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Preface

These notes started in the summer of 1993 when I was teaching
Number Theory at the Center for Talented Youth Summer Program
at the Johns Hopkins University. The pupils were between 13 and 16
years of age.

The purpose of the course was to familiarise the pupils with contest-
type problem solving. Thus the majority of the problems are taken
from well-known competitions:

AHSME American High School Mathematics Examination
AIME American Invitational Mathematics Examination
USAMO United States Mathematical Olympiad
IMO International Mathematical Olympiad
ITT International Tournament of Towns
MMPC Michigan Mathematics Prize Competition
(UM)2 University of Michigan Mathematics Competition
STANFORD Stanford Mathematics Competition
MANDELBROT Mandelbrot Competition

Firstly, I would like to thank the pioneers in that course: Samuel
Chong, Nikhil Garg, Matthew Harris, Ryan Hoegg, Masha Sapper,
Andrew Trister, Nathaniel Wise and Andrew Wong. I would also like
to thank the victims of the summer 1994: Karen Acquista, Howard
Bernstein, Geoffrey Cook, Hobart Lee, Nathan Lutchansky, David
Ripley, Eduardo Rozo, and Victor Yang.

I would like to thank Eric Friedman for helping me with the typing,
and Carlos Murillo for proofreading the notes.

Due to time constraints, these notes are rather sketchy. Most of
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the motivation was done in the classroom, in the notes I presented a
rather terse account of the solutions. I hope some day to be able to
give more coherence to these notes. No theme requires the knowl-
edge of Calculus here, but some of the solutions given use it here
and there. The reader not knowing Calculus can skip these prob-
lems. Since the material is geared to High School students (talented
ones, though) I assume very little mathematical knowledge beyond
Algebra and Trigonometry. Here and there some of the problems
might use certain properties of the complex numbers.

A note on the topic selection. I tried to cover most Number The-
ory that is useful in contests. I also wrote notes (which I have not
transcribed) dealing with primitive roots, quadratic reciprocity, dio-
phantine equations, and the geometry of numbers. I shall finish writ-
ing them when laziness leaves my weary soul.

I would be very glad to hear any comments, and please forward
me any corrections or remarks on the material herein.

David A. Santos



Chapter 1
Preliminaries

1.1 Introduction

We can say that no history of mankind would ever be complete
without a history of Mathematics. For ages numbers have fasci-
nated Man, who has been drawn to them either for their utility at
solving practical problems (like those of measuring, counting sheep,
etc.) or as a fountain of solace.

Number Theory is one of the oldest and most beautiful branches
of Mathematics. It abounds in problems that yet simple to state, are
very hard to solve. Some number-theoretic problems that are yet
unsolved are:

1. (Goldbach’s Conjecture) Is every even integer greater than 2
the sum of distinct primes?

2. (Twin Prime Problem) Are there infinitely many primes p such
that p + 2 is also a prime?

3. Are there infinitely many primes that are 1 more than the square
of an integer?

4. Is there always a prime between two consecutive squares of
integers?

In this chapter we cover some preliminary tools we need before
embarking into the core of Number Theory.

1



2 Chapter 1

1.2 Well-Ordering

The set N = {0, 1, 2, 3, 4, . . .} of natural numbers is endowed with two
operations, addition and multiplication, that satisfy the following prop-
erties for natural numbers a, b, and c:

1. Closure: a + b and ab are also natural numbers.

2. Associative laws: (a + b) + c = a + (b + c) and a(bc) = (ab)c.

3. Distributive law: a(b + c) = ab + ac.

4. Additive Identity: 0 + a = a + 0 = a

5. Multiplicative Identity: 1a = a1 = a.

One further property of the natural numbers is the following.

1 Axiom Well-Ordering Axiom Every non-empty subset S of the nat-
ural numbers has a least element.

As an example of the use of the Well-Ordering Axiom, let us prove
that there is no integer between 0 and 1.

2 Example Prove that there is no integer in the interval ]0; 1[.

Solution: Assume to the contrary that the set S of integers in ]0; 1[ is
non-empty. Being a set of positive integers, it must contain a least
element, say m. Now, 0 < m2 < m < 1, and so m2 ∈ S . But this is
saying that S has a positive integer m2 which is smaller than its least
positive integer m. This is a contradiction and so S = ∅.

We denote the set of all integers by Z, i.e.,

Z = {. . . − 3,−2,−1, 0, 1, 2, 3, . . .}.

A rational number is a number which can be expressed as the ratio
a

b
of two integers a, b, where b 6= 0. We denote the set of rational

numbers by Q. An irrational number is a number which cannot be
expressed as the ratio of two integers. Let us give an example of an
irrational number.
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3 Example Prove that
√

2 is irrational.

Solution: The proof is by contradiction. Suppose that
√

2 were ra-

tional, i.e., that
√

2 =
a

b
for some integers a, b. This implies that the

set

A = {n
√

2 : both n and n
√

2 positive integers}

is nonempty since it contains a. By Well-Ordering A has a smallest
element, say j = k

√
2. As

√
2 − 1 > 0,

j(
√

2 − 1) = j
√

2 − k
√

2 = (j − k)
√

2

is a positive integer. Since 2 < 2
√

2 implies 2 −
√

2 <
√

2 and also
j
√

2 = 2k, we see that

(j − k)
√

2 = k(2 −
√

2) < k(
√

2) = j.

Thus (j − k)
√

2 is a positive integer in A which is smaller than j. This
contradicts the choice of j as the smallest integer in A and hence,
finishes the proof.

4 Example Let a, b, c be integers such that a6 + 2b6 = 4c6. Show that
a = b = c = 0.

Solution: Clearly we can restrict ourselves to nonnegative numbers.
Choose a triplet of nonnegative integers a, b, c satisfying this equa-
tion and with

max(a, b, c) > 0

as small as possible. If a6 + 2b6 = 4c6 then a must be even, a = 2a1.
This leads to 32a6

1 + b6 = 2c6. Hence b = 2b1 and so 16a6
1 + 32b6

1 = c6.

This gives c = 2c1, and so a6
1 + 2b6

1 = 4c6
1. But clearly max(a1, b1, c1) <

max(a, b, c). This means that all of these must be zero.

5 Example (IMO 1988) If a, b are positive integers such that
a2 + b2

1 + ab
is

an integer, then
a2 + b2

1 + ab
is a perfect square.
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Solution: Suppose that
a2 + b2

1 + ab
= k is a counterexample of an integer

which is not a perfect square, with max(a, b) as small as possible. We
may assume without loss of generality that a < b for if a = b then

0 < k =
2a2

a2 + 1
< 2,

which forces k = 1, a perfect square.
Now, a2+b2−k(ab+1) = 0 is a quadratic in b with sum of the roots

ka and product of the roots a2−k. Let b1, b be its roots, so b1+b = ka

and b1b = a2 − k.

As a, k are positive integers, supposing b1 < 0 is incompatible with
a2 + b2

1 = k(ab1 + 1). As k is not a perfect square, supposing b1 = 0 is
incompatible with a2 + 02 = k(0 · a + 1). Also

b1 =
a2 − k

b
<

b2 − k

b
< b.

Thus we have found another positive integer b1 for which
a2 + b2

1

1 + ab1

= k

and which is smaller than the smallest max(a, b). This is a contradic-
tion. It must be the case, then, that k is a perfect square.

Ad Pleniorem Scientiam

6 APS Find all integer solutions of a3 + 2b3 = 4c3.

7 APS Prove that the equality x2 + y2 + z2 = 2xyz can hold for whole
numbers x, y, z only when x = y = z = 0.

1.3 Mathematical Induction

The Principle of Mathematical Induction is based on the following
fairly intuitive observation. Suppose that we are to perform a task
that involves a certain number of steps. Suppose that these steps
must be followed in strict numerical order. Finally, suppose that we
know how to perform the n-th task provided we have accomplished
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the n − 1-th task. Thus if we are ever able to start the job (that is, if
we have a base case), then we should be able to finish it (because
starting with the base case we go to the next case, and then to the
case following that, etc.).

Thus in the Principle of Mathematical Induction, we try to ver-
ify that some assertion P(n) concerning natural numbers is true for
some base case k0 (usually k0 = 1, but one of the examples below
shows that we may take, say k0 = 33.) Then we try to settle whether
information on P(n − 1) leads to favourable information on P(n).

We will now derive the Principle of Mathematical Induction from
the Well-Ordering Axiom.

8 Theorem Principle of Mathematical Induction If a setS of non-
negative integers contains the integer 0, and also contains the in-
teger n + 1 whenever it contains the integer n, then S = N.

Proof Assume this is not the case and so, by the Well-Ordering Prin-
ciple there exists a least positive integer k not in S . Observe that
k > 0, since 0 ∈ S and there is no positive integer smaller than 0. As
k − 1 < k, we see that k − 1 ∈ S . But by assumption k − 1 + 1 is also in
S , since the successor of each element in the set is also in the set.
Hence k = k − 1 + 1 is also in the set, a contradiction. Thus S = N. ❑

The following versions of the Principle of Mathematical Induction
should now be obvious.

9 Corollary If a set A of positive integers contains the integer m and
also contains n + 1 whenever it contains n, where n > m, then A

contains all the positive integers greater than or equal to m.

10 Corollary Principle of Strong Mathematical Induction If a set A

of positive integers contains the integer m and also contains n +

1 whenever it contains m + 1, m + 2, . . . , n, where n > m, then A

contains all the positive integers greater than or equal to m.

We shall now give some examples of the use of induction.
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11 Example Prove that the expression

33n+3 − 26n − 27

is a multiple of 169 for all natural numbers n.

Solution: For n = 1 we are asserting that 36 − 53 = 676 = 169 · 4 is
divisible by 169, which is evident. Assume the assertion is true for
n − 1, n > 1, i.e., assume that

33n − 26n − 1 = 169N

for some integer N. Then

33n+3 − 26n − 27 = 27 · 33n − 26n − 27 = 27(33n − 26n − 1) + 676n

which reduces to
27 · 169N + 169 · 4n,

which is divisible by 169. The assertion is thus established by induc-
tion.

12 Example Prove that

(1 +
√

2)2n + (1 −
√

2)2n

is an even integer and that

(1 +
√

2)2n − (1 −
√

2)2n = b
√

2

for some positive integer b, for all integers n ≥ 1.

Solution: We proceed by induction on n. Let P(n) be the proposition:
“(1 +

√
2)2n + (1 −

√
2)2n is even and (1 +

√
2)2n − (1 −

√
2)2n = b

√
2 for

some b ∈ N.” If n = 1, then we see that

(1 +
√

2)2 + (1 −
√

2)2 = 6,

an even integer, and

(1 +
√

2)2 − (1 −
√

2)2 = 4
√

2.
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Therefore P(1) is true. Assume that P(n − 1) is true for n > 1, i.e.,
assume that

(1 +
√

2)2(n−1) + (1 −
√

2)2(n−1) = 2N

for some integer N and that

(1 +
√

2)2(n−1) − (1 −
√

2)2(n−1) = a
√

2

for some positive integer a.

Consider now the quantity

(1 +
√

2)2n + (1 −
√

2)2n = (1 +
√

2)2(1 +
√

2)2n−2 + (1 −
√

2)2(1 −
√

2)2n−2.

This simplifies to

(3 + 2
√

2)(1 +
√

2)2n−2 + (3 − 2
√

2)(1 −
√

2)2n−2.

Using P(n − 1), the above simplifies to

12N + 2
√

2a
√

2 = 2(6N + 2a),

an even integer and similarly

(1 +
√

2)2n − (1 −
√

2)2n = 3a
√

2 + 2
√

2(2N) = (3a + 4N)
√

2,

and so P(n) is true. The assertion is thus established by induction.

13 Example Prove that if k is odd, then 2n+2 divides

k2n

− 1

for all natural numbers n.

Solution: The statement is evident for n = 1, as k2−1 = (k−1)(k+1) is
divisible by 8 for any odd natural number k because both (k−1) and
(k + 1) are divisible by 2 and one of them is divisible by 4. Assume
that 2n+2|k2n

− 1, and let us prove that 2n+3|k2n+1

− 1. As k2n+1

− 1 =

(k2n

− 1)(k2n

+ 1), we see that 2n+2 divides (k2n − 1), so the problem
reduces to proving that 2|(k2n+1). This is obviously true since k2n odd
makes k2n + 1 even.
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14 Example (USAMO 1978) An integer n will be called good if we
can write

n = a1 + a2 + · · · + ak,

where a1, a2, . . . , ak are positive integers (not necessarily distinct) sat-
isfying

1

a1

+
1

a2

+ · · · + 1

ak

= 1.

Given the information that the integers 33 through 73 are good,
prove that every integer ≥ 33 is good.

Solution: We first prove that if n is good, then 2n + 8 and 2n + 9 are
good. For assume that n = a1 + a2 + · · · + ak, and

1 =
1

a1

+
1

a2

+ · · · + 1

ak

.

Then 2n + 8 = 2a1 + 2a2 + · · · + 2ak + 4 + 4 and

1

2a1

+
1

2a2

+ · · · + 1

2ak

+
1

4
+

1

4
=

1

2
+

1

4
+

1

4
= 1.

Also, 2n + 9 = 2a1 + 2a2 + · · · + 2ak + 3 + 6 and

1

2a1

+
1

2a2

+ · · · + 1

2ak

+
1

3
+

1

6
=

1

2
+

1

3
+

1

6
= 1.

Therefore,

if n is good both 2n + 8 and 2n + 9 are good. (1.1)

We now establish the truth of the assertion of the problem by
induction on n. Let P(n) be the proposition “all the integers n, n +

1, n + 2, . . . , 2n + 7” are good. By the statement of the problem, we
see that P(33) is true. But (1.1) implies the truth of P(n + 1) whenever
P(n) is true. The assertion is thus proved by induction.

We now present a variant of the Principle of Mathematical In-
duction used by Cauchy to prove the Arithmetic-Mean-Geometric
Mean Inequality. It consists in proving a statement first for powers of
2 and then interpolating between powers of 2.
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15 Theorem (Arithmetic-Mean-Geometric-Mean Inequality) Let a1, a2, . . . , an

be nonnegative real numbers. Then

n
√

a1a2 · · ·an ≤ a1 + a2 + · · · + an

n
.

Proof Since the square of any real number is nonnegative, we have

(
√

x1 −
√

x2)
2 ≥ 0.

Upon expanding,
x1 + x2

2
≥ √

x1x2, (1.2)

which is the Arithmetic-Mean-Geometric-Mean Inequality for n =

2. Assume that the Arithmetic-Mean-Geometric-Mean Inequality
holds true for n = 2k−1, k > 2, that is, assume that nonnegative real
numbers w1, w2, . . . , w2k−1 satisfy

w1 + w2 + · · · + w2k−1

2k−1
≥ (w1w2 · · ·w2k−1)1/2k−1

. (1.3)

Using (1.2) with

x1 =
y1 + y2 + · · · + y2k−1

2k−1

and

x2 =
y2k−1+1 + · · · + y2k

2k−1
,

we obtain that

y1 + y2 + · · · + y2k−1

2k−1
+

y2k−1+1 + · · · + y2k

2k−1

2
≥

(

(
y1 + y2 + · · · + y2k−1

2k−1
)(

y2k−1+1 + · · · + y2k

2k−1
)

)1/2

Applying (1.3) to both factors on the right hand side of the above ,
we obtain

y1 + y2 + · · · + y2k

2k
≥ (y1y2 · · ·y2k)

1/2k

. (1.4)

❑

This means that the 2k−1-th step implies the 2k-th step, and so we
have proved the Arithmetic-Mean-Geometric-Mean Inequality for
powers of 2.
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Now, assume that 2k−1 < n < 2k. Let

y1 = a1, y2 = a2, . . . , yn = an,

and

yn+1 = yn+2 = · · · = y2k =
a1 + a2 + · · · + an

n
.

Let

A =
a1 + · · · + an

n
and G = (a1 · · ·an)1/n.

Using (1.4) we obtain

a1 + a2 + · · · + an + (2k − n)
a1 + · · · + an

n
2k

≥
(

a1a2 · · ·an(
a1 + · · · + an

n
)(2k−n)

)1/2k

,

which is to say that

nA + (2k − n)A

2k
≥ (GnA2k−n)1/2k

.

This translates into A ≥ G or

(a1a2 · · ·an)
1/n ≤ a1 + a2 + · · · + an

n
,

which is what we wanted.

16 Example Let s be a positive integer. Prove that every interval [s; 2s]

contains a power of 2.

Solution: If s is a power of 2, then there is nothing to prove. If s is not
a power of 2 then it must lie between two consecutive powers of 2,
i.e., there is an integer r for which 2r < s < 2r+1. This yields 2r+1 < 2s.
Hence s < 2r+1 < 2s, which gives the required result.

17 Example Let M be a nonempty set of positive integers such that
4x and [

√
x] both belong to M whenever x does. Prove that M is the

set of all natural numbers.
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Solution: We will do this by induction. First we will prove that 1 be-
longs to the set, secondly we will prove that every power of 2 is in
the set and finally we will prove that non-powers of 2 are also in the
set.

Since M is a nonempty set of positive integers, it has a least el-
ement, say a. By assumption [

√
a] also belongs to M , but

√
a < a

unless a = 1. This means that 1 belongs to M .

Since 1 belongs to M so does 4, since 4 belongs to M so does
4 · 4 = 42, etc.. In this way we obtain that all numbers of the form
4n = 22n, n = 1, 2, . . . belong to M . Thus all the powers of 2 raised to
an even power belong to M . Since the square roots belong as well
to M we get that all the powers of 2 raised to an odd power also
belong to M . In conclusion, all powers of 2 belong to M .

Assume now that n ∈ N fails to belong to M . Observe that n

cannot be a power of 2. Since n 6∈ M we deduce that no integer
in A1 = [n2, (n + 1)2) belongs to M , because every member of y ∈
A1 satisfies [

√
y] = n. Similarly no member z ∈ A2 = [n4, (n + 1)4)

belongs to M since this would entail that z would belong to A1, a
contradiction. By induction we can show that no member in the
interval Ar = [n2r

, (n + 1)2r

) belongs to M .
We will now show that eventually these intervals are so large that

they contain a power of 2, thereby obtaining a contradiction to the
hypothesis that no element of the Ar belonged to M . The function

f :
R∗

+ → R

x 7→ log2 x

is increasing and hence log2(n + 1) − log2 n > 0. Since the function

f :
R → R∗

+

x 7→ 2−x

is decreasing, for a sufficiently large positive integer k we have

2−k < log2(n + 1) − log2 n.

This implies that
(n + 1)2k

> 2n2k

.

Thus the interval [n2k

, 2n2k

] is totally contained in [n2k

, (n + 1)2k

). But
every interval of the form [s, 2s] where s is a positive integer contains
a power of 2. We have thus obtained the desired contradiction.
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Ad Pleniorem Scientiam

18 APS Prove that 11n+2+122n+1 is divisible by 133 for all natural num-
bers n.

19 APS Prove that

1 −
x

1!
+

x(x − 1)

2!
−

x(x − 1)(x − 2)

3!

+ · · · + (−1)nx(x − 1)(x − 2) · · · (x − n + 1)

n!

equals

(−1)n(x − 1)(x − 2) · · · (x − n)

n!

for all non-negative integers n.

20 APS Let n ∈ N. Prove the inequality

1

n + 1
+

1

n + 2
+ · · · + 1

3n + 1
> 1.

21 APS Prove that

√

2 +

√

2 + · · · +
√

2
︸ ︷︷ ︸

n radical signs

= 2 cos
π

2n+1

for n ∈ N.

22 APS Let a1 = 3, b1 = 4, and an = 3an−1 , bn = 4bn−1 when n > 1.

Prove that a1000 > b999.

23 APS Let n ∈ N, n > 1. Prove that

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
<

1√
3n + 1

.



Mathematical Induction 13

24 APS Prove that if n is a natural number, then

1 · 2 + 2 · 5 + · · · + n · (3n − 1) = n2(n + 1).

25 APS Prove that if n is a natural number, then

12 + 32 + 52 + · · · + (2n − 1)2 =
n(4n2 − 1)

3
.

26 APS Prove that
4n

n + 1
<

(2n)!

(n!)2

for all natural numbers n > 1.

27 APS Prove that the sum of the cubes of three consecutive posi-
tive integers is divisible by 9.

28 APS If |x| 6= 1, n ∈ N prove that

1

1 + x
+

2

1 + x2
+

4

1 + x2
+

8

1 + x8
+ · · · + 2n

1 + x2n =
1

x − 1
+

2n+1

1 − x2n+1
.

29 APS Is it true that for every natural number n the quantity n2 +

n + 41 is a prime? Prove or disprove!

30 APS Give an example of an assertion which is not true for any
positive integer, yet for which the induction step holds.

31 APS Give an example of an assertion which is true for the fisrt
two million positive integers but fails for every integer greater than
2000000.

32 APS Prove by induction on n that a set having n elements has
exactly 2n subsets.

33 APS Prove that if n is a natural number,

n5/5 + n4/2 + n3/3 − n/30

is always an integer.
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34 APS (Paul Halmos: Problems for Mathematicians Young and Old)
Every man in a village knows instantly when another’s wife is unfaith-
ful, but never when his own is. Each man is completely intelligent
and knows that every other man is. The law of the village demands
that when a man can PROVE that his wife has been unfaithful, he
must shoot her before sundown the same day. Every man is com-
pletely law-abiding. One day the mayor announces that there is at
least one unfaithful wife in the village. The mayor always tells the
truth, and every man believes him. If in fact there are exactly forty
unfaithful wives in the village (but that fact is not known to the men,)
what will happen after the mayor’s announcement?

35 APS 1. Let a1, a2, . . . an be positive real numbers with

a1 · a2 · · ·an = 1.

Use induction to prove that

a1 + a2 + · · · + an ≥ n,

with equality if and only if a1 = a2 = · · · = an = 1.

2. Use the preceding part to give another proof of the Arithmetic-
Mean-Geometric-Mean Inequality.

3. Prove that if n > 1, then

1 · 3 · 5 · · · (2n − 1) < nn.

4. Prove that if n > 1 then

n
(

(n + 1)1/n − 1
)

< 1 +
1

2
+ · · · + 1

n
< n

(

1 −
1

(n + 1)1/n
+

1

n + 1

)

.

5. Given that u, v, w are positive, 0 < a ≤ 1, and that u+ v+w = 1,

prove that

(

1

u
− a

)(

1

v
− a

)(

1

w
− a

)

≥ 27 − 27a + 9a2 − a3.
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6. Let y1, y2, . . . , yn be positive real numbers. Prove the Harmonic-
Mean- Geometric-Mean Inequality:

n

1

y1

+
1

y2

+ · · · + 1

yn

≤ n
√

y1y2 · · ·yn.

7. Let a1, . . . , an be positive real numbers, all different. Set s =

a1 + a2 + · · · + an.

(a) Prove that

(n − 1)
∑

1≤r≤n

1

s − ar

<
∑

1≤r≤n

1

ar

.

(b) Deduce that

4n

s
< s

∑

1≤r≤n

1

ar(s − ar)
<

n

n − 1

∑

1≤r≤n

1

ar

.

36 APS Suppose that x1, x2, . . . , xn are nonnegative real numbers with

x1 + x2 + · · · + xn ≤ 1/2.

Prove that
(1 − x1)(1 − x2) · · · (1 − xn) ≥ 1/2.

37 APS Given a positive integer n prove that there is a polynomial
Tn such that cos nx = Tn(cos x) for all real numbers x. Tn is called the
n-th Tchebychev Polynomial.

38 APS Prove that

1

n + 1
+

1

n + 2
+ · · · + 1

2n
>

13

24

for all natural numbers n > 1.

39 APS In how many regions will a sphere be divided by n planes
passing through its centre if no three planes pass through one and
the same diameter?
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40 APS (IMO 1977) Let f, f : N 7→ N be a function satisfying

f(n + 1) > f(f(n))

for each positive integer n. Prove that f(n) = n for each n.

41 APS Let F0(x) = x, F(x) = 4x(1 − x), Fn+1(x) = F(Fn(x)), n = 0, 1, . . . .

Prove that ∫1

0

Fn(x)dx =
22n−1

22n − 1
.

(Hint: Let x = sin2
θ.)

1.4 Binomial Coefficients

1.5 Viète’s Formulæ

1.6 Fibonacci Numbers

The Fibonacci numbers fn are given by the recurrence

f0 = 0, f1 = 1, fn+1 = fn−1 + fn, n ≥ 1. (1.5)

Thus the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .
A number of interesting algebraic identities can be proved using the
above recursion.

42 Example Prove that

f1 + f2 + · · · + fn = fn+2 − 1.

Solution: We have
f1 = f3 − f2

f2 = f4 − f3

f3 = f5 − f4

...
...

fn = fn+2 − fn+1
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Summing both columns,

f1 + f2 + · · · + fn = fn+2 − f2 = fn+2 − 1,

as desired.

43 Example Prove that

f1 + f3 + f5 + · · · + f2n−1 = f2n.

Solution: Observe that

f1 = f2 − f0

f3 = f4 − f2

f5 = f6 − f4

...
...

...
f2n−1 = f2n − f2n−2

Adding columnwise we obtain the desired identity.

44 Example Prove that

f2
1 + f2

2 + · · · + f2
n = fnfn+1.

Solution: We have

fn−1fn+1 = (fn+1 − fn)(fn + fn−1) = fn+1fn − f2
n + fn+1fn−1 − fnfn−1.

Thus

fn+1fn − fnfn−1 = f2
n,

which yields

f2
1 + f2

2 + · · · + f2
n = fnfn+1.

45 Example Prove Cassini’s Identity:

fn−1fn+1 − f2
n = (−1)n, n ≥ 1.
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Solution: Observe that

fn−1fn+1 − f2
n = (fn − fn−2)(fn + fn−1) − f2

n

= −fn−2fn − fn−1(fn−2 − fn)

= −(fn−2fn − f2
n−1)

Thus if vn = fn−1fn+1−f2
n, we have vn = −vn−1. This yields vn = (−1)n−1v1

which is to say

fn−1fn+1 − f2
n = (−1)n−1(f0f2 − f2

1) = (−1)n.

46 Example (IMO 1981) Determine the maximum value of

m2 + n2,

where m, n are positive integers satisfying m, n ∈ {1, 2, 3, . . . , 1981} and

(n2 − mn − m2)2 = 1.

Solution: Call a pair (n, m) admissible if m, n ∈ {1, 2, . . . , 1981} and
(n2 − mn − m2)2 = 1.

If m = 1, then (1, 1) and (2, 1) are the only admissible pairs. Sup-
pose now that the pair (n1, n2) is admissible, with n2 > 1. As n1(n1 −

n2) = n2
2 ± 1 > 0, we must have n1 > n2.

Let now n3 = n1 − n2. Then 1 = (n2
1 − n1n2 − n2

2)
2 = (n2

2 − n2n3 −

n2
3)

2, making (n2, n3) also admissible. If n3 > 1, in the same way we
conclude that n2 > n3 and we can let n4 = n2 − n3 making (n3, n4)

an admissible pair. We have a sequence of positive integers n1 >

n2 > . . ., which must necessarily terminate. This terminates when
nk = 1 for some k. Since (nk−1, 1) is admissible, we must have nk−1 =

2. The sequence goes thus 1, 2, 3, 5, 8, . . . , 987, 1597, i.e., a truncated
Fibonacci sequence. The largest admissible pair is thus (1597, 987)
and so the maximum sought is 15972 + 9872.

Let τ =
1 +

√
5

2
be the Golden Ratio. Observe that τ−1 =

√
5 − 1

2
.

The number τ is a root of the quadratic equation x2 = x + 1. We now
obtain a closed formula for fn. We need the following lemma.
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47 Lemma If x2 = x + 1, n ≥ 2 then we have xn = fnx + fn−1.

Proof We prove this by induction on n. For n = 2 the assertion is a
triviality. Assume that n > 2 and that xn−1 = fn−1x + fn−2. Then

xn = xn−1 · x
= (fn−1x + fn−2)x

= fn−1(x + 1) + fn−2x

= (fn−1 + fn−2)x + fn−1

= fnx + fn−1

48 Theorem (Binet’s Formula) The n-th Fibonacci number is given by

fn =
1√
5

((

1 +
√

5

2

)n

−

(

1 −
√

5

2

)n)

n = 0, 2, . . . .

Proof The roots of the equation x2 = x+ 1 are τ =
1 +

√
5

2
and 1− τ =

1 −
√

5

2
. In virtue of the above lemma,

τn = τfn + fn−1

and
(1 − τ)n = (1 − τ)fn + fn−1.

Subtracting
τn − (1 − τ)n =

√
5fn,

from where Binet’s Formula follows.

49 Example (Cesàro) Prove that

n∑

k=0

(

n

k

)

2kfk = f3n.
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Solution: Using Binet’s Formula,

∑n

k=0

(

n

k

)

2kfk =
∑n

k=0

(

n

k

)

2k
τk − (1 − τ)k

√
5

=
1√
5

(∑n

k=0

(

n

k

)

τk −
∑n

k=0

(

n

k

)

2k(1 − τ)k
)

=
1√
5

((1 + 2τ)n − (1 + 2(1 − τ))n) .

As τ2 = τ + 1, 1 + 2τ = τ3. Similarly 1 + 2(1 − τ) = (1 − τ)3. Thus

n∑

k=0

(

n

k

)

2kfk =
1√
5

(

(τ)3n + (1 − τ)3n
)

= f3n,

as wanted.
The following theorem will be used later.

50 Theorem If s ≥ 1, t ≥ 0 are integers then

fs+t = fs−1ft + fsft+1.

Proof We keep t fixed and prove this by using strong induction on s.
For s = 1 we are asking whether

ft+1 = f0ft + f1ft+1,

which is trivially true. Assume that s > 1 and that fs−k+t = fs−k−1ft +

fs−kft+1 for all k satisfying 1 ≤ k ≤ s − 1. We have

fs+t = fs+t−1 + fs+t−2 by the Fibonacci recursion,

= fs−1+t + fs−2+t trivially,

= fs−2ft + fs−1ft+1 + fs−3ft + fs−2ft+1 by the inductive assumption
= ft(fs−2 + fs−3) + ft+1(fs−1 + fs−2) rearranging,

= ftfs−1 + ft+1fs by the Fibonacci recursion.

This finishes the proof.

Ad Pleniorem Scientiam
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51 APS Prove that

fn+1fn − fn−1fn−2 = f2n−1, n > 2.

52 APS Prove that

f2
n+1 = 4fnfn−1 + f2

n−2, n > 1.

53 APS Prove that

f1f2 + f2f3 + · · · + f2n−1f2n = f2
2n.

54 APS Let N be a natural number. Prove that the largest n such
that fn ≤ N is given by

n =













log

(

N +
1

2

)√
5

log

(

1 +
√

5

2

)













.

55 APS Prove that f2
n + f2

n−1 = f2n+1.

56 APS Prove that if n > 1,

f2
n − fn+lfn−l = (−1)n+lf2

l .

57 APS Prove that
n∑

k=1

f2k =

n∑

k=0

(n − k)f2k+1.

58 APS Prove that
∞∑

n=2

1

fn−1fn+1

= 1.

Hint: What is
1

fn−1fn

−
1

fnfn+1

?
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59 APS Prove that
∞∑

n=1

fn

fn+1fn+2

= 1.

60 APS Prove that
∞∑

n=0

1/f2n = 4 − τ.

61 APS Prove that
∞∑

n=1

arctan
1

f2n+1

= π/4.

62 APS Prove that

lim
n→∞

fn

τn
=

1√
5
.

63 APS Prove that

lim
n→∞

fn+r

fn

= τr.

64 APS Prove that
n∑

k=0

1

f2k

= 2 +
f2n−2

f2n

.

Deduce that
∞∑

k=0

1

f2k

=
7 −

√
5

2
.

65 APS (Cesàro) Prove that

n∑

k=0

(

n

k

)

fk = f2n.

66 APS Prove that
∞∑

n=1

fn

10n

is a rational number.
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67 APS Find the exact value of

1994∑

k=1

(−1)k

(

1995

k

)

fk.

68 APS Prove the converse of Cassini’s Identity: If k and m are inte-
gers such that |m2 −km−k2| = 1, then there is an integer n such that
k = ±fn, m = ±fn+1.

1.7 Pigeonhole Principle

The Pigeonhole Principle states that if n + 1 pigeons fly to n holes,
there must be a pigeonhole containing at least two pigeons. This
apparently trivial principle is very powerful. Let us see some exam-
ples.

69 Example (PUTNAM 1978) Let A be any set of twenty integers cho-
sen from the arithmetic progression 1, 4, . . . , 100. Prove that there must
be two distinct integers in A whose sum is 104.

Solution: We partition the thirty four elements of this progression into
nineteen groups {1}, {52}, {4, 100}, {7, 97}, {10, 94} . . . {49, 55}. Since we are
choosing twenty integers and we have nineteen sets, by the Pigeon-
hole Principle there must be two integers that belong to one of the
pairs, which add to 104.

70 Example Show that amongst any seven distinct positive integers
not exceeding 126, one can find two of them, say a and b, which
satisfy

b < a ≤ 2b.

Solution: Split the numbers {1, 2, 3, . . . , 126} into the six sets

{1, 2}, {3, 4, 5, 6}, {7, 8, . . . , 13, 14}, {15, 16, . . . , 29, 30},

{31, 32, . . . , 61, 62} and {63, 64, . . . , 126}.
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By the Pigeonhole Principle, two of the seven numbers must lie in
one of the six sets, and obviously, any such two will satisfy the stated
inequality.

71 Example Given any set of ten natural numbers between 1 and 99

inclusive, prove that there are two disjoint nonempty subsets of the
set with equal sums of their elements.

Solution: There are 210 − 1 = 1023 non-empty subsets that one can
form with a given 10-element set. To each of these subsets we as-
sociate the sum of its elements. The maximum value that any such
sum can achieve is 90 + 91 + · · · + 99 = 945 < 1023. Therefore, there
must be at least two different subsets that have the same sum.

72 Example No matter which fifty five integers may be selected from

{1, 2, . . . , 100},

prove that one must select some two that differ by 10.

Solution: First observe that if we choose n+1 integers from any string
of 2n consecutive integers, there will always be some two that differ
by n. This is because we can pair the 2n consecutive integers

{a + 1, a + 2, a + 3, . . . , a + 2n}

into the n pairs

{a + 1, a + n + 1}, {a + 2, a + n + 2}, . . . , {a + n, a + 2n},

and if n + 1 integers are chosen from this, there must be two that
belong to the same group.

So now group the one hundred integers as follows:

{1, 2, . . . 20}, {21, 22, . . . , 40},

{41, 42, . . . , 60}, {61, 62, . . . , 80}

and
{81, 82, . . . , 100}.
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If we select fifty five integers, we must perforce choose eleven from
some group. From that group, by the above observation (let n = 10),
there must be two that differ by 10.

73 Example (AHSME 1994) Label one disc “1”, two discs “2”, three
discs “3”, . . . , fifty discs ‘‘50”. Put these 1 + 2 + 3 + · · · + 50 = 1275

labeled discs in a box. Discs are then drawn from the box at random
without replacement. What is the minimum number of discs that
must me drawn in order to guarantee drawing at least ten discs with
the same label?

Solution: If we draw all the 1 + 2 + · · · + 9 = 45 labelled “1”, . . . , “9”
and any nine from each of the discs “10”, . . . , “50”, we have drawn
45 + 9 · 41 = 414 discs. The 415-th disc drawn will assure at least ten
discs from a label.

74 Example (IMO 1964) Seventeen people correspond by mail with
one another—each one with all the rest. In their letters only three
different topics are discussed. Each pair of correspondents deals
with only one of these topics. Prove that there at least three people
who write to each other about the same topic.

Solution: Choose a particular person of the group, say Charlie. He
corresponds with sixteen others. By the Pigeonhole Principle, Charlie
must write to at least six of the people of one topic, say topic I. If
any pair of these six people corresponds on topic I, then Charlie
and this pair do the trick, and we are done. Otherwise, these six
correspond amongst themselves only on topics II or III. Choose a
particular person from this group of six, say Eric. By the Pigeonhole
Principle, there must be three of the five remaining that correspond
with Eric in one of the topics, say topic II. If amongst these three
there is a pair that corresponds with each other on topic II, then Eric
and this pair correspond on topic II, and we are done. Otherwise,
these three people only correspond with one another on topic III,
and we are done again.

75 Example Given any seven distinct real numbers x1, . . . x7, prove
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that we can always find two, say a, b with

0 <
a − b

1 + ab
<

1√
3
.

Solution: Put xk = tan ak for ak satisfying −
π

2
< ak <

π

2
. Divide the in-

terval (−
π

2
,
π

2
) into six non-overlapping subintervals of equal length.

By the Pigeonhole Principle, two of seven points will lie on the same

interval, say ai < aj. Then 0 < aj−ai <
π

6
. Since the tangent increases

in (−π/2, π/2), we obtain

0 < tan(aj − ai) =
tan aj − tan ai

1 + tan aj tan ai

< tan
π

6
=

1√
3
,

as desired.

76 Example (Canadian Math Olympiad 1981) Let a1, a2, . . . , a7 be non-
negative real numbers with

a1 + a2 + . . . + a7 = 1.

If
M = max

1≤k≤5
ak + ak+1 + ak+2,

determine the minimum possible value that M can take as the ak

vary.

Solution: Since a1 ≤ a1+a2 ≤ a1+a2+a3 and a7 ≤ a6+a7 ≤ a5+a6+a7

we see that M also equals

max
1≤k≤5

{a1, a7, a1 + a2, a6 + a7, ak + ak+1 + ak+2}.

We are thus taking the maximum over nine quantities that sum 3(a1+

a2 + · · · + a7) = 3. These nine quantities then average 3/9 = 1/3. By
the Pigeonhole Principle, one of these is ≥ 1/3, i.e. M ≥ 1/3. If
a1 = a1 +a2 = a1 +a2 +a3 = a2 +a3 +a4 = a3 +a4 +a5 = a4 +a5 +a6 =

a5+a6+a7 = a7 = 1/3, we obtain the 7-tuple (a1, a2, a3, a4, a5, a6, a7) =

(1/3, 0, 0, 1/3, 0, 0, 1/3), which shows that M = 1/3.
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Ad Pleniorem Scientiam

77 APS (AHSME 1991) A circular table has exactly sixty chairs around
it. There are N people seated at this table in such a way that the
next person to be seated must sit next to someone. What is the
smallest possible value of N?

Answer: 20.

78 APS Show that if any five points are all in, or on, a square of side
1, then some pair of them will be at most at distance

√
2/2.

79 APS (Eötvös, 1947) Prove that amongst six people in a room there
are at least three who know one another, or at least three who do
not know one another.

80 APS Show that in any sum of non-negative real numbers there
is always one number which is at least the average of the numbers
and that there is always one member that it is at most the average
of the numbers.

81 APS We call a set “sum free” if no two elements of the set add
up to a third element of the set. What is the maximum size of a sum
free subset of {1, 2, . . . , 2n − 1}.

Hint: Observe that the set {n + 1, n + 2, . . . , 2n − 1} of n + 1 elements is
sum free. Show that any subset with n + 2 elements is not sum free.

82 APS (MMPC 1992) Suppose that the letters of the English alpha-
bet are listed in an arbitrary order.

1. Prove that there must be four consecutive consonants.

2. Give a list to show that there need not be five consecutive con-
sonants.

3. Suppose that all the letters are arranged in a circle. Prove that
there must be five consecutive consonants.
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83 APS (Stanford 1953) Bob has ten pockets and forty four silver dol-
lars. He wants to put his dollars into his pockets so distributed that
each pocket contains a different number of dollars.

1. Can he do so?

2. Generalise the problem, considering p pockets and n dollars.
The problem is most interesting when

n =
(p − 1)(p − 2)

2
.

Why?

84 APS No matter which fifty five integers may be selected from

{1, 2, . . . , 100},

prove that you must select some two that differ by 9, some two that
differ by 10, some two that differ by 12, and some two that differ by
13, but that you need not have any two that differ by 11.

85 APS Let mn+ 1 different real numbers be given. Prove that there
is either an increasing sequence with at least n + 1 members, or a
decreasing sequence with at least m + 1 members.

86 APS If the points of the plane are coloured with three colours,
show that there will always exist two points of the same colour which
are one unit apart.

87 APS Show that if the points of the plane are coloured with two
colours, there will always exist an equilateral triangle with all its ver-
tices of the same colour. There is, however, a colouring of the points
of the plane with two colours for which no equilateral triangle of side
1 has all its vertices of the same colour.

88 APS Let r1, r2, . . . , rn, n > 1 be real numbers of absolute value
not exceeding 1 and whose sum is 0. Show that there is a non-
empty proper subset whose sum is not more than 2/n in size. Give

an example in which any subsum has absolute value at least
1

n − 1
.
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89 APS Let r1, r2, . . . , rn be real numbers in the interval [0, 1]. Show
that there are numbers εk, 1 ≤ k ≤ n, εk = −1, 0, 1 not all zero, such
that

∣

∣

∣

∣

∣

n∑

k=1

εkrk

∣

∣

∣

∣

∣

≤ n

2n
.

90 APS (USAMO 1979) Nine mathematicians meet at an interna-
tional conference and discover that amongst any three of them,
at least two speak a common language. If each of the mathemati-
cians can speak at most three languages, prove that there are at
least three of the mathematicians who can speak the same lan-
guage.

91 APS (USAMO 1982) In a party with 1982 persons, amongst any
group of four there is at least one person who knows each of the
other three. What is the minimum number of people in the party
who know everyone else?

92 APS (USAMO 1985) There are n people at a party. Prove that
there are two people such that, of the remaining n−2 people, there
are at least bn/2c − 1 of them, each of whom knows both or else
knows neither of the two. Assume that “knowing” is a symmetrical
relationship.

93 APS (USAMO 1986) During a certain lecture, each of five math-
ematicians fell asleep exactly twice. For each pair of these mathe-
maticians, there was some moment when both were sleeping simul-
taneously. Prove that, at some moment, some three were sleeping
simultaneously.

94 APS Let Pn be a set of ben!c + 1 points on the plane. Any two
distinct points of Pn are joined by a straight line segment which is
then coloured in one of n given colours. Show that at least one
monochromatic triangle is formed.

(Hint: e =
∑∞

n=0 1/n!.)



30 Chapter 1



Chapter 2
Divisibility

2.1 Divisibility

95 Definition If a 6= 0, b are integers, we say that a divides b if there
is an integer c such that ac = b. We write this as a|b.

If a does not divide b we write a 6 |b. The following properties should
be immediate to the reader.

96 Theorem 1. If a, b, c, m, n are integers with c|a, c|b, then c|(am +

nb).

2. If x, y, z are integers with x|y, y|z then x|z.

Proof There are integers s, t with sc = a, tc = b. Thus

am + nb = c(sm + tn),

giving c|(am + bn).

Also, there are integers u, v with xu = y, yv = z. Hence xuv = z,
giving x|z.

It should be clear that if a|b and b 6= 0 then 1 ≤ |a| ≤ |b|.

31
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97 Example Find all positive integers n for which

n + 1|n2 + 1.

Solution: n2 + 1 = n2 − 1 + 2 = (n − 1)(n + 1) + 2. This forces n + 1|2 and
so n + 1 = 1 or n + 1 = 2. The choice n + 1 = 1 is out since n ≥ 1, so
that the only such n is n = 1.

98 Example If 7|3x + 2 prove that 7|(15x2 − 11x + 14.).

Solution: Observe that 15x2 − 11x + 14 = (3x + 2)(5x − 7). We have
7s = 3x + 2 for some integer s and so

15x2 − 11x + 14 = 7s(5x − 7),

giving the result.
Among every two consecutive integers there is an even one,

among every three consecutive integers there is one divisible by
3, etc.The following theorem goes further.

99 Theorem The product of n consecutive integers is divisible by n!.

Proof Assume first that all the consecutive integers m+1, m+2, . . . , m+

n are positive. If this is so, the divisibility by n! follows from the fact
that binomial coefficients are integers:

(

m + n

n

)

=
(m + n)!

n!m!
=

(m + n)(m + n − 1) · · · (m + 1)

n!
.

If one of the consecutive integers is 0, then the product of them is
0, and so there is nothing to prove. If all the n consecutive integers
are negative, we multiply by (−1)n, and see that the corresponding
product is positive, and so we apply the first result.

100 Example Prove that 6|n3 − n, for all integers n.

Solution: n3 − n = (n − 1)n(n + 1) is the product of 3 consecutive
integers and hence is divisible by 3! = 6.
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101 Example (PUTNAM 1966) Let 0 < a1 < a2 < . . . < amn+1 be mn + 1

integers. Prove that you can find either m + 1 of them no one of
which divides any other, or n+1 of them, each dividing the following.

Solution: Let, for each 1 ≤ k ≤ mn + 1, nk denote the length of the
longest chain, starting with ak and each dividing the following one,
that can be selected from ak, ak+1, . . . , amn+1. If no nk is greater than
n, then the are at least m + 1 nk’s that are the same. However, the
integers ak corresponding to these nk’s cannot divide each other,
because ak|al implies that nk ≥ nl + 1.

102 Theorem If k|n then fk|fn.

Proof Letting s = kn, t = n in the identity fs+t = fs−1ft + fsft+1 we
obtain

f(k+1)n = fkn+n = fn−1fkn + fnfkn+1.

It is clear that if fn|fkn then fn|f(k+1)n. Since fn|fn·1, the assertion fol-
lows.

Ad Pleniorem Scientiam

103 APS Given that 5|(n + 2), which of the following are divisible by
5

n2 − 4, n2 + 8n + 7, n4 − 1, n2 − 2n?

104 APS Prove that n5 − 5n3 + 4n is always divisible by 120.

105 APS Prove that
(2m)!(3n)!

(m!)2(n!)3

is always an integer.

106 APS Demonstrate that for all integer values n,

n9 − 6n7 + 9n5 − 4n3

is divisible by 8640.
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107 APS Prove that if n > 4 is composite, then n divides (n − 1)!.
(Hint: Consider, separately, the cases when n is and is not a perfect
square.)

108 APS Prove that there is no prime triplet of the form p, p+ 2, p+ 4,
except for 3, 5, 7.

109 APS Prove that for n ∈ N, (n!)! is divisible by n!(n−1)!

110 APS (AIME 1986) What is the largest positive integer n for which

(n + 10)|(n3 + 100)?

(Hint: x3 + y3 = (x + y)(x2 − xy + y2).)

111 APS (OLIMPÍADA MATEMÁTICA ESPAÑOLA, 1985)
If n is a positive integer, prove that (n + 1)(n + 2) · · · (2n) is divisible by
2n.

2.2 Division Algorithm

112 Theorem (Division Algorithm) If a, b are positive integers, then
there are unique integers q, r such that a = bq + r, 0 ≤ r < b.

Proof We use the Well-Ordering Principle. Consider the set S = {a −

bk : k ∈ Z and a ≥ bk}. Then S is a collection of nonnegative
integers and S 6= ∅ as a−b·0 ∈ S . By the Well-Ordering Principle, S

has a least element, say r. Now, there must be some q ∈ Z such that
r = a−bq since r ∈ S . By construction, r ≥ 0. Let us prove that r < b.
For assume that r ≥ b. Then r > r − b = a − bq − b = a − (q + 1)b ≥ 0,
since r − b ≥ 0. But then a − (q + 1)b ∈ S and a − (q + 1)b < r which
contradicts the fact that r is the smallest member of S . Thus we
must have 0 ≤ r < b. To show that r and q are unique, assume that
bq1 + r1 = a = bq2 + r2, 0 ≤ r1 < b, 0 ≤ r2 < b. Then r2 − r1 = b(q1 − q2),
that is b|(r2 − r1). But |r2 − r1| < b, whence r2 = r1. From this it also
follows that q1 = q2. This completes the proof. ❑
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It is quite plain that q = [a/b], where [a/b] denotes the integral
part of a/b.

It is important to realise that given an integer n > 0, the Division
Algorithm makes a partition of all the integers according to their
remainder upon division by n. For example, every integer lies in one
of the families 3k, 3k+1 or 3k+2 where k ∈ Z. Observe that the family
3k + 2, k ∈ Z, is the same as the family 3k − 1, k ∈ Z. Thus

Z = A ∪ B ∪ C

where
A = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}

is the family of integers of the form 3k, k ∈ Z,

B = {. . . − 8,−5,−2, 1, 4, 7, . . .}

is the family of integers of the form 3k + 1, k ∈ Z and

C = {. . . − 7,−4,−1, 2, 5, 8, . . .}

is the family of integers of the form 3k − 1, k ∈ Z.

113 Example (AHSME 1976) Let r be the remainder when 1059, 1417

and 2312 are divided by d > 1. Find the value of d − r.

Solution: By the Division Algorithm, 1059 = q1d + r, 1417 = q2d +

r, 2312 = q3d + r, for some integers q1, q2, q3. From this, 358 = 1417 −

1059 = d(q2 − q1), 1253 = 2312 − 1059 = d(q3 − q1) and 895 = 2312 −

1417 = d(q3 − q2). Hence d|358 = 2 · 179, d|1253 = 7 · 179 and 7|895 =

5 · 179. Since d > 1, we conclude that d = 179. Thus (for example)
1059 = 5 · 179 + 164, which means that r = 164. We conclude that
d − r = 179 − 164 = 15.

114 Example Show that n2 + 23 is divisible by 24 for infinitely many n.

Solution: n2 + 23 = n2 − 1 + 24 = (n − 1)(n + 1) + 24. If we take n =

24k ± 1, k = 0, 1, 2, . . . , all these values make the expression divisible
by 24.
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115 Definition A prime number p is a positive integer greater than 1

whose only positive divisors are 1 and p. If the integer n > 1 is not
prime, then we say that it is composite.

For example, 2, 3, 5, 7, 11, 13, 17, 19 are prime, 4, 6, 8, 9, 10, 12,
14, 15, 16, 18, 20 are composite. The number 1 is neither a prime nor
a composite.

116 Example Show that if p > 3 is a prime, then 24|(p2 − 1).

Solution: By the Division Algorithm, integers come in one of six flavours:
6k, 6k ± 1, 6k ± 2 or 6k + 3. If p > 3 is a prime, then p is of the form
p = 6k ± 1 (the other choices are either divisible by 2 or 3). But
(6k± 1)2 − 1 = 36k2± 12k = 12k(3k− 1). Since either k or 3k− 1 is even,
12k(3k − 1) is divisible by 24.

117 Example Prove that the square of any integer is of the form 4k or
4k + 1.

Solution: By the Division Algorithm, any integer comes in one of two
flavours: 2a or 2a + 1. Squaring,

(2a)2 = 4a2, (2a + 1)2 = 4(a2 + a) + 1)

and so the assertion follows.

118 Example Prove that no integer in the sequence

11, 111, 1111, 11111, . . .

is the square of an integer.

Solution: The square of any integer is of the form 4k or 4k + 1. All the
numbers in this sequence are of the form 4k− 1, and so they cannot
be the square of any integer.

119 Example Show that from any three integers, one can always
choose two so that a3b − ab3 is divisible by 10.
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Solution: It is clear that a3b − ab3 = ab(a − b)(a + b) is always even,
no matter which integers are substituted. If one of the three integers
is of the form 5k, then we are done. If not, we are choosing three
integers that lie in the residue classes 5k ± 1 or 5k ± 2. Two of them
must lie in one of these two groups, and so there must be two whose
sum or whose difference is divisible by 5. The assertion follows.

120 Example Prove that if 3|(a2 + b2), then 3|a and 3|b

Solution: Assume a = 3k±1 or b = 3m±1. Then a2 = 3x+1, b2 = 3y+1.
But then a2 + b2 = 3t + 1 or a2 + b2 = 3s + 2, i.e., 3 6 |(a2 + b2).

Ad Pleniorem Scientiam

121 APS Prove the following extension of the Division Algorithm: if a

and b 6= 0 are integers, then there are unique integers q and r such
that a = qb + r, 0 ≤ r < |b|.

122 APS Show that if a and b are positive integers, then there are

unique integers q and r, and ε = ±1 such that a = qb + εr,−
b

2
< r ≤

b

2
.

123 APS Show that the product of two numbers of the form 4k + 3 is
of the form 4k + 1.

124 APS Prove that the square of any odd integer leaves remainder
1 upon division by 8.

125 APS Demonstrate that there are no three consecutive odd in-
tegers such that each is the sum of two squares greater than zero.

126 APS Let n > 1 be a positive integer. Prove that if one of the
numbers 2n − 1, 2n + 1 is prime, then the other is composite.

127 APS Prove that there are infinitely many integers n such that
4n2 + 1 is divisible by both 13 and 5.
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128 APS Prove that any integer n > 11 is the sum of two positive
composite numbers.

Hint: Think of n − 6 if n is even and n − 9 if n is odd.

129 APS Prove that 3 never divides n2 + 1.

130 APS Show the existence of infinitely many natural numbers x, y

such that x(x + 1)|y(y + 1) but

x 6 |y and (x + 1) 6 |y,

and also
x 6 |(y + 1) and (x + 1) 6 |(y + 1).

Hint: Try x = 36k + 14, y = (12k + 5)(18k + 7).

2.3 Some Algebraic Identities

In this section we present some examples whose solutions depend
on the use of some elementary algebraic identities.

131 Example Find all the primes of the form n3 − 1, for integer n > 1.

Solution: n3 − 1 = (n − 1)(n2 + n + 1). If the expression were prime,
since n2 + n + 1 is always greater than 1, we must have n − 1 = 1, i.e.
n = 2. Thus the only such prime is 7.

132 Example Prove that n4 + 4 is a prime only when n = 1 for n ∈ N.

Solution: Observe that

n4 + 4 = n4 + 4n2 + 4 − 4n2

= (n2 + 2)2 − (2n)2

= (n2 + 2 − 2n)(n2 + 2 + 2n)

= ((n − 1)2 + 1)((n + 1)2 + 1).

Each factor is greater than 1 for n > 1, and so n4 + 4 cannot be a
prime.
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133 Example Find all integers n ≥ 1 for which n4 + 4n is a prime.

Solution: The expression is only prime for n = 1. Clearly one must take
n odd. For n ≥ 3 odd all the numbers below are integers:

n4 + 22n = n4 + 2n22n + 22n − 2n22n

= (n2 + 2n)2 −
(

n2(n+1)/2
)2

= (n2 + 2n + n2(n+1)/2)(n2 + 2n − n2(n+1)/2).

It is easy to see that if n ≥ 3, each factor is greater than 1, so this
number cannot be a prime.

134 Example Prove that for all n ∈ N , n2 divides the quantity

(n + 1)n − 1.

Solution: If n = 1 this is quite evident. Assume n > 1. By the Binomial
Theorem,

(n + 1)n − 1 =

n∑

k=1

(

n

k

)

nk,

and every term is divisible by n2.

135 Example Prove that if p is an odd prime and if

a

b
= 1 + 1/2 + · · · + 1/(p − 1),

then p divides a.

Solution: Arrange the sum as

1 +
1

p − 1
+

1

2
+

1

p − 2
+ · · · + 1

(p − 1)/2
+

1

(p + 1)/2
.

After summing consecutive pairs, the numerator of the resulting frac-
tions is p. Each term in the denominator is < p. Since p is a prime,
the p on the numerator will not be thus cancelled out.
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136 Example Prove that

xn − yn = (x − y)(xn−1 + xn−2y + xn−3y2 + · · · + xyn−2 + yn−1)

Thus x − y always divides xn − yn.

Solution: We may assume that x 6= y, xy 6= 0, the result being other-
wise trivial. In that case, the result follows at once from the identity

n−1∑

k=0

ak =
an − 1

a − 1
a 6= 1,

upon letting a = x/y and multiplying through by yn.
Remark: Without calculation we see that 87672345−81012345 is divisible
by 666.

137 Example (EŐTVŐS 1899) Show that

2903n − 803n − 464n + 261n

is divisible by 1897 for all natural numbers n.

Solution: By the preceding problem, 2903n−803n is divisible by 2903−

803 = 2100 = 7 ·300 =, and 261n−464n is divisible by 261−464 = −203 =

7 · (−29). Thus the expression 2903n − 803n − 464n + 261n is divisible by
7. Also, 2903n − 464n is divisible by 2903 − 464 = 9 · 271 and 261n − 803n

is divisible by −542 = (−2)271. Thus the expression is also divisible by
271. Since 7 and 271 have no prime factors in common, we can
conclude that the expression is divisible by 7 · 271 = 1897.

138 Example ((UM)2C4 1987) Given that 1002004008016032 has a prime
factor p > 250000, find it.

Solution: If a = 103, b = 2 then

1002004008016032 = a5 + a4b + a3b2 + a2b3 + ab4 + b5 =
a6 − b6

a − b
.
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This last expression factorises as

a6 − b6

a − b
= (a + b)(a2 + ab + b2)(a2 − ab + b2)

= 1002 · 1002004 · 998004

= 4 · 4 · 1002 · 250501 · k,

where k < 250000. Therefore p = 250501.

139 Example (Grünert, 1856) If x, y, z, n are natural numbers n ≥ z,

then the relation

xn + yn = zn

does not hold.

Solution: It is clear that if the relation xn + yn = zn holds for natural
numbers x, y, z then x < z and y < z. By symmetry, we may suppose
that x < y. So assume that xn + yn = zn and n ≥ z. Then

zn − yn = (z − y)(zn−1 + yzn−2 + · · · + yn−1) ≥ 1 · nxn−1 > xn,

contrary to the assertion that xn + yn = zn. This establishes the asser-
tion.

140 Example Prove that for n odd,

xn + yn = (x + y)(xn−1 − xn−2y + xn−3y2 − + − · · · + −xyn−2 + yn−1).

Thus if n is odd, x + y divides xn + yn.

Solution: This is evident by substituting −y for y in example 1.11 and
observing that (−y)n = −yn for n odd.

141 Example Show that 1001 divides

11993 + 21993 + 31993 + · · · + 10001993.

Solution: Follows at once from the previous problem, since each of
11993 + 10001993, 21993 + 9991993, . . . , 5001993 + 5011993 is divisible by 1001.
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142 Example (S250) Show that for any natural number n, there is an-
other natural number x such that each term of the sequence

x + 1, xx + 1, xxx

+ 1, . . .

is divisible by n.

Solution: It suffices to take x = 2n − 1.

143 Example Determine infinitely many pairs of integers (m, n) such
that M and n share their prime factors and (m − 1, n − 1) share their
prime factors.

Solution: Take m = 2k−1, n = (2k−1)2, k = 2, 3, . . .. Then m, n obviously
share their prime factors and m − 1 = 2(2k−1 − 1) shares its prime
factors with n − 1 = 2k+1(2k−1 − 1).

Ad Pleniorem Scientiam

144 APS Show that the integer

1 . . . 1︸ ︷︷ ︸
91 ones

is composite.

145 APS Prove that 199 + 299 + 399 + 499 is divisible by 5.

146 APS Show that if |ab| 6= 1, then a4 + 4b4 is composite.

147 APS Demonstrate that for any natural number n, the number

1 · · · · · · 1︸ ︷︷ ︸
2n 1′s

− 2 · · · 2︸ ︷︷ ︸
n 2′s

is the square of an integer.

148 APS Let 0 ≤ a < b.

1. Prove that bn((n + 1)a − nb) < an+1.
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2. Prove that for n = 1, 2, . . .,

(

1 +
1

n

)n

<

(

1 +
1

n + 1

)n+1

n = 1, 2, . . . .

3. Show that
bn+1 − an+1

b − a
> (n + 1)a.

4. Show that
(

1 +
1

n

)n+1

>

(

1 +
1

n + 1

)n+2

n = 1, 2, . . . .

149 APS If a, b are positive integers, prove that

(a + 1/2)n + (b + 1/2)n

is an integer only for finitely many positive integers n.

150 APS Prove that 100|1110 − 1.

151 APS Let A and B be two natural numbers with the same number
of digits, A > B. Suppose that A and B have more than half of their
digits on the sinistral side in common. Prove that

A1/n − B1/n <
1

n

for all n = 2, 3, 4, . . ..

152 APS Demonstrate that every number in the sequence

49, 4489, 444889, 44448889, . . . , 4 · · · · · · 4︸ ︷︷ ︸
n 4′s

8 · · · 8︸ ︷︷ ︸
n−1 8′s

9,

is the square of an integer.

153 APS (POLISH MATHEMATICAL OLYMPIAD) Prove that if n is an even
natural number, then the number 13n + 6 is divisible by 7.
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154 APS Find, with proof, the unique square which is the product of
four consecutive odd numbers.

155 APS Prove that the number 22225555 + 55552222 is divisible by 7.

(Hint: Consider

22225555 + 45555 + 55552222 − 42222 + 42222 − 45555.)

156 APS Prove that if an + 1, 1 < a ∈ N, is prime, then a is even and n

is a power of 2. Primes of the form 22k

+ 1 are called Fermat primes.

157 APS Prove that if an − 1, 1 < a ∈ N, is prime, then a = 2 and n is
a prime. Primes of the form 2n − 1 are called Mersenne primes.

158 APS (PUTNAM 1989) How many primes amongst the positive in-
tegers, written as usual in base-ten are such that their digits are al-
ternating 1’s and 0’s, beginning and ending in 1?

159 APS Find the least value achieved by 36k − 5k, k = 1, 2, . . . .

160 APS Find all the primes of the form n3 + 1.

161 APS Find a closed formula for the product

P = (1 + 2)(1 + 22)(1 + 222

) · · · (1 + 22n

).

Use this to prove that for all positive integers n, 22n

+ 1 divides

222n
+1 − 2.

162 APS Let a > 1 be a real number. Simplify the expression

√

a + 2
√

a − 1 +

√

a − 2
√

a − 1.
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163 APS Let a, b, c, d be real numbers such that

a2 + b2 + c2 + d2 = ab + bc + cd + da.

Prove that a = b = c = d.

164 APS Let a, b, c be the lengths of the sides of a triangle. Show
that

3(ab + bc + ca) ≤ (a + b + c)2 ≤ 4(ab + bc + ca).

165 APS (ITT 1994)Let a, b, c, d be complex numbers satisfying

a + b + c + d = a3 + b3 + c3 + d3 = 0.

Prove that a pair of the a, b, c, d must add up to 0.

166 APS Prove that the product of four consecutive natural num-
bers is never a perfect square.

Hint: What is (n2 + n − 1)2?

167 APS Let k ≥ 2 be an integer. Show that if n is a positive inte-
ger, then nk can be represented as the sum of n successive odd
numbers.

168 APS Prove the following identity of Catalan:

1 −
1

2
+

1

3
−

1

4
+ · · · + 1

2n − 1
−

1

2n
=

1

n + 1
+

1

n + 2
+ · · · + 1

2n
.

169 APS (IMO 1979) If a, b are natural numbers such that

a

b
= 1 −

1

2
+

1

3
−

1

4
+ · · · − 1

1318
+

1

1319
,

prove that 1979|a.

170 APS (POLISH MATHEMATICAL OLYMPIAD) A triangular number is
one of the form 1 + 2 + . . . + n, n ∈ N. Prove that none of the digits
2, 4, 7, 9 can be the last digit of a triangular number.
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171 APS Demonstrate that there are infinitely many square triangu-
lar numbers.

172 APS (PUTNAM 1975) Supposing that an integer n is the sum of
two triangular numbers,

n =
a2 + a

2
+

b2 + b

2
,

write 4n + 1 as the sum of two squares, 4n + 1 = x2 + y2 where x and
y are expressed in terms of a and b.

Conversely, show that if 4n + 1 = x2 + y2, then n is the sum of two
triangular numbers.

173 APS (POLISH MATHEMATICAL OLYMPIAD) Prove that
amongst ten successive natural numbers, there are always at least
one and at most four numbers that are not divisible by any of the
numbers 2, 3, 5, 7.

174 APS Show that if k is odd,

1 + 2 + · · · + n

divides
1k + 2k + · · · + nk.

175 APS Are there five consecutive positive integers such that the
sum of the first four, each raised to the fourth power, equals the fifth
raised to the fourth power?



Chapter 3
Congruences. Zn

3.1 Congruences

The notation a ≡ b mod n is due to Gauß, and it means that n|(a −

b). It also indicates that a and b leave the same remainder upon
division by n. For example, −8 ≡ −1 ≡ 6 ≡ 13 mod 7. Since n|(a − b)

implies that ∃k ∈ Z such that nk = a − b, we deduce that a ≡ b mod
n if and only if there is an integer k such that a = b + nk.

We start by mentioning some simple properties of congruences.

176 Lemma Let a, b, c, d, m ∈ Z, k ∈ with a ≡ b mod m and c ≡ d

mod m. Then

1. a + c ≡ b + d mod m

2. a − c ≡ b − d mod m

3. ac ≡ bd mod m

4. ak ≡ bk mod m

5. If f is a polynomial with integral coefficients then f(a) ≡ f(b)

mod m.

Proof As a ≡ b mod m and c ≡ d mod m, we can find k1, k2 ∈ Z

with a = b + k1m and c = d + k2m. Thus a ± c = b ± d + m(k1 ± k2)

47
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and ac = bd + m(k2b + k1d). These equalities give (1), (2) and (3).
Property (4) follows by successive application of (3), and (5) follows
from (4). ❑

Congruences mod 9 can sometimes be used to check multipli-
cations. For example 875961 · 2753 6= 2410520633. For if this were true
then

(8+7+5+9+6+1)(2+7+5+3) ≡ 2+4+1+0+5+2+0+6+3+3 mod 9.

But this says that 0 · 8 ≡ 8 mod 9, which is patently false.

177 Example Find the remainder when 61987 is divided by 37.

Solution: 62 ≡ −1 mod 37. Thus 61987 ≡ 6 · 61986 ≡ 6(62)993 ≡ 6(−1)993 ≡
−6 ≡ 31 mod 37.

178 Example Prove that 7 divides 32n+1 + 2n+2 for all natural numbers
n.

Solution: Observe that 32n+1 ≡ 3 · 9n ≡ 3 · 2n mod 7 and 2n+2 ≡ 4 · 2n

mod 7. Hence
32n+1 + 2n+2 ≡ 7 · 2n ≡ 0 mod 7,

for all natural numbers n.

179 Example Prove the following result of Euler: 641|(232 + 1).

Solution: Observe that 641 = 27 · 5 + 1 = 24 + 54. Hence 27 · 5 ≡ −1

mod 641 and 54 ≡ −24 mod 641. Now, 27 · 5 ≡ −1 mod 641 yields
54 · 228 = (5 · 27)4 ≡ (−1)4 ≡ 1 mod 641. This last congruence and
54 ≡ −24 mod 641 yield −24 · 228 ≡ 1 mod 641, which means that
641|(232 + 1).

180 Example Find the perfect squares mod 13.

Solution: First observe that we only have to square all the numbers
up to 6, because r2 ≡ (13 − r)2 mod 13. Squaring the nonnegative
integers up to 6, we obtain 02 ≡ 0, 12 ≡ 1, 22 ≡ 4, 32 ≡ 9, 42 ≡ 3, 52 ≡
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12, 62 ≡ 10 mod 13. Therefore the perfect squares mod 13 are 0, 1, 4,
9, 3, 12, and 10.

181 Example Prove that there are no integers with x2 − 5y2 = 2.

Solution: If x2 = 2 − 5y2, then x2 ≡ 2 mod 5. But 2 is not a perfect
square mod 5.

182 Example Prove that 7|(22225555 + 55552222).

Solution: 2222 ≡ 3 mod 7, 5555 ≡ 4 mod 7 and 35 ≡ 5 mod 7. Now
22225555 + 55552222 ≡ 35555 + 42222 ≡ (35)1111 + (42)1111 ≡ 51111 − 51111 ≡ 0

mod 7.

183 Example Find the units digit of 777

.

Solution: We must find 777

mod 10. Now, 72 ≡ −1 mod 10, and so
73 ≡ 72 · 7 ≡ −7 ≡ 3 mod 10 and 74 ≡ (72)2 ≡ 1 mod 10. Also, 72 ≡ 1

mod 4 and so 77 ≡ (72)3 · 7 ≡ 3 mod 4, which means that there is an
integer t such that 77 = 3 + 4t. Upon assembling all this,

777 ≡ 74t+3 ≡ (74)t · 73 ≡ 1t · 3 ≡ 3 mod 10.

Thus the last digit is 3.

184 Example Prove that every year, including any leap year, has at
least one Friday 13th.

Solution: It is enough to prove that each year has a Sunday the 1st.
Now, the first day of a month in each year falls in one of the following
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days:
Month Day of the year mod 7

January 1 1

February 32 or 33 4 or 5

March 60 or 61 4 or 5

April 91 or 92 0 or 1

May 121 or122 2 or 3

June 152 or 153 5 or 6

July 182 or183 0 or 1

August 213 or 214 3 or 4

September 244 or 245 6 or 0

October 274 or 275 1 or 2

November 305 or 306 4 or 5

December 335 or 336 6 or 0

(The above table means that February 1st is either the 32nd or 33rd
day of the year, depending on whether the year is a leap year or
not, that March 1st is the 50th or 51st day of the year, etc.) Now,
each remainder class modulo 7 is represented in the third column,
thus each year, whether leap or not, has at least one Sunday the
1st.

185 Example Find infinitely many integers n such that 2n + 27 is divisi-
ble by 7.

Solution: Observe that 21 ≡ 2, 22 ≡ 4, 23 ≡ 1, 24 ≡ 2, 25 ≡ 4, 26 ≡ 1 mod
7 and so 23k ≡ 1 mod 3 for all positive integers k. Hence 23k + 27 ≡
1 + 27 ≡ 0 mod 7 for all positive integers k. This produces the infinitely
many values sought.

186 Example Are there positive integers x, y such that x3 = 2y + 15?

Solution: No. The perfect cubes mod 7 are 0, 1, and 6. Now, every
power of 2 is congruent to 1, 2, or 4 mod 7. Thus 2y + 15 ≡ 2, 3, or 5
mod 7. This is an impossibility.

187 Example Prove that 2k − 5, k = 0, 1, 2, . . . never leaves remainder
1 when divided by 7.
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Solution: 21 ≡ 2, 22 ≡ 4, 23 ≡ 1 mod 7, and this cycle of three repeats.
Thus 2k − 5 can leave only remainders 3, 4, or 6 upon division by 7.

188 Example (AIME 1994) The increasing sequence

3, 15, 24, 48, . . . ,

consists of those positive multiples of 3 that are one less than a per-
fect square. What is the remainder when the 1994-th term of the
sequence is divided by 1000?

Solution: We want 3|n2−1 = (n−1)(n+1). Since 3 is prime, this requires
n = 3k+1 or n = 3k−1, k = 1, 2, 3, . . .. The sequence 3k+1, k = 1, 2, . . .

produces the terms n2−1 = (3k+1)2−1 which are the terms at even
places of the sequence of 3, 15, 24, 48, . . .. The sequence 3k − 1, k =

1, 2, . . . produces the terms n2−1 = (3k−1)2−1 which are the terms at
odd places of the sequence 3, 15, 24, 48, . . .. We must find the 997th
term of the sequence 3k + 1, k = 1, 2, . . .. Finally, the term sought
is (3(997) + 1)2 − 1 ≡ (3(−3) + 1)2 − 1 ≡ 82 − 1 ≡ 63 mod 1000. The
remainder sought is 63.

189 Example (USAMO 1979) Determine all nonnegative integral so-
lutions

(n1, n2, . . . , n14)

if any, apart from permutations, of the Diophantine equation

n4
1 + n4

2 + · · · + n4
14 = 1599.

Solution: There are no such solutions. All perfect fourth powers mod
16 are ≡ 0 or 1 mod 16. This means that

n4
1 + · · · + n4

14

can be at most 14 mod 16. But 1599 ≡ 15 mod 16.

190 Example (PUTNAM 1986) What is the units digit of
[

1020000

10100 + 3

]

?
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Solution: Set a − 3 = 10100. Then [(1020000)/10100 + 3] = [(a − 3)200/a] =

[
1

a

∑200

k=0

(

200

k

)

a200−k(−3)k] =
∑199

k=0

(

200

k

)

a199−k(−3)k. Since
∑200

k=0(−1)k
(

200

k

)

=

0, (3)199
∑199

k=0(−1)k
(

200

k

)

= −3199. As a ≡ 3 mod 10,
∑199

k=0

(

200

k

)

a199−k(−3)k ≡
3199

∑199

k=0(−1)k
(

200

k

)

≡ −3199 ≡ 3 mod 10.

191 Example Prove that for any a, b, c ∈ Z, n ∈ N, n > 3, there is an
integer k such that n 6 |(k + a), n 6 |(k + b), n 6 |(k + c).

Solution: The integers a, b, c belong to at most three different residue
classes mod n. Since n > 3, we have more than three distinct
residue classes. Thus there must be a residue class, say k for which
−k 6≡ a,−k 6≡ b,−k 6≡ c, mod n. This solves the problem.

192 Example (PUTNAM 1973) Let a1, a2, . . . , a2n+1 be a set of integers
such that if any one of them is removed, the remaining ones can
be divided into two sets of n integers with equal sums. Prove that
a1 = a2 = . . . = a2n+1.

Solution: As the sum of the 2n integers remaining is always even,
no matter which of the ak be taken, all the ak must have the same
parity. The property stated in the problem is now shared by ak/2 or
(ak − 1)/2, depending on whether they are all even, or all odd. Thus
they are all congruent mod 4. Continuing in this manner we arrive
at the conclusion that the ak are all congruent mod 2k for every k,
and this may only happen if they are all equal.

193 Example Prove that

(kn)! ≡ 0 mod
n−1∏

r=0

(n + r)

if n, k ∈ N, n ≥ k ≥ 2.

Solution: (kn)! = M(n− 1)!n(n+ 1) · · · (2n− 1) for some integer M ≥ 1.

The assertion follows.
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194 Example Let

n!! = n! (1/2! − 1/3! + · · · + (−1)n/n!) .

Prove that for all n ∈ N, n > 3,

n!! ≡ n! mod (n − 1).

Solution: We have

n! − n!! = n(n − 1)(n − 2)!(1 − 1/2!

+ · · · + (−1)n−1/(n − 1)! + (−1)n/n!)

= (n − 1)
(

m + (−1)n−1n/(n − 1) + (−1)n/(n − 1)
)

= (n − 1) (m + (−1)n) ,

where M is an integer, since (n − 2)! is divisible by k!, k ≤ n − 2.

195 Example Prove that

6n+2∑

k=0

(

6n + 2

2k

)

3k ≡ 0, 23n+1,−23n+1 mod 23n+2

when n is of the form 2k, 4k + 3 or 4k + 1 respectively.

Solution: Using the Binomial Theorem,

2S := 2

3n+1∑

k=0

(

6n + 2

2k

)

3k = (1 +
√

3)6n+2 + (1 −
√

3)6n+2.

Also, if n is odd, with a = 2 +
√

3, b = 2 −
√

3,

1

2
(a3n+1 + b3n+1) =

3n + 1

2∑

r=0

(

3n + 1

2r

)

23n+1−2r3r.

≡ 3(3n+1)/2 mod 4

≡ (−1)(n−1)/2 mod 4.

As 2S = 23n+1(a3n+1 + b3n+1), we have, for odd n,

S ≡ (−1)(n−1)/223n+1 mod 23n+3.
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If n is even,

1

2
(a3n+1 + b3n+1) =

∑

2r≤3n

(

3n + 1

2r + 1

)

22r+133n−2r

≡ 2(6n + 1)33n mod 8

≡ 4n + 2 mod 8.

So for even n, S ≡ 23n+22n + 1 mod 23n+4.

Ad Pleniorem Scientiam

196 APS Find the number of all n, 1 ≤ n ≤ 25 such that n2+15n+122

is divisible by 6.

(Hint: n2 + 15n + 122 ≡ n2 + 3n + 2 = (n + 1)(n + 2) mod 6.)

197 APS (AIME 1983) Let an = 6n + 8n. Determine the remainder
when a83 is divided by 49.

198 APS (POLISH MATHEMATICAL OLYMPIAD) What digits should be put
instead of x and y in 30x0y03 in order to give a number divisible by
13?

199 APS Prove that if 9|(a3 + b3 + c3), then 3|abc, for integers a, b, c.

200 APS Describe all integers n such that 10|n10 + 1.

201 APS Prove that if

a − b, a2 − b2, a3 − b3, a4 − b4, . . .

are all integers, then a and b must also be integers.

202 APS Find the last digit of 3100.

203 APS (AHSME 1992) What is the size of the largest subset S of
{1, 2, . . . , 50} such that no pair of distinct elements of S has a sum
divisible by 7?
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204 APS Prove that there are no integer solutions to the equation
x2 − 7y = 3.

205 APS Prove that if 7|a2 + b2 then 7|a and 7|b.

206 APS Prove that there are no integers with

800000007 = x2 + y2 + z2.

207 APS Prove that the sum of the decimal digits of a perfect square
cannot be equal to 1991.

208 APS Prove that

7|42n

+ 22n

+ 1

for all natural numbers n.

209 APS Prove that 5 never divides

n∑

k=0

23k

(

2n + 1

2k + 1

)

.

210 APS Prove that if p is a prime,
(

n

p

)

− [
n

p
] is divisible by p, for all

n ≥ p.

211 APS How many perfect squares are there mod 2n?

212 APS Prove that every non-multiple of 3 is a perfect power of 2

mod 3n.

213 APS Find the last two digits of 3100.

214 APS (USAMO 1986) What is the smallest integer n > 1, for which
the root-mean-square of the first n positive integers is an integer?
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Note. The root mean square of n numbers a1, a2, . . . , an is defined to be

(

a2
1 + a2

2 + · · · + a2
n

n

)1/2

.

215 APS Find all integers a, b, c, a > 1 and all prime numbers p, q, r

which satisfy the equation

pa = qb + rc

(a, b, c, p, q, r need not necessarily be different).

216 APS Show that the number 16 is a perfect 8-th power mod p for
any prime p.

217 APS (IMO 1975) Let a1, a2, a3, . . . be an increasing sequence of
positive integers. Prove that for every s ≥ 1 there are infinitely many
am that can be written in the form am = xas + yat with positive inte-
gers x and y and t > s.

218 APS For each integer n > 1, prove that nn−n2+n− 1 is divisible
by (n − 1)2.

219 APS Let x and ai, i = 0, 1, . . . , k be arbitrary integers. Prove that

k∑

i=0

ai(x
2 + 1)3i

is divisible by x2±x+1 if and only if
∑k

i=0(−1)iai is divisible by x2±x+1.

220 APS ((UM)2C9 1992) If x, y, z are positive integers with

xn + yn = zn

for an odd integer n ≥ 3, prove that z cannot be a prime-power.
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3.2 Divisibility Tests

Working base-ten, we have an ample number of rules of divisibility.
The most famous one is perhaps the following.

221 Theorem Casting-out 9’s A natural number n is divisible by 9 if
and only if the sum of it digits is divisible by 9.

Proof Let n = ak10k + ak−110k−1 + · · · + a110 + a0 be the base-10 ex-
pansion of n. As 10 ≡ 1 mod 9, we have 10j ≡ 1 mod 9. It follows that
n = ak10k + · · ·+a110+a0 ≡ ak + · · ·+a1 +a0, whence the theorem.❑

222 Example (AHSME 1992) The two-digit integers from 19 to 92 are
written consecutively in order to form the integer

192021222324 · · · 89909192.

What is the largest power of 3 that divides this number?

Solution: By the casting-out-nines rule, this number is divisible by 9 if
and only if

19 + 20 + 21 + · · · + 92 = 372 · 3
is. Therefore, the number is divisible by 3 but not by 9.

223 Example (IMO 1975) When 44444444 is written in decimal notation,
the sum of its digits is A. Let B be the sum of the digits of A. Find the
sum of the digits of B. (A and B are written in decimal notation.)

Solution: We have 4444 ≡ 7 mod 9, and hence 44443 ≡ 73 ≡ 1 mod 9.
Thus 44444444 = 44443(1481) · 4444 ≡ 1 · 7 ≡ 7 mod 9. Let C be the sum of
the digits of B.

By the casting-out 9’s rule, 7 ≡ 44444444 ≡ A ≡ B ≡ C mod 9. Now,
4444 log10 4444 < 4444 log10 104 = 17776. This means that 44444444 has
at most 17776 digits, so the sum of the digits of 44444444 is at most
9 · 17776 = 159984, whence A ≤ 159984. Amongst all natural numbers
≤ 159984 the one with maximal digit sum is 99999, so it follows that
B ≤ 45. Of all the natural numbers ≤ 45, 39 has the largest digital
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sum, namely 12. Thus the sum of the digits of B is at most 12. But
since C ≡ 7 mod 9, it follows that C = 7.

A criterion for divisibility by 11 can be established similarly. For let
n = ak10k + ak−110k−1 + · · · + a110 + a0. As 10 ≡ −1 mod 11, we have
10j ≡ (−1)j mod 11. Therefore n ≡ (−1)kak +(−1)k−1ak−1 + · · ·−a1 +a0

mod 11, that is, n is divisible by 11 if and only if the alternating sum
of its digits is divisible by 11. For example, 912282219 ≡ 9 − 1 + 2 − 2 +

8 − 2 + 2 − 1 + 9 ≡ 7 mod 11 and so 912282219 is not divisible by 11,
whereas 8924310064539 ≡ 8−9+2−4+3−1+0−0+6−4+4−3+9 ≡ 0

mod 11, and so 8924310064539 is divisible by 11.

224 Example (PUTNAM 1952) Let

f(x) =

n∑

k=0

akx
n−k

be a polynomial of degree n with integral coefficients. If a0, an and
f(1) are all odd, prove that f(x) = 0 has no rational roots.

Solution: Suppose that f(a/b) = 0, where a and b are relatively prime
integers. Then 0 = bnf(a/b) = a0b

n+a1b
n−1a+ · · ·+an−1ban−1 +anan.

By the relative primality of a and b it follows that a|a0, b|an, whence
a and b are both odd. Hence

a0b
n+aabn−1a+· · ·+an−1ban−1+anan ≡ a0+a1+· · ·+an = f(1) ≡ 1 mod 2,

but this contradicts that a/b is a root of f.

Ad Pleniorem Scientiam

225 APS (AHSME 1991) An n-digit integer is cute if its n digits are an
arrangement of the set {1, 2, . . . , n} and its first k digits form an integer
that is divisible by k for all k, 1 ≤ k ≤ n. For example, 321 is a cute
three-digit number because 1 divides 3, 2 divides 32, and 3 divides
321. How many cute six-digit integers are there?

Answer: 2.

226 APS How many ways are there to roll two distinguishable dice
to yield a sum that is divisible by three?
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Answer: 12.

227 APS Prove that a number is divisible by 2k, k ∈ N if and only if
the number formed by its last k digits is divisible by 2k. Test whether

90908766123456789999872

is divisible by 8.

228 APS An old receipt has faded. It reads 88 chickens at the total
of $x4.2y, where x and y are unreadable digits. How much did each
chicken cost?

Answer: 73 cents.

229 APS Five sailors plan to divide a pile of coconuts amongst them-
selves in the morning. During the night, one of them wakes up and
decides to take his share. After throwing a coconut to a monkey
to make the division come out even, he takes one fifth of the pile
and goes back to sleep. The other four sailors do likewise, one af-
ter the other, each throwing a coconut to the monkey and taking
one fifth of the remaining pile. In the morning the five sailors throw
a coconut to the monkey and divide the remaining coconuts into
five equal piles. What is the smallest amount of coconuts that could
have been in the original pile?

Answer: 15621

230 APS Prove that a number which consists of 3n identical digits is
divisible by 3n. For example, 111 111 111 is divisible by 27.

231 APS ((UM)2C8 1991) Suppose that a0, a1, . . . an are integers with
an 6= 0, and let

p(x) = a0 + a1x + · · · + anxn.

Suppose that x0 is a rational number such that p(x0) = 0. Show that
if 1 ≤ k ≤ n, then

akx0 + ak+1x
2
0 + · · · + anxn−k+1
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is an integer.

232 APS 1953 digits are written in a circular order. Prove that if the
1953-digit numbers obtained when we read these digits in dextro-
gyral sense beginning with one of the digits is divisible by 27, then if
we read these digits in the same direction beginning with any other
digit, the new 1953-digit number is also divisible by 27.

233 APS (Lagrange) Prove that

fn+60 ≡ fn mod 10.

Thus the last digit of a Fibonacci number recurs in cycles of length
60.

234 APS Prove that

f2n+1 ≡ f2
n+1 mod f2

n.

3.3 Complete Residues

The following concept will play a central role in our study of integers.

235 Definition If a ≡ b mod n then b is called a residue of a modulo
n. A set a1, a2, . . . an is called a complete residue system modulo n
if for every integer b there is exactly one index j such that b ≡ aj

mod n.

It is clear that given any finite set of integers, this set will form a
complete set of residues modulo n if and only if the set has n mem-
bers and every member of the set is incongruent modulo n. For
example, the set A = {0, 1, 2, 3, 4, 5} forms a complete set of residues
mod 6, since any integer x is congruent to one and only one mem-
ber of A . Notice that the set B = {−40, 6, 7, 15, 22, 35} forms a com-
plete residue set mod 6, but the set C = {−3,−2,−1, 1, 2, 3} does not,
as −3 ≡ 3 mod 6.
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Table 3.1: Addition Table for Z3

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 3.2: Addition Table for Z6

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Tied up with the concept of complete residues is that of Zn. As
an example, let us take n = 3. We now let 0 represent all those inte-
gers that are divisible by 3, 1 represent all those integers that leave
remainder 1 upon division by 3, and 2 all those integers that leave
remainder 2 upon division by 3, and consider the set Z3 = {0, 1, 2}.
We define addition in Z3 as follows. Given a, b ∈ Z3 we consider a+b

mod 3. Now, there is c ∈ {0, 1, 2} such that a + b ≡ c mod 3. We then
define a +3 b to be equal to c. Table (1.1) contains all the possible
additions.

We observe that Z3 together with the operation +3 as given in
Table (1.1) satisfies the following properties:

1. The element 0 ∈ Z3 is an identity element for Z3, i.e. 0 satisfies
0 +3 a = a +3 0 = a for all a ∈ Z3

2. Every element a ∈ Z3 has an additive inverse b, i.e., an element
such that a +3 b = b +3 a = 0. We denote the additive inverse of
a by −a. In Z3 we note that −0 = 0,−1 = 2,−2 = 1.

3. The operation addition in Z3 is associative, that is, for all a, b, c ∈
Z3 we have a +3 (b +3 c) = (a +3 b) +3 c.
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We then say that < Z3,+3 > forms a group and we call it the
group of residues under addition mod 3.

Similarly we define < Zn,+n >, as the group of residues under

addition mod n. As a further example we present the addition table
for < Z6,+6 > on Table (1.2). We will explore later the multiplicative
structure of Zn.

Ad Pleniorem Scientiam

236 APS Construct the addition tables for Z8 and Z9.

237 APS How many distinct ordered pairs (a, b) 6= (0, 0) are in Z12

such that a +12 b = 0?
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Unique Factorisation

4.1 GCD and LCM

If a, b ∈ Z, not both zero, the largest positive integer that divides
both a, b is called the greatest common divisor of a and b. This
is denoted by (a, b) or sometimes by gcd(a, b). Thus if d|a and d|b

then d|(a, b), because any common divisor of a and b must divide
the largest common divisor of a and b. For example, (68,−6) =

2, gcd(1998, 1999) = 1.

If (a, b) = 1, we say that a and b are relatively prime or coprime.
Thus if a, b are relatively prime, then they have no factor greater
than 1 in common.

If a, b are integers, not both zero, the smallest positive integer that
is a multiple of a, b is called the least common multiple of a and b.
This is denoted by [a, b]. We see then that if a|c and if b|c, then [a, b]|c,
since c is a common multiple of both a and b, it must be divisible by
the smallest common multiple of a and b.

The most important theorem related to gcd’s is probably the fol-
lowing.

238 Theorem (Bachet-Bezout Theorem) The greatest common divi-
sor of any two integers a, b can be written as a linear combination
of a and b, i.e., there are integers x, y with

(a, b) = ax + by.

63
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Proof Let A = {ax + by|ax + by > 0, x, y ∈ Z}. Clearly one of ±a,±b

is in A , as both a, b are not zero. By the Well Ordering Principle, A

has a smallest element, say d. Therefore, there are x0, y0 such that
d = ax0 + by0. We prove that d = (a, b). To do this we prove that
d|a, d|b and that if t|a, t|b, then t|d.

We first prove that d|a. By the Division Algorithm, we can find in-
tegers q, r, 0 ≤ r < d such that a = dq + r. Then

r = a − dq = a(1 − qx0) − by0.

If r > 0, then r ∈ A is smaller than the smaller element of A , namely
d, a contradiction. Thus r = 0. This entails dq = a, i.e. d|a. We can
similarly prove that d|b.

Assume that t|a, t|b. Then a = tm, b = tn for integers m, n. Hence
d = ax0+bx0 = t(mx0+ny0), that is, t|d. The theorem is thus proved.❑

! It is clear that any linear combination of a, b is divisible by (a, b).

239 Lemma (Euclid’s Lemma) If a|bc and if (a, b) = 1, then a|c.

Proof As (a, b) = 1, by the Bachet-Bezout Theorem, there are inte-
gers x, y with ax+by = 1. Since a|bc, there is an integer s with as = bc.

Then c = c · 1 = cax + cby = cax + asy. From this it follows that a|c, as
wanted.

240 Theorem If (a, b) = d, then

(
a

d
,
b

d
) = 1.

Proof By the Bachet-Bezout Theorem, there are integers x, y such
that ax + by = d. But then (a/d)x + (b/d)y = 1, and a/d, b/d are
integers. But this is a linear combination of a/d, b/d and so (a/d, b/d)

divides this linear combination, i.e., divides 1. We conclude that
(a/d, b/d) = 1.
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241 Theorem Let c be a positive integer. Then

(ca, cb) = c(a, b).

Proof Let d1 = (ca, cb) and d2 = (a, b). We prove that d1|cd2 and
cd2|d1. As d2|a and d2|b, then cd2|ca, cd2|cb. Thus cd2 is a common di-
visor of ca and cb and hence d1|cd2. By the Bachet-Bezout Theorem
we can find integers x, y with d1 = acx+bcy = c(ax+by). But ax+by

is a linear combination of a, b and so it is divisible by d2. There is an
integer s then such that sd2 = ax + by. It follows that d1 = csd2, i.e.,
cd2|d1. ❑

! It follows similarly that (ca, cb) = |c|(a, b) for any non-zero integer

c.

242 Lemma For nonzero integers a, b, c,

(a, bc) = (a, (a, b)c).

Proof Since (a, (a, b)c) divides (a, b)c it divides bc. Thus gcd(a, (a, b)c)

divides a and bc and hence gcd(a, (a, b)c)| gcd(a, bc).

On the other hand, (a, bc) divides a and bc, hence it divides ac

and bc. Therefore (a, bc) divides (ac, bc) = c(a, b). In conclusion,
(a, bc) divides a and c(a, b) and so it divides (a, (a, b)c). This finishes
the proof.

243 Theorem (a2, b2) = (a, b)2.

Proof Assume that (m, n) = 1. Using the preceding lemma twice,

(m2, n2) = (m2, (m2, n)n) = (m2, (n, (m, n)m)n).

As (m, n) = 1, this last quantity equals (m2, n). Using the preceding
problem again,

(m2, n) = (n, (m, n)m) = 1.

Thus (m, n) = 1 implies (m2, n2) = 1.
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By Theorem 4.2,
(

a

(a, b)
,

b

(a, b)

)

= 1,

and hence
(

a2

(a, b)2
,

b2

(a, b)2

)

= 1.

By Theorem 4.3, upon multiplying by (a, b)2, we deduce

(a2, b2) = (a, b)2,

which is what we wanted.

244 Example Let (a, b) = 1. Prove that (a + b, a2 − ab + b2) = 1 or 3.

Solution: Let d = (a + b, a2 − ab + b2). Now d divides

(a + b)2 − a2 + ab − b2 = 3ab.

Hence d divides 3b(a + b) − 3ab = 3b2. Similarly, d|3a2. But then
d|(3a2, 3b2) = 3(a2, b2) = 3(a, b)2 = 3.

245 Example Let a, a 6= 1, m, n be positive integers. Prove that

(am − 1, an − 1) = a(m,n) − 1.

Solution: Set d = (m, n), sd = m, td = n. Then am − 1 = (ad)s − 1

is divisible by ad − 1 and similarly, an − 1 is divisible by ad − 1. Thus
(ad − 1)|(am − 1, an − 1). Now, by the Bachet-Bezout Theorem there
are integers x, y with mx + ny = d. Notice that x and y must have
opposite signs (they cannot obviously be both negative, since then
d would be negative. They cannot both be positive because then
d ≥ m + n, when in fact we have d ≤ m, d ≤ n). So, assume without
loss of generality that x > 0, y ≤ 0. Set t = (am − 1, an − 1). Then
t|(amx−1) and t|(a−ny−1). Hence, t|((amx−1)−ad(a−ny−1)) = ad−1.

The assertion is established.

246 Example (IMO, 59) Prove that the fraction
21n + 4

14n + 3
is irreducible

for every natural number n.
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Solution: 2(21n + 4) − 3(14n + 3) = −1. Thus the numerator and the
denominator have no common factor greater than 1.

247 Example (AIME, 1985) The numbers in the sequence

101, 104, 109, 116, . . .

are of the form an = 100 + n2, n = 1, 2, . . .. For each n let dn =

(an, an+1). Find maxn≥1 dn.

Solution: We have the following: dn = (100+n2, 100+(n+1)2) = (100+

n2, 100+n2+2n+1) = (100+n2, 2n+1). Thus dn|(2(100+n2)−n(2n+1)) =

200−n. Therefore dn|(2(200−n)+(2n+1)) = 401. This means that dn|401

for all n. Could it be that large? The answer is yes, for let n = 200, then
a200 = 100 + 2002 = 100(401) and a201 = 100 + 2012 = 40501 = 101(401).
Thus maxn≥1 dn = 401.

248 Example Prove that if m and n are natural numbers and m is
odd, then (2m − 1, 2n + 1) = 1.

Solution: Let d = (2m − 1, 2n + 1). It follows that d must be an odd
number, and 2m − 1 = kd, 2n + 1 = ld, for some natural numbers k, l.

Therefore, 2mn = (kd + 1)n = td + 1, where t =
∑n−1

j=0

(

n

j

)

kn−jdn−j−1. In

the same manner, 2mn = (ld−1)m = ud−1, where we have used the
fact that M is odd. As td + 1 = ud − 1, we must have d|2, whence
d = 1.

249 Example Prove that there are arbitrarily long arithmetic progres-
sions in which the terms are pairwise relatively prime.

Solution: The numbers km! + 1, k = 1, 2, . . . , m form an arithmetic pro-
gression of length M and common difference m!. Suppose that
d|(lm! + 1), d|(sm! + 1), 1 ≤ l < s ≤ m. Then d|(s(lm! + 1) − l(sm! + 1)) =

(s−l) < m. Thus 1 ≤ d < m and so, d|m!. But then d|(sm!+1−sm!) = 1.

This means that any two terms of this progression are coprime.

250 Example Prove that any two consecutive Fibonacci numbers are
relatively prime.
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Solution: Let d = (fn, fn+1). As fn+1−fn = fn−1 and d divides the sinistral
side of this equality, d|fn−1. Thus d|(fn − fn−1) = fn−2. Iterating on this
process we deduce that d|f1 = 1 and so d = 1.
Aliter: By Cassini’s Identity fn−1fn+1 − f2

n = (−1)n. Thus d|(−1)n, i.e.,
d = 1.

251 Example Prove that

(fm, fn) = f(n,m).

Solution: Set d = (fn, fm), c = f(m,n), a = (m, n). We will prove that c|d

and d|c.

Since a|m and a|n, fa|fm and fa|fn by Theorem 3.4. Thus

fa|(fm, fm),

i.e., c|d.

Now, by the Bachet-Bezout Theorem, there are integers x, y such
that xm + yn = a. Observe that x, y cannot be both negative, oth-
erwise a would be negative. As a|n, a|m we have a ≤ n, a ≤ m. They
cannot be both positive since then a = xm + yn ≥ m + n, a contra-
diction. Thus they are of opposite signs, and we assume without loss
of generality that x ≤ 0, y > 0.

Observe that

fyn = fa−xm = fa−1f−xm + faf−xm+1

upon using the identity

fs+t = fs−1ft + fsft+1

of Theorem 1.3. As n|yn, m|(−xm), we have that fn|fyn, fm|f−xm. This
implies that (fn, fm)|fyn and (fn, fm)|f−xm. Hence

(fn, fm)|faf−xm+1.

We saw earlier that (fn, fm)|f−xm. If it were the case that

(fn, fm)|f−xm+1,

then (fn, fm) would be dividing two consecutive Fibonacci numbers,
a contradiction to the preceding problem in the case when (fn, fm) >

1. The case = 1 is a triviality. Therefore (fn, fm)|fa, which is what we
wanted to prove.
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252 Example Prove that no odd Fibonacci number is ever divisible
by 17.

Solution: Let d = (17, fn), which obviously must be odd. Then (17, fn) =

(34, fn) = (f9, fn) = f(9,n) = f1, f3 or f9. This means that d = (17, fn) = 1, 2

or 34. This forces d = 1.

253 Example The Catalan number of order n is defined as

Cn =
1

n + 1

(

2n

n

)

.

Prove that Cn is an integer for all natural numbers n.

Solution: By the binomial absorption identity,

2n + 1

n + 1

(

2n

n

)

=

(

2n + 1

n + 1

)

.

Since 2n+1 and n+1 are relatively prime, and since the dextral side

is an integer, it must be the case that n + 1 divides

(

2n

n

)

.

254 Example Let n be a natural number. Find the greatest common
divisor of

(

2n

1

)

,

(

2n

3

)

, . . . ,

(

2n

2n − 1

)

.

Solution: Since
n∑

k=1

(

2n

2k − 1

)

= 22n−1,

the gcd must be of the form 2a. Since the gcd must divide
(

2n

1

)

= 2n,
we see that it has divide 2l+1, where l is the largest power of 2 that
divides n. We claim that 2l+1 divides all of them. We may write
n = 2lm, where M is odd. Now,

(

2l+1m

2k − 1

)

=
2l+1m

2k − 1

(

2l+1m − 1

2k − 2

)

.

But 2k − 1 6 |2l+1 for k > 1. This establishes the claim.
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255 Example Let any fifty one integers be taken from amongst the
numbers 1, 2, . . . , 100. Show that there are two that are relatively prime.

Solution: Arrange the 100 integers into the 50 sets

{1, 2}, {3, 4}, {5, 6} . . . , {99, 100}.

Since we are choosing fifty one integers, there must be two that will
lie in the same set. Those two are relatively prime, as consecutive
integers are relatively prime.

256 Example Prove that any natural number n > 6 can be written
as the sum of two integers greater than 1, each of the summands
being relatively prime.

Solution: If n is odd, we may choose a = 2, b = n−2. If n is even, then
is either of the form 4k or 4k + 2. If n = 4k, then take a = 2k + 1, b =

2k−1. These two are clearly relatively prime (why?). If n = 4k+2, k > 1

take a = 2k + 3, b = 2k − 1.

257 Example How many positive integers ≤ 1260 are relatively prime
to 1260?

Solution: As 1260 = 22 · 32 · 5 · 7, the problem amounts to finding those
numbers less than 1260 which are not divisible by 2, 3, 5, or 7. Let A

denote the set of integers ≤ 1260 which are multiples of 2, B the set
of multiples of 3, etc. By the Inclusion-Exclusion Principle,

|A ∪ B ∪ C ∪ D| = |A| + |B| + |C| + |D|

−|A ∩ B| − |A ∩ C| − |A ∩ D|

−|B ∩ C| − |B ∩ D| − |C ∩ D|

+|A ∩ B ∩ C| + |A ∩ B ∩ D| + |A ∩ C ∩ D|

+|B ∩ C ∩ D| − |A ∩ B ∩ C ∩ D|

= 630 + 420 + 252 + 180 − 210 − 126 − 90 − 84

−60 − 36 + 42 + 30 + 18 + 12 − 6 = 972.

The number of integers sought is then 1260 − 972 = 288.

Ad Pleniorem Scientiam
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258 APS Show that
(a, b)[a, b] = ab

for all natural numbers a, b.

259 APS Find lcm (23!41!, 29!37!).

260 APS Find two positive integers a, b such that

a2 + b2 = 85113, and lcm (a, b) = 1764.

261 APS Find a, b ∈ N with (a, b) = 12, [a, b] = 432.

262 APS Prove that (a, b)n = (an, bn) for all natural numbers n.

263 APS Let a ∈ N. Find, with proof, all b ∈ N such that

(2b − 1)|(2a + 1).

264 APS Show that (n3 + 3n + 1, 7n3 + 18n2 − n − 2) = 1.

265 APS Let the integers an, bn be defined by the relation

an + bn

√
2 = (1 +

√
2)n, n ∈ N.

Prove that gcd(an, bn) = 1 ∀ n.

266 APS Prove or disprove the following two propositions:

1. If a, b ∈ N, a < b, then in any set of b consecutive integers there
are two whose product is divisible by ab.

2. If a, b, c,∈ N, a < b < c, then in any set of c consecutive integers
there are three whose product is divisible by abc.

267 APS Let n, k, n ≥ k > 0 be integers. Prove that the greatest
common divisor of the numbers

(

n

k

)

,

(

n + 1

k

)

, . . . ,

(

n + k

k

)

is 1.
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(Hint: Prove
k∑

j=0

(−1)j

(

k

j

)(

n + j

k

)

= (−1)k.)

268 APS Let Fn = 22n

+ 1 be the n-th Fermat number. Find (Fn, Fm).

269 APS Find the greatest common divisor of the sequence

16n + 10n − 1, n = 1, 2, . . . .

270 APS Demonstrate that (n! + 1, (n + 1)! + 1) = 1.

271 APS Prove that any natural number n > 17 can be written as
n = a + b + c where a, b, c are pairwise relatively prime natural num-
bers each exceeding 1.

(Hint: Consider n mod 12. Write two of the summands in the form
6k + s and the third summand as a constant.)

272 APS Prove that there are no positive integers a, b, n > 1 with

(an − bn)|(an + bn).

273 APS Prove that the binomial coefficients have the following hexag-
onal property:

gcd

((

n − 1

k − 1

)

,

(

n

k + 1

)

,

(

n + 1

k

))

= gcd

((

n − 1

k

)

,

(

n + 1

k + 1

)

,

(

n

k − 1

))

.

274 APS (PUTNAM 1974) Call a set of integers conspiratorial if no
three of them are pairwise relatively prime. What is the largest num-
ber of elements in any conspiratorial subset of the integers 1 through
16?



Primes 73

4.2 Primes

Recall that a prime number is a positive integer greater than 1 whose
only positive divisors are itself and 1. Clearly 2 is the only even prime
and so 2 and 3 are the only consecutive integers which are prime.
An integer different from 1 which is not prime is called compos-
ite. It is clear that if n > 1 is composite then we can write n as
n = ab, 1 < a ≤ b < n, a, b ∈ N.

275 Theorem If n > 1, then n is divisible by at least one prime.

Proof Since n > 1, it has at least one divisor > 1. By the Well Ordering
Principle, n must have a least positive divisor greater than 1, say q.
We claim that q is prime. For if not then we can write q as q = ab, 1 <

a ≤ b < q. But then a is a divisor of n greater than 1 and smaller than
q, which contradicts the minimality of q.

276 Theorem (Euclid) There are infinitely many primes.

Proof Let p1, p2, . . . pk be a list of primes. Construct the integer

n = p1p2 · · ·pk + 1.

This integer is greater than 1 and so by the preceding problem, it
must have a prime divisor p. Observe that p must be different from
any of p1, p2, . . . , pk since n leaves remainder 1 upon division by any
of the pi. Thus we have shown that no finite list of primes exhausts
the set of primes, i.e., that the set of primes is infinite.

277 Lemma The product of two numbers of the form 4k + 1 is again
of that form.

Proof (4a + 1)(4b + 1) = 4(4ab + a + b) + 1.

278 Theorem There are infinitely many primes of the form 4n + 3.
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Proof Any prime either equals 2, or is of the form 4k± 1. We will show
that the collection of primes of the form 4k − 1 is inexhaustible. Let

{p1, p2, . . . pn}

be any finite collection of primes of the form 4k − 1. Construct the
number

N = 4p1p2 · · ·pn − 1.

Since each pk is ≥ 3, N ≥ 11. Observe that N is not divisible by any
of the primes in our collection. Now either N is a prime, in which
case it is a prime of the form 4k − 1 not on the list, or it is a product
of primes. In the latter case, all of the prime factors of N cannot be
of the form 4k + 1, for the product of any two primes of this form is
again of this form, in view of the preceding problem. Thus N must
be divisible by some prime of the form 4k−1 not on the list. We have
thus shown that given any finite list of primes of the form 4k − 1 we
can always construct an integer which is divisible by some prime of
the form 4k − 1 not on that list. The assertion follows. ❑

279 Example Prove that there are arbitrarily long strings that do not
contain a prime number.

Solution: Let k ∈ N, k ≥ 2. Then each of the numbers

k! + 2, . . . , k! + k

is composite.

280 Theorem If the positive integer n is composite, then it must have
a prime factor p with p ≤ √

n.

Proof Suppose that n = ab, 1 < a ≤ b < n. If both a and b are >
√

n,
then n = ab >

√
n
√

n = n, a contradiction. Thus n has a factor 6= 1

and ≤ √
n, and hence a prime factor, which is ≤ √

n. ❑

281 Example Find the number of prime numbers ≤ 100.
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Solution: Observe that
√

100 = 10. By the preceding theorem, all the
composite numbers in the range 10 ≤ n ≤ 100 have a prime factor
amongst 2, 3, 5, or 7. Let Am denote the multiples of M which are
≤ 100. Then |A2| = 50, |A3| = 33, |A5| = 20, |A7| = 14, |A6| = 16, |A10| =

10, |A14| = 7, |A15| = 6, |A21| = 4, |A35| = 2, |A30| = 3, |A42| = 2, |A70| =

1, |A105| = 0, |A210| = 0. Thus the number of primes ≤ 100 is

= 100 − ( number of composites ≤ 1) − 1

= 4 + 100 − multiples of 2, 3, 5, or 7 ≤ 100 − 1

= 4 + 100 − (50 + 33 + 20 + 14) + (16 + 10 + 7 + 6 + 4 + 2)

−(3 + 2 + 1 + 0) − 0 − 1

= 25,

where we have subtracted the 1, because 1 is neither prime nor
composite.

282 Lemma If p is a prime,

(

p

k

)

is divisible by p for all 0 < k < p.

Proof
(

p

k

)

=
p(p − 1) · · · (p − k + 1)

k!

yields

k!

(

p

k

)

= p(p − 1) · · · (p − k + 1),

whence p|k!

(

p

k

)

. Now, as k < p, p 6 |k!. By Euclid’s Lemma, it must be

the case that p|

(

p

k

)

.

283 Example Prove that if p is a prime, then p divides 2p − 2.

Solution: By the Binomial Theorem:

2p − 2 = (1 + 1)p − 2 =

(

p

1

)

+

(

p

2

)

+ · · · +
(

p

p − 1

)

,

as
(

p

0

)

=
(

p

p

)

= 1. By the preceding lemma, p divides each of the

terms on the dextral side of the above. This establishes the assertion.
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Ad Pleniorem Scientiam

284 APS Prove that there are infinitely many primes of the form 6n+

5.

285 APS Use the preceding problem to show that there are infinitely
many primes p such that p − 2 is not a prime.

286 APS If p and q are consecutive odd primes, prove that the
prime factorisation of p + q has at least three (not necessarily dis-
tinct) primes.

287 APS 1. Let p be a prime and let n ∈ N. Prove, by induction
on n, that p|(np − n).

2. Extend this result to all n ∈ Z.

3. Prove Fermat’s Little Theorem: if p 6 |n, then p|(np−1 − 1).

4. Prove that 42|n7 − n, n ∈ Z.

5. Prove that 30|n5 − n, n ∈ Z.

288 APS Let p be an odd prime and let (a, b) = 1. Prove that
(

a + b,
ap + bp

a + b

)

divides p.

289 APS Prove that 3, 5, 7 is the only prime triplet of the form p, p +

2, p + 4.

290 APS Let n > 2. Prove that if one of the numbers 2n−1 and 2n+1

is prime, then the other is composite.

4.3 Fundamental Theorem of Arithmetic

Consider the integer 1332. It is clearly divisible by 2 and so we obtain
1332 = 2·666. Now, 666 is clearly divisible by 6, and so 1332 = 2·2·3·111.
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Finally, 111 is also divisible by 3 and so we obtain 1332 = 2·2·3·3·37. We
cannot further decompose 1332 as a product of positive integers
greater than 1, as all 2, 3, 37 are prime. We will show now that such
decomposition is always possible for a positive integer greater than
1.

291 Theorem Every integer greater than 1 is a product of prime num-
bers.

Proof Let n > 1. If n is a prime, then we have nothing to prove.
Assume that n is composite and let q1 be its least proper divisor.
By Theorem 4.5, q1 is a prime. Set n = q1n1, 1 < n1 < n. If n1 is
a prime, then we arrived at the result. Otherwise, assume that n1

is composite, and let q2 be its least prime divisor, as guaranteed
by Theorem 4.5. We can write then n = q1q2n2, 1 < n2 < n1 < n.

Continuing the argument, we arrive at a chain n > n1 > n2 · · · > 1,
and this process must stop before n steps, as n is a positive integer.
Eventually we then have n = q1q2 · · ·qs. ❑

We may arrange the prime factorisation obtained in the preceding
Theorem as follows,

n = pa1

1 pa2

2 · · ·pak

k , a1 > 0, a2 > 0, . . . , ak > 0,

p1 < p2 < · · · < pk,

where the pj are primes. We call the preceding factorisation of n,
the canonical factorisation of n. For example 23325273 is the canoni-
cal factorisation of 617400.

292 Theorem Fundamental Theorem of Arithmetic Every integer > 1

can be represented as a product of primes in only one way, apart
from the order of the factors.

Proof We prove that a positive integer greater than 1 can only have
one canonical factorisation. Assume that

n = pa1

1 pa2

2 · · ·pas
s = qb1

1 qb2

2 · · ·qbt

t
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are two canonical factorisations of n. By Euclid’s Lemma (example
1.2) we conclude that every p must be a q and every q must be a
p. This implies that s = t. Also, from p1 < p2 < · · · < ps and q1 < q2 <

· · · < qt we conclude that pj = qj, 1 ≤ j ≤ s.

If aj > bj for some j then, upon dividing by p
bj

j , we obtain

pa1

1 pa2

2 · · ·paj−bj

j · · ·pas
s = pb1

1 pb2

2 · · ·pbj−1

j−1 p
bj+1

j+1 · · ·pbs
s ,

which is impossible, as the sinistral side is divisible by pj and the dex-
tral side is not. Similarly, the alternative aj < bj for some j is ruled out
and so aj = bj for all j. This finishes the proof. ❑

It is easily seen, by the Fundamental Theorem of Arithmetic, that
if a has the prime factorisation a = pa1

1 pa2

2 · · ·pan
n and b has the prime

factorisation b = pb1

1 pb2

2 · · ·pbn
n , (it may be the case that some of the

ak and some of the bk are zero) then

(a, b) = p
min(a1,b1)

1 p
min(a2,b2)

2 · · ·pmin(an,bn)
n . (4.1)

and also
[a, b] = p

max(a1,b1)

1 p
max(a2,b2)

2 · · ·pmax(an,bn)
n . (4.2)

Since x + y = max(x, y) + min(x, y), it clearly follows that

ab = (a, b)[a, b].

293 Example Prove that
√

2 is irrational.

Solution: Assume that
√

2 = a/b with relatively prime natural num-
bers a, b. Then 2b2 = a2. The sinistral side of this last equality has an
odd number of prime factors (including repetitions), whereas the
dextral side has an even number of prime factors. This contradicts
the Fundamental Theorem of Arithmetic.

294 Example Prove that if the polynomial

p(x) = a0x
n + a1x

n−1 + · · · + an−1x + an

with integral coefficients assumes the value 7 for four integral values
of x, then it cannot take the value 14 for any integral value of x.
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Solution: First observe that the integer 7 can be decomposed into
at most three different integer factors 7 = −7(1)(−1). Assume that
p(ak) − 7 = 0 for distinct ak, 1 ≤ k ≤ 4. Then

p(x) − 7 = (x − a1)(x − a2)(x − a3)(x − a4)q(x)

for a polynomial q with integer coefficients. Assume that there is an
integer M with p(m) = 14. Then

7 = p(m) − 7 = (m − a1)(m − a2)(m − a3)(m − a4)q(m).

Since the factors m − ak are all distinct, we have decomposed the
integer 7 into at least four different factors. This is impossible, by the
Fundamental Theorem of Arithmetic.

295 Example Prove that the product of three consecutive integers
is never a perfect power (i.e., a perfect square or a perfect cube,
etc.).

Solution: Let the integer be (n−1)n(n+1) = (n2−1)n. Since n2−1 and
n are relatively prime, by the Fundamental Theorem of Arithmetic,
n2−1 is a perfect kth power (k ≥ 2) and n is also a perfect kth power.
But then, n2 − 1 and n2 would be consecutive perfect kth powers,
sheer nonsense.

296 Example Prove that m5 + 3m4n − 5m3n2 − 15m2n3 + 4mn4 + 12n5 is
never equal to 33.

Solution: Observe that

m5 + 3m4n − 5m3n2 − 15m2n3 + 4mn4 + 12n5

= (m − 2n)(m − n)(m + n)(m + 2n)(m + 3n).

Now, 33 can be decomposed as the product of at most four differ-
ent integers 33 = (−11)(3)(1)(−1). If n 6= 0, the factors in the above
product are all different. They cannot be multiply to 33, by the Fun-
damental Theorem of Arithmetic, as 33 is the product of 4 diferent
factors and the expression above is the product of five diferent fac-
tors for n 6= 0.. If n = 0, the product of the factors is m5, and 33 is
clearly not a fifth power.
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297 Example Prove that the sum

S = 1/2 + 1/3 + 1/4 + · · · + 1/n

is never an integer.

Solution: Let k be the largest integer such that 2k ≤ n, and P the
product of all the odd natural numbers not exceeding n. The num-

ber 2k−1PS is a sum, all whose terms, except for 2k−1PS
1

2k
, are inte-

gers.

298 Example Prove that there is exactly one natural number n for
with 28 + 211 + 2n is a perfect square.

Solution: If k2 = 28 + 211 + 2n = 2304 + 2n = 482 + 2n, then k2 − 482 =

(k − 48)(k + 48) = 2n. By unique factorisation, k − 48 = 2s, k + 48 =

2t, s + t = n. But then 2t − 2s = 96 = 3 · 25 or 2s(2t−s − 1) = 3 · 25. By
unique factorisation, s = 5, t − s = 2, giving s + t = n = 12.

299 Example Prove that in any set of 33 distinct integers with prime
factors amongst {5, 7, 11, 13, 23}, there must be two whose product is
a square.

Solution: Any number in our set is going to have the form

5a7b11c13d23f.

Thus to each number in the set, we associate a vector (a, b, c, d, f).
These vectors come in 32 different flavours, according to the parity
of the components. For example (even, odd, odd, even, odd) is
one such class. Since we have 33 integers, two (at least) will have
the same parity in their exponents, and the product of these two will
be a square.

300 Example (IMO 1985) Given a set M of 1985 distinct positive inte-
gers, none with a prime factor greater than 26, prove that M con-
tains a subset of four distinct elements whose product is the fourth
power of an integer.
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Solution: Any number in our set is going to be of the form

2a3b5c7d11f13g17h19j23k.

Thus if we gather 513 of these numbers, we will have two different
ones whose product is a square.

Start weeding out squares. Since we have 1985 > 513 numbers,
we can find a pair of distinct a1, b1 such that a1b1 = c2

1. Delete this
pair. From the 1983 integers remaining, we can find a pair of distinct
a2, b2 such that a2b2 = c2

2. Delete this pair. From the 1981 integers
remaining, we can find a pair a3, b3 such that a3b3 = c2

3. We can
continue this operation as long as we have at least 513 integers.
Thus we may perform this operation n + 1 times, were n is the largest
positive integer such that 1985 − 2n ≥ 513, i.e., n = 736. Therefore,
we are able to gather 737 pairs ak, bk such that akbk = c2

k. Now,
the 737 numbers ck have all their prime factors smaller than 26, and
since 737 > 513, we may find two distinct cm say ci and cj, i 6= j,
such that cicj = a2, a perfect square. But then cicj = a2 implies
that aibiajbj = a4, a fourth power. Thus we have found four distinct
numbers in our set whose product is a fourth power.

301 Example Let any fifty one integers be taken from amongst the
numbers 1, 2, . . . , 100. Show that there must be one that divides some
other.

Solution: Any of the fifty one integers can be written in the form 2am,
where M is odd. Since there are only fifty odd integers between 1
and 100, there are only fifty possibilities for M . Thus two (at least)
of the integers chosen must share the same odd part, and thus the
smaller will divide the larger.

302 Example (USAMO 1972) Prove that

[a, b, c]2

[a, b][b, c][c, a]
=

(a, b, c)2

(a, b)(b, c)(c, a)
.

Solution: Put

a =
∏

pαk

k , b =
∏

p
βk

k , c =
∏

p
γk

k ,
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with primes pk. The assertion is equivalent to showing

2 max(αk, βk, γk) − max(αk, βk) − max(αk, γk) − max(βk, γk)

= 2 min(αk, βk, γk) − min(αk, βk) − min(αk, γk) − min(βk, γk).

By the symmetry, we may assume, without loss of generality, that
αk ≥ βk ≥ γk. The equation to be established reduces thus to the
identity

2αk − αk − αk − βk = 2γk − βk − γk − γk.

303 Example Prove that n = 24 is the largest natural number divisible
by all integral a, 1 ≤ a ≤ √

n.

Solution: Suppose n is divisible by all the integers ≤ √
n. Let p1 =

2, p2 = 3, . . . , pl be all the primes ≤ √
n, and let kj be the unique

integers such that p
kj

j ≤ √
n < p

kj+1

j . Clearly nl/2 < pk1+1
1 pk2+1

2 · · ·pkl+1
l .

Let lcm(1, 2, 3, . . . , [
√

n] − 1, [
√

n]) = K. Clearly then K = pk1

1 pk2

2 · · ·pkl

l .

Hence pk1+1
1 pk2+1

2 · · ·pkl+1
l ≤ K2 and thus nl/2 < K2. By hypothesis, n

must be divisible by K and so K ≤ n. Consequently, nl/2 < n2. This
implies that l < 4 and so n < 49. By inspection, we see that the only
valid values for n are n = 2, 4, 6, 8, 12, 24.

304 Example (Irving Kaplansky) A positive integer n has the property
that for 0 < l < m < n,

S = l + (l + 1) + . . . + m

is never divisible by n. Prove that this is possible if and only if n is a
power of 2.

Solution: Set n = s2k with s odd. If s = 1, 2S = (l + m)(m − l + 1),
which has one factor even and one factor odd, cannot be divisible
by 2n = 2k+1, since, its even factor is less than 2n. But if s > 1, then S

is divisible by n, with 0 < l < m < n, if we take

m = (s + 2k+1 − 1)/2
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and

l =

{
1 + m − 2k+1, s > 2k+1,

1 + m − s, s < 2k+1.

305 Example Let 0 < a1 < a2 < · · · < ak ≤ n, where k > [
n + 1

2
], be

integers. Prove that

a1 + aj = ar

is soluble.

Solution: The k − 1 positive integers ai − a1, 2 ≤ i ≤ k, are clearly
distinct. These, together with the k given distinct a’s, give 2k − 1 > n

positive integers, each not greater than n. Hence, at least one of
the integers is common to both sets, so that at least once ar−a1 = aj.

The sequence [n/2]+1, [n/2]+2, . . . , n, shows that for k = [(n+1)/2]

the result is false.

306 Example Let 0 < a1 < a2 < · · · < an ≤ 2n be integers such that
the least common multiple of any two exceeds 2n. Prove that a1 >

[
2n

3
].

Solution: It is clear that no one of the numbers can divide another
(otherwise we would have an lcm ≤ 2n). Hence, writing ak = 2tkAk, Ak

odd, we see that all the Ak are different. Since there are n of them,
they coincide in some order with the set of all positive odd numbers
less than 2n.

Now, consider a1 = 2t1A1. If a1 ≤ [2n/3], then 3a1 = 2t13A1 ≤ 2n,

and 3A1 < 2n. Since 3A1 would then be an odd number < 2n, 3A1 =

Aj for some j, and aj = 2tj3A1. Thus either [a1, aj] = 2t13A1 = 3a1 ≤ 2n,

or [a1, aj] = 2tj3A1 = aj ≤ 2n. These contradictions establish the
assertion.

307 Example (PUTNAM 1980) Derive a formula for the number of quadru-
ples (a, b, c, d) such that

3r7s = [a, b, c] = [b, c, d] = [c, d, a] = [d, a, b].
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Solution: By unique factorisation, each of a, b, c, d must be of the
form 3m7n, 0 ≤ m ≤ r, 0 ≤ n ≤ s. Moreover, M must equal r for at
least two of the four numbers, and n must equal s for at least two of
the four numbers. There are

(

4

2

)

r2 = 6r2 ways of choosing exactly two

of the four numbers to have exponent r,
(

4

3

)

r = 4r ways of choosing

exactly three to have exponent r and
(

4

4

)

= 1 of choosing the four
to have exponent r. Thus there is a total of 1 + 4r + 6r2 of choosing
at least two of the four numbers to have exponent r. Similarly, there
are 1 + 4s + 6s2 ways of choosing at least two of the four numbers to
have exponent s. The required formula is thus

(1 + 4r + 6r2)(1 + 4s + 6s2).

Ad Pleniorem Scientiam

308 APS Prove that log10 7 is irrational.

309 APS Prove that
log 3

log 2

is irrational.

310 APS Find the smallest positive integer such that n/2 is a square
and n/3 is a cube.

311 APS How many integers from 1 to 1020 inclusive, are not perfect
squares, perfect cubes, or perfect fifth powers?

312 APS Prove that the sum

1/3 + 1/5 + 1/7 + · · · + 1/(2n + 1)

is never an integer.

(Hint: Look at the largest power of 3 ≤ n).

313 APS Find mink≥1 36k − 5k.
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(Hint: Why is 36k − 1 − 5k 6= 0?)

314 APS (AIME 1987) Find the number of ordered triples (a, b, c) of
positive integers for which [a, b] = 1000, [b, c] = [a, c] = 2000.

315 APS Find the number of ways of factoring 1332 as the product
of two positive relatively prime factors each greater than 1. Factori-
sations differing in order are considered the same.

Answer: 3.

316 APS Let p1, p2, . . . , pt be different primes and a1, a2, . . . at be nat-
ural numbers. Find the number of ways of factoring pa1

1 pa2

2 · · ·pat

t

as the product of two positive relatively prime factors each greater
than 1. Factorisations differing in order are considered the same.

Answer: 2t−1 − 1.

317 APS Let n = pa1

1 pa2

2 · · ·pat

t and m = pb1

1 pb2

2 · · ·pbt

t , the p’s being
different primes. Find the number of the common factors of m and
n.

Answer:
t∏

k=1

(1 + min(ak, bk)).

318 APS (USAMO 1973) Show that the cube roots of three distinct
prime numbers cannot be three terms (not necessarily consecutive)
of an arithmetic progression.

319 APS Let 2 = p1, 3 = p2, . . . be the primes in their natural order
and suppose that n ≥ 10 and that 1 < j < n. Set

N1 = p1p2 · · ·pj−1 − 1, N2 = 2p1p2 · · ·pj−1 − 1, . . .

and
Npj

= pjp1p2 · · ·pj−1 − 1
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Prove

1. Each pi, j ≤ i ≤ n, divides at most one of the Npk
, 1 ≤ k ≤ j

2. There is a j, 1 < j < n, for which pj > n − j + 1.

3. Let s be the smallest j for which pj > n− j+1. There is a t, 1 ≤ t ≤
ps, such that all of p1, . . . pn fail to divide tp1p2 · · ·ps−1 − 1, and
hence pn+1 < p1p2 · · ·ps.

4. The s above is > 4 and so ps−1−2 ≥ s and p1p2 · · ·ps < ps+1 · · ·pn.

5. (Bonse’s Inequality) For n ≥ 4, p2
n+1 < p1 · · ·pn.

320 APS Prove that 30 is the only integer n with the following prop-
erty: if 1 ≤ t ≤ n and (t, n) = 1, then t is prime.

321 APS (USAMO 1984)

1. For which positive integers n is there a finite set Sn of n distinct
positive integers such that the geometric mean of any subset
of Sn is an integer?

2. Is there an infinite set S of distinct positive integers such that the
geometric mean of any finite subset of S is an integer.

322 APS 1. (PUTNAM 1955) Prove that there is no triplet of integers
(a, b, c), except for (a, b, c) = (0, 0, 0) for which

a + b
√

2 + c
√

3 = 0.

2. (PUTNAM 1980) Prove that there exist integers a, b, c, not all
zero and each of absolute value less than a million, such that

|a + b
√

2 + c
√

3| < 10−11.

3. (PUTNAM 1980) Let a, b, c be integers, not all zero and each of
absolute value less than a million. Prove that

|a + b
√

2 + c
√

3| > 10−21.
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323 APS (EŐTVŐS 1906) Let a1, a2, . . . , an be any permutation of the
numbers 1, 2, . . . , n. Prove that if n is odd, the product

(a1 − 1)(a2 − 2) · · · (an − n)

is an even number.

324 APS Prove that from any sequence formed by arranging in a
certain way the numbers from 1 to 101, it is always possible to choose
11 numbers (which must not necessarily be consecutive members of
the sequence) which form an increasing or a decreasing sequence.

325 APS Prove that from any fifty two integers it is always to choose
two, whose sum, or else, whose difference, is divisible by 100.

326 APS Prove that from any one hundred integers it is always pos-
sible to choose several numbers (or perhaps, one number) whose
sum is divisible by 100.

327 APS Given n numbers x1, x2, . . . , xn each of which is equal to ±1,
prove that if

x1x2 + x2x3 + · · · + xnx1 = 0,

then n is a multiple of 4.
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Chapter 5
Linear Diophantine Equations

5.1 Euclidean Algorithm

We now examine a procedure that avoids factorising two integers
in order to obtain their greatest common divisor. It is called the Eu-
clidean Algorithm and it is described as follows. Let a, b be positive
integers. After using the Division Algorithm repeatedly, we find the
sequence of equalities

a = bq1 + r2, 0 < r2 < b,

b = r2q2 + r3 0 < r3 < r2,

r2 = r3q3 + r4 0 < r4 < r3,
...

...
...

...
rn−2 = rn−1qn−1 + rn 0 < rn < rn−1,

rn−1 = rnqn.

(5.1)

The sequence of remainders will eventually reach a rn+1 which will
be zero, since b, r2, r3, . . . is a monotonically decreasing sequence
of integers, and cannot contain more than b positive terms.

The Euclidean Algorithm rests on the fact, to be proved below,
that (a, b) = (b, r2) = (r2, r3) = · · · = (rn−1, rn) = rn.

328 Example Prove that if a, b, n are positive integers, then

(a, b) = (a + nb, b).

89
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Solution: Set d = (a, b), c = (a + nb, b). As d|a, d|b, it follows that d|(a +

nb). Thus d is a common divisor of both (a + nb) and b. This implies
that d|c. On the other hand, c|(a + nb), c|b imply that c|((a + nb) −

nb) = a. Thus c is a common divisor of a and b, implying that c|d. This
completes the proof.

329 Example Use the preceding example to find (3456, 246).

Solution: (3456, 246) = (13 · 246 + 158, 246) = (158, 246), by the pre-
ceding example. Now, (158, 246) = (158, 158 + 88) = (88, 158). Fi-
nally, (88, 158) = (70, 88) = (18, 70) = (16, 18) = (2, 16) = 2. Hence
(3456, 246) = 2.

330 Theorem If rn is the last non-zero remainder found in the process
of the Euclidean Algorithm, then

rn = (a, b).

Proof From equations (4.1.1)

r2 = a − bq1

r3 = b − r2q2

r4 = r2 − r3q3

...
...

...
rn = rn−2 − rn−1qn−1

Let r = (a, b). From the first equation, r|r2. From the second equation,
r|r3. Upon iterating the process, we see that r|rn.

But starting at the last equation (5.1.1) and working up, we see
that rn|rn−1, rn|rn−2, . . . rn|r2, rn|b, rn|a. Thus rn is a common divisor of a

and b and so rn|(a, b). This gives the desired result. ❑

331 Example Find (23, 29) by means of the Euclidean Algorithm.

Solution: We have
29 = 1 · 23 + 6,

23 = 3 · 6 + 5,
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6 = 1 · 5 + 1,

5 = 5 · 1.

The last non-zero remainder is 1, thus (23, 29) = 1.

An equation which requires integer solutions is called a diophan-
tine equation. By the Bachet-Bezout Theorem, we see that the linear
diophantine equation

ax + by = c

has a solution in integers if and only if (a, b)|c. The Euclidean Algo-
rithm is an efficient means to find a solution to this equation.

332 Example Find integers x, y that satisfy the linear diophantine equa-
tion

23x + 29y = 1.

Solution: We work upwards, starting from the penultimate equality
in the preceding problem:

1 = 6 − 1 · 5,

5 = 23 − 3 · 6,

6 = 29 · 1 − 23.

Hence,
1 = 6 − 1 · 5

= 6 − 1 · (23 − 3 · 6)

= 4 · 6 − 1 · 23

= 4(29 · 1 − 23) − 1 · 23

= 4 · 29 − 5 · 23.

This solves the equation, with x = −5, y = 4.

333 Example Find integer solutions to

23x + 29y = 7.

Solution: From the preceding example, 23(−5)+29(4) = 1. Multiplying
both sides of this equality by 7,

23(−35) + 29(28) = 7,

which solves the problem.
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334 Example Find infinitely many integer solutions to

23x + 29y = 1.

Solution: By Example 5.5, the pair x0 = −5, y0 = 4 is a solution. We
can find a family of solutions by letting

x = −5 + 29t, y = 4 − 23t, t ∈ Z.

335 Example Can you find integers x, y such that 3456x + 246y = 73?

Solution: No. (3456, 246) = 2 and 2 6 |73.

336 Theorem Assume that a, b, c are integers such that (a, b)|c. Then
given any solution (x0, y0) of the linear diophantine equation

ax + by = c

any other solution of this equation will have the form

x = x0 + t
b

d
, y = y0 − t

a

d
,

where d = (a, b) and t ∈ Z.

Proof It is clear that if (x0, y0) is a solution of ax + by = c, then x =

x0+tb/d, y = y0−ta/d is also a solution. Let us prove that any solution
will have this form.

Let (x ′, y ′) satisfy ax ′ + by ′ = c. As ax0 + by0 = c also, we have

a(x ′ − x0) = b(y0 − y ′).

Dividing by d = (a, b),

a

d
(x ′ − x0) =

b

d
(y0 − y ′).

Since (a/d, b/d) = 1,
a

d
|(y0 − y ′), in virtue of Euclid’s Lemma. Thus

there is an integer t such that t
a

d
= y0−y ′, that is, y = y0− ta/d. From

this
a

d
(x ′ − x0) =

b

d
t
a

d
,

which is to say x ′ = x0 + tb/d. This finishes the proof. ❑
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337 Example Find all solutions in integers to

3456x + 246y = 234.

Solution: By inspection, 3456(−1) + 246(15) = 234. By Theorem 5.1 , all
the solutions are given by x = −1 + 123t, y = 15 − 1728t, t ∈ Z.

Ad Pleniorem Scientiam

338 APS Find the following:

1. (34567, 987)

2. (560, 600)

3. (4554, 36)

4. (8098643070, 8173826342)

339 APS Solve the following linear diophantine equations, provided
solutions exist:

1. 24x + 25y = 18

2. 3456x + 246y = 44

3. 1998x + 2000y = 33

340 APS Prove that the area of the triangle whose vertices are (0, 0), (b, a), (x, y)

is
|by − ax|

2
.

341 APS A woman pays $2.78 for some bananas and eggs. If each
banana costs $0.69 and each egg costs $0.35, how many eggs and
how many bananas did the woman buy?
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5.2 Linear Congruences

We recall that the expression ax ≡ b mod n means that there is
t ∈ Z such that ax = b + nt. Hence, the congruencial equation in x

ax ≡ b mod n is soluble if and only if the linear diophantine equation
ax + ny = b is soluble. It is clear then that the congruence

ax ≡ b mod n

has a solution if and only if (a, n)|b.

342 Theorem Let a, b, n be integers. Prove that if the congruence
ax ≡ b mod n has a solution, then it has (a, n) incongruent solutions
mod n.

Proof From Theorem 5.1 we know that the solutions of the linear dio-
phantine equation ax + ny = b have the form x = x0 + nt/d, y =

y0 − at/d, d = (a, n), t ∈ Z, where x0, y0 satisfy ax0 + ny = b. Letting t

take on the values t = 0, 1, . . . ((a, n) − 1), we obtain (a, n) mutually
incongruent solutions, since the absolute difference between any
two of them is less than n. If x = x0 + nt ′/d is any other solution, we
write t ′ as t ′ = qd + r, 0 ≤ r < d. Then

x = x0 + n(qd + r)/d

= x0 + nq + nr/d

≡ x0 + nr/d mod n.

Thus every solution of the congruence ax ≡ b mod n is congruent
mod n to one and only one of the d values x0 + nt/d, 0 ≤ t ≤ d −

1. Thus if there is a solution to the congruence, then there are d

incongruent solutions mod n.

343 Example Find all solutions to the congruence 5x ≡ 3 mod 7

Solution: Notice that according to Theorem 5.2, there should only be
one solution mod 7, as (5, 7) = 1. We first solve the linear diophantine
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equation 5x + 7y = 1. By the Euclidean Algorithm

7 = 5 · 1 + 2

5 = 2 · 2 + 1

2 = 2 · 1.

Hence,
1 = 5 − 2 · 2
2 = 7 − 5 · 1,

which gives

1 = 5 − 2 · 2 = 5 − 2(7 − 5 · 1) = 5 · 3 − 7 · 2.

Whence 3 = 5(9) − 7(6). This gives 5 · 9 ≡ 3 mod 7 which is the same
as 5 · 2 ≡ 3 mod 7. Thus x ≡ 2 mod 7.

344 Example Solve the congruence

3x ≡ 6 mod 12.

Solution: As (3, 12) = 3 and 3|6, the congruence has three mutually
incongruent solutions. By inspection we see that x = 2 is a solution.
By Theorem 5.1, all the solutions are thus of the form x = 2 + 4t, t ∈ Z.
By letting t = 0, 1, 2, the three incongruent solutions modulo 12 are
t = 2, 6, 10.

We now add a few theorems and definitions that will be of use in
the future.

345 Theorem Let x, y be integers and let a, n be non-zero integers.
Then

ax ≡ ay mod n

if and only if

x ≡ y mod
n

(a, n)
.

Proof If ax ≡ ay mod n then a(x − y) = sn for some integer s. This
yields

(x − y)
a

(a, n)
= s

n

(a, n)
.
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Since (a/(a, n), n/(a, n)) = 1 by Theorem 4.2, we must have

n

(a, n)
|(x − y),

by Euclid’s Lemma (Lemma 4.1). This implies that

x ≡ y mod
n

(a, n)
.

Conversely if x ≡ y mod
n

(a, n)
implies

ax ≡ ay mod
an

(a, n)
,

upon multiplying by a. As (a, n) divides a, the above congruence
implies a fortiori that ax − ay = tn for some integer t. This gives the
required result.

Theorem 5.3 gives immediately the following corollary.

346 Corollary If ax ≡ ay mod n and (a, n) = 1, then x ≡ y mod n.

Ad Pleniorem Scientiam

347 APS Solve the congruence 50x ≡ 12 mod 14.

348 APS How many x, 38 ≤ x ≤ 289 satisfy

3x ≡ 8 mod 11?

5.3 A theorem of Frobenius

If (a, b) = d > 1 then the linear form ax + by skips all non-multiples
of d. If (a, b) = 1, there is always an integer solution to ax + by = n

regardless of the integer n. We will prove the following theorem of
Frobenius that tells un when we will find nonnegative solutions to
ax + by = n.
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349 Theorem Let a, b be positive integers. If (a, b) = 1 then the num-
ber of positive integers m that cannot be written in the form ar+bs =

m for nonnegative integers r, s equals (a − 1)(b − 1)/2.

Proof Let us say that an integer n is attainable if there are nonneg-
ative integers r, s with ar + bs = n. Consider the infinite array

0 1 2 . . . k . . . a − 1

a a + 1 a + 2 . . . a + k . . . 2a − 1

2a 2a + 1 2a + 2 . . . 2a + k . . . 3a − 1

. . . . . . . . . . . . . . . . . . . . .

The columns of this array are arithmetic progressions with common
difference a. The numbers directly below a number n have the form
n+ka where k is a natural number. Clearly, if n is attainable, so is n+

ka, implying thus that if an integer n is attainable so is every integer
directly below it. Clearly all multiples of b are attainable. We claim
that no two distinct multiples of b, vb and wb with 0 ≤ v, w ≤ a − 1

can belong to the same column. If this were so then we would have
vb ≡ wb mod a. Hence a(v−w) ≡ 0 mod a. Since (a, b) = 1 we invoke
Corollary 5.1 to deduce v − w ≡ 0 mod a. Since 0 ≤ v, w ≤ a − 1, we
must have v = w.

Now we show that any number directly above one of the multi-
ples vb, 0 ≤ v ≤ a − 1 is non-attainable. For a number directly above
vb is of the form vb − ka for some natural number k. If vb − ka were
attainable, then ax + by = vb − ka for some nonnegative integers
x, y. This yields by ≤ ax + by = vb − ka < vb. Hence, 0 ≤ y < v < a.

This implies that y 6≡ v mod b. On the other hand, two numbers
on the same column are congruent mod a. Therefore we deduce
vb ≡ bv − ka ≡ ax + by mod a which yields bv ≡ by mod a. By
Corollary 5.1 we obtain v ≡ y mod a. This contradicts the fact that
0 ≤ y < v < a.

Thus the number of unattainable numbers is precisely the num-
bers that occur just above a number of the form vb, 0 ≤ v ≤ a − 1.

Now, on the j-th column, there are (vb−j)/a values above vb. Hence
the number of unattainable numbers is given by

a−1∑

v=0

a−1∑

j=0

vb − j

a
=

(a − 1)(b − 1)

2
,
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as we wanted to show.

The greatest unattainable integer occurs just above (a − 1)b,
hence the greatest value that is not attainable is (a − 1)b − a, which
gives the following theorem.

350 Theorem Let a, b be relatively prime positive integers. Then the
equation

ax + by = n

is unsoluble in nonnegative integers x, y for n = ab − a − b. If n >

ab − a − b, then the equation is soluble in nonnegative integers.

351 Example (PUTNAM 1971) A game of solitaire is played as follows.
After each play, according to the outcome, the player receives
either a or b points, (a, b ∈ N, a > b), and his score accumulates
from play to play. It has been noticed that there are thirty five non-
attainable scores and that one of these is 58. Find a and b.

Solution: The attainable scores are the nonnegative integers of the
form ax + by. If (a, b) > 1, there are infinitely many such integers.
Hence (a, b) = 1. By Theorem 5.4, the number of non-attainable
scores is (a − 1)(b − 1)/2. Therefore, (a − 1)(b − 1) = 70 = 2(35) =

5(14) = 7(10). The conditions a > b, (a, b) = 1 yield the two possibilities
a = 71, b = 2 and a = 11, b = 8. As 58 = 0 ·71+2 ·29, the first alternative
is dismissed. The line 11x+ 8y = 58 passes through (6,−1) and (−2, 10)

and thus it does not pass through a lattice point in the first quadrant.
The unique solution is a = 11, b = 8.

352 Example (AIME 1994) Ninety-four bricks, each measuring 4 ′′ ×
10 ′′ × 19 ′′, are to be stacked one on top of another to form a tower
94 bricks tall. Each brick can be oriented so it contributes 4 ′′ or 10 ′′

or 19 ′′ to the total height of the tower. How many different tower
heights can be achieved using all 94 of the bricks?

Solution: Let there be x, y, z bricks of height 4 ′′, 10 ′′, and 19 ′′ respec-
tively. We are asking for the number of different sums

4x + 10y + 19z
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with the constraints x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 94.

Now, 4x + 10y + 19z ≤ 19 · 94 = 1786. Letting x = 94 − y − z, we
count the number of different nonnegative integral solutions to the
inequality 376+3(2y+5z) ≤ 1786, y+z ≤ 94, that is 2y+5z ≤ 470, y+z ≤
94. By Theorem 5.5, every integer ≥ (2−1)(5−1) = 4 can be written in
the form 2y+ 5z, and the number of exceptions is (2− 1)(5− 1)/2 = 2,

namely n = 1 and n = 3. Thus of the 471 nonnegative integers n ≤
470, we see that 469 can be written in the form n = 2y + 5z. Using
x = 96 − x − y, n, 4 ≤ n ≤ 470 will be “good” only if we have 470 − n =

3x + 5z. By Theorem 5.4 there are (3 − 1)(5 − 1)/2 = 4 exceptions,
each ≤ 8, namely n = 1, 2, 4, 7. This means that 463, 466, 468, and 469
are not representable in the form 4x + 10y + 19z. Then every integer
n, 0 ≤ n ≤ 470 except for 1, 3, 463, 466, 468, and 469 can be thus
represented, and the number of different sums is 471 − 6 = 465.

353 Example 1. Let (n, 1991) = 1. Prove that
n

1991
is the sum of two

positive integers with denominator < 1991 if an only if there exist
integers m, a, b with

(∗) 1 ≤ m ≤ 10, a ≥ 1, b ≥ 1, mn = 11a + 181b.

2. Find the largest positive rational with denominator 1991 that
cannot be written as the sum of two positive rationals each
with denominators less than 1991.

Solution: (a) If (∗) holds then
n

1991
=

a

181m
+

b

11m
does the trick.

Conversely, if
n

1991
=

a

r
+

b

s
for a, b ≥ 1, (a, r) = (b, s) = 1, and r, s <

1991, we may suppose r = 181r1, s = 11s1 and then nr1s1 = 11as1 +

181br1, which leads to r1|11as1 and so r1|s1. Similarly, s1|r1, whence
r1 = s1 = m, say, and (∗) follows.
(b) Any n > 170, (n, 1991) = 1 satisfies (∗) with b = 1 and M such
that mn is of the form mn ≡ 181 mod 11. For mn > 181 except if
m = 1, n ≤ 180; but then n would not be of the form n ≡ 181 mod 11.

But n = 170 does not satisfy (∗); for we would have 170 ≡ 181b

mod 11, so b ≡ m mod 11, which yields b ≥ m, but 170m < 181. The
answer is thus 170/1991.
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354 APS Let a, b, c be positive real numbers. Prove that there are at
least c2/2ab pairs of integers (x, y) satisfying

x ≥ 0, y ≥ 0, ax + by ≤ c.

355 APS (AIME 1995) What is largest positive integer that is not the
sum of a positive integral multiple of 42 and a positive composite
integer?

356 APS Let a > 0, b > 0, (a, b) = 1. Then the number of nonnegative
solutions to the equation ax + by = n is equal to

[
n

ab
] or [

n

ab
] + 1.

(Hint: [s] − [t] = [s − t] or [s − t] + 1.)

357 APS Let a, b ∈ N, (a, b) = 1. Let S(n) denote the number of
nonnegative solutions to

ax + by = n.

Evaluate

lim
n→∞

S(n)

n
.

358 APS (IMO 1983) Let a, b, c be pairwise relatively prime integers.
Demonstrate that 2abc − ab − bc − ca is the largest integer not of the
form

bcx + acy + abz, x ≥ 0, y ≥ 0, z ≥ 0.

5.4 Chinese Remainder Theorem

In this section we consider the case when we have multiple con-
gruences. Consider the following problem: find an integer x which
leaves remainder 2 when divided by 5, is divisible by 7, and leaves
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remainder 4 when divided by 11. In the language of congruences
we are seeking x such that

x ≡ 2 mod 5,

x ≡ 0 mod 7,

x ≡ 4 mod 11.

One may check that x = 147 satisfies the requirements, and that in
fact, so does the parametric family x = 147 + 385t, t ∈ Z.

We will develop a method to solve congruences like this one. The
method is credited to the ancient Chinese, and it is thus called the
Chinese Remainder Theorem.

359 Example Find x such that

x ≡ 3 mod 5 and x ≡ 7 mod 11.

Solution: Since x = 3 + 5a, we have 11x = 33 + 55a. As x = 7 + 11b,

we have 5x = 35 + 55b. Thus x = 11x − 10x = 33 − 70 + 55a − 110b. This
means that x ≡ −37 ≡ 18 mod 55. One verifies that all the numbers
x = 18 + 55t, t ∈ Z verify the given congruences.

360 Example Find a number n such that when divided by 4 leaves
remainder 2, when divided by 5 leaves remainder 1, and when di-
vided by 7 leaves remainder 1.

Solution: We want n such that

n ≡ 2 mod 4,

n ≡ 1 mod 5,

n ≡ 1 mod 7.

This implies that
35n ≡ 70 mod 140,

28n ≡ 28 mod 140,

20n ≡ 20 mod 140.

As n = 21n−20n, we have n ≡ 3(35n−28n)−20n ≡ 3(70−28)−20 ≡
106 mod 140. Thus all n ≡ 106 mod 140 will do.
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361 Theorem Chinese Remainder Theorem Let m1, m2, . . . mk be pair-
wise relatively prime positive integers, each exceeding 1, and let
a1, a2, . . . ak be arbitrary integers. Then the system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

...
...

...
x ≡ ak mod mk

has a unique solution modulo m1m2 · · ·mk.

Proof Set Pj = m1m2 · · ·mk/mj, 1 ≤ j ≤ k. Let Qj be the inverse of Pj

mod mj, i.e., PjQj ≡ 1 mod mj, which we know exists since all the mi

are pairwise relatively prime. Form the number

x = a1P1Q1 + a2P2Q2 + · · · + akPkQk.

This number clearly satisfies the conditions of the theorem. The unique-
ness of the solution modulo m1m2 · · ·mk can be easily established.❑

362 Example Can one find one million consecutive integers that are
not square-free?

Solution: Yes. Let p1, p2, . . . , p1000000 be a million different primes. By
the Chinese Remainder Theorem, there exists a solution to the fol-
lowing system of congruences.

x ≡ −1 mod p2
1,

x ≡ −2 mod p2
2,

...
...

...
...

x ≡ −1000000 mod p2
1000000.

The numbers x + 1, x + 2, . . . , x + 1000000 are a million consecutive
integers, each of which is divisible by the square of a prime.

Ad Pleniorem Scientiam

363 APS Solve the following systems:
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1. x ≡ −1 mod 4; x ≡ 2 mod 5

2. 4x ≡ 3 mod 7; x ≡ 10 mod 11

3. 5x ≡ 2 mod 8; 3x ≡ 2 mod 9; x ≡ 0 mod 11

364 APS (USAMO 1986)

1. Do there exist fourteen consecutive positive integers each of
which is divisible by one or more primes p, 2 ≤ p ≤ 11?

2. Do there exist twenty-one consecutive integers each of which
is divisible by one or more primes p, 2 ≤ p ≤ 13?
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Chapter 6
Number-Theoretic Functions

6.1 Greatest Integer Function

The largest integer not exceeding x is denoted by [x] or bxc. We also
call this function the floor function. Thus [x] satisfies the inequalities
x−1 < [x] ≤ x, which, of course, can also be written as [x] ≤ x < [x]+1.

The fact that [x] is the unique integer satisfying these inequalities, is
often of use. We also utilise the notation {x} = x − [x], to denote the
fractional part of x, and ||x|| = minn∈Z |x − n| to denote the distance
of a real number to its nearest integer. A useful fact is that we can
write any real number x in the form x = [x] + {x}, 0 ≤ {x} < 1.

The greatest integer function enjoys the following properties:

365 Theorem Let α, β ∈ R, a ∈ Z, n ∈ N. Then

1. [α + a] = [α] + a

2. [
α

n
] = [

[α]

n
]

3. [α] + [β] ≤ [α + β] ≤ [α] + [β] + 1

Proof 1. Let m = [α + a]. Then m ≤ α + a < m + 1. Hence m − a ≤
α < m − a + 1. This means that m − a = [α], which is what we
wanted.

105
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2. Write α/n as α/n = [α/n]+θ, 0 ≤ θ < 1. Since n[α/n] is an integer,
we deduce by (1) that

[α] = [n[α/n] + nθ] = n[α/n] + [nθ].

Now, 0 ≤ [nθ] ≤ nθ < n, and so 0 ≤ [nθ]/n < 1. If we let Θ =

[nθ]/n, we obtain

[α]

n
= [

α

n
] + Θ, 0 ≤ Θ < 1.

This yields the required result.

3. From the inequalities α − 1 < [α] ≤ α, β − 1 < [β] ≤ β we get
α + β− 2 < [α] + [β] ≤ α + β. Since [α] + [β] is an integer less than
or equal to α + β, it must be less than or equal to the integral
part of α + β, i.e. [α + β]. We obtain thus [α] + [β] ≤ [α + β]. Also,
α+β is less than the integer [α]+ [β]+2, so its integer part [α+β]

must be less than [α] + [β] + 2, but [α + β] < [α] + [β] + 2 yields
[α + β] ≤ [α] + [β] + 1. This proves the inequalities. ❑

366 Example Find a non-zero polynomial P(x, y) such that

P([2t], [3t]) = 0

for all real t.

Solution: We claim that 3[2t] − 2[3t] = 0,±1 or −2. We can then take

P(x, y) = (3x − 2y)(3x − 2y − 1)(3x − 2y + 1)(3x − 2y + 2).

In order to prove the claim, we observe that [x] has unit period,
so it is enough to prove the claim for t ∈ [0, 1). We divide [0, 1) as

[0, 1) = [0, 1/3) ∪ [1/3, 1/2) ∪ [1/2, 2/3) ∪ [2/3, 1).

If t ∈ [0, 1/3), then both [2t] and [3t] are = 0, and so 3[2t] − 2[3t] = 0.

If t ∈ [1/3, 1/2) then [3t] = 1 and [2t] = 0, and so 3[2t] − 2[3t] = −2. If
t ∈ [1/2, 2/3), then [2t] = 1, [3t] = 1, and so 3[2t]−2[3t] = 1. If t ∈ [2/3, 1),
then [2t] = 1, [3t] = 2, and 3[2t] − 2[3t] = −1.
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367 Example Describe all integers n such that 1 + [
√

2n]|2n.

Solution: Let 2n = m(1 + [
√

2n]). If m ≤ [
√

2n] − 1 then 2n ≤ ([
√

2n] −

1)([
√

2n] + 1) = [
√

2n]2 − 1 ≤ 2n − 1 < 2n, a contradiction. If m ≥
[
√

2n] + 1, then 2n ≥ ([
√

2n]2 + 1)2 ≥ 2n + 1, another contradiction. It
must be the case that m = [

√
2n].

Conversely, let n =
l(l + 1)

2
. Since l <

√
2n < l + 1, l = [

√
2n]. So all

the integers with the required property are the triangular numbers.

368 Example Prove that the integers

[(

1 +
√

2
)n]

with n a nonnegative integer, are alternately even or odd.

Solution: By the Binomial Theorem

(1 +
√

2)n + (1 −
√

2)n = 2
∑

0≤k≤n/2

(2)k

(

n

2k

)

:= 2N,

an even integer. Since −1 < 1 −
√

2 < 0, it must be the case that
(1−

√
2)n is the fractional part of (1+

√
2)n or (1+

√
2)n+1 depending on

whether n is odd or even, respectively. Thus for odd n, (1+
√

2)n−1 <

(1 +
√

2)n + (1 −
√

2)n < (1 +
√

2)n, whence (1 +
√

2)n + (1 −
√

2)n =

[(1+
√

2)n], always even, and for n even 2N := (1+
√

2)n+(1−
√

2)n =

[(1 +
√

2)n] + 1, and so [(1 +
√

2)n] = 2N − 1, always odd for even n.

369 Example Prove that the first thousand digits after the decimal
point in

(6 +
√

35)1980

are all 9’s.

Solution: Reasoning as in the preceding problem,

(6 +
√

35)1980 + (6 −
√

35)1980 = 2k,
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an even integer. But 0 < 6 −
√

35 < 1/10, (for if
1

10
< 6 −

√
35, upon

squaring 3500 < 3481, which is clearly nonsense), and hence 0 <

(6 −
√

35)1980 < 10−1980 which yields

2k − 1 + 0.9 . . . 9︸ ︷︷ ︸
1979 nines

= 2k −
1

101980
< (6 +

√
35)1980 < 2k,

This proves the assertion of the problem.

370 Example (PUTNAM 1948) If n is a positive integer, demonstrate
that

[√
n +

√
n + 1

]

=
[√

4n + 2
]

.

Solution: By squaring, it is easy to see that
√

4n + 1 <
√

n +
√

n + 1 <
√

4n + 3.

Neither 4n + 2 nor 4n + 3 are squares since squares are either con-
gruent to 0 or 1 mod 4, so

[
√

4n + 2] = [
√

4n + 3],

and the result follows.

371 Example Find a formula for the n-th non-square.

Solution: Let Tn be the n-th non-square. There is a natural number M

such that m2 < Tn < (m+1)2. As there are M squares less than Tn and
n non-squares up to Tn, we see that Tn = n + m. We have then m2 <

n+m < (m+1)2 or m2−m < n < m2+m+1. Since n, m2−m, m2+m+1

are all integers, these inequalities imply m2−m+
1

4
< n < m2+m+

1

4
,

that is to say, (m − 1/2)2 < n < (m + 1/2)2. But then m = [
√

n +
1

2
]. Thus

the n-th non-square is Tn = n + [
√

n + 1/2].

372 Example (PUTNAM 1983) Let f(n) = n + [
√

n]. Prove that for every
positive integer m, the sequence

m, f(m), f(f(m)), f(f(f(m))), . . .

contains at least one square of an integer.
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Solution: Let m = k2 + j, 0 ≤ j ≤ 2k. Split the M ’s into two sets, the
set A of all the M with excess j, 0 ≤ j ≤ k and the set B with all those
M ’s with excess j, k < j < 2k + 1.

Observe that k2 ≤ m < (k + 1)2 = k2 + 2k + 1. If j = 0, we have
nothing to prove. Assume that m ∈ B. As [

√
m] = k, f(m) = k2+ j+k =

(k + 1)2 + j − k − 1, with 0 ≤ j − k − 1 ≤ k − 1 < k + 1. This means that
either f(m) is a square or f(m) ∈ A. It is thus enough to consider the
alternative m ∈ A, in which case [

√
m + k] = k and

f(f(m)) = f(m + k) = m + 2k = (k + 1)2 + j − 1.

This means that f(f(m)) is either a square or f(f(m)) ∈ A with an ex-
cess j−1 smaller than the excess j of m. At each iteration the excess
will reduce and eventually it will hit 0, whence we reach a square.

373 Example Solve the equation

[x2 − x − 2] = [x],

for x ∈ R.

Solution: Observe that [a] = [b] if and only if ∃k ∈ Z with a, b ∈ [k, k+1)

which happens if and only if |a − b| < 1. Hence, the given equation
has a solution if and only if |x2 − 2x − 2| < 1. Solving these inequalities
it is easy to see that the solution is thus

x ∈ (−1,
1

2
(1 −

√
5)] ∪ [

1

2
(1 +

√
17),

1

2
(1 +

√
21)).

374 Example Prove that if a, b are relatively prime natural numbers
then

a−1∑

k=1

[

kb

a

]

=

b−1∑

k=1

[

ka

b

]

=
(a − 1)(b − 1)

2
.

Solution: Consider the rectangle with vertices at (0, 0), (0, b), (a, 0), (a, b).
This rectangle contains (a − 1)(b − 1) lattice points, i.e., points with
integer coordinates. This rectangle is split into two halves by the line
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y =
xb

a
. We claim that there are no lattice points on this line, except

for the endpoints. For if there were a lattice point (m, n), 0 < m <

a, 0 < n < b, then
n

m
=

b

a
. Thus n/m is a reduction for the irreducible

fraction b/a, a contradiction. The points Lk = (k,
kb

a
), 1 ≤ k ≤ a − 1

are each on this line. Now, [
kb

a
] equals the number of lattice points

on the vertical line that goes from (k, 0) to (k,
kb

a
), i.e.

∑a−1

k=1

[

kb

a

]

is

the number of lattice points on the lower half of the rectangle. Sim-

ilarly,
∑b−1

k=1

[

ka

b

]

equals the number of lattice points on the upper

half of the rectangle. Since there are (a − 1)(b − 1) lattice points in
total, and their number is shared equally by the halves, the assertion
follows.

375 Example Find the integral part of

106
∑

k=1

1√
k
.

Solution: The function x 7→ x−1/2 is decreasing. Thus for positive inte-
ger k,

1√
k + 1

<

∫k+1

k

dx√
x

<
1√
k
.

Summing from k = 1 to k = 106 − 1 we deduce

106
∑

k=2

1√
k

<

∫106

1

dx√
x

<

106−1∑

k=1

1√
k
.

The integral is easily seen to be 1998. Hence

1998 + 1/103 <

106
∑

k=1

1√
k

< 1999.

The integral part sought is thus 1998.
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376 APS Prove that for all real numbers x, y,

[x] + [x + y] + [y] ≤ [2x] + [2y]

holds.

377 APS If x, y real numbers, when is it true that [x][y] ≤ [xy]?

378 APS If n > 1 is a natural number and α ≥ 1 is a real number,
prove that

[α] >
[α

n

]

.

379 APS If a, b, n are positive integers, prove that

[

ab

n

]

≥ a

[

b

n

]

.

380 APS Let α be a real number. Prove that [α] + [−α] = −1 or 0 and
that [α] − 2[α/2] = 0 or 1.

381 APS Prove that
[

(2 +
√

3)n
]

is an odd integer.

382 APS Show that the n-th element of the sequence

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . .

where there are n occurrences of the integer n is [
√

2n + 1/2].

383 APS Prove Hermite’s Identity: if x is a real number and n is a
natural number then

[nx] = [x] +

[

x +
1

n

]

+

[

x +
2

n

]

+ · · · +
[

x +
n − 1

n

]

.
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384 APS Prove that for all integers m, n, the equality

[

m + n

2

]

+

[

n − m + 1

2

]

= n

holds.

385 APS If a, b, c, d are positive real numbers such that

[na] + [nb] = [nc] + [nd]

for all natural numbers n, prove that

a + b = c + d.

386 APS If n is a natural number, prove that

[

n + 2 − [n/25]

3

]

=

[

8n + 24

25

]

.

387 APS Solve the equation

[ x

1994

]

=
[ x

1995

]

.

388 APS Let [α, β] be an interval which contains no integers. Prove
that there is a positive integer n such that [nα, nβ] still contains no
integers but has length at least 1/6.

389 APS (IMO 1968) For every natural number n, evaluate the sum

∞∑

k=0

[

n + 2k

2k+1

]

.

390 APS (PUTNAM 1973) Prove that if n ∈ N,

min
k∈N

(k + [n/k]) = [
√

4n + 1].
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391 APS (Dirichlet’s principle of the hyperbola)
Let N be the number of integer solutions to xy ≤ n, x > 0, y > 0. Prove
that

N =

n∑

k=1

[n

k

]

= 2
∑

1≤k≤
√

n

[n

k

]

− [
√

n]2.

392 APS (Circle Problem) Let r > 0 and let T denote the number of
lattice points of the domain x2 + y2 ≤ r2. Prove that

T = 1 + 4[r] + 8
∑

0<x≤r
√

2

[
√

r2 − x2] + 4

[

r√
2

]2

.

393 APS Let d = (a, b). Prove that

∑

1≤n≤b−1

[an

b

]

=
(a − 1)(b − 1)

2
+

d − 1

2
.

394 APS (Eisenstein) If (a, b) = 1 and a, b are odd, then

∑

1≤n≤(b−1)/2

[an

b

]

+
∑

1≤n≤(a−1)/2

[

bn

a

]

=
(a − 1)(b − 1)

4
.

395 APS Let m ∈ N with m > 1 and let y be a positive real number.
Prove that

∑

x

[

m

√

y

x

]

= [y],

where the summation runs through all positive integers x not divisible
by the M th power of an integer exceeding 1.

396 APS For which natural numbers n will 112 divide

4n − [(2 +
√

2)n]?

397 APS A triangular number is a number of the form 1 + 2 + · · · +

n, n ∈ N. Find a formula for the nth non-triangular number.
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398 APS (AIME 1985) How many of the first thousand positive inte-
gers can be expressed in the form

[2x] + [4x] + [6x] + [8x]?

399 APS (AIME 1987) What is the largest positive integer n for which
there is a unique integer k such that

8

15
<

n

n + k
<

7

13
?

400 APS Prove that if p is an odd prime, then

[(2 +
√

5)p] − 2p+1

is divisible by p.

401 APS Prove that the n-th number not of the form [ek], k = 1, 2, . . .

is Tn = n + [ln(n + 1 + [ln(n + 1)])].

402 APS LENINGRAD OLYMPIAD How many different integers are there
in the sequence

[

12

1980

]

,

[

22

1980

]

, . . . ,

[

19802

1980

]

?

403 APS Let k ≥ 2 be a natural number and x a positive real num-
ber. Prove that

[

k
√

x
]

=
[

k
√

[x]
]

.

404 APS 1. Find a real number x 6= 0 such that x, 2x, . . . , 34x have
no 7’s in their decimal expansions.

2. Prove that for any real number x 6= 0 at least one of x, 2x, . . . 79x

has a 7 in its decimal expansion.

3. Can you improve the “gap” between 34 and 79?
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405 APS (AIME 1991) Suppose that r is a real number for which

91∑

k=19

[

r +
k

100

]

= 546.

Find the value of [100r].

406 APS (AIME 1995) Let f(n) denote the integer closest to n1/4,
when n is a natural number. Find the exact numerical value of

1995∑

n=1

1

f(n)
.

407 APS Prove that

∫1

0

(−1)[1994x]+[1995x]

(

1993

[1994x]

)(

1994

[1995x]

)

dx = 0.

408 APS Prove that
[√

n +
√

n + 1
]

=
[√

n +
√

n + 2
]

.

409 APS (PUTNAM 1976) Prove that

lim
n→∞

∑

1≤k≤n

([

2n

k

]

− 2
[n

k

]

)

= ln 4 − 1.

410 APS (PUTNAM 1983) Prove that

lim
n→∞

1

n

∫n

1

∣

∣

∣

∣

∣

∣

n

x

∣

∣

∣

∣

∣

∣ dx = log3(4/π).

You may appeal to Wallis Product Formula:

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · =

π

2
.
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6.2 De Polignac’s Formula

We will consider now the following result due to De Polignac.

411 Theorem (De Polignac’s Formula) The highest power of a prime
p dividing n! is given by

∞∑

k=1

[

n

pk

]

.

Proof The number of integers contributing a factor of p is [n/p], the
number of factors contributing a second factor of p is [n/p2], etc..

412 Example How many zeroes are at the end of 300!?

Solution: The number of zeroes is determined by how many times
10 divides into 300. Since there are more factors of 2 in 300! than
factors of 5, the number of zeroes is thus determined by the highest
power of 5 in 300!. By De Polignac’s Formula this is

∑∞
k=1[300/5k] =

60 + 12 + 2 = 74.

413 Example Does

7|

(

1000

500

)

?

Solution: The highest power of 7 dividing into 1000! is [1000/7]+[1000/72]+

[1000/73] = 142+20+2 = 164. Similarly, the highest power of 7 dividing

into 500! is 71+10+1 = 82. Since
(

1000

500

)

=
1000!

(500!)2
, the highest power of

7 that divides
(

1000

500

)

is 164 − 2 · 82 = 0, and so 7 does not divide
(

1000

500

)

.

414 Example Let n = n1 + n2 + · · ·+ nk where the ni are nonnegative
integers. Prove that the quantity

n!

n1!n2! · · ·nk!

is an integer.
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Solution: From (3) in Theorem 6.1c we deduce by induction that

[a1] + [a2] + · · · + [al] ≤ [a1 + a2 + · · · + al].

For any prime p, the power of p dividing n! is
∑

j≥1

[n/pj] =
∑

j≥1

[(n1 + n2 + · · · + nk)/pj].

The power of p dividing n1!n2! · · ·nk! is
∑

j≥1

[n1/pj] + [n2/pj] + · · · [nk/pj].

Since

[n1/pj] + [n2/pj] + · · · + [nk/pj] ≤ [(n1 + n2 + · · · + nk)/pj],

we see that the power of any prime dividing the numerator of

n!

n1!n2! · · ·nk!

is at least the power of the same prime dividing the denominator,
which establishes the assertion.

415 Example Given a positive integer n > 3, prove that the least
common multiple of the products x1x2 · · · xk(k ≥ 1), whose factors
xi are the positive integers with

x1 + x2 + · · · xk ≤ n,

is less than n!.

Solution: We claim that the least common multiple of the numbers
in question is ∏

p

p prime

p[n/p].

Consider an arbitrary product x1x2 · · · xk, and an arbitrary prime p.

Suppose that pαj |xj, p
αj+1 6 |xj. Clearly pα1 + · · · + pαk ≤ n and since

pα ≥ αp, we have

p(α1 + · · ·αk) ≤ n or α1 + · · · + αk ≤ [
n

p
].
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Hence it follows that the exponent of an arbitrary prime p is at most
[p/n]. But on choosing x1 = · · · = xk = p, k = [n/p], we see that there
is at least one product for which equality is achieved. This proves
the claim.

The assertion of the problem now follows upon applying De Polignac’s
Formula and the claim.

Ad Pleniorem Scientiam

416 APS (AHSME 1977) Find the largest possible n such that 10n di-
vides 1005!.

417 APS Find the highest power of 17 that divides (17n − 2)! for a
positive integer n.

418 APS Find the exponent of the highest power of 24 that divides
300!.

419 APS Find the largest power of 7 in 300!.

420 APS (AIME 1983) What is the largest two-digit prime factor of
the integer

(

200

100

)

?

421 APS (USAMO 1975)

1. Prove that

[5x] + [5y] ≥ [3x + y] + [3y + x].

2. Using (1) or otherwise, prove that

(5m)!(5n)!

m!n!(3m + n)!(3n + m)!

is an integer for all positive integers m, n.
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422 APS Prove that if n > 1, (n, 6) = 1, then

(2n − 4)!

n!(n − 2)!

is an integer.

423 APS (AIME 1992) Define a positive integer n to be a “factorial
tail” if there is some positive integer m such that the base-ten rep-
resentation of m! ends with exactly n zeroes. How many positive
integers less than 1992 are not factorial tails?

424 APS Prove that if m and n are relatively prime positive integers
then

(m + n − 1)!

m!n!

is an integer.

425 APS If p is a prime divisor of
(

2n

n

)

with p ≥
√

2n prove that the

exponent of p in the factorisation of
(

2n

n

)

equals 1.

426 APS Prove that

lcm

((

n

1

)

,

(

n

2

)

, . . . ,

(

n

n

))

=
lcm(1, 2, . . . , n + 1)

n + 1
.

427 APS Prove the following result of Catalan:
(

m+n

n

)

divides
(

2m

m

)(

2n

n

)

.

6.3 Complementary Sequences

We define the spectrum of a real number α to be the infinite multiset
of integers

Spec(α) = {[α], [2α], [3α], . . .}.

Two sequences Spec(α) and Spec(β) are said to be complementary
if they partition the natural numbers, i.e. Spec(α) ∩ Spec(β) = ∅ and
Spec(α) ∪ Spec(β) = N.
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For example, it appears that the two sequences

Spec(
√

2) = {1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 24, 25, . . .},

and

Spec(2 +
√

2 = {3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 47, 51, . . .}

are complementary. The following theorem establishes a criterion
for spectra to be complementary.

428 Theorem (BEATTY’S THEOREM, 1926) If α > 1 is irrational and

1

α
+

1

β
= 1,

then the sequences

Spec(α) and Spec(β)

are complementary.

Solution: Since α > 1, β > 1, Spec(α) and Spec(β) are each sequences
of distinct terms, and the total number of terms not exceeding N

taken together in both sequences is [N/α] + [N/β]. But N/α − 1 +

N/β − 1 < [N/α] + [N/β] < N/α + N/β, the last inequality being strict
because both α, β are irrational. As 1/α + 1/β = 1, we gather that
N − 2 < [N/α] + [N/β] < N. Since the sandwiched quantity is an in-
teger, we deduce [N/α] + [N/β] = N − 1. Thus the total number of
terms not exceeding N in Spec(α) and Spec(β) is N − 1, as this is true
for any N ≥ 1 each interval (n, n+1) contains exactly one such term.
It follows that Spec(α) ∪ Spec(β) = N, Spec(α) ∩ Spec(β) = ∅.

The converse of Beatty’s Theorem is also true.

429 Example (BANG’S THEOREM, 1957) If the sequences

Spec(α) and Spec(β)

are complementary, then α, β are positive irrational numbers with

1

α
+

1

β
= 1.
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Solution: If both α, β are rational numbers, it is clear that Spec(α),

Spec(β) eventually contain the same integers, and so are not dis-
joint. Thus α and β must be irrational. If 0 < α ≤ 1, given n there is an
M for which mα − 1 < n ≤ mα; hence n = [mα], which implies that
Spec(α) = N, whence α > 1 (and so β > 1 also). If Spec(α)∩ Spec(β) is
finite, then

lim
n→∞

[n/α] + [n/β]

n
= 1,

but since ([n/α] + [n/β])
1

n
→ 1/α + 1/β as n → ∞, it follows that

1/α + 1/β = 1.

430 Example Suppose we sieve the positive integers as follows: we
choose a1 = 1 and then delete a1 + 1 = 2. The next term is 3, which
we call a2, and then we delete a2 + 2 = 5. Thus the next available
integer is 4 = a3, and we delete a3 + 3 = 7, etc. Thereby we leave
the integers 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, . . . . Find a formula for an.

Solution: What we are asking for is a sequence {Sn} which is com-
plementary to the sequence {Sn + n}. By Beatty’s Theorem, [nτ] and
[nτ]+n = [n(τ+1)] are complementary if 1/τ+1/(τ+1) = 1. But then
τ = (1 +

√
5)/2, the Golden ratio. The n-th term is thus an = [nτ].

Ad Pleniorem Scientiam

431 APS (Skolem) Let τ =
1 +

√
5

2
be the Golden Ratio. Prove that

the three sequences (n ≥ 1) {[τ[τn]]}, {[τ[τ2n]]}, {[τ2n]} are comple-
mentary.

6.4 Arithmetic Functions

An arithmetic function f is a function whose domain is the set of pos-
itive integers and whose range is a subset of the complex numbers.
The following functions are of considerable importance in Number
Theory:
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d(n) the number of positive divisors of the number n.
σ(n) the sum of the positive divisors of n.
φ(n) the number of positive integers not exceeding

n and relative prime to n.
ω(n) the number of distinct prime divisors of n.
Ω(n) the number of primes dividing n, counting multiplicity.

In symbols the above functions are:

d(n) =
∑

d|n

1, σ(n) =
∑

d|n

d, ω(n) =
∑

p|n

1, Ω(n) =
∑

pα ||n

α,

and
φ(n) =

∑

1≤k≤n

(k,n)=1

1.

(The symbol || in pα||n is read exactly divides and it signifies that pα|n

but pα+1 6 |n.)
For example, since 1, 2, 4, 5, 10 and 20 are the divisors of 20, we

have d(20) = 6, σ(20) = 42, ω(20) = 2, Ω(20) = 3. Since the numbers
1, 3, 7, 9, 11, 13, 17, 19 are the positive integers not exceeding 20 and
relatively prime to 20, we see that φ(20) = 8.

If f is an arithmetic function which is not identically 0 such that
f(mn) = f(m)f(n) for every pair of relatively prime natural numbers
m, n, we say that f is then a multiplicative function. If f(mn) = f(m)f(n)

for every pair of natural numbers m, n we say then that f is totally
multiplicative.

Let f be multiplicative and let n have the prime factorisation
n = pa1

1 pa2

2 · · ·par
r . Then f(n) = f(pa1

1 )f(pa2

2 ) · · · f(par
r ). A multiplica-

tive function is thus determined by its values at prime powers. If f is
multiplicative, then there is a positive integer a such that f(a) 6= 0.

Hence f(a) = f(1 · a) = f(1)f(a) which entails that f(1) = 1.

We will show now that the functions d and σ are multiplicative.
For this we need first the following result.

432 Theorem Let f be a multiplicative function and let F(n) =
∑

d|n f(d).

Then F is also multiplicative.

Proof Suppose that a, b are natural numbers with (a, b) = 1. By the
Fundamental Theorem of Arithmetic, every divisor d of ab has the
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form d = d1d2 where d1|a, d2|b, (d1, d2) = 1. Thus there is a one-to-one
correspondence between positive divisors d of ab and pairs d1, d2 of
positive divisors of a and b. Hence, if n = ab, (a, b) = 1 then

F(n) =
∑

d|n

f(d) =
∑

d1 |a

∑

d2 |b

f(d1d2).

Since f is multiplicative the dextral side of the above equals
∑

d1 |a

∑

d2 |b

f(d1)f(d2) =
∑

d1 |a

f(d1)
∑

d2 |b

f(d2) = F(a)F(b).

This completes the proof. ❑

Since the function f(n) = 1 for all natural numbers n is clearly mul-
tiplicative (indeed, totally multiplicative), the theorem above shows
that d(n) =

∑
d|n 1 is a multiplicative function. If p is a prime, the divi-

sors of pa are 1, p, p2, p3, . . . , pa and so d(pa) = a + 1. This entails that if
n has the prime factorisation n = pa1

1 pa2

2 · · ·par
r , then

d(n) = (1 + a1)(1 + a2) · · · (1 + ar).

For example, d(2904) = d(23 · 3 · 112) = d(23)d(3)d(112) = (1 + 3)(1 +

1)(1 + 2) = 24.

We give now some examples pertaining to the divisor function.

433 Example (AHSME 1993) For how many values of n will an n-sided
polygon have interior angles with integral degree measures?

Solution: The measure of an interior angle of a regular n-sided poly-

gon is
(n − 2)180

n
. It follows that n must divide 180. Since there are

18 divisors of 180, the answer is 16, because n ≥ 3 and so we must
exclude the divisors 1 and 2.

434 Example Prove that d(n) ≤ 2
√

n.

Solution: Each positive divisor a of n can paired with its complemen-

tary divisor
n

a
. As n = a · n

a
, one of these divisors must be ≤ √

n. This

gives at most 2
√

n divisors.
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435 Example Find all positive integers n such that d(n) = 6.

Solution: Since 6 can be factored as 2 ·3 and 6 ·1, the desired n must
have only two distinct prime factors, p and q, say. Thus n = pαqβ and
either 1 + α = 2, 1 + β = 3 or 1 + α = 6, 1 + β = 1. Hence, n must be of
one of the forms pq2 or p5, where p, q are distinct primes.

436 Example Prove that

n∑

k=1

d(k) =

n∑

j=1

[

n

j

]

Solution: We have
n∑

k=1

d(k) =

n∑

k=1

∑

j|k

1.

Interchanging the order of summation

∑

j≤n

∑

j≤k≤n

k≡0 mod j

1 =
∑

j≤n

[

n

j

]

,

which is what we wanted to prove.

437 Example (PUTNAM 1967) A certain locker room contains n lock-
ers numbered 1, 2, . . . , n and are originally locked. An attendant
performs a sequence of operations T1, T2, . . . , Tn whereby with the
operation Tk, 1 ≤ k ≤ n, the condition of being locked or unlocked is
changed for all those lockers and only those lockers whose numbers
are multiples of k. After all the n operations have been performed it
is observed that all lockers whose numbers are perfect squares (and
only those lockers) are now open or unlocked. Prove this mathemat-
ically.

Solution: Observe that locker m, 1 ≤ m ≤ n, will be unlocked after n

operations if and only if M has an odd number of divisors. Now, d(m)

is odd if and only if M is a perfect square. The assertion is proved.
Since the function f(n) = n is multiplicative (indeed, totally multi-

plicative), the above theorem entails that σ is multiplicative. If p is a
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prime, then clearly σ(pa) = 1 + p + p2 + · · · + pa. This entails that if n

has the prime factorisation n = pa1

1 pa2

2 · · ·par
r , then

σ(n) = (1+p1+p2
1+· · ·+pa1

1 )(1+p2+p2
2+· · ·+pa2

w ) · · · (1+pr+p2
r+· · ·+par

r ).

This last product also equals

pa1+1
1 − 1

p1 − 1
· pa2+1

2 − 1

p2 − 1
· · · par+1

r − 1

pr − 1
.

We present now some examples related to the function σ.

438 Example (PUTNAM 1969) Let n be a positive integer such that
24|n + 1. Prove that the sum of all divisors of n is also divisible by 24.

Solution: Since 24|n + 1, n ≡ 1 or 2 mod 3 and d ≡ 1, 3, 5 or 7 mod 8.

As d(
n

d
) ≡ −1 mod 3 or mod 8, the only possibilities are

d ≡ 1, n/d ≡ 2 mod 3 or vice versa,

d ≡ 1, n/d ≡ 7 mod 8 or vice versa,

d ≡ 3, n/d ≡ 5 mod 8 or vice versa.

In all cases d+n/d ≡ 0 mod 3 and mod 8, whence 24 divides d+n/d.

As d 6≡ n/d, no divisor is used twice in the pairing. This implies that
24|

∑
d|n d.

We say that a natural number is perfect if it is the sum of its proper
divisors. For example, 6 is perfect because 6 =

∑
d|6,d6=6 d = 1 + 2 + 3.

It is easy to see that a natural number is perfect if and only if 2n =∑
d|n d. The following theorem is classical.

439 Theorem Prove that an even number is perfect if and only if it is
of the form 2p−1(2p − 1) where both p and 2p − 1 are primes.

Proof Suppose that p, 2p − 1 are primes. Then σ(2p − 1) = 1 + 2p − 1.
Since (2p−1, 2p − 1) = 1, σ(2p−1(2p − 1)) = σ(2p−1)σ(2p − 1) = (1+ 2+ 22 +

· · · + 2p−1)(1 + 2p − 1) = (2p − 1)2(2p−1), and 2p−1(2p − 1) is perfect.
Conversely, let n be an even perfect number. Write n = 2sm, m

odd. Then σ(n) = σ(2s)σ(m) = (2s+1 − 1)σ(m). Also, since n perfect is,
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σ(n) = 2n = 2s+1m. Hence (2s+1 − 1)σ(m) = 2s+1m. One deduces that
2s+1|σ(m), and so σ(m) = 2s+1b for some natural number b. But then
(2s+1 − 1)b = m, and so b|m, b 6= m.

We propose to show that b = 1. Observe that b+m = (2s+1−1)b+

b = 2s+1b = σ(m). If b 6= 1, then there are at least three divisors of m,

namely 1, b and m, which yields σ(m) ≥ 1 + b + m, a contradiction.
Thus b = 1, and so m = (2s+1 − 1)b = 2s+1 − 1 is a prime. This means
that 2s+1 − 1 is a Mersenne prime and hence s + 1 must be a prime.

440 Example Prove that for every natural number n there exist natu-
ral numbers x and y such that x − y ≥ n and σ(x2) = σ(y2).

Solution: Let s ≥ n, (s, 10) = 1. We take x = 5s, y = 4s. Then σ(x2) =

σ(y2) = 31σ(s2).

Ad Pleniorem Scientiam

441 APS Find the numerical values of d(1024), σ(1024), ω(1024), Ω(1024)

and φ(1024).

442 APS Describe all natural numbers n such that d(n) = 10.

443 APS Prove that

d(2n − 1) ≥ d(n).

444 APS Prove that d(n) ≤
√

3n with equality if and only if n = 12.

445 APS Prove that the following Lambert expansion holds:

∞∑

n=1

d(n)tn =

∞∑

n=1

tn

1 − tn
.

446 APS Let d1(n) = d(n), dk(n) = d(dk−1(n)), k = 2, 3, . . .. Describe
dk(n) for sufficiently large k.
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447 APS Let m ∈ N be given. Prove that the set

A = {n ∈ N : m|d(n)}

contains an infinite arithmetic progression.

448 APS Let n be a perfect number. Show that

∑

d|n

1

d
= 2.

449 APS Prove that ∏

d|n

d = nd(n)/2.

450 APS Prove that the power of a prime cannot be a perfect num-
ber.

451 APS (AIME 1995) Let n = 231319. How many positive integer divi-
sors of n2 are less than n but do not divide n?

452 APS Prove that if n is composite, then σ(n) > n +
√

n.

453 APS Prove that σ(n) = n + k, k > 1 a fixed natural number has
only finitely many solutions.

454 APS Characterise all n for which σ(n) is odd.

455 APS Prove that p is a prime if and only if σ(p) = 1 + p.

456 APS Prove that

σ(n!)

n!
≥ 1 +

1

2
+ · · · + 1

n
.

457 APS Prove that an odd perfect number must have at least two
distinct prime factors.
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458 APS Prove that in an odd perfect number, only one of its prime
factors occurs to an odd power; all the others occur to an even
power.

459 APS Show that an odd perfect number must contain one prime
factor p such that, if the highest power of p occurring in n is pa, both
p and a are congruent to 1 modulo 4; all other prime factors must
occur to an even power.

460 APS Prove that every odd perfect number having three distinct
prime factors must have two of its prime factors 3 and 5.

461 APS Prove that there do not exist odd perfect numbers having
exactly three distinct prime factors.

462 APS Prove that
n∑

k=1

σ(k) =

n∑

j=1

j

[

n

j

]

.

463 APS Find the number of sets of positive integers {a, b, c} such
that a × b × c = 462.

6.5 Euler’s Function. Reduced Residues

Recall that Euler’s φ(n) function counts the number of positive inte-
gers a ≤ n that are relatively prime to n. We will prove now that φ is
multiplicative. This requires more work than that done for d and σ.

First we need the following definitions.

464 Definition Let n > 1 The φ(n) integers 1 = a1 < a2 < · · · < aφ(n) =

n − 1 less than n and relatively prime to n are called the canonical
reduced residues modulo n.

465 Definition A reduced residue system modulo n, n > 1 is a set of
φ(n) incongruent integers modulo n that are relatively prime to n.
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For example, the canonical reduced residues mod 12 are 1, 5, 7, 11

and the set {−11, 5, 19, 23} forms a reduced residue system modulo
12.

We are now ready to prove the main result of this section.

466 Theorem The function φ is multiplicative.

Proof Let n be a natural number with n = ab, (a, b) = 1. We arrange
the ab integers 1, 2, . . . , ab as follows.

1 2 3 . . . k . . . a

a + 1 a + 2 a + 3 . . . a + k . . . 2a

2a + 1 2a + 2 2a + 3 . . . 2a + k . . . 3a

. . . . . . . . . . . . . . . . . . . . .

(b − 1)a + 1 (b − 1)a + 2 (b − 1)a + 3 . . . (b − 1)a + k . . . ba

Now, an integer r is relatively prime to M if and only if it is relatively
prime to a and b. We shall determine first the number of integers in
the above array that are relatively prime to a and find out how may
of them are also relatively prime to b.

There are φ(a) integers relatively prime to a in the first row. Now
consider the k-th column, 1 ≤ k ≤ a. Each integer on this column is
of the form ma + k, 0 ≤ m ≤ b − 1. As k ≡ ma + k mod a, k will have
a common factor with a if and only if ma + k does. This means that
there are exactly φ(a) columns of integers that are relatively prime
to a. We must determine how many of these integers are relatively
prime to b.

We claim that no two integers k, a + k, . . . , (b − 1)a + k on the k-th
column are congruent modulo b. For if ia + k ≡ ja + k mod b then
a(i − j) ≡ 0 mod b. Since (a, b) = 1, we deduce that i − j ≡ 0 mod b

thanks to Corollary 5.1. Now i, j ∈ [0, b−1] which implies that |i−j| < b.

This forces i = j. This means that the b integers in any of these φ(n)

columns are, in some order, congruent to the integers 0, 1, . . . , b − 1.

But exactly φ(b) of these are relatively prime to b. This means that
exactly φ(a)φ(b) integers on the array are relatively prime to ab,
which is what we wanted to show.

If p is a prime and M a natural number, the integers

p, 2p, 3p, . . . , pm−1p
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are the only positive integers ≤ pm sharing any prime factors with
pm. Thus φ(pm) = pm − pm−1. Since φ is multiplicative, if n = pa1

1 · · ·pak

k

is the factorisation of n into distinct primes, then

φ(n) = (pa1

1 − pa1−1
1 ) · · · (pak

k − pak−1
k ).

For example, φ(48) = φ(24 · 3) = φ(24)φ(3) = (24 − 23)(3 − 1) = 16, and
φ(550) = φ(2 · 52 · 11) = φ(2) · φ(52) · φ(11) = (2 − 1)(52 − 5)(11 − 1) =

1 · 20 · 10 = 200.

467 Example Let n be a natural number. How many of the fractions
1/n, 2/n, . . . , (n − 1)/n, n/n are irreducible?

Solution: This number is clearly
∑n

k=1 φ(k).

468 Example Prove that for n > 1,

∑

1≤a≤n

(a,n)=1

a =
nφ(n)

2
.

Solution: Clearly if 1 ≤ a ≤ n and (a, n) = 1, 1 ≤ n − a ≤ n and
(n − a, n) = 1. Thus

S =
∑

1≤a≤n

(a,n)=1

a =
∑

1≤a≤n

(a,n)=1

n − a,

whence
2S =

∑

1≤a≤n

(a,n)=1

n = nφ(n).

The assertion follows.

469 Theorem Let n be a positive integer. Then
∑

d|n φ(d) = n.

Proof For each divisor d of n, let Td(n) be the set of positive integers
≤ n whose gcd with n is d. As d varies over the divisors of n, the Td

partition the set {1, 2, . . . , n} and so
∑

d|n

Td(n) = n.
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We claim that Td(n) has φ(n/d) elements. Note that the elements of

Td(n) are found amongst the integers d, 2d, . . .
n

d
d. If k ∈ Td(n), then

k = ad, 1 ≤ a ≤ n/d and (k, n) = d. But then (
k

d
,
n

d
) = 1. This implies

that (a,
n

d
) = 1. Therefore counting the elements of Td(n) is the same

as counting the integers a with 1 ≤ a ≤ n/d, (a,
n

d
) = 1. But there are

exactly φ(n/d) such a. We gather that

n =
∑

d|n

φ(n/d).

But as d runs through the divisors of n, n/d runs through the divisors
of n in reverse order, whence n =

∑
d|n φ(n/d) =

∑
d|n φ(d).

470 Example If p − 1 and p + 1 are twin primes, and p > 4, prove that
3φ(p) ≤ p.

Solution: Observe that p > 4 must be a multiple of 6, so

p = 2a3bm, ab ≥ 1, (m, 6) = 1.

We then have φ(p) ≤ 2a3b−1φ(m) ≤ 2a3b−1m = p/3.

471 Example Let n ∈ N. Prove that the equation

φ(x) = n!

is soluble.

Solution: We want to solve the equation φ(x) = n with the constraint
that x has precisely the same prime factors as n. This restriction im-
plies that φ(x)/x = φ(n)/n. It follows that x = n2/φ(n).

Let n =
∏

pα ||n pα. Then x =
∏

pα ||n

pα

p − 1
. The integer x will have the

same prime factors as n provided that
∏

p|n(p − 1)|n. It is clear then

that a necessary and sufficient condition for φ(x) = n to be soluble
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under the restriction that x has precisely the same prime factors as
n is

∏
p|n(p − 1)|n. If n = k!, this last condition is clearly satisfied. An

explicit solution to the problem is thus x = (k!)2/φ(k!).

472 Example Let φk(n) = φ(φk−1(n)), k = 1, 2, . . . , where φ0(n) = φ(n).
Show that ∀k ∈ N, φk(n) > 1 for all sufficiently large n.

Solution: Let pa1

1 pa2

2 · · ·par
r be the prime factorisation of n. Clearly

p
a1/2

1 p
a2/2

2 · · ·par/2
r > 2r−1 ≥ 1

2

p1

p1 − 1
· · · pr

pr − 1
.

Hence

φ(n) =
p1 − 1

p1

p2 − 1

p2

· · · pr − 1

pr

pa1

1 pa2

2 · · ·par
r ≥ 1

2

pa1

1 pa2

2 · · ·par
r

p
a1/2

1 p
a2/2

2 · · ·par/2
r

.

This last quantity equals
√

n/2. Therefore φ1(n) >
1

2

√

φ(n) >
1

2

√

1

4

√
n =

1

4
n1/4. In general we can show that φk(n) >

1

4
n2−k−1

. We conclude

that n ≥ 22k+2

implies that φk(n) > 1.

473 Example Find infinitely many integers n such that 10|φ(n).

Solution: Take n = 11k, k = 1, 2, . . .. Then φ(11k) = 11k − 11k−1 = 10 ·
11k−1.

Ad Pleniorem Scientiam

474 APS Prove that

φ(n) = n
∏

p|n

(

1 −
1

p

)

.

475 APS Prove that if n is composite then φ(n) ≤ n −
√

n. When is
equality achieved?

476 APS (AIME 1992) Find the sum of all positive rational numbers
that are less than 10 and have denominator 30 when written in low-
est terms.
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Answer: 400

477 APS Prove that φ(n) ≥ n2−ω(n).

478 APS Prove that φ(n) >
√

n for n > 6.

479 APS If φ(n)|n, then n must be of the form 2a3b for nonnegative
integers a, b.

480 APS Prove that if φ(n)|n − 1, then n must be squarefree.

481 APS (MANDELBROT 1994) Four hundred people are standing in
a circle. You tag one person, then skip k people, then tag another,
skip k, and so on, continuing until you tag someone for the second
time. For how many positive values of k less than 400 will every per-
son in the circle get tagged at least once?

482 APS Prove that if φ(n)|n − 1 and n is composite, then n has at
least three distinct prime factors.

483 APS Prove that if φ(n)|n − 1 and n is composite, then n has at
least four prime factors.

484 APS For n > 1 let 1 = a1 < a2 < · · · < aφ(n) = n − 1 be the
positive integers less than n that are relatively prime to n. Define the
Jacobsthal function

g(n) := max
1≤k≤φ(n)−1

ak+1 − ak

to be the maximum gap between the ak. Prove that ω(n) ≤ g(n).

(Hint: Use the Chinese Remainder Theorem).

485 APS Prove that a necessary and sufficient condition for n to be
a prime is that

σ(n) + φ(n) = nd(n).
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Table 6.1: Multiplication Table for Z6

·6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

6.6 Multiplication in Zn

In section 3.5 we saw that Zn endowed with the operation of ad-
dition +n becomes a group. We are now going to investigate the
multiplicative structure of Zn.

How to define multiplication in Zn? If we want to multiply a ·nb we
simply multiply a · b and reduce the result mod n. As an example,
let us consider Table (???). To obtain 4 ·6 2 we first multiplied 4 · 2 = 8

and then reduced mod 6 obtaining 8 ≡ 2 mod 6. The answer is thus
4 ·6 2 = 2.

Another look at the table shows the interesting product 3 ·6 2 = 0.
Why is it interesting? We have multiplied to non-zero entities and
obtained a zero entity!

Does Z6 form a group under ·6? What is the multiplicative iden-
tity? In analogy with the rational numbers, we would like 1 to be
the multiplicative identity. We would then define the multiplicative
inverse of a to be that b that has the property that a ·6 b = b ·6 a = 1.

But then, we encounter some problems. For example, we see that
0, 2, 3, and 4 do not have a multiplicative inverse. We need to be
able to identify the invertible elements of Zn. For that we need the
following.

486 Definition Let n > 1 be a natural number. An integer b is said to
be the inverse of an integer a modulo n if ab ≡ 1 mod n.

It is easy to see that inverses are unique mod n. For if x, y are in-
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verses to a mod n then ax ≡ 1 mod n and ay ≡ 1 mod n. Multiplying
by y the first of these congruences, (ya)x ≡ y mod n. Hence x ≡ y

mod n.

487 Theorem Let n > 1, a be integers. Then a possesses an inverse
modulo n if and only if a is relatively prime to n.

Proof Assume that b is the inverse of a mod n. Then ab ≡ 1 mod n,
which entails the existence of an integer s such that ab − 1 = sn,
i.e. ab − sn = 1. This is a linear combination of a and n and hence
divisible by (a, n). This implies that (a, n) = 1.

Conversely if (a, n) = 1, by the Bachet-Bezout Theorem there are
integers x, y such that ax + ny = 1. This immediately yields ax ≡ 1

mod n, i.e., a has an inverse mod n.

488 Example Find the inverse of 5 mod 7.

Solution: We are looking for a solution to the congruence 5x ≡ 1

mod 7. By inspection we see that this is x ≡ 3 mod 7.

According to the preceding theorem, a will have a multiplicative
inverse if and only if (a, n) = 1. We thus see that only the reduced
residues mod n have an inverse. We let Z×

n = {a1, a2, . . . , aφ(n)}. It is
easy to see that the operation ·n is associative, since it inherits as-
sociativity from the integers. We conclude that Z×

n is a group under
the operation ·n.

We now give some assorted examples.

489 Example (IMO 1964) Prove that there is no positive integer n for
which 2n + 1 is divisible by 7.

Solution: Observe that 21 ≡ 2, 22 ≡ 4, 23 ≡ 1 mod 7, 24 ≡ 2 mod 7,
25 ≡ 4 mod 7, 26 ≡ 1 mod 7, etc. The pattern 2, 4, 1, repeats thus
cyclically. This says that there is no power of 2 which is ≡ −1 ≡ 6 mod
7.
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490 Theorem If a is relatively prime to the positive integer n, there
exists a positive integer k ≤ n such that ak ≡ 1 mod n.

Proof Since (a, n) = 1 we must have (aj, n) = 1 for all j ≥ 1. Consider
the sequence a, a2, a3, . . . , an+1 mod n. As there are n + 1 numbers
and only n residues mod n, the Pigeonhole Principle two of these
powers must have the same remainder mod n. That is, we can find
s, t with 1 ≤ s < t ≤ n + 1 such that as ≡ at mod n. Now, 1 ≤ t − s ≤ n.

Hence as ≡ at mod n gives at−sas ≡ at−sat mod n, which is to say
at ≡ at−sat mod n. Using Corollary 5.1 we gather that at−s ≡ 1 mod
n, which proves the result.

If (a, n) = 1, the preceding theorem tells us that there is a positive
integer k with ak ≡ 1 mod n. By the Well-Ordering Principle, there
must be a smallest positive integer with this property. This yields the
following definition.

491 Definition If M is the least positive integer with the property that
am ≡ 1 mod n, we say that a has order M mod n.

For example, 31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 mod 7, and
so the order of 3 mod 7 is 6. We write this fact as ord73 = 6.

Given n, not all integers a are going to have an order mod n. This
is clear if n|a, because then am ≡ 0 mod n for all positive integers M .
The question as to which integers are going to have an order mod
n is answered in the following theorem.

492 Theorem Let n > 1 be a positive integer. Then a ∈ Z has an order
mod n if and only if (a, n) = 1.

Proof If (a, n) = 1, then a has an order in view of Theorem 6.7 and
the Well-Ordering Principle. Hence assume that a has an order mod
n. Clearly a 6= 0. The existence of an order entails the existence
of a positive integer M such that am ≡ 1 mod n. Hence, there is
an integer s with am + sn = 1 or a · am−1 + sn = 1. This is a linear
combination of a and n and hence divisible by (a, n). This entails
that (a, n) = 1. ❑
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The following theorem is of utmost importance.

493 Theorem Let (a, n) = 1 and let t be an integer. Then at ≡ 1 mod
n if and only if ordna|t.

Proof Assume that ordna|t. Then there is an integer s such that sordna =

t. This gives

at ≡ asordna ≡ (aordna)s ≡ 1s ≡ 1 mod n.

Conversely, assume that at ≡ 1 mod n and t = x · ordna + y, 0 ≤
y < ordna. Then

ay ≡ at−xordna ≡ at · (aordna)−x ≡ 1 · 1−x ≡ 1 mod n.

If y > 0 we would have a positive integer smaller than ordna with
the property ay ≡ 1 mod n. This contradicts the definition of ordna

as the smallest positive integer with that property. Hence y = 0 and
thus t = x · ordna, i.e., ordna|t.

494 Example (IMO 1964) Find all positive integers n for which 2n− 1 is
divisible by 7.

Solution: Observe that the order of 2 mod 7 is 3. We want 2n ≡ 1

mod 7. It must then be the case that 3|n. Thus n = 3, 6, 9, 12, . . ..
The following result will be used repeatedly.

495 Theorem Let n > 1, a ∈ Z, (a, n) = 1. If r1, r2, . . . , rφ(n) is a reduced
set of residues modulo n, then ar1, ar2, . . . , arφ(n) is also a reduced
set of residues modulo n.

Proof We just need to show that the φ(n) numbers ar1, ar2, . . . , arφ(n)

are mutually incongruent mod n. Suppose that ari ≡ arj mod n for
some i 6= j. Since (a, n) = 1, we deduce from Corollary 5.1 that ri ≡ rj

mod n. This contradicts the fact that the r’s are incongruent, so the
theorem follows.
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For example, as 1, 5, 7, 11 is a reduced residue system modulo 12
and (12, 5) = 1, the set 5, 25, 35, 55 is also a reduced residue system
modulo 12. Again, the 1, 5, 7, 11 are the 5, 25, 35, 55 in some order and
1 · 5 · 7 · 11 ≡ 5 · 25 · 35 · 55 mod 12.

The following corollary to Theorem 5.10 should be immediate.

496 Corollary Let n > 1, a, b ∈ Z, (a, n) = 1. If r1, r2, . . . , rφ(n) is a re-
duced set of residues modulo n, then ar1 + b, ar2 + b, . . . , arφ(n) + b is
also a reduced set of residues modulo n.

Ad Pleniorem Scientiam

497 APS Find the order of 5 modulo 12.

6.7 Möbius Function

498 Definition The Möbius function is defined for positive integer n
as follows:

µ(n) =






1 if n = 1,

(−1)ω(n) if ω(n) = Ω(n),

0 if ω(n) < Ω(n).

Thus µ is 1 for n = 1 and square free integers with an even number
of prime factors, −1 for square free integers with an odd number of
prime factors, and 0 for non-square free integers. Thus for example
µ(6) = 1, µ(30) = −1 and µ(18) = 0.

499 Theorem The Möbius Function µ is multiplicative.

Proof Assume (m, n) = 1. If both M and n are square-free then

µ(m)µ(n) = (−1)ω(m)(−1)ω(n) = (−1)ω(m)+ω(n) = µ(mn).

If one of m, n is not square-free then

µ(m)µ(n) = 0 = µ(mn).

This proves the theorem. ❑
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500 Theorem
∑

d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

Proof There are
(

ω(n)

k

)

square-free divisors d of n with exactly k prime
factors. For all such d, µ(d) = (−1)k. The sum in question is thus

∑

d|n

µ(d) =

ω(n)∑

k=0

(

ω(n)

k

)

(−1)k.

By the Binomial Theorem this last sum is (1 − 1)ω(n) = 0.

501 Theorem (Möbius Inversion Formula) Let f be an arithmetical func-
tion and F(n) =

∑
d|n f(d). Then

f(n) =
∑

d|n

µ(d)F(n/d) =
∑

d|n

µ(n/d)F(d).

Proof We have

∑
d|n µ(d)F(n/d) =

∑
d|n

∑
d|n

∑

s|
n

d

f(s)

=
∑

ds|n µ(d)f(s)

=
∑

s|n f(s)
∑

d|
n

s

µ(d).

In view of the preceding theorem, the inner sum is different from

0 only when
n

s
= 1. Hence only the term s = n in the outer sum

survives, which means that the above sums simplify to f(n).

We now show the converse to Theorem 5.13

502 Theorem Let f, F be arithmetic functions with f(n) =
∑

d|n µ(d)F(n/d)

for all natural numbers n. Then F(n) =
∑

d|n f(d).
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Proof We have
∑

d|n f(d) =
∑

d|n

∑
s|d µ(s)F(d/s)

=
∑

d|n

∑
s|d µ(d/s)F(s)

=
∑

s|n

∑

r|
n

s

µ(r)F(s).

Using Theorem 6.12, the inner sum will be 0 unless s = n, in which
case the entire sum reduces to F(n).

Ad Pleniorem Scientiam

503 APS Prove that

φ(n) = n
∑

d|n

µ(d)

d
.

504 APS If f is an arithmetical function and F(n) =
∑n

k=1 f([n/k]),

then

f(n) =

n∑

j=1

µ(j)F([n/j]).

505 APS If F is an arithmetical function such that f(n) =
∑n

k=1 µ(k)F([n/k]),

prove that F(n) =
∑n

j=1 f(j).

506 APS Prove that
∑

d|n |µ(d)| = 2ω(n).

507 APS Prove that
∑

d|n µ(d)d(d) = (−1)ω(n).

508 APS Given any positive integer k, prove that there exist infinitely
many integers n with

µ(n + 1) = µ(n + 2) = · · · = µ(n + k).



Chapter 7
More on Congruences

7.1 Theorems of Fermat and Wilson

509 Theorem (Fermat’s Little Theorem) Let p be a prime and let p 6 |a.
Then

ap−1 ≡ 1 mod p.

Proof Since (a, p) = 1, the set a ·1, a ·2, . . . , a · (p−1) is also a reduced
set of residues mod p in view of Theorem (???). Hence

(a · 1)(a · 2) · · · (a · (p − 1)) ≡ 1 · 2 · · · (p − 1) mod p,

or
ap−1(p − 1)! ≡ (p − 1)! mod p.

As ((p−1)!, p) = 1 we may cancel out the (p−1)!’s in view of Corollary
5.1. This proves the theorem.

As an obvious corollary, we obtain the following.

510 Corollary For every prime p and for every integer a,

ap ≡ a mod p.

Proof Either p|a or p 6 |a. If p|a, a ≡ 0 ≡ ap mod p and there is nothing
to prove. If p 6 |a, Fermat’s Little Theorem yields p|ap−1 − 1. Hence
p|a(ap−1 − 1) = ap − a, which again gives the result.

141



142 Chapter 7

The following corollary will also be useful.

511 Corollary Let p be a prime and a an integer. Assume that p 6 |a.
Then ordpa|p − 1.

Proof This follows immediately from Theorem 6.9 and Fermat’s Little
Theorem.

512 Example Find the order of 8 mod 11.

Solution: By Corollary 7.2 ord118 is either 1, 2, 5 or 10. Now 82 ≡ −2

mod 11, 84 ≡ 4 mod 11 and 85 ≡ −1 mod 11. The order is thus
ord118 = 10.

513 Example Let a1 = 4, an = 4an−1 , n > 1. Find the remainder when
a100 is divided by 7.

Solution: By Fermat’s Little Theorem, 46 ≡ 1 mod 7. Now, 4n ≡ 4 mod
6 for all positive integers n, i.e., 4n = 4 + 6t for some integer t. Thus

a100 ≡ 4a99 ≡ 44+6t ≡ 44 · (46)t ≡ 4 mod 7.

514 Example Prove that for m, n ∈ Z, mn(m60 − n60) is always divisible
by 56786730.

Solution: Let a = 56786730 = 2·3·5·7·11·13·31·61. Let Q(x, y) = xy(x60−

y60). Observe that (x − y)|Q(x, y), (x2 − y2)|Q(x, y), (x3 − y3)|Q(x, y),
(x4 − y4)|Q(x, y), (x6 − y6)|Q(x, y), (x10 − y10)|Q(x, y), (x12 − y12)|Q(x, y),
and (x30 − y30)|Q(x, y).

If p is any one of the primes dividing a, the Corollary to Fermat’s
Little Theorem yields mp − m ≡ 0 mod p and np − n ≡ 0 mod p. Thus
n(mp − m) − m(np − n) ≡ 0 mod p, i.e., mn(mp−1 − np−1) ≡ 0 mod p.

Hence, we have 2|mn(m−n)|Q(m, n), 3|mn(m2−n2)|Q(m, n), 5|mn(m4−

n4)|Q(m, n), 7|mn(m6−n6)|Q(m, n), 11|mn(m10−n10)|Q(m, n), 13|mn(m12−

n12)|Q(m, n), 31|mn(m30 − n30)|Q(m, n) and 61|mn(m60 − n60)|Q(m, n).
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Since these are all distinct primes, we gather that a|mnQ(m, n), which
is what we wanted.

515 Example (PUTNAM 1972) Show that given an odd prime p, there
are always infinitely many integers n for which p|n2n + 1.

Answer: For any odd prime p, take n = (p−1)2k+1, k = 0, 1, 2, . . .. Then

n2n + 1 ≡ (p − 1)2k+1(2p−1)(p−1)2k

+ 1 ≡ (−1)2k+112k + 1 ≡ 0 mod p.

516 Example Prove that there are no integers n > 1 with n|2n − 1.

Solution: If n|2n − 1 for some n > 1, then n must be odd and have a
smallest odd prime p as a divisor. By Fermat’s Little Theorem, 2p−1 ≡ 1

mod p. By Theorem 6.9, ordp2 has a prime factor in common with
p − 1. Now, p|n|2n − 1 and so 2n ≡ 1 mod p. Again, by Theorem 6.9,
ordp2 must have a common prime factor with n (clearly ordp2 > 1).
This means that n has a smaller prime factor than p, a contradiction.

517 Example 1. Let p be a prime. Prove that
(

p − 1

n

)

≡ (−1)n mod p, 1 ≤ n ≤ p − 1.

2.
(

p + 1

n

)

≡ 0 mod p, 2 ≤ n ≤ p − 1.

3. If p 6= 5 is an odd prime, prove that either fp−1 or fp+1 is divisible
by p.

Solution: (1) (p−1)(p−2) · · · (p−n) ≡ (−1)(−2) · · · (−n) ≡ (−1)nn! mod
p. The assertion follows from this.
(2) (p + 1)(p)(p − 1) · · · (p − n + 2) ≡ (1)(0)(−1) · · · (−n + 2) ≡ 0 mod p.
The assertion follows from this.
(3) Using the Binomial Theorem and Binet’s Formula

fn =
1

2n−1

((

n

1

)

+ 5

(

n

3

)

+ 52

(

n

5

)

+ · · ·
)

.
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From this and (1),

2p−2fp−1 ≡ p − 1 − (5 + 52 + · · · + 5(p−3)/2) ≡ −
5(p−1)/2 − 1

4
mod p.

Using (2),

2pfp+1 ≡ p + 1 + 5(p−1)/2 ≡ 5(p−1)/2 + 1 mod p.

Thus
2pfp−1fp+1 ≡ 5p−1 − 1 mod p.

But by Fermat’s Little Theorem, 5p−1 ≡ 1 mod p for p 6= 5. The assertion
follows.

518 Lemma If a2 ≡ 1 mod p, then either a ≡ 1 mod p or a ≡ −1 mod
p.

Proof We have p|a2 − 1 = (a − 1)(a + 1). Since p is a prime, it must
divide at least one of the factors. This proves the lemma.

519 Theorem (Wilson’s Theorem) If p is a prime, then (p − 1)! ≡ −1

mod p.

Proof If p = 2 or p = 3, the result follows by direct verification. So
assume that p > 3. Consider a, 2 ≤ a ≤ p − 2. To each such a we
associate its unique inverse a mod p, i.e. aa ≡ 1 mod p. Observe
that a 6= a since then we would have a2 ≡ 1 mod p which violates
the preceding lemma as a 6= 1, a 6= p − 1. Thus in multiplying all a in
the range 2 ≤ a ≤ p − 2, we pair them of with their inverses, and the
net contribution of this product is therefore 1. In symbols,

2 · 3 · · · (p − 2) ≡ 1 mod p.

In other words,

(p − 1)! ≡ 1 ·
(

∏

2≤a≤p−2

j

)

· (p − 1) ≡ 1 · 1 · (p − 1) ≡ −1 mod p.

This gives the result. ❑
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520 Example If p ≡ 1 mod 4, prove that
(

p − 1

2

)

! ≡ −1 mod p.

Solution: In the product (p − 1)! we pair off j, 1 ≤ j ≤ (p − 1)/2 with
p − j. Observe that j(p − j) ≡ −j2 mod p. Hence

−1 ≡ (p − 1)! ≡
∏

1≤j≤(p−1)/2

−j2 ≡ (−1)(p−1)/2

(

p − 1

2

)

! mod p.

As (−1)(p−1)/2 = 1, we obtain the result.

521 Example (IMO 1970) Find the set of all positive integers n with
the property that the set

{n, n + 1, n + 2, n + 3, n + 4, n + 5}

can be partitioned into two sets such that the product of the num-
bers in one set equals the product of the numbers in the other set.

Solution: We will show that no such partition exists. Suppose that we
can have such a partition, with one of the subsets having product of
its members equal to A and the other having product of its members
equal to B. We might have two possibilities. The first possibility is that
exactly one of the numbers in the set {n, n+1, n+2, n+3, n+4, n+5}

is divisible by 7, in which case exactly one of A or B is divisible by 7,
and so A · B is not divisible by 72, and so A · B is not a square. The
second possibility is that all of the members of the set are relatively
prime to 7. In this last case we have

n(n + 1) · · · (n + 6) ≡ 1 · 2 · · · 6 ≡ A · B ≡ −1 mod 7.

But if A = B then we are saying that there is an integer A such that
A2 ≡ −1 mod 7, which is an impossibility, as −1 is not a square mod
7. This finishes the proof.

Ad Pleniorem Scientiam

522 APS Find all the natural numbers n for which 3|(n2n + 1).



146 Chapter 7

523 APS Prove that there are infinitely many integers n with n|2n + 2.

524 APS Find all primes p such that p|2p + 1.

Answer: p = 3 only.

525 APS If p and q are distinct primes prove that

pq|(apq − ap − aq − a)

for all integers a.

526 APS If p is a prime prove that p|ap + (p − 1)!a for all integers a.

527 APS If (mn, 42) = 1 prove that 168|m6 − n6.

528 APS Let p and q be distinct primes. Prove that

qp−1 + pq−1 ≡ 1 mod pq.

529 APS If p is an odd prime prove that np ≡ n mod 2p for all inte-
gers n.

530 APS If p is an odd prime and p|mp + np prove that p2|mp + np.

531 APS Prove that n > 1 is a prime if and only if (n − 1)! ≡ −1 mod
n.

532 APS Prove that if p is an odd prime

12 · 32 · · · (p − 2)2 ≡ 22 · 42 · · · (p − 1)2 ≡ (−1)(p−1)/2 mod p

533 APS Prove that 19|(226k+2

+ 3) for all nonnegative integers k.
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7.2 Euler’s Theorem

In this section we obtain a generalisation of Fermat’s Little Theorem,
due to Euler. The proof is analogous to that of Fermat’s Little Theo-
rem.

534 Theorem (Euler’s Theorem) Let (a, n) = 1. Then aφ(n) ≡ 1 mod n.

Proof Let a1, a2, . . . , aφ(n) be the canonical reduced residues mod
n. As (a, n) = 1, aa1, aa2, . . . , aaφ(n) also forms a set of incongruent
reduced residues. Thus

aa1 · aa2 · · ·aaφ(n) ≡ a1a2 · · ·aφ(n) mod n,

or
aφ(n)a1a2 · · ·aφ(n) ≡ a1a2 · · ·aφ(n) modn.

As (a1a2 · · ·aφ(n), n) = 1, we may cancel the product a1a2 · · ·aφ(n)

from both sides of the congruence to obtain Euler’s Theorem.

Using Theorem 6.9 we obtain the following corollary.

535 Corollary Let (a, n) = 1. Then ordna|φ(n).

536 Example Find the last two digits of 31000.

Solution: As φ(100) = 40, by Euler’s Theorem, 340 ≡ 1 mod 100. Thus

31000 = (340)25 ≡ 125 = 1 mod 100,

and so the last two digits are 01.

537 Example Find the last two digits of 771000

.

Solution: First observe that φ(100) = φ(22)φ(52) = (22 − 2)(52 − 5) =

40. Hence, by Euler’s Theorem, 740 ≡ 1 mod 100. Now, φ(40) =

φ(23)φ(5) = 4 · 4 = 16, hence 716 ≡ 1 mod 40. Finally, 1000 = 16 · 62 + 8.

This means that 71000 ≡ (716)6278 ≡ 16278 ≡ (74)2 ≡ 12 ≡ 1 mod 40. This
means that 71000 = 1+40t for some integer t. Upon assembling all this

771000 ≡ 71+40t ≡ 7 · (740)t ≡ 7 mod 100.
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This means that the last two digits are 07.

538 Example (IMO 1978) m, n are natural numbers with 1 ≤ m < n.

In their decimal representations, the last three digits of 1978m are
equal, respectively, to the last three digits of 1978n. Find m, n such
that m + n has its least value.

Solution: As m + n = n − m + 2m, we minimise n − m. We are given
that

1978n − 1978m = 1978m(1978n−m − 1)

is divisible by 1000 = 2353. Since the second factor is odd, 23 must
divide the first and so m ≥ 3. Now, ord1251978 is the smallest positive
integer s with

1978s ≡ 1 mod 125.

By Euler’s Theorem

1978100 ≡ 1 mod 125

and so by Corollary 7.3 s|100. Since 125|(1978s − 1) we have 5|(1978s −

1), i.e., 1978s ≡ 3s ≡ 1 mod 5. Since s|100, this last congruence implies
that s = 4, 20, or 100. We now rule out the first two possibilities.

Observe that

19784 ≡ (−22)4 ≡ 24 · 114 ≡ (4 · 121)2 ≡ (−16)2 ≡ 6 mod 125.

This means that s 6= 4. Similarly

197820 ≡ 19784 · (19784)4 ≡ 6 · 64 ≡ 6 · 46 ≡ 26 mod 125.

This means that s 6= 20 and so s = 100. Since s is the smallest positive
integer with 1978s ≡ 1 mod 125, we take n − m = s = 100 and m = 3,
i.e., n = 103, m = 3, and finally, m + n = 106.

539 Example (IMO 1984) Find one pair of positive integers a, b such
that:
(i) ab(a + b) is not divisible by 7.
(ii) (a + b)7 − a7 − b7 is divisible by 77. Justify your answer.
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Solution: We first factorise (a+b)7−a7−b7 as ab(a+b)(a2+ab+b2)2.
Using the Binomial Theorem we have

(a + b)7 − a7 − b7 = 7(a6b + ab6 + 3(a5b2 + a2b5) + 5(a4b3 + a3b4))

= 7ab(a5 + b5 + 3ab(a3 + b3) + 5(a2b2)(a + b))

= 7ab(a + b)(a4 + b4 − a3b − ab3 + a2b2

+3ab(a2 − ab + b2) + 5ab)

= 7ab(a + b)(a4 + b4 + 2(a3b + ab3) + 3a2b2)

= 7ab(a + b)(a2 + ab + b2)2.

The given hypotheses can be thus simplified to

(i) ′ ab(a + b) is not divisible by 7,

(ii) ′ a2 + ab + b2 is divisible by 73.

As (a+b)2 > a2+ab+b2 ≥ 73, we obtain a+b ≥ 19. Using trial and error,
we find that a = 1, b = 18 give an answer, as 12+1 ·18+182 = 343 = 73.

Let us look for more solutions by means of Euler’s Theorem.
As a3 − b3 = (a − b)(a2 + ab + b2), (ii)’ is implied by

(ii) ′′
{

a3 ≡ b3 mod 73

a 6≡ b mod 7.

Now φ(73) = (7 − 1)72 = 3 · 98, and so if x is not divisible by 7 we have
(x98)3 ≡ 1 mod 73, which gives the first part of (ii)’. We must verify
now the conditions of non-divisibility. For example, letting x = 2 we
see that 298 ≡ 4 mod 7. Thus letting a = 298, b = 1. Letting x = 3

we find that 398 ≡ 324 mod 73. We leave to the reader to verify that
a = 324, b = 1 is another solution.

Ad Pleniorem Scientiam

540 APS Show that for all natural numbers s, there is an integer n

divisible by s, such that the sum of the digits of n equals s.

541 APS Prove that 504|n9 − n3.

542 APS Prove that for odd integer n > 0, n|(2n! − 1).
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543 APS Let p 6 |10 be a prime. Prove that p divides infinitely many
numbers of the form

11 . . . 11.

544 APS Find all natural numbers n that divide

1n + 2n + · · · + (n − 1)n.

545 APS Let (m, n) = 1. Prove that

mφ(n) + nφ(n) ≡ 1 mod mn.

546 APS Find the last two digits of a1001 if a1 = 7, an = 7an−1 .

547 APS Find the remainder of

1010 + 10102

+ · · · + 101010

upon division by 7.

548 APS Prove that for every natural number n there exists some
power of 2 whose final n digits are all ones and twos.

549 APS (USAMO 1982) Prove that there exists a positive integer k

such that k · 2n + 1 is composite for every positive integer n.

550 APS (PUTNAM 1985) Describe the sequence a1 = 3, an = 3an−1

mod 100 for large n.



Chapter 8
Scales of Notation

8.1 The Decimal Scale

As we all know, any natural number n can be written in the form

n = a010k + a110k−1 + · · · + ak−110 + ak,

where 1 ≤ a0 ≤ 9, 0 ≤ aj ≤ 9, j ≥ 1. For example, 65789 = 6 · 104 + 5 ·
103 + 7 · 102 + 8 · 10 + 9.

551 Example Find all whole numbers which begin with the digit 6

and decrease 25 times when this digit is deleted.

Solution: Let the number sought have n + 1 digits. Then this number
can be written as 6 · 10n + y, where y is a number with n digits (it
may begin with one or several zeroes). The condition of the problem
stipulates that

6 · 10n + y = 25 · y
whence

y =
6 · 10n

24
.

From this we gather that n ≥ 2 (otherwise, 6 · 10n would not be divisi-
ble by 24). For n ≥ 2, y = 25 ·10k−2, that is, y has the form 250 · · · 0(n−2

zeroes). We conclude that all the numbers sought have the form
625 0 . . . 0︸ ︷︷ ︸

n zeroes

.

151
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552 Example (IMO 1968) Find all natural numbers x such that the
product of their digits (in decimal notation) equals x2 − 10x − 22.

Solution: Let x have the form

x = a0 + a110 + a2102 + · · · + an−110n−1, ak ≤ 9, an−1 6= 0.

Let P(x) be the product of the digits of x, P(x) = x2 − 10x − 22. Now,
P(x) = a0a1 · · ·an−1 ≤ 9n−1an−1 < 10n−1an−1 ≤ x (strict inequality oc-
curs when x has more than one digit). So x2 − 10x − 22 < x, and we
deduce that x < 13, whence x has either one digit or x = 10, 11, 13. If
x had one digit, then a0 = x2−10x−22, but this equation has no inte-
gral solutions. If x = 10, P(x) = 0, but x2−10x−22 6= 0. If x = 11, P(x) = 1,

but x2−10x−22 6= 1. If x = 12, P(x) = 2 and x2−10x−22 = 2. Therefore,
x = 12 is the only solution.

553 Example A whole number decreases an integral number of times
when its last digit is deleted. Find all such numbers.

Solution: Let 0 ≤ y ≤ 9, and 10x + y = mx, m and x natural numbers.
This requires 10 + y/x = m, an integer. We must have x|y. If y = 0,
any natural number x will do, and we obtain the multiples of 10. If
y = 1, x = 1, and we obtain 11. If y = 2, x = 1 or x = 2 and we obtain
12 and 22. Continuing in this fashion, the sought numbers are: the
multiples of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 28, 33, 36,
39, 44, 48, 55, 66, 77, 88, and 99.

554 Example Let A be a positive integer, and A ′ be a number writ-
ten with the aid of the same digits with are arranged in some other
order. Prove that if A + A ′ = 1010, then A is divisible by 10.

Solution: Clearly A and A ′ must have ten digits. Let A = a10a9 . . . a1

be the consecutive digits of A and A ′ = a ′
10a

′
9 . . . a ′

1. Now, A + A ′ =

1010 if and only if there is a j, 0 ≤ j ≤ 9 for which a1 + a ′
1 = a2 + a ′

2 =

· · · = aj + a ′
j = 0, aj+1 + a ′

j+1 = 10, aj+2 + a ′
j+2 = aj+3 + a ′

j+3 = · · · =

a10 + a ′
10 = 9. Notice that j = 0 implies that there are no sums of the

form aj+k+a ′
j+k, k ≥ 2, and j = 9 implies that there are no sums of the

form al + a ′
l, 1 ≤ l ≤ j. On adding all these sums, we gather

a1 + a ′
1 + a2 + a ′

2 + · · · + a10 + a ′
10 = 10 + 9(9 − j).
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Since the a ′
s are a permutation of the as, we see that the sinistral

side of the above equality is the even number 2(a1 + a2 + · · · + a10).

This implies that j must be odd. But this implies that a1+a ′
1 = 0, which

gives the result.

555 Example (AIME 1994) Given a positive integer n, let p(n) be the
product of the non-zero digits of n. (If n has only one digit, then p(n)

is equal to that digit.) Let

S = p(1) + p(2) + · · · + p(999).

What is the largest prime factor of S?

Solution: Observe that non-zero digits are the ones that matter. So,
for example, the numbers 180, 108, 118, 810, 800, and 811 have the
same value p(n).

We obtain all the three digit numbers from 001 to 999 by expand-
ing the product

(0 + 1 + 2 + · · · + 9)3 − 0,

where we subtracted a 0 in order to eliminate 000. Thus

(0 + 1 + 2 · · · + 9)3 − 0 = 001 + 002 + · · · + 999.

In order to obtain p(n) for a particular number, we just have to substi-
tute the (possible) zeroes in the decimal representation, by 1’s, and
so

p(1) + p(2) + · · ·+ p(n) = 111 + 112 + · · ·+ 999 = (1 + 1 + 2 + · · ·+ 9)3 − 1,

which equals 463 − 1. (In the last sum, 111 is repeated various times,
once for 001, once for 011, once for 100, once for 101, once for 110,
etc.) As 463 − 1 = 33 · 5 · 7 · 103, the number required is 103.

556 Example (AIME 1992) Let S be the set of all rational numbers
r, 0 < r < 1, that have a repeating decimal expansion of the form

0.abcabcabc . . . = 0.abc,

where the digits a, b, c are not necessarily distinct. To write the ele-
ments of S as fractions in lowest terms, how many different numera-
tors are required?
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Solution: Observe that 0.abcabcabc . . . =
abc

999
, and 999 = 33 · 37. If abc

is neither divisible by 3 nor 37, the fraction is already in lowest terms.
By the Inclusion-Exclusion Principle, there are

999 − (999/3 + 999/37) + 999/3 · 37 = 648

such numbers. Also, fractions of the form s/37, where 3|s, 37 6 |s are
in S. There are 12 fractions of this kind. (Observe that we do not
consider fractions of the form l/3t, 37|s, 3 6 |l, because fractions of this
form are greater than 1, and thus not in S.)

The total number of distinct numerators in the set of reduced
fractions is thus 640 + 12 = 660.

557 Example (PUTNAM 1956) Prove that every positive integer has a
multiple whose decimal representation involves all 10 digits.

Solution: Let n be an arbitrary positive integer with k digits. Let m =

123456780 · 10k+1. Then all of the n consecutive integers m + 1, m +

2, . . . m + n begin with 1234567890 and one of them is divisible by n.

558 Example (PUTNAM 1987) The sequence of digits

12345678910111213141516171819202122 . . .

is obtained by writing the positive integers in order. If the 10n digit
of this sequence occurs in the part in which the M -digit numbers
are placed, define f(n) to be M . For example f(2) = 2, because
the hundredth digit enters the sequence in the placement of the
two-digit integer 55. Find, with proof, f(1987).

Solution: There are 9 · 10j−1j-digit positive integers. The total number
of digits in numbers with at most r digits is g(r) =

∑r

j=1 j · 9 · 10r−1 =

r10r−
10r − 1

9
. As 0 <

10r − 1

9
< 10r, we get (r−1)10r < g(r) < r10r. Thus

g(1983) < 1983 ·101983 < 104 ·101983 = 101987 and g(1984) > 1983 ·101984 >

103 · 101984. Therefore f(1987) = 1984.

Ad Pleniorem Scientiam
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559 APS Prove that there is no whole number which decreases 35

times when its initial digit is deleted.

560 APS A whole number is equal to the arithmetic mean of all the
numbers obtained from the given number with the aid of all possible
permutations of its digits. Find all whole numbers with that property.

561 APS (AIME 1989) Suppose that n is a positive integer and d is a
single digit in base-ten. Find n if

n

810
= 0.d25d25d25d25 . . . .

562 APS (AIME 1992) For how many pairs of consecutive integers in

{1000, 1001, . . . , 2000}

is no carrying required when the two integers are added?

563 APS Let M be a seventeen-digit positive integer and let N be
number obtained from M by writing the same digits in reversed or-
der. Prove that at least one digit in the decimal representation of
the number M + N is even.

564 APS Given that

e = 2 +
1

2!
+

1

3!
+

1

4!
+ · · · ,

prove that e is irrational.

565 APS Let t be a positive real number. Prove that there is a posi-
tive integer n such that the decimal expansion of nt contains a 7.

566 APS (AIME 1988) Find the smallest positive integer whose cube
ends in 888.

567 APS (AIME 1987) An ordered pair (m, n) of nonnegative inte-
gers is called simple if the addition m + n requires no carrying. Find
the number of simple ordered pairs of nonnegative integers that
sum 1492.
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568 APS (AIME 1986) In the parlor game, the “magician” asks one
of the participants to think of a three-digit number abc, where a, b, c

represent the digits of the number in the order indicated. The ma-
gician asks his victim to form the numbers acb, bac, cab and cba, to
add the number and to reveal their sum N. If told the value of N,
the magician can identity abc. Play the magician and determine
abc if N = 319.

569 APS The integer n is the smallest multiple of 15 such that every
digit of n is either 0 or 8. Compute n/15.

570 APS (AIME 1988) For any positive integer k, let f1(k) denote the
square of the sums of the digits of k. For n ≥ 2, let fn(k) = f1(fn−1(k)).
Find f1988(11).

571 APS (IMO 1969) Determine all three-digit numbers N that are
divisible by 11 and such that N/11 equals the sum of the squares of
the digits of N.

572 APS (IMO 1962) Find the smallest natural number having last
digit is 6 and if this 6 is erased and put in front of the other digits, the
resulting number is four times as large as the original number.

573 APS 1. Show that Champernowne’s number

χ = 0.123456789101112131415161718192021 . . .

is irrational.

2. Let r ∈ Q and let ε > 0 be given. Prove that there exists a
positive integer n such that

|10nχ − r| < ε.

574 APS A Liouville number is a real number x such that for every
positive k there exist integers a and b ≥ 2, such that

|x − a/b| < b−k.

Prove or disprove that π is the sum of two Liouville numbers.



Non-decimal Scales 157

575 APS Given that

1/49 = 0.020408163265306122448979591836734693877551,

find the last thousand digits of

1 + 50 + 502 + · · · + 50999.

8.2 Non-decimal Scales

The fact that most people have ten fingers has fixed our scale of
notation to the decimal. Given any positive integer r > 1, we can,
however, express any number in base r.

576 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213 < 75. We thus want to find 0 ≤ a0, . . . , a4 ≤
6, a4 6= 0, such that

5213 = a47
4 + a37

3 + a27
2 + a17 + a0.

Now, divide by 74 to obtain

2 + proper fraction = a4 + proper fraction.

Since a4 is an integer, it must be the case that a4 = 2. Thus 5213 − 2 ·
74 = 411 = a37

3 + a27
2 + a17 + a0. Dividing 411 by 73 we obtain

1 + proper fraction = a3 + proper fraction.

Thus a3 = 1. Continuing in this way we deduce that 5213 = 211257.

577 Example Express the decimal number 13/16 in base-six.

Solution: Write
13

16
=

a1

6
+

a2

62
+

a3

63
+ . . . .

Multiply by 6 to obtain

4 + proper fraction = a1 + proper fraction.
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Thus a1 = 4. Hence 13/16 − 4/6 = 7/48 =
a2

62
+

a3

63
+ . . .. Multiply by 62

to obtain

5 + proper fraction = a2 + proper fraction.

We gather that a2 = 5. Continuing in this fashion, we deduce that
13/16 = .45136.

578 Example Prove that 4.41 is a perfect square in any scale of nota-
tion.

Solution: If 4.41 is in scale r, then

4.41 = 4 +
4

r
+

1

r2
=

(

2 +
1

r

)2

.

579 Example Let [x] denote the greatest integer less than or equal
to x. Does the equation

[x] + [2x] + [4x] + [8x] + [16x] + [32x] = 12345

have a solution?

Solution: We show that there is no such x. Recall that [x] satisfies the
inequalities x − 1 < [x] ≤ x. Thus

x − 1 + 2x − 1 + 4x − 1 + · · · + 32x − 1 < [x] + [2x] + [4x] + [8x]

+ [16x] + [32x]

≤ x + 2x + 4x + · · · + 32x.

From this we see that 63x − 6 < 12345 ≤ 63x. Hence 195 < x < 196.
Write then x in base-two:

x = 195 +
a1

2
+

a2

22
+

a3

23
+ . . . ,

with ak = 0 or 1. Then

[2x] = 2 · 195 + a1,

[4x] = 4 · 195 + 2a1 + a2,

[8x] = 8 · 195 + 4a1 + 2a2 + a3,

[16x] = 16 · 195 + 8a1 + 4a2 + 2a3 + a4,

[32x] = 32 · 195 + 16a1 + 8a2 + 4a3 + 2a4 + a5.
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Adding we find that [x]+[2x]+[4x]+[8x]+[16x]+[32x] = 63 ·195+31a1+

15a2 + 7a3 + 3a4 + a5, i.e. 31a1 + 15a2 + 7a3 + 3a4 + a5 = 60. This cannot
be because 31a1+15a2+7a3+3a4+a5 ≤ 31+15+7+3+1 = 57 < 60.

580 Example (AHSME 1993) Given 0 ≤ x0 < 1, let

xn =

{
2xn−1 if 2xn−1 < 1

2xn−1 − 1 if 2xn−1 ≥ 1

for all integers n > 0. For how many x0 is it true that x0 = x5?

Solution: Write x0 in base-two,

x0 =

∞∑

k=1

an

2n
an = 0 or 1.

The algorithm given just moves the binary point one unit to the right.
For x0 to equal x5 we need 0.a1a2a3a4a5a6a7 . . . = 0.a6a7a8a9a10a11a12 . . ..
This will happen if and only if x0 has a repeating expansion with
a1a2a3a4a5 as the repeating block . There are 25 = 32 such blocks.
But if a1 = a2 = · · · = a5 = 1, then x0 = 1, which is outside [0, 1). The
total number of values for which x0 = x5 is thus 32 − 1 = 31.

581 Example (AIME 1986) The increasing sequence

1, 3, 4, 9, 10, 12, 13, . . .

consists of all those positive integers which are powers of 3 or sums
distinct powers of 3. Find the hundredth term of the sequence.

Solution: If the terms of the sequence are written in base-3, they
comprise the positive integers which do not contain the digit 2. Thus,
the terms of the sequence in ascending order are thus

1, 10, 11, 100, 101, 110, 111, . . . .

In the binary scale, these numbers are, of course, 1, 2, 3, . . . . To
obtain the 100-th term of the sequence we just write 100 in binary
100 = 11001002 and translate this into ternary: 11001003 = 36+35+32 =

981.
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Ad Pleniorem Scientiam

582 APS (PUTNAM 1987) For each positive integer n, let α(n) be the
number of zeroes in the base-three representation of n. For which
positive real numbers x does the series

∞∑

n=1

xα(n)

n3

converge?

583 APS Prove that for x ∈ R, x ≥ 0, one has
∞∑

n=1

(−1)[2nx]

2n
= 1 − 2(x − [x]).

584 APS (PUTNAM 1981) Let E(n) denote the largest k such that 5k is
an integral divisor of 112233 · · ·nn. Calculate

lim
n→∞

E(n)

n2
.

585 APS (AHSME 1982) The base-eight representation of a perfect
square is ab3c with a 6= 0. Find the value of c.

586 APS (PUTNAM 1977) An ordered triple of (x1, x2, x3) of positive
irrational numbers with x1 + x2 + x3 = 1 is called balanced if xn < 1/2

for all 1 ≤ n ≤ 3. If a triple is not balanced, say xj > 1/2, one performs
the following “balancing act”:

B(x1, x2, x3) = (x ′
1, x

′
2, x

′
3),

where x ′
i = 2xi if xi 6= xj and x ′

j = 2xj − 1. If the new triple is not
balanced, one performs the balancing act on it. Does continuation
of this process always lead to a balanced triple after a finite number
of performances of the balancing act?

587 APS Let C denote the class of positive integers which, when
written in base-three, do not require the digit 2. Show that no three
integers in C are in arithmetic progression.
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588 APS Let B(n) be the number of 1’s in the base-two expansion
of n. For example, B(6) = B(1102) = 2, B(15) = B(11112) = 4.

1. (PUTNAM 1981) Is

exp

(

∞∑

n=1

B(n)

n2 + n

)

a rational number?

2. (PUTNAM 1984) Express

2m−1∑

n=0

(−1)B(n)nm

in the form (−1)maf(m)(g(m))! where a is an integer and f, g are
polynomials.

589 APS What is the largest integer that I should be permitted to
choose so that you may determine my number in twenty “yes” or
“no” questions?

8.3 A theorem of Kummer

We first establish the following theorem.

590 Theorem (Legendre) Let p be a prime and let n = a0p
k+a1p

k−1+

· · ·+ ak−1p + ak be the base-p expansion of n. The exact power m of
a prime p dividing n! is given by

m =
n − (a0 + a1 + · · · + ak)

p − 1
.

Proof By De Polignac’s Formula

m =

∞∑

k=1

[

n

pk

]

.
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Now, [n/p] = a0p
k−1+a1p

k−2+· · ·ak−2p+ak−1, [n/p2] = a0p
k−2+a1p

k−3+

· · · + ak−2, . . . , [n/pk] = a0. Thus

∞∑

k=1

[n/pk] = a0(1 + p + p2 + · · · + pk−1) + a1(1 + p + p2 + · · · + pk−2)+

· · · + ak−1(1 + p) + ak

= a0

pk − 1

p − 1
+ a1

pk−1 − 1

p − 1
+ · · · + ak−1

p2 − 1

p − 1
+ ak

p − 1

p − 1

=
a0p

k + a1p
k−1 + · · · + ak − (a0 + a1 + · · · + ak)

p − 1

=
n − (a0 + a1 + · · · + ak)

p − 1
,

as wanted.

591 Theorem (Kummer’s Theorem) The exact power of a prime p

dividing the binomial coefficient
(

a+b

a

)

is equal to the number of
“carry-overs” when performing the addition of a, b written in base
p.

Proof Let a = a0+a1p+ · · ·+akp
k, b = b0+b1p+ · · ·+bkp

k, 0 ≤ aj, bj ≤
p−1, and ak+bk > 0. Let Sa =

∑k

j=0 aj, Sb =
∑k

j=0 bj. Let cj, 0 ≤ cj ≤ p−1,

and εj = 0 or 1, be defined as follows:

a0 + b0 = ε0p + c0,

ε0 + a1 + b1 = ε1p + c1,

ε1 + a2 + b2 = ε2p + c2,
...
εk−1 + ak + bk = εkp + ck.

Multiplying all these equalities successively by 1, p, p2, . . . and adding
them:

a + b + ε0p + ε1p
2 + . . . + εk−1p

k = ε0p + ε1p
2 + . . . + εk−1p

k + εkp
k+1

+c0 + c1p + · · · + ckp
k .

We deduce that a + b = c0 + c1p + · · · + ckp
k + εkp

k+1. By adding all
the equalities above, we obtain similarly:

Sa + Sb + (ε0 + ε1 + · · · + εk−1) = (ε0 + ε1 + · · · + εk)p + Sa+b − εk.
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Upon using Legendre’s result from above,

(p − 1)m = (a + b) − Sa+b − a + Sa − b + Sb = (p − 1)(ε0 + ε1 + · · ·+ εk),

which gives the result.
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Chapter 9
Diophantine Equations

9.1 Miscellaneous Diophantine equations

592 Example Find a four-digit number which is a perfect square such
that its first two digits are equal to each other and its last two digits
are equal to each other.

593 Example Find all integral solutions of the equation

x∑

k=1

k! = y2.

594 Example Find all integral solutions of the equation

x∑

k=1

k! = yz.

595 Example (USAMO 1985) Determine whether there are any posi-
tive integral solutions to the simultaneous equations

x2
1 + x2

2 + · · · + x2
1985 = y3,

x3
1 + x3

2 + · · · + x3
1985 = z2

with distinct integers x1, x2, . . . , x1985.

165
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596 Example Show that the Diophantine equation

1

a1

+
1

a2

+ . . . +
1

an−1

+
1

an

+
1

a1a2 · · ·an

has at least one solution for every n ∈ N.

597 Example (AIME 1987) Find the largest possible value of k for which
311 is expressible as the sum of k consecutive positive integers.

598 Example (AIME 1987) Let M be the smallest positive integer whose
cube is of the form n + r, where n ∈ N, 0 < r < 1/1000. Find n.

599 Example Determine two-parameter solutions for the “almost” Fer-
mat Diophantine equations

xn−1 + yn−1 = zn,

xn+1 + yn+1 = zn,

xn+1 + yn−1 = zn.

600 Example (AIME 1984) What is the largest even integer which can-
not be written as the sum of two odd composite numbers?

601 Example Prove that are infinitely many nonnegative integers n

which cannot be written as n = x2 + y3 + z6 for nonnegative integers
x, y, z.

602 Example Find the integral solutions of

x2 + x = y4 + y3 + y2 + y.

603 Example Show that there are infinitely many integers x, y such
that

3x2 − 7y2 = −1.

Ad Pleniorem Scientiam
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604 APS 1. Prove that

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab − bc − ca).

2. Find integers a, b, c such that 1987 = a3 + b3 + c3 − 3abc.

3. Find polynomials P, Q, R in x, y, z such that

P3 + Q3 + R3 − 3PQR = (x3 + y3 + z3 − 3xyz)2

4. Can you find integers a, b, c with 19872 = a3 + b3 + c3 − 3abc?

605 APS Find all integers n such that n4 + n + 7 is a perfect square.

606 APS Prove that 19911991 is not the sum of two perfect squares.

607 APS Find infinitely many integers x > 1, y > 1, z > 1 such that

x!y! = z!.

608 APS Find all positive integers with

mn − nm = 1.

609 APS Find all integers with

x4 − 2y2 = 1.

610 APS Prove that for every positive integer k there exists a se-
quence of k consecutive positive integers none of which can be
represented as the sum of two squares.
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Chapter 10
Miscellaneous Examples and
Problems

611 Example Prove that
∑

p

p prime

1

p

diverges.

Solution: Let Fx denote the family consisting of the integer 1 and
the positive integers n all whose prime factors are less than or equal
to x. By the Unique Factorisation Theorem

∏

p≤x

p prime

(

1 +
1

p
+

1

p2
+ · · ·

)

=
∑

n∈Fx

1

n
. (10.1)

Now,
∑

n∈Fx

1

n
>

∑

n≤x

1

n
.

As the harmonic series diverges, the product on the sinistral side of
2.3.3 diverges as x → ∞. But

∏

p≤x

p prime

(

1 +
1

p
+

1

p2
+ · · ·

)

=
∑

p≤x

p prime

1

p
+ O(1).
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This finishes the proof.

612 Example Prove that for each positive integer k there exist in-
finitely many even positive integers which can be written in more
than k ways as the sum of two odd primes.

Solution: Let ak denote the number of ways in which 2k can be
written as the sum of two odd primes. Assume that ak ≤ C ∀k for
some positive constant C. Then









∑

p>2
p prime

xp









2

=

∞∑

k=2

akx
2k ≤ C

x4

1 − x2
.

This yields ∑

p>2
p prime

xp−1 ≤
√

C
x√

1 − x2
.

Integrating term by term,

∑

p>2
p prime

1

p
≤

√
C

∫1

0

x√
1 − x2

dx =
√

C.

But the leftmost series is divergent, and we obtain a contradiction.

10.1 Miscellaneous Examples

613 Example (IMO 1976) Determine, with proof, the largest number
which is the product of positive integers whose sum is 1976.

Solution: Suppose that

a1 + a2 + · · · + an = 1976;

we want to maximise
n∏

k=1

ak. We shall replace some of the ak so

that the product is enlarged, but the sum remains the same. By the
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arithmetic mean-geometric mean inequality

(

n∏

k=1

ak

)1/n

≤ a1 + a2 + · · · + an

n
,

with equality if and only if a1 = a2 = · · · = an. Thus we want to make
the ak as equal as possible.

If we have an ak ≥ 4, we replace it by two numbers 2, ak−2. Then
the sum is not affected, but 2(ak − 2) ≥ ak, since we are assuming
ak ≥ 4. Therefore, in order to maximise the product, we must take
ak = 2 or ak = 3. We must take as many 2’s and 3’s as possible.

Now, 2 + 2 + 2 = 3 + 3, but 23 < 32, thus we should take no more
than two 2’s. Since 1976 = 3 · 658 + 2, the largest possible product is
2 · 3658.

614 Example (USAMO 1983) Consider an open interval of length 1/n

on the real line, where n is a positive integer. Prove that the number
of irreducible fractions a/b, 1 ≤ b ≤ n, contained in the given interval
is at most (n + 1)/2.

Solution: Divide the rational numbers in (x, x + 1/n) into two sets:

{
sk

tk

}, k = 1, 2, . . . , r, with denominators 1 ≤ tk ≤ n/2 and those uk/vk, k =

1, 2, . . . , s with denominators n/2 < vk ≤ n, where all these fractions
are in reduced form. Now, for every tk there are integers ck such
that n/2 ≤ cktk ≤ n. Define us+k = cksk, vs+k = cktk, yk+r = uk+r/vk+r.
No two of the yl, 1 ≤ l ≤ r + s are equal, for otherwise yj = yk would
yield

|uk/vk − ui/vi| ≥ 1/vi ≥ 1/n,

which contradicts that the open interval is of length 1/n. Hence the
number of distinct rationals is r + s ≤ n − [n/2] ≤ (n + 1)/2.

615 APS (IMO 1977) In a finite sequence of real numbers, the sum of
any seven successive terms is negative, and the sum of any eleven
successive terms is positive. Determine the maximum number of
terms in the sequence.
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616 APS Determine an infinite series of terms such that each term
of the series is a perfect square and the sum of the series at any
point is also a perfect square.

617 APS Prove that any positive rational integer can be expressed
as a finite sum of distinct terms of the harmonic series, 1, 1/2, 1/3, . . ..

618 Example (USAMO 1983) Consider an open interval of length 1/n

on the real line, where n is a positive integer. Prove that the number
of irreducible fractions a/b, 1 ≤ b ≤ n, contained in the given interval
is at most (n + 1)/2.

Solution: Suppose to the contrary that we have at least [(n + 1)/2] +

1 = a fractions. Let sk, tk, 1 ≤ k ≤ a be the set of numerators and
denominators. The set of denominators is a subset of

{1, 2, . . . , 2(a − 1)}.

By the Pigeonhole Principle, ti|tk for some i, k, say tk = mti. But then

|sk/tk − si/ti| = |msi − sk|/tk ≥ 1/n,

contradicting the hypothesis that the open interval is of length 1/n.
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Polynomial Congruences

619 Example (Wostenholme’s Theorem) Let p > 3 be a prime. If

a

b
= 1 +

1

2
+

1

3
+ · · · + 1

p − 1
,

then p2|a.

620 Example Let

Qr,s =
(rs)!

r!s!
.

Show that Qr,ps ≡ Qr,s mod p, where p is a prime

Solution: As

Qr,s =

r∏

j=1

(

js − 1

s − 1

)

and

Qr,ps =

r∏

j=1

(

jps − 1

ps − 1

)

,

it follows from

(1 + x)jps−1 ≡ (1 + xp)js−1(1 + x)p−1 mod p

that
(

jps − 1

ps − 1

)

≡
(

js − 1

s − 1

)

mod p,
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whence the result.

621 Example Prove that the number of odd binomial coefficients in
any row of Pascal’s Triangle is a power of 2.

622 Example Prove that the coefficients of a binomial expansion are
odd if and only if n is of the form 2k − 1.

Ad Pleniorem Scientiam

623 APS Let the numbers ci be defined by the power series identity

(1 + x + x2 + · · · + xp−1)/(1 − x)p−1 := 1 + c1x + c2x
2 + · · · .

Show that ci ≡ 0 mod p for all i ≥ 1.

624 APS Let p be a prime. Show that
(

p − 1

k

)

≡ (−1)k mod p

for all 0 ≤ k ≤ p − 1.

625 APS (PUTNAM 1977) Let p be a prime and let a ≥ b > 0 be
integers. Prove that

(

pa

pb

)

≡
(

a

b

)

mod p.

626 APS Demonstrate that for a prime p and k ∈ N,
(

pk

a

)

≡ 0 mod p,

for 0 < a < pk.

627 APS Let p be a prime and let k, a ∈ N, 0 ≤ a ≤ pk − 1. Demon-
strate that

(

pk − 1

a

)

≡ (−1)a mod p.
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Quadratic Reciprocity
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Continued Fractions

177


	Preface
	Preliminaries
	Introduction
	Well-Ordering
	Mathematical Induction
	Binomial Coefficients
	Viète's Formulæ
	Fibonacci Numbers
	Pigeonhole Principle

	Divisibility
	Divisibility
	Division Algorithm
	Some Algebraic Identities

	Congruences. Zn
	Congruences
	Divisibility Tests
	Complete Residues

	Unique Factorisation
	GCD and LCM
	Primes
	Fundamental Theorem of Arithmetic

	Linear Diophantine Equations
	Euclidean Algorithm
	Linear Congruences
	A theorem of Frobenius
	Chinese Remainder Theorem

	Number-Theoretic Functions
	Greatest Integer Function
	De Polignac's Formula
	Complementary Sequences
	Arithmetic Functions
	Euler's Function. Reduced Residues
	Multiplication in Zn
	Möbius Function

	More on Congruences
	Theorems of Fermat and Wilson
	Euler's Theorem

	Scales of Notation
	The Decimal Scale
	Non-decimal Scales
	A theorem of Kummer

	Diophantine Equations
	Miscellaneous Diophantine equations

	Miscellaneous Examples and Problems
	Miscellaneous Examples

	Polynomial Congruences
	Quadratic Reciprocity
	Continued Fractions

