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PREFACE TO THE SECOND EDITION

The Preface to the First Edition (1962) states that this is “a rather
tightly organized presentation of elementary number theory” and that
“number theory is very much a live subject.” These two facts are in
conflict fifteen years later. Considerable updating is desirable at many
places in the 1962 text, but the needed insertions would call for drastic
surgery. This could easily damage the flow of ideas and the author was
reluctant to do that. Instead, the original text has been left as is, except
for typographical corrections, and a brief new chapter entitled “Pro-
gress” has been added. A new reader will read the book at two
levels—as it was in 1962, and as things are today.

Of course, not all advances in number theory are discussed, only those
pertinent to the earlier text. Even then, the reader will be impressed
with the changes that have occurred and will come to believe—if he did
not already know it—that number theory is very much a live subject.

The new chapter is rather different in style, since few topics are
developed at much length. Frequently, it is extremely brief and merely
gives references. The intent is not only to discuss the most important
changes in sufficient detail but also to be a useful guide to many other
topics. A propos this intended utility, one special feature: Developments
in the algorithmic and computational aspects of the subject have been
especially active. It happens that the author was an editor of Mathe-
matics of Computation throughout this period, and so he was particu-
larly close to most of these developments. Many good students and
professionals hardly know this material at all. The author feels an
obligation to make it better known, and therefore there is frequent
emphasis on these aspects of the subject.

To compensate for the extreme brevity in some topics, numerous
references have been included to the author’s own reviews on these
topics. They are intended especially for any reader who feels that he
must have a second helping. Many new references are listed, but the
following economy has been adopted: if a paper has a good bibliogra-
phy, the author has usually refrained from citing the references con-
tained in that bibliography.

The author is grateful to friends who read some or all of the new
chapter. Especially useful comments have come from Paul Bateman,
Samuel Wagstaff, John Brillhart, and Lawrence Washington.

DANIEL SHANKS
December 1977
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PREFACE TO THE FIRST EDITION

It may be thought that the title of this book is not well chosen since
the book is, In fact, a rather tightly organized presentation of elementary
number theory, while the title may suggest a loosely organized collection
of problems. Nonetheless the nature of the exposition and the choice of
topies to be included or, omitted are such as to make the title appropriate.
Since a preface is the proper place for such discussion we wish to clarify
this matter here.

Much of elementary number theory arose out of the investigation of
three problems; that of perfect numbers, that of periodic decimals, and
that of Pythagorcan numbers. We have accordingly organized the book
into three long chapters. The result of such an organization is that motiva-
tion is stressed to a rather unusual degree. Theorems arise in response to
previously posed problems, and their proof is sometimes delayed until
an appropriate analysis can be developed. These theorems, then, or most
of them, are “‘solved problems.” Some other topies, which are often taken
up in elementary texts—and often dropped soon after—do not fit directly
into these main lines of development, and are postponed until Volume II.
Since number theory is so extensive, some choice of topics is essential, and
while a common criterion used is the personal preferences or accomplish-
ments of an author, there is available this other procedure of following,
rather closely, a few main themes and postponing other topics until they
become necessary.

Historical discussion is, of course, natural in such a presentation. How-
ever, our primary interest is in the theorems, and their logical interrela-
tions, and not in the history per se. The aspect of the historical approach
which mainly concerns us is the determination of the problems which sug-
gested the theorems, and the study of which provided the concepts and the
techniques which were later used in their proof. In most number theory
books residue classes are introduced prior to Fermat’s Theorem and the
Reciprocity Law. But this is not at all the correct historical order. We have
here restored these topics to their historical order, and it seems to us that
this restoration presents matters in a more natural light.

The “unsolved problems’ are the conjectures and the open questions—
we distinguish these two categories—and these problems are treated more
fully than is usually the case. The conjectures, like the theorems, are in-
troduced at the point at which they arise naturally, are numbered and
stated formally. Their significance, their interrelations, and the heuristic

xi



xii Preface

evidence supporting then are often discussed. It 1s well known that some
unsolved problems, such as Fermat’s Last Theorem and Riemann’s Hy-
pothesis, have been enormously fruitful in suggesting new mathematical
fields, and for this reason alone it is not desirable to dismiss conjectures
without an adequate discussion. Further, number theory is very much a
live subject, and it seems desirable to emphasize this.

So much for the title. The book is largely an exposition of known and
fundamental results, but we have included scveral original topics such as
cycle graphs and the circular parity switch. Another point which we might
mention is a tendency here to analyze and mull over the proofs—to study
their strategy, their logical interrelations, their possible simplifications, etc.
It happens that sueh considerations are of particular interest to the author,
and there may be some readers for whom the theory of proof is as interest-
ing as the theory of numbers. However, for all readers, such analyses of
the proofs should help to create a deeper understanding of the subject.
That is their main purpose. The historical introductions, especially to
Chapter I1I, may be thought by some to be too long, or even inappro-
priate. We need not contest this, and if the rcader finds them not to his
taste he may skip them without much loss.

The notes upon which this book was based were used as a text at the
American University during the last year. A three hour first course in
number theory used the notes through Sect. 48, omitting the historical
Sects. 41—45. But this is quite a bit of material, and another lecturer may
prefer to proceed more slowly. A second semester, which was partly lecture
and partly seminar, used the rest of the book and part of the forthcoming
Volume II. This included a proof of the Prime Number Theorem and would
not be appropriate in a first course.

The exercises, with some exceptions, are an integral part of the book.
They sometimes lead to the next topic, or hint at later developments, and
are often referred to in the text. Not every reader, however, will wish to
work every exercise, and it should be stated that while some are very easy,
others are not. The reader should not be discouraged if he cannot do them
all. We would ask, though, that he read them, even if he does not do them.

The book was not written solely as a textbook, but was also meant for
the technical reader who wishes to pursue the subject independently. It is
a somewhat surprising fact that although one never meets a mathematician
who will say that he doesn’t know ecalculus, algebra, etc., it is quite common
to have one say that he doesn’t know any number theory. Yet this is an
old, distinguished, and highly praised branch of mathematics, with con-
tributions on the highest level, Gauss, Euler, Lagrange, Hilbert, ete. One
might hope to overcome this common situation by a presentation of the
subject with sufficient motivation, history, and logic to make it appealing.

Preface  xiii

If, as they say, we can succeed cven partly in this direction we will consider
ourselves well rewarded.

The original presentation of this material was in a series of twenty public
lectures at the David Taylor Model Basin in the Spring of 1961. Following
the precedent set there by Professor F. Murnaghan, the lectures were
written, given, and distributed on a weekly schedule.

Finally, the author wishes to acknowledge, with thanks, the friendly
advice of many colleagues and correspondents who read some, or all of the
notes. In particular, helpful remarks were made by A. Sinkov and DP.
Bateman, and the author learned of the Original Legendre Symbol in a
letter from D. H. Lehmer. But the author, as usual, must take responsi-
bility for any errors in fact, argument, emphasis, or presentation.

DANTEL SHANKS
May 1962
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CHAPTER 1

FROM PERFECT NUMBERS TO
THE QUADRATIC RECIPROCITY
LAW

1. PErFEcT NUMBERS

Many of the basic theorems of number theory -stem from two problems
investigated by the Greeks—the problem of perfect numbers and that
of Pythagorean numbers. In this chapter we will examine the former,
and the many important concepts and theorems to which their investiga-
tion led. For example, the first extensive table of primes (by Cataldi)
and the very important Fermat Theorem were, as we shail see, both direct
consequences of these investigations. Euclid’s theorems on primes and
on the greatest common divisor, and Euler’s theorems on quadratic resi-
dues, may also have been such consequences but here the historical evidence
is not conclusive. In Chapter 11T we will take up the Pythagorean numbers
and their many historic consequences but for now we will confine ourselves
to perfect numbers.

Definition 1. A perfect number is equal to the sum of all its positive
divisors other than itself. (Euclid.)

ExaMPLE: Since the positive divisors of 6 other than itself are 1, 2, and
3 and since

1+ 243 =6,
6 is perfect.
The first four perfect numbers, which were known to the Greeks, are
P, =6,
P, = 28,
P; = 496,

Py = 8128.
1
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2 Solved and Unsolved Problems in Number Theory

In the Middle Ages it was asserted repeatedly that P, , the mth perfect
number, was always exactly m digits long, and that the perfect numbers
alternately end in the digit 6 and the digit 8. Both assertions are false. In
fact there is no perfect number of 5 digits. The next perfect number is

Py = 33,550,336.

Again, while this number does end in 6, the next does not end in 8. It also
ends in 6 and is

Ps = 8,589,869,056.

We must, therefore, at least weaken these assertions, and we do so
as follows: The first we change to read

Conjecture 1. There are infinitely many perfect numbers.
The second assertion we split into two distinet parts:

Open Question 1. Are there any odd perfect numbers?

Theorem 1. Every even perfect number ends in @ 6 or an 8.

By a conjecture we mean a proposition that has not been proven, but
which is favored by some serious evidence. For Conjecture 1, the evidence
is, in fact, not very compelling; we shall examine it later. But primarily we
will be interested in the body of theory and technique that arose in the
attempt to settle the conjecture.

An open question is a problem where the evidence is not very convineing
one way or the other. Open Question 1 has, in fact, been “conjectured’” in both
directions. Descartes could see no rcason why there should not be an odd
perfect number. But none has ever been found, and there is no odd perfect
number less than a trillion, if any. Hardy and Wright said there probably
are no odd perfect numbers at all—but gave no serious evidence to support
their statement.

A theorem, of course, is something that has been preved. There are
important theorems and unimportant theorems. Theorem 1 is curious but
not important. As we proceed we will indicate which are the important
theorems.

The distinction between open question and conjecture is, it is true,
somewhat subjective, and different mathematicians may form different
judgments concerning a particular proposition. We trust that there will
be no similar ambiguity concerning the theorems, and we shall prove many
such propositions in the following pages. Further, in some instances, we
shall not merely prove the thcorem but also discuss the nature of the proof,
its strategy, and its logical dependence upon, or independence from, some
concept or some previous theorem. We shall sometimes inquire whether
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the proof can be simplified. And, if we state that Theorem T is particularly
important, then we should explain why it is important, and how its funda-
mental role enters into the structure of the subsequent theorems.

Before we prove Theorem 1, let us rewrite the first four perfects in
binary notation. Thus:

Decimal Binary
P, 6 110
P 28 11100
P; 496 111110000

P, 8128 1111111000000
Now a binary number consisting of n I’sequals 1 +2 + 4 +4 --- + 2" =
2" — 1. For example, 11111 (binary) = 2° — 1 = 31 (decimal). Thus all
of the above perfects are of the form

272" — 1),
e.g., 496 = 16-31 = 2'(2° — 1).

Three of the thirteen books of Tuelid were devoted to number theory.
In Book IX, Prop. 36, the final proposition in these three books, he proves,
in effect,

Theorem 2. The number 271 (20 — 1) s perfect if 2» — 1 is a prime.

It appears that Fuclid was the first to define a prime—and possibly
in this connection. A modern version is

Definition 2. If p is an integer, >1, which is divisible only by =1 and
by =£p, it is called prime. An integer >1, not a prime, is called composite.

About 2,000 years after Euclid, Leonhard Euler proved a converse to
Theorem 2:

Theorem 3. Every even perfect number is of the form 2"=*(2" — 1) with
27 — 1 a prime.

We will make our proof of Theorem 1 depend upon this Theorem 3
(which will be proved later), and upon a simple theorem which we shall
prove at once:

Theorem 4 (Cataldi-Fermat). If 2" — 1 is a prime, then n is itself a
prime.

Proor. We note that

A" —1=(a— D@ " +a 7+ - +a+1.
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If » is not a prime, write it n = rs with r > 1 and s > 1. Then
2" — 1 = (2) — 1,
and 2" — 1 is divisible by 2 — 1, which is > 1 since r > 1.
Assuming Theorem 3, we can now prove Theorem 1.
Proor or TuEOREM 1. If NV is an even perfect number,
N =227 — 1)

with p a prime. Every prime >2 is of the form 4m + 1 or 4m + 3, since
otherwise it would be divisible by 2. Assume the first case. Then

N — 24m(24m+1 ___ 1)
= 16™(2-16™ — 1) withm = 1.

But, by induction, it is clear that 16™ always ends in 6. Therefore 2-16™ — 1
ends in 1 and N ends in 6. Similarly, if p = 4m + 3,

N = 4-16"(8-16™ — 1)
and 4-16™ ends in 4, while 8-16™ — 1 ends in 7. Thus N ends in 8. Finally
if p =2, wehave N = P; = 6, and thus all even perfects must end in
6 or 8.
2. Evucrmp

So far we have not given any insight into the reasons for 27 '(2? — 1)
being perfect—if 2° — 1 is prime. Theorem 2 would be extremely simple
were it not for a rather subtle point. Why should N = 277(2” — 1) be
perfect? The following positive integers divide N:

land (27 — 1)
2 and 2(2° — 1)
2% and 2%(2% — 1)

27~ and 277(27 — 1)
Thus Z, the sum of these divisors, including the last, 227(2° — 1) = N, is
equal to
T=(14242°4 - 427N+ (27 — 1))
Summing the geometric series we have
T = (2°—1)-2° = 2N.
Therefore the sum of these divisors, but not counting N itself, is equal to

2 — N = N. Does this make N perfect? Not quite. How do we know
there are no other positive divisors?

=
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Euclid, recognizing that this needed proof, provided two fundamental

underlying theorems, Theorem 5 and Theorem 6 (below), and one
fundamental algorithm.

Definition 3. If g is the greatest integer that divides both of two integers,
a and b, we call g their greatest common divisor, and write 1t

g = (a,b).
In particular, if
(a,b) =1,
we say that a is prime to b.
EXAMPLES:
2 = (4, 14) 1 = (1,n) (any n)
3=14(3,9 1=(n—1,n) (any n)
1= (9,20) 1 =(p,q (any two distinet primes)
Definition 4. If a divides b, we write
alb;
if not we write
atbd.
ExampLE:
92312047.

Theorem 5 (Euclid). If g = (a, b) there is a linear combination of a and
b with inlteger coefficients m and n (positive, negative, or zero) such that

g = ma + nb.
Assuming this theorem, which will be proved later, we easily prove a

Corollary. If (a, ¢) = (b,¢) = 1, then (ab,¢c) = L.
Proor. We have

ma+nic=1 and mb + n2c =1,

and therefore, by multiplying,
Mab 4 N¢c =1
with M = mymesand N = mmea + memb + mnec. Then any common
divisor of ab and ¢ must divide 1, and therefore (ab, ¢) = 1.
We also easily prove



6 Solved and Unsolved Problems in Number Theory

Theorem 6 (Euclid). If a, b, and ¢ are inlegers such that
clab and (¢, a) = 1,
then
clb.
Proor. By Theorem 5,
me + na = 1.
Therefore
meb + nab = b,
but since clab, ab = cd for some integer d. Thus
c(mb + nd) = b,
or ¢clb.
Corollary. If a prime p divides a product of n numbers,
plaas --- a, 5
1t must divide at least one of them.

Proor. If pA{ay, then (a;, p) = 1. If now, phas, then we must have
pfaiaz, for, by the theorem, if plasa., then plas . It follows that if pta,
pta: , and pta,, then prasasa; . By induction, if p divided none of a’s i\i
could not divide their product.

Eulclid did not give Theorem 7, the Fundamental Theorem of Arithmetic
and it is not necessary—in this generality—for Euclid’s Theorem 2. But7
we do need it for Theorem 3.

Theorem 7. Bvery integer, N, > 1, has a wunique factorization inlo
primes, p; in ¢ standard form,

N = pi'ps* -+ pi, (1)
witha; > 0and pyp < p2 < +-- < p,. That 13, if
N = ql'g - ¢l (2)

Jor primes i < g2 < -+ < ¢ and exponents b; > 0, then p; = ¢, m = n
and a; = b; . ’

Proor. Tirst, N must have at least one representation, £q. (1). Let a
be the smallest divisor of N which is > 1. It must be a prime, since if not
a would have a divisor >1 and <a. This divisor, <a, would divide ]\;
and this contradicts the definition of a. Write a now as p, , and the quotient
N /P1, as N1. Repeat the process with N, . The process must terminate:
since

N>N >Ny> -+ > 1,

From Perfect Numbers to the Quadratic Reciprocity Low 7

This generates IEq. (1). Now if there were a second representation, by the
corollary of Theorem 6, each p; must equal some ¢., since p.|N. Likewise
each ¢; must equal some p, . Therefore p; = ¢. and m = n. If b; > a,,
divide p¢* into Egs. (1) and (2). Then p; would divide the quotient in
Eq. (2) but not in Eq. (1). This contradiction shows that a; = b;.

Corollary. The only positive divisors of

N — p‘;l PN p(;"
are those of the form
pi'ps - P (3)

where
0 é C; é a; .

Proor. Let f[N and write N = fg. Express f and ¢ in the standard
form. Then if f and g were not both in the form of (3), their product,
N, would have a representation distinet from Eq. (1). This contradiction
proves the corollary.

Now we are able to complete the proof of Theorem 2.

ProoF or TueoreM 2. If 22 — 1 = p. is a prime, the only positive
divisors of

N = 2p—1p2

are those listed on page 4. Therefore N is the sum of all its positive
divisors, other than itself, and N is perfect.

The logical structure of the theorems discussed so far is shown in the
following diagram. The important theorems are those at the bottom.

Theorem 1

Theorem 2 Theorem 3

Theorem 7

Theorem 4

Theorem 6

Theorem 5
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They support the theorems which rest upon them. In general, the impor-
tant theorems will have many consequences, while Theorem 1, for in-
stance, has almost no consequence of significance.

The proofs of Theorems 3 and 5 will now be given.

3. EuLEr’s CoNVERSE PRoOVED
Proor or TarorEM 3 (by L. E. Dickson). Let N be an even perfect
number given by

N =2"'F

where F is an odd number. Let £ be the sum of the positive divisors of F.
The positive divisors of N include all these odd divisors and their doubles,
their multiples of 4, - - - | their multiples of 2*'. There are no other positive
divisors by the corollary of Theorem 7. Since N is perfect we have

N=2""F=(142+ - +2"H2 - N

or
2N =2°F = (2" — 1)Z.
Therefore
2=F+4+F/(2" - 1), (4)
and since Z and F are integers, so must F/(2" — 1) be an integer. Thus
2" - nIF

and F/(2" — 1) must be one of the divisors of F. Since X is the sum of
all the positive divisors of F, we see, from Eq. (4), that there can only be
two, namely F itself and F/(2" — 1). But 1 is certainly a divisor of F.
Therefore F/(2" — 1) must equal 1, F must equal 2" — 1, and 2" — 1
has no other positive divisors. That is, 2" — 1 is a prime.

4. EvcLip’s ALGORITHM

Proor oF TuroreM 5 (Euclid’s Algorithm). To compute the greatest
common divisor of two positive integers a and b, Euclid proceeds as follows.
Without loss of generality, let ¢ < b and divide b by a:

b= qa+a

with a positive quotient ¢, and a remainder a; where 0 < a; < a. If

a1 # 0, divide a by a; and continue the process until some remainder,
Qn+1, equals 0.

From Perfect Numbers to the Quadratic Reciprocity Law 9

a = @ay + as

01 = @20y + a3

Uy = Qn.—lan—l + an
n1 = Qun -
This must occur, since @ > a1 > ap - -+ > 0. Then the greatest common
divisor, ¢ = (a, b), is given by
g = a.. (5)
For, from the first equation, since gla and g[b, we have gla; . Then, from

the second, since gla and gla;, we have glas. By induction, gla,, and
therefore

g = ln. (6)
But, conversely, since a.|a._; by the last equation, by working backwards

through the equations we find that a.l@.—2, @ul@us, -+, ala and
a,b. Thus a, is a common divisor of @ and b and

ar, £ ¢ (the greatest).

With Eq. (6) we therefore obtain Eq. (5). Now, from the next-to-last
equation, a, is a linear combination, with integer cogfﬁments, of. nt and
an_s . Again working backwards we see that a, is a linear combination of
Gn_; and a,_._, for every 7. Finally

g = a, = ma -+ nb (7

for some integers m and n. If, in Theorem 5, @ and b are not both positive,
one may work with their absolute values. This completes the proof of
Theorem 5, and therefore also the proofs of Theorems 6, 7, 2, 3, and 1.

ExampLe: Let g = (143, 221).

Then 221 = 1-143 + 78,
143 = 1-78 + 65,
78 = 1-65 + 13,
65 = 5-13,

and g = 13. Now

13 =78 — 1-65
2-78 — 1-143
2-221 — 3-143.

[
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The reader will note that in the foregoing proof we have tacitly assumed
several elementary properties of the integers which we have not stated
explicitly—for example, that a[b and ajc implies alp + ¢; that a > 0,
and bla implies b < @, and that the a; in b = g + a; exists and is unique.
This latter is called the Division Algorithm. For a statement concerning
these fundamentals see the Statement on page 217.

It should be made clear that the m and n in Eq. (7) are by no means
unique. In fact, for every & we also have

<m+ kl—)>a+<n — kq>b =g.
g g

Theorem 5 is so fundamental (really more so than that which bears the
name, Theorem 7), that it will be useful to list here a number of comments.
Most of these are not immediately pertinent to our present problem—that
of perfect numbers—and the reader may wish to skip to Sect. 5.

(a) The number g = (a, b) is not only a maximum in the additive sense,
that is, d £ g for every common divisor d, but it is also a maximum in the
multiplicative sense in that for every d

dlg. (8)
This is clear, since dla and d|b implies d|g by Eq. (7).

(b) The number g is also a m¢nimum in both additive and multiplicative
senses. For if

ma + mb = h (9)
for any m; and n; , we have, by the same argument,
glh. (10)
Then it is also clear that
g < every positive h. (1D)

(¢) This minimum property, (11), may be made the basis of an alterna-
tive proof of Theorem 5, one which does not use Euclid’s Algorithm. The
most significant difference between that proof and the given one is that
this alternative proof, at least as usually given, is nonconstructive, while
Euclid’s proof is constructive. By this we mean that Euclid actually con-
structs values of m and n which satisfy Eq. (7), while the alternative
proves their existence, by showing that their nonexistence would lead to a
contradiction. We will find other instances, as we proceed, of analogous
situations—both constructive and nonconstructive proofs of leading
theorems.

Which type is preferable? That is somewhat a matter of taste. Landau,
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it is clear from his books, prefers the nonconstructive. This type of proof
is often shorter, more “elegant.”” The constructive proof, on the other
hand, is “practical’—that is, it gives solutions. It is also “richer,” that is,
it develops more than is (immediately) needed. The mathematician who
prefers the nonconstructive will give another name to this richness—he
will say (rightly) that it is ‘““irrelevant.”

Which type of proof has the greatest “clarity”’? That depends on the
algorithm devised for the constructive proof. A compact algorithm will
often cast light on the subject. But a cumbersome one may obscure it.

In the present instance it must be stated that Euclid’s Algorithm is
remarkably simple and efficient. Is it not amazing that we find the greatest
common divisor of a and b without factoring either number?

As to the “richness” of Euclid’s Algorithm, we will give many instances
below, (e), (f), (g), and Theorem 10.

Finally it should be noted that some mathematicians regard noncon-
structive proofs as objectionable on logical grounds.

(d) Another point of logical interest is this. Theorem 7 is primarily
multiplicative in statement. In fact, if we delete the “standard form,”
p1 < po < -+, which we can do with no real loss, it appears to be purely
multiplicative (in statement). Yet the proof, using Theorem 5, involves
addition, also, since Theorem 5 involves addition. There are alternative
proofs of Theorem 7, not utilizing Theorem 5, but, without exception,
addition intrudes in each proof somewhere. Why is this? Is it because the
demonstration of even one representation in the form of Eq. (1) requires
the notion of the smallest divisor?

When we come later to the topic of primitive roots, we will find another
instance of an (almost) purely multiplicative theorem where addition
intrudes in the proof.

(e) Without any modification, Euclid’s Algorithm may also be used
to find g(z), the polynomial of greatest degree, which divides two poly-
nomials, a(x) and b(x). In particular, if a(z) is the derivative of b(x), g(x)
will contain all multiple roots of b(x). Thus if

b(z) = 2° — 52° + Tz — 3,

and b(z) = a(z) = 32" — 10z + 7,
then g(z) = a(z) = =3z — 1),
Therefore (z — 1D*b(x).

(f) Without elaboration at this time we note that the quotients, ¢;,
in the Algorithm may be used to expand the fraction a/b into a continued
fraction.
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Thus
LI ’
o+ —
- 1
Q1+q2+”‘_, (12)

and, specifically,

431

221 1+ 1

1+- .1
1+ 5
Similarly from (e) above, we have
32°—10z+7 9
?*—bt+T7t —3 (Br—5) — 8
Bz —7)"

(g) Finally we wish to note that, conversely to Theorem 5, if
ma + nb =1

then a is prime to b. But likewise m is prime to n and a and b play the
role of the coefficients in their linear combination. This reciprocal relation-
ship between m and a, and between n and b, is the foundation of the so
called modulo multiplication groups which we will discuss later.

Now it is high time that we return to perfect numbers.

5. CataLpr aNnp OTHERS

The first four perfect numbers are

202" — 1),
242 — 1),
2428 — 1),
252" — 1).

We raise again Conjecture 1. Are there infinitely many perfect numbers?
We know of no odd perfect number. Although we have not given him a
great deal of background so far, the reader may care to try his hand at:

Exercise 1. If any odd perfect number exists it must be of the form
D — (p)4a+1N2

where p is a prime of the form 4m + 1, a = 0, and N is some odd number

not divisible by p. In particular, then, D cannot be of the form 4m + 3.
(Descartes, Euler).
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Any even perfect number is of the form
2P} (2% — 1)

with p a prime. If there were only a finite number of primes, then, of course,
there would only be a finite number of even perfects. Euclid’s last con-
tribution is

Theorem 8 (Euclid). There are infinitely many primes.
Proor. If p1, p2, - -+, . are n primes (not necessarily consecutive),
then since
N=pp: - -pn+1

is divisible by none of these primes, any prime p,.; which does divide N,
(and there must be such by Theorem 7), is a prime not equal to any of
the others. Thus the set of primes is not finite.

ExErcisE 2. (A variation on Theorem 8 due to T. J. Stieltjes.) Let A
be the product of any r of the n primes in Theorem &8, with 1 < r £ n,
and let B = pip2 - -+ pa/A.

Then A + B is prime to each of the n primes.
ExampLE: p1 = 2, p» = 3, p; = 5. Then
2:3-541, 2-3 4+ 5, 2:5 + 3, 3.5+ 2
are all prime to 2, 3, and 5.
ExercisE 3. Let A; = 2 and A4, be defined recursively by
Apn = 4.7 — 4.+ 1.
Show that each A; is prime to every other 4 ;. HinT: Show that
Apyr = A1dy -+ A+ 1

and that what is really involved in Theorem 8 is not so much that the p’s
are primes, as that they are prime to each other.

Exercise 4. Similarly, show that all of the Fermat Numbers,
Fn=2"+4+1
form = 0,1,2, -- -, are prime to each other, since
Fop = FFy - Fr + 2.

Here, and throughout, this book, 2°" means 2*™, not (2%)™ = 2*" = 4™

ExerciskE 5. Show that either the A; of Exercise 3, or the F, of Exercise
4, may be used to give an alternative proof of Theorem 8.
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Thus there are infinitely many values of 2” — 1 with p a prime. If, as
Leibnitz erroneously believed, the converse of Theorem 4 were true, that
is, if p’s primality implied 2° — 1’s primality, then Conjecture 1 would
follow immediately from Euclid’s Theorem 2 and Theorem 8. But the
converse of Theorem 4 is false, since already

232" — 1
a fact given above in disguised form (example of Definition 4).

Definition 5. Henceforth we will use the abbreviation
M,=2"—1.

M, is called a Mersenne number if n is a prime.

Skipping over an unknown computer who found that M,; was prime,
and that P; = 2"M; was therefore perfect, we now come to Cataldi
(1588). He showed that 3/,; and M, were also primes. Now My = = 524,287,
and we are faced with a leading question in number theory. Given a large
number, say M» = 2147483647, is it a prime or not?

To show that N is a prime, one could attempt division by
2,3,---, N — 1, and if N is divisible by none of these then, of course, it

is prime. But this is clearly wasteful, since if N has no divisor, other than 1,
which satisfies

d

then N must be a prime since, if

N = jg,

f and g cannot both be >+/N. Further, if we have a table of primes which
includes all primes £+/N, it clearly suffices to use these primes as trial
divisors since the smallest divisor (>1) of N is always a prime.

1A

/N

Definition 6. If z is a real number, by
(2]
we mean the greatest integer <z.
ExAMPLES:
= [L.5], 2 = [2], 3 = [3.1417],
—1 = [—3], 724 = [/ M)

To prove that My = 524,287 is a prime, Cataldi constructed the first
extensive table of primes—up to 750—and he simply tried division of M,
by all the primes <[v/My] = 724. There are 128 such primes. This was
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rather laborious, and since M, increases so very rapidly, it virtually forces
the creation of other methods. To estimate the labor involved in proving
some M, a prime by Cataldi’s method, we must know the number of
primes <~/M,

Definition 7. Let

m(n)

be the number of primes which satisfy 2 < p < n.

ExaMPLE:

w(724) = 128.

There is no shortage of primes. A brief table shows the trend.

n w(n)
10 4
102 25
103 168
104 1,229
10% 9,592
108 78,498
107 664,579
108 5,761,455
10° 50,847,534 (D. H. Lehmer)
10t 455,052,511 (D. H. Lehmer)

This brings us to the prime number theorem.

6. Tae PriME NUMBER THEOREM

In Termat’s time (1640), Cataldi’s table of primes was still the
largest in print. In Euler’s time (1738), there was a table, by Brancker,
up to 100,000. In Legendre’s time (1798), there was a table, by Felkel,
up to 408,000.

The distribution of primes is most irregular. For example (Lehmer),
there are no primes between 20,831,323 and 20,831,533, while on the other
hand (Kraitchik), 1,000,000,000,061 and 1,000,000,000,063 are both
primes. No simple formula for =(n) is either known, nor can one be ex-
pected. But, “in the large,” a definite trend is readily apparent, (see the
foregoing table), and on the basis of the tables then existing, Legendre
(1798, 1808) conjectured, in effect, the Prime Number Theorem.

Definition 8. If f(z) and ¢(x) arc two functions of the real variable
x, we say that f(2) is asymptotic to g(z), and write it

J(x) ~ g(z),
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if

Lim@ =1.

20 §()

Theorerp 9. (The Prime Number Theorem, conjectured by Legendre,
Gauss, Dirichlet, Chebyshev, and Riemann; proven by Hadamard and de la
Vallée Poussin in 1896).

n
logn”

m(n) ~

No easy proof of Theorem 9 is known. The fact tha¥ it took a century to
prove is a measure of its difficulty. The theorem is primarily one of analysis.
Number theory plays only a small role. That some analysis must enter is
clear from Definition 8—a limit is involved. The extent to which analysis is
involved is what is surprising. We shall give a proof in Volume II.

For now we wish to make some clarifications. Definition 8 does not
mean that f(x) is approzimately equal to g(x). This has no strict mathe-
matical meaning. The definition in no way indicates anything about the
difference

f(x) — g(=),
merely about the ratio
f(z)/g().
Thus
w4+ 1~ nt
n’ + 100n ~ n’
and n* 4+ ' logn ~ n’

age equally true. Which function, on the left, is the best approximation to
n” is quite a different problem.

If
f(z) ~ g(=)
and g(z) ~ h(z)
then f(z) ~ h(z).

Them;em 9 may therefore take many forms by replacing n/log n by any
function asymptotic to it. Thus

=N
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Theorem 9, .

n

")~ =T

Theorem 9,.

w(n) Nfgnﬂ

logz”

These three versions are all equally true. Which function on the right
is the best approximation?

P. Chebyshev (1848) gave both Theorems 9, and 9., but proved neither.
C. F. Gauss, in a letter to J. F. Encke (1849), said that he discovered
Theorem 9, at the age of 16—that is, in 1793—and that when Chernac’s
factor table to 1,020,000 was published in 1811 he was still an enthusiastic
prime counter. Glaisher describes this letter thus:

“The appearance of Chernac’s Cribum in 1811 was, Gauss proceeds, a
cause of great joy to him; and, although he had not sufficient, patience
for a continuous enumeration of the whole million, he often employed
unoccupied quarters of an hour in counting here and there a chiliad.”

Exercise 6. Compute N/log N — 1 (natural logarithm, of course!)
for N = 10, n = 1,2, ---, 10, and compare the right and left sides of

Theorem 9, .

7. Two UskEruL THEOREMS

Before we consider the work of Fermat, it will be useful to give two
theorems. The first is an easy generalization of an argument used in the
proof of Theorem 4, page 3. We formalize this argument as

Theorem 4,. If x # y, and n > 0, then

x — ylz" — y" (13)
In particular, if y = 1, ‘

z — llz" — 1, (13a)
and, if y = —y, and n is odd,

z + ylz" + ¥, (n is odd). (13b)

The proof is left to the reader.
Theorem 10. If a, b, and s are positive integers, we write

s —1=B,, £ —1=R.
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Then if (a,b) = g,

(Ba ’ Bb) = Bu 3 (14)
and in particular if a is prime to b, then s — 1 is the greatest common divisor
of s —1and s’ — 1.

Proor. In computing ¢ = (a, b) by Euclid’s Algorithm, the (m -+ 1)st
equation (page 9) is
Am-1 = gmQm + Am+1 - (15)
It follows that

B,,., = QuB., + B, ,, (16)
for some integer @, , for the reader may verify that
B = = 1 = Bam+1 quam + BQmam + Bam+1

aAm—1
quam

s
= [(Bamﬂ + 1) —B——:I B., + B, -

But B.,,|B,,.4, by Eq. (13a) with 2 = s, and n = ¢,,, and thus

(Bupoy + 1) Dontn
is an integer. Call it @,, and this proves Eq. (16).

But were we to compute (B,, By) by Euclid’s Algorithm, Eq. (16)
would be the m + 1Ist equation and the remainder, B,,,,, of Eq. (16)
corresponds to the remainder, a1, of Eq. (15). Therefore if (a, b) = g,
(B., By) = B,.

am

Corollary. Every Mersenne number, M, = 27 — 1, is prime to every other
Mersenne number.

The correspondence between Egs. (15) and (16) has an interesting
artthmetic interpretation. For simplicity, let s = 2 and thus B, = M, =
2* — 1. Let

b=gqa-+tr an
and
My =QM, + M,. (18)
Now M., in binary, is a string of x ones, and if the division, Eq. (18), is
carried out in binary we divide a string of @ 1’s into a string of b 1’s

100001000

11111 ‘ 1111111111111
(18a)

1111111111
111

From Perfect Numbers to the Quadratic Reciprocity Law 19

and obtain a remainder cf r 1’s. On the other hand, the ancient interpreta-
tion of Eq. (17) is that a stick b units long is measured by a stick a units
long, ¢ times, with a remainder r units long.

TSI
11111]11111 (172)
111

The quotient @, of Eq. (18), consists of the ¢ marks (bits) made in meas-

uring M, by M, !
€: |0000100001000

8. FerMmAT AND OTHERS

Now we come to Pierre de Fermat. In the year 1640, France was the
leading country of Europe, both politically and culturally. The political
leader was Cardinal Richelieu. The leading mathematicians were René
Descartes, Gérard Desargues, Fermat, and the young Blaise Pascal. In
1637, Descartes had published La Geometrie, and in 1639 the works of
Desargues and Pascal on projective geometry had appeared. From 1630
on, Father Marin Mersenne, a diligent correspondent (with an inscrutable
handwriting) had been sending challenge problems to Descartes, Fermat,
Frenicle, and others concerning perfect numbers and related concepts.
By his perseverance, he eventually persuaded all of them to work on perfect
numbers.

At this time My, My, My, M;, My, My, and My, were known to be
prime. But

My = 23-89,
and Fermat found that
A7\My; .
The obvious numerical relationship between p = 11 and the factors 23

and 89, in the first instance, and between 23 and 47 in the second, may
well have suggested to Fermat the following

Theorem 11 (Fermat, 1640). If p > 2, any prime which divides M,
must be of the form 2kp + 1 with kb = 1,2,3, -+ .

At the same time Fermat found:
Theorem 12 (Fermat, 1640). Lvery prime p divides 2° — 2:
pI2? — 2. (19)

These two important thcorems are closely related. That Theorem 11
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implies Theorem 12 is easily seen. Since the product of two numbers of
the form 2kp 4 1 is again of that form, it is clear by induction that Theorem
11 implies that all divisors of M, are of that same form. Therefore M,
itself equals 2Kp + 1 for some K, and thus M, — 1 is a multiple of p.
And this is Theorem 12. The case p = 2 is obvious.
But conversely, Theorem 12 implies Theorem 11. For let a prime ¢

divide A7, . Then

ql2” — 1, (20)
and by Theorems 12 and 6,

g2 — 1. (21)

Now by Theorem 10, (27 — 1,2 — 1) = 2° — 1 where g = (p,q — 1).
Since ¢ > 1, we have from Eqgs. (20) and (21) that g > 1. But since p is
a prime, we therefore have plg — 1, or ¢ = sp + 1. Finally if s were odd,
g would be even and thus not prime. Therefore g is of the form 2kp + 1.
To prove Theorems 11 and 12, it therefore will suffice to prove one of the
two.

Several months after Fermat announced these two theorems (in a
letter to Frenicle), he generalized Theorem 12 to the most important

Theorem 13 (Fermat’s Theorem). For every prime p and any integer a,
pla® — a. (22)
This clearly implies Theorem 12, and is itself equivalent to
Theorem 13,. If pra, then
pla®t — 1. (23)
For if pla(a® — 1) and p+a then by Theorem 6, pla®* — 1. The con-

verse implication is also clear. Nearly a century later, Euler generalized
Theorem 13; and in doing so he introduced an important function, ¢(n).

Definition 9. If n is a positive integer, the number of positive integers
prime to n and = n is called ¢(n), Euler’s phi function. There are therefore
¢(n) solutions m of the system:

(m,n) =1
1=m=n
ExAaMpLES:
o(1) =1, ¢(2) =1, ¢(3) =2, ¢(4) =2, ¢(5) = 4,

$(6) =2, ¢(7) =6, (8
Yor any prime, p, ¢(p) = p — 1.

4, ¢(9) =6, 4(10) = 4.

Il
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Theorem 14 (Euler). For any positive integer m, and any tnteger a prime
to m,
mla®™ — 1. (24)

Later we will prove Theorem 14, and since, for a prime p, ¢(p) = p — 1,
this will also prove the special case Theorem 13; . That will complete the
proofs of Theorems 13, 12, and 11. IFor the moment let us consider the
significance of Fermat’s Theorem 11 for the perfect number problem.

The first Mersenne number we have not yet discussed is My . To de-
termine whether it is a prime, it is not necessary to attempt division by
3, 5, 7, ete. The only possible divisors are those of the form 58k + 1. For
k=1,2,3,and 4 we have 58k + 1 = 59, 117, 175, and 233. But 594 M .
Again, 117 and 175 are not primes and therefore need not be tried, since
the smallest divisor (>1) must be a prime. Finally 233|Ms . Thus we
find that My = 536,870,911 is composite with only 2 trial divisions.

ExErcisE 7. Assume that p = 16035002279 is a prime, (which 1t is),
and that ¢ = 32070004559 divides M, , (which 1t does). Prove that ¢ is
a prime.

Exgrcise 8. Verify that
3:74 4+ 1|My.

{When we get to Gauss’s conception of a residue class, such computations
as that of this exercise will be much abbreviated.)

It has been similarly shown that My, My, My, Mg, and My are also
composite. Up to p = 61, there are nine Mersenne primes, that is, M,
for p = 2,3, 5,7, 13,17, 19, 31, and 61. These nine primes are listed in
the table on page 22, together with four other columns.

The first two columns are

sp = (VM) (25)
and
cp = T(5p). (26)

The number ¢, is the number of trial divisions—a la Cataldi (see page 14)
needed to prove M, a prime.

Definition 10. By 7, (n) is meant the number of primes of the form
ak 4 b which are =n.

ExAMPLES:

m11(50) = 6; the six primes being 5, 13, 17, 29, 37, 41

m3(50) = 8; the eight primes being 3, 7, 11, 19, 23, 31, 43, 47
m.(10%) = 19552

ms5(10°) = 19653
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m5,5(10°) = 19623
ms7(10°) = 19669.

By Theorem 11, the only primes which may divide 3], are those counted
by the function ms,1(7). The next column of the table is

fp = 7r2:n,1(3p)- (27)

The last column, ¢,, we will explain later. (Mnemonic aid: ¢, means
“Cataldi,”” f, means “Fermat,” e, means “Euler.”)

TABLE OF THE FIRST NINE MERSENNE PRIMES

b4 My Sp ¢p Ip €p

2 3 1 0 0 0

3 7 2 1 0 0

5 31 5 3 0 0

7 127 11 5 0 0
13 8,191 90 24 2 1
17 131,071 362 72 4 3
19 524,287 (Cataldi, 1588) 724 128 6 3
31 2,147,483,647 (Euler, 1772) | 46,340 4,792 157 84
61 2,305,843,009,213,693,951 1.5-10° | 75-10%% | 1.25-106** | 0.62-106**

* Estimated, using Theorem 9.
** Kstimated, using Theorem 16.

We see in the table that had Cataldi known Theorem 11, the 128 di-
visions which he performed in proving 7, a prime could have been re-
duced to 6; fio = 6.

Exercise 9. Identify the two primes in fi;, namely those of the form
26k + 1 which are <90. Also identify the 4 primes in fi; .

We inquire now whether the ratio f,/c, will always be as favorable as
the instances cited above. More generally, how does 7, »(n) compare with
w(n)? Since ak 4+ b is divisible by ¢ = (a, b) it is clear that the form
ak 4+ b cannot contain infinitely many primes wunless b is prime to a. But
suppose (a, b) = 1? If we hold a fixed there are ¢(a) values of b which are
<a and prime to a. Does each such form possess infinitely many primes?
Two famous theorems answer this question:

Theorem 15 (Dirichlet, 1837). If (a, b) = 1, there are infinitely many
primes of the form ak + b.

A stronger theorem which implies Theorem 15 (and also Theorem 9) is

Theorem 16 (de la Vallée Poussin, 1896). If (a, b) = 1, then

1 n 1 .
Tan(n) ~ o I ~ @ w(n), (28)
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or, equivalently, for any two numbers prime to a, b’ and b”, we have
Tap' (M) ~ map(0). (29)

We postpone the proof of Theorem 15 to Volume II, but a special case
which we need later is proven in Section 36. The more difficult Theorem 16
will be used as a guide in the following investigations but will not be used
logically and will not be proven. We note that although Eq. (28) is an
asymplotic law, we may nonetheless employ it for even modest values of
n with a usable accuracy. Thus ¢(38) = 18; more generally, for any prime
p, $(2p) = p — 1. Then n(sp) = 128 and fgn(sy) = 7.1. The number

sought is mi(sw) = fis = 6, a reasonable agreement considering the
smallness of the numbers involved. Generally we should expect
1
fo & p—1 Cp (30)

but it is clear that this is not an exact statement, since we give no bound
on the error.

Exercise 10. The ratio s,/c, may be regarded as a measure of the
improvement introduced by Cataldi by his procedure of using only primes
as trial divisors (page 14). Similarly, ¢,/f, measures the improvement
made by Fermat. Now note that the second ratio runs about 3 times the
first, so that we may say that Fermat’s improvement was the larger of
the two. Interpret this constant (=3) as 2/log 2 by using the estimates
for ¢, and f, suggested by Theorems 9 and 16. Evaluate this constant to
several decimal places.

9. EvLER’S GENERALIZATION PROVED
We now return to Euler’s Theorem 14,
mia®™ — 1, (a,m) =1
which we will prove by the use of the important

Theorem 17. Let m > 1. Let a, , 1 £ i < ¢(m), be the ¢p(m) positive in-
tegers <m and prime to m. Let a be any integer prime to m. Let the ¢(m)

products, aa; , ads , -+ + , Ay(my be divided by m, giing
aa; = qgm + 7 3D
with 0 =r. <m

Then the ¢(m) values of r; are distinct, and are equal to the ¢(m) values of
a, in some reqarrangement.

Proor oF TueoreM 17. Since @ and ¢, are both prime to m, so is their
product—by Theorem 5, Corollary. Therefore, from Iiq. (31), r; is also
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prime to m and thus is equal to one of the a;. If r; = r; we have from
Eq. (31),

ala; — a;) = (¢: — gj)m
Thus from Theorem 6, since (a, m) = 1,

m|a,~ — aj

or a; = a; . Thus the r; are all distinect.
Proor oF THEOREM 14 (by Ivory). The product of any two equationsin
Eq. (31) is
a’aia; = Qm + ra;
for some integer @, and by induction, the product of all ¢(m) equations in

Eq. (31) can be written

$(m)
a” " may c Qyomy — T2 0 Teemy = Lm

for some integer L. But (Theorem 17) the product of all the r; equals

the product of all the a; . Since

(@*™ — Daay - - - A (m)

is divisible by m, and each a; is prime to m, by Theorem 6
mla®™ — 1.

This completes the proofs of Theorems 14, 13, , 13, 12, and 11.

1
11
12 | 3
4 13
10 | 14 9
17 7
6
4 5
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Our logical structure so far (not including Theorem 8 and the unproven
Theorems 9, 15 and 16) is given by the diagram on the previous page.

10. PErFEct NUMBERs, 11

In the previous sections we have attempted to look at the perfect num-
bers thru the eyes of Euclid, Cataldi and Fermat, and to examine the
consequences of these several inspections. In the next section we take
up other important implications which were discovered by Euler. The
reader may be inclined to think that we have no sincere interest in the
perfect numbers, as such, but are merely using them as a vehicle to take
us into the fundamentals of number theory. We grant a grain of truth to
this allegation—but only a grain. For consider the following:

If N is perfect it equals the sum of its divisors other than itself.

N=1+d+d+- - +d

Dividing by N, we find that the sum of the reciprocals of the divisors, other
than 1, is equal to 1.

1 1 1 1
ey tatat o ta

For P, = 28, we have, for instance,
1 1 1 1 1
1 _7+—14+—28+Z+§'

Now write these fractions in binary notation. Since 7 (decimal) = 111
(binary), we have

1 = .001001001001 - - -
£ = .000100100100 - - - (shift right one place)
o5 = .000010010010 - - - (shift right one place)
1 = .010000000000 - - -
3 = .100000000000 - - -

sum = 1 = 111111111111 - - -

The fractions not only add to 1, but do so without a single carry! And
as it is with 28, so is it with 496. Is that not perfection—of a sort?

11. EULER AND My

We continue to examine the Mersenne numbers, M, , and our attempt
to determine which of these numbers are prime. In Theorem 11 we found
that any prime divisor of M, is necessarily of the form 2kp + 1. We now
seek a sufficient condition—that is, given a prime p and a second prime
q = 2kp + 1, what criterion will suffice to guarantee that ¢q{M, ? Consider
the first case, k = 1. Given a prime p, ¢ = 2p + 1 may be a prime, as for
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p = 3, or it may not, as for p = 7. If it is, ¢ may divide M, , as
23| M1y and 471M 3

or it may not, as
114 My and 59+ My*.

What distinguishes these two classes of ¢? To help us discover the criterion,
consider a few more cases:

TIM** and  167|Ms,
but
83+M41 and 107+M53

The reader may verify (in all these cases) that if p is of the form 4m + 3
and thus ¢ = 8m + 7, then |}, , whereas if p is of the form 4m 4+ 1 and
thus ¢ = 8m + 3, then ¢4, . Does this rule always hold?

Consider the question in a more general form. Let ¢ = 2Q + 1 be a
prime with @ not necessarily a prime. When does

q2¢ — 12
By Fermat’s Theorem 13; we had
gl2* — 1,
and factoring the right side:
q(2® — D2 + D),
we find from Theorem 6, Corollary that either
gl2® —1
or
q2° + 1.

It cannot divide them both since their difference is only 2. Which does it
divide? To give the answer in a compact form we write the class of integers
8k + 7 as 8k — 1 and the class 8k + 5 as 8k — 3. Then we have

Theorem 18. If ¢ = 2Q + 1 s prime, then
g2 — 1 if qg=8k+1, (32)
and

g2+ 1 if q=8k=x3. (33)

* Nonetheless My, is composite, since 233 | My, .
** Nonetheless M; is prime, since 7 = M; .
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In view of the discussion above we can at once write the

Corollary. If p = 4m + 3 s a prime, withm > 0, and 1f ¢ = 2p + 1
is also a prime, then q|M, —and thus 2° ' M, is not perfect.

Like Fermat’s Theorem 12, we will not prove Theorem 18 directly,
but deduce it from a more general theorem. This time, however, the
generalization is by no means as simple, and we shall not prove Theorem 18
until Section 17. For now we deduce a second important consequence.

Theorem 19. Every divisor of M, , for p > 2, is of the form 8k =+ 1.
Proor. Let ¢ = 2Q + 1 be a prime divisor of 3/, . Then
q2M, = 2" — 2 = N* — 2 , (34)
where N = 2072
Thus 2 = N* — Kqg
for some integer K. Then
2* = N' — Ky
for some integer K, , and, by induction
2¢ = N* — Lq.

Now ¢tN, since ¢42, and thus, by Fermat’s Theorem, ¢|{N *¢ — 1. There-
fore ¢!2° — 1, and, by Theorem 18, ¢ must be of the form 8« + 1. Fi-
nally, since the product of numbers of the form 8% 4= 1 is again of that
form, all divisors of A, are of the form 8k 4= 1.

We were seeking a sufficient condition for ¢|M, and found one in the
corollary of the previous theorem. Here instead we have another necessary
condition. Let us return to the table on page 22. We may now define
e, , the last column. From the primes counted by f, = m,, 1(sp), we delete
those of the form 8% + 3. By Theorem 19 only the remaining primes can
qualify to be the smallest prime divisor of M, . We call the number of these
primes e, .

As an example, consider My . For nearly 200 years, Cataldi’s M3, had
been the largest known Mersenne prime. To test My, we examine the
primes which are <46,340, of the form 62k 4 1, and of the form 8% =+ 1.
Let k = 4j + m with m = 0, 1, 2, and 3. Then the primes of the form
62k -+ 1 are of four types:

2487 + 1

248 + 63
248 + 125
248j + 187

I

8(315) + 1
8(31j +8) — 1

8(315 + 16) — 3
8(315 + 23) + 3.

i

l
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The last two types we eliminate, leaving
esn = oz, 1(831) + s, 63(Sa1).
Euler found that no prime ¢ satisfied
g < 46,340"
{248k +1 or

248k + 63
and qlMy .

Thus M; = 2147483647 was the new largest known prime. It remained
so for over 100 years.

Exgrcise 11. Show that if p = 4m + 3, ¢ = 2kp + 1, and q[M,,,
thenk = d4rork = 4r + 1. If p = 4m + 1, and ¢|M,, then k = 4ror
k=4r 4+ 3.

Exgercise 12. Show that 4p + 1 never divides M, .
Exgercist 13. Show that if p = 4m + 3,

€p = T3p, 1(Sp) + T8p, 2p+1(sp>’
while if p = 4m 4 1,
€p = Tsp, 1<8p) + T8p, 61;41(817)-

Exercise 14. Show that e, is “approximately’” one half of f, . Com-
pare the actual values of ¢y, fu, and e; on page 22 with estimates ob-
tained by Theorems 9; and 16.

Exgrcise 15. Identify the 3 primes in ey .

A glance at Mg , the last line of the table on page 22, shows that a
radically different technique is needed to go much further. Euler’s new
necessary condition, e, , only helps a little. But the theory underlying e,
is fundamental, as we shall see.

The other advance of Euler, Theorem 18, Corollary, seems of more
(immediate) significance for the perfect number problem. It enables us
to identify many M, as composite quite quickly. For the following primes
p =4m + 3,q = 2p + 1 is also a prime: p = 11, 23, 83, 131, 179, 191,
239, 251, 359, 419, 431, 443, 491, 659, 683, 719, 743, 911, - - - . All these
M, are therefore composite.

In Exercise 12, we saw that 4p + 141/, . But if p = 4m + 1, then
g = 6p -+ 1 = 8(3m) 4+ 7 is not excluded by Theorem 19. Again we ask,

* Note that Brancker’s table of primes sufficed. It existed then and included
primes <100,000—see page 15.
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for which primes p = 4m + 1 and primes ¢ = 6p + 1, does ¢/, ? But
this time the answer is considerably more complicated than was the criterion
for ¢ = 2p + 1 above. A short table is offered the reader:

g=6p+1|Mp g =060+ 14 Mp

p = 5,37,73, 233 p = 13, 17, 61, 101, 137, 173, 181

Exzercise 16. Can you find the criterion which distinguishes these two
classes of ¢? This was probably first found (at least in effect) by F. G.
Eisenstein. It is usually stated that the three greatest mathematicians
were Archimedes, Newton and Gauss. But Gauss said the three greatest
were Archimedes, Newton and Eisenstein! The criterion is given on page
169.

12. ManNY CONJECTURES AND THEIR INTERRELATIONS

So far we have given only one conjecture. But recall the definitions of
conjecture and open question given on page 2. Since by Open Question 1
we indicate a lack of serious evidence for the existence of odd perfects,
it is clear that if we nonetheless conjecture that there are infinitely many
perfects, what we really have in mind is the stronger

Conjecture 2. There are infinitely many Mersenne primes.
Contrast this with

Conjecture 3. There are infinttely many Mersenne composites, that is,
composites of the form 2° — 1, with p a prime.

Is this a conjecture? Yes, it is. It has never been proven. It is clear that
at least one of these two conjectures must be true.
By Theorem 18, Corollary, Conjecture 3 would follow from the stronger

Conjecture 4. There are infinitely many primes p = 4m + 3 such that
q = 2p + 1 s also prime.

But this is also unproven—although here we may add that the evidence
for this conjecture is quite good. We listed on page 28 some small p of this
type. Much larger p’s of this type are also known. Some of these are
p = 16035002279, 16045032383, 16048973639, 16052557019, 16086619079,
16118921699, 16148021759, 16152694583, 16188302111, etc.

For any of these p, ¢ = 2p + 1M, , and M, is a number, which if
written out in decimal, would be nearly five billion digits long. Each such
number would more than fill the telephone books of all five boroughs of
New York City. Imagine then, if Cataldi were alive today, and if he set
himself the task of proving these M, composite—by his methods! Can’t
you see the picture—the ONR contract—the thousands of graduate as-
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sistants gainfully employed—the Beneficial Suggestion Committee, ete.?
But we are digressing.

Conjecture 4 also implies the weaker

Conjecture 5. There are infinitely many primes p such that ¢ = 2p + 1
is also prime. Or, equivalently, there are infinitely many integers n such that
n + 1 is prime, and n 1s twice a prime.

Conjecture 5 is very closely related* to the famous

Conjecture 6 (Twin Primes). There are infinitely many integers n such
thatn — 1 and n + 1 are both primes.

While more than one hundred thousand of such twins are known, e.g.,
n = 4, 6, 12, 18, 30, ---, 1000000000062, 1000000000332, ---,
140737488353508, 140737488353700, a proof of the conjecture is still
awaited. Yet it is probable that a much stronger conjecture is true, namely

Conjecture 7 (Strong Conjecture for Twin Primes). Let 2(N) be the
number of pairs of twin primes,n — landn + 1,for5 <n+1 £ N.
Then

N
z(N)~1.3203236f _dn (35)
2 (log n)?

The constant in Eq. (35) is not empirical but is given by the infinite
product
1

1.3203236 - - = 2 LIB{1 - @_—1)2} (35a)

taken over all odd primes.
In Exercise 378, page 214, we will return to this conjecture. It is known
to be intimately related to the famous

Conjecture 8 (Goldbach Conjecture). Every even number >2 is the sum
of two primes.

ExampLES:
4 =242
6=3+3
8=3+5

10 =545=347,etc.
Returning to Conjecture 5, we will indicate now that it is also related

* By “related” we mean here that the heuristic arguments for the two conjectures
are so similar that if we succeed in proving one conjecture, the other will almost
surely yield to the same technique.
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to Artin’s Conjecture and to Fermat’s Last Theorem, but it would be too
digressive to give explanations at this point.
We had oceasion, in the proof of Theorem 19, to use the fact that

2M, = N* — 2
for some N. Thus Conjecture 2 implies the much weaker

Conjecture 9. There are infinitely- many n for which n* — 2 s twice a
prime.

This is clearly related to
Conjecture 10. There are infinitely many primes of the form n* — 2.

While more than 15,000 of such primes are known, e.g. n = 2, 3, 5,
7,9, ---, 179965, - -- | a proof of the conjecture is still awaited. Yet it is
probable that a much stronger conjecture is true, namely

Conjecture 11. Let P_o(N) be the number of primes of the form n* — 2
for2 = n £ N. Then

dn
logn’

N
P_o(N )~ 09250272 f (36)
2

On page 48 we will return to this conjecture. It is known to be related to

Conjecture 12. Let P,(N) be the number of primes of the form n* + 1
for1 £ n £ N. Then

N
Pi(N) ~ 0.6864067 f %. (37)
2

Asin Eq. (35), the constants in Egs. (36) and (37) are given by certain
infinite products. But we must postpone their definition until we define
the Legendre Symbol.

Exercise 17. On page 29 there are several large primes p for which
¢ = 2p + 1 is also prime. These were listed to illustrate Conjecture 4. Now
show that the ¢’s also illustrate Conjecture 10.

But we do not want to leave the reader with the impression that number
theory consists primarily of unsolved problems. If Theorems 18 and 19 have
unleashed a flood of such problems for us, they will also lead to some beauti-
ful theory. To that we now turn.

13. SeLirTiNG THE PRIMES INTO EQUINUMEROUS CLASSES

Definition 11. Let A and B be two classes of positive integers. Let A(n)
be the number of integers in A which are = n; and let B(n) be similarly



32 Solved and Unsolved Problems in Number Theory

defined. If
A(n) ~ B(n)

we say A and B are equinumerous.

By this definition and Theorem 16 the four classes of primes: 8k + 1,
8k — 1,8k + 3, and 8k — 3 are all equinumerous. Now Theorem 18 stated
that primes ¢ = 2Q + 1 divide 2° — 1 if they are of the form 8k + 1
or 8k — 1. Otherwise they divide 2° + 1. Therefore the two classes of
primes which satisfy

g2 — 1 and ¢2°+1

are also equinumerous.
We expressed the intent (page 27) to prove Theorem 18 not directly,
but, following the precedent:

Theorem 13 — Theorem 12,

to deduce it from the general case. The difficulty is that the generalization
is not at all obvious. For the base 3, there is

Theorem 20. If ¢ = 2Q+ 1 #£ 3 is a prime, then
g3 -1 if q= 12k + 1, (38)
and
12k + 5. (39)

i

@3+ 1 if gq

Here, again, we find the primes, (not counting 2 and 3), split into equi-
numerous classes. But this time the split is along quite a different cleavage
plane—if we may use such crystallographic language. Thus 7/2° — 1,
while 7|32 + 1.

Since primes of the form 8% + 1 are either of the form 24k + 1 or of
the form 24k + 17; and since primes of the form 12k — 5 are either of
the form 24k 4+ 7 or of the form 24k + 19; etc., the reader may verify
that Theorems 18 and 20 may be combined into the following diagram:

Forqg =24k + b = 2Q + 1 = prime:

q)2Q - 1—>] b =1, 23. =7, 17.

al2Q + 1—>| b=11,13. | b =5, 19.

als® - 1—1 [—q|3Q +1
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There are, of course, 8 different b’s, since ¢(24) = 8. It will be useful for
the reader at this point, to know a formula of Euler for his phi function.
In Seet. 27, when we give the phi function more systematic treatment, we
will prove this formula. If N is written in the standard form, Eq. (1), then

¢(N)=N<1—$1><1_%2>...<1_i>.

As an example
¢(24) = 24(1 — (1 — 3) = 8.

But this does not end the problem of the generalization. Still another
base, e.g., 5, 6, 7, etc., will introduce still another cleavage plane. The
problem is this: What criterion determines which of the odd primes g,
(which do not divide a), divide a® — 1, and which of them divide a? + 1?
By Theorem 13; exactly one of these conditions must exist.

14. EurLER’s CRITERION FORMULATED

The change of the base from 2 to 3 changes the divisibility laws from
Egs. (32) and (33) in Theorem 18 to Eqgs. (38) and (39) in Theorem 20.
Euler discovered what remains snvariani. In the proof of Theorem 19 the
following implication was used: If there is an N such that ¢|N® — 2, then
q]2° — 1. The reader may verify that the number 2 plays no critical role
in this argument, so that we can also say that if there is an N such that
qIN® — a, and if gta, then ¢la® — 1. The implication comes from Fermat’s
Theorem 13, , and the invariance stems from the invariance in that theorem.

Now Euler found that the converse implication is also true. Thus we
will have

Theorem 21 (Euler’s Criterion). Let a be any integer, (positive or nega-
tive), and let g = 2Q + 1 be a prime which does not divide a. If there is an
integer N such that

gIN* — a, then gla® — 1.
If there is no such N, then qla® + 1. It follows that the converses of the last
two sentences are also true.

Before we prove this theorem, it will be convenient to rewrite it with a
“notational change” introduced by Legendre.

Definition 12 (Legendre Symbol-—the current, but not the original
definition). If ¢ is an odd prime, and a is any integer, then the Legendre

Symbol (g) has one of three values. If ¢la, then <—g> = 0. If not, then

<‘—Z) = 41 if there is an N such that ¢|/N° — a, and <g = —1 ifthereis
q

not.
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ExAMPLES:

Il
+

since 7/3° — 2.

Il
I
=

TN TN
[SURNSTEREN TN )
N— S’

+1 since, for every g, ¢1* — 1.

N
K| =
N~—
i

gw

(E) =41 if gta, since, for every g, gja* — o’

Now we may rewrite Euler’s Criterion as

Theorem 21, . If ¢ = 2Q 4 1 ¢s a prime, and a is any integer,

gla® — <g> i (40)

We may remark that usually Euler’s Criterion is presented as a method
of evaluating (g) by determining whether q}aQ — 1 or not. The reader

may note that we are approaching Euler’s Criterion from the opposite
direction. The fact is, of course, that Euler’s Criterion is a two-way im-
plication, and may be used in either direction.

Exercisk 18. From Theorems 18 and 21; show that for all odd primes p,

(2) = -nyeoe (41)
Likewise
) —(-pf! (42)

where the square bracket, [ ], is as defined in Definition 6.

Exrrcise 19. Determine empirically the “cleavage plane” for qISQi 1,
which is mentioned on page 33, by determining empirically the classes of
primes ¢ which divide N* — 5, and those which do not. That is, factor N2 —
5 for a moderate range of N, and conjecture the classes into which the
prime divisors fall. You will be able to prove your conjecture after you
learn the Quadratic Reciprocity Law.

Exercise 20. On the basis of your answer to the previous exercise,
extend the diagram on page 32 to three dimensions, with the three cleavage
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planes, 2° = 1,3% & 1, and 5° = 1. In each of the eight cubes there will be
four values of b, corresponding to four classes of primes, ¢ = 120k + b.
All together there will be 32 classes, corresponding to ¢(120) = 32.

15. EvLEr’s CriTERION PROVED

Our proof of Theorem 21, will be based upon a theorem related to
Theorem 17.

Theorem 22. Let q be prime, and lef a; ;7 = 1,2, --- , ¢ — 1, be the posi-
tive integers < q. Let a be any integer prime to q. Given any one of the a.,
there s a unique j such that

gla.a; — a. (43)
Proor. By Euelid’s Eq. (7), page 9, there is an m and an n such that
ma; + ng = 1,
or
maa; + naqg = a. (44)
Since (m, ¢) = 1, we have ¢4ma and if we divide ma by ¢ we obtain
ma = sq + a; (45)
for some j and some s. From Eqs. (44) and (45),
qlaa; — a.
Now, for any k such that
glaax — a,
we have
glaiar — a;),

and, since gta; , we have ¢|(ax — a;), thatis, k = j.
Now we can prove Theorem 21, .

. a
Proor oF TuEOREM 21, (by Dirichlet). Assume first that <&> = —1.

With reference to Definition 12, this implies that the j and ¢ in Eq. (43)
can never be equal. Therefore, by Theorem 22, the 2Q integers a; must
fall into @ pairs, and each pair satisfies an equation:

a;a; = a + Kgq (46)
for some integer K. The product of these @ equations is therefore

Q! = a® + Lg
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for some integer L. Therefore

(g) = —1 implies gla® — (2Q)!. (47)

Now assume (g) = +1. Then ¢|N* — a for some N, and, since ¢tN
we may write N = sq + a, for some s and r. Therefore
gla,” — a. (48)
If, for any ¢,
gla* — a,
then from Eq. (48),
gla’ — o, or gl(a = a)(a + a,).
Thus either ¢ = r, or a; + a, = mq. In the second case, since a, and a,
are both <¢, m = 1, and therefore a; = ¢ — a, . Thus if (E) = -1, there
are exactly two values of a; which satisfy the equation !
qlx2 — a.
These two values, a, and a; = ¢ — a, , satisfy
~a,a; = a + Kg (49)

for some K.

The remaining 2Q — 2 values of a; fall into ¢ — 1 pairs (as before) and
each such pair satisfies Eq. (46). The product of these @ — 1 equations,
together with Eq. (49), gives

—(2Q)! = a° + Mq

for some M. Therefore

(g) = +1 implies ¢|(2Q)! + a° (50)
Equations (47) and (50) together read
gl @(2@)1 + a’. (51)

If we let @ = 1, by the third example of Definition 12, we have, for every q,

ql(2@)! + 1. (52)
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Therefore (2)! = —1 4+ Kq for some K, and Eq. (51) becomes

gla® — <g> (53)

Finally if <g—> = 0, gle, and Eq. (53) is still true. This completes the proof

of Theorem 21; .
It may be noted, that if b* = a, then by Eq. (40), and the last example
of Definition 12, we again derive

QIb2Q - 17

which is Fermat’s Theorem 13, . This theorem is therefore a special case
both of Euler’s Theorem 14, and his Theorem 21, .

Exercise 21. There have been many references to Fermat’s Theorem
in the foregoing pages. With reference to the preceding paragraph, review
the proof of Theorem 21; to make sure that a deduction of Fermat’s Theo-
rem from Euler’s Criterion is free of circular reasoning.

We have set ourselves the task of determining the odd primes ¢ = 2@ + 1
which divide a® — 1. Euler’s Criterion reduces that problem to the task of

evaluating (g) This, in turn, may be solved by Gauss’s Lemma and the

Quadratic Reciprocity Law. 1t would seem, then, that Euler’s Criterion
plays a key role in this difficult problem. Upon logical analysis, however,
it is found to play no role whatsoever. Theorem 21 and Definition 12 will
be shown to be completely unnecessary. Both are very important—ifor
other problems. But not here. If we have nonetheless introduced Euler’s
Criterion at this point it is partly to show the historical development, and
partly to emphasize its logical independence.

16. WiLson’s THEOREM

In the proof of Theorem 21; we have largely proven

Theorem 23 (Wilson’s Theorem). ];et
N=(@g-U!+1L
Then N is divisible by q if and only if g is a prime.

Proor (by Lagrange). The “if”” {ollows from Eq. (52) if ¢ is an odd
prime, since ¢ — 1 = 2Q. If ¢ = 2, the assertion is obvious. If ¢ is not
a prime, let ¢ = 7s with » > 1 and s > 1. Then, since s|(g — 1)!, stN.
Therefore ¢g¢+N and ¢|N only if ¢ is prime.

The reader will recall (page 14) that when we were still with Cataldi,
we stated that a leading problem in number theory was that of finding an
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efficient criterion for primality. In the absence of such a criterion, we have
used Fermat’s Theorem 11, and Euler’s Theorem 19, to alleviate the
problem. Now Wilson’s Theorem is a necessary and sufficient condition
for primality. But the reader may easily verify that it is not a practical
criterion. Thus, to prove M, a prime, we would have to compute:

524287|524286! + 1. (54)
But the arithmetic involved in Eq. (54) is much greater than even that
used in Cataldi’s method. We will return to this problem.
ExErcise 22. If ¢ = 2Q + 1 is prime, and @ is even,
2l(Q)* + 1.

(3)- oo

and therefore all odd divisors of n* + 1 are of the form 4m <+ 1.
ExERcisE 24. For a prime ¢ = 4m + 1, find all integers x which satisfy
qiz® + 1.

ExEerciseE 25. We seek to generalize Wilson’s Theorem in a manner
analogous to Euler’s generalization of Fermat’s Theorem. Let m be an
integer >1 and let a; be the ¢(m) integers 1, - -+ , m - 1 which are prime
to m. Let A be the product of these ¢(m) integers a;. Then for m = 9
or 10, say, we do find m|A 4 1 analogous to p|(p — 1)! + 1 for p prime.
But for m = 8 or 12 we have, instead, m{4 — 1. Iind one or more addi-
tional composites m in each of these categories. We will develop the com-
plete theory only after a much deeper insight has been gained—see Ex-
ercise 88 on page 103.

ExERrcisE 23.

17. Gauss’s CRITERION

After our digression into Euler’s Criterion, we return to the problem
posed on page 33. Which of the primes ¢ = 2Q 4 1, which do not divide
a, divide a® — 1? The similarity of Theorems 18 and 20, for the cases
a = 2 and a = 3, may create the impression that the problem is simpler
than it really is. But consider a larger value of a—say a = 17. Then it will
be found that primes of the form 34k 4= 1, 34k =+ 9, 34k =+ 13, and 34k & 15
divide 17° — 1, while 34k =+ 3, 34k + 5, 34k + 7, and 34k + 11 divide
17° + 1. Such complicated rules for choosing up sides scem obscure in-
deed. Thus the complete, and relatively simple solution for every integer
a, at the hands of Euler, Legendre, and Gauss, may well be considered a
Solved Problem par excellence.
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A large step in this direction stems from the simple

Theorem 24. Let a,(i = 1,2, - -+, Q) be the positive odd integers less than
a prime ¢ = 2Q + 1, and let a be any integer not divisible by g. Let
aa; = qiq + i 0 <r <q (55)

as in Eq. (31) of Theorem 17, (page 23). In addition to the result given
there that all Q of these r; are distinct, it s also true that no two of them add
to q:

ri +ri #q (56)
Proor. If r; 4 r; = ¢, then, from Eq. (55),
a{a; + a;) = Kq (57)

for some integer K. But a; + a; is even and <2q. Therefore ¢ta; + a;
and Eq. (57) implies g|a. Since this cannot be, we obtain Eq. (56).

From this simple observation we obtain an important result which we
will call Gauss’s Criterion.

Theorem 25 (Gauss’s Criterion). Let ¢, a, a; , and r; be as in the previous
theorem, and let v be the number of the r; which are even—(md therefore not
equal to some a;. Then

qla® — (=1)7; (58)
ie., gla® — 1 or qla® + 1 according as v is even or odd.

Proor. The set of @ remainders, r;, given by Eq. (55), consists of vy
even integers and Q — v of the odd integers a;. Let each of the v even
integers, r; , be written as ¢ — a for some k. But this ax cannot be 7.,
one of the @ — v odd remainders, since, if it were, we would have r; +
Tm = ¢ in violation of Theorem 24. Therefore, for each a,, either a; is one
of the odd r; or ¢ — a is one of the even r;, but not both. In the first case
we have !

aa; = ¢ + G (59)
for some 7, and in the second case we have
aar = g + (¢ — @)
(60)
= (Qk + 1)(1 - a

for some k.
If we now take the product of the v equations of type Eq. (60) and the
Q — v equations of type Eq. (59) we obtain

a®(aar -+ ag) = Lg + (—1)"(@as -+ %)
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for some integer L. Proceeding as we did in Theorem 14 (page 24) we
obtain Eq. (58).

Exgrcise 26. Derive Fermat’s Theorem from Gauss’s Criterion, and,
as in Exercise 21, check against circular reasoning.
With Gauss’s Criterion we may now easily settle Theorem 18.

Proor or THEOREM 18. Let @ = 2 in Theorem 25. If @ is odd, there are
(@ + 1)/2 odd numbers, 1, 3, 5, - - - , @, whose doubles

2:1,2:3,---,2:Q

are less than ¢. Therefore ¢; = 0 in Eq. (55), and these even products,
2a; , are themselves the r; . The remaining products

2Q+2),20Q+4),---,2(2Q - 1)

will have ¢; = 1 and therefore their r; will be odd. Thus, if Q is
odd, vy = (@ + 1)/2. Likewise, if @ is even, the /2 products

21,23, -+ ,2(Q — 1)

have even r,, and v = /2. Both cases may be combined, using Definition

6, in the formula
=[Q+1]=[q+1]
Y 2 m .

From Eq. (58) we therefore have
12 — (—1)"*""  (compare Exercise 18). (61)

Finally if ¢ = 8k = 1, [Q_j:_l] = 2k And if ¢ = 8k =+ 3, [4%] _

2k + 1. This completes the proof of Theorem 18, and therefore also of
Theorem 19.

18. THE ORIGINAL LEGENDRE SYMBOL

With the proofs of Theorems 18 and 19, we might consider now whether
we should pursue the general problem, gla® == 1, or whether we should
return quickly to the perfect numbers. But there is little occasion to do the
latter. We have already remarked (page 28) that “a radically different
technique is needed to go much further.” Such a radically different tech-
nique is the Lucas Criterion. But to obtain this we need some essentially
new ideas. And to prove the Lucas Criterion we will need not only Theorem
18, but also Theorem 20—the case a = 3. We therefore leave the perfect
numbers, for now, and pursue the general problem.

Legendre’s original definition of his symbol was not Definition 12, but
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Definition 13 (Original Legendre Symbol). If ¢ = 2@ + 1 is prime, and
a is any integer, then (alg) has one of three values. If gla, then (alg) = 0.
If not, then (ajg) = +1if gla® — L and (alg) = —1if gla® + 1. In every
case

gla® — (alg)- (62)

This looks very much like Euler’s Criterion. But of course it isn’t. It is
merely a definition, not a theorem. Further, there is nothing in this defini-
tion about an N such that ¢|/N* — a, etc. In view of Theorem 21,,

Eq. (40), it is clear that
a
=(=). (63)
(@) = (2)

We stated above, however, (page 37) that the solution of the problem
gla® = 1 is logically independent of Euler’s Criterion and Definition 12.
For the present then, we will ignore Eqgs. (63) and (40), and confine
ourselves to Definition 13 and Eq. (62).

In terms of the original Legendre symbol we may rewrite Gauss’s

Criterion as
Theorem 25, . With all symbols having their previous meaning, we have

(alg) = (=17 (64)
if gta.

The symbol (alg) has two important properties—it is multiplicative and
periodic.

Theorem 26.
(ablg) = (alg) (blg). (65)
(a + kqlg) = (alg) (for any integer k). (66)
Proovr. Since
a® = Kq + (alo),
and v® = Lg + (blg),
we have (ab)® = Mq + (alg) (blg)
for some integers K, L, and M. But since

(ab)® = Ng + (ablg)

il

we have

ql(alg) (blg) — (ablg). (67)
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Again, by Eq. (13),
ql(a + k)" — a”
for every n. Therefore q|(a + kq)® — a% or
ql(a + kqlg) — (alg). (68)

Since the right sides of Eqs. (67) and (68) are less than ¢ in magnitude,
they must both vanish, and therefore Eqgs. (65) and (66) are true.

To solve the problem gla® + 1, we must evaluate (alg). If gla, there is
no problem. Let gfa and let a be a positive or negative integer written
in a standard form

a = £p'p:’ - P (69)

By factoring out p:* for every even a;, and p} ™" for every odd a; > 1,
we are left with

a = £pipi - pulV’, (70)
a product of primes times a perfect square N°. Now, from Eq. (65),
(N'lg) = (Nig)(Nig) = +1 (71)
since ¢4N, so that, from Eq. (65), we have
(alg) = (£1ig)(pilg) - (Pmlg). (72)
If the first factor is (—1|¢), from Eq. (62) we have
(—1lg) = (=1 (73)
Otherwise
(i = L (74)
If p; = 2, from Eq. (61) we have
(2|q) — (__1)[((14-1)/4]' (75)

Therefore to evaluate any (alg) there remains the problem of evaluating
(plg) for any two odd primes p and gq.

19. THE REciprociTy Law

By examining many empirical results (such as those of Exercise 19),
Euler, Legendre and Gauss independently discovered a most important
theorem. But only Gauss proved it—and it took him a year. In terms of the
original Legendre Symbol we write

Theorem 27 (The Reciprocity Law). If p = 2P + 1 and ¢ = 2Q + 1
are unequal primes, then

(plg) (glp) = (—1)"< (76)
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The theorem may also be stated as follows: (plg) = (gip) unless p
and g are both of the form 4m + 3. In that case, PQ is odd, and (plg) =

—(glp)-
Before we prove Theorem 27, let us state right off that it completely

solves our problem, qla® &= 1. We stated above that what remained was to
evaluate all (plg). But if p > ¢ we may write p = s¢ -+ r and therefore,
by Eq. (66), (plg) = (r|g). Without loss of generality we may therefore
assume p < q. But in that case we may use Eq. (76) and obtain

(pl) = (—1)"%qlp)
so that if ¢ = sp 4+ r,
(plg) = (—1D"(rip).

Thus we reduce a symbol whose right argument is a prime ¢ to one whose
right argument is a smaller prime p. By continuing this reduction we must
eventually get down to a symbol

(=), (1lg), or (2lg)

which we can evaluate by Eqgs. (73), (74) or (75).
To illustrate these reductions we will evaluate several (al¢) and prove
one theorem. In carrying out any step of a reduction it will be convenient

to write
(Llg) = 1y

(—1g) = (=D
(2ig) = (=DM

(aN*lg) = (alg)s Gf ¢tN) (77)
(ablg) = (alg) (bIg)n

(a + kqlg) = (alg)r
(plg) = (—=1)"%(glp)=

depending on whether that step uses the “unit,” “negative,” “double,”
“square,” “multiplicative,” “periodic,” or “reciprocity” rule. There is no
unique method of reduction. Thus

(8[17) = (217)s = +1p,

i

or

(8[17) = (=917)r = (=1[17)s = +1u,

or

8I17) = (@5)17), = (117)s = +1u,
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or

(8)17) = (=26{17)p = (26]17)aen = (13[17) 0

(A713)r = (413)r = +15p.

Any path leads to the same answer, (8|17) = 1, and this implies 17 88 — 1.

Again,
(17]47) = (47]17)x
(17147) = (64]17)»

Therefore 47|17 — 1.
A third example raises a new point. We have

(15]47) = (3]47) (5]47)0 = —1(47]3) (47[5) =
= —1(—1[3)(25)r = (25)w = —1,.
But (15[47) 2 —1(47|15) 22 —1(215)s2 —1,.
In the second “reduction” we did not factor 15 and we applied the rules
(77) to (47]15) and (2{15). But 15 is not a prime! Nonetheless we obtained

the correct answer. We will return to this pleasant possibility in Volume
II when we study the Jacobi Symbol. Now let us prove Theorem 20.

+1s0.

Proor or THEOREM 20.

(3|12k + 1) = (12k + 13) = (1[3)r = 14.

312k — 1) = —1-(12k — 1[3)r = —1-(—1[3)5 = ly.

3|12k + 5) = (12k + 5[3)r = (—1[3)r = —14.

312k — 5) = —1(12k — 5]3)z = —1-(13)p = —1,.
Therefore g =12k + 13° — 1 and

g = 12k + 5[3° + 1.

We note, in passing, that Theorem 20 makes an assertion concerning
(3|g) for infinitely many ¢, while in the proof we need evaluate only finitely
many Legendre Symbols. It is, of course, the Reciprocity Law, together
with Eq. (66), that brings about this economy.

Exercise 27. Verify the statements on page 38 concerning 17° + 1.

Exzrrcisk 28. Investigate the possibility of always avoiding the “double”
rule, inasmuch as

(2g) = (—1lg) (g — 2lg)
If so, it means that our original motivation, ¢2? = 1, is the one thing we
do not need in determining gla® =+ 1.

(13|17)p = +1 (as above).
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The simplest and most direct proof of the Reciprocity Law is perhaps
the following modification of a proof by Frobenius. It is based on Gauss’s
Criterion.

Proor orF TerorEM 27. Let ¢ = 2Q + 1 and p = 2P 4 1 be distinct
primes. Let a be an odd integer satisfying 0 < a < p such that

ga = pa’ +r (78)

with 7 an even integer satisfying 0 < r < p. If v is the number of such a,
by Eq. (64) we have

(gp) = (=D

It follows from Eq. (78) that for each such a, the corresponding a’ is also
odd, is unique, and satisfies 0 < a’ < g.
By symmetry

(plg) = (=1
where 4’ is the number of odd a’ such that
pd = qa + r (79)

with0 < @’ < ¢,0 <r <q,0 < a < p, and with ¢ odd. Again, for each
such a’, @ is unique.
If we now consider the function

R(a, d') = qa — pa’

wherea = 1,3,5,---,p — 2,and @’ = 1,3,5,---, ¢ — 2, we see that
there are v of these R which satisfy 0 < R < p, and v’ of these B which
satisfy —¢ < R < 0. Since there is no B = 0 (because a < p and p is a
prime), we see that there are v 4+ v’ values of R such that

—q < R < p. (80)

But if R, = qa, — pa) is one of these, then so is Ry = ga: — pa;’ where
o+ a=p-—1,
a’ +a’ =q—1,

(81)
and therefore

R1+R2='p—q-

For, the mean value of R; and R. equals the mean value of the limits of
Eq. (80), —¢ and p. Therefore if R; is even, and between these limits,
so will B; be even and between the limits. And likewise if a; is odd and
between 0 and p — 1, 50 is a» . And similarly with a," and a,’.
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Therefore each R in Eq. (80) has a companion R in Eq. (80), given by
Eq. (81), unless

a=a=(p—1/2=P, and a =a =0Q. (82)

But, since every a and o’ is odd, Eq. (82) cannot occur unless P and Q are
both odd. Conversely, if P and @ are both odd, there is a self-companioned

R=qP —pQ =P —Q

given by Eq. (82), which does satisfy Eq. (80).
Thus ¥ + ' is even unless P and @ are both odd. But so is PQ even,
unless P and @ are both odd. Therefore

(alp) (plg) = (=1 = (=1)"*

and Theorem 27 is proven.

Gauss gave seven or eight different proofs of the Reciprocity Law. All of
them were substantially more complicated than the one we have given—
and the first proof, as we have said above, took him a year to obtain.
Yet the given proof, based on Gauss’s Criterion, seems quite straight-
forward and simple. We will return later to this question—since we are
interested, among other things, in the reasons why some proofs are com-
plicated, and in the feasibility of simplifying them.

We may note that the proofs of Theorem 25 (Gauss’s Criterion) and of
Theorem 27 just given, are similar in sirategy to parts of Dirichlet’s proof of
Euler’s Criterion (page 35). In both cases we multiply @ equations
together, and in both cases we set up “companions”’—except that in
Euler’s Criterion the companions are multiplicative, as in Eq. (46), while
in Theorem 27 they are additive, as in Eq. (81). Again, in both cases, the
self-companioned singularity (which may or may not occur) is the
critical point of the proof.

Exrrcise 29. Show that if the Q numbers a; in Theorem 24 are the num-
bers 1, 2, - -+, @ instead of the odd numbers, the theorem is still true.

Exzrcise 30. Modify Theorem 25 in accordance with the different set
of a; in the previous exercise. (For this different set and with the use of

(g) instead of (alg), this result is called Gauss’s Lemma.) Carry out the

details of the new proof.

ExEercise 31. With the variation on Theorem 25 of the previous example,
carry out another proof of Theorem 27—with ‘“‘companions,” ete.

Exercist 32, Consider Eq. (80) and show that cach R such that p < R
can be put into one-to-one correspondence with an R such that R < —q.

From Perfect Numbers to the Quadratic Reciprocity Low 47

If the number in each set is 4, then PQ = v 4+ v’ + 2A. Therefore we
have another variation on the proof of Theorem 27.

Exercisk 33. Examine the “companions,” Kq. (81), in several numerical
cases and verify that sometimes the v solutions of Eq. (78) choose their
companions solely from the v’ solutions of Eq. (79), while sometimes some
of the v companions of Eq. (78) are themselves from the set Eq. (78).

20. Tur Prime Divisors oF n* + a
Now that we have completed the solution of the problem qla® =+ 1,
we will lift our ban against Euler’s Criterion and Definition 12. Henceforth,

(alg) and <E> are identical, will be designated the Legendre Symbol, and
q

may be written in either notation.
If ¢ = 2Q + 1 is a prime which does not divide ¢, we now have at once

that
qn* + a
—a

for some n, if <T> = +1, and

gtn’ + a

for any n, if <—»—a> = —1. The symbol <—7a> we may evaluate by the rules
q

of Eq. (77). When we are concerned, as we are here, with gIn* + a, Theorem
27 is called the Quadratic Reciprocity Low.

ExERCISE 34. Show that for any odd prime ¢ = 24k 4 b, which is greater
than 3, there is an n such that qin* + a if b is one of those listed in the
following table. If b is not so listed, in the row corresponding to a, there is
no such n. g

a b

+1 1, 5,13, 17
42 | 1,11, 17, 19
—2 | 1, 7,17, 23
+3 | 1, 7,13, 19
—3 | 1,11, 13, 23
46 | 1, 5 7,11
-6 | 1, 5,19, 23

CoMMENT: In each of these seven cases “one-half” of the primes divide
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the numbers of the form n’ + a, since $(24) = 8. (When we get to modulo
multiplication groups, these seven sets of b will constitute the seven sub-
groups of order four in the group modulo 24. Why the special role of b = 1?
Because 1 is the identity element of the group.)

Exgercise 35. Prove the conjecture you made concerning the prime
divisors of n?2 — 5 in Exercise 19. Or, if your conjecture was erroneous, dis-
prove it. But if you haven’t done Exercise 19, don’t do it now. You already
know too much.

The reader no doubt asked himself, while reading Conjectures 11 and
12, why there should be more primes of the form n* — 2 than of the form
n* 4+ 1, and what the general situation would be for any form n* + a.
With what he knows now the reader may begin, if he wishes, to partially
formulate his own answer. In particular, from the table in Exercise 34,
should there be (relatively) few primes of the form n* + 6, or (relatively)
many?

Definition 14. By P.(N) is meant the number of primes of the form n? + a
for 1 < n < N. If a is negative, and if for some n, n* + a is the negative
of a prime, we will, nonetheless, count it as a prime.

Now that we have the Legendre symbol we can define the constants
in Conjectures 11 and 12, and state a general conjecture of which these
two are special cases.

Conjecture 12, (Hardy-Littlewood).
If a # —m’,
dn

1 N
Pa(N)Néha./; m

where the constant h, is given by the infinite product

he = ﬁ{l — (—ahw) — }

w—1

taken over all odd primes w. Here (—alw) is the Legendre symbol.

ExampLE:
From (—1w) = (—=1)“""" we have

bh=04+H0-D0+HDO+ A -2 —F) -
137281346 - - - |

-

and we thus obtain Eq. (37) for primes of the form n* 4+ 1. =
But to evaluate such slowly convergent infinite products we will need
many things which we have not yet developed—Mabius Inversion Formula,
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Gauss Sums, and Dirichlet, Series. We therefore postpone further considera-
tion of this conjecture until Volume II.

We offer, however, without further comment, a little table for the
reader’s consideration.

a P,(1000) P,(10,000) P,(100,000)
+7 167 1238 9521
—2 157 1153 8888
] 148 1088 8579
-3 120 850 6664
+1 112 841 6656
+4 125 870 6517
+3 109 711 5426
—6 91 643 - 5010
-7 68 440 3627
+2 68 446 3422
+6 53 444 3420
+5 48 339 2567
—4 2 2 2
-1 1 - 1 1

0 0 0 0
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THE UNDERLYING STRUCTURE

21. THE REsipUuE CLASSES AS AN INVENTION

In July 1801, Carl Friedrich Gauss of Braunschweig completed a book
on number theory, written in Latin, and entitled Disquisitiones Arithme-
ticae. He was then 24, and largely unknown. He had been writing this book
for five years. Upon publication, it was at once recognized as a work of the
highest order, and, from that time until his death many years later, Gauss
was generally regarded as the world’s leading mathematician. Since Gauss
was the director of the astronomical observatory at Géttingen for 48 years,
his death was recorded with appropriate accuracy: February 23, 1855 at
1:05 a.m. :

We should make it clear that his early reputation stemmed equally (or
perhaps principally) from quite a different source. On January 1, 1801,
Giuseppe Piazzi had discovered a minor planet in the general vieinity
predicted by Bode’s Law. This planetoid was named Ceres, but, being
only of 8th magnitude, it was lost 40 days later. From the data gathered
during these 40 days, and with new methods of reducing these which he
devised, Gauss managed to relocate the planet. And since celestial me-
chanies was the big thing in mathematics at that time—say as topology
is today—this relocation too was regarded as a work of first magnitude.
But if fads in mathematics change quickly, certain things do not. Of these
two works of Gauss in 1801, his book is still of first magnitude, and Ceres
is still of eighth.

At that period, France was once again the leading center of mathematics
with such luminaries as Lagrange, Laplace, Legendre, Fourier, Poncelet,
Monge, etc., and consequently Gauss’s book was first translated into
French (1807). It is perhaps through this translation that the work of
“Ch. Fr. Gauss (de Brunswick)” became known to the mathematical
world. It is said that Dirichlet carried his copy with him wherever he
went, that he even slept with the book under his pillow, and that many
vears later, when it was out of print, he regarded it as his most precious
possession—even though it was completely in tatters by then. For ap-
proximately $9.50 one may purchase a 1953 (Paris) reprint of this transla-
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tion, with an unsubstantial cover, and with pages so well oxidized that it
may well attain this “Dirichlet Condition” even if it encounters a more
casual reader. There also exists a German translation((1889), but, at this
writing, the book is still not available in English.

We ask now, what was in it; and why did it make such a splash? Well,
many new things were in it—Gauss’s proof of the Reciprocity Law, his
extensive theory of binary quadratic forms, a complete treatment of
primitive roots, indices, etc. Finally it included his most astonishing dis-
covery, that a regular polygon of F, = 2" 4 1 sides can be inscribed in
a circle with a ruler and compass—provided Fn is a prime.

But the most immediate thing found in Gauss’s book was not one of
these new things; it was a new way of looking at the old things. By this
new way we mean the residue classes. Gauss begins on page 1 as follows:

“If a number A divides the difference of two numbers B and C, B and C
are called congruent with respect to A, and if not, incongruent. A is called
the modulus; each of the numbers B and C are residues of each other in the
first case, and non-residues in the second.”

Does it seem strange that Gauss should write a whole book about the
implications of

AlB—C? (83)

It surely is not clear a priori why Eq. (83) should be worthy of such pro-
tracted attention. In fact, these opening sentences are completely un-
motivated, and hardly understandable, except in the historical light of the
previous chapter. But in that light, the time was ripe—and even overripe—
for such an investigation. We will review four aspects of the situation then
existing,.

(a) First, it will not have escaped the reader that we were practically
surrounded by special instances of (83) in the previous chapter. Thus
Fermat's Theorem 13; reads:

P—l_l
’

pla

and his Theorem 11:
g2 — 1 —2pig — 1,

can go it one better by having both hypothesis and conclusion in that
form. So likewise Euler’s Criterion:

gN* — aqla® — 1,
and his Theorem 19:
g2 —1—>8jg—1 or 8jg — (—1).
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Could so much formal similarity be fortuitous? And if not, what could be
its significance?

Where we first came upon such expressions we know well enough—if
N = 2"7'F is to be perfect, the sum of divisors 1 4+ 2 4+ -+ 4 2™ =
2" — 1 must be a divisor of N, and must also be a prime. But 232" — 1
and therefore My was not a prime, ete. It is another question, however ify
we ask why the expressions A\B — C should be so persistent. ,

We should make it clear, at this point, that though we have followed one
path in the previous chapter, that starting from the perfect numbers, much
other ground had been gone over by this time. In particular, consider
Ga_uss. Gauss could compute as soon as he could talk—in fact, he jokingly
claimed he could compute even earlier. He rediscovered many of the
theorems given in the previous chapter before he had even heard of Fermat,
Euler or Lagrange. It is clear that no computing child could reinvent
anything as esoteric as the perfect numbers, and therefore Gauss could
nf)t. have followed the path which we have sketched. To the Greeks a
divisor of a number, other than itself, was a “part” of the number; and
for a perfect number, the whole was equal to the sum of its parts. Such a
Greek near-pun could well engage the classicists of the Renaissance, but
would not be likely to occur to a self-taught Wunderkind.

What was available to Gauss was such material as

.142857142857142857 - - -
and T3 = .076923076923076923 - - - .

Now if # is a periodic decimal with a period 6, then since 1 = 0.999999 - - - ,
it means that 7999999, or

=
Il

7)10° — 1.

Likewise for any prime p, not equal to 2 or 5, we find
p[1077" — 1.

Therefore, say,
13/10" — 1.

But we have just seen that 5 also has a period of 6, so that
13[10° — 1.

From the foregoing theory we know that
pl10" "% — 1 means (10|p) = +1
and that
(10[13) = (=3[13), = (3[13) 4w = (13[3)r = +150.
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It is clear, however, that whether Fermat and Euler were interested in
perfect numbers—and 23[211 — 1; or Gauss was interested in periodic
decimals—and 13[106 — 1, the basic underlying theorems are identical,
and A|B — C arises in either case.

(b) There is another case of persistence in the previous chapter.”On
pages 24, 27, 35, etc., we are saying, repeatedly, “for some integer, @, L,
K, K»” ete., and that seems almost paradoxical at first. Isn’t number theory
an exact science—don’t we care what Q, L, ete., are equal to? The answer
is, generally,* no. If we are interested in A|B this implies some integer X
such that B = AX, but which integer is quite irrelevant.

1t is instructive to examine the additive analogue of divisibility, A < B.
This implies a positive X such that B = A + X, but which X is again
irrelevant. If this were not the case, Analysis would be quite impossible.
1t is difficult enough to show that a certain quantity is less than epsilon—
it would be totally unfeasible if we always had to tell how much less. The
analyst embodies this ambiguity in X by working with classes of numbers,
—e < X < ¢ and any X in the class will do. Likewise in divisibility theory
we should consider the advantages of working with classes of numbers,
which would embody the ambiguity presently in question.

A variation on this theme concerns the algebra of such ambiguity. On
page 27 we square one ambiguous equation, 2 = N® — Kq, to obtain a
second, 2° = N' — K.q. On page 36 we substitute the ambiguous N =
sq + a, into ¢gIN® — a to obtain gla,, — a. Such persistent, redundant, and
rather clumsy algebra virtually demands a new notation and a new algebra.

(¢) Again, consider the arithmetic of page 26:
167)2% — 1,
or the scemingly impossible operation,

32070004559|2' % — 1,

of Exercise 7. The first seems a little long and the second virtually im-
possible—but only because the dividend, and therefore the quotient is so
large. But we =aid that in questions of divisibility the quotient is irrelevant,
that only the remainder is of importance. Thus, if

b=qa++r,

divisibility depends only on 7. And 7 is less than a. And a, even in the
second case, is not too large to handle. What we want, then, is an arithmetic
of remainders.

* An important exception will be discussed in Sect. 25.
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(d) A final, and most important point. Fermat’s Theorem quickly let
its power be seen. Thus

fio =6 K¢ = 128

was most impressive. Similarly Euclid’s Theorem 5 and its immediate
consequence Theorem 6 have, by their constant use, become quite in-
dispensable. Yet can we say, at this point, that we can see clearly the
source of this power and this indispensability? There is suggested here the
existence of a deeper, underlying structure, the investigation of which
deserves our attention.

We want then, in (b), an algebra of ambiguity; in (c), an arithmetic of
remainders; and in (d), an interpretation in terms of an underlying struc-
ture. It is the merit of the residue classes that they answer all three of these
demands.

We could, it is true, have introduced them earlier—and saved a line here
and there in the proofs. But History did not introduce them earlier. Nor
would it be in keeping with our title, “Solved and Unsolved Problems,”
for us to do so. To have a solved problem, there must first be a problem,
and then a solution. We could not expect the reader to appreciate the
solution if he did not already appreciate the problem. Moreover, if we have
gone on at some length before raising the curtain (and perhaps given undue
attention to lighting and orchestration) it is because we thought it a matter
of some importance to analyze those considerations which may have led
Gauss to invent the residue classes. Knowing what we do of Gauss’s great
skill with numbers, and while we can not say for certain, the consideration
most likely to have been the immediate cause of the invention would seem
to be item (c¢) above.

.EXERCISE 36. Using the results of Exercise 35 and of Exercise 18, deter-
mine th.e odd primes p = 2P + 1 5 such that 1/p has a decimal expan-
sion which repeats every P digits. The period of some of these primes may
be less. Thus 4% = .027027 - - - does repeat every 18 digits, but its period
is 3.

22. THE REesipue Crasses as A Toor
Definition 15. If a, b, and ¢ are integers, with @ > 0, and such that
alb — ¢, (84)
we may write, equivalently,
b=c (mod a), (85)

and the latter is read “b is congruent to ¢ modulo a.” We may also say “b is
a residue of ¢ modulo a.” Conversely, given Eq. (85), we may write Eq.



56 Solved and Unsolved Problems in Number Theory

(84). If b is not congruent to ¢ modulo a, we write

b#ec (mod a). (86)
If
b=gqa+r, (87)
then b=r (mod a)
independently of the value of g. As ¢ takes on all integral values, - - -, —2,
—1,0,1,2, -+, each such b is congruent to r, and all such b form a class

of numbers which we call a residue class. a is called the modulus.
ExAMPLES:
M =1 (mod 23).
2% = —1  (mod 59).
(Fermat’s Theorem)
a#z0 (mod p) »a® ' =1 (mod p).

(Euler’s Criterion)

2
(r-D/z2 _ 1

N'=a (mod p) < a (mod p).

For any a@ > 0, and any b we can always write Eq. (87) with0 = r < a.
Corresponding to a modulus @, there are therefore a distinct residue classes,
and the integers 0, 1, 2, ---, a — 1 belong to these distinct classes, and
may be used as names for these classes. Thus we may say 35 belongs to
residue class 3 modulo 16.

“Congruent to” is an equivalence relation, in that all three characteristics
of such a relation are satisfied. Specifically:

Reflexive. For all b, (88a)
b=b (mod a).
Symmetric. (88b)
b=c¢ (mod @) implies ¢=b (mod a).
Transitive. (88¢)
b=c¢ (moda) and c=d (mod a)

implies b=d (mod a).

All the numbers in a residue class are therefore congruent to each other
(mod a).

The utility of residue classes comes from the fact that this equivalence
is preserved under addition, subtraction and multiplication. Thus we have

Theorem 28. Let f(a, b, ¢, - - - ) be a polynomial ¢n r variables with integer
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coefficients. That is, f is a sum of a finite number of terms, na®®® - - - | each
being a multiple of a product of powers of the variables. Here n is an integer
and a, B, - - - are nonnegalive integers. If ar, by, ¢, - - - are integers, and if
N1=f(01,b1,01,"'), (89)

and if
G = a, by =b,, c1=C, " (mod M) (90)

then

N, = f(a2,b2,¢2,+-) = N1 (mod M). (91)

Proor. The reader may easily verify that if Eq. (90) is true, then so are
a+bh=a+b (mod M),
a — b =a — b {(mod M), (92)
ab, = ashe (mod M).

By induction, it is clear that any finite number of these three operations
may be compounded without changing the residue class, and since any
polynomial, Eq. (89), may be thus constructed, the theorem is true.

Corollary. If f(a) is a polynomial in one variable, then
a=ad (mod M) <implies f(a) = f(d') (mod M).

This simple theorem allows us to use the residue classes as a tool for
those arithmetic and algebraic problems which we discussed on page 54.
Consider some simple examples.
(a) To verify that 7|10° — 1, we may write
10°=3°  (mod?)
since 10 = 3. But h
3’ =2 and thus 10°

30 = 2°

i
i
il

1 (mod7).
Therefore
7)10° — 1.
(b) To determine if 167 divides Ms; , we may proceed as follows:
2° = 256 =89  (mod 167)
2% =809"=7921 =72  (mod 167)
2% =72"=5184 =7  (mod 167)
2% =49 and 2 =49.8 =58  (mod 167)
2% =2%.21% = 58.72=4176 =1  (mod 167)
-~ 1672% — 1.
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The advantage of the congruence notation is clear. What we really want to
know here is whether 2% and 1 are in the same residue class, and in our
computation of 2 we continually reduce the partial results to smaller
members of the residue class, thus keeping the numbers from becoming
unduly large. ‘

(¢) Aside from advantages in the computation of results, there is also
an advantage in their presentation. Thus to show that 641|2" + 1, the
presentation

6700417
641 |4294967297

lacks the property of being easily checked mentally. But consider
640 = 5-128 = 5-2" = —1  (mod 641).
S 5228 =1 (mod 641).
But 5 =625 = —16 = —2'  (mod 641).
—2% =1 (mod 641)
or 22 +1=0  (mod 641).

Here the arithmetic is easily verified mentally.

(d) The proofs of some of the theorems in the previous chapter could
have been written more compactly in the new notation. For example, on
page 27, if ¢IN® — 2, then

N'=2 (mod g)
and directly we may write

2°=N*=1 (mod g).

Thus by setting up an algebra of ambiguity (page 55) we have simul-
taneously rid ourselves of the “some integer K” (page 27) which is
clearly redundant and merely extends the computation.

But to complete our algebraic tools we need division also, and for this we
have

Theorem 29 (Cancellation Law). If bc = bd(mod a) and (b, a) = 1 then
¢ = d(mod a).

This is only a restatement of Theorem 6 in the new notation. We will
reprove it using this notation.

Proor. If (b, @) = 1, from Eq. (7), page 9, we have

nb =1 (mod a). (93)
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Therefore if
be = bd, nbe = nbd, or ¢c=d (mod a).

Equation (93) is the key to our next topic, the Residue Classes as a
Group.

Exercisk 37. Prove Theorem 22, page 35, and Theorem 21, , page 35, in
the congruence notation.

ExEercisk 38. Verify that
1823| Moy, .

23. Ture REesibukE CrasseEs as A Group

In the previous sections the integers were the sole objects of our atten-
tion, and, as long as we considered the residue classes merely as a tool,
this remained the case. We now consider a system of residue classes as a
mathematical object in its own right, and, in particular, we study the
multiplicative relationships among these classes.

For a modulus m there are m residue classes, which we designate 0,1, - - - ,
m — 1, the ath class being that which contains the integer a. The system
of these m classes is therefore not infinite, like the integers, but is a finite
system with m elements. By the product of two classes a and b we mean the
class of all products a;b; where

ag=a and b =0b (mod m).
By Eq. (92) all these products lie in a residue class, say ¢, and we write
ab = ¢ (mod m).

For example, for m = 7, we have the following multiplication table:

N01&3456

— ab = ¢ (mod 7).
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If (a, m) = 1and @ = a; (mod m), we have (@, m) = 1. Thus we
may say that the residue class a is prime to m. Now if (a, m) = 1 we have
an ¢’ and m’ such that

ada+ m'm=1 (94)
and conversely. Therefore
aa=1 (mod m). (95)

Definition 16. We may call the a’ and a in Eq. (95) the reciprocals of
each other modulo m, and write

al=d (mod m). (96)
We may therefore characterize the ¢(m) residue classes prime to m as
those which possess reciprocals. If (¢, m) = (b, m) = 1, then so

is (ab, m) = 1, by Theorem 5, Corollary. In fact, since
alab b =1 {mod m),
we have explicitly
(ab) ' =a b} (mod m). (97

We will have occasion, say in Egs. (103a) and (104a) on page 66, and
in Eq. (136) on page 100, to calculate the reciprocal of a modulo m. This
we do by obtaining Eq. (94) from Euclid’s Algorithm as on page 9.
Equivalently, one may utilize the continued fraction (12) on page 12
with the term 1/g, omitted. This fraction we evaluate by the method on
page 183 below. The denominator so obtained, or its negative, is the
reciprocal of a modulo b. This follows from the analogue of Eq. (271).

Definition 17. A group is a set of elements upon which there is defined
a binary operation called multiplication which
(A) is closed, that is, if

¢ = ab,
then ¢ is in the group if @ and b are; and
(B) is associative, that is,
(ab)ec = a{be)
for every a, b and c.
Further,

(C) the group possesses an identity element (write it 1)
such that

la = a

for every a; and also
. . . —1
(D) it possesses inverse elements (write these a ) such

The Underlying Structure 61

that
a a=1

for every a.

Thus the ¢(m) residue classes prime to m form a group under the binary
operation multiplication modulo m. The postulates (B) and (C) are
trivially true, while closure (A), from Eq. (97), and inverses (D), from
Eq. (96), both stem from Eq. (94), that is, from Euclid’s Theorem 5.

Definition 18. If the operation in a group is commutative, that is, if
ab = ba

for each a and b, the group is called Abelian. If the number of elements in
a group is finite, the group is finite, and the order of the group is the number
of elements.

Definition 19. The group of ¢(m) residue classes prime to m, under
multiplication modulo m, we call a modulo multiplication group, and we
write it 91T, . It is a finite, Abelian group of order ¢(m).

The theory of finite groups is a large subject, into which we shall scarcely
enter. We shall confine ourselves primarily to 9, . Nonetheless, there is a
value here in introducing the more abstract Definition 17, and that lies
in the economy of this definition. In any theorem, say for 91, , which we
deduce from these four postulates, we have a certain assurance that re-
dundancies and irrelevancies have not entered into the proof. Pontrjagin
puts it this way:

“The theory of abstract groups investigates an algebraic operation in
its purest aspect.”

Several of our foregoing theorems have a simple group-theoretic in-
terpretation. We will illustrate them using the multiplication table for 91, .

1(2|3|4]5|6

21416135

5/3|1/6|4)2

6165|4321

(Note that the row and column headings are omitted, since the first row
and column also serve this purpose.)
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Theorem 17 says that if
aa; = r; (mod 7)

the r; are a permutation of the a, —that is, each row in the table contains
every element. But this is true for every finite group.
Again, Theorem 22 says that

za; = a (mod 7)

has a unique solution—that is, each column in the table contains every
element. Again, this is true for every finite group.

Since in an Abelian group the rows and columns are identical, we now
realize that Thecrem 22 is essentially a restatement of Theorem 17. We
have seen previously that Fermat’s Theorem 13 may be deduced either
from Euler’s Theorem 14, or from Euler’s Theorem 21, , and we now note
that the corresponding underlying Theorems 17 and 22 are also equivalent.

Euler’s Theorem 14 says that (a, 7) = 1 implies

=1 (mod 7).

Again, for every group of order n, a® = 1 is valid for every element a.
In fact, the whole subject of finite group theory may be thought of as a
generalization of the theory of the roots of unity. It is not surprising, then,
that Fermat’s Theorem plays such a leading role, seeing, as we now do,
that it merely expresses the basic nature of any finite group.

The three theorems just discussed hold for 91,, whether m is a prime or
not. But Euler’s Criterion does not generalize so simply. This criterion
states that

@*P? =1 (modp)«>n=a (modp). (98)

But consider m = 8 and m = 10. In both cases 3¢(m) = 2. Now for the
modulus m = 10, the implication (98) still holds. But for m = 8, we have

¥=1 (mod 8)
while
n’ =3 (mod 8)

has no solution. This is a difference which we shall investigate. It is as-
sociated with a particular characterization of the 9, groups for every m
which is prime, and for some m which are composite; namely, that these
groups have a property which we shall call ¢yelic.

Exgrcise 39. Write out the multiplication tables for 9 and My, . (If
you use the commutative law, and the generalized Theorems 17 and 22
mentioned above, you will save some arithmetic.)
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ExErcisE 40. If (¢, m) = 1, show that
gl = g*m! (mod m). (99)

Further, if (a, m) = ¢, a = ag, and m = ug,
then a = ¥
and m = (1 — o) /u
are integers that satisfy

a'a + m'm = g.
24. QuapRrATIC RESIDUES

Definition 20. Any residue class lying on the principal diagonal of the
M, multiplication table is called a quadratic residue of m. That is, a is a
quadratic residue of m if
f=a (mod m)
has a solution z which is prime to m. If (¢, m) = 1, and a is not a quadratic
residue of m it is called a quadratic nonresidue. When the meaning is clear,
we will sometimes merely say residue and nonresidue.

Examprres: From

1131567 113|719
311|715 319|117

(mod 8) (mod 10)
517113 711193
715|311 91713 |1

\
we see that 8 has 1 as its only quadratic residue, while 10 has both 1 and 9.
From the table on page 61, 7 has 1, 2, and 4 as quadratic residues.
From Definition 12, page 33, it is clear that if pta, a is a quadratic

. . . a
residue of p, or is not, according as{ =} = -1 or —1. Or, we may say,

<-§> = 41 or —1 according as a is or is not a square modulo p.

Theorem 30. Every prime p = 2P + 1 has exactly P quadratic residues,
and therefore also, P quadratic nonresidues.

Proor. In the proof of Euler’s Criterion on page 36 we showed that if

(g) = 41 there are exactly two incongruent solutionsof 2* = a (mod p).
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Since each of the 2P classes 1, 2, --- , 2P has a square, there are exactly
P distinct squares.

Definition 21. If (2) = 41 we write v/a (mod p) for either solution of

22 = a (mod p). Fora = 0, /0 = 0. For (g) = —1, v/a does not exist
®
modulo p.

ExErcisE 41. For every modulus m, the product of two residues is a
residue, and the product of a residue and a nonresidue is a nonresidue.
For every prime m and for some composite m, the product of two non-
residues is a residue, while for other composite m, the product of two
nonresidues may be a nonresidue.

ExercisE 42. Theorem 30 may be generalized to read that the number
of residues is 3¢(m) for some composite m, but not for others.

Exercise 43. For which primes p = 24k + b does M, contain v/ —1,
V2, or \/3 ? Examine all eight possible combinations of the existence
and the nonexistence of these square roots.

25. Is THE QuapraTIiCc RECIPROCITY LAW A DEEP THEOREM?

We interrupt the main argument to discuss a question raised on page
46. The Quadratic Reciprocity Law states that for any two distinct primes,
p = 2P + 1 and ¢ = 2Q + 1, p and q are both quadratic residues of each
other, or neither is, unless PQ is odd. In that case, exactly one of the primes
is a quadratic residue of the other. The theorem follows at once from
Theorem 27 with the use of Definition 20 and Euler’s Criterion.

The Quadratic Reciprocity Law is often refered to as a ‘‘deep” theorem.
We confess that although this term “deep theorem” is much used in books
on number theory, we have never seen an exact definition. In a qualitative
way we think of a deep theorem as one whose proof requires a great deal
of work—it may be long, or complicated, or difficult, or it may appear to
involve branches of mathematics the relevance of which is not at all ap-
parent. When the Reciprocity Law was first discovered, it would have
been accurate to call it a deep theorem. But is it still?

Legendre’s Reciprocity Law (so named by him), involves neither the
concept of quadratic residues, nor the use of Euler’s Criterion, as we have
seen. With the simple proof given on page 45, we would not consider it a
deep theorem.

Now divisibility questions of the form

giN* — a
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are clearly somewhat more involved than those of the form
me - 15

since a®° — 1 is a specific number, while in N* — a, N is unspecified and
may range over 2 possibilities. Therefore it is not surprising that the
Quadratic Reciprocity Law lies a little deeper than does Legendre’s Re-
ciprocity Law.

But even in the best of Gauss’s many proofs, the theorem still seemed
far from simple. It is of some interest to analyze the reasons for this.

(a) In his simplest proof, the third, Gauss starts with the “Gauss
Lemma,” (Exercise 30). From this, and a page or so of computation, he
derives another formula. If a isodd:

(&) -0 =22+
where

M= é [f‘ﬂ (100)

Here [ ] is the greatest integer function, defined on page 14. Now it ap-
pears that with Eq. (100) Gauss has already dug deeper than need be. What
we need is the parity of the sum, v + v/, (page 46). The individual ex-
ponent, M, is not needed, and, if it is obtained nonetheless, it is clear that
this is not without some extra effort.

(b) Gauss then proceeds to prove that

P Q
> [‘f’f] +X [”—”] = PQ (101)
z=1 | P z=1{ @

by the use of various properties of the { | function. Here we see irrele-
vancies. What has the [ ] function to do with the Quadratic Reciprocity
Law? Later Eisenstein simplified the proof of Eq. (101}, but only by bring-
ing in still another foreign concept—that of a geometric lattice of points.
This is all very nice theory—but it all takes time.

(¢) Finally there is a point which we may call “abuse of the congruence
symbol.” We have shown many uses of the notation, = (mod p). But
this symbol may also be misused. Suppose we write Eq. (78) as follows:

Q=T (mod p), (102)

and inquire as to the number of odd a’s for which r is even. There are three
things wrong with such an approach.
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(1) We are interested not in one group 91, , but in the interrelation
between two groups 9, and 9, , and, for this, the congruence notation is
not helpful.

(2) There are no “even” and “odd” residue classes. If @ is even, then
a+ p=aisodd.

(3) Most important is the following. The concept “congruent to” is
of value when, (as on page 54), we don’t care what the quotient is. But
in Eq. (78),

ga = pa’ + 1,
the quotient a’, for the divisor p, is also a coefficient of p in evaluating
(plg)- And the quotient a is a coefficient of ¢ for (¢|p). This is precisely

where the reciprocity lies, and, if we throw it away, as in Eq. (102), we
must work the harder to recover it.

ExErcise 44. Evaluate (13[17) by Eq. (100). Compare page 44.

26. CONGRUENTIAL EqQuaTioNs wWITH A PrIME MobuLus

In Sects. 23 and 24 we developed reciprocals and square roots modulo m.
With these we may easily solve the general linear and quadratic con-
gruential equations for a prime modulus. These are

ax +b=0 (modp) (pta) (103)
and
a’ +br+c=0 (modp) (pta). (104)

The reader may easily verify that the solutions are the same as those given
in ordinary algebra, that is,

r= —a'b (mod p) (103a)
and
z = (20)7(=b £ VP — 4ac) {mod p). (104a)

Therefore, “as” in ordinary algebra, Eq. (103) has precisely one solution,
while Eq. (104) has 2, 1, or 0 solutions depending on whether
(b* — 4daclp) = +1,0,0or —1.

ExXAMPLES:

(a) 3z + 2 =0 (mod 7).
Since 3 =5,z = —10 = 4 (mod 7).

(b) 32° + 42 + 1 =0 (mod 7). _
Since b* — 4ac = 4 is a quadratic residue of 7, with square roots 2 and 5,
wehavez = 67'(—4 & 2) = 6 0or 2 (mod 7).

(¢) 22° + 32z 4+ 2 = 0 (mod 7).
Since 9 — 16 = 0 (mod 7) there is only one solution, namely 1 (mod 7).
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The algebra here is so much like ordinary algebra because the residue
classes modulo a prime form a field, just as the real or rational or complex
numbers form a field. Thus, just as group theory applies to 9, so does
field theory apply here. An important theorem in field theory states that
an nth degree polynomial can have at most n roots.

Theorem 31. At most n residue classes satisfy the equation:
f(2) = az" + @Gusz™ '+ - +ay=0 (modp) (105)
with a, # 0 (mod p).*
Proor. Let Eq. (105) have n roots, a1, 22, - -+, Z, . Dividing f(z) by

z — z; we obtain f(z) = fi(z)(x — 1) + ¢ . But since plf(z;) we find
ples . Therefore

J(x) = fi(z)(x — ) + kp.
Repeating this operation with fi(z), then fi(x), etc., we obtain
@) = au(z — 2)(x — 2) -+ (x — =) + py(x)

for some polynomial g(x). Now if there were an n + 1st root z..:, not
congruent to one of the others, we would have

0= f(2us1) = @u(Tugr — 1) (Xngr — T2) *+ - (Tpar — T,)  (mod p)

Therefore, by Theorem 6, Corollary, a, = 0 (mod p), contradicting the
hypothesis.

We will use this theorem later when we investigate primative roots.
We could have used it earlier, together with Fermat’s Theorem, to prove
Euler’s Criterion.

If N* = a (mod ¢), then N*° = a (mod ¢) and, by Fermat’s Theorem,
a® = 1 (mod ¢). The converse is the more difficult. But from Theorem 30
there are @ quadratic residues. Therefore, from what we have just shown,
there are Q solutions of a® — 1 = 0 (mod ¢). But by Theorem 31, there
can be no other solutions. Therefore a® = 1 (mod ¢) implies N* = a (mod
Q).

If p is not a prime, in Theorem 31, there may be a greater number of
solutions. (Where does the proof break down?) Thus

=1 (mod 24)
has 8 solutions, and so does
=z {(mod 30).
The equation 2° = = (mod m) is particularly interesting, because in any

* Since 2? = z, 27+ = 12, etc., for every z (mod p), any polynomial of order higher
than p — 1 may be reduced to one of order not higher than p — 1.



68 Solved and Unsolved Problems in Number Theory

field the two roots, 0 and 1, are the identities for addition and multiplica-
tion respectively. If m is divisible by more than one prime, we shall see that
=z (mod m) (106)

has more than 2 solutions, and that each one may serve as an identity
element in a multiplicative group. Thus

=z (mod 10)

has 4 solutions 0, 1, 5, and 6. In addition to the set 9%, of elements 1, 3, 7,
and 9, which form a group with 1 as the identity, so likewise 2, 4, 6, and
8 form a group modulo 10 with 6 as the identity, and 0 and 5 form groups
of one element each, by themselves.

Exercise 45. Show that
22+ 52 4+5=0 (mod 7)
has no solution.

ExErcise 46. Find the 8 solutions of
=z (mod 30)

and show that corresponding to each solution therc is a multiplicative
group of residue classes, modulo 30, with that solution as the identity.

Exercise 47. Just as in Exercise 40, Eq. (99), we have an explicit
formula for a reciprocal, ¢ ' modulo m, so, for some prime moduli, we
have an explicit formula for a square root. Show that if p = 4m + 3,
and (alp) = +1, then v/a = a""" (mod p). In particular

477 = /2 (mod 8k 4+ 7).

Also show
& +aF =2 (mod 8k 4 1)

where ¢ is any quadratic nonresidue of the prime 8t + 1. Thus we may
compute /2 explicitly for all the prime moduli for which it exists.

27. EvLER’s ¢ Funcrion

On page 62 we noted that while certain theorems for M., with m
a prime, could be extended to all 91, , or even to all finite groups; others,
such as Euler’s Criterion, could be extended to 91, for some composite
m, (say m = 9, 10), but not for others, (say m = 8, 12). In Exercises
41 and 42 there were closely related extensions, again valid only for some
composite m. Likewise, back in Fxercise 25 there was such an extension.
We are concerned now with the underlying structural reasons for these
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differences. For this analysis we will want a better knowledge of Euler’s
¢ function.
Our first result is

Theorem 32 (Euler). If
N = pi'pi* - i, (107)

T (R I (R

In the proof of Eq. (108) the main work is done (and constructively) by
Theorem 33. If A > 0, B > 0, and (A, B) = 1, the AB numbers

m = Ab + Ba

witha =0,1,---,4 — 1,and b = 0,1, ---, B — 1, belong to distinct
residue classes modulo AB. Further, if in m, the a’s are confined to the ¢(A)
numbers prime to A, and the b’s to the ¢(B) numbers prime to B, then the
corresponding ¢( A)(B) numbers m are all prime to AB.

then

Proor. If
Ab, + Ba, = Ab, + Ba, (mod AB)

then 4b, = Ab; (mod B) and Ba; = Ba, (mod A). But since (4, B) = 1
by Theorem 29, b; = b: (mod B) and a; = a» (mod A). Furthermore’
w= AB + Ba = AB (mod B).

Since (A, B) = 1, and if (8, B) = 1, we have u prime to B. Likewise
if (a, A) = 1, uis prime to A. Therefore if (a, A) = (8, B) = 1, pis

prime to AB.
Corollary. If A > 0, B > 0, and (A, B) = 1, then
" ¢(AB) = ¢(A)e(B). (109)
Proor. The ¢(A)¢(B) numbers p just indicated are prime to AB, and
not congruent modulo AB. Furthermore, each such p is congruent to
exactly one integer satisfying 0 < z < AB. No other of the AB numbers
m = Ab + Ba are prime to AB, for if (a, A) # 1, then m is not prime to
A, nor therefore to AB. Similarly for b and B. This proves Eq. (109).

Proor or TarorEM 32. If N; = pi!, the numbers £ N; and not prime
a;—1

to N, are the multiples of p; £ N; . Since there are pi' ~ of these, we have

¢(N1) = N, (1 - l>,

Y4

and by applying Eq. (109) n — 1 times we obtain Eq. (108).
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Another important result concerning ¢(N) is
Theorem 34 (Gauss). If N > 0,

;¢(d) =N, (110)

where the sum on the left is taken over all positive divisors d of N.

ExampLE: N = 341 has four positive divisors, 1, 11, 31, and 341.

o(1) + o(11) + ¢(31) + ¢(341) = 1 + 10 4 30 + 300 = N.

Proor. Consider the equation

&N = (111)

where d is a positive divisor of N and z can be 1, 2, --- | N. Any solution
z of Eq. (111) must be a multiple of%r , & = k‘y, where 1 <k £ d. Further
any such z will be a solution if and only if (k, d) = 1, since mk + nd = 1
implies m (kg) + aN = gand conversely. There are therefore ¢(d) solu-

tions. Since every 1 £ x < N satisfies an Eq. (111) for one and only one d,
we obtain Eq. (110).

Theorems 32 and 34 could lead us off in several directions. Thus

(a) From Theorem 32, Euler proved Euclid’s Theorem 8 as follows. If

M =235 p,
and if there were no primes <M other than 2, 3, --- , p, we would have
$(M) = 1. But 6(M) = M(l - %)(1 - %) <1 - %) > 1.
On the other hand, we now have an upper bound:
(M) £ (M) + n.

Asn — o, we see that

D))

decreases monotonically and, if we are investigating =(N) we are led to
the question of estimating the right side of Eq. (112).

(b) Perhaps it was such a consideration which led Euler to his famous
identity:

i§=nQ-$y1u>n (113)

a=1 N P
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wherein the infinite product on the right is taken over all primes. This
identity, in the hands of Riemann and others, led eventually to a proof of
Theorem 9. If s = 1, the harmonic series on the left, 1 + % + % + -,
diverges. If there were only a finite number of primes, the product on the
right would remain finite and yet equal to the series on the left. This con-
tradiction gives another proof of Theorem 8. Again, if s = 2, we have

0 1 7I'2 1 -1

e (B
so that if Theorem 8 were false we would have #° equal to a rational num-
ber. This is known to be false, and if this latter does not already assume
Theorem 8, we have still another proof.

(¢) Equation (108) also leads to mean value theorems for ¢(N) and
¢(N)/N as N — =, and to an interesting relationship between ¢(N)
and o(N), the sum of the positive divisors of N.

(d) Theorems 32 and 34 have a relationship, via the so-called Mobius
Inversion Formula, which has an important generalization.

But we shall follow none of these diverging leads at this time. What is
now in order is a deduction of primitive roots using Theorem 34.

Exercise 48. Since (a, N) = 1 implies (N — a, N) = 1, ¢(N) is even
iftN > 2.

Exercise 49. Verify Theorem 34 for N = 561.

Exzrcise 50. Verify Theorem 34 for N = 30. What is the relationship
between this partition of 30 and that of Exercise 462 Hinr: Compare the
proof of Theorem 34 with the membership in the eight groups.

Exercise 51. Find several multiplicative groups modulo 561 other
than Nge -
28. PrimiTive Roors witH A PriMe MobuLus

For every a prime to m

™M =1 (mod m),
but for some a, a smaller exponent, s, may suffice for
a =1 (mod m)

to be satisfied. Thus for any quadratic residue of m, (if m > 2) we have

6(m)/2 =1

a (mod m).

Definition 22. If (¢, m) = 1 and e is the smallest positive exponent such
that
a =1 (mod m) (114)

we say a is of order e modulo m.
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Exampre: If @ = 10 and m is a prime # 2 or 5, then the order e is also
the period of the periodic decimal 1/m. Thus 10 is of order 3 modulo 37,
as on page 55. (It is probable that this definition, and Definition 23,
Theorem 35, and Theorem 36 which follow, all stem from Gauss’s early
studies in periodic decimals mentioned on page 53. See Exercise 8S on
page 203 for a plausible reconstruction of Gauss’s line of thought.)

Theorem 35. If (a, m) = 1, and a 1s of order e, then if
o =1 (mod m)

we have elf. In particular elp(m). Further, a', a*, a*, --- , a° belong to e
distinct residue classes modulo m.

Proor. We have mja® — 1 and mla’ — 1, and by Theorem 10, mja’ — 1
where g = (e, f). Therefore g < e. But g < ¢ by the definition of e. There-
fore e = g and e|f. Further, if " = a” (mod m), and ¢ = ¢, > e, = 1,
we have ¢”" = 1 (mod m), which again contradicts the definition of e.

Theorem 36 (Gauss). If dip — 1, where p is a prime, there are ¢(d)
residue classes of order d modulo p.

Proor. From Theorem 35, if a is of order e modulo p, then d', d’, &', - - -
a’ are e distinct residue classes. They are thus e distinet solutions of

=1 (mod p),

and, by Theorem 31, there can be no others. Each class of order e modulo
p is therefore contained among these ¢ classes. But if r < e and (r, e) # 1,
let r = sg and ¢ = tg with g > 1. Then

(@) =(a)"=1  (modp),

and we find that a” is of order <t < e. Let y(e) be the actual number of
classes of order e. Then, by Theorem 35, if ¢ £ p — 1, ¥(e) = 0, and
if eJp — 1, we have just shown that

¥(e) = ¢(e). (115)

But since every class, 1,2, -+, p — 1 is of some order modulo p we have
2ud) =p—1

where the sum is taken over all positive divisors of p — 1. Since from

Theorem 34 we now have
Zd: [6(d) — ¥(d)] =0,

and since, from Eq. (115), each [¢(d) — ¢(d)] = 0, we obtain
¥(d) = ¢(d)

for every d.
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Definition 23. If (a, m) = 1, and a is of order ¢(m) modulo m, we call
a a primitive root of m. In particular, for a prime modulus p, a primitive
root of p is a residue class of order p — 1.

ExampLE: Since, on page 53, the decimal expansion of + is of period 6,
3 = 10 is a primitive root of 7.

The importance of Theorem 36 is that it guarantees (nonconstructively!)
a primitive root for every prime modulus. This result—that is, every prime
modulus has a primitive root—is one of the fundamental theorems of
number theory. It is the basis of the theorems which we shall obtain in
this chapter concerning the structure of the 9. groups. In particular, it
is the basis of the structural differences which we sought at the end of
Sect. 23 and the beginning of Sect. 27. It implies that 91, is a cyclic group.

ExErcise 52. For every divisor d of 12, determine the ¢(d) residue classes
of order d modulo 13, in particular, determine the 4 primitive roots of 13.

ExERcISE 53. For every prime p > 2, 1is of order 1 and p — 1 is of
order 2 and these are the sole residue classes of these orders.

29. M, as A Cycruic GroUP

Definition 24. A group is cyclic if it contains an element g, called a
generator, such that every element a in the group may be expressed as

=9
for some integral exponent, positive, negative, or zero.
By Theorem 36, p has ¢(p — 1) distinct primitive roots. Lfit g be an}:
one of these. Since, by the last sentence of Theorem 35, ¢, ¢°, - -, g’f_
are all distinct, g serves as a generator for 91,, and thus 9, is cyeclic.

By rearranging the rows and columns of the table for 91; on page 61,
and since 3 is a primitive root of 7, we obtain

1132|645
?26451

26_4—513
?45132
—4—5132—6_
?13264

where the kth element in the first row is congruent to 3*7'. Here 3 is the
generator, and the (n 4+ 1)st row is obtained from the first by a left, n
shift, cyclic permutation.
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Some composite m may also have a primitive root; thus 2 is one for 9.

1/2)14(8|75

21481751

(mod 9)

715112148

511214817

For any modulus m > 2 which possesses a primitive root g, regardless
of whether m is prime or composite, it is almost immediate that if a = ¢*
(mod m), then a is a quadratic residue of m or not according as n is even
or odd. Further, there are exactly i¢(m) residues. Further (Euler’s Cri-
terion generalized), a is a residue if and only if ¢**™ = 1 (mod m) . Further,
the product of two nonresidues is a residue. We will determine later which
composite m have a primitive root, and therefore also these other properties.

ExErcise 54. Prove the “if”” part of Wilson’s theorem (page 37) using
a primitive root of the prime ¢. Hint: evaluate the sum 1 + 2 4+ .- +
(¢ — 1) modulo ¢ — 1. With reference to Exercise 25, generalize the proof
here to those composites m which have primitive roots.

Definition 25. Two groups @ and ® are said to be isomorphic if every
element a of @ may be put into one-to-one correspondence with an ele-
ment b of &,

a<—b
in such a way that if @, <= b, and @, — b, , then a.a; <~ bib, . That is, the
correspondence is preserved under the group operation. Starting with the
a’s and performing first the mapping, a — b, and then the product, we will
obtain the same result as if we first perform the product, and then the
mapping. In an isomorphism, therefore, these two operations may be com-
muted. If @ and & are isomorphic, we write

e=08®
and we consider them to be the same “abstract group.”

It is easily seen that two cyclic groups of the same order are always
isomorphic. Thus
My = Iy

under the mapping

(mod 7) 3" 27 (mod 9).
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Or, if we prefer, under

(mod 7) 5" 5" (mod 9),

since 5 is a primitive root of both moduli.

The group of the mth roots of unity, ™", fora = 0,1, -+, m — 1,
under ordinary multiplication; the group of rotations of the plane through
360a/m degrees, for a = 0, 1, --- , m — 1, under addition of angles; a.tnd
the group of the m residue classes under addition modulo m, are all iso-
morphic. They all are the same abstract group—namely, the cyclic group
of order m. We designate this group as €, .

The isomorphism between 91, for a prime p and @ ,; suggests a circular
representation of 91, , which eliminates the obvious redundancy in the
multiplication table for 91, , and which we illustrate for p = 17:

Here 3 is the generator and successive powers of 3 correspond to successive
rotations thru 223°. Or 37" = 6 may be considered the generator and its
powers are strung out in the opposite direction. Two residue classes at
angles « and 8 have a product at an angle o -+ 8. In particular, reciprocals
lie at an equal distance from 1 in opposite directions. The residue —1 = 16
is thus its own reciprocal, and the only class of order 2. It follows that
residues on opposite ends of a diameter add to 17; each is congruent to
the other’s negative. The quadratic residues are 1,9, 13, 15, ete.

Tt is well known that historically ¢ = +/—1 did not attain full re-
spectability until it was interpreted as a rotation of 90°. If p is an odd
prime, 91, will have a 4/—1 if and only if p = 4m + 1. We now see the
significance of this, in that only €i. allows a rotation of exactly 90°. Thus
for p = 17, in the diagram, we have 4 and 13 as the two values of v/ —1.

We see also that Euler’s Criterion,

a" = (%) (mod p),

and his even more celebrated formula,

e“i = (—1)")
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are very intimately related. Euler was no doubt the world’s most prolific
mathematician. A modern mathematician, looking at the last two equa-
tions, may be tempted to say, “No wonder, he works both sides of an
isomorphism.” But better judgment at once prevails—had Euler not
worked both sides, the isomorphism may not have been discovered.

Exercise 55. Show that 9W; = 9%, and give two distinct mappings.

ExErcise 56. Show that other circular representations of 91 may be
obtained from the given one by starting at 1 and taking steps of k-221°

where (k, 16) = 1. More generally, if g is a primitive root of p, ¢* is also,
if and only if (k,p — 1) = 1.

Exercise 57. Show that
M = My
but
Mg 72 M.
Show that 91 is not cyclic.
30. TeeE Circurar Parity SwircH

In 1956 the author invented the following unusual switch.

Definition 26. A circular parity switch of order N has a stator (S) with
2N equally spaced divisions. At N of these there are contacts (C). Their
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locations are arbitrary except that no two contacts lie on a diameter. There
is a rotor (R) which may assume the 2N angular positions, and attached
rigidly to R, at any of the 2N divisions on the hub, are N hands (H).
Again, their location is arbitrary except that no two lie in the same diam-
eter. Let m hands be touching contacts in a particular position of the rotor.

Theorem 37. As the rotor turns, (in either direction), m will be alternately
even and odd.

Exampie: In the special case for N = 8 in the diagram, a clockwise
rotation will give the following periodic m sequence: 5, 2, 5, 4, 5, 4, 3, 4,
3,6, 3,4, 3,4, 5, 4, repeat.

Proor. Opposite each hand in a rotor is a space. Let a complete group
of contiguous hands with no spaces in between be called a bunch, and
reading clockwise let the first hand in a bunch be called a trailing hand,
and the last hand, a leading hand. Let a complete group of contiguous
spaces be called a gap. Put each trailing hand 7'; into correspondence with
the leading hand L; immediately preceding the space opposite T;. There
issuch an L; since preceding T there is a space S; . Opposite S; is a hand.
Since this is followed by the space S; which is opposite T, the hand is a
leading hand.

Now as the rotor turns one division (clockwise), the only changes in m
which need be counted are those in which a leading hand picks up a contact
or a trailing hand drops one. For if a nonleading hand picks up a contact,
it was dropped by the hand ahead of it; and if a nontrailing hand drops a
contact, it is picked up by the hand behind it. But there was either a
contact under T'; or in S;, but not both. Therefore either T'; will drop this
contact, or L; will pick it up, but not both. The contribution of the pair
of hands towards changing m is therefore 1.

But starting at 7', and going clockwise to L;, we will pass k bunches
and k¥ — 1 gaps. And the remaining bunches in the other half of the rotor
may be reflected into these & — 1 gaps. Thus the total number of bunches,
2k — 1, is odd, and the number of pairs, T'; and L;, is therefore also odd.
But a change in m by an odd number of 41 means a change of parity.

We now ask, how many distinct rotors of order N are there—that is,
rotors that cannot be transformed into each other merely by rotation?
Call this number R(N). If N is an odd prime, we obtain an old friend.

Set aside the special rotor R, consisting alternately of one hand and one
space. Consider any other rotor of order N, and in particular consider the
pattern of hands and spaces in a block of N consecutive divisions. This
pattern may be represented by an N-bit binary number, with ones for
hands, and zeros for spaces. Excluding the two possible patterns in R :

1010 --- 01
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and 0101 - - - 10,

in precisely one rotor R;. It cannot occur in two, since the remaining N
divisions of R; must have the complementary pattern, and therefore R;
is completely defined. If a different block of N consecutive divisions in R;
is examined, a different pattern must be found. For if two patterns in R;
were identical, R; would have to be periodic, with a period less than 2N.
This period must divide 2N. The period cannot be the prime N, since we
know that complementary blocks of N divisions have complementary
patterns, not the same. The period cannot be 2, since we excluded those
two patterns. Thus E; must have 2N different patterns. Therefore

i any of the 2 — 2 remaining patterns is a legitimate one, and will oceur
F
l
I

2¥ — 2

BN) = =55

+ 1, (116)

|

|

|

|

l

|

|

E and since R(N) is an integer, we have reproven Fermat’s Theorem 12.

"‘ A second application of the parity switch is this. Consider the circular

{1‘ diagram for 9, (page 75) as a stator, with contacts at the even numbers.

| This is a legitimate stator since opposite each even e is the odd p — e
as we showed on page 75. Let the rotor have hands which, in one position,
point to every odd number. If the hand pointing to 1 is now brought
around to the number a, the (p — 1)/2 hands will point to the (p — 1)/2

! products

%; 1.a, 3.a’5.a,-.. ,(p—2)'a (mOd p),

‘ and let m of these products be even. Since in the rotor’s original position
| m is 0, by Theorem 37 m will be even or odd according as a is a quadratic

residue or not. That is,
a m
p

Thus we have reproven a combination of Euler’s and Gauss’s Criteria
with the aid of a switch.

31. Primimive Roors axp FErMAT NUMBERS

By characterizing 91, as a eyclic group, for every prime p, we have gone
the limit in its structural analysis. A cyclic group is the simplest type;
and we may say that there remain no questions concerning its structure.
But the content of that structure is quite another matter. Thus we know,
at once, that M, = ¢ :
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But until we compute a primitive root we cannot (completely) assign the
residue classes to suitable billets. (Where p — 1 = —1 goes is simple
enough.)

Given a prime p, it is always possible to compute a primitive root by
trial and error, since 9, is finite. For p > 2, a quadratic residue of p is
clearly not a primitive root of p. For if a is a quadratic residue of p = 2P + 1
we have @ = 1 (mod p) by Euler’s Criterion. Thus the order of a modulo
p is P or smaller. Further, forp > 3,p — 1= —lisnota primitive root,
since (—1)* = 1. But with these obvious exceptions, and with no deeper
theory, one might now examine the remaining residue classes in search of g
primitive root. Gauss, and others, have devised more efficient techniques,
but no general, explicit, nontentative method has been devised, and this,
like a good criterion for primality, remains an important unsolved problem.

The converse problem is even harder. Given an integer g, for which
primes p is ¢ a primitive root? Not even in a single instance is it known
that there are infinitely many such primes p. For example consider

Theorem 38. If p = 4m + 3 and ¢ = 2p + 1 are both prime, —21is a
primitive root of q.

ExAMPLE:
—2 = 5 is a primitive root of 7.

Proor. There are ¢(2p) = p — 1 primitive roots of ¢. None of the p
quadratic residues, a, of ¢ can be a primitive root, as above. Nor can —1,
which is not a quadratic residue, be a primitive root. Thus any other
quadratic nonresidue is a primitive root, and —2 is always one, since

(—Q\Q) = —(Q\Q)MN = —1p.
Therefore if Conjecture 4 were true we could prove the existence of

infinitely many g with —2 as a primitive root.
Similarly, if the weaker Conjecture 5 were true, we could utilize

Theorem 39. If p and ¢ = 2p + 1 are both odd primes, —4 is a primulive
root of q.

EXAMPLE:
—4 = 3 is a primitive root of 7.

The proof of Theorem 39 is left for the reader. Another theorem of
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slightly different character is

Theorem 40. If F,, = 2" + 1 isa prime, with m = 1, 3 is a primitive
root of F,, .

ExampLE:

3 is a primitive root of 5 = F; and of 17 = F, .
Proor. Since ¢(Fn — 1) = 3(F,, — 1), we see that in this (unusual)
case any quadratic nonresidue of F,, is also a primitive root. But
Fan =5 (mod 12)
by induction, since F;, = 5, and
Fop = (Fn— 174+ 1.
Therefore, by Theorem 20, (3[F,,,) = —1.

Here, again, we do not know whether there are infinitely many Fermat
numbers, F. , which are prime. Fermat thought all F,, might be prime,
but said he couldn’t prove it. Euler showed, however, that 641|F;, as on
page 58. Aside from the five primes, F,, for 0 < m < 4, no other prime
F. has been found. On the contrary, F,, for 5 < m < 16, at least, are
all composite. Any prime F',, corresponds to a constructable regular polygon,
(Gauss, page 52). Like the Mersenne numbers, (page 18), the Fermat

numbers, (page 13), are all prime to each other.
There are three possibilities:

(a) Only finitely many F, are composite.

(b) Only finitely many F,, are prime.

(c) Infinitely many F, are prime, and infinitely many are composite.
If (a) or (c) were true, we could find infinitely many primes with 3 as a

primitive root, but actually possibility (b) is the most likely. We will
return to this question in Exercise 368, page 214.

Exgrcise 58. Criticize the word “explicitly” in the last sentence in
Exercise 47. Investigate possibilities of remedying this flaw.

Exzrcise 59. Find a primitive root of p = 41.
Exgrcise 60. Find 16,188,302,110 primitive roots of q = 32,376,604,223.

Exkrcrse 61. If p = 4m + 3 > 3 and ¢ = 2p + 1 are both primes,
there are at least three successive integers, g, ¢ + 1, and ¢ + 2, which
are all primitive roots of g¢.

ExErcise 62. Using residue arithmetic, show that
274177|Fs .
32. ARTIN’S CONJECTURES

It is easily seen that —1 is a primitive root only for the primes 2 and
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3; +1, and all odd squares, are primitive roots only for the prime 2; and
any even square is never a primitive root. In spite of the negative results
of the previous section, the evidence is sufficient to warrant our stating

Conjecture 13 (Artin). Every inieger a, not equal to —1 or to a square, s
a primitive root of infinitely many primes.

It is likely that a stronger result is true:

Conjecture 14 (Artin). If a # b" with n > 1, and if v,(N) is the number
of primes =N for which a is a primitive root, then

vo(N) ~ 0.3739558 =(N). (117)

This conjecture was made by E. Artin in a conversation with H. Hasse
in 1927. It states that for a = 2, 3, 5, 6, 7, 10, etc., approximately § of all
primes will have a as a primitive root, and that this asymptotic ratio,
0.37 - - -, is independent of a. (If a is a cube or some other odd power,
there is a minor complication, which need not concern us here.)

We shall explain presently the coefficient in Eq. (117), and the heuristic
reasoning behind Eq. (117). But first we examine two tables based on
counts, »,(N), given by Cunningham (1913).

a v2(10,000) |»,(10,000)/7(10,000)
2 470 .3824
3 476 .3873
5 492 .4003
6 470 . 3824
7 465 .3784
10 467 . 3800
11 443 .3605
. 12 459 .3735
.3806 av.

N/10,000 va(N) vo(N) /= (NV) vio(N) vio(N) /()
1 470 .3824 467 .3800
2 840 .3714 865 . 3824
3 1205 .3713 1234 .3803
4 1570 .3735 1587 .3776
5 1923 .3746 1947 .3793
6 2263 .3736 2296 L3791
7 2589 .3733 2639 .3805
8 2928 .3736 2975 .3796
9 3274 .3758 3291 L3777

10 3603 .3756 3618 3772
3745 av. .3794 av.
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In the smaller table w i i i f
i resamiio) eo‘;i:' see that », is substantially independent of a ( tions. This may be noted in both tables above, and also, more clearly, in
positive mtegers not equal to a power. In the larger the following data: »(N)/m(N) = 0.3988, 0.3801, 0.3857, and 0.3849 for |

tal()ile, for the two most studied cases, a = 2 (related to perfect numbers)
and a = 10 (related to periodic decimals), we sce that v,(N :
only slightly with N. e W)/ changes

A probabili.ty argument which makes Conjecture 14 plausible runs as
fol_lox.vg Consider @ = 2, and the primes p < N. For every p choose a
primitive r('x‘)t g and write g™ = 2 (mod p) and (m, p — 1) = G. What is
‘the prol?ablhty that 2|G? Except forp = 2, p — 1 is always even, and m
Is even in one half ‘the cases—that is, when 2 is a quadratic residue of p.
Smcg G {nust be 1if 2 is to be a primitive root of p, we delete these cases
lea\;mg, in the mean, (1 — 3)x(N) primes. What is the probability that
3|GT Exc‘ept for p = 3, all primes are 3k + 1 or 3k + 2, and therefore
3[p — 1 in one-half the cases, while 3m in one third the cases. Eliminating
the remaining primes where 3|G we are left with (1 — l)(1 — —L> w(N)

2

. . - . 3 ) 2
primes. Continuing with 5|G, 7|G, etc., we are left with

A-7(N)

p.rimes with G = 1, where the coefficient A (called Artin’s constant), is
given by the infinite product: ’

4=1]1 (1 - ;)
? pip—1) (118)

The argument may be_improved somewhat by using Theorem 16 and
analogous results,.but this improvement does not suffice to constitute a
real proof of Conjecture 14. For any other nonpower @, the argument is

unchanged, but for @ = 8 say, we have 3lm in all the cases where
p = 3k + 1. This changes the factor (1 — %) to (1 — 1) and we find
instead . ?

13(N) ~ 2Ax(N), ete.

_ J. W. Wrench, Jr., has recently completed a highly accurate computa-
tion of Artin’s constant. He gets

4 = _0.37395 58136 19202 28805 47280 54346 41641 51116 - - - . (119)
If Artin’s Conjecture 14 proves as obdurate as the conjectures of Sect. 12—
and there is little doubt that it will—Wrench’s Eq. (119) should suﬂ.ice as
a check on any empirical studies of »,(N) for quite a long time.

There is letinct tendency for ».(N)/m(N) to run high for small values
of N—that is, for this ratio to approach 4 from above, aside from fluctua-
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N = 1000, 2000, 3000, and 4000. This tendency has an interesting ex-
planation: If a prime does not have 2 as a primitive root, the reason, four
times out of five, is that (2|p) = +1. These latter primes are those of the
forms 8k = 1. While it is true that these primes are equinumerous to those
of the forms 8k = 3, nonetheless there is a definite tendency for the class
of primes 8k + 1 to lag behind the other three classes. See page 21 for
some data. This interesting lag (which we will discuss in Volume II) has
the consequence that (1 — 1), the first factor in 4, is too small for these
modest N, and therefore, in general, »(N) runs too high.

33. QuesTioNs CoNCERNING CYCLE GRAPHS

We now concern ourselves with the structure of 9, with m not neces-
sarily a prime. A good insight into these structures will be gained by the
study of the cycle graphs of these groups.

Definition 27. If (o, m) = 1 and a is of order ¢ modulo m, the e residue
classes al, a2, a3, - - - , a’ are called the cycle of @ modulo m. The definition
may be clearly generalized to any finite group. ,

Definition 28. If a set $ of elements in a group G is closed under the
group operation, and contains the identity and the inverse of each of its
elements, it is called a subgroup of G. In particular, § itself is also a sub-
group of G.

1t is clear that each cycle of 9., is a cyclic subgroup of M . A diagram
of a group, which shows every cycle in the group, and the connectivity among
these cycles, is called a cycle graph of the group. It generalizes the circular
diagram of 9M;; on page 75. On pages 87-92 we show cycle graphs for 14
nonisomorphic 9%, groups. We will first make some comments, and we will
then raise some questions.

Let our point of departure be the cycle graph of 9 on page 88. It is
of only moderate complexity, and thus is best adapted to illustrate the
concept. The powers of 2 (mod 55), namely 1, 2, 4, 8, 16, 32, 9, 18, etc.,
constitute the cycle of 2 modulo 55. This cyclic subgroup of 9Mss is of order
20, and is easily seen in the graph. Now 53 = —2 (mod 55) is not in this
subgroup. Therefore the cycle of 53, which is also of order 20, is connected
to the cycle of 2 only at their even powers, that is, at the quadratic residues.
Similarly 51 = —4 has a cycle of order 10 which is connected to that of 4
at their even powers. Finally, the cycle of 29 completes the 40 = ¢(55)
residue classes in Mg . No residue class is of order 40 modulo 55 and there-
fore M 1s not cyelic.

Now let us back up to some smaller composite moduli. The smallest m
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for which 9, is not cyclic is 8. This is a well-known group of order 4—the
“Four” group. Here 3, 5, and 7 are all of order 2, and their 3 cycles are
connected only at their common square, 1. Since 9, = Mg, their cycle
graphs look alike—in fact, if 3 is replaced by 11, they are identical.

The next noncyclic group is 9y . Here four residue classes are of the
highest order, 4, and the cycles for 2 and 7, say, are connected at their
common square, 4, and common fourth power, 1. Two other cycles are
those of 11 and 14. It is clear that in the cycle graphs we are concerned
only with the ordering in, and topology of, the cycles. The actual size,
shape, or location of the various cycles is not meant to be of significance.
As with the circular diagram for 91, , we can easily read off the powers,
order, and inverse of every residue class.

It may be seen that

Mys = My = Mo = NMzo.

My is also of order 8, but is not isomorphic to 95, or to any other M. .
It has only one quadratic residue.

Mgy , which is isomorphic to Mg, My, and Mye , may be generated by
the three cycles of 10, 11, and 17. These three cycles are connected at the
three quadratic residues.

My 1s cyclic and isomorphic to My, .

IMe; really needs three dimensions. The four bunches, of three cycles
each, regroup, after passing through the quadratic residues 4, 25, 37, and
22, into three bunches of four cycles each. After passing through the square
roots of unity 62, 8, and 55, they again regroup, etc. By “needs three
dimensions” we mean, of course, that it cannot be drawn in two dimen-
sions without some eycles crossing each other. In three dimensions Mg may
be neatly represented as four 9y-like structures, in four planes separated
by angles of 45°, and joined together at the four square roots of unity, 1,
62, 8, 55.

Now we wish to ask several questions.

(a) For which m are the 91, cyclic?

(b) Which 91,, are isomorphic? Generally when we pass from m to
m + 1, we obtain a totally different pattern, e.g., m = 54, 55, 56, 57. But
My = My, My = My, and, more spectacularly, Mgy = Myos .

(¢) For which m are the cycle graphs three-dimensional; as in m = 63,
and, even more intricate, in m = 917

(d) We note definite lobal patterns. Thus 97:;; has nine lobes of the
same type of which Mz has three, and 9% , one. Again, Mg has three lobes
of the type of which 9%, has one; and Ny possesses five Mys-type lobes.
We ask, what is the structure of the various types of lobes, and how many
such lobes may a group have?
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(e) Can we characterize 91, by a formula? Given m, we wish to deter-
mine the structure of M, by an (easily computable) formula. We recall,
in this connection, that the structure of My is clear even before we compute
a primitive root.

(f) If 91, is eyclic there is an a of order ¢{m) modulo m. But if M, is
not cyclic what is the largest order possible within the group?

(g) If 9N, is cyclic there are 3¢(m) quadratic residues, but if 9, is not,
how many are there?

(h) Tinally we note, from group theory, that every group of order 4 is
either isomorphic to 91 or to the cyclic 9, . There are only two absiract
groups of order 4. Of order 8, there are five abstract groups, with cycle
graphs as follows:

OBy

Cs Mis Mos Q Dy

We see that two of them are isomorphic to 9. groups. The eyclic group
@s £ My, but it is a subgroup of an M. group. Namely, @y is isomorphic
to the group of quadratic residues of 91t;; —that is, to the cycle of 2 modulo
17 (see page 75).

The remaining two groups are well-known non-Abelian groups; @ is the
quaternion group, and D is the octic group (the symmetries of a square).
Since their multiplications are not commutative, they cannot be isomorphic
to any M, , or subgroup thereof. Therefore every Abelian group of order
8 is isomorphic to a subgroup of an M,y .

We now ask, is every finite Abelian group isomorphic to a subgroup of
an M, ?

We close this section with a useful theorem.

Theorem 41. In every finite Abelian group, if #* = o possesses n solutions
x, then every square, y* = b, possesses n solutions. In particular, in Ny ,
every quadratic residue has an equal number of square roots modulo m.

Proor. Let a have n square roots, 21, Z2, -+ + , @, . Let b have at least
one, 1 . Then each element

Yi = Xy T (120)

. . 2 : 2 2 —2 2 _ 3 —1_
fori = 1,2, -+, nsatisfies y;, = b sincey,” = yyr & = ba a = b.
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Further, if y;, = y;, we have 2y, 'y: = 2y, ', and thus z; = z, . There-
fore no square in the group can have fewer square roots than any other
square.

It follows that if the cycle graphs for @ and s represent groups, (and
they do), these groups cannot be Abelian, since in the octic group the
identity has 6 square roots, while a second element has only 2. In the
quaternion group the situation is reversed.

Exercise 63. Show that ¢(m) = 8 has exactly five solutions m, and
that therefore 9 is isomorphic to no other M, .

ExercisE 64. Each of the 7 rows in the table on page 47 form a sub-
group of N4 iIsomorphic to N .

ExXERCISE 65. 9M;; has both abstract groups of order 4 as subgroups.

Exercise 66. The quadratic residues of m constitute a subgroup of
M . Call it @m . Then Qs = Ny, and Qe = My . But Qg s isomorphie to
no M., . Also Qss = Q7 , ete.

ExErcise 67. Draw a cycle graph for o;; .

Exercise 68. Determine the periods of the decimal expansions of 5% and
& by examining the cycle graphs of M5 and NMg; .

Exercise 69. Determine 1177, 477 and the four square roots of —1
modulo 65.

ExERcISE 70. Determine the order of 2 modulo 85. Interpret the result
in terms of the equation FoF'\Fy + 2 = F;. Compare Exercise 4.

Exercise 71. Let a finite group of order m contain a subgroup of order
s. Then s}m. This is called Lagrange’s Theorem—it generalizes Theorem 35.

ExEercisE 72. There is only one abstract group of a prime order—the
cyelic group.
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Myos

m = p'p" - p. (121)

(B) For each odd prime p; write ¢(p,"") = (p; — 1)p," " in a modified
standard form

#(p”) = <@"><Lg"> - L@ ><p >, (122)

by factoring p; — 1 into the prime powers ¢,*%, and, if a; > 1, by including
the last factor. The symbol <C¢,"*>> means that the prime power is written
as a single number, e.g., <5°> = 25.

(C) If py = 2andif a; > 1 we write¢p(4) = 2,¢(8) = 2-2,¢(16) = 2-4,
and, in general,

$(27) = 227> (a2 3). (123)

If a, = 1, we omit this step.
(D) Now combine (C) and (B) into a modified standard factorization
of ¢p(m):

¢bm=22---44---8---33---9...5-.. (124)

Here ¢(m) is factored into primes, and powers of primes, and we take
care not to multiply factors of 2 with those of 4, etc.
If m = 2, we write ¢p = 1.

ExAMPLES:
m =105 = 3-5:7  ¢1os = 2:2:4-3
m = 65 = 5-13 o = 4:4-3
m =15 =35 s = 2-4
34. ANswERS CoNCERNING CycLE GRAPHS m = 16 o5 = 2-4
We shall prove 24 = §8-3 . 2.9.9
m = = . 4 = . .
Theorem 42 (Gauss). M, ¢s cyclic—that is, m has a primitive root—if
and only if m is one of the following: m =63 =97 ¢ = 2:2:3:3
m = 2, 4) p", or 2pu m = 17 ¢17 = 16
where p is an odd prime and n = 1. Now we can state
ExAMPLE. Theorem 43. M, and N+ are isomorphic if and only if ¢ and ¢n- are
identical.
M is cyclic, since 54 = 2.3°, EXAMPLES :
Which 91, are isomorphic? To answer this we need Myos = Myos 7= Mgs

Definition 29. By ¢, we mean a particular factorization of ¢(m) ob-
tained as follows if m > 2:
(A) Factor m into its standard form: ‘ Myo = Mag 7 Myr (verify).

TMys = Mae 2= Mas
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Exercise 73. If kb is odd, M = My, . If £ is prime to 3 and 4, Mg, = My .
If k& is prime to 7 and 9, Mz = N

ExERrcise 74. Show that the 91, are isomorphic for m = 35, 39, 45, 52,
70, 78, and 90.

Exgrcise 75. Show that the 9, are isomorphic for m = 51, 64, 68,
and 102, but for m = 51, 80, 96, and 120 we obtain 4 distinct abstract
groups of the same order.

The last two theorems both follow from a more powerful result. To
state this, it is convenient to modify the last definition to

Definition 30. By &,, we mean a particular factorization of ¢(m) ob-
tained as follows: '

For each distinet prime ¢; which divides ¢(m) we take the largest power
<¢.”">> which appears explicitly in ¢,, and multiply these powers together.
The product we call a characteristic factor of 9., . Setting this factor aside
we repeat this operation with the remaining <{¢.">> in ¢, . Then &,, is
the product of these characteristic factors

dn =f1'f2 fr (125)
Wheref1 éfz = fs éfr

ExAMPLES:

@]04,]05 = 2 M 2 * 12

B = 4-12

Big15 = 2+4
By = 2-2:2
B = 6-6
&y = 16

Then we will have

Theorem 44. If ®,, is the product of r characteristic factors f: , for each f;
there is a residue class g, , of order f; modulo m, such that every residue class
a; m Mu can be expressed as

a; = ghigy™i .. gl (mod m) (126)
with 0=s:;<Ffi

in one and only one way. We say that M., is the direct product of the r cycles
of the g, .
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ExaMpLE:

For m = 15, ®;5 = 2-4, and we may take g = —1 = 14 (mod 15), of
order 2, and g, = 2, of order 4. Then each of the 8 residue classes in 9Ny is
= (—1)"2" (mod 15) for one a and b such that0 < a < 2,and 0 £ b < 4.

The representation, Eq. (126), of 9. as a direct product of r cycles is
the characterization we sought in question (e) on page 85. We shall see
presently that Theorems 42 and 43 are consequences of Theorem 44. But
8o are two others:

Theorem 45. If f; are characteristic factors of M , then
filf; (127)
if © £ j. It follows that if f, is the largest characteristic factor of M.,
o =1 (modm) (128)

for every residue class a in Ny, .

ComMmENT: Equation (128) gives us a sharpening of Euler’s generalization
of Fermat’s Theorem. Further, it is clear from Eqgs. (128) and (126) that
f» is the answer to question (f) on page 85.

Theorem 46. If m > 2, and 9, has r characteristic factors, m has
o(m) -2 quadratic residues, and each of these has 27 square roots.

ExAMPLE:
Myps has 42 = 6 quadratic residues.

Proor oF THEOREM 45. Equation (127) is clear from the construction
of the f; in Definition 30. Then Eq. (128) follows at once from Eq. (126).

Proor orF THEOREM 46. If m > 2, each contribution to ¢, , Eq. (122)
in step B, and Eq. (123) in step C of Definition 29, is even. Therefore it
follows that each f; is even. It is then apparent, from Eq. (126), that a; is
a quadratic residue of m if and only if each of its exponents, s;,; is even.
Since, by Theorem 41, each quadratic residue has an equal number of
square roots, Theorem 46 follows.

Proor oF THEOREM 42. If m = 2,4, p”, or 2p” we find that @, = ¢(m)
with only one characteristic factor, and therefore g, is of order ¢(m)—that
is, g1 is a primitive root. Whereas if m is divisible by two distinet odd primes
or equals 4k with k& > 1, we find at least two characteristic factors. Since
the largest, f, , is less than ¢(m), by Eq. (128) there is no primitive root.

Proor or TurorREM 43. First we note, by the construction, that ¢..» and
¢ are identical if and only if ®,- and ®,- are identical. Then if ¢» and
¢ are identical, by the obvious mapping

, Nsy Msg nsr
r

rsy I8y ’s
i G2 " g TG G2 " g
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we find that 91,.- and 91,.» are isomorphic. Conversely if they are isomorphic
it is clear that ¢(m’) = ¢(m”) and also, from Theorem 46, 9 ,,, and M,
must have the same number of characteristic factors. We say further that
&, and ®,,» must in fact be identical, for, if not, we compare

b, = fll‘le .. .fr’

Q‘m" — fl” .f2” e fr”

from right to left, and let f;’ # f;” be the largest factors which differ.
Assume

with

F=f/<j=¢
and let P be the product
fivaFive == = flafiva - £
Then the B = ¢(m') /P residue classes,
g."gy" o g (129)

obtained by allowing the s, to take on all values, all satisfy " = 1(mod m’).
But all R of the residue classes

gll/slg2llsz . gjl/a," (130)

do not satisfy z* = 1 (mod m”) since g,” is of order G > F. Let there be
S < R residues, Eq. (130), which do satisfy z* = 1 (mod m”). All in all
there are exactly RF ™ solutions of z° = 1 (mod m’) since any of the R
solutions of Eq. (129) may be multiplied by

8541 /8542 sy

gJ+1 Ji+2' " " G

to yield another solution, if, and only if f;,4+|s;4x F for each k such that
J+ 1 =7+ k = r. That is, each s;,; can take on the F values

0 fise 2five . (F = i
b F 1 F 3 3 F M
Likewise there are exactly SF™ solutions of z* = 1 (mod m”). Since

S < R it follows that M, and 9.~ are not isomorphic unless ¢, and
¢n- are identical, since, in any isomorphism, 1 must map into 1, and the
z’ such that 2" = 1 must map into similar z”.

Theorem 44 is also one of the keys to the answer to the last question in
Sect. 33, page 85. This answer is given by

Theorem 47. Every finite Abelian group is tsomorphic to o subgroup of
M. for infinitely many different values of m.

The two remaining questions in Sect. 33, (¢) and (d), we shall here
answer with less formality. We will state, without proof, that the cycle
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graph of 9N, is three dimensional if 9, has at least two characteristie
factors which are not powers of 2. Thus 91,, is three dimensional for m =
63, 91, 275, and 341, since g = 6-6, Py = 6-12, Poy; = 10-20, and B3y =
10-30. See Exercise 198, on page 206, for a sketch of the proof.

On the other hand, if

_ > D> 2> N>

where N is an odd number =1, the cycle graph will have N lobes, and each

lobe is characterized by the formula {<{2°>-<2"> - 2> - <27>1.

There are two different lobes of order 4:

the cyclic {4} and {2-2}

Thus the cyclic 97,3 has 3 of the {4}, while 9y (page 87) has 3 lobes {2-2}.
There are three different lobes of order 8: the cyclic {8}; and

{2-4} @ and {2-2-2} @

as in My , NMes and Nz respectively.

There are five different lobes of order 16: the cyclic {16} in 9y ; {2-2-4)
in Myes ; {4-4) in Mes ; {2-8} in My (not shown); and {2-2-2-2} in NMes
(not shown).

How many different lobes are there of order 2”2 The answer is p(n), the
number of partitions of n. Thus p(4) = 5, since 4 may be partitioned (into
positive integers) in five ways:

4 =4

4 =141+2

4 =242
4=1+3
4=14+14+1+1
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We will return to the theory of p(n) in Volume II. To each partition of
n =M + ny, + --- 4+ ny; there is a lobe of order 2°:

(<2>-<2M> - 2>,

It will follow from Theorem 47 that for any such lobe, and for any odd
N, there are infinitely many 9%,, which have subgroups with a correspond-
ing cycle graph.

But it is not possible to have two lobes of {2-2):

since we have seen that this group is non-Abelian (page 86). And four

lobes of {2-2} does not represent any group—even a non-Abelian. It may
be shown that it violates the associative law.

There remain the tasks of proving Theorems 44 and 47.

ExEercisE 76. Find the relationship between r, the number of charac-

teristic factors of M., , and the number of odd primes which divide m, and
the power of 2 which divides m.

ExercisE 77. For any a;, in Eq. (126), which has every s;,; even, find
explicitly its 2" square roots.

Exgrcise 78. If (a, 561) = 1, then

560
1

(mod 561).
In particular, 561/2°" — 2.
35. FacTor GENERATORS OF 91,
We will prove Theorem 44 in three (rather long) steps.

Lemma 1. Theorem 44 s true if m equals a prime power p*. That s, if
p is odd, or if m = 2 or 4, m has a primitive root. If m = 2" withn = 3,
P, = 2-<2"">> and we have the representation
a; = (=1)"3%  (mod2") (131)
where —1 is of order 2, and 3 is of order 2" 2.

Proor. We know that each p has a primitive root h. We first show that
either k or & 4 p is a primitive root of p> For, if p > 2, from Eq. (13)
withz = h + p,y = hyandn = p — 1, we have

()" =07 = plh+ )"+ ()" h -+ B
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and the square bracket has p — 1 terms, each of which is =h""* (mod p).
But pt(p — 1)h”* and we thus have

(h+p)" #W

Therefore at least one of the numbers h and kb + p—call it g—satisfies

¢ #£ 1 (mod p%). (132)

By Theorem 35, if g is of order ¢ modulo P, e\¢(pzi =Fp(p qu)(.llgs)t,
i i : ‘e have p — lle. From Eq. ,
ce g is of order p — 1 modulo p, we ' : (13
:m?f pg— 1 and we therefore find ¢ = (p — 1)p, that is, g 15 a primitive

root of p’.
We thus have

(mod p°).

g =14+kp (with ptk).
By the binomial theorem
-1
g(p—l)l’ =1 + kp2 + (kp>2 p(p2 ) + tp3
for some ¢, and, if p > 2,

g(p—l)p =1+ kp’ (with ptks)

since
P — 1
ky = k+ <’C2 —'—‘2 ] t) p.

By induction, for every odd p,

g(p—l)p“'l =14 kaps (p‘l’ks).
It follows, by the same argument as for p°, that g is also a primitive root,
of p° for every s. For

gP 07 £ 1 (modp")

and thus ¢ is of order (p — 1)p*! modulo p’.
For p = 2, we note
?¥=1+8
3' =14 16 + 32

3 =1+ 32 4 64u

il

- n—2 n o > 3-
for integers ¢ and u. By induction, 3 is of order 2** modulo 2", if n =
But none of the 27 classes

a; =37  (mod?2")
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can be congruent to an
ap = —3% (mod 27),
for, if so, we would have
83" + 1

where a = [t; — # | . This is not possible since 3* 4 1 = 2 or 4 (mod 8)
for every a. Therefore the representation given by Eq. (131) gives every
residue class in Myn .

On page 90 we see the cycles of 3 and 63 = —1 (mod 64). Each residue
class —3* has been placed close to 3%

Lemma 2. If the ¢(A) classes a; in 9, can be written
a; = g7 g - g, (mod A) (133)
where the factor generator g; is of order m; modulo A, and
mims - - my, = ¢(A);

and if the ¢(B) classes b; in a cyclic My , with B prime to A, are written

i=¢%  (modB), (134)
then the ¢( AB) classes ¢; th M5 can be written
¢ = R hy"H - RTRY {(mod AB) (135)

where the factor generator hj is of order m;, and h is of order ¢(B), modulo
AB.

Proor. Let
k= B'(1-y¢g (mod 4)
and k; = A7'(1 — g)) (mod B)
forj=1,2,--+,n Thenset h = Bk + g, h; = Ak; + g;, and we have
h=Bk+g=1 (mod A4),
hi=A4k;+ g, =1 (mod B), (j = 1,2, ---,n). (137)

We now say that Eq. (135) has the stated properties. For, since h; =
g; (mod A), h; is of order m; modulo 4. Therefore

h™ =1+ sA andalso =1+ ¢B.

Therefore sA = tB and, since (4, B) = 1, we have BJs. Thus k; is also
of order m; modulo AB, since, if it were of a smaller order modulo AB,
this would imply a smaller order modulo A. Likewise k is of order ¢(B)
modulo AB.

(136)
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For any fized v; in Eq. (135), since h"* = | (mod 4), the ¢(A4) values
of ¢, are = tothe¢(4) valuesof a; (mod A), and therefore are incongruent
modulo 4. On the other hand, for two different values of v, the ¢; are
incongruent modulo B. Therefore each of the ¢(A)¢(B) values of ¢; are
incongruent modulo AB, since they are either incongruent modulo 4, or
modulo B, or both. Since each ¢; is prime to both A and B, each is prime
to AB, and since ¢(AB) = ¢(A)¢(B), the Lemma is proven.

Therefore, given any

_ ay__ ag a
m = Pp P ...pn"”

we can construct a representation of 91, in the form Eq. (135) by treating
each p;"* by Lemma 1, and compounding them by Lemma 2. There re-
mains the problem of putting the representation into the characteristic
factor form, Eq. (126), of Theorem 44.

Lemma 3. If g is of order AB modulo m with (A, B) = 1, the AB residue
classes ¢° (0 £ ¢ < AB) can be written as a direct product

(mod m) (138)

where s s of order A and t is of order B modulo m. Conversely, given {wo
residue classes s and t, of orders A and B, with (A, B) = 1, the AB classes
on the right of Eq. (138) are all distinct, and constitute the cycle of some g of
order AB modulo m.

Proo¥. Given ¢, set s = ¢° and ¢ = ¢*. Then s is of order 4, ¢ of order
B, and the AB classes

P =g""  (0=£a<4) (0Z2b<B

¢ b

g = s

are distinet by Theorem 33. Conversely, given s and ¢, consider the right
side of Eq. (138). Now if

b b
Salt 1 = Sa2t 2,

we have

ay—a bo—b
Sl 2Et2 1

2

and

] = S(al—az)A = t(bz—’h)A'

Then B’(bz — b)A, and, since (B, A) = 1, we have by = b,. Likewise
a, = a:. Thus the AB classes on the right of Eq. (138) are distinct. Now
set ¢ = st (mod m), and if g is of order e, then

St = 1.

m

Thus, as before, Ale, and Ble. Therefore e = AB. Further if A7TA
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(mod B), we have

A'A=kB+1, and A7'(b—a)d +a = k(b — a)B + b.
Let
f=A47"0b—-a)Ad +a (mod AB)
or

f=kb—a)B+b (mod AB).
Therefore ¢’ = 't/ = s (mod m) so that the cycle of g contains the AB
residue classes, and no others.

Thus, given any representation of 9., obtained by Lemmas 1 and 2,
we may decompose the cycles into cycles of prime-power order, as in ¢,
and then recompose them into the characteristic factors, as in ®,, . This
completes Theorem 44, and therefore also Theorems 42, 43, 45 and 46.

Previously we made the point that a primitive root for a prime modulus
was proven to exist nonconstructively. We should now add that the sub-
sequent steps in proving Theorem 44—that is, the foregoing three Lemmas—
are all constructive, and involve explicitly given computations.

We note that a representation of 91, in the form of Eq. (135) is not
necessarily unique, even as to the number of factors, and can involve as
many generators as the number of factors in ¢, , or as few generators as
the number of factors in &,

We may also note that the last Lemma can assist us in the finding of
primitive roots. Thus 2 is of order 3 modulo 7 and —1 is of order 2. There-
fore —2 = 5 is of order 6, that is, 5 is a primitive root, etc.

ExErcisE 79. A primitive root of p which is not a primitive root of p is
hard to come by. Show that 10 is a primitive root of 487 but not of 487° by
computing (101487) and with reference to the congruences:

100° = 189 (mod 487) 100° = 51324 (mod 487%)
189° = 475 51324° = 100797

475° = 220 100797° = 145833

220° = 232 145833° = 78152

232° =1 (mod 487) 78152° = 1 (mod 487°%)

Find a primitive root of 487°. Determine the periods of the decimal ex-
pansions of 487" and 487"

Exercrse 80. Find the fallacy in the following: If ¢ is a primitive root
both of p and of p’, then every primitive root of p has the same property.
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“Proof.” Any primitive root h of p may be written h = g* where k is prime
top— l,and k < p — 1. But

gl =1+sp  (pts).

Therefore R* = ¢® ¥ = 1 4 ksp + tp’, or, since ptks, we may write
Rl=1+4up  (ptu).

Therefore h is of order p(p — 1) modulo P

ExercisE 81. Given g, a primitive root of p”, with p odd, find a primitive
root of 2p”.

Exzercist 82. Determine a representation, Eq. (135), of 91 by Lemmas
1 and 2. It will be a product of two cycles of orders 4 and 6. Now decom-
pose and recompose into a product 2-12 and thus map 9 isomorphically
into Mg .

Exgercise 83. Investigate the degeneration of Eq. (131) into one char-
acteristic factor for 2" = 2 or 4. Note: —1 = 3 (mod 4).

Exercise 84. Show that 442” + 1, and therefore 4/ —1 does not exist
modulo 2" for n > 1. But if My were cyelic, v/ —1 would exist if n = 3.
Thus 2" has no primitive root if n = 3. ’

ExERCISE 85. Let n = 3. Show that 7 is a quadratic residue of 2" if, and
only if, r = 8k + 1. Thus 17 is the smallest positive integer, not equal to
a square, which is a quadratic residue of 2". Note that in the cycle graph
on page 90 the quadratic residues of 64 are strung out in numerical order
What do you make of that? Also, the smallest positive a for which 4+ oa
is divisible by every power of 2, for some z,isa = 7.

ExercisE 86. For m = 2" with n > 3, show that the two classes of
numbers 8k -+ 1 and 8 — 1 play special roles in the structure of M .
But 8k + 3 and 8k — 3 play similar roles. How many subgroups of order
2" are contained in 9N, ? Are they all isomorphic? Show that 3 may be
replaced by 5 in Eq. (131).

Exercise 87. If p is an odd prime, r is a quadratic residue of p” if and
only if 7 is a quadratic residue of p.

LxERCISE 88. If 91, is not cyelic, a*™ = 1 (mod m) for every a prime

to m. Thus Euler’s Criterion can be generalized only to composites of the
form 2p” and p” with p odd, and to 4. Further, if 91, is represented by Eq.
(126) the product A of all the residue classes a; is given by

A= (gugs - g™ (mod m),

and thus A = —1 or A = 41 according as 9, is cyclic or not. Therefore
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(compare Exercise 25 on page 38) Wilson’s Theorem, p|(p — 1)! + 1,
like Euler’s Criterion, only generalizes to these same composites (Gauss).

36. PRIMES IN SOME ARITHMETIC PROGRESSIONS
AND A GENERAL DivisiBiLity THEOREM

To prove Theorem 47 (page 96), we will assume, from group theory,
that every finite Abelian group @ can be written as a direct product of
cyclie subgroups. That is

a;, = glul,ng"l?,i e gnan,i (139)
for every a; in @. The generator ¢; is of order m; and the order of @ is
the produet mym, - - - m, . This implies that the cycles of any two generators

g; and g, have no element in common except the identity ¢;° = g.”.
Now the reader may verify that Lemma 3 above holds for every finite
Abelian group, so that any representation, Eq. (139), may be decomposed
into cycles of prime-power order. Assume this done, and that m; is now
equal to p;* for p; prime and «; = 1.
Now let

N — q1q2 .« o qn
where ¢; is a prime of the form kp;" 4+ 1. Then 9%y will contain a cycle of
order ¢; — 1 = kp;™ generated by a residue class s;. Further ¢; = s;*
(mod N) has a cycle of order p;*' and the subgroup of My generated by
1101,it2‘12,i e tnan,i
is isomorphic to @.
ExAMPLE:
Let @ be an Abelian group of order 9 represented by
a =z

where z and y are elements of @ both being of order 3. Then @ is isomorphic
to a subgroup of My since 91 = 7-13and 7 = 2-3 4+ 1 while 13 = 4-3 4 1.
Specifically, starting with 3 and 2 as primitive roots of 7 and 13 respectively,
and using Lemma 2 with A = 7, ¢; = 3, B = 13, g = 2, etc., we obtain
a representation of 9Ty as

a = 66°15"  (mod91)

with 66 of order 6, and 15 of order 12. Then 66° = 79, and 15" = 29 are
both of order 3, and @ is isomorphie to the subgroup of 9y, given by:

a= 7929  (mod9l).

(Note that @ is also isomorphic to the subgroup of quadratic residues Qg ,
but this mapping is not obtained by the construction given above.)
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But Eq. (139) may have an arbitrarily large number of factors of the
same order, and therefore Theorem 47 follows if, and only if, there are
infinitely many primes of the form kp;*" -+ 1 for every prime power p,*.
This is a special case of Dirichlet’s Theorem 15 (page 22). But we have
not proven Theorem 15.

Special cases of Dirichlet’s Theorem may be proven by variations on
the proof of Euclid’s Theorem 8. Thus if M is a product of primes of the
form 4k — 1, 4M — 1 must be divisible by a different prime of that form.
For if every prime divisor of 4M — 1 were of the form 4k 4 1, so would
their product be of that form. With a similar definition of M, we may use
6] — 1 to prove that there are infinitely many primes of the form 6k — 1.

Using our knowledge of quadratic residues, we may similarly show that

M*+2 M —2 and M +4

must contain at least one new prime of the form 8¢ + 3, 8 — 1, and
8k — 3 respectively. Again

(M*+ 1) and 3(M®+3)

are divisible only by primes of the form 4k + 1 and 6k 4 1 respectively.

But it is clear that by such individual attacks we can never prove
Dirichlet’s Theorem, since this encompasses infinitely many cases. For
our present, purpose we do not need Dirichlet’s Theorem in its full glory:
“There are infinitely many primes of the form ak + b for every (a, b) = 1.”
It suffices if b = 1 and @ is any prime power, and this we may obtain by a
very useful generalizaiion of Fermat’s Theorem 11.

Theorem 48. Let m = p" " with p prime and n positive. Let (a, b) = 1,
z=a",y=0b" and

" — y° Pt P2 p—2 p—1
P, =7 + 2"y + e YT (140)

Then

(zx —y,2) =1 or p (141)
according as

(a—b,p) =1 or p.
Secondly,

plz or plz (142)
according as
pl(a — by or ptla —b).

Thirdly, all other prime divisors of z are of the form kp™ 4 1.
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Before we prove Theorem 48 we shall give several applications.
(a) If a = b + 1 we find that all divisors of

_ G-

are of the form kp™ + 1.

(b) If,in(a),b = 1,n = 1,and m = 1, we obtain Fermat’s Theorem 11.

(¢) Ifa=2s,b=1,p=2,andn — 1 = ¢ we find that
- (28)2¢+1 . 1
(25)2 — 1

has divisors only of the form k2'* + 1.
(d) In particular,t =1,

= (29)" + 1 (144)

(28)* + 1
is divisible only by divisors of the form 4k 4 1.
(e) And
(2s)* + 1

is divisible only by divisors of the form 8 + 1.
(f) And the Fermat Number, obtained from Eq. (144) by s = 1 and
t =m,

Fn=2"4+1,

has divisors only of the form 2™+ 4 1.
(g) Ifa=3s,b=1,p =3,and n = 1, we find that

3
a’ —

a—1
= 1[(6s + 1)* + 3]

has divisors only of the form 6k + 1.
(h) If p = 2and n = 2, then, if (a,b) = 1,

—

=d+a+1=212a+ 1)+ 3]

Z =

4 4
_a —b

e (145)

has only 2 and primes of the form 4k + 1 as possible prime divisors.
(i) Finally we complete the

ProoF oF THEOREM 47. In Eq. (143) let b = 1. Then

2" —1
2m —1
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has at least one prime divisor of the form p"k 4 1. Given M, the product
of a number of such primes, if a = M and b = M — 1, we find from Eq.
(140) that the z there contains at least one more. For every prime power
p", there are therefore infinitely many primes of the form p"k 4 1. By the
construction on page 104 there are therefore infinitely many 9., with
subgroups isomorphic to any finite Abelian group.

Proor oF THEOREM 48. Let g = (x — y, 2). Then y = z (mod g), and,
from Eq. (140), z = pz”~* (mod g). Thus g|pz® " and also g|(z — y, pz* ).
But since (a, b) = 1, we have (2,y) =1, (z — y,z) = 1, and

(13 - Y qul) = 1.
Therefore g = 1 or p. Now, for every c,
cEcpEcp2E"'ECm (modp)
by Fermat’s Theorem. Therefore
r—y=a"—-b"=0a—> (mod p),

and if pt(a — b), p4(xz — y) and ¢ = 1. But if p{(a — b), y = x (mod p)
and, by Eq. (140), z = pz® ' (mod p) or p|z and g = p. This proves Eq.
(141) and the first part of Eq. (142).

If ¢ is a prime divisor of z, glz” — y® or a” = b (mod ¢). Thus g4a and
q4b, for if it divided either, it would divide the other also, and this con-
tradicts (a, b) = 1. Let b " satisfy 5'b = 1 (mod ¢). Then

G )" =1 (mod ¢),
and since

(b ') =1 (mod q)
by Fermat’s Theorem, we obtain, by Theorem 10,

gl(v7a)" — 1
where b = (p", ¢ — 1). If k % p", we must have hlm = p"". Then
gl(b7'a)™ — 1
or
gl{z — y).

But, by Eq. (141), ¢ can then be only p, and that only if p|(a — b). All
other prime divisors of 2, [that is, all prime divisors if pt(a — b)], have
h = p" and therefore are of the form ¢ = kp™ + 1. This proves the third
part of the theorem and the second part of Eq. (142).

With the foregoing theory we are now in position (in principle) to map
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any finite Abelian group isomorphically into a subgroup of an 9, and
therefore to carry out algebraic computations within the group by ordinary
arithmetic. An example is given in the following exercise. We quote from
a recent article in a digital computer newsletter.

ExERcise 89. BiNaARY AND DeEciMAL MACHINES
AND IsoMoRrPHIC OPERATIONS.

“Certain operations, which are easy on binary machines, are
awkward on decimal machines, and conversely. In particular, the
logical AND, OR, and COMPLEMENT are naturals for binary
machines while long numerical tables are often more quickly done
on decimal machines since otherwise much machine time is used in
binary-decimal conversion.

“Sometimes a very binaryish operation can nonetheless be done
decimally by using isomorphie operations. To illustrate this, consider
the following example.

“Let ‘octal biconditional’ be an operation which is designated by =
and which is performed on two (three-bit) binary numbers, from 000
to 111. Let

AxB = C

where A and B are two such numbers and the result (' is a third.
Then tllle ﬁ.rst bit of C is a 1 if the first bits of A and B are equal.
Otherwise, it is 0. The same rule holds for the second and third bits.

“Examples:
3¢1 =5 (octal)
since 011001 = 101 (binary).
Again 5% = 6 (octal)
since 101100 = 110 (binary).

This operation, ‘octal biconditional,’ arose in a practical problem,

namely, ‘clipped autocorrelation.” It would seem to be very awkward
to carry it out on a decimal machine.

“However, it is isomorphic to multiplication modulo 1000 according
to the following mapping:

octal 0 1 2 3 4 5 6

7
| S R S T S S
decimal 999 751 749 501 499 251 249 1

“For example, to compute

3x1
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we may map 3 and 1 into 501 and 751 respectively, then multiply
501 and 751 decimally. The last three digits of the product are 251
and by mapping backward we find the answer, octal 5. Thus

3x1 = 5
as before.”

Now the reader is asked to examine “octal biconditional” and, by com-
paring this with @4, to show that an isomorphic mapping such as that
given follows from the theory above. Is there another mapping into Mo
which does not use the same eight decimal numbers? Could we use m =
100 instead of m = 1000? What is the smallest modulus possible? Find a
mapping for this modulus. From the remarks concerning lobal patterns on
page 97 describe the cycle graph for M . Where, in this pattern, are
the eight decimal numbers utilized above?

Exercisk 90. Find a prime of the form 9% -+ 1 by the recipe given in
the proof of Theorem 47. Find the two smallest primes of the form 3k + 1
given by that recipe, and compare these with the two smallest primes of
the same form which were used in the example on page 104.

Exercist 91. From a book on group theory or modern algebra obtain
definitions of quotient group and group of automorphisms. 1ot €. be the
group of all integers under addition. Let m > 0, and let e, be the mul-
tiples of m. Let @, be the group of m residue classes under addition modulo
m. Then @, is the quotient group €./ e.'™. And 9M,, is isomorphic to the
group of automorphisms of G . And therefore every finite Abelian group
is isomorphic to a subgroup of the group of automorphisms of a quotient
group of an infinite cyclic group.

Can this characterization of Abelian groups—which seems to involve
only group-theoretic concepts—be proven independently of the number-
theoretic results in Theorem 48?

From the relationship between ®. and 9. explain the “coincidence”
that the number of primitive roots of p and the order of 9, both equal
o(p — 1).

37. ScALAR AND VECTOR INDICES
If 3 is chosen as the primitive root of 17 we may have two tables:

il ol 1| 2| 3| 4] 5| 6| 7| 8| 9(10[11]12:13}14115

a; 11 31 91013 51511116114 8) 7| 412 2| 6

al 1] 2] 3! 4| 5 6| 71 8] 910111213 |14 1516

il ol] 112 515|110 2] 3] 7[138] 4| 0l 6] 38
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In both tables
a=3' (mod 17).
The exponent 7 is called the index of @ modulo 17 and written
1 = ind a. (146)

Similar tables have been worked out for all moduli <2000 which are primes
or powers of (odd) primes. They enable one to multiply, divide, and solve
binomial congruences quite easily for these moduli. For example,

Qe =z (mod 17)
is solved by
ind z = ind a; + ind a (mod 16).
Thus, for
56=z¢ (mod 17)
inde=4=5+15 (mod 16),
and therefore = 13 (mod 17). Similarly
ax =10 (mod 17)
is solved by
indr=indb — inda (mod 16).

With indices, as with logarithms, multiplication, division, evolution, and
involution are replaced by addition, subtraction, multiplication, and
division respectively. The general binomial congruence:

ar"=b (mod p), (147)
is treated in

Exercise 92. If, in Eq. (147), n is prime to p — 1, there is a unique
solution given by

indz = n'(ind b — ind a) (mod p — 1) (148)

where n™ is the reciprocal of n modulo p — 1.
If (n,p — 1) = g and ¢g4(ind b — ind @), there is no solution. But if
gl(ind b — ind a), there are g solutions given by

y+k”;1 k=01, g—~1) (149)
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-1 /. .
y = (ﬁ) (M) (mod l’_—_l> , (150)
g g g

Exercise 93. Solve

where

=5 (mod 17).

If the modulus does not have a primitive root we must replace the
scalar indices 7 with vector indices (%, j, - -+ ). For example, each of the 24
residue classes prime to 35 can, by the foregoing theory, be expressed as

a= 8926  (mod35)

withi = 0,1, ---,3andj = 0,1, ---, 5. When the vector index (1, j)
has only 2 components a two-dimensional representation is handy. Thus

U log |
i\\\ 0 1 2 3 4 5

0 1 26 11 6 16 31

13 23 3
1 8 33 18 (mod 35)

2 29 19 4 34 9 24

3 | 2| 12 ] 32 2712 17

Then, as before, if

inde = (41, 5)
and

indb = (%, ),
we have

indab = (43, 73)

with 73 = 4 + % (mod ny) and j; = j; + j» (mod n2) where the generators
are of order n; and n, respectively. We may write:

indab = ind a -+ ind b (mod n1, ny).
That is, the indices are combined by modulo vector addition. Thus
33-24 = 22 (mod 35)
since

(3,00 = (1,1) +(2,5)  (mod4,6).
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Alternatively, we may consider the table to be continued periodically in
both directions. Then ordinary vector addition suffices.

The problem of binomial congruences we leave to the reader.

We note that by the use of Lemma 3, page 101, the 4 X 6 table above
can be transformed into a 2 X 12 table, etc. Even for a prime modulus,

say 7, we may modify its one dimensional index into a two dimensional
2 X 3 diagram. Thus

1\2 4

(mod 7).
6 ‘ 5 3

But a Fermat Prime, say 17, can only have a one dimensional represen-
tation since 22" cannot be factored into two factors prime to each other.
And an 9, with 3 or more characteristic factors requires at least that
many dimensions.

Finally we note that the (pattern of the) 91,, cycle graph is obtained most
simply by the use of such modulo vector addition. Thus from

C
G

we at once obtain

For the cycle of A is obtained by continued repetition of the vector dis-
placement from 1 to A, giving us 1, A, B, C, and then, reducing the % co-
ordinate modulo 4, back to 1. The continued repetition of the vector
displacement from 1 to E, again reducing 7 by 4, or j by 2 when necessary,
gives us 1, E, B, G, 1, etc. The elaborate pattern 9 is most easily ob-
tained not by multiplication modulo 63 but by addition of two dimensional
vectors modulo (6, 6).

ExErcisE 94. Find the pattern of the cycle graphs for Mg, and for s
(Exercise 67) by the use of modulo vector addition.

ExEercist 95. Show that if the octal numbers of Exercise 89 are sub-
tracted from 7 and written in binary, they may be interpreted as vector
indices of the corresponding decimal numbers.

L

e
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ExERcISE 96. The transformation from a 4 X 6 representation.to a
2 X 12 representation of My (Exercise 82) may be interpreted as a linear
transformation whereby a fundamental 4 X 6 rectangle becomes a funda-
mental 2 X 12 parallelogram.

38. Tur OTHER RESIDUE CLASSES

After this detailed treatment of 9, it is natural to ask “What of the
residue classes not prime to m?”’ This can be answered quickly. Consider
m = 21. Then besides the 12 solutions of (x, m) = 1, in 9Ma , there are 6
solutions of (z, m) = 3, 2 solutions of (x, m) = 7, and 1 solution of (z, m)
= 21. These three sets of residue classes constitute three other groups under
multiplication modulo 21. These groups have the cycle graphs

(5)
O e
e

and the identities 15, 7, and 0 respectively. More generally we have

Theorem 49. If m = AB with (4, B) = 1, the $(A) multiples of B, aB,
where (a, A) = 1, form a group under multiplication modulo m isomorphic
to M. . We call this group WP, If B is the reciprocal of B modulo A, and

al = & (mod A), (151)
the tsomorphic mapping s

(mod A) o aB {mod m), (152)

(B)

and, in particular, BB s the identity of M,

Exampre: Let m = 21, A = 7,and B = 3. Then 8 = 5 (mod 7) and‘15
is the identity of 9n$l, as shown above. 9P = 9M; under the mapping

(mod 7) a— 3& (mod 21)
where & = 5o (mod 7).

Proor. By Theorem 17 the &’s are a rearrangement of the o’s.
If
a1 = a3 (mod A),

@B&B = a(8B)’ = o8B = &B (mod A).

And clearly
&lBa2B = asB (mod B)
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Therefore
mloyBa,B — a;B or

5{1B(_12B = C-lgB (mOd m)

Thus the ¢(A) multiples of B prime to A form a group isomorphic to
M, under multiplication modulo m.

Definition 31. An integer not divisible by a square greater than 1 is
called quadratfrer.

Theorem 50. If m is divisible by n distinct primes, there will be exactly
2" maultiplicative groups modulo m of the type M,,"> described in Theorem
49. If m is quadratfrei, each of the m residue classes is contained in exactly
one of these groups. If m 1s not quadratfrei, those residue classes a satisfying

(a,m) =g with (g,m/g) #1 (153)
are contained in no multiplicative group.

Proor. If

ay an

m = p"'p? -

we may clearly choose the B, (and therefore the A), of Theorem 49 in
2" different ways. If m is quadratfrei, each a; equals 1, and therefore
B may be any divisor of m. Since the residue classes in 9, satisfy
(z, m) = B, no residue class belongs to two of these groups, and, if m
is quadratfrei, every possible greatest common divisor, ¢ = (x, m), occurs
as a B. In this case, then, each residue class is in exactly one group.

But if one or more a; # 1, and if ¢ = sp;° with 1 £ a < a;, and pi4s,
let @ be a residue class satisfying Eq. (153). Then a = tp;" with p.tt.
It follows that

r

a =a (mod p;**)

for no » > 1, and therefore

r

ad=a (mod m)
for no such r. But if @ were in a group of order h, and that group had an
identity e, we would have

" =cand " =a (mod m).

Thus if m is not quadratfrei there are still only 2" groups, and all remaining
residue classes, I5q. (153), are in no group.

Corollary. There are exactly 27 solutions of

=z (mod m)

if m is divisible by exactly n distinct primes.

JRUw———— SR S
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Proor. Any such z is the identity of a multiplicative group modulo m.

ExampLe: If m = 36 there are four 9W,,” isomorphic to the four
M.® for m = 21. (M,,Y is now our former 9, .) The remaining 15
residue classes modulo 36 have powers in one of the Mz, although they
themselves remain outside. We may diagram these appendages as follows:

(4) [€)] (36)
Mzs Mss Mize

M. never has appendages. These extra residue classes “join” the group
irreversibly. Their powers get in, but can’t get out.
Let us also note

Theorem 51. The 2" multiplicative groups M,'” are isomorphic to sub-
groups of M, = M, .

The proof is left to the reader.

ExErcise 97. Interpret the proof of Theorem 1, on page 4, in terms of
31'610(2).

39. Tue CoNVERSE OF FERMAT’'S THEOREM
If N is a prime # 2,

2"'=1  (mod N). (154)

The converse is not true. Thus

2% =1 (mod 561)

as in Exercise 78, but 561 = 3-11-17 is not a prime. The smallest com-
posite N which satisfies Eq. (154) is 341 = 11-31. In fact

r = 2°3 (mod 341) (155)

is a representation of 9z, where 2 is of order 10, and 3 is of order 30.
S0 2% =1 = 2" (mod 341).

Definition 32. A fermatian is an integer N which satisfies Eq. (154).

u "Definition 33. A Fermat number F,, is one of the form 22" + 1.
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Definition 34. A Carmichael number m is a composite whose largest charac-
teristic factor, f,, divides m — 1. See Definition 30.

Definition 35. A Wieferich Square is the square of a prime p such that
p2r "t — 1.
Wieferich Squares enter into the theory of Fermat’s Last Theorem.

Theorem 52. All odd primes, Fermat numbers, Mersenne numbers, Car-
michael numbers and Wieferich Squares are fermatians. There are other
fermatians, also, since 341, for instance, is none of these.

Proor. Odd primes are obviously fermatians. Since Fa2™" — 1, and
2™t19%"  we find

Fn2F»' — 1.
Again
M,=2"~1=kp+ 1
Then
M, =27 — 12" —1=2""—1
A Carmichael number m must be odd, since f, is even, (proof of Theorem

46), and thus could not divide m — 1 if m were even. Therefore, by Eq.
(128),

2"l =1 (mod m).

Also, if pI277' — 1, P22 — 1. Finally 341 is none of these. It is not a
Carmichael number since f, = 30¢340.

It has never been proved that

(a) There are infinitely many Mersenne composites, or
(b) There are infinitely many Fermat composites, or
(¢) There are infinitely many Carmichael numbers, or
(d) There are infinitely many Wieferich Squares.

Of the last there are only two examples up to p = 100,000; (S. Kravitz).
These are 1093% (Meissner) and 3511° (Beeger).
Nonetheless it is easy to prove

Theorem 53. There are infinitely many composite fermatians.

ProoF. Suppose f; is a composite fermatian. Then
fo=2"—1
is also one. For if f,|2"" — 1, filfa — 1, and fo = 1 + kfi. Then
2 —1=2" -1

—
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which is divisible by 2/* — 1 = f2 . Further, by Theorem 4, f; is composite
if f; is. Since 2" — 1, say, is a composite fermatian, there are infinitely
many of them.

The first ten composite fermatians are

341 = 11-31 561 (a Carmichael)
645 = 3-5-43 1105 (a Carmichael)
1387 = 19-73 1729 (a Carmichael)
1905 = 3-5-127 2047 (a Mersenne)

2465 (a Carmichael) 2701 = 37-73

The 43rd composite fermatian, 31417 = 89-353, belongs to none of the
foregoing distinguished classes, but is perhaps distinguished in its own
right:
314172" — 1.
P. Poulet and D. H. Lehmer have tabulated all composite fermatians

<10%. We give a table showing C(N), the number of such composites
= N. This is compared with = (N).

N C(N) =(N) «{N)/C(N)
10 0 4 —
102 0 25 —
103 3 168 56
104 22 1229 56
108 79 9592 121
108 247 78498 318
107 750 664579 886
108 2043 5761455 2820

Apparently composite fermatians are relatively rare. Of these 2043 com-
posites we may note that 252 are Carmichaels, 2 are Mersennes, 2 are
Wieferich Squares, and none are Fermat numbers. For the entries in the
table we have

C(N) < /(W) (156)

Definition 36. If a class of positive integers A contains a subclass B,
and if A and B are equinumerous, we say almost all A numbers are B
numbers.

ExamprLe: From the prime number theorem, almost all positive integers
are composite.

While it has not been proven that Eq. (156) remains valid as N — o,
one is tempted to risk

Conjecture 15. Almost all fermatians are prime.
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Composite fermatians have some interesting properties (Poulet). Their
distribution is very irregular. Thus 65,350,801 and 65,350,821 are suc-
cessive composite fermatians, and so are 95,452,781 and 96,135,601—a
gap of 20, and another of more than a half of a million. Very unexpected
is the fact that more than one half of these numbers end in the digit 1.

ExEercist 98. Prove that 1105 is a Carmichael number.

Exercise 99. The divisibility relation defining Wieferich Squares re-
minds one of the rare primitive roots of p which are not primitive roots
of p®. But show that 2 is not a primitive root of 3511. Nor is it of 1093,
but that is not as easy.

40. SurFICIENT CONDITIONS FOR PRIMALITY

When we left the perfect numbers we were in need of a good criterion
for the primality of M, . Wilson’s Theorem:

(N-1!l= -1 (mod N), (157)
is a necessary and sufficient condition, but it is not practical. Fermat’s
Theorem:

2Vl =1 (mod N), (158)

is a necessary and practical condition, but it is not sufficient—as we have
just seen. We may even say that it is particularly useless for Mersenne and
Fermat numbers, in view of Theorem 52. This is unfortunate, for while
2% like (N — 1)!, also grows rapidly, it is relatively easy to compute—
‘k by successive squarings and residue arithmetic.
We note that while N = 341 passes the test of Eq. (158), it does not
pass the test:
3 =1 (mod 341),
since, by Eq. (155), 3 is of order 30 and thus 30 = 31 £ | (mod 341).
But a Carmichael number m passes the test
m—1

a" =1 (mod m)

for every a prime to m. Because of this these numbers are also called
pseudoprimes. By the results of Sect. 38 we may state an even stronger
result.

Theorem 54. For every Carmichael number m, and any a,
mla” — a; (159)
Just as in Fermat’s Theorem 13:

pla® — a.
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CoMmMmENT: By implication the test is truly infantile since the number
doesn’t know its mla™ — a from its pla® — a.

Proor. A Carmichael number m is quadratfrei, for if p’im, we have
pl¢(m), and therefore plf, , its largest characteristic factor. But if m = ps,
and f, = pt, we see that f.4m — 1. Now, since m is quadratfrei, by Theo-
rems 50 and 51, every residue class @ modulo m is in an 91, isomorphic
to a subgroup of M, . Thus

ar=1 (mod m)

where [ is the identity of 91,,”. Then ™™ = I and ¢™ = a (mod m).

We now seek a better criterion and we decide that Euler’s Criterion is
twice as good a test as Fermat’s Theorem. If 341 were a prime, since it is
of the form 8k 4+ 5, we would have (2341) = —1, and

2" = 1 (mod 341).

But since 2° = 1 and 2" = 1, we see that 341 does not pass this test.
If a composite N passes Eq. (158), it may be expected to pass

QWD — (91N (mod N) (160)

only one-half the time. Here the “Legendre symbol,” (2|N), is computed
as if N were a prime. Nonetheless, Eq. (160) is not sufficient either, and,
in particular, all Mersenne numbers satisfy this congruence.

In contrast, Euler’s Criterion, with a base 3, is a necessary and sufficient
condition for the primality of Fermat numbers.

Theorem 55 (Pepin’s Test). F,, = 22" + 1 is a prime if and only if
3T = 1 (mod Fo). (161)

Proor. In Theorem 40 we showed that if F,, is a prime, (3|F,) = —1,
and, by Euler’s Criterion, Eq. (161} follows. The converse interests us
more. If Eq. (161) is true, so is

g3f= 1 =1 (mod F.).

Then if p|F., 37" = 1 (mod p), and the order of 3 modulo p divides
F, — 1 = 2" This order is thus a power of 2. Butit cannot divide 2°" ' =
(F.. — 1)/2 since that would contradict Eq. (161). Therefore the order
is F,, — 1, and since it must be £p — 1, we have F, £ p. Thusp = F,,
and Eq. (161) is also a sufficient econdition for the primality of F., .

The reader will hear a familiar ring in the argument. We use the fact
that a divisor d of p", with p a prime, divides p"7', if it does not equal
p". If this leads to a contradiction, d must equal p”. In Theorem 55 p = 2,
but in Theorem 48 p is any prime.

With this success for Fermat numbers we again inquire about Mer-
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senne numbers, 2° — 1 = M, . Here M, again involves a power of 2,
but this time M, — 1 is not that power of 2. Instead M, + 1 is. Here we
see the difficulty. What we need are not divisibility theorems like Fermat’s
Theorem and Euler’s Criterion, since these involve N — 1. We need a
divisibility theorem involving N + 1. Lucas found such a theorem, and
by the use of it he obtained the Lucas Criterion for Mersenne numbers.

The theorem is associated with rational approzimations to the /3.
When the 1/3, and earlier, the /2, were found to be irrational, there was a
great crisis in Greek mathematics and philosophy. We close the present
chapter, and start a new one, which discusses this crisis, and, associated
with it, another important source of number theory.

Exercise 100. If 2™ + 1 is prime, m is a power of 2.

Exercise 101. From case (f) of Theorem 48, page 106, if a prime
plFm, p =1+ k2™ Show that 2 is of order 2" modulo p, and also,
that if m > 1, (2|p) = 1. Then 2 "”? =1 (mod p), and k is even.
Thusp = 1 + 2" if m > 1.

Exercist 102. From Exercises 100, 101, and 4, if we search for the
smallest prime which divides Fs, our first trial divisor is 641.

Exercise 103. Prove that every Mersenne number passes the Euler
Criterion test, Eq. (160), as stated on page 119.
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CHAPTER III

PYTHAGOREANISM AND ITS
MANY CONSEQUENCES

41. Tae PYTHAGOREANS

We now examine a third source of number theory, one much older than
periodic decimals, and even older than perfect numbers.

Definition 37. Pythagorean numbers are three positive integers that
satisfy the equation
ad+v = (162)

The name has a twofold significance. First, it refers to the Pythagorean
Theorem concerning a right triangle, and the three integers give us such a
triangle:

a

whose sides have an integral relationship to each other. Second, it refers
to the fact that the Pythagoreans gave a formula for infinitely many such
triangles. Namely, if m is odd and >1, set

a=m, b=21(m' - 1), and c=3m+1) (163)
ExAMPLES:
32 + 42 - 52
50+ 12F = 13°

~ But there are also two senses in which this name, “Pythagorean” num-
bers, is seriously misleading. First, Neugebauer has shown that the Baby-
lonians knew of the numbers of Eq. (162)—not merely those given by

121



122 Solved and Unsolved Problems in Number Theory

Eq. (163)—at least 1,000 years before Pythagoras. Second, such a desig-
nation does not suggest, and indeed tends to conceal, the fact that origi-
nally the Pythagoreans thought that every right triangle would have its
three sides in an integral relationship by a proper choice of the unit length.
Furthermore, this belief was not a casual one but instead fundamental to
the whole Pythagorean philosophy. When it was shattered by a number-
theoretic discovery which the Pythagoreans made themselves, a profound
crisis arose in this philosophy and in Greek mathematics.

Pythagoras (5707-500? B.c.) was born on the Greek island of Samos,
traveled in Egypt, and perhaps in Babylonia, and founded a school and
secret brotherhood in southern Italy. We need not go into the ethical doc-
trines that he expounded. On the scientific side, four subjects were studied;
arithmetica (the theory of numbers), geometry, music, and spherics
(mathematical astronomy). Of these four, arithmetica was considered the
fundamental subject. In fact, the point of the Pythagorean philosophy was
that Number is everything. We should make it clear at once that Number
here means positive integer. There were no others. Since we are writing
here on the theory of numbers, it behooves us to examine this far-reaching
assertion in some detail.

The relationship between number and musical intervals was one of
Pythagoras’s first discoveries. If a stretched string of length, say, 12,
sounds a certain note, the fonic, then it sounds the octave if the length is
reduced to 6. It sounds the fifth (do to sol) if the length is reduced to §,
and the fourth (do to fa) if reduced to 9. So Harmony is Number. There
follows a study of means. The fourth is the arithmetic mean of the tonic
and octave, 9 = 1(12 + 6), while the fifth is their harmonic mean, } =
(i + %), since its pitch is half-way between theirs. There also follows a
study of proportion. The fifth is to the tonic as the octave is to the fourth,
and the criterion of such proportionality is found in

89 = 12-6.
Since we may write this as
9.8 = 12-6,

we also have that the fourth is to the tonic as the octave is to the fifth,
etc. The study of means and proportion was an important ingredient of
Pythagoreanism.

The Pythagorean relationship between music and spherics is less con-
vincing. The intervals between the seven ‘‘planets”’—the Moon, the Sun,
Venus, Mercury, Mars, Jupiter and Saturn—correspond to the seven inter-
vals in the musical scale. This explains the Celestial Harmony, and shows
that the Heavens too are essentially Number. We will see later how this
mystic nonsense played a most important role in the history of science.
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But the direct relation between number and spherics, without music
as a middleman, was also known to Pythagoras from his travels in Egypt,
and is worth more of our time. We shall not discuss Pythagorean astron-
omy in full. What we need to do is to understand a simple instrument
called a gnomon, because it exemplifies the Pythagorean synthesis of

spherics, geometry and arithmetica.
\\ ! ,/

rd ~

y.

4

The gnomon is an L-shaped movable sundial used for scientific studies.
It rests on one leg; the other is vertical. The length and direction of the
shadow is measured at different times of the day and year. If the shadow
falls directly on the horizontal leg at noon (when the shadow is shortest),
that leg points north. The noon shadow changes length with the seasons—
minimum at summer solstice and maximum at winter solstice. The sunrise
shadow is perpendicular to the horizontal leg during the vernal or autumnal
equinox. Thus the gnomon is a calendar, a compass and a clock. Pytha-
goras knew the world was a sphere—the gnomon measures latitude, it
measures the obliquity of the ecliptic, etc. Here we have Solar Astronomy
with Number (measurements) as the basis.

42, Tue PYTHAGOREAN THEOREM

In all such shadow measurements the geometry of similar triangles and
of right triangles is essential. A generation before Pythagoras, Thales of
Miletus (a commercial center near Samos) also went to Egypt, studied
mathematics, and started a school of philosophy. It is sometimes said that
Pythagoras was one of his students. Plutarch tells the story that Thales
determined the height of the Great Pyramid by comparing the length of
the shadows cast by the Pyramid and by a vertical stick of known length.
Some writers of mathematical history contest this, claiming that Thales
did not know of the laws of similar triangles. We believe that he did, but
we need not argue the point. It suffices for the argument which follows
that the Pythagoreans did know about similar triangles, and this fact is
not in question.
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Nor do we raise the questions as to how and where Pythagoras “dis-
covered” the Pythagorean Theorem. He may actually have learned of it
from Egypt, for the “rope stretchers” there had long known how to con-
struct right angles with a rope triangle of sides 3, 4 and 5; perhaps the
Great Pyramid (2700 B.c.) had already been laid out in this way. But we
do raise the question as to how Pythagoras proved (or thought he proved)
the theorem, since this proof appears to be a critical step in the subsequent
events.

We conjecture, on the basis of what we have already related, and upon
subsequent events which we will relate presently, that the original proof
ran as follows.

G F
Draw the perpendicular COF. Find the greatest common measure of
the four lines BC, CA, BO and OA. In terms of this length as a unit, let
the four lines be of length a, b, d, and ¢—d respectively. Since COB and
ACB are both right angles and CBO equals itself, the triangles CBO and

ABC are similar. Thus ¢ is to a as @ is to d. Here we have a third type of
mean, g is the geometric mean of ¢ and d, and

a = cd.

Therefore the square C'D equals the rectangle OG. Similarly CE equals AF,

and the square on the hypothenuse equals the sum of the squares on the
sides.
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b a b a
a b a a
b a b b
a b b a

A number of historians have favored a different opinion—that Pythag-
oras’s proof was a dissection proof such as that shown above. A square of
side @ -+ b can be dissected into four triangles and the square c?, or into
four triangles and the two squares a? and b2

We think that this opinion is incorrect on three grounds.

(a) The suggested proof has none of the elements of Pythagoreanism—
no proportion, no means, no ‘“‘Number-as-Everything,” no relation to
spherics.

(b) The suggested proof is very clever, and appears to be of a sort
that could be concocted after one knew the theorem to be true. But this
implies a prior proof—or at least some serious evidence in the theorem’s
favor.

(¢) The subsequent events, and their culmination in Kuclid’s Elements,
are best explained in terms of the (fallacious) proof which we have sug-
gested.

The Pythagorean derivation of Eq. (163) may date from the same (early)
period as the Pythagorean Theorem. The names “square’” number, “cube”
number, “triangular” number, ete., all derive from the Pythagorean
study of the relation between Number and form. The triangular numbers,
1, 3, 6, 10, ete., are the sums of consecutive numbers:

10 =14+ 2 4+ 3 + 4, ete. The square numbers, 1, 4, 9, 16, etc., are the
sums of successive odd numbers:

oo
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16 =1+ 34+ 5+ 7, etc. The odd numbers the Pythagoreans called
gnomons. It follows at once that if m is odd, and if m® is thought of as a
gnomon of side %(m’ =+ 1), then

m’ + [F(m* — D) = F(m* + D] ;
This proves Eq. (163) ‘‘geometrically.” And the first case of Eq. (163)
is the Egyptian triangle, 3-—4-5.
If we now look back at the illustration on page 123, we see the right
triangular shadow and, framing the square on one side, the gnomon—

which is really an odd number, etc. This was the Pythagorean synthesis
at its best, and in its happy days—before the trouble began.

43. THE +/2 AND THE CRISIS
The source of the trouble is attributed to Pythagoras himself. It is his
Theorem 56. The equation

20 = ¢’ (164)
has no solution in positive integers.

Proor. Assume a solution with (a@,¢) = ¢g. Let a = Ag and ¢ = Cg and
(4,0C) = 1. (165)
Then 24 = (",
But since C” is even, so must C be even. Let ¢ = 2D and
24 = 4D®, or A’ = 2D%

Then A is also even, and since this contradicts Eq. (165), there is no
solution.
This means that

V2 # c/a.

It is not a ratio, therefore, from the modern point of view, it is an drrational
“number.” But an irrational number is no number at all—it is (via the
Dedekind Cut) a class of classes of ordered pairs of numbers. It is totally
“man-made,” as L. Kronecker said, and thus is of dubious significance
philosophically.

To the Pythagoreans, Theorem 56 was a terrible shock. It implies that
in a 45° right triangle (with b = a), the hypothenuse and the side are
incommensurable. There is no common measure such as we presumed in
proof of the Pythagorean Theorem! The following serious consequences
ensue.
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(a) The proof is fallacious.

(b) The theorem is put in doubt.

(¢) The theory of proportion, and of similar triangles, is put in doubt.

(d) The Pythagorean philosophy is largely undermined. I'or if Number
(that is, positive integers), cannot even explain a 45° triangle, what
becomes of the much more far-reaching claims?

The Pythagoreans were a secret society, and it is said that their dis-
coveries were kept secret. But it is also said that Pythagoras’s lectures
were well-attended by the townspeople of Crotona. However contradictory
this may appear, it is clear that Theorem 56 was highly embarrassing.
The (unnamed) Pythagorean who first divulged this startling result is
said to have suffered shipwreck in consequence, “for the unspeakable and
invisible should always be kept secret.”

At a later date a new embarrassment arose. While it was not of quite the
same crucial character it may also have been considered important. The
Pythagoreans knew of four regular polyhedra. and they associated these
with the four “elements.” The tetrahedron was fire, the cube was earth,
the octahedron was air, and the icosahedron, water. But Hippasus, a
member of the society, discovered the fifth regular polyhedron, the dodec-
ahedron. By an ominous coincidence Hippasus, for divulging this dis-
covery, was also shipwrecked and perished.

Far be it from us to suggest foul play on the basis of such flimsy evi-
dence. Still, we recall that this was in southern Italy—the home of the
Mafia—and that a cardinal principle of the Mafia is silence or quick
retribution. The latter-day Mafia, in Chicago during the Prohibition era,
was, as we know, involved in the numbers racket, and was also inter-
ested in fifths and fourths, and if squealers were seldom shipwrecked,
they were often found, well-weighted, at the bottom of the Chicago river.
Yet the parallel does not quite run true; it takes a rather vivid imagination
to picture Little Caesar striding into the back room of the garage on Clark
Street, and snarling, “OK, Louie, so you told about Godel’s Theorem!
Now take dat!”’

But returning to more solid ground, there is no questioning the fact
that the problems raised by the /2 were most serious. We will examine the
effects of this crisis upon geometry, “spherics,” and arithmetica in the
next three sections.

44, Tae ErreEct urpoN GEOMETRY

If our supposition is correct, the order of the day at this point must have
been to

(a) Devise a sound proof of the Pythagorean Theorem, and
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(b) Devise a sound theory of proportion, which could handle incommen-
surate quantities, and therefore restore the important results concerning
similar triangles.

Geometry as a deductive science probably began with the Pythagoreans.
We see now that they had a strong motivation. When naive mathematics
leads to paradoxes and contradictions, the day of rigorous mathematics
begins. In the nineteenth century the paradoxes of the Fourier Series
played a similar role in the motivation of rigorous mathematics; were it
not too digressive, we should expound here on the parallelism of the prob-
lems created and of the answers found.

Instead, we skip over 200 years of Greek mathematics, and examine
briefly the Greek answers to problems (a) and (b) above, as they appear
in Euelid’s Elements.

Euclid gives two proofs of the Pythagorean Theorem—in Book I,
Prop. 47, and in Book VI, Prop. 31. Both proofs use (essentially) the
same figure as we show on page 124. Neither proof has any relation what-
soever to the dissection figure on page 125. The first proof has nothing to
do with similar triangles—these require a sound theory of proportion,
and this is postponed to Book V. Book I is, so to speak, more elementary.
It is clear, by reading it, that the main point of Book I is to prove the
Pythagorean Theorem. This theorem is I, 47, and I, 48, the last proposi-
tion in Book 1T, is its converse. With few exceptions almost all of the pre-
vious theorems enter into the chain of proof leading to I, 47.

We show this in the following logical structure. The propositions labelled
p are the “problems.” We will discuss their role presently. The blank
block under 46, and 37 is inserted because both of these propositions
depend upon both 31, and 34.

The proof in I, 47 is based not on similar triangles, but on congruent
triangles. Draw AD and CG in the figure on page 124. Then the triangles
ABD and GBC are congruent. But the first equals half of the square C'D
and the second, half of the rectangle OG. And so CD equals OG, ete.

The three theorems concerning congruent triangles—TI, 4; I, 8; and I,
26; well-beloved of all high school geometry students—all play leading
roles, as we see in the logical structure. The problems (bisect a line, an
angle, construct a perpendicular, ete.) also play leading roles. Number
plays no role. Proportion plays no role.

Book V gives the Eudoxus theory of proportion, the answer to problem
(b), and in Book VI we find a second proof of the Pythagorean Theorem,
similar to the one which we have attributed to Pythagoras—but now
based upon the logically sound Eudoxus theory. There can be no doubt
that Euclid knew of the earlier “proof,” and also what was wrong with it.

2
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47
41
46
D
. 37
35
3 1p 34 14
27|26
29
16
23p 10 15
p
13
9p llp
8
22, 7
5
3P
2p 4
1p

In conclusion we would point out that three important ‘“peculiar’ aspects
of the Elements all bear testimony to the original Pythagorean “proof”
and to the subsequent crisis over the /2.

(a) In elementary teaching the “problems” are often thought of as exer-
cises, or as applications. Euclid has no use whatsoever for exercises or appli-
cations. The problems are proof that any construction called for in the
proof of a theorem is indeed possible. The original mistake of Pythagoras,
“Find the greatest common measure, etc.,” was not to be repeated.

(b) Number is expelled from Geometry. Much nonsense has been written
on this point. It has been called a peculiarity of the Greek “mind”’—a
preference for form rather than number—a greater ability in geometry
than arithmetic, etc. There is no basis for this. Euclid has three books on
the theory of numbers. The origins of Greek mathematics in Egypt and
Babylonia were definitely numerical. Pythagoras’s opinion of Number we



130 Solved and Unsolved Problems in Number Theory

know. The expulsion of number from geometry was solely due to the prob-
lems raised by the /2.

(¢) Euclid’s proof of I, 47 is seldom appreciated in its historical context.
No doubt Euclid “liked” the logical simplicity of the fallacious Pythag-
orean proof. But to postpone a proof of the Pythagorean Theorem until
after the “advanced” Eudoxus theory can be studied is undesirable.
Therefore Euclid gives the most elementary proof he can find, while
keeping as close as possible to the original Pythagorean structural frame-
work. When Schopenhauer criticized this Euclid proof of I, 47 as a “mouse-
trap proof,” “a proof walking on stilts,” etc., he showed that he had little

appreciation of the historical, mathematical, and even philosophical points
which were involved.

45. THE CASE FOR PYTHAGOREANISM

The most important problem concerning the integers is the determination
of their role in Nature. The Pythagoreans said Number is everything,
but, aside from the analysis of music, we cannot say that they made a good
case for this assertion. Nor could they be expected to do so, with science
at such a primitive level. The mystic and numerological aspects of Pythag-
oreanism we now regard most unfavorably. However, these aspects can
be ignored. The real difficulty with Pythagoreanism stems from the /2
and its corollary that in the analysis of continuous magnitude the integers
(as such) do not quite suffice.

If we ask whether modern physical scientists believe that the world ean
be best understood numerically, the answer is yes—practically all of them
do. But here “numbers” are no longer confined to integers; they also in-
clude real numbers, vectors, complex numbers, and other generalizations.
The founders of modern physical science (Galileo, Kepler, and others)
did not have a rigorous theory of real numbers, but they had the practical
equivalent, namely, decimal fractions. These, of course, the Greeks did
not have. The formulation of the laws of nature in terms of ordinary dif-
ferential equations (Newton), and in terms of partial differential equations
(Euler, D’Alembert, Fourier, Cauchy, Maxwell), appeared to further
weaken the role of integers in Nature and to strengthen that of real num-
bers. But even here we may note that while the variables in an equation
are continuous, the order of the equation, and the number of variables in it,
are integers—a point that should not be neglected.

A philosophy which interprets the world numerically, in the general
sense of real numbers, we may call New Pythagoreanism, whereas one that
insists that the integers are fundamental—not only mathematically, but
also physically—we call Old Pythagoreanism. We now inquire whether a
case can be made for Old Pythagoreanism. To determine this we must
examine a list of some of the key discoveries in physical science.
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(a) Galileo (1590) found that during successivg seconds from t.he tin;e
at which it starts falling, a body falls through dlstanc'es propor};clona 0
1, 3, 5, 7, etc., so that the total distance fallen is pl"oportlonal to the ;quzrs
o% the time. Here we have square numbers arising as sums of the o

nomons!).
nuzxkf;)e; f)lginnes Kegler was an out-and-out Pythagorean*—one who };c;a;lz
believed in the Harmony of the Spheres (page 122), etc. He soug u:h
many years to find accurate numerical laws 'for‘ astronomy ex_presLsmg —s_ woh
“harmonies” and in 1619 he discovered his m}portant Third avs; ne
squares of the periods of the planets are proportional to the cubes of thei
i es from the sun.
me(?f)1 (]lilli?;lncbefore Newton’s Principia (1687) ifi was known ‘oot Rob?:);
Hooke, Christopher Wren, and others, that the' integer exponents mh- )
and (b) imply that each planet has an acce?lerat'wn toward t};(fl sun whie
is inversely proportional to the square of‘ its distance from 1 e ?bm(li785)

(d) Inspired by Newton’s Law of Gravity (e), Char}es Coulom )
determined, with a torsion balance, that electrqstatlc forceslwex(‘ie w
inverse square. Henry Cavendish (1773, unpubhsﬁed? had a.reaé y t(i)ve
tained the same law by another meth_od—one which is most ;I}S ruc e
for our present discussion. The experiment was repeated ll)ly ; alxvx;iical
hundred years later. The experimenter entfars a largfa ho gvx;he ec ol
conductor. The conductor is charged to a high potentlal an " e e);? o
menter attempts to measure a change of potential on the mij[ e suuaesi
He finds nothing—within experiment‘fﬂ error. In this Wayf a);wglﬁoo
tablished that the exponent is —2 with a .pr(.)bable error of % f/ rther.
Later experiments reduced the possible deviation fI‘OII'l -2 eve:h :‘1 Cou:

The point involved is this: a New Pythagorean. might say lam o
lomb’s results merely indicate that the e{(ponent is apprommats yt eq "

to —2. But the Cavendish-Maxwell experiment no_t only sugge:.s 11 athe
is exactly —2 but also suggests the “reffmson’j for th}s. Math}elzma :zc_a yence
only law of force which would behave in 'thlS way is one w qset we;i] e
is zero—that is, one that falls off radially 1n.such a way as "no Jusd'co 1;\} o
sate for the increase in the area of a spherlcgl shell Wlf:h .1ts ra{) ius. o
this area increases with the square ofIthe f;adtlust,h andtﬁl;sffcsothzfa:hs: e
ive i three dimensions. In effect, then, ‘
EZielrIllt a—S2p?sCZn0ifnteger is directly associated with the fact that the dimen-

i i ace 1s an integer. ‘ ‘
Sloaill%{oorisfhis interpretation of Coulomb’s Law (the dlvergenc(;a ::.S lf/?;(;i)é
from a similar, inverse square, elect.romagnetlc law due to(j{&nkrlvmxwe11
Ampere (1822), and from other expenmen'taI r}esults, Jamgs }?rd el
“was led to the electromagnetic wave equations in 1865. While the dep

igrated
* He even suggested the possibility that the soul of Pythagoras may have migraie
into his own.
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and the independent variables here are both continuous, we shall see that
in some respects the number of independent variables, 4, and of dependent
variables, 6, is more fundamental. We will pick up this thread presently.

(f) Proust’s Law of Definite Proportions (1799) and Dalton’s Law of
Multiple Proportions (1808) in chemistry directly imply an Atomic Theory
of matter. The integral ratios in the second law exclude any other inter-
pretation. Further, it appears that chemical affinity involves integers
directly, namely the valence of the elements.

(g) In exact analogy, Lisle’s Law of Constant Angles (1772) and Hatiy’s
Law of Rational Indices (1784) for crystals directly imply that a crystal
consists of an integral number of layers of atoms. Again, the integral ratios
in the second law exclude any other interpretation. Further, there is a
direct relationship between number and form, e.g., the six-sided symmetry
of frozen H,0.

(h) The ratio of the two specific heats of air is 7/5 and of helium is 5/3.
While the (New Pythagorean) phenomenological theory (thermodynamics)
cannot explain these integral ratios at all, the atomie theory (f) explains
them easily (Boltzmann). By a similar argument Boltzmann explains the
Dulong-Petit Law for the specific heats of solids.

(i) Faraday’s Law of Electrolysis (1834) states that the weight of the
chemical deposited during electrolysts is proportional to the current and
time. If chemical weight is atomic, from (f), then this law implies that
electricity is also atomic. Such electric particles were called electrons by
Stoney (1891). We will pick up this thread presently.

(j) In 1814 Joseph von Fraunhofer invented the diffraction grating. A
glass plate is seratched with a large number of parallel, uniformly spaced,
fine lines. This integral spacing produces an optical spectrum, since parallel
light of a given wavelength, shining through the successive intervals on
the glass, will be diffracted only into those directions where the successive
beams have path lengths that differ by an integral number of wavelengths.

(k) The simplest spectrum is that of hydrogen. The wavelengths of its
lines have been accurately determined, (j). In 1885 Balmer found that these
wavelengths are expressible by a simple formula involving integers.

(1) Pieter Zeeman (1896) discovered that the lines of a spectrum are
altered by a magnetic field, and H. A. Lorentz at once devised an ap-
propriate theory. The radiating atoms (f) contain electrons (i) whose
oscillations produce the spectrum by electromagnetic radiation (e). The
frequency of the oscillations (and therefore also their wavelength) is
changed by the action of the magnetic field upon the electrons.

(m) From Maxwell’s Equations (e) and thermodynamics, Ludwig
Boltzmann (1884) derived Stefan’s Law of Radiation (1879). This states
that a blackbody radiates energy at a rate proportional to the fourth power

[
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of its absolute temperature. We note that although electromagnetism and
thermodynamics are both theories of continua (New Pythagoreanism) the
real point of the law is the exponent. Here again the exponent 4 is said to
be exact and, in fact, even a casual examination of Boltzmann’s derivation
shows that this exponent equals the number of independent variables in
the wave equation—the three of space and one of time. Justas2 = 3 — 1
in (d), so does 4 = 3 4 1 here.

(n) But this Boltzmann theory involving continua (m) and his other
theory (h) involving atoms contradict experiment when combined theo-
retically. Thus if electromagnetic radiation is produced by oscillating
electrons (1), the statistical theory of equilibrium which Boltzmann de-
veloped for (h) does not imply Stefan’s Radiation Law (m). It implies
instead the so-called Rayleigh-Jeans Law, which does not agree with
experiment, and in fact asserts that an infinite amount of energy will be
radiated! In plain language this erroneous law implies that equilibrium is
not possible at temperatures above absolute zero.

To save the situation, that is to preserve both Stefan’s (m) and Lorentz’s
(1), Max Planck (1900) found it necessary to assume that the energy was
not radiated continuously but discretely in quanta. He gives

E = hy

where E is the energy of the quantum, » is its frequency, and k is a con-
stant. It is interesting to note that this Planck constant h enters into a
related radiation law (Wien’s Displacement Law) in the form of a ratio,
k/h, where k is the Boltzmann constant. Just as 4 is a measure of the energy
per quantum, so k is a measure of the energy per atom. The ratio k/h is
determined experimentally. If atoms are “small,” then so are quanta
“small,” but if matter is not continuous—that is, if & > 0—then neither
is energy continuous, since h > 0.

But Planck was a New Pythagorean and did not like his (discrete)
quanta. He sought for years to circumvent his own (fundamental) dis-
covery. But the logic is clear. Just as discrete matter implies discrete
electricity in (i) so does discrete matter imply discrete energy here—for
the ratio may be determined experimentally in either case.

(o) Einstein accepted quanta “heuristically’” and in 1905 he used them
to explain photoelectricity.

(p) In the same year, but in quite a different vein, he also developed
relativity. The Michelson-Morley experiment (1887) had suggested that
Maxwell’s Equations (e) must remain invariant to observers traveling
‘with different. velocities. The consequences of such an assumption are that
time and space are no longer absolute and distinct, but are related by the
Lorentz Transformation. In the hands of H. Minkowski (1908) this led to
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the four-dimensional space-time continuum. In this theory particular
importance is attached to vectors with four components. One such vector
is a space-time displacement. Another, which we will need soon, is the
momentum-energy vector, three components of momentum and one of
energy. A skew-symmetric tensor in this four-dimensional world has six
components—four things taken two at a time. The most important ex-
ample is the electromagnetic field—three components of electric field, and
three of magnetic.

{q) This recalls the fact that the Pythagoreans also considered four to
be especially important. Thus (they say), the soul is related to fire, and
fire, as we indicated before, is a tetrahedron, and a tetrahedron has both
four vertices and four faces, and is the smallest regular polyhedron. The
reader may well consider that we should hastily stow this back in the
closet—and lock the door. But we have our purpose, and since we have
raised the point let us examine it for a moment.

The Pythagoreans say that a point is of no dimension, two points form
a line, three points a surface, and four a solid. A tetrahedron has two
special properties: it is the smallest polyhedron, and it has the same num-
ber of vertices and faces (i.e., it is self-dual). Both properties follow from
the fact that its number of vertices is one more than the dimensionality
of space. Let us admit, then, that four is important to Pythagoras for the
same simple reason that it is important to Einstein, Minkowski, Stefan
and Boltzmann: 4 = 3 + 1.

But why should fire be a tetrahedron? The reader knows that the spec-
tacular part of fire is the radiant heat and light, and that this is electro-
magnetic, and that the six components of this field are obtained by taking
the four dimensions of space-time two at a time (p). So likewise the six
edges of the tetrahedron join the four vertices two at a time, and also are
the intersections of the four faces two at a time. But we do not insist upon
it. If the reader can find a more fitting regular polyhedron for fire let him
do so. We now close the closet and return to experimental facts.

(r) A most important discovery, and one which is very instructive for
our present investigation since it combines New and Old Pythagoreanism,
is Mendeléefi’s Periodic Table of the chemical elements (1869). If the
elements are listed in order of their atomic weights (f), then chemical,
spectroscopic, and some other physical similarities recur periodically. But
there were many imperfections and many questions arose. Tellurium
weighs more than iodine. But if placed in the table in that order these
elements clearly fall into the wrong groups. Again, the position of the rare
earths and the numerous radioactive dceay products was not clear. The
rare gases were entirely unanticipated. Further, the table is not strictly
periodic but has periods of length 2, 8, 18, and 32. Why these periods

i

Pythagoreanism and its Many Consequences 135

should all be of the form 2n? was not clear. Indeed, how could it be—for
what can mere weight have to do with these other properties?

(s) In 1911 C. G. Barkla found, by x-ray scattering, that an atom con-
tains a number of electrons approximately equal to one-half of its atomic
weight.

In the same year E. Rutherford found, by alpha particle scattering, that
the (compensating) positive charge, and with it most of the mass, was con-
centrated at the center of the atom. This positive charge was about one-
half of the atomic weight. There followed Rutherford’s theory of the atom—
a miniature “solar” system with the light, negatively charged electrons
bound to the heavy, positively charged nucleus by inverse square Coulomb
forces (d).

(t) In 1913 Niels Bohr assumed that the hydrogen atom had this
(simplest) Rutherford structure (s)-—one proton as a nucleus and one
electron as a satellite. With the use of Planck’s E = hy, (n), he deduced
the Balmer formula (k) with great precision. However, he had to assume
that the electron could have a stable orbit only if its angular momentum
were an integral multiple of A/27. That is,

myr = nh/2x%

with m the electron’s mass, r the orbit’s radius, » the electron’s velocity,
and & Planck’s constant. The integer n, the principal quantum number,
made no sense in the New Pythagorean theories then in vogue, but its
acceptance was forced by the remarkable accuracy of the theory’s pre-
dictions.*

(v) 1913 was a good year for Old Pythagoreanism. Soddy and Fajans
found that after radioactive emission of an alpha particle (charge +2) the
resulting element is two places to the left in the periodic table, whereas
emission of a beta particle (charge —1) results in a daughter element one
place to the right. Together with the earlier results in (s) this Displacement
Law makes it clear that atomic number, not atomic weight, is the important
factor. This integer is the positive charge on a nucleus, the equal number
of electrons in that atom, and the true place in the table of elements. This
was explicitly stated by van den Broek and rapid confirmation was ob-
tained by Moseley (w).

(v) In 1912 von Laue made the very fruitful suggestion that a crystal
(g) would act like a diffraction grating (j) for radiation of a very short
wavelength.

* While Niels Bohr was applying numbers to the analysis of spectra, his brother,
Harald Bohr, was applying a generalized spectral analysis (almost periodic func-
tions) to the analysis of number (prime number theory).
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(w) Henry Moseley (1913) used von Laue’s suggestion (v) to measure
the (very short) wavelengths of x-rays. Optical spectra, like chemical
behavior, are due to the outer electrons in an atom, and thus have a periodic
character. But x-ray spectra are due to the inner electrons, and these
electrons are influenced almost solely by the charge on the nucleus.
Moseley’s photographs show a most striking monotonic variation of the
x-ray wavelengths with atomic number.

Atomic number at once cleared up most of the difficulties in (r). But
what about 2n? ?

We note in passing a remarkable neck-and-neck race of x-rays and radio-
active radiation:

X-Rays Radioactivity
Discoyery ............................... 1895 Roentgen 1896 Becquerel
Atomic Structure................ ... .... 1911 Barkla 1911 Rutherford

Atomic Number......................... 1913 Moseley 1913 Soddy

(x) In 1923 L. de Broglie applied relativistic invariance of four-vectors
(p) to Planck’s £ = hp, (n). The energy F and the time associated with
the frequency » are merely single components of two four-vectors. The
remaining three components of momentum and of space, respectively,
(p), must be similarly related. Thus a particle of momentum mv should
have a (de Broglie) wavelength A given by

h

A= —.
my

When this is applied to Bohr’s
myr = nh/2xw
one obtains
nA = 2wr.

Thus the matter wave has exactly n periods around the circumference of
the orbit and the interpretation of the electron’s stability is that it con-
stitutes a standing wave.

(y) This conception was refined in the Schroedinger Wave Equation
(1926) . Here there are three quantum numbers 7, I, and m corresponding to
the dimensionality of space. In polar coordinates the wave functions cor-
responding to  and m are spherical harmonies—mno, not Harmony of the
Spheres—but very close to it. It further develops that the integer I can
equal 0, 1, 2, --- ; m — 1 while m can equal -, =1 +1,---,1—1, L
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For n = 4, for example, we have 16 possible states:

values of m

3 2 1 0

2 1 0] —1
N
1 0 —-1] -2
0 -1| -2 -3
7 T 7 1
= 0 1 2 3
Gnomons!

(z) But a fourth quantum number was already waiting. In 1925 Uhlen-
beck and Goudsmit discovered the spin of the electron. This gives rise to a
fourth number s which can take on two possible values. When this fourth
coordinate is added, with its astonishing rounding out of the little “‘solar”
system by rotating the “planets”” and thus simulating time, we obtain the
2n2 states which correlate with the periods in the periodic table. But we
must distinguish—and also associate—two different “harmonies” here.
In one atom an electron can go from state to state; thus giving rise to the
spectrum. This is the first “harmony.” On the other hand, as we go through
the periodic table, adding one new electron each time, the new electrons
will also take on these distinet quantum states according to the Pault
Exclusion Principle (1925). This gives rise to the periodic table—the
second “harmony.”

Before the rare gases were discovered it seemed as though the (lighter)
elements in the periodic table had a period of 7, not 8, and Newland (1864)
called this the Law of Octaves. He was an Old Pythagorean, but he lacked
the facts.

If we thought it necessary to strengthen the case we could continue and
discuss isotopes (Soddy); he/2xe’ = 137 (Eddington) ; “magic” numbers
(Mayer) ; “strangeness” numbers (Gell-Mann); etc. It is not a coinci-
dence, for example, that the three nuclei which are fissionable with slow
neutrons, U™, U* and Pu™, all contain an even number of protons and
an odd number of neutrons.

However it is not our purpose to write a history of science. We asked
whether there is a case for Old Pythagoreanism. We conclude that there is
—and a strong one. Henceforth we shall call it Pythagoreanism.

-Exercise 104. Draw a diagram showing the historical-logical structure
of the discoveries (a) to (z) discussed above.
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46. THREE GREEK PROBLEMS

We now return to number theory and consider three problems which are
immediately suggested by (the troublesome) Theorem 56. We recall that
this theorem stated that the equation

¢ = 2d° (166)

has no solution in positive integers. The first problem is that of generalizing
this theorem. While the /2 is encountered in a 45° right triangle (one-
half of a square), the v/3 is similarly encountered in a 30°-60° right tri-
angle (one-half of an equilateral triangle), and the corresponding equation
is

¢ = 3d” (167)
Equation (167) again has no solution in positive integers, or, we may say,
the /3 is irrational.

Plato states that Theodorus the Pythagorean (ca. 400 B.c.) showed
that v/3, v/5, v/6, V7, /8, v/10, V11, v/12, /13, V/14, +/15, and /17
were all irrational, “beyond which for some reason he did not go.” The
implication is that Theodorus had no general approach to the problem.
With the use of the unique factorization in Theorem 7, however, it is very
easy to prove the more general

Theorem 57. The equation
¢ = Na" (168)

has no solution in positive integers unless N s the nth power of an integer.
Proor. If ¢ and a are written in standard form:

¢ = pUpt -, a =g .

we see that ¢, ", and thus also ¢"/a", have all the exponents in their
standard factorizations divisible by n. Therefore N = ¢"/a™ is an nth
power.

There are many deeper solved and unsolved problems concerning irra-
tional and transcendental numbers, but it would be digressive to discuss
them now.

The second problem arises by modifying Eq. (166) to read

¢ — 24" = +1. (169)

The motivation is clear. The right side of Eq. (169) cannot be replaced by
zero. To best approximate an isosceles right triangle we seek sides a,

D T e R
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and “diagonal” ¢, with the right side of Eq. (169) having the smallest
magnitude possible. The corresponding isosceles triangle approximates a
right triangle and the ratio ¢/a is a rational approximation of the /2.

It is interesting that the opposite strategy leads to (essentially) the
same problem. Let the triangle be a right triangle whose (integral) sides
differ by as little as possible, that is, let b = @ 4+ 1 in Eq. (162). Then
from @ 4+ b — & =0 we have

20 +2i4+1—-—&=0 or

. ) (170)
(26 + 1)* — 28 = —1.

We therefore require a solution of Eq. (169) with ¢ odd (= 2a + 1),
a = ¢, and —1 on the right.

The Pythagoreans knew at least some of the solutions of Eq. (169).
But Theon of Smyrna (ca. A.p. 130) gave

Theorem 58. Let the “side” and ‘“‘diagonal”’ numbers a, and c, be de-
fined by

a =1 a=1;

-

»

as = c2 = 3;
and, in general,
Gny1 = Gn + Ca, Cot1 = 20, + Cu (171)
Then
el — 20" = (—1)" (172)
Proor. From Eq. (171)

C2n+1 — 2112n+1 = (2a, + Cn)Z — 2(a, + Cn)2

2 2
= 2a," — ¢C»

= — (e — 2a.).

Since ¢, — 2a;.° = —1, Eq. (172) follows by induction.

Several comments are in order. Equation (171), in fact, gives all the
solutions of Eq. (169), but that has not yet been demonstrated. The
source of the solution Eq. (171) is not indicated here but will be revealed
[ater. Finally we note that the right triangles obtained by Eq. (170),
from the side and diagonal numbers for n odd (and >1), are given by
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the triples:
(3,4, 5); (20, 21, 29); (119, 120, 169) ; etc.
These agree with the Pythagorean sequence, Eq. (163):
(3,4,5); (5,12, 13); (7, 24, 25) ; etc.,

only in the first triangle.

Theorem 58 has an important generalization but some modification is
necessary. For example, if we replace 2 by 3 in Eq. (169) and choose the
negative sign:

¢ — 3" = -1 (173)

we obtain an equation with no solution. That is clear since it implies
¢ = —1 (mod 3), and we know that is impossible. But if we choose the

plus sign and if N is not a square, the equation
¢ — Nd’ =1 (174)

always has infinitely many solutions. This important theorem of Fermat
we postpone until later.
If N = 3, we have

¢ —3d =1 v (175)
and, while Eq. (173) is impossible,
¢~ 3a> = —2 (176)

18 not. In his famous Measurement of a Circle Archimedes obtains
3% > 7 > 3%}
and in deducing these inequalities he uses
1351 265
750 > V3> 155

The reader may verify that these good approximations to v/3, (call them
c/a), satisfy Eqs. (175) and (176) respectively, so that Archimedes knew
at least some solutions of these equations.

Exercise 105. From one of these Archimedean approximations to the
v/3, and by an approach similar to Eq. (170), deduce the fact that (451,
780, 901) gives a right triangle which is approximately 30°-60°.

The last exercise, and the two series of Pythagorean numbers given
above, suggest the third problem—that of finding all solutions of

d+ b =7

e

o

et S A S
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)

This is solved by
Theorem 59. If a, b, and ¢ are positive integers which satisfy
a+b =7, (177)
it 18 sufficient if they are given by
a = s(2w), b= s(u’ — v, and c=s(d 45, (178)
with w > v, and Eq. (178) s also necessary providing we are willing to inter-
change the formulae for a and b if this is necessary.

CommEeNnT: The sufficiency was given by Euclid, Book X, Prop. 28, 29,
but was known to the Babylonians more than 1,000 years earlier (see
page 121).

Proor. Since
(2uv)2 + (u2 _ 1)2)2 — (uZ + 2}2)2
is an identity, the sufficiency of Eq. (178) is obvious. Suppose (a, b) = s
in Eq. (177). Then s|c and let a = s4,b = sB, and ¢ = sC. Then
A+ B = (* (179)
with A, B, and € all prime to each other. A and B are not both odd, for
if so A2 + B* = (" is of the form 4m + 2, and this is impossible. Nor are

they both even, since (4, B) = 1. Without loss of generality let A be even
and B be odd, and therefore C' is odd. Then

A\ ¢C—-B C+B
Z) = R 1
(2) 2 2 (180)

But (C + B)/2 and (C — B)/2 are prime to each other, for, if not, their
sum € and difference B would not be either. By Theorem 7 and Eq. (180),
(C + B)/2 and (C — B)/2 are therefore squares, say u’ and %,

Therefore

A = 2up, B =14 -7, and € =+ (181)
Then Eq. (178) follows.
Corollary. All Pythagorean numbers
A'+ B ="

with A, B, and C prime to each other, and with A even, are given by Eq. (181)
where w and v are prime to each other, one being odd and one even. These
triples are called primitive friangles.
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The 12 smallest primitive triangles listed according to hypothenuse are:

A B c u ! |A — B
4 3 5 2 1 1
12 5 13 3 2 7
8 15 17 4 1 7
24 7 25 4 3 17
20 21 29 5 2 1
12 35 37 6 1 23
40 9 41 5 4 31
28 45 53 7 2 17
60 11 61 6 5 49
56 33 65 7 4 23
16 63 65 8 1 47
48 55 73 8 3 7

ExEercise 106. In how many primitive triangles is 85 the hypothenuse?
What about 145?

ExErcisk 107. If ug and v are prime to each other and both odd, show
that the 4, B, C obtained from Eq. (181) equal 2B’, 247, 2C" for some
primitive triangle: A’, B’, (. Determine the « and » for this triangle in
terms of 4 and v, .

47. THREE THEOREMS OF FERMAT

Just as Theorem 56 led the Greeks to the three problems discussed above,
so did Theorem 59 lead Fermat to three important theorems. Each of
these, in turn, led to an important branch of number theory. We will prove
none of these theorems in this section but will state all three—in a survey
fashion.

Perhaps the most important is

Theorem 60. Every prime of the form 4m + 1 s the sum of two squares
n 6 unique way.

ExaMrLESs:

5

+2, 1T=1"+4 37=1+¢,
13 =243 290 =2"452 41 = 4® 4 5%

This theorem, which had already been stated by Girard several years
earlier, is, of course, suggested by the third column of the foregoing table
and the formula ¢ = «* 4+ »*. In example (h) of Theorem 48, page 106,
we have seen that if C is prime it is of the form 4m + 1. But to prove
Theorem 60 we need the (harder) converse and also the uniqueness. The
theorem is rather surprising, since primality is a purcly multiplicative
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concept. What can primality have to do with a sum of squares? We will
return to this point and theorem.

With Egs. (170) and (171) we obtained infinitely many primitives with
| A — B| = 1. The column | A — B | above has familiar looking numbers,
from our studies of the factors of M, , and suggested to Frenicle and Fermat
that every prime of the form 8m 4= 1 is the difference of the legs of in-
finitely many primitive triangles. Since

|A — B| = |[(u—20)"— 2]
the implication is that every prime p of the form 8m == 1 can be written as
+p = P 2y2

in infinitely many ways. Together with Theorem 60 we are led to consider
the numbers X

z* + Ny
for every integer N. This brings us to an extensive subject—that of bi.nm:y
quadratic forms. We may note that while perfect numbers and periodic
decimals lead to quadratic residues only at a deeper level, with Pythagorean
numbers they arise at once. For if a prime p is given by

p = 2>+ Ny,
then, since (y, p) = 1, we have
(yz) = v/ —N (mod p).

It is interesting to note that the two square roots which were most fruitful
historically in forcing an extension of the number sys’cem3 namely +/ —.1
and /2, were also those which arose earliest in these binary quadratic

forms, =2 + Ny . .
Further examination of the column C raises other questions. The hy-

pothenuse 65 arises twice:
65 = 7"+ 4° = 8" + 1"

In how many ways is an integer a sum of two squares?

And, of course, some numbers cannot be written as sum of two squares.
But, of these, some are a sum of three squares, and some of four. Thus
14=94+44+1; 7=4+4+1+41+4+ 1

Following an earlier statement by Bachet, Fermat proved
Theorem 61. Every positive integer n is expressible as
n=w+2+y+ (182)

where w, T, y, and z are inlegers, positive or zero.
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Like Theorem 60, Theorem 61 is rather surprising, and rather hard to
prove. Euler was unable to prove it although he worked on it for years.
Through its generalization, Waring’s Problem, it became a major source
of additive number theory. A sketch of a proof of Theorem 61 is given in
Exercises 318-33S, on page 209. The first published proof is due to La-
grange.

From a sense of symmetry the reader probably can guess what comes
next. If a sum of two squares leads us to consider a sum of four squares
on the one hand, it should also lead us to consider a sum of two fourth
powers on the other. In the foregoing table either A (as in 4, 3, 5) or B
(as in 40, 9, 41) may itself be a square, but not both stmultaneously. This
result is closely related to an impossible problem of Bachet—to find a
Pythagorean triangle whose area is also a square. (We may call this the
problem of “squaring the triangle”’—in integers.) This problem may be
shown to imply the following condition:

2

a— b =c (183)
Fermat proved Eq. (183) impossible, and similarly he proved
Theorem 62. The equation
at + b= (184)
has no solution in positive integers.
Corollary. The equation
a'+ b = ¢ (185)

has no solution in positive integers.
Proor oF THE CoroLLARY. A fourth power is a square.

We will prove Theorem 62 later. The corollary is in striking contrast
with Theorem 59 where there are infinitely many solutions. The corollary
is the only easy case of Fermat’s Last “Theorem.” We will consider this
celebrated conjecture in the next section. While it is sometimes stated to
be an isolated problem—of no special significance—it was, in fact, one of
the main sources of algebraic number theory.

48. FErMAT’s LasT “THEOREM”
It is well known that Fermat wrote that he had “a remarkable proof” of
Conjecture 16. The equation
a” + b = ¢" (186)

has no solution in positive integers if n > 2.

AT i
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The Corollary of Theorem 62 is, of course, the case n = 4. The reader
probably knows that no general proof has been found, although “it has
been attempted by Euler, Legendre, Gauss, Abel, Dirichlet, Cauchy,
Kummer,” ete.; that Paul Wolfskehl, a wealthy German interested in
number theory, offered a reward of 100,000 marks in 1908; that Hugo
Stinnes, a wealthy German not interested in number theory, helped bring
on the German Inflation in the 1920’s and thus (incidentally) reduce the
value of this prize considerably; and that (nonetheless) much furt}}er
effort has been expended by thousands of professionals and amateurs w1.th
no conclusive result. According to Professor Mordell, there are easier
ways to make money than by proving Fermat’s Last Theorem. .

We will first give an interesting approach which makes the conjecture
plausible. The reader knows that if g(z) is a rational function of z,

fg(x) dx

is integrable in terms of elementary functions—that is, a finite com.binatio.n
of algebraic, trigonometric and exponential functions together with their
inverses. Or, again, say,

f V1 — 22 dx (187)
is so integrable. But

[vi—za (188)

is not elementary—it is an elliptic integral. ‘
Chebyshev has proven that if U, V, and W are rational numbers, then

fo(A + Bz")¥ dx (189)

is integrable in terms of elementary functions if and only if

U+t or w, or v+1l + W (190)
Vv Vv
is an integer. In Eq. (188) we have A = —B = 1, U = 0, V = 4, and

W = 1. But neither %, nor , nor # is an integer.
If in Theorem 59 we set x = a/c and y = b/c and t = v/u we find that
all rational solutions z and y of

x2+y2=1
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are given by

2 1 - £

where ¢ is an arbitrary rational number.
Now, in Eq. (186), let us similarly write * = a/c and y = b/c and
generalize the exponent n to be any rational number £. Thus
&+ =1 (192)

We now ask, following the example of Eq. (191): Are there rational func-
tions

z=f(¢) and y=g()

such that Eq. (192) is satisfied identically?
If £ = 1/q, for q a nonzero integer, the answer is yes, since we may set

z=1{ and y=(1—28p-
And, if k£ = 2/q the answer is yes, since we may set
2t Y 1 — £\°
r = —_— = _—
(1 ¥ t?) wd oy (1 ¥ t?)'
But fqr any other rational number % no such rational functions exist.
For consider y = (1 — 25)"* and the integral

f(l — 2 dy = fydx. (193)
If 2 = f(t), and y = ¢(i), by the change of variable z = f(t) the integral
becomes
df
f g(t) 5 U

and since this integrand is a rational function, the integral is elementary.
But, by Egs. (189), (193) and (190), we must have

an integer, say q. Therefore we must have
k=1/q or k=2/q
and this condition is not only sufficient, but also necessary. In particular

k3,4,5
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Now it is clear that if & could be an integer >2, Eq. (192) would have
infinitely many rational solutions (by choosing any rational ¢) and thus

a4+ b =c

would have infinitely many integral solutions. But although Eq. (192) is
not solvable in rational functions, this does not preclude, at least according
to any known argument, a solution in terms of rational numbers. Although
the existence of such rational functions would disprove Conjecture 16,
their nonexistence does not prove it. The approach here is therefore only
suggestive—it proves nothing about Conjecture 16, but it does show the
special role of n = 1 and n = 2.

Three comments of general mathematical interest are these.

(a) The use of the transformations, Eq. (191), for rationalizing in-
tegrands involving y = /1 — z? is well known to calculus students. We
see here the intimate connection with Pythagorean numbers.

(b) The reader notes that we have not previously used methods in-
volving functions and integration, and may well ask, “What have these
to do with number theory?” The question is well taken and in fact it may
be stated that here, at least, the influence really goes in the opposite direc-
tion. The proof of Chebyshev’s result, Eq. (190)—see Ritt, Integration in
Finite Terms, Columbia University Press, 1948, p. 37—is based on certain
characterizations of the algebraic functions z’(A + Bz")” in terms of
infegers—namely, the number and order of the so-called branch points.
It is not so much that algebraic functions have number-theoretic implica-
tions as that numbers have functional implications.

(¢) We are impressed here with the fact that although Conjecture 16
has so far resisted all attempts at proof, the analogous theorem in terms
of functions is relatively easy. There are other examples of this phenomenon
in number theory. For example, there is a theorem analogous to Artin’s
Conjecture 13 which concerns functions, not numbers, and this has been
proven by Bilharz. It would take us too far afield to elaborate.

49. Tue Easy Case AND INFINITE DESCENT
To prove Conjecture 16 it would clearly suffice to restrict the variables
in
"+ 0" =c¢" (n>2)
as follows:

(A) @, b, and ¢ are prime to each other, and
(B) n = 4 orn = p, an odd prime.
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For if (a,b) = s > 1 we may proceed as on page 141 in the proof of The-
orem 59, and if n # 4 or p, it equals 4% or pk for some k > 1. But

an + bn — cn
is then impossible if
(ak)4 + (bk)4 — (ck)4
and
(@) 4+ (B = (H*
are impossible.

The only easy case isn = 4, and therefore also n = 4k. The impossibility
of this case we now prove. The proof is similar to that which Fermat gave
for Eq. (183), and this latter proof is noteworthy in two ways:

(A) Of all Fermat’s theorems this is the only one for which his proof is
known.

(B) The proof uses “infinite descent,” a method Fermat recommended

highly, which he used both for negative propositions such as Theorem 62,
and with some modification, for positive propositions such as Theorem 60.

Proor or THEOREM 62. Assume
A'+ B =C (194)

where A, B, and C are prime to each other, and, without loss of generality,
let A be even. Then, by Theorem 59, Eq. (181), we have

A® = 2w, B =4 — and C=u -+
with u prime to v. Then B® 4 »* = %% and since B is odd, v is even. Thus
v=2rs and u =1 + ¢
with » prime to s. Since
A = 2w = 4rs(r’ + &Y,

by Theorem 7, r, s, and « = * 4 s* must all be perfect squares. Let

r=d, s = 8, and u = .
Then
o'+ g = (195)
with y=u<C

Given a solution, Eq. (194), we could thus find a second solution, Eq.
(195), whose right side is smaller. But this implies an infinite sequence
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of positive integers
C>yv>vm>v> >0

Since this infinite descent is impossible, there is no solution.

We now analyze this proof for any light it may throw on Conjecture 16,
and note three features:

(A) The proof leans heavily on Theorem 59, but this is possible only
because 4 = 2-2 and thus is not extendable to odd exponents.

(B) Asin Theorems 56, 57 and 59, the unique factorization of Theorem
7 plays an important role—in distinction to, say, Chapter 1I, where the
“Fundamental” Theorem was hardly used at all. We should expect unique
factorization to be important for Conjecture 16.

(C) The infinite-descent strategy, like point B, is not peculiar to n = 4,
and we may expect it to be useful for Conjecture 16.

Despite its rather exotic name it should be noted that infinite descent
is essentially the Well-Ordering Principle, i.e., every nonempty set of
positive integers contains a smallest member. As is well known, this prin-
ciple is equivalent to the principle of induction—and thus is the most
characteristic of all the laws concerning the integers. The reader may note
that in the proof of Theorem 7 itself (page 6), and of the underlying
Theorem 5 (page 9), the Well-Ordering Principle is used several times.

50. GAUsSIAN INTEGERS AND TwoO APPLICATIONS

To attempt Conjecture 16, the analysis above suggests that we utilize
points B and C there while dropping point A. We introduce this possibility
by returning first to the paradox raised on page 143. Given a prime p of
the form 4m + 1, and given, by Theorem 60,

p=d + b, (196)

we repeat, “What has the multiplicative concept of primality to do with a
sum of two squares?” We can write IZq. (196) in a purely multiplicative
manner:

p = (a + bi){a — bi) (197)

where i = v/—1 and p is a product of the two complex factors. This is a
rather ironic solution of the paradox, since in terms of these factors p is no
longer a prime!

Definition 38. Gaussian integers are numbers of the form a - bi, where
a and b are integers.

ExAMPLESs:

243, 4-—7, -2 7
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We will give only a brief sketch of these integers. The sum, difference,
and product of two Gaussian integers are Gaussian integers, but

a+ bilc + di
only if there is an ¢ + f7 such that
(@ + be)(e 4+ fi) = (ae — bf) + (af + be)i = ¢ + di.

That is, the e and f obtained by solving ae — bf = ¢ and of + be = d
must both be integers. A unity is a divisor of 1, namely, 1, —1, ¢, or —3.
Two numbers are assoctated if their ratio is a unity. A prime is not a unity,
and is divisible only by associates of 1 and of itself. Prime to each other
means having no common divisor other than a unity.

Consider all ordinary integers, positive, negative, and zero. Let 41 and
—1 be the unities. Let a and —a be associated, and let

+2, £3, 5, ete.
be the primes. The fundamental theorem (Theorem 7) may be extended
to all integers as follows:

Theorem 63. Each integer not zero or a unity can be factored into a product
of primes which is unique except for a possible rearrangement, and except
for a possible substitution of associated primes.

ExampLE:

—15 = 3(—=5) = 5(-3), ete.

Now we state, without proof, that Theorem 63 is also true for Gaussian
integers. Assuming this, we will give two applications.

Parrian Proor or TuEOREM 60. On the basis of this unique factori-
zation we will show that every p = 4m + 1 is a sum of two squares. Since
(—1|p) = 1 there is an s such that

pls® + 1.
Let the quotient be ¢ and

pg=5+1=(s+ 4 (s — 9.

Now p cannot be a Gaussian prime, for if it were, by the unique factoriza-
tion of & + 1, we would have pls + 7 or pls — 4. Since neither quotient
is a Gaussian integer, p is not a Gaussian prime. But it is not divisible by
a real prime. Therefore

a+ bip
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for some a and b. Since p is real the quotient must be ¢(a — 7). Thus
p = ¢(a® 4+ b%), and since ¢ must be 1, we have p = o’ + b

Partian Proor taat Eq. (183) 1s ImprossiBLE. Assume
A*'—=B'=¢, B=0 (mod?2) (198)
with A, B, and C prime to each other. Then € is odd and
A' = (C +iBY(C — iBY).
By unique factorization ¢ + B’ is associated with a perfect fourth power.
Assume first that it equals a fourth power or its negative:
C +iB* = (D +iE)* or = —(E + D).
Then
B' = 4DE(D* — E*), +C = D'— 6D’E’ + E*.
Since D, E, and D* — E* are prime to each other they are perfect squares.
ILet D = o, E = 8, and D* — E* = 4°. Then
o — 8 =4, ' (198a)
and, since 48°|B*, 8 < B. Since C is odd, D and E are not both odd. And,
since D — E%isa square = 4m - 1, we must have £ and therefore 8 even.
Finally, C + iB® = +i(D + <E)", since equality here implies that C' is
even. Then, by infinite descent, from Eq. (198a) and 8 = 0 (mod 2), Eq.
(198) is impossible.

By a somewhat similar approach, using a generalized unique factoriza-
tion, and infinite descent, we now examine Conjecture 16.

Exercise 108. Show that Bachet’s problem (page 144) is equivalent
to Eq. (198) and therefore impossible.

51. ALcEBRAIC INTEGERS AND KUMMER’S THEOREM

We generalize Gaussian integers and sketch the following. A root z of a
polynomial with integer coefficients is called an algebraic number. The set
of all numbers

f(2)

R

which are rational functions (with integer coefficients) of z is called an
algebraic number field, 1:(z). The numbers of such a field which are roots
of a polynomial

w'taw” -+ 5 =0
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with integer coefficients, and leading coefficient 1, are the algebraic integers
of that field.

ExAMPLE:
The Gaussian integers arc the algebraic integers of k(~/—1) for if a
and b are ordinary integers, a + bz is a root of
w? — 2aw + a®> 4+ b = 0,
and it may be shown that all other numbers in k(1/—1) are not roots of
a polynomial with leading coefficient 1.
Unities, associated numbers, and primes are defined as before. If Theorem

63 held for the algebraic tntegers of any field then Conjecture 16 could be
shown to follow.

Assume
AP + B* = (C” (199)
with 4, B, and C prime to each other, and p an odd prime. Let
p=¢""? (200)

and we may then factor the left side of Eq. (199) as follows
(4 + B)(A + pB)(A + p'B) --- (4 4+ p"'B) = C”. (201)
It may be shown that the algebraic integers of k(p) are
a+bp+cp + -+ 5ot

where @, b, - -+ are ordinary integers.

We have, therefore, as in Eq. (197), turned an additive problem into
a purely multiplicative problem.

Now if these algebraie integers had unique factorization we could deduce
from Eq. (201) that each factor on the left is associated with a perfect
pth power of an algebraic integer. If this were always true, Fermat’s Last
Theorem would follow. E. E. Kummer, A. L. Cauchy and G. Lamé all
assumed that such uniqueness did exist. However, Dirichlet pointed out
that this must be proven. In fact, it is not true in general—the first counter-
example being p = 23. To overcome this lack of unique factorization into
primes, Kummer was led to introduce the important, underlying ideal
numbers, a development we cannot enter into here.

With this theory Kummer obtained a proof of Conjecture 16 for many
prime exponents n. We will state his remarkable result but not attempt to
prove it, as the proof is long and difficult.

Definition 39. The Bernouwlli number B, is a rational number defined by
the power series:

B
2n)t "

=1 —§+§1(—1>"* (202)

e — 1
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ExaMPLES:
1 1 1 7709321041217
Bi=g B=gp  Bimges Be=mmge—

Definition 40. A prime p is regular if it divides none of the numerators of
Bi,B:,Bs, -, Bopap

when these numbers are written in their lowest terms. Otherwise p is
trregular.

ExamrLE:
Since 37/7709321041217, and the larger number is the numerator of
By, and 16 £ 1(37 — 3), 37 is irregular.

Theorem 64 (Kummer, 1850). Fermat’s Last Theorem is true for every
exponent which is a regular prime. The only irregular primes up to 100 are
37, 59, and 67.

COMMENTS:

(A) The definition of regular is explicit but complicated; it has no ap-
parent relation to the problem. There is a more basic definition in terms of
the so-called class number but this is less explicit numerically and would
take longer to explain. This latter concept is fundamental, but is beyond
our scope.

(B) The name “irregular” is really misleading. Although only 3 of the
first 24 odd primes, 2 < p < 100, are irregular, larger primes are ‘ir-
regular” more often. Of the 367 primes, 2 < p < 2520, 144 are irregular;
and of the next 183 primes, 2520 < p < 4002, 72 are irregular. These

ratios:

144 72
3657 = 392 and 188 = 393,
are substantial.

(C) Other criteria have been found, besides Theorcm 64, and applied
to the irregular prime cases. With the aid of the SWAC, Selfridge, Nicol
and Vandiver proved that Conjecture 16 is true for all exponents =<4002.
But with Kummer’s regular primes, and other primes allowed by other
known criteria, it has not yet been proven that there are infinitely many
valid prime exponents.

Before leaving nonunique factorization let us examine a few examples.
Consider the quadratic fields k(~/N) where, without loss of generality,
N is quadratfrei. Of the 12 cases, N = —7, —6, =5, =3, =2, —1, 1, 2,
3, 5,6, 7, only in k&(~/—35) and k(+/—6) do the integers not have unique
factorization. We show two well-known examples. In k(+/—5),

21 = 3.7 = (1 + 2v/=5)(1 — 24/=5)
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although the four factors here may all be shown to be primes. In k(1/—6),
6 = —v/—6(+/—6) =23

and again the factors are primes. Finally we note, in passing, that in the
corresponding two quadratic forms,

@’ + 56" = (a + /=5b)(a — v/=5b),
o’ + 60 = (a 4+ v/ —6b)(a — v/—6b),
if weset @ = nand b = 1, and consider
P4+ 5 and n* 46

we obtain forms with an exceptionally low density of primes. See the table
on page 49. This is not a coincidence—the low density is really related
to the nonunique factorization—but the argument is a long one.

52. THE REsTRICTED CAsE, SOPHIE GERMAIN, AND WIEFERICH

Sophie Germain, a Parisian lady, was a contemporary of Gauss. Since
the Ecole Polytechnique did not accept women in the school she took corre-
spondence courses. She wrote Gauss after his Disquisitiones appeared
telling him how much she liked the book. She included some of her own
discoveries and signed—as talented ladies did in those days-—with a
male pseudonym, “M. Le Blanc.” Gauss was impressed. Only later, under
interesting circumstances, did he learn that M. Le Blanc was a lady.
Gauss was astonished and pleased. Henceforth their correspondence was
not strictly technical; he told her his birthday, ete.

There is a special case of Conjecture 16 which is substantially easier.
In this, the restricted case, it is assumed, in

A"+ B? = (C?
that p does not divide A, B, or C. Since it is possible that this case is true
while Conjecture 16 is false we state it separately.
Conjecture 17. The equation
a® + b =¢"
has no solution in integers not divisible by p.

The Encyclopaedia Britannica (1960) states erroneously that Sophie
Germain proved this conjecture; the article should add: for p < 100.
We give a cut-down version of her result. It shows

(A) How far one can go with very elementary arguments,
(B) That the restricted case is indeed easier, and
(C) There is a relation to our Conjecture 5. See pages 30 and 31.

[y
[
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Theorem 65 (Germain, modified). The equation
A? + B =C” (203)

has no solution in integers prime to p if p is an odd prime, and ¢ = 2p + 1
s also @ prime.

Proor. Assume a solution. We may take A, B, and C prime to each
other, and since p is odd we may write Eq. (203) symmetrically:

R4+ 8 4+T"=0 (204)
where A = R, B = S, and —C = T. Consider

S* 4+ 1% = (—R)~
Both sides are divisible by S + T by Theorem 4, on page 17, and since

ptR, we obtain p+S + T. Now let m = 1 in Theorem 48, page 105, and
let

S=2=a and T = —y = —b
Since p+S + T = a — b, by Eq. (141), S + T = x — y is prime to
_Sp—l—Tp:(—R)p
TS+ T S+T

Therefore, since

PP
(-ry = s+,
both factors on the right are perfect pth powers. Write
¥4 4
S+ T =17 %%LTF— =p’, —R=rp (205)
Similarly, by symmetry,
P P
T+ R = s, TT—i—g-=o", —8 = sg.
. . (206)
R+S=2¢, %%:ﬁ, T = tr.
Therefore
2R = s +* — 1" (207)

Now, by Euler’s Criterion, if ¢ = 2p 4 1 does not divide R, S, or T,
we have

R?, 8%, T all = £1 (modyg).
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By Eq. (204) this is impossible. On the other hand, ¢ cannot divide two
or three of R, S, and T since they are prime to each other. Therefore ¢
divides exactly one of them. Let it be R. From Eq. (207) it therefore
follows similarly that ¢ divides exactly one of r, s, and ¢, and by Eq. (206)
it must be 7.

Then, since ¢ | R, from

(T + R) = T" + R?
we have T = T7 (mod ¢q),
or o = 177 (mod q).
Now, since ¢ ¢ o,
7= 41 (mod g).
From Eq. (205), 8 = —T (mod q), and therefore, from

p ST
P S+ T

p’=pS" = pT"" = £p  (modg).

=87 - ST 4 . 4 TP

This is impossible, since (p | ¢) = =£1, and by Euler’s Criterion the
theorem is proven.

COMMENTS:

(A) Therefore Conjecture 17 is true for p = 3,5,11,23, - - -, 16188302111,

(B) If Conjecture 5 were true, Conjecture 17 would be true for in-
finitely many primes. But the latter has never been proven.
(C) By a modification of the argument, the criterion:

2p + 1is a prime,

may be supplemented by other criteria. It suffices if any of the following
are true:
4p + 1, 8 + 1, 10p + 1, 14p 4 1, or 16p + 1

is a prime. For example, since
29 = 4-7 + 1 is a prime,

Conjecture 17 is true for p = 7. The above criteria, taken together, suffice
for all p < 100. Therefore, as S. Germain proved, Conjecture 17 is true for
all p < 100.

(D) Theorem 65 has about the easiest proof of any significant result
obtained on Fermat’s Last Theorem. That the restricted case is much easier
is alto shown by the fact that in Kummer’s Theorem 64 the greatest
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difficulty comes when the restriction is waived. Further, as we shall soon
see, there can be little doubt that Conjecture 17 is true. Still, it has not been
proven—not even for infinitely many p—as already stated in point (B).

(E) Unique factorization is again fundamental. (Where does it enter?)

In 1909 A. Wieferich showed that Conjecture 17 is true if
py2r Tt — 1, (208)

that is, if p*is not a “Wieferich square” (see pages 116, 118). This eriterion
is therefore sufficient for all p < 100,000 except 1093 and 3511. However,
despite the fact that these squares are so rare, no one has proven that
there are infinitely many p which satisfy (208). Further, D. Mirimanoff
subsequently (1910) showed that

P43 — 1 (209)

was an equally valid criterion. Therefore the rare Wieferich squares must
also violate the equally prevalent (209) if we are to discover a counter-
example for Conjecture 17.

With these and other similar criteria, and following many previous
authors, D. H. and Emma Lehmer showed that Conjecture 17 is true for
all primes <253,747,889. '

Exercise 109. Show that Conjecture 17 is true for p = 3 since if 3¢a,
a’ = +1(mod 9).

Exercise 110. Show that the 24 odd primes <100 satisfy one or another
of the six criteria in point (C), page 156.

Exercise 111. If Conjecture 17 is true for all prime exponents does it
follow that it is true for all exponents, as on page 148?

53. EuLEr’s “CONJECTURE”

Although
A+ B #~ ¢
in positive integers we do have
6 =3 +44+5 and (210)
29° = 11° + 15° + 27°. (211)
There are in fact infinitely many solutions of
D'= 4"+ B + (. (212)
In our proof of
A' + B = ¢
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we utilized the fact that we had all solutions of
2 2 2
a+b=c

and that, of these, @ and b could not be squares simultaneously. The strategy
suggests itself to find all solutions of Eq. (212) and, by specialization,
to show that Fermat’s Last Theorem is true for n = 3. Further, one could
hope for a similar approach to n = 5, 7, ete.

We know of no serious progress in this direction. In this connection there
is a “conjecture” of Euler. While it has an attractive ring to it we know of
no serious evidence and so shall call it

Open Question 2. Can an nth power ever equal the sum of fewer than n
nth powers? That s, can

A" =B"+ B"+ --- + B,"
for1 <k < n?

Euler “conjectured” no. If his “conjecture” were true, Fermat’s Last
Theorem would follow as a special case.

ExErcise 112 (From Dickson). Write Eq. (212) in symmetrized form
W+ X4+ Y+ 272 =0. (213)
Substitute
W=3w+z+y+z, X=3iw+z—y=—2
Y=dw—z+y—2, Z=hv-z-y+2)

and show that Eq. (213) becomes the determinantal equation:

w 3z —3y
-z w 3z | =0. (214)
y -z w

This is the condition that
wa + 3zb — 3ye = 0, —za + wb + 3z¢c = 0, ya — b+ we =0

have solutions a, b, and ¢ not all zero.
Solve for x, y, and 2 in terms of w and obtain solutions of Eq. (214):

x = pa(a’® 4+ 3b° + 3¢%)
y = pb(a® + 3b° + 9% z = 3pc(a® + b* + 3cH).

Now witha = b = ¢ = 1 and a proper choice of p obtain Eq. (211).
Conversely, from Eq. (210), obtain an a, b, ¢, and p which gives that
solution. Finally, can all solutions of Eq. (212) in integers be obtained by
these formulae?

w = —06pabc

——
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54. Sum oF Two SQUARES

On pages 150-151 we gave a nonconstructive, partial proof of Theorem
60 based upon Gaussian integers. We now give two complete proofs, the
first explicitly constructive, and the second implicitly constructive. Both
are based upon (—1|p) = +1. The first proof—it may be Fermat’s—
uses the method of descent and also a famous identity which goes back
(at least) to Diophantus:

Theorem 66.
(a2+ bZ)(CQ—I-dZ)

(ac + bd)* + (ad — be)®

(215)
(ac — bd)* + (ad + be)™

Proor. Clear.

Proor of TueorEM 60. If p is a prime = 1 (mod 4), thereisans < p
such that pls® + 1. Write s = ao, 1 = bo, and

P = 002 + b02- (216)

It follows that go < p. If go = 1, p = as” + b, If not, divide ay ar%d'bo by
qo choosing remainders, positive or negative, which have a minimum
magnitude:

a = Togo + a0, bo = soqo + Bo (217)

Both remainders, ap and 8y, therefore satisfy |2 | = 3qo, and not both
are zero. For if a = By = 0, we have ¢p, and since 1 < ¢ < p this is
impossible.

Now define ¢; by

Qg = o + B0’ (218)
and we have 0 < ¢; < 3¢o. But, from Egs. (216) and (215), we have
palgr = (a0’ + bo’) (a0 + B0°)
(@ + boBo)” + (aoBo — Docw)”.
Substituting Eq. (217), and dividing by g0, now yields

par = (roco + so8o + ¢1)° + (roo — Socw)”. (219)
Thus, if
a = I Tocy + S0l -+ q1 | (220)
bl = IToBo - Soaol
we have
pg = @i’ + by’ (221)
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If g1 ¥ 1, we continue, and obtain
Q>q0>- >0 =1
Finally
p = a’ + bl

To show the uniqueness asserted in Theorem 60, we assume g, b, ¢, and
d are positive and

p=a+b=c+d (222)
By Eq. (215),
P’ = (ac + bd)® + (ad — be)® (223)
and
P’ = (ac — bd)* + (ad + be)? (224)

By Eq. (222), (p — a*) d’= (p — Hb’or
p(d* — b = (ad — be)(ad + be).

Now if plad — be, by Eq. (223) we have ad — be = 0, and thusd® — b* = 0
ord = b. Whereas, if plad 4 be, by Eq. (224) we have ac = bd, and since
((L., b) = 1, we have a|d and bje. By Eq. (222) we now have d = a. Since
p 1s prime, we must have one of these two cases.

Finally, to make the determination of p = a,” + b,” completely con-
structive—but not necessarily efficient—we note that we may take

s=aoz<p2_1>! (mod p)

by Wilson’s Theorem, and Exercise 22, page 38.

Exgrcisk 113. Determine 29 = o, + b’ and 89 = @, + by’, given
29112* 4 1 and 89| 34> 4 1.

ExErcise 114. From the previous exercise find the two representations
of
29-89 = 2581 = A* + B’
using Eq. (215).

ExERcISE 115. Given p = o’ + b, determine 2p = A4® 4+ B’, and
5p = C* + D* = B* + F".
Exgrcise 116. Using the results of Exercise 113, find, conversely, an

z and y such that 29|z° + 1, and 891" + 1 by z = ab,”" (mod 29), and
= @b, (mod 89).

——
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A shorter, more modern proof of Theorem 60 is related to the idea in
Exercise 116. It uses Thue’s Theorem, and this, in turn, uses the

Dirichlet Box Principle. If more than N objects are placed in N boxes,
at least one box contains two or more objects.

Theorem 67 (Thue). If n > 1, (a, n) = 1, and m s the least infeger
>/n, there exist an x and y such that

ay = +zx or —=x (mod n)
where
0 <z <m, 0<y <m.
Proor. Consider ay — z for the m”® possibilities: y = 0,1,2, --- ,m — 1
andz =0,1,2,--- ,m — 1. Since m® > n, by the Dirichlet Box Principle

at least two of these possibilities must be congruent modulo n. Let

ayy — Ty = ays — Ip (mod n)
with 41 > 3. . Further z; # ., for otherwise, since (a, n) = 1, we have
y1 =4 .Lety = y1 — yoand 2 = (21 — 72) > 0 and we have

ay = +x or —zx (mod n)

as required.

Seconp ProoF oF THEOREM 60. Let p|s? + 1. By Thue’s Theorem there
exist positive integers z and y < +/p such that

ys = +z (mod p).
Since (y, p) = 1, we have
S+1=2%"+1=0 (mod p)
or
£+y=0 (mod p).
But 0 < z* + »° < 2p. Therefore p = #* 4+ 3°. The uniqueness we prove

as before.

Exercise 117. Apply the Dirichlet Box Principle to Gertrude Stein’s
surrealist opera, Four Saints in Three Acts, and draw a valid inference.

55. A GENERALIZATION AND (GEoMETRICc NUMBER THEORY

Fermat, in a letter to Frenicle (1641), called Theorem 60 “the funda-
mental theorem on right triangles.” Compounding factors by Eq. (215), he

obtained numerous results such as:
A prime = 4m + 1 is the hypothenuse of a Pythagorean triangle in a

single way, its square in two ways, its cube in three ways, ete.
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ExAMPLE:
5 = 4" 4 37
25" = 24° 4+ 7* = 20% 4 15° :
125" = 120° + 35" = 117* 4+ 44 = 100’ 4+ 75%, ete.

It is clear, from Eq. (215), that the product of two distinet primes of
the form 4m + 1 is a hypothenuse in two ways, and, it may be shown,
that a product of & such primes is a hypothenuse in 2" ways.

Exercise 118. Obtain 4 distinet representations of n = A® 4+ B? for
(the Carmichael number) n = 5-13-17 = 1105.

We asked, on page 143: In how many waysis n a sum of two squares?

The answer takes a particularly neat form if we alter the convention of
what we mean by “how many ways.”

Definition 41. By r(n) we mean the number of representations n =
2* + ¥ in integers = and y, which are positive, negative, or zero. The
representations are considered distinct even if the z’s and y’s differ only
in sign or order. Further we define R(N) by

N

R(N) = X r(n). (225)

n=0

ExaMPLES:
r{0) =1 since 0 = 0* 4+ 0%
r(4) =4 since 4 = (£2)°+ 0’ = 0* + (£2)>
r(8) =4 since 8 = (£2)*+ (£2)%

r(10) = 8 since 10 = (£1)" + (£3)" = (£3)" + (£1)"
r(p) = 8if pisa prime = 4m + 1.
R(12) =1+4+4+0+--- +0 =37

It can be shown, by elementary methods, that the following result holds.

Theorem 68. If n, 21, has A positive divisors =1(mod 4) and B positive
dwisors = —1(mod 4), then

r(n) = 4(A — B). (226)

We mean here all divisors, not merely prime divisors.
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ExampLES:
r(2) = 4 sinced =1; (1). B =0.
r(5) = 8 since A = 2; (1,5). B =0.
r(7) = 0 since 4 =1; (1). B =1; (7).
r(65) = 16 since A = 4; (1,5,13,65). B =0.

Theorem 68 contains Theorem 60 as a special case.when allgwa.nce is
made for the different conventions. We now apply this generalization to
derive the famous Leibnitz series:

Im=1-f+3—4+5— (227)

Equation (227) was one of the first results obtained by .Lgibnitz from his
newly discovered integral calculus. In the subsequent priority controversy
concerning the calculus, Newton’s supporters pointed out that Gregory
had already given 3 5

arctanz = £ — 32" + & — - -

and Eq. (227) follows by taking ¢ = 1 Qur presenf: interest concerns
quite a different point—a remark by Leibnitz concerning Eq. (227). He
suggested that with Eq. (227) he had rgduced the rflyst.erlous number
to the integers. We may contest this claim. The derivation of Eq. (227. )
using integration and Taylor’s series does not reveal the:‘number—theor'etic
relation between = and the odd numbers. One may as:k, What has a cire le
to do with odd numbers?” and receive no convincing answer from this
derivation. The real insight is given by Theore_:m 68. . .
Consider the number of Cartesian lattice points (a, b) in or on the circle
25 + ¥ = N. We show these points for N = 12. There are 37 of them.

A

o+ oyt =12
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It is clear, by Definition 41, that the number of such points equals R(N),
since each point corresponds to exactly one representation of one n = a® +
b® < N. Further, if we associate each point (a, b) with the unit square of
which it is the center, (a & $, b &= 1), we see that R(N) approximates the
area of the circle, #N. The reader may show that the difference, R(N) —
N, vanishes with respect to 7N as N — o« since this difference is associ-
ated with the (relatively small) region along the circumference. In this way
he will obtain

Theorem 69.
R(N) ~ =N. (228)
Corollary. The mean number of representations of n = a* + b2, for n up
ton = N,tendstor as N — .

But, from Theorem 68, we may obtain a neat and exact formula for
R(N). Each n £ N receives a contribution of 4 representations from its
divisor 1. Each n < N, which is divisible by 3, loses 4 representations from
this divisor 3, and there are [N/3] such values of n. Similarly, there are
4[N/(2k -+ 1)] contributions, or 4[N/(2k + 1)] losses, corresponding to
the odd divisor 2k - 1, according as k is even or odd. Counting the single
representation of 0 = 0° 4 0%, we thus obtain

o =1+ o[1]- (2] [+ ). oo

Further, since [N/(2k 4+ 1)] = 0if 2k 4+ 1 > N, we may write Eq. (229)
as an infinite series, and thus obtain

Theorem 70.

R(N 144 k
) =144 5 e[ (230)
ExampLE:
R(12) =14 412 —-44+2—-14+1~-1} = 37.
With Theorem 69, dropping the 1 as N — o, we obtain
LN ~ S (_ 1) N
N Z,O( 1) [2k+1]. (231)

Now split the right side into two sums:

EN [% T 1] +3 [% ¥ 1]

o
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where
= VN - 1.

There are [\/N] terms in the first sum and we have

K x N K

& (=1 [Qk—}-l]_N;(—l 2k+1+"‘/~
where | 8| < 1, since the error made by removing the square brackets in
each term is <1. On the other hand the magnitude of the second sum is
less than, or equal to, the magnitude of its leading term—since the terms
are alternating in sign and monotonic in magnitude. Therefore it equals
¢~/N where | 6’ | < 1. Therefore, dividing by N, Eq. (231) now becomes

01/
2k+1+x/’zv

where | 67 | < 2, and, letting N — «, Eq. (227) follows.

Exercise 119. Gauss gave R(100) = 317 and R(10,000) = 31417.
Verify the former, using Eq. (230).

—7r~2< 1)*

Exercise 120. Jacobi’s proof of Theorem 68 was not elementary but was
based upon an identity which he obtained from elliptic functions:

(1 + 22 + 22" + 22° + 22 + --.)°
3 5
L

1 —2% 1 —2ab
Show that if the left side is written as a power series,
14 az + e’ + a2’ + -+ -,
then a, = r(n), while if the right side is
1+ b + b + b2’ + -+,
then b,= 4(4 — B), where A and B are as in Theorem 68.

56. A GENERALIZATION AND BINARY QuapraTic FoRMS

We now (start to) generalize Theorem 60 in a different direction. We
consider numbers of the form 2 4 N3y? as suggested on page 143. At first
things go easily. Theorem 66 becomes

Theorem 71.
(a* + NV (& + Nd*) = (ac + Nbd)* + N(ad — be)*

, (232)
(ac — Nbd)® + N(ad + be)®
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Proor. Consider

(a + V=Nb)(a — /=Nb)(c + /=Nd) (¢ — /—Nd).

By pairing the 1st and 2nd terms, and the 3rd and 4th we obtain the left
side of Eq. (232). By pairing the 1st and 4th terms, and the 2nd and 3rd we
obtain the first right side; while pairing the 1st and 3rd terms, ete., gives
the second right side.

For N = 2 and 3, Theorem 60 generalizes easily to

Theorem 72. Every prime p of the forms 8m + 1 and 8m + 3 can be
written as p = 2t + 2y in o unique way. Every prime p of the form 6m < 1
can be writlen as p = 2% + 3y? in a unique way.

Proor. If —N is a quadratic residue of p there is an s, prime to p, such
that s +- N = 0 (mod p). By Thue’s Theorem, as on page 161, there are
positive integers x and y < +/p such that

82+NEx2y_2+NEx2+NyZEO (mod p).

Nowif p = 8m + Lor8n + 3, (—2|p) = +1, and 2* + 2y is a multi-
ple of p which is <3p. If z° + 25 = p, we have our solution; but if 2% +
2y* = 2p, since £ must be even, = 2w, we have y* 4+ 2u* = P as our
solution.

Again, if p = 6m + 1, (—3|p) = +1, and 2* + 35° is a multiple of
p < 4p. Now z° + 3y° = 2p, for if equality holds, z and y are either both
odd or both even and therefore z* + 3y’ is divisible by 4, that is, 2|p.
Therefore either p = 2 + 3y°, or z = 3w and 3* + 3w* = p, as before.

The uniqueness follows from the more general

Theorem 73. If N > 0 there is at most one representation of a prime p as
p = a* 4+ Nb? in positive integers a and b.

Proovr. This is left for the reader, who will utilize Theorem 71.

Now, the “natural” generalization of Theorem 72 would be this—if
(=Nip) = +1, then p = 2° + Ny’ in a unique way—but this supposition
is not true. The generalization breaks down at two points.

First, as hinted by the qualification, N > 0, in Theorem 73, uniqueness
need not hold if N < 0. Thus we have (see page 143) the Fermat-Frenicle

Theorem 74. Every prime p of the form 8m = 1 can be written as a®> — 2b?
in infinttely many ways.

Proor. Since (2jp) = +1, we have, by Thue’s Theorem, z* — 2* is a
multiple of p, <p and > —2p. Since 2* — 2y* 5 0 by Theorem 56, we have

2 — 2y = —p.
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Therefore
(42" =2+ ' =p
or
a — 26" = p. (233)

Now let @, and ¢.. be the side and diagonal numbers of Theorem 58,
page 139. Then by Egs. (232) and (172),

(ctn — 2a3.)(a” — 2b°) = p
and
p = (c2n0 — 2a2.0)* — 2(canb — az2a)’.
Likewise
P = (2@ + 202.0)° — 2(Cond + @200)".

Therefore from each of the infinitely many pairs (e, , a2.), and from Eq.
(233) we obtain two other solutions of Eq. (233).

ExaMpPLE: -
From 3% — 2-1° = 7, and (c2n , @2.) = (3, 2) and (17, 12), we find:

7= 5 92.8 =132 —2.9° = 27 — 2.19* = 75" — 253"

Exercise 121. From 5 — 2-22 = 17, find four other representations of
at — 20 = 17.

To generalize Theorem 74 to of — 3%, d® — 5b°, ete., we would need the
generalization of Theon’s Theorem 58 known as Fermat’s Equation, ie.,
Eq. (174). This we will investigate in Sect. 58 below. We may also note
that the infinite number of solutions in Theorem 74, in distinction to the -
single solution in Theorem 72, is associated with the fact that the alge- T
braic number field k(4/2) has infinitely many unities—see pages 152, 150. __
That is,

¢ + ‘\/ﬁanll

for any side and diagonal numbers a, and ¢, .

A second, and more difficult, point which precludes the simple generaliza-
tion of Theorem 72 mentioned on page 166 is this. In the proof of Theo-
rem 72—say with N > O—one finds an z and y such that 2t + Ny* = rp,
where the coefficient r satisfies 1 < » < N + 1. It is not clear that, with
these many possibilities for 7, one can always obtain an r = 1.

Indeed, for N = 5 and 6 this is impossible. Thus (—6lp) = +1 for
p = 24m + 1,5,7,0r 11 (see table on page 47). In particular (—6}5) = 1.
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But it is clear that 5 = a® + 6b°. Similarly, (—5[3) = +1, but 3 » a® +
5b%. The partial proof of Theorem 60 using the unique factorization of
Gaussian integers (page 150) suggests that the “difficulty’” stems from the
lack of unique factorization in k(4/—5) and k(n/—6) (see page 153).
This is indeed the case. The following may be shown.

Theorem 75. If (—6|p) = 1, p = a* + 6b in a unique way if p = 24m +
1, 7. But 2p = a* + 6b* if p = 24m + 5, 11. Similarly, if (—5|p) = 1,
p = a® + 5V or2p = a® + 5b? accordingasp = 20m + 1,9 orp = 20m +
3, 7.

The two classes of primes, in either case of this theorem, are related to
the so-called class number (see page 153), which is >1 when unique fac-
torization is absent. We cannot do justice to this most interesting concept
in a few pages. Instead we pass on to other subjects.

ExEercise 122. Prove that for N = 7 everything is “OK” again—that is,

if (—7|p) = +1, there is a unique representation p = a* + 7b% The fact
that the relatively large value N = 7 is still “OK” is related to the specially
large density of primes of the form n® + 7. See table on page 49 and com-
pare remarks about n° + 5, 6 on page 154.

Exgrcisk 123. For N = 10, find a p such that (—10|p) = 41, but
p # a' + 100"

EXERCISE 124. In general, if p < N, p > o® 4 Nb”. What does this sug-
gest concerning unique factorization in k(4/—N) in general? Investigate
the literature to confirm or reject any hypothesis you develop. Caution:
If N = —1 (mod 4) the integers of k(n/—N) are of the form
1(a + +/—Nb). By unique factorization one could therefore only conclude
that 4p = a® + Nb’. An example is p = 3, N = 11. The integers
in k(n/—11) do have unique factorization.

ExErcise 125. Analogous to Theorem 68, for N = 2 there is the
following:

The number of representations of n = z* + 2% is equal to 2(4 — B) if
n has A divisors = 1, 3 (mod 8), and B divisors = —1, —3 (mod 8).

By an argument similar to that above (page 164) but now using ellipses
2 + 2y2 = n, show that

T 1 1 1 1 1 1 1
v T3 Tits T BT

Exgrcise 126. Conjecture the results analogous to the previous exercise

for N = 3. Investigate the literature to check your conjecture.

57. SOME APPLICATIONS

We now give several applications of the foregoing results.

s

Pythagoreanism and its Many Consequences 169

(A) (For those who know vector algebra.) Diophantus’s formula, Eq.
(215), has an interesting interpretation in vector algebra. Let

V1=ai+bj, V2=Cl+d]

Then the scalar and vector products are V,-Vy, = ac -+ bd, V1 X V; =
(ad — be) k. But the magnitude of Vi X Vs is the length of V) times the
length of V, times the sine of the angle between them. And V,-V, is the
length of V; times the length of V. times the cosine. Therefore

Vi Ve]? = (VW) + [ Vi X V|
and we obtain the first part of Bq. (215). On the otherhand, if V; = ¢i — di,

while | V5| = | V2|, the sine and cosine of the angle between Vi and_Va
will now be different, generally, and we obtain the second representation
in Eq. (215).

(B) (For those who know partial differential equations.) If the lowest
frequency with which an elastic square membrane can vibrate is

wy = \/§]C

where k is a constant, then it is well known that every possible frequency
is given by '
w = \Va& + bk (234)

where a and b are positive integers. Corresponding to this frequency, Eq.
(234), the shape of the membrane is given by

C sin (way/L) sin (xby/L)

where L is the length of the side. For the frequency Eq. (234), there will
therefore be s different modes of motion if n = a® + b” can be written as a
sum of squares in s different ways—where a and b are positive, but where
the order is counted. Thus for wy, s = 1;for w = /5k, s = 2;for v =
\65k, s = 4, ete.

(C) (For those who attempted Exercise 16, page 29.) By Theorem 72
the prime ¢ = 6p -+ 1 may be written

g =d + 30

in a unique way. The criterion sought is this: q|M, if, and only if, 3|b.
ExampPLES:
p= 5 ¢q=31=2"+33% Since 3|3, 31| M
p=13, ¢=79=2"+3-5% Since 345, 79+ M
p =17, ¢=103 = 10° + 3-1%,  Since 3¢1, 1034My

We shall not prove this rule, but we will indicate its source.
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Let g be a primitive root of ¢, and let 2 = ¢° (mod ¢), and therefore
27 = ¢’ (mod ¢). Since ¢ = 6p + 1, we have that ¢|M, if, and only if,
6le. Since p = 4m + 1 (see page 29), we have (2)g) = +1, and e is
even. Therefore ¢|M, if, and only if 3le. Therefore the necessary and
sufficient condition sought is that 2 is a cubic residue of g:

=2 (modq).

Prior to the time that the theory of cubic residues was developed, Gauss
found that it was necessary in developing the theory of biquadratic res-
idues, z* = a (mod p), to introduce the Gaussian integers—namely, those
of the algebraic number field k(¢™'*) = k(¢). Similarly, under this stimu-
lus, Eisenstein developed the theory of cubic residues with the field k(e*™*'%).
Since

€70 = H-14+V=3),
we are not surprised to find criteria involving
a4+ 36" = (a + vV=3b)(a — V=3b).
The criterion that 2 is a cubic residue of ¢ = 6m + 1 is: 3|b, where ¢ =
a’ + 3b°.
(D) (Necessary and Sufficient Conditions for Primality.)
Theorem 76. For n > 1, and
N = 1:agssumen = 4m 4+ 1; for
N = 2: assumen = 8m + 1 or 8m + 3; for
N = 3:assumen = 6m + 1.
If n is prime, n = & + Nb" in a unique way in positive integers a and b,

and (a,b) = 1. Conversely, if n = " -+ Nb’ in a unique way in nonnegative
integers, a and b, and if (a, b) = 1, then n is prime.

Proor. For n prime we have shown a unique representation. Further
(a, b) = 1 since (a, b)|n.

Now, conversely, let n = a® + Nb” and (a, b) = 1. Then (b, n) = 1
and (ab™")® = —N (mod n). Thus every prime divisor of # is of the form
listed above corresponding to N. By Theorem 71,

(@ + NB)(c* + Nb°) = (ac + Nbd)® + N(ad — be)® (235)
= (ac — Nbd)* + N(ad + be)*.

Therefore a product of two primes satisfying (—Np) = <1 is also of
the form «” + Ny* with z and y positive. For if (ac — Nbd) and (ad — bc)
were both zero, we find ¢ = Nb°. For N = 2, 3 this is clearly impossible.

ot
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For N = 1, likewise—since otherwise a® -+ b* would be even. Therefore at

"least one of the representations in Eq. (235) has z > 0 and y > 0. By

induction every divisor of » > 1 equals 2* + Ny* in positive integers.
Therefore if n is composite, write it as a product, Eq. (235), with a, b,
¢, d > 0. Then there are at least two distinct representations of » in non-
negative integers, since ac + Nbd > ac — Nbd. For N = 2, 3 this suffices.
For N = 1, we must also show that ac + Nbd = ac 4+ bd = ad + be.
This is so because

a(c — d) = blc — d)

implies ¢ = d, or @ = b, and thus that » is even. This completes the proof.

With Theorem 76 we have a method for determining the primality of
n=4m+ 1byN =1,and of n = 8n + 3 by N = 2. The method is
useful if # is not too large. One uses subtraction and a table of squares,
instead of division and a table of primes. To test the remaining numbers,
namely n = 8n 4+ 7, one would want to use N = —2. But as we have
seen in Theorem 74 we now lack uniqueness. To clarify the number of
representations of n = o — 2b° we now investigate Fermat’s Equation.

Exgrcise 127. Show that Theorem 76 may be easily extended to the
case N = —land n = 2m + 1.

EXERCISE 128. 45 = ¢® + 1’ in a unique way, but 45 is not a prime.
25 = o + b’ in a unique way in positive integers, but 25 is not prime.
21 # o + b°, and therefore 21 is composite. Again, 21 is composite since
it equals @® + 5b° in two ways. But neither 3 nor 7 equals @” + 5b°. From
Theorem 75,

3 =311 +4+51%), 7=313+519.
Thus3-7=(4+ V=5 4 —+/=5) = (1 +2+=5) (1 —2+/-5).

Compare page 153. Construct a similar example: pg = a* + 6b° in two
ways, while neither p nor ¢ equals a® + 6b°.

ExEercist 129. One half of the numbers 8n + 7 may be tested by n =
a’ + 3v”.

Exzercrse 130. All M, for p an odd prime fall in the class indicated in
the previous exercise. In particular M, is not a prime, since My, a + 3b%
But for p large, say p = 61, the test is impractical.

58. THE SIGNIFICANCE OF FERMAT’S EQUATION
The equation:
2t — Nyt =1 (236)

for N > 1, and not a square, is called Fermat’s Equation. In older writings
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it is often called “Pell’s Equation.” If N = n? it is clear that Eq. (236)
has no solution in positive integers since no two positive squares differ
by one. Fermat stated that Eq. (236) has infinitely many solutions for
every other positive N. He suggested the cases N = 61 and 109 as challenge
problems. Later Frenicle challenged the English mathematicians with
N = 151 and 313.

For some N a solution is easily obtained. For N = 2 we have 3 — N2° =
1 from Theorem 58, and, more generally, if N = »n° + 1,

(2n* + 1)* — N(2n)® = 1. (237)

But for N = 61, z = 1766319049 and y = 226153980 is the smallest solu-
tion, and for N = 313 the smallest x has 17 digits. Such an z is not some-
thing one would like to obtain by trial and error.

Exercise 131. Verify the following generalization of Eq. (237). If
= (nm)® & m, then

(2n'm = 1) — N(2n)® = 1. (238)
And if N = (nm)® £ 2m, then
(n’m £ 1)’ — N(n)? = 1. (239)

Show that by a proper choice of m and n, Eqgs. (238) and (239) suffice to
yield solutions for all nonsquare N where 2 £ N =< 20 except for two
cases. Likewise for 30 = N =< 42.

In the next section we state and prove the main theorem by a lengthy
implicit construction. Later we give an efficient algorithm. We now list
some reasons why Eq. (236) is important.

(A) If Eq. (236) is generalized to

& — N =M (240)

for any integer M, there can be no solution unless M is a quadratic residue
of every prime which divides N ; the example N = 3, M = —1 was men-
tioned on page 140. (We note that while this condition is necessary, it
is not sufficient. Thus

@ — 34 = —

has no solution even though —1 is a quadratic residue of 2 and 17.) M = 1
is, of course, a quadratic residue of all primes.

(B) But if Eq. (240) has a solution, it has infinitely many. Using the
method in the proof of Theorem 74, with the identity from Theorem 71,

(2" — Ny’ (a® — NV) = (za = Nyb)® — N(zb £ ya)?, (241)

and with any solution of Eq. (236), one obtains another solution of Eq.
(240). Further, since we may take M = 1, one solution of Eq. (236)
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implies infinitely many. All this because 1-M = M on the left side of
Eq. (241).

(C) This special role of M = 1 is also indicated—it is really the same
point in different language-—by the fact that for any solution z and y
of Eq. (236),

t+VNy

is a unity of the algebraic field k(A/N). See pages 152, 167.

(D) Again, the solutions of Eq. (236) are intimately related to the
rational approzimations of \/N, as we already noted on pages 139, 140.
Thus, from a larger solution for N = 3:

70226" — 3-40545° =
we get,
70226/40545 = 1.7320508077 - - - , (242)
which agrees with v/3 to ten figures.
(E) Further, these approximations, and the solutions of Eq. (236),
are obtained by infinite continued fractions, and Fermat’s Equation was

the occasion for the introduction of this technique into number theory.
(F) The same continued fractions may be used expeditiously to obtain

p = a* + b
for primes of the form 4m + 1.

(G) If we factor the left side of Eq. (242):
70226 26 37 73

40545 15 51 53

we obtain convenient gear ratios to approximate +/3:

LY il
3“ 73 453 ™
H L4 1.7320508077w0

3 o .
& %,
“s® '

““ulll ‘“un..

||||,'““‘n|./

"E
-
o

o’

..-00

“o

-

(H) But to carry out such factorizations it is desirable to know the
divisibility properties of the solutions (z, y) of Eq. (236). These properties
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are given by interesting and useful divisibility theorems for the infinite
sequence of solutions of Eq. (236). For N = 3 these theorems were used
by Lucas to obtain his criterion for the primality of Mersenne numbers.
It was this consideration (page 120) which led us into this chapter.
59. Tur MaiN THEOREM
Theorem 77. If N > 1, and not square,
2 — Ny =1 (243)

has infinitely many solutions in positive integers. If x; + /N y, is the
smallest value that x + /N y takes on, with x, y a solution, then every solu-
tion is given by

o+ VN g = (11 + VN )" (244)
The x. and y, may be computed explicitly by

Tn = %[(xl + \/ﬁ yl)" + (xl - \/JVyl)"]

(245)
Yn 2\1W [(z: + VN y)" — (2 — VN 97,

or recursively by

ZTnt1 = D1Tn + N N1Yn
(246)
Yntl = Y1Zn + T1Yn .

CommenT: If 7, ¥ are positive integers which satisfy Eq. (243) we will
sometimes use the expression: z + /Ny “is” a solution of Eq. (243).

Proor. First we prove that z,° — Ny’ = 1 implies z,°— Ny.’ = 1.
From Eq. (241), withz = @ = zyand y = b = ¥y, and choosing the
plus sign on the right, we see that the z. and y, of Eq. (246), withn = 1,
satisfy Eq. (243) if z; and y, do. By induction, the z. and y, of Eq. (246)
also satisfy Kq. (243). Also, by induction, these integers satisfy Eq. (244),
and likewise

2w — VNyn = (21 — V/Ny)) ™.

Then Eq. (245) follows at once.

Next we prove that there are no other solutions. Assume another solu-
tion, Eq. (243). Then

z+ V/Ny = 2. + /Ny,

for, if equality held, x — z, = /N(y. — y), and, since /N is irrational
by Theorem 57, we must have y = y,, 2 = xz,. Therefore, since z; +
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vNy: > 1, and thus, by Eq. (244), . + V/Nyn < Zags + VNns1,
assume

o + VNys < 2+ VNy < Ty + VNyupr. (247)
Since (2. — V/Nya) (2. + V/Ny.) = 1, we note that the first factor here

is >0. Multiply Eq. (247) by this positive number, z, — /Ny, , and
we have

1 < (2 + VNy) (zn — VNy) < (2 + V)" (1 — VNy)"
=z + \/Nyl
Let
(¢ + VNy)(z. — VNys) = a + V/Nb
where ¢ = 2z, — Nyy, and b = yr, — xy. . But
o’ — Nb* = (2 — Ny (2. — Ny = 1,

and since 1 < a + v/Nbwe find0 < ¢ — v/Nb < 1. Thus 1 < 2a and
0 < 2 4/N b. Therefore we have a solution of Eq. (243) in positive integers
a and b with ¢ + v/Nb < z; + VN, . Since by the definition of z; +
/Ny, this cannot be, there is no other solution z + /Ny.

Finally we come to the real problem, to show that q. (243) has at
least one solution. The first published proof is by Lagrange. Our proof
rests on a lemma which we will prove later in two ways.

Lemma. There is an integer M such that ©> — Ny? = M has infinitely
many solutions tn positive integers.

We assume this now and consider M* boxes B, with 0 < a < | M|,
0 <b < | M]|. Choose M*+ 1 solutions of 2° — Ny’ = M and place each
pair (z, y) in the box B, if = a, y = b (mod | M |). By the Box Principle
we therefore have two different solutions:

o= Nyl=2'—Np' =M (248)
with 21 = 22, y» = ¥ (mod | M |). Thus
s — Ny = 2" — Nyt = 0 = 209 — 2o (mod | M |),

and we have 12 — Ny = uM and xpe — zan = oM with v and v in-

tegers.
But, by Eqgs. (241) and (248),

M? = (222 — Nywe)® — N(zws — aapn)”® = (' — N M™ (249)
Then

W — N = 1.
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Now, if v = 0, 21y2 = z3pn and, by Eq. (249),
M = :t(:clxg bt Nylyz)
Thus
My, = i(x12x2y2 — Nylzxzyz) = +Muxsy,.

Since z; > 0 and 2, > 0 we have ; = x;, and likewise 31 = ¥, . Thus
»* > 0 and Eq. (243) has at least one solution v — Nv* = 1 in positive
integers. By the Well-Ordering Principle there is therefore a smallest
solution: z; + /Ny .

The reader may note that the device used in Eq. (249) of multiplying
two equations, and then dividing them by M2, is analogous to the strategy
utilized in Theorem 60, both after Eq. (218) and after Eq. (222).

A proof of the Lemma using a continued fraction algorithm will be
given later. A shorter, and now standard, proof runs as follows:

Proor oF THE LEmma. Fory = 0,1, 2, --- | let # = [\/Ny] + 1. Since
/N is irrational we have

0<z=2z—Ny<1l.

For any positive integer n; consider the n; boxes:

0<z§l;l<z§3;---;n1_1<251
n n n m =7
and 7, 4 1 values of z given by y = 0, 1, ---, n; . At least two 2’s are

in one box, and they are unequal since \/N is irrational. Call them z, > 2, .
Then their difference satisfies:

0<Z1—32=(Il—$2)”‘\/N(yl_yz)<h1—-
1

This may be written
3 — 1 _ 1
0<z=x—VNp< —=
C Y

where z; = z; — 22, y3 = 11 — y2. Now choose n, by
1
— < 23
e

and by the same process we obtain a 23 < z; with

O<z4=x4—\/ﬁy4<ﬁ.
4

%

e
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Thus, since /N is irrational, there are infinitely many solutions of
0<z—\/ﬁy<ﬁ. (250)

1t follows that
24/Ny < 2 + v/ Ny < 2+/Ny + 1,
and thus, whether y and z are positive or negative,
lz+ VNy| <2vVNly|+ 1
Therefore we find infinitely many solutions of
0<|2"—Ny'|=(z— Ny |z + VNy| <2/N + L

By the Box Principle (extended) we therefore have infinitely many solu-
tions of z° — Ny* = M forsome 0 < | M | < 24/N + 1. This completes

the proof of Theorem 77.
The reader notes the curious character of the proof given here for Theo-

rem 77. A solution of Eq. (243) implies

z 1

Y/ U

y y(z + VNy)

that is, z/y is a “good” rational approximation of 4/N. In the proof of

the Lemma, we first find that there exist approximations:
T 1
Z—+/N < -
Y Y

then, by the Box Principle, better approximations:

L VN -

< 2;2 .
Finally, using the Lemma, we attain the required approximations. 1t could
be called a proof by “convergence,” and this suggests that an explicit
and more efficient algorithm for finding good rational approximations of
/N could lead to an explicit and more efficient construction of solutions
of Eq. (243). This we now examine.

Exercist 132. By the same technique as that used on page 174 to show

that there is no other solution z + /Ny, show that if v’'— Ny* = —1
has a solution, and if w; -+ /Ny, is the smallest value possible, then all
solutions of ¥ — Ny* = —1 are given by

Un + VNy = (ws + VNy)" (251)
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for n odd, while for n even one obtains the solutions of Fermat’s Equation:
Uem + A/ Nvzw = 2w + /Nym (252)
given by Eq. (244).
Exercise 133. Show that Theon’s rule, Eq. (171), gives all solutions of
© — 2y = +1.
60. AN ALGORITHM

. For any positive nonsquare N we define five sequences of nonnegative
integers A, , B., C,, P,, and Q, as follows. Let

Ca=N; Co=1; By=0; P = =0; Py=0Q_ =1 (253)

Forn =0, 1, 2, --- , define the sequences recursively by
N + B, . —
Ay = [\—/'Ci—] , or, since 4; = [\/N],
(254)
A L= [Al + Bn
n+ Cn .
Bn+1 = An+ICn - B,L. (255)
Coyr = Coa + Apyi(Bn — Boyi). (256)
Pn+1 = Pn—l + An+1Pn- (257)
Qn+l = Qn—l + An+1Qn- (258)
In Eq. (254) we use the [ ] function of page 14.
ExampLE:
For N = 19 we show the sequences:
n Cn An Bn Pn Qn
-1 19 — — 0 1
0 1 — 0 1 0
1 3 4 4 4 1
2 5 2 2 9 2
3 2 1 3 13 3
4 5 3 3 48 11
5 3 1 2 61 14
6 1 2 4 170 39
7 3 8 4 1421 326
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Tt is clear, by the rules (Eqs. 254-256), that since C\n_1 , B, and C, repeat
here for n = 1 and 7, that A,, B., and C, will henceforth be periodic
with a pertod of 6.

Our immediate interest in the algorithm—there will be other points
later—is in the important relation which we will prove in the following
section:

Pt — NQ)S = (—1)"C.. (259)

If C, = 1, with n even, we obtain a solution of Fermat’s Equation: P.l—
NQ,} = 1. It will be shown that for every N there are infinitely many n
with (—1)"C, = 1, and for the smallest such n > 0 we obtain the smallest
solution of Eq. (243):

Pn+\/N4Qn:xl+\/Nyl-

Thus 170 + 1/19-39 is the smallest solution for N = 19.
If ¢, = 1 with n odd, the smallest such n yields the smallest solution of

u' — Nv* = —1 by
P, + V/NQ, = v + V/Nu

using the notation of Exercise 132. We show such a case for N = 13:

n Cn An Bn Pn Qn
-1 13 — — 0 1
0 1 — 0 1 0
1 4 3 3 3 1
2 3 1 1 4 1
3 3 1 2 7 2
4 4 1 1 11 3
5 1 1 3 18 5
6 4 6 3 119 33
Then 18 4+ /135 is the smallest solution of ut — 13 = —1. Corre-

spondingly, as in Exercise 132, 649 + +/13-180 = (18 + V13-5)% is
the smallest solution of z° — 13y® = 1. Alternatively, one could continue
the table until C;o = C; = 1, since now there is a period of 5. Then Py =
649, @ = 180. In fact, by periodicity we have

P?k - ISng = (‘"Dk-

ExXERCISE 134. Obtain solutions of * — 31y° = 1, and of  — 41y’ =
+1.
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Exercise 135. For N = (nm)® 4+ m (compare Exercise 131) carry
out the algorithm algebraicly and obtain

P2=2n2m+1, Q2=2n

Similarly carry out the algorithm for N = (nm)® — m. In this case what
is the period of A, , B, , C,if m = 1;if m > 1?

We shall see that A, , B, , and C, are periodic, from some point on, for
all N. This will follow from the inequalities:

0<A4,<2vN, 0<B,<+N,

which hold for all positive n. Granting these for now, it is clear, by the
Box Principle, that Cy, B, and C, must eventually repeat. Then 4, ,
B, , and C, will be periodic henceforth. We designate the period p(N),
as in p(19) = 6, p(13) = 5. Assuming Eq. (259), we then have another
proof of the Lemma (page 175).

We will also obtain the useful invariant:

an + CnCn—l = N- (261)

Since N 5 m?® we see that €', = 0. This justifies the division in Eq. (254).
Again, since C,_; = (N — B,’) /C. we need not have stipulated the repeti-
tion of C,_, in the previous paragraph. Also, if C, = C,_; we have N =
B.’ + (% In particular, for n = 3, we have 13 = 2° + 32 It can be shown
that for every prime N = 4m - 1 there issucha C, = C,_;.

0< C, <2+/N (260)

61. CoNTINUED FrACTIONS FOR /N
Consider
(V2 -1D(H2+1) =1
Then
2=14 —
v 1442
and, by substitution we have

VZ=1+ 1

1+ \@
By continuation we obtain the infinite continued fraction:

\/5=1+%

(NI

+

+

DO} =

1
245 ...

i

o e s
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which we abbreviate as

1 1 1
V=145 54 (262)
The fractions
1 3 17 1 1 1
- = 2= st o1+ 2 —14- = te.
1=b g=l+3 3 Tori tTo4g o

are called the convergents of the continued fraction. The reader may note
that these convergents are c./a. , the ratios of Theon’s diagonal and side
numbers.

If v/3=1+ (1/2),wehavez = 1/(1/3 — 1) = (1/3 + 1)/2. Let
(V3+1)/2=1+(/yandy =2/(v/3—-1) =+vV3+1=2+
(1/z). Thus

1 1 1

1
VBl e T4 269

The reader may verify that the convergents now:

-1 2 § Z ete
T r 3 4 '

Qo

are alternately solutions of Egs. (176) and (175), and, conversely, Archi-
medes’ approximations (page 140) are later convergents.
It may be easily shown that the convergents of any continued fraction

1 1 1
SLID Py WS VS

form a convergent sequence if the A’s are positive integers. Also that if
z is irrational and >1 it has a unique representation of this type:

1 1
AL N
Further, if such an z is given by
1 1 1

r= A+ — (264)

Ao+ At -+ Aty
where y > 1, then these n values of A are those of its unique representa-
tion. It follows that Eqs. (262) and (263) are the representations for
V2 and /3.

One could proceed with /N as with 4/3. But there is much redundancy,
notationwise and otherwise, in such algebra. If one seeks an algorithm
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with the redundancy removed one obtains that given in Sect. 60. Thus
we shall see that

1 1 1
=4 - = = 26
VN = At D Tt (265)
where the A’s are given by Eq. (254). Further the convergents are
P 1 1 1
i P M — 266
Q. 1+A2+A3+~--+An (266)

where P, and @, are given by Egs. (257-258). Thus, from page 178,

1 1 1 1 1 1 1
VI =t g 5T+ 48 424 .

We may indicate the periodicity neatly by the symmetric formula:

1 1 1 1 1 1
V= S T4 34T+ 4a4 VIO

Similarly
= 1 1 1 1 1
VB = T4 T 41434 v
and
18 1 1 1 1
ERRL 0 N U

We now prove Eqs. (259), (260), (261), (265) and (266). The subject
of continued fractions is a large one. It is not our purpose now to expound
upon it at length. Our primary interest concerns its relation to Theorem
77. At that, our treatment is brief and we leave numerous computations
for the reader.

First, from Eqgs. (255) and (256) we have
Cn+1 = Cn—l + 2An+an - A:+1Cn )

and from this, and Eq. (255), we obtain Eq. (261) by induction. Then
we define

= YN+ Bos (267)
Cn—l
and using Eq. (261) we find that
= A+ L (268)
Apt1
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Since oy = /N we obtain

1 1 1 1

— — - = 269
\/N—A1+A2+As+"'+An+an+1 (269)

by induction.

Next we show 0 < 4, and 1 < «, . From «, > 1, and [a,] = 4., and
Eq. (268), we find A, > 0 and axtq > 1. Since oy = v/N > 1, the re-
quired results follow by induction. Then from Egs. (269) and (264) we
derive Eq. (265).

To complete the proof of Eq. (260) assume

0< B, <N, 0<C,<2v/N (270)
for some positive n. From
— B,
Oyl — Anpy = @T__ﬂ >0

we find B,.; < A/N. Then from B% ;; + C.,Cn = N, we obtain 0 < Cry;.
Thus from
'\/N + Bn+1
Onpp = ~——— > 1
Cn+1
we have Chy1 < 24/N. But if Buyy £ 0, from Eq. (255) Cn S AniaCh =
B, < A/N. This implies
. \/N - Bﬂ+1 > 1

Cpyl ™ An+1 = C 3
n

and this contradiction implies 0 < B,.:. Then Eq. (270) follows by in-
duction for all » > 0. Finally, since 1 £ C,, we get 4, < an < 24/N
from Eq. (267). This completes the proof of Eq. (260). .

Next, from Eqgs. (257), (258) and (253) we obtain a second important
invariant by induction:

(_1)"(P71Qn—1 - Pn—lQn) = 1. (271)

This implies that (P., @.) = 1 and the fraction P./Q. is in its lowest

terms.
Now we prove Eq. (266), slightly generalized. Let a,, n = 1, 2, -+~
be any positive numbers, not necessarily integers, and let

p1=q =0, Po=ga =1,

Prny1l = Pna + Aui1Pn Gnt1 = Qn + Gnii1Gn,
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analogous to Eqs. (253), (257) and (258). Then

Pr_ I P2 aray + 1 1
= _— and LT =22"° " = —
¢ 1 q2 as @ as
are identities. Assume, for some n > 1,
Dn _ pn~2 + (229 pn—l ]. 1 1
—_— = S =aa _— — —
¢ totagn “VTatat+ - +a (272)
for any positive a’s. Thus we may replace a, by a, + (1/a,41) and obtain
1
pn—-Z + (an + >pn— pn + n—.
An41 ! — Ania P - DPr+1
1
Qn—2 + (an + > Qn—l Qn q"+1
an+l
- a + 1 1

P SRR I

Thereff)re Eq. (272) is true for all positive n and a’s. In particular, Eq.
(266) is true. Further, from Eq. (269), we obtain

Py + (An + ) .
,\/]v — ’ Onyl I_Pn—l+an+lpn
1 = 0 F a0 (273)
Qn—Z + <An + ) Qn_1 " r K
[ FWE
and, from Eq. (267),
\/]—V(P" - CﬂQﬂ—l - BﬂQﬂ) = NQn - Cnpnh] - BnPn.
But \/N is irrational, so:
Pn = CnQn—l + BnQn;
(274)

NQn = (Pauy + B.P, .

These combine to yield

- NQ,,2 = Cn(PnQn—l - Pn-lQn)7

and f.rom Eq. (271) we prove Eq. (259).
. It is easy to show that the right side of Eq. (265) converges to the left
side, for from Egs. (273) and (271) we also obtain

P, 1
N o= (="
Qﬂ ( ) (Jn(Qn—l + Kpyl Qn) )

Since Q. increases without bound the convergents converge to v/N in

(275)
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an alternating manner:

PZk P2k+l

2 VY G
We have shown that the algorithm yields a convergent, periodic, con-
tinued fraction for /N, and, if (—1)"C, = 1, we have a solution of
Eq. (243). These fractions were used by Fermat, Frenicle, Wallis and
Brouncker to obtain solutions. No one prior to Lagrange, however, (except
possibly Fermat), proved that such an n always existed. We have seen
that the algorithm implies the Lemma, and this implies a solution: -

Ny® = 1. Therefore
T 1
—_ = N —

1 1

N =5 ' 276
VAR VERS o)

Now any rational number b/a > 1 may be expanded into & finite con-
tinued fraction as on page 12. We have

b 1 1
a‘q“Lq to+ o+

where the ¢’s are given by Euclid’s Algorithm on page 9. Further ¢. > 1,
and, at our option, we may also write

and

QIR

b_ sl 11
TP T o+ + @D+
Using one or the other, z/y can be written
z 1 1
T G @77)
with n even. If z is defined by
— 1 1 1
N = - — =,
_ VN=at o b a4
we have, analogous to Eq. (275),
z 1 1 1
VY T TRy (278)
2+ v
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where 3’ is the denominator of the next to the last convergent of Eq.
(277). Therefore 0 < y’'/y < 1, and comparing Eqs. (278) and (276)
we find z > 1. Then, by Eq. (264), a; = 4, and z/y is a convergent P,/Q, .
It follows that every solution of Eq. (243) is given by the algorithm.

EXERZCISE 1362. Solve 61 = @’ + b*and 2" — 613 = —1 by the algorithm.
Solve ° — 61y” = -1; compare page 172. Obtain the representation of

V1.

ExErcise 137. Let n be the smallest positive index for which C, = 1.
From Egs. (261), (260), etc. show B, = B,y = A; and A, = 24,.
The representation may be written

1 1 1 1
N=4di+~ L 11
\/_ 1+A2+A3+.”+An+A1+‘\/—’ (279)

and the period p(N) = n. The sequence of A’s is
Al,Az,Ag"‘An, 2A1,A2,A3,"‘An, 2A1,etc.

ExErcise 138. The representation, £q. (279), is always symmetric:

. 1 1 1 1 1
N =A —_— . - = -
v T Tt Ht Mt 4+ VE

To prove Eq. (280), show that one may replace v/N by —+/N in Eq.
(279). Then solve for the lower radical in terms of the upper. Alternatively,
use Eqgs. (279) and (273) to derive

Pn = AlQn + Qn—l .
Then, with Eq. (282) below, show that

(280)

P, 1 1 1
L =A+ - —.
Qn ! An+An—l+"‘+A2
Exgrcrse 139. Show that if one runs the indices backwards one obtains
1 1 1
A+ 1_A5 (281)

An—1+An—2+ "'+A1 Pn—l
and

1 1 Q
A, = X
S S USRI pl s w (282)

ExERcISE 140.

—
[y

A+ L L
Art o+ An+ A+ Ap+ A+ - + Ao
(283)

— Pm+1Qm +PQO—1
Qm(Qm—l + Qm+1) ’
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L 11 1 _PuQn+t PriQnas
Ar+ - +An+ A4n+ -+ 4 Qn? + Qns )

Exzercise 141. Use one of the results of the previous exercise as a short-
cut in solving 2 — 61y° = —1. What do you note about the P’s and @’s
used, in relation to the 61 = a® + b of Exercise 136?

Exgrcise 142. From Eq. (273) and the periodicity of the A’s rederive
the recurrence relations, Eq. (246).

(284)

A+

Exgercise 143. There are infinitely many solutions of z — 34y’ = M for
M = 42 and —9, but none for M = —1.

Exgrcise 144. If N = 1 (mod 4) and prime, and the smallest solution
of Eq. (243) is z; + /Ny, then

U = 1/x1;1 and 1 = 1/%2_;1 (285)

are integers and u, + +/Nu, is the smallest solution of w— No* = —1.

Exgeroisk 145. If N = 2k + 1 is prime, the period p(N) of +/N is even
or odd according as k is odd or even.

ExERCISE 146. If N = 1 (mod 4) and prime, and if p(N) =2k — 1, then
N = B + C/. (286)

Exercisk 147. If N is an odd prime, and Nis° + 1 with 0 < s < 3N,
write

e etas e
by Euclid’s Algorithm. Then the a’s are symmetric and
N = pia + pa- (287)
For example: 1429/620° + 1.

42 _, 1 1 1 1 1 11
620 3+34+14+1+3+3+2°
Ps 23 >4 30 2 9
B2 B 1429 = 23" 4+ 30
g 10 gq 13 29 +
Exgercise 148. Conversely, if an odd prime N is a sum of two squares,
consider its representation by Eq. (287). Then expand by Euclid’s
Algorithm:
Dn 1 1

= Gu41 + —.
Pnr—1 Any2 + i + Qon
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If the next to the last convergent is u/v and s = up, + vp._;, then 0 <
s < N,and NJs* + 1.

ExERrcise 149. In Exercise 147 it is not necessary to complete Euclid’s
Algorithm in order to determine n. The largest numerator <+/N is P .

ExErcise 150.
p(N) < 2N. (288)
ExERCISE 151.
Pﬂ N + Bn Bn—l
Ifﬂ=_ then n — ———
B Qn B Bn + Bn—l

Exzrcise 162. If 2, + /Ny, is the nth solution of Eq. (243), then the
2nth solution is given by Newton’s Algorithm for taking square roots:

(289)

1 N
xZn/yZn - ‘2‘ [xn/yn + m] (290)
if the right side is in its lowest terms.

62. FROM ARCHIMEDES TO LuUcas
From

we obtain the approximations P,/Q, :

” 1 2 3 4 5 6
P, 1|2 5 7 19 2
Qn 1 3 4 1 15
n 7 8 9 10 11 12
P T o | o 362 080 1351
Q. 11 56 153 209 571 780

Archimedes’ approximations on page 140 are those for n = 12 and 9. Our
gear ratio on page 173 is

Py _ 70226 _ 26 37 73

Qs 40545 15 51 53°
and we note that the first factor on the right is Pe/Qs . This is not an iso-
lated result, for we shall prove
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Theorem 78. For all positive n, r, and s,
Qﬂleﬂ ’ Pﬂ|P(2l+1)n . (291)

It will be convenient in such investigations to introduce two new se-
quences. From Theorem 77 we obtain

Py, + \/§Q2n = (Pz + \/gQ‘z)n
This implies

2+ 3" (292)

{

Poass = 2Pon + 3Qen,  Qi2 = Pon + 2Qsn. (293)
But since Asnie = 1 for all n, we also have, from Eqgs. (257) and (258),
Pynia = Poo + Ponya, Qonyz = Q2o + Qonia.
Then, from Eq. (293), we obtain the odd-order convergents:
Pany1 = Pon + 3Qen s Qo1 = Pon + @
or
Pans1 = V3Qenns (294)
= (Pan £ V3Q) (1 &= V3) = (2 V3)"(1 £ V3).

Now (1 £ v/3)? = 2(2 = /3), and Egs. (292) and (294) may be
written

2"(Pa &= V3Qm) = (1 £ 3)™,
2”(P2,,+1 =+ \/'?;anﬂ) = (1 =+ \@)hﬂ-

2 1
Using the square bracket [2;] = [ L ;_ :l = n, we therefore have, for
all m,
2P, = V30w = (1= VA" (205)

If we now define

2[;]P,, = tn, 2[§]Qn = Un, (296)

we have
th = AV Bu, = (1 £43)" (297)

By this definition we override the pulsing character Qf B" + v3Q.—due
to the period, p(3) = 2—and may transfer our investigation to the smooth
sequence ¢, + \/3u, instead. For, if we can factor ¢ and u, , we can also
factor P, and @, by Eq. (296).
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From Eq. (297) we obtain at once some useful identities:

t”+m = tntm + 3unum y

Unpm = untm + umtn . (298)
Then
bon = tn2 + 3un2,
Usn = 2Unt, . (299)
Since (1 + v/3)™(1 — v/3)" = (—2)", we have
tn — V3un = (1 — V/38)™ = (=2)"(1 + v/3)™
Therefore
(tm = VBun) (ts + VBu) = (=2)™(1 + V/3)™ ™,
and, if m < n,
(=2)"Un-m = Untm ~ Uiy ,
(=2)"taem = talm — BUplim, (300)
while, if m = n,
(—2)" = t,° — 3u,> (301)

Now we can give the

. PR_OOF oF THEOREM 78. From Eq. (298), if m = rn, we see that Un |Urn
implies u, |4 40y, . By induction, wu,|u. for all positive r. Now ¢,[us, by
Eq. (299), and therefore, by what has just been proven, nUssn . Thus, if
m = 2sn, we see from Eq. (298) that tu[t@s1s . Then Eq. (291) foll()’ws
frox.n Eg. (296) directly if Q. , or P., respectively, is odd. To determine
their divisibility by powers of 2, we obtain from Eq. (298), with m = 4
and from Egq. (296), , ’

Ppyy = 7P, + 12Q,
Qn+4 = 7Qn + 4Pn .

It hfoll(l))ws, by induction, that Py, is divisible by 2, but not by 4, and all
other P, are odd. Likewise Q, is even only for n = 4k. F E,
and (296) we have rom as. (209)

Q4k = 2P2kQ2k .

It follows, by induction, that for £k > 1 and n = 2+(2 is di
L ) b - ]- n -

visible by 2* but not by 2¢+1. Gt D Qs di
Thus Eq. (291) is true for all n.

-
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Corollary. If Q, is a prime, then n is @ prime.

We find that Q;, @5, @7, Qu, and Qi3 = 2131 are indeed primes. But
Qi = 67-443. Qi = 110771 is again prime. This corollary, the numerical
behavior (6 primes and one composite), and the exponential growth of the
Q. are all reminiscent of M, = 2" — 1. Since, from Eqs. (296) and (297),
we have

Q. = Lt \/g)\[;z(ljm_ V3) (302)
and see that their formulas are somewhat similar. Let us pursue this

analogy.
From Theorem 35, on page 72, if m > 1 and odd, and if m[2/ — 1, and

if e is the smallest positive z such that m|2® — 1, then ¢[f. The analogous
result is

Theorem 79. If m > 1 and odd, and if m|Q;, and if Q. is the smallest post-
tive Q, which m divides, then e|f.

ProoF. Assume the contrary, and let f = ge + 7 with 0 < r < e. Con-
sider Eq. (300) with n = f, m = r. Then

(—2)"uge = Usty — Uy .

Since m divides Q. , it divides Q,. and therefore u,, . Likewise m|u, , and
thus m|u.t, . Then, since (¢, , m) = 1 by Eq. (301), m|u, , and m|Q, . Since
this contradicts the definition of e, we have r = 0 and elf.

Now we investigate the analogue of Fermat’s Theorem. Let p be an odd
prime, and, using the binomial theorem, we expand

(1i\/§)”=li’{\/§

+p(p_1)3i +Zl)(g—1)"'2 gD/ | gpi2

1-9 o (p = 1)
Then
= 110+ VB + (1= V)]
_ p(p — 1) Pl =12 s
S v e R T e R

But every term except the first is divisible by p, since these binomial co-
efficients are integers, and the factors in their denominators are <p.

Therefore
b, =1 (mod p). (303)
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Similarly
1
p = —— 1 p . QNP
u W [(1 + /3) (1 — /3)7]
- %’ p(p —11;(§ - 2) .3 g(-1/2

By Luler’s Criterion, 377/ = <g> (mod p). Therefore

%z@> (mod p). (304)

Now we use Eq. (300) with n = p,m = 1, and, since t; = u, = 1
we have 7

3
QUpy =t —u, =1 — (5> (mod p). (305)
. 3 .

By Theorem 20, <5> = 1 if p = 12m =+ 1. Therefore for these primes
we do get a “Fermat Theorem,” since p|2u,_; , and therefore P1@p—1 . For
the remaining primes = 2 or 3 we have <§> = —1. But from Eq. (298)

p

we find
Upt1 = Up + 1, = 1 + <%> (mod p). (306)

Together with Eqgs. (305), (304), and Theorem 79 we have thus proven
Theorem 80. If p is an odd prime,
Py,  PIQpa, or  PIQpn

according as p = 3,12 == 1, or 12m = 5. Further if p|Q. and e is the smallest
such positive index,

e = 3, elp — 1, or elp+ 1
respectively.

Next we investigate the analogue of Euler’s Criterion. From Eqgs. (299)
and (301)

6u = ta — (—2)"
Iftn = (p & 1)/2 we use Eqs. (298) and (300) to obtain
_IQu%pkl)/Q = t, — 3u, + 2(_2)<p~1)/2,

2
bU(pinye = b, + 3u, — (_2)(p+1)/2'

)

T ———
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Thus

—12u%p_1)/2 =1-3 (%) + 2 <:pg> (mod p),

2

(307)
6u‘%p+l)/2 =143 (%) + 2 <:Z—)—) (mod p).

We evaluate the Legendre Symbols—say from the table of (%) on page

47—and find:

If p=24m + 1orll, Uipne =0 (mod p).
If p=24m+130r23, Buppe=1  (modp).
If p=24m+ 50r7, SuUlpine = —2 (mod p).
If p=24m + 17 or 19, Uipsne = 0 (mod p).

In the first and last case plugsy 2 - In the two middle cases, since ptuprn 2 »
while from Theorem 80, pluyz1 , We see, from uz, = 2unt, , that pltgrn e -
We have therefore proven :

Theorem 81. Assume p prime. Then
PQupunre o p=24m+ 1,11,
p|Ppone if p = 24m + 13, 23,
plPuinpe o p=24m +5,7,
PRy o P = 24m + 17,19.

(308)

These and similar results have been obtained by Lucas and by D. H.
Lehmer.

ExERCISE 153.

() an(l)

 ExercisE 154. Forn = porp & 1, P, = either £1 or &£2, Q. = either
0 or =1 (mod p).
ExXERCISE 155. Every prime @, except @: = 3 ends in the digit 1.

63. Tae Lucas CRITERION
With the third case in Theorem 81 we have obtained that which we sought

at the end of the last chapter. We analyzed Pepin’s Theorem 55 there, and
found that this test succeeded as a necessary and sufficient criterion for
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the primality of the Fermat number F,, because, in
Fmi(g(Fm‘l)ﬂ + 1) (3(Fm—1)/2 _ 1)

F . divides only the first factor on the right, and also #,, — 1 is a power of 2.
For M, we have instead M, 4 1 as a power of 2. While Euler’s Criterion
is therefore useless our new “Ituler Criterion” yields

Theorem 82 (Lucas Criterion). A necessary and sufficient condition that
M, > 3 is prime s
M P (3piny 2 - (309)

This test mgy be carried out efficiently as follows. Let S; = 4, S, = 14, - -
St = S.°— 2. Then the condition becomes

M,18,, (310)
or, using residue arithmetic,
Sp,1= 0 (mod M,). (310a)
ExaMpLES:
7 = M3’P4 = 7 31 == M5IP16 = 18817.
To test M; = 127 we use Eq. (310a) and arithmetic modulo 127. Then
S1=4,8 =14, 8,=67,8,=42,8 = 111,S =0 (mod 127).

For such a small M, this test requires more arithmetic then Fermat’s f, and
Euler’s e, on page 22. But consider Mg, . Then eg implies about a million
divisions—and also a table of primes of the forms 488% + 1 and 488k + 367
out to 1.5 billion. However, Eq. (310a) requires only about 60 multiplica-
tions, 60 subtractions, and 60 divisions. Arithmetically speaking, a Lucas

tfest ﬂf[or My, is comparable with an Euler test for M3, , and a Cataldi test
or 19 -

Proor oF TuEoREM 82. If n = 2m + 1, M, = 2" — 1 = 7 (mod 24)
by induction, since M; = 7 and

47+1) —1=7 (mod24).

If M, is prime for p = 2m -+ 1 we have Egs. (309) by (308). Conversely,
assume Eq. (309) and suppose a prime ¢ divides M, . Then q|P (4102 and
qltcmpn 2 - Since us, = 2u,t, we obtain

q1Q syt
Let e be the smallest positive integer where ¢|Q.. By Theorem 79
elM, +1 = 2"

JE———
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If e < 27 we have ¢/2° ', and, by Theorem 78,
q1Qer-1 = Qrp41) 2
This cannot be, since ¢|P 412, and (Ps, @) = 1 for every s, since
PE—3Q =1 or —2.

Therefore e = 2°. But, by Theorem 80, the index e for any odd ¢ satisfies
e < g+ 1. Then M,= 2" — 1 =< q. Since g|M, , we have ¢ = M, that
is, M, is a prime.

Finally, since P; -+ +/3Q; is the smallest solution of 2 — 3 =1, we
have

P2m=Pm2+3Qm2=2Pm2_1

for any even m, by Eq. (292). If we define S, = 2P we therefore have
S, = 2P, = 4, and 8,41 = S,° — 2. Since (M, + 1)/2 = 27, Eq. (310)
is equivalent to Eq. (309).

We now give a brief account of the Mersenne numbers after Euler. There
were then eight known Mersenne primes, the Greek primes:

M,=3, My=17 M;=31, M,=127;  (311)

the medieval My; = 8191; and the modern M7, My, and My . Mersenne
stated in 1644 that for 31 £ p = 257 there were only four such primes,
Ms , Mg, My, and Ma; . While Euler had verified M3 the remaining
three were beyond his technique. There now ensued a pause of over a
century.*

In 1876 E. A. Lucas used a test which is related to Theorem 82 and is
described below. He found that M is composite and My is prime. With
one or another of these Lucas-Lehmer criteria, and with extensive compu-
tations by hand or desk computers, all doubtful M, were settled by the
year 1947 for 31 < p £ 257. It was found that

Mg, Mg, M, and My

are prime while the other M, including Ms; are composite.
The arithmetic necessary for a Lucas test of M, is roughly proportional
to p°, since that in the multiplication of two n digit numbers is proportional

* Peter Barlow, in the article “Perfect Number”’ in A New Mathematical and
Philosophical Dictionary (London, 1814), says “Euler ascertained that 2% — 1 =
2147483647 is a prime number; and this is the greatest at present known to be such,
and consequently the last of the above perfect numbers, which depends upon this,
is the greatest perfect number known at present, and probably the greatest that
ever will be discovered; for as they are merely curious, without being useful, it is
not likely that any person will attempt to find one beyond it.”
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to »n’. It is clear, then, that it becomes prohibitive to go much beyond
p = 257 without a high-speed computer. The Luecas prime My therefore
remained the largest known prime for three-quarters of a century. Further,
a test of Catalan’s conjecture was not possible. On the basis of Eq. (311),
Euler’s M3 , and Lucas’s My, Catalan had “conjectured” that if P = M,
is a prime then M p is prime. If this were true, Conjecture 2 (and therefore
Conjecture 1 also) would follow at once. But, for instance, is Mgy = M a1,
a prime?

A. M. Turing in 1951 utilized the electronic computer at Manchester,
England to test Mersenne numbers, but obtained no new primes. In 1952
Robinson used the SWAC in California and found five new primes:

]l[521 ) M607 3 M1279 3 MZ?OS ’ M2281 .

There are no others for 127 < p < 2309. In 1953 Wheeler used the ILLIAC
and proved that Mgy is composite. The computation took 100 hours!
Although it cannot be said that Catalan’s conjecture was nipped in the
bud, it was definitely nipped. It reminds one of the English philosopher
Herbert Spencer, of whom it was said that his idea of a tragedy was “a
theory killed by fact.” In 1957 Riesel used the Swedish machine BESK to
show that if 2300 < p < 3300 there is only one more Mersenne prime,
M7 . Finally, in 1961, Hurwitz used an IBM 7090 to show that for
3300 < p < 5000 there are two more Mersenne primes, M5 and M s .
The first of these is the first known prime to possess more than 1000 digits
in its decimal expansion, while the twentieth known perfect number,

P20 — 24422(24423 _ 1>,
is a substantial number of 2663 digits.

Exzercisk 156. The reduction of S,> modulo M » 18 facilitated by binary
arithmetic. For let 8, modulo M, be squared and equal §2° + R. If, there-
fore, R is the lower p bits of the square and @ is the upper p bits, then
S." = Q + R (mod M,). Or, if the right side here is >M,, then S,’ =
Q@ + R — M, . Thus the Lucas test requires no division if done in binary.

ExErcisk 157. (For those who know computer programming.) Estimate
the computation time—say on an IBM 7090—to do a Lucas test on Mgy, .
(For those who have used desk computers.) Estimate the computation
time—using residue arithmetic on a desk computer—to verify the following
the following counter-example of Catalan’s conjecture:

1 + 120 MM ar,,
that is,
2% = 2 (mod 62914441).
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64. A PROBABILITY ARGUMENT

The Lucas test of My on an IBM 7090 took about 50 minutes. It is
clear that once again we are up against current limits of theory and tech-
nology. Suppose one had a computer 1,000 times as fast. Then one could
test an M, for p about 50000 in about one hour. However, there are about
10 times as many primes to be tested in each new decade, so that one would
really want a computer 10,000 times as fast to do a systematic study out
to p =~ 50000.

How many new Mersenne primes can be reasonably expected for 5000 <
p < 500007 A related question is this: Why do we call it Conjecture 2?
Surely 20 Mersenne primes do not constitute “‘some serious evidence.”

The answer is suggested by the prime number theorem:

Y odn
n(N) ~ , Togn’
One can give a probability interpretation of this relation. However, it is
not rigorous mathematies. The probability that an n chosen at random is
prime is 1/logn. The heuristic argument goes as follows. Consider an
interval of positive integers, M — 1AM < m < M + $AM, with AM small
compared with M, but large compared with log M. Then the number of
primes in this interval we estimate by

MAEAM
f dm/log m.

MAAM

By the mean-value theorem this integral equals AM/log (M + ¢) for a
small e. Thus the ratio of the number of primes to the number of integers
here, which we call the probability, we may estimate as 1/log M.
Suppose now the Mersenne numbers M, are tentatively considered num-
bers “chosen at random.” Since log M, = p log 2 the probable number of
Mersenne primes M, for p, £ p £ p» would then be estimated by

3

=N

1 D

P=log2

bl

n

The series on the right can be shown to be divergent, so that by choosing
P large enough the probable number P could be made arbitrarily large.
Now, in fact, the error in our assumption can only reinforce this conclusion.
The “unrandomness” of the A7, is all in the direction of greater tendency
towards primality. Thus ¢+, if ¢ < 2p + 1. Again, any divisor of 17, is
of the forms 2pk + 1 and 8k = 1, and all 37, are prime to each other.
Everything we know suggests that our assumption errs on the conserva-
tive side.



198 Solved and Unsolved Problems in Number Theory

Were such a “random” assumption valid it would follow, from the
known rate of divergence of ), l, that if M,, are the successive Mersenne

primes, then log p; would grow exponentially. Empirically, the sequence
p: = 2,3,5,7,13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423 suggests a slower, linear growth of log p:. A reasonable
guess is that there are about 5 new prime M, for 5000 < p < 50000.

We know much larger composite M, than prime M, . For example, as
on page 29, Miggssemn is composite. Primes of such a size are completely
inaccessible to us with our current theory and technology. The Lucas test,
when done in binary, appears so simple (see Exercise 156) that it may be
hoped that one could penetrate more deeply into its meaning, and thereby
effect the next breakthrough. Alternatively, however, it is also conceivable
that one could obtain a (metamathematical ?) proof that the number of
elementary arithmetic operations here is the minimum needed to decide the
primality of M, . But, to date, neither of these things has been done, and
it is an Open Question which is the more likely.

ExEercisE 158. Give a heuristic argument in favor of infinitely many
Wieferich Squares, p°[2°~" — 1. On the other hand, “‘explain” their rarity.

65. FiBonacct NUMBERS AND THE OrigiNaL Lucas Test

Why do we single out /3 as a basis for a test; can we not use /5, say,
instead? The answer is that the original Lucas test did use /5, via the
so-called Fibonacct numbers.

Consider the continued fraction

1 1 1
eI T T4
Since z = 1 + (1/z), or * = z + 1, we have
z = 3(1 £ 5),

but since z > 0 we must take the + sign. The corresponding convergents

to (1 + /5)/2 are
1 2 35 8 13 21 34

2
The denominators (call them U,) are the Fibonacci numbers. They are
clearly definable by
U1 = U2 = 1, Un+1 = ljn + Un_l. (312)
The numerators are U, , and we have

Un+]/Un ~ %(1 + \/g) (313)
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It can be shown, by induction, that
- () - () e
The analogue of Theorem 80 is
Theorem 83. If p ¢s an odd prime,
pIUp, plUpy, or plUpn
according as p = 5, 10m =+ 1, or 10m = 3. Further, if p|U., and e is the
smallest such positive index,
e=205, ep—1, or ep—+1
respectively.

The original Lucas test was based on this Fermat-type theorem for /5.
If M = 10m — 3, and M|U 41, but M4+U, for every divisor d of M + 1,
it may be shown that M is a prime. Since

2P — 1= -3 (mod 10),

providing p = 3 (mod 4), the test is suitable for one-half of tlie Mersenne
numbers, including Me¢ and My, but not My . By computing Use-1 and
Uz» modulo M, one can determine the primality of the latter if p = 3
(mod 4).

Lucas then modified this procedure into an Euler Criterion—type test
as in Theorem 82. Let

Vl = 1, V2 = 3, V"+1 = V,, + Vn_l . (315)

_ {14+ /5 1 — 45\
Vo= (AY) + (L5) - vvn

If R, = Van, then it may be shown that

Then

R1 = 3, Rn+1 = R,,,2 — 2.
It follows, if p = 3 (mod 4), that M, is a prime if and only if
MRy .

Therefore Eq. (310) in Theorem 82 is also valid if we set S; = 3 instead
of 4, but only if p = 3 (mod 4).

The difference between 4/3 and /5 as the basis of a test therefore comes
to this—all M, are of the form 12m + 7, while some are of theform 10m + 1,
and others are of the form 10m - 7. Another reflection of this difference is
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that all even perfect numbers, except the first, end in 4 when written in the
base 12, but they end in 6 or 8 in decimal.

ExErcise 159. Prove the results stated in this section. More generally,
let z; + /Ny, be the smallest solution of 2° — Ny* = 4. Let S; = 2, and
examine the sequence S.4; = S,° — 2. Note that ¢ = z + (1/2z) where
z = %(z + \/Ny). Specifically examine N = 3, 5, and 6, and develop a
Lucas test based on S, = 10. Why can’t \/2 be used as the basis of a
Lucas test? Relate this to the fact that the /2 exists in 9 my—specifically,
(2P < 2 (mod M,).

Exzercisk 160. Use Eq. (232) with N = land @ + bi = cos § -+ ¢ sin 6
to derive the trigonometric addition laws for cos (8 =+ ¢), etc. Interpret
Eq. (244) as a generalized De Moivre’s Theorem. Interpret the vectors
(x:, y:) of Theorem 77 as an infinite cyclic group under the operation de-
termined by Eq. (244). Reduce these vectors modulo a prime p and discuss
the corresponding finite cyclic groups.

Exgrerse 161. (Lucas’s Converse of Fermat’s Theorem.) If mja™ ™" — 1,
and mta® — 1 for every divisor d of m — 1 which is <m — 1, then m is
prime.

SUPPLEMENTARY COMMENTS, THEOREMS,
AND EXERCISES

We utilize this section to tie down some loose ends developed in the
foregoing three chapters, and also to give some further comments and
exercises of interest in their own right. These results could have been in-
cluded earlier, in the appropriate sections, but it seemed better not to
attenuate the main argument. The 40 exercises which are given follow the
order of the corresponding topics in the text.

Exgrcist 18. On page 15 we noted a gap of 209 between successive
primes. Show that there exist arbitrarily large gaps by considering the
sequence m! + k with k = 2, 3, ..., m for a large value of m (Lucas).

ExEercise 25. A less tricky, but also less simple proof of the foregoing
result may be obtained by assuming the existence of a largest possible gap
m, and showing that a consequence of this is contradicted by the Prime
Number Theorem.

Exgrcise 3S. With reference to Conjecture 5, page 30, consider the
sequence:

@iy = 2a; + 1,

with @3 = 89. Then a;, ax = 179, a; = 359, a4y = 719, a5 = 1439, and
as = 2879 are all primes. But show that in any such sequence, regardless
of the starting value a, , the a; cannot all be prime. In fact, infinitely many
a; must be composite.

Exercise 48. (“Aus der ballistichen Zahlentheorie™)
Two missiles, u; and y. , are moving parallel to the x axis, and, at time
t = 0, they pass each other in the following kinematic attitudes:

z,(0) =22 (0) =0
% (0) e (0)
#(0) = 3 (0) = —1.

1

w1 has a sharp nose and many control surfaces, and therefore is decelerated
by a skin-friction drag force which is proportional to its velocity. ps, a
much older model (cirea 1850), has a blunt nose and no control surfaces,

201
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and therefore is decelerated by an air-inertia drag force which is propor-
tional to the square of its velocity.

21(8) — z2(2)

V) = ;

is the mean relative velocity, and is an analytic function of {. Show that the
initial value of its n’th derivative, that is

da'v

_d?n’ (0),

is an integer if and only if » + 1is a prime.

Exgrcisk 58. Consider the seven sets of four residue classes b modulo 24
in the table on page 47. Omitting the residue 1 the remaining residues may
be diagrammed as follows:

n2-3 n2-2

n2-6

Six of the seven sets are shown as straight lines through three points. But
the seventh set, n’ 4 1, is represented by the dotted line.

This would appear to give special roles to the form n° + 1 and the res-
idue class in the center, 23 = —1 (mod 24). But a priori no residue class in
M4 except 1, and no subgroup of order 4, has a special role. Show, in fact,
that any of the seven n* 4+ a may be given this “special role,”” and any &
not on it may be placed in the center. There are thus 28 such diagrams.

But is there a configuration of seven straight lines and seven points, with
each line on three points, and three lines through each point, so that we
could draw a diagram with no n° + @ in a “special role”?

ExErcisk 63. Show that Conjecture 12, , on page 48, implies that
P, (N) ~ Py (N).

Compare with the empirical data.
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Exercise 78, Let N be written in decimal:
N=0a10"4+a,,10""+ ...+ 0,10 + ao.
Let the sum of the digits be
Sy =@+ tat+ ... + 01+ a
and the alternating sum and difference be
Dy =a,— G+ ... + (—1)"a,.
Using residue algebra prove the divisibility criteria:
3IN < 3|Sw,
9IN <« 9|Sv,
11N < 11|Dy .

Exercise 88. (Gauss, Reciprocals, and Fermat’s Theorem) On pages
53-54 we indicated that Gauss independently discovered Fermat’s Theorem
from his studies, as a boy, of a table of reciprocals. Let us put ourselves in
his place and reconstruct his discovery. Gauss computed a table of recipro-
cals 1/m out to m = 1000. If p(m) designates the period of 1/m in decimal,
the period for all m < 100, and prime to 10, is given in the following table:

PERIOD OF 1/m IN DECIMAL

m p(m) m 2(m) m p(m) m p(m)

1 — 3 1 7 6 9 1
11 2 13 6 17 16 19 18
21 6 23 22 27 3 29 28
31 15 33 2 37 3 39 6
41 5 43 21 47 46 49 42
51 16 53 13 57 18 59 58
61 60 63 6 67 33 69 22
71 35 73 8 77 6 79 13
81 9 83 41 87 28 89 44
91 6 93 15 97 96 99 2

Now, being Gauss, the reader at once notes: p(m) < m always; p(m) =
m — 1 only if m is prime; but p(m) 5= m — 1 for every prime m; however,
if p(m) # m — 1 for some prime m, then p(m)jm — 1 for that prime; and
this implies m|10™" — 1 for every prime m other than 2 and 5.

Now prove this “conjecture” by noting, first, that the significance of the
p(m) = m — 1, for some prime m, is, that during the division involving
p(m) digits, each remainder r (that is, residue of 10"), from r = 1 to
r = m — 1, occurs exactly once. If p(m) = ¢ < m — 1 for some prime m,
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e different remainders occur. If @ is not one of these, a/m also has a period
of ¢ and these e remainders are all distinct from the foregoing. By continua-
tion, and exhausting all possible remainders other than zero, ejm — 1. But
the base 10 plays no essential role in the argument so that, for any prlme
m, (¢, m) = 1 impliesmla™ ' — 1 or a™ " = 1 (mod m).

Now, reader, relinquish your role as Gauss, resume that of a student and
verify that Gauss’s proof of Fermat’s Theorem, in his book Disquisitones
Arithmeticae, is essentially that which we have just reconstructed, and
further, with a slight abstraction, this is the classic proof of Lagrange’s
Theorem (Exercise 71 on page 86) given in any book on group theory.

Note that whether one is led to Fermat’s Theorem via the perfect num-
bers, or via periodic decimals, the problem does not initially concern
itself with the concept of primality. The concept asserts itself, and enters
the problem whether the investigator wishes it or not.

Exercise 98. Let p be prime and pta. If p = 1 (mod 4), ¢ and —a are
both quadratic residues of p, or neither 1s. If p = —1 (mod 4), exactly
one of the two, a or —a, is a quadratic residue of p.

Exgrcise 10S. In Exercise 34, page 47, we saw that any value
ofa = —1, %2, 43, or &6 is a quadratic residue for one-half of the primes,
and a quadratic nonresidue for one-half of the primes. Investigate this
problem for all a. Start with any ¢ = (—1)®""p, where p is an odd prime,
such as ¢ = =3, +5, —7, —11, 4-13, ete. Use Theorem 30 on page 63,
and the Quadratic Reciprocity Law in the form preferred by Gauss:

e T

and let ¢ be a prime of the form kp + b. Now let a = (—1)"™"""?M, where
M is a product of distinet odd primes, and use Theorem 33 and its Corollary.
Then let a be the negative of the foregoing, with ¢ of the form k (4M) + b.
Introduce a factor of 2 with ¢ = k& (8M) + b, and finally introduce any
square factor.

Exgrcisg 118. Generalize the ideas in Theorem 33 to obtain the famous
Chinese Remainder Theorem. Consider n moduli m; prime to each other:
(mi,m;) =1 (7 # 7).
Then the set of congruential equations:
r = ¢; (mod m;) (1=12..,n) (317)

has a unique solution x modulo the product M = m; - my ... m,, . The solution
may be obtained from the inverses:

ai = (M)_-l (mod m;) (318)

i
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by the formula
= Z i — ¢; (mod M). (319)

As an example find the four square roots of unity modulo 2047 = 23-89
by solving all four cases of
x
x

Further, two solutions of z° — 2 = 14 (mod 2047) are obviously x = 4.
Find two others.

+1 (mod 23)
+1 (mod 89).

i

Exercise 128. Investigate the parallelism between the proofs of Theo-
rems 34 and 36, both of which are due to Gauss. But also consider the
significant difference whereby the ¢(d) solutions z in the former theorem are
given explicitly, while the ¢(d) residue classes of order d in the latter are
shown to exist nonconstructively.

Exercist 13S. If ¢ is a primitive root of p, a prime of the form 4m + 1,
then so is p — ¢ a primitive root of p.

Exgrcisg 14S. Show that the two proofs of the “if”’ part of Wilson’s
Theorem, that by Dirichlet, equation (52), and that of Exercise 54, page
74, are not as unrelated as they seem at first.

For the classical trick of summing s = 2521 n is to write the same sum
backwards and associate integers with a common sum, thus:

8 1 + 2 +--+(p-2)+@(-1
s=(p-—-0D+p-2)+p-3)+---+ 1
2=@p-D+Gp-D+@E-D+---+(p-D+(p-1).

|

On the other hand Dirichlet’s proof associates integers with a common
product, and one proof is a logarithmic version of the other.

As an aside the reader may note that the same ‘“‘classical trick,” ab-
stractly speaking, is also at the foundation of Euclidean metric geometry.
Euclid’s I, 34 states that the diagonal of a parallelogram divides it into
two equal parts:

The parallel postulate comes in at I, 29, and the reader may verify, in the
diagram on page 129, that all further consequences of I, 29 leading up to
the Pythagorean Theorem utilize this I, 34.
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ExEercisk 15S. A student, S. Ullom, notes in the diagram on page 75,
that if we take differences modulo 17 we get the cyclic group again, rotated
through a certain angle:

Prove that this property holds for every prime p and primitive root g.

Exercise 168. In the definition of subgroup on page 83 it is redundant
to stipulate that the set contains the identity. Further, if the group is
finite, it is also redundant to stipulate the presence of every inverse. A sub-
set of a finite group therefore is a subgroup of that group if it merely
satisfies the closure postulate, (A) on page 60.

Exgercise 178. Ullom asks if the converse of Theorem 41 on page 85 is
true. If all the squares in a group have an equal number of square roots
is the group necessarily Abelian? Answer by A. Sinkov, no. There exists a
non-Abelian group of order p° for every odd prime p wherein each element
has one square root.

Exgrcise 188. If 91,, = M.+, their cycle graphs may be drawn so that
that they look alike, i.e., they may be superimposed. Show that the con-
verse is true; if they look alike, they are isomorphic.

Exercise 198. To prove the criterion for the three-dimensionality of the
cycle graphs of certain 91, given on page 97 proceed as follows. First,
note in 9 the configuration involving the 3 square roots of unity other
than 1,namely, 62,8, and 55, and any three of the quadratic residues other
than 1, say, 4, 25, and 37:
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This portion (sub-graph) of the cycle graph is already three-dimensional
(nonplanar). To see this, let us attempt to place these six residue classes
in a plane and connect them without any crossing lines. First draw

The path shown is a so-called Jordan Curve, and by the Jordan Curve
Theorem, which see, the third quadratic residue can topologically go into
only two places, the “inside” or the “outside.” Any two points in the
inside may be connected by a continuous arc lying wholly within the in-
side. Similarly for the outside. But if one point in the inside is joined to a
point in the outside the connecting arc must cross the Jordan Curve.
Choose the inside for the residue class 37 and conneet to 8 and 62:

D

Now, by the Jordan Curve Theorem, we have three options for locating
55. Complete the proof that this sub-graph is nonplanar.

Since it is nonplanar it is clear that completion of the cycle graph, by
adding other residue classes and lines, cannot undo this property, and there-

“fore Mg is also nonplanar.

Finally show that if 91, has at least two characteristic factors, f. and
fr-1, which are not powers of 2 the cycle graph of 91, must contain a sub-
graph similar to the foregoing and therefore 9M,, is three-dimensional.

Exercisk 208. If, as on page 97,
3, = <2°> - 2> .- 2> - L2N>
for some odd N = 1, and likewise if

e, = <2> - 2> - <2> - <2N'>
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with the same characteristic factors except for the last, prove that the
cycle graphs of 9, and 9M,,» may be drawn so that the latter will contain
N’ lobes of the same structure as the N lobes in the former.

Exercise 218. If N = 1 in the previous exercise we may say M, is one-
lobed. Examples illustrated on pages 87-91 are M, My, Mos, Mes, Mss, and
IMys . Gauss proved that an m-sided regular polygon may be constructed
with a ruler and compass if, and only if, m is a power of two times a product
of distinet Fermat primes. An m-sided regular polygon is therefore so
constructable if, and only if, 91,, is one-lobed.

ExErcisk 228. Prove the statement on page 98 that a cycle graph which
contains four lobes of {2-2} does not represent a group since it implies a
violation of the associative law.

Exercise 238. On page 102 we indicated that the computations for ob-
taining the representation of 9, from the primitive roots of the corre-
sponding primes were indicated explicitly in the proof of Theorem 44,
However, on page 99, only one of the two, h or k + p, was proven to be a
primitive root of p*, k& > 1. Remove this fentative feature by showing, first,
that if

hn = h + np, (n=01,2 ..p—1)

the p values of A2~ modulo p’ are all incongruent and exactly one of them,
8y hm , satisfies A2 = 1 (mod p%). Now solve for m and give an explicit
formula for k., . The latter is a primitive root of p” for all k& > 0.

ExErcise 24S. If the fallacious result in Exercise 80 on page 102 were
true, it would follow from Exercise 79 that if 3 is primitive root of 487, it
would not be a primitive root of 487°. But show by computations like those
on page 102 that 3 is a primitive root of both 487 and 487,

Exgrcist 258, There are infinitely many primes of the form 12k — 1.

ExercisE 26S. The integer 2047 is a fermatian but not a Carmichael
number. If(a, 2047) = 1, the probability that ¢ = 1 (mod 2047) is 1.

Exgercisk 278. Prove Theorem 57 on page 138 without explicit reference
to unique factorization. For if (¢, a) = g, let ¢ = Cg, a = Ag, and utilize
(4,C) = 1.

ExercisE 28S. Attempt to prove Theorem 63 on page 150 for the
Gaussian integers. These are the algebraic integers in the field k(") —see
page 152. If you succeed, try also k(¢*"*), and if you succeed here attempt
to prove Conjecture 16 for the exponent 3. See page 152.

ExErcise 298. Attempt to prove Theorem 68 on page 162 by elemen-
tary means. Alternatively, investigate the elliptic theta functions and
attempt to rederive Jacobi’s proof mentioned on page 165.
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Exercise 30S. Attempt to prove Theorem 75 on page 168.

ExercisE 318. (Euler’s Identity) Unlike the result of Diophantus on
page 159 for sums of two squares, m = o’ + b* + fandn = & + f* + ¢
do not imply that mn = j* + k* + I. Find a counter-example. Derive from
the vector algebra on page 169 the true relation:

(a® + b + cz)(e2 +f2+ gz)
= (ae + bf + ¢g)’ + (bg — ¢f)" + (ce — ag)’ + (af — be)".

But for four squares we again have a result analogous to that for two
squares, for show that the last equation is a special case of Euler’s Identity:

(a2+b2+c2+d2)(e2+f2+g2+h2)
= (ae + bf + cg + dh)* + (of — be + ch — dg)*  (321)
+ (ag — bh — ce + df)* + (ah + bg — ¢f — de)™.

With reference to a textbook of modern algebra examine the parallelism
between Diophantus’s Identity and complex numbers on the one hand,
and Euler’s Identity and guaternions on the other.

(320)

Exercisk 328. (A false start on Theorem 61) In view of Euler’s Identity
in the previous exercise, if
p=w+2"+y +7
for every prime p, the Fermat-Lagrange Four-Square Theorem on page
143 would follow by induction. Now, by Theorems 60 and 72,
p=a2+b2—|—02+02,
or p=a2-l—b2+b2—i—02

for all primes except those of the form 8% + 7. Of the latter one-half are of
the form

p=a2+b2+b2+b2
by Exercise 129. Now attempt to express at least some of the remaining
primes in the form

a4+ (240" or &+ b+ b+ (2b)°
by use of Theorem 75. The attempt fails.

Exercise 338. (Lagrange’s Four-Square Theorem) A proof of Theorem
61 is known which is remarkably like that of Theorem 60 on page 159.
There are small differences, due first, to the fact that Theorem 60 applies
only to primes = 1 (mod 4) while Theorem 61 applies to all primes, and
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second, because 4(3)* = 1, while 2(3)* < 1. We first prove the

Lemma. For every prime p there is a qosuch that 1 < g, < p and
Pgo = Clo2 + bo2 + 002 + doz- (322)

1'51;01;'1) = 2 this is obvious, and for p = 1 (mod 4) we proceed as on page
5 w1tl? ¢ = dy = 0. For p = —1 (mod 4) let @ be the smallest positive
qua‘mdratlc nonresidue of p. Then ¢ — 1 and P — a are both quadratic
residues; and, by adding these, find an a, and bo such that

Pho = a0’ + b’ + 1° + 0
with ¢o < p.
If go is even in (322), 0, 2, or 4 of the integers there, ao, b , ¢o , and do

are even. By associating integers of the same parit . .
, and
necessary, show that panty renaming them if

_ qo ao + bo 2 ay — ’ : :
pql—p(§>=< . )+(02b0>+<00-§d0)+<00—2d0).
But 1f 9 is odd proceed as in equation (217), page 159, ete., using the
identity of Euler instead of that of Diophantus, and thereb’y ob’.c7ain a g less

than g, . Now complete the proof, again using (321). v
The foregoing proof of the Lemma uses (=1|p) = (—1)* for both

classes of o‘dd primes, p = 2P 4+ 1 = 41 (mod 4). A different proof uses

the Box Principle on the p 4 1 residue classes 1

2
¢ and —1 — 2?

with 0 £ ¢ < P. Then show that

Ii2 = —1 - xjg (mod p)

for at least one ¢ and j, and thus that
P =z’ + =z + 17 4 0
fora g, < P.

Exercise 348. (Waring’s Conjecture) The integer7 =44+ 14+141

cannot b S imi
ooy ¢ expressed as a sum of fewer than 4 squares. Similarly prove

23=8+8+1+1—|—1+1+1+1+1

and
79 = 416 + 15-1

cannot be written as a sum of fewer than 9 positive cubes, and 19 bi-
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quadrates* respectively. Verify the generalization stated by one of Euler’s
sons that if

3 = 2% g+ m with 0<m <25 (323)

then the integer 2 g, — 1 cannot be written as a sum of fewer than I(k)
positive k’th powers where

) =2 +q—2=2"+ [@)k] —2 (324)

Waring had earlier implied that every positive integer is the sum of I(k)
non-negative k’th powers.

A great deal of modern work in this direction has succeeded in “nearly”
proving Waring’s Conjecture. Hilbert proved that for every positive k
there is a smallest g(k) such that

gtk)
n= ), Tm

m=1

k

for every positive n, with non-negative z.. But he did not show that
g(k) = I(k), nor even give it an upper bound.

Wieferich proved that g(3) = I(3) = 9, and Pillai proved that g(6)
= I(6) = 73. Dickson and Niven proved that if

< 2F — q, (325)

and k = 7, then g(k) = I(k). Verify (325) for 1 = k < 10. It is now con-
jectured that (325) is true for all positive k, and, if this were true, Waring’s
Conjecture would be proven for every k except 4 and 5. If (325) is false
for some k, and if fi = [($)"], Dickson showed that, for that k,

g(k) = I(k) + fe,
or g(k) = I(k) + /r — 1,
according as 2 = figx + fx + quor 2* < fiqe 4+ fr + gi. Verify that

Y T 2¢ >~ —1 and therefore one of these two conditions must

hold. In these cases, if any such exist, Waring’s Conjecture would be

false.
With reference to the ideas suggested by the cycle graph for e, show

that, if £ = 3,

Estimate by heuristic probability considerations the probability that

* Biquadrate means fourth power.
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(325) is violated for a particular k. Therefore show that the odds would
favor the truth of Waring’s Conjecture for all & = 10.
There remain the hardest cases, & = 5 and k = 4. Dickson showed that

I(5) = 37 = g(5) = 54,
and Chandler showed that
1(4) =19 = g(4) = 35.

It is curious that the easiest exponent for Fermat’s Conjecture, namely,

4, is the hardest exponent for Waring’s. Nonetheless the earliest and

simplest result, due to Liouville, is for this exponent, and like the same

exponent in Theorem 62 it utilized the theory for the exponent 2.
Liouville showed that ¢(4) = 53, that is

b3
n= D T .
m=1
Let n = 6¢ + r, and, using the Four-Square Theorem,
n = 6a° + 6b° + 6¢° + 6d° + 1.
Again use this theorem on a, b, ¢, and d so that
4 2 8 2 12 2 16 2
n = 6(fo) + 6<Zx,~2> +6<Zx,~2> +6(fo) + 7,
1 5 9 13

where r = 0, 1, 2, 3, 4, or 5. Now Liouville uses the identity:

6 (Z}: Ii2> = (xx + x2)4 + (Il - 1?2)4 + (701 + Z3)4 + (Il - Is)4

+ (@4 z)' 4 (11— 2)' + (2 )+ (22— 2)* (326)
+ (9?2 + $4)4 + (xz - 1‘4)4 -+ (fvs + 1‘4)4 + (Is - x4)4-

Verify this identity and the proof follows at once.

When Liouville’s recipe is applied to n = 79 we get exactly 19 positive
biquadrates, not 53. We get, in fact, the representation on page 210.

The reader who wishes to pursue these problems will find a vast litera-
ture. There is not only the extensive analytic theory (due to Dickson
et al) mentioned above, but Waring’s Problem has also been extended to
algebraic numbers by C. L. Siegel et al. There is also the so-called “easier”
Waring’s Problem. Note that if we allow negative integers, 23 is the sum
of only 5 cubes:

23 = 3 + (1P + (=17 + (=1 + (=17
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More generally, a representation in the form
no= 2 =+ (a)'

is allowed in this ‘“‘easier”’ Problem (E. M. Wright et al).
Show that, with this new degree of freedom, the 4 squares necessary in
Lagrange’s Theorem may always be reduced to 3, e.g.:

28 = 147 — 13% + 1%

More generally, a representation as a sum and/or difference of three
squares is also possible for those algebraic integers which may be written
as a sum and/or difference of any number of squares (R. M. Stemmler).
Examine the Gaussian integers and show that not all of them are repre-
sentable as a sum and/or difference of squares.

Exercise 358. (Theorem 76 for N = —2, see page 171)

Theorem 76; Let n = +1 (mod 8) and be > 1. If nis prime,n = a* —2b
n a unique way in positive integers a and b such that b = \/n/2. Further
(a, b) = 1. Conversely, if n = &® — 20° in a unique way in non-negative
integers with b £ /n/2, and if (a,b) = 1, then n s prime.

First show, for any positive n, that if n = o® — 2b°,and if @ > +/2n, we
also have n = a” — 2b,° with

a; = 3a — 4b,
b = 3b — 2a,

and0 < a; < a. For the smallest a > 0 we therefore must have a £ \/2n,
and b £ v/n/2 follows.
Show uniqueness, for n prime, somewhat as on page 160 with Eq. (232)

instead of (215). From the analogue of Iigs. (222) and (223), and the in-
equalities for @ and b, obtain a contradiction with a solution of

at — 2" =1
having 0 < b < 2.
Finally, one must prove the converse.
Further, for n prime, if x and y are obtained from Thue’s Theorem, as

in the proof of Theorem 74 on page 166, show that 2y — z = a and
y — x = b give the unique solution indicated in the above theorem. From

—M, =1 — 202"

obtain a solution of
M,=d — 2

with b < /M /2. Find such a representation for M7 and two such for M1 .
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Develop a result analogous to Theorem 76, for a* — 3b°.

Exercise 36S. Using heuristic probability considerations similar to
those used for Mersenne numbers on page 197 argue that there are only a
finite number of Fermat primes as is suggested on page 80. Why is the
argument less convineing in this case? ‘

ExercisE 37S. Obtain the constant (35a) for Conjecture 7 by a prob-
ability argument. If the probability of n + 2 being a prime were inde-
pendent of the probability of n being a prime, we could assign 1/(log n)*
as the probability that both are prime. But if n > 2, prime, and therefore
if 2¢n, we automatically have 2in + 2. We therefore (tentatively)
correct the probability to 2/(log n)® since on this ground, if n is known to
be prime, n 4+ 2 now has twice the probability. But, again, if n > 3, prime,
and therefore 3n, n 4 2 has 1 chance in 2 of being divisible by 3, not 1
chance in 3. We again correct to

1
21—5 1
) 1 (logn)?~
3

By continuation, obtain (35a), and by integration obtain the conjectured
asymptote in (35).

For large N it is known that the agreement in (35) is good. Thus D. H.
Lehmer finds Z(37-10°) = 183728, while the right side of (35) for
N = 37-10°is 183582. - - -.

Exzrcisk 388. If Z%(N) is the number of pairs of primes of the form
n —kandn + kforn + k = N, advance an argument to show that

Z(?)(N) ~ Z(l)(N),
but
Z(S)(N> ~ 2Z(1)(N)-

ExEercisE 39S. Develop a strong conjecture which bears the same rela-
tion to Conjecture 4 as Conjecture 7 does to Conjecture 6. Using the
datum Z(1000) = 35 estimate the number of M, , with p < 1000, for
which 2p 4 1|M, . Compare with the list on page 28.

ExEercise 408. (Lucas Sequences) From page 199 the S; = 4 in Theo-
rem 82 may be replaced by 8, = 3 for one-half of the 3, . But in Exercise
159 it develops that S; = 10, like S, = 4, is valid for every M, . Show
that besides S; = 4, and S, = 10, there are infinitely many such wniversal
starters. For instance 52 is one such, and if z is one, so is z(z* — 3). Hint:
Note, on page 188, that 4 = 2P, while 52 = 2P .
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Study the transformation
Tip =2 — 2 (327)

acting upon every residue class modulo a prime M, . For 3; verify the
following diagrams:

Here the — means application of the transformation (327).
Now note the following: 52 = — 10 (mod M5 ). The repeated applica-
tion of the transformation

Tiy = xi(xf - 3) (328)

to any of the 8 possible starters in the top row of the main pattern gives
a cyclic sequence of period 8 which runs through these 8 starters. Applica-
tion of (328) to the second row gives the second row in a cycle of period
4, ete. Omitting the residues 0 and £2 all 3(M; — 3) of the remaining

2
r - 4) = —1 while the ¥(M; — 3)

residues in the main pattern satisfy (
5

2
. . r —4
residues in the spiral patterns satisfy ( i ) = +1.

AWl 5
Develop a general theory for all prime A, , proving the main theorems,
if you can.
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66. CHAPTER I FIFTEEN YEARS LATER

First, read the Preface to the Second Edition. Square brackets below
indicate references: [1]-[34] are the annotated references of the first
edition, while [35]-[154] have been added for this chapter.

There has been work on Open Question 1, page 2. In [35] Hagis shows
that no odd perfect number is less than 10%°. His long, detailed 83-page
notebook [36] has been carefully checked by his principal competitor
Tuckerman, and so we must accept it as valid. In [37] Buxton and
Elmore claim 10?®, but I do not know that their proof has been
similarly authenticated.

Does this 10°° bound change the status of Open Question 1 to that of
a Conjecture? Not in my opinion; 10° is a long way from infinity and
all we can conclude is that there is no small odd perfect number. In
fact, of the 24 known even perfect numbers, only the first nine are
smaller than 10%°, so we cannot even state that P,y = 25Mg ~ 1.9 - 10
is the tenth perfect number. When one examines the elaborate [36] it
certainly seems doubtful that anyone will overtake Py, = 2199360, ~
9.3 - 10'2%2 by such methods. But Hagis himself graciously implies [38]
that Tuckerman’s algorithm [39] may be more powerful than his.

There has been work on the table of =(n), page 15. Lehmer’s 7(10'%)
listed there is correct as shown, although [3] erroneously gave it as 1
larger. Bohman [40] worried about this discrepancy at length, but he
then continued, using the same method, to compute

7(101) = 004118054813,
7(10'%) = 037607912018,

7(10'8) = 346065535898

The gap of 209 consecutive composites on page 15 is the largest gap
[4] that occurs up to 37 million. Skipping over intermediate work, which
is referenced in Brent’s [41], we find in [41] that the prime p =

217



218 Solved and Unsolved Problems in Number Theory

2614941710599 is followed by 651 composites and that all gaps that
occur before p are smaller. Every possible gap 1,3,5,... up to 533
occurs below p, and its first occurrence has been recorded. The evidence
in [41] and elsewhere supports the conjecture that I gave in [42] and I
now wish to add

Conjecture 18. Let p(g) be the first prime that follows a gap of g or
more conseculive composites. If all gaps that occur earlier are smaller
than g we call g a maximal gap, and we have the asymptotic law

log p(g) ~V'g (329)

as g — oo.

More general and stronger conjectures are discussed in [41] and in
papers cited there.

Section 10 made the point, like it or not, that the perfect numbers had
a great influence in the development of number theory. Aliquot

sequences are closely related to perfect numbers. One iterates the
operation

s(n) = o(n) — =, (330)
where o(n) equals the sum of the positive divisors of n. See [43] for an
introduction. If s(n) = n, then n is perfect. Study of these sequences
has surely been one of the causes of the many remarkable new develop-
ments in primality theory and in factorization methods that have
occurred in recent years. So we see the same forces acting before our
very eyes (at a lower level, to be sure). The reason is clear: the perfect
numbers (always) and the aliquot sequences (frequently) grow very
rapidly, and if one is to handle them one is constantly forced to invent
stronger and stronger methods. The sequences a™ + 1 are also related,
and a project for factoring them has been another cause of these new
developments. Their exponential growth creates the same situation and,
as before, Necessity becomes the Mother of Invention.

Now consider Conjecture 4 and Exercise 16 on page 29, and the
answer to the latter on page 169. Exercise 39S calls for a stronger
quantitative version of Conjecture 4, and we could also ask for a

stronger modification of Exercise 16. The generalization was given in
[44] and we call it

Conjecture 19. Let f,(N) be the number of M, with p < N that have a
prime divisor d = 2kp + 1. Then

FAN) ~ 2(N) (iw/4)g(q—;)[1_ll(f?2]vk_} (331)
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as N - oo, where Z(N) is the right side of (35) and the product above 1s
taken over all odd primes g, if any, that divide k.

In [44] the conjecture is stated in a stronger form: the order of the
error term is given. The heuristic arguments and data given in [44]
make Conjecture 19 very plausible. We return to it presently.

Conjectures 6 and 7 about twin primes are truly key questions. The
twin primes 140737488353700 + 1 were the largest known to me in 1962
but one of the new primality criteria alluded to above has yielded [45]
the much larger pair 76 - 31 + 1. These primes have 69 decimal digits
but no doubt even larger pairs could be found by the same method.
Brent [46] (see also [47], [48]) has counted the twins up to 10*! and finds

2(10') = 224376048,

so that we could now give one pair to every American.

The evidence for Conjectures 6 and 7 is overwhelming, and although
they remain unproved, interest has already shifted to the second-order
term

ra(N) = Z(N) — 2(N). (332)

This difference oscillates [46, Fig. 3] around zero in an unpredictable
way; it is not understood at all [48].

In his famous paper [49] that initiated sieve theory, Brun proved that
the series

T 1 1 1 1 1 1 1
= = 4+ — 33
B = 3+5+5+7+ +13+ +19+ (833)

converges. The denominators here are the twin primes. The accurate
computation of Brun’s constant B is a real challenge [50]. Assuming
(35), Brent [46] estimates

= 1.9021604 = 5 - 1077 —] (334)

This is probably correct, or nearly correct, but the unpredictable r4(N)
makes it very difficult to obtain greater accuracy. While B is a well-de-
fined real number, its evaluation to, say, 20 decimals would not only
require a proof of Conjecture 7 but would require the understanding of
r4(N) besides.

For all primes, the analogous

N odn
) = [ g )

can be expressed in terms of the complex zeros of the Riemann zeta
function [51]. That is bad enough, but for r4(N) we lack even that.
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The generalization Z*)(N) of Conjecture 7 referred to in Exercise
38S, which counts the prime-pairs

n—k , n+k (335)

for n + k < N, had been examined in [4] for k =1,2,...,70. The
more difficult problem

Pnsr — P, =2k (336)
concerning consecutive primes has been impressively studied by Brent.
In [41] he estimated the value of p, . ,, where (336) is first satisfied, and
in [52] he estimated the number of solutions of (336) for p,,; = N. His
extensive empirical data convincingly agrees with the conjectures de-
duced there from reasonable heuristic arguments. Of course, none of
these conjectures was proved.

Going beyond the linear polynomials (335) to Conjecture 12, and the
table on page 49, let us add [53] as another source of data on P,(N)
besides the earlier [16]. For P,(N) alone, that is, for primes of the form
n* + 1, Wunderlich [54] has gone much further and we record his

P,(10% = 54110 and P,(107) = 456362.

As expected, they agree well with Conjecture 12.
The Bateman-Horn Conjecture [34] is a most important generaliza-
tion. Briefly (but see [34]), if

f(n), fom), - - - fi(m) (337)

are k independent, irreducible polynomials in n, and if Q(N) is the
number of n £ N for which all of the k f(n) are simultaneously prime,
then

Y
am~c [ (338)
s (logn)
as N — oo, where C depends upon the array (337) and is given by a very
slowly convergent product.
The linear and quadratic cases above are all special cases of (337) and
all other polynomials that have been studied, such as

fi=nt+1, fi=n?+3, f,=mn%+1091,
fi=s(n=1"+1, fi=(m+10*+1,

ete. have given results consistent with (338). An accurate computation
of the appropriate C is frequently difficult, but in [55] Davenport and
Schinzel give a useful first approximation. Recently [56], Epstein zeta
functions have been found to be very effective in computing many such
constants C accurately.
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Except for the single linear polynomial f, = an + b, with (a, b) = 1,
where (338) reduces to the (28) in de la Vallée Poussin’s Theorem 16, no
case of (338) has been proved. Nonetheless, one can be quite confident,
for example, that although f, = n* + 2 has never been studied, one can
now compute its C accurately (say, to 12 decimals) by Epstein zeta
functions and would find that that C and £ =1 in (338) would ac-
curately estimate its Q(N) for large N.

An unusual result of Hensley and Richards may offer a different type
of evidence. If the f; in (337) are all linear, and if we assume infinitely
many k-tuples of such primes for each suitable array (337), without
requiring the stronger result (338), Hensley and Richards [57] show that
for some integers  and y = 2 we have

a(x + y) > =(x) + 7(y). (339)
Since this contradicts a frequently suggested property of #(x), it would
be desirable to find such a counter-example. There is none with x = y,
since it was recently proved [57a] that 7(2z) < 2#(x) if « 2 11. While
an example of (339) would certainly not prove the k-tuple prime
conjecture, it would at least verify a predicted but unexpected con-
sequence. _
Goldbach’s Conjecture 8 has been verified [58] by Stein and Stein for
all even numbers up to 10°. The historically important variant

dn+2=p,+ p,

with p; = p, = 1 (mod 4), which was mentioned on page 244, was also
verified to the same limit if we allow p, = 1 for a few small ». Hardy
and Littlewood [9] also gave a strong version of Conjecture 8. If P(2n)
is the number of solutions of

2n = p; + p;
then
P(2n) ~ z(Zn)H(———Z — ;), (340)
qln

in the notation of (331). This has been satisfactorily verified to n = 10°
in [59]. See also [60] for a different version.

The extensive development of sieve methods since Brun’s time (cf.
[61]) has been largely directed towards the proofs of weakened conjec-
tures. The result that is closest to (340) was obtained by Jing-run Chen
[62] (ef. [61]). He showed that, for all n greater than some =, the
number of solutions of

2n =p, + P,

where P, is the product of at most two primes, is greater than one-third
of the right side of (340).
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As this is being written, there has just appeared [63] a result of
Pogorzelski which states “The Goldbach Conjecture is provable from
the following: The Consistency Hypothesis, The Extended Wittgenstein
Thesis, and Church’s Thesis.” It seems unlikely that (most) number-the-
orists will accept this as a proof of Conjecture 8 but perhaps we should
wait for the dust to settle before we attempt a final assessment.

Schinzel [64] has generalized the strong Goldbach conjecture (340).
This complements the Bateman-Horn conjecture and, although it has
not been studied as extensively as the latter, there is no reason to think
that it is not equally reliable.

Finally, returning briefly to (331), we note that only for k£ = 1 is this
contained in the Bateman-Horn Conjecture. For k = 3,4,5,7,... (331)
takes us into a new realm and thus suggests [44] that the Bateman-
Horn conjecture can and should be generalized further. Also of interest
in {44] is the speculation there that it may now be possible to prove
Conjecture 8, which states that there are infinitely many Mersenne
composites. Of all the conjectures in Section 12, Conjecture 3 is cer-
tainly the hardest to doubt and perhaps the easiest to prove. It is
embarrassing that none of the conjectures in Section 12 are yet proved
and good strategy therefore suggests a serious attack on Conjecture 3.

Exercise 162 (“Hard Times”). In the 4000 numbers fi(n) = n® +
1091, (n = 1 to 4000), there is only one prime. Identify it, and estimate
the small constant C in (338) for this f,(n); [65], [66].

67. ARTIN'S CONJECTURES, 11

Artin’s Conjecture 13 remains as before: there is little doubt that it is
true, but it has not been proved, not even for a single base a, including
the values a = — 2, — 4, + 3 cited in Theorems 38-40. For ¢ = 3 in
Theorem 40, while many new factors have been found for various F,,
[67], [68], [69] including the spectacular factorization

F, = 59649589127497217 - 5704689200685129054721,

not a single new prime F,, has been found and perhaps there are none.
Nonetheless, there is little doubt that Conjecture 13, and Conjecture 14
also, are true for a = 3.

But Conjecture 14 is not true, as it was stated, for all a # bd™ with
n > 1; in particular, it is false for a = 5. The heuristic argument for
a = 2 on page 82 is sound, and it also applies to @ = 3. But fora =5 it
is not sound; Artin has an oversight here and we have followed him too
uncritically. Those p that have 5 as a quintic residue, i.e., those for
which one has 5|G in the notation above, were deleted there by multi-
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plying by the factor

1
(1 e 4).
But these p are all =1(mod5) and since (5/5k + 1) = + 1 by the

Reciprocity Law, they also have 2 |G and we have already deleted them,
with the factor ‘
1
(1 - E)‘

For a = 5, being a quintic residue is not independent of being a
quadratic residue. That is the only erroneous factor for a = 5, and so
we should expect

(N) ~ 20 4n(N) (341)

instead of (117). Therefore, a = 5 should have a density of primitive
roots that is about 5% higher.

What is really embarrassing here is that it is just what one finds in
Cunningham’s table on page 81! We accepted the high »;(10,000) = 492
there because it exceeded Am(10,000) = 459.6 by less than 2V'459.6 and
by an imprecise probability estimate such an excess seems to be an
acceptable fluctuation. If Cunningham had continued his table for
a =5 until N =10° or 10° the error would certainly have become
obvious.

For the seven other a in Cunningham’s table, Conjecture 14 needs no
change. But for ¢ = 13,17,29,... ora = —3, =7, —11,..., that is,
for any prime = 1 (mod 4), we have the same coupling between 2|G and
la| |G, and (341) generalizes to

_lal-(al-1) 2t
(M) ~ T An() (312)
Had Cunningham computed the data for @ = — 3, the fact that its
density runs 20% higher than that for ¢ = 2 and 3 would surely have
exposed the error much earlier.

D. H. and Emma Lehmer discovered and analyzed these errors in
their aptly entitled paper “Heuristics, Anyone?” [70], where they did
include data for @ = — 3. For most small a the correction needed for
(117), if any, is rather obvious; but the general case is somewhat
complicated, and for brevity we refer the reader to Heilbronn’s for-
mulation in [71, secs. 23, 24].
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Exercise 163. Show that for ¢ = — 15 there is coupling between the
cubic and quintic residues and therefore the conjecture should be
v_15(N) ~9447(N)/95.

Let us now record

Conjecture 14 (Amended). If a is not —1 or a square, then

vo(N) ~ fy Aa(N), (343)
where f, is a rational number given by Heilbronn’s rules [71]. Fre-
quently, e.g., fora = — 6, =5, —4, —2, 2,3, 6, f, is simply equal to 1.

The next big development was that Hooley [72] proved Conjecture 14
(Amended) conditionally. He showed that (343) follows if one assumes
that the Riemann Hypothesis holds for certain Dedekind zeta functions.
(Clearly, that implies that Conjecture 13 also follows under these

conditions.) His proof goes well beyond our subject matter and we
confine ourselves to one remark: Hooley’s bound for the error term

lVa(N) - faAW(N)I

is rather large compared with the known empirical data.

Baillie computed both sides of (343) for all & between —13 and +13
inclusive and all N up to 33 - 10%. In my review [73] of this extensive
table, I point out that

7o(N) = foAn(N)| <V f,An(N) (344)

is valid for all @ and N in this range. While we certainly do not know
that (344) remains valid for larger N, this does seem to suggest that it
may be possible to reduce Hooley’s error term, assuming, as before, all
needed Riemann Hypotheses.

An elementary variation [74] on (343) of interest is given by

Definition 42. If ¢ is a primitive root of p that satisfies
9°=1+g (modp), (345)
we call g a Fibonacct primitive root.
Since (345) implies
@ =g+g° g'=g"+g’ ete. (modp), (346)

the sequence ¢°=1,¢'=g¢,¢% ..., which would normally be com-
puted by repeated multiplication by g (mod p), can also be computed
additively by (346). An example is g =8 for p = 11, and we have
g =1+8=9¢°=8+9 =6, etc. Now we state
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Conjecture 20. If vi(N) is the number of primes = N that have a
Fibonacci primitive root, then

vp(N) ~ 2L An(N) (347)

as N — oo.

It was suggested in [74] that Hooley’s conditional proof of (343) could
probably be modified to be a conditional proof of (347), and this was
recently done by Lenstra [75].

68. CycLE GrRaPHS AND RELATED ToPICS

On page 84 we indicated that M, and M, , , are isomorphic for n = 3,
15, and 104. This sequence continues with » = 495, 975,... . For n <
10® there are twenty-three examples, the last of which is n = 48615735
(verify). It is not known whether the sequence is infinite, and that is
also true of the much larger set of »n for which ¢(n) = ¢(n + 1). The
latter condition is necessary but not sufficient; for n < 108 there are
306 examples [76].

The cycle graphs have proved to be useful when working with finite
Abelian groups; and I have used them frequently in finding my way
around an intricate structure [77, p. 852], in obtaining a wanted multi-
plicative relation [78, p. 426], or in isolating some wanted subgroup [79].
Any two Abelian groups that have superimposable cycle graphs are
isomorphic, as in Exercise 18S. That is true for any groups, Abelian or
not, that are of order < 16; but for order 16 one can display an Abelian
and a non-Abelian group that have the same (abstract) cycle graph [80].
The non-Abelian one gives a nicer example for Exercise 178, since its
two square elements each have eight square roots. There is a second
pair of such nonisomorphic look-alike groups among the fourteen
groups of order 16.

Cyclic groups have such a simple structure that one is surprised when
they yield an important new application. In many problems, one wants
and needs a very efficient solution of

¥’ =a  (mod p). (348)
If p=4m + 3, the answer is Va =a™"!, as in Exercise 47. But
suppose p = 8m + 5 or (harder) p = 8m + 1. The importance of (348)
was obvious to Gauss [81, p. 373] and to his best English expositor
Mathews [82, p. 53] but neither came up with a particularly efficient
method. Sometimes an efficient method is absolutely essential. In [77, p.
847] I am analyzing a certain subgroup and must solve (348) for
p = (28 + 8)? — 8, a prime of 37 digits. Unless the algorithm is highly
efficient, that is impossible. But when one analyzes the location of a in
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the cyclic group M,, a very efficient algorithm is not difficult to
construct. For brevity, the reader is referred to [83, sec. 5.

Gauss's book finally got translated into English [84] but unfor-
tunately the translation was not the best possible [84a]. The German
edition, which contains considerable additional material, has been re-
printed [81).

This year (1977) Gauss is 200 years old and I am much tempted to
have a longish section discussing him, his work, and even his errors. But
we have more pressing topics and for brevity we’ll move on.

69. PSEUDOPRIMES AND PRIMALITY

What we called a fermatian in Definition 32 is usually called a
2-pseudoprime in the literature. Let us write

Definition 43. If
a" 1= (mod n), (349)

n is called an a-pseudoprime whether it is composite or not. We
abbreviate this as a-psp. Let C,(N) be the number of composite a-psp
not exceeding N. If

a» V2= (ajn) (mod n), (850)

where (a|n) is computed as if n were prime, n is called an Euler a-psp;
we let E (N) be the number of these that are composite. Let ¢(N) be
the number of Carmichael numbers.

Poulet’s [23] dates from the pre-computer age and has many errors.
Our table on page 117 reflects all the corrections known at the time of
our first edition, but further errors have been found subsequently [85],
[86]. Sam Wagstaff has now gone much further, and Poulet’s table
should be retired. We show an excerpt from Wagstaff’s data [87]. |
have included the ratio Cy(N)/V#(N) from our inequality (156),
E,(N) as far as I computed it on an HP-65, and S,(N) (which is defined

later).

N CyN) CyiN)/Vn(N) EfN) SyN) c(N)

10® 3 0.231 1 0 1
10* 22 0.628 12 5 7
10° 78 0.796 35 16 16
10° 245 0.874 112 46 43
107 750 0.920 — 162 105
10® 2057 0.857 — 488 255
10° 5597 0.785 — 1282 646
10 14885 0.698 — 3291 1547
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Note that (156) remains valid in this much extended range;
Co(N)/Va(N) has maxima near N =3 -10° and 11 - 10° that are
< 1, and it then falls steadily. The earlier (156) suggested Conjecture
15, but that conclusion had already been proved by Erdos [88]. We have

Theorem 84 (formerly Conjecture 15). Almost all 2-pseudoprimes are

prime.
Erdos proved that
Co(N)e@e ™)' 2 /N is bounded. (351)
Therefore
(Cy(N) log N)/N

must approach 0, and the theorem is proved.

But (351) clearly does not prove the much stronger (156) and, in fact,
Erdds has repeatedly conjectured (cf. [89]) that Cy(N)/N'~< and even
¢(N)/N'~¢ will increase without bound for every positive . If he is
correct, Co(N)/V«(N) will stop decreasing at some N and then will
increase without bound. What is that N?

The matter is of interest. If a 40-digit » is a 2-psp, and if (156) holds,
the probability that = is composite is less than 107°. But if
CoAN)/Vx(N) increases without bound starting at some unknown N,
we lose that estimate. Erdos’s “conjecture” remains controversial; it is
not a conjecture as we defined it on page 2.

John Selfridge [87] has improved the subject with his

Definition 44. If n = ¢- 2° + 1 with ¢ odd, = is a strong a-psp if
a'=+1 (modn) or
a®=-1 (modn)

for some positive » < s. Let S,(N) be the number of composite strong
a-psp that do not exceed N.

Note that when one computes a”~! (mod n) one first computes a’
(mod ) and then squares this residue s times. Any x that we thus
encounter which satisfies 2* = 1 must equal *1 if n is a strong a-psp
just as it does if % is a prime.

EXERCISE 164 (SELFRIDGE). If % is a strong a-psp it is also an Euler
a-psp. The two concepts are equivalent if » =3 (mod 4) but not if
n =1 (mod 4).

Selfridge and Wagstaff have found that

N, =2047=23-%9
is the first composite strong 2-psp, that
N, = 1373653 = 829 - 1657
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is the first composite strong a-psp for both @ = 2 and 3, that
N, = 25326001 = 2251 - 11251
is the first for a = 2, 3 and 5, and that
N, = 3215031751 = 151 - 751 - 28351

is the only composite strong a-psp for a = 2, 3, 5 and 7 that does not
exceed 25 - 10°.

EXERCISE 165. Show that N, is a Carmichael number. Show that N, is
a strong a-psp for a =2, 3, 5, and 7 but not for ¢ = 11 simply by

showing that
a a a
(151) = (1) = (1)
is true for a = 2, 3, 5 and 7, but not for 11.

Exercise 166. Examine the cyele graph of the subgroup C, X Cg in
My,. If (a, Np) = 1, the probability that N, is an a-psp is 16/32; the
probability that it is an Euler a-psp is 8/32 and the probability that it is
a strong a-psp is 6/32. N, is an Euler 67-psp but not a strong 67-psp.

Our table of Cy(N), ete. suggests several questions, all of which are
open. We note that E,(N)/Cy(N) is running a little less than 1/2, but
we do not know what happens as N — co0. (We should emphasize that
this ratio is an average: for n = 1 (mod 8) alone the fraction is much
larger.) It is probable, but unproved, that ¢(N)/C,(N) — 0. It is plausi-
ble, but unproved, that S,(N)/C,(N)—0 very slowly, say as (log
log N)~ L

In contrast with Erdoés’s Co(N)/N!'7¢, even Cy(N)/log N has not
been shown to increase without bound. Nonetheless, we list

Conjecture 21. The ratio C(N)/N/? < increases without bound for
all a and any positive e.

For consider the numbers
n(m) = (12m + 1)(24m + 1), (352)
where both factors on the right are prime. Then n(3) is the 10th
composite 2-psp on page 117 and n(69) gives Selfridge’s N, above. Since
(2]24m + 1) = (3|24m + 1) = 1, Theorems 44 and 46 show that each
n(m) is a 2-psp and a 3-psp. How many such n(m) are there < N?

Exercise 167. Adapt the heuristic argument in Exercise 37S to these
n(m). Then the desired number should be asymptotic to

1.3203V2N / (log N)?, (853)

where the coefficient is that in (35a). Show that the 25th number in
(352) is n(213) and N = n(213) in (353) gives 25.14. Show that the 50th
number is 7(519), and now (353) gives 49.84. Not bad.

—

PR
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Additional 3-psp are generated by
n'(m) = (12m + 7)(24m + 18),

and clearly these are not 2-psp.
For every a,

n,(m) = (6am + 1)(12am + 1)

is both an a-psp and a 3-psp, so that there is little doubt that Conjecture
21 is true.

If (156) remains true (or nearly true) as N — oo, (853) shows that

Cy(N) is neatly trapped between VN /log? N and VN /Vleg N .
However, there is insufficient evidence to designate (156) a conjecture,
and we are aware of Erdos’s opinion. Numbers at infinity are quite
different from those that we see down here: the average number of
their prime divisors increases as log log N and, while that increases
very slowly, it increases without bound. People say that Erdés under-
stands these numbers. We do note that the Erdos construction [89] that
is said to yield so many Carmichael numbers is decidely peculiar in that
they all are products of primes r; for which each r, — 1 is square-free.
That is most untypical of the known Carmichael numbers; among the
first 300 only three have that character, namely:

67331463, 23-43- 131859, 131 - 571 - 1871.
All told, we regard the Erdos conjecture as an (unlisted) Open Question.

The n in (352) are not Carmichael numbers, since # is not an a-psp for
any a that satisfies (a|24m + 1) = — 1. The numbers

n(m) = (6m + 1)(12m + 1)(18m + 1)

are all Carmichael numbers if the three factors are prime, since
n(m) — 1 =36m(36m? + 11m + 1).

Therefore, [90, p. 199] although it remains unproved that there are
infinitely many Carmichael numbers, there is little doubt that ¢(N)
increases at least as fast as CN'/3/(log N)® for some constant C.

The Wieferich Squares (page 116) are much rarer; for p < 3 - 10°
there are still only the old examples of Meissner and Beeger [91].

As we indicated above, primality and factorization theory have
advanced greatly in recent years. An exposition would require a whole
book, and we merely give some key references here. If n is a strong
a-psp for ¢ =2, 3, 5 and 7, then n is a prime if it is < 25 - 10 and
# N,. But this is based on Wagstaff’s table, which required much
computer time and is therefore not extendable to very large n.

As an example, consider ¢y, in Theorem 58. It arises in the analysis of
a certain simple group [92] and it is essential there that it be prime. But
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Cg3; has 359 decimal digits and it surely would have defied all tech-
niques known prior to the recent developments. A sketch of its primal-
ity proof is in [92, sec. 4]. The key reference is [93], an important paper
of Brillhart, Lehmer and Selfridge. To be very brief, this combines
generalizations of our Exercise 161 on page 200 and of our Theorem 82.
It uses known factors of both n — 1 and n + 1, together with a bound
B such that » + 1 have no other prime divisors < B, and combines all
this into a powerful primality criterion for ». This has been imple-
mented in computer programs and it is now routine to prove primality
for large primes of, say, 50 digits. Our cgg; is much larger, but its
algebraic source (172) greatly assists us in factoring c4g; = 1, and that
suffices.

Besides the references in [93], which includes Pocklington, Robinson,
Morrison, Riesel, ete., other pertinent references are Williams [94], [95],
[95a] and Gary Miller [96]. The last contains an idea related to strong
pseudoprimes. Certain factorization methods that give a complete fac-
torization may also be used for primality tests if » is not too large. We
return to them later; see [65], [78], [97].

In contrast to these highly technical, but very effective, methods we
close this section with a new necessary and sufficient condition for
primality that has more charm than utility [98].

Consider Pascal’s Arithmetical Triangle with each row displaced two
places to right from the previous row. The n + 1 binomial coefficients
of (A + B)" are gZ), k=0,1,...,n, and are found in the n-th row
between columns 2n and 3n inclusive. Each coefficient in the n-th row
is printed in bold-face if it is divisible by =.

Then we have

Column No.
012345678910111213 14151617 18192021 22 23

01

1 11

2 121

3 1331

4 14 6 4 1

5 1 51010 5 1

6 1 6152015 6 1

7 1 721353521 7 1

8 1 828567056 28 8
9 1 9 36 84 126 126
10 110 45 120
11 1 11
Row No

Progress 231

Theorem 85. The column number is a prime if and only if all
coefficients in it are printed in bold-face.

For a proof, see [98].

70. FERMAT’S LAST “THEOREM,” 11

The ratios
S =0392 and 1o = 0393
on page 153 are very suggestive; they are nearly equal and one asks:
What is this number? Since a prime p must pass a gauntlet of
(p —3)/2 numbers B, in Definition 40 (page 153) in order to be
regular, we may heuristically estimate the probability P of regularity

by
1\(#-3)/2
P= (1 - 5) (354)

if we assume that the numerators of the B, are equidistributed (mod
p). Then P ~ e~ 1/2 = 0.60653 as p — oo, and the density of irregular
primes is therefore given by '

Conjecture 22 (Lehmer [99], Siegel [100]). If I(N) is the number of
wrregular primes £ N then

I(N) ~(1 - e V%)7(N) = 0.393477(N) (355)
as N — co.

If Conjecture 22 were true, then by Theorem 64, Conjecture 16 would
be true for at least three-fifths of all prime exponents.

Conjecture 16 itself is now true for all exponents < 125000 by
Wagstaff’s calculations [101]. Further, he gives 71(125000) = 4605 and
7(125000) = 11734. Their ratio equals 0.39245, in good agreement with
(355). The tndex of irreqularity j(p) is the number of B, in Definition
40 divisible by p; regular primes have j(p) = 0 and irregular primes
have j(p) 2 1. A related conjecture is

Conjecture 23.

N 1
J(N) = ggj(p) ~§w(N)- (856)

The heuristic argument is now even simpler if the same equidistribu-
tion is assumed. Wagstaff’s data gives J(125000) = 5842 and
J(125000) / 7(125000) = 0.49787, in good agreement with (356). More to
the point is the fact that N = 125000 is not exceptional: J(N)/7(N)
and I(N)/m(N) both have only small fluctuations up to this limit.
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Of the three conjectures, Conjectures 16, 22, and 23, the last is the
weakest, but conceivably it may be the least difficult to prove. If it is
proved, then Conjecture 16 is true for at least one-half of all prime
exponents.

Turning to Conjecture 17, it is now true for all p < 3 - 10° since, as
we indicated above [91], the only violations of Wieferich’s (208) for
p < 3-10° remain the old cases, p = 1093 and 3511. Prior to [91],
everyone quoted the Lehmers’ smaller bound 253, 747, 889, but this may
have become invalid shortly after they computed it [27] in 1941. The
reason is that they not only assumed the validity of the criteria in (208)
and (209) but also that of all such criteria:

PPt -1 (357)
for every prime ¢ £ 43. In 1948 Gunderson [102] questioned the valid-
ity of the proofs that had been given for (357) for the last three cases:
q = 37, 41, and 43.

Nonetheless, using (357) only for ¢ < 31, he deduced a bound for
Conjecture 17 that was larger than 253,747,889, namely

p < 11-10°
He showed (Theorem N) that if
pilgf -1 (358)

for the first » primes: ¢; = 2,9, = 3,¢3 = 5, . . ., q,, then p satisfies the
inequality

p n

o —)
@n-2! 2 (g\/§ p-1
(m=1)(n—-1)! nlogg-logg---logg, = 2

A

(359)

Designating the left side by f,( p), one finds that the iterative sequence

p=2f(p) +1 (360)
converges fairly rapidly to the desired bound for p. Since 31 = q,,, the

use of (360) for » = 11 gives Gunderson’s bound for Conjecture 17 more
precisely, namely,

p < 1,110,061,000.
If the validity of (357) is proved for ¢,, = 37 one gets a new bound:
p < 4,343,289,000. (361)
If ¢;3 = 41 and ¢,, = 43 are also good, this becomes
p < 57,441,749,000,
and if ¢;5 = 47, . . ., gy = 71 are also good, we have
p < 32,905,961,000,000.
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Since (361) is already better than the present bound 3 - 10°, the order of
the day seems clear: investigate (357) for ¢ = 37. If it is true, then we
have a new bound; if not, there must be an interesting mathematical
reason for this failure.

Concerning Euler’s generalization designated as Open Question 2 on
page 158, I am pleased with my intuition there. I refused to call it a
conjecture, since I said that there was no serious evidence for it.
Several years later a counter-example

144° = 275 + 84° + 110° + 133° (362)
was found by Lander and Parkin [103]. Curiously, no other counter-ex-
ample is known. The most probable reason is that further computations,

as in [104], have simply not gone far enough.
Since Open Question 2 is settled, let us replace it with

Open Question 3. Is there a nontrivial solution of

A*= B*+ C*+ D% (363)
Although (363) has been investigated frequently, there is insufficient
evidence to warrant a conjecture. One often reads that the methods of
algebraic geometry are very powerful. Perhaps it is not toe unfair to
challenge the algebraic geometers with (363): find a solution or prove
that none exists. No doubt algebraic geometry itself would be the main
beneficiary, since new developments would probably be required.

Exercise 168 (W. Jonnson [105]). Determine the probability of j( p)
= n, using the previous assumption. For n = 0, we gave P = ¢ /2
above.

Exercise 169. The absence of Wieferich Squares p? for 3511 < p <
3 - 10° does not contradict Exercise 158, since the probable number in
this interval is only 0.983. Using (208) and (209) and the sum

> p % what is the probability of a counter-example for Conjec-
p=3-10° :
ture 177

71. BiNarYy QUADRATIC FORMS WITH NEGATIVE DISCRIMINANTS

The most classical of classical number theory is the theory of binary
quadratic forms. Yet even here there has been significant development.
We cannot adequately treat all of these topics here, since we largely
confined ourselves above to the classical problems

p=a2+]\fb2, xZ_Ny2=_'__1
that initiated the subject and to their immediate generalizations.
Starting with Fermat’s Theorem 60, we might add a survey of

computational methods [106] and one new short-cut [107]. For Theorem
69, let us extend the data for R(N) given in Ex. 119 with the results
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given in [108] and the references cited there:
R(10%) = 3141549, R(10%) = 314159053,
R(10'%) = 31415925457, R(10'%) = 3141592649625,
R(10™) = 314159265350589.

There has also been interest in Landau’s function B(x), which counts
each integer n = a® + b% £ x only once no matter how many repre-
sentations it may have [109].

In the generalization

rp = a% + Nb? (364)
on page 167, we wish to make r = 1 if possible and to minimize it
otherwise. This relates, as we indicated on pages 153, 154, and 168, to
questions involving unique factorization and to those concerning the
density of primes generated by quadratic polynomials. In an important
development, H. M. Stark proved [110] that for negative N the
quadratic field k(N ) has unique factorization only for

N=-1-2 -8 -7 —11, — 19, — 43, — 67, — 163. (365)

A. Baker [111] and K. Heegner [112] have given other approaches to
this long-sought theorem. Correspondingly, the famous polynomial
n? + n + 41, which has —163 for its discriminant, must have a very
high density of primes. In [56] we find that we should take C = 3.31977
in (338) with &k = 1. Paul T. Rygg [113] has counted these primes up to
n = 10, and his count does agree very well with (338).

For computational developments on (364) we refer to published tables
such as [114], to reviews thereof, such as [115], and to improved
algorithms, such as [83, sec. 6]. An example in the latter solves (364) for
every N from 1 to 150 inclusive for a remarkable prime

P = 26437680473689 (366)

that we will refer to repeatedly below. Such solutions are possible only
because (— N|p) = + 1 for all N between 1 and 150 for this prime. The
generalization of Landau’s B(x) to n = a% + Nb? < z has been studied
in [116].

Much (but not all) of the recent development in factorization methods
involves binary quadratic forms either explicitly or implicitly. Our
Theorem 76 above is closely related to the Lehmers’ algorithm [97],
which may be used both for factoring and for primality tests. The
previously cited [78] has these same features; however, it derives its
greater efficiency not from Theorem 76 but from more advanced ideas
involving class groups and composition that we did not study above. We
must therefore drop the topic, even though it would fit in nicely with
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our previous text; the class groups are Abelian and their cycle graphs
are particularly informative. We continue with other references for
new factorization methods in the next section.

In view of the historical importance of Pythagorean numbers (see
Fermat’s statement to Frenicle, on page 161) it is curious that the
obvious three-dimensional analogue was not examined earlier. As far as
I know, it is new. In how many ways can we solve

pP=a?+b2+c¢%? for O<asbse (367)
if p is an odd prime? The elegant answer is in

Theorem 86. Write p uniquely as p=8n+ 1 or p =8n + 5. Then
(367) has exactly n solutions.

ExaMpLEs: p = 3, 7, and 13 each have one solution, p = 5 has none,
and p = 19 has three.

9=1+4+4, 49 =4+9 + 36, 169 = 9 + 16 + 144.
361 =1+ 36 + 324 = 36 + 36 + 289 = 36 + 100 + 225.

For a proof, see [117]. It is based on known classical results involving
ternary forms (see page 246).

Exercise 170. Determine the nine solutions of (367) for p = 73. Note
that 78% — 122 = 61 - 85 gives rise to four of them.

72. BINARY QUADRATIC FORMS WITH PosITIVE DISCRIMINANTS
In contrast with (365) we list

Conjecture 24. There are infinitely many quadratic fields (VN ) for
N > 0 that have unique factorization.

This is an important conjecture, since its proof will require a deep
insight not now available. For the large p in (366), k(V p ) has class
number % = 1 and therefore unique factorization. Empirically, that is
not surprising; for about 80% of known k(V p ), where p is a prime
= 1(mod 4), we have h =1 [118]-[120], and this empirical density
decreases only very slowly as p increases [121). Therefore, the a-priori
odds actually favor & = 1 for the prime in (366). While there are only
nine cases in (365), many thousands of such fields have been recorded
for N > 0.

The difference arises from the fact (page 173) that one has infinitely
many units when N > 0. We must generalize Fermat’s equation (236)
to include the possibilities indicated in Exercises 124 and 144. That
done, we have

Definition 45. If T and U are the smallest positive integers that
satisfy

T2 - UN = +4 (368)
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then

e=(T+ UVN)/2 (369)

is called the fundamental unit of k(VN ) and R = log ¢ is called its
regulator.

To be brief, it is known that the product 2Rh/VN plays the same
role if N > 0 that the product wh/V — N does if N < 0. In the latter
case, the class number grows (on the average) proportionally to
V — N ; while in the former, Rk grows (on the average) proportionally
to VN . Thus, if R is big enough, there is no reason why % cannot equal
1 no matter how big N becomes. So the real question is this: Why are
the fundamental units (369) frequently so large? This takes us back to
the very beginning. When Fermat and Frenicle challenged the English
(page 172) with N = 61, 109, 151, 313, ..., they may not have realized
it, but (VN ) has k = 1 in all of those cases.

For the p of (366) the smallest « that satisfies u — pv®? = — 1 has
9440605 decimal digits [122]. That makes even the answer to the famous
Archimedes Cattle Problem [123], [124] look small. The regulator of
k(V p ) is 21737796.4. It is that large because (a) the class number is 1,
(b) p is large, and (c) (p|lg) = + 1 for ¢ =3,5,7,...,149. This last
point is significant, since an “average” p this size, not having this
unusual property, would have a u with only 1116519 digits.

Digressing briefly, it is the last point (c) that gives p its mathematical
interest (not its gigantic ). It is the smallest prime = 1 (mod 8) that
has (p|q) = + 1 for ¢ = 3 to 149. The Riemann Hypothesis puts a limit
on how long a run of residues a prime of a given size can have, and p
was computed by the Lehmers and myself precisely to test this limit
[125].

Had Frenicle persuaded Lord Brouncker to compute the continued
fraction for Vp, they would have found [126] that its period is
18331889. But a new development makes it possible to compute R
accurately in a few seconds of machine time. Exercise 141 shows how to
use symmetry to cut the computation in half. It turns out (surprisingly)
that symmetry is not essential here; the use of composition and
quadratic forms allow a doubling operation anywhere in the period, and
therefore repeated doubling is also possible [122].

For h = 1 in cubic and quartic fields, see [120] and [127]-[129], while
for three interesting continued fractions, see [130]-[132].

Returning to factorization, the continued-fraction method [133] is
complicated but extremely powerful. An interpretation of it in terms of
quadratic forms [134] is of interest; and subsequently this led to a
greatly simplified method [135], [136], which loses much of the previous
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power but all of the complexity. It is now so simple and requires so
little storage that one can factor

250 + 230 — 1 = 139001459 - 8294312261,
251 — 7 = 17174671 - 131111671
on a little HP-67 even though this only computes with 10-digit numbers.
Other recent developments in factorization are by Lehman [137],
Pollard [138], and J. C. P. Miller [139]. For a survey article, see Guy
[140].

Exercise 171. Since 17174671 has a unique representation A% +
190B2 for A = 3991 and B = 81, it is prime. Why do we select 1907
[141].

73. Lucas AND PYTHAGORAS

Our estimate on page 198 that there will be “about 5” new prime M,
for 5000 < p < 50000 needs little revision, if any. Four have been found
for p < 21000 and “about 5” still seems a reasonable guess. Gillies [142]
has found prime M, for p= 9689, 9941 and 11213, and Tuckerman [143]
has found M ggqr-

Gillies included a statistical theory, based upon unproved hypotheses
which implies that about six or seven prime M, should be expected in
each decade: A < p < 10A. Ehrman studied these Gillies hypotheses
[144) and interpreted previous data [145] on the distribution of the
number of divisors M, has below a g'lven bound B. These distributions,
and those in (331), constltute first steps in understanding M,

There has been no computatlon of M, to my knowledge smce that of
Tuckerman [143). That is surprising, smce it was at that very time that
Knuth had begun to publicize [146] the new Strassen-Schonhage “fast
Fourier multiplication” algorithm for which one has

Theorem S. It is possible to multiply two n-bit numbers in
O(n log n log log n) steps.

This leaves open the pertinent question: For what »n does this become
competitive with the older O(n?) multiplication? It does seem to offer
an escape from our statement on page 195 that the Lucas arithmetic for
M, is roughly proportional to p3, and I do not know why this has not
been exploited.

We should add that the theory of Lucas sequences plays a large role
in many of the new primality tests referenced above, not merely in
tests for Mp

Returning to the beginning of Chapter III, the Case for Pythag-
oreanism remains an important philosophical proposmon I know of no
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serious discussion or refutation that has appeared anywhere; Eves [147]
merely copied our list without advancing the question. It is therefore
unnecessary to strengthen the case here, but two additions and one
subtraction should be made. The genetic code in DNA and recent
theories of elementary particles are almost pure Pythagoreanism, and it
is hard to conceive of two more fundamental things in the universe. On
the other hand, let us delete Eddington’s speculation that hc/27e® =
137 from our page 137. It mars a good case, since subsequent measure-
ments [148] have given

he /27me? = 137.0388 + 0.0019.

74. THE PrOGRESS REPORT CONCLUDED

We are nearly done; but even the Supplement and the commentary in
the first edition References need updating. For more on Exercises 45
and 8S, see [149] and [150], respectively. Finite geometries, as in
Exercise 58, arise in interesting number-theoretic situations; cf. [120,
page 30].

Waring's Conjecture (page 211) that every positive integer is the sum
of I(k) non-negative k-th powers is now even more “nearly” proven—
but still not completely. Rosemarie Stemmler [151] completed a verifi-
cation for all k£ up to 200,000, excluding the two hard cases k = 4 and 5.
Mahler [152] had already shown that g(k) # I(k) for at most a finite
number of k. Continuing developments of Baker’s method [111] suggest
that a proof will be found for all £ > 200,000, but this has not yet been
done. As we indicated on page 212, k = 4 is the hardest case. Chen [153]
has now proved that ¢g(5) = I(5) = 87 and, while there has been pro-
gress on g(4), its value remains unsettled. It seems likely that Waring’s
Conjecture will be completely proved in due course.

Dickson’s valuable History [1] has been reprinted by Chelsea; and the
dedicated scholar we called for on page 243 has turned out to be Wm. J.
LeVeque. His six-volume [154] collection of reviews, while not quite
equivalent to Dickson’s History, is certainly a valuable aid to research.

This progress report confirms the statement in the 1962 preface that
“number theory is very much a live subject.” Even within the limited
confines of our previous subject matter, the progress made since then is
impressive.

STATEMENT ON FUNDAMENTALS

The logical starting point for a theory of the integers is Peano’s five
axioms. From these one can define addition and multiplication and prove
all the fundamental laws of arithmetic, such as

a+b=1>+ q,
a(b+ ¢) = ab + ac,
a(be) = (ab)e,

etc. The reader knows that we have not done this. We have assumed all
these fundamentals without proof, and even without explicit statement.
Sometime, however, if he has not already done so, the reader should go
through this development, and he can hardly do better than to read
Landau’s Foundations of Analysis, Chelsea, 1951,

Similarly we have skipped over the simpler properties of divisibility. We
have not defined ‘“‘divisor,” “divisible,” “even,” etc. If there is an integer
¢ such that

ac = b

we say a is a devisor of b. If 2 is a divisor of b we say b is even, ete. For these
elementary definitions, and for such theorems as

alb and blc implies alc,

alb and alc implies alb + ¢,
etc., the reader is referred to Chapter I of a second book of Landau, Ele-
mentary Number Theory, Chelsea, 1958.

One of these elementary theorems should, however, be singled out for
special mention. This is the Division Algorithm:

Theorem. If a > 0, then for every b there are unique integers q and r, with
0 < r < a, such that
b=gqa+r;
that is, there is a unique quotient g and a unique remainder r.

This theorem is indeed a fundamental one in the theory of divisibility.
It enters the theory via the Euclid Algorithm (page 8) and elsewhere.
The proof runs as follows. Let b — z;a be the smallest non-negative

239
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integer of all integers of the form b — za, with z an integer. Set ¢ = z; and
r = b — qa. Then one shows that 0 = r < a, whereas for any other z,,
ry = b — xz» @ would not satisfy one, or the other, of the inequalities in
0=r.<a.

The key argument is the fact that there exists a smallest non-negative
b — za. This is guaranteed by the Well-Ordering Principle (page 149). As
is stated on page 149 the latter is equivalent to the principle of induction
(Peano’s fifth axiom), and thus is the principle which gives the integers
their special (discrete) characteristics.
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244  Relerances

Secmont

Histerieally, Thesmam 18 required a long time to get provad-manalegous
to the delayed presef in our treatment. It was first provan in its entirety by
Lagrange in 177533 yeass after Euler determined the primality of Mgzl
But, of eousse, this proof did net use Gauss's Criterion, as we do o page
40: It dees use Euler's Criterion, and theorsms en the prime divisois of
bingry quadratic forms similar t9 Thearams 72 and 74 on page 166. See
reference 12 below, page 2009 for an accomnt- By these latter-type theorems,
Theorem 19 may fotlow directly, and net, as we show here, as & eonsequense
of the bafd@f Theonsm 18. Thus if g h3 M» = N2 — 2, 4 must be of the
form ¢ = 5 — 2uh and it follws at ence that ¢ = 8k # 1. See, in this
conmsctinn, the Femark on Bage 143 conssmn tﬁs fact that quadratic
residugs atise most shyiausly 1n eonnestion with binary quadratic forms

SRR 13

The larse compssite M, 2ge 39 were sbtained as % bymroduet of
the studics in referenss ]léy Ree Bseraise 17 %8{ the conpestion.
+he twe E{BQHSEP Baﬂfé of twip BH%Q&& 2 &% R Bage %8 %r% from refer-

gnce % wﬂﬁs the twe large %F%%%S 7 4Fe Hom unpubtished work (June;
TRt M %% 7 %‘a
%%ul%%s 14 are from it
Aﬁ’b’ﬁz J- Ef%%ﬂ% Paruto.) ‘r}“me“’"“m¥
essmn of a number as a sum of primes,’ c;a % Tg
ssmn OI a numper as a sum O rlmes
:Ellle 80’1151b %h 8 (%ture mush sure e a t 0 1 reader
opnjecture m St sure rea as
excee né curious. ‘gne i rlm
exceedin ,curlous
was amem m to rove eor 8B ?
as att rove 1n t

E’e was ln e uen corresp on ence WIL ﬁs',lF ﬁ
a3 gn‘évéai% %a {1 or es ncfnt‘évlgr o a t?r Iiesuma
et ¢ Shat B sty nt%%e“ %t L i omecmre} en%gfeo-
rem B’ilmesulf’ f %r é’ﬁ mtege 1{1 $‘J§°f“re THS

m 61, wou 1) %r rs 0 fl Bm 4 fr m theortﬁn
iTom }}PS con uslon 1 eas1 t 61 ls 1 pos1-
1ve In elgselqgn Eusmn 1tll(§ra}stxol st no ion es%reerrnme Lt ruet ff)eas% 1P83e
all‘fgwntle%%r%e Oidiaer H a p?‘lmg Cbi‘insn\cz)v%g he ccepte%il%()na\/enet%‘h lfherf’le

ﬂl}lows 4} to lfe 0P§1 erﬁpl_l_ pf‘l_ill(éz +1§2 was the accepted convention then.

Thysg 14 mterestlng Sod¥th work 1n *addfitive number theory arising out of

Golf8’£> &egem% eg)c(hq%rn ngork in additive numbcr theory arising out of
fio! NPT Peari§f Number Theory, Graylock, Rochester, 1952,
10. 6{_1{2{&(1[% Three Pearl8 of Number Theory, Graylock, Rochester, 1952,

FéPeREH4Eh more difficult Vinogradoff theorem that every sufficiently
larB@TolRP sisBe PR e dicH ol tRaeEaloffn dhiegagm  that every sufficiently
lepgepodd PEIPRK NS Tha SR bnthbe QRIS PF5e Number Theory, Cam-

11. g‘ncfg%"’[qgggéﬁﬂiﬁtwﬁ@twn to Modem  Prime Number Theory, Cam-
bridge, 1952, Chapter 3.
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NO I T CE SEcrioN 18

For the Omiginal d.egendne Symbol, s¢e e g e g e n n
, 124 Avrien-Mariz Dacenwpre,Dlkderie des Nonbeese Tome 1, Blanqhard
a Paris, 1955, ¢. 197. 9 5 5 ,

NO I T CE SEgrioN 19
mo  Until rather recently textbookipracls efuThearam %iawere dishinctly bt
o more gomplex. The dirst publicatignief the erigipal Frohgpius proef dn 81 e r  tg

e r
k @ eot bopkiwditten inEnglish appearspto be in
y e 131 We¥s JMGEVEQUE,. Tomies z'ﬂonmbﬁrvﬂi&ﬁ@w Vol £, Addison-Wegley, U
Reading, 1956 p. 70. 0 a . n
cd ne sPrios #e thig.it hadenppeared in the next mfeerenﬁe,t peing attrlbufted o a
n r e Frokeniysbut witlout g detailed reference. i
A . . H.aHasse, Voresungen iher Zahlenthsavie, §Hf)}fig?f¥ne Beglin, 11950 9
. p-93. 3
¢ tne sithe pesent guthor hagd net yeb seen gefegence s dne 1952 avhen he inde- n
o pesdently foundythe same greof.
A 15, Brwem 8aanke, “The guadragic gequ;r@clty law,y Abstract 336 .43 6 w

Bull. Als3 5581 (1952), p. 452.

NO I T CE SEgTION 20

Qonjecture 121 is @ rewqgding gfianpropgsition in reference.d F%&dﬁore r p

- irecent discussion gnd pegtinenf datansee ¢  ae a

dAco i BrnmmSuaxks, “Qnithe eapjecturecof Hardy & bltﬂe}y%d gon- r

mmgn i n riewerning the pumber of Bfmﬁ‘r’s pf the form 2 g ¢,” Mrg‘ﬁh @%ﬁp 14,
, ) 0691 (1960), p. 321-332. 2 1 3 3

n o

NO I T C E 8EgTION 30
¢ Ari Vi Drovmn SHANKs ‘A ¢irgylar parity;gyitch gnd gnplicgtipps to gumber
3 theoryy” Abstract 5437, Nafrees, Amer. Math. Bacyad ¢858), Br86. y 6t ac

NO I T CE SE§TION 31
pelfor pegent Fermat comppsitgsignd fuyther geferences, gee . f
nt iSb-ArBaxsor, “The gomposifeness g the. thirteenth FﬁHﬂ&t ﬁum-
ber,” Math- Goma-e ¥ (1958) 420, ,

NO I T CE SEGTION 32
- Bee pefomenc 1npe @809, gnd
e b39- A- - EmBoNNINGHRN, {0n the hmaber gf primes gf {hy gome pesidu- ¢
P oytic geity,” Brge. Lomdan Mgt r§c?zg g 43,1 b%l €1914)’ 558_272
T RE BR £ HerBERT BinuaRzm Prufpdl,;{lsoren Wi, goxigegeb@(per@nm@lkurze}jg e R

Muaih- A 3dd g1937) B 476-492. 7 6

r oe
t

w



246  Refovavees

21. Jown W. WrencH, 5. “Bwaluatian of Artims eonstand and the twin-
prime eonstaady;’ Mutk. Cwnp,., 15, (1861), p. 396-R98.

Spemex 33

The eyale graphs were investigadatl by the auther in the early 1950,
but have net been previously published.

SEeTON3Y
23, SNy Eravimy “Fhe congruense 227 = 1 (mod 8d) for B < 160,000,
Magh- Camp. ¥4, Ei@é@) B 378
33. B. Bovwssr “Lahle des nombies compesés véritant le theoréme de
%@g@é pouF 1 module 2 jusqwd 180W8OWs0Sakine, Mag- 1938,

%4 B H. Lemwik “On the sonvgise 8% Fermabs Thesrsm, Hy” Amgr
MM Moty 36, (1849), B. 300-%

SEeTfoNd7

Bp Bagss lf%& }f& we {amg%ﬁ histe Q Al backaroun

g ee case g + % } erebt.1n§ Zfer ia §
Oll(iﬁ)a,C%l} ?gle g‘_fe_ z%]: as O one CaI‘lSS 8va E
ever r¥ is the sum ree squares,
Gvery i e + 1s € sum ree squares;
%ﬁ I R SRt 3 (3¢ + U,

then tha FONES HI2 e lence 2t s&rgm of Fermat which stites thit
ever n eger 18t e s m q}e ree rian ar nu
every 1nteger 1s the sum o riangular num ers

_ala+1 b(b+1 cle+1
iﬁ=mﬁzg—r;+b§5—g—172+eceg—%

er, one geguces
urt er, one ces

k = — 2 1)2
EFic@-F et at et iy
s0_that Theorem 61 is valid for each such integer. As we indicated above,

ﬁgg}'ﬁlﬁp?lég e, aﬁgiﬂ: y‘f%y lfolrnéeéjlé:& such integer. As we indicatecl above,

thig 4% pllles itﬁe‘(’){}g%té&f lalhnt%gglfsthe form 8k + 3 can be represented
byh{;%‘g blga@“f%?ﬁn , allprlmes of the form 8k + 3 cari be represented

by the binary form
8k + 3 = 22a+ l)2+2g2b+ 1%
SIC+ 3 = (2u + D)* + b + 1)2,
and this may be easily extended to all integers of the form 8k + 3 that

Ao PiniRdi %o YRTy St dorth BE1IRYEGHR Hyothe dorm 8k I 3 that
hayg, prme gV Torl detPiolwiatte fo bBBMSEuEh Fepresentations as

But this binary form does not suffice to obtain such representations as
84+ 3=35=057=1+4 3+ 5.
84 + 3= 356= 57 = 12+ ? + b2
For these one needs ternary forms. The attempt therefore failed. Although
For these one needs ternury forms. The attempt therefore failed. Although



References 248 4 7

Euler didnnotr prasth Theorem 61 until Lagrangeehad alieadssdonep, biso e ri
t prolonged nagtack «an whis: problem hade several gimpgrtant (hyproducts.
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. 95 ]11193% MorpELg, T’”@i Leatugss ea% Regmehs fogt ﬁ’sﬁf)&% foampridge, L

ce m The {,‘&magke@chlﬁllpgl ﬁ@a@ % page 147 Bejxers to ¥e€eerle%c? hco

NO I T CE SBqTION 51
fL . 36 Jo & SeLrrgEof.-Ar NigHor, & H. %P%ANR?W&‘ viprpof gf fermat’s
¢ mea d:ash Fheorem for gl prime, @%@%ﬁ? 55 than 4002,”; Broc. &aﬂonal
Acad. 8¢l 41 @%50)’ R, 870-973, d 0. .
NO T T C E §86rIoN §2
§ee Felsgencs. 2 gnde n :
37 Bl l\é EMp4; |.EHMER, “On %l@ {i Gase of germat S ]Ijast }‘hr(leorlo e mr, 7
§ull ﬁ]mer Math §0(ﬁm$7 §1a9741), ];339—14% . h 9
NO T T CE SEGHoN @3

<o %8 @Mg %FHMFR “Ahn e tended 'Eitleor of Eucas Eunctlons 7 f&lnn gf N
3zt

)

448"

E or he aflest eersenne Brlm(gs and {Zurther éeferences see

L %9 § XANDDR nggrﬁ\zr rr]%eiv ﬁersenne Brlr%es ” Mat g)’%ap"m![gbi

I?C2I)S, 4 9 9 2 2
C I

J or a survey on armg S onJecture see nj
J %0 %ag 8STMANN gd%u €. éah enthglqrw 2ivérter %ﬁ/ll ggnnﬁ § Berhn, &

or ext%nsmns to al%ebralc numbers and the eGas1er problem,’ see
IEGEL t;‘Generghzzﬁ,)lon of' Warl%g b Robiehd to aefgebrzﬁc nufo- ¢
er eds, Amer J. Mafh 66 (&1430 p."192°138. ng eubmr a i c !
\ ey, «An Wit nPs pll%'bfem,1 Jour L%nd%n Math 2 s

RN ) i s, M PO o i
33. Wodiiakie M. K% MMLER, “Th& easier Warmé problem 1n al%ebralc

—

\
tn 37 KR ﬁ%ﬁw%ﬁ%ﬁw ghump Mdroats o gebraic
4 Fér Lidhikls fanfu& : Aem6l ]Eﬁutp d‘ifﬁcult) Ioroof* of HilBert’s 7 o8
i UrHooretPhagoi1) sde refereficel e oiHilbmrk
+ EXFJ}i 79 S rmhfereén(]fc , ho g ra e e
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e&S Se]s e. eed Froidaai lareneg f , 7 o 11 2, n

8d PauL P. Bathman & Rocef A. Horn, “A heuristic asymptotic for-
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