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PARTIAL DIFFERENTIAL EQUATIONS IN BIOLOGY 1

I. Introduction: The Biological Problems and
their Mathematical Formulation.

1. Electrophysiology

Nerve: A neuron is a cell which

is specialized to process and

transmit information. Like other

cell body with a nucleus and is

surrounded by a membrane which

can support a voltage difference.

Unlike other cells, it has two

systems of elongated extensions:

the dendrites and the axon.

Information is received at the

dendrites in the form of

packages ("quanta") of a

chemical transmitter released

from the terminal ends of the

many axons which form synapses

In some respects these Notes constitute a sequel to:
Peskin, Mathematical Aspects of Heart Physiology, C.I.M.S.
Lecture Notes, 1975. In particular, the sections on
Electrophysiology and Muscle in these Notes are extentions
of the earlier material, and the discussions of Fluid
Dynamics in the Heart notes may serve as a useful intro-
duction to the material presented here on Arteries and
the Inner Ear.
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(close contacts) with the dendritic tree of the cell in

question. The chemical transmitter modifies the properties

of the post-synaptic membrane and a current flows into the

dendritic tree at the location of the synapse. The branches

of the dendritic tree are leaky transmission lines (in

which inductance may be neglected). Consequently, the

equation governing the spread of potential in each branch

of the tree is (in appropriate units)

av a2y
at ax2

-v

At each junction one has the boundary conditions of continuity

of voltage and conservation of current. The interesting

questions are:

(i) What voltage waveform is produced at the cell

body by the sudden release of transmitter at

a particular synapse. How does this depend on

the location of the synapse.

(ii) What voltage waveform is produced at synapse B

by the sudden release of transmitter at A.

This is important because the injected current

at a synapse depends on the local membrane

potential. Thus the system as a whole is non-

linear, despite the linearity of (1.1), and one

wants to know how the spatial organization of

the inputs determines the degree of non-linear

interactions between them.
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At the axon, the membrane properties change, and the

equations governing nerve conduction become non-linear.

This appears to be because the membrane potential influences

the number of aqueous channels (pores) available for the

conduction of ions across the lipid membrane. There are

several types of channels, specific for different ions.

Moreover, the concentration of any particular ion is

different on the two sides of the membrane, and these

concentration differences act like batteries. (The energy

for maintaining the concentration differences comes from

the metabolism of the cell.) The resulting equations have

the form

r

at -
a
2

+ f(V,s1...S )

ax

ask

t at = ak(V)(1-sk) - $k(V)sk

where sl...sN are membrane parameters which control the

number of aqueous channels, f(V,s1...sN) is the sum of the

ionic currents, and ak(V), k (V) are voltage dependent rate

constants. (Although the general physical interpretation

given here concerning voltage dependent channels is widely

accepted, the physical details are unknown.)

The most striking fact about equations (1.2) is their

ability (in certain cases) to support a traveling wave

solution of a particular shape, the "nerve impulse".
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V (millivolts)
Regardless of the pattern of

input to a neuron, the output

is always a train of such
0 t

-70

identical impulses. Only the

timing of the impulses conveys

any information, since their

waveform is fixed. The fact

the impulse can propagate along the axon without distortion

or attenuation is a consequence of the non-linearity in the

membrane behavior. This allows the impulse to tap energy

from the ionic concentration differences as it moves along

the axon. This mode of wave propagation is unrelated to

the more familiar transmission line wave, which. travels at

the speed of light. Nerve impulses travel at a speed on

the order of meters per second, and the resulting time delays

have important biological effects.

Heart: In cardiac tissue a network of specialized muscle

fibers conducts the electrical signals which tigger the

T heartbeat in a manner which

V closely resembles that of the
I t

nerve axon. Equations of the
A

l L form (1.2) also apply but with

different functions f,
ak'

Cardiac Action Potential The cardiac action potential

A = Atrium, V = Ventricle is more clearly divided into

4



two states, and the temptation to refer to them as ON and OFF

becomes irresistable. This is especially true in the

ventricular muscle. This suggests the mathematical question

of whether we can find limiting cases of equations (1.2) in

which sharp front-like behavior is observed.

Another interesting feature of cardiac tissue is the

presence of many pacemaker cells which can fire spontaneously

Sinoatrial Pacemaker

at a frequency characteristic

of the cell. Such cells lack

a stable resting potential,

and depolarize slowly until

a threshold is reached, at

which point they fire. An

important property of pace-

maker cells is the fact that

a fast pacemaker can capture
t

a slow one. Although pace-

maker cells are distributed

rkinje Fiber Pacemaker throughout the heart, the

Sinoatrial node fastest ones are collected in

Pu

sinoatrial node. Therefore,
Atrioventricular node

Conduction System of the
He art

this region initiates the

heartbeat. The spatial strati-

fication of cardiac cells

according to natural frequency

5



is important for the stability of the cardiac rhythm. In

certain cases we can introduce pacemaker activity into

equations (1.2) by adding a bias current term. Spatial

stratification can be included by making this term depend

on x.

Abnormal rhythms of the heart are often generated when

a segment of the conduction pathway becomes diseased. In

such cases, the diseased segment may itself become a

pacemaker, or it may conduct only a fraction of the

impluses. incident upon it. One can study such processes by

again making equations (1.2) x-dependent.

2. The Cochlea

The inner ear ("cochlea") is a fluid-filled cavity in

the skull. An elastic partition, the basilar membrane,

divides the cochlea into two parts, and the fibers of the

auditory nerve are distributed along this partition. The

stiffness of the basilar

membrane decreases exponen-

tially with distance from the

input end. When the ear is

ptt t ttt ItuuttinliIIIlrnIMJillIIIIIMP -`

ti l tht d b ts mu ee y a pure onea

vibrations of the basilar

membrane-fluid system take the form of a traveling wave

which peaks at a place which depends on frequency. (The

location of the peak varies as the log of the frequency.)

6



In this way the different frequencies of a complex sound are

sorted out and delivered to different fibers of the auditory

nerve.

We shall study this problem both with and without

viscosity. In the absence of viscosity the flow will be

potential flow and the equations are:

A = 0

ay

I

111

a2 + e-X a= 0tY
y

where is the velocity potential (u = grad ) and 0 is the

Laplace operator 4 = (a2/ax2) + 0 2/ay2).

If the factor e-X were replaced by a constant this

would be equivalent to the problem of waves of low amplitude

in water of finite depth. In fact, the factor e-X can be

absorbed by a conformal mapping. The results of this

analysis reveal an important fluid dynamic mechanism for

concentrating the energy of the wave near the basilar

membrane.

The inviscid analysis is incomplete, however, because

it predicts that the amplitude and spatial frequency of

the wave will increase without bound at the membrane

(although at any finite depth, this difficulty does not

occur.) The equations of motion with viscosity may be

7



written as follows:

1.4)

r

at+ = vAu

By = vov - e-xh(x,t)S(Y)t
at

au + IV = 0ax By

aht = v(x,O,t)

where (u,v) is the velocity vector, v is the viscosity,

h(x,t) is the membrane displacement.

Using Fourier transforms, this system can be reduced

to an integral equation along the membrane, which can be

solved numerically.

3. The Retina

The retina is essentially a two dimensional array of

cells which. codes a pattern of light stimulation into nerve

impulses. Even at this first stage of visual processing

there are interesting interactions between cells, so that

/
I

1

Objective

-- Subjective

the output of each cell depends

not only on the light falling

on that cell, but also on the

surrounding cells. For example,

when the objective illumination

contains a ramp connecting the

8



constant levels, the subjective impression is of a bright

band near the corner where the graph of the illumination

is concave down and a dark band at the opposite corner.

These were discovered by Mach, and are called Mach bands.

They can be explained by the theory that the retina computes

the Laplacian of the illumination and subtracts this from

the actual illumination to obtain the response. A class

of models related to this idea were proposed by Hartline

and Ratliff. These take the form:

(1.5)

R(x,y,t)

f

t
E(x,y,t) - adt' JJ dx'dy' K(x-x',y-y',t-t')R(x',y',t')

CO W

where E is the light and R is the response. Note that the

response, rather than the light, appears in the integrand

on the right hand side. This is because the influence of

one cell of the retina on another is mediated through the

response of the cell, not directly by the light.

With a particular choice of K which is not unreasonable

we can reduce the equation (1.5) to a partial differential

equation, which we then use to study the statics and

dynamics of retinal interactions.

9



4. Pulse-wave Propagation in Arteries

The heart ejects blood into a branching tree of

elastic tubes - the arteries. The shape of the arterial

pressure pulse deforms as the wave travels toward the

P periphery. The changes in

the shape of the pulse depend

t upon the properties of the

Near the Heart artery and are therefore

P useful in diagnosis. In

particular, atherosclerosis

t and diabetes result in the

In the Periphery absence of the second wave

in the peripheral pulse.

The one-dimensional equations governing the flow of

an incompressible fluid in an elastic tube are

8u + u 8u + ? = fp t Bx ax

(1.6) at + 8'x (Au) + 0

A = A(p,x)

where p is the density, u is the axial velocity, p the

pressure, f the frictional force, A the cross-sectional

area, the outflow, and A(p,x) is the relation between

pressure and area at each point x as determined by the
local properties of the wall.

10



At least two types of distortion are possible with

equations (1. ). To see this consider the model given by

(1.7)

f = 0

p,x) = A
0

e(Kp-ax)

cAp

In this case equations (1.6) become

(1.8)

I au + u au + ap = 0plat axl ax

t
+ apI

+
au - p

Kat uax ax= au

Setting A = cs = 0 we have the non-linear system

(1.9)

p (au + u aul + attat ax} a xx

(9P ap au
K a t+ u ax + ax = 0

in which distortion is introduced by the convective terms

au .
U ax and u ax

Alternatively, one may neglect the non-linear terms

but retain non-zero values for A and o. In that case the

system becomes

(1.10)

au + a2 = 0pat ax

K+Bx=
L at u - cep

11



and distortion is produced by the undifferentiated terms.

Both types of distortion influence the shape of the

arterial pulse.

5. Cross-Bridge Dynamics in Muscle

Skeletal and cardiac muscle contain two systems of

parallel filaments (thick and thin) which slide past each

other during contraction. Cross-bridges which form

between the thick and thin

filaments actually brim

about the sliding. An

attached cross-bridge may

be characterized by a
parameter x which measures

its strain. The population of cross-bridges may be

characterized by u(x) such that

jbu(x)ax
(1.11) = fraction of cross-bridges with a < x < b

a

For a given cross-bridge, x changes with time at a rate

proportional to the velocity of the muscle as a whole.

Moreover, the force exerted by an attached cross-bridge

is proportional to x.

Assume that all cross-bridges attach in configuration

x = A. Then with v < 0 (contraction) we have

12



au + v au = -g(x)u
at ax

(1.12) fu(x)F 1 - dx =

(-v)u(A_)

A

P = KJ u(x)x dx

The interesting problem here is an inverse problem:

with measurements of P(t), v(t) - how can one determine

g(x), the rate of breakdown of cross-bridges as a function

of strain? The solution of this problem yields a method

by means of which macroscopic measurements on intact

muscle can be used to determine the properties of a

microscopic (and rather inaccessible) chemical reaction.

13



II. Fundamental Solutions of Some Partial Differential Equations

In this section we shall construct solutions to the

following problems:

The Wave Equation;

(2.1) at - an) u(t,x1 ... xn) = f (t) S (xl) ... S (xn)

The Klein-Gordon Equation:

(2.2) (a2 - On + k2)u(t,x1 ... xn) = f(t)S(x1) ... S(xn

(Rote: when k2 < 0, 2.2 is a form of the Telegrapher's

equation.)

Laplace's Equation:

(2.3) -Anu(x1 ... xn) = S (x1) ... S (xn)

The Heat Equation:

(2.4) (at - An) u(t,x_1 ... xn) = f (t) S (x1) ... d (xn)

In the foregoing:

n 2

ak
An

k =l

a = a
a = a

k xk t at

14



Our approach will be as follows: First, solve the Wave

Equation in one space dimension. Then, use the method of des-

cent to construct solutions to the Wave Equation and the Klei_n-
Gordon Equation in higher dimensions. A special right-hand

side for the Wave Equation then yields Laplace's Equation in

the limit t - -. Setting k2 < 0 in the '_:lein-Gordon Equation

yields the Telegrapher's Equation, and a limiting case of this

is the Heat Equation. In this way we exhibit the connections

between the various problems, since we construct each solution

from that of the 'Wave Equation in one space dimension. This

contrasts with the usual approach in which hyperbolic (the

Wave and Klein-Gordon equations), elliptic (Laplace's equation)

and parabolic (the Heat equation) Problems are treated sep-

arately. There are, of course, good reasons for considering

these cases separately when one looks more deeply into the

subject, but the connections between the different equations

are also interesting and will be emphasized here. The reader

who wants a thorough introduction to the partial differential

equations considered in this section should consult (for

example) the C.I.M.S. Lecture Notes of Fritz John (also pub-

lished by Springer).

1. The Wave Equation in One Space Dimension.

The problem is:

(2.5) (8t - D2)u(t,x) = f(t)d(x)

15



on -- < x < -. We expect a solution which has u(t,x) = u(t,-x),

and we can state our problem as a boundary value problem on

x > 0 by choosing e > 0 and integrating (2.5) over the interval

(-e,e) . We obtain

lira [-(axu)(t,e) + (axu)(t,-e)) = f(t)
C-1-.0

or, since (axu) will be an odd function:

(2.6) lim (axu) (t, C) = - 2 f(t)

On x > 0, (2.5) becomes

(2.7)

(2.8)

(at - a2)u(t,x) = 0

which is easily shown to have the general solution

u(t,x) = g(t-x) + h(t+x)

that is, a sum of traveling waves of arbitra.r.' shapes -oving
in opposite directions at speed 1. T'e are intereste!? only in

the solution which moves away from the source. Therefore -et

h S 0. The boundary condition (2.6) then yields g'(t) = 2 f(t),

or g(t) = 2- F(t) where F'(t) = f(t). Therefore, on x > 0

u(t,x) = Y F(t-x)

and, extending this as an even function to - < x < w:

16



(2.9) u(t,x) = I F(t-r) , r = jxi

I t is interesting to specialize to the case where f(t) = S(t).

Then F(t) = 1 when t > 0, 0 otherwise, and we have

(2.10) u(t,x)

t > r
1

t < rj
t

u = 0

u = 0

2. The Method of Descent.

In this section we study a family of radially symmetric

functions of xl ... xn which also depend upon a parameter k:

(2.11)

where

On(xl ... xn;k) = (rnak)

rn = xi +...+ xn

17



The members of this family are related to each other as follows:

(2.12) On(xl ... xn;k) = foo dE cos k On+1(x1 ... xn,E;0)

CO

In the next section we will show that the solutions of the

Klein-Gordon Equation form a family of functions with precisely

this structure. Here, we derive formulae by means of which

one can construct the entire family from the single function

4D 1(r;0) .

Using the formula (2.12) twice, the second time with

k = 0, we obtain

(2.13) 6n (x1 ... xn;k) _ F dE cos kE f do 0n+2(xl ... xn,E,n;0)

CO -00

Rewrite (2.12) in polar form:

0n (r; k) = 2 fd E cos kE 'n+l ('err+Z_' 0 )
0

(2.14)

2

f 4

RdR
cos 0n+l(R;0)

r R2-r2

where we have used the change of variables R2 = so

that RdR = EdE = R d .

Similarly, rewrite (2.13) in polar form:

18



2Tr
On On(r,k) =

J

d8pcos (kp sin 0) to+2( r2+p2;0)
0 0

(2.15)

where

_ f (R; 0) Jor

f2 ,,T

(2.16) 1 0(z) _ cos
(z

sin 9)d8

0

Exercise: Show that repeated application of (2.14) yields (2.15).

In the special case k = 0, equations (2.14) and (2.15)

take the form

(2.17)

(2.18)

Co

0n(r;0) = 2 RdR On+1(r;0)

r Al r-

On (r;0) _ J 2TrRdROn+.,(r,0)

The latter formula is easily inverted by differentiating with

respect to r

(2.19)

3r On(r;0) _ -27rr!n+2(r,0)

0, n+2(r'0) = - 2 2r On(r;0)

19



In fact, equations (2.17) , (2.18) and (2.19) hold not only for
k = 0 but for arbitrary fixed k. To see this, rewrite (2.13)

as follows:

(2.20) n(xl ... xn;k)

100 do
J00

dE cos k9 0n+2(x1 ... xn,n,E;O)

-CO -00

where E and n now appear in opposite order as arguments of On+2'

This makes no difference because of radial symmetry. But the

second integral in (2.20) is equal to xn'n'k)'

Therefore

(2.21) On(x1 ... xn;k) = f do 4n+1(x1 ...
xn,n;k)

This is the recursive relation for fixed k. It has the same

form for all k. Therefore we will have the following formulae,

corresponding to (2.17), (2.18) and (2.19):

(2.22)

(2.23)

(2.24)

0n(r;k) = 2
1=

RdR
4 n+1(R;k)

r R2-r2

(r;k) = F 21rRdR 0n+2(R;k)
r

0 n+2(r'k) = - 2irr 8r n(r;k)

20



(If this argument seems too ine?irect, one can check that these

are consequences of (2.21). The manipulations will be the

same as above.)

We are now in a position to construct the entire family

{4n(r;k); n = 1,2,..., and k arbitrary} rrnrr. the single
function Dl(r;0).

(2.25) ID 3(r:0) = - 2rr r 0 1(r`0)

(2.26) t2(r;k) - 2
100

RdR
cos k R2-r2 03(R;0)

r _2-r

21rRdR Jo(k 2-r2) Y^;0)(2.27) '1(r;k) =
COr

Finally, with 01(r;k) and 02(r;k) known we can construct

0n(r;k) by repeated application of the formulae

(2.28) i'n+2(r;k) - ?_Tr 8r i'n(r;k)

3. Application of the "Iethod of Descent to the ,lein-Gordon.
Equation.

Consider the f: rnily of radially syrmetric functio-s

n(t,xi ... x.n;k) = 4Dn(t,rnk) which are solutions of

(2.29) (at - An + x1.,;k) = f(t)S(-I) ... (xn)

21



We want to show that (for each t) these functions have the
same structure as the 0 functions of the previous section.

First, we need the following identity:

ID
-00

dxn+l(-An+1u(xl " ' xn+l)) cos kxn+1

1CO

dxn+l(-Anu(xl ... xn+1)) cos kxn+1

(2.3)
-0,

dxn+l (_9n+12 (x1 xn+1) ) cos kxn+1
-CO

(-4n + k2) f dx_n+i cos kxn+lu(xl xn+l)
-00

Next, write (2.29) with k = 0 and n replaced by n+l:

(2.31) t
-

x-n+1;0)

= f(t)6(x 1) ... 4S(X)t(X1)

Multiply both sides of (2.31) by cos kxn+1 and integrate with

respect to xn+1. Using (2.30) we obtain

(8t - pn + k2) I:dXfl+l cos
xn+11-0)

(2.32)

= f (t) S (xl) ... S (xn)

Comparison with (2.29) shows that

22



cpn(t,xl ... xn;k)

(2.33)
EE dxn+l cos kxn+i0n+i(t'xl xn+1;0)

-00

which is precisely the required structure.

We are now ready to apply the method of construction

outlined in the previous section. We have solved the one-

dimensional wave equation in Section 1. In the present

notation the result is

01(t,r;0) = y F(t-r) where

(2.34)
F' (t) = f (t)

Therefore, applying formulae (2.25)-(2.27) we have

(2.35) D3 (t, r; 0) = 4I f (t-r)

-it)(2.36) I2(t,r;k) = 2n J dR cos

r R2-r2

(2.37) 01(t,r;k) f (t- R)
r

where J0 is given by (2.16). In particular, for k = 0 (The

Wave Equation), we have.

(2.38) 2(t,r;0) =
2-ff

dR f(t-R)
r R2-r

23



(2.39) 11(t,r;0) dRf(t-R)
r

This last result is equivalent to the results of Section 1,

since

(2.40) I'
Jt_r

dRf (t-R) = f (t') dt' = F (t-r)

Remark: Each of these problems also has a solution which

represents an incoming wave. These waves do not appear here

because they were excluded from the solution of the 'lave

Equation in Section 1.

4. Laplace's Equation.

In 3-space dimensions we can obtain the fundamental solution

of Laplace's Equation from that of the Wave Equation as follows.

Let

(2.41) (at - 03) u (t,xl,x2,x3) = f (t) a (xl) 6 (x2) a (x3)

we have shown above that

(2.42) u(t,xl,x2,x3) = U(t,r) = 4nr f(t-r)

where r2 = x2 + x2 + x3. Now consider the special case

24



(2.43) f (t)
0 t < 0

Then

(2.44) u(t,x1,x2,x3) =
1/4nr, t > r

(2.45)

0 , t < r

lira u(t,xl,x2,x3) - 4rrt-).W

In the open spherical ball r < t, the result we have just

found implies that

(2.45)
-A 3 ( 4rr ) = d (x1) d (x2) d (x3)

On the other hand, we can take t as large as we like, so

(2.46) must hold for all r, and

1 _ 1 1
4rtr = 4n

xi+x2+x3

is the fundamental solution of Laplace's equation in three

space dimensions.

In two space dimensions we have to be more careful.

Suppose we try the same method as above. From (2.38) we will

have
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U (t, r) 1 dR
R2-r2 021r

rf - -

(2.47) = 1 (t dR
2n j

r R -r2

Now

(2.48)

1
t/r

du
a J

1 u `-i

lint U(t,r) c?u

t+oo
1 u2-1

=0o

since i/ u 2:1 > 1/u when u > 1. On the other hand

(2.49)

and

(2.50)

au (t, r) - 2r r t2
- 1

r

which suggests that

- log r

is the fundamental solution of Laplace's Equation in two

dimensions (since 8= log r = r).
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5. The Heat Equation.

Let v(t,xl ... xn) = v(t,X) be the soultion of

(2.51) (at - A)v(t,X) = f (t) S (x1) ... S (xn)

and let vc(t,X) be the solution of

(2.52) ( at + at - A)vc(t,X) = f(t)S(xl) ... (xn)
c

We expect that

(2.53)

Let

(2.54)

(2.55)

(2.56)

v(t,X) = lim vc(tX)

vc(t,X) =
uc(t,x)e-at

atvc = (at -
)uce-at

atvc = (at - 2aat +
A2)uce-at

Choose a = a2/2. Then

(2.57)

And

(2.58)

2
(-7 at + at - A) vc = (-f at - a - uce-at

c c

uc satisfies

1 at2 - a -
4a)

uc (t,X) = f (t) eXtd (xl) ... S(x)

= f (t) e(c. /2) td.(xl) ... S (xn)
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Let

(2.59) uc(t,X) = uc(T,X) where T = Ct

Then uc satisfies

2
(2.60) (aT - - 4)uc(a)eCT/28(x1) ... 8(xn)

At this point we specialize to two dimensions and use (2.36)

with k = is/2 and with f (1) eCT/7 instead of f (t) . We obtain

CO C(T-R)
(2.61) Uc(T,r) =

1

dR cos ( R2-r') f(TCR)e21
2jr

r R 2-r2

Then

2

r ° (t-2)
AR -r ) f R e 2

C
c(2.62) U0(t,r) = 2-1 J

dP cosh (0 R`"-r`) f (t-C)e2 c
7r

r /R2-r2

2c t
Vc(t,r) = LTC(t,r)e $

(2.63)

1yff

R2-r2

C2 R

f(t - R)eC

Let R = ct'. Then

2
c dt' cosh ( c2t' -r2) - -- to

(2.64) Vc(t,r) = 2n J f(t-t')e
r/c c2t' -r
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v(t,r) = lim vc(t,r)c
(2.65)

2

_ J dt'f (t-t')
2'1 - [

t
e 2 cosh (c-t' I )t-

C-?Iw0 2

2
at' 2

lim e z cosh z t' 1- 2
C-*W C t'

(2.66)

Therefore

z'(1 c-tI + t
1 2

2

= lim e z ec
= 1 e-r2/4t'

Z

(2.67) v(t,r) = lim vc(t,r) = foo dt'f(t-t') 1 e r2/4t'

0

Exercise- tie have just fours' the solution to the r'ex.t_
Equation in two dimensions. use this solution to construct

the corresponc'.ing solution in n dimensions.
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Exercises Consider the system of equations!

au + C ax = 7 v(v-u)

9v 9V 1- c - v(u8t -v)
Tx- .7

= u+v. ^?hat does this equation become in the limit c

v V = c2.

-1. 00 ,

Give an interpretation of these results in terns of

random walks.
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III. Input to a Neuron: The Dendritic Tree 1

A typical neuron receives its input at selected sites

(synapses) along a tree of dendrites which originates at the

cell body. The input events are caused by release of a chemical

transmitter at the synapse. This modifies the conductance of

the post-synaptic membrane briefly, resulting in an injection

of current (if the membrane potential is not at equilibrium).

To a first approximation one may consider the injected current

as given, but a more refined analysis shows that it depends

on the local membrane potential. This makes possible non-

linear interactions between nearby synaptic sites, and it means

that we need to calculate the response to a synaptic event

not only at the cell body, but also throughout the dendridic

tree if we want to determine its interaction with subsequent

synaptic events.

1. Equations of a leaky cable.

This lecture is based on the following paper:
Rinzel, J. and W. Rall: Transient response In a
dendridic neuron model for current injected at one
branch, Biophysical J., 14, 1973, pp. 759-790.
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rAx

V

1
gAx ± CAx

Ax

(3.1)

(3.2)

(3.3)

N-t +gVI=

ai+I=0
TX

where i = axial current

I = current per unit length of membrane

V = internal voltage (external voltage = 0)

r = resistance per unit length (internal)

c = capacitance per unit length of membrane

g = conductance per unit length of membrane

When considering fibers of different radius a, it is

useful to relate the quantities r, c, g to radius. Let

po = resistivity of internal medium

Co = capacitance per unit area of membrane

Go = conductance per unit area of membrane.
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Then

(3.4)

r = po/lra2

c = Co27ra

3.5)

g = Go2ira

From equations (3.1)-(3.3) we have

c ay 1 azv+v
g at

_
rg ax-e

0

(3.6)

Let

T=g=Coo
Go

2 1 a
(3.7) Xo = rg = 2pp0

If we now choose T
0

as our unit of time, and X0 as our

unit of length (3.5) becomes

2

(3 8) + V = 0.

axe

2. Fundamental solution of the cable equations.

(3.9)

Let n(t,rn,k) be the solution of

(at - An + f(t)S(xl) ... S(xn)

where

r2 . x1 ... + xn
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In Lecture II we showed that:

2(t.
2 ,

0) =
1

dt'f(t-t') 1t
e-r /4t

0

Therefore, by the method of descent, we shall have

f
(3.10) 41(t,x,k) = dy cos ky j dt'f(t-t') ' e-r At

-00 0

where r2 = x2+y2. Thus

(3.11) 41(t,x,k)

F
a-x2At (m -y2/4t'dt'f(t-t')- t' 1 cos ky e dy

0

It remains to evaluate:

-00

r -Y2At' 2

J

cos kye dy = f exp(iky -,) dy
_CO -CO

(3.12)

=
e-k2t' r exp(k2t' + iky -yam) dy

= e-k2t' r
e-(y-2ikt')2/4t' dy

-00

=
e-k2t'

loo e-y2/4t' d y
-GO

But

(3.13) fe"4t' dy =

_CD
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Therefore:

g1(t,x,k)

(3.14)
_ f dt'f(t-t') 1 exp(-(k2t' + xlitf

0

Remark: When f(t) = 6(t) we obtain the Gaussian distribution

(3.15) ,(
2

Setting k = 0 we obtain the fundamental solution of the heat

equation in one dimension

(3.16) 1(t,x,0) = 1 e-x
2 /4t,

We note that 41(t,x,k) = exp(-k2t) 41(t,x,0). In fact

the cable equation can be interpreted as a random walk in

one dimension with a probability of absorbtion per unit time

equal to k2. Note that

J1(t,x,O)dx = 1
-CO

2
41(t,x,k)dx =

e-k t

I'
-00
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3. Equations for an infinite symmetrical tree.

n=0 n=1 .n=2

x3

0 x0=0

Let x measure distance from the origin.
Let (n,k) be the kth branch of the nth generation.

n = 0,1,2, ...

n
k = 0,1,2, ..., (2 -1)

Let Vnk xn'l < x < xn be the voltage in branch (n,k).

Note that the descendents of (n,k) are:

(n+l, 2k)

(n+l, 2k+l)

The equation for the kth branch in the nth generation is:

(3.19) (gn 8t - rlg ax + 1)Vnk(t,x) = 0
n n
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And the boundary conditions are

(3.20) Vnk(xn+l)
= Vn+1,2k(xn+1) = Vn+1,2k+l(xn+l)

av
(3.21)

r1

n
axk (xn+l)

1

rn+l

aVn+1e2k
aVn+l 2k+1

ax (xn+l) + ax (xn+1)

Make these equations non-dimensional in space and time by

choosing

(3.22)
en

oT = = C independent of n
o gn GG o

a
(13.23)

Xn rl = 2
G

dependent on n
ngn po 0

Then let

(3.24)

(3.25)

(3.26)

t = Tot'

(x-xn) = Xn(x'-xn)
xn `- x < xn+1

Vnk(t,x) = Vnk(t',x')

With these changes of variable, but dropping the 's, the

equations become:

(3.27) (at - ax + 1)Vnk(t,x) = 0

(3.28) Vnk(xn+l)
- Vn±1,2k(xn+l) = Vn+1,2k+l(xn+l)
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rn+1Xn+1 aVnk
r
n
X
n

ax (xn+l

(3.29)
aVn+1,2k aVn+1,2k+1

_
ax (xn+l) + ax (xn+l)

There is a special kind of tree which can be reduced to

an equivalent cylinder. To see this, sum the equations over

k = 0,1,2,...(2n-1) and divide by 2n. One obtains:

2n-1
(3.30) (at - ax + 1) 21n

k=0
Vnk = 0

(3.31)

n n
In 2-1Vnk(xn+l)

= In

2-1Vn+1,2k

(xn+l)
kn=0

2

kn=0

2n-1 2n-1

2n k 0
Vnk(xn+l) = 2n k10 Vn+1,2k+l(xn+l)

2n-1 2n+1_1

2n Vnk(xn+l) 2n+1 k=0 Vn+l,k(xn+l)

rn+1Xn+1) 1 2
n-1 aVnk

1
2n+1-1 aVn+lk

r n 2n k=0 ax
(xn+l) = 2n k=0 ax, (xn+l)

(3.32)

2 rnXn
2n k=0 ax n+l 2n+1 k0 ax n+l

(Z
rn+lXn+l) 1 2

n7-1
BVnk

(x
) = 1

2n+l
-1 aVn+l,k

(x
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1 2n-1

Vn
= 2n k-10 Vnk

(3.36)

(at - a2 + 1)Vn = 0
x

Vn(xn+l) = Vn+l(xn+l)

1 rn+lXn+l avn 3Vn+1

- (xn+l)rnXn ) ax (xn+1) = -1-x

In the special case

(3.37)
1 rn+1Xn+1 = 1
'f

rnXn

equations (3.35) and (3.36) merely assert the continuity of V

and axV at the points xn. This is already asserted by the

differential equation if we regard these points as interior

points of the domain of (3.34). Thus we have simply

(3.38) (at - a2 + 1)V(t,x) = 0 on x > 0

with a boundary condition at x = 0 which remains to be imposed.

The condition (3.37) can be rewritten as follows
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1 _ 1 rn+lXn+1 = 1 rn+1 rngn
rnKn 2 rn rn+lgn+1

(3.39)

(3.40)

rngn+l J an+1

3
1 rn+lgn _ 1 Z an

as+l
=

(x)2/3

an

where an is the radius of a branch of the nh generation.

4. Current Injection

Pick a point x* in branch NK and inject current at rate

f(t). In the dimensional form of the equations this gives rise

to a boundary condition;

(3.41) -
1

av
NK

+ f(t)
1

avXK(X*+)

N N

Equivalently, one can rewrite (3.19) as follows:

(3.42)

(en at - r
1axx 1)Vnk(t,x)

n n

= 1 f(t)6(x-x*)a 6
gn Nn Kk

The non-dimensional form of this (corresponding to 3.27)

will be

(3.43)

(at - a2 + 1)Vnk(t,x)

gnn
f(t)d(x-x*)6NnsKk
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The factor gnXn (with dimensions of conductance - only

x,t have been made non-dimensional, but V is still in volts

and f(t) is in amps) can be rewritten as follows:

(3.44)

gnXn = 27ranGo
poGo

= 27r

On the other hand, from (3.40) we have an/2 = ao3/2 2-n

Therfore,

(3.45) gri n =
2'R

where 1 = 27r
G

2p ao/2
0

and R has dimensions of ohms. (It is the input resistance

for the tree of infinite length as seen from the cell body

x = 0). Thus (3.43) becomes

t - a2 + l)Vnk(t,x)

(3.46) = R2nf(t)6(x-x*)SNn6Kk

As before, summing over k and dividing by 2n we obtain

(3.47) (at - a2 + 1)V(t,x) = Rf(t)a(x-x*)

For a boundary condition at x = 0 take 3x = 0 (sealed end, no

current flow at x = 0). This boundary condition will be

automatically satisfied if we extend the domain to -- < x <

and put an image source at x = x*. Then
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(3.48) (at - aX + 1)V(t,x) = Rf(t)[S(x-x*) + S(x+x*)J

The solution is

(3.49) V(t,x)

-t
R J dt'f(t-t') e-t'

CO A Tr t-1
exp(- (x- t, ) + exp(-

(x+
' )

As an important special case, consider the solution at the cell

body (x=0) in response to a S-function input. It is:

(3.50) 76(t,0) = 2R e

Exercise: Approximate VS(t,0) by a function of the form

A exb(-ct(t-tp)2)

when x* is large. To do this, take the log of VS and expand it

about the time tp when VS achieves its maximum. How do A, a,

tp depend on x* when x* is large?

Exercise: Instead of the boundary condition 2x = 0 at x = 0,

consider the condition V = 0 at x = 0. Solve this problem

by a method like the one used above and find the corresponding

formula for x(t,0). (This is the current which pours into

the origin when the cell body is held at zero voltage.)
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5. Unsymmetrical component of the response

We have found the symmetrical component V of the response

to a single injection of current at a synapse. This depends

only on the non-dimensional distance of the synapse from the cell

body. At the cell body itself V = V, so we have found the

response. In the rest of the dendritic tree no such formula

holds (except for a symmetrical distribution of inputs). Never-

theless, we can find the response by superposition of symmetri-

cally and antisymmetrically distributed inputs.

We will illustrate this procedure for a case where the

input occurs in branch n = 2, k = 1. The generalization to

arbitrary n,k will be evident.
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The problem we want to solve is

(at - a2 + 1)Vnk(t,x) = R22f(t)6(x-x*)dlk

Write 6lk as a vector

61k = (1,0,0,0)

and note that

Elk = [(1,1,1,1) + +

This means that we can write

(1,1,1,1) (1,-1,0,0)

Vnk V Vnk + Vnk + 2Vnk

But each of these problems can be solved. Vnikl,l,l) is the

solution for symmetrical imputs which has been found above.

In Vnk°lD-1,-1) we will have V(xl) = 0 by symmetry. This means

that we can solve the clariped symmetrical problem (see probler,
above) on the half-tree x > xl, k < (2n-1-1). Similarly in

Vnkl,-1,0,0) we will have V(x2) = 0 and can solve the clamped

symmetrical problem on the quarter-tree x > x2, k < (2n-2-1).

Proceeding in this way we can find the solution for a

single input.

Exercise: Carry out this construction and find li2k(x*) for k

= 1,2,3,4. '''hat is, find the response at the corresoondin7

points in other branches to an input applied at c''. For

simplicity, let xn = n, so that 2 < x* < 3.

44



6. Random walk interpretation.

The equations for the symmetrical dendritic tree have the

following interpretation. At t = 0 a particle is introduced

somewhere along the tree. It then proceeds to do a random

walk along the branches. The condition

as
+1 =

(2)2/3

n

insures that when it encounters a branch it is as likely to

move toward the origin as away from the origin. If it moves

away, it has equal probability of entering the two branches

available to it. If we describe the particle by the trajectory

x(t) then the condition an+1/an = (1/2)2/3 makes these

trajectories uninfluenced by the branching. Also, once a

particle has entered branch nk, it no longer distinguishes

among the descendents of nk and is equally likely to be found

in any of them which are consistent with its current value of

x. Moreover, the particle has a finite probability of disap-

pearing per unit time. If it does so, its trajectory terminates.

In this interpretation, the voltage is proportional to the

probability of finding the particle at a given location.
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IV. Equations of the Nerve Impulse

V The output of a neuron

consists of a discrete sequence
t

of pulses which propagate along

the nerve axon. The waveform

and amplitude of these pulses

is constant, so that information
can only be transmitted by means

of their relative timing. In general, a stronger stimulus is

coded as a higher frequency of nerve impulses.

In 1952, Hodgkin and Huxley 1 introduced a system of

equations which describe the propagation of these signals along

the nerve axon. Their equations can be written as follows:

(4.1)
all _ ] a2y
Tt

ax2
+ 'ion

where c = membrane capacitance per unit length

r = axial resistance per unit length

V = membrane voltage

Iion = ionic current through the membrane

and where

(4.2) Iion
= gNam'h(V-ENa) + gKn4(V-EK) + gL(V-EL)

Hodgkin and Huxley: A quantitive description of membrane
current and its application to conduction and excitation
in nerve. J. Physiol. 117, 500 (1952).
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(4.3)

= am(V)(1-m) - 8m(V)ma:E

T an(V)(1-n) - an(V)n

y - %(V)(1-h) - Rh(V)h

In these equations the subscripts Na, K, L refer to

Sodium, Potassium, and Leakage, respectively. The quantities

ENa, EK, EL give the equilibrium potential for each ion. The

quantities gNa, gK' gL give the conductance per unit length

for a particular ion when all of the channels specific to that

ion are open. The dimensionless parameters m, n, h can be

thought of as controlling the instantaneous number of channels

available. These quantities are confined to the interval (0,1)

and obey first order equations in which .the parameters a,

S are functions of voltage. Qualitatively, m and n are turned

on by increasing voltage, while h is turned off. The time

scales are such that m changes rapidly while n, h change slowly.

The complexity of the Hodgkin-Huxley equations is such

that the introduction of simpler models is advisable. A

particularly attractive idea is to construct a model in which

the equations are piece-wise linear. For example, the membrane

potential might satisfy one set of linear quations when V < a,

and another when V > a. In such a case we might hope to

construct solutions by solving the two linear systems and

matching the two solutions along the curve in the (x-t) plane
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where V = a. Such a model , introduced by H. McKean, has been

extensively studied by Rinzel and Keller 2, who have determined

all of its pulse shape and periodic traveling wave solutions

and have also analyzed the stability of these solutions. Their

model may be written as follows:

/ut=uxx-u+m-w
(4.4)

wt = b

In these Notes we introduce a slightly different model:

eut = e2uxx - u + alm(1-n) - a2n

(4.5) m=
0 u < a

nt = m-n

With a2 = 0, this model was proposed by R. Miller 3. The

motivation for this model in terms of the Hodgkin-Huxley

equations is as follows: The parameters m and n have the same

meaning as in the Hodgkin-Huxley equations, while (i-n)

2 Rinzel, J., and J.B. Keller: Traveling wave solutions of a
nerve conduction equation. Biophysical J. 13, 1313 (1973).

3 Miller, R. Thesis (Dept. of Math.) University of California
at Berkeley (in preparation).
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corresponds to h. The term alm(l-n) corresponds to the Na-

current, -a 2n corresponds to the K-current, and -u corresponds

to the leakage current. The parameter a is the threshhold,

or the voltage at which the Na-current turns on. Once the

Na-current turns on,. it slowly turns itself off through,tte

(1-n) factor while the K-current turns on because of the n factor

The e in the equations makes explicit the fact that the time

constant associated with charging the membrane is much less

than the time constant associated with the. dynamics of n. We

have chosen the latter time constant as our unit of time. The

e2 in front of the uxx term is introduced by choosing an

appropriate unit of length. With these units of time and

length the pulse will have finite duration and travel at a

finite speed even in the limit e - 0.

Our analysis of the model (4.5) will proceed as follows.

First, we find an expression for a traveling pulse solution
of these equations following the methods of Rinzel and Keller

(cited above). The constants in this expression can be

evaluated explicitly in the limit e - 0. In this limit the

front and back of the wave uncouple from each other in an

interesting way, as has been shown for traveling wave solutions

of a different model by Casten, Cohen and Lagerstrom
4.

In

4 Casten, R., H. Cohen, and P. Lagerstrom: Perturbation
analysis of an approximation to Hodgkin-Huxley theory.
Quart. appl. math., 32, 365 (1975).
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particular, the boundary conditions at the front of the wave

determine the propagation speed, while the conditions at the

back (together with the propagation speed) determine the speed

of the pulse.

This observation motivates the next development, in which

we depart from the context of traveling waves and consider the

full system of partial differential equations (4.5) in the

limit e - 0. We will derive a formula for the velocity of a

front in these circumstances. This formula remains valid even

when the front does not have a constant velocity, that is,

when the trajectory of the front is a curve in the (x,t) plane.

(It also remains valid in inhomogeneous media.) We use this

result to find the solution of an initial value problem in the

limit e ; 0 and to show how the traveling wave solution evolves

out of the initial conditions. These results on the non-

traveling wave case are believed to be new.

1. The Traveling pulse.

Consider the system:

(4.6)

(4.7)

sut = e2uxx - u + alm(l-n) - a2n

m =
1 u > a

L0 u < a

(4.8) nt = m-n
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Look for a solution of the form:

(4.9) u(x,t) = uc(z)

(4.10) n(x,t) = nc(z)

where

(4.11) z = x+ct , c > 0

Define the origin of z so that uc(0) = a and define z1 > 0

by uc(z1) = a. The solution we seek is a wave traveling to

the left which looks like this:

z

T

1

v -

m

-- ,n
-> z
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The ordinary differential equations satisfied by uc(z), nc(z)

are

(4.12) 0 = e2ulf - ecu, - u + alm(l-nc) - a2nc

(4.13)

(4.14)

We have

(4.15)

en1 = m-nc

M =
uc > a

uc < a

0 z < 0
m = 1 0 < z < zl

0 zl < z

1 0 z < 0

(4.16) nc 1-exp(icz) 0 < z < zl

1 C1-exp(Xczl)]exp(X0(z-zl)) zl < z

where

Ac=- <0

(4.17) lAP exp(Apz)
u Bp exp()Lpz) + Bn exp(Xnz) + B. exp(acz)

Cn exp()1nz) + Cc exp(X0(z-zl))

+ Bo
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where Ao has been given above and where API in are the roots of

e2a2 - eca - 1 = 0

(4.19)

(4.20)

= 2e (1 t 1 + )
c

an < 0 <ap

The coefficients Be, Bo, Cc are found by substitution of the

formulae for u in the differential equation (4.17).

On 0 < z < z1

(4.21) alm(l-n) - a2n = -a2 + (al+a2) exp(acz)

Therefore

(4.22)
2

77 - Se ad - l)(Bc exp()0 + Bo)(e2
dz

d

= a2 - (a1+a2) exp(acz)

(4.23)

(4.24)

(s2x2 - eoxo - 1)Bc = - (a1+a2)

- Bo : a2

a + an2
Be =
c 1 + eeXc - c2Ac

(4.25) Bo = - a2

1
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Similarly, on z1 < z

(4.26) a1m(l-n) - a2n = -a2n

-a2(1-exp(aczl)]exp(Xc(z-zl))

(4.27)
(£2

d2

2dz

(4.28)

(4.29) s
c 1 + £cAc - E c

The unknown coefficients which remain are as follows:

Ap, Bp, Bn, Cn, zl, c

For these unknowns we have the 6 boundary conditions

(4.30) uc(0-) = uc(0+) = u0(z1) = uc(zi) = a

(4.31) uC(0-) = u,(0+)

(4.32) uC(zi) = u;(zi)

three of which are associated with z = 0 and three with z = z1.

Explicitly, the boundary conditions read as follows.

At z = 0:

- cc dz - 1)Cc exp(Ac(z-zl))

= a2(l-exp(Aczl)]exp(Ac(z-zi))

(e2A2 - £cAc - 1)Cc = a2(1-exp(aczl)]

-a2[1-exp(aczl)]
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(4.33)

(4.34)

(4.35)

a = AP

a= Bp+Bn+B0+Bo

ApAp = BpAp + BnAn + BCAc

At z z1:

(4.36) a = Bp exp(Apz1) + Bn exp(Xnz1) + Bc exp(Acz1) + B0

(4.37) a = Cn exp(Anz1) + C0

(4.38) BpXp exp(Apzl) + BnXn exp(Anzl) + BOAC exp(Aczl)

= C
n
X
n exp(Anzl) + C0X0

Remark: If we use the equations for Bc, Bo, Cc, and regard

c, z1 as known, then these become a linear system for the 6

unknowns Ap, Bp, Bn, Cn, al, a2. However, if al, a2 are

regarded as known, then the equations for c, z1 are not linear.

2. The traveling pulse in the limit e + 0.

We shall look for a solution in which c, z1 remain finite

in the limit e + 0. We have Ap + m, An + Let

(4.39) -R = a 1 + 1 + (4/02)
An

1 - 1 + (4/c2)

which is independent of e.
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Note that

(4.40)

(4.41)

(4.42)

Also let:

(4.43)

(4.44)

a2

Bo = -a2

Cc - -a2(1-exp(Xcz1))

Bp = Bp exp(Apz1)

Cn = Cn exp(Anzl)

If NP and Cn remain finite, then Bp - 0 and Cn -s a*.

In the limit a - 0 the boundary conditions become:

At z=0:

(4.45)

(4.46)

(4.47)

Atz=z1

a = Ap

(4.48)

(4.49)

(4.50)

a = Bp + Bn + Bc + B
0

Ap=Bp-BnR1

a = Bp + Bc exp(acz1) + Bo

a= Cn+ Cc

lBp = -0nR
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Since the other terms in (4.48) are finite, Bp will also

be finite. Therefore Bp - 0, and the equations at z = 0 become

Ap=a

Bn -(al-a)

Bn al - a
R A = a

p

This determines the propagation speed, since (4.39) can

be easily solved to yield

(4.54) C = R-1 _ R1/2 - R-1/2
R1 2

The equations at z = zl become

(4.55) Bp = a + a2 - (al+a2)exp(Xczi)

(4.56) Cn = a + a2[1-exp(Xcz1)]

(4.57) RBp = -Cn

Since R is known, equation (4.57) becomes an equation for

z1. After some algebra:

a + a2
exp(Xezl) =

a1
- a + a2

a + a2

al - a + a2.<1 if R> 1
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It remains to find the solution u itself. For z 91 0

and z ¢ z1 we have in the limit e ; 0

(4.60) 0

O =U

zl<z

z < 0

(a1+a2)exp(acz) - a2 0 < z < z1

-a2(1-exp(xczi))exp(ac(z-zl))

-a2(1-exp(aczl))

The dotted lines give the shape of the transitions for

small but non-zero c. If we want to "capture" the form of

these transitions we can introduce a scale which changes with

e. This will be done for a more general problem in the next

section.

58



3. Propagation of Fronts.

Again consider the model:

(4.61)

(4.62)

(4.63)

We will not restrict attention to traveling waves, and the

formula we derive here wil: remain valid if al, a2, and a

depend smoothly on x. Thus the results of the section will be

applicable to an inhomogeneous line.

We are interested in the behavior of the solutions in the

limit c - 0. Taking this limit formally we obtain the system:

cut = e2uxx - u + alm(l-n) - a2n

m =
1 u > a

0 u < a

nt = m-n

0 = -u + alm(l-n) - a2n

(4.64) M =
u > a

u < a

nt = m-n

In the latter system different space points are uncoupled.

Moreover, there is no unique solution, since it may easily

happen that
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(4.65) [al(1-n) - a21) > a > [-a2n]

In such a case one can choose m = 0 or m = 1 without arriving

at a contradiction. We want to find the solution of (4.64)

which arises from (4.61 - 4.63) in the limit s - 0. This will

be done by finding a formula for the propagation speed of the

fronts. By "front" we. mean the place where a tran:,itior, in m

from 0 -> 1 or 1 - 0 occurs.

Let x = x(t) be a .:urge in the x,t plane along which a

jump in m occurs. Introduce new variables

(4.66)

(4.67) T - t

(4.68) u(x,t) = u(E,T)

The ± sign in the foregoing is to be ch.*)sen so that

(4.69)

We have in the limit a -* 0:

(4.70)

ut u9 :,t + uTTt

<0

5 > 0

a(+ a(t)) + :1T

6 Cc



(4.71)

(4.72) E2uxx
= ugE

(4.74) n(x,t) = n(x(t)teg,t) - n(i(t),t) = n(t)

Since n is continuous through the front. Therefore in the

limit

(4.74) 0 = uE t t(t)-uE - u + alm(1-n(t)) - a2n(t)

where

(4.75) m =
1 C < 0

0 E > 0

In the system (4.74)- (4.75), t appears as a parameter only.

(This came about because the term UT was negligeable on the

right hand side of (4.70).)

Let

(4.76)

(4.77) IA a al(1-n) - a2n

(4.78)

cut 4- u&(+ at (t))

IB = - a2n

The ordinary differential equation for the structure of

the front is:
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(4.79) 0=utg+eu9-u+

The solution is:

(4.80) U =

IA' C < 0

IB, E > 0

YAfIA + (a-IA)e

IB + (a-IB)e

where we have used u(0,t) = a, and where yB < 0< yA are the

Y2 + ey - 1 = 0

(4.83)

yA = - 2 (1 - sgn(8) A + (4/82) ) > 0

YB = - 0 (1 + sgn(e) A + (4/e2) ) < 0

To determine 0, impose the condition

ut(0-,t) = ti(0+,t)

(a-IA)YA = (a-IB)YB

R a IA-a = YB = 1-+ sgn(e) 1 + (4/82)
a-I YB A

1 - sgn(e) A + (4/02)

E < 0

YBE

C > 0
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Solving for 6, we find

(4.87)

For real 8, require that R > 0. Since IA > IB9 this implies

IA > a > IB. Another consequence of R > 0 is sgn(8) = sgn(R-1),

as can be shown from (4.86). Therefore, we have, without any

ambiguity of sign,

8= R-1 1/2 -1/2
R1/2 = R - R

a-IB

This is the required formula for the velocity of a front.

Since IA and IB depend on n, the velocity depends on n. The

sign convention for 8 is that 8 > 0 means the front is moving

outward from the excited region, while 8 < 0 means the front

is moving into the excited region.

4. An initial value problem.

We shall use the results of the previous section to

construct the solution of the problem (4.61 - 4.63) in the

limit a - 0, with initial data

(4.90) n(x,0) = 0

(4.91) m(x,0) _
1 1 x I < xo

0 (xI > xo
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We expect the solution to look like this:

TRAVELING WAVE

t b =back

m

m=l / /m=0

-Xo X0

= front

Because of symmetry, we can restrict our attention to

x > 0. Let t = tf(x), x = xf(t) be the trajectory of the front

and let t = tb(x), x = xb(t) be the trajectory of the back.

The front starts at x = xo. Along it we have n = 0, and

therefore

(4.92) Rf = R(0) =
as -a

Assume that a1 > 2a. Then Rf > l and

(4.93) 81 =Rfj2-Rf112> 0

The eqt i;ion for the front is

(4.94) xf(t) = X0 + Oft
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Next, determine the equation of the back on x < xo. This

is the line along which the back of the wave arises spontan-

eously. Its equation will be

(4.95) tb(x) = t*

where t* is the time when n becomes too large to support an

excited state. To find this, note that on x < x
0
and t < t*

we will have

(4.96) n(x,t) = 1 - exp(-t)

and the critical value of n is given by

(4.97) a = al(1-n*) - a2 n*

n* =
al-a
al+a2

exp(-t*) = 1-n* =
a2+a
a1+``2

It remains to determine the equation of the back on

x > x0. The equation will be

dtb
_ -1

dx 9b

6b = Rb/2 - Rbl/2
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(4.102)
al - a - (al+a2)nb

Pb
= a+a2nb

We still need to find nb. To do this use initial data

on the front t = tf(x)

(4.103) n(x,tf(x)) = 0

and for tf(x) < t < tb(x):

(4.104)

from which we conclude

8n = 1-nTf

(4.105) nb = 1 - exp[-(tb(x) - tf(x)))

Combining this with (4.100 - 4.102) we have an ordinary

differential equation for tb(x). It will be convenient, however:

to introduce the variable

(4.106) T(x) = tb(x) - tf(X)

whose equation on x > xo will be

dT = dtb dt f
- 1 + 1

{ a U dx 9b 0 f

eb
= Rb/2 - R-1/2

(4.107) gf = R1/2 - R-1/2
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- al - a - (al+a2)nb

(4.107-cont.) Rb a+a2nb

Rf a

nb = 1 - exp(-T)

The initial condition for (4.107) is T(x0) = t*.

We now show that (4.107) has an equilibrium solution

T(EQ). To find it, set

(4.108)

Then

(4.109)

1
8b = - of

(al- a) - (al+a2)nb

(a+a2jb al-a

Call the solution: nbEQ), T(EQ). Then

nb(EQ) _

a

(al-a)2
(al+a2)(al-a) + a(a+a2)

(EQ)
(al-a) 2 a1-a - n*

nb
al+a2 al-a = al+a2

al-a

dT_0
dx
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It follows that

(4.112) T(EQ) < t*

Next we show that T - T(EQ)as x - . Suppose T > T(EQ)

as is the case initially. Then

n > n(EQ)
b b

(4.113) 8b < - 8f < 0

1 < 1 < 0
e'f eb

dT _ (1 + 1 ) < 0dx 8b 8f

We have established that (dT/dx) < 0 when T > T(EQ). The

inequalities can also be reversed to show that (dT/dx) > 0

when T < T(EQ). It follows that for any initial T, T - T(EQ)

as x - co (since x does not appear explicitly in the formula

(4.107) fdr DT/dx).

Exercise: Find the equations for periodic traveling wave

solutions of (4.61 - 4.63) in the limit e - 0.
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V. The Inner Ear

1. Introduction.

The cochlea (inner ear) contains an elastic structure,

the basilar membrane, which is immersed in a viscous incom-

pressible fluid. The fibers of the auditory nerve are

distributed along the basilar membrane, the stiffness of

which decreases exponentially with distance. A sound signal

consisting of a pure tone sets tlla a traveling wave which

propagates along the basilar membrane. This wave has a

stationary envelope with a definite peak, the position of

which varies systematically with the frequency of the sound

stimulus. Thus, sounds of different frequencies stimulate

different groups of nerve fibers. In this way the cochlea
analyzes sound signals into their various frequency components.

This process is fundamental to the perception of pitch and

to the separation of signals from noise in hearing.

This chapter is also a research report, and I would
like to make the following acknowledgments: I have
had helpful conversations regarding this work with

many individuals including Olof Widlund, Alexandre
Chorin, Peter Lax, Cathleen Morawetz, Eugene
Isaacson, Joe Keller, Frank Hoppensteadt, Stan Osher,
And Harten, Edward Peskin, and Michael Lacker. Much
of the computer programming connected with this
project was done by Antoinette Wolfe. Computation
was supported by US ERDA under contract E(11-1)-3077
at New York University.
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The inner ear is a spiral shaped fluid filled cavity in

the temporal bone of the skull. Its relation to the other

parts of the ear can be understood in terms of the following

figure :

Ex. - External ear canal S. - Stapes

M. - Middle ear R. - Round Window

SC. - Semicircular canal 0. - Oval window

I. - Inner ear B. - Basilar membrane

Eu. - Eustachian tube D. - Ear drum

*
redrawn after von Bekesy [1]. This is a schematic
diagram in which the cochlea has been straightened
out.
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The iaechanical events involved in the transmission of
the sound wave through the may be described as follows.

Pressure fluctuations in the external ear cause the eardrum

to vibrate. This vibration is transmitted to the cochlea

by a delicate chain of bones terminating in the stapes.: which

is attached to the round window of the cochlea. The walls

of the cochlea, being made of bone (except at the round and

oval windows which are covered by elastic membranes) are

essentially rigid; and the cochlea is filled with an essen-

tially incompressible fluid.. Conservation of volume therefore

requires that an inward motion of the round window be

coeapensateci. by a simultaneous outward motion of the oval

window. This reciprocal vibration sets up a wave of fluid

motion which propagates along the basilar membrane. the

deformations of which stimulate the fibers of the auditory

nerve.

A quantitative discussion of the geometry and physical

properties of the cochlea is fundamental to an analysis of

its fluid dynamics. If unrolled and viewed from above the

basilar membrane would look like this-

0.5 mm

Base 35 mm Ape
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The compliance of the basilar membrane, measured as

volume displaced per unit length per unit pressure difference.

increases exponentially with x with a length constant of 7 mm.

This is the most important single length in the cochlea for

the following reason. The exponential function has the well

known property that translation simply produces multiplication

by a constant. A change in the frequency of the sound can

therefore be compensated by a translation of the pattern of

vibration along the basilar membrane to a new position at

which the range of values of compliance is appropriate to the

new frequency. Thus, the exponential dependence of compliance

on length is fundamental to auditory frequency analysis, and

the length constant of this dependence (in man, 7 mm) is the

natural unit of length for cochlea physiology.

In comparison with this unit of length, the basilar

membrane is obviously long and narrow. The depth of the

cochlea, being about 2mm for each half cochlea above or below

the basilar membrane, is moderate. It is not clear, therefore,

whether one should use shallow water or deep water theory,

and both approaches have been used. Experiments of von Bekesy

indicate, however, that the wave on the basilar membrane is
not much changed if the depth of the cochlea is increased.

This appears to be an argument against the use of shallow

water theory.
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A very important physical quantity with dimensions of

length is the boundary layer thickness, which measures the

distance from the boundary within which we may expect viscosity

to have a significant effect on the flow. In the present

problem this is given by (v/w)1/2, where v is the kinematic

viscosity, v = 0.02 cm2/sec, and where w is the frequency of

the sound, w = 27rf, (where f is the frequency in cycles per

second). A typical value for human hearing is obtained by

setting f = 1000/sec. This yields a boundary layer thickness

of about 0.02 mm, which is more than 100 times smaller than

the characteristic length introduced above. In Section 3

we will get an indication that the wavelength of the

disturbance which propagates along the basilar membrane is of

the same order of mamnitude as the boundary layer thickness

near the place where the amplitude of the disturbance is

greatest. (The wavelength is variable because of the

exponental variation in compliance.) This observation makes

the use of shallow water theory even less credible and may

explain von Bekesy's observation that the depth is effectively

infinite. It also weakens our own claim that the basilar

membrane is narrow, since its width may be small in comparison

with the characteristic length associated with membrane

compliance, but not always small in comparison with the

wavelength of the disturbance on the basilar membrane.
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The general idea that each part of the inner ear is
tuned to a particular frequency was introduced by Helmholtz

[2], who postualted a discrete system of resonators.

Modern theories of cochlea mechanics are founded on the

following observations of G. von Bekesy [1]:

1) In response to a pure tone there is a traveling

wave in the cochlea, the amplitude of wich has

a peak at a position which varies linearly with

the frequency of the tone.

2) The compliance of the basilar membrane increases

exponentially with distance from the base of the

cochlea.

3) In response to a point load, the basilar membrane

deforms like a plate. (That is, the basilar

membrane is not under tension, but it resists

bending.)*

More recent experiments [3,4] confirm the qualitative findings

of Bekesy but reveal a more localized disturbance than he

originally found.

* This means that the basilar membrane is not a membrane
in the sense of elasticity theory. The Perm basilar
membrane is established, however, and we continue to
use it.
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Both Bekesy [1] and Tonndorf [5] have constructed

simplified physical models of the cochlea. These models are

straight with rectangular cross sections. They contain the

basilar membrane only and not Reissner's membrane. Despite

these simplifications they reproduce the qualitative features

of cochlea mechanics. Bekesy has constructed such models of

variable depth, in order to show that the depth may be

increased without changing the form of the cochlea wave.

Tonndorf has given an excellent description of the motions

of marker particles suspended in the fluid. These motions

are not at all restricted to the longitudinal direction as in

shallow water theory.

Theoretical work on the cochlea may be classified

according to the equations used for the fluid and for the

basilar membrane. A class of cochlea models of direct concern
to the present work may be described as follows: The model

is two dimensional, and the basilar membrane appears in it as

a line, each point of which responds like a system with mass,

damping, and elasticity to forces tending to displace it from

equilibrium. The physical constants of the basilar membrane

may vary with position. The fluid is assumed inviscid and the

flow irrotational. The motion is of low amplitude, so that

non-linear terms are neglected and the boundary conditions

associated with the basilar membrane are applied to its

undisturbed location. Lesser and Berkeley [6] have given a
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numerical method for cochlea problems of this type, and

Siebert [7] has given an approximate analysis of the case of

infinite depth.
Models which attempt to incorporate the properties of the

basilar membrane as a plate are those of Inselberg and
Chadwick [8] and Steele [9]. The model of Inselberg and

Chadwick is two dimensional, so the plate is replaced by a

beam. The exponential variation of compliance is omitted

from the model, however, and the fluid dynamics is based on

shallow water theory. Steele's model is probably the most

detailed yet attempted. It is a three dimensional model in

which the basilar membrane appears as a plate. Various

boundary conditions for the support of the plate at its edges

are considered.

The present work is organized as follows. In Section 2

we give a derivation of the equations.of motion. The

derivation given for the fluid is standard, but the derivation

for the equations of the basilar membrane may be of some

interest, since it involves the exponential variation of

compliance with position. Also, we consider the case of a

very narrow basilar membrane and show that in this limit the
longitudinal coupling may be neglected in comparison with the

coupling of a given point to the edges. It is our belief

that this argument justifies the use of a point by point

representation for the basilar membrane in two dimensional
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models as in some of the papers cited above [6,71, and that it

answers the criticism of this approach which appears in [8].

In Section 3 we consider the model of Lesser and Berekely

[6) and Siebert [71, described above, with the following

modifications. First, we regard the cochlea as infinitely

long with a source at x = -m. This point of view makes sense

because the model basilar membrane becomes so rigid as

x - - that a source at x = -- has nearly the same effect as

a source at some finite distance. Next, we neglect the mass

of the basilar membrane. As a soft biological tissue, the

basilar membrane probably has nearly the same density as the
fluid which surrounds it. Idealizing it as a surface, we

assign it zero mass. The only inertia in the model, then, is

that of the fluid. As in the papers cited, we include a

dissipative force proportinal to the velocity of the basilar

membrane, but we also consider the limit as the dissipative

coefficent approaches zero. We assume (arbitrarily) that the

dissipative force has the same exponential dependence on

position as the elastic restoring force of the basilar

membrane.

For a special finite depth, we obtain an analytic solution

to the equations of motion for this model of the cochlea, and

we discuss the behavior of this solution in the case of

finite dissipation and in the limit of zero dissipation.

This limit is very important because, to our knowledge, a
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special dissipative mechanism acting on the basilar membrane

has not been demonstrated. Taking this limit, we find that

the amplitude of the motion of the basilar membrane grows

without bound as x - -. Thus the response is no longer

localized in space, even approximately, and the whole basis

for auditory frequency analysis seems to be lost. This shows

the fundamental role of dissipation in cochlea physiology.

It would be more satisfying, however, if the dissipative

mechanism in the model could be related to some known

dissipative process, such as fluid viscosity.

The analytic solution of the inviscid problem in

Section 3 can also be used to get a rough indication of what

would happen in the presence of fluid viscosity. We find

that the form of the disturbance should be the same with the

two types of dissipation but that the dependence of the

parameters of the disturbance on the frequency of the sound

should be different. These rough arguments serve as motivation

for the careful treatment of fluid viscosity in the next

section.

In Section 4, we formulate a two dimensional cochlea

model with fluid viscosity as the dissipative mechanism.

Only the case of infinite depth is considered, but the method

is easily generalized to finite depth. Using spatial Fourier

transforms we reduce the problem.to an integral equation on

the basilar membrane. (This has been done before only for
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the inriscid problem see [7].) This equation has the form

of an ei6enproblem, which we solve numerically. The numerical

method involves discretization by means of the discrete

Fourier transform and solution of the discrete e13enproblem by

inverse iteration. Each step of the inverse iteration involves

the solution of a large linear system by the conjugate gradient

method.

2. Equations of Motion.

In this discussion it may be helpful to have in mind a

definite (but idealized) geometry for the cochlea. We there-

fore consider the following; conceptual model.

y

Tx
z

The outer walls are rigid and the basilar membrane is a

clamped elastic plate whose undisturbed position is the

plane y = 0, which is also a plane of symmetry. The spaces

above and below the basilar membrane are filled with a
viscous incompressible fluid. The model cochlea is infinite

in both the positive and negative x directions. The stiffness
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of the basilar membrane decreases exponentially with x.

a. The Fluid:

We begin by deriving the equations of motion of an

inviscid, incompressible fluid. We use the laws of conser-

vation of mass and momentum. Let V be an arbitrary fixed

region with surface S and unit normal n pointing outward.

Let

u = (ul,u2,u3) = fluid velocity

p = pressure

p : density (constant)

P = (P1,P2,P3) = momentum contained in V

?2 = mass contained in V

Then

(5.1) d t .1 Pui dV = _f{(u^n)pui + pni} dSi d

V S

(5.2) 0 dt = dt fp dV a -f P(u°n) dS

V S
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Now convert the surface integrals to volume integrals, and

make use of the fact that V is fixed and p = constant:

(5.3)
1
{auj + PJ!1 ai(uiu3) + aipI dV = 0

V

(5.4) f { jf-l
a3uJ) dV = 0

V
` 111

Finally, on account of the arbitrariness of V, we have

(5.5) P atui + j l + Sip = 0
j=l J

(5.6) j?1 ajui = 0

We are interested in the case of small amplitude motion, so

(5.7)

we neglect the quadratic term. Introducing vector notation,

and choosing units in which p = 1, the equations then become

f
atu + grad p - 0

divu=0

An important special case of Eqs. (5.7) occurs when

u = grad . Then
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(5.8)

(5.9)

When fluid viscosity is considered, Eqs. (5.7) have to be

modified, as follows [10,11]

atu + grad p = vAu

div a = 0

We shall use Eqs. (5.8) in Section 3 and Eqs. (5.9) in

Section 4.

b. The Basilar Membrane:

As a model of the basilar membrane, we consider a

clamped elastic plate, the stiffness of which decreases

exponentially with x. The undisturbed plate occupies the

strip -- < x < -, -b < z < b in the plane y = 0. The

displacements are given by

(5.10) y = h(x,z)

We regard the displacements as small, and we therefore regard

dxdz as the element of area on the plate.

82



(5.11)

Along the boundaries z = ±b, we assume that

h = azh = 0

the latter condition corresponding to the word "clamped".

We also assume that h and axh - 0 sufficiently rapidly as

1 Finally, we assume that the elastic energy stored in the

deformed plate is given by

(5.12) E = 2 K
1

dxdz

plate

where A = ax + a2

We will find an equation of equilibrium for the plate in

response to an imposed load. Let the force per unit area

applied to the plate be given by R(x,z), where R > 0 means a

force in the negative y direction. To find the equation of

equilibrium, we use the principle of virtual work, which

asserts that for any small perturbation from equilibrium, the

work done by the applied forces should balance the change in

stored energy. That is,

(5.13) a K I e-'x(Ah)2 dxdz.+ f 9.6h dxdz = 0

But

(5.14) d 2 (Ah) 2 = (Ah)A(dh)

83



Substitute this result in the first integral, and integrate

twice by parts to obtain

(5.15)
1

{icA(e-Xxah) + L}Sh dxdz - 0

Since 6h is arbitrary

(5.16) KA(e-)Lxflh) + R = 0

We shall neglect the mass of the basilar membrane. In that

case, this equation of equilibrium holds at each instant t.

In the following we will consider two dimensional models

of the cochlea in which the basilar membrane necessarily

appears as a line instead of a surface. We need to find an

equation corresponding to (5.16).

When 9 is a function of x alone it seems natural to look

for solutions of (5.16) in which h is also a function of x

and not of z. This yields the equation

(5.17) Ka2(e-xa2h) + i = 0

The assumption that h is independent of z is untenable for

narrow plates, however, since it violates the boundary

condition along z = tb unless h =_ 0. We therefore reject

(5.17), and proceed as follows.
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Let c = ab << 1, and suppose that k = £(x). Introduce

new variables

(5.18)
xl = ax

zl = z/b

and functions h1 and 1l defined so that h1(xl,z1) = h(x,z)

and 11(x1) = 8.(x) at corresponding points. Equation (5.16)

becomes

(5.19)
K`X2a21 + b2

}e(2 a2l + b a211h1 + kl = 0

or

(5.20)
K (c2a21 + a2l1e

x1(e2a21
+ a2l)hl + £1 = 0

Now let K/b4 = Ko and take the limit e + 0 with Ko fixed.

We obtain

(5.21) Koe_x1 aZ h1+8.0
1

In this equation x1 appears as a parameter only. The solution

of (5.21) subject to the boundary conditions

(5.22) h1(xl, ±1) = 3z
1
h1(xl, ±1) = 0

85



is given by

(5.23) (z(z 1)
K

4.°- 1 1
0

Therefore the displacement of the middle of the basilar

membrane is given by

(5.214)

+1) 22hl - Rle 1

h(x,O) = hl(Ax,O) MRx()
0

It will be convenient to set 2s
0

= K0(14). Then

(5.25) 9.(x) = -2so exp(-Xx)h(x,O)

In the two dimensional models which are discussed below, we

shall use this equation with h(x,O) replaced by h(x). In

(5.25) each point in the middle of the basilar membrane

seems to be attracted to the equilibrium position h = 0 and

seems to be uncoupled from points with different values of

x. This uncoupling, which in reality is only approximate,

comes about because we have taken the limit c + 0 in (5.20).

The physical meaning of this result is that in the case of

a narrow plate the coupling of points to the edges is more

important than the coupling in the direction parallel to

the edges.

xl
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A generalization of (5.25) which also will be considered

in Section 3 is obtained by assuming that the basilar

membrane is visco-elastic instead of purely elastic. In that

case, we might have, for example

(5.26) k = -2sexp(-Ax)(h + ao
at

We will not give a detailed justification of this formula

since we know of no evidence that there is any special

dissipative mechanism residing in the basilar membrane.

Instead, we regard the term 0 at as a mathematical device

designed to include some dissipation in the model while

avoiding the mathematical difficulties associated with

fluid viscosity. In Section 4 we abandon this approach,

set S = 0, and let fluid viscosity supply the necessary

dissipation.

c. Coupling of the Fluid and Basilar Membrane:

We assume that the displacements of the basilar

membrane are small. We will therefore write the boundary

conditions which hold along the basilar membrane as if they

applied to the plane y = 0. A careful justification for

this procedure is given in Stoker [12]. Note that this

approximation is essentially the same as neglecting the non-

linear terms in the equations of motion of the fluid, since
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these terms arise from the distinction between the derivative

with respect to time at a point and the derivative with

respect to time following the motions of a fluid particle.

Since the fluid is incompressible, the vertical component

of velocity is continuous across the basilar membrane and we

have

(5.27) et (x,z,t) = v(x,O,z,t) = ay (x,o,z,t)

where the last equality holds only in the case of potential

flow.

It remains to consider the formula for the load on the

basilar membrane k. In the inviscid case this is simply

given by the pressure difference

(5.28) 2. = p2 - pl = [p]

where the subscripts refer to the two sides of the basilar

c..ernbrane (1 = below, 2 = above), and where [p] means the
jump in p.

In a viscous fluid, we have, in addition to the pressure

difference, a load due to the vertical component of the

viscous stress. This is given by v ay where v is the

viscosity and therefore
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(5.29) Q = Cpl - vlay]

We can express this result in another way by considering the

force per unit volume exerted by the basilar membrane on the

fluid. This force density is sin,:ular and is given by

(5.30) F = t 6(y) Y

in terms of F the equation of motion of the fluid may be

written

(5.31)
DU

at+grad p=vAu+F

which has the y-component

(5.32) at + 2k = vnv + k 6(y)

integrating over the interval -e < y < e and taking the limit

e - 0 we recover (5.29), as required.

d. Symmetry:

We shall look for solutions of the cochlea problem

with the following symmetry

89



(5.33)* p(x,y,2,t) _ -P(x,-y,z,t)

(from which it follows that ay has the same symmetry).

To justify this one could appeal to the manner in which the

cochlea is driven. It is simpler, however, to remark that

the problem is linear and that a general solution can be

split into solutions with even and odd symmetry. The solutions

with even symmetry are trivial however, since A. = 0, and they

fail to deform the basilar membrane.

3. The Two Dimensional Cochlea of Finite Depth.

Analytic Results for the Case of Potential Flow.

In this section we consider the cochlea model shown in

the figure:

h(x,t)

2--' n A

1

a

-a

The quantity p here is the pressure measured with respect
to some standard pressure, such as the atmosphere. Thus
p < 0 does not mean negative total pressure.
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We neglect fluid viscosity in the interior of the cochlea and

look fo:_^ potential flow solutions of small amplitude. The

interior equations therefore have the form:

(5.34) a +p=0at

(5.35) p¢, = 0

We assume that the outer walls are rigid, and that the basilar

membrane is visco-elastic but massless. Moreover, we assume

that the coefficients of stiffness and viscosity for the

basilar membrane both depend on x like. exp (-)Lx). These

assumptions lead to the boundary conditions

(5.36) y = ±a .

ao=o
ay

(5.37) y = 0 2sexp(-ax)rh + 8 j

_Ft
pl-p2 = o

ah = ay{ = a1
at a

1
ay 2

For a special depth, we shall give the analytic solution

to this problem corresponding to a source at x = - whose

time-dependence is exp(iwt). For a > 0, we shall be interested

in evaluating (g-j along y = 0. If we attempt to take the

limit 0 - 0, we

will
find that both the amplitude and the
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spatial frequency of the solution grow without bound as x

This shows the crucial role of dissipation in chochlea

physiology. On the other hand, there is no evidence for a

special dissipative mechanism in the basilar membrane, and

we ought therefore consider the case $ = 0. This paradox is

resolved by considering fluid viscosity, which is not explicit

in the model. At high enough frequencies, the effects of

fluid viscosity will be confined to a thin layer around

y = 0, and the inviscid solution will be valid outside of this
layer. On the other hand, the normal components of velocity

should be nearly constant across this boundary layer, which

suggests that we can get at least a rough indication of the

behavior of the basilar membrane by examining the inviscid

solution at the edge of the boundary layer.
As a first step, we eliminate p and h from our system of

equations. We are interested in solutions which satisfy the

symmetry condition

(5.38) p(x,Y,t) + P(x,-Y,t) = 0

Along y = 0, this becomes pl+p2 - 0, and therefore

(5.39) pl = so exp(-Xx)Ih + 0 $tj

92



Differentiating with respect to t, and expressing everything

in terms of 0 we obtain

= 0El + so exp (-ax) (-NY +
9-Y -at j24 y = 0

:5.40) AO = 0 -a < y < 0

The factor exp(-Xx) can be absorbed by a conformal mapping

which converts the strip -a < y < 0 into the wedge -Aa < 0 < 0.

Y'

image of x -

4
as

image of y = 0

x'

,c,_. - image of y = -a
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The rec_uired conformal mapping is

(5.41)

x'+iy' = exp(a(x+iy)I

or x' = exp(ax) cos (ay)

y' = exp(Ax) sin (Jy)

Also let

(5.42) 4'(x',y') = 4(x,y)

at corresponding points, and let

A =
()2

+ i a )2

Of course, conformal mappings take Laplace's equation into

Laplace's equation and normal derivatives into normal

derivatives. However, we need to change variables in the

boundary condition along y - 0.

(5.43) = ay'. + ?$_ ax'
y ay ay ax' ay

8-b #
_ ex (J1x )p

ay '

The factor exp(Ax) cancels the factor exp(-Ax) which appears

in the boundary condition, and we have the following problem

on the wedge -Aa < 0 < 0:
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at24 + As0
(H? + s ay at, = 0

(5.44) 1

X = -tan aa.

0'O' = 0

amt
= 0an'

where fan' stands for the normal derivative.

When a = 0, the boundary condition along y' = 0 is the

same as that on a free surface, and the problem is equivalent

to the problem of waves on a sloping beach, see [12]. (In

the present case, however, we are interested in a source at

the shoreline, x' = 0, y' = 0, which is the image of x = --.)

We shall be interested in the special depth la = , which is

simplest to consider because it maps into the problem of

waves generated at a vertical cliff.

y'

source

* x'

y '

source
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Evidently, the latter problem is equivalent to the correspond-

ing problem with the cliff removed, with fluid filling up the

lower half plane y' < 0, and with a source at the origin.

The symmetry of the problem then guarantees that there will

be no flow across x' = 0, so that these two problems are

equivalent.

We are therefore led to consider the following problem

on the lower half plane :

aty' = eiwta (x r)
a + aso l a + -- y' = 0

(5.45) 0 , y' < 0

A problem nearly idential to this was solved by Lamb [13],

who introduced into his water wave equations a frictional

force acting in the interior proportional to fluid velocity.

This frictional force was a fictitious device, introduced

by Lamb in order to secure the uniqueness of the solution

(that is, to rule out waves coming in from ±-). At a certain

stage of the calculation, the frictional forces were reduced

to zero. In the present problem, the dissipative forces act

on the surface only. This introduces a slight change in the

equations. A more important difference is that we shall be
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interested in the form of the solution for finite 0, as well

as in the limit 0 - 0. Lamb's method of solution, applied

to the present problem, is as follows: Let

(5.46) 4'(x',y',t) = V(x',Y')eiwt

Then 0' satisfies

(5.47)

-w O' + Aso(l+iW8) ay, = 5(x') Y' = 0

O'gb'0 y'<o

0' -> 0 y' + _CO

The general solution of the last pair of equations can be

written

(5.48) (D'(x',y') = 2r

`CO

dE f(E)

Note that

(5.49) 1 dE
f( O exp(i x')

271

(5.50) a, (x',0) = 2dt f(C)ItIy
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(5.51) '(x') = Z FdC exp(ix')
-CO

Substituting in the boundary condition which holds along

y' = 0, we obtain

(5.52) {-w2 + Xso(1+iWs) M 1f( ) = 1

Therefore

(5.53) v (x',Y') =
1 (co d exp(i_x'+I _I Y°)
2v 1- -w2+xso (i+iw8 )

We can split up this integral into two parts and write

'P'(x',y') = I+ + I_, where

I+
= 1

1M

dE ex (+i&x'+Ey' )
21T 0 -w2+Xso(1+iWO)t

(5.54)

1 M dE exp(-iEx'+Ey')
7

0 -w2+Xso(1+iws)

It is convenient to introduce the notation z' = x'+iy',

z' = x'-iy', in terms of which we have
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I+ 7
0

(5.55)

I = 1 (
2

0

d exp(i'z' )
-w2+Xso(1+iw(3)t

dE exp(..itz')
-w2+Xso(l+iws)E

Each of the integrands has a pole at

(5.56)

(w2/as

Co
o)

l+iw6

The constants X, so, S are positive. In the following we

will assume that w > 0. Then Re (Co > 0, Im (Eo) < 0.

Also, we restrict consideration to x' = Re (z') = Re (z') > 0.
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Using the contours indicated in the figure, we can therefore

show tha;

(5.57)

= 1 i F do exp(-nz' )
I+ Aso(l+iwa) 271 0 -oin

1 1 do exp(-nz')00

Aso 1+iwo 2r
0

f
Eo+in

+

-1 i exp(-iE z')ASO l+i wa o

Therefore 4 1(x,y) + -D2(x,y), where

-Xso(1+iws)Ol(x,y) = i exp(-itoz')

i exp(-nz') exp(-nz')(5.58)
2n fo dn1. - o+in + o+in }

0

z' = exp(Xz) = exp(X(x+iy))

The interesting part of the motion is associated with

1 (02 will be considered below). Substituting for z' and

differentiating with respect to y:
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(5.59)

-Xs 0(1+ims)t1(x,y) = i exp(-iE0 exp(Az))

ail
-Xso(1+iw$) ay (x,y) = Ai&o exp(Az) exp(-I 0 exp(Az))

where we have used Ty = i.

Note that

(5.60)
i 0

exp(Az)I = 1 O1 exp(Xx)

Therefore

(5.61) o exp(Xz) = IE01 exp(Ax) exp(-iS)

where S is a real function of y and Eo. With this notation

we have

ail
o-Xs (l+iw8)

aY

= xiieoI exp(Xx-id)1

(5.62) = aiIC0I exptax-I&ol sin S exp(Ax)I-exp(-iS-i1R0I cos a exp()Ix)i

Provided that sin S > 0, l/aye therefore has a peak at

x = xP given by
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1 - sin 6 exp(Axp) = 0

(5.63)

Let x = xP+x. Then

a(_
-Xso(1+iw6)

aY

A.

Xxp = log o
1
sin

= ai f exp(Ax ° exp ax - exp(ax) exp -io p-
tan d

(5.64) =
Xi

sin(6i6)

exp
exp(Xx - exp(ax)} exp(-i exp(

))

It is useful to introduce the real function A defined as

follows

(5.65) A(r) = exp(r - exp(r)I

a exp(-1)

r
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The function A has a peak at the origin given by

A(0) = exp(-l). For r <<0, A(r) ' exp(r). For r >> 0,

A(r) ti exp(-exp(r)). In terms of A

-As i1+iws)
o ay

Xi ex (-iS) f exp(A(x-xP)
(5.66) =

sin 6 A(X(x-xP)) . exp( -i
tan 1

There are two special cases which we shall consider.

I. Suppose S > 0, and examine the solution along y = 0.

We have

w2/As(5.67)o 1+iw50

I
oI exp(-iS1)

where

(5.68)

2 21+
> 0

and O < 6I <!. Since y = 0, z = x, and

(5.69) Co exp(Xz) = IEc1 exp(Ax) exp(-iSI)

We can therefore identify 6I with the quantity S which appears

in the foregoing.

tan SI = w6

sin dI =
ma
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II. On the other hand, suppose B = 0, and examine the solution

along Ay = -SII. When ¢ = 0, to =
2, and we have

to exp(Az) = 1101 exp(Xx-iSII)

(5.70) = It01 exp(Ax) exp(-i6II)

Since 0 < Ay < _2, 0 < SII < , and sin SII > 0, as

required for the existence of a peak in the amplitude of

the solution. Again, we can identify SII with the quantity

S which appears above.

An important difference between the two cases is the

following. The quantity SI is a definite function of w,

but 611 is an arbitrarily chosen constant which determines

a certain non-zero depth through Ay = -6
11*

It seems natural

to let 611 - 0 in order to study the motion of the basilar

membrane when B = 0 (no dissipation). When this is

attempted, serious difficulties arise immediately. For

example xp ; Co. In fact, if we consider S = 0, fix x,

and let y ; 0, we obtain

(5.71) limo
yl

(x,Y) _
it0 exp(Xx)

so
exp(_ic0 exp(Ax)I

which grows without bound as x + -. Of course, no such

phenomenon is observed in the cochlea. Note that, in this
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limiting solution, not only the magnitude but-also the

spatial frequency of (a(D 1/8y) grows without bounds. This

suggests that ultimately the viscosity of the fluid, which

is not included in the model, must limit the growth of the

solution when membrane viscosity is absent. It is well

known that the effects of fluid viscosity are often confined

to a thin layer near the boundary, the remainder of the

flow being essentially inviscid. Moreover, the component of

velocity normal to the boundary should be nearly constant

across the boundary layer, since the layer is thin and the

fluid is incompressible. This suggests that we can get a

rough indication of the motion of the basilar membrane in

the presence of fluid viscosity by inspecting the inviscid

solution at the edge of the boundary layer. This suggests

that we identify (6II/A) with the boundary layer thickness,

which at frequency w is given roughly by /v -7w-, where v is

the kinematic viscosity of the fluid. Thus set

1

(5.72)

In the human cochlea,
X-1 = 0.7 cm, v = 0.02 cm2/see, and

a typical value of w would be 27r x 103/sec. This gives as

a typical value

(5.73) 611 = 2.5 x 10-3
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Since 611 is proportional to w-1/2 the frequency of the

sound could change by a factor of up to 16 (that is, by 4

octaves) in either direction (covering much of the range of

human hearing) without changing 611 by a factor of more than 4.

This identification of 611/3 with the boundary layer

thickness puts our two cases on the same footing in the sense

that 6I and 611 are now definite functions of w. Note, how-

ever, that (961/3w) > 0, while (3611/aw) < 0.

We would like assert that the expression derived above

for H 1/3y describes the motion of the basilar membrane.

Before this claim can be made, however, we have to show

that 2/ay can be neglected in comparison with 301/ay. In

fact we will not be able to prove this in general because of

the decay of 3i+1/ay away from x = xP which is especially

rapid when x > xP. But we will be able to show, for

sufficiently small 6, that ja`D2/3yI << Iao1/ayl near x = xP.

We begin by deriving a bound on 1302/3yf. We have

(5.74) Xs (1+iws) do
fexP(-nT1) + exp(-nz')f

0 2 tar -o+1n+in
1

0

where

(5.75)
I z' = exp(Xz) = exp(a(x+iy))

1
z' = exp(az) = exp(a(x-iy))
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az'
= aiz'

ay

ate- _ -Xiz'

ao

(5.77)

(5.78)

But

Xs0(1+iws) -
Y

r nz' exp(-nz')
+
nz' exp(-nz')

dr;
Eo-in o+in

0

aso1 l+iwsl
Jy2l

< a
2ir

2 J00 dr n Re

0

1 1

(5.79) do n exp(-nx') =
0 (x')2 exp(2Xx) cos2Ay

(5.80) 1 z'I :: exp(Ax)

Therefore

(5.81)
+} I 2I < 7 1

aso nRe 2p exp(Ax) cosXy
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Now write x = (x-xp)+xP, and use

(5.82)

to obtain

exp(;kxp) =
x

1

sin 6

k--21

sin 6 exp(-A(x-x))
(5.83) xso,l+iwl

7T ,Re Eo-n cos2ay

But

(5.84)

Therefore

(5.85)

Let

(5.86)

(5.87)

_ 1 Ito1 sin26a a Re ( t 2
o cos Xy

B(r) = ex (-r.) 1
A r exp(2r-exp r )

Let I(C) be the interval of values of r such that B(r) < C.

For C > exp(l), this interval includes r = 0, and the interval

can be extended as much as as we like in both directions by

1@02
A(A(x-xp))

lsoI yy I
= X sin d

{a_2/2yl 1 sin26 exn(-X(x-xp))

ayT Tr Re oT cos2ay A a x-xP))
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choosing C sufficiently large. Then for X(x-xP) E I(C) we

have

(5.88)
iab2/ayl

T1 ay a C

We now show that by choosing the appropriate range of

frequencies, a can be made arbitrarily small. In Case I,

y = 0, and o = exp(-i6 2). Therefore Re (E0) = JEol cos S

Thus

(5.89)

1 sin2SI

=

1aI
cos

2 2 21 W2s -

In Case II, Eo is real and positive. Thus leoI = Re (E
0).

Also -y = (SII/X) = (v/W)1/2. Therefore

1
2

(5.90) all j tan g
jX(

W

i = 01 1 2

To make a as small as we like, we need only choose w

sufficiently small in Case I and sufficiently large in Case II.

Suppose, then, that we are given a bounded interval of

values of X(x-xP), on which we want to impose the requirement

I a /ayl
2

(5.91) r ,51 ay <
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We can always do this by choosing C so large that the given

interval is a subset of I(C) and then by restricting w so that

a<
e

C

In the following we assume that w has been thus restricted,

and we interpret a(Dl/2y as the complex amplitude of the

velocity of the basilar membrane. Putting in the time

dependence, we have

ah = 1 i eep(-
6

i6)
A(a(x-x2t P))so 1+ w

r r

(5.92) exp{ ilwt -
tan 6

where

(5.93)

(5.94)

(5.95)

axP = log 1
1901 sin 6

w2/As

o = l+iws
0

A(r) = exp(r-exp(r))

and where, in Case I

(5.96) a=6I= are tan ws

while in Case II, $ = 0, and
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(5.97) d = Sii = al
I

This solution is a traveling wave with a stationary

envelope. The envelope has the shape of the function A,

independent of w. It has a peak at x = xP, which depends

on w. To the left of the peak the envelope decays

exponentially, while to the right of the peak it decays like

an exponential of an exponential. The phases of the wave

travel to the right, and the spatial frequency increases

exponentially with increasing x.

To conclude this section we examine the dependence on w

of the position of the peak and of the spatial frequency at

the peak. In Case I,

(5.98)

(5.99)

2 1
W

o f = so l 2 22

we

(5.100) (ax ) = log 1 = log
I+w22

P I I o slf 61
2

w
X

ws
o

111



For w$ << 1, which is the situation of interest in Case I, we

have approximately

(5.101) (AxP) I = log -3 log w
2 0

ws
so

where wo = As0/a. In Case II,

(5.102)

(5.103)

(5.104)
2 v

W
w sin A
Aso

1/2
For A(

W )
<< 1, which is the situation of interest in

Case II, we have approximately

1

(5.105) (AxP)II = log = - 2 log

w
w

2 v }1/2S
w

0

where wo is now given by wa/2 = s0/v1/2

2
1 !! _ w
0 s0

sin 6II = sin A w

1

(AxP)II = log
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In both cases, the position of the peak varies linearly

with the log of the frequency of the sound. The slopes are

different, however, being -3 in the case of membrane viscosity,

and -3/2 in the case of fluid viscosity.

A more dramatic difference between the two cases appears

when we consider the spatial frequency of the waves as a

function of w. By spatial frequency we mean the derivative

of the phase with respect to x. Evaluating this quantity

at x = x, we get tan //_11_j T. Thus in Case I we get S. In

Case II we get approximately (w/v)1/2 which is just the

reciprocal of the boundary layer thickness. Thus the theory

based on membrane viscosity predicts that the principal

spatial frequency will vary inversely with the temporal

frequency of the sound, while the theory based on fluid

viscosity predicts that it- will vary directly with the
square root of the frequency of the sound.

4. The Two Dimensional Cochlea with Fluid Viscosity.

a. Formulation:

Here we generalize the model of the previous section by

including fluid viscosity. At the same time we set a = 0

and let the depth a -> °. These simplifications are not

essential, and could be removed without substantial changes

in method.
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The appropriate equations for this case were derived in

Section 2. and we state them together as follouu.us:

(5.106)

at + aE = vAu

at +

ap

12- = vAv + WY)

au+av=0
ax ay

at (x,t) = v(x,0 t)

k(x,t) = _e-'xh( .t)

where (u,v) = velocity field of the fluid

p = pressure

V = viscosity

h = displacement of the basilar membrane

k = force per unit length exerted by the
basilar membrane on the fluid.

A=a2+a2
x y

and where we have chosen our unit of length as the length

constant of the basilar membrane

such a way that p = 1.

anc' our unit of mass in
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b. Reduction to a Problem on the Basilar lembrane:

First, look for a solution in which all quantities depend on

time like exp(iwt). Thus let h(x,t) = Re {H(x) exp(iwt)}, etc.

The quantities H, etc., are complex. Their magnitudes give

the amplitudes and their angles give the phases of the

corresponding physical variables. The equations relating the

quantities H, etc., can be found by replacing at by iw in

Egs.(5.106):

(5.107)

(5.108)

(5.109)

(5.110)

iwU + 2x = vlU

iwV + a= vpV + L6(y)

aU+av=O
ay

iwH(x) = V(x,0)

L(x) = -e-xH(x)

This problem is not translation invariant because of the

factor exp(-x) which appears in the boundary condition along

y = 0. But the partial problem consisting of Egs.(5.107-5.1 10;

is translation invariant and can be solved through the use of

Fourier transforms. We want to express H(x) in terms of L(x).

This will achieve the desired reduction to a problem along

y = 0.
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Let

L(t) a-iEx L(x) dx

(5.112)

L(x) eitx L(e) dE

and similarly for other quantities. Then for each C we have

the system of ordinary differential equations

(5.113)

2 l
iwU + iEP = +lU

dY

2Zl V + L6 (y)iwV +
ay

= v 2 + d
dy 111

ice+d-y = 0

A convenient way to solve this system is to begin by solving

for P. Multiply the first equation by it and apply ay to the

second. Adding, and using the third equation, we obtain

(5.114) t2
2

+ P = Ld'(Y)
L

Incidently, this shows that for given L(x), the distribution

of pressure in the fluid is independent of viscosity. The
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solution is

(5.115) P = 2 e-ICIIYI sgn(y) L

which has

(5.116) ddy

2L
e-IEIIYI + 6(y) L

Substituting this in (5.113) we find

(5.117)
L vw

+2 _ 21 L

1 dy

There is a solution of the following form

Z + lvl
VW

L

The constant C1 is to be chosen so that (5.118) is a solution
of (5.117) on y > 0 and y < 0. The constant C2 is to be

chosen so that 8V/8y is continuous at y = 0. Since V is an

even function, this is equivalent to 8V/8y = 0 at y = 0. We

find

(5.119)

C1 {e-IC-IIyI + C2e

vW C1 = 1

(5.120) c2 = 0
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Therefore

1

(5.121) V( ,o) = 1 - L(V
2 l+iw

VC2

In terms of the displacements of the basilar membrane we have

V(,0)

where

H(v = -K( )LW

(5.124) 22w 1 + iW

Note that for small values of E2

(5.125) ti

2w

VE2

and that the viscosity v does not appear in this approximate

formula. Thus the viscosity does not influence. the low

spatial frequencies. For large values of C2, on the other

hand

(5.126) K(E) ti (1 - (1 - 2 i2j = wv
2w vE J
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Thus K(E) behaves like JEJ-1 for large values of E2 because

of the non-zero viscosity. The spatial frequency at which

the viscosity begins to play an important role is given by

(5.127)

In the previous section this quantity was used as an estimate

of the boundary layer thickness.

Let F denote the Fourier transform and F* its inverse.

Let K stand for multiplication by K(E) and let E stand for

multiplication by e x. We then have the following equation

for H:

(5.128)

but

(5.129)

Therefore:

(5.130)

H = - F*KFL

L = -EH

H = F*KFEH

This completes the reduction of our equations to a problem on

the basilar membrane.

Remark: Eq.(5.130) is an eigenproblem for the operator F*KFE.

We seek the eigenvector corresponding to eigenvaiue 1. If

this problem has a solution, say H0(x), then the spectrum of

F*KFE is continuous and includes at least the positive real

axis. Moreover, the eigenvectors are simply all the possible
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translates of H0(x). To see this, let K = F*KF and note that

K is a convolution operator. In particular it commutes with

translation. Let

(5.131) (TaH)(x) = H(x-a)

Then Ta = KT a, but

(5.132) (TaEH)(x) = (EH)(x-a) = e-(x-a)H(x-a)

= ea(ETaH)(x)

Thus TaE = eaETa. Now, by hypothesis

(5.133) H = KEHo 0

(5.134) (TaHo) = TaKEHo = eaKE(TaHO)

Therefore TaHo is an eigenvector of KE = F*KFE with eigenvalue

e . Since a may be any real number, and since the functiona

maps the real line onto the positive real line, this confirms

the statement made above.

The problem H = F*KFEH can also be stated in variational

form. This will be important in the next section. The least-

squares form of this problem is as follows. Minimize:

.00

j I(I-F*KFE)HI2 dx

-00
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Subject to the constraint

(5.136) f. IH(x)12 dx = 1

-CO

In the continuous context we expect the minimum to be zero,

but in the discrete context we expect some finite minimum which

-> 0 as N -

c. Discretization:

The discrete Fourier transform [14] FN: CN + CN is given

by the matrix

(5.137)

1 -ice j k
(FN) k j - -'- j,k = 1,2,...,N

Its Hermitian conjugate is given by

+i27r jk
(5.138) (F*)jk N e

N
14

and we have

N i Nn(j-j')k

(5.139) N e =
k=

ji
1

so that FNFN = IN, the identity in CN, and FN is unitary.

Note that the matrix elements of FN are periodic in j and

k with period N. This makes the choice j,k = 1,...,N arbitrary.

In the following we shall set N = 2m, m an integer, and use
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j,k = -m, ,m-l.

The correspondance between FN and the continuous Fourier

transform can be brought out in the following way. Given a

vector N in CN with components {4N, J _ -m, m-11 and its

discrete Fourier transform N = FN4N, we construct two

complex-valued functions 4N(x) and $N(C) as follows

(5.140)

(5.141)

where

(5.142)

(5.143)

(5.144)

so that

(5.145)

(5.146)

N m-1 -iExN N
( ) = E (Ax)N e

J=-m

1 m-1 itNx
N N
4 (x) = E (AN)N e

k
$Nk=-m

N = 2m, m an integer

xN = JN-112 (Ax) N = N-112

k = 2irkN-1/2 (0 )N = 27rN-1/2

Tr(©.x)N(L1ON =2N

N N 2ir ktkxj -
N

Note that when j,k = -m,...,m-1
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(5.147)

(5.148) ON

which justifies the use of the name ON for both the vector in

CN and the corresponding complex-valued function.

The trigonometric polynomials 4N(x) and ON(E) are periodic

functions with period N112 and 27rN1'2, respectively. Using

this fact and the periodicity of the matrix elements of FN, we

may write

(5.149) N( ) =

M e-ix
4N(xN)E T (Ax) N

J=-m

(5.150)
m icNx

N(x) = 2r Y
T

(AN)N e J N(Ek)
k=-m

where IT means the following

(5.151) IT C c + c +...+ c + 1 c
ia J a a+l b-1 2 b

Formulae (5.149-5.150) are therefore discretizations of the

integrals in the Fourier transform and its inverse according

to the trapezoidal rule.

Using the correspondance established above between vectors

in CN and trigonometric polynomials, we can easily introduce

diagonal matrices corresponding to the muliplication operators

N
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E and K. The off-diagonal elements will be zero, and the
diagonal elements will be given by

i = -(m-1),...,(m-1)

(5.152)
(EN)jj -xN -xNmm + e

(5.153) (KN)kk K(Ck)

j = -m

The norm that we should use in CN is the Euclidian norm,

except for a factor N-1'4. This can be seen as follows. Let

(5.154)

xN

IION1 2 = f

m
ION(X)12

dx = N N2
m11

I$NI2

N k

=_m

-Xm

-1 m-1
= N 2 E ioNi2

j=_m j

At the end of the previous section we gave our continuous

problem the following variational form: Minimize

(5.155) f' I(I-F#KFE)H12 dx
-00

subject to the constraint

(5.156)
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The corresponding discrete problem is as follows: Find a

vector HN in CN which minimizes

(5.157) II(I-FNFNEN)HNII

subject to the constraint

(5.158) IIHNII = 1

This is equivalent to finding the eigenvector corresponding

to the smallest eigenvalue of the non-negative Hermitian matrix

ANAN where

(5.159)

(5.160)

AN = I - FNKNFNEN

AN = I - ENFNKNFN

d. Solution of the discrete problem:

Given an Hermitian matrix M > 0 with a unique smallest

eigenvalue, one can find the corresponding eigenvector by the

method of inverse iteration [15]. That is, let

(5.161)
MXn+l = Xn

IIXn,I

If Xn -> X, then MX = AX, where A = I- . It remains to show

that convergence occurs and that A is the smallest eigenvalue.

Let the eigenvalues be given by 0 < al < A2 < A3 < ... < AN:

125



and let an orthonormal choice of the corresponding eigenvalues

be {V1,...,VN}. Let

(5.162)
N

Xo=
N cV
J=1 J i

and assume c1 3K 0. Then

(5.163)
N

xn - an I ci
,)=1

where an is real. After some algebra

(5.164) xn SV1 + en

IIxI I 1 + I IenII2

where 0 = c1/Icil and

N X n c
(5.165) en = E Ic T V

11=2 ` j 1

But

(5.166)

where

(5.167)

Ilen112 = N
(a1 2n Ic 2 (A1 2n

J-2 2 1 cli 2<(a2( C

N Ic
C = L

J=2 Ic112
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Since A
1 < A2, IlenI12 ; 0, and

(5.168)
Xn +

8V1
IIxn11

as required.

In the present problem it is very convenient to take the

limit N - - during the process of inverse iteration. At each

step of the inverse iteration we multiply N by 4. Because of

the formula x _ jN-112,
.j = -m,...,m where m = 2, this makes

the computational mech twice as fine and twice as long. Thus

we organize the computation as follows

(5.169) ANANHN = inter

where inter is the interpolation - embedding process which

takes us from (4) - N. This process may be described as

follows. First, the interior points are filled in by fitting

a trigonometric polynomial to the mesh function 0/4.
Then,

the resulting function is extended by zero on exterior mesh

points. Because of the factor N-1/2 which occurs in our

definition of 11 112, the operation inter Is norm-preserving.

At each step of the iteration, we have to solve a linear

system of the form ANANHN = BN. Written out in terms of real

and imaginary parts, this is a system of 2N equations in 2N

unknowns with a real symmetric matrix.
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A linear system with a real symmetric matrix can be solved
by the iterative algorithm SYMMLQ [16] which is a form of the

conjugate gradient method [17]. This algorithm does not require

that the matrix be stored, but it does require a subroutine

ATIMES which will multiply the matrix by an arbitrary vector.

In the present problem ATIMES can be very efficient.

Recalling the definition of AN, Eq.(5.159) we see that the

operation to be performed by ATIMES can be broken down into

simple steps which consist of multiplications by diagonal

matrices or discrete Fourier transforms. The latter can be

executed by means of the Fast Fourier Transform [14] which

has an operation count proportional to N log N. The operation

count for ATIMES will also have this form, since the rest of

the operations grow linearly with N. The amount of storage

required will grow only linearly with N.

In principle, the conjugate gradient method converges to

the exact solution in N steps, and in practice with the proper

scaling (see below) we have achieved accuracy limited by the

machine precision in less than N steps. Thus the number of

operations required to solve each linear system will be at

worst proportional to N2 log N.

Numerical difficulties can be expected in the present

problem because of the continuous spectrum of the operator

F*KFE. Presumably the corresponding discrete operator has

eigenvalues which are close together. In practice we found
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extremely slow convergence of the conjugate gradient method

when we attempted to solve ANANHN = BN. With N = 256 as

many as 40 N iterations were required to get an accurate

solution, and with N = 512 we could not achieve an accurate

solution within reasonable limits of machine time. Since an

accurate solution had been achieved in N steps with N = 64,

the impression was that the performance was falling apart

rapidly with increasing N. These difficulties were completely

removed by the method of symmetric diagonal scaling. Such

scaling is introduced as follows. Let DN be a diagonal matrix

with real elements to be determined below. Let HN = DNGN.

Multiplying through by DN our system becomes

(5.170)
DNANANDNGN = DNBN

Let the elements of AN be aij and let the real diagonal

elements of DN be di. Then the elements of DNAIdANDN are

N _
(5.171) E diakiakjdj = did3 (ai, aj)

k=1

where ai = ith column of AN, and where is the usual inner

product. Now set

(5.172)

1
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This choice gives the elements of DNANANDN the form

(5.173) (ai , aJ-)

V(ai,ai aJ,aj)

Thus the diagonal elements are all equal to 1, and the off-

diagonal elements have magnitudes which are less than 1

(Schwarz inequality). In practice, this procedure completely

removes the numerical difficulties mentioned above.

e. Results:

In the cochlea problem as formulated here, there is

essentially only one parameter. This can be seen by writing

K() as follows

(5.174)

where

(5.175)

(5.176)

C = 1
0 2w2

a2 = (vIX2
tW

(In the system of units of this section, A = 1, but we insert

the factor X2 so that the expression for 6 will be correct in

K( ) = c0j 1 -

130



any system of units.)

As remarked above, changes in the parameter Co merely

produce a translation of the solution along the x axis. This

can be used to put the peak of the solution near the center

of the computational mesh. Otherwise the parameter C
0

is

inessential.

In the computational experiments to be discussed below we

used the value d = 10-2 which is 4 times the typical value of

611 cited in Section 3. Our results therefore correspond to

a low frequency tone applied to the human cochlea
(62.5 cycles/sec).

With this choice of 6 we performed the iteration

(5.177) ANANHN = inter

HN/4

HI
A I I

with log2N = 6,8,10 and with log2N = 7,9,11. The initial guess

was a constant. As a test of convergence we used the parameter
0 defined as follows

(5.178)

I(HN,HN/4)I

cos e =
11H

Nil
11H

N/411

Thus, 0 measures the angle between solutions at successive

stages of the iteration.
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The quantity
111N11 is also of interest, because Jill

N
11-1

measures, in a sense to be made precise below, the distance

between the matrix ANAN and a nearby singular matrix.

Let Y = HN, X = inter (HN1'4), M = ANAN. We have

(5.179) MY = XTI (T

Now construct the matrix

XY
T

11111

mdM =- X
Y I-I

(SM)Y = [lxi = MY

Thus, M-SM is singular, since Y lies in its null space. On

the other hand, the norm of the operator 6M is

IIYJJ-1 = JIHNil-1. Thus the computed value of Jill
N, 1 -1 is an

a posteriori bound on the norm of the smallest perturbation

which makes P4 singular

The computational results are as follows:

I would like to thank Olof Widlund for pointing this
out to me.
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log2N IIHNI1 6(HN, HN/4)

6 2.45 1.32

8 473. 0.472
10 712. 0.057

7 4.89 1.36

9 615. 0.227
11 782. 0.035

In the figure which follows we plot Re (HN(x)) together with

± IHN(X)) for the case log2N = 11, N = 2048. Note that the

general features of the solution are as predicted in Section 3.

It is a wave, the spatial frequency of which increases with x.

Its evelope has a prominent peak and the decay to the

left of the peak is much more gradual than to the right.

Next, we give a similar plot of the Fourier transform

of H. The predominance of negative spatial frequencies shows

that the direction of wave propagation is to the right

(consider exp(i(ut-E0x)) where E0 > 0).

We close this discussion with the following remark. Nowhere

in the formulation of the problem in this section do we

explicitly include a source of any kind. Nevertheless, we

find a solution corresponding to a wave moving from left

-r right as though we had introduced a source at x = --. Thus the

form of the solution and even the direction of wave propagation

must be properties of cochlea, rather than of the manner in
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which it is excited. This corresponds to von Bekesy's

observation of paradoxical waves traveling toward the source

which can be elicited by a vibrating stimulus at the apex of

the cochlea.
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VI. The Retina

The pattern of light shining on the retina is coded into

a pattern of nerve impulses in the optic nerve. This code

exhibits interesting spatial and temporal interactions which

explain why certain patterns are easier to perceive than others.

These interactions have been extensively studied in the com-

pound eye of the horseshoe crab (Limulus), and a mathematical

model, closely correlated with experiments, has been formulated

by Bruce Knight

This model assumes that the light shining on a receptor

cell is coded into a generator potential, which in turn is

coded into nerve impulses. The generator potential is influenced

not only by the light, however, but also by the firing rate

(frequency of nerve impulses) of the cell in Question and also

of other nearby cells. These feedback, or "recurrent"

influences are inhibitory. That is, they oppose the action of

light on the generator potential and they tend to reduce the

firing rate of the cell.

The retina behaves approximately like a linear system

when the light signal consists of small deviations superimposed

on a constant background and when the response is measured in

Knig..ht, B.W., The Horseshoe Crab Eve: A little nervous
system that is solvable; in Some mathematical questions
in Biolo 4. American Mathematical Society (1973).
PP-113-144.
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in terms of the changes in impulse frequency in the fibers of

the optic nerve. Under these conditions, a general formulation

of recurrent inhibition has been given as follows:

(6.1) R(x,y,t)

= E(x,Y,t) - a fo dt' f
dxldy'K(x-x',y-yl,t-t')R(x',y',ti)

where

E(x,y,t) = Excitation. In the simplest case this would

be proportinal to the light intensity, but

more generally it will be linearly related

to the light intensity, e.g., through some

ordinary differential equation at each point.

R(x,y,t) = Response. This is the change in frequency of

nerve impulses on an optic nerve fiber

originating at point (x,y).

XK(x-x',y-y',t-t') = Inhibitory potential generated at

(x,y,t) by an impulse of activity on the

optic nerve at x'y't'. By writing the argu-

ments of K as x-x', y-y', t-t' we are assuming

that the system is translation invariant in

space and time. Since the system is also

causal, K(x,y,t) = 0 for t < 0.

Equation (6.1) has the discrete counterpart:

N
(6.2) Ri(t) = Ei(t) - A

1

dt' Klk(t-t')Rk(t')

-00
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which is useful when the fact that the retina consists of

discrete cells is of interest. Equations (6.1) or (6.2) are

referred to as the Hartline-Ratliff equations.

Evidently, equations (6.1) or (6.2) define a broad class

of models, depending on the choice of K and on he relation

between E and the light. In the paper by Knight, referrred to

above, the different transfer functions of the model are

measured using sinusoidally varying stimuli of three types:

1) light

2) electric current injected at the sight of

of the generator potential

3) electrical stimulation of the optic nerve

(to control R directly).

In these notes, we shall study a similar model with prop-

erties which resemble those of the horseshoe crab retina. The

model has the great advantage that it can be solved exactly

for many light patterns of interest. Our purpose is not to

give a detailed model of the horseshoe crab retina, but rather

to give a simple analytic model based on recurrent inhibition

which can explain the following phenomena:

1) When a time-independent strip of light is shined on

the retina the response exhibits Mach Bands, as

follows:
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Light Intensity

Response

2) When a space-independent pulse of light is shined

on the entire eye, the retina responds mainly to

the transient:

Light Intensity

V
Response

3) When a sinusoidally varying spot of light is

shined on the retina, the frequency response

has a peak at a certain frequency, and this

phenomenon is more pronounced for larMe?:spots

than for small spots.

The model we shall use is a special case of (6.1) defined

as follows. Let L be the light intensity, and let I be the

second term on the right hand side of (6.1). That is, let I

be the inhibition. Then our model will be given by the
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following equations:

(6.3)

(6.4)

(6.5)

(Tat + 1)E = L

(at -A+ 1)I AR

R = E - I

where A is the Laplace operator, A = ay + ay.

To make the identification of (6.4)-(6.5) with (6.1), let

K be the fundamental solution of (6.4). That is, let:

(6.6) (at - A + 1)K = 6(t)6(x)6(y)

Then

0
t < 0

2 2
e xp (- x--- - t) t > 0

See Chapter III of these Notes for a derivation of the

corresponding fundamental solution in the one-dimensional case.

A "physiological" picture corresponding to equations (6.3)-

(6.5) can be given. Eq.(6.3) asserts that the response of the

photoreceptor to a flash of light is a generator potential

which is a step followed by an

exponential decay. The actual

generator potential is less sharp,

corresponding to several steps of
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integration. Eq.(6.4) asserts that the inhibitory potential

diffuses latterally in all directions, according to the same

equation that governs the spread of electrical charge in

dendrites, that is, the diffusion equation with leakage. The

source for the inhibitory potential is the local response R

multiplied by a constant A which measures the strength of the

inhibitory coupling. Although it is not at all clear that

such diffusion of the inhibitory interaction actually occurs,

the anatomical substrate for it is present in the horseshoe

crab retina in the form of a plexus of interconnecting fibers.

Finally, equation (6.5) asserts that the excitatory part of

the generator potential and the inhibitory part are summed

(with the appropriate sign) and the result is converted into

nerve impulses.

1. The Steady State.

In the steady state the model reduces to:

(6.8) E = L

(6.9) (-4 + 1)I = AR = X(E - I) - A(L - I)

Therefore

(6.10)

Suppose that

(-Q + (X+1)) I = AL
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(6.11) L(x,y) =

x > 0

x < 0

Then I will be a function of x only and we expect a

solution of the form:

1/2

(6.12) I =

--

x > 0

x < 0

Continuity of I and its derivative at x = 0 yield the

A+l
+ A = B

- A = B

Therefore

(6.15)

and

(6.16)

1 aB=2 X+1=-A

2
e-(X+l)

1/2x)
x > 0

a+1 (1 -

X

XT-1
0
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This gives the following pictures for L, I, and R = L-I:

1

X/( X+1)

R

L

f

Note that the steady part of the response is reduced

by the factor (a+1)'1, while the jump is unchanged.

2. Space-independent Dynamics.

For space-independent dynamics, the model reduces to

(6.17) (Tat+1)E=L

(at +1)1 = AR = X(E-I)

(at + (X+l))I = AE
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If L is a unit step, then

(6.20) E = 1-e-kt, k = T-1

(6.21) A -kt -(X+1)t
I = X+1 - -k+A+l e + Ae

where A is determined from

(6.22)

Thus

0 = I(0) _ + k---A--I- + A

(6.23) I a+l + k-A-i
e-kt -(

al
+ k--- ) e-(71+1)t

(6.24) R=E-I

1 k-X-l+Ak
a+1 ( k- X-1

k-1 -kt ak -(a+l)t
k-A-1 ) e + (A+1) (k-A-1 e

T
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3. Sinusoidal Steady State
Let

(6.25)

L -

E =

L(x,y)eiwt

Ew(x,y)eiwt

I =

R =

Iw(x,y)eiwt

Rw(x,y)eiwt

Then equations (6.3)-(6.5) become

(6.26) (iwt + 1)Ew = Lw

(6.27) [-d + (iw+l)]Iw = XRw

(6.28) Rw = Ew - Iw

Eliminating R. and Ew, we get the following equation

for Iw:

(6.29)
XL

[-A + (iw+1+A)]Iw
= iwt + 1

Now consider the case where the spatial pattern is a

bar. That is, let

IxI < a

(6.30)
(xj > a

Then we expect a solution Iw with the form
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AL

(6.31) Iw =

-(a+l+iw)/2jxj
jxj > a

In the quantity (A+l+iw)1/2, the square root with positive

real part is to be taken. Matching I. and its derivative at

x = a yields

(6.32)

(6.33)

W
iwt+l iw+l+a {1 + A cosh(X+l+iw)l/2x} jxj < a

1 + A cosh(A+1+iw)1/2a = Be-(A+l+iw)1/2a

A + sinh(X+l+iw)1/2a = - Be-(X+l+iw)1/2a

Adding these two equations yields

(6.34) A -
e-(A+l+iw)1/2a

where we have used cosh 0 + sinh 9 = e0. Therefore

(6.35)
1W(O,y) =

XLw
{i -

e-(X+l+iw)1/2 a}

iwt+1 iw+1+a

(6.36) E (0 ) =
L

W 'y iwt+l

Ru(0,y)
(6.37) G(w) = LW(O,Y

1 X{l - e-(X+l+iw)1/2a}

=
iw+1+ }
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When a = 0:

(6.38)

When a = m :

(6.39)

G(w) = 1iw T+l

1 A
G(w) = iwT+l

{l - iw+l+a }

1 iw+l - 1 1 + iw
iwT+l iw+l+ - a+l (l+iwT)(1 + 1+l

If we plot log IG(w)I against log w in the two cases we

get graphs which look like this:

log I G(w)I

a = 0

a = a*

I

w = 1 ( T-1
log w
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Exercises:

1. Consider the response of the model to a circular

flash of light with radius r

(6.40) L(x,y,t) = 6(t)
1, x2 + y2 < r2

0, x2 + y2 > r2

Show that

(6.41) R(0,0,t)

= ke-kt{l -
ft

e(k-A+1)t'(1
- e-r2/4t,)dt,}

0

Sketch this solution for large and small r, and check

that in the limit r - -this result is the time derivative of

Eq. (6.24).

2. Consider the case where one has a traveling step

of light. That is

(6.42) L(x,y,t) =

1 x+ct>0
0 x+ct <0

Find the response R, and show that in the limit c - 0 it

looks like the response to a steady step, while in the limit

c - - it looks like the response to a temporal step of light

presented simultaneously to be entire retina.

To exhibit the space-like limit one should write R as a

function of x + ct, while to exhibit the time-like limit one
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should write R as a function of t +
c.

(This problem was suggested by the corresponding obser-

vation for the Horseshoe crab retina as described in the

article by B.W. Knight, cited above.)
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VII. Pulse-Wave Propagation in Arteries

The arterial pulse is distorted in an interesting way as

it propagates through the arterial tree from the heart toward

the tissues of the body.

Central

Peripheral

Pressure Flow

The features to be noted are:

1) Increased amplitude and steepness of the leading

edge of the pressure pulse.

2) The formation of a second wave.

3) The delay associated with wave propagation.

4) The approximate proportionality of pressure and flow

far from the heart, and the absence of such propor-

tionality near the heart.

The shape of the arterial pulse is of great importance

because it can measured non-invasively and because it changes
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in various disease states. In particular.it has been found

that the second wave is missing in diabetes and atheros-

sclerosis l* In both cases the changes in the arterial pulse

occur early and therefore have predictive value
1,2.

Compari-

son of pulses at different sites has also been used to asses

the state of partially blocked arteries before, after and

during surgery. 3 The temporary effect of exercise on the

arterial pulse is marked (it can abolish the second wave) and

has diagnostic significance 3

The non-invasive method which is used to record the

arterial pulse was first developed by H. Lax and A. Feinberg

and later independently developed by J.K. Raines 3. Raines'

machine is more suitable for routine clinical use and is

commercially available. The principle of operation of both

machines will be briefly described here: An air cuff with a

fairly rigid outer backing is placed around the arm, leg,

finger, or toe where the measurement is to be made, and is

inflated to some standard pressure. This pressure should be

high enough to occlude the veins, but it should be below the

lowest pressure which occurs in the artery. The fluctuations

in pressure in the cuff are then recorded. The relationship

of the changes in cuff pressure to the changes in the arterial

References at the end of the section.
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blood pressure can be estimated in the following way. (This

analysis follows that of Raines 3, except

that we include a term omitted by him).

Treat the artery, arm, and cuff as a
system of concentric cylinders. The

outer wall is rigid, so the total volume

of the system is constant. Therefore

(since the volume of the non-blood part of the arm does not

change) :

(7.1) LVa + Ave = 0

where

AVa = change in arterial volume

(7.2)

Ave = change in cuff volume

For the artery we shall assume that:

AVa a Ca A(Pa Pc)

where

Ca = compliance of the arterial segment under the cuff

APa = change in arterial pressure

Ape change in cuff pressure

Following Raines, we assume that the changes in the cuff

are adiabatic, so that the cuff pressure and volume are

related by
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(7.3)

c YPc

= compliance of the air in the cuff.

Combining these equations we find,

Ca(APa-ePc) - Cc Ape = 0

or, to first order

(7.4)

which gives

(7.5)

where

(7 6) C =

or

.

(7.7)

(7.8)

PeVI = constant

ePc VY +
YPc VY-l eVc = 0

V
eVc = - YP Ape = - Cc ePc

c

Vc

Ca
Ape Ca+C0 ePa

There are two interesting limits of this equation, since

we can make Cc either large or small by constructing a large

or small cuff (see Eq. 7.6). If Cc << Ca, then

(7.9) Ape ePa
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In this limit, which appears to have been achieved by the Lax-

Feinberg machine, the device essentially measures arterial

pressure and is insensitive to changes in arterial compliance.

In this limit the arterial wall is essentially unloaded and

changes in pressure inside are reflected at once outside the

artery. (The changes in volume which would normally occur are

thus prevented by the device, as can be seen from Eq. 7.2.)

In the opposite limit, when Ca << Cc, we have

(7.10)
C

'Vaca ppa ti Ca

c c

This limit describes the usual operating condition of the Raines

machine, which is therefore appropriately called a "Pulse

Volume Recorder".

In fact, the pressure-volume curve of an aterial segment

is nearly linear over the physiologic range of pressures. There-

fore the two methods yield very similar looking records. It

appears not to have been noticed, however, that a combination

of the two methods would make it possible to record the pressure-

volume curve of the arterial segment under the cuff. From

experimental records of P(t), V(t), one can easily eliminate

t and construct a relation between P and V. As will appear

below, this relation, differentiated with respect to length

to yield a relation between pressure and cross-section, is

fundamental to the theory of pulse wave propagation in arteries.
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The rest of this chapter is concerned with mathematical

mehtods for predicting the shape of the arterial pulse. We

begin with a derivation of the one-dimensional theory of blood

flow in arteries. Viscosity will be ignored, and a detailed

treatment of branching will be circumvented by considering a

single artery with outflow all along its length. These

omissions are related, since viscosity plays a fundamental

role in determining the distribution of flow over a cross-

section of the artery, and since this distribution is

especially complicated near points where the arteries give off

branches. It is not clear how to include these effects within

the context of the one-dimensional theory. The equations we

derive, however, will include the influence of taper, outflow,

non-linear (convection) terms in the fluid equations, and non-

linear wall properties. We will discuss several different

methods for solving these equations, in order of increasing

generality. In outline, then, we will proceed as follows:

1) Derivation of the one-dimensional theory.

2) The limit of infinite wave speed.

3) The fundamental solution.

4) The sinusoidal steady state.

5) The methods of characteristics:

a) Analytic

b) Numerical

6) The Lax-Wendroff method.
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Sections 3 and 4 are restricted to the linear case, but

the outflow and taper terms in the equations are retained. In

Section 5a, taper and outflow are neglected but the non-linear

terms are retained. Section 5b deals with the general case

except that the solution is required to be free of shocks

(discontinuities), while Section 6 gives a method for the

general case which works even in the presence of shocks.

References

1 Lax, H., Feinberg, A., and Cohen, B.M.: The normal pulse
wave and its modification in the presence of human athero-
sclerosis. J. Chronic Diseases 3, 618-631 (1956).

Feinberg, A., and Lax, H.: Studies of the arterial pulse
wave. Circulation 18, 1125-1130 (1958).

Lax, H., and Feinberg, A.: Abnormalities of the arterial
pulse wave in young diabetic subjects, Circulation 20,
1106-1110 (1959).

Feinberg, A., and Lax, H.: Vascular abnormalities in
children with diabetes mellitus. JAMA 201, 515-518 (1967).

2 Dawber, T., Thomas, E., McNamara, C.: Characteristics of
the dicrotic notch of the arterial pulse wave in coronary
heart disease. Angiology 24, (4) 1973.

3 Raines, J.K.: Diagnosis and analysis of arteriosclerosis in
the lower limbs. Ph.D. Thesis, M.I.T., 1972.

Darling, R.C., Raines, J.K., Brener, B.J., and Austen, W.G.:
Quantitative segmental pulse volume recorder: A clinical
tool. Surgery 72, 873-887 (1972).

159



1. Derivation of the one-dimensional, inviscid theory 1.

Consider an arbitrary surface S moving at velocity v and

enclosing a volume V. The volume enclosed by S is filled with

an incompressible fluid with velocity field u, density p, and

pressure p. The surface does not necessarily move with the

fluid so that u and v, may be different. We will now write

down the laws of conservation of volume and of conservation of

x-momentum for the volume V enclosed by S. These laws do not

assert that the conserved quantities are independent of time,

but rather that their changes are explained by a flux of the

conserved quantity across the surface S. Thus we have

conservation of volume:

(7.11) atV +
Jf

dS = 0

S

conservation of x-momentum:

(7.12)
at fff (pu)dV + ff dS + fJ 0

V S S

1
Most of this section is based on: Hughes, T.J.R.: A study
of the one-dimensional theory of arterial pulse propagation.
Report #UC SESM 74-13, .Mural Engineering Laboratory,
University of California at Berkeley, December 1974.
The notational devices beginning with Eq.(7.23) which result
in the form (7.30) are believed to be new, however.
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where:

A = unit normal (outward) to the surface S

u-v = velocity of the fluid relative to that of the surface.

R = unit vector in the x-direction.

u = x-component of velocity =

pu = density of x-momentum.

We now specialize a little by assuming that S is a
tubular surface with ends which are portions of the planes

x = 0 and x = L. Let the rest of

the surface be designated by the
S'

symbol S'. Note that v = 0 along

S-S'. Let A(x0) denote the cross-

section of the tube which is cut

x = 0 A(x) x = L by the plane x = x
0
and also let

the same symbol stand for the area

of this cross-section. Then we have

(7.13) at
fLdx

11
dA +

f

J

udA L + 1( (u-_)-n_ dS = 0

0 A(x) A(x) 0 S'

(7.14) at ,Ldx If pudA +
J

pu2dA L

0 A W [AxJ )
0

L
+ 11 dS + j dX 11 (axp)dA - 0

S'
0

A(x)
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Introduce functions V and VIP such that

L
(7.15) j *(x)dx = if (u-v) -A dS

0 St

(7.16)

0 St

P (x)dx = ff (u-v). pu dS

We require these equations to hold for arbitrary L. They there.

fore define the functions * and *p, which have the interpretatio;;
of being outflow (per unit length) of volume and momentum,

respectively. (Note that , and *p both vanish when the normal

component of the surface velocity equals that of the fluid).

Now, differentiate (7.13) and (7.14) with respect to L,

and then replace the symbol L by x throughout. We obtain

(7.17) atA + ax ffudA+=o
A(x)

(7.18) at Jf pudA + ax ff pu2dA + SUP + ff (axp)dA = 0

A(x) A(x) A(x)

fL

These equations are exact, but do not constitute a one-

dimensional theory since the distribution of velocity over a

cross-section still enters.

ff

Without knowing this distribution

there is no way of relating udA to ff u2dA. Nevertheless,
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these equations serve as a good starting point for the intro-

duction of approximations. The simplest of these is obtained

by assuming that u and p depend only on (x,t). In that case we

have

VIP = Pu*

a tA + ax(Au) +iy= 0

(7.21) plat(Au) + ax(Au2)] + *p + Aaxp = 0

Using (7.19), Eq.(7.21) can be rewritten as follows:

pu[atA + ax(Au) + *] + A[p(atu + uaxu) + axp] = 0

But (7.20) asserts that the first bracket is equal to zero.

Therefore :

(7.22) P(atu + uaxu) + axp = 0

The pair (7.20)-(7.22) can therefore be taken as the basis for

a one-dimensional theory of arterial pulse propagation. To

complete the theory we need to supply relations which define

A and j as functions of x and p. Without loss of generality

we may write

(7.23)

(7.24)

A = A
0

exp g(p,x)

* = Aa(P.x)p
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Introduce the notation

(7.25)

(7.26)

In some sense, K measures the elasticity of the artery while

A measures its rate of taper. Then

(7.27)

(7.28)

a
t
A = AKatp

a
x
A = -AX + AKaxp

Equation (7.20) then reduces to

(7.29) K(atp + uaxp) + axu = Au - op

where we have divided through by the common factor A.

Finally, we take as our one-dimensional equations the pair:

(7.30)

with unknowns

P(ut + uux) + px - 0

K(pt + upx) + Ux = Au - vp

u - axial velocity

p - pressure

and coefficients
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p = density

K = elastic coefficient

A = taper coefficient

a = outflow coefficient

The coefficients K, X, a may depend on x and D.

2. The limit of infinite wave speed.

An instructive limit of the equations of motion (7.30) is

achieved by setting p = 0. In that case px = 0 which implies

p = p(t). We will find an ordinary differential equation for

p(t). Rearranging the second equation of the pair (7.30) and

multiplying through by exp(g(p,x)) we find:

(7.31) (U
X-

au) exp(g(p,x)) = -(Kpt+ap) exp(g(p,x))

(7.32) ax(u exp(g(p,x))) _ -(Kpt+ap) exp(g(p,x))

x
(7.33) -u exp(g(p,x'))100

x

= p* f
K(p,x')eg(P,x')dx' + p j a(P,x')eg(p,x,)dx'

0 C.

Take the limit as x - a, and assurue that

(7.34) u exp(g(p,x)' - 0

and that the quantities
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(7.35) K*(P) = JK(P,x) exp(g(p,x))dx

0

(7.36) c*(P) = J(p,x) exp(g(P,x)) dx

0

are finite. Then

(7.37) u(0,t) exp(g(p,0))= K*(p)pt + a*(p)P

Multiply, through by A0, and let

(7.38) Q0(t) = A0u(O,t) exp(g(p,O))

Then

(7.39) Q0(t) = AoK*(P)Pt + Aocs*(P)P

This is the "Windkessel" model which is often used by

physiologists to explain the qualitative features of the arterial

pulse. The quantity AoK is the total arterial compliance,

A0a* is the reciprocal of the peripheral resistance, and Q0 is

the outflow from the heart.

Q0(t)-'j p

C = A0K* R = Aloes

0

Q0(t)

R
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We conclude this section by specializing to the case where

A, K, a are constant. Then g = -Ax + Kp, and

(7.40)

(7.41)

(7.42)

(7.43)

= K eKp
A

a* = a

A
eKp

@o(t) = A0eKp u(O,t)

In this special case, then (7.39) can be rewritten

u(0,t) _ pt + P

Moreover (7.33) becomes

- u exp(Kp-Ax')

(7.44)

x

0

pt K exp(Kp-Ax')!x - p -
exp(Kp-Ax?)1x

O 0

which, using (7.43) becomes

(7.45) u(x,t) pt + p = u(0,t)a

In this special case, then, the velocity like the pressure

becomes independent of x. (This implies that the flow decreases

exponentially with x.)

The "Windkessel" model explains in a qualitative way the

shape of the arterial pulse near the heart. Thus, according

to Eq. (7.39), a sudden ejection of blood from the heart will
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elicit a sudden rise in pressure followed by a roughly expo-

nential runoff-period during which Q0(t) = 0. This model

certainly does not explain the distortions in the arterial

pulse as it propagates toward the periphery. To investigate

these phenomena we need to look at Eqs. (7.30) with non-zero

p and consequently with a finite speed of wave propagation.

3. The fundamental solution.

In this section we consider the problem

out + px = 0
(7.46)

Kpt+ux= Au - ap

with p, K, A, a constants. We are interested in the domain

x > 0 and the boundary data are u(0,t) = u0(t) and the absence

of any waves coming in from

Let

(7.47)

With these substitutes put + px is identically zero, and the

second equation becomes

(7.48)

where

K fit) _ 0. -

(7.49) c2 - oK
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Applying at or ax to both sides of (7.48), we see that u and p

satisfy the same equation as 0. In particular

(7.50) (utt + K ut) = uxx - aux

The following change of variables absorbs the first

derivative terms but introduces an undifferentiated term. Let

(7.51)

Then

u= vE , where E=exp 1 (),x -K t)

Ut = (vt -

f
R v)E

utt =

(7.52)

a 1 Q
(vtt - K vt + If - v)E

ux = (vx + 7 Xv)E

uxx = (vxx +
Avx + 1-a2v)E

Then

(7.53)

2

2* _ (vtt - tl
7. -T

v) = vxx - . J12v

vtt -
vxx + a2v = 0

a2 =1(A2 -
22

-) = 1Tj (a2 - o-)
K

Depending on the sign of a2, Eq.(7.54) is the Klein-

Gordon equation (a2 > 0), the wave equation a2 = 0, or a form
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of the Telegrapher's equation (a2 < 0). In Chapter II we showed

that the solution of

WTT - wxx + a2w = f(T)d(x)

where

(7.58)

00

w(x,T) = 2 JdRJ0(a2)?(T_R)

IxI

27r

Jo(z) = 2 ` cos (z sin e)de

0

To introduce the factor c, let w(x,T) = w(x,ct) = w(x,t), and

let f(t) = f(ct) - f(t). Then (7.56) becomes

(7.59) 2 wtt - wxx + a2w = f(t)a(X)
c

and (7.57) becomes

(7.60)

Note that

(7.61)

00

a)w(x,t) =
2 f

IxI

wx(0+,t) f(t)

This can be demonstrated by integrating (7.59) over the x inter-

val (-e,e), and then letting e i 0 and using the fact that w

is an even function of x. Alternatively, one can use the

formula (7.60), keeping in mind that Jo(0) a 1 and noting that

the term which comes from differentiating the integrand with
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respect to x is zero at x = 0.

We can therefore solve our problem by.letting v = wx and

choosing f(t) so that the boundary condition is satisfied.

That is, let

(7.62) f(t) 2v(0+,t)

2uo(t) exp (2 . t)

(7.63) v(x,t) = ax 2 f -x2)f(t -
R

1xI

(7.64) u(x,t) = v(x,t) exp 2 (ax - K t)

Once u is known, p can be found using either equation of

the pair (7.46).

We can get some qualitative insight into the shape of the

arterial pulse by considering the case u0(t) = 6(t), which

represents a sudden ejection of blood from the heart. Then

f(t) = -26(t), since the exponential factor is equal to one

at t = 0 which is the only place that matters. Thus we have

for the impulse response on x > 0:

(7.65) v(x,t) = -ax f
I_x2)6(t

- E)

x

Let R = ct' to obtain
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v(x,t) = -8xc fdttJ0(a/c2tt2_x2o(t_tt)

X
c

= -a
x

0 x > ct

Therefore

c J0(z), x < ct

z = a
c2t2-x2

az = -ax a2x
ax 22 z

c `t`-x

(7.69) v(x,t) = c8(x-et) + a2cx
z '

x<ct

0 , x > ct

(7.70) u(x,t)

- x)
a(texp (Z (Xx - K t))

c

172

0

JI(z)

z



Leading
Impulse

The impluse response consists of

a traveling impulse followed by a

smooth wave. Because of the factor

x, which multiplies the smooth part

of the solution, the smooth wave

becomes increasingly prominent as

x increases. The smooth wave is

oscillatory when a2 > 0, which is

case we have sketched here. Is is

non-oscillatory when a2 < 0, and absent when a2 = 0. It seems

reasonable to postulate that the first positive peak of the

smooth part of the solution can be identified with the second

wave which is seen in the arterial pulse, especially since the

amplitude of this wave is observed to grow with increasing

distance from the heart.

We need to determine whether a2 is positive, negative, or

zero. For this purpose, rewrite a2 as follows (cf. Eq. 7.55)

a2 = 1 X2(1 - a2)

a s
acK 1 y !S

Next, we solve our equations for the special case of steady

flow, and identify the results with the mean values of the

corresponding quantities which occur in life. The steady
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solution required has u and p independent of both x and t, and

therefore has

(7.73)

Therefore we write

(7.74)

Au=op

p A OF

Since the wave speed has been measured in arteries, and the

density is known, it will be convenient to write

1K = PC2

a = 4 PC
AOP

As an illustrative case we will evaluate a for dogs, since

the relevant constants are available in a paper of Anliker and

Rockwell 1

(7.77)

p = 1 gm/cm3

c = 5 x 102 cm/sec

60 cm3/sec

Ao = 4.9 cm2

F = 1.33 x 105 dynes/cm2 (= 100 mm Hg)

Anliker, M., and Rockwell, R.: Nonlinear analysis of flow
pulses and shock waves in arteries. ZAMP 22, 217-246,
563-581 (1971).
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Therefore

(7.78) a ,::t 5 x 10-2

The assumption that a2 > 0 therefore seems well justified,

since a2 is proportional to 1-a2.

The changes which will reduce the amplitude of the second

wave may now be listed. They are changes which increase a

and hence reduce a. From (7.76) we see that two such changes

are an increase in wave speed (such as would occur with

stiffening of the artery in atherosclerosis), and an increase

in the ratio Q/p as in exercise. Whether these qualitative

predictions can be made quantitative remains to be seen.

We conclude this section by demonstrating that in the

limit c + -, our solution reduces to that of the Windkessel

model of the previous section. What has to be shown is that

u(x,t) + u(0,t) in the limit c + m.

Returning to Eq. (7.60), we have as a + m

(7.79) w(x,t) + W(x)f(t)

where

(7.80) W(x) _

1ixI

Returning again to Eqs. (7.59) and (7.60), however, we see that

W(x) is also the steady solution of (7.59), that is, the

solution which results by setting f(t) = 1. Thus W(x) satisfies
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(7.81)

It follows that:

(7.82)

(_32 + a2)W(x) - S(x)
x

W(x) a exp(-aIx

We can also show without appealing to any time-dependent

problem that W(x) satisfies (7.81) and therefore is given by

(7.82). First rewrite W(x) as follows:

(7.83)
2n

W(x) _ f dR n
Jcos ((a/R`-x`) sin Ode

1xI 0

Let p2 s R2-x2, so that pdp = RdR. Then

/
(7.84) W(x) _ 1

1

ab 2n
cos (ap sin 9)de

0 p`+x` 0

Regard p, 0 as polar coordinates in the y, z plane. Then

(7.85) W(x) - « dydz cos ay

- x +y2+z

Now exploit the fact that 1/4,rr is the fundamental solution

of Laplace's equation in three dimensions. That is,

(7.86) _ 02 + ay + a2) 1 - 6(x)6(y)6(z)

4xx"+y+z

Multiply both sides of (7.86) by cos ay, and integrate over

the y,z plane. The term involving a2 yields -32W. The term
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involving ay gives (after integration by parts) +a2W. The

term involving a2 gives zero. The right hand side becomes

6(x). Thus W satisfies (7.81), as claimed.

Therefore, as c - m,

(7.87) w(x,t) -I. 2a exp (-alxl)f(t)

But we also have a - Z. It then follows from equations

(7.62)-(7.64) that u(x,t) - uo(t) as required. What is

interesting (and perhaps surprising) here is the absence of

any space dependence in the limit. One might have expected

u(x,t) - uo(t)*(x), but in fact y turns out to be 1.

4. The sinusoidal steady state.

In this section we consider again the linear system (7.46)

but we look for solutions of the form

(7.88)

I
p = p0eux+iwt

This leads to the linear equations

(7.89)

iwp u uo

u-a iwK+a po

0

To permit non-trivial solutions, set the determinant equal to

zero. This gives

177



u2 - Au - iwp(iwK+u) = 0

(7.90)
u

A l + 1 + iw iw+a
2

A

41wp(iw K+) _ -4 +41A
A A

r

(7.92)

Then

(7.93)

A2 _ 2pK = 0

2 [1±/1:21k]
WO

Let ul and u2 be the two solutions given by (7.93), with

Re(u1) < Re(u2). We will show that only ul is of physical

interest. Our method will be to impose a boundary condition

u = 0 at x = L, and then take the limit as L + -. Perhaps,

surprisingly, the result will hold even for cases in which

Re(ui) > 0, so that the limiting solution is growing and does

not tend to zero as x + w.
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Suppose then, that the boundary conditions are u = uoeiWt

at x = 0, and u = 0 at x = L. The solution will have the form

(7.94)

ulx+iwt u2x+iwt
u = u1e + u2e

ulx+iwt u2x+iwt
p = p1e + p2e

where (u1,p1) and (u2,p2) satisfy (7.89) with u = ul and u = u2

respectively. Thus pl and p2 can be expressed in terms of ul

and u2 and we need only satisfy the boundary conditions on u.

These become:

(7.95) u1L
uie + u2e

u2L
0

Solving for (u1,u2) yields

(7.96)

1

uo 1 - exp ul-u2 L

1-u0 1-exp

As L + -, since Re(u1) < Re (U2)1

the limiting solution is

(7.97)

u uoe
ulx+iwt

p =
u1x+iwt

poe

u1-)- U
0

and u2 - O. Therefore
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Returning to the formula (7.93) and adopting the convention

that Re ' > 0 for any z, we have

(7.98)
2

u ul= 1_ -2+ 21
WO l

To complete the solution, we need only express Do in terms of

u0. This can be done from either of the two equations of the

pair (7.89). The two equivalent expressions are:

-'WP upo u 0
(7.99)

X--p
po i&K+a uo

Exercise: When w0 = Wl, show that the solution looks like a

traveling wave with speed c = (pK)-1/2, independent of w.

Exercise: Show that Re(p) is a monotonic function of w on

0 < w < -. Find Re u(0) and Re u(-), and give a condition

which determines whether Re (u) is increasing or decreasing.

Exercise: Let the wave speed become infinite by letting p - 0,

Find the limiting relation between u
0
and p

0
and check that

this agrees with the "Windkessel" soultion of Section 2.
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We will now find approximate solutions for low and high

frequencies. In the low frequency case:

X a K 1 1 ccl
PQ v p PK a

where a is the dimensionless constant defined by (7.72). In

the previous section we found that a < 1. Therefore cl > C.

Using this expression for u we find that, to 1st order in w

(7.102)

iw(t -

c

)

1

Po=v (1-iw{a-2w} ) uo
1

The high frequency behavior will be considered next. For

large w,

(7.103)
aJJ

(Remark: To verify the negative sign in 7.103, one has to look

.at terms which have been neglected in the end. The - which

appears in u has the form /-=+e for large w, after a positive
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factor has been removed.. The root with positive real part

lies near the positive imaginary axis. Then we subtract this

root from 1.)

Note that

(7.104)
2W0

X

/
= pK

Therefore, with this expression for u we have

iW(t - 1) +

u = u e
0

+ 2x

(7.105) p = p0e

A0 pcuo = g u0

(In the last expression we have let w a oo.)

Comparison of the low frequency and high frequency

behavior yields the following points of interest:

1) The low frequencies have a very high phase velocity

Cl = a > c. Of course, this is not a signal velocity;

we have seen in the previous section that signals

propagate at speed c. It will take several cycles

to build up the low frequency response given by

(7.102). The high frequencies, on the other hand,

propagate at the signal velocity c.
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2) To lst order in w, the low frequencies are not

amplified with distance. The high frequencies are

amplified by the factor exp 2x.

3) As w - , the ratio of pressure to flow becomes

independent of w and equal to /p-/17, in agreement

with the result for an untapered line with no outflow.

In the low frequency case, the first order expression

for the ratio of pressure to flow is like that of the

"Windkessel" model, except that the term K/v is

replaced by (K/v) - (1/2w1).

The following interpretation of these results may be

given. The frequency wo, can be written as follows

(7.106) w = 2(l) P =
2(Z) o

0

Since (1/A) is the distance in which the area decreases by the

factor exp (-1), it follows that (1/w0) is the round trip time

for the wave "bouncing off the taper". If the frequency is

much higher that this, the wave

length becmoes much less than 1/A

and the taper can be regarded as

gradual. For much lower frequencies,

on the other hand, the wave length

is much longer than the taper. In

the latter circumstances, the taper fails to amplify the wave

and the phase velocity becomes very large.
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5. The method of characteristics

This method has been used successfully by M. Anliker and

R.L. Rockwell 1 to construct numerical solutions for the one-

dimensional arterial pulse problem. The reader is refered to

their work for a comprehensive discussion of the results of

such calculations.

Here, we will confine our discussion to methods rather

than results. We will develop the method of characteristics

for the equations

(7.107)

1.

P(ut + uux) + px = 0

K(pt+upx) +ux=Au - Qp

where K, X, a may depend on p and x. The method will then be

applied in analytic form to the simpler problem, A = a = 0,

K = K(p), which corresponds to a uniform artery without outflow.

Following this, we will state a numerical method for the

general case.

A characteristic is a curve in the (x,t) plane along

which there is a restriction, in the form of an ordinary

differential equation, which relates the values of u and p

along the curve. For non-characteristic curves, u and p can

be specified arbitrarily without ariving at a contradiction

1 cited above.

184



of the partial differential equation (7.107). The character-

istics are the exceptional curves where an arbitrary choice of

u and p may lead to such a contradiction. The characteristics

are not determined by the partial differential equation alone

(except in the linear case), but depend on the solution. In

particular, the slopes (that is, the speeds) of the character-

istics are determined by the values of u and p at each point.

Dividing through by p and K, and using matrix and vector

notation, we find that 7.107 has the form

(7.108)

where

(7.109)

(7.110)

wt+Awx=Bw

A =

0 0

B a a
K - K

Now consider a curve x = x(s), t = s in the (x,t) plane. Let

(7.112) c =
ds

Along such a curve we have (for any differentiable function w)
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the identity

(7.113) wt + cwx = ws

Combining this with (7.108) yields the system

(7.114)
I A wt Bw

I ci wx ws

which has 4 equations and 4 unknowns ut, pt' ux, px- The right

hand side is known if u, p are given along the curve.

Recalling the definition of a charactersitic curve, we

want to find those speeds c for which (7.114) is solvable only

for certain right hand sides but not for all. Subtracting the

first equation from the second yields the system

(7.115)

I A

0 cI-A

Bw

EZi

ws - Bwi

which is solvable if and only if the 2x2 problem

(7.116) (cI - A)wx = ws - Bw

is solvable.

The characteristic speeds c can therefore be found by

setting

(7.117) det (ci - A) = 0

which yields

(7.118) c = u ± Aip
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We want to find the restriction on the right hand side which

allows (7.116) to have solutions. This can be found as follows.

Multiply by the arbitrary 2-vector YT = (Y1,Y2) to obtain

(7.119) YT(cI - A)wx = YT(ws - Bw)

Now choose yT so that

(7.120) YT(cI - A) = 0

which is possible since (cI - A) is singular. Then (7.119)

becomes

(7.121) 0 = YT(ws - Bw)

which is therefore a necessary condition for the existence of

a solution.

We now determine YT explicitly. Let

(7.122) c0 = pK

Then YT satisfies

(7.123) (Y1,Y2)

± c
0

- K-1 ± c

- p-1

0

Let yl = 1. Then

(7.124) Y2 = t Kc0 = ±

= 0
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The vector

(7.125)

us

ws - Bw = au-op
ps K

Therefore our restrictions on (u,p) along the charactersitic

becomes

+ KI{ Xu-ap = 0us p Ps K

Cu ±
P PI

s = ±c0[Xu-ap]

where the ± signs holds along the characteristic given by

(7.128) ds=u± co ds

which we shall refer to below as C+.

The quantities

(7.129) J± = u ±
p

p

are therefore conserved along their own charactersites in the

special case A = a = 0. In the general case, however, they

change according to the differential equation (7.127). The

quantities J+ can be interpreted as the amplitude of the forward

and backward waves, respectively, and the changes in J+ which

are prescribed by (7.127) can be regarded as continuous

refeictions generated by the taper and outflow.
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5a. Uniform artery with no outflow.

Here we consider the case A = a = 0, K = K(p). Thus the

artery is uniform, but the problem is still non-linear, and

the charactersitics speed depends on the solution, being given

by

(7.130) c = u ± co

where co is a function of p.

To make the problem as simple as possible, choose a finite

spatial domain 0 < x < L, and impose the boundary conditions

(7.131)
u(0,t) = uo(t)

u(L,t) =
p

p(L,t)

The latter boundary condition is chosen to make J_ = 0

at x = L (no reflected wave). Therefore, since (J-)s = 0 along

C-, we shall have J_ 0 throughtout the domain. It follows

that
(7.132) u =

p
p

everywhere, not just at x = L, and that

(7.133) J+ = 2u = 2I p
P

Since J+ is constant along each of the C+ charactersitics,

it follows that u,p are also constant, and therefore, that the

charactersitic itself is a straight line, with a speed deter-

mined by the value of uo(t) at the moment of origin of the
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characteristic. The equations of the C+ characteristics are

found as follows: Let

(7.134) po(t) = x uo(t)

(7.135) e(t) = uo(t) + co(po(t))

Then the equation of the characteristic which is created at the

time t* is simply

(7.136) x - e(t*)(t - t*)

Since, in this case, the C+ characteristics carry constant

values of u an p, the solution is given implicitly by (7.136)

and

(7.137)

u(x,t) - uo(t*)

p(x,t) = po(t*)

In arteries, co is an increasing function of p. From

(7.134) and (7.135) it follows that 6 is an increasing function

of u. Therefore, the high amplitude parts of the solution are

carried along at a greater velocity than the low amplitude

parts.
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x = 0 x = L

Thus wave fronts become steeper, and backs become less steep as

the wave propagates. The characteristics are converging where

u is increasing and diverging where u is decreasing.

An important question which now arises is whether the C+

characteristics intersect with each other anywhere on the

interval 0 < x < L. If they do, a shock (discontinuity) forms

and the solution constructed above becomes double-valued,

while the physically relevant solution of the problem becomes

discontinuous. A numerical method which succeeds in construct-

ing the solution even in the presence of shocks (the Lax-

Wendroff method) will discussed in Section 6. Here, we shall

derive a restriction on the boundary data which will guarantee

that. the interval 0 < x < L is free of shocks.

According to (7.136), two C+ charactersitics which

originate at times t1 and t2 will intersect at (x,L) given by
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(7.138)

That is

(7.139)

x = e(tl)(t - tl) = e(t2)(t - t2)

t= e(t2)t2 - e(tl)tl9t2 -9tl
e(tl)e(t2)(t2-tl)

X= et2- etl

Intersections on 0 < x < L will be avoided if x > L or x < 0.

Both possibilities are contained in x-1 < L'l, which reads:

(7.140)
e-1(t2) - e-1(tl) 1

t2 - tl < rT

Shocks will be avoided if and only if (7.140) holds for all

t1, t2. This condition is equivalent to

1 de 1e2ut<r

Note that this condition restricts the rate of rise of 0, but

not its rate of decrease. If this condition is satisfied by

the boundary data, then the solution we have constructed is

valid. If not, shocks will form and further considerations

are necessary to construct the solution.
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5b. The numerical method of characteristics.

We now drop the restriction A = cc = 0 and construct a

numerical method for the problem (7.107) in the general case.

The domain will be x > 0, t > 0, with u(0,t) = uo(t) and

u(x,0) = p(x,0) = 0.

Recall that the equations which define the characteristics

are

(7.143)

while the equations which hold along the charactersitics are

(7.144)

where

cps
(J±) = ±

Note that Eqs. (7.146) are easily inverted to yield u, p as

functions of J.
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The discretization of these equations proceeds as follows:

x

Introduce a mesh made up of characteristic lines. The

point Pm = (xmn, tm1 lies at the intersection of the nh discrete

C+ characteristic and the mth ldiscrete C- characteristic. The

notation m will mean 4(xm, tm).

First consider interior points of the mesh. Suppose that

all quantities have been determined on the mesh points Pm-1

and Pm-1. Then we determine the location of the point Pm by

solving the following pair of equations:

n
(7.148) xm - xm-1 = (tM

- tm-l) (u + cot
m-1

r if
}n-1

(7.149) xm - xm 1 = Itm
-

tm-11tu - col
m

Next, we determine (J')M as follows:

(7.150) (J+)m = (J+)m-1 + (tm -
tm-1)Am-1
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n n-1 n n-1 n-1
(7.151) (J_)m

(J_)m - (tm - tm )gym

The region of interest has two boundaries which require

special treatment. First, consider the boundary n = 0, which

corresponds to the leading C+ characteristic. Just to the

right of this boundary the system is at rest. But J is

continuous accross this boundary (J+ is not). Therefore J_ = 0

along n = 0. This condition replaces Eq. (7.151). Another

modification along this boundary is that we drop Eq. (7.149),

which refers to the mesh point P. This allows us to choose

(to - tm_1) arbitrarily in (7.148). For example, we could set
m

this quantity equal to a constant, and this constant will then

determine the resolution of the mesh.

Next, consider the boundary n = m, which corresponds to

x = 0. Along this boundary we have to drop the two equations

which refer to the C+ characteristic. That is, we drop (7.148)

and (7.150). In their place, we have the two conditions xn = 0

and un = uo(tn).

The equations we have outlined suffice to determine the

quantities xm' tm' 'm' pm on
the entire mesh 0 < n < m <

These quantitites can be determined in any order having the

property that all four quantities are determined at Pm-1 and

Pm-1 before they are determined at Pm.
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In this way, an approximate solution can be constructed.

Here, as before, there is nothing to prevent the computed C+

characteristics from intersecting with each other. If such an

intersection occurs it can be interpreted as the formation of a

shock, but some modification of the stated method is required

to continue the solution further. Such modifications will not

be discussed here, however, because a numerical method is

available which handles shocks automatically. This method is

the subject of the next section.

6. The Lax-Wendroff method

In this section we consider systems of equations of the

form

(7.152) ut + fx = g

where u is a vector, and where f and g are vector-valued

functions of u. Such a system has a simple interpretation

which can be found by integrating with respect to x over some

interval (a,b). One obtains

(7.153)
d /b b tb
at- 1 udx + f l = f

aa a a

Eq. (7.153) asserts that u is the space-density of some

quantity which has flux f and which is created at the rate g.

References at end of section.
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When g = 0, this amounts to a conservation law.

In this section we will begin by deriving a system of

difference equations which is satisfied by smooth solutions of

(7.152) up to terms of second order in Ax and At. These

difference equations constiute Richtmeyer's two-step version of

the Lax-Wendroff method. The stability of these difference

equations will then be investigated in the linear, constant

coefficient case. Finally, we will discuss the question of

how to put the equations of the arterial pulse in the form

(7.152).

The following notation will be used. Let h = Ax, k = At,

and, for any function (x,t), let i = (jh,nk). We will need

certain formulae relating divided differences of smooth

functions to the corresponding derivatives. These can be

derived using the Taylor series. For example, consider a

smooth function $(x):

(7.154)

oj+l = j + h(4X)j + 2 h2($xx)j + 0(h4)

J-1
0i - h(OX)1 + 1 h20XX)i - S 0(h4)

Adding and subtracting we obtain:

(7.155)

(7.156)

J+l + 0J-1 - 20j = h2(OXX)j + 0(h4)

Oj+1 OJ-1 = 2h(OX)j + 0(h3)
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Dividing through by h2 and by 2h, respectively, we obtain:

(7.157)

(7.158)

i+l h-2 (mxx)i + 0(h 2)

+12h
= (4x)i + 0(h 2)

A further consequence of (7.155) is

(7.159) OJ-1) _ 01 + 0(h2)

In all three formulae (7.157)-(7.159), the second order

accuracy is a consequence of the symmetry. Corresponding

formulae hold in the t-direction, and also with space steps of

other sizes such as h/2. We will use these formulae freely in

the following.

Now, consider a smooth function u which satisfies (7.152).

Then

(7.160)

un+1 _ un n+7

k (-fx + g)3 + 0(k2)

We need to construct a second order accurate difference

approximation to the quantity (-fx + g)n+1/2. For the resulting

difference equations to be useful as a numerical method, the

required approximation should be constructed from the values of

u at the time level n. We can do this as follows. Note that

(7.161)

1
n

uJ+1 = uJ+l + 2(ut)J+1 + 0(k2)

7 2 2
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and

(7.162) un
1

= 1(un 1 + un) + 0(h2)
J+f J+2

n n
(7.163) NO 1 = (-fx + g)

j+2 J+.

_ '+1f-n
+ [!L4 + 0(h2)

Substituting the last two formulae in (7.161), we obtain

1

(7.164)

7

+

[+-}fn

+ l2 2+0(h + k )

Therefore, let

n+1 n n to pon

(7.165)
u''

= 1(un +un) + k f +i 1 J + g +J'd -2 J+1 i h 2

For theoretical purposes, we require this formula, which

defines u, to hold for all (n,j), not just for integral values

of .n and J. It therefore defines a smooth function u over the

whole x,t plane, which, according to (7.164) is related to u

as follows:

(7.166) u = u + 0(h2 + k2)
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We will now show that a corresponding relation holds

between ux and ux. This can be established by computing the

quantity

n+ n+Z = 1 nuJ1
-

uJ-1
2' j+1

+2 T
(7.167)

k7 - h + 2

Dividing through by h yields

1

O(h2)(7.168) (ux+7 + O(h2) _ (ux)n + 2-
1

But:

(7.169)

(7.170)

Therefore:

(7.171)

(-fxx + gx)i (u)

(u}
n n 2

+ 2luxtln
= (Uxl

+
O(h

)

ax = ux + O(h2+k2)

Now let f = f(u), g = g(u). If f and g are smooth

functions, we can write as a consequence of (7.166) and (7.171):

(7.172) (-fx+g) = (-ix +A) + O(h2+k2)
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f j+1-f 1 g 1+ -12+72 2(7.173) (-fx+g)J = -
h

+ 2 + O(h )

Substituting (7.172) and (7.173) in (7.160), we get the

required formulae:

n+1 n+1 n+ n+
n+1 n f l-

1

g 1+ g 1
J J_

(7.174) _,1 k ui -+2 h 2 + _+_ 2
2 + O(k2+h2)

where, as before, f = f(u), g = g(u), and:

1 n nn 1n
(7.175) i+2.l(uj+l+uj)+2-f _+g

2

The Lax-Wendroff method (Richtmeyer's two-step version)

is now obtained by dropping the terms symbolized by 0(k2+h2).

(Once this is done the quantity u no longer represents the

exact solution of the partial differential equation, but we

will retain the notation u nonetheless.) The resulting

formulae give un+l in terms of u,_1, u1, They are there-

n+l

n+2

n
-1 J J+1

fore sutiable for constructing the

approximate solution u recursively

from initial data.
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We now examine the stability of the Lax-Wendroff method

in the special case f = Au, g = Bu, where A and B are constant

matrices. There will be no further restrictions on B. but we

require that A have real eigenvalues and N linearly independent

eigenvectors, where N is the order of the matrix A. The latter

condition will be satisfied if the eigenvalues of A are

distinct, and it will also be satisfied if A is a symmetric

matrix. Recall that the eigenvalues of A are the characteristic

speeds. In the present problem N = 2 and the characteristic

speeds are given by u ± c0, which are certainly real and

distinct.

When A and B are constant matrices, the difference

equations are linear with constant coefficients, and it is

useful to look for solutions of the form

(7.176)

un = Un
eiauh

i

aJ = Un eiajh

With these substitutions, the difference equation becomes:

(7.177)

where

(7.178)

n+l
n+l 2n=UU +hDU

1
Un+.

2 rcos + D] Un

D=-21A sin ahh+hB cos ahT- T-

202



Let A =
n+1

h, 0 2h, and eliminate U

(7.179) Un+1=1I+AD[Cos

Regard A as fixed, and let

(7.180) M(e,h) = I + AD [cos 6+ 12D]

(7.181) D(9,h) = -2iA sin e + hB cos 9

The the difference equations become:

(7.182)
Un+l = M(e,h)Un

Let T = nk = nAh. Then

(7.183) U(T) = EM(e,h)3nU(0)

Note that M(e,h) can be written

(7.184) M(e,h) = Mo(o) + hMl(e) + h2M2(e)

where

(7.185) Mo(o) = I - 21 sin 9 cos o AA - 2A2A2 sin2o

We will not need explicit formulae for M1 and M2. Note, however,

that they, like Mo, have elements which are bounded Independent

of 8, since sin a and cos a always stay on the interval [-1,1].

We assumed that the matrix A has real eigenvalues and a

linearly independent set of eigenvectors. Let the eigenvalues,
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which are also the characteristic speeds, be written cj and the

corresponding eigenvectors be written p j = 1,2,...,N. The

i are also eigenvectors of the matrix Mo(6) with eigenvalues

(7.186) 2i sin 8 cos 8 Xci - 2X2c2 sin28

Note that

IV 1 2 = 1 - 4X2c2 sin28 + 4X4a4 sin48 + 4 sin28 cos28 X2C2

= 1 - 4X22 sin28(1 - cos28) + 414c4 sin48

= 1 - 4 sin48(1 - X202)a2c2

(This cannot give a negative result because (1-X)X
4).

It follows that X2c2 < 1 implies , (8)j2 < 1. Also, when

X
2
c
2 > 1, then 14 (8)l2 > 1 except when 8 is such that

sin 8 = 0. Incidently, where X2 2 > 1, the largest value of

IV1 2 occurs when 0 = 2.

When A is such that X2c2 < 1 for all 3, the difference

equations are said to be stable for the following reason. Let

IJUjI be the norm of the vector U which is defined by expand-

ing U in terms of the eigenvectors of A and then taking the

i2 norm of the vector of coefficients. Thus when

U - Ejal b3$3,

(7.188) IIU112 = E Ibj12
3=1
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Also, let IIMII be the norm of the matrix M which is defined as

follows

(7.189) IIMII IIm x IIMUII
JJ=l

Then

(7.190) IIM(e,h)II < JIM0(O)II + htIM1(e)II + h21IM2(e)II

Now M1 and M2 have elements which are bounded independent of

e, and, in the case under consideration 11M0(6)11 < 1. The

latter statement is proved by considering the arbitrary vector

N
U E b

J=l

(7.191)
N

M0(e)U =
,j1

since Iuj(e)I2 < 1.

Therefore, for h sufficiently small, there is some constant

C, independent of 6 and h, such that

(7.192) hIM(e,h)II < 1 + Ck

(Recall that k = Xh).

Then

(7.193) IIUr'II < (1 + Ck)n IIU(0)II < eCkn IIU(0)lI
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Letting T - nk

(7.194) IIU(T)II <
eCT

IIU(0)II

Thus the growth of U is controlled independent of h, e, a pro-

perty which is called stability.

In the opposite case, when A is such that A2c2 > 1 for

some j, the difference equations are said to be unstable

because one can find initial conditions, depending on h but

satisfying IIU(0)II - 1, such that IIU(T)II + - as h + 0.

To do this, pick 8 and j so that IujI > 1. Pick e > 0

so that IuiI - c > 1. Now the eigenvalues of a matrix are

continuous functions of the matrix elements. Therefore, there

is some eigenvalue u3(G,h) of M(8,h) which approaches uj(8)

as h + 0. Therefore, for h sufficiently small, Iu - ujI < e

and

(7.195) IY > IuJI - e > 1

If we choose as our initial condition Uo an eigenvalue of M

corresaonding to eigenvalue then

(7.196) IlUnll > (IuJI - E)nllU°II

T

(7.197) IIU(T)II > (Iu1I - e)Xh-IIU(0)II

Pick IIU(0)II - 1. Then IIU(T)II + - as h + 0, since IujI - e

is independent of h and greater than 1. This situation is

called instability.
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In summary, the difference equations are stable if A = fi

is chosen so that (Acj)2 < 1 for all of the characteristic

speeds cJ. Otherwise they are unstable. Stability depends

only on the matrix A, whose eigenvalues are the characteristic

speeds, and not on the matrix B.

We have yet to consider the problem of putting the

equations of the arterial pulse in the form (7.152). In fact,

this can be done in several ways, all of which are equivalent

for smooth solutions but which yield different formulae for the

speed of propagation of a shock 1. In problems of gas dynamics,

the choice of the appropriate form of the equations is dictated

by the physical conservation laws. In arteries, the situation

is less clear-cut because the physical conservation laws do not

by themselves determine a one-dimensional theory. An extra

assumption has to be brought in, that the velocity and pressure

depend only on x and t. This assumption cannot be accurate

when the cross-section of the artery changes. It will be

especially bad when the change occurs abruptly, as a shock.

This problem has been carefully considered by Hughes 2,

who recommends that the following form of the ecuati.ons be used:

1 For a discussion of the circumstances in which shock waves
might occur in arteries, see Anliker and Rockwell cited above.

2 Hughes, T., cited above.
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tu 1 u2 + 1 p(A,x) 0

A

i
(7.198) + p

Au x)x

where u is the velocity, A is the cross-sectional area,

p(A,x) is the pressure, and i,(A,x) is the outflow. For smooth

solutions, these equations are equivalent to the equations

that we have been using throughout this chapter. Moreover,

they are in conservation form, as required by the Lax-Wendroff

method.
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VIII. An Inverse Problem in Muscle Mechanics .

The shortening which occurs in muscle is brought about

through the sliding of one system of filaments past another.

The filaments involved do not change length. Originating

from the thick filaments is a system of projections, called

cross-bridges. These projections can attach to the thin

filaments, pull them in the direction which shortens the

muscle, and then let go. Immediately after the cross-bridge

has attached to the thin filament, it is in a state of

tension. This tension arises from a chemical reaction

which forces the cross-bridge into a strained configuration

and which thereby supplies the energy which makes it

possible for the muscle to shorten against a load.

The shortening which occurs in one cross-bridge cycle

is much less than the maximum shortening of which the

muscle is capable. During a single contraction, a given

cross-bridge may go through. its cycle many times. The

different cross-bridges function independently and

asynchronously; the smooth behavior of the muscle as

a whole is a consequence of the average behavior of the

whole population of cross-bridges [2].

This lecture is based on the Ph.D. th.esis of

H.M. Lacker Ii].
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Sarcomere

_YI

of sliding -¢- ' ^ thin filament
Direction

cross bridge

thick filament

Equilibrium position
of Cross Bridge

The dynamics of the cross-bridge population may be

studied as follows. Let x be the displacement of the

cross-bridge from its equilibrium position, and let the

population density function u(x) be defined so that

f
b
u(x)dx = fraction of cross-bridges with x e (a,b).

a

We take the point of view that x is undefined for cross-

bridges which are not attached to the thin filament. Thus.

Co

l >
J

u(x)dx = fraction of cross-brdiges which are
attached.

210



We assume that all cross-bridges attach. in the same

configuration x = A. Following attachment they are

constrained to move according to

dx dL
dt

_

dt

where L is the length of a half-sarcomere. Note that L

is proportional to the length of the muscle as a whole.

We assume that each cross-bridge acts like a

linear spring. Thus the total force measured at the

ends of the muscle is proportional to

P =
J

u(x)xdx

Let F be the rate constant for attachment of an

unattached cross-bridge, and let g(x) be the rate constant

for detachment of a cross-bridge in configuration x. This

means that the rate of formation of cross-bridges at any

instant will be:

Il - f u (x) dx I F

00

while the rate of breakdown will be:

fg(x)u(x)dx

_CO
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We are now ready to derive an equation for the

dynamics of the cross-bridge population density u(x,t).

In the following, let v = d = a-xt , and restrict consideration

to v < 0 (shortening). Consider any interval (a,b) such

that a < b < A, where x = A is the configuration in which

attachment occurs. We have

(8.1)
jb

2t

dx =
a

jb
udx = v[u(a) - u(b)] -

JbgUdX

a a a

(8.2)

where the term v[u(a) - u(b)] arises from convection of

cross-bridges across the boundaries of the interval and the
b

term -
J

gudx arises from the breakdown of cross-bridges.

a
Differentiating with respect to b and setting b = x, we

obtain the partial differential equation

au+v au+g(x)u=
0at ax , x < A

We shall use this equation only for the case v(t) < 0,

which corresponds to shortening. The boundary condition

at x = A is obtained by equating the rate of formation

of new cross-bridges with the flux of bridges away from

x = A. Thus

(8.3) (-v)u(A) _ (1 -
JAudxP
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1. The Steady State.

The steady state solution of (8.2) is

f1
(8.4) u(x) = U(A) exply f Ag(x')dxl)

t

x

The constant u(A) can be determined from the boundary

condition (8.3). First let

A
N = f udx = fraction of cross-bridges attached.

Then from (8.3) and (8.4) we have

(8.5) N =
(1__N)F jA

dx
(1_ ffAg(X)dxt

I

This equation can be solved for N, and u(A) can be

evaluated from

(8.6)

(8.7)

(8.8)

u(A) = (1-N)F
-v

Instead of doing this in general, consider the limit

of low activation, F -} 0. In that case

A

rom

F

=
lV

dx exp(
jAg(Xt)dx?}

F

-= x

lim
u(A) = 1

F-+O
F -v
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Next we evaluate the quantity P which is proportional

to the force measured at the ends of the muscle. We have,

if each. cross-bridge acts like a linear spring,

(8.9)

and therefore

A
P =

J
uxdx

_CO

(A
(8.10) limo

F
= 1

Av x exp( J

x 11

It will be very convenient to rewrite this expression in

terms of new variables. Let

(8.11) Y(x) =
JAg(x?)dXt

x

Since g > 0, there is an inverse function x(y), such that

(8.12) x(y(x)) = x

Note that y(A) = 0; and y(_-m) = =, provided that g > S > 0.

Also let

(8.13)

Then

(8.14)

s = -1
v

Fim0 F = s J COdy

0
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Q(Y) = 2- d -2
y X

lim P
= s J dy y)es y = fm dy'QlsJe-y

F;0 F 0 0 l

The latter form of this integral is especially convenient

for considering the limit v -} 0, s } w which corresponds

to a muscle held at constant length (isometric). Let

Po = PI v=O.= PI S=00 . Then

(8.17)
P

lim Fo = Q(O) e-y'dy' = Q(0)
F-0

f

110

Therefore the ratio of force to isometric force in the

limit of low activation is given by

(8.18) lim P= S Q esy
F-0 0

0

These results are of interest because they can be

used in conjunction with experimental data to determine

the shape of the function g(x) which appears in the cross-

bridge model. In particular, steady state force velocity

curves have been determined experimentally, and an

excellent fit has been obtained to the equation 13]
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(1 + a)b(8.19)
iP

+ v + b=
P o )))

where a, b, P
0
are constants (P0 has the interpretation of

being the isometric force). It has also been found [4]

that when -v is plotted
-v

against P/Po3 the resulting

curve is nearly independent

of activation. Thus

Eq. (8.19) holds as written

even in the limit of low

activation. This fact turns

P out to be enough to deter-

Po mine the shape of the function

g(x). Once g(x) has been determined in this way, one can

go back and check whether the model predicts that (8.19)

should also be satisfied for finite activations. In fact,

it is not exactly satisfied, but it is satisfied to within

experimental error over the range of activations which are

likely to occur in muscle.

In order to solve for g, Lacker proceeds as follows.

First, rewrite (8.19) in terms of P and s = -1/v

(8.20) -a + (1 + a)b --s- (b)

+b s+ (b)
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Next, equate the experimental result (8.20) with the

theoretical result (8.18). Dividing through by s, one

obtains

(8.21) f Q(Y) e-sy = s - (b)
dy

0
Q s(s + (b))

This has the form of the Laplace Transform. Using the

inversion integral along the path r in the complex s-plane,

and noting that there are poles at s = 0 and s = -1/b we

have:

(8.22)

_ a
Q(Y)

s
(b) esyds

QFO T r s (s + b)

= -a + (1 + a)e-y/b

r

s-plane

(The reader who is unfamiliar with Laplace Transforms can

at least verify that the expression for QZ obtained in

(8.22) satisfies (8.21).)

Recalling the definition of Q(y) we have

(8.22) 2 dy x2 [L d
dY x2] Y=0 [-a + (l+a)e-y/bI
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The constant in (.8.22) can be evaluated:

(8.23 ) If ay x2]y=o =
-CO) ay (0) g

Integrating from 0 to y and writing x for X(Y) we obtain

the following relation between x and y

(8.24) 2(x2 - A2) = gA [ay - (l+a)b(l - exp(- b))

Depending on the parameters, this relation may look like

any of the following curves:

y

i

P,. x

For a typical point x there are two values of y, but one

may choose which branch is physically relevant by noting

that - qz = g > 0. Therefore we should choose the branch
dx

with negative slope. Considerations of continuity then

require that we choose the middle situation sketched

above. Analytically this means that dy is finite at

x = 0 and therefore x(dy) = 0. Using (8.22) we can then

determine y(0), and, substituting this in (8.24) we can

I

A
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find a restriction on the parameters. The critical value

of y is given by

(8.25) exp (- bo) _ a
1+a

and the restriction on the parameter is

(8.26) g(A) = A
Jj1 - log( as}a

Note that g(A) > 0, since

tlaaIa = it + ala < e

Using this restriction we can rewrite (8.24) as follows:

2

(8.27) 1 - (A) = 1 a [(1+a)(1 - exp(- b)) - a b]

1-log laaj

With this curve given, the function g can be derived from

from

Note that the parameters a and b are availableg ax-

from experiments. Although A is unknown, changing it

merely causes a scale change on the x axis. Consequently

the shape of the function g can be determined.
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2. Transients.

One may conjecture that the steady force-velocity

curve of muscle is not too sensitive to the shape of the

function g(x). In that case, the method outlined above

could be subject to significant errors. Also, the method

assumes that the cross bridge acts like a linear spring,

and it seems likely that a choice of a different cross-

bridge force-extension curve would lead to a different

choice of g(x). Finally, the method does not give any

independent check on the model.

To overcome these difficulties, Lacker has proposed

a transient experiment called a "velocity clamp" in which.

a muscle is first put in a state of isometric contraction

and then allowed to shorten at a controlled velocity.

The force on the ends of the muscle is measured as a

function of time. If this experiment is performed at

low activation for several different velocities, Lacker

has shown how the data could be used to determine not

only the function g(x), but also the force-extension curve

of the cross-bridges. Moreover, the method is self-

checking, since it can be carried out with data from any

pair of velocities and the results from different pairs

can be compared.

The equations of th.e model with. an arbitrary force-

extension curve p(x), with constant velocity of shortening

v < 0, and in the limit of low activation N << 1 are as
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follows:

(8.28) ut + vux + g(x)u = 0 x < A, t > 0

(8.29) u(A) = F
v

A
(8.30) P(t) _ J u(x,t)p(x)dx

-00

The advantage of regarding v rather than P as given

is that the pair (8.28)-(8.29) can be solved without

considering (8.30). (When P is given and v is unknown,

(8.28)-(8.30) has to be regarded as a non-linear system.)

We shall consider two different initial conditions

for Eqs. (8.28)-(8.29), as follows

(8.31)

(8.32)

uI(x,0) = 0

u1I(x,0) = 6(x-A)F

gA

where gA = g(A). The initial conditions uI(x,0) = 0

correspond to a muscle which was first stimulated at

time zero but which switches on instantaneously. This

experiment cannot be performed in practice because it

takes a finite amount time to activate the muscle. The

function uII(x,0) corresponds to a muscle in a steady

isometric contraction at low activation, since all
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of the attached cross-bridges have the configuration x = A.

This is the initial condition which may be realized in an

experiment.

One can construct both solutions uI and uII from the

steady solution uo(x). Restricting attention to x < A

we may write

(8.33)

A-x
-v

u0(x) = _F expf- j g(A+vT)dT

0

(8.34) u1(x,t) =

uo(W ) x > A+vt

0 x < A+vt

= uo(x)H(x - (A+vt))

(8.35) u1I(x,t) = u1(x,t) + g
i- 2-

at
u1(x,t)

A

Exercise: Verfiy that uo, U1, uII satisfy Eqs. (8.28)-

(8.29) and that uI and u1I satisfy the initial conditions

(8.31) and (8.32), respectively. (Recall that

ax H(x) = 8(x)).

It now follows from (.8.30) and (8.35) that the forces

PII(t) and PI(.t) corresponding to u1T(x,t) and u1(x,t)

are related as follows
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(8.36) PII(t) = PI(t) +

g

1 dt PI(t)
A

If PII(t) has been measured, and if a value for gA has

been determined (this point will be discussed below), then

we can solve (8.36) for PI(t) using the initial condition

PI(0) = 0. In the following we assume that PI(t) has been

determined. The next step is to derive equations for g(x)

and p(x) in terms of PI(t).

The first observation is that PI(t) may be written

A
(8.37) PI(t) = f p(x)uo(x)dx

A+vt

on account of the cut-off in the formula for uI(x,t). Taking

derivatives with respect to time:

(8.38) PI(t) = -vp(A+vt)u0(A+vt)

(8.39) PI(t) = -v2lp'(A+vt)uo(A+vt) + p(A+vt)uo(.A+vt)]

Before proceeding further, we note that the constant A can

be determined from a single record of PI(t). By definition,

x = 0 is the equilibrium point of the cross-bridge. There-

fore p(O) = 0. Assume that p(x) > 0 for x > 0, and

p(x) < 0 for x < 0. Physically this means that all cross-

bridges with x > 0 are in a configuration favorable for
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shortening, while all cross-bridges with x < 0 are in a

configuration which opposes shortening. Let

(8.4o) tee
A
-v

(Recall that v < 0). Then from (8.38), since u
0

> 0 we

have

(8.41)

PI(t) > 0 , t < t*

PI(t) = 0 , t = t*

PI(t) < 0 , t < t

In other words, PI(t) has a single maximum at t = t.

(The presence of several extrema would indicate multiple

equilibria for the cross-bridge: maxima will indicate

stable equilibria while minima will indicate unstable

equilibria). If t is measured and v is known, then A

can be determined from (8.40).

At this point it is important to recall that PI(t)

is not to be directly measured, but to be determined from

measurements of PII(t) by solving Eqn. (8.36). Before

this can be done, a value of gA must be determined. If

the wrong gA is chosen, this will shift the position of

the peak in the calculated curve PI(t) and hence lead to

an incorrect determination of A. Lackey has conjectured

that there is precisely one value of gA which will lead
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to the same value of A being derived from two or more

experiments at different velocities. (This conjecture

was confirmed analytically for the case g(x) = constant.)

If this conjecture is correct, then gA can be determined

from two or more experiments by imposing the requirement

that the values of A computed from the different experi-

ments are mutually consistent.

Assuming, then, that gA and A have been determined,

and that PI(t) has been computed from the measured curve

PII(t), we may proceed as follows:

From Eqs. (8.38)-(8.39) we have

(8.42)
PI (t) '(P_+vt)

uo(A+vt)

PI t= v p A+vt) + u0 A+vt

On the other hand, from the steady differential equation

satisfied by u , we have
0

vu'
0

u0 (x) _ -g(x)

P

PI(t) _ ° p'A+vt) - g(A+vt)

In is convenient to rewrite (8.44) in terms of x = A+vt
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(8.45)

PI ,!

P
(xA1 = v p-(-X - g(x)

I p

Now suppose that P1(t) has been determined for two different

values of v. Then we have equations of the form

(8.46)

fa(x) = va p'x))
- g(x)

-- (x)) =fbx X7 - gV b p(

where fa(x) and fb(x) are known. For each c, this is a

linear system in the unknowns pTXW and g(x). The

determinant is

v -1
a

Vb
-1

= Vb - va

which is different from zero if two different velocities

are used. Therefore, for each x we can determine the

two unknowns
P C

and g(x). The function p(x) can then

be determined by integration. (There will be numerical

difficulties near x = 0 where the functions fa(x) and fb(x)

are expected to become infinite. However, the functions

p(x) and g(x) are expected to go smoothly through x = 0,

so they can be determined near x = 0 by continuity.)
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It is important to note that the foregoing method can

be used to construct g(x) and p(x), from a single pair

of experiments at two arbitrarily chosen velocities. Other

pairs of velocities can also be chosen, and g(x) and p(x)

can computed independently from the resulting experimental

records. The results for different pairs of velocities

should be consistent. This provides a rigorous test of the

model.
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