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PREFACE

Plato said, < God is a geometer.” Jacobi changed this to, * God is an arithmetician.”
Then came Kronecker and fashioned the memorable expression, “ God created the
natural numbers, and all the rest is the work of man.”

FerLix KrEIN

The purpose of the present volume is to give a simple account of
classical number theory, as well as to impart some of the historical back-
ground in which the subject evolved. While primarily intended for use as
a textbook in a one-semester course at the undergraduate level, it is de-
signed to be utilized in teachers’ institutes or as supplementary reading
in mathematics survey courses. The work is well suited for prospective
secondary school teachers for whom the familiarity with a little number
theory may be particularly helpful.

The theory of numbers has always occupied a unique position
in the world of mathematics. This is due to the unquestioned historical
importance of the subject: it is one of the few disciplines having demon-
strable results which predate the very idea of a university or an academy.
Neatly every century since classical antiquity has witnessed new and
fascinating discoveries relating to the properties of numbers; and, at
some point in their careers, most of the great masters of the mathematical
sciences have contributed to this body of knowledge. Why has number
theory held such an irresistible appeal for the leading mathematicians and
for thousands of amateurs? One answer lies in the basic nature of its
problems. While many questions in the field are extremely hard to decide,
they can be formulated in terms simple enough to arouse the interest and
curiosity of those without much mathematical training. Some of the sim-
plest sounding questions have withstood the intellectual assaults of ages
and remain among the most elusive unsolved problems in the whole of
mathematics.

It therefore comes as something of a surprise to find out how
many students look upon number theory with good-humored indulgence,
regarding it as a frippery on the edge of mathematics. This no doubt stems
from the view that it is the most obviously useless branch of pure mathe-
matics; results in this area have few applications to problems concerning
the physical world. At a time when “ theoretical science” is treated with
impatience, one commonly encounters the mathematics major who knows

v



vi Preface

little or no number theory. This is especially unfortunate, since the elemen-
tary theory of numbers should be one of the very best subjects for early
mathematical instruction. It requires no long preliminary training, the
content is tangible and familiar, and—more than in any other part of
mathematics—the methods of inquiry adhere to the scientific approach.
The student working in the field must rely to a large extent upon trial and
error, in combination with his own curiosity, intuition, and ingenuity;
nowhere else in the mathematical disciplines is rigorous proof so often
preceded by patient, plodding experiment. If the going occasionally be-
comes slow and difficult, one can take comfort in the fact that nearly
every noted mathematician of the past has traveled the same arduous road.

There is a dictum which says that anyone who desires to get at
the root of a subject should first study its history. Endorsing this, we have
taken pains to fit the material into the larger historical frame. In addition
to enlivening the theoretical side of the text, the historical remarks woven
into the presentation bring out the point that number theory is not a
dead art, but a living one fed by the efforts of many practitioners. They
reveal that the discipline developed bit by bit, with the work of each
individual contributor built upon the research of many others; often cen-
turies of endeavor were required before significant steps were made. Once
the student is aware of how people of genius stumbled and groped their
way through the creative process to arrive piecemeal at their results, he
is less likely to be discouraged by his own fumblings with the homework
problems.

A word about the problems. Most sections close with a substan-
tial number of them ranging in difficulty from the purely mechanical to
challenging theoretical questions. These are an integral part of the book
and require the reader’s active participation, for nobody can learn number
theoty without solving problems. The computational excercises develop
basic techniques and test understanding of concepts, while those of a
theoretical nature give practice in constructing proofs. Besides conveying
additional information about the material covered eatlier, the problems
introduce a variety of ideas not treated in the body of the text. We have
on the whole resisted the temptation to use the problems to introduce
results that will be needed thereafter. As a consequence, the reader need
not work all the exercises in order to digest the rest of the book. Problems
whose solutions do not appear straightforward are frequently accom-
panied by hints.

Although the text was written with the mathematics major in
mind, very little is demanded in the way of formal prerequisites; it could
be profitably read by anyone having a sound background in high school
mathematics. In particular, a knowledge of the concepts of abstract
algebra is not assumed. When used for students who have had such a
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course (say, at the level represented by the book Introduction to Modern
Algebra by Neal McCoy ot the author’s own Introduction to Modern Abstract
Algebra), much of the first four chapters can be omitted.

From a perusal of the table of contents, it is apparent that our
treatment includes more material than can be covered satisfactorily during
a one-semester course. This should provide the flexibility desirable for
a diverse audience; it permits the instructor to choose topics in accordance
with personal tastes and it presents the students with the opportunity
for further reading in the subject. Experience indicates that a standard
course can be built up from Chapters 1 through 9; if the occasion demands,
Sections 6.2, 6.3, 7.4, 8.4, and 9.4 may be deleted from the program with-
out destroying the continuity. Since the last four chapters are entirely
independent of each other, they may be taken up at pleasute.

This revised printing of the text has been prepared in response to com-
ments made by many users. The primary change is the addition of infinite con-
tinued fractions and Pell’s Equation in Chapter 13. Problems have been added to
several sections in the text and many minor modifications have been included.

We would like to take the oppottunity to express our deep appre-
ciation to those mathematicians who read the manuscript in its various
versions and offered valuable suggestions leading to its improvement.
Particularly helpful was the advice of the following reviewers:

L. A. Best, The Open University

Jack Ceder, University of California at Santa Barbara

Howard Eves, University of Maine

Frederick Hoffman, Florida Atlantic University

Neal McCoy, Smith College

David Outcalt, University of California at Santa Barbara

Michael Rich, Temple University

David Roeder, Colorado College

Vitginia Taylor, Lowell Technical Institute
A special debt of gratitude must go to my wife, Martha, whose generous
assistance with the book at all stages of development was indispensable.

It remains to acknowledge the fine cooperation of the staff of
Allyn and Bacon and the usual high quality of their work. The author must,
of course, accept the responsibility for any errors or shortcomings that
remain,

Durham, New Hampshire Davip M. Burton
January, 1980
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1

Some Preliminary
Considerations

“ Number was born in superstition and reared
in mystery, ... numbers were once made the Sfoun-
dation of religion and philosophy, and the tricks of
fignres have bad a marvellous effect on a credulons
peaple.”’

F. W. PARkER




1.1 MATHEMATICAL INDUCTION

The theory of numbers is concerned, at least in its elementary aspects,
with properties of the integers and more particularly with the positive
integers 1, 2, 3, ... (also known as the natural numbers). The origin of
this misnomer harks back to the early Greeks when the word “ number >
meant positive integer, and nothing else. The natural numbers have been
known to us for so long that the mathematician Kronecker once remarked,
“God created the natural numbers, and all the rest is the work of man.”
Far from being a gift from Heaven, number theory has had a long and
sometimes painful evolution, a story which we hope to tell in the ensuing
pages.

We shall make no attempt to construct the integers axiomatically,
assuming instead that they are already given and that any reader of the
book is familiar with many elementary facts about them. Among these
we include the Well-Ordering Principle. To refresh the memory, it
states:

WELL-ORDERING PRINCIPLE. Every nonempty set S of nonnegative
integers contains a least element; that is, there is some integer a in S such
that a < b for all b belonging to S.

Since this principle will play a critical role in the proofs here and in
subsequent chapters, let us utilize it to show that the set of positive
integers has what is known as the Archimedean Property.

TueoreM 1-1 (Archimedean Property). If a and b are any positive
integers, then there exists a positive integer n such that na > b.

Proof:  Assume that the statement of the theorem is not true, so that
for some 4 and 4, na < b for every positive integer ». Then the set

§'={b—na| n a positive integer}

2



SEC. 1-1 Mathematical Induction 3

consists entirely of positive integers. By the Well-Ordering Principle
S will possess a least element, say & — wa. But b — (m + 1)a also lies
in S, since S contains all integers of this form. Furthermore, we have

b—(m+ Va={l—ma)—a<<b— ma,

contrary to the choice of 4 — »a as the smallest integer in §. This
contradiction arose out of our original assumption that the Archi-
medean property did not hold, hence this property is proven true.

With the Well-Ordering Principle available, it is an easy matter to
derive the Principle of Finite Induction. The latter principle provides
a basis for a method of proof called ““ mathematical induction.” Loosely
speaking, the Principle of Finite Induction asserts that if a set of positive
integers has two specific properties, then it is the set of all positive in-
tegers. To be less cryptic:

TueoreM 1-2 (Principle of Finite Induction). Let S be a set of
positive integers with the properties
(i) 1 belongs to S, and
(ii) whenever the integer k is in S, then the next integer k -+ 1 must also
be in S.
Then S is the set of all positive integers.

Proof: Let T be the set of all positive integers not in S, and assume
that T is nonempty. The Well-Ordering Principle tells us that T
possesses a least element, which we denote by 4. Since 1 is in S,
certainly > 1 and so 0 <4 —1 <a. The choice of 4 as the smallest
positive integer in T implies that 2 — 1 is not a member of T, or equi-
valently, that 2 — 1 belongs to §. By hypothesis, § must also contain
(¢ — 1)+ 1 =4, which contradicts the fact that  lies in T. We
conclude that the set T is empty, and in consequence that § contains
all the positive integers.

Here is a typical formula that can be established by mathematical
induction:

n(2n+ 1)(n+1)

(1) 124224 324 ... 2= Z



4 Some Preliminary Considerations CHAP. 1

forn=1,2,3,.... In anticipation of using Theorem 1-2, let § denote
the set of all positive integers # for which (1) is true. We observe that
when # = 1, the formula becomes

R (e Y

6 >
this means that 1 is in 5. Next, assume that 4 belongs to S (where £ is
a fixed but unspecified integer) so that

KRA+T)A41T)

7 .
To obtain the sum of the first £ 4 1 squares, we merely add the next one,
(A4 + 1), to both sides of equation (2). This gives

K2k + 1)k + 1)
6

) 1242243244 h2e

12402 4. g2 (b4 1)2= + (k4 1)

After some algebraic manipulation, the right-hand side becomes

1) [/f(2k+l)2—6(/f+l)] Gt 1) [2,1;2+67/f+6}
_ A+ DA+ 3k +2)
S ,

which is precisely the right-hand member of (1) when »=44-1. Our
reasoning shows that the set S contains the integer 441 whenever it
contains the integer 4. By Theorem 1-2, S must be all the positive in-
tegers; that is, the given formula is true forn =1, 2,3, ...

While mathematical induction provides a standard technique for
attempting to prove a statement about the positive integers, one disad-
vantage is that it gives no aid in formulating such statements. Of course,
if we can make an ““ educated guess ” at a property which we believe might
hold in general, then its validity can often be tested by the induction
principle. Consider, for instance, the list of equalities

1=1,
142=3,
142422=7,

14242242315,
142422425 4 24031,
142422425244 25— 63.



SEC. 1-1 Mathematical Induction 5

What is sought is a rule which gives the integers on the right-hand side.
After a little reflection, the reader might notice that

1=2-1, 3=22—1, 7=28-_1,
15—=26—1, 31=25_1, 63=26—1

(how one atrives at this observation is hard to say, but experience helps).
The pattern emerging from these few cases suggests a formula for obtain-
ing the value of the expression 14 24-22 4234 ... 427" 1; namely,

(3) 142422428 4. 201 2n ]

for every positive integer 7.

To confirm that our guess is correct, let S comprise the set of
positive integers 7 for which formula (3) holds. For #»=1, (3) is certainly
true, whence 1 belongs to the set . We assume that (3) is true for a
fixed integer £, so that for this &

142422 4.0 f26-1 226 ]

and we attempt to prove the validity of the formula for 4+ 1. Addition
of the term 2* to both sides of the last-written equation leads to

1424224 2670 20 D0 ] | 2k
=226 —1=2k+1_1,

But this says that formula (3) holds when #»= 4+ 1, putting the integer
kA4 11in §; so that £+ 1 is in § whenever £ is in §. According to the
induction principle, S must be the set of all positive integers.

REMARK: When giving induction proofs, we shall usually shorten the
argument by eliminating all reference to the set S, and proceed to show
simply that the result in question is true for the integer 1 and if true for
the integer £ is then also true for £+-1.

We should inject a word of caution at this point, to wit, that one
must be careful to establish both conditions of Theotem 1-2 befote
drawing any conclusions; neither is sufficient alone. The proof of condi-
tion (i) is usually called the basis for the induction, while the proof of (ii) is
called the induction step. The assumptions made in cartying out the
induction step ate known as the induction hypotheses. The induction
situation has been likened to an infinite row of dominoes all standing on
edge and arranged in such a way that when one falls it knocks down the
next in line. If either no domino is pushed over (that is, there is no
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basis for the induction) or if the spacing is too large (that is, the induction
step fails), then the complete line will not fall.

The validity of the induction step does not necessarily depend on
the truth of the statement which one is endeavoring to prove. Let us
look at the false formula

4) 143454 +Q2r—1)=n>+3,
Assume that this holds for #» = 4; in other words,

143454 +@2F—-1)=42+3,
Knowing this, we then obtain

T+3 45+ +QRA—D+ QA+ D) =423 L 24+ 1
=k+12+3

which is precisely the form that (4) should take when # — 4 - 1. Thus,
if formula (4) holds for a given integer, then it also holds for the suc-
ceeding integer. It is not possible, however, to find a value of # for which
the formula is true.

There is a variant of the induction principle that is often used
when Theorem 1-2 by itself seems ineffective. As with the first version,
this Second Principle of Finite Induction gives two conditions which
guarantee that a certain set of positive integers actually consists of all
positive integers. What happens is this: we retain requirement (1), but
(ii) is replaced by

(i) If & is a positive integer such that 1,2, ... | k belong to S, then k + 1

must also be in S.

The proof that § consists of all positive integers has the same
flavor as that of Theorem 1-2. Again, let T represent the set of positive
integers not in 5. Assuming that T is nonempty, we pick # to be the
smallest integer in T. Then 7> 1, by supposition (i). The minimal
nature of # allows us to conclude that none of the integers 1,2, ..., 7 —1
lies in T, or, if one prefers a positive assertion, 1,2, ..., 7 —1all belong to
S. Property (ii') then puts #=(n— 1)+ 1 in 5, which is an obvious
contradiction. The result of all this is to make T empty.

The First Principle of Finite Induction is used more often than the
Second, but there are occasions when the Second is favored and the
reader should be familiar with both versions. (It sometimes happens that
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in attempting to show that 4 + 1 is a member of §, one requires the fact
that not only 4, but all positive integers which precede £, lie in §.) Our
formulation of these induction principles has been for the case in which
the induction begins with 1. Each form can be generalized to start with
any positive integer #,. In this circumstance, the conclusion reads,
“Then S is the set of all positive integers # >#,.”

Mathematical induction is often used as a method of definition
as well as a method of proof. For example, 2 common way of introducing
the symbol #! (pronounced “# factorial”’) is by means of the inductive
definition

(@ 11=1,
by nl=n-n—1! forn>1.

This pair of conditions provides a rule whereby the meaning of #! is
specified for each-positive integer #». Thus, by (a), 11=1; (a) and (b)
yield

21=2.11=2.1;
while by (b) again,

31=3.21=3.2.1.

Continuing in this manner, using condition (b) tepeatedly, the numbers
11, 21, 31, ..., »! are defined in succession up to any chosen ». In fact,

ml=n-(n—1)...3.2.1.

Induction enters in showing that #!, as a function on the positive integers,
exists and is unique; we shall make no attempt however to give the
argument.

It will be convenient to extend the definition of #! to the case
in which 7 = 0 by stipulating that 0! = 1.

Example 1-1
To illustrate a proof which requires the Second Principle of Finite
Induction, consider the so-called Lacas sequence

1,3,4,7,11,18, 29,47, 76, ... .

Except for the first two terms, each term of this sequence is the sum
of the preceding two, so that the sequence may be defined inductively
by

a, =1,

a, =13,

A=y 1t Gy_q, for all #» >3.
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We contend that the inequality
a, <(7/4)"

holds for every positive integet 7. The argument used is interesting
because in the inductive step, it is necessary to know the truth of this
inequality for two successive values of # in order to establish its truth

for the following value.
First of all, for =1 and 2, we have

gy =1 <A =74 and a,=3 <(7/4)2 =49/16,

whence the inequality in question holds in these two cases. This
provides a basis for the induction. For the induction step, pick an
integer 4 > 3 and assume that the inequality is valid forn=1,2, ...,
Ak —1. Then, in particular,

a,_, <(T4)F-* and a4, <(T/4)*"2
By the way in which the Lucas sequence is formed, it follows that

o= a1+ @ <(TA)F 1+ (T/4) "
= (/4274 + 1)
= (74 ~*(11/4)
< (7[4)< = (T14)? = (T/4)".
Since the inequality is true for # = 4 whenever it is true for the integers

1,2, ..., #—1, we conclude by the second induction principle that
a, <(7/4)" for all n > 1.

Among other things, this example suggests that if objects are

. defined inductively, then mathematical induction is an important tool for
establishing the properties of these objects.

1.

PROBLEMS 1.1

Establish the formulas below by mathematical induction:
n(n+1)
2

b)) 1+34+54+-+2n—1)=nforaln>1;
n(n 4 D(n + 2) forall »> 1:
3 — )

foralln>1;

@ 142434 =

(© 124234344 +nn+1)=
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. ) . 2kﬂ(4ﬂ2-1)
(d 1243245 4o+ =12 =

foralln>1;

n(n+1)
2

2
@ 13+23+33+.-~+n3:[ } forall n >1.

2. If r=1, show that
a(rtrl —1)

atar+ar® 4. far =
r—1

for any positive integer 7.
3. Use the Second Principle of Finite Induction to establish that
an_l:(a_l)(an—l+an—2+an—8+‘”+d+1)
forallz > 1. [Hint: g® — 1= (g + 1)@ — 1) — ala™! — 1) ]

4. Prove that the cube of any integer can be written as the difference of two
squares. [Hin?: Notice that

W= 4284 ) — (1B 28 4o - (1 —1)%).]

5. (a) Find the values of #< 7 for which »! 11 is a perfect square (it is
unknown whether #! ++ 1 is a square for any # > 7).
(b) True or false? For positive integers » and #, (mn)!==m!n! and
(m4-ml=ml+al
6. Prove that n! > #? for every integer # >4, while 7! > #® for every integer
n>0.

7. Use mathematical induction to derive the formula

1N 4220 4+ 33D+ -+ s =@+ 1) -1
forall w>1.

1.2 THE BINOMIAL THEOREM

Closely connected with the factorial notation are the binomial coefficients
(2) For any positive integer # and any integer £ satisfying 0 <4 <,
these are defined by

(H) = ro—rr

By cancelling out either 4! or (# — £)!, Y can be written as
& k

(n)_ﬂ(ﬂ—l)---(/rﬁ—l)hn(ﬂ—1)-~(n~/r+1)
K (n— £)! - k! '
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For example, with » = 8 and £ = 3, we have

8 8 8:.7.6.5.4 8.7.6
(3)_315!_ 51 3t

Observe too that if £#=0 or 4 =, the quantity 0! appears on the right-
hand side of the definition of (

n

k

) ; since we have taken 0! as 1, these

special values of £ give

There are numerous useful identities connecting binomial coefficients.
One that we require here is Pascal’s rule:

(;)+(/fil>:<ﬂ:1)’ 1<k<n

Its proof consists of multiplying the identity

1+ 1 _ n+1
k' n—k+1 kn—Fk+1)

in order to obtain

nl
Y Fhi— A

7! 7!

DA T G DA Do A

_ (n+ 1)n!
CKE—Dn— £+ Dn— k)

Falling back on the definition of the factorial function, this says that

7! 7! (n+ 1)1
A=A G=Dln—F= D) At I—A

from which Pascal’s rule follows.
This relation gives rise to a configuration, known as Pascal’s

triangle, in which the binomial coefficient (Z) appears as the (£ + 1)th num-

ber in the #th row:
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1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The rule of formation should be cleat. The borders of the triangle are
composed of 1’s; a aumber not on the border is the sum of the two
numbers nearest it in the row above.

The so-called binomial theorem is in reality a formula for the
complete expansion of (¢ + &))", 7> 1, into a sum of powers of « and b.
This expression appears with great frequency in all phases of number
theory and it is well worth our time to look at it now. By direct multi-
plication, it is easy to verify that

(a4 by =a+b,

(a 4 b)? = a® + 2ab + 1,

(a -+ b)°=a*+ 3a%b + 3ab? 4- b3,
(a+b)t=a*+ 4% + 6a2b® + 4ab® + b4, etc.

The question is how to predict the coefficients. A clue lies in the observa-
tion that the coefficients of these first few expansions comprise the suc-
cessive rows of Pascal’s triangle. This would lead one to suspect that
the general binomial expansion will take the form

(a+ b= (g)an+ (’;)an—lb -} (;)g"—2b2+ et (ﬂj 1)abn—1 + (Z)bn

or, written more compactly,

(a+ b= Z (Z)a Kb,

k=0

Mathematical induction provides the best means for confirming
this guess. When 7= 1, the conjectured formula reduces to

1

(a + b= Z (i)al “kpk = (g))dllﬂ + (1)510[71 =a-+b,

k=0
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which is certainly correct. Assuming that the formula holds for some
fixed integer », we go on to show that it must hold for s + 1 too. The
starting point is to notice that

(a+b)m+t = a(a 4+ b)™ + b(a + bym.

Under the induction hypothesis,

a(a+b)m=z (Zl)am—k+lbk:am+l+z (Zi)amn--kbk
k=0 k=1

and

b(a -+ by :z (j.l)a’""b“lzz (/ff 1)am+l—kbk+bm+l'
k=1

i=0

Upon adding these expressions, we obtain

(a+b)m+1:dm+1+z [(,’Z)—{”(,gin_])] arrl-kpk | pm+1
k=1

_m+1 7”+1) dm+1_kbk
UE )
which is the formula in the case 7= » + 1. This establishes the binomial
theorem by induction.

Before abandoning these ideas, we might remark that the first
acceptable formulation of the method of mathematical induction appears in
the treatise Traité du Triangle Arithmétique, by the 17th century French
mathematicianand philosopher Blaise Pascal. This short work was written
in 1653, but not printed until 1665, because Pascal had withdrawn from
mathematics (at the age of 25) to dedicate his talents to religion. His
careful analysis of the properties of the binomial coefficients helped lay
the foundations of probability theory.

PROBLEMS 1.2

1. Prove that for n>> 1

(a) (Z) <(/f—{”»1) if and only if 0 << & < §(n —1);
”

(b) (A) = (/H”— l) it and only if # is an odd integer and £ = §(r - 1).
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2. If 2<< k< n—2, show that

(B=(22) 2 (3 + (%) -~

3. For #n>1, derive each of the identities below:

0 (0 (-

[Hint: Let a=b=1in the binomial theorem.]

(g) () ( Fot (= 1)n(),
( () (”>+'”+n(:):”2n~1;

[Hint: After expanding #(1 4- b)*~* by the binomial theorem, let b= 1;
” —_
note alsothatn( P )*(kﬁ—l) (/s+1)]

o (ol o=) >
(©) (g)+(g)+(i;)+(g)+=(;’)+(§)+(g) Gem2nen,

[Hint: Use parts (a) and (b).]

S~

(b

—
g
~ N

4. (a) For n>2, prove that

B+ E) e )=37)

[Hint: Use induction and Pascal’s rule.]

(1 From part (a) and the fact that 2(”1

2) + m = m? for m =2, deduce

the formula

aln -+ 1)(2n+1) .

12+22+32+_“+”2: 6

1.3 EARLY NUMBER THEORY

Before becoming weighted down with detail, we should say a few words
about the origin of number theory. The theory of numbers is one of the
oldest branches of mathematics; an enthusiast, by stretching a point here
and there, could extend its roots back to a sutprisingly remote date.
While it seems probable that the Greeks were largely indebted to the
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Babylonians and ancient Egyptians for a core of information about the
properties of the natural numbers, the first rudiments of an actual theory
are generally credited to Pythagoras and his disciples.

Our knowledge of the life of Pythagoras is scanty and little can
be said with any certainty. According to the best estimates, he was
born between 580 and 562 B.c. on the Aegean island of Samos. It seems
that he studied not only in Egypt, but may have even extended his
journeys as far east as Babylonia. When Pythagoras reappeared after
years of wandering, he sought out a favorable place for a school, and
finally settled upon Croton, a ptosperous Greek settlement on the heel
of the Italian boot. The school concentrated on four mathemata, or
subjects of study: arithmetica (arithmetic, in the sense of number theory,
rather than the art of calculating), harmonia (music), geometria (geometry),
and astrolgia (astronomy). This fourfold division of knowledge became
known in the Middle Ages as the guadrivium, to which was added the
trivinm of logic, grammar, and rhetoric. These seven liberal arts came
to be looked upon as the necessary course of study for an educated person.

Pythagoras divided those who attended his lectures into two
groups: the Probationers (or listeners) and the Pythagoreans. After
three years in the first class, a listener could be initiated into the second
class, to whom were confided the main discoveries of the school. The
Pythagoreans were a closely knit brotherhood, holding all worldly goods
in common and bound by an oath not to reveal the founder’s secrets.
Legend has it that a talkative Pythagorean was drowned in a shipwreck
as the gods’ punishment for publicly boasting that he had added the
dodecahedron to the number of regular solids enumerated by Pythagoras.
For a time the autocratic Pythagoreans succeeded in dominating the
local government in Croton, but a popular revolt in 501 B.c. led to the
murder of many of its prominent membets, and Pythagoras himself was
killed shortly thereafter. Although the political influence of the Pytha-
goreans was thus destroyed, they continued to exist for at least two
centuries more as a philosophical and mathematical society. To the
end, they remained a secret order, publishing nothing and, with a noble
self-denial, ascribing all their discoveries to the Master.

The Pythagoreans believed that the key to an explanation of the
universe lay in number and form, their general thesis being that “ Every-
thing is Number.” (By number, they meant of course a positive integer.)
For a rational understanding of nature, they considered it sufficient to
analyze the properties of certain numbers. With regard to Pythagoras
himself, we are told that he “seems to have attached supreme importance
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to the study of arithmetic, which he advanced and took out of the realm
of commercial utility.”

The Pythagorean doctrine is a curious mixture of cosmic philo-
sophy and number-mysticism, a sort of supernumerology which assigned
to everything material or spiritual a definite integer. Among their
writings, we find that 1 represented reason, for reason could produce
only one consistent body of truths; 2 stood for man and 3 for woman;
4 was the Pythagorean symbol for justice, being the first number which is
the product of equals; 5 was identified with marriage, since it is formed
by the union of 2 and 3; and so forth. All the even numbers, after the
first one, were capable of separation into other numbers; hence, they
were prolific and were considered as feminine and earthy—and somewhat
less highly regarded in general. Being a predominantly male society, the
Pythagoreans classified the odd numbers, after the fitst two, as masculine
and divine. A

Although these speculations about numbers as models of “things”
appear frivolous today, it must be borne in mind that the intellectuals
of the classical Greek period were largely absorbed in philosophy and
that these same men, because they had such intellectual interests, were
the very ones who were engaged in laying the foundations for mathematics
as a system of thought. To Pythagoras and his followers, mathematics
was largely a means to an end, the end being philosophy. Only with the
foundation of the School of Alexandria do we enter a new phase in which
the cultivation of mathematics is pursued for its own sake.

We might digress here to point out that mystical speculation
about the properties of numbers was not unique to the Pythagoreans.
One of the most absurd yet widely spread forms which numerology took
during the Middle Ages was a pseudo-science known as gematria ot
arithmology. By assigning numerical values to the letters of the alphabet
in some order, each name or word was given its own individual number.
From the standpoint of gematria, two words were considered equivalent
if the numbers represented by their letters when added together gave the
same sum. All this probably originated with the early Greeks where the
natural ordering of the alphabet provided a perfect way of recording
numbers; o« standing for 1, B for 2, and so forth. For example, the
word “amen” is aunv in Greek; these letters have the values 1, 40, 8,
and 50, respectively, which total 99. In many old editions of the Bible,
the number 99 appears at the end of a prayer as a substitute for amen.
The most famous number was 666, the  number of the beast,” mentioned
in the Book of Revelations. A favorite pastime among certain Catholic
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theologians during the Reformation was devising alphabet schemes in
which 666 was shown to stand for the name of Martin Luther, thereby
supporting their contention that he was the Antichrist. Luther replied in
kind: he connected a system in which 666 became the number assigned
to the reigning Pope, Leo X.

It was at Alexandria, not Athens, that a science of numbers
divorced from mystic-philosophy first began to develop. For nearly a
thousand years, until its destruction by the Arabs in 641 A.p., Alexandria
stood as the cultural and commercial center of the Hellenistic world.
(After the fall of Alexandria, most of its scholars migrated to Constanti-
nople. During the next 800 years, while formal learning in the West all
but disappeared, this enclave at Constantinople preserved for us the mathe-
matical works of the various Greek Schools.) The so-called Alexandrian
Museum, a forerunner of the modern university, brought together the
leading poets and scholars of the day; adjacent to it there was established
an enormous library, reputed to hold over 700,000 volumes—hand-
copied—at its height. Of all the distinguished names connected with the
Museum, that of Euclid (circa 350 B.c.), founder of the School of Mathe-
matics, is in a special class. Posterity has come to know him as the author
of the Elements, the oldest Greek treatise on mathematics to reach us in
its entirety. The Elements is a compilation of much of the mathematical
knowledge available at that time, organized into thirteen parts or Books,
as they are called. The name of Euclid is so often associated with geome-
try that one tends to forget that three of the Books, VII, VIII, and IX,
are devoted to number theory.

Buclid’s Elements constitute one of the great success stories of
world literature. Scarcely any other book save the Bible has been more
widely circulated or studied. Over a thousand editions of it have appeared
since the first printed version in 1482, and before that manuscript copies
dominated much of the teaching of mathematics in Western Europe.
Unfortunately no copy of the work has been found that actually dates
from Euclid’s own time; the modern editions are descendants of a revi-
sion prepared by Theon of Alexandtia, 2 commentator of the fourth
century A.D.

PROBLEMS 1.3
1. Each of the numbers

1=1, 3=1+2, 6=142+3, 10=14+2+4+3+4,
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represents the number of dots that can be arranged evenly in an equilateral
triangle:

This led the ancient Greeks to call a number friangular if it is the sum of

consecutive integers, beginning with 1. Prove the following facts con-

cerning triangular numbers:

(2) A number is triangular if and only if it is of the form s(z + 1)/2 for
some #>1. (Pythagoras, circa 550 B.C.)

(b) The integer # is a triangular number if and only if 87+ 1 is a perfect
square. (Plutarch, circa 100 A.0.)

() The sum of any two consecutive triangular numbers is a perfect
square. (Nicomachus, circa 100 A.D.)

(d) If n is a triangular number, then so are 9z -1, 2524 3, and 49% + 6.
(Euler, 1775).

2. If #, denotes the #th triangular number, prove that in terms of the binomial

coefhicients
n+1
l‘n—( 2 ), ﬂZl

3. Derive the following formula for the sum of triangular numbers, attributed
to the Hindu mathematician Aryabhatta (circa 500 A.p.):

n(n+ 1)(n+2)

Wttt lat+ = 6

n>1.
[Hint: Group the terms on the left-hand side in pairs, noting the identity
Beo1 T+ 5 :'152-]
4. Prove that the square of any odd multiple of 3 is the difference of two
triangular numbers ; specifically, that 927 + 12 =tgn s —fans1-
5. In the sequence of triangular numbers, find
(a) two triangular numbers whose sum and difference ate also triangular
numbers;
(b) three successive triangular numbers whose product is a perfect square;
() three successive triangular numbers whose sum is a perfect square.
6. (a) If2#2 4 11is a perfect square, say 2% 4- 1 = »?, prove that (#m)? is a
triangular number.
(b) Utilize part (a) to find three examples of squares which are also
triangular numbers.
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Divisibility Theory
in the Integers

« Integral numbers are the fountainhead of all
mathematics.”

H. MinkowsK1
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We have been exposed to the integers for several pages and as yet not a
single divisibility property has been derived. It is time to remedy this
situation. One theorem acts as the foundation stone upon which our
whole development rests: the Division Algorithm. The result is familiar
to most of us; roughly, it asserts that an integer 4 can be “divided” by
a positive integer & in such a way that the remainder is smaller in size
than b. The exact statement of this fact is

Turorem 2-1 (Division Algorithm). Given integers a and b, with
b >0, there exist unique integers q and r satisfying
a=gb+r, 0<r<b.
The integers q and r are called, respectively, the quotient and remainder in
the division of a by b.
Proof: We begin by proving that the set
S=1{a — xb | x an integer; a — xb > 0}; Ly

is nonempty. For this, it suffices to exhibit a value of x making
a — xb nonnegative. Since the integer #>1, we have | a| b >| 4|
and so

a—(—|al)b=a+|a|b>a+]|a|=0.

Hence, fot the choice x = —| 2|, 2 — xb will lie in §. This paves the
way for an application of the Well-Ordering Principle, from which we
infer that the set S contains a smallest integer; call it ». By the
definition of §, there exists an integer ¢ satisfying

r=a— gb, 0<r.
We argue that » < 4. If this were not the case, then r >4 and
a— @G+ Db=(@—qgb)—b=r—b=>0.

20
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The implication is that the integer 2 — (g + 1)b has the proper form to
belong to the set §. But a—(¢+ 1)pb=r—5b <r, leading to a
contradiction of the choice of r as the smallest member of 5. Hence,
r<b.

We next turn to the task of showing the uniqueness of g and
r. Suppose that 4 has two representations of the desired form; say

a=gh+r=q'b+7r,

where 0 <r < b, 0<r'<b. Thenr —r=>5b(g—q') and, owing to
the fact that the absolute value of 2 product is equal to the product of
the absolute values,

|7 —rl=blg—q'].

Upon adding the two inequalities —4 << —r <0 and 0 <r" <<b, we
obtain —b < r' — r < b ot, in equivalent terms, | #' — 7| <b. Thus,
b| q—q'| <b, which yields

0<lg—¢' <1
Since | — ¢’ | is a2 nonnegative integer, the only possibility is that
| g—¢' | =0, whence g = ¢’; this in its turn gives 7 =7’, ending the
proof.

A more general version of the Division Algorithm is obtained on
replacing the restriction that & be positive by the simple requirement
that » 0.

COROLLARY. If a and b are integers, with b 0, then there exist unigue
integers q and r such that

a=qgb+r, 0<r<|bl.
Proof: Itis enough to consider the case in which 4 is negative. Then
| #| > 0and the theorem produces unique integers ¢’ and r for which

a=q|b|+r, 0<r<|b|.

Noting that | # | = —b, we may take g= —¢' to arrive at a = gb + r,
with 0 <r <<| &|.
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To illustrate the Division Algorithm when 4 <0, let us take
b= —7. Then, for the choices of 7 — 1, —2, 61, and —59, one gets the
expressions

1=0(—=7)+1,

—2=1(—7) +5,
01 =(—8)(—7)+5,

—59=9(—7) + 4.

We wish to focus attention, not so much on the Division Algo-
rithm, as on its applications. As a first example, note that with & = 2 the
possible remainders are =0 and 7= 1. When r— 0, the integer « has
the form @ = 27 and is called even; when r — 1, the integer 4 has the form
a=27+1 and is called 0dd. Now a2 is either of the form (29)? = 4% or
29+ 12 =42+ g)+1=441+1. The point to be made is that the
square of an integer leaves the remainder 0 or 1 upon division by 4.

We can also show the following: The square of any odd integer
is of the form 84 +1. For, by the Division Algorithm, any integer is
representable as one of the four forms 4q, 4g+ 1, 49+ 2, 49+3. In
this classification, only those integers of the forms 49+ 1 and 49+ 3
are odd. When the latter are squared, we find that

(g +1°=80242+g) + 1 =841

and similarly
(49+3)° =8(24*+ 37+ 1) +- 1 = 84 + 1.

As examples, the square of the odd integer 7is 72 =49 = 8- 6 + 1, while
the square of 13 is 132 = 169 = 8- 21 -+ 1.

PROBLEMS 2.1

1. Prove that if 2 and & are integers, with & > 0, then there exist unique in-
tegers g and r satisfying ¢ = gb +r, where 25 < r < 3p.

2. Show that any integer of the form 64 + 5 is also of the form 3% + 2, but
not conversely.

3. Use the Division Algorithm to establish that
(a) every odd integer is either of the form 44 +1or 441 3;
(b) the square of any integer is either of the form 34 or 34 +1;
(c) the cube of any integer is either of the form 9%, 9%+ 1, or 94 L8,
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4. For n>1, prove that n(n+ 1)(2n+ 1)j6 is an integer. [Hint: By the
Division Algorithm, # has one of the forms 64, 64 +1, ..., 644 5; es-
tablish the result in each of these six cases.)

5. Verify that if an integer is simultaneously a square and a cube (as is the
case with 64 = 82 = 43), then it must be either of the form 74 or 74 + 1.

6. Obtain the following version of the Division Algorithm: For integers
a and b, with b # 0, there exist unique integers ¢ and r satisfying 2 =gb 4 r,
where —%|&| <r<(}|b|. [Hint: First write a=gq'b+r', where 0<
r<|b|. When 0<r" <C}|b|, let r=r" and g=4¢q'; when }|b]| <
rr< bl letr=r"—|bland g=¢' +1if b>00r g=¢' —1if 6 <0

7. Prove that no integer in the sequence
11, 111, 1111, 11111, ...

is a perfect square. [Hint: A typical term 111...111 can be written as
M1 111 =111.--108 -3 =44+ 3.]

2.2 THE GREATEST COMMON DIVISOR

Of special significance is the case in which the remainder in the Division
Algorithm turns out to be zero. Let us look into this situation now.

DeriNiTION 2-1.  An integer 4 is said to be divisible by an integer
a # 0, in symbols 4 | b, if there exists some integer ¢ such that b = ac.
We write 2 ¥ b to indicate that & is not divisible by 4.

Thus, for example, —12 is divisible by 4, since —12=4(—3).
However, 10 is not divisible by 3; for there is no integer ¢ which makes
the statement 10 = 3¢ true.

There is other language for expressing the divisibility relation
a|b. One could say that z is a divisor of b, that a is a factor of b or that
b is a multiple of a. Notice that, in Definition 2-1, there is a restriction
on the divisor a: whenever the notation « | 4 is employed, it is understood
that # is different from zero.

If 4 is a divisor of b, then 4 is also divisible by —z (indeed, b = ac
implies that b= (—a)(—¢)), so that the divisors of an integer always
occur in pairs. In order to find all the divisors of a given integer, it is
sufficient to obtain the positive divisors and then adjoin to them the
corresponding negative integers. For this reason, we shall usually limit
ourselves to a consideration of positive divisors.
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It will be helpful to list some of the more immediate consequences
of Definition 2-1 (the reader is again reminded that, although not stated,
divisors are assumed to be nonzero).

THEOREM 2-2.  For integers a, b, ¢, the Jollowing hold:

(1) 4]0,1]4,4]a.

@ a|lifandonlyifa= +1.

() Ifalbandc|d, then ac| bd,

(4) Ufalbandb|c, thena|v.

(5) al|bandb|aif and only if a= +b.

©) Ifalbandb 0, then | a| <|b)|.

() Ifalband a|c, then a| (bx+ &y) for arbitrary integers x and y.

Proof: We shall prove assertions (6) and (7), leaving the other parts
as an exercise. If 7| 4, then there exists an integer ¢ such that b = a¢;
also, 4 £ 0 implies that ¢ £ 0. Upon taking absolute values, we get
[b]|=]ac|=] a||c|. Sincec¢=£0, it follows that | ¢] >1, whence
b1=lal]e|>]al.

As regards (7), the relations 4 | band | ¢ ensure that b = gr
and ¢ = as for suitable integers r and 5. But then

bx—f—g:arx—%ay:a(rx—{—y)

whatever the choice of x and J. Since rx 4 sy is an integer, this says
that a | (bx + ¢y), as desired.

It is worth pointing out that property (7) of the preceding theo-
rem extends by induction to sums of more than two terms. ‘That is, if
albfor k=1,2, ..., n then

ai(b1x1+b2x2+"'+bnxn)

for all integers x,, x,, ..., xy. The few details needed for the proof are
so straightforward that we omit them.

If 2 and b are arbitrary integers, then an integer 4 is said to be
a common divisor of a and b if both 4 | aand 4| 4. Since 1 is a divisor of
every integer, 1 is a common divisor of z and b; hence, their set of positive
common divisors is nonempty. Now every integer divides 0, so that if
a=b=0, then every integer serves as a common divisor of 4 and &.
In this instance, the set of positive common divisors of 2 and /4 is infinite.
However, when at least one of z o1 & is different from zero, there are only a
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finite number of positive common divisors. Among these, there is a
largest one, called the greatest common divisor of # and . Framed as a

definition,

DerINITION 2-2.  Let 2 and 4 be given integers, with at least one of
them different from zero. The greatest common divisor of a and b,
denoted by gcd (g, b), is the positive integer 4 satisfying

(1) d|aandd]|b,
(2) ifc|laandc|b, thenc<d

Example 2-1
The positive divisors of —12 are 1, 2, 3, 4, 6, 12, while those of

30are 1, 2,3,5,06, 10, 15, 30; hence, the positive common divisors of
—12and 30 are 1, 2, 3, 6. Since 6 is the largest of these integers, it
follows that gcd (—12, 30) = 6. In the same way, one can show that

ged(—5,5)=5, gcd(8,17)=1, and gecd(—8, —36)=4.

The next theorem indicates that ged (4, &) can be represented as a
linear combination of @ and & (by a /Jinear combination of a and b, we mean
an expression of the form ax 4 by, where x and y are integers). This is
illustrated by, say,

ged (—12,30) =6=(—12)2430-1
or ged (—8, —36) = 4 = (—8)4 + (—36)(—1).
Now for the theorem:
THEOREM 2-3.  Given integers a and b, not both of whick are zero, there
exist integers x and y such that
ged (4, b) = ax + by.
Proof: Consider the set S of all positive linear combinations of a
and b:
S={au-+bv| an+ bv > 0; u, v integers}.

Notice first that S is not empty. For example, if 270, then the
integer | a | = au +b - 0 will lie in 5, whete we choose #=1 or =
—1 according as 4 is positive or negative. By virtue of the Well-
Otrdering Principle, § must contain a smallest element 4. Thus, from
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the very definition of S, there exist integers x and y for which 4=
ax + by. We claim that 4= ged (4, 4).

Taking stock of the Division Algorithm, one can obtain
integers g and 7 such that a = ¢d + r, where 0 <r <4d. Then r can
be written in the form

r=a—gqd=a—q(ax+by)
= a(l — gx) + &(— ).
Were r > 0, this representation would imply that  is 2 member of §,
contradicting the fact that 4 is the least integer in § (recall that r < d).
Therefore, r=0 and so 2= gd, or equivalently, 4 | . By similar
reasoning 4 | 4, the effect of which is to make 4 a common divisor of
both 2 and 4.

Now if ¢ is an arbitrary positive common divisor of the
integers  and &, then part (7) of Theorem 2-2 allows us to conclude
that ¢ | (ax + 4y); in other words, ¢ | 4. By (6) of the same theorem,
¢=|c¢|<|d|=4d, so that d is greater than every positive common
divisor of z and 4. Piecing the bits of information together, we see
that d = gcd (q, 4).

It should be noted that the foregoing argument is merely an
“existence” proof and does not provide a practical method for finding
the values of x and y; this will come later.

A perusal of the proof of Theorem 2-3 reveals that the greatest
common divisor of # and 4 may be described as the smallest positive
integet of the form ax + by. Besides this, another fact can be deduced:

CorOLLARY. If a and b are given integers, not both zero, then the set
T'={ax+ by | x, y are integers}

is precisely the set of all multiples of d= gcd (a, b).

Proof: Sinced| aand d| b, we know that | (ax + by) for all integers

x,y. Thus, every member of Tis a multiple of 4. On the other hand,

d may be written as d= ax, + by, for suitable integers x, and j,,
so that any multiple #d of 4 is of the form

nd = n(axo + byo) = a(nxo) + bny,).

Hence, #d is a linear combination of z and 5, and, by definition, lies
in T,
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\
It may happen that 1 and —1 are the only common divisors of a

given pair of integers # and b, whence gcd (4, b))=1. For example:
ged (2, 5) = ged (—9, 16) =ged (—27, —35)=1.

This situation occurs often enough to prompt a definition.

DerinrTioN 2-3. Two integers 4 and 4, not both of which are
zero, are said to be relatively prime whenever ged (a, b) = 1.

The following theorem characterizes relatively prime integers in
terms of linear combinations.

THEOREM 2-4. Let a and b be integers, not both zero. Then a and b
are relatively prime if and only if there exist integers x and y such that
1=uax+b.

Proof: 1f a and & are relatively prime so that ged (4, #) =1, then
Theorem 2-3 guarantees the existence of integers x and y satisfying
l=uax+4by. As for the converse, suppose that 1=ax+ &y for
some choice of x and y, and that /= gcd (¢, 4). Since 4| aand 4| 5,
Theorem 2-2 yields 4 | (ax + by), or 4| 1. Inasmuch asd is a positive
integer, this last divisibility condition forces d=1 (part (2) of
Theorem 2-2 plays a role here) and the desired conclusion follows.

This result leads to an observation that is useful in certain situa-
tions; namely,

Cororrary 1. If ged (4, b) = d, then ged (afd, bjd) = 1.

Proof: Before starting with the proof proper, we should observe
that while 4/d and 4/d have the appearance of fractions, they are in
fact integers since 4 is 2 divisor both of 4 and of 4. Now, knowing
that ged (4, ) = 4, it is possible to find integers x and y such that
d=ax 4 by. Upon dividing each side of this equation by d, one
obtains the expression

1 =(ald)x + (b]d)y.

Because 4/d and b/d are integers, an appeal to the theorem is legiti-
mate. The upshot is that #/d and 4/d are relatively prime.
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For an illustration of the last corollary, let us observe that
ged (—12, 30) =6 and

ged (—12/6, 30/6) = ged (—2, 5) =1,

as it should be.

It is not true, without adding an extra condition, that 4| ¢ and
b| ¢ together give ab|¢. For instance, 6| 24 and 8| 24, but 6 - 8 4 24.
Weére 6 and 8 relatively prime, of course, this situation would not arise.
This brings us to

CoroLLARY 2. Ifa|cand b|c, with gcd (a, b) =1, then ab | c.

Proof: Inasmuchasa|cand? |, integers r and s can be found such
that ¢ = ar = bs. Now the relation ged (a, b)) = 1 allows us to write
1 =ax + by for some choice of integers x and y. Multiplying the
last equation by ¢, it appears that

c=c-1=c(ax+ by) = acx + bey.
If the appropriate substitutions are now made on the right-hand side,
then
¢ = a(bs)x + b(ar)y = ab(sx + ry)

or, as a divisibility statement, ab | ¢.

Our next result seems mild enough, but it is of fundamental
importance.

TrEOREM 2-5 (Euclid’s Lemma). If a| be, with ged (a, b) = 1, then

ale.

Progf: We start again from Theorem 2-3, writing 1=ax -+ by
where x and y are integers. Multiplication of this equation by ¢
produces

c=1.c=(ax+ by)c=acx + bey.
Since a | ac and 4| be, it follows that « | (acx + bey), which can be
recast as 4 | ¢.

If 2 and & are not relatively prime, then the conclusion of Euclid’s
Lemma may fail to hold. A specific example: 12| 9 . 8, but 12 y 9 and
12 4 8.
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The subsequent theorem often serves as a definition of ged (a, 4).
The advantage of using it as a definition is that order relationship is
not involved; thus it may be used in algebraic systems having no order
relation.

THEOREM 2-6.  Let a, b be integers, not both zero. For a positive integer
d, d = gcd (a, b) if and only if
’

(1) d|aandd|b,
(2) whenever ¢ | a and ¢ | b, then ¢ | d.

Proof: To begin, suppose that d= gcd (4, ). Certainly, 4| 2 and
d| b, so that (1) holds. In light of Theorem 2-3, 4 is expressible as
d=ax+ by for some integers x, y. Thus, if ¢|a and ¢| b, then
¢ | (ax 4+ by), or rather ¢| 4. In short, condition (2) holds. Con-
versely, let 4 be any positive integer satisfying the stated conditions,
Given any common divisor ¢ of zand &, we have ¢ | 4 from hypothesis
(2). The implication is that 4 > ¢, and consequently 4 is the greatest
common divisor of # and 4.

PROBLEMS 2.2

1. If 2| b, show that (—a) | &, a| (—&), and (—a) | (—b).

2. Given integers a, b, ¢, verify that
(@) ifa|b, thena] be;

(b) ifa|banda]c, then 4| be;
(¢} a|bifand only if ac | be, where ¢ 5= 0.

3. Prove or disprove: if 2| (b + ¢), then either a | b or 4| <.

4. Prove that, for any integer 4, one of the integers 4, a + 2, 2 + 4 is divisible
by 3. [Hint: By the Division Algorithm the integer 4 must be of the
form 34, 3441, or 34 + 2.]

5. (a) For an arbitrary integer «, establish that 2|a(z+41) while

3| ala + 1)@+ 2).
(b) Prove that 4 } (42 + 2) for any integer .

6. For n>>1, use induction to show that
(a) 7 divides 23" — 1 and 8 divides 32" + 7;

(b) 2" 4 (—1)**1 is divisible by 3.
7. Show that if # is an integer such that 2 } 2 and 3 } 4, then 24 | (&* — 1).
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10.

11,

12.

13.

14.

15.

16.
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Prove that

(a) the sum of the squares of two odd integers cannot be a perfect
square;

(b) the product of four consecutive integers is one less than a perfect
square.

Establish that the difference of two consecutive cubes is never divisible
by 2.

For a nonzero integer 4, show that ged (4, 0)=| 2|, ged (4, a) =] 4|,
and ged (g, 1) =1.

If 2 and & are integers, not both of which are zero, verify that

ged (4, b)) = ged (—a, b) = ged (2, —b) = ged (—a, —b).

Prove that, for a positive integer # and any integer 4, gcd (a, a -+ n) divides

#; hence, ged (g, 2+ 1) = 1.

Given integers « and b, prove that

(a) there exist integers x and y for which ¢=ax + by if and only if
ged (a, b) | ¢;

(b) if there exist integers x and y for which ax + by = ged (4, b), then
ged (x,9) = 1.

Prove: the product of any three consecutive integers is divisible by 6;

the product of any four consecutive integers is divisible by 24; the product

of any five consecutive integers is divisible by 120. [Hint: See Corollary

2 to Theorem 2-4.}

Establish each of the assertions below:

(a) If ais an odd integer, then 24| a(4® —1). [Hint: The square of an
odd integer is of the form 84 + 1.]

(b) If 2and b are odd integers, then 8 | (a2 — 42).

(9 If a is an integer not divisible by 2 or 3, then 24 | (a2 + 23). [Hinz:
Any integer 4 must assume one of the forms 64, 64 +1, ... , 64+ 5.]

(d) Ifais an arbitrary integer, then 360 | a%(s? — 1)(s? — 4).

Confirm that the following properties of the greatest common divisor

hold:

(a) If ged (s, b)) =1 and ged (g, ¢) =1, then ged (4, be) =1,
[Hint: Since 1 = ax + by = an - cv for some x, Y, #, 0,

1=(ax + by )(an + ev) = a(anx + cvx + byu) + be( yv).]

(b) Ifged (s, b)=1and ¢| 4, then ged (b, ¢) = 1.

(c) 1If ged (s, b) =1, then ged (ar, b) = ged (¢, b).

(d) Ifged (s, b)=1and ¢c|a+b, then ged (g, ¢) = ged (b, ¢) = 1.
[Hint: Let d= ged (2, ¢). Then d| a, d| ¢ implies that d| (a+ b) —a
or 4| b.]
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2.3 THE EUCLIDEAN ALGORITHM

The greatest common divisor of two integers can, of course, be found
by listing all their positive divisors and picking out the largest one
common to each; but this is cumbersome for large numbers. A more
efficient process, involving repeated application of the Division Algorithm,
is given in the seventh book of the Elements. Although there is his-
torical evidence that this method predates Euclid, it is today referred to
as the Euclidean Algorithm.

The Euclidean Algorithm may be described as follows: Let 4
and b be two integers whose greatest common divisor is desired. Since
ged(J 4|, | #]) = gcd (s, b), there is no harm in assuming that ¢ > 4 > 0.
The first step is to apply the Division Algorithm to 2 and 4 to get

a=q b+ry, 0<r, <b.
If it happens that r, =0, then /|4 and gcd (4, /) =b. When r, 0,
divide 4 by r; to produce integers ¢, and r, satisfying

b=gqyr +ry, 0<r,<r,.
If r, =0, then we stop; otherwise, proceed as before to obtain

rL=qsry+r3, 0<ry<r,.

This division process continues until some zero remainder appears, say
at the (# + 1)th stage where r, _, is divided by 7, (a zero remainder occurs
sooner or later since the decreasing sequence 6>r, >r;>...>0
cannot contain more than 4 integers).

The result is the following system of equations:

a=qb+r, O<r,<b
b=q2r1+r2: O<7'2<7'1
ry=gqsry+r;, O0<ry<r,
rﬂ—2=ann—-1+’n9 O<r,| <f"_1

rn—lzqn+1rn+0'

We argue that r,, the last nonzero remainder which appears in this
manner, is equal to ged (g, 4). Our proof is based on the lemma below.

LemMa.  If a=gb+ r, then gcd (a, b) = ged (b, 7).
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Proof: 1f d= gcd (a, b), then the relations 4| 2 and 4| b imply that
d|(a—gb), ot d| r. Thus d is a common divisor of both # and 7.
On the other hand, if ¢ is an arbitrary common divisor of » and 7,
then ¢ | (g6 + r), whence ¢| 2. This makes ¢ a common divisor of
aand b, so that ¢ <d. It now follows from the definition of ged (b,7)
that d=gcd (b, 7).

Using the result of this lemma, we simply work down the dis-
played system of equations obtaining
ged (4, b) = ged (b, ry) =+ =gcd(r, 1, 1) = ged (r,, 0)=r,,

as claimed.

Although Theorem 2-3 asserts that gcd (4, b) can be expressed in
the form ax -+ by, the proof of the theorem gives no hint as to how to
determine the integers x and y. For this, we fall back on the Euclidean
Algorithm. Starting with the next-to-last equation arising from the
algorithm, we write

Tpn=Fn-g—Gntn-1-
Now solve the preceding equation in the algorithm for 7,_, and substi-
tute to obtain
Ta=Ty_2—qu(Tn-3— Gn-1"n-2)
=1+ gugn-1)rn-2t (—gn)n-s-
This represents , as a linear combination of r,_,and r,_5. Continuing
backwards through the system of equations, we successively eliminate

the remainders 7,_,, 7a_g, ---, 72, 71 until a stage is reached where
7, = gcd (a, b) is expressed as a linear combination of « and 4.

Example 2-2
Let us see how the Euclidean Algorithm works in a concrete case

by calculating, say, ged (12378, 3054). 'The appropriate applications
of the Division Algorithm produce the equations
12378 =4 - 3054 + 162,
3054 = 18 - 162 +- 138,
162 =1-138 + 24,
138 =524+ 18,
24=1-18 4+ 6,
18=3.6+0.



SEC. 2-3 The Euclidean Algorithm 33

QOur previous discussion tells us that the last nonzero remainder
appearing above, namely the integer 0, is the greatest common divisor
of 12378 and 3054:

6 = ged (12378, 3054).

In order to represent 6 as a linear combination of the integers 12378
and 3054, we start with the next-to-last of the displayed equations
and successively eliminate the remainders 18, 24, 138, and 162:
6=24—18

=24—(138—5.24)

=06-24—138

= 6(162 — 138) — 138

=6-162—7-138

=6-162 — 7(3054 — 18 - 162)

=132.162—7- 3054

= 132(12378 — 4 - 3054) — 7 - 3054

= 13212378 + (—535)3054.

Thus, we have
6= gcd (12378, 3054) = 12378x + 3054y,

where x =132 and y= —535. It might be well to record that this
is not the only way to express the integer 6 as a linear combination of
12378 and 3054; among other possibilities, one could add and
subtract 3054 - 12378 to get

6 = (132 ++ 3054)12378 4 (—535 — 12378)3054
— 3186 - 12378 + (—12913)3054.

The French mathematician Lamé (1795-1870) proved that the
number of steps required in the Euclidean Algorithm is at most five
times the number of digits in the smaller integer. In Example 2-2, the
smaller integer (namely 3054) has four digits, so that the total number of
divisions cannot be greater than twenty; in actuality only six divisions
were needed. Another observation of interest is that for each #» > 0, it is
possible to find integers 4, and &, such that exactly # divisions are re-
quired in order to compute gcd (4,, 4,) by the Euclidean Algorithm.
We shall prove this fact in Chapter 13.
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One mote remark is necessary: The number of steps in the Eucli-
dean Algorithm can usually be reduced by selecting remainders r, . ; such
that | 7, ., | <r/2; that is, by working with least absolute remainders in
the divisions. Thus, repeating Example 2-2, it would be more efficient
to write

12378 =4 - 3054 + 162,

3054 =19.162 — 24,
162=17.24—6,
24 = (—4)(—6)+ 0.
As evidenced by the above set of equations, this scheme is apt to produce
the negative of the value of the greatest common divisor of two integers
(the last nonzero remainder being —06), rather than the greatest common
divisor itself.

An important consequence of the Euclidean Algorithm is the
following theorem.

THEOREM 2-7. If £ >0, then gcd (ka, kb) = £ ged (a, b).
Proof: 1f each of the equations appearing in the Euclidean Algo-

rithm for # and & (see page 31) is multiplied by 4, we obtain

ak = q,(bk) + ri £, 0 <r k<bk
bk =qy(ri k) + 134, 0<rphb<rik

r,,_z'/r:qn(r,,_lk)—{—rn/r, 0<r kb <r,_,k
rn—lkzqni—l(rnk) + 0

But this is clearly the Euclidean Algorithm applied to the integers
ak and bk, so that their greatest common divisor is the last nonzero
remainder 7, £; that is,

ged (Aa, kb) =r, k=K gcd (a, b),

as stated in the theorem.
CoroLLARY. For any integer k #0, ged (ha, Ab) = | k| ged (g, b).

Proof: It suffices to consider the case in which £<0. Then
—k=| k| >0and, by Theorem 2-7,

ged (ak, bk) = ged (—ak, —bk)=ged(a| k|, b} £ |)=]| £]| gcd (g, b).
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An alternate proof of Theorem 2-7 runs very quickly as follows:
gcd (ak, bE) is the smallest positive integer of the form (ak)x -+ (b4)y,
which in its turn is equal to 4 times the smallest positive integer of the
form ax - by; the latter value is equal to £ gecd (g, b).

By way of illustrating Theorem 2-7, we see that

ged (12, 30) =3 ged (4, 10) =3 - 2 ged (2, 5) =6 - 1 =6,

There is a concept parallel to that of the greatest common divisor
of two integers, known as their least common multiple; but we shall not
have much occasion to make use of it. An integer ¢ is said to be 2 common
multiple of two nonzero integers 4 and & whenever 2| ¢ and 4| ¢ Evi-
dently, 0 is 2 common multiple of zand 4. To sée that common multiples
which are not trivial do exist, just note that the products b and —(ab) are
both common multiples of # and 4, and one of these is positive. By the
Well-Ordering Principle, the set of positive common multiples of 2 and &
must contain a smallest integer; we call it the least common multiple of
a and b.

For the record, here is the official definition.

DerFINITION 2-4.  ‘The least common multiple of two nonzero integers
a and b, denoted by lem (g, b), is the positive integer  satisfying

(1) a|mandb|m,
(2) ifa|candb|e¢, with ¢ >0, then » <c.

As an example, the positive common multiples of the integers
—12 and 30 are 60, 120, 180, ... ; hence, lcm (—12, 30) = 60.

The following remark is clear from our discussion: Given
nonzero integers a and &, lem (g, b) always exists and lem (a, b) <| ab|.

What we lack is a relationship between the ideas of greatest
common divisor and least common multiple. This gap is filled by

Turorem 2-8.  For positive integers a and b,
ged (4, b) lem (a, b) = ab.
Proof: To begin, put = ged (s, b) and write 2 = dr, b= ds for in-

tegers r and 5. If m = ab/d, then m = as = rb, the effect of which is
to make 7 a (positive) common multiple of 2 and b.
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Now let ¢ be any positive integer that is 2 common multiple
of 2 and &; say for definiteness, c=au=~br. As we know, there
exist integers x and y satisfying 4 =ax -+ by. In consequence,

¢ od clax+by)

=T = (¢/b)x +(cla)y = vx + ny.
This equation states that 7 | ¢, allowing us to conclude that 7 <c.
Thus, in accordance with Definition 2-4, »=Ilcm (g, 4); that is,

ab ab

lcm(a,b)=7=m,

which is what we started out to prove.
Theorem 2-8 has a corollary that is worth a separate statement.

CorOLLARY. Given positive integers a and b, lem (a, b) = ab if and only
if ged (s, b) = 1.

Perhaps the chief virtue of Theorem 2-8 is that it makes the
calculation of the least common multiple of two integers dependent on
the value of their greatest common divisor—which in its turn can be
calculated from the Euclidean Algorithm. When considering the integers
3054 and 12378, for instance, we found that gcd (3054, 12378) = 6;
whence,

3054 - 12378

- — 6,300,402.

lem (3054, 12378) =
Before moving on to other matters, let us observe that the
notion of greatest common divisor can be extended to more than two
integers in an obvious way. In the case of three integers 4, 4, ¢, not all
zero, ged (a, b, ¢) is defined to be the positive integer & having the pro-
perties
(1) dis a divisor of each of 4, b, ¢,

(2) if e divides the integers 4, b, ¢, then ¢ <d.
To cite two examples, we have

ged (39, 42, 54) =3 and gcd (49, 210, 350) =7.
The reader is cautioned that it is possible for three integers to be relatively

prime as a triple (in other words, ged(s, 4, ) =1), yet not relatively
prime in pairs; this is brought out by the integets 6, 10, and 15.
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SEC. 2-3
PROBLEMS 2.3
1. Find ged (143, 227), ged (3006, 657) and ged (272, 1479).
2. Use the Euclidean Algorithm to obtain integers x and y satisfying
(a) ged (56, 72) = 56x + 72y;
(b) ged (24,138) = 24x + 138y;
(c) ged (119, 272) = 119x 4 272y;
(d) ged (1769, 2378) = 1769x + 2378y.
3. Prove that if 4 is 2 common divisor of # and 4, then d=gcd (a, b) if and
only if ged (a/d, bjd) = 1. [Hint: Use Theorem 2-7).]
4. Assuming that ged (2, b)) = 1, prove the following:
() ged (@+b, a—b)y=1or2 [Hint: Let d=ged (a+b, a—b) and
show that 4| 2a, d| 2b; thus, that 4< gcd (24, 2b) = 2 ged (a, b).]
(b) ged (2a+b,a+2h)=1or 3.
() ged(a+b,a2+b6%)=10r2. [Hint: a®+ b2 = (a+b) (@ —b) + 2b2]
() ged (a+b, a® —ab+4%)=1o0r3.
[Hint: a® — ab -+ b? = (a + b)* — 3ab.]
5. For positive integers 4,  and »>>1, show that
(2) If ged (4, b)) =1, then ged (4%, 4")=1. [Hint: See Problem 16(a),
Section 2-2.]
(b) 'The relation 4™ | 4" implies that 2| &. [Hint: Put d= ged (a, b) and
write @ = rd, b = sd, where ged (7, 5) = 1. By part (a), ged (7", s") = 1.
Show that » = 1, whence a =4.]
6. For nonzero integers a and b, verify that the following conditions are
equivalent:
@ alb (b) ged (& =] | (© lem (@, )= | ¢
7. Find lem (143, 227), lem (306, 657) and lem (272, 1479).
8. Prove that the greatest common divisor of two positive integers always
divides their least common multiple.
9. Given nonzero integers z and b, establish the following facts concerning
lem (a, b):
(a) ged (a, b) = lem (q, b) if and only if a = 4.
(b) If £ >0, then lcm (ka, Ab) = £ lcm (a, b).
(&) If m is any common multiple of # and &, then lem (g, ) | m. [Hint:
Put # = lcm (g, 4) and use the Division Algorithm to write w = q¢ + 1,
where 0< 7 < £ Show that r is a common multiple of # and 4.]
10. TLet 4, 4, ¢ be integers, no two of which are zero, and d=gcd (4, b, ).

Show that
d= ged (ged (g, b), ¢) = ged (4, ged (b, ¢)) = ged (ged(s, 9), b).
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11. Find integers x, y, 2 satisfying
gcd (198, 288, 512) = 198x + 288y + 512z

[Hint: Put d = ged (198, 288). Since ged (198, 288, 512) = ged (4, 512),
first find integers # and » for which ged (4, 512) = du+ 512 ».]

2.4 THE DIOPHANTINE EQUATION ax + 4y =¢

We now change focus somewhat and take up the study of Diophantine
equations. The name honors the mathematician Diophantus, who
initiated the study of such equations. Practically nothing is known of
Diophantus as an individual, save that he lived in Alexandria sometime
around 250 A.n. The only positive evidence as to the date of his activity
is that the Bishop of Laodicea, who began his episcopate in 270, dedicated
a book on Egyptian computation to his friend Diophantus. While
Diophantus’ works were written in Greek and he displayed the Greek
genius for theoretical abstraction, he was most likely a Hellenized Baby-
lonian. What personal particulars we have of his career come from the
wording of an epigram-problem (apparently dating from the 4th century)
to the effect: his boyhood lasted 1/6 of his life; his beard grew after 1/12
more; after 1/7 more he married, and his son was born 5 years later; the
son lived to half his father’s age and the father died four years after his
son. If x was the age at which Diophantus died, these data lead to the
equation

L o+ dx £ 5+t 4=,

with solution x = 84. Thus he must have reached an age of 84, but in
what year or even in what century is not certain.

The great work upon which the reputation of Diophantus rests
is his Arithmetica, which may be described as the earliest treatise on alge-
bra. Only six Books out of the original thirteen have been preserved.
It is in the Arithmetica that we find the first systematic use of mathematical
notation, although the signs employed are of the nature of abbreviations
for words rather than algebraic symbols in our sense. Special symbols
are introduced to represent frequently occurring concepts, such as the
unknown quantity in an equation and the different powers of the unknown
up to the sixth power; Diophantus also had a symbol to exptess subtrac-
tion, and another for equality.
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It is customary to apply the term Diophantine equation to any
equation in one or more unknowns which is to be solved in the integers.
The simplest type of Diophantine equation that we shall consider is
the linear Diophantine equation in two unknowns:

ax+by=c¢,

where 4, b, ¢ are given integers and 4, 4 not both zero. A solution of this
equation is 2 pair of integers x,, o which, when substituted into the
equation, satisfy it; that is, we ask that ax, + by, = ¢. Curiously enough,
the linear equation does not appear in the extant works of Diophantus
(the theory required for its solution is to be found in Euclid’s Elements),
possibly because he viewed it as trivial; most of his problems dealt with
finding squares or cubes with certain properties.

A given linear Diophantine equation can have a number of
solutions, as with 3x + 6y = 18, where

3.4+ 61=18,
3(—6) + 6:6 =18,
3.10 + 6(—2) = 18.

By contrast, there is no solution to the equation 2x + 10y =17. Indeed,
the left-hand side is an even integer whatever the choice of x and y,
while the right-hand side is not. Faced with this, it is reasonable to
inquire about the circumstances under which a solution is possible and,
when a solution does exist, whether we can determine all solutions
explicitly.

The condition for solvability is easy to state: The Diophantine
equation ax + by = ¢ admits a solution if and only if 4 | ¢, where d=
ged(a, b). We know that there are integers 7 and s for which 2= dr and
b=ds. If a solution of ax 4 by=r¢ exists, so that ax,+by,=¢ for
suitable x, and y,, then

¢ =axy~+ byo = drx, + dsyo = d(rxo + o),

which simply says that d|¢. Conversely, assume that 4 | ¢, say c=dbt.
Using Theorem 2-3, integers xo and y, can be found satisfying 4=
ax, + by,. When this relation is multiplied by #, we get

¢ = dt = (axq + byo)t = a(tx,) + b(2yo)-

Hence, the Diophantine equation ax + by=r¢ has x=1x, and y=#),
as a particular solution. This proves part of our next theorem.
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THEOREM 2-9.  The linear Diophantine equation ax + by = ¢ has a solution
if and only if d| ¢, where d=gcd(a, b). If xo, yo is any particular
solution of this equation, then all other solutions are given by

x=2xo+bld)t,  y=Jyo—(ald)t
Jor varying integers 1.
Proof: To establish the second assertion of the theorem, let us

suppose that a solution x4, J, of the given equation is known. If
x', y' is any other solution, then

axo+ byo=c=ax' 4 by’,

which is equivalent to

d(X’ — XO) = b()}o _],).
By the Corollary to Theorem 2-4, there exist relatively prime integers
r and s such that a =dr, b=ds. Substituting these values into the
last-written equation and cancelling the common factor 4, we find
that

r(x’ — x0) =35(y0 —9")

The situation is now this: 7| s(y, — "), with ged(r, s)=1. Using
Euclid’s Lemma, it must be the case that 7 | (), —»'); or, in other
words, y, — )’ = r¢for some integer £. Substituting, we obtain

x'— x, = st.
This leads us to the formulas
x' =%y + 5t = x4+ (bd)t,
V' =Yyo—rt=y,—(ald)t.

It is easy to see that these values satisfy the Diophantine equation,
regardless of the choice of the integer #; for,

ax’ + by’ = aloxo + (Bl + L 3o — (ald)1)
= (axo + byo) + (ab|d — ab|d)t
=c¢+0-72=c

Thus there are an infinite number of solutions of the given equa-
tion, one for each value of £
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Example 2-3
Consider the linear Diophantine equation

1725 + 20y = 1000.

Applying Euclid’s Algorithm to the evaluation of ged (172, 20), we
find that

172=8.204 12,
20—=1.124+8,
12=1.8+4,

8—2.4,

whence ged (172, 20)=4. Since 4| 1000, a solution to this equa-
tion exists. To obtain the integer 4 as a linear combination of
172 and 20, we work backwards through the above calculations, as
follows:

4=12—8
—12— (20— 12)
—2.12—20

=2(172—8-20)—20
=2.172 4 (—17)20.
Upon multiplying this relation by 250, one arrives at
1000 = 250 - 4 = 250[2 - 172 4 (—17)20]
= 500 - 172 4 (—4250)20,

so that x = 500 and y = —4250 provides one solution to the Dio-
phantine equation in question. All other solutions are expressed by

x = 500 +-(20/4)z = 500 + 5¢,
y= —4250 — (172/4)t = —4250 — 43¢
for some integer 7.
A little further effort produces the solutions in the positive

integers, if any happen to exist. For this, # must be chosen so as to
satisfy simultaneously the inequalities

5¢+ 500 >0, —43£— 4250 >0
or, what amounts to the same thing,

—9838 > > —100.
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Since # must be an integer, we are forced to conclude that 7 — —99.
Thus our Diophantine equation has a unique positive solution x = 5,
J =1 corresponding to the value #= —99,

It might be helpful to record the form that Theorem 2-9 takes
when the coefficients are relatively prime integers.

Cororrary.  If ged(a, b) =1 and if x,, Jo i a particular solution of
the linear Diophantine equation ax + by = ¢, then all solutions are given
by

X=xo+bt, y=y,—at
JSor integral values of t.

For example: The equation 5x -+ 22y=18 has x, =8, yo= —1
as one solution; from the Corollary, a complete solution is given by
x=8+422¢, y=—1— 5¢for arbitrary £

Diophantine equations frequently atise in the solving of certain
types of traditional “ word problems,” as evidenced by our next example.

Example 2-4
A customer bought a dozen pieces of fruit, apples and oranges,
for $1.32. If an apple costs 3 cents more than an orange and more
apples, than oranges were purchased, how many pieces of each kind
were bought?

To set up this problem as a Diophantine equation, let x be
the number of apples and y the number of oranges purchased; also,
let z represent the cost (in cents) of an orange. Then the conditions
of the problem lead to

(z+ 3)x + 2y =132
or equivalently

3x 4+ (x +y)z =132,
Since x + y = 12, the above equation may be replaced by
3x 4 122 =132,

which in turn simplifies to x -+ 4z = 44,
Stripped of inessentials, the object is to find integers x and z
satisfying the Diophantine equation

(*) ’ X+ 4z = 44,
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1.

Inasmuch as ged (1, 4) = 1 is a divisor of 44, there is a solution to this
equation. Upon multiplying the relation 1 =1(—3)+4-1 by 44 to

get
44 =1(—132) + 4. 44,

it follows that x, = — 132, z, = 44 serves as one solution. All other
solutions of (x) are of the form

x = —132 4 44

z=44 — ¢,

where ¢ is an integer.

Not all of the infinite set of values of # furnish solutions to
the original problem. Only values of # should be considered which
will ensure that 12 > x > 6. This requires obtaining those # such that

12> —132 442> 6.

Now, 12> —132 + 4¢ implies that #<36, while —132 +4>6
gives # > 34}. The only integral values of # to satisfy both inequali-
ties are # = 35 and #==36. Thus there are two possible purchases:
a dozen apples costing 11 cents apiece (the case where 7= 36), ot
else 8 apples at 12 cents each and 4 oranges at 9 cents each (the
case where 7= 35).

PROBLEMS 2.4

43

Determine all solutions in the integers of each of the following Diophantine

equations:

(@) 56x + 72y = 40;
(b) 24x -+ 138y = 18;
(©) 221x -+ 91y=117;
(d) 84x — 438y = 156.

Determine all solutions in the positive integers of each of the following

Diophantine equations:

(@) 30x -+ 17y = 300;

(b) 54x + 21y = 906;

(©) 123x+ 360y = 99;
(d) 158x —57y="7.

If 4 and b are relatively prime positive integers, prove that the Diophantine
equation ax — by = ¢ has infinitely many solutions in the positive integers.
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[Hint: There exist integers x, and y, such that ax,+ by, = 1. For any
integer #, which is larger than both | x, | /6 and |y, | [a, % = x4 + b and
Y =—(yo — a#)are a positive solution of the given equation.]

(a) Prove that the Diophantine equation ax + by+ cz=4d is solvable
in the integers if and only if ged (g, 4, ¢) divides 4.

(b) Findallsolutions in the integers of 15x + 12y + 30z = 24, [Hint: Put
y=3s—>5¢and z = —s 4 2]

(a) A man has $4.55 in change composed entirely of dimes and quarters.
What are the maximum and minimum number of coins that he can
have? Is it possible for the number of dimes to equal the number of
quarters ?

(b) The neighborhood theater charges $1.80 for adult admissions and
75 cents for children. On a particular evening the total receipts were
$90. Assuming that more adults than children were present, how
many people attended ?

(c) A certain number of sixes and nines are added to give a sum of 126;
if the number of sixes and nines are interchanged, the new sum is
114. How many of each were there originally?

A farmer purchased one hundred head of livestock for a total cost of
$4000. Prices were as follows: calves, $120 each; lambs, $50 each; piglets,
825 each. 1If the farmer obtained at least one animal of each type how
many did he buy?

When Mr. Smith cashed a check at his bank, the teller mistook the number
of cents for the number of dollars and vice versa. Unaware of this, Mr.
Smith spent 68 cents and then noticed to his surprise that he had twice the
amount of the original check. Determine the smallest value for which
the check could have been written. [Hint: If x is the number of dollars
and y the number of cents in the check, then 100y 4 x — 68 = 2(100x + y).]
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31 THE FUNDAMENTAL THEOREM OF
ARITHMETIC

Essential to everything discussed herein—in fact, essential to every
aspect of number theory—is the notion of a prime number. We have
previously observed that any integer 2 > 1 is divisible by +1 and +4;
if these exhaust the divisors of 4, then it is said to be a prime number.
Put somewhat differently:

DeFiNtTION 3-1.  Aninteger p > 1is calleda prime number, or simply
a prime, if its only positive divisors are 1 and p. An integer greater
than 1 which is not a prime is termed composite.

Among the first ten positive integers 2, 3, 5, 7 are all primes,
while 4, 6, 8, 9, 10 are composite numbers. Note that the integer 2 is
the only even prime, and according to our definition the integer 1 plays a
special role, being neither prime nor composite.

For the rest of the book, the letters p and g will be reserved, so
far as is possible, for primes.

Proposition 14 of Book IX of Euclid’s E/ements embodies the
result which later became known as the Fundamental Theorem of Arith-
metic, namely, that every integer greater than 1 can, except for the
order of the factors, be represented as a product of primes in one and
only one way. To quote the proposition itself: “If a number be the
least that is measured by prime numbers, it will not be measured by any
other prime except those originally measuring it.” Since every number
is either a prime or, by the Fundamental Theorem, can be broken down
into unique prime factors and no further, the primes serve as the “build-
ing blocks” from which all other integers can be made. Accordingly,
the prime numbers have intrigued mathematicians through the ages,
and while a number of remarkable theorems relating to their distribution
in the sequence of positive integers have been proved, even more remark-
able is what remains unproved. The open questions can be counted
among the outstanding unsolved problems of all mathematics.

46
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To begin on a simpler note, we observe that the prime 3 divides
the integer 36, where 36 may be written as any one of the products

6-6=9-4=12-3=18-2.

In each instance, 3 divides at least one of the factors involved in the
product. This is typical of the general situation, the precise result being:

THEOREM 3-1. If pis a prime and p | ab, then p | a or p | b.

Proof: 1f p| a, then we need go no further, so let us assume that
p 4 a. Since the only positive divisors of p ate 1 and p itself, this
implies that gcd (p, a) = 1. (In general ged(p, a) = porged(p,a) =1
according as p | 4 or p ¥ a.) Hence, citing Euclid’s Lemma, we get

plb

This theorem easily extends to products of more than two terms.

CorOLLARY 1. Ifpisaprimeand p|ajay---a,, then p | a for some £,
where 1 < k<n.

Proof: We proceed by induction on #, the number of factors. When
n = 1, the stated conclusion obviously holds, while for » =2 the re-
sult is the content of Theorem 3-1. Suppose, as the induction
hypothesis, that #» > 2 and that whenever p divides a product of less
than # factors, then it divides at least one of the factors. Now, let
p|aias:--a,. By Theorem 3-1, either p | a,orelse p| ayay-+-a,_1.
If p | a,, then we are through. As regards the case p | ayag: - an-1,
the induction hypothesis ensures that p | 4, for some choice of 4,
with 1 <A <n—1. In any event, p divides one of the integers
G135y ...y 0.

COROLLARY 2. If P, 41, qas ---» qn are all primes and p| 4142+ 4n»
then p = gy, for some k, where | <k <n.

Proof: By virtue of Corollary 1, we know that p| g, for some £,
with 1 <4 <. Being a prime, g, is not divisible by any positive
integer other than 1 or g, itself. Since p>1, we are forced to
conclude that p=g,.

With this preparation out of the way, we arrive at one of the
cornerstones of our development, the Fundamental Theorem of Arith-
metic. As indicated earlier, this theorem asserts that every integer
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greater than 1 can be factored into primes in essentially one way; the
linguistic ambiguity * essentially ” means that 2 - 3 - 2 is not considered as
being a different factorization of 12 from 2.2 . 3. Stated precisely:

THEOREM 3-2 (Fundamental Theorem of Arithmetic). Every positive
integer n > 1 can be expressed as a product of primes; this representation
is unique, apart from the order in which the factors occar.

Proof: Either » is a prime or it is composite; in the former case,
there is nothing more to prove. If # is composite, then there exists
an integer 4 satisfying 4| 7 and 1 <d <» Among all such integers
d choose p, to be the smallest (this is possible by the Well-Ordering
Principle). Then p, must be a prime number. Otherwise, it too
would have a divisor ¢ with 1 <g <p,; but then ¢| p, and p, | #
imply that ¢| #, which contradicts the choice of p, as the smallest
divisor, not equal to 1, of ».

We may therefore write #= p,#,, where p, is prime and
1 <, <n. If n, happens to be a prime, then we have our represen-
tation. In the contrary case, the argument is repeated to produce a
second prime number p, such that #, = p,n,; that is,

#n=pP1 P27, 1<n,<ny.
If n, is a prime, then it is not necessary to go further. Otherwise,

write #, = pg#n,, with pg a prime:

”zplpzpaﬂa’ 1<”3<”2.
The decreasing sequence

ﬂ>ﬂ1>ﬂ2>-">1

cannot continue indefinitely, so that after a finite number of steps
#, -, is a prime, say p,. This leads to the prime factorization

n=p1p2"Pi-

To establish the second part of the proof—the uniqueness
of the prime factorization—let us suppose that the integer 7 can be
represented as a product of primes in two ways; say

n=p1pa " Pr=9q192"""qs» r<s

where the p; and g, are all primes, written in increasing magnitude
so that
P1SP2§"'SP”%S%S"'S%-
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Since p, | 4142 - - 45, Corollary 2 of Theorem 3-1 tells us that p;, = ¢,
for some 4; but then p, >g¢,. Similar reasoning gives ¢, > p,,
whence p, = ¢;. We may cancel this common factor and obtain

P2ps Pr=929s " Ys-

Now repeat the process to get p, = ¢, and, in its turn,

P3P4-“Pr=4344-'-qs-
Continue in this fashion. If the inequality » <s held, we would
eventually arrive at
I=¢+19+2 45

which is absurd, since each ¢, > 1. Hence » = s and

Plqu,P2242,---,Pr=%,

making the two factorizations of # identical. The proof is now
complete.

Of course, several of the primes which appear in the factorization
of a given positive integer may be repeated as is the case with 360 =
2.2.2-3.3.5. By collecting like primes and replacing them by a single
factor, we could rephrase Theorem 3-2 as

COROLLARY. Any positive integer n>1 can be written aniquely in a
canonical form

k. k
n=p"1p,"% - p,",

where, fori=1,2, ..., r, each k; is a positive integer and each p; is a prime ,
With py <po <<--- < pr.

To illustrate: the canonical form of the integer 360 is 360 =
28.32.5, As further examples we cite

4725=3%.52.7, 17460 =2°%.32.5.72

Theorem 3-2 should not be taken lightly, for there do exist
number systems in which the factorization into *“ primes” is not unique.
Perhaps the most elemental example is the set E of all positive even
integers. Let us agree to call an even integer an e-prime if it is not the
product of two other even integers. Thus, 2, 6, 10, 14, ... are all e-primes
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while 4, 8, 12, 16, ... are not. It is not difficult to see that the integer 60
can be factored into e-primes in two distinct ways; namely,

60=2.30=6-10.

Part of the trouble arises from the fact that Theorem 3-1 is lacking in
thesetE:6[2-30,but6,{’2and6,}’30. '

This is an opportune moment to insert a famous result of Pytha-
goras. Mathematics as a science began with Pythagoras (569-500 B.C.),
and much of the content of Euclid’s E/ements Is due to Pythagoras and
his School. The Pythagoreans deserve the credit for being the first to
classify numbers into odd and even, prime and composite.

THEOREM 3-3 (Pythagoras).  The number \/2 is irrational,

Proof:  Suppose to the contrary that V2 is a rational number; say,
V2 = ajb, where 2 and bare both integers with ged (4, b) = 1. Squat-
ing, we get ® = 262, so that b | @2 If b > 1, then the Fundamental
Theorem of Arithmetic guarantees the existence of a prime p such
that p| 4. It follows that p|4® and, by Theorem 3-1, that p | a;
hence, ged (g, b) > p. We therefore arrive at a contradiction, unless
b=1. But if this happens, then 42 — 2, which is impossible (we as-
sume that the reader is willing to grant that no integer can be multi-
plied by itself to give 2). Our supposition that V/2 is a rational num-
ber is untenable and so V/2 must be irrational.

PROBLEMS 3.1

1. It has been conjectured that there are infinitely many primes of the form
n? — 2. Exhibit five such primes.

2. Give an example to show that the following conjecture is not true: Every
positive integer can be written in the form P+ 4% where p is either a
prime or 1, and 2> 0.

3. Prove each of the assertions below:

(a) Any prime of the form 37+ 1 is also of the form 6w 4 1.

(b) Each integer of the form 3 + 2 has a prime factor of this form.

(c) The only prime of the form #% —1 is 7. [Hint: Wtite n® —1 as
(n =10+ n+1)]

(d) The only prime p for which 3p4+1 is a perfect square is p—35,
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10.

11.

12,
13.

14.

If p>5 is a prime number, show that p2+ 2 is composite. [Hinz: p

takes one of the forms 64 4 1 or 64 + 5.]

(a) Given that p is a prime and p | &", prove that | an

(b) If ged (4, b) = p, a prime, what are the possible values of ged (a2, b?),
ged (42, b) and ged (48, 42)?

Establish each of the following statements:

(a) Every integer of the form n* + 4, with #» > 1, is composite,

(b) If n >4 is composite, then # divides (» — 1)!.

(¢} Any integer of the form 8" + 1, where n>1, is composite. [Hint:
2n 1] 2% 4 1.]

(d) Each integer #» > 11 can be written as the sum of two composite
numbers. [Hint: If n is even, say n=24, then » —6=2(k — 3);
for # odd, consider the integer 7 — 9.]

Find all prime numbers that divide 50!.

If p>¢>5 and p and g are both primes, prove that 24 | p2 — 72

(a) An unanswered question is whether there are infinitely many primes
which are 1 more than a power of 2, such as 5=22+ 1, Find
two more of these primes.

(b) A more general conjecture is that there exist infinitely many primes
of the form #% + 1; for example, 257 = 162 4- 1.  Exhibit five more
primes of this type.

If p # 5 is an odd prime, prove that either p2 —1 or p2 + 1 is divisible by

10. [Hint: p takes one of the forms 54 + 1, 54 4- 2, 5k -+3 or 54+ 4.

Another Unproven conjecture is that there are an infinitude of primes

which are 1 less than a power of 2, such as 3 =22 1,

(a) Find four more of these primes.

(b) If p=2%—1 is prime, show that # is an odd integer, except when
k=2. [Hint: 3]4" —1 for all n>1.]

Find the prime factorization of the integers 1234, 10140, and 36000.

Consider the set § of all positive integers of the form 34 -+ 1; that is,
§={1,4,7,10,13,16,...}. An integer 4 > 1 of S is said to be prime if it
cannot be factored into two smaller integers, each of which belongs to
S (thus, 10 and 25 are prime, while 16=4-4 and 28 =4 . 7 are not).

(@) Prove that any member of S is either a prime or a product of primes.
(b) Give an example to show that it is possible for an integer in § to be
factored into primes in more than one way.

It has been conjectured that every even integer can be written as the
difference of two consecutive primes in infinitely many ways. For example,

6=29—23=137 — 131 =599 — 593 = 1019 — 1013 — ... .

Express the integer 10 as the difference of two consecutive primes in
fifteen ways.



52 Primes and their Distribution CHAP. 3

15. Prove that a positive integer @ > 1 is a squate if and only if in the canonical
form of a all the exponents of the primes are even integers.

16. An integer is said to be square-free if it is not divisible by the square of
any integer greater than 1. Prove that

(a) an integer # > 1 is square-free if and only if # can be factored into a
product of distinct primes;

(b) every integer #>1 is the product of a square-free integer and a
petfect square. [Hint: If n=p,*p,*2... p* is the canonical fact-
orization of », write 4, = 24, + r; where r; =0 or 1 according as £
is even or odd.]

17. Verify that any integer # can be expressed as # = 2¥m, where £ >0 and
is an odd integer.

18. Numerical evidence makes it plausible that there are infinitely many
primes p such that p + 50 is also prime. List fifteen of these primes.

3.2 THE SIEVE OF ERATOSTHENES

Given a particular integer, how can we determine whether it is prime or
composite and, in the latter case, how can we actually find a nontrivial
divisor? The most obvious approach consists of successively dividing
the integer in question by each of the numbers preceeding it; if none of
them (except 1) serves as a divisor, then the integer must be prime.
Although this method is very simple to describe, it cannot be regarded
as useful in practice. For even if one is undaunted by large calculations,
the amount of time and wotrk involved may be prohibitive.

There is a property of composite numbers which allows us to
reduce materially the necessary computations—but still the above pro-
cess remains cumbersome. If an integer ¢ >1 is composite, then it
may be written as 2= br, where 1 <b<a and 1 <¢<a. Assuming
that & <¢, we get b2 <bc=a and so b <+/a. Since b> 1, Theorem 3-2
ensures that 4 has at least one prime factor p. Then p <b <Va; further-
more, because p | b and & | 4, it follows that p | 2. The point is simply
this: a composite number @ will always possess a prime divisor p satisfying
p<Va.

In testing the primality of a specific integer 2 > 1, it therefore
suffices to divide # by those primes not exceeding vz (presuming, of
coutse, the availability of a list of primes up to V). This may be clarified
by considering the integer z=509. Inasmuch as 22 <V/509 < 23, we
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need only try out the primes which are not larger than 22 as possible
divisors; namely, the primes 2, 3, 5, 7, 11, 13, 17, 19. Dividing 509 by
each of these in turn, we find that none serves as a divisor of 509. The
conclusion is that 509 must be a prime number.

Example 3-1
The foregoing technique provides a practical means for deter-
mining the canonical form of an integer, say a = 2093. Since 45 <

\/ 2093 < 46, it is enough to examine the multiples 2p, 3p, 5p, 7p,
11p, 13p, 17p, 19p, 23p, 29p, 31p, 37p, 41p, 43p. By trial, the first of
these to divide 2093 is 7 and 2093 =7-299. As regards the integer
299, the seven primes which are less than 18 (note that 17 < 299 <
18) are 2, 3, 5, 7, 11, 13, 17. The first prime divisor of 299 is 13
and, carrying out the required division, we obtain 299 =13-23.  But
23 is itself a prime, whence 2093 has exactly three prime factors, 7,

13, and 23: 2093 =7 .13 - 23,

Another Greek mathematician whose work in number theory
remains significant is Eratosthenes of Cyrene (276-194 ».C.). While
posterity remembers him mainly as the director of the world-famous
library at Alexandria, Eratosthenes was gifted in all branches of learning,
if not of first rank in any; in his own day, he was nicknamed “Beta”
because, it was said, he stood at least second in every field. Perhaps the
most impressive feat of Eratosthenes was the accurate measurement of
the earth’s circumference by a simple application of Euclidean geometry.

We have seen that if an integer 2 > 1 is not divisible by a prime
p<V a, then a is of necessity a prime. Eratosthenes used this fact as
the basis of a clever technique, called the “Sieve of Eratosthenes,”
for finding all primes below a given integer n. The scheme calls for
writing down the integers from 2 to # in their natural order and then
systematically eliminating all the composite numbers by striking out all
multiples 2p, 3p, 4p, 5p;. .. of the primes p <+/n. The integers that are
left on the list—those that do not fall through the *“ sieve ’—are primes.

To see an example of how this works, suppose that we wish to
find all primes not exceeding 100. Consider the sequence of consecutive
integers 2, 3, 4, ..., 100. Recognizing that 2 is a prime, we begin by
crossing out all even integers from our listing, except 2 itself. The
first of the remaining integers is 3, which must be a prime. We keep 3,
but strike out all higher multiples of 3, so that 9, 15, 21, ... are now
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removed (the even multiples of 3 having been removed in the previous
step). The smallest integer after 3 which has not yet been deleted is 5.
It is not divisible by either 2 or 3—otherwise it would have been crossed
out—hence it is also a prime. All proper multiples of 5 being composite
numbers, we next remove 10, 15, 20, ... (some of these ate, of course,
already missing), while retaining 5 itself. The first surviving integer 7 is
a prime, for it is not divisible by 2, 3, or 5, the only primes that preceed
it. After eliminating the proper multiples of 7, the largest prime less

than V100 — 10, all composite integers in the sequence 2, 3, 4, ..., 100
have fallen through the sieve. The positive integers which remain,
to wit, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71,73, 79, 83, 89, 97, are all of the primes less than 100.

The table below represents the result of the completed sieve.
The multiples of 2 are crossed out by \; the multiples of 3 are crossed
out by /; the multiples of 5 are crossed out by —; the multiples of 7
are crossed out by ~.

2 3 4, 5 X 7 b g e
11 M 13 M - N 17 K 19 2
2 2R 23 3¢ 25 2% 27 2 29 3@
31 3% 3 M 3% 3 37 3R ¥ 30
41 43 M 45 e 47 I 49 B3¢
A 3 53 M 55 5 57 3% 59 B¢
61 B8 65 64 65 B 67 68 69 e
nooX 73 M B R " M9 B¢
1 3 8 P 85> B 87 B8 89 -
5 % 93 M 95 D 97 By 99 1eg-

By this point, an obvious question must have occurred to the
reader. Is there a largest prime number, or do the primes go on fore-
ever? The answer is to be found in a remarkably simple proof given by
Euclid in Book IX of his Elements. Euclid’s argument is universally
regarded as a model of mathematical elegance. Loosely speaking, it
goes like this: Given any finite list of prime numbers, one can always
find a prime not on the list; hence, the number of primes is infinite.
The actual details appear below.

TueoREM 3-4 (Euclid). There are an infinite number of primes.

Proof: Euclid’s proof is by contradiction. Let Pr=2, p,=3,
P3=35, ps=7,... be the primes in ascending order, and suppose
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that there is a last prime; call it p,. Now consider the positive
integer
P=P1P2"'Pn+ L.

Since P > 1, we may put Theorem 3-2 to work once again and con-
clude that P is divisible by some prime p. But p,, ps, ..., p, are the
only prime numbers, so that p must be equal to one of p, , ps, .. ., p, -
Combining the relation p| p,p,---p, with p| P, we atrive at
P | P—pipa---paot, equivalently, p| 1. The only positive divisor
of the integer 1 is 1 itself and, since p > 1, a contradiction arises.
Thus no finite list of primes is complete, whence the number of
primes is infinite.

It is interesting to note that in forming the integers

Pk=P1P2"'Pk+1,
the first five, namely,
P,=24+1=3,
Py=2.34+1=7,
P;=2.3.541=31,
P,=2.3.5.741=211,
P;=2.3.5.7.11 +1=2311,

are all prime numbers. However,
Pg=59.509, P,;=19.97.277, Pg=347.27953

are not prime. A question to which the answer is not known is whether
there exist infinitely many 4 for which P, is a prime. For that matter,
are there infinitely many composite P, ?

Euclid’s theorem is too important for us to be content with a
single proof. Here is a variation in the reasoning: Form the infinite
sequence of positive integers

n = 2)
ny=m -+ 1,
ny=nyny+1,

ny=nyngng +1,

M=ty My +1,
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Since each 7, > 1, each of these integers is divisible by a prime. But no
two s, can have the same prime divisor. To see this, let d= gcd (7, )
and suppose that / < 4. Then 4 divides #,, hence must divide 7, 7, - - - 5, _,.
Since 4| n,, Theorem 2-2 (7) tells us that d| n,—nn,---5,_, or d| 1.
The implication is that =1 and so the integers n, (f=1, 2, ...) are
pairwise relatively prime. The point which we wish to make is that
there are as many distinct primes as there are integers 7, , namely, infinitely
many of them.

Let p, denote the nth of the prime numbers in their natural
order. Euclid’s proof shows that an estimate to the rate of increase of

Dnis
Proii Spipa- P+ 1< 41
For instance, when #» = 3, the inequality states that
T=ps<pf+1=5"4+1=126
One can see that this estimate is wildly extravagant. A sharper limitation
to the size of p, is given in

THEOREM 3-5.  If p, is the nth prime number, then p, < 22" 7%,

Proof: Let us proceed by induction on 7, the asserted inequality
being clearly true when #=1. As hypothesis of the induction, we
assume that # > 1 and that the result holds for all integers up to 7.
Then

Prer<pipa---put1 |
SZ .22,,, Q21 +1:21+2+22+---+2"-1 +1

Recalling the identity 1 +2 422 4 ... 4 2°-1 =27 _ 1 we obtain
B <20 ip1 T
But 1 <<22°-1 for all #; whence

Dapa K271 42202
—2.02-1 2"

completing the induction step, and the argument.
p g P, g

There is a corollary to Theorem 3-5 which is of interest.
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10.

CoROLLARY. For n>1, there are at Jeast n -+ 1 primes less than 27"

Progf: From the theorem, we know that p;, py, ..., ppyy are all
less than 22",
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PROBLEMS 3.2

Determine whether the integer 701 is prime by testing all primes p <
V/701 as possible divisors. Do the same for the integer 1009.

Employing the Sieve of Eratosthenes, obtain all the primes between
100 and 200.

Given that p } » for all primes p < {’/ ;, show that # is either a prime or
the product of two primes. [Hint: Assume to the contrary that » contains
at least three prime factors.)

Establish the following facts:

(a) Vp is irrational for any prime p.

(b) Ifs>0and ('/ a is rational, then {‘/; must be an integer.

(¢) Forn=2, (‘/ n is irrational. [Hint: Use the fact that 2" > n.]

Show that any composite three-digit number must have a prime factor less
than or equal to 31.

Fill in any missing details in this sketch of a proof of the infinitude of
primes: Assume that there are only finitely many primes, say p;, p;, ...,
Pn. Let A be the product of any 7 of these primes and put B=p, p, - - -
PalA. Then each p, divides either A4 or B, but not both. Since A4+
B>1, A+ Bhas a prime divisor different from any of the p,., a contradic-
tion.

Modify Euclid’s proof that thete are infinitely many primes by assuming
the existence of a largest prime p and using the integer N=p!+1 to
artive at a contradiction.

Give another proof of the infinitude of primes by assuming that there
are only finitely many primes, say p,, pa, ..., p,, and using the integer

N=pops---potPrbs - bpnt - +hr1ba"Ppn-1
to arrive at a contradiction.

Prove that if #>>2, then there exists a prime p satisfying » <<p <<nl.
[Hint: 1f n! — 1 is not prime, then it has a prime divisor p; p < # implies
that p | n! leading to a contradiction.]

If p, denotes the sth prime number, show that none of the integers P, =
P1ba - Pa+ 1is a perfect square. [Hint: Each P, is of the form 44 4 3.]



58 ) Primes and their Distribution CHAP. 3

3.3 THE GOLDBACH CONJECTURE

While there is an infinitude of primes, their distribution within the positive
integers is most mystifying. Repeatedly in their distribution one finds
hints or, as it were, shadows of a pattern; yet an actual pattern amenable
to precise description remains unfound. The difference between con-
secutive primes can be small as with the pairs 11 and 13, 17 and 19, or
for that matter 1,000,000,000,061 and 1,000,000,000,063. At the same
time there exist arbitrarily long intervals in the sequence of integers which
are totally devoid of any primes.

It is an unanswered question whether there are infinitely many
paits of fwin primes; that is, pairs of successive odd integers p and p - 2
which are both primes. Numerical evidence leads us to suspect an
affirmative conclusion. Electronic computers have discovered 152,892
pairs of twin primes less than 30,000,000 and twenty pairs between 1012
and 10*2 + 10,000, which hints at their growing scatcity as the positive
integers increase in magnitude.

Consecutive primes can not only be close together, but also be
far apart; that is, arbitrarily large gaps can occur between consecutive
primes. Stated precisely: Given any positive integer », there exist #
consecutive integers, all of which are composite. To prove this, we need
simply consider the integers

D2, (1) 43, ., (5 + D (24 1),

where (7 + 1)l =(#+1) . #--.3.2. 1. Clearly there are 7 integers listed
and they are consecutive. What is important is that each integer is
composite; for, (#n + 1)! + 2 is divisible by 2, (# 4 1)!' + 3 is divisible by
3, and so on.

For instance, if a sequence of four consecutive composite integers
is desited, then the argument above produces 122, 123, 124 and 125:

51 +2=122=2.61,
514+3=123=3.41
51+4=124=4.31,
5! +5=125=5.25,

b

Of course, one can find other sets of four consecutive composites, such
as 24, 25, 26, 27 or 32, 33, 34, 35.

This brings us to another unsolved problem concerning primes,
the Goldbach Conjecture. In a letter to Euler (1742), Christian Goldbach
hazarded the guess that every even integer is the sum of two numbers
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that are either primes or 1. A somewhat more general formulation is that
every even integer greater than 4 can be written as a sum of two odd
prime numbers. This is easy to confirm for the first few even integers:

2=14+1

4=242=1+3
6=3+4+3=1+45
8=3+45=1+7

10=3+7=5+5

12=5+47=1+11
14=3+11=74+7=1+13
16=3+4+13=5+11
18=5+13=7+11=1417
20=3+4+17=7+13=1+19
22=3419=54+17=11+11
24=5+4+19=7+17=114+13=1-423
26=3+4+23=7+19=13+13
28=5423=114+17
30=7+423=114+19=134+17=1 4 29.

It seems that Euler never tried to prove the result, but, writing to Gold-
bach at a later date he countered with a conjecture of his own: any even
integer (>6) of the form 4z + 2 is a sum of two numbers each being
either primes of the form 4» + 1 or 1.

The numerical evidence for the truth of these conjectures is
overwhelming (indeed Goldbach’s Conjecture has been verified for all
even integers up to 100,000), but a general proof or counterexample is
still awaited. The nearest approach of modern number theorists to
Goldbach’s Conjecture is the result of the Russian mathematician Vino-
gradov, which states: Almost all even integers are the sum of two primes.
The technical meaning of the term ““almost all” is that if 4(#) denotes
the number of even integers » <# which are not representable as the
sum of two primes, then

lim A(n)jn=0.

N
As Landau so aptly put it, “ The Goldbach conjecture is false for at most
09 of all even integers; this at most 09, does not exclude, of course, the
possibility that there are infinitely many exceptions.”

We remark that if the conjecture of Goldbach is true, then each
odd number larger than 7 must be the sum of three odd primes. For,
take # to be an odd integer greater than 7, so that » — 3 is even and greater
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than 4; if » — 3 could be expressed as the sum of two odd primes, then #
would be the sum of three. In 1937, Vinogradov showed that this does
indeed hold for every sufficiently large odd integer, say greater than N.
Thus, it is enough to answer the question for every odd integer ~ in the
range 9 <z < N, which for a given integer becomes a matter of tedious
computation (unfortunately, N is so large that this exceeds the capabilities
of the most modern electronic computers).

Vinogradov’s result implies that every sufficiently large even
integer is the sum of not more than four odd primes. Thus, there is a
number N such that every even integer beyond N is the sum of either
two or four odd primes.

Having digressed somewhat, let us observe that according to

the Division Algorithm, every positive integer can be written uniquely
in one of the forms

An,4n+1,4n 42, 4n + 3
for some suitable # > 0. Clearly, the integers 4r and 47 4 2 = 2(2n+1)
are both even. Thus, all odd integers fall into two progressions: one
containing integers of the form 4# + 1,

1,5,9,13,17, 21, ...

and the other containing integers of the form 4x -+ 3,

3,7,11,15,19,23, ... .
While each of these progressions includes some obviously prime numbers,
the question arises as to whether each of them contains infinitely many
primes. ‘This provides a pleasant opportunity for a repeat performarice
of Euclid’s method for proving the existence of an infinitude of primes.
A slight modification of his argument reveals that there are an infinite

number of primes of the form 4z + 3. We approach the proof through a
simple lemma.

Lemma.  The product of two or more integers of the Jorm 4n 41 is of the
same form.

Progf: 1t is sufficient to consider the product of just two integers.

Let A=4n+1 and & =4m + 1. Multiplying these together, we
obtain

AR = (4n 4+ 1)(dm + 1)
= 16nm+4n+4m+1=4(4nm+ﬂ+m) +1,
which is of the desired form.

This paves the way for:
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THEOREM 3-6.  There is an infinite number of primes of the form 4n + 3.

Progf: In anticipation of a contradiction, let us assume that there
exist only finitely many primes of the form 4# -+ 3; call them ¢,,
925 --+» gs. Consider the positive integer

N=4419;-g—1=4q142---¢:— 1) +3

and let N=r,r,---r, be its prime factorization. Since N is an odd
integer, we have 7, == 2 for all £, so that each 7, is either of the form
4n+-1 or 424 3. By the Lemma, the product of any number of
primes of the form 4# + 1 is again an integer of this type. For N to
take the form 4% + 3, as it cleatly does, N must contain at least one
prime factor r, of the form 4z + 3. But r, cannot be found among the
listing ¢,, 43, ..., ¢;, for this would lead to the contradiction that
ri| 1. The only possible conclusion is that there are infinitely many
primes of the form 4z + 3.

Having just seen that there are infinitely many primes of the form
4n + 3, one might reasonably ask: Is the number of primes of the form
4n+1 also infinite? This answer is likewise in the affirmative, but a
demonstration must await the development of the necessary mathematical
machinery. Both these results are special cases of a remarkable theorem
by Dirichlet on primes in arithmetic progressions, established in 1837.
The proof is much too difficult for inclusion here, so that we content
ourselves with the mere statement.

Tueorem 3-7 (Dirichlet). If a and b are relatively prime positive .
integers, then the arithmetic progression

a,a+b,a+2b,at-3b, ...

contains infinitely many primes.

There is no arithmetic progression a, 2 + b, a + 2b, ... that con-
sists solely of prime numbers. 'To see this, suppose that # + #b = p, where
pis a prime. If we put my=n+ Ap for k=1, 2, 3, ..., then the #th
term in the progression is

@+ b= a4 (n 4 kD)o = (a -+ nb) + Apb = p + kph.
Since each term on the right-hand side is divisible by p, so is 2 + #, 5.
In other words, the progression must contain infinitely many composite
numbers.

It has been conjectured that there exist arithmetic progressions of
finite (but otherwise arbitrary) length, composed of consecutive prime
numbers. Examples of such progressions consisting of three and four
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primes, respectively, are 41, 47, 53 and 251, 257, 263, 269. Not long ago,
a computer search revealed progressions of five and six consecutive primes,
the terms having a common difference of 30; these begin with the primes

9,843,019 and 121,174,811,

We are not able to discover, at least for the time being, an arithmetic
progtession consisting of seven consecutive primes. When the restriction
that the prime numbers involved be consecutive is removed, then it is
possible to find infinitely many sets of seven primes in an arithmetic
progression; one such is 7, 157, 307, 457, 607, 757, 907.

In interests of completeness, we might mention another famous
problem that so far has resisted the most determined attack. For cen-
turies, mathematicians have sought a simple formula that would yield
every prime number or, failing this, a formula that would produce
nothing but primes. At first glance, the request seems modest enough:
find a function f(#) whose domain is, say, the nonnegative integers and
whose range is some infinite subset of the set of all primes. It was widely
believed in the Middle Ages that the quadratic polynomial

J)=n*+n+441

assumed only prime values. As evidenced by the following table, the
claim is a correct one for =10, 1, 2, ..., 39.

nf o B o )
0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 61 18 383 32 1097
5 71 19 421 33 1163
6 83 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447
10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743

13 223 27 797
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However, this provocative conjecture is shattered in the cases
n= 40 and #» = 41, where there is a factor of 41:

f(40)=40 - 41 + 41 =412
and
f(41) =41 .42 441 =41-43

The next value f(42) = 1747 turns out to be prime once again. It is not
presently known whether f(#)=#2 4 n+4 41 assumes infinitely many
prime values for integral .

The failure of the above function to be prime-producing is no
accident, for it is easy to prove that there is no nonconstant polynomial
() with integral coefficients which takes on just prilne values for integral
n. We assume that such a polynomial f(#) actually does exist and argue
until a contradiction is reached. Let

f(”)Zak”k+dk—1”k—1+"' +ayn® +anta,,

where the coefficients 4,, 4y, ..., 4, are all integers and 4, #0. For a
fixed value of #, say n=1n,, p = f(n,) is a ptime number. Now, for any

integer #, we consider the expression f(n, + #p):

flno 4 1p) = a(no + 1) + -+ - + a0 + 1p) + a0
= (@ no" + - 4 a1 1o + a0) + pA()
= f(no) + 2QO(%)
=p +200)=p1 +L20),

where O(?) is a polynomial in # having integral coefficients. Our reason-
ing shows that p | f(n, + #p); hence, from our own assumption that f(n)
takes on only ptime values, f(n,+#p)=p for any integer £ Since a
polynomial of degree £ cannot assume the same value more than £ times,
we have obtained the required contradiction.

Recent years have seen a measure of success in the search for
prime-producing functions. W. H. Mills proved (1947) that there exists
a positive real number 7 such that the expression f(#) = [r*"] is prime
for n=1, 2, 3, ... (the bracket indicates the greatest integer function).
Needless to say, this is strictly an existence theorem and nothing is
known about the actual value of .-
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11.

12.

13.
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PROBLEMS 3.3

Verify that the integers 1949 and 1951 are twin primes.

(a) If 1is added to a product of twin primes, prove that a perfect square
is always obtained.

(b) Show that the sum of twin primes p and P+ 2 is divisible by 12,
provided that p > 3.

Find all pairs of primes p and g satisfying p — g = 3.

Sylvester (1896) rephrased Goldbach’s Conjecture so as to read: Every

even integer 2 greater than 4 is the sum of two primes, one larger than

n/2 and the other less than 3#/2. Verify this version of the conjecture for

all even integers between 6 and 76.

In 1752, Goldbach submitted the following conjecture to Euler: Every

odd integer can be written in the form p + 24%, where p is either a prime

or 1and 2> 0. Show that the integer 5777 refutes tifs conjecture.

Prove that Goldbach’s Conjecture that every even integer greater than

2 is the sum of two primes is equivalent to the statement that every

integer greater than 5 is the sum of three primes. [Hint: If 21 —2 =

Ditpa,then2n=p, 4+ p+2and 2n+ 1= p; + py + 3.]

A conjecture of Lagrange (1775) asserts that every odd integer greater

than 5 can be written as a sum p; + 2p,, where p,, p, are both primes.

Confirm this for all odd integers through 75.

Given a positive integer #, it can be shown that there exists an even

integer 2 which is representable as the sum of two odd primes in » dif-

ferent ways. Confirm that the integers 60, 78, and 84 can be written as

the sum of two primes in six, seven, and eight ways, respectively.

(a) For n> 3, show that the integers 7, » + 2, n + 4 cannot all be prime.

(b) Three integers p, p+ 2, p -+ 6 which are all prime are called a prime-
triplet. Find five sets of prime-triplets.

Establish that the sequence

+D'=2, (r+D!3,...,(#=+1D! —(n+1)
produces # consecutive composite integers.

Find the smallest positive integer # for which the function f(#) = n2 4 n +
17 is composite. Do the same for the functions g(#) = #2 4 21z + 1 and
h(n) = 3n2 4 3n + 23.

The following result was conjectured by Bertrand, but first proved by
Tchebychef in 1850: For every positive integer #>>1, there exists at
least one prime p satisfying # < p <21, Use Bertrand’s Conjecture to
show that p, << 2", where p, is the nth prime.

Apply the same method of proof as in Theorem 3-6 to show that there
are infinitely many primes of the form 6# -+ 5.
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14.

15.

1e.

17.

18.

19.

20,
21.

22,

Find a prime divisor of the integer N=4(3.7-11) —1 of the form
41+ 3. Do the same for N=4(3.7-11.15) —1.

Another unanswered question is whether there exist an infinite number
of sets of five consecutive odd integers of which four are primes. Find
five such sets of integers.

Let the sequence of primes, with 1 adjoined, be denoted by p, =1, p; = 2,
P2=23,p3=>5,.... Foreachn>1,itis known that there exists a suitable
choice of coefficients g, = 41 such that

2n—-2 2n-1

P2n=P2n—1+kZO€kpkr P2n+1:2]72n+ Z ExPre-

= . k=0

To illustrate:

13=14+2—-3—-54+7+11 and 17=14+2—-3—-547—1142.13.

Determine similar representations for the primes 23, 29, 31, and 37.

In 1848 de Polignac claimed that every odd integer is the sum of a prime
and a power of 2. For example, 55 =47 4- 28 =23 + 25, Show that the
integers 509 and 877 discredit this claim.

(a) If pis a prime and p } b, prove that in the arithmetic progression
a,a-+b,a+2b,at+3b, ...

every pth term is divisible by p. [Hinz: Since ged(p, b)=1, there
exists integers r and s satisfying pr+4 bs=1. Put s, = kp — as for
k=1, 2,...and show that p|(a + #,b).]
(b) From part (a), conclude that if 4 is an odd integer, then every other
term in the indicated progression is even.
In 1950, it was proven that any integer » > 9 can be written as a sum of
distinct odd primes. Express the integers 25, 69, 81, and 125 in this
fashion.
If p and p2 + 8 are both prime numbers, prove that p® 44 is also prime.
(@) For any integer £ >0, establish that the arithmetic progression

atb,a+2b,a+3b,...,
where gecd (g, b)) =1, contains # consecutive terms which are compo-
site. [Hint: Put n=(a+b)(a+2b)---(a+4b) and consider the £
terms
a+(n+Db, at+(n+2)b, ..., a+(n4k)b.]
(b) Find five consecutive composite terms in the arithmetic progression
6, 11, 16, 21, 26, 31, 36, ....

Show that 13 is the largest prime that can divide two successive integers
of the form »2 4 3.
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23. (a) The arithmetic mean of the twin primes 5 and 7 is the triangular
number 6. Are there any other twin primes with triangular mean?
(b) The arithmetic mean of the twin primes 3 and 5 is the perfect square 4.

Are there any other twin primes with a square mean ?

24. Determine all twin primes p and g = p + 2 for which pg—2 is also prime.
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The Theory of

Congruences

“ Ganuss once said * Mathematics is the queen of
the sciences and number-theory the queen of mathe-
matics.” If this be true we may add that the
Disquisitiones Zs the Magna Charta of number-
theory.”

M. CanTOR




4.1 KARL FRIEDRICH GAUSS

Another approach to divisibility questions is through the arithmetic of
remainders, or the theory of congruences as it is now commonly known.
The concept, and the notation that makes it such a powerful tool, was
first introduced by the German mathematician Karl Friedrich Gauss
(Y777-1855) in his Disquisitiones Arithmeticae; this monumental work,
which appeared in 1801 when Gauss was 24 years old, laid the foundations
of modern number theory. Legend has it that a large part of the Dis-
quisitiones Arithmeticae had been submitted as a memoir to the French
Academy the previous year and had been rejected in 2 manner which, even
if the work had been as worthless as the referees believed, would have
been inexcusable. (Inan attempt to lay this defamatory tale to rest, the of-
ficers of the Academy made an exhaustive search of their permanent
records in 1935 and concluded that the Disquisitiones was never submitted,
much less rejected.) “It is really astonishing,” said Kronecker, “to
think that a single man of such young years was able to bring to light
such a wealth of results, and above all to present such a profound and
well-organized treatment of an entirely new discipline.”

Gauss was one of those remarkable infant prodigies whose natural
aptitude for mathematics soon becomes apparent. As a child of three,
according to a well-authenticated story, he corrected an error in his
father’s payroll calculations. His arithmetical powers so overwhelmed
his schoolmasters that, by the time Gauss was 10 years old, they admitted
that there was nothing more they could teach the boy. It is said that in
his first arithmetic class Gauss astonished his teacher by instantly solving
what was intended to be a “busy work > problem: Find the sum of all
the numbers from 1 to 100. The young Gauss later confessed to having
recognized the pattern

14100=101, 2 499 = 101, 3 + 98 = 101, ..., 50 +51 =101,

Since there are 50 paits of numbers, each of which adds up to 101, the
sum of all the numbers must be 50 - 101 = 5050. This technique pro-
vides another way of deriving the formula

68
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_nn+1)
2

14243 4. Ln

for the sum of the first » positive integers. One need only display the
consecutive integers 1 through 7 in two rows as follows:

1 2 3 n—1 »
n n—1 n—=2 ... 2 1

Addition of the vertical columns produces 7 terms, each of which is equal
to # + 1; when these terms are added, we get the value #(» + 1). Because
the same sum is obtained on adding the two rows hotizontally, what
occurs is the formula #(n + 1) =21 +2 43+ --- + 7).

Gauss went on to a succession of triumphs, each new discovery
following on the heels of a previous one. The problem of constructing
regular polygons with only ““Euclidean tools,” that is to say, with ruler
and compass alone, had long been laid aside in the belief that the ancients
had exhausted all the possible constructions. In 1796, Gauss showed that
the 17-sided regular polygon is so constructable, the first advance in
this area since Euclid’s time. Gauss’ doctoral thesis of 1799 provided
a rigorous proof of the Fundamental Theorem of Algebra, which had been
stated first by Girard in 1629 and then proved imperfectly by d’Alembert
(1746) and later by Euler (1749). The theorem (it asserts that an alge-
braic equation of degree » has exactly » complex roots) was always a
favorite with Gauss, and he gave, in all, four distinct demonstrations of
it. The publication of Disquisitiones Arithmeticae in 1801 at once placed
Gauss in the front rank of mathematicians.

The most extraordinary achievement of Gauss was more in the
realm of theoretical astronomy than of mathematics. On the opening
night of the 19th century, January 1, 1801, the Italian astronomer Piazzi
discovered the first of the so-called minor planets (planetoids or asteroids),

later called Ceres. But after the course of this newly found body, visible

only by telescope, passed the sun, neither Piazzi nor any other astronomer
could locate it again. Piazzi’s observations extended over a period of
41 days, during which the orbit swept out an angle of only nine degrees.
From the scanty data available, Gauss was able to calculate Ceres’ orbit
with amazing accuracy and the elusive planet was rediscovered at the
end of the year in almost exactly the positions he had forecast. This
success brought Gauss world-wide fame, and led to his appointment as
director of Gottingen Observatory.

By the middle of the 19th century, mathematics had grown into
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an enormous and unwieldy structure, divided into a large number of
fields in which only the specialist knew his way. Gauss was the last
complete mathematician, and it is no exaggeration to say that he was in
some degree connected with nearly every aspect of the subject. His
contemporaries regarded him as Princeps Mathematicorum (Prince of
Mathematicians), on a par with Archimedes and Isaac Newton. This is
revealed in a small incident: On being asked who was the greatest mathe-
matician in Germany, Laplace answered, “Why, Pfaff.” When the
questioner indicated that he would have thought Gauss was, Laplace
replied, “ Pfaff is by far the greatest in Germany, but Gauss is the greatest
in all Europe.”

Although Gauss adorned every branch of mathematics, he always
held number theory in high esteem and affection. He insisted that,
“ Mathematics is the Queen of the Sciences, and the theory of numbers is
the Queen of Mathematics.”

4.2 BASIC PROPERTIES OF
CONGRUENCE

In the first chapter of Disquisitiones Arithmeticae, Gauss introduces the
concept of congruence and the notation which makes it such a powerful
technique (he explains that he was induced to adopt the symbol = because
of the close analogy with algebraic equality). According to Gauss,
“If a2 number # measures the difference between two numbers # and b,
then 4 and & are said to be congruent with respect to #; if not, incon-
gruent.” Putting this into the form of a definition, we have

DerFINrTION 4-1.  Let # be a fixed positive integer. Two integers a
and b are said to be congruent modulo 5, symbolized by
a=b (mod »)
if  divides the difference 2 — &; that is, provided that 4 — b = 4»
for some integer £.
To fix the idea, consider #=7. It is routine to check that
3=24(mod7), —31=11(mod7), —15= —64 (mod 7),

since 3 —24=(—3)7, —31 -11=(—6)7, and —15 —(—64)=7-17.
If # k¥ (a—b), then we say that 4 is incongruent to b modulo n and in this
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case we write 2 b (mod 7). For example: 253 12 (mod 7), since 7
fails to divide 25 — 12 = 13.

It is to be noted that any two integers are congruent modulo 1,
whereas two integers are congruent modulo 2 when they are both even or
both odd. Inasmuch as congruence modulo 1 is not particularly inter-
esting, the usual practice is to assume that # > 1.

Given an integer 4, let ¢ and 7 be its quotient and remainder upon
division by #, so that

a=gn—+r, 0<r<m.

Then, by definition of congruence, a=r (mod #). Since there are #
choices for r, we see that every integer is congruent modulo # to exactly
one of the values 0, 1, 2, ..., »— 1; in particular, 2= 0 (mod #) if and
only if #| 2. The set of » integers 0, 1, 2, ..., n— 1 is called the set of
least positive residues modulo n.

In general, a collection of # integers a,, a,, ..., a, is said to
form a complete set of residues (ot a complete system of residues) moduio n if
every integer is congruent modulo # to one and only one of the 4, ; to
put it another way, 4, , 45, ..., 4, are congruent modulo 7 to 0, 1, 2, ...,
n — 1, taken in some order. For instance,

—12, —4, 11, 13, 22, 82, 91
constitute a complete set of residues modulo 7; here, we have
—12=2, —4=3,11=4,13=6,22=1,82=5,91 =0,

all modulo 7. An observation of some importance is that any # integers
form a complete set of residues modulo # if and only if no two of the
integers are congruent modulo 7. We shall need this fact later on.

Our first theorem provides a useful characterization of congruence
modulo # in terms of remainders upon division by 7.

Tueorem 4-1. For arbitrary integers a and b, a=b (mod ) if and
only if a and b leave the same nonnegative remainder when divided by n.

Proof : First, take =¥ (mod #), so that a = b + 4» for some integer
4. Upon division by #, b leaves a certain remainder r: b= gn +-r,
where 0 <<r <<n. Therefore,

a=b+ikn=(gn+r)+hin=(q+Fn+r,
which indicates that ¢ has the same remainder as 5.

N
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On the other hand, suppose we can write @ = ¢, # +r and
b = gyn +r, with the same remainder (0 <r < #). Then

a—b=(qn+r)—(gon+71)=(4. — g2,

whence 7|2 —#b. In the language of congruences, this says that
a=b (mod »).

Example 4-1
Since the integers —56 and —11 can be expressed in the form

—56=(—7)9 +7, —11=(—2)9+47
with the same remainder 7, Theorem 4-1 tells us that —56= —11
(mod 9). Going in the other direction, the congruence —31 =11

(mod 7) implies that —31 and 11 have the same remainder when
divided by 7; this is clear from the relations

—31=(=5)7 +4, 11=1.7}4.

Congruence may be viewed as a generalized form of equality, in
the sense that its behavior with respect to addition and multiplication is
reminiscent of ordinary equality. Some of the elementary properties of
equality which carry over to congruences appear in the next theorem.

THEOREM 4-2. Let n>0 be fixed and a, b, ¢, d be arbitrary integers.

Then the following properties hold:

(1) a=a(mod n).

(2) If a=b (mod n), then b==a (mod #).

(3) If a=b(mod n) and b= (mod ), then a= ¢ (mod ).

(4) If a=b (mod n) and c=d (mod n), then a + c=b -+ d (mod »)
and ac = bd (mod 7).

(5) Ifa=b(mod ), then a +c="b + ¢ (mod #) and ac = bc (mod 7).

(6) If a=b (mod n), then a*=b* (mod n) for any positive integer k.

Proof: For any integer 4, we have « —a=0.#, so that a=a«
(mod 7). Now if =5 (mod #), then 2 — b = /kn for some integer
k. Hence, b — a = —(kn) = (—4)n and, since — £ is an integer, this
yields (2).

Property (3) is slightly less obvious: Suppose that a=14
(mod #) and b ==¢ (mod #). Then there exist integers # and 4 satis-
fying a— b=hnand b — ¢ = kn. It follows that

a—c=(@—b)+Gb—c)=hn+kn= >+ k)n,

in consequence of which 2= ¢ (mod #).
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In the same vein, if e=4 (mod #) and ¢=d (mod #), then
we are assured that a — & = £, n and ¢ — d = 4, n for some choice of
A,and £,. Adding these equations, one gets

(@a4+eo)—@G+d)y=(@—b)+(c—4d)
=hn+ kon=_>k, + Ao

or, as a congruence statement, # +- ¢ = b + d(mod #). As regards the
second assertion of (4), note that

ac=(b+ kyn)(d + kon) = bd + (bky + dky + Ky hom)n.

Since bk, + dk, + £, kyn is an integer, this says that ac — bd is divis-
ible by #, whence a¢ = bd (mod #).

The proof of property (5) is covered by (4) and the fact that
¢=c¢(mod #). Finally, we obtain (6) by making an induction argu-
ment. The statement certainly holds for 4= 1, and we will assume
it is true for some fixed £. From (4), we know that 2= 4 (mod #)
and #* = b* (mod #) together imply that as* = bb* (mod #), ot equiv-
alently, #***=/*** (mod #). This is the form the statement should
take for £ + 1, so the induction step is complete.

Before going further, we should illustrate the great help that
congruences can be in carrying out certain types of computations.

Example 4-2
Let us endeavor to show that 41 divides 22°— 1. We begin by
noting that 2= —9 (mod 41), whence (25)* =(—9)* (mod 41) by
Theorem 4-2(6); in other words, 22° = 81 . 81 (mod 41). But 81 =
—1 (mod 41) and so 81 - 81=1 (mod 41). Using parts (2) and (5)
of Theorem 4-2, we finally arrive at

220 —1=81-81—1=1—1=0(mod 41).
Thus 41| 22° — 1, as desired.

Example 4-3
For another example in the same spirit, suppose that we are asked to
find the remainder obtained upon dividing the sum

10421+ 31 44! ... 4991 +100!

by 12. Without the aid of congruences this would be an awesome
calculation. The observation that starts us off is that 4!=24=0
(mod 12); thus, for 4 >4,

Al=4!1.5.6---k=0.5.6-.-4=0 (mod 12).
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One finds in this way that
421431+ 41+ ... +100!
- =142 4+314+0+-- +0=9 (mod 12).

Accordingly, the sum in question leaves a remainder of 9 when

divided by 12.

In the last theorem, it was seen that if ==/ (mod #), then cz =
¢b (mod ) for any integer ¢. The converse, however, fails to hold.
For an example perhaps as simple as any, note that 2-4=2.1 (mod 6),
while 4 £ 1 (mod 6). In brief: one cannot unrestrictedly cancel a common
factor in the arithmetic of congruences.

With suitable precautions, cancellation can be allowed; one
step in this direction, and an important one, is provided by the following
theorem,

THEOREM 4-3.  If ca=ch (mod 1), then a=b (mod n/d), where d =
ged (¢, n).

Proof: By hypothesis, we can write
t(a—b)=rca—cb=kn

for some integer £. Knowing that ged (¢, #) = d, there exist relatively
prime integers  and s satisfying ¢ = dr, n = ds. When these values are
substituted in the displayed equation and the common factor 4
cancelled, the net result is

r(a — by = ks.

Hence, 5| r(a—b) and ged(r, s)=1. Euclid’s Lemma implies that
5| a— b, which may be recast as #=5 (mod s); in other words,
a=b (mod #/d).

Theorem 4-3 gets its maximum force when the requirement
that ged (¢, #) = 1 is added, for then the cancellation may be accomplished
without a change in modulus.

CoroLLARY 1. If ca=ch (mod #) and ged(e,n)=1, then a=b
(mod #).

We take the moment to record a special case of Corollary 1 which
we shall have frequent occasion to use, namely,
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CorOLLARY 2. Ifca=cb (mod p) and p k¥ ¢, where p is a prime number,
then a = b (mod p).
A

Proof: 'The conditions p } ¢ and p a prime imply that ged (¢, p) = 1.

Example 4-4
Consider the congruence 33 = 15 (mod 9) or, if one prefers, 3 - 11 =
3.5 (mod 9). Since ged (3, 9) = 3, Theorem 4-3 leads to the con-
clusion that 11=5 (mod 3). A further illustration is furnished by
the congruence —35 = 45 (mod 8), which is the same as 5 - (—7) =
5.9 (mod 8). The integers 5 and 8 being relatively prime, we
may cancel to obtain a correct congruence —7 =9 (mod 8).

Let us call attention to the fact that, in Theorem 4-3, it is un-
necessary to stipulate that ¢5£ 0 (mod #). Indeed, were ¢=0 (mod #),
then ged (¢, #) = # and the conclusion of the theorem would state that
a=b (mod 1); but, as we remarked earlier, this holds trivially for all
integers 2 and b.

There is another curious situation that can arise with congruences:
the product of two integers, neither of which is congruent to zero, may
turn out to be congruent to zero. For instance, 4-3=0 (mod
12), but 4s£0 (mod 12) and 30 (mod 12). It is a simple matter to
show that if 46 =0 (mod #) and ged (4, #) =1, then 4= 0 (mod #); for,
Corollary 1 above permits us legitimately to cancel the factor @ from
both sides of the congruence ab=a -0 (mod #). A variation on this is
that if 26 = 0 (mod p), with p a prime, then either 2=0 (mod p) ot 5=0
(mod p).

PROBLEMS 4.2

1. Prove each of the following assertions:
(@) If a=& (mod ») and » | #, then a = b (mod ).
(b) If a=b (mod #) and ¢ > 0, then ca = ¢b (mod ¢x).
(¢) TIf a=b (mod #) and the integers a, b, » are all divisible by 4> 0,
then a/d = b/d (mod n/d).
2. Give an example to show that 4% = 4% (mod #) need not imply that a=b
(mod 7).
3. If a=b (mod n), prove that gcd (2, #) = ged (b, n).
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11.

12.

13.

14,
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(a) Find the remainders when 25° and 4185 are divided by 7.
(b) What is the remainder when the sum

15425 4354 ... 4+ 995 4 100%

is divided by 4°?
Ifa),a,,...,a,is a complete set of residues modulo 7 and ged (a, #) = 1,
prove that aa,, aa,, ..., aa, is also a complete set of residues modulo ».
{Hint: It suffices to show that the numbers in question are incongruent
modulo #.)
Verify that 0, 1, 2, 22, 23, .. ., 2° form a complete set of residues modulo
11, but 0, 12, 2%, 3%, ..., 10 do not.
Prove the following statements:
(a) If ged (4, #) = 1, then the integers

6&cta,c+2a,c43a,...,c4+(n—1a

form a complete set of residues modulo # for any «.

(b) Any # consecutive integers form a complete set of residues modulo ».
[Hint: Use part (a).]

(9 The product of any set of # consecutive integets is divisible by #.

Verify that if =4 (mod #,) and a=¥4 (mod n,), then 2=4 (mod »),

where the integer »=lcm (7,, #,). Hence, whenever #, and #, are rel-

atively prime, 2 = b (mod n, n,).

Give an example to show that &= 4* (mod #) and 4=/ (mod ) need

not imply that 27 = 47 (mod »).

Prove the statements below:

(@) If zis an odd integer, then 42 =1 (mod 8).

(b) For any integer 2, 42> =0, 1, or 8 (mod 9).

(c) For any integer 4, 4° = a (mod 6).

(d) If an integer 4 is not divisible by 2 or 3, then 4% =1 (mod 24).

(e) If an integer 2 is both a square and a cube, then 2=0, 1, 9, or 28
(mod 36).

Establish that if # is an odd integer, then
a?" =1 (mod 2"+2)

for any n > 1. [Hint: Proceed by induction on 7.]
Use the theory of congruences to verify that

89|2¢—1 and 97|29 —1.

Prove that if ab=c¢d (mod #) and =4 (mod #), with gcd (4, n) =1,
then 2 = ¢ (mod #).

If a= b (mod n,) and @ = ¢ (mod #,), prove that b = ¢ (mod #), where the
integer n = gcd (5, , #y).
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4.3 SPECIAL DIVISIBILITY TESTS

One of the more interesting applications of congruence theoty involves
finding special criteria under which a given integer is divisible by another
integer. At their heart, these divisibility tests depend on the notational
system used to assign “names” to integers and, more particularly, to
the fact that 10 is taken as the base for our number system. Let us there-
fore start by showing that, given an integer 4 > 1, any positive integer N
can be written uniquely in terms of powers of b as

-Z\I::ambm'+'am—1bm_1 + U +d2b2 +d1b +40;
whete the coefficients 4, can take on the # different values 0, 1, 2, ...,
b—1. For, the Division Algorithm yields integers ¢, and 4, satisfying
N=g¢g,b+a,, 0<q, <b.

If 4, > b, we can divide once more, obtaining
d1=q20 +a,, 0<a, <b.
Now substitute for ¢, in the earlier equation to get
N=(gb+a)b+a,=q,0*>+a,b+a,.

As long as g, > b, we can continue in the same fashion. Going one more
step: g, = g3 & + a,, where 0 <a, < b, hence

N=g;0°+a,0* +a b +a,.
SinceN>g1 >¢,>--- >0 is a strictly decreasing sequence of integers,
this process must eventually terminate; say, at the (» — 1)th stage, where
In-r=qunb+an_,, 0<a,_.<b
and 0 < g, <b. Setting a,, = ¢, , we reach the representation
N=ag,b"+a, " '+ - 4a,b+a,

which was our aim.

To show uniqueness, let us suppose that N has two distinct
representations; say,

N=anb"+- - Fab+ay=c,b"+-- +c,b4¢q,

with 0 <a, <& for each 7 and 0 <¢, <& for each ; (we can use the same
m by simply adding terms with coefficients 2, = 0 or ¢, = 0 if necessary).
Subtracting the second representation from the first gives the equation

O=d,b™+.. - +d,b+d,,
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whete d,=a, — ¢, for i=0, 1, ..., m. Because the two representations
for N are assumed different, we must have 4, =0 for some value of ;.
Take £ to be the smallest subscript for which 4, # 0. Then

O=d b+ - +d, b +d.b*
and so, after dividing by ¥,
do=—b@nb" " F " 4 - d ).

This tells us that | d,. Now the inequalities 0 <@, </ and 0 <<¢, <&
lead to —b <a,—¢,<b, or | d,| <b The only way of reconciling
the conditions & | d, and | 4, | <4 is to have d, = 0, which is impossible.
From this contradiction, we conclude that the representation of N is
unique.

The essential feature in all of this is that the integer N is com-
pletely determined by the ordered array a,,, @, 1, ..., 4, , 2o of coefficients,
with the powers of 4 and plus signs being superfluous. Thus, the number

N=apb™ +ap_ 16" ' 4 +a,0° +a,b+a,
may be replaced by the simpler symbol
N=(anan-1"" a3a140)

(the right-hand side is not to be interpreted as a product, but only as
an abbreviation for N). We call this the base b place value notation for N.

Small values of & give rise to lengthy representation of numbers,
but have the advantage of requiring fewer choices for coefficients. The
simplest case occurs when the base 5 =2, and the resulting system of
enumeration is called the Zinaij number system (from the Latin binarius,
two). The fact that when a number is written in the binary gystem only
the integers 0 and 1 can appear as coefficients means: every positive
integer is expressible in exactly one way as a sum of distinct powers of 2.
For example, the integer 105 can be written as

105=1.2641.2540.2¢141.2240.2¢4+0-2+1
=264 2542941
or, in abbreviated form,
105 = (1101001),.
In the other direction, (1001111), translates into

1.2640.2540.2041.2241.2241.24+1=79
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The binary system is most convenient for use in modern electronic
computing machines, since binary numbers are represented by strings of
zeros and ones; 0 and 1 can be expressed in the machine by a switch
(or a similar electronic device) being either on or off.

We ordinarily record numbers in the decimal system of notation,
where b= 10, omitting the 10-subscript which specifies the base. For
instance, the symbol 1492 stands for the more awkward expression

1.10°4+4.10249.10+2.

The integers 1, 4, 9, and 2 are called the digits of the given number, 1
being the thousands digit, 4 the hundreds digit, 9 the tens digit, and
2 the units digit. In technical language we refer to the representation
of the positive integers as sums of powers of 10, with coefficients at
most 9, as their decimal representation (from the Latin decem, ten).

We are about ready to derive criteria for determining whether
an integer is divisible by 9 or 11, without performing the actual division.
For this, we need a result having to do with congruences involving
polynomials with integral coefficients.

THEOREM 4-4. Let P(x)= Y 1_oc.x* be a polynomial function of x
with integral cogfficients ¢, If a= b (mod #), then P(a) = P(b) (mod ).

Proof:  Since a =& (mod #), part (6) of Theorem 4-2 can be applied
to give &* = b* (mod #) for £=0, 1, ..., m. Therefore
¢ead* = ¢, b* (mod n)

for all such 4. Adding these 7 4 1 congruences, we conclude that

m

z Ced* = chb" (mod #) <

k=0

ot, in different notation, P(z)= P(b) (mod #).

If P(x) is a polynomial with integral coefficients, one says that a
is a solution of the congruence P(x)=0 (mod #) if P(¢)=0 (mod ).

CoroLLARY. If a is a solution of P(x) =0 (mod #) and a=b (mod »),
then b is also a solution.

Proof: From the last theorem, it is known that P(¢) = P(}) (mod 7).
Hence, if 4 is a solution of P(x)=0 (mod #), then P())=P(s)=0
(mod #), making & a solution.



80 The Theory of Congruences CHAP. 4

One divisibility test that we have in mind is this: A positive
integer is divisible by 9 if and only if the sum of the digits in its decimal
trepresentation is divisible by 9.

THEOREM 4-5. Let N=a,10™ 44, _,10m"* 4 ... 4 4,10 +a, be
the decimal expansion of the positive integer N, 0 <a, <10, and let
S=ag+ay+---+ay. Then 9| Nifand only if 9| S.

Proof: Consider P(x)= Y ,a,x*, a polynomial with integral
coefficients. The key observation is that 10=1 (mod 9), whence
by Theorem 4-4, P(10) = P(1) (mod 9). But P(10) = N and P(1) =
ao+a,+---+ap=25, so that N=5 (mod 9). It follows that
N=0 (mod 9) if and only if $=0 (mod 9), which is what we
wanted to prove.

‘Theorem 4-4 also serves as the basis for a well-known test for
divisibility by 11; to wit, an integer is divisible by 11 if and only if the
alternating sum of its digits is divisible by 11. Stated more precisely:

THEOREM 4-6. Let N=4,10" 44, _,10m-* ... 4 2,10 + a, be
the decimal representation of the positive integer N, 0 <a, < 10, and let
T=ao—a,+ay,— -+ (—D)"an. Then 11| N if and only if 11| T.

Proof: As in the proof of Theorem 4-5, put P(x)= Y., a,x*.
Since 10=—1 (mod 11), we get P(10)=P(—1) (mod 11). But
P(10)= N, whereas P(—1)=a,—a, + a5~ - +(—1)"a, =T, so
that N=T (mod 11). The implication is that both N and T are
divisible by 11 or neither is divisible by 11.

Example 4-5 o~
To see an illustration of the last two results, take the integer N =
1,571,724, Since the sum 1 +5+7 4147 + 2 + 4 =27 is divis-
ible by 9, Theotem 4-5 guarantees that 9 divides N. It can also
be divided by 11; for, the alternating sum4 —2 +7—14+7 — 5 41
= 11 is divisible by 11.

PROBLEMS 4.3

1. Prove the following statements:
(a) For any integer 4, the units digit of 4%is 0, 1, 4, 5, 6, or 9.
(b) Any one of the integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 can occur as the units
digit of 4°.



SEC. 4-3 Special Divisibility Tests 81

10.

(c) For any integer a, the units digit of 4* is 0, 1, 5, or 6.

(d) The units digit of a triangular number is 0, 1, 3, 5, 6, or 8.

Find the last two digits of the number 9%°. [Hint: 9°=9 (mod 10),

hence 99° = 99+10%; now use the fact that 91° =1 (mod 100).]

Without performing the divisions, determine whether the integers

176,521,221 and 149,235,678 are divisible by 9 or 11.

(a) Obtain the following generalization of Theorem 4-5: If the integer
N is represented in the base & by

N=ag,b"+ -+ ab?* ‘- a,b+a,, 0<a,<b—1

thenb —1| Nifandonlyifb — 1| (g, + -+ + a3+ a; + a,).

(b) Give criteria for the divisibility of IN by 3 and 8 which depend on
the digits of N when written in the base 9.

(c) Is the integer (447836), divisible by 3 and 8?

Using the 9-test or 11-test, find the missing digits in the calculations

below:

(a) 52817 - 3212146 = 169655x15282;

(b) 2x99561 = [3(523 4 x)].

Establish the following divisibility criteria:

(a) Aninteger is divisible by 2 if and only if its units digit is 0, 2, 4, 6, or 8.

(b) An integer is divisible by 3 if and only if the sum of its digits is
divisible by 3.

() An integer is divisible by 4 if and only if the number formed by
its ten and units digits is divisible by 4. [Hinz: 108 =0 (mod 4)
for £>2.]

(d) An integer is divisible by 5 if and only if its units digit is 0 or 5.

Show that 2" divides an integer N if and only if 2" divides the number

made up of the last # digits of N. [Hint: 10% = 2¥5¥ =0 (mod.2") for

k>n]

Let N=g,10"+ ... 42,102+ 2,10+ 2, where 0< 4, <9, be the

decimal expansion of a positive integer N. Prove that 7, 11, and 13 all

divide N if and only if 7, 11, and 13 divide the integer

M = (1004, + 10a, + ao) — (10025 + 102, + 25)
+ (10025 + 10a; + ag) — *+*
[Hint: If n is even, then 103 =1, 103*+! = 10, 103**2 = 100 (mod 1001)
if # is odd, then 103" = —-1, 10%*+1 = —10, 10**2 = —100 (mod 1001).]
Without performing the divisions, determine whether the integer
1,010,908,899 is divisible by 7, 11, and 13.
() Given an integer N, let M be the integer formed by reversing the
order of the digits of N (for example, if N = 6923, then M = 3296).
Verify that N — M is divisible by 9.
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(b) A palindrome is a number that reads the same backwards as forwards
(for instance, 373 and 521125 are palindromes). Prove that any
palindrome with an even number of digits is divisible by 11.

() Show that the integers

1111, 111111, 11111110, .., 111011, L L

where an even number of digits are involved, are all composite.
11.  Explain why the following curious calculations hold:

1.94 2—11
12.94 3=111
123.9 4+ 4—1111

1234.9 + 5—11111
12345.9 + 6=111111
123456.9 + 7= 1111111

1234567 -9 + 8 — 11111111
12345678 - 9 + 9 =111111111
123456789 - 9 4 10 — 1111111111,

[Hint: Show that

(10°~1 2. 10%2 £ 3. 10"% 4 .. 4 )(10 — 1) + (n 4+ 1)
= (10"*1 —1)/9,]

12.  An old and somewhat illegible invoice shows that 72 canned hams were
purchased for $x67.9y. Find the missing digits.

44 LINEAR CONGRUENCES

This is a convenient place in our development at which to investigate
the theory of linear congruences: An equation of the form ax = b (mod #)
is called a /inear congruence, and by a solution of such an equation we
mean an integer x, for which ax,=4 (mod 7). By definition, ax,=#
(mod #) if and only if # | ax, — b or, what amounts to the same thing, if
and only if ax,— b= ny, for some integer y,. Thus, the problem of
finding all integers satisfying the linear congruence ax =4 (mod ) is
identical with that of obtaining all solutions of the linear Diophantine

equation ax —ny=>b. This allows us to bring the tesults of Chapter 2
into play.
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It is convenient to treat two solutions of ax = & (mod #) which are
congruent modulo 7 as being “equal”” even though they are not equal in
the usual sense. For instance, x =3 and x = —9 both satisfy the con-
gruence 3x = 9 (mod 12); since 3 = —9 (mod 12), they are not counted as
different solutions. In short: When we refer to the number of solutions
of ax = b (mod 7), we mean the number of incongruent integers satisfying
this congruence.

With these remarks in mind, the principal result is easy to state.

THEOREM 4-7.  The linear congraence ax ="b (mod #) has a solution if
and only if d| b, where d=gcd (a, n). If d| b, then it has d mutually

incongruent solutions modulo n.

Proof: We have already observed that the given congruence is
equivalent to the linear Diophantine equation ax —#y=54. From
Theorem 2-9, it is known that the latter equation can be solved if
and only if 7| b; moreover, if it is solvable and x,, , is one specific
solution, then any other solution has the form

n a
X=Xo+;{t> Y=o ‘f‘;f

for some choice of 2

Among the various integers satisfying the first of these for-
mulas, consider those which occur when # takes on the successive
values 1=0,1,2,...,d—1:

n 2n d— 1
xO)x0+2’x0+7>"'axo+(_‘_;“)—‘ -

We claim that these integers ate incongruent modulo #, while all
other such integers x are congruent to some one of them. If it hap-
pened that

n

xo—|—d

? =X+ Stz (mod #),
where 0 <#, <7, <d—1, then one would have

H= gtz (mod #).

NS
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Now gcd (#/d, #) = n|d and so, by Theorem 4-3, the factor #/d could
be cancelled to arrive at the congruence

=1, (mod d),

which is to say that 4| #,—# . But this is impossible, in view of
the inequality 0<< #, — #, < d.

It remains to argue that any other solution x4 + (#/d)? is
congruent modulo # to one of the 4 integers listed above. The
Division Algorithm permits us to write # as #= gd +r, where
0<r<d—1. Hence

x0+gt=xo+g(qd—|—r)
n
=Xo+ng+5r
n
= X, —}—;]r(mod ),

with x, 4 (#/d)r being one of our 4 selected solutions. This ends the
proof.

The argument that we gave in Theorem 4-7 brings out a point
worth stating explicitly: If x, is any solution of ax = b (mod #), then the
d = gcd (4, 7) incongruent solutions are given by

Xa, Xo +nld, xo +2n|d), ..., xo -+ (d— 1)(n/d).

. v
For the reader’s convenience, let us also record the form Theorem
4-7 takes in the special case in which 2 and # are assumed to be relatively
prime.

CoroLrary.  If ged (s, #) =1, then the linear congruence ax = b (mod )
has a unigue solution modulo n.

We now pause to look at two concrete examples.

Example 4-6
Consider the linear congruence 18x = 30 (mod 42). Since gcd (18,
42) = 6 and 6 surely divides 30, Theorem 4-7 guarantees the existence
of exactly six solutions, which are incongruent modulo 42. By
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inspection, one solution is found to be x =4. Our analysis tells us
that the six solutions are as follows:

x=4+ (42/6)t =44 7t (mod 42), t=0,1,...,5
ot, plainly enumerated,

x=4, 11,18, 25 32, 39 (mod 42).

Example 4-7
Let us solve the linear congruence 9x = 21 (mod 30). At the outset,
since gcd (9, 30) = 3 and 3| 21, we know that there must be three
incongruent solutions.

One way to find these solutions is to divide the given con-
gruence through by 3, thereby replacing it by the equivalent con-
gruence 3x =7 (mod 10). The relative primeness of 3 and 10 implies
that the latter congruence admits a unique solution modulo 10.
Although it is not the most efficient method, we could test the inte-
gers 0, 1, 2, ..., 9 in turn until the solution is obtained. A better
way is this: multiply both sides of the congruence 3x =7 (mod 10)
by 7 to get

21x =49 (mod 10),

which reduces to x = 9 (mod 10). (This simplification is no accident,
for the multiples 0-3,1.3,2-3, ..., 93 form a complete set of
residues modulo 10; hence, one of them is necessarily congruent to
1 modulo 10.) But the original congruence was given modulo 30,

so that its incongruent solutions are sought among the integers

0,1,2,...,29. Taking =0, 1, 2, in the formula "

x =94 104,
one gets 9, 19, 29, whence
x=9 (mod 30), x=19 (mod 30), x =29 (mod 30)

are the required three solutions of 9x = 21 (mod 30). .

A different approach to the problem would be to use the
method that is suggested in the proof of Theorem 4-7. Since the
congruence 9x =21 (mod 30) is equivalent to the linear Diophan-
tine equation

95 — 30y = 21,
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we begin by expressing 3 = gcd (9, 30) as a linear combination of 9
and 30. It is found, either by inspection or by the Euclidean Algo-
rithm, that 3 = 9(~-3) 4-30 . 1, so that

21=7.3=9(—21) — 30(—7).

Thus, x = —21, y= —7 satisfy the Diophantine equation and, in
consequence, all solutions of the congruence in question are to be
found from the formula

x=—21 43— _21 4+ 10x

The integers x = —21 + 104, whete #=0, 1, 2 are incongruent
modulo 30 (but all are congruent modulo 10); thus, we end up with
the incongruent solutions

x=—21(mod 30), x=—11(mod 30), x=—1 (mod 30)

or, if one prefers positive numbers, x =9, 19, 29 (mod 30).

Having considered a single linear congruence, it is natural to
turn to the problem of solving a system

ayx=b,(mod m,), a,x = b, (mod my), ..., a,x =b,(mod )

of simultaneous linear congruences. We shall assume that the moduli
m, are relatively prime in pairs. Evidently, the system will admit no
solution unless each individual congruence is solvable; that is, unless
d.| b, for each £, whete d,= gcd (a,, ). When these conditions are
satisfied, the factor 4, can be cancelled in the 4th congruence to produce
a new system (having the same set of solutions as the original one),

aix =bi(mod ny), ay x =by(mod ny), ..., aix=b, (mod #,),

where 7, = m/d, and gcd (n,, n)=1 for i +/; also, ged (af, n)=1.
The solutions of the individual congruences assume the form

x=¢; (mod 7)), x=1¢, (mod n,), ..., x=¢, (mod #,).

Thus, the problem is reduced to one of finding a simultaneous solution of
a system of congruences of this simpler type.

The kind of problem that can be solved by simultaneous con-
gruences has a long history, appearing in the Chinese literature as early as
the first century A.D. Sun-Tsu asked: Find a number which leaves the
remainders 2, 3, 2 when divided by 3, 5, 7, respectively. (Such mathe-
matical puzzles are by no means confined to a single cultural sphere;
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indeed, the same problem occurs in the Introductio Arithmeticae of the
Greek mathematician Nicomachus, circa 100 a.p.) In honor of their
eatly contributions, the rule for obtaining a solution usually goes by the
name of the Chinese Remainder Theorem.

TureorREM 4-8 (Chinese Remainder Theotem). Letn,,n,, ..., 1, be
positive integers such that ged (n, n)=1 for i #j. Then the system of

linear congruences

x = a, (mod n,),

x = a, (mod n,),

x = a, (mod #,)
has a simultaneous solution, which is unique modulo nyny - - n,.
Proof: We start by forming the product #=#,#,---n,. For each
k=1,2,...,r let
Ne=mnlme=ny -t sthyr - ;5

in other words, N, is the product of all the integers », with the
factor n, omitted. By hypothesis, the #, are relatively prime in pairs,
so that gcd (N, 7,) = 1. According to the theory of a single linear
congruence, it is therefore possible to solve the congruence Ny, x =1
(mod #,); call the unique solution x,. Our aim is to prove that the
integer

X=a,Nyx;+a;Nyxy +--- +a,N,x,

is a simultaneous solution of the given system. )
First, it is to be observed that N, =0 (mod #,) for 7 5 £,
since 7, | IN; in this case. The result is that

&=a,N,x, + - +a, Nx,=a,N.x(mod n).

But the integer x; was chosen to satisfy the congruence N, x =1
(mod #,), which forces

X=a, -1 =aq,(mod n,).

This shows that a solution to the given system of congruences
exists,
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As for the uniqueness assertion, suppose that x’ is any other
integer which satisfies these congruences. Then

x = a, = x' (mod n), E=1,2,...,r

and so #, | X — x’ for each value of 4. Because ged (7, ) =1, Cor-
ollary 2 to Theorem 2-5 supplies us with the crucial point that
nyng- - n | ¥ —x'; hence, % =x'(mod ). With this, the Chinese
Remainder Theorem is proven.

Example 4-8
The problem posed by Sun-Tsu corresponds to the system of three
congruences

x =2 (mod 3),
x =3 (mod 5),
x=2(mod 7).

In the notation of Theorem 4-8, we have n=13.5.7 = 105 and
Ny=n[3=35 Ny,=#/5=21, Ny=n/T=15.
Now the linear congruences
35x=1(mod 3), 2lx=1(mod5), 15x==1 (mod 7)

are satisfied by x, =2, x, =1, x5 =1, respectively. Thus, a solu-
tion of the system is given by

$=2-35-2+43-21-1+42.15.1=233,
Modulo 105, we get the unique solution % = 233 =23 (mod 105).
Example 4-9
For a second illustration, let us solve the linear congruence
17x =9 (mod 276).

Since 276 =3 - 4 - 23, this is equivalent to finding a solution of the
system of congruences

17% =9 (mod 3) or x =0 (mod 3)
17%=9 (mod 4) x=1(mod 4)
17x =9 (mod 23) 17x =9 (mod 23)

Note that if x = 0 (mod 3), then x = 34 for any integer £. We sub-
stitute into the second congruence of the system and obtain

3k =1 (mod 4).
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Multiplication of both sides of this congruence by 3 gives us
k=94=3 (mod 4),
so that £#= 3 -} 4/, where ; is an integer. Then
x=303+4)=9+12;.
For x to satisfy the last congruence, we must have
17(9 + 124) =9 (mod 23)

or 204j = —144 (mod 23), which reduces to 3j=6 (mod 23); that is,
j=2(mod 23). This yields j = 2 + 23¢, # an integer, whence

s =9 - 12(2 + 23£) = 33 + 276+,

All in all, x=33 (mod 276) provides a solution to the system of
congruences and, in turn, a solution to 17x =9 (mod 276).

PROBLEMS 4.4

1. Solve the following linear congruences:
(a) 25x =15 (mod 29).
(b) 5x =2 (mod 26).
() 6x=15(mod 21).
(d) 36x=8 (mod 102).
(e) 34x =60 (mod 98).
(f) 140x = 133 (mod 301). [Hinz: ged (140, 301) =7.]
2. Using congtruences, solve the Diophantine equations below:
@) 4x+51y=9. [Hint: 4x=9 (mod 51) gives x =15+ 51#, while
51y =9 (mod 4) gives y = 3 + 4s. Find the relation between s and 2]
(b) 12 -+ 25y = 331.
() 5x—53y=17.
3. Find all solutions of the linear congruence 3x — 7y = 11 (mod 13).
4. Solve each of the following sets of simultaneous congruences:
(a) x=1(mod 3), x=2 (mod 5), x =3 (mod 7)
(b) x =5 (mod 11), x =14 (mod 29), x = 15 (mod 31)
(©) x==5(mod 6), x =4 (mod 11), x =3 (mod 17)
(d) 2x=1 (mod 5), 3x =9 (mod 6), 4x=1 (mod 7), 5x =9 (mod 11)-
5. Solve the linear congruence 17x=3(mod 2.3.5.7) by solving the
system

17x==3 (mod 2), 17x=3(mod 3), 17x=3(mod5), 17x=3 (mod 7).
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Find the smallest integer 4 > 2 such that
21{a,3|a+1, 4|a+2, 5|a+3, 6|a+4.

(a) Obtain three consecutive integers each having a square factor.
[Hint: Find an integer a2 such that 22|a, 32|42+ 1, 52 [ a-+21]
(b) Obtain three consecutive integers, the first of which is divisible
by a square, the second by a cube, and the third by a fourth power.

(Brahmagupta, 7th century A.p.). When eggs in a basket are removed
2,3, 4,5, 6 at a time there remain, respectively, 1, 2, 3, 4, 5 eggs. When
they are taken out 7 at a time, none are left over. Find the smallest
number of eggs that could have been contained in the basket,

The basket-of-eggs problem is often phrased in the following form: One
egg remains when the eggs are removed from the basket 2, 3, 4, 5, or 6
at a time; but, no eggs remain if they are removed 7 at a time. Find
the smallest number of eggs that could have been in the basket.

(Ancient Chinese Problem). A band of 17 pirates stole a sack of gold
coins. When they tried to divide the fortune into equal portions, 3 coins
remained. In the ensuing brawl over who should get the extra coins,
one pirate was killed. The wealth was redistributed, but this time an
equal division left 10 coins. Again an argument developed in which
another pirate was killed. But now the total fortune was evenly distri-
buted among the survivors. What was the least number of coins that
could have been stolen?

Prove that the congruences
x =g (mod n) and x = b (mod =)
admit a simultaneous solution if and only if ged (#, 7) | 2 — b; if a solution

exists, confirm that it is unique modulo lem (7, ).
Use Problem 11 to show that the system

x =5 (mod 6) and  x=7 (mod 15)

does not possess a solution.

If x = a (mod #), prove that either x = a (mod 27) or x = a + # (mod 2#).

A certain integer between 1 and 1200 leaves the remainders 1, 2, 6 when

divided by 9, 11, 13 respectively. What is the integer ?

(a) Find an integer having the remainders 1, 2, 5, 5 when divided by
2, 3, 6, 12, respectively. (Yih-hing, died 717.)

(b) Find an integer having the remainders 2, 3, 4, § when divided by
3,4, 5, 6, respectively. (Bhaskara, born 1114.)

(c) Find an integer having the remainders 3, 11, 15 when divided by
10, 13, 17, respectively. (Regiomontanus, 1436-1473.)
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Fermat’s Theorem

“ And perhaps posterity will thank me for having
shown it that the ancients did not know every-
thing.”

P. FERMAT




51 PIERRE DE FERMAT

What the ancient world had known was largely forgotten during the
intellectual torpor of the Dark Ages, and it was only after the twelfth
century that Western Europe again became conscious of mathematics.
The revival of classical scholarship was stimulated by Latin translations
from the Greek and, more especially, from the Arabic. The Latinization
of Arabic versions of Euclid’s great treatise, the Elements, first appeared
in 1120. The translation was not a faithful rendering of the Elements,
having suffered successive, inaccurate translations from the Greek—
first into Arabic, then into Castilian, and finally into Latin—done by
copyists not versed in the content of the work. Nevertheless this much-
used copy, with its accumulation of errors, served as the foundation
of all editions known in Europe until 1505, when the Greek text was
recovered.

With the fall of Constantinople to the Turks in 1453, the Byzan-
tine scholars who had served as the major custodians of mathematics
brought the ancient masterpieces of Greek learning to the West. It is
reported that a copy of what survived of Diophantus’ Arithmetica was
found in the Vatican library around 1462 by Johannes Miiller (better
known as Regiomontanus from the Latin name of his native town,
Konigsberg). Presumably, it had been brought to Rome by the refugees
from Byzantium. Regiomontanus observed that “In these books the
very flower of the whole of arithmetic lies hid,” and tried to interest
others in translating it. Notwithstanding the attention that was called
to the work, it remained practically a closed book until 1572 when the
first translation and printed edition was brought out by the German
professor Wilhelm Holzmann, who wrote under the Grecian form of
his name, Xylander. The Arithmetica became fully accessible to European
mathematicians when Claude Bachet—borrowing liberally from Xylander
—published (1621) the original Greek text, along with a Latin translation
containing notes and comments. The Bachet edition probably has the
distinction of being the work that first directed the attention of Fermat
to the problems of number theory.

92
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Few if any periods were so fruitful for mathematics as the 17th
century; Northern Europe alone produced as many men of outstanding
ability as had appeared during the preceding millennium. At a time when
such names as Desargues, Descartes, Pascal, Wallis, Bernoulli, Leibniz,
and Newton were becoming famous, a certain French civil servant,
Pierre de Fermat (1601-1665), stood as an equal among these brilliant
scholars. Fermat, the “Prince of Amateurs,” was the last great mathe-
matician to pursue the subject as a sideline to a nonscientific career. By
profession a lawyer and magistrate attached to the provincial parliament
at Toulouse, he sought refuge from controversy in the abstraction of
mathematics. Fermat evidently had no particular mathematical training
and he evidenced no interest in its study until he was past 30; to him,
it was merely a hobby to be cultivated in leisure time. Yet no practi-
tioner of his day made greater discoveries or contributed more to the
advancement of the discipline: one of the inventors of analytic geometry
(the actual term was coined in the early 19th century), he laid the tech-
nical foundations of differential and integral calculus, and with Pascal
established the conceptual guidelines of the theory of probability. Fermat’s
real love in mathematics was undoubtedly number theory, which he
rescued from the realm of superstition and occultism where it had long
been imprisoned. His contributions here overshadow all else; it may well
be said that the revival of interest in the abstract side of number theory
began with Fermat.

Fermat preferred the pleasure which he derived from mathematical
research itself to any reputation that it might bring him; indeed, he
published only one major manuscript during his lifetime and that just
five years before his death using the concealing initials M.P.E.A.S.
Adamantly refusing to put his work in finished form, he thwarted several
efforts by others to make the results available in print under his name.
In partial compensation for this lack of interest in publication, Fermat
carried on a voluminous correspondence with contemporary mathema-
ticians. Most of what little we know about his investigations is found in
the letters to friends with whom he exchanged problems and to whom he
reported his successes. They did their best to publicize Fermat’s talents
by passing these letters from hand to hand or by making copies, which
were dispatched over the Continent.

As his parliamentary duties demanded an ever greater portion
of his time, Fermat was given to inserting notes in the margin of what-
ever book he happened to be using. Fermat’s personal copy of the
Bachet edition of Diophantus held in its margin many of his famous
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theorems in number theory. These were discovered five years after
Fermat’s death by his son Samuel, who brought out a new edition of the
Arithmetica incorporating his father’s celebrated marginalia. Since
there was little space available, Fermat’s habit had been to jot down some
result and omit all steps leading to the conclusion. Posterity has wished
many times that the margins of the Arithmetica had been wider or that
Fermat had been a little less secretive about his methods.

5.2 FERMAT’S FACTORIZATION METHOD

In a fragment of a letter, written in all probability to Father Marin Mer-
senne in 1643, Fermat described a technique of his for factoring large
numbers. This represented the first real improvement over the classical
method of attempting to find a factor of # by dividing by all primes not
exceeding V/#. Fermat’s factorization scheme has at its heart the observa-
tion that the search for factors of an odd integer 7 (since powers of 2 are
easily recognizable and may be removed at the outset, there is no loss in
assuming that 7 is odd) is equivalent to obtaining integral solutions x
and y of the equation

n=x*—y2
If » is the difference of two squares, then it is apparent that # can be
factored as
#w=xt =yt = (x +y)x — ).

Conversely, when # has the factorization # = ab, with a > b > 1, then we
may write
a-+ b\? a— 19) 2
n= —_ .
() - (5

Moreover, because # is taken to be an odd integer, 2 and 4 are themselves
odd; hence, (z + 5)/2 and (« — 5)/2 will be nonnegative integers.

One begins the search for possible x and y satisfying the equation
n=x%— y2, or what is the same thing, the equation

X2 —p=y?

by first determining the smallest integer £ for which 42 >#». Now look
successively at the numbers

K2, A+ 12 —n, (A + 22—, (A +3)2—n, ...
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until a value of » >4/ is found making m? — # a square. 'The process
cannot go on indefinitely, since we eventually arrive at

7+ 1\2 n—1\2
() == (=)
the representation of # corresponding to the trivial factorization #=# - 1.
If this point is reached without a square difference having been dis-
covered earlier, then # has no factors other than # and 1, in which case it
is a prime.
Fermat used the procedure just described to factor

2027651281 = 44021 - 46061

in only 11 steps, as compared to making 4850 divisions by the odd primes
up to 44021. This was probably a favorable case devised on purpose to
show the chief virtue of his method: it does not require one to know all

the primes less than V7 in order to find factors of 7.

Example 5-1

To illustrate the application of Fermat’s method, let us factor the
integer »=119143. From a table of squares, we find that 3452 <
119143 < 3462; thus it suffices to consider values of 42 — 119143
for £ in the range 346 << £ < (119143 4 1)/2=59572. 'The calcula-
tions begin as follows:

346% — 119143 = 119716 — 119143 = 573,

3472 — 119143 = 120409 — 119143 = 1266,

3482 — 119143 = 121104 — 119143 = 1961,

3492 — 119143 = 121801 — 119143 == 2658,

3502 — 119143 = 122500 — 119143 = 3357,

3512 — 119143 = 123201 — 119143 = 4058,

3522 — 119143 = 123904 — 119143 = 4761 = 692

This last line exhibits the factorization
119143 = 3522 — 692 = (352 +- 69)(352—69) = 421 . 283,

the two factors themselves being prime. In only seven trials, we
have obtained the prime factorization of the number 119143. Of
course, one does not always fare so luckily; it may take many steps
before a difference turns out to be a square.
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Fermat’s method is most effective when the two factors of # are of
neatly the same magnitude, for in this case a suitable square will appear
quickly. To illustrate, let us suppose that # = 23449 is to be factored.
The smallest square exceeding # is 1542, so that the sequence 42—z
starts with

1542 —23449 = 23716 — 23449 = 267,
1552 — 23449 = 24025 — 23449 = 576 = 242,

Hence, factors of 23449 are
23449 = (155 + 24)(155—24) = 179 - 131,

When examining the differences 42 —# as possible squares, many
values can be immediately excluded by inspection of the final digits.
We know, for instance, that a square must end in one of the six digits
0,1, 4,5, 6, 9 (Problem 1a, Section 4.3). 'This allows us to exclude all
values in the above example, save for 1266, 1961, and 4761. By calcula-
ting the squares of the integers from 0 to 99 modulo 100, one sees further
that, for a square, the last two digits are limited to the following twenty-
two possibilities:

00 21 41 64 89
01 24 4 69 96
04 25 49 76
09 29 5 81

16 36 61 84

The integer 1266 can be eliminated from consideration in this way.
Since 61 is among the last two digits allowable in a square, it is only
necessary to look at the numbers 1961 and 4761; the former is not a
square, but 4761 = 692

PROBLEMS 5.2

1. Use Fermat’s method to factor
(a) 2279;
(b) 10541;
(c) 340663. [Hint: The smallest square just exceeding 340663 is 5872.]
2. Prove that a perfect square must end in one of the following pairs of
digits: 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81,

)

i
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84, 89, 96. [Hint: Since x?=(50+ x)? (mod 100) and x?=(50 —x)?
(mod 100), it suffices to examine the final digits of x? for the 26 values
x=0,1,2,...,25]

3. Factor the number 211 — 1 by Fermat’s factorization method.

4. TIn 1647, Mersenne noted that when a number can be written as a sum
of two relatively prime squares in two distinct ways, it is composite and
can be factored as follows: if # == 4% 4 % = ¢ 4- 42, then

7= (ac + bd)(ac — bd)|(a -+ d)(a — d).
Use this result to factor the numbers
493 = 182 +132== 2224 3%,
and 38025 = 1682 4- 992 = 1562 4- 1172

53 THE LITTLE THEOREM

The most significant of Fermat’s correspondents in number theory was
Bernhard Frénicle de Bessy (1605-1675), an official at the French mint
who was renowned for his gift of manipulating large numbers. (Frénicle’s
facility in numerical calculation is revealed by the following incident:
On hearing that Fermat had proposed the problem of finding cubes which
when increased by their proper divisors become squares, as is the case
with 7° 4 (1 + 7 + 72) = 202, he immediately gave four different solutions;
and supplied six more the next day.) Though in no way Fermat’s equal as
a mathematician, Frénicle alone among his contemporaries could challenge
him in number theory and his challenges had the distinction of coaxing
out of Fermat some of his carefully guarded secrets. One of the most
striking is the theorem which states: If p is a prime and 4 is any integer
not divisible by p, then p divides 4! — 1. Fermat communicated the
result in a letter to Frénicle dated October 18, 1640, along with the
comment, “I would send you the demonstration, if I did not fear its
being too long.” This theorem has since become known as ““Fermat’s
Little Theorem” to distinguish it from Fermat’s ¢ Great” or ‘“Last
Theorem,” which is the subject of Chapter 11. Almost 100 years were to
elapse before Euler published the first proof of the Little Theorem in
1736. Leibniz, however, seems not to have received his share of recogni-
tion; for he left an identical argument in an unpublished manuscript
sometime before 1683.
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We now proceed to a proof of Fermat’s Theorem.

TueorEM 5-1 (Fermat’s Little Theorem). If p is a prime and p k a,
then a*~' =1 (mod p).

Proof:  We begin by considering the first p—1 positive multiples
of a; that is, the integers

a,2a,3a,...,(p—1)a.

None of these numbers is congruent modulo p to any other, nor is
any congruent to zeto. Indeed, if it happened that

ra = sa (mod p), I<r<s<p—1
then z could be cancelled to give 7 = s (mod p), which is impossible.

Therefore, the above set of integers must be congruent modulo p

to 1,2 3, ..., p—1, taken in some order. Multiplying all these
congruences together, we find that

a-24-3a--(p—1)a=1-2.3...(p— 1) (mod p),
whence
@ (p— 1)l =(p— 1)! (mod p).
Once (p—1)! is cancelled from both sides of the preceding con-

gruence (this is possible since p ¥ (p — 1)!), our line of reasoning
culminates in 2*~* =1 (mod p), which is Fermat’s Theorem.

This result can be stated in a slightly more general way in which
the requirement that p } 4 is dropped.

CorROLLARY. If p is a prime, then a* =a (mod p) for any integer a.

Proof: When p|a, the statement obviously holds; for, in this
setting, > =0=4 (mod p). If p t 4, then in accordance with Fer-
mat’s Theotem, 47~ ' =1 (mod p). When this congruence is multi-
plied by 4, the conclusion #” =z (mod p) follows.

There is a different proof of the fact that 4* = 2 (mod p), involving
induction on 4. If a=1, the assertion is that 17=1 (mod p), which
is cleatly true, as is the case #=0. Assuming that the result holds for
a, we must confirm its validity for 2 4 1. In light of the binomial theorem,

(a+1)"=ap+(‘f)aﬂ-1+-~-+(,f)ap-k+---+(Pﬁl)ml,



SEC. 5-3 The Little Theorem 99

where the coefficient (f) is given by

HE Pl =1 (p—ktD)
k) " Klp—A)! 1.2.3---4

Our argument hinges on the observation that (f) =0 (mod p) for

1 <A <p—1. To see this, note that
#(2) =2 =1+ (p— 4+ 1)=0 (mod p),

by virtue of which p| 4! or p| (/]3) But p| 4! implies that p | for

some ; satisfying 1 <j <4 <p— 1, an absurdity. Therefore, p | (/IZ) of,

converting to a congruence statement,

(/f) =0 (mod p).
The point which we wish to make is that
(@a+1P=0a"+1=a+1(mod p),
where the right-most congruence uses our inductive assumption. Thus,
the desired conclusion holds for # 4 1 and, in consequence, for all 2 > 0.

If 2 is a negative integer, there is no problem: since ¢ =r (mod p) for
some r, where 0 <r <p—1, we get a* =r?=r=a (mod p).

Fermat’s Theorem has many applications and is central to much
of what is done in number theory. On one hand, it can be a labot-
saving device in certain calculations. If asked to verify that 5% =4
(mod 11), for instance, we would take the congruence 5'°==1 (mod 11)
as our starting point. Knowing this,

598 — 510:3+8 — (510)3(52)4
=1%.3*=81=4 (mod 11),

as desired.
Another use of Fermat’s Theorem is as a tool in testing the

primality of a given integer ». For, if it could be shown that the con-
gruence

a" =4 (mod #)
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fails to hold for some choice of 4, then # is necessarily composite. As
an example of this approach, let us look at #=117. 'The computation is
kept under control by selecting a small integer for 4; say, 2= 2. Since
217 may we written as

21T = 271645 — (27)1628
and 2" =128 =11 (mod 117), we have
207 =1118. 25 = (121)® 2° =4° . 25 =221 (mod 117).
But 22! = (27)3, which leads to
221 =11=121-11=4 - 11 =44 (mod 117).
Combining these congruences, we finally obtain
2117 =44 £ 2 (mod 117),

so that 117 must be composite; actually, 117 =13 . 9,

It might be worthwhile to give an example illustrating the failure
of the converse of Fermat’s Theotem to hold; in other words, to show
that if 4" ~* =1 (mod #) for some integer 4, then # need not be prime. As
a prelude we requite a technical lemma:

LemMma.  If p and q are distinct primes such that a° =a (mod q) and
a®=a (mod p), then 4** = a (mod pg).

Proof: It is known from the last corollary that (4%)? = 4% (mod p),
while 4% = 2 (mod p) by hypothesis. Combining these congruences,
we obtain 4?*=a (mod p) o, in different terms, p| 4* — 4. In an
entirely similar manner, ¢ | 4»* — 4. The corollary to Theorem 2-4
now yields pg| 4" —a, which can be recast as a?* =4 (mod pg).

Our contention is that 2340 = 1 (mod 341) where 341 = 11 - 31.
In working towards this end, notice that 21° = 1024 = 31 . 33 +- 1. Thus,
21 =2.210=2.1=2(mod 31)
and
281—2(21%)3=2.13=2 (mod 11).
Exploiting the lemma,

21181 =2 (mod 11 - 31)
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or 2841 =2 (mod 341). After cancelling a factor of 2, we pass to
2340 =1 (mod 341),

so that the converse to Fermat’s Theorem is false.

The historical interest in numbers of the form 2" — 2 resides
in the claim made by the Chinese mathematicians over 25 centuries ago
that # is prime if and only if #| 2" — 2 (in point of fact, this criterion is
reliable for all integers 7 << 340). Needless to say, our example, where
341 | 2%¢* — 2 although 341 = 11 - 31, lays the conjecture to rest; this was
discovered in the year 1819. The situation in which #| 2" — 2 occurs
often enough to merit a name though: call a composite integer # pses-
doprime whenever n|2"— 2. It can be shown that there are infinitely
many pseudoprimes, the smallest four being 341, 561, 645, and 1105.

PROBLEMS 5.3

1. Verify that 186 =1 (mod 7%) for £ =1, 2, 3.
2. (a) If gcd (4, 35) = 1, show that 4'2 = 1 (mod 35). [Hint: From Fermat’s
Theorem 48 =1 (mod 7) and 4* =1 (mod 5).]
(b) If gcd (4, 42) = 1, show that 168 =3.7.8dividesa® — 1.
(c) If ged (a, 133) = ged (b, 133) = 1, show that 133 | 218 — b8,
3. Prove that there exist infinitely many composite numbers # for which
a" ' = a (mod n). [Hint: Take n = 2p, where p is an odd prime.]
4. Derive each of the following congruences:
(a) a?'=a (mod 15) for all a. [Hint: By Fermat’s Theorem, 4°=4a
(mod 5).]
(b) 4" =a(mod 42) for all a.
(c) a'®*=a(mod3-7-13) for all a.
5. For any integer 4, show that «® and 4 have the same units digit.

Find the units digit of 31 by the use of Fermat’s Theorem. [Hin?:
Write 3100 == 3(3%)!1.]
7. Prove that for any positive integer #, the following congruences hold:
(@ 22"=1 (mod 3).
(b) 23" =1 (mod 7).
(¢) 2% =1 (mod 15).
8. (a) Let pbea prime and ged (4, p) =1. Use Fermat’s Theorem to verify
that x = 4”~2b (mod p) is a solution of the linear congruence ax == b
(mod ).
(b) By applying patt (a), solve the linear congruences 2x =1 (mod 31),
65 =5 (mod 11), and 3x = 17 (mod 29).
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9. Assuming that 2 and b are integers not divisible by the prime p, establish
the following:

() If a* =47 (mod p), then a = 4 (mod p).
(b) If 4 =47 (mod p), then 4" = 4" (mod p2). [Hint: By (a), a=b 1 pk
for some £, so that 4% —b? — (b + pA)» —b?; now show that p?
divides the latter expression.]
10. Employ Fermat’s Theotem to prove that, if p is an odd prime, then
(a) 1=l p2p-14 3p-1.4 ., +(p—1)"1= —1 (mod p).
(b)y 1P42r 1 3p ... 4 (p —1)» =0 (mod p). [Hint: Recall the identity
T+2434- (1D =p(p —1)/2]
11. Prove thatif pis an odd prime and £ is any integer satisfying 1 << 4 <p—1,
then the binomial coefficient

n ) == v¥mod

12.  Assume that p and ¢ are distinct odd primes such that p —1|4—1.
If ged (4, pg) = 1, show that 42~ 1 =1 (mod pg).
13. If p and g are distinct primes, prove that

P+ gP =1 (mod 29).
14. Confirm that the integers 1729 =7 - 13- 19 and 1905 =3 . 5 - 127 are both
pseudoprimes.
15. Show that 561 | 2561 — 2 and 561 | 3581 —3; it is an unanswered question

whether there exist infinitely many composite numbers # with the property
that »| 2* — 2 and »| 3" — 3,

54 WILSON’S THEOREM

We now turn to anpther milestone in the development of number theory.
In his Meditationes Algebraicae of 1770, the English mathematician Edward
Waring (1741-1793) announced several new theorems. Foremost among
these is an interesting property of primes reported to him by one of his
former students, a certain John Wilson. The property is the following:
if p is a prime number, then p divides (p — 1)! +-1. Wilson appears to
have guessed this on the basis of numerical computations; at any rate,
neither he nor Waring knew how to prove it. Confessing his inability to
supply a demonstration, Waring added, ¢ Theorems of this kind will be
very hard to prove, because of the absence of a notation to express prime
numbers.” (Reading the passage, Gauss uttered his telling comment on
“ notationes versus notiones,” implying that in questions of this nature

i
;
i
;
‘

kg s
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it was the notion that really mattered, not the notation.) Despite Waring’s

pessimistic forecast, Lagrange soon afterwards (1771) gave a proof of

what in the literature is called “ Wilson’s Theotem” and observed that

the converse also holds. It would be perhaps more just to name the

theorem after Leibniz, for there is evidence that he was aware of the

result almost a century eatlier, but published nothing upon the subject.
Now to a proof of Wilson’s Theorem.

THEOREM 5-2 (Wilson). If pis a prime, then (p — 1)! = —1 (mod p).

Proof: Dismissing the cases p=2 and p—3 as being evident,
let us take p > 3. Suppose that 4 is any one of the p —1 positive
integers

1,2,3,...,p—1

and consider the linear congruence ax=1 (mod p). Then gcd
(2, p) = 1. By Theotem 4-7, this congruence admits a unique solution
modulo p; hence, thete is a unique integer «’, with 1 4" <p— 1,
satisfying a4’ = 1 (mod p).

Since p is prime, =4’ if and only if 4=1or a=p—1.
Indeed, the congruence *=1 (mod p) is equivalent to (¢—1)-
(2 +1)=0 (mod p). Therefore, either 2 — 1==0 (mod p), in which
case 2= 1, or 2 + 1 =0 (mod p), in which case = p — 1.

If we omit the numbers 1 and p — 1, the effect is to group the
remaining integers 2, 3, ..., p — 2into paits 4, 4', where @ 7 a’, such
that a2’ =1 (mod p). When these (p — 3)/2 congruences are multi-
plied together and the factors rearranged, we get

2.3...(p—2)=1 (mod
/(P )=1(mod p)

or rather

(p—2)!=1 (mod p).

Now multiply by p — 1 to obtain the congruence

(p—Dl=p—1=—1(mod p),

as was to be proved.

A conctete example should help to clarify the proof of Wilson’s
Theorem. Specifically, let us take p=13. It is possible to divide the
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integers 2, 3, ..., 11 into (p — 3)/2 =5 pairs each of whose products is
congruent to 1 modulo 13. To write these congruences out explicitly:

2-7=1 (mod 13),
3-9=1(mod 13),
4.10=1 (mod 13),
5.8==1 (mod 13),
6-11=1 (mod 13).

Multiplving the above congruences gives the result
M=2-7)(3-9)(4-10)(5-8)(6-11)=1 (mod 13)
and so
12! =12 = —1 (mod 13).

Thus, (p — 1)! = —1 (mod p), with p = 13,

The converse of Wilson’s Theorem is also true: If (n — 1)1 == —1
(mod #), then # must be prime. For, if # is not a prime, then # has a
divisor 4, with 1 <<d <n. Furthermore, since 4 <#— 1, d occurs as one
of the factors in (#— 1)!, whence d|(#—1)!. Now we are assuming
that #|(n —1)! 41, and so d| (#— 1)! -1 too. The conclusion is that
d| 1, which is nonsense.

Taken together, Wilson’s Theorem and its converse provide a
necessary and sufficient condition for determining primality; namely,
an integer #>1 is prime if and only if (#— 1)l =—1 (mod #). Un-
fortunately, this test is of more theoretical than practical interest since as #
increases, (# — 1)! rapidly becomes unmanageable in size. ’

We would like to close this chapter with an application of Wilson’s
Theorem to the study of quadratic congruences. [It is understood that
quadratic congruence means a congruence of the form ax? +bx +c=0
(mod #), with ¢ 7 0 (mod #).] ‘This is the content of

THEOREM 5-3.  The quadratic congruence x* +1=0 (mod p), where p
is an odd prime, has a solution if and only if p=1 (mod 4).

Proof: Let a be any solution of x% 4 1 = 0 (mod p), so that 4% = —1
(mod p). Since p ¥ a, the outcome of applying Fermat’s Theorem
is:

1=a>~1= (22D =(—1)®-D2 (mod p).
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The possibility that p = 44 + 3 for some 4 does not arise. If it did,
we would have

(__1)(1:—1)/2 :(_1>2k+1 — _1;

hence 1= —1 (mod p). The net result of this is that p | 2, which is
patently false. Therefore, p must be of the form 44 4 1.
Now for the opposite direction. In the product

-1 1
(p—vi=1-2. L= -2,

we have the congruences

p—1=—1(mod p),
p—2=—2(modp),

pA1
2

Il

—1
—PZ (mod p).

Rearranging the factors produces

(p—Di=1-(~1)-2-(-2)-- 2 L (J’; 1) (mod p)
—1\2
§<_1)<v~1>/2(1 .2..."’7) (mod p),

since there are(p — 1)/2 minus signs involved. It is at this point that
Wilson’s Theorem can be brought to bear; for, (p — 1)! = —1 (mod

?), whence
_1 E(_1)<p—1)/2[(£—;—1) !]((mod ).

If we assume that p is of the form 44+ 1, then (—1)®-12=1,
leaving us with the congruence

—1= [(P%l) !]2(modp).

The conclusion: [(p— 1)/2]! satisfies the quadratic congruence
x? +1=0 (mod p).
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Let us take a look at an actual example; say, the case p=13
which is a prime of the form 44 + 1. Here, we have (p — 1)/2=06 and
it is easy to see that

6! =720=5 (mod 13),
while
5% +1=26=0 (mod 13).

Thus the assertion that [((p— 1))!]> +1=0 (mod p) is correct for
p=13.

Wilson’s Theorem implies that there exists an infinitude of
composite numbers of the form #!+1. On the other hand, it is an
open question whether #! -1 is prime for infinitely many values of ».

The only values of # in the range 1 <# < 100 for which #! + 1 is known
to be a prime number are n =1, 2, 3, 11, 27, 37, 41, 73, and 77.

PROBLEMS 54

1. (a) Find the remainder when 15! is divided by 17.
(b) Find the remainder when 2(261) is divided by 29. [Hinz: By Wilson’s

Theorem, 2(p — 3)! = — 1 (mod p) for any odd prime p > 3]
2. Determine whether 17 is a prime by deciding whether or not 16! = —1
{mod 17).

3. Arrange the integers 2, 3, 4, ..., 21 in pairs 4 and & with the property
that 2b =1 (mod 23).

4. Show that 18! = —1 (mod 437).
5. (a) Provethataninteger# > 1is prime if anﬁmly if(n —2)! =1 (mod n).
(b) If n is a composite integer, show that (n —1)! =0 (mod n), except
when # =4,

6. Given a prime number p, establish the congruence
(P—D!'=p—1(mod 14+2+3+...+(p- 1)
7. If p is a prime, prove that
pla?+(@—"Nla and p|(p—1le? + 4

for any integer a. [Hint: By Wilson’s Theorem, 2? +(—Dla=a? —
a(mod p).]

8. Find two odd primes p<<13 for which the congruence (p — )= —1
(mod p?) holds.
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9.

10.

11.

12.

Using Wilson’s Theorem, prove that
12.32.52...(p —2)2=(—1)"* /2 (mod p)

for any odd prime p. [Hint: Since k= —(p — £) (mod p), it follows
that2-4.6---(p — 1) =(—1®"121.3.5...(p — 2)(mod p).]
(a) For a brime p of the form 44 + 3, prove that either

(fizil-)lzl (mod p) ot (pT_l)!z —1 (mod p);

hence, [(p — 1)/2]! satisfies the quadratic congruence x? = 1 (mod p).
(b) Use part (a) to show that if p =44+ 3 is prime, then the product
of all the even integers less than p is congruent modulo p to either
1 or —1. [Hint: Fermat’s Theorem implies that 27-1/2 = 41
(mod p).]
Apply Theorem 5-3 to find two solutions to the quadratic congruences
x2 = —1 (mod 29) and x? = —1 (mod 37).
Show that if p = 44 4 3 is prime and 4% + #2 =0 (mod p), then 2= 4b=0
(mod p). [Hint: If a£0 (mod p), then there exists an integer ¢ such
that 2c =1 (mod p); use this fact to contradict Theorem 5-3.]
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Number-Theoretic
Functions

“ Mathematicians are like Frenchmen: whatever
you say to them they translate into their own
language and forthwith it is something entirely
different.”’
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6.1 THE FUNCTIONS 7 AND o

Certain functions are found to be of special importance in connection
with the study of the divisors of an integer. Any function whose domain
of definition is the set of positive integers is said to be a number-theoretic
(or arithmetic) function. While the value of a number-theoretic function
is not required to be a positive integer or, for that matter, even an integer,
most of the number-theoretic functions that we shall encounter are
integer-valued. Among the easiest to handle, as well as the most natural,
are the functions r and o.

DerFmnrrion 6-1. Given a positive integer 7, let 7(#) denote the
number of positive divisors of 7 and o(#) denote the sum of these
divisors.

For an example of these notions, consider »= 12. Since 12 has
the positive divisors 1, 2, 3, 4, 6, 12, we find that

(12)=6 and o(12)=1+2+3+4+6-+12=28.
For the first few integets,
(1)=1,72)=2,73)=2,7(4)=3,7(5)=2,76) =4, ...
and
o(1)=1,0(2)=3,0(3)=4,0(4) =7, 0(5) =6, a(6) =12, ....

It is not difficult to see that 7(#) = 2 if and only if # is a prime number;
also, o(#) = n +- 1 and if only if # is a prime.

Before studying the functions = and ¢ in more detail, we wish to
introduce a notation that will clarify a number of situations later on.
It is customary to interpret the symbol

> @)

djn

110
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to mean, “Sum the values f(d) as 4 runs over all the positive divisors of
the positive integer n.”” For instance, we have

> fd)=f(1) +£Q2) +f&) +£(5) +f(10) +20).
d]20
With this understanding, = and ¢ may be expressed in the form
W= 1, o= z d.
din d|n

The notation Y, 1, in particular, says that we are to add together as
many 1’s as there are positive divisors of 7. To illustrate: the integer
10 has the four positive divisors 1, 2, 5, 10, whence

(0= S1=1+1+41+1=4,
while
o(10)= > d=1+245+10=18.
aJio

Our first theorem makes it easy to obtain the positive divisors
of a positive integer # once its prime factorization is known.

TueoREM 6-1. If n=p,"*p,*2---p/ is the prime factorization of
n~>1, then the positive divisors of n are precisely those integers d of the

Jform

d=P1alP2a2 v 'Prar,
where 0 <a, <k, (i=1,2,...,7).

Progf: Note that the divisor 4= 1 is obtained whena, =a;="+--==
2,=0, and # itself occurs when a,= ki, ag=FKg, ..., ay=~FK,.
Suppose that 4 divides # nontrivially; say n=dd', where d>1,
d'>1. Express both 4 and 4’ as products of (not necessatily dis-
tinct) primes:

d=q1qg2+qs, d=hly ty,
with ¢, #, prime. Then

P1k1P2k2 P =g gt

are two prime factorizations of the positive integer #n. By the
uniqueness of the prime factorization, each prime ¢, must be one of
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the p,. Collecting the equal primes into 2 single integral power,
we get

d=q14z-- g, = p:19p"% o p, ",
where the possibility that 2, = 0 is allowed.

Conversely, every number d—= 2P (0<a, < k)
turns out to be a divisor of n. For we can write

P =P1k1]>2k2- . .pf"r

= (21" pa" NP1 apg R p ey
=dd,

with d'= p *1=1p k=02, p k@ gnd g a4, >0 for each 7. Then
d'>0and d|n

We put this theorem to work at once.

THEOREM 6-2. If n=p,*'p** .. p.*" is the prime Sfactorization of n > 1,
then

@) )=k + Dha+1) - (h, + 1), and

—P1k1+1_ 1p2k2+1 __1 . .prk,+l *1
(b) U(”)_ Pl_l Pz___l ) Pr_l .

Progf:  According to Theorem 6-1, the positive divisors of # are
precisely those integers

d=Pla‘Pza2 . 'Pra',

whete 0 <4, <4,. There are £y +1 choices for the exponent a,;
k241 choices for a,, ...; k,+ 1 choices for 4, ; hence, there are

i+ Dk +1) - (B +1)
possible divisors of 7.
In ordet to evaluate o(x), consider the product

Atprtp2 4 F 2N+ pa 22+ 4 p,%9) ..
(1 +pr +Pr2+ +Prkr)'

Each positive divisor of 7 appears once and only once as a term in the
expansion of this ptoduct, so that

o) = +pr+p2+ 40 ) o (L p,+p2 - + 2,).
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Applying the formula for the sum of a finite geometric seties to the
ith factor on the right-hand side, we get

. ptkg+l__1
1+P1+P12+"'+P1‘=—‘—‘
pi—1

It follows that

p1k1+1___ 1 P2k2+1__1 .“prk,+1__1.
pl'—l _P2—1 Pr_l

o(n) =

Cotresponding to the Y notation for sums, a notation for pro-
ducts may be defined using the Greek capital letter “pi.”” The restriction
delimiting the numbers over which the product is to be made is usually
put under the [[-sign. Examples are

[T f@=r0)/@3 /@165,

l<d<b

[ [ f@=rs3/0),

a9

[T f@=r@s3/6).

pj30
p prime

With this convention, the conclusion to Theorem 6-2 takes the compact
form: if = p,"*p,** ... p,* is the prime factorization of # > 1, then

=1 ] Gh+1)

lgigT
and
_pik‘+ 1 _ 1
o(n) = -
1]';1r pi—1
Example 6-1

The number 180 = 22 - 32. 5 has
r(180) =2+ 12+ 1)1 +1)=18
positive divisors. These are integers of the form
201 . 3% . 59
where 2, =0, 1, 2; a,=0, 1, 2; 33=0, 1. Specifically, we obtain
1, 2,3,4,5,6,9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180.
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The sum of these integers is

28—13—-152—-1 72624

o(180) =

One of the more interesting properties of the divisor function =
is that the product of the positive divisors of an integer 7 > 1 is equal to
n*®12, It is not difficult to get at this fact: Let 4 denote an arbitrary
positive divisor of 7, so that #=dd’ for some d'. As d ranges over all
7(d) positive divisors of 5, 7(d) such equations occur. Multiplying these

together, we get
wo=]Td-]]a.

dn a’|n

But as 4 runs through the divisors of #, so does 4'; hence, []a.d=
ITa1n @'. The situation is now this:

7t — (1_—[ d)2
d|n

ntmi2 — | Id
din

ot equivalently,

The reader might (or, at any rate, should) have one lingering
doubt concerning this equation. For it is by no means obvious that the
left-hand side is always an integer. If 7(#) is even, there is certainly no
problem. When 7(#) is odd, # turns out to be a perfect square (Problem
7), say n=m?; thus n*™/2 = "™ settling all suspicions.

For a numerical example, the product of the five divisors of 16
(namely, 1, 2, 4, 8, 16) is

d= 1674912 = 16512 = 45 — 1024,
d|16

Multiplicative functions arise naturally in the study of the prime
factorization of an integer. Before presenting the definition, we observe
that

7(2-10)=7(20) =6 #£2 - 4 = 7(2) . 7(10).
At the same time

o(2 - 10)=0(20) =42 #3 - 18 =0(2) - o(10).
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These calculations bring out the nasty fact that, in general, it need not
be true that

w(mn) = 1(m)r(n) and  o(mn) = o(m)o(n).

On the positive side of the ledger, equality always holds provided we
stick to relatively prime » and #. This circumstance is what prompts

DerFINITION 6-2. A number-theoretic function f is said to be
multiplicative if

S(mm) = f(m) ()
whenever gcd (m, n) = 1.

For simple illustrations of multiplicative functions, one need
only consider the functions given by f(#) =1 and g(#) =7 for all > 1.
It follows by induction that if f is multiplicative and »,, #g, ..., n, are
positive integers which are pairwise relatively prime, then

Sl g on) = f(n) f(ns) - - ().

Multiplicative functions have one big advantage for us: they
are completely determined once their values at prime powers are known.
Indeed, if # > 1 is a given positive integer, then we can write # = p,** 2
p/ in canonical form; since the p/* are relatively ptime in pairs, the
multiplicative property ensures that

fmy=F(p")f(p") - f(p):

If £ is 2 multiplicative function which does not vanish identically,
then there exists an integer # such that f(#) #0. But

foy=f@-1)=fnfQ).
Being nonzero, f(n) may be cancelled from both sides of this equation
to give f(1)=1. The point to which we wish to call attention is that
f(1) = 1 for any multiplicative function not identically zero.
We now establish that  and o have the multiplicative property.

THEOREM 6-3. The functions v and o are both multiplicative functions.

Proof: Let m and n be relatively prime integers. Since the result
is trivially true if either » or # is equal to 1, we may assume that
m>landn>1. If

k k k.
mzpl lp22.'_prr and ﬂ:ququJz"'qus
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are the prime factorizations of » and #, then, since ged (m, n) =1,

no p; can occur among the g,. It follows that the prime factorization
of the product m# is given by

wmn =P1kl . 'Prqulh - qus.
Appealing to Theotem 6-2, we obtain
)=k + 1) -+ DI+ 1)+ G+ )]

= (m)r(n).
In a similar fashion, Theotem 6-2 gives

K1+l Retl i+t Jstl

a(mn):[ﬁl 1._.]9, 1][91 1“_43 1]
pi—1 A—11L g—1 g, — 1
= a(m)o(n).

Thus, 7 and ¢ are multiplicative functions.

We continue our program by proving a general result on multi-
plicative functions. This requires a preparatory lemma.

Lemvma.  If ged (m, n)=1, then the set of positive divisors of mn consists
of all products d, d, , where d | n, dy | m and ged (dy, d;) = 1; furthermore,
these products are all distinct.

Proof: 1t is harmless to assume that »>1 and #>1; let m—

Pipe* e pfrand m=gy 71 g2+ g+ be their respective prime
factorizations. Inasmuch as the primes py, ..., b, 41, ..., g, are
all distinct, the prime factorization of m# is

k k;
mn:‘px 1"'PT 79111"'4315-

Hence, any positive divisor 4 of ## will be uniquely representable in
the form

d=P1u1"'Pra'%bl"'qsbs, OS”{S/Q, 0<b, <Ji

This allows us to write 4 as d= d, d,, where d, — 214 p,% divides

mand dy=g," .- ¢, divides . Since no p, is equal to any 4,, we
surely have ged (d,, 4,) = 1.

A keystone in much of our subsequent work is
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THEOREM 6-4. If f is a multiplicative function and F is defined by
Fo)= > f@),

din

then F is also multiplicative.

Proof: Let 7 and 7 be relatively prime positive integers. Then

Fim)= > fd)= f(d:d),

d|mn di|m
dajn

since every divisor d of mn can be uniquely wtitten as a product of
a divisor 4, of m and a divisor d, of #, where ged (d,, 45)=1. By
the definition of a multiplicative function,

f(dl dz) :f(dl)f(dZ)'

It follows that

F(mm)= > f(@d)f(d2)

@i
_ (d;ﬂm) (;f(dz)) — F(m)F (7).

It might be helpful to take time out and run through the proof
of Theorem 6-4 in a concrete case. Letting 7z =8 and »= 3, we have

F(8-3)= d.zuf@
= (1) +1(2) +£(3) + /&) +1(6) +£(8) +1(12) + £(24)
A )@ D ASA D) HfG D@D+ )
+f(4-3)+(83)
—fDF Q)+ D+ G+ DS D+ @SB+ @)
+ /A fG) +£(8)(3)

= [/(1) +/@ +/@ +/@ID) +/O)
=> fid)- > fd)=FOFQ).
418 FTE]

Theotem 6-4 provides a deceptively short way of drawing the
conclusion that = and o are multiplicative.
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CoroLLARY.  The functions T and o are multiplicative functions.

Proof: Wehave mentioned before that the constant function f (n=1
is multiplicative, as is the identity function f(s) =#. Since r and o
may be represented in the form

(n) = Z 1 and  o(n) = Zd,

din dain

the stated result follows immediately from Theorem 6-4.

PROBLEMS 6.1

Let m and # be positive integers and p,, p,, ..., p, be the distinct primes
which divide at least one of 7 or #. Then m and # may be written in the
form

I/I:Plklp2k2,..Prkr’ Withkizoforizl’ 2,_._,7'

n=plp2 . p withj, >0fori=1,2,...,r
Prove that

ged (m, n) :Plulf’zuz e pt, lem (m, n) =p" PR P

where #, = min {£,, /;}, the smaller of 4, and /, ; and », = max {#,, /,}, the
larger of 4, and ;,.
Use Problem 1 to calculate ged (12378, 3054) and lem (12378, 3054).
Deduce from Problem 1 that ged (m, #) lem (m, #)= mn for positive
integers 7 and ».
In the notation of Problem 1, show that ged (w, n)=1 if and only if
kji=0fori=1,2...,r
(@) Verify that (1) = 7(n + 1) = (n + 2) = 7(n + 3) holds for = 3655

and 4503.
(b) When n = 14, 206, and 957, show that o(s) = a(n + 1).

For any integer #>>1, establish the inequality 7(s) < 2V/n. [Hine: 1f

d| n, then one of d or #/d is less than or equal to V/n.]

Prove that:

(a) 7(n)is an odd integer if and only if # is a perfect square;

(b) ofn) is an odd integer if and only if # is a perfect square or twice a
perfect square. [Hint: If p is an odd prime, then 1 4 p+ p2 4 ... 4
p*is odd only when £ is even.]

Show that Y 4, 1/d = o(n)/n for every positive integer #.
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10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

If # is a square-free integer, prove that +(#) = 2", whete r is the number of
prime divisors of 7.

Establish the assertions below:

() If n=p,"1p,*2... p,* is the prime factorization of # > 1, then

1 1 1
306
(%) /1 2 Pr
(b) For any positive integer », o(n)n!>1+124+1/3 4.+ 1/n
[Hint: See Problem 8.]
() If n>1 is a composite number, then of#) >} V. [Hinz: Let
d|n, where 1 <d<<n, so 1 <nmld<n Ud< \/;, then #/d > \/ﬂ.]
Given a positive integer £ > 1, show that there are infinitely many integers
n for which 7(#) = 4, but at most finitely many » with o(n) = £ [Hinz:
Utilize Problem 10(a).]
(a) Find the form of all positive integers # satisfying +(#) = 10. What is
the smallest positive integer for which this is true?
(b) Show that there are no positive integers # satisfying o(#) = 10.
[Hint: Note that for n > 1, a(n) > n.)
Prove that there are infinitely many pairs of integers » and # with o(#?) =
o(n®). [Hint: Choose £ such that ged (4, 10) = 1 and consider the integers
m=>5k, n=4%]
For £ > 2, show each of the following:
(a) #n=2F"1 satisfies the equation o(#) = 2n —1;
(b) if 2¥ —1 is prime, then » = 2¢-1(2¥ — 1) satisfies the equation g(#) =
2n;
(c) if 2 —3 is prime, then # = 2%~1(2* — 3) satisfies the equation o(n) =
214 2.
Tt is not known if there are any integers » for which o(n) =24 1.
If #» and #-+ 2 are twin primes, establish that a(» 4 2) = g(n) 4 2; this
also holds for # = 434 and 8575.
(a) For any integer # > 1, prove that there exist integers #, and #, with
T(ny) -+ T(ny) = m.
(b) Prove that Goldbach’s Conjecture implies that for each even integer
2n there exist integers #, and #, with o(#,) + o(n,) = 2n.
For a fixed integer 4, show that the function f defined by f(#) =#* is
multiplicative.

Let f and g be multiplicative functions such that f(p*) == g(p¥) for each
prime p and £>1. Prove that f=g.

Prove that if f and g are multiplicative functions, then so is their product

Jg and quotient f/g (whenever the latter function is defined).
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20.

21,

22,

23.
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Define the function p by taking p(1) =1 and p(#) = 2, if the prime fact-
orization of #>1 is n=p,"1p,*>...p % For instance, p(8)=2 and
p(10) = p(36) = 2.

(a) Deduce that p is a multiplicative function.

(b) Find a formula for F(n) = 4, p(d) in terms of the prime factoriza-
tion of ».

For any positive integer #, prove that Yy, 7(d)> = (4, 7(d))% [Hint:
Both sides of the equation in question are multiplicative functions of
so that it suffices to consider the case n=p¥, where p is a prime.]
Given 72>0, let oy(#) denote the sum of the sth powers of the positive
divisors of #; that is,
o () = Z &
d|n
Verify the following:
(@) oo=r7and o, =o0.
(b) o, is 2 multiplicative function. [Hinz: The function f, defined by
J(») = ~*, is multiplicative.]
(€) I n=p,"p,"*... p " is the prime factorization of #, then

pysRIYD 1\ p skatD) _q p,sCer+1) __
o= () (5 ) - (=)
pf—1 P —1 Pt —1

For any positive integer #, show that

@ > od=> gf(d), and

dfn djn
®) > Zold)= > dr(d)
dafn din

[Hint: Since the functions F(n) = 3}, o(d) and G(n) = Y ain 8/d 7(d)
are both multiplicative, it suffices to prove that F(p¥) = G(p*) for
any prime p.]

THE MOBIUS INVERSION FORMULA

We introduce another naturally defined function on the positive integers,
the Md&bius u-function.
DeriniTion 6-3. For a positive integer #, define p by the rules

1lifrn=1

p(n)= {0 if p?| # for some ptrime p

(=1 if n=pyp,---p,, Whete the p, are distinct primes
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Put somewhat differently, Definition 6-3 states that u(#)=0
if # is not a square-free integer, while u(#) = (—1)" if 7 is square-free with
r ptime factors. For example: u(30) =p(2-3.5)=(—1)*=—1. The
first few values of u are

pD=1,p2)=—1,p@)=—1,p#H=0,u5)=—1,u(06) =1, ...
If p is a prime number, it is clear that u(p)= —1; also, u(p*)=0 for

k=2,

As the reader may have guessed already, the Mobius u-function is
multiplicative. This is the content of

THEOREM 6-5.  The function u is a multiplicative function.

Proof: We want to show that u(mn) = p(m)u(n), whenever » and
are relatively prime. If either p? | » or p? | #, p a prime, then p? | mn;
hence, u(mn) = 0= u(m)u(x), and the formula holds trivially. We
may therefore assume that both 7 and # are square-free integers.

Say, m=p,ps--Prs B=q192" 45, the primes p; and g, being all
distinct. Then
plmm) =p(pr-- - Prgr - gs) =(—1)**
= (=1 (=1 =pm)u@»),

which completes the proof.

Let us see what happens if u(d) is evaluated for all the positive
divisors 4 of an integer # and the results added. In case » =1, the answer
is easy; here,

> ud)=p(l)=1.
d[1
Suppose that # > 1 and put
F() =" u(d).
d[n

To prepare the ground, we first calculate F(») for the power of a prime,
say, n=p*. 'The positive divisors of p* are just the £+ 1 integers 1,
P P54 ..., DK, so that

F(p)= D uld)=p(l) +u(@) +p(p) + - +p(p)
dalpk
=p(1) + () =1+(~1)=0.
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Since p is known to be a multiplicative function, an appeal to

Theorem 6-4 is legitimate; this result guarantees that F is multiplicative

too. Thus, if the canonical factotrization of # is n=p,*p,*2... p*

then F() is the product of the values assigned to F for the prime powers
in this representation:

F(n) = F(p,")F(p."*) - - - F(p,") = 0.

We record this result as

THEOREM 6-6. For each positive integer n > 1,
lifn=1
ZMH@ = {0 £ 1
where d runs through the positive divisors of n.

For an illustration of this last theorem, consider » = 10. The
divisors of 10 are 1, 2, 5, 10 and the desired sum is

> wld) = (1) + (@) + () + (10)
d|10
=14 (=1)+(=1)+1=0.

The full significance of Mébius’ function should become apparent
with the next theorem.

THEOREM 6-7 (Mébius Inversion Formula). Let F and f be two
number-theoretic functions related by the formula

F(rn) = z 1.
d|n
Then
fin) = D wdFn/d) = > u(n/d)F(d).
d|n d|n

Proof: ‘The two sums mentioned in the conclusion of the theorem
are seen to be the same upon replacing the dummy index 4 by 4" =
n|d; as d ranges over all positive divisors of #, so does 4'..

Carrying out the required computation, we get

1) > wdF@d)=> (p(d) > f(f)) =Z( > zﬂ(d)f(f)).

djn djn cl(n/d) cj(nid)
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It is easily verified that d|» and ¢| (s/d) if and only if ¢|# and
d|(nfc). Because of this, the last expression in (1) becomes

@ Z (Clgd)#(d)f(‘)) => ( > f(f):u(a'))

&\
=> (f(c)dgmp(d)).

cin

In compliance with Theorem 6-6, the sum Y 4/, u(d) must vanish
except when #/c = 1 (that is, when # = ¢), in which case it is equal to
1; the upshot is that the right-hand side of (2) simplifies to

> (f(f) > M(d)> =D f©)- 1=1@),
c|n di(njc) c=n

giving us the stated result.

Let us use »= 10 again to illustrate how the double sum in (2)
is turned around. In this instance, we find that

(2, HASO) =HDLW) + 1) +15) +1(10)]
4|10 \c|(10/d)
| + L) +fG) + G +1@)] +p10)/D)
= FO[(1) +p(2) +4(5) -+ p(10)]
+/@I(1) + 1) +F G + #@)] +FA0)u(1)

> (> f(f)#(d))-

cj10 (d|(10/c)

To see how Mobius inversion works in a particular case, we
remind the reader that the functions 7 and o may both be described as
“sum functions ”’:

-r(n):Zl and o(n):Zd.

d|n din

Theorem 6-7 tells us that these formulas may be inverted to give

1= > uln/d)7d) and n=" wn/d)od),

dln din
valid for all » > 1,

Theorem 6-4 insures that if f is a multiplicative function, then
so is F(n)= Y 4» f(d). Turning the situation around, one might ask
whether the multiplicative nature of F forces that of f. Surprisingly
enough, this is exactly what happens.
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TueorReM 6-8. If F is a multiplicative function and

Fm)= > f@),

din

then [ is also multiplicative.

Proof: Let m and # be relatively prime positive integers. We recall
that any divisor 4 of mn can be uniquely written as d=d, d,, where
dy | m,dy | n,and ged (d,, 4;) = 1. Thus, using the inversion formula,

fom =3 wdF (%)

&
_ %ﬂ w(dy dp)F (;1’%2)
=3 Warr (g);nwﬁ (5) =remsen,

which is the assertion of the theorem. Needless to say, the multipli-
cative character of u and of F is crucial to the above calculation.

PROBLEMS 6.2

(a) For each positive integer 7, show that

p(m)u(n + Dp(n + 2)u(n + 3) =0.
(b) For any integer n >3, show that Y &, u(4) =1.
The Mangoldt function A is defined by

log p, if n= p*, where p is a prime and £>1
0, otherwise

Al) — {

Prove that A(n)= Ya.p(n/d)logd= —7 4o u(d)logd. [Hint: First
show that Y 4, A(d) =log 7 and then apply the Mobius Inversion For-
mula.]
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3. Let n=p,"'p,*>... p,* be the prime factorization of the integer » > 1.
If fis a multiplicative function, prove that

> W f@d) =0 —fE)t —fpa)) (1 = f(pr)-

ajn

[Hint: By Theorem 6-4, the function F defined by F(n) = Y 4, u(d)f(d)
is multiplicative; hence, F(n) is the product of the values F(p;*).]
4. If the integer #n>>1 has the prime factorization 7= p,*1p,*2... p ¥ use

Problem 3 to establish the following:

@ > udrd)=(=1r;

din

®) D wdold)=(~1pipa-+ v

din

© > wd)fd=1—1/p)A = 1fpo)- (1 —1[p);

din .

@ > dud)=(1—p)1—pa)--(1 — ).

djn

5. Let S(#n) denote the number of square-free divisors of #. Establish that

() =d;l |u@)] =2

where r is the number of distinct primedivisors of #. [Hint: § is a multi-
plicative function.]

6. Find formulas for Y 4, p*(d)/7(d) and Y 4 p*(d)/o(d) in terms of the prime
factorization of n.

7. 'The Liouville X-function is defined by A (1) =1 and A(n) = (—1)fr+¥e+- +kr
if the prime factorization of #>1 is n=p,*p,**... p*".  For instance,
AM360) = A(28.32. 5) =(—1)3+2+ 1 =(—1)=1.

(2) Prove that A is a multiplicative function.
(b) Given a positive integer #, verify that

1 if n= m? for some integer
> =| 8

0 otherwise
din

8. If the integer # > 1 has the prime factorization 7 = p,**p,*2. .. p,*r establish
that Y 4, u(@Ad) = 2".
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6.3 THE GREATEST INTEGER FUNCTION

The greatest integer or “bracket” function [ ] is especially suitable for
treating divisibility problems. While not strictly a number-theoretic
function, its study has a natural place in this chapter.

DeriNiTION 6-4. For an arbitrary real number x, we denote by
[x] the largest integer less than or equal to x; that is, [x] is the unique
integer satisfying x — 1 < [x] < x.

By way of illustration, [ ] assumes the particular values
[-3/2)=—2,[V2] =1, [1/3] =0, [x] = 3, [—n] = —4.

The important observation to be made here is that the equality
[x] = > holds if and only if x is an integer. Definition 6-4 also makes
plain that any real number x can be written as

x=[x]+0

for a suitable choice of 8, with 0 <8 < 1.
We now plan to investigate the question of how many times a
particular prime p appears in #!. For instance, if p=3 and #=9, then

91=1.2.3.4.5.6-7-8.9
—27.3.5.7,

so that the exact power of 3 which divides 9! is 4. It is desirable to have
a formula that will give this count, without the necessity of always
writing #! in canonical form. This is accomplished by

THEOREM 6-9. If n is a positive integer and p a prime, then the excponent
of the highest power of p that divides n! is

2 [,

(This is not an infinite series, since [np¥] = O for p* >n.)

Progf: Among the first # positive integers, those which are divisible
by p are p, 2p, ..., 1p, where ¢ is the largest integer such that £p <
n; in other words, # is the largest integer less than or equal to #[p
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(which is to say #= [#/p]). Thus, there are exactly [#/p] multiples
of p occurring in the product that defines #!, namely,

©) P20, -5 [#[p]p-

The exponent of p in the prime factorization of #! is obtained
by adding to the number of integers in (1), the number of integers
among 1, 2, ..., » which are divisible by p?, and then the number
divisible by %, and so on. Reasoning as in the first paragraph, the
integers between 1 and # that are divisible by p? are

©) P% 2p% - [[p%1P%,
which are [#/p?] in number. Of these, [#/p%] are again divisible by p:
€) P,20° ., [n[p°1P°.

After a finite number of repetitions of this process, we are led to
conclude that the total number of times p divides #! is ) 7., [#/p*].

This result can be cast as the following equation, which usually
appears under the name of Legendre’s formula:

o0
X (n/pk]

”!=npk=1

P<n

Example 6-2
We would like to find the number of zeroes with which the decimal
representation of 50! terminates. In determining the number of times
10 enters into the product 50!, it is enough to find the exponents of
2 and 5 in the prime factorization of 50!, and then to select the
smaller figure.
By direct calculation we see that

[50/2] + [50/22] -+ [50/2°] -+ [50/2¢] + [50/2°]
=25+124+6+34+1=47.
Theorem 6-9 tells us that 2¢7 divides 50!, but 248 does not. Similarly,
[50/5] + [50/5%} =10 +2=12

and so the highest power of 5 dividing 50! is 12. ‘This means that 50!
ends with 12 zeroes.
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We cannot resist using Theorem 6-9 to prove the following fact.

THEOREM 6-10. If n and r are positive integers with 1 <r <n, then
the binomial coefficient
(ﬂ) _ n!
r]  rlin—r)!

is also an integer.

Progf: 'The argument rests on the observation that if 2 and 4 are
arbitrary real numbers, then [2+ 4] >[a] 4-[¢]. In particular, for
each prime factor of p of ! (n—r)l,

#pP] = [7[pF] + [(n — )p"], k=1,2,....

Adding these inequalities together, we obtain

@ D= D Il + D [ — )P
k21 k21 k21

The left-hand side of (1) gives the exponent of the highest power of
the prime p that divides #!, whereas the right-hand side equals the
highest power of this prime contained in rl(»—r)!. Hence, p
appears in the numerator of #!/rl(n — r)! at least as many times as it
occurs in the denominator. Since this holds true for every prime
divisor of the denominator, rl(n—r)! must divide #l, making
nljrl(n— r)! an integer.

CoroLLARY. For a positive integer r, the product of any r consecutive
positive integers is divisible by r!.

Proof: The product of r consecutive positive integers, the largest
of which is #, is

n(n—V)(n—2)---(n—r+1).

Now we have

Since #nljrl(n—r)! is an integer, it follows that r! must divide the
product #(n — 1) - - -(n— r 4 1), as asserted.
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We pick up a few loose threads. Having introduced the greatest
integer function, let us see what it has to do with the study of number-
theoretic functions. Their relationship is brought out by

THEOREM G6-11. Let f and F be number-theoretic functions such that
F(n)= Z Fd).
din

Then, for any positive integer N,
N N
> F)= > fAIN]A.
n=1 k=1

Proof:  We begin by noting that

N

1) iF(n) => > @)

n=1 djn

The strategy is to collect terms with equal values of f(4) in this
double sum. For a fixed positive integer £ <N, the term f(£)
appears in Y 4, f(4) if and only if £ is a divisor of 7. (Since each
integer has itself as a divisor, the right-hand side of (1) includes
f(#), at least once.) Now, in order to calculate the number of sums
Y a1n f(d) in which f(%) occurs as a term, it is sufficient to find the
number of integers among 1, 2, ..., IN which are divisible by 4.
There are exactly [IN/£] of them:

k, 2k, 3, ..., [IN|AA.

Thus, for each 4 such that 1 <4 <N, f(4) is a term of the sum
Y ainf(d) for [N]£] different positive integers less than or equal to IN.
Knowing this, we may rewrite the double sum in (1) as

N

> > fid)= Z JRNJA

n=1dn

and our task is complete.
As an immediate application of Theorem 6-11, we deduce

CoroLrarY 1. If N is a positive integer, then

- S

n=1
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Proof: Noting that 7(n) = Y 4, 1, we may write = for F and take
/ to be the constant function f(#) = 1 for all ».

In the same way, the relation o(#) = 3 4, 4 yields

CoroOLLARY 2. If N is a positive integer, then

N

i o(n) = Z #[N/n].

n=1 n=1
These last two corollaries are perhaps clarified with an example.

Example 6-3
Consider the case N =06. The results on page 110 tell us that

i (1) = 14.

From Corollary 1,

Z [6/s] = [6] + [3] + [2] -+ [3/2] + [6/5] + [1]
=6+34+24+1+1+1=14,

as it should. In the present case, we also have
6
z o(n) = 33,

n=1

while a simple calculation leads to

z #[6/n] = 1{6] + 2[3] + 3[2] + 4[3/2] - 5[6/5] + 6[1]

=1.6+2.-34+3.2+4.14+5.-1+6-1=33.

PROBLEMS 6.3

1. Given integers @ and # >0, show that there exists a unique integer r
with 0 <7 < b satisfying 2 = [a/b]b + 7.

2. Let x and y be real numbers. Prove that the greatest integer function
satisfies the following properties:
(a) [x+ #n} = [x] -+ » for any integer ».
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(b) [¥]+ [—x]=0or —1, according as x is an integer or not. [Hinz:
Write x = [x] 4 0, with 0 << <1, s0 —x = —[x] —1 4 (1—6).]
(©) [*x]+[y] <[x+r] and, when x and y are positive, [x][ 3] <[xy].
(d) [x/n] = [[x]/n] for any positive integer #. [Hint: Let x[n = [x[n] + 6,
where 0 << 0 < 1; then [x] = n[x/n] + [#6].]
(&) [nm|k] = n[m|k] for positive integers n, m, £.
© [+ DI+ [+l <[2%] + (2] [Hint: Let x=[x]+6,0< 6 <1,
and y=[y] 4+ 6, 0<0 < 1. Consider cases in which neither, one,
or both of § and 6’ are greater than 1.]
3. Find the highest power of 5 dividing 1000! and the highest power of
7 dividing 2000!.
4. Find the exponent of the highest power of the prime p dividing
(a) the product 2.4.6...(2n) of the first # even integers;
(b) the product 1.3.5...(27 —1) of the first # odd integers. [Hins:
Note that 1.3.5-.-(2n — 1) = (2n)!/2"41.]
Show that 1000! terminates in 249 zeroes.

If #>1 and p is a prime, prove that
(@) (2a)!/(n!)?is an even integer. [Hint: Use induction on #.]
(b) The exponent of the highest power of p which divides (2r)!/(n!)? is

2 ([2n]p#] —2[n|p").

(c) In the prime factorization of (2#)!/(n!)? the exponent of any prime p
such that # < p << 2# is equal to 1.

7. Let the positive integer # be written in terms of powers of the prime p
so that n=ag p¥+ ..  + a,p? + 4, p + a5, where 0<<a, <p. Show that
the exponent of the highest power of p appearing in the prime factor-
ization of #! is

n—(a+ -+ ay +a; + ap)
p—1 '

8. (a) Using Problem 7, show that the exponent of highest power of p
dividing (p* —1)! is [p* —(p — 1)4 —1)j(p —1). [Hint: Recall the
identity p* —1=(p —)(p* "} + -+ 2+ p+1)]

(b) Determine the highest power of 3 dividing 80! and the highest
power of 7 dividing 2400!. [Hinz: 2400 = 7* — 1.]

9. Find an integer #» > 1 such that the highest power of 5 contained in #!
is 100. [Hinz: Since the sum of coefficients of the powers of 5 needed
to express # in the base 5 is at least 1, begin by considering the equation
(n—1)/4=100.]
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10.

11.
12.

Number-Theoretic Functions

Given a positive integer N, show that

@ > wEINJ=1;
®) | > woifn| <1.

llustrate Problem 10 in the case N =6.
Verify that the formula

> AN =[VN]

n=1

holds for any positive integer N. [Hint: Apply Theorem 6-11 to the

CHAP. 6

multiplicative function F(#)= ) 4, A(d), noting that there are (V]

petfect squares not exceeding 7.]



{

Fuler’s Generalization
of Fermat’s Theorem

“ Euler calculated without apparent effort, just
as men breathe, as eagles sustain themselves in the

air.”
ARAGO




7.1 LEONHARD EULER

The importance of Fermat’s work resides, not so much in any contribu-
tion to the mathematics of his own day, but rather in its animating effect
on later generations of mathematicians. Perhaps the greatest disappoint-
ment of Fermat’s career was his inability to interest others in his new
number theory. A century was to pass before a first class mathematician,
Leonhard Euler (1707-1783), either understood or appreciated its sig-
nificance. Many of the theorems announced without proof by Fermat
yielded to Euler’s skill, and it is likely that the arguments devised by
Euler were not substantially different from those which Fermat said he
possessed.

The key figure in 18th century mathematics, Euler was the son of
a Lutheran pastor who lived in the vicinity of Basel, Switzerland. His
father earnestly wished him to enter the ministry and, at the age of 13,
sent his son to the University of Basel to study theology. There he came
into contact with Johann Bernoulli—then one of Europe’s leading
mathematicians—and he befriended Bernoulli’s two sons, Nicolaus and
Daniel. Within a short time, Euler broke off the theological studies
that had been selected for him in order to address himself exclusively
to mathematics. He received his master’s degree in 1723 and in 1727,
when he was only 19, won a prize from the Paris Academy of Sciences
for a treatise on the most efficient arrangement of ship masts.

Where the 17th century had been an age of great amateur mathe-
maticians, the 18th century was almost exclusively an era of professionals
—university professors and members of scientific academies. Many
of the reigning monarchs delighted in regarding themselves as patrons of
learning, and the academies served as the intellectual crown jewels of the
royal courts. While the motives of these rulers may not have been
entirely philanthropic, the fact remains that the learned societies con-
stituted important agencies for the promotion of science. They pro-
vided salaries for distinguished scholars, published journals of research
papers on a regular basis, and offered monetary prizes for scientific
discoveries. Euler was at different times associated with two of the

134
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newly formed academies, the Imperial Academy at St. Petersburg (from
1727 to 1741, and again, from 1766 to 1783) and the Royal Academy in
Berlin (from 1741 to 1766). In 1725, Peter the Great had founded the
Academy of St. Petersburg and attracted a number of leading mathe-
maticians to Russia, including Nicolaus and Daniel Bernoulli. On
their recommendation an appointment was secured for Euler. Because
of his youth, he had recently been denied a professorship in physics at
the University of Basel and was only too ready to accept the invitation of
the Academy. In Petersburg, he soon came in contact with the versatile
scholar Christian Goldbach (of the famous conjecture), 2 man who
subsequently rose from professor of mathematics to Russian Minister of
Foreign Affairs. Given his interests, it seems likely that Goldbach was
the one who first drew Euler’s attention to the work of Fermat on the
theory of numbers.

Euler eventually sickened of the political repression then prevalent
in Russia and accepted the call of Frederick the Great to become 2 member
of the Berlin Academy. The story is told that, during a reception at
Court, he was kindly received by the Queen Mother who inquired why so
distinguished a scholar should be so timid and reticent; he replied,
“Madame, it is because I have just come from a country where, when one
speaks, one is hanged.” Flattered by the warmth of the Russian feeling
towards him, however, and unendurably offended by the contrasting
coolness of Frederick and his court, Euler returned to Petersburg in
1766 to spend his remaining days. Within two or three years of his
going back, Euler had the misfortune to become totally blind.

However, Euler would not permit blindness to retard his scien-
tific work; aided by a phenomenal memory, his writings grew to such
enormous proportions as to be virtually unmanageable. Without a
doubt, Euler was the most prolific writer in the entire history of mathe-
matics. He wrote or dictated over 700 books and papers in his lifetime,
and left so much unpublished material that the St. Petersburg Academy
did not finish printing all his manuscripts until 47 years after his death.
The publication of Euler’s collected works was begun by the Swiss
Society of Natural Sciences in 1911 and it is estimated that more than
75 large volumes will ultimately be required for the completion of this
monumental project. ‘The best testament to the quality of these papers
may be the fact that on twelve occasions they won the coveted biennial
prize of the French Academy in Paris.

During his stay in Berlin, Euler acquired the habit of writing
memoir after memoir, placing each when finished at the top of a pile of
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manuscript. Whenever material was needed to fill the Academy’s journal,
the printers would help themselves to a few papers from the top of the
stack. As the height of the pile increased more rapidly than the demands
made upon it, memoirs at the bottom tended to remain in place a long
time. This explains how it happened that various papers of Euler were
published, while extensions and improvements of the material contained
in them had previously appeared in print under his name. We might
also add that the manner in which Euler made his work public contrasts
sharply with the secrecy customary in Fermat’s time.

7.2 EULER’S PHI-FUNCTION

The present chapter deals with that part of the theory arising out of the
result known as Euler’s Generalization of Fermat’s Theorem. In a
nutshell, Euler extended Fermat’s Theorem, which concerns congruences
with prime moduli, to arbitrary moduli. While doing so, he introduced
an important number-theoretic function, described as follows:

Derinition 7-1. For 7> 1, let ¢(#) denote the number of positive
integers not exceeding # that ate relatively prime to #.

As an illustration of the definition, we find that $(30) = 8; for,
among the positive integers that do not exceed 30, there are eight which
are relatively prime to 30; specifically

1,7, 11, 13, 17, 19, 23, 29.
Similatly, for the first few positive integers, the reader may check that

=142 =1, $3)=2, §(4) =2, $(5) =4, $(6)=2, §(7) =6, ...

Notice that ¢(1) = 1, since ged (1, 1) = 1. While if # > 1, then ged (n, 1) =
n7#1, so that ¢(n) can be characterized as the number of integers less
than 7 and relatively prime to it. ‘The function ¢ is usually called the Ex/er
Phi-function (sometimes, the indicator ot totient) after its originator; the
functional notation $(), however, is credited to Gauss.

If # is a prime number, then every integer less than 7 is relatively
prime to it; whence, ¢(#) =# — 1. On the other hand, if » >1 is com-
posite, then 7 has a divisor 4 such that 1 <d < #. It follows that there
are at least two integers among 1, 2, 3, ..., » which are not relatively
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ptime to 7, namely, d and # itself. As a result, () <# — 2. This proves:
forn>1,
é(n) =n—1 if and only if # is prime.

The first item on the agenda is to derive a formula that will allow
us to calculate the value of ¢(z) directly from the prime-power factot-
ization of n. A large step in this direction stems from

TureoreM 7-1.  If p is a prime and k >0, then
¢)=p—p - =pA=1p)

Proof: Cleatly, ged(n, p¥)=1 if and only if p f# There are
-1 integers between 1 and p* which are divisible by p, namely

P 2P, 3p, o (PF7 1P

Thus, the set {1, 2, ..., p*} contains exactly p* — p*~* integers which
are relatively prime to p* and so, by the definition of the phi-function,

B =pF P
For an example, we have
$(9) =43 =3"—3=0;

the six integers less than and relatively prime to 9 are 1, 2, 4, 5, 7, 8.
To give a second illustration, there are 8 integers which are less than
16 and relatively prime to it, to wit, 1, 3, 5,7,9, 11,13, 15.  Theorem 7-1
yields the same count:

$(16) = (24) = 2¢ — 23 = 16— 8 =8.

We now know how to evaluate the phi-function for prime
powers and out aim is to obtain a formula for ¢(#) based on the factoriza-
tion of # as a product of primes. 'The missing link in the chain is obvious:
show that ¢ is a multiplicative function. We pave the way with an easy
lemma.

LemmMa.  Given integers a, b, ¢, gcd (a, be) = 1 if and only if ged (a, b) =1
and ged (a, o) =1.

Proof: Suppose first that ged (g, b¢) = 1 and put d = ged (4, 4). Then
d|aandd| b, whence d| aand 4| be. This implies that ged (4, be) =
d, which forces d=1. Similar reasoning gives rise to the statement

ged (a4, 0) =1
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For the other direction, let gcd (s, )= 1= gcd(a, ¢) and
assume that ged (4, &¢) = d, > 1. Then 4, must have a prime divisor
p- Since d, | be, it follows that p | bc; in consequence, p | b ot p | .
If p | b, then (by virtue of the fact that p | @) gcd (4, &) > p, a contradic-
tion. In the same way, the condition p | ¢ leads to the equally false
conclusion that ged (4, ¢) > p.  Thus d; = 1 and the lemma is proven.

THEOREM 7-2.  The function ¢ is a multiplicative function.

Proof: 1t is required to show that ¢(mn) = $(m)p(n), whenevetr m
and # have no common factor. Since ¢(1) = 1, the result obviously
holds if either # or # equals 1. Thus we may assume that » > 1 and
n>1. Arrange the integers from 1 to m» in 7 columns of # integers
each, as follows:

1 2 r m
m+1 m+2 m+r 2m
2m +1 2m 42 2m+r 3m
(n—ljm—i—l (n—ljm+2 (n——ljm—l—r nm

We know that ¢(mn) is equal to the number of entries in the above
array which are relatively prime to mn; by virtue of the lemma,
this is the same as the number of integers which are relatively prime
to both 7 and #.

Before embarking on the details, it is worth commenting on
the tactics to be adopted: Since gcd (gm + 7, m) = ged (r, m), the
numbers in the rth column are relatively prime to  if and only if »
itself is relatively prime to ». Therefore, only $(») columns contain
integers relatively prime to 7, and every entry in the column will be
relatively prime to 7. The problem is one of showing that in each of
these ¢(7) columns there are exactly ¢(#) integers which are relatively
prime to #; for then there would be altogether ¢(#)d(#) numbers in
the table which are relatively prime to both » and #.

' Now the entries in the 7th column (where it is assumed that
ged (r, m) = 1) are

rymAr,2mA4-r, o0, (n— Dm +r.

There are » integers in this sequence and no two ate congruent
modulo #. Indeed, were

km +r=jm+ r (mod #)
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with 0 < 4 <j <, it would follow that A ==;jm (mod ). Since
ged (m, n) = 1, we could cancel  from both sides of this congruence
to arrive at the contradiction that # = (mod #). Thus, the numbers
in the rth column are congruent modulo #to 0, 1,2, ..., n— 1, in
some order. But if s=#(mod 7), then ged (s, #) =1 if and only if
ged (¢, n)=1. The implication is that the rth column contains as
many integers which are relatively prime to 7 as does the set {0, 1,
2,...,n— 1}, namely, ¢(n) integers. Therefore, the total number of
entries in the array that are relatively prime to both 7 and # is
$(m)p(n). This completes the proof of the theorem.

With these preliminaries in hand, we can now prove

THEOREM 7-3. If the integer n>>1 has the prime factorization n=
PR i then
$(m) = (pi" — £ TN — ) - (B — 25T
=n(l —=1p )1 —1pa) --- (1= 1[pn)-

Proof: We intend to use induction on 7, the number of distinct
prime factors of #n. By Theorem 7-1, the result is true for r=1.
Suppose that it holds for r =. Since

ged (Plklpzka Tt Ptk‘, V2 =1,

the definition of multiplicative function gives

S -+ PP = (21 e PN ")
= ¢(P1k1 v Piki)(lb{+1kul __Pi+1kt+1"1)'
Invoking the induction assumption, the first factor on the right-hand
side becomes
$(p1F1ps 7 - ) = (1" — o NP2 — P (=TT

and this serves to complete the induction step, as well as the proof.

Example 7-1
Let us calculate the value $(360), for instance. The prime-power
decomposition of 360 is 2° - 3% - 5, and Theorem 7-3 tells us that

$(360) = 360(1 — H)(1 — H(1 — )
—360-3-%-4=96.
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The sharp-eyed reader will have noticed that, save for ¢(1) and
#(2), the values of ¢(#) in our examples are always even. This is no
accident, as the next theorem shows.

THEOREM 7-4.  For n>2, §(n) is an even integer.

Proof:  First, assume that # is a power of 2, let us say » = 2%, with
k>2. By Theorem 7-3,

$(1) = $(2) =21 — ) =2""",
an even integer. If 7 does not happen to be a power of 2, then it is
divisible by an odd prime p; we may therefore write # as 7= pm,
where 4>1 and ged(p*, m)=1. Exploiting the multiplicative
nature of the phi-function, one gets

o) = ¢(p*)d(m) = p(p — D(m),
which is again even since 2| p — 1.

We can establish Euclid’s Theorem on the infinitude of primes
in the following new way: As before, assume that there are only a finite
number of primes. Call them p,, p,, ..., p, and consider the integer
#=pips--- p,. We argue that if 1 <4 <#, then gcd(a, #) £1. For,
the Fundamental Theorem of Arithmetic tells us that « has a prime divisor
g. Since p;, pa, ..., p, are the only primes, ¢ must be one of these p,,
whence ¢| #; in other wotds, ged (4, #) > 4. The implication of all this
is that ¢(#) = 1, which is clearly impossible by Theorem 7-4.

PROBLEMS 7.2

1. Calculate $(1001), $(5040), and $(36,000).
. Verify that the equality ¢(#) = ¢(# + 1) = ¢(# + 2) holds when 7= 5186.
3. Show that the integers » = 3% . 568 and » = 3* . 638, where £ > 0, satisfy
simultaneously

™(m) = 7(n), o(m) = a(n), $(m) = $(n).

4. Establish each of the assertions below:
(a) If nis an odd integer, then ¢(2#) = ¢().
(b) If #is an even integer, then ¢(2n) = 2¢4(n).
(c) (3n)=3¢(n) if and only if 3| .
(d) &(3n)= 2¢(n) if and only if 3 } .
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10.

11.

12,

13.

14.

(e) ¢(n)=n/2 if and only if n=2* for some k>1. [Hint: Write n=
2¢N, where N is odd, and use the condition ¢(#) = /2 to show that
N=1]

Prove that the equation ¢(r)=(n+2) is satisfied by »= 2(2p —1)

whenever p and 2p — 1 are both odd primes.

Show that there are infinitely many integers # for which ¢(x) is 2 perfect

square. [Hint: Consider the integers # = 2+l for k=1,2,....]

Verify the following:

(@) For any positive integer 7, W n< d(n) <n. [Hint: Write n—=
2kop,F e p M s0 $ln) =207 py T Ty = 1) e (B, = D)
Now use the inequalities p —1> \/;; and £ — L > 4/2 to obtain
B(i) = 2907 p, 172 o p ]

(b) If the integer #>>1 has r distinct prime factors, then ¢(n) > n/2'.

(c) If n>1 is a composite number, then d(n) < n—V/n. [Hint: Let p
be the smallest prime divisor of #, so that p < Vs Then ¢(n)<
#(1 —1/p)-]

Prove that if the integer # has r distinct odd prime factors, then 27| ¢(n).

Prove that:

(a) If » and #+ 2 are twin primes, then ¢(n+ 2) = ¢(n) + 2; this also
holds for # = 12, 14, and 20.

by Ifpand2p+1are both odd primes, then 7= 4p satisfies ¢(n + 2) =
B(n) + 2.

If every prime that divides # also divides , establish that b(nm) = n(m);

in particular, ¢(n2) = n(n) for every positive integer 7.

(a) If ¢(n)| n —1, prove that # is a square-free integer. [Hint: Assume
that # has the prime factorization 7= p,"'p," - - 27, where & > 2.
Then p, | $(n), whence p, | #—1, which leads to a contradiction.]

(b) Show that if n=2% or 2¥37, with & and ; positive integers, then
$(1) | .

If n=p,"1p,"2 - 2,7, derive the inequalities

@ o) =1 —1p1 —1/p?) - (1 —1/p?), and

(b) 7(n)(n) =>n. [Hint: Show that m(m)d(n) =27 - n(l /2).]

Assuming that d| n, prove that ¢(d) | é(n). [Hint: Work with the prime

factorizations of 4 and #.]

Obtain the following two generalizations of Theorem 7-2:

(a) For positive integers » and #,

G(m)p(n) = $(mm)p(d)/d,
where d = ged (w, 7).

(b) For positive integers 7 and »,

b(m)p(m) = $(ged (m, m))g(lem (, n)).
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15. Show that Goldbach’s Conjecture implies that for each even integer
2n there exist integers #, and 7, with ¢(n,) + d(n,) = 2n.

16. Given a positive integer 4, show that
(a) there are at most a finite number of integers # for which ¢(n) = 4;
(b) if the equation ¢(n) =4 has a unique solution, say #=1#,, then

4| ny. [Hint: See Problem 4(a) and 4(b).]
A famous conjecture of Carmichael is that the number of solutions of
é(n) = 4 cannot be equal to one.

17. Find all solutions of ¢(n) =16 and ¢(n) = 24. [Hint: If n=p ,*1p,*2 ...
P satisfies ¢(n) = £, then n=[4/I1 (p, —1)] Ip;. 'Thus the integers
d;=p; —1 can be determined by the conditions (1) 4;| 4, (2) 4,4+ 1 is
prime and (3) k/ I1 d; contains no prime factor not in II p;.]

18. (a) Prove that the equation ¢(#) = 2p, where p is a prime number and

2p 4 1 is composite, is not solvable.
(b) Prove that there is no solution to the equation ¢(r) = 14, and that
14 is the smallest (positive) even integer with this property.

19. If pis a prime and £ > 2, show that ¢($(p*)) = p*~2((p — 1)?).

7.3 EULER’S THEOREM

As remarked earlier, the first published proof of Fermat’s Theorem
(that 2»~*=1 (mod p) if p ¥ a) was given by Euler in 1736. Somewhat
later, in 1760, he succeeded in generalizing Fermat’s Theorem from
the case of a prime p to an arbitrary integer #». This landmark result
states: if ged (4, #) = 1, then 2°™ =1 (mod #).

For example, putting # = 30 and 2= 11, we have

11269 =118 = (112)* = (121)* = 1* =1 (mod 30).
As a prelude to launching our proof of Euler’s Generalization
of Fermat’s Theorem, we require a preliminary lemma.
LemMA. Let n>1 and ged (e, n)=1. If ay, ay, ..., ayem, are the
positive integers less than n and relatively prime to n, then
aay, ady, ..., Adyq,
are congruent modulo n to ay, ag, ..., Ay, i1 Some order.

Proof: Obsetrve that no two of the integers aa,, aay, ..., adyy,
are congruent modulo #. For if az,=aa, (mod #), with 1 <7/ <
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J < $(n), then the cancellation law yields 2, = 4, (mod #), a contradic-
tion. Furthermore, since gcd (4;, #) =1 for all 7and ged (4, 7) =1,
the lemma on page 137 guarantees that each of the aa, is relatively
prime to #.

Fixing on a particular aa;, there exists a unique integer 4,
where 0 < b <, for which 4a; = b (mod 7). Because

ged (b, #) = ged (aa;, 1) =1,

b must be one of the integers a,, a5, ..., dpmy- All told, this proves
that the numbers aa, , aa,, ..., ddym, 2nd the numbers 4,, a,, ...,
44, ate identical (modulo #) in a certain order.

TueoreM 7-5 (Buler). If n is a positive integer and ged(a, n)=1
then a*™ =1 (mod 7).

Proof: There is no harm in taking » >1. Leta,, a5, ..., o) be
the positive integers less than # which are relatively prime to 7.
Since ged (g, #) =1, it follows from the lemma that 4,, aa,, ...,
a4, are congruent, not necessarily in order of appearance, to
Ay, dg, -+ dpmy. Then

aa, =4, (mod #),

aay, = ay (mod #),

ady@y = a:b(n) (mOd ”),

whete @, , @b, ..., dyw, are the integers a,, 4z, ..., 4y i0 SOMeE
order. On taking the product of these ¢(#) congruences, we get

(aa,)(aaz) -+ (Bapm) =41 a5+ Gpm) (mod #)
=a,d, -+ A, (mod )

and so
at™ayay - Apmy) =14z Ao (mod #).

Since gcd (4, #) =1 for each 7, the lemma preceding Theorem 7-2
implies that ged (4145 * " dg(m > #) = 1. Therefore we may divide
both sides of the foregoing congruence by the common factor
4,4y -+ gy, leaving us with

@™ =1 (mod »).
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This proof can best be illustrated by carrying it out with some
specific numbers. Let »=19, for instance. The positive integers less
than and relatively prime to 9 are

1,2,4,57,8.

These play the role of the integers 4, , a,, ..., @4, in the proof of Theorem
7-5. If a= —4, then the integers aa, are

—4, —8, —16, —20, —28, —32,
where, modulo 9,
—4=5 —8=1,—-16=2, —20=7, —28=8, —32=4.
When the above congruences are all multiplied together, we obtain
(—4)(—8)(—16)(—20)(—28)(—32) =5 -1.2.7 .8 . 4 (mod 9),
which becomes
(1-2.4.5.7.8)(—4)°=(1-2-4-5.7-.8) (mod 9).

Being relatively prime to 9, the six integers 1, 2, 4, 5, 7, 8 may be suc-
cessively cancelled to give

(—4)¢=1 (mod 9).
The validity of this last congruence is confirmed by the calculation

(—4)¥=4°=(64)>=12=1 (mod 9).

Note that Theorem 7-5 does indeed generalize the one due to
Fermat, which we proved earlier. For if p is a prime, then ¢(p) = p—1;
hence, whenever ged (4, p) =1, we get

A’ l=g%®) = 1 (mOdP)

and so:

CorovrrARrY (Fermat). If p is a prime and p ¥ a, then o~ *=1
(mod p).

Example 7-2
Euler’s Theorem is helpful in reducing large powers modulo 7.

To cite a typical example, let us find the last two digits in the decimal
representation of 32%6; this is equivalent to obtaining the smallest
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nonnegative integer to which 32%¢ is congruent modulo 100. Since
ged (3,100) = 1 and

$(100) = (2% - 5%) = 100(1 — $)(1 — 3) = 40,
Euler’s Theorem yields
340 =1 (mod 100).
By the Division Algorithm, 256 = 6 - 40 + 16; whence
3256 — 36:40+16 = (340)6316 — 316 (mod 100)

and our problem reduces to one of evaluating 3'¢, modulo 100.
The calculations are as follows, with reasons omitted:

316 — (81)* = (—19)* = (361)2 = 612 = 21 (mod 100).

There is another path to Euler’s Theorem, one which requires the
use of Fermat’s Theorem.

Second Proof of Euler’s Theorem: To start, we argue by induction
that if p ¥ 2(p a prime), then
1) a®®) =1 (mod p*), k£ >0.

When 4 =1, this assertion reduces to the statement of Fermat’s
Theorem. Assuming the truth of (1) for a fixed value of £, we wish
to show that it is true with 4 replaced by 4 + 1.

Since (1) is assumed to hold, we may write

207 =1 4 gp*
for some integer 4. Notice too that
¢(pk+l) = prtt _pk:p(pk_pk—l) zp‘ﬁ(pk)
Using these facts, along with the Binomial Theorem, we obtain

aPRY — gpo®")
= +ap"y
—t+ (D + (Garr o+ (2 ey + @y

=1+ (ﬁ’)(qpk) (mod *+1),
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But p| (?) and so p¥*+* | (2)(¢p*). Thus, the last-written congruence
becomes

a®@tH =1 (mod Pk+1)’

completing the induction step.
Now let ged (4, #) =1 and # have the prime factorization
n=p,"p,**--.p*. In view of what has already been proved, each

of the congruences
) 2 =1 (mod p;"), i=1,2,...,7
holds. Noting that ¢(») is divisible by ¢(»/*), we may raise both
sides of (2) to the power ¢(n)/$(p,) and artive at
a®™ =1 (mod p,"), i=1,2,...,r
Inasmuch as the moduli are relatively prime, this leads us to the
relation
2™ =1 (mod Plkxpzkz .. 'P'fky)
or ¢*™ =1 (mod #).
The usefulness of Euler’s Theorem in number theory would be
hard to exaggerate. It leads, for instance, to a different proof of the

Chinese Remainder Theorem. In other words, we seek to establish that
if ged (n;, n;) =1 for i £/, then the system of linear congruences

x =a, (mod ), i=1,2,...,r

admits a simultaneous solution. Let n=#,7,---7, and put N,=un/n
fori=1,2,...,r. Then the integer

x=a; N{*™ 42, N,*™ + - f-a, N,

fulfills our requitements. To see this, first note that N;=0 (mod #)
whenever 7 # 7; whence,

x=a; N, (mod #,).
But, since ged (IN,, #,) =1, we have
N =1 (mod #,)

and so x = 4, (mod #»,) for each 7.
As a second application of Euler’s Theorem, let us show that if #
is an odd integer which is not a multiple of 5, then # divides an integer
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all of whose digits are equal to 1. (For example: 7| 111111.) Since
ged(n, 10)=1 and ged (9, 10) =1, we have ged (97, 10)=1 Quoting
Theorem 7-5 again,

10°@» =1 (mod 7).

This says that 102©™ — 1 = 9z for some integer £ or, what amounts to
the same thing,

10%em 1
kn= —

The right-hand side of the above expression is an integer whose digits
are all equal to 1, each digit of the numerator being cleatly equal to 9.

PROBLEMS 7.3

1. Use Euler’s Theorem to establish the following:
(a) Forany integer a,4%” = a(mod 1729). [Hint: 1729 =7-13-19.]
(b) For any integer 4, 4'® = a (mod 2730). [Hin?:2730=2-3-5-7-13.]
(c) For any odd integer a, 4®® = 2 (mod 4080). [Hint: 4080 = 1516 - 17.]
2. Show that if ged (4, #) = ged (¢ — 1, n) =1, then

14+a4a24+ -+ a* -1 =0 (mod »).
[Hint: Recall that a®™ — 1 =(a —1)(@®™ 1+ - +a®>+a-+1)]

3. If » and # are relatively prime positive integers, prove that
m®™ 4 o™ =1 (mod mn).

4. Fill in any missing details in the following proof of Euler’s Theorem:
Let p be a prime divisor of # and ged (s, p) = 1. By Fermat’s Theorem,
@ '=1 (mod p), so that a?~'=1+#p for some £ Then a?®~ D=
A+ =1+E@p)+---+@#)y=1 (mod p?) and, by induction,
'@ D=1 (mod p¥) where £=1, 2, ... . Raise both sides of this
congruence to the ¢(n)/p*~}(p — 1) power to get a®™ =1 (mod p*). Thus
a*™ =1 (mod 7).
Find the units digit of 31°° by means of Euler’s Theorem.
6. (a) If ged (@, n)=1, show that the linear congruence ax =& (mod 7)
has the solution x = 4™ -1 (mod 7).
(b) Use part (a) to solve the congruences 3x==5 (mod 26), 13x=2
(mod 40) and 10x = 21 (mod 49).
7. Prove that every prime other than 2 or 5 divides infinitely many of the
integers, 1, 11, 111, 1111, ... .
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8.

Euler’s Generalization of Fermat’s Theorem CHAP. 7

Given n > 1, a set of ¢(n) integers which are telatively prime to # and which
are incongruent modulo # is called a reduced set of residues modulo n (that is,
a reduced set of residues are those members of a complete set of residues
modulo # which are relatively prime to 7).

Verify that
(a) the integers —31, —16, —8, 13, 25, 80 form a reduced set of residues
modulo 9;
(b) the integers 3, 32, 33, 3%, 3%, 36 form a reduced set of residues modulo
14;
(c) the integers 2, 22, 23, ..., 218 form a reduced set of residues modulo
27.
If p is an odd prime, show that the integers
1 —1
—p—--—, ey —2,—-1,1,2,..., r—7
2 2

form a reduced set of residues modulo p.

7.4 SOME PROPERTIES OF THE

PHI-FUNCTION

The next theorem points out a curious feature of the phi-function;
namely, that the sum of the values of ¢(d), as 4 ranges over the positive
divisors of #, is equal to # itself. This was first noticed by Gauss.

TreEOREM 7-6 (Gauss). For each positive integer n > 1,
n= $(d),
din

the sum being extended over all positive divisors of n.

Progf: The integers between 1 and # can be separated into classes as
follows: if 4 is a positive divisor of #, we put the integer » in the
class S, provided that ged (%, #) = d. Stated in symbols,

Sa={m|gcd(mn=d; 1 <m<n}.

Now gecd (m, n) = difand only if ged (/d, n/d) = 1. Thus the number
of integers in the class S, is equal to the number of positive integers
not exceeding #/d which are relatively prime to #/d; in other words,
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equal to ¢(n/d). Since each of the # integers in the set {1, 2, ..., n}
lies in exactly one class S, we obtain the formula

"= Z $(n|d).

din

But as 4 runs through all positive divisors of #, so does #n|d; hence,
> $(nld) = > 4(d)
din din

and the theorem follows.

Example 7-3
A simple numerical example of what we have just said is provided

by »=10. Here, the classes S, are
Sl = {1’ 3: 7’ 9}’
52 = {2’ 4; 6’ 8}’
Ss=1{5},
S10={10}.

These contain ¢(10) =4, ¢(5)=4, #(2)=1, and #(1) =1 integers,
respectively. Therefore,

> $(d)=$(10) +4(5) +4(2) + HH =44+ 1 +1=10.

dj10

It is instructive to give a second proof of Theorem 7-6, this one
depending on the fact that ¢ is multiplicative. The details are as follows:
If =1, then clearly

> $d)=> dd=4h)=1=n
dln all
Assuming that #>1, let us consider the number-theoretic function
F(n)= > $(d).
din

Since ¢ is known to be a multiplicative function, Theorem 6-4 asserts
that F is also multiplicative. Hence, if 7= p,"'p,"*+-- p/r is the prime
factorization of #, then

F(r) = F(p,")F(p") .- - F(p,").
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For each value of

Fp/y= > $(d)

d|p

= ¢(1) + () + $(°) + (%) + - + ()

=14+@=D+@*=2) +(°—p2) + -+ — 47

:Piki:
since the terms in the foregoing expression cancel each other, save for
the term p,*. Knowing this, we end up with

F@m)=ppd---p/ =n
and so
n=> $a),
din

as desired.
We should mention in passing that there is another interesting

identity which involves the phi-function.

THEOREM 7-7. For n>1, the sam of the positive integers less than n
and relatively prime to n is nd(n); in symbols,

= > k.
ged(k,n)=1
l<k<n

Proof: Let a;, a,, ..., a4y, be the positive integers less than #
and relatively prime to ». Now, since ged (s, 7) =1 if and only if
ged(n—a, #) =1, we have
aptayt ot aym=m—a)+n—a)+--- + (1 — a5n))
=¢mn— (a1 +az+ -+ + aon))-
Hence,
2ay +az+ -+ apmy) = P(n)n,
leading to the stated conclusion.

Example 7-4
Consider the case #=30. The ¢(30) = 8 integers which are less

than 30 and relatively prime to it are

1,7, 11, 13, 17, 19, 23, 29.
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In this setting, we find that the desired sum is
14+74+11+13417-+19423+29=120=14-30-8.
This is a good point at which to give an application of the Mébius

Inversion Formula.

THEOREM 7-8. For any positive integer n,

$(n) =1 > p(d)/d

din

Proof: The proof is deceptively simple: If one applies the inversion
formula to

Fn)=n="> $(d),
dln
the result is

$(n) = > wd)F(ud)="> (dyn/d.

din din

Let us illustrate the situation with »=10 again. As can easily
be seen,

10> w(d)jd = 100u(1) + w2 + )5 +(10)/10]
allo
=10[1 +(=1)/2 +(=1)/5 +(—1)%/10]
—10[1 — 1/2— 1/5 +1/10] = 10 - 2/5 = 4 = $(10).

Starting with Theorem 7-8, it is an easy matter to determine the
value of the phi-function for any positive integer ». Suppose that the
prime-power decomposition of 7 is 7= p,*'p,**-.. p,* and consider the
product

P=] JGu1) +u(pfpc+ - +p(pp ).

piln

Multiplying this out, we obtain a sum of terms of the form

pDu(pL Wu(P2"2) - - - (™) P17 P2" - - - s 0<a, <4

ot, since p is known to be multiplicative,

p(pL P2 - ) 1P - P = p(d)]4,
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where the summation is over the set of divisors d— 21p" - p, % of
n. Hence, P= 3, , u(d)/d. It follows from Theotem 7-8 that

) =n > w@)ld=n ] | @) +uplpi+ - +upp.

dln piln
But u(p;*) =0 whenever 2,>2. As a result, the last-written equation
reduces to
d=n] [w®) +u@dp)=n] [~ 1/p),
piln piln

which agrees with the formula established earlier by different reasoning.
What is significant about this argument is that no assumption is made
concerning the multiplicative character of the phi-function, only of p.

PROBLEMS 7-4

1. For a positive integer #, prove that

0 if # is even
dzln (—1)ed(d) = {—rz if # is odd
[Hint: If n=2FN, wherte N is odd, then Y, (—1)*¢$(d) =
Daize-1n $(d) — Y ain $(24).]
2. Confirm that } 4136 $(d) = 36 and Y 4,56 (—1)°¢/eh(d) = .

3. For a positive integer #, prove that Y ain w3 @A) S(d) = njd(n). [Hint: See
the hint in Problem 1.]

4. Use Problem 3, Section 6.2, to give a different proof of the fact that
8> wld)d = do).

5. If the integer n>1 has the prime factorization n=p,*1p,*2...pkr es
tablish the following:

@ > U= —p)2—p0)- 2 —p)

<
SO () (.. (e
© ; $(d)/d — (1 n %1:1)) (1 +_ﬁ_/‘2@;2— 1)) (1 | A, — 1))

[Hint: For patt (a), use Problem 3, Section 6-2.]
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10.

11.

12

13.

Verify the formula S7%_, ¢(d)[n/d] =n(n+1)/2 for any positive integer #.
[Hint: This is a direct application of Theorems 6-11 and 7-6.]

If # is a square-free integer, prove that Y ain o(d*~1)d(d) = n* for all integers
k>2.

For a square-free integer #>> 1, show that 7(#?) = if and only if » =3.
Prove that 3 | (374 2) and 4 | o(4n+ 3) for any positive integer 7.

(a) Given 4> 0, establish that there exists a sequence of £ consecutive
integers n+1, n+2, ..., n+ £ satistying

pr+ ) =p@r+2)=-=p(r+4)=0.
[Hint: Consider the system of linear congruences
x=—1(mod 4), x=—2(mod 9), ..., x=—£ (mod ;%)

where p, is the Ath prime.]

(b) Find four consecutive integers for which u(#)=0.

Prove the statements below:

(a) An integer 7 is prime if and only if o(#) +@(#) =n7(n). [Hint: First
derive the relation 3 o(d)p(n/d) =nr(n).]

(b) An integer # is prime if and only if ¢(n) | #—1 and 5n+1 | a(#).
[Hint: See Problem 11(a), Section 7-2.]

Show that there exist infinitely many integers # such that ¢(») =#/3, but
none for which ¢(n) =n/4.

For 7> 2, establish the inequality ¢(#%) + ¢((n + 1)%) <242
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“. .. mathematical proofs, like diamonds, are
hard as well as clear, and will be touched with

nothing but strict reasoning.”’
Joun LockE




81 THE ORDER OF AN INTEGER MODULO n

In view of Euler’s Theorem, we know that 2°™ =1 (mod #), whenever
ged (g, ) = 1. However, there are often powers of # smaller than z°®™
which are congruent to 1 modulo #». This prompts the following defini-
tion:

DerFiNITION 8-1.  Let #>1 and gcd (2, #) = 1. The order of a modulo
7 (in older terminology: the exponent to which a belongs modulo n) is
the smallest positive integer £ such that 2* =1 (mod #).

Consider the successive powers of 2 modulo 7. For this modulus,
we obtain the congruences

21=2,22=4,2%3=1,24=2,2°=4,25=1, ...,

from which it follows that the integer 2 has order 3 modulo 7.

Observe that if two integers are congruent modulo #, then they
have the same order modulo ». For if 2= b (mod #) and 4*=1 (mod #),
Theorem 4-2 implies that 4* = b* (mod #), whence #* =1 (mod 7).

It should be emphasized that our definition of order modulo #
concerns only integets 4 for which ged (¢, #7) = 1. Indeed, if ged (2, #) > 1,
then we know from Theorem 4-7 that the linear congruence ax=1
(mod #) has no solution; hence, the relation

4*=1 (mod 7), A>1

cannot hold, for this would imply that x = 4*~! is a solution of ax =1
(mod #). Thus, whenever there is reference to the order of 4 modulo
n, it is to be assumed that ged (4, #) = 1, even if it is not explicitly stated.

In the example given above, we have 2¥=1 (mod 7) whenever £
is a multiple of 3, the order of 2 modulo 7. Our first theorem shows
that this is typical of the general situation.

THEOREM 8-1. Let the integer a have order k modulo n. Then a" =1
(mod 7) if and only if k| h; in particular, k | $(n).

156
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Proof: Suppose to begin with that 4| 4, so that s= jk for some
integer /. Since @* =1 (mod #), Theorem 4-2 tells us that (@y=1
(mod 7) or 4* =1 (mod 7).

Conversely, let 4 be any positive integer satisfying 4" =1
(mod 7). By the Division Algorithm, there exist ¢ and r such that
h= gk + r, where 0 <r < 4. Consequently,

&= g%+ = (@)

By hypothesis both " =1 (mod #) and #* =1 (mod #), the implica-
tion of which is that 4" = 1 (mod 7). Since 0 <r < 4, we end up with
7 = 0; otherwise, the choice of 4 as the smallest positive integer such
that 4% = 1 (mod #) is contradicted. Hence 4= gk, and 4 | 4.

Theorem 8-1 expedites the computation when attempting to
find the order of an integer 2 modulo #: instead of considering all powers
of a, the exponents can be restricted to the divisors of ¢(n). Let us obtain,
by way of illustration, the order of 2 modulo 13. Since ¢(13) =12,
the order of 2 must be one of the integers 1, 2, 3, 4, 6, 12. From

22=4 20=8, 2¢=3 26=12,22=1(mod 13),

it is seen that 2 has order 12 modulo 13.

For an arbitrarily selected divisor 4 of #(n), it is not always
true that there exists an integer 2 having order 4 modulo #. An example
is n—=12. Here $(12) =4, yet there is no integer which is of order 4
modulo 12; indeed, one finds that

12=52="72=11%?=1(mod 12)

and so the only choice for orders is 1 or 2.
Here is another basic fact regarding the order of an integer.

TuroreM 8-2. If a has order k modulo n, then & =4’ (mod ) if and
only if i=j (mod £).
Proof: First, suppose that 4' =4’ (mod #), where 7 > /. Since a is
relatively prime to #, we may cancel a power of 2 to obtain ' 7 =1
(mod #). According to Theorem 8-1, this last congruence holds
only if £ | 7 — j, which is just another way of saying that / =/ (mod £).
Conversely, let 7=/ (mod 4). Then we have i=/ + gk
for some integer ¢. By the definition of 4, #*=1 (mod #), so that

4 =+ % = a/(d*)* = 4’ (mod ),

which is the desired conclusion.
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CorOLLARY. If a has order k modulo n, then the integers a, a2, ..., a*
are incongruent modulo n.

Proof: 1f 4 =4’ (mod #) for 1 <i <j < £, then the theorem insures
that /=7 (mod £). But this is impossible unless 7 = .

A fairly natural question presents itself: is it possible to express
the order of any integral power of # in terms of the order of 2? The
answer is the content of

TrEOREM 8-3. If the integer a has order k modulo n and h >0, then
a" has order k|ged (b, £) modulo n.

Proof: Letd= gcd (4, £). Then we may write /= 4, dand k= 4,4,
with ged (4, £,) = 1. Clearly,

(ah)lq — (ahui)k/d — (a}c)hl = 1 (mod ”)'
If 4" is assumed to have ordet » modulo #, then Theorem 8-1 asserts
that 7| £,. On the other hand, since # has order 4 modulo #, the

Congrueﬂce
a"=(a")=1 (mod #)

indicates that £ | 4r; in other words, A, d| kydr or ki | hyr. But
ged (A, , #) = 1 and therefore £, | ». This divisibility relation, when
combined with the one obtained earlier, gives

r==/k, = Fkld= k|gcd (h, k),
proving the theorem.
The last theorem has a corollary for which the reader may supply

a proof.

CoROLLARY. Let a have order k modulo n. Then a* also has order £ if
and only if ged (b, £) = 1.

Let us see how all this works in a specific instance.

Example 8-1
The following table exhibits the orders modulo 13 of the positive

integers less than 13:
intcger'l 23 45 6 7 89 10 11 12

order'112364121243 6 12 2
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We observe that the order of 2 modulo 13 is 12, while the orders of
22 and 28 are 6 and 4, respectively; it is easy to verify that

6=12/gcd (2, 12) and 4=12/gcd (3, 12)

in accordance with Theorem 8-3. Those integers which also have
order 12 modulo 13 are powers 2* for which ged (4, 12) = 1; namely,

25 =6, 27 =11, 211 =7 (mod 13).

If an integer 4 has the largest order possible, then we call it
a primitive root of 7.

Dermnrrion 8-2. If ged (4, #) =1 and 4 is of order ¢(#) modulo
then a is a primitive root of n.

To put it another way, # has 4 as a primitive root if a?m™=1
(mod #), but 4* # 1 (mod #) for all positive integers k< $().
It is easy to see that 3 is a primitive root of 7, for

1=3,32=2,38=6, 3t=4, 3°=5,3°=1 (mod 7).

Mote generally, one can prove that primitive roots exist for any prime
modulus, a result of fundamental importance. While it is possible for
a primitive root of # to exist when # is not a prime (for instance, 2 is a
primitive root of 9), there is no reason to expect that every integer #
will possess a primitive root; indeed, the existence of primitive roots is
more the exception than the rule.

Example 8-2
Let us show that if F, =22" 41, n>>1, is a prime, then 2 is not a
primitive root of F,. (Cleatly, 2 is a primitive root of 5=F;.)
Since 22"** — 1 =(22" 4 1)(2" — 1), we have

22*** =1 (mod F,),

which implies that the order of 2 modulo F, does not exceed 2"+ 1,
But if F, is assumed to be prime,

$(F,) =F,—1=2"

and a straightforward induction argument confirms that 22" >
2n+1 whenever #>1. Thus the order of 2 modulo F, is smaller
than ¢(F,); referring to Definition 8-2 we see that 2 cannot be a
primitive root of F,.
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One of the chief virtues of primitive roots lies in our next theorem.

TueEOREM 8-4. Let ged(a, n)=1 and let ay, ay, ..., ayum, be the
Dositive integers less than n and relatively prime to n. If a is a primitive
root of n, then

a,a ..., qa%m™

are congruent modulo # 10 ay, dg, ..., dyw,, N Some order.

Proof: Since a is relatively prime to #, the same holds for all the
powers of 2; hence, each 4* is congruent modulo # to some one of the
a;. 'The ¢(n) numbers in the set {a, 22, ..., 2®™} are incongruent by
the corollary to Theorem 8-2, hence these powers must represent
(not necessarily in order of appearance) the integets @, , a,, . . ., 2y, -

One consequence of what has just been proved is that, in those
cases in which a primitive root exists, we can now state exactly how many
there are.

CoROLLARY. If # has a primitive root, then it has exactly $($(n)) of
them.

Proof: Suppose that « is a primitive root of n. By the theorem, any
other primitive root of # is found among the members of the set
{a, 2%, ..., a®*™}. But the number of powers ¢, 1 < 4 < ¢(n), which
have order ¢(#) is equal to the number of integers 4 for which
ged (£, ¢(n)) = 1; there are ¢($(n)) such integers, hence ¢(¢(7)) primi-
tive roots of #.

Theorem 8-4 can be illustrated by taking =2 and #=9. Since
#(9) = 6, the first six powers of 2 must be congruent modulo 9, in some
order, to the positive integers less than 9 and relatively prime to it.
Now the integers less than and relatively prime to 9 are 1, 2, 4, 5, 7, 8
and we see that

21=2,22=4,2=8,2¢=7,2°=5,25=1 (mod 9).

By virtue of the corollary, there are exactly ¢(¢(9)) = ¢(6) =2
primitive roots of 9, these being the integers 2 and 5.
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10.

PROBLEMS 8.1

Find the order of the integers 2, 3, and 5: (a) modulo 17, (b) modulo 19,
and (c) modulo 23.

Establish each of the statements below:

(a) If a has order 44 modulo #, then 4" has order £ modulo 7.

(b) If a has order 24 modulo the odd prime p, then 2= —1 (mod p).
(c) If @ has order # — 1 modulo #, then # is a prime.

Prove that ¢(2" — 1) is a multiple of # for any » > 1. [Hint: The integer
2 has order # modulo 2" — 1.]

Assume that the order of 2 modulo # is 4 and the order of # modulo 7
is &. Show that the order of @b modulo » divides A#; in particular, if
ged (b, £) = 1, then ab has order hé.

Given that 4 has order 3 modulo p, where p is an odd prime, show that

4+ 1 must have order 6 modulo p. [Hint: Because 4* +-a+1=0 (mod p),

it follows that (4 1)2=a(mod p) and (a+ 1)>=—1 (mod p)1

Verify the following assertions:

(2) The odd prime divisors of the integer 7% 4 1 are of the form 44 -+ 1.
[Hint: n? = —1(mod p), where p is an odd prime, implies that 4 | H(p)
by Theorem 8-1.]

(b) The odd prime divisors of the integer #* + 1 are of the form 84+ 1.

(¢) The odd prime divisors of the integer #* 47 + 1 which are different
from 3 are of the form 64 + 1.

Establish that there are infinitely many primes of each of the forms 44 + 1,
6k 41, and 84+ 1. [Hint: Assume that there are only finitely many
primes of the form 44 +1; call them py, pg, ..., py. Consider the integer
(2p1 p2*** Pr)? + 1 and apply the previous problem.]

(a) Prove that if p and g are odd primes and¢| a* — 1, then either 4| 2 —1
or g=24p + 1 for some integer £. [Hint: Since 4? =1 (mod ¢), the
order of 2 modulo ¢ is either 1 or p; in the latter case, p| $(g).]

(b) Use part (a) to show that if p is an odd prime, then the prime divisors
of 27 — 1 are of the form 24p + 1.

(c) Find the smallest prime divisor of the integers 217 — 1 and 229 — 1.

Prove that there are infinitely many primes of the form 24p + 1, where
p is an odd prime. [Hint: Assume that there are finitely many primes
of the form 24p+ 1, call them ¢,, 42, ---5 4y, and consider the integer

@ g2 g — 1]
(a) Verify that 2 is a primitive root of 19, but not of 17.

(b) Show that 15 has no primitive root by calculating the orders of
2, 4,7, 8,11, 13, and 14 modulo 15.
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11. Let » be a primitive root of the integer #n. Prove that 7* is a primitive
root of # if and only if gcd (4, ¢(#)) = 1.
12. (a) Find two primitive roots of 10.
(b) Use the information that 3 is a primitive root of 17 to obtain the
eight primitive roots of 17.

8.2 PRIMITIVE ROOTS FOR PRIMES

Since primitive roots play a crucial role in many theoretical investigations,
a problem exerting a natural appeal is that of describing all integers
which possess primitive roots. We shall, over the course of the next
few pages, prove the existence of primitive roots for all primes. Before
doing this, let us turn aside briefly to establish a theorem dealing with
the number of solutions of a polynomial congruence.

Tueorem 8-5 (Lagrange). If p is a prime and
f)y=a,x" +ap  x" "t fayxtag, a3 0 (mod p)

is a polynomial of degree n > 1 with integral coefficients, then the congruence

f(x)=0 (mod p)

has at most n incongruent solutions modulo p.

Proof:  We proceed by induction on #, the degree of f(x). Ifn=1,
then our polynomial is of the form

JG)=a,x +a,.

Since ged (4,, p) = 1, we know by Theorem 4-7 that the congruence
a;x = —a, (mod p) has a unique solution modulo p. Thus, the
theorem holds for » = 1.

Now assume inductively that the theorem is true for poly-
nomials of degree £#— 1 and consider the case in which f(x) has
degree 4. Either f(x)=0 (mod p) has no solutions (and we are
finished) or it has at least one solution, call it . If f(x) is divided
by x — a, the result is -

J(x) = (> — a)q(x) +r,
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in which g(x) is a polynomial of degree £ — 1 with integral coefhicients
and 7 is an integer. Substituting x = 4, we obtain

0=/(e) = (¢ — g(a) -+ r = 7 (mod p)

and so f(x) = (x — 4)q(x) (mod p).
If b is another one of the incongruent solutions of f(x)=0
(mod p), then

0=/(6) = (b — a)g(b) (mod p).

Since b — a £ 0 (mod p), this implies that ¢(b) = 0 (mod p); in other
words, any solution of f(x)=0 (mod p) which is different from «
must satisfy ¢(x)=0 (mod p). By our induction assumption, the
latter congruence can possess at most 4 — 1 incongruent solutions
and so f(x) = 0 (mod p) will have no more than £ incongruent solu-
tions. This completes the induction step and the proof.

From this theotem, we can pass easily to

COROLLARY. If p is a prime number and d| p—1, then the congruence

x?—1=0 (mod p)

has exactly d solutions.

Proof: Since d|p— 1, we have p—1=dk for some 4. Then
xPl—1=(x?—1)f(x),

where the polynomial f(x)= x®~1 4 x¢®=2 4 ... L x? 41 has
integral coefficients and is of degree d(f—1)=p—1—d. By
Lagrange’s Theorem, the congruence f(x) =0 (mod p) has at most
p—1—d solutions. We also know from Fermat’s Theorem that
x?~1—1=0 (mod p) has precisely p — 1 incongruent solutions;
namely, the integers 1, 2, ..., p—1.

Now any solution x = 2 of x?~* — 1 =0 (mod p) that is not
a solution of f(x) = 0 (mod p) must satisfy x* — 1 =0 (mod p). For

0= a1 — 1= (a* — 1)f(a) (mod p),

with p f f(a), implies that p|4*—1. It follows that x*—1=0
(mod p) must have at least

p—1—(p—1—d=d
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solutions. This last congruence can possess no more than 4 solutions
(Lagrange’s Theorem enters again), hence has exactly 4 solutions.

We take immediate advantage of this corollary to prove Wilson’s
Theorem in a different way: given a prime p, define the polynomial

J(>) by
S = e = 2)- o — (p— ) — (=2 — 1)
=y o XP % ta, gxP P 4.4 a,x+a,,

which is of degree p—2. Fermat’s Theorem implies that the p—1
integers 1, 2, ..., p— 1 are incongruent solutions of the congruence

S(x)=0 (mod p).
But this contradicts Lagrange’s Theorem, unless
dp_g=ay g=---=a,=ay,=0(mod p).

It follows that, for any choice of the integer >,

(x—= 1) —2)+(x — (p— 1)) = (» "1 — 1) =0 (mod p)

Now substitute x = 0 to obtain

(=1)(=2)-+-(—(p— 1) +1=0 (mod )

or (—1)»"Yp— 1)l +1=0 (mod p). Either p — 1 is even or else =2,
in which case —1 =1 (mod p); at any rate, we get

(p—1D!=—1(mod p).

Lagrange’s Theorem has provided us with the entering wedge.
We are now in a position to prove that, for any prime b, there exist
integers with order corresponding to each divisor of p—1. Stated
more precisely:

Tueorem 8-6. If p is a prime number and d| p—1, then there are
excactly §(d) incongruent integers having order d modulo p.

Proof: Tet d|p—1 and let y(d) denote the number of integers 4,
1 <4 <p—1, which have order 4 modulo p. Since each integer
between 1 and p — 1 has order 4 for some 4| p — 1,

p—1="2 ¥

dip—-1
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At the same time, Gauss’ Theorem tells us that

p—1= 2 $(d)

dip-1

and so, putting these together,

(1) > wd)= > $d).

dlp—-1 dip—1
Our aim is to show that y(d) < $(d) for each divisor 4 of p—1,
since this, in conjunction with equation (1), would produce the
equality () = $(d) # 0 (otherwise, the first sum would be strictly
smaller than the second).

Given an arbitrary divisor 4 of p — 1, there are two possi-
bilities: either Y(d)=10 or (d)>0. If y(d)=0, then certainly
$(d) < $(d). Suppose that (d) >0, so that there exists an integer
aof orderd. Thenthe dintegersa, a2, ..., a? are incongruent modulo
2 and each of them satisfies the polynomial congruence

2 x¢ —1=0(mod p);

for, (@)¢=(a%*=1 (mod p). By the corollary to Lagrange’s
Theorem, there can be no other solutions of (2). It follows that
any integer which has order 4 modulo p must be congruent to one
of a, &2, ..., a*. But only ¢(d) of the just-mentioned powers have
order d, namely those #* for which the exponent 4 has the property
ged (4, d)=1. Hence, in the present situation, ()= ¢(<), and
the number of integers having order 4 modulo p is equal to ¢(d).
This establishes the result we set out to prove.

Taking d = p — 1 in Theorem 8-6, we arrive at

COROLLARY. If p is a prime, then there are exactly $(p — 1) incongruent
primitive roots of p.

An illustration is afforded by the prime p = 13. For this modulus,
1 has order 1; 12 has order 2; 3 and 9 have order 3; 5 and 8 have order 4;
4 and 10 have order 6; and four integers, namely 2, 6, 7, 11, have order
12. Thus,

Z¢(d )=9(1) +$(2) +¥(3) +$(4) +4(0) +¥(12)
dj12
=1414+242+4244=12
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as it should. Notice too that

YD =1=4¢(1), ¢4 =2=4¢@)
YA=1=¢(2), #6) =2=4¢(6)
Y3 =2=403), $(12)=4=4(12)

Incidentally, there is a shorter and more elegant way of proving
that (d) = ¢(d) for each d|p—1. We simply subject the formula
d= Y4 $(c) to Mébius inversion to deduce that

W) = D ule)dfe)
cld
In light of Theorem 7-8, the right-hand side of the foregoing equation
is equal to ¢(d). Of course, the validity of this argument rests upon
knowing that  is a multiplicative function.

We can use this last theorem to give another proof of the fact
that if p is a prime of the form 44 + 1, then the quadratic congruence
x?*=—1 (mod p) admits a solution. Since 4|p—1, Theorem 8-6
tells us that there is an integer # having order 4 modulo p; in other
words,

a*=1 (mod p)
or equivalently,
(@ — 1)(a* + 1) =0 (mod p).
Because p is a prime, it follows that either
a*—1=0(mod p) or 42+ 1=0 (mod p).

If the first congruence held, then 2 would have order less than or equal
to 2, a contradiction. Hence, 42 41 =0 (mod p), making the integer 4
a solution to the congruence x?= —1 (mod p).

Theorem 8-6, as proved, has an obvious drawback; while it
does indeed imply the existence of ptimitive roots for a given prime p,
the proof is nonconstructive. To find a primitive root, one must usually
proceed by brute force or else fall back on the extensive tables that have
been constructed. The accompanying table lists the smallest positive
primitive root for each prime below 200.
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Least positive Least positive
Prime primitive root Prime primitive root

2 1 89 3

3 2 97 5

5 2 101 2

7 3 103 5
11 2 107 2
13 2 109 6
17 3 113 3
19 2 127 3
23 5 131 2
29 2 137 3
31 3 139 2
37 2 149 2
41 6 151 6
43 3 157 5
47 5 163 2
53 2 167 5
59 2 173 2
61 2 179 2
67 2 181 2
71 7 191 19
73 5 193 5
79 3 197 2
83 2 199 3

If y(p) designates the smallest positive primitive root of the
prime p, then the table presented above shows that y(p) <19 for all
p <200. In fact, x(p) becomes arbitrarily large as p increases without
bound. The table suggests, although the answer is not yet known,
that there exist an infinite number of primes p for which x(p)=2.

In his Disquisitiones Arithmeticae, Gauss conjectured that there
are infinitely many primes having 10 as a primitive root. In 1927 Emil
Artin generalized this unresolved question as: For 4 not equal to 1, —1,
or a perfect square, do there exist infinitely many primes having « as
a primitive root ?

The restrictions in Artin’s conjecture are justified as follows.
Let 2 be a perfect square, say 2= x2, and let p be an odd prime with
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ged(a, p)=1. If p }y x, then Fermat’s Theorem yields x? =1 = 1 (mod p),
whence

@ =112 = (x?)®- D12 =1 (mod p).
Thus « cannot serve as a primitive root of p [if p | x, then p | @ and surely
a?~1 % 1 (mod p)]. Furthermore, since (—1)2 =1, —1 is not a primitive
root of p whenever p — 1> 2.

Example 8-3
Let us employ the various techniques of this section to find the

#(6) = 2 integers having order 6 modulo 31. To start, we know that
there are

$($(31)) = $(30) = 8

primitive roots of 31. Obtaining one of them is a matter of trial and
error. Since 2°== 1 (mod 31), the integer 2 is clearly ruled out. We
need not search too far, since 3 turns out to be a primitive root of
31. Observe that in computing the integral powers of 3 it is not
necessary to go beyond 3'%; for the order of 3 must divide $(31) =
30 and the calculation
315 =(27)° =(—4)°* =(—64)(16) = —2(16) = —1 # 1 (mod 31)

shows that its order is greater than 15.

Because 3 is a primitive root of 31, any integer which is
relatively prime to 31 is congruent modulo 31 to an integer of the
form 3* where 1 <4 <<30. Theorem 8-3 asserts that the order of
3k is 30/gcd (4, 30); this will equal 6 if and only if ged (4, 30) = 5.
The values of £ for which the last equality holds are 4=5 and
4=25. Thus our problem is now reduced to evaluating 3° and 325
modulo 31. A simple calculation gives

3*=(27)9 =(—4)9 = —36 = 26 (mod 31),
3% =(3°)° =(26)° = (—5)° = (—125)(25) = —1(25) = 6 (mod 31),

so that 6 and 26 are the only integers having order 6 modulo 31.

PROBLEMS 8.2

1. If p is an odd prime, prove that
(a) the only incongruent solutions of x2=1 (mod p) are 1 and p —1;
(b) the congruence x?~2+4 ...+ x24x+4+1=0 (mod p) has exactly
2 — 2 incongruent solutions and they are 2, 3, ..., p — 1.
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10.

11.

12,

Verify that each of the congruences x? =1 (mod 15), x2 = —1 (mod 65)
and x2 = —2 (mod 33) has four incongruent solutions ; hence, Lagrange’s
Theorem need not hold if the modulus is a composite number.
Determine all the primitive roots of the primes p=17, 19, and 23, ex-
pressing each as a power of some one of the roots.

Given that 3 is a primitive root of 43, find

(a) all positive integers less than 43 having order 6 modulo 43;

(b) all positive integers less than 43 having order 21 modulo 43.

Find all positive integers less than 61 having order 4 modulo 61.

Assuming that 7 is a primitive root of the odd prime p, establish the

following facts: b

(a) 'The congruence r®- D12 = —1 (mod p) holds.

(b) If ' is any other primitive root of p, then 77’ is not a primitive root
of p. [Hint: By part (a), (rr)® - P2 =1 (mod p).]

(c) If the integer 7' is such that 77/ =1 (mod p), then r’ is a primitive
root of p.

For a prime p >3, prove that the primitive roots of p occur in pairs

r, v’ where r7' =1 (mod p). [Flint: If r is a primitive root of p, consider

the integer 7' =777 2.]

Let 7 be a primitive root of the odd prime p. Prove that

(a) if p=1(mod 4), then —ris also a primitive root of p;

(b) if p=3 (mod 4), then —r has order (p — 1)/2 modulo p.

Give a different proof of Theorem 5-3 by showing that if 7 is a primitive

root of the prime p=1 (mod 4), then r®~1* satisfies the quadratic

congruence x2 + 1= 0 (mod p).

Use the fact that each prime p has a primitive root to give a different

proof of Wilson’s Theorem. [Hint: If p has a primitive root 7, then by

Theorem 8-4 (p — 1)1 =r1*+2++@®-1 (mod p).]

If p is a prime, show that the product of the ¢(p — 1) primitive roots of

p is congruent modulo p to (—1)®-1. [Hint: If r is a primitive root of

p, then 7* is a primitive root of p provided that ged (£, p — 1) =1; now

use Theorem 7-7.]

For an odd prime p, verify that the sum

" ong 3 o[ O(modp)if(p—1) 4 n
I3 (p— )= __1(modp)if(P‘”1)|”

[Him‘: If(p — 1) ¥ n, and r is a primitive root of p, then the sum is congru-

r(p—l)n —1 ]

ent modulo p to 147" 4720 oo - rP=20 = — -
r* —
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8.3 COMPOSITE NUMBERS HAVING
PRIMITIVE ROOTS

We saw earlier that 2 is a primitive root of 9, so that composite numbers
can also possess primitive roots. The next step of our program is to
determine all composite numbers for which there exist primitive roots.
Some information is available in the following two negative results.

‘THEOREM 8-7.  For k > 3, the integer 2% has no primitive roots.

Proof:  For reasons that will become clear later, we start by showing
that if 2 is an odd integer, then for £ >3
a?*7? =1 (mod 2¥).
If £= 13, this congruence becomes 42 = 1 (mod 8), which is certainly
true(indeed, 12 =32=5%=72=1(mod 8)). For 4 > 3, we proceed
by induction on 4. Assume that the asserted congruence holds for
the integer £; that is, 4**"* =1 (mod 2¥). This is equivalent to the
equation
a? "t =14 b2%,
where b is an integer. Squaring both sides, we obtain
a7t = (a2 =1 4+ 2(h2%) + (b2¥)2
— 1 _’_ 2k+1<b +b22k—1)
=1 (mod 2++%),

so that the asserted congruence holds for 4 1 and hence for all
k>3
Now the integers which are relatively prime to 2* are precisely
the odd integers; also, #(2¥) = 2%-1. By what was just proved, if 4
is an odd integer and 4 > 3,
a®@2=1 (mod 2¥)

and, consequently, there are no primitive roots of 2%,
Another theorem in this same spirit is

Tueorem 8-8. If ged(m, n)=1, where m>2 and n>2, then the
integer mn has no primitive roots.
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Proof: Consider any integer a for which ged (e, 7n)=1; then
ged (2, m)=1 and ged(a, #)=1. Put k= lem (§(), $()) and d=

ged (¢(), (7).
Since ¢(7) and #(n) are both even (Theorem 7-4), surely

d>2. In consequence,

_plm)b(n) _ blmn)
h= 7 < 5

Now Euler’s Theorem asserts that 4*™ =1 (mod ). Raising this
equation to the ¢(#)/d power, we get

dh — (ad>(m))¢(n)/d = 1¢(n)/d = 1 (mod ”f).

Similar reasoning leads to #* =1 (mod 7). Together with the hypo-
thesis ged (7, #)= 1, these congruences force the conclusion that

=1 (mod mn).

The point which we wish to make is that the order of any integer
relatively prime to mn does not exceed ¢(mn)/2, whence there can be
no primitive roots for mz.

Some special cases of Theorem 8-8 are of particular interest and
we list these below.

COROLLARY. The integer n fails to have a primitive root if either
(1) n is divisible by two odd primes, or
(2) nis of the form n=2mpk, where p is an 0dd prime and m = 2.

The significant feature of this last series of results is that they
restrict our search for primitive roots to the integers 2, 4, p*¥ and 2p¥,
where p is an odd prime. In this section, we shall prove that each of the
numbers just mentioned has a primitive root, the major task being the
establishment of the existence of primitive roots for powers of an odd
prime. The argument is somewhat long-winded, but otherwise routine;
for the sake of clarity, it is broken down into several steps.

LemMA 1. If p is an odd prime, then there exists a primitive root r of p
such that r»=1 £ 1 (mod p?).

Proof: From Theorem 8-6, it is known that p has primitive roots.
Choose any one, call it 7. If 71 £ 1 (mod p?), then we are finished.
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In the contraty case, teplace 7 by 7’ = r -+ p, which is also a primitive
root of p. Then employing the Binomial Theorem,

(ryt=(r4pyr-t=rrt 4 (p—1)pre=2 (mod p2).
But we have assumed that 7»~* =1 (mod p?); hence
(r'y-t=1—prr-2 (mod p?).

Since 7 is a primitive root of p, ged (r, p) =1 and so p fr?~2. The
outcome of all this is that (»)?~1 =£ 1 (mod p?), as desired.

COROLLARY. If p is an odd prime, then p* has a primitive root; in fact,
Jor a primitive root r of p, either r or r - p is a primitive root of p2.

Progf: 'The assertion is almost obvious: If 7 is a primitive root of b
then the order of » modulo p? is either p — 1 or else p(p — 1) = (p?).
The foregoing proof shows that if 7 has order p — 1 modulo p?, then
r + p will be a primitive root of p2.

To reach our goal, another somewhat technical lemma is needed.

Lemma 2. Let p be an odd prime and r be a primitive root of p such that
r*=t=£ 1 (mod p?). Then for eack positive integer k > 2,

rP* 2@ = £ 1 (mod p¥).
Progf:  The proof proceeds by induction on 4. By hypothesis, the
assertion holds for A= 2. Let us assume that it is true for some

A#=>2 and show that it is true for 4+ 1. Since ged(r, p*~1) =
ged (r, p¥) =1, Euler’s Theorem indicates that

pPETEE =D — o TH =1 (mod pk-1).
Hence, there exists an integer 4 satisfying
,-pk-z(p—l) =1 + apk—l,

where p t a by our induction hypothesis. Raise both sides of this
last-wrtitten equation to the pth power and expand to obtain

rpk—l(p—l) — (1 + apk—l)p =1 +apk (modpk+1).
Since the integer « is not divisible by p, we have
pPETi0-1) #1 (modpku)_

This completes the induction step, thereby proving the lemma.
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The hard work, for the moment, is over. We now stitch the
pieces together to prove that the powers of any odd prime have a primi-
tive root.

TuEOREM 8-9. If p is an odd prime number and k > 1, then there exists
a primitive root for p*.

Proof: 'The two lemmas allow us to choose 2 primitive root 7 of p
for which 772~ 1 =£ 1 (mod p¥); in fact, any 7 satisfying the condi-
tion ##~1 = 1 (mod p2) will do. We argue that such an 7 serves as a
primitive root for all powers of .

Let # be the order of » modulo p*. In compliance with
Theorem 8-1, » must divide ¢(p¥) = p*~*(p —1). Since r"= 1 (mod
) implies that 7» =1 (mod p), we also have p — 1| 7 (Theorem 8-1
serves again). Consequently, # assumes the form 7= pr(p—1),
where 0 <m <A — 1. If it happened that # #pi(p—1), then
p=2%(p — 1) would be divisible by #» and we would arrive at

rP 2@ - =1 (mod p"),

contradicting the way in which 7 was initially picked. Therefore,
n=p*-(p—1) and r is a primitive root for p.

This leaves only the case 2p* for our consideration.

CoROLLARY. There are primitive roots for 2p*, where p is an odd prime
and £ > 1.

Proof: Let r be a primitive root for p¥. There is no harm in as-
suming that 7 isan odd integer; for, if it is even, thenr - p*isoddand
is still a primitive root for p¥. Then gcd (r, 2p¥)=1. The order #
of » modulo 2p* must divide

$(2) = $2)$(p*) = $(2")-
But 7"=1 (mod 2p*) implies that 7"=1 (mod p*), and so $(p*)| 7.

Together these divisibility conditions force 7= ¢$(2p*), making r a
primitive root of 2p*.

The prime 5 has ¢(4) = 2 primitive roots, namely the integers 2
and 3. Since

25-1==16%1(mod 25) and 3°-1=63% 1 (mod 25),
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these also serve as primitive roots for 52, hence for all higher powers
of 5. The proof of the last corollary guarantees that 3 is a primitive
root for all numbers of the form 2 . 5*,

We summarize what has been accomplished in

Tueorem 8-10.  An integer n>>1 has a primitive root if and only if
n=2, 4, p*, or 2p*,

where p is an odd prime.

Proof: By virtue of Theorems 8-7 and 8-8, the only positive integers
with primitive roots are those mentioned in the statement of our
theorem. It may be checked that 1 is a primitive root for 2, while 3
is a primitive root of 4. We have just finished proving that primitive
roots exist for any power of an odd ptime and for twice such a power.

This seems the opportune moment to mention that Euler gave an
essentially correct (although incomplete) proof in 1773 of the existence
of primitive roots for any prime p and listed all the primitive roots for
p<37. Legendre, using Lagrange’s Theorem, managed to repair the
deficiency and showed (1785) that there are ¢(d) integers of order 4 for
each d|(p—1). The greatest advances in this direction were made by
Gauss when, in 1801, he published a proof that there exist primitive roots
of #if and only if #»=2, 4, p¥, and 2p*, where p is an odd prime.

PROBLEMS 8.3

1. (a) Find the four primitive roots of 26 and the eight primitive roots of
25,
(b) Determine all the primitive roots of 32, 33 and 3%.
2. For an odd prime p, establish the following facts:

(a) There are as many primitive roots of 2p" as of pm.

(b) Any primitive root r of p* is also a primitive root of b [Hint:
Let r have order £ modulo p. Show that rP*=1 (mod p3),...,
77"~ =1 (mod p"), hence (p") | p*~14.]

(c) A primitive root of p? is also a primitive root of p* for 7> 2.

3. Ifris a primitive root of p2, p being an odd prime, show that the solutions

of the congruence x?~! = 1 (mod p?) are precisely the integers 77, r%, ...,
r®=-Lp,
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10.

11.

(a) Prove that 3 is a primitive root of all integers of the form 7% and
2.7

(b) Find a primitive root for any integer of the form 17%.

Obtain all the primitive roots of 41 and 82.

(a) Prove that a primitive root 7 of p¥, where p is an odd prime, is a
primitive root of 2p* if and only if 7 is an odd integer.

(b) Confirm that 3, 3%, 3% and 39 are primitive roots of 578 = 2.172,
but that 37 and 3! are not.

Assume that 7 is a primitive root of the odd prime p and (r+ ppyp-1£1

(mod p?). Show that 7+ fp is a primitive root of p* for each £A>1.

If n=2%9p,F1p,F2... p*r is the prime factorization of #>1, define the

universal exponent \(n) of n by

Aln) = lem (\(29), $(21™), - -+ $(2/)

where A(2) = 1, A(2%) = 2, and A(2¥) = 2¢~ 2 for £ >3. Prove the following

statements concerning the universal exponent:

(a) For n=2, 4, p¥, 2p, whete p is an odd prime, A(n) = (n).

(b) If gecd (a, 2F) =1, then 4@ =1 (mod 2¥). [Hint: For k>3, use
induction on 4 and the fact that A(2¥*1) = 2A(2").]

(©) If ged (a, n)=1, then a*™ =1 (mod 7). [Hint: For each prime
power p* occurring in 7, a*™ =1 (mod 2]

Verify that, for 5040 = 2% - 32. 5. 7, A(5040) = 12 and $(5040) = 1152.

Use Problem 8 to show that if 5 2, 4, p¥, 2p*, where p is an odd prime,

then # has no primitive root. [Hint: Except for the cases 2, 4, P*, 2p%,

A(#)|3¢(r); hence, a*™/? =1 (mod 7) whenever ged (a, #7) = 1.]

(a) Prove that if ged (4, 7) = 1, then the linear congruence ax = b (mod 7)
has the solution x = ba*™~* (mod #).

(b) Use part (a) to solve the congruences 13x = 2 (mod 40) and 3x =13
(mod 77).

84 THE THEORY OF INDICES

The remainder of the chapter is concerned with a new idea, the concept
of index. Let # be any integer which admits a primitive root r. As
we know, the first ¢(n) powers of 7,

2
7,12, L, ™

are congruent modulo #, in some order, to those integers less than # and
relatively prime to it. Hence, if  is an arbitrary integer relatively prime
to #, then « can be expressed in the form

a=r*(mod 7)
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for a suitable choice of £, where 1 <A <¢(#). This allows us to frame
the following definition.

DEeriNITION 8-3. Let 7 be a primitive root of 7. If ged (g, #) =1,
then the smallest positive integer £ such that 2 = r* (mod #) is called
the index of a relative to r.

One customarily denotes the index of # relative to » by ind, « ot,
if no confusion is likely to occur, by ind 2. Cleatly, 1 <ind,a < ¢()
and

ri"dr e =4 (mod 7).

The notation ind,z is meaningless unless gcd (e, #)=1; in the future,
this will be tacitly assumed.
For example, the integer 2 is a primitive root of 5 and

21=2,22=4,28=3,2*=1 (mod 5).
It follows that
ind,1 =4, ind,2=1, ind, 3 =3, ind, 4 = 2.

Observe that indices of integers which are congruent modulo 7
are equal. Thus, when setting up tables of values for ind &, it suffices
to consider only those integers « less than and relatively prime to the
modulus #. To see this, suppose that #=4 (mod #), where @ and b are
relatively prime to # Since r'"4¢=g4 (mod #) and r'"°=} (mod ),
we have

rind @ = 71nd ® (mod 7).

Invoking Theorem 8-1, it may be concluded that ind z=ind 4 (mod
é(n)). But, because of the restrictions on the size of ind # and ind 4,
this is only possible if ind « = ind 4.

Indices obey rules which are reminiscent of those for logarithms,
with the primitive root playing a role analogous to that of the base for
the logarithm.

TueOREM 8-11.  If # has a primitive root r and ind a denotes the index
of a relative to r, then

(1) ind (@b) =ind 2 + ind b (mod ¢(»)),

(2) ind 4*= £ ind @ (mod ¢(#)) for £ >0,

(3) ind 1=0(mod ¢(»)), ind =1 (mod ¢(»)).
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Proof: By the definition of index, 7'*¢¢ =4 (mod 7) and r'***=4p
(mod #). Multiplying these congruences together, we obtain

pinda+1nd b = b (mod ﬂ).
But 774 @ = g} (mod #), so that
7ind & +10d b = pind @)(mod 7).

It may very well happen that ind 2 +ind 4 exceeds #(#). This
presents no problem, for Theorem 8-1 guarantees that the last equation
holds if and only if the exponents are congruent modulo ¢(»); that
is,
ind @ + ind & = ind (ab) (mod $(7)).

The proof of property (2) proceeds along much the same
lines. For we have rind e = 4* (mod #) while, by the laws of expo-
nents, r¥10d ¢ — (pind e)e = 4 (mod #); hence,

pind ak — pkinda (mod ﬂ).

As above, the implication is that ind "= £ ind « (mod $(»)). The
two parts of (3) should be fairly apparent.

The theory of indices can be used to solve certain types of con-
gruences. For instance, consider the binomial congruence

x* = a (mod #), £>2

where # is a positive integer having a primitive root and ged (s, 7) = 1.
By properties (1) and (2) of Theorem 8-11, this congruence is entirely
equivalent to the linear congruence

4 ind x = ind 2 (mod ¢(»))

in the unknown ind x. If d=gcd (4, ¢(#)) and 4 f ind a4, there is no
solution. But, if 4| ind 4, then there are exactly d values of ind x which
will satisfy this last congruence, hence 4 incongtuent solutions of x* =4
(mod #).

The case in which 4=2 and #=p, with p an odd prime, is
particularly important. Since ged (2, p — 1) = 2, the foregoing remarks
imply that the congruence x2=a (mod p) has a solution if and only if
2| ind 4; when this condition is fulfilled, there are exactly two solutions.
If 7 is a primitive root of p, then 7* (1 <4 < p — 1) runs through the inte-
gers 1, 2, ..., p—1, in some order. The even powers of r produce
the values of # for which the congruence x?=ga (mod p) is solvable;
there are precisely (p — 1)/2 such choices for a.
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Example 8-4
For an illustration of these ideas, let us solve the congruence

4x°% =17 (mod 13).

A table of indices can be constructed once a primitive root of 13 is
fixed. Using the primitive root 2, we simply calculate the powers
2,22 ...,22 modulo 13. Here,

21=2, 25 =0, 2% =5

22=4, 26=12, 10=10

23=8, 27=11, 2u=7

2t =3 28=9, 212 =1

all modulo 13, and hence our table is

a' 123 456 7 89 10 11 12

indza‘121429511381076

Taking indices, the congruence 4x° = 7 (mod 13) has a solu-
tion if and only if

ind, 4 + 9 ind, x = ind, 7 (mod 12).

The table gives the values ind, 4 = 2 and ind, 7 = 11, so that the last
congruence becomes 9 ind, x =11 —2=9 (mod 12) which in turn
is equivalent to ind, x =1 (mod 4). It follows that

indyx=1,5, or 9.

Consulting the table of indices again, we find that the congruence
4x° =7 (mod 13) possesses the three solutions

x=2,5,and 6 (mod 13).

If a different primitive root is chosen, one obviously obtains
a different value for the index of a; but, for purposes of solving the
given congruence, it does not really matter which index table is avail-
able. The ¢(¢#(13)) = 4 primitive roots of 13 are obtained from the
powers 2¢(1 < £ < 12), where

ged (4, ¢(13)) = ged (4, 12) = 1.
These are
2'=2,25=0, 2"=11, 2!* =7 (mod 13).
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The index table for, say, the primitive root 6 is displayed below:

a 1 23 456 7 89 10 11 12

indga 12 5 8 10 9 1 7 3 4 2 11 6
Employing this table, the congruence 4x° =7 (mod 13) is replaced
by

indg4 + 9 indg x =inde 7 (mod 12)
or rather,
9 indyx=7—10=—3=9 (mod 12).
Thus, indgx = 1, 5, or 9, leading to the solutions
x=2,5,and 6 (mod 13),

as before.
The following criterion for solvability is often useful.

TuroreM 8-12. Let #n be an integer possessing a primitive root and let
ged (a, ny=1. Then the congruence x*=a (mod #) has a solution if and
oy if

2%™id =1 (mod #),
where d = ged (k, §(n)); if it has a solution, there are exactly d solutions
modulo n.

Proof: ‘Taking indices, the congruence #*™/¢ =1 (mod #) is equi-
valent to

¢( ) ind 2 = 0 (mod ¢(»))

which in its turn holds if and only if 4| ind 2. But we have just
seen that the latter is a necessary and sufficient condition for the con-
gruence x* =z (mod #) to be solvable.

CoroLLARY (Euler). Let p be a prime and ged (a, p) = 1. Then the
congruence x* = a(mod p) has a solution if and only ifa® - 14 = 1 (mod p),
where d = gcd (&, p—1).
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Example 8-5
Let us consider the congruence

53 =4 (mod 13).
Here, d= ged (3, $(13)) = ged (3, 12) = 3 and so ¢(13)/d= 4. Since

*=93 1(mod 13), Theorem 8-12 asserts that the given congruence

is not solvable.
On the other hand, the same theorem guarantees that

3x* =5 (mod 11)

will possess a solution (in fact, there are three incongruent solutions
modulo 13); for, in this case, 5*=625=1 (mod 13). These solu-
tions can be found by means of the index calculus as follows: The
congruence x® =5 (mod 13) is equivalent to

3 ind; x =9 (mod 12),
which becomes
ind, x =3 (mod 4).
This last equation admits three incongruent solutions modulo 12,
namely

indyx = 3, 7, or 11.

The integers corresponding to these indices are, respectively, 7, 8, and
11, so that the solutions of the congruence x* = 5 (mod 13) are

x =7,8,and 11 (mod 13).

PROBLEMS 8.4

1. Find the index of 5 relative to each of the primitive roots of 13.
Using a table of indices for a primitive root of 11, solve the congruences
(a) 7x%=3 (mod 11) (b) 3x*=8 (mod 11) (c) x®=10 (mod 11)
3. The following is a table of indices for the prime 17 relative to the primi-
tive root 3:

al12345678910111213141516

indga 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8
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10.

11.

12.

13.

14.

With the aid of this table, solve the congruences
(a) x'2=13(mod 17) (b) 8x°=10(mod 17)
() 9x®=8(mod17) (d) 7*=7 (mod 17)

Find the remainder when 3% is divided by 17. [Hint: Use the theory

of indices.]

If 7 and 7' are both primitive roots of the odd prime p, show that for

ged (a, py=1

ind,, 2 = (ind, 4)(ind, 7) (mod p —1).

This corresponds to the rule for changing the base of logarithms.

(a) Construct a table of indices for the prime 17 with respect to the
primitive root 5. [Hint: By the previous problem, indg 2=13ind; 4
(mod 16).]

(b) Using the table in part (a), solve the congruences in Problem 3.

If r is a primitive root of the odd prime p, verify that

ind, (—1) =ind, (p — 1) =3(» =

(a) Determine the integers a (1 <a<12) such that the congruence
ax* = b (mod 13) has a solution for =2, 5, and 6.

(b) Determine the integers 2 (1 <a<{p—1) such that the congruence
x* = g (mod p) has a solution for p =7, 11, and 13.

Employ the corollary to Theorem 8-12 to establish that if p is an odd

prime, then

(a) x2= —1 (mod p) is solvable if and only if p=1(mod 4);

(b) x*= —1 (mod p) is solvable if and only if p = 1 (mod 8).

Given the congruence x° =z (mod p), where p=>5is a prime number

and ged (4, p) = 1, prove that

(a) if p=1 (mod 6), then the congruence has either no solutions or
three incongruent solutions modulo p;

(b) if p=>5(mod 6), then the congruence has a unique solution modulo p.

Show that x® = 3 (mod 19) has no solutions, while x° =11 (mod 19) has

three incongruent solutions.

Determine whether the two congruences x® =13 (mod 23) and x" =15

(mod 29) ate solvable.

If p is a prime and ged (4, p — 1) = 1, prove that the integers

1%, 2%, 3%, ..., (p — 1)

form a reduced set of residues modulo p.

Let r be a primitive root of the odd prime p and 4= ged (4, p —1). Prove

that the values of a for which the congruence x* = a (mod p) is solvable
are ro, r24, ., pl®@- DA,
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The Quadratic
Reciprocity Law

“The moving power of mathematical invention is

not reasoning but imagination.”
A. DEMORGAN




9.1 EULER’S CRITERION

As the heading suggests, the present chapter has as its goal another
major contribution of Gauss: the Quadratic Reciprocity Law. For those
who consider the theory of numbers “the Queen of Mathematics,”
this is one of the jewels in her crown. The instrinsic beauty of the
Quadratic Reciprocity Law has long exerted a strange fascination for
mathematicians. Since Gauss’ time, over a hundred proofs of it, all
more or less different, have been published (in fact, Gauss himself even-
tually devised seven). Among the eminent mathematicians of the 19th
century who contributed their proofs appear the names of Cauchy,
Jacobi, Dirichlet, Eisenstein, Kronecker, and Dedekind.

Roughly speaking, the Quadratic Reciprocity Law deals with the
solvability of quadratic congruences. It therefore seems appropriate
to begin by considering the congruence

(1) ax? - bx +- ¢ =0 (mod p),

where p is an odd prime and 2 # 0 (mod p); that is, gcd (4, p) = 1. The
supposition that p is an odd prime implies that gcd (44, p) = 1. Thus,
congruence (1) is equivalent to

4a(ax? -+ bx +¢) =0 (mod p).
Using the identity
da(ax® + bx + ¢) = 2ax + b)? — (b2 — 4ac),
the last-written congruence may be expressed as
(2ax + b)? =(b? — 4ac) (mod p).
Now put y = 2ax + b and d'= b® — 4ac to get
@ 2? =d (mod p).

If x =x, (mod p) is a solution of (1), then y =2ax, + b (mod p) satisfies
the congruence (2). Conversely, if y =y, (mod p) is a solution of (2),
then 2ax =y, —4 (mod p) can be solved to obtain a solution of (1).

184
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Thus, the problem of finding a solution to the quadratic con-
gruence (1) is equivalent to that of finding 2 solution to a linear congru-
ence and a quadratic congruence of the form

©) x? =a (mod p).

If p| a, then (3) has x =0 (mod p) as its only solution. To avoid triv-
ialities, let us agree to assume hereafter that p f a.

Granting this, whenever x? =a (mod p) admits a solution x = x,,
then there is also a second solution x = — x,. This second solution
is not congruent to the first. For xo=p—x, (mod p) implies that
2x4 =0 (mod p), or x, =0 (mod p), which is impossible. By Lagrange’s
Theorem, these two solutions exhaust the incongruent solutions of
x? =a (mod p). In short: x* =a (mod p) has exactly two solutions ot no
solutions.

A simple numerical example of what we have just said is provided
by the congruence

552 — 6x -+ 2 =0 (mod 13).
To obtain the solution, one replaces this congruence by the simpler one
2 =9 (mod 13)
with solutions y =3, 10 (mod 13). Next, solve the linear congruences
10x =9 (mod 13), 10x =16 (mod 13).

It is not difficult to see that x =10, 12 (mod 13) satisfy these equations
and, by our previous remarks, the original quadratic congruence also.

The major effort in this presentation is directed towards providing
a test for the existence of solutions of the congruence

) x? =a (mod p), ged(a, p)=1.

To put it differently, we wish to identify those integers « which are
perfect squares modulo p. Some additional terminology will help us to
discuss this situation in a concise way:

Dermnrrion 9-1.  Let p be an odd prime and ged (4, p)= 1. If the
congruence x? =a (mod p) bas a solution, then  is said to be a
quadratic residue of p. Otherwise, a is called a guadratic nonresidue of p.

The point to be borne in mind is that if 2 =4/ (mod p), then 4
is 2 quadratic residue of p if and only if & is a quadratic residue of .
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Thus, we need only determine the quadratic character of those positive
integers less than p in order to ascertain that of any integer.

Example 9-1
Consider the case of the prime p=13. To find out how many of
the integers 1, 2, 3, ..., 12 are quadratic residues of 13, we must know

which of the congruences
x? =a (mod 13)

are solvable when # runs through the set {1, 2, ..., 12}, Modulo 13,

the squares of the integers 1, 2, 3, ..., 12 are
12=122= 1,
22=112= 4,
32=10%2= 9,
42= 92= 3,
52 = §2=12,
62 = 72=10.

Consequently, the quadratic residues of 13 are 1, 3, 4, 9, 10, 12, while
the nonresidues are 2, 5, 6, 7, 8, 11. Observe that the integers
between 1 and 12 are divided equally among the quadratic residues
and nonresidues; this is typical of the general situation.

Euler devised a simple criterion for deciding whether an integer
a is a quadratic residue of a given prime p.

TueoreM 9-1 (Euler’s Criterion). Let p be an odd prime and
ged(a, p)=1. Then a is a guadratic residwe of p if and only if
a®-112 =1 (mod p).

Progf: Suppose that 2 is a quadratic residue of p, so that x2 =4
(mod p) admits a solution, call it x, . Since ged (4, p) = 1, evidently
gcd (xy, p) = 1. We may therefore appeal to Fermat’s Theorem to
obtain

a® D12 =(5,2)®P-D/2 =x-1 =1 (mod p).
For the opposite direction, assume that 2®-1/2 =1 (mod p)

holds and let » be a primitive root of p. Then 4 =r*(mod p) for some
integer 4, with 1 <4 <p— 1. It follows that

r@®-112 = 4-112 =1 (mod p).
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By Theorem 8-1, the order of r (namely, p— 1) must divide the
exponent A(p — 1)/2. The implication is that £ is an even integer,
say £ =2j. Hence,

(r7)? = r¥ = r* =a (mod p),
making the integer 7/ a solution of the congruence x? =a (mod p).
This proves that z is a quadratic residue of the prime p.

Now if p (as always) is an odd prime and gcd (e, p) =1, then
(@®- V2 —1)(@r V24 1)=ar"1—1=0 (mod p),

the last congruence being justified by Fermat’s Theorem. Hence either
a®-V2=1(mod p) or a® VZ=-—1 (mod p),

but not both. For, if both congruences held simultaneously, then we
would have 1 = —1 (mod p), or equivalently, p | 2, which conflicts with
our hypothesis. Since a quadratic nonresidue of p does not satisfy
a?-12 =1 (mod p), it must therefore satisfy a®®~ 12 =—1 (mod p).
This observation provides an alternate formulation of Euler’s Criterion:
the integer 4 is a quadratic nonresidue of p if and only if a?- V12 =—1

(mod p).

Putting the various pieces together, we come up with

COROLLARY. Le# p be an odd prime and ged (a, p)=1. Then aisa
quadratic residue or nonresidue of p according as

a?-V2 =1(mod p) or a? PP=—1 (mod p).

Example 9-2
In the case p = 13, we find that

203-12 — 26 — 64 =12 =—1 (mod 13).
Thus, by virtue of the last corollary, the integer 2 is a quadratic non-
residue of 13. Since

3a3-112 = 36 = (27)2 =12 =1 (mod 13),
the same result indicates that 3 is a quadratic residue of 13 and so the

congruence x? =3 (mod 13) is solvable; in fact, its two incongruent
solutions are x =4 and 9 (mod 13).
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There is an alternative proof of Euler’s Criterion (due to
Dirichlet) which is longer, but perhaps more illuminating. The reasoning
proceeds as follows: Let 4 be a quadratic nonresidue of 2 and let ¢ be
any one of the integers 1,2, ..., p— 1. By the theory of linear congru-
ences, there exists a solution ¢’ of ex =4 (mod p), with ¢ also in the set
{1, 2, ..., p—1}. Notice that ¢ #¢, for otherwise we would have
¢2=a (mod p), contradicting what we assumed. Thus, the integers
between 1 and p — 1 can be divided into (p — 1)/2 pairs ¢, ¢, where ¢’ =4
(mod p). This leads to (p — 1)/2 congruences,

¢, ¢; =a (mod p),
¢a¢3 =a (mod p),

Cr -2 bp-1/2 =a (mod p).
Multiplying them together and observing that the product

cle,cheec

61616565

f’
1 (r-1)/27 (p-1)/2

is simply a rearrangement of 1-2.3...(p— 1), we obtain
(p— 1) =a®-1"2 (mod p).
At this point, Wilson’s Theorem enters the picture; for, (p — 1)! =—1
(mod p), so that
a®=112 = _1 (mod p),

which is Euler’s Critetion when « is a quadratic nonresidue of 2.

We next examine the case in which « is 2 quadratic residue of )2
In this setting the congruence x2=ga (mod 2) admits two solutions
x=0x; and x=p— x,, for some x,; with 1 <x;<p—1. If x, and
p— ¥y are removed from the set {1, 2, ..., p— 1}, then the remaining

2 — 3 integers can be grouped into pairs ¢, ¢ (where ¢ £¢") such that
e’ =a (mod p). To these (p— 3)/2 congruences, add the congruence

xy(p—x1) =—x,2 =—a (mod p).

Upon taking the product of all the congruences involved, we arrive at
the relation

(p— 1! =—a®-Y2 (mod p).
Wilson’s Theorem plays its role once again to produce

a® ‘Q”" =1 (mod p).
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Summing up, we have shown that 2172 =1 (mod p) or a®~ V2 =—1
(mod p) according as « is a quadratic residue or nonresidue of p.

Euler’s Criterion is not offered as a practical test for determining
whether a given integer is or is not a quadratic residue; the calculations
involved are too cumbersome unless the modulus is small. But as a
crisp criterion, easily worked with for theoretical purposes, it leaves
little to be desired. A more effective method of computation is embodied
in the Quadratic Reciprocity Law, which we shall prove later in the
chapter.

PROBLEMS 9.1

1. Solve the following quadratic congruences:
(@) x®+7x+10=0(mod 11);
(b) 3x? 4+ 9x -+ 7=0 (mod 13);
(c) 5x24 6x + 1 =10 (mod 23).
2. (a) For an odd prime p, prove that the quadratic residues of p are con-
gruent modulo p to the integers

12,02 32 ... (ﬁf—l 2.
b b b > 2

(b) Verify that the quadratic residues of 17 are 1, 2, 4, 8,9, 13, 15, 16.
3. Employ the index calculus to derive Euler’s Criterion. [Hint: See
Theorem 8-2.]
4. Show that 3 is a quadratic residue of 23, but a nonresidue of 19.
5. Given that 4 is a quadratic residue of the odd prime p, prove that
(a) ais not a primitive root of p;
(b) p— ais a quadratic residue or nonresidue of p according as p=1
(mod 4) ot p =3 (mod 4).
6. If p=2¥+1 is prime, establish that every quadratic nonresidue of p
is a primitive root of p. [Hint: Apply Euler’s Criterion.]
7. If p is an odd prime and gcd (4, p) =1,
(a) show that the quadratic congruence ax?-bx+c=0 (mod p) is
solvable if and only if 42 — 4ac is zero or a quadratic residue of p.’
(b) Use part (a) to verify that 5x2 — 6x -2 =0 (mod 17) is solvable.
(a) If ab= r (mod p), where r is a quadratic residue of the odd prime p,
prove that « and b are both quadratic residues of p or both non-

residues of p. ~

o
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(b) If 2 and b are both quadratic residues of the odd prime p or both
nonresidues of p, show that the congruence ax?=4 (mod p) has a
solution. [Hint: Multiply the given congruence by 4’ where aa’ =1
(mod p).]

9. Let p be an odd prime and ged (4, p) = ged (4, p) = 1. Prove that either
all three of the congruences

x?2=g(mod p), x?=b(mod p), x%=ab (mod p)

are solvable or exactly one of them admits a solution.
10. (a) Knowing that 2 is a primitive root of 19, find all the quadratic
residues of 19.
(by Find the quadratic residues of 29 and 31.

11. If »>2 and ged (4, #) =1, then a4 is called a quadratic residue of # when-
ever there exists an integer x such that x2 =4 (mod 7). Prove that if 4
is a quadratic residue of # > 2, then 4°™/2 =1 (mod #).

12. Show that the result of the previous problem does not provide a sufficient
condition for the existence of a quadratic residue of #; in other words,
find relatively prime integers @ and #, with 2?™/2 =1 (mod #), for which
the congruence x2 = 4 (mod #) is not solvable.

9.2 THE LEGENDRE SYMBOL AND ITS
PROPERTIES

Euler’s studies on quadratic residues were further developed by the
French mathematician Adrien Marie Legendre (1752-1833). Legendre’s
memoir “Recherches d’Analyse Indéterminée” (1785) contains an ac-
count of the Quadratic Reciprocity Law and its many applications, 2
sketch of a theory of the representation of an integer as the sum of three
squares and the statement of a theorem that was later to become famous:
Every arithmetic progression ax + &, where gcd (s, ) = 1, contains an
infinite number of primes. The topics covered in “Recherches” were
taken up in a more thorough and systematic fashion in his Essai sur la
Théorie des Nombres, which appeared in 1798. This represented the first
“modern”™ treatise devoted exclusively to number theory, its precursors
being translations or commentaries on Diophantus. Legendre’s Essas
was subsequently expanded into his Théorie des Nombres. The results
of his later research papers, inspired to a large extent by Gauss, were
included in 1830 in a two-volume third edition of the T/éorie des Nombres.
This remained, together with the Disquisitiones Arithmeticae of Gauss, a
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standard work on the subject for many years. Although Legendre made
no great innovations in number theory, he raised fruitful questions
which provided subjects of investigation for the mathematicians of the
19th century.

Before leaving Legendre’s mathematical contributions, we
should mention that he is also known for his work on elliptic integrals
and for his Elments de Géométrie (1794). In this last book, he
attempted a pedagogical improvement of Euclid’s Elements by rearrang-
ing and simplifying many of the proofs without lessening the rigor of
the ancient treatment. The result was so favorably received that it
became one of the most successful textbooks ever written, dominating
instruction in geometry for over a century through its numerous editions
and translations. An English translation was made in 1824 by the
famous Scottish essayist and historian Thomas Carlyle, who was in early
life a teacher of mathematics; Carlyle’s translation ran through 33 Ameri-
can editions, the last not appearing until 1890. In fact, Legendre’s
revision was used at Yale University as late as 1885, when Euclid was
finally abandoned as a text.

Our future efforts will be greatly simplified by the use of the
symbol (2/p); this notation was introduced by Legendre in his Essai and is
called, naturally enough, the Legendre symbol.

DerFiniTION 9-2. Let p be an odd prime and ged (¢, p) = 1. The
Leegendre symbol (ap) is defined by

(alp) = { 1 if 4 is a quadratic residue of p
p) = —1 if 2 is a quadratic nonresidue of p

For the want of better terminology, we shall refer to 4 as the
numerator and p as the denominator of the symbol (/p). Other standard

notations for the Legendre symbol are (‘—Z ) ot (a| p).

Example 9-3
Let us look at the prime p = 13, in particular. Using the Legendre
symbol, the results of an earlier example may be expressed as

(1/13) = (3/13) = (4/13) = (9/13) = (10/13) = (12/13) =1
and

(2/13) = (5/13) = (6/13) = (7/13) =(8/13)=(11/13) =—1.
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REMARK: For p|a, we have purposely left the symbol (4/p) undefined.
Some authors find it convenient to extend Legendre’s definition to this
case by setting (4/p) = 0. One advantage of this would be that the number
of solutions of x? = a4 (mod p) can then be given by the simple formula

1+ (a/p).

The next theorem sets in evidence certain elementary facts con-
cerning the Legendre symbol.

Turorem 9-2. Let p be an odd prime and a and b be integers which are
relatively prime to p. Then the Legendre symbol has the following pro-
perties:

1 If a=b(mod p), then (a|p)= (b|p)-
@) (@p) = 1.

(3) (”/P) =gP-1)2 (modp),

) (ab|p) = (a|p)(b[p).

©) (1/p)=1and (—1/p)=(—1)@-12

Proof:  If a=b (mod p), then x? =4 (mod p) and x2 =5 (mod p)
have exactly the same solutions, if any at all. Thus x? =« (mod p)
and x? =& (mod p) are both solvable, or neither one has a solution.
This is reflected in the statement that (¢/p) = (b/p).

As regards (2), observe that the integer 4 trivially satisfies
the congruence x? =42 (mod p); hence, (4?/p) = 1. Part(3)is just the
corollary to Theorem 9-1 rephrased in terms of the Legendre symbol.
We use (3) to establish (4):

(ablp) ==(ab)> =12 =a®> =13t~ 22 —(ap)(b]p) (mod )
Now the Legendre symbol assumes only the values 1 or —1. Were
(ab[p) + (a[p)(b]p), we would have 1 = —1 (mod p) or 2 =0 (mod p);
this cannot occur, since p > 2. It follows that

(@b[p) = (a[p)(b/p)-

Finally, we observe that the first equality in (5) is a special
case of (2), while the second one is obtained from property (3) upon
setting a = —1. Since the quantities (—1/p) and (—1)®~1/2 are
either 1 or —1, the resulting congruence

(—=1/p) =(—1)@~ 72 (mod p)
implies that (—1/p) = (—1)®-12, o
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From parts (2) and (4) of Theorem 9-2, we may also abstract the
relation

©) (ab?|p) = (a|p)(&*[p) = (a/p)-
In other words, a square factor which is relatively prime to p can be
deleted from the numerator of the Legendre symbol without affecting
its value.

Since (p — 1)/2 is even for p of the form 44 + 1 and odd for p of

the form 44 + 3, the equation (—1/p) = (—1)® -2 permits us to add a
small supplement to Theorem 9-2.

COROLLARY. If p is an odd prime, then
_ | 1ifp=1(mod 4)
(=l = {_1 if p =3 (mod 4)

This corollary may be viewed as asserting that the congruence
x?=—1 (mod p) has a solution if and only if p is a prime of the form
4% +1. The result is not new, of course; we have merely provided the
reader with a different path to Theorem 5-3.

Example 9-4
Let us ascertain whether the congruence x2?=—38 (mod 13) is
solvable. This can be done by evaluating the symbol (—38/13).
We first appeal to patts (4) and (5) of Theorem 9-2 to write

(—38/13) = (—1/13)(38/13) = (38/13).
Since 38 =12 (mod 13), it follows that
(38/13) = (12/13).
Now property (6) above gives
(12/13) = (3 - 22/13) = (3/13).
But
(3/13) =39°-1i2 =30 =(27)% =1 (mod 13),

where we have made appropriate use of (3) of Theorem 9-2; hence,
(3/13)=1. Inasmuch as (—38/13)=1, the quadratic congruence
x? = —38 (mod 13) admits solution.

The Corollary to Theorem 9-2 lends itself to an application
concerning the distribution of primes. N
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THEOREM 9-3.  There are infinitely many primes of the form 4k - 1.

Proof: Suppose that there are finitely many such primes; call them
P1s p2s -5 Py and consider the integer

N=2p1ps-2)* + 1.
Clearly N is odd, so that there exists some odd prime p with p | N.
To put it another way,

(prp2- - p)* =—1(mod p)
or, if one prefers to phrase this in terms of the Legendre symbol,
(—1/p)=1. Butthe relation (—1/p) = 1 holds only if p is of the form
4% + 1. Hence, p is one of the primes p,. This implies that p; di-
vides N — (2p, py - - - pn)% of p; | 1, a contradiction. The conclusion:
there must exist infinitely many primes of the form 44 + 1.

We dig deeper into the properties of quadratic residues with

‘THEOREM 9-4. If p is an odd prime, then
p-1

> (ap=o.

a=1
Hence, there are precisely (p — 1)[2 quadratic residues and (p— 1)/2
quadratic nonresidues of p.

Proof: Let r be a primitive root of p. We know that, modulo p,
the powers 7, 72, ..., r»~! are just a permutation of the integers 1,
2,..., p—1. Thus for any @ between 1 and p — 1, inclusive, there
exists a unique positive integer £ (1 <4 <p—1), such that 2 =r*
(mod p). By appropriate use of Euler’s Criterion, we have

(1) (@p)=(*p) =)~ V72 =(r@ DR =(—1)* (mod p),

where, since r is a primitive root of p, 7#-1/2=—_1 (mod p). But
(a/p) and (—1)* are equal to either 1 or —1, so that equality holds in
(1). Now add up the Legendre symbols in question to obtain

'§<a/p>=§<—1>k=0,

the desired conclusion.

The proof of Theorem 9-4 serves to bring out the following
point, which we record as

N
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COROLLARY. The quadratic residues of an odd prime p are congruent
modulo p to the even powers of a primitive root r of p; the quadratic non-
residues are congruent to the odd powers of r.

For an illustration of the idea just introduced, we again fall
back on the prime p=13. Since 2 is a primitive root of 13, the quad-
ratic residues of 13 are given by the even powers of 2, namely,

22 =4 28 =9
20 =3 210 =10
25 =12 2z —1

all congruences being modulo 13. Similarly, the nonresidues occur as
the odd powers of 2:

2t =2 2"=11
23 =8 29 =5
25 =6 211 =7,

Most proofs of the Quadratic Reciprocity Law, and ours as well,
rest ultimately upon what is known as Gauss’ Lemma. While this lemma
gives the quadratic character of an integer, it is more useful from a
theoretical point of view than as a computational device. We state and
prove it below.

THEOREM 9-5 (Gauss’ Lemma). Let p be an odd prime and let
ged (a, p) = 1. If n denotes the number of integers in the set

S={a,2a,3a,...,(ﬁ—;1)a}

whose remainders upon division by p exceed p|2, then

(alp) = (=1
Proof: Since ged (4, p) =1, none of the (p — 1)/2 integers in S is
congruent to zero and no two are congruent to each other modulo .
Let 7, ..., rn be those remainders upon division by p such that
0<r,<p/2ands,...,s, bethose remainders such that p >+, > p/2.
Then m -+ n=(p— 1)/2, and the integers

Tis ooy Py P S515 00 P— 5y

are all positive and less than p/2.

AN
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In order to prove that these integers are all distinct, it suffices
to show that no p — s, is equal to any ,. Assume to the contrary
that

P—si=r;
for some choice of 7 and /. Then there exist integers # and », with
1<u, 0 <(p—1)/2, satisfying s, =ma (mod p) and 7, =va (mod p).
Hence,
(#+v)a =s; +7r,=p =0 (mod p)
which says that # +-» =0 (mod p). But the latter congruence cannot
take place, since 1 <# -0 <p— 1.

The point which we wish to bring out is that the (p— D)2

numbers
Piseeis Tms =151, oy p—15,

are simply the integers 1, 2, ..., (p» — 1)/2, not necessarily in order of
appearance. Thus, their product is [(p — 1)/2]!:

(P%l) l=rieorn(p—s1) - (p—s)

=7y Tp(—51) -+ -(—5,) (mod 2)
=(—1)"y- 7,55, (mod p).

But we know that 7y, ..., 7., 5, ..., s, are congruent modulo p to
a,2a,...,[(p— 1)/2]a, in some order, so that

(2%_1_) l=(—1)"¢-24-. (P; l) a(mod p)

E(_l)naw—wz(PT_l) ! (mod p).
Since [(p — 1)/2]! is relatively prime to p, it may be cancelled from
both sides of this congruence to give
1 =(—1)ng»-1i2 (mozi ?)
or, upon multiplying by (—1)*,
a'? =2 =(—1)" (mod p).
Use of Euler’s Criterion now completes the argument:

(4/p) =a®~ V12 =(—1)" (mod p),
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which implies that
(a/p) = (=)~
By way of illustration, let p =13 and 2=5. Then(p —1)/2=0,
so that
S = {5, 10, 15, 20, 25, 30}.
Modulo 13, the members of S ate the same as the integers
5,10, 2, 7, 12, 4.

Three of these are greater than 13/2; hence, » = 3 and Theorem 9-5 says
that

(5/13) = (—1)8 = —1.

Gauss’ Lemma allows us to proceed to a variety of interesting
results. For one thing, it provides a means for determining which
primes have 2 as a quadratic residue.

THEOREM 9-6.  If p is an odd prime, then

[ 1lifp=1(mod8) or p=7(mod8);
@lp) *{_1 if p=3(mod 8) or p=5(mod 8).

Proof:  According to Gauss’ Lemma, (2/p) = (—1)", whete # is the
number of integers in the set

_ p—1\ .
5_{2,2.2,3.2,...,( . ) 2}

which, upon division by p, have remainders greater than p/2. The
members of S are all less than p, so that it suffices to count the number
that exceed p/2. For 1 <A <(p—1)/2, 2}\<p/2 if and only if
k < p/4. If [] denotes the greatest integer function, then there are
[ p/4] integers in S less than p/2, hence

1
”:%——[P/“]

integers which are greater than p/2.
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Now we have four possibilities; for, any odd prime has one
of the forms 84 +1, 84 +3, 84+ 5, or 84+7. A simple calcula-
tion shows that

if p=8k+1, then n=44 — [24 + }] = 4% — 24k = 24,

i p=8k-+3, then n=4k +1—[2h + ] =4k 1 — 24 =24 1,

ifp=8k+5 thenn=4k +2— 24 +1 4+ }] =44 +2— (2 1)
=2k 41,

ifp=8k+7,thenn=4~k43— 24 +1+ 3] =44 4+3— (24 + 1)
=2k 42

Thus, when p is of the form 84 - 1 or 84 + 7, nis even and 2/p) =1;
on the other hand, when p assumes the form 84 +3o0r 8445, nis
odd and (2/p) = —1.

Notice that if the odd prime p is of the form 84 - 1 (equivalently,
»=1(mod 8) or p =7 (mod 8)), then
PP—1 (8L 1)2—1 6442+ 164

— 842
3 8 8 = 842 1 24,

which is an even integer; in this situation, (=1)»*-18 =1 — (2/p).
On the other hand, if p is of the form 84 + 3 (equivalently, p =1 (mod 8)
or p =5 (mod 8)), then

pr—1 (BAL£3)2—1 64421 48418
8 8 o 8
which is odd; here, we have (—1)#*-18 — _ 1 — (2/p). These observa-

tions are incorporated in the statement of the following corollary to
Theorem 9-6.

=842+ 64 +1,

CoROLLARY.  If p is an odd prime, then
2lp)= (=)o,

It is time for another look at primitive roots. As we have re-
marked, there is no general technique for obtaining a primitive root of an
odd prime p; the reader might, however, find the next theorem useful on
occasion,

THEOREM 9-7. If p and 2p +1 are both odd primes, then the integer
(=1)®=1122 i5 a primitive root of 2p + 1.
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Proof: For ease of discussion, let us put g=2p+41. We dis-
tinguish two cases: p =1 (mod 4) and p =3 (mod 4).

If p =1 (mod 4), then (—1)®-2/22 =2, Since ¢(q) =g —
1 = 2p, the order of 2 modulo ¢ is one of the numbers 1, 2, p, or 2p.
Taking note of part (3) of Theorem 9-2, we have

(2/g) =212 =27 (mod g).

But, in the present setting, 4 =3 (mod 8); whence, the Legendre
symbol (2/g) = —1. It follows that 2» = —1 (mod ¢) and so 2 cannot
have order p modulo ¢. The order of 2 being neither 1, 2, (22 =1
(mod ¢) implies that ¢ | 3, an impossibility) nor p, we are forced to
conclude that the order of 2 modulo ¢ is 2p. This makes 2 a primi-
tive root of ¢.

We now deal with the case p =3 (mod 4). This time,
(—DH@-b22 = —2 and

(—2)? =(—2/g) = (—1/9)(2/q) (mod g).

Since g=7 (mod 8), the corollary to Theorem 9-2 asserts that
(—1/g) = —1, while once again we have (2/g) = 1. This leads to the
congruence (—2)? =—1 (mod ¢). From here on, the argument
duplicates that of the last paragraph. Without analyzing further,
we announce the decision: —2 is a primitive root of g.

Theorem 9-7 indicates, for example, that the primes 11, 59, 107,
and 179 have 2 as a primitive root. Likewise, the integer —2 serves as
a primitive root for 7, 23, 47, and 167.

Before retiring from the field, we should mention another result
of the same character: if p and 4p + 1 are both primes, then 2 is a prim-
itive root of 4p -+1. Thus, to the list of prime numbers having 2
for a primitive root, one could add, say, 13, 29, 53, and 173.

There is an attractive proof of the infinitude of primes of the
form 84 — 1 which can be based on Theorem 9-6.

THEOREM 9-8. There are infinitely many primes of the form 8k — 1.

—_

Proof:  As usual, suppose that there are only a finite number of such
primes. Let these be p;, p3, ..., p» and consider the integer

N=(4PIP2 ° 'Pn)z— 2.
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There exists at least one odd prime divisor p of N, so that

(4p1p2- - pn)? =2 (mod p)

or (2/p)=1. In view of Theorem 9-6, p = 4-1 (mod 8). If all the
odd prime divisors of IN were of the form 84 + 1, then N itself would
be of the form 16z + 2; this is clearly impossible, since N is of the
form 16z — 2. Thus, N must have a prime divisor g of the form
84—1. Butg| N and g| (4p; ps--- p,)? leads to the contradiction
that g | 2.

The next result, which allows us to effect the passage from
Gauss’ Lemma to the Quadratic Reciprocity Law, has some independent
interest.

LEMMA. If p is an odd prime and a an odd integer, with gcd (a, p) =1,
then

(»—1y/2

(@lp) = (1)

Proof: We shall employ the same notation as in the proof of Gauss’
Lemma. Consider the set of integers

$=fo20ee (B52) )

Divide each of these multiples of 4 by p to obtain
ka=q.p+t, 1< <p—1.
Then Aa/p=q, + 4/p, so that [Aa[p]=¢,. Thus for 1 <A<

(p — 1)/2, we may write £z in the form
M ka = [kalplp + .

If the remainder #, << p/2, then it is one of the integets 7y, ..., 7 ;
if #4, > p/2, then it is one of the integers 51, ..., 5,.
Taking the sum of the equations (1), we get the relation

[kalp)

)] (pilzlm = (p_zmz[/m/p]p + z"': e+ i e -
k=1 k=1 k=1 k=1

It was learned in proving Gauss’ Lemma that the (p — 1)/2 numbers

PigevestmsP— 515 ey P— 5
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are just a rearrangement of the integers 1, 2, ...,(p — 1)/2. Hence,

(p—1)/2 m

3 Z k:Z’k"*‘i(P_fk):P”‘*‘Zm’k—Ei:frw

Subtracting (3) from (2) gives

k=1 k=1

) (a— 1)(p_szf =P((p_zm[/fﬂ/])] - ﬂ) +2 Z Sier

Let us use the fact that p =4 =1 (mod 2) and translate this last equa-
tion into a congruence modulo 2:

(p-1)/2 (r-1)/2
0- Z /rzl-( Z [/ra/p]-—n) (mod 2)
o k=1 k=1

| [44/p] (mod 2).

1

n

(-1

Kk

The rest follows from Gauss’ Lemma; for,

p=-1)/2
3 (kalpl

(@lp) = (=1 =(=1)""
as we wished to show.
For an example of this last result, again consider p = 13 and 2= 5.
Since (p — 1)/2= 6, it is necessary to calculate [£a/p] for =1, ..., 6:
[5/13] = [10/13] =0;
[15/13] = [20/13] = [25/13] = 1;
[30/13] = 2.
By the lemma, we have
(5/13) = (—1)r+1+1+2— (—1)5 = —1,

confirming what was earlier seen.

PROBLEMS 9.2

1. Use Gauss’ Lemma to evaluate each of the Legendre symbols below
(that is, in each case find the integer # for which (a/p) =(—1)™):

@ @11, b) (7/13), © (6/19), @ 11/23), () (©/31).
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If p is an odd prime, show that

p-2
D (aa+1)/p) = —1
a=1
[Hint: 1f &' is defined by @’ =1 (mod p), then (a(a + 1)/p) = ((1 + a')/p).
Note that 1 + 4" runs through a complete set of residues modulo p, except
for the integer 1.]
Prove the statements below:
(@) If pand g=2p+1 are both odd primes, then —4 is a primitive root
of g.
(b) If p=1(mod 4) is a prime, then —4 and (p — 1)/4 are both quadratic
residues of p.
If p=7 (mod 8), show that p| 22 _1. [Hijnt: By Theorem 9-6,
1=(2/p) = 2-12 (mod p).]
Use Problem 4 to confirm that the numbers 2" — 1 are composite for
n=11, 23, 83, 131, 179, 183, 239, 251.
Given that p and g=4p+ 1 are both primes, prove the following:
(a) Any quadratic nonresidue of ¢ is either a primitive root of 4 or has
order 4 modulo ¢. [Hint: If a is a quadratic nonresidue of g, then
—1=(a/g) =4°" (mod g¢); hence a has order 1, 2, 4, p, 2p, or 4p
modulo ¢.]
(b) The integer 2 is a primitive root of g.
If r is a primitive root of the odd prime p, prove that the product of the
quadratic residues of p is congruent modulo p to 7®*-1/¢ while the pro-
duct of the nonresidues of p is congruent modulo p to r®-1%*4,  [Hins:
Apply the Corollary to Theorem 9-4.]
Establish that the product of the quadratic residues of the odd prime p
is congruent modulo p to 1 or —1 according as p=3 (mod 4) or p =1
(mod 4). [Hint: Use Problem 7 and the fact that r#~ /2= _1 (mod p).
Or, Problem 2(a) of Section 9.1 and the proof of Theorem 5-3.]

(a) If the prime p >3, show that p divides the sum of its quadratic
residues.

(b) If the prime p >5, show that p divides the sum of the squares of
its quadratic nonresidues.

Prove that for any prime p>5 there exist integers 1<<a, b<<p—1

for which

@p) =@+ D=1 and Gp) =G+ D= —1;

that is, there are consecutive quadratic residues of p and consecutive
nonresidues.
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11. (a) Let p be an odd prime and ged (4, p) = ged (4, p) = 1. Show that if
the equation x? —ay? = p admits a solution, then (alp)=1; for
example, (2/7)=1, since 62 —2-22=4-7. [Hint: If xq, yo satisfy
the equation, then (x yo" %)% =4 (mod p).]

(b) By considering the equation x*+ 5y%=7, demonstrate that the
converse of the result in part (a) need not hold.

(c) Show that, for any prime p=+3 (mod 8), the equation x? —2y% = p
has no solution.

12. If p=1 (mod 4), prove that

-

)2

(a/p) = 0.

(p-

[Hint: (a]p) =(p — a/p)]

9.3 QUADRATIC RECIPROCITY

Let p and ¢ be distinct odd primes, so that both of the Legendre symbols
(p/g) and (g/p) are defined. It is natural to inquire whether the value of
(p/q) can be determined if that of (g/p) is known. To put the question
more generally, is there any connection at all between the values of these
two symbols? The basic relationship was conjectured experimentally by
Euler in 1783 and imperfectly proved by Legendre two years there-
after. Using his symbol, Legendre stated this relationship in the elegant
form that has since become known as the Quadratic Reciprocity Law:

p-1qg-1

(Plalp) =17 *.

Legendre went amiss in assuming a result which is as difficult to prove as
the law itself, namely, that for any prime p =1 (mod 8), there exists
another prime g =3 (mod 4) for which p is a quadratic residue. Un-
daunted, he attempted another proof in his Essai sur la Théorie des Nombres
(1798); this one too contained a gap, since Legendre took for granted
that there are an infinite number of primes in certain arithmetical pro-
gressions (a fact eventually proved by Dirichlet in 1837, using in the
process very subtle arguments from complex variable theory).

At the age of eighteen, Gauss (in 1795), apparently unaware of
the work of either Euler or Legendre, rediscovered this reciprocity law
and, after a year’s unremitting labor, obtained the first complete proof.
“Tt tortured me,” says Gauss, *“for the whole year and eluded my most
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strenuous efforts before, finally, I got the proof explained in the fourth
section of the Disguisitiones Arithmeticae.” In the Disquisitiones Arith-
meticae—which was published in 1801, although finished in 1798—Gauss
attributed the Quadratic Reciprocity Law to himself, taking the view
that a theorem belongs to the one who gives the first rigorous demonstra-
tion. The indignant Legendre was led to complain: “This excessive
impudence is unbelievable in a man who has sufficient personal merit
not to have the need of appropriating the discoveries of others.” All
discussion of priority between the two was futile; since each clung to
the correctness of his position, neither took heed of the other. Gauss
went on to publish five different demonstrations of what he called “the
gem of higher arithmetic,” while another was found among his papers.
The version presented below, a variant of one of Gauss’ own arguments,
is due to his student, Ferdinand Eisenstein (1823-1852). The proof is
complicated (and it would perhaps be unreasonable to expect an easy
proof), but the underlying idea is simple enough.

THEOREM 9-9 (Gauss’ Quadratic Reciprocity Law). If p and q are
distinct odd primes, then

(Pla)alp) =(—1)'7 7.

Proof: Consider the rectangle in the xy coordinate plane whose
vertices ate (0, 0),(p/2, 0), (0, ¢/2), and (p/2, g/2). Let R denote the
region within this rectangle, not including any of the bounding lines.
The general plan of attack is to count the number of lattice points
(that is, the points whose coordinates are integers) inside R in two
different ways. Since p and g are both odd, the lattice points in R
consist of all points (7, 7), where 1 <z <(p—1)2and 1 <m <
(¢ — 1)/2; the number of such points is clearly
p—1 g1

2 2

Now the diagonal D from (0, 0) to(p/2, 4/2) has the equation
Y =/(q/p)x, or equivalently, py=gx. Since gcd(p, g)=1, none of
the lattice points inside R will lie on D. For p must divide the
x coordinate of any lattice point on the line py = gx, and g must divide
its y coordinate; there are are no such points in R. Suppose that T,
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denotes the portion of R which is below the diagonal D, and T, the
portion above. By what we have just seen, it suffices to count the
lattice points inside each of these triangles.

The number of integers in the interval 0 <y <4g/p is
[#g/p}. Thus, for 1 <A< (p—1)/2, there are precisely [4£9/p]
lattice points in T, directly above the point (£, 0) and below D;
in other words, lying on the vertical line segment from (£, 0) to
(%, kq|p). It follows that the total number of lattice points con-
tained in T is

(p-112

> [halp).
k=1
0

(0,4/2) (p/2,4/2)

T, D

“Tk,kg/p)
e o o o Tl

©,0) (,0) 20

A similar calculation, with the roles of p and g interchanged, shows
that the number of lattice points within T}, is

-

)2

L2/4]-

(-

-

=1

This accounts for all of the lattice points inside R, so that

P . 1 - 1 (p—-1)/2 @-1)/2
o= > Tkl + D Liblal
k=1 i=1
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The time has come for Gauss’ Lemma to do its duty:

(@12 - 1)/2

2 Upial 2 tkalp]
(2lg)glp) =(—1) =* H(=1) w=
(q—El)IZ[‘ 1l <P—é)/2[k ,
q] + q/pl
:(_—1> P ir R P

l1g-1

—(-1)
The proof of the Quadratic Reciprocity Law is now complete.

An immediate consequence of this is

CorOLLARY 1. If p and q are distinct odd primes, then
B if p=1(mod4)org=1(mod 4)

Progf: The number (p — 1)/2 - (4— 1)/2is even if and only if at least
one of the integers p and g is of the form 44 + 1; if both are of the
form 44 4 3, then(p — 1)/2 - (¢ — 1)/2 is odd.

Multiplying each side of the Quadratic Reciprocity equation by
(¢/p) and using the fact that (g/p)?= 1, we could also formulate this as

CoRrOLLARY 2. If p and q are distinct odd primes, then
(9/p) if p=1(mod4)or g=1 (mod 4)
—lp) i p=g=3(mod4)
Let us see what this last series of results accomplishes. Take

2 to be an odd prime and 4 # 4-1 to be an integer not divisible by 2.
Suppose further that 2 has the factorization

a= :{:2k°P1k1sz2 * 'prk':

where the p, are odd primes. Since the Legendre symbol is multiplicative,

(a[p) = (1P (pa[p)* - - - (2r[p).

In order to evaluate (¢/p), we have only to calculate the symbols (—1 1P),
(2/p), and (p,/p). 'The values of (—1/p) and (2/p) were discussed earlier,
so that the one stumbling block is (p,/p), where p, and p are distinct odd
primes; this is where the Quadratic Reciprocity Law enters. For Corol-

(o) =|
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lary 2 allows us to replace (p,/p) by a new Legendre symbol having
2 smaller denominator. Through continued inversion and division, the
computation can be reduced to that of the known quantities

(—1/q), (1/q), and (2/g)-

This is all somewhat vague, of course, so let us look at a conctete example.

Example 9-5
Consider the Legendre symbol (29/53), for instance. Since both
29 =1 (mod 4) and 53 =1 (mod 4), we see that

(29/53) = (53/29) = (24/29) = (2/29)(3/29)(4/29)
= (2/29)(3/29).
With reference to Theorem 9-6, (2/29) = —1, while inverting again,
(3/29) = (293) = 2/3) = —1,

where we used the congruence 29 =2 (mod 3). The net effect is
that

(29/53) = (2/29)(3/29) = (—1)(—1)=1.
The Quadratic Reciprocity Law provides a very satisfactory

answer to the problem of finding all odd primes p 7 3 for which 3 is a
quadratic residue. Since 3 =3 (mod 4), Corollary 2 above implies that

L (p3) if p=1(mod4)
Glp) _{—(p/3) if p=3(mod 4).

Now p =1 (mod 3) or p =2 (mod 3). By Theorems 9-2 and 9-6,

{1 if p=1(mod3)
(P/S)—{_1 if p=2(mod 3)

the implication of which is that (3/p) =1 if and only if

(1) p=1(mod4) and p=1(mod3),
or
(2 p=3(mod4) and p=2 (mod 3).

The restrictions in (1) are equivalent to requiring that p =1 (mod 12)
while those in (2) are equivalent to p =11 =—1 (mod 12). The upshot
of all this:
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TueoreM 9-10.  If p 5 3 is an odd prime, then

{1 i p=-t1(mod12)
(3/[’)_{—1 if =5 (mod 12)

Example 9-6
The purpose of this example is to investigate the existence of solu-

tions of the congruence
x? =196 (mod 1357).

Since 1357 = 23 . 59, the given congruence is solvable if and only
if both

x? =196 (mod 23) and x2 =196 (mod 59)

are solvable. Our procedure is to find the values of the Legendre
symbols (196/23) and (196/59).

The evaluation of (196/23) requires the use of Theorem
9-10:

(196/23) = (12/23) = (3/23) = 1.

Thus, the congruence x2 =196 (mod 23) admits a solution. As
regards the symbol (196/59), the Quadratic Reciprocity Law enables
us to write

(196/59) = (19/59) = —(59/19) = —(2/19) = —(—1) = 1.

It is therefore possible to solve x2 =196 (mod 59) and, in con-
sequence, the congruence x? =196 (mod 1357) as well.

Let us turn to a quite different application of these ideas. At
an earlier stage, it was observed that if F,=2"4+1,2>1,isa ptime,
then 2 is not a primitive root of F,. We now possess the means to show
that the integer 3 serves as a primitive root of any prime of this type.

As a step in this direction, note that any F, is of the form 124 + 5.
A simple induction argument confirms that 4m =4 (mod 12) for m=
1,2, ... ; hence, we must have

Fo=2"+4+1=2%"41=4m{1=5(mod 12).
If F, happens to be prime, then Theorem 9-10 permits the conclusion

(3/F,)=—1,
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ot, using Euler’s Critetion,

Fp~1

377 =—1(mod F,).

Switching to the phi-function, the last congruence says that
30012 =—1 (mod F,).

From this, it may be inferred that 3 has order ¢(F,) modulo F,, and so
3 is a primitive root of F,.

PROBLEMS 9.3

1. Evaluate the following Legendre symbols:
@) (71/73), (b) (—219/383), (c) (461/773), (d) (1234/4567),
(e) (3658/12703). [Hint: 3658 =2-31- 59.]

2. Prove that 3 is a quadratic nonresidue of all primes of the form 22n 4 1) as
well as all primes of the form 2° —1, where p is an odd prime. [Hint:
For all 5, 4*=4 (mod 12).]

3. Determine whether the following quadratic congruences ate solvable:
(@) x2=219 (mod 419).
(b) 3x2+ 6x+ 5=0(mod 89).
(c) 2x2? 4 5x —9=0(mod 101).

4. Verify that if p is an odd prime, then

(—2/p) = 1 if p=1(mod8) or p=3(mod8)
—2D)={_1 if p=5(mod8) or p=7(mod8)

5. (a) Prove that if p >3 is an odd prime, then

_ 1 if le(m0d6)
(-3/P)—{_1 if p=>5(mod 6)

(b) Using part (a), show that there are infinitely many primes of the
form 6k + 1. [Hint: Assume that py, ps, ..., Py ate all the primes of
the form 6% + 1 and consider the integer (2, pg- - - pr)* + 3.]
6. Use Theorem 9-2 and Problems 4 and 5 to determine which primes can
divide each of 72 + 1, 2 + 2, n® 4- 3 for some value of 7.
7. Prove that there exist infinitely many primes of the form 84 + 3. [Hint:
Assume that there are only finitely many primes of the form 84 + 3, say
P1» Das +-+» Pr» and consider the integer (p1 P2 D)+ 2]
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Establish each of the following assertions:

(@) (G/p)=1ifandonlyif p=1,9, 11, or 19 (mod 20).

(b) (6/p)=1if and onlyif p=1, 5, 19, or 23 (mod 24).

(© (7/p)=1ifand only if p=1, 3, 9, 19, 25, or 27 (mod 28).

(a) Show that if p is a prime divisor of 839 — 382 —5 . 112, then (5/p) =1.
Use this fact to conclude that 839 is a prime number. [Hint: It
suffices to consider those primes p < 29.]

(b) Prove that 397 = 202 — 3 and 733 = 292 — 3.. 62 are both primes.

Solve the quadratic congruence x%= 11 (mod 35). [Hint: After solving

x?=11(mod 5)and x% = 11 (mod 7), use the Chinese Remainder Theorem.]

Establish that 7 is a primitive root of any prime of the form p =24 | 1,

[Hint: Since p =3 or 5(mod 7), (7/p) = (p/7) = —1.]

Let zand 4 > 1 be relatively prime integers, with & odd. If b — Dipa by

is the decomposition of 4 into odd primes (not necessarily distinct)

then the Jacobi symbol (a/b) is defined by

(a]6) = (a[p:)alps) - - - (alp,),

where the symbols on the right-hand side of the equality sign are Legendre
symbols. Evaluate the Jacobi symbols

(21/221), (215/253), and (631/1099).

Under the hypothesis of the previous problem, show that if 7 is a quadratic

tesidue of b, then (4/b) = 1; but, the converse if false.

Prove that the following properties of the Jacobi symbol hold: If 4

and &' are positive odd integers and ged (as’, bb'y=1, then

(@ a=4d' (mod b) implies that (a/b) = '/b);

(b) (aa'[b) = (afb)(a'[b);

(©) (a/bb') = (afb)(afb');

(d) (@/b)=(a/b?)=1;

(& (A/f)=1;

(f) (=1/B)=(—1)®-Y72; [Hint: If 4 and » are odd integers, then
(# —1)/24(r —1)/2 = (w — 1)/2 (mod 2).]

(8) (2/)=(—1)**-D/8 [Hint: If 4 and » are odd integers, then
#* —1)/8 4 (v — 1)/8 = [(wr)? — 1]/8 (mod 2).]

Derive the Generalized Quadratic Reciprocity Law: Ifsand b are relatively

prime positive odd integers, each greater than 1, then

@B)ba) = (1) T,

[Hint: See the hint in Problem 14(f).]
Using the Generalized Quadratic Reciprocity Law, determine whether
the congruence x2? = 231 (mod 1105) is solvable.
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9.4 QUADRATIC CONGRUENCES WITH
COMPOSITE MODULI

So far in the proceedings, quadratic congruences with (odd) prime
moduli have been of paramount importance. The remaining theorems
broaden the horizon by allowing a composite modulus. To start, let us
consider the situation where the modulus is a power of a prime.

Tueorem 9-11. If p is an odd prime and ged (a, p) =1, then the con-
gruence
x? =a (mod p), n>1

has a solution if and only if (a[p) = 1.

Proof: As is common with many “if and only if” theorems, one
half of the proof is trivial while the other half requires considerable
effort: If x? =a (mod p") has a solution, then so does x? =a (mod p)
—in fact, the same solution—whence (¢/p) = 1.

For the converse, suppose that (z/p)=1. We argue that
x? =4 (mod p") is solvable by inducting on . If n=1 there is
really nothing to prove; indeed, (2/p) = 1 is just another way of say-
ing that x% =4 (mod p) can be solved. Assume that the result
holds for #= 4> 1, so that x2 =a (mod p*) admits a solution x,.
Then

xo? = a -+ bp*

for an appropriate choice of 4. In passing from kto k + 1, we shall
use x, and 4 to write down explicitly a solution’to the congruence

x? =a (mod pF*1).
Towards this end, we first solve the linear congruence

2x4y =—b (mod p),

obtaining a unique solution y, modulo p (this is certainly possible,
since ged (2, p) = 1). Next, consider the integer

xp = Xo + Yo P*
Upon squaring this integer, we get
(%0 +J0 )% = Xo® + 2X0 Yo" + )0 P™
=a+ (b +2x0 Jo)P* + 0P
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But p | (b + 2x,3,), from which it follows that
%1% = (%0 +90p*)? =a (mod p*+1).

Thus, the congruence x? =4 (mod p") has a solution for 7 = 4 +1
and, by induction, for all positive integers .

Let us run through a specific example in detail. The first step
in obtaining a solution of, say, the quadratic congruence

x? =23 (mod 7?)

is to solve x? =23 (mod 7), or what amounts to the same thing, the
congruence

x? =2 (mod 7).
Since (2/7) =1, a solution surely exists; in fact x, =3 is an obvious
choice. Now x,? can be represented as

32923 1 (—2)7,

so that b= —2 (in our special case, the integer 23 plays the role of 4).
Following the proof of Theorem 9-11, we next determine J so that
6y =2 (mod 7);

that is, 3y =1 (mod 7). This linear congruence is satisfied by y,=75.
Hence,

xo+Tyo=3+7-5=38

serves as a solution to the original congruence x? =23 (mod 49). It
should be noted that —38 = 11 mod (49) is the only other solution.
If, instead, the congruence

x? =23 (mod 7°)
were proposed for solution, we would start with

x? =23 (mod 7?),
obtaining a solution x, = 38. Since

38223 1 29.72,

the integer /=29. We would then find the unique solution Jo=1 of
the linear congruence

76y = —29 (mod 7).
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Then x? =23 (mod 7?) is satisfied by
o4 yoT2=38 +1 .49 =87,

as well as —87 =256 (mod 7°).

Having dwelt at length on odd primes, let us now take up the
case p = 2. The next theorem supplies the pertinent information.

THEOREM 9-12.  Le# a be an odd integer. Then

(1) x2 =a (mod 2) always has a solution;

(2) x%=a(mod 4) kas a solution if and only if a =1 (mod 4);

(3) x?=a (mod 2"), for n>3, has a solution if and only if a =1
(mod 8).

Proof: ‘The first assertion is obvious. The second depends on the
observation that the square of any odd integer is congruent to 1 mod-
ulo 4. Thus, x2 =4 (mod 4) can be solved only when 4 is of the
form 44 -+ 1; in this event, there are two solutions modulo 4, namely
x=1and x=3.

Now consider the case in which » >3. Since the square of
any odd integer is congruent to 1 modulo 8, we see that for the
congruence x2 =a (mod 2") to be solvable it is necessary that «
should be of the form 84 4 1. To go the other way, let us suppose
that 2 =1 (mod 8) and proceed by induction on 7. When n=3,
the congruence x2 =4 (mod 27) is certainly solvable; indeed, each of
the integers 1, 3, 5, 7 satisfies x* =1 (mod 8). Fixa value of # >3
and assume, for the induction hypothesis, that the congruence
x? =4 (mod 2") admits a solution x,. Then there exists an integer

b for which
xo2=a -+ b2

Since « is odd, so is the integer x,. It is therefore possible to find
a unique solution y, of the linear congruence

xo ) =—b (mod 2).
We argue that the integer

X1 =Xo+o2" 1
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satisfies the congruence x2 =4 (mod 2"*!). Squaring yields
(>0 402" 7 1)? = x0% + 50 962" - 9,222 2
=a (b + x00)2" + 322272,
By the way y, was chosen, 2| (b 4 x,.,), hence
xy% = (X0 +02" )2 =a (mod 2"+1)

(one also uses the fact that 27— 2=n-+1+4(n—3)>n+1).
Thus x2 =4 (mod 2"*1) is solvable, completing the induction step
and the proof.

To illustrate: the congruence x2? =5 (mod 4) has a solution, but
x? =5 (mod 8) does not; on the other hand, x> =17 (mod 16) and
x? =17 (mod 32) are both solvable.

In theory, we can now completely settle the question of when
there exists an integer x such that

x?=a(mod n), gcd(a,n) =1, n>1,
For suppose that # has the prime-power decomposition
n= 2)‘0]‘71](1102)(2 ° 'Prkr, ko >0, >0

where the p; are distinct odd primes. Since the problem of solving the
quadratic congruence x2 =4 (mod #) is equivalent to that of solving the
system of congruences

x? =g (mod 2),
x? =aq (mod p;""),
x? =g (mod p,"),
our last two results may be combined to give the following general

conclusion.

TueorReM 9-13. Let n=2Fp,t-..p"" be the prime factorization
of n>1 and let ged (a, ) = 1. Then x2 =a (mod n) is solvable if and

only if

) @p)y=1fori=1,2,...,r;
(2) a=1(mod4)if4|n bur8 yn;a=1(mod 8)if 8] .
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10.

PROBLEMS 9.4

(a) Show that 7 and 18 are the only incongruent solutions of x=—1
(mod 52%).

(b) Use part (a) to find the solutions of x? = —1 (mod 5°).

Solve each of the following quadratic congruences:

(a) x?="7 (mod 3%);

(b) x?=14 (mod 5%);

() x?=2(mod 73).

Solve the congruence x? = 31 (mod 11%).

Find the solutions of x2+45x+6=0 (mod 5% and x2+x—+3=0

(mod 38).

Prove that if the congruence x? = a (mod 2"), where #>3, has a solution,

then it has exactly four incongruent solutions. [Hint: If x; is any solution,

then the four integers xy, —Xg, Xo+ 2"~ 1, —xo+ 2"~ ! are incongruent

modulo 2" and comprise all the solutions.]

From 232 =17 (mod 27), find three other solutions of the congruence

x2 =17 (mod 27).

First determine the values of 2 for which the congruences below are solvable

and then find the solutions of these congruences:

(a) x?=a(mod 2*);

(b) x%=ua (mod 2°);

() x%2=ua (mod 2°).

For fixed 7> 1, show that all the solvable congruences x2 =4 (mod »)

have the same number of solutions.

(a) Without actually finding them, determine the number of solutions of
the congruences x2 = 3 (mod 112 - 232) and x% =9 (mod 2° - 3 - 5%).
(b) Solve the congruence x* =9 (mod 2° - 3 - 57%).
(a) For an odd prime p, prove that the congruence 2x% 4 1=0 (mod p)
has a solution if and only if p =1 or 3 (mod 8).
(b) Solve the congruence 2x% 41 =0 (mod 11%).
[Hint: Consider integers of the form x4 114, where x, is a
solution of 2x2 +1 =0 (mod 11).]
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Perfect Numbers

“In most sciences one gemeration tears down what
another has built and what one has established
another undoes. In  Mathematics alone each
generation builds a new story to the old structure.”’

HerMaNnN HANKEL




101 THE SEARCH FOR PERFECT
NUMBERS

The history of the theory of numbers abounds with famous conjectures
and open questions. The present chapter focuses on some of the in-
triguing conjectures associated with perfect numbers. A few of these
have been satisfactorily answered, but most remain unresolved; all have
stimulated the development of the subject as a whole.

The Pythagoreans considered it rather remarkable that the num-
ber 6 is equal to the sum of its positive divisors, other than itself:

6=1+42+43.

The next number after 6 having this feature is 28; for the positive divisors
of 28 are found to be 1, 2, 4, 7, 14, and 28, and

28=142+4+4+7+14,
In line with their philosophy of attributing mystical qualities to numbers,
the Pythagoreans called such numbers “petfect.” Stated precisely:
Derinrrion 10-1. A positive integer # is said to be perfect if # is

equal to the sum of all its positive divisors, excluding # itself.

The sum of the positive divisors of an integer #, each of them
less than #, is given by o(n) —». Thus, the condition “# is perfect”
amounts to asking that o(#) — #= #, or equivalently, that

a(n) = 2n.
For example, we have
o6)=14+2+3+6=2.6
and o(28)=1+2+447414428=2.28

so that 6 and 28 are both perfect numbers.
For many centuries, philosophers were more concerned with the
mystical or religious significance of perfect numbers than with their

218
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mathematical properties. Saint Augustine explains that although God
could have created the world all at once, He preferred to take six days
because the perfection of the work is symbolized by the (perfect) number
6. Early commentators on the Old Testament argued that the perfection
of the Universe is represented by 28, the number of days it takes the moon
to circle the earth. In the same vein, the 8th century theologian Alcuin
of York observed that the whole human race is descended from the
eight souls on Noah’s Ark and that this second Creation is less perfect
than the first, 8 being an imperfect number.

Only four perfect numbers were known to the ancient Greeks.
Nicomachus in his Introductio Arithmeticae (circa 100 A.D.) lists

P, =6, P,— 28, P, — 496, P, = 8128.

He says that they are formed in an “orderly” fashion, one among the

units, one among the tens, one among the hundreds, and one among the
thousands (that is, less than 10,000). Based on this meager evidence,
it was conjectured that

1. the nth perfect number P, contains exactly » digits; and
2. the even perfect numbers end, alternately, in 6 and 8.

Both assertions are wrong. There is no perfect number with
5 digits; the next perfect number (first given correctly in an anonymous
15th century manuscript) is

P, = 33,550,336.
While the final digit of P; is 6, the succeeding perfect number, namely
Ps = 8,589,869,056

ends in 6 also, not 8 as conjectured. To salvage something in the posi-
tive direction, we shall show later that the even perfect numbers do
always end in 6 or 8—but not necessarily alternately.

If nothing else, the magnitude of P, should convince the reader
of the rarity of perfect numbers. It is not yet known whether there are
finitely many or infinitely many of them.

The problem of determining the general form of all perfect
numbers dates back almost to the beginning of mathematical time. It
was partially solved by Euclid when in Book IX of the E/ements he proved
that if the sum

14242742540 271 =p
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is a prime number, then 2%-1p is a perfect number (of necessity even).
For instance, 14+244=7 is a prime; hence 4-7=28 is a perfect
number. Euclid’s argument makes use of the formula for the sum of a
geometric progression

1+2+22_§_23+_'_+2k—1:2k_1’
which is found in various Pythagorean texts. In this notation, the result
reads as follows: If 28 —1 is prime (4 > 1), then #=2¢-1(2—1) is a
petfect number. About 2000 years after Euclid, Euler took a decisive

step in proving that all even perfect numbers must be of this type. We
incorporate both these statements in our first theorem.

Tueorem 10-1. If 25— 1 is prime (k> 1), then n = 2+-3(2k — 1) is
perfect and every even perfect number is of this form.

Proof: Let 2¢—1=p, a prime, and consider 7= 2* ~!p. Since
ged (21, p) =1, the multiplicativity of o (as well as Theorem 6-2)
entails that

o(7) = o(2~1p) = o(2*"*)o(p)
=2—1)(p+1)
=(2¥— 1)2k = 22,
making # a perfect number.
For the converse, assume that # is an even petfect number.

We may write # as #n = 2~ 1z, where » is an odd integer and 4 > 2.
It follows from gecd (2~ 1, ) =1 that

o(n) = o(2°~'m) = o(2¥~No(m) = (2 — 1)o(m),
while the requirement for a number to be perfect gives
o(n) = 2n=2%m.
Together, these relations yield
2m = (2¥ — Vo (m),

which is simply to say that (25— 1) | 2%». But 2*— 1 and 2* are
relatively prime, whence (2 — 1) | ; say, m = (2 — 1)M. Now the
result of substituting this value of  into the last-displayed equation
and cancelling 2% — 1 is that o(m) = 2M. Since 7 and M are both
divisors of » (with M < »), we have

26M = o(m) > m + M= 2¢M,
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leading to o(») = m + M. The implication of this equality is that 7
has only two positive divisors, to wit, M and # itself. It must be
that # is prime and M = 1; in other words, m = (2¥ — )M =21
is a prime number, completing the present proof.

Since the problem of finding even perfect numbers is reduced to
the search for primes of the form 2¥ — 1, a closer look at these integers
might be fruitful. One thing that can be proved is that if 28— 1 is a
prime number, then the exponent 4 must itself be prime. More generally:

LemMA. If a8 — 1 is prime (@ >0, k>2), then a=2 and £ is also
prime.

Proof: 1t can be verified without difficulty that

F—1=(a—1)@ "+ +atl),

where, in the present setting,

Fl4gd 24 dat+1>a+1>1

Since by hypothesis 2* — 1 is prime, the other factor must be 1; that
is,a— 1= 1sothata=2.

If £ were composite, then we could write £ = rs, with 1 <r
and 1 <<s. Thus

dk—l=(dr)s—1:(a’——1)(a'(s—l)+d7(s_2)+“-+ar+1)

and each factor on the right is plainly greater than 1. But this
violates the primality of 4*— 1, so that 4 must by contradiction be
prime.

For p=2, 3, 5, 7, the values 3, 7, 31, 127 of 2? —1 are primes,
so that
222 —1)=6,
22(28 — 1) =28,
2425 — 1) = 496,
25(27 — 1) = 8128

are all perfect numbers.
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Many early writers erroneously believed that 22 — 1 is prime for
every choice of the prime number p. But in 1536, Hudalrichus Regius in
a work entitled Utriusque Arithmetices exhibits the correct factorization

211 — 1 =2047=23. 89.

If this seems a small accomplishment, it should be realized that his calcula-
tions were in all likelihood carried out in Roman numerals, with the aid
of an abacus (not until the late 16th century did the Arabic numeral
system win complete ascendancy over the Roman one). Regius also
gave p =13 as the next value of p for which the expression 22 — 1 is a
prime. From this, one obtains the fifth perfect number

212(213 _ 1) = 33,550,336.

One of the difficulties in finding further perfect numbers was the un-
availability of tables of primes. In 1603, Pietro Cataldi, who is remem-
bered chiefly for his invention of the notation for continued fractions,
published a list of all primes less than 5150. By the direct procedure of
dividing by all primes not exceeding the square root of a number, Cataldi
determined that 2!7 — 1 was prime and, in consequence, that

2160217 — 1) = 8,589,869,056

is the sixth perfect number.

A question which immediately springs to mind is whether there
are infinitely many primes of the type 2> — 1, with p a prime. If the
answer were in the affirmative, then there would exist an infinitude of
(even) perfect numbers. Unfortunately this is another famous un-
resolved problem.

This appears to be as good a place as any at which to prove out
theorem on the final digits of even perfect numbers.

THEOREM 10-2.  An even perfect number n ends in the digit 6 or 8,
that is, n =06 (mod 10) or # =8 (mod 10).

Proof: Being an even perfect number, » may be represented as
n=2%"1(2¥—1), where 2*— 1 is 2 prime. According to the last
lemma, the exponent 4 must also be prime. If #=2, then =6
and the asserted result holds. We may therefore confine our atten-
tion to the case £ >2. The proof falls into two parts, according as
£ takes the form 47 + 1 or 47 -+ 3.
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If £ is of the form 4 + 1, then
= 2tm(Q4m+1_ 1)
=28m+1__2m—2.16%" — 16™.
A straightforward induction argument will make it clear that 16* =6
(mod 10) for any positive integer #. Utilizing this congruence, we

get
n=2.6—6=06(mod 10).

Now, in the case in which 4 = 4m 4 3,
n—= 24m+2(24m+3 —_ 1)
— 28m+5 _ 24m+2____ 2 . 162m+1__ 4 . 16m‘
Falling back on the fact that 16 =6 (mod 10), we see that
n=2-6—4.6=—12=8 (mod 10).

Consequently, every even petfect number has a last digit equal to 6
or to 8.

A little more argument establishes a sharper result, namely that
any even perfect number #=2¥-1(2¥ — 1) always ends in the digits 6
or 28. Since an integer is congruent modulo 100 to its last two digits,
it suffices to prove that, if £ is of the form 4 4+ 3, then » =28 (mod 100).
To see this, note that

2k-1=24m+2— 16" .4 =6 - 4 =4 (mod 10).

Moreover, for £ > 2, we have 4| 2~ and so the number formed by the
last two digits of 2¢-! is divisible by 4. The situation is this: the last
digit of 2¥-! is 4, while 4 divides the last two digits. Modulo 100, the
various possibilities are

2k-1 =4, 24, 44, 64, or 84.
But this implies that
2—1=2.2"1—1=7, 47, 87, 27, or 67 (mod 100),
whence
n=2k"12F—1)=4.7,24.47,44 .87, 64 - 27, or 84 - 67 (mod 100).

It is 2 modest exercise, which we bequeath to the reader, to verify that
each of the products on the right-hand side of the last congruence is
congruent to 28 modulo 100.
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PROBLEMS 10.1

Prove that the integer » = 2!°(2!* — 1) is not a perfect number by showing

that o(#) # 2n. [Hint: 211 —1=23.89.]

Verify each of the statements below:

(a) No power of a prime can be a perfect number.

(b) A perfect square cannot be a perfect number.

(c) The product of two odd primes is never a perfect number. [Hint:
Expand the inequality (p —1)(¢—1)>2 to get pg>p+q+1]

If # is a perfect number, prove that Y ;,, 1/d=2.

Prove that every even perfect number is a triangular number,

Given that # is an even perfect number, say 7= 2¥-1(2¢ — 1), show that

n=1+2+43+ ... 4(2¥ —1) and $(n) = 2k-1(2k-1 1),

For an even perfect number # > 6, show the following:

(a) The sum of the digits of # is congruent to 1 modulo 9. [Hins:
The congruence 26 =1 (mod 9) and the fact that any prime p >5
is of the form 6441 or 6445 imply that =271 (27 —1)=1
(mod 9).]

(b) The integer # can be expressed as a sum of consecutive odd cubes.
[Hint: Use Section 1.1, Problem 1(¢) to establish the identity
13438 4584 oo 4 (28 —1)3 =22-2(22-1 _ 1) for all £>1.]

Show that no divisor of a perfect number can be perfect. [Hint: Apply

the result of Problem 3.}

Find the last two digits of the perfect number n = 219936 (210037 __ 1),

If o(n) = An, where £ >3, then the positive integer # is called a k-perfect

number (sometimes, multiply perfect). Establish the following assertions

concerning £-perfect numbers :

(@) 523,776 =2°-3.11-31is3-perfect; 30,240 — 25.33.5.7is 4-perfect;
14,182,439,040 =27 . 3. 5.7 . 112 . 17 - 19 is 5-perfect.

(b) If #is a 3-perfect number and 3 y#, then 3# is 4-perfect.

(c) If nis a 5-petfect number and 5 f #, then 57 is G-perfect.

(d) 1If 3n is a 44-perfect number and 3 y #, then # is 34-petfect.

Show that 120 and 672 are the only 3-perfect numbers of the form =

2%.3. p, where p is an odd prime.

A positive integer # is multiplicatively perfect if n is equal to the product of

all its positive divisors, excluding # itself; in other words, 72 :Hdl,‘ 4.

Find all multiplicatively perfect numbers. [Hint: Notice that n2 = #™)2]

If #>6 is an even perfect number, prove that 7= 4 (mod 6). [Hinm:
27! =1 (mod 3) for any odd prime p.]

The harmonic mean H(n) of the divisors of a positive integer # is defined
by the formula
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11l
H(n) 7(n) 44 d

Show that if # is a perfect number, then H(#) must be an integer. [Hint:
Observe that H(n) = nr(n)/o(n).]

14. The twin primes 5 and 7 are such that one-half their sum is a perfect
number. Are there any other twin primes with this property? [Hint:
Given the twin primes p and p+ 2, with p>5, }(p+ p+2) = 64 for
some £ >1.]

15. Prove that if 28 — 1 is prime, then the sum 2¥~1 2% 4 2k+1 ... 4 222
will yield a perfect number. For instance, 2° —1 is prime and 22 23 +
24 — 28, which is perfect.

16. Assuming that 7 is a perfect number, say n=2¢"1(2" — 1), prove that
the product of the positive divisors of # is equal to #*; in symbols,

[Tajnd=r"

10.2 MERSENNE PRIMES

It has become traditional to call numbers of the form
M,=2"—1(#n>1)

Mersenne numbers after a French monk, Father Marin Mersenne (1588-
1648), who made an incorrect but provocative assertion concerning their
primality. Those Mersenne numbers which happen to be prime are
said to be Mersenne primes. By what we proved in Section 10.1, the deter-
mination of Mersenne primes M,—and, in turn, of even perfect numbers—
is narrowed down to the case in which # is itself prime.

In the preface of his Cogitata Physica-Mathematica (1 644), Mersenne
stated that M, is prime for p=2, 3, 5,7, 13, 17, 19, 31, 67, 127, 257 and
composite for all other primes p < 257. It was obvious to other mathe-
maticians that Mersenne could not have tested for primality all the
numbers he had announced; but neither could they. Euler verified
(1772) that M,, was prime by examining all primes up to 46339 as possible
divisors, but Mg, , M,,,, and My, were beyond his technique; in any
event, this yielded the eighth perfect number

230(231 — 1) = 2,305,843,008,139,952,128.
It was not until 1947, after tremendous labor caused by unreliable
desk calculators, that the examination of the prime or composite character
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of M, for the 55 primes in the range p <257 was completed. We know
now that Mersenne made five mistakes: he erroneously concluded that
Mg, and My, are prime, and excluded Mg,, Mgy, and M,,, from his
predicted list of primes. It is rather astonishing that over 300 years were
required to set the good friar straight.

An historical curiosity is that, in 1876, Edouard Lucas worked a
test whereby he was able to prove that the Mersenne number M,, was
composite; but he could not produce the actual factors. At the October
1903 meeting of the American Mathematical Society, the American
mathematician Frederick Nelson Cole had a paper on the program with
the somewhat unassuming title “On the Factorization of Large Num-
bers.” When called upon to speak, Cole walked to a board and, saying
nothing, proceeded to raise the integer 2 to the 67th power; then he
carefully subtracted 1 from the resulting number and let the figure stand.
Without a word he moved to a clean part of the board and multiplied,
longhand, the product

193,707,721 x 761,838,257,287.

The two calculations agreed. The story goes that, for the first and only
time on record, this venerable body rose to give the presenter of a paper
a standing ovation. Cole took his seat without having uttered a word,
and no one bothered to ask him a question. (Later, he confided to a
friend that it took him twenty years of Sunday afternoons to find the fac-
tors of Mg,.)

In the study of Mersenne numbers, one comes upon a strange
fact: when each of the first four Mersenne primes (namely, 3, 7, 31, and
127) is substituted for # in the formula 2" — 1, a higher Mersenne prime
is obtained. Mathematicians had hoped that this procedure would give
rise to an infinite set of Mersenne primes; in other words, the conjecture
was that if the number M, is prime, then M,,, is also a prime. Alas, in
1953 a high-speed computer found the next possibility

My, = 2Mis __ 1 D81l __

(a number with 2466 digits) to be composite.

There are various methods for determining whether certain
special types of Mersenne numbers are prime or composite. One such
test is presented below.

TueoreM 10-3. If p and q=2p + 1 are primes, then cither q| M, or
q| M, + 2, but not both.
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Proof: With reference to Fermat’s Theorem, we know that
2¢-1 1 =0 (mod g)
and, factoring the left-hand side, that
(2@-Dr2 _ 1)(2@- 102 4 1) = (2P — 1)(2* 4 1)
=0 (mod ¢).
What amounts to the same thing:
My(M, 4+ 2) =0 (mod g).

The stated conclusion now follows from Theorem 3-1. One cannot
have both ¢ | M, and g| M, 4 2, for then ¢| 2, which is impossible.

A single application should suffice to illustrate Theorem 10-3:
If p =23, then g=2p + 1 =47 is also a prime, so that we may consider
the case of M,;. The question reduces to one of whether 47 | M,; or,
to put it differently, whether 22° =1 (mod 47). Now, we have
223 = 23(2%)* =23%—15)* (mod 47).
But
(—15)* = (225)2 =(—10)?> =6 (mod 47).

Putting these two congruences together, it is seen that
223 =2%.6=48 =1 (mod 47)

whence M,; is composite.
We might point out that Theorem 10-3 is of no help in testing the
primality of M,,, say; in this instance, 59 } M,,, but instead 59 | M,, + 2.
Of the two possibilities ¢ | M, or ¢| M, + 2, is it reasonable to
ask: What conditions on ¢ will ensure that ¢g| M, ? The answer is to be
found in

THEOREM 10-4. If g=2n 41 is prime, then

(1) q| M,, provided that g =1 (mod 8) or g =7 (mod 8);

(2) q| M, +2, provided that ¢ =3 (mod 8) or g =5 (mod 8).

Proof: To say that g | M, is equivalent to asserting that
2@-12 = 2% =1 (mod ¢).

In terms of the Legendre symbol, the latter condition becomes the
requirement that (2/g) = 1. But according to Theorem 9-6, (2/7) =1
whenever g =1 (mod 8) or ¢ =7 (mod 8). The proof of (2) pro-
ceeds along similar lines.
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Let us consider an immediate consequence of Theorem 10-4.

CoROLLARY. If p and qg=2p+ 1 are both odd primes, with p =3
(mod 4), then q|'M,.

Proof: An odd prime p is either of the form 44 +1 or 44 +3. If
p =4k +3, then g= 84+ 7 and Theorem 10-4 yields 4| M,. In
case p =44 + 1, then g= 84+ 3 so that g } M,.

The following is a partial list of those primes p =3 (mod 4) for
which ¢=2p + 1 is also prime: p =11, 23, 83, 131, 179, 181, 239, 251.
In each instance, M, is composite.

Exploring the matter a little further, we next tackle two results
of Fermat which restrict the divisors of M,. The first is

TueoreM 10-5. If p is an odd prime, then any divisor of M, is of the
SJorm 2kp + 1.

Proof: Let g be any prime divisor of M,, so that 2? =1 (mod g).
If 2 has order 4 modulo ¢ (that is, if 4 is the smallest positive integer
satisfying 2¥ =1 (mod ¢)), then Theorem 8-1 tells us that 4| p.
The case 4 =1 cannot arise; for this would imply that ¢| 1, an
impossible situation. Therefore, since 4 | p and 4 > 1, the primality
of p forces £ =p.

In compliance with Fermat’s Theorem, we have 2¢-1 =1
(mod ¢) and so, thanks to Theorem 8-1 again, £| g— 1. Knowing
that 4 = p, the net result is that p | g— 1. To be definite, let us put
g— 1 =pt; then g=pt+1. The proof is completed by noting
that if # were an odd integer, then ¢ would be even and a contradic-
tion occurs. Hence, we must have ¢ = 24p -+ 1 for some choice of
4, which gives g the required form.

As a further sieve to screen out possible divisors of M, , we cite
the following result.

TueorReM 10-6. If p is an odd prime, then any prime divisor q of M,
is of the form g =41 (mod 8).

Proof: Suppose that g=2#-+1 is a prime divisor of M,. If
a=2®+V2 then

4 —2—=12°+1_2=2M, =0 (mod g).
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Raising both sides of the congruence 22 =2 (mod ¢) to the #th power,

we atrive at
a?~ 1= g% =2" (mod ¢).

Since ¢ is an odd integer, one has gcd (4, 9)=1 and so #*~ 1 =1
(mod ¢). In conjunction, the last two congruences tell us’ that
2" =1 (mod ¢) or, viewed otherwise, ¢| M,. Theorem 10-4 may
now be brought into play to reach the conclusion that g =41
(mod 8).

For an illustration of how these theorems can be used, one might
look at M,,. Those integers of the form 344 + 1 which are less than

362 <V'M,, are
35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Since the smallest (nontrivial) divisor of M,, must be prime, we need
only consider the primes among the foregoing ten numbers; namely,

103, 137, 239, 307.

The work can be shortened somewhat by noting that 307 # -1 (mod 8)
and so 307 may be deleted from our list. Now either M, is prime or one
of the three remaining possibilities divides it. With a little calculation,
one can check that M,, is divisible by none of 103, 137, and 239; the
result: M, , is prime.

After giving the eighth perfect number 23°(23' — 1), Barlow
in his book Theory of Numbers (published in 1811) concludes from its
size that it “is the greatest that ever will be discovered; for as they are
merely curious, without being useful, it is not likely that any person
will ever attempt to find one beyond it.” The very least that can be
said is that Barlow underestimated obstinate human curiosity. While
the subsequent search for larger perfect numbers provides us with one
of the fascinating chapters in the history of mathematics, an extended
discussion would be out of place here.

It is worth remarking however that the first twelve Mersenne
primes (hence, twelve perfect numbers) have been known since 1914.
The twelfth in order of discovery, namely Mgy, was the last Mersenne
prime disclosed by hand calculation; its primality was verified by both
Powers and Cunningham in 1914, working independently and by dif-
ferent techniques. The prime M,,, was found by Lucas in 1876 and for
the next 75 years was the largest number actually known to be a prime.
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Calculations whose mere size and tedium repel the mathematician
are just grist for the mill of electronic computers. Starting in 1952,
fifteen additional Mersenne primes (all huge) have come to light, the
most recent having been discovered by Slowinski in 1979. 'This is M,s407
which, at present, is the largest of the known prime numbers. The
Mersenne prime M,,,o, in its turn gives rise to the largest even perfect
number, the 27th one

P27 — 244496M44497 — 244498(244497 _ 1),
an immense number of 26,790 digits.

For the reader’s convenience, we list the 27 even petfect numbers,
the number of digits in each, and its approximate date of discovery.

Number Number of digits Date of discovery

1 2(22-1) 1 unknown
2 2228 —1) 2 unknown
3 2428 —1) 3 unknown
4 2%27—1) 4 unknown
5 212213 1) 8 1456
6 218217 —1) 10 1588
7 218219 1) 12 1588
8 230(231_1) 19 1772
9 260261 1) 37 1883

10 288289 1) 54 1911

11 2108(2107 1) 65 1914

12 21262127 1) 77 1876

13 25202521 1) 314 1952

14 2806(2807 1) 366 1952

15 21278(21279 1) 770 1952

16 22202(22203 __ 1) 1327 1952

17 22280022281 _ 1) 1373 1952

18 20218(28217 1) 1937 1957

19 24262(24253 1) 2561 1961

20 2842224423 1) 2663 1961

21 29688(28689 __ 1) 5834 1963

22 29940(29841 1) 5985 1963

23 2u22u23 1) 6751 1963

24 219936(218937 1) 12,003 1971

25 2217000221701 1) 13,066 1978

26 228208225208 __ 1) 13,973 1978

27 244406(pa4497 _ 1) 26,790 1979
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The perfect numbers given above are the only ones which have
been discovered. One of the celebrated problems of number theory is
whether or not there exist any odd perfect numbers. While no odd
perfect number has thus far been produced, it is nonetheless possible to
find certain necessary conditions for their existence. The oldest of these
we owe to Euler, who proved that if # is an odd perfect number, then

7= pg g, 2 g2
where p, ¢, ..., ¢, are distinct odd primes and p =a =1 (mod 4). In
1937, Steuerwald showed that not all the B; can be equal to 1; that is,
if n=p*q,2q,2--¢,* is an odd number with p =a =1 (mod 4), then #
is not perfect. Four years later, Kanold established that the (3, cannot
all be equal to 2, nor is it possible to have one §3; equal to 2 and all the
others equal to 1. The last few years have seen further progress: Hagis
and McDaniel (1972) found that it is impossible to have ;=3 for all 7.

With these comments out of the way, let us prove Euler’s result.

TueoreM 10-7 (BEuler). If # is an odd perfect number, then

7 :Plklpzziz .. ‘Przfr,
where the p, are distinct odd primes and p, =k, =1 (mod 4).

Proof: Let n=p,"'p,**.--p be the prime factorization of 7.
Since 7 is petfect, we can write

2= o{n) = o(py*)o(ps") - o(p/")

Being an odd integer, » =1 (mod 4) or # =3 (mod 4); in either event,
2n =2 (mod 4). Thus, o(#) = 2# is divisible by 2, but not by 4. The
implication is that one of the o(p/*), say o(p,"), must be an even
integer (but not divisible by 4), while all the remaining o p) are
odd integers.

For a given p,, there are two cases to be considered: p; =1
(mod 4) and p,= 3 (mod 4). If p; =3 =—1 (mod 4), we would
have

O'(Piki>= 1 ‘I‘Pt‘f‘]’.ﬁ + - +Pikt
=1+ (—=1) +(—1)2 + -+ +-(—1)* (mod 4)

__{0(mod 4) if £, is odd
" |1 (mod 4) if £ is even
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Since o(p,"*) =2 (mod 4), this tells us that p, = 3 (mod 4) or, to
put it affirmatively, p, =1 (mod 4). Furthermore, the congruence
o(p;") =0 (mod 4) signifies that 4 divides o(p,*), which is not pos-
sible. The conclusion: if p, =3 (mod 4), where i =2, ..., r, then
its exponent £, is an even integer.

Should it happen that p; =1 (mod 4)— which is certainly
true for / = 1—then

o(pN=1+p +p2+ - +p*
=141 4+124... 4+ 1% (mod 4)
=4;+ 1 (mod 4).
The condition o(p,*) =2 (mod 4) forces 4, =1 (mod 4). For the
other values of 7, we know that o(p,*) =1 or 3 (mod 4) and so 4, =0
or 2 (mod 4); in any case, 4; will be an even integer. The crucial

point is that, regardless of whether p, =1 (mod 4) or p;, =3 (mod 4),
k; is always even for 7 % 1. Our proof is now complete.

In view of the preceding theorem, any odd perfect number #
can be expressed as

7 :P1k1p227'2 .. ‘Pr2jr :plkl(p2j2 e rJr)2
= p," 2

This leads directly to

COROLLARY. If # is an odd perfect number, then n is of the form

7= pkm2’
where p is a prime, p ¥ m, and p =k =1 (mod 4); in particalar, n =1
(mod 4).

Proof: Only the last assertion is not immediately obvious. Because
p =1(mod 4), we have p* =1 (mod 4). Notice that  must be odd;
hence, » =1 or 3 (mod 4) and so, upon squaring, »2 =1 (mod 4).
It follows that

n=p»n?=1.1=1(mod 4),

establishing our corollary.
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Another line of investigation involves estimating the size of an
odd perfect number #. The classical lower bound was obtained by
Turcaninov in 1908: 7 has at least five distinct prime factors and exceeds
2.108. With the advent of electronic computers the lower bound has
been improved to # > 10, While all this lends support to the belief
that there are no odd perfect numbers, only a proof of their nonexistence
would be conclusive. We would then be in the curious position of having
built up a whole theory for a class of numbers that didn’t exist.

“It must always,” wrote the mathematician Joseph Sylvester in
1888, ““stand to the credit of the Greek geometers that they succeeded in
discovering a class of perfect numbers which in all probability are the
only numbers which are perfect.”

PROBLEMS 10.2

1. Prove that the Mersenne number M, is a prime; hence #=2'2 (2'® —1)
is petfect. [Hint: Since vV M, 5 <91, Theorem 10-5 implies that the only
candidates for prime divisors of M3 are 53 and 79.]

2. Prove that the Mersenne number M, is a prime; hence # = 2'8(219 —1)
is perfect. [Hint: By Theorems 10-5 and 10-6, the only prime divisors
to test are 191, 457, and 647.]

Prove that the Mersenne number M,q is composite.

A positive integer # is said to be a deficient number if o(n) <2 and an

abundant number if o(n) > 2n. Prove each of the following:

(a) There are infinitely many deficient numbers.  [Hint: Consider
the integers # = p¥, where p is an odd prime and 4> 1.]

(b) ‘There ate infinitely many even abundant numbers. [Hint: Consider
the integers » = 2* . 3, where £ >1.]

(c) ‘There are infinitely many odd abundant numbers. [Hint: Consider
the integers # = 945 - £, where 4 is any positive integer not divisible
by2,3,5, 0r7. Since 945=3%.5.7, ged (945, /) =1and so a(n) =
a(945)a(£).]

5. Assuming that # is an even perfect number and 4|#, where 1 <<d <n,
show that 4 is deficient.

Prove that any multiple of a perfect number is abundant.

An amicable pair of numbers is a pair of positive integers 7 and # satisfying

a(m) = m+ n= o).
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To date almost 900 pairs of amicable numbers have been found, none of
which are relatively prime. Confirm that the pairs of integers listed
below are amicable:

(@ 220=2%2.5.11 and 284=2%.71 (Pythagoras, 500 B.C.);

(b) 17296=2%.23.47 and 18416 =2*.1151 (Fermat, 16306);

() 9363584 =127-191-383 and 9437056 = 27 - 73727 (Descartes, 1638).

For a pair of amicable numbers 7 and #, prove that

(;1/d)"+(; 1/d)“=1.

Establish the following statements concerning amicable numbers:

(a) Neither p nor p? can be one of an amicable pair, where p is a prime.

(b) The larger integer in any amicable pair is a deficient number.

(c) If m and n are an amicable pair, with » even and # odd, then # is
a petfect square. [Hint: If p is an odd prime, then 1 4 p 4 p% 4----
4- p* is odd only when £ is an even integer.]

In 1886, a 16-year old Ttalian boy announced that 1184 = 25 . 37and 1210 =

2.5 . 112 form an amicable pair of numbers, but gave no indication of the

method of discovery. Verify his assertion.

The amicable pair of numbers 220 and 284 represent the case #» =2 of

the following rule due to Tabit ibn Korra, an Arabian mathematician

of the 9th century: If p=3.2""? —1,4=3.-2" —1l,and r=9-22"-1 -1

are all prime numbers, where #>2, then 2"pg and 27 are an amicable

pair of numbers. Prove this rule; verify that »=4 and 7 also lead to

amicable pairs.

By an amicable triple of numbers is meant three integers such that the sum

of any two is equal to the sum of the divisors of the remaining inte-

ger, excluding the number itself. Verify that 2%.3.13.293.337,

26.3.5.13.16561 and 2%-3.13.99371 are an amicable triple.

A finite sequence of positive integers is said to be a sociable chain if each
is the sum of the positive divisors of the preceding integer, excluding
the number itself (the last integer is considered as preceding the first
integer in the chain). Show that the following integers form a sociable
chain:

14288, 15472, 14536, 14264, 12496.

Only two sociable chains were known until 1970, when nine chains of

four integers apiece were found.

Prove that

(a) any odd perfect number # can be represented in the form » = pa?,
wherte p is a prime;

(b) if n= pa?is an odd perfect number, then 7 = p (mod 8).
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15. If nis an odd perfect number, prove that # has at least three distinct prime
factors. [Hint: Assume n=p*q®, where p=4=1 (mod 4). Use the
inequality 2 = o(n)/n < [ p/(p — D]lg/(g — D] to reach a contradiction.]

16. If the integer # > 1 is a product of distinct Mersenne primes, show that
o(n) = 2* for some 4.

10.3 FERMAT NUMBERS

To round out the picture, let us mention another class of numbers that
provides a rich source of conjectures, the Fermat numbers. These may
be considered as a special case of the integers of the form 2" 4-1. We
observe that if 2™+ 1 is a prime, then = 2" for some »>0. For,
assume to the contrary that 7 had an odd divisor 24 +1 >1, say m =
(24 + 1)r; then 2™ +- 1 would admit the nontrivial factorization

2m+1=2(2k+1)r_|_1=(2r)2k+1+1
:(27+1)(22kr_2(2k—1>r+_“_‘_227_21+1)’

which is impossible. In brief, 2™ 4 1 can be prime only if 7 is a power
of 2.

DerFINITION 10-2. A Fermat number is an integer of the form
F,=2"41, n>0.

If F, is prime, it is said to be a Fermat prime.

Fermat, whose mathematical intuition was usually reliable,
observed that the integers

F,—3, F,=5, F,= 17, Fy= 257, F, = 65,537

are all primes and expressed his belief that F, is prime for each value
of 7. In writing to Mersenne, he confidently announced: “I have found
that numbers of the form 22" + 1 are always prime numbers and have
long since signified to analysts the truth of this theorem.” However,
Fermat bemoaned his inability to come up with a proof and, in subse-
quent letters, his tone of growing exasperation suggests that he was
continually trying to do so. The question was resolved negatively by
Euler in 1732 when he found

Fo—22° 1 =4,294,967,297
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to be divisible by 641. To us, such a number does not seem very large;
but in Fermat’s time, the investigation of its primality was difficult and
he obviously did not carry it out.

The following elementary proof that 641 | F; does not explicitly
involve division and is due to G. Bennett.

Tueorem 10-8.  The Fermat number Fy is divisible by 641.

Proof: We begin by putting « = 2" and & =5, so that
1+ab=1+42".5=041.
It is easily seen that
14ab—0=1+(a—bb=143b=2"
But this implies that
Fo=2% 4+1=2%41
— 2% 1
=1 +ab—bHa*+1
= (14 ab)a* + (1 — a*b*)
=1+ ab)[a* +(1 — ab)(1 + a%b?)],
which gives 641 | F,.

Subsequent investigations have revealed that F, is composite for
5 <7 <16 and 47 other values of #, the largest being » = 1945, In 1905,
the Fermat number F, was proved to be composite by a method that did
not exhibit its factors. It took 66 years, until 1971, before Brillhart and
Morrison discovered the factorization

F, =228 11 =59649589127497217 - 5704689200685129054721.

(The likelihood of arriving at this without the assistance of modern
computers is temote). For Fy, the challenge remains: it is known to be
composite, yet so far none of its factors has been calculated. The case
for F,s was settled as recently as 1953 and lays to rest the tantalizing
conjectute that all the terms of the sequence

241,22 41,22 41,222 11,227 ¢ 1, .

are prime numbers. To this day it is not known whether there are
infinitely many Fermat primes or, for that matter, whether there is at



SEC. 10-3 Fermat Numbers 237

least one Fermat prime beyond F,. The best ““guess” is that all Fermat
numbers F, > F, are composite.

Part of the interest in Fermat primes stems from the discovery
that they have a remarkable connection with the ancient problem of
determining all regular polygons that can be constructed with ruler and
compass alone (where the former is used only to draw straight lines and
the latter only to draw arcs). In the seventh and last section of the Dis-
guisitiones Arithmeticae, Gauss proved that a regular polygon of # sides is
so constructible if and only if either

n=2% ot n=2%p,ps-pr,

whete £>0and py,p,, ..., p, are distinct Fermat primes. The construc-
tion of regular polygons of 2%, 2¥.3, 2.5 and 2% .15 sides had been
known since the time of the Greek geometers. In particular, they could
construct regular z-sided polygons for »=3, 4, 5, 6, 8, 10, 12, 15, and 16.
What no one suspected before Gauss was that a regular 17-sided polygon
can also be constructed by ruler and compass. Gauss was so proud of
his discovety that he requested that a regular polygon of 17 sides be
engraved on his tombstone; for some reason, this wish was never ful-
filled, but such a polygon is inscribed on the side of 2 monument to
Gauss erected in Brunswick, Germany, his birthplace.

A useful property of Fermat numbers is that they are relatively
prime to each other.

TuroreMm 10-9. For Fermat numbers F, and F,,, where m >n >0,
ged (F, F)=1.

Proof: Put d=gcd (F,, F,). Since Fermat numbers are odd

integers, 4 must be odd. If we set x=2%" and £=2""", then

F,—2 () "—1
F, 211

xk—1

— x+1 ___xk—l_xk—2+‘___1’

whence F, |(F,—2). From d|F,, it follows that 4|(F,—2).
Now use the fact that 4| F,, to obtain 7| 2. But 4is an odd integer,
and so d= 1, establishing the result claimed.
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This leads to a pleasant little proof of the infinitude of primes:
We know that each of the Fermat numbers F, F,, ..., F, is divisible by
a prime which, according to Theorem 10-9, does not divide any of the
other F,. Thus there are at least » + 1 distinct primes not exceeding
F,. Since there are infinitely many Fermat numbers, the number of
primes is also infinite.

PROBLEMS 10.3

1. By taking fourth powers of the congruence 5 - 27 == —1 (mod 641), deduce
that 232 4 1 = 0 (mod 641); hence, 641 | F;.

2. Gauss (1796) discovered that a regular polygon with p sides, where p
is a prime, can be constructed with ruler and compass if and only if
p—1isapower of 2. Show that this condition is equivalent to requiring
that p be a Fermat prime.

3. For n>0, prove that
(a) there are infinitely many composite numbers of the form 22"+ 3;

[Hint: Use the fact that 22"=34 41 for some £ to establish that
7 l D22+l + 3_]
(b) each of the numbers 2%" 4 5 is composite.

4. Composite integers # for which #| 2" —2 are called psesdoprimes. Show
that:

(a) Ifnis odd pseudoprime, then the Mersenne number M, is also pseud-
oprime; hence, there are infinitely many pseudoprimes. [Hins:
The relation 2#|2" —2 gives n|2* 1 —1, whence 2"~1 —1=4n
for some 4. Then 2M*~' _1=22" __1=(2"2 1, which implies
that 20 — 1| 2M»=1 1]

(b) Every Fermat number F, is either a prime or a pseudoprime. [Hint:
Raise the congruence 22" = —1 (mod F,) to the 22"~" power.]

5. For #n>2, show that the last digit of the Fermat number F, =22" 4 1

is 7. [Himt: By induction on #, verify that 22" =6 (mod 10) for #>2]

6. Establish that 22" —1 has at least # distinct prime divisors. [Hint: Use
induction on # and the fact that 22" — 1 =(22""" 4 1)(22" "' —1).]

7. In 18G9, Landry wrote: “No one of our numerous factorizations of the
numbers 2" 4 1 gave us as much trouble and labor as that of 258 1.”
Verify that 258 4 1 can be factored rather easily using the identity

At 4 1= (252 — 2¢ + 1)(2¢? + 2 + 1).

8. Prove that any prime divisor p of the Fermat number F, is of the form
p=2r*2k + 1. [Hint: Assume % denotes the order of 2 modulo p. Then
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10.

11,

13.

p | F, implies that p | 22"** —1, whence #=2"*1. From Fermat’s Theorem,

k| p —1 or equivalently, 2**1| p —1.]

(2) For any odd integer #, show that 3|2" + 1.

(b) Prove that if p and g are odd primes and ¢|2? 41, then either =3
or ¢ =2kp +1 fot some integer 4. [Hint: Since 2°? =1 (mod g), the
order of 2 modulo g is either 2 or 2p; in the latter case, 2p | $(9)-1

(c) Find the smallest prime divisor 4 >3 of each of the integers 217 41
and 229 -1,

Determine the smallest odd integer # > 1 such that 2" —1 is divisible by

a pair of twin primes p and g, where p <g. [Hint: Being the first

member of a pair of twin primes, p = —1 (mod 6). Since (2/p) =(2/¢) =1,

p=g=+1 (mod 8); hence, p=—1 (mod 24) and ¢=1 (mod 24).

Now use the fact that the orders of 2 modulo p and ¢ must divide 7.]

Find all prime numbers p such that p divides 27 +1; do the same for

27 —1.

Let p=3-2"+1 be a prime, where #>>1. (Nineteen primes of this form

are currently known, the smallest occurring when #=1 and the largest

when #="534.) Prove each of the following assertions:

(@) The order of 2 modulo p is either 2 or 3 - 2* for some 0 </ <n.

(b) Except when p=13, 2 is not a primitive root of p. [Hint: If 2isa
primitive root of p, then (2/p) =-—1.]

(c) The order of 2 modulo p is not divisible by 3 if and only if p divides a
Fermat number F, with 0 <A <#sn—1. [Hint: Use the identity
2% 1 =F,F,F,---F,_;.]

(d) There is no Fermat number which is divisible by 7, 13, or 97.

For any Fermat number F,=22"-1, establish that F,=5 or 8 (mod 9)

according as # is odd or even. [Hint: Use induction to show, first, that

22"=22""? (mod 9).]
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The Fermat Conjecture

“He who seeks for methods without having a
definite problem in mind secks for the most par?
in vain.”

D. HiLBERT




11.1 PYTHAGOREAN TRIPLES

Fermat, whom many regard as a father of modern number theory, never-
theless had a custom peculiarly ill-suited to this role. He published very
little personally, preferring to communicate his discoveries in letters to
friends (usually with no more than the terse statement that he possessed
a proof) or to keep them to himself in notes. A number of such notes
were jotted down in the margin of his copy of Bachet’s translation of
Diophantus’ Arithmetica. By far the most famous of these marginal
comments is the one—presumably written about 1637—which states:

It is impossible to write a cube as a sum of two cubes, a fourth power as
a sum of two fourth powers, and, in general, any power beyond the sec-
ond as a sum of two similar powers. For this, I have discovered a truly
wonderful proof, but the margin is too small to contain it.

In this tantalizing aside, Fermat was simply asserting that, if » > 2, then
the Diophantine equation

Xn _i_yﬂ — zﬂ-
has no solution in the integers, other than the trivial solutions in which
at least one of the variables is zero.

The quotation just cited has come to be known as Fermat’s Last
Theorem or, more accurately, Fermat’s Conjecture. All the results he
enunciated in the margin of his Arithmetica were later found to be true
with the one exception of the Last Theorem, which still awaits proof or
disproof. If Fermat had a *“ truly wonderful proof,” it has never come to
light. To date, the conjecture has only been established for specific
values of the exponent # (electronic computers have shown that there are
no nontrivial solutions in the range 3 <z < 25000), but no general proof
has been forthcoming.

Fermat did however leave a proof of his Last Theorem for the
case #=4. In order to carry through the argument, we first undertake
the task of identifying all solutions in the positive integers of the equation

1 X2 4 g% =22

242
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Since the length z of the hypotenuse of a right triangle is related to
the lengths x and y of the sides by the famous Pythagorean identity
x? 4 y2 =22, the search for all positive integers which satisfy (1) is
equivalent to the problem of finding all right triangles with sides of
integrallength. The latter problem was raised in the days of the Babylonians
and was a favorite with the ancient Greek geometers. Pythagoras himself
has been credited with a formula for infinitely many such triangles, namely

x=2n+1, y=2n*+42n z2=2n*42n+1,

where # is an arbitrary positive integer. This formula does not account
for all right triangles with integral sides and it was not until Euclid wrote
his Elements that a complete solution to the problem appeared.

The following definition gives us a concise way of referring to
the solutions of (1):

DEerFINrrioN 11-1. A Pythagorean triple is a set of three integers
x, 3, z such that x? 4 y%==22; the triple is said to be primitive if
ged (x, 9, 2)=1.

Perhaps the best known examples of primitive Pythagorean
triples are 3, 4, 5 and 5, 12, 13, while a less obvious one is 12, 35, 37.

There are several points that need to be noted. Suppose that
x, J, 2 is any Pythagorean triple and 4= ged (x, y, 2). If we write x =
dxy,y=dy,, z=dz,, then it is easily seen that

x2+ 2 22
X12+_)’12:‘—d2—}=a722212

with ged (>, 91, 21)=1. In short, x;, y1, 2, form a primitive Pytha-
gorean triple. Thus, it is enough to occupy ourselves with finding all
primitive Pythagorean triples; any Pythagotean triple can be obtained
from a primitive one upon multiplying by a suitable nonzero integer.
The search may be confined to those primitive Pythagorean triples x, y,
in which x >0, y > 0, 2 > 0, inasmuch as all others arise from the positive
ones through a simple change of sign.

Our development requires two preparatory lemmas, the first of
which sets forth a basic fact regarding primitive Pythagorean triples.

Lemma 1. If x, y, z is a primitive Pythagorean triple, then one of the
integers x and y is even, while the other is odd.
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Proof: If x and y are both even, then 2| (x2 + y2) or 2] 22, so that
2| z. The inference is that ged (x, y, 2) = 2, which we know to be
false. If, on the other hand, x and y should both be odd, then x2? =1
(mod 4) and y% =1 (mod 4), leading to

2% = x? 4 y% =2 (mod 4).

But this is equally impossible, since the square of any integer must
be congruent either to 0 or to 1 modulo 4.

Given a primitive Pythagorean triple x, y, 2, exactly one of these
integers is even, the other two being odd (if x, y, z were all odd, then
x? + y% would be even, while 2? is odd). The foregoing lemma indicates
that the even integer is either x or y; to be definite, we shall hereafter
write our Pythagorean triples so that x is even and y is odd; then, of
course, 2 is odd.

It is worth noticing (and we will use this fact) that each pair
of the integers x, y, and z must be relatively prime. Were it the case
that gcd (x, y) = 4> 1, then there would exist a prime p with p | 4. Since
d| x and 4|y, we would have p | x and p |y, whence p| x? and p| %
But then p | (x2? 4 y?), or p| 22, giving p| 2. This would conflict with
the assumption that gecd (x, y, 2)=1, and so /=1. In like manner,
one can verify that gecd (y, 2) = ged (x, 2) =1.

By virtue of Lemma 1, there exists no primitive Pythagorean
triple x, y, z all of whose values are prime numbers. There are primitive
Pythagorean triples in which z and one of x or y is a prime; for instance,
3,4, 5; 11, 60, 61; and 19, 180, 181. It is unknown whether there exist
infinitely many such triples.

The next hurdle which stands in our way is to establish that
if 2 and b are relatively prime positive integers having a square as their
product, then # and & are themselves squares. With an assist from the
Fundamental Theorem of Arithmetic, we can prove considerably more,

to wit,

LemMma 2. If ab = c", where gcd (a, b) = 1, then a and b are nth powers;
that is, there exist positive integers ay, by, for which a=a,", b= b,".

Proof: There is no harm in assuming that ¢>1 and 4 >1. If

a =P1klp2kz . 'Prkr, b — qulq272 Ve qsfs
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are the prime factorizations of 4 and b, then, bearing in mind that
ged (4, b)=1, no p, can occur among the ¢;. As a result, the
prime factorization of 4b is given by

k PR i
ﬂb=P1 ... p, '41“"-%3-

Let us suppose that ¢ can be factored into primes as ¢ = " u,' et

Then the condition ab = ¢* becomes

K ke, § js __ ,, nl
_pll"'j)r 'qll...qss_ul 1...ut

From this, one sees that the primes # , ..., #at€py, ..., pryq1s- -5 9s
(in some order) and #/;, ..., nl, are the cotresponding exponents
Aiyevvshpsfiseeesjs. The conclusion: each of the integers 4; and j;
must be divisible by #». If we now put

a, :P1k1/n])2k2/n .. 'Prkrm

. jiin , jain jsin
b1—Q11 g gt

>

then a," = a, b," = b, as desired.

With the routine work now out of the way, the characterization
of all primitive Pythagorean triples is fairly straightforward.
THEOREM 11-1. A/ the solutions of the Pythagorean equation
x% 4 9% = 2>

satisfying the conditions

ged (x, 9, 2)=1, 2|x, x>0,y>0,2>0
are given by the formulas

x=2st, y=1s52— 1%, =852+ 1*

for integers s >t >0 such that ged (s, ) =1 and 53 # (mod 2).
Proof: To start, let x, y, z be a (positive) primitive Pythagorean
triple. Since we have agreed to take x even, and y and z both odd,

z—y and z 4y are even integers; say, 2 —y=2x and 2 +y=2v.
Now the equation x2 + y? = 22 may be rewritten as

x?=22—y?=(2—)(z +I)

o= () ) =

whence
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Notice that # and » are relatively prime; for, if gcd (#, v) =d > 1,
then d| (#— v) and d| (4 4 v), or equivalently, 4| y and 4| 2, which
violates the fact that gcd (§, 2) = 1. Taking Lemma 2 into considera-
tion, we may conclude that # and » are each perfect squares; to be
specific, let

u==s2 v=1r2

where s and 7 are positive integers. The result of substituting these
values of # and » reads:

Z2=yt+v=1ys%+72
y=4—v=2s2—1%

x? = 4yy = 4522,

ot, in the last case x = 2s#. Since a common factor of s and # divides
both y and z, the condition ged (5, 2) =1 forces ged (s, £)=1. It
remains for us to observe that if s and # were both even, or both odd,
then this would make each of y and 2z even, an impossibility. Hence,
exactly one of the pait s, # is even, while the other is odd; in symbols,
sz£ ¢ (mod 2).

Conversely, let s and # be two integers subject to the condi-
tions described above. That x = 254, y= 5% — #2, z=s? 422 form a
Pythagorean triple follows from the easily verified identity

x84y = ot 4 (2 — 1= (¢ + P =,

To see that this triple is also primitive, we assume that gcd (x, y, 2) =
d > 1 and take p to be any prime divisor of 4. Observe that p #2,
since p divides the odd integer z (one of sand #is odd, while the other
is even, hence s2 4 #2 =z must be odd). From p |y and p| 2, we
obtain p | (z +y) and p | (2 — ), or put otherwise, p | 2s2 and p | 2/2
But then p| s and p | #, which is incompatible with gcd (s, #)=1.
The implication of all this is that /=1 and so x, y, z constitutes a
primitive Pythagorean triple. Theorem 11-1 is thus proven.

The table below lists some primitive Pythagorean triples arising
from small values of s and # For each value of s=1, 2, 3, ..., 7, we
have taken those values of # which are relatively prime to s, less than s
and even whenever s is odd.
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x ¥ 2
P (25f) (52 — 72) (524 72)
2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 1 61
7 2 28 45 53
7 4 56 33 65
76 84 13 85

From this or from a more extensive table, the reader might be
led to suspect that if x, 3, 2 is a primitive Pythagorean triple, then exactly
one of the integers x or y is divisible by 3. This is, in fact, the case.
For, by Theorem 11-1, we have

x=2t y=3s52—1¢2 z2=s"+1

where ged (5, #) = 1. If either 3| s or 3| # then evidently 3 | x, and we
need go no farther. Suppose that 3 y s and 3 y £ Fermat’s Theorem
asserts that

52 =1 (mod 3), 2 =1 (mod 3)
and so
y=1s2—#?=0 (mod 3).

In other wotds, y is divisible by 3, which is what we were required to
show.

Let us define a Pythagorean triangle to be a right triangle whose
sides are of integral length. Our findings lead to an interesting geometric
fact concerning Pythagorean triangles, recorded as

TueorReM 11-2. The radius of the inscribed circle of a Pythagorean
triangle is always an integer.
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Proof: Let r denote the radius of the circle inscribed in a right
triangle with hypotenuse of length z and sides of lengths.x and .
The area of the triangle is equal to the sum of the areas of the three
triangles having common vertex at the center of the circle, hence

Iy =1drx+ 4y +dra={r(x +y +2).

The situation is illustrated below:

J

Now x2? + y2 = 22. But we know that the positive integral
solutions of this equation are given by

x = 2kst, y = k(s2— 12), 2 = A(s*> + #?)

for an appropriate choice of positive integers 4, 5, £ Replacing
x, 9, # in the equation xy = r(x +.y + z) by these values and solving
for r, it will be found that

28— 1)

Tkt R — PRt
k(1)
T s4-#

= kt(s — 1),
which is an integet.

We take the opportunity to mention another result relating to
Pythagorean triangles. Notice that it is possible for different
Pythagorean triangles to have the same area; for instance, the right
triangles associated with the primitive Pythagorean triples 20, 21, 29
and 12, 35, 57 each have an area equal to 210. Fermat proved: for any
integer #>1, there exist » Pythagorean triangles with different
hypotenuses and the same area. The details of this are omitted.
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PROBLEMS 11.1

1. (a) Find three different Pythagorean triples, not necessarily primitive,
of the form 16, y, 2.
(b) Obtain all primitive Pythagorean triples x, y, z in which x=40;
do the same for x = 60.

2. 1If x, y, z is a primitive Pythagorean triple, prove that x + y and x — y are
congruent modulo 8 to either 1 or 7.

3. (a) Prove that if # %2 (mod 4), then there is a primitive Pythagorean

triple x, y, z in which x or y equals ».

(b) If >3 is arbitrary, find a Pythagorean triple (not necessarily pri-
mitive) having # as one of its members. [Hint: For n odd, consider
the triple n, 1(#® — 1), }(#®+ 1); for n even, consider the triple #,
724 —1,n%/4 4+ 1.]

4. Prove that in a primitive Pythagorean triple x, y, z, the product xy is
divisible by 12, hence 60 | xyz.

5. For a given positive integer », show that there are at least # Pythagorean
triples having the same first member. [Hint: Let y, =2¢(Q2% -2 —1)
and z, = 2822~ % 4 1) for £=0,1, 2, ..., n—1. Then 2**1, y,, 2, are
all Pythagorean triples.]

6. Verify that 3, 4, 5 is the only primitive Pythagorean triple involving
consecutive positive integers.

7. Show that 3#, 4n, 52 where n =1, 2, ... are the only Pythagorean triples
whose terms are in arithmetic progression. [Hin¢: Call the triple in
question x — d, x, x + 4, and solve for x in terms of 4.]

8. Find all Pythagorean triangles whose areas are equal to their perimeters.
[Hint: The equations x2?4y2=22 and x+y+2z=4xy imply that
(x —d)(y—4=28]
9. (a) Prove that if x, y, z is a primitive Pythagorean triple in which x
and z are consecutive positive integers, then

o= 2t 1), y =2+ 1, 2=20(F + 1) + 1

for some #>0. [Hint: The equation 1=2z—x=1s242—2s¢
implies that s — 7= 1.]
(b) Prove that if x, y, 2 is a primitive Pythagorean triple in which the
difference 2 — y = 2, then
x=2y=#—1,2=12+4+1

for some #> 1.
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10. Show that there exist infinitely many primitive Pythagorean triples
x, y,  whose even member x is a perfect square. [Hint: Consider the
triple 4n%, n* — 4, n* 4 4, where # is an aribtrary odd integer.]

11. For an arbitrary positive integer n, show that there exists a Pythagorean
triangle the radius of whose inscribed circle is #n.  [Hint: If r denotes the
radius of the circle inscribed in the Pythagorean triangle having sides «
and 4 and hypotenuse ¢, then 7= (2 + b —¢). Now consider the triple
2n+ 1, 2602 -+ 25, 252 + 21+ 1.]

12. (a) Establish that there exist infinitely many primitive Pythagorean

triples x, y, z in which x and y are consecutive positive integers.
Exhibit five of these. [Hinz: If x, x+ 1, 2 forms a Pythagorean
triple, then so does the triple 3x + 2z + 1, 3x + 2z + 2,4x 4 32 + 2]

(b) Show that there exist infinitely many Pythagorean triples x, y, z
in which x and y are consecutive triangular numbers. Exhibit three
of these. [Hint: If x, x4+ 1, z forms a Pythagorean triple, then so
does #y;, o, 41, (25 + 1)2.]

13. Use Problem 12 to prove that there exist infinitely many triangular num-
bers which are perfect squares. Exhibit five such triangular numbers.
[Hint: If x, x+ 1, z forms a Pythagorean triple, then upon setting #=
z—x—1,v=x+ }(1 — 2), one obtains #(» + 1)/2 = »2.]

11.2 THE FAMOUS “LAST THEOREM”

With our knowledge of Pythagorean triples, we are now prepared to
take up the one case in which Fermat himself had a proof of his con-
jecture, the case #=4. The technique used in the proof is a form of
induction sometimes called ““Fermat’s method of infinite descent.” In
brief, the method may be described as follows: It is assumed that a solu-
tion of the problem in question is possible in the positive integers.
From this solution;, one constructs a new solution in smaller positive
integers, which then leads to a still smaller solution and so on. Since
the positive integers cannot be decreased in magnitude indefinitely, it
follows that the initial assumption must be false and therefore no solution
is possible.

Instead of giving a proof of the Fermat Conjecture for #» =4, it
turns out to be easier to establish a fact which is slightly stronger; namely,
the impossibility of solving the equation x* -+ y*= 22 in the positive
integers.

THEOREM 11-3 (Fermat). The Diophantine equation x* -+ y*= 2°
has no solution in positive integers x, y, 2.
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Proof: With the idea of deriving a contradiction, let us assume
that there exists a positive solution xo, Jo, 2o of x* -yt =22
Nothing is lost in supposing also that gcd (x4, Jo) = 1; otherwise, put
ged (%o, 90) = d, x0=dxy, Yo = dyy, o= dz; to get x,* + 9" = 2,
with ged (5, 91) = 1.

Expressing the supposed equation x,* -+ 90t = 2,% in the
form

(502)? _+_(},02)2 = 2,2

we see that x,%, .2, 2, meet all the requirements of a primitive
Pythagorean triple, and so Theorem 11-1 can be brought into play.
In such triples, one of the integers x,? or y,* is necessarily even,
while the other is odd. Taking x,? (and hence x,) to be even, there
exist relatively prime integers s > # > 0 satisfying

X% = 2s¢,
~)/02=‘r2‘—tl2)
zo:-fz +t2’

where exactly one of s and #is even. If it happened that s were even,
then we would have

1 _:_]02212__;2 =0—1=3 (mod 4),

an impossibility. Therefore, s must be the odd integer and, in con-
sequence, 7 is the even one. Let us put /= 2r. Then the equation
x,2 = 2s5¢ becomes x,? = 4s7, which says that

(20/2)% = s7.
But Lemma 2 asserts that the product of two relativé:ly prime integers
[ged (s, £) = 1 implies that ged (5, 7) = 1] is a square only if each of
the integers is itself a square; hence, s= z,%, r=w,* for positive
integers zy, ;.

We wish to apply Theorem 11-1 again, this time to the equa-

tion

12+ yo® = 2
Since ged (s, #) = 1, it follows that ged (2, yo, 5) = 1, making #, yo, 5
a primitive Pythagorean triple. With # even, we obtain

t= 2,
Jo=#—1%,

s=u?+0%
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for relatively prime integers # >» > 0. Now the relation
w=1t2=r=w,?

signifies that # and » are both squares (Lemma 2 serves its purpose
once more); say, #=x,2 and »=y,2. When these values are sub-
stituted into the equation for s the result is

Z2)i=s=4*F+02=x*+y*

A crucial point is that, 2, and ¢ being positive, we also have the
inequality

0<z,<22=5<s2<s?2+12=2z,.

What has happened is this: starting with one solution xq,
Yo, 2o Oof x*+ y*= 2% we have constructed another solution x,,
91, 2, such that 0 <2, <<z,. Repeating the whole argument, our
second solution would lead to a third solution x,, y5, 2, with 0 <
2, < 2y, which in its turn gives rise to a fourth. This process can be
carried out indefinitely to produce an infinite decreasing sequence of
positive integers

zo>z1>z2>"' .
Since there is only a finite supply of positive integers less than z,,

a contradiction occurs. We are forced to conclude that x* + y* = 22
is not solvable in the positive integers.

As an immediate corollary, one gets the following.

CoroLLARY.  The equation x* + y* = z* has no solution in the positive
integers.

Proof: 1If x4, 5o, 2o Were a positive solution of x* 4 y* = 2*, then
X0, Yo, %02 would satisfy the equation x* - y* = 22, in conflict with
Theorem 11-3.

If n>2, then # is either a power of 2 or divisible by an odd
prime p. In the first case, =44 for some A#>1 and the Fermat
equation x™ 4 y* = 2" can be written as

()t + ()t =(@)*



SEC. 11-2 The Famous “Last Theorem” 253

We have just seen that this equation is impossible in the positive integers.
When 7 = pk, the Fermat equation is the same as

(k) + ()P = @)

If it could be shown that the equation #” +»*» =" has no solution,
then, in particular, there would be no solution of the form #=x*, v =
9%, w=2* and hence x"+y"=2z" would not be solvable. Fermat’s
Conjecture therefore reduces to this: for no odd prime p does the equation

Xp+yp=zp

admit a solution in the positive integers.

Although the problem has challenged the foremost mathe-
maticians of the last 300 years, their efforts have only produced partial
results and proofs of individual cases. Euler gave the first proof of the
Fermat Conjecture for the prime p=23 in the year 1770; the reasoning
was incomplete at one stage, but Legendre later supplied the missing
steps. Using the method of infinite descent, Dirichlet and Legendre
independently settled the case p =5 around 1825. Not long thereafter,
in 1839, Lamé proved the conjecture for seventh powers. With the in-
creasing complexity of the arguments came the realization that a successful
resolution of the general case called for different techniques. The best
hope seemed to lie in extending the meaning of integer” to include a
wider class of numbers and, by attacking the problem within this enlarged
system, obtaining more information than was possible by using ordinary
integers only.

The German mathematician Kummer made the major break-
through. In 1843, he submitted to Dirichlet a purported proof of the
Fermat Conjecture based upon an extension of the integers to include the
so-called “algebraic numbers” (that is, complex numbers satisfying
polynomials with rational coefficients). Having spent considerable
time on the problem himself, Dirichlet was immediately able to detect
the flaw in the reasoning: Kummer had taken for granted that algebraic
numbers admit a2 unique factorization similar to that of the ordinary
integers, and this is not always true.

But Kummer was undeterred by this perplexing situation and
returned to his investigations with redoubled effort. In order to restore
unique factorization to the algebraic numbers, he was led to invent the
concept of ideal numbers. By adjoining these new entities to the algebraic
numbers, Kummer successfully proved the Fermat Conjecture for a
large class of primes which he termed “regular primes” (that this repre-
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sented an enormous achievement is reflected in the fact that the only
irregular primes less than 100 are 37, 59, and 67.). Unfortunately, it is
still not known whether there are an infinite number of regular primes,
while, in the other direction, Jensen (1915) established that there exist
infinitely many irregular ones. Almost all the subsequent progress on the
problem has been within the framework suggested by Kummer.

To round out our historical digression, we might mention that in
1908 a prize of 100,000 marks was bequeathed to the Academy of Science
at Gottingen to be paid for the first complete proof of Fermat’s Conjec-
ture. The immediate result was a deluge of incorrect demonstrations
by amateur mathematicians. Since only printed solutions were eligible,
Fermat’s Conjecture is reputed to be the mathematical problem for which
the greatest number of false proofs have been published; indeed, between
1908 and 1912 over 1000 alleged proofs appeared, mostly printed as
private pamphlets. Suffice it to say, interest declined as the German
inflation of the 1920’s wiped out the monetary value of the prize.

From x* 4 y* = 2%, we move on to a closely related Diophantine
equation, namely, x* —y* =22 The proof of its insolubility parallels
that of Theorem 11-3, but we give a slight variation in the method of
infinite descent.

THEOREM 11-4 (Fermat). The Diophantine equation x* — y* = 22 has
n0 solution in positive integers x, y, z.

Proof: The proof proceeds by contradiction. Let us assume that the
equation admits a solution in the positive integers and among these
solutions X, ¥o, 2, is one with a least value of x; in particular, this
supposition forces x, to be odd (Why?). Were ged (x,, 9,) =d > 1,
then putting x, = dx;, yo = 4y, , we would have #*(5;* — y,%) = 2,2,
whence 42| z, or 2,=d?z, for some 2z, >0. It follows that x,,
J1, % provides a solution to the equation under consideration with
0 <<, << X, an impossible situation. Thus, we are free to assume a
solution x, 3o, 2o in which ged (x,, yo) = 1. The ensuing argument
falls into two stages, depending on whether y, is odd or even.

First, consider the case of an odd integer y,. If the equation
Xo* — Yo = 2,? is written in the form 2,2 + (,2)? = (x,%)?, one sees
that z,, y,%, x,? constitute a primitive Pythagorean triple. Theorem
11-1 asserts the existence of relatively prime integers s > #>0 for

which
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20 = 284,
_)/02 == J'2 —_ 12,
xo2 = 52 4 £2,
It thus appears that
st — 1= (5% + )52 — %) = x0%0% = (X00)%

making s, #, x_y, 4 (positive) solution to the equation x* — y* = 2%

Since
0<s<Vs24+£2=x,,

we arrive at a contradiction to the minimal nature of x,.

For the second part of the proof, assume that , is an even
integer. Using the formulas for primitive Pythagorean triples, we
now write

o2 = 25,
2o =52 — 1%,
xo? =52 4 1%,

where s may be taken to be even and # to be odd. Then, in the rela-
tion 3,2 = 2sf, we have gcd (25, #)=1. The by-now-customary
Lemma 2 tells us that 25 and # are each squares of positive integers;
say, 25 =2, =% Since w must of necessity be an even integer,
set w = 24 to get s=24%. Therefore,

xo2 =52+ 12 =4u* +v*

and so 242, 12, x, forms a primitive Pythagorean triple. Falling back
on Theorem 11-1 again, there exist integers > & > 0 for which

242 = 2ab,
V2= a%— b?,
xozdz—l_bz:

where ged (4, b)) = 1. The equality #* = ab ensures that @ and b are
petfect squares, so that 2= ¢ and b = 42. Knowing this, the rest of
the proof is easy; for, upon substituting,

2 =a? —b?=ct—d

The result is a new solution ¢, d, » of the given equation x* — y* = 22
and what’s more, a solution in which

0<ec=Va<a®+b*=x,,

contrary to our assumption regarding x.
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The only resolution of these contradictions is that the
equation x* — y* = 22 cannot be satisfied in the positive integers.

In the margin of his copy of Diophantus’ Arithmetica, Fermat
states and proves: the area of a right triangle with rational sides cannot
be the square of a rational number. Clearing of fractions, this reduces
to a theorem about Pythagorean triangles; to wit,

THEOREM 11-5.  The area of a Pythagorean triangle can never be equal
to a perfect (integral) square.

Proof:  Consider a Pythagorean triangle whose hypotenuse has
length 2 and other two sides have lengths x and y, so that x2 + y2 =
2%, The area of the triangle in question is }xy and if this were a
square, say #2, it would follow that 2xy = 4#%. By adding and sub-
tracting the last-written equation from x? - y2 = 22, we are led to

(x+9)2=22+4u® and (x —y)?= 22— 442

When these last two equations are multiplied together, the outcome
is that two fourth powers have as their difference a square:

(8 — 57 — 4 — 16ut — 24 — Q)"

Since this amounts to an infringement of Theorem 11-4, there can
be no Pythagorean triangle whose area is a square.

There are a number of simple problems pertaining to Pythagorean
triangles that still await solution. The Corollary to Theorem 11-3 may
be expressed by saying that there exists no Pythagorean triangle all the
sides of which are squares. However, it is not difficult to produce
Pythagorean triangles whose sides, if increased by 1, are squares; for
instance, the triangles associated with the triples 132 — 1,102 — 1, 142 — 1,
and 2872 —1, 2652 — 1, 3292 — 1. An obvious—and as yet unanswered
—question is whether there are an infinite number of such triangles.
One can find Pythagorean triangles each side of which is a triangular
number. [By a triangular number, we mean an integer of the form
t,=n(n+1)/2.] An example of such is the triangle corresponding to
1325 t143> s - It is not known if there exist infinitely many Pythagorean
triangles of this type.

As a closing comment, we should observe that all the effort
expended on attempting to prove Fermat’s Conjecture has been far from
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wasted. The new mathematics that was developed as a by-product laid
the foundations for algebraic number theory, as well as the ideal theory
of modern abstract algebra. It seems fair to say that the value of these
far exceeds that of the conjecture itself.

PROBLEMS 11.2

Show that the equation x2 - y2=z® has infinitely many solutions for
x, y, % positive integers. [Hint: For any n>3, let x=n(n*—3) and
y="73n—1]
Prove the theorem: The only solutions in nonnegative integers of the
equation x? + 2y* = 2%, with gcd (x, y, 2) = 1, are given by

x=4(252 —12), y =2, g=252412
where s, # are arbitrary nonnegative integers. [Hint: If u, v, w are such that
y=2w,z+x =2uz—x=21, then the equation becomes 2u* = uv.)
In a Pythagorean triple x, y, 2, prove that not more than one of x, 5, ot z
can be a perfect square.

Prove each of the following assertions:
(a) The system of simultaneous equations

x2492=22—-1 and x?—y*=w?-1
has infinitely many solutions in positive integers X, y, 2, #. [Hint:

For any integer 7 > 1, take x = 2#% and y = 21.]
(b) ‘The system of simultaneous equations

x2 492 =22 and x?—)2=wn?
admits no solution in positive integets x, ¥, 2, #.
() The system of simultaneous equations
x2+y2=22+4+1 and x2—yr=w?41
has infinitely many solutions in positive integers X, J, 2, #. [Hine:
For any integer # > 1, take x = 8s% + 1 and y = 848.]

Use Problem 4 to establish that there is no solution in positive integets
of the simultaneous equations

x%+y2=2% and x2 4 292 = w2

Hint: An solution of the given system also satisfies 22 —+ 2 = »? and
y g ¥ J
22 _},2 = Xz.]
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Show that there is no solution in positive integers of the simultaneous
equations

x24+y2=2% and x?+ 22 =p2;

hence, there exists no Pythagorean triangle whose hypotenuse and one
of whose sides form the sides of another Pythagorean triangle. [Hint:
Any solution of the given system also satisfies x2 4- (wy)? = z%.]

Prove that the equation x* — y* = 222 has no solutions in positive integers
x, ¥, 2. [Hint: Since x, y must be both odd or both even, x2 4 9% = 24°
x -y =202 x — y=2:2for some a, b, c; hence, a® = b* 1+ ]

Verify that the only solution in relatively prime positive integers of the
equation x*+4y*=22% is x=y=2z=1. [Hint: Any solution of the
given equation also satisfies the equation

24— Qg)t = [(* —y%)/21.]
Prove that the Diophantine equation x* —4y* = 22 has no solution in
positive integers x, y, 2. [Hint: Rewrite the equation as (2)2)? +2% =
(%®)? and appeal to Theorem 11-1.]
Use Problem 9 to prove that there exists no Pythagorean triangle whose
area is twice a perfect square. [Hint: Assume to the contrary that x2 -+
J?=2% and 4xy=2w% 'Then (x+y)®=22+ 842 while (x — 9)? =
2% — 8w This leads to z* — 4(2w)* = (x* — y?)2.]
Prove the theorem: The only solutions in positive integers of the equation

1/x2+1/y2=1/22, ged (x,y, 2) =1
are given by
x =252+ 12), y =5t — 1%, 2 = 25t(s% — 12),

where s, # ate relatively prime positive integers, one of which is even, with
s§> 4

Show that the equation 1/x*+ 1/y* = 1/2% has no solution in positive
integers.
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Representation of Integers
as Sums of Squares

“The object of pure Physic is the unfolding of the
laws of the intelligible world; the object of pure
Mathematic that of unfolding the laws of human
intelligence.”

J. J. SYLVESTER




12.1 JOSEPH LOUIS LAGRANGE

After the deaths of Descartes, Pascal, and Fermat, no French mathe-
matician of comparable stature appeared for over a century. In England
meanwhile, mathematics was being pursued with restless zeal, first by
Newton, then by Taylor, Stetling, and Maclaurin, while Leibniz came
upon the scene in Germany. Mathematical activity in Switzerland was
marked by the work of the Bernoullis and Euler. Towards the end of
the 18th century, Paris did again become the center of mathematical
studies, as Lagrange, Laplace, and Legendre brought fresh glory to
France.

An Italian by birth, German by adoption, and Frenchman by
choice, Joseph Louis Lagrange (1736-1813) was, next to Euler, the
foremost mathematician of the 18th century. When he entered the
University of Turin, his great interest was in physics, but, after chancing
to read a tract by Halley on the merits of Newtonian calculus, he became
excited about the new mathematics that was transforming celestial
mechanics. He applied himself with such energy to mathematical studies
that he was appointed, at the age of eighteen, Professor of Geometry at
the Royal Attillery School in Turin. The French Academy of Sciences
soon became accustomed to including Lagrange among the competitors
for its biennial prizes: between 1764 and 1788, he won five of the coveted
prizes for his applications of mathematics to problems in astronomy.

In 1766, when Euler left Berlin for St. Petersburg, Frederick the
Great arranged for Lagrange to fill the vacated post, accompanying his
invitation with a modest message which said, “It is necessary that the
greatest geometer of Europe should live near the greatest of Kings.”
(To D’Alembert, who had suggested Lagrange’s name, the King wrote,
“To your care and recommendation am I indebted for having replaced a
half-blind mathematician with a mathematician with both eyes, which
will especially please the anatomical members of my academy.”) For
the next twenty years, Lagrange served as director of the mathematics
section of the Berlin Academy, producing work of high distinction

260
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which culminated in his monumental treatise, the Mécanigne Analytique
(published in 1788 in four volumes). In this work he unified general
mechanics and made of it, as the mathematician Hamilton was later to
say, “a kind of scientific poem.” Holding that mechanics was really a
branch of pure mathematics, Lagrange so completely banished geometric
ideas from the Mécanigne Analytigne that he could boast in the preface
that not a single diagram appeared in its pages.

Frederick died in 1787 and Lagrange, no longer finding a sym-
pathetic atmosphere at the Prussian court, decided to accept the invitation
of Louis XVI to settle in Paris, where he took French citizenship. But
the years of constant activity had taken their toll: Lagrange fell into a
deep mental depression which destroyed his interest in mathematics. So
profound was his loathing for the subject that the first printed copy of
the Mécanigue Analytigue—the work of a quarter century—lay unexamined
on his desk for more than two years. Strange to say, it was the turmoil
of the French Revolution that helped to awaken him from his lethargy.
Following the abolition of all the old French universities (the Academy of
Sciences was also suppressed) in 1793, the revolutionists created two
new schools, with the humble titles of Ecole Normale and Ecole Poly-
technique, and Lagrange was invited to lecture on analysis. Although
he had not lectured since his early days in Turin, having been under
royal patronage in the interim, he seemed to welcome the appointment.
Subject to constant surveillance, the instructors were pledged ‘“neither
to read nor repeat from memory” and transcripts of their lectures as
delivered were inspected by the authorities. Despite the petty harass-
ments, Lagrange gained a reputation as an inspiring teacher. His lecture
notes on differential calculus formed the basis of another classic in mathe-
matics, the Théorie des Fonctions Analytique (1797).

While Lagrange’s research covered an extraordinarily wide spec-
trum, he possessed, much like Diophantus and Fermat before him, a
special talent for the theory of numbers. His work here included: the
first proof of Wilson’s Theorem that if # is a prime, then (v — 1)! =—1
(mod #); the investigation of the conditions under which 42 and 45
are quadratic residues or nonresidues of an odd prime (—1 and 43
having been discussed by Euler); finding all integral solutions of the
equation x? — gy% = 1; and the solution of a number of problems posed by
Fermat to the effect that certain primes can be represented in particular
ways (typical of these is the result which asserts that every prime p =3
(mod 8) is of the form p = 4* 4- 2b%). The present chapter focuses on the
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discovery for which Lagrange has acquired his greatest renown in
number theory, the proof that every positive integer can be expressed as
the sum of four squares.

12.2 SUMS OF TWO SQUARES

Histotically, a problem which has received a good deal of attention has
been that of representing numbers as sums of squares. In the present
chapter, we develop enough material to settle completely the following
question: What is the smallest value # such that every positive integer
can be written as the sum of not more than » squares? Upon examining
the first few positive integers, one finds that

1=12
2—12412
3—124 12112
420

5—22 412
6=22 112112

T=22412412 112

Since four squares are needed in the representation of 7, a partial answer
to our question is that » >>4. Needless to say, there remains the pos-
sibility that some integers might require more than four squares. A
justly famous theorem of Lagrange, proved in 1770, asserts that four
squares are sufficient; that is, every positive integer is realizable as the
sum of four squared integers, some of which may be 0= 02. This is
our Theorem 12-7.

To begin with simpler things, we first find necessary and sufficient
conditions that a positive integer be representable as the sum of two
squares. The problem may be reduced to the consideration of primes
by the lemma below.

LemMa.  If m and n are each the sum of two squares, then so is their product
.

Proof: It m=a*-b* and n=¢? 4 42 for integers a4, b, ¢, d, then
mn = (a® + b?)(¢c* + d%) = (ac + bd)? + (ad — be)2.
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It is clear that not every prime can be written as the sum of
two squares; for instance, 3 = 42 + 42 has no solution for integral 4 and
b. More generally, one can prove

THEOREM 12-1.  No prime p of the form 4k + 3 is a sum of two squares.

Proof: Modulo 4, we have 2 =0, 1, 2, or 3 for any integer #; hence,
a? =0 or 1 (mod 4). It follows that, for arbitrary integers z and &,
a® +b2=0,1, or 2 (mod 4).

Since p =3 (mod 4), the equation p = 42 4 b* is impossible.

On the other hand, any prime which is congruent to 1 modulo 4
is expressible as the sum of two squared integers. The proof, in the
form we shall give it, employs a theorem on congruences due to
the Norwegian mathematician Axel Thue. This, in its turn, relies on
Dirichlet’s famous “ pigeon-hole principle”:

P1GEON-HOLE PRINCIPLE. If # objects are placed in m boxes (or pigeon-
holes) and if n > m, then some box will contain at least two objects.

Phrased in more mathematical terms, this simple principle asserts
that if a set with » elements is the union of » of its subsets and if # > m,
then some subset has more than one element.

Lemma (Thue). Let p be a prime and gcd (a, p)=1. Then the con-
gruence

ax =y (mod p)
admits a solution x4, Yo, where

0<|xo|<Vp and 0<|yo|<Vp.

Proof: Let 4= [V ] + 1 and consider the set of integers
S={ax—y|0<x<Ai—1,0<y<Ai—1}

Since ax —y takes on A2>p possible values, the Pigeon-hole
Principle guarantees that at least two members of S must be con-
gruent modulo p; call them ax; —y, and ax, — y,, where x; 7 x,
or y, #y,. Then we can write

a(>xc, — xg) =y, — ¥, (mod p).
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Setting xo=x; — x, and y, =7, —J,, it follows that x, and y,
provide a solution to the congruence ax =y (mod p). If either x,
or y, were equal to zero, then the fact that ged (4, p) = 1 could be
used to show that the other must also be zero, contrary to assump-

tion. Hence, 0 <|xo| <A—1<Vp and 0<|y| <k—1<Vp.

We are now ready to derive the theorem of Fermat that every
prime of the form 44 ++ 1 can be expressed as the sum of squares of two
integers. (In terms of priority, Girard recognized this fact several years
carlier and the result is sometimes referred to as Girard’s Theorem.)
Fermat communicated his theorem in a letter to Mersenne, dated Decem-
ber 25, 1640, stating that he possessed an irrefutable proof. However,
the first published proof was given by Euler in 1754, who in addition
succeeded in showing that the representation is unique.

THEOREM 12-2 (Fermat). An odd prime p is expressible as a sum of
two squares if and only if p =1 (mod 4).

Progf: While the “only if” part is covered by Theorem 12-1, let us
give a different proof here. Suppose that p can be written as the sum
of two squares, say p=a?+4 b2 Because p is a prime, we have
praand p b (If pla, then p| b2 and so p| b, leading to the
contradiction that p? | p.) Thus, by the theory of linear congruences,
there exists an integer ¢ for which bz =1 (mod p). Modulo p, the
relation (ac)? - (be)? = pe? becomes

(ac)* =—1 (mod p),

making —1 a quadratic residue of p. At this point, the corollary to
Theorem 9-2 comes to our aid: (—1/p) = 1 only when p =1 (mod 4).

For the converse, assume that p =1 (mod 4). Since —1isa
quadratic residue of p, we can find an integer  satisfying 4% = —1
(mod p); in fact, by Theorem 5-3,4 = [(p — 1)/2]lis one such integer.
Now gcd (4, p) =1, so that the congruence

ax =y (mod p)

admits a solution x,, y, for which the conclusion of Thue’s lemma
holds. As a result,

—xo% =a’xy? =(axy)? =9, (mod p)
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ot x4 + 7,2 =0 (mod p). This says that
xo% + yo® = Ap
for some integer 4 > 1. Inasmuchas0 < | x, | <Vpand 0 <|y,| <

vV ];, we obtain 0 < xo2 + 52 < 2p, the implication of which is that
k= 1. Consequently, x,2 + y,% = p, and we are finished.

Counting 4% and (—a)? as the same, we have

COROLLARY. . Any prime p of the form 4k - 1 can be represented unignely
(aside from the order of the summands) as a sum of two squares.
Proof: To establish the uniqueness assertion, suppose that
p=at+ b=+ d
whete a, b, ¢, d are all positive integers. Then
a*d? — b%c? = p(d? — b%) =0 (mod p)
whence ad =bc (mod p) or ad = —be (mod p). Since 4, b, ¢, d are all
less than /p, these relations imply that
ad—bc=0 or ad-+bc=p.

If the second equality holds, then we would have ar= bd; for,

P2 =(a® + b®)(c? + d?) = (ad + bc)? + (ac — bd)?

' = p? +(ac — bd)?

and so ac — bd = 0. It follows that either

ad=bc or ac=bd.

Suppose, for instance, that ad= be. Then a | be, with ged (a, b) =1,
which forces a | ¢; let us say, ¢ = Aa. The condition ad = be = b(ka)
then reduces to d = bk. But

p=c4d= k2(a? + %)

implies that 4=1. In this case, we get 2=¢ and b=4d. By a
similar argument, the condition a¢=bd leads to a=d and b=c.
What is important is that, in either event,

@+ b2 =% 42,

justifying the stated conclusion.
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Let us follow the steps in Theorem 12-2, using the prime p = 13.
One choice for the integer 2 is 6! = 720. A solution of the congruence
720x =y (mod 13), or rather,

5x =y (mod 13)
is obtained by considering the set
S=Bx—y|0<x,y<4}.

The elements of § are just the integers

0 5 10 15
-1 4 9 14
-2 3 8 13
-3 2 12

which, modulo 13, become

0 5 10 2
12 4
11 3 0
10 2 7 12

Among the various possibilities, we have
5:1—-3=2=5.3—0(mod 13)

or 5(1 — 3) =3 (mod 13).

Thus, we may take x, = —2 and y, = 3 to obtain

13 = 4% -+ yo? = 22 £ 32,

REMARK: Some authors would claim that any prime p=1 (mod 4)
can be written as a sum of squares in eight ways. For with p =13, we
have

13=28 4 39 = 22 4 (—=3)° = (~2)° + 3% = (2 4 (— 3
= 322232 4 (—2)2 = (—3)2 4 22 = (—3)2 -+ (—2)2,

Since these eight representations can all be obtained from any one of
them by interchanging the signs of 2 and 3 or by interchanging the

“essentially” only one way of doing this. Thus,

summands, there is
from our point of view, 13 is uniquely representable as the sum of two

squares.
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We have shown that every prime p such that p =1 (mod 4) is
expressible as the sum of two squares. But other integers also enjoy
this property; for instance,

10 =12 4 32,

The next step in our program is to charactetize explicitly those positive
integers which can be realized as the sum of two squares.

THEOREM 12-3.  Let the positive integer n be written as n = N?m, where
m is square-free. Then n can be represented as the sum of two squares if
and only if m contains no prime factor of the form 4k +- 3.

Proof: 'To start, suppose that 7 has no prime factor of the form
44 + 3. If m =1, then n = N2 + 0% and we are through. In the case
in which 7 > 1, let m = p, p,- -+ p, be the factorization of » into a
product of distinct primes. Each of these primes p,, being equal to
2 or of the form 44 + 1, can be written as the sum of two squares.
Now, the identity

(a? + b2)(c* + d%) = (ac -+ bd)* + (ad — be)?
shows the product of two (and, by induction, any finite number)
integers each of which is representable as a sum of two squares is
likewise so representable. Thus there exist integers x and y satisfy-
ing m = x*+y2. We end up with

1= Nt = Noee? %) = (N2 + (D),
a sum of two squares.

Now for the opposite direction. Assume that # can be repre-
sented as the sum of two squares,

n=a?+b>= N?m

and let p be any odd prime divisor of » (without loss of generality,
it may be assumed that 7 >1). If d=gcd (4, b), then a= rd, b= sd,
where ged (r, 5) = 1. We get

d¥(r? + s%) = N?m
and so, 7 being square-free, 42| N2. But then

r? 452 = (N?[d¥)m = tp
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for some integer #, which leads to
r? + 52 =0 (mod p).

Now the condition ged (r, 5)=1 implies that one of r or s, say 7,
is relatively prime to p. Let 7’ satisfy the congruence

rr’ =1 (mod p).

When the equation 72 4 52 =0 (mod p) is multiplied by ()%, we
obtain

(s7')? +1 =0 (mod p)

ot, to put it differently, (—1/p) = 1. Since —1is a quadratic residue
of p, Theorem 9-2 ensures that p =1 (mod 4). The implication of
our reasoning is that there is no prime of the form 44 + 3 which
divides .

As a corollary to the preceding analysis, we have

COROLLARY. A positive integer n is representable as the sum of two
squares if and only if each of its prime factors of the form A4k + 3 occurs
o an even power.

Example 12-1
The integer 459 cannot be wtitten as the sum of two squares, since
459 = 33 . 17, with the prime 3 occurring to an odd exponent. On
the other hand, 153 = 32 . 17 admits the representation

153 = 3%(4% + 17) = 122 4 32,

Somewhat more complicated is the example »=5.7%.13-17.
In this case, we have

n="T2.5.13.17 = 722 4 12)(32 -+ 2%)(4* 4- 12).
Two applications of the identity appearing in Theorem 12-3 give
(32 4+22)(42 - 12) = (12 4-2)2 + (3 — 8)> =142 4-52
and
(22 4- 12)(142 4 52) = (28 + 5)? 4- (10 — 14)* = 33% 4 42
When these are combined, we end up with

5= TY(33% + 4%) = 2312 4 282,
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There exist certain positive integers (obviously, not primes
of the form 44 -+ 1) which can be represented in more than one way as
the sum of two squares. The smallest is

25=421+32=>52 1 02
If 2 =b (mod 2), then the relation
b (a+b)2 (a—b 2
S\ 2 2 )
allows us to manufacture a variety of such examples. Take » =153 as
an illustration; here,

2 _Q\2
153:17-9:(17+9) —(17 9) =132-42

2 2
and
3\ 2 2\ 2
153:51-3:(51+3) —(51 3) =272 — 242
2 2
so that

132 — 42 =272 — 242,
This yields the two distinct representations

272 - 42 = 242 | 132 ="745.

At this stage, a natural question should suggest itself: What
positive integers admit a representation as the difference of two squares?
We answer this below.

THEOREM 12-4. A positive integer n can be represented as the difference
of two squares if and only if n is not of the form 4k + 2.

Proof: Since a> =0 or 1 (mod 4) for all integers 4, it follows that
a®—b? =0, 1, or 3 (mod 4).

Thus, if # =2 (mod 4), we cannot have # = 42 — b? for any choice of
a and b.

Turning affairs around, suppose that the integer 7 is not of
the form 44 - 2; that is to say, #=0, 1, or 3 (mod 4). If =1 or
3 (mod 4), then # + 1 and » — 1 are both even integers; hence, 7 can

be written as
_(ﬂ+1 2 (ﬂ—1)2
=\ ) —\727)
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a difference of squares. If » =0 (mod 4), then we have

)G

COROLLARY. .An odd prime is the difference of two successive squares.

Examples of this last corollary are afforded by
11=6%—52% 17 =92 — 82 and 29 = 152 — 142,

Another point worth mentioning is that the representation of a
given prime p as the difference of two squares is unique. To see this,
suppose that

p=a?—b*=(a—b)a-+b),

where 2 >5>0. Since 1 and p are the only factors of p, necessarily
we have

a—b=1 and a-+b=p,
from which it may be inferred that

p+1 _p—1
> and !7_—2 .

Thus, any odd prime p can be written as the difference of the squares
of two integers in precisely one way; namely, as
p = (EEL) - (=1
2 2

A different situation occurs when we pass from primes to arbitrary
integers. Suppose that # is a positive integer which is neither prime
nor of the form 44 4+ 2. Starting with a divisor 4 of #, put "= n/d (it is
harmless to assume that 4 > 4’). Now if 4 and 4’ are both even, or both

odd, then (4 +d')/2 and (d — d')/2 are integers. Furthermore, we may
write

b\ (d—d\?
n_dd_( . )~( . )

By way of illustration, consider the integer » = 24. Here,

B L1242y 122y
24_12-2_(——-2——) _(—2-—) —72_5
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and
6+4\2 (6—4\2
24 = - 4= — — 52 __12
s=6a=(557) - (F) -
giving us two representations for 24 as the difference of squares. .

PROBLEMS 12.2

1. Represent each of the primes 113, 229, and 373 as a sum of two squares.

2. (a) It has been conjectured that there exist infinitely many primes p
such that p = #? + (# + 1)? for some positive integer #; for example,
5—124+22 and 13=224 32 Find five more of these primes.

(b) Another conjecture is that there are infinitely many primes p of the
form p—=22+ p,2, where p, is a prime. Find five such primes.

3. Establish each of the following assertions:

(a) each of the integers 2", where n=1, 2,3, ...,is a sum of two squares;

(b) if #=23 or 6 (mod 9), then # cannot be represented as a sum of two
squares;

(c) if 7 is the sum of two triangular numbers, then 4741 is the sum of
two squares;

(d) every Fermat number F,=22"41, where n>>1, can be expressed as
the sum of two squares;

(e) every odd perfect number (if one exists) is the sum of two squares.
[Hint: See the Corollary to Theorem 10-7.]

4. Prove that a prime p can be written as a sum of two squares if and only
if the congruence x2 41 =0 (mod p) admits a solution.

5. (a) Show that a positive integer # is a sum of two squares if and only

if n=2mz2h, where >0, a is an odd integer, and every prime
divisor of & is of the form 44 4 1.

(b) Write the integers 3185 =5-72-13;39690 = 2-3*. 5-7%;and 62920 =
23.5.112.13 as a sum of two squares.

6. Find a positive integer having at least three different representations as
the sum of two squares, disregarding signs and the order of the summands.
[Hint: Choose an integer which has three distinct prime factors, each
of the form 44 + 1.]

7. If the positive integer # is not the sum of squares of two integers, show
that # cannot be represented as the sum of two squares of rational numbers.
[Hint: By Theotem 12-3, there is a prime p = 3 (mod 4) and an odd integer
# such that p* | #, while p¥*1 y n. If n=(a/b)*> + (¢/d)?, then p will occur
to an odd power on the left-hand side of the equation #(bd)? = (ad)? + (be)?,
but not on the right-hand side.]
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Prove that the positive integer # has as many representations as the sum
of two squares as does the integer 2#. [Hint: Starting with a representa-
tion of # as a sum of two squares, obtain a similar representation for 2»,
and conversely.]

(a) If #is a triangular number, show that each of the three successive
integers 842, 81”4 1, 84% 4 2 can be written as a sum of two squares.

(b) Prove that of any four consecutive integers, at least one is not
representable as a sum of two squares.

Prove that:

(a) if a prime number is the sum of two or four squares of different
primes, then one of these primes must be equal to 2;

(b) if a prime number is the sum of three squares of different primes,
then one of these primes must be equal to 3.

(a) Let pbean odd prime. If p [ a® + b%, where ged (a, b) = 1, prove that
p=1(mod 4). [Hint: Raise the congruence 4= —b? (mod p) to
the power (p —1)/2 and apply Fermat’s Theorem to conclude that
(—1)@-Diz=1]

(b) Use part (a) to show that any positive divisor of a sum of two rel-
atively prime squares is itself a sum of two squares.

Establish that every prime p of the form 84 4 1 or 84 4 3 can be written

as p=a® -+ 2b* for some choice of integers « and 4. [Hint: Mimic the

proof of Theorem 12-2.]

Prove that:

(@) A positive integer is representable as the difference of two squares
if and only if it is the product of two factors which are both even or
both odd.

(b) A positive even integer can be written as the difference of two
squares if and only it if is divisible by 4.

Verify that 45 is the smallest positive integer admitting three distinct
representations as the difference of two squares. [Hinz: See part (a) of
the previous problem.]

For any # >0, show that there exists a positive integer which can be
expressed in # distinct ways as the difference of two squares. [Hint:
Note that 220+1 = (22n-Fk 4 k=132 __ (22n-k __ k=132 for £ =1, 2, ..., n.]
Prove that every prime p=1 (mod 4) divides the sum of two relatively
prime squares, where each square exceeds 3. [Fins: Given an odd prim-
itive root 7 of p, r* =2 (mod p); hence r2*+®-1/41 = 4 (mod p).]

Show that the equation #% 4 (# + 1)? = 7 has no solution in the positive
integers.

The English number theorist G. H. Hardy relates the following story
about his young protege Ramanujan: I remember going to see him
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once when he was lying ill in Putney. I had ridden in taxi-cab No. 1729,
and remarked that the number seemed to me rather a dull one, and that
1 hoped it was not an unfavorable omen. * No,” he reflected, ‘it is a very
interesting number; it is the smallest number expressible as the sum of
two cubes in two different ways.””” Verify Ramanujan’s assertion.

123 SUMS OF MORE THAN TWO
SQUARES

While not every positive integer can be written as the sum of two squares,
what about their representation in terms of three squares (0* still permit-
ted)? With an extra square to add, it seems reasonable that there
should be fewer exceptions. For instance, when only two squares are
allowed, we have no representation for such integers as 14, 33, and 67,
but

14 =132 422 412, 33 =152 4 22 422, 67 =724 32 4- 32

It is still possible to find integers which are not expressible as the sum
of three squares. A theorem which speaks to this point is

THEOREM 12-5. No positive integer of the form 4"(8m ) can be
represented as the sum of three squares.

Proof: 'To start, let us show that the integer 8 + 7 is not expres-
sible as the sum of three squares. For any integer 4, we have 2* =

0,1, or 4(mod 8). Itfollows that
a?+ b2 4¢2=0,1,2,3,4,5, or 6 (mod 8)

for any choice of a, b, c. Since 847 =7 (mod 8), the equation
a? -+ b2 + ¢2 = 8m 4 7 is impossible.

Next, let us suppose that 4*(8 -+ 7), where »>1, can be
written as

48m + 1) =a® + b* + 2.
Then each of the integers @, b, ¢ must be even. Putting a = 24,
b=2b,,c=2c,, we get
4 =1Y8m + Ty =a,> + b,* +¢,°

If #— 1 > 1, the argument may be repeated until 8 - 7 is eventually

represented as the sum of three squared integers; this, of course,
contradicts the result of the first paragraph.
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One can prove that the condition of Theorem 12-5 is also sufficient
in order that a positive integer be realizable as the sum of three squares;
however, the argument is much too difficult for inclusion here. Part of
the trouble is that, unlike the case of two (or even four) squares, there is
no algebraic identity which expresses the product of sums of three squares
as a sum of three squates.

With this trace of ignorance left showing, let us make a few
historical remarks. Diophantus conjectured, in effect, that no number
of the form 8w + 7 is the sum of three squares, a fact easily verified
by Descartes in 1638. It seems fair to credit Fermat with being the first
to state in full the criterion that a number can be written as a sum of
three squared integers if and only if it is not of the form 48 4 7),
where 7 and 7 are nonnegative integers. This was proved in a complicated
manner by Legendre in 1798 and more clearly (but by no means easily)
by Gauss in 1801.

As just indicated, there exist positive integers which are not
representable as the sum of either two or three squares (take 7 and 15,
for simple examples). Things change dramatically when we turn to four
squares: there are no exceptions at all!

The first explicit reference to the fact that every positive integer
can be written as the sum of four squares, counting 0%, was made by
Bachet (in 1621) and he checked this conjecture for all integers up to
325. Fifteen years later, Fermat claimed that he had a proof using his
favorite method of infinite descent, but, as usual, he gave no details.
Both Bachet and Fermat felt that Diophantus must have known the result;
the evidence is entirely conjectural: Diophantus gave necessary conditions
in order that a number be the sum of two or three squares, while making
no mention of a condition for a representation as a sum of four squares.

One measure of the difficulty of the problem is the fact that Euler,
in spite of his brilliant achievements, wrestled with it for more than
forty years without success. Nonetheless his contribution towards the
eventual solution was substantial; Euler discovered the fundamental
identity which allows one to express the product of two sums of four
squares as such a sum, as well as the crucial result that the congruence
x% 4%+ 1=0 (mod p) is solvable for any prime p. A complete proof
of the four-square conjecture was published by Lagrange in 1772, who
acknowledged his indebtedness to the ideas of Euler. The next year,
Euler offered a much simpler demonstration, which is essentially the
version to be presented here.

It is convenient to establish two preparatory lemmas, so as not
to interrupt the main argument at an awkward stage. The proof of the
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first contains the algebraic identity which allows us to reduce the four-
square problem to the consideration of prime numbers only.

Lemma 1 (Buler).  If the integers m and n are each the sum of four squares,
then mn is likewise so representable.

Proof: 1If m=a,®>+a,® +as®+a,® and n=0b> 4 by* +bs® + b2
for integers a;, b;, then
mn = (a,% + ax® + az® + a,2) (0,2 + by + by? + b,®)
= (ay by +ayhy + aghs+ agby)? 4 (a1 by — azgby + asby, — aybs)®
A (aybs— agby— aghy + ayby)? +(ay by + aby — aghy — asby)*
One confirms this cumbersome identity by brute force: just multiply

everything out and compare terms. The details are not suitable for
the printed page.

Another basic ingredient in our development is

LeMMA 2. If p is an odd prime, then the congruence
x? +9y2+1 =0 (mod p)
has a solution x,, yo where 0 <, <(p—1)[2and 0 <y, <(p— 1)/2.

Proof: 'The idea of the proof is to consider the following two sets:

p—1\*
5‘={1+02’1+12’1+22"”’H(’T) }

2
5, = {—02, 12,22 .., — (P—zl) }

Evidently, no two elements of the set S, are congruent modulo p.
For if 1 4 x,2=1 4 x,? (mod p), then either x, =x, (mod p) or
x, =—x, (mod p). But the latter consequence is impossible, since
0 <) + x5 < p(unless x; = x, = 0),whence x; =x,(mod p), which
implies that x, = x,. In the same vein, no two elements of S, are
congruent modulo p.

Together §, and S, contain 2[1 4 §(p — 1)] = p + 1 integers.
By the Pigeon-hole Principle, some integer in S, must be congruent
modulo p to some integer in S, ; that is, there exist x,, o such that

1 4 x02% = —y,? (mod p),
where 0 <x, <(p—1)/2and 0 <y, <(p—1)/2.
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CoroLLARY.  Given an odd prime p, there exists an integer k < p such
that Kp is the sum of four squares.
Proof:  According to the theorem, we can find integers x, and y,,
0<xo<pf2, 0<y,<p/2
such that
X2 4902+ 124-02=4p

for a suitable choice of 4. The restrictions on the size of x, and y,
imply that

hp =i +y0* +1 < p2l4+pAl4+ 1< p?

and so £ < p, as asserted in the corollary.

We digress for a moment to look at an example. If one takes
p =17, then the sets 5, and 5, become

S.={1, 2, 5, 10, 17, 26, 37, 50, 65}
and
S,=1{0, —1, —4, —9, —16, —25, —36, —49, —64}.
Modulo 17, the set §; consists of the integers 1, 2, 5, 10, 0, 9, 3, 16, 14,
while those in S, are 0, 16, 13, 8, 1, 9, 15, 2, 4. Lemma 2 tells us that

some member 1 4-x? of the first set is congruent to some member —y?
of the second set. We have, among the various possibilities,

14+52=9=—-5%(mod 17)
or 1 +52+452=0(mod 17). It follows that
3.17=12452 452402
is a multiple of 17 written as a sum of four squares.
The last lemma is so essential to our work that it is worth point-
ing out another approach, this one involving the theory of quadratic
residues. If p =1 (mod 4), we may choose x, to be a solution of x? = — 1

(mod p) (this is permissible by the corollary to Theorem 9-2) and y, =0
to get

X024 0% + 1 =0 (mod p).
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Thus, it suffices to concentrate on the case p =3 (mod 4). We first
pick the integer a to be the smallest positive quadratic nontesidue of
p (keep in mind that 2 > 2, since 1 is a quadratic residue). Then

(—a[p)=(—1/p)alp) = (=D(=D) =1,
so that —a is a quadratic residue of p. Hence, the congruence
x? =—a (mod p)
admits a solution x,, with 0 < x, <(p — 1)/2. Now z — 1, being posi-
tive and smaller than g, must itself be a quadratic residue of p. Thus,
there is an integer y,, 0 <y, <(p — 1)/2, satisfying
y2=a—1(mod p).
The conclusion:

xo2 +yo2+1=—a+(@—1)+1=0(mod p).

With these two lemmas among our tools, we now have the
necessary information to carry out a proof of the fact that any prime can
be realized as the sum of four squared integers.

THEOREM 12-6.  Any prime p can be written as the sum of four squares.

Proof: 'The theorem is certainly true for p = 2, since 2= 1% + 1% +
02 4 02. Thus, we may hereafter restrict our attention to odd primes.
Let 4 be the smallest positive integer such that £p is the sum of four
squares; say,

kp=x% 4y 4 2% 4 w2

By virtue of the foregoing corollary, £ < p. The crux of our argu-
ment is that A= 1.

We make a start by showing that £ is an odd integer. For a
proof by contradiction, assume that £ is even. Then x, y, z, w are
all even; or all are odd; or two are even and two are odd. In any
event, we may rearrange them, so that

x=y(mod2) and z=w (mod 2).
It follows that

%—(X—_)/), %—(X+]), %(z—w), %(Z-le)
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are all integers and
. x —y\? x -+ 9\ 2 z—w\2 z -+ w\?
in=(57) + (552) + () + ()
is a representation of (£/2)p as asumof four squares. This violates the
minimal nature of £, giving us our contradiction.
There still remains the problem of showing that 4=1.

Assume not; then 4, being an odd integer, is at least 3. It is there-
fore possible to choose integers 4, b, ¢, d such that

a =x (mod £), b =y (mod £), ¢ =2 (mod £), d =w (mod %)
and
la| <Al2,|b| <h2,|c|<h]2,|d| <42
(To obtain the integer 4, for instance, find the remainder » when x
is divided by £; put a=7r or a=r— k according as r < £/2 or
r > k£/2.) Then
a2+b2+€2+d2EX2+)/2+22+WZEO(mOd k)
and so
a? 4 b% +c* +d?* = nk
for some nonnegative integer 7. Because of the restrictions on the
size of @, b, ¢, d,
0 <nk=a%+4b*4c* +d? < 4(£|2)? = 42

We cannot have » = 0, since this would signify thate =b=¢r=4d=0
and, in consequence, that 4 divides each of the integers x, y, 2, .
Then A% | Ap, ot £ | p, which is impossible in light of the inequality
1 <4k <p. The relation nk <42 also allows us to conclude that
n<k. Insum:0 <z <4 Combining the various pieces, we get

A2np = (hp)(hn) = (x2 492 + 22 + w?)(a® 4 b% + ¢* + d?)

=ri4+s2+2+4

whete r = xa + yb + zc + wd,

§=xb—ya + zd — we,

t=x¢— yd — za -+ wh,

#=xd+yc— zb— wa.
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It is important to observe that all four of 7, s, #, # are divisible by 4.
In the case of the integer r, for example, one has

r=xa+yb+zc +wd =a%+b>+c* +-d* =0 (mod £).
Similarly, s =#=#=0 (mod £). This leads to the representation
np = (r|k)? -+ (s K)? -+ (2 £)® + (4] £),
where r/k, 5|k, t|k, u|k ate all integers. Since 0 < 7 < 4, we there-
fore arrive at a contradiction to the choice of 4 as the smallest positive

integer for which 4p is the sum of four squares. With this contradic-
tion, 4 = 1, and the proof is finally complete.

This brings us to our ultimate objective, the classical result of
Lagrange:

TuEOREM 12-7 (Lagrange). .Any positive integer n can be written as
the sum of four squares, some of which may be zero.

Progf: Clearly, the integer 1 is expressible as 1 = 12 4- 02 - 02 + 02,
a sum of four squares. Assume that # > 1 and let 7= p, p,--- p, be
the factorization of # into (not necessarily distinct) primes. Since
each p, is realizable as a sum of four squares, Euler’s Identity permits
us to express the product of any two primes as a sum of four squares.
This, by induction, extends to any finite number of prime factors,
so that applying the identity 7 times, we obtain the desired representa-
tion for 7.

Example 12-2

To write the integer 459 == 3 - 17 as the sum of four squares, we use

Euler’s Identity as follows:

459 ==32.3.17 =3%(12 + 12 + 12 4+ 02)(4* 4 12 4- 0% + 0?)
=32[(44+1+0+02+(1—4+0—-0)2+(0—-0—4+0)°

+(0+0—-1—-0)3

= 32[52 4 37 +42 +17]
=152 92 4122 + 32,

While squares have received all our attention so far, many of the

ideas involved generalize to higher powers.
In his book, Meditationes Algebraicae (1770), Edward Waring
stated that each positive integer is expressible as a sum of at most 9



280 Representation of Integers as Sums of Squares CHAP. 12

cubes, also a sum of at most 19 fourth powers, and so on. This assertion
has been interpreted to mean: Can each positive integer be written as
the sum of no more than a fixed number g(4) of Ath powers, where g(#)
depends only on 4, not the integer being represented? In other words,
for a given 4, a number g(4) is sought such that every # >0 can be repre-
sented in at least one way as

n=a* +af + -+ a,*

where the #; are nonnegative integers, not necessarily distinct. The
resulting problem was the starting point of a large body of research
in number theory on what has become known as “ Waring’s Problem.”
There seems little doubt that Waring had limited numerical grounds in
favor of his assertion and no shadow of a proof.

As we have reported in Lagrange’s Theorem, g(2) =4. Except
for squares, the first case of a Waring-type theorem actually proved
is attributed to Liouville (1859): every positive integer is 2 sum of at
most 53 fourth powers. This bound for g(4) is somewhat inflated, and
through the years was progressively reduced. The existence of g(4)
for each value of 4 was resolved in the affirmative by Hilbert in 1909;
unfortunately, his proof relies on heavy machinery (including a 25-fold
integral at one stage) and is in no way constructive.

Once it is known that Waring’s Problem admits a solution, a
natural question to pose is “How big is g(4)?” There is an extensive
literature on this aspect of the problem, but the question itself is still
open. A sample result, due to Dickson, is that g(3) = 9, while

23 =28 428 4 13 18 L 134134134134 18
and

230 = 4% £ 43 135 135 1 33 438 413 194 1°

ate the only integers that actually require so many as 9 cubes in their
representation; each integer greater than 239 can be realized as the sum
of at most 8 cubes. In 1942, Linnik proved that only a finite number of
integers need 8 cubes; from some point onwards 7 will suffice. Whether
6 cubes are also sufficient to obtain all but finitely many positive integers
is still unsettled.

The cases # = 4 and # = 5 have turned out to be the most subtle,
and the answers are less complete. For many years, the best known
result was that g(4) lay somewhere in the range 19 < g(4) <35, while g(5)
satisfies 37 < g(5) < 54. Recent work has shown that g(5) = 37 and that
every integer less than 1031° or greater than 10*4°° can be written as a sum
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of 19 fourth powers; thus, in principle, g(4) can be calculated. As far as
% > 6 is concerned, it has been established that the formula

LA =132 +2—-2

holds, except possibly for a finite number of 4. There is considerable
evidence to suggest that this is the correct value for all 4.

Another problem that has attracted considerable attention is
whether an nth power can be written as a sum of # #th powers, with » > 3.
The first progress was made in 1911 with the discovery of the smallest
solution in 4th powers,

353% = 30% + 120* + 272¢ 4 315%.
In the 5th powers, the smallest solution is
725 = 195 + 43°% - 46° {475 - 67°.
However, for 6th or higher powers no solution is yet known.

There is a related question; it may be asked, ““Can an #th power
ever be the sum of less than # #th powers?” Euler conjectured that this
is impossible, but in 1968 Lander and Parkin came across the representa-
tion

1445 = 275 - 84° 4~ 110° 4- 1335,
Despite an extensive computer search through 4th and 6th powers this is
the only known counterexample.

PROBLEMS 12.3

1. Without actually adding the squares, confirm that the following relations
hold:

(@) 124224324 ... 4 2324 242 =702,
(b) 18241924202+ ... 4 272 4 282 =T7?;
() 224524824 ... 4 2324 262 =48?;
(d) 624122182 4 ... 4 422 4 482 =952 — 412
2. Regiomontanus proposed the problem of finding twenty squares whose

sum is a square greater than 300,000. Furnish two solutions. [Hint:
Consider the identity

(@2 + a2+ 44, = (@2 + a? 4 - +a,,° —,%)?
+(2a12,)? + (2058,)% + - -+ + (22, 14,)* ]
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Show that n2 4 (n4-1)2+(m+2)2+ .-+ (n+ #)? is not equal to a

square whenever 124224 324 ...+ 42 is a quadratic nonresidue of

A+ 1.

Establish that the equation 42 442+ 2+ 4+ b+ ¢=1 has no solution

in the integers. [Hint: The equation in question is equivalent to the

equation (2 + 1)2 4+ (26 + 1)2 4 (2 + 1)2 = 7.]

For a given positive integer #, show that either # or 2 is a sum of three

squares.

An unanswered question is whether there exist infinitely many primes p

such that p=#% 4 (n+ 1)2 4 (# + 2)?, for some #>0. Find three of

these primes.

In our examination of # = 459, no representation as a sum of two squares

was found. Express 459 as a sum of three squares.

Verify each of the statements below:

(a) Every positive odd integer is of the form 42 + 42 + 22, where 4, b, ¢
are integers. [Hint: Given >0, 47+ 2 can be written as 4n 4+ 2 =
x? 4+ y2 4 22, with x and y odd and z even. Then

21+ 1=} +9)? +3(x —)* + 2(2/2)*]

(b) Every positive integer is either of the form a2 + 52 4 ¢2 or @2 + 42 +
202, where a, b, ¢ are integers. [Hint: If n >0 cannot be written as
a sum 4® + b? 4 ¢, then it is of the form 4"(84 4- 7). Apply part (a)
to the odd integer 84 + 7.]

(c) Every positive integer is of the form 42 4 4% — 2, where a4, b, ¢ are
integers. [Hint: Given 7> 0, choose 2 such that # — 42 is a positive
odd integer and use Theorem 12-4.]

Establish the following:

(a) No integer of the form 94 + 4 or 94 4 5 can be the sum of three or
fewer cubes. [Hint: By Problem 10 in Section 4.1, 28 =0, 1, or 8
(mod 9) for any integer a.]

(b) The only prime p which is representable as the sum of two cubes
is p=2. [Hint: Use the identity 4®+ %= (a+ b)((¢ — b)? + ab).]

(c) A prime p can be represented as the difference of two cubes if and
only if it is of the form p = 34(4 +1) + 1, for some 4.

Express each of the primes 7, 19, 37, 61, and 127 as the difference of two

cubes.

Prove that every positive integer can be represented as a sum of three

or fewer triangular numbers. [Hint: Given #>0, express 87+ 3 as a

sum of three odd squares and then solve for 7.}

Show that there are infinitely many primes p of the form p = 2% + 42 + ¢2 +
1, where 4, b, ¢ are integers. [Hint: By Theorem 9-8, there are infinitely
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13.

14.

15.

16.

17.

18.

many primes of the form p =84 4 7. Writep —1= 8k +6=a®+b>+¢?

for some a, b, ¢.]

Express the integers 231 =3.7.11,391=17- 23, and 2109 = 37 - 57 as

sums of four squares.

(a) Prove that every integer #>170 is a sum of five squares, none of
which are equal to zero. [Hint: Write n — 169 =4 + 6%+ ¢* + a2
for some integers 4, b, ¢, d and consider the cases in which one or more
of a, b, ¢ is zero.]

(b) Prove that any positive multiple of 8 is a sum of eight odd squares.
[Hint: If n=a*+b>+c®+d? then 8748 is the sum of the
squares of 22+ 1,26+ 1,20 4+ 1, and 24+ 1.]

From the fact that #3 = (mod 6) conclude that every integer 7 can be

represented as the sum of the cubes of five integers, allowing negative

cubes. [Hinz: Utilize the identity

# bk =1 — (F+1)° —(k —1)° + 4% + 4°.]

Prove that every odd integer is the sum of four squares, two of which
are consecutive. [Hint: For n>0, 4n41 is a sum of three squares,
only one being odd; but, 47 + 1 = (24)® + (26)* + (2c+ 1) gives2n+ 1=
(@+ )+ (@—b2+ 2+ (c+1)2]

Prove that there are infinitely many triangular numbers which are simul-
taneously expressible as the sum of two cubes and the difference of two
cubes. Exhibit the representations for one such triangular number.
[Hint: In the identity

(27482 —1 = (94* — 34)> + (94° —1)°
= (94* + 34)% — (94° + 1)%,
take £ to be an odd integer to get
@n+1)2 —1 = (24)* +(26)° = (2¢)> — (2)°,

or equivalently, #, = a® 4 b° = ¢® —4°]

(a) If n—1and n+ 1 are both primes, establish that the integer 2n2 + 2
can be represented as the sum of 2, 3, 4, and 5 squares.

(b) Illustrate the result of part (a) in the cases in which # =4, 6, and 12.
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Fibonacci Numbers and
Continued Fractions

“. .. what is physical is subject to the laws of
mathematics, and what is spiritual to the laws of
God, and the laws of mathematics are but the
excpression of the thonghts of God.”

Tuomas HiLL




13.1 THE FIBONACCI SEQUENCE

Perhaps the greatest mathematician of the Middle Ages was Leonardo
of Pisa, who wrote under the name of Fibonacci—a contraction of flius
Bonacci, that is, son of Bonacci. The Hindu-Arabic numeral system
became known to Western Europe through his work Liber Abaci which
was wtitten in 1202, but sutvives only in a revised 1228 edition (the
word “abaci” in the title does not refer to the abacus; rather it means
computation in general). It is ironic that despite his many achievements
Fibonacci is remembered today mainly because the 19th century number
theorist Edouard Lucas attached his name to a sequence that appears in a
trivial problem in the Liber Abaci. Specifically, Fibonacci posed the
following problem dealing with the number of offspring generated by a
pair of rabbits conjured up in the imagination:

A man put one pair of rabbits in a certain place entirely surrounded by a
wall. How many pairs of rabbits can be produced from that pair in a year,
if the nature of these rabbits is such that every month each pair bears a new
pair which from the second month on becomes productive ?

Assuming that none of the rabbits dies, then a pair is born during the
first month, so that there are two pairs present. During the second
month, the original pair has produced another pair. One month later,
both the original pair and the firstborn pair have produced new pairs,
so that three adult and two young pairs are present, and so on. (The
figures are tabulated in the chart on page 287.) The point to bear
in mind is that each month the young pairs grow up and become adult
pairs, making the new “adult” entry the previous one plus the previous
“young” entry. Each of the pairs that was adult last month produces
one young pair, so that the new “young” entry is equal to the previous
“adult” entry.

When continued indefinitely, the sequence encountered in the
rabbit problem

1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, ...

286
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is called the Fibonacci sequence and its terms the Fibonacci numbers. The
position of each number in this sequence is traditionally indicated by a
subscript, so that #, =1, #, = 1, #3=2, and so forth, with #, denoting
the nth Fibonacci number.

Growth of Rabbit Colony
Months Adult Pairs Young Pairs Total
1 1 1 2
2 2 1 3
3 3 2 5
4 5 3 8
5 8 5 13
6 13 8 21
7 21 13 34
8 34 21 55
9 55 34 89
10 89 55 144
11 144 89 233
12 233 144 377

The Fibonacci sequence exhibits an intriguing property, namely,

2=1+1 or Uy =ty -+ 4y,
3=2+1 or Uy =ty + 4s,
5=3+2 or Hs = Uy + 43,
8=5+43 or Ue =t -+ 4y.

By this time, the general rule of formulation should be discernible:
#y=ty=1, Hy="tHp_ 1+ Uy 2 for n > 3.

That is, each term in the sequence (after the second) is the sum of the two
that immediately precede it. Such sequences, in which from a certain
point on every term can be represented as a linear combination of preceding
terms, are said to be recursive sequences. 'The Fibonacci sequence is the
first known recussive sequence in mathematical work. Fibonacci himself
was probably aware of the recursive nature of his sequence, but it was not
until 1634—by which time mathematical notation had made sufficient
progress—that Albert Girard wrote down the formula.
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It may not have escaped attention that in the portion of the
Fibonacci sequence which we have written down, successive terms are
relatively prime. This is no accident, as is now proved.

THEOREM 13-1. For the Fibonacci sequence, ged (#y, #yy1)=1 for
every n > 1.

Proof:  Let us suppose that the integer 4> 1 divides both #, and
#y,41. Then their difference #, ., — #, =, _, will also be divisible
by 4. From this and from the relation #, — #, ., =, _,, it may be
concluded that 4| #,_,. Working backwards, the same argument
shows thatd | #,_5,d| #,_,, ..., and finally that d| #,. Butus, =1,
which is certainly not divisible by any 4> 1. This contradiction
ends our proof.

Since #3 =2, #5 =5, s, = 13, and #,, = 89 are all prime numbers,
one might be tempted to guess that #, is prime whenever the subscript
n>2is a prime. This conjecture fails at an early stage, for a little figur-
ing indicates that

o= 4181 — 37 . 113,

Not only is there no known device for predicting which #, are prime, but
it is not even certain whether the number of prime Fibonacci numbers is
infinite. There is nonetheless a useful positive result whose cumbersome
proof is omitted: For any prime p, there are infinitely many Fibonacci
numbers which are divisible by p and these are all equally spaced in the
Fibonacci sequence. To illustrate, 3 divides every fourth term of the
Fibonacci sequence, 5 divides every fifth term, while 7 divides every
eighth term.

As we know, the greatest common divisor of two positive integers
can be found from the Euclidean Algorithm after finitely many divisions.
By suitably choosing the integers, the number of divisions required can
be made arbitrarily large. The precise statement is this: Given # >0,
there exist positive integers 2 and 4 such that in order to calculate gcd (o, b)
by means of the Euclidean Algorithm exactly » divisions are needed.
To verify the contention, it is enough to let ¢=x,,, and b=u,,,.
The Euclidean Algorithm for obtaining gcd (#,,,, #,,,) leads to the
system of equations
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Upy 2= 1 cHn i1 +un>

”n+1:1 Uy AUy 1,

=113+ u,,
Uy=2-4,+0.

Evidently, the number of divisions necessary here is 7. The reader will
no doubt recall that the last nonzero remainder appearing in the algorithm
furnishes the value of ged (#, 44, #,.1). Hence,

ng (un+2> ”n+1)=”2: 1,

which confirms anew that successive Fibonacci numbers are relatively
prime.

Suppose, for instance, that #=26. The following calculations
show that one needs 6 divisions in order to find the greatest common
divisor of the integers #; = 21 and #, = 13:

21=1.13 +8,
13=1.845,
8—1.543,
5—1.342,
3—1.241,
2—=2.140.

One of the striking features of the Fibonacci sequence is that the greatest
common divisor of two Fibonacci numbers is itself a Fibonacci number.

The identity
(1) ”m+n:”m—1”n+”m”n+1
is central to bringing out this fact. For fixed #, this identity is established
by induction on 7. When # =1, (1) takes the form

U1 = Uy 1 W1+ Uy = Hpy 1 + #p
which is obviously true. Let us therefore assume that the formula in
question holds when # is one of the integers 1, 2, ..., £ and try to verify
it when 7= £ + 1. By the induction assumption,

U= Hm-1 Wy + Ui 15

Umbo-1) = Um—1 %1+ Hn ¥y
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Addition of these two equations gives us

Uk T B s - 19 = tm = 1(the + the - 1) + U1+ #).
By the way in which the Fibonacci numbers are defined, this expression
is the same as
Upt o+ 1) = Hm—1 By 41+ Uty g,

which is precisely formula (1) with # replaced by 4 -+ 1. The induction
step is thus complete and (1) holds for all » and ».
One example of formula (1) should suffice:

Hy=tg,3= 1ty +tgtt,=5-2+8.3=734,

The next theorem, aside from its importance to the ultimate result which
we seek, has an interest all its own.

TreoreM 13-2. For m > 1, n>1, #,, is divisible by u,, .

Proof: We again argue by induction on #, the result being certainly
true when »=1. For our induction hypothesis, let us assume that
#yy 1s divisible by #,, for n=1, 2, ..., £. The transition to the case
Ui +1) = Hmp 4+ m 15 realized using formula (1); indeed,

i +1) = Hmic =1 #m = Hmic Am 1+

Since #,, divides #,, by supposition, the right-hand side of this ex-
pression (and hence, the left-hand side) must be divisible by #,.
Accordingly, #, | #pu+1,, Which was to be proved.

Preparatory to evaluating ged (#,,, #,), we dispose of a technical *
lemma.

LemMma.  Ifm= qn + r, then gcd (#y, , #,) = ged (#, , #,).
Proof: 'To begin with, formula (1) allows us to write

ng (”m > ”n) = ng (”qn+r 5 ”n) == ng (”qn—-l #, + HonHr 415 ”n)-
An appeal to Theorem 13-2 and the fact that gcd (2 -+ ¢, b) = gcd (a, 4),
whenever & | ¢, gives
ng (”qn 1 Uy, ”n) = ng (”qn—- 1%y, ”u)-

Our claim is that gcd (#4,-1, #,)=1. To see this, set
d=gcd (#40-1, #,). The relations 4| #, and #,|#,, imply that
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d| 44, and so d is a (positive) common divisor of the successive
Fibonacci numbers #,, _, and #,,. Since successive Fibonacci num-
bers are relatively prime, the effect of this is that /= 1.

To finish the proof, the reader is left the task of showing
that whenever gcd (4, ¢) = 1, then ged (4, b¢) = ged (q, /). Knowing
this, we can immediately pass on to

ged (#y , #,) = ged (Hgn 1 #,, #,) = gcd (4, #,,),
the desired equality.

This lemma leaves us in the happy position in which all that is
required is to put the pieces together.

THEOREM 13-3.  The greatest common divisor of two Fibonacci numbers
is again a Fibonacci number; specifically,
ged (4, #,) = 4, where d = gcd (m, 7).

Proof: Assume that » >n. Applying the Euclidean Algorithm to
m and n, we get the following system of equations:

”1=q1”+f1, O<r1<ﬂ

n=qyr, +73, 0<ry<ry

ri=4qs’s+ 73, O<rs<r,
rn—ZZQnrnw1+rn’ O<rn<rn-1

Thno1=qn+17n +O
In accordance with the previous lemma,
ged (4, #,) = ged (w5 #,) = ged (5 #,) = -+ - = ged (w4, , #y,).

Since 7, |7,.1, Theorem 13-2 tells us that #, |#, ,, whence
ged (4, _,, #,) = #,,. Butr,, being the last nonzero remainder in
the Euclidean Algorithm for » and #, is equal to gcd (», 7). Tying
up the loose ends, we get

ng (”m > un) = Hgca(m,n)

and in this way the theorem is established.

It is interesting to note that the converse of Theorem 13-2 can be
obtained from the theorem just proved; in other words, if #, is divisible
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by #,, then we can conclude that # is divisible by ». Indeed, if #, | #,,
then gecd (#, #,) = #,. But according to Theorem 13-3, the value of
gcd (#,, #,) must be equal to #gcq (m, ). The implication of all this is
that gcd (m, ) = m, from which it follows that 7 | n. We summarize these
remarks in:

COROLLARY. In the Fibonacci sequence, uy, | #, if and only if m | n_for m > 2.

A good illustration of Theorem 13-3 is provided by calculating
ged (w16, #12) = ged (987, 144). From the Euclidean Algorithm,
987 =6 - 144 + 123,
144 =1.123 + 21,
123=5.21 418,
21=1-18+3,
18=6-3+0,
and so gcd (987, 144) = 3. The net result is that

ng (%16, H1p) =3 =ty = tgeq (16, 12>

as asserted by Theorem 13-3.

PROBLEMS 13.1

1. Given any prime p+#5, it is known that either #,_, or #,,, is divisible
by p. Confirm this in the cases of the primes 7, 11, 13, and 17.
2. Forn=1,2,..., 10, show that 5#,°> + 4(—1)" is always a perfect square.
3. Prove that if 2| #,, then 4| (#,,,2 —#,_,2); and similarly, if 3 | #,, then
9 l (”n+13 _”n—la)'
4. For the Fibonacci sequence, establish that
(@) #,.3=n, (mod 2), hence #;, #g, #,, ... are all even integers;
(b) #,.5= >34, (mod 5), hence #5, #,9, #;5, ... are all divisible by 5.

5. Show that the sum of the squares of the first » Fibonacci numbers is
given by the formula

A Sl Sl R R ISE A e

[Hint: For n>2, #,2 =ty 1 — Upthy_.]
6. Utilize the identity in Problem 5 to prove that

PRRLEY A K 4+ 2ty g2+ Hy_ 12+ + #2442, n>3.
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10.
11.

12.

13.

Evaluate gcd (#g, #,5), ged (#y5, #20), and ged (w24, #36)-

Find the Fibonacci numbers which divide both #,, and #z6.

Use the fact that #,, | #, if and only if » | # to verify each of the assertions
below:

(2) 2|u#,ifand onlyif 3| ;
(b) 3| #,if and only if 4| #;
() 4|u,ifand onlyif 6| #;
(d) 5]|#,ifand onlyif 5|~

1f ged (m, #) = 1, prove that #, #, divides #,,, for all m, n > 1.

It can be shown that if #, is divided by #,, (# > ), then either the remainder
r is a Fibonacci number or else #, —r is a Fibonacci number. Give
examples illustrating both cases. i

It is conjectured that there are only five Fibonacci numbers which are also
triangular numbers. Find them.

For #>> 1, prove that 2"~ 4, =n(mod 5). [Hint: Use induction and the
fact that 2" #, , ; = 2(2"~ u,) + 42"~ 24, _,).]

13.2 CERTAIN IDENTITIES INVOLVING

FIBONACCI NUMBERS

We move on and develop several of the basic identities involving Fibonacci
numbers; these should be useful in doing the problems at the end of
the section. One of the simplest asserts that the sum of the first #
Fibonacci numbers is equal to #,,,— 1. For instance, when the first
eight Fibonacci, numbers are added together, we obtain

14+14+243+54+8+134+21=54=55—1=u#,—1

That this is typical of the general situation follows by adding the relations

Hy = Hz — Uy,
Uy ==HUy — U3,

Uy = U — Hy,

Up 1 =1HUpns1 — Yn,

Up=Hps0—Hny1-
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On doing so, the left-hand side yields the sum of the first #» Fibonacci
numbers, while on the right-hand side the terms cancel in pairs leaving
only #,,,— #,. But#,=1. The consequence is that

(2) Uyt Hy Uyt U=ty — L.
Another Fibonacci property worth recording is the identity
(3) uﬂ2= n+1%n-1 +(_1)n—1’ ﬂ22

This may be illustrated by taking, say, =6 and # = 7; then
#2=82=13 .5~ 1 =0, — 1,
#.2=132=21.-8 +1=wsgu, + 1.

The plan for establishing formula (3) is to start with the equation

”"2 —Hny1 Uy = ”n(”n-—l +”n—2) —Hpy1Hp-
= <”n - ”n+1)”n—1 +”n”n—2 .
From the rule of formation of the Fibonacci sequence, we have #,,, =
#y, +#, -1, and so the expression in parentheses may be replaced by the
term —u#,_, to produce

4,2 —Hn i1 Mpo :(_1)(”1!—12—”””"—2)'

The important point is that except for the initial sign the right-hand
side of this equation is the same as the left-hand side, but with all the
subscripts decreased by 1. By repeating the argument #,_,2— #, 4, ,
can be shown to be equal to (—1)(#,_ ;2 — #, _, #,_;), whence

U — ty 1ty oy = (= 1)t g% — sty 1 #1y _3).
Continue in this pattern. After » — 2 such steps, we arrive at
U — thy 1ty =(—1)" "0y — uyuy)
=(=Ir "2 =2 )= (=1,

which we sought to prove.
For # = 24, formula (3) becomes

(4) ”2k2=”2k+1”2k-1—1~

While we are on the subject, we might observe that this last identity is
the basis of a well-known geometric deception whereby a square 8 units
by 8 can be broken up into pieces which seemingly fit together to form a
rectangle 5 by 13. To accomplish this, divide the square into four parts
as shown below on the left and rearrange them as indicated on the right.
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13 d

The area of the square is 82 = 64, while that of the rectangle which seems
to have the same constituent parts is 5-13 =65, and so the area has
apparently been increased by 1 square unit. The puzzle is easy fo explain:
the points a, b, ¢, d do not all lie on the diagonal of the rectangle, but
instead ate the vertices of a parallelogram whose area is of coutse exactly
equal to the extra unit of area.

The foregoing construction can be carried out with any square
whose sides are equal to a Fibonacci number #;,. When partitioned in
the manner indicated

U
A
“gp—2 B
Ugr—1
Hok—1 C D
k-1

the pieces may be reformed to produce a rectangle having a slot in the
shape of a slim parallelogram (our figure is somewhat exaggerated):

ok Hgp—1

D
-1

#2341
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The identity #z, _ #5, 1 — 1 = 4,2 may be interpreted as asserting that
the area of the rectangle minus the area of the parallelogram is precisely
equal to the area of the original square. It can be shown that the height
of the parallelogram—that is, the width of the slot at its widest point—is

1

\/ﬂzkz + gy _ o*

When #, has a reasonably large value (say, #,, = 144, so that #,, _, = 55),
the slot is so narrow as to be almost imperceptible to the eye.

A List of the First Fifty Fibondcci Numbers

#, 1 Hog 121393
4, 1 Uy 196418
43 2 Hag 317811
4, 3 Hyg 514229 i
4 5 Hao 832040
4 8 %3y 1346269
4, 13 #39 2178309
#g 21 Uy 3524578
4y 34 7% 5702887
", 55 Hye 9227465
#yy 89 H3g 14930352
#y9 144 Usp 24157817
#5 233 H3g 39088169
Hy4 377 Hsg 63245986
#5 610 Hyo 102334155
#g 987 Hyy 165580141
#yq 1597 Hyo 267914296
#ig 2584 Hyg 433494437
#q 4181 Uyg 701408733
Ha0 6765 Hyg 1134903170
Uy, 10946 Uy 1836311903
Hyo 17711 Hyy 2971215073
Hya 28657 Hyg 4807526976
Upg 46368 Hyg 7778724049

s 75025 s 12586269025
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The next result to be proved is that every positive integer can be
written as a sum of distinct Fibonacci numbers. For instance, looking
at the first few positive integers:

1l=u S=us=1u,+ 4

2=u, O=tg+ty =ty + 43+ 4,
3=u, T=ts+u =ty 3+t -+
4=u,+u 8=tg =ty + #,.

It will be enough to show by induction on # > 2 that each of the integers
1,2,3, ..., #,— 1 is a sum of numbers from the set {#;, #;, ..., #x_o},
none repeated. Assuming that this holds for #= 4, choose N with
#— 1 <N <#,,. Since N—t_y <th,1—th_,=1#, We infer that
the integer N — #, _, is representable as 2 sum of distinct numbers from
{uy, #3, ..., th-3}. Then N and, in consequence, each of the integers
1,2,3,..., #,,,— 1 can be expressed as a sum (without repetitions) of
numbers from the set {#,, #y, ..., #,_3, #—1}. This completes the induc-

tion step.
For the reader’s convenience, we explicitly record this fact as

THEOREM 13-4.  Euvery positive integer can be represented as a finite sum
of Fibonacci numbers, none used more than once.

PROBLEMS 13.2

1. Using induction on the positive integer #, establish the formula
ty+ 2y 4 3ug+ oty =4 Vtty g — 2y g+ 2.
2. (a) Show that the sum of the first # Fibonacci numbers with odd indices
is given by the formula
Hy Aty + g+ A Hgn_y = Yoy

[Hint: Add the equalities #) = #,, #y =ty —#y, H5=1He —Hg, ... .
(b) Show that the sum of the first # Fibonacci numbers with even indices
is given by the formula

Uyt thy+ g+ o g =ty — 1.

[Hint: Apply part (a) in conjunction with identity (2).]
(c) Derive the following expression for the alternating sum of the first
» Fibonacci numbers:

Hy — sty — sy (1) = 1 (1)
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From formula (1), deduce that

Hopoy =#p2 Uy 1% Hgy =1y 1% —ty_y°
with #> 2.
Establish that the formula

U Up_1 :"‘n2 _”n—l2 +(_—1)"

holds for n>>2 and use this to conclude that consecutive Fibonacci
numbers are relatively prime.
Without resorting to induction, derive the following identities:
(a) ”n+12 - 4”n”n—1 = ”n—22’ n>3.
[Hint: Start by squaring #, o =#, —#,_y and #, ;= #, ++ #, _1.]
(b) #pir1tn_1 —tpiotn_a= 2(—=1)" n>3.
[Hint: Put a,, 5=ty 1+ #y, #y_o=t, — #,_, and use formula (3).
(©) #® =ty oty o =(—1)"n=>3.
[Hint: Mimic the proof of formula (3).]
(d) #2 —thpygthp s =41, =4
(e) Upln 1180 +3%n+a :u,,+24 —1,5>1.
[Hint: By patt (€), #yy 4%y = #y 42> +(—1)*** while by formula (3),
Upp1p43= ”n+22 + (_1)n+2']
Represent the integers 50, 75, 100, and 125 as sums of distinct Fibonacci
numbers.
Prove that every positive integer can be written as a sum of distinct terms

from the sequence #,, #3, #,, ... (that is, the Fibonacci sequence with #
deleted).
Establish the identity

(thy thy s 3)> + 2oty 1 1 0)* = (#gn+3)% n>1

and use this to generate five primitive Pythagorean triples.

Prove that the product #, #, . ; #, . 5 #, , 3 Of any four consecutive Fibonacci
numbers is the area of a Pythagorean triangle. [Hint: See the previous
problem.]

Let = 13(1 +\/§) and 8= 4(1 ——\/g), so that « and B ate both roots of
the equation x?=2x+ 1. Show by induction that the Binet formula

=P
V5

holds for n>1.
In 1876, Lucas discovered the following formula for the Fibonacci numbers
in terms of the binomial coefficients:

() () () () ()
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where  is the largest integer less than or equal to (# —1)/2. Derive this
result. [Hint: Argue by induction, using the relation #, =#,_; + #,_3;

note also that (;”) = (m /r_ 1) + (’Z : })]

12. Establish thatfor#>1,

(@) (Z)uﬁ (;)u2+ (;)ua+---+ (Z)un=u2n;

(&-{Qﬁ+cyr{9%+m+emfﬁaz~%

13.3 FINITE CONTINUED FRACTIONS

In that part of the Liber Abaci dealing with the resolution of fractions into
unit fractions, Fibonacci introduced a kind of “continued fraction.”

For example, he employed the symbol 35 as an abbreviation for

1+1%
= 1 1

3 373473575

The modern practice is, however, to write continued fractions in a
descending fashion, as with

2+
4+

1
1
1
14—
HEER
A multiple-decked expression of this type is said to be a finite simple

continued fraction. To put the matter formally:

DErFINITION 13-1. By a finite continued fraction is meant a fraction of

the form
1

a, +

a, + 1
a; +
ay +———

3

1
4pn-1 +;‘

n



300 Fibonacci Numbers and Continued Fractions CHAP. 13

where 4, 4y, ..., 4, are real numbers, all of which except possibly 4,
are positive. ‘The numbers 4, , 4, ..., a, are the partial denominators
of this fraction. Such a fraction is called simple if all of the 4; are integers.

integers.

While giving due credit to Fibonacci, most authorities agree that
the theory of continued fractions begins with Rafael Bombelli, the last of
the great algebraists of Renaissance Italy. In his L’ A/gebra Opera (1572),
Bombelli attempted to find square roots by means of infinite continued
fractions—a method both ingenious and novel. He essentially proved

that v/13 could be expressed as the continued fraction

4

V13=34 7

6+ ;——4—
+—6 T
It may be interesting to mention that Bombelli was the first to populatize
the work of Diophantus in the Latin West. He set out initially to trans-
late the Vatican Library’s copy of Diophantus’ Arithmetica (probably the
same manuscript uncovered by Regiomontanus), but, carriej away by
other labors, never finished the project. Instead he took all the problems
of the first four Books and embodied them in his 4/gebra, interspetsing
them with his own problems. Although Bombelli did not distinguish
between the problems, he nonetheless acknowledged that he had borrowed
freely from the Arithmetica.
Evidently, the value of any finite simple continued fraction will
always be a rational number. For instance, the continued fraction
34 ____1___
4+ _
1

i

can be condensed to the value 170/53:

i

34— =34
44— 44—
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THEOREM 13-5. _Any rational number can be written as a finite simple
continued fraction.

Proof: Let alb, where b>0, be any rational number. Euclid’s
algotithm for finding the greatest common divisor of zand & gives us
the equations

a=bay+ry, 0<r,<b

b=rya,+r, 0<ry<ry

ri="rydy+ 73, 0<rs<ry
rn—zzrn—lan—1+rn: O<rn<rn—1

rn—1=rnan+0-

Notice that since each remainder 7, is a positive integer, a;, 43, - .., 4»
are all positive. Rewrite the equations of the algorithm in the follow-

ing manner:
alb=ay +rilb=ay +1/(b]r1),
biry=a, +rofry=ay +1/(ry[r2),
rijro=a; +r3frg=as + 1/("2/"3);
Po1fTn=0n.
If we eliminate b/r, from the first of these equations, then
alb=a, + 1/(b/"1) =dp +
a; +———
' (r1/r3)

In this result, substitute the value of ,/r; as given by the third equa-
tion:

alb=a,+
a; +

1
a +__1__
? (ralrs)
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Continuing in this way, we can go on to get

alb=a, + 1

3

dn_1 +_
an

thereby finishing the proof.

To illustrate the procedure involved in the proof of Theorem
13-5, let us represent 19/51 as a continued fraction. An application of
Euclid’s algorithm to the integers 19 and 51 gives the equations
51=2.19413 or 51/19 =2+ 13/19,
19=1-13+6 or 19/13 =1+ 6/13,

13=2.6+41 ot 13/6 =2 4-1/6,
6=6-1+40 or 6/6 =1.
Making the appropriate substitutions, it is seen that
19 1 1

517 (51/19) 2+ 13

| -

- 1

2+

=
£

=
)

24—
14—
T3

which is the continued fraction expansion for 19/51.
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Since continued fractions are unwieldy to print or write, we
adopt the convention of denoting a continued fraction by a symbol which
displays its partial quotients; say, by the symbol [ao; @1, -+, @] In
this notation, the expansion for 19/51 is indicated by

[0; 2,1, 2, 6]
and for 172/51 = 3 4+ 19/51 by
[3;2,1, 2, 6].

The initial integer in the symbol [ 5 a1, .-+, a,] will be zero when the
value of the fraction is positive but less than one.

The representation of a rational number as a finite simple con-
tinued fraction is not unique: once the representation has been obtained,
we can always modify the last term. For, if 4, > 1, then

1
= (=) +1=(@—1) +7,

where 4, — 1 is a positive integer, hence
[20; @1y s an)=a0; a1, -5 an—1, 1].
On the other hand, if 4, = 1, then

1 1
dn-1 +;‘:an—1 +i=an—1 +1,

so that
[aO;a1> "',ﬂn—l’ﬂn]z[ao;dl, "'9dn—2:an—1+1]~

Every rational number has two representations as 2a simple continued
fraction, one with an even number of partial denominators and one with
an odd number (it turns out that these are the only two representations).

In the case of 19/51,
19/51 =1[0;2,1,2,6]=[0;2,1,2,5,1].

Example 13-1
We go back to the Fibonacci sequence and consider the quotient

of two successive Fibonacci numbers (that is, the rational number
Hy +1/%,) Written as a simple continued fraction. As pointed out
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earlier, the Euclidean Algorithm for the greatest common divisor of
#, and #, ., produces the # — 1 equations

Hpp1 = 1 sy +”n—1;

14,,:1 “HnoytHy_a,

”4'_——1 '”3+”2:
Hy=2 4, +0.

Since the quotients generated by the algorithm become the partial
denominators of the continued fraction, we may write

Uy, =[1;1,1,...,1,2].

But #,,1/#, is also represented by a continued fraction having one
more partial denominator than does [1; 1, 1, ..., 1, 2]; namely,

”n+l un=[1; 1; 1; teey 1’ 1, 1],

where the integer 1 appears # + 1 times. Thus, the fraction #, , ,/x,
has 2 continued fraction expansion which is very easy to desctibe:
there are # partial denominators all equal to 1.

As a final item on our program, we would like to indicate how the
theory of continued fractions can be applied to the solution of linear
Diophantine equations. This requites knowing a few pertinant facts
about the “ convergents” of a continued fraction, so let us begin proving
them here.

DEerFiNiTION 13-2.  The continued fraction made from lao;a1,...,a,)
by cutting off the expansion after the 4th partial denominator a, is
called the £th convergent of the given continued fraction and denoted by
C, ; in symbols,

Ce=la0s a1, ..., 4], (1<£<n).
We let the zero’th convergent C, be equal to the number a,.
A point worth calling attention to is that for 4 <# if 4, is re-

placed by the value 4, + 1/4,,,, then the convergent C, becomes the
convergent C,., ; ;

l[ao; a1, ..., -1, ﬂk+1/ﬂk+1]:[‘lo;ﬂl, ceey Aoy, Ay, ﬂk+1]=C;c+1-
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It hardly needs remarking that the last convergent C, always equals the
rational number represented by the original continued fraction.

Going back to our example 19/51 = [0; 2, 1, 2, 6], the successive
convergents are

COZO,
Ci=[0;2]=0+3=4

1
Cz=[0;2> 1]=0+m=§3

Cs=[0; 2, 1,2]=0+__11—
2 -
113

C.=1[0; 2, 1,2, 6]=19/51.

=%

Except for the last convergent C,, these are alternately less than or
greater than 19/51, each convergent being closer to 19/51 than the pre-
vious one.

Much of the labor in calculating the convergents of a continued
fraction [ao; @1, ..., 4a] can be avoided by establishing formulas for
their numerators and denominators. To this end, let us define numbers
peand g, (A=0,1,...,7)as follows:

Do= 4o go=1
pr=ara,+1 g =a,;
Pe=pr-1 1 Pr-2 G = G G-1+ G2
for k=2,3,...,n
A direct computation shows that the first few convergents of

[@0; @1, -+ > an] ate

Co=ﬂo:a—o‘-_—&,
1 4
1 1
Cl—ﬂo+—:dlao+ &,
1 a 71
. 1 _ﬂz(ﬂ1ﬂ0+1) +do P
Ci=dot 1 aza; + 1 —92.
a, +—
ay

Success hinges on being able to show that this relationship continues to
hold. This is the content of
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THEOREM 13-6. The kth convergent of the simple continued fraction
[ao; @y, ..., an] has the value

Ci = Pl 9k O <A <n).
Proof: ‘The remarks above indicate that the theorem is true for 4 =

0, 1, 2. Let us assume that it is true for 4=, where 2 <m <n;
that is, for this »,

4um -1 +pm -2
* Cm = Dpp/gn ——" .
( ) P /q amgm—1+qm-2
Note that the integers pn_1, gm—_1> Pm-2> gm-2 depend on the first
m — 1 partial denominators @, , @, ..., 4, _, , hence are independent

of a,,. Thus formula (*) remains valid if a,, is replaced by the value

am+ 1/am+1 :
1

Am+1

(am+ )Pm—l +Pm—2

1
[do;ﬂla""am—l’dm_l_ =

Am 11

1
(”m+ )qm—l +qm—2
Am+1

As we have explained earlier, the effect of this substitution is to
change C,, into the convergent C,,,, so that

1
(am+d )pm—l +'Pm—2
Cm+1: m+1
(am +dm+1)qm—l +qm—2

_ A s 1(@nPm -1+ Pm—2) + P2
ﬂm+1(ﬂmqm-1 -+ qm-z) + Gm-1
o Am+1Pm + Pm-1
- ps1Gm + Gm-1 '
But this is precisely the form the theorem should take in the case
k=m-+1. So, by induction, the stated result holds.

Let us see how this works in a specific instance. In our example,

19/51 = [0; 2, 1, 2, 6]:

po=0 and go=1,
p1=0.-241=1 7 =2,
p=1-14+0=1 ga=1-2+1=3,
ps=2-14+1=3 g3=2-3+2=8,

Ppe=6-3+1=19 ga=6-8-43=51.
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This says that the convergents of [0; 2, 1, 2, 6] ate
Co= polgo="0, C1 = p1/q1 =1/2, Cy = po|qz = 1/3, Cs=psq: = 3/8,
C4 :P4/44 - 19/51,

as we know that they should be.
We continue our development of the properties of convergents by

proving
TueoREM 13-7. If C,.= p/qs is the kth convergent of the simple con-
tinwed fraction (ag 5 ay, ..., a,), then

_pkqlc—l_qkpk—1:(—‘l)k-l, 1<i<n

Proof: Induction on 4 works quite simply, with the relation
Pl?o—%]’o:(alﬂo +1) A —a, - ap= 1 :(”‘1)1_1 ’

disposing of the case # = 1. We assume that the formula in question
is also true for # = m, where 1 <m <»n. Then

pm+1qm_qm+lpm:(am+1pm +pm—1)qm_(am+1qm+qm—?1)pm

= _(qum-l - qmpm—l)
— (== (=)

and so the formula holds for » -+ 1, whenever it holds for ». It
follows by induction that it is valid for all Awith 1 <A <n.

A notable consequence of this result is that the numerator and
denominator of any convergent are relatively prime, so that the con-
vergents are always given in lowest terms.

CoROLLARY. For 1 <k <n, p, and g are relatively prime.

Proof: If d=gcd (pe, ¢i), then from the theorem, 4| (—1)*"%;
since 4 > 0, this forces us to conclude that /= 1.

Example 13-2
Consider the continued fraction [0; 1, 1, ..., 1] in which the partial

denominators are all equal to 1. Here, the first few convergents are
Co=0/1,C,=11,C,=2/1,C3=3/2,C,=5/3, ...
Since the numerator of the Ath convergent C; is

szl “DPr-1 T Pe-2=Pr-1 +D-2
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and the denominator is
Ge=1 Geor+Gu-2=Gu-1+Gi-2>
it is apparent that
Co=# 1 1/%, (4 >2),

where #, denotes the £th Fibonacci number. In the present context,
the identity p, ¢, -1 — ¢ P - = (—1)¥ ! of Theorem 13-7 assumes the

form
Uyt — w2 =(—1)"1;

this is precisely formula (3) on page 294.

Let us now turn to the linear Diophantine equation
ax +by=rc,
where @, b, ¢ are given integers. Since no solution of this equation exists
if 4 f ¢, where d= gcd (a, b), there is no harm in assuming that 7| ¢. In
fact, we need only concern ourselves with the situation in which the
coefficients are relatively prime. For if gcd (2, ) =d>1, then the
equation may be divided by 4 to produce
(ald)x +(b|d)y = ¢|d.

Both equations have the same solutions and, in the latter case, we know
that ged (¢/d, bjd) = 1.

Observe too that a solution of the equation

ax +by=¢, gcd(a, b)=1
may be obtained by first solving the Diophantine equation
ax +by=1, gcd(a, b)=1.
Indeed, if integers x, and y, can be found for which ax, 4 4y, = 1, then
multiplication of both sides by ¢ gives
a(exo) + b(cyo) =rc.

Hence, x = cx, and y = ¢y, is the desired solution of ax + by =r¢.

To secure a pair of integers x and y satisfying the equation
ax +by=1, expand the rational number #/b as a simple continued
fraction; say,

alb=1ag; @1, ..., as).
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Now the last two convergents of this continued fraction are
Coor=Pn-1/gn-1 20d Co=pulgn=alb.

Since ged (P, gn)=1= ged (a, b), it may be concluded that

pp=a and g,=?b.
By virtue of Theorem 13-7, we have

Prgn-1— Gnbn-a=(=1"""
or, with a change of notation,
agp-1— bpp-1=(—=1)""%
Thus, with x = ¢,_, and y = —pn_1, W€ have
ax +by=(—1)""1

If # is odd, the equation ax -+ by =1 has the particular solution o=
Gn-1>Yo= —pPn-1, While if # is an even integer, then a solution is given
by Xo= —¢n-1>Yo=Pn-1- Our eatlier theory tells us that the general

solution is

x = Xgo + bt, )y =Yyo— at, (t=0, +1, £2,...).
Example 13-3
Let us solve the linear Diophantine equation
172x -+ 20y = 1000

by means of simple continued fractions. Since ged (172, 20) =4,
this equation may be replaced by the equation

43x + 5y = 250.
The first step is to find a particular solution to
43x +5y=1.

To accomplish this, we begin by writing 43/5 (or if one prefers,
5/43) as a simple continued fraction. The sequence of equalities
obtained by applying the Euclidean Algorithm to the numbers 43
and 5 is

43=8.5+3,
5—1.3+2,
3-1.241,

2—=2.1,
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so that 43/5=[8;1,1,2] =8+ —11— . The convergents of

143
this continued fraction are
Co=8/1,C, =9/1,C; =172, C3 =43/5,
from which it follows that p,=17, g,=2, p;=43 and ¢3=>5.
Falling back on Theorem 13-7 again,
P3dz—gspa=(—1"1,
or in equivalent terms,
43.2—-5-17=1.
When this relation is multiplied by 250, we obtain
43 . 500 + 5(—4250) = 250.
Thus a particular solution of the Diophantine equation 43x + 5y =
250 is
xo =500, y, = —4250.
The general solution is given by the equations
x =500 45¢ y= —4250 — 43,  (+=0, +1, +2,...).
Before proving a theorem concerning the behavior of the odd

and even numbered convergents of a simple continued fraction, a
preliminary lemma is required.

LemMA. If g, is the denominator of the kth convergent C, of the simple
continued fraction [ay; ay, ..., ay), then gy <qy for 1 <k<wn, with
Strict inequality when £ > 1.

Progf: We establish the lemma by induction. In the first place,

go=1<a, =g¢,, so that the asserted equality holds when £=1.

Assume, then, that it is true for £ =m, where 1 <m <#. Then
Im+1=%m+19m T 9m—-1>>%m+19m >1- In =Im

so that the inequality is also true for A =m+1.

With this information available, it is an easy matter to ptove

TuEOREM 13-8. (1) The convergents with even subscripts form a strictly
increasing sequence; that is,
Co <Cz <C¢ <"'-
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(2) The convergents with odd subscripts form a strictly decreasing sequence;
that is,

Ci>C>C> -
(3) Every convergent with an 0dd subscript is greater than every convergent
with an even subscript.

Proof: With the aid of Theorem 13-7, we find that
Cis2—Ce=(Crr2—Cys1) +(Ces1—Ci)
____(Pk+2 _ Pk+1) + (Pk+1 _&)

Jrc+2 Tr+1 Jrc+1 Gk
(= (=D
T Gevadisr Ger1dr
=(—1)k(qk+2 — ) .

TeTr+19k+2

Recalling that ¢,> 0 forall >0 and that gy , 5 — > 0 by the lemma,
it is evident that C, , , — C; has the same algebraic sign as does (—1)*.
Thus, if 4 is an even integer, say 4 =27, then Cy; . 5> Cy;; whence

Co<Co<Cy<: -,

Similarly, if 4 is an odd integer, say 4 =2 —1, then Cy;,4 <ﬁC2,_1;
whence

C,>C>C> -
It remains only to show that any odd-numbered convergent Cy,_y
is greater than any even-numbered convergent Cy.  Since pygi—1 —
g pe—1=(—1)*"%, upon dividing both sides of the equation by
GG -1 We obtain

- —1)k-1
C,—Cy-1 2& _De-s :(__)_ .
9 k-1 Tx9e-1
This means that C,; <C,;_;. The effect of tying the various in-
equalities together is that
Cos <Cosiar <Cosazr-1 <Car-1,

as desired.

To take an actual example, consider the continued fraction
[2;3,2,5,2,4,2]. A little calculation gives the convergents
Co=2/1,C, =73, C,=16/7, C3 =87/38,
C,=190/83, C; =847/370, Cg = 1884/823.
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According to Theorem 13-8, these convergents satisfy the chain of

inequalities

2<16/7<190/83 < 1884/823 < 847/370 < 87/38 <7/3.

This is readily visible when the numbers are expressed in decimal
notation:

2<2.28571... <2.28915... <2.28918. .. <2.28947 - .. <2.33333....

PROBLEMS 13.3

Express each of the rational number below as finite simple continued
fractions:

(@ —19/51  (b) 187/57 (¢) 71/55 (d) 118/303

Determine the rational numbers represented by the following simple
continued fractions:

(a) [—2;2,4,6,8 (b) [4;2,1,3,1,2,4] (c) [0;1,2,3,4,3,2,1]
Ifr =[ag; a4, a3, ..., a,], where r >1, show that

1/r=1[0;49, 4, ..., a,]

Represent the following simple continued fractions in an equivalent
form, but with an odd number of partial denominators:
(@ [0;3,1,2,3] (b) [—-1;2,1,6,1] (o) [2;3,1,2,1,1,1]
Compute the convergents of the following simple- continued fractions:
(a') [1;29 3) 3a 29 1] (b) [_3; 1’ 1’ 1)1’3] (C) [0;2’14’ 1: 8’ 2]
(@) If C, = py/qy is the Ath convergent of the simple continugd fraction
[1;2,3,4,...,n n+1], show that
Pn :”Pn-l +”Pn—2 +(”_ I)Pn—a + +3P1 +2Po +(P0 +1)
[Hint: Add the relations po=1, py =3, pp =+ 1) px—1 + pr—o for
k=2,...,n]
(b) Illustrate part (a) by calculating the numerator p, for [1; 2, 3, 4, 5].
Evaluate p,, ¢,, and C, (=0, 1, ..., 8) for the simple continued fractions
below; notice that the convergents provide an approximation to the
irrational numbers in parentheses:

@ [1;2,2,2,2,2,2,2,2] (V2)
b [1;1,2,1,2,1,2,1,2] (V3)
(© [2;4,4,4,4,4,4,4,4] (V5)
@ [2;2,4,2,4,2,4,2,4] (V6)
(e [2:1,1,1,4,1,1,1,4 (VT
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8.

10.

11.

12.

If C,=py/q. is the Ath convergent of the simple continued fraction
[40; @15 -+ -» 5], establish that

g =2k~ D12, 2 <k <n).

[Hint: Observe that g, =gy -1+ Gic—2=>24x-2-]

Find the simple continued fraction representation of 3.1416, and that of |
3.14159.

If C,=py/q. is the Ath convergent of the simple continued fraction
[40; 435 -+ -» @,) and @, >0, show that

Dulbr-1= (2 aK_15 -5 215 o),
and
e/ Gre—1 = x5 i —15 -+ +> 2> a1
[Hint: In the first case, notice that
Prf Pr-1 ="+ (Pre—2/ Px-1)
1
=a, +—m—mm—1.
" +(Pk—1/Pk-2)]

By means of continued fractions determine the general solutions of each
of the following Diophantine equations:

(@) 19x+51y=1; (b) 364x+22Ty=1;

() 18x+5y=24; (d) 158x—57y=1.

Verify Theorem 13-8 for the simple continued fraction [1;1,1,1,1,
1,1,1].

13.4 INFINITE CONTINUED FRACTIONS

Up to the point, only finite continued fractions have been considered;
and these, when simple, represent rational numbers. One of the main
uses of the theory of continued fractions is finding approximate values of
irrational numbers. For this, the notion of an infinite continued fraction
is necessatry.

If 5, 4;, 45, ... is an infinite sequence of integers, all positive

except perhaps for 4,, then the expression

1
aO+ 1 >

at——7—
“at
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denoted more simply by [o; 2y, @5, ...), is called an infinite simple continned
fraction. In order to attach a mathematical meaning to this expression,
observe that each of the finite continued fractions

(n=0)

C,=lag; a1, @35 + .5 @)

is defined. It seems reasonable therefore to define the value of the infinite
continued fraction [ay; 4y, 45, ...] to be the limit of the sequence fof
rational numbers C,, provided of course that this limit exists. In some-
thing of an abuse of notation, we shall use [4,; 4,, 43, ...] to indicate not
only the infinite continued fraction, but also its value.

The question of the existence of the above limit is easily settled.
For, under our hypothesis, the limit not only exists but is always an
irrational number. To see this, obsetve that formulas previously obtained
for finite continued fractions remain valid for infinite continued fractions,
since the derivation of these relations did not depend on the finiteness of
the fraction. When the upper limits on the indices are removed, Theorem
13-8 tells us that the convergents C, of [a,; 4y, 4;, ...] satisfy the infinite
chain of inequalities

Co<C<Cy< o <Cyp <o+ <y <+ <Cs <Cy <.

Since the even-numbered convergents Cy, form 2 monotonically increasing
sequence, bounded above by C;, they will converge to a limit « which is
greater than each Cy,. Similarly, the monotonically decreasing sequence
of odd-numbered convergents Cy, . ; is bounded below by C, and so has
a limit «’ which is less than each C,, ;. Let us show that these limits are
equal. On the basis of the relation pg, , 1 9on —Gon+ 1 P2n =(—1)%" we see
that
o —o <Czn+1 —Con =p2n_+1 —'& =_1— >
9on+1  Jon Fan9an+1
whence
1 1

Gan2n+1 qgn )
Since the g, increase without bound as 7 becomes large, the right-hand
side of this inequality can be made arbitrarily small. If ' and « ‘were not
the same, then a contradiction would result (more precisely, 1/43, could
be made less than the value of |’ —«|). Thus, the two sequences of
odd- and even-numbered convergents have the same limiting value «,
which means that the sequence of convergents C, has the limit e.

Taking our cue from these remarks, we make the following
definition:

Ogla'—al <
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DErINITION 13-3.  If 44, 4y, 45, ... is an infinite sequence of integers,
all positive except possibly z,, then the infinite simple continued
fraction [ay; 4y, 43, ...] has the value lim,_, o, [2o; 21, 42,5 -+ @]

It should be emphasized again that the adjective ““simple”
indicates that the partial denominators a, are all integers; since the only
infinite continued fractions to be consideted are simple, we shall often
omit the term in what follows and call them infinite continued fractions.

Perhaps the most elementary example is afforded by the infinite
continued fraction [1;1,1,1,...]. Example 13-1 showed that the #th
convergent C, =[1;1,1,..., 1], where the integer 1 appears 71 times,
is equal to

Cn :ur;-:l (71 _>_O),

a quotient of successive Fibonacci numbers. If x denotes the value of the
continued fraction [1; 1,1, 1, ...], then

/2 . /3 H, _
x = lim C, = lim “2*1 — Jim 2 T2

n-+ n—+oo Uy n—+ o un
= lim1 + =1 1 =u:1—}—1.
n—> U, 1im( Uy, ) X
Up_1 n—0 \#p_1

This gives rise to the quadratic equation x? —x—1=0, whose only
positive root is x =(1 +v/5)/2. Hence,

144/5
2

There is one situation which occurs often enough to merit

special terminology. If an infinite continued fraction, suchas [3; 1,2, 1,

6,1,2,1,6,...], contains a block of partial denominators by bgyenny by

which repeats indefinitely, the fraction is called periodic. The custom is

to write a periodic continued fraction [ag; ay, ...y @p, 015 -5 by, byy oensy
by, ...] more compactly as

=[1;1,1,1,...].

[ao;al"" m’b1>"'> n]’
where the bar over b, b,, ..., b, indicates that this block of integers
repeats over and over. If by, b,, ..., b, is the smallest block of integers
which constantly repeats, we say that &y, by, ..., b, is the period of the
expansion and that the /ngth of the period is #. Thus, for example,
[3;1,2,1,6] would denote [3;1,2,1,6,1,2,1, 6,...], a continued
fraction whose petiod 1, 2, 1, 6 has length 4.



316 Fibonacci Numbers and Continued Fractions CHAP.13

We saw eatlier that every finite continued fraction is represented
by a rational number. Let us now consider the value of an infinite
continued fraction.

TureoreM 13-9.  The value of any infinite continued fraction is an irrational
number.

Proof: Suppose that x denotes the value of the infinite continued
fraction [ao; 4y, 43, -.-]; that is, x is the limit of the sequence of
convergents

Pn

In

Since x lies strictly between the successive convergents C,, and C, , 1,
we have

0<|x—Cpl <|Cri1—GCol =

Cn = [40; a, dg, . an] =

P n+l Pn
In+1 n qn In+ 1

With the view to obtaining a contradiction, assume that x is a rational
number; say, x =a/b, where @ and >0 ate integers. Then

qn In+1
and so, upon multiplication by the positive number b,

0 < |eg,— bp,| <

1 i
We recall that the ¢, increase without bound as 7 increases. If 7 is
chosen so large that b <g,,;, the result is
0 < |ag, —bp,) < 1.
This says that there is a positive integer, namely |ag, —bp,|, between
0 and 1—an obvious impossibility.
We now ask whether two different infinite continued fractions

can represent the same irrational number. Before giving the pertinent
result, let us observe that the properties of limits allow us to write an

infinite continued fraction [ay; @5, @3, ...] as

[40; 41 23, ...]=lim [ag; a3, ..., ]
n—

1
= lim (a ————)
n— o 0+[a1;a2,...,ﬂn]
1

=a, -
ot lim [2;; @3, ... @)
n— o
1

[215 45,43, ...]

=ao+
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Our theorem is stated as:

Tureorem 13-10.  If the infinite continued fractions [ay; ay, az, ...] and
(605 b1, b, ... ] are equal, then a, = b, for all n>0.

Proof: 1f x=|[ay; ay, 43, ...], then Cy <x <C;, which is the same
as saying that a, < x < 4, + 1/2;. Knowing that 4, > 1, this produces
the inequality 2, <x <<a,+1. Hence, [x] =4,, where [x] is the
traditional notation for the greatest integer or ““bracket” function
(page 126).

Now assume that [aq; @y, 23, ...] =X =[bg; by, ba, ...] of,
to put it in a different form,

1 1
VY ST S
AT R T

By virtue of the conclusion of the first paragraph, we have 4, =
[x]=4,, from which it may then be deduced that [2,; 4,, ...] =
[65; bg, ...]. When the reasoning is repeated, we next conclude that
4, = b, and that [a,; a3, ...] =[bs; b3, ...]. The process continues by
mathematical induction, thereby giving a, =b, for all #>0.

ap+

CorOLLARY. Two distinct infinite continued fractions represent two distinct
irrational numbers.

Example 13-4
To determine the unique irrational number represented by the

infinite continued fraction x ={3; 6, 1, 4], let us write x =[3; 6, 51,
whete

y=[14=[;4,]

Then
=1+ 1 —1 4 ____5.)’+1
4+ TH+1 Y+
which leads to the quadratic equation
492 —4y—1=0.

Inasmuch as_y> 0 and this equation has only one positive root, we
may infer that

1442
R
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From x=[3; 6, y], we then find that

3. 1 25419V2
L T8 t6v2
14+v2
2

_(254+19V2)(8—6V2) 14—V2
(8 +6V2)(8 —6V2) 4
that is, [3; 6, T, 4] = E"T‘/E.

Our preceding theorem shows that every infinite continued
fraction represents a unique irrational number. Turning matters around,
we next establish that any irrational number x, can be expanded into an
infinite continued fraction [4,; 4;, 45, ... ] which converges to the value x,.
The sequence of integers 4y, @y, a5, ... is defined as follows: using the
bracket function, we first let

1 1 1

Xo = Xa = een
xo — [>0]’ 2 xy =[] 8 xg—[x,]’

Xy =

and then take
a4y =[x,], @y =[], ag=[x3], a3 =[x35], --+.

In general, the 4, are given inductively by

1

b
X —a

k£>0.

@, =[], X1 =

It is evident that x, , , is irrational, whenever x; is irrational; arid because
we are confining ourselves to the case in which x, is an irrational number,
all x;, are irrational by induction. Thus,

0 <x —a =2, —[x.] <1

and we see that

1

X —

>1

Xg+1 =

so that the integer 4, ; = [x,,,] > 1 forall £>0. This process therefore
leads to an infinite sequence of integers 4, 4;, 43, ..., all positive except
perhaps for 4.
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Employing our inductive definition in the form

1

Xp+1

(£=0)

X =a, +

we obtain through successive substitution

= [‘103 @y, dgs «es s xn+1]
for every positive integer #. This makes one suspect—and it is our task
to show—that x, is the value of the infinite continued fraction
[a0; @y, 43, -+ ]

For any fixed #, the first #4+1 convergents C, = Py /qi» 0K A<,
of [4o; a1, dg, ---] are the same as the first # +1 convergents of the finite
continued fraction [ay; 4y, @gs -+ @n, X¥ns1]- 1f We denote the (8 +2)th
convergent of the latter by C;, ,, then the argument used in the proof of
Theorem 13-6 to obtain C,,, from C, by teplacing a, by ,+1/a,,,
works equally well in the present setting; this enables us to obtain C;,
from C, by replacing @, 4, by X541¢

Xo =C‘7,|.+1 = [“o? T TR R xn-l-l]
=xn+1.pn +Pn-1
Xn+19n +qn—1 )

Because of this,

xn+1pn +_pn—1 _&L

xn+1?n+qn—1 n

=(_1)(ann—1 '_qnpn—l) — (_1)11.
(xn+1qn +qn—1)qn (xn+14n +qn—1)qn ’

where the last equality relies on Theorem 13-7. Now Xy 41 >ap41 and so

1 1 1
= < — .
(xn+1qn +qn—1)qn (an+1qn+qn—1)qn q»+lqn

xo—Cp=

|x0-Cn|
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Since the integers ¢, are increasing, the implication is that
xo = lim C, =[ay; 2, a5, ...].
n—
Let us sum up our conclusions in
TuEOREM 13-11.  Every irrational number has a unique representation as

an infinite continued fraction, the representation being obtained from the
continued fraction algorithm described above.

Incidentally, our argument reveals a fact worth recording
separately.

CoROLLARY. Ifp.[q, is the nth convergent to the irrational number x, then

bl 11
qn qn+lqn qn

x——<

We give two examples in illustration of the use of the continued
fraction algorithm in finding the representation of a given irrational
number as an infinite continued fraction.

Example 13-5
For our first example, consider x =Vv23~4.8. The successive
irrational numbers x; (and therefore the integers 4, = [xk]b can be
computed rather easily, with the calculations exhibited below:

xo=m=4+(\/§§ 4) 4o=4’
1 1 V2344 llvﬁi—s 21
k=l VB4 7 7o
1 7 V2343 vf" 3
Xg = — 2] \/— 3 2 =3+ ="
1 2 V2343 _ \/5—4 1
STk %l vV23—3 7 7o
Mgm— T \/TB 484 (VIE—4), a,=8.

xg—[xs]  v/23—4

Since x5 =x,, also xg=1x,, X7 =2x3, xg=2,; then we get xy=
X ==, and so on, which means that the block of integers 1, 3, 1, 8
repeats indefinitely. We find that the continued fraction expansion

of v/23 is periodic with the form
v23=[4;1,3,1,8,1,3,1,8,...]=[4; 1,3, 1, 8].
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Example 13-6
To furnish a second illustration, let us obtain several of the conver-
gents of the continued fraction of the number

7 =3.141592653 - -,

defined by the ancient Greeks as the ratio of the circumference of a
circle to its diameter. The letter 7, from the Greek word perimetros,
was never employed in antiquity for this ratio; it was Euler’s
adoption of the symbol in his many popular textbooks that made
it widely known and used.

By straightforward calculations, one sees that

xog=m=3+(mr—3), ay =3,

= =07 e =T06251330 .., =T,

=g _l[xl] — ety = 1599659440 .., =15,

=g 1 5 — s = L0MITB ., a =1,
1 1

4 =T = 0.00STTE —292.63724 ...,  ay=292,

Thus, the infinite continued fraction for  starts out as
n=[3;7,15,1,292,...];

but, unlike the case of v/23 in which all the partial denominatots , are
explicitly known, there is no pattern which gives the complete sequence
of a,. The first five convergents are

3 22 333 355 103993

As a check on the Corollary to Theorem 3-11, notice that we

should have
1

22
T - <7—2.

7
Now 314/100 < 7 < 22/7 and therefore

2 2 34_ 1 _1
T|I<F 100 7-50 72’

.Tr—_

as expected.
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Unless the irrational number x assumes some very special form,
it may be impossible to give the complete continued fraction expansion
of x. One can prove, for instance, that the expansion for x becomes
ultimately periodic if and only if x is an irrational root of a quadratic
equation with integral coefficients; that is, if x takes the form r+sVad,
where 7 and s £ 0 are rational numbers and 4 is a positive integer which is
not a perfect square. But among other irrational numbers, there are
very few whose trepresentations seem to exhibit any regularity. An
exception is another positive constant which has occupied the attention
of mathematicians for many centuries, namely

¢ —2.718281828 ...,
the base of the system of natural logarithms. In 1737, Euler showed that

€ —

e+1

where the partial denominatots form an arithmetic progression, and that

_—[026101418 ok

2 —
2+1

The continued fraction representation of ¢ itself (also found by Euler) is 2
bit more complicated, yet still has a pattern:

e=[2;1,2,1,1,4,1,1,6,1,1,8,...],

=10;1,3,5,7,9,...]

with the even integers subsequently occurring in order and s¢parated by
two 1’s. With regard to the symbol ¢, its use is also original with Euler
and it appeared in print for the first time in one of his textbooks.

In the introduction to analysis, it is usually demonstrated that e
can be defined by the infinite series

1 1 1 1
e=1+1—! +m+§ +jn T

If\' the reader is willing to accept this fact, then Euler’s proof of the
irrationality of ¢ can be given very quickly: Suppose to the contrary
that ¢ is rational, say e =a/b, where 2 and b are positive integers. Then
for n>b and also »> 1, the number

1 1 1 a 1 1 1
Nen{em (1)) i1 )
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is a positive integer. When ¢ is replaced by its series expansion, this
becomes

1 1 1
RS S RSV (RS RECE CER ) Cas: R
1 1 1
<sviternern e e

1 1 1 1 1 2
e +(n+1 _n+2) +(n+2_n+3) toe=ga<t
Since the inequality 0 <N <1 is impossible for an integer, ¢ must be
irrational. The exact nature of the number 7 offers greater difficulties;
J. H. Lambert (1728-1777), in 1761, communicated to the Berlin Academy
an essentially rigorous proof of the irrationality of .

Given an irrational number x, a natural question is to ask how
closely, or with what degree of accuracy, it can be approximated by
rational numbers. One way of approaching the problem is to consider
all rational numbers with a fixed denominator 4> 0. Since x lies between
two such rational numbers, say ¢/b <x <(c+ 1)/, it follows that

N

x5l 1
bl ~b’
Better yet, we can write
bl ~2b°

where a=¢ ot a=c¢+1, whichever choice may be appropriate. The
continued fraction process permitted us to prove a result which conside-
ably strengthens the last-written inequality, namely: given any irrational
number x, there exist infinitely many rational numbers 4/b in lowest
terms which satisfy
x4l

b " b
In fact, by the corollary to Theorem 13-11, any of the convergents p,/4,
of the continued fraction expansion of x can play the role of the rational
number a/b. The forthcoming theorem asserts that the convergents p,/4,
have the property of being the best approximations, in the sense of
giving the closest approximation to x among all rational numbers a/b
with denominators ¢, or less.

For clarity, the technical core of the theorem is placed in the

following lemma.

<
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LeMMA. Let p,|q, be the nth convergent of the continued fraction representing
the irrational number x. If a and b are integers, with 1 <b <g, .1, then

anx _pnl < |bx—a|.

Proof: Consider the system of equations

Pr+PrriB=2a,
In™ +4ns1B =b.
The determinant of the coefficients being p, ¢, + 1 —¢npn+1 =(—1)"*1,
the system has the unique integral solution
« =(_1)n+1(‘19n+1 - an+1):
B =(— 1)+ (bpo —agy).
It is well to notice that ¢ £ 0. In fact, « =0 yields ag, ., =bp, ., and,
because gcd (Pp4 1> gn+1) =1, this means that g,,, | 4 or b>qn1s
contrary to hypothesis. In the event that 8 =0, the inequality stated
in the lemma is clearly true. For =0 leads to 2 =p,, b/ =g, and,
as a result,
|63 — a] = |a| |gnx — pa] = |gn % — pul-

Thus, there is no harm in assuming hereafter that 8 0.

When B 0, we argue that « and 8 must have opposite signs.
If B<0, then the equation g,a=&—g,, B indicates that g,0> 0
and, in turn, «>0. On the other hand if 8>0, then 6 <g,.,
implies that < B, ,, and therefore ag, =b — ¢, .18 <0; this makes
< 0. We also infer that, because x stands between the consecutive
convergents Pn/% and Pn+ 1/qn+ I

an—Pn and qn+1x_Pn+1
will have opposite signs. The point of this reasoning is that the
numbers
a(qnx —'pn) and B(%w 1 _pn+1)

must have the same sign; in consequence, the absolute value of their
sum equals the sum of their separate absolute values. It is this
crucial fact that allows us to complete the proof quickly:

|bx —a| = |(4n°‘+qn+1/3)X—(Pn°‘+Pn+1ﬁ)|
= |o(gn ¢ — Pr) +B(Gn+1% —Pns 1)l
= lo| |gnx — n| + |B] |gn+1% = Pns1]
> |af |gnx — pal = |0 — Pl
which is the desired inequality.
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The convergents p,/q, are best approximations to the irrational
number x in that every other rational number with the same or smaller
denominator differs from x by a greater amount.

TuroreM 13-12.  If 1 <b<gq,, the rational number a|b satisfies

_bn _a
|x al =1 bl‘
Proof: Were it to happen that
|
then
lqnx_Pn! =4n .X‘—!él‘ >b|x——‘—;‘ =|bx—ﬂl »

violating the conclusion of the lemma.

Historians of mathematics have focused considerable attention on
the attempts of early societies to arrive at an approximation to m, perhaps
because the increasing accuracy of the results seems to offer 2 measure of
the mathematical skills of different cultures. The first recorded scientific
effort to evaluate 7 appeared in the Measurement of a Circle by the great
mathematician of ancient Syracuse, Archimedes (287-212 s.c.). Sub-
stantially, his method for finding the value of = was to inscribe and
circumscribe regular polygons about a circle, determine their perimeters,
and use these as lower and upper bounds on the circumference. By this
means, and using a polygon of 96 sides, he obtained the two approxima-
tions in the inequality 223/71 <= <22[7.

Theorem 13-12 provides insight into why 22/7, the so-called
¢ Archimedian value of m,” was used so frequently in place of ; there is
no fraction, given in lowest terms, with smaller denominator which
furnishes a better approximation. While

l,r_?%mo.omzms and ‘ﬂ—32—3 ~0.0007476,

71

Archimedes’ value of 223/71, which is not a convergent of , has a
denominator exceeding ¢, =7. Our theorem tells us that 333/106 (a
ratio for = employed in Europe in the 16th century) will approximate 7
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more closely than any rational number with denominator less than or
equal to 106; indeed,

_ 333
106

Due to the size of ¢, = 33102, the convergent p;/g; =355/113 allows one
to approximate = with a striking degree of accuracy; from the corollary
to Theorem 13-11, we have

355 1 3
~113| < {13 33102 <107
The noteworthy ratio of 355/113 was known to the early Chinese mathe-
matician Tsu Chung-chih (430-501); by some reasoning not stated in his
works, he gave 22/7 as an ““inaccurate value” of 7 and 355/113 as the
“accurate value.” The accuracy of the latter ratio was not equalled in
Europe until the end of the 16th century, when Adriaen Anthoniszoon
rediscovetred the identical value. ‘
This is a convenient place to record a theorem which' says that
any “close” (in a suitable sense) rational approximation to x must be a
convergent to x. There would be a certain neatness to the theory if
al 1
=5 <
implied that a/b = p,/q, for some #; while this is too much to hope for, a
slightly sharper inequality guarantees the same conclusion.

\w

I ~ 0.0000832.

T

<

THEOREM 13-13.  Let x be an irrational number. If the rational number
alb, where b >1 and gcd (a, b) =1, satisfies

1
<22

a
X — —

b

then alb is one of the convergents p,|q, in the continued fraction representation ‘

of x.

/
Proof: Assume that a/b is not a convergent of x. Knowing that
the ¢, form an increasing sequence, we see that there is a unique
integer # for which ¢, <#<gq,,,. For this #, the last lemma gives
the first inequality in the chain

a 1
|gnx — pu| < |bx —a| =be —;;l <3
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which may be recast as

eln <]

gnl " 2bg,"

In view of the supposition that /b # p,/q,, the difference bp, —aq,
is 2 nonzero integer, whence 1 < |bp, —ag,|. Weare able to conclude
at once that

a
x——

.L< bpn —agy| _ |Pn_ 2 \Pn_ 7

bgn bgn G b In
This produces the contradiction b <g,, ending the proof.

<

X

ot
g, T2

+

PROBLEMS 13.4

1. Evaluate each of the following infinite simple continued fractions:

@ [Z3] ® [0:T,23]
© [2:1,2,1] @ [152,31]
e [1;2,1,2,12)

2. Prove that if the irrational number x>>1 is represented by the infinite
continued fraction [a,; 4;, 43, -..], then 1/x has the expansion [0; 4, 41,
45,...]. Use this fact to find the value of [051,1,1,...]=[0; 1].

3. Evaluate [1;2,1] and [1; 2, 3, T].

4. Determine the infinite continued fraction representation of each irrational
number below:

@ V5 b V7
© HYB @ SV
© 11422/30

5. (a) For any positive integer 7, show that v W 1=[n;20), Vi2+2=
[#; m, 25) and Vn2 +2n=n; 1, 2s]. [Hint: Notice that

1
ﬂ+Vﬂ2+1=2ﬂ+(\/ ﬂ2+1—ﬂ)=2”+m.]

(b) Use part (4) to obtain the continued fraction representations of
V2, /3, V15 and V3T.
6. Among the convergents of A/15, find a rational number which will
approximate 4/15 with accuracy to four decimal places.
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10.

11.

12.

13.
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(a) Findarational approximationtoe=1[2;1,2,1,1,4,1, 1,6, ...] which
is correct to 4 decimal places.
(b) Ifaand bare positive integers, show that the inequality e < a/b <87/32
implies that 4 >39.
Prove that of any two consecutive convergents of the irrational number x,
at least one, a/b, satisfies the inequality
1

a
o TR

[Hint: Since x lies between any two consecutive convergents,

_1_|trer 2a _Dn
qnqn—f-l qn+1 % qn

_Pn+1
In+1

=‘x

Now argue by contradiction.]

Given the infinite continued fraction [1;3,1,5,1,7,1,9,...], find the
best rational approximation 4/b with

(a) denominator b <25; (b) denominator b <225,

First show that |(1 4+-V/10)/3 —18/13| <1/(2 - 13%); and then verify that
18/13 is a convergent of (1 +4/10)/3.

A famous theorem of A. Hurwitz (1891) says that for any irrational number
x, there exist infinitely many rational numbers 4/b such that

lx_z Ll
bl " /5p2

Taking x =, obtain three rational numbers satisfying this inequality.
Assume that the continued fraction representation for the irrational
number x ultimately becomes periodic. Mimic the method used in
Example 13-4 to prove that x is of the form 7+ s/d, where 7 and 50
are rational numbers and 4> 0 is a nonsquare integer.

Let x be an irrational number with convergents p,/g,. For every n>>0,
verify that

@) 1/24,q5+1 <|X—Pn/9n] <1/gnqn+15
(b) the convergents are successively closer to x in the sense that

_pn—ll.
qn—l

b

n

<|x

X

[Hint: Rewrite the relation

___xn+lqn '+'Pn—1
Xn419n+ Gn-1

as xn-i-l(xQn —Pn) =_qn—1(x ’_Pn-l/qn—l)']

X



SEC. 13-5 Pell’s Equation 329

13.5 PELL’S EQUATION

What little action Fermat took to publicize his discoveries came in the
form of challenges to other mathematicians. Perhaps he hoped in this
way to convince them that his new style of number theoty was worth
pursuing. In January of 1657, Fermat ptoposed to the European
mathematical community—thinking probably in the first place of John
Wallis, England’s most renowned practitioner before Newton—a pait
of problems:

1. Find a cube which, when increased by the sum of its proper
divisors, becomes a square; for example, 7 +(1 +7 + 72) =202,

2. Find a square which, when increased by the sum of its proper
divisors, becomes a cube.

On hearing of the contest, Fermat’s favorite correspondent, Bernhard
Frénicle de Bessy, quickly supplied 2 number of answers to the first
problem; typical of theseis (2-3-5-13-41 - 47)3, which when increased
by the sum of its proper divisors becomes (27 - 32.52.7.13./17.29)2
While Frénicle advanced to solutions in still larger composite numbers,
Wallis dismissed the problems as not worth his effort, writing, ““What-
ever the details of the matter, it finds me too absorbed by pumerous
occupations for me to be able to devote my attention to it immediately;
but I can make at this moment this response: the number 1 in and of
itself satisfies both demands.” Barely concealing his disappointment,
Frénicle expressed astonishment that a mathematician as experienced
as Wallis would have made only the trivial fesponse when, in view
of Fermat’s stature, he should have sensed the problem’s greater
depths.

Fermat’s interest, indeed, lay in general methods, not in the
wearying computation of isolated cases. Both Frénicle and Wallis
overlooked the theoretical aspect that the challenge-problems were meant
to reveal on careful analysis. While the phrasing was not entirely precise,
it seems clear that Fermat had intended the first of his queries to be
solved for cubes of prime numbers. To put it otherwise, the problem
called for finding all integral solutions of the equation

1+x+x24x3=y2,
or equivalently

(1 42)(1 %) =»%
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where x is an odd integer. Since 2 is the only prime which divides both
factors on the left-hand side of this equation, it may be written as

7\2
ab:(i) R ged (a, b)) =1.
But if the product of two relatively prime integers is a perfect square,
then each of them must be 2 square; hence, 2 =#2, b =2 for some # and v,
so that

14 x=2a=242 14 x2=2h=2p2

This means that any integer x which satisfies Fermat’s first problem must
be a solution of the pair of equations

x=24%—1, x2=20% -1,

the second being a particular case of the equation x2 =dy2 4 1.

In February, 1657, Fermat issued his Second Challenge, dealing
directly with the theoretical point at issue: Find a number y which will
make dy>+1 a perfect square, where 4 is a positive integer which is not a
square; for example, 3. 124+1=22% and 5.42+1=92 If, said Fermat, a
general rule cannot be obtained, find the smallest values of y which will
satisfy the equations 61y2 + 1 =x2; or 10992 +1 =x2. Frénicle proceeded
to calculate the smallest positive solutions of x2 —4y2 =1 for all permis-
sible values of 4 up to 150 and suggested that Wallis extend thé table to
d=200 or at least solve x2—151y2 =1 and x2—313y2—=1, hinting that
the second equation might be beyond Wallis’ ability. In teply, Wallis’
patron Lord William Brouncker of Ireland stated that it had only taken
him an hour or so to discover that

(126862368)% — 313(7170685)2 = —1

and so y=2.7170685 - 126862368 gives the desired solution to x2—
313y2=1; Wallis solved the other concrete case, furnishing

(1728148040)% — 151(140634693)2 =1.

The size of these numbers in compatison with those arising from
other values of 4 suggests that Fermat was in possession of a complete
solution to the problem, but this was never disclosed (later, he affirmed
that his method of infinite descent had been used with success to show the
existence of an infinitude of solutions of x2—4dy2=1). Brouncker,
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under the mistaken impression that rational and not necessarily integral
values were allowed, had no difficulty in supplying an answer; he simply
divided the relation
(r2 +dy? —d(2r) =(r —d)?
by the quantity (72 —d)? to arrive at the solution
r24-d 2r

X=E_r J=7"4

where r#d is an arbitrary rational number. This, needless to say, was
rejected by Fermat, who wrote that “solutions in fractions, which can be
given at once from the merest elements of arithmetic, do not satisfy me.”
Now informed of all the conditions of the challenge, Brouncker and
Wallis jointly devised a tentative method for solving x2—dy?=1 in
integers, without being able to give a proof that it will always work.
Appatently the honots rested with Brouncker, for Wallis congratulated
Brouncker with some pride that he had ““preserved untarnished the fame
that Englishmen have won in former times with Frenchmen.”

After having said all this, we should record that Fermat’s well-
directed effort to institute a new tradition in arithmetic through a mathe-
matical joust was largely a failure. Save for Frénicle, who acked the
talent to vie in intellectual combat with Fermat, number theory had no
special appeal to any of his contemporaries. The subject was permitted
to fall into disuse, until Euler, after the lapse of nearly a century, picked
up where Fermat had left off. Both Euler and Lagrange contributed to

the resolution of the celebrated problem of 1657. By converting Vdinto
an infinite continued fraction, Euler (1759) invented a procedure for
obtaining the smallest integral solution of x2 —dy*>=1, but he failed to
show that the process leads to a solution other than x =1, y=0. It was
left to Lagrange to clear up this matter. Completing the theory left
unfinished by Euler, Lagrange in 1768 published the first rigorous
proof that all solutions arise through the continued fraction expansion
of Vd.

As a result of a mistaken reference, the central point of conten-
tion, the equation x2 —dy? =1, has gone into the literature with the title
“Pell’s equation.” The erroneous attribution of its solution to the
English mathematician John Pell (1611-1685), who had little to do with
the problem, was an oversight on Euler’s part. On a cursory reading
of Wallis’ Opera Mathematica (1693), in which Brouncker’s method of
solving the equation is set forth as well as information as to Pell’s work
on diophantine analysis, Euler must have confused their contributions.
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By all rights we should call x2 —4y2 =1 “Fermat’s equation,” for he was
the first to deal with it systematically. While the historical error has
long been recognized, Pell’s name is the one that is indelibly attached to
the equation.

Whatever the integral value of 4, the equation x%—dy2=1 is
satisfied trivially by x =41, y=0. If d<—1, then x® —4y2>1 (except
when x =y =0) so that these exhaust the solutions; when d=—1, two
more solutions occur, namely x =0, y=-41. The case in which 4 is
a perfect square is easily dismissed. For if d=#2 for some #, then
x2 —dy? =1 can be written in the form

(x+my)(x —m) =1
which is possible if and only if x + 7y =x —ny =4-1; it follows that
NCE O RECEL N

and the equation has no solutions apart from the trivial ones x =4-1, y =0.

From now on, we shall restrict our investigation of the Pell
equation x? —4y2=1 to the only interesting situation, that where 4 is a
positive integer which is not a square. Let us say that a solution x, y of
this equation is a positive solution provided both x and y are positive.
Since solutions beyond those with y =0 can be arranged in sets of four
by combinations of signs -x, 4y, it is clear that all solut1on$ will be
known once all positive solutions have been found. For thlS reason,
we seek only positive solutions of x2 —dy2=1.

‘The result which provides us with a starting point asScrts that
any pair of positive integers satisfying Pell’s equation can be obtained

from the continued fraction representing the irrational number /7.

TrEOREM 13-14.  If p, q is a positive solution of x® —dy2 =1, then p|q is
a convergent of the continued fraction expansion of V4.

Proof: In light of the hypothesis that p2 —dg? =1, we have
(o —aVap+4vVd) =1
implying that p > gV/d as well as that
2_yi—__1

q g(p+qVa)’
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As a result,
Vi vd_ _ 1
0<L va< = =5—.
g gqVd+qVd) 2¢°Vd 24°
A direct appeal to Theorem 13-13 indicates the p/g must be a con-
vergent of V4.

In general, the converse of the preceding theorem is false: not
all of the convergents p,/g, of Vd supply solutions to x? —dy?=1.
Nonetheless, we can say something about the size of the values taken on
by the sequence p,% —dg,?.

THEOREM 13-15.  If p|q is a comvergent of the continued fraction expansion
of Vd, then x=p, y=q is a solution of one of the equations

x2 —dy:=#,
where |k| <142V,

Proof: 1If pjqis a convergent of v/d, then the corollary to Theorem
13-11 guarantees that

‘vz_ﬁy <
9 49
and therefore
1
|2 —qVidl <.
This being so, we have
- 1 -
|p+4Vd| =[(p— V) +24Vd| < +2VI<(1+2V g
These two inequalities combine to yield
1 -
|9*—dg*| =p—qVd| |p+4Vi| < (1 +2Vd)g=1+2V4,
which is precisely what was to be proved.

In illustration let us take the case of d==7. Using the continued
fraction expansion V71=[2;1,1,1, 4], the first few convergents of V7
are determined to be

2/1, 3/1,5/2, 8/3, ....

Running through the calculations of p,? —7¢,?, we find that
22_.7.12=-3, 32-7.12=2, 52-7.22=-3, &-7.3*=],
whence x =8, y=3 provides a positive solution of the equation .x% —

Ty2=1.
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While a rather elaborate study can be made of periodic continued
fractions, it is not our intention to explore this area at any length. The
reader may have noticed already that in the examples considered so far,

the continued fraction expansions of V4 all took the form

Vid=l[ay; ay, ag, ..., a,];

that is, the periodic part starts after one term, this initial term being [V/d].
It is also true that the last term 4, of the period is always equal to 24, and
that the period, with the last term excluded, is symmetrical (the symmetri-
cal part may or may not have a middle term). This is typical of the general
situation. Without entering into the details of proof, let us simply
record the fact: if 4 is a positive integer which is not a perfect square,
then the continued fraction expansion of V/4 necessatily has the form

Vd=ay; 8y, 83, a3, .-+, a3, a3, 41, 245)-
In the case in which =19, for instance, the expansion is

V19=[4;2,1,3,1, 2, 8]
while d =73 gives

V73=[8;1,1,5,5,1, 1, 16).

Among all /<100, the longest period is that of V94 which has sixteen
terms:

V9% =[9;1,2,3,1,1,5,1,8,1, 5,1, 1, 3, 2, 1, 18].

The accompanying table lists the continued fraction expansions
of Vd, where 4 is a nonsquare integer between 2 and 40.

V2=[1;2] V1T=[4;3] V29=[5;2,1,1,2,10]
V3=[1;1,2] V18=[4;4,8] V30=[5;2,10]

V5 =[2;4] V19=[4;2,1,3,1,2,8] V31=][5;1,1,3,5,3,1,1, 10]
V6=[2;2,4] V20=[4;2,8] V32=[5;1,1,1,10]

V7=[2;1,1,1,4) v21=[4;1,3,1,8] V33=[5;1, 2,1, 10]
V8=1[2;1,4] V22=[4;1,2,4,2,1,8] V34=[5;1,4,1,10]

V10=[3;6] V23=[4;1,3,1, 8] \/—=[5,1, 10]
VI1=[3;3,] V24=[4;1,8] V37 =[6;12]

V12=[3;2,6] V26 =1[5;10] V38 =16; 6, 12]
V13=[3;1,1,1,6] V27=I[5;5,10] V39 =[6; 4, 12]

ﬂ_[3,1,2,1,6] V28=15;3, 2, 3, 10] V40 =[6;3,12)
V15=[3;1,6]
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Theorem 13-14 indicates that if the equation x2 — dy? =1 possesses
a solution, then its positive solutions are to be found among x=p,
J =gy, Whete py/q, are the convergents of v/d. The period of the con-
tinued fraction expansion of v/d provides the information we need to
show that x2 —dy? =1 actually does have a solution in integers; in fact,
there are infinitely many solutions, all obtainable from the convergents

of V/d. Our proof telies on a lemma.

LeMMA. Let the convergents of the continued fraction expansion of Vd be
Prelgi. If nis the length of the period of the expansion of V/d, then
i — gt =1 (k=123 ...).

Proof: For k£>1, the continued fraction expansion of V4 can be
written in the form

Vd= (405 @15 @25 +++ 5 Bpn-1 Xien)

where

an= [240; al’ sevy an_l, zﬂo] :ao —}—'\/z.
As in the proof of Theorem 13-6, we have

,\/2_ xknpkn—l “‘pkn—z .

XinGin—-1 T Tn -2

Upon substituting xy, =4 +4/d and simplifying, this reduces to
V&80 Gn 1+ Gin -2 —Pien—1) = %o Pen -1+ Pien -2 — WMen-1-

Because the right-hand side is rational and Vd is irrational, the
foregoing relation requires that

8o Gn-1+ Pen—2=Prn-1> and @oPrn-1 +Pkn—2=qun-—1'

The effect of multiplying the first of these equations by pyn_1 and
the second by —gn 1, 2nd then adding them, is

PRa1—Gtn—1=DPin-19kn-2— Jn—1Prn-2-

But Theorem 13-7 informs us that pu,_19kn-2—9kn-1Prn-2=
(—1)kn-2 =(—1)*", and so

plzcn—l "'dq%n—l =(_1)kn,

which results in our lemma.
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We can now describe all positive solutions of x2—dy2=1,
where 4> 0 is a nonsquare integer. We state our main result as

THEOREM 13-16.  Let py/q, be the convergents of the continued fraction
excpansion of V'd and let n be the length of the period of the expansion.
(V) If n is even, then all positive solutions of x* —dy? =1 are given by

x=Pk‘n—1’ J=9kn-1 (k=1) 2) 3"")'

(2) If nis odd, then all positive solutions of x2 —dy® =1 are given by
X =Pogn—1s J=42n-1 (ﬁ‘=1, 2’ 3’ -)

Proof: It has already been established that any positive solution
Xgs Yo Of X2 —dy2 =1 is of the form x, =py, Jo =4 for some con-

vergent py/qy..

Taking the lemma into account, x =py,_1, ¥ =gy Will
furnish a solution if and only if (—1)**=1. When # is even, this
condition is satisfied by all integers £; when # is odd, the condition
holds if and only if £ is an even integer.

Example 13-7
As a first application of Theorem 13-16, we again consider the equa-

tion x2—7y2=1. Because V7=[2;1,1, 1, 4], the initial twelve
convergents are
2/1, 3/1, 5/2, 8/3, 37/14, 45/17, 82/31, 127/48, 590/223, 717/271,
1307/494, 2024/765.

Since the continued fraction representation of V7 has a period of
length 4, the numerator and denominator of any of the convergents
Par-1/9ax—1 form a solution of x2 —7y2=1. Thus, for instance,

Dalgs =8/3, pq/g7 =127]48, p11/911 =2024/765

give rise to the first three positive solutions; these solutions are
x, =8, 3, =3; x, =127, y, =48; x3 =2024, y;3 =765.

Example 13-8
To find the solution of x2 —13y2 =1 in the smallest positive integers,
we note that V/13=[3;1,1, 1, 1, 6] and that there is a period of
length 5. 'The first ten convergents of V/13 are

3/1,4/1,7/2,11/3, 18/5, 119/33, 137/38, 256/71, 393/109, 649/180.
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With reference to part (2) of Theorem 13-16, the least positive
solution of x2 —13y2=1 is obtained from the convergent py/qs =
649/180, the solution itself being x; =649, y; =180.

There is a quick way to generate other solutions from a single
solution of Pell’s equation. Before discussing this, let us define the
fundamental solution of the equation x? —dy? =1 to be its smallest positive
solution. That is, it is the positive solution xq, y, With the property that
xo <Xy o<y’ for any other positive solution x’, y’. Theorem 13-16
furnishes the following fact: if the length of the period of the continued
fraction expansion of V/d is #, then the fundamental solution of x2 —dy?
=1is givenby x =p,_;, y =4, Whennis even; and by X9, _1, Y =qan-1
when 7 is odd. Thus the equation x2 —dy2 =1 can be solved in either #
or 27 steps.

Finding the fundamental solution can be 2 difficult task, since the
numbers in this solution can be unexpectedly large, even for comparatively
small values of 4. For example, the innocent-looking equation x? —991y2
=1 has the smallest positive solution

x =379 516 400 906 811 930 638 014 896 080,
y= 12 055 735 790 331 359 447 442 538 767.

The situation is even worse with x2 —1000099y2 =1, where the smallest
positive integer x satisfying this equation has 1118 digits. Needless to
say, everything is tied up with the continued fraction expansion of V4
and, in the case of 4/1000099, the period consists of 2174 terms.

It can also happen that the integers needed to solve x2 —dy? =
are small for a given value of 4 and very large for the succeeding value.
A striking illustration of this variation is provided by the equation
x? —61y2 =1, whose fundamental solution is given by

x=17663319049,  y=226153980.

These numbers are enormous when compared with the case 4= 60, where
the solution is x = 31, y =4 or with =62, where the solution is x =63,
y=_8.

With the help of the fundamental solution—which can be found
by means of continued fractions or by successively substituting y =1, 2,
3, ... into the expression 14 dy? until it becomes a perfect square—we
are able to construct all the remaining positive solutions.
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THEOREM 13-17.  Let xy, y, be the fundamental solution of x* —dy? =1.
Then every pair of integers x.,, y, defined by the condition
xn+.)'n\/2=(x1 +.)'1\/‘7)n (n=1,2,3,...)

is also a positive solution.

Proof: It is a modest exercise for the reader to check that
Xn —jn\/‘?:(xl _Jl\/z)n‘
Further, because x, and y, ate positive, x, and y, are both positive
integers. Bearing in mind that x;, y, is a solution of x2 —dy2=1,
we obtain _
X2 — 4}}1»2 = (%, +.)'n\/d)(xn __}’n\/‘_l)

=1+ V)G, —pVay

—(e? =2 =10 =1,
and so x,, J, is a solution.

Let us pause for a moment to look at an example. By inspection,
it is seen that x; =6, y; =1 forms the fundamental solution of x2—
3592=1. A second positive solution X, y, can be obtained from the
formula

X5+ 92V 35 =(6+V35)2 =71+ 12v/35,
which implies that x; =71, y,=12. These integers satisfy the equation
x2 —35y%2 =1, since
712 —-35.122=5041 — 5040 =1.
A third positive solution arises from

%3 -+75V/35 = (6 +V/35)3
=(71 4 124/35)(6 4-V/35) = 846 -+ 1434/35.
This gives x3 =846, y; =143 and in fact
8462 — 35 . 1432 =715716 — 715715 =1,

so that these values provide another solution.
Returning to the equation x%2 —dy%=1, our final theorem tells
us that any positive solution can be calculated from the formula

Xn +.}'n\/d=(x1 +.)’1\/d)n’
where 7 takes on integral values; that is, if #, » is a positive solution of
x2—dy? =1, then #=wx,, v=y, for a suitably chosen integer ». We
state this as
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TuroreM 13-18.  If x,, y, is the fundamental solution of x* —dy? =1,
then every positive solution of the equation is given by Xy, yy , where x, and y,
are the integers determined from

Xy Va=0cr+nVadyr  (1=1,2,3,...)

Proof: In anticipation of a contradiction, let us suppose that thete
exists a positive solution # » which is not obtainable by the formula
(%1 +yVd)". Since x; -+, Vd>1, the powers of x, +y,Vd
become arbitrarily large; this means that # +»v/d must lie between
two consecutive powets of x; +y,V/d, say,

(¢, + VA <ut-vVd<(x; +y,Vdyr+?
ot, to phrase it in different terms,

3+ 9V A< 4+ 0V A < (205 + 9,V )26, + 3,V d).

On multiplying this inequality by the positive number x, — .y, Vd
and noting that x,2 —dy,2 =1, we are led to

1 <(x, — VA +2Vd) <, +3,Vd.

Next define the integers r and s by 7 + sVd =(x, —y,Vd)(u+#V d);
that is, let

r =X, 4 — y,vd, § =X — YpHh.
An easy calculation reveals that

r2—ds? =(x,2 —dy, (> —d*) =1

and so 7, s is 2 solution of x% —dy? =1 satisfying 1 <r+sVd<x, +
V.
To complete the proof, it remains to show that 7, s is a
positive solution. Because 1 <r+ sV'd, we find that 0 < r — sVd<1.
In consequence,

2r=(r+sVd)+(r—sVd)>1+0>0
VA= +sVd)—(r—sVd)>1—-1=0

which makes both r and s positive. The upshot is that since x;, y; is
the fundamental solution of x2? —d4y2 =1, we must have x; <r and
3, <s; but then x; +y,Vd<r4sV d, violating an earlier inequality.
This contradiction ends our argument.
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Pell’s equation has attracted mathematicians throughout the ages.
There is historical evidence that methods for solving the equation were
known to the Greeks some 400 years before the beginning of the Christian
era. A famous problem of indeterminate analysis known as the ““cattle
problem™ is contained in an epigram sent by Archimedes to Eratosthenes
as a challenge to Alexandrian scholars. In it, one is required to find the
number of bulls and cows of each of four colors, the eight unknown
quantities being connected by nine conditions. These conditions ulti-
mately involve the solution of the Pell equation

x2 —4729494y2 =1,
which leads to enormous numbers; one of the eight unknown quantities is
a figure having 206545 digits (assuming that 15 printed digits take up
one inch of space, the number would be over 1/5 of a mile long). While
it is generally agreed that the problem originated with the celebrated
mathematician of Syracuse, no one contends that Archimedes actually
carried through all the necessary computations.

Such equations and dogmatic rules, without any proof, for
calculating their solutions spread to India more than a thousand years
before they appeared in Europe. In the 7th century, Brahmagupta said
that a person who can within a year solve the equation x2 —92y2=1isa
mathematician; for those days, he would at least have to be a good
arithmetician, since x=1151, y =120 is the smallest positive solution.
A computationally more difficult task would be to find integers satisfying
x2—94y2 =1, for here the fundamental solution is given by x =2143295,
y=221064.

Fermat was not the first therefore to propose solving the equation
x2—dy?=1, or even to devise a general method of solution. He was
pethaps the first to assert that the equation has an infinitude of jsolutions
whatever the value of the nonsquare integer 4. Moreover, his effort to
elicit purely integral solutions to both this and other probleths was a
watershed in number theory, breaking away as it did from the classical
tradition of Diophantus’ Arithmetica.

PROBLEMS 13.5

1. If x,, 5, is a positive solution of the equation x2 —4y2=1, prove that
Xo=>Jo-

2. By the technique of successively substituting y=1,2, 3, ... into dy24-1,
determine the smallest positive solution of x2 —dy2=1 when d is
@ 7 O © 18 (@ 30; (9 3
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3.

10.

11.

12.

13.

Find all positive solutions of the following equations for which y < 250:
(@) x2—22=1; (b) x%2—32=1; (© x?—52=1,

Show that there is an infinitude of even integers # with the property that
both #41 and 7/2 41 are perfect squares. Exhibit two such integers.
Indicate two positive solutions of each of the equations below:

(@ x2—23%%=1; (b) x2—20%=1; (c) x*—3%*=1

Find the fundamental solutions of

(@ x?2—2%%=1; (b) x2—4ly2=1; (c) x*—T74*=1.

[Hint: V41 =[6;2,2,12] and V74=[8;1,1,1,1,16].]

Exhibit a solution of each of the following equations:

(@ x2—132=—1; (b) x2—2%%:=—1; (0 x?—41*’=—1.
Establish that if x,, y, is a solution of the equation x? —dy? =—1, then
2 =22+ 1, y =2x, y, satisfies x2 —dy?=1. Brouncker used this fact in
solving x2? —313y% ==1.

If dis divisible by a prime p =3 (mod 4), show that the equation x? —dy? =
—1 has no solution.

If x,, 5, is the fundamental solution of x2 —dy?=1 and

Xpt ) Vad=(xy + VA (3=1,2,3,...),
prove that the pair of integers x,, y, can be calculated from the formulas
% =3{(%; +.}'1\/2)" +0a —.}'1\/2)"]

1
Vo

Verify that the integers x,, J, in the previous problem can be defined
inductively either by

[(ey +J’1\/‘—1)" —( _)’1\/3)”]«

X1 =X1%n+ D1 Jn

Ine1=X1In+ X J1>
for n=1,2,3,..., ot by

X g1 =2y Xp— Xp 1

In+1=2%1Yp—In-1
forn=23,....
Using the information that x; =15, y; =2 is the fundamental solution
of x2 — 56y2 = 1, determine two more positive solutions.

(a) Prove that whenever the equation x2 —dy? = is solvable, then it has
infinitely many solutions. [Hint: If #, v satisfy x2 —dy?=cand r, s
satisfy x%2—g2=1, then (urd-dvs)®—d(ustor)? =(>—d®)(r*—
ds?)=¢.]
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(b) Given that x=16, y=06 is a solution of x% —7y? =4, obtain two
other positive solutions.

() Given that x=18, y=3 is a solution of xZ —35y2=09, obtain two
other positive solutions.

Apply the theory of this section to confirm that there exist infinitely many

primitive Pythagorean triples x, y, g in which x and y are consecutive

integers.
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The Prime Number Theorem

Although the sequence of prime numbers exhibits great irregularities
of detail, a trend is definitely apparent in the large. The celebrated
Prime Number Theorem allows one to predict, at least in gross terms,
how many primes there are less than a given number. It states that if the
number is 7, then there are about # divided by log # (here, log # denotes
the natural logarithm of #) primes before it. Thus the Prime Number
Theorem tells us how the primes are distributed “in the large,” or “on
the average,” or ““in a probability sense.”

One measure of the distribution of primes is the function 7(x)
which, for any real number x, represents the number of primes that do
not exceed x; in symbols, m(x)= Y, <, 1. In Chapter 3, we proved that
there are infinitely many primes, which is simply an expression of the fact
that lim, , , m(x) = co0. Going in the other direction, it is clear that the
prime numbers become on the average more widely spaced in the higher
parts of any table of primes; in informal terms, one might say that almost
all the positive integers are composite.

By way of justifying our last assertion, let us show that the limit
lim, _, , m(x)/x = 0. Since m(x)/x > 0 for all x > 0, the problem is reduced
to proving that m(x)/x can be made arbitrarily small by choosing x suffi-
ciently large. In more precise terms, what we shall prove is that if £ >0 is
any number, then there must exist some positive integer N such that
m(x)[x < & whenever x > N.

To start, let # be a positive integer and use Bertrand’s Theorem to
pick a prime p with 2"~ < p <2 Then p | (2", but p 4 (2*~1)!, so that
the binomial coefficient (Z;-,) is divisible by p. This leads to the ine-
qualities

22 ._>_ (zfj 1) 2 1_[ P 2 (2” - 1):1(2") — m(2n-1)

2n-lcpxgan

344
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and, upon taking the exponents of 2 on each side, the subsequent ine-
quality
n

*) n(2) — w2 1) S

If we set =24, 24— 1,24 —2, ..., 3 in (*) and add the resulting ine-
qualities, we get

2r
r—1°

m(2%) — m(2%) < i

But m(22) < 22 trivially, so that

ﬂ<22k)<§:;——2_—r—izzkr-2—rl+ i rirl'
=2

r=2 r=k+1

In the last two sums, let us replace the denominators »— 1 by 1 and £
respectively to arrive at

k 2k
"(22k)<22r+ Z 2|k < 2k¥1 4 QWAL
r=2

T=k+1

Since £ < 2%, we have 2k+1 << 22¢+1/£ for £ >2 and so
m(2%) <2273 R) = 4(2%|A),

which can be written as
(%) m(22%)[2% < 4/£.
With this inequality available, our argument proceeds rapidly to its
conclusion. Given any real number x > 2, there exists a unique integer £
satisfying 22 -2 << x < 2%, From (**), it follows that

7(3) [ < 7(2%%) 3 < m(22€)[2% - 2 = 4(m(22K)[2%F) < 16/£.
If we now take x > N = 22@16/e1+ 1) then £ > [16/¢] 4 1; hence,

m(x)[x < 16/[16/e] +1 <,

as desired.

It was Euler (probably about 1740) who introduced into analysis
the zeta function

@

U)= D Uw=1"427 4374,

n=1
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the function on whose propetties the proof of the Prime Number Theorem
ultimately depended. Euler’s fundamental contribution to the subject is
the formula representing {(s) as a convergent infinite product; namely,

=] Ja—1p)-, (s>1)

where p runs through all primes; its importance arises from the fact
that it asserts equality of two expressions of which one contains the
primes explicitly while the other does not. Euler considered {(s) as a
function of a real variable only, but his formula nonetheless indicates the
existence of a deep-lying connection between the theory of primes and
the analytic properties of the zeta function.

Euler’s expression for {(s) results from expanding each of the
factors in the right-hand member as

T U R A
and observing that their product is the sum of all terms of the form
1
(:"pa" - py
where py,. . ., p, are distinct primes. Since every positive integer # can

be written uniquely as a product of prime powers, each term 1/#* appears
once and only once in this sum; that is, the sum simply is Y2, 1/7:.

It turns out that Euler’s formula for the zeta function leads to a
deceptively short proof of the infinitude of primes: the occurtence of a
finite product on the right-hand side would contradict the fact that
lim, ., {(s) = co.

Legendre was the first to make any significant conjecture about
functions which give a good approximation to m(x) for large values of x.
In his book Essai sur la Théorie des Nombres (1798), Legendre ventured
that 7(x) is approximately equal to the function

x
log x— 1.08366
By compiling extensive tables on how the primes distribute themselves
in blocks of 1000 consecutive integers, Gauss reached the conclusion
that m(x) increases at roughly the same rate as each of the functions

x/log x and .
: du

2 logau

Li(x) =
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with the logarithmic integral Li(x) providing a much closer numerical
approximation. Gauss’ observations were communicated ina letter to the
noted astronomer Encke in 1849, and first published in 1863, but appear
to have begun as early as 1791 when Gauss was fourteen years old—
needless to say, well before Legendre’s treatise was written.

It is interesting to compate these remarks with the evidence of
the tables:

x
x m(x) Iog ~ —1.08366 x/log x Li(x) m(x)/(x/log x)
1000 168 172 145 178 1.159
10,000 1,229 1,231 1086 1246 1.132
100,000 9,592 9,588 8,686 9,630 1.104
1,000,000 78,498 78,534 72,382 78,628 1.084
10,000,000 664,579 665,138 620,420 664,918 1.071

100,000,000 5,761,455 5,769,341 5,428,681 5,762,209 1.061

The first demonstrable progress towards comparing n(x) with
x/log x was made by the Russian mathematician Tchebychef. In 1850,
he proved that there exist positive constants « and b, 2 <1 < b, such that

a(x[log x) < m(x) << b(x/[log x)

for sufficiently large x. Tchebychef showed further that if the quotient
(x)/(x/log x) has a limit as x increases, then its value must be 1. Tche-
bychef’s work, fine as it is, is a record of failure: what he could not
establish is that the foregoing limit does in fact exist, and, as he failed to
do this, he failed to prove the Prime Number Theorem. It was not
until some 45 years later that the final gap was filled.

We might observe at this point that Tchebychef’s result implies
that the seties Y, 1/p, extended over all primes, diverges. To see this,
let p, be the #th prime, so that m(p,) = 7. Since we have

m(x) > a(x/log x)

for sufficiently large x, it follows that the inequality

#n=m(pn) > a(paflog pn) >V Pu
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holds if # is taken sufficiently large. But #2 > p, leads to log p, <2 log#

and so we get
apn, <nlog p, <2nlogn

when # is large. In consequence, the series Y ., 1/p, will diverge in
comparison with the known divergent series Y =, (1/# log ).

The radically new ideas which were to furnish the key to a proof
of the Prime Number Theorem were introduced by Riemann in his
epoch-making memoir Uber die Anzahl der Primzahlen unter einer gegebenen
Grisse of 1859 (his only paper on the theotry of numbers). Where Euler
had restricted the zeta function {(s) to real values of 5, Riemann recognized
the connection between the distribution of primes and the behavior of
{(s) as a function of a complex variable s=4 -+ bi. He enunciated a
number of properties of the zeta function, together with a remarkable
identity, known as Riemann’s Explicit Formula, relating =(x) to the
zeroes of {(s) in the s-plane. The result has caught the imagination of most
mathematicians because it is so unexpected, connecting two seemingly
unrelated things; namely, number theory which is the study of the dis-
crete and complex analysis which deals with continuous: processes.

In his memoir, Riemann made a number of conjectures concerning
the distribution of the zeroes of the zeta function. The most famous is
the so-called Riemann Hypothesis which asserts that all the nonreal
zeroes of {(s) are at points } + &7 of the complex plane; that is, they lie on
the “critical line” Re(s) = 4. This conjecture has never been proved or
disproved.

Riemann’s investigations were exploited by Hadamard and de
la Vallée Poussin who in 1896, independently of each other and almost
simultaneously, succeeded in proving that

()

Ilirg xflog x =L

The result expressed in this formula has since become known as the Prime
Number Theotem. De la Vallée Poussin went considerably further in
his research. He showed that, for sufficiently large values of x, n(x) is
more accurately represented by the logarithmic integral Li(x) than by

the function
X

logx— A’

no matter what value is assigned to the constant .4, and that the most
favorable choice of A in Legendre’s formula is 1. This is at variance
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with Legendre’s original contention that .4 = 1.08366, but his estimate
(based on tables extending only as far as x = 400,000) had long been
recognized as having little more than historical interest.

Today a good deal more is known about the relationship between
m(x) and Li(x). We shall only mention a theorem of Littlewood to the
effect that the difference w(x) — Li(x) assumes both positive and negative
values infinitely often as x runs over all positive integers. Littlewood’s
result is a pure “existence theorem” and no numerical value of x for
which m(x) — Li(x) is positive has ever been found. It is a curious fact
that an upper bound on the size of the first x satisfying =(x) > Li(x) is
available; such an x must occur someplace before

¢¢”® = 1010'°* (approximately),
a number of incomprehensibly large magnitude.

A useful sidelight to the Prime Number Theorem deserves our
attention; to wit,

lim ” log n_

n— oo n

1.

For, starting with the relation

Jim T logx 4

I — o0

we may take logarithms and use the fact that the logarithmic function is
continuous to obtain

lim [log #(x) +log(log x) — log x] =0

or equivalently

lim log m(x) 1 —1lim log(log x).
e lOg X o log x

Butlim, , ,, log(log x)/log x = 0, which leads to lim, _, ,, log 7(x)/log x = 1.
We then get

1= lim m(x) log x — lim m(x) log m(x) _logx
z—® X z->00 X log n(x)

—lim () log m(x) )

Z— © X
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Setting x = p,, so that m(p,) = #, the result

lim” log » 1

n-— n

follows. This may be interpreted as asserting that if there are # primes
in an interval, then the length of the interval is roughly » log .

Until recent times, the opinion prevailed that the Prime Number
Theorem could not be proved without the help of the properties of the
zeta function, and without recourse to complex function theory. It
came as a great surprise when in 1949 the Norwegian mathematician
Atle Selberg discovered a purely arithmetical proof. His paper An
Elementary Proof of the Prime Number Theorem is ““elementary” in the
technical sense of avoiding the methods of modern analysis; indeed,
its content is exceedingly difficult. Selberg was awarded a Fields medal
at the 1950 International Congress of Mathematicians for his work in this
area.
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The following table gives the least primitive root r of each prime p, where 2 < p < 1000.

TABLE 1

Table 1

357

2 r ? r p r p r » r b4 r
2 |1 ] 127 3 283 3 467 2 661 2 877 2
312131 2 293 2 479 13 673 5 881 3
5| 2 | 137 3 307 5 487 3 677 2 883 2
73| 139 2 311 17 491 2 683 5 887 5

11 | 2 | 149 2 313 10 499 7 691 3 907 2

13 | 2 | 151 6 317 2 503 5 701 2 911 17
17 | 3 | 157 5 331 3 509 2 709 2 919 7
19 | 2 | 163 2 337 10 521 3 719 1 929 3

23 | 5 | 167 5 347 2 523 2 727 5 937 5

29 (2] 173 2 349 2 541 2 733 6 941 2

31 | 3 (179 2 353 3 547 2 739 3 947 2

37 12| 181 2 359 7 557 2 743 5 953 3

41 | 6 | 191 19 367 6 563 2 751 3 |.967 5

43 | 3 | 193 5 373 2 569 3 757 2 971 6

47 | 5 | 197 2 379 2 571 3 761 6 977 3

53 { 2| 199 3 383 5 577 5 769 11 983 5

5 2| 211 2 389 2 587 2 773 2 991 6

61 { 2 [ 223 3 397 5 593 3 787 2 997 7

67 | 2 | 227 2 401 3 599 7 797 2

71 {7 | 229 6 409 21 601 7 809 3

73 1 5| 233 3 419 2 607 3 811 3

79 | 3 | 239 7 421 2 613 2 821 2

83 | 2| 241 7 431 7 617 3 823 3

89 | 3 | 251 6 433 5 619 2 827 2

97 | 5 | 257 3 439 15 631 3 829 2

101 | 2 | 263 5 443 2 641 3 839 1

103 | 5 | 269 2 449 3 643 11 853 2

107 | 2 | 271 6 457 13 647 5 857 3

109 | 6 | 277 5 461 2 653 2 859 2

113 | 3 | 281 3 463 3 659 2 863 5




TABLE 2

The following table lists the smallest prime factor of each odd integer n, 3 <n <4999, not
divisible by 5; a dash in the table indicates that n is itself prime.

1 101 — 200 3 301 7 401 —

3 — 103 — 203 7 303 3 403 13

7 — 107 — 207 3 307 — 407 11

9 3 109 — 209 11 309 3 409 —
11 — 111 3 211 — 311 — 411 3
13 — 113 — 213 3 313 — 413 7
17 — 117 3 217 7 317 — 417 3
19 — 119 7 219 3 319 11 419 —
21 3 121 11 221 13 321 3 421 —
23 — 123 3 223 — 323 17 423 3
27 3 127 — 227 — 327 3 427 7
29 — 129 3 229 — 329 7 429 3
31 — 131 — 231 3 331 — 431 —
33 3 133 7 233 — 333 3 433 —
37 — 137 — 237 3 337 — 437 19
39 3 139 — 239 — 339 3 439 —
41 — 141 3 241 — 341 11 441 3
43 — 143 11 243 3 343 7 443 —
47 — 147 3 247 13 347 — 447 3
49 7 149 — 249 3 349 — 449 —
51 3 151 — 251 — 351 3 451 1
53 — 153 3 253 11 353 — 453 3
57 3 157 — 257 — 357 3 457 —
59 — 159 3 259 7 359 — 459 3
61 — 161 7 261 3 361 19 461 —
63 3 163 — 263 — 363 3 463 —
67 — 167 — 267 3 367 — 467 —
6 3 169 13 269 — 369 3 469 7
71 — 171 3 2711 — 3 7 471 3
73 — 173 — 273 3 373 — 473 11
7 177 3 277 — 377 13 477 3
79 — 179 — 279 3 379 — 479 —
81 3 181 — 281 — 381 3 481 13
83 — 183 3 283 — 383 — 483 3
87 3 187 11 287 7 387 3 487 —
89 — 189 3 289 17 389 — 489 3
91 7 191 — 291 3 391 17 491 —
93 3 193 — 293 — 393 3 493 17
97 — 197 — 297 3 397 — 497 7
29 3 199 — 299 13 39 3 499 —

358
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501 3 601 — 701 — 801 3 9201 17
503 — 603 3 703 19 803 11 923 3
507 3 607 — 707 7 807 3 9207 —
500 — 609 3 709 — 809 — 209 3
511 7 611 13 711 3 811 — 911 —
513 3 613 — 713 23 813 3 913 11
517 11 617 — 717 3 817 19 917 7
519 3 619 — 719 — 819 3 919 —
521 — 621 3 721 7 821 — 921 3
523 — 623 7 723 3 823 — 923 13
527 17 627 3 727 — 827 — 927 3
529 23 629 17 729 3 820 — 929 —
531 3 631 — 731 17 831 3 931 7
533 13 633 3 733 — 833 7 933 3
537 3 637 7 737 11 837 3 937 | —
539 7 639 3 739 — 839 — 939 3
541 — 641 — 741 3 841 29 941 —
543 3 643 — 743 — 843 3 943 |23
547 — 647 — 747 3 847 7 947 |—
549 3 649 11 749 7 849 3 949 13
551 19 651 3 751 — 851 23 951 3
553 7 653 — 753 3 853 — 953 —
557 — 657 3 757 — 857 — 957 3
559 13 659 — 759 3 859 — 959 7
561 3 661 — 761 — 861 3 961 31
563 — 663 3 763 7 863 — 963 3
567 3 667 23 767 13 867 3 967 —
569 — 669 3 769 — 869 11 969 3
571 — 671 11 771 3 871 13 971 —
573 3 673 — 773 — 873 3 973 7
577 — 677 — 777 3 877 — 977 —
579 3 679 7 779 19 879 3 979 11
581 7 681 3 781 11 881 — 981 3
583 11 683 — 783 3 883 — 983 —
587 — 687 3 787 — 887 — 987 3
589 19 689 13 789 3 889 7 989 23
591 3 691 — 791 7 891 3 991 —
593 — 693 3 793 13 893 19 993 3
597 3 697 17 797 — 897 3 997 —
509 — 699 3 799 17 899 29 999 3
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Table 2

1001
1003
1007
1009
1011
1013
1017
1019
1021
1023
1027
1029
1031
1033
1037
1039
1041
1043
1047
1049
1051
1053
1057
1059
1061
1063
1067
1069
1071
1073
1077
1079
1081
1083
1087
1089
1091
1093
1097
1099

1101
1103
1107
1109
1111
1113
1117
1119
1121
1123
1127
1129
1131
1133
1137
1139
1141
1143
1147
1149
1151
1153
1157
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1179
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1501 19 1601 — 1701 3 1801 — 1901 —
1503 3 1603 7 1703 13 1803 3 1903 11
1507 11 1607 — 1707 3 1807 13 1907 —
1509 3 1609 — 1709 — 1809 3 1909 23
1511 — 1611 3 1711 29 1811 — 1911 3
1513 17 1613 — 1713 3 1813 7 1913 —
1517 37 1617 3 1717 17 1817 23 1917 3
1519 7 1619 — 1719 3 1819 17 1919 19
1521 3 1621 — 1721 — 1821 3 1921 17
1523 — 1623 3 1723 — 1823 — 1923 3
1527 1627 — 1727 11 1827 3 1927 41
1529 11 1629 3 1729 7 1829 31 1929 3
1531 — 1631 7 1731 3 1831 — 1931 —
1533 3 1633 23 1733 — 1833 3 1933 —
1537 29 1637 — 1737 3 1837 11 1937 13
1539 3 1639 11 1739 37 1839 3 1939 7
1541 23 1641 3 1741 — 1841 7 1941 3
1543 — 1643 31 1743 3 1843 19 1943 29
1547 7 1647 3 1747 — 1847 — 1947 - 3
1549 — 1649 17 1749 3 1849 43 1949 —
1551 3 1651 13 1751 17 1851 3 1951 —
1553 — 1653 3 1753 — 1853 17 1953 | 3
1557 3 1657 — 1757 7 1857 3 1957 19
1559 — 1659 3 1759 — 1859 11 1959 3
1561 7 1661 11 1761 3 1861 — 1961 37
1563 3 1663 — 1763 41 1863 3 1963 13
1567 — 1667 — 1767 3 1867 — 1967 7
1569 3 1669 — 1769 29 1869 3 1969 11
1571 — 1671 3 1771 7 1871 — 1971 3
1573 11 1673 7 1773 3 1873 — 1973 —
1577 19 1677 3 1777 — 1877 — 1977 3
1579 — 1679 23 1779 3 1879 — 1979 —
1581 3 1681 41 1781 13 1881 3 1981 7
1583 — 1683 3 1783 — 1883 7 1983 3
1587 3 1687 7 1787 — 1887 3 1987 —
1589 7 1689 3 1789 — 1889 — 1989 3
1591 37 1691 19 1791 1891 31 1991 11
1593 3 1693 — 1793 11 1893 3 1993 —
1597 — 1697 — 1797 3 1897 7 1997 —
1599 3 1699 — 1799 7 1899 3 1999 —
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2001
2003
2007
2009
2011
2013
2017
2019
2021
2023
2027
2029
2031
2033
2037
2039
2041
2043
2047
2049
2051
2053
2057
2059
2061
2063
2067
2069
2071
2073
2077
2079
2081
2083
2087
2089
2091
2093
2097
2099
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2501 41 2601 3 2701 37 2801 — 2901 3
2503 — 2603 19 2703 3 2803 — 2903 —
2507 23 2607 3 2707 — 2807 7 207 3
2509 13 2609 — 2709 3 2809 53 2909 —
2511 3 2611 7 2711 — 2811 3 2911 41
2513 7 2613 3 2713 — 2813 29 2913 3
2517 3 2617 — 2717 11 2817 3 2917 —
2519 11 2619 3 2719 — 2819 — 2919 3
2521 — 2621 — 2721 3 2821 7 2921 23
2523 3 2623 43 2723 7 2823 3 2923 37
2527 7 2627 37 2727 3 2827 11 2927 —
2529 3 2629 11 2729 — 2829 3 2929 29
2531 — 2631 3 2731 — 2831 19 2931 3
2533 17 2633 — 2733 3 2833 — 2933 7
2537 43 2637 3 2737 7 2837 — 2937 3
2539 — 2639 7 2739 3 2839 17 2939 —
2541 3 2641 19 2741 — 2841 3 2941 17
2543 — 2643 3 2743 13 2843 — 2943 : 3
2547 3 2647 — 2747 41 2847 3 2947 | 7
2549 — 2649 3 2749 — 2849 7 2949 | 3
2551 — 2651 11 2751 3 2851 — 2951 13
2553 3 2653 7 2753 — 2853 3 2953 —
2557 — 2657 — 2757 3 2857 — 2957 —
2559 3 2659 — 2759 31 2859 3 2959 11
2561 13 2661 3 2761 11 2861 — 2961 3
2563 11 2663 — 2763 3 2863 7 2963 —
2567 17 2667 3 2767 — 2867 47 2967 3
2569 7 2669 17 2769 3 2869 19 2969 —
2571 3 2671 — 2771 17 2871 3 2971 —
2573 31 2673 3 2773 47 2873 13 2973 3
2577 3 2677 — 2777 — 2877 3 2977 13
2579 — 2679 3 2779 7 2879 — 2979 3
2581 29 2681 7 2781 3 2881 43 2981 11
2583 3 2683 — 2783 11 2883 3 2983 19
2587 13 2687 - 2787 3 2887 — 2987 29
2589 3 2689 — 2789 — 2889 3 2989 7
2591 — 2691 3 2791 — 2891 7 2991 3
2593 — 2693 — 2793 3 2893 11 2993 41
2597 2697 3 2797 — 2897 — 2997 3
2599 23 2699 — 2799 3 2899 13 2999 —
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3001
3003
3007
3009
3011
3013
3017
3019
3021
3023
3027
3029
3031
3033
3037
3039
3041
3043
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Table 2 365
3501 3 3601 13 3701 — 3801 3 3901 47
3503 31 3603 3 3703 7 3803 — 3903 3
3507 3 3607 — 3707 11 3807 3 3907 —
3509 11 3609 3 3709 — 3809 13 3909 3
3511 — 3611 23 3711 3 3811 37 3911 —
3513 3 3613 — 3713 47 3813 3 3913 7
3517 — 3617 — 37117 3 3817 11 3917 —
3519 3 3619 7 37119 — 3819 3 3919 —
3521 7 3621 3 3721 61 3821 — 3921 3
3523 13 3623 — 3723 3 3823 — 3923 —
3527 — 3627 3 3727 — 3827 43 3927 3
3529 — 3629 19 3729 3 3829 7 3929 —
3531 3 3631 — 3731 7 3831 3 3931 —
3533 — 3633 3 3733 — 3833 — 3933 3
3537 3 3637 — 3737 37 3837 3 3937 31
3539 — 3639 3 3739 — 3839 11 3939 3
3541 — 3641 11 3741 3 3841 23 3941 7
3543 3 3643 — 3743 19 3843 3 3943 —
3547 — 3647 7 3747 3 3847 — 39471 —
3549 3 3649 41 3749 23 3849 3 3949: 11
3551 53 3651 3 3751 11 3851 — 3951 3
3553 11 3653 13 3753 3 3853 — 3953 59
3557 — 3657 3 3757 13 3857 7 3957 3
3559 — 3659 — 3759 3 3859 17 3959 37
3561 3 3661 7 3761 — 3861 3 3961 17
3563 7 3663 3 3763 53 3863 — 3963 3
3567 3 3667 19 3767 — 3867 3 3967 —
3569 43 3669 3 3769 — 3869 53 3969 3
3571 — 3671 — 3771 3 3871 7 3971 11
3573 3 3673 — 3773 7 3873 3 3973 29
3577 7 3677 — 3777 3 3877 — 3977 41
3579 3 3679 13 3779 — 3879 3 3979 23
3581 — 3681 3 3781 19 3881 — 3981 3
3583 — 3683 29 3783 3 3883 11 3983 7
3587 17 3687 3 3787 7 3887 13 3987 3
3589 37 3689 7 3789 3 3889 — 3989 —
3591 3 3691 — 3791 17 3891 3 3991 13
3593 — 3693 3 3793 — 3893 17 3993 3
3597 3 3697 — 3797 — 3897 3 3997 7
3599 59 3699 3 3799 29 3899 7 3999 3
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Table 2

4001
4003
4007
4009
4011
4013
4017
4019
4021
4023
4027
4029
4031
4033
4037
4039
4041
4043
4047
4049
4051
4053
4057
4059
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4063
4067
4069
4071
4073
4077
4079
4081
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4087
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Table 2 367
4501 7 4601 43 4701 3 4801 — 4901 13
4503 3 4603 — 4703 — 4803 3 4903 —
4507 — 4607 17 4707 3 4807 11 4907 7
4509 3 4609 11 4709 17 4809 3 4909 —
4511 13 4611 3 4711 7 4811 17 4911 3
4513 — 4613 7 4713 3 4813 — 4913 17
4517 — 4617 3 4717 53 4817 — 4917 3
4519 — 4619 31 4719 3 4819 61 4919 —
4521 3 4621 — 4721 — 4821 3 4921 7
4523 — 4623 3 4723 — 4823 7 4923 3
4527 3 4627 7 4727 29 4827 3 4927 13
4529 7 4629 3 4729 — 4829 11 4929 3
4531 23 4631 11 4731 3 4831 — 4931 —
4533 3 4633 41 4733 — 4833 3 4933 —
4537 13 4637 — 4737 3 4837 7 4937 —
4539 3 4639 — 4739 7 4839 3 4939 11
4541 19 4641 3 4741 11 4841 47 4941 3
4543 7 4643 — 4743 3 4843 29 4943 —
4547 — 4647 3 4747 47 4847 37 4947 3
4549 — 4649 — 4749 3 4849 13 4949 7
4551 3 4651 — 4751 — 4851 3 4951 —
4553 29 4653 3 4753 7 4853 23 4953 3
4557 3 4657 — 4757 67 4857 3 4957 —
4559 47 4659 3 4759 — 4859 43 4959 3
4561 — 4661 59 4761 3 4861 — 4961 11
4563 3 4663 — 4763 11 4863 3 4963 7
4567 — 4667 13 4767 3 4867 31 4967 —
4569 3 4669 7 4769 19 4869 3 4969 —
4571 7 4671 3 4771 13 4871 — 4971 3
4573 17 4673 — 4773 3 4873 11 4973 —
4577 23 4677 3 4777 17 4877 — 4977 3
4579 19 4679 — 4779 3 4879 7 4979 13
4581 3 4681 31 4781 7 4881 3 4981 17
4583 — 4683 3 4783 — 4883 19 4983 3
4587 3 4687 43 4787 — 4887 3 4987 —
4589 13 4689 3 4789 — 4889 — 4989 3
4591 — 4691 — 4791 3 4891 67 4991 7
4593 3 4693 13 4793 — 4893 3 4993 —
4597 — 4697 7 4797 3 4897 59 4997 19
4599 3 4699 37 4799 — 4899 3 4999 —




TABLE 3

The following table lists the prime numbers between 5000 and 10,000,

5003

5009
5011
5021
5023
5039

5051
5059
5077
5081
5087

5099
5101
5107
5113
5119

5147
5153
5167
5171
5179

5189
5197
5209
5227
5231

5233
5237
5261
5273
5279

5281
5297
5303
5309
5323

5333
5347
5351
5381
5387

5393
5399
5407
5413
5417

5419
5431
5437
5441
5443

5449
5471
5477
5479
5483

5501
5503
5507
5519
5521

5527
5531
5557
5563
5569

5573
5581
5591
5623
5639

5641
5647
5651
5653
5657

5659
5669
5683
5689
5693

5701
5711
5717
5737
5741

5743
5749
5779
5783
5791

5801
5807
5813
5821
5827

5839
5843
5849
5851
5857

5861
5867
5869
5879
5881

5897
5903
5923
5927
5939

5953
5981
5987
6007
6011

6029
6037
6043
6047
6053

6067
6073
6079
6089
6091

6101
6113
6121
6131
6133

6143
6151
6163
6173
6197

6199
6203
6211
6217
6221

6229
6247
6257
6263
6269

6271
6277
6287
6299
6301

6311
6317
6323
6329
6337

6343
6353
6359
6361
6367

6373
6379
6389
6397
6421

6427
6449
6451
6469
6473

6481
6491
6521
6529
6547

6551
6553
6563
6569
6571

6577
6581
6599
6607
6619

6637
6653
6659
6661
6673

6679
6689
6691
6701
6703

6709
6719
6733
6737
6761

6763
6779
6781
6791
6793

6803
6823
6827
6829
6833

6841
6857
6863
6869
6871

6883
6899
6907
6911
6917

6947
6949
6959
6961
6967

6971
6977
6983
6991
6997

7001
7013
7019
7027
7039

7043
7057
7069
7079
7103

7109
7121
7127
7129
7151

7159
7177
7187
7193
7207




Table 3 369

7211 7561 7907 8273 8647 8971 9337 9677
7213 7573 7919 8287 8663 8999 9341 9679
7219 7577 7927 8291 8669 9001 9343 9689
7229 7583 7933 8293 8677 9007 9349 9697
7237 7589 7937 8297 8681 9011 9371 9719
7243 7591 7949 8311 8689 9013 9377 9721
7247 7603 7951 8317 8693 9029 9391 9733
7253 7607 7963 8329 8699 92041 9397 9739
7283 7621 7993 8353 8707 9043 9403 9743
7297 7639 8009 8363 8713 9049 9413 9749
7307 7643 8011 8369 8719 9059 9419 9767
7309 7649 8017 8377 8731 9067 9421 9769
7321 7669 8039 8387 8737 9091 9431 9781
7331 7673 8053 8389 8741 9103 9433 9787
7333 7681 8059 8419 8747 9109 9437 9791
7349 7687 8069 8423 8753 9127 9439 9803
7351 7691 8081 8429 8761 9133 9461 9811
7369 7699 8087 8431 8779 9137 9463 9817
7393 7703 8089 8443 8783 9151 9467 9829
7411 7717 8093 8447 8803 9157 9473 9833
7417 7723 8101 8461 8807 9161 9479 9839
7433 7727 8111 8467 8819 9173 9491 9851
7451 7741 8117 8501 8821 9181 9497 9857
7457 7753 8123 8513 8831 0187 9511 9859
7459 7157 8147 8521 8837 9199 9521 9871
7477 7759 8161 8527 8839 9203 9533 9883
7481 7189 8167 8537 8849 9209 9539 9887
7487 7793 8171 8539 8861 9221 9547 9901
7489 7817 8179 8543 8863 9227 9551 9907
7499 7823 8191 8563 8867 9239 9587 9923
7507 7829 8209 8573 8887 9241 9601 9929
7517 7841 8219 8581 8893 9257 9613 9931
7523 7853 8221 8597 8923 9277 9619 9941
7529 7867 8231 8599 8929 9281 9623 9949
7537 7873 8233 8609 8933 0283 9629 9967
7541 7877 8237 8623 8941 9293 9631 9973
7547 7879 8243 8627 8951 9311 9643

7549 7883 8263 8629 8963 9319 9649

7559 7901 8269 8641 8969 9323 9661




TABLE 4

The following table gives the number of primes and the number
of pairs of twin primes in the indicated intervals.

Number of
Number of pairs of

Interval primes twin primes
1-100 25 8
101-200 21 7
201-300 16 4
301-400 16 2
401-500 17 3
501-600 14 2
601-700 16 4
701-800 14 0
801-900 15 5
901-1000 14 0
2501-2600 11 2
2601-2700 15 2
2701-2800 14 3
28012900 12 1
2901-3000 11 1
10001-10100 1 4
10101-10200 12 1
10201-10300 10 1
10301-10400 12 2
10401-10500 10 2
29501-29600 10 1
29601-29700 8 1
29701-29800 7 1
29801-29900 10 1
29901-30000 7 0
100001-100100 6 0
100101-100200 9 1
100201100300 8 0
100301-100400 9 2
100401100500 8 0
299501-299600 7 1
299601-299700 8 1
299701-299800 8 1
299801299900 6 0
299901-300000 9 0




TABLE 5

The table below gives the squares and cubes of integers n, where 1 <n <499,

n n? n® n n2 #
35 1 225 42 875
1 1 1 36 1 296 46 656
2 4 8 37 1 369 50 653
3 9 27 38 1 444 54 872
4 16 64 39 1 521 59 319
5 25 125 40 1 600 64 000
6 36 216 41 1 681 68 921
7 49 343 42 1 764 74 088
8 64 512 43 1 849 79 507
9 81 729 44 1 936 85 184
10 100 1 000 45 2 025 91 125
1 121 1 331 46 2 116 97 336
12 144 1 728 47 2 209 103 823
13 169 2 197 48 2 304 110 592
14 196 2 744 49 2 401 117 649
15 225 3 375 50 2 500 12$ 000
16 256 4 096 51 2 601 132 651
17 289 4 913 52 2 704 140 608
18 324 5 832 53 2 809 148 877
19 361 6 859 54 2 916 157 464
20 400 8 000 55 3 025 166 375
21 441 9 261 56 3 136 175 616
22 484 10 648 57 3 249 185 193
23 529 12 167 58 3 364 195 112
24 576 13 824 59 3 481 205 379
25 625 15 625 60 3 600 216 000
26 676 17 576 61 3721 226 981
27 729 19 683 62 3 844 238 328
28 784 21 952 63 3 969 250 047
29 841 24 389 64 4 096 262 144
30 900 27 000 65 4 225 274 625
3 961 29 791 66 4 356 287 496
32 1 024 32 768 67 4 489 300 763
33 1 089 35 937 68 4 624 314 432
34 1 156 39 304 69 4 761 328 509

n
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Table 5

n n? n n n2 n3

70 4 900 343 000 110 12 100 1 331 000
71 5 041 357 911 111 12 321 1 367 631
72 5 184 373 248 112 12 544 1 404 928
73 5 329 389 017 113 12 769 1 442 897
74 5 476 405 224 114 12 996 1 481 544
75 5 625 421 875 115 13 225 1 520 875
76 5 776 438 976 116 13 456 1 560 896
77 5 929 456 533 117 13 689 1 601 613
78 6 084 474 552 118 13 924 1 643 032
79 6 241 493 039 119 14 161 1 685 159
80 6 400 512 000 120 14 400 1 728 000
81 6 561 531 441 121 14 641 1 771 561
82 6 724 551 368 122 14 884 1 815 848
83 6 889 571 787 123 15 129 1 860 867
84 7 056 592 704 124 15 376 1 906 624
85 7 225 614 125 125 15 625 1 953 125
86 7 396 636 056 126 15 876 2 000 B76
87 7 569 658 503 127 16 129 2 048 383
88 7 744 681 472 128 16 384 2 097 152
89 7 921 704 969 129 16 641 2 146 689
20 8 100 729 000 130 16 900 2 197 000
91 8 281 753 571 131 17 161 2 248 Q91
92 8 464 778 688 132 17 424 2 299 968
93 8 649 804 357 133 17 689 2 352 637
94 8 836 830 584 134 17 956 2 406 104
95 9 025 857 375 135 18 225 2 460 375
9 9 216 884 736 136 18 496 2 515 456
97 9 409 912 673 137 18 769 2 571 353
98 9 604 941 192 138 19 044 2 628 072
99 9 801 970 299 139 19 321 2 685 619
100 10 000 1 000 000 140 19 600 2 744 000
101 10 201 1 030 301 141 19 881 2 803 221
102 10 404 1 061 208 142 20 164 2 863 288
103 10 609 1 092 727 143 20 449 2 924 207
104 10 816 1 124 864 144 20 736 2 985 984
105 11 025 1 157 625 145 21 025 3 048 625
106 11 236 1 191 016 146 21 316 3 112 136
107 11 449 1 225 043 147 21 609 3 176 523
108 11 664 1 259 712 148 21 904 3 241 792
109 11 881 1 295 029 149 22 201 3 307 949




Table 5 373

n n2 ne n n? n?

150 22 500 3 375 000 190 36 100 6 859 000
151 22 801 3 442 951 191 36 481 6 967 871
152 23 104 3 511 808 192 36 864 7 077 888
153 23 409 3 581 577 193 37 249 7 189 057
154 23 716 3 652 264 194 37 636 7 301 384
155 24 025 3 723 875 195 38 025 7 414 875
156 24 336 3 796 416 196 38 416 7 529 536
157 24 649 3 869 893 197 38 809 7 645 373
158 24 964 3 944 312 198 39 204 7 762 392
159 25 281 4 019 679 199 39 601 7 880 599
160 25 600 4 096 000 200 40 000 8 000 000
161 25 921 4 173 281 201 40 401 8 120 601
162 26 244 4 251 528 202 40 804 8 242 408
163 26 569 4 330 747 203 41 209 8 365 427
164 26 896 4 410 944 204 41 616 8 489 664
165 27 225 4 492 125 205 42 025 8 615 125
166 27 556 4 574 296 206 42 436 8 741 816
167 27 889 4 657 463 207 42 849 8 86? 743
168 28 224 4 741 632 208 43 264 8 993 912
169 28 561 4 826 809 209 43 681 9 129 329
170 28 900 4 913 000 210 44 100 9 261 000
171 29 241 5 000 211 211 44 521 9 393 931
172 29 584 5 088 448 212 44 944 9 528 128
173 29 929 5177 717 213 45 369 9 663 597
174 30 276 5 268 024 214 45 796 9 800 344
175 30 625 5 359 375 215 46 225 9 938 375
176 30 976 5 451 776 216 46 656 10 077 696
177 31 329 5 545 233 217 47 089 10 218 313
178 31 684 5 639 752 218 47 524 10 360 232
179 32 041 5 735 339 219 47 961 10 503 459
180 32 400 5 832 000 220 48 400 10 648 000
181 32 761 5 929 741 221 48 841 10 793 861
182 33 124 6 028 568 222 49 284 10 941 048
183 33 489 6 128 487 223 49 729 11 089 567
184 33 856 6 229 504 224 50 176 11 239 424
185 34 225 6 331 625 225 50 625 11 390 625
186 34 596 6 434 856 226 51 076 11 543 176
187 34 969 6 539 203 227 51 529 11 697 083
188 35 344 6 644 672 228 51 984 11 852 352
189 35 721 6 751 269 229 52 441 12 008 989
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n n n n n? n

230 52 900 12 167 000 270 72 900 19 683 000
231 53 361 12 326 391 271 73 441 19 902 511
232 53 824 12 487 168 272 73 984 20 123 648
233 54 289 12 649 337 273 74 529 20 346 417
234 54 756 12 812 904 274 75 Q76 20 570 824
235 55 225 12 977 875 275 75 625 20 796 875
236 55 696 13 144 256 276 76 176 21 024 576
237 56 169 13 312 053 277 76 729 21 253 933
238 56 644 13 481 272 278 77 284 21 484 952
239 57 121 13 651 919 279 77 841 21 717 639
240 . 57 600 13 824 000 280 78 400 21 952 000
241 58 081 13 997 521 281 78 961 22 188 041
242 58 564 14 172 488 282 79 524 22 425 768
243 59 049 14 348 907 -283 80 089 22 665 187
244 59 536 14 526 784 284 80 656 22 906 304
245 60 025 14 706 125 285 81 225 23 149 125
246 60 516 14 886 936 286 81 796 23 393 656
247 61 009 15 069 223 287 82 369 23 639 903
248 61 504 15 252 992 288 82 944 23 887 872
249 62 001 15 438 249 289 83 521 24 137 569
250 62 500 15 625 000 290 84 100 24 389 000
251 63 001 15 813 251 291 84 681 24 642 171
252 63 504 16 003 008 292 85 264 24 897 088
253 64 009 16 194 277 293 85 849 25 153 757
254 64 516 16 387 064 294 86 436 25 412 184
255 65 025 16 581 375 295 87 025 25 672 375
256 65 536 16 777 216 296 87 616 25 934 336
257 66 049 16 974 593 297 88 209 26 198 073
258 66 564 17 173 512 298 88 804 26 463 592
259 67 081 17 373 979 299 89 401 26 730 899
260 67 600 17 576 000 300 90 000 27 000 000
261 68 121 17 779 581 301 90 601 27 270 901
262 68 644 17 984 728 302 91 204 27 543 608
263 69 169 18 191 447 303 91 809 27 818 127
264 69 696 18 399 744 304 92 416 28 094 464
265 70 225 18 609 625 305 93 025 28 372 625
266 70 756 18 821 096 306 93 636 28 652 616
267 71 289 19 034 163 307 94 249 28 934 443
268 71 824 19 248 832 308 94 864 29 218 112
269 72 361 19 465 109 309 95 481 29 503 629




Table 5 375
”n n2? n n n3 n®
310 96 100 29 791 000 350 122 500 42 875 000
311 96 721 30 080 231 351 123 201 43 243 551
312 97 344 30 371 328 352 123 904 43 614 208
313 97 969 30 664 297 353 124 609 43 986 977
314 98 596 30 959 144 354 125 316 44 361 864
315 99 225 31 255 875 355 126 025 44 738 875
316 99 856 31 554 496 356 126 736 45 118 016
317 100 489 31 855 013 357 127 449 45 499 293
318 101 124 32 157 432 358 128 164 45 882 712
319 101 761 32 461 759 359 128 881 46 268 279
320 102 400 32 768 000 360 129 600 46 656 000
321 103 041 33 076 161 361 130 321 47 045 881
322 103 684 33 386 248 362 131 044 47 437 928
323 104 329 33 698 267 363 131 769 47 832 147
324 104 976 34 012 224 364 132 496 48 228 544
325 105 625 34 328 125 365 133 225 48 621‘125
326 106 276 34 645 976 366 133 956 49 027 896
327 106 929 34 965 783 367 134 689 49 430 863
328 107 584 35 287 552 368 135 424 49 836 032
329 108 241 35 611 289 369 136 161 50 243 409
330 108 900 35 937 000 370 136 900 50 653 000
331 109 561 36 264 691 371 137 641 51 064 811
332 110 224 36 594 368 372 138 384 51 478 848
333 110 889 36 926 037 373 139 129 51 895 117
334 111 556 37 259 704 374 139 876 52 313 624
335 112 225 37 595 375 375 140 625 52 734 375
336 112 896 37 933 056 376 141 376 53 157 376
337 113 569 38 272 753 377 142 129 53 582 633
338 114 244 38 614 472 378 142 884 54 010 152
339 114 921 38 958 219 379 143 641 54 439 939
340 115 600 39 304 000 380 144 400 54 872 000
341 116 281 39 651 821 381 145 161 55 306 341
342 116 964 40 001 688 382 145 924 55 742 968
343 117 649 40 353 607 383 146 689 56 181 887
344 118 336 40 707 584 384 147 456 56 623 104
345 119 025 41 063 625 385 148 225 57 066 625
346 119 716 41 421 736 386 148 996 57 512 456
347 120 409 41 781 923 387 149 769 57 960 603
348 121 104 42 144 192 388 150 544 58 411 072
349 121 801 42 508 549 389 151 321 58 863 869




376

Table 5

n n? n? n n? n
390 152 100 59 319 000 430 184 900 79 507 000
391 152 881 59 776 471 431 185 761 80 062 991
392 153 664 60 236 288 432 186 624 80 621 568
393 154 449 60 698 457 433 187 489 81 182 737
394 155 236 61 162 984 434 188 356 81 746 504
395 156 025 61 629 875 435 189 225 82 312 875
396 156 816 62 099 136 436 190 096 82 881 856
397 157 609 62 570 773 437 190 969 83 453 453
398 158 404 63 044 792 438 191 844 84 027 672
399 159 201 63 521 199 439 192 721 84 604 519
400 160 000 64 000 000 440 193 600 85 184 000
401 160 801 64 481 201 441 194 481 85 766121
402 161 604 64 964 808 442 195 364 86 350 888
403 162 409 65 450 827 443 196 249 86 938 307
404 163 216 65 939 264 444 197 136 87 528 384
405 164 025 66 430 125 445 198 025 88 121 125
406 164 836 66 923 416 446 198 916 88 716 536
407 165 649 67 419 143 447 199 809 89 314 623
408 166 464 67 917 312 448 200 704 89 915 392
409 167 281 68 417 929 449 201 601 90 518 849
410 168 100 68 921 000 450 202 500 91 125 000
411 168 921 69 426 531 451 203 401 91 733 851
412 169 744 69 934 528 452 204 304 92 345 408
413 170 569 70 444 997 453 205 209 92 959 677
414 171 396 70 957 944 454 206 116 93 576 664
415 172 225 71 473 375 455 207 025 94 196 375
416 173 056 71 991 296 456 207 936 94 818 816
417 173 889 72 511 713 457 208 849 95 443 993
418 174 724 73 034 632 458 209 764 96 071 912
419 175 561 73 560 059 459 210 681 96 702 579
420 176 400 74 088 000 460 211 600 97 336 000
421 177 241 74 618 461 461 212 521 97 972 181
422 178 084 75 151 448 462 213 444 98 611 128
423 178 929 75 686 967 463 214 369 99 252 847
424 179 776 76 225 024 464 215 296 99 897 344
425 180 625 76 765 625 465 216 225 100 544 625
426 181 476 77 308 776 466 217 156 101 194 696
427 182 329 77 854 483 467 218 089 101 847 563
428 183 184 78 402 752 468 219 024 102 503 232
429 184 041 78 953 589 469 219 961 103 161 709
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n n nd n n? nd

470 220 900 103 823 000 485 235 225 114 084 125
471 221 841 104 487 111 486 236 196 114 791 256
472 222 784 105 154 048 487 237 169 115 501 303
473 223 729 105 823 817 488 238 144 116 214 272
474 224 676 106 496 424 489 239 121 116 930 169
475 225 625 107 171 875 490 240 100 117 649 000
476 226 576 107 850 176 491 241 081 118 370 771
477 227 529 108 531 333 492 242 064 119 095 488
478 228 484 109 215 352 493 243 049 119 823 157
479 229 441 109 902 239 494 244 036 120 553 784
480 230 400 110 592 000 495 245 025 121 287 375
481 231 361 111 284 641 496 246 016 122 023 936
482 232 324 111 980 168 497 247 009 122 763 473
483 233 289 112 678 587 498 248 004 123 505 992
434 234 256 113 379 904 499 249 001 124 251 499




Answers to Selected Problems

Section 1.1

5.

(a) 4,5, and 7
() (3-2)1 #3121, (3+2)! £31 42!

Section 1.3

5.
6.

(a) 23=21 and £ =15
(b) 6% = £g, 352 = 45, 204% = #,44

Section 2.3

1.
2.

7.
11.

1,9,and 17

(@ x=4,y=—-3 (b) x=6,y=—1
© x=7,9y=-—3 (d) x=39,y=-29
32461, 22338, and 23664

x=171, y=—114, 2 =—-2

Section 2.4

1.

2,

(@) x=2049¢,y=—15—-T¢ (b) x=18+234y=—3—4¢

() x=—18474,y=45—17t (d) x=>54—7T73¢,y=40— 147

(a) No solutions (b) x=2,y=38;x=9,y=20;x=16,y=2

(c) No solutions (d) x=17—57¢,y= 47 — 158¢, where <0

(b) x=8-+24y=—48—154k—5¢,2=16+5k42¢

(a) The fewest coins are 3 dimes and 17 quarters, while 43 dimes and
one quarter give the largest number. It is possible to have 13 dimes
and 13 quarters.

(b) There may be 40 adults and 24 children; or 45 adults and 12 children;
or 50 adults.

(c) 6 sixes and 10 nines.

There may be 5 calves, 41 lambs, and 54 pigs; or 10 calves, 22 lambs,

and 68 pigs; or 15 calves, 3 lambs, and 82 pigs.

$10.21

379
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Section 3.1
2. 25 is a counterexample.

7. All primes <47,
11. (a) 2!¥ —1is prime.
13. (b) 100=10.10=4.25

Section 3.3
3. 2and>5

11. A(22) =23 67
14. 71, 13859
16, 37=—142+34+5+7+11—13417—19423—29 31,
3= —1+42—345—7—11+ 13417 — 19 — 23 4 2(29).
19. 81=34+5473
125 = 5 413 4- 107

Section 4.2
4, (@) 4and6 (b) 0

Section 4.3
2. 89
5 (@ 9 (b 4
12, x=3,y=2 P
Section 4.4
1. (a) x=18 (mod 29) (b) =16 (mod 26)
() x =6, 13, and 20 (mod 21) (d) No solutions
(&) x =45, 94 (mod 98) (f) x=16,59,102,145,188,231,and

274 (mod 301)
2. (a) x=154514y=—1—4
(b) x=13425¢,y=T7—12
(€ x=14+453,y=1+5¢

3. x=11+7(mod 13), y=5+ 6#(mod 13)

4, (a) x=52(mod 105) (b) x=4944 (mod 9889)
(¢) x=785 (mod 1122) (d) x=653 (mod 770)

5. =99 (mod 210)

6. 62

7. (a) 548,549,550  (b) 52| 350, 3% 351, 2¢[ 352

8. 119

9. 30t

10. 3930
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14. 838
15. (@) 17 () 59 (c) 1103

Section 5.2
1. (b) 127.83 (c) 691.493
3. 89.23
4. 29.17,2925.13

Section 5.3
6. 1
8. (b) x =16 (mod 31), x =10 (mod 11), x = 25 (mod 29).

Section 5.4
8. 5,13

11. 12,17;6, 31

Section 6.1
2. 6, 6300402

12. P and pig; 48 =2¢.3

Section 6.3
3. 249, 330

8. (b) 36,39
9. 405

Section 7.2
1. 720, 1152, 9600

17. ¢(n) =16 when n =17, 32, 34, 40, 48, and 60.
é(n) = 24 when » = 35, 39, 45, 52, 56, 70, 72, 78, 84, and 90.

Section 7.3
5 1
6. (b) x=19 (mod 26), x = 34 (mod 40), x =7 (mod 49)

Section 8.1
1. (@ 8,16, 16. (b) 18,18,9. (c) 11,11, 22.

8. (c) 2'7—1is prime;233/22° — 1.
12. @ 3,7. ) 3,5,6,7,10,11, 12, 14.

Section 8.2
2. 1, 4,11, 14; 8, 18, 47, 57; 8, 14, 19, 25.
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3. 3,5=2356=3157=3110=23% 11 =137,12=1318,14 =139,
©2,3=21310=2", 13 =25, 14=27, 15 =211;
5,7=>51%10=5% 11 =59, 14 =521, 15 =517, 17 =57, 19 =515, 20 = 5%,
21 =518,
4. (@ 7,37. (b) 9,10, 13, 14, 15, 17, 23, 24, 25, 31, 38, 40.
5. 11, 50.

Section 8.3
1. (@) 7,11,15,19;2, 3,8, 12, 13, 17, 22, 23.
(b) 2,5;
2,5, 11, 14, 20, 23;
2,5, 11, 14, 20, 23, 29, 32, 38, 41, 47, 50, 56, 59, 65, 68, 74, 77.
4. (b) 3.
5. 6,7, 11,12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35;
7, 11, 13, 15, 17, 19, 29, 35, 47, 53, 63, 65, 67, 69, 71, 75.
11. (b) x =34 (mod 40), x = 30 (mod 77).

Section 8.4
1. ind,5=09,indg5 =9, ind,5 =23, ind;; 5 =3.
2. (@ x=7(mod 11). (b) x=5,6(mod 11).  (c) No solutions.
3. (@ x=6,7,10,11(mod 17). (b) x=>5 (mod 17).
() x=3,5,6,7,10,11,12, 14 (mod 17).  (d) x=1 (mod 16).
4. 7. -
8. (a) Ineach case,4=2,5,6.
b 1,6;1<a<10;1,5,8, 12
12. Only the first equation has a solution.

Section 9.1
1. (@ x=06,9(mod 11). (b) x=4, 6 (mod 13).
(€) x=9, 22 (mod 23).
10. (@) 1,4,5,6,7,9, 11, 16, 17.
) 1,4,5,6,7,9, 13, 16, 20, 22, 23, 24, 25, 28;
1,2,4,5,7,8,9, 10, 14, 16, 18, 19, 20, 25, 28.

Section 9.2

L@ 1% O D © D @ DS (@ (=D

Section 9.3
1. @ 1. () —-1. (© -1 @ 1. (e) 1.
3. (a) Solvable. (b) Not solvable. (c) Solvable.
6. p=2o0rp=1(mod4); p=2o0rp=1 or 3 (mod 8);
p=2o0rp=1(mod 6).
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10. x=9, 16, 19, 26 (mod 35).
12. -1, —1,1,
16. Not solvable.

Section 9.4
1. (b) x=57, 68 (mod 53).
2. (@) x=13, 14 (mod 33). (b) x =42, 83 (mod 5%).
(c) =108, 135 (mod 73).
3. x=5008, 9633 (mod 11%).
4. x =122, 123 (mod 5%); x =11, 15 (mod 33).
6. x=41, 87, 108 (mod 27).
7. (@ Whena=1,x=1,7,9, 15 (mod 2%).
When 2 =9, x =3, 5, 11, 13 (mod 2%).
(b) Whene=1, x=1, 15, 17, 31 (mod 25).
When ¢ =9, x =3, 13, 19, 29 (mod 28).
When =17, x =7, 9, 23, 25 (mod 25),
() Whena=1, x=1, 31, 33, 63 (mod 25).
When ¢ =9, x =3, 29, 35, 61 (mod 28).
When 2 =17, x =7, 25, 39, 57 (mod 2°).
When a =25, x =5, 27, 37, 59 (mod 25).
When a =33, x = 15, 17, 47, 49 (mod 2°).
When 2 = 41, x = 13, 19, 45, 51 (mod 2°).
When ¢ =49, x =7, 25, 39, 57 (mod 28).
When ¢ =57, x =11, 21, 43, 53 (mod 25),
9. (@ 4,4 (b) x=3, 147, 453, 597 (mod 22 .3 . 52),
10. (b) x=>51, 70 (mod 112).

Section 10.1
1. o(n) =2160(21* — 1) 7= 2048(2!* — 1).
8. 56.

11. 3 pq.

14. No.

Section 10.2
3. 233 My,.

Section 10.3
3. (b) 3|22 +5.
7. 25841 =(2%0 — 215 4 1)(22° 4 216 1 1) =5 . 107367629 - 536903681,
9. (c) 43691|27 41 and 59220 4 1.

10. #=315,p=71, and ¢=73.

11. 3|23 41.
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Section 11.1
1. () (16, 12, 20), (16, 63, 65), (16, 30, 34).
(b) (40, 9, 41), (40, 399, 401); (60, 11, 61), (60, 91, 109), (60, 221, 229),
(60, 899, 901).
8. (12,5, 13), (8, 6, 10).
12. @) (G 4 5), (20, 21, 29), (119, 120, 169), (696, 697, 985),
(4059, 4060, 5741).
(b) (5 275 35), (Pa0> %415 1189), (Y23 5 f239, 30391).
13, £, =12, 1, = 6, f,g = 352, fyg — 2042, £1g9; = 11892,

Section 12.2
1. 113 =724 82, 229 =22 4152, 373 =72 | 182,
2. (a) 172 4182 =4613.
5. (b) 3185 =562+ 72, 39690 = 1892 + 632, 62920 = 2422 - 66°.
6. 1105=5:13.17 =92 4322 =122 - 312 =232 - 242; note that 325 =
52.13=124+182=62 +172 =102 + 152
14, 45 =72 —22 =92 — 6% =232 — 222,
18. 1729 =18 4123 =93 1105,

Section 12.3
3. (28702 =(124-22 432 +... 2022 leads to 5742 =4142 + 8% 16>+
242 4322 ... 41522, h
6. 509 =122 4132 4- 142,
7. 459 =152 | 152 32,
10. 61 =5%—43, 127 =73~ G5,
13. 231 =152 422 412 112, 391 =152 492 92 122, 2109 =442 4 122 4
52 4-22,
17. #3=34+4=6%—-5
18. 290 =132 4+ 112 =162 4 52 432 =142 4-92 4-32 |- 22 =152 4 6%
4% 432 423,
Section 13.1
7. 2,5, 144.
8. uy, Hy, Uy, Hy, U, Hyg.
11, %y =24y + 4y, #13 = sty + (g — #).

12, %y, #o, 8y, #g, #10-

Section 13.2

16. 50 =wu, + 5y + 4y, 15 = sz +#45 4ty 4410, 100 =2y 23 +t15 + 41,
120 =uy 2y + 2435 .

19. (3, 4, 5), (5, 12, 13), (8, 15, 17), (39, 80, 89), (105, 208, 233).
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Section 13.3

1.

>

@ [-1;1,1,1,26. ®) [B3;3,1,1,32. (© [1;3,2 3, 2]

@ [0;2,1,1,3,5,3]

(@) —710/457.  (b) 741/170.  (c) 321/460.

@ [0;3,1,2,2,1. () [-1;2,1,7. (© [2;3 1,2 1,2]

@) 1, 3/2, 10/7, 33/23, 76/53, 109/76.

(b) —3, =2, —5/2, —7/3, —12/5, —43/18.

© 0,1/2,4)9, 5/11, 44/97, 93/205.

(b) 225=4.434+4-10+3-34+2.1+2.

(@) 1,3/2,7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985.

(b) 1,2,5/3,7/4,19/11, 26/15, 71/41, 97/56, 265/153.

(©) 2,9/4,38/17, 161/72, 682/305, 2889/1252, 12238/5473, 51841/23184
219602/98209.

(d) 2,5/2,22/9, 49/20, 218/89, 485/198, 2158/881, 4801/1960, 21632/8721.

(€) 2,3,5/2, 83, 37/14, 45/17, 8231, 127/48, 590/223.

b

9. [3;7,16,11], [3;7, 15, 1, 26].
11. (a) x=—8-+51s y=3—19
(b) x=58+4227¢ y= —93 — 364+
(© x=48+45¢ y——168 —18¢
(d) x=-—22—57¢ y=—61—158¢
Section 13-4
3+4V15 —44+4/37 54+v10
1@ p T 9 2
3 3 3
19—v21 314 —1/37
@ —5 © 7353
V5 —1
2. 57—
3 5—4/5 87445
T2 e _
(@ [2;4. () [2;1,1,1,4. (o [2;3]. (@ [2;1,3}
© [1;3,1,2,1,4].
6. 1677/433
7. (a) 1264/465.
9. (2) 34/27. (b) 301/239.
11. 3, 355/113,
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Section 13-5

2. (a) x=8,y=3. b) x=10, y=3. (0 x=17, y=4.
(@) x=11,y=2. (¢) x=25, y=4.

3. (@ x=3,y=2;x=17, y=12; x=99, y=70.
(b) x=2,y=1;x=7, y=4, x=26, y=15; x=97, y=56;

x =362, y==209.
(€) x=9,y=4; x=161, y="72.
4. 48, 1680.

5. (a) x=24, y=5; x=1151, y=240.
(b) x=51, y=10; x=5201, y=1020.
() x=23, y=4; x=1057, y=184.
6. (a) x=9801, y=1820. (b) x=2049, y=320.
(c) x=3699, y=430.
7. (@ x=18,y=5. (b) x=70,y=13. (¢) x=32, y=>5.
12, x =449, y=060; x =13455, y=1798.
13. (b) x=254, y=96; x=4048, y =1530.
() x=213, y=36; x=2538, y=429.



Anthoniszoon, Adriaen 326
abundant number 233
Alcuin of York (735-804) 219
algebraic number 253
amicable pair 233
triple 234
Archimedean property 2
Archimic(l)es (287-212 B.C.) 70
, 3
Archimedean cattle problem 340
Archimedean value of 7 325
measurement of a circle 325
arithmetic function 110
Artin, Emil 167
Artin conjecture 167
Aryabhatta (7-476) 17

Bachet, Claude (1587-1638)
92, 242, 274

Barlow, Peter (1776-1862) 229

Theory of Numbers 229

base for a number system 78

belonging to an exponent 156

Bennett, G. 236

Bernoulli, Daniel (1700-1782)
134, 135

Bernoulli, Johann (1667-1748)
134

Bernoulli, Nicolaus (1695~
1726) 134, 135
Bertrand’s conjecture 64, 314
Bhaskara (1114-11587) 90
binary number system 78
Binet formula 298
binomial coefficient 9, 12, 13,
17, 102, 128, 298
binomial theorem 11
Bombelli, Rafael (1526-?) 300
L’ Algebra Opera 300
bracket function 126
Brahmaguta (598-7?) 90, 340
Brillhart, John 236
Brouncker, William (1620-1684)
330, 331, 341

canonical form 49

Carlyle, Thomas 191

Carmichael’s conjecture 142

Cataldi, Pietro (1548-1626)
222

Cauchy, Augustine-Louis
(1789-1857) 184

Chinese Remainder Theorem
87, 146

Cole, Frederick Nelson (1861~
1927) 226

common divisor 24

common multiple 35

INDEX

complete set of residues 71
composite number 46
congruence 70
binomial 177
cancellation in 74

linear 82,
polynomial 79, 162

properties of 72
quadratic 104, 184, 211
simultaneous linear 86
solution of linear 82
continued fraction 299
convergent 304

expansion of Vd 334

best approximation 332

infinite simple 314

period 315

periodic 315

finite simple 299

partial denominators 300
Criterion, Euler’s 186
Cunningham, Allen Joseph

(1842-1928) 229

d’Alembert, Jean (1717-1783)
69, 260

decimal representation 79

decimal system 79

Dedekind, Richard (1831-
1916) 184

deficient number 233

de la Vallée Poussin, Charles
(1866-1962) 318

de Polignac, C. 65

Descartes, René (1596-1650)
93, 234, 260, 274

Dickson, Leonard Eugene
(1874-1954) 280

difference of cubes 282

difference of squares 269,
270, 272

digits 79

x* 4+ y*= 24252
X" 4 yh=z" 252
Diophantus of Alexandria
(circa 250) 38, 274
Arithmetica 38, 92, 94, 242,
300
Dirichlet, Peter Gustav
(1805-1859) 611, 184,
188, 203, 253, 263
Dirichlet’s Pigeon-{ho]e
Principle 263 .
Dirichlet’s Theoretn 61
divides 23 .
divisibility criterio
by 2, 4, 8, 2% 1

by3 8l
by 5 81 .

by 7, 11, 13 80, 81
by9 80

Division Algorithm 20

rdivisors 23

common 24

greatest common 25
harmonic mean of 225
number of 112
product of 114

sum of 112

Eisenstein, Ferdinand Gott-
hold (1823-1852) 184,
204
Enke, Johann (1791-1865)
317
Eratosthenes (276-196 B.C.)
53, 340
sieve ot 53
Euclid of Alexandria (circa
350 B.C.) 16, 54, 220
Elements 16, 31, 46, 50,
54, 92, 191, 219, 243
Euclidean Algorithm 31

diophantine equations 39, 308 Euclid’s formula for perfect

ax—+ by=c39
ax+ by+ cz=d 44
x2 4 y2 = n 267
x2—y*=p94

x2 4 y2 = z2 245
x2 4 y*= 723257
x2 4 2y = 72 257
x*+ y*= 22 250
x* 4 y* = 272 258
x4 — y* = 22254
x4 — y*= 272258
x4 — 4y* = 7% 258

numbers 220

Euclid’s Lemma 28

Euler, Leonhard (1707-1783)
17, 58, 59, 134, 174, 179,
203, 220, 225, 231, 235,
253, 260, 261, 274, 275,
281, 315, 316, 321, 322, 331

Euler’s Criterion 186

Euler’s Identity 275

Euler’s phi-function 136

Euler’s Theorem 143, 145,
147

exponent:

belonging to 156
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of a prime in n! 126
universal 175

factor 23
factorial 7
factorization into primes 48
Fermat, Pierre de (1601-1665)
93, 97, 134, 228, 234,
235, 242, 248, 250, 254,
256, 260, 261, 264, 274
» 329, 330
Fermat numbers 235, 239, 271
Fermat primes 235
Fermat’s Conjecture 242, 253
Fermat’s factorization method
94
Fermat’s Last Theorem 242
Fermat’s Little Theorem 98
Fermat’s Method of Infinite
Descent 250
Fibonacci (1180-12507)
286, 299
Liber Abaci 286, 299
Fibonacci numbers 287, 300
Fibonacci sequence 287
finite simple continued
fraction 299
Frederick the Great 135, 260
Frénicle de Bessy, Bernhard

(1605-1670) 97, 329, 330, 33

functions:
arithmetic 110
multiplicative 115
number-theoretic 110
zeta 315
Fundamental Theorem of
Algebra 69
Fundamental Theorem of
Arithmetic 48

Gauss, Karl Friedrich (1777-
1855) 68, 102, 148, 174,
190, 203, 204, 237, 238,
274, 317

Disquisitiones Arithmeticae
68, 69, 70, 167, 190, 204,
237

Gauss’ Lemma 195

gematria 15

Girard, Albert (1595-1632)
69, 264, 287

Goldbach, Christian (1690-
1764) 58, 64, 135 .

Goldbach’s Conjecture 59,
64, 119, 142

greatest common divisor 25

greatest integer function 126

Hadamard, Jacques (1865—
1963) 318

Hagis, Peter 231

Hamilton, William Rowan
(1805-1865) 261

Hardy, Godfrey Harold
(1877-1947) 272

harmonic mean 225

Index

Hilbert, David (1862-1943)
280

Holzman, Wilhelm (see
Xylander)

ideal numbers 253
incongruent 70

index of an integer 176
indicator 136

induction, mathematical 3-
induction hypothesis 5
induction step 5

infinite descent 250
integers (see numbers)

Jacobi, Carl Gustav (1804—
1851) 184

Jacobi symbol 210

Jensen, K. L. 254

Kanold, Hans-Joachim 231

k-perfect number 224

Kronecker, Leopold (1823-
1891) 2, 184

Kummer, Ernst Eduard
(1810-1893) 253

Lagrange, Joseph Louis
(1736-1813) 64, 103, 260,
262, 274, 279

Meécanique Analytique 261
Théorie des Fonctions
Analytique 262

Lagrange’s four-square
theorem 279

Lagrange’s Theorem 162

Lambert, J. H. (1728-1777) 323

Lamé, Gabriel (1795-1870)
33, 253

Landau, Edmond (1877-1938)
59

Lander, L. J. 281

Landry, Fortune 238

Laplace, Pierre Simon
(1749-1827) 70, 260

lattice point 204

Law of Quadratic Recipro-
city 204

least common multiple 35

least positive residue 71

Legendre, Adrien-Marie
(1752-1833) 174, 190,
191, 203, 204, 253, 260,

274, 316, 319
Eléments de Géométrie 191
Théorie des Nombres 190,
203, 316

Legendre’s formula 127

Legendre symbol 191

Leibniz, Gottfried (1646—
1716) 93, 97, 103, 260

Lemma:

Euclid’s 28

Gauss’ 195

Thue’s 263
Leonardo of Pisa (see

Fibonacci)

linear combination 25

linear congruence 82

linear diophantine equation 39

Linnik, Y. V. (1915-1972) 280

Liouville, Joseph (1809-1882)
280

Liouville A-function 125, 132

Littlewood, J. E. (1885- )
319

logarithmic integral 316

Lucas, Edouard (1842-1891)
226, 229, 286, 298

Lucas sequence 7

Luther, Martin 16

Maclaurin, Colin (1698
1746) 260
Mangolidt fungtion 124
mathematical induction:
principle of '3
second principle of 6
McDaniel, Wayne 231
Mersenne, Ma}rin (1588-
1648) 94, 97, 225, 264
Cogitata Physica-Mathe-
matica 225
Mersenne nunhbers 225, 233,
238 |
Mersenne prir{les 225, 235
Mills, W. H. (1921- ) 63
Mébius Inversion Formula
122
Mobius p-funétion 120
Morrison, Michael 236
Miiller, Johannes (see
Regiomontanus)
multiple 23
least common 35
multiplicative function 115
multiplicatively perfect 224
multiply perfect 224

Newton, Isaac (1642-1727)
70, 93, 260
Nicomachus of Gerasa (circa
100) 17, 87, 219
Introductio Arithmeticae
87, 219
nonresidue, quadratic 185
numbers
abundant 233
algebraic 253
amicable 233
composite 46
congruent, incongruent 90
deficient 233
even, odd 22
Fermat 235
Fibonacci 287
ideal 253
k-perfect 224
Mersenne 225
multiplicatively perfect 224
multiply perfect 224
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palindromic 82

perfect 218

prime 46

pseudoprime 101

relatively prime 27

square-free 52

triangular 17
number-theoretic function 110

odd number 22

odd perfect number 231, 233,
234, 271

order of an integer 156

palindrome 82
Parkin, Thomas 281
partial denominator 300
Pascal, Blaise (1623-1662)
12, 93, 260
Traité du Triangle Arith-
métique 12
Pascal’s rule 10
Pascal’s triangle 10
Pell, John (1711-1685) 331
Pell equation 331
positive solution 332
fundamental solution 327
perfect numbers 218, 230, 233
odd 231
Pfaff, Johann Friedrich
(1765-1825) 70
phi-function 136
Piazzi, Giuseppi (1746-1826)
69

Pigeon-hole Principle 263

Plutarch 17

polynomial congruences 79,
162

Pope Leo X 16

Powers, R. E. 229

Prime Number Theorem 314,
318

prime representing function

3

primes 46

in arithmetic progression
61, 62
contained in n! 126
factorization into 48, 49
Fermat 235
of the form 4n+ 1 161, 194
of the form 4n+ 3 61
of the form 6n+ 1 161, 209
of the form 6n - 5 64
of the form 8n+ 1 161
of the form 8n -+ 3 209
of the form 8n+ 7 199
of the form 2kp + 1 161
infinitude of 54, 57, 140,
238, 316

Mersenne 225
pseudo 101
regular 253
twin 58

prime-triplet 64

Index

primitive root 159
existence of 160, 174
pseudoprime 101, 102, 238
Pythagoras (569-500 B.c.) 14,
17, 50, 234
Pythagorean equation 243,
245
Pythagorean triangle 247,
250, 256, 258
Pythagorean triple 243
primitive 243
Pythagoreans 14, 218
quadratic congruence 104, 184
quadratic nonresidue 185

Quadratic Reciprocity Law
203, 204
generalized 210
quadratic residue 185
quotient in division 20

Ramanujan, S. (1887-1920)
272

recursive sequence 287

reduced set of residues 148

Regiomontanus (1436-1473)
90, 92, 281, 300

Regius, Hudalrichus 222

regular polygons 69, 237, 238

regular prime 253

relatively prime 27

remainder in division 20

Riemann, George Friedrich
(1826-1866) 318

Riemann’s Explicit Formula

Riemann’s Hypothesis 318

Saint Augustine 219
Selberg, Atle (1917-
sieve of Eratosthenes 53
simultaneous congruences 86
sociable chain 234
square-free integer 52, 125,
141, 153
Sterling, James (1692-1770)
260
Steurwald, R. 231
sum of cubes 224, 282, 283
sum of two squares 264, 267,
268
sum of three squares 273
sum of four squares 277, 279
Sun-Tsu 86, 88
Sylvester, James Joseph
(1814-1897) 64, 233
symbols:
alb23
akb 23
a=b (mod n) 70
az# b (mod n) 71
(a/b) 210
(a/p) 191
(an---azazao), 78
[ag; ay, -, a,] 303
e 322, 328

) 320

389

F, 159
ged (a, b) 25
ind a 176
Icm (a, b) 35
A(n) 125
An) 124
Li(x) 316
M, 225

u(n) 120
nt7

n
WE
pa 56
321, 323,325,
326, 328
w(x) 314
P(n) 165
II,,, 113
$(n) 136
Z41n 110
a(n) 110
a,(n) 120
7(n) 110
[x] 126
I(s) 315
(1/p) 192
(—1/p) 193
(2/p) 197
(—2/p) 209
3/p) 207
(—3/p) 209 '
(5/p) 210
(6/p) 210
(7/p) 210

Tabit ibn Korra (B26-901) 234
Taylor, Brook (1685-1731)
260
Tchebychef, P. L. (1821-
1894) 64, 317
inequalities 317
Theon of Alexandria (circa
370) 16
Theorem:
Chinese Remainder 87
Dirichlet’s 61
Euclid’s 54
Euler’s 143
Fermat’s 98
Gauss’ 148
Lagrange’s 162
Wilson’s 103
Thue, Axel (1863-1922) 263
Thue’s Lemma 263
totient 136
triangles
Pascal’s 10
Pythagorean 247
triangular numbers 17, 81,
224, 250, 256, 271, 272,
282, 283, 293
Tsu Chung-Chih (430-501) 32¢
Turcaninov, A. 233
twin primes 58, 64, 119, 141,
225, 238
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unique factorization 49
universal exponent 175
Vinogradov, I. M. (1891- )
Wallis, John (1616-1703) 329, 330, 331
opera mathematica 331,
Waring, Edward (1734-1798)
102, 279
Meditationes Algebraicae
102, 279
Waring’s Problem 280
Well Ordering Principle 2
Wilson, John (1741-1793) 102
Wilson’s Theorem 103, 169
Xylander (1532-1576) 92
Yih-hing 90
zeta function 315
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