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This Volume contains account of the invited lectures at the International 
Symposium on Algebraic Number Theory in Commemoration of the Centennary 
of the Birth of Professor Teiji TAKAGI held at the Research Institute of Mathe- 
matical Sciences (RIMS), the University of Kyoto, from March 22 through March 
29, 1976. This Symposium was sponsored by the Taniguchi Foundation and the 
Japan Society for Promotion of Sciences and was cosponsored by the RIMS, the 
Mathematical Society of Japan and the Department of Mathematics of the Faculty 
of Science of the University of Tokyo. I t  was attended by some 200 participants, 
among whom 20 from foreign countries. 

The Organizing Committee of this Symposium consisted of 6 members: 
Y. AKIZUKI, Y. IHARA, K. IWASAWA, S. IYANAGA, Y. KAWADA, T. KUBOTA, who 
were helped in practical matters by 2 younger mathematicians T. IBUKIYAMA and 
Y. MORITA at the Department of Mathematics of the University of Tokyo. The 
oldest member of the Committee. Akizuki. is a close friend of Mr. T. TANIGUCHI, 
president of the Taniguchi Foundation, owing to whose courtesy a series of Inter- 
national Symposia on Mathematics is being held, of which the first was that on 
Finite Groups in 1974, this symposium being the second. The next oldest member, 
Iyanaga, was nominated to chair the Committee. 

Another International Symposium on Algebraic Number Theory was held in 
Japan (Tokyo-Nikko) in September. 1955. Professor T. TAKAGI (1  875-1960), 
founder of class-field theory, attended it as Honorary Chairman. During the years 
that passed since then, this theory made a remarkable progress. to which a host 
of eminent younger mathematicians, in Japan as well as in the whole world, con- 
tributed in most diversified ways. The actual date of the centennary of the birth 
of Professor Takagi fell on April 25. 1975. The plan of organizing this Sym- 
posium was then formed to commemorate him and his fundamental work and to 
encourage at the same time the younger researchers in this country. 

We are most thankful to the institutions named above which sponsored or 
cosponsored this Symposium as well as to the foreign institutions such as the 
Royal Society of the United Kingdom. the National Science Foundation of the 
United States, the French Foreign Ministry and the Asia Foundation which 
provided support for the travel expenses of some of the participants. We appre- 
ciate also greatly the practical aids given by Mrs. A. HATORI at the Department 
of Mathematics of the University of Tokyo, Miss T. YASUDA and Miss Y. SHICHIDA 
at the RIMS. 

In spite of all these supports, we could dispose of course of limited resources, 
so that we were not in a position to invite all the eminent mathematicians in this 
field as we had desired. Also some of the mathematicians we invited could not 



come for various reasons. (Professor A. WEIL could not come because of his ill 
health at that time, but he sent his paper, which was read by Professor G. SHIMURA.) 

The Symposium proceeded in 10 sessions, each of which was presided by 
senior chairman, one of whom was Professor OLGA TAUSSKY-TODD who came from 
the California Institute of Technology. 

In addition to delivering the lectures which are published here together with 
some later development, we asked the participants to present their results in 
written form to enrich the conversations among them at the occasion of the 
Symposium. Thus we received 32 written communications, whose copies were 
distributed to the'participants, some of whom used the seminar room which we 
had prepared for discussions. 

We note that we received all the papers published here by the summer 1976, 
with the two exceptions: the paper by Professor TATE and the joint paper by 
Professors KUGA and S. IHARA arrived here a little later. We failed to receive 
a paper from Professor B. J. BIRCH who delivered an interesting lecture on 
"Rational points on elliptic curves" at the Symposium. 

We hope that the Symposium made a significant contribution for the advance- 
ment of our science and should like to express once again our gratitude to all the 
participants for their collaboration and particularly to the authors of the papers 
in this Volume. 

Tokyo, June 1977 
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Trigonometric Sums and Elliptic Functions 

J.W.S. CASSELS 

Let be a p-th root of unity, where p > 0 is a rational prime and let x be a 
character on the multiplicative group modulo p. Suppose that I is the precise or- 
der of % :  so p = 1 (mod I). We denote by 

the corresponding "generalized Gauss sum". It is well-known and easy to prove 
that rL  E Q(x) and there are fairly explicit formulae for r L  in terms of the decom- 

position of the prime p in Q(x) : these are the basis of the ori,@nal proof of Eisen- 
stein's Reciprocity Theorem. 

When the values of x are taken to liz in the field C of complex numbers and E 
is given an explicit complex value, say 

then .r is a well-defined complex number of absolute value p112. It  is therefore 
meaningful to ask if there are any general criteria for deciding in advance which of 
the I-th roots of the explicitly given complex number rL  is actually the value of r. 

The case I = 2 is the classical "Gauss sum". Here r2 = (- l)(p-n/2p and Gauss 

proved that (2) implies that r = pl/'(p = l(mod 4)), r  = ip1/2(p -l(mod 4)), 
where pl/Qenotes the positive square root. And this remains the only definitive 
result on the general problem. 

The next simplest case, namely I = 3 was considered by Kummer. We de- 
note the cube root of 1 by O.I = (- 1 + (- 3)1/3)/2. There is uniqueness of fac- 
torization in Z[o] : in particular p = &&' where we can normalize so that 6 = (I + 
3m(- 3)'12) j2 with I, m E Z and I = 1 (mod 3). We have 



where the sign of m is determined by the normalization 

%(r) F r@-"/3 (mod (3) . ( 4 )  

Kummer evaluated r for some small values of p. He made a statistical conjecture 

about the distribution of the argument of the complex number r (with the normali- 
zation (2)). Subsequent calculations have thrown doubt on this conjecture and the 
most probable conjecture now is that the argument of 7 is uniformly distributed. 

Class-field theory tells us that the cube root of & lies in the field of &-division 
values on the elliptic curve 

which has complex multiplication by ao] : and in fact the relevant formulae were 
almost certainly known to Eisenstein at the beginning of the 19th century. Let d 

be a d-th division point of (5). Then in an obvious notation 

Hence if S denotes a +set modulo 6 (i.e. the s, US, w2s (s E S) together with 0 are a 
complete set of residues (mod &)) we see that P3, = 1/d2, where 

We can normalize S so that 

and then P,(d) = P(d) depends only on d. 
In order to compare with the normalization (2) we must choose an embedding 

in the complex numbers and take the classical parametrization of (5) in terms of the 
Weierstrass 9-function. Let B be the positive real period and denote by do 
the &-division point belonging to B/d. Then the following conjecture has been 
verified numerically for all p < 6,000 : 

Conjecture (first version) 

Here p1I3 is the real cube root. 
This conjecture can be formulated in purely geometrical terms independent 

of the complex embeddings. Let d, e be respectively 6- and &'-division points 
on (5). The Weil pairing gives a well-defined p-th root of unity 

with which we can construct the generalized Gauss sum r = T ( { )  as in (1). 
With this notation the conjecture is equivalent to 

Conjecture (second version) 

dE(d, el) = {~(3))'pd{P(d))~P'(e) , 

where P'(e) is the analogue for e of P(d). 

The somewhat unexpected appearance of the factor ( ~ ( 3 ) ) ~  in the second 
version is explained by the fact that e2="P is not the Weil pairing of the points 
with parameters 816 and 8/&'. 

We must now recall Kronecker's treatment of the ordinary Gauss sum. 
Let 1, be the unique character of order 2 on the multiplicative group of residue 
classes of Z modulo the odd prime p? so 

is the ordinary Gauss sum and, as already remarked, it is a straightforward 
exercise to show that 

Consider also 

Then also 

and so 

If we make the normalization (2) it is easy to compute the argument of a, 
since it is a product. Hence we can determine the argument of r, if we can 
determine the ambiguous sign & in (16). But (16) is a purely algebraic 
statement and we can proceed algebraically. The prime p ramifies completely 

in Q(E). The extension p of the p-adic valuation has prime element 1 - 4 
and (1 - E)-'/2'p-"r2 and (1 - c)-'/2'P-"a are both p-adic units. As Kronecker 
showed, it is not difficult to compute their residues in the residue class field 



Fp and so to determine the sign. 
If, however, we attempt to follow the same path with (11) we encounter 

a difficulty. There are two distinct primes 6 and 6' of Q(o). The prime cz 
ramifies completely in the field of the 6-division points and so if we work with 

an extension of the 6-adic valuation there is little trouble with P(d). On the 
other hand, P'(e) remains intractable. Thus instead of obtaining a proof of 
(11) we obtain merely a third version of the conjecture which works in terms 
of the elliptic curve (5) considered over the finite field Fp of p elements and 
over its algebraic closure F. To explain this form of the conjecture we must 
recall some concepts about isogenies of elliptic curves over fields of prime 
characteristic in our present context. 

We can identify F, with the residue class field Z[o]/6. Then complex 
multiplication by the conjugate 3' gives a separable isogeny of the curve (5) 
with itself. If X = (X, Y) is a generic point of (5) we shall write this isogeny 
as 

-, 
W 

(X, Y) = X --+ 6'X = x = ( x ,  y) . (17) 

The function field F(X) is a galois extension of F(x) of relative degree p. The 
galois group is, indeed, cyclic namely 

where e runs through the kernel of (17) (that is, through the 6'-division points). 
The extension F(x) /F(x)  is thus Artin-Schreier. As Deuring [3] showed,. 
there is an explicit construction of F(X) as an Artin-Schreier extension. Since 
we are in characteristic p, there is by the Riemann-Roch theorem a function 

f(X) whose only singularities are simple poles at the p points of the kernel of 
(17) and which has the same residue (say 1) at each of them. Then 

but 

since otherwise it would be a function of x whose only singularity is a simple 
pole. 

For any e in the kernel, the function f(x + e) enjoys the same properties 

as f(x), and so 

where 

Clearly 

and so a(e) gives a homomorphic map of the kernel of d' into the additive 

group of F. This homomorphism is non-trivial, by (20). 
Following Deuring we normalize the residue of f(X) at the points of the 

kernel so that near the "point at infinity" it behaves like y / x  (x = 6'X). Then 

where F(x) can be given explicitly and A is the "Hasse invariant". Given F(x) 
the roots of this equation are f(X) itself and its conjugates 

In particular 

All the above applies generally to an inseparable isogeny with cyclic kernel 
of an elliptic curve with itself. In our particular case 

This implies the slightly remarkable fact that one third of the points of the 
kernel are distinguished by the property that 

We now can carry through the analogue of Kronecker's procedure. If d 
is a 6-th division point the extension Q(o, d)/Q(w) is completely ramified. A 
prime element for the extended valuation p is given by p/R where (2 ,  p )  are 
the co-ordinates of d. We extend p to a valuation !@ of the algebraic closure 
of Q. Let e be a 6'-division point and let its reduction modulo !@ belong to 
a(e) E F in the sense just described. Then it is not difficult to see that the 

statement that is the Weil pairing of d and e is equivalent to the statement 

that the p-adic unit 

reduces to a(e) modulo p. 



We are now in a position to enunciate the third version of the conjecture. 
We denote the co-ordinates of e by (X(e), Y(e)). 

Conjecture (third version). Let S be a 113-set nzodulo p satisfying (8) 

and let e be a point o f  the kernel of the inseparable isogeny (17). Suppose 
that (28) holds. Then 

This is, of course an equation in F .  It is, in fact the version of the con- 
jecture which was originally discovered. The value of a(e) determines e uniquely 
and so determines its co-ordinates X(e), Y(e). There is therefore no ambiguity 
in considering them as functions of a ,  say X(a), Y(a) where ap- '  = A . If we 
had a really serviceable description of X(a) in terms of a then one could 
expect to prove the conjecture. The author was unable to find such a des- 
cription but did obtain one which was good enough for computer calculations. 
Inspection of the results of the calculation suggested the third formulation of 
the conjecture: the other two formulations were later. Indeed the calculations 
suggested a somewhat stronger conjecture which will now be described. 

Consideration of complex multiplication on (5) by the 6-th roots of unity 
show easily that a-'X(a) depends only on aG. Call it Xo(a6). Then calculation 
suggests : 

Conjecture (strong form) 

where the product is over all roots ,3 of  

Even if my conjectures could be proved, it is not clear whether they would 
contribute to the classical problem about r ,  namely whether or not its argument 
is uniformly distributed as p runs through the primes = 1 (mod 6). Also it 
should be remarked, at least parenthetically, that in his Cambridge thesis John 
Loxton has debunked the miraculous-seeming identities in [ 2 ] .  
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Kummer's Criterion for Hurwitz Numbers 

J. COATES and A. WILES 

Introduction 

In recent years, a great deal of progress has been made on studying the 
p-adic properties of special values of L-functions of number fields. While this 
is an interesting problem in its own right, it should not be forgotten that the 
ultimate goal of the subject is to use these special values to study the arithmetic 
of the number fields themselves, and of certain associated abelian varieties. 
The first result in this direction was discovered by Kummer. Let Q be the 
field of rational numbers, and c(s) the Riemann zeta function. For each even 
integer k > 0, define 

<*(k) = (k - 1) ! (2;~)-~5(k)  . 

In fact, we have <*(k) = (-l)1+k/2Bk/(2k), where B,  is the k-th Bernoulli 
number, so that c*(k) is rational. Let p be an odd prime number. Then it 

is known that i"(k) (1 < k < p - 1) is p-integral. Let n be an integer 2 0 ,  
and ,up,+, the group of pn+l-th roots of unity. Let F ,  = Q(p,,+J, and let R, 
be the maximal real subfield of F,. We give several equivalent forms of 
Kummer's criterion, in order to bring out the analogy with our later work. 

By a ZlpZ-extension of a number field, we mean a cyclic extension of the 
number field of degree p. 

Kummer's Criterion. At least one o f  the numbers <*(k) (k even, 1 < k 
< p - 1) is divisible by p i f  and o n l ~  if  the following equivalent assertions are 
valid:- (i) p divides the class number o f  F,;  (ii) there exists an unramified 

ZlpZ-extension o f  F, ; (iii) there exists a Z/pZ-extension of R,, which is un- 

ramified outside the prime o f  R, above p, and which is distinct from R,. 

A modified version of Kummer's criterion is almost certainly valid if we 

replace Q by an arbitrary totally real base field K (see [3] for partial results 
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in this direction). This is in accord with the much deeper conjectural relation- 
ship between the abelian p-adic L-functions of K and certain Iwasawa modules 
attached to the cyclotomic 2,-extension of K(p,). 

When the base field K is not totally real, the values of the abelian L- 
functions of K at the positive integers do not seem to admit a simple arithmetic 
interpretation, and it has been the general feeling for some time that one should 
instead use the values of Hecke L-functions of K with Grossencharacters of 

type (A,) (in the sense of Weil [15]). In the special case K = Q(i), this idea 
goes back to Hurwitz [4]. Indeed, let K be any imaginary quadratic field with 
class number 1, and 8 the ring of integers of K. Let E be any elliptic curve 

defined over Q, whose ring of endomorphisms is isomorphic to 8. Write S 
for the set consisting of 2, 3, and all rational primes where E has a bad re- 
duction. Choose, once and for all, a Weierstrass model for E 

such that g,, g, belong to 2 ,  and the discriminant of (1) is divisible only by 
primes in S. Let p(z) be the associated Weierstrass function, and L the period 
lattice of p(z). Since 0 has class number 1, we can choose 9 E L such that 
L = 98. As usual, we suppose that K is embedded in the complex field C, 
and we identifqr 8 with the endomorphism ring of E in such a way that the 
endomorphism corresponding to a! E 0 is given by [(z) ++ c(a!z), where ((2) = 

(p(z), pt(z)). Let + be the Grossencharacter of E as defined in § 7.8 of [14]. 
In particular, + is a Grossencharacter of K of type (A,) ,  and we write L(+k, S) 

for the primitive Hecke L-function of qk for each integer k > 1. It can be 
shown (cf. [2]) that P k L ( q k ,  k) belongs to K for each integer k 1. Let w 
be the number of roots of unity in K. In the present paper, we shall only be 
concerned with those k which are divisible by w. In this case, Q-kL(+k, k) is 
rational for the following reason. If k G 0 mod w, we have qk(a) = a k ,  where 
a is any generator of the ideal a. Then, for k > 4, 

( 2 )  L k  k) = ( k  - 1 ! L (  k) (k G 0 mod w) 

is the coefficient of zk-?/(k - 2)! in the Laurent expansion of p(z) about the 
point z = 0. A different argument has to be used to prove the rationality of 
(2) in the exceptional case k = w = 2. 

It is natural to ask whether there is an analogue for the numbers (2) of 
Kummer7s criterion. Such an analogue would provide concrete evidence that 

the p-adic L-functions constructed by Katz [6], [7], Lang [8], Lichtenbaum [9], 
and Manin-Vishik [lo] to interpolate thz L*(qk, k) are also related to Iwasawa 
modules. A first step in this direction was made by A. P. Novikov [ I l l .  
Subsequently, Novikov7s work was greatly improved by G. Robert [12]. Let 

p be a prime number, not in the exceptional set S, which splits in K. In this 

case, it can be shown that the numbers 

( 3 )  L*(+k, k) (1 < k < p - 1, k - Omodw) 

are all p-integral. Let p be one of the primes of K dividing p. For each 

integer n > 0, let 3, denote the ray class field of K modulo pn+l .  Then 

Robert showed that the class number of !Y$ is prime to p if p does not divide 
any of the numbers (3). In the present paper, we use a different method from 
Robert to prove the following stronger result. 

Theorem 1. Let p be a prime number, not in S, which splits in K. 
Then p divides at least one of the numbers (3) if and only if there exists a 
Z/pZ-extension of 'B,, which is unramified outside the prime of %, above p, 
and which is distinct from 8,. 

Since this paper was written, Robert (private communication) has also proven 
this theorem by refining his methods in [12]. 

As a numerical example of the theorem, take K = Q(i), and E the elliptic 
curve y G  4x3 - 4x. Then S = {2,3). Define a prime p = 1 mod 4 to be 

irregular for Q(i) if there exists a ZIpZ-extension of %,, unramified outside the 
prime above p, and distinct from '93,. It  follows from Theorem 1 and Hunvitz's 
table in [4] that p = 5, 13, 17, 29, 37, 41, 53 are regular for Q(i). On the other 

hand, p = 61, 2381, 1162253 are irrekglar for Q(i), since they divide L*(pP6, 36), 
L*(.IG,~O, 40), L * ( I , ~ ~ ~ ,  48), respectively. 

For completeness, we now state the analogue, in this context, of assertions 
(i) and (ii) of Kummer's criterion. Again suppose that p is a prime, not in 

S, which splits in K, say (p) = p p .  Put r = + ( p ) :  so that ;c is a generator 

of p. For each integer n 0, let E,, be the kernel of multiplication by zn 

on E.  Put F = K(E,). Thus iF/ K is an abelian extension of degree p - 1. 

By the theory of complex multiplication, 9 contains B,, and [ F :  %,I = w. 
Let d be the Galois group of FIB,, and let x : J -+ ( Z / P Z ) ~  be the character 
defined by uu = ~ ( o ) u  for all o s J and u E EI .  Let E ( F )  be the group of 
points of E with coordinates in F. If A is any module over the group ring 
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Z,[J], the ~ ~ - t h  component of A means the submodule of A on which J acts 
via xk. Consider the Z,[il]-module E(F) / ; rE(F) .  Since E,, f l  E ( F )  = E, 
(because Qp(E=,)/Qp is a totally ramified extension of degree p(p - I)), we can 
view E, as a submodule of E(P),/;rE(S). By the definition of 1, E_ lies in 
the %-component of E(.F)/zE(S). Let LU denote the Tate-Safarevic group of 
E over 9, i.e. UI is defined by the exactness of the sequence 

0 + UI + H 1 ( 3 ,  E) - H1(.Fa7 E) > 
all 4 

where the cohomology is the Galois cohomology of commutative algebraic groups 
(cf. [13]) ; here g runs over all finite primes of 9, and 9, is the completion 
at g. Let UI(lc) denote the z-primary component of LLI. 

Theorem 2. Let p be a prime number, not in S, which splits in K. Then 
the following two assertions are equivalent:- (i) there exists a Z/pZ-extension 
of %,, unramified outside the prime above p. and distinct from 8,; (ii) either 
the %-component of LU(r) is non-trivial, or the pcomponent of E ( F ) / z E ( F )  is 
strictly larger than E,. 

For brevity, we do not include the proof of Theorem 2 in this note. 
However, the essential ingredients for the proof can be found in [2]. 

Since the symposium, we have succeeded in establishing various refinements 
and generalizations of Theorem 1. These yield deeper connexions between the 
numbers L*(,,hk, k) (k I), and the arithmetic of the elliptic curve E. In 
particular, the following part of the conjecture of Birch and Swinnerton-Dyer 
for E is proven in [2] by these methods. 

Theorem 3. Assume that E is defined over Q,  and has complex multi- 
plication by the ring of integers of an imaginary quadratic field with class 
number 1. If E has a rational point of infinite order, then the Hasse-Weil 
zeta function of E over Q vanishes at s = 1. 

In particular, the theorem applies to the curves y' = x3 - Dx, D a non- 
zero rational number, which were originally studied by Birch and Swinnerton- 
Dyer. These curves all admit complex multiplication by the ring of Gaussian 
integers. 

Proof of Theorem 1. This is divided into two parts. In the first part, 
we use class field theory to establish a Galois-theoretic p-adic residue formula 
for an arbitrary finite extension of K .  The arpments in this part have been 
suggested by [I]  (see Appendix I), where an analo,oous result is established for 

totally real number fields. We then combine this with a function-theoretic p- 

adic residue formula, due to Katz and Lichtenbaum, for the p-adic zeta function 
of !X0/K. This then yields Theorem 1. 

We use the following notation throughout. Let K be any imaginary quadratic 

field (we do not assume in this first part of the proof that K  has class number 
I), and F  an arbitrary finite extension of K. Put d = [ F :  K]. Let p be an 

odd rational prime satisfying (i) p does not divide the class number of K, and 
(ii) p splits in K .  We fix one of the primes of K lying above p, and denote 

it by p. Write 9 for the set of primes of F  lying above p. 

We now define two invariants of F / K  which play an essential role in our 
work. The first is the p-adic regulator R, of FIK.  Let Q, be the field of p- 

adic numbers, and C, a fixed algebraic closure of Q,. Let log denote the 

extension of the p-adic logarithm to the whole of C, in the manner described 
in 5 4 of [5] .  Denote by $,, . . ., $, the distinct embeddings of F  into C,, 
which correspond to primes in Y. There are d of these embeddings because 

the sum of the local degrees over Q, of the primes in Y is equal to d, because 
p splits in K .  Let G be the group of global units of F. Since F  is totally 

imaginary, the 2-rank of G modulo torsion is equal to d - 1. Pick units 

E, ,  . , E,- ,  which represent a basis of B modulo torsion, and put E ,  = 1 + p. 

We then define R, to be the d x d determinant 

Since the norm from F  to K  of an element of 8 is a root of unity, and the 

logarithm of a root of unity is 0, it is easy to see that, up to a factor & 1, 
R, is independent of the choice of E , ,  . . , r,-,, and defines an invariant of F /  K. 
The second quantity that we wish to define is the p-component J ,  of the relative 
discriminant of F / K .  Let d F I K  be the discriminant of F  over K ,  so that dF/K 
is an ideal of K .  Let K,  denote the completion of K at p,  and 0, the ring 
of integers of K,. We define J ,  to be any generator of the ideal 11,,,8,. Thus, 
strictly speaking, J ,  is well defined only up to a unit in 0,. However, this 

will suffice for our present purposes, since we wdl only be interested in the 
valuation of J,. It is perhaps worth noting that, since J,,,O, can be written 
as a product of local discriminants of F I K  for the primes in Y (cf. the proof 
of Lemma 8), one can, in fact, define 11, uniquely, up to the square of a unit 
in 0,. 

By class field theory, there is a unique 2,-extension of K  which is un- 
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ramified outside p. We denote this 2,-extension by K,, and write K, for the 
n-th layer of K,/K. Since p is assumed not to divide the class number of K, 
the extension K,/K is totally ramified at p. For each n 0, let K, be the 
completion of K, at the unique prime above p, and let V, be the units of T, 
which are r 1 modulo the maximal ideal. We write V = V, for the units of 
0, which are r 1 modulo p. Let N, denote the norm map from Fn to K,. 

Lemma 4. For each n 2 0, we have Nn(Vn) = Vpn. 

Proof. The lemma is true for any totally ramified abelian extension of 
K,(= Q,) of degree pn. For, pick a local parameter a, in t,. Since t n / K ,  
is totally ramified, r, = N,(n,) is a local parameter in K,. Thus we have 

where ,up-, denotes the group of (p - 1)-th roots of unity, and {a,), {T,} are 

the cyclic groups generated by sr,, T,, respectively. Now, by local class field 
theory, the index of N,(F,") in K,X is pn. Since N,(p,-,) = pP-,, and since 
N,(;m) = r,, N,(V,) must be a closed subgroup of V of index pn. But, as 
0, = Z,, V*" is the only closed subgroup of V of index pn, and the proof of 
the lemma is complete. 

Let F, = FK,, so that F,/F is a 2,-extension, which is unramified out- 
side 9. For each n > 0, let F, denote the n-th layer of F,/F, and write 
C, for the idele class group of F,. For brevity, put C = C,. Let NFdF be 
the norm map from C, to C, and put 

For each g E 9, U,,, will denote the units in the completion of F at g, which 
are = 1 mod g, and we put 

We view U, as being embedded in the idde class group C in the usual way, 
and identify it with its image in C. We write, for convenience, NF/, for the 
norm map from U, to V given by the product of the local norms to K, at all 
the g in 9'. Thus NwK is the restriction to U, of the norm map from C to 
the idkle class group of K. Finally, if L I H  is an abelian extension of local 
or global fields, and c belongs to H x ,  or the idkle class group of H, according 
as H is local or global, we denote the Artin symbol of c for L J H  by ( i ,  L/H).  

Lemma 5. Y fl U, is the kernel of N,,,. 

Proof. Define the integer e > 0 by K, = K, fl F.  Thus, for each n > 0, 

we have F ,  = FK,,,. Suppose first that E E Y fl U,. Since i E NFnIFCn, we 

have (c, F,/F) = 1 for each n > 0, whence, restricting this Artin symbol to 
K,,,, we obtain (NFIKc, Kn+,/ K) = 1. Since NF/,c lies in K,, it follows from 
class field theory that NFlKe is a norm from T,,,; clearly it must then be a 
norm from V,,,. Hence, by Lemma 4, NF/,E E Vpn+' for all n 2 0, and so 

NF,,i = 1. Conversely, let E be an element of U, with NF,,i = 1. Let j be 

the restriction map from G(F,/F) to G(K,/K). Note that j is injective because 

F, = FK,. Now, if C, denotes the idde class group of K, class field theory 

tells us that we have the commutative diagram 

where the vertical map on the left is the norm map, and the horizontal maps 
are the respective Artin maps. Since j is injective, NFlK5 = 1 implies that 

(I, F, IF) = 1, whence c E Y, as required. 

Lemma 6. Let L be the p-Hilbert class field of F. Let the integers e 

and k 0 be defined by F fl K, = K, and L f l  F, = F,. Then NFlK(U1) 
- - VP'+~, 

Proof. For each prime g of F, above p, let U,,,(n) be the units r 1 mod g 

in the completion of F, at g. Then, with k as defined in the statement of the 
lemma, the norm map from Ul(k) = n,,, U,,,(k) to U1 is surjective. This is 

because F,/F is unramified, and the norm map for an unramified extension of 
local fields is surjective on the units (and so also surjective when its domain 
and range are restricted to the units 1). It  follows that 

But, as F, contains K,,,, the group on the right is contained in N,+,(V,+,) 
- - Vpk+'" (by Lemma 4). Therefore N,,,(U,), being a closed subgroup of 

finite index of V, is of the forrn Vp', where r 2 e + k. We now proceed to 

show that we must have r = e + k. We do this by showing that every element 
of G(F,-,IF,) is 1. Let a be any element of G(F,-,IF,), and put t = r - e. 
Since L fl F, = F,, there exists r E G(LF,/L) whose restriction to F, is a. As 
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T fixes L. class field theory shows that there exists i E U, such that (e, LF,/F) 

-- - . . whence (;, F,! F) = a. Now, since the restriction map from G(F,/ F,) to 
G(K7/K,-,) is injective, it suffices to show that the restriction of a to KT is 1. 
But this restriction is the &tin symbol (NFIKE, K7/K), and this is certainly 1 
because, by hypothesis, NFIKi belongs to VP' = N7(V7). Thus a is indeed 1, 
and the proof is complete. 

We now make some index computations. For each g s Y ,  let Fa be the 
completion of F at g, Ln, the ring of inteprs of Fa, and e, the ramification 
index of F,  over K,. Choose an integer t 0 such that p-'O, contains log U,,, 
for each g E 9'. Define 

For each g E Y, let w, denote the order of the group of p-power roots of unity 
in Fa. Finally, we recall that d is the degree of F over K. 

Lemma 7. [-0: log U,] = ptd n,,, (wgNg), where Ng is the absolute norm 
of 4. 

Proof. Fix g E Y. The kernel of the logarithm map on U,,, is the group 
of p-power roots of unity of F,. On the other hand, if we define r = [ea/(p 
- 1)1 + 1, and let U,,, denote the units = 1 mod gr, then the restriction of the 

logarithm map to U,,, defines an isomorphism from Ua,7 onto g7. Therefore 
the kernel of the map from Ug,l/U,,7 onto (log U,,,) /(log U,,,), which is induced 
by the logarithm, can be identified with the group of p-power roots of unity 
in F,. Thus 

whence 

[p-,6,: log U,,,] = (~Vg)l+~~gw, . 

Since p is of degree 1, we have N ,  = pig, where f, is the residue class degree 

of g over p.  Thus, taking the product over all g e .Y, and recalling that 
CaEY egfg = d, the assertion of the lemma follows. 

Let 6, be the group of global units of F,  which are r 1 mod g for each 
g E Y .  The torsion in 6, is the group of p-power roots of unity in F ,  and 8, 

modulo torsion is a free Z-module of rank d - 1. Let (o : F - n ,,, Fa be the 
canonical embedding. We define D to be the 2,-submodule of U, which is 
generated by ~(6,) and ( o ( ~ ~ ) ,  where, as before, E, = 1 + p. We write log D 

for the subset of log U,, which is obtained by applying the log map to each 
component of the vectors in D. Let I ', denote the valuation of C,, normalized 

so that Jpl, = p- ' .  

Lemma 8. The index of log D in log U, is finite if and only if R, # 0. 

If R, f 0, then [log U,: log Dl is equal to the inverse of the p-adic valuation 

of 

Proof. For each g E 9, let 9, be the canonical embedding of F in Fa, da 
= [Fa : Q,], and a:", . - , a$ a 2,-basis of 0,. If E , ,  . . . , E~ - I  are representatives 

of a Z-basis of 8, modulo torsion, we have 

where the aF2 belong to 2,. Let A be the d x d matrix formed from the 

a:,' (1 < j < d, 1 < k < d,, g E 9'). Then, since log D is generated as a Zp- 
module by the log Y(E,) (1 < j < d), it follows that the index of log D in 9 is 
either infinite, or finite and equal to the exact power of p dividing det A, ac- 

cording as det A is 0 or is not 0. To compute det A, let cpj (1 < j < d) run, 
as before, through the distinct embeddings of F in C, which correspond to 
primes in Y ,  and let ay) (1 < j < d,) run through the distinct embeddings of 
Fa in C,. Let 2, be the d, x d, matrix formed from the oy)a$) (1 < j, k < d,), 
and let E be the direct sum of the E, for g E 9 (i.e. the d x d matrix with 

the blocks E,, for g E 9 ,  down the diagonal, and zeros outside these blocks). 
Let O be the d x d matrix formed from the log p,(tj) (1 < j, k < d). I t  fol- 

lows from (5) that O = AS.  Since the index of 8, in 8 is prime to p, we 

deduce immediately from the definition of R, that det O = (d log cd)R,u, where 
u is a unit in G p  = 2,. Also, by the definition of the local discriminant, the 
power of p occurring in (det ;"J2 is p-?t" times the power of p occurring in 
the local discriminant 3, of F, over K,. But, in our earlier notation, we have 

whzre J,,, is the relative discriminant of F over K. It follows that the power 

of p dividing (det Zl2 is the same as that dividing The first assertion 

of the lemma is now plain since log U, has finite index in 9. Moreover, as- 

suming that R, f 0, we conclude that 
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[a : log Dl = j (d log ( E , ) ~ ~ ~ R , )  / JQ;l . 

Noting that the p-adic valuation of log a, is p-l, the assertion of the lemma 
now follows from Lemma 7. 

Lemma 9. The index of  D in U, is finite if  and only if  R, + 0. I f  R, 
# 0, then [U, : Dl is equal to the inverse of  the p-adic valuation of  

where OF is the number of  roots o f  unity in F.  

Proof. The first assertion is plain. Assuming R, # 0, we have the com- 
mutative diagram with exact rows 

: log 
V 

0 + log D 4 log U, + log U,/log D 4 0 ; 

the kernel of the vertical map on the left is the group of p-power roots of 

unity in F ,  and the kernel of the middle vertical map is the product over all 
g E 9 of the group of p-power roots of unity in Fa. It now follows from the 
snake lemma, and Lemma 8, that Ul/D has the desired order. 

The 2,-submodule of U, which is generated by ~ ( 6 , )  is, of course, simply 

the closure (o(d,) of ~ ( 8 , )  in U, in the p-adic topology. Since p # 2, and p 
does not ramify in K, each element of 8, has norm from F to K equal to 1. 

Thus Lemma 5 shows that z) is contained in Y f l  U,. 

Lemma 10. The index o f  p(~9,) in Y fl U, is finite if  and only if  R, # 0. 
I f  R, # 0, this index is equal to the inverse o f  the p-adic valuation o f  

where the integers e and k are as defined in Lemma 6 .  

Proof. The first assertion is plain, and so we assume that R, # 0. By 
Lemma 6, and the definition of D, we have the commutative diagram with 
exact rows 

KUMMER'S CRITERION FOR HURWITZ NUMBERS 

By Lemma 5, we have D fl Y = y(&',), whence the vertical map on the extreme 
right is clearly injective. Applying the snake lemma, and noting that Ng - 1 

is prime to p for g E 9 ,  Lemma 10 now follows from Lemma 9. 

We can now derive the main result of these index calculations. Recall 
that K is any imaginary quadratic field, p is an odd prime number, which does 
not divide the class number of K, and which splits in K, and p is one of the 
factors of (p) in K. Also, F is an arbitrary f h t e  extension of K, and 9 the 
set of primes of F lying above p. 

Theorem 11. Let M be the maximal abelian p-extension of  F, which is 

unramified outside 9 .  Then G(M/F,) is finite if and only if  R, # 0. If  R, 
# 0, the order of G(M/F,) is equal to the inverse of  the p-adic valuation of  

where hF is the class number of  F, OF is the number o f  roots of  unity of F,  

and the integer e is defined by F fl K, = K,. 

Proof. Let J denote the id6le group of F .  For each finite prime g, let 
U, be the units in the completion of F at g. For each archimedean prime g, 

let U, be the full multiplicative group of the completion of F at Q. Put U, 
= n,,, U,, the product being taken over all archimedean primes, and all non- 
archimedean primes not in 9. We can view U, as a subgroup of J in the 

natural way, and we let FXU, be the closure of FXU, in the idde topology. 
Let m be the maximal abelian extension of F, which is unramified outside 9. 
By class field theory, the Artin map induces an isomorphism 

Now let C be the idkle class group of F, and let M be as defined in the theorem. 
Thus M is the maximal p-extension of F contained in rn. Let be the Artin 

map from C onto G(M/F). Let L be the p-Hilbert class field of F. It  fol- 

lows from (6) by a standard argument that 1b maps U, onto G(M/L), and that 
- 

the kernel of 1) restricted to U, is precisely ~ ( 8 , ) .  In addition, if f E C, then 
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+(C) fixes F ,  if and only if < is in Y = n,,, N ,n,, C,. Thus, as Y n "(8J 
- 

= ~(8,) by Lemma 5 ,  it follows that 1,b induces an isomorphism 

Theorem 11 now follows from Lemma 10, since 

and the order of this latter group is lh/pW;', by the dzfinition of k. 

Before proceeding to the second part of the proof of Theorem 1, we 
digress briefly to indicate a possible interpretation of Theorem 11 in terms of 
Iwasawa modules. Let M, be the maximal abelian p-extension of F,, which 

is unramified outside the primes of F, lying above primes in 9. Put X ,  
= G(M,/F,). Then r = G(F, IF) operates on X, via inner automorphisms 
in the usual manner. Thus, if we fix a topological generator of T ,  X, is a 
A-module in a natural way, where ;I = Zp[[T]] is the ring of formal power 
series in an indeterminate T with coefficients in 2,. It can easily be shown 
that X, is a finitely generated if-module. Very probably, two further results 

are true about the structure of X, as a ll-module, but these are unknown at 
present. Firstly, X, is probably always A-torsion (this can be proven when 
F is abelian over K). Secondly, it seems likely that X, has no non-zero A- 
submodule of finite cardinality. If these two facts were known for X,, then 

we could interpret Theorem 11 as giving a p-adic residue formula for a 
function derived from the characteristic polynomial of X, in a natural way 
(see Appendix 1 of [I],  where an analogous result is established when F is a 

totally real number field). 

We now come to the second part of the proof of Theorem 1. We begin 

by recalling the results of Katz [6], [7] and Lichtenbaum [9], upon which this 
second part of the argument is based. At present, this work has only been 
completely carried out when K has class number 1, and so we assume from 
now on that this is the case. As in the Introduction. let ;s = + ( t p ) ,  so that ~r 

is a generator of the ideal p. As before, let E, be the kernel of multiplication 
by ;: on E, and put 9 = K(E,). Let G be the Galois group of .F over K, 

and let 

be the canonical character giving the action of G on E,, i.e. 8 is defined by 

uu = 8(a)u for all u E E, and all o E G. Since E has good reduction at p by 
hypothesis, it is well known that B is an isomorphism. Again, let 8, be the 
ray class field of K modulo p, so that 3, c 9, and [F: 3,] = o, where u 

denotes the number of roots of unity in K. Thus, if we identify ( Z / P Z ) ~  with 
the group of (p - 1)-th roots of unity in 2," in the natural way, we see that 

is the set of all non-trivial characters, with values in Z,", of the Galois group 
of 8, over K. To each y E X, Katz and Lichtenbaum have associated a p- 
adic L-function, which we denote by L,(s, cp) . Actually, Lp(s, cp) is not uniquely 
determined by cp, but also depends on the choice of certain parameters as- 
sociated with the elliptic curve E (see the discussion in [9]). However. these 
additional choices do not affect the properties of L,(s, y) used in the proof of 
Theorem 1, and so we neglect them. Let A denote the ring of integers of a 
sufficiently large finite extension of the completion of the maximal unramified 
extension of Q,, and let if, be the ring of formal power series in an indeterminate 
T with coefficients in A .  Then it is shown in either [6] or [9] that the 
L,(s, 9) are holomorphic in the following strong sense. For each y E X, there 
exists H ( T ,  y )  in A,, such that 

( 8 )  LJs, cp) = H((1 + p)S - 1,cp) for all s in Z, . 

The two key properties of the L,(s, y) used in the proof of Theorem 1 are 
summarized in the following theorem. 

Theorem 12 (Katz, Lichtenbaum). (i) Suppose that j is an integer such 
that 81 belongs to X .  Then, for each integer k 2 1 with k E j mod (p - I), 
we have L,(@, 1 - k) = u,L*(+~, k), where a, is a unit in A .  (ii). If h is 
the class number of 8,,  and R,, A, are the invariants of B,/K defined earlier, 
then 

where p is a unit in A .  
The deepest part of this theorem is (9), which is established in [9]. Its 

proof is based on an explicit formula, due to Katz [7], for Lp(l ,  cp) in terms 
of the p-adic logarithms of elliptic units. 

We now prove Theorem 1. In Theorem 11, we take F to be the ray 
class field 3, modulo p. In this case, 8 , /K  is totally ramified at p, so that 
9 consists of a single prime whos? absolute norm is p. Also e = 0, and 8, 
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contains no non-trivial p-power roots of unity (because the conjugate of p is 
not ramified in %,/K) .  In  addition, the p-adic analogue of Baker's theorem 
on linear forms in the logarithms of algebraic numbers shows that R, # 0. 

Thus, if M denotes the maximal abelian extension of 3,,  which is unramified 
outside 9 ,  and whose Galois group is a pro-p-group, Theorem 11 tells us that 
the order of G(M/F,) is equal to 

where h is the class number of 3,. Since each L,(1, y)  is in A by (S), it 
follows from (9) that G(M/F,) = 0 if and only if L,(l, cp) is a unit for each 
cp E X. But, by (8) and (i) of Theorem 12, this latter assertion is valid if and 
only if p divides none of the numbers (3). On the other hand, since G(F,/F) 
has no torsion, it is clear that G(M/F,) = 0 if and only if there is no cyclic 
extension of F = 8, of degree p, unramified outside 9 ,  other than the first 
layer of F,/F. Since the first layer of F,/F is the ray class field 8, of K 
modulo p2, the proof of Theorem 1 is complete. 
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Symplectic Local Constants and Hermitian 
Galois Module Structure 

Introduction 

Let N / K  be a normal extension of algebraic number fields, always of finite 
absolute degree, with Galois group I' and let D be the ring of algebraic integers 
in N. Under the hypothesis that N / K  is tame, I established in some recent 

work a connection between the Galois module structure of D on the one hand, 
and the Artin root numbers and Galois Gauss sums appearing in the functional 
equation of Artin L-functions, and also the Artin conductor on the other hand 

(cf. [F3], [F4]). The present paper complements this theory. I shall now 
establish, under a local tameness hypothesis, a connection between the local 
structure of D as a "Hermitian Galois module" on the one hand and the local 
root numbers of Langlands (we follow the exposition in [TI), the local Galois 
Gauss sums (cf. [MI) and the local conductors, for symplectic characters of r 
on the other hand. The deepest results are those on root numbers. The in- 
terpretation of these, for symplectic characters, on the local level, implies one 
on the global level. which goes a good deal further than that obtained earlier 

without the additional element of structure given by the Hermitian form. 
(Compare e.g. Theorem 14 in [F3], or Theorem 5 [F4] and the discussion in 
fj 5 of [F4].) We moreover derive a "Hermitian interpretation" for the con- 
ductors of all charactors, generalising the classical one for the discriminant. 

The basic notion of a Hermitian module used here is wider than that in 
which topologists have been interested. Thus e . g  such a module over Z(T)  is 
given by a locally free module M together with a non-degenerate Hermitian 
form on M O, Q over Q( r ) .  We shall take the general theory of these only 
as far as is needed for the immediate purpose, defining in particular the appro- 
priate local, and adelic, class groups. The basic tool here is the Pfaffian as- 
sociated with a symplectic character. 



The particular form in our case is defined via the relative trace and has 
been considered already in [Fl]  and [F2]. The link between Pfaffians on the 
one hand and Galois Gauss sums (or conductors) on the other is provided by 
the generalized resolvent, and we shall use again the fundamental theorem of [F3]. 

1. Pfaffians of matrices 

Notation. For any ring R,  the ring of n by n matrices is Mn(R), and the 
group of invertible elements is R*. Thus M,(R)* = GLn(R). Mn(R) acts from 
the right on the product R n  of n copies of R.  

Let F be a field of characteristic # 2. An involution (involutory antiauto- 
morphism) j of Mn(F) is said to be symplectic if it is the adjoint involution of 
some skew form (non-degenerate skew-symmetric bilinear form) h :  Fn x Fn -+ 

F, i.e. we have 

h(vP, w) = h(v, wPj) , all v, w E Fn, all P E Mn(F) . 
Let h and j be as above. If S E GLn(F) is j-symmetric (i.e. S = Sj) then 

for some P E GL,(F). For S = I the identity matrix, this implies det (P) = 1. 
Hence in general the determinant 

(1.2) det (P) = Pfj(S) 

only depends on S. It  is its Pfafian. Immediately 

(1.3) Pfj(S)" Det (S) , hence Pfj(S) E F* . 
Also 

(1.4) Pfj(I) = 1 , Pfj(PjSP) = Det (P)Pfj(S) , 

for P, S E GLn(F), S being j-symmetric. 

Next let h' be a further skew-form on Fm, with adjoint involution j'. 

Write jLj' for the adjoint involution of the orthogonal sum hLh'. If S E GLn(F) 
is j-symmetric, S' E GL,(F) is j'-symmetric then 

where the matrix on the left is of course jLj'-symmetric. 
Now let b : FQ x FQ -- F be a non-sinplar pairing and let k : GLQ(F) -+ 

GLQ(F) be defined by b(vT, w) = b(v,  wTk), for all v, w E Fq, all T E GLq(F). 

We get a skew form h on F2Q, given by 

(v,, wi E Fq), and with respect to its adjoint involution j we get 

~ f j ( ( ~  O )) = Det (T) , 
0 Tk 

where T E GLq(F) and the matrix on the left is j-symmetric. 
Next let k, j be two symplectic involutions of Mn(F) so that for all P, and 

for some fixed C E GLn(F), 

(i.e. k and j are equivalent). If S E GLn(F) is j-symmetric, then C-'SC is k- 

symmetric and 

Let a be an automorphism of F, extended to Mn(F). Given j there is a 

symplectic involution 

and with S as before, 

The same applies to any embedding a:  F + E of fields (taking the second line 
in (1.8)) 

Let now A be a central simple F-algebra with involution i. Let E be a 

separable algebraic extension field of F and 

an isomorphism of E-algebras. The equations 

define an involution j of Mn(E). If it is symplectic (and this property does. 
not depend on E or on g) write 

By (1.7) and (1.9) (both for a : F -+ E and for automorphisms of E) and by the 



Skolem-Noether theorem, Pfi is independent of choices and has values in F*. 
If in particular A is a quaternion algebra with i as standard involution then 
the symmetric elements in A* are the cl,, c E F* and 

Next let B be a commutative F-algebra. Extend the symplectic involution 

j of Mn(F) to Mn(B) = Mn(F) B, letting it act trivially on B. If B is a 
product of fields then for any j-symmetric S E GLn(B) the Pfaffian Pfj(S) is 
defined in the same way as before and lies in B*. The same applies to certain 
subalgebras of products of fields and in all these cases the results of this section 
remain essentially valid. An important case is that of the adele ring B = Ad(F) 
when F is a number field. Details are left to the reader. 

2. Pfaffians for group rings 

Throughout r is a finite group whose group ring over a commutative ring 
B will be denoted by B(r ) .  The symbol Q stands for the algebraic closure of 
Q in C. The term character is used in the sense of representation theory over 
Q, i.e. each representation T : r - GL,(Q) has an associated character x : r - 
Q. If B is a commutative K-algebra, K always a subfield of a ,  we can extend 
T to an algebra homomorphism 

and further to 

Now take determinants and restrict to invertible elements. Thus 

(2.2) det, (a) = det (T(a)) E (e 63, B)* , (a E GL,(B(r))) 

only depends on the character x associated with T. Let R, be the additive 
group of functions on r generated by the characters, the group of "virtual 
characters". The function det, (a) then extends to % E R, by linearity. (For all 
this see [F3] (AI).) 

We shall write a --+ a for the standard involution on group rings which leaves 
the base ring elementwise fixed and takes 7 E I' into 7-I. The character 1 as- 
sociated with a representation T is symplectic if the T(y) leave some skew-form 
h on Qn invariant, i.e. if 

(2.3) h ( v T ( y ) , ~ T ( ~ ) ) = l z ( v , w ) ,  for all v , w c Q n ,  all T E ~ .  

This is equivalent with 

(K c Q), where j is the adjoint involution of h. 
This last equation can be extended to T on B(T) (B always a K-algebra) 

and then further to T as in (2.1). For the latter we need the concept of a 

matrix extension of an involutioiz i of a ring A .  This is the involution of 

M,(A), again denoted by i, for which 

where P(r, s) is the r, s entry of the matrix P. In other words we involute the 

entries and then transpose. (2.4) will now hold for the matrix extension of - 

to M,(B(r)) and of j to M , ( M , ( ~  63, B)). 
Assume in the sequel that (2.4) holds in the extended sense and that B is a 

product of fields. or B = Ad(K) with K a number field (i.e. of finite degree over 
Q). For a E GL,(B(T)), with a = ri. we now get an element PfJ(T(a)) E (Q @, B)*. 
We shall show that this only depends on the character ;C associated with T, not 
on T itself or j, and we may thus write 

Indeed let T' be a further representation with the same character X, leaving 
invariant a skew-form h' with adjoint involution j'. There then exists C E GL,(Q) 

with 

Tf(y) = C-lT(y)C , for all y , 
hf(v, W) = h(?;C-', wc-l) , for all v, w E Qn , 

(see e.g. [FM] for a proof in slightly different language) and hence 

This extends also to M,JQ @, B). By (1.7), Pfj'(Tf(a)) = Pfj(T(a)). 

If % and + are symplectic characters then so is 1 + ~k and, by (1.5), 

Thus the map % -+ Pf,(a) extends to the subgroup R; of R,  generated by 

the symplectic characters and (2.7) goes over. Further properties of Pf, are 

deduced first for actual symplectic characters and then always extended to R, 
by linearity. 

Let in the sequel a be a symmetric element of GL,(B(r)). By (1.3), 



(2.8) P ~ , ( u ) ~  = det, (a) . 

By (1.4), for b E GL,(B(r)), 

and so in particular 

(2.10) Pf, (66) = det, (b) . 

For q5 E R p  with 6 the complex conjugate, or contragredient, we have 6 + 6 E R;, 
and then by (1.6) 

Thus the determinants of symmetric elements, or "discriminants" are known once 
the Pfaffians are. Next let a' be a symmetric element of GL,(B(r)). By (1.5), 

Now let o be an automorphism of Q, extended to some automorphism of 

Q @, B, and to B ( r )  (so that o leaves the elements of r fixed.). We shall 
prove that 

(2.13) 

In fact let 

Let T be a representation with character X. Then 

as T on M,(B(r)) = Mq(B) 8, K(T) is defined by linearity from r - GL,(Q). 
Now the representation Tg-': r - GL&) with To-'().) = T(r)'-' has character 

Thus we get T(aa) = ( C  a, @ Ta-'(r))a = (To-'(a))". By (1.9) we now 
get (2.13). 

From now on for the remainder of this paper, let K be a number field and 
write DK = Gal (QIK). If o E Q K  then we may assume that o fixes B element- 
wise. By (2.7) and (2.13), the map 

lies in Hom,, (R;, (Q @, B)"). We shall consider two cases. Firstly when 

B = K, is the (semilocal) completion of K at a prime divisor p of some subfield 
of K, we write Q 8, K, = Q,. Next we also need the case B = Ad(K), the 

adele ring. Then we write ( Q  8, Ad(K))* = ~ ( 0 ) .  This is indeed the union 

of the idele groups J(L) for number fields L c Q. 

Remark. For both the above choices of B one can show that all elements 
of the group Hom,, (R;, (Q $3, B)*) are of form Pf(a), a E GL,(B(r)) for some 
q, and that the group is generated by such elements with q fixed. 

3. Class groups 

Let R be a Dedekind domain, with quotient field F. A Hermitian R( r ) -  

module is a pair (M, b) where M is a locally free R(T)-module of finite rank 
and b :  V x V -, F ( r )  is a non-degenerate Hermitian form on the F(r)-module 
V spanned by M, with respect to the standard involution of F ( r ) .  

With K as before, let o be the ring of algebraic integers of K. If p is a 
prime divisor of K, or of a subfield of K, denote by K, the completion of K 
at p. The symbol o, stands for the completion of o at p if p is finite, and 
o, = K, if p infinite. The Hermitian class group of o,(r) is defined as 

(3.1) HCl(o,(r)) = Hom,, (R;, Q ,* ) /~e t "  (o,(r)*) . 
Here we recall (cf. (2.2) that the map % -, det, (a) (a E o,(r)*), with x E RJ, is an 
RK-homomorphism into @. Denote it by Detva). Thus D e t q s  a homomor- 

phism o,(r)* - Hom,, (R;, @), and the denominator on the right hand side of 
(3.1) is its image. We also define the adelic Hermitian class group of o( r )  by 

Here U(o(r)) = n, o,(r)* (product over all prime divisors of K ) ,  with the 
denominator on the right hand defined analogously to that in (3.1). The em- 

bedding @ -+ J(Q) yields an embedding 

Let (M, b) be a Hermitian o,(r)-module of rank q, say with a o,(r)-basis 

7 .  Then (b(v,, v,)) is a symmetric matrix in GLq(K,(T)), under the matrix 

extension of the standard involution of K,(T), hence (cf. (2.14)) defines an ele- 
ment Pf((b(v,, v,))) of Horn,, (R;, @). whose class c(M, b) E HCl(o,(r)) indeed 



only depends on (M, b). By (2.12) the classinvariants c(M, b) define a homo- 
morphism of the Grothendieck group of Hermitian o,(r)-modules into HCl(o,(r)) 
which, by the remark in 5 2, is surjective. 

An adelic Hermitian o(r)-module is a pair (M, b), where M is a free 
n,o,(r)-module (product over all primedivisors of K) of finite rank, and b is a 
non-degenerate Hermitian form V x V -+ Ad(K)(r) spanned by M. "Non- 
degenerate" here means that for any basis {v,) of M over n,o,(r),  the p-components 
of the matrix (b(v,, v,)) should lie in GL(K,(T)), for all p, and in GL(o,(r)) for 

almost all p. As in the local case we get a class invariant c(M, b) E AHCl(o(r)), 
namely the class of Pf((b(v,, v,)), with {v,} a basis of M. The p-component 
(M,, b,) is a Hermitian o,(r)-module and c(M, b), = c(M,, b,). Moreover the 
embedding (3.3) corresponds to a functor (M, b) +-+ (9, 6 )  from Hermitian o,(r)- 
modules to adelic Hermitian o(T)-modules. If say M is of rank m over o,(r) 
we put A?, = M, 6, = b with M ,  = o,(r)", 8, being given by the multiplication 

in o,(r), for q # p. 
An Hermitian o(r)-module (M, b) yields by tensoring with n o,(r) an 

adelic Hermitian o(r)-module, and we define its adelic invariant 

This yields again a homomorphism from the appropriate Grothendieck group 
into AHCE(o(r)). 

Remark I. This homomorphism is not in general surjective. In other 
words not every element of AHCl(o(r)) is of form Ac(M, b). The theorem that 

the ideal class of a quadratic form discriminant is a square is a special case of 

this restriction. On the other hand, by the remark in 5 2, every element in 

HCl(o,(r)) is a class invariant. 

Remark 2. One can define a class group HCl(o(T)), and class invariants 

yielding a surjective homomorphism from the Grothendieck group of Hermitian 
o(r)-modules to HCl(o(T)). The adelic invariant in turn gives then rise to a 
homomorphism HCl(o(r)) - AHCl(o(r)) whose kernel and cokernel provide 
global information. Moreover one gets a homomorphism from HCl(o(r)) to 

the ordinary class group Cl(o(r)) which plays a central role in theory of Galois 
module structure (cf. [F3], [F4]). All this will be dealt with elsewhere. 

Let now U(L) be the group of unit ideles of a number field L, i.e. of ideles 
whose components at all finite prime divisors are units. Gopg to the limit we 

get a subgroup ~ ( 0 )  of .I@). The surjection J(Q) + J(Q)Ju(Q) (the "group of 

fractional ideals") yields a homomorphism 

We shall write x H g((M, b ) ~ )  for the image of c(M, b) under this map, both for 
Hermitian o(r)-modules and for Hermitian o,(r)-modules (using the embedding 

(3.3)). 

4. Norm and restriction of scalars 

Let k be a subfield of K, and {a} always in the sequel a right transversal 
of QK in . We have a natural homomorphism 

X,,, : Hom,, (R>, X) ----+ Horn,, (R", X )  

given by 

(in multiplicative notation for X). Write o, for the ring of algebraic integers 

in k. We adopt the same notation for completions of k as previously for K. 
In this section p will always stand for a prime divisor of 0,. The map NK,, 
for X = o:, or X = .I@), will take Det"o,(r)*) into DetS (o,,,(r)*), respec- 
tively Det"U(o(r))) into DetvU(o,(r))). where we continue to write o for oK 
(cf. [F3] (A6 Proposition 1)). We thus get induced homomorphisms 

which commute with taking components at p and with embeddings (3.3). 
We extend the trace map t,,, : K - k to k-algebras : t,,, : K @, A -, A = 

k g, A, given by t,,, (c a) = C , ca S a.  Let now (M, b) be a Hermitian 
o(T) - (or o,(r) -) module. Restricting scalars to o,(r) (or to o,,,(r)) we get 
a Hermitian o,(r) - (or o,,,(r) -) module (M, t,,,b),,,, where t,,,b(v, w) = 

tKlk(b(v, w)) . Analogously for adelic modules. 

4.1. Proposition. Let (M, b) be a Hermitian o,(r)-module. With {a) 
as above, let {c,) be an o,,,-basis o j  0,. If c(M, b) is represented by 
f E Hom,, (R;, Q,*) then c(M, t,,,b),,,, is represented by the map 



where deg (x) is the degree of ;C arld r(M) the o,(r)-rank of M. 

Corollary. The corresponding result for adelic modules and for the adelic 

invariants Ac(M, b) of global modziles. 

Details and proof of Corollary : Exercise. 

Proof of 4.1. There is a basis {v,) (r = 1. . . , q) (q = r(M)) of M over 

o,(r) so that for all E R> 

(4.3) f(x) = Pf,(b(v,, vt)) . 

Thus c(M, tK,kb)Pr,P is represented by f', where 

the matrix on the right having row index (I, r), column index (i, t) with r, t = 1, 
. . , q  and 1,i = 1 , .  . . , m ,  (m = [K: k]). 

Next let (a  ,,,,a,,) be the matrix with row index (I, s), column index (a, r), 
where r, s = 1, . . . , q, {o) as before and 1 = 1, . . , m, and where 

= 8 ,  (8 the Kronecker symbol) . 

Viewing this as a matrix in M,,(K,(r)) we compute 

(4.5) det, ((al,8,a,,)) = det ((c;))~"~(~) ' ( '~)  

We moreover define a matrix over KD(r)  with row index (a, r), column 

index (p, t), with r, t = 1, . . , q, with a and p running through the given trans- 
versal of 9, in Qk, and with 

This matrix, viewed as a block matrix is formed by blocks (b(v,, v,)") down 
the main diagonal, indexed by a, and zero blocks elsewhere. Hence by (2.12) 

and so by (2.13) 

Now one verifies the matrix equation 

By (2.9), and (4.3)-(4.6) we verify that ,f'(;~) is indeed given by the right hand 
side of (4.2), as we had to show. 

Let d(K) be the absolute discriminant of K. Applying the Proposition to 
the case k = Q we can use 

where we recall that deg (;c) is always even for x E R", Correspondingly for 
adelic invariants in the global case we get a term d(K)*"g(~)/~. 

Remark. One can also apply the proposition to a properly local restriction 
of scalars. Let the prime divisor p of K lie above the rational prime divisor p. 

Fix an embedding Q,  -+ K,. From a Hermitian o,(T)-module (M, b) we obtain 
by restriction of scalars, via the above embedding, a Hermitian Z,(r)-module 

(M, t Q b )  Let d(KJ be a basis discriminant for o,/Z,, and let f represent 
c(M, b). Then (in Hom,, (R;, @), or in Hom,, (R;, I@))) the map 
x H. J G ~ ~ ~  (x) . d(Kp)r(x) deg ( x ) / ~  represents (M, tKPlQpb). 

To see this let k be the decomposition field of p .  We thus have a unique 
prime divisor of k below p and an isomorphism Q,  z k, reflecting the given 
embedding. Now one applies the proposition to Klk. Thus e.g. tKplQpb = tKIkb. 
One then observes that @ is the QQ-module induced by the Qk-module @ and 
that we thus get an isomorphism 

which takes JY,,,~ into NKIQf,  for all f r Hom,, (R',, @-I. The details are 
omitted. 

5. Traceform and resolvents 

We now assume that we are given a surjective homomorphism with open 
kernel 

i.e. an isomorphism 

(5 .2)  r r Gal (NIK) 

where N is the fixed field of Ker lr. Thus Gal (N/K)-modules become r-modules. 
For every subfield k of K we get a non-degenerate Hermitian form ("trace 

form") 

b,,, = bAV,, (abuse of notation) 



on N over k( r ) ,  given by 

(5.3) 

Hence 

More generally if B is a is a commutative k-algebra we get a form on NO, B 
over B(r ) ,  which for simplicity's sake we shall again denote by b,vlx. 

-Let  now in particular B be a commutative K-algebra. Then N QK B is 

free of rank one over B ( r ) ,  say on a free generator a. On the one hand we 

have then the resolvent (a 1 X) (X E R,), given by (cf . [F3] 5 1) 

On the other hand b,,,(a, a) will be a symmetric element of B(r)*,  and we 
thus have the Pfaffian Pf,(b,,,(a, a)), for x E R;. 

Theorem 1. For all x E R;, 

Proof. Verify that 

if {o) is a right transversal of Q, in Q,. 

6. Relation with Artin conductors 

Write f(N/ K, X) for the Artin conductor of ;C E R,, and f,(N/ K, 2) for the 
local Artin conductor at a prime ideal p of o. 

Theorem 2. Let p be a prime ideal of o, tame in N. Then for all % E R", 

(For the definition of g see the end of 5 3.) 

Corollary 1. If N/K is tame, then for all E R", 

Corollary 2. ( i )  Let p be a prime ideal of K tame in N. Then for all 

4 E R r  

(ii) Suppose N/K is tame. Then jor all 4 E R, 
and use (2.10). 

In the sequel Q is always the ring of algebraic integers in N, and as 

before o that in K. A prime divisor p of K is said to be tame in N if it 

is finite and at most tamely ramified in N, or if it is infinite. 

Corollary 1. Let p be a prime divisor of K which is tame in N. Let 

ao,(r) = G,. Then c(Cp, b,,,) is represented by 

Corollary 3. Suppose NIK is tame. Let a n, o,(r) = 17, 0, (product over 

all prime divisors of K). Then Ac(C, b,,,) is represented by 

We get similar descriptions after restriction of scalars, using Proposition 4.1. 
In this context we shall always use the notation 

The theorem and Corollary 1 give a determination of the ideals g for a,, bNIK 
and for 113, bNIK in terms of Artin conductors. One knows that, under the 
hypothesis of tameness, local conductors of symplectic characters are ideal 
squares of o. Hence by Theorem 2, the g((C,',, biVlK), X) are actually ideals of o. 

On the other hand, Corollary 2 gives, under a tameness hypothesis, a 
description of conductors or local conductors for all x E R,, in terms of the 
Hermitian invariants g, generalising the classical description of discriminants in 
terms of the trace form. 

Remark on notation. Strictly speaking we should have written g((C,, bNIK), X) 
= ~.Jx) ,  f,(N/K, X) = f, , ,(~), and analogously in the global case. For, all 
these ideals depend on x (in (5.11)) and on x .  In the context of the present 
paper such a strict adherence to a formal notation is not necessary, as on a 
whole 7;. is fixed. But for a proper understanding of our results it is important 
to be clear about their precise scope. Thus e.g. Theorem 2 asserts that for 



all s "tame above a given p" the two maps x H i,,,(~), and x H g,,p(%)2 coincide 
-the first given by ramification, the second by Hermitian structure. In other 
words the tame local conductors are "Hermitian invariants".Cimilar remarks 
apply to the contents of subsequent sections. 

Proof of Theorem 2. By Theorem 1, and [F3] (Theorem 18). 

7. Relation to Galois Gauss sums 

Let U+(L) be the group of ideles of a number field L which are units at 
all finite prime divisors and are real and positive at all infinite ones, including 
the complex ones. This is more restrictive than the usual definition of "totally 
positive elements", but has the advantage of being independent of the choice of 
reference field L. Write U+@) for the union of the U+(L), all L c e. Note that 

Det8 (U(Z(r))) c Hom,, (R;, U+(Q)). Thus the group AHCl(Z(r)) has a sub- 

gro UP 

we have in fact a direct product 

In the sequel let pi denote the projection on the i-th factor. 
We shall write W(N/K, X )  for the Artin root number, i.e. the constant in 

the functional equation of the Artin L-function, and Wp(N/K, X) for Langlands' 
local constants. Also r(N/ K, X) is the Galois Gauss sum and r,(N/ K, X) the 
local Galois Gauss sum (cf. [TI and [MI). We know that if p is finite and 
tame in NIK and x E R",hen r p ( N / K , ~ )  E Q* and W,(N/K,X) = f 1 (cf. [MI 
(11, 5 6)) or [F3] Theorem 9). Observing that det, (r) = 1, we deduce from 

the definition of r, that 

(7.3) W,(N/K, ;c) = sign r,(N/K, X) . 

Theorem 3. Let p be a prime divisor of K, tame in N. Then 

Proof. By [F3] (Theorem 4.10), (7.3) and Theorem 1 above. 

Corollary 1. Suppose N/K is tame. Then 

Remark. The interpretation of ,k'x,QA~(C, by,,) as "essentially" the adelic 
invariant of (C, tKlQbNIK) over Z(T)  is immediate from Proposition 4.1. Follow- 
ing the remark in fj 4 we also get a similar interpretation for ,frK,Qc(D,, b,,,), 
p a prime divisor of K. 

Corollary 2. Let p be a prime divisor of K tame in N. Let a o,(r) = C,. 
Then p2JfrK/Q~(C,, bNIK) has a representative u,, so that if u,,,(~) denotes the 
semi local component of u,(x) at the finite rational prime divisor 1, we have 

8. Relations to root numbers 

Let 1 be a prime number. Ker dl  is the kernel in R, of "reduction mod 1". 
More precisely 

In the present section we restrict 1 to be an odd prime, except in some con- 
cluding remarks. 

If x E R", Ker dl then for any finite p of K, tame in N, r,(N/K, X) is a 

unit at 1 and 

(8.1) ( N ,  ) 1 (mod I )  

and p l ~ K / Q ~ ( ~ , ,  bNIK) is the map (cf. [F3] (Theorem 13)), whence beside the characterisation of W,(N/K, X) as a 



signature at infinity (cf. (7.3)), we now get for these a characterisation by 
congruences mod 1, namely 

for p as above. Here Ni, is the absolute norm of i,, which we know to be a 
rational square. It is (8.1), or equivalently (8.2). which Lies behind the character- 
isation of local root numbers, for % E R; f l  Ker d,, as Hermitian invariants. In 
addition we need a corresponding statement for resolvents. Let p be a prime 
divisor in K, tame in N ,  and let ao,(r) = S),. The idele -.VK,Q(al %) is a unit 
above 1 and 

of R, of virtual characters T(Q) = 6 f 6. Then R", T(R,) 3 2R", We 
have a homomorphism 

(8.6) k, : Hom,, (R;/ T(R,), i- 1) -+ Hom,, (R; fl Ker dl, ~ ~ ( g ) )  
where k,g is the composition 

R; f l  Ker d, - R; -+ R>;T(R,) --% + 1 ---+ V,@) . 

If p is tame in N ,  then the map W,(N;'K): x H W,(N/K, lies in 

Hom,, (R", T(R,), & 1) 

and we now have 
(8.3) NKIQ(a / X) --= 1 (mod 2)  

Theorem 4. Let p be a prime divisor of K tame in N. Then 
where 2 is the product of prime divisors above 1 in some suitable field E, e.g. 

E = Q(x), the field obtained by adjoining the values ~ ( 7 )  to Q. If p does not 
lie above 1 then the semilocal component of MKIQ(a 1 X) at 1 is 1, hence (8.3) 
holds trivially. Otherwise see [F3] (Theorem 12). 

For any number field L, let V,(L) = (oL/2,)* where o, is the ring of 
algebraic integers in L,  2, the product of its prime ideals above I. Let V,@) 
be the limit of the V,(L). If g is a homomorphism R", u+@) write r,g for 
the composition 

mod B 
R", Ker d, ----+ R", u+@) ---+ v,@) . 

If g E Det"U(Z(r))) then actually r,g = 1 (cf. [F3] (A111 Proposition 2)). Thus 
the map r, in turn yields a homomorphism 

and composing with p, (cf. (7.2)) we get a homomorphism 

(8.4) hL : G ( r )  ---+ Hom,, (R", Ker dl, V,@)) . 

By Corollary 2 to Theorem 3, by (8.1) and (8.3), wz conclude that 

(for p a prime divisor in K tame in N) is represented by the map 

(8 5 )  x t--+ W,(N/K, X) mod 1 . 

To give a neat formal statement of this result let T(R,) by the subgroup 

With the obvious definition of W(N/K) we have the 

Corollary. If N / K  is tame then 

We add some further remarks. 

Remark 1. One can restate the result of this section by interpreting, for 

x E R; fl Ker d,, the value of W,(N!K, %) as the value of a rational idele class 
character (mod I )  at a certain rational idele class, provided that p2" k'KIQ~(Qp, by/K) 
has a representative in Hom,, (R", U+(Q)). This is trivially true except when 
p is finite and divides order ( r ) .  In the latter case this is an open question 
of some interest in resolvent theory. 

Remark 2. Theorem 4 is closely related to [F3] Theorems 14 and 15. 

A detailed discussion, based on maps involving the Hermitian class group of 
Z(r) (see Remark 2 in 5 3) will be given elsewhere. 

Remark 3. If one now varies z ,  for given r, the problem arises, which 

elements of Hom,, (R",T(R,), + 1) can appear in the form W,(NI1K). For the 

corresponding global question see e. g. [F4] (Theorem 18 .) . 

Remark 4. Theorem 4 does not yet give a full characterisation of (local 

or global) symplectic root numbers as Hermitian invariants. In other words the 

group n, Ker k, (1 odd) need not be zero (cf. (8.6)). What is still outstanding 



is a satisfactory treatment for Ker d? (7 R", For certain groups, e.g. all generalised 
quaternion groups (and trivially for all groups with RS, = T(Rr)) there are com- 
plete results. For the quaternion group of order 8 and K = Q these connect 

with computations of Martinet's (cf. [MI]). 
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Criteria for the Validity of a Certain Poisson Formula1 

JCN-ICHI IGUSA 

Introduction 

We shall first recall a Poisson formula in Weil [12], p. 7 :  let X, G denote 
locally compact commutative groups, f :  X - G a continuous map, r a lattice 
in G, and T, the annihilator of r in the dual G* of G ; let Y(X) denote the 
Schwartz-Bruhat space of X and put 

for every 0 in Y(X) and g* in G* ; assume that the series 

is uniformly convergent on every compact subset of Y ( X )  x G*. Then there 

exists a unique family of tempered positive measures p, on X each p, with 

support in f-'(g) such that 

defines a continuous L1-function F ,  on G with F: as its Fourier transform ; and 

for every O in Y(X). We also recall that the later parts of Weil's paper are 

devoted, among other things, to the making of the above Poisson formula 
definitive in the case where X,  G are adelized vector spaces relative to a number 
field k and f is defined by quadratic forms with coefficients in k. The defini- 

'This work was partially supported by the National Science Foundation. The sympo- 
sium lecture (entitled "On a Poisson formula in number theory") consisted of some material 
in [I?], this paper, and [6] .  



tive Poisson formula by Weil contains some classical works of Siepl. 

We have become interested in generalizing such a formula to a similar 
formula where f is defined by higher degree forms; at the present moment we 

restrict ourselves to the case of a single form. We have rwo things to do: one 
is to prove the convergence of (*) under a condition on f(x) similar to the 

classical condition on a quadratic form that "the number of variables is larger 
than 4"; another is to show that pi for each i in k is the measure defined by 
a "singular series". The first difficulty in carrying out such a program came, 
of course, from the fact that we had no criterion for the convergence of (*). 

Consequently the proofs in some known cases were quite artificial; cf. [3], [lo]. 
I n  order to improve this situation we have developed a theory of asymptotic ex- 
pansions over an arbitrary local field in [4] and applied it to another case; cf. 

[5]. In this paper we shall prove useful criteria for the validity of the Poisson 
formula ; we refer to 9 1, Theorem 1 for the details. As an application we 
have outlined shorter proofs for the above-mentioned cases; cf. fj 7. There are 
other applications; of these we have included just one; cf. 5 9, Theorem 3. 

3 1. The criteria 

Let X denote an irreducible non-singular algebraic variety defined over a 
field k and D, D' positive divisors of X rational over k such that D' is reduced 
and at every point a of X the irreducible components of D' passing through a 

are defined over k(a) and transversal at a. Suppose that a morphism h :  Y -+ 

X defined over k is the product of successive monoidal transformations each 
with irreducible non-singular center such that at every point b of Y the irreduc- 
ible components of h*(D + D') passing through b are defined over k(b) and 
transversal at b. (We recall that if f = 0 is a local equation for D. then f h 

= 0 is a local equation for h*(D).) We further assume that h is not biregular 
at most at singular points of D. Then we say that h is a resolution of (D, D') 
over k ; in this case lz is a resolution of (D, 0) over k and also of (D, D') over 
any extension of k. If h is a resolution of (D, 0) over k, we simply say that 
h is a resolution of D over k .  We observe that every irreducible component 
E of h*(D) is non-singular. We say that /z is tame if char (k) does not divide 
the multiplicity iV = N ,  of E in h*(D) for svery E. 

We take a point b of E ,  choose local coordinates (y,, . . , y,) of Y around 
b and local coordinates (I,, - , I,) of X around h(b) ; then the multiplicity of 
E in the divisor of the corresponding Jacobian determinant a(x,, . . . , x,)/a(y,, 

. . , y,) depends only on h and E. We shall denote by v = v, this multiplicity 

increased by 1 ; and we call the pair (N, v) the numerical datum of h along E. 
The number of all numerical data of Iz is equal to the number of irreducible 

components of h*(D). Moreover if E,, E2, . - . are the irreducible components. 

of h*(D) passing through any given point b of Y, then the cardinality of {EiIi 
is at most equal to n. If (Ni, pi) is the numerical datum of h along E,, then 

we call {(Ni, 2i))i the numerical data of Iz at 6. We call attention to the fact 

that the above definition of the numerical data is slightly different from our 

definition in [4]-11, p. 309. 
Let f(x) denote a polynomial in n variables x,, . , xn with coefficients in 

k ;  then f(x) gives rise to a function f on the affine n-space X defined over k. 
We shall denote by S = Sf the critical set of f defined by 

For the sake of simplicity we say that f(x) is almost homogeneous if Sf is con- 

tained in f-'(0); this is the case if f(x) is homogeneous and char (k) does not 

divide deg 0. 
We shall identify X with its dual space via the symmetric bilinear from 

on X x X. Also for every i in the universal field we put 

then U(i) is non-singular ; and f(x) is almost homogeneous if and only if U(i)f 
= f-'(i) for every i # 0. We shall at least assume that Sf f X ;  then we can 

write 

with some (n - 1)-form 8 on X.  Moreover for every i we can choose B so 

that it becomes regular along U(i), i.e., at general points of U(i) ; then its. 
restriction 8, to U(i) is well defined and it is regular and non-vanishing every- 

where on U(i). 
Let k denote a global field, k, the completion of k relative to a normalized 

absolute value 1 1, on k, and k, the adele group of k ;  we shall also use k, v 

resp. A as subscripts to denote the taking of rational points over k, k ,  resp. the 
adelization relative to k. We shall fix a non-trivial character + of k,/k and 

denote by +, its v-component; we shall identify X,, X, with their duals via 



FOv(0) = lim FOo(i) 
i -0 

the bicharacters +,([x, y]), +([x, y]) of X, x Xu, XA i< X a ,  respectively. We 

shall denote by Idxl,, j dxlA the autodual measures on X,, X, ; then Idx 1, be- 
comes the restricted product measure of all jdxl, and X,/X, has measure 1. 
If k, is a p-field, we shall denote by o,, p v  the subsets of k ,  defined by lil, 5 1, 
li], < 1, respectively, and we put 

exists. If k, is a p-field and 0, is the characteristic function of XO,, then we 

shall write F, instead of FOv. 

Theorem 1. We shall assume that the following two conditions are satisfied: 

(Cl) The critical set Sf is of codimension at least 3, i.e., 

Then for almost all v we have +, = 1 on o, but not on p i 1  ; and XO, has measure 
1 for such a v. 

Let 0, denote an element of the Schwartz-Bruhat space Y'(X,) of X, ; then 
(C2) for almost all p-field k, we have 

1 F$(i*) 1 5 max (1, 1 i* I,,)-* 

with a fixed a > 2 for every i* in k,. 

Then (*) has a dominant series if 0 is restricted to a compact subset of Y(XA). 
Moreover for every i in k the restricted product measure j$,I, on U(i), exists, 
its image measure under U(i),+ X, also exists, the sum of all such measures 
is tempered, and the Poisson formula 

defines a bounded uniformly continuous function F& on k,. If k, is a p-field 
and 0, is the characteristic function of XO,, then we shall write F$ instead of 

F&. Similarly as above, for every 0 in 9 ( X A )  

holds. As an identity of tempered distributions it can also be written as defines a bounded uniformly continuous function F,* on k, ; the series 

The condition (C 1) is easy to verify ; it means that the hypersurface f (x) 
= 0 is irreducible and normal. The usefulness of this theorem comes from 

the fact that it reduces the proof of the Poisson formula to the verification of 
the estimate in (C2) for almost all non-archimedean valuations. It is probable 
that we can further restrict the set of valuations as follows: let k, denote a 

suitable subfield of k over which k is separably algebraic; then the estimate in 
(C2) holds for almost all non-archimedean valuations v on k of degree 1 relative 
to k,. We might also mention the obvious fact that in proving the Poisson 
formula we may use any convenient non-trivial character of kA/ k as + and we 
may multiply any element of kX to f(x) ; if we can prove the formula under 
such normalizations, then it is true in general. 

may or may not converge. If i is in k,, then Bi gives rise to a positive 
measure /8,1, on U(i), ; cf. [ l l ] ,  pp. 14-16. The image measure of I$ilv 
U(i),  -+ X, may or may not exist. If i is in k, then lBtl, is defined for 
v ; the restricted product measure / $,IA of all I$,J, may or may not exist. 
if it exists, the image measure of / O i l A  under U(i), -+ X, may not exist. 

Bore1 
under 
every 
Even 

We shall assume that f(x) is homogeneous of degree m 2 2, char (k) does 
not divide m, and that a tame resolution h, over k of the projective hypersur- 
face defined by f(x) = 0 exists; in view of Hironaka's theorem such a resolution 

always exists if char (k) = 0 ;  cf. [2], p. 176. Since f ( x )  is almost homogene- 
ous, we get U(i) = f-'(i) for every i f 0 ;  hence 

$j 2. Property (P) 

We shall denote by h :  Y -+ X a resolution of (D, D'), hence also of D, 
over an arbitrary field and by b a point of Y. Let {(N,, v,)), denote the numerical 

defines a continuous function FOI, on k,X for every 0, in 9'(X,). And Foe has 
a continuous extension to k, if and only if 



data of 11 at b and assume that pi 2 N ,  for every i where pi = Nt for at most 
one i,; then we say that the numerical data have the property (Po) at b. If 
we further have that 2io = Nio = 1, then we say that the numerical data have 
the property (P) at b. In the following lemma we shall assume that h is tame: 

Lemma 1. If the numerical data of h : Y -+ X have the property (P,) every- 
where, i.e., at every point of Y, then they have the property (P) everywhere. 

Proof. We take a Zariski open subset U of X, put V = hml(U), and 
denote by h, the restriction of h to V ;  then h,: V -+ U is a resolution of the 

restriction of D to U. And we have only to prove the lemma for every such 
U. Therefore from the beginning we may assume the following: there exists a 
regular function f on X such that D = Cf), the divisor of f ; there also exists 
a "gauge form" dx on X, i.e., a differential form dx on X of degree n = 

dim (X) which is regular and non-vanishing on X,  i.e., everywhere on X. 
If the lemma is false, there exists an irreducible component E of h*(D) 

such that u, = NE 2 2. Since h is tame by assumption, NE is not divisible 
by the characteristic. Consequently we can write 

We recall that 11 is the product of successive monoidal transformations each 

with irreducible non-singular center : 

Since YE 2 2 ,  h is not biregular along E ;  hence it is "created" at some stage, 

say at 11': Y' -+ X'. Let Z denote the center of h' and put E' = (h')-'(2); 
then E' is irreducible non-singular and the restriction of Y -+ Y' to E is a mor- 

phism g :  E + E' which is birational and surjective. Let BE, denote the unique 
(n - 1)-form on E' satisfying 8, = g*(BE,); then BE, is different from 0 and 
regular on E'. In fact, if OE, is not regular on E', choose any component C' 
of its polar divisor; then C = g-'(C') becomes a component of the polar divisor 

of eE, a contradiction. 
Let r denote the restriction of h' to E' ; then n : E' --, Z converts E' into 

a fiber space with the projective space P,-, as fiber; the dimension r - 1 of the 
fiber is positive because r is the codimension of 2. We choose a point b' of 

E' where 6,, does not vanish and put a' = ~ ( b ' )  ; we then choose a local gauge 
form dz on Z around a' and write 

with an (n - 1)-form 8 on Y regular along E ; and then the restriction 8, of 

8 to E is well defined, different from 0, and regular on E .  This can be proved 
as follows: let b denote an arbitrary point of E ;  then there exist local coordi- 
nates (y , ,  . , y,) of Y centered at b such that 

in which s ,  6' are regular and non-vanishing around b ; and {(N,, pi)},, where 
N ,  2 1, are the numerical data of h at b. We may assume that yl = 0 is a 
local equation for E ;  then we can take 

and hence locally around b we get 

,jE = the restriction to E of 

It is easy to verify that the right hand side does not depend on the choice of 
the local coordinates (y,, . . , y,). 

with an (r - 1)-form p on E' regular along F = a-'(a'). This is possible and 

the restriction ~ j r ~  of p to F is well defined, different from 0, and is regular on 

F ; cf. [12], p. 12. On the other hand, since F is isomorphic to P,-,, there 
is no regular form on F other than 0. We thus have a contradiction. q.e.d. 

If the resolution h : Y --, X is over k, then it can happen that the numerical 
data of h have the property (P,), but not necessarily the property (P), at every 
k-rational point of Y. An example can be constructed, e.g., as follows: we 
choose a homogeneous polynomial f(x) of degree n in n variables with coefficients 
in k such that the projective hypersurface defined by f ( x )  = 0 is non-singular and 

has no k-rational point; and we take the affine n-space as X,  (f) as D, and the 
quadratic transformation of X centered at the origin of X as h. 

§ 3. A remark on resolutions 

We shall prove. for the sake of completeness, the following elementary lemma : 

Lemma 2. Let f(x) denote a homogeneous polynomial of degree m in n 

vnriables x,, - . - , x, with coe,@cients in a field k ; consider the projective spaces 

X,, Xr with (x!, . . . , x,), (1, x,, - , x,) as their respective homogeneous coordi- 



nates ; let f' denote the rational futzction on X' defined by f (x )  ; and assume 

that a resolution h,: Y o  -+ X ,  of  the projective hypersurface f(x) = 0 over k 
exists. Let H, denote the hyperplane at infinity in X' so that ( f" ) ,  = m . H ,  ; 
then h, gives rise to a resolution h i :  Y #  -. Xr of  ((fl),, H,) over k such that at 

every point of  YQhe numerical data of  h* are the numerical data of  12, at some 

point of  Y o  possibly augmented by (m, n). 

Proof. The correspondence (1,  x,, . . , x,) -, (x,, . . , x,) defines a rational 
map of X# to X ,  over k which is regular except at the point with (1 ,0 ,  . . . , 0 )  

as its homogeneous coordinates. Let g : Z --, X# denote the quadratic transforma- 
tion centered at this point ; then the product of g and the above rational map gives 
a morphism h, : Z -+ X ,  defined over k. We consider the subset Y #  of Y o  x Z 
consisting of those (y ,  z )  where h o b )  = h,(z), i.e., we put 

and we define hX : Y X  -+ X# as the product of h, x 1 : Y# -, Z and g : Z -+ X'. 

We shall show that hr has the required property. 
We first recall that if A, B are finitely generated integral resp. graded inte- 

gral rings over k such that their fields of quotients are regular over k, then the 
k-schemes Spec (A)  resp. proj ( B )  can be identified with the corresponding afltine 
resp. projective varieties. We put 

for 1 5 i 5 n ; then X I ,  - . . , X ,  resp. Y, ,  . . , Y ,  form k-open coverings of 
X ,  resp. Yo .  Furthermore 

for 1 i 5 n form a k-open covering of Xr and Proj (k[ t ,  tx,]) x Xi for 1 5 
i =( n,  in which t is a new variable, form a k-open covering of 2. Finally 

Proj (k[t, tx,]) x Y i  for 1 5 i 5 n form a k-open covering of Y s .  

After this remark we take a point bj of YQnd put a' = hX(b*). We have 

only to show that the irreducible components of (h*)*((f", + H,) are defined 

over k(b9 and transversal at b# and that the numerical data of h h t  bQre 
as stated in the lemma. By changing indices we may assume that b' is in 

Proj (k[ t ,  tx,]) x Y ,  ; then we can write b# = (a,, b) with a, in the universal field 
or a, = co and b in Y , .  We put 

then there exist local coordinates (v,, - , v,) of Y o  centered at b and defined 
over k(b)  such that 

in which E ,  &' are regular and non-vanishing around b. We shall separate two 
cases according as a* is or is not on H,, i.e., according as a, is or is not co : 

If a, f ce, we put 

y, = X ,  - a,, y, = .v2, . . . , y, = v ,  ; 

then bl, . . , y,) form local coordinates of Y #  centered at b# and clearly defined 
over k(b8) such that 

Since (x,,  . . . , x,) form local coordinates of XI around a# and f (xl ,  . , x,) = 0 
gives a local equation for (f#),,  h# has the required property at b#. If a, = co, we put 

then (y,, u,, . . . , u,) resp. (y,, , y,) form local coordinates of X# resp. Y j  

around a# resp. centered at b' and defined over k(b*). Moreover f (1 ,  u,, . . , u,) 
= 0 resp. y, = 0 give local equations for ( f # ) ,  resp. H, ; and we have 

Therefore h q a s  the required property at b#. q.e.d. 
The above proof shows that the "augmentation" becomes necessary if and 

only if a, = 0 ,  i.e., if and only if a* = hg(b*) has (1 ,0 ,  . . , 0 )  as its homogeneous 
coordinates. 

5 4. A correction 

We shall resume the assumption that k is a global field and denote by D(k:) 
the group of quasi-characters of k t .  We know that the identity component 
S(k,")O consists of quasi-characters w ,  defined by o,(i) = /il: for every i in k t ,  
in which s is in C ;  even if w is arbitrary in Q(k,"), we at least have 



for every i in k," with a(w) in R. 
Suppose that f(x) is an almost homogeneous polynomial in x,, . - . , x ,  with 

coefficients in k, and let X denote, as before, the affine n-space defined over 

k ; then for every 0, in Y(X,) the following integral: 

defines a holomorphic function Z,,, on the subset of Q(k2) defined by a(w) > 0 ;  
and it has a meromorphic continuation to the whole Q(k,"). Furthermore the 

function F$u is in L1(k,) if and only if 

I FiU(i*) 5 const. max (1, /i*j,)-" 

with a fixed o > 1 for every i* in kv ; and this is the case if and only if Fao(0) 
exists. In terms of Z,,(w) this condition can be stated as follows: if k,  is an 
R-field, then ZOu(w) for w not in Q(k,")O and (s $ l)Z,.(w) for w = w, are 
holomorphic on the subset o(o) 2 -1 ; if k, is a p-field and t = q-" then 

ZOu(o) for o not in O(k,")O and (1 - q-lt)Z,u(o) for w = w, are holomorphic on 
a )  2 - 1  And if these equivalent conditions are satisfied for every 0, in 

Y(Xv), t k n  

defines a tempered positive measure on Xu with support contained in 

We proved the above results in [4]-I1 under the following assumption: let 
X* denote the projective space obtained from X by adding a hyperplane H, and 
f' the rational function on XX which extends f ; then the assumption is that a 
tame resolution h*: Y# -, XX' of ((fX),, H,) over k, exists ; this assumption is always 
satisfied if char (k,) = 0. We put Y = (hv-'(X) and denote by h the restriction 
of h4 to Y. Then later in that paper we proved as Lemma 4 a statement to 
the effect that the numerical data of 11 have the property (P) at every point of 
Y, if k, is a p-field and if the equivalent conditions are satisfied for every 0, 
in Y(X,). We have found, however, that the "proof" is incomplete; there- 
fore we shall replace "Lemma 4" by another statement and give its complete 
proof. We shall use the following notation: suppose that k, is an arbitrary local 
field and M a k,-analytic manifold; then we shall denote by 9 ( M )  the vector 

space of smooth, i.e., infinitely differentiable or locally constant, functions on 
M with compact support. 

Theorem 2. Let b denote a point of Y ,  and @, an element of 9(Xv)  
satisfying 0, 2 0, 0,(h(b)) > 0 ;  then the existence of F,,,(O) implies that the 
numerical data of h have the property (P,) at b ; and the stronger assumption: 

implies that the numerical data of h have the property (P) at b. Conversely if 
the numerical data of I2 have the property (P) at every b in Y,, then (**) 

holds for every 0, in 9 ( X , )  ; and if the numerical data of h' have the property 
(P) at every b' in Yt. then (**) holds for every 0, in Y(X,). 

Proof. For a moment we take 0, arbitrarily from 9'(X,). Suppose that 
F,,,(O) exists; then i s  + l)Z,,,(w,) is bounded around - 1. On the other hand, 
since h :  Y -, X is a resolution of (f) over k,, there exist local coordinates 

(y,, . ., y,) of Y centzred at b and defined over k, such that 

in which e, e' are regular and non-vanishing around b . We observe that a, e', 
y,, . . . , y, give rise to k,-analytic functions on a small open neighborhood, say 

V, of b in Y,; we may assume that ae' f 0 at every point of V. Suppose 
that 0, is in a(X,) and 0, 2 0, @,(h(b)) > 0 ;  then, by making V smaller if 
necessary, we may assume that 

for -1 s 0 and for every y in V, in which c is a constant. And then 
we will have 

for -1 < s 5 0. If we multiply s + 1 to the right hand side, therefore, the 
product is bounded as s -+ - 1 ; and this clearly implies that pi 2 Ni for every 
i where Y,, = Ni, for at most one io. 

We shall next show that (**) implies pi, = N,,  = 1 ; by changins indices 
we may assume that io = 1. We put 
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then for every i f 0 we have 

h*(B,) = the restriction to ( f  3 h)-'(i) of 

&,. y;~--W .dy2A - .  Ady, . 
J > l  

Let E denote the irreducible component of h*((j)) with y, = 0 as a local equation 
and define BE as in the proof of Lemma 1 ; then BE gives rise to a positive 
Bore1 measure IBEIv on E, ; and \ B E  , has E, as its exact support. 

After this remark we take the open neighborhood V of b small enough so 
that el # 0 at every point of V ;  then for every $ in d(V)  we have 

We recall that h is biregular at every point of h-'(U(0)). Therefore if ?I, = N, 
= 1, then in V, i.e., as long as points of V are concerned. we have 

h-l(U(0)) = E minus the hyperplanes y j  = 0 for N j  2 1 ; 

hence we get 

We take a finite covering of the preimage under h of the support of @, by 
open sets such as V and take a partition of unity (p,), subordinate to this 
covering. Then by applying the above observation to each # = (0, 0 h)p, we get 

Since jeEIv has E, as its exact support, if we have (**), then no E with ?I, = 
NE 2 2 passes through b. 

Finally suppose that the numerical data of h have the property (P) at every 
point of Y,; then (**) certainly holds for every 0, in d(X,). Suppose further 
that the numerical data of hX have the property (P) at every point bQf Y: ; 
choose local coordinates (y,, . . . , y,) of Y-entered at bi and defined over k, 
such that f # o  hQecomes, up to a regular and non-vanishing function around bX, 
a product of powers of y,, . ., y, and (hX)*(dx) a product of powers of y,, . . . , 
y, and a local gauge form around bX. This time, however, some of the exponents, 
say the exponent of y, in fYa hX, may become negative. Then the "infinite 
divisibility" of @, by a local equation for H ,  implies the infinite divisibility of 

@, 0 hY by y,. In this way we see that the component with y, = 0 as a local 

equation becomes negligible and (*x)  holds for every @, in 9'(Xv). q.e.d. 
As we have said, [4]-11, Lemma 1 has to be replaced by the theorem just 

proved. As for Theorem 4 that follows Lemma 4, it is valid as stated; in fact 
it follows from the above theorem and the previous Lemma 1. 

$j 5. (C2) implies (P) 

We have assumed the existence of a tame resolution h,: Yo --+ X, over k 
of the projective hypersurface defined by f(x) = 0 and that char (k) does not 
divide m 2 2. This implies that the resolution h': Y' -+ XX in Lemma 2 is also 
tame and over k, hence over k, for every v. We shall show that if (C2) is 
satisfied, then the numerical data of Iz* have the property (P) everywhere. In 
view of the conjecture made after Theorem 1, we shall prove the following more 
precise statement : 

Lemma 3. Let k, denote a subfield of k over which k is separably algebraic 
and assume that Fg is in L1(kv) for almost all non-archimedean valuations v on 
k of degree 1 relative to k,; then the numerical data of h' have the property 
(P) everywhere. Therefore F;, is in L1(kv) and 

for every 0, in 9 ( X v )  and for every valuation v on k. 

Proof. Since ho is tame by assumption, all irreducible components of the (h,)* 
of the projective hypersurface f(x) = 0 are defined over the separable closure k, 
of k. Consider the set of all numerical data of h, at various points of Yo ; then by 
the quasi-compactness of the Zariski topology this set is finite. Let {(N,, 
denote an element of this set and consider the subset of Yo consisting of those 
points where h, has {(Ni, as its numerical data ; then at least locally it is 
a transversal intersection of varieties defined over k,. Therefore the set is locally 
closed and its irreducible components are defined over k,. According to a well- 
known elementary lemma, any irreducible variety defined over k, has a k,-rational 
point; in fact the subset of k,-rational points is Zariski dense. Therefore we 
can find a point of the set which is rational over k,. We choose such a point 
b, for each { ( N , ,  and denote by k, the extension of k obtained by adjoining 
(the coordinates of) all bo ; by construction k, is a separable algebraic extension 
of k, hence also of k,. 

We know that the set of non-archimedean valuations on k, of degree 1 



relative to ko is infinite; this is a well-known consequence of the fact that the 

zeta function of a global field is holomorphic for Re(s) > 1 and has s = 1 as 
a pole. By restricting such valuations to k we get infinitely many non-archimedean 
valuations on k of degree 1 relative to k,. Therefore we can certainly choose 
a particular valuation, say w, from the set specified in the lemma such that kl  

becomes a subfield of k,. We have thus achieved a situation where the numerical 
data of hff at any given point of Y z  are also the numerical data of 12 at some 

point of Yw f l  h-'(Xi,). The rest of the proof is as follows: 
By assumption F,* is in L1(kw) ; hence by the first part of Theorem 2 the 

numerical data of h have the property (Po) at every point of Y w  fl lz-'(X:). In 
view of the construction the numerical data of h' have the property (Po) every- 
where. Then by Lemma 1 they have the property (P) everywhere. Therefore 
by the last part of Theorem 2 (**) holds, hence F& is in L1(k,), for every @, 
in 9 ' (Xv)  ; and this is so for every valuation v on k .  q.e.d. 

$j 6. Proof of Theorem 1 

We recall that Fgv is the Fourier transform of FOv for every 0, in Y ( X , )  
and that if F& is in L1(k,), then 

for every i in k,. In the following two lemmas we shall assume that v is non- 
archimedean, +, = 1 on o ,  but not on pi', and the coefficients of f ( x )  are in 
o,; almost all valuations on k are good in this sense. 

Lemma 4. Suppose that 

with a fixed a > 1 

for every i in 0,. 

Proof. Since 
F,* is in L1(k,) by 

v is "good," F$ = 1 on o, and XO, has measure 1 .  Since 
assumption, we get 

We recall that U(i)O,, where i is in o,, is a compact subset of U(i ) ,  defined 

as follows: if i # 0, then U(i)O, is simply U(i),  n XO, and if i = 0, it is the sub- 
set of U(i),  fl XO, defined by the additional condition that grad, f s 0 mod p,. 

Lemma 5. Suppose that the condition in Lemmn 1 is satisfied for almost 

all v ; put r = codim, -,,,, ( S f )  ; then for every i in o, we have 

uniformly in i and v. 

Proof. Since the left hand side is at most equal to F,(i), by Lemma 4 it 
is bounded uniformly in i and v. Therefore in proving the lemma we may ex- 

clude any finite number of valuations ; in particular we may assume that m 
0 mod p,. After this remark we shall denote an element of XO, by and define 

N,(i) resp. Nf(i) as the number of 6 mod p",uch that f (0 = i mod p",esp. f([) 
r i mod p",d grad, f 3 0 mod p, for e = 0,1 ,2 ,  . . ; then we get 

q-'n-l)eN,(i) = F$(i*)+,(-ii*) 1 di* i v  . Jpp 
As in the proof of Lemma 4 this implies 

uniformly in i and v. On the other hand we have N,(i) = w ( i )  if i $ 0 mod p, 
and 

N1(i) = M i )  + O h S )  , 

where s = dim ( S f )  = n - 1 - r ,  uniformly in i and v if i r 0 mod p,. This 

is an elementary result ; cf. [7], Lemma 1. We also have 

for almost all v ; cf. [ l l ] ,  Theorem 2.2.5. Therefore we get 

this implies 
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uniformly in i and v. 
We are ready to prove Theorem 1 : first of all the series 

is absolutely convergent for every 0 in Y(X,). This follows from (C2), Lemma 
3, and from the fact (proved in [3], [5]) that the series 

C r[ max (1, li* ,)-"Q 
i * € k  v 

is convergent if a, > 1 for all v and o, 2 o > 2 for almost all v. We also 
remarked elsewhere that as long as @ remains in a compact subset of Y(X,), 
the first series has a constant multiple of the second series as a dominant series ; 
cf. [6]. On the other hand, the correspondence (@, i*) -+ @(x)+(i*f(x)) defines a 
continuous map of 9'(X,) x kA to 9'(XA) ; cf. [8]. Therefore conditions (B,), 
(B,) in Weil [12], p. 8 are satisfied. Consequently Fg is in L1(kA) and there 
exists a unique family of tempered positive measures pi on X, each with sup- 

port in f-'(i) = fl1(i) such that 

defines a continuous L1-function F ,  on k, with Fg as its Fourier transform; and 

for every 0 in Y(X,). The rest of the proof consists of making the measure 
pi explicit for every i in k. 

We have 

for every @ in 9'(X,) and i in k,. We choose i from k ;  then for every 
special element @ of Y(X,) of the form 0 = 0, @, the product of all F,,(i) 

is absolutely convergent; by Lemma 4 this follows from (C2). Futhermore 1 
is a set of convergence factors for U(i) ; by Lemma 5 this follows from (Cl) 
and (C2). Therefore the restricted product measure lei 1, of all lei 1, exists. More- 
over if, for a moment, S denotes a large finite set of valuations on k, then 

@dpi = lim n F$,(i*)+c(- ii*) 1 di*l , ; 
S v E S  S k, 

and the right hand sides are both equal to the product of all F,.(i). Since the 
C-span of functions such as @ forms a dense subspace of 9'(XA), therefore, 
we get 

for every @ in 9'(X,). This completes the proof. 

5 7. Known cases retold 

If k, is a p-field and 0, is the characteristic function of Xi, then we shall 
write Z,(s) instead of Z,Q(o,) ; this is in accordance with the notation F,, F$. 

Case 1. Let f(x) denote a homogeneous polynomial of degree m 2 2 in n 

variables with coefficients in k ; we shall assume that Sf = {0), i.e., the projec- 
tive hypersurface defined by f(x) = 0 is non-singular. In this case h* is simply 
the quadratic transformation of XT centered at the origin of X ;  hence it is tame. 
if char (k) does not divide m. Moreover if n > m, then we have 

for every i* in k, and for almost all non-archimedean valuation v on k. This. 
was proved in [5], pp. 219-222 independently of other parts (but dependently 
on Deligne's result). Therefore by Theorem 1 the Poisson formula holds if 
char (k) does not divide m and n > 2m. Incidentally the Euler factor Z&) has 
(1 - q-lt)(l - q-"tm), where t = q-" as its denominator and 

as its numerator 

Case 2. We shall take as X (the underlying vector space of) a simple 
Jordan algebra defined over k of quaternionic hermitian matrices of degree 
m 2 2 and as f(x) its norm form. In this case the codimension of Sf in f-'(0) 

is 5. And we have 

for almost all .v ; this can be proved by replacing f(x) by the Pfaffian of an. 
alternating matrix of degree 2m, which is permissible for almost all v. The 
details are given in [3], pp. 192-193 ; it only depends on what we called. 
"elementary arithmetic" in that paper. At any rate this implies 



for every i* in k ,  - o r ,  where 

for 1 5 i < m. Therefore if k is 'a number field. then we can apply Theorem 
1 with any number between 2 and 3 as a ;  hence the Poisson formula holds in 
this case. 

Case 3.  We shall take as X an exceptional simple Jordan algebra defined 
over k and as f(x) its norm form. This case was fully examined by Mars [lo] 
by using the theory of Jordan algebras; we can also proceed as follows: the 
codimension of S, in f-'(0) is 9 and 

for almost all .v; this can be proved by replacing f(x) by the classical split form 
txzy - Pf(z), e.g., in E. Cartan's thesis, p. 143, where z is an alternating 
matrix of degree 6 and x, y are column vectors. The computation is tedious 
but elementary. At any rate this implies 

for every i* in k, - on. Therefore if k is a number field, then we can apply 
Theorem 1 ; hence the Poisson formula holds also in this case. 

Remark. In the function-field case we have to verify the prerequisite for 
applying Theorem 1, i.e., the existence of a tame resolution ho over k of the 
projective hypersurface defined by f(x) = 0. This question, which is interesting 
in itself, was examined (in the fall of 1974) by G. R. Kempf over an arbitrary 
field. He showed, among other things, that a resolution h,: Yo - + X o  exists and 
that the numerical data of ho at any given point of Y o  are subsets of 

{(i, i(2i - l))),,,,, in Case 2 and of {(I, I), (2, 10)) in Case 3. Therefore in 
Case 2 if char (k) does not divide m! ,  then the Poisson formula holds. 
(Actually by the method in [3] we can show that the Poisson formula holds 
without any restriction on char (k) ; in fact the proof in the function-field case 
is much simpler.) ,Moreover in Case 3 if char (k) f 2, 3, then the Poisson 
formula holds. 

We might also mention that Kempf's result (together with our theory of 
asymptotic expansions) clarifies the ambipities in [3], p. 183 and [lo], p. 129: 
for every @, in 9'(X,) and i* in k, we have 

j Fzn(i*) / 5 const. max (1, j i* I,)-" 

with a = 3 in Case 2 and a = 5 in Case 3 ; and this is so for every valuation 
v on k. 

3 8. Birch-Davenport's theorem 

We shall give another application of Theorem 1 ; we shall first recall certain 
results of Davenport and Birch: let k denote an algebraic extension of Q of 

degree d and o the ring of integers of k ; we choose a 2-basis {o,, . . , w,) of 
o. We shall denote by f(x) a homogeneous polynomial of degree m 2 2 in x,, 
. . . , x, with coefficients in o and by S = Sf the critical set of f : X = Cn -* C ;  
we shall assume that Sf # X,  i.e., f + 0. We put Y = M,,,(C) and define 

x :  Y -+X as 

then there exists a unique set of homogeneous polynomials gl(y), . , g,Cv) of 
degree m in y,, with coefficients in Z such that 

If we use the functor RkIs in Weil [ l l ] ,  p. 6, then 

In the following we shall regard the number field k, the 2-basis {a,, . . . , o,) 
of o, and the form f(x) as fixed ; and we shall introduce the following "variables" : 
a box B in Y, of sidelength 1, a vector u = (u,, . . , u,) in Rd, positive real 

numbers a ,  9, r where /3, r 5 1, and polynomials r,(y), . . . , r,(y) of degree m - 1 
in y,, with coefficients in R. We say that a quantity is a parameter or a con- 
stant according as it is or is not dependent on these variables. 

Theorem (Birch-Davsnport). We put 

go = 2 - ( m - ! ;  odirn (Sf) 

and assume that a0,3 > a ;  then there exists a parameter ro depending only on 
ao,3 - a! such that for any r < r0 either 



or there exist relatively prime integers a,, . . . , a,, b satisf?ing 

for 1 R 5 d ,  in which c is a constant. 

A proof of the above theorem can be "extracted" from Birch [I] ; we 
have clarified the nature of r, and also we have included rl(y), . . , r,(y) with 
variable real coefficients. 

Corollary. W e  put a = ( m  - 1)-'a,; then for any c > 0 there exists a 
positive integer b, depending only on E such that if  a,, . . , a,, b are relatively 

prime integers and b 2 b,, then 

For the sake of completeness we shall give a proof: we may assume that 
& < a ;  put 

and define b, as the smallest integer satisfying 

then b. depends only on e. Define a box B in Y ,  by the condition that every 
yil satisfies 0 j y, < 1 and put ; = b-l, n, = a,b-' for 1 R 5 d.  Then the 
alternative (2) can easily be rejected, and the estimate (1) can be rewritten as 
in the corollary. 

A remarkable feature of this corollary is that the estimate holds uniformly 
in r,(y), . . , rd(y) ; this will permit us to prove Lemma 6 in a form more general 
than we need in this paper. 

$9.  Case 4 

We shall apply Theorem 1 to f ( x )  ; clearly if 

a = codim (S,.)/2"-l(m - 1) > 1 , 

then ( C l )  is satisfied. We shall proceed to show that if a > 2d, then (C2) is 
also satisfied: we shall denote by e,  the product of Q,  - Q,/Z,-- R / Z  and 

e ;  we put Y ,  = M,,,(Q,), Y: = Mn,,(Z,), and denote by Idyl, the Haar 

measure on Y ,  such that YO, has measure 1. Then for every Y, in .Y(Y,) the 

following integral : 

defines a bounded locally constant function Gcp on Qd,. 

Lemma 6.  Suppose that Y, is the characteristic function of  a coset in 

Y,/YO,; then for every LL* in Qd, such that 

Proof. We choose a representative y 9 f  the coset such that yo is a 
rational matrix with a non-negative power of p as its denominator; and we 

replace u* by a similar rational vector without affecting Ggp(u*) and / u* 1,. In this 
way the lemma is reduced to the following statement: suppose that h,(y), . . . , h,(y) 
are polynomials of degree m - 1 in y,, with coefficients in p-""Z and a,, . . , a, 
are integers not all divisible by p ; then we have 

provided that pe 2 b,;  and the proof is as follows: 
We choose el 2 e f e,; then the left hand side of (#) becomes 

We may assume that 0 =( qi, < pel for every i, R and we decompose 7 into 7' 

+ 7" where 0 5 v{, < pe ; then for each 7'' we can write 

in which r,(y) is a polynomial of degree m - 1 in y,,, with rational coefficients. 
Therefore by the "corollary" we get 

hence the left hand side of (#) is less than 



We shall denote by tr the trace from k to Q and define a 2-basis {G,, 

. . , w,) of the inverse of the different of k by the condition tr (w,~,,) = &,,. 
On the other hand we define a character e, of Q, = R as e,(t) = e(-t) and 
for a moment we allow p  = w. Then for every valuation v on k dividing p 
the product +, = ep c trC, where tr, denotes the trace from k ,  to Q,, gives a 
character of k ,  ; and there exists a unique character + of k , / k  with +, as its 
v-component. 

After this remark we shall assume that p # w and fix the following product 
isomorphism : 

Q", 

in which the first isomorphism is given by 

n 

and the second isomorphism comes from the injections k  -+ k, ; we shall also 

fix the following product isomorphism: 

in which the second isomorphism comes from the injections X, +X,. We ex- 

press the above isomorphisms as u* --, (i:), and y -+ (x,),. We choose @, from 

9 ( X C )  for every v dividing p  and define Y, in 9 (Yp)  as 

then we get 

in which c, = 1 if p does not divide the discriminant 1, of k .  Finally if 

d ,  denotes the degree of k, over Q,, then 

1 1  u* I, = max {I i: (Ydv) 
V I P  

defines a norm on Qd, ; and ju* 1, = lu*lp if p  does not divide A, .  
Suppose that v divides p 2 b,, jJkI + 1 ; denote by 0, the characteristic 

function of a coset in X,/X;, for every w dividing p ;  then the above ?.F, be- 
comes the characteristic function of a coset in Yp/Y:. Therefore if we take 

i: = 0 for every w dividing p but different from v, then by Lemma 6 we get 
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; Fzv(i*) 1 = : G* (ri*) i 5 max (1, j ~ * i , ) - " + ~  
V P  

= max (1, , i* J ( - ~ - ~ ~ / d o  

for every i* = i: in k,. This shows that (C2) is satisfied if a > 2d. We have 
thus obtained the following theorem: 

Theorem 3. Let k denote an algebraic number field and f(x) a homogeneous 
polynomial of degree rrz 2 2 with coefjCicients in k ;  assume that 

o = codim (S,)/2m-!im - 1) > 2 [ k :  Q] ; 

then the Poisson formula 

C I.,, = C +(i*f(x)) 
i E k  i *E  k 

holds. 

A similar Poisson formula holds also in the function-field case; the proof 
in that case is simpler because .Y(X,) coincides with the C-span of characteristic 
functions of "boxes" ; cf. [9]. We might add that if our conjecture (stated after 
Theorem 1) is correct, then the condition a > I [ k  : Q] can be replaced by o > 2. 
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On the Frobenius Correspondences of Algebraic Curves 

YASUTXKA IHARA 

Introduction 

1. Our study was motivated by the desire to find all congruence relations 
of the form 9'- 17 + 17' (mod p), where 7 is an algebraic correspondence of 
an algebraic curve 9 over a p-adic field having a good reduction C, I7 is the 
N(p)-th power Frobenius correspondence of C, and 17' is its transposed cor- 
respondence. This type of relations has been known for the Hecke corre- 
spondences F = T ( p )  of modular curves by Kronecker, Eichler, Shimura and 
Igusa, and for the generalized Hecke correspondences associated to quaternionic 
modular groups, by Shimura [7] [8] (supplemented by Y. Morita). For the 
applications to the arithmetic of algebraic curves over finite fields as those given 

in [ 5 ] ,  it is desirable that one can find all possible relations of this type, 
especially starting from any given curve C over finite field. Thus we meet the 
problem of finding all deformations ( 9 ;  F) of the pair (C;  17 + 17') of a curve 
C and a divisor 17 + 17' on C x C, including especially the deformations 
changing the characteristic. The purpose of this paper is to present a full 
exposition of our results in this direction which were announced in the 
Symposium. 

2. We shall formulate the problem in a precise and slightly generalized 

form. Take a complete discrete valuation ring R with finite residue field F,. 
Let C be a proper smooth geometrically irreducibleu algebraic curve of genus 
g > 1 over F,. Put C' = C, and consider the product C x C' over F,. Let 
17 (resp. 17') be the graph on C x C' of the q-th power Frobenius morphism 
C -+ C' (resp. C' -+ C). Consider T = 17 + 17' as a reduced subscheme of 
C x C'. The singularities of T consist of all geometric points of I7 f l  17'. 

1) This assumption of geometric irreducibility can be dropped, with only slight modi- 
fications; see S 16. 



- - 
They are the points of the form (Q, QQ), where runs over all FP-rational 

points of C. In particular, deg (17 n 17') equals the number of F,,-rational 

points of C. 

Problem A. Find all triples (59, $5'; 5) consisting of two proper smooth 
R-schemes V, Y;' and an R-flat closed subscheme T c %' x V', such that 
'%'BRFq = C, 59'ER Fq = C' and T x , ( C  x C') = T, where 9'= 9 ~ ~ 9 ' .  

Let r be a prime element of R and put R, = Rixn+l  (n 2 O), so that 

R, = F,. When X ,  is an R,-scheme and 0 5 m 5 n, we write X ,  = X ,  
gRn R, and call X ,  an extension of X,. When we speak of a triple (C,, C;; T,) 

over R,, it will always be assumed that C, and C', are proper smooth R,- 
schemes that extend C and C' respectively, and that T, is an R,-flat closed 

subscheme of S, = C, x Ck (the product is over R,) such that T, x ,n (C x C') 
= T. A triple (C,, C',; T,) over R, is called an extension of (C,, C',; T,) if 

C, and Ck are extensions of C, and C', respectively and if T, = T, x sn Sm. 
Now by the Grothendieck existence theorem ([I] [2], or [6]), Problem A is 
equivalent to : 

Problem A. Find all infinite sequences {(C,, Ck ; T,)),",, of successive ex- 
tensions of triples over R, starting from (C, C' ; T). 

They are equivalent because, first, C and C' being proper curves, we know 
by [2] I11 and [I]  I11 5 5.4 that each sequence {C,) (resp. {Ck)) determines %? 

(resp. V') uniquely, and secondly by [I]  I11 (5.1.8, 5.4. I), {T,} corresponds to 
a unique closed subscheme 3 of 59 x R  ??I. SO our problem is reduced to 

solving the following problem for the general n 2 1 : 

Problem A,. Find all extensions (C,, C', ; T,) over R, of a given triple 

(Cn-l, Ck-1; Tn-J over Rn-l. 

3. We shall now describe our main results on Problem A,, together with 
the organization of this paper. 

In the first four sections (55 4 - 7), we shall approach the problem by the 
cohomological method. Let E be the kernel of the canonical sheaf-homomor- 

phism O -+ N,, where O is the tangent sheaf of C x C' and NT is the normal 
sheaf of T in C x C'. Our first observation is the vanishing of H1(E) (Propo- 
sition 1, 54). This follows from the surjectivity of the Cartier operator 
7 :  W(pi+'KC) - W(piKc) (i 2 0) on C (Lemma 1, 5 4). The vanishing of H1(E) 
then leads directly to a certain uniqueness theorem. To explain this, let (C,-,, 

Ck-, ; T,-,) be the given triple over R,-,, let P be a point of C x C', and let 

Un-, be a small affine open neighborhood of P in Cn-, x Ch-,. Consider a 
pair (U,, T,(Un)) of a smooth R,-scheme Un extending U,-, and an R,-flat 
closed subscheme T,(U,) c U, extending Tn-, fl U,-,. Such a pair of local 
extensions exists always, and up to isomorphisms over U,-,, it is unique when 
P $17 fl n ' ,  while there are qdes distinct such pairs when P E 17 fl 17'. For 
each P E I7 fl IT, let 2, be the set of germs of isomorphism classes of (U,, 
T,(U,)) at P. and put 9 = u p  2,. Then our uniqueness theorem states that 
for any given 1 = (1,) E 9, the solcition (C,, Cn ; T,) of Problem A,,witlz which 
(C, x C;, T,) belongs to 1, at each P E 17 fl 17', is at most unique (Theorem 
1, 5 6)". Thus, the next problem is to investigate the existence of (C,, Ck; T,) 
for each 1. This existence turns out to be equivalent with the vanishing of the 

obstruction class $1) which is an element of a 4(q - l)(y - 1) dimensional 
Fq-module 

Obs = Ker (H2(E)  --+ H2(8)) ($6) . 

But /3(l) does not uszially vanish, and our next attention will be directed to the 

nature of the mapping 3:  9 -, Obs defined by 1 -+ ?(I) (5 7). Let NO, be the 
image of O + NT and consider the deg (17 fl 17')-dimensional Fq-module 

HO(N,/ NO,). Then 2 forms a principal homogeneous space of HO(NT/NO,), and 
1 turns out to be equivariant with the canonical group-homomorphism HO(NT/WT) 

4 Obs. (By this, we observe, for example, that the solution of Problem A is 

at most unique if it is so for Problem A, (Corollary 2 of Proposition 2).) But 
this is not yet sufficient for our purpose, as this describes our mapping ,8 only 

up to unknown translations in Obs. The determination of ,13 itself seems to 
offer a serious arithmetic question, except in the trivial case where R, = 
Fq[[t]]/tn+l and (C,-,, Ck-,; T,-,) is the obvious extension of (C, C'; T). This 
is the starting point of the main part of our study. 

To proceed further, we shall forget about 1, and look closely at the dif- 
ferential invariants of the related Frobenius mappings modulo zn+l (§§ 8 -- 11). 
Suppose for simplicity that R = Z, (the ring of p-adic integers) and that C',,, 

= C,-,. Let en-, denote the local ring at the generic point of C,-,. It is a 
unique R,-,-flat local ring having (p) as the maximal ideal and FJC) (the func- 
tion field of C) as the residue field. The finite Ctale extensions of St,-, corre- 
spond bijectively with the finite separable extensions of the residue field F,(C). 
Let @,-, be the maximum Ctale extension of R,-,. Then our main result in 

1)  It is noteworthy that the familiar concept of supersingularity in g= l  does not 
appear at this stage. In this sense, there are no exceptions for g>1! 
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this case takes the following form ; there is a canonical bijection 

between the set of all solutions of Problem A,  and the set of all ordered pairs - 
(on-,, 0:-,) of differentials con-,, wi-, of Q,-, that are "of type T,P" at every 
P E T ;  where (C,, Ck; T,) are counted up to isomorphisms and (on_,,  wk-,) are 
up to termwise multiplications of elements of R:, (Theorem 4, 5 11). 

To explain this, let C,, C', be any smooth extensions of C,-, over R,, U, 
c C, x C', be an a f k e  open set, and T,(U,) be an R,-flat closed subscheme 
of U, extending an open set of T,-,. Then Tn(U,) - 17' (resp. Tn(Un) - 17), 
unless empty, can be considered as graphs of local morphisms C, -+ Ch (resp. 
C + C ) .  Let on : 9; -+ 9, (resp. oi : 9, - Rk) be the corresponding local 
homomorphisms at the generic points of C,, Ci. Note that &/pn and $th/pn 
can be identified with 9,-,, and that there is an isomorphism c,: 9, 7 B', 
inducing the identity of 9,-,. After identifying 52, and 8: via r,, we may 
regard a, and oh as endomorphisms of Rn inducing the p-th map modulo p. 
Let an be the maximum Ctale extension of 9,. Then on (resp. ok) can be 
extended uniquely to an endomorphism of a, inducing the p-th power map 
modulo p, which we shall denote also by on (resp. ok). By a general argument 

(5 9), we can prove that there exists a differential on (resp. oi) of @,, not 
divisible by p, such that 

~ ; ; n  = Pwn (resp. w:; = pwi) . 

Moreover, if on-, (resp. wi-,) denote the differentials of @,-, obtained by re- 
duction of w, (resp. wi) modulo pn, then on-, (resp. oh-,) are uniquely deter- 
mined modulo multiples of elements of R;,, and they are independent of the 
choice of r,. Consider the ordered pair (an-,, wk-,) as a differential invariant 

of (C,, Ch ; T,(U,)). In particular, we can associate to each solution (C,, Ck ; T,) 
of Problem A, its invariant (w,-,, ok-,), and this defines the map (*). A pair 
(on-,,w~-,) of differentials of a,-, is called "of type T,P" at P E T, if there 
exists a small affine open neighborhood Un of P on C, x Ck, on which we can 

draw a local extension T,(U,) of Tn-, in such a way that the invariant (w,9,, 
o;Cl) of (C,, Ch; Tn(Un)) coincides with (w,-,, w',-,) up to termwise multiplica- 
tions of elements of R:,. (Here, when P $ I7 (resp. P $ U'), so that w,9, 

(resp. oh<,) is not defined. the corresponding coincidence condition is considered 
as empty.) Since this condition is local, the choice of C, or C:, has no influence 
on this. In the proof of the bijectivity of (*), a certain auxiliary sheaf F on 

C x C', a coherent O&,,-Module such that E c F c O,  plays a crucial role. 
This is a principle which could be used effectively only after one obtains 

a more explicit description of the above local condition for (a,-,, 0:-,). For 

the general n. the author could not succeed in rewriting this in sufficiently ex- 
plicit terms, perhaps because of his present unfamiliarity with the world in which 

these differentials live ; i.e., some ramified coverings of curves mod pn. But for 

n = 1, our principle leads directly to the solution of Problem A, (Theorem 5, 

5 12). The solutions (C,, C:; T,) are in a natural one-to-one correspondence 
with the pairs (w?(*-'), o;a(p-l)) of differentials of degree p - 1 on C characterized 
by explicit conditions. This gives an effective method for calculating the number 

of (C,, Ci ; T,) for any given C. For example, let C be the Madan-Queen plane 
quartic : 

4"' i (x3 + x2z + z3)y + (x4 + xz3 + z4) = 0 over F2 . 

Then there are no solutions (C,, Ci ; T,) over 214 ; hence a priori no solutions 
of Problem A for R = Z2. On the other hand, for the plane quartic: 

y4 - (x  + z)y3 + xy2z + (x + ~ ) ~ y  + x2z2 = 0 over F2 , 

there is exactly one solution (C,, C:; T,) over 214. We do not know whether 
it extends further up to a solution of Problem A (although we know by Corol- 
lary 2 of Proposition 2 that such an extension is at most unique). These, and 

other examples are given in § 15. 
We add here the following remark. In our previous work, we have shown 

that wherever there is a congruence relation, there is a certain differential as- 
sociated to it, and then studied some properties of this differential (cf. [4], and 
also "Non-abelian invariant differentials and Schwarzian equations in the p-adic 
theory of automorphic functions", US- Japan Seminar on Number Theory, Tokyo 

1 9 7 1 )  Our present work gives a partial inverse of this process. 
It is my pleasure to express my gratitude to E. Horikawa who guided me 

to his theory of deformations of varieties carrying divisors ([3]) which was very 
helpful in the first part of this study. I am also grateful to T. Shioda and S. 
Iitaka for their valuable conversations with me in connection with this problem. 

Notations and conventions 

In addition to the basic notation introduced in 5 2, we shall also frequently 
use the following notations and conventions. 

1) Available at the Univ. of Tokyo. 
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For each 0 5 in 5 n and an R,-algebra A, (resp. an R,-scheme X,), we 
write A, = A, ORn R, (resp. X, = X, OR,, R,). Similarly. for each f, E A,, 
f, will denote its image f, 0 1 in A,,. In this case, A,, (resp. X,, f,) is called 
an extension of A, (resp. X,, f,). If Y ,  is a subscheme of X,, we write 
Y, = Y, xXn Xm, and call Y, an extension of Y ,  on X,. Note that X, and 
X, have the same base topological spaces. For each i (0 _< i 5 n), the product 
zn-t-fi  (fi E Ai) makes sense as an element of A,. 

A triple (C,, C, ; T,) is always assumed to satisfy the conditions in Problem 
A, i.e., C, (resp. Ck) is a proper smooth R,-scheme extending C (resp. C'), 
and T, is an R,-flat closed subscheme of C, x Ci extending T. Solutions 
(C,,  C; ; T,) of Problem A, are always counted up to equivalence (C,, Ch ; T,) 
-- (C:, C:' ; T:) ; which consists of two R,-isomorphisms E : C, 2; C: and E' : C:, 
2; C:' extending the identities of C,-, and Ci-, (respectively) and satisfying 
(E x E')(T,) = T? . 

If X is any scheme, 0, will denote its structure sheaf. A point P, Q, . . . 
E X means a scheme-theoretic closed point of X. For the geometric points, 

we shall use the letters P ,  g ,  . . . , etc. (For example, if P = (Q, Q') is a point 
of T with the projections Q, Q' on C, C', respectively, then Q = Q' by the 
identification C = C' ; but if = (Q, 0') is a geometric point of T, then either 

0' = or Q = el..) The local ring of X at P will be denoted by OH,,. 
When X is either a curve or a surface which is proper smooth and irreducible 
over Fq, and D is a divisor on X ,  we denote by O(D) = O,(D) the correspond- 
ing invertible sheaf on X (the sheaf of germs of rational functions f on X 
satisfying f >- -D), and write 

as usual. 

Cohomological approach 

4. We shall consider here the following two sheaves on C x C'; 

0 :  the tangent sheaf of C x C' ; 

E :  the kernel of the canonical homomorphism 8 - NT . 

where NT is the normal sheaf of T (in C x C'). By definition, if U = Spec A 
is any affine open set of C x C' which is so small that T fl U is defined by 
a single equation f = 0 on U, then r ( U ,  O) (resp. r ( U ,  E)) consists of all 
derivations 6 :  A --, A over Fq (resp. all 6  E r(U, O) satisfying 6 f  E (f)). 

To express O and E as direct sums of invertible sheaves, take any rational 
function x on C which is not a p-th power in the function field of C, and let 
y be the corresponding function on C'. Lzt Kc (resp. Kc,) be the divisor of 

dx (resp. dy) on C (resp. C') and put 

Then each local section 6 of O can be expressed uniquely as o' = a(?/?x) + 
b(a/ay), where a (resp. b) is a local section of 8(-K) (resp. 6(-Kt)). This 

decomposition will be expressed as 

A similar decomposition is possible for E ,  due to the particular circun~stance 
that 17 ,n '  are graphs of inseparable morphisms. In fact, let P = (Q, Q') E T, 

and take a rational function x, on C which is finite at Q, dx, # 0 at Q, and 
such that the value of x, at Q generates the residue field of Q over Fql).  Let 

y, be the corresponding function on C' and put h = yp - x$. 11' = x, - y$ 
and f = hh'. Then h = 0, h' = 0 and f = 0 are local equations at P for Ll: 17' 
and T, respectively. But since ?lz/ax = ah'/ay = 0 (by the inseparability), we 
obtain 

and since a and b are local sections of O(-K) and 0(-K') respectively, 
a(dxp/dx) and b(dy,/dy) are finite at P.  Since the local ring O,,,,,p is regular 

and hence it is a unique factorization domain, 6 f  E (f) holds if and only if 
a(dx,/dx) and b(dy,/dy) are divisible (at P) by xp - y'$ and yp - xg, respec- 
tively. This implies that 6 belongs to a local section of E if and only if a 
and b belong to the local sections of O(-K - 17') and O(-K' - 17) respectively. 

Therefore, (4.1) induces the decomposition 

Let p, (resp. p,) be the projection of C x C' to C (resp. C )  and 0, 
(resp. O,.) be the tangent sheaf of C (resp. C'). Then O, = p:Oc @pff,. and 

1) Such a function exists, since if z is any function on C whose value at Q generates 
the residue field of Q, but d:=O at Q, then s p =  c+t satisfies this condition for any prime 
element t at Q. 



0 2  = pPOc @P*@~..  But since Hn(OC) = H0(OC,) = 0 as g 2 2, the Kiinneth 
formula gives the canonical isomorphisms 

Therefore, H1(0) -- H1(Oc) @ H1(Bct) (canonically), in whch each direct sum- 
mand is 3(g - 1)-dimensional over F,. 

Proposition 1. H1(E) = 0. 

Proof. By E = El  @ Ez and by symmetry, it suffices to. prove that H1(E,) 
= 0. For this purpose, look at the exact sequence 

which can be rewritten in terms of invertible sheaves as 

where r is defined by the restriction to D', and K,, is the canonical divisor 
of Dr .  Since I(-qK,,) = 0, it suffices to prove the injectivity of H1(r): 

H 1 ( O C ( - )  + H 1 ( ( - q ) ) .  Replace H1(Ocxct(-K)) by H1(Oc(-Kc)) (via 
Pz 

(4.3)), and H1(C',.(-qK,.)) by H1(Gc(-qKc)) (via D' C' = C). Then H1(r) 
is replaced by p : H1(Oc(-Kc)) -+ H1(Bc(- qK,)). But by the definition of IT', p 

is nothing but the homomorphism induced by the q-th power Frobenius opera- 
tion (a,,) + (ak) on 1-cocycles. Therefore, the dual of p has an interpretation 
as an iterate of the Cartier operator r .  In fact, put q = pf (p: a prime 
number). Then p is the dual of the homomorphism 

where, in general, W(D) (for a divisor D on C) denotes the space of differentials 
,' on C satisfying E >- -D. Therefore, the proof is reduced to the surjectivity 
of (4.6), and hence to the following lemma : 

Lemma 1. Let C be a proper smooth irreducible algebraic curve over a 
perfect field K of characteristic p, Kc be its canonical divisor, and D be any 

divisor of C satisfying l(D) > 0, l(Kc - pD) = 0. Then the Cartier operator 

(4.7) : w (pD) * FV (D) 

is surjective. 

To prove this, we may replace D by a positive divisor which is linearly 

equivalent with D ; so, we can assume that D Z 0. Take any ,t E W(D) and 

express i as 5 = u dv/v.  Put r; = UP d v / v .  Then ~ ( 7 )  = [. For each point 
Q E C, let KQ be the residue field. let t = tQ be a local uniformization, and 

expand as 7 = C c,(Q)t;dtQ with cn(Q) E KQ. Then since C tr,,,,(c-,(Q)) = 0, 
there exists a differential ; on C such that 

is finite at all Q, which implies that j47) - ~ ( c )  is a differential of the first 
kind. On the other hand, it follows directly from the condition 6 = ~ ( 7 )  > -D 
that i 2- -pD. Therefore, W(D) is covered by the sum of r(W(pD)) and the 
space of differentials of the first kind. Therefore, it suffices to check that 
r(W(pD)) contains all differentials of the first kind. To check this, take any 
differential El of the first kind. By the same reason as above, there exists a 

differential 7, such that ~ ( 7 ~ )  = El. Put v1 = E n  bn(Q)tnQdte. Then since 6, is 

of the first kind, we have b-,,-,(Q) = 0 for all i 2 0 ; hence pl - dwQ is finite 
at Q for some rational function wQ. Obviously, we can choose WQ in such a 

way that (we) belongs to the adele ring of the function field of C. Since 

/(Kc - pD) = 0, we can find a rational function w such that w - (wQ) >- -pD 
for the adele (wQ). Since the differentiation annihilates the p-th power elements, 
this implies that dw - pl Z -pD. Therefore if we put 7, = pl - dw, we have 

v2 E W(pD) and ~(7 , )  = el. This completes the proof of Lemma 1 and hence 

also that of Proposition 1. 
Let 

be the cohomology exact sequence induced by 0 - E +- O + @ / E  + 0. We 

shall call 

(4.8) 
J. 

Obs = Ker (H2(E) --+ Hz(@)) . 

It is canonically isomorphic to Coker (H1(@) -% H1(@/ E)). Since 

we have 

dim (Obs) = dim H1(@/E) - dim HI(@) 

= 2{(2q + l)(y - 1) - 3(g - 1)) = 4(q - l)(g - 1) 

Corollary. dim (06s) = 4(q - l)(g - I). 



Since dim H"@) = 6g(y - 1) by the Kiimeth formula, we have: 

(4.9) dim Hi(@) = 0, 6(g - I), 6g(g - 1) for i = 0, 1 , 3  . 
(4.10) dim H t ( E )  = 0. 0. (69 f 4q - 4)(g - 1) for i =  0 , 1 . 2 .  

respectively 

5. Here, the local questions on the infinitesimal extensions of the pair 
(C,-, x Ck-,, T,-,) wdl be discussed. We start with some general remarks 
(Rl)  - (R3). 

Let A, be any R,-algebra. According to our conventions made above, we 
write A, = A, E,,, R, and f, = f, @ 1 (f, E A,) for any 0 5 m 5 n. (Rl ) :  
An element a, E A, is a unit of A, if and only if a, is a unit of A,.  This 
follows immediately from the fact that every element of A, of the form 1 + zb ,  

(b, E A,) is a unit of A, (because sn+' = 0). (R2): Recall that A, is flat over 
R, if and only if Ker [xi] = Image [;rn+l-" holds for all i = 1, . a ,  n ; or equiva- 

lently, for i = n ;  where [ d l  denotes the multiplication of n3 in A,. (R3): Let 
X, = Spec A, be flat over R, and Yo be a closed subscheme of X, defined by 
a single equation f, = 0, where f, is assumed to be a non-zero-divisor of A,. 

Let Y, be a closed subscheme of X,. Then the following two conditions (i) 
(ii) for Y ,  are equivalent; 

( i )  Yn is flat over R, and Y, x X n  X ,  = YO, 

(ii) there exists f, E A, extending f, such that Y, is defined by a single 
equation f, = 0 in X,. 

In fact, assuming (ii) we obtain directly that A,/f, is flat over R,, which 
gives the implication (ii) 3 (i). To verify the implication (i) 3 (ii), assume (i) 
and let a be the ideal of A, defining Y,. Since (a, s )  corresponds to Yo, there 
is some f E A ,  extending f, such that (a, ;r) = (f, s),  and we may choose f from 
a.  Take any a E a and write cu = f g  + zh (g, lz E A,), so that rlz E a. By the 
R,-flatness of Y,, this implies that Iz = nnh' (mod a) with some h' E A,. There- 
fore, a E (f) + s a  ; therefore, a c (f) + r a  which leads to a = (f), as rn+'  = 0 
in A,. This implies (ii). 

Now suppose that a triple (C,-,, Ck-i ; T,-,) (n 2 1) is given. Let U,-, = 
Spec A,- ,  be an affine open set of C,-, x C',-,. By the general theory [2]  

Exp. 111, there exists a smooth R,-scheme U, that extends U,-,, and U, is 
unique up to such R,-isomorphisms that extend the identity of Un-,. Moreover. 
if Aut (U,/U,-,) denotss the group of all Rn-automorphisms of U, that extend 
the identity of U,-, (called infinitesimal automorphisins of U,), then there is 
an isomorphism 

and in fact, there is a standard choice of this isomorphism once a prime element 
;r of R is fixed. To write it down, take any o" E T(Uo, 0) and let x, be a local 
section of the structure sheaf of U,. Then x, + ;rn(6.xo) is another local sec- 
tion", and the collection of ring automorphisms x, + x, + rrn(o"xo) determines 
an element B of Aut (U,/ U,-,). This mapping 6 -+ B determines the standard 
isomorphism (5.1). 

Now take a smooth R,-scheme U, extending U,-,, and consider the ques- 
tion of infinitesimal extensions of T,-, fl U,-, on U,. In doing this, we assume 
that U,-, is so small that T n U, is defined by a single equation in Uo and 

that U, is also a h e .  Then by (R3), T,-, fl U,-, is also defined by a single 
equation fn- ,  = 0 in U,-,. Moreover, if f, is any extension of f,-, on U,, 
the closed subscheme of U, defined by f, = 0 is R,-flat and extends T,-, f l  

U n 1  Conversely, any R,-flat closed subschemes of U, extending T,-, fl U,-, 
is obtained in this manner in view of (R3), (Rl). Let f, and f, + snz0 be 
two extensions of f,-,, and let T,O (U,), T,(U,) be the corresponding closed sub- 
schemes of U,. Let E E Aut (U,/ U,-,) correspond with d E r(U,, @) via (5. I).. 
Then, as can be verified directly, the following conditions are equivalent: 

From this equivalence, we obtain the following two facts. First, E leaves T,(U,), 

invariant if and only if 6f0 E (f,), i.e., 6 E T(U,, E). This fact will be expressed 

briefly as 

(5.2) Aut ((U,, Tn(Un))/ U,-,) 2: r(U, ,  E) (induced from (5.1)) . 

Secondly, T,O(U,) and T,(U,) are equivalent (i.e., (a) holds with some E E 

Aut (U,/U,-,)) if and only if z, is contained in the ideal of r(U,,  O,,,,) gener-. 
ated by f o  and 6fo where 6 runs over all elements of r(U,,  0). But this is the 

ideal defining the sinplarities of T in U, ; i. e., the ideal corresponding to the 

closed subscheme U, fl 17 0 17' of U,. Therefore, if U,-, is so small that U,. 
contains at most one point of 17 n L?', then the number of equivalence classes. 
of T,(U,) is given by 

1 . . .  when U 0 0 1 7 n 1 7 ' = $ ,  
q d e g P  . . -  when U, n 17 fl l7'= {P), 

1 ) Recall our conventions " ~ " - ~ a i  E A,". 



and in the latter case, the class of T,(U,) is determined by zo(P), the value 
of zo at P. Since U, itself is unique, this gives the number of extensions 
(U,, T,(U,)) of (U,-,, T,-, fl U,-,) counted up to infinitesimal isomorphisms. 

Each germ of (infinitesimal) isomorphism classes of (U,, T,(U,)) at P will 
be called a local class at P. A mapping P -+ I,, which assigns to each P E 17 n 17' 
a local class 1, at P, will be called a local condition (on (C,-,, Ck-, ; T,-,)). There 
are qlva distinct local conditions, where 

1v2 = C deg P = C deg Q . 
PEnnnl & E C  

deg Q 2 2  

We say that (C,, Ch ; T,) satisfies the local condition 1 = (I,), when (C, x C', ; T,) 
belongs to the class 1, at each P E 17 fl 27'. Finally, when I7 f l  17' = 8, we 
understand that there is one and only one local condition 1 on (C,-,, C',-, ; T,_,). 

6. Now we assign, in addition to (C,-,, Cn-, ; T,-,), a local condition 

1 = (1,) on (C,-,, Ch-, ; Tn-,) (see fj 5). We shall formulate in cohomological 
terms the problem of £inding all triples (C,, Ch ; T,) extending (C, -,, C',-, ; T,-,) 
and satisfying I. 

First, since C,-,, Ch-, are smooth extensions of a curve C, there exist 
smooth R,-schemes Cz, C:' that extend C,-,, Cn-I respectively (cf. [2] ; indeed, 
this obstruction belongs to H2(C, Oc) = 0). We shall fix C: and C:' for an 
auxiliary purpose. Let C,-, x C',-, = U, Ui-I be an a h e  open cover. Let 

be the open subscheme of C: x C,*' having the same base space as Ui-,. 
We may assume that our affine open cover is so fine that each Ui is also af'fine 

and that T,-, fl UA-I is defined by a single equation fi-I = 0. Take any such 
extension fi of fk-I on Uk that (Uk, Ti) belongs to the assigned local class, where 
Ti is the closed subscheme of Ui defined by = 0. Take any ( A ,  p), and put 
U2 = Ui n U;. Then since (VZ, Ti fl U?) and (U?, T;: fl U?) belong to the 
same local class, there is an infinitesimal automorphism E" of U: which trans- 

forms T: fl U:; to T; n U:. Let 8 ' ~  be the element of r(Uip; @) correspond- 
ing to ciP7 and put !'" = 8'" + euu + 8" E r(UiPu, E), where UrV = Uk fl U; fl 
U; (see (5.2)). Then (;"v) is a 2-cocycle of E.  Let 9 E H2(E) be its c o h o m o l o ~  
class. Then 13 does not depend on the choice of Cz and C:', nor on the choice 

of { U ~ - l ) , f ~ - l , f ~  and E* .  It depends only on (C,-,,CQ-!; T,-,) and 1. More- 
over, the image of ,8 in H2(0) vanishes, as (,PV) is a 2-coboundary of @. Thus 
for each local condition 1 on a fixed triple (C, -, . Ci-, ; T,-,), we have defined 
an element ,J = p(l) E 0 6 s  = Ker +. 

It is clear that the existence of (C,, Ch ; T,) satisfying 1 would imply ,3 = 0. 

Conversely, if ,3 = 0, then we can replace 8'"y 8" - el", with some e" E 

r(Uip, E) for each (A. p) ,  to make 8" a 1-cocycle, so that we can re-patch 
(UA, T;) together to construct a pair (S,. T,), where S, is a smooth R,-scheme 
that extends Cn-, x C',-, and T, is an R,-flat closed subscheme of S, extending 
T,-,, satisfying 1. But since the set of all infinitesimal isomorphism classes of 

smooth extensions of C,-, x C',-, (resp. C,-,, Cn-,) over R, forms a principal 
homogeneous space of H1(0) (resp. H1(Oc), H1(Oct)) in the natural way (cf. [2] 
Exp. 111, Theorem 6.3), and since we already examined that H1(0) -- H1(Oc) 
Q H1(Ocr) (canonically) ( 5  4), S, can be decomposed uniquely as S, = C, x Ck, 
where C,, Ch are smooth R,-schemes extending C,-,, Ch-,. Therefore, the ex- 
istence of (C,, Ch; T,) is equivalent with the vanishing of P.  (That C,, Ch are 
proper over R, follows automatically ; in fact, C,-, --, Spec R, is proper, being 

the composite of the two proper morphisms C,-, -+ Spec R,-, and Spec R,-, + 

Spec R,, but since C, -, -+ C, is surjective (in fact, topologically bijective), C, -+ 

Spec R, must also be proper ; [l] 11, 5.4.3). 
Finally, since the set of all solutions (C,, Ch; T,) of Problem A, satisfying 

1 forms a principal homogeneous space of H1(E) in the natural manner, we 
obtain by Proposition 1 and its Corollary ( 5  4) the following 

Theorem 1. The solutions (C,, Ch; T,) of Problem A ,  satisfying a given 

local condition 1 on (C,-,, Ch-, ; T,-,) is at most unique, and the obstruction 
Jr 

to its existence is an element $(I) of Obs = Ker (H2(E) --+ H2(0)) which is a 

4(q - l)(g - 1) dimensional F,-module. 

7. To study the group theoretic structure of the mapping 1 --+ ,8(l), consider 
the sheaves NT, NO, and NT/NO, on T, where NT is the normal sheaf of T and 
NO, is the image of the canonical homomorphism O --+ NT. Since this homo- 

morphism is surjective outside the singular points of T, NT/NO, is with support 
in 17 fl 17'. From the two short exact sequences 

(7.2) 0 -+ E ---+ O ---3- NO, ---+ 0 , 

we obtain a natural homomorphism 

(7.3) 9, : H"(N, /NO,) - Obs , 

as the composite of the three homomorphisms, HO(NT,/NO,) --, H1(NO,) (from (7. I)), 
H1(NO,) -+ H1(NO,) I H1(0) (the canonical homomorphism) and H1(NO,)/ H1(0) 2; Obs 
(from (7.2)). 



Fix (Cn-,, C',-, ; T,-,), and let 9 be the set of all local conditions 1 = (I,) 

on C 1  C ; T ) .  Then HO(!VT/NO,) acts on 9 in a simply transitive way 
as follows. Take any P E 17 f l  17'. and a small affine neighborhood Un-, of P 
on C,-, x CL-,. Since Uo is affine, r (Uo ,  NT/NO,) = r (Uo ,  NT)/r(Uo,  KO,). Since 
NT is the normal sheaf, there are isomorphisms i : T(U,, NT) G T(Uo, OT) 
defined with respect to each choice of local equation f, = 0 for T, whose de- 

pendence on fo being given by if& = (f,'/fo)-ifo. Moreover ifo induces r (Uo ,  
N,/NO,) -- l i p ,  where K, is the residue field of P. Now take any ap E 

( U O T / N ) .  Let U, be a smooth extension of U,-I over R, and f, = 0 be 
a closed subscheme of U, representing the local class 1,. Then the local class 
represented by the closed subscheme f, - nnifo(aP) = 0 on U, depends only on 

cup and l,, which will be denoted by 1, + a,. Then I, -+ 1, + a, gives a 
simply transitive action of T(Uo, NT/NO,) on the set 9, of all local classes I, 
at P. Extending this to the direct sum over all P E 17 f l  17', we obtain a simply 

transitive action 1 --+ 1 + a of a E Ho(NT/Ni) on 9. Now the following com- 
patibility can be checked by a straightforward calculation. 

Proposition 2. ,3(1 + a )  = ? ( I )  + Po(a). 

Let V be the kernel of Po. It can be identified with the inverse image of 
H1(0) by the above homomorphism HO(NT/NO,) -+ H1(NO,). 

Corollary 1. The set of all 1 E 9 such that ,3(1) = 0 is either empty or forms 

a single V-orbit in 9 .  In particular, the number of solution of Problem A ,  
for each given (C,-,, CL-, ; T ,  -,) is either zero or qdim '. 

Corollary 2. If Problem A,  has a unique solution, then the solution of 
Problem A is at most unique. 

Associated differentials and a rescue sheaf F 

8. The following sheaf F on C x C' will play an important role in our 
problem. Let x ,  y, K, K' be as in fj 4. Then F is the subsheaf of O determined 

by the following condition; a local section 6 = a(a/dx) + b(d/dy) of O is a local 
section of F if and only if the restrictions a,,, b, are q-th powers in the func- 
tion fields of 17', 17, respectively. In view of the equalities K.17' = qK,, and 

KI.17 = qK,, we note the following. If 6 = a(a/ax) + b(a/ay) is a local section 

of O, so that a ,  b are local sections of O(--K), O(-K'), respectively, then a,,, 
b, are local sections of On,(-qK,,), On(-qK,), respectively. Therefore, when 

6 belongs to a local section of F ,  a,, and b, are q-th powers in the ring of 

local sections oj  C,,(- K,,), a,( - K,), respectively. So, we may express concisely 

as 

where (rzsp. F") is the inverse image of On,(-K,,)q (resp. On(-K,)q) in 
the restriction homomorphism &(- K) -+ Cf ,,(- qKnt) (resp. 0(-Kr)-+ &,(- qK,))l). 
This definition of F is independent of thz choice of x ;  in fact, F can also be 
defined as thz subsheaf of O whose stalk at P = (Q, Q') (Q E C, Q' E C') is the 
module of all such derivations 6 of Oc,c,qp that, for any I E O,,, (resp. 7 E 

Oct,Q,), the restriction of o'(p,*.t) to 17' (resp. 6 ( p z j )  to Z7) is a q-th power 
element of O,,,, (resp. O,,,), whenever P E 17' (resp. P E 17). 

It is clear that E c F c O. Although F is not an O,,,,-Submodule of O, 
it is a coherznt O~xc,-Module. Therefore, F can be regarded as a coherent 

U,;,,,-Module through the q-th power homomorphism OcXc, -, O;,,,. Therefore, 
the cohomologies of F coincides with the t ech  cohomologies. We shall rely 
heavily on the following 

Proposition 3. The homomorphisms H1(F) -+ H1(0) and H2(E) -+ H2(F) 
induced from the sheaf inclusions E c F c O are bijective. 

Proof. Let O$ denote the subsheaf of O1 determined by the condition: a 
local section 6 = a(d/dx) of O, is a local section of Og if and only if a is a 
pull-back of a function on C. Then 0," c F1 c O,, as the restrictions to 17' 
of the pull-backs of functions on C are q-th powers. Therefore, the isomorphism 

H1(Oc) 2; H1(Ol) (4.3) factors through H1(Fl). Therefore, H1(Fl) -+ H1(Ol) is 
surjective. By symmetry, H1(F) -+ H1(0) is surjective. In particular, dim H1(F) 
2 6(g - 1). 

Now look at the exact sequence 0 -+ El -+ F, -+ Fl /E l  -+ 0. By the restriction 
to 17', we obtain F , /El  -- @,t(--K,,)q 2: On,(-K,,). Therefore, dim H1(Fl/El) 
= 3(g - 1) ; hence dim H1(F/E) = 6(g - 1). Since F I E  has one-dimensional 
support, we have H2(F/E) = 0. Now look at the cohomology exact sequence 

Since ,a is injective and dim H1(F) 2 6(y - 1) = dim H1(F/E), ,U must be 

1) The q-th power of a sheaf means the image of the q-th power endomorphism of 
this sheaf. 



bijective and dim H1(F) = 6(g - 1). Now our conclusions follow immediately 

from the surjectivity of H1(F) -. H1(0) and the exact sequence (8.2). q.e.d. 

Corollary 1. (i) The sheaf exact sequence 0 -+ F -+ O -+ @IF --+ 0 induces 
an exact sequence 0 - H1(O/F) -+ H2(F) -+ H2(0) -+ 0. 

(ii) dim HYF) = 0, 6(g - I), (6g +- 4q - 4)(g - 1) for i = 0, 1 , 2 ;  

dim H"B/F) = 0. 4(q - l)(g - 1) for i = 0: 1 ; 

respectively. 

With the aid of F, we can reformulate our problem of finding all (C,, Ck ; T,) 

starting from a given triple (C, -,, Ck-I ; T,-,). For this purpose, fix any smooth 

R,-schemes C;, C:' that extend C,-,, Ck-,, respectively. A family {TA),,, of 
local extensions of T,-, on CX x C:' is defined by an affine open cover 

Uac,i U3, of C? x C:' and, for each A ,  an R,-flat closed subscheme T3, of Ui 
that extends T,-, fl Ui-,. Such a family {PA) will be called F-intimate if Ti 

and T; are congruent mod F for all 2 ,  p E A ;  i.e., T3, fl U p  and T; fl UF are 
congruent by an infinitesimal automorphism of U2 corresponding to a section 
of F on Up. Since E c F c O, this condition is weaker than the coincidence 

of T3, with T; on U?, but stronger than the coincidence of the local class of 
(U;, TA) with that of (U;, T;) at each point of Uiu fl 17 fl 17'. Two F-intimate 

families {TA)2cA and {T','},,,.,, are called equivalent if Ti  and T: are congruent 
mod F. Since HO(O/F) = 0, they are equivalent if and only if they are just 
congruent mod O (i.e.. the local classes of (Ui, T3,) and (U:, T:) coincide at 
each point of II f l  17'). (Use the affine cover C: x C:' = U2,2. (Uk fl U:) to 

check this.) Therefore? non-equivalent F-intimate families determine distinct 
local conditions. 

Corollary 2. Let (C ,-,, Ci-, ; T,-,) and C:, C:' be fixed as above, and 

let 1 be a local condition on (C,-,, C',-, ; T,-,). Then a solution (C,, Ck ; T,) 

of Problem A ,  satisfying 1 exists if and only if there exists an F-intimate family 
{Ti)2E1 of local extensions of T,-, on Cz x C:' belonging to 1. In this manner, 

the solutions of Problem A ,  are in one-to-one correspondence with the equiva- 
lence classes of F-intimate families {Ti),, , of local extensions of T,-, on a fixed 
surface C: x C:'. 

Proof. Suppose that an intimate family { T i }  belonging to 1 exists. Then, 

with the notation of 8 6, 9" belongs to r(Ugu, F), so that (;2PY) is a 2-co- 

boundary in F. But since the canonical homomorphism H2(E) -+ H 2 ( F )  is 

bijective by Proposition 3, ,3(1) must vanish. Conversely, if ,3(1) = 0 in €j 6, 
there is some eAP E r(Ui9. E )  for each (1. p) such that 8"' - eLu is a 1-cocycle 
of B. But since the canonical homomorphism H1(F) - HL(@) is bijective by 
Proposition 3, we have 

with fa" E r(Uip, F), 8" E(U& 0).  Therefore, replacing T3, by its translation by 
8', we obtain an F-intimate family belonging to I. The rest of our assertion 
follows immediately from Theorem 1 (a). q.e.d. 

Remark. When p(1) = 0, the curves C, and C:, in the "real solution" 
(C,, Ci ; T,) have nothing to do with the auxiliary curves CX, C:'. Their dif- 
ference is represented by the element of H1(0) corresponding to the above 1- 
cocycle 8"' - e". 

Finally, call F "  the sheaf on C x C' defined by just replacing "q-th power" 

by "p-th power" in the definition of F. For F", Proposition 3 will be replaced 

by 

Proposition 3'. The canonical homomorphism H1(F") -+ H1(0) is bijective. 
The canonical homomorphism H2(E) --+ H2(F0) is surjective and its kernel is of 
dimension 4(pf-I - l)(g - 1) over F,: where q = pf. 

This will be used only as a remark. 

9. In €j 9, it is assumed that n 2 1. Let C, be a smooth R,-scheme that 
extends C and denote by 9, the local ring at the generic point of C,. Then, 
as an R,-algebra, R, is determined uniquely by C and n. In fact, if Uo is any 
affine open set of C, the smooth R,-scheme U, that extends Uo is unique up 
to R,-isomorphisms and 9, is the inductive limit of the rings of sections of 
open sets of U,. Clearly, 9, is a local ring which is a flat R,-algebra such 
that 9 , / z  = 9, is the function field of C. The finite Ctale extensions of R, 
are in a categorical equivalence with the finite separable extensions of the residue 

field 9, (e.g., apply [1] IV 18.3.4); let 9, denote the union (inductive limit) 
of all such extensions of 9,. Then so = B,/a is the separable closure of 9,. 

The derivations of 9, over R, form a free 9,-module of rank one. If x, 
is any element of R, such that x, is not a p-th power in St,, a derivation D of 

St, over R, is determined by D(x,) which can take any value in 8,. The dual 
9,-module is the module of difJerentials (or 1-forms) of 9,. It is generated 
by dx, for such x,, A senerator of the module of differentials will be called 
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a unitary differential. 4 s  for en, the situation is completely parallel, and the 
same kind of terminology will be used. 

An R,-endomorphism a, of 9, (resp. e n )  into itself will be called a 
Frobenius mapping of 9, (resp. e n )  if the induced endomorphism a, (resp. 5,) 

of 9, (resp. a,) is the q-th power endomorphism x, - x;. The Frobenius 
mappings of 9, (or of @,) are injective and not surjective. It is easy to see, 
by a standard argument, that every Frobenius mapping of 9, extends uniquely 
to that of @,. By the uniqueness. this extended Frobenius mapping commutes 
with each element of the Galois group of 5?, over 9,. If a, is any Frobenius 
mapping of @,, then the only a,-invariant elements of en are the elements of 

R,. (In fact, if x 2  = x,, then x, E Fq, so that x, = r, + ;ry with r, E R,, y E a,,  
and y is again a,-invariant ; repeat this argument n + 1 times.) 

A numerical invariant Y = ~(a , )  is defined for each Frobenius mapping 
a = a, of 6,, as follows. Take any unitary differential 5 of fin. Then EU = 

A[ with some A E 6,. If A = 0, put Y = m. If A f 0, Y is defined as the 
greatest exponent for which A is divisible by ;cu. Since a maps the group of 
units of @, into itself, I, is independent of the choice of 6. One may choose 5 = 
dx, (x, & &') ; then x; = x;f + ;rr (r E a,) ; hence dx; = (qxz-I + n(dr/dx,))dx,. 
Therefore, A is divisible by z ,  which implies that Y is always positive. There- 
fore, either 1 < :, < n, or Y = m .  When R = Z,, we have dx; = p(x;-l + 
u .  (dr/dx,))dx, with u E R,X. Since x[-'dx, is not an exact differential of C, 

xK1 + n(dr/dx,) cannot be divisible by p. Therefore, we have Y = 1 in the 

case R = 2,. (More generally, we have :, 2 ord, q if ord, q < n. But this 

will not be used ; the proof is exactly the same as that of Proposition 1 of 141.) 
Finally, if a, is a Frobenius mapping of 9, and 6, is its unique extension to 
@, as a Frobenius mapping, we define ~(o,) by v(a,) = ~(6,).  

Theorem 2'). Let a, be a Frobenius mapping of gn with ~(a , )  = Y < m ,  

and choose any c E R, with cR, = ;ruR, (as a normalizing constant). Then (i) 

there exists a unitary differential w, of 5?, satisfying 

(ii) the differential on-, = on (mod ;rn"-') of @,-, = 6,/;rn+'-" is determined 
ziniqziely up to R2,-multiples; (iii) when a, is the extension of a Frobenius 
mapping of R,, w,-, is invariant, up to m~iltiplications of elements of R:,, by 

the Galois group of 5?n-,/B,-,. 

1) A parallel result for 9, = lim 9, was given in my previous mimeographed note 
t 

"Non-abelian invariant differentials (1971)". 

Proof. To begin with, note that each side of (9.1) depends only on on_,. 

Take any element x, E @, such that .r, E @', and put dxin = c . U, -,dx,(U, -, E 

@;,). Put on-, = w,-,d.r,-,. Then (9.1) is equivalent to the equation 

for w,-,, in a,"_,, where on-, is the Frobenius mapping of en-, induced from 

a,. From now on, we shall omit most of the subscripts, and consider the above 
equation wo-I = U-I in @&. Since 9, is separably closed, we can solve in 9, 
the Kummer equation for the exponent q - 1, and also the Artin-Schreier equa- 
tions. First, since Uo has a (q - l)-th root in go ,  we can find u E fi:, such 
that U-I r uo-I mod n. Put a = ul-". U-I (= 1 (mod n)), and w' = w/u. Then 
the equation is transformed to (w')O-' = a. We shall construct a sequence 

{ Y , ) ~ = ~  in such that y,,, = y, (mod xi+') and y;-l = a (mod ;ri+l). Then 
w' = y, would give a solution of the above equation. Put yo = 1, and suppose 
that yo, . , y, have been constructed. Put y:-' = a + ;si+'A(" and yi+, = 

y,(l + ;.r"lB(i)). Then 

therefore, y, + , is obtained by solving the Artin-Schreier equation 

in @,. This settles (i). Since we know that the only a,-,-invariant elements of 

fin_, are elements of R,-,,, (ii) is obvious. Also, (iii) follows immediately from 

the uniqueness of on -, . q.e.d. 
We shall call w,-, the differential associated with a, (or with r,, when a, 

is the extension of a Frobenius mapping r ,  of 9,). It depends on the nor- 
malizing constant c, but if we change c by c', on-, is simply multiplied by an 
element d which is a solution of the equation dun-u-' = c'lc in an Ctale ex- 
tension of R,-,. To avoid unnecessary complexifications of descriptions, we 
make it a rule to choose c = nu, when no reference is made about the nor- 
malizing constant. 

The next theorem will not be used in this paper but it will be presented 

as a remark, without proof. 

Theorem 3. Let R = Z, and a, be a Frobenius mapping of en. Then 
there exists an element t, E @, such that to &,P and that 



Moreover, if t i  is another element of h?, with ti g @,P, then t t n  = tLp holds if and 

only if t', = t;. upn with some r E Z,  r + 0 (mod p) and rc E f i , ~ .  The differential 

3 (mod pn) , 
t n 

which is determined up to R;,-multiples, is the digerential on-, associated with 

an* 

10. We continue the notation of 5 9. The following lemma will be used 
later. 

Lemma 2. Let a, and a; be two Frobenius mappings of @, which coincide 
mod rn. Put v = v(an), v' = v(~i) ,  let x, be any element of @, such that x, 
g &', and put xi" xin = nnzo (z ,  E 6,). Then the following conditions (i) - 

(iii) are equivalent ; 

( i ) either Y = v' = co ; or v = Y' < co and a,, a; have the same associ- 

ated differentials ; 
(ii) dx$ = d x ~  ; 

(iii) to E a: . 

Proof. Obviously, (ii) is equivalent with (iii). As we have seen in 5 9, 
the differential on-, associated with a, is determined by the three equations ; 

Since a,-, = d,-, by assumption, (i) is equivalent with (ii). q.e.d. 
We shall now look at the Frobenius mappings and their differential invari- 

ants associated with our problem. Fix two smooth R,-schemes C,, C; that extend 
C, C', and let 8,, 2; be the local rings at the generic points of C,, C',, respec- 
tively. Then since C = C', their function fields 9, = 9,/x and $2; = A',/r can 

be identified with each other. It is clear from the argument at the beginning 
of 5 8 that there is an R,-isomorphism e n  : 9, 2; 9; inducing the identity mod z. 

Suppose that U, c C, x CL is an open set, and T,(U,) is an Rn-flat closed 
subscheme of U, extending T fl U,. For each such local extension T,(U,) of 

T, we can define (generally two) Frobenius mappings a, and 4 of Rn, where 
a, (resp. a;) is defined whenever 17 fl Uo # q5 (resp. 27' fl U, f $). To define 

them, suppose that 27 fl U, # $, and let OTn,,,,,, be the local ring of T,(U,) 
at the generic point of 27 n U,. Then p? : 9, ++ OTn ,,,, ,, is bijective (this 

follows immediately by combining the facts that p,* induces a bijection between 
their residue fields and that R, and O,,;,,,,, are R,-flat local rings with the 
maximal ideal (n)). Therefore, p;*-' op; defines a homomorphism a, : 9; -t 8,. 
Similarly, if 17' f l  U, # $, d, : 2, -+ P, is defined by using 17' instead of 1?. 

By means of the given identification e n :  R, 7: R;, we shall regard a,, a; as 
endomorphisms of 53,. Then they are obviously the Frobenius mappings of 8,. 
The invariant v associated with a, (resp. 0,') will be denoted by v(T,(U,)) 
(resp. d(T,(U,))), and when it is finite, the differential associated with a, 
(resp. a;) will be denoted by w(T,(U,)) (resp. w'(T,(U,))). 

When we have two local extensions T,(U,) and T;(V,) of T,-, and we 
say that their invariants Y, v', o ,  w' are the same, we mean that each of the four 
invariants which is defined for both T,(U,) and T;(V,) has the same value for 
these two extensions. It is clear that T,(U,) and its restriction to an open 
subset of U, have the same invariants Y, Y', W, w'. 

Remark. The nature of dependence of these four invariants of T,(U,) on 
the choice of an isomorphism c, is not clear. But for our present purpose, it 
suffices to note that they depend only on en-, = en (mod rn). This verification 
is trivial ; hence omitted. 

Now for the connections between the associated differentials and the sheaf 
FO defined at the end of 5 8 ! 

Proposition 4. Let U, be an afine open set of C, x Ck, and T,"(U,), 
Tn(Un) be two R,-fEat closed subschemes of U, which coincide mod xn and which 
extend T fl U,. Then the following two conditions (i), (ii) are equivalent; 

( i )  T," (U,) and T,(U,) have the same invariants v, v', o, o' ; 

(ii) T," (U,) and T,(U,) are congruent mod F O  ; i.e., they are transformed 
to each other by an infinitesimal automorphism of U, corresponding to a section 

of F" on U,. 

Proof. We can assume that U, is a sufficiently small a h e  neighborhood 
of some point P = (Q, Q') E T. Since T,"(U,) and T,(U,) coincide mod nn, we 
may also assume that they are defined by the local equations f, = 0 and f, + 
rnzo = 0, respectively. Let x,, y, be as in 5 4. Then we may assume that 

f o  = ( yP  - xg)(xp - y$). Let 6 be a local section of O on U, and express it 

as o" = a(d/ax,) + b(d/ay,), by using x, and y,. Recall (5 8) that 6 is a sec- 

tion of Fc if and only if a,,, b, are p-th power elements, and that T(U,) = 
T,"(U,)' holds if and only if z, - 6fo E (f,), where E is the infinitesimal auto- 



morphism of U, corresponding to d (S 5). Since df, = (J, - @)a + (x ,  - y$)b, 
we obtain the following equivalence ; "T,(U,) E T,"(Un) (mod F") holds if and 
only if (x, - x$)-'(z,),, (yP - y$)-l(z,),, are p-th power elements in the func- 
tion fields of 17, U', respectively (and are finite at P)." Here, the last condition 
of finiteness at P can be dropped, since (xp - x$)-'(z,), and (yp - Y ~ ) - ' ( & ) ~ ,  
have at most simple poles at P, so that they must be finite at P if they are 
p-th power elements. 

On the other hand, let o: (resp, on) be the mappings Qk - $2, defined by 
the 17-component of T;(U,) (resp. T,('U,)), and o:' (resp. 06) be the mappings 

9, -+ 9; defined by the 17'-component of T,"(U,) (resp. T,(Un)). Let x, be 
any extension of x, on C,, and put yn = rn(xn). Then we obtain easily, by 
localizations OTn(Un) ,P -+ OTnca,, ,n, OTn(Cn) ,,, , the following relations 

where we regard (to), (resp. (z,),,) as a function on C (resp. C') via p, : U 2: C 
(resp. p, : II' = C'). Therefore, our assertion is reduced to Lemma 2. q.e.d. 

11. Now we came to a certain theoretic conclusion. Fix (C,-,, Ck-I ; T,-,) 
and also an Rn-l-isomorphism r,-, : $2,-, z 9;-, between the local rings at the 
generic points of C,-,, Ch-, inducing the identity mod r. 

First, fix also C: and C:' as in 9 8. Let {Ti},,, be an F-intimate family 
of local extensions of I,-, on C: x C:'. Then since the members of {Ti},,,, 
are mutually con,ment mod F, they are a priori con,oruent mod F O .  Therefore, 
by Proposition 4, the invariants V, v', w, w' of Ti are independent of A. Here, 
V, v', 0, w' are those defined with respect to r,-, (see Remark, § 10). Thus, to 
each equivalence class of F-intimate family {Ti},E.i, we can associate a quadruple 
(v, 2'; 0, 0') of its invariants. When q = p, so that F = F', Proposition 4 tells 
us that this association is one-to-one. We also observe that the condition for 
a quadruple (v, P' ; w, a') to correspond with some {TA},,.,, is completely of a 
local nature; i.e., it is (necessary and) sufficient that each point P E C: x C:' 
has an a h e  neighborhood U,P (on C: x Cz') and an R,-flat closed subscheme 
T,P on U,P that extends Tn-, f l  UL, and having V, P', w,  w' as its invariants. 
Indeed, then, {T:} is an F-intimate family (by q = p and by Proposition 4). 
Therefore, combining with Corollary 2 of Proposition 3 ( 5  9), we obtain a one- 

to-one correspondence 

between the set of all solutions (C,, Ck; T,) of Problem A, and that of all 
quadruples (v, P' ; w, w') satisfying the above local conditions. Here, (C,, Ck ; 
T,) are counted up to equivalence, and the differentials w, wf are counted up to 
multiplications of elements of R&,, R,X_,,, respectively. We observe easily that 
this correspondence (1 1.1) is independent of the choice of C: or C:'. In par- 

ticular, we observe that the map (1 1.1) associates to each (C,, Cn ; T,) the 
invariant (v, V' ; a ,  w') of T, on Cn x Cn. So we arrive at the following defini- 

tion and theorem. 

Definition. Let (v, Y' ; w, o') be a quadruple, where each of V, V' is either 

a positive integer I n  or C O ,  and w (resp. o') is a unitary differential of Rn-, 
(resp. @,+,.) which appears in the quadruple only when v (resp. 9') is finite. 
Let P be any point of T. Then (v,v'; w, wf) is called of type T,P, if the follow- 
ing condition is satisfied ; 

(B,) P has an affine open neighborhood U,P on Cz x C:', on which we 
can find an R,-flat closed subscheme T,P that extends T,-, n U:, and that has 
the given invariants :, (when P E 17), Y' (when P E n'),  w (when P E 17 and v < 
CO), and o' (when P E II' and Y' < CO). 

Since this condition B, is local, it does not depend on the choice of Cz 
or Cz'. 

Theorem 4. Let q = p. Fix (C,-,, C',-, ; T,-,) and r,-,, as at the begin- 
ning of § 11. Then there is a canonical bijection between the set of all solu- 
tions (C,, Ck; T,) of Problem A ,  and that of all quadruples (v, v'; w, o') which 
are of type T,P at every P E T. Here, (C,, C', ; T,) are counted up to equivalence 
and w, w' are up to multiplications of elements of R;,, R,X_,,, respectively. 

Remark. When R = Zp, condition B, implies v = v'. = 1, as we have 
shown in 5 9. So, in this case, the quadruples (v, v'; w, w') can be replaced by 
the pairs (w, w'). When q + p, our argument fails, in view of Proposition 3" 

(§ 0 

Extensions of II + IT' on R / z 2  , 

12. Now let q = p. We shall consider Problem A, which is to find all 
triples (C,, C:; T,) of proper smooth R,-schemes C,, C: extending C and an R,- 

flat closed subscheme T, of C, x C: extending T. Since R, = F,, there are 
two cases for R, ; (Case 1) R, = Z/p2, which is the case where R = Zp ; 
(Case 2) R, = FJE] with E' = 0, which is the case where R is either a fully 
ramified extension of Zp or the ring of formal power series over F,. In Case 



2, there is one trivial solution of Problem A,, which is the solution obtained 
by the trivial base-change gFP Fp[c] of (C, Cf ; T). 

To state our result, let Q, (resp. .Q2) be the set of all rational differentials 

o' of degree p - 1 on C satisfying the following two conditions (a) and (b), 
where @ is the divisor of C defined by the formal sum of all closed points Q 
of C with deg Q 5 2 ; 

0' < 2@ ; 

y(o) = o (resp. ~ ( o )  = 0) , 

where o is a differential of degree 1 on a cyclic covering of C such that o' = 
o ~ ( ~ - l )  , and y is the Cartier operator. 

In other words, fix any rational function x on C which is not a p-th power 
in the function field of C, and write 

where p is a differential of degree 1 on C. Then, in terms of P, the above 
two conditions (a), (b) are interpreted as 

By (b)', is of the form = xp-ldx + dr (resp. P = dr), where r is a rational 

function on C. The zeros of a' must be of order 2. In fact, in considering 

the order of o' at Q E C, we may choose x as a local uniformization at Q ;  
then o' has a zero at Q if and only if dr has a pole at Q, and in this case 

ordQ o' = -ordQ (dr) ; therefore, the order of zeros of o' cannot be 1 ; hence 
it must be 2 by (a). A similar argument shows that, for the elements o' E 8, 
the poles of o' must be of order 2 -(p - 1). 

Let i = 1 or 2, and o', o" E Qi. We say that o' and o" are the Fp-con- 
jugates of each other, if the following conditions (c), (d) are satisfied; 

(c) the zeros of o' coincide with the zeros of o"; 

(d) at each zero Q, let XQ be a local uniformization and expand w', o" as 

then c and c' are conjugate over F,. (As deg Q 2 2 by (a), the coefficients 

in (12.1) belong to F,,.) 
For each o' E Q,, there is at most one w" E Qi which is the Fp-conjugate 

of w'. In fact, if w" = (dx)@p/if and o"' = ( d ~ ) @ ~ / r  are both the F,-conjugates 
of a' ,  then C' - C" ). p(dxj - 0 by (a)' and (d), but since y(C' - C") = 0, this 
implies that 2 - 5" > p(dx) ; hence 5' = ;". By definition, the mutually Fp- 
conjugate differentials w', a'' have the same numerators in their divisors, but 
their denominators are generally different (see Example 1 €j 15). Also, there 
are some examples of a differential of Qi which is not the Fp-conjugate of any 
differential of Qi (see Examples 2, 3, 4 ; fj 15). 

Theorem 5. (i) The set of all solutions (C,, C: ; T,) of Problem A, in 
Case 1 (resp. the set of all non-trivial solutions (C,,  C: ; T,) of Problem A, in 
Case 2) is in a canonical one-to-one correspondence with the set of all ordered' 
pairs (w', w") of mutually Fp-conjugate elements of Q, (resp. 9,). 

(ii) This one-to-one correspondence is determined by the following descrip- 
tion of the local class of (C, x C:; T,) at each P = (Q, Q') E 17 n 17' in terms. 
of (a', w"). Let XQ be a local uniformization at Q on C, yQt be the correspond- 
ing function on C', x,, y, be any extensions of XQ, YQ. on C,, C:, and let 

be the local equation for T, at P, where ~i = p (resp. ;= = E )  in Case 1 (resp, 
Case 2). Then 

z,(P) = 0 if 0rdQ O' < 0 , 
z,(P) = c-' if ord, o' = 2 , 

where c is the constant defined in (12.1). 

(iii) When (C,, C: ; T,) corresponds with (o', o"), its transpose (Ci, C,, tT,)t 
corresponds with (a", a'). 

13. Now we shall prove Theorem 5 by using Theorem 4. We first restrict 
ourselves to Case 1. Then, with the notation of Theorem 4, we always have 
v = V' = 1 (see 5 9) ; therefore, (C,, C:; T,) are in a canonical one-to-one cor- 
respondence with the pairs (a, of) of unitary differentials of @, (the separable 
closure of the function field Ro of C) satisfying Condition B, of 5 11 for all P E T. 

Since o ,  o' are differentials associated with some Frobenius mappings of R,, 
they are invariant up to F,"-multiples by the Galois automorphisms of fio/Ro. 
(Theorem 2, 5 9). Therefore, if we take w' = wa(P-l) ,d = 0 4 3 ( ~ - 1 )  , then 
they are rational differentials of degree p - 1 on C. (At the same time, the 
indeterminacy of o ,  of by a scalar factor of F,' disappears for we, o".) 

Our task is to interpret the local Condition B, in terms of o ' , ~ "  in a 
simpler way. 



For this purpose, let, CF, CT' be as in 5 11 and let B1, 5%; be the local 
rings at their generic points respectively. Choose an Rl-isomorphism r ,  : 9, G 7; 
inducing the identity mod p. Let P be a closed point of T = I7 + 17' with 
the projections Q, Q' on C, C', respectively. Let x, be a local uniformization 
on C at Q, and yo be the corresponding local uniformization on C' at Q'. 
Let x, (resp. y,) be any extensions of xo (rssp. yo) on Cf (resp. Cf') such that 

(l(~1) = Yl. 
In general, let a, be any Frobenius mapping of 9, and put x;l = xf + pro 

( r  E 9 ) .  Let o(o,) be the differential associated with a, (with normalizing con- 
stant p), and put o(a,) = wodxo with wo E e o .  Then wo is determined by the 
equation 

wg-l = U;' , with dxp = pUodxl (see 5 9) . 

Since Uo = x:-' + dro/dxo, we obtain wg-' = (xi-l + d r , / d ~ , ) - ~ ;  hence 

The Condition B, at P E n, P n'. An extension of 17 on C? x C,*/ near 
P is defined by a local equation 

with some function z, on C x C' which is regular at P. The corresponding 
Frobenius mapping of R, is given by x;l = x,P + pro with r, = (z,),, the restriction 
of z0 on 17 considered as a function on C via p,: I7 -- C. Since any function 
r, on C regular at Q can be expressed as (zo), with some Zo7 the Condition B, 
for o' at P is that 

(i,) o' is of the form (xi-' + dro/dxo)-l(dxo)~(P-l~ 

and 

(5,) r, can be chosen to be regular at Q. 

But since ~(x,P-'dx,) = dx,, (i,) is equivalent with the condition (b)' ( 5  12) (for 

x = xo) and hence also with (b). This being assumed, (ii,) is just equivalent 
with ordB a' 2 0. Therefore, the Condition B, at P E 17, P 9 I7' consists of 

Condition (b) (5 12) and ordQ o' 2 0 . 

The Condition B, at P E n', P $ 17. This consists of 

Condition (b) (5 12) and ordQ a'' 2 0 . 

The Condition B, at P E 17 fl 17'. An extension of I7 + I7' on C,* x C,*' 
near P is defined by an equation 

with some function z0 on C x C' which is regular at P. The two correspond- 
ing Frobenius mappings defined from the I7-component and the I7'-component 
are given respectively by 

.r;l = .Y! + pro , with ro = (xf2 - . T , ) - ~ ( Z ~ ) ~  , 
and 

x;; = xf + pr', . with rg = (xg2 - X ~ ) - ~ ( ~ Z ~ ) ,  , 

where tzo is the transpose of z,, and (z,),, (tzo), are considered as functions on C 
via p, : I7 2: C. Therefore, the Condition B, at P is equivalent with the existence 
of zO, regular at P ,  such that 

and 

There are two cases here. The existence of to with z0(P) = 0 is equivalent with 

Condition (b) for o', a'' ; and OrdQ w' 2 0, ord, o" 2 0 . 

While the existence of z, with z,(P) f 0 is equivalent with 

Condition (b) for o', o" ; ord, o' = ordB o" = 2 ; and c' = cp ; 

where o' = cxi(1 $ . .)(dx0)~;p-l) and o" = c'xi(1 + . . .)(dx,)@("-" at Q. Note 
also that zo(P) = c-' in this case. As we have seen in § 12, (b) implies that 
w' cannot have simple zeros. Therefore, we conclude that Condition B, is 
equivalent with "(a) and (b) for w' ,  w", and (c) and (d) for (o', o")". This 
settles the proof of (i), and also (ii). for Case 1. 

Now consider Case 2, where R, = Fp[€]. Look at the local equation 
(1 2.1) for T, at P E 17 Ti 17'. The local class at P is determined by zo(P). By 
Theorem 1, (C,, Ci ; T,) must be the trivial solution if zo(P) = 0 for all P E I7 f l  I7'. 
Therefore, z,(P) # 0 for at least one P E 17 n I7' for a non-trivial solution. We 
shall show that if (C,, Ci ; T,) is a non-trivial solution, then u = V' = 1. Let 
a, (resp. a;) be the Frobenius mappings defined by the I7-component (resp. 17'- 



component) of T,. Then x;l = xf + zr, (resp. x;i = x,P + zri) with 

ro = (.3$' - x ~ ) - ~ ( z ~ ) ~  , J, = (x:' - xo)- ' ( ' z ~ ) ~  . 
Take P where z,(P) + 0. Then r,, rg have poles of order - 1 at Q. In particular, 
r,, rg are not p-th powers in the function field of C .  Therefore, P = v' = 1. 
The rest is exactly the same, except that one has to replace + dro/dxo by 
dro/dxo in the formula for the associated differentials. (Indeed, this time. dx;ljdx, 
= px,P-' + ~r(dr,/dx,) = ;r(dro/dxo).) 

Finally, (iii) follows immediately from (ii), because,by Theorem 1, (C,, C:; T,) 
is uniquely determined by the local classes at P E II fl n t .  

This completes the proof of Theorem 5. 

14. Here, we shall give some scattered remarks. 
Put N ,  = deg0,  the number of F,,-rational points of C. Then the con- 

dition (a) (§ 12) tells us that R,, 9, are empty unless 

So, (14.1) is a necessary condition for the existence of solutions (Case 1) (resp. 
non-trivial solutions (Case 2)) of Problem A,. 

Let V be, as in 7, the kernel of ,?, : Ho(NT/NO,) -+ Obs. Recall Corollary 1 of 
Proposition 2 ( 5  7). In Case 1, the set of all solutions of Problem A, is either 
empty or forms a principal homogeneous space of V, and in Case 2 the set of 
all solutions can be identified with V if we take the trivial solution as the origin. 
(In particular, the number of solutions for R, = Z/p2 is equal to that for 
R, = F,[E] as long as the former is non-zero). The scalar multiplication of 
a E F," in the space of solutions in Case 2 corresponds to (a', 0") -+ (a-lo', a-lo") 
and also to the automorphism of FJE]  induced by e - a&. 

Finally, one word about the connection between Corollary 1 of Proposition 

2 ( 5  7) and Theorem 5. The set of all local conditions 1 satisfying j(Z) = 0 
can be calculated by means of Theorem 5 (ii) using the differentials on C, and 

on the other hand it forms a single V-orbit (unless empty). In re-verifying this 
connection directly (i. e., without passing through the extensions (C,, C: ; T,)), 
one meets the following equality which is a simple example of the Serre duality 
(for @-Modules on C) ; 

N? - 2(p - l)(g - 1) 
(14.2) 

= dim W,,(20 - pK,) - dim W,, (pK, - @) 

Here. W,,(D) (for a divisor D on C) will denote the F,-module of all exact 
differentials [ satisfying Z -D. This formula can also be used for evaluat- 

ing the dimension of V. For example, if N? > 2 (p + 1) (g - I), then 
dim W,,(pK, - 0) = dim W(pK, - @) = 0.  Therefore, the space of satisfy- 
ing (a)' and (b)' (for Q,) has dimension N, - 2(p - l)(g - 1). Therefore, 
dim V 2 N, - 2(p - l)(g - 1). On the other hand, since V is the kernel of 

HO(NT/NO,) -, Obs, dim V 2 N? - 4(p - l)(y - 1). Therefore, 

(14.3) N ,  - 4(p - l)(g - 1) 5 dim V 2 N2 - 2(p - l)(g - 1) 

holds when N 2  > 2(p + l)(y - 1). 

15. Exmnple 1. Let C be defined by the equation 

over F,. Then g = 2, N, = 5. This is a hyperelliptic curve whose ramification 
in the double covering C -. P1 defined by (x, y) x is concentrated to a wild 

ramification at x = 0. The points of degree 1 are P,, Q,, R, defined by (x, y) 

= (oo, 0), (oo, w), (0,O). respectively, and the point of degree 2 is S, defined 
by x = 1. The space of differentials p(dx) - 24? = 10R, - 6P1 - 6Q: - 2S,  
is spanned by (x + l)-2xidx (2 2 i 2 6) and (x + l)-2x-'ydx (2 j 3). The 
kernel of y in this space is spanned by (x + 1)-?xidx (i = 2,4,6). Since y maps 
x3(l + y)(1 + x)+dx to dx, we obtain 

Name each o' E Q, as w' = o'(a, b, c). Then w'(a, b, c) is F,-conjugate 
with @'(a, b f 1, c), and the numerators of their divisors for (a, c)  = (0, O), 
(1, O), (0, I), (1, I) are given respectively by 2 (Q, + S,), 2 (Q, + R, + S,), 
2(P, + S,), 2(P, + R, + S,), respectively. For example, 

and 

(w(0, 1,O)) = 2(Q,  + S,) - D, ; 

where D3 is the point of degree 3 defined by y = 1, and D, is the point of 

degree 4 defined by x5 = 1, x + 1, y = x + 1. These differentials are mutually 

F,-conjugate, as the values of w(0, O,O)/ (x + 1Yd.x and o(0, l,O)i(x + 1)2dx at 
each geometric point in S2 are conjugate over F?. 

Accordingly, there are eight triples (C,, C: ; Ti) over 2 / 4 ,  of which none 



is symmetric. As for !??, we see that each w' E Qz is F?-conjugate with itself. 
(For example, (a, b, c) = (1, 1,O) gives o' = x-?dx whose divisor is 2R1.) Ac- 

cordingly, there are (one trivial and) sevsn non-trivial triples (C,, C;; TI) over 
F,[E], all of which are symmetric. 

Example 2. Let C be the non-singular quartic 

over F,. Then g = 3 and N ,  = 2. In fact, there is one point P2 of degree 2 
defined by (x, y) = (p. ,02) with p2 4 ,o f 1 = 0, and this is the unique point 
with degree 2 2. Therefore, 0 = P2. Since (p - l)(g - 1) = N, in this case, 
the condition w' < 2 0  implies (w') = 2 0  = 2P2. Therefore, 

Since ~ ( o ' )  = 0, Q, is empty and Q? = (a'). Accordingly, there is no triples 

(C,, C: ; TI) over 214. The remaining question is whether w' E Q, is the F2- 
conjugate of itself, or equivalently, whether the value of o'/t2dt at P, belongs 
to the prime field F,, where t is a local uniformization at P,. Take t 

= x2 + x + 1, andput z = y  + x + 1. Then z4 + (x3 + x2 + l)z = tL. There- 
fore, the value of o'/t2dt = t-?(x2 + x" I)-': at (x, y) = (p, p2) is equal to ,02. 

Therefore, Q' does not yield a pair (o', a"). Therefore, there are also no non- 
trivial triples (C,, C: ; T,) over F2[€]. 

Another similar example is : 

Ex~mple  3. Let C be the non-singular quartic 

over F,. Then N2 = 4, and the points of degree < 2 are P, ,  Q,, R,, defined by 

(x, y )  = (1, O), (0, O), (1, p) with ,02 ; p + 1 = 0, respectively. We obtain 

In the course of finding the mutually F,-conjugate pairs, only the self-conjugate 
differential 

0 = ydx 
(x ' 1)(x + y f I)" 

in Ql remains. (Its divisor is 2(P1 + Q,).) Therefore, there is exactly one triple 
(C,, C: ; T,) over 2 / 4  (which naturally is symmetric), and no non-trivial ones 
over F2[&]. 

Example 4. Let C be defined by 

over F,. Then g = 4 and N ,  = 10. Although N, > (p - l)(g - 1) = 6, there 
are no solutions of Problem .Al except the trivial one in Case 2. In fact, Q, 
is empty; while as for Q,, it consists of two differentials 

+ v-Yy3 + y2 + l)?(dy)a2 , -. 

but it yields no pairs (a', a"). 

Example 5. Let C be defined by 

over F5. Then g = 2 and N, = 46. In this case, N ,  - ( p  - l)(g - 1) is so 
big that the calculations are too tedious to be carried through. But by the 
formula (14.3), we obtain an evaluation of d = dim V, as 

3 0 < d <  3 8 .  

On the other hand, put 

Then o' satisfies (a), (b) for Q,, and o' is the &-conjugate of itself. Therefore, 
there is at least one symmetric solution (C,, C;; T,) over 2 / 2 5  corresponding to 
( o , .  Therefore, there are 5d solutions over 2 / 2 5  and also the same number 
of solutions (including the trivial one) over F,[E]. The above particular solution 
comes from a Shimura-Morita's congruence relation for a quaternionic modular 

group (cf. our previous work [5] for details). So, we know "from the other 
side" that it can be further extended to a solution (V, 9 ' ;  F) of Problem A for 
R = 2, .  

16. Remark. We have assumed throughout the paper that C is geometri- 
cally irreducible. We can replace this by a weaker assumption of irreducibility 
over F,, with only minor modifications. In fact, the only necessary changes 
arise from the fact that, if F,, is the field of constant functions on C, C xF,  C 
decomposes into m connected components (corresponding to the decomposition 



of F,, OFp F,,,,). If m > 2, then 17 and 17' lie on the different components ; 
so the only important case besides the case of m = 1 is that of m = 2. In this 
case, replace C xFq C by the component containing 17 and 17', consider the 
cohomology groups on this component, and consider their dimensions over F,, 
(instead of over F,). Then, the dimension formulae for these groups do not 
change if we take g to be the genus of C over F,,. AU other results of this 
paper remain valid under this generalization without modifications. 
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Some Remarks on Hecke Characters 

KENKICHI IWASAWA 

In the present paper, we shall make some simple remarks on Hecke 
characters of type (A,)  for a special type of finite algebraic number fields. For 
imaginary abelian extensions over the rational field, examples of such characters 
are provided by Jacobi sums and these will also be discussed briefly." 

§ 1. Let j denote the automorphism of the complex field C mapping each 
a in C to its complex-conjugate a. An algebraic number field k ,  i.e., an 
algebraic extension of the rational field Q contained in C, will be called a j- 
field if k  is invariant under j and oj = jo for every isomorphism a of k  into 
C.  One sees immediately that k  is a j-field if and only if k  is either a totally 
real field or a totally imaginary quadratic extension of a totally real subfield. 

In the following, we shall consider Hecke characters of type (A,) for a 
field k  which is an imaginary j-field and is also a finite Galois extension over 

Q. Let G = Gal ( k / Q ) .  The restriction of j on k ,  which will simply be de- 
noted again by j, is an element of order 2 in the center of G. Let I denote 
the idele group of k .  Then I = I, x I ,  where I ,  and I ,  are the finite part 
and the infinite part of I respectively. The multiplicative group k X  of the field 
k  is naturally imbedded in I as a discrete subgroup of the locally compact 

abelian group I. Hence each a  in k X  can be uniquely written in the form a 
= a,a, with a, E I,, a, E I , .  Now, a Hecke character of k  (for ideles) is, by 
definition, a continuous homomorphism x :  I -+ C X  such that x(kx)  = 1 ; it is 
called a Hecke character of type (A,) if there exists an element o in the group 
ring R = Z[G]  of G over the ring of rational integers Z with the property that 

1)  For Hecke characters of type ( A o )  in general and for Jacobi sums in particular, 
see Weil [2a], [2b], [2c]. 



for every a in kX.  Such w is uniquely determined for ;C by the above equality 

and is denoted by a,.  The set H of all Hecke characters of type (Ao) on k 
forms a multiplicative abelian group in the obvious manner and the map x ++ o, 

defines a homomorphism 

from the multiplicative group H into the additive group of the group ring R 

= Z[G]. One sees easily that the ksrnel of cp is the torsion subgroup T of H 
which is, by class field theory, dual to the Galois group of the maximal abelian 
extension over k. Let A denote the image of cp in R so that 

Lemma 1. Let 

Then A consists of all elements w in R such that 

for some integer a. In particular, A is a two-sided ideal of R containing 

(1 - j)R. 

Proof. Let l l f i l  denote the norm of an idele [ in I defined in the usual 
manner. It is well known that f H ,/;!I defines a surjective homomorphism of 
I onto the multiplicative group of real numbers, that kx is contained in the 
kernel I, of the homomorphism, and that I l / kX is a compact group. It then 
follows that for each Hecke character ;c, there exists a real number r such that 

\%([)I = l / [ i l 7  for every idele f .  The lemma follows from this and from the 
definition of Hecke characters of type (A,). 

Let [G: 11 = [k: Q] = 2n and let 

Then (1 + j)8' = 8 and it follows immediately from the above lemma that 

Hence A is a free abelian group of rank n + 1. Note also that A is gen- 
erated over Z by the sums 8' = C;,, oi when {a,, s s ,  on) ranges over all sub- 
sets of G such that G = {o,, . . . , on, jo:, . . . , ja,}. 

Now, for each integral ideal m of k, let z, denote the multiplicative group 
of all ideals of k which are prime to rn. Let ;C be a Hecke character of k. 
Then it follows from the continuity of % that for a suitable intesral ideal m, ;C 

induces a homomorphism 

with the property that 

for every cu in kx satisfying a = 1 modx rn. Furthermore, if ;C is of type (A,), 
the sets x(I,) and ;i(,&,) generate over k the same field k, : 

Let o = ox and (1 + j)o = aB, a E 2, as stated in Lemma 1. 

Lemma 2. k, is a j-field, finite over k, and for each ideal a in ,3,, 

where N(a) denotes the norm of a over Q and (%(a)) is the principal ideal of 

k, generated by %(a). 

Proof. If a = 1 modX m, then %((a)) = ;~(a,)-I = a". The two equalities 
of the lemma follow from this and from the fact that the ray class group 
mod m is a finite group. Let f = %(a) for an ideal a in 3, and let ah  = (a), 
h 2 1, CY E kX, a = 1 modX rn. Then f h  = %((a)) = a" belongs to k while f l + j  

= N(a)" is a rational number. Hence k(E) is a finite extension of k, invariant 
under the complex-conjugation. Let o be any isomorphism of k(f) into C. 
Since k is a j-field, a j  = ja on k. In particular, (fh)"(l+j) = (fh)('+j)", namely, 
(fl+j)ha = (fo)h(l+J). Since = N(a)"" > 0 and ( io)l+j  > 0, it follows that 
(fl+j)" = (fa)l+j SO that oj = ja on k(f). Therefore k(j(a)) = k([) is a j-field, 
finite over k. As the ray class group mod m is finite, k, is the composite of 
a finite number of j-fields such as k([). Hence k, is again a j-field. finite 

over k. 

By a similar argument, one can prove the following result which may be 
of some interest for itself: For each j-field k, finite over Q, there exists a j- 
field F, finite over k. such that every ideal of k becomes a principal ideal in 
F. 

§ 2. Let F be an algebraic number field containing k and let A,  denote 



the set of all o in A such that for every ideal a of k, a" becomes a principal 
ideal in F. On the other hand, let B, be the set of all w, = cp(;~) for Hecke 
characters 1 of type (A,) with the property that k, c F. Then AF and B, 
are additive subgroups of A and by Lemma 2 

From now on, we shall assume that F is a j-field containing k ; since k 
is imaginary, F also is an imaginary j-field. Let E ,  E,, and E +  denote the 
group of all units in F ,  the subgroup of all real units in E ,  and the subgroup 
of all totally positive real units in E,, respectively. Clearly E?, E1+j  E E-  

C E, E. Let W be the group of all roots of unity contained in F. Since - 
F is a j-field, the index [E:  WE,] is either 1 or 2, and so is the index 
[E1+j : E:]. Let 

Obviously E is an abelian group with exponent (at most) 2. 

Now, let o be an element of A,  and let a be any ideal of k. By the 
definition of A,, a" is a principal ideal in F so that 

with an element p in FX. Since A, A, it follows from Lemma 1 that 

with an integer a. Hence 

and we see that 

is a unit of F and, indeed, a totally positive real unit in E,. If p is replaced 
by ,u7 with 7 in E ,  then ; is replaced by ql+f. Therefore the coset of 2 

mod E1""s uniquely determined by o and a so that it may be denoted by 

[a, a] : 

[o, a] = N(a)-a ,~ l+j  mod E"f . 

It is clear that [a ,  a] defines a pairing of A, and the ideal group of k into E.  
Furthermore, if a = (a), n E kx,  then a" = (p) with p = nw so that E = N ( ~ t ) - ~ p l + j  

= 1. Hence [w ,  a] depends only upon the ideal class of a and it also defines 

a pairing of A,  and the ideal class group C, of k into E = EF: 

Theorem. B, is the annihilator of C, in AF in the above pairing so that 

there is a monomorphism 

AF/BF ---+ Hom (C,, E,) . 

Proof. In the above, F is not necessarily a finite extension over k. 
However, the proof for the general case can be easily reduced to that of the 
special case where F is a finite extension of k. Therefore we shall assume in 

the following that F is finite over k and. hence, also finite over Q .  

It is clear from Lemma 2 that BF is contained in the annihilator of C, in 

A,. To prove the converse, let w be any element of A,  which annihilates C ,  
in the above pairing. Let w denote the order of the finite group W consisting 

of all roots of unity in F. We fix a prime ideal p of k, prime to w, and 

denote the norm of p over Q by q :  q = N(p). The residue class field of p 
then contains a subgroup canonically isomorphic to W so that q - 1 is divisible 
by w. Let a be any ideal of the ideal group 8, in k and let a" = (p), p E FX,  
as stated above. Since [a ,  a] = 1 by the assumption on o ,  E = N(a)-"pl+J is 
contained in E1+j : ; = rll+j, 7 E E. Hence, replacing p by ,q, we may assume 
that N(a)" = $+f .  As a belongs to 3,, p is prime to p ,  and there exists a 

- root of unity ; in W satisfying / J ( Q - ' ) / ~  = C modX p.  Let 

Then 

We shall next show that for each a in &, there exists only one 9 in FX 
satisfying the above conditions. Indeed. let >' be another element in FX sat- 
isfying the same conditions and let >' = q. Then 7 is a unit of F such that 

$ + f  = 1, 7 - l m o d X p .  Since [E:  WE,] = 1 or 2, let f =  i'?, with C ' E  W, 

7, E E,. From ri2('+fl = 1, we then see that 7; = 1, 7, = i 1 so that I) = kc' 
belongs to W. It then follows from 7 r 1 modx p that 7 = 1, v' = u. 

Now, since 9 is unique for a, the map a H 2 defines a homomorphism 



If a is an element of k x  satisfying a = 1 modK q, then v = crw' obviously sat- 
isfies the above conditions for the principal ideal a = (a). Hence 

for such an ideal (a). By [2a] ,  we then know that there exists a Hecke 
character x on k which induces the homomorphism p on &: 2 = p. We also 
see immediately that x is of type (A,) and w' = w, = &). Since %(&) = p(3,) 
C FX, o' = ( (q  - l ) /w )w  is contained in BF. - 

In the above, we have fixed a prime ideal p of F ,  prime to w. However, 
it is easy to see by class field theory that when p ranges over all prime ideals 
of k, prime to w, then the g.c.d. of N(p) - 1 is w. Therefore it follows 
from the above that w itself is contained in B,, and this completes the proof 
of the theorem. 

3 3. We shall next make some remarks on the results mentioned above. 

Let F be an arbitrary j-field containing k. Since A, is a subgroup of A 
which is a free abelian group of rank n + 1 and since E2 = 1, it follows from 
the theorem that A,/B, is a finite abelian group of type (2, . a ,  2) with rank 
at most equal to n + 1. In particular, 

Note also that if 1 = 1, i.e., if E +  = El+', then A ,  = B,. 
Let F = k. In this case, A ,  is the subgroup of all w in A such that C; 

= 1, namely, the subgroup of all "relations" on the R-module C, contained 
in A .  The theorem then states that up to a finite factor group of exponent 2, 

all such relations are provided by Hecke characters 1 of type (A , )  on k with 
the property k, = k, i.e., %(Io) Z k. 

Let L denote the field generated over k by ~(1, )  for all Hecke characters 
x of type (A,) on k and let K be the subfield of L generated by %(Io) for all 
x in the torsion subgroup T of N :  

As one sees immediately, K is the field generated ovsr k by all roots of unity 
in C.  By the definition, L is the composite of the fields k, for all % in H. 
Hence, by Lemma 2, L is a j-field. It is also easy to show that L is a 
Galois extension of the rational field Q .  Furthermore, since HIT -- A and A 
is a finitely generated abelian group, it follows from the proof of Lemma 2 

that L!K is a finite abelian extension. It seems that the extension L /K ,  which 
is thus canonically associated with the field k, has some significance for the 
arithmetic of the ground field k. Here wz note only the following simple fact. 
Let w be any element of A  = y(H) and let o = o, with x in H. For any a 

in Gal (LIK). define 

by ;c"-'(i) = for 6 E I. Then ;c"-' is a Hecke character in the torsion 

subgroup T of H and it depends only upon o and a. The map (a, a) - 
then defines a pairing of A  and Gal (LIK) into T and this induces a non- 
degenerate pairing 

A / B R  x Gal (L/K) ----+ T . 

Therefore there exist monomorphisms 

§ 4. Important examples of Hecke. characters % of type (A , )  with k, = k 
are provided by Jacobi sums when k is an abelian extension over the rational 

field." We add here some further remarks on such Hecke characters in con- 
nection with what has been discussed above. 

For each integer m > 1, let K ,  denote the cyclotomic field of m-th roots 

of unity and let G, = Gal (Km/Q) and R, = Z[G,]. For any real number a ,  

let ( a )  = a - [a] where [a] denotes the largest integer <a. and for any 
integer t ,  prime to m, let a, denote the automorphisrn of K ,  which maps every 
m-th root of unity in K ,  to its t-th power. We then define 

for any integer a. 8,(a) is an element of Q[G,] such that m8,(a) E R,. and 

it depends only upon the residue class of a modm. Let r = ( I - , .  ., r,) be 

any finite sequence of elements r; in Q 2 such that mr = 0 and let I.,  = n,,'m 
(mod 2 )  with a, E 2 ,  1 < i ,< S .  For such a sequence r. we put 

Again y(m, r) is an element of Q[G,] such that my(m, r) E R,, . In [2c]. a 

2 )  See [3b], [2c]. 



"modified" Gauss sum Jm(r. a) is defined for each sequence r = (r,, ., r,) with 
mr = 0 and for each ideal OX of K,, prime to m. It is an algebraic number 
of which the m-th power is contained in K,, and 

for the principal ideal (J,(r, OX)") in K,. 

In general, let Q E k' C k and let both k/Q and k' ,  Q be finite Giilois 
extensions. Let G = Gal (klQ), G' = Gal (k'/Q) and R = Z[G], R' = Z[G']. 
Then the canonical homomorphism f,,,, : G - G' induces a ring homomorphism 
R -+ R' and this will be denoted again by f,,,,. There also exists an additive 
homomorphism f,,,, : R' - R which maps each a' in G' to the sum of all a in 
G such that f,,,,(a) = a'. f,,,, and f,,,, can be extended to homomorphisms 

Q[G] - Q[G'] and Q[G'] -+ Q[G] respectively in the obvious manner. When 
one or both of k and k' are cyclotomic fields, e . g ,  k = K,, we shall write 
simply f,,,, and f,,,, for f,,,, and f,,,, respectively. 

Now, let k be an arbitrary finite abelian extension over the rational field 
Q and let m be any positive integer. Let k' be any subfield of k n K, and 
let r = (r,, . . , r,) be a sequence such that mr = 0 and such that f,,,,(r(m, r)) 
is contained in the group ring R' = Z[G'] of G' = Gal (k'/Q)3). Then 
J,(r, N,,,,(a)) is contained in k (in fact, in k') for any ideal a of k, prime to 
m. Such an element of k is called a (generalized) Jacobi sum for the field k 

because in the special case where k = K, = k', it coincides with a classical 
Jacobi sum for K, studied in [2b]. Let a be any integer. The main theorem 

in [2c] states that there is a Hecke character x of type (A,) on k which induces 
the homomorphism 2 : &, ---+ Cx defined by 

From now on, let us assume that k is an imaginary abelian extension 
over Q. We then see that k ,  = k for the Hecke character % mentioned above 

and that w, = y ( z )  in R = Z[G] is given by 

where 0 denotes as before the sum of all elements in G = Gal (k/Q). With k 
fixed, let S denote the submodule of R generated over Z by such o',(m, k', r, a) 

for all possible choices of m, k',r, and n (i.e., m,a  E Z, m 2 1, k' G k f7 K,, 

3 )  One checks easily that this condition on r is equivalent to the condition djrj=O in 
the lemma on p. 6 of [2c]. 

mr = 0? and f,,,,(r(nt, r)) E R' = Z[G'] where G' = Gal (k'lQ)). Then S is 
an ideal of R contained in B, : 

The elements in S may be called Stickelberger operators for k because in the 
special case where k = K,, they appear in the classical theorem of Stickelberger. 
Using the fact that Dirichlet's L-functions L(s; $1 do not vanish at s = 1, we 
can show that 

Now the question arises: What are the indices 

[A: S], [ A , :  S] = [A,: B,][B,: S] . 

In the simplest case, namely, in the case where k is an imaginary quadratic 
field, one can compute [A: A,] and [A: S] without much difficulty and find 
that [A : A,] is the exponent of the ideal class group C, of k while [A : S] is 
the order of C,, namely, the class number of k. Hence, in general, A,/S 
is not a 2-group like A,/B,. On the other hand, one can also prove that if 
k is the cyclotomic field of m-th roots of unity, k = K,, and if m is divisible 
by at most two distinct prime numbers, then [A : S] is equal to the first factor 
of the class number of ko. Although the number of known examples is limited, 
this seems to suggest that the same equality might hold for any imaginary 
abelian extension k over Q or at least for all cyclotomic fields Km5). The proof 
of such a conjecture, if true, may require some intrinsic characterization of the 
elements of S among the relations on C, given by the elements of A ,  or B,, 
and such a characterization in turn may enable us to define Stickelberger 
operators for an arbitrary Galois j-field k which is not necessarily abelian over 

Q .  
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Congruences between Cusp Forms and Linear 
Representations of the Galois Group 

Let f(z) be a cusp form of type (I ,  a) on ro(N) which is a common eigen-. 
function of all the Hecke operators. For such f(z), Deligne and Serre [I] 
proved that there exists a linear representation 

p : G ---+ GL,(C) where G = Gal (Q/Q) , 

such that the Artin L-function for p is equal to the L-function associated to 

f(z). Here, we shall show that, for almost every prime I ,  the subfield of 0. 
corresponding to the kernel of p is realized as a field generated by the coordinates 
of certain points of finite order of an abelian variety attached to a certain cusp 
form of type (2, E $ )  on ro(Nl), where + is a character of (Z/lZ)X of order 
1 - 1. (See Theorem 2.3) 

We next apply the above result to the theory of Shimura 151 to obtain 
further theorems in 9 4. 

The proof is based on an idea of Shimura which is very useful for proving, 
congruences between cusp forms. The author wishes to express his hearty 
thanks to Prof. G. shim& for suggesting these problems. 

For proofs of theorems in this note, see [3] which is to appear. 

Notations 
K : number field. 

o, : the maximal integer ring of K. 

p, : a real archimedean prime of K. 
( x l p , )  = 1 or -1 according as x is positive or negative at p ,  for x E K -  
For a formal product 7 of an integral ideal yo and archimedean primes of K ,  
I ( f )  will denote the group of all fractional ideals in K prime to to. 
%(a) = (N l a )  : the Legendre symbol for a E 2, (a, N )  = 1. 



S,(N, E ) :  the vector space of all cusp forms of type (K, E) on ro(N). 

§ 1. Preliminaries 

Here we explain an idea which is very useful to prove congruences between 
cusp forms of different weights and of different levels. The idea consists of 
the following two parts. 

1.1. Eisenstein series of weight 1. 
Let 1 be an odd prime. We fix a prime divisor i lying above 1 in the 

algebraic closure Q in C of Q. Let + be the Dirichlet character defined 
mod 1 satisfying 

+(a)a-l(mod7) for a l l a ~ Z , ( a , I ) = l .  

For any Dirichlet character x defined mod 1, let 

where L(s, x) is the Dirichlet's L-function for the character x. Then E,,,(z) 
is the Eisenstein series of type (1, X )  on rO(l). 

2 i f % = + ,  I L(O,x) I = (1; 1 otherwise , 

where we denote by 1x1, for x E Q, the absolute value on 1-adic completion of 
normalized so that 111 = I-'. 

Especially for the character +, we have the following congruence: 

We should remark that the Eisenstein series El-,(z) of weight 1 - 1 on 

SL,(Z) satisfies the same congruence: 

where B,-, is the 1 - 1-th Bernoulli number. E,-,(z) was used by Serre in [4] 

to develop the theory of p-adic modular forms and was also used by Deligne 
and Serre to prove a theorem about which we shall make a certain remark in 

the next section. Our idea, which is due to Shimura, is to use El,,($ instead 

of E~-,(z). 

1.2. Lemma of Deligne and Serre. We quote a lemma from [I]. 

Lemma 1.1 (Deligne and Serre). Let f(z) = C,",, ane2xtnz be a cusp form 
of type (K, E )  on rO(N) such that a, are 1-adic integers for all n 2 1. Suppose 
a, satisfy the following congruences for every prime p 

anap = a,, + c(p)pC-la,,, (mod i) if P li N , 
anap -- anp (mod i) if p I N . 

Then, there exists a cusp form g(z) = C,",, bne?xhQf the same type (s, E) as 
f(z) on ro(N) such that 

(1.1) g(z) is a common eigenfunction of all the Hecke operators. 

(1.2) a, = bn (mod 1) for all n 2 1 

$j 2. Remark on a theorem of Deligne and Serre 

2.1. First we recall a theorem of Deligne and Serre. 

Theorem 2.1 (Deligne and Serre [I]). Let N > 1 be an integer and let 
E be a Dirichlet character defined mod N such that E(- 1) = - 1. Let 

be a cusp form of type ( 1 , ~ )  on T,(N) which is a common eigenfunction of 
. Hecke operators T(p) for all primes p 4 N with eigenvalues a,. Then there 
exists a linear representation 

p : G --+ GL,(C) where G = Gal (a/  Q) , 

such that p is unramified outside of N and satisfies 

Tr (F,,,) = a, , det (F,,,) = ~ ( p )  for all primes p ,{ N , 

where F,,, is the image by ,O of the Frobenius element related to p. 

The representation p associated with f(z) by Theorem 2.1 is irreducible 
and the image of p is finite. We denote by Kf the subfield of Q correspond- 

ing to the kernel of p. Then K, is a finite Galois extension over Q. We 

shall show that Kf can be realized as a field generated by the coordinates of 
certain points of finite order of an abelian variety attached to a certain cusp 
form of type (2, E+) on r,(NI). 



Before that. we recall a theorsm of Shimura. Let N 2 1 be an integer 
and let ;C be a Dirichlet character defined mod N such that ;c(- 1 )  = 1 .  Let 

be a cusp form of type ( 2 , ~ )  on T , ( N )  which is a common eigenfunction of 

all the Hecke operators. We denote by M the subfield of C generated over 
Q by the Fourier c,oefficients c, for all n. Then we have 

Theorem 2.2 (Shimura [5]). There exists a couple ( A ,  0)  with the follow- 
ing properties : 

(2.1) A is an abelian subvariety, of dimension [M : Q ] ,  o f  the Jacobian variety 
o f  the modular function field with respect to T , (N) .  

(2.2) 6 is an isomorphism o f  M into End ( A )  O Q. 

(2.3) A and the elements of  B(M) 7l End ( A )  are rational over Q .  

(2.4) For every prime p,  6(cJ coincides with the homomorphism of A naturally 

induced from the Hecke operator T(p)  or U(p). 

Changing ( A ,  6)  by an isogeny over Q, if necessary, we may assume 

(2.5) @(ox)  c End A . 

2.2. We fix a cusp form f ( z )  = C;==, aa,2xinz, a, = 1 ,  of type (1,  e)  on 
r,(N) which is a common eigenfunction of all the Hecke operators. Let N' 
be the least common multiple of N and I .  If 1 does not divide N, f ( z )  is re- 
placed by f ( ~ )  - cuf(1z) where a is a solution of the equation X 2  - a,X + & ( I )  

= 0 .  Put g(z) = f(z)-E,,,(z) = C;;',, bneZrinz. Then g(z)  is an element of 
S,(N', E I ~ )  and it is obvious that b,  satisfy the conditions in Lemma 1.1. 
Therefore, there exists an element h(z)  = C,"=, ~ , e ' . ' ~ ~ ' ,  c, = 1 ,  of S2(Nt, E+) such 
that (1)  h(z) is a common eigenfunction of all the Hecke operators and (2) 
c, = b ,  (mod 1) for all i~ 2 1. 

Now we assume that 1 is greater than 3 and is prime to the order of 

Gal (K,l Q). Let ( A ,  8) be a couple associated with h(z)  by means of Theorem 
2.1. We denote by I the prime ideal of A4 which is lying below 1. Put 

A [ [ ]  = {t E AIB(l)t = 01, 
L, = the subfield of C generated by the coordinates of all points of A [ [ ] .  

Then we have 

Theorem 2.3. L,  coincides with K,. 

8 3. Congruences between cusp forms 

First we briefly recall Shimura7s theory from [5].  Let N be a positive 
integer and ;C be an arbitrary real-valued character of ( Z / N Z ) X  such that % ( - 1 )  
= 1. We denote by k the real quadratic field corresponding to x and by E 

the non-trivial automorphism of k. We fix a cusp form h(z) = EL, one2xinz 

of S,(N,  2). We assume that h(z) belongs to the essential part and that h(z) 
is a common eigenfunction of all the Hecke operators. We normalize It so 
that a, = 1. We denote by K the subfield of C generated over Q by the 
coefficients a, for all n and by F the maximal real subfield of K. Let b be 
the odd part of the ideal of o, generated by {x  E oK1xp = -x)  (p  beins the 
complex conjugation) and put NK/F(Z1) = C. Then the following is a fundamental 
theorem in [5]. 

Theorem 3.1 (Shimura). Let I be a prime factor of  c in F.  Then, there 

exist (o,/I)x-valued characters r,  and s, of  an ideal group of k satisfying the 
following properties : 

(3.1) Let i[rJ be the conductor of  r,. Then f[rlJt = f[s,] and every finite 

prime factor of  f[r,] divides NkIQ(I)N. 

(3.2) r,(a) -- s,(al) for every a E I(f[r,]). 

(3.3) r,(mok) = s,(mok) = .(m mod I )  for every m E Z prime to f[r,] where 

p ,  is the archimedean prime o f  Q .  

(3.4) r,(a) .s,(u) = NkIQ(a) mod r for every a E I(f[r,]) I-I z(f[s,]). 

(3.5) If p is a rational prime that is prime to Nk/,(I)N7 and that decomposes 

into two distinct prime ideals p and p1 in k ,  then 

r,(p) + s,(pl) = a, mod I: . 

The properties of these characters r, and s, are c o ~ e c t e d  with the reci- 
procity law of a certain abelian extension of k which can be generated by the 
coordinates of certain points of finite order on an abelian variety associated 
with h(z).  From Theorem 3.1, it follows a formal congruence between partial 
sum of h(z) and a formal power series hr,(z) defined by 



where the sum is extended over all integral ideals prime to f[r,]. Moreover 
Shimura conjectured that the congruence holds between entire sums. A,,($ is 
actually reduction mod i of a cusp form of weight 1 which is the Mellin 
transform of a L-function of k with a certain class character. 

Our purpose is to prove directly, not by way of abelian varieties, con-mences 
between cusp forms of weight K, K 2 2 and cusp forms of weight 1 which are 
the Mellin transforms of L-functions of real quadratic fields with certain class 
characters. Our result is as follows : 

Let k = Q(JN) be a real quadratic field and let N be the discriminant of 
k .  Let 1 2 5 be a prime which decomposes into two distinct prime ideals in 
k .  We fix a prime factor I ,  of 1 in k such that I ,  is lying below i. Let p, 
be an archimedean prime of k and let m be an integral ideal of k such that 
m is prime to I .  Put m = Nk,,m. Let R be a Cx-valued character of the 
ideal group of k whose conductor is p ,  . m e  I,. With such a R ,  we associate a 
function f,(z) by 

where a runs over all integral ideals of k prime to ml,. f,(z) is proved to be 
a cusp form of type ( 1 , ~ )  on r,(lmN) with ~ ( a )  = (N/a)R(ao,) for a E 2, 

(a, 1mN) = 1, where (N la )  is the Legendre symbol. Moreover, on account of 
that the corresponding L-function has an Euler product, f,(z) is a common . 

eigenfunction of all the Hecke operators. 2 is decomposed into the product of 
x1 and x2 which are characters of ( Z / l Z ) "  and of ( Z / m N Z ) "  respectively. 
Since + is a generator of the character group of ( Z / I Z ) " ,  there exists a positive 
integer K such that X ,  = +-=. Then our result is the following: 

Theorem 3.2. The notations being as above, there exists a cusp form 
h(z)  of  type ( K  + 1, X J  on r o ( m N )  stlch that 

(3.6) h(z) is a common eigenfunction of  all the Hecke operators. 

3 4. Real quadratic fields and Hecke operators 

Here we apply our result in €j 3 to Shimura's theory [5] for proving some 
conjectures and we deal with only the case of square-free level N with the 

character ( N /  ). 

Let k = Q(.JN) with a positive square-free integer N = 1 (mod 4). Let u 

be the fundamental unit of k.  Suppose NklQu = - 1 .  Let 1 2 5 be a rational 

prime which divides NkIQ(u - 1 ) .  Then 1 decomposes into two prime ideals I ,  
and I ;  in k .  Moreover u - 1 is divisible by only one of the two prime factors 

of 1 in k .  Hence we may assume that tr E 1 (mod I , )  and 1, is lying below i. 
Let p ,  be an archimedean prime of k such that (ulp,) = 1. Then, there 
exists an ideal character R of k with conductor p;I,  satisfying 

for every a in k prime to I,.  Here c : (ok /  I J x  -+ ( Z /  12)" is the natural iso- 

morphism such that c(a mod I,) = a mod 1 for every a E 2, (a, I )  = 1 .  

We fix such a R. Then the associated function f,(z) is a cusp form of 
type (1, ( N l  )+-I) on ro( lN)  which is a common eigenfunction of all the Hecke 
operators. Applying Theorem 3.2 to f ,(z),  we obtain the following 

Proposition 4.1. There exists a cusp form h(z) of  type (2 ,  (N l  )) on r , ( N )  
such that 

(4.1) h(z) is a common eigenfunction of  all the Hecke operators. 

We fix such a h(z) obtained in the above proposition and, to h(z),  we 
apply Shimura's theory a part of which is explained in 3, namely we consider 

( A ,  B), K, F, c, r,, etc. for the fixed h(z). Let b* be the ideal of K generated 

by the Fourier coefficients c, of h(z) for all n such that (N ln )  = - 1. We 

suppose that b and b* consist of the same prime factors except 2 and 3. This 
is not yet proved. As a corollary, we immediately obtain 

Corollary 4.2. 1 is a prime factor o f  N(c). 

Hence the prime ideal I of F which is lying below i is a prime factor of 
c, let 6, be a prime ideal of K such that 6: = 1 . 0 ~ .  Then we have 

Corollary 4.3. L,, = Kfi. 
The relation between R and r, is as follows. We denote by 9 the residue 

field of 0 with respect to i. Then o,/l is canonically imbedded into 9. For 

any a E I(I,), we define ](a) by ](a) = R(a) mod 7. It is obvious that the con- 

ductor of 2 is equal to p,.I,. 

Corollary 4.4. Either r, or s, coincides with 2. Especially the conductor 

f[r,] of  r ,  is equal to p;Z, and the following congruence holds: 



h(z) G f,, (mod i) . 

Now we go back to the general theory and explain another conjecture of 
Shimura. Assume N is a prime. Accordingly ~ ( a )  = (N la )  and N = 1 (mod 4), 

so that k = Q(dN) .  Let u be the fundamental unit of k .  In 151, Shimura 
conjectured that 

(4.3) NFIQ(c) and TrkIQu consist of the same prime factors, i f  we disregard 2 
and 3. 

We can give a partial answer for his conjecture as a direct consequence of 
Proposition 4.1. 

Proposition 4.5. Let N be a square-free integer such that N 1 (mod 4)  

and let a be the fundamental unit of  k = Q( dg) .  Assume NkIQu = - 1. Let 
1 2 5 be any prime which divides Tr,,Qu. Then there exists a cusp form h(z) 
of type (2,  ( N /  )) on r , ( N )  which is a common eigenfunction of  all the Hecke 
operators such that 1 divides NFIQ(c) for h( t ) .  
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On a Generalized Weil Type Representation 
- - 

TOMIO KUBOTA* 

This paper contains a complete exposition on the unitary representation 
announced in [I]. 

For three particular types of elements a of G = SL(2, C ) ,  define unitary 
operators r(a) of L2(C) with respect to the euclidean measure dV(z) of C by 

(0 E LZ(C)) ,  where 

e(t) = exp ( d T ( t  + i)) , 

and d is the Fourier transform of O defined by 

then a -, r(a) extends multiplicatively to a unitary representation of G ,  which is 
a special case of the representation constructed in [4], and, as the second formula 
of (1) shows, is "quadratic". The aim of the present paper is to construct a 
similar unitary representation "of degree n" for an arbitrary natural number 

n 2 2, which is fixed once for all. 
Throughout this paper, the function k(z) given in Theorem 1 of [ 2 ] ,  and 

the integral transformation @ -+ O* defined by (7) of [2] using k(z)  will be 

assumed to be known, and every integral of the form lc resp. Jr , which is 

* This research is supported by NSF Grant GP-43950 (SK-CUCB). 



not absolutely convergent, should be understood in the sense of lim S resp. 
Y-rn Izl<Y 

Proposition 1. If z, w E C are not zero, then 

1 Proof. It is enough to prove the case of z = - - = 4- 1. 
z 

In view of 

( 2 ) e ( t n a )  = 2 1-,(2srn) exp ( g m n O )  , (t = r exp ( G O ) )  , 
m= - w  

and Proposition 1 of [2], we have 

(W = r' exp ( m e ' ) ) ,  with 

To show the existence of this integral, we first change the variable from r to 
r'ln, and then, using the asymptotic formula 

(lzl -+ m), and the corollary to Theorem 1 of [2], reduce the problem to the 

existence of the integral of the form e(x)e(xa)x-gdx, (0 < a < 1, 0 < /3), S1 
that can be verified by means of partial integration and by the fact that e(x) 
remains bounded after repeated integration. 

We introduce here a parameter p, put 

for m 2 0, and compute M(cm,(r', p),s) first formally, where M stands for the 
Mellin transformation defbed by 

for a function +(r) of r 2 0. Since 

(0 < Re s < n/2), we get 

dr' = 21 Sr Jr Jm(2rrn)amn(rr')rp+2n-3 dr rh- 
f 

which is equal to 

Now, the last two integrals exist in the region determined, for instance, by 
O < R e s < &  and - 2 n + 3 - & < R e p < - - 2 n + 3  with small E > O .  Con- 
sequently, M(cmn(r', p), s) is well-defined in the same region, and cmn(f, p) is 
the inverse Mellin transform of M(cmn(J, p), s), whenever -2n + 3 - E < Rep  
< -2n + 3. Since, however, the integral (3) exists for -2n + 3 - E < R e p  
< E ,  and is holomorphic with respect to p, the analytic continuation to p = 0 
of (3) should coincide with that of the inverse Mellin transform of (4). At 
p = 0, (4) reduces to 

and, by Proposition 1 of [2], reduces furthermore to 

because of M,(amn, s) = M(amn, s). This shows 



Since this formula remains true after m is replaced by -m. (5) holds for 
m < 0, too. (q.e.d.) 

Here we introduce the upper half space; it is the space H of all u = (z, v), 

( Z E  C, v > 0). If we put 1 = ( i), (t E C), and identify u = (z, v) E H with 

the matrix (:, -P), then o = (z I;) E G = SL(2, C) operates on H by the 

fractional linear transformation ou = (du + 6 ) ( h  + a)-'. Since K = SU(2) is 
the isotropy group of (0 , l )  E H, H is a realization of the homogenous space 
GIK. There is a G-invariant Riemannian structure V - ~ ( ~ X ~  + dy2 + dv2), 
(x = Re z, y = Im z), on H, and corresponding invariant measure and Laplacian 
are given by du = v - ~  dx dy dv and by 

respectively. Furthermore, if g(u) is a function on H, and s, R E C, then 

is equivalent to 

An element of SU(2) is of the form (; -{), (Inj' + lp12 = 1), and is 

decomposed as 

(-;c Q < Z,  -2;r 5 p < Is), with +(Q + p) = arg a, &(q5 - 7) = arg ,?. More- 
over, we have 

Thus, SU(2) is equipped with the coordinate system ($, 8, p), and, considering 

the operation of an element of SU(2) on the tangent vector a[dv at (0 , l )  E H, 
one sees at once that sin 8 dq5 d8 dp is the Haar measure of SU(2). 

Next, we fix a u, = (z,, v,) E H. and take ui = (z,, vi) with vilv, = R ,  so 
that d(uo, u;) = log R,  if d(u, u') stands for the R i e m a ~ i a n  distance between 

two points u, u' of H. If o, = is a fixed element of SL(2, C) such 

that o,~r, = (0, I), then every u with d(u,, u) = R is of the form 11 = o;'oa,u,, 

where o E SU(1) and is expressed as in (8) and (9). Therefore, a coordinate 
system (8,$) is provided on the sphere determined by d(u,, u) = R.  Denote 
by dA(R) the measure induced on the sphere by the Riemannian metric on H ;  
then the invariance of the Riemannian structure implies that dA(R) is propor- 
tional to the Haar measure of SU(2), i.e., there is a constant C, > 0 such that 

(10) dA(R) = C, (log R)' sin 6 dB d$ . 

Let v(u) = v for u = (z, v) E H ; then. in the above notation, lim v(o;'aa,u;) 
R-m 

= oo or 0 according to 8 = 0 or 8 f 0. But. more precisely, we have 

Proposition 2. If 8 f 0, then Rv(o;'oo,u@ is monotonically increasing, 
and tends to v, (sin 8/2)+ as R--. co . 

Proof. Put a;'uo, = ( f;) ; then a computation shows 

exp (-m+) - 
Since vi = Rv,, Rv(o;'oo,u@ is monotonically increasing as R- co . On the 
other hand, (8) and (9) imply c 1 = la0j2 sin 0/2. Hence lim Rv(o;'oo,u[) = 

R-m 

v;' j ~ , l - ~  (sin 8/2)-' = v, (sin 8!2)-', (8 # 0). (q.e.d.) 



If a function g(u) on H satisfies Dg = Rg, (R E C), then the theory of [3] 
shows that there exists a constant A,(R) depending only on R and R such that 

and, to determine d,(R), it is enough to put g(u) = ~ ( u ) ~ ,  (s E C), and determine 

.js(R) by 

(1 1) J v(u)VA (R) = ils(R)v(uo)V 
d(uo,u) =log R 

Proposition 3. If 0 5 Re s < 1, then lim (log R)'2R\ds(R) exists, and is 
R-io 

positive, whenever 0 5 s < 1. 

Proof. It follows from (11) that 

(log R)-'Rqs(R) = (log R)'2R"(u)"A(R) , 
d(uo,u) =log R J 

and the right hand side of this formula is, according to (lo), equal to 

Co J: Rsv(o;'ooou;)s sin 8 dB d$ . 

Since I Rev(o;'ooou@s ) is, by Proposition 2, monotonically increasing and tends 
to v,S (sin 8/2)-2S, (S = Re s), and since 

V ~ C ,  lr (sin $)-2S sin B do d+ < m , 

we have 

,Ix 10' (sin $) -Is sin B dB d+ . lim (log R)-2R9s(R) = vsC 
R-m 

This shows at the same time that the limit is positive for 0 5 s < 1. (q.e.d.) 

Theorem 1. Let g be a function on H satisfying the following three con- 
ditions : i) g is a solution of (6), i.e., of (7), with R = s ( ~  - I), (0 5 s < 1). 
ii) g is bounded on H. iii) lim g(u) = 0 for almost every z E C, (u = (2, v)). 

v-0 

Then, g = 0. 

Proof. Consider an arbitrary point uo = (z,, v,) E H.  Then, in the same 
notation as in Proposition 2, 

and (10) imply 

By Proposition 2, IR%(a;'aaou~)" is bounded by the product of a constant and 

(sin :)-", (S = Re s) , and (sin +)'-IS < a .  Therefore, by the assump- 

tions ii) and iii), the right hand side of (12) tends to 0 as R + m, so that 

lim (log R)'2R~s(R)v(u,)~(uo) = 0 . 
R- rn 

Hence, it follows from Proposition 3 that g(uo) = 0. (q.e.d.) 

For u = (2, V) E H, we introduce new notations u* = wu, (w = - I)), 
jut= 1//z12 + v2, and t u =  (tz,ltlv), ( ~ E C ) .  If f(u) is a function on H, then 

depends only on wnu*. Accordingly, 

defines a linear transformation f -+ f*, and Theorem 3 of [2] implies f** = f .  
We now propose to construct a function F on H which satisfies F* = F 

and has many other good properties ; main tools to do this are Proposition 1 
and Theorem 1. 

Theorem 2. The function F(u) = v1/nKl,n(2;rv)e(z), (u = (2 ,  v) E H), satisfies 
F* = F, and is a solution of (6), i.e. of (7), with s = (n - l ) /n  and R = s(s - 2) 
= -(1 - nV2). 

Proof. Since +(v) = vK,,,(2;cv) is a solution of 

Fl(zi) = ~ ( ~ - l ) l ~ F ( u )  is an eigenfunction of D belonging to R. 
Put next u* = (z*, v*) ; then vlv* = luj2 gives rise to 



The left hand side of this formula can be written as 

and D is an invariant operator. Hence, the right hand side of the same formula 
is, and consequently Ff(u) = ~ ( ~ - l ) / ~ F * ( u )  is an eigenfunction of D belonging 
to 2.  

Thus g(u) = F(u) - F*(u) satisfies the condition i) of Theorem 1. To 
show the condition ii), i.e., the boundedness of g(u), we write F*(u) as 

and assume first that v/lzl is bounded from above. In this case, the boundedness 
of g(u) follows from 

from Proposition 1, and from the following Abel type estimation of an integral: 
if a(x) is a function defined on a real interval [a, b] such that I A(x)l 5 M, 

(A(x) = JI a(x) dx, x E [a, b] , and if ~ ( x )  is real valued, dderentiable and mono- ) 
tone on the same internal, then 

entails 

In  our case, E(X) = xK1/,(2r(v/(izi2 + v2))xn), (X > 0). Since this function is 
monotonically decreasing, we may use (14) with a = 0 and b = m, (~ (b )  = 0). 
To prove the boundedness of g(u) when v/lzi is bounded from below by a 
positive constant, it is enough to note that 

The condition iii) of Theorem 1 is again a consequence of Proposition 1. Hence,. 
from Theorem 1 follows g(u) = 0, i.e., F = F*. (q.e.d.) 

When n = 2. F(u)  reduces to $e-'zt e (z ) .  

For three special types of elements a E G = SL(2, C), we define unitary 
operators r,(o) of the Hilbert space @, in the sense of [2] as follows: 

(0 ) The fact that r,(o) is unitary follows from Theorem 3 of [2]. If 

n = 2, then (15) coincides with (1) up to a trivial deviation. Another remark- 
able fact here is that, in all the three formulas of (15), @ E 9, in the sense of 
[2] implies r,(a)O E 9,. In fact, the case of the first formula is evident, and 
for the second formula, (D E Y ,  follows from the definition of Y,, from (2), 
and from the power series expansion of J , .  The case of the third formula is. 
nothing else than Proposition 3 of [2]. 

Using the function F(u) of Theorem 2, we put 

(u = (z,v) E H), and 

By the formula for the Mellin transform of K,,,, we see that 

and therefore O,,(t) E 9, for any u E H. 

Proposition 4. For each of three types of a in (15), we have r,(o)O, = @,,. 

Proof. It  is easy to verify rn(o)O, = O,, by direct computations for the 

first two types of o in (15). For the third type of a, the required formula 
follows from Theorem 2. (q.e.d.). 



Proposition 5. The Hilbert space Qn is generated by all the CJ,, or 
equivalently by all the T,, (u E H). 

Proof. Let g(t) be a function in an such that 

for all u ; then, we have 

with 

Furthermore, it follows from 

that I t l - ( n - l ) / n  gl(tlln) = 1 t /-'In g(tlln) E L2(C). On the other hand, I t l - ( n - l ) / n  CJ I ,= (t1In) 

= 1 t CJu(tlln) = ~l /~K~/ , (27r  1 t 1 v)e(tz) belongs to L2(C), and K1,,(2;7 I t 1 v) # 0 
for any t E C. Therefore, if $(z) is the Fourier transform of an arbitrary 
Schwartz function + on C, then 

Hence g(t) = 0 almost everywhere. (q.e.d.) 

An arbitrary element a E G = SL(2, C)  is expressed by a product a,a,a, of 
at most three elements which are of the form as considered in (1). If we put 

rn(a) = r,(al)rn(a,)r,(a,) for a = ala,a,, then the above two propositions imply 

Theorem 3. TJle operator rn(a) is well-defined, and a -+ rn(o) is a unitary 
representation of G = SL(2, C) on @,. 

A zonal spherical function o,(u) on H belonging to the eigenvalue R E C is 
defined by the following conditions : i) w,(au) = w,(u) for any a E K = SU(2) ; 

ii) Dw, = Ro, ; iii) w,((O, 1)) = 1. For every R E C, there exists one and only 
one zonal spherical fumtion. 

Theorem 4. The representation given by Theorem 3 is irreducible: 

Proof. Let T, be as in (16), and let dk be the Haar measure of K = 
SU(2) such that the total measure of the group is 1. Then, there exists a 
function Jz(t) of the complex variable t such that 

(2 = -(I - n-9)). In fact, Theorem 2 and Proposition 4 imply that the left 
hand side of this formula is equal to o, up to a constant factor. 

Define a projection P of $5, by 

and let @' be the subspace of @, consisting of all functions CJ E @, such that 
P.rn(a)@ = 0 for all a E G. Then, the orthogonal complement @" of @' in Qn 
is not zero, because it follows from Proposition 4 and (17) with u = (0, 1) that 

and this function ( E @,) does not belong to @'. Let now CJ # 0 be an arbitrary 
function in Q". Then, there exists a a E G such that P.rn(o)@ # 0. From 
Proposition 5 and (17), it follows that P.rn(o)CJ is of the form ch(t), (c # 0). 

Therefore, by (18), @" contains F,,,,,. On the other hand, we have by defini- 
tion rn(a)@" c @" for all a E G, and hence @" contains all ?Fu, (U E H). This 
shows that .@" = @,, and at the same time that the representation a -+ rn(a) on 

@" = @, is irreducible. (q.e.d.) 
Let a - T ,  be an irreducible unitary representation of class 1 of G = 

SL(2, C), where To means a unitary operator of a Hilbert space @. Then, as 
the general theory shows, an element f, E @ satisfying i j  f, l j  = 1 and T,f, = f, 
for all a E K = SU(2) is uniquely determined up to a constant factor, and 

(f,, T,f,) = w(a) = o,(u), (u = o(0, 1) E H), turns out to be a zonal spherical 
function. Moreover, R determines the equivalence class of the irreducible re- 
presentation, and if we express R as R = s(s - 2 ) ,  (s E C), then all equivalence 
classes of irreducible representations of G are in one to one correspondence 
with s satisfying either i) Re s = 1, Im s 2 0, (principal series), or ii) 1 < s 2 2 
(supplementary series). 

Theorem 5. The irreducible representation a + rn(a) belongs to tJze sup- 
plementary series, and the value of the parameter s corresponding to the repre- 
sentation is (n + l ) /n .  



Proof. For the representation o -+ rn(u) in Theorem 3, we may take 
Y(o,l,(t) = h(t) as f ,  (up to a constant factor), so that we have 

(c' > O), and 

by Theorem 2 and Proposition 4. Hence, 1 = -(I - n-9, and s = (n + l ) /n .  
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Family of Families of Abelian Varieties 

MICHIO KUGA* AND SHIN-ICHIRO IHXRA 

9 1. Introduction and thanks 

This note is a supplement to Ichiro Satake's work on symplectic repre- 
sentations [3] in 1967. 

Moduli-space of elliptic curves is described in terms of the upper half plane 
and SL,(Z). This is the first example of the happy marriages of algebraic 
geometries and semi-simple Lie group theories. As further examples we know 
that theorems of moduli of polarized abelian varieties (with additional structures), 
and that of K-3 surfaces are also describable in terms of symmetric domains. 
A big(?) problem arises naturally; i.e. : find more examples of algebraic varieties, 
of which moduli-spaces are quotients r ' \ X '  of symmetric domains X'. 

The purpose of this note is to show that the above work of Satake is 
actually giving some answer to this problem. 

* 

Let V U be a family of abelian varieties, constructed as in [2], over 
a local hermitian symmetric space U = r : ,X  = IP'\,G/K, where G is a connected 
semi-simple Lie group with finite center, K is a maximal compact subgroup, 
X = GIK is a symmetric domain, and r is a discrete subgroup such that r \ X  
is smooth and compact. Then V and U are projective algebraic varieties, of 
which projective embeddings are given by "standard" Hodge metrics on them. 
The Hodgs metric, as well as the corresponding polarization i.e. the ample 
divisor or the line bundle of V, is denoted by P. In this lecture we shall 
investigate the space U' of all "algebraic deformations" of the polarized variety 

(V, P), and we shall show that under the assumptions (H), (+), and (I), des- 
cribed in 5 2, with some additional assumptions on the rank of the irreducible 
components of X, the "moduli-space" U' of (V,  P) is again a quotient U' = 

T'\Xf of a symmetric domain X'. 

;% Supported by N.S.F. 
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A lecture on this topic is given at the Takagi's 100 th-birthday-conference 
by the first named author. But he found after that, a new result of T.  Sunada 
[4] simplifies greatly the last part of our work, and that the essential part of our 
story stands on the calculations of cohomologies, which is same as ones in an 
still unpublished old collaboration of two authors. So he believes that this note 
should be published as collaboration. 

Authors hope that, by further study of Sunada's results, they could remove 
some of our unpleasant restrictions (+), (I), and/or rank conditions. And this 

note is only a mid-investigation report without detailed proof. 

Authors thank to Professors Satake and Sunada for obvious reasons, to 
Professors Matsushima, Murakami, Nagano, Hotta, Kazdan. Serre, Tate, Gromov, 
Leahy and Sah for various reasons. 

§ 2. Symplectic representations of SATAKE type 

Let G be a connected semi-simple algebraic group defined over Q such 
that a homogeneous space X = G/(max. compact) is a hermitian symmetric 
domain with a G-invariant complex structure. The action of G on X is denoted 

by c :  G -t Aut (X). The triple (G, X, c) is called a C-structure. 

Let F be an even dimensional vector space over Q, and B be an alternating 
non-degenerate bi-linear form on F. Put N = 2m = dim F, and let Sp(F, B) 

= {g E GL(F) I B(gx, gy) = B(x, y), Vx, vy E F) be the symplectic group of (F, B) 
which is also denoted by G'. Put X O  = {J  E GL(FR) / J2 = - 1, B(x, Jy) = a 

positive definite symmetric bilinear form in x, y E FR), where FR denotes F $3 R. 
We write B(x, Jy) as S,(x, y). Sp(F, B) acts on X O  by g(J) = g 0 J  0 g-l. The 

action is sometimes denoted by C" : G -t Aut (X), but usually it is abbreviated as 

c"(g) = g.  The action c' is transitive, and the isotropy subgroup Ky = Sp(F, B) 
n O(SJ) at a point J E X is a maximal compact subgroup of Go,  where O(SJ) 
is the orthogonal group of the quadratic form Sj .  The center of K: is the 
one-parameter subgroup exp (-Jt) which is a circle ; the orientations t -+ 

exp (-- Jt) of the circles for all J E X O  determine the Go-invariant complex 
analytic structure on X'. The C-structure {G", X O ,  cO) is called the S-structure. 
Obviously, Go  G Sp(m, R), and X' = L j m  = {Z = tZ E M ( m ,  C) I Im (2) > O), the 

Siegel's upper-half-space. If F = RZm, and B = ( O k), an isomorphism 
- I m  

-I Z - l i Z  of Tjm with X' is given by 2-1 = (-I z) (O -:)(I; g). 
Let (G, X, c) be a C-structure. A symplectic representation of G is a 

homorphism defined over Q of G into a symplectic group Sp(F, B) of some 

(F, B). A symplectic representation p of G into Sp(F, B) is said to have the 
property (H) with respect to the given C-structure (G, X, c), if there is a holo- 
morphic map r of X into X', satisfying the compatibility condition: p(g)[r(x)] 
= r[g(x)] for all x E X, g E G. Such a map 7 is called an Eichler map for p. 
The set of all Eichler maps r for p is dznoted by X' = Xi = X'(p, c, r,). 

Denote by gR the Lie algebra of GR ; let gl, . . , g, be non-compact 

simple components of g,, g,,,, . . ., g, compact simple components. Put g,, = 
gl + . . . + g, and g, = y,,, + . . . + g,, then gR = g,, O gc. The projection 
operators of gR to g,,, or to g, are denoted by proj,, or proj, respectively. A 
symplectic representation p of G is said to have the property (+), if there 
are two subspaces W,, W, of F, = F 8 C, with F, = W, O W,, and two rep- 

resentations dip,, : y ,, -+ End (W,), dp, : g, --+ End (W,) of the Lie subalgebras 
such that dp = (dp,, 0 proj,,) O (dp, 3 proj,), where dp is the representation of 
the Lie algebra g, corresponding to p. 

Finally, we say that p has the property (I), if dp is injective and none 
of irreducible components of dp is trivial. 

For any C-structure (G, X, !), Satake determined all possible (F, B) and 
p : G --+ Sp(F, B), which satisfy (N), (+), and (I). Such representations p will 
be called hereafter syrnplectic representations of Satake-type. Moreover, for 
each p of Satake-type, Satake determined the set Xi of all Eichler maps for p 

[3]. Following facts on p of Satake-type and on Xi  are given in [3] implicitly. 

Denote by G' the centralizer of p(G) in Go.  G' operates on X', by 

g'(r) = g' 0 T (g' E GI,, r E Xi). The action is transitive and Xi is the symmetric 
space of the semi-simple group G'. The action is denoted by i: G --+ Aut (X'). 
The complex structure of Xi is given uniquely in such a way that the map 
(x, T) H r(x) of X x Xi to X 3  is holomorphic. The triple (G', X',, c') is a C- 
structure, and the natural inclusion p' : G' 4 Go is a symplectic representation 
of the Satake-type. Finally, for any x E X, the map r .-, r(x) of Xi to X O  is 
an Eichler map of Xi.  

3 3. Algebraic deformations 

Let V be a compact complex manifold. and let L -+ V be a linebundle 
of which coordinate-transformations are denoted by {g,,). The cohomology 
class of 1-cocycle {g,,) is also denoted by L E H1(V, OX), where CX is the in- 
vertible sheaf of V. 

The tangent space of the space of all deformations of V is majorated by 
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H1(V, T(V)), where T(V) is the sheaf of germs of holomorphic vector fields on 
V. We simply call H1(V, T(V)) the space of (infinitesimal) deformations. 

We define a subspace H1(V, T(V))L of H1(V, T(V)) as follows. Take a 1- 

cocycle {O,,} of H1(V, T(V)), where O,,, is a holomorphic vector field on the 
intersection U, fl U, of two coordinate neighborhoods U, and U,. For each 

triple (a,  j , ~ )  with Ua n U, f l  U, # $, define a holomorphic function fa,,,, on 
Ua n up fl uT by fa,,,, = Om,, (d log g,,,) = (Om,,, g,fdg,,,), where ( 7 ) is the 

coupling of vector fields and differential l-forms. Then the system {fa,,,,) is a 

2-cocycle in H2(V, O),  where 0 is the sheaf of germs of holomorphic functions 
on V. This process {O,,,} --+ {fa,,,,) induces a linear map of H1(V, T(V)) to 

H2(V, O), which we denote by F(L) : H1(V, T(V)) H2(V, 8). The kernel of 

F(L) is denoted by H1(V, T(V))L. If W A4 is a holomorphic family of 
algebraic varieties V, = p-'(t), (t E M), such that all Vt are in a same projective 
space PN(C). The line bundle on V defined by a hyper-plane is denoted by 
L. Then the Kodaira-Spencer map K, : T,(M) -+ H1(Vt, T(Vt)), at any point 
t E M, has its image K,(T,(M)) in H(V,, T(V,))=. 

The mapping F(L) depends only on the chern class C = C(L) E H2(V, 2) 
of L. So we denote F(L) by F(C), and H1(V,T(V))= by H1(V,T(V))'. Note 

that if mlC, = m2C2 (m, f 0), then H1(V, T(V))cl = H1(V, T(V))ca. If A = 
C"/L is an abelian variety, the Chern class of the ample line bundle L is given 
by an alternating R-bilinear form B on CN, with properties : B(L, L) C 2, B(x, iy) 

= B(y, ix), B(x, ix) > 0 for x # 0. Such B is also called a polarization of A. 
We also denote F(L) by F(B), H1(A, T(A))L by H1(A, T(A))B. Sometimes a 
polarization is defined as the ray (B) = {RB : R E Q, R > 0), still H1(A, T(A))= 
is well defined. 

5 4. Standard family of polarized abelian varieties 

For each J E X', the linear space FR equipped with the complex (linear) 
structure J is a complex linear space (FR, J), which will be denoted by Ej. 

On the product X' x FR, there is a uniquz complex analytic structure 2, 
with respect to which following conditions (El, E9, E3) are satisfied : 

(El)  the projection map of X "  x FR onto X' is holomorphic, 
(E2) the injection maps : u - J x u of EJ  into X" x FR are holomorphic 

for all J E X3,  
(E3) X "  x FR -+ X'  is a complex vector bundle over X" .  

We denote the vector bundle, or the complex manifold (X' x FR7 3) by Ex,. 
For details see 121. 

Take a lattice L in the Q-linear space F. Then for any J E X', the 
complex torus A j  = EJ/L is an abelian variety with the polarization B. L also 
acts on Ex, as translations : T, : J x 14  - J x (u + d), (d E L). The actions 
T ,  are biholomorphic. The quotient L E,, is denoted by A,, ,  which is a 
fibred space over X O  with the natural projection ;r : A,, -+ X' whose fibres 
z-'(J) are abelian varieties A j  polarized by B. 

Since A,, = U A j  is a family of deformations of a fibre Aj, we have the 
J E S O  

Kodaira-Spencer map c J : r ,(X") -+ H1(A J, T(Aj)), where T J(XO) is the holomorphic 
tangent space of X" at J. This KJ is injective, but not surjective if m > 1. 
However, it is known that KJ is surjective onto the subspace H1(AJ, T(Aj))B: 

Let OJ be the sheaf of germs of holomorphic functions on Aj.  Then, 
we have 

On the other hand, we know that H1(A j, 0,) z "the universal cover of the 
Picard variety a," e E j  (by means of the polarization B). So, we have 

Moreover we can show 

where AT is the r-th exterior power of the vector space. These isomorphisms 
(4-3,4,5,6,7) depend on the polarization B. 

The map F(B) : H1(A ,, T(Aj)) ++ H2(Aj7 0 J), defined in 5 3, is translated 
into the projection map A : x @ y ++ x P\, y of E j  @ E j  ++ A (E J), via isomor- 
phisms (4-9, (4-6) ; i.e. we have the following diagram : 
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Therefore the kernel of F(B) is isomorphic to the symmetric square S2(EJ) of 
E j :  

Combining (4-9) with ( G l ) ,  we have the isomorphism: 

These formulas of isomorphisms (&I), . . , (&lo), are also true in the 
sheave level. The projection A,, - X' induces a map ;r, : T,(A,,) -+ T,(XO) 

( X  = ir(f)). A tangent vector of A,, is called vertical if it belongs to the kernel 
of n,. The vector-sub-bundle of all the vertical tangent vectors of T(A,,) is 
denoted by TV(A,,). The quotient bundle (T/TY)(XO) is denoted by TH(A,,), 

and called horizontal vector bundle. Let T(Axo) ,  Tv(Axo), TH(AXo) be sheaves 

over A,, of germs of holomorphic sections of TV(Azo), TH(Axo) respectively. 

Let E(XO) be the sheaf over XO of germs of holomorphic sections of Ex, = 
E(XO) ; O(A,,), O(XO) the sheaves of holomorphic functions over A,, , X" res- 
pectively. Then, there are sheaf-isomorphisms over X O  : 

Also the sheaf-homomorphism F(B) of R'z,(TVAx0)) to R2ir,(O(A,,)) defined 
by the same cup-product map 

where f ,,,,, = (8 ,:,, d log g,,,), for open sets W in X", is translated to the obvious 
sheaf-homomorphism : E @ E -+ A2(E)  via the above isomorphisms (4-12, 

13) : i.e. the diagram 

is commutative. So, denoting the kernel of F(B) by R1z,(Tv(A,o))B, we have 

Define Sp(L, B) by Sp(L, B) = (7 E S p ( F ,  B) ; yL = L). Take a subgroup 
r "  of Sp(L, B) of h t e  index which has not a torsion element. Then U' = 
To \ X O  is a smooth manifold, which may be considered as a Zariski-open set 
of a projective algebraic variety. 

There exists a unique holomorphic vector bundle EO -+ UO, such that 
E(XO) -+ X O  is the pull back by X"  -+ U'. Also, we can define the family 
of abelian varieties VO -+ U0 over U3, as the unique one, whose pull-back 
is A,, -+ X O .  Since sheaves are local objects, all formulas (4-1 1, . . . 15) are 
also true for corresponding sheaves on U" : i.e. employing obvious notations, 
we have 

and 

§ 5. Family of families of abelian varieties 

Let (G, X,  r )  be a C-structure, p : G - Go = Sp(F, B) a symplectic represen- 
tation of Satake-type, and let Xu, rO, L, r 3 ,  UO,X', G' be same as in 2, $4 .  

Take an arithmetic discrete subgroup r in G, such that p(T) c To. We 
assume that I' has no torsion element, and that U = T \ X  is compact. 

For each r E X', the Eichler map r : X -+ X" induces a holomorphic map 
r :  U - UO, which we again denote by ;he same letter r.  The pull-back of the 

vector bundle E O  -+ X o  by r is denoted by Er -% U ;  the pull-back of the 

f amily Vo - Uo is denoted by E, 5 U, which is a family over U of polarized 
abelian varieties polarized by B. Usually we abriviate the word "polarized", 
and call them simply a "family of abelian varieties". Such families of abelian 

varieties as V ;  --% U obtained by that way are called "group theoretic type". 
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A standard polarization of the alzebraic variety V, is described in [2]. It 
is given there by the Hodge-metric ds2 = dsi f S,,,,(dE, dq), where dsi is the 

Hodge metric on U given by the Bergmam-metric of X, and S,(de, dq) (J = 
r(x)) is the definite symmetric form B(X, JY) on the vertical tangent space 
TV(V,) = F,. This polarization of V, is denoted by P, or by P,. 

As same as in 5 4, there are isomorphisms of sheaves over U? i.e. employ- 
ing the obvious notations, we have 

Since for each r r X', there is a (group theoretical) family V, -% U of 

abelian varieties, we have a family {V, -% U},,,. of families V; U of 
abelian varieties, parametrized by r E X'. 

Take a subgroup r' of G' fl Sp(L, B) of finite index. We assume that r' 
has no torsion element. For two points rl ,  r, E X'. families V,, -% U, V,, U 
are isomorphic (as families of polarized abelian varieties), if T, = r'r, with some 
y' E P. Therefore, actually the quotient manifold U' = r"\,X' does parametrize 

a family of families of polarized abelian varieties: {V, -f; U),,,.. 
Satake showed in [3] implicitly, that if r,? 7, r X' and r ,  and r, are very 

close but r1 # r,, then V;, -% U is not isomorphic to V ,  --% U. We call 
this fact as Satake's effectiveness. 

We shall investigate hereafter the deformations of V, as a (bare) manifold, 
not as a family of abelian varietis. So, we consider {V,),,,, or {V,),,,, as a 
family of varieties V,, and consider the Kodaira-Spencer map 

Since every fibre V, is polarized uniformly by P. we have 

Combining the Satake's effectiveness with the Adler's lemma described below, 
we can prove easily 

 emm ma 5.5 (Allan Adler). Let C., -% U, V2 --% U are two group 
theoretical families of abelian varieties over U = r j X .  Suppose that Vl is 
isomorphic with V, as complex manifolds. and let + : Vl -+ V, be an isomorphism. 
Then there is an automorphism u of U ,  s~iclz that (p o z1 = z2  0 +. [I]. 

(A corollary to the Adler's lemma). Let V -, U be a group theoretical 
family of abelian varieties, P the standard polarization of V. Then, the auto- 
morphism group of (V, P) is finite. 

3 6. Calculation of cohomologies 

In this and the next sections, we calculate H1(V,, T(V,)) and H1(V,, T(V,))P. 
Here r is an arbitrally fixed point of X'. and remains fixed through these sec- 

tions. So we abriviate suffices r, and write as V U for V, -% U. 
- 

The fibre-structure V U provides a spectral sequence {E$>q, d) with 

and 

In particular, we have 

dim H1(V, T(V)) 5 dim G-O + dim qll 
(6.3) 

= dim H1(U, ROx,(T(V)) +- dim HO(U, R1n,(T(V))) . 

More precisely, reading the exact sequence of Hochschild, 

we have 

Proposition -6.4. If E:yO = H1(U, ROz,(T(V))) = 0, then 

The injection is denoted by ,Q. 

Proposition 6.5. If E~TO = 0 and G.O = H2(U, ROn,(T(V))) = 0, then 

NOW, we have 

Proposition 5.4. K: is injective. Lemma 6.6. ROn,(T(V)) = E. 
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Theorem 6.25. (1) If HO(U, T(U)) = 0, H1(U. T(U)) = 0, H1(U, E) = 0. 
and HO(U, E @ T(U)) = 0. then 

(2) If moreover, H2(U, E )  = 0. then 

As for the conditions HO(T) = 0, H1(T) = 0, H1(E) = 0, HO(E@ T) = 0, 
and H2(E) = 0 in Theorems 6-24,25, we see that: HO(U, T(U)) = 0 is always 
true, since Aut (U) is a finite group ; H1(U, T(U)) = 0 means U is rigid, and 
this is true if X has no component of complex dimension one ; H1(U, E )  = 0 
if X has no component of rank one; H2(U, E) = 0 if X has no component of 
rank 5 2 by a result due to R. Hotta; HO(U, E 3 T(U)) = 0 is true if no com- 
ponent of X is of rank one. The last statement is proved according to the 
Matsushima-Murakami theory, if we note that HO(U, E @T) c HO(U, p Ad) = 
HO(G, p 8 Ad) and that the representation p 8 Ad of G does not contain a 
trivial component by checking case by case followin,o to Satake's list of symplectic 
representations. 

5 7. Completeness of the algebraic deformation 

In this section, we assume that the semi-simple algebraic group G defined 
over Q is connected, and that no Q-simple component of G is compact; i.e. 
that any compact ideal of 9, can not be defined over Q. This assumption will 
be called the assumption (A). 

By pulling back the isomorphism S2(E') r T(U') of the vector bundle over 
UO,  by r : U --+ U' , and by taking sections, wz have the isomorphism 

of sheaves over U, and the isomorphism 

Sunada [4] investigated the space of sections HO(U. ?T(U3) ) ,  and proved 
that all the sections are obtained in the following way. Take an element Y 
of the Lie algebra g' = sp(F, B). Since G" opzrates on X' holomorphically, 
Y defines a holomorphic vector field Y :  J -+ Y(1) on X ' ,  which is also de- 
noted by the same letter Y. Pull back the vector field Y by T :  X --+ X', and 
obtain a section r*Y E H"XO, r * T ( X 3 ) ) .  If T*Y is r-invariant, namely if 

for all x E X and for all i E r ,  then :*Y induces a section in HO(U, :*T(UO)). 
The section is denoted by Y,. Sunada proved that all sections in HO(U, r*T(U3)) 
can be obtained in this way [4]. 

In our circumstances, the condition (7.3) implies Y E g' = the Lie algebra 

of G'. A proof of this, which we omit here, is purely group theoretic, and 
depends on the assumption (A). 

Denote by ?: the Lie algebra of the isotopy subgroup K: of G' at a point 
r EX' ,  and let gX = f i  + p: be the Cartan decomposition. p: has the complex 
linear structure, and p: r T:(Xr). Obviously, Y, = 0 for all Y E f:. Therefore, 

the above result of Sunada is now described as 

Combining results in this and previous sections, we have the following in-. 
equalities under the assumtion (A) and the assumptions in the Theorem 6-25(1) :. 

dim pi 2 dim HO(U, i*T(U3)) (by 7-4) 

2 dim H(V, T(V))P (by 6-25(1)) 
2 dim T,(X') (by 5-41 

= dim p: . 

Hence, all the equalities should hold. Thus we have 

Theorem 7.5. If (G, X, I )  4-t (G' , X' , r ') is of Satake type, and G satis- 
fies the assziinption ( A ) ,  and if 

H1(U, T(U)) = 0 , H1(U, E) = 0 , and HO(U, E O T(U)) = 0 , 

then 

Namely, our family {V7)rEUt or {V,)r,,r are locally effective and complete- 

as a family of deformations of polarized variety (V,, P). 

Corollary 7.6. Under the assumptions in Theorem 7-5, a deformation of 
- 

a total space V of a group-theoretical family V U of abelian varieties 
{n-'(x)) is again fibred by a group theoretical family of abelian varieties. 

Corollary 7.7. Under the assrtmptions that p is of Satake type and that 
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G satisfies (A), if we further assume that every irreducible component of X is 
of rank greater than one, then the conclusions of Theorem 7.5 and of Corollary 
7.6 are true. 

Theorem 7.8. If p : G -+ Sp(F, B) is of Satake-type with respect to (G, X, l ) ,  

and if the assumptions in Theorem 7.5 (or in Corollary 7.7) are true, then 
there exists an algebraic number field K c C of finite degree [K: Q] < m, such 

that for any o P Aut(C/K), E X' and model of V;, U, x,, V: -% U" is again 
a group theoretical family of abelian varieties, isomorphic o one of the mem- 

bers of the family of families {V, 5 U),,,. of abelian varieties. 
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Examples of p-adic Arithmetic Functions 

Yxsuo MORITA 

This paper is a summary (and a reformulation) of my recent result (cf. 
Y. Morita [8] and [9 ] ) .  

In recent years, the problem of constructing p-adic analogues of arithmetic 
functions has been attracting interest of many mathematicians (cf. Kubota- 
Leopoldt [7], Iwasawa [4], etc.). The main purpose of this paper is to make 
some contribution to this interesting problem. 

In 8 1, we shall construct a p-adic analogue of the Hunvitz-Lerch L- 

function L(s ; a, b, X) by applying the method of Kubota-Leopoldt [7]. In $ 2, 
using the result of 8 1, we shall construct a p-adic analogue of the r-function 

r(z) .  In $ 3 ,  remarks and references will be given. 

§ 1. L-functions of Hurwitz-Lerch 

1.1. Let be a primitive Dirichlet character with conductor f ,  XO the 
trivial character. Let a, b, s be complex numbers such that - 1 < a < co, 
I bl 1, Re (s) > 1. We define the Hunvitz-Lerch L-function for the character 

x by 

Then, by the standard arguments, we obtain 

where r ( l  - s) is the r-function, arg (-z)l 5 ;: and C denotes a path which 
encircles the positive real axis in the positive direction and separates all other 
singularities of the integrand from the positive real axis. Hence L(s; a, b, X) 



for any non-negative integer m. Then we can prove (cf. Y. Morita [9], 5 2) 

can be extended to a meromorphic function on the entire s-plane with a pos- 
sible simple pole at s = 1. In particular, L(l - m ; a, b, X) (m = 1 ,2 ,3 ,  . . .) 
are well-defined. 

Let 

Then the coefficients +,,,(a, b) belong to Q(~)(b)[a] (resp. Q(x, b)[a]) if bf # 1 
(resp. bf = I), here Q(x) (resp. Q(x, b)) denotes the field that is generated over 
the rational number field Q by the values of ;C (resp. by b and the values of 

x). Furthermore, by the standard arguments, we obtain 

Proposition 1. Let m be a  positive integer. Then 

1.3. Let p be a prime number, Q, the field of p-adic numbers, C, the 

completion of an algebraic closure of Q,. Let / / be the valuation of Cp 
such that lpl = p-l. Put q = 4 if p = 2, and q = p otherwise. Let o(x) be 

the Dirichlet character with conductor q such that o(x) G x mod q  (cf. e.g. 
Kubota-Leopoldt [7 ] ) .  For any p-adic unit .Y E Z,X, let x = o(x)(x). 

Let a, b be elements of C, such that / a /  5 / q l  and Ib - 11 < lplll(p-l). 

Hereafter we assume b = 1 if x is an integral power of o. Put 

Proposition 2. In Cp, 

1.3. Let LV(-m ; a, b, X) be the value of C x(n)bn/(a + n)8 at a non- {i 2,'$="1 

positive integer s = - 172. Since L*(- 112 ; a.  b, x) = $,,,(a, b) - ~(p)p~+, , , (a /p ,  bp), 

L'iC(-~rz ; a, b, z) belongs to Q(~)(b)[a] or Q(%, b)[a]. Hence we may substitute 
in a and b elements of Cp. Then the following theorem can be obtained from 
Proposition 2 (cf. Y. Morita [9], €j 3). 

Theorem 1. Let the notation and assumptions be as before. Then there 
exists a function L,(s ; a, b, ;c) with the following properties : 

( i )  L , ( s ;a ,b ,z )  is given in Cp by 

Let T(z) be the r-function. Then it is well-known that r ( z )  satisfies the 
following (differential) equations over C : 

d ( 4  2) [- log r ( z  + l)] = -7 (7: the Euler constant) ; 
d z 2-0 

Since C,"=, 1 j (n + t)? = L(2 ; z ,  1, %" and since 7 is the constant term of the 
Laurent expansion of L(s ; 0, 1, xO) at s = 1, we define the p-adic analogues of 
the above equations by the following: 

(i.e. bva 5 (log b)"u + 
n-=o k !  m +  k +  1 ) 



where 7, is the constant term of the Laurent expansion of Lp(s; 0, 1, xO) at 
s =  1 ;  

(# 31, [log rP (z  + 1)1,=, = 0. 

For jz( 5 141, these equations are well-defined, and the solution is given in Cp by 

1 
log r p ( z  + 1) = lim - C w(n)(n + z)(log (n + z) - 1) 

a-m Da f 1 6 n S P  

1 - lim - C w(n)(n)(log (n) - 1) , 
a-'=n 14n4pa 

pa ((wv-1 

where (n + z) = w(n)-'(n + z). We study this function and obtain the follow- 

ing theorem (for a proof see Y. Morita [8] and [9]). 

Theorem 2. There exists a function log r,(z + 1) with the following 

properties : 

( i ) log r p ( z  + 1) is given in Cp by 

and C,"-, anzn converges for lzl < I.*' 

(ii) log r,(z + 1) satisfies (# I),, (# 21, and (# 31, for lzl 5 141- 
(iii) For any positive integer z that is divisible by q, 

(iv) ( d / d ~ ) ~  log r p ( z  + 1) can be extended to an analytic function on 
(Cp U {m))\Z," (in the terminology of Krasner [5]). For lz] > 1, this analytic 

function is given by 

where <(s) denotes the Riemann zeta function. 

(v)  (d/dr) log r p ( z  + 1) can not be continued outside {z E Cp I lz 1 < 1) as 
an analytic function of Krasner . Hence log r p ( z  + 1) has also no analytic 
continuation outside {z E Cp 1 lz j < 1). **)  

$3 .  Remarks 

(A) P. Cassou-Noguks and K. Hatada studied p-adic analogues of zeta 
functions of the form 

(cf. Cassou-No@ [2] and Hatada [3]). Furthermore, put 

(cf. Shintani [lo]). Then Hatada constructed a p-adic analogue of (ajax,) 

. . (a/ax,)C(A, x, s). But, for n 2 2, the problem of constructing a p-adic 
analogue of C(A, x, s) seems difficult. 

(B) K. Shiratani studied p-adic analogues of partial zeta functions 

(cf. Shiratani [12]). 

(C) Let x = x ~ % ~ x ~  be the decomposition such that the conductor of x1 is 
prime to p, X, is an integral power of o, and X, depends only on < ) Let 
fo be the conductor of x,;(,, 5 a primitive fo-th root of unity. Then, by apply- 
ing the method of Amice-Fresnel [I], we can prove (cf. Y. Morita [9], § 4) 
that there exists an analytic function (cf. Krasner 161) on 

1 Is1 < 1q-1~1i(p-1)5-11, la1 I 1qEI , 
l ~ l t l < t q - ' p l / ( p - ~ l  / b - ~ ' 1  > / P l f i ~ - l ) ~ - l i l ~ ~  (1 s u 5 fo, (u, P)= 1) 

that satisfies 

for any positive integer m. 

(D) K. Shiratani studied the number y, and named it the p-adic Euler 
constant (cf. [ l l ]) .  

(9 We obtained in [8] 
(-:Im 

logr,(:+ I ) =  --rpzf F L p ( m ; w l - m ) .  
m 2- m 

(**) Though this assertion (v) is not proved in [8], it can be easily proved by showing that 
the coefficients of the Taylor expansion of (d/dz) log r,(: ; I) at  z = 0 are not bounded (cf. 
Krasner [S], p. 126). 



(E) J. Diamond constructed a p-adic analogue of log T(z + 1). His result 

is slightly different from ours (cf. [l-l]). 
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The Representation of Galois Group Attached to Certain 
Finite Group Schemes, and its Application 

to Shimura's Theory 

In [2], Oort and Tate gave classification theorems of group schemes of 
prime order over certain base schemes. Especially, they classified group schemes 
of prime order over a normal subring of a finite algebraic number field in 
terms of characters of the idele class group. Raynaud [3] then gave a classi- 
fication theorem of group schemes of type (p, . . , p) satisfying certain conditions. 
In this paper, we first study the properties of the Galois modules associated 
with such group schemes over the integer ring of a local field (of characteristic 
zero), or over a normal subring of a finite algebraic number field. We next 
apply our result to the theory of Shimura [5]. 

$j 1. Let p be a fixed prime number, and r be a fixed positive integer. 
We put q = pT, and denote by F, the finite field with q elements. Let o be 
an integral domain of characteristic zero, with its quotient field k. Our object 
is a commutative group scheme G, finite, flat and locally free of rank q over 

o, on which F, acts unitarily as its o-endmorphisms (i.e. G is a "schima en 
Fq-vectoriels" of rank q over o, in the terminology of [3]). We denote by 
the algebraic closure of k. and by Gal ( i l k )  the Galois group of E over k. 
Then Gal (Elk) acts on the one-dimensional Fq-vector space G ( E )  Fq-linearly, 
and hence we obtain a representation p, of the Galois group; 

po : Gal (f / k )  -+ Aut,,(~(@) g F; . 
Since this representation is abelian, p, factors through the maximal abelian 

quotient of Gal (Elk). The purpose of this section is to study this representation 
in terms of class field theory. 

We first assume that k is a finite extension of the p-adic number field Q,, 



and that o is the integer ring of k. Then for a given G as above, we obtain 

a representation yG of k X ,  corresponding to p, by the local class field theory; 

We denote by p (resp. K) the maximal ideal of o (resp. the residue field 
of o), and assume that K has pn elements. We denote by ord,( ) the normal- 

ized additive valuation of k. 

Proposition 1. Let the notation be as above, and fix an embedding of Fq 

into the algebraic closure of K. Let m be the G.C.D. of n and r, and F,, 

be the unique subfield of Fq and K with pm elements. Then we have: 

~ G ( u )  = NrlFpm(ii)-C for all u E ox  , 

where N,,, , is the norm from K to F,,, ii is the residue class mod p of u, 
and c is an integer satisfying the following condition: 

q - 1 T - 1  

- C c,pi with 0 < ci < e = ord,(p) , and c, E Z C- - 
p m - 1  i=o 

Proof. First assume that n is divisible by r. In this case, o contains all 

the (q - 1)-th roots of unity in g. We fix a character x : Fz -+ ox  such that 

the resulting homomorphism 2: F," - K" is extendable to a field homomorphism. 
We regard Fq as a subfield of K by means of 2. Then by [3] Corollary 1.5.1, 

G is o-isomorphic to Spec (o[X,, . . , X,]/u), where a is the ideal of o[X1, . . , X,] 
generated by X; - &Xi+, (i E Zl rZ ,  Zi E 0, and ordo(&) < e for all i). Here, 
F,X acts on the bialgebra by: [l]Xi = %(aPiXi for all 1 E F," and i. The ex- 

tension of k corresponding to pG is the splitting field of the equation: X i  - aiXi 
= 0 with a, = 6;'-'6;~':;" . . .6 t+T- , .  By the explicit formula of the tame norm 

residue symbol, we conclude that 

for all t E kx ,  where v( ) = ord,( ). This proves our assertion in this case. 

In the general case, put N = nrlm, and denote by K the unramified ex- 
tension of k corresponding to the residue extension Ffl/FP.. Let 42, p, and 

K' be the integer ring of K, the maximal ideal of 0, and the residue field of 
D, respectively. Then G @ D over C satisfies the above condition. Let x and 

a, be as above for G 8 C over G ,  and regard Fq as a subfield of K' by means 
of 2. Take u E ox. Then there exists an element t c G x  such that N,,,(t) 
= u. By the compatibility of the canonical homomorphism : Gal (Kab/ K) --+ 

Gal (kab/k) (La, being the maximal abelian extension of L), the norm homo- 

morphism N,,, : Kx - kX,  and the reciprocity homomorphisms for K and k, 

we have y G ( d  = poao(t). Hence by the first step of the proof, we have y,(u) 
= N,.,Fg(i)-Y(ao), where v( ) = ord,( ). Since the image of ox  by yo is 
contained in F,,, v(a,) must be divisible by (q - l ) / (pm - 1). Write c = 
v a 0 p m  - 1 - 1 Since K is unrarnified over k, we have : 

P G ( ~ )  = N c ~ / ~ p ( i ) - ~  = Nc/Fpm(c)-c . 
Since ord,(p) = ord,(p), we have the conclusion. Q.E.D. 

Remark. By the proof, we have ci = ord, (67-1-i), where 4 ' s  are elements 
of C corresponding to G 8 O as in the first part of the proof. The (ordered) 
set {ord,(G,), . . ., ord,(F,-,)} depends on the embedding of Fq into the algebraic 
closure of K .  By a change of an embedding, this set is changed by a cyclic 
permutation. 

Next, we assume that k is a finite extension of the rational number field 

Q, and that o is a normal subring of k whose quotient field is k. For a given 
G over o as in the beginning of this section, we obtain a representation y, of 
the idele class group C, of k, corresponding to p, by the global class field 
theory ; 

For a finite prime p of k, we denote by k,, o,, and ~ ( p ) ,  the p-completion 
of k, the integer ring of k,, and the residue field of o,, respectively. For such 
a p, we denote by p, the composite of po and the canonical homomorphism: 

k,X -+ C,. As a global reformulation of Proposition 1, we obtain the following 
theorem (the first assertion is proved in [2] Lemma 5). 

Theorem 1. Let the notation be as above. For a finite prime p of k 
which corresponds to a closed point of Spec (o), we have; 

(1) pp(o,X) = (1) if p does not divide p. 
(2) If p divides p, 

where m is the G.C.D. of n = ord, (*~(p)) and r, ii is the residue class mod p 
of u, and we are fixing an embedding of Fq into the algebraic closure of ~ ( p ) .  

c, is an integer which satisfies the following condition: 

7-1 - 
= C ctpi with 0 $ Ci < P, = ord. (p) and ci E Z . C u p m - l  i-0 



Remark. If r = 1, this is contained in Theorem 3 of Oort. Tate [2]. There, 

they moreover established the one-to-one correspondence between the isomor- 
phism classes of G's over o and the system (yG, {c,},,,)'~ satisfying (1) and (2). 

Example. Let G be as above over the inteser ring o, of k .  Assume 
that po, = p is a prime ideal, and that m = (n, r) = 1 for p. Then we see 

that c, = 0 or 1 in the above notation. Hence either G or its Cartier dual is 
Ctale over o, (cf. the remark after Proposition 1 and [3] 1.5.3). If moreover 

the class number of k in the narrow sense is prime to q - 1, G must be iso- 
morphic to either the constant scheme (ZlpZ),:, or its Cartier dual (p,)rk (the 
product of r copies). 

$ 2 .  We first recall the notation of Shimura [5]. Let N be a positive 
integer, and let + be a non-trivial quadratic character defined mod N such that 
( -  1 = 1 Take a cusp form f(z) = C;=, a,e2xinz of weight 3, which is Neben- 
type of level N and with the character 1). We assume that f belongs to the 
essential part, and that f is a common eigen function of all the Hecke operators. 
We normalize f so that a, = 1. Let K be the field generated over Q by all 
an's. K is a CM-field, and we denote by F the maximal real subfield of K. Let 

oK and oF be the integer rings of K and F, respectively. 
There corresponds to f an abelian variety A defined over Q, together with 

an injective homomorphism of K into End (A) @ Q. A is a factor of the 
jacobian variety of the modular curve associated to T,(N). By changing A 
with a Q-isogeny, if necessary, we assume that o, acts on A as Q-endomorphisms. 

0 -1 
Let k be the real quadratic field corresponding to $. Then [N ] defines 

an automorphism 7 of A defined over k such that 7' = -7 ( E  being the gen- 
erator of Gal (k/Q)). Put B = (1 + 7)A and Ba = (1 - 7)A. Then o, acts on 

B and B' as k-endomorphisms. 
Now let b be the odd part of the ideal of o, generated by {x E oK x P  = 

-x) (P being the complex conjugation), and put NK,,(b) = c. We hereafter 

assume that 6 f 0,. Take a prime factor b, of b, and put I = NKIF(bl). Let 

p be the rational prime divisible by I, and assume that NFIQ(l) = pr = q .  We 
denote by g, the finite subgroup scheme of b,-section points of A, and defme 

the finite subgroup scheme kj, (resp. 8,) of B (resp. Bt) by: k j , ( i )  = ~ ( k )  fl z,(E) 
(resp. a,(E) = B ~ E )  n q,(E) and ;[(E) are isomorphic to o, / l as 0,-modules. 
There is a natural representation of Gal (Elk) on Aut,, (q,(E)) z F: (resp. 

Aut,, (3,(E)) r F,X). Shimura raised several questions and conjectures concerning 

this representation (see especially [5] p. 148). 

In the following, we impose the following 

Assumption ( A ) .  N is square free, and + is a primitive character defined 
mod N. 

Under the assumption (A), there is an abelian scheme ~2 (resp. 9) over 
the integer ring ok of k, whose general fibre is isomorphic to B (resp. BE) 
(Deligne, Rapoport [I] V.3.7). Identifying B (resp. B') with 8 k (resp. 
gS @ k), we denote by ij, (resp. 3,) the schemetic closure of 0, (resp. 8,) in a 
(resp. ) This is a commutative group scheme, finite, flat and of rank q 
over o,, and this group scheme is naturally equipped with the structure of a 
"schCma on oF/l-vectoriels". Therefore our Theorem 1 of 5 1 applies with G = ij, 
or 51, and o = o,. In the following, we denote by G one of ij, and 3,, and 
use the notation of 5 1 for this G. For the determination of c, with P dividing 
p, the key point is the formula (iii) of [5] Theorem 2.3 ; 

Lemma 1 (Shimura [5]). Let m be a positive integer which is prime to 
p. Denote by a(m) the idele of k, whose components at the finite primes 

dividing p are 1, and whose other components are all equal to m. Then under 
the above notation, we have 

Now there are three cases to consider: 

( I ) po, = pp' with two distinct prime ideals p and p'. 
(11) po, = p is prime. 
(111) po, = p2. 

Lemma 2. In the above three cases, the possibilities of c,'s for G are as 
follows. 

Case ( I ) (c,, c,,) = (1,O) or (0, 1). 
Case (11) r must be even, and in this case. c, = 1 or p. 

Case (111) c, = 1. 

Proof. Our Theorem 1 of 5 1 shows that there are following possibilities 
in each case : 

Case ( I ) 0 < c,, c,> < 1, and v,(a(m)) = (m mod p)cecp'. 
Case ( 11) When r is odd, c, = 0 or 1, and v,(a(m)) = (m mod p)2cu. 

When r is even, 0 < c, < p + 1, and ~ ~ ( a ( m ) )  = (m m ~ d p ) ~ , .  



Case (111) 0 < c, < 2, and yG(n(m)) = (m mod P)~V.  

Here, m is a positive integer which is prime to p. This and Lemma 1 gives 
the desired conclusion. Q.E.D. 

We denote by u, the fundamental unit of k. If Nk,,(u,) = 1, we take u, 
to be totally positive. 

Theorem 2. Under the assumption (A) and the above notation, we have ; 

( i ) N,,,(u, - 1) _= 0 mod p, and 
(1) If N,,,(u,) = -1, then +(p) = 1, i.e. p decomposes into two 

distinct prime factors in k. 
(2) If N,,,(u,) = 1, and r is odd, then +(p) # -1, i.e. p does not 

remain prime in k. 

(ii) In the case (1) of (i), the conductor of the class field corresponding 
to ,OG is pp,, where p is a prime factor of po,, and p, is a real prime of k 
which satisfies the condition that u, is positive or negative at p, according as 
u, = 1 or -1 modp. 

Proof. Let U+ be the subgroup of "totally positive units" of the idele 

group of k, i.e. U+ = R+ x R+ x n of. Then U+ f l  kx = E+ is the group 
q: flnlte 

of totally positive units in k. Since cp, is the character of the idele class 

group of k, 50, must be trivial on E+. But the restriction of cp, to U+ is 

determined by the local character cp,'s with p dividing p. There are two cases; 

(1) Nk,,(u0) = - 1, and hence E+ is generated by u;. 
(2) NkIQ(u0) = 1, and hence E+ is generated by u,. 

Denoting by (a) the principal idele whose components are a E kX, we have by 
Lemma 2 and Theorem 1 : 

Case ( I ) (1) yG((ui)) = (ui mod p)-' = 1 if c, = 1, and cFG((u@) = 
(u; mod p')-I = 1 if c,, = 1. 

( 2 )  pG((uO)) = (u, mod p)-' = 1 if c, = 1, and p,((u,)) = (u, mod p')-' = 1 
if c,, = 1. 

Case (11) (1) ~ , ( ( u ~ ) )  = (ui mod p)-' or (11; mod p)-p and this is equal 
to 1. 

( 2 )  pG((uo)) = (11, mod p)-' or (u, mod p)-P and this is equal to 1, 
Case (111) (1) yG((u;)) = (11: mod p)-I = 1. 

(2) (~G((u0)) = ( ~ 0  mod PI-' = 1. 

Noting that ui - 1 = N k / Q ( ~ O  - l)/u; when Nk,,(uo) = - 1, we have Nk,,(u0 - 1) 

- 0 mod p in any cases. This togzther with Proposition A. 11. 1 of [5] concludes 

the proof of (i). 
The assertion about the finite part of the conductor in (ii) is clear from 

Lemma 3. The proof of the assertion about the real prime is contained in the 
proof of Proposition 3.2 of [5] (and follows easily from the equality y,((rr,)) 
= pG((-u,)) = 1). Q.E.D. 

Corollary 1. Let the situation be as above, and assume that NkiQ(uo) = - 1 - 
Assume that c, = 0 and c,, = 1 for G, and let b(p) be the idele of k, whose 
p-component is a prime element of p, and whose other components are all' 
equal to 1. Then, 

and especially a, is prime to I. 

Proof. By the above assumption, G @ ok/p is Ctale. By the con,oruence 
relation (cf. [5] (1.1 I)), a, acts on the reduction mod p of A 8 k as a, + a,*, 
where xp is the Frobenius endomorphism of degree p, and rr: is the dual of z,.. 

Q.E.D. 

Remark. ( i )  In Shimura [5] p. 148 (I), it was conjectured that NFIQ(c) 
and N,,,(u, - 1) have the same prime factors except 2 and 3, provided that 
N is prime (see also the examples in [5] 5 7). 

(ii) The above assertion (ii) was conjectured in [5] (3.1) (when N is. 
prime). 

(iii) For the assertion of Corollary 1, cf. [5] Theorem 2.8. 

We next add the following 

Assumption (B). The class number of k in the narrow sense is prime to 
q - 1. 

Since q - 1 is even, we see that (A) + (B) is equivalent to the following 
Assumption (C). N is a prime number which is congruent to 1 mod 4, 

and the class number of k = ~ ( d g )  is prime to q - 1. 
The second assertion of the following corollary is due to H. Yoshida. 

Corollary 2. Under the assumption (C), we have; 

(1) The class field over k corresponding to ,oG is the unique class field of 
degree p - 1 with the conductor pp,, where p and p, are as in (ii) of Theo- 
rem 2. 

(2 )  Let R be the subring of o, generated over Z by all an's such that 



n is prime to N. Thert RiR fl 6,  is isomorphic to F, (cf. [5]  p. 148 (IV)). 

Proof. Since N,,,(u,) = - 1, the conductor of the corresponding class field 

is as asserted as above by Theorem 2 (ii). But the class number of the ray 

class mod pp, is equal to h(N)(p - I), where h(N) is the class number of k 

= Q(~N), hence we obtain the first assertion. We also see that the image of 

is contained in the prime subfield of uF/I. The second assertion follows 

from this, Corollary 1, and [5] Theorem 2.3 (v). Q.E.D. 

Remark. (i) In the above discussions, we assumed (A) in order to ensure 
the following 

Assumption (A'). A has everywhere good reduction over k. 
If (A') is assumed, our argument also applies to the abstract situation of 

Shimura [5]  9 9. In fact, under the notation and assumptions (9.1)-(9.6) and 

(9.8) there, we have the same conclusions as above, if we replace (A) by (A'), 

and (C) by (A') + (B). 
(ii) Similar results had been obtained by H. Yoshida under the assump- 

tion r = 1 (unpublished). 
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A Note on Spherical Quadratic Maps over 2 

TAKXSHI 0x0 

Since the results presented at the time of the Symposium under the title of 
"Hopf maps and quadratic forms over 2" will appear elsewhere, I will report 
a relevant (but independent) result obtained after the Symposium. 

Let Rn be the euclidean space of dimension n 2 1 with the standard inner 
product (x, y) = C x,yi and the norm jx; = (.r, x)ll'. The unit sphere Sn-I con- 
sists of all x E Rn with / x /  = 1. A map f : Rn - R m  will be called quadratic 
if there exist m quadratic forms f,, . . - ,  f m  on Rn such that f(x) = (f,(x), . . , 
fm(x)) for all x E Rn.  A map f :  Rn  -+ Rm will be called spherical if we have 
f(Sn-l) c Sm-l. We shall denote by Sn,,(R) the set of all quadratic and spherical 
maps from Rn  to Rm.  

Maps in Sn,,(R) can be constructed by the method of Hopf: Let Rn = 
X _i Y, Rm = RE 1 V, E e Sm-l, be any orthogonal decompositions of spaces 
into subspaces and let B be a bilinear map X x Y -+ V such that ]B(x, y)j = 

Ixllyl, X E X ,  y E Y. Then the Hopf map lz :  Rn-+Rm defined by 

belongs to S,,,(R). We shall denote by Hn,,(R) the subset of Sn,,(R) consisting 
of all Hopf maps. R. Wood has proved that every f in Sn,,(R) is homotopic 
to a Hopf map h, where f and h being considered as maps from Sn-I to Sm-l. 
(See, R. Wood, Polynomial maps from spheres to spheres, Inventiones math. 5, 
163-168 (1968), Theorem 3.) 

The purpose of this paper is to prove a theorem which is a kind of Z- 
version of the theorem of Wood. 

So, we begin with the introduction of the subset Sn,,(Z) of S,,,(R). For 
a quadratic map f :  Rn --+ Rm, write its k-th component as 



with the symmetric matrix sk = (s:~) E R+n(n+u. We say that f is integral if 
sk E z $ ~ ( ~ + ~  for all k, 1 5 k l - m. We denote by Sn,,(Z) the subset of all 
htegral maps in S,,,(R). We also put H.,,(Z) = H,,,(R) fl Sn,,(Z), the in- 
tegral Hopf maps. What we want to prove is the following 

Theorem. S,, ,(Z) = H,, ,(Z). 
We first need some preliminary discussions over R. Notation being as above, 

for a fixed pair i, j, put si = (sfj) E Rm. We have then 

with the symmetric "matrix" s = (si j) E (Rm)tncn+l) = R+mn(n+l) .  From now on, 
we shall identify f with s in this way. Since the sphericality condition f(Sn-l) 
c Sm-I is equivalent to the polynomial identity lf(x)I2 = Ix14, i.e. to the identity 

one verifies easily that f belongs to S,,,(R) if and only if the following con- 
ditions (i)-(v) are satisfied by s :  

( i )  ( s ~ ~ / ~  = 1, 
( ii (saa, sap) = 0, 
(iii) baa, s,,) + 2 Is,, I" 1, 
(''1 (~aa, '$7) f 2(sa8, ~a,) = 0, 
('1 (sap, s;,) + (saT, s B J  + (sad, sgr) = 0, 

where indices a, ,8,7,6,  1 $ cu, J , r ,  8 5 n, are all distinct. It is easy to see that, 
in the set of conditions (i)-(v), one can replace (iii) by the following 

(iii)' 

From this it follows that !s, / $ 1 for all i, j and the set S,,,(R) becomes a 
compact algebraic subset of Rbrnncn+l) . Note that the set S,,,(Z) is finite as 
being a discrete subset of S,,,(R). 

Proof of Theorem. We only have to prove that Sn,,(Z) C H,,,(Z). Take 
an f E S,,,(Z) and let s = (sij) be the corresponding element in Zbmn(n+l). Since 
Isij 1 $ 1 and Isij i2 E 2, it follows from (iii)' that Isij l 2  = 1 whenever sii + sj,. 
In this case, however, we see from (iii) that (s,, + sjj, sii + sjj) = 2 + 2(sii, sjj) 

= 2 + 2(-1) = 0, and hence s j j  = -sit. In other words, we have saa = &sll 
for all a , l $ a $ n .  Call P , Q  the subset of { l , 2 , . - . , n }  defined by P =  

{a, saa = sll}, Q = {/3, spg = --sl1}, respectively. To see that f is a Hopf map, 

let ei = (0, . . . , 1, . . . , O), 1 being at the i-th position, 1 i 5 n, and put 

Since sij = 0 whenever sii f sjj, we have 

Now, since we have (sap, sl1) = (sub, s,.) = (sub, -sZp) = 0 by (ii), we see that 
CaEp,8EQ RsUS C (RsJL = V. Hence, if we call B the bilinear map X x Y -+ 

V defined by 

for x = CmEP x,ea E X, y = CsEO yBe, E Y, and if, finally, we put s = sll E Sm-I 
n Z", then we see that f(x + y) = (/x12 - Iy13~ + 2B(x, y), i.e. f is a Hopf 
map, q.e.d.l) 

Remark. The orthogonal groups O,(R), O,(R) act on the space S,,,(R) 
by the rule : 

The subgroups O,(Z), Om(Z) of integral matrices act then on the finite set Sn,,(Z). 

Hence the quotient O,(Z)\Sn,,(Z)/On(Z) is essential. From now on we shall use 
the equivalence of maps f (and corresponding matrices s) in this sense. For each 

s E Sn,,(Z), associate the subsets P, Q of the set {1,2, . . . , n) as in the proof 
of theorem. Let p, q be the cardinalities of P, Q, respectively. We have p 2 1 
since 1 E P. Replacing s by its suitable equivalent, we may assume that 

and that P =  {1,2, . . . , p} ,  Q =  {p + l , . . . , n }  (P + q = n ) .  If q = O ,  s is 
diagonal : 

1) The condition IB(x,y)l = 1x1 1yi follows from the sphericality of f :  (1x13 + Iy!2)2 = / X  + 
~1~ = I ~ ( X  + Y)I? = ( 1 x 1 ~  - I Y I ~ ) ~  + 4 IB(X,Y) I~ .  
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Q-forms of Symmetric Domains and Jordan Triple Systems 

ICHIRO SATAKE 

It is known (Koecher [7b]) that there exists a one-to-one correspondence 
between symmetric domains and positive definite hermitian JTS's (= Jordan triple 
systems). This correspondence is actually an equivalence of two categories, and 

to give a "cusp" (i.e., a point in the h o v  boundary) of a symmetric domain 
9 amounts to giving a principal idernpotent in the corresponding JTS. Combining 
this with the theory of Koranyi-Wolf ([S], [12d]) and a more recent development 
on Siege1 domains ([5], [4], [14], [13e, f,  g], [2]), we can establish a more precise 
form of the equivalences between the related categories (Theorem 1). As an 
application, we will give a determination of Q-forms of (the Lie algebra of) a 
symmetric domain 9 with a Q-rational cusp in terms of the corresponding 

JTS and Jordan algebra representation. 

1. We first review some known results on symmetric domains and JTS's. 
(The main references will be [12h] and [9b] .) 

We consider a symmetric domain 9 along with an "origin" o E 9 and a 

cusp o, E ad. As is well-known, g = Lie (Hol(9)) is a real semi-simple Lie 

algebra of hermitian type and the stabilizer t (resp. b) of o (resp. 0,) in g is a 
maximal compact (resp. maximal parabolic) subalgebra of g. Let g = f + p be 

the Cartan decomposition at o and B the corresponding Cartan involution of g. 
Then there exists a unique element Z in the center of 1 such that J = ad, Z 
(= ad Z /  p) is a complex structure on p compatible with that on 9. On the 

other hand, there exists a unique element X in p such that b is the direct sum 
of the eigenspaces of ad X for eigenvalues 0, 1 ,2 ,  which we call go, V ,  U, 
respectively. (V  may reduce to (01.) We then have o, = lim,,, (exp RX)o. It 

is known ([8], [1 11, [12d]) that one has a unique decomposition 



where e E U, Z0 is in the center of yo and one has 

where I is a complex structure on V (uniquely determined by X alone, cf. 
Lemma 2 below). Thus to give a pair (0, 0,) amounts to giving a pair (Z, X )  
satisfying the above conditions, or equivalently, a (maximal) homomorphism K 

of ~ f ( 2 ,  R) into g (satisfying the condition (H,)) determined by 

Now let g, be the complexification of g and let V+ be that i-eigenspace of 
I in V,. Then the (complex) subspace If = U,@ V+ of g, with the triple 
product 

becomes a positive definite hermitian JTS. By definition, this means that {x, y, z )  
is C-linear in .Y, z, C-antilinear in y, and satisfies the following conditions (JT1-3). 

for all x, y ,  z, x,, y, E If. Following Koecher, we denote by x y the C-linear 
transformation z H {x, y, Z) and define the "trace form" by r(x, y) = tr (x y). 
Then 

(JT3) r(x, y) is a positive definite hermitian form on If . 

We note that the i-eigenspace p+ of a d z  in p, with the same triple product as 
(3) is also a positive definite hermitian JTS, isomorphic to If7 and an isomor- 
phism p +  - If is given by the "generalized Cayley transformation" ([8], [12d]). 

From (2) we see that e is a "principal idempotent", i.e., one has {e, e, e) 
= e and e e is non-singular. The corresponding "Peirce decomposition" is 
If = U ,  8 V,, U, and V+ being the eigenspaces of e e for eigenvalues 1 and 

3. With the product defined by 

UU' = (11 ,  u', e) = {u, e, u') , 

U becomes a formally real Jordan algebra with unity e. If we denote by Go 
the (real) analytic subgroup of Ad(gc) (the adjoint group of 8,) corresponding 

to go, then the Go-orbit 9 of e is a self-dual homogeneous open convex cone 
in U (with respect to the inner product T I  U x U), and one has 

9 = Interior {u2j u E U) 

([2],[7a]). We put R(u) = L{ O e l V -  for U E  Uc and 

for v, v' E V+ . Then H : V, . x V+ -, U, is an (9-positive) hermitian map satis- 
fying the relation 

Putting further f = +r 1 V+ x V,, we denote by Z ( V + ,  f) the Jordan algebra of 
hermitian transformations of V+ with respect to the hermitian inner product f .  
Then it can be shown ([12e, £1, [3]) that 2R is a (unital) Jordan algebra homo- 
morphism of (U, e) into A?(V+, f) satisfying the condition 

for all u E U, v, v' E V+. We note that, through the generalized Cayley trans- 
formation mentioned above, the symmetric domain 9 is analytically equivalent 
to a "Siege1 domain" 

9 (U ,  V+, H,  9 )  = {(u, v) E Uc x V+ I Im u - H(v, v) E .!?) 

(which depends only on X and not on Z), and the conditions mentioned above 
(i.e., the self-duality of 9 and the existence of the linear representation 2R 

satisfying (6)) are precisely the necessary and sufficient conditions for this Siege1 
domain to be symmetric. In particular, if 2R is trivial, i.e., V +  = {0), then 
9 is equivalent to a symmetric tube domain U + ii?. 

We shall now show that the Jordan algebra representation 2R:  (U, e) --+ 

.&'(V+, f) determines completely the structures of the JTS If and the Lie algebra 

g. First, the Jordan triple product { ) can be expressed as follows: 

{u, u', ~ 1 " )  = (LI~')LL" + u(uf1f") - ~'(uu")  , 
{u, u', v} = 2R(u)R(U')v , 

( 7 )  
{v, vl, ~ i )  = 2H(.v, R(zi)v') , 

{v, v', 2'") = 2R(H(v, v'))vf' + 2R(H(vf', vf))v 

for all u, u', u" E U, and v, v', v" E V,.  The product of the form {u, v, u') or 
{v, u, v') vanishes identically. From (7) one obtains 



for u, u' E U,, where we put T(u) = ~i 2 e j U,. Hence the hermitian inner product 
r 1 Uc x U, is uniquely determined by the data : (U, e), 2R, and f .  Therefore, 
in view of (3, so is H. Thus the hermitian JTS t (with the Peirce decom- 
position U,@ V + )  is completely determined by these data. Next, identifying 

the underlying vector space of g, with @ (P 8)  8 8 7  in a natural manner, 
we see that the Lie algebra structure of y, (with the Cartan involution x H 83) 

is easily described by (3). The complex conjugation of g, with respect to g is 
given by 

U = {e, u, e) for u E U, , 
ti = 2 i e n v  for V E  V+ . 

Thus the real form g (with the gradation U + V + go + 8V + 8U and the 
Cartan involution 8) is also determined. 

Conversely, starting from any formally real Jordan algebra (U, e) and any 
linear representation 2R : (U, e) --* Z ( V + ,  f)  satisfying (6) and using the above 
formulas as definitions, one can construct a positive definite hermitian JTS 
with a principal idempotent e and then a semi-simple Lie algebra of hermitian 
type g (with Z and X). Moreover these constructions are all functorial. In 
this way, we obtain the following 

Theorem 1. The categories of the following objects with morphisms defined 
in a suitable manner are equivalent to one another: 

(a) (9, o, 0,) (symmetric domains with origins and cusps), 
(b) (g, Z, X) (semi-simple Lie algebras of hermitian type with maximal 

homomorphisms from Sl(2, R) satisfying ( H , ) ) ,  

(c) (U, 3 V+, e) (positive definite hermitian ITS'S with principal idempotents), 
2R 

(d) (U, e)  -+ Z ( V + ,  f) (formally real Jordan algebras with linear represen- 
tations satisfying (6)). 

For a more precise statement and a proof, see [12h]. The linear repre- 
sentations of formally real Jordan algebras (satisfying (6)) are completely deter- 
mined in [l4] and [12c, £1. 

2. We give some lemmas relevant to our considerations. 

Lemma 1. When Z is given in the form (I), the corresponding Cartan 
involution 8 is given by 

This formula can be derived by a straightforward computation of 8 = 
exp(n ad Z) = exp(n ad 2,). exp((n/ 2)(e +- Be)). Cf. also [5], [ l  11, [12e]. 

Lemma 2. Let Z' be another element in g satisfying the same condition 

as Z with respect to X. Then Z' can be written in the form 

where a E Q and a-I is the "inverse" of a in the Jordan algebra (U, e) (i.e., the 
unique element in U such that {a, a-l, a) = a). 

Proof. Since Ad g (= the identity connected component of Aut g) is transi- 
tive on the set of all possible pairs (2,  X) satisfying the conditions mentioned 
in 1, there exists g, E Ad g such that g,Z = Z' and glX = X. Put Gi = 

{g E Aut g 1 gX = X). Then, since G; is an algebraic subgroup of Aut g with 

Lie algebra go and is stable under 8, it admits a global Cartan decomposition 

induced by 8. Hence one has g, = exp x,. k, with x, E Po, k, E K, where po = 

p fl go and K is the analytic subgroup of Ad g corresponding to E. Therefore, 
from (I), one has 

In  general, we put 

for x, y E U,. Then it is clear that 

P((exp xJx) = (exp x,)P(x)(exp x,) on U, . 

In  particular, putting x = e and a = (exp x,)e, one has P(a) = (exp x,)' on U,. 
Therefore P(a) is non-singular, and one has a-I = P(a)-'a = exp(-x,)e, q.e.d. 

Lemma 2 shows that for a fixed X the set of all possible Z is parametrized 

by Q = Goe. We write 2, for Z' given by (11) and 8, for the corresponding 
Cartan involution. Then, comparing (1) and ( l l ) ,  one has 

We denote by { ), the corresponding Jordan triple product, i.e., 



Lemma 3. One has 

(14) {x, y, z), = {x, P(a-')u + 2R(a-')v, z) , 

where y = u + v and u E Uc, v E V,. 

the corresponding X is always F-rational (i.e., X E gF). In fact? since 6 is 

defined over F, so are U + V and U. (U + V is the unipotent radical of b, 

and U is the center of U + V.) Moreover, since 8 is F-rational, go = 6 f l  8b 

is defined over F. Hence V, which is the intersection with 6 of the orthogonal 

complement of U + go + 8U with respect to the Killing form, is also defined 
over F .  Thus the gradation 

Proof. It is enough to prove that 

For u E Uc, one obtains by (lo), (12), (JT2) and (7) 

8Bau = ace, [e, [@a-', [Ba-', u]]]] 

= ace, [[e, Oa-'1, [8a-', u]] + [Ba-I, [e, [8a-l, u]]]] 

= [e, -[e a-', u C] a-'1 - {u, a-', e} C] a-'1 

= [e, -{e, a-', u} a-' + u C] {a-', e, a-l) - (ua-') C] a-'1 

= 2a-'(a-'u) - = P(a-')u . 
Similarly, for v E V,,  one has 

80av = - [e, [@a-', v]] = 2{v, a-', e) = 2R(a-')v , q.e.d. 

We denote the Jordan product in U, the representation 2R, and the hermitian 
form f relative to the triple product { ), by u ~ u ' ,  2Ra, and fa, respectively. 
Then by (14) and (7) one has 

U;U' = {u, a-', u') , 
Ra(u)v = 2R(u)R(a-')v , 
fa(v, v') = f(v, 2R(a-l)v') . 

We say that the hermitian Jordan triple product { ), (and ;, 2Ra, fa) are obtained 
from { ) (and , 2R, f )  by a "mutation" by a-' (cf. [2], [7a]). 

3. Let F be a subfield of R. An "F-form" of g is a Lie algebra g, over 
F such that g = g, @, R. When an F-form is given, we put W, = W f l  gF 
for any subspace W of g ; W is called "defined over F" if one has W = WF Q, R. 
An origin o (resp. cusp 0,) is called "F-rational" if the corresponding f (resp. 6) 
is defined over F ,  or equivalently, if 8 is F-rational (i.e., 8 leaves g, stable). 
By an F-structure on an object (9, o, 0,) in the category (a) we mean an F- 
form g, of g such that o and o, are F-rational. For brevity, an object endowed 
with an F-structure will be called an F-object. We note that for an F-object 

is defined over F. Therefore, X is F-rational, since X is the unique element 

in g such that the eigenspace decomposition of g with respect to ad X for eigen- 
values 2, 1,0, - 1, - 2 coincides with this gradation. 

Now we want to determine all Q-objects in the category (a). Clearly it is 

sufficient to determine "Q-simple" Q-objects, i.e., those for which gQ is Q-simple. 
Let (1 < i < d) be the simple factors of g and let iri : g -+ g(i) be the canon- 
ical projection. Then, as is well-known, a Q-form gQ of g is Q-simple if and 

only if there exists a (uniquely determined) totally real number field F of degree 
d such that g(l) is defined over F and that ;r, induces an isomorphism gQ z g$' 
(as Lie algebra over Q). (This situation is expressed as g = RF,Q(g(l') in Weil's 
notation.) If we denote by {a,, . . . , o,} (o, = id) the set of injections of F into 
R arranged in a suitable order, then we have g(i) = OFui R (1 < i < 4, 
i.e., g") has an Pi-form gj2, = (CJ$))~~. If we write X = C;,, X(" with X(i)  E g'", 
then X is Q-rational if and only if X(l )  is F-rational and XCi' = X(l'Oi for 
1 < i < d. A similar statement is also true for the Cartan involution 8. Thus 

the determination of Q-simple Q-objects is equivalent to determining systems of 
(absolutely) simple Pi-objects (1 < i < d) which are mutually conjugate. 

Now suppose there is given a Q-simple Q-form g, of g for which there 
exists a Q-rational cusp 0,. (Hence the totally real number field F and the F- 
form gg) of g(" are determined.) We will show that there exists also a Q- 

rational origin. First, it is known ([12a]) that the element X corresponding to 

o, can be chosen to be Q- rational. (This amounts to choosing a Q-rational 

go in a Q-rational 6.) Moreover, any Q-rational X can be expressed in the form 

where {Xiu, . , XpJ) (r, = F-rank g$)) is a "canonical basis" for the Lie algebra 
of a maximal F-split torus in Ad gg). .Hence, from the conjugacy of maximal 
F-split tori, we see that the F-rational element X(l) = C;", XY) is uniquely deter- 



mined up to F-rational inner automorphism of a:), or what amounts to the 
same thing, the Q-rational element X is uniquely determined up to Q-rational 
inner automorphism of g,. Therefore, in what follows, we may (hence shall) 
fk a Q-rational X once and for all. (From the above expression of X, it also 
follows that the R-rank of each factor Q ( ~ ) ,  which may depend on i, is a posi- 
tive multiple of r,. In particular, none of y( i j  is compact.) 

Let 8 be a Cartan involution of g such that BX = -X and write 

where 19(i) is a Cartan involution of g(i) and = r;,(Z) is the corresponding 
element in Similarly, we put Vi) = si(f), p(i)  = ni(p) ; then gci) = + p ( t )  
is the Cartan decomposition corresponding to P. In this notation, we obtain 

Lemma 4. Under the above assumptions, a Cartan involution 8 is Q- 
rational, if and only if there exists a totally positive element a in F such that 
d%Z(l) is F-rational and one has 

for all 1 5 i 5 d. The totally imaginary quadratic extension F' = F ( d r a )  is 
then uniquely determined by 8. 

Proof. Suppose I9 is Q-rational. Then 8") is F-rational, and so F1) and 
p(l) (#  {O}) are defined over F. Since the restriction of the adjoint represen- 
tation of f ( l )  on p(l) is irreducible and the center of ad,,,, fC1) contains J(l) = 

adpll, Z"), the commuter algebra of ad,,,, tj? in End p$) is a field F-isomorphic 

to an imaginary quadratice xtension F' of F (in C). If we write F' = F(,/-) 
with ap ositive element a in F, uniquely determined modulo (Fx)2, then 4;~") 
and hence 4 2 " )  is F-rational ; moreover a (mod (FX)2) is uniquely characterized 

by this property. Transforming everything by the conjugation ai, we obtain the 

corresponding statement for the factor g(i). Hence a is dtotally positive, F' is 

totally imaginary, and one has the relation (16). Conversely, if there exists a 
totally positive element a in F satisfying the conditions mentioned in the Lemma, 
then clearly is defined over F and one has Vi' = f(""t for all i. Hence I9 
is Q-rational. If there exists another totally positive element a' in F satisfying 
the same condition, then by the above-mentioned uniqueness, one has a' -- a ,  

7 i.e., d = CY,# for some ,3 E F X ,  and hence F(v - a )  = F(J--CY), q.e.d. 

Remark. In the case, where V # {0}, let gii) = ;si(go), Vi) = si(V), Zf) 

= ( Z 0 )  Then the representation gf) is irreducible and contains = 
2 advli, ZAi! in its center. Hence, by the same reason as above, we see that 

there exists a uniquely determined totally imaginary quadratic extension Fg = 
F(J=,) such that the commuter algebra of ad,,,, y$ in End Vj? is F-isomor- 
phic to FL, or equivalently, J& I(1) (or 4% Zf)) is F-rational. (Then the relation 
&$Zhi) = (,,lCu,Zf))"i follows automatically.) By (I), if dJZ(l) is F-rational, 

so is J J Z f ) .  Hence one has a -- a, and F' = Fi. Thus, in this case, the 

field F' is uniquely determined by the Q-form g, alone, independently of the 
choice of 8. 

To find a Q-rational origin, we may proceed as follows. If V = {0}, let 

a be an arbitrary totally positive element in F ;  if V # {0}, we let a -- a, in 
the notation of the above Remark. Take a Q-rational element e' E Q and set 

Then the origin o corresponding to e (i .e., o = (m e, 0) in the Siege1 domain 
expression of 9) is Q-rational. In fact, let 0 be the Cartan involution corre- 
sponding to e. Then, since (ade)? is Q-rational, Lemma 1 assures that 81 U is. 
Q-rational ; in particular, Be' = C ,/a"18(i)e(i) is Q-rational. Therefore, by Lemma 

1 (or Lemma 4), we see that I9 is Q-rational. Conversely, by Lemma 4, all 

Q-rational 8, and hence all Q-rational origin o, is obtained in this way. Note 

that e(l) E $2") = ~ ~ ( $ 2 )  corresponding to a Q-rational origin is characterized by 
the following two properties: 

( i )  JZe(l)  is F-rational ; 

(ii) (JFe(l))"i is in Pi) = n,(Q) for all 1 5 i 2 d. 
Now, suppose a and e(l) are chosen as above. Then, (in the case V # {O}), 

since is F-rational, Vy) (= r1(V+)) is defined over F'. Since P) is F- 

rational, the Jordan triple product { } on r(" = Ug) O V:) (= n1(P)) is defked 
over F'. Therefore, f g ?  = U$? @ V:&, with the induced triple product is a 
positive definite hermitian JTS over F'. Transforming everything by (an ex- 

tension of) a,, we obtain positive definite hermitian JTS's V!2,, over F'"' = 

FU~(  4-act). In this sense, we call p ~ ?  a "totally positive" hermitian JTS. In 

a similar sense, f ( l )  = f 1 VI" x V:" gives an F'-valued totally positive hermitian 
form on Vyk., and Z(Vyi t ,  fcl)) is a totally formally real Jordan algebra over F. 

To define a Jordan algebra structure on UF), we consider a mutation of 
f ( 1 )  by = J e(l) 



where y = u + v with rr E Ug), v E V?. Then the corresponding Jordan product 
and representation 

are defined over F and F', respectively. Thus (Up .  JFe(l ' )  is a totally formally 
real (central simple) Jordan algebra over F and 

is an F-linear representation of it satisfying the condition (6). If we replace e(l) 
by another a(') E Qil) satisfying the conditions (i), (ii) for a totally positive element 

d in F (a' -- a if V # {0}), then the triple product { } (and the data ,;,, , R:?b,, 
f")) are transformed by a "totally positive F-mutation", that is, a mutation by 
an F-rational element (a/.J2)ai1)-I satisfying the condition (ii) (i.e., (JF'a(l)-')ui 
E Q i )  for all i). 

Conversely, starting from any totally imaginary quadratic extension F' = 
F(  JTi) of a totally real number field F, a totally formally real (central simple) 
Jordan algebra (Uf), JTe(l)) over F, and an F-linear representation Z;Z-lR(l) 
of it satisfying (6), we can construct by the process explained in 1 a (simple) 
totally positive hermitian JTS (P;?!', { }) over F' and then a (simple) Lie algebra 

of hermitian type gy  over F with an F-rational origin and cusp. In this way, 
we obtain a system of mutually conjugate (simple) Fut-objects, which gives rise 
to a (Q-simple) Q-object. 

It is possible to give a theorem analogous to Theorem 1, concerning Q- 
objects. However, for our purpose, the following partial result will be sufficient. 
First, the notion of "F-isomorphism" of F-objects in the category (a) is defined 

in a natural manner. In particular, when, as above, the Q-form yQ and the 
Q-rational element X are fixed, the Q-objects corresponding to el1) and a$'' E Q1) 

satisfying the conditions (i), (ii) are Q-isomorphic, if and only if there exists g, 
in Ghj? (the group of F-rational elements in G;") = {g E Aut g$) gX{" = Xfl)}) 
such that = g, J Z e u ) .  On the other hand, an "F-equivalence" of two 
(non-trivial) Jordan alsebra representations over F 

are defined to be a pair (y ,  +) formed of a Jordan algebra isomorphism 

" : (Ut),  v ,7e:1 ' )  -+ (U?', yfi?ag:) over F and I? E GL(V(lLr) such that 

(For trivial representations, an F-equivalence is simply a Jordan algebra isomor- 
phism 9.) It is clear that, if g, E G;;' and y l (dTe( '>)  = 2/a"a(l), then the pair 

of y = gl Ug' and ,,)- = g1 V'_'&, is an F-equivalence of the corresponding repre- 
sentations. Conversely, it can be shown by a standard augument in JTS ([12h]) 

that any F-equivalence of two Jordan algebra representations over F can uniquely 
be extended to an F-isomorphism of the corresponding F-objects in the category 

(a) 
Summing up, we obtain the following 

Theorem 2. Let F be a totally real number field. Then Q-isomorphism 

classes of Q-simple Q-objects belonging to F (i.e., objects in the category (a) 
endowed with Q-simple Q-forms gQ such that o and o, are Q-rational, g(l) is defined 
over F and yQ s g;') are in a one-to-one correspondence with F-equivalence 
classes of Jordan algebra representations 

satisfying the condition (6) ,  where F' = F(.J-a) is a totally imaginary quadratic 
extension of F ,  (U;), j F e ( l ) )  is a totally formally real central simple Jordan 
algebra over F, and f ( l )  is a totally positive hermitian form on VYL,. In parti- 

cular, without specifying the Q-rationul origins, the Q-isomorphism classes of Q- 
simple Lie algebras gQ over Q with Q-rational cusps correspond in a one-to-one 
way to the equivalence classes of the Jordan algebras (Up), j F e ( l ) )  and their 
representations 24Z- 'R( l )  with respect to totally positive F-mutation. 

4. In the tube domain case ( V  = {0}), it follows from Theorem 2 that 

the determination of Q-simple Q-objects (resp. Q-simple Q-forms g,) up to Q- 
isomorphism is reduced to that of totally formally real F-forms of the formally 
real simple Jordan algebras U(l' up to F-isomorphism (resp. totally positive F- 
mutation). (For classification of F-forms of Jordan algebras, see [2], [13]. Cf. 

also [12], [15].) 
As an example of non-tube-domain case, we consider the case of an ex- 

ceptional symmetric domain 9 where g(l) is of type E,. In this case, the data 

(Ucl), e")), 2R(l', etc. are given as follows. Let U(l) be an 8-dimensional real 

vector space endowed with a symmetric bilinear form S of singnature (1,7) and 



let e(l) E U(l) be such that S(e(ll, e"') > 0. Then the Jordan product in U(l) is 
given by 

Let C be the Clifford algebra of (Uil), S), and C+ the even part of C. Then 
one has 

We identify C+ with d 8 ( C )  by the second isomorphism in such a way that one 

has e-lx'e = for all x E C+, where I is the canonical anti-involution of C+.  
(This is equivalent to saying that the standard Cartan involution x I-+ -9 of 
C +  = dd8(C) induces the Cartan involution of ~o(U(l ) ,  S) C C+ corresponding to 

the orthogonal decomposition U(l) = (Re")) @ The representation 2R'l) 
satisfying (6) is then given by the "spin representation" 

Note that the "conjugate" representation ? I ( ' )  : u I+ S(eU:, e(l))-'e(l)u is R-equiv- 
alent to 2R(11 by 

and + = id. (These representations correspond to the two mutually conjugate 
spin representations of So(U(l', S).) 

The data determining a Q-simple Q-object are given as follows. Let F be a 
totally real number field. Let Up) be an F-form of Uc1) (as vector space) and 
take an F-rational S such that all conjugates Sag (1 5 i < d) are of signature 

1 7 Then we have F-forms C, and C$ of C and C'. Put a = -det (S) 
(for any fixed basis). Then a is totally positive, and the center of C; may be 
identified with F = F ( J T ) .  Since the representation 2 JZ-lR(l) should be 
obtained on Ff8, one must have C; z .,d8(F'). Hence one has 

(-- means the equivalence in the sense of Brauer.) The same is also true for 
all conjugates (C,)O~ (1 $ i $ d). Therefore, by the theory of simple algebras 
over algebraic number fields, C, is equivalent to a quaternion algebra over F 
of the form (-a, f) with a totally positive ,3 E F. It follows that S is equivalent 
to a symmetric bilinear form corresponding to 

since these two forms have the same invariants. Finally, we take e(l) in such 
I- 

a way that e'") = y CY e(l) is F-rational. Then we obtain an F-linear Jordan 

algebra representation 

Thus, in particular, the Q-form of y with a Q-rational cusp is completely deter- 
mined by the symmetric bilinear form S satisfying the above conditions, or 

equivalently, by the pair of totally positive elements a, ,8 in F. 
Finally, we remark that our method can also be applied to the determi- 

nation of certain Q-forms of real semi-simple Lie algebras corresponding to 
(non-compact) symmetric "R-spaces" introduced by Kobayashi and Nagano ( [ 6 ] ,  
[gal). Beyond formal analog, there seems to be a direct connection between 
the Q-forms of symmetric domains and symmetric R-spaces. 
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Representations 1-adiques 

JEAN-PIERRE SERRE 

La notion de systtme rationnel de repre'sentntions I-adiques a ite introduite 
par Taniyama [37], il y a pr6s de vingt am. Cette notion joue le r61e de la 
cohornologie rationnelle pour les variCtCs algebriques; elle est d'une grande 

utilite dans 1'Ctude arithmbtique de ces variCtCs. Malheureusement, on sait peu 
de chose sur les systemes rationnels de representations I-adiques, en dehors du 
cas abelien ([37], [37], [40]) : les probl2mes sont plus nombreux que les thkorimes! 

Ce sont ces problkmes, et ces thioremes, que je me propose de discuter. 

§ 1. Notations et dhfinitions 

Dans tout ce qui suit ( 5  7 excepte), on note K un corps de nombres 
algCbriquesl), une cl6ture algebrique de K, et GK le goupe  de Galois de R 
sur K. Soit C K  l'ensemble des places ultrametriques de K ;  si v E C K ,  on 
note k, le corps residue1 correspondant, p, sa caracteristique, et Nu le nombre 
ds ses elements. 

Soit 1 un nombre premier. Une repre'sentation I-adique de GK est un 
homomorphisme continu 

ou V, est un Q,-espace vectoriel de dimension finie. 
Un syst2nze de repre'sentations 1-adiques de G, est la donnee, pour tout I, 

d'une representation I-adique p,. Un tel systkme est dit rationnel s'il jouit de 
la proprieti suivante (cf. [27], [37]) : 

I1 edste une partie finie S de C, telle que, si v E C K  - S ,  et si 1 # p,, 
alors p, est non ramifike en v et le polyndme carncte'ristique de l'e'le'ment de 

1 )  On pourrait se borner i supposer que K est une extension de type fini de Q ,  non 
nicessairement algdbrique; cela ne changerait rien aux rdsultats et conjectures des S S  2 et 3. 



Frobenius p,(Frob,) est coeficienrs duns Q, et ne de'pend pas de 1. 
Cette condition de compatibiliti entraine que, si l'on connait p, pour rrn 

1: on connait, sinon tous les p,, du moins tous leurs semi-simplifiis ([27], 1-10). 
Les seuls exemples connus2) de systemes rationnels proviennent, de pres 

ou de loin, de la cohomologie I-adique, cf. 2. On serait par exemple fort 
surpris de trouver des systemes rationnels (p,) tels que les valeurs absolues des 
valeurs propres des p,(Frob,) ne soient pas des puissances entieres de N F !  

§ 2. Systhes fournis par la cohomologie 

Soient X une variiti projective lisse sur K, et a la R-variite diduite de 
X par extension du corps de base B R. Soit m un entier >, 1. Posons 
V, = H m ( F  ; Q,), m-ikme groupe de cohomologie I-adique de F ,  au sens de [I] ; 
c'est un Q,-espace vectoriel de dmension h i e .  Le groupe GK opere par 
transport de structure sur V, ; on en diduit une reprisentation I-adique 

Soit S une partie finie de C, assez grande pour que X ait "bonne riduction 
en dehors de S", i.e. provienne d'un schima projectif et lisse X ,  sur l'anneau 
des S-entiers de K. Si v E CK - S, notons X, la fibre en v du schCma Xs;  
c7est une variCtC projective et lisse sur k,, appelie parfois la re'duction de X 
modulo v ;  notons z, la variiti diduite de X, par extension du corps de base 
A une clature algebrique de k,. Les thiorkmes de changement de base pour 
la topologie Ctale [I]  montrent que, si 1 # p,, on peut identifier V ,  B Hrn(X, ; Q,), 
que p, est non ramifike en v, et que p,(Frob,) s'identifie A l'inverse du "Frobenius 
giom6trique" de H ~ X ,  ; Q,). D'aprks Deligne [8], ceci entraine : 

2.1. Si v $ S, le polyn8me caracte'ristique de p,(Frob,), 1 f p,, est d 
coeficients duns Q et inde'pendant de 1; de plus les inverses de ses racines sont 
des entiers alge'briques dont toutes les valeurs absolues (archime'diennes) sont 
e'gales a Nv m / 2 .  

En particulier, le systkme (p,) est rationnel. 
(Lorsque m = 1, V, est le dual du module de Tate de la varietk d'Albanese 

de X ;  on retrouve le cas considiri initialement par Taniyama [37].) 

Soit G, = p,(G,) l'image de p,  ; c'est un sous-groupe de Lie du groupe 
de Lie 1-adique Aut (V,). cf. [26] ; son algebre de Lie g, est une sous-algkbre 
de End (V,). On sait tres peu de choses sur les g, ; on ignore mzme si leur 

dimension est indipendante de 1 (cf. 3 3). Voici quelques resultats elementaires : 

2.2. Supposons que les p,(Frob,), pour v + S, p, =+ 1, soient semi-simples. 
Alors g, est scindable (Bourbaki, LIE VII, 5 5) et ses sous-algtbres de Cartan 
sont commutatives et forme'es d'e'le'ments semi-simples. 

Cela resulte de Bourbaki, loc. cit., p. 62, exerc. 16, compte tenu de ce 
que les logarithmes3: des p,(Frob,) sont denses dans g, d'apres le thioreme de 

Cebotarev. 
L'hypothise faite sur les pl(Frob,) est vraie pour m = 1, en vertu des 

risultats de Weil sur lei variitis abeliennes; on espkre qu'elle est vraie pour 
tout m (cela risulterait des "conjectures standard" de Grothendieck, cf. [ l l ] ,  
4.6). 

2.3 (Deligne). L'enveloppe alge'brique gfLg de g, contient les homothe'ties. 

(On conjecture que g;'g = g,, cf. § 3.) 
Soit en effet v E CK - S tel que p, # I. L'algkbre de Lie g, contient l 'ili- 

ment F, = logp,(Frob,) ; si A,, ., 2,  sont les valeurs propres de F,, il risulte 
de 2.1 que toute relation liniaire 

C at& = 0 , avec a, E Z , 

entrake C a, = 0 ; or on sait que cette propriiti iquivaut B dire que l'enveloppe 
algebrique de F,  contient les homothities. D'ou 2.3. 

2.4. On a Hyg, ; V,) = 0 pour tout i. (Le m2me risultat vaut pour les 

espaces tensoriels TrV, @ TSVf, avec r # s.) 
Cela risulte de 2.1 combink avec le critere de nulliti de cohomologie donnC 

dans [26], I1 (cf. Bourbaki, LIE VII. 56, exerc. 6). Deligne m'a fait observer 

que cela peut aussi se diduire de 2.3, et du fait que gflg opere trivialement 
sur Hyg, ; V,). 

Le cas m = 1, i = 1, s = 1, r = 0 de 2.4 a la consiquence suivante : si 
A est une variiti abilienne sur K, tout sous-groupe d7indice fini de A(K)  est 
un groupe de congruence [26]. 

5 3. Relations avec les groupes de Hodge : conjectures 

Les notations itant celles du 5 2, choisissons un plongement de dans C, 

et soit X, la variite complexe diduite de par le changement de base K -+ C. 

Notons V, (resp. V,) le m-ikme groupe de cohomologie de X, B coefficients 
dam Q (resp. dans C ) .  On a 

2) A part, peutCtre, ceux construits par Shimura [32], [33]. 3 )  I1 s'agit de logarithmes 1-adiques, cf. Bourbaki, LIE 111, $7, n06. 



V, = C O  VQ et V ,  = Q, @ VQ pour tout 1 (cf. [I]) . 

La thkorie de Hodge dkfinit une birgraduation de V,: 

Soit T = C* x C* ; 

On obtient ainsi un 

vc = u v p  . 
P A q = r n  

faisons operer T sur V ,  par: 

(u, v).h = uPrQh si h E Vg4 . 

homomorphisme de groupes alrgebriques 

. 53 : T + GL(Vc) . 
Le groupe de Hodge Hdg = Hdg,,, peut Stre defini comme le plus petit Q- 
sous-groupe algebrique de GL(V,) qui, apres extension des scalaires j. C, con- 
tienne le tore cp(T) ; il est engendre par les ya(T), ou a parcourt le groupe des 
Q-automorphismes de C. Ce groupe a ete introduit par Mumford-Tate [16], 
et etudie par Saavedra dans sa these [%I (voir aussi 171, [17]). C'est un 
groupe reductif connexe ; son algibre de Lie Jj, est une sous-algebre de End (V,) ; 

par construction, ells contient les homotheties. On conjecture (cf. [16]): 

C.3.1. L'algPbre de Lie y, du groupe de Galois G, = Im (p,) est kgale a 

61 = Qi 8 6 p  
(Cela entrainerait en particulier que g, est algebrique, reductive dans 

End (V,), et que sa dimension est independante de 1.) 

L'assertion C. 3.1 est Cquivalente a : 
C.3.2. Les groupes G, et Hdg (Q,) sont cornmensurables (i.e. leur inter- 

section est ouverte dans chacun d'eux). 

On peut formuler une conjecture plus precise: 

C.3.3. I1 existe un Q-sous-groupe algtbrique H de GL(VQ), de composante 
neutre Hdg, re1 que : 

a) On a p,(G,) c H(Q,) pour tout 1. 

bi Si r de'signe le groupe fini HjHdrg, l'izon~on~orphisn~e 

est surjectif, et indkpendant de I. 
C) Si r ,'E - S, et 1 # p,, l'irnclge F, de p,(Frob,) dons la varikte' Cl, 

des classes de conjrrgaisorz" de H est rationnelle stir Q, et ne depend pas de I. 

4) La variitk CIH est, par dkfinition, le spectre de la sous-algkbre de l'algkbre affine de 
H formie des forlcriorls centrales. 

d) Pour tout I ?  pL(GK) est ouvert dons H(Q,). 
On notera que, si un tel groupe H existe, il est unique, puisque c'est 

l'adherence de pl(GK) pour la topologie de Zariski. 

Exemple. m = 1, X est une courbe elliptique multiplications complexes 
par un corps quadratique imaginaire F non contenu dans K. Le groupe Hdg 
est le sous-groupe de Cartan de GL, defini par F, et H est le normalisateur 
de Hdg ; le groupe r a deux elements, et l'homomorphisme GK T de 
b) est celui difini par l'extension quadratique K.F de K. 

La conjecture C. 3.3 entraine : 

C.3.4. I1 existe une extension finie Kt de K telle que, pour tout I, p,(GK,) 
soit un sous-groupe ouvert de Hdg (QL). 

En  effet, il suffit de choisir K' tel que GK, soit contenu dans le noyau de 
l'homomorphisme GK ---+ r de C. 3.3. b). 

Les conjectures ci-dessus sont etroitement liees a celles de Hodge et Tate 
sur les classes de cohomologie alge'briques (cf. [38], ainsi que [24], p. 402-405) : 

3.5. Si la conjecture de Tate est vraie pour tous les X X  . . . x X, on a 
g;'g 3 lj, pour tout I. 

3.6. Si la conjecture de Hodge est vraie pour tous les X x  . . x X, il 
existe un Q-sous-groupe alge'brique H de GL(V,), de composante neutre Hdg, 

tel que les proprie'te's a) et b) de C.3.3 soient satisfaites. En particulier, on 
a gL C r j l  pour tout I. 

Variation avec 1 
Supposons C.3.4 vraie, et rempla~ons K par K', de sorte que G, c Hdg (Q,) 

pour tout 1. Choisissons une base de V,, ce qui donne un sens 2i 
Hdg (&). Pour presque tout I, on a G, c Hdg (ZL), et, comme Hdg (2,) 
est compact, l'indice de G, dans ce groupe est fini. On peut se demander si 
cet indice est 6gal 1 pour presque tout I. Des exemples simples montrent 
qu'il n'en est rien (meme pour m = 1, cf. 4.2.1, 4.2.2). Toutefois, il me 

parait raisonnable de conjecturer : 

C.3.7. a) L'indice de GL duns Hdg (2,) est borne'. 

b) Pour presque tout 1, GL contient les commutateurs de Hdg (Z,), ainsi 
que les puissances m-iPmes des Izomothe'ties. 

On peut aussi exprimer 1es choses en termes adkliques: soit A* = Q @ 2 
l'anneau des adiles finis de Q. La famille des pL difinit un homomorphisme 



continu p de G, dans le groupe Hdg (Af), produit "restreint" des Hdg (Q,), et 
l'on aimerait savoir si ,0(GK) est ouvert dans Hdg (Af), ce qui entrainerait que 
G, = Hdg ( Z ! )  pour presque tout 1. On peut esperer que seule la presence 
d'isogenies5) s'oppose a cette propriete. D'ou la conjecture: 

C.3.8. Supposons qu'il n'existe nucune Q-isogtnie H' -+ Hdg, de degre 
> 1, avec H' connexe, telle que cp : T -+Hdg (C) se reldve en 9' : T -+ H r ( C ) .  
Alors p(G,) est ouvert dans Hdg (Af). 

(L'hypothese faite sur Hdg revient a dire que z,(Hdg (C)) est sngendre 
par les cpe(;;l(T)), pour G E Aut ( C ) . )  

$4. Relations avec les groupes de Hodge : r6sultat.s 

Le cas le plus etudie est celui ou m = 1, X etant une variete abelienne. 
On a alors: 

4.1. (~iatetckii-Sapiro [21], Deligne, Borovoi [4]). I1 existe une extension 
finie K' de K telle que, pour tout 1, on ait p,(GKt) C Hdg (Q,) ; en particulier, 

on a g, c lj,. 
En  comparant B 3.6, on voit que l'on obtient essentiellement le meme 

resultat que si la conjecture de Hodge itait vraie pour les variCtCs abeliennes 
(ce que l'on ignore) ; autrement dit, sur une telle variete, toute classe de 
cohomologie r a t i o ~ e l l e  de type (p, p) se comporte, du point de vue galoisien, 
comme si elle etait algebrique. 

I1 est remarquable que la demonstration de 4.1 utilise le cas particulier des 
varietes abeliennes i multiplications complexes : 

4.2 (Shimura-Taniyama [34], Weil [40]). Si X est de type (CM), la con- 
jecture C.3.3 est vraie ; en particulier, on a g, = Q,. 

Le groupe Hdg est alors un tore, ce qui permet d'expliciter les homo- 
morphismes 

p, : G, ---+ Hdg ( e l )  , cf. [34], [40], et [27], 11, 2.8. 

Signalons que, meme dans ce cas, il n'sst pas toujours vrai que p(GK) 

soit ouvert dans le groupe adelique Hdg (Af). Voici deux contre-exemples: 

4.2.1. X est la jacobienne de la courbe y2 = 1 - xZ3. 

4.2.2. X est le produit de quatre courbes elliptiques multiplications 

5 )  On sait que, si H f - -  H est une isoginie de degrC > 1, l'image de H'(Af) dans 
H ( A j )  n'est pas ouverte; il faut donc Cviter que ? ne se factorise par une telle isoginie. 

complexes par ~ (d - ) ,  i = 1, 2, 3 ,3,  les d, &ant choisis tels que d,d2d,d, soit 
un carre et qu'aucun des didj (i # j) n'en soit un. 

(Dans 4.2.1, l'homomorphisme p : GK - Hdg(Af) se factorise par une isogenie 
de degre 3 de Hdg, et dans 4.2.2, il se factorise par une isogknie de degr6 2.) 

4.3 (cf. [27], [3 11). Si X est line courbe elliptique sans multiplications 
complexes, on n Hdg = GL(Vp), et p(GK) est ouvert dans Hdg (Af) 2: GL,(Af) ; 
en particulier, on a g, = El, pour tout 1. 

Le fait que Hdg soit de rang semi-simple 1 entraine que, si les groupes 
de Galois G, etaient "trop petits", ils seraient "presque" abeliens, et donc 
justiciables de [27], Chap. I1 et 111 ; a partir de la, on peut en dkduire de 
diverses faqons que la courbe X a des multiplications complexes, contrairement 
ii l'hypothese faite. 

4.4 ("fausses courbes elliptiques", cf. Ohta [18], Jacobson [lo]). On sup- 
pose que dim X = 2, et que End (X) est un ordre d'un corps de quaternions D. 
On a alors les mGmes risultats que dans 4.3, B cela prks que Hdg est, 
non plus GL,, mais le groupe multiplicatif de D. 

4.5. On suppose que X est un produit E, x . . x En de courbes elliptiques 
sans multiplications complexes, deux a deux non isogenes (sur x), et dont les 

invariants modulaires ne sont pas des entiers algkbriques. Le groupe Hdg est 
alors le sous-groupe de GL, x . . . x GL, form6 des (s,, - - ,sn)  tels que 
det (sJ = . - = det (s,), et p(GK) est ouvert dans Hdg (Af). 

Le cas n = 2 est traite dam [31] ; le cas general se r a m h e  au cas n = 2 
g r k e  a un lemme de Ribet [23]. 

On trouvera egalement dans Ribet [22] une forme "tordue" de 4.5 : le cas 
d'une variete abelieme de dimension d ayant pour anneau d'endomorphismes 
un ordre d'un corps de nombres totalement reel de degr6 d. 

En dehors de ces cas, tous relatifs aux variCtCs abdiennes, il n'y a guere 
i signaler que celui des varie'tts de Fermat 

ou le groupe Hdg est un tore, et ou l'on peut dCcrire les (p,) comme dam 

4.2 (Weil [41], [42], Deligne). 

On aimerait avoir d'autres exemples. 

§ 5. Repr6sentations I-adiques, s6ries de Dirichlet et formes modulaires 

Soit (p,) un systkme de representations I-adiques du type considere aux 



5 3  2'3. Rappelons (cf. [30]) la definition de la se'rie de Dirichlet L,o(s) attachie 
B ce systeme ; on a :  

ou P, est un certain polynbme, B coefficients entiers, de terme constant 1 : 

si v 4 S, on a P,(T) = det (1 - Tp,(Frob,)-I) pour tout 1 f p,, 

si v E S, on definit P,(T) par une recette que l'on trouvera dans 1301 (elle 
fait intervenir certaines conjectures sur la restriction de pl au groupe de de- 
composition de v, pour 1 f p,). 

Je renvoie Cgalement 2 [30] pour la dkfinition du conducteur i, et du 
facteur gamma r,(s) du systkme (p,) ; le conducteur ne dipend que des pro- 
priCtis locales (conjecturales) des p, aux places de S ; le facteur gamma ne 
depend que de la dCcomposition de Hodge de Hm(Xc ; C )  et de l'action des 

"Frobenius rCels" attachis aux places rkelles de K. Si DK dksigne le discrimi- 
nant de K, et n ( ~ )  le degri de p (i.e. le m-ieme nombre de Betti de X), on 
pose : 

Par construction, L,(s) et A,(s) sont holomorphes pour R(s) > 1 + m/2. La 
conjecture principale de [30] est : 

C.5.1. La fonction A,(s) se prolonge analytiquement en zlne fonction 
holomorphe dans tout le plan complexe, ci la seule exception (si m est pair) 

des points s = m/2 et s = 1 + m/2, oir elle est me'romorphe. Elle satisfait ci 
l'e'quation fonctionnelle 

C.5.2. Supposons m pair, et soit r, le rang du groupe des classes de 
cohomologie de X reprisentables par des cycles algebriques de codimension m/2 
rationnels sur K. D'aprks Tate [38], la fonction Ap(s) devrait avoir un p61e 
d'ordre rK aux points s = m/2 et s = 1 + m/2. 

C.5.3. On trouvera dans Deligne [6] une giniralisation de C.5.1 aux 
fonctions L de "motifs", ainsi qu'une formule exprimant la constante de l'kqua- 
tion fonctiomelle comme produit de constantes locales? B la Lanzlands. 

C.5.4 (Valeurs des Ap(s) en certains entiers). Soit n E Z tel que r,(s) et 

r p ( m  + 1 - S) soient holomorphes en s = n.O) I1 devrait ttre possible d'icrire 

Ap(n) comme produit d'une "piriodz" par un nombre rationnel ayant des pro- 
priitis d'interpolation p-adique analogues B celles des nombres de Bernoulli et 
de Hurwitz (ce qui permettrait de definir des fonctions L p-adiques). Bien 

entendu, cet Cnonci n'a de sens que si l'on precise ce que l'on entend par 

"periode", ce que je suis incapable de faire ; toutefois, il existe tellement d'ex- 
emples7) ou c'est possible que je ne doute pas qu'il y ait 12 un phenomene 

giniral. 

C.5.5. La non-annulation de Lp(s) sur la droite 

R(s) = 1 + m/2 

est Cgalement une question interessante. On peut esperer en tirer une gCnC- 

ralisation de la conjecture de Sato-Tate [38], i.e. (avec les notations de (2.3.3) 
la distribution des classes F,  dans la variite reells CIH(R), cf. [27], Chap. I, 

APP . 
Lien avec les formes modulaires 

La correspondance entre representations I-adiques et series de Dirichlet 
discutke ci-dessus devrait 

reprCsentations 

pouvoir se "factoriser" en: 

siries de Dirichlet 

P 
formes modulaires 

Autrement dit : 

C.5.6. Tout systkme rationnel de reprksentations 1-adiques (ou, plus gin& 

ralement, tout "motif") devrait dCfinir une forme modulaire sur un groupe 
riductif G convenable8) ; 

C.5.7. Toute forme modulaire doit dCfinir une sirie de Dirichlet ayant 
un prolongement analytique et une Cquation fonctionnelle analogues a C. 5.1. 

Dam le cas particulier du systeme associe B une courbe elliptique difinie 

6 )  Cette condition m'a Cti signalie par Deiigne. 
7 )  dus B Euler, Hurwitz, Katz, Kubota, Leopoldt, Manin, Mazur, Rankin, Shimura. 

Siegel, Swinnerton-Dyer, Zagier . . . et j'en oublie. 
8 )  Lorsque C. 3.3 est vCrifiCe, on choisit un sous-groupe riductif connexe L de GL(Vg) 

contenant le groupe H, et l'on prend pour G un groupe riductif dCployC dont le dual (au 
sens de Langlands) est Cgal A Llc;  la forme modulaire correspond au systkme des classes 
F ,  e CIL, comme expliquC dans [14]. 



sur Q, la conjecture C.5.6 n'est autre que la classique "conjecture de Weil" 
(cf. [43], ainsi que Taniyama [36]). Elle entre dans le cadre general de la 
"philosophie de Langlands", cf. [3], [l4]. 

La conjecture C.5.7 est discutie dans Langlands [l4] sous une forme plus 
precise: Langlands part d'une forme modulaire sur G, et d'une representation 
lineaire du groupe dual, et leur associe une sine de Dirichlet analogue a A,(s) ; 

dans certains cas (dont la liste augmente reguli&-ement.. .) on peut prouver 
que cette serie a les proprietes voulues (cf. Borel [3]). 

Signalons egalement que l'on peut (parfois) "inverser" C.5.6 et C.5.7, et 
passer des series de Dirichlet aux formes modulaires (Hecke, Weil [42], Jacquet- 
Langlands, ~iateckii-iapiro, . . .) et des formes modulaires aux representations 
I-adiques (Deligne [5]). 

(Pour plus de details sur les questions evoquees dans ce 5 , le lecteur aura 
interst se reporter au texte de Deligne "Non-abelian class field theory" paru 
dans "Problems of Present Day Mathematics", Proc. Symp. Pure Math. XXVIII, 
A.M.S., 1976, p. 41-44.) 

$6. Problhmes relatifs aux courbes elliptiques 

Conjecture de Weil 

C.6.1 (Taniyama [36], Weil 1431). Toute courbe elliptique sur Q, de 
conducteur N, est quotient de la courbe modulaire X,(N). 

Cette conjecture est corroborie par d'abondants resultats numeriques, cf. 
[35]. Par contre, on ne sait pas grand-chose (ni nurneriquement, ni conjectura- 
lement) lorsque le corps de base est distinct de Q. 

Isoge'nies 

La conjecture suivante est un cas particulier de celle de Tate sur les 
classes de cohomologie algibriques [38] : 

C.6.2. Deux courbes elliptiques sur K dont les systtrnes de reprksentations 
I-adiques sont isomorphes sont isogPnes. 

Ce n'est dimontri que lorsque l'invariant j de l'une des deux courbes n'est 
pas un entier algkbrique (cf. 4.5 ainsi que [27], IV-14). Le cas general re- 
sulterait de l'assertion suivante : 

C.6.3. Si S est une partie finie de C,, il n'existe qu'un nombre fini (a 
isomorphisme prks) de courbes de genre 2 sur K dont les jacobiennes aient 
bonne rPdrictiotz en dehors de S. 

Voir lri-dessus ParSin [19], [20]. 

Eflectivitk 

Soit X une courbe elliptique sur K .  sans multiplications complexes, et 

soit p = (p,) le systkme de representations 1-adiques defini par les modules de 
Tate de X. On peut identifier p un homomorphisme de GK dans GL& 
= n GL2(Zl), et p, a la 1-ikme composante de p. D'aprks 4.3, p(GK) est un 

sous-groupe ouvert de G L ? ( ~ ) .  

6.4. Perit-on dtterminer p(GR) Je  f a ~ o n  eflective.? 

Cela kquivaut a : 

6.4'. Peut-on dkterminer effectivement un entier n,,, 2 1 tel que p(GK), 

contienne tous les Plkments de G L , ( ~ )  qui sont congrus d 1 mod. n,,, ? 

En particulier : 

6.4.1. Peut-on dtterminer eflectivement les courbes elliptiques qui sont 

K-isogtnes 2 X ? 

6.4.2. Peut-on de'terrniner eflectivement un entier m,,H tel que pl(GK) 
= GL,(ZJ pour tout 1 > m,,, ? 

Ces problkmes semblent abordables, maintenant que l'on dispose d'une, 
forme effective du theorkme de densite de cebotarev [12]. 

Uniformitk 
La question suivante parait plus hasardeuse : 

6.5. Peut-on choisir l'entier m,,, de 6.4.2 indkpendamment de X9) ? 
(Par exemple, pour K = Q, peut-on prendre m,,, egal 37 quelle que 

soit la courbe X ?) 

La question peut se reformuler en termes de points rationnels sur des 
courbes modulaires. Soient en effet B, N, et N- les sous-groupes de GL,(FJ 

dkfinis ainsi : 

B = (;) :) = sous-groupe de Borel, 

N+ = ((; (1) U ((1 ;)) = normalisateur de sous-groupe de Cartan diploye, 

N- = normalisateur de sous-groupe de Cartan non deploy&. 

9) On pourrait se poser la mGme question pour l'entier ~ K , X  de 6.4', mais il es t  
facile de voir que la riponse serait "non". 



A ces groupes correspondent des courbes modulaires ( )  xv + ( 1 ,  e t X,- (I) 

qui sont definies sur Q, cf. [9], chap. IV ; les deux premibres ne sont autres 
que les classiques Xo(I) et XZ(1Z). La question 6.5 est iquivalentelO) ii : 

6.6. Existe-t-il un entier n, tel que, pour tout 1 > n,, aucune des courbes 
XB(I), X,+(l) et X,-(l) n'ait de point rationnel sur K (a part les "pointes") ? 

Le seul cas sur lequel on ait des risultats est celui de la courbe XB(l) = 

X,(I), pour K = Q (cf. Mazur [15]). 

Rkpartition des klkments de Frobenius 
Supposons, pour simplifier, que K = Q, et que la courbe elliptique X 

considirie n'ait pas de multiplications complexes. Soit S l'ensemble des p en 
lesquels X a mauvaise riduction. Si p $ S, soit a, la trace de l'endomorphisme 
de Frobenius de la rkduction de X modulo p ;  on a 

Tr p,(Frob,) = a, et det pl(Frobp) = p si 1 f p . 
Soit H(U, V) un polynbme non nul, en deux variables, sur un corps de carac- 
teristique zero, et soit PH l'ensemble des p ( S tels que H(a,, p) = 0. On 
diduit facilement de 4.3 (cf. [27], p. IV-13, exerc. 1) que : 

6.7. L'ensemble P, est de densite' 0. 
Autrement dit, si PH(x) disigne le nombre des p < x qui appartiennent a 

pH, on a 

De combien peut-on ameliorer cette estimation ? Est-il vrai, par exemple, 
que : 

C.6.8. P,(x) = O ( ~ l / ~ / l o g  x )  pour x - oc ? 

Si l'on admet l'hypothbe de Riemarm gin6ralisie, on peut montrer, en 
utilisant [12], que PH(x) = O(xa) pour a = 7/8, et mime pour a = 516 si 
H(U, V )  est isobare (pour U de poids 1 et V de poids 2). 

Le cas oh H(U, V) = U + n, avec n E 2, est Ctudie en detail, du point 
de w e  numdrique et heuristique, dans Lang-Trotter [13] ; il semble que, dans 
ce cas, on ait 

10) Cela rksulte de la classification des sous-groupes de PGL?(Fl), compte tenu de ce 
que les groupes "exceptionnels" A+ S, et As ne peuvent pas intervenir lorsque 1 est assez 
grand. 

pourvu bien siir qu'il n'existe aucune relation de congruence sur les a, im- 
pliquant que n, - n + 0 pour presqus tout p ;  on trouvera dans [13] la valeur 
(conjecturale) de la constante C,. Les cas n = 0 et n = - 1 sont specialement 

interessants. 

5 7. Le cas local : modules de Hodge-Tate 

Pour Ctudier une representation I-adique, il est precieux de comaitre 
I'action du groupe d'inertie en une place t. telle que p, = 1. Apres change- 

ment du corps de base (et remplacement de 1 par p), cela amene a la situation 
suivante : 

Le corps K est un corps complet pour une valuation discrete v a corps 

residue1 k algebriquement clos; on suppose k de caracteristique p, et K de 
caractiristique 0. On note une clbture algebrique de K, et Gg le groupe 

de Galois de sur K. On s'interesse i une representation continue 

p : GK -+ Aut (V) , 

ob V est un Q,-espace vectoriel de dimension h i e  (par exemple V = H ~ X ;  Q,), 
oh X est une variete projective lisse sur K, cf. 8 2). 

Soient C le complete de R, et Vc = C @ V. Le groupe GK opbe  sur 

Vc par s .  (c 1% 2;) = S(C) @ p(s)v. On dit que V est un module de Hodge-Tate 

(cf. [25], [28], [39]) s'il existe une base ei de V, et des entiers nt tels que 

s(e,) = %(sPei  pour tout s E GK , 

ob : GK - Z,X est le caractere qui donne l'action de G, sur les racines pm- 

iemes de I'unite. Tate [39] a conjecture: 

C.7.1. Les modules galoisiens Hm(X ; Q,) sont des modules de Hodge- 
Tate. 

C'est vrai pour m = 1, d'aprks Tate [39], complete par Raynaud. Pour 

m = 2, il y a des resultats partiels dus a Artin-Mazur [2]. Le cas gCnQal 

devrait resulter d'une meilleure comprihension des relations entre "cohomologie 
cristalline" et "cohomologie 6ta1e''11). 

Soit V un module de Hodge-Tats. Par definition, V, poss?de une gradu- 

ation analogue a celle de Hodge dans le cas complexe. On en deduit, comme 

au 5 3, un groupe de Hodge Hdg,, qui est un Q,-sous-groupe algebrique con- 
nexe de GL(V), non necessairement reductif. Soit d'autre part H, le plus 

11) C'est de ce cat6 que devrait Cgalement sortir une dCmonstration des conjectures 
sur les caracteres du groupe d'inertie modtree faites dans [31], p. 278. 



petit sous-groupe algebrique de GL(V) contenant p(G,). D'apres un thtoreme 
de Sen [25] ,  on a : 

7.2. a) Le gronpe p(G,) est un sous-goupe ouvert de HI-(Q,). 
b) La composante nerrtre de H, est &gale a Hdg,-. 

En particulier : 

7.3. L'alggbre de Lie de ,o(G,) est &ale d celle de Hdg,-; c'est une 
alg2bre de Lie nlge'brique. 

(La situation est donc plus favorable que dans le cas global.) 

Soit HT la 8-categorie (au sens de [24]) des modules de Hodge-Tate sur 
K. Lorsque V parcourt HT, les H,- (resp. les Hdg,) forment un systeme pro- 
jectif. Soit H (resp. Hdg) la limite projective de ce systeme; c'est un groupe 
pro-algtbrique affine sur Q,; la Z-cattgorie des representations lineaires de 

N est iquivalente a HT. On a sur H et Hdg les renseipements suivants (cf. 
[291) : 

7.4. La composante neutre de H est Hdg; le quotient HiHdg s'identifie 
d G, (considtre comme groupe pro-algebrique "constant", de dimension 0). 

7.5. Le groupe Hdg ne change pas lorsque l'on remplace K par une 
extension finie. 

7.6. Soit Hdgab le quotient de Hdg pnr son groupe des corrzrnutateurs. 
Le groupe Hdgab ne de'pend que de p (mais pas de K) : c'est lo lirnite pro- 
jective des tores REIQp(G,), ou E parcourt /'ensemble des extensions firlies de Q,. 

(Les assertions 7.4 et 7.5 sont des consequences immkdiates de 7.2 ; quant 
2 7.6, c'est une traduction de resultats de Tate, cf. [27], Chap. 111, App.) 

On sait par contre tres peu de choses sur le plus grand quotient semi- 
simple de Hdg. On ne sait mZme pas quels sont 1es types de groupes simples 
qui peuvent intervenir : A,, B,, . - . , E, ? 

Ici encore, on manque fkheusement d'exemples. 

I I I Artin, M., Grothendieck, A. et Verdier, J.-L., Thiorie des Topos et Cohomologie 
Ctale des schimas (SGA 4), Lecture Notes in Math. 259. 270, 305. Springer-Verlag, 
1972. 

Artin, M. et Mazur, B., Formal groups arising from algebraic varieties, Ann. Sci. 
E.N.S., paraitre. 

Borel, A., Formes automorphes et sCries de Dirichlet (d'aprks R. P. Langlands), SCm. 
Bourbaki 1974/75. expos6 466, Lecture Notes in Math. 514, 183-222, Springer- 
Verlag, 1976. 

Borovoi, M. V., Sur l'action du groupe de Galois sur les classes de cohomologie 
rationnelles de type (p, p) des variCtCs abiliennes (en russe), Mat. Sbornik, 94 
( 1974), 649-652. 

Deligne, P., Formes modulaires et reprisentations I-adiques, SCm. Bourbaki 1968169, 
expose 355, Lecture Notes in Math. 179. 139-186, Springer-Verlag, 1971. 

-. Les constantes des tquations fonctionnelles, SCm. Delange-Pisot-Poitou 1969/70. 
expos6 19 bis. (Voir aussi Lecture Xotes in Math. 349, 501-597, Springer-Verlag, 
1973.) 

-, La conjecture de Weil pour les surfaces K3, Inv. Math., 15 (1972), 206-226. 
-. La conjecture de Weil I, Publ. )lath. I.H.E.S., 43 (1974), 273-307. 
Deligne. P. et Rapoport, M,, Les schCmas de modules de courbes elliptiques (Proc. 

Int. Summer School Univ. of Antwerp, RUCA, 1972), Lecture Notes in Math. 
349, 143-3 16, Springer-Verlag, 1973. 

Jacobson, M. I., VariitCs abiliennes de dimension deux ayant pour alg2bre d'endo- 
morphismes une alg2bre de quaternions indifinie (en russe), Usp. Mat. Nauk, 29 
(1974), 185-186. 

Kleiman. S., Algebraic cycles and the Weil conjectures, Dix exposes sur la thCorie 
des schimas, 359-386, Masson, Paris et North-Holland, Amsterdam, 1968. 

Lagarias. J. C. et Odlyzko, A. M., Effective versions of the Chebotarev density 
theorem, Proc. Durham Conf., 409-464. Academic Press, 1977. 

Lang, S. et Trotter, H., Frobenius Distributions in GL2-Extensions, Lecture Notes in 
Math. 504, Springer-Verlag, 1976. 

Langlands, R. P., Euler Products. Yale Univ. Press, 1967. 
Mazur, B., Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977). 
Mumford, D., Families of abelian varieties, Proc. Symp. Pure Math.. A.M.S.. IX, 

1966. 347-351. 
-, A note on Shimura's paper "Discontinuous Groups and Abelian Varieties", 

Math. Ann.. 81 (1969), 345-351. 
Ohta, M.. On I-adic representations of Galois groups obtained from certain two-dimen- 

sional abelian varieties, J. Fac. Sci. Univ. Tokyo, Sec. I.A. 21 (1974), 299-308. 
ParSin, A. N., Modkles minimaux des courbes de genre 2, et homomorphismes de 

variCtes abkliennes definies sur un corps de caracttristique h i e  (en russe), Izv. Akad. 
Nauk URSS, 36 (1972 ),67-109 (= Math. USSR Izv. 6 (1972), 65-108). 
- Correspondances modulaires, hauteurs et isogtnies de vari6tCs abeliennes (en 

russe). Trud. Inst. Math. Steklov, 82 (1973), 211-236 (= Proc. Steklov Inst. of Math., 
132 ( 1973 ), 223-270). 

~iateckii-Sapiro, I. I.. Relations entre les conjectures de Hodge et de Tate pour les 
variCt6s abeliennes (en russe), hlat. Sbornik, 87 (1971), 610-620 (= Math. USSR 
Sb. 14 (1971), 615-625). 

Ribet, K., Galois action on division points of abelian varieties with many real multi- 
plications, Amer. J. Math., 98 (1976), 751-804. 
- On 1-adic representations attached to modular forms, Inv. Math., 28 (1975), 

245-275. 



Saavedra Rivano, N., Categories Tannakiennes, Lecture Notes in Math., 255, Springer- 
Verlag, 1973. 

Sen. S., Lie algebras of Galois groups arising from Hodge-Tate modules, Ann. of 
Math.. 97 (1973), 160-170. 

Serre, J.-P., Sur les groupes de congruence des variCtCs abdiennes, Izv. Akad. Nauk 
URSS, 28 (1964), 3-20; 11, ibid., 35 (1971), 731-737. 

-, Abelian 1-adic representations and elliptic curves, Benjamin, New York, 1968. 
-, Sur les groupes de Galois attachis aux groupes p-divisibles, Proc. Conf. on 

Local Fields, Driebergen, 1966, Springer-Verlag, 1968, 1 18-1 3 1. 
-RCsume des cours de 1967-1968, Annuaire du Collkge de France (1968-1969), 

47-50. 
-. Facteurs locaux des fonctions zita des variites algebriques (difinitions et con- 

jectures), SCm. Delange-Pisot-Poitou 1969/70, expos6 19. 
-, Proprietc2s galoisiennes des points d'ordre fini des courbes elliptiques, Inv. Math., 

15 (1972), 3'9-331. 
Shimura, G., Local representations of Galois groups, Ann. of Math., 89 (1969), 99- 

124. 
- , On canonical models of arithmetic quotients of bounded symmetric domains, 

-4nn. of Math., 91 (1970), 144-222. 
Shimura, G. et Taniyama, Y., Complex multiplication of abelian varieties, Publ. Math. 

Soc. Japan, 6, Tokyo, 1961. 
Swinnerton-Dyer, H. P. F. et Birch, B. J., Elliptic curves and modular functions, Lec- 

ture Notes in Math., 476, 2-32, Springer-Verlag, 1975. 
Taniyama. Y.. Problem 12, in "Some Unsolved Problems in Mathematics", Tokyo- 

Nikko, 1955, 8.12' 
-, L-functions of number fields and zeta functions of abelian varieties, J. Math. 

Soc. Japan, 9 (1957). 330-366 (= Oeuvres, 99-130). 
Tate. J., Algebraic Cycles and Poles of Zeta Functions, Arithmetical Algebraic Geo- 

metry, Harper and Row, New York, 1965, 93-110. 
-. p-divisible groups, Proc. Conf. on Local Fields, Driebergen, 1966, Springer- 

Verlag 1968, 158-183. 
Weil, A.. On a certain type of characters of the id$le-class group of an algebraic 

number field, Proc. Int. Symp. Tokyo-Nikko, 1955, 1-7. 
-, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55 

( 1949 ) , 497-508. 

12) Comme ce texte nta kt6 public2 qu'en japonais (dans les Oeuvres de Taniyama), 
je le reproduis pour la cornmodit6 du lecteur: 

"12. Let C be an elliptic curve defined over an algebraic number field k, and Lc(s) 
denote the L-function of C over k. Namely 

is the zeta function of C over k. If a conjecture of Hasse is true for !c(s), then the 
Fourier series obtained from Lc(s) by the inverse Mellin-transformation must be an auto- 
morphic form of dimension - 3, of some special type (cf. Hecke). If so, it is very plau- 
sible that this form is an elliptic differential of the field of that automorphic functions. 
The problem is to ask if it is possible to prove Hasse's conjecture for C, by going back 
this considerations, and by finding a suitable automorphic form from which Lc(s) may be 
obtained. (Y. Taniyama)" 

[421 - , Jacobi sums as "Grossencharaktere", Trans. Amer. Math. Soc., 73 (1953), 387- 
495. 

[431 - , Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. 
Ann., 168 (1967), 149-156. 

Collkge de France 
11, place Marcelin Berthelot 
7523 1 Paris Cedex 05 
France 



ALGEBRAIC NUMBER THEORY, Papers contributed for the 
International Symposium, Kyoto 1976; S. Iyanaga (Ed.):  
Japan Society for the Promotion of Science. Tokyo, 1977 

Unitary Groups and Theta Functions 

GORO SHIMURA 

Our first theme is the theta functions which occur as the Fourier coefficients 
of automorphic forms. This will eventually lead to the second one: the special 
values of various zeta functions, especially those associated with cusp forms. 
The point of contact of these two themes is a certain Eisenstein series, of which 
the Fourier coefficients are "arithmetic theta functions", and which, evaluated 
at some points, gives special values of a certain zeta function. 

First we defme, with a fixed imaginary quadratic field K, a unitary group 

U by 

where m = n + 2q with positive integers n and q. We assume that -iS is 
positive defmite. The group acts naturally on the space 3 consisting of all 

elements (z, w) of M,(C) x Mn,,(C) such that i ( t ~  - z + %Sw) is positive def- 
inite, where M,,,(F), for any field F, denotes the set of all n x q matrices 
with coefficients in F, and Mn(F) = Mn,,(F) as usual. If (z, w) E 3 and 

then the image of (z, w) under a is defined by 

Put j(a ; z, w) = det ( a , ~  + b3w + c,). Then the jacobian of ar is j(a ; z, w)-". 



For any congruence subgroup r of U and a positive integer k, we understand. 
by an automorphic form on 3 of weight k with respect to r, a holomorphic 

function f on 3 satisfying 

( 1 )  f (r(z ,  w))  = f ( z ,  w)j(y ; t, w ) V o r  all ,Y E r . 
Such a function f has an expansion 

with holomorphic functions g, on M,,,(C), where e(x) = ezxix, and B 'is a lattice 
in the vector space 

we write 0 < r to indicate that r is non-negative. Moreover, each g, satisfies 

( 3 )  g,(w + I )  = e -H 1 w + -1 y,(w) for all 1 E L , ( i i  T( : >> 
where L is a lattice in M,,,(K) depending only on T, and H, is the hermitian 
form defined by 

Thus the "Fourier coefficients" of f are theta functions on Mn,,(C) with respect 
to L.  Now, in the theory of elliptic modular functions, the modular forms that 
are important from the number-theoretical viewpoint are those with cyclotomic 
(or more generally algebraic) Fourier coefficients. This leads us to the following 

natural question : 
Can one define the notion of "arithmetic theta functions" in such a way 

that the forms f with arithmetic Fourier coeficients behave like elliptic modular 

forms with cyclotomic Fourier coeficients ? 
We shall actually show that the answer is affirmative. To define "arithmetic 

theta functions" in a more general setting, let V be a finite dimensional complex 
vector space, L a lattice in V ,  and H(u, L') a non-negative hermitian form on 
V .  We put E(u, v) = Im (H(u,  v ) ) ,  and assume that E(L,  L )  C 2, i.e., H is a 
Riemann form. Further let + be a map of L into the group of all roots of 
unity such that 

+(l + 1') = +(l)~)(l ')e(E(l,  1')/2) . 

Then we consider a "reduced theta function" of type ( H ,  +, L )  in the sense of 
Weil [8],  which is a holomorphic function g(u) on V satisfying 

g(rt + 1) = 

Let T ( H ,  +, L )  denote the set of all such g. For each g 

gc(r4 = e ( i ~ ( u .  u))c~(u) . 

Then y, is not holomorphic unless g = 0, but it satisfies 

g , ( ~  - 1) = +(l)e(E(l, u)/2)g,(u) for all 1 E L and u E V . 

Therefore the restriction of g, to QL can be extended to a function on 

Q L  @ , A ,  where A denotes the ring of adelcs. It should be noted that g,  is 
not a function on V/M for any lattice M commensurable with L. 

Now suppose that V / L  is an abelian variety and End ( V / L )  la Q is iso- 

morphic to M,(F) with a CM-field F, where A = 2 dim ( V ) /  [F : Q].  Then we 
obtain a CM-type (F,  0) such that Iz times 0 is the representation of F on V .  
Let (F', V )  be the reflex of (F. @), and let T,(H, +, L )  be the set of all g in 

T(H,  +, L )  such that g,(u) E Fib for all u E QL, where F:, denotes the maximal 
abelian extension of F'. (It is also meaningful and even advantageous to con- 

sider all g such that g,(u) is algebraic for all u E QL.) We call the elements 
of Ta(H, 9, L) arithmetic theta functions. It can be shown that T(H,  $, L )  can 
be spanned by Ta(H, +, L )  over C.  Let F;" and F: denote the idele groups 
of F' and F, respectively. We can define a map 7 of F y  into Fi  by ~ ( x )  = 
det (@'(x)) . 

Theorem 1. Every element x of  F:X defines a Q-linear map g ++ gx of 

Ta(H, +, L )  onto Ta(N(x)H, $'. &x)-lL) satisfying g,(uIx = (gx),(7(x)-'u) for all 
u E QL, where +'(1) = +(~(x) l )" ,  and N ( x )  is the norm o f  the ideal associated 
with x. 

Here cz for c E Fib denotes the image of c under the element of Gal (F:,/F') 

corresponding to x ;  one should also note that every element of F i  acts on 
Q L  OQ A, and therefore (gx),(&r)-'u) and + ( ~ ( x ) l )  are meaningful. We can 
actually generalize the theorem to the case of an abelian variety which is iso- 
genous to the product of several varieties of the above type with different F's. 

The details will be given in [5]. 
Let us now come back to the function f of (2)  and its Fourier coefficients 

g, satisfying (3). Putting V = M,,,(C), we observe that End ( V / L )  (8 Q is 
isomorphic to M,,(K), so that the above definitions and results are applicable. 



In this case, we have F = F' = K and 7 is the identity map. Let ,dk(r) 
denote the vector space of all f satisfying ( I ) .  We call an element f of ,dk(r)  

arithmetic if g, E T,(H,, 1, L )  for all r.  Let Ar(T) denote the set of all such 
f ,  and ,& the union of ,d;(r) for all congruence subgroups r. Further let 
R denote the field of all arithmetic automorphic functions with respect to the 
algebraic group 

G = { X  E GLm(K) I ~XRX = y (X)R  with y(X) E Q} 

in the framework of canonical models as considered in [ I ] ,  [2]. Then we have 

Theorem 2. The field K,,R consists of all the quotients f / g  with auto- 
morphic forms f and g of the same weight belonging to &, &,". 

We can also prove some theorems concerning the explicit action of a certain 

subgroup of the adelization of G on R and on A;, similar to those in [3], [4]. 
Let us now consider Eisenstein series in the present setting. Suppose q = 1 ; 

let d be a lattice in M,,,(K), and let p be an element of M,,,(K). Put 

Then we define an Eisenstein series Ex,k by 

where a, c E K,  and b E MI,,(K). If k > 2n + 2, this is convergent and defines 
an element of A,(r), where 

Our main result about Ex., is 

Theorem 3. Let h be an elliptic modular form of  weight k with rational 

Fourier coe,ficients at i m ,  and r an element of  K with positive imaginary part 
such that h(r) f 0. Then ~ - ~ h ( r ) - ' E , , ,  is arithmetic. 

This fact implies some interesting results about the special values of a new 
type of zeta function of the form 

Here s is a complex variable, P is the composite of K with a totally real 
algebraic number field Po of degree m ,  and d is a negative element of Po whose 
all other conjugates are positive; the sum is extended over all x belonging to 

a lattice a in P such that Tr,,,Q(dxZ) = 0. The series is convergent for suf- 
ficiently large Re(s), and can be continued to a meromorphic function on the 
whole s-plane. One interesting feature of this function is that 1xI2 is not neces- 
sarily a rational integer. Similar zeta functions can be defined with a direct 
sum of fields in place of P. 

We finally mention a result on the special values of the zeta function 

where 9 is a primitive Dirichlet character, and f is a cusp form which has an 
expansion f(z) = C;=l ane(nz) and satisfies 

for all ,8 = (z f;) E SL,(Z) such that c 2 0 (mod N )  with a positive integer 

N ;  x is a Dirichlet character modulo N. Suppose that a, = 1, and f is an 
eigenfunction of all Hecke operators of level N ; suppose further that f is "primi- 
tive" in the sense that it cannot be obtained from the forms of lower level. 
Define the Gauss sum g(o) by 

where c is the conductor of 9. Then we obtain 

Theorem 4. Let 50 and p' be primitive Dirichlet characters, and f a primi- 
tive cusp form as above. Further let m and m' be two positive integers less 
than k such that (yvt)(-  1) = (-- l)m-m' and D(m', f ,  lo') f 0. Then 

is an algebraic number belonging to the field generated over Q by a,, ~ ( n ) ,  and 

v'(n) for all n. 

There is also a complementary result which concerns the case where 

( ) ( - )  = ( - l ) m m ' .  For details, the reader is referred to [6] ,  [7]. 
The proof of Theorem 4 relies on a certain result concerning the special 

values of a zeta function 



which is defined with another modular form g(z) = b,e(nz). The pull- 
back of E,,, to the upper half plane evaluated at a point belonging to K is a 
constant times D(k - 1, f ,  g), where f is the Mellin transform of an L-function 
of K with a Grossen-character and g is a product of two theta series. Although 
this phenomenon is not so important, nor needed for the proof of the above 
theorem, it shows at least how these values are intricately connected with each 
other. 

One final remark may be added: the whole theory of arithmetic automorphic 
forms with respect to a unitary group can be generalized to the case where the 
basic field K is a totally imaginary quadratic extension of a totally real algebraic 
number field; also Theorem 4 can be generalized to the zeta functions associated 
with Hilbert modular forms. 
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On Values at s = 1 of Certain L Functions of 
Totally Real Algebraic Number Fields1) 

Introduction 

0.1. Let F be a totally real algebraic number field of degree n and let x 
be a character of the group of narrow ideal classes modulo f of F. Denote by 
L,(s, X )  the Hecke L-function of F associated with the character X. Assuming 
that x is primitive and the gamma factor in the functional equation for LF(s. X) 
is r ( s /2) r ( (s  + 1)/2)"-', we derivz a formula for LF(l, x ) .  The formula re- 
presents LF(l, X) as a finite linear combination of logarithms of special values 
of multiple gamma functions which were introduced and studied by E. W. Barnes 

in [2]. In particular, when x corresponds to a quadratic extension of F in 
which only one of n real primes of F splits, the formula is a generalization of 

the Dirichlet class number formula for real quadratic fields. When F is real 
quadratic, the formula was obtained in our previous paper [ 5 ] .  

In his Nice Congress talk [6], H.  M. Stark conjectured that, under our 
assumptions, L,(1, X )  would be a linear form with elementary coefficients in 
logarithms of units of certain abelian extension of F. In view of the conjecture, 
our result may be of some interest. 

0.2. The present paper consists of three sections. In €j 1, we summarize 
basic definitions and properties of multiple gamma functions. In €j 2, we evaluate 
the derivative at s = 0, of the following Dirichlet series: 

where LT, LT, . - . , Lz are linear forms with positive coefficients and x = (x,, 

1)  The result presented at the time of the conference has appeared in [ 4 ] .  In the 
present article, a relevant result obtained after the Symposium is exposed. 



. . - , x,) + 0 is an r-tuple of non-negative real numbers. In 5 3., our formula 
for L,(l,z) is derived. Under our assumption, L,(1, z) is equal to, up to an 

elementary factor, [(-$)L,(s, x)] . On the other hand, it is shown in [4] 
a = o  

(see also Zagier 171) that L,(s, 1) is a finite linear combination of Dirichlet 
series of type (0.1). 
Thus, the result of 5 2 yields our formula for L,(l, x). 

Notation. As usual, we denote by 2, Q, R and C the ring of integers, 
the field of rational numbers, the field of real numbers and the field of complex 
numbers. Further, Z+ denotes the set of non-negative integers. The set of 
positive rational (resp. real) numbers is denoted by Q+ (resp. R,). 
We denote by r ( s )  the gamma function, by B,(x) the m-th. Bernoulli poly- 

nomial and by y the Euler constant. 

§ 1. We recall definitions and basic properties of multiple gamma functions 
introduced and studied by Barnes in [2]. 

For an r-tuple w = (o,, o,, . . . , or)  of positive numbers and for a positive 
number a, we denote by <,(s, o ,  a) the multiple Riemann zeta function given by 

&(s, W, a) = C, (a + R)-$, where the summation with respect to R is over all 
the non-negative integral linear combinations Q = m,o, + m,02 + . . + m,w, 
(m,, . , m, E 2,) of u,, o,, . . . , or. It is known that the Dirichlet series <,(s, w, a) 
is absolutely convergent if Re s > r and is continued analytically to a meromorphic 
function in the whole complex plane which is entire except for simple poles 
at s = 1,2,  . .  . , r .  

Put 

Further, set 

d T,(a, w> 
[;-<,(s, US w, a)] s-0 = log { } . 

p, (w) 

It is proved that, as a function of a, T,(a, w)-' is extended to an entire 
function of order r of a. 

Put 

for q = 1,2,  . . , r. Then it is known that T,(a, w)-' has the following canonical 
product expression : 

where the product is over all the non-negative integral linear combinations 
.Q = mlwl + m p ,  + . . $ m,o, + 0 (m,, . . . , m, E Z,)  of o,, ~ 2 ,  . . , a 7 .  

For an integer i (1 < i < r), we denote by 6(i) the (r - 1)-tuple of posi- 
tive numbers given by 6(i) = (a,, . . , oi-l, oi+,, . . - , w,). Then the multiple 
gamma function r , (a ,  w) satisfies the following difference equations: 

For a positive number E, denote by I(€, + co) the integral path in the 
complex plane consisting of the line seapent ($ so, E), the counterclockwise 
circle of radius E around the origin and the line s e p e n t  (E, + 03). 
If 0 < E < 2n/o, for i = 1,2 ,  . . - , r, then we have the following integral re- 
presentation for log {I',/pr}, 

S exp (-at) 
( 3 )  

1% t dt 
2 n C - f  zo.+-, nix1 {I - exp 

where log t is understood to be real valued on the upper line segment (+ CO, E )  

on I(&, + 03). 

Remark. For r = 1, 

For r = 3, r,(a, o) is the double gamma function studied in [I] (see also 5 1 

of [m. 
$2. Let A = (atj) (1 < i < r, 1 < j < n) be an r x n matrix with positive 

entries and let x = (x,, x,, . . . , x,) be an r-tuple of non-negative numbers. We 
assume that x + 0. Set 

where the summation with respect to z is over all the r-tuples z = (z,, . , z,) 



of non-negative integers. The Dirichlet series c(s. .4. .r) is absolutely convergent 
if Re s > r,ln and has an analytic continuation to a meromorphic function in 
the whole complex plane. For each j (1 < j ,< n), set 4;. = (a,, . a, j, . . , and 
z(x)(~)  = ,Z;,, a, jxk. If n = 1, it is easy to see that G(s, A ,  x) = C,(S, a( ' ' ,  ~(x)" ' ) .  
Furthermore, for each r-tuple 1 = (I,, . . ., I,) of non-negative integers, set 

CL(A) = [ {fi (a,, + a,,u)Li-l - fi n:;-l)$ , 
( J  n )  0 i=l 1x1 

where the summation with respect to (j, k) is over all pairs (j, k )  of positive 

integers which satisfy the conditions 1 < j, k < n and j + k. 

Proposition 1 (cf. Proposition 1' of [3] and Proposition 3 of [5]). The 
notation being as above, 

where the summation with respect to 1 is over all the r-tuples of non-negative 
integers which satisfy the equality I, + I, + . . . + 1, = I. .  

Proof (cf. the proof of Proposition 3 of [5]). Set 

g(t) = g(t1, . . - , 1,) = fi exp ((1 - x,)L,<t>} 
= exp {L,(t)} - 1 ' 

where L,(t) = a,,t, + a,,t, + . . . + aint, (1 < i < r). Then we have the following 
integral representation for c(s, A, x) (Re s > rln). 

For j = 1.2, - . - , n ,  put 

For a positive number E < 1, let I(€, +a) be the integral path introduced at 
the end of § 1 and let I(&, 1) be the integral path consisting of the line segment 
[ l ,  E], the counterclockwise circle of radius E around the origin and the line 
segment [E, 11. If E is su@ciently small, we have 

J g(t)(t, . . .  t,)s-ldtl . - .  dr, 
D j  

( 7 )  = {exp (2nz~'-Is) - I}-' {exp ( 2 z t q s )  - I}'-" 

x tns-ldt S g3(t, ll)(lilll, . . . ~i,-,)"-'du, . . dun-, , 
I(I,+-) ~ ( # , i ) n - l  

where we put g,(t, u) = g(t~l', . . , tuj-,, t. tu j ,  . ' ,  (j  = 1,2. . . , n).  
It follows from (6) and (7) that 

Furthermore, 

fi { 
exp (1 - xi)aijt - - 1  exp (a,,t) - 1 

where we put 

gjk(t, U) = fi exP {(l - xi)t(aij + a , ,~)}  
i-1 exp {(a,, + ai,u)t} - 1 

It is easy to see that 

Since g,,(t, 0) = gj(t, 0), it follows from (8) that 

Moreover 

x [h (a,, + ai,u)lt-l - fi (aj;--l)]!!L 
0 i= l  i = l  L l  



where the summation with respect to 1 is over all the r-tuples 1 = (El, I,, . . . , I,) 
of non-negative integers which satisfy 1, + . . I, = r. 
On the other hand, it follows from (3) that 

= log { i[ rT(Cl.1 XA ,, (a, ,, . . . a, j)) 
1'1 pr(alj, . . , a,,) 1 

The equality (8) implies that 

Thus, we obtain the proposition. 

Remark. For each r-tuples of non-negative integers 1 = (I,, . . , l,), CL(A) 
is expressed as an elementary function of a,,, a,,, , a,,. Assume that, I, f 

. . + I, = r and set 

Tl = {i; 1 < i < r ,  li > 1) and T, = {i; 1 < i  < r ;  li = 01 .  

For simplicity assume that for any 

Then 

el(A) = C c n i E T l  ( ~ i j ~ p k  - aikapj)zf-l log (*) . 
pcT1 l<j<'gn ap japk n p + q ~  T~ (aqlapk - aqkapl) 'pk 

$3. 1. Let F be a totally real algebraic number field of degree n. 
Let x H x ( ~ )  (i = 1,2,  . . . , n ; x E F )  be n different embeddings of x into the 
real number field R. Embed F into Rn via the mapping: x H (xc1), x(", , x'")). 
By componentwise multiplication, the group F - (0) operates on Rn. Denote 
by E+ and by o(F) the group of totally positive units of F and the ring of in- 
tegers of F, respectively. For linearly independent vectors v,, v2, # - ., v, of Rn 
(1 < r < n), denote by C(v,, v,, . . , v,) the open simplicia1 cone of dimension 
r with the generators v,, v,, . , v,. More precisely, 

C(v,, v,, , v,) = civ, ; c,, . , c, > 0) . 
i=l  

Set o(F)+ = R", o(F). 
It is known (see Proposition 4 of [4]) that there exists a finite system of 

open simplicial cones {Cj ; j E J} (J is a finite set of indices) with generators all 
in o(F)+ such that 

( 9 )  = U IJ KC, (disjoint union) , 
u E E +  j E  J 

We choose and fix such a system of open simplicia1 cones together with 
their generators in o ( F ) ~  once and for all. 

Let f be an integral ideal of F and let x be a character of the group of 
narrow ideal classes modulo f of F. Denote by L,(s, ;c) the Hecke L-function 
of F associated with the character X :  

where the summation with respect to g is over all the integral ideals of F. 

Choose a complete set of representatives a,, a,, . . , a,, of the group of 
narrow ideal classes of F so that a,, a,, . . . , a,, are all integral ideals of F. 

For each j t J (J is the set of indices for our system of open simplicia1 
cones) and for each ai (1 < i < h,), set 

(r(j) is the dimension of C,) . 
Since vjl, . . , v,,,,, are all in o(F) and are linearly independent over R, it is 
easy to see that R(C,, (aii)-') is a finite subset of Q'_'j). 

For each x E R(Cj, (aif)-I), set 

Furthermore, for each j E J .  denote by A, the ro )  x n matrix whose (k, /)-entry 

is v$ (1 < k < r(j), 1 < 1 < n ) :  

Lemma 2. The notation being as above, 



where the summation with respect to x is over R(Cj ,  (aii)-'1. 

Proof. It follows from the definition of LF(s, x )  that 

where the summation with respect to ,u is over all totally positive numbers in 
(a,i)-I which are not associated with each other under the action of the group 

E+ . In view of (9), we have 

Since both at and f :  are integral and the generators v j l ,  . . ., v,,,~, are all in 
o(F)+, each ,u E (atf)-' f l  C, is uniquely written in the form 

where 

and 

On the other hand, for each x E R(C,, (aii)-l) and each z E Z:(j), (13) gives an 

element of (a,f)-I f l  C,. Since x is a character modulo 7 ,  

Thus 

where the summation with respect to z is over Z:(j) and the summation with 
respect to x is over R(Cj ,  (ai i ) - I ) .  The Lemma now follows from (4). 

Since x is a character of the group of narrow ideal classes modulo of 

F, there exists a subset S of the set of indices { l ,  2 ,3,  . . , n)  and a character 
xo of the group of invertible residue classes modulo 7 such that 

(14) x((x))  = ; c~(x )  n (sgn 
i i S  

for any integral principal ideal ( x )  of F. 
Let n1 = ' S /  be the cardinality of the set S and put 

where d is the discriminant of F. It is known (see [3]) that if x is primitive, 
t ( s ,  X )  satisfies the following functional equation: 

where w(x) is a complex number of modulus 1 which depends only upon X .  

For each j E J .  set 

and 

Theorem 1 (cf. Theorem 1 of [5] and Theorem 3 of [4]). Let x be a 
non-principal primitive character of the group of narrow ideal classes modulo f 

of F of the form (14) with n1 = IS/ = n - 1. Then 

where the sunzrnation with respect to x is over R(C,, (ai f ) - l )  and the summation 

with respect to 1 is over all the r(j)-tuples of non-negative integers 1 = (l,, I,, 
- . , I,,,,) such that 1, + l2 + . + I,.( j )  = r(j) (for notations see (9), (15), ( I S ) ,  

( W ,  ( lo ) ,  (317 ( l a ,  (17L (12) and ( 5 ) ) .  



Proof. Since x is non-principal and primitive and is of the form (14) with 
n, = IS1 = n - 1, L,(s, X) is an entire function of s and L,(1, X) f 0. Hence, 

the functional equation (15) implies that s = 0 is a simple zero of L,(s, x). 

Let R be an arbitrary character of the group of narrow ideal classes of F. Then 

it is easy to see that ~1 is also a primitive character of the group of narrow 
ideal classes modulo f of F and that LF(O, xR) = 0. It follows from Lemma 

2 that 

where the summation with respect to x is over the finite set R(Cj, (aif)-'1. 
Since the above equality holds for any R, we have 

The functional equation (15) implies that 

The Theorem now follows easily from Proposition 1, Lemma 2 and the equality 

(20). 

Remark 1. Take an open simplicial cone C j  (j E J) of dimension n. Let 

R'(Cj, (aif)-') be the subset of R(Cj, (a,i)-l) given as follows : 

(cf. (10)). 
Then if x = (x,, . . . , x,) E R'(Cj, (a,!)-,), 1 - x = (1 - x,, 1 - x2, . . . , 1 - x,) 

E R7(C,, (a,f)-'), since v j l .  - ,  V j n  E o(F). 
Furthermore, since n, = IS1 = n - 1 in (14), 

Hence, it follows from the equality B,(1 - x) = (- l)lB,(x) that 

for any n-tuple I = (I,, . . . , 1,) such that 1, + . . + 1, = n = r(j). 

Remark 2. If n = 1, F = Q ,  h, = 1 and x is a primitive character modulo 

f (f > 1) such that x(- 1) = 1. We may put a, = (I), j = {I) ,  C, = C(1). 
Then R(Cl, (a,i)-l) = {x/f ;  x = 1,2, . . , f) .  Furthermore 

W(;C> = - ~ ( x )  exp (+) . 
,If ,=I 

Hence, the formula (19) reduces to the following: 

1 f-1 1 f-1 
- -  - c ~ ( x ) - l  log {r  / sin (7)) = -yz lx (x ) - l l ogs in  

2 ,=I (7) . 

Thus, when F = Q, the formula (19) coincides with the well-known formula 
for the values of Dirichlet L functions at s = 1. 

2.  Let K be a quadratic extension of F. We assume that only one of n real 
primes of F splits in K. Denote by 3 the relative discriminant of K with respect 
to F and let x be the character of the group of narrow ideal classes modulo 3 
of F which corresponds to the quadratic extension K in class field theory. Then 
x is primitive and is of the form (14) with n, = IS1 = n - 1. Denote by PK(s) 
(resp. C,(s)) the Dedekind zeta function of K (resp. F). Then we have 

Further, w ( ~ )  = 1 in (15). 

Denote by RK (resp. R,) the regulator of K (resp. F) and denote by h, 
(resp. h,) the class number of K (resp. F). Evaluating the residues at s = 1 
of both sides of (21), we have 

Let E(K) (resp. E(F)) be the group of units of K (resp. F). Denote by m 
the cardinality of the toroidal part of the abelian group E(K),IE(F). Take a 
unit E of K so that the subgroup of E(K) generated by E and E(F) has index 
m in E(K). Denote by E* the conjugate of E with respect to F. There exists 
an embedding of K into R such that j ~ / ~ " j  > 1. We identify K with a subfield 
of R via this embedding. Then it is easy to see that mR, = 2"-?R, log l E , / i " l .  

Thus, 



Combining this equality with Theorem 1, we obtain the following: 
Corollary to Theorem 1. The notation being as above, 

where the product with respect to s is over R(Cj, (ai?)-') and the product with 
respect to 1 is over all the r(j)-tuples 1 = (I,, . . . , I,,,,) of non-negative integers 
such that I, + 1, + . . . + l,,,, = r(j). 

Remark 3. When F = Q, formula (22) coincides with the Dirichlet class 

number formula for real quadratic fields. 
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On a Kind of p-adic Zeta Functions 

KATSUMI SHIRATANI 

1. Introduction 

It is our purpose to construct explicitly a special class of p-adic functions 
attached to the partial zeta functions in the rationals Q.  

Let Z denote the ring of rational integers, 2, the ring of rational p-adic 
integers, and Q, the rational p-adic number field. As usual we set q = p for 
p > 2 and q = 4 for p = 2. 

Let C(z, a,  f) be the partial zeta function of a modulo f ,  where f means a 
given natural number and n denotes an integer prime to f .  Then, following 
Siege1 [lo] we know that for each positive integer m E Z 

holds with the m-th Bernoulli function Pm(y) except for the case f = 1, m = 1. 

In this case we have C(0) = - 112. The number P(1 - m, a, f) for m > 2 is the 
constant term of the Fourier expansion at infinity of a certain modular form, 
which is a linear combination of the primitive Eisenstein series of weight m and 
level f .  

2. Some p-adic integrals 

A function u :  Z, + D,, the complete algebraic closure of Q,, is said to 
be uniformly differentiable if there exists a continuous function 4, : 2, x Z, - Q, 

such that &(x, x') = u(x) - zr(.r')/x - x' holds for any x # x' in 2,. Then 
we see easily that the integral 

1 PP-1 
Z,,(L~) = lim - C u(x) 

p - m  pP z=0 

exists. Take u(x) = (x + ~ l f ) ~  ; then we have I,,(u) = Bm(a/f) for the m-th 
Bernoulli polynomial Bm(y) . 



we define similar numbers B,"_,(a/f) in Q,, where o(x)  denotes the canonical 
function defined on Z,, namely o(x )  = lim .Pp for x E Z p  - pZ,, w(x) = 0 for 

P'" 

x E pZp ( p  > 2) and w(x) = & 1 ,  o (x)  = x (mod 4)  for x E Z2 - 2Z,, w(x) = 0 for 
x E 22,  ( p  = 2). 

We regard the characters w-" with in = 0 (mod p - 1) to p > 2 and o-" 

with m E 0 (mod 2) to p = 2 as the primitive principal character x0 respectively 
We also remark that the number B,"-,(a//) for pla is an expression in Q,  

of the value of a generalized Bernoulli polynomial belonging to the character 
w - ~ .  

We further set P,"_,(a/f) = B,"--,(aO/f) for a E Z prime to f ,  where a, = a 
- f [ a / f l  denotes the least non-negative residue of a module f .  Hence we have 
P," -m(~ / f )  = Pm(a/f) if o-" = xO. 

As for the function o we have the decomposition x = o(x) (x)  to any unit 
x in Z ,  with a principal unit ( x )  = 1 (mod q) . 

3. A sequence of numbers 

Now we take any integer c E Z as a parameter such that (c, pf)  = 1, c > 1,  
Then we define a sequence of numbers V ( m ,  c ,  a, f )  in Q, as follows : 

where a,, (ac), mean two integers satisfying a = pa, (mod f ) ,  ac = p(ac), (mod f ) .  

Let us determine an integer rp(x)  E Z for each integer x = 0 ,  1 ,  . . , pP - L 
by requiring 0 5 cx + pfrP(s) 5 pP - 1 .  

Then, we see 

1 1 .  1 PP-1 V ( m ,  C ,  a, f )  = - - lim - C 
x=O 

( f . ~  + (ac>o)'" ' - " f r - ( a t i 0 i O  (mad p )  

When we takz the integer a such as a 2 f ,  we can transform V ( m ,  c ,  a, f )  

in the followin,o form : 

pp-1  

V ( m ,  c ,  a, f )  = lim C* w-'(fcx +- ac)(fcx + ac)m-lrp(x) 
p-- x=O 

+ <c>" 2: w-'(jx + a)<fx + a),-' , 
x = - C a / f ]  

where * means to take sums over all integers x satisfying fcx + ac g 0 ,  f x  
+ ac 5 0 ,  f x  - a + 0 (mod p) in the given ranges respectively. 

Because the number V ( m ,  c ,  a, f )  is determined modulo f it follows from 
this that GkV(rn. c ,  a, f )  = 0 (mod qk) holds with a usual linear difference operator 
6 defined by 8a, = a, +, - a ,  on any sequence {am}. 

4. Partial zeta functions 

By making use of the sequence V ( m ,  c, a, f )  with a parameter c 1 (mod pf) 
we can obtain a continuous function on 2, 

Let us now define a p-adic partial zeta function C,(s, a, f) by 

Denoting by e the order of the character o we have the following 

Theorem 1. There exists a continuous function S,(s, a, f l  on 2, (s + I ) ,  
such that for each positive integer m = 0 (mode) 

holds. Moreover this function can be explicitly obtained from dividing F(s, c ,  a, f )  

by 1 - ( c ) ' - ~  ns above. 

Next, from the definitions of the generalized Bernoulli numbers B: and 
the p-adic L-functions L,(s, X )  [3], [4] we obtain 

Theorem 2. Let be a primitive Dirichlet character with conductor f,. 
It holds then that for s s 1 + eZp (s  # 1), hence for all s E 2, (s # 1 )  in the 
case p > 2 



Conversely, we have for any natural number f 

Herein 9 means Euler's function, x runs through all the Dirichlet characters 
defined modulo f and they are interpreted as primitive, and 1 runs over all 

prime factors o f  f prime to pf,. 

5. Calculation of the residue 

Finally we compute the residue of Cp(s, a, f )  at s = 1 from Theorem 1 by 
using the theory of r-transforms [3], [ 5 ] ,  181, which can be also directly seen 
from Theorem 2 if we assume the known results on p-adic L-functions. 

Let c, denote a primitive r-th root of unity and A be another linear dif- 
ference operator acting on the numbers n f  (n = 0, 1,2,  . . ). 

Then we find that 

By the way, let g(t) = C bjt j  be any polynomial, whose coefficients are 
elements in a finite extension K of Q p .  For any integer n E Z we set ang(t) 

= C bjj". Then we obtain a formula 
j21 

1 P - 1  

where we put a",t - 1)' = -- C an{(C;t - Ilk - (t  - 1lk}. 
p "-0 

This operator span be extended to an operator on a p-adic Banach algebra 
over K consisting of some formal power series in K[[t  - 111 under a certain 
norm. It is useful for a calculation of the values of LJs,  X )  and CJs, a, f )  at 
each rational integer point [9]. 

From the above formulas we conclude, in particular, with use of the p-adic 

F(l, c ,  a, f )  = lim F(l - p P ( p  - 11, c ,  a, f )  
6"- 

This gives us the following 

Theorem 3. The function <,(s, a ,  f )  has a pole o f  order 1 at s = 1. and 
indeed we have 

We can analogously discuss p-adic class zeta functions for real quadratic 
number fields by starting again from a formula of Siegel [ I ] ,  [2] ,  [6],  [7].  
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Representation Theory and the Notion 
of the Discriminant 

The representation theory of reductive algebraic groups over arbitrary fields 
has been developed extensively by I. Satake [2] and J. Tits [3]. Applying 
the theory to the representation of outer-twisted groups of type A?,-: correspond- 
ing to the center vertex of the Dynkin diagram, one can define an invariant 
attached to an involutorial algebra A of the second kind of even degree over 
its center. If the algebra A splits over its center, the involution is defined by 
a hermitian form and the invariant is essentially the discriminant of the form. 
Pushing the analog further, we would like to prove a few theorems on the 
invariant. The definition of the invariant is based on the representation theory 
of unitary groups, and one can expect there would be a more algebraic approach 
to the theory. 

Throughout this note, unless specified otherwise, fields are subfields of a 
fixed algebraically closed field L and vector spaces are finite dimensional over 
the common ground field L. Let G be a group and V a vector space. A 
representation p of G on V is a homomorphism of G into the general linear 
group GL(V) of V. A representation p of G on V is uniquely extended to a 
homomorphism ,ij of the group ring L[G] = US,, Ls into the algebra E(V) of 
all linear transformations of V. We denote the kernel of ,6 by I[p]. If p is 
simple, p is surjective and the equivalency class of p is uniquely determined by 

I[pl 
Let p be a simple representation. An element C c(s)s of L[G] belongs 

to if and only if C c(s)~,(st) = 0 for all t E G where ~,(s) is the character 

~,(s) = tr p(s) of the representation p. Hence the equivalency class of p is 

determined uniquely by its character x,. Let X ( P )  denote the set {%,(s) : s E G), 
We say p is defined over a field F if F 3 X(,o). If p is defined over F, then 

* Research partially supported by NSF research grant MPS71-03469. 



I[pIF = I[p] n F[G] contains a linear base of I [ p ]  over F and the factor algebra 
A[& = F[G]/I[pIF is central simple over F of degee n = dim V. We denote 

by b[plF the Brauer class of A[pIs and by p[s] the image of s E G in A[pIF. 
We denote by BF the Brauer group over F. If an algebra A is central simple 
over F, we denote by b(A)  the Brauer class of A .  If K is an extension of 
F, we denote by Rest,,, the restriction morphism of B, into B,. Namely, 
RestF,,b(A) is the Brauer class of the algebra K @, A over K .  We state the 

following lemmas without proof. 

Lemma 1. Let G be a group, p a simple representation defined over 

a field F and H a subgroup of G .  Suppose that the restriction p, o f  p to H 

is semi-simple and there exists a simple constituent 7 of  multiplicity 1 o f  9,  
defined over F .  Then we have 

Lemma 2. Let p be a simple representation of a group G on a vector 

space V defined over a field F .  Let p be an integer I 5 p 5 n and ,o(p) 

denote the representation of G on V(p) = V A  A V defined by 

x,, x,, . . , xp  E V. I f  p(P)  is simple, p ( P )  is defined over F and we have 

Let A be a central simple algebra of degree n over a field Z and V a 
minimal left ideal of A L  = L OZ A. For a E A ,  let f ( t ,  a )  = tn  - S1(a)tn-I 

+ + (- l)"Sn(a) denote the characteristic polynomial of the linear trans- 
formation R(a), x -+ ax  of V. f(t, a )  is a polynomial in Z[t]  and Na = S,(a) 

is called the norm of a.  The other terms S,(a), S,(a), . . . are traces of linear 

transformations R(a), P2)(a), . . of V, V ( 2 ) ,  . . defined by 

R(P'(a)(x, A . . . P, x,) = ax, A . . . A ax,  

respectively. Let GL(A)  denote the group of all invertible elements of A.  For 

each p, S, is the character of the simple representation p!P) of GL(A) on V(P) 
which is the restriction of R ( p )  to GL(A).  

Proposition 1. If d is a divisor o f  n! then the Schur index of  b(Ald is 

a divisor o f  n ld .  

Proof. It suffices to prove our assertion in the case where d is a prime 

number p. The degree of p@) is equal to (i) and by Lemma 2, the Schur 

index of b(A)? is a divisor of the greatest common divisor of n and n ! / p  ! (n  - p) ! 
which is equal to nlp .  

Henceforth we assume that n = 2r is even. For a E GL(A) ,  we have 
Na-'tnf(t-', a )  = f ( t ,  a-')  and 

Proposition 2. There exists an involution of the first kind p -+ ,LP of A(') 
SLICIZ that 

Proof. Put G = GL(A) .  We define an involution * of Z[G] by 

We have, by (I), 

and = I[p(')],. Therefore the involution * of Z[G] induces an involu- 
tion of A('' = Z[G]  / I [p!T1]z  with the required property. 

Assume that Z is a separable quadratic extension of a field F and algebra 
A admits an involution J of the second kind. Let o denote the conjugation 
of Z over F. For every a E A we have 

The following proposition will be proved in the same manner as the proof 
of Prop. 2. 

Proposition 3. There exists an involution J ( p )  of  the second kind p - 
p J ( p )  of  A @ )  such that 

For every a E GL(A)  we have 

hence involutions * and J(r)  of A") commute to each other. Therefore the 



set A, of all p E A('! with p* = ,uJ(?) is a central simple algebra over F and 
we have 

A'" = ZA, E Z @  A, . 
F 

The involution p + ,LP induces an involution of the first kind of A,. 

Definition. The Brauer class of A, will be called the discriminant of the 
involutorial algebra ( A ,  J )  and denoted by @A, J ) .  

Let SU(A, J ) ,  denote the gooup of all s E GL(A) with ssJ = 1 and Ns = 1. 
By restricting p") ,  p ( 2 ) ,  . . to SU(A, J )  we have representations <(l) ,  <(?), . . . of 
SU(A, J ) .  They are all simple because SU(A, J )  is a Zariski-dense subgroup of 

the special linear group SL(A) of A.  By ( 1 )  and (2) we have 

Therefore = <(') is defhed over F and the algebra A[c] ,  is identified with 

the algebra of all F-linear combinations of d r ) ,  s E SU(A, J )  in A(". Since 
S ( ~ ) *  - - S ( ~ ) - l  - - (sJ)(') we have A, = A[<],. We have proved the following: 

Theorem 1. The representation < = i(') of SU(A, J )  is defined over F 
and b[<], is equal to 6(A, J ) .  The discriminant 6(A, J )  has the following pro- 

perties : 

1 .  6(A,J)2= 1 

2. Rest,,, 6(A, J )  = b(A)' . 

Let d # 0 be an element of F. By (d, ZIF) we denote the quaternion 
algebra Z + Zu defined by 

Theorem 2. Let y be an element of GL(A) such that yJ = i and J' 

denotes the involution of  A defined by aJ' = pJy- l .  Then we have 

Proof. First we assume that A(" splits over Z. Let W be a minimal 
left ideal of A(". By Prop. 2 there exists a non-degenerate bilinear form B 

on W x W such that 

The form B is uniquely determined up to scalar multiplications. By Prop. 

3 there exists a non-degenerate hermitian form H(LL, v)  on W x W such that 
H(cu, v )  = caH(u, v ) ,  c E Z and 

There exists a o-semi-linear transformation R of W such that 

for all (a, V )  E W x W .  For every p E A, we have p* = pJCr)  and 

Hence we have R p  = pR and R2 commutes with all p E A,. Since ZA, = A(" 
we have 2% = du with a fixed d E F* = F - (0). The F-algebra C generated 
by 1 and scalar multiplications u -+ cu, c E Z ,  is isomorphic to (d, Z / F )  and the 

centralizer of A, in the algebra E,(W) of all F-linear transformations of W. 
Hence we have 

The involution J'(r) corresponding to J' is obviously given by 

Put r = I(". The form H(u, v )  is replaced by H(r-lu, v )  and R is replaced 
by R' = TR. On the other hand, by (3) and (4) we have 

and R(ru) = N y P 1 l u .  Therefore we have (1')2u = Nyl'u = dNyu. Replacing 
d by dNy in (6 ) ,  we have 

Suppose that A(') does not split over Z .  By Prop. 1, the Schur index of 
A(') is equal to 2. Let W be a minimal left ideal of A(') and Q denote the 
algebra of all A("-homomorphisms of W .  Q is a quaternion algebra over Z 
admitting an involution of the second kind over F. By Albert's theorem 
(Albert [ I ] ,  Chap. X, Th. 21), there exists a F-subalgebra Q, of Q such that 

Q = ZQ, z Z @ Q,. Let K be a maximal separable subfield of Q, (which is 
not a subfield of L). Since Q does not split over 2, K and Z are not iso- 
morphic over F, and K, = ZK e Z P, K is a Galois extension of degree 4 
over F. The Galois group of K,/F is generated by o regarded as the conjuga- 
tion over K and the conjugation ; of K, over Z.  We now regard W as a 



vector space over K,. There exists a non-degenerate bllmear form B on W x W 

satisfying (3) and a non-desenerate hermitian form H satisfying (4). There 

exists an element K E Qo such that k2  = a E F* and cn = KC' for all c E K,. 

Since B and H are determined uniquely up to scalar multiplications, we have 

B(xu, K V )  = cB(u, v)' C E K1 , 
H(Ku, K V )  = c'H(u, v)' C' E K . 

We have ccr = c'ctr = a?. Choosing b E K ,  and b' E K so that br-' = cla and 

b"-l = c'/a, we have bB(nu, K V )  = a(bB(z4, v))' and ~ ' H ( K u ,  KV)  = a(b'H(u, v))'. 
Therefore we may assume that c = c' = a. Let R be the a-semi-linear trans- 

formation satisfying (5). We have 

B(Ku, V )  = H(RKu, V )  = B(u, rv)' 

= H(Ru, K V )  = H(KRu, 2;) 

and RK = KR.  We now have R2 = d with d = d' E F*. The F-algebra C gen- 

erated by 1, K and scalar multiplications x - cx, c E K, is isomorphic to (d,  Z / n  

8 (a, K /  F) and is the centralizer of A ,  in the algebra E,(W) of all F-linear 
transformations of W. Therefore we have 

If we replace the involution J by J', then as in the first case, d is replaced by 
dNy and we have 

For an element a E A ,  the rank of a is defined by 

rank a = n-I dim, Aa . 

Theorem 3. Szrppose that there exists an idempotent E # 0, 1 of  even 

rank 2r, such that E~ = r .  Piit A ,  = EAE and A ,  = (1  - s)A(1 - 3. The 

involution J induces an involution J ,  on A ,  and J 2  and A,  respectively. Then 

we have 

Proof. A ,  is a central simple algebra over Z ( = Z c )  of degree n, = Zr, 

and A ,  is a central simple algebra over Z (=Z( l  - E ) )  of degree n2 = 2r, = 
2 - r .  Let pju, pj2),  . - denote the fundamental representations of GL(A,), 
i = 1,2 ,  and H denote the group of all a E GL(A) with ~ c r  = as. H is a sub- 

group of GL(A)  and naturally isomorphic to GL(A,) x GL(A,). The restriction 
of p(P) to H is equivalent to the direct sum 

Let C ,  and Cr  denote the restrictions of pin), p:r2) to SU(A,, J,)  and SU(A,, I,) 

respectively. Then the restriction of , to SU(A,, I,) x SU(A,, JJ is equivalent 
to 

c* @ c2 + p @ Ckt) 
Now Cl  @ C ,  is simple and defined over F. By Lemma 1 we have 

Theorem 4. Suppose that there exists an idempotent E of A such that 
E + cJ  = 1 .  Then we have 

Proof. Let H denote the group of all s E SU(A, J )  such that ss = ES.  

Put A' = EAE. A' is a central simple algebra of degree r over Z (=ZE).  Let 
N'd denote the reduced norm of d E A'. Then H is the group of all a' + 
(dJ)-I, a' E GL(A') such that N'a' = a E F. Put f(s) = N ' d ,  s E H .  The 
restriction of 5 to H is semi-simple and has two constituents of degree 1, e 
and 6-'. By Lemma 1 we have b[c], = 1. 

Theorem 5. Let V be a vector space of dimension n = 2r over Z and 
h(x, y )  a non-degenerate hermitian form on V x V such that h(cx, y )  = cah(x, y). 

Let J denote the involution of A = E(V)  defined by 

Then we have 

o"(A, J )  = b((d, ZIF))  

d = (-- 1)' det (h(x,, x,)) 

where x,, . . . , x, are a base of  V over Z .  

Proof. We may assume that x,, . . -, x, are an orthogonal base with 
respect to h. By Theorem 3, it suffices to treat the case where n = 2. In 
this case, the algebra A ,  is isomorphic to (-a,a,, Z / F )  and our assertion follows 
immediately. 



So far we have treated only the case where the center Z of A is a field. 

To describe the behavior of d(A, J )  by the basic field extensions, we consider 
somewhat degenerate cases. 

Let ( A ,  J )  be a normal simple involutorial algebra of the second kind 
over a field F and Z denote the center of A. Z is a commutative semi-simple 

algebra over F of rank 2 and J induces a non-trivial automorphism of Z over 
F .  If Z is a field we have studied the case. If Z is not a field, Z is the 

sum of two ideals Fs + Fzf, E + E' = 1, E:' = 0, and A is the sum Az + Ad 
of ideals A,  = AE and A,  = AE'. Both Al and A, are normal simple over F 
and the involution J induces an anti-isomorphism of A, onto A?. The special 
unitary group SU(A, I )  is the group of all s, + sf ,  s, E SL(A,). Therefore if 

the degree n = 2r of A ,  over F (which will be called the degree of A over Z )  
is even, it is reasonable to assign b(A,)' as the value of 6(A, J ) .  Now we 

have the following: 

Theorem 6.  Let ( A ,  J )  be a normal simple involrrtorial algebra over F 
of the second kind. Suppose that the degree n of A over the center is even, 
n = 2r. I f  K is an extension of F and J K  is the canonical extension of  J to 
AK = A QF K ,  we have 

Proof. Put G = SU(A, J )  and G, = SU(A,, J K ) .  Denote by C K  the re- 

presentation 52 of GE. Obviously we have Z[C',], fl F[G] 2 I [c] ,  and the 

morphism A [ a F  - A[c,], is injective. Comparing the degrees of 5 and C, we 

have A[<,], Z K BF A[<]F and 

Let F be an algebraic number field, Z a quadratic extension of F and A 

a central simple algebra over Z of degree n = 2r. Assume that A admits an 

involution J of the second kind over F .  By Theorem 6, we have RestFd,, o"(A, J) 

= B(A,, JJ for all prime p where F, is the completion of F at p and A, is the 
algebra F, @, A. If Z,  = Z @, F, is a field, namely there is only one prime 

of Z over p ,  then A,  splits over Z,  and we have 6(A,, I,) = b((d,, ZJF,)) where 
d, is the "discriminant" of the hermitian form hP defined by 1,. The Hasse 

invariant of 6(A,, I,) is 0 or 112 according as d, is a norm of an element of 
2, or not. If Z,  splits into the sum of two fields z F,, p splits into two primes 

q, and q, of Z and the sum of invariants Inv (A,,) + Inv (A,,) is G O  mod 1. 
We have 

6(A, J )  is uniquely determined by giving Inv @(A,, J,)) for all p and we have 
the relation 

C Inv (G(A,, J,))  r 0 mod 1 . 
P 
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Selberg Trace Formula for Picard Groups 

YOSHIO TXNIGAWA 

A Picard group in the title means a discrete subgroup of SL(2, C) that 
operates discontinuously on the 3-dimensional upper half space. Historically 
E. Picard was the first who considered such a group. Recently T. Kubota 
considers an automorphic function with respect to a Picard group in his theory 
of power residue symbols. In this paper, we shall write down the trace 
formula in Selberg's original form with respect to I' = SL(2, Z[ i ] ) .  

This paper contains an introductory part of a research of the author, in 
which he proposes to develop, to certain extent, a theory on the vector valued, 
real analytic automorphic functions related to SL(2, C). 

Shortly after the author had completed the manuscript, a new translation 
of Venkov [7] was published, which is more extensive than the present paper. 

Nevertheless, it still seems to make some sense officially to announce and 
to publish the results in the present paper for, between 171 and this paper, there 
are a few differences in displacement of contents as well as in details of proofs, 
although they might be inessential. For instance, [7] is based upon the theory 
of resolvent as described in Faddeev [ I ] ,  while the present paper derives every 

theorem by direct computations of Eisenstein series. More recently, Dr. de la 
Torre in Princeton has worked on this topic in her private note, too [6].  

The auther wishes to express his thanks to Prof. Kubota for his helpful 
advices . 

§ 1. Three dimensional upper half space 

The three dimensional upper half space H is a space consisting of all 
elements u = ( z ,  v) where t is a complex number and v is a positive real 
number. The group G = SL(2, C) operates on this space by a linear fractional 
transformation : 



This action is transitive and the isotropy group of LL, = (0, 1) is the maximal 
compact subgroup K = SU(2) of G, so we can canonically identify the space 
H with the homogeneous space G/K.  

We shall use the following notations in the sequel, 

g = the image of g E G under the projection G -. H. 

It is well known that the space H is of rank 1 and has a G-invariant 
metric ds2 = v-Z(dxZ + dyZ + dv2) and a G-invariant volume element dp(u) = dg 
= ~-3dxdydv (x = Re (z), y = Im (zj). The Laplace-Beltrami operator on this 

space is 

$2.  The Selberg transformation 

We shall normalize the Haar measure dg on G by 

G 

dxdydv for all f c L~(GIK) J f (g)dg = J H  f(n(z)a(v))---- v 

where z = x + iy. 
Let 2, be the space of continuous functions on G with compact support 

such that 

y(kgkr)=y(g)  for a l l g ~ G a n d a l l  k, ~ ' E K .  

The function defined by k(g, g') = y(g'-'g), for y E 2, is a point-pair invariant 
so derives an invariant integral operator L,, i.e. 

Theorem 1 (Selberg). Suppose that the function f on GIK is an eigen- 

function of D with an eigenval~ie R .  Then f is an eigenfunction of an arbitrary 

invariant integral operator L,. Moreover, its eigenvalue is determined only by 
L, and R.  

This eigenvalue is denoted by h(2) and the map y(g) -+ h(R) is called the 
Selberg transformation. 

Before stating the next proposition, we will make two conventions. Every 
element y of X,  is in fact a function of t = jlgjj2 = jai2 + /Bj2 + lr/2 + I8l2 where 

g = (; {) E G,  so we will often write as p(g) = +(t). Secondly, we introduce 

the new variable r by R = - 1 - r2, and write h(r) instead of h(R) . 

Proposition 2. Let p be an element of 2,, and let +(t) = y(g) as above. 
Then the Selberg transformation can be computed as follows. Set 

and y(u) = Q(w) where w = eu + e-". Then, 

Conversely, 

and 

For the proof, we refer to [3]. 

Let 0 be the ring of integers of Q(i).  The group r = SL(2,O) is a discrete 
subgroup of G and operates discontinuously on the space H. The fundamental 
domain for it is given, as a standard form, by 

Let L"(r'\G) be the space of measurable functions on G such that 

Let Li(r \ ,G) be the subspace of L2(T',,G) satisfying the additional condition 



(iii) Sl2 r12 f(n(;)g)dxdy = O for d l  g E G . 

The operator L, derived from 9 E 2, is, on L2(Ti,G), an integral operator with 
the kernel function K(g, g') = C , , ,  y(y'-'yy). The Eisenstein series with 
respect to is defined by 

where s is a complex number, v = v(g) is the v-part in the Iwasawa decom- 

position g = n(z)a(v)k (k e K), and To = { (a  P, E j = 0). This series 
Y d  

converges absolutely in Re(s) > 2 and defines a holomorphic function. I t  can 

be continued to all complex plane as a meromorphic function and satisfies a 
functional equation : 

where O(s) = x/(s - 1)-Z(s - l)/Z(s), and Z(s) is the Dedekind zeta function 
of Q ( i ) .  Put 

where s = 1 + ir. 
From Selberg's theory we know that L, operates completely continuously 

on Li ( r \G)  and has only discrete spectra with finite multiplicities. The con- 
tinuous spectrum of L, on L2(r \ \G)  is expressed by H(g, g'), that is, the 
operator L: on L2( r ' ,G)  with the kernel function K* = K - H is completely 
continuous and has all discrete spectra of L,. Suppose that LT is of trace 
class. Then the following trace formula holds: 

where the sum in the left hand side ranges over all r, > 0 such that the dif- 

ferential equation Df = -(1 + r;)f has a non-trivial solution in L2(.9). 

§ 3. Decomposition of r = SL(2, C )  into conjugacg classes 

We denote by the symbol { r ) ,  the conjugacy class of y  E r in I', and de- 

(' O ) with 1 note r, the centralizer of y  in r. If r G has Jordan form A-, 
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Every element of r = SL(2, G )  is conjugate to one of the following dements : 

- - the unit matrix ; 

parabolic element conjugate to ( ( f) in G where r E C ,  i + 0) ; 

elliptic element (conjugate to 5 (6 E!l) in G where 1 E I  = 1, E + F. 1 ; 

(" 
O ) in G where v > 1 , hyperbolic element conjugate to + 

) 
( 

loxodromic element 

) 
+('" 0 v-iE-' O ) in G, where v >  1, / E / =  1, 

E = k 1 ) .  

( i ) Parabolic elements. 

Let To, r1 be the subgroups of r defined by 

Then, r1 is the group consisting of all parabolic elements which leave the cusp 
co fixed. Every parabolic element of I' is conjugate to some element of r , ,  
so that it is sufficient to decompose the group r, into its conjugacy classes. 
The result is as follows. The full set of reeresentatives of conjugacy classes is 
given by 

where runs over the following set: 

For every y  E r , ,  its centralizer is just the group rl. 
(ii) Elliptic elements. 

The elliptic element of T has an order equal to 4, 3 or 6. 
There are four conjugacy classes of elliptic elements of order 4, and they 

are represented by 

> 0, then y  is said to have the norm N { y )  = R 2  Their centralizers are 



for all 2 .  
On the other hand, there are two conjugacy classes of elliptic elements of 

order 3.  The representatives of them are 

and r, is generated by ( -A) and (;ii 212f ) ,  and Tb is generated by 

( - l i  oi) and (': . The case of elliptic elements of order 6 is 2 - 1  

similar. The representatives are given by -a, -b7 and r-, = r , ,  r-b = rb. 
(iii) Hyperbolic or loxodromic elements. 
I t  is difficult for the author to determine the full set of representatives of 

conjugacy classes of them. Hereafter, we assume that the full set of repre- 
sentatives of primitive elements {y,),,, is given (an element is said to be 
primitive if it is not a power of any other element of r ) .  Every hyperbolic 

or loxodromic element y can be written as y = y,k with some primitive element 
yo and some integer k. 

4. Trace formula 

In 5 2, we defined an integral operator L: on L2(r\G). We assume that 

it is of trace class. Then the trace formula holds. 

The conjugacy class of elliptic elements of order 4 and that of parabolic 

elements have the continuous spectrum. So we shall compute 

for the class of +unit, elliptic elements of order 3 or 6 ,  and hyperbolic or 
loxodromic elements. And to exclude the continuous spectrum we shall com- 
pute 

lim {-!- (parabolic element) 'lement 
v - -  2 sv of order 4 

where 9, = { (z ,  v) E 9 / v 5 V ) .  

Proposition 3. Let r be a discrete subgroup of G of  finite type and let 
.9 be its fundamental domain in H.  Let y be an element of  3,. Then the 
contribution from f unit is given by 

where m(9) is the volume of  9 and h is the Selberg transformation associated 

with cp. 

Proposition 4. Let r be a discrete subgroup of  G o f  finite type and let 
9 be its f~~ndamental domain in H .  Let y be an element of  2,. I f  y is an 

elliptic elements of  r with the Jordan canonical form (b such that r, is 

generated by two elements. 

denote by 7,. Let (r:)' be 

where [ : ] means the index 

Then one of  them is of infinite order which we 

a free part o f  r , .  Then 

as a transformation group. 

Proposition 5. Let r be a discrete subgroup of  G of  finite type with 

fundamental domain 9. Let cp be an element of 3,. Let yo be a primitive 
hyperbolic or loxodromic element, and let y = y,k for some integer k .  Then 

where (rro)' is a free part o f  r, , ,  [ : ] denotes the index as a transformation 
group, and g is the inverse Fourier transform of h (Proposition 2). 

The proofs of these three' propositions are similar to the case of a Fuchsian 

group of the first kind. So we omit their proofs. 

Now we take SL(2,O) for r where 0 is the ring of integers of Q(i) .  As- 
sume that {y,),,, is a full set of representatives of conjugacy classes of primitive 

hyperbolic or loxodromic elements. Then the tzrms of elements described in 
the above propositions are 



Note that m ( 9 )  is equal to 2-;c-'Z(2) in our case. 
To exclude the continuous spectrum, we divide the fundamental domain 9 

= r \ ,H  as 9, U 9:, where gV = { ( z ,  v )  E 9 v V ) .  9: = 9 - G,, and 

compute the asymptotic behavior of the integral as V - CO.  f , 
For the elliptic elements of order 4, we must compute the following integral : 

where D = [U - U o0:] - !J o a k .  
U E  r UE ro U E  r 

o b r o  

From the compactly supportedness of cp we get the following 

Lemma 6 .  For a sufficiently large V we have 

where o = (; $) runs over all elements of r such that o g To, a/; # Ri/2. 

So, it is sufficient to integrate on the following domain: 

the union U* is over all a E T o ,  and U** is over all a = ( $) E r such 

that a $ To  and a /  y = Ri ' 2 .  
More explicitly, 

1 1 Po = { ( z ,  v) E HI v V .  iI2 + (v - -)' B (-)'I 2v 2 v  

for R # 0 . 
If we put y(g) = +( t )  for t = /jg;I2 then 

In order to express these integrals in terms of h(r) and g(u) we shall change 
the variables by 

Then the first integral reduces to 

1 , 3 ~ / 2  - e - ~ / 2  = - f: f m  h(r)e-fr" 
- 50 eu/z + e-U/Z 

drdu . 
211. 

We note the following equation 

and the formula 

e - u ( l + i ~ )  
)du = P ( 1  + ir) 

1 - e-" r ( l  + ir) 

If we put K(s) = ( T ' ( s ) ) / ( r ( s ) )  for simplicity, the above integral is equal to 

and On the other hand, the second integral is equal to 



7 
--g(0) log v . 
7r 

Theref ore 

For other A(= 1 ,  -i, 1 - i ) ,  we get similarly 

After some calculations, I ,  is equal to 

(h(0) - 1 Jm h (r) (T ( 1  + G) - F(+ + $))dr] 
16 -- 

Now we get, 

Proposition 6 .  Contributions from the elliptic elements of  order 4 is given 

by 

1 5 = -g(O) log V + -g(0) log 2 
2 16 

where V -, a. 

Next we shall consider the parabolic elements. 
We must compute the asymptotic behavior of the following integral: 

1 1612 : ? I 2  dxdydv c ---~(2 + ,) - z8JE (2 7)-v" (/I = x + iy) . ::: 2~ i Q l2 > j+o E 

where E = U a 9:. 

a E rl\r 

But the second integral is o(1) when V -+ a, so we have only to consider 
the first sum. For that purpose, we shall put 

and 

Then we have 

Changing the variable in the first integral and integrating by parts in the second 
integral, we get 

In order to express the first integral in terms of h and g, we introduce a new 
variable u by 

Let u, be a real number such that 2 f 1/V2  = eul + e-"l. Then 



where O(s) is defined by (ir/(s - 1 ) ) .  (Z(s  - l ) / Z ( s ) )  with the Dedekind zeta 

function Z(s) of  Q(i) . 
(Sketch of the proof) With the formula of exponential integral 

If we set 9 = 9 U 

above integral is 
where C is an Euler constant and with V - l l u ,  as V w ,  we have 

Define ET'(g, s) by 

where F(s) = ( r t ( s ) ) / ( r ( s ) )  as before. From the lattice point theorem we know 

P(x) = 0(x1f2). Then the last three terms is equal to Then we have 

where CQci, is a generalized Euler constant attached to Q(z), i.e. CQ(i) = 
as V --+ oo. On the other hand, 

Proposition 7. Contributions from the parabolic elements is given by  

1 1 1 1 
-g(O) log v + - ~ z ( O )  - -g(O)C + ---g(O)C,,i) 
2 S 2 4n 

+ rag ' r h ( r ) @ ( s ) e i r O d r d  (log v )  

Finally we shall consider the Eisenstein series. We must compute the 

integral = 4ng(O) log V - Jm h(r)  @'(' + ir) dr + rh(O)@(l) + o(1) 
-- @(l  + ir) 

as V -+ a, hence the proposition follows. 

where H(g, g') = 1 Jx h(r)E(y, s)E(g', s)dr (s = 1 + ir) . 
iT -" 

Theorem 9. Let 0 be the ring o f  integers of Q(i) and let I' = SL(2,O) be 
a special linear subgroup of  G with entries in 0. Then the trace formula for 
r is Proposition 8. The part of  continuous spectrum is 
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On the Torsion in K ,  of Fields* 

J. TXTE 

1 Introduction 

Let F be a field and F' its multiplicative group. Let R, denote the sub- 
group of F' @ F' generated by the elements a @ b with a + b = 1. Theorems 
of Steinberg and Matsumoto give a canonical isomorphism 

(F' @ F*)/ RF -I"--, K2F 

(see [5], for example). The image of a @? b in K,F is denoted by {a, b}. We 
have {a, -a) = 1 and {a, b){b, a) = 1. That's about all the algebraic K-theory 
we use in this paper except for the existence of a "K,-norm" which we now 
recall. 

Suppose E is an extension field of F .  The inclusion F c E induces a 
homomorphism K,F -+ K,E such that {a, b}, ++ {a, b),, for a and b in F', where 
the subscripts F and E are added to make clear in which K, group the symbol 
{a, b} is to be interpreted. If the degree of E over F is fhite, then there is 
a "natural" &-norm homomorphism A',,,: K,E -, K,F such that 

for a E F' and b E E* (see [5, 5 141). When neither a nor b is in F the image 
of {a, b}, under the norm map is not easy to describe in terms of the symbols 

{ , IF, although there do seem to be complicated algorithms for such com- 
putations hidden in [ l ,  Ch. I, 5 51. 

Now let m be an integer 2 1 and suppose F contains a primitive m-th 
root of unity, z.  Then there is a complex 

* Work partially supported by NSF. 
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where Br F denotes the Brauer Sroup of F, the maps labelled by HZ are the 

endomorphisms =c o .rm of the abelian Sroup in question, and the homomorphisms 
g and h are given by g(a) = {z, a) and Iz({a, b)) = (a. b), where (a, b) is the 
class of the "cyclic" algebra '4,,, of degree m2 over F defined by 

Aa, ,  = F[a , ? ] ,  am = C Z , ~ ; " ~  = b ,  and a,? =$a .  

The complex (1.1) has a tendency to be acyclic; I know of no field F for 
which any one of the three "homology" groups 

Br, FIIm h , Ker h/(K,F)" , (K,F),!'Im g 

is known to be non-zero (we write X, for the kernel of m : X + X). These 

three groups are zero if F is a global or local field, or a field of cohomological 
dimension 1. For the first group this is classical ; for example, if m = 2, the 
vanishing of Br, F / Im lz is equivalent to every element of order 2 in the 
Brauer group being a product of classes of quaternion algebras. The second 

group, Ker IZ/ (K,F)~  is discussed in [9], where some criteria for it to vanish 
are derived. In this paper we study the third group (K,F),/Im g by a method 
proposed originally by Birch [2] in case rn = 2, which was seen by Bass to be 
generalizable to arbitrary m by using the K,-norm. This method is described 
in $ 2. Bass' generalization of Birch's idea raises a curious algebraic problem 
(cf. (2.6) below) which we have been unable to solve. 

In $ 3 these ideas are applied to fields F of cohomological dimension 1 
(meaning roughly that Br F = 0). For such fields all difficulties vanish and the 

method gives immediately (K2F), = Im g. This is t r ~ e  in particular if F is a 

function field in one variable over an algebraically closed field. In that case 

I would conjecture that the fourth "homology group", Ker g/(FS)", of our 
sequence (1.1) is also trivial, and there is a brief discussion of this problea at 
the end of $ 3. 

In $ 4 we use the method of Birch and Bass to prove a relative result, to 
the effect that for a subfield F, c F such that F;/(FJm maps isomorphically to 
F'/(F')", the map (K,F,), --. (K,F), is surjective. 

In $ 5 we prove (K2F), = Im g for local fields by using the result of $ 4  
to reduce that question to the corresponding statement for global fields which 
is known to be true. We also discuss in detail (Theorem (5.5)) the relation- 
ships among some conjectures of Lichtenbaum's and mine on the torsion in K, 
of local fields. Finally, we are able to prove all these conjectures in the special 
case that Q, c F c Q,(a), where Q, is the field of 1-adic numbers, and a is an 

1-power root of unity. Thus for such an F there is a canonical splitting of 
K2F into the direct sum of its torsion subgroup (K,F),,,, and its maximal divis- 
ible subgroup (K,F),, which is zrniquely divisible; and if F, is the algebraic 
closure of Q in F we have canonical isomorphisms 

where p, is the group of all roots of 1 in F?  the map to p, being given by 
the norm residue symbol. 

The results of 5 4 and $ 5 were not known to me at the time of the 

conference in Kyoto. My talk there was more in the nature of a report on 
unsolved problems. It was only in preparing this written version that I found 
at least the partial answers given here. 

5 2. Extracting roots of symbols 

Let F be a field containing a primitive m-th root of unity, z. for some 
integer m 2 1. Let X c K?F be thz group of elements of the form {z, a) with 

a E F'. Since zm = 1 we have X c (KJ), ; we want to find conditions under 

which these two groups are equal, i.e., under which every element of order 
dividing m in K,F is of the form {z, a). 

The equality X = (K2F), is equivalent to the existence of a homomorphism 
f :  (K,F)" - K,F/X such that f(um) = uX for all u E K2F, and such a homo- 
morphism, if it exists, is unique. In [2], Birch proposed a method for con- 
structing such an f in case m = 2. Bass remarked that by using the K,-norm, 
a corresponding approach could be devised for arbitrary m. The idea is the 
following. For a, b E F' it is well known ([5], Theorem 15.12, or [9], Pro- 
position 4.3) that the following statements are equivalent 

( i )  {a,b)E(K2nrn 
(ii) There exists a finite extension field E of F and elements a and i3 E E 

such that am = a and NE,,P = b. 
The idea of Birch is that the proof of (ii) + (i) yields more than just 

{a, b) E (K2F)m ; it furnishes an "m-th root" of {a, b), namely NEIF{a, $1, which 
is ziniquely determined modulo X .  

(2.1) Lemma. For E, a ,  and ;3 as in condition (ii), the class of NE,,{a, 8) 
modulo X depends only on the pair a,  b. 

Clearly it suffices to consider fields E contained in a fixed algebraic closure 
of F. Then a is determined by a up to a power of z, so that changing a 



changes NEIF{a ,  ,b) by a power of N E / F { ~ ,  ,8) = {t, NE/F,3) = {z ,  b )  E X .  Let E ,  

= F(cY), and p, = NEIE1$.  By the transitivity of the &-norm we have 

and since NE1/Fpl = b ,  we can assume from now on that E = El = F(a).  We 
must show then that for fixed a the class of NEIF{a ,  13) modulo X depends 
only on NEIF/3, or what is the same, that NE,,{a, P )  E X if iVE/F$ = 1. Suppose 
NEIF/3 = 1, and let a be a generator of the cyclic group Gal ( E I F ) .  Then by 
Hilbert's Theorem 90 we have ,8 = y u / r  for some element E E', and since 

we have N E I F { a ,  ,8) = NE,,{aU-'la, 7) .  This is in X ,  because aa-'/a! is a power 
of z. 

Let P be the set of all pairs a x b E F' x F' satisfying the equivalent con- 
ditions (i) and (ii) above. In view of (2.1) we can define a map f : P -+ &FIX 

by 

where E ,  a!, and ,8 are related to a and b as in condition (ii). 

(2.3) Example (Birch [2] ) .  Suppose m = 2. Then P is the set of a11 
a x b E F' x F' such that the equation ax2 + by2 = 1 has a solution in non- 
zero elements x ,  y E F', and for any such x ,  y we have 

(2.4) f (a ,  b )  = { y ,  a){b,  x){y ,  x)' , mod X . 

Indeed let a be a square root of a. If a 6 F, then to compute f (a ,  b )  we can 
take E = F(n) ,  p = y-'(1 + xa).  and have 

- 1 = {y ,  -a){by< - x )  
{ -a ,  y}{-x. 1 - x2a} 

= { y ,  a){by2, x) mod X . 

We leave to the reader the verification of (2.4) in case a E F,  i.e., a E (F')?.  

(2.5) Proposition. The  map f has the following properties: 

(2.5.1) For all a x  ~ E P  we have 

in the sense that {a. b )  = Om if f (a ,  b )  = OX. 
(2.5.2) For ~ E F ' ,  a #  1 .  we have 

f ( a , l - a ) = 1 ,  and f ( a , - a ) = 1 .  

(2.5.3) For a x b and a x b' in P we have 

(2.5.4) Suppose a x b and a' x b are in P. I f  b is a norm from 

F(a1Im, (a')llm), then 

In  particular, this rule holds i f  either a or a' is in (Fa)". 
(2.5.5) For all a x  ~ E F ' x  F' we have 

f(am, b )  = {a, b)X = f (a ,  bm) . 
Proof of (2.5.1) : With notation as in (2.2) we have 

Proof of (2.5.2) : Let E = F(a) ,  where a! is an in-th root of a in some extension 
field of F. Then E,/F is a cyclic extension whose degree n = [ E  : F] divides 
m ; say m = rn. Then 

Hence 

and this is in X because {zja,  1 - z ja)  = 1 and ~ V , , ~ { z j ,  9 )  E X for all ,.3 E E .  

The case of f (a ,  -a) is handled similarly, replacing 1 - z ta  by -zia in the 
above. 

Proof of (2.5.3): Let a be an rn-th root of a. let E = F(a),  and let ,3 and 
,8' be elements of E such that NEIF,3 = b and iVE,,,3' = b'. Then NE/,,3,3' = 
bb', so 



NEIF$ for some ,i3 E E, then 

Proof of (2.5.5) : To compute f(am, b) we can take E = F, $ = b, and find 
{a, b) as the result immediately. For f(a, b"), let E,  a ,  r, and n be related to 
a as in the proof of (2.3.2) above. Then 

for some j .  Since dn = am = a, this is congruent modulo X to {a, b). 

(2.6) Remark. It looks like an interesting algebraic problem to prove that 

the rule f(aat, b) = f(a, b)f(ar, b) holds in general without any hypothesis. If 
this were so, then f would be bimultiplicative on its domain P. Since f(a, -a) 
= 1 is known, bimultiplicativity would imply skew-symmetry, i.e., f(a, b)f(b, a) 
= 1. Conversely, since f is multiplicative on the right, skew-symmetry would 
imply bimultiplicativity. Skew-symmetry would follow in turn from the rule 
f(a, b) = f(-ab, b) for a x b E P, for that would imply f(a, b)f(b, a) = 
f(-ab, b)f(-ab, a) = f(-ab, ab) = 1. These things are at least true in many 
cases. If m = 2, then f is skew-symmetric by (2.4), hence bimultiplicative. 
Also f is bimultiplicative whenever X = (K,F),, because in that case f(a, b) is 
characterized by the fact that (f(a, b))" = {a, b}. Hence bimultiplicativity holds 
if F is an algebraic number field or an algebraic function field in one variable 

over a finite field (cf. [9]). 

The map f is functorial in the following sense 

(2.7) Lemma. Let F' be a field containing F .  Then the following dia- 
gram is commutative 

where P', X', and f' have the same meaning for F' as P, X ,  and f do for F, 
and where the horizontal arrows are induced by the inclusion of F in F'. 

Let a x b E P and let a be an m-th root of a in some field containing F'. 
Let E = F(a) and E' = F'(a). Let F1 = E fl F'. Let 8 E E be such that 
NE,,,3 = b. Let 
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be the maps induced by the inclusions F c F, c F'. Then 

.iNE/F{a, ,3} = ~NF~/F(NE/F~{~,  3)) = R ( N E / F ~ { ~ ,  3))' 
oEGa1 (Fl/F) 

= n N E / F ~ { ~ ~ ,  , 
o E R  

if R is some chosen set of representatives for the cosets of Gal (EIF,) in 
Gal (EIF). Since ao,'a is a power of z for each o E R we have 

where a' = no,, pa .  Since E BF1 F' --, E' is an isomorphism we have then 

Hence ?(a, b) = NEtIF,{d, S')X' = jiNE,,{a, ,3)X = jif(a, b) as 

3 3. Fields of cohomological dimension 1 

The method of Birch works beautifully when F satisfies 
dition : 

(3.1) Br, F' = 1 for each finite extension F' of 

was to be shown. 

the following con- 

F .  

This condition is satisfied by fields of dimension 1 in the sense of [7, Ch. 11, 

5 31 and Cl-fields, in particular, function fields in one variable over algebra- 
ically closed fields (Theorem of Tsen), fields complete with respect to a discrete 
valuation with algebraically closed residue field (Lang), and finite fields. 

(3.2) Theorem. Suppose our field F with the primitive m-th root of 
unity, z ,  satisfies condition (3.1). Then K,F is divisible by m, and an element 
x E K,F such that xm = 1 is of the form x = {z, a) for some a E F'. 

Condition (3.1) implies, via the theory of "cyclic algebras", that P = F' x F'. 
Thus f(a, b) is defined for every pair a x b E F' x F', and each generator {a, b}. 
of K,F is an m-th power, so K,F is divisible by m. Condition (3.1) also im- 
plies that for each finite extension F' of F and each element a' E F', the norm 



map NEIFt : E' - (F')' is surjective, for E = F'((U')'/~). By the transitivity of 

of the norm, it follows that for any two elements a, a' E F', the map NElF is 
surjective for E = F(al/", (a')'/"). Hence f(a. b) is multiplicative in a, by (2.5.4). 
It is multiplicative in b by (2.5.3) and satisfies f(a, 1 - a) = 1 by (2.5.2). 

Being defined on all of F' x F' it is therefore a "symbol", and there is a 
homomorphism f,: K,F --, K2F/X such that f,({a, b)) = f(a, b) for all a, b E F'. 
We have fo(xm) = xX, by (2.5.5) for x = {a, b), and hence for all x E K,F. 
If xm = 1 it follows that x E X, i.e., x is of the form {z, a} as was to be shown. 

Suppose F is a function field in one variable over an algebraically closed 
constant field k. The map 

induced by x - {z, x) is surjective, as we have just seen. Is it bijective? When 

k is the algebraic closure of a finite field the answer is 'Lye~", as can be seen 
by viewing F as a limit of function fields over finite fields and applying results 
of [9]. In any case, the existence of "tame symbols" at the places of F shows 
that if x is in the kernel of (3.3), then the divisor of x is divisible by m. It  

follows that the kernel of (3.3) is isomorphic to a subgroup of the group of 
divisor classes of order m on F, so is contained in a product of 2g cyclic 
groups of order m, if g is the genus of F .  For example, if m = 2 and F is 

the function field of an elliptic curve of the form y2 = (x - e,)(x - e,)(x - e,), 
then the injectivity of (3.3) is equivalent to the statement that {- 1, x - ei) f 1 
in K,F, for each i = 1,2 ,3 .  I don't know whether this is true, even in the 
"classical" case k = C .  

Suppose F, is a subfield of F containing the primitive m-th root of unity 
z and such that 

(4.1) F' = F;(FS)" and F, n (F')" = (F;)m , 

in other words such that the natural map Fi/(F,)" --. F'/(Fm)" is bijective. Let 
X,, Po, and f, have the same meaning for F,  as X,  P, and f do for F. The 

condition 

(4.3) If a E Fj, and a is an m-th root of a in an extension field of F, then 

F(a)' = F,(a)'(F(a)')". 

Indeed, suppose a, b E F, and a x b E P. With CY as in (4.3) there is a ,3 E F(ac) 
such that b = NF,a,,Fi3. We must show that b is a norm from F,(cY). By 
(4.3) we have 13 = pOrm with ,!?, E Fo(a). By (4.1) and Kummer theory, the 

degrees [F,(cY) : F,] and [F(ar) : F] are the same, so NF,,a,,F,~o = NF,,,,,j0. Hence 

Since cm E F, we have c E F, by (4.1). Hence b is a norm from F,(a) as we 
wanted to show. 

(4.4) Theorem. Suppose F, is a subfield of F containing the primitive 
m-th root of unity Z, and satisfying conditions (4.1) and (4.2). Then the 
natural map (K2F0), --, (K,F), is surjective. 

Let U be an abelian group like the unit circle which is divisible and has 
elements of all orders. To prove the theorem it is enough by duality to show 
that any homomorphism s: K2F --. U which kills the image of (K,F,), in K,F 
also kills (K2F),. Let s be such a homomorphism and let so: K2Fo -+ U be the. 
homomorphism obtained by composing s with the natural map K,F, + K,F. 
Then so kills (K,F,), and consequently, since U is divisible, there exists a 
homomorphism to: K,F, -+ U such that so = t,". 

For convenience we will write simply s(a, b) instead of s({a, b)) for a, b E F', 
and similarly with so and to, when a, b E F,. We want to construct a homo- 
morphism t : K,F --, U such that s = tm.  To do this we try to define a "symbol"' 
t :  F' x F' -+ U as follows. For a, b E F', let, by (4.1), 

with a,, b, E F,, and put 

To check that this t(a, b) is independent of the choice of a,, x and b,, y in 
(4.5), note that, for example, a different choice of bo and y would be of the 
form 

is implied by bi = boz;," and y' = yv;' 



with v, E F, because of (4.1). The new value of t(a, b) is then tj 5. Local fields 

and this is the same as the old, since so = t;". Similarly, t(a, b) is independent 

of the decomposition a = a,xm. Thus t is well-defined. It is obviously bi- 
multiplicative. The key fact is 

(4.7) Lemma. Suppose a x b E P. Then t(a, b) = s(f(a, b)). (Here 

f :  P + K,F/X is the map defined in 9 2 ;  note that s(f(a, b)) is well-defined, 
i.e., s(X) = 1, because by (4.1) any element of X is of the form {a,, z )  with 
a, E Fi, so X is in the image of (K,F,),.) 

Suppose (4.7) is proved. Taking b = 1 - a we find, by (2.5.2), that 
t(a, 1 - a) = 1, for any a E F'. Hence t is a "symbol" and induces a homo- 

morphism t :  K,F --, U such that t({a, b)) = t(a, b). We have tm = s because, 

using t? = so, we find 

t(a, bIm = so(ao, b,)s(a,, ym)s(.xm, b,)s(x, Y)" 
= s(aoxm, boym) = s(a. b) . 

Hence s kills (K,F), as was to be shown. The theorem will be proved, once 

we give the 

Proof of (4.7) : Expressing a and b as in. (4.5) we have 

a x  b ~ P = + a , x  ~ , E P = + ~ , X ~ , E P , ,  

by (4.2). Using (2.5.1) for f, we can therefore writs 

bo) = to({ao, bo)) = t,(f,(a,, b,)") = s,(f,(a,, b,)) . 

Similarly, using (3.5.5) for f ,  

t(a, b) = so(fo(a0, boMf(a0, yrnMf(.xrn3 b)) 

By the functorality of f (2.7), we have sosf ,  = s - f  on Po, so 

Let F,, be a global field, i.e.. a finite extension of the field of rational 
numbers, or of the field of rational functions in one variable over a finite 
field. From now on we suppose that F is the completion of F,, at a place v, 
and that F, is the algebraic closure of F,, in F.  We still suppose z is a root 

of 1 in F ,  hence in F, too, of order m 2 1. 

(5.1) Proposition. a) The natural nmp (K,F,), --, (K,F), is surjective. 
b) Let 1 be any prinze number. Then (K,Fo)L --. (K,F), is szirjective, 

whether or not F contains the 1-tlz roots of 1. 

To prove (a), via (4.4), we will show that the pair F, and F satisfy con- 

ditions (4.1) and (4.2). The condition (F')" n F, = (F,)" holds because F, is 

algebraically closed in F. On the other hand, we have F' = F;(F')" because 

Fi is dense in F' and (F')" is open in F'. (This last is obvious if F is the 

real or complex field ; in the non-archimedean case "Newton's method" furnishes 
a root x of .xx = a for a such that v(a - 1) > 2v(m).) Condition (4.2) is 
implied by (4.3), and (4.3) is satisfied because if a is an m-th root of a E F,, 
then FO(a) is dense in F(a), so that F(a)' = F,(cr)'(F(a)')". 

We now prove (b). If I is equal to the characteristic of F then there 
is nothing to prove, because (K,F), = 0. This is a consequence of the fact 

that [F : FL]  = 1. The map x H xL is an isomorphism of F1fl onto F ; hence 
the map 

gives an isomorphism K,F1-' G K,F. It follows immediately from this that the 
K,-norm is surjective for the extension F1-'IF, and that K,F is uniquely div- 

isible by I. 
Suppose 1 is different from the characteristic of F. Let F; = F,(w), and 

F' = F;F = F(w), where w is a primitive I-th root of unity. It is easy to see 
that F; is algebraically closed in F' and that F'IF and F;/F, are Galois with 
the "same" Galois group, G, which is of order prime to 1. Part (a) of the 
Proposition, applied to the field F' with m = I, shows that (K,F3, -+ (K,Ft), is 
surjective. It follows that 

is surjective because the functor A w AG is exact on the category of G-modules 

killed by I. The fact that (K,F), = (K2Ff)f? and similarly for F,, can be 



proved by a simple argument using the K,-norm as. for example, in the proof 
of Lemma 3.3 in [9]. 

(5.2) Theorem. Locally compact non-discrete fields E have the following 

property: If E contains a root of unity z of order m 2 1, then every element 
x E K2E such that xm = 1 is of the form x = {z, a} with a E E'. 

Global fields have this property. This is Theorem 6.1 of [9] when m 
= 1 is prime, and the case of general m follows by induction on m. (If 1 is 
a prime dividing m and xm = 1 we can assume inductively that xL = {zz, b). 
Then (x{z, b}-l)l = 1, so, by the prime case, we have x{z, b}-I = {PIL ,  c} = 
{z, cmlL}, and finally x = {z, bcmlL}.) The property in question carries over to 

direct limits, because K, commutes with direct limits. Hence the field F, of 
Proposition (5.1) has the property, for F, is a union of global fields. The 
property carries over to F by part (a) of the Proposition ; and any locally 
compact non-discrete field is isomorphic to such an F. 

(5.3) Remark. When F is non-archimedean and m is prime to the residue 

characteristic of F, Theorem (5.2) is due to J. E. Carroll [3]. Carroll's proof 
is local, whereas ours is global. 

We want now to investigate the whole torsion subgroup (K,F),,,, of K,F, 

and its relation to K,F,. (Recall that K,FO is a torsion group, by Garland's 
theorem in the number field case, and by [I ,  Ch. 11, 5 21 in the function field 
case.) If F is the complex field C .  then both groups vanish, for it is well 

known (and follows easily from (3.2)) that the K, of an algebraically closed 
field is uniquely divisible. 

Suppose now the place v is not complex. i.e., F is not isomorphic to the 
complex field C.  Then F contains only a finite number of roots of 1. Let 
m be the number of roots of unity in F and let p, = (F'),,,, be the group 
they form. Consider the diagram 

4' ( K J )  tors 

where a is induced by the inclusion F,  c F and where 3 and ,3, = ,3a are the 
homomorphisms given by the m-th power local norm residue symbol 

/3,, 8 : {a. b} --+ (a, b)m . 
The maps ,3, and ,8 are surjective because the norm residue pairing is non- 

degenerate, and the natural map pm -, F,,'(FJm = F'/(F')" is injective. As we 

shall see below, a is surjective as well. Hence the statement ",3, is bijective" 
is equivalent to the conjunction of the two statements "a is bijective" and ''13 
is bijective". The first of these three statements has been conjectured by 
Lichtenbaum. The second is mentioned in problem 10, p. 19 of [4]. The 
third is an old hope of mine [9]. I would certainly guess that the maps a ,  p, 
and 13, are isomorphisms in all cases. The theorem below summarizes what I 
can prove at present in that direction. The real case is easy, and the results 

on the parts prime to the residue characteristic in the non-archimedean case 

are essentially due to Carroll [3]. 

(5.5) Theorem. 1) The three maps a, P ,  and 3, in diagram (5.4) are 
surjective in all cases. 

2) They are bijective in the function field case (char F # 0) and in case 
F is the real field. 

3) Suppose F is a finite extension of QL for some prime I. If F C QL(a), 
where a is an 1-power root of unity, then the maps a ,  3, and Po are bijective. 
In any case, the kernel of each of the three maps is isomorphic to (QL/ZJ 
for some integer r, and Ker Po is isomorphic to the direct sum of Ker a and 
Ker ,B. As F increases, the "corank" r increases or stays the same, jor each 
of the three kernels. 

We first treat the case F = R, the real field. If x and y are two real 
numbers and x + y = 1, then one of the two is > O  and is therefore an n-th 
power for every integer n > 0. It follows that the subgroup of R' @ R' gen- 
erated by the elements x @ y with x + y = 1 is divisible, and is therefore a 
direct summand. Hence the quotient, K,R can be viewed as a subgroup of 

Since R (2 R is torsion-free it follows that the torsion subgroup of K,R is of 
order 1 or 2. Since $({-1,-I})=(-1,-I) ,= -1. the order is 2, and p 
is an isomorphism. If we replace R by the field R, of real algebraic numbers, 

the same argument goes through. word for word, showing Po is an isomorphism. 
Hence a is an isomorphism. 

From now on we assume F is non-archimedean. Let 1 be a prime number 

and, if C is an abelian group, let C{l} denote the I-primary part of C, i.e., 
the subgroup of elements of 1-power order. It obviously suffices for us to 



discuss separately, for each 1, the maps induced by 6.. ,3, and ,3, on the 1-primary 
parts of the groups involved, as in the diagram 

and we hope it will create no confusion to denote these induced maps by the 
same symbols as the original maps, rather than by something like cu{l), etc. 

We begin with the case in which 1 is not equal to the characteristic of the 
residue field, and will show in that case that the maps ,B, and are bijective, 

hence ac also. As remarked above before the statement of the theorem, $, and 
,3 are bijective. To show they are injective, it is enough to show that Ker ,3, 
and Ker ,,3 contain no elements of order 1. The same argument works for 3, 
as for ,9 ; it is due to Carroll [3]. Wc give it here, for p, for the convenience 

of the reader. 
Assume first that F contains the 1-th roots of unity. Then 1 lm, and if z 

is a generator of p,, then z, = zmlL is a primitive 1-root of 1. By (5. I), any 

element of order 1 in K2F is of the form {z,, x}. Suppose such an element is 

in Ker 13. Then 1 = ,3({z,, x}) = (z,, x) ,  = ( z ,  x),, where ( , )L denotes the 1- 

power norm-residue symbol. Since any unit in F is a power of z times a 1- 

unit, and since 1-units are 1-th powers, it follows that (u,x), = 1 for all units 
u.  Hence x is a unit modulo I-th powers, and so is a power of z modulo 1- 
th powers. This implies that {z,, x) = 1, as we wanted to show, because {i,, Z} 
= 1. Indeed we have {z,, z} = {z. z)mlL = {z, - l)miL, so this is killed by 1 
and by 2, and is therefore 1 if 1 is odd. I t  is also 1 if 1 = 2 and 4 divides 

m, because {z, - 1)' = 1, If 1 = 2 and 4 does not divide m then our element 

is { z m ,  - 1 = {- 1 - 1 In the function field case it is 1, because K2 of 

finite fields is {I). In the number field case we must show {- 1, - 1) = 1 in 

K2Q, for L odd, and we can assume 1 3 (mod4). An argument of A. 
Waterman for this runs as follows. Solve the congruence x" yy? ZE - 1 (mod l), 

taking x to be an 1 - 1 root of 1 in ZL. By Hensel's lemma, there is a y E 

Z1 such that x2 + y 2 =  -1. Then 1 = {-2 , -y2 )=  {-1,-1){x',y2), and 
since x2 is a root of unity of odd order we conclude that {- 1, - 1) is of odd 
order, so is 1. 

Now suppose 1 is equal to the residue characteristic. If char F = 1, we 

have [F: FL] = 1 = [F, : F@ and it follows, as explained in the proof of (5.l)(b) 

that the groups in diagram (5.41) are 0. and there is nothing to prove. This 
completes the proof of part 2) of the Theorem. 

From now on we assume F is a finite extension of Q, .  We first show 
that Ker ,3 and Ker j3, are divisible. In case of 9, this is an immediate con- 
sequence of a theorem of C. Moore ([6], see also the appendix of Milnor's 

book [j]).  The methods of ,Moore and Milnor can presumably be adapted to 
the case of 3,. One can also deduce the divisibility directly from the connec- 
tion between K, and Galois cohomology. as follows. Consider the map 

introduced in [9, Th. 3.11. The hypothesis "h, iizjective" of the corollary of 
Theorem 3.4 of [9] is satisfied for the field Fo because F, is a union of global 
fields, and the map h, is injective for global fields by Theorem 5.1 of [9]. 
Therefore. by the above-mentioned corollary, Ker /z is the maximal divisible 
subgroup of KIFo{l), and K2F,Jl) is the direct sum of Ker h and a subgroup 
mapped isomorphically by h onto H2(F0, 2,(2)){1}. Now in fact the map h is 
just another version of our map ,3,, via a canonical isomorphism 8 : H2(Fo, ZL(2)) 

p {  We will construct such an isomorphism 8 below, but we leave to the 
reader to check that 8 0 h = 9, (at least up to sign), for all we really need 
here is that Ker Po = Ker h, and this equality follows from the existence of 8. 

Namely, Ker h is killed by ,3, because it is divisible, and since Po and h are 
surjective, the existence of 8 shows that their images have the same order, 
and hence their kernels are equal. 

To construct 8, note first that E, ++ Eo F is an equivalence of the 
category of finite separable extensions of Fo with the category of finite separ- 
able extensions of F. Therefore H2(Fo, Z1(2)) -- H2(F, Z,(2)). By [9, Cor. of 
Prop. 2.21 we have an isomorphism 

H2(F, Z1(2)) lim H2(F, Z/ln2)(2)) 
T 

because H1(F, Z/lnZ(2)j is finite for each n (indeed Hi(F, M) is finite for all 

i and all finite M).  By local duality, [7, Ch. 11, 5 5.1, Th. 21, this group is 
dual to 

Since there is only a finite number of roots of unity in F, this last is dual to 
HO(F, (Q,/Z,)(l)) = p,{l), and we get 8 by double duality. 



This concludes our proof that 3 and 3, are surjective with divisible kernels. 
Next we show that a has the same property. Consider the exact commutative 

diagram 

90 
0 + Ker ,3, + K2Fo{l} pm{l} 0 

(5.6) 1 fl I I a1 
I a2 

v " p 4 
0 ---+ Ker ,3 - - =  K,F{l) ----+ pm{E) + 0 . 

Since a, is injective, it follows from (5.l)(b) that a, maps (Ker ,3,), onto (Ker ,3),. 

From the fact that Ker Po is divisible and Ker ,i3 is an /-primary torsion group, 
it follows easily that a, is surjective and its kernel divisible by 1, hence div- 

isible. (One way to see this is to apply the snake lemma to the diagram 

I 
0 ---+ (Ker $,), -+ Ker ,3, Ker 3, -+ 0 

1 v I @-I 1 lal 
0 ---+ (Ker p), ---+ Ker 13 ---+ Ker ,3 ---+ 0 .) 

Now applying the snake lemma to (5.6) we find, since a? is bijective, that 

Ker a = Ker a,,  so is divisible, and Coker a = Coker a,, so is zero, as we 
wished to show. Now parts 1) and 2) of the Theorem are proven. 

Since all three maps in (5.41) are surjective, their kernels form an exact 
sequence 0 + Ker a -. Ker 130 -+ Ker w, and since Ker a is divisible, this 

sequence splits. Since Ker ,3 and Ker ,3, are divisible the exact sequences in 

(5.6) split and we have isomorphisms 

and 

(5.8) K,F{l) = Ker ,8 O p,{1) . 

Suppose F contains a primitive 1-th root of unity z,. Let A (resp. A,) be 

the group of all .K E F' (resp. F;) such that {z,, x) = 1 in KIF (resp. K,F,). By 
Theorem (5.2) the map x H {z,, x }  induces an isomorphism 

and similarly (cf. the proof of Theorem (5.2)) we have an isomorphism 

Let r and r, be the integers defined by (F': A) = 1' and (F;: A,) = 1'" .en 

(K,F), has order l7 and (K,F,), is of order lT0. By (5.7) and (5.8) we conclude 
that (Ker ,3), is of order IT-, and (Kzr J,), of order 1'0-I. Since Ker j and 
Ker F, are I-divisible I-primary torsion groups it follows from this that they are 
isomorphic to (Q, /Z,)'-' and (Q, /Z,)Trl, respectively. 

Suppose F' is an extension of F of finite degree, n. Then the kernel of 
the natural map KIF - K 2 F  is killed by n. Hence its intersection with Ker ,3 
is finite, and it follows that the image of Ker ,3 in K,F' has the same "corank", 
r - 1, as Ker ,3. Thus the corank of Ker ,3 cannot decrease when we enlarge 
F. A similar argument shows that the same holds for Ker i3, and Ker a .  

We have now proved everything in the theorem except the first sentence 

of part 3). For that we use 

(5.9) Lemma. Let E be a field, n an integer 2 2 ,  and a, x E E' such 
that xn+l - xn - x + 1 - a = 0. Then {x, a)" = 1 in K,E, and if a is a j-th 
root of unity, then {x, aId = 1, where d is the g.c.d. on n and j. 

The given relation between x and a can be written a = (1 - x)(l - xn). 
Hence 

{x, a), = {x, 1 - x)~{x, 1 - xn), = {xn, 1 - p) = 1 

as claimed. If a j  = 1 then also {x, a)f = 1, so { x ,  a)" 1. 
Let us suppose now that F = Q,(a), where a is a primitive I" root of 

unity for some Y 2 1. Let v be the valuation of F,  normalized so that v(F') 
= Z. Then ~ ( l  - a) = 1 > 0, and consideration of the Newton polygon of 
the polynomial Xn+ '  - X n  - X + 1 - a shows that it has a unique root n 

= x, such that .v(x) = v(1 - a) = 1. Because it is unique this root is in F, 
hence in F,. Let u, = x / ( l  - a). Then 

and consequently 

This shows that the I" elements u,, for 2 < n 2 I' + 1 generate the group U 
of units in F,, modulo UL, for if Ui denotes the group of units = 1 mod (1 - a)i 
then un generates Un-, modulo U ,  for each n 2 2, and we have Uf 3 U,,,,, 
as is well known (cf., e.g., [5, Lemma A.41). We define, specially, u, = 1 -a .  
Then the 1' + 1 elements L[,, for 1 5 n 2 1" + 1 generate Fi modulo (FJ1. 
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On the other hand, putting 2 ,  = nLY-', a primitive I-th root of unity, we 
have 

{z,, u,)  = {fl, 1 - = 1 , 

and for n  2 2 

{z,, un) = { L I ~ ~ - ~ ,  lln) = fl, - ( 1 2  a } l u - l  = {(I. xx}Lv- '  

By the lemma we conclude that for n  2 1 we have {z,, u,) = 1, if V $ n .  
Hence, for I 5 n  5 1' + 1 we have {z,, u,) = 1 except possibly for n  = 1'. 
Since the 1' + 1 elements u,, 1 5 n  5 I" + 1, generate F, modulo I-th powers, 
it follows that (K,F,), is generated by the single element {z,, u~,),  because every 
element of (K,F,), is of the form {z,, x), as one sees on passing to the limit 

with Theorem 6.1 of [9]. Moreover 

if z is a primitive m = (1 - 1)lV root of 1 such that zl-' = a.  Since z $ (F'),, 

and the I-th power norm residue symbol is non-degenerate, the map x H (z, x,) 
is not identically 1. Therefore there is some n  5 1' + 1 such that (z, u,), # 1. 
The only possibility is n = 1'. Hence &({z,, u,,)) # 1, and it follows that 
(K,F,), is cyclic of order 1, generated by {z,, u,,), and that ,3, is injective. 

Exactly the same argument, with F, replaced by F throughout, shows that 
,a is injective. The only difference is that we must appeal to (5.2) to know 

that every element of (K,F), is of the form {z,, x). Thus Ker 3, and Ker ,!3 are 
0 when F = Q,(a), where a is a primitive 1' root of unity. If we have only 
Q, c F c Ql(n) the same conclusion holds, because, as we have seen, Ker Po 

Ker ,3 can not decrease in size when we enlarge F .  
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Isomorphisms of Galois Groups of Algebraic Number Fields 

K ~ J I  UCHIDA 

Let Q be the field of the rational numbers. Let f2 be a normal algebraic 

extension of Q such that f2 has no abelian extension. Let G be the Galois 

group of Q over Q. Neukirch [3,4]  has shown that every open normal sub- 

group of G is a characteristic subgroup, and has proposed a problem whether 
every automorphism of G is inner. This problem is solved affirmatively, i.e., 

we prove 

Theorem 1. Let G, and G? be open subgroups of G ,  and let a :  G, -+ G, be 
a topological isomorphism. Then o can be extended to an inner automorphism of G. 

Neukirch has stated his theorems in the case Q is the algebraic closure or 
the solvable closure of Q. The author proved Theorem 1 in these cases. 
Theorem 1 of the above form is due to Iwasawa who noticed that Neukirch's 
theorems are valid for every -0 as above. Ikeda also proved Neukirch's problem 
independently. 

Let N be any open normal subgroup of G contained in G, and G,. We 
put H = GIN,  H, = G,/N and H, = G,/N. Neukirch has shown o(N) = N. 
Hence o induces an isomorphism a,: H, -, H2. We only need to show that 
can be extended to an i ~ e r  automorphism of H for every N .  

Lemma 1. Let h be any element of H,. Then cyclic subgroups generated 

by h and a-\-(h) are conjugate in H. Especially there exists an integer r which 
is prime to the order of h such that ~ - ~ ( h )  is conjugate to hT in H .  

Lemma 2. Let n be the order of H, and let p be any prime number such 

that p r 1 (mod n). Let F ,  be a finite field with p elements, and let A = F,H 

be the group ring of H. Tlzen there exists an open normal subgroup A4 of G 
contained in N such that NIM is isomorphic to A as an H-module. 

Lemma 1 comes from Nsukirch's theorems, and Lemma 2 is the easiest case 
of the embedding problem. We take M as in Lemma 2. Then o induces an 



isomorphism o, which is an extension of a,, i.e., zo,(x) = ox;r(x) for every 

x E G,/M, where ;r is a natural projection of GIM to H. An additive group 
A is considered as a subgroup of GIM. As A is contained in G,/M, o,(a) 
is defined for any a E A .  Identity element of H is written as 1. Let h be 
any element of H,. If we consider h as an element of A .  it holds 

because the operation of h onto A is induced from an inner automorphism by 

an element of G,/M. Let B = F,H, be a subring of A .  For any element a 
= Xa,h E B, a, E F,, h E H,, we put 

a.v(a) = 2a,a,(h) . 

Then it holds 

for any a E B. Let E be an idempotent of B. A left ideal AE is a normal 
subgroup of G / M  which is invariant by as Neukirch's theorems show. Hence 
it holds 

for some /3 E A .  As 1 - E is also an idempotent of B, 

for some r E A .  By multiplying E from the right, it holds 

Lemma 1 shows that a,(l) is conjugate to r 1 in G / M  for some r E F:. All 
the conjugates of 1 are just the set H considered as a subset of A .  Hence 
a,(l) = rho for some h, E H,  and then 

for every idempotent E of B. Let h be any element of H, and let m be its 
order. As p = 1 (modm), F, contains a primitive m-th root ,u of unity. Then 

are idempotents of B for i = 0, 1, . . . , rn - 1. Then above relations for these 
E~ show that 

for every h E H,. This shows that a, can be extended to an inner automor- 
phism of H by h,. 

Corollary 1 (Neukirch's problem). Every automorphism of G is inner. 

Corollary 2. Let K, and K2 be subfields of .? of finite degrees. Let G, 

= G(Q/K,) and G, = G(.?/K2). If G, a i d  G, are isomorphic, K ,  and K? are 

conjugate. 

Corollary 3. Let K be a subfield of I? of finite degree and let GK = G(-Qi'K). 
Then 

Aut GK/Inn G, -- Aut K . 

Corollaries 1 and 2 are easy from our theorem. Corollary 3 was pointed 

out by Neukirch. In the above, Aut G, and Inn G, are the goup  of the 

topological automorphisms of G, and the normal subgroup of the inner auto- 
morphisms, respectively. Aut K is the automorphism group of the field K, 
which is G(K/Q) if K is normal over Q. Theorem 1 shows that every auto- 

morphism of G, is extended to an inner automorphism of G. Then this corollary 

holds if the centralizer of G, is trivial. The method of the proof of Proposition 

1 in [I] is valid also in this case, and it shows the centralizer is trivial. 
In Theorem 1 we assume two subgroups are open. But this assumption 

can be weakened. 

Theorem 2. Let GI be an open subgroup of G and let G, be a closed sub- 
group of G. If G, and G2 are isomorphic as topological groups, G? must be open. 

Replacing by a suitable subgroup if necessary, we may assume that G, is 
a normal subgroup of G. Let K, and K, be fixed subfields of G, and G?, 

respectively. We first show that K, c K2. We fix an isomorphism o :  G, -+ G,. 

As K,K, is a Galois extension of K2 of finite degree, corresponding subgroup 
H, of G, is open and normal. Then H I  = o-'(H,) is an open normal subgroup 

of G,. We must show that H, = G,. 
Let p be a prime number. Let v be a valuation of 52 which is an extension 

of the p-adic valuation. Let D, be the decomposition subgroup of v in GI. 

Neukirch theory shows that D, = a(D,) is a decomposition subgroup of a valuation 
w of Q in G,. As w is also above p, completions K,,, and K2,, are extensions 



of Q,. They have the same ramification index and the same residue class field. 
Now let v be unramified in the extension K ,  j Q .  As v and w are conjugate, 
K,,, is also an unramified extension of Q ,  of degree [K,,,: Q,]. As K,,, is 
an unramified extension of the same degree, it holds (K,K,), = K:,,. This 

shows D, c Hz,  and then Dl c H,. Then it must be H ,  = G ,  because any 
unramified prime of K ,  splits completely in the extension corresponding to G,/H, .  

Now let L ,  be an algebraic extension of K ,  of finite degree, which is normal 
over Q .  Let F, be a corresponding subgroup of G,. Let F, = a(F,) and let 
L ,  be the fixed field of F,. As F, and F2 are isomorphic, above argument 
shows L ,  c L,. Then M ,  = LlK2 is a normal subextension of L,/K,. There 
exists a normal subextension M ,  of L , / K ,  corresponding to M ,  through the 
isomorphism o. Let v and w be as above. Then 

holds. As M ,  contains L, and as w and v are conjugate on L,, 

holds. Then it holds 

e .  L = M , .  This shows L,, ,  = M ,,,, i.e., a prime of M ,  corresponding 
to v splits completely in L,. As v is arbitrary, it must be L ,  = M,. Then 
L2 = M ,  and 

[ L ,  : K,] = [L ,  : K,] = [L,K, : K,] 

for any L,. This holds only when K ,  = K,. This shows G, = G ,  is open. 
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Remarks on Hecke's Lemma and its Use 

1. Leibniz' discovery, early in his career, of his famous series for ;;. was 
not only, in the eyes of his contemporaries, one of his most strilung achieve- 
ments (on which Huyghens, who had hitherto regarded him as a talented young 
amateur, immediately congratulated him as one likely to preserve his name for 
posterity) ; it also paved the way for the no less sensational summation by Euler, 
some fifty years later, of the series we now denote by C(2n). In retrospect, 

we see that these were the first examples of relations between periods of abelian 
integrals (in this case, the one which defines r) and special values of Dirichlet 
series, or (more generally) of automorphic forms. As a further typical instance 

of such a relation, I will merely quote here Jacobi's famous formula 

expressing the period 

of the "standard" elliptic integral of the first kind as a modular form with 
respect to the "transcendental" module r (the ratio of the periods), while the 
"algebraic" module k2 is expressed as a modular function of r (the quotient of 
two "Thetanullwerte"). Incidentally, that formula does not seem to have been 

generalized yet to theta-functions of more than three variables (cf. [7] ) .  
Although a number of the best mathematicians of the last and of the present 

century have studied various aspects of this subject, it may fairly be said that 
only its surface has been scratched so far; nor will the present paper (which 
should be regarded as a "report on work in progress") attempt to do more. 
My purpose is merely to point out the usefulness of Hecke's classical lemma in 



dealing with some of the problems raised by the evaluation of the periods of 
certain abelian integrals. 

Broadly speaking, Heckc's lemma establishes the relation between automor- 
phic forms and Dirichlet series satisfying functional equations of the classical type. 
Hecke introduced it in connection with the full modular group GL,(Z) and some 
of its subgroups of small index; it is no less useful, however, in the study of the 
discrete subgroups of GL,(k), where k is any algebraic number-field (cf. e.g. [6]). 
Even the formulation I gave for it in connection with the latter problem ([6], 
p. 132) is not quite general enough. however, for some of its most interesting 
applications ; my first step will be to formulate it with the proper degree of 
generality. 

Hecke's Lemma. Let go, F' be two continuous functions on R:, such that 

both V ( Y )  and go'(y-l) are O(e-Au), with some A > 0, for Y --, fa, and O ( V - ~ ) ,  

with some B 2_ 0, for Y --, 0. Put 

then these integrals are absolutely convergent and define lzolomorphic functions 
f ,  f' in the half-planes Re(s) > B and Re(s) < -B, respectively. Let now R(s) 

be a rational function of s, vanishing at s = co, and assume that, for some 

a > B and some a' < -B, t -+ f(a + it) and t + f'(a' + it) are 0( l t / -2) .  Then 
the following two assertions are equivalent : 

( i )  f (s)  - R(s) and f'(s) - R(s) can be continued to one and the same 
entire function in the s-plane, bounded in every strip a, 5 Re(s) 5 cr?; 

(ii) for all ?I > 0, we have 

where Res means the residue, and the sum is extended to all the poles of  R(s).  

The lemma, as formulated in [6], p. 132, is the special case R = 0 ; the 
proof remains of course exactly the same." 

2. Some of Hecke's early applications of his lemma concerned groups 
which were not commensurable with the modular group; and it is perhaps 
worthwhile to emphasize here that its scope is actually wider than is generally 
realized. Take for instance any fuchsian group G in the upper half-plane, and 

1 )  A rather broad generalization wiIl be found in S. Bochner, Ann. of Math. 53 ( 1951 ), 
pp. 332-363. I am indebted to J.-P. Serre for this reference. 

assume that it has at least one cusp; then it has infinitely many, including all 
the transforms of that cusp under G .  Normalize the group by assuming that 

ico is one such cusp, i.e. that G contains a substitution t - t + p, with p > 0. 
Let p be another cusp of G ;  put t' = (p  - t)-l, and call G' the transform of 
G by t - t' ; then ico is a cusp of G', Ct-; and G' contains a substitution t' - t' + q 

with q > 0. 
Let A(t )  be an automorphic form of degree - k  for G, holomorphic every- 

where including the cusps ; then A(t )  has at ico a power-series expansion in 
exp (',zit/ p) ; call a, its constant term, and put 

This has a power-series expansion: 

absolutely convergent in the upper half-plane. Similarly, put : 

this is an automorphic form for G' ; call b, the constant term of its expansion 
at ico ; then we can write 

and we have 

F(r) + a, = (-pT)-k[~(A) pqr + b,] . 

Now put, for Y > 0 : 

and apply Hecke's lemma. We find: 

and we conclude from the lemma that f ,  f' can be continued to one and the 
same meromorphic function with the same poles and the same residues as R(s).. 



In this manner, we have associated Dirichlet series with functional equations 
to every pair of cusps and every automorphic form for G. Whether such series 
have an arithmetical significance, when G is not comnlensurable with the modular 
group, will remain an open question for the moment; for such a group G, of 
course, the theory of the Hecke operators cannot be applied. 

3. For k = 2, the automorphic form A(t) defines an invariant differential 

A(t)dt of the second kind for G, and a differential of the first kind if it is a 
cusp form (i.e. if a, = 0, and b, = 0 for every cusp p # im) ; to simplify 
notations, we will consider only this latter case. Put 

In the formulas of no. 2, put k = 2, a, = 0, b, = 0, R(s) = 0.  In the functional 
equation f(s) = f'(s), substitute s + 1 for s,  and divide both sides by s/27t. 
We find a functional equation F(s) = Ff(s), where F,  F' are respectively defined, 
in suitable half-planes Re(s) > B and Re(s) < -B, by the series 

These can be written as 

where we have put 

We apply Hecke's lemma, where we have to take into account the fact that we 
have divided the functional equation by s/2;c, so that F, F' have a simple pole 
at s = 0, with the residue 2 s .  f(1). This gives : 

In particular, if r is any element of G. we can take p = r(im), and I(p) is 
then the period of A(t)dt belonging to the cycle defined by r .  

4. The principles of the above proofs can also be applied to more general 

problems ; actually, they were suggested by the proof given by Goldstein and 
de la Torre [3] for the transformation formula of log 547) under general modular 
substitutions, which may now, in retrospect, be regarded as an application of 
the above method to the differential A(r)di = d log ~ ( r ) ,  combined with the 
knowledge of the functional equation for "Hurwitz' zeta-functiont. In their 

case, of course, the presence of double poles in thz functions denoted above by 
F(s), Ff(s) requires greater care iF the  evaluation of the residues ; but the basic 
idea in their proof is the same as described above. 

Another interesting case is the one where the group is Hecke's group To(N), 
and the invariant differential A(t)dt is the Mellin transform of the zeta-function 
of an elliptic curve E of conductor N, with complex multiplication, defined over 

Q .  Let k be the imaginary quadratic field generated by the complex multipliers 
for E ;  let w be one of the periods of a differential of the first kind on E, defined 
over Q .  Well-known conjectures had led to expect that the periods of A(t)dt 
are of the form Ga, with a E k, and this has been verified by Shimura [5b] by 
using Hecke operators ; closely related results had already been obtained by Hecke 
[4] by a method depending on the direct calculation of the periods. Here we 

merely wish to point out that the method explained above, combined with 

Damerell's theorem [I],  leads immediately to the conclusion that the periods of 
A(t)dt are all of the form Ga, where a is an algebraic number. It may be 

surmised that the conclusion a E k could be derived from Shimura's work on 
the same subject [5c] ; but I must leave this question open for the time being. 

5. The method explained in no. 3 applies equally well to the periods of 

Eichler's integrals (see [2] and [5a]). Here it will be convenient to normalize the 

group G of no. 2 so that the two cusps to be considered are at i m  and at 0, 
I 1. Let A be a holomorphic form and that G contains the substitution 7 .r T 

of degree -k. where k is an integer 2 2  ; as before, call a, the constant term 
in its expansion at i w ,  q the period of the form A(-l/.;)r-k7 and b, the con- 
stant term in its expansion. We writs again: 

and now, changing our earlier notations, we will write 



We apply Hecks's lemma exactly in the manner explained in no. 2, and con- 
clude that @, !?- satisfy the functional equation 

where both sides have simple poles at s = 0 and s = k, with residues respectively 
equal to -ao and to ikb,. In view of the definition of @ and Y this gives 
cp(0) = -ao, +(0) = - b,. 

Now we replace s by s + k - 1 in this functional equation, and then divide 
it by (s + 1) . - . (s + k - 2) ; the new functional equation can be written as 

where we have put 

Moreover, in this new functional equation, both sides have simple poles at s = 1,0 ,  
- 1 , .  . .  , 1 - k, with residues given in an obvious manner in terms of the 

values of 9, (or of +,) at these points, i.e. in terms of cp(O), cp(l), . . . , ~ ( k  - I), 
and of b,. 

On the other hand, put 

and similar formulas for G1(r) ; F,, G, are essentially no other than the "Eichler 
integrals" for the automorphic form A(r) and its transform under r + - l / q r .  
Then Hecke's lemma, applied to the functional equation between 0, and F1, gives : 

When the two cusps of G under consideration are the transforms of one another 
under an automorphism 7 E G, then (as in the special case discussed above in 
no. 3) the polynomial in the right-hand side gives the corresponding period of 
the Eichler integral F,(:). A typical case of this formula (the one correspond- 

ing to the modular form d(r) %f degree k = - 12) had already been described 
by Shimura [5a]. 

6 .  In conclusion, it seems appropriate to mention one important motivation 
for the calculations described above. 

There is, by now, a fair amount of well-documented conjectures on the 

zeta-functions of elliptic curves over Q ; moreover, most of them (with the notable 
exception of the Birch-Swinnerton-Dyer conjecture) have been verified for curves 
with complax multiplication. On the other hand, we are still unable even to 
guess what the corresponding facts may look like for elliptic curves over an 
algebraic number-field k. 

The known facts suggest at any rate that the zeta-function of such a curve 
is the Mellin transform of a modular form for the group GL,(k). More precisely, 

let k have r archimedean real places and s imaginary places, its degree being 
r + 2s ; the Riemannian symmetric space for GL,(k @ R) is the product of r 

copies of the PoincarC upper half-plane and of s copies of hyperbolic 3-space ; 
it has a natural complex structure if s = 0, but not otherwise. Then (cf. [6, 
p. 144]), in view of the available evidence, one many surmise that the zeta- 

function is the Mellin transform of a harmonic differential form of degree r + s, 
invariant under a suitable congruence subgroup of GL,(k), and of its dual (or 
"star") which is of degree r + 2s ; if s = 0, it amounts to the same to consider, 
instead of this form, the corresponding holomorphic form of degree r. As we 

have seen above, the more precise conjectures which can be made (and partly 
verified) in the case k = Q depend upon the calculation of the periods of these 
differentials. which can be carried out at any rate when the curve has complex 
multiplications. Thus one has some right to expect that a calculation of the 

periods of the miferentials in question for a curve with complex multiplication, 
over a field k f Q, might lead to more precise conjectures concerning the general 
case. I have little doubt that Hecke's lemma would prove its usefulness even 
there. 
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Dirichlet Series with Periodic Coefficients 

Y OSHIHIKO YAMAMOTO 

Iv 

0. Introduction 

Let p be an odd prime and (alp) denote the Legendre symbol mod p. We 

define S: (N, r positive integers, 1 5 r 2 N) by 

Clearly S: = 0 and Sy = (- 1 /p)S$-,+,, so we have S: = 0 for p = 1 (mod 4). 
Dirichlet showed 3 = (2 - (2/p))h(-p) for p E 3 (mod 4), where h(-p) is 
the class number of the imaginary quadratic field Q( J r p ) .  

According to Karpinski [6], the sum 9: for certain small values were first 
studied by Gauss and Dedekind [3]. Their results were extended by Karpinski, 
Lerch, Holden, Y amamoto, Berndt and Johnson-Mitchell [ I ,  2 ,4,6,7,8] .  These 
results give equalities between linear combinations of ST'S and h(-p)'s. 

We give here more general treatment of character sums as special values 
of periodic Dirichlet series, which contains formulas for 

(;) log sin (f - +) 1 
1 

(cf. Lerch [7]) as well as the results mentioned above. 

1. Periodic sequences P ( N )  

Let c = {~(n)),",, be a sequence of complex numbers of period N 2 1 ; c(n) 

= c(n + N). We often identify the sequence with the function defined on the 
natural numbers N taking values in the complex numbers C. The set of all 
sequences of period N makes a complex vector space C(N) by the natural iso- 
morphism C(N) 3 c H (c(l), . , c(N)) E C.'. Define 6, E C(N) by 



then clearly So, . . , Ex-, is a basis of C(N). We define an inner product 

of c, and c, in C(N). Then the basis above mentioned is an orthogonal basis 
of C(N). Let +(n) be a Dirichlet character mod u (not necessarily primitive), 
then + E C(ku) for k = 1,2, . . . For a positive integer t we d e h e  +(t )  E C(tu) by 

+(l)(n) = 
othenvise . 

Put 
X(N) = {+(t )  1 + is a Dirichlet character mod u, tu = N} . 

It is easy to see the following 

Proposition 1.1. X(N) gives an orthogonal basis of C(N). 

2. Periodic Dirichlet series 

Let 

be the Dirichlet series with periodic coefficients c(n) E C(N). It follows from 
the periodicity of c(n) that D(s, c) is absolutely convergent for Re s > 1 and 
defines an analytic function D(s, c), regular at Re s > 1. Moreover, if Cg-',, c(n) 
= 0, D(s, c) is convergent uniformly for Re s > a, (a, > 0), so D(s, c) is regular 
at Re s > 0. The set P(N) = {D(s, c) / c E C(N)} of all periodic Dirichlet series 
of period N makes a complex vector space of dimension N, canonically isomor- 
phic to C(N). It is clear that D(s, 6,) (0 _L a 5 A; - 1) gives a basis of the 
vector space P(N). On the other hand, it follows from Proposition 1.1 that 
D(s, $1 (1) E X(N)) gives another basis of P(N). Take +Cr' t )  E X(N), where .\CF is 

a Dirichlet character mod u and N = tu. Let $-, be the primitive character 
mod u, defined by +. Then, for Re s > 1, 

where L(s, +) and L(s, +,,) are the Dirichlet L-functions for the Dirichlet characters 
+ and +, respectively and the p in the product runs through all primes p divid- 
ing u but not dividing u,. 

3. Function F(s .  z )  

We define a Dirichlet series F(s, z )  with a complex parameter z by 

The series F(s, z) is absolutely convergent for s E C if Im z > 0 and for Re s > 1 
if z = x E R, the real number. We can, in the usual manner, express F(s, z)  
as a contour integral, which shows that F(s, z) is continued analytically to the 
whole s-plane, univalent and meromorphic with only possible pole of order one 
at s = 1, and the pole arises only when z E Z, the rational integers. Further- 
more, if we fix s E C, we ha% a one-valued holomorphic function F(s, z) defined 
on the z-plane slit at negative ima,ginary axis and its translations by integers, 
i.e. on C, = C - {n + iyln E Z and y 4 0). Clearly F(s,a/N) = D(s,Ea) (0 5 
a 5 N - 1) and F(s, 0) = c(s), the Riemann zeta-function. 

Proposition 3.1. Any periodic Dirichlet series D(s, c) E P(N) is a linear 
combination of F(s, a/N) (0 5 a 5 N - 1). Hence, D(s, c) is continued analyt- 
ically to the whole s-plane. 

When z is in the upper half plane, we have 

and 

Hence 

and 

where the integral is taken over the line joining 0 and z. Making z -, x + iO 
(x E R) in the upper half plane, we get 
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2/r1 5 sin 2mnx (- l)tk+l,lZ - (k = odd) , 
( 2 ~ ) ~  n = l  nk 

Bk(x) = 
(- 1)kD-1 2k ! 5 cos 2snx (k = even) , 

( 2 ~ ) ~  n-I nk 

Proposition 3.2. ( i ) For x E R - 2, 

and 
Then it is easily seen that 

where 
and the Fourier series of A, is, up to constant multiple, the conjugate Fourier 
series of B,. 

r 

S(k, r) = C (-I)'-" 
m = l  

(ii) For O < x  < 1, 4. Singular values of L(s, X )  

Let x be a primitive Dirichlet character modulo N > 1. We can write x as 

linear combination of Ea fi j a 5 N - 1) ; 

where 

where G(2) = Cz;o' ~(a)(,(l), the normalized Gaussian sum for 4. If Re s > 1, 
j(k) if k is odd , 

(0 if k is even , 

and B,(x) is the k-th Bernoulli polynomial defined by 

By analytic continuation, (4.1) holds for every s E C. From Proposition 3.2 and 

(3.1) follows On the other hand, for 0 < x < 1 and k 2 1, 

Proposition 4.1. For every s E C, F(k, x) = C (cos 3znx + i sin 2 x n ~ ) n - ~  
n=l 

In particular, for k = 1,2, - ,  Hence we get the Fourier series of A, and B,, 

AkW = i kt sin 2mx (- l y - 1 ~  (k = even) , 
( 2 ~ ) ~ - '  n=1 nk 
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In case 1 = 1, the principal character, consider the sum 

iv-l 'y ~ ( k ,  L) = N C (Nn)-l  = N1-k' 
a=O N a=O 

J k )  9 

and we have 

Proposition 4.2. For any positive integer N > 1 ,  

for k = 3 ,5 ,  . . . , 

for k = 2 ,4 ,  . . . . 

5. Character sums S, and T, 

We fix an integer k 2 0 and a rational number a = t / u  ( t ,  u E Z,O < t 5 U )  

in the following. Let f ( x )  be a periodic function on R with period 1, satisfying 

and the Fourier series of f ( x )  be 

where 

The Fourier series converges to +(f (x  + 0) + f ( x  - 0)) at every 0 5 x < 1. 
Now we take a primitive Dirichlet character x mod N > 1 and put 

where the prime in the summation indicates that, if a takes the extreme values 
0 or aN (= ( t / u )N) ,  the corresponding summand is to be halved. From (5.1) 
and (5.2) 

(5 3) 

where 

and 7 = e2*i/u . We see easily 

that is, b,  has the parity &(by) = (- I ) '%(-  1). Since b E C(u)  ( 1  5 r 5 k + I ) ,  
by Proposition 1.1, b,  is a linear combination of + E X(u) ,  the parity of which 
is the same as b, ; 

'*c 

Hence 

It is easily seen that ~ ( v ) .  $2 = (+,z)(") E X(uN) if + is of the form + = I@), 
where is a Dirichlet character mod u / v .  The parity a(+z) = E ( + ) E ( ~ )  = 

E ( ~ , ) E ( x )  = (- Combining (5.3) and (5.4), we finally get the following 

Theorem 5.1. NkG(1)-'S, is a linear combination o f  D(r, +x) (1 5 r 5 
k + 1, + E X(U) ,  E(+ )  = (- l ) , ~ ( -  1)) .  The coe,ficients depend only upon +, r 
and the parity o f  ;c. 

For the other expressions of the sum S,, see Berndt [2] and Kanemitsu- 
Shiratani [5] .  

Example 5.1. Case k = 0 : 



where a = t / u  and 7 = ezXilu. 

where [I2] denotes the principal character mod 2 .  

and 

When ~ ( n )  = ( d / n ) ,  where d is a discriminant number of a certain quadratic 
number field, then N = \dl and SIl2 = S: by the notation of 3 0, and 

since G ( I )  = d z  and L(l ,  X )  = 2 x h ( d ) / w ( d ) d M  (d  < 0 ) ,  where w ( d )  is the 
number of roots of unity contained in ~ ( d d ) .  

where [3]  denotes the unique primitive character mod 3 ,  [ 3 ] ( n )  = ( n / 3 ) ,  and 
[I,] is the principal character mod 3.  

and 
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When ~ ( n )  = ( d / n ) ,  S,,, = S:, and 

1 -h(- 2 3d)  i f  d  > 0 and 34d , 

1 
-(3 - ($)) h (d') if d = - 3d' > 0 , 
w(d') 

1 ( 3 - ( h )  w ( d )  i f d < 0 .  

where [5]  is the primitive character mod 5 satisfying [5]  ( 2 )  = i and 

- 1m (gL(1, [ 5 ] ( 2 ) ) )  if d > 0 and 54d , 
2A 

J. 1m ( g ~  (1, (c))) if d = 5d' > 0 , 
2 x  

1 1 --(5 - (+))h(d)  - , jh(5d) if d < 0 and 54'd , 
2w ( d )  

5 1 -h (d ) - - (5 - (%) )h (d ' )  4 if d = 5 d 1 < 0 .  
2w(d1) 

In the same way, we have, for a = 2 / 5  and ~ ( n )  = ( d / n ) ,  
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if d > 0 and 5td , 

1 1 + -h(5d) if d < 0 and 54d , 
4 

Combining (5.5) and (5.6), 

(S2/, + is,/,) if d > 0 and 54d , 
The conjugate function 1 of f defined at the beginning of this section is 

given by the singular integral and 

f (x )  = PV J.'f(+ - y )  cot zydy . 
0 

The Fourier series of f ,  
Example 5.2. Case k = 1 : 

converges to j(x) at every x # 0 ,  a. We define another character sum 

for a primitive Dirichlet character mod N, where we assume N 4 u and the sum 

is taken over (a, N )  = 1. Then, from (5.2) and (5.7), 

1%'-1 

= - 2 s p  (n)jn C x(a)Cnt = - iG(x) 2 sgo (n)p(n)f. 

where 

Clearly, 
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Put 

then 

'v-1 N-1 a 
T: = a = l  C l ( a ) ~ l ( N  - a) = - a-1 C ~ ( a )  log s i n a  1 

( - - a)I ; We have, corresponding to (5.4), 

Hence we get 

Theorem 5.2. G(z)-IT, is a linear combination of D(r, +x) (1 r k + 1, 
+ E X(u), E($ )  = (- l)r-l;C(- 1)), whose coe,ficients depend only upon +, r and 
ihe parity of X. 

All the results on S, in Example 5.1 and 5.2 can be transfered to T ,  
canonically. 

and 
Example 5.3. Case k = 0 : 

When ~ ( n )  = (d/n), 

- - 1 -- (log 2 /sin X(X - a)I - log 2 [sin rxj) - 
4 L 

where R(d) = log E ,  and E ,  > 1 is the fundamental unit of ~ ( d a ) .  
Therefore, 

1 .v-I I sin r(a/N) 1 
= - C x(a)log sin ( - ;5 a = l  x a (2) ' 

and On the other hand, from (5.8), 

where 
--L(3-($))h(d)~(d) r'i i f d > 0 ,  

1 -h(- 3d)R(- 3d) if d < 0 and 34d , 
X 

From Proposition 4.1 we see that 



When ~ ( n )  = (dln), 

(-&(5 - (-$))h(d)R(d) + Lh(5d)R(5d) 2 z if d > 0 and 54d , 

In the same way, we have, for cu = 215 and ~ ( n )  = (d/n), 

"") =' -  

Combining (5.9) and (5. lo), 

5 
--h(d)R(d) + - ( 5 - ($))h(d')~(d') if d = 5 d t > 0 ,  

2lr 2lr 

dm I ~ ( ~ ~ ( ~ , [ ~ ] ( L ) ) )  if d < 0 and 54d , 
2n 

s inz (a !d -2 /5 ) !  i f d > O a n d 5 { d .  = y a=l  (($log 
: sin z(a/d - 115) i 
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On Extraordinary Representations of G L, 

HIROYUKI YOSHIDA 

Introduction 

Let k be a non-archimedean local field. In 5 12 of Jacquet-Langlands [7], 

it is shown that there is a certain correspondence from continuous 2-dimensional 
representations of the Weil group W ,  to irreducible admissible representations 

of GL,(k), under the assumption of the Artin conjecture about the holomorphy 
of "Artin-Hecke" L-functions. We need a precise statement of this conjectural 

L 
correspondence. Let a be' a continuous representation of W ,  in GL,(C). Then 

det a defines a quasicharacter w of kX because every continuous one dimensional 
representation of W ,  factors through the transfer map W ,  -, kx. For an irre- 
ducible admissible representation ;c of GL,(k), let w, denote the quasicharacter 
of kX which is defined by the restriction of is to the center of GL,(k). Let + 
be a non-trivial additive character of k. 

Conjecture. There exists an irreducible admissible representation ;c = r(o) 

of GL,(k) which satisfies that (i) det a = w,, (ii) L(s, a @ X) = L(s, ?c 8 x ) ,  (iii) 
E(S, a @ X, +) = E(S, ;: 9 %, $1 for every quasicharacter x of kX, where E(S, a 1% j ) ,  +) 

denotes the "Artin root number" and L(s, a 63 X) the L-function of the repre- 

sentation a @ x of W,, which are defined in [3], [8]. L(s, is @ 1) and ~ ( s ,  ;c @ X, +) 
are defined in [7]. 

We should recall that this conjecture can be regarded as a non-abelian 
analogue of local class field theory and remains unsolved only when the residual 
characteristic of k is 2 (cf. [2], [15]). Because the problem is local, a purely 
local approach may be worth attempting. In 5 1, we shall prove that the ex- 
istence of the representation ~ ( a )  is equivalent to certain relations satisfied by 
the Artin root numbers (Theorem 1). Let Z be the center of GL,(k) and D 
the maximal compact subring of k. Let z be a "strongly cuspidal" representa- 
tion (cf. 5 2) of GL,(D).Z. By a theorem of Casselman [1], we know that 



ind (7 ,  GL,(C). Z - GL,(k)) z is or ?;: @ z (8 v, where ;: is an irreducible admissible 
absolutely cuspidal representation of GL,(k) and 9, is the unramified character 
of order 2 of kx. We can compute the local functional equation of z 8 from 
i for any quasicharacter ;C of kf' (Theorem 2). By considering the restriction 
of is(a) to GL,(C), we get such 7 and another conjectural corrzspondence a + 

r(a). As an application of Theorem 1 and 2. we can see that there is an 
algorithm to check the conjecture when a is given. 

fj 3 and 5 4 are entirely based on the recent work of Langlands [9]. In 
5 3. we shall show that ~ ( a )  exists if the module of k is an odd power of 2 

and a is of "tetrahedral type" (Theorem 3). Our proof depends on the con- 
sideration of the behavior of an irreducible admissible representation of GL,(k) 

under the automorphism group of C. Let K /k  be a finite Galois extension of 
algebraic number fields and a a 2-dimensional representation of Gal (Klk) of 
"tetrahedral type". In 5 4, we discuss some problem about the existence of the 
automorphic representation is(o) of GL2(kA). 

Notations and terminologies. 

For a non-archimedean local field k, 6, (sometimes we drop the suffix k) 
denotes the maximal compact subring of k. If p (resp. z) is a finite dimen- 
sional continuous (resp. irreducible admissible) representation of the Weil group 

W k  (resp. GL,(k)), f (p )  (resp. f ( ~ ) )  denotes the conductor of ,O (resp. T). We 
denote the quasicharacter det p of kx by a,. For an algebraic number field 
F, F A  and F: denote the adele ring and the idele group or' F respectively. If 
an object :: is defined globally with respect to F and v is a place of F, i?, 

denotes the local object obtained naturally from is. Let a be a representation 
of a group G in GL,(C) and @ the natural map GL,(C) + PGL,(C). We 
call a "of tetrahedral type" if @ o u(G) is isomorphic to A,. For others, we follow 
the notations and terminologies of Jacquet-Langlands [7], Langlands [9] and 

Weil [14]. 

1 z(a)  and the Artin root numbers 

We may assume that a is irreducible. (If a is reducible, the existence of 
the special representations causes a little trouble. The conjecture is true? how- 
ever, after a little modification). The irreducibility implies that T(U) is absolutely 
cuspidal, because we have L(s, a 8 ;c) = 1 for every quasicharacter % of kx (cf. 
[6] ,  I .  47). Let i? be an irreducible admissible absolutely cuspidal representa- 

tion of GL,(k), w = ( A) E GL2(k), Y'(k.0 the vector space of all the 
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Schwarz-Bruhat functions on kx and % a quasicharacter of kx .  We use the 
same letter ;: for the Kirrilov realization of z ,  

equivalent to z realized on 9(k:') and satisfies that 

for v t  E 9'(k:<), x t. kx.  Then the local functional 
following form ; 

where 1x1 denotes the absolute value of x E kX and 
on kx.  Hence, by the Fourier inversion formula, 

which is the representation 

( i s  ;)c)(x) = +(bx)f (ax) 

equation of n @ ;C takes the 

for vc E Y(kX) , 

dxx denotes a Haar measure 
the action of w is given by 

where kx denotes the Pontrjagin dual of kx, dxx the dual measure of dXx and 

we put ~ ( r  @ p;', +) = 4112, ;c 8 p g l ,  $1. Let us define the action of B = 

( 3  (n(: i)c)(x) = a(d)+(bd-lx)t(ad-lx) , o = det a 

and the action of w by 

where ;(a @ +) = 4112, o @ xu--', +). Then it is clear that the conjecture 
is reduced to the following question; "Does this action define an irreducible 

admissible representation of GL,(k) ?" To prove that T is a homomorphism, it 

is enough to show that ;r preserves all the relations among the generators of 

GL,(k). We note the Bruhat decomposition 

( 5 )  GL?(k) = B U BwB (disjoint union) . 
It is obvious that ;: defines a homomorphism B -. Aut (9'(kX)) by (3). The 
relations between the elements of B and w are reduced into three types. 



Let 17 be a character of kx and q the module of k. Define an element [In) 
(n E 2 )  of Y(kx) by 

(A,) if = q n  
[in'(x) = 

otherwise . 

Any element of 9 ( k X )  can be written as a finite linear combination of [p). 
Therefore it is enough to verify the relations (i), (ii), (hi) only for [in'. We 

normalize dXx so that the volume of D X  is 1 and 6 so that Q is the largest 
ideal of k on which + is trivial. It is .easy to see the following properties of 
s-function. 

From (4), (7), we obtain 

( 9 )  z(w)[y) = ~ ( o  O R-', +)EL{:?) , 

and we can verify the relations (i) and (ii) from (8), (9). It  is enough to 

verify (iii) for [I0), because if we take the inner automorphism by 
1 0  

the relation (iii) for a is transformed to that for pa. Let a be a prime ele- 

ment of k. We may assume that a = ma with 6 E Z and R(m) = 1. For a 

character 7 of kX and a E 2, put 

We have the Fourier expansion 

(11) +(mNx) = C +)?(X) for x E kX, 1x1 = qn, N E 2 ,  
7 

where 7 extends over all the characters of kx such that 7(a) = 1. 

Lemma 1. Let o be as above and 7 a quasicharacter of kX. If f(a) 2 2f(7), 

we have f(o 8 7) 5 f(o). If f(o) < 2f(7), we have f(o O 7) = 2f(7). 

We can prove this lemma using Lemma 3 of Weil [15]. We consider the 

equation 

with a = ma. Put f = f(o @ R-l) and assume that ~ ( m )  = 1. Using (1 1) and 

Lemma 1, we can see the followings. 
If 0 < d < f ,  (E) is equivalent to 

where % is any character of kx such that A,-,(%, 6 )  $: 0, ~ ( m )  = 1, f j  = 
f(o @ ~ ~ 2 - l )  and v j  extends over all the characters of kX such that f(a @ %lo-') 

- f = f j  - 26, qj(m) = 1. 
If o" 5 0 or f $ 6, (E) is equivalent to 

for any quasicharacter ;7 such that f(7) = 6 (resp. f - 6) if f $ 6 (resp. 6 5 0). 
Now we can state our first theorem. 

Theorem 1. The conjecture for o is equivalent to the relations (A) and 
(B) satisfied by the &-function. 

Proof. It is enough to prove that 71. is irreducible and admissible under 
the assumption of (A) an& (B). That ;; is admissible is equivalent to (i) For 

any [ E 9'(kX), the stabilizer r, of [ is open. (ii) For a positive integer N, put 

The vectors fixed by r ( N )  make a finite dimensional vector space. To prove 

(i), we may assume that E = ti0). We have s(i f;)[jO) = [f' if a - 1 = d - 1 = 
0 mod mu with u = max. (f(l), f(w)) and b E 9. Also we can see that 

O [jO) = [jO) if c E mfD with f = f (o 8 ,I-'). Therefore r, contains r (N) ,  4 1) 
where N = max. (u, f). Hence (i) is proved. Let us assume that 6 = C;,, ai[i:') 

is fixed by r (N) .  We may assume that &(a) = 1 (vi) and (Ri, ni) + (Rj, nj) 

if i $: j .  We have n( i  = for a E DX. Therefore f(&) $ N 

holds. Moreover we have z (h m;)E(x) = +(mxx)E(x) = [(x). We may assume 

that N 2 2. In ( l l ) ,  f(7) must be equal to n - N if n - N 2 2. Therefore 

if n, > 2N for some i, (11) contradicts the fact f(Ri) 5 N. Hence we get 

ni j 2N for all 1 $ i 5 n. Considering r ( i ,  :)[ = c, we get ni 2 -2N for 



all 1 g i $ n by the same argument. This proves (ii). The irreducibility is an 
immediate consequence from the uniqueness of the Kirillov model. 

Let a be an element of Aut ( C ) ,  the group of the field automorphisms of 

C. Let ir be an irreducible admissible absolutely cuspidal representation of 

GL,(k). For every character 1 of k x ,  we put &(ra Q 1 .19~)  = E(Z  1% +)a and 
E(S, za 8 I ,  + a )  = E ( I C  6 ia- ' ,  +)a, q- f (s -1/2)  where f = f ( z  8 la- ') .  Let 9 be the 
quasicharacter of k X  defined by v(x) = 1x1 and put E(S,  ira @ I 6 us', qa) = 
E(S + s', nu @ R ,  w).  It is easy to see that ~ ( s ,  ;ra 8 I .  + a )  is well defined for 
every quasicharacter R of k x .  By the same method as the proof of Theorem 
1 ,  we can prove 

Corollary. Define the action of  B on Y ( k X )  by ( 3 )  using o:, +" instead of 
o, and $ and that of w by (2) using &(nu Q X ( W ; ) - ~ ,  instead of E(Z  Q XU;', $) 
for every x E k x .  Then this action defines an irreducible admissible absolutely 
cuspidal representation za of GL2(k). 

Remark I .  It seems possible to generalize Theorem 1 for GL, and more 
general law of reciprocity, which is formulated in Gelfand-Kajdan [ 5 ] .  

$j 2. The restriction of ~ ( o )  to GL,(D) 

Let the notation be as in the previous section. We take a quasicharacter 
1 of k X  such that u 8 has the minimum conductor c. Replacing u by o 8 2, 
we may assume that f (o  6 x )  2 f(a) for every quasicharacter x of k x .  Let us 
define a vector subspace V of Y ( k X ) .  If c = f(o) is even, V is generated by 
ijfO) with f ( R )  5 f,, where 2fo = c. We have dim. V = (q  - l)qf"-l.  If c is 
odd, V is generated by [If0-- ' )  with f ( I )  5 f o  - 1 and tif0) with f ( I )  $ f,, where 
2f ,  - 1 = c. We have dim. V = (q - l ) (q  + 1)qfo-?. Put B(D) = B n GL,(D). 

Proposition 1. n(w) and n(b) (b E B ( g ) )  induce the a~ltomorphisms of V .  

This proposition follows from (91, ( 1 1 )  and Lemma 1 .  Therefore if (A) 
and (B) are satisfied. we obtain a representation GL,(D) -+ Aut ( V )  because 

GL,(C) is generated by B(Q) and w. We denote this conjectural representation 
by ~ ( o )  and it is easy to see that d o )  necessarily factors through the natural 

map GL,(C) -, GL,(C/a fO) .  We note that wc can check the existence of r(o) 
by finite calculations. If c is small, we can prove 

Proposition 2. Assume that q = 2,  c = 3. Then ~(o) exists i f  and only 
if ~ ( o  Q X ,  $1 = -%(- I ) ,  where x is any character of k x  of  conductor 2 such 
that X Z  = 1. 

Proposition 2 follows from (i), (ii) and Lemma 1, taking account of the 
relations between w and the elements of B(D) modulo a?. There exists a "non- 
dihedral" absolutely cuspidal representation of GL,(Q,) of conductor 3.  This 

fact suggests that the above case already contains some new representations. 
Suppose that an irreducible representation r of GL,(D) factors through 

{ (A ;') / u s c}. We call r strongly cuspidal of GL2(C jaf). Put N(C) = g = 

level f if every irreducible component x i  is contained in r j N(Q) with multiplicity 
1 and %, does not factor through C Dlaf- ' .  If every xi does not factor 

through G -. D/af  - I ,  r is called "with primitive N(G)-spectrum". These ter- 

minologies are due to Casselman [ I ] .  It is easy to prove 

Proposition 3. Assume that r ( i )  exists. Then r(o) is a strongly cuspidal 

representation of level f,. 

As stated in Introduction, we can compute the local functional equations 
for induced representations. Let r be a strongly cuspidal representation of level 

f and w a quasicharacter of k x  such that ;(: :) = o(a).  1, (n = deg r )  for 

a E Dx.  We extend ; to a representation r* of GL,(C).Z by r"(gz) = r(g)w(z) for 

g E GL,(G), z E Z .  Define a matrix A E M,(C) by A = J o x r ( A  ~ ) + ( - m - f ~ ) d ~ .  

Let x be a quasicharacter of k x .  For t s 2, t 2 0 and i E Q X ,  we put 
F 

(if t = 0, we understand that i + a°C = C X ) .  

Theorem 2. When 7 is with primitive N(D)-spectrum, let T: be the irre- 

ducible admissible absolutely cztspidal representation of GL2(k) defined by ;r = 
Ind (r*, GL,(C). Z -. GL,(k)). Then the local factor E ( S ,  ;C @ X ,  +) is uniquely 

determined ns the solution of  

for every t and i.  When ; is not with primitive N(0)-spectrum, let z be an 

irreducible admissible absolutely cuspidal representation of GL,(k) s~lch that 



a @ s O v, = Ind (r*, GL,(C) -2 --* GL,(k)). Let 2f, + 1 be the conductor of 
X. If f(x) 2 f, + 1, E(S, ;C O X, +) is uniquely determined as the solution of (12) 
for every t and i. 

We can make an explicit isomorphism from the representation space of 7i to 
its Kirillov model and Theorem 2 follows immediately. If r is not with primitive 
N(C)-spectrum and f ( ~ )  5 f,, (12) has no solution. However, ~ ( s ,  a 3 X, +) can be 
determined in the following way. Let V be the representation space of r. For 
a character c of iO which is contained in TIN@), let u, be a non-zero vector of 
V which transforms according to c. Let V, (resp. V,) be the vector subspace 
of V which is spanned by u, such that f(C) = f, (resp. f(c) = f, + I), where f(5) 
denotes the integer such that mf K) is the largest ideal of C on which c is trivial. 
We may assume that o(m) = 1. In V, (resp. V,), we can take a vector 

vji)(i = 1,2) such that r ((: y))vji) = R(a)vji), a E O X ,  where 1 is a given 

character of kX such that f(R) j f, (resp. f(R) 5 f, f 1) and R(u) = 1. We can 
take a E EX such that i(x) = $(a-fOax) (resp. ( = ( m f a x ) )  if u, E V, 
(resp. uC E V,) and x E D. For each i(i = 1,2), determine vy) simultaneously 
up to a constant multiple by the relation u, = c, C ,?(a)-lvji)(cC E CX) for every 

c. We can write r(w)vjl) = E'(T @ 2-', +)v$L1 with E'(Z @ 2-', +) E CX. Normalize 
the vectors vj2) SO that E'(T 8 R-l, +)~'(a O OR, 9 )  = w(- 1). This determines 
the vectors vj2' up to the multiple by + 1 when vil) are chosen. Then we have 
E(X% 2, +) = €'(a@ R, +). 

Remark 2. The ambiguity up to the sign is inevitable, because we have 
E(S 8 R, +) = -€(a O v0 $3 2, 9 )  for R E kx,  f(2) _< f,. 

Remark 3. As an application, we can check the conjecture in finite steps 
when o is given, because we have E(S, s O X, +) = E(S, o J, +)E(s, 2, +) when 

f ( ~ )  2 f(z) if a is absolutely cuspidal and ~ ( s ,  o @ X ,  9) = E(S, OX, +)E(s, I, +) 

when f ( ~ )  2 C, where c is a constant which can be estimated explicitly when o 
is given (cf. Deligne [3], p. 545-547). 

5 3. Partial results 

To prove the conjecture, we may assume that o factors through the natural 

map W k  -+ Gal (Klk), where K is a finite Galois extension of k. Therefore we 
identify o with a faithful irreducible representation Gal (K/k) - GL,(C). 

Theorem 3. We assume that o is of tetrahedral type and q is an odd 
power of 2. Then a(o) exists. 

We shall indicate the outline of our proof. We may assume that the 
characteristic of k is 0 and the residual characteristic of k is 2. Let k, be the 
subfield of C generated by all the 2"-th roots of unity (n E 2, n 2 1). If not 

specified, we simply assume that a is of tetrahedral type and do not assume 
that q is an odd power of 2. 

Lemma 2. There exists a finite Galois extension Kt of k, a representation 
of of Gal (K'ik) in GL,(C) and a character x of kX such that (d d) 8 ( X  o T) 
= (00 X) and the character of o' has values in k,, where x (resp. a') is the 

natural map W ,  3 Gal (Ki k) (resp. W ,  --, Gal (K'/ k)) and T is the transfer 

map W ,  --* kx. 

By this lemma, we may assume that the character of a is k,-valued. Let 

L, be the subfield of K which corresponds to the center of Gal (K/k) and L 
be the subfield of L, which corresponds to the 2-Sylow subgroup of Gal (Ll/k) 

A .  Put d = j Gal (KI L). We see that d is irreducible and monomial. 

Hence there exists an absolutely cuspidal representation 5 = ~ ( d )  of GL,(L). 
Let a be an irreducible admissible representation of GL,(k) which lifts to 5 (a 
is written as it.,se,,,(o) in [9 ] .  Our task is to show that apSe,,,(o) = a(o), if we 
choose a suitably.) 

Lemma 3. Let NL,, (resp. Tr,,,) denote the norm (resp. the trace) map 

from L to k. We have ~ ( s ,  5 18 R o NL,,, + 0 Tr,,,) = n , E(S, ;C @ R @ X, +) for 
every quasicharacter ? of kX, where extends over all the characters of k X  

which are trivial on NLIK(Lx). 

Proof. The representation ;c $3 R lifts to 2 R o NL/=. By this fact, we 

may assume that R = 1. We can show, as a routine exercise, that there exists 
a finite Galois extension k / i  of algebraic number fields which satisfies the fol- 
lowing conditions. (i) For an even place t of t& and a place u of $ lying 

above v, the localization b,/L, is canonically isomorphic to K /  k and [ k  : l] 
= [K: k]. (ii) Every even place v(i.t) splits completely in B,'t&. We define 

a representation r = o o c of Gal (k it&), where r is the isomorphism Gal ( $ / A )  
1 Gal (Kik). Let i be the subfield of K which corresponds to L under c. 

Put i = r i Gal (k /L) .  Because ? is monomial, the automorphic representation 
6 = r(t) of G L , ( ~ - ~ )  exists. Let $ be an automorphic representation of GL,(~,) 
which lifts to 6. We may assume that 9, = rc. We can see easily that L(s, 4) 
= n i  L(r, 9 8 2). where 2 extends over all the characters of i:/ix which are 
trivial on NiaiE, ( i 2 / i x ) .  Let 4 be an additive character of t,/i such that 



= 1 .  From the functional equations of L(s, 6) and L(s, $ @ f ) ,  we have 

n n u  cV(s, $. CG z,, 6,) = n,  E ( S ,  6.. (I) 9 TriA,~A).), where v (resp. w )  extends 
over all the places of k (resp. L) .  If v is not even, we get ni ;(s. 6 ,  @ jv, 4,) 
- - nw E(S, dw7 (+ O T T ~ ~ , ~ ~ ) ~ ) ,  where w extends over all the places of L which 

are above v (this is a consequence from Theorem A. [a]) .  From this, we can 
squeeze the desired relation ~ ( s ,  2, ,I/. c Tr,,,) = n, ~ ( s ,  x @ X, +). 

Corollary. Ij L / k  is unramified, we have ~ ( s ,  z 0 1, +j3 = E ( S ,  a @ A,  ~ r ) ~  
for every quasicharacter R of  k X .  

Lemma 4. Assume that L l k  is unramified and that E(Z  3 1, J r )  = =(a @ 1, +) 

for every 1 E A x  such that i (a )  = 1. Then we have x = x(o). 

Proof. Form Cor., we have f(;r @ 2) = f (o  8 A )  for every quasicharacter 
R of k X .  Hence it is enough to prove w = o,. This follows from the fact 
that ( I :  1, r,b) = ~(o.2, +)E(R, r,h) = ~ ( w l ,  +)&(A,  +) = &(a 8 A,  ,I/.) if / ( A )  is suf- 
ficiently large. 

Remark 4. In the statement of the conjecture, the condition (iii) implies (i). 
Let 5 be as before. We identify : with its Kirillov realization. For a 

character 1 of L X ,  define an element en) of Y ( L x )  by (6). Let $ be a generator 
of Gal ( L i  k ) .  We can define an automorphism I, of LP(LX) by I,[:") = ti;). 
Then we have e(g9) = Iil:(g)I,. Let Gal ( L i k )  x , GL,(L) be the semi-direct 

product defined using the natural injection Gal ( L /  k )  -+ Aut (GL,(L)).  Define 
a representation II of Gal ( L l k )  x ,  GL2(L)  by II(,P, g )  = I:t(g).  Then by the 
definition of the lifting, we may assume that x satisfies the relation I,(+ x g)  

= x=(h) if Ng = gg$gj2 is conjugate to a regular semi-simple element h of GL2(k) .  

Lemma 5. I f  h is a regular semi-simple element o f  GL2(k)  we have %,(h)' 
= x,,(h) for a E Aut ( C ) .  

We can give a finite expression of ;~ , (h)  using the &-function. and this 
formula proves Lemma 5. The computation is lengthy, so we omit the details. 

Lemma 6. Let k l  be the subfield o f  C generated over Q by the values 
o f  all the characters o f  02. I f  Ng is conjrrgate to a regular senzi-simple element 
o f  GL,(k) ,  %,(,3 x g)  belongs to k,. 

We can prove this lemma in a similar way as for Lemma 5. 

Proof o f  Theorem 3. Let cr be an element of Aut (Clk , ) .  By Lemma 5 
and 6. we have %,(;3 x g)° = ~ , ( , 3  Y 9 )  = ~, , (h)°  = %,*(h) if Ng = g.gQs2 is 

conjugate to a regular semi-simple element 11 of GL2(k).  This shows that zz also 

lifts to 5. Therefore we have x' = x 8 x where % is a character of k' which is 
trivial on N,,,,(L <). If ;C = 1 for every n E Aut (C, 'k , ) ,  we have ~ ( z  8 i. +) E k ,  if 

R is a character of k' such that R(m) = 1 .  We also know that ;(a 8 R ,  19) E k ,  

for such R (cf. Dwork [4]) .  By Cor. of Lemma 3 and Lemma 4,  wz have ir = 

z(a) because e"-"I3 s k ! .  Therefore we may assume that there exists an automorphism 
n E Aut (Clk , )  such that xu = r (3 ;C with % E k~ which is trivial on N,,,(L ') and 

1. Because 3 u q - 1, L /  k is unramified and we see that x / Cc = id. and 
%(a) = : where < is a primitive cubic root of unity. From E ( Z  9 R, +I3 = 

~ ( a  $3 A,  ~ b ) ~ ,  we have i (x  a A,+)  = ;,i(~ @ A, +) where C ,  is a cubic root of 
unity. We assume that R E k x  and R(a) = 1. We have ;(x @ R ,  +)" = :(xu Z A,  +) 

= E ( X  8 R 8 X ,  + )  = C-fa(ir 8 R ,  +) = C : E ( ~  @ A ,  = C;i(o @ 2, +) with f = 
f ( x  @ 1). Therefore we get C g / C i  = ;-J with f = f ( x  O 2). If f(i) 2 f ( r r ) ,  we 

have f (rr 8 R )  = 2f  (i) . Hence we see that ;a = ;? and Cg / <, = c, = i-J . We 

get e(x @ R 8 % - I ,  6 )  = Cfi(x  @ 2, $) = cJc,;(o 8 R. I ) )  = c(a C3 R, +). This shows 

that x(o) = x @ ;c-I and completes the proof. 

Let K / k  be a finite Galois extension of algebraic number fields and a a 
faithful 2-dimensional representation of Gal ( K l k )  of tetrahedral type. Let us 

define a cyclic cubic ~xtension L of k in the exactly same manner as in fj 3 
and put d = a j Gal tK,'L). Then the automorphic representation Z = x(d) of 

GL2(LA)  exists because d is irreducible and monomial. Let x be an automorphic 

representation of GL2(kA)  which lifts to f. Note that x is a constituent of the 

space of the cusp forms because 2 is. We put the following hypothesis, which 

will be discussed at the end of this section. 

( H )  r ,  = ;r(a,) 8 ;c, if a, is reducible and v is a finite place of k ,  where 
X ,  is a character of k," which is trivial on NL,kO(L;)  and w is a place of L 

lying above v. 
We shall show that ( H )  implies the existence of the automorphic repre- 

sentation ir(o) of GL,(k,). By [9] ,  we have rr ,  = x(o,) when v is an infinite place. 
From (H) ,  we have (w,), = (o,),;~% with w, = det o, considering the character 
induced on the center of GL,(k,). Define a character 7 of k,"/k;' by 7 = w,w;'. 
We have 7% = %, if a, is reducible and z' is a finite place. Therefore ( x  % v-,), 
= ;r, ,a = ;";(a,) is a, is reducible and v is a finite place. Because 7 is 
trivial on NL,,k,(L; , ' L x ) ,  we have ( x  '8 7- ' ) ,  = _(a,) if v is an infinite place. 
Let w be a unitary character of k,'lliX. It is easy to see that L(s, a B w) does 



not have a pole in the domain {s ; Re(s) 0 or Re(s) 2 1) (cf. [15], p. 288). 
From this fact, we can see that L(s, a 6 w) (which coincides with L(s, ir @ o) 
up to a finite number of Euler factors) is an entire function and the existence 
of ir(a) follows. 

If k is totally real and x corresponds to a holomorphic automorphic form 
(i.e. for every archimedean place v of k and place w of K which divides v, 

K, r C and a, z x1 Q x2 where x1 (resp. x,) is the trivial (resp. non-trivial) 
representation of Gal (K,/ k,) r Gal (C/ R), then we can also argue in the fol- 
lowing way, assuming (H). We may assume that the character of a has its 
values in k,, by a similar lemma as Lemma 2. Let a be an element of 
Aut (Clk,). By Prop. 4 of Shimura [ I  11, we can see that there exists an 
automorphic representation ;ra of GL,(k,) which satisfies the following conditions. 
(i) (nu), = x, if v is an infinite place of k. (ii) For a set S of finite places 
of k which contains almost all places of k, n, = n(,u,, 6,) and (xu), = ;s(,cr;, 6;) 
if v E S, where p, and 6, are quasicharacters of kc. If v E S and w is a place 
of L which divides v, we have r ,  = n(a,) @ x, from (H). We have n; = n(a,)" 

@ x; = n(a,) @ x;. We know that nu also lifts to 2 because (nu), lifts 2, at 
almost all places v of k. Therefore ira = I: 0 7 holds with a character 7 of 
k2/kx which is trivial on N,,,,,(L,X/ LX).  Hence we get x;/x, = 7, if v E S. 
If X ;  = xu for every a E Aut (Clk,) and v E S, we have x, = 1 for every v E S 

and this is sufficient to obtain the conclusion. Assume that x; $: xu for some 
a E Aut (Clk,) and v E S. Then we have x;/x, = xu = 7, for every v E S. 
Therefore the automorphic representation n @,7-' of GL,(k,) satisfies that 

(ir @ 7-I), = ~ ( a , )  for almost all v. This shows x(a) = n @ 7-I as before. 
Finally we observe that (H) is satisfied except for a set of places of k 

which has Kronecker density 0. Let U be the set of finite places of k which are 
unramified in Klk. We have ir, = x(,u,, 6,) with characters p, and 5, of k," if 
v E U .  Let a, be a prime element of k,. We assume that v E U remains 
prime in L. Then we can see easily that ip,(a,) + 6,(aU)j = 1 if (H) is satisfied 
and l,u,(ca,) + 6,(av)j = 2 if (H) is not satisfied for v. Using Th. 19.14 of 
Jacquet [17] (see also Deligne-Serre [16], p. 519), we can see that 

( * x I,u,(a,) + 6,(aV)~2Nz~-S = log (11s - 1) + O(1) (s -t 1) , 
V E 6- 

where Nv denotes the module of k,. We have, by a standard argument, that 

C 1 Trace(a(F,)) ,' Nu-" log (1 ,'s - 1) + O(1) (s -+ 1) , 
U E Lr 

where F, denotes the Frobenius conjugacy class of v. From (*) and (*:+), our 

observation follows immediately. 
Note: 5 4 was revised in March 1977. I would like to express my hearty 

thanks to Professor R. Langlands and his research fellow in IAS, who kindly 
let me be aware of a mistake. 
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