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Series Preface

Mathematics is playing an ever more important role in the physical and biological
sciences, provoking a blurring of boundaries between scientific disciplines and a
resurgence of interest in the modern as well as the classical techniques of applied
mathematics. This renewal of interest, both in research and teaching, has led to
the establishment of the series: Texts in Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical and
symbolic computer systems, dynamical systems, and chaos, mix with and rein-
force the traditional methods of applied mathematics. Thus, the purpose of this
textbook series is to meet the current and future needs of these advances and en-
courage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and
beginning graduate courses, and will complement the Applied Mathematical Sci-
ences (AMS) series, which will focus on advanced textbooks and research level
monographs.



Preface

Numerical mathematics is the branch of mathematics that proposes, de-
velops, analyzes and applies methods from scientific computing to several
fields including analysis, linear algebra, geometry, approximation theory,
functional equations, optimization and differential equations. Other disci-
plines such as physics, the natural and biological sciences, engineering, and
economics and the financial sciences frequently give rise to problems that
need scientific computing for their solutions.

As such, numerical mathematics is the crossroad of several disciplines of
great relevance in modern applied sciences, and can become a crucial tool
for their qualitative and quantitative analysis. This role is also emphasized
by the continual development of computers and algorithms, which make it
possible nowadays, using scientific computing, to tackle problems of such
a large size that real-life phenomena can be simulated providing accurate
responses at affordable computational cost.

The corresponding spread of numerical software represents an enrichment
for the scientific community. However, the user has to make the correct
choice of the method (or the algorithm) which best suits the problem at
hand. As a matter of fact, no black-box methods or algorithms exist that
can effectively and accurately solve all kinds of problems.

One of the purposes of this book is to provide the mathematical foun-
dations of numerical methods, to analyze their basic theoretical proper-
ties (stability, accuracy, computational complexity), and demonstrate their
performances on examples and counterexamples which outline their pros
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and cons. This is done using the MATLAB® ! software environment. This
choice satisfies the two fundamental needs of user-friendliness and wide-
spread diffusion, making it available on virtually every computer.

Every chapter is supplied with examples, exercises and applications of
the discussed theory to the solution of real-life problems. The reader is
thus in the ideal condition for acquiring the theoretical knowledge that is
required to make the right choice among the numerical methodologies and
make use of the related computer programs.

This book is primarily addressed to undergraduate students, with partic-
ular focus on the degree courses in Engineering, Mathematics, Physics and
Computer Science. The attention which is paid to the applications and the
related development of software makes it valuable also for graduate stu-
dents, researchers and users of scientific computing in the most widespread
professional fields.

The content of the volume is organized into four parts and 13 chapters.

Part I comprises two chapters in which we review basic linear algebra and
introduce the general concepts of consistency, stability and convergence of
a numerical method as well as the basic elements of computer arithmetic.

Part II is on numerical linear algebra, and is devoted to the solution of
linear systems (Chapters 3 and 4) and eigenvalues and eigenvectors com-
putation (Chapter 5).

We continue with Part IIT where we face several issues about functions
and their approximation. Specifically, we are interested in the solution of
nonlinear equations (Chapter 6), solution of nonlinear systems and opti-
mization problems (Chapter 7), polynomial approximation (Chapter 8) and
numerical integration (Chapter 9).

Part IV, which is the more demanding as a mathematical background, is
concerned with approximation, integration and transforms based on orthog-
onal polynomials (Chapter 10), solution of initial value problems (Chap-
ter 11), boundary value problems (Chapter 12) and initial-boundary value
problems for parabolic and hyperbolic equations (Chapter 13).

Part I provides the indispensable background. Each of the remaining
Parts has a size and a content that make it well suited for a semester
course.

A guideline index to the use of the numerous MATLAB Programs de-
veloped in the book is reported at the end of the volume. These programs
are also available at the web site address:

http://wwwl.mate.polimi.it/“calnum/programs.html

For the reader’s ease, any code is accompanied by a brief description of
its input/output parameters.

We express our thanks to the staff at Springer-Verlag New York for their
expert guidance and assistance with editorial aspects, as well as to Dr.

IMATLAB is a registered trademark of The MathWorks, Inc.
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Martin Peters from Springer-Verlag Heidelberg and Dr. Francesca Bonadei
from Springer-Italia for their advice and friendly collaboration all along
this project.

We gratefully thank Professors L. Gastaldi and A. Valli for their useful
comments on Chapters 12 and 13.

We also wish to express our gratitude to our families for their forbearance
and understanding, and dedicate this book to them.

Lausanne, Switzerland Alfio Quarteroni
Milan, Italy Riccardo Sacco
Milan, Italy Fausto Saleri

January 2000
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1

Foundations of Matrix Analysis

In this chapter we recall the basic elements of linear algebra which will be
employed in the remainder of the text. For most of the proofs as well as
for the details, the reader is referred to [Bra75], [Nob69], [Hal58]. Further
results on eigenvalues can be found in [Hou75] and [Wil65].

1.1 Vector Spaces

Definition 1.1 A vector space over the numeric field K (K = Ror K = C)
is a nonempty set V', whose elements are called vectors and in which two
operations are defined, called addition and scalar multiplication, that enjoy
the following properties:

1. addition is commutative and associative;

2. there exists an element 0 € V (the zero vector or null vector) such
that v+ 0 = v for each v € V;

3.0-v=0,1-v=v, where 0 and 1 are respectively the zero and the
unity of K;

4. for each element v € V there exists its opposite, —v, in V such that
v+ (—v) =0;
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5. the following distributive properties hold

Vae K, Vv,w eV, a(v+w) =av+aw,
Va, € K, VW eV, (a+ p)v=av+[v;

6. the following associative property holds

Va,B € K, Yv eV, (af)v = a(Bv).

Example 1.1 Remarkable instances of vector spaces are:

-V =R" (respectively V = C"): the set of the n-tuples of real (respectively
complex) numbers, n > 1;

- V = P,: the set of polynomials p,(z) = >7_, axz" with real (or complex)
coefficients ax having degree less than or equal to n, n > 0;

-V = CP([a,b]): the set of real (or complex)-valued functions which are con-
tinuous on [a,b] up to their p-th derivative, 0 < p < oco. .

Definition 1.2 We say that a nonempty part W of V' is a vector subspace
of V iff W is a vector space over K. |

Example 1.2 The vector space P, is a vector subspace of C*°(R), which is the
space of infinite continuously differentiable functions on the real line. A trivial
subspace of any vector space is the one containing only the zero vector. °

In particular, the set W of the linear combinations of a system of p vectors
of V, {vy,...,v,}, is a vector subspace of V, called the generated subspace
or span of the vector system, and is denoted by

W =span{vy,...,v,}
={v=avi+...+ v, witho, €K, i=1,...,p}.

The system {v1,...,v,} is called a system of generators for W.
If Wy,..., W, are vector subspaces of V', then the set

S={w: w=vi+...+v, withv,e W;, i=1,... ,m}

is also a vector subspace of V. We say that S is the direct sum of the
subspaces W; if any element s € S admits a unique representation of the
foorms=vy+...+ v, withv; € W, and ¢ =1,... ,m. In such a case, we
shall write S =W & ... W,,.



1.2 Matrices 3

Definition 1.3 A system of vectors {vy,...,v,,} of a vector space V is
called linearly independent if the relation

a1vy +asve + ...+ oy, =0

with aq, s, ..., a,, € K implies that ay = as = ... = a,, = 0. Otherwise,
the system will be called linearly dependent. |

We call a basis of V' any system of linearly independent generators of V.
If {u,...,u,} is a basis of V, the expression v = vju; + ... + v,u, is
called the decomposition of v with respect to the basis and the scalars
v1,...,0, € K are the components of v with respect to the given basis.
Moreover, the following property holds.

Property 1.1 Let V' be a vector space which admits a basis of n vectors.
Then every system of linearly independent vectors of V' has at most n el-
ements and any other basis of V' has n elements. The number n is called
the dimension of V' and we write dim(V') = n.

If, instead, for any n there always exist n linearly independent vectors of
V', the vector space is called infinite dimensional.

Example 1.3 For any integer p the space C?([a,b]) is infinite dimensional. The
spaces R™ and C" have dimension equal to n. The usual basis for R" is the set of

unit vectors {e1,... ,en} where (e;); = 6;; for 4,5 = 1,...n, where §;; denotes
the Kronecker symbol equal to 0 if 4 # j and 1 if 4+ = j. This choice is of course
not the only one that is possible (see Exercise 2). °

1.2 Matrices

Let m and n be two positive integers. We call a matriz having m rows and
n columns, or a matrix m x n, or a matrix (m,n), with elements in K, a
set of mn scalars a;; € K, withi =1,... ,m and j = 1,...n, represented
in the following rectangular array

a1 a2 . A1n
a1 as2 . a92n

A=| O (1.1)
Am1 Am2 . Amn

When K = R or K = C we shall respectively write A € R™*™ or A €
C™*™ to explicitly outline the numerical fields which the elements of A
belong to. Capital letters will be used to denote the matrices, while the
lower case letters corresponding to those upper case letters will denote the
matrix entries.
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We shall abbreviate (1.1) as A = (a;;) with¢=1,... ,mand j =1,...n.
The index ¢ is called row index, while j is the column index. The set
(@1, @iz, . .., Qip) is called the i-th row of A; likewise, (a1j,a2;,... ,amj)
is the j-th column of A.

If n = m the matrix is called squared or having order n and the set of
the entries (a1, a2, ... ,any) is called its main diagonal.

A matrix having one row or one column is called a row vector or column
vector respectively. Unless otherwise specified, we shall always assume that
a vector is a column vector. In the case n = m = 1, the matrix will simply
denote a scalar of K.

Sometimes it turns out to be useful to distinguish within a matrix the set
made up by specified rows and columns. This prompts us to introduce the
following definition.

Definition 1.4 Let Abeamatrix mxn. Let 1 <41 <ix < ... <1 <m
and 1 < j; < jas < ... < j; <n two sets of contiguous indexes. The matrix
S(k x 1) of entries sp, = a;,;, with p = 1,...,k, ¢ =1,...,1 is called a
submatriz of A. If k =1 and i,, = j,. for r = 1,...  k, S is called a principal
submatrixz of A. [ |

Definition 1.5 A matrix A(m x n) is called block partitioned or said to
be partitioned into submatrices if

A A .o Ay
Aoi A ... Ay
A= . : . ;
A Ape ... Ay
where A;; are submatrices of A. |

Among the possible partitions of A, we recall in particular the partition by
columns

A= (ay, ag, ... ,a,),

a; being the i-th column vector of A. In a similar way the partition by rows
of A can be defined. To fix the notations, if A is a matrix m x n, we shall
denote by

A(iy sig, gu: jo) = (i) 01 <i<iig, j1 <J<Jo

the submatrix of A of size (ia — i1 + 1) X (jo2 — j1 + 1) that lies between the
rows 41 and io and the columns j; and j,. Likewise, if v is a vector of size
n, we shall denote by v(i; : i2) the vector of size i — i; + 1 made up by
the i1-th to the is-th components of v.

These notations are convenient in view of programming the algorithms
that will be presented throughout the volume in the MATLAB language.
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1.3  Operations with Matrices

Let A = (a;;) and B = (b;;) be two matrices m x n over K. We say that
A is equal to B, if a;; = by for i = 1,... ,m, j = 1,... ,n. Moreover, we
define the following operations:

- matriz sum: the matrix sum is the matrix A+B = (a;;+b;;). The neutral
element in a matrix sum is the null matriz, still denoted by 0 and
made up only by null entries;

- matriz multiplication by a scalar: the multiplication of A by A\ € K, is a
matrix AA = (Aa;;);

- matriz product: the product of two matrices A and B of sizes (m,p)
and (p,n) respectively, is a matrix C(m,n) whose entries are ¢;; =

P
g by, fori=1,... ,m,j=1,... ,n.
k=1

The matrix product is associative and distributive with respect to the ma-
trix sum, but it is not in general commutative. The square matrices for
which the property AB = BA holds, will be called commutative.

In the case of square matrices, the neutral element in the matrix product
is a square matrix of order n called the unit matrix of order n or, more
frequently, the identity matriz given by I, = (6;;). The identity matrix
is, by definition, the only matrix n x n such that Al, = I,A = A for all
square matrices A. In the following we shall omit the subscript n unless it
is strictly necessary. The identity matrix is a special instance of a diagonal
matriz of order n, that is, a square matrix of the type D = (d;;6;;). We will
use in the following the notation D = diag(dy1,dag, ... ,dnn)-

Finally, if A is a square matrix of order n and p is an integer, we define AP
as the product of A with itself iterated p times. We let A? = 1.

Let us now address the so-called elementary row operations that can be
performed on a matrix. They consist of:

- multiplying the i-th row of a matrix by a scalar «; this operation is
equivalent to pre-multiplying A by the matrix D = diag(1,...,1,a,
1,...,1), where a occupies the i-th position;

- exchanging the i-th and j-th rows of a matrix; this can be done by pre-
multiplying A by the matrix P(»7) of elements

1 ifr=s=1,...,i—=1i+1,...,7—1,j+1,...n,
pli) =0 1 ifr=js=iorr=i,5=j, (1.2)

0 otherwise,
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where I, denotes the identity matrix of order r = j —¢ — 1 if 5 >
i (henceforth, matrices with size equal to zero will correspond to
the empty set). Matrices like (1.2) are called elementary permutation
matrices. The product of elementary permutation matrices is called
a permutation matriz, and it performs the row exchanges associated
with each elementary permutation matrix. In practice, a permutation
matrix is a reordering by rows of the identity matrix;

- adding « times the j-th row of a matrix to its i-th row. This operation
can also be performed by pre-multiplying A by the matrix I + NG ),
where Ng ) is a matrix having null entries except the one in position
1,7 whose value is a.

1.3.1 Inverse of a Matriz

Definition 1.6 A square matrix A of order n is called invertible (or regular
or nonsingular) if there exists a square matrix B of order n such that
A B =B A =1. Bis called the inverse matriz of A and is denoted by A~!.
A matrix which is not invertible is called singular. |

If A is invertible its inverse is also invertible, with (A=1)~! = A. Moreover,
if A and B are two invertible matrices of order n, their product AB is also
invertible, with (A B)~! = B7'A~!. The following property holds.

Property 1.2 A square matriz is invertible iff its column vectors are lin-
early independent.

Definition 1.7 We call the transpose of a matrix A€ R™*" the matrix
n x m, denoted by AT, that is obtained by exchanging the rows of A with
the columns of A. |

Clearly, (AT)T = A, (A +B)T = AT + BT, (AB)T = BTAT and (aA)T =
aAT Yo € R. If A is invertible, then also (AT)™! = (A=1)T = A-T,

Definition 1.8 Let A € C™*™; the matrix B = A# € C"*™ is called the
conjugate transpose (or adjoint) of A if b;; = a;;, where a;; is the complex
conjugate of aj;. [ |

In analogy with the case of the real matrices, it turns out that (A+B)¥ =
A+ BH (AB)? = BHAH and (aA)H = aA® Va € C.

Definition 1.9 A matrix A € R"*" is called symmetric if A = AT, while
it is antisymmetric if A = —AT. Finally, it is called orthogonal if ATA =
AAT =1, that is A=! = AT, |

Permutation matrices are orthogonal and the same is true for their prod-
ucts.
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Definition 1.10 A matrix A € C"*" is called hermitian or self-adjoint if
AT = A, that is, if A = A, while it is called unitary if AHA = AA" =1
Finally, if AA”T = A# A, A is called normal. |

As a consequence, a unitary matrix is one such that A~ = AH
Of course, a unitary matrix is also normal, but it is not in general her-
mitian. For instance, the matrix of the Example 1.4 is unitary, although
not symmetric (if s # 0). We finally notice that the diagonal entries of an
hermitian matrix must necessarily be real (see also Exercise 5).

1.3.2  Matrices and Linear Mappings

Definition 1.11 A linear map from C™ into C™ is a function f : C" —
C™ such that f(ax+ By) = af(x) + 8f(y), Vo, 8 € K and Vx,y € C". B

The following result links matrices and linear maps.

Property 1.3 Let f : C* — C™ be a linear map. Then, there exists a
unique matric Ay € C™*" such that

f(x)=Asx vx € C". (1.3)

Conversely, if Ay € C™*™ then the function defined in (1.3) is a linear
map from C" into C™.

Example 1.4 An important example of a linear map is the counterclockwise
rotation by an angle ¢ in the plane (z1,z2). The matrix associated with such a
map is given by

GW) = { _CS z } , ¢ = cos(¥), s =sin(¥)
and it is called a rotation matriz. °

1.3.3  Operations with Block-Partitioned Matrices

All the operations that have been previously introduced can be extended
to the case of a block-partitioned matrix A, provided that the size of each
single block is such that any single matrix operation is well-defined.
Indeed, the following result can be shown (see, e.g., [Ste73]).

Property 1.4 Let A and B be the block matrices

A11 - All B1s R Bi,
A=| ot [ B=| 0
Akl . Akl Bni ... B

where A;; and B;j are matrices (k; x I;) and (m; x nj). Then we have
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1.
M oo My AT ... AY
A = : , AEC; AT = Lo,
My o0 My AT ... Al

2. ifk=m,l=n, my=k; and nj =1, then

Aii+Bu ... Ay+By
A+B= |
Api+Bri ... A +Bu

3. ifl=m, l; = m; and k; = n;, then, letting Cy; = ZAisst’

s=1

AB =

1.4 Trace and Determinant of a Matrix

Let us consider a square matrix A of order n. The trace of a matrix is the
n

sum of the diagonal entries of A, that is tr(A) = Za”'
i=1

1=
We call the determinant of A the scalar defined through the following for-
mula

det(A) = Z sign(m)a1q, 27y - - - Anr, s

TeP
where P = {7 = (m1,... ,m,)"} is the set of the n! vectors that are ob-
tained by permuting the index vector i = (1,... ,n)T and sign(m) equal to

1 (respectively, —1) if an even (respectively, odd) number of exchanges is
needed to obtain 7 from i.
The following properties hold

det(A) = det(AT), det(AB) = det(A)det(B), det(A~!) =1/det(A),

det(AH) = det(A), det(aA)=a"det(A), Va € K.

Moreover, if two rows or columns of a matrix coincide, the determinant
vanishes, while exchanging two rows (or two columns) produces a change
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of sign in the determinant. Of course, the determinant of a diagonal matrix
is the product of the diagonal entries.

Denoting by A;; the matrix of order n — 1 obtained from A by elimi-
nating the ¢-th row and the j-th column, we call the complementary minor
associated with the entry a;; the determinant of the matrix A;;. We call
the k-th principal (dominating) minor of A, dj, the determinant of the
principal submatrix of order k, Ay = A(1 : k,1 : k). If we denote by
Ay = (—l)i‘*jdet(Aij) the cofactor of the entry a;j, the actual computa-
tion of the determinant of A can be performed using the following recursive
relation

ail ifn= ].,

det(A) = { = (1.4)
ZAijai]‘, forn > 1,

j=1

which is known as the Laplace rule. If A is a square invertible matrix of
order n, then

1
det(A)
where C is the matrix having entries Aj;, 4,5 =1,... ,n.

As a consequence, a square matrix is invertible iff its determinant is non-
vanishing. In the case of nonsingular diagonal matrices the inverse is still
a diagonal matrix having entries given by the reciprocals of the diagonal
entries of the matrix.

Every orthogonal matriz is invertible, its inverse is given by A7, moreover
det(A) = £1.

1.5 Rank and Kernel of a Matrix

Let A be a rectangular matrix m x n. We call the determinant of order
q (with ¢ > 1) extracted from matriz A, the determinant of any square
matrix of order ¢ obtained from A by eliminating m — ¢ rows and n — ¢
columns.

Definition 1.12 The rank of A (denoted by rank(A)) is the maximum
order of the nonvanishing determinants extracted from A. A matrix has
complete or full rank if rank(A) = min(m,n). |

Notice that the rank of A represents the maximum number of linearly
independent column vectors of A that is, the dimension of the range of A,
defined as

range(A) ={y e R": y = Ax for x € R"}. (1.5)
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Rigorously speaking, one should distinguish between the column rank of A
and the row rank of A, the latter being the maximum number of linearly
independent row vectors of A. Nevertheless, it can be shown that the row
rank and column rank do actually coincide.

The kernel of A is defined as the subspace

ker(A) = {x e R": Ax=0}.
The following relations hold
1. rank(A) =rank(A") (if A € C™*" rank(A) = rank(A"))
2. rank(A) + dim(ker(A)) = n.

In general, dim(ker(A)) # dim(ker(AT)). If A is a nonsingular square ma-
trix, then rank(A) = n and dim(ker(A)) = 0.

Example 1.5 Let
1 1 0
r=ln 4]
Then, rank(A) = 2, dim(ker(A)) = 1 and dim(ker(A”)) = 0. °

We finally notice that for a matrix A € C™"*" the following properties are
equivalent:

1. A is nonsingular;
2. det(A) # 0;

3. ker(A) = {0};

4. rank(A) = n;

5. A has linearly independent rows and columns.

1.6 Special Matrices

1.6.1 Block Diagonal Matrices

These are matrices of the form D = diag(Dq, ... ,D,,), where D, are square
matrices with ¢ = 1,... ,n. Clearly, each single diagonal block can be of
different size. We shall say that a block diagonal matrix has size n if n
is the number of its diagonal blocks. The determinant of a block diagonal
matrix is given by the product of the determinants of the single diagonal
blocks.



1.6 Special Matrices 11

1.6.2 Trapezoidal and Triangular Matrices

A matrix A(m x n) is called upper trapezoidal if a;; = 0 for i > j, while it
is lower trapezoidal if a;; = 0 for i < j. The name is due to the fact that,
in the case of upper trapezoidal matrices, with m < n, the nonzero entries
of the matrix form a trapezoid.

A triangular matriz is a square trapezoidal matrix of order n of the form

lll 0 ‘e 0 uip w12 ... Uin

121 122 cen 0 0 U22 ... U2p,
L=1] . . : or U=

lnl l'n,2 RN lnn 0 0 N Unn

The matrix L is called lower triangular while U is upper triangular.
Let us recall some algebraic properties of triangular matrices that are easy
to check.

The determinant of a triangular matrix is the product of the diagonal
entries;

the inverse of a lower (respectively, upper) triangular matrix is still lower
(respectively, upper) triangular;

the product of two lower triangular (respectively, upper trapezoidal) ma-
trices is still lower triangular (respectively, upper trapezodial);

if we call unit triangular matriz a triangular matrix that has diagonal
entries equal to 1, then, the product of lower (respectively, upper) unit
triangular matrices is still lower (respectively, upper) unit triangular.

1.6.3 Banded Matrices

The matrices introduced in the previous section are a special instance of
banded matrices. Indeed, we say that a matrix A € R™*" (or in C™*"™)
has lower band p if a;; = 0 when ¢ > j + p and upper band q if a;; = 0
when j > i4q. Diagonal matrices are banded matrices for which p = ¢ = 0,
while trapezoidal matrices have p = m—1, ¢ = 0 (lower trapezoidal), p = 0,
g =mn —1 (upper trapezoidal).

Other banded matrices of relevant interest are the tridiagonal matrices
for which p = ¢ = 1 and the upper bidiagonal (p = 0, ¢ = 1) or lower bidiag-
onal (p =1, ¢ = 0). In the following, tridiag,, (b, d, ¢) will denote the triadi-
agonal matrix of size n having respectively on the lower and upper principal
diagonals the vectors b = (by,... ,b,_1)T and ¢ = (¢1,... ,¢,1)T, and on
the principal diagonal the vector d = (dy, ... ,d,)T. If b; = 3, d; = § and
c¢; = 7, B, 6 and v being given constants, the matrix will be denoted by
tridiag,, (8, 6, ).
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We also mention the so-called lower Hessenberg matrices (p = m — 1,
q = 1) and upper Hessenberg matrices (p = 1, ¢ = n — 1) that have the
following structure

hi1 hio 0 hi1 hiz ... hin
h h han,
H= | o fe oH- | . ;
. hm—ln O
hml N e hmn hmn—l hmn

Matrices of similar shape can obviously be set up in the block-like format.

1.7 Eigenvalues and Eigenvectors

Let A be a square matrix of order n with real or complex entries; the number
A € C is called an eigenvalue of A if there exists a nonnull vector x € C™
such that Ax = Ax. The vector x is the eigenvector associated with the
eigenvalue A and the set of the eigenvalues of A is called the spectrum of A,
denoted by o(A). We say that x and y are respectively a right eigenvector
and a left eigenvector of A, associated with the eigenvalue A, if

Ax = )Xx, yHPA =)y".

The eigenvalue A corresponding to the eigenvector x can be determined by
computing the Rayleigh quotient A = x Ax/(x"x). The number \ is the
solution of the characteristic equation

py(A) =det(A — AI) =0,

where p, () is the characteristic polynomial. Since this latter is a polyno-
mial of degree n with respect to A, there certainly exist n eigenvalues of A
not necessarily distinct. The following properties can be proved

n n

det(A) = JTai, tr(A) =D A, (1.6)

i=1 i=1

and since det(AT — AI) = det((A — AI)T) = det(A — AI) one concludes that
o(A) = o(AT) and, in an analogous way, that o(A") = o(A).

From the first relation in (1.6) it can be concluded that a matrix is
singular iff it has at least one null eigenvalue, since pa(0) = det(A) =
e\

Secondly, if A has real entries, p, (A) turns out to be a real-coefficient
polynomial so that complex eigenvalues of A shall necessarily occur in com-
plex conjugate pairs.
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Finally, due to the Cayley-Hamilton Theorem if p, (A) is the charac-
teristic polynomial of A, then p, (A) = 0, where p, (A) denotes a matrix
polynomial (for the proof see, e.g., [Axe94], p. 51).

The maximum module of the eigenvalues of A is called the spectral radius
of A and is denoted by

A) = A 1.7
p(A) Ag%)l\ (1.7)

Characterizing the eigenvalues of a matrix as the roots of a polynomial
implies in particular that A is an eigenvalue of A € C™"*™ iff ) is an eigen-
value of A, An immediate consequence is that p(A) = p(Af). Moreover,
VA € C"™" Va € C, p(aA) = |a|p(A), and p(AF) = [p(A)]* VE € N.

Finally, assume that A is a block triangular matrix

Ay A oo Ay
0 A22 e Agk

A= . , .
0 . 0 A

As p(A) = pya,, (MPay, (A) -+ Py, (A), the spectrum of A is given by the
union of the spectra of each single diagonal block. As a consequence, if A
is triangular, the eigenvalues of A are its diagonal entries.

For each eigenvalue \ of a matrix A the set of the eigenvectors associated
with A, together with the null vector, identifies a subspace of C™ which is
called the eigenspace associated with A and corresponds by definition to
ker(A-AI). The dimension of the eigenspace is

dim [ker(A — AI)] = n — rank(A — AI),

and is called geometric multiplicity of the eigenvalue A. It can never be
greater than the algebraic multiplicity of A, which is the multiplicity of
A as a root of the characteristic polynomial. Eigenvalues having geometric
multiplicity strictly less than the algebraic one are called defective. A matrix
having at least one defective eigenvalue is called defective.

The eigenspace associated with an eigenvalue of a matrix A is invariant
with respect to A in the sense of the following definition.

Definition 1.13 A subspace S in C" is called invariant with respect to a
square matrix A if AS C S, where AS is the transformed of S through A.
|
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1.8 Similarity Transformations

Definition 1.14 Let C be a square nonsingular matrix having the same
order as the matrix A. We say that the matrices A and C~'AC are similar,
and the transformation from A to C™'AC is called a similarity transfor-
mation. Moreover, we say that the two matrices are unitarily similar if C
is unitary. |

Two similar matrices share the same spectrum and the same characteris-
tic polynomial. Indeed, it is easy to check that if (A, x) is an eigenvalue-
eigenvector pair of A, (\,C~!x) is the same for the matrix C~'AC since

(CT'AC)C™Ix = C'Ax = AC 7 !x.

We notice in particular that the product matrices AB and BA, with A €
C™*™ and B € C™*"  are not similar but satisfy the following property
(see [Hac94], p.18, Theorem 2.4.6)

a(AB)\ {0} = o(BA)\ {0}

that is, AB and BA share the same spectrum apart from null eigenvalues
so that p(AB) = p(BA).

The use of similarity transformations aims at reducing the complexity
of the problem of evaluating the eigenvalues of a matrix. Indeed, if a given
matrix could be transformed into a similar matrix in diagonal or triangular
form, the computation of the eigenvalues would be immediate. The main
result in this direction is the following theorem (for the proof, see [Dem97],
Theorem 4.2).

Property 1.5 (Schur decomposition) Given A€ C"*™, there exists U
unitary such that

A bis ... b
L e 0 X ban, B
UAU=UHPAU= | . I )
0o ... 0 M\,

where \; are the eigenvalues of A.

It thus turns out that every matrix A is unitarily similar to an upper
triangular matrix. The matrices T and U are not necessarily unique [Hac94].
The Schur decomposition theorem gives rise to several important results;
among them, we recall:

1. every hermitian matrix is unitarily similar to a diagonal real ma-
trix, that is, when A is hermitian every Schur decomposition of A is
diagonal. In such an event, since

U'AU = A = diag(\g, ..., \n),
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it turns out that AU = UA, that is, Au; = \u; fori = 1,... ,n so
that the column vectors of U are the eigenvectors of A. Moreover,
since the eigenvectors are orthogonal two by two, it turns out that
an hermitian matrix has a system of orthonormal eigenvectors that
generates the whole space C". Finally, it can be shown that a matrix
A of order n is similar to a diagonal matrix D iff the eigenvectors of
A form a basis for C™ [Axe94];

2. a matrix A € C™*" is normal iff it is unitarily similar to a diagonal
matrix. As a consequence, a normal matrix A € C"*™ admits the
following spectral decomposition: A = UAUH = S Aiw;ull being
U unitary and A diagonal [SS90];

3. let A and B be two normal and commutative matrices; then, the
generic eigenvalue p; of A+B is given by the sum \; + §;, where
A and &; are the eigenvalues of A and B associated with the same
eigenvector.

There are, of course, nonsymmetric matrices that are similar to diagonal
matrices, but these are not unitarily similar (see, e.g., Exercise 7).

The Schur decomposition can be improved as follows (for the proof see,
e.g., [Str80], [God66]).

Property 1.6 (Canonical Jordan Form) Let A be any square matriz.
Then, there exists a nonsingular matrixz X which transforms A into a block
diagonal matriz J such that

XTAX = J = diag (Jp, (A1), Thy(A2), -5 T, (A1)

which is called canonical Jordan form, A; being the eigenvalues of A and
Ji(\) € C**F a Jordan block of the form J1(\) = X if k =1 and

A1 0 ... 0
0 X 1 :
N =1: - 1 ol for k> 1.
: D |
L0 ... ... 0 A

If an eigenvalue is defective, the size of the corresponding Jordan block
is greater than one. Therefore, the canonical Jordan form tells us that a
matrix can be diagonalized by a similarity transformation iff it is nonde-
fective. For this reason, the nondefective matrices are called diagonalizable.
In particular, normal matrices are diagonalizable.



16 1. Foundations of Matrix Analysis

Partitioning X by columns, X = (x1,...,X;,), it can be seen that the
k; vectors associated with the Jordan block Jy,()\;) satisfy the following
recursive relation

Ax) = N\ixg,

i—1
j=1

AXj:)\in+Xj—1, ]Zl—i-l,,l—l—f—k‘“ lfkiz#l

The vectors x; are called principal vectors or generalized eigenvectors of A.

Example 1.6 Let us consider the following matrix

7/4 3/4 -1/4 —-1/4 —-1/4 1/4
0 2 0 0 0 0
Al | U2 -2 520 12 —1/2 12
T o—12 —1/2 —1/2 5/2 0 1/2 1/2
~1/4 —1/4 —1/4 —1/4 11/4 1/4
—3/2 —1/2 -1/2 1/2 1/2 7/2
The Jordan canonical form of A and its associated matrix X are given by
2 1 0 0 0 O 1 0 0 0 0 1
0 2 0 0 0 O 01 0 0 0 1
j_loo0o3 100 x_ |00 1001
0O 0 0 3 1 0|’ 0 0 01 0 1
0 0 0 0 3 0 0 00 0 1 1
0O 0 0 0 0 2 1 1 1 1 1 1

Notice that two different Jordan blocks are related to the same eigenvalue (A =
2). It is easy to check property (1.8). Consider, for example, the Jordan block
associated with the eigenvalue A2 = 3; we have

Ax3=1[003003]"=3[001001]" = Xoxs,
Axs=[001304"=3[000101"+[001001]" = Xox4 + x3,
Axs; =[000134)"=3/000011"+[000101]" = Xaxs + xu.

1.9 The Singular Value Decomposition (SVD)

Any matrix can be reduced in diagonal form by a suitable pre and post-
multiplication by unitary matrices. Precisely, the following result holds.

Property 1.7 Let Ae C™*"™. There exist two unitary matrices Ue C™*™
and Ve C™"™™ such that

UHAV = ¥ = diag(oy, . .. e cmxn with p = min(m,n) (1.9)

1 0p)

and o1 > ... > 0, > 0. Formula (1.9) is called Singular Value Decompo-
sition or (SVD) of A and the numbers o; (or 0;(A)) are called singular
values of A.
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If A is a real-valued matrix, U and V will also be real-valued and in (1.9)
UT must be written instead of U¥. The following characterization of the
singular values holds

oi(A) = /N(AHA), i=1,....n. (1.10)

Indeed, from (1.9) it follows that A = UXV# A = VX U# 5o that, U and
V being unitary, AZYA = VE2VH | that is, \;(AHA) = \;(22) = (0:(A))2.
Since AAT and A A are hermitian matrices, the columns of U, called the
left singular vectors of A, turn out to be the eigenvectors of AAH (see
Section 1.8) and, therefore, they are not uniquely defined. The same holds
for the columns of V, which are the right singular vectors of A.

Relation (1.10) implies that if A € C™*™ is hermitian with eigenvalues given

by A1, A2,..., A, then the singular values of A coincide with the modules
of the eigenvalues of A. Indeed because AAY = A2 o, = \/\? = | )] for
i =1,...,n. As far as the rank is concerned, if

012 ...20,>0,41=...=0,=0,

then the rank of A is r, the kernel of A is the span of the column vectors
of V, {v,41,...,Vn}, and the range of A is the span of the column vectors
of U, {uy,...,u,}.

Definition 1.15 Suppose that A€ C™*™ has rank equal to r and that it
admits a SVD of the type UYAV = ¥. The matrix AT = VETU is called
the Moore-Penrose pseudo-inverse matrix, being

1 1
ET—diag(,...,,o,...,()). (1.11)

The matrix AT is also called the generalized inverse of A (see Exercise 13).
Indeed, if rank(A) = n < m, then AT = (ATA)7'AT while if n = m =
rank(A), AT = A1 For further properties of Af, see also Exercise 12.

1.10  Scalar Product and Norms in Vector Spaces

Very often, to quantify errors or measure distances one needs to compute
the magnitude of a vector or a matrix. For that purpose we introduce in
this section the concept of a vector norm and, in the following one, of a
matrix norm. We refer the reader to [Ste73], [SS90] and [Axe94] for the
proofs of the properties that are reported hereafter.
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Definition 1.16 A scalar product on a vector space V defined over K
is any map (-,-) acting from V x V into K which enjoys the following
properties:

1. it is linear with respect to the vectors of V, that is

(vx+Az,y) =v(x,y) + AMz,y), Vx,z2€V, Vy,A € K;

2. it is hermitian, that is, (y,x) = (x,y), Vx,y € V;

3. it is positive definite, that is, (x,x) > 0, Vx # 0 (in other words,
(x,x) >0, and (x,x) = 0 if and only if x = 0).

In the case V = C™ (or R"), an example is provided by the classical Eu-
clidean scalar product given by

n
(x,y) =y"x= Zfﬂzﬂi,
i=1

where Z denotes the complex conjugate of z.

Moreover, for any given square matrix A of order n and for any x, ye C"
the following relation holds

(Ax,y) = (x,Ay). (1.12)

In particular, since for any matrix Q € C™*", (Qx, Qy) = (x,Q”Qy), one
gets

Property 1.8 Unitary matrices preserve the FEuclidean scalar product, that
is, (Qx,Qy) = (x,y) for any unitary matriz Q and for any pair of vectors
X andy.

Definition 1.17 Let V' be a vector space over K. We say that the map
|| - || from V into R is a norm on V if the following axioms are satisfied:

1. (i) ||v]| > 0 ¥v € V and (i) ||v]| = 0 if and only if v = 0;
2. |lav]|| = |a|||v]] Ya € K, Vv € V' (homogeneity property);
3. [v+w| <|v||+ |lw] Vv,w eV (triangular inequality),

where |a| denotes the absolute value of a if K = R, the module of « if
K =C. [ |
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The pair (V, || - ||) is called a normed space. We shall distinguish among
norms by a suitable subscript at the margin of the double bar symbol. In
the case the map | - | from V into R enjoys only the properties 1(i), 2 and
3 we shall call such a map a seminorm. Finally, we shall call a unit vector
any vector of V' having unit norm.

An example of a normed space is R", equipped for instance by the p-norm
(or Hélder norm); this latter is defined for a vector x of components {z;}
as

n 1/P
%I, = (leilp> . for1<p< oo (1.13)
=1

Notice that the limit as p goes to infinity of ||x||,, exists, is finite, and equals
the maximum module of the components of x. Such a limit defines in turn
a norm, called the infinity norm (or mazimum norm), given by

Ixflc = max [z

When p = 2, from (1.13) the standard definition of Fuclidean norm is
recovered

n 1/2

1/2

||x|z=<x,x>”2:<2'“2> — (x"x)'"",
=1

for which the following property holds.

Property 1.9 (Cauchy-Schwarz inequality) For any pair x,y € R",

(x3)| = Ix"y| < [x]2 [[y]2 (1.14)
where strict equality holds iff y = ax for some o € R.

We recall that the scalar product in R™ can be related to the p-norms
introduced over R™ in (1.13) by the Holder inequality

P |
oY) < Ixlpliylla,  with =4 = =1,

In the case where V is a finite-dimensional space the following property
holds (for a sketch of the proof, see Exercise 14).

Property 1.10 Any vector norm ||-|| defined on'V is a continuous function

of its argument, namely, Ve > 0, 3C" > 0 such that if ||x — X|| < € then
| x| = [ | < Ce, for any x, X € V.

New norms can be easily built using the following result.
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Property 1.11 Let || - || be a norm of R™ and A € R™*™ be a matriz with
n linearly independent columns. Then, the function || - ||az acting from R™
into R defined as

Ix|[a2 = ||Ax]| vx € R",
18 a norm of R™.

Two vectors x, y in V are said to be orthogonal if (x,y) = 0. This statement
has an immediate geometric interpretation when V' = R? since in such a
case

(x,¥) = [Ix[l2[lyl2 cos(?),

where ¢ is the angle between the vectors x and y. As a consequence, if
(x,y) = 0 then ¥ is a right angle and the two vectors are orthogonal in the
geometric sense.

Definition 1.18 Two norms || - ||, and || - ||, on V are equivalent if there
exist two positive constants c,q and Cpq such that

epgllxllq < [Ix[lp < Cpgllxllq Vx €V
[ ]

In a finite-dimensional normed space all norms are equivalent. In particular,
if V' =R"™ it can be shown that for the p-norms, with p = 1, 2, and oo, the
constants ¢y, and C), take the value reported in Table 1.1.

Cpq q=1|qg=2 | g=0 Chq qg=1|q=2|qg=x
p=1 1 1 1 p=1 1 nt/? n

p=2 || n71/2 1 1 p=2 1 1 nt/?
p =00 nt n=1/? 1 p =00 1 1 1

TABLE 1.1. Equivalence constants for the main norms of R"

In this book we shall often deal with sequences of vectors and with their
convergence. For this purpose, we recall that a sequence of vectors {X(k)}
in a vector space V having finite dimension n, converges to a vector x, and

we write klim xF) = x if
lim z¥) =2, i=1,...n (1.15)
k— o0

where zgk) and z; are the components of the corresponding vectors with

respect to a basis of V. If V.= R", due to the uniqueness of the limit of a
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sequence of real numbers, (1.15) implies also the uniqueness of the limit, if
existing, of a sequence of vectors.

We further notice that in a finite-dimensional space all the norms are topo-
logically equivalent in the sense of convergence, namely, given a sequence
of vectors x(F),

x®)| =0 < |x®] = 0if k — oo,

where ||| - ||| and || - || are any two vector norms. As a consequence, we can
establish the following link between norms and limits.

Property 1.12 Let || - || be a norm in a space finite dimensional space V.
Then

limx® =x & lim ||x —x®| =0,

k—o0 k—o00

where x € V and {x(k)} is a sequence of elements of V.

1.11 Matrix Norms

Definition 1.19 A matriz norm is a mapping || - || : R™*"™ — R such that:
1. JJA] > 0 VA € R™*™ and ||[A]| = 0 if and only if A = 0;
2. ||aAl = |af|A]] Yo € R, YA € R™*™ (homogeneity);
3. JA+ Bl < ||Al + |B]] VA,B € R™*" (triangular inequality).
|

Unless otherwise specified we shall employ the same symbol || - ||, to denote
matrix norms and vector norms.

We can better characterize the matrix norms by introducing the concepts
of compatible norm and norm induced by a vector norm.

Definition 1.20 We say that a matrix norm ||-|| is compatible or consistent
with a vector norm || - || if

[Ax[ < [[A]l [x],  vxeR™ (1.16)
More generally, given three norms, all denoted by || - ||, albeit defined on
R™ R™ and R™*" respectively, we say that they are consistent if Vx € R™,
Ax =y e R™, A € R™*", we have that ||y|| < [A] [|x] |

In order to single out matrix norms of practical interest, the following
property is in general required
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Definition 1.21 We say that a matrix norm || - || is sub-multiplicative if
VA € R™*™ VB € Rm*?

[AB[ < [[A[l [[B]]. (1.17)
o

This property is not satisfied by any matrix norm. For example (taken from
[GL89]), the norm ||[A||a = max|a; | fori =1,...,n,j =1,...,m does
not satisfy (1.17) if applied to the matrices

11
a=s=| ] 1]

since 2 = ||AB||a > [[A|a]Blla = 1.

Notice that, given a certain sub-multiplicative matrix norm || - ||o, there
always exists a consistent vector norm. For instance, given any fixed vector
y # 0 in C", it suffices to define the consistent vector norm as

x|l = [lxy ™o x€C".

As a consequence, in the case of sub-multiplicative matrix norms it is no
longer necessary to explicitly specify the vector norm with respect to the
matrix norm is consistent.

Example 1.7 The norm

1Alr = | D lai|* = tr(AA") (1.18)

ij=1

. . . ) . 2 .
is a matrix norm called the Frobenius norm (or Euclidean norm in C"") and is

compatible with the Euclidean vector norm || - ||2. Indeed,
n n 2 n n n
2 2 2 21,02
TSRS 90 S 155 o1 o200 (=13 VI
i=1 [j=1 i=1 \j=1 j=1
Notice that for such a norm ||I,||r = v/n. °

In view of the definition of a natural norm, we recall the following theorem.

Theorem 1.1 Let ||-|| be a vector norm. The function
Ax
JA] = supl2xl (1.19)
x£0 ||X||

is a matriz norm called induced matriz norm or natural matrixz norm.
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Proof. We start by noticing that (1.19) is equivalent to
IA[l = sup [[Ax]|. (1.20)
lIx[l=
Indeed, one can define for any x # 0 the unit vector u = x/||x||, so that (1.19)

becomes

1A= sup [Auf ={lAw] — with fjw] =1.

||ull=
This being taken as given, let us check that (1.19) (or, equivalently, (1.20)) is
actually a norm, making direct use of Definition 1.19.
1. If ||Ax|| > 0, then it follows that |A]| = sup [|[Ax|| > 0. Moreover

lIxll=

p Al

<o X

Al = =0&||Ax| =0Vx#0

and Ax = 0 Vx # 0 if and only if A=0; therefore [|A|| =0 < A =0.

2. Given a scalar «,

llaAll = sup [laAx|| = o] sup |[Ax]|= o] [A].

[I=ll= [I=ll=1

3. Finally, triangular inequality holds. Indeed, by definition of supremum, if
x # 0 then

[[Ax]|

<Al = [Ax] < ||A]l|lx]],
] < 1Al [AX]| < [|A[lIx]]

so that, taking x with unit norm, one gets
[(A+B)x| < [|Ax| + [IBx[| < [[Al + B,

from which it follows that ||[A + B|| = sup [|(A + B)x|| < ||A|l + [|B]l-
lIx][=1
<&
Relevant instances of induced matrix norms are the so-called p-norms de-

fined as
IIAXHp

o Xl

[Allp =

The 1-norm and the infinity norm are easily computable since

m

n
IAlh = max Y layl, [[Alle = max > |a]
]:1,...,712':1 z=1,4..,7nj:1

and they are called the column sum norm and the row sum norm, respec-
tively.

Moreover, we have ||Alj; = ||AT || and, if A is self-adjoint or real sym-
metric, [|All1 = [|A||co-

A special discussion is deserved by the 2-norm or spectral norm for which
the following theorem holds.
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Theorem 1.2 Let 01(A) be the largest singular value of A. Then

JAllz = \/p(ATA) = /p(AAH) = 51(A). (1.21)
In particular, if A is hermitian (or real and symmetric), then
[All2 = p(A), (1.22)
while, if A is unitary, |All2 = 1.
Proof. Since A® A is hermitian, there exists a unitary matrix U such that
U AP AU = diag(pa, ..., fin),

where p; are the (positive) eigenvalues of AT A. Let y = U”x, then

A Ax X) UHAT AUy,
x#0 (x,x) 0 (y,y)
= sup\j Zuilyi\2/2|yi|2 =/, max_|uil,
y#£0 o P i=1,...,n

from which (1.21) follows, thanks to (1.10).
If A is hermitian, the same considerations as above apply directly to A.
Finally, if A is unitary

IAX]I3 = (Ax, Ax) = (x, A" Ax) = ||x]3

so that ||Alj2 = 1. <O

As a consequence, the computation of ||Alls is much more expensive than
that of ||A]le or ||Al]l;. However, if only an estimate of ||A||s is required,
the following relations can be profitably employed in the case of square
matrices

max|a;;| < [|All2 < n max|a;;l,
1,] 1,7
Al < All2 < VallAlls,
Al < Al < vallAlL,
[All2 < VAL [[Allco-

For other estimates of similar type we refer to Exercise 17. Moreover, if A
is normal then ||Aljs < ||A||, for any n and all p > 2.

Theorem 1.3 Let ||| - ||| be a matriz norm induced by a vector norm || - ||.
Then

1. || Ax|| < |[JAJ]] |Ix||, that is, ||| - ||| is @ norm compatible with || - ||;
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2. [ = 1;
3. ABI|| < [[|AI] [IIBI|], that is, ||| - ||| is sub-multiplicative.

Proof. Part 1 of the theorem is already contained in the proof of Theorem 1.1,
while part 2 follows from the fact that |||I||| = sup||Ix||/||x|| = 1. Part 3 is simple
x#0

to check. &

Notice that the p-norms are sub-multiplicative. Moreover, we remark that
the sub-multiplicativity property by itself would only allow us to conclude
that [|[I[]| > 1. Indeed, ||[T][| = [||T-I[|| < [|[T]I[*.

1.11.1 Relation between Norms and the Spectral Radius of a
Matriz

We next recall some results that relate the spectral radius of a matrix to
matrix norms and that will be widely employed in Chapter 4.

Theorem 1.4 Let || - || be a consistent matriz norm; then
p(A) <Al VA eCvm,

Proof. Let \ be an eigenvalue of A and v # 0 an associated eigenvector. As a
consequence, since || - || is consistent, we have

AL vIF = lIAv]] = JAV]E < [[A]] (vl
so that |A] < [|A]]. &

More precisely, the following property holds (see for the proof [TK66], p.
12, Theorem 3).

Property 1.13 Let A € C"*™ and € > 0. Then, there exists a consistent
matriz norm || - ||a. (depending on e) such that

[Allae < p(A) +e.

As a result, having fixed an arbitrarily small tolerance, there always exists
a matrix norm which is arbitrarily close to the spectral radius of A, namely

p(A) = infl|A] (1.23)
the infimum being taken on the set of all the consistent norms.

For the sake of clarity, we notice that the spectral radius is a sub-
multiplicative seminorm, since it is not true that p(A) = 0 iff A = 0.
As an example, any triangular matrix with null diagonal entries clearly has
spectral radius equal to zero. Moreover, we have the following result.
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Property 1.14 Let A be a square matriz and let ||-|| be a consistent norm.
Then

Jim A7V = p(a).

1.11.2  Sequences and Series of Matrices

A sequence of matrices {A(k)} € R™ " is said to converge to a matrix
A e R if

lim [|[A®) — Al =0.
k—o00

The choice of the norm does not influence the result since in R™*™ all norms
are equivalent. In particular, when studying the convergence of iterative
methods for solving linear systems (see Chapter 4), one is interested in the
so-called convergent matrices for which

lim A =0,

k—o0

0 being the null matrix. The following theorem holds.

Theorem 1.5 Let A be a square matriz; then

Jim AP =0ep(A) < 1. (1.24)
Moreover, the geometric series ZAk is convergent iff p(A) < 1. In such a
case h=0
S Ab=(a-A)h (1.25)
k=0

As a result, if p(A) < 1 the matriz 1T — A is invertible and the following
inequalities hold

1

1
Ay <!
+[[All

— 71 J
e T (1.26)

where || - || is an induced matriz norm such that ||Al] < 1.

Proof. Let us prove (1.24). Let p(A) < 1, then 3¢ > 0 such that p(A) <1—¢
and thus, thanks to Property 1.13, there exists a consistent matrix norm || - || such
that ||A|] < p(A) + ¢ < 1. From the fact that ||[A¥|| < ||A||* < 1 and from the
definition of convergence it turns out that as k — co the sequence {Ak} tends

to zero. Conversely, assume that lim A" = 0 and let A denote an eigenvalue of
— 00

A. Then, A*x = A*x, being x(#0) an eigenvector associated with X, so that
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klirn A = 0. As a consequence, |A] < 1 and because this is true for a generic
—00

eigenvalue one gets p(A) < 1 as desired. Relation (1.25) can be obtained noting
first that the eigenvalues of I—A are given by 1 — A(A), A(A) being the generic
eigenvalue of A. On the other hand, since p(A) < 1, we deduce that I—A is
nonsingular. Then, from the identity

I-A)I+A+.. FA") = (1A

and taking the limit for n tending to infinity the thesis follows since

[ee]

I-A)) A =1L

k=0
Finally, thanks to Theorem 1.3, the equality ||I|| = 1 holds, so that
L= T < T= Al [(T—A)T" < @+ [ADIT-A)7",

giving the first inequality in (1.26). As for the second part, noting that I =
I—A+A and multiplying both sides on the right by (I—A)™!, one gets (I-A) ™" =
I+ A(I — A)™'. Passing to the norms, we obtain

IT=A) T < T+ AL A - A)71,

and thus the second inequality, since [|A| < 1. O

Remark 1.1 The assumption that there exists an induced matrix norm
such that ||A]| < 1 is justified by Property 1.13, recalling that A is conver-
gent and, therefore, p(A) < 1. [ ]

Notice that (1.25) suggests an algorithm to approximate the inverse of a
matrix by a truncated series expansion.

1.12 Positive Definite, Diagonally Dominant and
M-matrices

Definition 1.22 A matrix A € C"*" is positive definite in C™ if the num-
ber (Ax,x) is real and positive Yx € C", x # 0. A matrix A € R"*" ig
positive definite in R™ if (Ax,x) > 0 Vx € R", x # 0. If the strict in-
equality is substituted by the weak one (>) the matrix is called positive
semidefinite. |

Example 1.8 Matrices that are positive definite in R™ are not necessarily sym-
metric. An instance is provided by matrices of the form

A= { 7227a 5 } (1.27)
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for aw # —1. Indeed, for any non null vector x = (z1, azg)T in R2
(Ax,x) = 2(z} + 5 — z122) > 0.

Notice that A is not positive definite in C?. Indeed, if we take a complex vector
x we find out that the number (Ax,x) is not real-valued in general. °

Definition 1.23 Let A € R™*". The matrices
1 1
As=§(A+AT)» Ass=§(A—AT)

are respectively called the symmetric part and the skew-symmetric part
of A. Obviously, A = Ag + Agg. If A € C"*", the definitions modify as
follows: Ag = £(A + Af) and Agg = 3(A — ATT). [ |

The following property holds

Property 1.15 A real matriz A of order n is positive definite iff its sym-
metric part Ag is positive definite.

Indeed, it suffices to notice that, due to (1.12) and the definition of Agg,
xTAgsx = 0 Vx € R". For instance, the matrix in (1.27) has a positive
definite symmetric part, since

1 [ 2 -1

This holds more generally (for the proof see [Axe94]).

Property 1.16 Let A € C™*" (respectively, A € R™"*™); if (Ax, x) is real-
valued VYx € C™, then A is hermitian (respectively, symmeltric).

An immediate consequence of the above results is that matrices that are
positive definite in C™ do satisfy the following characterizing property.

Property 1.17 A square matriz A of order n is positive definite in C™
iff it is hermitian and has positive eigenvalues. Thus, a positive definite
matriz is nonsingular.

In the case of positive definite real matrices in R"”, results more specific
than those presented so far hold only if the matrix is also symmetric (this is
the reason why many textbooks deal only with symmetric positive definite
matrices). In particular

Property 1.18 Let A € R™ "™ be symmetric. Then, A is positive definite
iff one of the following properties is satisfied:

1. (Ax,x) > 0 Vx # 0 with x€ R™;
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2. the eigenvalues of the principal submatrices of A are all positive;

3. the dominant principal minors of A are all positive (Sylvester crite-
Ti0n);

4. there exists a nonsingular matriz H such that A = HTH.

All the diagonal entries of a positive definite matrix are positive. Indeed,
if e; is the i-th vector of the canonical basis of R™, then e;fFAei =a;; > 0.

Moreover, it can be shown that if A is symmetric positive definite, the
entry with the largest module must be a diagonal entry (these last two
properties are therefore necessary conditions for a matrix to be positive
definite).

We finally notice that if A is symmetric positive definite and A/? is
the only positive definite matrix that is a solution of the matrix equation
X2 = A, the norm

Ix]la = |AY2x]|2 = (Ax, x)'/2 (1.28)

defines a vector norm, called the energy norm of the vector x. Related to
the energy norm is the energy scalar product given by (x,y)a = (Ax,y).

Definition 1.24 A matrix A€ R™*"™ is called diagonally dominant by rows
if

n
|aii| > Z |a1‘j|, withi=1,... n,
j=1.g#i
while it is called diagonally dominant by columns if
n
|@ii| > Z |aji|, with ¢ = 1, e, N
j=1.#i
If the inequalities above hold in a strict sense, A is called strictly diagonally
dominant (by rows or by columns, respectively). [ ]

A strictly diagonally dominant matrix that is symmetric with positive di-
agonal entries is also positive definite.

Definition 1.25 A nonsingular matrix A € R"*" is an M-matrizif a;; <0
for i # j and if all the entries of its inverse are nonnegative. |

M-matrices enjoy the so-called discrete maximum principle, that is, if A is
an M-matrix and Ax < 0, then x < 0 (where the inequalities are meant
componentwise). In this connection, the following result can be useful.

Property 1.19 (M-criterion) Let a matriz A satisfy a;; < 0 for i # j.
Then A is an M-matriz if and only if there exists a vector w > 0 such that
Aw > 0.
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Finally, M-matrices are related to strictly diagonally dominant matrices
by the following property.

Property 1.20 A matriz A € R™™"™ that is strictly diagonally dominant
by rows and whose entries satisfy the relations a;; <0 fori # j and a;; > 0,
is an M-matriz.

For further results about M-matrices, see for instance [Axe94| and [Var62].

1.13 Exercises

1. Let Wi and W5 be two subspaces of R™. Prove that if V' = W7 & W, then
dim(V') = dim(W1) + dim(W?), while in general

dim(W1 + Wz) = dim(Wl) + dim(Wz) — dim(W1 N W2).

[Hint : Consider a basis for W1 N W> and first extend it to Wi, then to
Wa, verifying that the basis formed by the set of the obtained vectors is a
basis for the sum space.]

2. Check that the following set of vectors
vi= (27 e, =12, n,

forms a basis for R"™, x1,... ,x, being a set of n distinct points of R.

3. Exhibit an example showing that the product of two symmetric matrices
may be nonsymmetric.

4. Let B be a skew-symmetric matrix, namely, BT = —B. Let A = (I+B)(I -
B)~! and show that A~' = A”.

5. A matrix A € C"*" is called skew-hermitian if AT = —A. Show that the
diagonal entries of A must be purely imaginary numbers.

6. Let A, B and A+B be invertible matrices of order n. Show that also A~ +
B~! is nonsingular and that

(A7'4+B™) T =A(A+B)'B=B(A+B)'A.
[Solution : (A™' +B~Y) ™" =A(I+B'A)"' = A(B+A)"'B. The sec-
ond equality is proved similarly by factoring out B and A, respectively from
left and right.|

7. Given the non symmetric real matrix

0o 1 1
A= 1 0 -1,
-1 -1 o0

check that it is similar to the diagonal matrix D = diag(1,0,—1) and find
its eigenvectors. Is this matrix normal?

[Solution : the matrix is not normal.]
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Let A be a square matrix of order n. Check that if P(A) = chAk and
k=0

A(A) are the eigenvalues of A, then the eigenvalues of P(A) are given by
A(P(A)) = P(A(A)). In particular, prove that p(A?) = [p(A)]°.
Prove that a matrix of order n having n distinct eigenvalues cannot be

defective. Moreover, prove that a normal matrix cannot be defective.

Commutativity of matriz product. Show that if A and B are square matri-
ces that share the same set of eigenvectors, then AB = BA. Prove, by a
counterexample, that the converse is false.

Let A be a normal matrix whose eigenvalues are A1, ..., \,. Show that the
singular values of A are |A1],...,|An|.

Let A € C™*" with rank(A) = n. Show that AT = (ATA)"'A” enjoys the
following properties

(DATA =1,; (2)ATAAT = AT AATA=A; 3)ifm=n, AT=A""

Show that the Moore-Penrose pseudo-inverse matrix A' is the only matrix
that minimizes the functional

min ||AX — L, ||r,
XECTI,XTH,

where || - || is the Frobenius norm.

Prove Property 1.10.

[Solution : For any x, X € V show that | ||x]| — [|X]| | < ||x —X]|. Assuming
that dim(V) = n and expanding the vector w = x — X on a basis of V,
show that ||w| < C||lw|/s, from which the thesis follows by imposing in
the first obtained inequality that ||wle < e.]

Prove Property 1.11 in the case A € R"*™ with m linearly independent
columns.
[Hint : First show that || - ||a fulfills all the properties characterizing a

norm: positiveness (A has linearly independent columns, thus if x # 0, then
Ax # 0, which proves the thesis), homogeneity and triangular inequality.]

Show that for a rectangular matrix A € R™*"
AR =07 + ... +012,,

where p is the minimum between m and n, o; are the singular values of A
and || - ||¢ is the Frobenius norm.

Assuming p,q = 1,2, 00, I, recover the following table of equivalence con-
stants cpq such that VA € R™", ||Allp < cpqllAllq-

Cpq gq=1]|g=2|qg=00 | ¢g=F
p=1 1 Vn n Vn
p=2 N 1 N 1
p =00 n Vn 1 vn
p=F | vn | Vn Vvn 1
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18. A matrix norm for which ||A[| = || |A| || is called absolute norm, having
denoted by |A| the matrix of the absolute values of the entries of A. Prove
that || - ||1, || - || and || - ||# are absolute norms, while || - ||2 is not. Show
that for this latter

1
—|IAllz < || 1Al |2 < Va||All2.
\/ﬁ\l l2 < I AL ll2 < V/nllA]l2



2

Principles of Numerical Mathematics

The basic concepts of consistency, stability and convergence of a numerical
method will be introduced in a very general context in the first part of
the chapter: they provide the common framework for the analysis of any
method considered henceforth. The second part of the chapter deals with
the computer finite representation of real numbers and the analysis of error
propagation in machine operations.

2.1  Well-posedness and Condition Number of a
Problem

Consider the following problem: find = such that
F(z,d) =0 (2.1)

where d is the set of data which the solution depends on and F' is the
functional relation between x and d. According to the kind of problem
that is represented in (2.1), the variables x and d may be real numbers,
vectors or functions. Typically, (2.1) is called a direct problem if F' and d
are given and z is the unknown, inverse problem if F' and = are known
and d is the unknown, identification problem when x and d are given while
the functional relation F' is the unknown (these latter problems will not be
covered in this volume).

Problem (2.1) is well posed if it admits a unique solution & which depends
with continuity on the data. We shall use the terms well posed and stable in
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an interchanging manner and we shall deal henceforth only with well-posed
problems.

A problem which does not enjoy the property above is called ill posed or
unstable and before undertaking its numerical solution it has to be regular-
ized, that is, it must be suitably transformed into a well-posed problem (see,
for instance [Mor84]). Indeed, it is not appropriate to pretend the numerical
method can cure the pathologies of an intrinsically ill-posed problem.

Example 2.1 A simple instance of an ill-posed problem is finding the number
of real roots of a polynomial. For example, the polynomial p(x) = zt — 2? (2a —
1) + a(a — 1) exhibits a discontinuous variation of the number of real roots as a
continuously varies in the real field. We have, indeed, 4 real roots if a > 1, 2 if

a € [0,1) while no real roots exist if a < 0. °

Continuous dependence on the data means that small perturbations on
the data d yield “small” changes in the solution z. Precisely, denoting by 6d
an admissible perturbation on the data and by éx the consequent change
in the solution, in such a way that

F(z + éx,d+6d) =0, (2.2)
then
V>0, IK(n,d) : [[6d]| <n = |éz|| < K(n,d)|[6d]|. (2.3)

The norms used for the data and for the solution may not coincide, when-
ever d and x represent variables of different kinds.

With the aim of making this analysis more quantitative, we introduce the
following definition.

Definition 2.1 For problem (2.1) we define the relative condition number
to be

62 |/]||
K(d) = sup ~—— 1, (2.4)
saeD ||6dl|/1|]|
where D is a neighborhood of the origin and denotes the set of admissible
perturbations on the data for which the perturbed problem (2.2) still makes
sense. Whenever d = 0 or = 0, it is necessary to introduce the absolute
condition number, given by

|0z ||
Kaps(d) = sup —. 2.5
bs(d) = sup I (25)

Problem (2.1) is called ill-conditioned if K(d) is “big” for any admissible
datum d (the precise meaning of “small” and “big” is going to change
depending on the considered problem).
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The property of a problem of being well-conditioned is independent of
the numerical method that is being used to solve it. In fact, it is possible
to generate stable as well as unstable numerical schemes for solving well-
conditioned problems. The concept of stability for an algorithm or for a
numerical method is analogous to that used for problem (2.1) and will be
made precise in the next section.

Remark 2.1 (Ill-posed problems) Even in the case in which the condi-
tion number does not exist (formally, it is infinite), it is not necessarily true
that the problem is ill-posed. In fact there exist well posed problems (for
instance, the search of multiple roots of algebraic equations, see Example
2.2) for which the condition number is infinite, but such that they can be
reformulated in equivalent problems (that is, having the same solutions)
with a finite condition number. ]

If problem (2.1) admits a unique solution, then there necessarily exists a
mapping G, that we call resolvent, between the sets of the data and of the
solutions, such that

z=G(d), thatis F(G(d),d)=0. (2.6)

According to this definition, (2.2) yields 2 + éx = G(d + 6d). Assuming
that G is differentiable in d and denoting formally by G’(d) its derivative
with respect to d (if G : R — R™, G'(d) will be the Jacobian matrix of
G evaluated at the vector d), a Taylor’s expansion of G truncated at first
order ensures that

G(d + 8d) — G(d) = G'(d)d + o(||6d]|))  for &d — 0,

where || - || is a suitable norm for éd and o(-) is the classical infinitesimal
symbol denoting an infinitesimal term of higher order with respect to its
argument. Neglecting the infinitesimal of higher order with respect to ||6d]|,
from (2.4) and (2.5) we respectively deduce that

1] /
K(d) ~ || G'(d)] v Kas(d) > [|G'(d)], (2.7)
1G]
the symbol || - || denoting the matrix norm associated with the vector norm

(defined in (1.19)). The estimates in (2.7) are of great practical usefulness
in the analysis of problems in the form (2.6), as shown in the forthcoming
examples.

Example 2.2 (Algebraic equations of second degree) The solutions to the
algebraic equation 22 — 2pz + 1 = 0, with p > 1, are z+ = p + /p? — 1. In this
case, F(x,p) = 2> —2pz+ 1, the datum d is the coefficient p, while z is the vector
of components {z,z_}. As for the condition number, we notice that (2.6) holds
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by taking G : R — R? G(p) = {z4+,2_}. Letting G4 (p) = 24, it follows that

G4 (p) =1+p/\/p?>— 1. Using (2.7) with || - || = || - ||2 we get
K(p) ~ _ Il p> 1. (2.8)

N/

From (2.8) it turns out that in the case of separated roots (say, if p > V/2)
problem F(z,p) = 0 is well conditioned. The behavior dramatically changes in
the case of multiple roots, that is when p = 1. First of all, one notices that the
function G+ (p) = p £ /p? — 1 is no longer differentiable for p = 1, which makes
(2.8) meaningless. On the other hand, equation (2.8) shows that, for p close to
1, the problem at hand is ill conditioned. However, the problem is not ill posed.
Indeed, following Remark 2.1, it is possible to reformulate it in an equivalent
manner as F(z,t) = 2° — (1 +t*)/t)z + 1 = 0, with ¢t = p + \/p? — 1, whose
roots x— = t and x4 = 1/t coincide for t = 1. The change of parameter thus
removes the singularity that is present in the former representation of the roots
as functions of p. The two roots z— = x_(¢) and x4+ = x4(t) are now indeed
regular functions of ¢ in the neighborhood of t = 1 and evaluating the condition
number by (2.7) yields K(¢) ~ 1 for any value of ¢. The transformed problem is
thus well conditioned. °

Example 2.3 (Systems of linear equations) Consider the linear system Ax
= b, where x and b are two vectors in R", while A is the matrix (n X n) of the
real coefficients of the system. Suppose that A is nonsingular; in such a case z
is the unknown solution x, while the data d are the right-hand side b and the
matrix A, that is, d = {b;, a;;,1 <4,7 <n}.

Suppose now that we perturb only the right-hand side b. We have d = b,
x = G(b) = A™'b so that, G'(b) = A™', and (2.7) yields

JA bl _ JAx]
K ~ =
@ =TTl = x|

IATH < A AT = K (A), (2.9)

where K (A) is the condition number of matrix A (see Section 3.1.1) and the use
of a consistent matrix norm is understood. Therefore, if A is well conditioned,
solving the linear system Ax=Db is a stable problem with respect to perturbations
of the right-hand side b. Stability with respect to perturbations on the entries of
A will be analyzed in Section 3.10. °

Example 2.4 (Nonlinear equations) Let f : R — R be a function of class
C" and consider the nonlinear equation

F(z,d) = f(z) = ¢(z) —d =0,

where ¢ : R — R is a suitable function and d € R a datum (possibly equal
to zero). The problem is well defined only if ¢ is invertible in a neighborhood
of d: in such a case, indeed, z = ¢ *(d) and the resolvent is G = ¢ *. Since
(™)' (d) = [¢' ()] ", the first relation in (2.7) yields, for d # 0,

~ ldl

= I’ (@), (2.10)

K(d)
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while if d = 0 or x = 0 we have
Kaps(d) ~ [[¢ ()] 7. (2.11)

The problem is thus ill posed if = is a multiple root of p(z)—d; it is ill conditioned
when ¢’(x) is “small”, well conditioned when ¢’ (z) is “large”. We shall further
address this subject in Section 6.1. °

In view of (2.8), the quantity ||G'(d)|| is an approximation of K,ps(d) and
is sometimes called first order absolute condition number. This latter rep-
resents the limit of the Lipschitz constant of G' (see Section 11.1) as the
perturbation on the data tends to zero.

Such a number does not always provide a sound estimate of the condition
number K,ps(d). This happens, for instance, when G’ vanishes at a point
whilst G is non null in a neighborhood of the same point. For example,
take z = G(d) = cos(d) — 1 for d € (—7/2,7/2); we have G'(0) = 0, while
Kaps(0) =2/7.

2.2 Stability of Numerical Methods

We shall henceforth suppose the problem (2.1) to be well posed. A numer-
ical method for the approximate solution of (2.1) will consist, in general,
of a sequence of approximate problems

Fy(zy,dn) =0 n>1 (2.12)

depending on a certain parameter n (to be defined case by case). The
understood expectation is that =, — x as n — oo, i.e. that the numerical
solution converges to the exact solution. For that, it is necessary that d,, —
d and that F,, “approximates” F', as n — oco. Precisely, if the datum d of
problem (2.1) is admissible for F},, we say that (2.12) is consistent if

F,(z,d) = F,(x,d) — F(x,d) — 0 for n — oo (2.13)

where x is the solution to problem (2.1) corresponding to the datum d.

The meaning of this definition will be made precise in the next chapters
for any single class of considered problems.

A method is said to be strongly consistent if F,,(x,d) = 0 for any value
of n and not only for n — oo.

In some cases (e.g., when iterative methods are used) problem (2.12)
could take the following form

Fo(Tn, Tpo1,... ;Tn—q,dn) =0 n>q (2.14)

where xg,1,...,24—1 are given. In such a case, the property of strong
consistency becomes F,(x,z,...,z,d) =0 for all n > gq.
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Example 2.5 Let us consider the following iterative method (known as New-
ton’s method and discussed in Section 6.2.2) for approximating a simple root «
of a function f: R — R,

f(@n-1)

given To, Tn = Tn—1 Flon1)’ n > 1. (2.15)
The method (2.15) can be written in the form (2.14) by setting Fy (zn, Tn—1, f) =
Tn — Tn—1 + f(xn-1)/f (zn-1) and is strongly consistent since F,(a,a, f) = 0
for all n > 1.
Consider now the following numerical method (known as the composite mid-
point rule discussed in Section 9.2) for approximating x = f: F () de,

n
t t
xn:ng(%)’ n>1

k=1

where H = (b—a)/nand tx =a+ (k—1)H, k =1,...,(n+ 1). This method
is consistent; it is also strongly consistent provided thet f is a piecewise linear
polynomial.

More generally, all numerical methods obtained from the mathematical prob-
lem by truncation of limit operations (such as integrals, derivatives, series, ...)
are not strongly consistent. °

Recalling what has been previously stated about problem (2.1), in order
for the numerical method to be well posed (or stable) we require that for any
fixed n, there exists a unique solution x,, corresponding to the datum d,,
that the computation of x,, as a function of d,, is unique and, furthermore,
that z,, depends continuously on the data, i.e.

V>0, 3Ka(,dn) : |6dnll <0 = ||620] < Kn(n, d)||6dn]l.  (2.16)

As done in (2.4), we introduce for each problem in the sequence (2.12) the
quantities

|62l

Kn dn = )
. o, |

oxnll/||zn
w Kabs,n (dn) =

s 2.17
o 16| /Ildn] e (2.17)

and then define

K™ (dy,) = lim sup Kp(dy), Kgpi™(dn) = lim sup Kaps n(dn).

k—00 1>, abs k=00 1>

We call K™™(d,,) the relative asymptotic condition number of the numer-
ical method (2.12) and K[}“"(d,,) absolute asymptotic condition number,
corresponding to the datum d,,.

The numerical method is said to be well conditioned if K™*™ is “small”

for any admissible datum d,,, ill conditioned otherwise. As in (2.6), let us
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consider the case where, for each n, the functional relation (2.1) defines a
mapping G,, between the sets of the numerical data and the solutions

Ty = Gp(dy), thatis F,(Gn(d,),d,) =0. (2.18)
Assuming that G,, is differentiable, we can obtain from (2.17)
||
K, (d,) ~ |G (dn ”7”, Kapsn(dn) =~ |G (dn)]]. (219
(dn) = N1Ga(dn) I 5200 51 aldn) = (|G (dn)ll. - (2.19)

Example 2.6 (Sum and subtraction) The function f : R* — R, f(a,b) =
a + b, is a linear mapping whose gradient is the vector f'(a,b) = (1,1)”. Using
the vector norm || - ||; defined in (1.13) yields K(a,b) ~ (Ja| + |b])/(Ja + b]), from
which it follows that summing two numbers of the same sign is a well conditioned
operation, being K (a,b) ~ 1. On the other hand, subtracting two numbers almost
equal is ill conditioned, since |a + b| < |a| + |b|. This fact, already pointed out in
Example 2.2, leads to the cancellation of significant digits whenever numbers can
be represented using only a finite number of digits (as in floating-point arithmetic,
see Section 2.5). °

Example 2.7 Consider again the problem of computing the roots of a polyno-
mial of second degree analyzed in Example 2.2. When p > 1 (separated roots),
such a problem is well conditioned. However, we generate an unstable algorithm
if we evaluate the root _ by the formula x— = p — /p? — 1. This formula is
indeed subject to errors due to numerical cancellation of significant digits (see
Section 2.4) that are introduced by the finite arithmetic of the computer. A pos-
sible remedy to this trouble consists of computing =z = p + /p? — 1 at first,
then 2_ = 1/x;. Alternatively, one can solve F(z,p) = x? — 2pz + 1 = 0 using
Newton’s method (proposed in Example 2.5)

Tn = Tn_1 — (22_1 = 2pTn—1 + 1)/(2Tn_1 — 2p) = fu(p), n>1, xogiven.

Applying (2.19) for p > 1 yields K,(p) ~ |p|/|zn — p|. To compute K™*™(p)
we notice that, in the case when the algorithm converges, the solution z,, would
converge to one of the roots x4 or x_; therefore, |z, — p| — /p? — 1 and thus
K, (p) — K™ (p) ~ |p|/+/p?> — 1, in perfect agreement with the value (2.8) of
the condition number of the exact problem.

We can conclude that Newton’s method for the search of simple roots of a
second order algebraic equation is ill conditioned if |p| is very close to 1, while it
is well conditioned in the other cases. °

The final goal of numerical approximation is, of course, to build, through
numerical problems of the type (2.12), solutions z,, that “get closer” to the
solution of problem (2.1) as much as n gets larger. This concept is made
precise in the next definition.

Definition 2.2 The numerical method (2.12) is convergent iff

Ve > 0 Ing(e), F6(ng,e) >0
(2.20)
Vn > ng(e), V||6d,| < 6(no,e) = [|z(d) — x,(d+ 6d,)| <&,
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where d is an admissible datum for the problem (2.1), x(d) is the corre-
sponding solution and x,,(d+ éd,,) is the solution of the numerical problem
(2.12) with datum d + 6d,,. [ |

To verify the implication (2.20) it suffices to check that under the same
assumptions

[z(d + 8dn) — zn(d + 6dy)|| < 5. (2.21)

N ™

Indeed, thanks to (2.3) we have
[#(d) = zn(d + bdn)|| < ||2(d) — z(d + bdn) ||
+Hz(d + 6dn) — xn(d + 6dy)|| < K(6(no, ), d)||6dy || + §.
Choosing éd,, such that K(6(ng,¢),d)||6d,| < 5, one obtains (2.20).

Measures of the convergence of x,, to x are given by the absolute error
or the relative error, respectively defined as

|x — x|
x| 7

In the cases where x and x, are matrix or vector quantities, in addition
to the definitions in (2.22) (where the absolute values are substituted by
suitable norms) it is sometimes useful to introduce the error by component
defined as

E(:En) = |£L’ - xn‘v Erel('rn) =

(ifz # 0). (2.22)

C

l(x )_max|(‘r_x7l)ij|
re n) T e .

(2.23)
irj |45

2.2.1 Relations between Stability and Convergence

The concepts of stability and convergence are strongly connected.
First of all, if problem (2.1) is well posed, a necessary condition in order
for the numerical problem (2.12) to be convergent is that it is stable.

Let us thus assume that the method is convergent, and prove that it is
stable by finding a bound for ||6x,,||. We have

[0znll = |lzn(d+bdn) — 2n(d)]| < |lzn(d) — z(d)]
+ Ja(d) — 2(d + 8dy)|| + |(d + 6dy) — zp(d+ 6dy)||  (2.24)
< K(8(no,e),d)||6dn]| + e,

having used (2.3) and (2.21) twice. From (2.24) we can conclude that, for n
sufficiently large, ||6z,||/||6d,|| can be bounded by a constant of the order
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of K(6(ng,¢e),d), so that the method is stable. Thus, we are interested in
stable numerical methods since only these can be convergent.

The stability of a numerical method becomes a sufficient condition for
the numerical problem (2.12) to converge if this latter is also consistent
with problem (2.1). Indeed, under these assumptions we have

le(d+bdp) — xn(d+6dn)|| < a(d+ b6dn) — z(d)]

+  Jz(d) — 2 (d)|| + [0 (d) — zn(d + 6d,) ).

Thanks to (2.3), the first term at right-hand side can be bounded by ||6d,, ||
(up to a multiplicative constant independent of 6d,,). A similar bound holds
for the third term, due to the stability property (2.16). Finally, concerning
the remaining term, if F,, is differentiable with respect to the variable z,
an expansion in a Taylor series gives
oF,
Fn(m(d)»d) - Fn(mn(d)v d) = W‘(E,d)(x(d) - xn(d))7

for a suitable T “between” x(d) and z,(d). Assuming also that JF,, /0x is
invertible, we get

OF,\ !

x(d) — z,(d) = [Fr(z(d),d) — Fp(zn(d),d)]. (2.25)
0% /(.4

On the other hand, replacing F), (z,(d), d) with F(x(d), d) (since both terms

are equal to zero) and passing to the norms, we find

<8Fn ) !
07 /\(z.a)
Thanks to (2.13) we can thus conclude that ||z(d) —x,(d)|| — 0 for n — cc.
The result that has just been proved, although stated in qualitative terms,
is a milestone in numerical analysis, known as equivalence theorem (or
Lax-Richtmyer theorem): “for a consistent numerical method, stability is
equivalent to convergence”. A rigorous proof of this theorem is available in
[Dah56] for the case of linear Cauchy problems, or in [Lax65] and in [RM67]
for linear well-posed initial value problems.

l2(d) — zn(d)]| < [1En(z(d), d) = F(x(d), d)]-

2.3 A priort and a posteriori Analysis

The stability analysis of a numerical method can be carried out following
different strategies:

1. forward analysis, which provides a bound to the variations ||6x,| on
the solution due to both perturbations in the data and to errors that
are intrinsic to the numerical method;
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2. backward analysis, which aims at estimating the perturbations that
should be “impressed” to the data of a given problem in order to
obtain the results actually computed under the assumption of working
in exact arithmetic. Equivalently, given a certain computed solution
Tn, backward analysis looks for the perturbations éd,, on the data
such that F,(Z,,d, + 6d,) = 0. Notice that, when performing such
an estimate, no account at all is taken into the way Z, has been
obtained (that is, which method has been employed to generate it).

Forward and backward analyses are two different instances of the so
called a priori analysis. This latter can be applied to investigate not only
the stability of a numerical method, but also its convergence. In this case
it is referred to as a priori error analysis, which can again be performed
using either a forward or a backward technique.

A priori error analysis is distincted from the so called a posteriori error
analysis, which aims at producing an estimate of the error on the grounds
of quantities that are actually computed by a specific numerical method.
Typically, denoting by Z,, the computed numerical solution, approximation
to the solution x of problem (2.1), the a posteriori error analysis aims at
evaluating the error x — Z,, as a function of the residual r,, = F(Z,,d) by
means of constants that are called stability factors (see [EEHJ96]).

Example 2.8 For the sake of illustration, consider the problem of finding the
Zeros aq, ... ,an of a polynomial p,(x) = ZZ:O akmk of degree n.

Denoting by pn(z) = >}, arz® a perturbed polynomial whose zeros are d,
forward analysis aims at estimating the error between two corresponding zeros
a; and &;, in terms of the variations on the coefficients a — ax, k=0,1,... ,n.

On the other hand, let {&;} be the approximate zeros of p,, (computed some-
how). Backward analysis provides an estimate of the perturbations dax which
should be impressed to the coefficients so that "1 (ax +dar)ar = 0, for a fixed
&i. The goal of a posteriori error analysis would rather be to provide an estimate
of the error a; — &; as a function of the residual value p, (&;).

This analysis will be carried out in Section 6.1. °

Example 2.9 Consider the linear system Ax=b, where A€ R™*" is a nonsin-
gular matrix.

For the perturbed system Ax = B, forward analysis provides an estimate of
the error x — x in terms of A — A and b — b, while backward analysis estimates
the perturbations 6A = (da;;) and b = (6b;) which should be impressed to the
entries of A and b in order to get (A + §A)X, = b+ b, X, being the solution of
the linear system (computed somehow). Finally, a posteriori error analysis looks
for an estimate of the error x — X,, as a function of the residual r,, = b — AX,,.

We will develop this analysis in Section 3.1. °

It is important to point out the role played by the a posteriori analysis in
devising strategies for adaptive error control. These strategies, by suitably
changing the discretization parameters (for instance, the spacing between
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nodes in the numerical integration of a function or a differential equation),
employ the a posteriori analysis in order to ensure that the error does not
exceed a fixed tolerance.

A numerical method that makes use of an adaptive error control is called
adaptive numerical method. In practice, a method of this kind applies in the
computational process the idea of feedback, by activating on the grounds of
a computed solution a convergence test which ensures the control of error
within a fixed tolerance. In case the convergence test fails, a suitable strat-
egy for modifying the discretization parameters is automatically adopted
in order to enhance the accuracy of the solution to be newly computed,
and the overall procedure is iterated until the convergence check is passed.

2.4 Sources of Error in Computational Models

Whenever the numerical problem (2.12) is an approximation to the math-
ematical problem (2.1) and this latter is in turn a model of a physical
problem (which will be shortly denoted by PP), we shall say that (2.12) is
a computational model for PP.

In this process the global error, denoted by e, is expressed by the dif-
ference between the actually computed solution, Z,,, and the physical so-
lution, x,, of which x provides a model. The global error e can thus be
interpreted as being the sum of the error e,, of the mathematical model,
given by « — xpp,, and the error e, of the computational model, Z,, — z, that
is e = e, + e, (see Figure 2.1).

PP : zp,
F(z,d) =0 e - T
%\ /ea'
F.(x,,d,) =0

FIGURE 2.1. Errors in computational models

The error e, will in turn take into account the error of the mathematical
model in strict sense (that is, the extent at which the functional equation
(2.1) does realistically describe the problem PP) and the error on the data
(that is, how much accurately does d provide a measure of the real physical
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data). In the same way, e. turns out to be the combination of the numerical
discretization error e, = x, — x, the error ¢, introduced by the numerical
algorithm and the roundoff error introduced by the computer during the
actual solution of problem (2.12) (see Section 2.5).

In general, we can thus outline the following sources of error:

1. errors due to the model, that can be controlled by a proper choice of
the mathematical model,

2. errors in the data, that can be reduced by enhancing the accuracy in
the measurement of the data themselves;

3. truncation errors, arising from having replaced in the numerical model
limits by operations that involve a finite number of steps;

4. rounding errors.

The errors at the items 3. and 4. give rise to the computational error. A
numerical method will thus be convergent if this error can be made arbi-
trarily small by increasing the computational effort. Of course, convergence
is the primary, albeit not unique, goal of a numerical method, the others
being accuracy, reliability and efficiency.

Accuracy means that the errors are small with respect to a fixed tol-
erance. It is usually quantified by the order of infinitesimal of the error
e, with respect to the discretization characteristic parameter (for instance
the largest grid spacing between the discretization nodes). By the way, we
notice that machine precision does not limit, on theoretical grounds, the
accuracy.

Reliability means it is likely that the global error can be guaranteed to be
below a certain tolerance. Of course, a numerical model can be considered
to be reliable only if suitably tested, that is, successfully applied to several
test cases.

Efficiency means that the computational complexity that is needed to
control the error (that is, the amount of operations and the size of the
memory required) is as small as possible.

Having encountered the term algorithm several times in this section, we
cannot refrain from providing an intuitive description of it. By algorithm
we mean a directive that indicates, through elementary operations, all the
passages that are needed to solve a specific problem. An algorithm can in
turn contain sub-algorithms and must have the feature of terminating after
a finite number of elementary operations. As a consequence, the executor
of the algorithm (machine or human being) must find within the algorithm
itself all the instructions to completely solve the problem at hand (provided
that the necessary resources for its execution are available).

For instance, the statement that a polynomial of second degree surely
admits two roots in the complex plane does not characterize an algorithm,
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whereas the formula yielding the roots is an algorithm (provided that the
sub-algorithms needed to correctly execute all the operations have been
defined in turn).

Finally, the complezity of an algorithm is a measure of its executing
time. Calculating the complexity of an algorithm is therefore a part of the
analysis of the efficiency of a numerical method. Since several algorithms,
with different complexities, can be employed to solve the same problem P,
it is useful to introduce the concept of complezity of a problem, this latter
meaning the complexity of the algorithm that has minimum complexity
among those solving P. The complexity of a problem is typically measured
by a parameter directly associated with P. For instance, in the case of
the product of two square matrices, the computational complexity can be
expressed as a function of a power of the matrix size n (see, [Str69]).

2.5 Machine Representation of Numbers

Any machine operation is affected by rounding errors or roundoff. They are
due to the fact that on a computer only a finite subset of the set of real
numbers can be represented. In this section, after recalling the positional
notation of real numbers, we introduce their machine representation.

2.5.1 The Positional System

Let a base 8 € N be fixed with 5 > 2, and let  be a real number with
a finite number of digits x; with 0 < zp < @ for k = —m, ... ,n. The
notation (conventionally adopted)

zg = (—1)° [TnTp-1...2100.T1T—2 ... Tp], Tn #0 (2.26)

is called the positional representation of x with respect to the base 3. The
point between xg and x_; is called decimal point if the base is 10, binary
point if the base is 2, while s depends on the sign of z (s = 0 if z is positive,
1 if negative). Relation (2.26) actually means

xg = (—1)° ( Z xkﬂk> .

k=—m

Example 2.10 The conventional writing x19 = 425.33 denotes the number = =
4102 +2-104+54+3-10"" + 31072, while 26 = 425.33 would denote the
real number £ =4-6>+2-6+5+3-6"1 +3-672. A rational number can of
course have a finite number of digits in a base and an infinite number of digits in
another base. For example, the fraction 1/3 has infinite digits in base 10, being
x10 = 0.3, while it has only one digit in base 3, being z3 = 0.1. °
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Any real number can be approximated by numbers having a finite repre-
sentation. Indeed, having fixed the base (3, the following property holds

Ve >0, Vzg € R, Jyg € Rsuch that |yg — x| < e,

where y3 has finite positional representation.

In fact, given the positive number 23 = z,xp—1...T0.T—1 ... Ty, ... With
a number of digits, finite or infinite, for any r > 1 one can build two
numbers

r—1
I(Bl) _ an,kﬂn_k, xéu) _ x(ﬂl) 4 gL
k=0

having r digits, such that mg) <z < x(ﬂu) and x(ﬂu) — x(ﬁl) = gt If

7 is chosen in such a way that 3"~"*1 < ¢, then taking ys equal to sr:g)

or xg‘) yields the desired inequality. This result legitimates the computer

representation of real numbers (and thus by a finite number of digits).

Although theoretically speaking all the bases are equivalent, in the com-
putational practice three are the bases generally employed: base 2 or binary,
base 10 or decimal (the most natural) and base 16 or hexadecimal. Almost
all modern computers use base 2, apart from a few which traditionally
employ base 16. In what follows, we will assume that 3 is an even integer.

In the binary representation, digits reduce to the two symbols 0 and 1,
called bits (binary digits), while in the hexadecimal case the symbols used
for the representation of the digits are 0,1,...,9,A,B,C,D,E,F. Clearly,
the smaller the adopted base, the longer the string of characters needed to
represent the same number.

To simplify notations, we shall write = instead of x4, leaving the base 3
understood.

2.5.2  The Floating-point Number System

Assume a given computer has N memory positions in which to store any
number. The most natural way to make use of these positions in the rep-
resentation of a real number x different from zero is to fix one of them for
its sign, N — k — 1 for the integer digits and k for the digits beyond the
point, in such a way that

x= (=1 [any_2an_3...a).G}_1 -..a0] (2.27)

s being equal to 1 or 0. Notice that one memory position is equivalent to
one bit storage only when 3 = 2. The set of numbers of this kind is called
fized-point system. Equation (2.27) stands for

N-2
z=(=1)°- 7Y 0y (2.28)
j=0
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and therefore this representation amounts to fixing a scaling factor for all
the representable numbers.

The use of fixed point strongly limits the value of the minimum and maxi-
mum numbers that can be represented on the computer, unless a very large
number N of memory positions is employed. This drawback can be easily
overcome if the scaling in (2.28) is allowed to be varying. In such a case,
given a non vanishing real number z, its floating-point representation is
given by

= (-1 (0.a1az...a;) - = (=1)* -m - " (2.29)

where ¢ € N is the number of allowed significant digits a; (with 0 < a; <
8 —1), m = ajas...a; an integer number called mantissa such that 0 <
m < % —1 and e an integer number called ezponent. Clearly, the exponent
can vary within a finite interval of admissible values: we let L < e < U
(typically L < 0 and U > 0). The N memory positions are now distributed
among the sign (one position), the significant digits (¢ positions) and the
digits for the exponent (the remaining N — ¢ — 1 positions). The number
zero has a separate representation.

Typically, on the computer there are two formats available for the floating-
point number representation: single and double precision. In the case of bi-
nary representation, these formats correspond in the standard version to
the representation with N = 32 bits (single precision)

1 8 bits 23 bits
(s e m |

and with N = 64 bits (double precision)

1 11 bits 52 bits
sl e | m |

Let us denote by

F(B8,t,L,U) = {0} U {x eR: z= (—1)5662%-6’}
i=1

the set of floating-point numbers with t significant digits, base 5 > 2, 0 <
a; < B —1, and range (L,U) with L <e < U.

In order to enforce uniqueness in a number representation, it is typi-
cally assumed that a; # 0 and m > 3'~1. In such an event a; is called
the principal significant digit, while a; is the last significant digit and the
representation of x is called normalized. The mantissa m is now varying
between $~1 and 5t — 1.

For instance, in the case 8 = 10, t = 4, L = —1 and U = 4, without
the assumption that a; # 0, the number 1 would admit the following
representations

0.1000- 10}, 0.0100 - 102, 0.0010- 103, 0.0001 - 10%.
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To always have uniqueness in the representation, it is assumed that also
the number zero has its own sign (typically s = 0 is assumed).

It can be immediately noticed that if z € F(f3,t,L,U) then also —z €
F(G,t,L,U). Moreover, the following lower and upper bounds hold for the
absolute value of z

Tmin = ﬂL_l < |Z‘| < BU(l - ﬁ_t) = Tmaz- (230)
The cardinality of F(3,t, L,U) (henceforth shortly denoted by F) is
card F =28 —-1)p" (U ~L+1)+1.

From (2.30) it turns out that it is not possible to represent any number
(apart from zero) whose absolute value is less than ,,;,. This latter limi-
tation can be overcome by completing F by the set Fp of the floating-point
de-normalized numbers obtained by removing the assumption that a; is
non null, only for the numbers that are referred to the minimum exponent
L. In such a way the uniqueness in the representation is not lost and it is
possible to generate numbers that have mantissa between 1 and g~ — 1
and belong to the interval (—3%~!, £~1). The smallest number in this set
has absolute value equal to 87,

Example 2.11 The positive numbers in the set F(2,3,—1,2) are

(0.111) - 2% = g (0.110) -2 =3,  (0.101)-2% = g (0.100) - 22 = 2,
(0.111)~2:£, (0.110) - 2 = g (0.101) -2 = g, (0.100) -2 =1,
(0.111) = % (0.110) = z, (0.101) = g (0.100) = %
(0.111) - 27! = %, (0.110) - 27' = g, (0.101) - 27! = 1%’ (0.100) - 27! = i.

They are included between @i, = L1 =272 = 1/4 and Tmaz = ﬁU(l—ﬂft) =
2%(1—-27%) = 7/2. As a whole, we have (3—1)3" "' (U - L+1) = (2—1)2°" (2 +
14 1) = 16 strictly positive numbers. Their opposites must be added to them,
as well as the number zero. We notice that when § = 2, the first significant digit
in the normalized representation is necessarily equal to 1 and thus it may not be
stored in the computer (in such an event, we call it hidden bit).

When considering also the positive de-normalized numbers, we should complete
the above set by adding the following numbers

)
16°

3 1
011)2-27 = = (010)2-27' ==, (.001)2-27' =
(.011)2 g (010)2 g (001)
According to what previously stated, the smallest de-normalized number is £~ =
27173 = 1/16. o
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2.5.8  Distribution of Floating-point Numbers

The floating-point numbers are not equally spaced along the real line, but
they get dense close to the smallest representable number. It can be checked
that the spacing between a number = € F and its next nearest y € F, where
both z and y are assumed to be non null, is at least 3~ eys|z| and at most
ear|z|, being exr = B¢ the machine epsilon. This latter represents the
distance between the number 1 and the nearest floating-point number, and
therefore it is the smallest number of F such that 1 + ep; > 1.

Having instead fixed an interval of the form [3¢, 3°*!], the numbers of F
that belong to such an interval are equally spaced and have distance equal
to 3¢7t. Decreasing (or increasing) by one the exponent gives rise to a
decrement (or increment) of a factor 5 of the distance between consecutive
numbers.

Unlike the absolute distance, the relative distance between two consecu-
tive numbers has a periodic behavior which depends only on the mantissa
m. Indeed, denoting by (—1)*m(x)3°~t one of the two numbers, the dis-
tance Ax from the successive one is equal to (—1)*4¢~!, which implies that
the relative distance is

Az (—1)spet 1

T - (=1)sm(z)Bet = m(z) (2.31)

Within the interval [3¢, 3], the ratio in (2.31) is decreasing as = increases
since in the normalized representation the mantissa varies from 5¢~1 to 3t —
1 (not included). However, as soon as & = 3°T1, the relative distance gets
back to the value 87+ and starts decreasing on the successive intervals,
as shown in Figure 2.2. This oscillatory phenomenon is called wobbling
precision and the greater the base 3, the more pronounced the effect. This
is another reason why small bases are preferably employed in computers.

2.5.4 IEC/IEEE Arithmetic

The possibility of building sets of floating-point numbers that differ in base,
number of significant digits and range of the exponent has prompted in the
past the development, for almost any computer, of a particular system F. In
order to avoid this proliferation of numerical systems, a standard has been
fixed that is nowadays almost universally accepted. This standard was de-
veloped in 1985 by the Institute of Electrical and Electronics Engineers
(shortly, IEEE) and was approved in 1989 by the International Electroni-
cal Commission (IEC) as the international standard IEC559 and it is now
known by this name (IEC is an organization analogue to the International
Standardization Organization (ISO) in the field of electronics). The stan-
dard IEC559 endorses two formats for the floating-point numbers: a basic
format, made by the system F(2,24, —125,128) for the single precision,
and by F(2,53,—1021,1024) for the double precision, both including the
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A

-23

24

FIGURE 2.2. Variation of relative distance for the set of numbers
F(2,24,—125,128) IEC/IEEE in single precision

de-normalized numbers, and an extended format, for which only the main
limitations are fixed (see Table 2.1).

| single | double || | single | double
N | > 43 bits | > 79 bits || t > 32 > 64
L | <-1021 | <16381 || U | >1024 | > 16384

TABLE 2.1. Lower or upper limits in the standard ITEC559 for the extended
format of floating-point numbers

Almost all the computers nowadays satisfy the requirements above. We
summarize in Table 2.2 the special codings that are used in IEC559 to
deal with the values +0, +o00 and with the so-called non numbers (shortly,
NaN, that is not a number), which correspond for instance to 0/0 or to
other exceptional operations.

value || exponent | mantissa

+0 L—-1 0
+oo U+1 0
NaN U+1 #0

TABLE 2.2. IEC559 codings of some exceptional values

2.5.5 Rounding of a Real Number in its Machine
Representation

The fact that on any computer only a subset F(3,¢, L, U) of R is actually
available poses several practical problems, first of all the representation in F
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of any given real number. To this concern, notice that, even if x and y were
two numbers in IF, the result of an operation on them does not necessarily
belong to F. Therefore, we must define an arithmetic also on F.

The simplest approach to solve the first problem consists of rounding
z € R in such a way that the rounded number belongs to F. Among all
the possible rounding operations, let us consider the following one. Given
2 € R in the normalized positional notation (2.29) let us substitute x by
its representant fI(z) in I, defined as

_(_1)\s ~N e . a ifat+1<5/2

fl(z) = (=1)°(0.araz2...a) - B¢, ar= { a1 if a > /2. (2.32)
The mapping fl : R — F is the most commonly used and is called rounding
(in the chopping one would take more trivially a@; = a;). Clearly, fl(z) =z
if x € F and moreover fi(x) < fl(y) if x < y Vz,y € R (monotonicity
property).

Remark 2.2 (Overflow and underflow) Everything written so far holds
only for the numbers that in (2.29) have exponent e within the range of F.
If, indeed, z € (—00, —Zmaz) U (Zmaz, 00) the value fi(x) is not defined,
while if © € (—Zmin, Tmin) the operation of rounding is defined anyway
(even in absence of de-normalized numbers). In the first case, if x is the
result of an operation on numbers of F, we speak about overflow, in the
second case about underflow (or graceful underflow if de-normalized num-
bers are accounted for). The overflow is handled by the system through an
interrupt of the executing program. |

Apart from exceptional situations, we can easily quantify the error, ab-
solute and relative, that is made by substituting fi(z) for x. The following
result can be shown (see for instance [Hig96], Theorem 2.2).

Property 2.1 If x € R is such that Tpmin < |2| < Tmax, then

fl(x) = x(1+6) with |6] <u (2.33)
where
Ll 1
u= 25 = 5eu (2.34)

is the so-called roundoff unit (or machine precision).

As a consequence of (2.33), the following bound holds for the relative error

Erel(x) = |x_|xfl(m)| <u, (235)

while, for the absolute error, one gets

E(x) =z — fl(z)| < B8 (ay...as.as41...) — (a1 ...a)|.
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From (2.32), it follows that

l(a1...ap.ai41...) = (ar...a)| < B!

)

B
2
from which

1 —ti+e

Remark 2.3 In the MATLAB environment it is possible to know imme-
diately the value of €);, which is given by the system variable eps. |

2.5.6 Machine Floating-point Operations

As previously stated, it is necessary to define on the set of machine numbers
an arithmetic which is analogous, as far as possible, to the arithmetic in R.
Thus, given any arithmetic operation o : R x R — R on two operands in
R (the symbol o may denote sum, subtraction, multiplication or division),
we shall denote by [o] the corresponding machine operation

[o]:RxR—=TF,  z[o]y=fI(fi(x)o fli(y)).

From the properties of floating-point numbers one could expect that for the
operations on two operands, whenever well defined, the following property
holds: Vz,y € F, 36 € R such that

z[o]y=(xoy)(1+9) with 6] < u. (2.36)

In order for (2.36) to be satisfied when o is the operator of subtraction, it
will require an additional assumption on the structure of the numbers in F,
that is the presence of the so-called round digit (which is addressed at the
end of this section). In particular, when o is the sum operator, it follows
that for all z,y € F (see Exercise 11)

o [+]y — (e +y)|

|| + |y u
|z + Yy

lz+yl 7

<u(l+u) (2.37)
so that the relative error associated with every machine operation will be
small, unless = + y is not small by itself. An aside comment is deserved by
the case of the sum of two numbers close in module, but opposite in sign.
In fact, in such a case x+y can be quite small, this generating the so-called
cancellation errors (as evidenced in Example 2.6).

It is important to notice that, together with properties of standard arith-
metic that are preserved when passing to floating-point arithmetic (like, for
instance, the commutativity of the sum of two addends, or the product of
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two factors), other properties are lost. An example is given by the associa-
tivity of sum: it can indeed be shown (see Exercise 12) that in general

e[+ w[+]2) # @[+]y) [+] =

We shall denote by flop the single elementary floating-point operation (sum,
subtraction, multiplication or division) (the reader is warned that in some
texts flop identifies an operation of the form a + b - ¢). According to the
previous convention, a scalar product between two vectors of length n will
require 2n — 1 flops, a product matrix-vector 2(m — 1)n flops if the matrix
is n x m and finally, a product matrix-matrix 2(r — 1)mn flops if the two
matrices are m x r and r X n respectively.

Remark 2.4 (IEC559 arithmetic) The IEC559 standard also defines a
closed arithmetic on F, this meaning that any operation on it produces
a result that can be represented within the system itself, although not
necessarily being expected from a pure mathematical standpoint. As an
example, in Table 2.3 we report the results that are obtained in exceptional
situations.

exception || examples | result
non valid operation || 0/0, 0 - oo NaN
over flow +oo
division by zero 1/0 +o0
under flow subnormal numbers

TABLE 2.3. Results for some exceptional operations

The presence of a NaN (Not a Number) in a sequence of operations au-
tomatically implies that the result is a NalN. General acceptance of this
standard is still ongoing. |

We mention that not all the floating-point systems satisfy (2.36). One of
the main reasons is the absence of the round digit in subtraction, that is,
an extra-bit that gets into action on the mantissa level when the subtrac-
tion between two floating-point numbers is performed. To demonstrate the
importance of the round digit, let us consider the following example with
a system [F having = 10 and ¢t = 2. Let us subtract 1 and 0.99. We have

10 - 0.1 10% - 0.10
10°-0.99 = 10'-0.09

101001 —

that is, the result differs from the exact one by a factor 10. If we now
execute the same subtraction using the round digit, we obtain the exact
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result. Indeed

101 - 0.1 10+ 0.10
10°-0.99 = 10'-0.099]

10'-0.00[1] —

In fact, it can be shown that addition and subtraction, if executed without
round digit, do not satisfy the property

fllx £y) = (x £y)(1 4 6) with |6] < u,
but the following one
fllz £y) =2(1+a) £y(1l + B) with |a| + 3] < u.

An arithmetic for which this latter event happens is called aberrant. In some
computers the round digit does not exist, most of the care being spent on
velocity in the computation. Nowadays, however, the trend is to use even
two round digits (see [HP94] for technical details about the subject).

2.6 Exercises

1. Use (2.7) to compute the condition number K (d) of the following expres-
sions

(1) z—a’=0,a>0 (2) d—x+1=0,

d being the datum, a a parameter and = the “unknown”.
[Solution : (1) K(d) ~ |d||logal, (2) K(d) = |d|/]d + 1].]

2. Study the well posedness and the conditioning in the infinity norm of the
following problem as a function of the datum d: find x and y such that

r+dy=1,
dr +vy =0.

[Solution : the given problem is a linear system whose matrix is A =
1 d
d 1
case, Koo(A) = [(|d[ +1)/(|d] = 1)[]

3. Study the conditioning of the solving formula z+ = —p 4+ \/p? + ¢ for
the second degree equation z? + 2px — ¢ with respect to changes in the
parameters p and g separately.

[Solution : K(p) = |p|/\/p? + ¢, K(q) = lal/2le£|\/P* + )]

4. Consider the following Cauchy problem

}. It is well-posed if A is nonsingular, i.e., if d # +1. In such a

{ i/(t) = zoe” (acos(t) —sin(t)), t>0 (2.38)

(0) = o
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whose solution is z(t) = zoe® cos(t) (a is a given real number). Study the
conditioning of (2.38) with respect to the choice of the initial datum and
check that on unbounded intervals it is well conditioned if a < 0, while it
is ill conditioned if @ > 0.

[Hint : consider the definition of Kaps(a).]

Let T # 0 be an approximation of a non null quantity z. Find the relation
between the relative error € = | — z|/|z| and E = |z — Z|/|Z|.

Find a stable formula for evaluating the square root of a complex number.

. Determine all the elements of the set F = (10,6, —9,9), in both normalized

and de-normalized cases.

Consider the set of the de-normalized numbers Fp and study the behavior
of the absolute distance and of the relative distance between two of these
numbers. Does the wobbling precision effect arise again?

[Hint : for these numbers, uniformity in the relative density is lost. As a
consequence, the absolute distance remains constant (equal to BL%), while
the relative one rapidly grows as x tends to zero.]

What is the value of 0° in IEEE arithmetic?

[Solution : ideally, the outcome should be NaN. In practice, IEEE systems
recover the value 1. A motivation of this result can be found in [Gol91].]
Show that, due to cancellation errors, the following sequence

1
k?

is not well suited to finite arithmetic computations of the integral I

IoZlOgg, Iy + 511 = k=1,2,...,n, (2.39)

[01 ‘j_ 5da[: when n is sufficiently large, although it works in infinite arith-
Vg
metic.

[Hint : consider the initial perturbed datum fo = Ip + po and study the
propagation of the error po within (2.39).]

Prove (2.37).
[Solution : notice that

ol ly— @+l _ Ja+ - (U= )DL [fie) =2+ f1(y) ~ ]
|+ y| - lz +yl lz +yl '

Then, use (2.36) and (2.35).]

Given z,y,z € F with x + vy, y + 2z, * + y + z that fall into the range of F,
show that

(2 [+] ) z—w+y+z>|sclz<2|m+y|+|z|>u
@ [+] (v — (@ 4y +2)| < Cs = (|2 + 2]y + 2|)u.

Which among the following approximations of 7,

1 1 1 1
ST (R

7r:6(0.5+( 5;3+ (05)5+3'5(0'5)7+...)

(2.40)

2-4.5 2:4.-6-7
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better limits the propagation of rounding errors? Compare using MATLAB
the obtained results as a function of the number of the terms in each sum
in (2.40).

Analyze the stability, with respect to propagation of rounding errors, of the
following two MATLAB codes to evaluate f(z) = (e —1)/z for |z| < 1

% Algorithm 1 % Algorithm 2
if x == y = exp (x);
f=1, ify ==
else =1;
f=(exp(x)-1)/x; else
end f=(y-1)/log(y)
end

[Solution : the first algorithm is inaccurate due to cancellation errors, while
the second one (in presence of round digit) is stable and accurate.]

In binary arithmetic one can show [Dek71] that the rounding error in the
sum of two numbers a and b, with a > b, can be computed as

(a[+]0)[=]a) [=]0)

Based on this property, a method has been proposed, called Kahan com-
pensated sum, to compute the sum of n addends a; in such a way that the
rounding errors are compensated. In practice, letting the initial rounding
error e; = 0 and s; = a1, at the i-th step, with ¢ > 2, the algorithm
evaluates y; = x; — e;—1, the sum is updated setting s; = s;—1 + y; and
the new rounding error is computed as e; = (s; — s;i—1) — ¥;. Implement
this algorithm in MATLAB and check its accuracy by evaluating again the
second expression in (2.40).

The area A(T) of a triangle T' with sides a, b and ¢, can be computed using
the following formula

A(T) = +/plp—a)(p—b)(p—c),

where p is half the perimeter of T'. Show that in the case of strongly de-
formed triangles (a ~ b + ¢), this formula lacks accuracy and check this
experimentally.
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3

Direct Methods for the Solution of
Linear Systems

A system of m linear equations in n unknowns consists of a set of algebraic
relations of the form

Sagzi=bi, i=1,....m (3.1)
j=1

where x; are the unknowns, a;; are the coefficients of the system and b;
are the components of the right hand side. System (3.1) can be more con-
veniently written in matrix form as

Ax = b, (3.2)

where we have denoted by A = (a;;) € C™*™ the coefficient matrix, by
b=(b;) € C™ the right side vector and by x=(z;) € C" the unknown
vector, respectively. We call a solution of (3.2) any n-tuple of values x;
which satisfies (3.1).

In this chapter we shall be mainly dealing with real-valued square systems
of order n, that is, systems of the form (3.2) with A € R"*™ and b € R".
In such cases existence and uniqueness of the solution of (3.2) are ensured
if one of the following (equivalent) hypotheses holds:

1. A is invertible;
2. rank(A)=n;

3. the homogeneous system Ax=0 admits only the null solution.
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The solution of system (3.2) is formally provided by Cramer’s rule

Y
~ det(A

T ik j=1,...,n, (3.3)
where Aj is the determinant of the matrix obtained by substituting the
j-th column of A with the right hand side b. This formula is, however,
of little practical use. Indeed, if the determinants are evaluated by the
recursive relation (1.4), the computational effort of Cramer’s rule is of the
order of (n + 1)! flops and therefore turns out to be unacceptable even for
small dimensions of A (for instance, a computer able to perform 10° flops
per second would take 9.6 - 1047 years to solve a linear system of only 50
equations).

For this reason, numerical methods that are alternatives to Cramer’s rule
have been developed. They are called direct methods if they yield the so-
lution of the system in a finite number of steps, iterative if they require
(theoretically) an infinite number of steps. Iterative methods will be ad-
dressed in the next chapter. We notice from now on that the choice between
a direct and an iterative method does not depend only on the theoretical ef-
ficiency of the scheme, but also on the particular type of matrix, on memory
storage requirements and, finally, on the architecture of the computer.

3.1 Stability Analysis of Linear Systems

Solving a linear system by a numerical method invariably leads to the
introduction of rounding errors. Only using stable numerical methods can
keep away the propagation of such errors from polluting the accuracy of the
solution. In this section two aspects of stability analysis will be addressed.

Firstly, we will analyze the sensitivity of the solution of (3.2) to changes
in the data A and b (forward a priori analysis). Secondly, assuming that
an approximate solution X of (3.2) is available, we shall quantify the per-
turbations on the data A and b in order for X to be the exact solution
of a perturbed system (backward a priori analysis). The size of these per-
turbations will in turn allow us to measure the accuracy of the computed
solution X by the use of a posteriori analysis.

3.1.1  The Condition Number of a Matrix

The condition number of a matrix A € C"*" is defined as
K(A) = [[A]l [[A7], (3.4)

where || - || is an induced matrix norm. In general K(A) depends on the
choice of the norm; this will be made clear by introducing a subscript
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into the notation, for instance, K., (A) = [|Al/cc [|A™}|loo. More generally,
K,(A) will denote the condition number of A in the p-norm. Remarkable
instances are p = 1, p = 2 and p = oo (we refer to Exercise 1 for the
relations among K7 (A), K2(A) and K (A)).

As already noticed in Example 2.3, an increase in the condition number
produces a higher sensitivity of the solution of the linear system to changes
in the data. Let us start by noticing that K(A) > 1 since

L= [[AATH < [JA[[IAT] = K (A).

Moreover, K(A™!) = K(A) and Va € C with o # 0, K(aA) = A)
Finally, if A is orthogonal, K5(A) = 1 since ||A|2 = \/ (ATA) = /p(D) =1
and A~! = AT, The condition number of a singular matrix is set equal to
infinity.

For p = 2, K5(A) can be characterized as follows. Starting from (1.21),
it can be proved that

_ —1._ 91
Kay(A) =[[All2 [A™ 2 = on(A)

where 01(A) and 0, (A) are the maximum and minimum singular values of
A (see Property 1.7). As a consequence, in the case of symmetric positive
definite matrices we have

Ka(A) = 2197 p(a)p(AY) (3.5)

)\min

where A4 and A, are the maximum and minimum eigenvalues of A.
To check (3.5), notice that

HA||2 =V p(ATA) -V p(A2) =V >‘72na3: = Mnaz-

Moreover, since A(A™!) = 1/A(A), one gets ||A7Y|l2 = 1/Ain from which
(3.5) follows. For that reason, Ko(A) is called spectral condition number.

Remark 3.1 Define the relative distance of A € C"*" from the set of
singular matrices with respect to the p-norm by

dist,(A) = min { 613'17 A+ 0A s singular} .
P

It can then be shown that ([Kah66], [Gas83])

1

dist,(A) = KA

(3.6)

Equation (3.6) suggests that a matrix A with a high condition number
can behave like a singular matrix of the form A+6A. In other words, null
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perturbations in the right hand side do not necessarily yield non vanishing
changes in the solution since, if A+0A is singular, the homogeneous system
(A + 6A)z = 0 does no longer admit only the null solution. From (3.6) it
also follows that if A+0A is nonsingular then

[6A[lplIAll, < 1. (3.7)
o

Relation (3.6) seems to suggest that a natural candidate for measuring
the ill-conditioning of a matrix is its determinant, since from (3.3) one is
prompted to conclude that small determinants mean nearly-singular matri-
ces. However this conclusion is wrong, as there exist examples of matrices
with small (respectively, high) determinants and small (respectively, high)
condition numbers (see Exercise 2).

3.1.2  Forward a priori Analysis

In this section we introduce a measure of the sensitivity of the system to
changes in the data. These changes will be interpreted in Section 3.10 as
being the effects of rounding errors induced by the numerical method used
to solve the system. For a more comprehensive analysis of the subject we
refer to [Dat95], [GL89], [Ste73] and [Var62].

Due to rounding errors, a numerical method for solving (3.2) does not
provide the exact solution but only an approximate one, which satisfies a
perturbed system. In other words, a numerical method yields an (exact)
solution x 4 dx of the perturbed system

(A + 6A)(x + 6x) = b + &b. (3.8)

The next result provides an estimate of éx in terms of A and éb.

Theorem 3.1 Let A € R™*"™ be a nonsingular matriz and 6A € R™*"™ be
such that (3.7) is satisfied for a matriz norm || - ||. Then, if x€ R™ is the
solution of Ax=b with b € R™ (b # 0) and éx € R" satisfies (3.8) for
éb € R",

l6x| _ K(A) <||6b| ||6A||> . (3.9)

[l 1= K(A)[SA[I/IA[\ (bl [lA]l

Proof. From (3.7) it follows that the matrix A~'§A has norm less than 1. Then,
due to Theorem 1.5, T4+ A™'§A is invertible and from (1.26) it follows that

1 1

T+A'6A) 7Y < = '
I( VIS T A=A = T AT A

(3.10)

On the other hand, solving for §x in (3.8) and recalling that Ax = b, one gets
6x = (I1+A'6A) 'A"!(6b — §Ax),
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from which, passing to the norms and using (3.10), it follows that

A71
x| < A (bl + Al )

[A=H] (oAl
Finally, dividing both sides by ||x|| (which is nonzero since b # 0 and A is
nonsingular) and noticing that ||x|| > ||b||/||A[|, the result follows. &

Well-conditioning alone is not enough to yield an accurate solution of the
linear system. It is indeed crucial, as pointed out in Chapter 2, to resort to
stable algorithms. Conversely, ill-conditioning does not necessarily exclude
that for particular choices of the right side b the overall conditioning of the
system is good (see Exercise 4).

A particular case of Theorem 3.1 is the following.

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold and let
O0A =0. Then

1 [éb] _ [[&x]
K(A) [l =[xl —

I8bi|
bl

K(A) (3.11)

Proof. We will prove only the first inequality since the second one directly
follows from (3.9). Relation 6x = A™'8b yields ||§b| < ||A| ||6x|. Multiplying
both sides by ||x|| and recalling that ||x|| < ||A™"|| ||b|| it follows that ||x]|| [|6b]| <
K(A)|b]|| ||6x||, which is the desired inequality. <&

In order to employ the inequalities (3.10) and (3.11) in the analysis of
propagation of rounding errors in the case of direct methods, ||[6A] and
||6b|| should be bounded in terms of the dimension of the system and of
the characteristics of the floating-point arithmetic that is being used.

It is indeed reasonable to expect that the perturbations induced by a
method for solving a linear system are such that [|[6A|| < v[|A|| and ||6b]| <
v|Ibl|, 7 being a positive number that depends on the roundoff unit u (for
example, we shall assume henceforth that v = 3'~*, where 3 is the base
and t is the number of digits of the mantissa of the floating-point system
F). In such a case (3.9) can be completed by the following theorem.

Theorem 3.3 Assume that ||6A] < ~||All, ||6b| < v||b|| with v € RT and
6A € R"*" §b € R™. Then, if YK(A) < 1 the following inequalities hold

Ix + 6x|| - 1+~K(A)
x|~ 1—-yK(A)

(3.12)

joxl _ 2%
Il <T@ (319)




62 3. Direct Methods for the Solution of Linear Systems

Proof. From (3.8) it follows that (I+ A7*§A)(x + 6x) = x + A~*8b. Moreover,
since YK (A) < 1 and [|6A|| < v||A] it turns out that T+ A™'§A is nonsingular.
Taking the inverse of such a matrix and passing to the norms we get ||x + 6x|| <
X4+ A"6A) | (IIx]] + v|A7| |Ib]]). From Theorem 1.5 it then follows that

1

< -
et 061 < 1A Taay

(eIl +~ 1A= Bl

which implies (3.12), since ||[AT'8A|| < vK(A) and ||b|| < [|A] ||x]]-
Let us prove (3.13). Subtracting (3.2) from (3.8) it follows that

Abx = —6A(x + 6x) + 6b.
Inverting A and passing to the norms, the following inequality is obtained

l6x]| < [[ATT6A] [lx + 6x[| + [AT"]| [|6b]|

B (3.14)
< yKA)|x A+ 6| +~[|AT ] [Ib]l.

Dividing both sides by ||x|| and using the triangular inequality ||x+6x|| < ||6x||+
[Ix|l, we finally get (3.13). <&

Remarkable instances of perturbations 6A and éb are those for which
[6A] < ~|A] and |6b| < ~|b| with v > 0. Hereafter, the absolute value
notation B = |A| denotes the matrix n x n having entries b;; = |a;;| with
1,5 = 1,...,n and the inequality C < D, with C,D € R™*" has the
following meaning

Cijgdij fori:l,...,m, j:l,...,n.

If || - |loo is considered, from (3.14) it follows that

6xlloo  _ IIATH AL [x][+ [A7Y D] [l

=
X|| oo 1— A=A o) 1% o
bS] (L=l AT AL o) 1]l (3.15)

2y _
< AT AT [loo-
L= JAZH A] Jloo

Estimate (3.15) is generally too pessimistic; however, the following compo-
nentwise error estimates of 6x can be derived from (3.15)

|6 S’y\ra)\ Al [x+6x|, i=1,...,n if 6b=0,

g (3.16)
51, ri,| b
W'_ “}L', i=1,...,n ifA=0,
|| |r(i) |

being rg;) the row vector e/’ A~L. Estimates (3.16) are more stringent than
(3.15), as can be seen in Example 3.1. The first inequality in (3.16) can be
used when the perturbed solution x + dx is known, being henceforth x+ éx
the solution computed by a numerical method.
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In the case where |A~!| |b| = |x|, the parameter v in (3.15) is equal
to 1. For such systems the components of the solution are insensitive to
perturbations to the right side. A slightly worse situation occurs when A
is a triangular M-matrix and b has positive entries. In such a case 7 is
bounded by 2n — 1, since

iy LA x| < (20 = 1)l

For further details on the subject we refer to [Ske79], [CI95] and [Hig89].
Results linking componentwise estimates to normwise estimates through
the so-called hypernorms can be found in [ADR92].

Example 3.1 Consider the linear system Ax=b with

],b:

which has solution x” = (a, 1), where 0 < a < 1. Let us compare the results
obtained using (3.15) and (3.16). From

2 1
« a+g

Q=

A=
1

[e3

0

Q=

_ _ 2 \"
A 1ALl =147 bl = (a+ 21) (317)

it follows that the supremum of (3.17) is unbounded as a — 0, exactly as it
happens in the case of ||[A]l«. On the other hand, the amplification factor of
the error in (3.16) is bounded. Indeed, the component of the maximum absolute
value, x2, of the solution, satisfies |r(T2)| [A] |x|/|x=2] = 1. °

3.1.8  Backward a priori Analysis

The numerical methods that we have considered thus far do not require the
explicit computation of the inverse of A to solve Ax=b. However, we can
always assume that they yield an approximate solution of the form x = Cb,
where the matrix C, due to rounding errors, is an approximation of A~!.
In practice, C is very seldom constructed; in case this should happen, the
following result yields an estimate of the error that is made substituting C
for A=! (see [IK66], Chapter 2, Theorem 7).

Property 3.1 Let R=AC—1; if |R| < 1, then A and C are nonsingular
and

Il IRI IC— A1 < ICIL IR

A== TRy Ay < TR

(3.18)

In the frame of backward a priori analysis we can interpret C as being the
inverse of A 4+ 6A (for a suitable unknown 6A). We are thus assuming that
C(A + 6A) = 1. This yields

SA=C'-A=—-(AC-T)C"!'=-RC!
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and, as a consequence, if |R|| < 1 it turns out that

[RI A

[6A] < :
1= [IR]

(3.19)
having used the first inequality in (3.18), where A is assumed to be an
approximation of the inverse of C (notice that the roles of C and A can be
interchanged).

3.1.4 A posteriori Analysis

Having approximated the inverse of A by a matrix C turns into having an
approximation of the solution of the linear system (3.2). Let us denote by
y a known approximate solution. The aim of the a posteriori analysis is to
relate the (unknown) error e = y — x to quantities that can be computed
using y and C.

The starting point of the analysis relies on the fact that the residual
vector r = b — Ay is in general nonzero, since y is just an approximation
to the unknown exact solution. The residual can be related to the error
through Property 3.1 as follows. We have e = A~"!(Ay —b) = —A~!r and
thus, if ||R]] < 1 then

[l IC]l

lell < 7= IR (3.20)
Notice that the estimate does not necessarily require y to coincide with
the solution X = Cb of the backward a priori analysis. One could therefore
think of computing C only for the purpose of using the estimate (3.20) (for
instance, in the case where (3.2) is solved through the Gauss elimination
method, one can compute C a posteriori using the LU factorization of A,
see Sections 3.3 and 3.3.1).

We conclude by noticing that if §b is interpreted in (3.11) as being the
residual of the computed solution y = x + 6x, it also follows that

llell

w(aylEl (3.21)

[ = bl

The estimate (3.21) is not used in practice since the computed residual
is affected by rounding errors. A more significant estimate (in the || - oo
norm) is obtained letting ¥ = fl(b — Ay) and assuming that ¥ = r + ér
with [8t] < yn41(|A] |y] + [b]), where yns1 = (n+ /(1 — (n+ 1)) > 0,
from which we have

lelloo - I TAZI(F] + a1 (IALly ] + [P lloo
Iyllee ™ 13 [loo

Formulae like this last one are implemented in the library for linear algebra
LAPACK (see [ABBT92]).
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3.2 Solution of Triangular Systems

Consider the nonsingular 3x3 lower triangular system

l11 0 0 X1 b1
lor lap O Ty | = by
31 l32 33 T3 bs

Since the matrix is nonsingular, its diagonal entries l;, i = 1,2,3, are
non vanishing, hence we can solve sequentially for the unknown values
r;, 1 =1,2,3 as follows

1 = b1/l
x9 = (by — lo121) /122,
x3 = (bg — ls1w1 — l3222) /133.

This algorithm can be extended to systems n x n and is called forward
substitution. In the case of a system Lx=b, with L being a nonsingular
lower triangular matrix of order n (n > 2), the method takes the form

by
A

la

1 i-1 (3.22)
Ti = b; Zlijxj , 1=2,...,n

(23 _7:1

The number of multiplications and divisions to execute the algorithm is
equal to n(n+1)/2, while the number of sums and subtractions is n(n—1)/2.
The global operation count for (3.22) is thus n? flops.

Similar conclusions can be drawn for a linear system Ux=b, where U
is a nonsingular upper triangular matrix of order n (n > 2). In this case
the algorithm is called backward substitution and in the general case can
be written as

bn
Tp = ,
unn
1 n (3.23)
i=— | b — E iiTi | = 71,...71.
X Ui 'U,ij (3 n

j=i+1

Its computational cost is still n? flops.

3.2.1 Implementation of Substitution Methods

Each i-th step of algorithm (3.22) requires performing the scalar product
between the row vector L(é,1 : ¢ — 1) (this notation denoting the vector
extracted from matrix L taking the elements of the i-th row from the first
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to the (i-1)-th column) and the column vector x(1 : 4 — 1). The access to
matrix L is thus by row; for that reason, the forward substitution algorithm,
when implemented in the form above, is called row-oriented.

Its coding is reported in Program 1 (the Program mat_square that is
called by forward row merely checks that L is a square matrix).

Program 1 - forward_row : Forward substitution: row-oriented version

function [x]=forward_row(L,b)
[n]=mat_square(L); x(1) = b(1)/L(1,1);
for i = 2:n, x (i) = (b(i)-L(i,1:i-1)*(x(1:i-1))")/L(i,i); end

)
x=x";

To obtain a column-oriented version of the same algorithm, we take ad-
vantage of the fact that ¢-th component of the vector x, once computed,
can be conveniently eliminated from the system.

An implementation of such a procedure, where the solution x is over-
written on the right vector b, is reported in Program 2.

Program 2 - forward_col : Forward substitution: column-oriented version

function [b]=forward_col(L,b)
[n]=mat_square(L);
for j=1:n-1,
b(3)= b(3)/L(); b(i-+1:n)=b(+1:n)-b()*L(+Lin,j);
end; b(n) = b(n)/L(n,n);

Implementing the same algorithm by a row-oriented rather than a column-
oriented approach, might dramatically change its performance (but of course,
not the solution). The choice of the form of implementation must therefore
be subordinated to the specific hardware that is used.
Similar considerations hold for the backward substitution method, pre-

sented in (3.23) in its row-oriented version.
In Program 3 only the column-oriented version of the algorithm is coded.
As usual, the vector x is overwritten on b.

Program 3 - backward_col : Backward substitution: column-oriented ver-

sion

function [b]=backward_col(U,b)
[n]=mat_square(U);
for j = n:-1:2,
b(3)=b(3)/U(i.); b(L:j-1)=b(1:5-1)-b()*U(Lj-L);
end; b(1) = b(1)/U(1,1);

When large triangular systems must be solved, only the triangular portion
of the matrix should be stored leading to considerable saving of memory
resources.
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3.2.2  Rounding Error Analysis

The analysis developed so far has not accounted for the presence of round-
ing errors. When including these, the forward and backward substitution
algorithms no longer yield the exact solutions to the systems Lx=Db and
Uy=b, but rather provide approximate solutions X that can be regarded
as being ezact solutions to the perturbed systems

(L+6L)R=b, (U+6U)%=h,

where 6L = (6l;;) and 6U = (bu;j) are perturbation matrices. In order
to apply the estimates (3.9) carried out in Section 3.1.2, we must provide
estimates of the perturbation matrices, 6. and 6U, as a function of the
entries of L and U, of their size and of the characteristics of the floating-
point arithmetic. For this purpose, it can be shown that

nu

OT| <
| ‘_l—nu

T, (3.24)

where T is equal to L or U, u = %ﬂlft is the roundoff unit defined in (2.34).
Clearly, if nu < 1 from (3.24) it turns out that, using a Taylor expansion,
|6T| < nu|T| 4+ O(u?). Moreover, from (3.24) and (3.9) it follows that, if
nuK (T) < 1, then

Ix — x| - nuK(T)

S Tk )+ O (3.25)

for the norms || - |1, || - [[co and the Frobenius norm. If u is sufficiently
small (as typically happens), the perturbations introduced by the rounding
errors in the solution of a triangular system can thus be neglected. As
a consequence, the accuracy of the solution computed by the forward or
backward substitution algorithm is generally very high.

These results can be improved by introducing some additional assump-
tions on the entries of L or U. In particular, if the entries of U are such
that |u;;| > |u; ] for any j > 4, then

|z; — 75| < 2”_”1% I?gf(ﬁﬂ, 1<i<n.
The same result holds if T=L, provided that |l;;| > |l;;| for any j < ¢, or if
L and U are diagonally dominant. The previous estimates will be employed
in Sections 3.3.1 and 3.4.2.

For the proofs of the results reported so far, see [FM67], [Hig89] and
[Hig88|.

3.2.8 Inverse of a Triangular Matriz

The algorithm (3.23) can be employed to explicitly compute the inverse
of an upper triangular matrix. Indeed, given an upper triangular matrix
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U, the column vectors v; of the inverse V=(vi,...,v,) of U satisfy the
following linear systems

UVi = €y, 1= 1, ,n (326)

where {e;} is the canonical basis of R” (defined in Example 1.3). Solving
for v; thus requires the application of algorithm (3.23) n times to (3.26).

This procedure is quite inefficient since at least half the entries of the
inverse of U are null. Let us take advantage of this as follows. Denote by
Vi = (V... V)T the vector of size k such that

URv, =1, k=1,...,n 3.27
k k 9 )

where U®) is the principal submatrix of U of order k and 1, the vector of
RF having null entries, except the first one which is equal to 1. Systems
(3.27) are upper triangular, but have order k and can be again solved using
the method (3.23). We end up with the following inversion algorithm for
upper triangular matrices: for k =n,n —1,... ,1 compute

Vg, = U;Zkl )

v = —uz' Y wigvje, fori=k—1k=2...,1 (3.28)

j=it1

At the end of this procedure the vectors v}, furnish the non vanishing entries
of the columns of U~!. The algorithm requires about n®/3 + (3/4)n? flops.
Once again, due to rounding errors, the algorithm (3.28) no longer yields
the exact solution, but an approximation of it. The error that is introduced
can be estimated using the backward a priori analysis carried out in Section
3.1.3.

A similar procedure can be constructed from (3.22) to compute the in-
verse of a lower triangular system.

3.3 The Gaussian Elimination Method (GEM) and
LU Factorization

The Gaussian elimination method aims at reducing the system Ax=Db to an
equivalent system (that is, having the same solution) of the form Ux=Db,
where U is an upper triangular matrix and b is an updated right side
vector. This latter system can then be solved by the backward substitution
method. Let us denote the original system by AMx = b(*). During the
reduction procedure we basically employ the property which states that
replacing one of the equations by the difference between this equation and
another one multiplied by a non null constant yields an equivalent system
(i.e., one with the same solution).
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Thus, consider a nonsingular matrix A € R™*" and suppose that the
diagonal entry a;; is non vanishing. Introducing the multipliers

o

_ il S
mil—TU, 2—273,...771,
aqy

where agl-) denote the elements of A(M), it is possible to eliminate the un-
known x; from the rows other than the first one by simply subtracting
from row ¢, with ¢ = 2,... ,n, the first row multiplied by m;; and doing
the same on the right side. If we now define

@ _ 0 )
ij

a;; = — miiay;, 1,]=2,...,n,

R T

where bl(-l) denote the components of b() | we get a new system of the form

) ™ p(D)

ayy Qg ... Gy T 1
0 o ... aP zy || b
0 W@ .. o | La b2

which we denote by A®)x = b(®| that is equivalent to the starting one.
Similarly, we can transform the system in such a way that the unknown
To is eliminated from rows 3,...,n. In general, we end up with the finite
sequence of systems

ARx =bF) 1<k <n, (3.29)

where, for k > 2, matrix A®) takes the following form

¢! 1 1) 1
A R 1
0 afy agy
NI, I : o |
0O ... 0 agz) a,(;;)
. 0 ... 0 aikg a%kn) ]
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having assumed that a,gf) #0fori=1,... k—1.1t is clear that for k =n
we obtain the upper triangular system A(™x = b(™)

r 1 1 1) 7 r 1) 7

o) o) ) . o
0 i || o
0 . : : :

L0 al) | L@ b |

Consistently with the notations that have been previously introduced, we
denote by U the upper triangular matrix A, The entries a,(fz) are called
pivots and must obviously be non null for k =1,... ;n—1.

In order to highlight the formulae which transform the k-th system into
the k 4 1-th one, for £ =1,... ,n — 1 we assume that agz) # 0 and define
the multiplier

o0
mik:%7 i=k+1,...,n. (3.30)
Ok
Then we let
k k k .
az(.j-i-l):agj),mika;j), i,j=k+1,...,n (331)

D 26— b, i = kLo m

Example 3.2 Let us use GEM to solve the following system

1 1 _u

r1 + 372 + 33 = G

(AWx = bM) oy o+ Ly, 4 lp, — 13
21 3:b2 13 12 )

1 1 1 _ 47

31+ T2+ 5T3 = g

which admits the solution x=(1, 1, 1)¥. At the first step we compute the mul-
tipliers mo1 = 1/2 and ms1 = 1/3, and subtract from the second and third
equation of the system the first row multiplied by m21 and ms1, respectively. We
obtain the equivalent system

1+ %CEQ + %333 = %

(A®x =b®) 0 + Sz + Has = 3
1 4 31

0 + 22 + T3 = g

If we now subtract the second row multiplied by ms2 = 1 from the third one, we
end up with the upper triangular system

r + 3z +  gwzs = 4
(A®Px =b®) 0 + 72 + 28 = 5,
1 _ 1
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from which we immediately compute 3 = 1 and then, by back substitution, the
remaining unknowns r; = 2 = 1. °

Remark 3.2 The matrix in Example 3.2 is called the Hilbert matriz of
order 3. In the general n x n case, its entries are

hij=1/(i+j—1), dj=1,...,n (3.32)
As we shall see later on, this matrix provides the paradigm of an ill-
conditioned matrix. [ ]

To complete Gaussian elimination 2(n — 1)n(n +1)/3 4+ n(n — 1) flops are
required, plus n? flops to backsolve the triangular system U x = b(™.
Therefore, about (2n3/3 + 2n?) flops are needed to solve the linear sys-
tem using GEM. Neglecting the lower order terms, we can state that the
Gaussian elimination process has a cost of 2n3/3 flops.

As previously noticed, GEM terminates safely iff the pivotal elements a,(clz),
for k = 1,... ,n — 1, are non vanishing. Unfortunately, having non null
diagonal entries in A is not enough to prevent zero pivots to arise during
the elimination process. For example, matrix A in (3.33) is nonsingular and
has nonzero diagonal entries

12 3 1 2 3
A=]2 4 5|, A®=]0 o] -1 |. (3.33)
78 9 0 —6 —12

Nevertheless, when GEM is applied, it is interrupted at the second step
since ag) = 0.

More restrictive conditions on A are thus needed to ensure the appli-
cability of the method. We shall see in Section 3.3.1 that if the leading
dominating minors d; of A are nonzero for i = 1,... ,n— 1, then the corre-
sponding pivotal entries agz) must necessarily be non vanishing. We recall
that d; is the determinant of A;, the i-th principal submatrix made by the
first ¢ rows and columns of A. The matrix in the previous example does
not satisfy this condition, having d; = 1 and ds = 0.

Classes of matrices exist such that GEM can be always safely employed in
its basic form (3.31). Among them, we recall the following ones:

1. matrices diagonally dominant by rows;

2. matrices diagonally dominant by columns. In such a case one can even
show that the multipliers are in module less than or equal to 1 (see
Property 3.2);

3. matrices symmetric and positive definite (see Theorem 3.6).

For a rigorous derivation of these results, we refer to the forthcoming sec-
tions.
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3.3.1 GEM as a Factorization Method

In this section we show how GEM is equivalent to performing a factorization
of the matrix A into the product of two matrices, A=LU, with U=A("),
Since L and U depend only on A and not on the right hand side, the same
factorization can be reused when solving several linear systems having the
same matrix A but different right hand side b, with a considerable reduction
of the operation count (indeed, the main computational effort, about 2n3/3
flops, is spent in the elimination procedure).

Let us go back to Example 3.2 concerning the Hilbert matrix Hs. In
practice, to pass from A=Hj to the matrix A at the second step, we
have multiplied the system by the matrix

100 1 00
My=| -3 1 0|=] -ma 10
-+ 01 -mg1 0 1
Indeed,
1 1
L3 3
MA=MAD =10 &4 L |=A®
1 4
0 15 5

Similarly, to perform the second (and last) step of GEM, we must multiply
A® by the matrix

1 0 0 1 0 0
Mo=|0 1 0|=1]0 10|,
0 -1 1 0 —Mm32 1

where A®) = MA@ Therefore
MoM;A = A®) = U, (3.34)

On the other hand, matrices M; and My are lower triangular, their product
is still lower triangular, as is their inverse; thus, from (3.34) one gets

A = (MyM;)"'U = LU,

which is the desired factorization of A.
This identity can be generalized as follows. Setting

T
myg — (0, ,O,mk+17k,... ,mn’k) cR"
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and defining

1 0 0 0
lo 1 0 0| . 7
Mk = 0 My 1 0 = In mypeg
L0 ... —muy, 0 L1

as the k-th Gaussian transformation matriz, one finds out that
(Mk)ip = 6ip - (mkeg)ip = 5ip - mikékpa 'va = 1a cee s

On the other hand, from (3.31) we have that

§f+1) a’(;c) - mlkékka’kj Z mzkékp ;];)7 Zv] =k+ L...un,
p=1
or, equivalently,
AFFD — VAR, (3.35)

As a consequence, at the end of the elimination process the matrices My,
with k =1,... ,n — 1, and the matrix U have been generated such that

M,—1M,—o...M;A =T.
The matrices My, are unit lower triangular with inverse given by

M; ' =21, — My =1, + mye;, (3.36)

T

where (m;e] )(mje]) are equal to the null matrix if i # j. As a consequence

A = MMM U

n

(In + mle,{)(]:n —+ mgeg) e (In + mnflezfl)U

n—1
(In + me?) U
i=1

1 0 0
(3.37)
mo1 1
- ma2 uU.
0
L mMmp1 Mp2 ... Mp n—1 1 |
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Defining L = (M, _1M,,_o...M;)~"* =M;'... M1, it follows that
A=LU.

We notice that, due to (3.37), the subdiagonal entries of L are the multi-
pliers my, produced by GEM, while the diagonal entries are equal to one.

Once the matrices L and U have been computed, solving the linear system
consists only of solving successively the two triangular systems

Ly=b
Ux =y.

The computational cost of the factorization process is obviously the same
as that required by GEM.

The following result establishes a link between the leading dominant
minors of a matrix and its LU factorization induced by GEM.

Theorem 3.4 Let A € R"*"™. The LU factorization of A with l;; = 1 for
1 =1,...,n exists and is unique iff the principal submatrices A; of A of
orderi=1,...,n—1 are nonsingular.

Proof. The existence of the LU factorization can be proved following the steps
of the GEM. Here we prefer to pursue an alternative approach, which allows for
proving at the same time both existence and uniqueness and that will be used
again in later sections.

Let us assume that the leading minors A; of A are nonsingular fori =1,... ,n—
1 and prove, by induction on ¢, that under this hypothesis the LU factorization
of A(= A,) with l;; =1 for i = 1,... ,n, exists and is unique.

The property is obviously true if ¢ = 1. Assume therefore that there exists an
unique LU factorization of A;_1 of the form A;_; = LO~DUGY with l,(ctl) =1
for Kk =1,...,i— 1, and show that there exists an unique factorization also for
A;. We partition A; by block matrices as

A¢_1 C
A =
dT Q4

and look for a factorization of A; of the form

) . L(i_l) 0 U(i—l) u
A=LOUY = | : : (3.38)
1 1 0 Wis

having also partitioned by blocks the factors L® and U®. Computing the prod-
uct of these two factors and equating by blocks the elements of A;, it turns out
that the vectors 1 and u are the solutions to the linear systems LU Yu = ¢,
17Ut =47,
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On the other hand, since 0 # det(A;—1) = det(LE~)det(UCY), the matrices
LG=Y and UCY are nonsingular and, as a result, u and 1 exist and are unique.

Thus, there exists a unique factorization of A;, where wu;; is the unique solution
of the equation u;; = a;; — 17u. This completes the induction step of the proof.

It now remains to prove that, if the factorization at hand exists and is unique,
then the first n — 1 leading minors of A must be nonsingular. We shall distinguish
the case where A is singular and when it is nonsingular.

Let us start from the second one and assume that the LU factorization of A
with I;; = 1 for 4 = 1,... ,n, exists and is unique. Then, due to (3.38), we have
A; =LOUD for i =1,... ,n. Thus

det(A;) = det(L™)det(U™) = det(UY) = uriuas . . . wi, (3.39)

from which, taking ¢ = n and A nonsingular, we obtain w12z ... un, 7% 0, and
thus, necessarily, det(A;) = wiiuzz...u;s Z0fori=1,... ,n— 1.

Now let A be a singular matrix and assume that (at least) one diagonal entry
of U is equal to zero. Denote by ugr the null entry of U with minimum index k.
Thanks to (3.38), the factorization can be computed without troubles until the
k + 1-th step. From that step on, since the matrix U® is singular, existence and
uniqueness of the vector 17 are certainly lost, and, thus, the same holds for the
uniqueness of the factorization. In order for this not to occur before the process
has factorized the whole matrix A, the uxr entries must all be nonzero up to the
index k = n—1 included, and thus, due to (3.39), all the leading minors Aj, must
be nonsingular for k=1,... ,n— 1. o

From the above theorem we conclude that, if an A;, with¢=1,... ,n—1,
is singular, then the factorization may either not exist or not be unique.

Example 3.3 Consider the matrices
1 2 0 1 0 1
o[ 2] e[ a] o8]

According to Theorem 3.4, the singular matrix B, having nonsingular leading
minor B; = 1, admits a unique LU factorization. The remaining two examples
outline that, if the assumptions of the theorem are not fulfilled, the factorization
may fail to exist or be unique.

Actually, the nonsingular matrix C, with C; singular, does not admit any

factorization, while the (singular) matrix D, with D; singular, admits an infinite
number of factorizations of the form D = LgUg, with

L@:M H Uﬁz[g QEﬁ}, VB ER.

In the case where the LU factorization is unique, we point out that, because
det(A) = det(LU) = det(L) det(U) = det(U), the determinant of A is given
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by
det(A) = U1l " Upnp-

Let us now recall the following property (referring for its proof to [GL89]
or [Hig96]).

Property 3.2 If A is a matriz diagonally dominant by rows or by columns,
then the LU factorization of A exists. In particular, if A is diagonally dom-
inant by columns, then |l;;| <1 Vi, j.

In the proof of Theorem 3.4 we exploited the fact the the diagonal entries
of L are equal to 1. In a similar manner, we could have fixed to 1 the
diagonal entries of the upper triangular matrix U, obtaining a variant of
GEM that will be considered in Section 3.3.4.

The freedom in setting up either the diagonal entries of L. or those of U,
implies that several LU factorizations exist which can be obtained one from
the other by multiplication with a suitable diagonal matrix (see Section
3.4.1).

3.3.2  The Effect of Rounding Errors

If rounding errors are taken into account, the factorization process induced
by GEM yields two matrices, L and U such that LU = A + OA, 6A being a
perturbation matrix. The size of such a perturbation can be estimated by

nuo o~ o
641 < |2 O], (3.40)
where u is the roundoff unit (for the proof of this result we refer to [Hig89]).
From (3.40) it is seen that the presence of small pivotal entries can make
the right side of the inequality virtually unbounded, with a consequent loss
of control on the size of the perturbation matrix 6A. The interest is thus
in finding out estimates like (3.40) of the form

[0A] < g(u)[A],

where g(u) is a suitable function of u. For instance, assuming that L and
U have nonnegative entries, then since |L| [U| = [LU| one gets

L0 =

| |A + 6A| < |A|+ |6A| < |A] + |L| \U|, (3.41)
from which the desired bound is achieved by taking g(u) = nu/(1 — 2nu).

The technique of pivoting, examined in Section 3.5, keeps the size of the
pivotal entries under control and makes it possible to obtain estimates like
(3.41) for any matrix.
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3.3.83 Implementation of LU Factorization

Since L is a lower triangular matrix with diagonal entries equal to 1 and U
is upper triangular, it is possible (and convenient) to store the LU factor-
ization directly in the same memory area that is occupied by the matrix A.
More precisely, U is stored in the upper triangular part of A (including the
diagonal), whilst L occupies the lower triangular portion of A (the diagonal
entries of L are not stored since they are implicitly assumed to be 1).

A coding of the algorithm is reported in Program 4. The output matrix
A contains the overwritten LU factorization.

Program 4 - lu_kji : LU factorization of matrix A. kji version

function [A] = lu_kji (A)

[n,n]=size(A);

for k=1:n-1
A(k+1:n,k)=A(k+1:n,k)/A(k,k);
for j=k+1:n, for i=k+1:n

AG)=AG)-AGK)*A(K.);

end, end

end

This implementation of the factorization algorithm is commonly referred
to as the kji version, due to the order in which the cycles are executed.
In a more appropriate notation, it is called the SAXPY — kji version,
due to the fact that the basic operation of the algorithm, which consists of
multiplying a scalar A by a vector X, summing another vector Y and then
storing the result, is usually called SAXPY (i.e. Scalar A X Plus Y).

The factorization can of course be executed by following a different order.
In general, the forms in which the cycle on index i precedes the cycle on
j are called row-oriented, whilst the others are called column-oriented. As
usual, this terminology refers to the fact that the matrix is accessed by
rows or by columuns.

An example of LU factorization, jki version and column-oriented, is given
in Program 5. This version is commonly called GAX PY — jki, since the
basic operation (a product matrix-vector), is called GAXPY which stands
for Generalized sAXPY (see for further details [DGK84]). In the GAXPY
operation the scalar A of the SAXPY operation is replaced by a matrix.

Program 5 - lu_jki : LU factorization of matrix A. jki version

function [A] = lu_jki (A)
[n,n]=size(A);
for j=1:n
for k=1:j-1, for i=k+1:n
AGLI)=AG§)-AG K *ACK,);
end, end
for i=j+1:n, A(i,j)=A(i.))/A(.j); end
end
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3.3.4  Compact Forms of Factorization

Remarkable variants of LU factorization are the Crout factorization and
Doolittle factorization, and are known also as compact forms of the Gauss
elimination method. This name is due to the fact that these approaches
require less intermediate results than the standard GEM to generate the
factorization of A.

Computing the LU factorization of A is formally equivalent to solving
the following nonlinear system of n? equations

min(z,5)

Q5 = Z lirurja (342)
r=1

the unknowns being the n? +n coefficients of the triangular matrices L and
U. If we arbitrarily set n coefficients to 1, for example the diagonal entries
of L or U, we end up with the Doolittle and Crout methods, respectively,
which provide an efficient way to solve system (3.42).

In fact, supposing that the first £ — 1 columns of L and U are available
and setting I, = 1 (Doolittle method), the following equations are obtained
from (3.42)

k—1

QL = § lkrurj+a j:ka"'vn
r=1
k—1

i = E lirurk—i—ukk, i=k+1,...,n

r=1

Note that these equations can be solved in a sequential way with respect
to the boxed variables uy; and [;;. From the Doolittle compact method
we thus obtain first the k-th row of U and then the k-th column of L, as
follows: for k=1,...,n

Ukj = Ay — Zlkr“m j=k,....n

lik—f (am—zmum) i=k+1,...,n

(3.43)
ULk

The Crout factorization is generated similarly, computing first the k-th
column of L. and then the k-th row of U: for k=1,... ,n

lik:a’ikig Z'Lrurk i:k,...,n

k—1
1 .
ki = (akj > lkruw‘> j=k+1,....n,
r=1
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where we set ugr = 1. Recalling the notations introduced above, the Doolit-
tle factorization is nothing but the ijk version of GEM.

We provide in Program 6 the implementation of the Doolittle scheme.
Notice that now the main computation is a dot product, so this scheme is
also known as the DOT — ijk version of GEM.

Program 6 - lu_ijk : LU factorization of the matrix A: ijk version

function [A] = lu_ijk (A)
[n,n]=size(A);
for i=1:n
for j=2:i
A1) =AG 1) /AG-L1);
for k=1:-1, A(i,j)=A(i.j)-A(i,k)*A(k,j); end

end
for j=i+1:n
for k=1:i-1, A(i,j)=A(i.j)-A(i,k)*A(k,j); end
end
end

3.4 Other Types of Factorization

We now address factorizations suitable for symmetric and rectangular ma-
trices.

3.4.1 LDM" Factorization

It is possible to devise other types of factorizations of A removing the
hypothesis that the elements of L are equal to one. Specifically, we will
address some variants where the factorization of A is of the form

A =LDMT.

where L, M7 and D are lower triangular, upper triangular and diagonal
matrices, respectively.

After the construction of this factorization, the resolution of the system
can be carried out solving first the lower triangular system Ly=b, then the
diagonal one Dz=y, and finally the upper triangular system M” x=z, with
a cost of n? + n flops. In the symmetric case, we obtain M = L and the
LDLT factorization can be computed with half the cost (see Section 3.4.2).

The LDLT factorization enjoys a property analogous to the one in The-
orem 3.4 for the LU factorization. In particular, the following result holds.

Theorem 3.5 If all the principal minors of a matriz A€ R™*™ are nonzero
then there exist a unique diagonal matriz D, a unique unit lower triangu-
lar matriz L and a unique unit upper triangular matric M7, such that

A = LDM7.
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Proof. By Theorem 3.4 we already know that there exists a unique LU factor-
ization of A with [;; = 1 for ¢ = 1,... ,n. If we set the diagonal entries of D
equal to u;; (nonzero because U is nonsingular), then A = LU = LD(D~'U).
Upon defining MT = D~ 'U, the existence of the LDM” factorization follows,
where DU is a unit upper triangular matrix. The uniqueness of the LDM7T
factorization is a consequence of the uniqueness of the LU factorization. <&

The above proof shows that, since the diagonal entries of D coincide
with those of U, we could compute L, M7 and D starting from the LU
factorization of A. It suffices to compute M as D~'U. Nevertheless, this
algorithm has the same cost as the standard LU factorization. Likewise,
it is also possible to compute the three matrices of the factorization by
enforcing the identity A=LDMT7 entry by entry.

3.4.2  Symmetric and Positive Definite Matrices: The
Cholesky Factorization

As already pointed out, the factorization LDM” simplifies considerably
when A is symmetric because in such a case M=L, yielding the so-called
LDMT factorization. The computational cost halves, with respect to the
LU factorization, to about (n®/3) flops.

As an example, the Hilbert matrix of order 3 admits the following LDL”
factorization

1 3 3 1 00 1 0 0 1 3 %
11 1 1 1

11 1 1 1

5 1 3 5 11 0 0 315 0 0 1

In the case that A is also positive definite, the diagonal entries of D in the
LDLT factorization are positive. Moreover, we have the following result.

Theorem 3.6 Let A € R™*™ be a symmetric and positive definite matriz.
Then, there exists a unique upper triangular matriz H with positive diagonal
entries such that

A=H"H (3.44)

This factorization is called Cholesky factorization and the entries h;; of HT
can be computed as follows: hi1 = \/a11 and, fori=2,...,n,

Jj—1
hi; = (aij - Zhikhjk> Jhjj, j=1,...,i—1,

k=1

i1 1/2
hii = (aii — Zh3k> .
k=1

(3.45)
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Proof. Let us prove the theorem proceeding by induction on the size i of the
matrix (as done in Theorem 3.4), recalling that if A; € R**? is symmetric positive
definite, then all its principal submatrices enjoy the same property.

For i = 1 the result is obviously true. Thus, suppose that it holds for ¢ — 1 and
prove that it also holds for i. There exists an upper triangular matrix H;_; such
that A,_1 = HiT,lHi_l. Let us partition A; as

Ai:|:A7i’71 V:|7

v «
with o € R+, vl € R*~! and look for a factorization of A; of the form

o, o Hi-1 h

1T, _ i—1 i—1

e[ 8] [ 3]

Enforcing the equality with the entries of A; yields the equations HZ ;h = v

and h”h + %2 = «. The vector h is thus uniquely determined, since H- ; is
nonsingular. As for 3, due to the properties of determinants

0 < det(A;) = det(H]) det(H;) = 8*(det(H;—1))?,

we can conclude that it must be a real number. As a result, 8 = va — h”h is
the desired diagonal entry and this concludes the inductive argument.

Let us now prove formulae (3.45). The fact that h11 = y/a11 is an immediate
consequence of the induction argument for ¢ = 1. In the case of a generic i,
relations (3.45); are the forward substitution formulae for the solution of the
linear system HY ;h = v = (a14, a2i, . . . 7a¢,1,¢)T, while formulae (3.45)2 state

that 8 = vVa — hTh, where a = a;. &

The algorithm which implements (3.45) requires about (n3/3) flops and it
turns out to be stable with respect to the propagation of rounding errors.
It can indeed be shown that the upper triangular matrix H is such that
HTH = A + 6A, where 6A is a pertubation matrix such that ||§Ally <
8n(n + 1)ul|Al|2, when the rounding errors are considered and assuming
that 2n(n + 1)u <1 — (n+ 1)u (see [Wil68]).

Also, for the Cholesky factorization it is possible to overwrite the matrix
HT in the lower triangular portion of A, without any further memory stor-
age. By doing so, both A and the factorization are preserved, noting that
A is stored in the upper triangular section since it is symmetric and that
its diagonal entries can be computed as a;; = h3y, a; = h% + 22;11 h,
1=2,...,n.

An example of implementation of the Cholesky factorization is coded in
Program 7.
Program 7 - chol2 : Cholesky factorization

function [A] = chol2 (A)
[n,n]=size(A);
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for k=1:n-1

A(k,k)=sqrt(A(k,k)); A(k+1:n,k)=A(k+1:n,k)/A(kk);
for j=k+1:n, A(j:n,j)=A(:n.j)-A(j:n,k)*A(j,k); end
end

A(n,n)=sqrt(A(n,n));

3.4.8 Rectangular Matrices: The QR Factorization

Definition 3.1 A matrix A € R™*" with m > n, admits a QR fac-
torization if there exist an orthogonal matrix Q € R™*™ and an upper
trapezoidal matrix R € R™*" with null rows from the n + 1-th one on,
such that

A =QR. (3.46)
o

This factorization can be constructed either using suitable transformation
matrices (Givens or Householder matrices, see Section 5.6.1) or using the
Gram-Schmidt orthogonalization algorithm discussed below.

It is also possible to generate a reduced version of the QR factorization
(3.46), as stated in the following result.

Property 3.3 Let A € R™*" be a matriz of rank n for which a QR fac-
torization is known. Then there exists a unique factorization of A of the
form

A=QR (3.47)
where Q and R are submatrices of Q and R given respectively by
Q=Q(1:m,1:n), R=R(1:n,1:n). (3.48)

Moreover, Q has orthonormal vector columns and R is upper triangular
and coincides with the Cholesky factor H of the symmetric positive definite
matriz ATA, that is, ATA = RTR.

If A has rank n (i.e., full rank), then the column vectors of Q form an
orthonormal basis for the vector space range(A) (defined in (1.5)). As a
consequence, constructing the QR factorization can also be interpreted as
a procedure for generating an orthonormal basis for a given set of vectors.
If A has rank r < n, the QR factorization does not necessarily yield an
orthonormal basis for range(A). However, one can obtain a factorization of
the form

T | Ri1 R
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FIGURE 3.1. The reduced factorization. The matrices of the QR factorization
are drawn in dashed lines

where Q is orthogonal, P is a permutation matrix and Rq; is a nonsingular
upper triangular matrix of order 7.

In general, when using the QR factorization, we shall always refer to its
reduced form (3.47) as it finds a remarkable application in the solution of
overdetermined systems (see Section 3.13).

The matrix factors Q and R in (3.47) can be computed using the Gram-
Schmidt orthogonalization. Starting from a set of linearly independent vec-

tors, X1, ... , Xy, this algorithm generates a new set of mutually orthogonal
vectors, qi,... ,qn, given by

q1 = X,

k
(i, Xkt 1) (3.49)
Q1 = X1 — )~ i, k=1,...,n—1
; (@i qi)

Denoting by ay,... ,a, the column vectors of A, we set q; = a;/|[lai||2
and, for k =1,... ,n — 1, compute the column vectors of Q as

A1 = A1/ llArsl2,

where
k

Qi1 = app1 — (@), ak41)d;
j=1

Next, imposing that A=QR and exploiting the fact that Q is orthogonal
(that is, Q'= QT), the entries of R can easily be computed. The overall
computational cost of the algorithm is of the order of mn? flops.

It is also worth noting that if A has full rank, the matrix AT A is sym-
metric and positive definite (see Section 1.9) and thus it admits a unique
Cholesky factorization of the form HTH. On the other hand, since the or-
thogonality of Q implies

H'H = ATA =RTQ"QR = R"R,



84 3. Direct Methods for the Solution of Linear Systems

we conclude that R is actually the Cholesky factor H of ATA. Thus, the
diagonal entries of R are all nonzero only if A has full rank.

The Gram-Schmidt method is of little practical use since the generated
vectors lose their linear independence due to rounding errors. Indeed, in
floating-point arithmetic the algorithm produces very small values of ||qx+1|2
and 7, with a consequent numerical instability and loss of orthogonality
for mat