  Put 

s ~ = v , \ ( s ~ v ~ )  and S2=SuS1; 

then GA, = G A ~ ,  x Gs,. By what we have proved, GK is dense in GAs2. 
Therefore, to use Lemma 7.4 it suffices to verify that GK n U is dense 
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in Gsl, for any open subgroup U of GAs2. Without loss of generality, 
U may be assumed compact. Then it is commensurable with GAs2(s2), 
and hence GK n U is commensurable with Go(s2). On the other hand, 
by Proposition 7.6 GKv is connected for each v in v:; thus also Gsl is 
connected. It follows that we actually need only establish that Go(s2) is 
dense in Gsl. Let A denote the connected component of the closure of 
Go(s2) in Gsl. We claim that A is a normal subgroup of Gsl. Indeed, 
Go(S2) and g-1Go(s2)g are commensurable, for any g in GK; therefore 
their closures are also commensurable, and consequently the connected 
components of the closures coincide, i.e., A = g-lAg. But G has weak 
approximation with respect to S1, by Proposition 7.9; it follows that A = 
g-lAg for any g in Gs,. Thus, A is a connected normal subgroup of Gsl, 
so A = GS3 for some S3 C S1. 

Assume that S4 = S1 \ S3 # 0, and let T: Gsl + Gs4 be the correspond- 
ing projection. Since kerx = Gs3 is contained in the closure of Go(s2) 
in Gsl , the connected component of the closure of Go(s2) in GS4 is 
r(A) = (1). Now let us view Gs4 as a real Lie group. Then by Cartan's 
theorem @ is a Lie subgroup of dimension zero, since @ is totally discon- 
nected. Hence is discrete in Gs4. To obtain a contradiction here, it 
suffices to view Go(s2) as a discrete subgroup of Gs2 = G(s2\s4) x Gs4, 
whose quotient space has finite measure, and to invoke Lemma 3.17, in 
view of the fact that GsZis4 is noncompact (since S c S z  \ S4 and Gs is 
noncompact). This completes the proof of Theorem 7.12. Q.E.D. 

Combining Theorem 7.12 and Proposition 7.13, we arrive at the following 
interesting observation: an algebraic K-group G either has strong approx- 
imation with respect to a nonempty subset S of VK, or the closure GK of 
G in GAS has infinite index. 

The problem of strong approximation in algebraic groups has a long 
history. The first important result was the theorem of Eichler [l] on strong 
approximation in SL,(D), where D is a finite-dimensional division algebra 
over K .  Later various special cases of this problem over a number field K 
were studied by Eichler [2], Shimura [l] and Weil [3]. Next Kneser [lo], 
[ll] solved the problem of strong approximation for the classical groups, 
obtained the necessary conditions for its validity in the general case, and 
showed that the strong approximation theorem for arbitrary groups can be 
obtained when the Hasse principle holds. A complete solution of the strong 
approximation problem was obtained by Platonov [3]-[5] via a different 
approach. It is evident from the proof of Theorem 7.12 presented above that 
a central role is played by reducing the problem of strong approximation to 
the Kneser-Tits' conjecture over local fields, which was proved by Platonov 
(Theorem 7.6). 
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The strong approximation theorem is also valid for a global field of posi- 
tive characteristic. The proof, however, requires considerable modification, 
not only to prove that conditions (1) and (2) are necessary (cf. Behr [2]), 
but especially to prove that they are sufficient. A crucial reason for this is 
that the key part of the above argument (which is close to the original ver- 
sion given in Platonov [4], [5])-the theory of analytic groups-cannot be 
applied in the case of positive characteristic. Prasad [l] refined Platonov's 
method and obtained a complete proof in the function field case; the proof 
uses Theorem 7.6 and relies on the following assertion, which is interesting 
in its own right. 

THEOREM 7.13. Let G be a Kv-simple Kv isotropic algebraic group. If 
H is a closed nondiscrete subgroup of GKv such that GK,/H has finite 
invariant measure, then H > GkV. 

A different proof of Theorem 7.13, based on the ergodic properties of 
GK,/H, was obtained by Margulis [I]. It should be noted that for charac- 
teristic zero the proof of Theorem 7.13 actually follows the same argument 
as the first part of the proof of sufficiency in Theorem 7.12. 

7.5. Generalization of the strong approximation theorem. 
Several mathematicians (cf. Mathews et al. [I], Nori [2]) have recently 

obtained results which in a certain sense generalize the strong approxima- 
tion theorem. The point of departure for this generalization is the following 
straightforward observation: in proving strong approximation for a simply 
connected group G with respect to a finite set S > v:, an important role 
is played by the assertion that the closure Go(s) of Go(s) is open in GA,. 

Indeed, the second part of the proof of sufficiency in Theorem 7.12 shows 
that, without loss of generality, one may assume all the v in VfK for which 
G is K,-anisotropic to be contained in S; and it suffices to establish that 
for any finite subset S1 of vK \ S,  the image of the natural embedding 
6sl: Gsl + GAS is contained in GK. It follows from the openness of GK 
that W = 6g11 (Im 6s, n GK) is an open subgroup of Gsl , which is obviously 
normalized by GK. But by the weak approximation property for G (Propo- 
sition 7.9), GK is dense in Gsl, and hence W = Gsl by Theorem 7.6. Thus 
we arrive at the question, investigated in the works mentioned above: if 
is a finitely generated subgroup of GK, when is its closure r open in GAS? 
We shall not state the results obtained in their most general form but, to 
visualize the approach, shall limit ourselves to the case K = Q. Then one 
has 

THEOREM 7.14. Let G be a simply connected simple Q-group, let S be a 
finite set of prime numbers, and let r C Gz(s) be a Zariski-dense subgroup 
of G. Then r is open in GA,. 
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The proof of Theorem 7.14 follows easily from the next assertion, which 
is of interest in its own right. 

THEOREM 7.15. Let .rrp denote the reduction map modulo p. Then, under 
the assumptions of Theorem 7.14, for almost all p $! S we have .rrp(I') = 

G ( ~ )  where @P) is the reduction of G modulo p and Fp is the field of p -Fp 7 

elements. 

The proof of this result, found in Mathews et al. [I], unfortunately relies 
on the classification of the finite simple groups. In contrast, the proof pre- 
sented in Nori [2] is self-contained and is based on several nice observations 
dealing with the properties of the exponential and logarithmic maps for 
characteristic p > 0. 

Theorem 7.14 implies that any infinite arithmetic subgroup I' of a simply 
connected simple algebraic Q-group G contains many subgroups c I' of 
infinite index which are dense in I' in the adelic topology. Indeed, Margulis- 
Soifer [2] showed that in r there is a continuum of maximal subgroups of 
infinite index which are the desired ones. On the other hand, in several 
cases, such as r = SL,(Z) (n > 3), the adelic topology coincides with the 
profinite one (note that this assertion is equivalent to a positive solution 
of the congruence problem for r ,  cf. $9.5); this yields examples of proper 
subgroups c I' which are dense in the profinite topology. Then the 
corresponding homomorphism 6 + f' of profinite completions is surjective. 
Naturally one might ask whether there exist proper subgroups c I' for 
which the homomorphism 6 + f' is an isomorphism. 

This question was put forward by Grothendieck [I], in 1970, for arbitrary 
finitely generated residually finite groups I'. As Platonov and Tavgen have 
shown [I], the answer to the general Grothendieck problem is negative. A 
relevant example has already been found in the group I' = F x F, where 
F is a free group with generators X I ,  2 2 ,  x3, and 24. It suffices to con- 

-1 -2 
sider the normal subgroup N a F generated by x3x2x3 x2 , 

-1  -2 
X4X3X4 xg , and x1x4x,1x~2 (note that F I N  is the remarkable Higman 
group) and to take (N, 1 ) ~ ~  for a, where F* is the diagonal in F x F .  For 
further results on the Grothendieck problem, see Tavgen [I], [2]. In partic- 
ular, a counterexample in the class of solvable groups was constructed in 
Tavgen [I]. We call the reader's attention to the fact that the above group, 
r = F x F, is an arithmetic subgroup of SL2 x SL2, so the Grothendieck 
conjecture is also false for the class of arithmetic groups. Nevertheless, the 
following remains an open 
PROBLEM: Let I' be an S-arithmetic subgroup of G having a finite con- 
gruence kernel c S ( G )  (for example F = SL,(Z), n > 3). Do there exist 
proper subgroups of F for which the homomorphism 6 + of ~rofinite 
completions is an isomorphism? 
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This problem is closely related to an interesting conjecture which came 
up in studying the representations of finitely generated groups. In $2.4.7 we 
defined the variety of representations R(I', G) of a finitely generated group 
F in an algebraic group G. Instead of R(r ,  GL,), we shall write R,(I'), 
and call the latter the variety of n-dimensional representations of F. It is 
well known (cf. van der Waerden [I]) that a completely reducible represen- 
tation Q E R,(I') is uniquely defined up to equivalence by its character, 
i.e., by the function x,(g) = tr ~ ( g ) ,  g E I'; on the other hand, for an arbi- 
trary Q there exists a completely reducible representation QO with the same 
character: X, = x,, Thus, a natural one-to-one correspondence arises be- 
tween the set of equivalence classes of completely reducible n-dimensional 
representations of F and the set X,(I') of all n-dimensional characters. It 
turns out that X,(I') also has the natural structure of an algebraic vari- 
ety. Computing X,(F) for concrete groups and studying the impact of the 
geometry of X,(I') on the properties of I' and its representations are the 
main problems related to the geometric approach to representation theory 
of finitely generated groups, which has its origins in the classical works of 
Poincark, Klein, Vogt and Fricke. 

One of the first questions arising here is what are the I' for which 
dimX,(I') = 0, for any n? (This condition is equivalent to the finite- 
ness of X,(r); hence the groups satisfying it are naturally called groups 
of finite representation type.) Clearly all finite groups are groups of finite 
representation type; but there are also infinite groups with this property, 
such as I' = SL,(Z), m 2 3. The finiteness of the representation type here 
follows from a general theorem of Margulis on the almost algebraicity of 
finite-dimensional representations of irreducible lattices in semisimple Lie 
groups of rank > 2 (cf. Margulis [5]). However, Margulis' argument does 
not reveal the connection between finiteness of the representation type and 
the structure of I'. Therefore we shall show how the finiteness of type of 
F = SL,(Z), m > 3, can be deduced from a result of Carter and Keller 
[I] on the bounded generation of I' with respect to the set of elementary 
matrices (cf. $4.4). 

PROPOSITION 7.14. Let r = SL,(Z), m > 3. Then dim X,(r) = 0 for 
any n. 

PROOF (RAPINCHUK): The essence of Carter and Keller's result mentioned 
above consists of proving the existence of an integer d > 0 such that any 
element x in I' can be written as x = xyl . . . x:~, where ai E Z and xi is one 
of the elementary matrices ejk(l), the set of which we shall denote by X. 
Now let Q: I? + GL,(C) be an n-dimensional representation. If U c I' is the 
subgroup of upper unipotent matrices, then Q(U) is a nilpotent subgroup of 
GL, (C). By the Malcev-Kolchin theorem e(U) has a triangulizable normal 



436 Chapter 7. Approximation in Algebraic Groups 

subgroup N of finite index 1. Then, obviously, ,o(eij(l)) = @(eij(l))' E N 
for all i < j ;  consequently 

in particular p(eI3(l2)) is a unipotent matrix. Since all the eij(l) in r are 
conjugate, we obtain that @(eij(l2)) is a unipotent matrix for any i # j. In 
other words, 

where En is the identity matrix. Let f (t) denote the polynomial (tl' - l )n  
of degree 6 = 12n. Then (7.16) means that f(p(x)) = 0 for any x in X. 
We let Y denote the (finite) set {xyl . . . x:d : xi E X,  0 5 a < 6 )  and 
show that the Q-hull Q [ Q ( ~ ) ]  is precisely the Q-space spanned by e(Y); in 
particular, dirnQQ[@(I')] < cm. Indeed, since f ( ~ ( x ) )  = 0 for any x in X ,  
any power Q ( x ) ~  can be expressed linearly in the Q ( x ) ~ ,  0 5 P 5 6, with 
integral coefficients. Now, writing any z in r as z = xyl . . . xzd,  where 
xi E X and ai E Z, and plugging in the expression already obtained for 
e(xi)"% in the corresponding expression for ~ ( z ) ,  we obtain a presentation 
for ~ ( z )  as a linear combination of the elements of Q(Y), as desired. 

It follows, for any z in I?, that the powers ~ ( z ) ~  cannot be linearly inde- 
pendent over Q, so ~ ( z )  satisfies some polynomial equation with rational 
coefficients. All the eigenvalues XI,. . . , A, of the matrix of ~ ( z )  satisfy this 
equation and thus are algebraic numbers. Therefore tr ~ ( z )  = Cy=l Xi will 
also be algebraic. The proof of the proposition is completed by 

LEMMA 7.5. Suppose that for any representation Q E Rn (I') all the tr ~ ( x )  
are algebraic numbers. Then dim X, (I?) = 0. 

PROOF: Suppose dimXn(I') > 0. Then there exists an irreducible curve 
C C Rn( r ) ,  defined over a finitely generated field k, whose image under 
the map p: R n ( r )  4 Xn(I') does not reduce to a point. Let K denote 
the function field k(C) and, embedding k in @, construct a representation 
T: r + GLn(@), defining n(x) for x in I' as the matrix (aij), where aij is 
the function on C such that aij(e) = Q ( x ) ~ ~  for Q in C. Since the image of 
C in X,(I') does not reduce to a point, it follows that there exists xo in 
for which x,(xo) = t r  T ( X ~ )  is a nonconstant function of k(C), in particular 
xT(xo) 4 0. We obtain a contradiction to the algebraicity of the traces of 
all the Q in Rn(F)@. Thus Lemma 7.5 and Proposition 7.14 are proved. 
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precisely, if all the roots have the same length, then the proof goes through 
as is. For a system having roots of different lengths, some modifications are 
required due to the fact that the analog of (7.16) must be proved separately 
for long and short roots.) 

In analyzing the known examples of groups of finite representation type, 
Platonov [22], [23] has set forth the following conjecture: 

CONJECTURE (ON ARITHMETICITY): Assume r is a finitely generated 
linear group, such that d imXn( r )  = 0 for any n. Then r is a group of 
arithmetic type. 

(By a group of arithmetic type we mean a group which is commensu- 
rable with a direct product of suitable S-arithmetic subgroups (possibly 
for different S) ,  where the commensurability in this situation means there 
exist isomorphic subgroups of finite index.) 

Unfortunately, this conjecture is still far from being proved. However, 
even preliminary investigation has brought to light a surprising connec- 
tion with the Grothendieck problem stated above (cf. Platonov-Tavgen [2]). 
Namely, if, for example, one could find a proper subgroup in F = SL, (Z), 
n 2 3, for which the natural homomorphism 6 --+ f' of the profinite com- 
pletions is an isomorphism, then the representations of @ and I' would be 
the same for each dimension. Consequently, Proposition 7.14 would imply 
that has finite representation type. However, Grothendieck proved in 
fact that cannot be an arithmetic group. Therefore, for subgroups of 
most arithmetic groups, the Platonov conjecture would imply an affirma- 
tive answer to the Grothendieck problem stated above. 

In $4.4 we noted that Tavgen [3] generalized the result of Carter-Keller 
[l] for all Chevalley groups of rank _> 2. In this connection, we wish to point 
out that the proof of Proposition 7.14 also extends to these groups. (More 



8. Class numbers and class 
groups of algebraic groups 

In this chapter we study an important arithmetic invariant of an alge- 
braic K-group G-its class number cl(G) (cf. $5.1). In 58.1 we present 
results which allow the problem of computing cl(G) to be interpreted as 
the problem of computing the number of classes in the genus of various 
arithmetical objects. In particular, we establish that the class number 
cl(O,(f)) of the orthogonal group of a quadratic form f is precisely the 
number of classes in the genus of f ,  and the class number cl(GL,) of GL, 
(n  2 1) over K equals the class number of K .  

These examples suggest that computation of class number is a difficult, 
even hopeless, problem in its most general formulation. Naturally, we can- 
not pay equally close attention to all aspects of the problem, so we have 
decided to focus on studying the possible values of cl(cp(G)), the class num- 
ber of a fixed algebraic K-group G under various realizations cp, depending 
on the arithmetic properties of the group. The most complete results are 
obtained for G a semisimple group of noncompact type. It turns out that 
cl(G) in this case is the order of some finite abelian group Gcl(G), called 
the class group, whose exponent is always a divisor of the exponent of f of 
the fundamental group F of G. In particular, if the canonical factorization 
of f can be written as f = pyl . . .P:~, then the class number with respect 
to any realization can be written as pfl . . . +. In 58.2 we prove the re- 
alization theorem, according to which any number of such a form can be 
obtained as a class number of G in a suitable realization. In 58.3 we study 
the class number of semisimple groups of compact type. The main result 
of this section asserts that the class number here takes on values which 
are divisible by any given number. In 58.4 we prove a general theorem on 
the unboundedness of the class numbers of nonsimply connected groups 
and study the relationship between the class number of a group and the 
class numbers of its most important subgroups (parabolic subgroups and 
maximal tori). 

Several classical arithmetic problems can be solved with the results ob- 
tained here. In particular, in 558.2-8.3 we look at problems of the number 
of classes in the genus of a quadratic form and the number of classes in the 
genus of a lattice under conjugation. In 58.5 we investigate the genus prob- 
lem in arithmetic groups and for integral representations of finite groups. 

8.1. Class numbers of algebraic groups 
and number of classes in a genus. 

Let K be an algebraic number field. Recall (cf. $5.1) that by definition 
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the class number cl(G) of an algebraic K-group G is the number of double 
cosets GA(,)xGK of the adele group GA modulo the subgroups GA(,) and 
GK of integral and principal adeles respectively. In 51.2 we saw that for 
the idele group JK of K (which is the adele group of the one-dimensional 
K-split torus (6,) the index [JK : J F K * ]  is equal to the class number hK 
of K .  Below we shall show that for the orthogonal group G = O,(f) of 
a nondegenerate n-dimensional quadratic form f over K ,  cl(G) is equal to 
the number of classes in the genus of f .  Thus, the definition of class number 
is a natural generalization of the classical arithmetic invariants introduced 
by Lagrange and Gauss. Moreover, we shall see that this definition works 
in other situations as well, enabling us to achieve new results by means of 
general methods. 

The following remark should always be born in mind when working with 
class numbers of algebraic groups. While JK has a uniquely determined 
subgroup JF of integral ideles, in an arbitrary algebraic K-group G the 
group GA(m) of integer adeles is well-defined only when there is a fixed 
realization of G as a matrix group. Below, by a realization of G we mean a 
specified K-representation cp: G -, GL, and lattice L(cp) c KT. Then one 

L(v) = can GA(,) cp;l(cp(~)Lqg)), where 

here cp(~)b:)~ = { g E cp(G)~. : ~ L ( c p ) ~  = L(p), ) is the group of v-adic 
integral points under the localization L(cp), of L(cp), i.e., the aggregate of 
those g in (P(G)K, which are given by a matrix in GLT(O,) with respect 
to a base of the lattice L(cp),. Equivalently, cp (~) ;g )  can be viewed as 
the stabilizer in cp(G)~ of L(cp) under the action of GLT(A) on lattices in 
KT,  defined as follows: if g = (g,) E GLT(A) and L c K T  is a lattice, then 
we have g, E GLT(Ov) and L, = 0; for almost all v in v ~ K  (cf. 91.5.3); 
so g,L, = L,. Therefore by Theorem 1.15 there exists a unique lattice 
M C KT satisfying M, = g,L, for all v in VfK, and by definition we put 
M = gL. 

We shall write the class number of G corresponding to the representation 
cp as ~l (cp(G)~(v)) ,  but shall also use the notation C ~ ( G ~ ( P ) ) ,  cl(cp(G)), or 
simply cl(G) when this does not lead to ambiguity. Note that Theorem 5.1 
implies that cl(cp(G)) is finite for any cp. Indeed, Theorem 5.1 itself actually 
asserts the finiteness of cl(cp(G)) for any cp defined by a free lattice L(cp). On 
the other hand, for two arbitrary representations pi: G -+ GL,, (i = 1,2), 
the G~E;  are commensurable. Indeed, G~E; = G, x G:::), where the 
Archimedean part G, of the adele group is independent of the choice of the 

representation and the finite parts G;Z~)  and G ~ Z ? )  are commensurable 
as two open compact subgroups of GAf . It follows that cl(pl(G)) and 
cl(cp2(G)) are either both finite or both infinite. In view of the above, this 
remark implies 

THEOREM 8.1. cl(cp(G)) is finite for any representation cp of an algebraic 
K-group G. 

As we noted, the basic objective of this chapter is to study the values that 
cl(cp(G)) can assume, depending on the arithmetic and structural properties 
of G. In this regard, recall that cl(cp(G)) is 1 for any representation cp if G 
has absolute strong approximation (cf. Proposition 5.4). 

Above we saw that hK, the class number of K ,  can be interpreted as 
the class number of the one-dimensional K-split torus T -- GL1. It turns 
out that hK is also the class number of the full linear group of arbitrary 
dimension. 

PROPOSITION 8.1. Let G = GL, be the full linear group over K ,  in its 
natural realization. Then cl(G) = hK. 

PROOF: We use an approach widely applied in computing class numbers: 
essentially, the "noncommutative" problem of calculating the number of 
double cosets is reduced to the computation of an index of commutative 
groups. In the case at hand, this can be done using the homomorphism 
det: G + G,, which, for the sake of brevity, we denote by f .  Clearly the 
image of f (GA) is the idele group JK of K ,  f (GA(m)) is the subgroup of 
integral ideles JF, and f (GK) is the subgroup K*  of principal ideles. We 
shall show that the map 8: G A ( ~ )  \ G A / G ~  + JF \ JK/K*,  induced by 
f ,  is one-bone. Then 

as desired. In view of what we have just observed, we need only prove that 
8 is injective, i.e., 

for g, h E GA. If f (g) = x f (h)y, where x E JF, y E K*, then choosing 
a in GA(,) and b in GK such that f(a)  = x and f(b) = y, we obtain 
f (g) = f (ahb); and it suffices to show that g and t = ahb determine the 
same double coset modulo GA(,) and GK. Obviously 

where H = SL,. U = t-lHA(,)t is an open subgroup of HA, and therefore 
Us n H,HK is nonempty, since absolute strong approximation holds for 
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H. In view of the fact that Hw c U ,  it follows that there exist u in HA(w) 
and v in HK such that 

1 s = t-lg = t- utv. 

Then g = utv, as desired. Proposition 8.1 is proved. 

When G = GL,, one can push the equality cl(G) = hK further by 
applying an argument analogous to that used to show hK = [JK : J F K * ]  
and replacing fractional ideals of K (i.e., lattices in K1) by n-dimensional 
lattices. To do so, let us fix the lattice L = On in K n  and use the action of 
GA on lattices, defined above. We claim that the orbit GA(L) is precisely 
the entire set L of all n-dimensional lattices. Indeed, L, = Mu for any 
lattice M of Kn and almost all v in v~K. However, each localization Mu 
is Ow-free (cf. 51.5) and therefore one can find g, in GK, such that Mu = 
g,(L,). It follows easily that there exists an adele g in GA such that M = 
g(L). Since GA(m) is the stabilizer of L, the set of double cosets {GA(w) \ 
GA/GK ) is in one-bone correspondence with the set of orbits GK \L,  i.e., 
the set of classes of isomorphic lattices. Therefore, Proposition 8.1 implies 
that the number of isomorphism classes of n-dimensional lattices is hK, 
the class number of K .  This can also be proved directly by methods from 
lattice theory. To do so we use the concept of the pseudobase of a lattice, 
introduced in $1.5.3. Recall that any lattice M of K n  has a pseudobase, i.e., 
there exists a presentation of the form M = Oxl @ Ox2 @. - . @ Ox,-' @ax,, 
where a c O is an ideal whose class in the ideal class group depends only on 
M. Furthermore, one can show that two lattices M = Oxl @ . . . + 
ax, and N = Oyl @ . . . @ OynPl @ by, are isomorphic if and only if the 
classes of a and b are the same. This implies that the classes of isomorphic 
n-dimensional lattices are in one-bone correspondence with the classes of 
the fractional ideals of K ,  and so we obtain again cl(G) = [GK \ L] = h ~ .  
This example readily illustrates that the adelic interpretation offers a faster 
and more direct proof. Moreover, it enables us to formulate the following 
useful criterion for a lattice to be free. 

LEMMA 8.1. Fix a lattice L = On and consider an arbitrary lattice M in 
Kn.  Then M is free if and only if f (g) E JF K*, where g in GA is an 
element satisfying M = g(L). 

PROOF: It follows from what we have seen above that M is free if and only 
if g E G K G A ( ~ ) ,  which by (8.1) reduces to the condition f(g) E J F K * .  

This implies 

PROPOSITION 8.2. Let K be an algebraic number field with the Hilbert 
class field K, and let L be a free lattice in Kn. Then a lattice M in Kn  
is free if there exists vo E VF such that L, = Mu for v E vF,  v # vo and 
K c K,, . 

PROOF: To begin with, recall that by the Hilbert class field for K we 
mean a maximal abelian extension of K which is unramified at all points. 
In terms of global class field theory, K is defined as the field corresponding 
to the norm subgroup J F K * / K *  of CK; so G ~ ~ ( K / K )  is isomorphic to 
the ideal class group of K .  In this connection, K c Kvo is equivalent to 
the principal class J F K *  containing all the ideles ivo(a) ( a  E K:o), given 
componentwise by 

(All of these results can be found in [ANT].) 
Now let M satisfy the conditions of the proposition. Then for g in GA 

which sends L to M we can take an adele of the form gwO (a) (a E GKvo), SO 

f (g) = iwO(det a) E J F K * ,  and by Lemma 8.1 M is free. Proposition 8.2 
is proved. 

To prove the theorem on one-class lattices (cf. 58.2) we shall need another 
result which also follows from Lemma 8.1. 

PROPOSITION 8.3. Let S be a finite subset of vK containing vZ, such 
that JK = J ~ K * ,  where J; is the group of S-integral ideles. Then for any 
lattice M in K n  there exists a free lattice N in K n  such that Mu = Nu for 
all v in VK \ S. In other words, any lattice can be made free by changing 
its localization only for v in S \ vZ. 

PROOF: Put L = On, and let g be an adele in GA such that M = g(L). 
Then f (g) E JK = J ~ K * ;  and therefore f(g) = xyz, where xu = 1 for 
v 4 S \  vZ, y E JF, and z E K*. For v in S \ VZ take a, in GK, such 
that f (a,) = xu, and construct the adele h with components 

1, v $ S \ V Z ,  
hv = { 

a,, v E S \ V Z .  

We claim that N = h-'(M) is the desired lattice. Indeed, N = h-lg(L) 
and f (h-lg) = f (h)-'f (g) = x-'(xyz) = yz E J P K * ,  so N is free. 
However, (8.2) implies that Nu = Mu for v in vK \ S. The proposition is 
proved. 

Now we can conclude our discussion of questions dealing with the com- 
putation of the class number of G = GL,, in its natural realization, and 
with various interpretations of cl(G) = hK. This discussion, however, does 
not cover all the relations between the class numbers of algebraic groups 
and classical arithmetic invariants. In particular, we now show that the 
number of classes in the genus of a nondegenerate quadratic form f is pre- 
cisely the class number of the corresponding orthogonal group G = O,(f). 
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We deduce this from a general result which has several other interesting 
applications. 

So, let G be a linear algebraic K-group acting on an affine K-variety X. 
Let us fix realizations of G c GL, and X c Am, such that the action of G 
on X is defined over the ring of integers 0 of K ,  i.e., is given by polynomials 
with coefficients in 0. We say that two elements x, y in Xo are equivalent 
(with respect to Go) if there exists an element g in Go such that y = gx. 
As we shall see in the examples below, this definition includes the classical 
concepts of the equivalence of integral matrices, integral quadratic forms, 
integral representations of finite groups and other arithmetical objects. 

The basic problem which arises here is to determine necessary and suf- 
ficient conditions for the equivalence of two elements. In this regard, one 
can readily point out a series of very natural necessary conditions: if x, y 
in Xo are equivalent with respect to Go, then they are equivalent with 
respect to GK and Go, for all non-Archimedean valuations v of K ,  i.e., 
there exist g~ in GK and g, in Go, (v E VfK) such that ~ K X  = y and 
g,x = y. The question of the sufficiency of these conditions comes down 
to a question of the validity of the local-global principal holds in the given 
situation. This is a very complicated question, and in most instances the 
answer is negative. In order to discuss the question quantitatively (i.e., to 
characterize the deviation from the local-global principal) we introduce the 
following 
DEFINITION: Let x E Xo. The genus gen(x) of x is the collection of all 
elements y in Xo such that x and y are equivalent with respect to GK 
and Go, for all v in VfK. The class cl(x) of x is the orbit Gox, i.e., the 
aggregate of those y which are equivalent to x with respect to Go. Each 
gen(x) partitions into the union of disjoint classes: 

gen(x) = u cl(xi), cl(xi) n cl(xj) = 0 (i # j ) ;  
i E I  

the order of I is called the number of classes in the genus of x (under the 
action of G) and is denoted as fG(x). 

Thus, we see that the local-global principal for equivalence holds if and 
only if fG(x) = 1. In general fG(x) # 1, and this naturally raises the 
question of computing fG(x). The results in this vein will be discussed in 
the sections that follow; for the time being, we point out the connections 
with the class numbers of algebraic groups. 

THEOREM 8.2 (ON THE STABILIZER). Let x E Xo and let G(x) = {g  E 

G : gx = x ) ,  the stabilizer of x. Then fG(x) equals the number of double 
cosets G ( X ) ~ ( , ) ~ G ( X ) ~  c G ( x ) ~  which are contained in the ~rincipal 
class GA(m)GK. In particular, fG(x) is always finite. If absolute strong 
approximation holds for G, then fG (x) = cl(G(x)) . 

PROOF: Let g be the quotient set obtained from gen(x) by identifying 
the elements belonging to the same class. Since fG(x) = lg(x)J, to prove 
the theorem it suffices to establish a one-bone correspondence between 
g(x) and the set M of double cosets G ( x ) ~ ( ~ ) ~ G ( x ) ~  c G(x)A which are 
contained in G A ( ~ ) G K .  

Let g = G ( x ) A ( ~ ) ~ G ( x ) K  E M, i.e., 

We claim y E gen(x). First note that y E XK, by definition. hrthermore, 
(8.3) implies that for any v in VfK the v-component g, is g o , g ~ ,  where 
go, E Go,. It follows that g~ = g;:gv and 

since g, E G(x)K,; in particular, y E Xo,. Therefore y E Xo, and (8.4) 
and (8.5) show that y E gen(x). 

Now we define 8: M -+ g(x), mapping g into the class containing y. We 
claim first that 6 is well defined. Suppose 

i.e., h = t ~ ( ~ ) g t ~ ,  where tA(,) E G(x)~(,) and tK E G(x)K. Consider 
an arbitrary factorization h = in G A ( ~ ) G K .  Then 

and consequently 

Now h~ = S ~ K ~ K ;  letting g = h ~ x ,  we have 

from which it follows that fi lies in the same class as y, proving our claim. 
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Surjectivity of 0. Let y E gen(x). Then 

for suitable g~ in GK and g, in Go,, (v E v ~ K )  Let h denote the adele 
with components 

hv = { gK € V,K, 

Sv, VEVfK 

Obviously, h E G A ( ~ ) .  It follows from (8.6) and (8.7) that for any v in VK 
we have h ; l g ~  E G(x)K,, , SO g = h-lgK E G(x)A. Thus, by assumption 
g = G ( x ) ~ ( ~ ) ~ G ( x ) K  E M, and its image under 0 is the equivalence class 
in g(x) containing y, thereby proving 8 to be surjective. 

Injectivity of 9 .  Let g and h be elements in G(x)* for which the respective 
classes g and h lie in M and 0(g) = ~ ( h ) .  Choose factorizations g = 

g , q m ) g ~  and h = in G A ( ~ ) G K .  Then O(g) = 0(h) means there 
exists s in Go such that 

hKx = S~KX. 

Put tA(oo) = hA(m)~- l  gAcm, -' and t~ = g ~ l ~ - l h K  . It is easily verified that 

Then h = t A ( m ) g t ~ ,  i.e ij = h, establishing the injectivity of 8. 

Thus we have proved the main part of Theorem 8.2. The finiteness of 
fG(x) now follows immediately from Theorem 8.1. If G has absolute strong 
approximation, then cl(G) = 1 (cf. Proposition 5.4), i.e., GA = G A ( ~ ) G K ,  
and therefore fc(x) = cl(G(x)), completing the proof of Theorem 8.2. 

Now we give some applications of Theorem 8.2. 

EXAMPLE 1 (QUADRATIC FORMS): Let X be the variety of nonsingular 
symmetric (n x n)-matrices, viewed as a subvariety of the n2-dimensional 
affine space -- Mn. The points of X are in one-to-one correspondence 
with the nondegenerate n-dimensional quadratic forms, sending the points 
of XK and Xo to K- and 0-defined forms, respectively. G = GLn acts 
naturally on X,  by 

g(F) = t g ~ g ,  for g E G, F E X, 

where 5 is the matrix transpose to g; clearly this action is defined over 0 .  
Therefore, using the above definition, we can introduce the concepts of the 

genus and the class of a symmetric matrix F E Xo, as well as the concept 
of the number of classes fG(F)  in the genus. Since there is a one-to-one 
correspondence between the elements of X and quadratic forms, all the 
concepts mentioned carry over to quadratic forms and become the classical 
concepts in the theory of quadratic forms which goes back to Lagrange and 
Gauss. Thus, for example, the genus gen(f) of a quadratic form f with 
coefficients in 0 is the set of quadratic forms with coefficients in 0 which 
are equivalent to f over K and over all 0, for v in v~K; also, cl(f) is the 
set of forms which are 0-equivalent to f .  Here the number of classes in the 
genus is traditionally designated by c(f). 

If f is a nondegenerate quadratic O-defined form and F is the corre- 
sponding symmetric matrix in Xo, then the stabilizer G(F)  is On( f) .  Let 
us show that always On( f ) ~  c GLn(A(oo))GLn(K). For each v in VfK, 
clearly GLn(Ov) contains a matrix with determinant -1; therefore, any el- 
ement of O n ( f ) ~  can be put into SLn(A) by multiplying by a suitable 
element of GLn(A(oo)). But, as we have noted, cl(SLn) = 1, i.e., 

from which it follows that On(  f)A c GLn(A(oo))GLn(K). In view of this, 
Theorem 8.2 yields 

PROPOSITION 8.4. The number of classes c(f) in the genus of a nondegen- 
erate quadratic form f is finite and equals the class number cl(On( f ) )  of 
the corresponding orthogonal group. 

Here it is relevant to cite a straightforward example, due to Milnor, which 
shows that in general c(f) # 1. Take two symmetric integral matrices over 
Q: 

Let us introduce the following nonsingular rational matrices: 

Direct computation shows that tgiFlgi = F2 (i = 1,2). Since the gi are 
rational, and moreover gl E GL2(Z,) for all p # 2 and g2 E GL2(Z2), it 
follows that Fl and Fz  (and their respective quadratic forms f i ,  f2) lie in 
the same genus. At the same time, if we assume that Fl and F 2  lie in the 
same class, then there must be an integral matrix g = (z i)  such that 
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tgFlg = F2. This relation, as one can easily verify, reduces to the following 
system of equations 

( 5a2 +11c2 = 1 

{ 5ab + l lcd = 0 

in which even the first equation has no integral solution. Thus, fGL2 ( F l )  = 

c(f1) > 1. 
EXAMPLE 2 (INTEGRAL REPRESENTATIONS): Let I? be a finitely generated 
group, and let X = R,(I?) be the variety of n-dimensional representations 
of I? viewed as a subvariety of (GL,)~ (cf. ss2.4, 7.5). The group G = GL, 
acts naturally on R,(F), since the orbits of this action are the classes 
of equivalent representations. The points of Xz correspond to integral 
representations Q: I? -+ GL,(Z) of degree n, and the general concepts of the 
genus and the class of an element reduce in this situation to the concepts of 
the genus and the class of an integral representation, used in representation 
theory (cf. Curtis-Reiner [I]). Since cl(GL,) = 1 over Q according to 
Proposition 8.1, Theorem 8.2 implies 

PROPOSITION 8.5. Let Q: I? + GL,(Z) be an integral representation of 
a finitely generated group I?, and let C be the centralizer of Q (= the 
centralizer of @(I?)). Then the number of classes in the genus of Q is finite 
and equals cl(C). 

Following Platonov [2], we shall use this fact to obtain a precise estimate 
for the number of classes in the genus of an integral representation (cf. §8.5), 
improving the estimate obtained by RoYiter [l] using a technique from the 
theory of modules. 

EXAMPLE 3 (CONJUGACY OF INTEGRAL MATRICES): Let G be a connected 
algebraic subgroup of GL, defined over Q. Consider the adjoint action 

The genus of an element g in Gz, which in the case under consideration is 
usually denoted as [gIG, is the set of the elements of Gz which are conjugate 
to g over GQ and GZp, for a11 primes p; the class of g is its conjugacy class 
in G c  Applying Theorem 8.2, we obtain the following assertion concerning 
fG(9). 

PROPOSITION 8.6 (CENTRALIZER THEOREM, PLATONOV [8]). The num- 
ber of classes fG(g) in the genus of an element g in Gz is finite, and is the 
number of double cosets CA(,)xGq c CA of the centralizer C = ZG(g) 
contained in the principal class GA(,) GQ. In particular, if cl(G) = 1, then 
fc(g> = cl(C). 

In 98.5 we shall use this proposition to solve the genus problem (cf. 
Rapinchuk [I]). 

In conclusion, we wish to point out another interpretation of the class 
number of an algebraic group, which in a sense is dual to the one discussed 
above. To do so, let us consider an algebraic K-group G in GL, and a 
lattice M in Kn. 
DEFINITION: By the genus gen(M) of M relative to G we mean the set 
of lattices N in K n  which are locally isomorphic to M relative to G, i.e., 
those lattices for which there exists g, in GK- satisfying g,(M,) = N, for 
each v in VfK. The class of M consists of lattices which are isomorphic to 
M relative to G, i.e., lattices of the form g(M), g E GK. 

PROPOSITION 8.7. The number of classes in the genus of M relative to G 
is finite and equals cl(GM). 

PROOF: As usual, the proof consists of establishing a one-to-one correspon- 
dence between the set A of double cosets G ~ ~ G ~ , )  in GA, the number of 
which equals cl(GM), and the set g(M) of classes in the genus of M. To do 
so, consider the action of GA on the lattices in Kn,  induced by embedding 
GA in GL,(A) and the action of GL,(A) considered above. 

We claim that gen(M) is precisely the orbit GA(M). Clearly GA(M) c 
gen(M). Now let N E gen(M). Then for each v in VfK there is a g, in GK- 
satisfying gu(Mv) = N,. Since Mu = Nu = 0; for almost all v, it follows 
that the element h = (h,) with components 

is an adele; moreover, by construction h(M) = N. Since the stabilizer of 
M under the given action is Gz,) and the orbits of GK are the classes 
of lattices in the sense defined above, we obtain the desired one-to-one 
correspondence A 2 g(M). Proposition 8.7 is proved. 

EXAMPLE 4: Let G = On( f ) ,  where f is a nondegenerate quadratic form 
on Kn.  Then the genus of M in K n  consists of those lattices N in K n  which 
are locally isometric to M,  i.e., those lattices for which the localizations 
Mu and Nu are isometric for all v in v~K. (In other words, for each v in VfK 
there exists an isometry a, E O n ( f ) ~ ,  satisfying uv(Mv) = Nu.) The class 
of M consists of all lattices isometric to M.  Thus, in this case our concepts 
of the genus and the class of a lattice coincide with the concepts used 
by O'Meara [I] in the arithmetic theory of quadratic forms. Combining 
Propositions 8.4 and 8.7, we arrive at the following assertion: 

Let f be a nondegenerate quadratic form on Kn with coefficients in 0; 
then the following three numbers are the same: 
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(1) c(fh 
(2) cl(On(f 
(3) the number of classes in the genus of L = On under the action of 

G = On(f). 

Henceforth, bearing in mind the interpretation of the class number given 
in Proposition 8.7, we shall call M for which c l ( ~ ~ )  = 1,2,. . . one-class, 
tweclass, etc., respectively. 

8.2. Class numbers and class groups of semisimple groups of 
noncompact type; the realization theorem. 

In this section we shall obtain a complete description of the values taken 
on by cl(cp(G)) for a semisimple K-group G of noncompact type with re- 
spect to the various representations p. (Recall (cf. $4.4) that a semisimple 
K-group G is said to have noncompact type if it does not have any K- 
simple components Gi with the compact Archimedean part G L  of the 
adele group. An equivalent definition can be given using Theorem 7.12: 
G has noncompact type if and only if strong approximation holds for its 
simply connected covering G.) For this case it turns out that the values 
which cl(p(G)) can assume are by no means arbitrary; first we shall obtain 
the relevant constraints on the class number, and then we shall show that 
all values that are possible a p7*107*1 are actually realized as cl(cp(G)). 

Let G be a semisimple K-group of noncompact type. Consider the uni- 
versal K-covering IT: G + G and the corresponding exact sequence of K- 
groups 

where F = ker IT is the fundamental group of G. For any extension M/K 
we take the segment of the exact cohomological sequence 

where qM is the coboundary morphism (cf. $1.3). Putting M = Kv (where 
v E v K )  and then passing to the direct product, we obtain the exact 
sequence 

where II = n ITK, and 9 = n $K,. Let ITA and $A denote the restrictions 
2) 2) 

of Il and 9 to the adele groups GA and GA, respectively. 

PROPOSITION 8.8. Let G be a semisimple K-group of noncompact type. 
Then the principal class GA(oo)GK is a normal subgroup of GA containing 
the commutator group [GA, GA], and cl(G) is the order of the finite abelian 
group Gcl(G) = GA/GA(,)GK. Also 

in particular, 

PROOF: First we establish that the sequence 

is exact. Since (8.9) is exact it suffices to show that 

This is equivalent to having 

for almost all v in v ~ K .  In $6.2 we saw that for almost all v in v ~ K  there is 
an exact sequence 

where Fo,,, is F for almost all v in VfK Then for g in Go,:, we have 

IT-' (9) c 6'o,,y.. In particular, if g = n(x) E Go. , where x E GK,, , then - - - 
x E Go,:, f l  GK, = Go,, from which one obtains (8.12). 

Now we note that the strong approximation property for G implies that 
TA(GA) c GA(,)GK; moreover, ITA(GA) c g- lGA(w)gG~ for any g in 
GA. Indeed, U = I T A ~ ( ~ - ' G ~ ( , ) ~ )  is open in GA and contains G,; there- 
fore, since GwGK is dense in G A ,  it follows that GA = UGK. Conse- 
quently, 

ITA(GA) = ITAWGK) c s-~GA(,)~GK. 

Since $A is a homomorphism of GA to an abelian group, we see that 
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for any g in GA. Now the proof of the proposition is easily completed. For 
any gi in GA(,) and hi in GK (i = 1,2), and any g in GA, we have 

(glhl)(g2h2) = (glg2)([g~~,hl])hlh2 E GA(rn)GK, 

(8.14) (glhl)-l = h-I 1 91 -l - - ~1~[!?1,  h ~ l ] h ~ l  E GA(,)GK, 

~ - ~ g i h i g  = gi[gll ,  g-lI[g-l, hilhi € GA(,)GK 

by virtue of [GA, GA] C GA(,)GK (where [x, y] = X ~ X - ~ ~ - ~ ) .  Fkom (8.14) 
we see that the class GA(,)GK is a normal subgroup of GA containing 
[GA, GA]. To prove the assertion that the order of the quotient group 
Bcl(G) = G A / G ~ ( , ) G ~  equals the class number, it suffices to establish 
that the double coset GA(,)xGK coincides with the right coset xGA(,)GK, 
for any x in GA. By virtue of (8.13), for any g, h in GA we have 

and setting g = x and h = x-I we obtain the reverse inclusion, as desired. 
The proof of the isomorphism (8.10) follows from the standard homomor- 
phism theorem, since ker C GA(,)GK. This completes the proof of 
Proposition 8.8. 
DEFINITION: Bcl(G) = GA/GA(,)GK is called the class group of a semi- 
simple algebraic K-group G of noncompact type. 

Proposition 8.8 implies 

COROLLARY. Let G be a semisimple K-group of noncompact type, and 
let f be the exponent of its fundamental group F. Then f is an exponent 
of Bcl(G). In particular, cl(G) always has the form pyl; . . . p,"., where 
pl , . . . , pT are the distinct prime divisors of the order of F. 

The aim of this section is to show that all the numbers of the form 
described can be obtained as cl(cp(G)) for a suitable realization cp of G. 
This is done by 

THEOREM 8.3 (REALIZATION THEOREM). Let G be a semisimple K- 
group of noncompact type, and suppose the kernel F of the universal cov- 
ering .rr: G + G has exponent f .  Then for any finite abelian group B of 
exponent f there exists a K-representation c p ~  of G such that Gcl(cp~(G)) 
is isomorphic to B. In particular, one can determine effectively an integer 
n such that G has a faithful representation of degree n, and such that for 
any integer of the form pyl . . . p,"~,  where the pi's are as above, there exists 
a free lattice M ( a l ,  . . . , Q,) c K n  such that cl(GM("l l-, la.)) = pyl . . . pFr . 

PROOF: Theorem 8.3 is proved in several steps, the first of which is the 
theorem on the existence of a one-class free lattice. 

THEOREM 8.4. Let G be a semisimple K-group of noncompact type and of 
degree n. Then there exists a free lattice Lo in K n  such that cl(GLO) = 1. 

PROOF: We use the following straightforward assertion, which allows us to 
choose a special set of representatives of double cosets. 

LEMMA 8.2. Let H be an algebraic K-group having weak approximation 
with respect to a finite subset S of VfK, and let W be an open subgroup of 
HA(,) of the form W = H, x n Wv, where Wv is an open subgroup 

V E V ~  

of How and Wv = How for almost all v in VfK. Then there exists a finite 
subset T c VfK disjoint from S,  and a finite system of representatives 
{hi):='=, of the double cosets W \ H A / H ~  such that the v-component he is 
1 for any v $ T and any i = 1,. . . , r .  In particular, HA = HA(qHK for a 
suitable finite set T containing VZ and disjoint from S. 

PROOF: Clearly W has finite index in HA(,); therefore Theorem 8.1 im- 
plies that there is a finite system of representatives {xi):=l of W \ HA/HK. 
Using the weak approximation property, for each i = 1 , .  . . , r we choose a" 
in HK n n (Wvxe) and put 5i = xi(ai)-l and yi = (ye), where 

VES 

Then by assumption yi E W for any i  = 1, .  . . , r ,  so the adele zi = 
(yi)-lxi(ai)-l defines the same double coset as xi. Put 

T = {v E vf(: zt $ Wv for some i =  1, ..., r ) .  

Clearly T is a finite subset; and since zd = 1 for v in S, we have T n S = 8. 
Now clearly for our desired system of representatives {hi):='=, we can take 
the adeles zi "truncated" at T ,  i.e., we can put hi = (he), where 

It remains to note that the system {hi):=l we have just constructed con- 
tains representatives of all the double cosets HA(,) \ HA/HK; so 
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since hi E HA(TUV2) by virtue of (8.15). The lemma is proved. 

By Theorem 7.7 there is a finite subset So of VZ such that, for any finite 
S in VK disjoint from So, G has the weak approximation property with 
respect to S. 

Applying Lemma 8.2 to the one-dimensional torus H = G,, we establish 
the existence of a finite subset S of vK containing VE and disjoint from 
So, such that JK = J ~ K * ,  where JS is the group of S-integral ideles. Now 
let us fix a lattice L in K n  and let W denote the subgroup of Gi(,) of the 
form 

where Sf = S \ vZ. Applying Lemma 8.2 again, this time to H = G and 
to the set Sf (noting that by assumption G has weak approximation with 
respect to S), we obtain a system of representatives { g i ) f = l  of W\GA/GK, 
such that, for some finite T c v ~ K  disjoint from S, the v-component ge is 
1 for each v $ T and all i = 1,. . . , l .  

The desired Lo is constructed by modifying the v-component of the orig- 
inal L, for v in S U T. For v in T,  the necessary local components are 
obtained from the following assertion. 

LEMMA 8.3. There exists a lattice Nu in K," such that 

Indeed, by Proposition 3.18 there exists a maximal compact subgroup B 
of GK, such that GK, = B . XK,(G~,) .  On the other hand, by Proposi- 
tion 1.12, there is a lattice Nu in K," satisfying GZ = B. 

The condition JK = J ~ K *  and Proposition 8.2 imply the existence 
of lattices Mu in K,", for v in S f ,  such that the lattice Lo having local 
components 

Mu, V E S  

is free; and it remains to show that cl(GLO) = 1. 
Let g E GA. Then there exist h in W,  t in GK, and i, 1 5 i 5 I ,  such 

that g = hgit. For v in T take the factorization 

where b, 6 G:; and sv E XK, (GK,), and introduce adeles x and y with 
components 

Then, since g i  = 1 for v $ T,  we have hgZ = xy; moreover, by as- 
sumption x E G~T,, and y E xA(GA). Since G has noncompact type, 

\ ,  

nA(GA) c 6 2 , ) ~ ~ ;  consequently g = hgit = xyt E GLO GK, as de- 
A ( w )  

sired. Q.E.D. 
If we do not require that the one-class lattice constructed be free, then 

the proof of its existence becomes quite short and its main argument- 
the application of Proposition 3.18-stands out clearly. The proof of the 
latter proposition - is based on the conjugacy of the Sylow pro-psubgroups 
of XK,(GK,,); thus it is an excellent example of applying abstract group 
theoretic arguments to the study of subtle arithmetic questions. In this 
regard, it should be noted that much more preliminary work is required 
to prove Theorem 8.4 for the orthogonal group of an indefinite quadratic 
form in the context of lattice theory (cf. O'Meara [I]). We also wish to 
call the reader's attention to the fact that Theorem 8.4 evidently treats 
what is probably the most general case, in which the existence of one-class 
lattices is the rule, not the exception. Platonov-Bondarenko-Rapinchuk 
[l, 541 presented the examples of tori and semisimple groups of compact 
type which do not have a one-class realization in any space. 

In this connection, we note the following curious fact, which shows that 
the existence of a one-class realization is determined by the intrinsic prop 
erties of the group itself and is independent of the choice of a faithful 
representation. 

PROPOSITION 8.9. Let G c GL, be an arbitrary algebraic K-group of 
degree n. Assume there exists a lattice L in Kn  such that cl(GL) = 1. 
Then, for any faithful K-representation cp: G + GL,, there also exists a 
lattice L(9) in K T  such that c1(GL(~)) = 1. 

PROOF: Let S denote a finite subset of VfK, such that the morphism cp is 

defined over 0, and Lv = 0," for all v in v ~ K  \ S. The group 9 ( G k )  is 
compact, for each v in S; therefore there exists a lattice Mu in K,T such that 
9 ( G k )  c ~J(G)%.  Let us define the localizations of the desired lattice 
L(cp) as follows: 

L(p), = { OL, v 4 s ,  
M,, V E S .  
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Then it follows from our assumptions that p(Gi(,)) c p ( ~ ) i g ) ,  and 

therefore ~ ( G ) A  = ~ ( G A )  = p ( ~ i ( , , G ~ )  c p ( G ) ~ ~ ) p ( ~ ) ~ ,  in other 

words, cl(p(~)~(+')) = 1. The proposition is proved. 
Now we return to the proof of Theorem 8.3. The desired lattices are 

constructed by starting with a special one-class lattice L, and modifying 
its v-components for v from a finite subset S of VfK in such a manner that 
the corresponding integral adele group becomes smaller. In this situation 
one can refine the isomorphism in (8.10). 

PROPOSITION 8.10. Let G be a semisimple K-group of noncompact type 
and of degree n, and let L be a lattice in Kn satisfying cl(GL) = 1. Assume 
that N is another lattice in K" satisfying the following conditions: 

(1) $A(GT(,)) c $A(Gi(,)); 
(2) Nu = Lv for all v in VfK \ S,  where S is a (fixed) finite subset of VfK, 

For any subset T of VfK, let ST: H1(K, F )  -, n H'(K,, F )  be induced by 
V E T  

the restriction maps, and let 6 = &K. Then 

Moreover, Ss($K (Gg)) is the image of b ($~(Gk) )  under the projection 
map ps: n H1(Kv, F )  + n H1(K,, F); and the latter group is finite and 

v UES 
is given by the equality 

PROOF: $A(GA) = $ A ( G ~ ( , ) G ~ ) ,  since cl(GL) = 1. Therefore, by (8.10) 
we have 

In this case, applying the standard isomorphism AB/CB E A/(A n B)C, 
which holds for any subgroups A, B ,  and C of a certain abelian group such 
that C c A, we obtain 

NOW, applying p s  and the fundamental theorem of homomorphisms, and 
bearing in mind that the kernel of the restriction of ps  to $A(G&,)) lies 
in $A (GT(,)), we obtain the isomorphism 

where I? denotes the image under p s  of $ J ~ ( G ~ ( , ) )  n $A(GK). Bearing in 

mind that $A(GK) = S($K(GK)) and ~s($K(G&)) = PS(~($K(G$))), we 
see that it suffices to establish 

Let x = $A(g) = $ ~ ( h ) ,  where g E Gi(,) and h E GK. Then $~(gh- ' )  = 

1, and hence y = gh-l E ker$A = ImxA (cf. proof of Proposition 8.8). 
The strong approximation property for G implies 

so y = gh-I = st for some s in TA(GA) n G;(,, and t in xA(CK). We 
have 

L ~ - l g  = th E G;(,) n GK = Go; 

hence x = $ ~ ( h )  = $ ~ ( t h )  E $ A ( G ~ ) ,  as desired. 
It remains to observe that Gg is finitely generated, by Theorem 4.17; 

therefore $ K ( G ~ )  is a finitely generated abelian group of finite exponent, 
and hence is itself finite. Proposition 8.10 is proved. 

Now we have all the results necessary to prove Theorem 8.3. However, we 
shall provide a full proof only for the important case where the fundamental 
group F is cyclic. In this situation one can give an explicit description of 
the realizations obtained, and this is significant for arithmetic applications 
(cf. Theorem 8.6 and Proposition 8.13). Moreover, this case involves basic 
technical difficulties, and the general case can actually be reduced to this 
case (cf. Platonov-Bondarenko-Rapinchuk [3]). 

THEOREM 8.5. Let G be a semisimple K-group of noncompact type with 
a cyclic fundamental group F of order f = py' . . . pFs . Assume that there 
exists a faithful K-representation Q: G -, GL, and a finite extension P I K  
such that, for almost all v in VfK for which P C K,, there is a lattice Rv 
in K; satisfying $K,(~g;)  = 1. Then for any finite abelian group B of 
exponent f there is a free lattice L(B) in K T  such that G C ~ ( G ~ ( ~ ) )  N B. 
In particular, for any integer of the form pill . . . & there is a free lattice 
L(P1, . . . , P,) in K T  with cl(GL(P19...rPs)) = . . .# . If G has degree n as 
a linear group, then for Q one can always take the representation of degree 

2% given by ~ ( 9 )  = (: in). 
PROOF: Enlarging P, we may, and shall, assume henceforth that P is 
a Galois extension of K, containing the Hilbert class field K, and such 
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that F = Fp. Let us fix a one-class lattice L in KT and take a fac- 
1 

torization B = n Bi of B into the product of cyclic factors. Let S1 de- 
i=l 

note the set of those v in V? for which $K*(G$) # H 1 ( K y / K V , F ) .  
Note that Proposition 6.4 implies that S1 is finite. Also, let Sz be a fi- 
nite subset of VF such that, for any finite S disjoint from S2, the map 
Ss: H1(K, F )  -+ n H1(Kv, F )  is surjective (cf. Proposition 7.8, Corol- 

- - 

v E S  

lary 2). By the Chebotarev density theorem one can choose 1 valuations 
vl , .  . . ,Q in v ~ K  \ (S1 u S2) with the property that P c Ke, for i = 1 , .  . . ,1. 
Put S = {v l , .  . . ,vl ). Then we have 

LEMMA 8.4. There exists a free one-class lattice M in K T  such that 

PROOF: Using Lemma 8.2, we choose a finite subset S of VK containing 
VZ and disjoint from S2 U S, such that JK = J ~ K * .  By our assump 
tions and Proposition 7.10, it follows that G has weak approximation with 
respect to T = S U S. Consider two open subgroups of GT: 

The weak approximation property implies that Wl = (GK n Wl)(Wl n W2) 
in the sense of the diagonal embedding of GK in GT; hence 

where $T = n $K, . Since all the cohomology groups H1(Kv, F )  are finite 
- - 

V E T  

(Theorem 6.14), $T(W~)  is also finite; and therefore there exists a finitely 
generated subgroup r c GK n Wl such that 

Clearly C G&,,v,K) for some finite subset V of Vf disjoint from T. Now 
we define the desired M in KT by means of its localizations, as  follows: 

Lv, V $ V U S ,  
Mv = { Nu, v g v ,  

Jv, V E S ,  

where Nu is the lattice from Lemma 8.3, and the components Jv are selected 
in such a way as to ensure that M be free (cf. Proposition 8.3). 

We shall show that cl(GM) = 1. Since L is a one-class lattice, we obtain 
$A(GA) = $A(G&,)GK); and therefore, by Proposition 8.8, it suffices to 
establish that $A (Gfi(,)) C $A (G%,)GK). Since 

Mv = Lv for v $ V U S and 

$K, ( ~ 2 )  C $K, (GE;) = $K, (GK,) for each v in V, 

we need only prove that 

where is n $K, ( ~ 2 )  naturally embedded in $A(GA). It follows from 
v E S  

(8.19) that for any x in there exists y in r satisfying bS($~(y)) = x. 
Then, analysis of the local components and (8.20) easily yield that 
x$A(T-') E $A(G~,)) ,  and hence 

as desired. 
According to Proposition 8.10, in order to compute S S ( $ ~ ( G g ) )  one 

has to take the image under the projection p~ of $ A ( G ~ )  = $A(GK) n 
$A(G%,)). Denote the kernel of the restriction of 6.9 to $K(r) by A; it 
follows from (8.19) that 

However, using (8.20), we obtain that S(A) C $A(GK) n$A(~g,) ) ;  hence 

S S ( $ ~ ( G g ) )  > n H1(Ky/Kv,  F). The reverse inclusion is obvious, 
v€S 

since G g  c G:; = ~2 for all v in S. Lemma 8.4 is proved. 

Note that thus far we have not used the fact that F is cyclic; therefore 
all our constructions and results also hold in general. 

Now we continue with the proof of Theorem 8.5. Since F = Fp, we have 
H1(P, F )  = Hom(Gal(P/P), F) ;  and we can consider the map 

0: H ~ ( K ,  F) -+ H' (P, F )  = ~ o m ( ~ a l ( P / P ) ,  F ) .  
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Let H denote the intersection of the kernels of all homomorphisms x E 
%(+K (Gg)). Since E = +K (Gg)  is finite (Proposition 8.10), H is a closed 
normal subgroup of G ~ ~ ( P / P )  of finite index. We claim that H is actually 
a normal subgroup of Gal(K/K). Indeed, if x E o(+~(G$)) ,  h E kerx 
and g E Gal(K/K), then 

x(g-lh9) = x ( s - ~ ) s - ~ ( x ( ~ s ) )  = x ( s - ~ ) s - ~ ( x ( ~ ) ~ x ( s ) )  

= x(s-~)s-~(x(s)) = x(99-l) = 1, 

since x is a cocycle on all Gal(K/K) and h, as an element of Gal(P/P), 
acts trivially on F .  Let C denote the finite Galois extension of K corre- 
sponding to H. (It can be characterized as the smallest Galois extension of 
K containing P and satisfying E c H1 (CIK, F).  Then the homomorphism 

1 

bs:E + n H 1 ( ~ G , , F )  
i=l 

factors through H1(C/K, F) .  Now it follows from (8.18) that all the ex- 
tensions C,,/K,, (i = 1 , .  . . ,1)  are unramified. Moreover, by assumption 
F = Fp and P c KG,; hence 

H'(K$,?/K,~, F )  = ~ o m ( k ,  F) .v F, 

and the composition 
1 1 

a: H'(c/K, F )  -. n H~(C,,K,, F )  - n H'(K~:/K~~, F )  1 F' 
i=l i=l 

is given by 
x ( ~ ( ~ l ) ,  . . . 7 ~ ( ~ l ) ) ,  

where ui is the F'robenius automorphism of CCi/Kvi, viewed as an ele- 
ment of Gal(C/K) (cf. $1.1). By the Chebotarev density theorem, out- 
side any given finite set of valuations one can find vl, . . . , vl in VfK such 
that C,, /Kv, is unramified and the Frobenius automorphism Fr(Cvi /K,,) 
is ri = for i = 1, . . . ,1 (note that 1 Bi 1 divides f ,  since by as- 
sumption the exponent of B is f).  In particular, we may assume that 

$Kui (G:::) = H1(K:;/K,", F )  for each i, and there is a lattice R,, in K,', 
with the property indicated in Theorem 8.5. (Note that by assumption 
P C KGi, and therefore the restriction of ai to P is trivial; consequently, 
the restriction of ri to P is also trivial, and hence P c KVi .) Let us define 
the lattice L(B) as follows: 

v $ { v l , . . .  ,v l}7 

Rv, V E { V I , . . . , ~ ~ ) .  

Since, for any i, the completion of KVi contains the Hilbert class field K, 
and since M is free, it follows that L(B) is also free (Proposition 8.3). 

PROOF: We use Proposition 8.10. In our case, the isomorphism (8.16) 
established in the proposition assumes the form 

where S = { vl, . . . , vl ). (Recall that by assumption tKU% (GRui 0% ) = 1.) By 

definition $K,,, (G::; ) = H' (K::/Kvi, F ) ,  the homomorphism 6s: E - 
1 n H1(KVi, F )  factors through H1(C/K, F ) ,  and the composition 

i=l 

Since a ( E )  = F1 and ri = af'lBi', we have 

where h is a generator of F (observe that ai acts trivially on F and hence the 
restriction of x to (ai) is a homomorphism). It follows that G C ~ ( G ~ ( ~ ) )  = 

1 n Bi = B, as desired. 
i=l 

The assertion that on lattices L in K T  all numbers of the form m = 

pf' . . .p? are realized as class numbers follows from the fact that any 
finite abelian group with exponent f is realizable as a class group and from 
the remark that one can always find a group of order m and exponent f .  
Thus, it remains to show that if G is a linear group of degree n, then for 
dimension r = 2n there exists a lattice R, in K,' satisfying $ J ~ , , ( G ~ )  = 1, 
for almost all v in VfK. To do so, we need 

PROPOSITION 8.11. Let H = GL, and let cp: H -+ GL2, be the represen- 
tation given by 

Then, for any non-Archimedean v in VfK and any integer t > 0, there exists 

a lattice L,(t) in K:" such that H;:(" = q(GL,(O,, p : ) ) .  
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The proof is analogous to that of Proposition 4.3. 

Thus, if G is a linear group of degree n, then for any v in v ~ K  there is 

always a lattice L, in K:" for which ~2 = Gou (p,) Therefore, the proof 
of Theorem 8.5 is completed by the following 

LEMMA 8.6. If v(lF1) = 0, then +K, (Gou (p,)) = 1. 

PROOF: The kernel of the homomorphism ?jK, : GK, -) H1 (K,, F )  is an 
open subgroup rKV (GKu). Therefore qK, is continuous if H1 (K,, F )  is 
endowed with the discrete topology. It follows that I? = $Kv (GoU (p,)) is a 
discrete pro-pgroup, i.e., a finite pgroup. However, I? C H1(K,, F ) ,  and 
the latter group has exponent f = I FI. Thus (p, f )  = 1, since v( f )  = 0; 
henceI'={l},asdesired. Q.E.D. 

Theorem 8.5 guarantees that all the class numbers that are possible a 
priori, for a semisimple K-group G of noncompact type and of degree n 
with cyclic fundamental group F, are realized for suitable lattices in KZn. 
However, in some cases the desired lattices can be constructed in dimen- 
sion n; this leads to interesting arithmetic applications of the realization 
theorem, one of which follows now. Recall that to say a quadratic form f 
is indefinite over K means that there exists a valuation v in VE such that 
f represents zero in Kz. 

THEOREM 8.6 (KNESER [I]). Let f be an indefinite quadratic form in 
n 2 3 variables over the ring of integers 0 of an algebraic number field K.  
Then c( f ) ,  the number of classes in the genus o f f ,  has the form 2d, where 
d is an integer > 0. Conversely, for any integer d > 0, there is a quadratic 
form fd which is K-equivalent to f ,  such that c(fd) = 2d. 

Note that f being indefinite over K is equivalent to H = SO,( f )  being 
K,-isotropic (Proposition 2. Id), and hence to SO, (f )K, being noncom- 
pact. From this one easily obtains that, for n > 3, f is indefinite if and 
only if H has noncompact type. Furthermore, in view of Proposition 8.4, 
one can restate Theorem 8.6 as follows: under the assumptions of the theo- 
rem, with G = On(f), for any lattice L in K n  the class number cl(GL) has 
the form 2d; and for any integer d 2 0 there is a free lattice L(d) for which 
c ~ ( G ~ ( ~ ) )  = 2d. Unfortunately, G is not connected, so Theorem 8.5 cannot 
be applied directly. Therefore, we shall prove the analogous assertion for 
H = SO, (f).  The case of G = On( f )-is handled in a similar way, using 
the fact that the universal covering T: H -+ H of H extends to a covering 
of G, i.e., that there exists a group G and a morphism cp: G -+ G for which 

8.2. Semisimple groups of noncompact type 

the following diagram is commutative and has exact rows: 

We leave it to the reader to work out the details of the argument (cf. below). 
Let us examine the class numbers of H. Since the universal covering 

of H in the given case has the form T :  H = Spin,(f) + SO,(f) = H,  
which means that F = {f 1}, it follows that cl(H) always has the form 2d 
(corollary to Proposition 8.8). To obtain all powers of two as class numbers, 
we use the following construction of lattices in a quadratic space. 

PROPOSITION 8.12. Let f = fix: + . . . + f,x;, with respect to a base 
e = (el , .  . . ,en) of Kn. For v in VfK, let Mu denote the 0,-lattice with 
the base el, 7r,ez, . . . , nc-' en, where .rr, is a uniformizing parameter. If 
v(fi) = 0 for all i = 1,.  . . , n, then 

where 

(The matrix notation refers to the basis e.) If in addition v(2) = 0, then 
HZ = (I?" H)(B n H). 

PROOF: Let x E GE; and x = (xij) with respect to the basis e l , .  . . ,en. 
Then 

for all j = 1,. . . ,n.  Therefore xij E pL-j for i > j .  But x E G, i.e., 
~ F X  = F, where F = diag(f1,. . . , fn) is the matrix of f .  This gives us 
the matrix relation 

tx = p X - l ~ - l ,  

which means that xi, = fi f;lYijl where y = (yij) = Since y E GE; 
and hence yij E p k 3  for i 2 j ,  the condition v( fi) = 0 (i = 1, . . . , n) 
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implies that xij E p!-j1 for all i, j. F'urthermore, again using txFx = F, we 
obtain that ELl f, x:~ = f j  for any j = 1,. . . , n; hence x2 3 3 - 1 (mod p,), 
so xjj  = &1 (mod p,). We have proved ~ g ;  c I'B. The inverse inclusion 
follows from (8.22), which gives the action of x on the base {r;-'ej). 

Now let x E HZ and x = yz, where y E I' and z E B. Then 

where det y = f 1 and det z = 1 (mod p,). If v(2) = 0, then -1 $ 1 
(mod p,), and hence det y = 1, i.e., y E I' n H and z E B n H.  The 
proposition is proved. 

Now let 1C, denote the coboundary map corresponding to the universal 
covering r :  H + H of H. Let P be a finite Galois extension of K such 
that ~!IK(I' n H) lies in H1(P/K, F). If P c K, and v(2) = v(fl) = 

. .. = v(f,) = 0, then for the lattice constructed in Proposition 8.12 we 
have ?+bK,(~z) = GK,(I' fl H)~C,K,,(B n H )  = 1 by Lemma 8.6, since 
B n H c Ho, (p,). Thus, the assumptions of Theorem 8.5 are satisfied and 
therefore, for any integer d 2 0 there is free lattice L(d) in Kn  for which 
c ~ ( H ~ ( ~ ) )  = 2d. 

EXERCISE: Let f be a nondegenerate, indefinite quadratic form over K in 
n > 3 variables, and let G = On (f)  and H = SO, (f) .  

(1) Using the strong approximation theorem for H and the fact that, for 
any extension L/K, the commutator groups of HL and GL are the 
same (cf. Dieudonnk [2]), show that the principal class GA(oo)GK is 
a subgroup of GA and that cl(G) is [GA : G A ( ~ ) G K ] .  Also, show 
that if 13 is the coboundary map corresponding to the covering cp in 
(8.21) (which is none other than the spinor norm), and OA is the 
restriction of nu OKv to GA, then 

(Hint: follow the proof of Proposition 8.8.) It follows that cl(G) 
always has the form 2d. 

(2) Prove there exists a form g over K ,  equivalent to f ,  with c(g) = 1; 
in other words, that there is L in Kn  for which c l ( ~ ~ )  = 1. To do 
so, establish that 

~i = G&) H; 

for any L in Kn,  from which it follows immediately that cl(GL) 5 
cl(HL); then use Theorem 8.4. 

(3) Prove Theorem 8.6 by imitating the proof of Theorem 8.5. Note that 
in this case (and in general, when IF1 = p) one can omit the step of 

the proof given by Lemma 8.4, pertaining to the construction of a 
special one-class lattice, and can begin the subsequent constructions 
with an arbitrary one-class lattice. 

(4) Establish the following relationship between cl(GL) and cl(HL): 

It follows that cl(GL) is c l ( ~ ~ )  or $ cl(HL); moreover, if one has 
[GE : Hh] = 2 (in particular, if n is odd), then cl(GL) = cl(HL). 
For any d 2 0, construct L(d) in K n  such that c ~ ( H ~ ( ~ ) )  = 2d and 

L ( 4  [G:(~) : Ho ] = 2. In this way, give another proof of Kneser's 
theorem. 

We shall present one more classical example, in which Theorem 8.5 allows 
one to obtain a complete description of the class numbers that occur: the 
problem of computing the number of classes in the genus of lattices in the 
full matrix algebra under conjugation. Two lattices L1 and L2 in Mn(K) 
are said to belong to the same genus if their localizations L1, and Lz, are 
conjugate by a matrix in GL,(K,) for all non-Archimedean valuations v 
of K, and to the same class if they are conjugate by a matrix in GL,(K). 
What are the possible values of c(L), the number of classes in the genus of 
an arbitrary lattice L in M, (K)? An exhaustive answer to this question is 
given by 

PROPOSITION 8.13. Let n = pyl . . . p ; ~  be the canonical factorization of 
n. Then c(L) has the form pp . . . p p ,  for any L in M,(K); and conversely, 
for any p p  . . .el there is a lattice L(Pl, . . . , h) in M,(K) for which 

c(L(P1,. . . ,Pr) )  =P? .. . P P -  

PROOF: The action of GL, on W = Mn by conjugation induces a faithful 
representation of G = PSL, in GL(W) = GLn2. Let cp: GL, -+ G denote 
the morphism of algebraic groups that arises thereby. Since ker cp N G,, 
for any extension P / K  the exact sequence 

yields cp(GL,(P)) = Gp; in other words, the transformations of Gp are 
realized by conjugation using matrices from GL, (P).  Applying Proposi- 
tion 8.7, we now obtain that in the given case c(L) = cl(GL) for any L in 
M,(K). Thus, the problem of computing c(L) leads to the computation of 
the class number of the projective group. The universal covering r of G is 
obtained by restricting cp to SL,; therefore ker .rr is a cyclic group of order 
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n, and one can invoke Theorem 8.5. To apply this theorem one needs a 
construction of lattices R, in M,(K,) satisfying $ K , ( G ~ )  = 1, where $ 
is the coboundary morphism corresponding to T. In view of Lemma 8.6, 
the desired construction is given by 

LEMMA 8.7. There exists a finite subset S of VfC such that, for v in vfC\S, 
there is a lattice R, in WK, satisfying GZ c G$(p,), where L is the 
lattice spanned by the standard base eij of the matrix algebra. 

PROOF: Consider the quadratic form f on W given by f (x) = tr(x2), 
where tr denotes the trace of a matrix. It is easy to see that the correspond- 
ing bilinear form can be written as b(x, y) = tr(xy), where for x = (xij) we 
have b(x, eij) = xij. The latter equation shows that f is nondegenerate. 

Let Wo denote the subspace of W consisting of matrices with trace 0, 
and let Wl denote the subspace of scalar matrices. Then clearly W is the 
orthogonal direct sum of Wo and Wl. It follows that the restriction fo of 
f to Wo is also nondegenerate. Let wl, w2,. . . , wm (m = n2 - 1) be a base 
of WOK in which fo has the canonical form fo = alxf + . . . + amxL, and 
let wm+l be a nonzero vector of WIK. Let M denote a lattice with base 
wl, w2, . . . , wm+l, and take the exceptional subset S to be S1 U S2, where 
S1 = { v  E vfK : Lv # M,) and S2 = { v  E VfK : v(ai) # O f o r s o m e i =  
1, ... , m ) .  

NOW suppose v E vfC\S. Then L, = Mu, so 62 = G:; and G 2 ( p V )  = 

GE; (p,). We show that for the desired R, we can take the 0,-lattice with 
the base 

where T, is a uniformizing parameter. Let x E G;; and x = (xij) in the 
base wl, w2,. . . , wm+l. Since the trace is invariant under conjugation, Wo 
and fo are invariant under G; moreover, G acts trivially on Wl. It follows 

that x has the form x = (: ) , where y = (yij) is a matrix of degree 

m which is orthogonal with respect to fo; thus it suffices to show that 
y E GLm(O,, p,) with respect to the base wl, . . . , w,. We have 

hence 

Since aij E Ow, we obtain, as in the proof of Proposition 8.12, that 

as a consequence of (8.23), since y is orthogonal with respect to fo and 
v $ S2. Then, turning to (8.24), we find that yij = 1 (mod p,). This 
completes the proof of Lemma 8.7 and Proposition 8.13. 

The problem of the number of classes in the genus of a lattice in the full 
matrix algebra under conjugation admits the following natural generaliza- 
tion. Let G be a simple adjoint algebraic K-group. Then the adjoint action 
of G on its Lie algebra g induces a faithful K-representation G -. GL(g), 
and one may ask what values cl(GL) can assume on all the lattices L in 
g ~ .  (The above analysis is a special case of this problem for G = PSL,, 
since Wo introduced in the proof of Lemma 8.7 is actually the Lie algebra 
L(G).) The methods which we have developed enable us to answer this 
question. 

PROPOSITION 8.14. Let G be a simple adjoint algebraic K-group of non- 
compact type other than Dz,. Assume G is realized as a group of inner 
automorphisms of its Lie algebra g, and let f = p;ll . . . p:s be the exponent 
of the corresponding fundamental group F. Then for any finite abelian 
group B of exponent dividing f there is a lattice L(B) in g~ for which 
G C ~ ( G ~ ( ~ ) )  N B. In particular, for any number of the form pp . . .p?, 
there is a lattice L(P1, . . . , p,) in g~ with c l ( ~ ~ ( ~ ~ > .  98s)) = pp . . . & . 
PROOF: The fundamental group F of any simple algebraic group of type 
other than Dan is cyclic; therefore by Theorem 8.5 it suffices to construct 
lattices R, in g ~ ,  for which $K, (G:;) = 1. To this end, let us consider the 
Killing form h on g, which is a nondegenerate K-defined quadratic form on 
g, invariant under the action of G. Then one can use the following 

LEMMA 8.8. Let G c GL, be an algebraic K-group such that G c O,(h) 
for a suitable nondegenerate K-defined quadratic form h. Assume that h 
has the canonical form h = hlxf + . - .  + h,x; with respect to the base 
e = (el , .  . . , e n )  of Kn; and for any v in v ~ K  let R, denote the 0,-lattice 
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n-1 with the base el,  7r,e2, . . . T, en, where n, is a uniformizing parameter. 
Then for almost all v in VfK we have 

where 

={x E G :  x(ei) = f e i ,  i = 1 , .  . . , n ) ,  

C ={ x = (xij) E GO, (P,) : xij E pE-jl, i, j = 1, .  . . , n ) .  

PROOF: We have G:; = G n ~,(h):;, where 0,(h):; = l7B for almost 
all v, notation as in Proposition 8.12. It is easy to see that = G n I? and 
C = G n B; therefore to prove (8.25) we must show that 

for almost all v in Vf. Put A = r \ a .  Then the Zariski-closed sets G 
and A are disjoint; hence, for almost all v, their reductions modulo v are 
disjoint (Lemma 3.12), i.e. 

In particular, G cannot intersect AB, thereby yielding (8.26). Lemma 8.8 
is proved. 

The rest of the proof of Proposition 8.14 is standard. Consider a finite 
Galois extension P / K  such that $K (a)  c H1 (P/K, F). Then, for almost 
all v satisfying P C K,, by Lemmas 8.6 and 8.8 we have 

as desired. 

Proposition 8.14 also holds for groups of type D2n, as can be seen easily 
from the proof of the general case of Theorem 8.3 (the Realization Theorem; 
cf. Platonov-Bondarenko-Rapinchuk [3]). 

A characteristic peculiarity in the proof of Theorem 8.3 is that the com- 
putations of class number involved there are of a general nature, in the sense 
that they are not attached to any particular representation p: G + GLd 
and are applicable every time one has the corresponding lattices in the 
representation space. On the other hand, whether such lattices can be con- 
structed for an arbitrary faithful representation is still an open question. 
Thus, one has the 

PROBLEM: Let p: G -t GLd be an arbitrary faithful K-defined represen- 
tation of a semisimple K-group G of noncompact type, and let f be the 
exponent of the fundamental group F of G. Is it true that any finite abelian 
group B of exponent f can be obtained as the class group ~ c l ( G ~ ( ~ ) ) ,  for 
a suitable lattice L(B) in K ~ ?  

We showed above that an affirmative answer can be given for adjoint re- 
alizations of adjoint groups. If G is a simple adjoint group of type Bl, then 
the answer is affirmative for any realization of G. (The proof is analogous 
to the proof of Proposition 8.13, taking into consideration the fact that, for 
any representation Q: G -, GLd, there exists a nondegenerate G-invariant 
quadratic form; cf. Bourbaki [4].) This is virtually all that is known about 
the problem, and its solution apparently requires the development of es- 
sentially new met hods of constructing lattices, using the representation 
theory of algebraic groups. We are somewhat optimistic in this regard, due 
to the following assertion, which shows that there always exist lattices with 
"small" stabilizers. 

PROPOSITION 8.15 (RAPINCHUK). Let G c GL, be a reductive algebraic 
K-group which is not a normal subgroup of GL,. Then for any v in VfK 
there exists a sequence of lattices L(i) in K," such that p,(~:!)) ,- 0, 

2'00 

where p, is the Haar measure on GKv . 
PROOF: Suppose, to the contrary, that there is a constant c > 0 such that 
p,(Gk,) 2 c for any L in K:. Let us fix a base e l , .  . . ,en of Kn. Taking 
L = x(O,el + . . - + Owen), with an arbitrary x in GL,(K,), we have 

(where the integral points are taken with respect to the base e l , .  . . ,en).  
We claim that these subgroups H(x) = x ( x - ~ G x ) ~ , x - ~  (x E GL,(K,)) 

split into a finite number of conjugacy classes with respect to GK,. Indeed, 
by Proposition 3.16, any compact subgroup of GK, is contained in some 
maximal compact subgroup. On the other hand, by the results in 53.4 the 
maximal compact subgroups of GKv split into a finite number of conjugacy 
classes; let HI,  H2, . . . Hd be a full set of representatives of the conjugacy 
classes of the maximal compact subgroups of GK,. Thus, for any x in 
GL,(K,), there is a g in GK, and j = 1,. . . , d satisfying gH(x)g-l c Hj. 
Moreover, we have clearly 

SO [Hj : g ~ ( x ) g - l ]  is bounded from above. Thus it suffices to show that 
H j  has only a finite number of subgroups of a given index t. If [Hj : D] = t, 
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then D > cp,(Hj), where s = t! and cp,(x) = xS. But from Proposition 3.3 
it follows easily that the map cp, is open at the identity; in particular, the 
(obviously normal) subgroup N of Hj, generated by cp,(Hj), is open. It 
follows that the number of subgroups of index t in Hj equals the number of 
those in Hj/N. It remains to note that the latter quotient group is finite, 
since Hj  is compact. 

Let us fix a finite set of elements XI , .  . . , x, in GLn(Kv), such that any 
subgroup H(x) is conjugate in GK, to one of the H(xi), i = 1, . . . , r. 
Furthermore, let Z denote the centralizer of G in GL, and let P denote 
the reductive subgroup ZG of GL,. Let us show that the quotient space 
GLn(Kv)/PK, is compact. To do so, it suffices to find a compact subset 
D of GLn(Kv) such that GLn(Kv) = ZK,GK, D. Put 

Then GLn(Kv) = UL=, GK,Bi, since we have H(gx) = gH(x)g-I for g in 
GK,; and it suffices to find compact subsets Ci such that Bi C ZK,C~. If 
x E Bi, then, putting y = x-'xi, we will have 

i.e., Bi c xi x-' , where 

We shall show that the Y ,  have the form Y, = D~ZGL,, ( x i l ~ x i  )K, with 
Di compact. Then 

as desired. 
Let a l ,  . . . , ad be a finite system of topological generators of ( x T ~ G x ~ ) ~ ,  . 

Consider the map 

given by cp(g) = (galg-', . . . ,gadg-l). Clearly Y ,  = cp-l(Wov)nGLn(Kv). 
Now note that the Zariski closure of the subgroup generated by a l ,  . . . , ad 
is xiGxil, since ( X ~ ~ G X ~ ) ~ ,  is Zariski-dense in x i l ~ x i  (Lemma 3.2). 
In particular, the fibers of cp are the cosets modulo the centralizer Zi = 
ZGLn (2,' G X ~ ) .  But clearly Zi is the algebraic group defined by the multi- 
plicative group of the centralizer in M,(K,) of the K,-hull ~ ~ [ ( x i ~ ~ x i ) ~ , ] ,  

which is a semisimple Kv-algebra, since G is reductive. It follows that 
H1 (K, , Zi) = 1, and consequently cp-l (x) # 0 for each x in Im cp n WKv . 
Therefore (o(Y,) = Im (o n Wo,. By Theorem 2.16, the image of Im cp is 
Zariski-closed, so cp(Y,) is compact. Then cp(Y,) = (o(Di) for a suitable 
compact Di in GL,(K,) and Y ,  = D ~ ( Z ~ ) K , ,  as desired. 

Now we can easily complete the proof of the proposition. Since the space 
GL,(K,)/PK, is compact, it follows that P contains a Borel subgroup B 
of GL, (Theorem 3.1), which certainly will also be a Borel subgroup of 
P .  Since P is reductive, it contains a Borel subgroup B- opposite to B. 
Clearly B- is the opposite of B also with respect to GL,. But by the 
Bruhat decomposition, B-B contains a Zariski-open subset of GL,, and 
hence B and B- generate GL,. Hence P = GL,. Recalling that P = ZG, 
where Z is the centralizer of G, we see that G is a normal subgroup of GL, 
(i.e., is either contained in the center or contains SL,). This contradiction 
proves the proposition. 

8.3. Class numbers of algebraic groups of compact type. 

Theorem 8.3 in $8.2 gives a complete description of the possible values 
of cl(G), for a semisimple K-group G of noncompact type. In this section 
we shall examine the opposite case. The most definitive results are ob- 
tained for the case where G has compact type (cf. Theorem 8.8), i.e., when 
the Archimedean part G, of the adele group is compact. This is the most 
important case in terms of applications, since the orthogonal groups of pos- 
itive definite quadratic forms are of this type, and consequently we obtain 
results on the corresponding number of classes in the genus. However, if we 
do not insist on taking the desired lattices in the former dimension, then 
we can obtain analogous results for a broader class of semisimple K-groups 
G of mixed type, which means that there exists a K-simple component Gi 
in G with G& compact. 

THEOREM 8.7. Let G be a semisimple algebraic K-group of mixed type 
and of degree n. Then, for any positive integer r ,  there is a free lattice 
M(r) in K2" such that c l ( ~ ~ ( ' ) )  is divisible by r .  

PROOF: Let us fix a free lattice L in K n  and henceforth designate the 
group Gi (m)  simply by GA(m). For any vo in V,? and any open subgroup 
U of Go,,, we put 

and 
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where, as usual, Go,, (p,,) is the congruence subgroup of level p,,. Let 
us write c(G, vo, U) (resp., c(G, vo)) to denote the number of double cosets 
G~(,)(vo, U) \ GA/GK (resp., GA(,)(VO) \ G A / G K )  h t e a d  of Th- 
rem 8.7, we shall prove the following somewhat more technical result: For 
any positive integer r, there is a vo in v ~ K  such that K c K,, and c(G, vo) 
is divisible by r .  Theorem 8.7 follows in the obvious way from this state- 
ment. Indeed, Proposition 8.11 implies the existence of a lattice N in 
KZn such that N, = L, for v # vo and ~2 = Go,,, (p,). Then, obui- 

ously, G;(,) = GA(,) (vo); in particular, cl(GN) = c(G, vo) is divisible by 
r .  However, N is free by Proposition 8.2, in view of the condition that 
i? c K,,. 

Let GA = Uz1 GA(,)ziGK be a partition of GA into double cosets. 
Without loss of generality, we may assume that there exists a finite subset 
So of v ~ K  such that the v-component (zi), = 1 for all v $ So and all 

i = 1, . . . , m. Let G$) denote z ; 'G~( , )~~ n GK. Also let ci(G, vOI U) 
(resp., c;(G, vo)) be the number of double cosets in GA(,)ziGK modulo 
the subgroups GA(,)(vo, U) (resp., GA(,)(vo)) and GK. 

LEMMA 8.9. We have 

Moreover, ci(G, vo, U) equals the number of double cosets U \ GoWo/G& 
for vo in VfK \ So. In particular, ci (G, vo) is given by 

PROOF: Formula (8.27) is obvious, therefore we shall establish the remain- 
ing assertions. For a in Go,,, let xvo(a) denote the adele with components 

Then 
G ~ ( c o ) z i G ~  = IJ GA(,) ( ~ 0 ,  U)xVo ( a ) z i G ~ ,  

a 

where the union is taken over all a in Go,,. Now we show that the condi- 
tions 

and 

are equivalent. If (8.30) holds, then 

for some a in G(vo, U) and b in GK. Then, clearly, 

hence b E G$). Projecting (8.32) on the vo-component, and bearing in 
mind that by assumption (zi),, = 1, we obtain a = a,,pb, where a,, E U, 
i.e., (8.31). Conversely, if (8.31) holds, then a = cpd, where c E U and 
d E G$). Putting a = ~ ~ ~ ( a ) q d - ~ z ; ~ x ~ ~ ( ~ - ~ )  and b = d, we ensure 
that (8.32) holds, and it suffices to establish that a E G(vo, U). Since 
d E GW,  by our set-up zid-lz;' E GA(,), and hence a E GA(,). It 
remains to compute the vo component a,,. Since (zi),, = 1, we have 

as we wished to show. 
Since, as we have seen, (8.30) and (8.31) are equivalent, we obviously 

obtain ci(G1 U, VO) = JU \ G o , / ~ g ) ~ .  To prove (8.28) it remains to note 

that, since U = Go,, (p,,) is normal in Go,,, the double coset UXG$) (for 

x in Go,) is the right coset XW modulo the subgroup W = G ~ ) G ~ ~ ,  (p,,); 
so ci(G, vo) = [Go,, : W]. Lemma 8.9 is proved. 

PROPOSITION 8.16. Suppose G is a semisimple algebraic K-group of mixed 
type (cf. 4.4). Then, for any positive integer r, there is vo in VfK such that 
K c Kvo and all the ci(G, v0) (i = 1,. . . , m) are divisible by r. In 
particular, c(G, vo) is divisible by r .  

PROOF: The definition of a group of mixed type implies that G is an 
almost direct product of semisimple groups F and H,  where H has com- 
pact type. Put D = G/F, and let T: G -+ D be the corresponding quo- 
tient map. By Proposition 6.5, there is a finite subset S1 of v ~ K  such 
that, for each v in VfK \ S1, T is defined over 0, and n(Go,) = Do,; 

then n(Go, (p,)) c Do, (p,). Now for each v $ S o  U 81, ci(G, vo) is 
divisible by [rr(Go,) : n ( ~ $ ) ) a ( ~ o ,  (p,))] , and thus also is divisible by 

[Do, : T ( G ~ ) ) D ~ , ( P ~ ) I .  
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Now we prove that all the . r r (~g))  are finite. It follows from the definitions 
that 

But, since D is isogenous to H ,  it has compact type; it follows easily that 
the subgroup x(GA(,)) of DA is compact. On the other hand, the subgroup 
DK of DA is discrete. The intersection in (8.33), being simultaneously 
compact and discrete, is thus finite. Let I denote the least common multiple 
of the orders of all the . r r (~$) .  From what we have proven it follows, for 
each i = 1,. . . , rn, that ci(G, vo) has the form +[Do,, : Do,, (p,,)] for 
suitable di. 

Therefore, the proof of Proposition 8.16, as well as Theorem 8.7, is com- 
pleted by 

LEMMA 8.10. Let D be a nontrivial reductive K-group, and let F / K  be 
a finite extension. Then, for any positive integer r ,  there exists an infinite 
set of v in VfK for which F c K, and [Do" : Do,(pv)] is divisible by r. 

PROOF: It is easy to see that the group of points DK over the algebraic 
closure of K contains a finite subgroup C of order r .  (One can find such 
a subgroup, for example, by considering an arbitrary (nontrivial) torus T 
of D and using the isomorphism TR -- ( K * ) ~ ' ~ ~ ) .  Let P denote a finite 
Galois extension of K containing F and for which C c G p .  It follows 
from the Chebotarev density theorem that S = {v E VfK : P c K,} 
is infinite, and therefore there is an infinite number of vo in S such that 
C C Do,, , and the restriction of the reduction map modulo p,, to C is 
injective. In this case Dovo /Do,, (puo) contains an isomorphic image of C, 
so [Do,, : Douo (p,,)] is divisible by r .  Lemma 8.10 is proved. 

Theorem 8.7 shows intuitively that, unlike the case of semisimple groups 
of noncompact type, the class number of the groups of mixed type can 
take on rather diverse values. Since it is impracticable to obtain a precise 
description of these values, rather than going into an elaboration of the 
theorem itself, below we shall focus our attention on obtaining arithmetic 
applications of Theorem 8.7. That is, we shall study class numbers in the 
original representation, since this enables one to characterize, for example, 
the possible number of classes in the genus of positive definite quadratic 
forms. Thus far, it has been shown that the analogous assertion to Theo- 
rem 8.7 holds for the groups of compact type in the original dimension n. 

THEOREM 8.8. Let G be a connected linear algebraic K-group of compact 
type and of degree n. Then, for any positive integer r ,  there exists a free 
lattice L(r) in Kn  such that c l ( ~ ~ ( ' ) )  is divisible by r .  

For a nondegenerate n-dimensional quadratic form f ,  the group G = 
SOn(f)  has compact type if and only if f is K,-anisotropic for each v in 
V& (in particular, the field must be totally real). Thus, if f is positive 
definite over all K,, where v E V& (in which case f simply is said to be 
positive definite), then Theorem 8.8 applies to G = SOn(f). The same 
proof of Theorem 8.8 works without any modification also for G = On(f);  
so, in view of Proposition 8.4, we obtain the following result (compare with 
Theorem 8.6). 

THEOREM 8.9. Let f be a positive definite quadratic form of degree n 2 2, 
with coefficients from the ring of integers 0 of a totally real algebraic 
number field K. Then, for any positive integer r, there exists a form f, 
with coefficients from 0 which is K-equivalent to f and for which c(f,), 
the number of classes in the genus, is divisible by r .  

The local components of the desired L(r) in Theorem 8.8 are constructed 
with the help of Lemma 8.8, which can be applied by virtue of the following 

PROPOSITION 8.17. Let G be a connected algebraic K-group of compact 
type and of degree n. Then there exists a positive definite quadratic form 
f with coefficients from K in n variables, such that G c SOn(f). 

PROOF: Let W be the space of all quadratic forms in n variables; it can 
be identified with the space of symmetric (n x n)-matrices in Mn. Let w 
denote the K-subspace of W consisting of matrices invariant under GK, i.e., 
w = { A E W : = A for all g E GK }. By assumption GK, is compact 
for any v in vZ; therefore each wK, must contain a positive definite matrix 
(cf. $3.2). It follows that the subset of positive definite matrices in WK" 
is nonempty and open. Therefore, using the weak approximation property 
for W, we can find a matrix F in wK which is positive definite relative to 
any v in V z  . Let f be the associated quadratic form. Then GK c On (f). 
However, GK is Zariski-dense in G (Theorem 2.2), since G is connected; so 
G c On( f ) ,  and the desired assertion follows. Proposition 8.17 is proved. 

Now we outline the proof of Theorem 8.8. Using Proposition 8.17, we 
choose an n-dimensional positive definite G-invariant quadratic form f .  
Put f in the canonical form f = fix: + . .. + fnx: with respect to a 
suitable base e = (el, .  . . ,en) of Kn. If K c KUo for vo in v~K, then 
there is a uniformizing parameter .rru0 in 0 such that xu, E U, for v # vo, 

(-1) and we consider the lattice L(vo) with base el,  .rr,,ez,.. . , T,, en. Then 
L(vo), = L,, for v # vo, where L is the lattice with base e l , .  . . , en; and 

L(VO) ,~  . for almost all vo the stabilizer B(vo) = Go 
"0 1s described (Lemma 8.8) 

by: 
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where 
@ = { x ~ G : x ( e ~ ) = f e ~ ,  i = l  ,... , n )  

and 
C = { x = (xi,) E Go,, (pvo)xij E pko-jl , i, j = 1, . . . , n ) 

(where the matrix notation is taken with respect to e). Fix a partition 

with the property that (zi), = 1 for i = 1, .  . . , m for all v lying outside 
some finite subset So of VfK. Then, by Lemma 8.9, for vo @ So we obtain 
the formula 

m 

where 

Thus far the argument has been completely analogous to the proof of 
Theorem 8.7; however, from here on additional complications arise. To 
wit, in computing ci(G, vo) = Go,, (pvo) \ Go, /G$) I in the proof of The- 
orem 8.7, we used the fact that the congruence-subgroup is normal, and 
reduced the computation of the number of double cosets to the computa- 
tion of the index of a certain subgroup. In our case, B(vo) in general is 
not a normal subgroup of Govo and therefore another approach is called 
for. One trick is to choose the base e and the decomposition (8.35) in a 
special way, so that the corresponding G;) is contained in { f  En); then 

again di(vo) = IG?, : G$)B(V~)~ ,  and the argument from the proof of 
Theorem 8.7 carries over without any modification. It turns out that this 
trick can be applied every time G is a proper subgroup of SOn(f). 

PROPOSITION 8.18. Let G be a proper connected K-subgroup of H = 
SOn( f ) .  Then there exists an orthogonal base e = (el, . . . , en) of K n  with 
respect to f ,  such that G n r (e)  c {f En),  where 

PROOF: For n = 2, H is a one-dimensional torus; so G is trivial and 
there is nothing to prove. Therefore, we may assume n > 2. Let us fix 
an orthogonal base e0 = (ey, . . . , e:) of K n  with respect to f ,  and put 

ro = r(eo). If h E HK, then, putting h(eo) = (h(ey), . . . , h(eE)), we have 
r(h(e0)) = hroh-'; therefore it suffices to show that there is h in HK such 
that G n (hroh-l) c {f En). Assume that this is not possible; then 

where C(y) = { h E H : h-'yh E G )  and A = ro \ {f En). Clearly C(y) 
is a Zariski-closed subset of H ;  so H = UYEA C(y) follows from (8.36) 
and the fact that HK is dense in H (Theorem 2.2). Therefore, since H 
is connected, we have H = C(y) for some y in A; i.e., G contains the 
conjugacy class { h-'yh : h E H ). Therefore, the proposition follows from 

LEMMA 8.1 1. For n > 2, the normal subgroup of H generated by any 
element y in ro \ {f En) is H .  

Indeed, for n # 4, any proper normal subgroup of H lies in {&En), 
therefore we need only consider the case n = 4. Here H = HlH2 is an 
almost direct product of two groups isomorphic to SL2, identifying the 
centers. If we assume that the normal subgroup N of H generated by some 
y in ro \ {&En) is proper, then either N = H1 or N = Hz. Under the 

isomorphism Hi - SL2, the element y goes over to (il ") (this is the 

only element of order 2 in SL2). But then y = -E4, contradiction. This 
completes the proofs of Lemma 8.11 and Proposition 8.18. 

PROPOSITION 8.19. Let G be a proper K-subgroup of SOn( f ) ,  where f 
is a positive definite quadratic form. Then there exists a base el,  . . . , en of 
K n  , orthogonal with respect to f , and a partition 

(where L is the lattice with base el , .  . . ,en) such that (zj), = 1 for all v 
not in some finite subset So of VfK, and all the GS) = z;lGA(,)zi n GK 
lie in { f  En). 

PROOF: Let u = (ul , .  . . , u,) be the orthogonal base of K n  constructed in 
Proposition 8.18, and let M be the lattice with base u. Fix the partition 

in which (tj)v = 1 for j = 1 , .  . . , r ,  and for all v outside some finite 
subset S of VfK. The group G, is compact since f is positive definite; 
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it follows that all the GZ): = t;lGgw)tj n GK are finite. Let us put 

R = (U;=, 6 g ) )  \ {&En) and take a finite subset Sl of VfK such that 

for v in VfK \Sl. Furthermore, choose vo in v;(\ (SUSl) such that K c K,, 
(n-')un is and the stabilizer B(vo) of the lattice with base ~ 1 ~ 7 ~ ~ ~ ~ 2 , .  . . , K,, 

described by (8.34) (where T,, in 8 is a uniformizing parameter such that 
T,, E Uv for v # vo). We wish to show that the desired base is 

Let L be the lattice with base e l , .  . . ,en. Then by assumption L, = 

Mu, for u # uo and G$ c G:,","; so representatives of all the cosets 

Gi(,) \ GA/GK can be chosen from adeles of the form z(j, a )  = xvO(a)tj, 

where a E 6::; (see Lemma 8.9 for notation). Note that (z(j, a)) ,  = 1 

for v 4 So: = S U {vo). Therefore it suffices to show that 

for any j and a .  We have 

However, taking the projection onto the vo-component, we obtain 

i.e., finally 
G ~ I " )  c 6g) n a - l ~ ( v ~ ) a ,  

where, as we required above, B(uo) = 6% is described by (8.34), and 

r(e)  n G = {*En). It follows that for any a in G::," one has 

PROOF OF THEOREM 8.8 FOR G Cf SOn(f): Let e = (el,. . . , en) be the 
orthogonal base constructed in Proposition 8.19, and let L be the lattice 
generated by this base. Then, as we saw above, for almost all vo in VfK 

satisfying K c K,, we have 

with di(uo) = IB(uo) \ G$ /Gg)I, where 

notation as above. Since by assumption G$ C {*En) for any i = 

1 , .  . . , m, we have di(vo) = 1GLw0 : G$,)B(vo)(. But B(vo) )C f G$ (pV0), 
Duo 
L 

from which it follows that if IG< : G$ (p,,)l is divisible by 2r, then each 

di(vo) is divisible by r, and hence also cl(GL("0)) is divisible by r .  Thus 
the proof is completed by applying Lemma 8.11. 

It remains to prove Theorem 8.8 for SOn(f) ,  where f is a positive definite 
quadratic form. The argument here is technically more difficult than in 
the case of proper subgroups of SOn(f);  but, as we have mentioned, it 
applies as well to SOn( f )  and On(  f ) .  Since cl(On( f ) )  is c( f ) ,  and hence 
is of special interest from the arithmetic viewpoint, we shall establish the 
analogous assertion to Theorem 8.8 for G = On(f); this gives us a proof 
of Theorem 8.9. 

First, one proves the following analog of Proposition 8.19. 

PROPOSITION 8.20. There exists an orthogonal base el , .  . . , en of Kn  rel- 
ative to f and a partition 

(where L is the lattice with base e l , .  . . ,en) such that (zi), = 1 for all v 
not in some finite subset So of VfK, and all the G$) = Z;'G;(,)~~GK are 
conjugateinGK toasubgroupofr = { x  E G :  ~ ( e i )  = fei ,  i = I , . .  . , n ) .  

PROOF: Write f in diagonal form f = alx: + . . . + anx:, with respect to 
a base u1, . . . , un of Kn. Let M denote the lattice with base ul, . . . , u,, 
and let us fix a partition 

since R n (f GoW0 (p,,)) = 0. Proposition 8.19 is proved. 
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in which (tj), = 1 for j = 1 , .  . . , r ,  for all v not in some finite subset 
S1 of VfK As in the proof of Proposition 8.19, we conclude that all the 

Gg) = t;'G%,)tj n GK are finite. Let us put R = UiZ1 6g) and find a 

finite subset S2 of v ~ K  such that for v in VfK \ S2 we have 

Let us choose vo in v ~ K  \ (S1 U S2) such that K C K,, and vo(ai) = 0 
for all i = 1 , .  . . , n .  Also, let us choose a uniformizing parameter T,, 

in 0 such that T,, E Uv for v # vo, and show that the desired base is 
el = u1, e2 = 7rvou2,. . . , en = TV, 

Let L be the lattice with base e l , .  . . ,en. Then Lv = Mu for v # vo, 
and the stabilizer C = 62, is as described in Proposition 8.12. Then, as 

above, we note that the representatives of all the cosets Gi(,) \GA/GK can 
. . 

be chosen among the adeles z(j, a )  where j = 1,.  . . , r and a E G::' (cf. 
proof of Proposition 8.19). Moreover, z(j,  a), = En for v 4 So: = S1 U {vo) 

Since C = I'B, where 

we have x2 E G$) n aP1Ba = {En}, for any z in ~ 2 ' ~ ) ;  i.e., x2 = En. 
Thus, the proof of Proposition 8.20 is completed by 

LEMMA 8.12. Let O c GK be a subgroup of exponent 2. Then 0 is 
conjugate in GK to a subgroup of I'. 

PROOF: Left to the reader as an exercise. 

Take the base e = (el , .  . . , en) constructed in Proposition 8.20, a lattice 
L spanned by this base, and the corresponding partition (8.37). We shall 
assume that f has the form f = fix: + . . . + fnx i  with respect to e. Let 
us also consider gi in GK (i = 1, . . . , m) for which 

Let P be a finite Galois extension of K containing K, the coefficients of the 
matrices gj, and fl, a,. . . , a. Let T denote a K-subtorus SOz(h) 
of SOn( f ) ,  where h is the restriction of f to the subspace spanned by el, e2. 

For given r it follows from Lemma 8.10 that there exists vo in VfK \So such 
that 

(1) p c Kv,, 
(2) IT;:'' : To, (pvo) 1 is divisible by 22nr, 
(3) 4 2 )  = v(f1) = . . . = v(fn) = 0, 

(4) gj E 6 % .  

LEMMA 8.13. There exists an orthogonal base u1, u2 of O,, el @ O,, e2 such 
that f (ui) = a fi, i = 1,2, where a in Uvo is a unit element which is not a 
square. 

PROOF: It follows from our set-up that h = fix: + f2xi is equivalent over 
O,, to the form 21x2, for which the assertion is verified immediately. 

For i > 2 put ui = ei, and let Nu, denote the Ow,-lattice with base 
u1, T,, u2, . . . , T ~ - ~ ) U , ,  where T,, is a uniformizing parameter. Let us 
define L(r) as follows: 

It follows from Proposition 8.2 that L(r) is free. Let us show that cl(GL(')) 
is divisible by r. Note that L(r), = L, when v # vo. On the other hand 

for v = vo, by Proposition 8.12, C = GL(')"" = A B  where 
" ~ 0  

and B c GZ (p,,). Thus Lemma 8.9 yields 

cl(GL(')) = ci, where ci = (C \ ~2 /G:) I. 

Rom the choice of vo it follows that G$) is conjugate in ~ 2 ,  to a 
subgroup of r, for any i = 1 , .  . . , m. Therefore, the following proposition 
implies that all the ci, and hence also cl(GL(')), are divisible by r .  

PROPOSITION 8.21. Let H be a finite subgroup of G$ such that 

g-lHg c r for some g in G$. Then the number of double cosets 

IC \ G?, / H I  is divisible by r .  
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PROOF: Let 'H denote the set of all subgroups of H ,  and for H' in 3-1 put 

and let i(H1) be such that 2i(H1) = [H : HI]. 

LEMMA 8.14. Notation as above, 

PROOF: It is easy to see that CD(H1)H = D(H1), i.e., D(H1) is the union 
of some family of double cosets CxH. So 

and it suffices to prove that 

To do so we establish that any double coset CxH, where x E D(H1), 
consists of precisely 2(n+i(H')) left cosets By, where y E D(H1). We have 

CxH = U Cxh, 
h € H  

and moreover, Cxhl = Cxh2 h2 h r l  E H n x - ~ C X  = H'. Thus, there 
L 

are 2i(H') disjoint cosets in (8.38). At the same time, for any y in G z o ,  

and all the cosets in (8.39) are distinct, since A n  B = (1). Lemma 8.14 is 
proved. 

Since i(H1) 5 n, to finish the proof of the proposition it suffices to 
show that IB \ D(H1)I is divisible by 22nr for any subgroup H' in 'H. Put 
'H(H1) = {H" E H :  H" 3 HI} and D(H') = { x  E ~ 2 ,  : H' c x-~CX}.  
Then 

D(H') = D(H') \ U D(HI'), 
H1'E'H(H') 

from which it follows that 

To compute the number of elements in the union we use the following 
well-known formula: if Al, . . . , Am are finite sets, then 

Since D(H;) n D(H;) = D(H;H;), it follows that there exist integers bH,, 
(HI' E 'H) for which 

Therefore, the proof of Proposition 8.21 and Theorem 8.9 is completed by 

LEMMA 8.15. ( B  \ D(H') ( is divisible by 22nr, for any subgroup H' of 'H. 

PROOF: We show that if D(H') # 0, then Z = XT~;: x-' centralizes HI, 

for suitable x in G k 0 .  Then D(H')Z = D(H'), so ( B  \ d(H1)J  can be 
expressed as CBgZ[{ BZ : BZ c ByZ ) I ,  where the sum is taken over all 
double cosets ByZ and each term is the number of left cosets Bz contained 
in the double coset ByZ. It is easy to see that this number equals 

Since B C ~2 (p,,), by assumption this index is a multiple of 2"r, and 

hence the number of cosets B \ D(H') is also a multiple of 22nr. 
Thus, let d E D(H'), i.e., H' c dCICd. By the theorem on the conjugacy 

of Sylow subgroups in profinite groups, bdH1d-'b-' c A for suitable b in 
B,  since H is a 2-group and A is a Sylow 2-subgroup of C = AB. We wish 
to show that x = bd is as desired. To do so, it suffices to establish that 
xH1x-I C A,, where 

Let 6 = xhx-l 4 A,, for suitable h in H'. Put 
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Then W(6) contains exactly one of the elements UI,  u2, let us say, ul, and 
therefore has a base of the form u1, ui,, . . . , ui,, where i j  > 2 ( j  = 1, .  . . ,1). 
In particular, the discriminant d(W(6)) equals a fi fi, . . . fi, , and hence 
d(W(6)) 4 KG:. On the other hand, by assumption g-lHg c r, so the 
analogous space W(y) = { w E K z  : y(w) = w ) for an element y = g-'hg 
has a base of the form ej,, . . . , ej,,,; hence d(W(y)) = fjl . . . fj, E K::. 
But y = (xg)-'6(xg), implying W(6) = (xg)W(y); i.e., W(6) and W(y) 
must be isometric and, in particular, have the same discriminants. Proof by 
contradiction. This completes the proof of all the theorems in this section. 

Note: it would be interesting to obtain the analog of Theorem 8.8 for 
groups of mixed type. 

8.4. Estimating the class number for reductive groups. 

The results of $8.3 show that the possible values of the class number 
cl(cp(G)) of a semisimple K-group G depend on the arithmetic properties 
of the group. Therefore, in order to characterize these numbers one needs 
to know more about G. But what can one say about cl(cp(G)) in the most 
general case? Here, of course, one must exclude the case where G has 
absolute strong approximation, since in that case cl(cp(G)) = 1 for any 
representation cp. It turns out that in the remaining cases the numbers 
cl(cp(G)) are not bounded. 

THEOREM 8.10. Let G be a linear algebraic K-group of degree n, without 
the strong approximation property. Then, for any r ,  there is a lattice M(r) 
in K2" such that c l ( ~ ~ ( ' ) )  > r .  

PROOF: Fix a lattice L in Kn,  and for any open subgroup U of Gif(,) 
let c(U) denote the number of double cosets (G, x U) \ GA/GK. 

LEMMA 8.16. For any positive integer r, there is an open subgroup U such 
that c(U) > r .  

PROOF: Suppose the contrary. Then, c(Uo) takes on a maximal value d, 
for some open subgroup Uo of Gfi,(,). Fix a partition 

into double cosets. The assumption that c(Uo) is maximal implies that, for 
any subgroup U of Uo, we have c(U) = c(Uo); hence 

for all i = 1,2, . . . , d. Passing to the projections onto G Af , and denoting 
the projection of zi by Zi, we obtain 

and consequently 

where the intersection is taken over all the open subgroups U of Uo. Now 
we need the following elementary result from topological group theory: if a 
topological group H has a fundamental system U = {U) of neighborhoods 
of the identity consisting of subgroups, then the closure of any subset 
of H is given by = nUGUUI'. It follows that the right side of (8.41) is 
the closure of ZiGK in GAS, i.e., is ziGK, where GK is the closure of GK. 
From (8.40) we obtain 

i.e., GK has finite index in GAS. But this is impossible, since Theorem 7.12 
and the absence of strong approximation for G imply that one of the con- 
ditions of Proposition 7.13 holds, according to which GK has infinite index 
in GAS. The lemma is proved. 

Now we continue the proof of Theorem 8.10. By Lemma 8.16, one can 
find an open subgroup U of Gif(,) such that c(U) > r ,  and it suffices to 

find a lattice M in K2" satisfying GEI,, c U. But, since U is open, it 
, %  , 

contains a subgroup of the form W = fl ~2 (pru) x fl ~ 2 ,  where 
VET VEV,?\T 

T is a finite subset of v ~ K ,  and mv (v E T) are suitable positive integers. 
By Proposition 8.11, for each v in T there exists a lattice Lv(mv) in K:" 
such that G%(~" . )  = GL~(p7u). We define the lattice M in K2" by its 
localizations: 

Mv = 

Then Gyf(,) is obviously W; so M is the desired lattice. Q.E.D. 

Theorem 8.10 implies the following curious remark: if cl(cp(G)) of an ar- 
bitrary algebraic K-group G takes on even one value # 1, then by changing 
cp we can obtain an infinite set of distinct values. 
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It would be interesting to obtain an analog of Theorem 8.10 for the 
original dimension n (assuming, naturally, that G is not a normal subgroup 
of GL,). Evidently this should be done by modifying suitably the proof of 
Proposition 8.15. For tori of GL, other than the scalar torus this follows 
from Proposition 8.25, to be proved in 58.5 in connection with the genus 
problem in arithmetic groups. 

Now we proceed to an exposition of results on the connection between the 
class number of an algebraic group and the class numbers of its parabolic 
subgroups and maximal tori. One of the primary motivations for studying 
this relationship is the hypothetical possibility of thereby obtaining esti- 
mates of class numbers of the maximal tori of a group; this may prove useful 
in using methods of algebraic group theory to study the class numbers of 
algebraic number fields. At present research in this topic is just beginning 
to develop, so the results which we have are only preliminary. Therefore 
we present the next theorems without proofs. 

THEOREM 8.11 (BONDARENKO-RAPINCHUK [I]). Let G be a reductive 
algebraic K-group, and let P be an arbitrary parabolic K-subgroup of G. 
Then cl(G) < cl(P). 

COROLLARY 1. Let G be a reductive K-split algebraic group, and let T 
be an arbitrary maximal K-split torus of G. Then cl(G) < cl(T). 

Indeed, let B = TU be a Bore1 subgroup of G containing T. Then, 
by Theorem 8.11, cl(G) < cl(B). On the other hand, by Proposition 5.4, 
cl(B) < cl(T), since U has the strong approximation property. 

Corollary 1 gives an "efficient" version of Theorem 8.4 on one-class lat- 
tices for split groups over a one-class field. 

COROLLARY 2. Let G be a reductive split group over a one-class field K.  
Then cl(G) = 1 in any K-realization of G for which G contains a maximal 
K-split torus in diagonal form. (More precisely, if G c GL, and, for 
some base el, . . . , en of Kn,  there is a maximal torus of G which is given 
by diagonal matrices, then cl(GL) = 1, where L is the lattice with base 
e l , . . .  ,en.) 

Let T be a maximal K-split torus of G, such that T c D,. Since cl(G) < 
cl(T) (Corollary I) ,  it suffices to show that cl(T) = 1. Let r = dimT and 
let cp: D, -- T be a K-isomorphism. Since K is a one-class field, we have 
cl(D,) = 1 and therefore it suffices to verify that cp(D,,,=,) c TA(oo). But 
in the coordinate notation for cp, 

the rational functions cpi must be multiplicative, and therefore have the 
r 

form cpi(xl, . . . , x,) = n xyii for suitable integers aij, yielding the desired 
j=1 

result. 
As we shall see in the examples below, the relationship between cl(G) 

and cl(T), where T is an arbitrary K-torus of an algebraic K-group G, can 
vary greatly. Therefore, the next result, which treats the case of semisimple 
groups of noncompact type, cannot be extended to a wider class of groups. 

THEOREM 8.12 (PLATONOV-BONDARENKO-RAPINCHUK [2]). Let G be a 
semisimple K-group of noncompact type, and let T: G -+ G be its universal 
K-covering. Then, for any maximal K-torus T of G, 

where x(T) is the group of characters of? = T-'(T) and G is the Galois 
group over K of the splitting field L of T and T. 

Note that if T is a maximal torus of G, split over K ,  then m ( T )  = 
H~(G,x(T)) = 1; thus we arrive at the estimate that cl(T) > cl(G), ol+ 
tained in a different way in Corollary 1 of Theorem 8.11. 

COROLLARY 3. Let G be a semisimple K-group of noncompact type. Then 
there exists a constant M > 0, depending only on G, such that, for any cp, 

where the minimum is taken over all maximal K-tori of G. 

Next we present two interesting examples, illustrating various types of 
relationships between minT cl(T) and cl(G). 

EXAMPLE 1: Let G = SL2 over Q. We shall show that for any m > 0 
there is a lattice L(m) in Q4 such that c ~ ( T ~ ( ~ ) )  > m for any maximal 
Q-torus T of G, whereas c l ( ~ ~ ( ~ ) )  = 1. 

Fix a lattice L in Q2 and, for each prime number p, let Mp denote a 
lattice of Q: such that GZ = GZ (p) (cf. Proposition 8.12). Let S(m) = 

{pl,  . . . ,p, ) be a set of m distinct odd prime numbers. Let us define 
L(m) in Q4 by the conditions: 
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We shall show that cl(TL(")) 2 2m-2 for any maximal Q-torus T of G; 
this will yield the desired result at once. We have 

where TS(,) : TQ + n TQp is the diagonal embedding. 
pES(m) 

-1 0 The matrix [ belongs to all the TZ but not to any of the T Z ( ~ ) ,  

since p is odd. Therefore, in the decomposition of the abelian group 
n T ; ' / T ~ ( ~ )  into cyclic groups, one encounters at least rn cyclic 

p G ( m )  

factors of order divisible by 2. On the other hand, by Corollary 1 of The- 
orem 4.11, Tk is the direct product of a finite group @ and a free abelian 
group r of rank 5 1. One has T 2 G,, since dim T = 1; consequently @ 
is cyclic. Thus, Tk has at most two cyclic factors, which means that the 
quotient group 

has at least (m - 2) cyclic factors of order divisible by 2. In particular, 
ID1 2 2m-2, and hence c l ( ~ ~ ( ~ ) )  = cl(TL) I D I  > 2m-2. On the other hand, 
by the strong approximation theorem c l ( ~ ~ ( , ) )  = 1. 

Example 1 shows that the difference between the left and right sides 
in (8.42) can be arbitrarily large; i.e., there cannot exist any estimates of 
the type M cl(G) 2 minT cl(T), where M is a constant depending solely 
on the birational properties of G but not on its concrete realization. 

EXAMPLE 2: Let f = x2 + y2 + z2 with respect to a base el,  e2, e3 of Q3, 
and let G = SO3( f ). Then T = S O 2 ( ~ ) ,  for g = x2 $ y2, is a maximal 
torus of G. 

Take an odd prime p and an integer n 2 0; let L(n) denote the lattice 
with base el,  e2,pne3. Our objective is to show that c l ( ~ ~ ( ~ ) )  - +a 

71-00 

whereas cl(TL(")) = 1. 

Put Dn = G;:~). Then, repeating the steps in the proof of Proposi- 
tion 8.12, we can show that 

D(n) = { x = (xij) E Gzp : xij = f 6ij (mod pn), if i or j equals 3 ) 

(where the matrix notation is taken with respect to el,  e2, e3 and Sij is the 
Kronecker delta). Therefore D(l )  > D(2) > D(3) > . . . ; moreover, 

where y = diag(1, 1, -1). Since Tzp has infinite index in Gzp , it follows 
that [Gzp : D(n)] - +a; consequently also 

n--*a 

since Gz is finite, because the form f is positive definite. On the other hand, 
arguing as in the proof of Lemma 8.9, it is easy to show that i(n) is the 
number of double cosets of the form G : ~ ) X G ~  contained in the principal 

class GA(,)GQ; in particular, c l ( ~ ~ ( ~ ) )  2 i(n) and c l ( ~ ~ ( " ) )  - + a .  
n-00 

It remains to establish that cl(TL(")) = 1 for any n. Since the action of T 
on es is trivial, it follows that cl(TL(")) = cl(S02(g)) for all n. But it is well 
known (cf., for example, Borevich-Shafarevich [I]) that g is a one-class form, 
and therefore, by Proposition 8.4, c1(02(g)) = 1. Since 02(g)z  contains 
a matrix of determinant -1, one can easily see that cl(S02(g)) = 1, as 
desired. 

EXERCISE: Give another proof of cl(TL) = 1 in Example 2, using the fact 
that K = Q ( G )  is a one-class field. (This follows from the existence of 
a Euclidean algorithm for the ring of Gaussian integers Q = Z[i].) More 
precisely, consider the natural realization of S = RKIQ(Gm) defined by 
the regular representation of K with respect to a suitable base of O/Z. It 

(1) follows from hK = 1 that cl(S) = 1. Using T -- RKIQ(Gm), construct, 
using Hilbert's Theorem 90 a surjective morphism 8: S -+ T having ker 8 = 
6,. Show that ~ A ( S A )  = T A , ~ ( S A ( ~ ) )  C T A ( ~ ) ,  and deduce from this 
that cl(T) = 1. 

Example 2 shows that Theorem 8.12 (and even its corollaries) cannot be 
extended to the groups of compact type. 

The relationship between the class numbers of a group and of its maximal 
tori undoubtedly merits further investigation. The purely algebraic meth- 
ods which have been used thus far apparently need to be supplemented by 
analytic arguments, which ultimately should help clarify the "averaged" 
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picture of variation of the class number of tori, and in particular should 
answer the question as to whether the set of tori of an algebraic group 
with a given class number is finite or infinite (a modern version of Gauss' 
problem). 

To conclude this section, we shall discuss briefly one other sort of prob- 
lem-the change of class number of an algebraic group under a change 
of the ground field. More precisely, let G be an algebraic K-group and 
let E / K  be a finite extension. How is cl(G) related to clE(G), the class 
number of the same G viewed as a group over E? (Henceforth we have in 
mind a realization of G by a given lattice L in Kn;  then clE(G) and the 
corresponding group of integral points are taken with respect to LBoOE C 

En, where OE is the ring of integers of E.) Various aspects of this problem 
were studied by Bartels [l] ,[2] and Earnest-Hsia [I] ,[2]. We shall confine 
ourselves to pointing out the connection with the local-global principle 
for the cohomology of arithmetic subgroups. To state the results more 
concisely, we fix the principal class GAE(,)GE to be the distinguished 
element of the set of double cosets GAE(,) \ GAE/GE. 

THEOREM 8.13 (ROHLFS [I]) .  Suppose E / K  is a Galois extension, and 
that the Hasse principle holds for G over E (i.e., that the kernel of the 
map H1(E/K, GE) 4 n H1 (Ew/Kv, GE,) is trivial). Then one has the 

v 
following exact sequence of sets with distinguished element: 

(for each v in VK we choose a single extension w in VE and assume that 
oEw = E, for w in v:). 

PROOF: Consists of several steps. 

CONSTRUCTING a :  Let x E GA and x = yz, where y E GA,(,) and 
z E GE. Then for any a in G = Gal(E/K) we have 
(8.43) 

-1 u a, = y-lyu = ( X Z - ~ ) - ~ ( Z X - ~ ) ~  = z(z ) E GAE(,) n GE = GO,; 

so a = {a,) defines a cocycle in H1(E/K, Go,). Any other decomposition 
x = y'z' is associated with x = yz as follows: y' = yt and z' = t-lz, where 
t E GoE; therefore the corresponding cocycle 

is equivalent to {a,). Moreover, if xl = gxh, where g E GA(,) and h E GK, 
then XI = (gy)(hz) and (gy)-'(gy), = y-l yo, which shows that a depends 
only on GA(,)xG~. Thus, we have constructed a well-defined map a .  
SHOWING (kercu = (1)): Suppose the cocycle a = {a,) corresponding to 
x is trivial in H1(E/K, Go,), i.e., a, = t-lt" for suitable t in Go,. Then 
(8.43) yields 

y-lyU = z(z-l)" = t-'to for all a in G. 

Therefore (yt-l)" = yt-l and (tz)O = tz; i.e., 

and 
z l = t z € G E n G A = G K .  

Then x = yz = y'z' belongs to the principal class GA(,)GK, as desired. 

SHOWING EXACTNESS AT H1(E/K, Go,): By definition a, = y-lyU, 
where y E GA(,); i.e., a becomes trivial in 

Thus, I m a  c kerp. Conversely, if a = {a,) E H1(E/K, Go,) lies in 
kerp, then a, = y-ly" for suitable y in GAE(,). Hence the image of a in 
H1(E/K, GE) becomes trivial in H1(Ew/Kv, GEw) for each v in v K ;  since 
the Hasse principle holds for G, it follows that a is trivial in H1(E/K, GE), 
i.e., there exists z in GE such that a, = z(z-I)". Put x = yz. Then, for 
any a in G, we have 

so x E GA. Moreover, by assumption x E GA,(,)GE. Thus, the class 
G A ( m ) ~ G ~  lies in ker(GA(,) \ GA/GK + GAE(,) \ GA,/GK), and from 
the description of a it follows that a(GA(,) XGK) = a. This completes the 
proof of Theorem 8.13. 

COROLLARY 4 (THE HASSE PRINCIPLE FOR COHOMOLOGY OF ARITH- 
METIC SUBGROUPS OF SIMPLY CONNECTED GROUPS). Let G be a simply 
connected semisimple K-group of noncompact type. Then for any Galois 
extension E I K ,  the kernel of the map 
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Indeed, the Hasse principle always holds for cohomology of groups of 
rational points of simply connected groups (Theorem 6.6). However, the 
strong approximation property for G (Theorem 7.12) yields cl(G) = 1, and 
the assertion follows from the exact sequence of the theorem. 

An interesting result for the groups of compact type is obtained by argu- 
ing conversely: first derive the Hasse principle for the cohomology, and as 
a corollary show that ker(GA(,) \ G A / G ~  + GAE(OO) \GAE/GE) is trivial. 

COROLLARY 5. Let G be an algebraic Q-group with compact group of 
R-points, and let K/Q be a totally real Galois extension. Suppose that 
GO, = GZ (cf. 54.8) and that the Hasse principle holds for G over K .  
Then the kernel of the canonical map 

is trivial. 

Let G = On (f )  for a quadratic form f .  In view of the fact (Proposi- 
tion 8.4) that the double cosets GA(,) \ GA/GK are in one-to-one cor- 
respondence with the classes in the genus of f (where the principal class 
GA(,)GK corresponds to the class containing f )  Corollary 5 yields 

COROLLARY 6. Let f be a positive definite quadratic form with integral 
coefficients, and let K/Q be a totally real Galois extension. Suppose 
On(  f = On( f )z (which is always true if f is diagonal, cf. $4.8). If 
an integral form g lies in the genus o f f  and is equivalent to f over O K ,  
then it is equivalent to f over Z. 

The proof of Corollary 5 follows from the exact sequence of the theorem 
and the next result, interesting in its own right. 

THEOREM 8.14 (BARTELS [2]). Let G be an algebraic Q-group, and let 
K/Q be a totally real Galois extension. Suppose Go, = Gz. Then the 
kernel of the canonical map 

is trivial. 

PROOF: Since the action of B = Gal(K/Q) on Go, = GZ is trivial, the 1- 
cocycles on G with values in Go, are homomorphisms cp: B + Go,, and the 
trivial class in Z1(K/Q, Go,) corresponds to the trivial homomorphism. 
Now let cp E ker Q. Our objective is to show that cp = 1. For any w in vfK, 
let &) denote the corresponding inertia group. The canonical maps 

and the inclusions 

induce the cohomology maps 

H1 (K/Q, Go,) 9 H ~ ( K , / Q ~ ,  GO,,,,) 5 H'(G:), r ) .  

Since cp E ker Q, we have 0, o ew(cp) = 1. But B c )  acts trivially on r, so 
this is equivalent to the triviality of the composition of the restriction of cp 
to ~ 2 )  with the homomorphism sending Go, to I?. In other words, 

where p, is the prime corresponding to w. Minkowski's lemma (cf. 54.8) 
implies that Gz(pw) is trivial for p, odd. Reasoning analogously, we can 
easily show that Gz(p,) has exponent 2, for p, = 2. Therefore, bearing in 
mind that 6 is generated by all the ~ 2 )  (a corollary of Hermite's theorem, 
cf. §l . l ) ,  we obtain cp(Q) c Gz(2); hence cp(B) -v (Z/2Z)' for suitable 1. 

Let L denote the subfield of K corresponding to ker cp. Since 6:) c ker cp 
if p, is odd, L/Q can be ramified only at diadic points. However, the 
fact that Gal(L/Q) = Imcp = (;2/22)' implies that L is a compositum of 
quadratic extensions of Q. Since the only real quadratic extension of Q 
that ramifies only at diadic points is of ()(a), it follows that either 1 = 0, 
which gives the desired result, or L = Q ( d )  and, in particular, 1 = 1. 

We have the following commutative diagram with exact rows: 

Let Gal(L/Q) = (1, a) and cp(a) = a. It follows from (8.45) that cp E 
kerb; therefore, arguing as above, we obtain a E Gz(2). We also need the 
following straightforward result. 

LEMMA 8.17 (MINKOWSKI). Let a E GLn(Z, 2) and let a2 = En. Then 
there exists a matrix c in GLn(Z) such that cac-' = diag(~1, .  . . , E,), 
where ~i = f 1. 
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Indeed, put a1 = :(En - a) and a2 = ;(En + a). Then ai E Mn(Z), 
aal = -all aa2 = a2, and a1 +a2 = En. It follows that any z in Zn can be 
written as z = zl + ~ 2 ,  where zi = ai(z) E Zn. Thus, putting Mi = ai(Zn), 
we obtain Zn = MI + M2. Moreover, if zi E Mi, then a(zi) = (- l)ki;  
therefore this sum is direct and a has the required form with respect to the 
base of Zn which is the union of the bases of MI and M2. 

So, let c in GLn(Z) be chosen so that d = cac-l is diag(e1,. . . ,E,), 
where ~i = f 1. Moreover, since cp E kerb, one can choose a matrix b in 
GOLZ such that a = ba(b)-l. Then, for the matrix t = (tij) = cu(b) in 
GL, (OL, ), we have 

a(t) = u(w(b)) = cb = caa(b) = dt, 

i.e., u(tij) = &itij for entries tij o f t .  But if ~i = -1 then tij E &OL~ for 
all j ,  yielding det t E &OL,, which is impossible. Thus, all the ~i = 1, 
i.e., a = En. We have shown that cp is trivial, and thus have completed the 
proof of Theorem 8.14. 

With regard to Theorem 8.13, Corollary 1, and Theorem 8.14, it would 
be interesting to see whether (in the same sense as Corollary 1) the Hasse 
principle always holds for the cohomology of arithmetic subgroups of simply 
connected groups. 

8.5. The genus problem. 
In 58.1 we gave a general definition of the genus and the class of an 

integral element of an algebraic variety under the action of an algebraic 
group, and showed that computing the number of classes in the genus re- 
duces to counting certain double cosets. In this section we use the methods 
developed for computing the class numbers of algebraic groups in order to 
illustrate specific instances of estimating and characterizing the number of 
classes in the genus. 

We begin by examining the genus problem in arithmetic groups, first 
studied by Platonov [8]. Let G be a linear algebraic group defined over Q. 
Recall (cf. 58.1) that two elements a and b in Gz are said to belong to the 
same genus if they are conjugate in GQ and GZp for a11 primes p, and to the 
same class if they are conjugate in Gz. Let [aIG denote the genus of a in Gz, 
and let fG(a) be the number of classes contained in [aIG. This number is 
always finite (cf. Proposition 8.6). The genus problem consists of studying 
the properties of the function fG(a) (where a E Gz), and is closely related 
to the problem of conjugacy separability of finitely generated linear groups, 
to estimation of the class numbers of maximal tori of reductive groups, and 
to other arithmetic and group theoretic questions. 

For commutative groups the genus problem is meaningless, therefore the 
greatest interest lies in studying fG(a) for G semisimple. In this case f~ 

turns out to be unbounded on the arithmetic subgroups H of Gz, under 
the natural condition that Gz be infinite or, equivalently (cf. §4.6), that 
the group of real points Gw be noncompact. 

THEOREM 8.15. Let G be a semisimple algebraic Q-group such that Gw 
is noncompact. Then supaGH fG(a) = oo, for any arithmetic subgroup H 
of Gz. 

Theorem 8.15 was obtained for Q-isotropic groups by Platonov [8]. There 
he conjectured that this theorem should hold in general. This conjecture 
was confirmed for orthogonal groups over Q by Matveev [I]. Theorem 8.15 
was put in its final form by Rapinchuk [I]. 

First we reduce the proof of Theorem 8.15 to the case of simply connected 
Q-simple groups. 

PROPOSITION 8.22. Let T: G -+ G be a Q-isogeny of Q-groups. If 

sup fG (a) = oo 
~ E H  

for any arithmetic subgroup H of GZ, then also supaE* fG(a) = 00 for any 
arithmetic subgroup H of Gz. 

PROOF: Since TA: GA + GA is continuous and F = ker T is finite it follows 
that there exists an open normal subgroup U of GA(,) containing G,, such 
that rA(U) c GA(,) and U n FQ = (1). Clearly [GA(,)_: U] is some finite 
number 1. Furthermore, r = GQ n U has finite index in Gz = GQ f l  GA(,); 
therefore, by Theorem 4.1 we see that [Gz : ~ ( r ) ] ,  which we denote by m, is 
finite. (Note that ~ ( r )  c GQ n rA(U) c GQ n GA(,) = Gz.) Theorem 4.1 
also implies that the inverse image .rr-l(H) of any arithmetic subgroup H 
of Gz is an arithmetic subgroup of G; therefore 

is arithmetic. To prove the proposition we shall show that if a E H then 
there is b in [ale such that fG(tr(b)) 2 q. 

Put t = fe(a) and let a1 = a, a2, . . . , at be representatives of the distinct 
classes contained in [a]& It follows from the definition of the genus that for 
each i = 1,.  . . , t one can find gi in G ~ ( ~ )  satisfying ai = g,lagi. Consider 
the partition (1,.  . . , t )  = u:=, I,, assuming that il and iz fall in the same 
class Ij if gi,U = gi,U. Then clearly one can find jo for which I = Ij, 
contains no fewer than t/l  elements. Let us put b = ail where i E I ,  and 
show that b is the desired element. 
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First note that ai = gilagi E U n GQ = r for any i = 1,. . . , t ;  since 
a E H c U and U is a normal subgroup of G ~ ( ~ ) ,  SO Ci = *(ai) E GZ. 
Furthermore, by definition the ai (i in I )  are conjugate in U; therefore the 
corresponding ci are conjugate in r (U)  and also in G A ( ~ ) .  Moreover, the 
ai are conjugate in GQ, and therefore the ci are conjugate in GQ. By this 
argument, the ci (i E I )  lie in the same genus, i.e., ci E [ ~ ( b ) ] ~ .  

To prove that fG(x(b)) 2 111 > 5,  it now suffices to find at least 111 
elements among the ci (i E I )  which are not conjugate in Gz. To this end, 
now consider the partition I = UiIl J k ,  such that the indexes il and ig in 
I belong to the same class if cil and ci, are conjugate in Gz. 

We shall show for any k that I Jk( 5 m. Then s 2 g, but also fG(.ir(b)) 2 
s, which gives the desired result. Suppose I JkI > m. Fix an index io in Jk, 
and for each i in J k  find an element zi in Gz satisfying ci = zz~'ciOzi. For 
any two distinct i l ,  i a  E J k ,  we have zil = z i ,~ (g )  for suitable g in I', since 
[Gz : 7r(I')] = m. Then 

Recalling that ci = *(ai), we obtain *(ai,) = .rr(g-laiZg), i.e., 

On the other hand, it follows from our definitions and the fact that U is a 
normal subgroup of G ~ ( ~ )  that x E U .  Therefore x E U n FQ = {I), and 
hence ail = g-lai,g; contradiction, since the ai are not conjugate in Gz or 
in I'. Proposition 8.22 is proved. 

Now let G be an arbitrary semisimple Q-group with a noncompact group 
of R-points. Let T: G 4 G be the universal Q-covering. By Proposi- 
tion 8.22 it suffices to prove Theorem 8.15 for G. But G is a direct product 
of its Q-simple components Gi, and GZ is noncompact for some io. We 
claim that if Theorem 8.15 holds for GiO then it also holds for G. In- 
deed, Proposition 8.22 implies that the validity of Theorem 8.15 for G 
is independent of the realization of G; therefore we can fix a realization 
of G which is the direct product of the realizations of its components. 
Then GZ = n G i  and GZp = n G i ,  for any p; it follows for any a in GZ 

i i 

that fC(a) > fcio (priO (a)), where pri,: G + GiO is the projection on GiO. 
Since H' = priO(H) C Gg is arithmetic for any arithmetic subgroup H 
of Gz (Theorem 4.1), we can prove that supaEw fe(aj = oo by proving 
SUPaEw) f ~ . ~  (a) = 00. 

Thus, it suffices to prove Theorem 8.15 for simply connected Q-simple 
groups. Let us show that in this case the following, more precise, assertion 
holds. 

PROPOSITION 8.23. Let G be a simply connected almost Q-simple alge- 
braic group whose group of R-points is noncompact. Then, for any arith- 
metic subgroup H of Gz and any positive integer r ,  there is an element a 
in H such that fG(a) is divisible by r .  

The proof rests on the following two facts: 

PROPOSITION 8.24. Let T be a noncentral K-torus of a connected K- 
group G. Then for any positive integer r there is an element g in GK for 
which ~ l ( ~ - l T g )  is divisible by r .  

LEMMA 8.18. Under the assumptions of Proposition 8.23, there exists a 
semisimple element E in Gz such that E" is regular for any positive integer 
m. 

PROOF: Let G be a linear group of degree n; i.e., G c GL,. It is well 
known that the Euler function has the property p(r)  - GO; therefore 

T'm 

there exists t in N such that cp(r) > n! whenever r > t. Put d = t! and 
consider the map ~ d :  G + G given by T ~ ( x )  = xd. NOW, let G, denote the 
set of all semisimple elements of G and let U denote an open Zariski-dense 
subset of G consisting of regular semisimple elements (cf. $2.1.11). With 
this notation, obviously 7d(Gs) = Gs > U, and in particular T ~ ( G )  is dense 
in G. But Gz is also dense in G (Theorem 4.10), so finally T ~ ( G z )  is a dense 
subset of G. Since U is open, U n rd(GZ) contains some element 8. We 
shall show that if 13 = rd(&), where E E Gz, then E is the desired element. 

Let T be a maximal torus of G containing E. By the criterion of regularity 
(cf. §2.1.11), an element x in T is regular if and only if a(x) # 1 for any 
root a in R(T, G); therefore we need to show that Q = a(&) is not a root of 
unity. First we establish that Q belongs to the extension F = Q ( E ~ ,  . . . , E,) 
of Q generated by the eigenvalues 61,. . . , E, of E. Indeed, by definition 
g = L(G) contains a nonzero element X such that C'XE = a(&)X. Let 
us put E in diagonal form; i.e., take a matrix z in GL, such that < = 
z - l ~ z  is the diagonal matrix d i a g ( ~ ~ , ~ 2 , .  . . ,E,). Then for Y = z-lXz 
one has <-'Y< = a(&)Y. Therefore, if Y = (yij) and yiOjO # 0, then 
a(&) = EG'E~, E F .  Since F is a splitting field of a polynomial of degree 
n with rational coefficients (the characteristic polynomial of E), one has 
[F : Q] 5 n!. However, if Q' = 1, where r > 0 is minimal with this 
property, then [Q(e) : Q] = cp(r), from which it follows that cp(r) 5 n!. By 
assumption this yields r 5 t ,  and consequently r divides d = t!. Therefore 
a(8) = = ed = 1, contradicting the regularity of 8. Lemma 8.18 is 
proved. 

We postpone the proof of Proposition 8.24 and now complete the proof 
of Proposition 8.23. Let E be the element constructed in Lemma 8.16. 
Then the centralizer T = ZG(E) is a maximal torus of G. Indeed, since E is 
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regular, the connected component ZG(&)O is a maximal torus; but it is well 
known (cf. Steinberg [2]) that in the simply connected case the centralizers 
of semisimple elements are connected. Note also that Z G ( E ~ )  = T, since 
E~ is regular for any m. 

Now let us fix an arbitrary positive integer r .  By Proposition 8.24 one 
can find g in Gq for which ~ l ( ~ - ' T g )  is divisible by r .  Proposition 4.1 
implies that D = g-lGzg is arithmetic in G, from which it follows that 
[D : D n H]  is finite. Choose a normal subgroup N C D of finite index, 
which is contained in D fl H ,  and let 1 denote the exponent of DIN. Then 
< = g - i ~ l g  E H ,  and fG(<) is divisible by r .  Indeed, under the assump 
tions of Proposition 8.23, the strong approximation property holds for G; 
therefore cl(G) = 1, and consequently fG(C) = cl(ZG(C)) (Proposition 8.6). 
But ZG(C) = g-'ZG(&')g = g-lTg and c ~ ( ~ - ' T ~ )  is divisible by r .  This 
completes the proof of Proposition 8.23 and Theorem 8.15, as well. 

PROOF OF PROPOSITION 8.24: Let a realization of G in GL, be given by a 
lattice L in Kn ,  and let P be the splitting field of T. Since T is noncentral 
in G, its adjoint action on the corresponding Lie algebra g = L(G) is 
nontrivial. Consequently, there is a non-trivial character a in X(T) and 
a nonzero element X in g such that Ad(t)(X) = a( t )X for all t in T. 
Moreover, since cw is defined over P ,  one can choose X in gp. Let 1 be 
a positive integer such that X(T) n Q a  is generated by ,B = + a .  Since 
cw # 1, it follows that X is nilpotent (say X n  = O), and we can consider 
the "truncated" exponential map 

which gives a P-morphism of algebraic groups cp:G, + GL, (cf. $2.1.8). 
Let W = cp(G,) be the corresponding one-dimensional unipotent subgroup. 
Then the Lie algebra L(W) is generated by X and consequently L(W) c g 
and W c G. It is also clear that the morphism 111: W + G,, which is the 
inverse of cp, is given by the "truncated logarithmic map 

Moreover, for any a in (6, and t in T,  we have 

Let e l , .  . . ,en be a base of Pn in which the elements of T can be written 
as diagonal matrices, and let M denote the Op-lattice generated by this 

base. Let S consist of all the v in V '  for which at least one of the following 
conditions fails to hold for some extension wlv: 

(i) { a  E Pw : a X  E M,(Opw)) = Op,, 
(ii) Mw = Opw L, 
(iii) w((n - l)!l) = 0. 

It is easy to see that S is finite; therefore the Chebotarev density theorem 
implies that Vo = { v E VfK \ S : P c K, ) is infinite. 

(1) g(g-'Tg)o,g-l C To,, for each v $! S and any g in GKv. 
(2) If v 6 Vi, then a(Tov) = u:, where U, is the group of v-adic units. 
(3) Put g = cp(n;l) for v in Vo, where n, is a uniformizing parameter. 

Then ff(g(g-lTg)o,~-l) C uL'), where 

~ ; ' ) = { a ~ U , : a - l  (modp,)). 

PROOF: (1) Consider any P-isomorphism from T to a group of diagonal 
matrices Dr. In the proof of Corollary 2 in 58.4 we saw that this iso- 
morphism is defined over Op if T is put in diagonal form. Consequently, 

TE' (Dr)opW for any w in v P .  But (D,)oPw is obviously the unique 
maximal compact subgroup of (D,) pW (i.e., contains each compact sub- 
group); therefore the same is true of T&'; in Tpw . Thus 

since M, = Opw L, by virtue of the fact that v 4 S .  
(2) It follows from our definitions that there exists a base XI,  . . . , X, of 

X(T) such that ~1 = 0. Then, by Theorem 2.1, there is a P-isomorphism 
T D, under which ~1 corresponds to the character C1 in X(D,), given 
by Cl(diag(x1,. . . ,x,)) = xl.  Since v E Vo, i.e., v $ S and Pw = K,, 
it follows from the proof of (1) that T -L D, induces an isomorphism 

To, (DT)o,; hence P(To,) = U, and a(To,) = Ut. 
(3) If t E g(g-'Tg)o,g-', then g-ltg E Go,; moreover, also t E Go,, 

by (1). Using (8.48) we obtain 

t-'9-Itg = cp(1- a(t)n,l) E Go, 

By condition (iii), the denominators of all the terms in (8.47) are v-integral; 
therefore 

+(t-'g-ltg)x = (1 - a ( t ) ) n , l ~  E Mn(Ov). 
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But then condition (i) implies that (1 - a(t))x;l E O,, i.e., a ( t )  = I 
(mod p),. Lemma 8.19 is proved. 

We construct the desired g's in GK in Proposition 8.26 by suitably a p  
proximating the elements cp(xll). More precisely, for each vo in V we find 
g(vo) in GK, such that g(vo) E cp(~;~)G~,, and g(v0) E Go, for v in S. 
Such an element always exists, even if G does not have weak approximation. 
Indeed, let G = HR,(G) be the Levi decomposition of G, let B = [H, HI 
be the semisimple part of H, and let 6: B + B be the universal K-covering. 
Using 6, we define an action of B on R,(G) and take an isogeny 

of the respective semidirect products. Since G/D = H I B  is a torus, the 
unipotent element x,, = cp(x,l) lies in D. Furthermore, arguing as in 57.2, 
we can show easily that in fact x,, E T(D~, , ,  ). 

Let x,, = ~ ( y , ~ ) ,  where y,, E DK,,. Choose open subgroups E, of DKU 
for v in {vo) U S,  such that T(E,) c Go,,. It follows from Proposition 7.9 
that D always has weak approximation, which means one can find h in DK 
satisfying h E y,, Eva and h E E, for v in S. Then g(vo) = ~ ( h )  will be the 
desired element. 

Let us show that for suitable vo in h, ~ l ( g ( v ~ ) - ~ T ~ ( v ~ ) )  is divisible by 
any preassigned positive integer T. 

LEMMA 8.20. c(vo) = ~ l ( ~ ( v ~ ) - ' T g ( v ~ ) )  is divisible by [u;, : I'u$)], where 
r = (Y(T~). 

PROOF: Put C, = g(vo)(g(vo)-lTg(vo))o,g(vo)-l, for v in VfK Then 
c(vo) is clearly [TA : CTK], where C = T, x n C,. It follows from 

v € VrK 

Lemma 8.19 (1) that C, c To, when v $ S. But by assumption g(vo) E 
Go, when v E S; therefore this inclusion also holds when v E S .  Thus, 
C C T A ( ~ ) ,  yielding: 

Projecting onto the vo-component, we obtain that [TA(m) : CTo] is divis- 
ible by [Touo : CvoTo]. Finally, applying a and using assertions (2) and (3) 

of Lemma 8.19, we obtain the desired result. (Note that u;:) C u:, since 
v(1) = 0.) Lemma 8.20 is proved. 

Now we can easily complete the proof of Proposition 8.24. By Theo- 
rem 4.20, To is finitely generated. Let a l ,  . . . ,a,  be a finite set of genera- 
tors of r = a(To). Put d = ZT and with the Chebotarev density theorem 

find vo in v ~ K  \ S, relatively prime to r, such that 

where ~d is a primitive d-th root of unity. Then obviously vo E Vo. Let 
us show that [U;, : I?u$)] is divisible by r. The quotient group u,,/u;~) 
is isomorphic to the multiplicative group k:, of the corresponding residue 
field, and therefore is cyclic. Let C denote the cyclic subgroup of K,, 
generated by ~ d ,  which has order d. Since u$) is a pro-pgroup with respect 
to the prime p corresponding to vo, and since vo(d) = 0, it follows that 
C n u;," = (1); this implies that U,,/U;~) contains an isomorphic image 
of C and, consequently, has order divisible by d. But then U;,/U,d, has 

order r. On the other hand, by assumption F u $ ~ )  c U,",, so [U;, : Fu$)] 
is divisible by r .  Proposition 8.24 is proved. 

Proposition 8.24 immediately yields, in particular, a characterization of 
the class numbers of algebraic tori. 

PROPOSITION 8.25. Let T c GL, be an algebraic torus ofpositive dimen- 
sion. 

(i) If T coincides with the torus S consisting of scalar matrices, then, 
for any lattice L in Kn,  cl(TL) equals the class number h~ of K; 

(ii) If T # S,  then, for any positive integer r, there exists a lattice L(r) 
in K n  such that c l ( ~ ~ ( ' ) )  is divisible by r .  

Now we are in a position to answer the main question of this chapter: 
what values can the class number cl(cp(G)) of an algebraic group G assume, 
for arbitrary cp? 

THEOREM 8.16. Let G be a reductive algebraic K-group of degree n. 

(i) If G is a semisimple group of noncompact type, then, for any cp, 
cl(cp(G)) has the form pyl, . . . , pFr , where pl, . . . , p, are the distinct 
prime divisors of the order of the fundamental group of G; moreover, 
all such numbers are indeed realized for suitable cp. 

(ii) Otherwise, for any positive integer r ,  there is a lattice L(r) in KZn 
such that cl(GL(')) is divisible by r .  

PROOF: We determined the class numbers of semisimple groups of noncom- 
pact type in Theorem 8.5. Assertion (ii) for semisimple groups of mixed 
type is proved in Theorem 8.7. The case where G is an algebraic torus is 
treated in Proposition 8.25. We leave it to the reader to analyze the re- 
maining case of an almost direct product of a torus by a semisimple group, 
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as an exercise summarizing this chapter. We remind the reader that in 
studying class numbers we were compelled to enlarge the original realiza- 
tion. Therefore, we would like to underscore the problem of calculating 
cl(cp(G)) for the case where cp has the same degree as a linear group G. 

Theorem 8.15 has an interesting application to abstract group theory 
(cf. Platonov-Matveyev [l]). Recall that an abstract group r is said to be 
conjugacy separable if any two of its elements are conjugate in r if and only 
if their images are conjugate in all finite quotients of r (in other words, 
if the conjugacy classes in r are closed in the profinite topology of r ) .  
This concept is useful in studying algorithmic problems; in particular, it is 
well known that the answer to the conjugacy problem is affirmative in any 
group which is finitely presented and conjugacy separable. This property 
holds for free groups, polycyclic groups, and several other classes of groups 
(cf. Remeslenikov [I]). At the same time, Theorem 8.15 also enables us 
to construct large classes of examples of arithmetic groups which are not 
conjugacy separable. 

Let G be a simply connected Q-simple algebraic group with a noncom- 
pact group of R-points. To state the conditions under which r = Gz is 
not conjugacy separable we shall need several elementary results related to 
the congruence subgroup problem, discussed briefly in 59.5. Below we use 
ra and r,, respectively, to denote the arithmetic and congruence topolo- 
gies, and C = C ( r )  for the corresponding congruence kernel (note that 
C = C V ~  (G), notation as in 59.5). 

PROPOSITION 8.26. We keep the previous assumption and notation. As- 
sume that C ( r )  is central. Then r = Gz is not conjugacy separable. 

PROOF: It is well known (cf. 59.5) that the centrality of C ( r )  implies its 
finiteness. Let denote the completion of r under 7,. There is an open 
normal subgroup N of r such that N n C ( r )  = (1). Put d = [f' : N]. 
We shall show that if a E and a l l  . . . , a, belong to the genus [aIG, then 
there is a subset I of (1, . . . , r) of cardinality ) I )  > 5 such that ai and 
a j  are conjugate in f', for any i,  j in I. To begin with, note that the 
strong approximation theorem implies that the completion f' of under T, 

is n GZp; SO the ai, which belong to the same genus by assumption, are 
P 

conjugate in r. Therefore, for any i = 1, .  . . , r ,  one can find zi in f' and Ci  

in C(G) satisfying zi lalzi  = ciai. We introduce a partition 
t 

{I l .  .. , r )  = u I k l  
k=l 

taking i and j in the same class if ai E a jN and zi E zjN. Clearly t, the 
number of such classes, does not exceed d2, and therefore among the I k  

one can find a set I of order [I( 2 5 .  We shall show that I is the desired 
set. 

Indeed, our definitions yield that 

for i , j  in I ;  hence cylci E N n C ( r )  = {I), i.e., cj = ci. Then, since C ( r )  
is central, letting s = z i l z j  we have 

as desired. 
By Theorem 8.15 one can find a in Gz whose class number in the genus 

is r = fG(a) > d2. Let a l l  . . . , a, be representatives of disjoint classes 
of [aIG, and let I be a subset of {I, . . . , r) of cardinality (I( > $ > 1, 
constructed as above. Then ai and a j  are conjugate in f', for all i # j in 
I; i.e., their images are conjugate in all finite quotients of r .  On the other 
hand, by definition ai and a j  lie in different classes and consequently are 
not conjugate in I?. Proposition 8.26 is proved. 

It follows from Proposition 8.26 and well-known results on the congruence 
subgroup problem (cf. 59.5) that if, for example, G = RK/~(SL,) ,  where 
n > 3 and K is any algebraic number field, then r = Gz is not conjugacy 
separable, since C ( r )  here is either trivial or is a central cyclic subgroup. 
Moreover, it should be noted that since, in general, C(r)  # 1, to prove 
Proposition 8.26 it is not enough to find a's in GZ for which fG(a) > 1, i.e., 
elements for which the local-global principle for conjugation is violated; 
rather, one needs Theorem 8.15 on the existence of a in Gz with fG(a) 
arbitrarily large. 

REMARK: AS we shall see in 59.5, it is natural to study the congruence 
subgroup problem in the more general context of S-arithmetic subgroups, 
since then the conjectured conditions for the centrality of the corresponding 
congruence kernel can be described uniformly as follows: 

ranks G =  rank^" G 2 2 and  rank^^ G 2 1, for v in S \ v:. 
v E S  

In this regard, we point out that all the results in this section can be 
extended to such a situation without any modification. Here, instead of the 
usual double cosets G A ( ~ )  \ GA/GK one has to work with GA(q  \ GA/GK. 
The methods used to count these classes hardly differ from those developed 
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in 58.2-8.4 for computing usual class numbers, and therefore all the results 
in this chapter, including Theorem 8.16, have their S-arithmetic analogs. 

Besides the genus problem in arithmetic groups, we shall consider the 
genus problem for integral representations of finite groups (for the relevant 
definitions, cf. 58.1). Although we do not intend to present a comprehensive 
exposition of the theory of integral representations (cf. Curtis-Reiner [I]), 
we discuss this subject for two reasons. Firstly, it provides an example 
of efficient use of adele groups and class numbers of algebraic groups in 
what might seem to be an area that is far removed from the arithmetic 
of algebraic groups. Secondly, the answer to the genus problem here is 
diametrically opposed to that in Theorem 8.15; namely, the basic result 
affirms the uniform boundedness of the class numbers in the genus of all the 
integral representations of a given finite group r (among which, in general, 
there are infinitely many nonequivalent representations; cf. Curtis-Reiner 
[I, §8.1A]). Needless to say, to keep our digression on the theory of integral 
representations brief, we sketch only the main points. 

THEOREM 8.17. Let G be a finite group. Then there is an effectively 
determinable constant t such that the number of classes in the genus of 
any integral representation of r is bounded by t .  

PROOF: (Platonov [I].) Let Q: r + GLn(Z) be an arbitrary integral repre- 
sentation, and let G = ZcLn (e(r))  be its centralizer. We already know (cf. 
Proposition 8.5) that the number of classes in the genus of Q is cl(GL), where 
L = Zn; therefore our objective is to obtain an estimation of cl(GL) which 
is independent of Q and is determined only by the properties of r. Even a 
superficial familiarity with representation theory of finite groups suggests 
that the answer should be related to the properties of the corresponding 
group algebra D = Q[I']. By Maschke's theorem, D is semisimple; i.e., it 

d has the form D = $+, Mni(Ti), where Ti is a division algebra over Q. In 
fact, Ti are in one-to-one correspondence with the equivalence classes Ri of 
the 0-irreducible representations of I'; i.e., if ei E Ri and ei: -, GLls (Q), 
then Ti is the centralizer of ei(I') in Ml,(Q). (The reader can find these 
and several other results from representation theory, needed in the proof, 
in Curtis-Reiner [I].) If Q is viewed as a representation over Q, then one 
has the following direct sum decomposition: 

d 

Then G is an algebraic Q-group of the form G = n RK%/q(GLmi(Ti)), 
i=l 

where Ki is the center of Ti and GLo is assumed to be trivial over any skew 

field. We would like to obtain an estimate of cl(GL) which is independent 
of mi. To do so, in each Gi = RK,/q(GLmi(T,)) consider the subgroup 

d 
and put H = n Hi. 

i= 1 

LEMMA 8.21. c l ( ~ ~ )  < c l ( ~ ~ ) ,  for any lattice M in Qn. 

PROOF: For each i = 1 , .  . . , d l  if mi > 1 let Fi denote the subgroup 
d 

RKi/q(SL,%(E)) of Gi; otherwise put Fi = (1). Clearly F = n Fi is 
i=l 

a normal subgroup of G. We shall show that GA = FAHA. It suffices to 
establish that GiA = FiAHiA for each i. If mi 5 1, then Gi = Hi and 
we have nothing to prove; therefore we may assume that mi > 1. Let- 
ting Di denote the algebra M,,(T,), whose center is Ki, we clearly have 
NrdDsIKi (GL,, (Ti)) = NrdDtlKi (GLl(Ti)), where GL1 (Ti) is embedded 
in GL,,(Ti)) in the natural way and NrdDilKi is the reduced norm. A 
similar equality holds over any extension PlQ;  hence Gip = Fip Hip. In 
particular, for any p one has GiQp = FiQp HiQp. Moreover, for almost all 
p, one can identify Giqp. with GL,(Ki 8 Qp), where s = mib and b is the 
index of Ti, and Hiqp with the subgroup 

Hence GiZp = FiZp HiZp. Therefore GiA = F ~ A H ~ A ,  as desired. It follows 
from our definitions that Fi has absolute strong approximation; therefore, 
applying the argument in the proof of Proposition 5.4 to GA = FAHA, we 
obtain the desired inequality. Lemma 8.21 is proved. 

The arguments below use results on orders in semisimple algebras (cf. 
51.5.3). The integral group ring A = Z[r] is an order in D = Q[r]  and 
therefore is contained in some maximal order A. Put f = [A : A]; then 
f A c A. Let us extend Q to a representation of D. Since Q is an integral 
representation of r, it follows that e(A)L = L, and therefore 
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In particular, M is a lattice; moreover, clearly @(A) c End(M). Let C 
denote the centralizer of Q(D) in Mn(Q). Then C = M,, (Ti) as 
an algebra; also, it is clear that Gp is the group of invertible elements of 
C @Q P, for any P/Q. Let O be the centralizer of @(A) in End(M); one 
can show that O is a maximal order in C. To estimate the class number of 

d 
G we need to pass from O to in C, which has the form @i=l Mmi(Oi), 
where Oi is a maximal order in Ti. The order is maximal in C ,  SO 

O P - - O Bz Zp and a, = @z Zp are maximal orders in Cp = C @Q Qp, for 
any p. Consequently, by the theorem on the conjugacy of maximal orders 
in semisimple algebras over a local field, one can find gp in C,* = GQp such 
that gpOpg;l = a,. Moreover, for almost all p we have Op = ap, and one 
can put gp = 1. 

Let g denote the element of GA whose pcomponent is gp and whose real 
component is 1. Put L1 = g(L) and MI = g(M) , in the sense of the action 
of GL,(A) on lattices in Qn, as defined in 58.1. Then, by Lemma 8.21, we 
obtain 

L We claim that c H z p  for d l  p, and consequently HA?,) C ~ 2 ~ ) .  

Indeed, it suffices to show that G::' c G Z p .  We have Gtip = gp~::g;l 

and G,Mdp = g p G~~ zp QP -I; therefore the problem reduces to proving 

But any element from G:: commutes with Q ( ~ ) ,  and therefore also leaves 

Mp = @(A)L, fixed, as desired. Thus, using (8.50) we obtain: 

We proceed by looking at each factor separately. By assumption, GZ is 
O;, for any p; therefore G Z p  = gp~Zg;l is a;. It follows that H e l p  is 
naturally isomorphic to n 0;. Thus, cl(HMl) is bounded from above 

i,mi#O 
d 

by h = n hi, where hi is the number of double cosets taken in 
i=l 

(Oi @Z A(,))* \ (T, @Q A)*/T,*. 

The noncommutative analog of Proposition 8.1 shows that hi is the class 
number of Ti, which is independent of the choice of the maximal order Oi 
(for more detail, see Deuring [I]). 

To estimate the second factor in (8.51), note that (8.49) implies 

It follows that, for any p, the congruence subgroup 

is contained in H;ip. Indeed, for any g in H F p (  f )  and any 1 in Lip we 
have 

g(l) = (g - En)(l) + 1 E f Mlp + 1 c Lip, 

as desired. Therefore, identifying H Z p  with n O:, as above, we see 
i, mi#O 

d 
that [H?,) : HAL:_)]  is bounded by k = n ki, where 

i= 1 

(Note that ki is also independent of the choice of the maximal order Oi c 
Ti.) Thus, finally, we see that we can take hk for the t in Theorem 8.17. 
Q.E.D. 

Note that this proof of Theorem 8.17 also holds for integral representa- 
tions of an arbitrary semisimple Zalgebra A, since the fact that A = Z[r] 
is not actually used. 

BIBLIOGRAPHIC NOTE: The number of classes in the genus of quadratic 
forms and the class numbers of number fields were first studied by Gauss [I]. 
Since then a vast number of papers have been written on the subject. They 
treat various aspects of the problem, ranging from determining the class 
number in specific situations to obtaining asymptotic estimates of the class 
number for certain sets of forms, fields, etc. This chapter has been devoted 
to results that generalize the concept of class number to arbitrary algebraic 
groups. The fact that the numbers of classes in the genus of arithmetic 
objects are related to the class numbers of the corresponding algebraic 
groups (Theorem 8.2) is well known, but apparently has never been noted 
in such generality. This connection was utilized by Kneser [I] to obtain a 
complete description of the number of classes in the genus of an indefinite 
quadratic form (Theorem 8.6). F'urther results describing class numbers 
and class groups of semisimple groups of noncompact type were obtained in 
a series of papers by Platonov, Bondarenko and Rapinchuk [I-31. Besides a 
complete proof of the realization theorem, these papers contain the theorem 



508 Chapter 8. Class numbers and class groups 9. Normal subgroup 

on unboundedness of the class numbers of groups without absolute strong 
approximation, estimates of the class numbers of maximal tori, and some 
examples and applications of these results to classical arithmetical problems 
(in particular, the problem of calculating the class number in the genus of 
lattices on the full matrix algebra under conjugation). Analysis of class 
numbers in the genus of semisimple groups of mixed type on lattices of 
double dimension was begun in [3]. This investigation was completed by 
Rapinchuk [2] for groups of compact type in the original dimension; this, 
in particular, made it possible to obtain a characterization of the number 
of classes in the genus of positive definite quadratic forms. Section 8.5 
contains the solution of the genus problem in arithmetic groups obtained 
by Rapinchuk [I], and an effective estimation of the number of classes in the 
genus of integral representations of a given finite group, due to Platonov [2]. 

structure of groups of rational 
points of algebraic groups 

The main results of this chapter focus on the following problem: let G 
be a simply connected simple algebraic group defined over an algebraic 
number field K ;  what can be said about the structure of GK, the group 
of K-rational points? Of the many questions which arise in this regard, 
the problem of analyzing the normal subgroup structure of GK has been 
singled out. This can be viewed as a tribute to the algebraic tradition which 
goes back to the work of Artin and Dieudonn6 on the normal subgroups 
of SL,(D) and other classical groups, as well as to the needs of closely 
related areas, in particular the theory of automorphic functions, the theory 
of group representation, etc. 

As we indicated in Chapter 7, one must distinguish between the cases 
when G is K-isotropic and when G is K-anisotropic. Whereas, in the first 
case, much energy was directed at proving the Kneser-Tits conjecture for 
G (cf. Theorem 9.1), the subject long remained obscure for the second one, 
even in the general picture. Thus, until 1979, the only result bearing on this 
problem was the paper by Kneser [2], dated 1956 and studying the spinor 
groups of quadratic forms. In the past decade, research in this area has 
gained considerable impetus, in no small measure due to the conjecture on 
the criterion for GK being projective simple, first put forward by Platonov 
at  the International Congress of Mathematicians in Vancouver in 1974. 

We shall begin our exposition with a discussion of this conjecture and 
its generalizations, followed by the statement of recent results ($9.1). Sec- 
tions 9.2-9.4 are devoted to proving the theorems stated in $9.1. It should 
be noted that we are dealing here with results that were obtained quite 
recently (through 1989) and inherently are rather intricate. Therefore, the 
exposition in this section is more concise, stylistically resembling a paper 
in a journal more than a book. Nevertheless, in order not to lose the main 
train of thought, the proofs of some secondary assertions are left to the 
reader. In a word, this chapter demands more of the reader than previous 
chapters. We believe, however, that it will provide the attentive reader with 
the necessary background material for continuing independent research in 
this area. Lastly, in 59.5 we present a survey of the latest results on the 
congruence subgroup problem. 

9.1. Main conjectures and results. 
Throughout this chapter unless otherwise stated G denotes a simple sim- 

ply connected algebraic group, defined over an algebraic number field K.  
The basic problem which we address is as follows: when does GK, the 
group of K-rational points, have no noncentral normal subgroups? A more 
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general problem would be to describe all the possible normal subgroups of 
GK. Analogous problems can be posed for arbitrary K ;  however there is no 
hope of obtaining a solution to the problem in such generality. (Note, also, 
that it hardly makes sense to discuss them for a broader class of groups 
than that singled out above, since when the radical of G is nontrivial the 
problem becomes meaningless, whereas the case of semisimple groups es- 
sentially reduces to that of simple groups.) The situation looks brighter for 
the case of a number field, since here, hypothetically, one can pass from the 
local analysis of normal structure to the global. The relevant conjecture 
has been formulated by Platonov [ll]. 

CONJECTURE 9.1. GK is projectively simple (i.e., GK/Z(GK) is simple1) 
if and only if, for all v in VK, the local groups GKu are projectively simple. 

Thus formulated, this conjecture is a qualitatively new version of the 
local-global principle, which pervades all of the arithmetic theory of al- 
gebraic groups. Earlier statements of this principle were related to local- 
global isomorphisms of objects, and therefore generally could be reduced 
to proving injectivity of the maps of cohomology groups (cf. Chapter 6). 
Here we suggest the possibility of moving from local to global with respect 
to simplicity of an abstract group-a property which can in no way be 
conveyed a priori by cohomological invariants. 

Conjecture 9.1 can be stated equivalently as follows: For an absolutely 
simple simply connected K-group G, the group GK is projectively simple 
if and only if G is Kv-isotropic, for all v in VfK. Indeed, GK, is always 
projectively simple, for all v in V z  (Proposition 7.6); therefore it remains 
to show that, for v in v~K, GK, being projectively simple is equivalent to 
G being K,-isotropic. In one direction, this follows from the proof of the 
Kneser-Tits conjecture over non-Archimedean local fields (Theorem 7.6). 
The converse follows from the fact that, when G is Kv-anisotropic, GKu is 
compact (Theorem 3.1) and hence also profinite (cf. $3.3). Therefore GK, 
has a base of neighborhoods of the identity consisting of normal subgroups, 
and one cannot even speak of GK, being simple. Moreover, if N is an open 
normal subgroup of GK, (as is any noncentral normal subgroup of GK,, 
cf. Theorem 3.3), then Nl = N n GK is a normal subgroup of GK. In 
addition, the fact that G has weak approximation (Proposition 7.9) implies 
that GKv = NGK; hence GKU/N 2 G K / N ~ .  Thus, the intersection of GK 
with any proper, noncentral normal subgroup of GK, i~ a proper normal 
subgroup of GK. Note, by Proposition 3.17, that N has finite index in 

Note that in the theorems presented below, we consider projective simplicity in a 
stronger sense, namely as the absence of proper noncentral normal subgroups. However, 
this formulation of the concept seems to be more elegant. 

GK, and therefore Nl is always infinite; hence the conditions given in 
Conjecture 9.1 are necessary for GK to be projectively simple. 

Moreover, if the conditions of Conjecture 9.1 are not satisfied, then it 
follows from the above that GK, as well as GK,, has a system of normal 
subgroups % = {N) of finite index, such that ONE% N = (I), i.e., GK 
is residually finite. This above argument can be sharpened as follows. If 
G is Kv-anisotropic for v in v ~ K ,  then G 2 SL1(D) over Kv, where D is 
a finite-dimensional central division algebra over K, (Theorem 6.5). But 
then GK, 1) SL1(D) is prosolvable, by the results in 51.4.4. Therefore, 
when the conditions of Conjecture 9.1 are violated, GK is approximated 
by normal subgroups of finite index with solvable quotients; in particular, 
GK # [GK, GK]. 

By the conjecture, if G is Kv-isotropic for all v in VfK (which is always 
the case if G belongs to a type other than A,), then GK is projectively 
simple. In general, consider T = { v  E v ~ K  : G is Kv-anisotropic); it 
follows from Theorem 6.7 that T is always finite. If T # 0, then, as we 
noted above, for any v in T ,  GK, has a base of neighborhoods of the 
identity consisting of normal subgroups, each of them intersecting GK in 
a nontrivial normal subgroup of GK. It is easy to see that the analogous 
assertion also holds if, instead of a single GK,, one considers the product 
GT = n GK,; namely, GT has a base of the neighborhood of the identity 

V E T  
consisting of normal subgroups, and each proper, open normal subgroup H 
of GT yields a proper normal subgroup N = GK f l  H of GK. Since GKv 
is isomorphic to a group of type SLl(D), for v in T, the results of $1.4.4 
(in particular, Theorem 1.10) give a description of the normal subgroups 
in the local case. Therefore, one may say that the normal structure of GK 
has been fully studied if one knows that all noncentral, normal subgroups 
of GK can be obtained in the manner described above. 

CONJECTURE 9.2 (MARGULIS [3]). For any noncentral normal subgroup 
N of GK one can find an open normal subgroup H of GT such that N = 
6-'(H), where 6: GK + GT is the diagonal embedding. 

Conjecture 9.2 resembles the congruence subgroup problem for the 
groups of rational points, which we shall discuss in $9.5 for S-arithmetic 
groups. Note, also, that for T = 0 (in particular, if G belongs to a type 
other than A,) Conjectures 9.1 and 9.2 become equivalent. 

The aim of this chapter is to set forth the current results on these con- 
jectures. To begin with, we must distinguish two cases: when G is K- 
isotropic and when G is K-anisotropic. In the first one, analysis of the 
normal structure of GK reduces to the question whether the Kneser-Tits 
conjecture (cf. 57.2) holds for G; for number fields we have the following, 



512 Chapter 9. Normal subgroup structure of groups of rational points 9.1. Main conjectures and results 

almost definitive, result: THEOREM 9.4. Conditions as above, 

THEOREM 9.1. Let G be a simple simply connected algebraic group defined 
over an algebraic number field K.  Suppose G belongs to a type other than 
2 ~ 6 .  Then GK = Gfi-, and consequently GK has no proper noncentral 
normal subgroups. 

For the classical groups the main points in the proof of this theorem 
were set forth in $7.2. For the exceptional groups the argument requires 
verification case by case; and, by Theorem 7.4 it suffices to consider groups 
having K-rank equal to 1. Unfortunately, a complete exposition of this part 
of the proof has not yet been published (although Prasad-Raghunathan [3] 
promised one); nevertheless, it can be reconstructed with the help of Tits' 
lecture [4] at the Bourbaki seminar. The case of a K-form of type 2E6 

having K-rank equal to 1 with the Tits index 

has not yet been studied. 
Now let G be a simple simply connected K-anisotropic group. The most 

difficult groups to analyze are those of type A,; at present (1989) for most 
outer forms of type A, we have practically no results. Therefore, let us 
assume that G is an inner form of type A,. Then G = SL1(D), where 
D is a finite-dimensional central division algebra over K.  In this case 
T, introduced before Conjecture 9.2, is the set of all v in VfK for which 
D, = D 8 K, remains a division algebra. Conjecture 9.2 has been fully 
solved only for quaternion skew fields. 

THEOREM 9.2. Let D be a quaternion skew field over K ,  and let G = 

SL1(D). Then Conjecture 9.2 holds for GK. In particular, if T = 0, then 
GK has no proper noncentral normal subgroups. 

(The conjecture on the projective simplicity of SL1(D), where D is a 
quaternion skew field, was set forth by Kneser [2] for T = 0 and remained 
unproved for almost 25 years. The reader should also note that the groups 
mentioned in Theorem 9.2 comprise all the anisotropic groups of type A1.) 

At present, for division algebras of arbitrary index we have only the 
following partial result: 

THEOREM 9.3. Let N be a normal subgroup of GK, satisfying Conjec- 
ture 9.2. Then Conjecture 9.2 also holds for the commutator group [N, N]. 

For the convenience of references, we state Theorem 9.3 separately for 
N = GK. 

In particular, if T = 0, then GK = [GK, GK]. 

These theorems were actually proved in several stages. First, the authors 
[I] obtained a proof of Theorem 9.4 for the case where D is a quaternion 
skew field and T = 0, developing the multiplicative arithmetic of quater- 
nions. Using the latter, Margulis [4] then proved Theorem 9.2. Subse- 
quently, the authors managed to generalize the methods and results of 
[I] to division algebras of arbitrary index. In other words, a multiplica- 
tive arithmetic of division algebras of arbitrary index was developed and 
applied to the proof of Theorem 9.4, with one small constraint: it was 
assumed that v((n, 2)) = 0 for v in T,  where n is the index of D. Lastly, 
Raghunathan [7] proved that this condition is superfluous, and derived the 
more general Theorem 9.3 from Theorem 9.4. 

We devote $9.2 to the proofs of Theorems 9.2-9.4, beginning with Theo- 
rem 9.4, whose proof is technically the most intricate. The arguments here 
follow the general scheme described in Platonov-Rapinchuk 141, with sev- 
eral modifications which, firstly, remove the previously imposed condition 
on D, and secondly, reduce the reliance on class field theory to a mini- 
mum. In particular, the version of the proof presented here does not use 
the Griinwald-Wang theorem, which in a somewhat generalized form plays 
a key role in the proof given by Raghunathan [7]. Then we derive Theo- 
rem 9.3 from Theorem 9.4. The argument we present is more direct than 
the original one used by Raghunathan [7] and is based on establishing a 
connection with the metaplectic problem, treated in $9.5. Lastly, following 
Margulis [4], we prove Theorem 9.2. 

We devote '$9.3 to the normal subgroup structure of groups of rational 
points of algebraic groups belonging to other classical types. The main 
result here can be stated as follows: 

THEOREM 9.5. Let G be a simple simply connected algebraic K-group 
belonging to one of the following types: Bl (1 > 2), Cl ( I  > 21, Dl 
(1 2 4, except for 3D4 and 6D4); or the special unitary group S u m  (L, f )  of a 
nondegenerate m-dimensional Hermitian form f over a quadratic extension 
L/K, having type 'Am-l (m 2 3). Then GK has no proper noncentral 
normal subgroups; in particular, Conjecture 9.1 holds. 

This theorem has apparently not been published before in such complete 
form. Its proof evolved over more than three decades, from the work of 
Kneser [2] in 1956, to the present day. A key role in the argument is played 
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by the fact that the groups under consideration have a convenient geomet- 
ric realization as groups of automorphisms of various vector spaces over 
a division algebra, endowed either with a Hermitian or a skew-Hermitian 
form. This approach was used by Kneser [2] to prove the projective sim- 
plicity of the groups of rational points of the spinor groups G = Spin(f) 
of nondegenerate quadratic forms in n > 5 variables, belonging to type 
Bd for n odd and to type Dq for n even. The case of groups of type 

2 

Cl and of SUm(L, f )  of type 2Am-l, related to a quadratic extension L/K 
and a nondegenerate Hermitian form f ,  was studied by Borovoi [I]. Later 
Chernousov [4] reduced the proof of Theorem 9.5 for groups of type Dl 
(1 > 4) to groups of type D3 = A3. The definitive result for groups of type 
Dl was obtained independently by Tomanov [2] and Borovoi [3]. In this re- 
gard, Tomanov's arguments are direct analogs of those used by Kneser [2], 
whereas Borovoi's approach develops methods used in his earlier work [I]. 
A crucial observation is that the proof of Theorem 9.5 can be reduced not 
merely to groups of type D3 = A3, but actually to groups of this type which 
are isomorphic to SU4(L, f) ;  these groups were studied earlier. (Note that 
the argument in Chernousov [4] can also be carried through to the end with 
the help of this remark.) 

We shall give a new proof of Theorem 9.5 which, although it uses several 
points from the works mentioned above (mostly Borovoi [I], [3]), differs 
from the previous proofs first and foremost in terms of its general nature 
and does not require treating each type separately. On the whole, the 
argument is inductive, with Theorem 9.2 providing the base of induction 
(recall that B1 = C1 = A1 and D2 = A1 + A1), the inductive step being 
justified by Theorem 9.13. 

The method used in the proof of Theorem 9.5 can also be applied to 
non-classical groups. For instance, applying it to the 7-dimensional repre- 
sentation of a group of type G2, we obtain the following result: 

THEOREM 9.6. Let G be a simple K-group of type G2. Then GK is pro- 
jectively simple. 

We still have to consider groups of type E6, E7, E8 and F4. The anal- 
ysis of these types is complicated by the fact that there are no convenient 
geometric realizations for groups of the E series. The proof of the pro- 
jective simplicity of the groups of K-rational points of simple groups of 
the latter three types, obtained by Chernousov ([3], [5]), appeared rather 
unexpectedly. By applying several methods which he developed previously 
[2] in order to study the rationality of the varieties of real algebraic groups, 
Chernousov proved the following theorem. 

THEOREM 9.7. Let G be a simple simply connected algebraic groups of 
rank 1 2 2, defined and anisotropic over K ,  but split over tl quadratic 
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extension LIK.  Then GK hm no proper, noncentral normal subgroups 
and, in particular, is projectively simple. 

Groups of all types except A1 have K-forms to which one can apply The- 
orem 9.7. However, any K-group belonging to type B1, Cl, E7, Es, F4 or Gz 
always splits over some quadratic extension of K (Proposition 6.17). Since 
it has already been shown that for K-isotropic groups of these types there 
are no noncentral normal subgroups of GK (Theorem 9.1), Theorem 9.7 
yields 

COROLLARY. The groups of K-rational points of simple simply connected 
groups of types Bi (I L 2), Cl (1 > 2), E7, E g ,  F4,  and G2 do not have 
proper noncentral normal subgroups. 

Thus, for groups of type B1 and Cl (1 > 2) we obtain one more proof 
of the projective simplicity of GK. In 59.4 we present a modified proof of 
Theorem 9.7. Like Chernousov's original proof (cf. [3],[5]), it is by induction 
on the rank 1 of the group under consideration, beginning with 1 = 2. 
Since there are only three types having rank 2 (namely, A2, B2 = C2, and 
G2), and since any K-anisotropic group of type A2, split over a suitable 
quadratic extension L/K, is precisely SU3(L, f ) ,  it follows that the starting 
point of the induction is given by Theorems 9.5 and 9.6. 

In summary, aside from the case of groups of type Al (1 > 2), we see that 
at  present Conjectures 9.1 and 9.2 are proved for all groups, except for the 
forms of type 3D4, 6D4 and Es. Therefore, from this perspective, the main 
problem is to complete the analysis of groups of type Al, both for inner 
forms, for which the known results are assembled in Theorems 9.2-9.4, as 
well as outer forms, for which analogous results have not yet been obtained. 

Although the methods used in 559.2-9.4 vary widely, approximation is 
used in all the proofs. Therefore, in this introductory section we present 
the following two results, which will be used repeatedly in the sequel. 

Let G be a simple simply connected algebraic K-group, and let T = 
{ v  E v ~ K  : GK, is K,-anisotropic). For any noncentral normal subgroup 
N of GK and any finite subset S of vK, let Ns denote the closure of N in 
GS = n GK,. 

v E S  

LEMMA 9.1. 

(1) Ns is an open normal subgroup of Gs. 
(2) Ns = N ~ n s  x Gs\(Tns); in particular, if T n S = 0, then Ns = Gs. 

PROOF: By Proposition 7.9, GK is dense in Gs; therefore Ns is a normal 
subgroup of Gs. For v in S, there is a natural embedding of GKv in Gs, and 
one can consider W, = [Ns, GK,]. Then clearly W, is a normal subgroup 
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of GK,, and Wv @ ~ ( G K , ) .  Indeed, let x be a noncentral element in N, 
and let cp: G + G be the map given by p(g) = [x, g]. Since x $ Z(G) and 
G is connected, the closure of the image of cp has positive dimension. But 
GK, is Zariski-dense in G (Theorem 2.2), so cp(GK,) c Wv is infinite; in 
particular, Wv @ Z(GK, ). 

Theorem 3.3 implies that Wv is open in G K ~ .  On the other hand, since 
Ns is a normal subgroup, we have Wv c Ns for any v in S; so n Wv c Ns 

- - 

v E S  
and Ns  is open. Now if v E S\ (T n S) ,  then GK, has no noncentral normal 
subgroups; hence W, = GK,, C Ns, which means that GS\(TnS) C NS. 
Now consider the projection of Ns on GSnT. Its image is an open subgroup 
of G s n ~  and at the same time contains N as a dense subgroup; i.e., it 
coincides with N s n ~ ,  and the lemma is proved. 

LEMMA 9.2. Notation as above, the following conditions are equivalent: 

(i) N satisfies the congruence assertion in Conjecture 9.2; 
(ii) N is open in GK in the T-adic topology; 
(iii) N is closed in GK in the T-adic topology. 

PROOF: (i)+ (ii)+ (iii) are obvious, therefore we shall prove (iii) +(i). 
As above, let NT denote the closure of N in GT. If follows from Lemma 9.1 
that NT is an open normal subgroup of GT and therefore N is dense in 
G K ~ N T  in the T-adic topology of GK. Then by (iii) we have N = GK nNT, 
which means that the congruence assertion of Conjecture 9.2 holds for N 
(with H = NT). Lemma 9.2 is proved. 

To conclude, we look at a qualitative aspect of the problem of the nor- 
mal subgroup structure of groups of rational points. Theorem 3.1 implies 
that GK, is compact for each v in T; therefore GT itself is compact. Now 
suppose the congruence assertion of Conjecture 9.2 holds for a normal sub- 
group N of GK, i.e., that N = GK n H for some open normal subgroup H 
of GT. Then, since GT is compact, it follows immediately that [GT : H] is 
finite; hence also [GK : N] is finite. Since Conjecture 9.2 has not yet been 
proved, one naturally wonders whether a priori GK could have noncentral 
normal subgroups of infinite index. The answer to this question is provided 
by the following 

THEOREM 9.8 (PRASAD [I], MARGULIS [3]). Let G be a simple simply 
connected algebraic K-group. Then any noncentral normal subgroup of 
GK has finite index. 

With the help of the strong approximation theorem, the proof is easily 
obtained from the following general result. 
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THEOREM 9.9 (MARGULIS 131). Let F be an S-arithmetic subgroup of a 
simple algebraic K-group G, where S is a finite subset of vK containing 
vZ. If ranks G = EVES rankKv G 2 2, then any normal subgroup of 
either has finite index in F, or is contained in the center of G. 

Several special cases of Theorem 9.9 were known before Margulis [3] 
and had been proved by purely algebraic methods. For rankK G > 2, 
Theorem 9.9 was obtained by Raghunathan [4]. Apparently, by modifying 
Raghunathan's arguments, one can prove Theorem 9.9 for an arbitrary 
S-arithmetic subgroup of a K-isotropic group G for which ranks G 2 2. 
However, such an approach cannot be applied in the K-anisotropic case. 
Margulis [3] uses arguments of an, essentially different nature, based on 
the fact that r is a lattice of Gs) ,Theorem 5.7) and using deep results 
from measure theory and the thee-y of infinite-dimensional representations. 
Since these methods are not covered in our book, unfortunately we cannot 
present the proof of Theorem 9.9 here and must refer the reader to the 
original proof in Margulis 131. 

Nevertheless, we shall show how Theorem 9.8 is derived from Theo- 
rem 9.9. We introduce a finite subset S of vK, containing T and VZ 
and satisfying the following conditions: 

(i) ranks G > 2; 
(ii) N n Go(s) is not contained in Z(G), the center of G. 

Such an S can easily be constructed if we proceed from the following two 
facts: 

(1) G is K, isotropic, i.e., rankKv (G) > 1, for almost all v in v~K; 
(2) if x E N \ Z(G), then x E Go(s) for S sufficiently large. 

Also, consider the diagonal embedding of GK in the group GA, of S-adeles, 
and let N denote the closure of N in GAS. Then N = GAS. Indeed, GK is 
dense in GAS by the strong approximation theorem; hence N is a normal 
subgroup of G A S  For any v @ S there is a natural embedding of G K ~  in 
GAS, and the commutator subgroup [GKv , N] is contained in N and is a 
noncentral normal subgroup of GKv. But by assumption v @ T,  so GK" 
cannot have any proper noncentral normal subgroups (Theorem 7.6); hence 
GK, c N .  But it follows from the definition of the adele topology that 
the subgroup of GA, generated by all the GKv (where v $ S)  is dense; 
therefore, finally, N = GAS. In particular, 

where is the group of S-integral adeles in GAS. From (9.1) we obtain 
that GK = NGo(s), from which it follows that GK/N 2 Go(s)/NnGo(s). 
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It remains to note that by assumption N n Go(s) g' Z(G); thus the latter 
quotient group is finite, by (i) and Theorem 9.9. Therefore GK/N is also 
finite and Theorem 9.8 is proved. 

Note that Theorem 9.8 is essential in proving the theorems formulated 
above, in particular Theorems 9.2 and 9.5. 

9.2. Groups of type  A,. 

Throughout this section let G be a simple simply connected K-aniso- 
tropic group which is an inner form of type An-1. Thus, G = SL1(D), 
where D is a finite-dimensional central division algebra over K of index 
n. Put T = { V  E v ~ K  : D, = D @K K, is a division algebra). As we 
noted in $9.1, what we know at present about the normal subgroups of GK 
is summarized in Theorems 9.2-9.4; this section is devoted to the proofs 
of these theorems. Our arguments use approximation theorems for G and 
several norm properties of the maximal subfields of D; we shall begin our 
exposition with the latter. 

The most technically intricate part of the proofs of Theorems 9.2-9.4 lies 
in the following assertion, for which we introduce the following notation. 
Fix an arbitrary noncentral normal subgroup N of GK = SL1(D), and for 
x in D* let R(x) denote the subgroup of D* generated by the multiplicative 
groups of all the maximal subfields of D* of the form K(xz), where z E N. 
Furthermore, let NT be the closure of N in GT, and let OT(X) be the 
subgroup of D; = fl D: generated by the products fl K:[&Z,]* for 

VET VET 
which 2 = (z,) E NT and K,[xz,] is a maximal semisimple commutative 
subalgebra of D, for all v in T. 

THEOREM 9.10. NrdDIK(R(x)) = NrdDIK(Df)nNrdDT/KT ( ~ T ( x ) )  (here 
NrdDTIKT denotes the product of the maps NrdDUIK, for in T).  

First we show how Theorem 9.10 is derived from the following 

PROPOSITION 9.1. Put To = { v  E v ~ K  : D, $ M,(K,) ). Then 

for any x in D*, where m = n!. 

We shall need two lemmas. 

LEMMA 9.3. Let v E VK, x E D:, and let H be a maximal semisimple 
commutative subalgebra of D,. If NrdDVIK, (x) E NrdDWIK, (H*), then 
H = K, [xz] for suitable z in GK, . In particular, 

(1) if D, -. M,(K,), then there exists z in GK, such that K,[xz] N K:; 

(2) if v E VfK \ T, then there exists z in GKv such that 

N ~ ~ D , / K ,  (KV [xz]*) = KG. 

PROOF: We use the following fact: if y E H*, then for any  en subgroup 
R of GK, there is z in R f l  H satisfying H = K[yz]. For the proof, let B 
denote the maximal K,-torus of GL1(D) corresponding to H ,  and let W be 
the set of regular elements in B; then W is Zariski-open in B (cf. $2.1.11). 
Since B = BIB2, where B1 = Gm and B2 = B n G, it follows that W(y) = 

{ b E B2 : yb E W ) is nonempty and open in B2, for any y in B. On the 
other hand, B2 n R is an open subgroup of BZKv in the v-adic topology; 
hence it is Zariski-dense in B2 (Lemma 3.2). Therefore, one can find z in 
W(y) n R, which will be the desired element. 

The first assertion of the lemma and (1) are immediate; to prove (2) it 
remains to construct a maximal semisimple commutative subalgebra H of 
D, satisfying NrdDvlK,(H*) = K;. TO do so, write D, = Ml(A), where 
A is a division algebra over K,. Since v E VfK \ T, we have 1 > 1 and one 
can consider the algebra H = E @ P'-', where E (resp., P )  is a maximal 
unramified (resp. totally ramified) subfield of A. Then NrdDUIK,(H*) 
contains NrdAIKv(E*) and NrdAIKv(P*). But the first of these groups 
contains the group of v-adic units U,, and the second contains a uniformiz- 
ing parameter of K,, so in the end NrdDWIK,(H*) = K;. The lemma is 
proved. 

LEMMA 9.4. Let x E D*, let S be a finite subset of VK, and for each v in S 
fix a maximal semisimple commutative K,-subalgebra H, of D, . Suppose 
there is = (z,) E Ns satisfying K,[xz,] z H, for all v in S .  Then there 
is z in N such that K, [xz] -. H, for all v in S. 

PROOF: Without loss of generality we may assume that H, = K,[xz,]. 
It follows from the proof of Proposition 6.13 that the set Y,, consisting of 
those y in D: for which K,[y] is conjugate in D, to H,, is open in D:. 
Then Y = Ns n ( n x-'Y,) contains 2 and therefore is a nonempty, open 

UES 
subset of Ns. Hence Y n N is nonempty, and any z in Y n N will be the 
desired element. The lemma is proved. 

Now let a E NrdDIK(D*) f l  NrdDT/K,(RT(x)). This means there exist 
Zl,. . . , 2, in NT (where 2i = (zi,)) such that a = NrdDTIKT(Zl,. . . ,Zr), 
where Zi E n K, [xzi,] * and K, [xzi,] is a maximal semisimple commuta- 

V E T  
tive subalgebra of D, for all v in T ,  (i = 1 , .  . . , r). Using Lemma 9.4, we 
can find zl, . . . , z, in N such that K, [xzi] z K, [xzi,] for all v in T and 
all i = 1,.  . . , r. Then NrdDTIKT(Zi) = NrdDTIKT(xi) for suitable xi in 
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n K,[xzi]*. Furthermore, by Lemmas 9.1, 9.3 and 9.4 there is zT+l in N 
V E T  
such that NrdDUIK, (K, [xzT+l]*) = K,* for all v in To \ T. It follows from 
our definitions that there exist ti in Zi = fl Kv[xzi]* (i = 1,.  . . ,r  + 1) 

VETO 
such that a = N r d ~ ~ , , ~ ~ ,  (tl . . . tT+l). Applying the weak approximation 
theorem to K(xzi), we find si in K(xzi)* n t iZy.  We have 

aNrdDIK(sl.. . s,+l)-' E NrdDIK(D*) n n K:m, 
VETO 

which means that a NrdDIK (sl . . . s,+~)-' E NrdDIK (fl(x)), by Proposi- 
tion 9.1. But then also a E NrdDIK (fl(x)), as desired. 

Now we sketch the proof of Proposition 9.1. Let 

a E NrdDIK(D*) n n K:-. 
VETO 

It suffices to find zl, z2 in N such that Mi = K(xzi) are maximal subfields 
of D and a E NM11K(M~)NM21K(M2+). We prove the latter inclusion 
by applying the multinorm principle (cf. 56.3) to the normal closures Pi 
of Mi in a given algebraic closure (then Li = Pi, notation as in Proposi- 
tion 6.11). To construct the Mi = K(xzi) in such a way that the conditions 
of Proposition 6.11 hold for the Pi, we need the following stronger version 
of Lemma 9.4 

PROPOSITION 9.2 Given an element x in D*, a finite extension F of K ,  a 
finite subset S of v K ,  and an element 2 = (a,) E Ns such that K,[xz,] is 
a maximal semisimple commutative subalgebra of D,, for all v in S; then 
there exists z in N such that the following holds for the field M = K(xz) 
and its normal closure P (in a given algebraic closure): 

(1) M BK K, e K[xz,] for all u in S; 
(2) P n F = K ;  
(3) P / K  satisfies the Hasse norm principle. 

PROOF: Obtained by reducing to Lemma 9.4. Namely, we show that there 
exist a finite subset S1 of VfK \ ((v~K n S )  UTo) and, for each v in S1, a maxi- 
mal semisimple commutative subalgebra H, of D, such that H, = K,lxz,] 
for suitable z, in GK- ; and if M @K K, e H, for v in S1, then conditions 
(2) and (3) hold. (Intuitively, we shall show that one can guarantee (2) 
and (3) by fixing a finite number of local conditions that are "indepen- 
dent" of the conditions stipulated in (I).) Then the existence of z in N 
with the requisite properties follows immediately from Lemma 9.4, for the 
application of which one must note that E = (zv)v~susl lies in Nsusl, by 
Lemma 9.1. 

Condition (2) is the easiest to handle. 

LEMMA 9.5. For any finite subset So of VK and any finite extension F / K  
there exists a finite subset S (F)  of ~ f (  \ (VfK n So) such that, if P > K 
and P, = K, for all v in S ( F )  and all w(v, then P n F = K .  

PROOF: We may assume without loss of generality that F I K  is Galois. 1 

Consider a system of generators 01,. . . ,aT of Gal(F/K). By the Cheb- 
otarev density theorem, for each i = 1,2, .  . . , T there is a vi in v ~ K  \ 
(VfK n So) and its extension Gi to F such that the Frobenius automor- 
phism F'r(Fei/KUi) = u. Put S (F)  = {vl, . . . , vT ). If P > K and 
E = P f l  F # K ,  then there is an automorphism ui that acts nontriv- 
ially on E.  Let w denote a valuation of P extending the restriction of Gi to 
E. Then w(vi and P, # K,, since ui in Gal(FG,/KUi) is not the identity 
on Eei; consequently Eei # KVi. The lemma is proved by contradiction. 

Let us choose S(F) as constructed in Lemma 9.5 so that it is not in 
So = To U S .  Then, on the one hand, for any v in S ( F )  there exists z, 
in GK, satisfying K,[xz,] - K," (Lemma 9.3 (1)); on the other hand, if 
M BK K, 2 K c  for all v in S (F) ,  then the normal closure P of M satisfies 
P, = K, whenever v E S(F)  and wJv; hence P n F = K ,  i.e., condition 
(2) is satisfied. 

It remains to dispose of condition (3). By Theorem 6.11, the Hasse 
principle holds for a Galois extension P / K  with Galois group g if and only 
if the canonical map 

is injective (where G,, is the decomposition group of an extension of v). 
Since in our case P is a normal closure of an extension of degree n, we 
see that is isomorphic to a subgroup of the symmetric group S,, and 
consequently it follows from Lemma 1.2 that P / K  always satisfies the Hasse 
principle whenever n 5 3. Therefore, below we assume that n 2 4. 

Choose any two valuations vl and v2 in ~ f (  \ (SUTO uS(F)), and consider 
the following maximal semisimple commutative subalgebras Hvi c D,, 21 

Mn(Kv, 1: 

where E is an unramified extension of K,, of degree n - 1, and R1, R2 are 
unramified and totally ramified quadratic extensions of K,,, respectively. 
Clearly NrdDui/K (H,*,) = K,*, for z = 1,2; therefore Lemma 9.3 implies 

" i  

that there exist zi in GK,, such that H,, = Kvi [xz~]. 
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We shall show that if M is an extension of K of degree n such that 
M @K K,, e H,, for i = 1,2, then the Hasse principle holds for P/K.  
First we compute G = Gal(P/K). Let f be an irreducible polynomial of 
degree n determining MIK.  The action of G on the roots of f gives an 
injective homomorphism 8: G -+ S, to the symmetric group; moreover, in 
view of the irreducibility of f ,  the image of 8(G) is a transitive subgroup. 
It follows from (9.2) that we have P,, = E for wl lvl; so the splitting group 
G(wl) is a cyclic subgroup of order n - 1, and under 8 any of its generators 
passes to a cycle of length n - 1. Similarly, for w21v2 we have Pw2 = RlR2; 
consequently G(w2) is the direct product of two cyclic groups of order 2, 
whose generators pass under 8 to two permutations. 

Thus 8(Q) is a transitive subgroup of S, containing a cycle of length 
n - 1 and a permutation, so 8(G) = S,. (Cf. van der Waerden [I].) Then 
it follows from Lemma 1.2 and the description of G(w2) that H3(G, Z) -+ 

H3(G(w2), Z) is injective, and consequently the Hasse principle holds for 
P /K.  This completes the proof of Proposition 9.2. 

Now we complete the proof of Proposition 9.1. Let 

we shall show that a E NrdDIK(K(xz1)*K(xz2)*) for suitable zi in N such 
that the Mi = K(xzi) are maximal subfields of D. Choose an element zl 
in N such that the following conditions hold: 

(11) K,[xzl] N K," for v in V(a) \ (V(a) n To) (recall that V(a) = 

{v E VfK: v(a) #O));  
(21) the Hasse principle holds for the normal closure Pl of MI = K(xzl) 
(31) a E NPlWIK,(~;,) for wlv in v,K. 

The existence of such a zl follows from Lemmas 9.1 and 9.3 and Propo- 
sition 9.2. More precisely, for S = (V(a) \ (V(a) n To)) u ( V z  \ T,) where 
T, = {v E V: : D, $ Mn(Kv)), Lemmas 9.1 and 9.3 imply the existence 
of z = (2,) in Ns, such that K,[xz,] N K," for all v in S. Then, applying 
Proposition 9.2, we can find zl in N satisfying conditions (1) and (2), and 
moreover K,[xzl] cv K: for v in V: \ T,. With the latter fact, we verify 
condition (3). For v in VZ \ T, we have PI, = K,, and obviously (3) 
holds. But if v E T,, then noting K, = I% and PI, = C, we have a > 0 in 
K,, since a E NrdDUlK,(D:); therefore a E Np,,IK,(P~).  

Furthermore, one can choose 22  in N satisfying the following conditions: 

(12) K,[xz2] 2~ K c  for all v in VfK \ To such that Plw/K, is ramified; 
(22) the normal closure P2 of M2 = K(xz2) satisfies Pl n P2 = K.  

One can see as above that such a 2 2  exists. 
Let us show that a E NMIIK(Mf)NM21K(Mi). In fact, in our case 

we shall prove the stronger assertion that a E NplIK(P;)NP2/~(P~) .  By 
Proposition 6.11, in view of conditions (21) and (22), it suffices to show 
that 

a E N ~ l / ~ ( J ~ l ) N ~ ~ / ~ ( J ~ z ) .  

(Note that Li = Pi in the notation of Proposition 6.11.) If v E VfK \ V(a) 
and Plw/K, is unramified, then a is a norm of the w-adic unit of PI,. 
Therefore, in view of (31), it remains to verify 

for w (v in v ~ K  such that either v E V(a) or Plw/Kv is ramified. If in 
addition v E To, then by assumption a E KGrn and (2) obviously holds, 
since [PI, : K,] divides m = n!. But if v $ To, then by assumption either 
PI, = K, or P2, = K, respectively, and again (9.3) is satisfied. This 
completes the proof of Proposition 9.2. 

A general remark is in order. If N is a noncentral normal subgroup 
of GK, then d = [GK : N] is finite by Theorem 9.8. In this case the 
subgroup No of GK generated by {xd : x E GK ) is contained in N and 
is a normal subgroup of D*. Moreover, as follows from Lemma 9.2 for 
example, if Conjecture 9.2 holds for NO, then it also holds for N. Therefore, 
henceforth we shall only consider those normal subgroups of GK that are 
normal subgroups of D*. 

Let N c GK be a noncentral normal subgroup of D*. For x in D*, put 
Z(x) = { u  E D* : U X U - ~ X - ~  E N ) .  

LEMMA 9.6. O(x) C Z(x). Consequently, for any x and y in D* and any 
a in O(x) and b in R(y), we have 

where [x, y] = xYx-l y-l and - denotes equivalence modulo N.  

Indeed, it suffices to show that K(xz)* c Z(x) for any z in N. Let 
u E K(xz)* . Then, since N is a normal subgroup of D* , we have [u, x] = 
[u, xz] = 1, as desired. Furthermore, since Z(x) = Z(x-I), it follows that 

[x, ya] = xyax-la-ly-l r xyx-ly-l = [x, y]. 

Similarly, [xb, y] = ~ b y b - ~ x - ~ y - ~  [x, y], and Lemma 9.6 is proved. 
We must introduce some additional notation. Put NT = NT n K,*. 

V E T  
Applying Corollary 1 of Proposition 3.3 to I/J : G, x G -+ GLl(D),  the 
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product map, we see that the map K,* x GK, + D: is open for any v in 
VK. Therefore, since NT c GT is open (cf. proof of Lemma 9.1), we see 
that NT is an open normal subgroup of D; = n D:. It follows that in 

vFT 

the T-adic topology N = D* n NT and N = GK n NT are open subgroups 
of D* and GK respectively, and that they are normalized by D*. 

PROPOSITION 9.3. Let N c GK be a noncentral normal subgroup of D*, 
and let x E N. Then Z(x)N = D*. 

PROOF: First we show that GK C Z(X)N. Let P be an arbitrary maximal 
subfield of D such that the P,/K, are unramified for all v in T ,  and let 
S = RPIK (Gm) be the corresponding maximal torus of H = GL1(D). Let 
W denote the set of regular elements in S. Using Proposition 3.3 one can 
easily verify that for any v in vK the map p,: D: x WKu --, D: given by 
p,(g, x) = gxg-l is open; so also c p ~  = n 9,: D; x WT -+ D; is open. 

Thus, if we take a descending chain Ul 3 U2 > . . . of open subgroups of 
D; converging to 1, then B, = cpT (U,, WT) is open in D;, for each r 2 1. 
Since NK* is obviously dense in NT, the set xW1B, should intersect NK*, 
for any r 2 1. It follows that there exist y, in N and u, in U, such that 
u,(S,)TU;~ = ST, where ST = Z ~ ( x y , )  is the centralizer of the regular 
element xy,. Let P, = K(xz,). Clearly ST has the form RPVIK(Gm), 
and the P,,,/K, are unramified for all v in T. Therefore, Proposition 7.8 
implies that the corresponding norm tori = ST n G do have weak 
approximation relative to T.  In particular, for any z in s:) one can find 

(1) z, in (u;'zu,)N~ n (ST )K. Then 

a-'z, E GK n ((z-lu;'zuT)~T) = GK n NT = N 

for sufficiently large r ,  since u, + 1 and NT is open in GT. On the other 
hand, z, E R(x) C Z(x); hence z E Z(x)N, which means 5':) c Z(x)N. 
Note that for P one can take an arbitrary maximal subfield of D such that 
all the PV/K, (v E T) are unramified; therefore it remains to show that 
together all possible s;)'s generate GK. To simplify the notation, put 

P(') = s;) and let B denote the subgroup of GK generated by the various 
P('), for all P in D having the specified properties. Also, for v in T ,  let A, 
denote the set of those z in GK, for which K,[z] is a maximal unramified 
subfield of D,. Then A, is open in GK,, and one can easily deduce from 
Theorem 1.8 that A, generates GK,. It follows that A = n A, is open 

V E T  

in GT and generates GT. 

LEMMA 9.7. Let I? be a dense subgroup of a topological group a, and let 
U be an open subset of a .  Then the subgroup generated by I? n U is I? n W, 
where W is the subgroup (algebraically) generated by U. 

PROOF: An easy exercise for the reader 
Since GK is dense in GT, it follows from Lemma 9.7 that the subgroup 

of GK generated by GK n A is GK. However, by assumption, for any z 
in GK n A the algebra K, [z] is an unramified extension of K, of degree n 
for all v in T;  i.e., P = K[z] satisfies the required properties, and hence 
P(') c B. Thus, GK n A c B and GK = B c Z(x)N. 

Now all we need to complete the proof of Proposition 9.3 is to show 
that NrdDIK(Z(x)) = NrdDIK(D*). In view of R(x) C Z(X), it suffices 
to establish by Theorem 9.10 that RT(x) = D; for each x in N. But it 
follows from the definition of N that in the given case, for any choice of 
maximal semisimple commutative subalgebras H, of D, (v E T), there 
is an element 2 = (z,) E NT such that K[xz,] .- H,, yielding the desired 
result. 

Proposition 9.3 is proved. 

COROLLARY. If N/N is abelian, then N/N lies in the center of D*/N. 

Indeed, let x E D* and y E N. Since D* = NZ(Y) by Proposition 9.3, 
we have [x, y] = [s, y] for suitable s in N. Symmetrically, using the factor- 
ization D* = NZ(S), we obtain that [x, y] = [s, t] for suitable s and t in 
N. But since N/N is abelian, it follows that [s, t] - 1 and hence [x, y] = 1, 
i.e., x centralizes y modulo N. 

Having completed these preliminaries, we proceed directly to the proof 
of Theorems 9.2-9.4. 
PROOF OF THEOREM 9.4: A crucial role in the proof is played by 

THEOREM 9.11 (CONGRUENCE THEOREM). Let 

and let y E D*. Suppose x E U,(1 + '$3,) for all v in T n V(NrdDIK(y)), 
where ?& is the valuation ideal in D, (cf. 1.4). Then [x, y] = xyx-ly-' E 

[GK , GK] . In particular, [U, U] = [GK , GK] . 
First we shall prove Theorem 9.4, assuming that Theorem 9.11 is known. 

The proof is based on the following natural idea: since GK = [D*, D*] 
(Theorem 2.14), using a presentation of z in GK n n [GK,, GK,] as the 

VET 
product of group commutators, one can try to replace z by an element 
of zN, where N = [GK, GK], which can be expressed in terms of group 
commutators of the form described in Theorem 9.11; then z E [GK, GK]. 
Throughout the proof of Theorem 9.4, N denotes [GK, GK], and the nota- 
tion zl - z2 indicates the fact that z~ ' z2  E [GK, GK]. Also note that for 
any finite subset S of VK we have Ns = n Nu, where Nu = [GK,, GK,], 

v E S  
and that Nu = GK, for v $ T. 
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LEMMA 9.8. Any element of GK is the product of group commutators of 
the form [x, y], where x E U and y E D*. 

PROOF: Since GK = [D*, D*], it suffices to show that any commutator 
[x, y] (x, y E D*) can be written as the product of group commutators of 
the specified form. Let F be a maximal subfield of D such that F,/K, is 
totally ramified for each v in T. Then ~ ( N r d ~ , / ~ ,  (F:)) = Z, and therefore, 
applying the weak approximation theorem to F, one can find s and t in F 
satisfying 

for all v in T.  In view of (9.4), one has xo = xs-', yo = yt-l E U. Then 
the lemma follows immediately from the relation: 

As before, let F denote a maximal subfield of D such that F,/K, is 
totally ramified for all v in T. Furthermore, choose t in F* satisfying 
v(NrdDIK(t)) = 1 for 811 v in T.  Then t is a uniformizing parameter of D,, 
for any v in T. 

PROPOSITION 9.4. For any a in GK one can find x in U such that z - [x, t]. 

PROOF: For x and y in U and any s in D* we have 

(9.5) 
-1 -1 -1 - 

[XY, s] = xysy x s - x[y, s](sx-~s-') = [x, s] [y, s], 

since [y,s] and sx-ls-l lie in U and hence, by the congruence theorem, 
commute modulo N. Therefore, in view of Lemma 9.8, it suffices to show 
that any [a, b] where a E U and b E D* is equivalent to [x, t] for suitable x 
in U .  

Let T = { vl , . . . , vd ). The weak approximation theorem for K(a) im- 
plies that there exist a l ,  . . . , ad in U such that a = a1 . . . ad and 

ai = a (mod P,,) 

a i - 1  (mod?&,), j # i  

for all i = 1,.  . . ,d.  Then, by (9.5) 

Furthermore, putting ai = vi(NrdDIK(b)) We obtain 

since by assumption T n V ( N r d ~ / K ( t - ~ % b ) )  C T \{v~) ;  SO ai - a (mod p,) 
for v in TnV(NrdDIK (tPaa b)), and by the congruence theorem ai and t-aa b 
commute modulo N. In view of (9.6) and (9.7), to complete the argument 
we have to show that any [a, ta], where a E U and cu E Z, is equivalent to 
a commutator of the form [d, t] for suitable d in U. 

a-1 
For a > 0, put d = n (tiat-i) = a(ta)a-lt-(a-l) E U. Then, with (9.5) 

i = O  
we obtain 

a-1 a- 1 

[dl t] = fl piat-', t] = n (tiata-It-('+ '1) = [a, ta]. 
i=O i=O 

Similarly, assuming that a < 0 and putting 

we obtain 

since a and tea-lt-a lie in U and hence commute modulo N. Proposi- 
tion 9.4 is proved. 

Now we complete the proof of Theorem 9.4. Let z E GKn n [GK,, GK,]. 
VET 

Using Proposition 9.4, choose x in U such that z = [x, t]. Since 

[GK,, GK,] = GK, n ( 1 +  P,) for v in T (Theorem 1.9)) 

the inclusion [x, t] E [GK,, GK,] yields 

(9.8) txt-l r x (mod Y,) for any v in T.  

But we know (cf. $1.4.1) that in our case the residue field d, = OD,/P, 
is commutative and is a Galois extension of the residue field k,; more- 
over, the automorphism induced by Int t generates the entire Galois group 
Gal(d,/k,). Therefore (9.8) implies that the residue 3 of x falls in k,, i.e., 

Since the latter inclusion holds for all v in T, by the congruence theorem 
w e h a v e [ x , t ] ~ N , a n d t h e n a l s o z E N .  Q.E.D. 
PROOF OF THE CONGRUENCE THEOREM: We begin with the second as- 
sertion, namely, that [U, U] = [GK, GK]. Bearing in mind that [x,y] E 
[x, ya] - [xb, y] for a in R(x) and b in R(y) (Lemma 9.6), we see easily that 
the above assertion follows from 
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LEMMA 9.9. If x E U, then NrdDIK (O(X)) 3 NrdD/K(U). 

PROOF: By Theorem 9.10, it suffices to show that 

Since NT = n N,, clearly GT(X) = n flu (x), where R,(x) is the s u b  
v F T  v F T  

group of D: generated by the multipli~ative groups of the maximal s u b  
fields of the form K,(xz), z E Nu. It suffices to establish that among 
these subfields there is a maximal unramified subfield L c D,, since then 
by Proposition 1.2 U, c NLIK,(Lt) = NrdDUIK,(L*). By assumption 
NrdDIK(x) E U,, SO it follows that x E L*GK,. Furthermore, Theorem 1.8 
implies that GK, = L(~)N,,  where L(') = { x  E L* : NLIK,(x) = 1 ); 
hence x E L*N,. But then L = K[xz] for suitable z in Nu (cf. proof of 
Lemma 9.3). Lemma 9.9 is proved. 

To establish the first assertion of the congruence theorem we prove that 
under our conditions, b = NrdDIK (y) E NrdDIK (o(x)). By Theorem 9.10 
it suffices to show that b E N r d D T I K T ( R ~ ( ~ ) ) ,  where, notation as in 
Lemma 9.9, OT(x) = n O,(x). We have already seen that b E R,(x) 

V E T  

if v(b) = 0. Otherwise, one has x = st, where s E U, and t E 1 + Tp,; 
SO a = NrdDIK(x) = snr,  where r = NrdDulK,(t) E 1 + p,. Let US show 
that then b E NrdDUIK, (K,[xz]*), for suitable z in Nu. To do so, first we 
construct an extension L of K, of degree n, satisfying a, b E NL/~,(L*) .  
Let p, be the prime corresponding to v, and let n = pcm, where m is 
relatively prime to p,. 

LEMMA 9.10. Let b E KG and let m be an arbitrary integer > 1. Then 
there exists an extension F/K, of degree m such that b E NFIK, (F*).  

PROOF: Left to the reader as an exercise. (Hint: reduce the problem to 
the case m prime. Furthermore, analyze m = 2 and m odd separately; in 
the second case it is useful to rely on the fact that if b 4 KGrn, then the 
polynomial X m  - b is irreducible over K,, cf. Lang [3].) 

Let F be an extension of K, of degree m such that b = NFIK,(c), for 
suitable c E F*.  Since a = sn . r ,  where r E 1 + p,, the fact that m 
and p, are relatively prime implies that a = dm, for some d E K,'. We 
shall show that there is an extension L of F of degree 1 = p," satisfying 
c, d E NL/F(L1). 

It is well known (cf. $1.1.2) that F* 2 Z x E x z:,, where E is the 
group of roots of unity in F and 6 = [F : Q,,]. It follows that F*/F*' 2: 

(Z/1Z)6+1 x E/E1. If 6 > 1, then the subgroup generated by the images of 

c and d in F*/F*' has index divisible by 1; so there exists an open subgroup 
W of F* of index 1 containing both c and d ,  and for L one can take the 
abelian extension of F of degree 1 with norm subgroup W, constructed 
via local class field theory. If 6 = 1 (i.e., F = Q,,) and p, # 2, then 
one can put L = F($&). Indeed, as the exercise below shows, L does 
not contain any abelian extensions of F and therefore, by local class field 
theory, NLIF(L*) = F*.  

EXERCISE: If p # 2, then Q,(fi) (1 = pa) does not contain any abelian 
(or even any normal) extensions of Q,. (Hint: use induction on a. The 
case cr = 0 is obvious. Let cr > 1 and let L c Q,(fi) be a Galois extension 
of Q,. Then L c Q,(fi) n Qp(<fi) = Qp( pa-;/P), where is a primitive 
p t h  root of unity, and one applies induction.) 

We have yet to consider the case p, = 2, i.e., F = 02. Here F*/F*2 2: 

(Z/2Z)3; therefore, arguing as above, we find a quadratic extension P J F  
such that c = NPIF(cl) and d = NplF(dt) for suitable c' and d' in P .  But 
by what we have seen there exists an extension M / P  of degree for 
which c', d' E NMIP(M*), and one can take L = M. 

Thus, we have proved that there exists an extension LIK, of degree n 
such that a ,  b E NLI K, (L* ) . One can embed L in D, as a maximal subfield, 
and it suffices to find z in Nu such that L = K,(xz). To do so, again write 
x = st, where s E U, and t E 1 + 9, .  Since a = NrdDIK(x) E NLIK,(L*), 
it follows that 

Therefore, by Proposition 9.13, NrdDulK,(t) = NLIK,(g) for some g in 
1 + TL, where T ~ L  is the valuation ideal of L. Then 

and xz = sg E L. It remains to modify xz, multiplying it by an element of 
L* n Nu in such a way that it generates all of L (cf. proof of Lemma 9.3). 
This completes the proof of the congruence theorem, as well as the proof 
of Theorem 9.4. 

REMARK: If T = 0, then by Theorem 9.4, GK is its own commutator 
group; so one can ask about computing the commutator length of GK, i.e., 
finding a minimal 1 = ~ ( G K )  such that any element of GK can be written 
as the product of at most 1 commutators. In the proof of Theorem 9.4 
for the case where D is a quaternion algebra and T = 0 (cf. Platonov- 
Rapinchuk [I]), it was shown that ~ ( G K )  5 3. No other estimates of the 
commutator length of GK (or even a proof of its finiteness in the general 
case) are known. 
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Now we proceed to the proof of Theorem 9.3. By Lemma 9.2, it suffices 
to prove the following: if a normal subgroup F of GK is open in the T-adic 
topology, then its commutator group [F, F] is also open. First we consider 
the case where D is a quaternion algebra. Let T denote the canonical 
involution on D. The restriction of T to any maximal subfield of D induces 
a nontrivial automorphism; therefore by the Skolem-Noether theorem, for 
any x in D*, one can find y in D* such that T(X) = yxy-l. However, 
NrdDIK(x) = XT(X); in particular, the elements of GK = SL1(D) are 
characterized by T(X) = x-'. Thus, for any x in GK one has y in D* 
satisfying x-I = yxy-l. 

Now let F be an arbitrary subgroup of GK, open in the T-adic topology. 
Then, for suitable a, > 0 (v E T), we have Fo = GK n n (1 + SJ3EV) c F, 

u E T  

where p, is the valuation ideal of D,. Clearly Fo is a normal subgroup of 
D*; and since [Fo, Fo] is open, it follows that [F, F] is open. Thus we may 
assume that F is a normal subgroup of D*. 

Put N = [F, F] and let N and N be as before (cf. p. 523). Since N c F, 
the quotient group N I N  is abelian; therefore N/N lies in the center of 
D*/N, by the corollary to Proposition 9.3. Let Z denote the set of elements 
of the form XT(X)-' (x E N). We have noted that T(X) = yxy-' for 
suitable y in D*; hence Z c N,  since NIN is central in DIN. Let us show, 
on the other hand, that N c ZN. To do so, it suffices to establish that Z is 
open in GK in the T-adic topology, as we shall now show. By assumption N 
is open in D* in the T-adic topology; so D* n n (1 + p p )  C N for suitable 

VET 

integers pv > 0 (v E T). Then the identity x = ( ~ ) T ( F ) - ' ,  which is 
true for any x in GK, immediately implies that GK n n (1 + 2 p F )  C Z, 

V E T  

as desired. 
The above argument can be carried over verbatim to the general case, 

provided one knows that, for any normal subgroup U of D* open in the 
T-adic topology, [U, D*] is also open (for then N c [N, D*]N = N). One 
can get information on [U, D*] from the initial segment 

of the Hochschild-Serre spectral sequence, arising from the extension 

where Hi(*) denotes the i-th cohomology group with coefficients in J = 
Q/Z viewed as a G-module with trivial action of G. We have 

(9.10) H ' ( u ) ~ *  = Horn(U/[U, D*], J). 

But by assumption U = D* n W, where W is an open normal subgroup of 
D$ (coinciding with the closure of U), and one can consider the Hochschild- 
Serre sequence of continuous cohomology groups with coefficients in J en- 
dowed with the discrete topology: 

corresponding to the topological extension 1 + W --t D; -+ D;/W -+ 1. 
Viewing the cohomology in (9.9) as the continuous cohomology of discrete 
groups, we combine sequences (9.9) and (9.11) into the commutative dia- 
gram 

in which the vertical arrows are the restriction maps. The weak approx- 
imation theorem for D* implies that D*/U 2. D;/W, i.e., a and y are 
isomorphisms. If it were known that 6 (or even its restriction to Im$) is 
injective, then one could easily obtain from (9.11) that 

(9.12) H ~ ( u ) ~ *  = I m p  + Imcp. 

In terms of (9.10), any element of I m p  + Imcp induces the trivial home 
morphism on [D*, D*] n [W, D;] = GK n [W, D$]; therefore (9.12) implies 
[U, D*] = GK n [W, D;]; in particular, [U, D*] is open. 

Thus, if we could establish the injectivity of 6: H2(D;) -+ H2(D*) (or 
even the injectivity of the restriction of 6 to the image in H2(D>) of 
1% H2(D;/W) taken over all open normal subgroups W of D;), then we 
would have a proof of Theorem 9.3 which does not rely on Theorem 9.4, and, 
in particular, we would have another proof of Theorem 9.4 itself. Thus, we 
see a connection between Theorem 9.3 and the problem of computing ker 6, 
which is naturally called the weak metaplectic problem (the terminology is 
related to the analogous concepts used in studying the congruence subgroup 
problem, cf. $9.5). This connection was first noted by Rapinchuk [6] in his 
analysis of the (strong) metaplectic problem. Unfortunately, we do not yet 
have a direct computation of ker 6, or even of kerb IBmH2(D;,w); however, 

--+ 
Rapinchuk [6] proved the triviality of the kernel of the corresponding map 
for G, i.e., 8: H 2 ( G ~ )  -+ H2(GK), where, as above, one considers continu- 
ous cohomology groups with coefficients in J viewed as a discrete G-module 
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with the trivial action, and GK is assumed to be endowed with the discrete 
topology. Rapinchuk [6] derived the triviality of ker 8 from Theorem 9.3, 
a proof of which was obtained by Raghunathan [7] in another way. Here 
we shall argue in the opposite direction, showing that Theorem 9.3 can be 
obtained from the triviality of ker 8 and using the following result. 

THEOREM 9.12 (WEAK METAPLECTIC CONJECTURE) SUPPOS~ n > 2. 
Then 8: H2(GT) -+ H2(GK) is injective. 

The proof of Theorem 9.12, presented in 59.5 in connection with the con- 
gruence problem, uses results from Prasad-Raghunathan [5]. Theorem 9.12 
also holds for n = 2, but then, as in Rapinchuk [6], the triviality of kero 
must be derived from Theorem 9.3, which has already been proved for 
quaternion algebras. 

For n > 2, the derivation of Theorem 9.3 from Theorem 9.12 follows the 
scheme outlined above. Namely, let U be a normal subgroup of GK, open 
in the T-adic topology, and let W be its closure in GT; then U = GK n W. 
Consider the commutative diagram analogous to (9.11) 
(9.13) 

H ~ ( G ~ / u )  - H ~ ( G ~ )  - H ~ ( U ) ~ K  - H2(GK/u)  - H2(GK) 

la lil l7 l6 lo 
H'(GT/W) ---+ H'(GT) - H ' ( w ) ~ ~  - H~(GT/W)  ---t H ~ ( G T ) ,  

in which the vertical arrows are restriction maps and the rows are the initial 
segments of the Hochschild-Serre spectral sequences corresponding to the 
extensions 1 4 U -+ GK --, GK/U + 1 and 

respectively. The weak approximation theorem for G shows that GK/U cz 
GT/W, so a and S are isomorphisms. Furthermore, by Theorem 9.4 one 
can say that the natural map GK/[GK, GK] -$ GT/[GT, GT] is an iso- 
morphism, and then /3 is also an isomorphism. With these facts and 
the injectivity of 8 (Theorem 9.12), diagram (9.13) easily yields that y 
is an isomorphism. But H ~ ( u ) ~ K  = Hom(U/[U, GK], J )  and H ' ( W ) ~ T  = 
Horn( W/ [W, GT], J ) ;  therefore we see that U C W induces an isomorphism 
U/[U, GK] z W/[W, GT]; in particular, [U, GK] = U n [W, GT] is open in 
the T-adic topology. 

Thus, we have shown that if a normal subgroup U of GK is open in the 
T-adic topology, then [U, GK] is also open. Now let F be an arbitrary T- 
adically open subgroup of GK; let us show that [F, F] is also open. Without 
loss of generality one may assume F to be a normal subgroup of D*. Let 

U denote the closure [F, F] of GK in the T-adic topology. Then it follows 
from the above assertion that [U, GK] is open; so 

On the other hand, U/[F, F] is abelian, since U c F by virtue of F being 
open; hence it lies in the center of D*/[F, F] (corollary to Proposition 9.3). 
In particular, [U, GK] C [F, F] ; so (9.14) yields U = [F, F], as desired. 

We conclude this section with the proof of Theorem 9.2. We shall need 
the following stronger version of Proposition 9.1. 

PROPOSITION 9.5. Let D be a quaternion algebra, let x E D*, and let 9 
be a finite set of maximal subfields of D. Then for anv finite subset B 
of NrdDIK(D*) fl n K:2 and any noncentrd normal subgroup N of GK 

V E T  
there is an element n in N such that B C NrdDIK(L*K(xn)*) for any L 
in 9 .  

PROOF: Put Vo = {v E VK : B C NrdDwIK, (L:) for each L in 9 ) .  Since 
L,/K, (L E 9 )  is unramified, and the elements of B are v-adic units, for 
almost all v in VfK, it follows that S = vK \ Vo is finite. Moreover, from 
B C NrdDIK(D*) fl n K,*2 it obviously follows that S does not intersect 

V E T  
T U T,. Since in the given case T = To, Lemmas 9.3 and 9.4 imply that 
there exists n in N such that K(xn), -. K, $ K, for all v in S. Then 

B C NrdDwIK, ((L @ KV)* K, [xnl*) for all v in v K .  

One can pass from local to global norms either by using Proposition 6.11 
or by the following argument, specially designed for the case at hand. Let 
a E B and L E 9 .  Then the expression NLIK(a) - ( Y N ~ ( ~ , ) / K ( ~ )  is a 
4-dimensional quadratic form with respect to the coefficients of a in L and 
b in K(xn); and the condition a E NrdDIK (L* K(xn)*) is equivalent to this 
form representing zero in K .  By the Minkowski-Hasse theorem it suffices 
to verify the representability of zero over all completions K,, where it is 
a consequence of a E NrdDwIK, ((L @ KV)* KV [xnl*). The proposition is 
proved. 

As usual, henceforth we shall assume that N c GK is a normal subgroup 
of D*. For v in T,  let @, denote an open subgroup of K,* having finite 
index and not containing -1, and put H = (NT n a,) n D*. It is easy to 

VET 
see that H is a T-adically open subgroup of D* of finite index; moreover, 
H n GK = NT n GK = N, because -1 4 @,. Consider the natural action 
of H on N/N by inner automorphisms, and let F denote the kernel of this 
action. 
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LEMMA 9.11. For any x in D* there is n in N satisfying: 

PROOF: By Theorem 9.8, NIN is finite; therefore [D* : F] is finite, since 
[D* : HI is finite. In particular, NrdDIK(D*)/NrdDIK(F) is finite; let q 
denote the number of subgroups of this quotient group. Also, choose a 
finite subset B of representatives of the C O S ~ ~ S  NrdDIK(H)/ NrdDIK(F), 
and note that by our definitions B C NrdDIK(D*) fl n K:2. Thus, by 

vFT 

induction, Proposition 9.5 yields nl  = 1, na, . . . , n,+l in-N such that 

It follows from the definition of q that, for some i # j, the images of 
NrdDIK(K(xni)*) and NrdDIK(K(xnj)*) in NrdD/K(D*)/ NrdDIK(F) are 
the same; then for n = ni we have 

Let US show that NrdDIK(H) nNrdD/K(K(xn)*) = NrdolK ( H  fl K(xn)*). 
This follows from 

LEMMA 9.12. Let LIK be a quadratic extension, let T be a finite subset 
of VK, and let W be an arbitrary open subgroup of LT = n (L@K Kv)*. 

vFT 

Then 
N L / K ( ~ * )  n N ~ T / ~ T ( W )  = NL/K(L* n W). 

PROOF: If NLIK(a) = NLTIKT(b) for a in L* and b in W, then ab-l E ST, 
(1) where S = RLIK(Gm) is the corresponding norm torus. Proposition 7.8 

implies that S has weak approximation with respect to any finite subset 
of valuations; therefore (ab-'W) n SK is nonempty, i.e., contains some 
element c. Then ac-' E L* n W and NLIK(ac-l) = NLIK(a), as desired. 

Now (9.15) can be rewritten as 

hence H = (K(xn)* n H)(GK n H)F ,  and it remains to use the fact that 
GK n H = N. The lemma is proved. 

Now let us suppose = N/N is nontrivial. It follows from Theorem 9.3 
that J? coincides with its own commutator group, and consequently cannot 
be solvable. Therefore, replacing N by the inverse image of the max- 
imal solvable normal subgroup of I?, under the natural homomorphism 

N -+ N/N, we reduce the problem to the case where I? does not contain 
any solvable normal subgroups. Then, in particular, the center of r is 
trivial; so F n N = N,  and we have the embedding 

As we saw in the proof of Theorem 9.3 for quaternion algebras, the openness 
of H in the T-adic topology implies the openness of 

so N c ZN. However, for any x in H there is y in D* satisfying T(X) = 
yxy-l; hence 

Therefore, Z c N, yielding N = ZN. Bearing in mind that XT(X)-' = 
x2 NrdDIK(x)-l and that K *  C F, we obtain r = A2. Thus, Lemma 9.11 
puts us in a position to apply the following result from group theory. 

LEMMA 9.13. Suppose a finite group r is embeddable in a finite group A 
so that the following conditions hold: 

(1) A2 = r; 
(2) for any g in A there is an abelian group B(g) C A containing g such 

that A = B(g)r.  

Then r2 = {g E r : g2 = e ) is a normal subgroup of I' 

(Note that, applying Lemma 9.11, for g = X N  we can take B(g) to be 
the image in A of K(xn)* n H from Lemma 9.11.) 

PROOF: Consider the map +:A -+ J? given by +(g) = g2. Condition (1) 
yields 

However, if h E r and h = g2 where g E A, then +-'(h) > gB(g)2; 
therefore 

Here we use the fact that for any finite abelian group B and any subgroup C 
of B one has IB2( 2 I 1. Comparing (9.16) and (9.17), we obtain that 
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I+-'(h)J = JA/I'l for any h in I?; and, if h = g2, then +-'(h) = gB(g)2. In 
particular, A2 = +-' (e) = B(e)2 is a subgroup of A. Therefore I'2 = I'nA2 
is clearly a normal subgroup of I?. The lemma is proved. 

Since we are supposing that I' has no non-trivial solvable normal s u b  
groups, it follows from Lemma 9.12 that I'2 = (e); i.e., the order of I' is 
odd. But then, by the Feit-Thompson theorem, I' itself must be solvable; 
contradiction. The argument can also be made without using the Feit- 
Thompson theorem. Indeed, as we noted in the beginning of the proof of 
Theorem 9.2, x and x-l = ~ ( x )  are conjugate in D*, for any x in GK. If 
in addition x E N, then Proposition 9.3 implies that the images of x and 
xP1 in I? are conjugate (in I'). It follows that if g E I' and g2 # e, then 
{ h E I' : hgh-' E {g, g-l) ) consists of two cosets modulo the centralizer of 
g. So, if I' is nontrivial, then it must have even order, and hence I'2 # (e). 

Thus, we have completed the proof of Theorems 9.2-9.4. This required 
the development of a specific technique, which we call the multiplicative 
arithmetic method (cf. Platonov-Rapinchuk [4]). We deliberately set forth 
the basic results of multiplicative arithmetic in a somewhat more general 
form than necessary for the proof of these theorems. Naturally, this has not 
been done for the sake of generality per se, but because we are confident 
that by applying the method developed here one will be able to prove 
Conjecture 9.2 for all G that are inner forms of type A,. At this time we 
have virtually no results for algebraic groups of the form G = SUl(D), 
where D is a finite-dimensional skew field with involution T of the second 
kind, which are outer forms of type A,. In this area, apparently one should 
begin by obtaining the analogs of Theorems 9.3 and 9.4. The starting 
point must be to prove that the commutator group of the unitary group 
Ul(D) = {x  E D* : xx7 = 1) is SUl(D) = Ul(D) n SLl(D), the analog 
of the frequently used equality, SL1(D) = [D*, D*]. One possible way 
might be to use the triviality of the reduced unitary Whitehead group 
SUK1(D) = C:/C, (cf. §7.2), where C: is the subgroup of the elements 
of D* with r-symmetric reduced norm, and C, is generated by symmetric 
elements. Namely, let a E SUl(D) be an element generating a maximal 
subfield P over the center L of D. Then T(P) = P and NplM(a) = aa7 = 1, 
where M is the subfield of symmetric elements in P. Therefore, by Hilbert's 
Theorem 90, a = b(br)-' for some b in P. Moreover, 

NrdDIK (b)/ NrdglK (b7) = ~ r d ~ / ~ ( b ( b ~ ) - l )  = N ~ ~ D I K  (a) = 1, 

so b E C:. Since SUK1(D) is trivial, it follows that there exist symmetric 
t l ,  . . . , t, in D* such that b = tl  . . . t,, and then 

Can (9.18) be transformed in such a way as to obtain an expression for a 
as a product of commutators in Ul(D)? We leave this unsolved problem 
for the reader to ponder. 

9.3. The classical groups. 

The object of this section is to prove Theorem 9.5. While the arguments 
in the previous section were based on the inner structure of G, here a key 
role is played by the fact that any group G belonging to one of the types 
under consideration has a nice geometric realization. Our starting point is 
the fact that all the classical series under considerations stem from groups 
of type A1 (i.e., B1 = C1 = Al, D2 = Al + Al), whose normal subgroups 
are described in Theorem 9.2; thus the task at hand reduces to setting up 
an induction on dimension in describing normal subgroups. The following 
terminology will be helpful. For a semisimple simply connected K-group 
G, we shall say that GK has a standard description of normal subgroups 
if there exists a finite subset S of vK such that any Zariski-dense normal 
subgroup N of GK is open in GK in the S-adic topology. 

If a normal subgroup N of GK is open in the S-adic topology, then 
it is also open in the Sf -adic topology, where Sf = S n VfK 
For a simple simply connected K-group G, the standard description 
of normal subgroups holds for GK if and only if Conjecture 9.2 holds 
for G. 

1 
If G = n RLiIK(Gi) is a semisimple simply connected K-group, 

i=l 
where the Gi are simple Li-groups, then the standard description 
of normal subgroups holds for GK if and only if it holds for all the 
(Gi)Li. In particular, if all the simple components of G have type 
A1, then G has the standard description of normal subgroups. 

PROOF: (1) If N = GK n W, where W is an open subset of Gs, then 
the weak approximation property for G (Proposition 7.9) implies that the 
closure Ns of N in Gs contains W and therefore is an open normal s u b  
group. Since for v in V$ there are no noncentral normal subgroups of 
GK, (Proposition 7.6), then arguing as in the proof of Lemma 9.3 we ob- 
tain that Ns = GSnVooK x NSf , where Ns, is an open normal subgroup of 
Gsf . In view of the fact that N is S-adically-closed in GK, we obtain that 
N = GK n Ns = GK n Nsf , i.e., N is open in the Sf-adic topology. 

(2) If Conjecture 9.2 holds for GK, then clearly GK has the standard 
description of normal subgroups relative to S = T. Conversely, if the stan- 
dard description of normal subgroups holds for GK relative to S, then the 
formula Ns = N s n ~  x Gs\(snT) for the closure Ns of a normal subgroup 
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N of GK in the S-adic topology (cf. Lemma 9.1) implies that any non- 
central normal subgroup is closed in the ( S  n T)-adic topology and hence 
also in the T-adic topology; by Lemma 9.2, equivalently one may say that 
Conjecture 9.2 holds. 

1 
(3) GK N n ( G i ) ~ , ;  moreover, for any finite subset S of VK, the S-adic 

i=l 
topology on GK is the product of the Si-adic topologies on the (Gi)Li, 
where Si consists of all extensions of the valuations from S to Li. It follows 
in particular that if the standard description of normal subgroups holds for 
GK relative to S, then it holds for each (G~)L"  relative to Si. Conversely, 
the standard description of normal subgroups for (Gi)Li relative to Si c 
VLi implies the standard description for GK relative to S = Ui V,, where V,  
consists of the restrictions of the valuations of Si to K.  The latter assertion 
of (3) follows from Theorem 9.2. Lemma 9.14 is proved. 

Now let G be a simple simply connected K-group of one of the types 
listed in Theorem 9.5. By the results in 52.3, there is a natural action of G 
on W = W @K K, where W is an m-dimensional space over a skew field D 
with involution 7, and this action preserves a Hermitian or skew-Hermitian 
form f on W. All the forms which arise in this manner appear in the list 
at the end of 52.3.4, to which we shall refer repeatedly. Note that in case 
(1) of this list (groups of type 2A,), by assumption D = L is a quadratic 
extension of K .  On the other hand, in case (3), G is K-split and it is well 
known that GK is projectively simple (cf. 57.2); thus we are fully justified 
in excluding this case from further consideration. In the remaining cases, 
W contains vectors which are anisotropic with respect to f ,  and one can 
use the following result, crucial to the proof of Theorem 9.5. 

THEOREM 9.13. Let m L mo + 1, let x be an arbitrary anisotropic vector 
in W, and let G(x) be its stabilizer. If a standard description of normal 
subgroups holds for G(x)K, then it also holds for GK. 

(The value of mo for each type of form is given in the list in 52.3.4. Note 
that G(x) is simply connected and semisimple for m 2 mo + 1 (Proposi- 
tion 2.21), and therefore one can speak of a standard description of normal 
subgroups for G ( x ) ~ . )  

PROOF: Now let N be an arbitrary noncentral (=Zariski-dense) normal 
subgroup of GK. By assumption there is a finite subset S of VK such 
that any Zariski-dense normal subgroup of G(x)K is open in the S-adic 
topology. In addition, by Lemma 9.14 (I), we may assume without loss of 
generality that S c VfK Since N has finite index in GK (Theorem 9.8), 
it follows that G(x)K n N has finite index in G(x)K and, in particular, is 
Zariski-dense in G(x). Since S c v~K, one can find an open subgroup U of 

Gs satisfying 

(9.19) G(x)K n U c G(x)K n N. 

Let us put X = { y E W : f (y) = f (x) ). Suppose we are able to prove 
the orbit (U n N)x is open in GKX in the So-adic 

(9'20) topology, where So = S v vZ. 
Since the action of Gso on Xso is continuous, it follows that there exists 

an open subset B of Gso containing the identity, such that (B n GK)x c 
(U n N)x. Let N be the closure of N in GK in the So-adic topology. 
Then U f l  N is dense in U n N under this topology, and, in particular, 
U n N c (U n N)(B n GK). It follows that 

(U n N)x c (U n N)(B n GK)X c (U n N)X, 

and therefore U n N C (U n N)(G(x)K n U) C N by virtue of (9.19). But 
N = (U n N)N, so N = N,  and the theorem is proved. 

Thus, it remains to prove (9.20). To do so, we introduce a technical 
concept. We shall say that a vector z in W is regular if f (z) E D*. More 
generally, a D-submodule V of w is said to be regular if it is free and its 
discriminant with respect to some (or any) D-base lies in K*. 

(1) A vector z in W is regular if and only if it is anisotropic; and, for 
a D-subspace V of W, the D-submodule V @K K is regular if and 
only if V is nondegenerate. 

(2) If z is a regular vector in W, then Z = { z' E w : f (z') = f (z) ) is 
a homogeneous space of G. 

PROOF: (1) is obvious. To prove (2) let us consider an arbitrary anisotropic 
vector x in W. There exists an element d in D* such that f (z) = f (xd). 
Since, by Witt's theorem (Theorem 2.11), the variety { y E W : f (y) = 
f (x) ) is a homogeneous space of G, then so is 2. The lemma is proved. 

Put Y = {(x,z ,g)  E X  X X  x G : g x =  y, g z =  z ) ,  andlet Yo denote 
the subset of Y consisting of (y, z, g) such that 

(a) (x - y) is a regular vector; 
(9.21) (b) the D-submodule of W generated by x and 

y is D-free and regular. 

Furthermore, consider the projections: 

P: y -+ x x x, P(X, z, g) = (Y, z) 
q : X x X + X ,  q (y ,z )=y .  

Clearly p(Y) C F = { ( y , ~ )  E X x X : f(z,x) = f(z,y)) .  Moreover, 
p(Yo) c Fo, where Fo  consists of pairs (y, z) satisfying (9.21). 
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LEMMA 9.16. Yo and Fo are nonempty Zariski-open subsets of Y and F 
respectively, and the rnorphisrns p: Yo + Fo and q: Fo + X are dominant. 

PROOF: Clearly D* is a Zariski-open subset of D; therefore the set of 
vectors y in w satisfying condition (a) of (9.21) is also open, since it is the 
inverse image of D* under the map sending y to f (x - y). Similarly, one 
can show that the set of vectors z in W satisfying condition (b) is open. It 
follows that Yo is an open subset of Y and Fo is an open subset of F .  

Let Xo denote the subset of X consisting of those y satisfying the fol- 
lowing conditions: 

(i) the vector x - y is regular; 
(ii) the D-submodule generated by x and y is 

(9.22) D-free and regular; 
(iii) f (x - y, x) E D* and 

f ( x -  y,x)-lf(x-y,y) - 1 E D * .  

From what we have seen above, Xo is clearly a Zariski-open subset of X.  
Moreover, if y in W is such that y l x  and f (y) = f (x), then one can see 
immediately that y E Xo and thus Xo # 0. Since the Witt theorem implies 
that X is irreducible, it follows that Xo is open and dense in X .  We wish 
to show that Xo c q(Fo), from which it will follow that Fo is nonempty and 
q:Fo -+Xisdominant. Thus, let y E Xo; put X = - f ( ~ - y , x ) - ~ f ( x - ~ , y )  
and t = xX + y. Immediate verification shows that t and x - y form an 
orthogonal D-base of the D-submodule generated by x and y. Therefore 
t is regular, and by choosing d in D* so that f (td) = f (x), for z = td we 
obtain (y, z) E Fo, and the proof is completed. 

To prove the remaining assertions of the lemma, we shall show that 
p(Yo) = Fo, i.e., if (y, z) E Fo, then y = g(x) for suitable g in G satisfying 
gz = z. By Theorem 2.11, one has h in G for which hx = a. Then, 
putting xl = h-'x and yl = h-ly, it is easy to see that to construct 
g it suffices to find s in G(x) such that sxl = yl. Let Wo denote the 
orthogonal complement of x in W, and put xz = xl - x f (x)-lf (XI, x) 
and yz = y1 - x f ( ~ ) - ' f ( ~ ~ , x ) .  Then x2,y2 E Wo = Wo @K K, and 
f (xz) = f (y2), with x2,yz regular. Now, applying Lemma 9.15 (2) to WO, 
and bearing in mind that G(x) is the universal covering of the special 
unitary group of Wo, we obtain the desired result. Lemma 9.16 is proved. 

We proceed to the proof of (9.20). Take U as in (9.19). By making U 
smaller if necessary, we may assume that U = n U,, where U, is an open 

u E S  
subgroup of GKv for each v in S. Put Uo = U x Gs\s, = n U,, where 

vESo 

U, = GK, for v in So \ S = V z  and 

LEMMA 9.17. 

(1) Y and Fo are irreducible varieties. 
(2) C = n C,, where C, is a nonempty subset of YoKv, open in the 

VESO 
v-adic topology and dense in the Zariski topology. 

PROOF: Consider the map cp: P = G x G(x) -+ X x X x G given by 
(g, h) H ((ghg-lx), gx, ghg-l). From Witt's theorem one can easily de- 
duce that cp(P) = Y. It follows that Y is irreducible; hence also Fo is 
irreducible, since Yo is open in Y and p: Yo + Fo is dominant (Lemma 9.16). 

It is easy to see that C = I7 Cv, where 
VESO 

and therefore it follows from Proposition 3.3 that C, is open in Y K ~ .  How- 
ever 17, > cp((U, x (G(x) n U,)) n PO), where Po = cpP1(Yo). Since P is 
smooth and irreducible, U, x (G(x) n U,) is Zariski-dense (Lemma 3.2) and 
Po is Zariski-open in P ;  it follows easily that C, is dense. Lemma 9.17 is 
proved. 

Since C, is dense in Y, it follows that for each v in So there exists a simple 
point c in C, such that b = p(c) is a simple point of Fo and the differential 
d,p: T, (Y) -+ Tb(F) is surjective. Then, by Proposition 3.3, p(C,) contains 
a subset B, of FoKv which is open in the v-adic topology and dense in 
the Zariski topology. Applying the same argument again, we obtain that 
q(B,) contains a subset E, which is open in XK,. Put B = B, and 

v € S o  
E = n E,. Then, to prove (9.20), it suffices to establish 

v € S o  

Let y E E n X K .  By assumption one can find 2 in Xso such that 
(y,Z) E B. If Z = (z , ) ,~s~,  then for any v in So we have 

Let g denote the restriction of f to the orthogonal complement Wo of 
(x - y). Then taking Z = { t  E Wo @K K : g ( t )  = f (x) ) we have ZK" # 0 
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for all v in So; in particular, ZKv # 0 for v in v,. Since m > mo + 1, 
it follows that dim Wo = m - 1 2 mo. Thus, comparing the values of mo 
with the minimal dimensions in Claims 6.11, 6.2 and 6.3 of 56.6, we obtain 
that ZK # 0. Furthermore, there exists a neighborhood J c Zs, of 2 
such that (y, J) c B. By Proposition 7.4, Corollary 2, Z satisfies weak 
approximation, and hence there is a point z in ZK n J. Then (y, z) E p(C), 
i.e., z E Uox, and the subspace spanning x and z is nonsingular. 

Now we need the following 

LEMMA 9.18. Suppose there is a K-action of an algebraic K-group H on 
an algebraic K-variety M,  and S is a finite subset of vK containing v,. If 
x is a point in MK such that the stabilizer H(x) is semisimple and simply 
connected, then MK n Ux = (HK n U)x for any open subgroup U of Hs. 

PROOF: Follows from the validity for H(x) of the Hasse principle (Theo- 
rem 6.6) and of the weak approximation property (Proposition 7.9). Indeed, 
let y E MK n Ux and y = hx, where h E HR. Then a, = h-'a(h) lies 
in H(x), for any a in G ~ ~ ( K / K ) ;  moreover, the family {a,) determines a 
cocycle < in H'(K, H(x)). Since by assumption y E HK,x for v in S > V , ,  
it follows that < lies in the kernel of H1(K, H(x)) + n H1(Ku, H(x)). 

VEV,K 

Therefore, since the Hasse principle holds for H(x), we see that < is trivial; 
i.e., a,  = h-'a(h) = g-la(g) for suitable g in H(x) and all a in G ~ ~ ( K / K ) .  
Then h' = hg-' E HK and y = h'x E HKx. Thus, y = hlx = h2x, where 
hl E HK and h2 E U. Then r = h11h2 E H(x)s ,  and by the weak a p  
proximation property there exists t in H(x) n (r(H(x)S n U)). We have 
hlt E HK n U and y = (hlt)x E (HK n U)x. The lemma is proved. 

Applying Lemma 9.18 to the action of G on X ,  and bearing in mind that 
G(x) is simply connected (Proposition 2.21), we obtain that XK n Uox = 
(GK n Uo)x; in particular, 

Furthermore, by definition (y, z) E p(C), i.e., y E (G(z)s, n Uo)x. There- 
fore, applying Lemma 9.5 to the action of G(z) on X (which is permissible, 
since G(x, z) is simply connected, again by Proposition 2.21), we obtain 

Since G(z) = ~ G ( x ) ~ - ' ,  it follows from (9.24) and (9.25) that 

which means y = hx E ( N n u ) ~ .  This completes the proof of Theorem 9.13. 

PROOF OF THEOREM 9.5: By Lemma 9.14 (2) it suffices to show that GK 
has a standard description of normal subgroups. This will follow from The- 
orem 9.13 by induction on the degree m of the group under consideration. 
Since the types listed in Theorem 9.4 correspond precisely to the condition 
m 2 mo + 1, the induction step is obvious and it remains to justify the 
base of induction for each case. In other words, in an m-dimensional space 
W over D, for m = mo + 1, one needs to find a vector x, anisotropic with 
respect to f ,  such that G(x) will have a standard description of normal 
subgroups. But in case (1) from the list of classical groups (cf. 52.4.4), 
where D = L and m = m o + l  = 3, and in case (4), where m = m o + l  = 2, 
G(x) has type A1 for any anisotropic vector x in W; therefore the standard 
description of normal subgroups holds for G(x)K (Lemma 9.14 (3)). Simi- 
larly, in the case (2), where m = mo + 1 = 5, G(x) has type D2 = Al + Al, 
and again we can apply Lemma 9.1. 

Case (5), where m = mo + 1 = 4, is somewhat more difficult to handle. 
Here H = G(x) has type D3 = Ag. We show that x in W can be chosen in 
such a manner that H will either be K-isotropic (in which case Theorem 9.1 
implies that HK has no proper, noncentral normal subgroups), or else a 
group of the form SU4(f), where f is a Hermitian form over a quadratic 
extension LIK,  which we have already considered. To this end, we use the 
following test. 

LEMMA 9.19. Let H be a simple simply connected K-group of type A3. If 
H is split by some quadratic extension LIK, then H is one of the following 
groups: SL4; SLz(D), where D is a quaternion skew field over K ;  or 
SU4 (f ), where f is a nondegenerate Hermitian form over L. 

PROOF: Follows easily from the description of groups of type A, (cf. 52.3). 

Thus it remains to construct an anisotropic vector x in W for which 
H = G(x) satisfies the conditions of Lemma 9.19. First we show that there 
are vectors el and en in W satisfying 

To this end, for each v in v,, let us find regular vectors s" and tu in 
W g K  Ku such that s u l t u  and f (su) = f (tu). With the weak approximation 
property in W and the orthogonalization process, one can construct s and 
t in W such that s l t  and 

for all v in V z .  We put el = s and show that the orthogonal complement 
Wo of el contains a vector e2 for which f (en) = f (el). By Claim 6.3 
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of $6.6, it suffices to find eu in Wo @K Ku for each v in v:, such that 
f (eu) = f ( e l )  But by (9.27) f (s) = f(sudl) and f( t)  = f (tud2) for 
suitable dl and d2 in D:. Then eu = tdyldl E Wo @K Ku is the desired 
vector, since f (eu) = f (tudl) = f (sudl) = f (s). Thus, we have established 
the existence of el and e2 satisfying (9.26). 

Put U = elD + e2D, and let h denote the restriction of f to U. Then 
F = SU2(h) belongs to type D2 = Al x A1. On the other hand, F becomes 
split over a quadratic extension P = K(a) of K ,  where a = f (el) = f (e2). 
Indeed, let Ti denote the special unitary group of the space spanned by 
the ei. Then Ti 2 R ~ ; ~ ( G , ) ,  and T = TI x Tz is a maximal torus of F ,  
as desired. It follows that F = Fl x F2 is the direct product of groups of 
type A1 over K .  We have Fi = SL1(Di), where Di is a quaternion algebra 
over K .  

Now we establish the existence of e3 in U L  such that b = f(e3) # 0 
and L = K(b) splits Dl and D2. We claim that we may then choose x to 
be any vector orthogonal to el, e2, e3. Indeed, let us put H = G(x) and 

(1) show that H is L-split. Clearly H contains F x T3, where T3 N RLIK(Gm) 
is a one-dimensional torus which is the special unitary group of the space 
spanning e3. But by construction L splits F and T3; so there is nothing 
more to prove, since H and F x T3 have the same rank. 

To construct e3, let S denote the finite subset of vK consisting of those 
v for which at least one of the algebras Dl,, D2, is a skew field. Let v E S; 
then there is a regular vector uu in U L  @K Ku such that Ku[bu] is a field 
for bu = f (uu). Indeed, if Du is a skew field, then for uu one can take any 
anisotropic vector; if not, one uses the fact that a 4-dimensional quadratic 
form over Ku always contains an anisotropic, binary subform. (Note that 
since v E S, certainly K, # C.) For e3 choose a vector from U I  which is 
sufficiently close to the uu for v in S so that, for b = f (e3), the algebras 
Ku\b] and Ku[bu] will be isomorphic for all v in S. (The existence of such 
approximations is easily established with the help of Krasner's lemma, for 
example, cf. $6.4.) Then it follows from $1.5.1 and our constructions that 
L = K(b) is the desired field. This completes the proof of Theorem 9.5. 

We have yet to prove Theorem 9.6. So, let G be a simple algebraic K- 
group of type Gg. It is well known (cf. Jacobson [I]) that G can be realized 
as the group of all automorphisms of C B K  K, where C is a Cayley algebra 
over K .  There is a norm map N: C + K on C which is a nondegenerate 
quadratic form of degree 8 in the coefficients with respect to a base CIK. 
Let W denote the space of "pure" octonions, i.e., the orthogonal comple- 
ment of the identity of C with respect to the bilinear form ( I ) associated 
with N,  and let f be the restriction of N to W. The space W = W @ K  K 
and f are invariant under G; moreover, by restricting the action of G to 

W we obtain its well-known 7-dimensional K-representation. 
The proof of Theorem 9.6 uses the following properties of this represen- 

tation. 

PROPOSITION 9.6 (WITT'S THEOREM). Let a and b in W be anisotropic 
vectors such that f (a) = f (b). Then there exists g in G satisfying g(b) = a. 
Furthermore, if a l ,  a2 and bl, b2 are pairs of vectors of W generating non- 
singular subspaces with respect to f ,  such that f (ai) = f (bi) (i = 1,2) and 
(alJa2) = (bllb2), then there exists g in G satisfying g(bi) = ai (z = 1,2). 

PROPOSITION 9.7. For any vector x in W, anisotropic with respect to f ,  
the stabilizer G(x) is isomorphic either to SL3 or to SU3((p), where cp 
is a nondegenerate Hermitian form over a quadratic extension LIK; and 
for any pair of vectors x, y in W generating a nonsingular subspace with 
respect to f ,  the stabilizer G(x, y) is either SL2 or SU2((p). Thus, G(x) 
and G(x, y) are semisimple and simply connected. 

It follows from Proposition 9.7 and Theorem 9.5 that for anisotropic x 
in W we have a standard description of normal subgroups of G(x)K; there- 
fore, in this case, it suffices to establish the analog of Theorem 9.13. This 
analog indeed holds, and its proof is a replica of the proof of Theorem 9.13. 
The following result, a direct consequence of Claim 6.1' in $6.6 and Propo- 
sition 7.4, Corollary 2, contains all the necessary arithmetic facts: 

Let z be an anisotropic vector in W, let Wo be the orthogonal comple- 
ment of z,  and let Z = { x  E Wo @K K : f(x) = c),  where c E K*. If 
ZK, # 0 for each v in V:, then ZK # 0; moreover, in this case Z has weak 
approximation with respect to any finite subset S of VK. 

We leave it to the reader to work out the details of the argument as an 
exercise. 

Chernousov (unpublished) has found another proof of the projective sim- 
plicity of GK, for a K-anisotropic group G of type G2.2 It is based on the 
fact, already used in our proof of the Hasse principle for G, that any max- 
imal K-torus T of G lies in a K-subgroup H of G of type A2 (cf. $6.8). 
Let us take an arbitrary, noncentral normal subgroup N of GK and show 
that N = GK. Let x E GK. Since G is assumed K-anisotropic, it follows 
that x is semisimple and therefore is contained in a maximal K-torus T of 
G. Take a K-subgroup H of G of type A2, containing T. By Theorem 9.8, 
[GK : N] is finite; hence, in particular, HK n N is a noncentral normal 
subgroup of HK. Therefore, to show that x E N and thus complete the 
proof, it suffices to establish that HK is projectively simple. But this will 
follow from Theorem 9.5 once it is shown that H has the form SU3(f) 

It can be shown that any K-group of type G2 is either K-split or K-anisotropic; thus, 
one obtains another proof of Theorem 9.6. 
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for a suitable Hermitian form f over a quadratic extension LIK. To do 
so we use the fact (cf. Proposition 6.17) that G becomes split over some 
quadratic extension LIK. Let B be a Borel L-subgroup of G. We have 
dimG = 14, dim H = 8 and dim B = 8; so dim(B n H )  2 2. It follows 
that H becomes isotropic over L. On the other hand, the list of all the 
possibilities for H is as follows: 

1 ~ 2  = { j?:il (D), D is a skew field of index 3 

(222) SU3( f )  
2 ~ 2  = 

(iv) SU1(D), D is a skew field of index 3, 

and neither of the groups in cases (ii) and (iv) can be L-isotropic. Q.E.D. 

9.4. Groups split over a quadratic extension. 
This section is devoted to the proof of Theorem 9.7. We shall use induc- 

tion on the rank 1 of G. For 1 = 2, G belongs either to type A2, B2 = C2, 
or G2. For groups of type B2 or G2 the absence of noncentral normal s u b  
groups of GK follows from Theorems 9.5 and 9.6. The normal structure of 
arbitrary groups of type A2 has not yet been analyzed fully; however in our 
case one only encounters groups of this type that are split over a quadratic 
extension LIK. Such groups have the form G = SU3(f), where f is a 
nondegenerate, 3-dimensional Hermitian form over L (cf. the discussion at 
the end of the previous section), and again the projective simplicity of GK 
follows from Theorem 9.5. 

Let us suppose the theorem holds for all the groups described in its 
statement, of rank less than 1 (1 2 3), and show that it is true if the rank 
of G equals 1. To the end, we establish the existence of an open subset U 
of G, such that any g in GK n U can be written as 

where the gi (i = 1, . . . , m) lie in GiK, for suitable simple simply connected 
K-subgroups Gi of G which are split over L and whose ranks are between 2 
and 1 - 1. If N is a noncentral normal subgroup of GK, then [GK : N] < rn 
(Theorem 9.8), and, in particular, GiK n N  is a noncentral normal subgroup 
of GiK . Therefore, by the induction hypothesis, GiK n N = GiK ; hence 
g E N, which means that GK n U c N. But by Lemma 9.1 we have 
N, = G,, so NU = G, and N(GK n U) = GK. Therefore, finally we 
obtain N = GK, and the theorem is proved. 

To establish the existence of (9.28) we need to use some information on 
the structure of G. By Lemma 6.20 there exists a maximal K-torus T of 
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G which is split over an extension LIK. As we noted after the proof of 
Lemma 6.20 (§6.6), the nontrivial automorphism a in Gal(L/K) acts on 
the group of characters X(T) by multiplication by -1; so, for any root a in 
R = R(T, G), the root subgroup G, of G generated by the one-dimensional 
unipotent subgroups U, and U-, is defined over K (note that G, 2. SL2 
over L). Furthermore, let us fix 11, a subsystem of simple roots of R, and 
for any subset C of 11 let Gc denote the subgroup of G generated by the G,, 
for a in C. Lastly, put Tc = T n Gc (in particular, T, = T n G,). We shall 
need the following well-known properties (cf., for example, Steinberg 121): 

(1) for any subset C of 11, the group Gc is a 
simple simply connected K-group of rank 
equal to JC 1; 

(2) if C1 n CZ = 0, then Gcl n Ge, = (1); 
(3) T = n T,. 

In each (G,)L ( a  E 11) we choose an element w, which represents a 
nontrivial element w, of the Weyl group W(T,, G,), and let Xk denote 
the corresponding "large cell" in the Bruhat decomposition of G,; ' i.e., we 
put Xk = B,w, B,, where B, = T,U, is a Borel subgroup of G,. Since 
a(B,) = B-, = Tau-, and a(w,) = w,t for suitable t in T,, it follows 
that a(XA) = B-,w, B-,; consequently the variety 

is defined over K and is an open, dense subset of G,. In particular, 
dimX, = 3. Also put Y, = X,T = TX, and note that actually Y, - 
X, x Tn\(,) by property (2) of (9.29). 

In 52.1.10 we noted that S = {w, : a E I I )  generates W = W(T, G), 
where (W, S) is a Coxeter group. Let us take an element w in W which has 
maximal length with respect to the set of generators S. It is well known 
(cf. Bourbaki [4]) that such an element is unique and is characterized by 
the fact that it transforms positive roots to negative ones; moreover r ,  the 
length of its reduced decomposition w = w,, . . . war (ai E n), equals 
the number of positive roots. (Some of the ai may well coincide.) Put 
X =X,,  x - . . x X a r ,  Y = Y,, x . . .xY, , . ,  andlet  cp:Y + G be the  
product morphism. Moreover, let us define the action of TT-I on Y as 
follows: if t = (tl,. . . $,-I) E Tr-' and y = (yl,. . . , y,) E Y, then 

(In this section it will be more convenient for us to view the action on the 
right, and not, as is customary, on the left.) It follows from Y, = X,T = 
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TX, that the right side of (9.31) lies in Y, and consequently the action 
is well-defined. In addition, it is immediately evident from (9.31) that the 
stabilizer in Tr-' of any y in Y is trivial. 

(1) For any extension P / K  we have cp(Xp) = cp(Yp). 
(2) cp is dominant and its nonempty fibers are the orbits of T'-'. 

(In current terminology, the second assertion means, in particular, that 
Y is a torsor with base cp(Y) and structure group T,-'.) 

PROOF: (1) Since Y, N X, x Tn\<,}, we have (Y,)p = (X,)p(Tn\(a})p. 
But, as we noted above, T normalizes X,, and therefore Tp normalizes 
(X,)p. On the other hand, (X,)p(T,)p = (X,)p. With these facts it is 
easy to show that cp((Y,,)p x . . . x (Y,,)p) = cp((X,,)p x . . . x (XaP)p). 

(2) For m < r consider the product morphism 

and by induction on m we show that the fibers of cp(") are the orbits of 
the action of Tm-l on ~ ( ~ 1 ,  given by the analogous formula to (9.31): 

It follows from (9.32) that cp(")(y~"-l) = cp(m)(y) for any y in Y("). 
Therefore it remains to show that if cp(m)(y) = cp(m)(z), then z = yt for 
suitable t in Trn-l. This is obvious for m = 1. So, let m > 1, and let yi 
and zi in Y,, (i = 1, .  . . , m) be such that 

Let us put g = ymz;l and show that g E T.  It follows from (9.30) that 
Y, c Bw,B n B-w,B-, where B is the Borel subgroup of G associated 
with TI: and B- is the opposite Borel subgroup. We shall show that g E B; 
similarly, one can show that g E B-, and then g E B n B- = T,  as desired. 
Since Gam is normalized by T ,  it follows that g E G,,T. If we assume 
that g @ B, then the Bruhat decomposition 

implies that g E (Barn warn B,,)T c Bw,, B. Since w,, . . . warn is a seg- 
ment of the reduced decomposition of w and hence is irreducible, it follows 
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that (Bw,, . . . w,, B)(Bw,,+, B) = Bw,, . . . wai+, B for any i < m (cf. 
Steinberg [2]). This yields 

Z' = z1 .. .zm-1 E Bw,, . ..warn-,B, 

But by (9.33) we have y' = z', which contradicts the fact that the dou- 
ble cosets in the Bruhat decomposition of G are disjoint. Thus, g E T.  
Then ym-lg E Yam-, and by the induction hypothesis y' = z' implies the 
existence of tl  , . . . , tm-2 in T such that 

Then, putting tm-1 = g and t = (tl ,  . . . , tm-I), we obtain (yl, . . . , ym)t = 

(XI , . . .  32m). 
Thus, the fibers of cp are the orbits of Tr-' and therefore have dimension 

l(r - I), where 1 is the rank of G. It then follows from the theorem on the 
dimension of fibers and the image of a morphism that 
- 

dim p(Y) = r dim Y, - ( r  - 1)l = r(3 + (1 - 1)) - ( r  - 1)l = 2r + 1 = dim G, 

since G has exactly 21- roots. Thus, cp is dominant and Lemma 9.20 is 
proved. 

It follows from the fact that cp: Y + G is dominant and from Proposi- 
tion 3.3 that cp(Y,) contains U ,  an open subset of G,. Let us show that for 
g in G K ~ U  we do have (9.28). Let y E cp-l(g)K. Then cp(y) = cp(O(y)) = g 
for any 8 in Gal(K/K); so by Lemma 9.20 there is a unique to in TL-' 
satisfying 8(y) = yte. One can easily verify that c = { to : 8 E Gal(K/K) ) 
defines a cocycle with values in TrP1; moreover, the conditions 

g E cp(Yp) and [ E ker(H1(K,~'- ')  + H1(p, T'-I)) 

are equivalent for any extension P of K .  By definition T is split over L, 
so H1(L,Tr-l) = 1, and consequently g E ~ ( Y L ) .  But ~ ( Y L )  = cp(XL) 
(Lemma 9.20 (I)), therefore one can choose x = (xl, . . . , x,) in XL such 
that cp(x) = g. Let < = {to) be a cocycle in H1(K,T'-l) such that 
8(x) = xto. A basic property of 5 which we shall need below is that 

[ E ker(H1(K, + H'(K,, T'~ ')) ,  
v€V,K 

since by definition g E cp(Y,). Moreover, g E cp(YL), and therefore 5 lies in 
H1(L/K,Tr-I),  i.e., is given by a single element t = t, E TL-' such that 
to(t) = 1. With these facts, we show how to pass from 

to a factorization as in (9.28). Let a in II be an end root in the Dynkin 
diagram of R, and let /3 be a (unique) adjacent root 
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Put C = II \ {a). It suffices to establish the existence of gils in Gi, 
(i = 1,.  . . ,d), where each Gi is a simple simply connected L-split K- 
subgroup of G of rank 2, such that g' = gd . . . glg can be written as 

where hl E (Gc)L and ha E (G,)L. Indeed, since g' E GK and Gc n G, = 
(I), it follows from (9.35) that hl E (Gc)K and h2 E ( G ~ ) K  C (G{a,Pl)K; 
therefore the factorization g = gcl . . . gd1hlh2, equivalent to (9.35), satis- 
fies all the requirements of (9.28). To pass from (9.34) to (9.35) one must 
rearrange the factors in (9.34) in such a manner as to collect separately all 
the xi for which ai E C and all the xi for which ai = a ,  compensating for 
the permutation of factors by multiplying by suitable gils. This is easily 
done using an obvious inductive argument, based on the following 

PROPOSITION 9.8. Suppose z in GK has the form z = zlz2xi.. . x,, where 
z1 E ( G c ) ~ ,  z2 E (G,)L and the xi are from (9.34). Then one can find a 
simple simply connected L-split K-subgroup H of G of rank 2 and elements 
g in HK, z3 in (Gc)L, and z4 in (G,)L such that gz = ZgZ4Xi+l . . . x,. 

PROOF: If ai = a then put z3 = zl and 24 = zzxi. If ai # a , @ ,  then 
there are no roots of the form jai + ka (where j, k E Z \ (0)); therefore 
it follows from the commutator relations (cf. Steinberg [2]) that G,, and 
G, commute. In particular, 22 and xi commute, so one can put 23 = zlxi 
and a4 = z2. Therefore, it remains to consider the case ai = 0. Let t = 
(tl ,  . . . , trPl) E TL-' be the element introduced above satisfying ta(t) = 1 
and u(x) = xt. Then 

We shall work with the "parts" oft; namely, put u = ti and let s denote the 
projection of ti-1 to Tc in the sense of the direct product decomposition 
T = Tc x T,. If follows from ta(t) = 1 that so(s) = uo(u) = 1, i.e., that 
s and u determine cocycles in H1(L/K, Tc) and H1 (LIK, T) respectively. 
Note that these cocycles become trivial when one passes to real localiza- 
tions, since by construction the cocycle [ in H1 (LIK, T,-') determined by 
t lies in 

k e r ( ~ ' ( ~ ,  T'-') + n H'(K,, T'~')).  
v€VooK 
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LEMMA 9.21. a(a) = as, a(b) = h. 

PROOF: Since z = bxi+, . . . x, E GK, it follows that 

by (9.36). Similarly, it can be shown that a(az2) = a ~ ~ t i - ~ .  By construc- 
tion, ti-1 = ss' for some s' in T,; hence 

and u(a) = as, as desired. 

LEMMA 9.22. Let f be an element of GL such that e = f-'a(f) E TL, 
and let S = Int f be the corresponding inner automorphism. Then, for any 
subset A of II, the group 6(GA) and the restriction 6 I T :  T + S(T) are 
defined over K .  

PROOF: 6(GA) and S I T  are defined over L a fortiori; to prove they 
are defined over K it suffices to establish that they are invariant un- 
der a .  We have o(fGa f-') = u(f)GAa(f)-l  = feGaeP1 f - l  = ~ G A  f- l ,  

since T normalizes GA. Similarly, for any t in TL we obtain ~ ( f t f  -') = 
f ea(t)eP1 f -l = fa(t)  f - l ,  as desired. 

Now we can complete the proof of Proposition 9.8. Put 6 = Int a and 
H = 6(GiatpI). It follows from Lemmas 9.21 and 9.22 that H is defined 
over K ,  and H obviously has rank 2. It suffices to find h in HK, y1 in 
( H P ) ~ ,  and 92 in (Ha)L, where H, = S(G,) and Hp = 6(Gg), such that 

(9.37) hb(z2xi) = ~ 1 ~ 2 ,  

since then 

hz = h S ( ~ ~ x ~ ) a x ~ + ~  . . . xr = yly2axi+l. . . X, 

= a6-1(~l)S-1(~2)~i+l  

and one can put 23 = aS-'(yl) and z4 = 6-'(y2). 
We have 

(9.38) u(S(a2xi)) = a(baP1) = &u~-'a-~ = s ( z ~ x ~ ) ~ ( u s - ~ ) .  

Therefore, the problem reduces to finding yl and y2 for which 

(9.39) ~ ( Y I Y ~ )  = Y I Y ~ ~ ( u ~ - ' ) .  

Indeed, in this case (9.38) and (9.39) yield that h = S(z2xi)(y1 Yz)-l lies in 
HK and obviously satisfies (9.37). Put a = zl, b = z1z2xi 
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LEMMA 9.23. Let y E II and let d be an element in (T,)L such that 
da(d) = 1. Assume that the cocycle in H1(L/K, T,) determined by d lies 
in k e r ( H 1 ( ~ ,  T,) -+ n H1(Kv, T,)). Then, for any f in GL such that 

VEVZ 

fP1o(f )  E TL, there is an element g in f(Gr)Lf-l satisfying g-lu(g) = 
fdf -1. 

PROOF: Put S = Int f .  By the previous lemma, S(G,) and the restriction 
of S to T are defined over K .  It follows that t = 6(d) determines a cocycle 
c in H1(L/K, S(T,)) which lies in 

But then, since the Hasse principle holds for S(G,), we obtain 

i.e., t = g - ' ~ ( ~ )  for suitable g in S(G,) L, and the lemma is proved. 

In our case S(us-l) E H n S(T) = S(T{,,B)); so d = us-' E T{,,@), 
and one can write d = dld2, where dl E and d2 E (Ta)L It fol- 
lows by definition that dl and d2 determine cocycles in H1(L/K, To) and 
H 1 ( ~ / K ,  T,), respectively, which become trivial when one passes to real 
localizations. Then Lemma 9.23 immediately implies that there exists yl 
in (HP)L such that y,lu(yl) = adlaP1. Put f = yla. Then 

Applying Lemma 9.23 once more, we find p in f f-l satisfying 
p-la(p) = fdz f - l .  Putting y2 = y;lpyl, we obtain 

and (9.39) is proved. This completes the proof of Proposition 9.8 and 
Theorem 9.7. 

As we noted in 99.1, Proposition 6.17 implies that Theorem 9.7 can be 
applied to any simply connected K-anisotropic group of type B,, C,, E7, 

E8, F4 or G2; thus the groups of K-rational points of these groups are 
always projectively simple. 
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9.5. The congruence subgroup problem (a survey). 

Let G be a simply connected simple K-group, and let N be a noncentral 
normal subgroup of GK. If S is a finite subset of vK containing T U V z  
such that Gs is noncompact (i.e., ranks G = EVES rankKv G 2 then 
r = Go(s) is infinite and, as the proof of Theorem 9.8 shows, 

We inferred the finiteness of the quotient group on the left from the finite- 
ness of the quotient group on the right; and the latter is finite when 
ranks G 2 2 and r n N Z(G). This connection between the normal 
subgroup structure of GK, the group of K-rational points, and that of its 
S-arithmetic subgroups (for arbitrary S c VK containing v:) calls for 
further investigation. In particular, one naturally wonders what property 
of normal subgroups of r guarantees that Conjectures 9.1 and 9.2 will hold 
for GK? r always contains an extensive family of normal subgroups of 
finite index, consisting of the congruence subgroups 

(9.41) r ( a ) = { g € r : g = e  (moda)}, 

corresponding to the nonzero ideals a of O(S). (As usual, when dealing 
with integral or S-integral points, we fix a matrix realization of G; in 
particular, the equality in (9.41) is viewed with respect to this realization.) 
Thus, ci propos the normal structure of r, one naturally wonders whether 
the congruence subgroups thus defined exhaust all the normal subgroups 
of r of finite index? Further analysis shows that the best way of putting 
the question is as follows: 

Does any normal subgroup of finite index in r con- 
(9-42) tain a suitable congruence subgroup r ( a )  ? 

This question has become known as the congruence subgroup problem. Its 
connection with the normal structure of groups of rational points is treated 
by 

PROPOSITION 9.9. Let G be a simple simply connected K-group, and let 
S be a finite subset of VK containing V , .  Assume that ranks G 2 1 and 
that for r = Go(s) the answer to the congruence subgroup problem (9.42) 
is affirmative. Then Conjecture 9.2 (cf. 99.1) holds for GK. 

Recall that T denotes the set of those v in Vf( for which G is K,-anisotropic, cf. s9.1. 
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PROOF: Let N denote the closure of N in the group of S-adeles GAY 
Then, arguing as in the proofs of Lemma 9.1 and Theorem 9.8, we can 
easily show that 

We wish to prove that 

where H = NT\(TnS) X G T ~ S  is an open normal subgroup of GT. By 
assumption, for a suitable nonzero ideal a of O(S) one has r ( a )  c r n 
N. The definition of the adele topology implies that there exists an open 
subgroup U of GAS such that U n GK = r(a). Then Uo = U fl N is an 
open subgroup of GA, contained in N, and therefore N = UoN. Taking 
the intersection with GK and applying (9.43) we obtain 

But by assumption Uo n GK c U n GK = F(a) c N,  from which it follows 
that GK n NT\(T~s) = N,  as desired. 

Observe that our argument indicates that necessarily S n T = 0 in order 
for the congruence subgroup problem to be true for I?. Indeed, suppose 
vo E S n T and let W be an arbitrary proper, open normal subgroup of 
GKvo. Then the weak approximation theorem implies that the following 
properties hold for the normal subgroup N = GK n W: 

Now suppose that the congruence subgroup problem has an affirmative 
answer for I' = Go(s). Then it follows from the proof of Proposition 9.9 
and property (2) that N = GK; but this contradicts property (1). 

Thus, if one solves the congruence subgroup problem affirmatively for 
r = Go(s) then one can solve the problem of describing the normal sub- 
groups of GK. In this sense the congruence subgroup problem is, a priori, 
a more general and more complicated problem. Indeed, it has long been 
known that SL,(Q) (n > 2) has no normal subgroups, although the con- 
gruence subgroup problem for SL,(Z) (n > 3) was only fully solved in 
1964 and for SL2(Z), surprisingly, the answer was negative. To give the 
reader an accurate impression of how these problems interrelate, we present 
a historical survey of research on the congruence subgroup problem, which 
we recommend comparing with the historical background given in 57.2 
and $9.1. 
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The fact that the answer to the congruence subgroup problem is nega- 
tive for I? = SL2(Z) was first noted by F. Klein [I] in 1880, in connection 
with his study of modular functions. For I? = SL3(Z), however, little 
progress was made for many years, until, in 1965-1965, Bass-Lazard-Serre 
[l] and Mennicke [I] found a positive solution of the problem for SL,(Z) 
(n 2 3). Subsequent investigation (cf. Bass-Milnor-Serre [I]) revealed that 
for r = SL,(O), where 0 is the ring of integers of an algebraic number 
field K ,  the answer to the congruence subgroup problem depends not only 
on the algebraic properties of SL, itself, but also on the arithmetic of the 
ground field K.  If K is not totally imaginary, then, as before, the congru- 
ence problem has a positive solution. On the other hand, if K is totally 
imaginary, then the answer to (9.42) is negative; however, there exists a 
subgroup I" of I? of finite index, for which (9.42) is solved affirmatively. 
It can be shown that for r = SL2(Z) there is no such subgroup. Thus, 
when the answer to (9.42) is negative one needs to characterize the degree 
to which the congruence subgroup property described in (9.42) is violated. 
This leads to the important concept of the congruence kernel (cf. Serre 161, 
Humphreys [3]), which we now define. 

Let G be an algebraic group defined over K ,  and let S be a finite subset of 
vK containing v,". Straightforward verification by means of Proposition 1 
in Bourbaki [2, Ch. 3, 51.21 shows that two Hausdorff topologies T, and T, 

can be defined on GK under which GK is a topological group. The first, 
called the arithmetic topology, has a fundamental system of neighborhoods 
of the identity consisting of all subgroups of r of finite index; the second, 
called the congruence topology, has as its fundamental system of neighbor- 
hoods of the identity the set of all congruence subgroups r(a) .  With the 
results in loc. cit. Ch. 3, 53.4, one can show that there exist completions G 
and G of GK under these topologies. In addition, since T, is stronger than 
T,, this gives rise to the continuous homomorphism T :  G -+ G whose kernel 
CS(G) is called the congruence kernel. One also has completions f' and r 
of r under the induced topologies, which are the closures of r in G and G, 
respectively. Then T induces a continuous homomorphism T O :  f' -+ r ;  and 
it is easy to see that ker T = ker T O  c f'. Also f' is precisely the profinite 
completion of r, i.e., l@ r / N  taken over all the normal subgroups of finite 
index. This easily yields the following result (cf. Serre [2], Humphreys [3]). 

PROPOSITION 9.10. T is surjective, and its kernel CS(G) is a profinite 
group. Moreover, c'(G) is trivial if and only if the congruence subgroup 
problem as stated in (9.42) holds for I? = Go(s) .4 

Thus, CS(G) measures the degree of deviation from the positive solu- 

* Most of the results in this section will be presented without proofs. 
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tion of the congruence subgroup problem as stated in (9.42). Therefore, 
in contrast to the classical formulation given in (9.42), the contemporary 
formulation of the congruence subgroup problem is usually understood as 
the problem of computing CS (G). Using the concept of congruence kernel, 
we can state the result of Bass-Milnor-Serre [I] as follows: 

THEOREM 9.14. Let G be either SL, (n > 3) or Sp2, (n > 2) over an 
algebraic number field K .  Then for S = V z  we have 

if K is not totally imaginary, 
(9.44) CS(G) = { :(K) if K is totally imaginary. 

where E ( K )  is the group of roots of unity in K. 

Thus, for the groups under consideration, the congruence kernel is finite. 
On the other hand, one can show that for SL2(Z) it is a free profinite group 
of countable rank (cf. Melnikov [I]). 

Matsumoto [2], elaborating on the method used in Bass-Milnor-Serre [I], 
obtained a similar computation of the congruence kernel for all universal 
Chevalley groups of rank 2 2. In the remaining case, SL2, first Men- 

nicke [2] solved (9.42) positively for SL2 z[L] , and then Serre [6] studied ( P I  
the general case and showed that for IS1 > 1 the congruence kernel is triv- 
ial if S does not consist entirely of imaginary places, and is isomorphic 
to E(K)  otherwise (cf. (9.49) below). On the basis of his analysis of the 
available results, Serre [6] formulated the following congruence subgroup 
c~njecture :~  

Let G be a simple simply connected algebraic K- 
group. Then c ' ( ~ )  should be finite if ranks G = 

(9.45) CUES rankK, G > 2 and rankK, G > 1 for v in 
S \ VZ, and should be infinite if ranks G = 1. 

(It may seem strange to the reader that, having defined CS(G) for arbitrary 
algebraic groups, we speak of computing it only for simple simply connected 
groups. Actually, this does not restrict the generality, since one can show 
(cf. Platonov [6], Platonov-Sharomet [I]) that the computation of cS(G)  
reduces to the semisimple case, and CS(G) is always infinite for a non- 
simply connected semisimple K-group G whose simply connected covering 
G has strong approximation relative to S (cf. Serre [2], Platonov [20]). 

We are interested primarily in the first part of the congruence subgroup 
conjecture, which treats to  the finiteness of c'(G). Now we set forth 

Actually Serre did not impose the condition that rankKv G 2 1 for v E S \ VZ; but, 
as we have seen, this condition is necessary. 

the main line of reasoning which has been applied in all the work on this 
question. 

By definition C = cS(G) enters the exact sequence 

Consider the initial segment of the Hochschild-Serre spectral cohomological 
sequence, corresponding to (9.46) : 

where Hi(*) denotes the i-th continuous cohomology group with coefficients 
in the one-dimensional torus R/Z. It is easy to see that 

where bar denotes closure in GK under the S-arithmetic topology. Fur- 
thermore, one notes that the S-congruence topology on GK is the topology 
induced by the topology in the group of S-adeles under the embedding 
GK - GAS. Therefore, if we suppose that the conditions of the congru- 
ence conjecture hold here, then the strong approximation theorem implies 
that G can be identified with G A S  However, by assumption GK embeds 
in G as well as in G; i.e., (9.46) splits over GK and actually is a "universal" 
sequence with this property (cf. Prasad-Raghunathan [2]). It follows that 

Im$ = M(G, S) ,  

where M(G,S) = ker(H2(GA,) + H2(GK)) is the metaplectic kernel 
(viewing GK as endowed with the discrete topology). Thus (9.47) yields 
the following exact sequence: 

(9.48) 1 + coker cp -+ H'(c)' + M(G, S)  + 1. 

Unfortunately, in general H1 (c)' provides information only about part of 
C.  This term lets us reconstruct C in full only when C is central, i.e., 
when it lies in the center of G, since then H'(c)' = H1(C) is C*, the 
Pontryagin dual of C. 

THEOREM 9.15. If C is central, then it is finite. Moreover, if coker cp = 1, 
then C* = M(G, S). 

Indeed, the metaplectic kernel M(G, S )  is always finite (cf. Raghuna- 
than [4], Prasad-Raghunathan [2]). On the other hand, by Theorem 9.8 
[GK, GK] has finite index in GK; in particular, coker cp is also finite. There- 
fore, the finiteness of C follows from (9.48) and the remarks following it. 
The second assertion of the theorem is evident. 
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It should be noted that the finiteness of C is in fact equivalent to its 
centrality. More precisely, if C is finite and GK is projective simple, then 
C is central. Thus, the qualitative aspect of determining C (i.e., proving 
its finiteness) reduces to proving its centrality. 

The next stage of the investigation naturally involves the precise com- 
putation of C. To do so, first of all one must establish whether or not 
coker cp is trivial. Clearly coker cp = 1 if GK has no proper noncentral nor- 
mal subgroups. Therefore, by the results of $9.1, cokercp = 1 if either G 
is K-isotropic and does not have type 2E6, or if G has type Bl (1 > 2), 
Cl (1 2 2), Dl (1 2 4, except for 3D4, 6D4), E7, E8, F4, or Gz, or if G is 
SU,(L, f )  (m 2 4) of a nondegenerate Hermitian form f over a quadratic 
extension L/K. 

Now suppose G is a K-anisotropic inner form of type A, and that 
T = {v E v ~ K  : G is K,-anisotropic). The conditions of the congru- 
ence subgroup conjecture imply 5' fl T = 0; so, by Theorem 9.4, [GK, GK] 
is closed in the S-arithmetic topology, and again coker cp = 1. Thus, there 
remain only forms of type 2A,, 3D4, 6D4 and E6, for which the trivial- 
ity of coker cp has not been established; in other words, in most instances 
computation of C (when it is central) reduces to computation of M(G, S). 

M(G, S)  has been determined for Chevalley groups in the fundamental 
works of Moore [I] and Matsumoto [I]. Their results, resembling (9.44), 
are as follows: 

THEOREM 9.16. Let G be a simple simply connected K-split group, and 
let S be a finite subset of vK containing V z .  Then 

The case of quasisplit groups has been studied by Deodhar [I]. 
Lively interest in this question during the late 60's was followed by more 

than a decade of neglect. Interest in the subject revived in the 80's when 
Prasad-Raghunathan [2, 31 computed M(G, S) for all K-isotropic groups 
(for the classical groups, cf. also Bak-Rehman [I], [2], Bak [I]). 

THEOREM 9.17. Let G be a simple simply connected K-isotropic group. 
Then 

Prasad and Raghunathan's proof uses various K-subgroups of G of type 
SL2, whose construction depends on the fact that G is K-isotropic. There- 
fore their arguments could not be carried over to the K-anisotropic case, 
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which was investigated by Rapinchuk [3], [4], [6] using other methods. Un- 
fortunately, the results are not yet as unified as those of Theorem 9.17, and 
will have to be stated separately for the various types of groups. 

INNER FORMS OF TYPE An-l : Here G = SL1 (D), where D is a skew field 
of index n over K. Put Se = { v E vK \ S : D @JK K, E M2(FV), where 
F, is a division algebra over K, ) and s = ISe[ (s is finite when n > 2 and 
infinite when n = 2). 

THEOREM 9.18. Suppose S contains a non-Archimedean valuation vo such 
that DBK Kvo = Mn(KVo). Then M(G, S)  is a finite subgroup of the group 
B(D, S)  = (2/22)". In general M(G, S )  is isomorphic to a finite subgroup 
of an extension of B(D, S) by E(K),  the group of all the roots of unity 
in K .  

COROLLARY. If S, = 0, in particular if n is odd, then 

1, if 3vo E S : K,, # C and Duo E Mn(Ku0), 
M(G,S) = { I E(K) otherwise. 

(This result is actually analogous to the classical result (9.49).) 
The theorem is proved by reducing the problem to the study of the 

reciprocity laws for maximal K-tori of G. In general outline, the reductive 
part of the argument is analogous to the classical argument of Matsumoto 
[2], the only difference being that in working with anisotropic groups one 
naturally encounters anisotropic tori. The reciprocity laws which arise are 
studied using algebraic number theory. (Analogous results on reciprocity 
laws were obtained independently by Prasad [3]). 

OUTER FORMS OF TYPE An-l: These are the special unitary groups G = 
SU, (D, f ) ,  where D is a finite-dimensional skew field with involution u of 
the second kind, where K is the fixed subfield under u of the center of D,  
and f is a nondegenerate n-Hermitian form of degree m over D (cf. 52.3). 

THEOREM 9.19. Let G = SU,(D, f )  and let m 2 3. If S contains a 
non-Archimedean valuation, then M(G, S) has exponent 5 2. In general 
M (G, S )  is finite and is an extension of a group of exponent 5 2 by a 
subgroup of E(K).  

PROOF: Uses Theorem 9.18, the properties of Hermitian forms, and the 
local computations of Prasad-Raghunathan [2]. 

THE REMAINING CLASSICAL GROUPS: Using Theorem 9.18 and the g e e  
metric realization of the classical groups, one obtains the following result: 
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THEOREM 9.20. Let G be a simple simply connected K-group of type 
B, (n > 2), C, (n > 2), or D, (n > 5). Suppose S contains a non- 
Archimedean valuation vo and that the following conditions hold: 

(1) if G has type B,, then either n 2 3, or n = 2 and G is K,,-split; 
(2) If G has type C,, then G is K,,-split. 

Then M(G, S)  has exponent 5 2. In general M(G, S)  is finite and is an 
extension of a group of exponent 5 2 by a subgroup of E(K). 

THE EXCEPTIONAL GROUPS: 

THEOREM 9.2 1. Let G be a simple K-group of type Es, F4 or G2. Then 
M(G, S) is trivial if S contains a non-Archimedean valuation, and is iso- 
morphic to a subgroup of E(K)  if S does not contain such a valuation. 

For groups of type E7 one obtains a result similar to Theorem 9.20. 
Thus, it remains to study the metaplectic kernel for groups of types 2An, 
D4 and E6. 

We shall not give a detailed analysis of the main points of the proofs 
of Theorems 9.18-9.21, of which Theorem 9.18 is the most fundamental; 
however, we must prove the weak metaplectic conjecture (cf. Theorem 9.12), 
which we used to derive Theorem 9.3 and which actually comprises part of 
the proof of Theorem 9.18. 

PROOF OF THEOREM 9.12: Let G = SL1(D), where D is a skew field over 
K of index n > 2, and let T = {v E vfK : D, is a skew field). We need 
to show that the restriction map 8: H2(GT) -+ H2(GK) is injective. (Here 
and below we consider continuous cohomology groups with coefficients in 
the trivial discrete module J = Q/Z. One can show, however, that that in 
our case the same results can be obtained if the module of coefficients J is 
replaced by the one-dimensional torus R/Z.) To do so, consider a maximal 
subfield L of D such that all the local extensions L,/K, are unramified for 
v E T,  and let F = R:)~(G,) be the corresponding maximal K-torus of 
G. We shall show that p: H ' ( G ~ )  -+ H2(FK) is already injective. Clearly 
p is a composition of the two restriction maps 

and it suffices to establish that each map is injective. 

LEMMA 9.24. q is injective. 

PROOF: By $1.3.1 each cocycle a in H2(H) corresponds to a central ex- 
tension 
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which can be used to associate with any two commuting subgroups A - and 
B of H a bimultiplicative map 6: A x B -+ J given by S(a, b) = [a, b] = 

666-lb-', where 6 E Q-I (a) and b E ~- l (b ) .  Moreover, if H is a topological 
group and a is continuous, then (9.50) is a topological extension and S is 
continuous. With these preliminary remarks, we proceed immediately to 
proving that 17 is injective. 

Let cu E ker 7) and let 

be the central extension corresponding to a .  Then a is trivial if and only 
if this extension is trivial (i.e., if it splits); and, since FT is abelian and J 
is divisible, this condition is equivalent to E being abelian (Lemma 1.1). To 
show that E is abelian, let us consider the bimultiplicative map 
6: FT x FT -+ J defined above and show that it is trivial. The condi- 
tion that a E ker q reduces to the fact that (9.51) splits over FK, i.e., there 
exists a section cp: FK -+ E of Q. It follows easily that the restriction of 
6 to FK x FK is trivial. But Proposition 7.8 implies that FK is dense in 
FT, therefore by continuity we obtain that 6 is also trivial. Lemma 9.24 is 
proved. 

LEMMA 9.25. < is injective. 

PROOF: Easily obtained from the following result of Prasad and Raghu- 
nathan [5]. 

THEOREM 9.22. For each v in T, the map H2(GKV) -+ H ~ ( F ~ , )  is injec- 
tive. 

Let a E ker < and let 

be the corresponding central extension. It is easy to see that, for each v in 
T,  the cocycle a, corresponding to the induced extension 

lies in the kernel of H2(GKv) + H2(FKv) and therefore, by Theorem 9.22, 
is trivial; i.e., (9.53) splits. In other words, for each v in T there is a 
continuous homomorphism cp,: GKv --, E which is a section of Q over GK,. 
A necessary and sufficient condition for the product cp = n cp, to provide 

V E T  

a section of Q over all GT, is that the subgroups e-l(GK,) (v E T) of E 
be elementwise commuting. Let vl,v2 E T and let 6: GK,,~ x GK,, + J 
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be the bimultiplicative map defined by taking the commutator of arbitrary 
pre-images. We wish to show that S is trivial. Since S is bimultiplicative, 
it can be viewed as a map 

However, since a E ker <, the restriction of S to FKvl x FKU2 is trivial. 
Therefore the triviality of S is a consequence of the equality 

which follows from Theorem 1.8. This completes the proof of Lemma 9.25, 
and hence also of Theorem 9.12. 

We have yet to prove Theorem 9.22. To simplify the notation, we put 
C = GK,, B = FK,, and for i = 1,2,.  . . we let Ci denote the congruence 
subgroup GKv n (1 + vi), where ?& is the valuation ideal of Dv; we shall 
also write Co for C. Thus, our notation is consistent with that of 81.4.4, 
whose results we use in the proof. We shall prove that <: H2(C) -+ H 2 ( ~ )  
is injective as follows. It  is easy to see that 

where the direct limit is taken with respect to the natural inflation maps 
H2(C/Ci) -, H2(C/Cj) for i 2 j .  Let H2(C)i denote the image of 
H2(C/Ci) in H2(C). Then 

Since C/C1 is cyclic (cf. Proposition 1.8), it follows that H2(C/Cl) = 1. 
Therefore, for any nontrivial a in H2(C) one can find minimal i 2 2 for 
which a 6 H2(C)i. Having taken a in ker< and chosen the minimal i, we 
show that actually a E H ~ ( C ) ~ - ~ ,  from which it follows that a = 1. We 
shall outline the argument, and leave the reader to work out the details. 

Let r 2 2, let a E H2(C/CT), and let 

be the central extension corresponding to a. For s 5 r we put E(s)  = 
e-l(C,/CT). Below we always assume that the condition n > 2 of Theo- 
rem 9.12 is satisfied. 
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(1) E(2) centralizes E ( r  - 1). 
(2) a lies in the image of the inflation map H z  (C/CT-l) H2(C/cT) 

if and only if E ( l )  centralizes E ( r  - 1). 

PROOF: Follows easily from the commutation relations for congruence sub- 
groups (cf. $1.4.4) and is left to the reader. 

A slight restatement of the lemma is helpful. Since E(2) acts trivially 
on E ( r  - I),  the commutator map (x, y) -+ [x, y] gives a well-defined map 

But clearly E(l)/E(2) = Cl/C2 = F(1) and E(r  - l ) /E(r )  = CT-l/CT = 
F ( r ) ,  notation as in $1.4.4 (p. 34). It is easy to see that A" is biadditive, 
and invariant under the natural action of A = E/E( l )  = C/C1 on F(1) 
and F( r ) .  Since the exponent of F(i)  is equal to the prime p corresponding 
to  v,  it follows that 

1 
Im A" c -Z/Z -- ZlpZ. 

P 
Thus, A" can be viewed as the biadditive A-invariant map 

Moreover, 

As in 81.4, let B(F( l ) ,  F ( r  - 1)) denote the set of biadditive A-invariant 
maps F ( l )  x F ( r  - 1) -+ Fp. It follows that the correspondence 

given by a H Aa is a homomorphism of abelian groups, whose kernel 
is Im(H2(C/CT-1) 4 H~(C/C,)). Actually, this homomorphism is con- 
nected with one of the maps in the Hochschild-Serre spectral sequence 
corresponding to the extension 

Besides the Aa, we shall need the "higher" biadditive A-invariant maps A: 
(2 < r): 

A:: F(i)  x F ( r  - i) -+ Z/pZ, 

which are induced by the map (x, y) -+ [x, y], where F ( i )  = E(i)/E(i  + 1). 
To establish that the A: are well-defined one must show that E(i  + 1) 
centralizes E ( r  - i )  for any i = 1, . . . , r - 1. 
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(1) E( i  + 1) centralizes E ( r  - i) for any i = 1, .  . . , r - 1; so, the Aq are 
well-defined. Moreover, the Aq are biadditive and A-invariant. 

(2) Suppose r is a multiple of n. Then for any cr in H2(C/Cr) the map 
A" is given by A"(x, y) = nlIFp(Aax~(y)) ,  where A" is a suitable 
element of the residue field 1 of D,, u is the canonical generator of 
Gal(l/k,), and the F( i )  are identified with the subgroups ofthe addi- 
tive group of 1 (cf. 51.4.4). In this case Aq(x, y) = nlIFp (Aqxai(y)), 

where A? = u j  (Aa). 

PROOF: Uses Hall's identity: 

true for any elements a, b and c of a group, where xy denotes the element 
xyx-'. We prove (1) by induction on i. The case i = 1 is analyzed in 
Lemma 9.26. Assume it has been proved that E(i)  centralizes E ( r  - i + I ) ,  
and let a E E(1), b E E(i) ,  and c E E ( r  - i). Then Hall's identity and the 
induction hypothesis imply that 

i.e., [a, b] and b~ commute. Since b ~ ~ - l  = [ b , ~ ]  E E ( r  - i + I ) ,  by induction 
it follows that [a, b] and bcc-l also commute; hence [a, b] and c commute, as 
well. But the commutation relations for congruence subgroups (cf. 51.4.4) 
imply that [E(l) ,  E(i)] J = E(i  + 1); consequently E( i  + 1) commutes with 
E( r  - i),  as desired. The assertions that the Aq are biadditive and A- 
invariant are evident. 

Now let r be a multiple of n. If F ( l )  is a simple A-module, then with 
appropriate identifications A" is given by 

for suitable A" in 1 (Theorem 1.11). Somewhat later we shall show that Aa 
always has the form of (9.55); but now we use (9.55) to obtain a formula 
for Aq(x, y). Again we use induction on i. 

Let us suppose that the formula for has already been established for A?-1 
and prove it for A?. Take any a in E(1), b in E( i  - l ) ,  and c in E ( r  - 2). 
Then, fixing a uniformizing parameter II in D,, we have 
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for suitable s ,  t and u from the ring of integers oDv. Then Lemma 1.8 
implies that 

@([a, b]) = 1 + xII', where x = ~ u ( f )  - uiP1(S)< 

(9.56) @([b, c]) = 1 + yIIT-', where 31 = Gi-l(zl) - ~ ' - ~ ( f ) f i ,  

~ ( [ c ,  a]) = 1 + where 2 = GU'-~(S) - ~ ( G ) s ,  

where bar denotes the residue of the respective element in 1. Since C1 acts 
trivially on F(i) ,  Hall's identity yields 

Furthermore, the obvious identity [a, b] = [b, a] -' implies that Aq (x, y) = 
-AFPi(y, x) for all x in F(i)  and y in F ( r  - i);  hence 

Now, using induction, we obtain 

since r is a multiple of n. 
Thus we see that the biadditive maps A,"(x, y) and n l / F p ( A q ~ ~ i ( Y ) )  

coincide for x in F(i) and y in F ( r  - i )  such that x = su(t) - ai-'(s)t 
for s in F ( l )  and t in F(i  - 1). However, as we have seen in the proof of 
Theorem 1.9, elements of this form generate all of F(i) ;  therefore one has 

It remains to show that the map A" also has the form (9.55) in the case 
where F ( l )  is not a simple A-module. Since n > 2, by Proposition 1.9 
we need only consider the case where Ilk, is Fs4/F4. AS we know (Thee 
rem 1.11), in this case one can guarantee that 
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for suitable X,p E 1; we want to show that p = 0. From (9.56) and (9.57) 
we obtain, for any s, t, and u in I ,  that 

(note that r 2 n = 3). Let t = (s, ( E k,. Then (9.58) yields 

LEMMA 9.27. In the case a t  hand, 1 is generated as an abelian group by 
elements of the form sa(sa(u) - u ~ - ~  ( s ) ~ ) ~  (s, u E I). 

PROOF: Left to the reader. 

The lemma and (9.59) imply that p(( + C8) = 0, and since one can 
choose ( in k, such that ( + C8 # 0 (k, = Fq @ Fs!), it follows that p = 0. 
Proposition 9.11 is proved. 

Now we complete the proof of Theorem 9.22. Let P E ker E ,  where 
<: H2(C) -+ H 2 ( ~ )  is the restriction map and ,O # 0. Choose r minimal 
> 1 for which P E H2(C),, and let a in H2(C/CT) be an element which 
goes over to P under H2(C/C,) -+ H2(C). We claim that r is a multiple 
of n. Indeed, if r is not a multiple of n then Theorem 1.11 implies 

and by (9.54) H2(C/CT-1) + H2(C/G',) is surjective. Thus, since r is 
minimal, it follows that r must be a multiple of n. Then, by Theorem 1.11, 
the corresponding map Aa is given by 

for some XQ in 1. We wish to show that w = Trllkv (Aa) = 0. Note that by 
Proposition 9.11 

Furthermore, ,O becomes trivial when restricted to B. It follows that 
Q-~(BC,/C,) (where Q is the extension corresponding to a )  is commu- 
tative. However, by Proposition 1.8, 

c n  = (Cn n B)Cn+l and CT-n = (CT-, n B)Cr-n+l. 
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Therefore the definition of A: implies A: = 0. Since F(n) and F ( r  - n) 
are canonically identified with I(') = { x  E 1 : Trllk,(x) = 0) ,  we obtain 
finally 

(9.61) TrlIFp (wxy) = 0 for all x, y in 1(O). 

But (l(O))' = { z  E 1 : Trllkv(zl(0)) = 0 )  is precisely k,, so (9.61) implies 
do) C k,. This is impossible if w # 0, since dimkv ~('1 = n - 1 > 1. Thus 

We conclude as follows. Construct y in ker(H2(C/CT) -+ H2(C/CT+1)) 
such that A* = AT. Then, by (9.54), 

and therefore the image of a- y in H2(C) by construction lies in H ' ( C ) ~ - ~ .  
However, the image of a - y in H2(C) is precisely the image of a; hence 
@ E H2 (C)T-l; contradiction. 

To construct y, we write Xa = S - US (6 E I )  (which can be done since 
Trl/k,,(Xa) = O), and define cp in Hom(F(r), F,) by cp(x) = TrlIFp(6x). 
Using Z/pZ -- ~ Z / Z  C J ,  we can view q as an element of Hom(F(r), J ) .  
Consider the trivial extension 

and let @ denote the subgroup of E' consisting of elements of the form 
(g, -cp(g)), where g E CT/CT+l. Since r is a multiple of n, it follows that 
CT/CT+l lies in the center of C/CT+l; hence we see that @ is a normal 
subgroup of El. Let y be the cocycle in H2(C/Cr) corresponding to the 
extension 

By definition y E ker(H2(c/CT) -+ H ~ ( C / C , + ~ ) )  and it remains to show 
that 

AY(x, Y) = ~ 1 / F P ( X a x ~ ( ~ ) )  = n1/~p((6- uS)xu(~))  

for all x in F ( l )  and y in F(r-1). To do so, note that the group commutator 
of a in E( l )  and b in E ( r  - 1) can be computed as follows: take arbitrary 
inverse irnages c and d of &(a) and ~ ( b )  in C/Cr+l and consider the group 
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commutator [c, dl in C,/CT+l = F(r) ;  then [a, b] = ~ ( [ c ,  dl) .  Therefore, it 
follows from the commutator formulas (cf. Lemma 1.8) that 

A'(? Y) = cp(x4y) - o r - ' ( 4 ~ )  

= ~ - , / F ~ ( ~ ( X ~ ( Y )  - yoT-l(x))) 

= n-l,,((S - O ~ ) X ~ ( Y ) )  
= Aa (2, y). 

Q.E.D. 
To complete our survey of the work done so far on the congruence prob- 

lem we present the results currently available on the centrality of the con- 
gruence kernel. To be begin with, the centrality of the congruence kernel 
can be established by manipulating the unipotent elements in GK (if they 
exist). This idea goes back to the basic works of Bass-Milnor-Serre [I], 
Mennicke [I], [2], Matsumoto [l] and Serre [6]. The definitive result is due 
to Raghunathan [4], [6], who showed that for a simple simply connected 
K-group G the existence of unipotent elements in GK (i.e., the fact that 
G is K-isotropic), together with the condition that ranks G 2 2, indeed 
guarantees the centrality of the congruence kernel CS(G). The presence of 
unipotent elements in GK is essential to his argument, and therefore the 
latter results cannot be extended to anisotropic groups. Until recently the 
only result on the centrality of C S ( ~ )  also applicable to some anisotropic 
groups was Kneser's theorem [14] treating spinor groups of quadratic forms. 
Kneser's argument, however, turns out to be general and applicable to other 
groups that have a convenient geometric realization. First Raghunathan 
and Tomanov treated groups of type C,, and later Rapinchuk [9] proved 
the following general result: 

THEOREM 9.23. Let G be a simple simply connected K-group of one of 
the following types: B, (n > 21, C, (n L 21, D, (n >_ 5), or G2; or 
let it be S u m  (L, f )  (m 2 4) of a nondegenerate Hermitian form f over 
a quadratic extension L of K ,  having type 2Am-1. If ranks G > 2, then 
CS (G) is central. 

The proof is based on a development of Kneser's method [14] and uses the 
techniques introduced in $9.3. As in $9.3, the argument here is general and 
can be applied to other groups having a convenient geometric realization; 
the argument for groups of type G2 is given in Rapinchuk [8]. 

The geometric method, by which Theorem 9.23 was obtained, apparently 
cannot be applied to the exceptional groups since these groups do not have 
suitable geometric realizations. Here a solution to the congruence subgroup 
problem was obtained by a new approach, using the intrinsic structure of 
the group. 

9.5. The congruence subgroup problem 569 

THEOREM 9.24 (RAPINCHUK [9]). Let G be a simple simply connected 
K-anisotropic group of type E7, E8, or F4. If ranks G 2 2, then CS (G) is 
central. 

PROOF: Uses the fact that the groups of the types under consideration are 
split over a quadratic extension of K (which is why E6 is not included in 
the list). 

It should be noted that the projective simplicity of the group of rational 
points is used in the proof of practically all the results on the congruence 
subgroup problem, in particular in Theorems 9.23 and 9.24. 

Unfortunately we do not yet know anything about the congruence sub- 
group problem for anisotropic inner forms of type A,. Many years of inves- 
tigation notwithstanding, no progress has been made even for the minimal 
case of groups of type A1, even though the normal subgroup structure of 
the groups of rational points is known here (Theorem 9.2). In the special 
case G = SL1(D), where D is a quaternion skew field over Q, S = {oqp), 
and the prime p is chosen such that Q, splits D, the problem is due to 
Ihara (cf. Kourovka Notebook, 1978, problem 5.33). Note that Serre's re- 
sults [7] make it possible to determine the precise algebraic structure of 
GqsP Apparently the main results here have yet to be discovered. 



Appendix A. 

This supplement sets forth several results that appeared while the book 
was being prepared for press. Although a series of important results in the 
arithmetic theory of algebraic groups was discovered in the interim, a full, 
systematic exposition of these results would considerably exceed the scope 
of an appendix; yet, a proper balance between the Appendix and the main 
body of the book requires that we do more than simply list these results. 
Therefore we have decided to give a brief, conceptual exposition of two 
of the results, closely related to the problems handled in the book. The 
first of these presents finiteness theorems of a new sort, and the second is 
related to Platonov's conjecture on arithmeticity. 

5A.1. Finiteness theorems for discrete subgroups of semisimple 
groups having a quotient space of bounded volume 

In 54.6 we established that, for a semisimple algebraic Q-group G, any 
arithmetic subgroup I? of Gw is a lattice, i.e., is a discrete subgroup for 
which Gw/F has finite volume. We calculated the precise volume of Gw/F 
only for G = SL2. Until recently, such calculations existed only for split 
groups (Langlands [I]) and quasisplit groups (Lai [2]). Also, many natural 
quantitative questions about the volume of Gw/r were pending; in partic- 
ular, whether this volume can be arbitrarily small. Answers to many of 
these deep questions are found in Borel-Prasad [I] and Prasad [4], and will 
be discussed in this appendix. 

For G a simple group defined over R with rankR G > 1, it has long 
been known1 that there are only finitely many conjugacy classes of lattices 
I? c Gw for which the volume of Gw/G with respect to a given Haar mea- 
sure on Ga is bounded by some constant. Later Tits asked whether the 
analogous result holds for lattices I? in the groups of points GK of a simple 
algebraic group G over a non-Archimedean local field K ;  but in his formu- 
lation of the question only the constant bounding the volume of G K / r  was 
fixed, and it was allowed to vary K and the K-group G (under a certain 
"universal" definition of the Haar measure on GK). Put in this way, the 
question not only acquires a new meaning for lattices in real groups, but 
can also be generalized to lattices in products of real and padic groups (in 
particular, to S-arithmetic subgroups, cf. $5.4). This problem is studied 
for S-arithmetic subgroups in Borel-Prasad [I]. Before presenting the main 
results, we introduce some notation. 

Let G be a simple simply connected algebraic group over a number field 

' Cf. Wang H .  C .  Topics on totally discontinuous groups: Symmetric spaces. New York: 
Marcel Dekker , 1972, pp.460-472. 
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K ,  and let G' be a group isogeneous to G over K .  For v in vK, let p; 
denote the Haar measure on GLu (cf. §3.5), which is normalized as follows. 
For v in V: we require p;(I,) = 1, where I, is an Iwahori subgroup of 
GLU (cf. $3.4). For v in VZ, consider the group H = RKUIB(G1). Then 
GL, E Hw, and it suffices to determine the Haar measure p; on Hw. Let 
Ho be a @/R-form of H such that HoR is compact. (Such a group always 
exists.) Since the Lie algebras L(H) and L(Ho) are isomorphic over C, any 
invariant differential form of degree n = dim H on H corresponds to some 
form on Ho, and therefore any Haar measure on HR corresponds to a Haar 
measure on How (cf. $3.5). Then p; is normalized in such a way that the 
volume of How under the corresponding measure is 1. For any finite subset 
S of VK containing V:, let p$ denote the Haar measure on G$, which is 
the product of the p; for all v in S .  With this notation, we have 

THEOREM A l .  Fix a constant c > 0. There are only finitely many possi- 
bilities for choosing a number field K ,  a finite subset S of VK containing 
VZ, and (up to K-isomorphism) a K-group G' of absolute rank 2 2, such 
that there is an S-arithmetic subgroup I?' of G$ for which p$ (G',/rl) 5 c. 
Moreover, there are also only finitely many conjugacy classes of such I" in 
G$ . 

Theorem A.l is a finiteness theorem of a basically new type. Indeed, all 
the versions of finiteness theorems studied in the book assert the finiteness 
of certain groups (H1(K, G), Sh(G), GA(oo) \GA/GK, etc.), associated with 
an individual algebraic group G. Here the theorem deals with the finiteness 
of a certain class of objects (S-arithmetic subgroups having a quotient space 
with bounded volume) in arbitrary simple groups of rank 2 2. In other 
words, it proves not only that there are finitely many conjugacy classes of 
such subgroups in each particular group, but also that they occur only in 
a finite number of groups. 

The methods developed to prove Theorem A . l  also yield an interesting 
result on the uniform growth of the class numbers of simply connected 
simple algebraic groups of compact type. To formulate this result we intro- 
duce the following notation. Let S be a finite subset of vK containing V:, 
and let P, C G K ~  be a parahoric subgroup for each v in VK \ S. We say 
the collection P = ( P v ) u E V ~ \ S  is coherent if P, = Gou for almost all v in 
VK \S.  In this case U(S, P )  = Gs x n P, is an open subgroup of GA. 

V 6 V K \ S  

Now suppose that S = vZ, and let us write U(P) instead of u(v$, P )  for 
a coherent collection P .  Then Theorem 5.1 implies that the number c(P) 
of double cosets U(P) \ G A / G ~  is finite. 

THEOREM A2. Fix a constant C > 0. There are only finitely many options 
for a number field K ,  a simple simply connected K-group G of compact 

type, and a conjugacy class in GA, of coherent families P = (PV)vEvT of 

parahoric subgroups, such that c(P) 5 C 

Note that for an arbitrary lattice L defining a realization of G there is 
a coherent collection P of parahoric subgroups such that Gi(m,  C U(P). 

Then cl(GL) > c(P), and therefore Theorem A.2 yields 

COROLLARY. For any C > 0 there are a finite number of pairs (Gi, Li) 
(i = 1, . . . , d), consisting of a simple simply connected algebraic group 
Gi c GLnt defined over a number field Ki, and of a lattice Li c Kr' ,  
such that the following holds: If G c GL, is a simple simply connected 
algebraic group of compact type over a number field K ,  and L c K n  is 
a lattice for which cl(GL) 5 C, then, for suitable i E { 1,.  . . , d) ,  we have 
K = Ki, G 2 Gi over K ,  and Gi(oo) is isomorphic to a subgroup which is 

conjugate to G:,_, in GiA. 

In other words, there are only finitely many simple simply connected 
groups of compact type that have a realization with bounded class num- 
ber, and each such group has only finitely many essentially distinct such 
realizations. Theorem A.2 also establishes the existence of a system of 
intrinsic constraints, which "prohibit" almost all simple simply connected 
groups of compact type from having realizations with small class numbers 
(in particular, one-class realizations, cf. Theorem 8.4). It would be in- 
teresting to discover a purely arithmetic mechanism by which this works. 
Moreover, one would like to have a theorem analogous to Theorem A.2, for 
all semisimple groups, not only for simple simply connected ones. In this 
regard, we note that for orthogonal groups of positive definite quadratic 
forms the question of one-class realization is solved by the following theo- 
rem due to ~ feuf fe r :~  One-class positive definite quadratic forms in three 
or more variables exist only over a finite number of algebraic number fields; 
over each K there are only finitely many equivalence classes of such forms 
f for which the ideal s ( f )  has bounded norm. (s(f) is the ideal in the ring 
of integers OK of K ,  generated by the values of the corresponding bilinear 
form on the lattice 0%; in particular, the condition s (  f )  = OK picks out 
the primitive forms.) 

We discuss briefly some of the main points in the proofs of Theorems A. l  
and A.2. One of these is the formula given by Prasad [4] for computing 
the volume of ps(GS/r), where I? is a principal S-arithmetic subgroup, 
i.e., a subgroup of the form GK n ( n Pv), where ( P v ) V E V ~ \ S  is a 

71EVK\S 
coherent collection of parahoric subgroups. We give a general statement 

Pfeuffer, H. "Einklassige Geschlechter totalpositiver quadratischer Formen in totalree- 
len algebraischen Zahlkorpern," J. Number Theory 3 (1971), 371-411. 
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of this formula, omitting the definition of some constants allowing explicit 
description. Let L be the smallest extension of K over which G becomes 
an inner form if G has type other than 6D4. Also, let ml < . . . < m, be 
the exponents of the root system of G (cf. Bourbaki [4, Ch. VI,§1.11]). 

where DK (respectively DL) is the discriminant of K (respectively L), s is 
a constant that depends only on the inner type of G, r(G) is the Tamagawa 
number of G, and E is a constant that depends on the collection ofparahoric 
subgroups (PV)V,VK\S. 

Another fact used in the proofs is that actually r(G) = 1 (cf. p. 263), 
and therefore this factor may be omitted. Analyzing the formula in The- 
orem A.3 by means of various number-theoretic estimates, especially esti- 
mates for the discriminants of number fields, Bore1 and Prasad obtained 
the finiteness of triples (K ,  S, G) such that, for suitable GI isogeneous 
to G over K ,  there exists an S-arithmetic subgroup r1 c G$ for which 
pk(G$/rl) 5 c. The final step in the proof of Theorem A.l establishes 
the finiteness, for a given group, of the number of conjugacy classes of S- 
arithmetic subgroups having a quotient space of bounded volume. Here 
one uses the finiteness theorems for Galois cohomology and estimates of 
the indexes of S-arithmetic subgroups in their normalizers, obtained by 
appropriately generalizing results due to Rohlfs [3]. 

Note that, with some minor restrictions, most of the results in this section 
also hold for groups over global fields of positive characteristic. 

5A.2. Representations of groups with bounded generation 
Let r be a finitely generated abstract group. In this section we shall 

analyze representations of r exclusively over fields of characteristic 0,  and 
in most cases the ground field will be (C. Let Rn(r)  and Xn( r )  denote 
the variety of n-dimensional representations of I? and the variety of their 
characters, respectively. In 57.5 we discussed groups of finite representation 
type, i.e., groups satisfying 

(1) dim Xn( r )  = 0 for all n > 1. 

At present, the analysis of such groups is focused on proving Platonov's 
conjecture on arithmeticity (cf. p. 437); but, unfortunately, little progress 
has been made here so far. Nevertheless, all the known examples of groups 

satisfying (1) indeed come from S-arithmetic groups. Even for such groups, 
it is by no means easy to verify (I) ,  and the corresponding argument relies 
either on a positive solution of the congruence problem or on the super- 
rigidity results due to Margulis [6]. Neither of these methods, however, 
enables one to trace a connection between (1) and the structural prop 
erties of r .  Yet it is clear that without elucidating this connection it is 
impossible to progress very far in analyzing groups of finite representation 
type. One example of a structural approach towards verifying (1) is pre- 
sented in $7.5; namely, for r = SLn(Z) (n > 3) one can derive (1) from 
the fact that I' is boundedly generated by the set of elementary matrices 
(cf. Proposition 7.14). Recently Rapinchuk3 obtained an abstract version 
of this result; namely, he showed that (1) can be derived from the purely 
combinatorial property of bounded generation of I?. 

Recall that r is said to be a group with bounded generation of degree 
< t if there exist 71,. . . , yt in r such that = (yl) . . . (yt), where (yi) is 
the cyclic subgroup generated by yi. Let us also introduce the following 
condition: 

(2) 
ryb = r l / [ r l ,  rl] is finite, for any subgroup rl of I' of 
finite index. 

THEOREM A4. Let r be a group of bounded generation satisfying (2). 
Then dim Xn( r )  = 0 for all n > 1. 

Note that (2) is necessary for (1) to be satisfied. Let us also point out 
several corollaries of Theorem A.4. 

COROLLARY 1. Let r c GLn((C) be a fully reducible subgroup with bound- 
ed generation, satisfying (2). Then there exists g in GLn((C) such that 
9rg-l c GLn(K), for a suitable algebraic number field K .  

COROLLARY 2. Suppose G c GLn((C) is a simple algebraic W-group. If 
ranka G 2 2 and r c GR is a lattice which as an abstract group has 
bounded generation, then there exists a matrix g in GLn(W) such that 
grg-l c GLn(K) for a suitable algebraic number field K.  

The following result is crucial for the proof of Theorem A.4. 

PROPOSITION A l .  Let r be an abstract group having bounded generation 
of degree 5 t. Then, for any subgroup rl of r of finite index, the pro-p- 
completion rp) is an analytic pro-p-group (i.e., a compact Lie group over 
Q,) of dimension 5 t.  

Rapinchuk, A. S. ,  "Representations of groups with bounded generation," Dokl. Akad. 

Nauk SSSR 315 (1990), 536-540. 
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The proof is obtained by using one of the criteria for analyticity (cf. 
Lazard [I, p. 2061). 

As Tavgen [3] has noted, Proposition A.l implies that a group I' with 
bounded generation is linear if and only if there exists a subgroup rl of I' of 
finite index which is presidually finite for some prime p. Thus, Platonov's 
conjecture on arithmeticity, if true, would yield the following abstract char- 
acterization of arithmetic groups: if r has bounded generation, satisfies (2), 
and has a subgroup Fl of finite index which is presidually finite for some 
prime p, then I' is a group of arithmetic type. 

Proposition A.l implies that, for a suitable subgroup rl c F of finite 
index, the pro-pcompletion f'p) is an analytic pro-pgroup of the largest 
possible dimension. Then the corresponding Lie algebra g1 over Q, is 
independent up to isomorphism of the choice of a subgroup I'l of I' having 
the properties described above. We call g1 the Lie palgebra of I', and call 
dimq, g1 the analytic pdimension of I?, denoted by dim, I?. One may ask 
the following interesting question: For a linear group of finite width, is 
it true that dim, r is independent of p, for almost all p? 

Let us sketch the proof of Theorem A.4. As in the proof of Proposi- 
tion 7.14, it suffices to show that for any representation 

the set of traces X = { t r ~ ( y )  : y E I') consists entirely of algebraic 
numbers. It turns out that one can replace I' by any subgroup of finite 
index. 

LEMMA A l .  Let rl c I' be a subgroup of finite index, and let X1 = 

{ t r ~ ( y )  : y E rl }. Then the field Q(X) is an algebraic (even finite) 
extension of Q(X1). 

We have @(I?) c GL,(A), for a suitable finitely generated subring A of 
C. Then one uses the following result, whose proof is based on embeddings 
in locally compact fields (cf. Platonov [lo]). 

LEMMA A2. There exists a finite subset II of prime numbers such that, for 
each p in 11, there are infinitely many embeddings o1, 0 2  . . . (not necessarily 
distinct) of A in Zp such that oi(A) n oj(A) consists of algebraic numbers 
for i # j .  

Let us define ~ i :  I' 4 GLn(Zp) as the composite of Q with the embedding 
induced by oi. Let g be the Lie palgebra of I?. Then g = s 63 r, where 
t is the radical of g and 5 is semisimple. There are only a finite number 
(say, d) of inequivalent representations 7: 5 -+ g[,(Qp). Let us consider the 
representations el,  . . . , Q ~ + I .  Passing to a subgroup of finite index, we may 

assume without loss of generality that the images of Qi(r)  (i = 1 , .  . . , d + l )  
lie in the congruence subgroup GL,(Z,,p); hence the ~i extend to analytic 
representations &: f'(p) -+ GLn(Zp), and, moreover, f'(p) is a semidirect 
product S K R, where S and R are analytic pro-pgroups with Lie algebras 
5 and r respectively. Our setup implies that there are two indexes i, j in 
{ 1, .  . . , d + 1 } such that & and & induce equivalent representations of s; 
therefore, passing to a subgroup of finite index, we may assume that & 1s 
and & I s  are equivalent. In particular, tr &(x) = tr &(x) for all x in S .  
On the other hand, (2) implies that for any A: I' -+ GL,(C) the radical 
of the connected component Go of the algebraic group G, obtained as the 
closure of X(I'), is unipotent; therefore, again passing to a subgroup of 
finite index, we may assume that t r  ek(xy) = tr ek(s) for all x in S, y in 
R (k = i, j). But then tr &(x) = t r&(x) for all x in f'(p). In particular, 
oi(tr ~ ( y ) )  = oj(tr ~ ( 7 ) )  for each y in I?. Therefore, Lemma A.2 implies 
that tr ~ ( y )  is an algebraic number, as desired. 

Theorem A.4 gives a qualitative description of the set of all possible 
representations of I'. It turns out that for S-arithmetic subgroups with 
bounded generation one can give a complete description of these represen- 
tations. 

THEOREM A5. Let G be a simple simply connected algebraic group over 
an algebraic number field K, let S be a finite subset of vK containing 
VZ, and let I' be a Zariski-dense S-arithmetic subgroup of GK. Suppose 
Conjecture 9.2 (cf 59.1) holds for G over K. If I' has bounded generation, 
then for any representation Q: r -+ GL,(C) there exists a rational homo- 
morphism el:RKIq(G) -, GL,(C) such that @ and Q' coincide on some 
subgroup I?' of I' of finite index. 

COROLLARY 3. Under the assumptions of Theorem A.5, I' does not have 
any noncentral normal subgroups N of finite index such that I'lN is linear. 
In particular, (2) holds. 

There is an interesting connection between bounded generation of S- 
arithmetic subgroups and the congruence subgroup problem. Namely, sev- 
eral years ago the second author conjectured that for an S-arithmetic sub- 
group of a simple simply connected group, bounded generation should im- 
ply the finiteness of the congruence kernel. This has been proved in part 
by Rapinchuk4 and in full by Platonov and Rapinchuk.5 In this regard, 

Cf. Rapinchuk, A. S., "The congruence subgroup problem for arithmetic groups with 
bounded generation," Dokl. Akad. Nauk SSSR 314 (1990), 1327-1331. 

Cf. Platonov, V. P., and Rapinchuk, A. S . ,  "Abstract characterizations of arithmetic 
groups with the congruence subgroup property," Dokl. Akad. Nauk SSSR 319 (1991), 
1322-1327. 
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one naturally raises the following conjecture, now an important question 
of the theory of arithmetic groups: suppose I? is an S-arithmetic subgroup 
of a simple algebraic group G; if ranks G = EVES rankKv G > 2, then I? 
has bounded generation (or, in a weaker version, the profinite completion 
f' has bounded generation a s  a profinite group). 

Appendix B. Basic Notation 

K* (resp. K+)  - the multiplicative (resp. additive) group of a field K.  
VK - the set of all inequivalent valuations of the number field K.  
Vf( (resp. v:) - the subset of non-Archimedean (resp. Archimedean) 

valuations of VK. 
K, - the completion of K with respect to the valuation v in VK. 
0, - the ring of v-adic integers (for v in VfK). 
p, - the valuation ideal of 0,. 
U, - the group of v-adic units. 
0 - the ring of integers of K .  
O(S) - the ring of S-integers of K (for finite S c VK containing v:). 
wlv - an extension of a valuation. 
A - the ring of adeles. 
A(S) - the ring of S-integral adeles. 
A(w) - the ring of integral adeles. 
As - the ring of S-adeles. 
Af - the ring of finite adeles. 
As(T) - the ring of T-integral S-adeles (for T > S).  
JK - the group of ideles. 
J E  - the group of integral ideles. 
hK - the class number of K. 
Br(K) - the Brauer group of K .  
NLIK (respectively, TrLIK) - the norm (respectively, trace) in a finite 

extension L/ K .  
NrdDIK (respectively, n d D I K )  - the reduced norm (respectively, re- 

duced trace). 
F, - the field of p elements. 
Z (respectively, 0 ,  R, C, Qp) - the ring of integers (respectively, field 

of rational, real, complex, and padic numbers). 
An (respectively, Pn) - the n-dimensional affine (respectively, projec- 

tive) space. 
6, - the one-dimensional K-split torus. 
G, - the one-dimensional connected unipotent group. 
SL,(D), SU,(D, f )  - classical groups over skew fields. 
SL, (D) , SU, (D, f ) - their corresponding algebraic groups. 
RLIK - the restriction of scalars. 
X(G) - the group of characters of an algebraic group G. 
X*(G) - the group of cocharacters (one-parameter subgroups). 
R(T, G) - the root system of an algebraic group G with respect to a 

torus T.  
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W(T, G) - the Weil group of an algebraic group G with respect to a 
torus T.  

g = L(G) - the Lie algebra of an algebraic group G. 
U, - the one-dimensional unipotent subgroup corresponding to a root 

a in R(T, G). 
G, - the corresponding root subgroup. 
7 - the variety of maximal tori. 
B - the variety of Bore1 subgroups. 
R(r ,  G) - the variety of representations of a finitely generated group 

r in an algebraic group G. 
Rn(r)  - the variety of n-dimensional representations. 
Xn(I') - the variety of n-dimensional characters. 
T,(X) - the tangent space to a variety X at the point x. 
d, f - the differential of a morphism f at x. 
rankK G - the rank of G over K (K-rank). 
ranks G = rankKw G - the 5'-rank of G (for finite S C v K ) .  

v E S  
GK - the group of K-points of an algebraic K-group G. 
Go - the group of integral points. 
Go(s) - the group of S-integral points. 
G - the group of v-adic integral points relative to a local lattice 

L, c Kc. 
GA - the group of adeles. 
GA(,) - the group of integral adeles. 
Gi(,) - the group of integral adeles relative to a lattice L c Kn.  
GA(s) - the group of S-integral adeles. 

- the group of T-integral S-adeles. 
Gs = n GK,, G, = GV2. 

V E S  

cl(G) - the class number of G. 
cl(GL) - the class number with respect to the realization given by 

L c Kn. 
Gcl(G) - the class group of a semisimple algebraic group G of noncom- 

pact type. 
cl(a) - the class of an element a. 
gen(a) - the genus of an element a. 
fG(a) - the number of classes in the genus of a. 
Hi(G, A) - the i-th cohomology group (in the noncommutative case, 

the i-th cohomology set). 
Hi(L/K, G) = Hi(Gal(L/K), GL) - the i-th Galois cohornology group 

(set) of an algebraic K-group G with respect to a Galois exten- 
sion L/K. 

H'(K, G) = Hi(Gal(K/K), GK) (where K is the algebraic closure of 
K). 

*(G, A) - the i-th Tate cohomology group. 
Res - the restriction homomorphism. 
Cor - the corestriction homomorphism. 
lim - the projective limit. 
t 

lim - the inductive limit. 
3 

- the set of G-invariant elements of a G-module A. 
G(a) - the stabilizer of an element a under the action of G. 
Ga - the orbit of a. 
[XI - the cardinality of a set X.  
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torus, K-, 53 

approximation 
absolute strong, 250 
strong, 13, 250, 399 

in groups, criterion for, 427 
theorem, 427 
theorem for a field, 14 

weak, 13, 399 
in algebraic groups, 415 
theorem for a field, 14 

arithmetic subgroup, 171 
0-, 227 
S-, 175, 267, 268 

arithmetic topology, 555 
arithmeticity, conjecture on, 437 

Bartels' problem, 309 
Bartels' theorem, 492 
Bartels-Kitaoka theorem, 234 
Behr's theorem, 152 
birational isomorphism, 98 
B-N pair, 149 
Borel-Harish-Chandra theorem, 193 
Bore1 

measure, 159 
subgroups, 57 

Brauer group, 28 
Brauer-Hasse-Noether theorem, 38 
Bruhat decomposition, 60 
building, 149 

E. Cartan's theorem, 407 
Cartan decomposition, 150 
Cayley-Dickson parametrization, 403 
central isogeny, 62 
Centralizer theorem, 448 
Chebotarev Density Theorem, 9 
Chernousov's theorem, 387 
Chevalley base, 64 
Chevalley group, 65 



Chevalley's theorem, 99 
stronger version, 100 

class, 444, 449 
class group, 452 
class number, 2, 251, 440 

in the genus, 444, 448, 449 
of lattices in the full matrix algebra 

under conjugation, 465 
of a quadratic form, 447 
of an element, 448 

Closed Orbit Lemma, 99 
coboundary map, 23 
cohomological dimension, 340 
cohomology, 16 

of adele groups, 297 
of algebraic groups, 71 
continuous, 20 
Galois, 21 
of groups of v-adic integral points, 292 
non-abelian, 21 
real, 320 
Tate, 300 
unramified, 294 

commensurability subgroup, 206 
compact type, 205 
compactly presented group, 152 
compactness, criterion for 

of GA/GK, 260 
of G R / G ~ ,  207 

completion, 3 
congruence 

kernel, 555 
subgroup, 31, 134, 172, 553 
subgroup conjecture (of Serre), 556 
subgroup problem, 553 
theorem, 525 
topology, 555 

connected component, 51 
continuous cohomology, 20 
convergence coefficients, 261 
corestriction map, 20 

decomposition 
Bruhat, 60 
Cartan, 150 
Iwasawa, for GL,(W), 129 

Index 

Iwasawa, theorem, 131 
Jordan, 52 

additive, 52 
Levi, 58 
polar, 124, 126 

decomposition group, 6 
degree 

of an algebraic group, 48 
residue, 5 

Density Theorem 
Borel, 205 
Chebotarev, 9 

diagonalizable algebraic group, 52 
Dieudonne' determinant, 39 
differential form, 165 

integrating, 165 
invariant, 165 

Dirichlet unit theorem, 209 
distinguished vertex, 66 
dominant morphism, 96 

Eichler's theorem, 38 
unitary version, 360 

Eisenstein polynomial, 9 
exponential map, 116 

truncated, 56 
extension 

K-adequate, 309 
totally ramified, 5 
totally real, 229 
unramified, 5 

field 
algebraic number, 1 
of definition of an algebraic variety, 96 
local, 5 

non-archimedean, 5 
residue, 5 
splitting, 27, 53 
of type (F), 316 
Weak approximation theorem for a ,  14 

finite presentability of S-arithmetic 
groups, 272 

finiteness theorem for the orbits of arith- 
metic groups, 193 

Index 

forms 
differential, 165 
K-forms of algebraic groups, classification 
of, 75 

inner, 66 
i~tegrating differential, 165 
invariant differential, 165 
Killing, 51 
LIK-, 67 
outer, 66 

fractional ideals, 2 
Frobenius automorphism, 6 
fundamental 

domain, 163 
group, 63 
set, 164, 189, 193, 253, 267 

Galois cohomology, 21 
generalized Dirichlet's theorem, 276 
generalized Siege1 set, 224 
genus, 444, 449 
genus problem, 494 

in arithmetic groups, 494 
for integral representations, 504 

Grothendieck's problem, 434 

group 
absolutely simple, 62 
adele, see d e l e  group 
algebraic, 47 

character of, 52 
defined over K ,  see group, K- 
classification of semisimple groups, 63 
of cocharacters, see one-parameter sub- 
groups 

of compact type, 228 
compactly presented, 152 
conjugacy separable, 502 
decomposition, 6 
ideal class, 1, 2 
inertia, 10 
isogeneous, 56 
K-, 49 
K-anisotropic, 65 
K-isotropic , 65 
of mixed type, 228 
of noncompact type, 228 

orthogonal, 80 

profinite, 137 

p r e p ,  138 
ramification, 10 

reductive, 58 

self-adjoint, 124 

semisimple, 58 

simple, 62 

special linear, 78 

special unitary, 84 

spinor, 82 

of S-units, 267 

symplectic, 80 
of type (F), 316 

unimodular, 160 
unitary, 84 

of units, 171 

with bounded generation, 203 

Haar measure, 159 

on a finite direct product, 160 
Harish-Chandra's theorem, 183 

Hasse norm principle, 15, 307 

Hasse norm theorem, 308 
Hasse principle, 284, 285 

for cohomology of arithmetic subgroups of 
simply connected groups, 491 

first obstruction to, 309 

for simply connected groups, 286 

strong, 347 

for tori, 307 

total obstruction to, 311 
weak, 347 

Hasse-Witt invariant, 349 

Hensel's lemma, 143 
Hermite's theorem, 9 
Hilbert class field, 443 
Hilbert's Theorem 90, 70 
Hochschild-Serre spectral sequence, 19 

for non-Abelian cohomology, 25 



ideal class group, 1, 2 
idele topology, 12 
ideles, 10 

group of, 11 
integral, 12 
principal , 12 
S-integral, 12 
special, 12 

index, 27 
inertia group, 10 
inflation map, 19 
inner form, 66 
invariant 

differential form, 165 
of a division algebra, 29 
HasseWitt, 349 
measure on a quotient space , 162 
of a simple algebra , 29 

Inverse Function Theorem, 110 
inverse limit, 137 
inverse system, 137 
involution, 83 

of the first kind, 83 
of the first type, 85 
of the second kind, 83 
of the second type, 85 

isogeny, 56, 62 
Iwahori subgroup, 148 
Iwasawa decomposition for GLn(IW), 129 
Iwasawa decomposition theorem, 131 

Jordan decomposition, 52 

Killing form, 51 
Kneser's theorem, 462 
Kneser-Tits conjecture, 406 
Krasner's lemma, unitary version, 364 

Index 

Landherr's theorem, 359 
Lang's isogeny theorem, 290 
Lang's theorem, 281 
lattice (on a vector space), 42 

local, 42 
in a locally compact topological 
group, 221 

criterion for free, 442 
Levi decomposition, 58 
Lie algebra 

of an algebraic group, 51 
of an analytic group, 116 

Lie subgroup, 117 
local field, 5 

non-archimedean, 5 
local lattice, 42 
local-global principle, 14, 285; see also 
Hasse principle 

logarithmic map, 116 
truncated. 56 

Mahler's criterion, 211 
Margulis' conjecture, 511 
Margulis' theorem. 517 - 
Matsumoto's theorem, 139 
measure, 159 
metaplectic 

kernel, 557 
conjecture, weak, 532, 560 

Meyer's theorem, 342 
Minkowski's lemma, 232, 493 
Minkowski-Hasse Theorem, 14 
mixed type, 205 
module 

of an automorphism, 159 
of a group, 160 

morphism 
of algebraic groups, 48 
dominant, 96 
K-, 49 

Mostow's theorem, 124, 127 
multidimensional conjugacy classes, 101 
multinorm principle, 313 
multinorm torus, 54 
multiplicative arithmetic method, 536 

Index 

Nakayama-Tate theorem 
global version, 283 
local version, 282 

natural structure, 285 
Noether's theorem, 143 
non-abelian cohomology, 21 
non-singular points, see simple points 
noncompact type, 205 
norm torus, 54 
normal subgroups, standard description 
of, 537 

oneparameter subgroups, 54 
order, 42 

maximal, 42 
orthogonal group, 80 
Ostrowski's theorem, 3 
outer form, 66 

parabolic subgroup, 57 
standard, 62 

parahoric subgroup, 149 
Platonov's conjecture 

on projective simplicity, 510 
on arithmeticity, 437 

Platonov's theorem, 407, 414, 426 
Platonov-Bondarenko-Rapinchuk theo- 
rem, 487 

Platonov-Yanchevskii theorem, 30 
polar decomposition, 124, 126 
Prasad-Margulis theorem, 516 
Prasad-Raghunathan theorem, 35, 411, 561 
pro-pgroup, 138 
product formula, 12 
product, restricted topological, 161 
profinite group, 137 
projective limit, 137 
projective system, 137 
pseudobase, 42 

Q 
quasisplit, 58 
quotient varieties, 52 

radical, 58 
unipotent, 58 

ramification group, 10 
ramification index, 5 
rank, K-, 65 
Rapinchuk theorem, 569 
real cohomology, 320 
Realization Theorem, 452 
reduced norm, 27 
reduction, 142 

in arbitrary groups, 189 
in GLn(IW), 175 
map, 143 
smooth, 142 
theory, 175 

for S-arithmetic subgroups, 266 
reductive group, 58 
relative root systems, 65 
residue 

degree, 5 
field, 5 
skew field, 29 

restriction 
map, 19 
of scalars, 49 

Riehm's theorem, 114 
Rohlf's theorem, 490 
root 

subgroup, 353, 547 
system, 59 

Schur multiplier, 17, 312 
self-adjoint group, 124 
semisimple group, 58 
Serre congruence subgroup conjecture, 556 
Shafarevich-Tate group, 284, 323 
Shapiro's Lemma, 20 

noncommutative version, 25 
Siege1 set, 177, 215 
simple group, 62 
simple point of reduction, 142 
simple points, 97 
simply connected, 62 
singular points, 97 
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Skolem-Noether theorem, 27 
special covering, 76 
special linear group, 78 
special unitary group, 84 
spinor group, 82 
splitting field, 27, 53 
stabilizer, 44, 45 
standard description of normal 
subgroups, 537 

standard parabolic subgroup, 62 
Steinberg's theorem, 338, 342 
Strong approximation theorem, 427 

for a field, 14 
strong Hasse principle, 347 
(Sylow) pro-q-subgroup, 139 
symplectic group, 80 
system of simple roots, 59 

table of the centers of simple groups, 64 
Tamagawa measure, 261 
Tamagawa number, 262, 266 
TanahAr t in  problem, 27 
tangent space, 97 
Tate cohomology, 300 
Tate's theorem, 302, 307, 308 
theorem on the stabilizer, 444 
theorems on finiteness of orbits, 268 
Tits 

index, 66 
system, 149 
theorem, 406 

topology 
adele, 11 
arithmetic, 555 
congruence, 555 
idele, 12 
v-adic, 108 

toric varieties, 104 
torus 

K-anisotropic, 53 
multinorm, 54 
norm, 54 
quasisplit, 55 

transgression map, 19 
truncated exponential map, 56 
truncated logarithmic map, 56 
twisting, 23, 68 

uniformizing parameter, 5, 29 
unimodular group, 160 
unipotent radical, 58 
unirational K-varieties, 98 
unitary group, 84 
universal covering, 63 

defined over K ,  76 
unramified cohomology, 294 

v-adic topology, 108 
valuation, 2 

padic, 2 
archimedean, 2 
complex, 4 
equivalent, 3 
extension of, 4 
logarithmic, 2 
non-archimedean, 2 
normalized, 12 
real, 4 
ideal, 5 
ring, 5 

variety 
of Bore1 subgroups, 106 
defined over K ,  96 
maximal toric. 104 
of n-dimensional characters, 435 
rational, 98 
of representations , 103 
smooth, 98 
toric, 104 

vertex, distinguished, 66 
volume, criterion for fi~.ite 

of GAIGK,  260 
of Ga/Gz, 213 

Wang's theorem, 38 
Weak approximation theorem for a field, 14 
Wedderburn's theorem, 288 
Weyl group, 59, 65, 149 
Whitehead group, reduced, 27 
Whitney's theorem, 119 
Witt index, 82 
Witt's theorem, 92, 545 


