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Preface 

From September 13 to 17 in 1999, the First China- Japan Seminar on 
Number Theory was held in Beijing, China, which was organized by the 
Institute of Mathematics, Academia Sinica jointly with Department of 
Mathematics, Peking University. Ten Japanese Professors and eighteen 
Chinese Professors attended this seminar. Professor Yuan Wang was the 
chairman, and Professor Chengbiao Pan was the vice-chairman. This 
seminar was planned and prepared by Professor Shigeru Kanemitsu and 
the first-named editor. Talks covered various research fields including 
analytic number theory, algebraic number theory, modular forms and 
transcendental number theory. The Great Wall and acrobatics impressed 
Japanese visitors. 

From November 29 to December 3 in 1999, an annual conference 
on analytic number theory was held in Kyoto, Japan, as one of the 
conferences supported by Research Institute of Mat hemat ical Sciences 
(RIMS), Kyoto University. The organizer was the second-named editor. 
About one hundred Japanese scholars and some foreign visitors corn- 
ing from China, France, Germany and India attended this conference. 
Talks covered many branches in number theory. The scenery in Kyoto, 
Arashiyarna Mountain and Katsura River impressed foreign visitors. An 
informal report of this conference was published as the volume 1160 of 
Siirikaiseki Kenkyiisho Kakyiiroku (June 2000), published by RIMS, Ky- 
oto University. 

The present book is the Proceedings of these two conferences, which 
records mainly some recent progress in number theory in China and 
Japan and reflects the academic exchanging between China and Japan. 

In China, the founder of modern number theory is Professor Lookeng 
Hua. His books "Introduction to Number Theory", "Additive Prime 
Number Theory" and so on have influenced not only younger genera- 
tions in China but also number theorists in other countries. Professor 
Hua created the strong tradition of analytic number theory in China. 
Professor Jingrun Chen did excellent works on Goldbach's conjecture. 
The report literature of Mr. Chi Xu "Goldbach Conjecture" made many 
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people out of the circle of mathematicians to know something on number 
theory. 

In Japan, the first internationally important number theorist is Pro- 
fessor Teiji Takagi, one of the main contributors to class field theory. His 
books "Lectures on Elementary Number Theory" and "Algebraic Num- 
ber Theory" (written in Japanese) are still very useful among Japanese 
number theorists. Under the influence of Professor Takagi, a large part 
of research of the first generation of Japanese analytic number theorists 
such as Professor Zyoiti Suetuna, Professor Tikao Tatuzawa and Pro- 
fessor Takayoshi Mitsui were devoted to analytic problems on algebraic 
number fields. 

Now mathematicians of younger generations have been growing in 
both countries. It is natural and necessary to exchange in a suitable 
scale between China and Japan which are near in location and similar 
in cultural background. In his visiting to Academia Sinica twice, Pro- 
fessor Kanemitsu put forward many good suggestions concerning this 
matter and pushed relevant activities. This is the initial driving force 
of the project of the First China-Japan Seminar. Here we would like to 
thank sincerely Japanese Science Promotion Society and National Sci- 
ence Foundation of China for their great support, Professor Yuan Wang 
for encouragement and calligraphy, Professor Yasutaka Ihara for his sup- 
port which made the Kyoto Conference realizable, Professor Shigeru 
Kanemitsu and Professor Chengbiao Pan for their great effort of promo- 
t ion. 

Since many attendants of the China-Japan Seminar also attended the 
Kyoto Conference, we decided to make a plan of publishing the joint 
Proceedings of these two conferences. I t  was again Professor Kanemitsu 
who suggested the way of publishing the Proceedings as one volume of 
the series "Developments in Mathematics", Kluwer Academic Publish- 
ers, and made the first contact to Professor Krishnaswami Alladi, the 
series editor of this series. We greatly appreciate the support of Profes- 
sor Alladi. We are also indebted to Kluwer for publishing this volume 
and to Mr. John Martindale and his assistant Ms. Angela Quilici for their 
constant help. 

These Proceedings include 23 papers, most of which were written by 
participants of a t  least one of the above conferences. Professor Akio 
Fujii, one of the invited speakers of the Kyoto Conference, could not 
attend the conference but contributed a paper. All papers were refer- 
eed. We since~ely thank all the authors and the referees for their con- 
tributions. Thanks are also due to Dr. Masami Yoshimoto, Dr. Hiroshi 
Kumagai, Dr. Jun Furuya, Dr. Yumiko Ichihara, Mr. Hidehiko Mishou, 
Mr. Masatoshi Suzuki, and especially Dr. Yuichi Kamiya for their effort 

of making files of Kluwer LaTeX style. The contents include several 
survey or half-survey articles (on prime numbers, divisor problems and 
Diophantine equations) as well as research papers on various aspects of 
analytic number theory such as additive problems, Diophantine approx- 
imations and the theory of zeta and L-functions. We believe that the 
contents of the Proceedings reflect well the main body of mathematical 
activities of the two conferences. 

The Second China-Japan Seminar was held from March 12 to 16,2001, 
in Iizuka, Fukuoka Prefecture, Japan. The description of this conference 
will be found in the coming Proceedings. We hope that the prospects of 
the exchanging on number theory between China and Japan will be as 
beautiful as Sakura and plum blossom. 

April 2001 

CHAOHUA JIA AND KOHJI MATSUMOTO (EDITORS) 
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summation formula 

Abstract A multiple L-function and a multiple Hurwitz zeta function of Euler- 
Zagier type are introduced. Analytic continuation of them as complex 
functions of several variables is established by an application of the 
Euler-Maclaurin summation formula. Moreover location of singularities 
of such zeta functions is studied in detail. 

1991 Mathematics Subject Classification: Primary 1 lM41; Secondary 32Dxx, 11 MXX, 
llM35. 

1. INTRODUCTION 
Analytic continuation of Euler-Zagier's multiple zeta function of two 

variables was first established by F. V. Atkinson [3] with an application 
to  the mean value problem of the Riemann zeta function. We can find 
recent developments in (81, [7] and [5]. From an analytic point of view, 
these results suggest broad applications of multiple zeta functions. In [9] 
and [lo], D. Zagier pointed out an interesting interplay between positive 
integer values and other areas of mathematics, which include knot the- 
ory and mathematical physics. Many works had been done according to 
his motivation but here we restrict our attention to the analytic contin- 
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uation. T .  Arakawa and M. Kaneko [2] showed an analytic continuation 
with respect to the last variable. To speak about the analytic continu- 
ation with respect to all variables, we have to refer to J. Zhao [ll] and 
S. Akiyama, S. Egami and Y. Tanigawa [I]. In [ll], an analytic con- 
tinuation and the residue calculation were done by using the theory of 
generalized functions in the sense of I. M. Gel'fand and G. E. Shilov. In 
[I], they gave an analytic continuation by means of a simple application 
of the Euler-Maclaurin formula. The advantage of this method is that 
it gives the complete location of singularities. This work also includes 
some study on the values at non positive integers. 

In this paper we consider a more general situation, which seems im- 
portant for number theory, in light of the method of [I]. We shall give 
an analytic continuation of multiple Hurwitz zeta functions (Theorem 
1) and also multiple L-functions (Theorem 2) defined below. In special 
cases, we can completely describe the whole set of singularities, by us- 
ing a property of zeros of Bernoulli polynomials (Lemma 4) and a non 
vanishing result on a certain character sum (Lemma 2). 

We explain notations used in this paper. The set of rational integers is 
denoted by Z, the rational numbers by Q, the complex numbers by @ and 
the positive integers by N. We write Z<( for the integers not greater than 
t. Let Xi  (i = 1,2 , .  . . , k) be ~irichletcharacters of the same conductor 
q 2 2 and Pi (i = 1,2, .  . . , k) be real numbers in the half open interval 
[O, 1). The principal character is denoted by XO. Then multiple Hurwitz 
zeta function and multiple L-function are defined respectively by: 

and 

where ni E N (i = 1 ,..., k). If W(si) > 1 (i = 1,2  ,... , k  - 1) and 
W(sk) > 1, then these series are absolutely convergent and define holo- 
morphic functions of k complex variables in this region. In the sequel 
we write them by ck (s I p)  and Lk ( s  I x), for abbreviation. The Hurwitz 
zeta function <(s, a )  in the usual sense for a E (0 , l )  is written as 

by the above notation. 
We shall state the first result. Note that Pj - Pj+l = 1/2 for some j 

implies 4-i - 4 # 112, since Pj E [O, 1). 

Theorem 1. The multiple Hurwitz zeta function &(s  I P) is meromor- 
phically continued to ck and has possible singularities on: 

Sk = 1, XSk- i+ l  E Z<j  ( j  = 2,3, .  . . , k). 

Let us assume furthermore that all Pi (i = I , .  . . , k) are rational. If 
- Pk is not 0 nor 112, then the above set coincides with the set of 

whole singularities. If Pk-i - Pk = 112 then 

j 

Sk-i+l E Z<j  for j = 3,4, .  . . , k 
i=l 

forms the set of whole singularities. If Pk-l - Pk = 0 then 

j 

Sk-i+l E Z< j  for j = 3,4, .  . . , k  

forms the set of whole singularities. 

For the simplicity, we only concerned with special cases and deter- 
mined the whole set of singularities in Theorem 1. The reader can easily 
handle the case when all Pi - Pi+1 (i = 1, . . . , k - 1) are not necessary 
rational and fixed. So we have enough information on the location of 
singularities of multiple Hurwitz zeta functions. For the case of multiple 
L-functions, our knowledge is rather restricted. 

Theorem 2. The multiple L-function Lk(s 1 X )  is rneromorphieally con- 
tinued to ck and has possible singularities on: 

Sk = 17 X Sk-i+l E ZSj ( j  = 2,3, .  . . , k). 

Especially for the case k = 2, we can state the location of singularities 
in detail as follows: 
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Corollary 1. We have a meromorphic continuation of L2(s ( X )  to c2, 
L2(s I X )  is holomorphic in 

where the excluded sets are possible singularities. Suppose that ~1 and ~2 

are primitive characters with ~ 1 x 2  # X O .  Then L2 ( s  ( X )  is a holomorphic 
function in 

where the excluded set forms the whole set of singularities. 

Unfortunately the authors could not get the complete description of 
singularities of multiple L-function for k 2 3. 

2. PRELIMINARIES 
Let Nl, N2 E N and q be a real number. Suppose that a function 

f ( x )  is 1 + 1 times continuously differentiable. By using Stieltjes integral 
expression, we see 

where B ~ ( x )  = Bj  ( x  - [ X I )  is the j-th periodic Bernoulli polynomial. 
Here j-th Bernoulli polynomial B j ( x )  is defined by 

and [x] is the largest integer not exceeding x. Define the Bernoulli 
number BT by the value BT = Br (0). Repeating integration by parts, 

When q = 0, the formula (5) is nothing but the standard Euler-Maclaurin 
summation formula. This slightly modified summation formula by a pa- 
rameter q works quite fine in studying our series (1)  and (2). 

Lemma 1. Let 

and 

Then it follows that 

1 1 
- &+l (q)  (41. 
- C ( r  + l ) !  (Nl + a + - @1(s I Nl + q , a )  

Nl +q<n 

Proof. Put f ( x )  = ( x  + a)-S .  Then we have f ( ')(x) = (- l) ' (s) ,  ( X  + 
SO from (5), 
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When Rs > 1, we have 

as N2 -+ oo. When Rs 5 1, if we take a sufficiently large 1, the integral 
in the last term @1 ( s  1 Nl + q, a )  is absolutely convergent. Thus this 
formula gives an analytic continuation of the series of the left hand 
side. Performing integration by parts once more and comparing two 

-(919+1+1). ,, expressions, it can be easily seen that Ol ( s  I Nl +q, a )  << Nl 

Let AX1,X2 ( j )  be the sum 

Lemma 2. Suppose xl and ~2 are primitive characters modulo q with 
~ 1 x 2  # X O .  Then we have: for 1 5 j 

where T ( X )  is the Gauss sum defined b y  T ( X )  = x(u)e  2xiulg 

Proof. Recall the Fourier expansion of Bernoulli polynomial: 

B ~ ( ~ )  = - j !  lim 
M+oo 

n=-M 

for 1 5 j, 0 5 y < 1 except ( j ,  y )  = (1,O). First suppose j  2 2, then the 
right hand side of (6)  is absolutely convergent. Thus it follows from (6)  
that 

Since 
a- 1 

for a primitive character X ,  we have 

from which the assertion follows immediately by the relation T (x) = 
x ( - ~ ) T ( x ) .  Next assume that j = 1. Divide Axl ,x2 (1) into 

where C1 taken over all the terms 1 5 all a2 5 q - 1 with a1 # a?. The 
secondsum in (7)  is equal to 0 by the assumption. 
first sum is 

By using (6) ,  the 
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Hence we get the result. 0 

We recall the classical theorem of von Staudt & Clausen. 

Lemma 3. 
1 

B2n + C - is an integer. 
p - l ( 2 n  P 

Here the summation is  taken over all primes p such that p - 1 divides 
2n. 

Extending the former results of D. H. Lehmer and K. Inkeri, the 
distribution of zeros of Bernoulli polynomials is extensively studied in 
[4], where one can find a lot of references. On rational zeros, we quote 
here the result of [6]. 

Lemma 4. Rational zeros of Bernoulli polynomial B n ( x )  must be 0,112 
or 1. These zeros occur when and only when i n  the following cases: 

Bn(0) = B n ( l )  = O  n is odd n 2 3 
Bn(1/2)  = 0 n i s o d d  n 2 1 .  (8) 

We shall give its proof, for the convenience of the reader. 

Proof. First we shall show that if B n ( y )  = 0 with y E Q then 27 E Z. 
The Bernoulli polynomial is explicitly written as 

Let y = P/Q with P, Q E Z and P, Q are coprime. Then we have 

Assume that there exists a prime factor q 2 3 of Q. Then the right 
hand side is q-integral. Indeed, we see that B1 = -112 and qBk is q- 
integral since the denominator of Bk is always square free, which is an 

easy consequence of Lemma 3. But the left hand side is not q-integral, 
we get a contradiction. This shows that Q must be a power of 2. Let 
Q = 2m with a non negative integer m. Then we have 

If m > 2 thcn wc get a similar contradiction. Thus Q must divide 2, we 
see 27 E Z. Now our task is to study that values of Bernoulli polynomials 
a t  half intcgc:rs. Sincc: Bo(..r;) = 1 and B l ( x )  = x - 112, the assertion is 
obvioi~s if  71, < 2. Assurric: that, rr, 2 2 arid even. Then by Lemma 3, the 
t],:norr~ i rl;~t,or of' I&, is c l  ivisihlc: h y  3. R.cc:alling the relation 

for n 2 2 arid c:vc:~~. Wc: sc :~  1,11;~1, lil ,(l  12) is riot 3 intcgral from L(:~ri~rli~ 
3 :mcl tho 1 h i , i 0 1 1  ( I  0). C O I I I I ) ~ I I ~ I I ~ ,  (91, ( I  1), wc have for any iritogcr T / / ,  

arid any c:vc:r~ irlt,c:gc:r rr. > 2 

It  is easy to show thc: t~sscrtion for the remaining case when n > 2 is 
odd, by using (9) and (10).  0 

3. ANALYTIC CONTINUATION OF 
MULTIPLE HURWITZ ZETA FUNCTIONS 

This section is devoted to the proof of Theorem 1. First wc trcut tlic 
double Hurwitz zeta function. By Lemma 1, we see 
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Suppose first that P1 > a. Then the sum Cnl+P1-P2<n2 means 
En,<,, , so it follows from (12)  that 

Suppose that P1  < P2. We consider 

Noting that the sum Cnl+B1 -P2<n2 means Enl <n2, we apply (12)  to the 
second term in the braces. For the first term in the braces, we use the 
binomial expansion: 

1 - 1 ( P 2  - P i )  
+ Ru+l) (ni + P 2 ) 1 2  (nl + /31)S2 nl+ Pl 

with < n;". By applying (12)  and (14)  to (13) ,  we have 
(14)  

Recalling the relation (9) and combining the cases P1 5 a and P1 > A, 
we have 

where 

The right hand side in (15)  has meromorphic continuation except the 
last term. The last summation is absolutely convergent, and hence holo- 
morphic, in R ( s l  + s2 + 1 )  > 0. Thus we now have a meromorphic 
continuation to R ( s l  + s2 + 1 )  > 0. Since we can choose arbitrary large 
1, we get a meromorphic continuation of C2(s I P )  to C 2 ,  holomorphic in 

The exceptions in this set are the possible singularities occurring in 
( ~ 2  - 1)- l  and 

Whether they are 'real singularity' or not depends on the choice of pa- 
rameters pi (i = l ,  2 ) .  For the case of multiple Hurwitz zeta functions 
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with k variables, 

Since 

with L = %(sk-i) + x15j5k-2,!f?(s ,)<0 % ( ~ i ) ,  the last summation is con- 
2 - 

vergent absolutely in 

Since 1 can be taken arbitrarily large, we get an analytic continuation 
of &(s I 0 )  to c k .  Now we study the set of singularities more precisely. 
The 'singular part' of C2(s I P )  is 

Note that this sum is by no means convergent and just indicates local 
singularities. From this expression we see 

are possible singularities and the second assertion of Theorem 1 for k = 2 
is now clear with the help of Lemma 4. We wish to determine the 
whole singularities when all Pi (i = 1, . . . , k) are rational numbers by an 
induction on k. Let us consider the case of k variables, 

We shall only prove the case when /3k-1 - Pk = 0. Other cases are left to 
the reader. By the induction hypothesis and Lemma 4 the singularities 
lie on, at least for r = -1,0,1,3,5,7,. . . , 

in any three cases; Pk-2 - Pk-l = 0,112, and otherwise. 
Thus 

~ k = 1 ,  ~ k - l + ~ k = 2 , 1 , 0 , - 2 , - 4 , - 6  ,... 
and 

s k - j + l  + ~ k - j + 2  + " ' +  ~k E E<j,  for j > 3 

are the possible singularities, a s  desired. Note that the singularities of 
the form 

sk-2 + s k - l  +sk + r  = 1,-1,-3,-5 ,... 
may appear. However, these singularities don't affect our description. 
Next we will show that they are the 'real' singularities. For example, 
the singularities of the form sk-2  + sk-l+ s k  = 7 occurs in several ways 
for a fixed 7. So our task is to show that no singularities defined by one 
of the above equations will identically vanish in the summation process. 
This can be shown by a small trick of replacing variables: 
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In fact, we see that the singularities of 

C k ( ~ l , - . . , u k - 2 , ~ k - l  - U k r U k  I P l , . - - , P k )  

appear in 

By this expression we see that the singularities of (ul ,  . . . , uk-1 + 
r I PI, . . . ,8k-I) are summed with functions of uk of dzfferent degree. 
Thus these singularities, as weighted sum by another variable uk, will 
not vanish identically. This argument seems to be an advantage of [I], 
which clarify the exact location of singularities. The Theorem is proved 
by the induction. 0 

4. ANALYTIC CONTINUATION OF 
MULTIPLE L-FUNCTIONS 

Proof of Theorem 2. When %si > 1 for i = 1,2, .  . . , k, the series is 
absolutely convergent. Rearranging the terms, 

l o o  

By this expression, it suffices to show that the series in the last brace has 
the desirable property. When ai - ai+l >_ 0 holds for z = 1, . . . , k- 1, this 
is clear form Theorem 1, since this series is just a multiple Hurwitz zeta 
function. Proceeding along the same line with the proof of Theorem 1, 
other cases are also easily deduced by recursive applications of Lemma 
1. Since there are no need to use binomial expansions, this case is easier 
than before. I7 

Proof of Corollary 1. Considering the case k = 2 in Theorem 2, we see 

We have a meromorphic continuation of L2(s I X) to C2, which is holo- 
morphic in the domain (3). Note that the singularities occur in 

and 

If ~2 is not principal then the first term vanishes and we see the 'singular 
part' is 

Thus we get the result by using Lemma 2 and the fact: 

for n 2 1 and a non principal character X. 0 

AS we stated in the introduction, we do not have a satisfactory answer 
to the problem of describing whole sigularities of multiple L-functions 



16 ANALYTICNUMBER THEORY 

in the case k 2 3, at present. For example when k = 3, what we have 
to show is the non vanishing of the sum: 

apart from trivial cases. 
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1. INTRODUCTION 
Throughout this paper except in the appendix, we denote by q a ratio- 

nal or an imaginary quadratic integer with Iq( > 1, and K an imaginary 
quadratic number field including q. Note that K must be of the form 
K = Q(q) if q is an imaginary quadratic integer. For a positive ra- 
tional integer s and a polynomial P(z )  E K [z] of degree s such that 
P(0)  # 0, P(q-n) # 0 for all integers n _> 0, we define an entire function 

Concerning the values of $(z; q), as a special case of a result of Bkivin [q, 
we know that if 4(a;  q) E K for nonzero a E K ,  then a = a,q: with 
some integer n, where as is the leading coefficient of P(z ) .  Ht: usctl in 
the proof a rationality criterion for power series. Recently, the prcscnt 
authors [I] showed that n in B6zivin1s result must be positivct. Hcnc:c 
we know that, for nonzero CY E K ,  

In case of P (z )  = aszs + ao, it was also proved in [I] that &(a; q )  E K 
for nonzero a, E K if and only if a = asqsn with some n E N. 

In this paper we are interested in the particular case s = 2, P ( z )  = 
(z - q)2 of (1.1), that is, 

We note that the function J ( z ;  q) := +(-z2/4; q) satisfies 

where the right-hand side is the Bessel function Jo(z). In this sense 
J ( z ;  q) is a q-analogue of Jo(z). The main purpose of this paper is to 
determine the pairs (q, a )  with a E K for which 4(a;q)  belong to K. 
In this direction we have the following result (see Theorems 2 and 3 of 
[2]): $(a,; q) does not belong to K for all nonzero a E K except possibly 
when q is equal to 

where b is a nonzero rational integer and D is a square free positive 
integer satisfying 

We now state our main result which completes the above result. 

Theorem. Let q be a rational or an imaginary quadratic integer with 
1q1 > 1, and K an zrnaginary quadratic number field including q. Let 
4 ( ~ ;  q )  be the function (1.3). Then, for nonzero a E K ,  +(a;  q) does not 
belong to K except when 

where the order of each & sign is taken into account. 
Moreover, a, is a zero of 4(z; q) in each of these exceptional cases. 

For the proof, we recall in the next section a method developed in [I] 
and [2]. In particular, we introduce a linear recurrence c, = c,(q) (n  E 
N) having the property that +(qn; q) E K if and only if cn(q) = 0. 
Then the proof of the theorem will be carried out in the third section by 
determining the cases for which %(q) = 0. In the appendix we remark 
that one of our previous results (see Theorem 1 of [2]) can be made 
effective. 

The authors would like to thank the referee for valuable comments on 
refinements of an earlier version of the present paper. 

2. A LINEAR RECURRENCE c, 
Let +(z; q) be the function (1.1). Then, for nonzero a E K ,  we define 

a function 

which is holomorphic a t  the origin and meromorphic on the whole com- 
plex plane. Since $(a;  q) = f (q), we may study f (q) arithmetically 
instead of +(a;  q). An advantage in treating f (z) is the fact that it 
satisfies the functional equation 

which is simpler than the functional equation of d(z) = $(z; q) such as 
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where A is a q-'-difference operator acting as ( A $ ) ( z )  = $ ( q - l ~ ) .  In 
fact, as a consequence of the result of Duverney [4], we know that f ( q )  
does not belong to K when f ( z )  is not a polynomial (see also [ I ] ) .  Since 
the functional equation (2.1) has the unique solution in K [ [ z ] ] ,  a poly- 
nomial solution of (2.1) must be in K [ z ] .  Let Eq(P)  be the set consisting 
of all elements a E K for which the functional equation (2.1) has a 
polynomial solution. Then we see that, for a E K ,  

Note that f ( z )  r 1 is the unique solution of (2.1) with a = 0 ,  and that 
no constant functions satisfy (2.1) with nonzero a. 

In view of (1.2), o E E,(P)\{O) implies that a = a,qn with some 
positive integer n. ~ndeed,  we can see that if (2.1) has a polynomial 
solution of degree n E N ,  then a must be of the form ar = a,qn. Hence, 
by (2.2), our main task is to determine the pairs (q ,  n)  for which the 
functional equation (2.1) with s = 2,  P ( z )  = ( z  - q ) 2 ,  and u = qn has 
a polynomial solution of degree n E N .  To this end we quote a result 
from Section 2 of [2] with a brief explanation. 

Let f ( z )  be the unique solution in K [ [ z ] ]  of (2.1) with s = 2, P ( z )  = 
( z  - q ) 2 ,  and a = qn (n E N ) .  It is easily seen that f ( z )  is a polynomial 
of degree n if and only if f ( z ) / P ( z )  is a polynomial of degree n - 2. By 
setting 

n-2 

with unknown coefficients bi, we have a system of n - 1 linear equations 
of the form 

Anb = C ,  

where 

Let Bn be an n x n matrix which is An with c as the last column. Since 
A, has the rank n - 1, this system of linear equations has a solution if 
and only if Bn has the same rank n - 1, so that det Bn = 0.  We can 
show for det Bn (n E N )  the recursion formula 

det Bn+2 = 29 det B n + ~  - q2(1 - qn) det B,, 

with the convention det Bo = 0 ,  det B1 = 1. For simplicity let us in- 
troduce a sequence c, = c,(q)  to be c, = q-("-')det B,, for which 
c1 = 1,c2 = 2, and 

Then we can summarize the argument above as follows: The functional 
equation (2.1) with s = 2, P ( z )  = ( z  - q ) 2 ,  and o = qn (n E N )  has a 
polynomial solution f(z)  if and only if c , (q)  = 0.  We wish to show in 
the next section that c , (q)  = 0 if and only if 

which correspond to the cases given in the theorem. 

3. PROOF OF THE THEOREM 
Let c, = ~ ( q )  (n E N )  be the sequence defined in the previous 

section. The following is the key lemma for our purpose. 

Lemma 1. Let d be a positive number. If the inequalities 

and 

(191 - ( 2  + a )a - l ) l qy  r z (3  + s + a- l )  

hold for some n = m, then (3.1) is valid for all n 2 m. 

Proof. We show the assertion by induction on n. Suppose that the 
desired inequalities hold for n with n 2 m. By the recursion formula 
(2.3) and the second inequality of (3.1), we obtain 

which is the first inequality of (3.1) with n + 1 instead of n. 
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We next show the second inequality of (3.1) with n + 1 instead of n .  
By the recursion formula (2.3) and the first inequality of (3.1) ,  we obtain 

Noting that (2  + 6) (2  + 6-'(Iqln + 1 ) )  is equal to 

and that the inequality (3.2) for n = m implies the same inequality for 
all n 2 m, we get the desired inequality. This completes the proof. 

In view of the fact mentioned in the introduction, we may consider the 
sequences c, = c , (q)  (n  E N )  only for q given just before the statement 
of the Theorem. In the next lemma we consider the sequence c , (q)  for 
these q excluding b-. 

Lemma 2. Let q be one of the numbers 

Then, for the sequence c, = c , (q)  ( n  E N), c, = 0 i f  and only if (2.4) 
holds. 

Moreover, for the exceptional cases (2.4), 4(q3; q )  = 0 if q = -3, and 
4(q4;  q )  = 0 if q = (- 1 f f l ) / 2 ,  where +(z;  q)  is the function (1.3). 

Proof. Since 
c3 = 3 + q ,  C4 = 2(q2 + q + 2 ) ,  

we see that c, = 0 in the cases (2.4). By using computer, we have the 
following table which ensures the validity of (3.1) and (3.2) with these 
values: 

It follows from Lemma 1 that, in each of the sequences, ~ ( q )  # 0 for all 
n 2 m. By using computer again, we can see the non-vanishing of the 
remaining terms except for the cases (2.4). 

As we noted in the previous section, if the functional equation (2.1) 
has a polynomial solution f ( z ;  a ) ,  it is divisible by P ( z ) .  Hence we 
have ~ # ( ~ ~ ; q )  = f (q;  q3)  = 0 if q = -3, and 4(q4;q )  = f (q;q4)  = 0 if 
q = (-1 f -)/2. The lemma is proved. 0 

We next consider the case where q = b m  without (1.4). 

Lemma 3. Let b be a nonzero integer, and D a positive integer such 
that b2D 2 5. Then, for q = b m ,  the sequence c, = c , (q)  (n E N )  
does not vanish for all n. 

Proof. By (3.3), c3 and c4 are nonzero for the present q. Let us set 
A := b 2 ~ .  To prove c, # 0 for all n 2 5, we show (3.1) and (3.2) with 
6 = 3, n = 4. Indeed, by straightforward calculations, we obtain 

and 

Since these values are positive whenever A 2 5, (3.1) with 6 = 3, n = 4 
holds. Moreover, 

holds whenever A 2 5. Hence (3.2) with S = 3,  n = 4 also holds. Hence 
the desired assertion follows from Lemma 1. This completes the proof. 

0 

By this lemma there remains the consideration of the case where q = 
b- with (1.4) and b2D < 5, that is the case q = f G. In this case, 
by using computer, we can show that (3.1) and (3.2) with 6 = 4,  n = 8 
are valid. Hence, by Lemma 1, c, = %(f n) # 0 for all n > 8. We 
see also that c, # 0 for all n < 8 by using computer again. Thus we 
have shown the desired assertion, and this completes the proof of the 
theorem. 

Appendix 
Here we consider an arbitrary algebraic number field K ,  and we denote 

by OK the ring of integers in K. Let d, h, and R be the degree over Q, the 
class number, and the regulator of K, respectively. Let s be a positive 
integer, q a nonzero element of K, and P ( z )  a polynomial in K [ z ]  of the 
form 

S 

Then, as in Section 2, we define a set &,(P) to be the set consisting 
of all a E K for which the functional equation (2.1) has a polynomial 
solution. In this appendix we remark that the following result concerning 
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the set Eq(P) holds. Hereafter, for any a E K, we denote by H ( a )  the 
ordinary height of a,  that is, the maximum of the absolute values of the 
coefficients for the minimal polynomial of a over Z. 

Theorem A. Let s be a positive integer with s 2 2, and q a nonzero 
element of K with q E OK or q-' E OK. Let ai(x) E OK[x], i = 
0,1,  ..., s ,  be such that 

Let 
and 
Let 

S = {wl, ..., wt) be the set of finite places of K for which lylwi < I ,  
B an upper bound of the prime numbers pl , ..., pt with \pi lwi < 1. 
P ( z )  = P ( z ;  q )  be a polynomial as above, where ai = ai(q) (i = 

0, 1, . . . , - 5 ) .  Then there exists a positive constant C ,  which is effectively 
corr~putc~lle f7.f~V-L quantities depending only on d,  h, R, t ,  and B,  such that 
i j E q ( r )  # { O ) ,  then H(q) < C .  

Note that we already proved the assertion of this theorem with a non- 
cff(:ctivc constant C (see Theorem 1 of [2]). In that proof we applied a 
generalized version of Roth's theorem (see Chapter 7, Corollary 1.2 of 
Lang [5]), which is not effective. However, as we see below, it is natural 
in our situation to apply a result on S-unit equations, which is effective. 

Proof of Theorem A. We first consider the case where q E OK. It  follows 
from the Proposition of [2] that if &(P) # {0}, then 1 f q are S-units. 
Since 

(1 - 9) + (1 +9)  = 2, 

(1 - q, 1 + q) is a solution of the S-unit equation x 1 + 2 2  = 2. Hence, by a 
result on S-unit equations in two variables (see Corollary 1.3 of Shorey 
and Tijdeman [6]), H ( l  f q) is bounded from above by an effectively 
computable constant depending only on the quantities given in the the- 
orem. Since the minimal polynomial of q over Z is Q(x + 1) if that of 
1 + q is Q(x), H(q) is also bounded from above by a similar constant. 

For the case where q-' E OK, by the Proposition of [2] again, we 
can apply the same argument replacing q by q-l . Hence, by noting that 
H(q-') = H(q), the desired assertion holds in this case. This completes 
the proof. 0 
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1. INTRODUCTION 
Lately, great progress have been made towards the determination of 

all the normal CM-fields with class number one. Due to the work of 
various authors, all the normal CM-fields of degrees less than 32 with 
class number one are known. In contrast, up to now the determination 
of all the non-normal CM-fields with class number one and of a given 
degree has only been solved for quartic fields (see [LO]). The present 
piece of work is an abridged version of half the work to be completed 
in [Bou] (the PhD thesis of the first author under the supervision of 
the second auhtor): the determination of all the non-normal sextic CM- 
fields with class number one, regardless whether their maximal totally 
real subfield is a real cyclic cubic field (the situation dealt with in the 
present paper) or a non-normal totally real cubic field. 

Let K range over the non-normal sextic CM-fields whose maximal 
totally real subfields are cyclic cubic fields. In the present paper we 
will prove that the relative class number of K goes to infinity with the 
absolute value of its discriminant (see Theorem 4), we will characterize 
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these K's of odd class numbers (see Theorem 8) and we will finally 
determine all these K's of class number one (see Theorem 10). 

Throughout this paper K = F ( G )  denotes a non-normal sextic 
CM-field whose maximal totally real subfield F is a cyclic cubic field, 
where S is a totally positive algebraic element of F .  Let S1 = 6, 62 and 
63 denote the conjugates of 6 in F and let N = F (m, &&, a) 
denote the normal closure of K .  Then, N is a CM-field with maximal 
totally real subfield Nf = F (m, m) and k = Q(-) is an 
imaginary quadratic subfield of N ,  where d = S1S2S3 = NFlq(6). 

2. EXPLICIT LOWER BOUNDS ON 
RELATIVE CLASS NUMBERS OF SOME 
NON-NORMAL SEXTIC CM-FIELDS 

Let h i  = h K / h F  and QN E {1,2) denote the relative class number 
and Hasse unit index of K ,  respectively. We have 

where dE and R ~ S , = ~ ( ( ~ )  denote the absolute value of the discriminant 
and the residue at s = 1 of the Dedekind zeta function CE of the number 
field E. The aim of this section is to obtain an explicit lower bound on 
h& (see Theorem 4). 

2.1. FACTORIZATIONS OF DEDEKIND 
ZETA FUNCTIONS 

Proposition 1. Let F be a real cyclic cubic field, K be a non-normal 
CM-sextic field with maximal totally real subfield F and N be the normal 
closure of K .  Then, N is a CM-field of degree 24 with Galois group 
Gal(N/Q) isomorphic to the direct product d4 x C2, N+ is a normal 
subfield of N of degree 12 and Galois group Gal(N+/Q) isomorphic to 
d4 and the imaginary cyclic sextic field A = F k  is the maximal abelian 
subfield of N .  Finally, we have the following factorization of Dedekind 
zeta functions : 

h/&+ = ( c A / < F ) ( c K / ~ ) ~ .  (2) 

Proof. Let us only prove (2). Set K O  = A = F k  and Ki  = ~ ( a ) ,  
1 < i < 3. Since the Galois group of the abelian extension N / F  is the 
elementary 2-group C2 x C2 x C2, using abelian L-functions we easily 
obtain CN/CN+ = n:=o(<K,/@). Finally, as the three Ki7s with 1 < i < 

3 are isomorphic to K ,  we have CKi = CK for 1 5 i 5 3, and we obtain 
the desired result. 

2.2. ON THE NUMBER OF REAL ZEROS OF 
DEDEKIND ZETA FUNCTIONS 

For the reader's convenience we repeat the statement and proof of 
[LLO, Lemma 151: 

Lemma 2. If the absolute value dM of the discriminant of a number 
M satisfies d~ > e x p ( 2 ( d m  - I)) ,  then its Dedekind zeta func- 
tion CM has at most m real zeros i n  the range s ,  = 1 - (2( Jm+l- 
I ) ~ /  l o g d ~ )  _< s < 1. In  particular, CM has at most two real zeros i n  the 
range 1 - (l / logdM) 5 s < 1. 

Proof. Assume CM has at  least m + 1 real zeros in the range [s,, l[ .  
According to the proof of [Sta, Lemma 31 for any s > 1 we have 

where 

where n > 1 is the degree of M and where p ranges over all the real 
zeros in ] O , 1 [  of CM. Setting 

we obtain 

and since h(t,) < h(2) < 0 we have a contradiction. 
Indeed, let y = 0.577 - . denote Euler's constant. Since hf(s) > 0 for 
8 > 0 (use (r'/I?)'(s) = Ck.O(k + s ) - ~ ) ,  we do have h(tm) < h(2) = 
(1 -n(y+logrr)) /2+rl( l  -iog2) 5 (1 -n(r+logrr-  l+log2)/2 < 0. 
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2.3. BOUNDS ON RESIDUES 
Lemma 3. 

1. Let K be a sextic CM-field. Then, !j < 1 - ( l j a  log dK) 5 P < 1 
and CK (P) I 0 imply 

1 - P  
Ress=i(C~) 2 where EK := 1 - ( 6 ~ e ' ~ ~ " l d g ~ ) .  (3) 

2. If F is real cyclic cubic field of conductor fF then 

and $ 5 /3 < 1 and CF(P) = 0 imply 

Proof. To prove (3), use [Lou2, Proposition A]. To prove (4), use [Loul]. 
For the proof of (5) (which stems from the use of [LouQ, bound (31)] and 
the ideas of   LOU^]) see [LouG]. 

Notice that the residue at its simple pole s = 1 of any Dedekind zeta 
function CK is positive (use the analytic class number formula, or notice 
that from its definition we get CK(s) > 1 for s > 1). Therefore, we have 
lims,l CK(S) = -CQ and < ~ ( 1  - ( l j a l o g d ~ ) )  < 0 if <K does not have 

s<l 
any real zero in the range 1 - ( l l a  log dK) I s < 1. 

2.4. EXPLICIT LOWER BOUNDS ON 
RELATIVE CLASS NUMBERS 

Theorem 4. Let K be a nun-normal sextic CM-field with maximal to- 
tally real subfield a real cyclic cubic field F of conductor fF .  Let N 
denote the normal closure of K .  Set BK := 1 - ( 6 ~ e l / ~ ~ / d $ ~ ) .  W e  have 

h G t € K  1 8  3 
JdKldF. 

e / (log f~ + 0.05)2 logdN 

and dN < d g .  Therefore, h c  goes to infinity with dK and there are only 
finitely many nun-normal CM sextic fields K (whose maximal totally real 
subfields are cyclic cubic fields) of a given relative class number. 

Proof. There are two cases to consider. 

First, assume that has a real zero p in [1 - (11 log dN), l[. Then, 
P 2 1 - (l/410gdK) (since [N : K] = 4, we have dN 3 dk) .  Since 
CK(P) = 0 < 0, we obtain 

(use Lemma 3 with a = 4). Using (I),  (5), (7) and QK 2 1, we get 

(since [N : F] = 8, we have dN > d i  = fh6). 
Second assume that <F does not have any real zero in [I- (11 log dN), 1[. 
Since according to (2) any real zero P in [ I -  (11 log dN), 1 [ of CK would 
be a triple zero of CN, which would contradict Lemma 2, we conclude 
that (i< does not have any real zero in [1 - (l / logdN), 1[, and P := 
1 - (11 log dN)) 2 1 - (1/4log dK)) satisfies CF(P) < 0. Therefore, 

Ress=l(C~) L EK 
1 

e1/8 log dN 

(use Lemma 3 with a = 4). Using (I) ,  (4), (9) and QK 2 1, we get (6). 
Since the lower bound (8) is always better than the lower bound (6), the 
worst lower bound (6) always holds. 

Now, let 6 E F be any totally positive element such that K = ~(fl). 
Let 61 = 6, 62 and 63 denote the three conjugates of 6 in F and set K i  = 
I?(-). Let N denote the normal closure of K .  Since N = K1K2K3 
and since the three Ki's are pairwise isomorphic then dN divides d g  

(see [Sta, Lemma 7]), and dN 5 d g  . Finally, since fF = d;I2 $ d g 4  and 

since 2 dg4,  we do have h i  ---, CQ as dK - CQ 

3. CHARACTERIZATION OF THE 
ODDNESS OF THE CLASS NUMBER 

Lemma 5. Let K be a nun-normal sextic CM-field whose maximal to- 
tally real subfiel F is a cyclic cubic field. The class number h~ of K is 
odd If and only if the narrow class number hg of F is odd and exactly 
one prime ideal Q of F is rami,fied in the quadratic extension K/F. 

h o f .  Assume that hK is odd. If the quadratic extension K/F were 
unramified at all the finite places of F then 2 would divide h$. Since 
the narrow class number of a real cyclic cubic field is either equal to its 
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wide class number or equal to four times its wide class number, we would 
have h: G 4 (mod 8) and the narrow Hilbert 2-class field of F would 
be a normal number field of degree 12 containing K ,  hence containing 
the normal closure N of K which is of degree 24 (see Proposition 1). A 
contradiction. Hence, N / F  is ramified at at least one finite place, which 
implies H$ n K = F where H$ denotes the narrow Hilbert class field 
of F .  Consequently, the extension KH$/K  is an unramified extension 
of degree h$ of K .  Hence h+ divides hK, and the oddness of the class F number of K implies that hF is odd, which implies h$ = hF. 

Conversely, assume that h$ is odd. Since K is a totally imaginary 
number field which is a quadratic extension of the totally real number 
field F of odd narrow class number, then, the 2-rank of the ideal class 
group of K is equal to t - 1, where t denotes the number of prime ideals of 
F which are ramified in the quadratic extension K / F  (see [CH, Leqma 
13.71). Hence hK is odd if and only if exactly one prime ideal Q of F is 
ramified in the quadratic extension K /F .  

L e m m a  6. Let K be a non-normal sextic CM-field whose maximal to- 
tally real subfield F is  a cyclic cubic field. Assume that the class number 
hK of K is  odd, stick to the notation introduced i n  Lemma 5 and let 
q >_ 2 denote the rational prime such that Q n Z = qZ. Then, (i) the 
Hasse unit QK of K is equal to one, (ii) K = F(,/-CyQ2) for any totally 

+ positive algebraic element a p  E F such that Q h ~  = (aa) ,  (iii) there ex- 
ists e >_ 1 odd such that the finite part of the conductor of the quadratic 
extension K / F  is given by FKIF = Qe, and (iv) q splits completely i n  
F .  

Proof. Let UF and U$ denote the groups of units and totally positive 
units of the ring of algebraic integers of F, respectively. Since h$ is odd 
we have U$ = Ug. We also set h = h$,  which is odd (Lemma 5). 

1. If we had QK = 2 then there would exist some c E U$ such that 
K = ~ ( 6 ) .  Since U$ = u;, we would have K = ~ ( a )  and 
K would be a cyclic sextic field. A contradiction. Hence, QK = 1. 

2. Let a be any totally positive algebraic integer of F such that K = 
F ( f i ) .  Since Q is the only prime ideal of F which is ramified in 
the quadratic extension K / F ,  there exists some integral ideal Z of 

2 1 F such that (a )  = z2Q1, with 1 E {0, I) ,  which implies ah = wlap 
for a totally positive generator a1 of ih and some e E U:. Since 
U: = u;, we have e = q2 for some 7 E UF and K = F ( 6 )  = 

F(d--Cyh) = F ( d 7 ) .  If we had 1 = 0 then K = F(-) would 

be a cyclic sextic field. A contradiction. Therefore, 1 = 1 and 
K = F(d-'Ye). 

3. Since Q is the only prime ideal of F ramified in the quadratic 
extension K / F ,  there exists e > 1 such that FKIF = Qe. Since 
K / F  is quadratic, for any totally positive algebraic integer a E F 
such that K = F ( 6 )  there exists some integral ideal Z of F such 
that (4a) = z23KIF (see [LYK]). In particular, there exists some 

integral ideal 1 of F such that (4ap)  = ( 2 ) 2 ~ h :  = Z2FKIF = 
z2Qe and e is odd. 

4. If (q) = Q were inert in F ,  we would have K = F(-) = 
F ( 6 ) .  If (q) = Q3 were ramified in F ,  we would have K = 

F(,/-) = F( J-a3Q) = F(JT) = ~(fi). In both cases, 
K would be abelian. A contradiction. Hence, q splits in F .  . 

3.1. THE SIMPLEST NON-NORMAL SEXTIC 
CM-FIELDS 

Throughout this section, we assume that h$ is odd. We let AF de- 
note the ring of algebraic integers of F and for any non-zero a E F we 
let v(a) = f 1 denote the sign of NFlq(a). Let us first set some no- 
tation. Let q > 2 be any rational prime which splits completely in a 
real cyclic cubic field F of odd narrow class number h&, let Q be any 
one of the three prime ideals of F above q and let cup be any totally 

+ 
positive generator of the principal (in the narrow sense) ideal Q h ~ .  We 
set KFIQ := F(J-CYQ) and notice that K F , ~  is a non-normal CM-sextic 
field with maximal totally real subfield the cyclic cubic field F .  Clearly, 
& is ramified in the quadratic extension K /F .  However, this quadratic 
extension could also be ramified at primes ideals of F above the rational 
prime 2. We thus define a simplest non-normal sextic CM-field as 
being a KFIQ such that Q is the only prime ideal of F ramified in the 
quadratic extension KFIQ/F .  Now, we would like to know when is K F ~ Q  
a simplest non-normal sextic field. According to class field theory, there 
is a bijective correspondence between the simplest non-normal sextic 
CM-fields of conductor Qe (e odd) and the primitive quadratic charac- 
ters xo on the multiplicative groups (AF/Qe)* which satisfy xO(e) = v(c) 
for all e E UF  (which amounts to asking that Z I+ ~ ( 1 )  = v(az)xo(ar)  
be a primitive quadratic character on the unit ray class group of L for the + 
modulus Qe, where a= is any totally positive generator of z h r ) .  Notice 
that x must be odd for it must satisfy x(-1) = v(-1) = ( - I ) ~  = -1. 
Since we have a canonical isomorphism from Z/qeZ onto AF/Qe, there 
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exists an odd primitive quadratic character on the multiplicative group 
( A F / Q e ) * ,  e odd, if and only if there exists an odd primitive quadratic 
character on the multiplicative group ( Z / q e Z ) * ,  e odd, hence if and only 
if [q = 2 and e = 31 or [q = 3 (mod 4 )  and e = 11, in which cases 
there exists only one such odd primitive quadratic character modulo Qe 
which we denote by x p .  The values of X Q  are very easy to compute: for 
a E AL there exists a, E Z such that a = a, (mod Q e )  and we have 
xQ(a)  = xq(a,) where xu denote the odd quadratic character associated 
with the imaginary quadratic field Q(fi). In particular, we obtain: 

Proposi t ion 7. K = F(,/-) is a simplest non-normal sextic CM- 
field if and only if q $ 1 (mod 4) and the odd primitive quadratic char- 
acter X Q  satisfies x Q ( e )  = N F I Q ( € )  for the three units € of any system 
of fundamental units of the unit group U F  of F .  In  that case the finite 
part of the conductor of the quadratic extension K F I Q / F  is  given by 

3.2. THE CHARACTERIZATION 
Now, we are in a position to give the main result of this third section: 

Theo rem 8. A number field K is a non-normal sextic CM-field of odd 
class number and of maximal totally real sub-field a cvclic cubic field F - .I 

i f  and only if the narrow class number h& of F is odd and K = K F I Q  = 
F(,/-CYQ) is a simplest non-normal sextic CM-field associated with F 
and a prime ideal Q of F above a positive prime q $ 1 (mod 4 )  which 
splits completely i n  F and such that the odd primitive quadratic character 
X Q  satisfies x p ( c )  = NFIQ(e )  for the three units e of any system of 
fundamental units of the unit group U F  of F .  

4. THE DETERMINATION 
Since the K F I Q 9 s  are isomorphic when & ranges over the three prime 

ideals of F above a split prime q and since we do not want to distinguish 
isomorphic number fields, we let K F l q  denote any one of these KF,Q.  
We will set ij := N F I Q ( G I F ) .  Hence, Q = q if q > 2 and @ = 23 if q = 2. 

T h e o r e m  9. Let K = K F l q  be any simplest nun-normal sextic CM-field. 
12 16 Then, QK = 1, dK = Qdg = ~ f : ,  dN = Ql2d; = $d& = Q f F  , and ( 6 )  

yields : 

,/Qf; 
& > ' K  1 8  .J e ?r (log f F  + 0.05)2 log(Q12 f i 6 )  

(where BK := 1 - ( 6 ~ e ' / ~ ~ / d $ ~ )  2 e~ := 1 - ( 6 ~ , 1 / 2 4 / 3 1 / 6 f l / ~ ) ) .  In 
particular, if h~ = 1 then f F  5 9 - lo5 and for a given fF 5 9 .  lo5 
we can use (10) to compute a bound on the Q's for which hk = 1. For 
example h~ = 1 and f~ = 7 imply 4 5 5 .107 ,  hK = 1 and f F  > 1700 
imply 4 5 lo5,  h~ = 1 and f~ > 7200 imply 4 5 lo4 and hK = 1 and 
fF > 30000 imply Q < lo3. 

Proof. Noticing that the right hand side of (10) increases with Q 2 3, we 
do obtain that f F  > 9 lo5 implies h i  > 1. 

Assume that h K F t q  = 1. Then hg = 1, fF = 1 (mod 6 )  is prime or 

fF = 9,  fF < 9 - lo5, and we can compute BF such that (10) yields 
hKstq > 1 for q > B F  (and we get rid of all the q 5 BF for which either 

q 1 (mod 4 )  or q does not split in F (see Theorem 8 ) ) .  Now, the 
key point is to use powerful necessary conditions for the class number of 
KF,, to be equal to one, the ones given in [LO, Theorem 6) and in [ O h ,  
Theorem 21. Using these powerful necessary conditions, we get rid of 
most of the previous pairs (q ,  f F )  and end up with a very short list of less 
than two hundred pairs (q ,  f F )  such that any simplest non-normal sextic 
number fields with class number one must be associated with one of these 
less than two hundred pairs. Moreover, by getting rid of the pairs (q ,  f F )  
for which the modular characters X Q  do not satisfy x Q ( e )  = N F / ~ ( t )  for 
the three units e of any system of fundamental units of the unit group 
U F ,  we end up with less than forty number fields K F l q  for which we have 
to  compute their (relative) class numbers. Now, for a given F of narrow 
class number one and a given K F , ~ ,  we use the method developed in 
[Lou31 for computing h i F t q .  To this end, we pick up one ideal Q above 
q and notice that we may assume that the primitive quadratic character 
x on the ray class group of conductor & associated with the quadratic 
extension K F , q / F  is given by (a )  I+ ~ ( c r )  = v (cr )xQ(a)  where v ( a )  
denotes the sign of the norm of cr and where X Q  has been defined in 
subsection 3.1. According to  our computation, we obtained: 

T h e o r e m  10. There are 19 non-isomorphic non-normal sextic CM- 
fields K (whose maximal totally real subfields are cyclic cubic fields F )  
which have class number one: the 19 simplest non-normal sextic CM- 
fields K F , ~  given in the following Table : 
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Table 

In  this Table, fF is the conductor of F and F is also defined as being the 
splitting field of an unitary cubic polynomial (X) = x3 - ax2 + b~ - c 
with integral coeficients and constant term c = q which is the minimal 
polynomial of an algebraic element cuq E F of norm q such that KF,r = 
I?(,/%). Therefore, KFa is generated by one of the complex roots of 
the sextic polynomial PKF,, (X)  = -pF(-x2)  = X6 + a x 4  + bX2 + C. 
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Abstract We discuss the solubility of the ternary equations x2 + y3 + zk = n for an 
integer k with 3 5 k 5 5 and large integers n ,  where two of the variables 
are primes, and the remaining one is an almost prime. We are also 
concerned with related quaternary problems. As usual, an integer with 
a t  most r prime factors is called a P,-number. We shall show, amongst 
other things, that for almost all odd n ,  the equation x2 +p: +p: = n has 
a solution with primes pl ,  p2 and a Pis-number x, and that for every 
sufficiently large even n ,  the equation x +p: + pj: + p i  = n has a solution 
with primes pi and a P2-number x. 

1991 Mathematics Subject Classification: l lP32,  l lP55,  llN36, l lP05.  

1. INTRODUCTION 

The discovery of the circle method by Hardy and Littlewood in the 
1920ies has greatly advanced our understanding of additive problems in 
number theory. Not only has the method developed into an indispens- 
able tool in diophantine analysis and continues to be the only widely 
applicable machinery to show that a diophantine equation has many so- 
lutions, but also it has its value for heuristical arguments in this area. 

'written while both authors attended a conference a t  RIMS Kyoto in December 1999. We 
express our gratitude to  the organizer for this opportunity to collaborate. 

..r 
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This was already realized by its inventors in a paper of 1925 (Hardy and 
Littlewood [14]) which contains many conjectures still in a prominent 
chapter of the problem book. For example, one is lead to expect that 
the additive equation 

S 

with fixed integers ki > 2, is soluble in natural numbers xi for all suffi- 
ciently large n,  provided only that 

and that the allied congruences 

x:' I n (mod q) 

have solutions for all moduli q. In this generalization of Waring's prob- 
lem, particular attention has been paid to the case where only three 
summands are present in (1.1). Leaving aside the classical territory of 
sums of three squares there remain the equations 

For none of these equations, it has been possible to confirm the result 
suggested by a formal application of the Hardy-Littlewood method. It 
is known, however, that for almost all2 natural numbers n satisfying 
the congruence conditions, the equations (1.3) and (1.4) have solutions. 
Rat her than recalling the extensive literature on this problem, we content 
ourselves with mentioning that Vaughan [28] and Hooley [16] indepen- 
dently a,dded the missing case k = 5 of (1.4) to the otherwise complete 
list provided by Davenport and Heilbronn 16, 71 and Roth (241. I t  came 
to  a surprise when Jagy and Kaplansky [21] exhibited infinitely many 
n not of the form x2 + y2 + z9, for which nonetheless the congruence 
conditions are satisfied. 

In this paper, we are mainly concerned with companion problems in 
additive prime number theory. The ultimate goal would be to solve 

- 

2 ~ e  use almost all in the sense usually adopted in analytic number theory: a statement is 
true for almost all n if the number of n 5 N for which the statement is false, is o ( N )  as 
N -+ 00. 

(1.3) and (1.4) with all variables restricted to prime numbers. With 
existing technology, we can, at best, hope to establish this for almost 
all n satisfying necessary congruence conditions. A result of this type is 
indeed available for the equations (1.3). Although the authors are not 
aware of any explicit reference except for the case k = 2 (see Schwarz 
[26]), a standard application of the circle method yields that for any 
k 2 2 and any fixed A > 0, all but O(N/(log N)*) natural numbers 
n < N satisfying the relevant congruence conditions3 are of the form 
n = p: + p; + p;, where pi denotes a prime variable. 

If only one square appears in the representation, the picture is less 
complete. Halberstam [lo, 111 showed that almost all n can be written 

and also as 
x2 + y3 + p 4  = n. 

Hooley [16] gave a new proof of the latter result, and also found a similar 
result where the biquadrate in (1.6) is replaced by a fifth power of a 
prime. In his thesis, the first author [I] was able to handle the equations 

for almost all n. The replacement of the remaining variable in (1.5) or 
(1.7) by a prime has resisted all attacks so far. It is possible, however, to 
replace such a variable by an almost prime. Our results are as follows, 
where an integer with a t  most r prime factors, counted according to 
multiplicity, is called a P,-number, as usual. 

Theorem 1. For almost all odd n the equation x 2  + p: + pq = n has a 
solution with a P15 -number x and primes pl, p2. 

Theorem 2. Let N1 be the set of all odd natural numbers that are not 
congruent to 2 modulo 3. 
(i) For almost all n E N1, the equation x 2  + p: + p i  = n has solutions 
with a P6 -number x and primes pl , p2. 
(ii) For almost all n E N1, the equation p: + y3 + p$ = n has sohtions 
with a P4-number y and primes pl, p2. 

3 ~ h e  condition on n here is that the congruences z2 + y2 + zk n (mod q) have solutions 
with ($92, q) = 1 for all moduli q. On denoting by qk the product of all primes p > 3 such 
that (p - 1)lk and p 3 (mod 4), this condition is equivalent to (i) n = 1 or 3 (mod 6) when 
k is odd, (ii) n G 3 (mod 24), n f 0 (mod 5) and (n - l ,qk)  = 1 when k is even but 4 { k, 
(iii) n E 3 (mod 24), n $ 0, 2 (mod 5) and (n - 1, qk) = 1 when 41k. It is easy to see that 
almost all n violating this congruence condition cannot be written in the proposed manner. 



42 ANALYTIC NUMBER THEORY Ternary problems in additive prime number theory 43 

Theorem 3. Let N2 be the set of all odd natural numbers that are not 
congruent to 5 modulo 7. 
(i) For almost all n E N2, the equation x2 + p; + pi = n has solutions 
with a P3-number x and primes pl , p2. 
(ii) For almost all n E N2, the equation p: + y3 + p i  = n has solutions 
with a P3-number y and primes pl ,  p2. 

I t  will be clear from the proofs below that in Theorems 1-3 we ac- 
tually obtain a somewhat stronger conclusion concerning the size of the 
exceptional set; for any given A > 1 the number of n 5 N satisfying the 
congruence condition and are not representable in one of specific shapes, 
is  lo^ lo^ N)-*). 

A closely related problem is the determination of the smallest s such 
that the equation 

S s 

k=l 
has solutions for all large natural numbers n. This has attracted many 
writers since it was first treated by Roth [25] with s = 50. The current 
record s = 14 is due to Ford [8]. Early work on the problem was based 
on diminishing ranges techniques, and has immediate applications to 
solutions of (1.8) in primes. This is explicitly mentioned in Thanigasalam 
[27] where it is shown that when s = 23 there are prime solutions for all 
large odd n. An improvement of this result may well be within reach, 
and we intend to return to this topic elsewhere. 

When one seeks for solutions in primes, one may also add a linear 
term in (1.8), and still faces a non-trivial problem. In this direction, 
Prachar [23] showed that 

is soluble in primes pi for all large odd n. Although we are unable to 
sharpen this result by removing a term from the equation, conclusions 
of this type are possible with some variables as almost primes. For 
example, it follows easily from the proof of Theorem 2 (ii) that for all 
large even n the equation 

has solutions in primes pi and a P4-number y. We may also obtain 
conclusions which are sharper than those stemming directly from the 
above results. 

Theorem 4. (i) For all suficiently Earge even n,  the equation 

has solutions in primes pi and a P3-number x. 
(ii) For all suficiently Earge even n, the equation 

has solutions i n  primes pi and a P4 -number x. 

Further we have a result when the linear term is allowed to be an 
almost prime. 

Theorem 5. For each integer k with 3 5 k 5 5, and for all sufficiently 
large even n, the equation 

has solutions i n  primes pi and a P2 -number x. 

All results in this paper are based on a common principle. One first 
solves the diophantine equation at  hand with the prospective almost 
prime variable an ordinary integer. Then the linear sieve is applied to 
the set of solutions. The sieve input is supplied by various applications 
of the circle method. This idea was first used by Heath-Brawn [15], and 
for problems of Waring's type, by the first author [3]. 

A simplicistic application of this circle of ideas suffices to prove Theo- 
rem 5. For the other theorems we proceed by adding in refined machinery 
from sieve theory such as the bilinear structure of the error term due to 
Iwaniec [19], and the switching principle of Iwaniec [18] and Chen [5]. 
The latter was already used in problems cognate to those in this paper 
by the second author [22]. Another novel feature occurs in the proof of 
Theorem 2 (ii) where the factoriability of the sieving weights is used to 
perform an efficient differencing in a cubic exponential sum. We refer 
the reader to $6 and Lemma 4.5 below for details; it is hoped that such 
ideas prove profitable elsewhere. 

2. NOTATION AND PRELIMINARY 
RESULTS 

We use the following notation throughout. We write e(a) = exp(2sicu), 
and denote the divisor function and Euler's totient function by r(q) and 
cp(q), respectively. The symbol x N X is utilized as a shorthand for 
X < x < 5X, and N =: M is a shorthand for M << N << M. The 
letter p, with or without subscript, always stands for prime numbers. 
We also adopt the familiar convention concerning the letter e: whenever 
E appears in a statement, we assert that the statement holds for each 

. . E > 0, and implicit constants may depend on e. 
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We suppose that N is a sufficiently large parameter, and for a natural 
number k, we put 

1 1  xk = -Nx.  
5 

We define 

By a well-known theorem of van der Corput, there exists a constant 
A such that the following inequalities are valid for all X 2 2 and for all 
integers k with 1 < k 5 5 ;  

We fix such a number A > 500, and put 

Then denote by !Dl the union of all 331(q,a) with 0 < a 5 q < L and 
(q, a )  = 1, and write m = [O, 11 \ %I. It is straightforward, for the most 
part, to handle the various integrals over the major arcs 331 that we 
encounter later. In order to dispose of such routines simultaneously, we 
prepare the scene with an exotic lemma. 

Lemma 2.1. Let s be either 1 or 2, and let k and kj  (0 5 j < s) be 
natural numbers less than 6. Suppose that w(P) is a function satisfying 
w(P) = Cuko(p) + O(Xko(log N)-2) with o constant C, and that the 
function h(a )  has the property 

for a E %I(q, a )  c Dl. Suppose also that fi < Qj < XkJ for 1 5 j < 
s, and write 

and put Q = flyIl  Q j .  Then for N 5 n < (6/5)N and 1 <_ d < x ~ L - ~ ,  
one has 

J(n) = (C log XI, + O(log L))I(n),  (2.7) 

and 
I (n)  = N)-~-'. (2.8) 

Proof. When a = a/q + P, (q, a )  = 1, q 5 L and Ifl 5 L/N, it is known 
that 

for 1 5 j < s. These are in fact immediate from Theorem 4.1 of Vaughan 
(301 and a minor modification of Lemma 7.15 of Hua [17]. Thus straight- 
forward computation leads to (2.6). 

It is also known, by a combination of a trivial estimate together with 
a partial integration, that 
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By these bounds and the trivial bounds vkj(/3; Qj)  << Qj(10g N)-I for 
1 < j 5 s, we swiftly obtain the upper bound for I (n )  contained in 
(2.8). To show the lower bound for I (n) ,  we appeal to Fourier's inversion 
formula, and observe that 

where the region of integration is given by the inequalities Xko 5 to < 
5Xk0, Qj  5 t j  5 5Qj (1 < j 5 S )  and n - ( 5 ~ ~ ) ~  5 x>ot:' 5 n - x;. 
Noticing that all of these inequalities are satisfied when ( ~ 1 5 )  'lk0 < to 5 
l.0l(N/5)'lko, Q j  5 t j  < 1.01Qj (1 < j 5 S) and N < n 5 (6/5)N, we 
obtain the required lower bound for I(n).  

It remains to confirm (2.7). By the assumption on w(/3), together 
with (2.10) and the trivial bounds for vkj(/3; Qj),  we see 

Then we use the relation 

and appeal to (2.10) once again. We consequently obtain 

J ( n )  = CI(n)  log Xk + O ( x k x k ,  QN-' log ~ ( 1 0 ~  N)-~-'), 

which yields (2.7)) in view of (2.8), and the proof of the lemma is com- 
pleted. 

When we appeal to the switching principle 
require some information on the generating 
almost primes. We write 

in our sieve procedure, we 
functions associated with 

and denote by n(x)  the number of prime factors of x, counted according 
to multiplicity. Then define 

XNX 
(~m(=))=i  
R ( x )  =r 

Also, let Cl(u) = 1 or 0 according as u > 1 or u < 1, and then define 
C,(u) inductively for r 2 2 by 

Lemma 2.2. Let B and 6 be fixed positive numbers, k be a natural 
number, and X be suficiently large number. Suppose that z 2 x 6 ,  and 
that a = a/q + P, (q,a) = 1, q < ( ~ o ~ x ) ~  and 1/31 < ( ~ o ~ x ) ~ x - ~ .  
Then for r >_ 2, one has 

where the function wk(/3; X ,  r, z) satisfies 

w ~ ( / ~ ; ~ , T , z ) = c ~ ( ~ ) z I ~ ( / ~ ; x ) + o ( x ( ~ o ~ x ) - ~ ) .  log z (2.14) 

Here the implicit constants may depend only on k, B and 6. 

Proof. We hcgin with the expression on the rightmost side of (2.12)) 
and writc t) = pl . . .p,-l for concision. The innermost sum over p, 
hc:c:orrlc:s, by thc: c;orrc:sponding analogue to the latter formula in (2.9) 
([17], IA:IIIIII;L 7.1 5); 

5 X  4 t k P )  &) 
,I,,,,:(,; .) r; .) = i, .(ti r. 4- 

log t 

wc oLti~iri the: fi)rrnula (2.13). 
We shall ncxt cst;~blish the formula 

for r 2 2. Proving this is an exercise in elementary prime number theory, 
and we indicate only an outline here. It is enough to consider the case 
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zr 5 t ,  because c ( t ;  r ,  z) = Cr(log t /  log z )  = 0 otherwise. When r = 2, 
the formula (2.16) follows from Mertens' formula. Then for r 2 3,  one 
may prove (2.16) by induction on r ,  based on Mertens' formula and the 
recursive formula 

log t 
~ ( t ;  r ,  z )  = c ( ~ / P I ;  7- - 1,  P I ) .  

From (2.16) and the definition of wk (P ;  X, r ,  z )  in (2 .  I S ) ,  we can im- 
mediately deduce (2.14)) completing the proof of the lemma. 

3. SINGULAR SERIES 
In this section we handle the partial singular series ed(n, L) defined 

in (2.3),  keeping the conventions in Lemma 2.1 in mind. Namely, s is 
either 1 or 2, and the natural numbers k and k j  (0  5 j 5 s) are less than 
6.  In addition we introduce the following notation which are related to 
(2.2) and (2.3);  

A (q ,  n)  = ~ ( q ) - ~ - '  C S i  (9 ,  a )  ns;, (9 ,  a )  e ( -an /q ) ,  (3.1) 

The series defining B d ( p ,  n) and B ( p ,  n)  are finite sums in practice, be- 
cause of the following lemma. 

Lemma 3.1. Let B(p, k )  be the number such that p e ( ~ 7 k )  i s  the highest 
power of p dividing k ,  and let 

8 (p ,  k )  + 2, when p = 2 and k is  even, 
8(p ,  k )  + 1, when p > 2 or k is  odd. (3.3) 

Then  one has S; (ph ,  a )  = 0 when p + a and h > y (p ,  k ) .  

Proof. See Lemma 8.3 of Hua [17] 

Next we assort basic properties of Ad(q ,  n)  et al. 

Lemma 3.2. Under the above convention, one has the following. 

(i) Ad(q ,  n) and A(q ,  n) are multplicative functions with respect to  q. 

( i i )  B d ( p ,  n)  and B ( p ,  n)  are always non-negative rational numbers. 

(iii) Ad(p ,  n)  = A(p ,  n)  = 0 ,  when p 2 7 and h 2 2,  or when p 5 5 and 
h > 5.  

Proof. The first two assertions are proved via standard arguments (refer 
to the proofs of Lemmata 2.10-2.12 of Vaughan [30] and Lemmata 8.1 
and 8.6 of Hua [17]).  The part (iii) is immediate from Lemma 3.1, since 
k j  < 6 ( 0  5 j 5 s ) .  

Lemma 3.3. Assume that 

Then  one has B d ( p ,  n)  = B(p,d) ( p ,  n). One also has 

Prwf. The assumption and Lemma 3.1 imply that Ad (ph ,  n)  = A ( ~ ~ ,  n) = 
0 for h > k ,  thus 

For h 5 k ,  we may observe that s k ( p h ,  adk )  = s k ( p h ,  d ) k ) ,  which 
gives A ~ ( ~ ~ ,  n)  = A ( ~ , ~ )  (ph ,  n). SO the former assertion of the lemma 
follows from (3.4).  

Next we have 

But, when 1 5 h 5 k ,  we see 

whence 1 

A l ( p h , n )  - P - A p ( p h , n )  = ( 1  - ; ) ~ ( p " , n ) .  

Obviously the last formula holds for h = 0 as well. Hence the latter 
assertion of the lemma follows from (3.4).  
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Now we commence our treatment of the singular series appearing in 
our ternary problems, where we set s = 1. 

Lemma 3.4. Let Ad(q, n) be defined by (2.2) with s = 1, and with 
natural numbers k, ko and kl less than 6. Then for any prime p with 
p f d, one has 

/Ad (P, n)  1 < 4kkOklp-l (P, n )  'I2- 

When pJd one has 

Proof. For a natural number 1, let Al be the set of all the non-principal 
Dirichlet characters x modulo p such that XL is principal. Note that 

For a character x modulo p and an integer m, we write 

As for the Gauss sum T(X, I ) ,  we know that IT(x, 1) 1 = p1I2, when x is 
non-principal. It is also easy to observe that when x is non-principal, we 
have T(X, m) = ~ ( m ) r ( x ,  1). When x is principal, on the other hand, 
we see that T(X, m)  = p - 1 or -1 depending on whether plm or not. In 
particular, we have 

for any character x modulo p and any integer m. 
By Lemma 4.3 of Vaughan [30], we know that 

whenever p { a,  and obviously Sf (p, a )  = Sl (p, a )  - 1. So when p { d, we 
have Sk (p, adk) = Sk (p, a )  and 

By appealing to (3.5) and (3.6), a straightforward estimation yields 

When pld, we have Sk(p, adk) = p, and the proof proceeds similarly. 
By using (3.5), (3.6) and (3.7), we have 

Thus when pld but p t n, we have Ad(p, n )  = o ( ~ - ' / ~ )  by (3.6). When 
pln, we know T ( + ~ + ~ ,  -n) = 0 unless $o+l - is principal, in which case 
we have T ( + ~ + ~ ,  -n) = p - 1 and $1 = $o, and then notice that +o E 
A(ko,kl )  , because both of $2 and $tl are principal. Therefore when pld 
and pln, we have 

by (3.5), and the proof of the lemma is complete. 

Lemma 3.5. Let Ad(q,n), Gd(n, L)  and Bd(p,n) be defined by (2.2)) 
(2.3) and (3.2)) respectively, with s = 1, and with natural numbers k, ko 
and kl less than 6. Moreover put Y = exp( d m )  and write 
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Proof. We define Q to be the set of all natural numbers q such that 
every prime divisor of q does not exceed Y, so that we may write 

in view of Lemma 3.2 (i). We begin by considering the contribution of 
integers q greater than N1I5 to the latter sum. Put q = 10(log N)- ' /~ .  
Then, for q > N1I5, we see 1 < ( q / ~ ' / ~ ) '  = q V y - 2 ,  and 

Since pQ 5 YQ = elo, it follows from Lemmata 3.4 and 3.2 (iii) that 

which means that there is an absolute constant C > 0 such that 

Therefore a simple calculation reveals that 

Next we consider the sum 

Now write Td(q, a) = q-1rp(q)-2~k(q, adk)si0(q,  a)Sil  (q, a) for short. By 
(3.7) and (3.6) we have 

S k  (p, adk) << p1I2(p, d) 'I2, Sij (p, a )  << $I2, (3.12) 

whence Td(p, a )  << pF3I2 (p, d) for all primes p with p a. From the 
latter result we may plainly deduce the bound 

for all natural numbers q with (q, a )  = 1, in view of Lemma 2.10 of [30], 
Lemma 8.1 of [17], as well as our Lemma 3.2 (iii). In the meantime we 
observe that 

Unless ql = 92 and a1 = a?, we have Ila2lq2-allqlll > l/(qlq2) > N - ~ / ~ ,  
where IlPll = minmEz IP - ml, so the last expression is 

by using (3.13). Consequently we obtain the estimate 

which yields 

The lemma follows from (3.9), (3.10) and the last estimate. 

Lemma 3.6. Let B(p,n) be defined by (3.2) with s = 1, k = 2, ko = 3 
and 3 5 kl 5 5. 

(i) When kl = 5 and n is odd, one has B(p, n) > p-2 for all primes 
P . 
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(ii) When kl = 4, n is odd and n $ 2 (mod 3), one has B(p, n) > p-2 

for all primes p. 

(iii) When kl = 3, n is odd and n f 5 (mod 7), one has B(p, n)  > p-2 

for all primes p. 

Proof. Since min{y (p, 2), y (p, 3)) = 1 for every p, Lemma 3.1 yields that 

where M(p, n) denotes the number of solutions of the congruence x: + 
xq + st1 n (mod p) with 1 < xj < p (1 < j < 3). Thus in order to 
show B(p, n)  > p-2, it suffices to confirm that either IA(p,n)l < 1 or 
M(P, n )  > 0. 

It is fairly easy to check directly that M(p, n )  > 0 in the following 
cases; (i) p = 2 and n is odd, (ii) p = 3 and kl = 3 or 5, (iii) p = 3, 
kl = 4 and n $ 2  (mod 3). 

Next we note that for each 1 coprime to p, the number of the integers 
m with 1 < m < p such that lk = mk (mod p) is exactly (p - 1, k). Thus 
it follows that 

where we put v(p, k) = (p - 1, k) - 1. When p li a,  meanwhile, we know 
that IS2(p, a)l = fi by (3.7), whence IS;(p, a ) [  < fi+ 1. Consequently 
we have 

When p r 3 (mod 4), moreover, we know that S2 (p, a) is pure imaginary 
unless pla, which gives the sharper bound IS,"(p, a ) ]  < d m .  For 
such primes, therefore, we may substitute dm for the factor Jjj + 1 
appearing in (3.14). 

Since kl < 5, we derive from (3.14) that 

for p > 17. If p $ 1 (mod 3), then we deduce from (3.14) that 

for p > 5. Thus it remains to consider only the primes p = 7 and 13. 
When p = 13, it follows from (3.14) that IA(13, n)l < 1 for kl = 3 and 

5. When p = 13 and kl = 4, we can check that M(13, n)  > 0 for each n 
with 0 5 n 5 12 by finding a solution of the relevant congruence. 

When p = 7, replacing the factor fi+ 1 by JFl in (3.14) according 
to the remark following (3.14), we have 

for kl = 4 and 5. When p = 7 and kl = 3, we can check by hand again 
that M(7, n )  > 0 unless n - 5 (mod 7). 

Collecting all the conclusions, we obtain the lemma. 

We next turn to the singular series which occur in our quaternary 
problems. In such circumstances, we set s = 2. 

Lemma 3.7. Let Ad(q, a )  and Gd(n, L) be defined by (2.2) and (2.3) with 
s = 2 and natural numbers k and kj (0 < j < 2) which are less than 
6 ,  and suppose that min{k, ko) = 1. Then the infinite series Gd(n) = 

Ad(q, n )  converges absolutely, and one has 

as well as 

Proof. Suppose first that ko = 1. Since S;(p, a) = -1 when p f a,  we 
derive from (3.12) that 

Thus, by Lemma 3.2 (i) and (iii), we have 
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for all natural numbers q. 
When k = 1, alternatively, it is obvious that Sl(q, ad) $ (q, d) when- 

ever (q, a )  = 1. So the estimate (3.16) is valid again by (3.12) and 
Lemma 3.2. 

Hence we have (3.16) in all cases. Then the absolute convergence of 
Bd(n) is obvious, and the latter equality sign in (3.15) is assured by 
Lemma 3.2 (i). Moreover, a simple estimation gives 

Lemma 3.8. Let B(p, n )  be defined by (3.1) and (3.2) with s = 2, k = 1, 
ko = 2, kl = 3 and any k2. Then one has B(p,n)  > p-3 for all even n 
and primes p. 

Proof. I t  is readily confirmed that the congruence X I +  x i  + x: + sf2 m n 
(mod p) has a solution with 1 5 xj < p (1 5 j 5 4) for every even n 
and every prime p. The desired conclusion follows from this, as in the 
proof of Lemma 3.6. 

4. ESTIMATION OF INTEGRALS 
In this section we provide various estimates for integrals required later, 

mainly for integrals over the minor arcs m defined in $2. We begin with 
a technical lemma, which generalizes an idea occurring in the proof of 
Lemma 6 of Briidern [3]. 

Lemma 4.1. Let X and D be real numbers 2 2 satisfying log D << 
log X ,  k be a jixed natural number, t be a fixed non-negative real number, 
and let r = r(d) and b = b(d) be integers with r > 0 and (r, b) = 1 for 
each natural number d I D. Also suppose that q and a are coprime 
integers satisfying lqa - a1 $ x - ~ / ~  and 1 5 q 5 x k I 2 .  Then one has 

X X k 
a r ( r ) t  (r + (,) 1rdka - bl) -i << 

T ( ~ ) ~ + ' x  log X 

d< D 
(9 + xk1qa - al)l/k + 

Proof. Let V be the set of all the natural numbers d 5 D such 

r 5 xkI2 / (3Dk)  and lrdka - b1 < 1/(3xkI2) .  

When d $ D but d $ V, we have 

Ternary problems 

whence 

in additive prime number theory 

When d E V, we have 

which means rdka = qb. Since (q, a )  = (r, b) = 1, it follows that r = 
q/(q, dk), and therefore 

I x m t  C (q, dk)'lk 
(4 + XklW - al)'lk dlD d .  (4.2) 

Moreover we have easily 

The lemma follows from (4.1), (4.2) and the last inequality. 

We proceed to the main objective of this section, and particularly 
recall the notation fk(a ;  d), gk (a ) ,  L, M and m defined in $2. In addition 
to these, we introduce some extra notation which is used throughout this 
section. 

We define the intervals 

denote by rt(Q) the union of all r t(q,a;  Q) with 0 5 a I q I Q and 
(q, a)  = 1, and write n(Q) = [O, 11 \ rt(Q), for a positive number Q. 
Note that the intervals rt(q, a ;  Q) composing rt(Q) are pairwise disjoint 
provided that Q 5 X2. 

For the interest of saving space, we also introduce the notation 

where (a,) is an arbitrary sequence satisfying 
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for all x - Xk . In our later application, we shall regard hk ( a )  as gk ( a )  or 
some generating functions associated with certain almost primes, which 
are represented by sums of the functions gk(a;  X ,  r, z )  introduced in 
(2.12). 

Lemma 4.2. For given sequences (A,) and (p,) satisfying 

define 

Let k = 4 or 5, and D = X$ with 0 < 0 < (6 - k)/(2k). Then one has 

and 

Proof. The latter estimate follows from the former, since we see, by 
Schwarz's inequality and orthogonality, 

So it suffices to prove the former inequality. 
We begin with estimating F2(a).  For each pair of u and v, we can 

find coprime integers r and b satisfying lru2v2a - bl 5 uv/X2 and 1 5 
r 5 X2/(uv), by Dirichlet's theorem (Lemma 2.1 of Vaughan [30]). Then 
using Theorem 4.1, (4.13), Theorem 4.2 and Lemma 2.8 of Vaughan [30], 
we have the bound 

We next take integers s, c, q and a such that 

Isu2a - cl 5 u/X2, s < X2/u, (s ,  c) = 1, 
1 4 ~  - al I 11x2, 9 I X2, (q, a) = 1. 

Then by (4.3) and repeated application of Lemma 4.1, we have 

x2 (UV) -I  + x2i+'Di 
, 5 ~ 2 / 3  , < ~ 1 / 3  (r + ( X ~ / ( U V ) ) ~ ~ ~ U ~ V ~ ~  - 61) 'I2 

X2u-'r(s) log X2 x2 i+>1/3 
1 1 2 + ( )  ) + x ~ " D :  

(S + ( x 2 / u ) 2 ) ~ ~ 2 a  - c I )  

and G2 (a )  = 0 for a E n(X2), so that we may express the estimate (4.5) 
as 

F2(a)  << G2(a) + x2'+'D3, (4.6) 

for cr E [O ,1 ]  . 
We next set 

The inequality (4.6) yields 

but the last integral is << I ' /~I ; /~  by Schwarz's inequaity. Thus we have 

To estimate 11, we first note that the first inequality in (2.1) swiftly 
implies the bound 

for each integer 1 with 1 5 1 5 5, by considering the underlying diophan- 
tine equation. Secondly we estimate the number, say S, of the solutions 
of the equation x: + yf + y$ = x i  + y$ + yi subject to 11, 1 2  - X2 and 
Yj - XI, (1 < j 5 4)) not only for the immediate use. Estimating the 
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number of such solutions separately according as xl  # x2 or x l  = 22, 
we have 

by (4.8) and our convention (2.1). Thirdly we note that 

F 2 ( a ) = x b x e ( x 2 a ) ,  where b x =  XUpv, (4.10) 

by (4.4), and that b, << Xg for x - X2 by (4.3) and the well-known 
estimate for the divisor function. Consequently, by orthogonality, we 
have 

for k = 4 and 5. Finally it follows at once from (4.8) and the last 
inequality that 

We turn to 12. For later use, we note that the following deliberation 
on I2 is valid for 3 5 k < 5. Our treatment of integrals involving G2(a) 
or its kin is motivated by the proof of Lemma 2 of Briidern [2]. Putting 
L' = (log N)12*, we denote by 911 the union of all '31(q,a;X2) with 
N' /~L'  < q < - X2, 15 a < q and (a,q) = 1, and by 912 the union of all 
n ( q ,  a; X2) with 0 5 a < q < N'/~L' and (a, q) = 1. We remark that 
'X(X2) = '3ll U n2. 

By the above definitions we have 

We define $1 to be the number of solutions of the equation x! + x$ - 
X$ - xi = 1 in primes xj subject to X j  - Xk (1 5 j 5 4), SO that 

I g k  ( a )  l 4  = El $1 e(1a). As we know that $ho << xi+", we see 

1 ~ 0  (mod q)  1 ~ 0  (mod q )  
l#O 

We substitute this into (4.12). Then, after modest operation we easily 
arrive a t  the estimation 

Since we are assuming that A is so large that (2.1) holds, we have 

Thus, recalling that k is a t  most 5, we deduce from (4.13) that 

By this and (4.8), we have 

Next define $; by means of the formula 1 h3 ( a )  l 2  = El $ie(la), and 
write $; for the number of solutions of x3 - y3 = 1 subject to x, y - X3. 
It  follows from our convention on h3(a) that $i << $:. Then, proceeding 

1 as above, we have 
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The sums appearing in the last expression can be estimated by (2.1) and 
a well-known result on the divisor function. Thus we may conclude that 

Moreover, when a, E %(q, a; X2) but a, $! m, we must have 

G2(a) <<  log ~ ) ~ ( q  + Nlqa - al)'-'I2 << x 2 ~ - ' I 3 .  (4.15) 

Therefore, using the trivial bound h3 << X3 also, we obtain 

(4.16) 
On the other hand, it is known within the classical theory of the circle 

method that 

for k 5 5 (see Vaughan [30], Ch. 2). Thus we have 

<< N ~ + Z ( ~ O ~  N ) - ~ A ,  

and it follows from this and (4.14) that 

I2 << N$+f  (log N ) - ~ A .  (4.19) 

By (4.7), (4.11) and (4.19), we obtain 

which implies the conclusion of the lemma immediately. 

Lemma 4.3. Let F2(cr) = F2(a; D,  (A,), (pv ) )  be as in  Lemma 4.2, and 
let D = X! with 0 < 0 < 5/12. Then one has 

516 2 L~'(a)h~(a)g3(a;~~ ) )  d o  (< N V ( l o g ~ ) - ~ ~ ~ .  

Proof. Write ij3 = 93 (a,; for short, and set 
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'31'8+E whenever a E n(x:l6), we deduce Since we have G2(a,) << X2 
from (4.6) that 

The last integral is << 5:l4 J ~ / ~  by HGlder's inequality, whence 

As for J1, we appeal to the inequalities 

1 1 

a << X ,  1 h318da, (< x:", 1 h:gglda < x!". 
(4.21) 

The first one is plainly obtained in view of (4.10) and (4.8), the second 
one comes from Hua's inequality (Lemma 2.5 of Vaughan [30]), and the 
last one is due to Theorem of Vaughan [29]. Thus we have 

(4.22) 
To estimate J2, we may first follow the proof of (4.16) to confirm that 

1 ~ ~ 0 3  I2da << x,5I3 (log N ) ~ + ~  
LPp) 

holds, and then, by this together with (4.15) and (4.17)) we infer the 
bound 

Now it follows from (4.20), (4.22) and the last inequality that 

which gives the lemma. 
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Lemma 4.4. For a given sequence (Ad) satisfying [Ad[  5 1, define 

and let D = X! with 0 < I3 < 113. Then one has 

Proof. Define 

for a E n ( q ,  a; X2) C '32(X2), and G3 ( a )  = 0 for a E n(X2). Then 
Lemma 6 of Brudern [3] gives the bound 

for a E [ O , l ] .  (It is apparent from the proof that the factor qE appearing 
in Lemma 6 of [3] may be replaced by ~ ( q ) . )  

We write ij3 = g3(a; again, and put 

Since G3(a) << for a E I I (x~ /~) ,  we have 

by virtue of (4.24)) whence 

We may express F3(a) as b2e(x3a) with bx << X i ,  and there- 
fore, by orthogonality and the last inequality in (4.21), we see 

By this and (4.8)) we have 

Next we note that G3(a) << ~ ~ ( a ) ~ / ~  for all a E [O, 11. So we see 

<< (sup IG& (x!)~ 1G2j3l2da << N Y  (log N)-looA, 
aEm 

in view of (4.15) and (4.23). Thus, using (4.8) again, we obtain 

(4.27) 
The lemma follows from (4.25)) (4.26) and (4.27)) via a modicum of 
computation. 

Lemma 4.5. For a given sequence (Ad) satisfying lAdl 5 1, define 

and let D = ( ~ 3 6 ~ ~ ) '  with 0 < I3 < 113. Then one has 

For each p -- X21, take co-prime integers r = r(p) and b = b(p) such 
that 1rp3cr - bl < ( ~ 3 / p ) - ~ / ~  and 1 < r 5 ( ~ ~ / p ) ~ / ~ .  Then applying 
Lemma 6 of Brudern [3] again, we have 

Accordingly Lemma 4.1 yields 

&(a)  << 8 3  ( a )  + ( ~ 2 1  D) 'I4 , (4.28) 

where ~ ~ ( 0 )  is the function on [0,1] defined by 

for a E %(q, a; X2) c 37(X2), and E3(a)  = 0 for a E n(X2). 
We now put 
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By (4.28), we have 

whence 
Uo < 1 + u2. (4.29) 

As regards Ul, considering the number of solutions of the underlying 
diophantine equation with a well-known estimate for the divisor func- 
tion, we may observe that Lemma 6 of Briidern and Watt [4] swiftly 
implies the bound 

Also, we have the straightforward estimate 

Therefore we derive from (4.29) that 

Making use of (4.8), (4.9) and the last result on Uo, we conclude that 

as required. 

Lemma 4.6. For a given sequence (Ad) satisfying IAdl 5 1, define 

and let D = X! with 0 < 0 < 17/30. Then for each integer k with 
3 5 k 5 5, one has 

We remark that when k < 4, the restriction on 0 in this lemma can 
be relaxed to 0 < t9 < 213, as the following proof shows. 
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Proof. We know f l (a ;  d) << min{N/d, iladll-'1, where ll/?ll denotes the 
distance from p to the nearest integer. So Lemma 2.2 of Vaughan [30] 
gives 

whenever iqa - a1 < q-' and (q, a) = 1. 
We can find coprime integers q and a satisfying lqa - a1 5 N - ' / ~  and 

q 5 N1l2 by Dirichlet's theorem. If lqa - a [  5 q/N, then we obtain the 
bound 

from (4.30). In the opposite case Iqa-a1 > q/N we take coprime integers 
r and b such that Jrcr - bl < Jqa  - a) /2  and r 5 2/)qa - al, according to 
Dirichlet's theorem again. Since b/ r  cannot be identical with a/q now, 
we see 

which implies that r 2 (2 lqa - al)-' >> N 'I2. Thus it follows from (4.30) 
that 

Hence the estimate (4.31) holds whenever lqcr - a1 5 Neil2, q _< N1l2 
and (q, a) = 1. 

Recycling the function G2 ( a )  defined in the proof of Lemma 4.2, we 
may express (4.31) as Fl (a )  << G2 (a)2 + ( D  + X2) log N. Now put 

and observe that V << ( D  + x2)lI4+€& + v~/~v:/*, whence 

By an application of Holder's inequality, we see 

The first integral appearing on the right hand side is obviously O(N1+€) 
by orthogonality, and we refer to (4.8) and (4.9) for the other integrals. 
Consequently we obtain 
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On the other hand, making use of (4.8), (4.19) and the simple estimate 

we observe that 

Hence it follows from (4.32) that 

19 << N j + i + f e + &  + Nz+&+ae+~ + Ng+i ( logN) -~ .  

This establishes the lemma. 

We close this section by showing an easy lemma, which allows us 
to ignore the integers divisible by a square of a larger prime, in our 
application of weighted sieves. 

Lemma 4.7. Let 6 be an arbitrary fixed positive number, and k be an 
integer with 3 5 k 5 5 .  Then one has 

and 

Proof. Since CnmN e(-na) << min{N, 11 a \ I - '  }, the expression on the 
left hand side of the first inequality is dominated by 

Also it is indeed an easy exercise to establish the estimates 

Therefore the latter conclusion of 
equality. 

the lemma follows via Schwarz's in- 

5. WEIGHTED SIEVES 
Having finished the preparation concerning the Hardy-Littlewood cir- 

cle method, we may proceed to application of sieve theory, and in this 
section we appeal to weighted linear sieves. The uninitiated reader may 
consult Briidern [3], $2, for a general outline of the interaction of sieves 
and the circle method in problems of the kind considered in this paper. 

The simplest of our proofs is that of Theorem 5. 

The proof of Theorem 5. Let n be an even integer satisfying N < n < - 
(6/5)N with a sufficiently large number N ,  k2 be an integer with 3 5 
kz 5 5, and let Rd(n) be the number of representations of n in the form 

with integers x and primes p j  satisfying x 0 (mod d) and 

For any measurable set '23 c [0, 11, we write 

We can estimate Rd(n; %I) by applying Lemma 2.1 in a trivial way. 
Namely this time we set 

and h(a)  = g2(a),  w(P) = v2(P), Q1 = X3 and Q2 = X k 2 .  Moreover we 
adopt the notation introduced in Lemma 2.1 with these specializations. 
Then Lemma 2.1 implies that 

and 
J(n) x N!+f (log N ) - ~ .  (5.6) 

Also we recall the definitions (3.1), (3.2) and (3.15) with the current 
arrangement (5.4). Lemmata 3.2 (ii), 3.3 and 3.8 assure that Bl (p, n )  > 
p-3 - p-4 for all primes p, while the estimate Bl(p, n )  = 1 + o ( ~ ' - ~ / ~ )  
follows from (3.16). Thus we see that 
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and we may define the multiplicative function w, (d) by 

Then by (5.3) and (5.5) we have 

where 

We know w,(d) is nonnegative, and Lemmata 3.3 and 3.8 yield that 

for all primes p. In the meantime we deduce from (3.16) that 

Hence our situation belongs to the linear sieve problems. 
Next we put D = x:". Then, for any sequence (Ad) with lXd 1 5 1, 

Lemma 4.6 ensures that 

since 519 < 17/30. Therefore we have 

here we have used Lemma 3.7, (5.6) and (5.7) to confirm (5.12). Further, 
for any fixed 6 > 0, it follows from Lemma 4.7, (5.6) and (5.7) that 

Now Theorem 5 is a direct consequence of a weighted linear sieve. 
Here we refer to Richert's linear sieve (Theorem 9.3 of Halberstam and 
Richert [12]). Although the estimate (5.13) is weaker than the constraint 
(R3) of Halberstam and Richert [12], but it is clear from the proof of 
Theorem 9.3 of [12] that (5.13) is an adequate and sufficient substitute. 
All other requirements of the latter theorem are satisfied (with r = 2 
and cv = 519) in view of (5.9)-(5.12). In particular, we note that 

5 
- . ( 3 -  log(1815) - 10-2) , I 
9 log 3 

Then, as regards the number R(n) of representations of n in the form 
(5.1) with P2-numbers x and primes pj satisfying (5.2), Theorem 9.3 of 
[12] gives the lower bound R(n) >> 6 (n) J (n )  (log N)- ' . This completes 
the proof of Theorem 5. 

We next turn to Theorem 1 and Theorem 2 (i). At this stage we 
benefit from the bilinear error term in Iwaniec's linear sieve. Without 
it, we can prove Theorems 1 and 2 (i) only with P16 and P7, respec- 
tively, at present. Thus we require Iwaniec's bilinear error terms within 
a weighted sieve. This has been made available by Halberstam and 
Richert [13]. Rather than stating here their result in its general form, 
we just mention its effect on our particular problem within the proof be- 
low. Indeed the inequality (5.27) below is derived from Theorems A and 
B of Halberstam and Richert [13] (see also the comment on (8.4) in [13], 
following Theorem B), by taking U = T = 213, V = 114 and E = 119, 
for example. Here we should make a minor change in the error term in 
Theorem A of [13], where the bilinear error term is expressed by using 
the supremum over all the sequences (X,) and (p,) satisfying IX,I 5 1 
and lpvl 5 1, instead of the form appearing in (5.27). This change is 
negligible in the argument of Halberstam and Richert [13], and as the 
following proof shows, it is convenient for our aim to keep the error term 
in the original form given by Iwaniec [19]. 

In order to establish (5.27) below, we may alternatively combine 
Richert's weighted sieve with Iwaniec's linear sieve, while Halberstam 
and Richert [13] appealed to Greaves' weighted sieve. Although Greaves' 
weights give stronger conclusions, Richert's weights are simpler, and 
much easier to combine with Iwaniec's sieve. It is actually a straight- 
forward task to utilize Iwaniec's sieve within the proof of Theorem 9.3 
of Halberstam and Richert [12], and such a topic is discussed in $6.2 of 
the unpublished lecture note [20] of Iwaniec. The latter device is still 
adequate to our purpose, proving (5.27). We may leave the details of 
the verification of (5.27) to the reader. 
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Before launching the proofs of Theorems 1 and 2 (i), we record a 
simple fact as a lemma. 

Lemma 5.1. Let v(n) be the number of distinct prime divisors of n,  
and A be any constant exceeding 3. Then one has v(n) < 2Aloglog N 
for all but O(N(log N ) - ~ )  natural numbers n 5 N .  

Proof. In view of the well-known estimate 

C r (n) << N log N, 

the number of n < N such that r ( n )  2 (log N ) ~ + '  is O ( ~ ( l o ~  N ) - ~ ) .  
Since ~ ( n )  > 2"("), the lemma follows. 

The proofs of Theorems 1 and 2 (i). Let kl = 4 or 5, and let Rd(n) be 
the number of representations of n in the form 

with integers x I 0 (mod d) and primes pl,  p2 satisfying 

For any measurable set 23 C [O,l], we write 

so that &(n) = &(n; [O, 11) = Rd(n; 1)31) + Rd(n; m). 
This time we set 

s = 1, k = 2, ko = 3 and kl = 4 o r  5, 

and, under these specializations, we recall the definitions of bd (n, L)  , 
J ( n ) ,  Y, Pd(n, Y) et a1 from the statements of Lemmata 2.1 and 3.5, 
together with the definitions (3.1) and (3.2). Then Lemma 2.1 implies 
that 

a.nd that 

for every integer n with N 5 n 5 (6/5)N. 
To facilitate our subsequent description, we denote by N(5) the set of 

all the odd integers in the interval [N, (6/5)N], and put N(4) = Nl n 

[N, (6/5)N] where N1 is the set defined in the statement of Theorem 
2. Also we say simply "for almost all n" instead of "for all n E N(kl) 
with a t  most O(N(1og N ) - ~ )  possible exceptions", within the current 
section. Since min{y(p, 3)) y(p, kl))  = 1 for all primes p, it follows from 
Lemmata 3.2 (ii), 3.3, 3.5 (i) and (ii) that 

for all n E N(kl ) and primes p. We can therefore define the multiplicative 
function w,(d) by 

for n E N(kl), so that, by (5.16), we may write 

where 

By the definition, we see that w, (p) = Bp(p, n )  / Bl (p, n )  or 1, accord- 
ing to p < Y or p > Y, and also that w,(~')  = wn(p) for all 1 > 1. Then 
we may confirm that 

for all primes p and integers 1 > 1. In fact, we can show the former by 
Lemmata 3.3 and 3.6 (i) and (ii), following the verification of (5.10). As 
regards the latter, it suffices to note that, in the current situation, we 
always have 

by Lemmata 3.1 and 3.4, respectively. 
We next discuss a lower bound for Pl (n, Y). By using (5.18)) and by 

combining the former formula in (5.21) with Lemma 3.4, we have 

PI (n, Y) > n (zp2)-' n (1 - 120p-') n (I - 1 2 0 ~ - ' / ~ ) ,  
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for n E M(kl ) . If we denote by f in the v(n)-th prime exceeding lo5 where 
v(n) is defined in Lemma 5.1, then we have 

as well as << ~ ( n ) ~ / ~ .  Now Lemma 5.1 implies that, for almost all n,  
we have &I2 << (loglog N ) ~ / ~  and, by (5.22) and (5.23), 

Pl (n, Y) >> (log y)-120 (log N)-€ >> (log N ) - ~ ~ .  (5.24) 

Further, as an immediate consequence of Lemma 4.7, (5.17) and 
(5.24), we note that for any fixed 6 > 0, the chain of inequalities 

holds for almost all n. 
Now let R (n , r )  be the number of representations of n in the form 

(5.14) subject to P,-numbers x and primes pl,  p2 satisfying (5.15). Then, 
based on the above conclusions (5. lg), (5.20) and (5.25), we can apply 
a weighted linear sieve, for almost all n ,  to obtain a lower bound for 
R(n,r) .  Indeed, as we announced in the account prior to Lemma 5.1, 
we conclude from Halberstam and Richert [13] (or Iwaniec 1201, 56.2) 
that for every integer r satisfying 

there exists a positive absolute constant ?I such that 

h<H u<D2/3 v<D1/3 

(5.27) 
for almost all n ,  where the sequences (AuTh) and ( P ~ , ~ )  are independent 
of n ,  and satisfy IXuAJ 5 1 and 5 1, and where 1 <_ H << log N .  

We put 

getting r(5) = 15 and r(4) = 6. Note that (5.26) is satisfied with 
r = r(kl). We denote by E(n) the error term in (5.27), namely, 

We shall estimate E(n) on average over n. To this end, we first estimate 
the expression 

By Bessel's inequality and Lemma 4.2, recalling the notation (4.4), we 
have 

Then we deduce from Lemma 3.5, (5.17) and the definition of Ed(n),  
with an application of Cauchy's inequality, that 

This implies that for almost all n we have 

by (5.17) and (5.24). In view of (5.27) and (5.29) with the constraint 
(5.26), we conclude that R(n,r(kl) )  >> Pl(n,Y)J(n)( log D)-' for al- 
most all n, from which Theorems 1 and 2 (i) follow immediately. 

6. SWITCHING PRINCIPLE 
The remaining theorems are proved by the switching principle in sieve 

theory. 
Throughout this section we denote Euler's constant by y. We begin 

with introducing the basic functions +o(u) and +l(u) concerning the 
linear sieve. These functions are defined by 

for 0 < u < 2, and then by the difference-differentia1 equations 

for u 2 2. It  is known that 0 5 +o(u) 5 1 5 +l(u) for u > 0, and that 

2e7 2e7 f o r 0 < u < 3 .  go(,) = - log(u - 1) for 2 5 u 5 4, + 1 ( ~ )  = - 
U U 

(6.1) 
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Then we refer to Iwaniec's linear sieve in the following form (see Iwaniec 
[19], or [20], for a proof). 

Lemma 6.1. Let Q, U, V, X be real numbers >_ 1, and suppose that 
D = UV is suficiently large. Let w(d) be a multiplicative function such 
that 0 < w(p) < p and w ( ~ ' )  < 1 for all primes p and integers 1 > 1, 
and suppose that 

-l < logz (, + 0((logloglogD)3 

w s p < z  
- log w log w ))> (6.2) 

whenever z > w 2 2. Further, let r (x)  be a non-negative arithmetical 
function, z be a real number with 2 < z < II(z) be as in (2.11)) 
and write 

44  a) .- log D 
~ d =  C r ( x ) - - - x ,  d ~ ( z ) = n ( l -  , 

XWQ P<Z P log z 
XZO (mod d) 

( j  (j) Then there exist sequences (Xu,h) and (P.,~) for j = 0, 1, satisfying 

(j) < 1, 1~:; 1 5 1, such that lAu,hl - 

as well as 

where 

for j = 0, 1. In addition, these sequences (AZi) and (P$) depend at 
most on U and V. 

The following proof of Theorem 2 (ii) can serve as a model of our 
strategy when using the switching principle. 

The proof of Theorem 2 (ii). Let Rd(7-L) be the number of representations 
of n in the form 

n = P: + ( P ~ x ) ~  + P:, (6.3) 

subject to primes pl,  p2, p3 and integers x satisfying 

P l m X 2 ,  P 2 ~ X 2 1 ,  xmX3/p2,  P 3 ~ X 4 7  (6.4) 

and x = 0 (mod d). For any measurable set 23 c [0, I], we write 

so that Rd (n) = Rd (n; [O, I]) = Rd (n; m )  + Rd (n; m) . We now apply 
Lemma 2.1 with 

and h(a) = g2(a), w(@ = v2(P), C = 1. We accordingly specify the 
relevant notation Bd(n, L), J (n ) ,  I (n ) ,  Y, Pd(n, Y) et al, introduced 
in Lemmata 2.1 and 3.5. Note here that BpZd(n, L)  = Bd(n, L) for 
pz 2 X2i > L, in view of the definitions (2.2) and (2.3). Then Lemma 
2.1 implies that 

and 

for every integer n with N < n < (6/5)N. 
Confirming swiftly the prerequisite of Lemma 3.3 in the current case, 

we note that Pl (n, Y) > 0 whenever n E N1, by Lemmata 3.2 (ii), 3.3 
and 3.6 (ii), where & is the set introduced in the statement of Theorem 
2. Thus we may define 

for n E N1, and then, we may write 

where 
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Note that Mertens' formula gives the estimate 

Hereafter, until the end of the proof of Theorem 2 (ii), we say simply 
<'for almost all n", meaning "for all but O(N(1og N)-*) values of n E 

Nl n [N, (615) N]" . Following the verification about (5.24), we derive 
from Lemmata 3.3, 3.4 and 3.6 (ii) that 

for almost all n. 
We confirm that 0 < wn(p) < p and wn(P1) << 1 for all primes p, 

integers 1 >_ 1 and n E N1, by using Lemmata 3.2 (ii), 3.3, 3.4, 3.6 (ii) 
and the definition of w,(d), following the allied argument in the proof 
of Theorem 2 (i) in the preceding section. Next we have to discuss the 
property of w, (d) corresponding to (6.2). 

When lo5 < p 5 Y, we derive from Lemma 3.4 that 

while we have w,(p) = 1 for p > Y. On putting wo = log log N ,  when 
z > w 2 wo we have 

(P, n Y 2  1 C p312 
<< w-'/2+ - C 1°gp 

wlp<z 
log w 

wlp<z P 

1 1 % ~  log?% <<-C-<- log w 
P log w ' 

pifin 

recalling & introduced in connection with (5.23). Appealing to Lemma 
5.1 and Mertens' formula, we consequently see that for almost all n, 

whence 

log z n ( l - - n ( ~ ) / ~ ) - '  < logu (1 + 0(10g log log N /  log w)), 
wSp<z 

- 
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A-', a't t; 

when x > w 2 wo. To consider the case where 2 < w < wo, we note 
that 1 - wn(p)/p >> 1 for p < lo5 and n E N1, by Lemmata 3.3, 3.4 and 
3.6 (ii). Then we have by (6.10) 

log z log z (log log log N ) ~  
<< -(log 13,) << - 

log w log w log w 9 

when 2 5 w < wo, for almost all n, by virtue of Lemma 5.1. Hence, for 
almost all n ,  we conclude that 

whenever z > w > 2. 
Now we put 

and let R(n) be the number of solutions of (6.3) subject to  primes p j  
(1 5 j < 3) and integer x satisfying (6.4) and 

(x, l-I(z)) = 1. (6.12) 

By the above argument, we know that we can apply the linear sieve, 
Lemma 6.1, to obtain a lower bound for R(n), for almost all n.  Indeed, 
taking U = D and V = 312 in the latter lemma, and writing 

we have the bound 

R(n) > (&(70) + O((log log N)-'IS0)) e ~ l  (n, Y) ~ ( n ) ~ ( n ,  2) - Eo(n), 
(6.13) 

for almost all n ,  where 

with a certain sequence (Adyh) satisfying (Ad,h(  < 1. In much the same 
way as the deliberation on (5.28), we deduce from Lemmata 3.5 and 4.5 
that 

(E0(n)l << N W  (log N ) - , ~ ,  
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whence 

for almost all n ,  by (6.6), (6.8), (6.9) and (6.11). 
We next write 

7% Y) = n B(P7 4, (6.15) 
p l y  

where B(p, n )  is defined by (3.2) with (3.1), under the current special- 
ization (6.5). Then Lemma 3.3 gives the formula 

for p 5 Y. Recalling that wn(p) = 1 for p > Y, we see that 

e-7 
= p ( n ,  y )  - (1 + O((log 2)-I)), log z 

by Mertens' formula. In view of (6.9), (6.11) and (6.16), we remark that 

P ( n ,  Y) >> (log N)-~O 

holds for almost all n.  Also it follows from (6.1), (6.6), (6.8), (6.13), 
(6.14) and (6.16) that for almost all n ,  

7 
R(n) > - (log(78 - 1) + O((log log N)-'I5O)) @ ~ ( n ,  Y) I (n) 

38 

We denote by ~ ( n )  the number of solutions of (6.3) subject to primes 
p j  (1 5 j 5 3) and integer x satisfying (6.4), (6.12) and O(x) > 4, where 
n (x )  is defined in $2, prior to (2.12). We aim to show that ~ ( n )  - d ( n )  > 
0 for almost all n. The latter conclusion implies that for almost all n ,  
the equation (6.3) has a solution in primes pj (1 5 j 5 3) and an integer 
x satisfying (6.4)) (6.12) and R(x) 5 3, whence Theorem 2 (ii) follows. 
To this end we need an upper bound for ~ ( n )  valid for almost all n ,  and 
such a bound is obtained by the switching principle. 

Now let R&(n) be the number of representations of n in the form 

subject to primes p2, p3 and integers x, y satisfying 
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and y = 0 (mod d). Note that R(x) 5 7 when x satisfies the conditions 
in (6.19). Recalling the notation (2.12), we write 

and then observe that R&(n) = R&(n; [O, 11) = R&(n; Dl) + R&(n; m). 
When a = a/q + P, q 5 L and JPI 5 LIN,  we note that S$(q, up;) = 

S:(q, a )  for p2 > X21 > L, and deduce from Lemma 2.2 that 

for 4 5 r 5 7. When p - X21, we also note that 

and that, by change of variable, 

Thus by Lemma 2.2 we have 

Then in order to estimate R&(n;!DI), we apply Lemma 2.1 for each 
p2 - X21, with taking 

7 7 

h(a)  = ~2 x 93(p;a; ~ 3 1 ~ 2 ,  r, 4, w(P) = p2 C w3(plP; ~ 3 1 ~ 2 .  r, 4 ,  
T =4 T=4 

and 

But we require some notation here. We set 

and recall the definitions (2.2)-(2.5)) (3.1), (3.2) and (3.8), but we basi- 
cally attach primes, for distinction, to the respective symbols. Namely 
we define 

'? 

A&(q, n) = q-1v(q)-2 C S2(q, a d 2 ) ~ $ ( q ,  a)~, ' (q,  ale(-anlq), 
a= 1 

(alq>=l 
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where Y = e x p ( d m ) ,  and 

As regards I (n) ,  A(q, n),  B(p, n )  and P (n ,  Y), we note that the settings 
(6.5) and (6.22) cause no difference in their definitions (2.4), (3. I ) ,  (3.2) 
and (6.15). Indeed we define 

and, in particular, it should be stressed that I (n )  and P (n ,  Y) are exactly 
the same as those appearing in (6.6), (6.15) and (6.17). We then derive 
from Lemma 2.1 that 

and that for each p2 - X21 , 

We now remark that P$(n, Y )  is identical with the function Pd(n, Y) 
that appeared in the proof of Theorem 2 (i), with kl = 4, in 55. Accord- 
ing to the deliheration there, we remember that 

for almost all n ,  and we can define wL(d) = Pi (n ,  Y)/P;(n, Y) for n E 
NI. Then we may write by (6.23) 

where 

and 

Recalling Q defined at  (6.7), we derive from (6.24) that 

Put  
1 113 D' = x:, el = 0.249, 21 = ( D )  , 

and let R1(n) be the number of representations of n in the form (6.18) 
subject to primes p2, p3 and integers x, y satisfying (6.19) and (y, I I ( z l ) )  = 
1. The last condition is satisfied when y is a prime with y - X2, we 

'see that ~ ( n )  5 R1(n). Since we know that the property (5.20) holds 
with w; in place of w,, we can apply Iwaniec's linear sieve in the form 
of Lemma 6.1, to obtain the upper bound 

where 

with U = ( D ' ) ~ / ~ ,  V = ( D ' ) ~ / ~ ,  and certain sequences (Xu,h) and (pvYh) 
satisfying IX,,h( I 1 and I P , , ~ ~  I 1. Note that 

for n E N1, by the result corresponding to (5.20). 
Via the same way as the verification of (5.29), we deduce from Lem- 

mata 3.5 and 4.2, together with (6.6), (6.8), (6.25), (6.26) and (6.28), 
that 

IEl(n)l << P:(n)J"(n)W1(n, zl)(log N ) - ~ ,  
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for almost all n. Further, Lemma 3.3 gives the formula 

for p 5 Y, and we know w&(p) = 1 for p > Y, thus 

e 
= P(n ,  q7 (1 + O((l0g 2')-1)). 

log z 

Hence it follows from (6.27), (6.26) and (6.1) that 

for almost all n. Here we can confirm the numerical estimates 

and C7(7) = 0, as is recorded in (12) of Kawada [22]. (To confirm these 
bounds, we can appeal to Theorem 1 of Grupp and Richert [9]. We 
remark that the function IT (u) in [9] and our CT (u) satisfy the relation 
C T  ( 4  = UIT(U).) 

Finally, by (6.29) and (6.30), we obtain the estimate 

for almost all n. We conclude that R(n) - ~ ( n )  > 0 for almost all n ,  
by (6.17) and the last inequality, and the proof of Theorem 2 (ii) is now 
completed. 

We proceed to the proofs of Theorems 3 and 4, following the methods 
introduced thus far. These proofs are somewhat simpler than that of 
Theorem 2 (ii) above. Concerning Theorem 3, moreover, the limits of 
"level of distribution" D assured by Lemmata 4.3 and 4.4 are not worse 
than those appearing in Lemmata 4.5 and 4.2, and the latter constraints 
were still adequate for getting a "P3" as we saw in the above proof of 
Theorem 2 (ii), whence the conclusions in Theorem 3 are essentially 
obvious to the experienced reader. For these reasons, we shall be brief 
in the following proofs. 

The proof of Theorem 3. Within this proof, we use the terminology "for 
almost all n", for short, to mean that "for all but O(N(1og N ) - ~ )  values 

of n E N2 n [N, (615) N]" , where N2 is the set introduced in the statement 
of Theorem 3. 

When X and y are sets of integers, we denote by R(n, X,  y )  the 
number of representations of n in the form n = x2 + y3 + p3 subject 
to x E X,  y E Y and primes p - We denote by X(d) and Y(d), 
respectively, the set of the multiples of d in the intervals (X2, 5X2) and 
(X3, 5X3), and by Xo and Yo, respectively, the sets of primes in the 
intervals (X2, 5x2) and (X3, 5x3). We further put 

and define the sets 

Trivially, all the numbers in X3 and y3 are P3-numbers. 
By orthogonality, we have the formulae 

1 7  

R(n) X2, y(d)) = (x T =4 g2(a; ~ 2 . 7 , ~ ) )  f3(a; d)g3 ( a ;  xil')e(-no)do. 

The contributions from the major arcs to these integrals are immedi- 
ately estimated by Lemma 2.1, with the aid of Lemma 2.2 in the latter 
case. As in the proof of Theorem 2 (ii), then we can apply Iwaniec's 
linear sieve, Lemma 6.1, to obtain a lower estimate for R(n, XI, yo) and 
an upper estimate for R(n, X2, y l ) ,  both valid for almost all n.  

Now let I ( n )  and P (n ,  Y) be defined by (2.4), (3.1), (3.2) and (6.15), 
with s = 1, k = 2 and ko = kl = 3, and put 

By Lemmata 3.1, 3.3, 3.4, 3.6 and 5.1, we may show that 

for almost all n ,  and Lemma 2.1 asserts that I (n)  = N1lg(log N ) - ~  for 
N 5 n 5 (6/5)N. 
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When we apply Lemma 6.1 to R(n, XI, yo), we are concerned with a 
remainder term corresponding to in Lemma 6.1, with U = D2I3 and 
V = 0'i3.  We can regard this remainder term as negligible for almost 
all n by Lemmata 3.5 and 4.3. Using Lemma 3.3 in addition, we can 
establish the lower bound 

log D 
> (40 (-) +  log log N)-'I5')) ~ ( n ,  Y) (log X2) I (n)  log z log z 

for almost all n.  On the other hand, we apply Lemma 6.1 to R(n, X2, y l ) ,  
with taking U = Dl and V = 312, and dispose of the error term corre- 
sponding to d l )  in Lemma 6.1 by Lemmata 3.5 and 4.4. In this way we 
arrive a t  the upper bound 

log Dl e-7 
R(n, X2, Yl) < (41 (-) log z' +  loglog log N)-'I5')) P ( n ,  Y)logz' x 

which is valid for almost all n.  
Since yo c Yl, we see R(n, X2, Yo) 5 R(n, X2, yl), and 

for almost all n ,  by (6.31), (6.32) and (6.30) with modest numerical 
computation. This proves Theorem 3 (i). 

Similarly we can show that 

R(% XI 7 Y2) < (i 2 G (7) +  log log N)-'/~o)) ~ ( n ,  Y) ~ ( n ) ,  
r=4 

for almost all n,  and then that 

The proof of Theorem 4. Let k2 = 4 or 5, and put 

and 
r ( 4 ) = 3 ,  r ( 5 ) = 4 .  

We denote by R(n) the number of representations of n in the form 

subject to primes pl,  p2, p3 and integers x satisfying 

Also we denote by ~ ( n )  the number of representations counted by R(n) 
with the additional constraint R(x) > r(k2). We aim to prove Theorem 4 
by showing that R(n) - ~ ( n )  > 0 for every even integer n E [N, (615) N]. 

We first fix some notation. Let I (n)  and B(p,  n) be defined by (2.4), 
(3.1) and (3.2) with s = 2, k = 1, ko = 2, kl = 3 and k2 = 4 or 5, and 

It  is easily confirmed that B(p, n)  = 1 + o ( ~ - ~ / ~ ) ,  which assures the 
absolute convergence of the last infinite product, as well as the lower 
bound 6 ( n )  >> 1 for even n ,  in combination with Lemma 3.8. Mean- 
while, Lemma 2.1 gives the estimate I (n )  =  lo^ N)-* valid 
for N 5 n 5 (6/5)N. 

Proceeding along with the lines in the proof of Theorem 5 in fj5 (see, 
in particular, the argument from (5.5) through to (5.11)), with trivial 
adjustment of notation, we see that Lemma 6.1 can be applied to R(n) 
for every even n E [N, (6/5)N]. In the latter application we take U = 
D ~ / ~  and V = D1I3, and then Lemmata 3.7 and 4.2 show that the error 
term do) in Lemma 6.1 is negligible in this instance. Using Lemma 3.3 
also, we can conclude that, for all even n E [N, (615) N], 

R(n) > (40 (3) + O((log log N) -'/SO)) 6 (n) (log ~ 2 )  ~ ( n )  log z 

Next we put 

for almost all n ,  by (6.30). This establishes Theorem 3 (ii). 
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and denote by R'(n) the number of representations of n in the form 

subject to primes pp - X3, p3 - Xk2 and integers x and y satisfying 

Obviously we see ~ ( n )  5 R1(n). Again we can apply Lemma 6.1 to 
obtain an upper bound for R1(n), this time taking U = Dl and V = 
312, and then it is negligible the contribution of the remainder term 
corresponding to E(') in Lemma 6.1. To see this, we just follow the 
argument from (5.5) through to (5.12), replacing g2 (a)  with 

Hence, by using mainly Lemmata 2.1, 2.2, 3.3, 3.7, 4.6 and 6.1, we can 
establish the upper bound 

< (41 (3) +  log log N ) - ~ / ~ ' ) ) G ( ~ ) = ( K  (k2) log Xl)I(n) 
log z1 

= (2~(k2) /8 '  + O((1og log N)-'/~')) ~ ( n )  ~ ( n ) ,  (6.34) 

valid for all even n E [N, (615) N] , where 

To examine K(k2), the following observation is useful. For a fixed 
real number u exceeding 1 and a large real number X ,  let x(X, u) be the 
number of integers x with x - X and (5, II(xl/.)) = 1. Then we have 

by Lemma 2.2 (with the latter formula in (2.9) for r = 1). On the other 
hand, to estimate x(X,u) is the simplest linear sieve problem, and it is 
easy to prove that 

as X -+ oo. Moreover, Grupp and Richert [9] showed that $q(u) < 
1 + 3 lo-'' for u 2 10 (see [9], p.212). Consequently we must have 

for u > 10. 
Note now that Cl (u) = 1 and C2 (u) = log(u - 1) for u 2 2, by the 

definition. In the case k2 = 4, we have C3(3/8(4)) > 2, so we see by 
(6.35) that 

whence 2K (4)/8' < 5. Since (2 log 2)/8(4) > 5.5, we conclude by (6.33) 
and (6.34) that R(n) - ~ ( n )  2 R(n) - R1(n) > 0 for every even n E 
[N, (6/5) N], which establishes Theorem 4 (i) . 

In the case k2 = 5, we have C3(3/0(5)) > 4.9 and C4(3/0(5)) > 4, 
thus we see by (6.35) 

whence 2K(5)/01 < 13.5. Since (2 log 2)/0(5) > 14, we conclude by 
(6.33) and (6.34) that R(n) - ~ ( n )  > 0 again for every even n E 
[N, (615) N], which completes the proof of Theorem 4 (ii). 
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Abstract In this paper, we announce the result that for any odd n > 1, 

(n-1)/2 1 
-292 (n) + nq:(n) (mod n2),  

where g,(n) = (r4(n) - l ) /n ,  (r ,n)  = 1 is Euler's quotient of n with 
base r ,  which is a generalization of E. Lehmer's congruence. As appli- 
cations, we mention some generalizations of Morley's congruence and 
Jacobstahl's Theorem to modulo arbitary positive integers. The details 
of the proof will partly appear in Acta Arithmetica. 

2000 Mathematics Subject Classification: 1 lA25, 1 lB65, 1 lB68. 

1. INTRODUCTION 
In 1938 E. Lehmer [5] established the following congruence: 

for any odd prime p, which is an improvement of Eisenstein's famous 
congruence (1850): 
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where 

is Fermat's quotient, using (1) and other similar congruences, he ob- 
tained various criteria for the first case of Fermat's Last Theorem (Cf. 
[8]). The proof of (1) followed the method of Glaisher 121, which depends 
on Bernoulli polynomials of fractional arguments. In this paper, we fol- 
low the same way to  generalize (1) to modulo arbitary positive integers, 
however, we need establish special congruences concerning the quotients 
of Euler. The main theorem we obtain is the following, 

Theorem 1. If n > 1 is odd, then 

(n-1)/2 

7 -292(n) + ng$(n) (mod n2), 

i s  Euler's quotient of n with base r .  

Corollary 1. If n is odd, then 

1 7 = 92(4  - nq:(n)/2 
(mod n2) for 3 t n  

i= 1 (mod n2/3) for 3 1 n. 

Similarly as Theorem 1, we can generalize other congruences by Lehmer 
to  modulo arbitary positive integers. Among those, the most interesting 
one might be the following, 

Theorem 2. If n is odd, then 

where 

i s  generalized Wilson's quotient or Gaussian quotient, the negative signs 
are to be chosen only when n is not a prime power. 

Corollary 2. If n is odd, then 

(n- 1112 
f 2q2(n)vn + q;(n) (mod n) ,  

2 

where the negative sign is to be chosen only when n is not a prime power. 

In 1895, Morley [7] showed that 

for any prime p > 5, this is one of the most beautiful congruences con- 
cerning binomial coefficients. However, his ingenious proof, which is 
based on an explicit of De Moivre's Theorem, cannot be modified to 
investigate other binomial coefficients, we use Theorem 1 to present a 
generalization of (2), i.e., 

Theorem 3. If n is odd, then 

4 n l 4  
= 4 m  ( - l ) q n ( ( & ; / 2 )  - 

(mod n3) for 3 1 n 
(mod n3/3) for 3 ( n,  

dln 

(3) 
where p(n) is Mobius' function, and +(n) is Euler's function. I n  partic- 
ular, if n 2 5 is prime, (3) becomes (2). 

Corollary 3. 

and 

for any1 2 1. 

Corollary 4. 
such that 

I f  p 2 5 is prime, then 

For each 1 >_ 1, there are exactly two primes up to 4 x 1012 

the positive sign is to be chosen when p = 1093 and the negative sign i s  
to be chosen when p = 3511. 
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Corollary 5. If p, q 2 5 are distinct odd primes, then 

Moreover, we have the following, 

Theorem 4. Let n > 1 be an integer, then 

( (mod n3) if 3 1. n ,  n # 2a 

(modn3/3) 2 i  3 i n  
(mod n3/2) if n = 2a, a > 2 (4) 

dln 
( (mod n3/4) i f  n =  2 

for any integers u > v > 0. In  particular, if p > 5 is prime, then ( 4 )  
becomes 

this is Jacobstahl's Theorem. 

Corollary 6. If p, q > 5 are distinct primes, then 

for any integers u > v > 0. 

Corollary 7. If p > 5 is prime, then 

and 

for any 12 1. 

Corollary 8. If p, q > 5 are distinct primes, then 

In 1862, Wolstenholme showed that 

( )  1 (mod p3) 

- 
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for any prime p 2 5. This is a consequence of Jacobstahl's Theorem, 
and therefore a consequence of Theorem 4. The exponent 3 in (5) can 
be increased only if plBp-3, here Bp-3 is the p - 3th Bernoulli number. 
Jones (Cf. [3]) has asked for years that whether the converse for (5) is 
true. As direct consequences of Corollary 7 and Corollary 8, we present 
two equivalences for Jones' problem, i .e., 

Theorem 5. If the congruence 

( )  1 (mod n3) 

has a solution of prime power pi ( 1  > l ) ,  then p must satisfy 

( )  1 (mod p6) .  

The converse is also true. Meanwhile, if the congruence (6) has a solu- 
tion of product of distinct odd primes p and q, then 

( )  1 (mod p3), ( )  1 (mod g3) 

The converse i s  also true. 

In particular, if 1 = 2, the first part of Theorem 5 was obtained by R. 
J. McIntosh [6] in 1995. 
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Abstract Let N be a sufficiently large even integer and S ( N )  denote the number 
of solutions of the equation 

where p denotes a prime and Pz denotes an almost-prime with a t  most 
two prime factors. In this paper we obtain 

where 

2000 Mathematics Subject Classification: 1 lNO5, 1 lN36. 

1. INTRODUCTION 
In 1966 Chen ~ in~ run [ ' I  made a considerable progress in the research 

of the binary Goldbach conjecture, heI21 proved the remarkable Chen's 
Theorem: let N be a sufficiently large even integer and S ( N )  denote the 
number of solutions of the equation 

where p is a prime and P2 is an almost-prime with a t  most two prime 
factors, then 
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where 

The oringinal proof of Chen's was simplified by Pan Chengdong, Ding 
Xiaqi, Wang ~ u a n w ,  Halberst am-~icher t [~] ,  ~a lbe r s t am[~] ,  ~ o s s [ ~ l .  In 
[4] Halberstam and Richert announced that they obtained the constant 
0.689 and a detail proof was given in (51. In page 338 of [4] it says: 
"It would be interesting to know whether the more elaborate weighting 
procedure could be adapted to the numerical improvements and could be 
important". In 1978 Chen ~ i n ~ r u n [ ~ l  introduced a new sieve procedure 
to show 

In this paper we shall prove 

Theorem. 

The constant 0.8285 is rather near to the limit obtained by the method 
employed in this paper. 

2. SOME LEMMAS 

- Let A denote a finite set of integers, P denote an infinite set of primes, 
P denote the set of primes that do not belong to P. Let z 2 2, put 

Lemma I [~] .  If 

where w(d) is a multiplicative function, 0 5 w(p) < p, X is independent 
of d. Then 

where 
log D s = -  
log z ' RD = Irdlr 

d<D,dlP(z) 

V(z) = c ( w ) E  (1 + 0 (2)) , 
log z log z 

- 1 

C(W) = n (I-  y) ( 1 : )  , 
P 

where y denotes the Euler's constant, f (s) and F(s )  are determined by 
the following diflerential-difference equations 

Lemma 2[']. 
2e7 

F(s )  = -, O < s 5 3 ;  
S 

F ( s )  = 
(1 + 

- 1 0  - 1) dt) 
7 3 5 ~ 5 5 ;  

S t 
2e7 log(s - 1) 

f ( 4  = 7 2 5 ~ 5 4 ;  
S 

2eY s-1 t-l log(u - 1) 

Lemma 31'1. For any given constant A > 0, there exists a constant 
B = B(A) > 0 such that 

max max ,<, (l,d)=l YSX C g(x, a)H(y; a ,  d, 1) 
a<E(x),(a,d)=l 

x 
<< - 

logA x ' 
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where 
1 

H(y ;a ,d , l )  = 1 - - I ,  
~ P S P  a p s v  

a p d (  mod d )  

Remark 11'1. Let r l ( y )  be a positive function depending on x and 
satisfying r l ( y )  << xa for y I x. Then under the conditions in Lemma 
3, we have 

Remark d9]. Let r2(a)  be a positive function depending on x and y 
such that ar2(a) << x for a I E ( x ) ,  y 5 x. Then under the conditions 

max max 
(I.d)=l ~ 5 %  

d l  D 

in Lemma 3, we have 

Lemma 4[9J01. Let 

C g(x,a)H(arl(y);  a,d, 1)  
a<E(x),(a,d)=l 

P<Z 
Then for u 2 uo > 1, we have 

x << -. 
logA x 

x C l = w ( u ) - + o  - 
n<x log 2 (10; r )  

where w(u )  is determined by  the following differential-difference equation 

Moreover, we have 

1 
W ( U )  < my u 2 4. 

3. WEIGHTED SIEVE METHOD 
Let N be a sufficiently large even integer and put 

A =  {ala= N - p , p <  N ) ,  

P =  { P I  ( P , N )  = 1).  

Lemma 5l71. Let 0 < a  < ,f3 < !j and a+3P > 1. Then 

where 

1, a = p1p2p3,NOL I pl < N P  I p2 < p3, ( a , N )  = 1; 
P 2 ( 4  = 

0, otherwise. 

1, a = P ~ P ~ P ~ , N P  I Pl  < p2 < p3, ( a , N )  = 1; 

0, otherwise. 

1, a = pip2p3n,NOL 5 pl < p2 < p3 < N P ,  (a,  N ~ ; ' P ( ~ ~ ) )  = 1; 
P a ( 4  = 

0, otherwise. 
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Proof. Since the second inequlity can be deduced from the first one 
easily, so it suffice to prove the first inequality. Let 

Then 

On the other hand, 

For 

X(a) = 0 = 1 - 1 1 1 
- 5 ~ 2  (a) - m (a) + ,p4 (a); 

I A 

P On Chen's theorem 105 

Combining the above arguments we complete the proof of Lemma 5. 

Lemma 6. 
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Proof. By Buchstab7s identity 

we have 
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BY Lemma 5 with (%PI = (&,& and (&,PI = (&,& and 
(3.3)-(3.5), we complete the proof of Lemma 6. 

4. PROOF OF THE THEOREM 
In this section, sets A and P are defined by (3.1) and (3.2) respectively. 

Let 

N X = LiN .v - log N ' ( 4  N )  = 1, 

1) Evaluation of C, E l ,  C4, C5, C6, C7. 
1 

Let D = -+ with B = B(5) > 0, by Lemma 3 we get 
log N  

and 

By Lemma 1, Lemma 2, (4.1), (4.2) and some routine arguments we 
get that 

log(s - 1) 
C 2 8 ( l  + o(1)) log -ds) 5 

s + l  

For N& < p <  N&, by Lemma 1 and (4.2) we get that 

where 

~ < $ , ~ I P ( N & )  

By Lemma 3 we have 

max max ' ' ( l ,d )=l  y 9 N  
~ ( y ;  d, 1) - - 

d < D  cp(4 Liy I 
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2) Evaluation of Clo, El l .  
We have 

By (4.4)) (4.5), the prime number theorem and summation by parts we 
get that 

where 

N ~ < P I < ~ ~ < ~ ~ < N &  l<n<+ p1p2p4 P=N- (pipzp4n)p3 1 

(plp2p41N)=1 (nlp;l~p(p4))=l ~ ~ < ~ 3 < m i n ( ~ ~ 8 1 ~ . & )  
(4.11) 

Now we consider the set 

Similarly, 

E4 5 8(1+ o(1)) '(:IN (log 
(1 + 1 2.4065 log(S - 

log N 6.813 s By thc tlcfinition of the set E, it is easy to see that for every e E 
E, p1, r )2 ,p~  arc detcrrnincd by e uniquely. Let p2 = r(e),  then we have 

+ J4 - 

5 
log d s )  

2.4065 s s + l  

Let 

~ E L , ~ < N $  

Z,,, t1oc:s not, c:xc:c:c:(lit~g t,tl(: r ~ ~ ~ r n h c r  of primes in L, hence 
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By Lemma 1  we get 

S ( L ,  D ; )  5 8 ( l +  o(1) )  C ( N ) ' L '  + R1 + R2, 
log N 

where 

D  = ~ i l o g - ~  N ( B  = B ( 5 )  > O),  

C 1 
e E E  

ep3 = N ( d )  

Let 

then 

R 1 =  C 
d l  D 

N $  <a<N# 
(a,d)=l  

ap3 = N ( d )  

It  is easy to show that 
g(a)  i 1. 

- 
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Now 

1 

d l ,  

where 

C 
1  

R5 = 

d l D , ( d , N ) = l  N f  <a<N# 
(a,d)=l  ap3 N ( d )  

By Lemma 3, Remark 1, Remark 2 we get 
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Now by Lemma 4 we have 

- - N 
1.7803 log N (1 + o w  

By (4.10)-(4.17) we get 

By a similar method we get 

By (4.18) and (4.19) we obtain 

On Chen's theorem 115 

3) Evaluation of C2, C3, C8, C9. 
We have 

Consider the sets 

We have 

The numter of elements in the set C which are less than Nf does not 
exceed N3,  S does not exceed the number of primes in C. Therefore 

Now we apply Lemma 1 to estimate the upper bound of S(C, P, 2). For 
the set LC, 
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Then by Lemma 1 we get that 

X 
S ( L ,  P,  2) 5 8 (1  + o ( l ) ) C ( N )  - log N + R i  +R2, 

, (4 .23)  

where 

In view of N ;  5 e < N $  fore  E E, let 

then we have 

R1 = C 
d<D, (d ,N)= l  ap<N 

(a ,d)=l  a p r  N ( d )  

It  is easy to show that g (a )  5 1. Now 

On Chen's theorem 117 

By Lemma 3 we get that 

By the prime number theorem and integeration by parts we have 

( 3 047 N 11  log 2.047 - 
= ( 1  + 0 (1 ) ) -  J 

S 
) ds .  (4 .26)  

log 2.047 

By (4.21)-(4.26) we get that 

By similar methods, we have 
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4) Proof of the Theorem. 
By (4.3),(4.6)-(4.9). (4.20), (4.27)-(4.30) we get 

The Theorem is proved. 
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Let p be a prime number and k be a natural number. For a Dirichlet 
character x modulo p we denote by L(s,  X )  the Dirichlet L-function for 
x as usual. The power moment of L(1,x)  over odd characters were 
investigated after the results of Ankeny and Chowla [I], Walum [2] on 
mean square, and now we have general asymptotic formula 
PI 7 [GI: 

by Zhang 

2k log p 
I L ( ~ , x ) ~ * = c ~ ~ + o ( ~ ~ P (  )) 

x(-I )=-1  1% 1% P 

and 

C ~ ( l , x ) ~ = D k p + o  
x(-I)=-1 

where Ck and Dk are certain positive constants depending only on k. We 
note that Zhang's results are actually given for any composite modulus 
and the constants Ck and Dk are given explicitly. 

In this paper we report a curious "vanishing" phenomenon on the 
similar power moment twisted by the arguments of the Gaussian sum. 
Let G ( x )  denotes the Gaussian sum i.e. 
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where ep(z) = e2"'r. Define 

THEORY 

- 
On a twisted power mean of L(1, X) 123 

Note that the absolute value of ex is 1. Then our result is the following: 

The author expresses his sincere gratitude to Professor Kohji Mat- 
sumoto for valuable information and discussions on Zhang's works, and 
to  the referee for several important comments for correction and im- 
provement of the manuscript. 

Hereafter we use the following conventions: 

Lemma 1. 

where 

Proof. The class number formula says if x(-1) = -1 (see e.g. [3] p.37, 
Theorem 4.9) 

Here we have used the facts h(x) = 0 for even non-principal x and 
h(x) = 9 for principal X. The first term of the last expression is 
calculated as 

which shows the conclusion. 

Lemma 2. 

where 

K(n l , .  . . , nk )  =p-k x ep(-alnl - . - aknk)  
(a1 ,..., a k ) ~ ~ ; ~  

al.-ak=l (mod p) 

and 

Proof. Let I (a l ,  . . . , ak)  denote the characteristic function of the set 
defined by a1 . ak 1 (mod p). Then by Fourier analysis on Z,k (con- 
siderd as an additive group) we have 

Hence 
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IS1 
For (nl, . . . , nk) E 2: we denote by r = r(nl,  . . . , nk) the number of 

zeros among the numbers n l ,  . . . , nk. 

Lemma 3. 

Proof. First we assume r 2 1. Without loss of generality we may assume 
(nl,. . . , nk) = (nl, .  . . , nk-,., 0 , .  . . , 0), and all of 7x1,. . . , nk-" are not 
zero. Then we have 

The latter half is a direct consequence of the Deligne estimate of the 
hyper-Kloosterman sums (see [4]). 0 

Proof of Theorem. From Lemma 2 and Lemma 3 we have 

Since @(O) = '1 and CP,;; @(n) = - pv (note that ~ z = k  @(n) = 
0) we observe the first term to be 

- 

On a twisted power mean of L(1, X )  125 

While the second term can be estimated to 0 (p ik -+  logk p) since 

Thus Theorem follows immediately from Lemma 1. 0 
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also to the zeros of Dirichlet L-functions . 
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1. INTRODUCTION 
We shall give a remark concerning the Montgomery's conjecture on 

the pair correlation of the zeros of the Riemann zeta function C(s). 
We start by recalling Montgomery's conjecture [lo]. We shall state it 

in the following form, where y and y' run over the imaginary parts of 
the zeros of ((s). 

Montgomery's pair correlation conjecture. 
For all T > To and for a n y  a > 0, 

sin rt 2 
l = ~ l o g T . { l l ( n ( l - ( _ t ) ) d t + o ( l ) } .  2r 

O < - i , - i l I T  

In this article, we shall prove that the above conjecture is correct as 
far as the asymptotic behavior as a + cm is concerned. We [4] have 
already proved this under the Riemann Hypothesis. Here we shall give 
a proof without assuming any unproved hypothesis. 

127 
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An importnat point of the above conjecture is, as noticed by Dyson, 
that the density function 

is exactly the density function of the pair correlation of the eigenvalues 
of Gaussian Unitary Ensembles. This observation has stimulated many 
researches since then. One of the latest works along this line can be seen 
in the works of Katz-Sarnak [9] and Connes [I]. 

We start by recalling the Riemann-von Mangoldt formula for the num- 
ber N(T)  of the zeros P + iy of ((s) in 0 < y 5 T and 0 5 P 5 1, the 
zeros on y = T being counted one half only. Let 

1 1 
S(T) = -arg((- + i T )  for T # y, 

n 2 

where the argument is obtained by the continuous variation along the 
straight lines joining 2, 2 + iT,  and 4 + iT, starting with the value zero. 
When T = y, we put 

Then the well known Riemann-von Mangoldt formula (cf. p.212 of Titch- 
marsh [12]) states that 

where 8(T)  is the continuous function defined by 

with 
8(0) = 0 

and has the following expansion 

T T T n  1 
6(T) = -log- - - - - 

7 +- +-+... 
2 2n 2 8 48T 5760T3 

and we have 
S(T)  << log T, 

r ( s )  being the r-function. 

Now using the Riemann-von Mangoldt formula, we see that for any 
a > 0 and for all T > To, 

Thus it is clear that the following is equivalent to Montgomery's pair 
correlation conjecture. 

Conjecture. For all T > To and for any a, > 0, we have 

The above argument has been noticed in pp. 242-243 of h j i i  [5] with 
slightly more details. Thus it may be realized that to study the sum 

is very important. Under the assumption of the Riemann Hypothesis, we 
have shown in Fujii [4] that for all T > To and for any positive a << T~ 
with some positive constant A, we have 

27fa 
T ) << T log T. C S(Y - - 

O<y<T 1% I;; 

The first purpose of the present article is to eliminate the Riemann 
Hypothesis from the above result and prove the following result. 

Theorem I. Suppose that T > To and 0 5 la) << T. Then we have 

Thus we have the following consequence without assuming any un- 
proved hypothesis. 
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Corollary I. For all T > To and for any a > 0, we have 

The second purpose of the present article is to consider a more gen- 
eral situation. Let x and $ be primitive Dirichlet characters with the 
conductor d 2 1 and k > 1, respectively. Let L(s, X) and L(s,$) be the 
corresponding Dirichlet L-functions. Let y(x) ( and i ($) ) run over the 
imaginary parts of the zeros of L(s, X) ( and L(s, $) , respectively). One 
general problem is to study the following quantity. 

where T > To and a is any positive number. To state our conjecture and 
the results on this, we have to start by stating the following Riemann- 
von Mangoldt formula for N(T, x), the number of the zeros of L ( s ,  X) in 
0 5 X ( s )  5 1 and 0 5 S ( s )  = t 5 T, possible zeros with t = 0 or t = T 
counting one half only. Then it is well-known (cf. p.283 of Selberg [Il l)  
that  for all T > 0, we have 

where S(T, X) is defined as in p.283 of Selberg [ll]. 
Now if x = $, then the asymptotic behavior of the above sum must 

be similar to the one conjectured in Montgomery's conjecture. On the 
other hand, if x # $, then it may be natural to suppose that there may 
be no strong tendency to separate "(x) and <($). Thus we may have 
the following. 

Conjecture. Let x and $ be primitive Dirichlet characters with the 
conductor d 2 1 and k 2 1, respectively. Then for all T > To and for 
any a > 0, we have 

T a 

C sin 7rt 
1 = -logT-{ / (1 -6 (~ ,$ ) ( - )~ )  dt+o(l)  

0 < 7 ( ~ ) , 7 ' ( 3 ) l T  
2.lr o 7rt 

where we put 

This has been already stated in p.250 of Fujii [5]. 
If we use the Riemann-von Mangoldt formula for N(T, X) as stated 

above, we see that our conjecture is equivalent to the following. 

Conjecture. Let x and $ be primitive Dirichlet characters with the 
conductor d > 1 and k 2 1, respectively. Then for all T > To and for 
any a > 0, we have 

T T 
=- log - . S(x, $) . 

27r 27r {la (y)2 dt + o(l)}. 

In the present article, we shall prove the following result which is a 
generalization of Theorem I. 

Theorem 11. Let x and $ be primitive Dirichlet characters with the 
conductor d 2 1 and k 2 1, respectively. Suppose that T > To and 
0 5 la1 << T. Then we have 

This implies, in particular, the following. 

Corollary 11. Let x and $ be primitive Dirichlet characters with the 
conductor d 2 1 and k 2 1, respectively. Then for all T > To and for 
any a > 0, we have 
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We understand that our results do not reach to the point where either 
the factor 

or the factor 

S(x7 $> 

plays an essential role. 
Finally, we notice that Theorem I is announced in Fujii [7]. Here we 

shall give the details of the proof of Theorem I1 in the next section. We 
shall not trace the dependence on d or k , for simplicity. 

2. PROOF OF THEOREM I1 
We shall use the following explicit formula for S(T, X) due to Selberg 

(cf. p.330-334 of Selberg (1 11). 

Lemma. For 2 < X < t2, t 2 2, we have 

where we put 

4 . 4  for I < n < X  
X3 2 X2)2 (1% ?;-) - 2 ( k  ?;- 

A X ( ~ )  = A(n) 2(log X) 
for X < n < x2 

(log g)2 
A(n) 2(log ~ ) 2  for x2 5 n < x3 

- 
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and 

e(x) running here through all zeros P(x) + iy(x) of L(s,  X) for which 

We shall divide our proof into two cases. 

We suppose first that a > 0. 
We put X = Tb with a sufficiently small positive b and Tl = + a.  
We may suppose that 

In this case, we have first 

Using the estimate S(y(x)  - a ,  $) << logT, we get, simply, 

For S2, we can use the above lemma and get 

Using the Riemann-von Mangoldt formula, we get first 
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=S5 + sf3 + S7,  say. 

By the integration by parts, we get 

By the integration by parts, we get also 

-i logp T p-i(t-a)$(p)~(t, X) d t  } 
IT 

p < X 3  

=s8 - S9, say. 

Since S(T, X) << log T, we get immediately, 

x: 
S g  << logT- 

log X 
<< T. 

To treat Sg, we apply the above lemma again. Since Jfl 5 TI, we 
have 

-2 log p T 
p-i(t-a)$(p)~ ( ~ ( t ,  X, x)) d t  

p<X3 

=Slo + S11, say. 

We get, easily, 

By Cauchy's inequality, we get 

- 
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Since 

we get 

Using Fujii [2] (as in pp.246-251 of Selberg [ l l ] ) ,  we get 

and 

Since 

S11 << T log T, 

S g  << T log T 

x4 
s 7  << - 

log X 
<< T, 

we get 

S3 << T log T. 

We shall next estimate S4. 
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For j = 1,2, we use the following inequality 

+ logT  max l a j ( t  - a,x,$)12 
TI 5 tST  

=u j ( l )+u j (2 )+Uj (3 ) ,  say. 

We see easily that 

To treat Uj(3) for j = 1,2, we use the above lemma again. Then we 
have 

- 
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", i 

Similarly, we get 
Uj (4), Uj (5) K T. 

As above, we get 

Next, we have 

where 

In the same manner, we get 
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Similarly, we get 

u2 (6) << T log4 x 
and 

h ( 7 )  << T. 

Thus we get 

uJ$ (6) uJ$ (7) << T log T. 

Consequently, 

Uj (3) << T log T. 

Hence, we get 

and 

Extending the argument in pp. 69-71 of Fujii (61, we get 

Finally, extending again the argument in pp. 69-71 of Fujii (61, we 
get first 

1 

(Lmxi-gdoLmX~-o C I Ax(~)log(Xp)d(p) 
pu+i(r(x) -4 l 2  do) 

Ti <y(x)_<T p<X3 

T log T 
<< ,,/- (& - J = ' X ~ - ~  Tl <Y C ( X I  ST IWx) ) l2do )  $, 
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where we put 

with 

Hence we are reduced to the estimate of the sum 

Now as before, we have first 

The first term in the right hand side is 

The last integral is 
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We see easily that 

W2 has the same upper bound. 

where 

Now since we have 

we get 

Similarly, we get 

P 
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Since 
W5 << T ,  

we get 

Consequently, we get 

T log T 
<< d- (T log T . log2 X )  

log2 X 

<< T log T. 

Hence, we get 
S4 << T log T 

We suppose next that 
t 

a  = -a 5 0. 

We put TI = m a x ( n  - at,O). We may suppose that Tl 5 T .  We 
suppose first that 

o < a ' < \ / j ? .  

In this case, we have first 

C s(r(x) - a )  = C S(r(x )  + a') 
O<r(x) I T  O<r(x)IT 

We can modify the proof given above and get our conclusion as stated 
in Theorem 11. 
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then TI = 0 and we can follow the same argument as above and get our 
conclusion as stated in Theorem 11. 

Thus in any case, we have the same conclusion as stated in Theorem 
11. 
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1 

Abstract In this paper, we show that the discrepancy of some special sequence 

( f ( n ) ) N l  satisfies D ~ ( f ( n ) )  << N - h " ,  where E is any positive 
number and twice differentiable function f ( x )  satisfies that ( f l ( x )  - 
a)  f l ' (x)  < 0 for x 2 1 and f ' ( x )  = a + o([ f " ( % ) I  ' I 2 )  for an irrational 
number a of finite type 7. We show further that if a is an irrational 
number of constant type, then the discrepancy of the sequence ( f  (n))Z=l 
satisfies D N ( ~  (n) )  << N-2/3 log N. We extend the results much more by 
van der Corput's inequality. 

1991 Mathematics Subject Classification: Primary llK38; Secondary l lK06. 

1. INTRODUCTION AND RESULTS 

For a real number x, let {x) denote the fractional part of x. A se- 
quence (x,), n = 1,2, . . ., of real numbers is said to be uniformly dis- 
tributed modulo 1 if 

- 
143 

&k C. Jia and K. Matsumoto (eds.), Analytic Number Theory, 143-155. 
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for every pair a ,  b of real numbers with 0 $ a < b $ 1, where q a , b ) ( x )  
is the characteristic function of [a, b) + Z, that is, x[,,b)(x) = 1 for a $ 
{ x }  < b and ~ [ ~ , b ) ( x )  = 0 otherwise. It is known that the sequence (x,) 
is uniformly distributed modulo 1 if and only if limN-m DN(x, )  = 0, 
where 

I .  N 

is the discrepancy of the sequence (x,) (see [2, p.881). 
Let a be an irrational number. Let $ be a non-decreasing positive 

function that is defined at least for all positive integers. We shall say 
that a is of type < $J if hl(hal1 > l / $ ( h )  holds for each positive integer 
h, where l (x  1 1  = min{{x}, 1 - { x } }  for x E R. If $J is a constant function, 
then a of type < $J is called of constant type (see [2, p.121, Definition 
3.31). Let q be a positive real number. The irrational number a is said 
to be of finite type q if q is infimum of all real numbers T for which there 
exists a positive constant c = C(T ,  a )  such that a is of type < $, where 
$(q)  = cqr-' (see [2, p.121, Definition 3.4 and Lemma 3.11). 

By Dirichlet's theorem, if a is of finite type q, then q > 1 holds, and 
if a is of constant type, then a is of finite type q = 1. 

In [4], Tichy and Turnwald investigated the distribution behaviour 
modulo 1 of the sequence (an+@ log n),  where a and P are real numbers 
with ,f3 # 0. They showed that for any E > 0 

provided that a is the irrational number of finite type q and P # 0. 
In [3], Ohkubo improved the estimate (1.1) as follows: for any E > 0 

holds whenever a is the irrational number of finite type q and p # 0. 
The following theorem includes as a special case the above result (1.2). 

Theorem 1. Let f ( x )  be a twice differentiable function defined for x 2 
1. Suppose that there exists an irrational number a of finite type q such 
that for x 1 1 either 

and f ' ( x )  = a + 0 ( 1  f " ( ~ ) ] ' / ~ ) .  Then for any E > 0 

D N ( f  (n))  << N-*+E. 

Remark 1. The following statement was shown by van der Corput : If 
f ( x ) ,  x > 1, is differentiable for suficiently large x and lim,,, f i ( x )  = 
a (irrational), then the sequence ( f  (n ) )  is uniformly distributed mod 
1 (see [2, p.28, Theorem 3.3 and p.31, Exercise 3.51). If the function 
f ( x )  in Theorem 1 also satisfies the condition lim,,, f " ( x )  = 0, then 
l i ,  f i x )  = a. Therefore, Theorem 1 gives a quantitative aspect of 
van der Corput's result. 

For the irrational number a of constant type, we obtain the following: 

Theorem 2. Let a be an irrational of constant type and let f ( x )  be as 
in Theorem 1. Then 

DN ( f (n ) )  << N - ~ / ~  log N .  

Example 1. f ( x )  = a x  + ,B log log x and f ( x )  = a x  + ,f3 log x satisfy the 
conditions of Theorem 1 and 2. 

Furthermore, we extend Theorem 1 by van der Corput's inequality 
(Lemma 5) .  

Theorem 3. Let q be a non-negative integer and let Q = 2 9 .  Suppose 
that f is q + 2 times continuously differentiable on (1,oo).  Suppose also 
that there exists an irrational number a of finite type q such that for 
x 2 1 either 

and f (9+ ' ) ( x )  = a + 0(1 f(9+2)(x)1'/2). Then for any E > 0 

Example 2. Let q be a non-negative integer, let f ( x )  = aox9+' +alx9+ 
. + a g x  + Px9 log x ,  where ai E R (i = 0, . . . , q ) ,  0 < P E R and a0 is 

the irrational number of finite type q. Then f ( x )  satisfies the conditions 
of Theorem 3: 

f ('+')(x) = ( q  + I ) !  a0 + pcx-' for some c > 0, 

Theorem 4. Let a be an irrational number of constant type and let q, 
Q, and f ( x )  be as i n  Theorem 3. Then 

I 

DN ( f  (n))  < N - 2 ~ 2 - 1 / 2  log N .  
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2. SOME LEMMAS 
First, Erdos-TurBn's inequality is stated (see [2, p. 1141). 

Lemma 1 (Erdos-Tursn's inequality). For any finite sequence (I,) 

of real numbers and any positive integer m ,  it follows 

Subsequently, two known results are stated (see [5, p.74, Lemma 4.71 
for the first one and [6, p.226, Lemma 10.51 for the second one). 

Lemma 2 (van der Corput). Let a and b be real numbers with a < 
b. Let f ( x )  be a real-valud function with a continuous and steadily 
decreasing f l ( x )  in ( a ,  b ) ,  and let f l ( b )  = a,  fl(a) = 8. Then 

where q is any positive constant less than 1. 

Lemma 3 (Salem). Let a and b be real numbers with a < b. Let r ( x )  
be a positive decreasing and differentiable function. Suppose that f ( x )  
is a real-valued function such that f ( x )  E c 2 [ a ,  b] ,  f " ( x )  is of constant 
sign and r l ( x ) /  f " ( x )  is monotone for a 5 x 5 b. Then 

We need the following inequality. 

Lemma 4. Let q be a non-negative integer, and let Q = 29. If 
irrational number of type < d ,  then for any positive integer m 

<< $(2m)1~Qm11(2Q)go(m)  + d(2h) ' I Q  h1/(2Q)-1go(h), 
h= 1 

where go(m) = logm if q = 0, and yo(m) = 1 if y 2 1. 

Proof. The proof is almost as in the proof of [2, p. 123, Lemma 3.31. 

Discrepancy of some special sequences 

By  Abel's summation formula, we have 

I t  follows that 

From (2.2), it follows that in each of the intervals 

there exists at most one number of  the form 1 1  jail, 1 5 j 5 h, with no 
such number lying in the first interval. Therefore, we have 

This completes the proof. 0 

W e  quote the following lemma from [ I ,  p.14, Lemma 2.71. 
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Lemma 5 (van der Corput's inequality). Let q be a positive integer, 
112 and let Q = 29. If 0 < H 5 b - a ,  H p  = H ,  HiV1 = Hi (i  = 9, q - 

1, ..., 2)  then 

Hence we have 
I N I 

where f ( x )  E Cq[a, b] ,  h = ( h l ,  . . . , hq) ,  S q ( h )  = e2aifq(n;h), 
aq 

f (n  + h . t )d t l  . . . dt,, t = ( t l ,  t2,  . . . , t,), fdn; h) = S,' . J; 
h t is the inner product, and I ( h )  = ( a ,  b - hl - h2 - - . . - h91' 

Since a is of type q, for any d > 0, a is of type < d with $(q) = cq"1+6/2 
for some c > 0. Then, Lemma 4 with q = 0 implies 

m 

3. PROOF OF THEOREMS 
Proof of Theorem 1. Let h be a positive integer. Applying Lemma 2, we 
get 

Applying Lemma 1, by (3.1) and (3.2), we obtain 

where A = h f ' ( N )  and B = h f l ( l ) .  We set g ( x )  = h( f ( x )  - a x ) .  Using 
integration by parts, we have 

for any 6 > 0. 

Choosing m = 

Hence, 
In the case f l ( x )  < a,  f " ( x )  > 0 for x 2 1, the proof runs along the 

same lines as above. 0 

Proof of Theorem 2. The proof runs the same lines as in the proof of 
Theorem 1. Since a is of constant type, by Lemma 4 with q = 0 and 
+ ( x )  = C ,  we have 

We suppose that 
1 

h1/211hall 
<< m1j2 log m. 

h= 1 
f l ( x )  > a and f " ( x )  < 0 for x > 1. 

From Lemma 3 and the hypothesis, it follows that 
Then from the first inequality of (3.3) 
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for any positive integer m. 
Choosing m = [N2I3] , we have 

which completes the proof. 

Proof of Theorem 3. The case q = 0 coincides with Theorem 1, and so, 
we may suppose q 2 1. Let 1 5 H 5 N. Set Hq = H, Hi-1 = H : ~ ~  
(2  = q, q - 1, . . . , 2). Applying Lemma 5, for any positive integer k we 
have 

e2nik f (n)  I$ 
where = (h l , . . .  hq) i  Sq(k;  h, = xnEl(h) e2nik fq (n;h) , 
I ( h )  = (0, N - hi - h2 - . - hq] and f&; h) = .# . . Jd &f ( X  + 
h . t)dtl  . . - dt, = hl . h, J: . . . J: f (q)(x + h . t)dtl  . . - dt, with t = 

( t l ,  t2, . . . ,  t,). 
Suppose that f (q+2)(x) < 0 for x 2 1. Since J,' . . . J,' f (q+2) ( x  + h . 

t )dt l  . . . dt, < 0, & f,(x; h) is steadily decreasing as x increases. 
Hence, by Lemma 2, 

where A = khl ...h,$; ...$; f ( q + ' ) ( ~  - hl - . . . -  h, + h a t ) d t l  a . . dt,, 

B = k h l . .  . h, J; . . . J,' f('+')(l + h. t ) d t l .  - Sdt,. 
Using integration by parts, we have 

- 
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where we set g(x)  = khl ... h , (~:  $: f (q) (x  + h t)dtl  dtq - ax) .  
If f(q+l)(x) > a for x 2 1, then J: . - - J :  f(q+')(x + h . t ) d t l  . . .dt ,  > 

a ( x  > 1). It  follows from Lemma 3 that 

J 1 

<< (khl . . . h,) f x 

By the hypothesis f (q+') ( x )  = a + ~ ( l  f (qf 2, ( x )  1'12) and H6lderYs in- 
equality 

Therefore, we have 

By combining (3.6) and (3.7), we get 

Applying (3.8) to the right-hand side of (3.5), we have 

S q ( k ; h ) <  C (khl . h,) f 
lkhl . hqa - V /  

+ log(B - A + 2) 
A-1/2<v< B+1/2 
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1 where we set c(h) = lo . . . J; f (q+l)(l + h . t)dtl . . . dtq - a .  Since 
f(q++')(x) is non-increasing for x 2 1, we have 0 < c(h) 5 f ('++')(I) - a .  
By the same reason, we have 

Since a is of finite type r ] ,  for any E > 0 there exists a positive constant 
1 

c = c ( E , ~ )  such that kllkall 2 Ckt)rl+E for all positive integers k. Thus, 
for all positive integers hl ,  . . . , hq 

Therefore, 
holds for all positive integers k, and so, hl . - . hqa is of type < ?I, with 
$(x) = c(hl . . . h,)*'x"-". Hence, by Lemma 4, we get 

Applying (3.9) to the right-hand side of (3.4), we have 

Therefore, 

Thus, for any positive integer m, we obtain 

where we used Hl . . Hq = ~ ~ ( l - l / Q )  in the last step. 
On the other hand, since 

we have 
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Combining (3.10), (3.11), and (3.12), we obtain 

Since log(mH2 + 2) << (mH2)€I2 and 1) 2 1, we get 

then the solution H(= Ho) of the equation 

satisfies 1 5 Ho < N with Ho = NUQm-@, where 

Hence we have 

- 
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Applying Lemma 1, we conclude that 

By choosing m = [NW] with w = 1/(2Q2 + 2(1) - l ) Q  - 1) + 1/2), m 
satisfies the condition (3.13) for sufficiently large N ,  and so we have 

for any e' > 0. 0 

Proof of Theorem 4. Putting 1) = 1 and E = 0 in the proof of Theorem 
3, we obtain 

1 1 1 

DN (f (n)) << - + N - G m -  log m. 
m 

Choosing m = N492-' , we get the conclusion. [ I 
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1. INTRODUCTION AND RESULT 
For any a E cC and for any integer n E No ( = (0) U N ) we use the 

notation (a), = a(a  + 1) . . (a + n - I), known as Pochhammer's symbol. 
(We adopt, of course, the rule (a)o = 1.) The Gauss hypergeometric 
function is defined by the power series 

where a ,  b, c are complex parameters satisfying c $ -No. As is well- 
known, it satisfies the following linear differential equation of the second 
order: 

r(1 - z ) F U +  ( c -  ( a +  b +  1 ) z ) ~ ' -  abF = 0. 
157 

r lin nnA K Matrumntn ( P A  ) Amlvtir  N u m h ~ r  Thenrv. 157-172. 
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If a or b is in -No, then F(z)  becomes a polynomial; otherwise F ( z )  has 
radius of convergence 1. 

Let m, n E N. (m, n)-Pad6 approximation for a given formal power 
series f (z) E C[[z]] means the functional relation 

with polynomials Pm(z) and Q,(z), not all zero, of degrees less than 
or equal to m and n respectively. The existence of such polynomials 
follows easily from the theory of linear algebra, by comparing the num- 
ber of coefficients of Pm(x) and Qn(z) with the number of conditions 
imposed on them. To find the explicit construction of P,(z) and Qn(z), 
when m/n is comparatively close to 1, is very important in the study 
of arithmetical properties of the values of f (z) at specific points z near 
to the origin. However this must be a difficult problem. For example, 
such explicit (m, n)-Pad6 approximations for F (1/2,1/2,1; z) and for 
the polylogarithms of order greater than 1 are not known. 

The purpose of the present paper is to give the explicit (n, n - 1)-Pad6 
approximation to the ratio 

for any a,  b, c E C satisfying c @ -No, which is equal to the logarithmic 
derivative of F(a,  b, c ; z )  multiplied by club if ab # 0. It was the sec- 
ond author who first gave t he explicit (n, n - 1)-Pad6 approximation to 
H(a,  b, c ;  z) in the case a + b = c = 1 using the theory of monodromy. 
Especially he treated the case a = b = 112 and c = 1 in order to study 
arithmetical properties of the value H(1/2,1/2,1; l/q) for q E Z\{O), 
since it is related to the ratio E(k)/K(k) where qk2 = 1 and E(k),  K(k) 
are the first and the second kind elliptic integrals respectively [4, 51. If 
ab # 0, then our function H(a,  b, c ; z) satisfies the following non-linear 
differential equation of the first order: 

ab 
z ( l  - z ) H 1 +  -z(1 - z ) H ~ +  (c- ( a +  b +  

C 

Remark. Gauss found the following continued 

1)z)H - c = 0. 

fraction expansion: 

where the coefficients a j  are determined by a ,  b, c and j explicitly. The 
numerator and the denominator of the convergents in this continued frac- 
tion expansion give the explicit ([(n + 1)/2], [n/2])-Pad6 approximation 
to  G(a, b, c ; z). (See [2] for the details.) This expansion was generalized 
by Yu.V. Nesterenko [7] to generalized hypergeometric functions. The 
irrationality measures of the values G(a, b, c ; z) were discussed in [3] for 
small enough x E 0. 

Our theorem can now be stated as follows: 

Theorem. Let a, b, c be any complex parameters satisfying c $ -No. 
We put 

for any 0 5 i ,  j 5 n, n E N and E E {O,l). Then the polynomials 

tisfy the functional relation 

with 

and 
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Therefore (1.1) gives the explicit (n,  n-1)-Pad6 approximation to H(a ,  b, c ;  z )  
since Pn(0) = Qn-1 (0) = 1. The existence of such a relation, without 
explicit expressions of Pn, Qn-l and Cn, was first shown by Riemann 
(See 14, 51). We will show this theorem by a marvelous application of 
the following simple combinatorial fact: 

for all polynomial S(z) E @[z] of degree less than n. More direct ap- 
plications of this method have been made by W. Maier [GI and G.V. 
Chudnovsky [I] in order to obtain Padk-type approximations. 

If ab = 0, then clearly BoYl = 1 and BjYl = 0 for all j E N. Thus 
the case a = 0 in the theorem (replacing b, c by b - 1, c - 1 respec- 
tively) implies the following corollary, giving the explicit (n, n - 1)-Pad6 
approximation to the Gauss hypergeometric function 

Corollary. Let b, c be any complex parameters satisfying c 4 -No. Then 
the non-trivial polynomials 

satisfy the functional relation 

with 

Note that C i  has a finite limit as c --+ 1; so (1.2) is valid also for c = 1. 
The first author is indebted to the Dkpartement de Mathkmatiques 

de l'U.S.T.L. for their kind hospitality in September, 1998. 

2. PRELIMINARIES 
It  may be convenient to introduce Pochhammer's symbol with nega- 

tive suffix 

for any x $ N and p E N. We first show the following simple useful 
lemma concerning generalized Pochhammer's symbol: 

Lemma 1. Let x E @ and p, q E Z. Suppose that x + p 4 N if q < 0, 
x 4 N i f p  + q < 0, and that x 4 -No i f p  > 0. Then we have 

Proof. First consider the case q 2 0 ;  ( X + P ) ~  = ( x + P ) ( x + P + ~ )  (x+  
p + q - 1). If p 2 0, then clearly 

Conversely, if p < 0, then 

(2 + P ) ~  = ( for p + q 2 0, 

for p +  q < 0. 

Next consider the case q < 0 ; ( X + P ) ~  = ( ( x + P + ~ ) ( x + P + ~ + ~ ) .  . . (x+ 

p - 1))-'. If p < 0, then obviously 
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Conversely, if p 2 0, then 

I for p +  q < 0, 

as required. I 

We put B; = Bj,O and Bj = BjYl for brevity. It is not difficult to see 
that Bj and B; are the coefficients of z j  in the series F(a,  b, c ;  I) and 
F (a + 1, b + 1, c + 1; z) respectively. We also notice that the polynomial 
Qn- (z) can be replaced by 

For we have 

since S(x) = (c + n + 1 - x) . . - (c + 2n - 1 - x) is a polynomial in x of 
degree n - 1. 

Let a t ,  be the coefficient of ze in the Taylor expansion of Pn (z) F ( a  + 
l , b + l , c + l ; z )  at  z = 0 ;  namely, 

For arbitrarily fixed i E 10, min(l, n) 1, the variable k varies in the range 
10, l - i] satisfying k = C - i - j 2 l - n. Hence, exchanging j and k, we 
have 

Similarly let P e ,  be the coefficient of z' in the Taylor expansion of 
Qn- 1 (z)F(a, b, c ; z); 

For arbitrarily fixed i E [O,  min(l, n)  1, the variable j varies in the range 
[O ,n - i ]  satisfying j = l - i -  k 5 l - i ;  hence 

Put  ye,n = at,, - Be,, for l E No. We then must show that ~ g , ~  

vanishes for all l E [O,2n). However this is trivial for l E [0, n ] ,  since 
max(0, l - n) = 0 and min(l, n)  = l in (2.1) and (2.2). Thus it remains 
to show that 7eyn = 0 for l E (n, 2n), which will be treated in the next 
section. 

For a while we assume that a,  b $! -No and that c $ N. Let m f N be 
fixed and put l = m + n. It then follows from (2.1) and (2.2) that 

n (m+n-i n-i 

The quantity in the above brace can be transformed into 

by substituting j' = rn + n - i - j in the first sum of the right-hand side; 
therefore 

We can write this in the following manner: 
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where 

m- 1 

A t  = i ! (n  - i)!Ai,, (c + 1)2n-1 C Bj Bk+n-i-j, (a + l)n(b + 1)n .- 
3 -0 
m- 1 

(c + l)2n-1 
(3.2) 

A; = i !(n - i)! Aitn C B; Bm+n-i-j. 
(a + l)n(b + l ) n  j=o 

(We used here the assumption that a ,  b $ -No.) 
We first deal with the quantity A+ when m < n.  Since 

it follows that 

where o n - i+ 1. This expression shows that A: is a rational function 
in o ; so we write A +(o) instead of A f ,  which can be written in the form 
(partial fraction expansion) 

where d l  are constants and S+(o) is a polynomial in o of degree less than 
n. In fact each dkf is the residue of A+(o) at the simple pole o = -k. 
Since (0)rn-j = o(o  + 1) . . (o + m - j - 1) contains the factor o + k if 
and only if 0 5 j < m - k - I, we get 

dk+ = lim (o  + k) A+(o) 
0 4 - k  

Then it follows from Lemma 1 that 

and 

hence we have 
' \  m-k-1 

Similarly the second quantity in (3.2) can be written as 

so we can put 

where dl,  are constants and S-(a) is a polynomial in o of degree less 
than n - 1. Then we have 

- lim (o + k) A-(a) di - ,,+-k 

hence, from Lemma 1, 

Substituting j' = m - k - 1 - j, it is easily seen that d: = d< for all 
k E [0, m) from (3.3) and (3.4). Therefore 

is a polynomial in o, hence in i, of degree less than n. This implies that 
-(,+,,, = 0 for all m E (0, n )  from (3. I ) ,  as required. 

4. CALCULATION OF THE REMAINDER 
TERM 

On the remainder term of our approximation, as is mentioned in Sec- 
tion 1, Riemann determined its form; so it suffices to calculate the value 
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of Cn = ~ 2 ~ , ~  explicitly. However we will show the theorem directly by 
calculating Ye,, for all l >_ 2n. 

We first consider A+(a) for m 2 n. Put m = n + M, M E No for 
brevity. Then it can be seen that 

where 

a;(,'(.) = 

Owing to thc 
we can write 

assumption that c $ N, all poles of A+(o) are simple; so, 

where r:, s: are constants and T f ( o )  is a polynomial in o of degree 
less than n. Since (a),+M-j contains the factor a + k if and only if 
0 5  j L n + M - k - 1 , w e h a v e  

It  then follows from Lemma 1 that 

and 

hence we obtain 

which formally coincides with (3.3) when m = n + M .  

--I - 
< 
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The factor o + c + n - 1 + l appears in the denominator of QT(a) if 
and only if 0 5 j < M - l ;  therefore we get 

s: = lim ( a  + c + n - 1 + e )  A+(a) 
~+-c-n+i-e 

M-e 

- B j  -- (1  + a - c - n - e ) , + ~ - ~ ( l +  b - c - n - t)n+M-j 
e !  

j=o ( 1  - c - n - l),+fvf-j ( M  - j - e)!  

Using Lemma 1 and the identity (1  - x)k(x)-k = (-l)k for any x $ N 
and k E No, 

where Dk is the coefficient of zk in the series F ( 1  +a - c, 1 + b - c, 1 - c ; z )  . 
We next consider 

where 

Then A-(a) is a rational function in a and we can write 

where r;, s; are constants and T - ( a )  is a polynomial in o of degree 
less than n - 1. Since (o),+M-j contains the factor a + k if and only if 
0 5  j < n + M - k - 1 , w e g e t  

r = lim (o + k )  A-(o) 
a+-k 

n+M-k-1 
- -- ( - ' Ik  k ! x ( j  + l ) B j + l  ( a  - k ) n + ~ - j - l ( b  - k ) n + ~ - j - 1  ni(- k )  . 

j=o ( n + M -  j - k -  I ) !  
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It  then follows from Lemma 1 that 

hence we obtain 

which formally coincides with (3.4) when m = n + M. Substituting 
j ' =  n + M - j - k - 1 ,  it i s e a ~ i l ~ s e e n t h a t r :  = r ;  for all k E [O,n+M) 
from (4.2) and (4.5). 

Similarly we calculate SF .  The factor a + c + n - 1 + [ appears in the 
denominator of nJa)  if and only if 0 5 j 5 M - [ - 1; hence 

It  then follows from Lemma 1 that 

where D; is the coefficient of zk in the series F ( 1  + a  - c, 1 + b- c, 2 - c ; I). 
By noticing that a + c + n -  1 + l =  c + 2 n - i + !  and that 

(this is true for c > -n ; hence for c @ -No by analytic continuation), it 
follows from (3.1), (4.1)) (4.3), (4.4) and (4.6) that 

- 
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in particular we have 

as required. Moreover 

with 

where Ec is the coefficient of ze in the series F ( c  - a + n,  c - b + n,  c + 
2n + 1; z), and with 

We thus obtain 

= X(z) F ( c  - a + n, c - b + n,  c + 2n + 1; z), 

where 

Now, using the well-known formula: 

it is easily seen that 
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where 

Put  f (z) = F(a,  b, c ;  z) and g(z) = F(-a,  -b, 1 - c ; z) for brevity. 
Then it follows that 

from which we get 

1 - 22 z ( l  - z) 
$I = f'g + fg' - - 

ab f19'- ab ( f "gt + f 2") . 
We now use the differential equation satisfied by the Gauss hypergeo- 
metric function, stated in Section 1, that is, 

and 

in order to show that $(z) = 0 ; hence $(z) = 1 by $(O) = 1. Therefore 
&(z) is equal to F ( a  + n + 1, b + n + 1, c + 2n + 1; z), as required. 

Finally the assumption that a ,  b $! -No and c $! N can be easily 
removed by limit operation, since each Aijn, BjYf and Cn are continuous 
a t  a ,  b E -No and at c E N. This completes the proof of the theorem. 

5. REMARKS AND OPEN PROBREMS 
It  is easily seen from (1.1) that H(a ,  b, c ; z) is a rational function if 

and only if Cn = 0 for some n E N. Therefore the explicit expression of 
Cn implies that H(a,  b, c ;  z) is a rational function if and only if either 
a E  - N , ~ E  - N , c - a E  -No or c - b ~  -No. 

Using the same method employed in Section 3, we can calculate the 
leading coefficient of the polynomial Pn(z) ; namely, 

Similarly the leading coefficient of Qn-l(z) is 

Finally we propose the following interesting problems: 

Problem 1. Find a continued fraction expansion of H(a,  b, c ; z) analo- 
gous to Gauss' continued fraction expansion to G(a, b, c ; 2). 

Problem 2. Extend our theorem to the generalized hypergeometric 
function 

where p 5 q + 1 and ai E @, bj $! -No. 

The simple combinatorial method employed in this paper will be cer- 
tainly applied to construct Pad6 approximation of the second kind for 
the generalized hypergeometric function and its derivatives. Such ap- 
proximations may have an interesting application to the irrationality 
problem of the ratio 

for q E Z \{O}, where n # rn E N and Ln(z) = xp?l zk/kn is the 
polylogarithm of order n . r 
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Abstract We study C ,sx c,, where c,s are the coefficients of the Rankin- 
n=a(p7') 

Selberg series, p is an odd prime, r is a natural number, and a is also - 
a natural number satisfying (a,p) = 1. For any natural number d, 
we know the asymptotic formula for C,,, %x(n), where x is a primi- 
tive Dirichlet character mod d. This is oLtained by using the VoronoY- 
formula of the Riesz-mean En,, c,x(n)(x - n)2. In particular, in case 
d = p", the fourth power of the Gauss sum appears in that Voronoi- 
formula. We consider the sum over all characters mod pr, then the 
fourth power of the Gauss sum produces the hyper-Kloosterman sum. 
Hence, applying the results of Deligne and Weinstein, we can estimate 
the error term in the asymptotic formula for C ,I, c,. 

n=a(p") 

1991 Mathematics Subject Classification: llF30. 

1. INTRODUCTION 
Let a ,  d be integers, (a,d) = 1, d 2 1. The author [3] studied the 

sum C n<, cn, in the case d = p (p is an odd prime), where h s  are 
nra(d)  

the coefficients of the Rankin-Selberg series and n = a(d) means n a 
mod d. In [3], the author showed the following results. If x2 5 p3, then 
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we have 

and 

by using Deligne's estimate of the hyper-Kloosterman sum, where xo is 
the principal character mod p. Some notations used in (1.1) and (1.2) 
are defined below. And if p3 > x2, we have 

In this paper, we generalize the result of [3] to the case d = pr by 
using Weinstein's estimate and an induction argument. First of all, we 
introduce the Rankin-Selberg series. 

Let f (z) and g(z) be normalized Hecke eigen cusp forms of weight k 
and 1 respectively for SL2 (Z), and denote the Fourier expansion of them 
as 

and 

where a,, bn E R. The Rankin-Selberg series is defined by 

- 
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in R(s) > 1. Here L(s, X )  is the Dirichlet L-function with a Dirichlet 
character X. This Rankin-Selberg series has the Euler product 

where ap and Pp are complex numbers satisfying the following conditions; 

and 

Here bar means the complex conjugate. We find that 

and 

from (1.1). Deligne's estimate of an and bn gives the estimate c, K n'. 
We find En,, lc,l << x easily by using the Cauchy-Schwarz inequality 
and the argument which is in the proof of Lemma 4 in IviOMatsumoto- 
Tanigawa [4]. 

On the sum of c, over arithmetic progressions, we obtain the follow- 
ing theorem. Throughout this paper, E is an arbitrarily small positive 
constant. 

Theorem. Let p be an odd prime, r 2 1 a natural number and a an 
integer with (a,p) = 1. If p3' 2 x2, then we have 
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~f p3' < x2, then we have 

where q5 is the Euler function, xo is the principal character mod p, k a  
is the residue of L ( s )  at s = 1 and 

In particular, the error t e n  can be estimated as 0(x3/5p3'/5) in the case 
r 2 3. Here it is noted that Lf@,(O,x) = 0, if k = 1 and x is not trivial. 

The constant cy is given by 

where the integral runs over a fundamental domain for SL2(Z) in the 
upper half plane. This constant is given by Rankin [7]. 

The author would like to express her gratitude to Professor Shigeki 
Egami for his comment. 

2. THE PROOF OF THEOREM 
We prepare several facts for the proof of Theorem. First, recall the 

following functional equation of L f8g(s, x), which was got by Li (61. Let 

then we have 

where Cx is a constant depending on x with ICxI = 1. When x is a 
non-real primitive character mod p' (p is a prime), Li [6] shows Cx = 

~ ( ~ ) ~ / p ~ '  where W(X) is the Gauss sum. There is no real primitive 
character mod pr when p is an odd prime and r > 2. These facts yield 
the following lemma which is analogous to Lemma 2 of the author's 
article [3]. Deligne's estimate of the hyper-Kloosterman sum is the key 
of the proof of Lemma 2 in [3]. In order to prove the following lemma 
we need Weinstein's result [8] for the hyper-Kloosterman sum. 

Lemma. Let p be an odd prime, r 2 1 a natural number and b a 
constant with (b, p) = 1. Then we have 

where C1 means the sum over the primitive characters. 

Proof of Lemma. The proof is complete in [3] when r = 1. We prove 
this Lemma when r >_ 2. First, we consider the case r 2 3. Let b-l be 
the integer satisfying bb-' = 1 mod pT. 

where C[b1 means the sum for yl, y2, 313 and y4 running over 1 < yi 5 pr 

(1 5 i 5 4) satisfying n f = l  pi I b mod p' and (yi,p) = 1. And b' is an 
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integer satisfying b = b' mod pr-'. By using Weinstein's estimate [8] we 
find 

Secondly, we consider the case r = 2. We divide 

and the first term can be treated as above. There is a little difference 
in the treatment of the second term, but it is estimated by Lemma 2 of 
[3]. Hence we obtain 

in this case. 

The above lemma is the key for getting the following estimate. 

Proposition. Let p be an odd prime, r > 1 a natural number and a an 
integer coprime to p. ~f p3' > x2, then we have 

If p3' 1 x2, then we have 

where 4 is the Euler function and C' means the sum over primitive 
characters. Here if k = 1 and x is not trivial, then LfBg(O, X) = 0. 

The basic structure of the proof of Proposition is same as the argument 
which is used in the proof of Proposition 1 of the author [3]. (This 
method is used in Golubeva-Fomenko [I] and the author [3], and the 
idea goes back to the works of Landau [5] and Walfisz [9].) Therefore 
we just give a sketch of the proof of Proposition in this paper. 
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Proof of Proposition. We use Lemma and Hafner's results [2] on VoronoY - - 
formulas. We apply his results to Dp (x) = r ( p  + I)-' %x(n) (x - 
n)p, where x is a primitive character mod d. Then we have 

and 

Here, the integral paths C and Ca,b conform to Hafner's notation. Let 
R be a real number satisfying R > (k + 1)/2 - 1. The path C is the 
rectangle with vertices b f i R and 1 - b f i R and has positive orientation. 
The path Ca,b is the oriented polygonal path with vertices a-ioo, a-iR, 
b-iR, b+iR, a + i R  and a+ioo. In our case, a = 0 and b > (k+E)/2-1 
(see Hafner [2]). F'rom the definition, we see that & D,(X) = Dp-1 (x) 
and there are the analogous relations for Qp(x) and fp(x). Hafner [2] 
showed the asymptotic expansion of fp(x) for x 2 1. (Actually Hafner 
stated that it holds for x > 0, but this is a slip.) 

We start explaining the sketch of the proof of Proposition. The 
Voronoi formula (2.2) with p = 2 implies 

The left-hand side of (2.3) is equal to 

Let T be a real number satisfying xE < 7 5 x, and we define the operator 
AT as 
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where h ( x )  is a function. We consider the operation of A, to (2.3) and 
(2.4). Then we get the following result. 

n - i ( p r )  
- 

n r a  (p') 

= p J J U T  ( c + c % dwdv 
x v n<x x<n<w 

n-a  (p') n -a  (p') 

) 

n s x  
n=a (p') 

In the same way, we have 

From the definition of Q p ( x ) ,  we get 

If k = 1 and x is a non-trivial character, from the functional equation 
(2.1) and the Euler product of L f e g ( s , x )  we find that L f e g ( O , x )  = 0.  
We estimate the remaining part 

by using Lemma. And we have to study A,(f2(16rr4xn/p4')) which is a 
part of (2.9). The relation & f p ( x )  = fp-1(x) implies 

1 6 ~ 4 ~ ~  
A, ( f 2  (9)) = r2 ( F ) ~  lxiT lviT fo (--p--) dwdv. 

Using the mean value theorem, we find that there is a < in [ x ,  x + 271 
satisfying 

We estimate the sum over n > x 3 ~ - 4 p 4 r  in (2.9) by using Hafner's 
estimate of f2 ( x )  . Then this part is estimated as 0(r  1/2x3/2p3r/2$(pr)). 
The estimate of the sum over p4'/167r4 < n 5 x 3 ~ - 4 p 4 r  is obtained by 
using (2.10) and Hafner's estimate of f o ( x ) .  In fact, we can estimate it 
as The reason of the restriction p4r/16a4 < n is 
that  Hafner's estimate of f p ( x )  can not use in x < 1. The estimate of the 
remaining part sum over p4'/16?r4 2 n can be got by using (2.10) and 
moving the integral path of fo appropriately, similarly to the argument in 
[3]. We are able to estimate this part of (2.9) as o ( T ~ ~ - ~ ~ ~ ' / ~ + ~ ~  d)(pT)>. 

Collecting the above results, we obtain 

We put T = x3/5p3'/5, then we complete the proof of the latter half of 
Proposition. The first half is proved easily by using En,, 1% 1 << x .  

- 

The claim of Proposition, (1.1) and (1.2) give the proof of Theorem 
by using induction. 
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Abstract We study the pure periodicity of P-expansions where P is a Pisot number 
satisfing the following two conditions: the P-expansion of 1 is equal to 
k1 k:! . . . kd-11, k, 2 0, and the minimal polynomial of P is given by 
xd - klxd-l - . .  - kddlx - 1. From the substitution associated with 
the Pisot number p ,  a domain with a fractal boundary, called atomic 
surface, is constructed. The essential point of the proof is to define a 
natural extension of the P-transformation on a d-dimensional product 
space which consists of the unit interval and the atomic surface. 

1991 Mathematics Subject Classification: 34C35; Secondary 58F22. 

0. INTRODUCTION 
Let be a real number and let Tp be the p-transformation on the unit 

interval [ O , 1 )  : Tp : x -+ f i  (mod I).  Then any real number x E [O,1) is 
represented by dp(x) = (di)itl where di = LPT;-'(X)]. Here denote by 
Ly] the integer part of a number y. This representation of real numbers 
with a base p is called the @-expansion, which was introduced by R6nyi 
[9]. Parry [7] characterized the set {dp(x) lx E [O, 1)). 

A real number x E [O, 1) is said to have an eventually periodic P- 
expansion if dp(x) is of the form uv*, where v" will be denoted the 
sequence vvv.. .. In particular, when dp(x) is of the form v", x is said 
to have a purely periodic P-expansion. 

For x = 1, we can also define the P-expansion of 1 in the same way: 
dp(1) = dldz . . ., di = [PT;-' (I)]. However the region of the definition 
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of To is the right open interval [O, 1) which doesn't contain the element 
1 unless we write Tp(1) in this paper. 

Bertrand [3] and K. Schmidt [Il l  studied eventually periodic P- 
expansions. A Pisot number is an algebraic integer (> 1) whose con- 
jugates other than itself have modulus less than one. Let Q(P) be the 
smallest extension field of rational numbers Q containing P. 

T h e o r e m  0.1 (Ber t rand ,  K. Schmidt).  Let P be a Pisot number and 
let x be a real number of [0, 1).  Then x has an eventually P-expansion if 
and only if x E Q(P). 

In [I], Akiyama investigated sufficient condition of pure periodicity 
where /3 belongs to a certain class of Pisot numbers. Authors [6] charac- 
terized numbers having purely periodic P-expansions where P is a Pisot 
number satisfying the polynomial Irr(P) = x3 - klx2 - kzx - 1,O 5 
k2 < k1 # 0. In [lo], one of the authors gives necessary and sufficient 
condition of pure periodicity where P is a Pisot number whose minimal 
polynomial is given by 

And the main tool of thc: proof is il domain X with a fractal boundary. 
Many propertics of this dorr~ain X from [2] are quoted in [lo]. In this pa- 
per, instead of using t h ~ :  propc:rtics we define the domain X in another 
way, called atornic s i~rf im,  using a graph associated with a substitution. 
Moreover, let /3 hr:long to a larger class of Pisot numbers. Hereafter, P 
is a Pisot nurnbcr whosc rr~inirrial polynomial is 

From (2) we can sct! k1 = 1/31 2 1 and 0 5 ki 5 kl for any 2 5 i 5 d-  1. 
Then we have the following result: 

T h e o r e m  0.2 (Main Theorem) .  Let x be a real number in Q(P)  f l  

[O, I ) .  Then x has a purely periodic P-expansion if and only if x is 
reduced. 

We define "reduced" in section 3. For our goal we introduce a d- 
dimensional domain 9 from the domain X and define a natural extension 
of Tp on 9. The main line of the proof is almost same as the way in 
[lo]. In this paper, we would like to make a point of constructing the 
domain X. 

1. ATOMIC SURFACES 
Let A be an alphabet of d letters {1,2, . . . , d). The free monoid on A, 

that is to say, the set of finite words on A, is denoted by A* = Uzo An. 
A substitution a is a map from A to A*, such that, a(i)  is a non-empty 
word for any i. The substitution a extends in a natural way to an 
endomorphism on A* by the rule a(UV) = a(U)a(V)  for U, V E A*. 

For any i E A we note a( i )  = w(') = w~ ' )w~ ' ) .  . . w:), w:) E A. 

We also write a ( i )  = w(') = P:)W:)S$) where P:) = (') (2) Wl . . .  Wn-l is 

the prefix of the length n - 1 of the letter w:) (this is an empty word 
for n = 1) and s:) = W;i1 . . . w:) is the suffix of the length li - n of 

the letter w:) (this is an empty word for n = li). 
There is a natural homomorphism (abelianization) f : A* + zd given 

by f (2) = ei for any i E A where {el, . . . , ed) is the canonical basis of 
IRd. For any finite word W E A*, f (W) = t (x l , .  . . , x d )  Here indicates 
the transpose. We know that each Xi means the number of occurrences 
of the letter i in W. Then there exists a unique linear transformation 
'a satisfying the following commutative diagram: 

It is easily checked that the matrix 'a is given by Oo = (f ( ~ ( 1 ) )  , . . . , f ( ~ ( d ) ) )  . 
Hence each which means the (i, j ) th  entry of the matrix 'a, rep- 
resents the number of occurrences of the letter i in a ( j ) .  

Let a be the substitution 

Then the matrix 'a is 

We see that the characteristic polynomial of 'a is I r r (P) .  The eigenvec- 
tor corresponding to the eigenvalue P of 'a and the eigenvector corre- 
sponding to P of the transpose of 'a are denoted by (a l ,  . . . , ad )  and 
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t (71, . . . , yd). Since the matrix ' a  is primitive, the Perron-Frobenius 
theory shows both eigenvectors are positive. A nonnegative matrix A is 
primitive if AN > 0 for some N > 1. We put a1 = yl = 1. The elements 
ai and Ti are given by 

Let P be the contractive invariant plane of 'a, that is, 

where ( , ) indicates the standard inner product. Let ?r : IRd -+ P be the 
projection along the eigenvector ( a l ,  . . . , ad) .  

Let us define the graph G with vertex set V(G) = {I, 2 , .  . . , d} and 

edge set E(G). There is one edge ( : ) from the vertex i to the vertex 

j if ~ f )  = i. Otherwise, there is no edge. This graph was introduced 
by Sh. Ito and Ei in [5 ] .  

Let XG be the edge shift, that is, 

Here each edge e E E(G) starts at a vertex denoted by I(e) E V(G) and 
terminates a t  a vertex T(e)  E V(G) . 

On the plane P we can define the sets Xi (1 5 i 5 d) and X using 
the edge shift XG as follows: 

The set X is called the atomic surface associated with the substitution 
a. (See Figure 1 in case kl = k2 = 1.) 

We see that X is bounded since the set 

{f ( f )  I (: ) E m }  

is a finite set and ' a  is a contractive map on the plane P. Moreover, 

( )ra E Xc and I ( : ) = 1 show that the origin point 0 is in XI .  

Figure 1 The atomic surface (kl = kz = 1). 

Proposition 1.1. The sets Xi (1 5 i 5 d) are closed. 

Proof. We take a sequence {xl}El satisfing xl E Xi and xl -+ x (1 -+ ca) 
for some x. For each I,  we can put 

00 

for some ( ti! ) E XG. 
n= 1 ncN 

Since the edge set E(G) is finite, there exists ( 2 ) E E(G) such that 

j l ( l> ( ) = ( , ,,, ) for infinitely many 1. Thus we take the subsequence 

{xl, satisfying ( $ ) = ( ) Similarly, we choose for all 

n ( 2 ) E E(G) and the subsequence { x ~ ~ } ~ ~  such that (2) = 

( ) . ~f we put 

then 21, -t x' ( s  + oo). Therefore xl + x' (1 + oo). Hence we see 
x = X' E Xi. This implies that the sets Xi are closed. 0 

Moreover, the set X has the following property: 
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where f is the lattice given by f = ~ f = ~  nis(el - ei) I ni E Z}. See { 
the details in [4]. F'rom the Baire-Hausdorff theory) we see that the set 
X has a t  least one inner point. Then 1x1 is positive, where we note I K I 
the measure of a set K. In [4], it is implied that X is the closure of the 
interior of X. 

Proposition 1.2. For any 1 5 i 5 d,  the following set equations hold: 

Proof. The definitions of Xi imply that 

O 0 - l ~ ~  

substituting ( ) for ( :: ) and ( j n l  ) for ( ) for all n 2 2, 
kn-1 

w f ) = i , ~ ( L : ) = ~ ,  and ( t )  
n€N 

We can get the set equations above. 

Applying Oo to the equation (4), from the form of the substitution a 
in the equation (3)) we have 

In order to  know Xi are disjoint each other up to a set of measure 0, we 
would prepare lemmas. The next result can be found in [2], originally 
in [8]. 

Lemma 1.3. Let M be a primitive matrix with a maximal eigenvalue 
A. Suppose that v is a positive vector such that M v  2 Xv. Then the 
inequality is an equality and v is the eigenvector with respect to A. 

Lemma 1.4. The vector of volumes satisfies the following 
inequality: 

Oa ( I " ' )  > 3  (y. 
lXdl lXd l 

Proof. F'rom the form of Xi in the equation (4), we see 

Since the determinant of Oo-' restricted to P is 0, we know that Ioo-'xi 1 
= [Xi 1. Hence we arrive a t  the conclusion. 0 

Two lemmas above imply the following result. 

Corollary 1.5. The sets Xi (1 5 i 5 d )  are disjoint up to a set of 
measure 0. Therefore the atomic surface has the partition (5). 

Proof. Lemmas 1.3 and 1.4 show that the vector of volumes ' (IXi 1 )  l<i<d - - 

is the eigenvector corresponding to of Oo. Since the inequality become 
the equality in Lemma 1.4, for each i and j with w;) = i the sets 

(xj - 'a-lrr f ( ~ f ) ) )  are disjoint up to a set of measure 0. 
(j In the case ki 2 1, we take i = k = 1 and it is implied that f ( P k  ) = 0 

for all j. So that Xj are disjoint up to a set of measure 0. Applying 
'a, we know the atomic surface has the partition (5) whose elements are 
disjoint each other up to a set of measure 0. 

In case ki = 0 for some i ,  for all j there exists N such that oN (j) = lvj 
for some vj E A*. Then the disjointness is proved in the same way. 0 
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2. NATURAL EXTENSIONS 
Sections 2 and 3 base on the paper [lo] .  Therefore we would like to 

give an outline of the way to our main theorem. For the details, see [lo]. 
Let 

p = p( l ) ,p (2 ) ,  . . . , p ( r1 )  

be the real Galois conjugates and 

be the complex Galois conjugates of P ,  where rl  + 2r2 = n and ij is the 
complex conjugate of a complex number v. The corresponding conju- 
gates of x E Q(P)  are also denoted by 

Let C Rd ( 1  $ i _< d )  be the domains 

and let 2 = u:=, x. Here w = l /  (a1 yl + . . - + adyd) ( E  Q@)) and 
t 

n 

a = (a l ,  . . . , ad). Let To be the transformation on 2 given by 

Then we have the following result. Therefore $ is the natural extension 
of the transformation Tp. 

h 

Proposition 2.1. Tp is surjective and injective except the boundary on 
2. 

We put 

where $2 indicates the real part and 3 indicates the imaginary part. Let 
us define the domains P and (1  _< i _< d )  as follows: 

Because of the change of bases, we can write as domains in W x IRd-l. 
And naturally, we can define the transformation on P as follows: 

h so := Q-' 0 8 0 Q. 

Then & is also the natural extension of Tp. Here we put 

where A @ B is a matrix of a form: 

Then we have the following result. 

Proposition 2.2. The transformation q on P is given by 

and surjective. 

3. MAIN THEOREM 
In this section, we would like to introduce the definition of "reduced" 

and give a survey of the proof of our main theorem. You can see the 
complete proof in [lo].  

- Let ? ( C  R x I td- ' )  be the product space: ? := [O,w) x Rd-'. Let 
Sp be the transformation on ? defined by 

h 

Then the restriction of & on ? ( C  7 )  is So. 
Define a map p :  Q ( P )  -t R x Rd-' by 

h 

Y := Q - ' ( Z )  and := Q-'(Z). Definition 3.1. A real number s E Q(P) n [O, 1 )  is reduced if p(wx) E 9. 
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We easily get the next result from the definitions of &, p, and Tg. 

Lemma 3.1. Let x E Q(P) n [O,l). Then 

Lemma 3.2. Let x E Q(P) n [0, 1) be reduced. Then 

1. Tp(x) is reduced, 

2. there exists x* such that x* is reduced and Tp(x*) = x. 

Proof. Since x E Q(P) n [O, 1) is reduced, p(wx) E 9. 
1. From Lemma 3.1, $ ( ~ ( w x ) )  = p (w . Tp(x)) E 9. Hence Tp(x) is 
reduced. 
2. From Proposition 2.2, is surjective on 9. Thus there exist 

h 

( w x * , ~ )  E such that Sp (wx*,x) = p(wx). Hence Tp(x*) = x. And 
we can show that (wx*, x )  = p (wx*). Then p (wx*) E 9 implies x* is 
reduced. 0 

By the lemmas above, we can get sufficient condition of pure period- 
icity of P-expansions. 

Proposition 3.3. Let x E Q(P) n [O, 1) be reduced. Then x has a purely 
periodic P-expansion. 

Proof. Lemma 3.2 2 shows that there exist xf (i  2 0) such that xf are 
h 

reduced and Tp(xf) = where we set x; = x. As Y is bounded, 
we can see the set { x , * ) ~ ~  is a finite set. Hence there exist j and k 
( j  > k) such that x; = x;-& Hence T/(x) = x. Therefore x has a 
purely periodic P-expansion. 0 

Proposition 3.4. Let x E Q(P) n [O,l). Then there exists Nl > 0 such 
that TFX are reduced for any N > Nl . 

--k 
Proof. Simple computations show that Sp (p(wx) ) exponentially comes 

near P as k -+ GO. Since there exist the finite number of p w T/(x)) 
-- N1 

( 
in a certain bounded domain, Sp ( ~ ( w x ) )  = p (w . T/IN'(x)) E P for 

sufficiently large Nl.  Then T? (x) is reduced. From Lemma 3.2 1, we 

see that T ~ ( X )  are reduced for any N > Nl .  0 

Theorem 3.5. Let x E [0, 1). Then 

1. x E Q(P) if and only if x has an eventually periodic P-expansion, 

2. x E Q(P) is reduced if and only if x has a purely periodic P- 
expansion. 

Proof. 1. Assume that x E Q(P). By Proposition 3.4, there exists 
N > 0 such that T;(x) is reduced. Proposition 3.3 says that T;(x) 
has a purely periodic P-expansion. Hence x has an eventually periodic 
P-expansion. The opposite side is trivial. 
2. Necessity is obtained by Proposition 3.3. Conversely, assume that x 
has a purely periodic P-expansion. From 1, we know x E Q(P). Accord- 
ing to  Proposition 3.4, there exists N > 0 such that T;(X) is reduced. 
The pure periodicity of x implies that there exists j > 0 such that 
T:' J (x) = x. Lemma 3.2 1 says that x is reduced. 
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I. THE DISTRIBUTION OF PRIME NUMBERS 
In analytic number theory, one of important topics is the distribution 

of prime numbers. We often study the function 

In 1859, Riemann connected ~ ( x )  with the zeros of complex function 
c(s). He put forward his famous hypothesis that all non-trivial zeros of 
<(s) lie on the straight line Re(s) = 4. Along the direction pointed out 
by Riemann, Hadamard and Vall6e Poussin proved the famous prime 
number theorem in 1896. It  states that if x + oo, then 

By this theorem, it is easy to prove the Bertrand Conjecture that in 
every interval (x, 2x), there is a prime. 

Assuming the Riemann Hypothesis (RH), we get 

Then we can prove that in the short interval (x, x + xi+'), there is a 

primes. prime. In fact, there are approximately 
195 

C. Jia and K. Matsumoto (eds.), Analytic Number Theory, 195-203. 



196 ANALYTIC NUMBER THEORY 

If RH is not assumed, then we have to consider the weaker problem 
that there is a prime in the short interval (x, x + y), where y > xi+'. 
Some famous mathematicians such as Montgomery, Huxley, Iwaniec, 
Heath-Brown made great contribution to this topic. The best result is 
due to Baker and Harman. They [3] proved that there is a prime in the 
short interval (x, x + x0.535). 

We also study the topic of probabilistic type. In 1943, assuming RH, 
Selberg [21] showed that, for almost all x, the short interval (x ,x  + 
f (x) log2 x) contains a prime providing f (x) -+ oo as x -+ oo. Here 
'almost all' means that for 1 5 x 5 X, the measure of the exceptional set 
of x is o ( X ) .  At the same time, Selberg [21] also proved an unconditional 

19 
result. He showed that, for almost all x, (x, X+XE+') contains a prime. 

In 1990's, it was active on this topic. Jia, Li and Watt obtained some 
results. The last result is that for almost all x, (x, x + xh+') contains a 
prime. One could see [16]. 

There is a difficult conjecture that there is a prime between two con- 
tinuous squares. I t  can be expressed as that there is a prime in the short 
interval (x, x + x i ) .  But one can not prove it even on RH. Therefore we 
have to find the other way to study the existence of prime in the short 
intervals (x, x + x f ) and (x, x + xi+'). 

11. THE LARGEST PRIME FACTOR OF INTEGERS IN 
THE SHORT INTERVAL (z, x + xi) 

Firstly we decompose all integers in the interval (x, x + x i ) .  Among 
all prime factors, there is the largest one which is denoted as P(x) .  We 
have an identity 

where 

Let 

Taking logarithm in both sides of the equation (2), we have 
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where A(d) is the Mangoldt function. 
T f  

is proved, then 
P (x )  > xa. 

we employ the Fourier expansion 

t o  get the trigonometric sum 

where ((x)) = {x) - and e(x) = e2"ix. 
Using Vaughan's identity, we get two kinds of trigonometric sum. One 

is 

C ~ a ( m ) ~ b ( n ) e ( E ) ,  
O<lhl<H m n 

where a(m) is the complex number satisfying a(m) = 0(1) ,  so does b(n). 
The other is 

C ~ a ( m ) ~ e ( & ) .  
O<lhl<H m n 

The first sum is called the sum of type I1 and the second one is called 
the sum of type I. The original idea in Vaughan's identity came from 
Vinogradov. Vaughan made it clear and easy to use. 
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In the second sum 
C N(P) logp, 

we apply the sieve method. The error term in the sieve method can be 
transformed into the sum of type I or 11. 

One of the main tools which we use to estimate trigonometric sum is 
Weyl's inequality 

where Q 5 N. Weyl's inequality is a generalization of Cauchy's inequal- 
ity. 

The other is the reverse formula 

where 1 f "(x) 1 - k, 1 f "'(x) 1 &, f l (nv)  = v, [a, P] is the image of 
[a, b] under the transformation y = f '(x) and llxll denotes the nearest 
distance from x to integers. One can refer to [15]. 

The reverse formula is based on Poisson's summation. A suitable 
combination of Weyl's inequality and reverse formula yields good es- 
timate for trigonometric sum. On the new estimate for trigonometric 
sum, Theorem of Fouvry and Iwaniec [8] plays an important role, which 
transforms the trigonometric sum into suitable integral. 

Ramachandra [20] proved that P(x)  > 1.9, where p = g. Graham [9] 
got p = 0.662. He used the sieve method and the Fourier expansion. 
As the development of the estimate for trigonometric sum and the sieve 
method, some new exponents have appeared. There are exponents of 
Jia I141 ( p  = 0.69), Baker [I] ( p  = 0.70), Jia [15] ( p  = 0.728), Baker 
and Harman [2] ( p  = 0.732), Liu and Wu [I91 ( p  = 0.738). 

If we can get p = 1, then we can prove that there is a prime in 
the short interval (x, x + x i ) .  But the present results are far from the 
optimal one. The main reason is that on this topic, we can not use 
Perron's formula and the mean value estimate for Dirichlet polynomials. 

- 
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111. THE LARGEST PRIME FACTOR OF INTEGERS L 

IN THE SHORT INTERVAL (x,  x + xi+') 

Similarly as in the topic 11, we define Q(x) as the largest prime factor 
of integers in the short interval (x, x + xi+'). I t  is obvious that Q(x) 2 
P(x> .  

The first result on this topic is due to Jutila. He [18] proved that 
Q(z)  2 x"', where 29 = i. Bolog [4] improved it to 29 = 0.772. Balog, 
Harman and Pintz [5] obtained 29 = 0.82. They also used the basic frame 
in the topic 11. But now they could use the Perron's formula 

to  transform sums into integrals. Then they applied some mean value 
formulas to deal with these integrals. 

Let 

We have a formula similar to (3). In the first sum 

Vaughan's identity, Perron's formula, mean value formulas 

and 

are used. 
In the second sum 

the sieve method is applied. The error term in the sieve method can be 
dealt with by the estimate of Deshouillers and Iwaniec [6] 
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This estimate which is based on the theory of modular forms is better 
than the classical one (5). 

In 1996, Heath-Brown made a great progress on this topic. He [12] 
got 19 = $. Heath-Brown had an innovation on the basic frame. He 
considered the sum of the form 

where * means some conditions on pl,  p2 and p3, one considers the sum 

and uses the relationship 

where pTV P, pl PE, .-• , ps - PE.  
If one can prove > 0, then there is a prime factor p - P. Hence, 

the largest prime factor Q(x) > P. In the previous papers, the sum 
to get the expression 

Then in the different ranges of d and 1, one can apply different mean 
value formulas. 

In the joint work of Heath-Brown and Jia [13] in 1998, we got 6' = 
g .  In this paper, we used Heath-Brown's innovation but applied the 
traditional sieve method. Harman's method was employed (see [lo]). 
The major feature of Harman's method is that one can get an asymptotic 

is considered, where p 5 xa and 1 is an integer. In Heath-Brown's device, 
the prime factors pl ,  . . , ps are more flexible than I. 

Heath-Brown introduced some new ideas on the sieve method. His 
ideas can be traced back to Linnik's identity. Let 

formula for the sum 

We have where r is a small positive constant, while usually one can only take 
T = E .  Harman's method works in some topics since there is the estimate 
for the sum of type 11. By Harman's method, in the sum (9), we only 
decompose one of pl ,  p2, p3 and keep the others unchanged. In this 
way, one can use the mean value estimate 

The estimate (10) is due to Deshouillers and Iwaniec [7], which de- 
pcnds on their work for the application of the theory of modular forms. 
It is difficult to apply formula (10) in Heath-Brown's original work [12]. 

Moreover, we used computer to deal with the complicated relationship 
among the sieve functions. By the help of computer, we can get good 
estimate for Buchstab's function w(u) which is defined as 

Comparing the equations (7) 
sieve method. 

and (8), we can get some identities on the 

Now I give a quite rough explanation on the application of the above 
identity. For the sum 
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We have 
0.5607 5 w(u) 5 0.5644, u 2 3, 
0.5612 5 w(u) 5 0.5617, u 2 4. 

One could refer to [16]. Before we only had Jingrun Chen's result that 
w(u) 5 0.5673 for u 2 2. 

Recently Jia and M.-C. Liu (171 got a new exponent 29 = $. In this 
paper, we employed Harman's new idea on the sieve method (see [Ill). 
In some sums of the form 

Harman applied the sieve method to the variable p, which is similar to 
Jingrun Chen's dual principle. In the sum pl + p2, Chen applied the 
sieve method to pl ,  then to p2. We used the work of Deshouillers and 
Iwaniec (71 again in more delicate way and made complicated calculation 
in the sieve method. Then we got the new exponent 29 = $. 
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Abstract In this paper we shall consider the general divisor problem which arises 
by raising the generating zeta-fuction Z(s) to the k-th power, where the 
zeta-functions in question are the most general E. Landau's type ones 
that  satisfy the functional equations with multiple gamma factors. 

Instead of simply applying Landau's colossal theorem to Z k  (s) ,  we 
start from the functional equation satisfied by Z(s) and raise it  to the 
k-th power. This, together with the strong mean value theorem of 
H. L. Montgomery and R. Vaughan, and K.  Ramachandra's reasonings, 
enables us to improve earlier results of Landau and K. Chandrasekharan 
and R. Narasimhan in some range of intervening parameters. 

2000 Mathematics Subject Classification: 1 lN37, 1 lM4l.  

1. INTRODUCTION 
In order to treat a general divisor problem for quadratic forms (first 

investigated by the second author [12]) in a more general setting, we 
shall work with well-known E. Landau's framework of Dirichlet series 
satisfying the functional equation with multiple gamma factors where 
the number of gamma factors may not necessarily be the same on both 
sides [6], [13]. 

The main feature is that we raise the generating Dirichlet series Z ( s )  
to the k-th power while both Landau [6] and Chandrasekharan and 
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Narasimhan [2] simply apply their theory of functional equation to Zk(s)  
and that we incorporate the mean value theorem in the estimation of the 
resulting integral, providing herewith some improvements over the re- 
sults of Landau [6]and Chandrasekharan and Narasimhan [I] in certain 
ranges of intervening parameters. The main ingredient underlying the 
second feature is similar to K. Chandrasekharan and R. Narasimhan's 
approach; but in [2] they appeal to their famous approximate functional 
equation whereas in this paper we use a substitute for it (Lemma 3.3), 
following the idea of K.  Ramachandra [8]-[ll], we avoid the use of it 
thus giving a more direct approach to the general divisor problem. 

To state main results, we shall fix the setting in which we work and 
some notation. 

1. Let {an} and {bn} be two sequences of complex numbers satisfying 

are gamma factors and where the real parameters ai, Pi, 1 5 i 5 p, 
yj, Sj, 1 5 j 5 v are subject to the conditions 

5. Let 

and suppose that q satisfies 

1 
q > l a n d q > a + - .  2 

Also put for every E > 0, where a 2 0 is a fixed real number. 

2. Form the Dirichlet series (s = a + it) 

6. For any fixed integer k > 2, we define ak(n) by . - 

Z(s) = 5 and ~ ( s )  = 5 
n= 1 

ns n=l nS 

which are absolutely convergent for a > a + 1 by Condition 1. 

3. We suppose that Z(s) can be continued to a meromorphic function 
in any finite strip a1 < a 5 0 2  such that 0 2  2 a + 1 with only real 
poles, and satisfies the convexity condition there: 

so that by (1.2) 

Now we are in a position to state the main results of the paper. 

Theorem 1. We write 
for some constant y = y(a l ,  a2) > 0. 

4. For a < 0 suppose Z(s) satisfies the functional equation 

where Mk (x) is the sum of residues of the function 5 Zk (s) at a11 positive 

real poles of Zk(S) in the strip 0 < a 5 a + 1. 
Then for every E > 0, we have 

where A1, A2, A3 are positive numbers and 

A(s) = n r ( a i  + a s )  and 

where X1 is as in (3.3). 
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where we let 
co = cO(&) = + 1 +E. 

Theorem 2. In addition to the conditions in Theorem 1 suppose also 
that for s o  = a 0  + i t  (with fixed a 0  satisfying 112 < a 0  5 a + I ) ,  

This follows from the approximate formula for the discontinuous in- 
tegral (see Davenport [3]): 

that for some fixed integer j 2 2 we have for every E > 0 Let 

where qo = qo(j, a )  is a positive constant depending on j and a ,  and 
that j X o  < qo. Then we have 

Then for x > 0 and c > 0, we have 

Acknowledgment. It gives us a great pleasure to thank Professor 
Yoshio Tanigawa for scrutinizing our paper thoroughly which resulted 
in this improved version. The authors would also like to thank the referee 
whose comments helped us to improve the presentation of the paper. 

3. SOME LEMMAS AND A MEAN VALUE 
THEOREM 

Lemma 3.1. .Let Q = Q(E) = a + 1 + e as in (2.4). Then we have 

( v + ~ H ) ( c o - u )  

Z(a  + i t)  << (tl 2. NOTATION AND PRELIMINARIES 
We use complex variables s = a + it,  w = u + iv. E always denotes 

a small positive constant and ~ 1 ,  ~ 2 ,  . . . denote small positive constants 
which may depend on e. cl, cz, . . . denote positive absolute constants. 

The Stirling formula [15] states that in any fixed strip a1 5 a < 0 2  as 
(tl -+ oo we have 

uniformly in -E 5 a < CO. In particular, we have 

z (; + it) << 1tlA1, 

where 

We also have If we write (1.4) as 

Z(s) = x ( s ) ~ ( a  + 1 - s),  (2.1) 

then by Stirling's formula above, 
uniformly in !j 5 o 5 co. 

Proof. Since 
Z(co - i t)  < 1, 

where the symbol f = g means that f > 9 and f f g ( f  being 
Vinogradov's symbolism). 

We make use of the standard truncated Perron formula, which states 
that for 0 < T 5 x, 

it follows from (2.1) and (2.2) that 

z(-E + it) << l t l ~ + ~ ~ .  (3.5) 

In view of (1.3), the Phragmkn-Lindelof principle (see e.g. [15]) applies 
to  infer that the exponent of t is a linear function p ( a )  connecting the 
points ( - E ,  q + EH) and (q, 0), or 
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Lemma 3.2 (Hilbert's inequality A la Montgomery et Vaughan 
[7]). If {hn}  is an infinite sequence of complex numbers such that C:=l nlhnI2 
is convergent, then 

where cl 5 H1 5 T .  

Lemma 3.3 (Substitute for an approximate functional equa- 
tion). For T 5 t _< 2T and a positive parameter Y > l we have the 
approximation 

z (1 + i t )  

Proof. By the Mellin transform we have, after truncation using Stirling's 
formula, 

where 

Now, we move the line of integration of I to u = -4 -2e, encountering 
the pole of the integrand at w = 0 with residue z($ + i t ) ,  and estimate 

A general divisor problem in  Landau's framework 21 1 

the horizontal integrals by Stirling's formula and (3.1) to get 

where 

To transform I' we substitute the functional equation (2.1) for z(; + 
it + w )  thereby dividing the sum 

into two parts I; (n 5 Y )  and I; (n > Y ) :  I' = I; + I;. 
In I; we move the line of integration back to u = -E committing an 

error of order 0 ( ~ ~ 5 e - ~ 6 ( ~ ~ g ~ ) ~ ) .  
Thus 

I' being the sum of I; and I;, we substitute (3.7) into (3.6) to conclude 
the assert ion. 0 

Theorem 3. For T 2 To, where To denotes a large positive constant, 
we have for every E > 0 

In particular, we have 

(i + i t )  l 2  d t  <( TvliE. 

I Z  (1 + i t )  l2  <( ~ v l - l + ~ .  

Proof. Choosing Y = T in Lemma 3.3, we see that it suffices to compute 
the mean square of the first three terms S, I; and I;, say ( I ;  is not 
quite the same, but the namings are to be suggestive of their origins in 
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Lemma 3.3), the error term being negligible. In doing so, we shall make 
good use of Hilbert's inequality, Lemma 3.2. 

By the Cauchy-Schwarz inequality, we infer that 

Similarly, we have 

Dividing the sum on the right into two parts n 5 T and n > T and 
2n 

substituting the approximation e -T  = 1 + 0(%) in the former and 
2n 

e -T  = o ( ( : ) ~ ~ + ~ )  in the latter, we conclude that 

so that by (2.2) 

Since 
2T By Lemma 3.2, the inner integral ST is 

l~ (I + it) 12dt = /T27 + l i i 2  + 1 1 ; ~ )  dt, 

the assertion follows from (3.9)-(3.11). 0 

Lemma 3.4. For the quantities ql and X1 defined by (1.9) and (3.3)) 
respectively, we have 

2X1 L q1 + 2 q .  

Proof. We distinguish two cases 

by (1.1). 
Thus, substituting this, we conclude that 

(ii) a + 1 5 q. 
To estimate the mean square of I; and S, we apply Lemma 3.2. 
Direct use of the estimate (2.2) and then of that lemma yields In Case (i), we get 

by (1.9)' and in Case (ii), we get 

again by (1.9). as above. 
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4. PROOF OF THEOREM 1 AND 2 

Proof of Theorem 1. We move the line of integration in the integral 
appearing in (2.3) to o = 4. By the theorem of residues we obtain 

where Mi(x)  is the main term which is the sum of residues of the function 

Zk(S) in the interval 4 < o 5 o + 1, and $.Zk (s) at all possible poles of 7 
I f h  (resp. I,) denotes the horizont a1 (resp. vertical) integrals: 

by (3.4), while 

In the integral in the error term for I, we factor the integrand 121k 
into 12 1 k-2 and 1 212 to which we apply (3.2) and (3.8) respectively. Then 
we get 

x i T ( k - 2 ) ~ l + ~ - l + ~  (4.3) 

Since the contribution from possible poles in the interval 0 < o 5 4 
to  the main term is ~ ( x f  ), we may duly write Mk(x) instead of Mi(x).  

Hence from (4.1)-(4.3) and the above remark we conclude that 

Now, by Lemma 3.4, the last error term dominates the middle one 
(apart from an €-factor). Therefore we have 

Choosing 

we get 

n l x  1 
whence we conclude the assertion of Theorem 1. 0 

Proof of Theorem 2 is similar to that of Theorem 1. For simplicity, we 
assume oo = 112. Indeed, instead of (4.3) we have 

Hence instead of (4.4) we have 

Now, instead of (4.4), the assumed inequality j X o  < qo implies that the 
last error term dominates the second one, whence it follows that 

Choosing 

we get 

thereby completing the proof. 0 

5. SOME APPLICATIONS 
5.1. Let Q = Q(y1,. . . , yl) be a positive definite quadratic form in 

1-variables (1 2 2 an integer). Let ZQ(s)  be the associated zeta-function, 
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summation being extended over all integer I-tuples not all zero. ZQ(s) 
can be continued meromorphically over the whole plane with its unique 
simple pole at s = 4 and satisfies the functional equation of type (1.4): 

where d is the discriminant of Q and denotes the reciprocal of Q [14]. 
Hence we may take in Theorem 1, 

1 1 
Since a, = b, = O(nr-'+"), we may take a = - 1, so that 71 = 1 - 1. 

1 1  Also we have X1 = - + c l .  
Hence Theorem 1 gives 

x C ak(n)  = Res zQ(s)-- + o (xi-$+&) , 
s=; S 

n<x 

which recovers the theorem of the second author [12]. 

Remark.  For I = 2, Kober [5] has proved a mean value theorem slightly 
better than Theorem 3. 

5.2. In the special case where 

where a is a positive constant, it is known from [16] that 

ZQ ( + it) << t i  (los t )3  

1 and that a, = bn = O(nE).  Hence we can take Xo = 5 + E, a = 0, rj = 1,  
H = 2. Also we use Theorem 3, so that we take j = 2. Then qo = 1,  
and Theorem 2 implies that 

5.3. If Z(s) = ((s), then we have the most famous functional equation 

1 - s  
- ( )  ( s )  = - 9  ( )  1 s ) ,  

so that we may take 7 = 1/2, H = 1, and also a = 0. We remark here 
that this value 7 does not satisfy the assumption (1.8). So we cannot 
use Theorem 1. However we use Theorem 5.5 [15] to take Xo = + E.  

Instead of Theorem 3, we apply the 4-th power moment ( j  = 4) with 
710 = 1. 

In this way we can recover Theorem 12.3 of Titchmarsh [15], i.e. 

where a k  is defined as the least exponent such that 

with dk(n) denoting the k-fold divisor function due to Piltz (ak(n) = 
dk(n)). For k > 12, we can take j = 12, Xo = 116, 70 = 2 (from a result 
of D.R. Heath-Brown). The condition j X o  5 70 is satisfied and hence 
we get a k  < 9 for k > 12 which improves the earlier result slightly for 
k > 12. 

6. COMPARISON WITH THE RESULTS OF 
LANDAU AND OF CHANDRASEKHARAN 
AND NARASIMHAN 

6.1. If we apply Landau's theorem [6], we get 

Hence, comparing this with Theorem 1, we are to show that 

in some cases. Recall Definition (1.9) of 71 and consider three cases. 
( )  i = 2 - 1, e H > 2 and 7 > a + 1. In this case (6.2) is of the 
form 

6 a  + 5 > 47, 

which is true in view of (1.8). 
(ii) 71 = 2 a  + 1, i.e. a > q - 1 and a 2 q - 4. In this case we further 
suppose that 

in which case necessarily H > q .  Then (6.2) becomes 
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i.e. (6.3). 
(iii) ql = 2q + 1 - H ,  i.e. H 5 min{2,2(q - a)). In this case we must 
have q 2 a + 3. Then solving (6.2) in H gives < H .  

Thus we have proved 

Proposition 6.1. If one of the following conditions are satisfied, then 
our estimate supersedes Landau's bound (6.1): 

4q - 3 3 
4 

and H > - 
2 

(iii) 
4q + 20 + 3 < H 5 min{2,2(q - a ) )  and q > a + Q .  

4(a + 1) 

6.2. Chandrasekharan and Narasimhan [I], [2] considered the pair of 
~LQ and $(s) = C r = l  $ that satisfy the Dirichlet series p(s) = C r = l  A, 

functional equation with equal multiple gamma factor A(s) : 

with 6 > 0, where 
N 

For comparison of the theory of Landau-Walfisz [17] and Bochner-Chandra 
-sekharan-Narasimhan, cf. [4]. 

Their theorem (Theorem 4.1 [I]) states that if the functional equation 
(1.4)' is satisfied as in [I], in particular, a, > 0, 1 < v < N ,  A = 
CL1 a, > 1 (see (1.6)' below), and the only singularities of the function 
cp are poles, then 

for q2 2 0 at our choice, where x' = x + O(xl-m-h), q = maximum 
of the real parts of the singularities of cp, r = maximum order of a pole 
with the real part v, u = ,8 - f - with /? satisfying 

If in addition, a,  > 0, then we can dispense with the last error term: 

A: (x) - Qo(x) = 0 (X f - h + 2 A v 2 u  ) + 0 (zq- -v2 (log x)'-') . (6.5) 

There being essentially no difference between the sequences {n) and 
{A,) and {p,), we may compare Chandrasekharan and Narasimhan's 
result above with ours. 

In our setting we must have 

and 
SH 

q = - = 6A, etc. 
2 

(1.7)' 

Since to our situation, A is transformed into kA, our applications are 
mostly for a, 2 0, and q (> a + 1 = 6) can be as big as 6, (6.5) reads 

We are to choose q2 SO that the two error terms be more or less equal: 

By (1.2) and the condition on u, we must have 

1 
2 k A ~ + 1 >  Z ( l + k H ( ~ +  

It is enough to choose u so as to satisfy 

6 1 u >  - SO that 

1)) . 

Thus we choose 
(&-1 

2 2 k H )  
q2 = 1 + k H ( a +  1) '  

We are to prove that 
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Hence it suffices to prove 

As in 6.1, we distinguish two cases and solve (6.7) in H. Then we can 
immediately prove the following 

Proposition 6.2. If either of the following conditions are satisfied, then 
our estimate supersedes Chandrasekharan and Narasimhan's bound (6.5): 

(ii) a 2 9 - 1 and H > &(&{(k - 2)17(2a + 1) + 2 ( 2 ~  - l ) ( a  + 
111 - 1). 

We note that Case (iii) in Proposition 1 cannot occur in Proposition 2 
in view of (1.6)'. 
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1. INTRODUCTION 
Let 8 be irrational and 4 real. Throughout this paper we shall assume 

that q8 - 4 is never integral for any integer q. Define the inhomogeneous 
approximation constant for the pair 8, 4 

where 11 . 11 denotes the distance from the nearest integer. If we use the 
auxiliary functions 

then M (8,4) = min (M+ (8,d) , M- (8,4)). Several authors have treated 
M (8,+) or M +  (8,4) by using their own algorithms (See [2], [3], [4], [5] 
e.g.), but it has been difficult to find the exact values of M ( 8 , 4 )  for the 
concrete pair of 8 and 4. 

In [6] the author establishes the relationship between M(O,4) and the 
algorithm of Nishioka, Shiokawa and Tamura 181. By using this result. 
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we can evaluate the exact value of M(8 ,+ )  for any pair of 8 and 4 at  least 
when 8 is a quadratic irrational and q5 E Q(8). Furthermore, in [7] the 
author demonstrates that the exact value of M(8 ,4 )  can be calculated 
even if 8 is a Hurwitzian number, namely its continued fraction expansion 
has a quasi-periodic form. 

In this paper we establish the relation between M(8,+)  and the Bor- 
weins' algorithm, yielding some new results about the typical Hurwitzian 
numbers 8 = e and 6' = ellS ( s  > 2). 

As usual, 8 = [ao; a1 , an, . . .] denotes the simple continued fraction of 
8, where 

The n-th convergent p,/q, = [ao; a1 , . . . , a,] of 8 is then given by the 
recurrence relations 

Borwein and Borwein [I] use the algorithm as follows: 

$ = do + YO, do = 16J , 
Yn-110,-1 = dn + ̂ In, dn = lm-1/8n-1J (n  = 1,2 , .  . .). 

Then, $ is represented by 

where Di = qi8-pi = (-1)'Oo81 . . . Bi (i 2 0). Put Cn = C:=l(-l)i-ldiqi-l. 
Then IIcne - $11  = 1 - { c n e  - 6) = II(-l)"%Dn-iI1 = 7nlDn-11. 

We can assume that 0 < 6 < 1/2 without loss of generality. Then $I 

can be represented as q5 = Czl (-1)'-Idi ~ ~ - 1 .  1 - 6 is also expanded 
by the Borweins' algorithm as 

Theorem 1. For any irrational 8 and real 4 so that q8 - $I i s  never 
integral for any integer q, we have 

Remark. As seen in the proof of Theorem 1, the last two values are 
considered only if C2,-1 > 0 (so, C4n-1 > 0 by Lemmas below); C2n < O 
(SO, cin < 0). 

By applying Theorem 1 we can calculate M(8 ,4 )  for any concrete 
pair (8,6).  In special we establish the following two theorems. 

Theorem 2. For any integer 1 2 2, we have 

Remark. It is known that this equation holds for 1 = 2 ,3  and 1 = 4 

~ 6 1 ,  [71). 

Theorem 3. For any integers 1 > 2 and s 2 2 with s = 0 (mod I), we 
have 

2.  LEMMAS 
Lemma 1. 

, (1) If a, = d, > 0, then d,+l = 0. 
(2) If d, > 0, then 

Proof. It is easy to prove. 

Lemma 2. I f  Cn + CA = (-l)n-lqn, then Cn+1 + C;+l = 
If c n  + CL = (-l)"-' (qn - qn-1) or Cn + CA = (-l)"qn_l, then 

Proof. When n = 1, we have (dl + di) + (yl + 7;) = a1 + 81 because 

70 1 - Yo 1 
d l + ~ l = - - ,  d ; + 7 ; = 7  and a1 + 81 = -. 

60 80 



226 ANALYTIC NUMBER THEORY 
- 

On inhomogeneous Diophantine approximation . . . I1 227 

Notice that dl, di and a1 are integers, yl ,  yi and 191 are non-integral 
real numbers. Thus, if 81 > yl, then dl + d; = a1 and y1 + yi = el, 
yielding Cl + C; = (dl +d;)qo = q1. If O1 < 71, then dl + d i  = a1 - 1 
and yl + yi = 81 + 1, yielding C1 + C; = ql - go. 

Assume that Cn + C; = (-l)"-lqn and yn + 7; = On. Since O < 
yn "/ < On 7 we have 

dn+, = = 0 and d;+' = [a =O. 

Hence, Cn+l + C;+i = (-l)"-'qn + + d;+1)qn = (-l)n-lqn 
and 'Yn+l+ 'Y;+l = yn/en + 7;/On = 1. 

Assume that Cn + CA = - qn-l) and yn + 7; = On + 1. In 
this case dn+l = [yn/OnJ > 1 and d',+l = [?/,/On J 2 1 because yn > 19, 
and < > On. Then 

If yn+l +?A+, = en+1+ 1, then dn+l +d;+l = an+l and 

3. PROOF OF THEOREM 1 

First of all, any integer K can be uniquely expressed as 

where zi (1 I i I n) is an integer with 0 5 zi < ai and zn # 0. If 
0 5  K I a l ,  put n =  1 andz l  = K .  

If K > a l ,  then choose the odd number n ( 2  3) satisfying qn-2 + 
1 I K 5 qn. Put Kn = K and zn = [(Kn - ~ n - ~ ) / q ~ - ~ l ,  SO that 
1 I zn I a,. If qn-2 - qn-3 + 1 I Kn - znqn-l I qn-2, then put 
zn-l = 0 and Kn-2 = Kn - ~nqn-1 (SO, ~ ~ ~ - 2  = Otherwise, put 
Kn-1 = znqn-l - Kn. 

If K < 0, then choose the even number n ( 2  2) satisfying -qn + 1 5 
K I -qn-2. Put Kn = -K and zn = [(Kn - qn-2 + l)/qn-ll, SO that 
1 5 zn I a,. If n # 2 and 9,-2 - qn-3 I Kn - znqn-l I qn-2 - 1, then 
zn-l = 0 and Kn-2 = Kn - znqn-l (SO, zn-2 = Otherwise, put 
Kn-1 = znqn-l - Kn. 

By repeating these steps we can determine z,, zn-1, . . . , 22. Finally, 
put zl = K1. 

For general i < n we have 0 5 zi I ai and 

Next, we can obtain 

{KO) = C ( - l ) i - l z i ~ i - l .  

Notice that if zi-1 = ai-1 then zi = 0 (2 I i 5 n). Put 

Since zn # 0 is followed by zn- 1 # an- 1, 

and Tn-3 = Tn-20n-3 + zn-3 < + Bn-2)On-3 + - 1) = an-3. 
Hence, by induction, if # ai then Ti < ai. If zi = ai then Ti < ai + Oi 
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and z-1 < ai-1. Therefore, T,8i-l < (ai + 8i)8i-l = 1. Especially, we 
have 

n 

0 < C(-~) ' - 'Z~D~-~  = TIBo < 1.  
i=l 

We shall assume that [[KO - 411 = f ({KO} - 4).  If IIKe - 411 = 
1 - ({KO) - 4) > 4, then IKIJIKO - 411 > 1K14 -+ rn (IKl -+ 00). If 
//KO-411 = 1-(+-{KO}) > 1-4, then ~ K ~ ~ / K ~ - 4 ~ ~  > IKl(1-4) --+ rn 

(IKI --+ 4. 
Suppose that K # Cn or di = zi ( 1  I i s - 1)  and ds  # 2, 

( 1  I s I n ) .  If ds  > z,, then 

where y,* = Ts+lOs = Ts - zs(< 1) .  Since 

Qn-2 + 15 K I qn n : odd; and { 1 5 CS I (IS s : odd; 
-qn+ 15  K 5 -qn-2 n : even -qs+ 15 Cs < 0 s : even 

When s = n-1, K = Cn-1+(-1)n-2(tn-l-dn-l)qn-2+(-l)n-1~nqn-l. 
If K > 0 (so, n is odd), by dn-i > zn-1 > 0 we have -9,-l+l 5 CnA1 < 
0, and Cn-1 + CA-1 = -qn-l or -9,-1 + qn-2. If K > qn-1 - 1, then 
K > ICn-ll, yielding KllKO - 411 > ICn-lIIICn-le - 411. Assume that 
K < qn-1 - 1. Then zn = 1. Hence, 

and 

and 
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If Cn-1 > 0 and zn = 1, then Cn-l + CA-l = qn-1 or qn-1 - qn-2. 
By applying the same argument as the case where K > 0 (n  is odd), 
Cn-l < 0 and z, = 1 above, we have 

If z, > d,, then 

If s 5 n - 3, IKI > lCsl + qs-1 yields the result. Let n be odd. If n be 
even, the proof is similar. When s = n - 2, we can assume that dn-2 > 0, 
so Cn-2 > 0. Otherwise, there is a positive integer s (<  n - 2) such that 
d, > 0 and C, = Cs+l = = Cn-2. Then, 

When s = n - 1, we can assume that dn-l > 0, so Cn-l < 0. Otherwise, 
this case is reduced to the case s 5 n - 2. Then, 

When s = n,  we can assume that dn > 0, so Cn > 0. Otherwise, this 
case is reduced to the case s 5 n - 1. Then, K = (zn - dn)qn-l + Cn 2 
Cn + Qn-1. 

4. SOME APPLICATIONS 
We shall denote the representation of 4 (0 < 4 < 1) through the 

expansion of 6' by the Borweins' algorithm by 4 =e (dl, d2, . . . , dn, . . . ) 
with omission of do = 0. The overline means the periodic or quasi- 
periodic represent ation. For example, 

The first example, Theorem 2, shows the case where 6' is one of the 
typical Hurwitzian numbers, 6' = e .  

Proof of Theorem 2. First of all, we shall look at the cases when 1 = 5 
and I = 6. 

When 6' = e = [2; 1,2i, l]zl, 4 = 115 is represented as 

and for n = 1,2 , .  . . 

1 
730n-2 = 5 ,  

Notice that 

Notice also that 
1 

-+ 
1 1 

~3nlD3nl = = - (n + W) 
a3n+l+e3n+l+q3n-l/~3n l + O + l  
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In a similar manner one can find 

one can have 

and 

For simplicity we put 

and 

1 - $ = 415 is represented as 

arid = (-1 + 401)/5, Ti = (2 - 02)/5 and for n = 1 , 2 , .  . . 
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In a similar manner one can find 

Therefore, we have M ( e ,  115) = 1/50. 

4 = 116 is represented as 

and for n = 1,2, .  . . 
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Since 

one can have 

and 

In a similar manner one can find that 

1 - q5 = 516 is represented as 

and yi = (-1 + 581)/6, yb = ( 3  - 02)/6, for n = 1 , 2 , .  . . 

Since 

one can have 

Ci8n+3 I D18n+ 2 Id8n+3 

6 
= - (n -, oo) 

72 

and 
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Therefore, we have M(e ,  116) = 1/72. 
For general 1, when 1 is even, we have 731n-1 = 031n-l/Z -+ 1/(21) 

(n  -+ w ) ,  C31n-1 = ~31n-l/l and d31n-1 = a31,-1/1. Thus, 

1 1 1 1  
= lim -q31n- 1 D31n-2 1 = - ' 1 ' - = - 

n-ca 1 1 21 212 ' 

Next example, Theorem 3, where 0 = ellS with some integer s 2 2, 
looks like similar but is much more complicated. Continued fraction 
expansion of ellS (s > 2) is given by 

In other words, 

and for n = 1,2, .  . . -, oo 

03n-1 = [O;ll (2n + 1)s - 1'1, I , .  . .] -+ 1, 

Odn = [O; (2n + 1)s - 1,1,1,  (2n + 3)s - 1, .  . .] -+ 0 .  

Notice that 

I t  is, however, not difficult to  see the specific case, where 1 > 2 and 
s 2 2 with s r 0 (mod I). 

Proof of Theorem 3. When s r 0 (mod 1) (1 2 2), 4 = 111 is represented 

and for i = 1 , 2 , . - .  -, oo 

Since 

we have 

In  a similar manner one finds that 

1 
(C6n-5 + q6n-6) (1 - 76n-5) 1 D6n-6 1 -+ - 212 (n -+ 00) . 
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Next, 1 - q5 = 1 - 111 is represented as 

Since 

i=l 

we have 

In a similar manner one finds that 

(1 - 1)2 
- 7kn-5) p6n-61 - 212 

( n  -, oo) . 

Therefore, M(ellS, 111) = 1/(212) if s = 0 (mod 1) (1 > 2). 0 

The other cases can be achieved in similar ways but the situations are 
more complicated. 

Conjecture 1. For any integer s ( 2  1) and 1(> 2) 

When 1 is even with 1 5 50, it has been checked that M(elIs, 111) = 
1/(212). When 1 is odd with 1 5 50, the following table is obtained. 

{s (mod 1) : ~ ( e ' l " ,  111) = 0) 
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Abstract Let I'2(p, (wl, w2)) be the double gamma-function. We prove asymp- 
totic expansions of log r2 (P ,  (1, w)) with respect to w, both when Iwl + 
+oo and when Iwl -+ 0. Our proof is based on the results on Barnes' 
double zeta-functions given in the author's former article [12]. We also 
prove asymptotic expansions of log r2(2cn - I ,  ( ~ n  - I ,  En)), log p2 (En - 
1, &n) and log p2 (en, E: - E,), where cn is the fundamental unit of 
K = Q(J4n2 + 8n + 3). Combining those results with F'ujii's formula 
[6] [7], we obtain an expansion formula for ("(1; vl), where C(s; vl) is 
Hecke's zeta-function associated with K. 

1991 Mathematics Subject Classification: llM41, llM99, llR42, 33B99. 

1. INTRODUCTION 
This is a continuation of the author's article [12]. We first recall 

Theorem 1 and its corollaries in [12]. 
Let p > 0, and w is a non-zero complex number with 1 arg wl < T. 

The Barnes double zeta-function is defined by 

This series is convergent absolutely for Ru > 2, and can be continued 
meromorphically to the whole u-plane, holomorphic except for the poles 
a t  u = 1 and u = 2. 

Let C(u), C(u, P) be the Riemann zeta and the Hurwitz zeta-function, 
respectively, C the complex number field, a fixed number satisfying 

243 
C. Jia and K. Matsumoto (edr.), Analytic Number Theory, 243-268. 



244 ANALYTIC NUMBER THEORY 

0 < 00 < T, and put 

W,  = {w E C I lwl L 1, Iargwl 500) 

and 

Define 

v(v - 1) . (v - n + l ) /n!  if n is a positive integer, (3={1 if n = 0. 

Theorem 1 in [12] asserts that for any positive integer N we have 

in the region Xv > - N + 1 and w E W,, and also 

in the region Rv > -N + 1 and w E Wo. The implied constants in (1.2) 
and (1.3) depend only on N, v, P and 80. 

There are two corollaries of these results stated in [12]. Corollary 
1 gives the asymptotic expansions of Eisenstein series, which we omit 
here. The detailed proof of Corollary 1 are described in [12]. On the 
other hand, Corollary 2 in [12] is only stated without proof. Here we 
state it as the following Theorem 1. 

Let r2(P, (1, w)) be the double gamma-function defined by 

log (r2(p, (l .  w))) = C;(O; p, (1, w)), 
P ~ ( L  w) 

where 'prime' denotes the differentiation with respect to v and 

Let $(v) = (I"/I') (v) and y the Euler constant. Then we have 
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Theorem 1. For any positive integer N > 2, we have 

for w E W,, where the implied constant depends only on N, P and 00. 
Also we have 

for w E Wo, where Cl(v, P) = <(v, P) - P-" and the implied constant 
depends only on N and 00. 

Note that when w > 0, the formula (1.6) was already obtained in [lo] 
by a different method. 

We will show the proof of Theorem 1 in Section 2, and will give 
additional remarks in Section 3. In Section 4 we will prove Theorem 2, 
which will give a uniform error estimate with respect to P. In Section 
5 we will give our second main result in the present paper, that is an 
asymptotic expansion formula for C'(1; vl), where C(s; vl) is Hecke's zeta- 
function associated with the real quadratic field Q( J4n2 + 8n + 3). This 
can be proved by combining Fujii's result [6] [7] with certain expansions 
of double gamma-functions (Theorem 3), and the proof of the latter will 
be described in Sections 6 to 8. Throughout this paper, the empty sum 
is to be considered as zero. 

2. PROOF OF THEOREM 1 

Double gamma-functions were first introduced and studied by Barnes 
[3] [4] and others about one hundred years ago. In 1970s, Shintani [13] 
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[14] discovered the importance of double gamma-functions in connec- 
tion with Kronecker limit formulas for real quadratic fields. Now the 
usefulness of double gamma-functions in number theory is a well-known 
fact. For instance, see Vignkras [17], Arakawa [I] [2], Fujii [6] [7]. There- 
fore it is desirable to study the asymptotic behaviour of double gamma- 
functions. Various asymptotic formulas of double gamma-functions are 
obtained by Billingham and King [5]. Also, when w > 0, the formula 
(1.6) was already proved in the author's article [lo], by using a certain 
contour integral. It should be noted that in [lo], it is claimed that the 
error term on the right-hand side of (1.6) is uniform in P (or cr in the 
notation of [lo]), but this is not true. See [ll], and also Section 4 of the 
present paper. 

Here we prove Theorem 1 by using the results given in [12]. The 
special case u = 0, cr = P of the formula (3.8) of [12] implies 

for any positive integer N ,  where 

CN = -%v - N + E wiih an arbitrarily small positive E ,  and the path of 
the above integral is the vertical line %z = CN. In Section 5 of [12] it is 
shown that (2.1) holds for %v > - N  + 1 + e, w E W,. The result (1.2) 
is an immediate consequence of the above facts. 

From (2.1) we have 

- 
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where 

- ( y )  ((u + k) log w ((-k, P ) W - ~ - ~ .  i 
Noting the facts 

and 

we find 

Ao(O;p, W) = 1 (P - 1) (log29 - logw), 

lim Al(v; p, W) = ((-1, P)w-'(log w - y), 
v-0 

and so 

for w E W,  and N 2 2. (The above calculations are actually the same 
as in pp.395-396 of [lo].) 

Put  z = -v - N + e + iy in (2.2), and differentiate with respect to v. 



248 ANALYTIC NUMBER 

We obtain 

THEORY 

+ i y ) ( ( - N  + & + i y ,  P )  W-v-N+~+iy 

I"(v + N - E - i y )  
( ( v  + N - E - i y )  

F ( v  + N - E - i y )  + ( ' (v  + N - E - i y )  
r w  

- r ( v  + N - E - i y )  
C(v + N - E - i y )  logw 

r ( v )  

Noting 

(as v - 0 ) ,  we have 

x r ( N  - E - i y ) ( ( N  - E - i y ) d y .  (2 .6)  

Hence, using Stirling's formula and Lemma 2 of [12] we can show that 

~ k ( 0 ;  P ,  W) = O ( I W I - ~ +  '), (2 .7)  

and this estimate is uniform in p if 0 < p 5 1. 
Consider (2 .5)  with N + 1 instead of N ,  and compare it with the 

original (2 .5) .  Then we find 

hence 

which is again uniform in ,B if 0 < P 5 1. Noting this uniformity and 
the fact 

- 
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from (2 .5)  we obtain 

for w E W,. The first assertion (1.6) of Theorem 1 follows from (2 .5 ) ,  
(2.8) and (2.9).  

Next we prove (1.7).  Our starting point is the special case u = 0 ,  
cr = p of (6.7) of [12] ,  that is 

where 

In Section 6 of [12] it is shown that (2.10) holds for Rv > 1 - N + E ,  

w E Wo. From (2.10) it follows that 

where 
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- 
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It  is clear that Bo(O; 0 )  = (i(0, P) and 

Also, since 

= - $ @ ) - - ~ - l ,  
v-0 v 

we see that 

lim Bl (v; p)  = $(P) + P-'. 
v-0 

Hence from (2.12) (with (2.4)) we get 

for N 2 2. 
The estimate 

can be shown similarly to (2.8); this time, instead of Lemma 2 of [12], 
we use the fact that (1 (v, p) and (i (v, ,8) are uniformly bounded with 
respect to p in the domain of absolute convergence. Hence (2..14) is 
uniform for any p > 0. From (2.13), (2.14) and this uniformity, we 
obtain 

1 3 1 
= - logw - - log2n - (((-1) + (I(-l)}w-I + -yw 

2 4 12 

for N > 2, w E Wo. From (2.13), (2.14) and (2.15), the assertion (1.7) 
follows. 

3. ADDITIONAL REMARKS ON 
THEOREM 1 

In this supplementary section we give two additional remarks. 
First we mention an alternative proof of (1.6). Shintani [15] proved 

00 

'(' + 

exp {H + (1 - a )  log(nw)} (3.1) ''(') n=l ~ F ( I +  nw) 2nw 

(see also Katayama-Ohtsuki [9], p.179). Shintani assumed that w > 
0, but (3.1) holds for any complex w with 1 arg w) < T by analytic 
continuation. We recall S tirling's formula of the form 

given in p.278, Section 13.6 of Whittaker-Watson [18], where BL+2(a) 
is the derivative of the (m + 2) t h  Bernoulli polynomial and M is any 
positive integer. Noting 

( 

(p.267, Section 13.14 of [18]), we obtain 

log ( fi '(' + nw) exp {@ + (1 - P) log(nw)}) 
n= 1 

r ( l  + nw) 2nw 

From (3.3) and the fact B3 (a) = a3 - (3/2)a2 + ( 1 1 2 ) ~  it follows that 
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Hence the coefficient of the term of order w-l on the right-hand side of 
(3.4) vanishes, and so the right-hand side of (3.4) is equal to 

Substituting this into the right-hand side of (3.1), and noting (3.5), we 
arrive at the formula (1.6). 

Next we discuss a connection with the Dedekind eta-function 
00 

8 ( w) = e"'~/'2 n ( 1 - e2r inw >. (3.6) 
n=l 

In the rest of this section we assume s / 2  5 O0 5 s, and define 

W(Oo) = {w E C I s -  Oo 5 argw L 00). 

For w E W(OO) we have log(-w) = -si + log w. Hence from (2.9) and 
the facts C(-1) = -1112 and C(-k) = 0 for even k it follows that 

for w E W,, n W(Oo) and N 2 2. Similarly, from (2.15) we get 

for w E Wo n W(OO) and N > 2. The reason why the terms of order 
w * ~  (2 5 k 5 N - 1) vanish in (3.7) and (3.8) can be explained by the 
modularity of r](w), by using the formula 

p2 (1, w)p2 (1, -w) = (27r)3/2w-1/217(w) exp ( si ( +  (3.9) 
4 12w 

due to Shintani [15]. In fact, in view of (3.9), we see that (3.7) is a direct 
consequence of the definition (3.6) of ~ ( w ) .  Also (3.8) follows easily from 
(3.9) and the modular relation of ~ ( w ) .  

4. THE UNIFORMITY OF THE ERROR 
TERMS 

A difference between (1.6) and (1.7) is that the error estimate in (1.7) 
is uniform in p, while that in (1.6) is not. From the proof it can be seen 

that the implied constant in (1.6) does not depend on P if 0 < P 5 1. 
For general P, it is possible to separate the parts depending on ,f3 from 
the error term on the right-hand side of (1.6). An application can be 
found in [ll]. 

We write B = A + P, where A is a non-negative integer and 0 < p < 1. 
Then we have 

Theorem 2. For any positive integer N and Rv > -N + 1, we have 

if w E W, and Iwl > /3 - 1, where the implied constant depends only on 
v, N and 80. 

In the case w > 0, this result has been proved in [ll], but the proof 
presented below is simpler. 

Corollary. Let N > 2, w E W, and Iwl > P - 1. Then the error t e r n  
on  the right-hand side of (1.6) can be replaced by 

and the implied constant depends only on N and 80. 

Now we prove the theorem. Since 

from (2.2) we have 

say. Let L be a large positive integer (L > N), and shift the path of 
integration of TN(j) to %x = CL.  Counting the residues of the poles 
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z = -v - k ( N  I. k 5 L - I ) ,  we obtain 

L-1 , , 

Using Stirling's formula we can see that TL(j)  -+ 0 as L + +oo if 
Iwl > p + j .  The resulting infinite series expression of - ~fz,l TN(j)  
coincides with the explicit term on the right-hand side of (4.1). The 
remainder term RN(v; p ,  w) can be estimated by (5.4) of [12]. Since 
0 < p < 1, the estimate is uniform in p .  Hence the proof of Theorem 2 
is complete. 

5.  AN ASYMPTOTIC EXPANSION OF THE 
DERIVATIVE OF HECKE'S 
ZETA-FUNCTION AT s = 1 

Let D be a square-free positive integer, D EE 2 or 3 (mod 4). Hecke 
[8] introduced and studied the zeta-function (following the notation of 
Hecke) 

associated with the real quadratic field ~ ( o ) ,  where (p) runs over all 
non-zero principal integral ideals of ~ ( o ) ,  N(p)  is the norm of (p),  p' 
is the conjugate of p ,  and sgn(pp1) is the sign of pp'. Hecke's motivation 
is to study the Dirichlet series 

where {x} is the fractional part of x. The coefficients ~ ~ ( a )  and 
G 2 ( a )  in the Laurent expansion 

are important in the study of the distribution of { n o }  - 112, a famous 
classical problem in number theory. Hecke's paper [8] implicitly includes 
the evaluation of GI ( a )  and G2 ( a )  in terms of ((1; vl) and ('(1; vl). 
In particular, 

~ 2 ( f i )  = '')a(Y + log 2n) - ' ( 1 )  1 
1 

n2 log ED 
- - +  (5.2) 

2 n 2 l o g € ~  12 
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if N(ED) = 1, where ED is the fundamental unit of ~ ( 0 ) .  
F'ujii [6] proved different expressions for G1 ( o )  and G2 ( a ) .  Com- 

bining them with Hecke's results, F'ujii obtained new expressions for 
<( l ;v l )  and C1(l;vl). An interesting feature of F'ujii's results is that 
double gamma-functions appear in his expressions. This is similar to 
Shintani's theorem [14]. Shintani [14] proved a formula which expresses 
the value LF (1, X )  of a certain Hecke L-function (associated with a real 
quadratic field F) in terms of double gamma-functions. Combining Shin- 
tani's result with our expansion formula for double gamma-functions, we 
have shown an expansion for L F ( ~ ,  X )  in [I 11. In a similar way, in this 
paper we prove an expansion formula for ('(1; vl). 

F'ujii [6] proved his results for any ~ ( a ) ,  D is square-free, positive, - 2 or 3 (mod 4). However, his general statement is very complicated. 
Therefore in this paper we content ourselves with considering a typical 
example, given as Example 2 in Fujii [7]. 

To state F'ujii's results, we introduce more general form of double zeta 
and double gamma-functions. Let a, wl, w2 be positive numbers, and 
define 

and 

Let n be a non-negative integer such that 4n2 + 8n + 3 is square-free. 
We consider the case D = 4n2 + 8n + 3. Then en = + 2n + 2 is the 
fundamental unit of ~ ( a ) .  Example 2 of Fujii [7] asserts that 

and 
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Let a, p be positive numbers with a < p, and define 

In [12] we have shown that &((u, v); (a ,  P)) can be continued meromor- 
phically to the whole C2-space. In Section 7 we will show the facts that 
c2 ((0, v); ( a ,  p))  is holomorphic at v = 0, while &((- k, v + k); (a, P)) has 
a pole of order 1 at v = 0 for any positive integer k. Denote the Laurent 
expansion at v = 0 by 

for k 2 1. We shall prove 

Theorem 3. Let D = 4n2 + 8n + 3, E, = fi + 2n + 2, and < = tn = 
en - 1. Then, for any positive integer N 2 2, we have 

From this theorem and (5.7), we obtain the asymptotic expansion of 
<'(I; vl) with respect to < = En (or with respect to E,) when n -+ +oo. 
Moreover, combining with (5.2) and (5.6), we can deduce the asmptotic 
expansion of ~ ~ ( 0 )  = G2(J4n2 + 8n + 3). It should be noted that, 

by expanding the factor log(1 + <) on the right-hand side of (5. lo), we 
can write down the asymptotic expansion with respect to < in the most 
strict sense. This is an advantage of the above theorem; the formula 
for LF(l,  X )  proved in [ll] is not the asymptotic expansion in the strict 
sense. 

The rest of this paper is devoted to the proof of Theorem 3. It is de- 
sirable to extend our consideration to the case of F'ujii's general formula 
(Fujii [6], Theorem 6 and Corollary 2). It is also an interesting problem 
to evaluate the quantities C!, ((0,O); (1,2)) and Co(k; (1,2)) appearing on 
the right-hand side of (5.10). 

6. THE BEHAVIOUR OF (en,  E: - E , ) )  
2 AND PZ ( e n ,  E, - e n )  

Let ,O = a/wl and w = w2/w1. F'rom (5.3) we have 

for !Rv > 2. This formula gives the analytic continuation of the function 
c2 (v; a, (wl , w2)) to the whole complex v-plane, and yields 

From (5.4) and (6.2), we have 

where the existence of the limit 

can be seen from the expression 
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which is the special case m = 0 of Theorem 5 in [lo] .  From (6.4) it 
follows that 

Now we consider the case ( w l ,  w 2 )  = ( E n ,  E: - E n ) .  Our aim in this 
section is to prove the following 

Proposition 1. We have 

for any N 2 2,  and 

Proof Putting ( w l  , w 2 )  = (E,, E: - E,), the formula (6.3) gives 

2 because w = ( E ,  - E n ) / & ,  = En - 1 = <. Substituting (2.9) and (6 .5)  
into the right-hand side of (6 .9) ,  we obtain (6.7).  

Next, for R u  > 2,  we have 

This formula is valid for any u by analytic continuation. Hence from 
this formula we obtain 

1 + mi 1, ( I , < ) )  + 5 log 2*, (6.11) 

which with (6 .9)  and (1 .4)  yields 

1 + log r 2 ( 1 ,  ( L O )  + log 2 ~ .  

From (3.1) we find that 

Substituting (6 .5) ,  (6.6) and (6.13) into the right-hand side of (6 .12) ,  we 
obtain (6 .8) .  This completes the proof of Proposition 1. 

7. AN AUXILIARY INTEGRAL 
In this section we prove several properties of the integral 

which are necessary in the next section. Here P u  > 2 ,  1 - R u  < c < -1, 
and 0 < cu < p. 

Let E be an arbitrarily small positive number. From (9.2) of [12] we 
have 

where J is any positive integer and SolJ ( (u+ z ,  -2) ; (a, p ) )  is holomorphic 
in the region P u  > 1 - J + E and R z  < J - E .  Since J is arbitrary, (7.2) 
implies that z = - 1 is the only pole of &((u+ z ,  -2);  (a,  P ) )  as a function 
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in z .  This pole is irrelevant when we shift the path of integration on the 
right-hand side of (7.1) to R z  = CN = -%v - N +e, where N is a positive 
integer 2 2. It is not difficult to see that C2((v + z ,  - z ) ;  ( a , @ )  is of 
polynomial order with respect to S z  (for example, by using (7.2)) ,  hence 
this shifting is possible. Counting the residues of the poles z = -v - k 
(0  5 k 5 N - I ) ,  we obtain 

k ) )  = (iv) (2((-k ,  u + k ) ;  (a ,  P ) )<-~ -*  
k=O 

where 

Next, from (9.9) of [12] we have 

where 

The formula (7.5) is valid in the region 

and in this region Ro, J ( (u ,  v ) ;  (a ,  P ) )  are holomorphic. In particular, 

- 
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choosing J = 2 and ( u ,  v) = ( z ,  v - z ) ,  we have 

for %z < 3 - E and %(v - z )  > -1 + e.  If Rz = - N  + e ,  then the 
right-hand side of (7.7) can be singular only if u = 2,1 ,0 ,  - 1, -2, . . . or 
v = z + 1. Hence the integrand of the right-hand side of (7.4) is not 
singular on the path R z  = - N + e if Rv > 1 - N + e ,  which implies that 
the integral (7.4) can be continued meromorphically to R v  > 1 - N + e.  
Moreover, the (possible) pole of C2 ( ( 2 ,  v - z )  ; (a ,  P ) )  at u = 0 cancels 
with the zero coming from the factor r(v)-' , hence (7.4) is holomorphic 
a t  v = 0. 

Let k be a non-negative integer. Putting z = - k in (7.7), we have 

for %v > -k - 1 + E .  From (7.8) it is easy to see that C2((0,u);  (a,P))  
is holomorphic a t  u = 0 ,  while C2((-k, u + k ) ;  (a ,  P ) )  has a pole of order 
1 at  u = 0 for k 2 1. We may write the Laurent expansion at  v = 0 as 
(5.9) for k 2 1. Then 

is holomorphic at u = 0 ,  and its Taylor expansion is 

- - ( - ' I k  C-,(k;  (a ,  P))<-* + { C o ( k ;  (a,  P ) )  k 

for k 2 1; recall that the empty sum is to be considered as zero. Now 
7- 
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by (7.3), I ( v ;  ( a ,  P ) )  can be continued to the region Rv > 1 - N + E ,  and 

1 1 +c-@; ( a ,  / i ) )  ( 1  + 5 + - - + - - k - 1  

We claim that the limit values of C;( (O ,  0 ) ;  ( a ,  P ) ) ,  c2((0,  0 ) ;  ( a ,  P ) ) ,  
Co(k; ( a ,  P ) ) ,  C- l (k ;  ( a ,  P ) )  and IL(0;  ( a ,  P ) ) ,  when a + +0, all ex- 
ist. w e  denote them by c ; ( ( O ,  0 ) ;  (0 ,  P ) ) ,  C2((0,0); (0,  P ) ) ,  Co(k; (0 ,  P ) ) ,  
C- l (k ;  (0 ,  P ) )  and IL(0;  (0 ,  P ) ) ,  respectively. 

To prove this claim, first recall that if Rv < 0,  then ( ( v ,  a )  is con- 
tinuous with respect to a when a + +O. This fact can be seen from 
(2.17.3) of Titchmarsh (161. Hence the existence of <;((0,0); (0 ,  P ) )  and 
G((0,O);  (0 ,  P ) )  follows easily from the case k = 0 of ('7.8). Similarly we 
can show the existence of I(y (0; 0, P )  by using (7.4) and (7.7)) and at  the 
same time we find 

and 

Next consider the case k > 1 of (7.8). The Laurent expansion at  v = 0 
of the first term on the right-hand side of (7.8) is 

where 

- 
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Collecting the above facts, we obtain 

and 

where P ( k ;  ( a ,  P ) )  is defined by (7.13) and 

From the above expressions it is now clear that the values Co(k;  (0 ,  P ) )  
and C-l (k ;  (0 ,  P ) )  exist for any k > 1. We complete the proof of our 
claim, and therefore from (7.10) we obtain 

8. THE BEHAVIOUR OF r2(2&, - 1, (E, - 1, E,)) 

AND p2(cn - 1, E,); COMPLETION OF THE 
PROOF OF THEOREM 3 

Let R v >  2 a n d O < a  < 1. We have 

The other terms on the right-hand side of (7.8) are holomorphic a t  v = 0 
if k 2 2. If k = 1, one more pole is coming from the second term on the 
right-hand side of (7.8), whose Laurent expansion is 
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'5" 

Proposition 2. We have Using the Mellin-Barnes integral formula ((2.2) of [12]) we get 

where -3v < c < 0. We may assume 1 - Xv < c < -1. Then, summing 
up the both sides of (8.2) with respect to m and n,  we obtain 

Remark. The estimate of the error term in (8.5) can be strengthened 
to  O ( E - ~  log (). (Consider (8.5) with N  + 1 instead of N ,  and compare 
it with the original (8.5).) 

Our next aim is to prove the following 

Proposition 3. We have 

Therefore, combining with (8.1), we have 

for %v > 2, and by analytic continuation for Xv > 1 - N  + E .  Hence 

Applying (2.4) to the right-hand side, we have +0(cyN log C). 

Proof. For Xv > 2, we have 

Taking the limit a -+ 0, and using (7.12) and (7.17) with P = 1, we 
obtain 
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which is, again using the Mellin-Barnes integral formula, 

That is, 

and this identity is valid for Wv > 1 - N + E by analytic continuation. 
Hence 

Therefore using (7.10), (7.11) (with cu = 1, ,O = 2) and (8.5) we obtain 
the assertion of Proposition 3. The error estimate O ( C - ~  log J) can be 
shown similarly to the remark just after the statement of Proposition 2. 

Now we can easily complete the proof of Theorem 3, by combining 
Propositions 1, 2 and 3. Since 

(valid a t  first for Wv > 2 but also valid for any v by analytic continua- 
tion), by using (6.4) we find 

Also, (7.14) implies that C-l( l ;  (1,2)) = 0 and C-1 (k; ( l ,2 ) )  = k/12 for 
k > 2. Noting these facts, we can deduce the assertion of Theorem 3 
straightforwardly. 

It should be remarked finally that if we only want to prove Theorem 
3, we can shorten the way; in fact, since the left-hand side of (5.10) is 
equal to 

the formulas (6.11), (6.6), (2.5), (2.8), (8.8), (7.10), (7.11) are sufficient 
to deduce the conclusion of Theorem 3. However the formulas of Propo- 
sitions 1, 2 and 3 themselves are of interest, therefore we have chosen 
the above longer but more informative route. 

- 
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Abstract We consider an average of the character sum S(X; 0, N) = x(n) 
(Proposition), and making use of this result, we obtain some average- 
type results on the q-estimate of L ( i  + it, x). 

1991 Mathematics Subject Classification: llL40, llM06. 

1. INTRODUCTION 

Let p be an odd prime, q be a positive integer, x be a Dirichlet char- 
acter mod q. We define the sums 

and we are interested in q-estimate of L(+ + it,  x), i.e. we want to find 
a good upper bound for I L ( $  + it,  x ) J  as a function in q, and we are not 
concerned with its t-aspect. 

In the long history of the study of (S(X; M, N)J  and (~(4 + it, x)(,  the 
first important estimate is Pdya-Vinogradov inequality ([I31 [l4], 19 l8),  

and, by making use of partial summation, this gives, for any E > 0, 

1 
L(-  + it,  X )  << pa+E. 

2 
269 
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In 1962, Burgess ([I]) proved the famous estimate; for any natural 
number r and any positive E, 

S(X;  M, N )  << N'-f q 3 + ' ,  

and from this estimate, we have 

1 
L ( ~  + it,  X) << q&+". (1) 

For a large N ,  it is well-known that P6lya-Vinogradov inequality is 
almost best possible (cf. [12]), but in many cases we expect a much 
better estimate on IS(x; M,  N)I as well as I L ( $  +  it,^)]. Actually, it is 
conjectured in [2] that, for the case q = p, 

and from this we can derive 
1 

L(- + it, X) << p", 
2 

which can be compared with the Lindelof conjecture for L-functions: 

1 
L(- + it,  X) << t". 

2 
In the context, Burgess [3] [4] recently considered some average values 

of IS(x; M,  N) I. He introduced the set of characters 

&(p3) = {x; Dirichlet character mod p3, xp2 = xO), 
where xo denotes the principal character mod p3, and proved 

Theorem A. (Burgess 131) For almost all x E &(p3), we have, for any 
E > 0) 

S(x ;  M,  N )  << f i p i ' " .  (2) 

Theorem B. (Burgess [4]) 
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From (2) wr: Ililvc:, fi)r ~ L ~ I I I O S ~ .  all c:l~i~rac:tcr of &(p", 

In tho litcraturc or1 t h :  sul)j(:(:t, rlliLIly pc:opl(: suc:ccc:(lcd in construct- 
ing an irifinitc seyucricx: of' x rno(1 (1, fix wIiic11 

1 
L(- + it,  x )  < $ + E ,  

2 

holds ([6] [7] [8]). So, it seems that the cxporicnt A has a big interest 
in this topics. (Very recently, "the exponent " is proved for any real, 
nonprincipal character of modulus q, see [llj].) 

Independently from Burgess' works, the prcscnt author corisitlcrcd in 
[I I]  the set 

&(p2) = {x; Dirichlet character mod p", X P  = x 0 } ,  
here xo denotes the principal character mod p2,  arid hc provc:tl 

Theorem C. 
1 

S(X; M,  N) << p i  logp, 
- xWP2).x#xo 

uniformly in M and N .  

In the paper [ll], we proved a weaker estimate 

1 C S(X; M,  N )  << pfi logp. 
- XEE(P~).X#XO 

'l'his rcsult is based on Heath-Brown's estimate on Heilbronn's exponen- 
11 

tial surn, and by virtue of his new estimate [9], we can improve pi-i into 
7 
p . 

In this paper, first we shall prove 

Theorem 1. 

1 5 19 C L ( ~  + it,  X) << pn( logp )a .  
- ' xeE(p2),x#xo 
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This is the average of L(; + it,  x), not the average of I L($ + it,  X) 1 ,  
but, since p h  = q& < qf , this indicates that, for many characters, the 
exponent of q in the right hand side of (1) might be much smaller than 
1 
I - 
6 ' 

Our second result is 

Theorem 2. Let r be a natural number, q = pr and A be an arbitrary 
subset of the set {x; Dirichlet character mod pT, x # xo}. We put Id1 = 
pS, with s E R. Then we have 

First, when we apply this result to the case r = 3 and s = 2, then 

1 1 19 
- C I L ( ~  + it,  x)I << q @ l o g p ) ~ ,  
p2 xed.xf  xo 

and this shows that the estimate (7) holds not only for &(p3) but also 
for any set of characters mod p3 of p2 elements. 

Secondly, we take s as a very near number to r, for example s = r - 2, 
and let r tend to infinity, then Theorem 2 says, asymptotically, the mean 
value of I L ( ~  + it, x)( on an arbitrary set A with Id( = pT-2 is bounded 

by q Q x (log- part). 
Recently, Katsurada-Matsumoto [lo] discussed the mean square of 

Dirichlet L-function, and from their result we can derive 

with some positive constants C1, C2. This inequality gives q-estimate 
and t-estimate at the same time, so-called hybrid estimate, and they 
said that, limiting to the q-estimate aspect, the theoretical limit of their 
method seems to be p i .  So, the exponent Q might be the next threshold. 

2. PROOFS 
Lemma 1. 

2 X I  C a n x ( n ) I ~ ( ~ + q )  C Ian12 
x mod q N<nlN+H N<n<N+H 

holds uniformly for natural numbers N,  H > 0, an E C and q 2 2. 

+ 
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For the proof, see, for example [5], Lemma 2. 

Lemma 2. Let ~ ( n )  be the divisor function. We have the following 
inequality, for any natural number K: 

For natural number r 2 2, we define the set 

V(pT) = {x; Dirichlet character mod pr). 

Proposition. Let A be an arbitrary subset of D(pT), and we put IAl = 
pS, with s E R and I be a positive integer >_ 2. When N'-' <_ pr < N', 
then we have 

1 
- C lS(x; 0, N )  I 
I d '  x e d  

Proof. We take a natural number m. Then Holder's inequality gives 

where 

Lemma 1 implies 

and Lemma 2 gives an estimate 
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Consequently, we have 

We take m = 1 and m = 1 - 1, then we get the desired inequality. 

I Our Proposition ( 

(516,213) Trivial ~/d 
he proof of 

Figure 1 When, for N = an estimate "character sum"<< p a ~ P ( l o g p ) r  holds, 
then we plot ( 0 ,  cu + 013). 

As a direct consequence of Proposition, we have, for example, 

Corollary 1. For all except for at most p2 - 1 of characters of 2)(p3), 
we have 

- 
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In fact, we arrange all x E v(p3) according to the size of IS(x; 0, N) I, 
and take the set A = A(N)  as the set of p2 characters for these charac- 
ters IS(x; 0, N )  I take the biggest p2 values. Then Proposition gives our 
=sertion. 

Proof of Theorem 1. We take 

We divide the sum into three parts, 

and, according to the size of n ,  we estimate these three sums by 

trivial estimate - Proposition ---+ Theorem C 

(see Fig). The trivial estimate Ix(n) 1 < 1 gives 

As for the second sum ~ : i ~ ~ + ~ ,  applying partial summation and Propo- 
sition with 1 = 2, we have 

and finally applying partial summation and Theorem C, we can prove 

this proves Theorem 1. 

Proof of Theorem 2. We take 
2r+s 11 

Nl = p i ,  N2 = p  4 (logpT)-7, 

and divide the sum & CxcA,xZxo 1 L($ +it, x)I into three parts as above. 
Now we estimate these three sums by 

trivial estimate ---+ Proposition - P6lya-Vinogradov inequality, 

then we get the desired result. 
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Abstract An arithmetic sequence a(n) = {a + nx : x E Z )  (0 5 a < n) 
with weight X E @ is denoted by (X,a,n). For two finite systems 
d = {(A,, a,, n,));=l and 17 = {(pt, bt ,  mt)):=l of such triples, if 

En,(=-a, = x m t ( z - b t  pt  for all x E Z then we say that d and f3 are 
covering equivalent. In this paper we characterize covering equivalence 
in various ways, our characterizations involve the r-function, the Hur- 
witz <-function, trigonometric functions, the greatest integer function 
and Egyptian fractions. 
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1. INTRODUCTION AND PRELIMINARIES 

By Z+ we mean the set of positive integers. For a E Z and n E Z+ 
we let a + n Z  represent the arithmetic sequence 

{ . a .  , a - 2 n ,  a - n ,  a ,  a + n ,  a + 2 n , - . . )  

and write a (n)  for a + nZ  if a E R(n) = {0,1, . . , n - 1). For a finite 
system 

of such arithmetic sequences, we define the covering function W A  : Z + 

N = {0,1,2,. . . ) as follows: 
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Let m be a positive integer. If wA(x) >_ m for all x E Z, then we call 
(1.1) an m-cover (of Z); when wA(x) = m for any x E Z, we say that 
A forms an exact m-cover (of Z). The notion of cover (i.e. 1-cover) 
was introduced by P. Erdos ([Er]) in the early 1930's, a simple nontriv- 
ial cover of Z is {0(2), O(3), 1(4), 5(6), 7(12)). Covers of Z have many 
nice properties and interesting applications, for problems and results we 
recommend the reader to see R. K. Guy [GI, and S. Porubskf and J. 
Schonheim [PSI. 

Let M be an additive abelian group. In 1989 the author [Sul] consid- 
ered triples of the form (A, a ,  n) where X E M, n E Z+ and a E R(n) ,  
we can view (A,a,n) as the arithmetic sequence a(n)  with weight (or 
multiplier) A. Let S(M) denote the set of all finite systems of such 
triples. For 

A = {(As, as, ns)}:=l E S(M) (1.3) 

we associate it with the following periodic arithmetical map WA : Z -+ 

M :  
k 

wd(x) = A, for x E Z, (1.4) 

which is called the covering map of A. (we refers to the zero map 
into M.) Clearly WA is periodic modulo the least common multiple 
[nl, . , nk] of all the moduli n l ,  . . , nk. For A, B E S(M), if w~ = wg 
then we say that A is covering equivalent to B and write A - B for this. 
Observe that (1.3) and B = {(pt, bt, mt))i=l E S(M) are equivalent if 
and only if 

C = {(Al,al ,nl) ,  . . .  , (Ak,ak,nk), (-pl,bl,ml)r ". , ( -~ l , b l ,m l ) )  - 0. 
(1.5) 

We identify (1.1) with the system {(1, a,, n,)}:=l. Thus, (1.1) forms 
an exact m-cover if and only if A - { (m, 0 , l ) ) .  

Let M be an additive abelian group, and f a map of two complex 
variables into M such that { (% , ny) : r E R(n)} Dom( f )  for all 
(x, y) E Dom(f) and n E Z+. If 

n-1 

( n )  = f ( x )  for any (x,y) E Dom(f) and n E Zi, 
n r=O 

(1.6) 
then we call f a uniform map into M .  Note that f (x, y) = f (F, 1 y) 
and {r(n)}:zd - {0(1)} for any n E Z+. 

In 1989 the author [Sul] showed the following 

Theorem 1.1. Let M be a left R-module where R is a ring with identity. 
1 Whenever two systems A = {(A,, a,, n,)}:=l and B = {(pt, bt, mt)}t=l 

in S(R) are equivalent, for any uniform map f into M we have 

A simple proof of this remarkable theorem was given in Section 2 of 
[ S U ~ ]  . 

Let f be a uniform map into the complex field @ with Dom(f) = 
D x  D' and f (xo, yo) # 0 for some (xo, yo) E D x  Dl. I f f  (x, y) = g(x)h(y) 
for all x E D and y E Dl, then for each n E Z+ we have 

thus B(n) = h(yo)/h(nyo) # 0 and 

n-1 

B (n )h (n~)  = (Y) = h(y) for every y E D', 
9(xo) r=, 

therefore 

 YO) h(my0) e(mn) = - . = B(m)B(n) for any m , n  E Zf 
h(my0) h(n(my0)) 

and 
n-1 

= B(n)g (x) for all n E Z+ and x E D.  (1.8) 

Such functions g with D = Dom(g) = [O, 1) or Q n [O, 1) were studied 
by H. Walum [W] in 1991 (where Q denotes the rational field), and 
investigated earlier by H. Bass [B], D. S. Kubert [K], S. Lang [La] and 
J. Milnor [MI in the case B(n) = nl-S where s E @. 

In this paper by R and R+ we mean the field of real numbers and the 
set of positive reals. For a field F we use F* to denote the multiplicative 
group of nonzero elements of F. When x E R, [XI and {x) denote the 
integral part and the fractional part of x respectively, if n E Z+ then we 
write {x), to mean n{x/n). For convenience, we also set 

1 
q(O)=O and q ( z ) = -  f o r z E C * .  

Z 
(1.9) 
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2. SOME EXAMPLES OF UNIFORM MAPS 

For a uniform map f ,  the map f - ( x ,  y) = f (1 - x ,  y) is also a uniform 
map. 

Example 2.1. Two simple uniform maps into the additive group Z  are 
the functions I ,  I+ : C x C + Z  given below: 

1  i f x ~ Z + ,  

0  otherwise. (2.1) 

Another example is the function [ ] : R  x R  -+ Z  defined by 

the identity ~ : z i [ % ]  = [ X I  (for n E Z+) is well known and due to 
Hermite. 

Now we turn to uniform maps into the multiplicative group C*. 

Example 2.2. (i) Define y : C x R+ -+ C* as follows: 

r ( x ) y x / &  if x 4 -N = (0 ,  -1, -2,. . . ), 
yx & otherwise. (2.3) 

When n E Z+ and y  E R+, if x  E C \ - N ,  then by applying Gauss' 
multiplication formula 

with z  = x / n ,  we obtain that 

on the other 

n- 1 

lirn JJ  
x+-m 

r=O 
T#l 

hand, for m = k n  + 1 with k  E N and 1 E R(n), we have 

r ( % ) ( n y ) c  
= lim ~ ( X ) Y ~ I ~ @  

G x+-m r(+)(ny)$/,/= 

1 x-112 r ( x  + m + 1) n>,(x + j ) -  y  
= lim - r~-m* 

&-1 - ( - 1 ) k  
x'-m I?(- + 1) n:=,(+ + j ) - l (ny)  - 2 T ( n y ) - k , / % @  

Thus y  is a uniform map into C*. 
(ii) As r ( z ) r ( l  - z )  = r l s i n r z  for z  4 Z ,  y ( x , y ) y - ( x , y )  = 

( - l ) ' + ( x ~ ~ ) / ~ ( x ,  y) for x  E C and y  > 0, where 

It  follows that the function S : C x @* -, C* is a uniform map into C*. 
(iii) For a ,  8, y E C with Re(?) > Re(a + 8) and y  # 0, -1, -2,. . . , 

we use F ( a ,  p, y,  z )  to denote the hypergeometric series given by 

which converges absolutely for lzl < 1. Let u ,  v ,  w  E C and DU,,,, consist 
of all those ( x ,  y) E C x C* such that x+ t , x +  y , x +  7 4 -N and 
Re(x + 7) > 0. When ( x ,  y) E Du,v,w, by a formula in [Ba] we have 

w h e r e x l = x + ~ , x 2 = x + ~ , x ~ = x + W - U a n d x 4 = x + W - V ; f o r  
Y Y Y 

any n E Z+ clearly (%, ny)  E Du,v,w for all r E R ( n )  (since % + $ = 

I *) and 

n-1 
u v w  

F  -,-,-+- if ( v  x l + r  x + r , ~ )  = U F ( E , - , -  
T =O nY nY nY n r=O nY nY n 

- ( 
u v w  

- n-l Y ( ? ~ ~ Y ) T ( - ) ~ Y )  - Y ( x ~ ~ Y ) ~ ( x ~ ? Y )  = F  -, -, - + x ,  1  - I-I ,(F, n,),,?, ny )  
T =O ~ ( 2 3 ,  yMx4 ,  Y )  Y Y Y  ) .  

1 So the function FU,,,, : DU,,,, + C* given by 

u v w  
Fu,v,w(x,y)=F 

Y Y Y  

~ is a uniform map into C*. 

I Remark 2.1. Since the function S  is a uniform map into C*, we have 

n-1 

= log(2 sin nx) for n E Z+ and x E ( 0 , l ) .  



282 ANALYTIC NUMBER THEORY 

- 
On covering equivalence 283 

In 1966 H. Bass [B] showed that every linear relation over Q among the 
numbers log(2sin nx) with x E Q n (0, I ) ,  is a consequence of the last 
identity, together with the fact that log(2 sin n(1 - x)) = log(2 sin nx) . 
(See also V. Ennola [El.) 

Example 2.3. (i) Define G, H : @ x R+ -+ C by 

and 

We assert that G is a uniform map into @ and hence so is H = G-. 
Let n E Z+ and y > 0. By Example 2.2(i), 

Taking the logarithmic derivatives of both sides we get that 

Thus 

where y is the Euler constant. By a known formula (see, e.g., [Ba]), if 
x E (C \  -N then 

So, for any x E @ \ -N we have 

When x = -a - bn with a E R(n) and b E N, 

n-1 
x + a  

= G (D,ny) - ~ ( x , y )  + lim G ( F , n y )  z-x 
z@ T=O 

= ~ ( - b ,  ny) - G(X, Y) + !$ (G( . z ,~ )  - G (ym)) 
z$= 

(Note that for any v E N we have 

00 1 1 00 U-v 
lim (- - -) = :Z ( m - u ) ( m - v )  = 0. 
21-v m - u  m - v  

m=O m=v+l 

For, if lu - vl < 112 then 

1 ---I= 
m u  m - v  

00 1 1 for m = v + 1, v + 2,. . , thus the series Cm=v+l(m-u - =) (with 
Iu - v< < 112) converges uniformly.) 

(ii) The Hurwitz zeta function ((s, v) is defined by the series 

I for s ,  v E @ with Re(s) > 1 and Re(v) > 0 (or v -N), by Lemma 1 of 
I [MI it extends to a function which is defined and holomorphic in both 
I 
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variables for all complex s # 1 and for all v in the simply connected 
region @ \ (-00, 01. In addition, we set ((1, v) = -G(v, 1). For v E 
@ \ -N, if Re(s) > 1 then 

we also have 

If Re(s) > 1 then 

d 
00 

-C(s, v) = c d(m + = -s<(s + I, v) for all v E c \ -N. 
dv m=O dv 

Whenever s E @ \ (0, I), 

d 
- - ( ( s ,  V) = -s((s + 1, v) for all v E @ \ (-00, O] 
dv 

1 d by analytic continuation. As ( ( 0 , ~ )  = 5 - v, ;i;((O,v) = -1. For those 
v E @ \  -N, we have 

For s E @ we define C, : (@ \ (-oo, 01) x W+ -+ @ by 

Let x E @ \  (-m,0] and y E W f .  Then (1(x, y) = -G(x, Y). If Re(s) > 1 
and n E Z+ , then 

By part (i) and analytic continuation, for any s E @ the function (, is a 
uniform map into C. 

Remark 2.2. (a) In [MI Milnor observed that there is no constant c such 
that 

(b) By [Ba], if x, y > 0 then 

d s x  1 = y - - ( s ,  ) - logy . ((s, x) 
ds S=O ds s=o 

(c) For s E @ \ -N Milnor [MI proved in 1983 that the complex vector 
space of all those continuous functions g : (0,l)  + @ which satisfy (1.8) 
with D = (0 , l )  and 8(n) = nS, is spanned by linearly independent 
functions ((s, x) and ((s, 1 - x) where x ranges over (0, l ) .  

Example 2.4. (i) Let $ be a function into @ with Dom($) @. Let 

I 
Dq denote the set of those (x, y) E @ x @ such that (x + k)y E Dom($) 
for all k E Z and Cklo (mod n) $((x + k)y) converges for any a E Z and 
n E Z+. If (x, y) E D$ and n E Z+, then ( 9 , n y )  E D+ for all r E R(n) 
since ( 9  + k)ny = (x + ( r  + kn)) y, furthermore 

n-1 00 n-1 

C d ( ( T + k ) n y ) = E  d ( (x+ l )y )  
r=O k=-00 T=O k r  (mod n) 

Thus the function 12 : D+ -+ @ given by 

is a uniform map into @. This fact was first mentioned 
[Sul] . 

(ii) Let m E N. We define cot, : C x @* -+ @ by 

(2.9) 

by the author in 
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where cot(")(t) = - for t E C \ nZ, and Bn is the nth  Bernoulli 
number. Fix x E C and y E C*. As 

1 1 1 
n c o t n v =  C - = - + 2 v x -  

v + k  v 
for v E C \ Z, 

k=-00 k=l v2 - k2 

if x 6 Z then 

nm+l cot(,) (nx) = 
" dm 

v=x /'.=I v=x 

and so 

If x E Z and 2 1 m, then cot, (x, y) vanishes and 

If x E Z and 2{m,  then 

So we always have 

By part (i) this implies that cot, is a uniform map into C. 
Let x E (C and y > 0. Clearly 

Also, 

and 

2(1+2 cos2 nx) 
y4 sin4 TX 

if x 6 Z, - - 6 +O0 1 - C ( ~ + k ) ~ '  (2.14) if x E Z, k=-m 

Remark 2.3. In 1970 S. Chowla [C] proved that if p is an odd prime, 
then the 9 real numbers cot 2 n i  ( r  = 1,2, .. . , 9 )  are linearly in- 
dependent over Q,  this was extended by T. Okada [0] in 1980. By 
Lemma 7 of Milnor [MI, there is a unique function g : W + R periodic 
mod 1 for which g(x) = codrn) (nx) = (- l), cot, (x, 1) for x E W \ Z 
and (1.8) holds with O(n) = nm+' and D = W, we remark that g(x) = 
(-l), CO~,(X, 1) for all x E W because cot, is a uniform map into @. 
With the help of Dirichlet L-functions, Milnor [MI also showed that ev- 
ery Q-linear relation among the values g(x) with x e Q, follows from 
(1.8) with O(n) = nm+' and D = Q, and the facts g(x + 1) = g(x) and 
g(-x) = (-l),+lg(x) for x E Q. So, each Qlinear relation among the 
values cot,(x, n )  = . s g ( x )  with x E Q and n E Z+, is a consequence 
of the fact that cot, is a uniform map into C, together with the trivial 
equalities cot,(x + 1, n)  = cot,(x, n) and cot; = (-l)m-l cot,. 

3. CHARACTERIZATIONS OF COVERING 
EQUIVALENCE 

In order to characterize covering equivalence, we need 

Lemma 3.1. Let f be a complex-valued function so that for any n E Z+, 
f (x, n )  is defined and continuous at x E (-oo,l) \ Z, and 

n-1 

f ( n )  = f ( x l )  f o r a i l x <  1 w i t h x 6 Z .  
r=o 

Suppose that 

lim f (x, 1) = oo for each m E N. 
x+-m 



288 ANALYTIC NUMBER THEORY On covering equivalence 289 

Let A = {(A,, a,, n,)}f=, be such a system in  S(@) that 

Then A 8. 

Proof. Since wd is periodic mod [nl,  - - . , nk],  it suffices to show w d ( m )  = 
0 for any m E N. As limx,-, f ( x ,  1)  = oo there exists a 6 E ( 0 , l )  such 
that f ( x ,  1)  # 0 for all x E (-m - 6, -m + 6)  with x # -m. If n E Z+ 
then 

and hence 

1 if n, 1 m - a , ,  
lim 

x+-m 0 otherwise. 

Therefore 

k 
x + a, 

= x+-m lim L E A , /  j ( x ,  1) (-,n,) =o.  
s= 1 n s 

Let's now characterize the covering equivalence of two systems of 
arithmetic sequences. 

Theorem 3.1. Let n,, mt  E Z+, as E R(ns) and bt E R(mt) for s = 
1, . . , k and t = 1, . . , I .  Then the following statements are equivalent: 

for z E @ 

where S, = { l  < s 4 k : z E a,(n,)} and T, = { I  4 t 4 1 : z E bt(rnt));  

where U, = ( 1  4 s 6 k : z E a, + n,W) and V, = ( 1  < t 4 1 : z E 

bt + m t N ) ;  

for u ,  v ,  w E @ with Re(w)  > Re(u + v) and w ,  w - u ,  w - v @ -N. 
(3.5) 

Proof. (3.1) @ (3.2). Let N = [nl, . . . , n k ,  ml , . . , ml]. Set 

Clearly any zero of f ( z )  or g ( z )  is an Nth  root of unity. For each a E Z ,  
e2"iaIN is a zero of f ( z )  with multiplicity wa(-a) ,  and a zero of g ( z )  
with multiplicity wB(-a) .  By Vikte's theorem, we have the identity 
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f ( z )  = g ( z )  if and only if WA = w ~ .  Note that f ( z )  = g ( z )  if and only if 

By comparing the coefficients of powers of z ,  we find that WA = w~ if 
and only if 

for all a = 0, l , 2 ,  . . . . This proves the equivalence of (3.1) and (3.2). 
(3.1) + (3 .3)(3 .4) .  We can view the multiplicative group C* as a 

Z-module with the scalar product (m, z )  H zm. By Theorem 1.1, for 
any z E C we have 

and 

Apparently IS, I = IT' I and IU, I = IV, I. If n E Zf , a E R(n) and 
z E a ( n ) ,  then -7 = 2-0 - n - [;I. Therefore (3.3) and (3.4) follow. 

(3.3)+(3.1), and (3.4)+(3.1). For n E Zf and x E (-oo, 1)  \ Z ,  we 
put 

Let j E { I ,  2). Then limx,-, f j ( x ,  1)  = oo for all m E N. Let n E Z+. 
Then f j ( x ,  n)  is continuous for x E (-oo, 1 )  \ Z. When x < 1 and x 6 Z ,  

and 

k 1 
x + a  n (2sin n ~ )  - n ( 2  sin n- 

s= 1 n s t=l mt 

for x E (-oo,1) \ Z ,  or 

for x E (-oo, 1)  \ Z ,  then 

k 1 

f j  (2+a,,nS) -x 
s=l n s t=l 

therefore ( ( 1 ,  a l ,  n l ) ,  . . . , 

for j = 1 or 2 we have 

f j  ( )  = 0 for a l lx  < 1 w i t h i  B Z ,  

by Lemma 3.1. So, each of (3.3) and (3.4) implies (3.1). 
(3.1) + (3.5). Let u ,  u ,  w be complex numbers with Re(w) > Re(u+u) 

and w, w - u, w - u 6 -W. By Example 2.2(iii), Fu,v,w is a uniform map 
into the multiplicative group C*. Note that ( 0 , l )  E Du,v,w. Since A - B, 
applying Theorem 1.1 we get that 

(3.5) + (3.1). Let x E W \ Z .  By a known formula in [Ba], if n E Z+ 
and a E R(n) then 
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So, by (3.5) we have 

Note that r ( l  + z) = zr(z)  = z(z - 1 ) .  - - (2 - n)r (z  - n) for n E N and 
z @ Z .  Let m E N. Then 

n lgsSk r (y) 
- - nslm-as . . 

n l<t<l  r (e) 
mt lm-bt 

Letting x + -m we obtain from (*) and (*) that 

Thus (x + m ) w ~ ( m ) - w ~ ( m )  tends to a nonzero number as x + -m. This 
shows that wA(m) = wB (m). We are done. 

Remark 3.1. (a) When (3.1) holds with n l  . . . < nk-1 < nk and ml  6 
6 ml, by taking c = l / nk  in (3.2) we obtain that l / nk  = CtE l /mt  

for some J C_ (1,. . . ,1) and hence nk 6 ml. From this we can deduce 
that if A = {as(ns)};=, and B = {bt(mt)}:=l are equivalent systems 
with n l  < < nk and ml  < < ml then A = B (i.e. k = 1, ns = m, 
and a, = bs for s = 1, . . . , k), this uniqueness result was discovered by S. 
K .  Stein [S] in a weaker form and presented by Zndm [Z2] in the current 
form. When B = {bt(mt)}f=l is the system of m copies of 0(1), the right 
hand side of the formula in (3.2) turns out to be 

C (-1) 
i f c = n  forsomen=O, l ; - .  , m ,  
otherwise. 

1 - 
P 
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Thus (1.1) forms an exact m-cover of Z if and only if 

and 

1 
for any J {I, , k} with - $ Z. 

s E  J ns 

For connections between covers of Z and Egyptian fractions, the reader 
may see [ S U ~ ] ,  [ S U ~ ] ,  [SU~] ,  [ S U ~ ] ,  [SU~] .  

(b) By the proof of '(3.3)+(3.1)' and '(3.4)+(3.1)', (3.1) is valid if 
the formula in (3.3) or (3.4) holds for any z E (C \ Z. Thus (3.1) has the 
following two equivalent forms by analytic continuation. 

k 1 
bt - z 

2'-' JJ sin.- as -' - - for all z E (C; 
n s 

( t )  
s=l t=l 

That (t)  implies (3.1) was first obtained by Stein [S] in the case B = 
{0(1)}; the converse in general case was noticed by the author in 1989 
as a consequence of theorems in [Sul], when B = {bt (mt)}f=l is simply 
{0(1)} it was found repeatedly by J. Beebee [Bell in 1991. That (3.1) 
implies (4)  is essentially Corollary 3 of Sun [Sul] which extends the Gauss 
multiplication formula, the converse was mentioned in [Sul] as a conjec- 
ture. By the above, (1.1) is an exact m-cover of Z (i.e. A - {(m, O,l)}) 
if and only if 

k n (r (2) rise-') = ( 2 7 r ) v r ( ~ ) ~  for all z E (C \ -N. (3.6) 
s= 1 
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Consequently, if (1.1) is an exact 1-cover of Z with a1 = 0,' then 

for z # 0,-1,-2, . . . ,  i.e., 

(by Theorem 3.1 we directly have nL2 r ($)n~s~ns-112 = ( 2 ~ ) ( ~ - l ) / ~ n ; ~ / ~ ) .  
In 1994 Beebee [Be31 showed that the relative formula (3.7) holds for any 
exact 1-cover (1.1) of Z, as we have seen this was actually rooted in [Sul] 
published in 1989. The new contribution of [Be31 is that if (3.7) holds 
then (1 . l )  must be an exact 1-cover of Z, however we have a simpler 
equivalent form ($) of (3.1). 

Now we give 

Theorem 3.2. For every s = I , . . .  , k we let As E @, n, E Z+ and 
a, E R(ns). Then the following statements are equivalent: 

A = {(AS, as, ns)}%, - 0; (3.8) 
(t) (t) Xi Xj  

for t = 1 ,2  (3.9) 
s=1 l<i<j<k 

where Xi1) = ReX, and Xi2) = Imh, for any s = 1, . . , k; 

where m is an integer prime to the moduli nl ,  . . . , nk; 

where rn is a nonnegative integer and cot$m) is as i n  Example 2.4(ii); 

k 
+ at = o for all z E c \ (-M, 01 (T nt) 

where s is a complex number not i n  -N and Cs is as in Example 2.3(ii). 

Proof. (3.8) H (3.9). For t = 1,2 and N = [nl , .  , nk] we can easily 
check that 

So (3.8) and (3.9) are equivalent. 
(3.8) o (3.10). Let B = {(A,, bs, ns)}Ll  where bs is the least nonneg- 

ative residue of ma, mod n,. As m is prime to N = [nl , .  . . , nk], any 
integer z can be written in the form mu + Nv (with u, v E Z) and hence 
wa(z) = ws(mu) = wd(u) . Thus I3 - 0 if A - 0. Clearly f (x, y) = x- 4 
and g(x, y) = f (x, y) - [ ](x, y) = {x) - $ over R x R are uniform maps 
into R. If d - 0 and x E R, then 

If (3.10) holds, then so does (3.8), because for any x E Z we have 

ma, - mx] [ma, -nyx - 11) 
wd(x)=  ns - 

l < s < k  

(3.8) o (3.11). Since cot, is a uniform map into @, (3.8) implies 
(3.11) by Theorem 1.1. By Example 2.4(ii), 

+m m ! 1 
cot,(z, 1) = - Tm+ 1 C (k + z),+' for z E @ \ Z. 

k=-00 

Obviously cot,(z, 1) + oo as z tends to an integer. If n E Z+, then 
cot, (z, n)  = cot,(z, l)/nm+' is continuous for z E @ \ Z. In the light of 
Lemma 3.1, (3.11) implies (3.8). 
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(3.8) * (3.12). By Example 2.3(ii), C, is a uniform map into @. So 
(3.12) is implied by (3.8). 

As s # 0, -1, -2,. . , by Example 2.3(ii) we have 

d d 
-C(s, v) = -s((s + 1, v), -C(s + 1,v) = (-s - 1 ) q s  + 2, v), . 
dv dv 

in the region @ \ (-m, 01. Let m = [2 - Re(s)] if Re(s) < 1, and m = 0 
if Re(s) > 1. Put S = s + m. Then Re(3) > 1 and 

dm 
-C(s, V) = n (-s - j) . C(s, V) for v E @ \ (-m,O]. 
dvm O<j<m 

If n E Z+ and a E R(n), then 

for z E @ \ (-m,O]. 

Apparently C3(z, 1) = ((3, z) + m as z tends to an integer in -N. 
Let's assume (3.12). Then 

for z E @ \ (-m,O], and hence by analytic continuation 

Applying Lemma 3.1 we then get (3.8). 
So far we have completed the proof of Theorem 3.2. 

Remark 3.2. In the case m = 1, that (3.8) implies (3.10) was first 
realized by the author [Sul] in 1989 and later refound by Porubskf [P4] 
in 1994. If (3.8) holds, then the formula in (3.10) in the case m = 1 
and x = [nl, . . , nk] yields the equality ~ f = ~  2 = 0. In 1989 the 
author [Sul] obtained Theorem 1.1 and noted that f (x, y )  = $ cot s x  
over (@ \ Z) x @* is a uniform map into (C, thus for any exact 1-cover 
(1.1) we have 

k 
1 k z + as 1 z + as - cot (s-) = cotsz  and - csc2 (sT) = csc2(sz) 

s=1 n s ns s= 1 n: 
for all z E @ \ Z, this was also given by Beebee [Bell in 1991. 

Corollary 3.1. Let (1.1) be a finite system of arithmetic sequences, and 
m a positive integer. Then 

(i) (1.1) forms an exact m-cover of Z i f  and only if 

k 1 - m(m - 1) 
c $ = m  and c m- 2 '  (3.13) 
s=l l<i<j<k 

(ni,nj)lai-aj 

also (1.1) forms an exact m-cover of Z i f  and only if 

k IC a + na, (k - m)(n - 1) cl=m and c[_] = a m +  for a E R(N) 
n s s= 1 2 s =  1 

(3.14) 
where n is any fixed integer prime to N = [nl, . - . , nk]. 

(ii) S q p x e  that (1.1) is an m-cover of Z. Then 

k 

n;" ( s ,  Z+UL) ) m((s, x) for s > 1 and x > 0, 
t = l  nt 

and for any n E Z+ we have 

Proof. Let A= { ( l , a l , n l ) , . . .  , ( l ,ak,nk) , (-m,0,1)}.  
i) Clearly A = {a, (n,))t,l forms an exact m-cover if and only if 

A -. 0. If A -. 0, then zfzl l ln ,  - m = 0 by Remark 3.2. (That 

~ f = ~  l l n ,  = m for any exact m-cover (1.1) is actually a well-known 
result, it can be found in [P2].) 

By the equivalence of (3.8) and (3.9), A -. 0 if and only if 

Under the condition l /ns  = m, (A) reduces to the latter equality 
in (3.13). So, A N 0 if and only if (3.13) holds. 

- 
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By Theorem 3.2, A - 0 if and only if for all x E Z we have 

Any integer x can be written in the form a + q N  where a E R(n) and 
q E Z, thus the last equality holds for all x E Z if and only if (3.14) is 
valid. This ends the proof of part (i). 

ii) As wA(x) 2 m for all x E Z, wd(x) 2 0 for any x E Z. Obviously 
A - {(wd(r), r, ~)}:=jl. When s > 1 and x > 0, by Theorem 3.2 

therefore 

Z+T -S since <(s, 9) = C Z o ( j  + T) > 0. 
By Example 2.4(ii), 

(2n - I)! +00 
(x, N )  = 

1 
(rrN)2" .C ( j  + x)2n 

> O  f o r a l l x ~ W .  
3=-00 

As in the last paragraph, now we have 

k 
x + as 

C ~ o t 2 ~ - 1  ( T , n s )  - m ~ o t ~ ~ - ~ ( x , l )  2 O for any x E W. 
s=l 

Clearly this is equivalent to (3.16). We are done. 

Remark 3.3. (3.16) in the case n = 1 gives the following inequality: 

1 x + a, m csc2 (rrx) i f x ~  R \ z ,  

l < s < k  
g (m - C l<,<k 5 )  if x E Z. 

x+aa$!naZ nalx+aa 

Let A = {(A,,as,ns)}~=l E S(C) and z E C. For 

we have 

where Bn(x) is the Bernoulli polynomial of degree n. So, A - 0 if and 
only if 

k 

x A s n r 1 ~ ,  (F) = 0 for all n = 0 ,1 ,2 , . . .  . 
s= 1 

For the system B = { ( l , a l , n l ) ,  . - .  , ( l , ak ,nk ) ,  (-m,O, 1)}, this was 
proved by A. S. Fraenkel [Fl], [F2] in the case m = 1 and z = 0, by Bee- 
bee [Be21 in the case m = 1, and by Porubskf [P2] in the case m € Z+ 
and z = 0. See also Porubskf [Pl], [P3] and Zniim [Zl] for the case 
z = 0 with the weights 1 in B replaced by real weights. In 1994 Porubskf 
[P4] essentially established the above general result. However, before the 
works of Beebee [Be21 and Porubskf [P4], in 1989 the author [Sul] proved 
Theorem 1.1 and observed that the function bn(x, y) = yn-' Bn(x) is a 
uniform map into C for each n E N. In 1988 D. H. Lehmer [Le] showed 
that Bn(x) is the only monic polynomial of degree n such that 

For any n E N clearly 

Thus A - 0 if and only if 

In 1991 E. Y. Deeba and D. M. Rodriguez [DR] found this for the trivial 
system { ( l ,O ,d ) , ( l , l , d ) , - . .  , (1,d-l,d),(-l,O, 1)) whered E Z+, later 
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Beebee [Be21 obtained the result for system D with m = 1, and Porubskf 
[P5] observed the generalization to A E S(R). 

For the covering equivalence between systems in S(R), Porubskf [P5] 
provided some characterizations involving Euler polynomials and recur- 
sions for Euler numbers. 

In [Su2] the author announced several results closely related to this 
paper, proofs of them are presented in a recent paper [Sug]. 
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CERTAIN WORDS, TILINGS, THEIR NON- 
PERIODICITY, AND SUBSTITUTIONS OF 
HIGH DIMENSION 

Jun-ichi TAMURA 
3-3-7-307 Azamino Aoba-ku Yokohama 225-001 1 Japan 

Keywords: automaton; higher dimensional substitution, word, and tiling; non- 
periodicity; padic  number 

Abstract We consider certain partition of a lattice into c (1 < c 5 m) parts, and 
its characteristic word W(A; c) on the lattice, which are determined 
uniquely by c and a given square matrix A of size s x s with integer en- 
tries belonging to a class (Bdd). We give a definition of substitutions for 
s-dimensional words in a general situation, and then, define special ones, 
and automata of dimension s together with their conjugates. We show 
that the word W(A; c) can be described by iterations of a substitution 
for A belonging to a subclass of (Bdd). The hermitian canonical forms of 
intcgcr rni~tricos pli~y an important role in some cases for finding substi- 
tutions. Wc: givct $1 thcorerri which discloses a padic  link with hermitian 
canonic:al forms. Wc givc two dcfinitions for periodicity: Q-periodicity, 
and X-pcriodic:it.y, both for words and for tilings of dimension s .  The 
non-X-~c:riodic:it,y st.rongly rctqrrircs non-periodicity, so that  it excludes 
sornct non-poriotlic: wortls in t l ~ c  ~lsual sense. We also consider certain 
Voronoi I,(:ss(:~~~LI.~oIIs c:o~r~ir~g frorr~ s word W(A; c). We show that some 
of tllo wortls W(A; c ) ,  iml  t,hc tcssctllations are non-C-periodic. 

0. INTRODUCTION 
In this papcr, we intend to give proofs for Theorems 1-5 reported 

without giving proofs in [3]. For completeness, we repeat all the defini- 
tions and remarks given there, and correct some errors*. 

'The author would like to express his deep gratitude to World Scientific Co. Pte. Ltd., who 
returned the copyright of [3] to him. 

--.- 
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For any integers c > 1, d > 1, there exists a unique partition 

0 

U d3r+ = N \  {0) 
O$j<c 

0 

of the set of positive integers into c parts, where U indicates a disjoint 
union, m r  := {mn; n E I?), N is the set of non-negative integers. Then 
the word W = ~ 1 ~ 2 ~ 3  - - . over 

Kc := {0, 1 ,2 , .  . . , C  - 1) 

defined by w, := j (n  E d j r )  becomes a non-periodic word, which is the 
fixed point of a substitution o over Kc given by o( i )  := od-' (i + 1) (0 q 
i < c - 1), o(c  - 1) := od, cf. [2]. We can consider an s-dimensional 
version of ( I ) ,  that is 

where Z is the set of integers, I? is a subset of ZS, A is an s x s matrix 
with integer entries, A~I '  is a set {Ajx; x E T), o := (0, . . . ,0)  E Zs, 
and the "T" indicates the transpose. We also consider (2) with c = m ,  
which becomes a partition of the lattice into infinite parts. We define a 
word W for a partition (2): 

W = W(A;c) = (wx)xEZs E K:', wx := j if x E A~I '  (w0 := m ) ,  

where 
K ~ : =  K C u { m )  for 1 < c q  oo (K, :=N).  

The word W(A;c) will be referred to as the characteristic word of a 
partition (2). 

We remark that a set I' satisfying (2) can be considered as one of the 
discrete versions of a self-similar set for regular matrix A. For any given 
1 < c <= m, the partition (2) with s = 1 exists and uniquely determined 
by numbers c, a if and only if A = (a), a E Z \ (0, *I). Note that, in 
the case of s = 1, we get (1) (resp., (2)) from (2) (resp., (1)) by setting 
I'+ = r n N (resp., r = r+ u (-r+)) .  Hence, we get nothing new for 
s = 1. But, the situation for s > 1 turns out to be quite changed from 
that for s = 1. For instance, if s > 1, for some matrices A having an 
n-th root # 1 as their eigenvalues, partitions (2) do exist, but are not 
uniquely determined; while a partition (2) is uniquely determined even 
for some singular matrices A. In such a singular case, we can consider 

also partitions (2) with ZS in place of ZS \ (0 ) .  So, there appear some 
new phenomena that do never occur in the case of s = 1. Among them, 
Theorem 6 related to p-adic numbers may be of interest. 

The main objective of this paper is to investigate words and tilings 
of higher dimension, and their non-periodicity together with its new 
definitions. We give a definition of substitutions for words of dimension 
s in a general situation, and then, define special ones together with 
their conjugates, and automata of dimension s.  We describe the word 
W(A; c) (1 < c < m) by a substitution of dimension s for A belonging 
to a class of matrices. We give new definitions for non-periodicity for 
words, and tilings of dimension s.  One of them requires non-periodicity 
in a very strong sense. We shall see that some of the words W(A; c) are 
non-periodic in the strong sense. 

We deote by M(s;  Z) the set of matrices of size s x s with integer 
entries; by Mr(s; Z) (resp., GL(s; Z)) the set of matrices A E M(s ;  Z) 
with det A # 0 (resp., det A = f 1). We say that a matrix A E M(s;  Z) 
satisfies a condition (P(c)) (resp., (P,(c))) if a partition of the form (2) 
exists (resp., if a partition exists and it is uniquely determined); we mean 
by A E (P) that A satisfies a condition (P) .  

We consider (2) for regular (resp., singular) matrices A in Sections 1, 3 
(resp., Section 4). We shall give some necessary and sufficient conditions 
for (P,(c)) in Theorem 1, and in Theorem 2, we give a necessary, and a 
sufficient condition for (P,(c)) in terms of characteristic polynomials. In 
Section 2, we define s-dimensional substitutions, and automata together 
with their conjugates, and give a class of matrices A such that the word 
W(A;c) can be described by a limit of iterations of a substitution of 
dimension s, cf. Theorem 3. We give some examples of Theorem 3 in 
Section 3, where we consider only regular matrices. In Section 3, the so 
called hermitian canonical forms of integer matrices play an important 
role. Examples of partitions (2) with singular matrices A will be given 
in Section 4. In Section 5, we give two definitions for non-periodicity. 
One of them strongly requires non-periodicity. We also consider certain 
Voronoi tessellations cc.rn;ng from a word W(A; c). We show that some 
of the words W(A; c), and the tessellations are non-periodic in our strong 
sense, cf. Theorems 4-5. i l l  Section 6, we give some problems and con- 
jectures together with Theorem 6, which shows a beautiful connection 
between hermitian canonical forms and p-adic numbers. We shall give, 
in a forthcoming paper, the proof of Theorem 6 together with a theorem 
on a higher dimensional continued fraction in the p-adic sense. 
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Remark 1. Let us suppose A E (P(c)). Then, setting A := u-'I' for a 
unimodular matrix U E GL(s; Z), we have by (2) 

Hence, A E (P(c)) (resp., A E (P,(c))) implies U-'AU E (P(c))  (resp., 
u-'Au E (P,(c))), and vice versa. This fact can be applied also for a 
singular matrix A. 

1. THE CONDITION P,(c) 

In this section, we suppose A E MT(s; Z), s 2 1; we denote by L, the 
set ZS \ {o). 

Lemma 1. Let there exist a partition (2) for a matrix A E MT(s; Z) 
with 1 < c < oo, r 3 S. Then 

Proof. The assumption of the lemma implies AjT > AjS for all 0 2 j < 
c. Suppose that an element x E ACS belongs to a set A j r  with 0 < j < c. 
Then 0 < c- j < c, so that A-jx E A-j(AcS) = AC-jS c Ac-jr, which 
contradicts A-jx E A-j(AjI') = T. Hence, we get 

so that A j - T  3 Aj-C(AcS) = AjS for all c 2 j < 2c. Suppose that 
an element x E AZCS belongs to a set AjI' with 0 < j < c. Then 
c < 2c - j < 2c, so that A-jx E A-j(AZCS) = AZc-jS c Ac-jI' (0 < 
c - j < c), which contradicts A-jx E A-j(Ajr) = I?. Hence we get 

Repeating the argument, we get the lemma. rn 

Lemma 2. Let there exist a partition (2) for a matrix A E MT(s;  Z) 
with 1 < c < CQ, x E I' such that A-nx E L, for all n E N. Then 
r > {ACmx; m E Z). 

Proof. We put x, := Anx (n E Z). Lemma 1 implies r 2 {x,,; m E N), 
so that 

A~I '  3 {xnncj; m E N) for all 0 2 j < C. (3) 

Suppose x-, E AjI' (m 2 0) for an integer 0 < j < c. Then 

Hence, by Lemma 1, we get 

xC-j = xc(m+l)-m-j E I? with 0 < c - j < C, 

which contradicts (3). Therefore, we obtain x-, E I' for all m 2_ 0, 
which together with Lemma 1 implies Lemma 2. 

We consider two conditions (Bdd), (Emp) on A: 
(Bdd) The set {j E N; A-jx E ZS} is bounded for any x E L,, 
WP) nos,,, - A.L. = c 

Theorem 1. The condition (Bdd) holds if and only if one of the con- 
ditions (Ernp), (P,(2)), (P,(3)), . . ., (P,(m)) holds. 

Corollary 1. The conditions (Pu(2)), (P, (3)), . . ., (P,(m)) are equiv- 
alent. 

Proof of Theorem 1. Following a diagram 

(Emp) & (Bdd) 8 (P,(c)) (1 < c j w ) ,  

not (Bdd) 3 not (P,(w)), not (Bdd) 9 not (P,(c)) (1 < c < m), 

we prove the theorem according to the number (i-iv) : 

(i) We denote by xC for X c L, the complement of X in L,. Since 
A-mx E ZS implies A-,z E ZS (Vn < m), we have 

A-nx $ ZS (3n E N) + A-mx $ ZS (Vm > n). (4) 

Hence, noting 

(Emp) ej U (A"L , )~  = L, e=, L, c U (A"L, )~  
Osn<oo O$n<oa 

-Vx E L, 3n E N such that x E (A"L, )~  

e j V x  E L, 3n  E N such that x $ AnZS 

-Vx E L, 3n E N such that AWnx @ ZS, 

we get the equivalence (Emp) (Bdd) . 
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(ii) We suppose (Bdd). Then, we can define a map ind A by 

ind A : ZS -) N U {oo), 

ind A(X) := min{n E W; A-"-'x $ ZS) ( x  E L,), 
ind A(o) := oo. 

Note that (4) implies 

A-"x E Zs (n 2 ind ~ ( x ) ) ,  A-"x $ ZS (n > ind ~ ( x ) ) .  

We put 

Sn =Sn(A) := {X E Ls; indA(x)  2 n), 

Tn =Tn(A) := Sn \ Sn+l = {X E Ls; ind A(X) = n), n 2 0. 

The condition (Bdd) implies 

Since 

we get 
A ~ T O  = T ,  (0 j j < 00). 

Setting 
I'= U Tcj ( c < m ) ,  r = T o  (c=oo) ,  

O~j<oc 

we have a partition (2). We show the uniqueness of the partition. It is 
clear that (2) implies r > To. First, we assume (2) with c = m. Then 
I' > To implies Anr  3 AnTo = Tn for all n 2 0. In view of ( 5 ) ,  we must 
have 

AnI' = Tn 

for all n 2 0, since (2) is also a disjoint union. Secondly, we assume (2) 
with c < oo. From Lemma 1 together with (6), it follows 

so that 

Therefore, we get by (2), (5) 

which says the uniqueness. 

(iii) We assume that (Bdd) does not hold, i.e., there exists an element 
xo E Ls such that A-nxo E ZS for all n 2 1. We put 

and consider two cases: 
(a) The sequence { x ~ ) ~ ~ ~  is periodic, i.e., xo = xk for some 

k E Z \ (0). 
(b) The sequence { x , ) , ~ ~  is not periodic, i.e., xo # xk for all 

k E Z \  (0). 
We suppose (a). We may assume that the number k is chosen to be 

the smallest positive number satisfying xk = xo. Then s o  E AjI' ( j  2 0) 
implies xo E AkfjI', so we can not have a partition (2) with c = oo. We 
suppose (b) and that there exists a partition (2) for c = oo together with 
x0 E AjI' for an integer j >= 0. Then x-j  E I', so that 

for all n 2 0. Now, consider an element of x-j- 1, which can be supposed 
to be an element of AmI' for an integer m >= 0. Then 

which contradicts x.-j E I' = AOI'. 

(iv) We assume that (Bdd) does not hold, and that there exists a 
partition (2) for 1 < c < oo. We consider two cases (a), (b) as in the 
proof (iii). First, we suppose (b). Then, setting 

r(') := (I' \ X) u {xi+-; m E Z), X := {z,; rn E Z), 

we obtain by (2) 
0 
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for all i E Z: which says that we can not have the uniqueness of the 
partition (2). Secondly, we suppose (a). If xi E A~I '  (i 2 0) for an 
integer 0 5 j = j ( i )  < c, then xi-j E I?. Hence, by Lemma 2 we get 
xi+, = Aj(x,+i-j) E AjI', m E Z. Hence, xi, and xj belong to the 
same set A ~ I '  (0 5 h < c) if and only if i I j (mod c). In view of (a), 
we have x k  = xo, so that k must be a multiple of c. Hence, we obtain 
partitions (7) with I'(') given above for all 0 5 i < c. Therefore, noting 
I'(4 # ~ ( j )  for integers i,  j satisfying 0 5 i < j < c, c > 1, we can not 
have the uniqueness of the partition (2). 

By the proof of Theorem 1, we get the following 

Corollary 2. Let (2) have a unique solution I'(c L,). Then the matrix 
A satisfies (Bdd), and 

A~I '  = U T,+,(A) (0 5 j < c) for c < co, 
O$m<oo 

A'I' =Tj (A) (0 5 j )  for c = 00. 

holds. 

In some cases, for a given matrix A, it is not so easy to conclude 
whether A satisfies the condition (Bdd). We aim at giving a class (K) 
of matrices such that we can make sure of the implication A E (K) + 
A E (Bdd) . 
Lemma 3. Let Ai E MT(si;Z) (1 5 2 5 t) be matrices satisfying the 
condition (Bdd), and T a matrix 

Let A E MT(s; Z) ( s  = sl + - + s t )  be a matrix given by A = UTU-' 
with a matrix U E GL(s; Z). Then A also satisfies (Bdd). 

Proof. We may assume s > 1. It  suffices to show the lemma for t = 2. 
Changing the basis of ZS as a Z-module if necessary, we may assume 
that T is an "upper triangular" matrix. Then, we can write 

By induction, one can show 

We get the equivalence: 

A 4 ( ~ d d )  o u - ~ A U  4 ( ~ d d )  

o 32 E ZS1, 3 y E  ZS2 ~ i t h ~ ( ~ x , ~ y )  # o &  

u-'A-"u (Tx,Ty) E ZS for Vn E N. 
p - n X  - ( P - ~ Q R - ~  + p - n + 1 ~ ~ - 2  + . . . 
+ P - ~ Q R - " ) ~  E zS1 & 

RWny E ZS2 for Vn E N. 

Hence, noting that 

we obtain 
A 4 (Bdd) + P 4 (Bdd), or R 4 (Bdd), 

which implies the lemma. rn 
We denote by QA(x) the characteristic polynomial of a square matrix 

A, by Q the set of rational numbers. 

Lemma 4. Let A E MT(s; Zt) be a matrix such that 1 det A1 > 1, and 
QA(x) is irreducible over Z[x]. Then A satisfies (Bdd). 

Proof. Since QA(x) is irreducible, so is F(x)  := QA-1 (2). We may sup- 
pose that a = al, . . . , at (t > 1) are simple roots of F(x) ,  which are the 

(n) conjugates of a root a # 0. We put A-" = (aij )15i,jst. By Cayley- 
(n) Hamilton's theorem, {aij }n=1,2,.. becomes a linear recurrence sequence 

with F (x )  as its characteristic polynomial for each 1 5 i 5 t ,  1 <= j 5 t ,  
so that 

(k)  holds for all n E Z, where Xij are numbers independent of n ,  be- 
longing to the splitting field K := Q(a l ,  . . . , a t )  of F (x). Then, for 

T 5 = (XI, ..., xt) E Z t \  {o), 
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where V := n l < j < i < t ( ~ i  - a j )  # 0, and NwQ(a) is the norm of a over - - 
Q* 

Now, we suppose that xn  E Zt for all n 2 0. Then 

follows. By the assumption of the lemma, we have 

Hence, from (8), (9), it follows det A = 0, so that 

holds for all n. The matrix A-'(E GL(t; 0)) gives rize to a linear trans- 
formation over Q on the linear space Qt. Since xo = x # o, 

follows, where (xo, XI ,  . . .) denotes the linear subspace of Qt generated 
by elements xo, XI ,  . . . E Qt. Since det (xo, XI ,  . . . , ~ t - ~ )  = 0, there 
exists an integer 1 2 i 5 t - 1 such that 

Multiplying the both sides of the equality obtained above by Awl,  we 
get 

where 4, ci , . - . , d,-l E Q. Repeating the argument, we see that 

for all n 2 0. Therefore, we obtain 

We may suppose y l  = xi,, . . . ,y ,  = xi, form a basis of the space 
( so ,  X I , .  . .). Extending the basis to a basis of Qt, we may assume that 

is a basis of Qt . Since (xo, x 1, . . .) is an invariant space, considering the 
linear transformation A-' with respect to the basis y l ,  . . . , y,, z l ,  . . . , I,-,, 
we can find S E GL(t;Q) such that 

which contradicts the irreducibility of F(x) .  

Lemmas 3-4 imply the assertion (ii) in the following theorem. 

Theorem 2. (i) Let A E MT(s; ZS) be a matrix satisfying the condition 
(Bdd). Then A has no algebraic units as its eigenvalues. 

(ii) Let A = UTU-' E MT(s; Z) ((I E GL(s; Z)) be a matrix having 
no units as its eigenvalues with T given by 

such that all the characteristic polynomials aA,(x) are irreducible over 
Z[x]. Then A satisfies the condition (Bdd). 

Proof of (i). Let A E (Bdd). Suppose that A has an algebraic unit E 
1 as an eigenvalue. Then we can choose a factor g(x) = xu + g,-1 + 

- . + g l x + g o  E Z[x] of QA(x) such that 

Notice that deg h(x) >= 0. Let cpA (x) be the minimal polynomial of A, 
and ei(x) (1 5 i 5 s, ei+i(x) is divisible by ei(x) (1 5 i 5 n - 1)) be the 
elementary divisors of the matrix XE - A. Then aA(x )  = el (x) . . es(x), 
and pA(x) = e,(x), so that any irreducible factor of a A ( x )  is a factor 
of cpA(x). Hence, h(x) is not divisible by cpA(x). Therefore h(A) # 0, 
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so that there exists a lattice point x E h(A)ZS such that x # o. Since, 
g(A)x = o, we get 

which contradicts A E (Bdd). rn 
In what follows, A(A) denotes the set of eigenvalues of a square matrix 

A. 

Remark 2. A E M,(s; Z) with 1 2 s 5 3 satisfies (Bdd) if A(A) contains 
no algebraic units. 

Sketch of the proof. If s = 1, it is trivial. We may assume that @ A  
is reducible. If s = 2, or = 3, then by the reducibility of QA,  we may 
assume a E A(A) n Z, la1 > 1. For s = 2, we can take an eigenvector 
x = (xl, x2) E Z2 satisfying GCD(xl,x2) = 1. Then we can choose 
y E Z2 such that U := ( x  y)  E GL(2; Z). Then U-'AU = T turns out 
to be of the form as in Theorem 2 with sl = s 2  = 1, so that A E (Bdd). 
For s = 3, we can choose an eigenvector x = (xl,  1 2 ,  13) E Z3 with 
GCD(xl ,x2, x3) = 1. Applying a modified Jacobi-Perron algorithm, we 
can find y ,  I E Z3 such that U := (I y I) E GL(3; Z). The first column 
of U-' AU is (a, 0,O). Using Lemma 3 together with the result for s = 2 
that we have obtained, we get A E (Bdd). rn 

2. SUBSTITUTIONS OF HIGH DIMENSION, 
AND AUTOMATA 

We shall give a definition of substitutions of high dimension in a gen- 
eral situation, and then define substitutions of a special form. - 

An element W of a set K~ (K # 4) for a subset X of a lattice 
L := P(ZS) ( P  E GL(s; W)) will be referred to as a word over K o n  
t h e  set X ,  and we write X := Dorn (W). The matrix P will be fixed, 
and we shall mainly consider the case where P = E. It is convenient, 
and natural to think that the set Kd consists of one element for the 
empty set 4. We denote by X the element of K4, which is referred to as 
the empty word. If K = {a) and X = {x) (a E K ,  x E L), the set K~ 
also consists of one word, which will be referred to as an atomic word, 
and denoted by (a, x).  We say that W is a finite (resp., infinite) word 
if Dorn (W) is a finite (resp., infinite) set. We say two words Wl, W2 
over K are collative if they agree on Dorn (Wl) n Dorn (W2) as maps. 
If Wl and W2 are collative words over K ,  then we can define a word 

Wl V W2 over K on Dorn (Wl) U Dorn (W2) by 

(Wl v W2)(x) := Wl(x) ( x  E Dorn (Wl)), := W ~ ( X )  ( x  E Dorn (W2)). 

We call W1v W2 the join of Wl and W2. It  is clear that WVX = X V  W = 
W holds for any W, and the join operation V satisfies the associative, 
the commutative, and the idempotent laws. Note that Wl v W2 is not 
always defined, so that uxcLKX does not form a monoid with respect 
to the join operation if the cardinality of K is bigger than 1. If any 
two of finite, or infinitely many words WL (L E I )  are collative, then 
we can define the join VLEI WL. Notice that the cardinality of the index 
set I can be continuous. Notice also that Wl and W3 can be non- 
collative even if Wl, W2 are collative and so are W2, W3. For any 
W = ( 2 ~ ~ ) ~ ~ ~  E K ~ ,  W = VZEx (w+, x) holds. We mean by a subword 
of W E K X  a restriction V of W as a map, and we write V i W .  We 
denote by Sub (W) the set of all subwords of W. Sub (W) becomes a 
monoid having X as its unit with respect to the operation V. We say 
Z(C u ~ ~ ~ K ~ )  is generative set (of words) if WL E B (L E I) are 
mutually collative then vLEIWL E S, and if VLEIWL E B then WL E E 
(L E I).  For instance, Sub (W) (W E K ~ ) ,  and 

Gen(K,X) := U Sub(W) = U K~ (X  c L) 
WEKX YCX 

are generative set. For a word W = ( w ~ ) ~ ~ ~  E KX and t E L, W T t 
denotes the word ( w ~ + ~ ) ~ ~ ~  E K ~ + ~ ,  the translation of W by t .  If 
there exists t E L such that Wl t = W2 for two words Wl, W2 E 
Gen (K, L), we write Wl W2, which gives an equivalence relation 
on Gen (K, L). Let H be a generative set consisting of some words in 
Gen (K, L). We say that a map 0 : B --+ B is a substitution (over K on 
X := UwE= Dorn (W)) if it satisfies the following two conditions: 

(i) additivity: If W, E B (L E I )  are mutually collative, then so are 
a(WL) (L E I ) ,  and 

holds. 

(ii) context  uniformity: For any a E K, we can find a finite word 
F = F(a)  E Gen (K, L) independent of x satisfying that there exists an 
element t = t(a, x )  E Dorn ( ~ ( ( a ,  2) ) )  such that 
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holds for all x provided that (a, x )  E E. 

We remark that K can be an infinite set. Notice that a substitution - a : 3 --+ E is determined only by the values a((a ,  x ) )  for all (a, x )  E 
E. Notice also that for any generative E, the identity map on E is a 
substitution; so that any word W can be a fixed point of some trivial 
substitutions on Sub (W). 

Our main objective in this section is to describe the characteristic 
words W(A; c) (1 < c 2 oo) of some of the partitions given by (2) as a 
limit starting from a word (a, x ) ,  i. e., 

(a, x ) i a ( ( a ,  x ) ) i a2 ( ( a ,  x ) ) ~ .  . . i an ( ( a ,  x ) ) ~ .  . . , 
lim an ((a, 2 ) )  = W (A; c), 

where an is the n-fold iteration of a. Note that if W(A; c) has such 
a description as a limit starting from (a, x), then it becomes the fixed 
point of a with (a, x )  as its subword, since W(A; c) = ~ , ~ ~ o ~ ( ( a ,  x ) )  
holds. We shall construct a substitution a describing W(A; c) for some 
of A E (Bdd) in this sense, cf. Theorem 3. Here, in general, we mean by 

liman(W) = Z (E Gen (K, L)) 

that an(W) E Sub ( 2 )  for all n 2 0, and 

Our definition of a word "substitution" differs from the usual one in 
the case of dimension s = 1, but the new definition can describe any 
fixed point of a usual substitution. We give two typical examples: Let 
W = abaababaab.. . be the Fibonacci word, and consider it as anelement 
of {a, bIN.  If we define a substitution a by 

then lim on ((a, 0)) = W holds, where p(x) is the Fibonacci representa- 
tion of an integer x 2 0. (p(0) := A, p(x) is obtained by the greedy 
algorithm using the Fibonacci numbers 1,2,3,5, . . . instead of using 2" 
(n 2 0) in the base2 expansion, so that p(x) becomes a word over {O, 1) 
in the usual sense of words such that w := p(x) has not 11 (resp., 0) as 
its subword (resp., prefix). If w is such a word, then p-'(0%) is defined 

T* - 
2 .  
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to be a number p-'(w) (i 2 0)). In this case, all the finite subwords 
Sub ,(W) of W form a monoid, and a becomes a monoid morphism on 
Sub, (W). In general, a may not be so explicit as the Fibonacci case, but 
it is clear that, for arbitrary one of the fixed points of a substitution a 0  

(in the usual sense), we can define, according to a o ,  a substitution (in our 
sense) that describes the fixed point. But, in general, we have difficulty 
in describing plural fixed points by a substitution in our sense accord- 
ing to a given substitution in the usual sense. (Consider, for instance, 
a substitution a 0  in the usual sense over {a, b) defined by ao(a) = ab, 
ao(b) = baa together with its two fixed points W = abbaabaaabab.. ., 
V = baaabababbaa.. ., which are considered to be words on N. Then, 
the substitution a : E - E (W, V E E) in our sense according to a 0  

should satisfy o((a,  3)) = (a, 8) V (b, 9) and o((a,  3)) = (a, 7) v (b, 8) at  
a time by W(3) = V(3) = a ,  which is impossible.) For substitutions of 
constant length (in the usual sense), the situation turns out to be very 
simple. We can take E = Gen ({a, b), N), and describe plural fixed points 
by one substitution in our sense. For instance, let Wa = abbabaab.. ., 
Wb = baababba.. . be the fixed points of the usual Thue-Morse substi- 
tution a -+ ab, b -+ ba, and consider them as elements of {a, bIN. If we 
define a substitution a over {a, b) on N by 

a((a ,  x)) := (a, 2x) V (b, 22 + I) ,  

a (@,  x)) := (b, 22) V (a, 2x + 1) (x 2 O), 

then Way Wb E El and they become the fixed points of a ,  which are 
obtained by taking limit of the iteration an : Wa = lim an((a ,  O)), Wb = 
lim an ((b, 0)). 

For a substitution a describing W (A; oo) that we shall give later, the 
word W(A; c) (1 < c < oo) can be described by a substitution over K~ 
obtained by taking the reduction by modulo c as we shall see. Notice that 
a is not uniquely determined by W (A; c) (A E (Bdd), 1 < c 5 oo), since 
am (m > 1) works as well as a .  We remark that, in some cases, we can 
give substitutions a, r such that a p  # rq for any integers p, q > 0, and 
liman((oo,o)) = limrn((oo,o)) = W(A;c). For instance, consider the 
word W (A; m) E ~g with A = [I, -1//1,1], see the notation in Section 
3. Then, we can define a substitution a : E --+ El 5 := Gen ( N ~ { o o ) ,  ZS) 
by 

a( (a ,  o))(y) :=0, otherwise; 
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Dam (a@, 2))) :=2x + ( 0 , ~ )  x {0 ,~2) ,  ~ 1 x 2  # 0, 
Dorn (a((a, 2))) :=2x + (0, ~ 1 )  x {-1,0,1), XI # 0,x2 = 0, 
Dorn (a((a,x)))  :=2x + {-1,0,1) x { O , E ~ ) ,  XI = 0, 5 2  # 0 

for x = T(x1,x2) E Z2 \ {o), and for Dorn (a((a,x)))  3 y = 2x + x, 
x = T(tl ,  22) 

a((a,  x) )  (y) :=0, otherwise, 

where a E NU{oo) (w+a  := oo), and Ei := sgn (xi) (i = 1,2) (sgn (x) := 
1,0, - 1 accoring to x > 0, x = 0, x < 0). Then, as we shall see, 
W := limon((oo,o)), cf. (ii), Section 3. In this case, Dorn (o((a,x))) n 
Dom (a((b,y))) = 4 holds for all x # y ( ~  Z2), a ,  b E N u {oo}, so 
that we can extend a to Gen (NU {oo), ZS) from the values o((a, x))(y) - - given above. We can define another substitution T : E -, a, a := 
Sub (W(A; oo)) for the same A as above by setting 

Dorn ( ~ ( ( a ,  2))) :=Ax + ({o) U D), D := iT (O ,  I), T ( ~ ,  -I)), 

r ((a ,  x))(Ax + y) :=a + 1 if y = o, := 0 if y E D ((a, x )  E H), 

we can extend T to Sub (W(A;oo)), and check that rn((oo,o)) tends 
to W(A; oo). Notice that Dorn ( ~ ( ( a ,  x) ) )  n Dorn ( r ( ( b ,  y)))  # 4 for 
some x # y E Z2, but in such a case, r((a ,  x))(z)  = r ( ( b ,  y))(z)  = 0 
holds for x E Dorn (r((a,x)))  n Dorn (r((b,y))), so that r ( (a ,x) )  and 
~ ( ( b ,  y)) (a, b E N U {oo)) are collative. Such a construction of T is valid 
for A E (Bdd) if and only if we can find a finite subset D of the set 
To(A)(= {x E Zs; ind n(x) = 0)) such that 

lim C Am({o) u D) = ZS 
m-mo 

Osmzn 

holds. But, in general, we can not find such a set D for some A E 
(Bdd) having a number E satisfying (&I < 1 as its eigenvalue, so that 
limrn((oo,o)) can not be a word on ZS. For instance, such a phe- 
nomenon takes place for A = [2,2//2,3] E (Bdd). In fact, for A = 
[2,2//2,3], we have difficulty in finding any substitution like subsitu- 
tions a, T given above, cf. Remark 8, Section 6. Note that if we take a 
trivial substitution v, for instance, defined by 

v : Sub (W(A; c)) - Sub (W(A; c)), A = [2,2//2,3], 

Dom (v((a, x)))  := x + {o) u D, (a, x)  E Sub (W(A; c)), 

where D is any finite subset of To(A), then W(A; c) is a fixed point of 
v, but vn((oo, 0)) does not tend to a word on z2 .  

In what follows, we mainly consider words on a set X C Ns, and 
we shall define substitutions a, on NS of special type together with its 
conjugates (T E (1, - 1)') on NS . We shall see later that for a given 
matrix U E GL(s; Z) and a substitution a, on NS, we extend a,, by using 
the conjugates of a,, to a substitution a, = 8,(U) on ZS, which takes 
each (a, x)  to a word on lattice points in "s-dimensional parallelepiped". 

Recall the definition of the sets Kc, and K~ (c E NU {oo)). We denote 
by G the subset of NS given by 

for b = T(b l , .  . . , b,) E Ws. Note that G(o) = 4. For a non-empty set K ,  
we define 

K*(s) := U K ~ ( b ) .  

 ENS 

Note that K*(') has the empty word X as its element, and it is not a 
monoid with respect to the join operation except for the cases where 
s = 1, or the cardinality of K is one. The set K*(') differs from K*, 
which denotes the set of all finite words over K in the usual sense. In 
other words, K* is a free monoid generated by K with X as its unit with 
respect to the concatenation as its binary operation. For u E K*, u-' 
denotes the inverse element of u in the free group generated by K ,  so 
that uu-' = u-'u = A. For S c K*, we denote by a S  (resp., Sa) the set 
{as; s E S) (resp., {sa; s E S)), and by S1.. Sn the set consisting of 
the words ul . . . u n  (ui E Si c K*, 1 5 i 2 n). We put Sn := S1 ... Sn 
when Si = S (1 2 i 5 n). Note that in some context, Sn denotes the 
usual cartesian product as it did before. In the case where we have to 
distinguish them, we denote by s ( ~ )  the cartesian product. Note also 
that K*(') should not be read as (K*)('). We put 

For an integer b > 1, we denote the base-b expansion of x E N as a word 
over Kb by pb(x) = p(x; b) E K; \ (OK:). Note that pb(0) = A. The base- 
b expansion pb(x) of x = T(xl, . . . , s,) E Ns with b = T(bl,  . . . , b,) E NS 
bi > 1 (1 5 i 5 s) is a finite word over G(b) defined by 
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where r = r(x) := max{)p(xi; bi)); 1 5 i 5 s), lul denotes the length 
of a finite word u, and o = T ( ~ ,  . . . ,0) E G(b). Note that pb(o) = A = 
T ( ~ ,  . . . , A). The map 

is a bijection. The inverse of the map pb can be extended to G(b)* 
by 

p,'(onu) := pbl(u), n 2 0, u E G(b)* \ (oG(b)*). 

For x E NS, we define L ~ ( x )  E G(b) U {A) by 

with uo determined by pb(x) = ~ j ~ j - 1  . . uo (X # 0, ui E G(b), 0 $ 
i l j). 

Suppose a map 

is given. Then we can define a substitution 

a, : Gen (K, NS) -+ Gen (K, Ns) 

In fact, for any W = ( W X ) X ~ H  E Gen (K,NS), W can be written as a 
join VXEH (wx, x), so that G(W) = V~EHO*((WX, x ) )  = vXEH(D(WX) T 
p i '  (pb(x)o)), since a(wx) 1 p i '  (pb(x)o) (x E H )  are mutually collative. 
In particular, for W E ~ f l ( ~ ) ,  the resulting word o.(W) can be written 
by the following: 

with a,(W) = (2,) defined by 

Note that G ( ~ ; ' ( ~ ~ ( C ) O ) )  = G(blcl, . . . , bscs) for c = T ( ~ l ,  - . . , cs) E NS, 
a,(A) = A. The substitution a, will be referred to as a substitution 
over K of dimension s of size G(b). 

- 
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In what follows, we mean by a word "substitution" such a substitution 
L a, determined by a map o : K -+ unless otherwise mentioned. Let 
P 

a, be a substitution over K of size G(b) with b = T(bl, . . . , b,), bi > 1 
(1 2 i 5 s )  satisfying (a(a))(o) = ao(a) = a for an element a E K. 
Then, 

.:((a, 0 ) )14+ ' ( (a ,  4, 
and a t ( ( a ,  0 ) )  is a word on G(b7,. . , b!), so that the limit of al;L((a, 0 ) )  
always exists, which is an infinite word on the set NS, and it becomes 
the fixed point of a, with (a, o) as its subword. 

We define an automaton M of dimension s: 

which is a finite automaton with its initial state @ , the set of states 
K 3 @ , the set of input symbols G(b) # 4, and a transition function 
C : K x G(b) -+ K .  In some cases, we consider a map n from the set K 
to a non-empty finite set F, which will be referred to as a projection. If 
we distinguish an element h E F, we can specify a set H := n-' (h) C K 
as a final states of M .  The map ( can be extended to  the set K x G(b)* 
as well as in the usual case s = 1 by 

If K is a finite set, then M becomes a finite automaton. An infinite 
word W E KNS can be generated by M :  

For a given substitution a, over K 3 @ of size G(b), b = (bl , . . . , b,), 
bi > 1 (1 5 i 5 s )  determined by 

satisfying a,(@ ) = @ , we can define an automaton M = (@, K, G(b) , C) 
corresponding to a by setting 

Then the word V generated by M coincides with the fixed point W = 
lim or ( (@ , 0))  of a,. Conversely, for a given automaton M = (@ , K ,  
G(b), C) with C(@ , o) = @ , G(b) = T(bl,. . . , b,), b, > 1 (1 j i 2 s), if 
we define a map a by (lo), then the substitution a, determined by a 
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A-jUDn for all n 2 0, 0 j < k with D := D(d), d := T(d;', - . , d;'), 
di E Z, Idi( > 1 for all 1 j i 5 s .  Then A E (P,(c)), and the word 
W (A; c) becomes a fixed point, with respect to the basis U, of a substi- 
tution 5, determined by a map o = a(') = o(u-lAU~c) over K, of size 
G := G((dl 1, . . . , (dsl), so that W (A; c) = lim 6:((m, 0)) holds. The map 
a is defined by the following: 

JC) : & + K;G, &(h) = ($) (h)) E Kg, 
iEG 

(case c = oo) 

oLW)(m) := oo, aLW)(h) := h +  k, (0 h < m ) ,  

~ , ( ~ ) ( h )  := j ( i  E Ij, 0 2 j < k, O 2 h < oo), 

(case 1 < c < m )  

a,(c)([h]c) := [ ~ , ( ~ ) ( h ) ] ,  ( i  E G, 0 2 h 5 m ) ,  

where 

Ij := {X E G \  {o); indu-lau(x) = j) (0 5 j < k). 

N.B.: The map 0 given above is determined by U-'Au, k and c. We 
remark that UoSjck Ij = G \ {o) forms a disjoint union, and Ij # 4 for 

- 
all 0 $ j < k, as we shall see in the proof. Notice that oim)(h) does not 
depend on h if i E % \ {o), and that [hl], = [h2], (1 < c < oo) implies 
[hi + k], = [h2 + k],, so that a(') (1 < c 2 m )  given in Theorem 3 is 
well-defined, which is extended to a substitution strictly over K, of size 
G. 

Proof. The assumption of the lemma implies u- 'A-~u - D ,  so that 
A' E (Bdd). Hence, we get A E (Bdd), which together with Theorem 1 
implies A E (P,(c)) for all 1 < c $ m .  We put B := U-'AU. It  suffices 
to show that W(B; c) becomes a fixed point of a substitution o.(B; c) 
over of size G with respect to  the basis given by the unit matrix 
E = Es. From A- '~ -~u  - A-jUDn it follows 

in particular, B - ~  = VID, so that for x E ZS 

x G o (mod G) (=, D x  E ZS B-'x E Zs indB(x) 2 k. 
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Since 
x E G \ {o) * D x  4 ZS ind ~ ( x )  < k, 

we get 
0 

where Jj is the subset of G \ {o) given in Theorem 3. We shall soon see 
that Ij # 6 for all 0 2 j < k. We put b := T(ldll,. . . , Ids[). Noting that 
D ( m  8 b) E Zs, i. e., B-'((m 8 b) E ZS for any m E ZS, we get 

x E Ij, and X ~ Y  (modG),  y € Z S  
-B-jx E ZS, B-j-1 x 4 ZS, and 

x = y + m 8 b for an element m E ZS 

-B-j(y + m 8 b) E Zs, and B-j-'(y + m 8 b) $ ZS 

=B-jy E ZS, and B-j-'y @ ZS 

for any 0 2 j < k. Hence we get for y E ZS \ {o) 

ind B(y) = j x E Ij = Ij(B),  and x (mod G) 

for any 0 5 j < k. Therefore, we obtain 

where ei denotes the i-th fundamental vector, and Zdlel + . . . + Zdses 
is the Z-submodule of ZS generated by {diei; 1 2 i 2 s). In view of 
Corollary 2, we have Tj # 4, which implies Ij # 4. We write u > v for 
u , v  E G* if v is a suffix of u .  By (l3), we get for 0 2 j < k 

and by (11) 

for all 0 2 j < k, n 2 0. Therefore, if we consider an automaton 

with C : Km x G --+ defined by 

C(oo,o) = oo, C(oo,i) = j if i E Ij (0 2 j < k), 

C(h, o) = h + k, C(h,i) = j if i E Ij (0 j j < k, O 5 h < m), 
(14) 
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for a matrix A = (aij)1<i j<s E M(s;Q) in some cases. If f 1 @ A(A) c 
- I =  

Q, and some of the eigenvectors of A form a basis U of ZS as a Z 
module, then it is clear that A E 2); and by Corollary 3, it is easy to 
find a substitution having W(A; c) as its fixed point with respect to the 
basis U. While, in some cases, we can construct a substitution for A 
with f 1 @ A(A) c Q such that any eigenvectors can not form a Zbasis. 
For instance, 

T (i) A = [2, -411 - 2,0] (A(A) = {-2,4)). XI  = (1, I) ,  x2 = 
T(2, -1) are eigenvectors, so that any pair of eigenvectors in Z2 can 
not be a Zbasis, while, for U = [I, 1//0,1], A-"U - D(4-", 2-") 
(n 2 - 0) can be shown by induction. Hence, W(A; c) becomes the 
fixed point, with respect to the basis U, of a substitution o of size 
4 x 2 defined by 

The right-hand sides given above denote 2-dimensional words of 
size 4 x 2; for instance, oo(a) = b, and ox(a) = 0 for all Tx # 0, 
a E Kc. 

For some A, A E C (or A E 2)) can be seen by its shape. See the 
examples (ii-v) below. Note that, in general, A(A) C Q does not hold, 
cf. (ii, v, vi) given below. 

(ii) A = 1 , - / / ,  ( A )  = 1 f } A E C(2;2;2). (It is 
clear that A4 is a scalar matrix, so that A E C(4).) For the set I? 
satisfying (2), the sets I', AI', A~I', . . . are of high symmetry similar 
to each other. W(A; c) becomes the fixed point, with respect to 
the basis E ,  of a substitution a given by 

(iii) aEs + T E C(la1; (allal;s) for a E Z, (a (  > 1, T = (tij)lSi jcs, 
- I =  t i j  = 0 (i 2 j) satisfying (la] - l)(lal - 2) . ( (a (  - m + l)Tm 0 

(mod am-' . m!) for all 1 < m < s. In particular, [a, b//O, a] E C. 

Then, A(a, ac) E C(s; Jal; s)  for c E ZS-'. In fact 

which can be shown by induction. The word W(A; c) becomes the 
fixed point, with respect the basis E, of the substitution o defined 
by the following: 

o,(t) :=0 for X I ,  . . , xs # 0, 
o,(t) :=[j], for X I  = 2 2  = . - .  = x j  = 0, xj+l # 0 with 1 S j < S, 

oo(t) :=[t + s], (t # m ) ,  oO(w)  := 03 

where G := G(la1,. . . , (a!) c NS, x = T(xl , .  . . ,xs)  E G, t E 
Let B be the adjugate matrix of A(a, b) with b := T(a - 1,. . . , a  - 
1) E ZS-'. Then cB E D(1; ac, . . . , ac, c; s)  with respect to the 
basis U for c E Z, Icl > 1. 

As we have already seen in Lemma 5 that the word W(A;c) with 
c < w can be obtained from W(A; m )  = (ind A(x)),Ez. by taking 
residues with mod c. For the computation of the values ind ~ ( x ) ,  it is 
convenient, in some cases, to consider the Hermitian canonial form Hn = 
H(dnAdn) for dnA-n with d = det A. Here, the Hermitian canonical 
form H = H(A) for a matrix A E Mr ( s ;  Z) is defined to be a matrix H, 
that is uniquely determined by 

which can be obtained by elementary transformations by multiplying A 
by unimodular matrices from the left. We put 

Then Cn(A, U) - A-nU (n E Z), so that 

by which we can get the value ind u -~Au(x ) .  In some cases, for A $! C, 
we can conclude that A E V by considering Cn(A, E).  For instance, 

(vi) A = [0,4, -2//2,2, -2// - 1, -2,2]. A(A) = {-2,3 f fi}. By 
induction, we can show 
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C2n+1 (A, E )  =2-2n [I, 2n - 1,0//0, an, O//O, 0,2"+']. 

Hence, setting U =. [I, 1,0//0,1,0//0,0,1], we obtain 

which implies A E D(2; 4,2,2; 3) 

In the following examples, Cn indicates the matrix Cn (A; E). We put 

(vii) An = Hsn({~rn)rnEz) E C(3; 3; 3) holds for all n E Z, where 
{arn),,z is a linear recurrence sequence having x3 - x2 - 1 as 
its characteristic polynomial determined by a0 = a1 = 1, a2 = 0. 
In fact, using An+1 = ULAn = AnUR = (UR = U4, 
UL = T ~ R ) ,  we get 

where 

which implies A;' - Cl, A i 2  - C2 for a11 n E Z. By the similar 
manner, we get A: - 3C1 for all n E Z, so that A: - 3C1An = 
3ClAoU;t, which together with 3C1Ao = [3,3,6//3,0,3//0,3,6] - 
3E, so that An E C(3; 3; 3). Hence, using A;' - Cl and Ac2 - 

- a(U- 'AU;c) Over K ~ :  C2, we get a - 

The right-hand side given above denotes a 3-dimensional word of 
size 3 x 3 x 3; for instance, ao(a) = b, and o,(a) = 2 for all a E K~ 

- 
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if Tx = (x, y, Z) = (2,1, I ) ,  (1,2,2). We remark that 'a # a 
holds for T = (-1,1, I ) ,  (1, -1, I ) ,  (1,1, -1) for c 2 3. 

It  is remarkable that Example (vii) gives infinitely many matrices 
A(n) with nontrivial one parameter n such that W ( A(n); c) is indepen- 
dent of n. We can make some variants of such an example. For instance, 
the adjugate matrix Bn of H2n({bm}mEz) belongs to C(3; 4; 3) if {bm}rnEz 

is a linear recurrence sequence having x3 - x2 - x - 1 as its characteristic 
polynomial with bo = b2 = 0, bl = 1. 

4. EXAMPLES (SINGULAR CASE) 
In this section, we suppose A E M (s; Z), det A = 0. We consider 

partitions (2) with s > 1 together with their variants 

If c = m, or s = 1 then there does not exist a partition (2), nor (15) 
for any singular matrix A. Thus, we assume c < CCI in this section. We 
denote by TA the endomorphism on ZS induced by A E M(s;  Z) as a 
Z-module. Then, we easily get the following 

Remark 5. If there exists a partition (2), then 

ker TA C A~-'I' U {o}, (ZS \ Im TA) c I' 

holds; if there exists a partition (IS), then 

holds. In particular, ker TA c Im TA follows. 

(i) Let A = (bi,j-l)l<i,j<s ( s  2 2). Then there exists a partition (2) if 
and only if c is a divisor oT s. If s = ct for an integer t, such a partition 
is uniquely determined: 

holds, where Ei := ZS-'-' x (Z \ {o}) x {o)', 0 5 i < S. 

Proof. One can make sure that if we define r by (16) with j = 0, 
then (16) holds for all 1 < j < c, and the sets AjI' form a partition 
(2). Suppose that there exists a partition (2) for a set r c ZS \ {o). 

- 
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AS = 0 implies c s, since, otherwise, Ac-'I' 3 o follows. Since 
> ZS \ Im TA, we get I' > So by Remark 5, so that 

A~I '  > Ej  for all 0 5 i < c 

holds. If c = s ,  then (16) follows. So, we may suppose c < s. Let us 
assume that an element x E 8, does not belong to I'. Then x E A i r  for 
an integer 0 < i < c, so that there exists a y E F such that A2y = x E 2,. 
Hence, setting y = T(yl , .  , y,), we get yS-,+i # 0, yS-,+i+l = . = 
y, = 0, so that y E Ec-i. Hence, y E EC-i C Ac-iI' with some 0 < i < c 
follows from (17), which contradicts y E r .  Therefore, in the case c < s ,  
we must have I' > Ec. Now, suppose s - c = i with 0 < i < c. Then - Ai-'I' > Sc+i-l = -,-I = (Z\{O)) x {O)'-' follows from r > E,, SO that 
A i r  3 o, consequently we can not have (2). Thus, we get s - c = i 2 c, 
ie., s 2 2c. If s = 2c holds, then we get (16). Suppose s > 2c. Then, we 
can show r > E2,, and then a contradiction by setting i = s - 2c with 
0 < i < c in the same way as above. Thus, we get s = 3c, or s > 3c. If 
s = 3c, then (16) follows. Repeating the argument, we can arrive a t  (i). 

(ii) Let A = (aidi,j-l)l<i j<s with integers ai, lail > 1 for all 1 2 i 2 
- 1 =  

s - 1 (s 2 2). Then there exists a partition (15) if and only if c = 2, and 
such a partition is uniquely determined: 

r = (Zs-' x (Z \ {0})) u U (Zi-' x (Z \ aiZ) x zS-') i l$i<s 
A r  = a l Z  x . . . x a,-lZ x {O). 

Proof. x := T(l, 0, .  . . ,0) @ Im TA, SO that x E I' follows from Remark 
5, and so, Ax = A2x = A3x = . . = o, which implies c 2 2. Suppose 
that (15) holds with c = 2. Since any element of X := (ZS-I x (Z\{O}))u 
(Ulii<s(Zi-l x (Z \ aiZ) x ZS-')) can not be an element of Im TA, we 
get I' > X by Remark 5. Hence, we obtain 

AI' > AX = Y := a l Z  x x aS-lZ x {o). 

Note that s 2 2 implies AX 3 o. Noting X U  Y = ZS is a disjoint union, 
we get r =  X and AI'= Y. 

We can prove the following (iii) by almost the same fashion as (ii). 
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there exists a partition (15) if and only if c = 2, and such a partition is 
uniquely determined: 

5. NON-C-PERIODICITY OF WORDS AND 
TESSELLATIONS 

We give some new definitions of non-periodicity for words and sets of 
dimension s as follows in a general situation. 

In this section, s 2 1 denotes a fixed integer. We denote by RS, the 
Euclidean space with the norm 11 * 1 1  induced by the usual inner product 
(*, *). For a set S c RS, we denote by (resp., So)  the closure (resp., 
the interior) of S with respect to the usual topology. We mean by a 
cone J a closed convex set satisfying the following conditions: 

(i) JO # 4, 
(ii) If x E J ,  then rx E J for all r E W+, 

where R+ is the set of non-negative numbers. We denote by Q, the 
set of all cones in RS. Note that RS, W:, a half-space in Rs are cones 
E P,, and that any cone J E Pt, J c Rt x {o)'-' c Rs (t  < s )  can 
not be an element of P,. Any cone J becomes a monoid with o as 
its unit with respect to the addition, so that J > x + S holds for any 
x E J ,  S c J. We say a set S c WS is spreading if for any bounded 
set B c WS, there exists an element x E RS such that x + B c S. 
For instance, Untl B(log(1 + n);  T(n2, n3, .  . . , nS+')) is a spreading set, 
where B(r,  a) denotes the open ball {x E RS; [la - X I [  < r}; and so 
is a set x + J for all x E WS, J E Qs. In what follows, C, denotes 
the set of all spreading sets in WS. We denote by L the fixed lattice 
L = L(P)  := P(ZS) ( P  E GL(s; W)) as in Section 2. We say a subset S 
of WS is spreading with respect to L if for any bounded set B C L, 
there exists an element x E RS such that x + B c S. C(L) denotes 
the set of all spreading set with respect to L. For instance, X n L is 
spreading with respect to L for any X E C,. 

First, we give definitions for non-periodicity for words W = (w,) E 
K~ (K # 4) on a set X c L. Note that K can be an infinite set. We 
denote by Wls its restriction to S: 
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which is a word on S n X .  For words W = ( w ~ ) ~ ~ ~ ,  V = ( ~ 1 ~ ) ~ ~  y ,  we 
write W = V if they coincide as maps; and write W = V if there exists 
t E L such that W = V t as in Section 2. We say a word W E K X  
( X  c L) is non-@-periodic if 

We say that a word W E K X  ( X  E L) is non-C-periodic if 

Note that, in general, Wls = WIT with S C X implies T C X for 
W E K~ ( X  c L). We say a word is *-periodic (resp., C-periodic) 
if it is not non-9-periodic (resp., not non-C-periodic). Note that, by 
the definition, any word on X C L is C-periodic (resp., 9-periodic) 
if X &f C(L) (resp., if X > p + J n L does not hold for all p E L, 
J E 9,) .  We remark that both definitions of non-periodicity given 
above are considerably strong. In fact, the non-fD-periodicity excludes 
some trivially "non-periodic" words on J E 9, for all s 2 2; for s = 1, 
the definition requires the non-periodicity for both directions for words 
on Z, while the definition is equivalent to the usual one for words on N. 
In general, the non-C-periodicity implies the non-9- periodicity. Note 
that some non-*-periodic words are C-periodic. For instance, any non-fD 
-periodic word over K # 4 on N of the form 

u1va1u2va2 . . unvan . . ( lim an = 00; u,, v E K* \ {A}) 
12-00 

is C-periodic. In particular, any word coming from a normal number is 
non-9-periodic, but it is C-periodic. On the other hand, for instance, 
the Thue-Morse word and the Fibonacci word are non-C-periodic, cf. 
Remarks 6-7. 

Remark 6. A word W over K # 4 on N is non-C-periodic if there exists 
an integer m > 1 such that W is m-th power free ( ie . ,  W has no 
subwords of the form urn, u E K* \ {A)). In general, any non-periodic 
(in the usual sense) fixed point of a primitive substitution is m-th power 
free for all sufficiently large m (cf. [I]), so that it is non-C-periodic. 

Remark 7. All the Sturmian words (2 .  e., the words having the complexity 
p(n) = n +  1) on N are non-Cperiodic. In particular, the Fibonacci word 
is non-C-periodic. 

We can show that the words W(A; c) are non-C-periodic for some 
A E (Bdd), c > 1. For instance, the non-Cperiodicity of the word 

P 
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$& 
i W ([I, - 1/11, 11; c) for even c follows from Theorem 5 below, cf. the 
', example (ii), Section 3. 

Secondly, we give definitions for non-periodicity for tilings. A set 
8 c WS is called a t i le if 8 is an arcwise connected closed set such that - 
O0 = 8. We say that a set 0 C WS is a tessera if 8 is a compact tile. 
We say that 8 = {O,; p E M )  is a tiling (resp., a tessellation) of 
J ( J  E fD,) if all the sets 0, (p  E M) are tiles (resp., tesserae) such 
that UpEMea = J and 0; n 0; = 4 (p # Y) hold. We say that a set 
8 = 18,; p E M} (0, c Rs) is C-distributed on a set X c RS if 
X \ (uPEMOP) &f CS. A set 8 = {O,; p E M} will be referred to as a 
mosaic on X E Cs if 0, C X are relatively closed sets with respect to 
X such that 8; n 8; = 4 (p  # v), and 8 is C-distributed on X E C,. 
Any tiling of J is a mosaic on J .  Let 8 = {O,; p E M )  be a mosaic on 
X .  We denote by @Is the S-restriction: 

Note that for any mosaic 8, its restriction ely is always a mosaic for a 
spreading set Y c X. For two sets 8 = {O,; p E M),  B = {py; v E N) 
(O,, p,, c WS), we write 

if there exists a z E RS such that 

We say that a mosaic {O,; p E M )  on X is non-@-periodic if 

We say that a mosaic {O,; p E M} on X is non-C-periodic if 

Note that any mosaic {O,; p E M )  such that one of the sets 0, is a 
spreading set is C-periodic, which can be easily seen. 

Finally, we give a definition of non-periodicity for a discrete set S = 
{x,; p E M} c RS. We say that S is a mosaic on X if so is the set 
{{I,}; p E M);  and that S is non-Wperiodic (resp., non-C-periodic) if 
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so is the mosaic { { x ~ ) ;  p E M). For instance, A ( P )  is a Q-periodic 
mosaic for any A E GL(s; R) ; Z U a!Z is a non-Q-periodic mosaic for any 
a! E R \ Q; while (Z U a Z )  x Z is a Q-periodic mosaic. 

For a discrete set X c RS, the Voronoi cell T (X ,  x )  with respect to 
x E X is defined by 

T(X,  x) := {y E RS; llx - yll 2 Ily - xll for all x E X \ {x}}. 

For A E (P,(c)), we denote by r (A ,  c) the set determined by (2). Since 
any Voronoi cell T is a finite intersection of closed half-spaces, T is a 
closed convex set, so that it is arcwise connected. Hence, T (AjI'(A, c) , x )  
is a tile for any A E (P,(c)), 0 2 j < c, and x E AjI'(A,c), so that the 
sets 

R(A, c; j )  := {T(Ajl?(A, c), x ) ;  x E A~I'(A, c)} (0 2 j < c) 

become tilings of RS. Note that R(A, c; j )  is not always a tessellation. In 
fact, some of the cells T (AjI'(A, c), x )  are unbounded, cf. the examples 
(i-iii) for the singular case in Section 4. We can show the following 

Theorem 4. Let A E (Bdd), 0 5 j < c, 1 < c 2 oo. Then the 
set R(A,c; j )  is always a tessellation consisting of tesserae which are 
polyhedra of dimension s. For 1 < c < oo, all the tessellations R(A, c; j )  
(0 j j < c) are non-C-periodic if and only if so is the word W(A;  c). 
The word W(A; oo) is non-C-periodic; while, R(A, oo; j) ( j  2 0) are 
Q-periodic. 

Proof. We show that R(A, c; j )  is always a tessellation for A E (Bdd). 
We suppose A E (Bdd), so that det A # 0. Then, Aj(ZS) becomes a free 
Z-module of rank s.  In fact, the elements 

form a basis of Aj (ZS) as a Z-module, i. e., 

(2 )  where ei is the i-th fundamental vector. The vectors bj are linearly 
independent over R, so that RS \ Aj (ZS) is not a spreading set. Hence, 
Aj(ZS) is a mosaic. In view of Corollary 2, we have Tj(A) = AjI'(A, oo), 
which is not empty by Theorem 1. Since 

we get 

Tj (A) = A3r(A, 00) = A' (ZS) \ A'+' (ZS) # 4, 0 =< j < GO. (19) 

Suppose 1 < c < oo. Choose any xo E A~I'(A, c) (0 j < c). We 
shall show that Y(A~I'(A, c), s o )  is a compact set. By Corollary 2, we 
have xo E AjI'(A, C) = Uo5m..m - TCm+j(A), SO that xo E Tcm+j(A), i. e., 
ind A(XO) = crn + j for some m = m(xo) 2 0, and 0 2 j < c. On the 
other hand, from the definition of ind A it follows 

Hence, noting that ind A(+) > cm + j for any x E ACm+j+'(ZS), we get 

Thus, setting 

F := {XO + {f bl, . . . , f bs}} U {so} with bi := bg+ j+ l  (1 5 i 2 s), 

we obtain 
F c A ~ ~ ( A ,  c), 

so that 
T (F ,  XO) 3 T(A31 ' (~ ,  c), xo).  

In addition, T (Ajr(A, c), xo) is a closed set by the definition of Voronoi 
cells. Hence, it suffices to show that the set T (F ,  xo) is bounded for 
the proof of the compactness of T (AJI'(A, c), xo). For simplicity, we 
consider T (-xo + F, o)  that is congruent to T (F, xo)  . By the definition 
of a Voronoi cell, we have 

where F, := {&2-' bl, . . . , f 2-I b,}, and H-(b) denotes a closed half 
space 

H-(b) := {x E RS; (b, x) 5 0}, b E Rs \ {o}. 

Since bi (1 2 i 2 s) are linearly independent over R, by the orthonormal- 
ization of Schmidt, we can take an orthonormal basis of RS as a vector 
space over R such that we can write 

with respect to the basis. Then, for any E = T ( ~ l ,  , E ~ )  E {l , - l JS ,  
there exists a unique element V(E) = (vl (E), . . , us (E)) E RS satisfying 
the equations: 
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namely 

Thus, T(-x + F, o)  becomes a parallelepiped of dimension s with 2s 
vertices V(E) (E :  E (1, -I)'), SO that 

Thus, we have shown that the set R(A, c; j )  is always a tessellation for 
1 < c < oo. Note that, since Aj(r(A,  c) (C ZS) is a discrete set, each 
set T(Aj(r(A, c), xo)  has non-empty interior, so that it becomes an s 
dimensional body. Hence, the tessellation R(A, c; j )  consists of polyhedra 
of dimension s. Now, we suppose c = oo. Choose any xo E Ajr(A,  oo) 
for a given number 0 5 j < oo. Then, by (lg),  we get (20) with cm = 0, 
c = oo. Hence, we can show that T(Ajr(A,oo),xO) is compact as we 
have shown in the case 1 < c < oo, which completes the proof of the 
first statement of the theorem. 

We prove the second statement. Suppose c < oo. We put 

which is a word over {O, 1) on the set ZS, where ~s is the characteristic 
map with respect to a set S. If Q(A, c; j )  is C-periodic, then so is the set 
A j r .  Applying ~ - j  to the set A j r ,  we see that the set r is C-periodic. 
Hence, we get the C-periodicity of A j r  for all 0 2 j < c, which implies 
the C-periodicity of Wj(A; c) for all 0 2 j < c. Then, we can conclude 
that W(A; c) is C-periodic. Conversely, the C-periodicity of W(A; c) 
implies that of Wj(A; c) for each 0 6 j < c, so that all the sets Ajr(A;  c) 
are C-periodic, and so are the tessellations R(A, c ; j ) ,  0 5 j < c. 

We prove the third assertion. First, we prove the latter half. In view 
of (18), we see that Aj(ZS) is a *-periodic set for all 0 6 j < oo. Hence, 
(19) together with Aj(ZS) > Ajc'(ZS) implies that for any 0 2 j < oo, 
the set AjF(A, oo) is a 9-periodic set as a mosaic with periods coming 
from (18) with j + 1 in place of j, so that the tesselation R(A, oo; j )  is 
*-periodic for any j 2 0. Secondly, we prove the first half. We choose 
an element gn E An(ZS) \ {o) among elements having the smallest norm 
in the set An(ZS) \ {o) for each n. Then we can show that 

Suppose the contrary. Then we can choose a bounded subsequence 
{gp(n)}n=0,1,2, ... ( l i m ~ ( n )  = m) of the sequence {gn}n=0,1,2,..: Then we 
can choose a subsequence {gq(n)}n=o,l,2,... (lim q(n) = oo) of 
{gp(n))n=0,1,2,... such that it converges to an element g E An(ZS) \ {o). 
Then A'(")(Z~) 3 gq(,) = g # o holds for all sufficiently large n. Hence, 
we get A-'(")~ E ZS, g # o for infinitely many n ,  which contradicts 
A E (Bdd). Thus, we get (22). Hence, we see that any choice x,, yn  E 

I 

I A n r  (A, m )  = Tn (A) = An (ZS) \ An+' (ZS) c An (Zs) , 

1 Now, suppose that W = W(A; oo) is C-periodic, i e ,  Wlx = W l t + ~ ,  
X E C(ZS), t # o. Then we have 

I 

1 where Wn (A; oo) is the word defined by (21). Recalling that Anr(A,  oo) 

I is a 9-periodic set as a mosaic with periods coming from (18) with 
j = n+1,  wecan find xn ,yn  E Anr(A,oo)nX (x, # y,), n = 0,1,2 , .  . . 
for any spreading set X E C(ZS). Therefore, we get lit 11 2 llgn 1 1  by (23), 

I (24). Taking n -+ oo, we have a contradiction by (22). 

We remark that some tilings a (A ,  c; j )  for singular matrices A are 
*-periodic, cf. the examples (i-iii), Section 4. 

Now, we are intending to show that some of the words W(A; c) and 
1 

tessellations R(A, c; j )  are non-C-periodic for 1 < c < oo, A E (Bdd). 
I 
I 
I 

Lemma 6. Let W be a word on ZS, and U E GL(s; Z). Then W is non- 
*-periodic (resp., non-C-periodic) if and only zf so are the (T, U)-sectors 

I for all T E (1, -1)'. 

Proof. By our definitions, any (7, U)-sector of W is non-*-periodic 
(resp., non-C-periodic) if so is W. 

I We assume that all the (T, U)-sector of W are non-*-periodic (resp., 
non-C-periodic) . It suffices to show that W l x  is non- @-periodic (resp., 
non-C-periodic) for any X = p + J with p E ZS and J E 9, (resp., 
X E C,). Suppose the contrary. Then Wlx is *-periodic (resp., C- 
periodic) for some X = p + J with p E ZS and J E QS (resp., X E Cs). 
Then J n U(T 8 NS) E Qs n ZS (resp., X n U(T 8 NS) E C(ZS)) holds at 
least one element T E (1, -1IS. Hence, (7 ,  U)-sector of W is Q-periodic 
(resp., C-periodic) , which contradicts our assumption. 
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Apart from the partitions (2), we may consider substitutions of di- 
mension s having fixed points which are non-C-periodic. 

Theorem 5. Let a be a substitution over K = {@ ) U Fo U Fx of size 
G(b) w i t h F o n F x  = 4, b = T ( b l , - . .  ,bs), bi > l ( 1  5 i 5 s) ,  s > 1, 
a ( a )  = ( ~ , ( a ) ) , ~ ~  satisfying 

vo(@ ) = @ ; 
vo(a) E Fo for all a E Fo, vo(b) E Fx for all b E Fx; 
v,(a) E Fo for all a E K,  

and x E Go := {T(x l , . . -  ,xs )  E G(b) \ (0); x1 . . . x s  = 01, 

v,(a) E Fx for all a E K ,  

and x E Gx := {T(xl, - . . , xs) E G(b); X I -  . . xs # 0). 

Then the fied point W E K ~ '  (W(o) = @ ) of a is non-C-periodic. 

N.B.: We mean by X I .  . xs = 0 not a word but the product of numbers 
XI ,  . . . , xs equals zero. 

Proof. Let a have the property stated in Theorem 5. Since, for any 
T E (1, -I)', and x E G(b) \ {o), 

all the conjugates of have the same property. We consider the au- 
tomata rM = (@ , K,  G(b), rC) with TC corresponding to r a .  Then, all 
the conjugates rM can be described as in Fig.1 given below. We mean 
the transition function T( by the arrows labeled by Go, Gx , or o there. 
For instance, for a E Fx, '<(a, i )  E Fo if i E Go, and TC(a, i )  E Fx if 
i ~ G , , o r i = o .  

We consider a word W% E K"' generated by the automaton M with 
a projection n : K --+ {a, p)  defined by 

namely, 

Note that W% does not depend on r, so that all the (7, E)-sectors 
( T I E )  w = W of the fixed point W E K"' of a are identical to W% 
if we identify the symbols in K according to the projection n. I t  is clear 
that if W% is non-C-periodic, then WINS is non-Cperiodic (in general, 
the converse is not valid). By Lemma 6, it suffices to show that W% is 

Figure 1: 

non-C-periodic. In view of Fig. 1, recalling s > 1, we get the following 
facts (i), (ii): 

T (1) ( 4 )  Let x E WS, pb(x) = u,u,-~ . . . uo E G(b)* with uj = (uj  , . . . , u j  
E G(b). Then 

(i) w? = a if there exists a k (1 5 k 2 s) such that u f )  # 0, 

u r )  . . . u t )  = 0 for an integer h = h(k) with 0 5 h j m satisfying 

uy'  = o for all j (O 5 j < h). 

(ii) w? = p if and only if there exists an h (0 2 h 5 m) such that 
(4 uh # 0 for all i (1 2 i 5 s )  satisfing uj = o for all j (0 2 j < h). 

Now suppose that W% is C-periodic, i.e., 

holds for a set X E C(ZS), X c NS, and a fixed vector p E NS \ {o). For 
any integer h 2 2, we can take q = q(h) E WS such that 
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Hence, we can choose an x = x(h)  E Z such that 

pb(x) = tntn-1 . . to E G(b)*, t j  = T(t(l'), . . . , t:)) E ~ ( 6 1 ,  

(1) th # 0, .  . . , t f )  # 0, ti = o for all 0 5 i < h, (26) 

x + y E X for all y E ~ f )  for each 1 5 k 5 s ,  

where 

Hf) :={T(y~, . . . ,ys )  E ZS; yk = 0, - bF+  1s yi 1 6; - 1 
for all 1s i 2 s with i # k). 

Since 

holds for an integer j = j (y )  for any given y E Hf) \ {o), we get by 
(i,ii) 

Noting x + u ~ ~ ~ < ~ H ~ )  c NS, we see by (27) that wall (x) is a subword 
- - 

of W% consisting of symbols identical to a except for an occurrence of 
a symbol ,O centered at x as far as x satisfies (26). Consider any r E NS 
satisfying 

(k) t + U Hh c NS with pb(z) = u n u n - l S . .  uo E G(b)* (h  2 2). 
l$k$s 

(s) uj = T(~( l" , . .  . , u j  ) E G(b) (0 5 j 5 n = n(r)) .  

We put 
j0 = jo(z) := min{O 5 j j n( r ) ;  uj # 0).  

We have two cases: 
(a) u(l! # 0 for all 1 i $ s.  

(b) ~12) # 0, u g )  = o for some 1s il 5 s, 12 i2 2 s. 

Now, we assume 0 5 j o  5 h - 2 (h 2 2). Suppose the case (a). Then, 
taking y = T(yl , .  . . , ys) with y1 = 0, yi = b;-' for all 2 j i j S, we 
have by the definition of jo 

and by (a), ujb) # 0 for all 1 5 i 5 s. Hence, we get by (ii) 

so that 
wall ( r )  # wall (2) 

for x satisfying (26). Suppose the case (b). Then taking yi = 0 for all i 
(4 with ujO # 0, yi = for all i with u(l2 = 0, we get by (ii) 

Hence, we obtain 
w% - 
z+y - P, y E HtZ),  

so that 
wall (x)  # wall ( z )  

for x satisfying (26). Therefore, 0 5 jo(z) 2 h - 2 implies wall (x) # 
wall ( r )  for x satisying (26). Hence, wall (x) = wall (z )  with x # r for 
x satisying (26) implies 

On the other hand, (25) implies 

wall (2) = wall (p + x) ,  p # 0, 

so that we get 
llpll 2 minib:-'; 1 2 i 5 s). 

Since we can take h arbitrarily large, we have a contradiction, and there- 
fore, we have completed the proof. I 

Applying Theorems 4-5 for the word W (A; c) with A = [I, - 1//1,1], 
c = 2m, 1 < m < oo, we get non-C-periodic tessellations R(A, c; j) 
(0 =< j < c). We can show that the tessellations R(A, 2; j )  consist of 
three kinds of incongruent tesserae: a quadrangular, a pentagon, and a 
hexagon. In this case, each tessera of R(A, 2; 0) is similar to a tessera of 
R(A, 2; 1)) cf. Fig. 2 below. Note that, in general, such similarity does 
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not hold. Using Corollary 3, and Theorems 5-6, we can give a non-C- 
periodic word W(A $ . - @ A; 2m) of dimension 2s) and non-C-periodic 
tessellations R(A $. . . $ A, 2m; j )  (0 5 j < 2m < oo) of Euclidean space 
ItZs for A = [1, - l / / l , l ] .  

The dots are elements of AI' in the first section; the midpoints of the edges of length 
2 and all the vertices are elements of I' U (0 ) .  

Figure 2: (Tessellation n(A, 2; 1) for A = [I, - 1//1,1]) 

6. PROBLEMS AND A THEOREM 
We say a substitution of dimension s of size G over K~ is ad,missible 

if there exists a matrix A E M(s;  Z) such that the substitution comes 
from a partition (2). Can we give a criterion by which we can determine 
whether a given substitution is admissible, or not ? 

We have already seen that a partition (2) exists and uniquely deter- 
mined for A belonging to the class (Bdd), and have given its subclass 'I) 
such that for any A f 'I), the characteristic word W (A; c) corresponding 
to (2) can be described in terms of nontrivial substitutions. By the proof 
of Theorem 3, we can effectively determine the substitution for any given 
A belonging to V(k). Probably, we can not extend Theorem 3 to a class 
strictly including the class 27. While, we have not a good algorithm to 
determine whether a given matrix A belongs to 'D. Can we find an ef- 
fective criterion for that? For instance, it is easy to see [2,3//2,2], and 

- 
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[2,2//3,2] E C(2), so that they belong to D(2); but we have difficulty 
for [2,2//2,3], cf. Remark 6 below. It seems very likely that there exist 
some matrices A E (Bdd) for which W(A; c) (1 < c < oo) can not be 
finitely automatic. We conjecture that W(A; c)  with A = [4, -1//0,2], 
1 < c < oo can not be a fixed point with respect to any base b, and basis 
U E GL(2;Z). We can show, for A = [4, -1//0,2] 

Related to such problems, we can prove the following: 

Remark 8. Let A = [2,2//2,3]. Then A E (Bdd). Let Cn be the 
hermitian canonical form H ((det A)nA-n). Then 

If we put uo := 0, and for n 2 1, 

then the word unun-l . - uo becomes the base-2 expansion of tn+i; to be 
accurate, 

tn+1 = p ; l ( ~ n ~ n - l . . . ~ O )  (n 2 1). 
I The sequence {tn)n=o,l,2,... can be given by the following algorithm: 

(i) t l  = 0. 

(ii) Find the continued fraction of 2-"-l(2tn - 3) (n 2 1): 

(iii) Find the value [ao; a l ,  - . . , a2m(n)-1] = p/q, where q = q(n) > 0, 
I p = p(n) are coprime integers. 

(iv) Find the residue tn+1 by tn+1 = 2(tn - l)q(n) (mod 2"+'), 0 5 
tn+l < 2"+'. 

I A few symbols of the begining of the word u := uoul . . are 

1 which is almost the same as 
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where the word v comes from one of the eigenvalues of A in the p-adic 
sense. To be precise, if QA(a)  = 0, la12 < 1, a E Z2 (Hensel's lemma 
says that such an a uniquely exists), then the 2-adic expansion of the a 
is given by v = vovlv2 - (v, E {O, I)) ,  i.e., a = &o vn2,, where ( * Jp 

denotes the padic  valuation. (In what follows, we mean by I * I = 1 * 1, . . .  
the ordinal absolute value as before.) Comparing u with v, we might 
say that they should be the same except for one missing symbol 1 in u 
(in fact, this is valid as we shall see). 

Related to such a phenomenon, we can show the following 

Theorem 6. Let f (x) := xS - cs-lxS-l - . . . - clx - co E Z[x] be a 
polynomial satisfying s > 1, lcol > 1, GCD(c0, cl)  = 1 with the decom- 
position lcol = nl<ks,pkek, where pk are distinct primes. Let C be the 
companion matrix-off (x): 

where Es-l is the (s - 1) x (s - 1) unit matrix. Then there exists a 
unique root apk E Zpk off (x) satisfying lapk lpk < 1 for each pk, and the 
following statements are valid: 

(i) The hermitian canonical form of (det C - c-'), is of the shape 

for all n z  1, 1 j 5 s -  1, where d := Icol. 

( A  < -em 
(ii) ldpk -xn I p k  = pk holds for all n 2 1, 1 j j j s - 1, 1 5 k 2 t .  
Using Theorem 6, we can give an explicit formula of a continued frac- 

tion of dimension s-1 whose pk-adic value converges to T(p, P2, - , ps-') 
with p = P(k) = cclapk for all 1 j k 5 t .  The proof of this fact and 
Theorem 6 will appear in a forthcoming paper. 

If we use Theorem 6, we can show that the sequence t, in Remark 8 
converges, in Zz, to the root y of g := 2x2 - x - 2 satisfying 1712 < 1, so 
that 27 + 2 = a .  Hence, the last phrase in Remark 8 is valid. Since g 
is irreducible over Q, so that P $ Q. Hence we see that the word u is a 
non-periodic word in the usual sense. We give the following 

Conjecture 1: Let f (x) E Z[x], and C E M(s;Z)  be as in Theorem 
6. Suppose that f (x) is irreducible over Z[x]. Then W(C;  c) (2 2 c < 
m) is not finitely automatic with respect to any basis U E GL(s; Z) 

- 
\ 
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of the lattice ZS, and to any base b E (N \ (0,l)) '  of an automton 
(@ K,  G(b), C). 

Can we show that W(A;c) (1 < c < co) is not automatic with re- 
spect to any basis U € GL(s; Z), and to any base b for A mentioned in 
Remark 8 ? If so, what will happen when we extend the conception of 
automaticity ? For example, we may consider a representation p of num- 
bers i given by a sum of terms of a linear recurrence sequence instead of 
the base-b expansion pb(i). We may consider p(x) (x E NS) coming from 
s linear recurrence sequences. In such a case, the set {p(x); x E NS) 
is retricted to  a subset of G(b)*; for instance, if we take the Fibonacci 
representation p with dimension s = 2, then p(x) E R, where 

We may define an automatic class of words as a class of words W gen- 
erated by an automaton M = (@ , K ,  G(b), c) together with a represen- 
tation p and a projection 7r : K -t F: 

Can we find a matrix A 4 2) such that W(A; c) becomes automatic in 
this sense ? 

We say A, B E M,(s; Z) have the same behavior if H((det A),A-") = 
H((det B)"B-") holds for all n 2 0. If the behaviors of A, B E (Bdd) are 
the same, then W (A; c) = W (B; c) follows. We remark that, in general, 
any two matrices among A, UA, AU, U - ~ A U ,  and TA do not have 
the same behavior for U E GL(s;Z). On the other hand, for instance, 
the behaviors for [2,1//2,2], [2,3//2,2], [2,2//3,2], and [4, -711 - 6,101 
coincide. Recall the example (vii) in Section 3; the matrices A, (resp., 
Bn) have the same behavior for all n E Z. Can we find an effective 
criterion by which we can see whether two given matrices have the same 
behavior ? 

Concerning the non-C-periodicity, it is remarkable that p(n) = n + 1 
is the minimum complexity for the non-C-periodic words on Z, and on 
N, cf. Remark 7. Here, in general, for a word of W on a subset of ZS, 
p(n1,. . . , n,) = p(nl, . . . , n,; W) counts the number of the subwords of 
size n l  x . . . x n, of W. Can we find the minimum complexity for the 
non-C-periodic words on ZS, or on NS ? Note that the existence of the 
minimum complexity is not clear. 

Conjecture 2: The word W(A; c )  corresponding to the partition (2) is 
non-C-periodic for any A E (Bdd), 1 < c < oo. 
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Note that the conjecture implies that all the tessellations n(A, c; i)  
(0 2 i < c) of WS are non-Cperiodic for any A E (Bdd), and finite 
c > 1, cf. Theorem 4. 

It will be interesting to consider the partitions of the form 

instead of (2) for non-singular matrices A @ (Bdd). 
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Abstract It is known that in the moduli space A1 of elliptic curves, there exist 
precisely 9 Q-rational points corresponding to the isomorphism class of 
elliptic curves with complex multiplication by the ring of integers of an 
imaginary quadratic field. We consider the same determination problem 
in the case of dimension two. In the moduli space of principally polarized 
abelian surfaces, this problem was solved in [3]. In this paper, we shall 
determine all Q-rational points corresponding to the isomorphism class 
of abelian surfaces whose endomorphism ring is isomorphic to the ring 
of integers of a quartic CM-field in the non-principal case. 

2000 Mathematics Subject Classification: llG15, llG10, 14K22, 14K10. 

1. INTRODUCTION 
Let E be an elliptic curve defined over the complex number field C 

whose endomorphism ring is isomorphic to the ring of integers of an 
imaginary quadratic field K. It is well known that 

the j-invariant of E is contained in the rational number field Q (1.1) 

if and only if the class number of K is one, 

and that 
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there are 9 imaginary quadratic fields Q(&), d < 0, having (1.2) 
class number equal to one: 

- d = 1,2 ,3 ,7 ,11 ,19 ,43,67,163.  

Let A1 be the moduli space of elliptic curves. This is represented by 

where .Fjl = {T E C I Im(r) > 0). From the above facts, we can see 
that in dl there exist precisely 9 Q-rational points corresponding to the 
isomorphism class of elliptic curves with complex multiplication by the 
ring of integers of an imaginary quadratic field. 

Now we consider the same questions in the case of dimension two. 
Let (A,C) be a polarized abelian surface over C.  We can regard it 
analytically as a pair ( c 2 / d ,  E )  of a complex torus and a non-degenerate 
Riemann form. By choosing a suitable basis (211,. . . , u4) of the lattice 
A, the matrix (E(ui, ~ ~ ) ) i , ~ = ~ ~ . . . ~ 4  can be reduced to the form 

dl 0 where D = ( ) , dl I d2. Moreover we can assume that dl = 1, 
0 d2 

d2 i . e  D = ( ) ,  = -, since two polarized abelian surfaces are 
dl 

isomorphic. 1n the following, we call such a surface (A, C) a d-polarized 
abelzan surface for the sake of convenience. For d E Z>l, put 

- 

Denote the Siege1 upper half space of degree 2 by 

and define a subgroup r ( d )  of GL4(Z) by 

for any d. For G E I' (d), we put 

A 
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t 
i Then we can regard the moduli space of d-polarized abelian surfaces as 

So we consider how many Q-rational points A2(d) includes for each 
d. In the case of d = 1, r ( 1 )  = Sp2(Z), so d2(1)  means the moduli 
space of principally polarized abelian surfaces. In this case, we have 
already obtained an answer (cf. [3]), namely it was proved that in A2(l)  
there exist precisely 19 Q-rational points whose endomorphism ring is 
isomorphic to the ring of integers of a quartic CM-field. 

In this paper we determine all Q-rational points corresponding to 
the isomorphism class of abelian surfaces whose endomorphism ring is 
isomorphic to the ring of integers of a quartic CM-field in d2 (d )  for any 
d. 
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f 2.  PRELIMINARIES ON THE THEORY OF 
COMPLEX MULTIPLICATION 

Let K be a quartic CM-field and F the maximal real subfield of K. 
We consider a structure P = (A, C, 8) formed by an abelian variety A of 
dimension two defined over C ,  a polarization C of A, and an injection 
8 of K into EndO(A) := End(A) @z Q such that 8- ' (~nd(A))  = OK, 

where OK is the ring of integers of K .  

We always assume the following condition: 

O(K) is stable under the Rosati involution of EndO(A) (2.1) 

determined by C. 

Let p : K Endc(Lie(A)) be the representation on the Lie algebra 
of A with respect to 8. Then there exist two injections ol,o2 of K into C 
such that p is equivalent to the direct sum 01 $ 0 2 .  We put Q = {al, 02). 
Then must satisfy the following condition: 

{ol7 a2} U { p  0 01, p o oz} coincides with the set of all injections (2.2) 
of K into C ,  

where p denotes the complex conjugation in C .  This pair (K, Q) is called 
the CM-type of P. We define an isomorphism 6 of R-linear spaces by 

I 
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For each a E OK, we set &(a)  = ) . Then there exist a 

fractional ideal a of K and an analytic isomorphism 

such that the following diagram commutes for any a E OK: 

Take a basic polar divisor in C and consider its Riemann form E(x ,  y) 
on c2 with respect to A. Then there is an element .r) of K such that 

for any (x, y) E K x K .  The element 77 must satisfy the following condi- 
tions: 

Then the structure P is said to  be of type (K, a; 7, a). Conversely for any 
a, a, q satisfying the conditions (2.2), (2.4) and (2.5), we can construct 
(A, C, 0) of type (K, a ;  7, a). 

Let X be a basic polar divisor in the class of C. We can consider the 
isogeny 

bx : A ---+ p i c 0 ( ~ ) ,  v I+ [Xu - XI 

from A onto its Picard variety, where Xu is the translation o f 'X  by v. 
Then there exists an ideal f of F which is uniquely determined by the 
property 

ker(4x) = {Y E A I O(f) y = 0). (2.6) 
The ideal f satisfies 

foK = qbaaP, (2.7) 

where b is the different of KIQ .  

For any subfield L of K ,  one can prove that there exists a subfield 
ML of C which has the property: 

- 
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t 
for any automorphism a of C ,  a is the identity map on ML (2.8) . 
if and only if there exists an isomorphism L of A to Aa such 

that L(C) = Cu and L o O(a) = Ou(a) o L for all a E L. 

ML is called the field of moduli of (A, C, OIL). The field of moduli of 
(A, C), which is equal to MQ, can not be understood only by the theory 
of complex multiplication. But we have the following result proved by 
Murabayashi (cf. Theorem 4.12 in [2]): 

Theorem 2.1. Let K be a quartic CM-field and (A ,  C) a polarized abeli- 
an surfaces such that OK C End(A), where OK denotes the ring of inte- 
gers of K .  Then OK r End(A) and the field of moduli of (A, C) coincides 
with Q i f  and only if the following three conditions hold: 

I 

(a) K has an expression of the form 

b 

where EO is a fundamental unit of F = Q(f i )  such that EO > 0 and 
p, ql, . . . , qt are distinct prime numbers which satisfy one of the following 
conditions: 

(al) p = 5 (mod 8). Moreover if t 2 1, then 

q i -  1 (m0d4) and (E) = -1 (i = 1, ... , t ) ;  

(a2) p = 5 (mod 8), t 2 1, ql = 2. Moreover if t 2 2, then 

qi z 1 (mod 4) and ( )  = -1 (i  = 2,.  . . , t ) ;  

(as) p = 2. Moreover if t > 1, then 

(b) h i  = 2t ,  where h; denotes the relative class number of K .  

( c )  f = fT for any 7 E Gal(F/Q). 

Remark 2.2. In the statement of Theorem 4.12 in [2], we assume the 
condition (2.1). But we can ignore this assumption (see Remark 1.2 in 
PI ). - 
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3. FIELDS WHICH SATISFY NECESSARY 
CONDITIONS 

We have the following theorem which has been proved by Louboutin 
in [ I ] :  

Theorem 3.1. Let K be an imaginary cyclic number field of 2-power 
degree 2n = 2m 2 4 with conductor f K  and discriminant d K .  Then we 

where 
2meG 

E K = ~ - -  
2 

or -exp(-G).  
d K %  5 d K G  

By using this result, we can determine quartic CM-fields satisfying 
the conditions (a) and (b) in Theorem 2.1 (cf. [3]): 

Theorem 3.2. There are exactly 13 quartic CM-fields satisfying the 
conditions (a) and (b) in Theorem 2.1. Namely, the ones with class 
number h given as follows: 

h = l  Q(J-(~+JZ)) h = 2  Q(J--~(~+JZ)) 

Q(J=) Q ( J ~ )  
Q ( J ~ )  Q(J-) 
Q(J-) ~(J-17(5+2JS)) 
Q(J-) Q ( J ~ )  
Q ( J ~ )  Q ( J ~ )  

Remark 3.3. Note that the above fields are cyclic extensions over Q 
and have an expression of the form 

which is given by the condition (a) in Theorem 2.1: 

4. RESULTS 
Proposition 4.1. Let K be a quartic CM-field. Assume that (A,C) 
i s  a polarized abelian surface such that End(A) % OK and its field of 
moduli coincides with Q. Then (A ,  C) has either principally polarization 
or p-polarization, where p is the prime number which appears in the 
expression of K as i n  Theorem 2.1 (a). 

Proof. Let (A,C) be an abelian surface satisfying the assumption and 
f the ideal of F determined by (2.6). From the condition (c) of Theo- 
rem 2.1, we can write 

since F has class number 1. Then one can ignore the gap of r, since it 
causes an isomorphism (cf. [4], § 14.2). So the polarization C is deter- 
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mined only by the value of 6. By the calculation of the Riemann form, 
it is a principally polarization if 6 = 0, but otherwise a p-polarization. 
This completes the proof. 

Theorem 4.2. Let d2 (d )  be the moduli space of d-polarized abelian sur- 
faces and 

I 19 i f d = l ,  

7 i f d = 5 ,  

I 1 if d = 29,37,53,6l, 

0 otherwise. 

Then in d2 (d) there exist exactly n(d) Q -rational points corresponding 
to the abelian surface whose endomorphism ring is isomorphic to the 
ring of integers of a quartic CM-field. 

Proof. Let K be a quartic cyclic CM-field and A an abelian surface 
with End(A) OK. We fix an injection L :  K - C ,  a generator a 
of Gal(K/Q) and an isomorphism 8  : K EndO(A). Let c p :  K 4 
Endc(Lie(A)) be the representation corresponding to 0. Then cp is equiv- 
alent to L o ai @ L o oj for some i ,  j (0 5 i < j 5 3). Since the condition 
(2.2) holds, we have (i, j) = (0, I ) ,  (0,3), (1,2) or (2,3). Changing 8  by 

B o a  i f ( i , j )= (O ,3 ) ,  

B o a 3  if ( i , j )  = (1,2), 
B o a 2  if ( i , j )  = (2,3), 

we may assume that cp is equivalent to L $ L o a. Put = {L, L o a ) .  
Then A is isomorphic to c 2 / 6 ( a )  for some a E IK .  It holds thabfor any 
a, b E I K ,  c 2 / 6 ( a )  and c 2 / 6 ( b )  are isomorphic if and only if a and b 
are in the same ideal class. Therefore we obtain 19 abelian surfaces from 
the fields in Theorem 3.2. For each of these abelian surfaces, a principal 
polarization has been constructed in [3]. By the similar calculation, we 
can construct a p-polarization by giving in $2 concretely. In our case, 
it holds that NFI9(cO) = -1. SO any totally positive unit of F is of the 
form E? = E$ . ( E $ ) P .  Hence any two d-polarizations are equivalent for 
each d = 1 , p  (see 5 14 in [4]). From Proposition 4.1, this completes the 
proof. 

Remark 4.3. We can determine the points in fj2 corresponding to these 
Q-rat ional points. 

- 
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Abstract We survey results on families of cubic Thue equations. We also state 
new results on the family of cubic Thue inequalities 1x3 +axy2 + by3 I 5 k ,  
where a ,  k are positive integers and b is an integer: We give upper bounds 
for the solutions of these inequalities when a is larger than a certain 
value depending on b, and as an example, for the case b = 1,2, a 2 1, 
and k = a + b + 1, we solve these inequalities completely. Our method 
is based on Pad6 approximations. 

1991 Mathematics Subject Classification: 11D. 

1. INTRODUCTION 
The study of cubic Thue equations has a long history. We survey 

some of the results on families of cubic Thue equations. We also explain 
the Pad6 approximation method. There are also many results on various 
kinds of single cubic Thue equation, and also on the number of solutions, 
however we will not mention these subjects except a few results. We also 
state new results. 

In 1909, A. Thue [Thu2] proved that if F(x ,  y )  is a homogeneous 
irreducible polynomial with integer coefficients, of degree at least 3, and 
k is an integer, then the Diophantine equation 

has only a finite number of integer solutions. After this important work, 
equations of this type are called Thue equations. His method also yields 
an estimate for the number of solutions. However, his result is ineffective 
and does not provide an algorithm for finding all solutions. 

For a Thue equation, we call the solutions which can be found easily 
the trivial solutions. This is a vague terminology, but will be well un- 
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derstood in each situation. The problem is usually to  show that a given 
Thue equation has no other solution than the trivial solutions. For a 
family of Thue equations, it is usually expected that, if some suitable 
parameters are large, then there would be no non-trivial solution. 

To actually solve a Thue equation or to give an effective upper bound 
for the solutions, there are mainly four methods: 1. Algebraic method; 
2. Baker's method; 3. Pad6 approximation method; and 4. Bombieri's 
method. In the following we discuss results obtained by these methods. 
(Some of the results are stated in the form of Theorem, and some are 
not. But no meaning is laid on this distinction.) 

Let 8 be a real number. If there exist positive constants c and X such 
that for any integers p, q (q > 0), we have 

then we call the number X an irrationality measure for 8. If c is effective, 
then we say that 8 has an eflective irrationality measure. For equation 
(I ) ,  if we can obtain for every real root of F(x,  1) an effective irrational- 
ity measure smaller than the degree of F, then we can obtain, by an 
elementary estimation, an upper bound for the solutions of (1). 

Let us consider the family of cubic Thue inequalities 

where a ,  b, and k are integers. This is a general form of cubic Thue 
equation or inequality in the sense that the solutions of any given cubic 
Thue equation are contained in the set of solutions of an inequality as 
(3) with suitable a ,  b and k. In Section 7 we state new results on (3): 
We give an upper bound for the solutions of (3) when a is positive and 
larger than a certain value depending on b, and as an example, for the 
case b = 1,2,  a 2 1, and k = a + b + 1, we solve these inequalities 
completely. Our method is based on Pad6 approximations. We give a 
sketch of the proof in Section 8. 

The author expresses his gratitude to Professors Yann Bugeaud and 
Attila Petho for valuable comments and information. 

BAKER'S METHOD 
In 1968, A. Baker [Ba2] succeeded to give an effective upper bound 

for the solutions of any Thue equation. The method is based on his 
result on estimate of lower bound for linear forms in the logarithms of 
algebraic numbers. See [Ba3, Chapter 41 for this method. The upper 
bounds obtained by Baker's method are usually very large. However, 
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since the result of Baker appeared, estimate of lower bounds for linear 
forms in the logarithms of algebraic numbers has been largely improved. 
See for example M. Waldschmidt [Wall for the case of n logarithms, 
and M. Laurent, M. Mignotte, and Y. Nesterenko [LMN] for the case 
of two logarithms. The result in [LMN] provides us, in some cases, 
a fairly good estimate close to an estimate obtained by the Pad6 ap- 
proximation met hod. Using these improvements and other computation 
techniques, we can nowadays actually solve a single Thue equation by 
aid of computer if the coefficients are concretely given, and if they are 
small. For example Y. Bilu and G. Hanrot [BH] provide a method using 
computation techniques and number theoretical datas for finding actu- 
ally all solutions of such Thue equations or Thue inequalities. In fact 
this method is implemented by them in the software called KA NT [Dal] 
and also in the system called PARI. These softwares return us all solu- 
tions of a Thue equation if we just input to the computer the values of 
the coefficients of the equation. 

In 1990, E. Thomas [Thol] investigated for the first time a family of 
Thue equations by using Baker's method. Since then, various families 
of Thue equations or inequalities of degree 3 or 4 or even of higher 
degree have been solved. See also C. Heuberger, A. Petho, and R. F. 
Tichy [HPT] for a survey on families of Thue equations. Heuberger 
[HI is also a nice survey on families of Thue equations, and describes 
recent development of Baker's method for solving them. As for cubic 
Thue equations or inequalities, the following have been solved partly or 
completely. 

(i) 1x3 - (a - 1 ) ~ ~ ~  - (a + 2)xy2 - y31 < k. 
Thomas [Thol] proved that this family with k = 1 has only the trivial 

solutions (0, 0), (&l, 0), (0, k l )  and f (1, - 1) if a 2 1.365 x lo7. Mignotte 
[MI] in 1993 solved the remaining cases with k = 1. 

For general k, Mignotte, Petho, and F. Lemmermeyer [MPL] in 1996 
gave an upper bound for the solutions in the case a 2 1650, and solved 
completely this family for k = 2a + 1. In 1999, G. Lettl, Petho, and 
P. Voutier [LPV], using the Patle approximation method, gave an upper 
bound for the solutions in thc case a 2 31, and k 2 1. This upper bound 
is much better than thc forrricr onc. 

(ii) x3 - ax2y - (a + l ) sY2  - 1/'' = 1. 
Mignotte and N. 'l'ssriakis [Mrl'] proved that this family has only 5 

trivial solutions if a > 3.67 . 10"'. Recently, Mignotte [M2] solved this 
family completely. 
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(iii) x(x - aby) (x - acy) f y3 = 1. 
Thomas [Tho21 proved that if 0 < b < c and a > (2 . 106(b + 

2 ~ ) ) ~ . ~ ~ / ( ~ - ~ ) ,  then the equation has only the trivial solutions. For the 
case b = 1, c > 143, a > 2, he completely solved the equation. He 
conjectures that, if d 1 3 and pl (t), - . , pd-1 (t) are polynomials with 
integer coefficients satisfying degpl < . . . < degpdFl, then the family 
x(x  - pl (a) y) . . (x - pd-l (a) y) f yd = 1 has only the trivial solutions if 
a is sufficiently large. He calls this a split family. 

These were all treated by Baker's method, except the work of [LPV] 
on (i). To apply this method, it is necessary to determine a fundamental 
unit system of the associated algebraic number field or of the associated 
order. Therefore, to be able to treat a family of Thue equations by this 
method, it is strongly required that the associated algebraic number field 
or the associated order has a fundamental unit system whose form does 
not vary much depending on the values of parameters, or a t  least that 
we are able to obtain a good estimate for a fundamental unit system. If 
the right-hand side k of a Thue equation is not f 1 as in family (i), then 
it is also necessary to determine a system of representatives of algebraic 
integers whose norm is equal to k. Therefore, when Baker's method is 
used, usually the case with k = f 1 is treated. 

The idea of Pad6 approximation method is originally due to Thue 
[Thul], [Thud]. This method can be applied only to certain types of 
equations. Moreover, when we apply this method to a family of Thue 
equations, it fails usually for the case where the values of the parameters 
of the family are small, and we must treat the remaining equations by 
Baker's method. However, if this method is applicable, then it usually 
provides a better estimate than Baker's method. Therefore, it often 
happens that the number of remaining equations is finite and small, and 
in such a case we can solve completely the family. An example is men- 
tioned above concerning equation (i) . Moreover, to apply this method, 
it is not necessary to know the structure of the associated number field, 
and we can easily treat Thue inequalities a t  the same time. 

(iv) laxd - byd[ < k, d 2 3. 
In 1918 Thue [Thu4] succeeded to give an upper bound for the solu- 

tions of this inequality using one good solution under the assumption 
that it exists. When one can find easily a good solution, then his result 
gives actually an upper bound for the other solutions. As an example 

he gave an upper bound for the solutions of 

when a > 37. 
To our knowledge, this is the first time that an upper bound for the 

solutions of a family of Diophantine equations was obtained. His idea 
is really original. He constructed, already in his earlier work [Thul], 
polynomials Pn(x) and Qn(x) of degree at most n for any positive 
integer n such that xpn(xd) - Qn(xd) = (x - l ) d 2 n ( ~ ) .  Actu- 
ally, these polynomials Pn and Qn are some hypergeometric polynomi- 
als, namely Pn(x) = F(- l l d  - n, -n, -1ld + 1; l/x)xn and Qn(x) = 
F( - l l d -n ,  -n, - l /d+ 1; a), even though he does not mention this fact 
and this is observed by C. L. Siegel [Sl] . Taking a good solution (xo, yo), 
Thue puts x = ~ x o l y o ,  and obtains the result. He works only with 
polynomials, but this is essentially equivalent to Pad6 approximations. 
See Section 6 for further explanation. 

Using the Pad6 approximation method, Siegel [Sl] in 1929 showed that 
the number of solutions of any cubic Thue equation as (1) with positive 
discriminant is at most 18 if the discriminant is larger than a certain 
value depending on k. To construct Pad6 approximations he as well 
as Thue uses hypergeometric polynomials, so this Pad6 approximation 
method is also called the hypergeometric method. In a student paper 
from 1949, A. E. Gel'man showed that 18 can be replaced by 10. For 
a proof of this, see B. N. Delone and D. K. Faddeev [DF, Chapter 51. 
J.-H. Evertse [E2] proved that the number of solutions of any cubic 
Thue equation with positive discriminant (not assuming it is large) and 
with k = 1 is a t  most 12, and M. A. Bennett [Bell proved that this 
number is at most 10. Recently (in 2000) R. Okazaki announced at  
a conference held a t  Debrecen, Hungary that the number of solutions 
of any cubic Thue equation with sufficiently large positive discriminant 
and with k = 1 is at most 7. On the other hand, based on extensive 
computer search, Petho [PI formulated a conjecture on the number of 
solutions of cubic Thue equations with positive discriminant and with 
k = 1, by classifying cases. For the general case, he conjectures that 
the number of solutions is at most 5. His conjecture is refined by F. 
Lippok [Li]. For the equation laxd - byd 1 = k, Evertse [El] gave an 
upper bound for the number of solutions, by the Pad6 approximation 
method and congruence consideration. The paper [Bell includes also 
many references on Thue equations. 

Siegel [S2] refined the above work of Thue on (iv), and proved that if 
lab( is larger than a certain value depending on d and k, then inequality 
(iv) has a t  most one positive coprime solution. This is a nice result since 
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it asserts that, if we find one solution, then there is no more solution. 
Siege1 gave interesting examples: 1. For d = 7,11,13, the equation 
33xd - 32yd = 1 has only the solution (1 , l ) .  2. The equation (a + 1)x3 - 
ay3 = 1 has only the solution (1 , l )  if a > 562. Some special cases of 
Siegel's results are contained in earlier results of Delaunay, T .  Nagell, 
and V. Tartakovskij obtained by the algebraic method. See (viii) and 
(ix) below. 

Refining the Thue-Siege1 method, Baker [Ball proved that fi has 
irrationality measure X = 2.955 with c = lo6, and obtained an upper 
bound for the solutions of (iv) in the case a = 1, b = 2, and d = 3, and 
completely solved (iv) in the case a = 1, b = 2, d = 3, and k = 1. 

Baker and C. L. Stewart [Bas] treated (iv) in the case b = 1, a 2 2 and 
d = 3 by Baker's method, and proved that the solutions are bounded by 
(cl k)e2, where cl = e(5010g10gf)2, c2 = 1012 log o and e is the fundamental 
unit > 1 of the field Q ( @ ) .  

An irrationality measure for the number is obtained by Bombie- 
ri's method. See Section 4. 

After an extensive work done by Bennett and B. M. M. de Weger 
[BedW], recently Bennett [Be21 proved, by using both the Pad6 ap- 
proximation method and Baker's method, that for d > 3 the equation 
axd - byd = 1 has a t  most one positive solution. This can be considered 
to be a final result about family (iv) with k = 1. 

There are some other families of Thue equations of degree > 3 which 
were treated by the Pad6 approximation method. 

(v) 1x4 - ax3y - 6x2y2 + axy3 + y41 5 k. 
Chen Jianhua and P. M. Voutier [CheV] solved this family with k = 1 

for a > 128. They use an important lemma of Thue [Thu3] which 
provides a possibility to apply the Pad6 approximation method to some 
special type of Thue equations of degree > 3. For general k, Lettl, 
Petho, and Voutier [LPV] gave an upper bound for the solutions in the 
case a > 58, and proved that, in the case k = 6a + 7 and a > 58, the 
only solutions with 1x1 5 y are (0,1), (&I, 1)) (&I, 2). Historically, before 
[CheV], by using Baker's method Lettl and Petho [LP] had already solved 
completely the corresponding family of Thue equations (not inequalities) 
for k = 1 and 4. 

(vi) ~x6-2ax5y-(5a+15)x4y2-20x3y3+5ax2Y4+(2a+6)xy5+y6~ 5 k. 
Lettl, Petho, and Voutier [LPV] gave an upper bound for the solutions 

in the case a > 89, and solved the inequality completely in the case k = 
120a+323 and a 2 89. Families (i), (v) and (vi) are called simple families 
since the solutions of the corresponding algebraic equation F (x ,  1) = 
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0 are permuted transitively by a fractional linear transformation 
rational coefficients (see [LPV] for the definition). 
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with 

(vii) 1x4 - a2x2y2 - by4[ 5 k. . . .  

For b = -1, the author [Wakl] gave an upper bound for the solutions 
in the case a > 8, and solved the inequality when k = a2  - 2 and 
a > 8. When b > 1 and a is greater than a certain value depending on b, 
an upper bound for the solutions was obtained by [Wak2], and the case 
b = 1,2,  a 2 1, and k = a2 + b - 1 was completely solved. The method is 
based on Pad6 approximations. In the Pad6 approximation method, one 
usually constructs, for a real solution 8 of the corresponding algebraic 
equation, linear forms in 1,8. In these two works however, linear forms 
in 1,8,  e2 were used, and it seems that linear forms of this kind were 
used for the first time to solve Thue equations. 

4. BOMBIERI'S METHOD 
The proof of the finiteness theorem of Thue on equation (1) is based 

on the idea that if there is a rational number which is sufficiently close 
to a given real number 8, then other rational numbers can not be too 
close to 8. In fact, Thue first assumes existence of a rational number 
polgo having sufficiently large denominator and exceptionally close to 
8. Then, taking another plq close to 8, and using the box principle, he 
constructs an auxiliary polynomial P(x,  y) which vanishes a t  (8,8) to 
a high order. And he proves that P vanishes at (po/qo,p/q) only to a 
low order. To prove this, he needs the assumption that qo is sufficiently 
large. However, this assumption for polgo is too strong, and no pair 
(8,po/q0) having the required property is known at present, and by this 
reason no effective result has been found using this method. 

E. Bombieri [Boll however succeeded, by using Dyson's lemma, to 
remove the requirement that qo should be large. This lemma asserts 
in fact that P vanishes at (po/qo,p/q) only to a low order, by using 
information on the degree of P and the vanishing degree at (B,O) only. 
Hence it is free from the size of qo, and it allows to use an approximation 
po/qo to 8 even if its denominator is small. Thus, Bombieri could find 
examples of good pairs (O,po/qo), and obtained effective irrationality 
measures for certain algebraic numbers. 

Example [Boll. Let d 2 40, and let B be the positive root of xd-axd-'+I, 
where a 2 A(d) and A(d) is effectively computable. Then, O has effective 
irrationality measure X = 39.2574. 
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Refining the above method, Bombieri and J. Mueller [BoM] obtained 
the following. 

Theorem ([BoM]). Let d > 3,  and let a and b be coprime positive 

integers, and put p = log l a -  b ' .  Let 6' E $(m) be of degree d .  If 
log b 

p < 1 - 2 /d ,  then for any E > 0, 0 has eflective irrationality measure 

2 d5 log d A = -  
1 - P  

Pursuing this direction, Bombieri [Bo2] in 1993 succeeded to create 
a new method for obtaining an effective irrationality measure for any 
algebraic number. This method applies to all algebraic numbers, hence 
it is a very general theorem as well as Baker's theorem. The method is 
completely different from that of Baker. 

Bombieri, A. J. van der Poorten, and J. D. Vaaler [BvPV] applied 
Bombieri's method to algebraic numbers of degree three over an algebraic 
number field, and under a certain assumption, obtained an irrationality 
measure with respect to the ground field. For simplicity, we state their 
result for cubic numbers over the rational number field. 

Theorem ([BvPV]). Let a (# 0) and b be integers (positive or negative), 
and f ( x )  = x3 + a x  + b be irreducible. Let 6' be the real root of f whose 
absolute value is the smallest among the three roots of f .  Assume that 
la1 > eloo0 and la1 > b2. Then, 6' has eflective irrationality measure 

Example. For la1 = [eloo0] + 1 and lbl = 1 we have X = 2.971. 

Remark. If a > 0, then f has only one real root, and its absolute value 
is smaller than that of the complex roots of f .  

5. ALGEBRAIC METHOD 
After Thue proved his theorem on the finiteness of the number of 

solutions, the maximal number of solutions for some special families of 
Thue equations of low degrees was determined by the algebraic method. 
This method uses intensively properties of the units of the associated 
number field or of the associated order. Therefore, only the cases where 
the units group has rank 1 have been treated. However, this method 

On families of cubic Thue equations 367 

gives very precise results on the maximal number of solutions, and it 
also gives an alternative proof of Thue's finiteness theorem for these 
special cases. Nagell [N4], and Delone and Faddeev [DF] are good books 
on this subject. Families (viii) and (ix) are special cases of (iv). 

(viii) ax3 + by3 = k .  
Case b = 1 and k = 1. Delaunay and Nagell independently proved 

that this equation has at most one solution with x y  # 0. For the proof, 
see [Dell, [Nl] and [N2]. 

Case k = 1 or 3. Nagell [Nl] [N2] proved that this equation has a t  
most one solution with xy # 0 except the equation 2x3 + y3 = 3 which 
has two such solutions (1 , l )  and (4, -5). 

(ix) x4 - ay4 = 1. 
Tartakovskij [Ta] proved that if a # 15 then this equation has a t  most 

one positive solution. Actually, one can see by using KANT that the 
same holds for a = 15 also. 

(x) F(x ,  y )  = 1 where F is a homogeneous cubic polynomial with 
negative discriminant. 

The assumption that the discriminant is negative implies that F ( x ,  1) 
has only one real zero and the associated unit group has rank 1. Delau- 
nay [De2] and Nagell [N3] independently proved that, if the discriminant 
is not equal to  -23, -31, -44, then this equation has a t  most 3 solutions. 

(xi) x 3 + a x Y 2 + y 3 =  1, a > 2 .  
The only solutions of this equation are (1,O) , (0 , l )  and (1, -a). This 

is a corollary of the above general result of Delaunay and Nagell on 
equation (x) since the discriminant -4a3 - 27 is negative by the as- 
sumption and the equation has already three solutions. The case a = 1 
corresponds to one of the exceptional cases. 

6. PRINCIPLE OF THE PADE 
APPROXIMATION METHOD 

We explain here how we apply Pad6 approximations to solve Thue 
equations. For this purpose, let us consider equation (4), namely the 
example treated by Thue and Siegel. The principle is as follows. In order 
to solve this equation, we need to obtain properties concerning rational 
approximations to the algebraic number a = q w  with d = 3. 
Let us note that this number is written as a = q m .  In order to 
obtain properties of this number, we first consider the binomial function v m ,  and obtain some property concerning Pad6 approximations to 
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this function. Then, putting x = l l a  and using the property of this 
function, we obtain properties of the number a. 

In order to explain what Pad6 approximations are, we state the fol- 
lowing proposition. 

Proposition. Let f (x) be a Taylor series at the origin with rational 
coeficients. Then, for every positive integer n, there exist polynomials 
Pn(x) and Qn(x) (Q, # 0) with rational coeficients and of degree at 
most n such that 

holds, namely, such that the Taylor expansion of the left-hand side begins 
with the term of degree at least 2n  + 1. 

We call the rational functions Pn (x)/Qn (x) or the pairs (Pn (x), Qn (x)) 
Pad6 approximations to f (x) . 
Proof. The necessary condition for Pn and Qn is written as a system of 
linear equations in their coefficients. Comparing the number of equations 
and the number of unknowns, we find a non-trivial solution. 

By this proposition we see that Pad6 approximations to a given func- 
tion exist always. For application to Diophantine equations, this exis- 
tence theorem is not sufficient, and it is very important to know prop- 
erties of the polynomials Pn(x) and Qn(x). Namely, it is necessary to 
know the size of the denominators of their coefficients, and upper bounds 
for values of these polynomials and the right-hand side. Therefore, it is 
important to be able to construct Pad6 approximations concretely. 

Example (Thue-Siegel). Pad6 approximations to the binomial function 
$ C F Z  are given by 

where F denotes the hypergeometric function of Gauss (in this case they 
are hypergeometric polynomials). 

We put x = l / a  into this formula, and we multiply the relation by 
the common denominators of the coefficients of these hypergeometric 
polynomials and also by an.  Then we obtain 

A 
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Suppose a is sufficiently large. Then we can verify that if n tends to 
the infinity, then the right-hand side tends to zero. From this we obtain 

t a sequence of rational numbers pn/qn which approach to the number 
a = q m .  Since we know well about hypergeometric functions, we 
can obtain necessary information about p,, q,, and the right-hand side 
of the above relation. Then, comparing a rational number p/q close to 
the number a with the sequence pn/qn, we obtain a result on rational 
approximations to a. (Actually we should construct two sequences ap- 
proaching to a . )  This final process is based on the following lemma. Its 
idea is due to Thue. 

Lemma. Let 8 be a non-zero real number. Suppose there are positive 
numbers p, P, I ,  L with L > 1, and further there are, for each integer 
n 2 1, two linear forms 

with integer coeficients pin and gin satisfying the following conditions: 
(i) the two linear forms are linearly independent; 

(ii) [gin 1 < pPn ; and 
(iii) lltnl < l / L n .  

Then 8 has irrationality measure 

log P 
X = 1 + -  wi th  c = 2 p P ( m a ~ { 2 l , l ) ) ( ' ~ ~ ~ ) ~ ( ' ~ ~ ~ ) .  

log L 

Proof. See for example [R, Lemma 2.11. 

If we can obtain some information about the behavior of the principal 
convergents to the algebraic number a = q w ,  it would be ex- 
tremely nice. But, since a is an algebraic number of degree greater than 
2, we do not know any information at all about its principal convergents. 
Even though the sequence p,/q, obtained by Pad6 approximations con- 
verges to cr not so strongly as the principal convergents, we any way 
know some information about its behavior, and this provides us with 
information about rational approximations to a by the above lemma. 
This is the principle of the Pad6 approximation method. 

Remark. As explained in Section 4, in the proof of the finiteness theorem 
of Thue, the denominator of an exceptional approximation po/qo is re- 
quired to be large. Contrary to this, in the Pad6 approximation method, 
it is not required for a good solution (or equivalently for an exceptional 
approximation) to have large size. 
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In the above lemma, the smaller the constant P is, the better result 
is obtained. G. V. Chudnovsky [Chu] estimated more precisely the com- 
mon denominators of the coefficients of the hypergeometric polynomials 
than Siege1 [S2] and Baker [Ball did. Thus he improved for example 
Baker's result on irrationality measure for B, and obtained the value 
X = 2.42971. He also gave irrationality measures for general cubic num- 
bers under a certain assumption [Chu, Main Theorem]. As an example, 
he obtained the following (see [Chu, p.3781). 

Theorem ([Chu]). Let a be an integer (positive or negative) with a - 
-3 (mod 9), and let 8 be the real zero of f (x) = x3 + ax + 1 whose 
absolute value is the smallest among the three zeros o f f .  Then, for any 
e > 0, 8 has effective irrationality measure 

where 

Taking e small, we have X < 3. When la1 is large, we have asymptotically 

4.5 log 3 - 2 log 2 - fin12 
X w 3 -  

3 log la1 + 0.5 log 3 - &/6 ' 

7. THUE INEQUALITIES GIVEN BY (3) 

Hereafter, we suppose a > 0. We give new results on the family of 
cubic Thue inequalities given by (3). Our method is based on Pad6 
approximations. We give an outline of the proof in Section 8. The full 
proof will appear elsewhere. 

As mentioned above, there are preceding results concerning this fam- 
ily: Equation (xi) was solved by algebraic method; irrationality mea- 
sures for the associated algebraic numbers were given by Bombieri's 
method; Chudnovsky gave irrationality measures for the case b = 1 
and a - -3(mod 9). (In the last two cases, the results hold for a < 0 
also.) 

Put  f (x) = x3 +ax+ b. From the assumption that a > 0, the algebraic 
equation f (x) = 0 has only one real solution and the other two solutions 
are complex. Let us denote by 8 this real solution. Further we put 

- 
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R = 4a3 + 27b2. Note that R is equal to the discriminant of f multiplied 
by - 1. Our results are as follows. 

Theorem 1. Suppose a > 22/334b8/3 (1 + 3g01b13 . Then for any 3 213 
integers p, q (q > O), we have 

where 

X(a, b) = 1 + log(4dZ + 12&1b1) < 3. 
log((1 - 27b2/~)dZ/(27b2)) 

Further, X(a, b)  is a decreasing function of a and tends to 2 when a tends 
to 00. 

Remark. The above assumption on the size of a is imposed in order 
to obtain the inequality X(a, b) < 3 which is the essential requirement 
for application. For example, we obtain X(a, b) < 3 for b = 1 and 
a 2 129, and for b = 2 and a 2 817. This shows that for small b we have 
X(a, b) < 3 for relatively small a. Compare with the assumption in the 
theorem of Bombieri, van der Poorten, and Vaaler mentioned in Section 
4. Moreover, in their result, X behaves asymptotically for large a 

while ours behaves 

4 log 1 b1 + 2 log 108 
X(a, b) - 2 + 

3 log a , 

and behaves better. However we should note that their result holds for 
cubic algebraic numbers over any algebraic number field. Compare also 
with the behavior of X in Chudnovsky's theorem. 

As an easy consequence of Theorem 1, we obtain the following. 

Theorem 2. Under the same assumption as in Theorem 1, we have, 
for any solution (x, y )  of the Thue inequality (3), 

with the same X(a, b) as in Theorem 1. 

Since we have obtained an upper bound for the solutions of (3), we 
may consider that (3) is solved in a sense under the assumption. In order 
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to find all solutions of (3)  completely, we need to specify the value k. 
Let b  > 0. Taking into account that for (x, y )  = (1 , l )  the left-hand side 
of (3)  is equal to a + b  + 1, let us put k = a + b  + 1, and let us consider 
the Thue inequalities 

Theorem 3. Let b > 0  and a 2 3000b4. Then the only solutions of (5) 
with y 2 0 and gcd(x, y )  = 1 are 

Let us call these solutions the trivial solutions of (5) with y 2 0. 
For b  = 1,2 we can solve (5) completely. 

Theorem 4. Let b = 1 or b  = 2, and let a > 1. Then the only solutions 
of (5) with y 2 0  and gcd(x, y )  = 1 are the trivial solutions except the 
cases b = 1, 1 5 a 5 3  and b  = 2, 1 5 a 5 7.  Further, we can list up 
all solutions for the exceptional cases. 

8. SKETCH OF THE PROOF 
Proof of Theorem 1. We use the Pad6 approximation method expiained. 
in Section 6. As explained above, in order to solve equation (4) or the 
more general equation (iv), it was necessary to obtain a result on ra- 
tional approximations to  the associated algebraic number. Since those 
equations have diagonal form, namely they contain only the terms xd 
and y d ,  the associated algebraic number is a root of a rational num- 
ber. Therefore the binomial function was used. However, in our 
case, equation (3) has not diagonal form. But this inconvenience can 
be overcome by transforming the equation into an equation of diagonal 
form as follows. The transformation itself is an easy consequence of the 
syzygy theorem for cubic forms in invariant theory, namely the relation 
47-t3 = D F 2  - 92 among a cubic form F, its discriminant D, and its 
covariants 7-t and 9 of degree 2 and 3 respectively. 

Lemma 1. The polynomial f can be written as 

where 

Proof. We can verify the formula by a simple calculation starting from 
the right-hand side. 

In order to obtain the form of the formula, we just set a = s + tJfi 
and ,!? = u + v f i  with unknowns s ,  t,  u ,  v, and put them into the right- 
hand side, and we compare the coefficients. Then we obtain the formula. 

This fact was used also in Siege1 [Sl] to determine the number of 
solutions of cubic Thue equations, and also it was used in Chudnovsky 
[Chu]. This made possible to obtain results on general cubic numbers 
of wide class by considering only the binomial function and its 
Pad6 approximations. 

We use this formula in a different way from theirs. Since 8 is a real 
zero of f (x), we have 

The key point of our method is to consider the number on the left-hand 
side, and to apply to this number Pad6 approximations to the function 
V ( 1  - x)/( l  + x ) .  To construct Pad6 approximations, we use Rickert's 
integrals [R]. 

)L 

Lemma 2. For n 2 1, i = 1,2 and small x, let 

where Ti ( i  = 1,2) is a small simple closed counter-clockwise curve en- 
closing the point 1 (resp. -1). Then these integrals are written as 

where Pn(x) is a polynomial of degree at most n with rational coefficients. 
Further we have 

Now we put s = 3 f i b / J ? i  into these Pad6 approximations. Then 
using (6) we rewrite the left-hand side in terms of 8, P and p, and we 
multiply by 8 + p. Then we observe that the left-hand side does not 
contain any square root. Thus we obtain linear forms 

with rational coefficients. 
Since the Pad6 approximations are given by integrals, we can obtain 

necessary information about the linear forms by residue calculus and by 
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In this paper we shall exhibit the close mutual interaction between zeta- 
regularization theory and number theory by establishing two examples; 
the first gives the unified Kronecker limit formula, the main feature be- 
ing that stated in terms of zeta-regularization, the second limit formula 
is informative enough to entail the first limit formula, and the second 
example gives a generalization of a series involving the Hurwitz zeta- 
function, which may have applications in zeta-regularization theory. 
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1. INTRODUCTION 
In this paper we shall give two theorems, Theorems 1 and 2, which 

have their genesis in zeta-regularization. One (Theorem 1) is the second 
limit formula [16] of Kronecker in which effective use is made of the zeta- 
regularization technique, and the other (Theorem 2) is a generalization 
of a formula of Erdklyi [6] (in the setting of Hj. Mellin [13]) which gives 
a generalized zeta regularized sequence (Elizalde et a1 [4]). 

First, we shall give the definition of the zeta-regularization. 

Definition. Let {Ak}k=l,l,.,. be a sequence of complex numbers such 
that 

03 

for some positive 0. 
Define Z(s) by Z(s) = Ah-' for s such that Re s = o > a and 

call it the zeta-function associated to the sequence {Ak}. 
379 

C. - - Jia - - - and - - - K. Matsumoto (eds.), Analytic Number Theory, 379-393. . . . - . . . . - . , . , . , . , , , 



380 ANALYTIC NUMBER THEORY Two examples of zeta-regularization 381 

We suppose that Z(s) can be continued analytically to a region con- 
taining the origin. 

Then we define the regularized product, denoted by n A,, of {Ak} 
z 

k as 

where FP f (so) indicates the constant term in the Laurent expansion of 
f (s) a t  s = so. If this definition is meaningful, the sequence {Ak} is 
called zeta-regularizable. 

Similarly, if Z(s) can be continued analytically to a region containing 
s = -1, the zeta-regularized sum is defined by 

Cz = log { vZ exp(hk)} = FP Z(- 1). 
k 

Giving a meaning in this way to the otherwise divergent series or 
products by interpreting them as special values of suitable zeta-functions 
(or derivatives thereof) is called Zeta-regularizat ion. 

Remark 1. i) As {Ak) we consider mostly the discrete spectrum of a 
differential operator. 

ii) Formal differentiation gives 

so that this gives a motivation for interpreting the formal infinite product 
nE1 Xk as e-FP "(O). 

i i i j  The merit of the zeta-regularization method lies in the fact that 
by only formal calculation one can get the expressions wanted, save for 
the main term, which is given as a residual function (the sum of the 
residues), for more details, see Bochner [3]. To calculate the residual 
function one has to appeal to classical methods. Cf. Remark 2 and 
Remark 3, below. 

We shall now state the background of our results more precisely. Re- 
garding Kronecker's limit formulas, J. R. Quine et al [15] were the first 
who used the zeta regularized products to derive Kronecker's first limit 

formula in the form 

where the prime "I" indicates that the pair (m, n )  = (0,O) should be ex- 
cluded from the product, q(z) denotes the Dedekind eta-function defined 
by 

00 

On the other hand, Quine et a1 [15], Formula (53), states Kronecker's 
second limit formula in the form 

nZcy + W) = iq-l(z) exp (-T - Tiw) B ~ ( w ,  z), (3) 

where y runs through all elements m + n r  of the lattice with basis 1, T 

(-T 5 arg y < T) and &(w, z) is one of Jacobi's theta-function given by 

00 

B1(w,z) = C exp 
n=-00 

Quine et a1 [15] proved (3) using a generalization of Voros' theorem 
[19] on the ratio of the zeta-regularized product and the Weierstrass 
product to the case of zeta regularizable sequences (Theorem 2 [15]). 

I t  is rather surprising that they reached (3) without knowing the first 
form of Kronecker's second limit formula (from the references they gave 
they do not seem to know Siegel's most famous book [16] on Kronecker 
limit formulas) as (3) does not immediately lead to it (the conjugate 
decomposition property does not necessarily hold for complex sequences 
4- 

Siegel's book [16] had so much impact on the development of Kro- 
necker's limit formulas and their applications in algebraic number the- 
ory that the general understanding before Berndt's paper [I] was that 
the first and the second limit formulas of Kronecker should be treated 
separately, and may not be unified into one (see e.g. Lang [ll] and oth- 
ers). Berndt [I] was the first who unified these two limit formulas into 
one, but this paper does not seem to be well-known for its importance 
probably because it was published under a rather general title "Identities 
involving the coefficients of a class of Dirichlet series". 
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It is also possible to unify the investigation of Chowla and Selberg with 
Siegel to deduce a unified version of Kronecker's limit formula (Kumagai 
[lo]), but this is superseded by Berndt's theorem in the sense that in 

t I 

Theorem 1. i) cQ(s; u, v) has the expansion at s = 1, 

Berndt's one is to take only w = 0 while in Kumagai's paper, the residual 
function has not been extracted out. 

To restore the importance of Berndt's paper and clarify the situa- 
tion surrounding Kronecker's limit formulas we shall prove the unified 
Kronecker limit formula. The main feature is that, stated in terms of 
zeta-regularized product, the second limit formula is informative enough 

where 

and 

to  entail the first limit formula: 

where E(U, u) is defined by 

g1 (U - UZ, 2) 
- log 1 (u - uz>rl(z> 

Indeed, noting that 

- (1 - E(U, u)) log lu - u z }  , (10) 

&(u, 21) = 1, (u, 4 = (090) 
0, otherwise. 

we can take the limit in (5) as w -+ 0, and ii) Under the convention 

(1 - E(u,u)) log Iu - uzl = 0 for (u,u) = (0,0), 

we can rewrite (8) as Kronecker's first limit formula stated in Siegel [16]. 

To state Theorem 1 we fix the following notation. 
Let Q((, q) = ac2 + 2btq + q2 be a positive definite quadratic form 

with a > 0, and discriminant d = ac - b2 > 0 which we decompose as where y is Euler constant and ((s) = C(s, 1) = xzl n-' denotes the 
Riemann zeta-function. 

We now turn to the second example, which is discussed in Elizalde et 
a1 [4] under the title "Zeta-regularization generalized". Our main object 

For 0 < u, v < 1 we define the Epstein (-Lerch) zeta-function associated 
with Q(u, u) by 

of study is the function 

o0 e - ( n + a ) a ~  

F, (s, r, a )  := C (n  + a)as ' (11) 
n=O 

over n # -a, is absolutely convergent for where the series, extended 
cua > 1 and r 2 0. 

Also define the classical Epstein zeta-function by I Theorem 2. For 0 < cu < 1, a > 0 and 171 < 2n, we have the expansion 

We can now state the unified Kronecker limit formula. 
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where <(s,u) = x r = o ( n  + u)-' denotes the Hurwitz zeta-function and 
P ( s ,  T) the generalized residual function (see e.g. Bochner [3]) 

and where r is a small positive number so as to enclose the pole of the 
integrand as follows: 

In  particular, if s - @ Z, 

The series on the right-hand side of (12) is absolutely convergent for 
any T or 171 < 271. according as 0 < a < 1 or a = 1. 

In the case a = 1, (12) corresponds to Formula (8) in ErdBlyi [6, p.291: 
Ilogzl < 2 ~ ,  s f  1 ,2 ,3  ,..., U#O,-1,-2 , . . a  

Theorem 2 is a companion formula to Theorem 1 of Katsurada [8] 
which gives an asymptotic expansion for the function 

(Katsurada considered the special case of a = 1, a = 1: Gy (T) = 
(-7)" G(y, = C n > R e u + l  <(n - v)T).  

We are as yet unable to obtain a counterpart result for G. 
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The author would like to express his hearty thanks to the referee 

for his thorough scrutinizing the paper and for many useful comments 
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2. PROPERTIES OF 
ZETA-REGULARIZATION 

We quote some basic properties of the zeta-regularized products which 
we use in the proof of Theorem 1 (see e.g. Quine, et a1 [15], Song [17]). 

We call the least integer h such that the series for Z(h  + 1) converges 
absolutely the convergence index. 

(2) I. Partition Property. Let { A t ) }  and { A k  } be zeta-regularizable se- 

quences and let { A k }  = { A t ) }  U { A f ) }  (disjoint union). Then 

11. Splitting Property. If { A k }  is zeta-regularizable and n a k  is con- 
k 

vergent absolutely, then 

111. Conjugate Decomposition Property. If { A k }  is a zeta-regular- 
izable sequence with convergence index h < 2, then 

IV. Iteration Property. Suppose A = { A m n )  is a double-indexed zeta- 

regularizable sequence, i.e. n Am, is meaningful. Then for { A , }  = 
e 

{ , A }  A m  is meaningful, and we have 

(for details, cf. Song [17], p.31). 

We shall now give two examples. The first example interpreting the 
otherwise divergent series as special values of the Riemann zeta-function, 
is originally due to Euler [7] and is an example of various regular methods 
of summation or a consequence of the functional equation, while the 
second example enabling us to  interpret the otherwise divergent products 
as the zeta-regularized products is due to Lerch [12, p.131. 
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We use the functional equation (16) to expand <Q around s = 1 as 
follows: 

Example 1. <(-n), n = 0,1,2, . . . (see Berndt [2, pp. 133-1361 for more 
details about Ramanujan's ideas) 

Thus we are led, after Stark (see e.g. [18]), to compute +b. (s; u, v) 
a t  s = 0 (rather than at  s = 1) which we do by the zeta-regularized 
product 

e -mb*(o;u,v) = ( J ; ~ ~ ) E ( u . u )  n: l n + m z +  w12, (18) 
m.nEZ 

Example 2. exp(-<I(-n)), exp(-<I(-n, a ) )  

where w = v - uz. 
We compute n = n ( n  + mz + w12. By Property IV, 

m,nEZ 

For w # 0, by Properties I and 111, the inner product can be expressed 
as 

where A = 1.282427130. . . is the Glaisher-Kinkelin constant defined by 

A = lim 1 ' 2 ~ 3 ~  . . nn e$ = e-('(-l)+h 
n--roo nn2+$+& 

3. PROOF OF THEOREMS 
Proof of Theorem 1. Let Q* be the reciprocal of Q given by 

00 fi 
By Lerch's formula n (n  + a )  = - we may express each product rm If we define the Epstein-Hurwitz zeta-function +Q by n=O \ ,  

in terms of the gamma function. Since these in pairs are of the form 

& fi 6 6 and 
r ( m z  + w) I'(1 - mz - a )  ~ ( m f  + G) r ( l -  mf  - G) '  

then <Q satisfies the functional equation 
we can rewrite them, using the reflection property of the gamma func- 
tion, in sines to get 

(see e.g. Epstein [5] or Berndt [I]). 
In particular, +Q* (0; u, v) = -E(u, v) follows from this. 
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On the right-hand of this formula we express the sine 12 sin n(mz+w) l 2  
by exponentials 

e-ni(l~+w) l 2  1 - e2ni(w+l~) l 2  Or le-ni(1z-tu) l 2  1 - e-2ni (w- l~)  I i 

? 
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Proof of Theorem 2. Suppose first that 0 < T < 27r. Then by the Mellin 
inversion for fixed s = a + it, 

according as m = 1 or m = -1, 1 E N. 
We multiply these over I ,  -1, and 0, using Properties I and 11, we have 

I 

where the integral is the Bromwich integral extended over a vertical line 
(c ) :  z = c + iy ,  -00 < y < oo, with c > 0. 

We shift the line of integration to (c') with c' = -N - K ,  where 
0 < K < 1 and N is a large positive integer satisfying 

1 
N > a - - ,  N > > I t ( ,  

CY 
(19) 

which we may, because for the Hurwitz zeta-function we have the well- 
known estimate 

1=1 

The infinite product part can be rewritten as 

e 3 

and the zeta-product part as 

e-2sy(u2- i) 
9 

and for the gamma function we have 

Ir(u + iu)l - \ /2;;1u1~-ie-f  1'1 

valid in any strip ul < u < u2, a consequence of Stirling's formula 

whence we conclude (5):  

for I argzl < 7r, IzI + 0;). 

Hence by the residue theorem, we find that 

Hence by (5 ) ,  the product in (18) becomes 
F(s ,  T )  = z=-lc Res r ( t ) < ( o ( s  + z), a ) ~ - '  

O<k<-C' 

say, where P(s ,  T )  is defined by (13) and 

Hence Substituting (18)' in (17) proves the assertion. 

( - ' I k  <(a(s  - k ) ,  a )rk  + f ( s ,  T )  + R N ( s ,  7 ) .  F ( s , T )  = x' - 
O l k l N  k ! 

Remark 2. Deduction of (18)' in this formal way is the advantage of 
the zeta-regularization met hod (cf. the ingenious proof of Siege1 [I 61). 

Ii 
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+ 

Two examples of zeta-regularization 391 

We wish to determine the radius of absolute convergence of the series 
on the right-hand side of (12) whose partial sum appears on the right- 
hand side of (24). For this purpose we estimate the coefficients. 

If t = x + iy, I arg tl < n,  and 1x1 --+ oo, then by (22) we have 

integral by I(-), I(') and I(+), respectively, where 

I'(-N - K - iv)C(a(s - N - K - iv), a ) ~ ~ + ~ + "  dv, 

+$ iT I'(-N - K + i v s  - N - K + iu) ,a)T~+n-iv dv, Using (25) and the functional equation 

2 r ( l  - s) 2 sin(2;yas+ 7 )  
C(s, a )  = (27r)l-~ 

for a < 0, 
m= 1 

( I(+) = & l m I ' ( - ~  - K + iv)((a(s - N - K + iv), a )~"+" - '~  dv. 

(30) 
To estimate I(') we apply (20) and (21) and then the Cauchy-Schwarz 

inequality to get 
we infer that 

for x -+ 00. 

Thus we conclude that by the Cauchy-Hadamard Theorem, (25) and 
(26), the series on the right-hand side of (12) is absolutely convergent 
for 171 < oo or I T [  < 2n according as  0 < a < 1 or o = 1, whence we 
conclude that (12) gives the Taylor expansion for F(s ,  T) - P(s ,  T) in the 
respective range of T if limN,, RN(s, T )  = 0. 

It  remains to prove that 

1 (Lm e $ ~ v - 2 ~ - 2 ~ - l  dV) 

Hence by (29) lim RN (s, T) = 0 
N+m 

for any T if 0 < o < 1 and for Irl < 2n if a = 1. 
With 

, . n a  and similarly, 

let 
1 

Then N = [c(a)T] and 
T >> It1 (29) 

in view of (19). Divide the integration path of RN(s, T) into three parts: 
v = Im t E (-oo, -T), [-T,T), [T, co) and denote the corresponding 

where 

cl ( a )  = c(a)  {a log 2n - a log a, + (1 - a )  (log c(a)  - 1)). 
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Thus, from (31)) (32) and (33), it follows that 

with c2(a) = cl(a) ,  c;(a) = a ( l o g 2 ~  - loga + 1) - 1. 
Hence, as long as 0 < a < 1, we have 

a .  N + oo and for a = 1, c;(l) = log 2~ > 0, we have 

asN-+oo.  
By (35) and (35)' we conclude (27). This completes the proof. 0 

Remark 3. We transform formally F(s, T) by the method of zeta-reg- 
ularization to obtain 

00 

= H C ( a ( s  - k), a )  + (a correction term) 
k=O 

k! 

with s - # O,1,2,. . . 
In fact P(s,T) is the correction term to be calculated by another 

met hod. 
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Abstract The main purpose of this paper is using the mean value theorem of the 
Dirichlet L-functions and the estimates for character sums to study the 
mean value distribution of Dedekind sums with a weight of Hurwitz 
zeta-function, and give an interesting asymptotic formula. 
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1. INTRODUCTION 
For a positive integer k and an arbitrary integer h, the Dedekind sum 

S(h ,  k )  is defined by 

where 

x - [XI - 4 if x is not an integer; 
if x is an integer. 

Various properties of S(h,  k )  were investigated by many authors. For 
example, Carlitz [3], Mordell [5] and Rademacher [6] obtained an im- 
portant reciprocity formula for S(h,  k ) .  Conrey et al. [4] studied the 
mean value distribution of S(h ,  k ) ,  and gave an interesting asymptotic 
formula. The main purpose of this paper is to study the asymptotic 
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properties of the hybrid mean value 

where ((s, a )  is Hurwitz zeta-function, X I  denotes the summation over 
a 

all integers a coprime to q. 
Regarding (I ) ,  it seems that it has not yet been studied, a t  least I 

have not seen expressions like (1) before. The problem is interesting 
because it can help us to find some new relationship between Dedekind 
sums and Hurwitz zeta-functions. In this paper, we shall give a sharper 
asymptotic formula for (1). The constants implied by the 0-symbols 
and the symbols << used in this paper do not depend on any parameter, 
unless otherwise indicated. By using the estimates for character sums 
and the mean value Theorems of Dirichlet L-functions, we shall prove 
the following main conclusion: 

Theorem. Let q be an integer with q 2 3, x be any Dirichlet character 
modulo q. Then for any fixed positive integer m and n, we have the 
asymptotic formula 

where L ( s ,  X )  is Dirichlet L-function and exp(y) = e'. 

From this Theorem we may immediately deduce the following two 
Corollaries: 

Corollary 1. Let q be an  integer with q 2 3. Then for any fixed positive 
integer m and n, we have the asymptotic formula 

where C' denotes the summation over all a such that ( q , a )  = 1,  n 
a 

P I *  
denotes the product over all prime divisors of q, and C(s)  is the Riemann 
zeta-function. 

- 
A hybrid mean  value formula of Dedekind S u m s  . . . 397 

Corollary 2. Let p be an odd prime, A = A(p) denotes the set of all 
quadratic residues modulo p i n  the interval [I, p-11. Then the asymptotic 
formula 

(m + n + 2) log p 

holds uniformly for any fixed positive integers m and n, where n* de- 
9 

notes the product over all prime q such that 

2. SOME LEMMAS 
To complete the proof of the theorem, we need the following Lemmas 

1, 2 and 3. 

Lemma 1. Let q be an integer with q > 3, ( a ,  q )  = 1. Then we have 

d2 

Y mod d 

where +(d) is the Euler function, x denotes a Dirichlet character mod- 
ulo d with x(-1) = -1, and L(s ,x)  denotes the Dirichlet L-function 
corresponding to X. 

Proof. (See reference [9]). 

Lemma 2. Let q be any integer with q >_ 3, x denotes an odd Dirichlet 
character modulo d with dlq, XI be any Dirichlet character modulo q. 
Then for any fixed positive integer m, we have the asymptotic formula 

x mod d 
x(-I)=-1 

Proof. For the sake of simplicity we only prove that Lemma 2 holds 
for m = 1. Similarly we can deduce other cases. For any character 
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xq modulo q ,  let A ( y , x q )  = x q ( a ) ,  and X: denote the principal 
d < a l y  

character modulo q.  Then for any character xq(# Xi) modulo q  and 
Re s > 0, applying Abel's identity we have 

So that 

LI 

x mod d 
x(-1)-1 
xx1 f x ;  

x mod d 

Note that for ( l rnn ,  d )  = 1,  from the orthogonality relation for char- 
acter sums modulo d  we have the identity 

l + ( d ) ,  if in m mod d ;  C x ( l ) x ( n ) X ( m )  = if l n  -m mod d ;  ( 3 )  
x mod d otherwise. 

x ( - I ) = - 1  

Now we use (3) to estimate each term on the right side of ( 2 ) .  First 
we have 

x mod d 
x ( - I ) = - 1  

- -- --- 
2 

l<l<d l<m<d l<n<d d m n  2  
l<l<d l l m < d  l l n < d  di mn 

h=m( mod d )  
- - 

In=-m( mod d )  
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In-m( mod d )  
ln>d 

W )  c Jtxi(1) - -- 
2 l m n  

1 j l < d  l<m<d l<n<d 

In=-m( mod d )  
ln>d 

Here and in what follows each indicates that the summation index 
runs through all integers coprime to d  in the respective range. Note that 
the asymptotic estimates 

holds, and hence 

Next we have 
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Hence 

Also, 
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x3 = - X I  (1) 4(d) 
2 

f i x1  (1) 

l<l<d l<n<d 

+ - 
ln(d - ln) (d - 1n)nJi 2 

l<l<d l<n<d 

2 log d 

where r (d)  is the divisor function and the estimate ~ ( d )  << exp 

has been applied. Hence 

exp 
2 log d 

Similarly, 

Hence 

Combining (4) - (8) we obtain 

,a x mod d 
x ( - I ) = - 1  
xx1 #x t  
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x mod d 
x ( - I ) = - 1  

7r2 3 
12 

d(d) exp = - + ( w ( ~ ,  n (1 - ) + 0 ( (lf:;fgdd)) . (9) 
pld 

We next estimate the terms involving R(s, xq)'s on the right-hand 
side of (2). For this we first note that X X ~  is a character modulo q, and 
hence we may assume d < y < q in the following. Then from (3) and 
the properties of characters we have 

x mod d 
x(-l)=-I 
xx1zx: 

. . ", " 
l<n<d l<m<d d<l<y x mod d 

h=m( mod d )  

Similarly, for d < yj  < q ( j  = 1,2,3) we can also get the estimates 

," 
l<n<d d<a<yl d<bLyz x mod d 

x(-11-1 
xx1 z x ;  

an=b( mod d )  
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and the estimates 

x mod d 
x(-I)=-1 
xx1 z x ;  

Hence from ( 10 )  we get 

x mod d 
x(-I)=-1 
xx1 z x ;  

Similarly from ( 11 )  we deduce that 

1 x S ( ~ , X ) R ( ~ ,  x x d R ( 1 , X )  = 0 
x mod d 

and from ( 12 )  we obtain 

1 C R(;i, X X ~ ) R ( ~ ,  x ) ~ , x )  = 0 
x mod d 

Using the same method of proving ( 13 )  we also have 

- 

x mod d 
x(-I)=-1 
xx1 zx: 

lnrm( mod d )  

x mod d 
x(-I)=-1 

X X l  zx: 

Now combining ( 2 ) ,  (9), ( 1 3 ) ,  ( 14 ) ,  ( 15 ) ,  (16)  and ( 17 )  we obtain 

x mod d 
x(-11-1 
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= C q;, X l X ) l ~ ( 1 ,  X I 2  + 0 (9f log2 d )  
x mod d  

This proves Lemma 

Lemma 
Dirichlet 

3. Let q and m be positive integers with q 2 3, x be any 
character modulo q.  Then we have 

Proof. For any complex number s = a + it with s # 1, from [I] 
that 

we know 

Applying this identity and Lemma 1 we may immediately get 

Xi mod dl  

- 
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Note that the estimates 

d3I2 3 1% 9 <<@ex.( ) 
x mod d dl 9  

1% log 9 
~ ( - l ) = - l  

and the identity 

Applying (18) and Lemma 2 repeatedly we have 

X 

dm-  i 19 

X I  mod a 
XI(-I)=-1 xm-1(-I)=-1 

This proves Lemma 3. 



406 ANALYTIC NUMBER THEORY 

3. PROOF OF THE THEOREM 
In this section, we shall prove the Theorem by mathematical induc- 

tion. First from Lemma 3 we know that the Theorem is true for n = 1. 
Then we assume that the Theorem is true for n = k > 1. That is, 

Now we prove that the Theorem is true for n = k + 1. From the 
orthogonality relation for character sums modulo q and the inductive 
assumption ( 1 9 )  we have 

qm+ 
- - 

(Wrn' (9 )  
X I  mod q 

Using the method of proving Lemma 2  we can easily get the asymptotic 
formula 

XI mod q 2  

P 
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and the estimate 

I 
Combining ( 2 0 ) ,  ( 2 1 )  and ( 2 2 )  we obtain 

This completes the proof of the Theorem. 

Proof of the Corollaries. Taking x = X:  ( the principal character 
mod q  ) in the Theorem and noting the identity 

we may immediately get the assertion of Corollary 1. 

Next we prove Corollary 2 .  Let p be an odd prime, (g ) denotes the 

Legendre symbol. Then note that the identity 

holds. From Theorem and Corollary 1  we may deduce Corollary 2. 

Note. It is clear that using the method of proving the Theorem we can 
also get the following more general conclusion: 

For a n y  1 5 a < 1, we have 
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