








Published in 2011 by Britannica Educational Publishing  
(a trademark of Encyclopædia Britannica, Inc.) 
in association with Rosen Educational Services, LLC
29 East 21st Street, New York, NY 10010.
 
Copyright © 2011 Encyclopædia Britannica, Inc. Britannica, Encyclopædia Britannica, 
and the Thistle logo are registered trademarks of Encyclopædia Britannica, Inc. All  
rights reserved.

Rosen Educational Services materials copyright © 2011 Rosen Educational Services, LLC.  
All rights reserved.

Distributed exclusively by Rosen Educational Services.
For a listing of additional Britannica Educational Publishing titles, call toll free (800) 237-9932.

First Edition

Britannica Educational Publishing
Michael I. Levy: Executive Editor
J.E. Luebering: Senior Manager 
Marilyn L. Barton: Senior Coordinator, Production Control
Steven Bosco: Director, Editorial Technologies
Lisa S. Braucher: Senior Producer and Data Editor
Yvette Charboneau: Senior Copy Editor
Kathy Nakamura: Manager, Media Acquisition
Erik Gregersen: Associate Editor, Science and Technology

Rosen Educational Services
Hope Lourie Killcoyne: Senior Editor and Project Manager
Nelson Sá: Art Director
Cindy Reiman: Photography Manager
Matthew Cauli: Designer, Cover Design
Introduction by Erik Gregersen

Library of Congress Cataloging-in-Publication Data

The Britannica guide to heat, force, and motion / edited by Erik Gregersen.—1st ed.
      p. cm.—(Physics explained)
“In association with Britannica Educational Publishing, Rosen Educational Services.”
Includes bibliographical references and index.
ISBN 978-1-61530-380-9 (eBook)
1. Thermodynamics--Popular works. I. Gregersen, Erik. II. Title: Heat, force, and motion.
QC311.B835 2011
536'.7—dc22

2010018515

Cover, p. iii © www.istockphoto.com/fleag

On page xii: The physical forces of air resistance, friction, and gravity are at play on a base-
ball when tossed in a game of catch. As Galileo first noted, the curved path followed by such 
a projectile is a parabola. Thinkstock Images/Comstock/Getty Images

On page xx: The locomotive is powered by a steam engine that converts the energy from 
burning coal into forward motion. Istockphoto/Thinkstock

On pages 1, 28, 43, 59, 106, 134, 157, 192, 206, 256, 277, 300, 351, 356, 362: A gyroscope. 
Tim Simmons/Stone/Getty Images



Contents
Introduction� xii

Chapter 1: Thermodynamics:  
The Laws of Energy and Work� 1

Thermodynamic States� 3
Thermodynamic Equilibrium� 4
Temperature� 5
Work and Energy� 6
Total Internal Energy� 8
The First Law of Thermodynamics� 9

Heat Engines� 10
Isothermal and Adiabatic  
Processes� 12

The Second Law of Thermodynamics� 13
Entropy� 14

Efficiency Limits� 15
Entropy and Heat Death� 17
Entropy and the Arrow of Time� 17

Open Systems� 19
Thermodynamic Potentials� 20
Gibbs Free Energy and Chemical 
Reactions� 24
Enthalpy and the Heat  
of Reaction� 25

Chapter 2: Thermodynamics:  
Systems at Work� 28

Work of Expansion and Contraction� 29
Equations of State� 30
Heat Capacity and Specific Heat� 32
Heat Capacity and Internal Energy� 34
Entropy as an Exact Differential� 37
The Clausius-Clapeyron Equation� 40 xx

xii



Chapter 3: The Laws of Force  
and Motion� 43

Origins and Foundations� 45
Units and Dimensions� 50
Vectors� 52
Newton’s Laws of Motion and  
Equilibrium� 56

Chapter 4: The Laws of  
Particle Motion� 59

Motion of a Particle in One Dimension� 59
Uniform Motion� 59
Falling Bodies and Uniformly 
Accelerated Motion� 60
Simple Harmonic Oscillations� 63
Damped and Forced Oscillations� 69

Motion of a Particle in Two or More 
Dimensions� 73

Projectile Motion� 73
Motion of a Pendulum� 75
Circular Motion� 79
Circular Orbits� 84
Angular Momentum and Torque� 86

Motion of a Group of Particles� 89
Centre of Mass� 89
Conservation of Momentum� 93
Collisions� 96
Relative Motion� 100
Coupled Oscillators� 102

Chapter 5: Rigid Bodies� 106
Statics� 106
Rotation About a Fixed Axis� 110
Rotation About a Moving Axis� 114
Centrifugal Force� 118
Coriolis Force� 120

116

76

91



Spinning Tops and Gyroscopes� 122
Analytic Approaches� 126

Configuration Space� 128
The Principle of Virtual Work� 130
Lagrange’s and Hamilton’s  
Equations� 131

Chapter 6: Solids� 134
History� 138
Concepts of Stress, Strain, and  
Elasticity� 138
Beams, Columns, Plates, and Shells� 141
The General Theory of Elasticity� 143
Waves� 146
Stress Concentrations and Fracture� 147
Dislocations� 149
Continuum Plasticity Theory� 150
Viscoelasticity� 154
Computational Mechanics� 155

Chapter 7: Stress and Strain� 157
Linear and Angular Momentum  
Principles: Stress and Equations  
of Motion� 158

Stress� 161
Equations of Motion� 164
Principal Stresses� 165

Strain� 166
Strain-Displacement Relations� 167
Small-Strain Tensor� 169
Finite Deformation and  
Strain Tensors� 171

Stress-Strain Relations� 172
Linear Elastic Isotropic Solid� 174
Thermal Strains� 175
Anisotropy� 176

165

125

140



Thermodynamic Considerations� 178
Finite Elastic Deformations� 179
Inelastic Response� 180

Problems Involving Elastic Response� 184
Equations of Motion of Linear  
Elastic Bodies� 184
Body Wave Solutions� 185
Linear Elastic Beam� 185
Free Vibrations� 188
Buckling� 190

Chapter 8: Liquids at Rest� 192
Basic Properties of Fluids� 193
Hydrostatics� 198

Differential Manometers� 199
Archimedes’ Principle� 201
Surface Tension of Liquids� 202

Chapter 9: Liquids in Motion� 206
Bernoulli’s Law� 206
Waves on Shallow Water� 212
Compressible Flow in Gases� 215

Viscosity� 220
Stresses in Laminar Motion� 220
Bulk Viscosity� 225
Measurement of Shear Viscosity� 226

Navier-Stokes Equation� 228
Potential Flow� 229
Potential Flow with Circulation:  
Vortex Lines� 232
Waves on Deep Water� 235
Boundary Layers and Separation� 240
Drag� 244
Lift� 248
Turbulence� 251
Convection� 254 233

205

215



Chapter 10: Gravity: The Force of 
Attraction� 256

Development of Gravitational  
Theory� 257

Early Concepts� 257
Newton’s Law of Gravity� 258
Potential Theory� 266

Acceleration Around Earth, the  
Moon, and Other Planets� 270

Variations Due to Location  
and Time� 270
Measurements of g� 271
Gravimetric Surveys and  
Geophysics� 274
The Moon and the Planets� 275

Chapter 11: Gravity: The Universe� 277
Field Theories of Gravitation� 277
Gravitational Fields and the Theory  
of General Relativity� 280
The Paths of Particles and Light� 283
Gravitational Radiation� 284
Some Astronomical Aspects of  
Gravitation� 287
Experimental Study of Gravitation� 288

The Inverse Square Law� 290
The Principle of Equivalence� 293
The Constant of Gravitation� 295
The Variation of the Constant  
of Gravitation with Time� 297
Fundamental Character of G� 297

Conclusion� 298

Chapter 12: Biographies� 300
Ludwig Eduard Boltzmann� 300
Sadi Carnot� 301

302

268

286



Henry Cavendish� 305
Rudolf Clausius� 307
Gustave-Gaspard Coriolis� 308
Galileo� 309
Sophie Germain� 314
J. Willard Gibbs� 316
Sir William Rowan Hamilton� 318
Hermann von Helmholtz� 320
Robert Hooke� 325
William Thomson, Baron Kelvin� 326
Johannes Kepler� 331
Joseph-Louis Lagrange� 335
Horace Lamb� 338
James Clerk Maxwell� 339
Isaac Newton� 342
Ludwig Prandtl� 347
William John Macquorn Rankine� 348
Benjamin Thompson� 349

Glossary� 351
Bibliography� 356
Index� 362

329

311

314





IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N

IN
T

R
O

D
U

C
T

IO
N



xiii

7 Introduction 7

Heat, force, and motion—the most fundamental parts 
of physics, form the beginnings of many basic phys-

ics courses. They are also part of everyday life. Everyone 
has felt hot or cold. Everyone has stubbed a toe or thrown 
a ball. The subfields of thermodynamics and mechanics, 
unlike more complex areas such as quantum mechanics 
and relativity, are the closest to everyday human experi-
ence as it has happened throughout history. This book 
provides readers with in-depth coverage of these physical 
concepts, as well as examples and simple experiments that 
concretize the ideas covered. 

Thermodynamics, as the name reveals, is the study of 
heat and how it moves and changes. The exact nature of 
heat was not realized until the mid-19th century. Prior to 
that time, the dominant explanation of temperature and 
related phenomena was the caloric theory of heat. Caloric 
was an invisible weightless substance that permeated 
matter. Cold objects contained little caloric; hot objects 
contained a good deal of it. Since caloric flowed from hot 
to cold, caloric repelled itself. 

The caloric theory had some success and did explain 
many aspects of heat. However, in 1798, Sir Benjamin 
Thompson, Count Rumford of the Holy Roman Empire, 
became interested in cannon making and how it related 
to caloric. Cannons were made by having horses turn an 
iron bit, which bored away the center of a metal cylinder. 
The bit grinding against the middle of the cylinder gener-
ated heat. By immersing the cannon in water and driving 
the horses for hours, Thompson was able to boil the water 
from the friction and so able to calculate how much caloric 
was transferred from the cannon to the water. However, 
the caloric originally must have come from the bit, but 
if the bit contained enough caloric to boil the amount 
of water necessary to cover a cannon, the bit would have 
melted before it even touched the cannon.
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Count Rumford’s experiment was ignored for the 
most part, and the science of thermodynamics proceeded 
with caloric as its foundation. The French soldier Sadi 
Carnot explained heat engines—machines that use heat 
to make something else move, such as the piston in a 
steam engine—using the caloric theory. It was not until 
the 1840s that Julius Robert van Mayer in Germany and 
James Joule in England disproved the caloric theory and 
found the true nature of heat. In a cylinder containing gas 
that is heated, expands, and moves a piston (Mayer) and 
a paddle wheel stirring water (Joule), the heat was found 
to be equal to the energy of the motion. Heat was a form 
of energy. The energy put into stirring the paddle wheel 
had heated the water. The energy had not been created or 
destroyed; it had been merely converted from one form to 
another. The total amount of energy was conserved. This 
is the first law of thermodynamics.

Thermodynamics has three other fundamental laws. 
The zeroth concerns the measurement of thermal equi-
librium. The second states that heat cannot be converted 
completely into work; there is always some energy that is 
wasted. This wasted energy is stated in terms of a quantity 
called entropy, or heat energy per temperature, that always 
increases. The entire universe has an entropy, which, in 
one of the bleakest conclusions of physics, will increase 
until no useful work can be done anywhere. The third law 
sets the scale by which entropy is measured.

The other subfield of physics that is considered in 
this book is mechanics, which studies how bodies move. 
Mechanics came to fruition much earlier than did ther-
modynamics. In the early 17th century, the Italian 
astronomer Galileo used a simple experiment involving 
balls rolling down an inclined plane to discover the law of 
motion often stated as “a body in motion stays in motion.” 
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That is, bodies have inertia. To change the movement of 
a body, a force must be applied to it. The same conditions 
apply to something sitting still. A force must be applied to 
an object at rest to get it moving. 

This statement about bodies and how they move is 
the first of Newton’s three laws of motion, which form 
the basis of the subject of mechanics. The second law 
defines what a force is: namely, mass times acceleration, 
or mathematically, F=ma. The third law is the well-known 
statement “for every action, there is an opposite and equal 
reaction.” 

These laws can be applied to many different things 
from an apple falling from a tree to a planet orbiting a star. 
One system treated in detail in many physics courses is the 
simple harmonic oscillator, a mass on a spring. The mass 
is moved; the spring stretches. A restoring force pulls the 
mass back, compressing the spring. The spring moves the 
mass in a cycle of stretching and compressing. The physics 
learned from the system can be applied to a pendulum in a 
clock, the skin on a drum, or any oscillatory system.

The subject of mechanics is filled with such general-
izations from the universal to the particular. For example, 
in the subfield of the mechanics of solids, forces on bulk 
materials are studied. With the mass on the spring or the 
planet in its orbit, no consideration need be made of its 
internal structure. But in much of one’s everyday life, 
solid objects such as cars, land masses, and houses have 
insides. How do Newton’s laws apply to a girder in a sky-
scraper? To answer this question, one uses the mechanics 
of solids.

The basic concepts of the mechanics of solids are 
those of stress, strain, and elasticity. Stress is a force per 
area. An object sitting on a floor is pulled toward the cen-
ter of Earth by the force of gravity. This force places a 
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stress on the floor. The floor gives under the stress. This 
“give” is quantified by strain, how much a material moves 
over a unit of its length. (Strain is a dimensionless quan-
tity, length divided by length.) When the weight is lifted 
from the floor, the floor rebounds. The floor’s ability to 
return to its original state is its elasticity. A rubber band 
is extremely elastic and snaps right back to its original 
length after a force stretching it is released. A steel beam 
is nowhere near as elastic as a rubber band.

Every building that stands is a testament to the use-
fulness of the mechanics of solids. Structural engineers 
and architects have applied this field of physics to build 
ever taller and taller buildings. For millennia, the tallest 
structure in the world was the Great Pyramid of Giza, 
which is basically a giant pile of rocks standing 147 metres 
(481.4 feet) above the desert. The ancient Egyptians of 
Khufu’s time did not need to know so much about the 
stress one block placed upon another. The tallest building 
of our time is the Burj Khalifa, a skyscraper standing 828 
metres (2,717 feet) above the desert in Dubai. This build-
ing required much more knowledge. The builders of the 
Burj Khalifa had to know how the building would sway in 
the wind, how it would expand in the desert heat, how it 
would stand up to shifts in the ground (the site is near a 
geographical fault line), and how the foundation would 
hold the weight of the whole. All this they learned from 
the mechanics of solids.

A corresponding subject dealing with the motions of 
liquids and gases is called fluid mechanics. There are some 
stresses called shear stresses dealing with the differing 
motions of layers of a material with respect to each other 
that will not effect a solid; however, even the slightest 
motion of one layer of water, for example, with respect to 
a lower layer will cause some movement. 
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Fluid mechanics can be considered in both its static 
and its dynamic forms, that is, fluids at rest and fluids 
in motion. The science of static fluids is ancient, dating 
back to Archimedes, the ancient Greek mathematician 
(d. 212/211 bce), who discovered that the force upward on 
a floating body is equal to the weight of the liquid it dis-
places. (Archimedes likely did not shout “Eureka” after 
discovering this in his bathtub. That story is probably a 
later embellishment by the Roman architect Vitrivius.) 
The science of dynamic fluids had to wait until the 18th 
century and the mathematicians Leonhard Euler and 
Daniel Bernouilli. They applied Newton’s laws to a mov-
ing fluid. Their results can applied the flow of water in a 
pipe or winds in the atmosphere.

Just as skyscrapers testify to the usefulness of the 
mechanics of solids, the existence of much of modern 
technology testifies to the usefulness of fluid mechanics. 
An airplane wing experiences a lift force that arises from 
the circulation of air around it. Wind tunnels are used to 
study the flow of air around cars, and the results are used 
to make cars more efficient and thus better for the envi-
ronment. The study of water flowing past a levee can have 
quite an effect on those living nearby who depend on that 
structure to hold in times of flood.

The most notable of the mechanical forces is that 
of gravitation. Everything from the atmosphere to the 
oceans to all life on Earth is held near the surface of the 
planet by gravity. However, gravity is not just something 
that large celestial bodies have. Gravity is a property of all 
objects with mass. Two people exert a gravitational force 
on each other, but it is far less than that exerted by the 
mass of Earth. 

It is with gravity that science must go beyond the 
physics of Newton to that of Einstein and his theory of 
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relativity. Gravity is not just a force, but a field. The com-
monly given analogy is the gravity is like the ball distorting 
a rubber sheet, with the sheet being space-time, the struc-
ture of the universe. 

Gravity is one of four fundamental forces, with the 
others being the strong nuclear force that holds atoms 
together, the weak nuclear force that causes radioactive 
decay, and the electromagnetic force that is seen in elec-
tricity and magnetism. Surprisingly, gravity is the weakest 
of these forces; however, its range is that of the universe. 
All of the galaxies are attracted to all the others, and the 
amount of mass there is and therefore, its gravitational 
effects, is something that must be known if one is to 
understand the fate of the universe. The universe will not 
collapse back into a primordial fireball, but keep expand-
ing at an ever slower rate.

Although seemingly the most quotidian areas of phys-
ics, the subjects of heat, force, and motion as can be seen 
from this brief introduction cover a wide range of expe-
rience. A sunbather laying on a beach on a summer’s day 
experiences both the force of gravity and the heat of the 
sun. The Frisbee players nearby experience those forces, and 
motion as well. The universe as a whole—from its broadest 
expanse down to a grain of sand on a beach here on Earth—
are affected by both thermodynamics and mechanics. 
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chapter 1
Thermodynamics: 

The Laws of Energy and Work

Thermodynamics is the science of the relationship 
between heat, work, temperature, and energy. In 

broad terms, thermodynamics deals with the transfer of 
energy from one place to another and from one form to 
another. The key concept is that heat is a form of energy 
corresponding to a definite amount of mechanical work.

Heat was not formally recognized as a form of energy 
until about 1798, when Count Rumford (Sir Benjamin 
Thompson), a British military engineer, noticed that lim-
itless amounts of heat could be generated in the boring 
of cannon barrels and that the amount of heat generated 
is proportional to the work done in turning a blunt bor-
ing tool. Rumford’s observation of the proportionality 
between heat generated and work done lies at the foun-
dation of thermodynamics. Another pioneer was the 
French military engineer Sadi Carnot, who introduced 
the concept of the heat-engine cycle and the principle 
of reversibility in 1824. Carnot’s work concerned the 
limitations on the maximum amount of work that can 
be obtained from a steam engine operating with a high-
temperature heat transfer as its driving force. Later that 
century, these ideas were developed by Rudolf Clausius, 
a German mathematician and physicist, into the first and 
second laws of thermodynamics, respectively.

The most important laws of thermodynamics are:

•	 The zeroth law of thermodynamics. When 
two systems are each in thermal equilibrium 
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with a third system, the first two systems are 
in thermal equilibrium with each other. This 
property makes it meaningful to use ther-
mometers as the “third system” and to define a 
temperature scale.

•	 The first law of thermodynamics, or the law 
of conservation of energy. The change in a 
system’s internal energy is equal to the differ-
ence between heat added to the system from 
its surroundings and work done by the system 
on its surroundings.

•	 The second law of thermodynamics. Heat 
does not flow spontaneously from a colder 
region to a hotter region, or, equivalently, heat 
at a given temperature cannot be converted 
entirely into work. Consequently, the entropy 
of a closed system, or heat energy per unit 
temperature, increases over time toward some 
maximum value. Thus, all closed systems tend 
toward an equilibrium state in which entropy 
is at a maximum and no energy is available to 
do useful work. This asymmetry between for-
ward and backward processes gives rise to what 
is known as the “arrow of time.”

•	 The third law of thermodynamics. The 
entropy of a perfect crystal of an element in its 
most stable form tends to zero as the tempera-
ture approaches absolute zero. This allows an 
absolute scale for entropy to be established that, 
from a statistical point of view, determines the 
degree of randomness or disorder in a system.

Although thermodynamics developed rapidly during 
the 19th century in response to the need to optimize the 
performance of steam engines, the sweeping generality 



3

7 Thermodynamics: The Laws of Energy and Work 7

of the laws of thermodynamics makes them applicable 
to all physical and biological systems. In particular, the 
laws of thermodynamics give a complete description of all 
changes in the energy state of any system and its ability to 
perform useful work on its surroundings.

Thermodynamic States

The application of thermodynamic principles begins by 
defining a system that is in some sense distinct from its 
surroundings. For example, the system could be a sample 
of gas inside a cylinder with a movable piston, an entire 
steam engine, a marathon runner, the planet Earth, a 
neutron star, a black hole, or even the entire universe. 
In general, systems are free to exchange heat, work, and 
other forms of energy with their surroundings.

A system’s condition at any given time is called its ther-
modynamic state. For a gas in a cylinder with a movable 
piston, the state of the system is identified by the temper-
ature, pressure, and volume of the gas. These properties 
are characteristic parameters that have definite values at 
each state and are independent of the way in which the 
system arrived at that state. In other words, any change 
in value of a property depends only on the initial and final 
states of the system, not on the path followed by the sys-
tem from one state to another. Such properties are called 
state functions. In contrast, the work done as the piston 
moves and the gas expands and the heat the gas absorbs 
from its surroundings depend on the detailed way in which 
the expansion occurs.

The behaviour of a complex thermodynamic system, 
such as Earth’s atmosphere, can be understood by first apply-
ing the principles of states and properties to its component 
parts—in this case, water, water vapour, and the various 
gases making up the atmosphere. By isolating samples of 
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material whose states and properties can be controlled 
and manipulated, properties and their interrelations can 
be studied as the system changes from state to state.

Thermodynamic Equilibrium

A particularly important concept is thermodynamic equi-
librium, in which there is no tendency for the state of a 
system to change spontaneously. For example, the gas in 
a cylinder with a movable piston will be at equilibrium if 
the temperature and pressure inside are uniform and if the 
restraining force on the piston is just sufficient to keep it 
from moving. The system can then be made to change to 
a new state only by an externally imposed change in one 
of the state functions, such as the temperature by adding 
heat or the volume by moving the piston. A sequence of 
one or more such steps connecting different states of the 
system is called a process. In general, a system is not in 
equilibrium as it adjusts to an abrupt change in its environ-
ment. For example, when a balloon bursts, the compressed 
gas inside is suddenly far from equilibrium, and it rapidly 
expands until it reaches a new equilibrium state. However, 
the same final state could be achieved by placing the same 
compressed gas in a cylinder with a movable piston and 
applying a sequence of many small increments in volume 
(and temperature), with the system being given time to 
come to equilibrium after each small increment. Such a 
process is said to be reversible because the system is at (or 
near) equilibrium at each step along its path, and the direc-
tion of change could be reversed at any point. This example 
illustrates how two different paths can connect the same 
initial and final states. The first is irreversible (the bal-
loon bursts), and the second is reversible. The concept of 
reversible processes is something like motion without fric-
tion in mechanics. It represents an idealized limiting case 
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that is very useful in discussing the properties of real sys-
tems. Many of the results of thermodynamics are derived 
from the properties of reversible processes.

Temperature

The concept of temperature is fundamental to any dis-
cussion of thermodynamics, but its precise definition is 
not a simple matter. For example, a steel rod feels colder 
than a wooden rod at room temperature simply because 
steel is better at conducting heat away from the skin. It is 
therefore necessary to have an objective way of measur-
ing temperature. In general, when two objects are brought 
into thermal contact, heat will flow between them until 
they come into equilibrium with each other. When the 
flow of heat stops, they are said to be at the same tempera-
ture. The zeroth law of thermodynamics formalizes this 
by asserting that if an object A is in simultaneous thermal 
equilibrium with two other objects B and C, then B and C 
will be in thermal equilibrium with each other if brought 
into thermal contact. Object A can then play the role of a 
thermometer through some change in its physical proper-
ties with temperature, such as its volume or its electrical 
resistance.

With the definition of equality of temperature in hand, 
it is possible to establish a temperature scale by assign-
ing numerical values to certain easily reproducible fixed 
points. For example, in the Celsius (°C) temperature scale, 
the freezing point of pure water is arbitrarily assigned a 
temperature of 0 °C and the boiling point of water the value 
of 100 °C (in both cases at 1 standard atmosphere). In the 
Fahrenheit (°F) temperature scale, these same two points 
are assigned the values 32 °F and 212 °F, respectively. There 
are absolute temperature scales related to the second law 
of thermodynamics. The absolute scale related to the 
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Celsius scale is called the Kelvin (K) scale, and that related 
to the Fahrenheit scale is called the Rankine (°R) scale. 
These scales are related by the equations K = °C + 273.15, 
°R = °F + 459.67, and °R = 1.8 K.

Work and Energy

Energy has a precise meaning in physics that does not 
always correspond to everyday language, and yet a pre-
cise definition is somewhat elusive. The word is derived 
from the Greek word ergon, meaning “work,” but the term 
work itself acquired a technical meaning with the advent 
of Newtonian mechanics. For example, a man pushing on 
a car may feel that he is doing a lot of work, but no work is 
actually done unless the car moves. The work done is then 
the product of the force applied by the man multiplied by 
the distance through which the car moves. If there is no 
friction and the surface is level, then the car, once set in 
motion, will continue rolling indefinitely with constant 
speed. The rolling car has something that a stationary car 
does not have—it has kinetic energy of motion equal to 
the work required to achieve that state of motion. The 
introduction of the concept of energy in this way is of 
great value in mechanics because, in the absence of fric-
tion, energy is never lost from the system, although it can 
be converted from one form to another. For example, if a 
coasting car comes to a hill, it will roll some distance up the 
hill before coming to a temporary stop. At that moment 
its kinetic energy of motion has been converted into its 
potential energy of position, which is equal to the work 
required to lift the car through the same vertical distance. 
After coming to a stop, the car will then begin rolling back 
down the hill until it has completely recovered its kinetic 
energy of motion at the bottom. In the absence of fric-
tion, such systems are said to be conservative because at 
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any given moment the total amount of energy (kinetic 
plus potential) remains equal to the initial work done to 
set the system in motion.

As the science of physics expanded to cover an 
ever-wider range of phenomena, it became necessary to 
include additional forms of energy in order to keep the 
total amount of energy constant for all closed systems (or 
to account for changes in total energy for open systems). 
For example, if work is done to accelerate charged par-
ticles, then some of the resultant energy will be stored 
in the form of electromagnetic fields and carried away 
from the system as radiation. In turn the electromagnetic 
energy can be picked up by a remote receiver (antenna) 
and converted back into an equivalent amount of work. 
With his theory of special relativity, Albert Einstein real-
ized that energy (E) can also be stored as mass (m) and 
converted back into energy, as expressed by his famous 
equation E  =  mc2, where c is the velocity of light. All of 
these systems are said to be conservative in the sense that 
energy can be freely converted from one form to another 
without limit. Each fundamental advance of physics into 
new realms has involved a similar extension to the list of 
the different forms of energy. In addition to preserving 
the first law of thermodynamics, also called the law of 
conservation of energy, each form of energy can be related 
back to an equivalent amount of work required to set the 
system into motion.

Thermodynamics encompasses all of these forms of 
energy, with the further addition of heat to the list of dif-
ferent kinds of energy. However, heat is fundamentally 
different from the others in that the conversion of work 
(or other forms of energy) into heat is not completely 
reversible, even in principle. In the example of the rolling 
car, some of the work done to set the car in motion is inev-
itably lost as heat due to friction, and the car eventually 
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comes to a stop on a level surface. Even if all the generated 
heat were collected and stored in some fashion, it could 
never be converted entirely back into mechanical energy 
of motion. This fundamental limitation is expressed quan-
titatively by the second law of thermodynamics.

The role of friction in degrading the energy of 
mechanical systems may seem simple and obvious, but 
the quantitative connection between heat and work, as 
first discovered by Count Rumford, played a key role 
in understanding the operation of steam engines in the 
19th century and similarly for all energy-conversion pro-
cesses today.

Total Internal Energy

Although classical thermodynamics deals exclusively with 
the macroscopic properties of materials—such as tem-
perature, pressure, and volume—thermal energy from the 
addition of heat can be understood at the microscopic 
level as an increase in the kinetic energy of motion of the 
molecules making up a substance. For example, gas mole-
cules have translational kinetic energy that is proportional 
to the temperature of the gas: the molecules can rotate 
about their centre of mass, and the constituent atoms 
can vibrate with respect to each other (like masses con-
nected by springs). Additionally, chemical energy is stored 
in the bonds holding the molecules together, and weaker 
long-range interactions between the molecules involve yet 
more energy. The sum total of all these forms of energy 
constitutes the total internal energy of the substance in 
a given thermodynamic state. The total energy of a sys-
tem includes its internal energy plus any other forms of 
energy, such as kinetic energy due to motion of the system 
as a whole (e.g., water flowing through a pipe) and gravita-
tional potential energy due to its elevation.
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The First Law of 
Thermodynamics

The laws of thermodynamics are deceptively simple to 
state, but they are far-reaching in their consequences. 
The first law asserts that if heat is recognized as a form of 
energy, then the total energy of a system plus its surround-
ings is conserved; in other words, the total energy of the 
universe remains constant.

The first law is put into action by considering the flow 
of energy across the boundary separating a system from 
its surroundings. Consider the classic example of a gas 
enclosed in a cylinder with a movable piston. The walls of 
the cylinder act as the boundary separating the gas inside 
from the world outside, and the movable piston pro-
vides a mechanism for the gas to do work by expanding 
against the force holding the piston (assumed friction-
less) in place. If the gas does work W as it expands, and/or 
absorbs heat Q from its surroundings through the walls of 
the cylinder, then this corresponds to a net flow of energy 
W − Q across the boundary to the surroundings. In order 
to conserve the total energy U, there must be a counter-
balancing change

			   ΔU = Q − W� (1)

in the internal energy of the gas. The first law provides 
a kind of strict energy accounting system in which the 
change in the energy account (ΔU) equals the difference 
between deposits (Q) and withdrawals (W).

There is an important distinction between the quan-
tity ΔU and the related energy quantities Q and W. 
Since the internal energy U is characterized entirely 
by the quantities (or parameters) that uniquely deter-
mine the state of the system at equilibrium, it is said 
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to be a state function such that any change in energy is 
determined entirely by the initial (i) and final (f) states 
of the system: ΔU = Uf − Ui . However, Q and W are not 
state functions. Just as in the example of a bursting bal-
loon, the gas inside may do no work at all in reaching 
its final expanded state, or it could do maximum work 
by expanding inside a cylinder with a movable piston to 
reach the same final state. All that is required is that the 
change in energy (ΔU) remain the same. By analogy, the 
same change in one’s bank account could be achieved 
by many different combinations of deposits and with-
drawals. Thus, Q and W are not state functions, because 
their values depend on the particular process (or path) 
connecting the same initial and final states. Just as it is 
only meaningful to speak of the balance in one’s bank 
account and not its deposit or withdrawal content, it is 
only meaningful to speak of the internal energy of a sys-
tem and not its heat or work content.

From a formal mathematical point of view, the incre-
mental change dU in the internal energy is an exact 
differential, while the corresponding incremental changes 
d′Q and d′W in heat and work are not, because the definite 
integrals of these quantities are path-dependent. These 
concepts can be used to great advantage in a precise math-
ematical formulation of thermodynamics.

Heat Engines

The classic example of a heat engine is a steam engine, 
although all modern engines follow the same princi-
ples. Steam engines operate in a cyclic fashion, with the 
piston moving up and down once for each cycle. Hot high-
pressure steam is admitted to the cylinder in the first half 
of each cycle, and then it is allowed to escape again in 
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the second half. The overall effect is to take heat Q1 gen-
erated by burning a fuel to make steam, convert part of 
it to do work, and exhaust the remaining heat Q2 to the 
environment at a lower temperature. The net heat energy 
absorbed is then Q  =  Q1  −  Q2. Since the engine returns 
to its initial state, its internal energy U does not change 
(ΔU  =  0). Thus, by the first law of thermodynamics, the 
work done for each complete cycle must be W = Q1 − Q2. 
In other words, the work done for each complete cycle is 
just the difference between the heat Q1 absorbed by the 
engine at a high temperature and the heat Q2 exhausted 
at a lower temperature. The power of thermodynamics 
is that this conclusion is completely independent of the 
detailed working mechanism of the engine. It relies only 
on the overall conservation of energy, with heat regarded 
as a form of energy.

In order to save money on fuel and avoid contaminat-
ing the environment with waste heat, engines are designed 
to maximize the conversion of absorbed heat Q1 into use-
ful work and to minimize the waste heat Q2. The Carnot 
efficiency (η) of an engine is defined as the ratio W/Q1—
i.e., the fraction of Q1 that is converted into work. Since 
W = Q1 − Q2, the efficiency also can be expressed in the form

�
(2)

If there were no waste heat at all, then Q2 = 0 and η = 1, 
corresponding to 100 percent efficiency. While reducing 
friction in an engine decreases waste heat, it can never be 
eliminated; therefore, there is a limit on how small Q2 can 
be and thus on how large the efficiency can be. This limi-
tation is a fundamental law of nature—in fact, the second 
law of thermodynamics.

7 Thermodynamics: The Laws of Energy and Work 7
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Isothermal and Adiabatic Processes

Because heat engines may go through a complex sequence 
of steps, a simplified model is often used to illustrate the 
principles of thermodynamics. In particular, consider a gas 
that expands and contracts within a cylinder with a mov-
able piston under a prescribed set of conditions. There are 
two particularly important sets of conditions. One condi-
tion, known as an isothermal expansion, involves keeping 
the gas at a constant temperature. As the gas does work 
against the restraining force of the piston, it must absorb 
heat in order to conserve energy. Otherwise, it would cool 
as it expands (or conversely heat as it is compressed). This 
is an example of a process in which the heat absorbed is 
converted entirely into work with 100 percent efficiency. 
The process does not violate fundamental limitations on 
efficiency, however, because a single expansion by itself is 
not a cyclic process.

The second condition, known as an adiabatic expan-
sion (from the Greek adiabatos, meaning “impassable”), is 
one in which the cylinder is assumed to be perfectly insu-
lated so that no heat can flow into or out of the cylinder. In 
this case the gas cools as it expands, because, by the first 
law, the work done against the restraining force on the 
piston can only come from the internal energy of the gas. 
Thus, the change in the internal energy of the gas must be 
ΔU = −W, as manifested by a decrease in its temperature. 
The gas cools, even though there is no heat flow, because 
it is doing work at the expense of its own internal energy. 
The exact amount of cooling can be calculated from the 
heat capacity of the gas.

Many natural phenomena are effectively adiabatic 
because there is insufficient time for significant heat flow to 
occur. For example, when warm air rises in the atmosphere, 
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it expands and cools as the pressure drops with altitude, but 
air is a good thermal insulator, and so there is no significant 
heat flow from the surrounding air. In this case the surround-
ing air plays the roles of both the insulated cylinder walls 
and the movable piston. The warm air does work against 
the pressure provided by the surrounding air as it expands, 
and so its temperature must drop. A more-detailed analysis 
of this adiabatic expansion explains most of the decrease of 
temperature with altitude, accounting for the familiar fact 
that it is colder at the top of a mountain than at its base.

The Second Law of 
Thermodynamics

The first law of thermodynamics asserts that energy must 
be conserved in any process involving the exchange of 
heat and work between a system and its surroundings. A 
machine that violated the first law would be called a per-
petual motion machine of the first kind because it would 
manufacture its own energy out of nothing and thereby 
run forever. Such a machine would be impossible even in 
theory. However, this impossibility would not prevent the 
construction of a machine that could extract essentially 
limitless amounts of heat from its surroundings (earth, 
air, and sea) and convert it entirely into work. Although 
such a hypothetical machine would not violate conserva-
tion of energy, the total failure of inventors to build such 
a machine, known as a perpetual motion machine of the 
second kind, led to the discovery of the second law of 
thermodynamics. The second law of thermodynamics can 
be precisely stated in the following two forms, as originally 
formulated in the 19th century by the Scottish physicist 
William Thomson (Lord Kelvin) and the German physi-
cist Rudolf Clausius, respectively:
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1.	 A cyclic transformation whose only final result 
is to transform heat extracted from a source 
which is at the same temperature throughout 
into work is impossible.

2.	 A cyclic transformation whose only final result is 
to transfer heat from a body at a given temperature 
to a body at a higher temperature is impossible.

The two statements are in fact equivalent because, if 
the first were possible, then the work obtained could be 
used, for example, to generate electricity that could then 
be discharged through an electric heater installed in a 
body at a higher temperature. The net effect would be a 
flow of heat from a lower temperature to a higher temper-
ature, thereby violating the second (Clausius) form of the 
second law. Conversely, if the second form were possible, 
then the heat transferred to the higher temperature could 
be used to run a heat engine that would convert part of 
the heat into work. The final result would be a conversion 
of heat into work at constant temperature—a violation of 
the first (Kelvin) form of the second law.

Central to the following discussion of entropy is the 
concept of a heat reservoir capable of providing essentially 
limitless amounts of heat at a fixed temperature. This is 
of course an idealization, but the temperature of a large 
body of water such as the Atlantic Ocean does not materi-
ally change if a small amount of heat is withdrawn to run a 
heat engine. The essential point is that the heat reservoir 
is assumed to have a well-defined temperature that does 
not change as a result of the process being considered.

Entropy

The concept of entropy was first introduced in 1850 by 
Clausius as a precise mathematical way of testing whether 
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the second law of thermodynamics is violated by a partic-
ular process. The test begins with the definition that if an 
amount of heat Q flows into a heat reservoir at constant 
temperature T, then its entropy S increases by ΔS = Q/T. 
(This equation in effect provides a thermodynamic defi-
nition of temperature that can be shown to be identical 
to the conventional thermometric one.) Assume now 
that there are two heat reservoirs R1 and R2 at tempera-
tures T1 and T2. If an amount of heat Q flows from R1 to 
R2, then the net entropy change for the two reservoirs is

�
(3)

ΔS is positive, provided that T1 > T2. Thus, the observation 
that heat never flows spontaneously from a colder region 
to a hotter region (the Clausius form of the second law of 
thermodynamics) is equivalent to requiring the net entropy 
change to be positive for a spontaneous flow of heat. If 
T1 = T2, then the reservoirs are in equilibrium and ΔS = 0.

Efficiency Limits

The condition ΔS ≥ 0 determines the maximum possible effi-
ciency of heat engines. Suppose that some system capable of 
doing work in a cyclic fashion (a heat engine) absorbs heat 
Q1 from R1 and exhausts heat Q2 to R2 for each complete 
cycle. Because the system returns to its original state at the 
end of a cycle, its energy does not change. Then, by conser-
vation of energy, the work done per cycle is W = Q1 − Q2, and 
the net entropy change for the two reservoirs is

� (4)
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To make W as large as possible, Q2 should be kept as small 
as possible relative to Q1. However, Q2  cannot be zero, 
because this would make ΔS negative and so violate the 
second law of thermodynamics. The smallest possible 
value of Q2 corresponds to the condition ΔS = 0, yielding

� (5)

This is the fundamental equation limiting the efficiency 
of all heat engines whose function is to convert heat into 
work (such as electric power generators). The actual effi-
ciency is defined to be the fraction of Q1 that is converted 
to work (W/Q1), which is equivalent to equation (2).

The maximum efficiency for a given T1 and T2 is thus

� (6)

A process for which ΔS = 0 is said to be reversible because 
an infinitesimal change would be sufficient to make the 
heat engine run backward as a refrigerator.

As an example, the properties of materials limit the 
practical upper temperature for thermal power plants 
to T1  =~  1,200 K. Taking T2 to be the temperature of the 
environment (300 K), the maximum efficiency is 1  −  
300/1,200  =  0.75. Thus, at least 25 percent of the heat 
energy produced must be exhausted into the environment 
as waste heat to avoid violating the second law of ther-
modynamics. Because of various imperfections, such as 
friction and imperfect thermal insulation, the actual effi-
ciency of power plants seldom exceeds about 60 percent. 
However, because of the second law of thermodynamics, 
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no amount of ingenuity or improvements in design can 
increase the efficiency beyond about 75 percent.

Entropy and Heat Death

The example of a heat engine illustrates one of the many 
ways in which the second law of thermodynamics can be 
applied. One way to generalize the example is to consider 
the heat engine and its heat reservoir as parts of an iso-
lated (or closed) system—i.e., one that does not exchange 
heat or work with its surroundings. For example, the heat 
engine and reservoir could be encased in a rigid container 
with insulating walls. In this case the second law of ther-
modynamics (in the simplified form presented here) says 
that no matter what process takes place inside the con-
tainer, its entropy must increase or remain the same in the 
limit of a reversible process. Similarly, if the universe is an 
isolated system, then its entropy too must increase with 
time. Indeed, the implication is that the universe must 
ultimately suffer a “heat death” as its entropy progressively 
increases toward a maximum value and all parts come into 
thermal equilibrium at a uniform temperature. After that 
point, no further changes involving the conversion of heat 
into useful work would be possible. In general, the equilib-
rium state for an isolated system is precisely that state of 
maximum entropy. This is equivalent to an alternate defi-
nition for the term entropy as a measure of the disorder 
of a system, such that a completely random dispersion of 
elements corresponds to maximum entropy, or minimum 
information.

Entropy and the Arrow of Time

The inevitable increase of entropy with time for isolated 
systems plays a fundamental role in determining the 
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direction of the “arrow of time.” Everyday life presents 
no difficulty in distinguishing the forward flow of time 
from its reverse. For example, if a film showed a glass of 
warm water spontaneously changing into hot water with 
ice floating on top, it would immediately be apparent that 
the film was running backward because the process of 
heat flowing from warm water to hot water would violate 
the second law of thermodynamics. However, this obvious 
asymmetry between the forward and reverse directions 
for the flow of time does not persist at the level of funda-
mental interactions. An observer watching a film showing 
two water molecules colliding would not be able to tell 
whether the film was running forward or backward.

So what exactly is the connection between entropy 
and the second law? Recall that heat at the molecular level 
is the random kinetic energy of motion of molecules, and 
collisions between molecules provide the microscopic 
mechanism for transporting heat energy from one place 
to another. Because individual collisions are unchanged by 
reversing the direction of time, heat can flow just as well 
in one direction as the other. Thus, from the point of view 
of fundamental interactions, there is nothing to prevent 
a chance event in which a number of slow-moving (cold) 
molecules happen to collect together in one place and 
form ice, while the surrounding water becomes hotter. 
Such chance events could be expected to occur from time 
to time in a vessel containing only a few water molecules. 
However, the same chance events are never observed in 
a full glass of water, not because they are impossible but 
because they are exceedingly improbable. This is because 
even a small glass of water contains an enormous number 
of interacting molecules (about 1024), making it highly 
unlikely that, in the course of their random thermal 
motion, a significant fraction of cold molecules will col-
lect together in one place. Although such a spontaneous 
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violation of the second law of thermodynamics is not 
impossible, an extremely patient physicist would have to 
wait many times the age of the universe to see it happen.

The foregoing demonstrates an important point: 
the second law of thermodynamics is statistical in 
nature. It has no meaning at the level of individual mol-
ecules, whereas the law becomes essentially exact for the 
description of large numbers of interacting molecules. In 
contrast, the first law of thermodynamics, which expresses 
conservation of energy, remains exactly true even at the  
molecular level.

The example of ice melting in a glass of hot water 
also demonstrates the other sense of the term entropy, as 
an increase in randomness and a parallel loss of informa-
tion. Initially, the total thermal energy is partitioned in 
such a way that all of the slow-moving (cold) molecules 
are located in the ice and all of the fast-moving (hot) mol-
ecules are located in the water (or water vapour). After 
the ice has melted and the system has come to thermal 
equilibrium, the thermal energy is uniformly distrib-
uted throughout the system. The statistical approach 
provides a great deal of valuable insight into the mean-
ing of the second law of thermodynamics, but, from the 
point of view of applications, the microscopic structure 
of matter becomes irrelevant. The great beauty and 
strength of classical thermodynamics are that its pre-
dictions are completely independent of the microscopic 
structure of matter.

Open Systems

Most real thermodynamic systems are open systems that 
exchange heat and work with their environment, rather 
than the closed systems described thus far. For example, 
living systems are clearly able to achieve a local reduction in 
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their entropy as they grow and develop; they create struc-
tures of greater internal energy (i.e., they lower entropy) 
out of the nutrients they absorb. This does not represent a 
violation of the second law of thermodynamics, because a 
living organism does not constitute a closed system.

Thermodynamic Potentials

In order to simplify the application of the laws of ther-
modynamics to open systems, parameters with the 
dimensions of energy, known as thermodynamic poten-
tials, are introduced to describe the system. The resulting 
formulas are expressed in terms of the Helmholtz free 
energy F and the Gibbs free energy G, named after the 
19th-century German physiologist and physicist Hermann 
von Helmholtz and the contemporaneous American phys-
icist Josiah Willard Gibbs. The key conceptual step is 
to separate a system from its heat reservoir. A system is 
thought of as being held at a constant temperature T by a 
heat reservoir (i.e., the environment), but the heat reser-
voir is no longer considered to be part of the system. Recall 
that the internal energy change (ΔU) of a system is given by

ΔU = Q − W, (7)

where Q is the heat absorbed and W is the work done. 
In general, Q and W separately are not state functions, 
because they are path-dependent. However, if the path 
is specified to be any reversible isothermal process, then 
the heat associated with the maximum work (Wmax) is 
Qmax = TΔS. With this substitution the above equation can 
be rearranged as

−Wmax = ΔU − TΔS. (8)
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Note that here ΔS is the entropy change just of the sys-
tem being held at constant temperature, such as a battery. 
Unlike the case of an isolated system as considered previ-
ously, it does not include the entropy change of the heat 
reservoir (i.e., the surroundings) required to keep the tem-
perature constant. If this additional entropy change of the 
reservoir were included, the total entropy change would 
be zero, as in the case of an isolated system. Because the 
quantities U, T, and S on the right-hand side are all state 
functions, it follows that −Wmax must also be a state function. 
This leads to the definition of the Helmholtz free energy

F = U − TS (9)

such that, for any isothermal change of the system,

ΔF = ΔU − TΔS (10)

is the negative of the maximum work that can be extracted 
from the system. The actual work extracted could be 
smaller than the ideal maximum, or even zero, which 
implies that W ≤ −ΔF, with equality applying in the ideal 
limiting case of a reversible process. When the Helmholtz 
free energy reaches its minimum value, the system has 
reached its equilibrium state, and no further work can be 
extracted from it. Thus, the equilibrium condition of max-
imum entropy for isolated systems becomes the condition 
of minimum Helmholtz free energy for open systems held 
at constant temperature. The one additional precaution 
required is that work done against the atmosphere be 
included if the system expands or contracts in the course 
of the process being considered. Typically, processes are 
specified as taking place at constant volume and tempera-
ture in order that no correction is needed.

7 Thermodynamics: The Laws of Energy and Work 7
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Although the Helmholtz free energy is useful in 
describing processes that take place inside a container 
with rigid walls, most processes in the real world take place 
under constant pressure rather than constant volume. For 
example, chemical reactions in an open test tube—or in 
the growth of a tomato in a garden—take place under con-
ditions of (nearly) constant atmospheric pressure. It is for 
the description of these cases that the Gibbs free energy 
was introduced. As previously established, the quantity

−Wmax = ΔU − TΔS (11)

is a state function equal to the change in the Helmholtz 
free energy. Suppose that the process being considered 
involves a large change in volume (ΔV), such as happens 
when water boils to form steam. The work done by the 
expanding water vapour as it pushes back the surrounding 
air at pressure P is PΔV. This is the amount of work that is 
now split out from Wmax by writing it in the form

Wmax = Wmax + PΔV, (12)

where Wmax is the maximum work that can be extracted 
from the process taking place at constant temperature T 
and pressure P, other than the atmospheric work (PΔV). 
Substituting this partition into the above equation for 
−Wmax and moving the PΔV term to the right-hand side 
then yields

−Wmax = ΔU + PΔV − TΔS. (13)

This leads to the definition of the Gibbs free energy

G = U + PV − TS (14)
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such that, for any isothermal change of the system at con-
stant pressure,

ΔG = ΔU + PΔV − TΔS (15)

is the negative of the maximum work Wmax that can be 
extracted from the system, other than atmospheric work. 
As before, the actual work extracted could be smaller 
than the ideal maximum, or even zero, which implies that 
W′ ≤ −ΔG, with equality applying in the ideal limiting case 
of a reversible process. As with the Helmholtz case, when 
the Gibbs free energy reaches its minimum value, the sys-
tem has reached its equilibrium state, and no further work 
can be extracted from it. Thus, the equilibrium condition 
becomes the condition of minimum Gibbs free energy for 
open systems held at constant temperature and pressure, 
and the direction of spontaneous change is always toward 
a state of lower free energy for the system (like a ball roll-
ing downhill into a valley). Notice in particular that the 
entropy can now spontaneously decrease (i.e., TΔS can be 
negative), provided that this decrease is more than offset 
by the ΔU + PΔV terms in the definition of ΔG. A simple 
example is the spontaneous condensation of steam into 
water. Although the entropy of water is much less than 
the entropy of steam, the process occurs spontaneously 
provided that enough heat energy is taken away from the 
system to keep the temperature from rising as the steam 
condenses.

A familiar example of free energy changes is pro-
vided by an automobile battery. When the battery is fully 
charged, its Gibbs free energy is at a maximum, and when 
it is fully discharged (i.e., dead), its Gibbs free energy is at 
a minimum. The change between these two states is the 
maximum amount of electrical work that can be extracted 
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from the battery at constant temperature and pressure. 
The amount of heat absorbed from the environment in 
order to keep the temperature of the battery constant 
(represented by the TΔS term) and any work done against 
the atmosphere (represented by the PΔV term) are auto-
matically taken into account in the energy balance.

Gibbs Free Energy and Chemical Reactions

All batteries depend on some chemical reaction of the form

reactants → products

for the generation of electricity or on the reverse reaction 
as the battery is recharged. The change in free energy (−ΔG) 
for a reaction could be determined by measuring directly 
the amount of electrical work that the battery could do 
and then using the equation Wmax  =  −ΔG. However, the 
power of thermodynamics is that −ΔG can be calculated 
without having to build every possible battery and mea-
sure its performance. If the Gibbs free energies of the 
individual substances making up a battery are known, then 
the total free energies of the reactants can be subtracted 
from the total free energies of the products in order to 
find the change in Gibbs free energy for the reaction,

ΔG = Gproducts − Greactants. (16)

Once the free energies are known for a wide variety of 
substances, the best candidates for actual batteries can 
be quickly discerned. In fact, a good part of the practice 
of thermodynamics is concerned with determining the 
free energies and other thermodynamic properties of 
individual substances in order that ΔG for reactions can 
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be calculated under different conditions of temperature 
and pressure.

In the above discussion, the term reaction can be 
interpreted in the broadest possible sense as any transfor-
mation of matter from one form to another. In addition 
to chemical reactions, a reaction could be something as 
simple as ice (reactants) turning to liquid water (products), 
the nuclear reactions taking place in the interior of stars, 
or elementary particle reactions in the early universe. No 
matter what the process, the direction of spontaneous 
change (at constant temperature and pressure) is always in 
the direction of decreasing free energy.

Enthalpy and the Heat of Reaction

As discussed above, the free energy change Wmax  =  −ΔG 
corresponds to the maximum possible useful work that 
can be extracted from a reaction, such as in an electro-
chemical battery. This represents one extreme limit of a 
continuous range of possibilities. At the other extreme, 
for example, battery terminals can be connected directly 
by a wire and the reaction allowed to proceed freely with-
out doing any useful work. In this case W′ = 0, and the first 
law of thermodynamics for the reaction becomes

ΔU = Q0 − PΔV, (17)

where Q0 is the heat absorbed when the reaction does no 
useful work and, as before, PΔV is the atmospheric work 
term. The key point is that the quantities ΔU and PΔV are 
exactly the same as in the other limiting case, in which the 
reaction does maximum work. This follows because these 
quantities are state functions, which depend only on the 
initial and final states of a system and not on any path 
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connecting the states. The amount of useful work done 
just represents different paths connecting the same initial 
and final states. This leads to the definition of enthalpy 
(H), or heat content, as

H = U + PV. (18)

Its significance is that, for a reaction occurring freely (i.e., 
doing no useful work) at constant temperature and pres-
sure, the heat absorbed is

Q0 = ΔU + PΔV = ΔH, (19)

where ΔH is called the heat of reaction. The heat of reac-
tion is easy to measure because it simply represents the 
amount of heat that is given off if the reactants are mixed 
together in a beaker and allowed to react freely without 
doing any useful work.

The above definition for enthalpy and its physical sig-
nificance allow the equation for ΔG to be written in the 
particularly illuminating and instructive form

ΔG = ΔH − TΔS. (20)

Both terms on the right-hand side represent heats of 
reaction but under different sets of circumstances. ΔH 
is the heat of reaction (i.e., the amount of heat absorbed 
from the surroundings in order to hold the tempera-
ture constant) when the reaction does no useful work, 
and TΔS is the heat of reaction when the reaction does 
maximum useful work in an electrochemical cell. The 
(negative) difference between these two heats is exactly 
the maximum useful work −ΔG that can be extracted 
from the reaction. Thus, useful work can be obtained by 
contriving for a system to extract additional heat from 
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the environment and convert it into work. The differ-
ence ΔH  −  TΔS represents the fundamental limitation 
imposed by the second law of thermodynamics on how 
much additional heat can be extracted from the environ-
ment and converted into useful work for a given reaction 
mechanism. An electrochemical cell (such as a car bat-
tery) is a contrivance by means of which a reaction can be 
made to do the maximum possible work against an oppos-
ing electromotive force, and hence the reaction literally 
becomes reversible in the sense that a slight increase in 
the opposing voltage will cause the direction of the reac-
tion to reverse and the cell to start charging up instead of  
discharging.

As a simple example, consider a reaction in which 
water turns reversibly into steam by boiling. To make the 
reaction reversible, suppose that the mixture of water and 
steam is contained in a cylinder with a movable piston 
and held at the boiling point of 373 K (100 °C) at 1 atmo-
sphere pressure by a heat reservoir. The enthalpy change 
is ΔH = 40.65 kilojoules per mole, which is the latent heat 
of vaporization. The entropy change is

ΔS = 40.65 ⁄373 = 0.109 kilojoules per mole∙K, (21)

representing the higher degree of disorder when water 
evaporates and turns to steam. The Gibbs free energy 
change is ΔG  =  ΔH  −  TΔS. In this case the Gibbs free 
energy change is zero because the water and steam are in 
equilibrium, and no useful work can be extracted from the 
system (other than work done against the atmosphere). In 
other words, the Gibbs free energy per molecule of water 
(also called the chemical potential) is the same for both 
liquid water and steam, and so water molecules can pass 
freely from one phase to the other with no change in the 
total free energy of the system.

7 Thermodynamics: The Laws of Energy and Work 7
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chapter 2
Thermodynamics:

Systems at Work

In order to carry through a program of finding the 
changes in the various thermodynamic functions that 

accompany reactions—such as entropy, enthalpy, and free 
energy—it is often useful to know these quantities sepa-
rately for each of the materials entering into the reaction. 
For example, if the entropies are known separately for the 
reactants and products, then the entropy change for the 
reaction is just the difference

ΔSreaction = Sproducts − Sreactants

and similarly for the other thermodynamic functions. 
Furthermore, if the entropy change for a reaction is known 
under one set of conditions of temperature and pressure, 
it can be found under other sets of conditions by includ-
ing the variation of entropy for the reactants and products 
with temperature or pressure as part of the overall process. 
For these reasons, scientists and engineers have developed 
extensive tables of thermodynamic properties for many 
common substances, together with their rates of change 
with state variables such as temperature and pressure.

The science of thermodynamics provides a rich vari-
ety of formulas and techniques that allow the maximum 
possible amount of information to be extracted from 
a limited number of laboratory measurements of the 
properties of materials. However, as the thermodynamic 
state of a system depends on several variables—such as 
temperature, pressure, and volume—in practice it is 
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necessary first to decide how many of these are indepen-
dent and then to specify what variables are allowed to 
change while others are held constant. For this reason, the 
mathematical language of partial differential equations is 
indispensable to the further elucidation of the subject of  
thermodynamics.

Of especially critical importance in the application 
of thermodynamics are the amounts of work required to 
make substances expand or contract and the amounts of 
heat required to change the temperature of substances. 
The first is determined by the equation of state of the 
substance and the second by its heat capacity. Once these 
physical properties have been fully characterized, they 
can be used to calculate other thermodynamic proper-
ties, such as the free energy of the substance under various 
conditions of temperature and pressure.

In what follows, it will often be necessary to consider 
infinitesimal changes in the parameters specifying the 
state of a system. The first law of thermodynamics then 
assumes the differential form dU = d ′Q − d ′W. Because U 
is a state function, the infinitesimal quantity dU must be 
an exact differential, which means that its definite inte-
gral depends only on the initial and final states of the 
system. In contrast, the quantities d ′Q and d ′W are not 
exact differentials, because their integrals can be evalu-
ated only if the path connecting the initial and final states 
is specified. The examples to follow will illustrate these 
rather abstract concepts.

Work of Expansion 
and Contraction

The first task in carrying out the above program is to  
calculate the amount of work done by a single pure 
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substance when it expands at constant temperature. 
Unlike the case of a chemical reaction, where the volume 
can change at constant temperature and pressure because 
of the liberation of gas, the volume of a single pure sub-
stance placed in a cylinder cannot change unless either 
the pressure or the temperature changes. To calculate 
the work, suppose that a piston moves by an infinitesi-
mal amount dx. Because pressure is force per unit area, 
the total restraining force exerted by the piston on  
the gas is PA, where A is the cross-sectional area of the 
piston. Thus, the incremental amount of work done is 
d′W = PAdx.

However, Adx can also be identified as the incremen-
tal change in the volume (dV) swept out by the head of 
the piston as it moves. The result is the basic equation 
d′W = PdV for the incremental work done by a gas when 
it expands. For a finite change from an initial volume Vi 
to a final volume Vf , the total work done is given by the 
integral

� (22)

Because P in general changes as the volume V changes, 
this integral cannot be calculated until P is specified as a 
function of V; in other words, the path for the process 
must be specified. This gives precise meaning to the con-
cept that dW is not an exact differential.

Equations of State

The equation of state for a substance provides the addi-
tional information required to calculate the amount of 
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work that the substance does in making a transition from 
one equilibrium state to another along some specified 
path. The equation of state is expressed as a functional 
relationship connecting the various parameters needed 
to specify the state of the system. The basic concepts 
apply to all thermodynamic systems, but here, in order to 
make the discussion specific, a simple gas inside a cylinder 
with a movable piston will be considered. The equation 
of state then takes the form of an equation relating P, 
V, and T, such that if any two are specified, the third is 
determined. In the limit of low pressures and high tem-
peratures, where the molecules of the gas move almost 
independently of one another, all gases obey an equation 
of state known as the ideal gas law: PV = nRT, where n 
is the number of moles of the gas and R is the univer-
sal gas constant, 8.3145 joules per K. In the International 
System of Units, energy is measured in joules, volume in 
cubic metres (m3), force in newtons (N), and pressure in 
pascals (Pa), where 1 Pa = 1 N/m2. A force of one newton 
moving through a distance of one metre does one joule 
of work. Thus, both the products PV and RT have the 
dimensions of work (energy). A P-V diagram would show 
the equation of state in graphical form for several differ-
ent temperatures.

To illustrate the path-dependence of the work done, 
consider three processes connecting the same initial and 
final states. The temperature is the same for both states, 
but, in going from state i to state f, the gas expands from 
Vi to Vf (doing work), and the pressure falls from Pi to 
Pf. According to the definition of the integral in equa-
tion (22), the work done is the area under the curve (or 
straight line) for each of the three processes. For pro-
cesses I and III the areas are rectangles, and so the work  
done is
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WI = Pi(Vf − Vi) (23)

and

WIII = Pf (Vf − Vi), (24)

respectively. Process II is more complicated because P 
changes continuously as V changes. However, T remains 
constant, and so one can use the equation of state to sub-
stitute P = nRT/V in equation (22) to obtain

� (25)

or, because

PiVi = nRT = Pf Vf (26)

for an (ideal gas) isothermal process,

� (27)

WII is thus the work done in the reversible isothermal 
expansion of an ideal gas. The amount of work is clearly dif-
ferent in each of the three cases. For a cyclic process the net 
work done equals the area enclosed by the complete cycle.

Heat Capacity and Specific Heat

As shown originally by Count Rumford, there is an equiva-
lence between heat (measured in calories) and mechanical 
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work (measured in joules) with a definite conversion fac-
tor between the two. The conversion factor, known as the 
mechanical equivalent of heat, is 1 calorie = 4.184 joules. 
(There are several slightly different definitions in use for 
the calorie. The calorie used by nutritionists is actually 
a kilocalorie.) In order to have a consistent set of units, 
both heat and work will be expressed in the same units 
of joules.

The amount of heat that a substance absorbs is con-
nected to its temperature change via its molar specific 
heat c, defined to be the amount of heat required to 
change the temperature of 1 mole of the substance by 1 K. 
In other words, c is the constant of proportionality relat-
ing the heat absorbed (d′Q) to the temperature change 
(dT) according to d′Q  =  nc  dT, where n is the number 
of moles. For example, it takes approximately 1 calorie of  
heat to increase the temperature of 1 gram of water by 1 
K. Since there are 18 grams of water in 1 mole, the molar 
heat capacity of water is 18 calories per K, or about 75 
joules per K. The total heat capacity C for n moles is 
defined by C = nc.

However, since d′Q is not an exact differential, the 
heat absorbed is path-dependent and the path must be 
specified, especially for gases where the thermal expan-
sion is significant. Two common ways of specifying the 
path are either the constant-pressure path or the constant-
volume path. The two different kinds of specific heat are 
called cP and cV respectively, where the subscript denotes 
the quantity that is being held constant. It should not 
be surprising that cP is always greater than cV, because 
the substance must do work against the surrounding 
atmosphere as it expands upon heating at constant pres-
sure but not at constant volume. In fact, this difference 
was used by the 19th-century German physicist Julius 
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Robert von Mayer to estimate the mechanical equivalent  
of heat.

Heat Capacity and 
Internal Energy

The goal in defining heat capacity is to relate changes in the 
internal energy to measured changes in the variables that 
characterize the states of the system. For a system consist-
ing of a single pure substance, the only kind of work it can 
do is atmospheric work, and so the first law reduces to

dU = d ′Q − P dV. (28)

Suppose now that U is regarded as being a function 
U(T, V) of the independent pair of variables T and V. The 
differential quantity dU can always be expanded in terms 
of its partial derivatives according to

�
(29)

where the subscripts denote the quantity being held constant 
when calculating derivatives. Substituting this equation into  
dU = d′Q − P dV then yields the general expression

�
(30)

for the path-dependent heat. The path can now be speci-
fied in terms of the independent variables T and V. For a 
temperature change at constant volume, dV  =  0 and, by 
definition of heat capacity,

d ′Q V = CV dT. (31)
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The above equation then gives immediately

�
(32)

for the heat capacity at constant volume, showing that 
the change in internal energy at constant volume is due 
entirely to the heat absorbed.

To find a corresponding expression for CP, one need 
only change the independent variables to T and P and sub-
stitute the expansion

� (33)

for dV in equation (28) and correspondingly for dU to 
obtain

� (34)

For a temperature change at constant pressure, 
dP = 0, and, by definition of heat capacity, d ′Q = CP dT, 
resulting in

� (35)

The two additional terms beyond CV have a direct 
physical meaning. The term
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represents the additional atmospheric work that the sys-
tem does as it undergoes thermal expansion at constant 
pressure, and the second term involving

represents the internal work that must be done to pull the 
system apart against the forces of attraction between the 
molecules of the substance (internal stickiness). Because 
there is no internal stickiness for an ideal gas, this term 
is zero, and, from the ideal gas law, the remaining partial 
derivative is

�
(36)

With these substitutions the equation for CP becomes 
simply

CP = CV + nR (37)

or

cP = cV + R (38)

for the molar specific heats. For example, for a mona-
tomic ideal gas (such as helium), cV  =  3R/2 and cP  =  5R/2 
to a good approximation. cVT represents the amount 
of translational kinetic energy possessed by the atoms 
of an ideal gas as they bounce around randomly inside 
their container. Diatomic molecules (such as oxygen) 
and polyatomic molecules (such as water) have additional 
rotational motions that also store thermal energy in their 
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kinetic energy of rotation. Each additional degree of free-
dom contributes an additional amount R to cV. Because 
diatomic molecules can rotate about two axes and poly-
atomic molecules can rotate about three axes, the values 
of cV increase to 5R/2 and 3R respectively, and cP corre-
spondingly increases to 7R/2 and 4R. (cV and cP increase 
still further at high temperatures because of vibrational 
degrees of freedom.) For a real gas such as water vapour, 
these values are only approximate, but they give the cor-
rect order of magnitude. For example, the correct values 
are cP  =  37.468 joules per K (i.e., 4.5R) and cP  − cV  = 9.443 
joules per K (i.e., 1.14R) for water vapour at 100 °C and 1 
atmosphere pressure.

Entropy as an Exact 
Differential

Because the quantity dS = d ′Qmax/T is an exact differential, 
many other important relationships connecting the ther-
modynamic properties of substances can be derived. For 
example, with the substitutions d ′Q = T dS and d ′W = P dV, 
the differential form (dU  = d ′Q − d ′W) of the first law of 
thermodynamics becomes (for a single pure substance)

dU = T dS − P dV. (39)

The advantage gained by the above formula is that dU 
is now expressed entirely in terms of state functions in 
place of the path-dependent quantities d ′Q and d ′W. This 
change has the very important mathematical implication 
that the appropriate independent variables are S and V in 
place of T and V, respectively, for internal energy.

This replacement of T by S as the most appropriate 
independent variable for the internal energy of substances 
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is the single most valuable insight provided by the com-
bined first and second laws of thermodynamics. With U 
regarded as a function U(S, V), its differential dU is

�(40)

A comparison with the preceding equation shows 
immediately that the partial derivatives are

�
(41)

Furthermore, the cross partial derivatives,

� (42)

must be equal because the order of differentiation in 
calculating the second derivatives of U does not matter. 
Equating the right-hand sides of the above pair of equa-
tions then yields

�
(43)

This is one of four Maxwell relations (the others will 
follow shortly). They are all extremely useful in that the 
quantity on the right-hand side is virtually impossible to 
measure directly, while the quantity on the left-hand side 
is easily measured in the laboratory. For the present case 
one simply measures the adiabatic variation of tempera-
ture with volume in an insulated cylinder so that there is 
no heat flow (constant S).
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The other three Maxwell relations follow by similarly 
considering the differential expressions for the thermo-
dynamic potentials F(T,  V), H(S,  P), and G(T,  P), with 
independent variables as indicated. The results are

�

As an example of the use of these equations, equation 
(35) for CP − CV contains the partial derivative

which vanishes for an ideal gas and is difficult to evaluate 
directly from experimental data for real substances. The 
general properties of partial derivatives can first be used 
to write it in the form

�
(45)

Combining this with equation (41) for the partial 
derivatives together with the first of the Maxwell equa-
tions from equation (44) then yields the desired result

�
(46)

The quantity
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comes directly from differentiating the equation of state. 
For an ideal gas

�(47)

and so

is zero as expected. The departure of

from zero reveals directly the effects of internal forces 
between the molecules of the substance and the work that 
must be done against them as the substance expands at 
constant temperature.

The Clausius-Clapeyron 
Equation

Phase changes, such as the conversion of liquid water to 
steam, provide an important example of a system in which 
there is a large change in internal energy with volume at 
constant temperature. Suppose that the cylinder contains 
both water and steam in equilibrium with each other at 
pressure P, and the cylinder is held at constant tempera-
ture T. The pressure remains equal to the vapour pressure 
Pvap as the piston moves up, as long as both phases remain 
present. All that happens is that more water turns to 
steam, and the heat reservoir must supply the latent heat 
of vaporization, λ = 40.65 kilojoules per mole, in order to 
keep the temperature constant.
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The results of the preceding section can be applied 
now to find the variation of the boiling point of water 
with pressure. Suppose that as the piston moves up, 
1 mole of water turns to steam. The change in volume 
inside the cylinder is then ΔV  =  Vgas  −  Vliquid, where 
Vgas  =  30.143 litres is the volume of 1 mole of steam at 
100 °C, and Vliquid = 0.0188 litre is the volume of 1 mole 
of water. By the first law of thermodynamics, the change 
in internal energy ΔU for the finite process at constant P 
and T is ΔU = λ − PΔV.

The variation of U with volume at constant T for the 
complete system of water plus steam is thus

�(48)

A comparison with equation (46) then yields the equation

�(49)

However, for the present problem, P is the vapour pressure 
Pvapour, which depends only on T and is independent of V. 
The partial derivative is then identical to the total derivative

�(50)

giving the Clausius-Clapeyron equation

� (51)
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This equation is very useful because it gives the variation 
with temperature of the pressure at which water and steam 
are in equilibrium—i.e., the boiling temperature. An approx-
imate but even more useful version of it can be obtained 
by neglecting Vliquid in comparison with Vgas and using

�
(52)

from the ideal gas law. The resulting differential equation 
can be integrated to give

�
(53)

For example, at the top of Mount Everest, atmospheric 
pressure is about 30 percent of its value at sea level. Using 
the values R = 8.3145 joules per K and λ = 40.65 kilojoules 
per mole, the above equation gives T = 342 K (69 °C) for 
the boiling temperature of water, which is barely enough 
to make tea.
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chapter 3
The Laws of  

Force and Motion

Mechanics is the science concerned with the motion 
of bodies under the action of forces, including the 

special case in which a body remains at rest. Of first con-
cern in the problem of motion are the forces that bodies 
exert on one another. This leads to the study of such top-
ics as gravitation, electricity, and magnetism, according to 
the nature of the forces involved. Given the forces, one can 
seek the manner in which bodies move under the action of 
forces; this is the subject matter of mechanics proper.

Historically, mechanics was among the first of the 
exact sciences to be developed. Its internal beauty as a 
mathematical discipline and its early remarkable success 
in accounting in quantitative detail for the motions of 
the Moon, Earth, and other planetary bodies had enor-
mous influence on philosophical thought and provided 
impetus for the systematic development of science into 
the 20th century.

Mechanics may be divided into three branches: statics, 
which deals with forces acting on and in a body at rest; kine-
matics, which describes the possible motions of a body or 
system of bodies; and kinetics, which attempts to explain 
or predict the motion that will occur in a given situation. 
Alternatively, mechanics may be divided according to the 
kind of system studied. The simplest mechanical system is 
the particle, defined as a body so small that its shape and 
internal structure are of no consequence in the given prob-
lem. More complicated is the motion of a system of two or 
more particles that exert forces on one another and possi-
bly undergo forces exerted by bodies outside of the system.
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Classical mechanics deals with the motion of bodies 
under the influence of forces or with the equilibrium of 
bodies when all forces are balanced. The subject may be 
thought of as the elaboration and application of basic pos-
tulates first enunciated by Isaac Newton in his Philosophiae 
Naturalis Principia Mathematica (1687), commonly known 
as the Principia. These postulates, called Newton’s laws of 
motion, are set forth below. They may be used to predict 
with great precision a wide variety of phenomena ranging 
from the motion of individual particles to the interactions 
of highly complex systems.

In the framework of modern physics, classical mechan-
ics can be understood to be an approximation arising out 
of the more profound laws of quantum mechanics and 
the theory of relativity. However, that view of the sub-
ject’s place greatly undervalues its importance in forming 
the context, language, and intuition of modern science 
and scientists. Our present-day view of the world and 
man’s place in it is firmly rooted in classical mechanics. 
Moreover, many ideas and results of classical mechanics 
survive and play an important part in the new physics.

The central concepts in classical mechanics are force, 
mass, and motion. Neither force nor mass is very clearly 
defined by Newton, and both have been the subject  
of much philosophical speculation since Newton. Both of 
them are best known by their effects. Mass is a measure 
of the tendency of a body to resist changes in its state of 
motion. Forces, on the other hand, accelerate bodies, which 
is to say, they change the state of motion of bodies to 
which they are applied. The interplay of these effects is 
the principal theme of classical mechanics.

Although Newton’s laws focus attention on force 
and mass, three other quantities take on special impor-
tance because their total amount never changes. These 
three quantities are energy, (linear) momentum, and 



45

7 The Laws of Force and Motion 7

angular momentum. Any one of these can be shifted 
from one body or system of bodies to another. In addi-
tion, energy may change form while associated with a 
single system, appearing as kinetic energy, the energy of 
motion; potential energy, the energy of position; heat, 
or internal energy, associated with the random motions 
of the atoms or molecules composing any real body; or 
any combination of the three. Nevertheless, the total 
energy, momentum, and angular momentum in the uni-
verse never changes. This fact is expressed in physics by 
saying that energy, momentum, and angular momentum 
are conserved. These three conservation laws arise out 
of Newton’s laws, but Newton himself did not express 
them. They had to be discovered later.

It is a remarkable fact that, although Newton’s laws 
are no longer considered to be fundamental, nor even 
exactly correct, the three conservation laws derived from 
his laws—the conservation of energy, momentum, and 
angular momentum—remain exactly true even in quan-
tum mechanics and relativity. In fact, in modern physics, 
force is no longer a central concept, and mass is only one 
of a number of attributes of matter. Energy, momentum, 
and angular momentum, however, still firmly hold centre 
stage. The continuing importance of these ideas inherited 
from classical mechanics may help to explain why this 
subject retains such great importance in science today.

Origins and Foundations

The discovery of classical mechanics was made necessary 
by the publication, in 1543, of the book De revolutioni-
bus orbium coelestium libri VI (“Six Books Concerning the 
Revolutions of the Heavenly Orbs”) by the Polish astrono-
mer Nicolaus Copernicus. The book was about revolutions, 
real ones in the heavens, and it sparked the metaphorically 
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named scientific revolution that culminated in Newton’s 
Principia about 150 years later. The scientific revolution 
would change forever how people think about the universe.

In his book, Copernicus pointed out that the calcula-
tions needed to predict the positions of the planets in the 
night sky would be somewhat simplified if the Sun, rather 
than Earth, were taken to be the centre of the universe 
(by which he meant what is now called the solar system). 
Among the many problems posed by Copernicus’s book 
was an important and legitimate scientific question: if 
Earth is hurtling through space and spinning on its axis 
as Copernicus’s model prescribed, why is the motion not 
apparent?

To the casual observer, Earth certainly seems to be 
solidly at rest. Scholarly thought about the universe in 
the centuries before Copernicus was largely dominated 
by the philosophy of Plato and Aristotle. According to 
Aristotelian science, the Earth was the centre of the 
universe. The four elements—earth, water, air, and fire—
were naturally disposed in concentric spheres, with earth 
at the centre, surrounded respectively by water, air, and 
fire. Outside these were the crystal spheres on which the 
heavenly bodies rotated. Heavy, earthy objects fell because 
they sought their natural place. Smoke would rise through 
air, and bubbles through water for the same reason. These 
were natural motions. All other kinds of motion were vio-
lent motion and required a proximate cause. For example, 
an oxcart would not move without the help of an ox.

When Copernicus displaced Earth from the centre of 
the universe, he tore the heart out of Aristotelian mechan-
ics, but he did not suggest how it might be replaced. Thus, 
for those who wished to promote Copernicus’s ideas, 
the question of why the motion of Earth is not noticed 
took on a special urgency. Without suitable explanation, 
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Copernicanism was a violation not only of Aristotelian 
philosophy but also of plain common sense.

The solution to the problem was discovered by the 
Italian mathematician and scientist Galileo Galilei. 
Inventing experimental physics as he went along, Galileo 
studied the motion of balls rolling on inclined planes. He 
noticed that, if a ball rolled down one plane and up another, 
it would seek to regain its initial height above the ground, 
regardless of the inclines of the two planes. That meant, 
he reasoned, that, if the second plane were not inclined at 
all but were horizontal instead, the ball, unable to regain 
its original height, would keep rolling forever. From this 
observation he deduced that bodies do not need a proxi-
mate cause to stay in motion. Instead, a body moving in 
the horizontal direction would tend to stay in motion 
unless something interfered with it. This is the reason that 
Earth’s motion is not apparent; the surface of Earth and 
everything on and around it are always in motion together 
and therefore only seem to be at rest.

This observation, which was improved upon by the 
French philosopher and scientist René Descartes, who 
altered the concept to apply to motion in a straight line, 
would ultimately become Newton’s first law, or the law 
of inertia. However, Galileo’s experiments took him far 
beyond even this fundamental discovery. Timing the rate 
of descent of the balls (by means of precision water clocks 
and other ingenious contrivances) and imagining what 
would happen if experiments could be carried out in the 
absence of air resistance, he deduced that freely falling 
bodies would be uniformly accelerated at a rate indepen-
dent of their mass. Moreover, he understood that the 
motion of any projectile was the consequence of simulta-
neous and independent inertial motion in the horizontal 
direction and falling motion in the vertical direction. In 
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his book Dialogues Concerning the Two New Sciences (1638), 
Galileo wrote,

It has been observed that missiles and projectiles describe a 
curved path of some sort; however, no one has pointed out 
the fact that this path is a parabola. But this and other facts, 
not few in number or less worth knowing, I have succeeded 
in proving . . .

Just as Galileo boasted, his studies would encompass 
many aspects of what is now known as classical mechanics, 
including not only discussions of the law of falling bodies 
and projectile motion but also an analysis of the pendu-
lum, an example of harmonic motion. His studies fall into 
the branch of classical mechanics known as kinematics, or 
the description of motion. Although Galileo and others 
tried to formulate explanations of the causes of motion, 
the focus of the field termed dynamics, none would suc-
ceed before Newton.

Galileo’s fame during his own lifetime rested not so 
much on his discoveries in mechanics as on his obser-
vations of the heavens, which he made with the newly 
invented telescope about 1610. What he saw there, partic-
ularly the moons of Jupiter, either prompted or confirmed 
his embrace of the Copernican system. At the time, 
Copernicus had few other followers in Europe. Among 
those few, however, was the brilliant German astronomer 
and mathematician Johannes Kepler.

Kepler devoted much of his scientific career to elucidat-
ing the Copernican system. Although Copernicus had put 
the Sun at the centre of the solar system, his astronomy was 
still rooted in the Platonic ideal of circular motion. Before 
Copernicus, astronomers had tried to account for the 
observed motions of heavenly bodies by imagining that they 
rotated on crystal spheres centred on Earth. This picture 
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worked well enough for the stars but not for the planets. 
To “save the appearances” (fit the observations) an elabo-
rate system emerged of circular orbits, called epicycles, on 
top of circular orbits. This system of astronomy culminated 
with the Almagest of Ptolemy, who worked in Alexandria in 
the 2nd century ce. The Copernican innovation simplified 
the system somewhat, but Copernicus’s astronomical tables 
were still based on circular orbits and epicycles. Kepler set 
out to find further simplifications that would help to estab-
lish the validity of the Copernican system.

In the course of his investigations, Kepler discovered 
the three laws of planetary motion that are still named for 
him. Kepler’s first law says that the orbits of the planets 
are ellipses, with the Sun at one focus. This observation 
swept epicycles out of astronomy. His second law stated 
that, as the planet moved through its orbit, a line joining it 
to the Sun would sweep out equal areas in equal times. For 
Kepler, this law was merely a rule that helped him make 
precise calculations for his astronomical tables. Later, 
however, it would be understood to be a direct conse-
quence of the law of conservation of angular momentum. 
Kepler’s third law stated that the period of a planet’s orbit 
depended only on its distance from the Sun. In particu-
lar, the square of the period is proportional to the cube of 
the semimajor axis of its elliptical orbit. This observation 
would suggest to Newton the inverse-square law of uni-
versal gravitational attraction.

By the middle of the 17th century, the work of 
Galileo, Kepler, Descartes, and others had set the stage 
for Newton’s grand synthesis. Newton is thought to have 
made many of his great discoveries at the age of 23, when in 
1665–66 he retreated from the University of Cambridge to 
his Lincolnshire home to escape from the bubonic plague. 
However, he chose not to publish his results until the 
Principia emerged 20 years later. In the Principia, Newton 
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set out his basic postulates concerning force, mass, and 
motion. In addition to these, he introduced the univer-
sal force of gravity, which, acting instantaneously through 
space, attracted every bit of matter in the universe to every 
other bit of matter, with a strength proportional to their 
masses and inversely proportional to the square of the 
distance between them. These principles, taken together, 
accounted not only for Kepler’s three laws and Galileo’s 
falling bodies and projectile motions but also for other 
phenomena, including the precession of the equinoxes, the 
oscillations of the pendulum, the speed of sound in air, and 
much more. The effect of Newton’s Principia was to replace 
the by-then discredited Aristotelian worldview with a new, 
coherent view of the universe and how it worked. The way 
it worked is what is now referred to as classical mechanics.

Units and Dimensions

Quantities have both dimensions, which are an expression 
of their fundamental nature, and units, which are chosen 
by convention to express magnitude or size. For example, 
a series of events have a certain duration in time. Time 
is the dimension of the duration. The duration might be 
expressed as 30 minutes or as half an hour. Minutes and 
hours are among the units in which time may be expressed. 
One can compare quantities of the same dimensions, even 
if they are expressed in different units (an hour is longer 
than a minute). Quantities of different dimensions cannot 
be compared with one another.

The fundamental dimensions used in mechanics are 
time, mass, and length. Symbolically, these are written as t, 
m, and l, respectively. The study of electromagnetism adds 
an additional fundamental dimension, electric charge, 
or q. Other quantities have dimensions compounded of 
these. For example, speed has the dimensions distance 
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divided by time, which can be written as l/t, and volume 
has the dimensions distance cubed, or l3. Some quantities, 
such as temperature, have units but are not compounded 
of fundamental dimensions.

There are also important dimensionless numbers in 
nature, such as the number π = 3.14159 . . . . Dimensionless 
numbers may be constructed as ratios of quantities hav-
ing the same dimension. Thus, the number π is the ratio 
of the circumference of a circle (a length) to its diameter 
(another length). Dimensionless numbers have the advan-
tage that they are always the same, regardless of what set 
of units is being used.

Governments have traditionally been responsible for 
establishing and enforcing standard units for the sake of 
orderly commerce, navigation, science, and, of course, 
taxation. Today all such units are established by inter-
national treaty and revised every few years in light of 
scientific findings. The units used for most scientific mea-
surements are those designated the International System 
of Units (Système International d’Unités), or SI for short. 
They are based on the metric system, first adopted offi-
cially by France in 1795. Other units, such as those of the 
British engineering system, are still in use in some places, 
but these are now defined in terms of the SI units.

The fundamental unit of length is the metre. A metre 
used to be defined as the distance between two scratch 
marks on a metal bar kept in Paris, but it is now much more 
precisely defined as the distance that light travels in a cer-
tain time interval (1/299,792,458 of a second). By contrast, 
in the British system, units of length have a clear human 
bias: the foot, the inch (the first joint of the thumb), the 
yard (distance from nose to outstretched fingertip), and 
the mile (one thousand standard paces of a Roman legion). 
Each of these is today defined as some fraction or multiple 
of a metre (one yard is nearly equal to one metre). In the 
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SI or the metric system, lengths are expressed as decimal 
fractions or multiples of a metre (a millimetre = one-
thousandth of a metre; one centimetre = one-hundredth 
of a metre; one kilometre = one thousand metres).

Times longer than one second are expressed in the units 
seconds, minutes, hours, days, weeks, and years. Times  
shorter than one second are expressed as decimal fractions 
(a millisecond = one-thousandth of a second, a microsecond 
= one-millionth of a second, and so on). The fundamental 
unit of time (i.e., the definition of one second) is today 
based on the intrinsic properties of certain kinds of atoms 
(an excitation frequency of the isotope cesium-133).

Units of mass are also defined in a way that is tech-
nically sound, but in common usage they are the subject 
of some confusion because they are easily confused with 
units of weight, which is a different physical quantity. The 
weight of an object is the consequence of Earth’s gravity 
operating on its mass. Thus, the mass of a given object is 
the same everywhere, but its weight varies slightly if it is 
moved about the surface of Earth, and it would change a 
great deal if it were moved to the surface of another planet. 
Also, weight and mass do not have the same dimensions 
(weight has the dimensions ml/t2). The Constitution of the 
United States, which calls on the government to establish 
uniform “weights and measures,” is oblivious to this dis-
tinction, as are merchants the world over, who measure the 
weight of bread or produce but sell it in units of kilograms, 
the SI unit of mass. (The kilogram is equal to 1,000 grams; 
1 gram is the mass of 1 cubic centimetre of water—under 
appropriate conditions of temperature and pressure.)

Vectors

The equations of mechanics are typically written in terms 
of Cartesian coordinates. At a certain time t, the position 
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of a particle may be specified by giving its coordinates x(t), 
y(t), and z(t) in a particular Cartesian frame of reference. 
However, a different observer of the same particle might 
choose a differently oriented set of mutually perpendic-
ular axes, say, x′, y′, and z′. The motion of the particle is 
then described by the first observer in terms of the rate 
of change of x(t), y(t), and z(t), while the second observer 
would discuss the rates of change of x′(t), y′(t), and z′(t). 
That is, both observers see the same particle executing 
the same motion and obeying the same laws, but they 
describe the situation with different equations. This 
awkward situation may be avoided by means of a mathe-
matical construction called a vector. Although vectors are 
mathematically simple and extremely useful in discuss-
ing mechanics, they were not developed in their modern 
form until late in the 19th century, when J. Willard Gibbs 
and Oliver Heaviside (of the United States and Britain, 
respectively) each applied vector analysis in order to help 
express the new laws of electromagnetism proposed by 
James Clerk Maxwell.

A vector is a quantity that has both magnitude and 
direction. It is typically represented symbolically by an 
arrow in the proper direction, whose length is propor-
tional to the magnitude of the vector. Although a vector 
has magnitude and direction, it does not have position. A 
vector is not altered if it is displaced parallel to itself as 
long as its length is not changed.

By contrast to a vector, an ordinary quantity hav-
ing magnitude but not direction is known as a scalar. In 
printed works vectors are often represented by boldface 
letters such as A or X, and scalars are represented by light-
face letters, A or X. The magnitude of a vector, denoted 
|A|, is itself a scalar—i.e., |A| = A.

Because vectors are different from ordinary (i.e., scalar) 
quantities, all mathematical operations involving vectors 
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   (A) The vector sum  C  =  A  +  B  =  B  +  A . (B) The vector difference  A  + (− B ) = 
A  −  B  =  D . (C, left)  A  cos θ is the component of  A  along  B  and (right)  B  cos θ
is the component of  B  along  A . (D, left) The right-hand rule used to fi nd the 
direction of  E  =  A  ×  B  and (right) the right-hand rule used to fi nd the direc-
tion of − E  =  B  ×  A .   Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services 

must be carefully defi ned. Addition, subtraction, three 
kinds of multiplication, and differentiation will be dis-
cussed here. There is no mathematical operation that 
corresponds to division by a vector. 

 If vector  A  is added to vector  B , the result is another 
vector,  C , written  A  +  B  =  C . The operation is performed by 
displacing  B  so that it begins where  A  ends.  C  is then the 
vector that starts where  A  begins and ends where  B  ends. 

 Vector addition is defi ned to have the (nontrivial) 
property  A  +  B  =  B  +  A . There do exist quantities having 
magnitude and direction that do not obey this requirement. 
An example is fi nite rotations in space. Two fi nite rotations 
of a body about different axes do not necessarily result in 
the same orientation if performed in the opposite order. 
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 Vector subtraction is defi ned by  A  −  B  =  A  + (− B ), where 
the vector − B  has the same magnitude as  B  but the oppo-
site direction. 

 A vector may be multiplied by a scalar. Thus, for 
example, the vector 2 A  has the same direction as  A  but 
is twice as long. If the scalar has dimensions, the resulting 
vector still has the same direction as the original one, but 
the two cannot be compared in magnitude. For example, 
a particle moving with constant velocity  v  suffers a dis-
placement  s  in time  t  given by  s  =  v  t . The vector  v  has been 
multiplied by the scalar  t  to give a new vector,  s , which has 
the same direction as  v  but cannot be compared to  v  in 
magnitude (a displacement of one metre is neither big-
ger nor smaller than a velocity of one metre per second). 
This is a typical example of a phenomenon that might be 
represented by different equations in differently oriented 
Cartesian coordinate systems but that has a single vector 
equation (for all observers not moving with respect to 
one another). 

 The dot product (also known as the scalar product, or 
sometimes the inner product) is an operation that com-
bines two vectors to form a scalar. The operation is written 
 A · B . If  θ  is the (smaller) angle between  A  and  B , then the 
result of the operation is  A · B  =  AB  cos  θ . The dot prod-
uct measures the extent to which two vectors are parallel. 
It may be thought of as multiplying the magnitude of one 
vector (either one) by the projection of the other upon it. If 
the two vectors are perpendicular, the dot product is zero. 

 The cross product (also known as the vector product) 
combines two vectors to form another vector, perpendic-
ular to the plane of the original vectors. The operation is 
written  A  ×  B . If  θ  is the (smaller) angle between  A  and 
 B , then |  A  ×  B |=  AB  sin  θ . The direction of  A  ×  B  is given 
by the right-hand rule: if the fi ngers of the right hand are 
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made to rotate from  A  through  θ  to  B , the thumb points 
in the direction of  A  ×  B . The cross product is zero if the 
two vectors are parallel, and it is maximum in magnitude 
if they are perpendicular. 

 The derivative, or rate of change, of a vector is defi ned 
in perfect analogy to the derivative of a scalar: if the vector 
 A  changes with time  t , then 

 
(1)

 Before going to the limit on the right-hand side of 
equation (1), the operations described are vector subtrac-
tion [ A ( t  + Δ t ) −  A ( t )] and scalar multiplication (by 1/Δ t ). 
The result,  d  A / dt , is therefore itself a vector. Notice that 
the difference between two vectors, in this case  A ( t  + Δ t ) 
−  A ( t ), may be in quite a different direction than either 
of the vectors from which it is formed, here  A ( t  + Δ t ) and 
 A ( t ). As a result,  d  A / dt  may be in a different direction 
than  A ( t ).     

 neWTon’S laWS oF moTion 
and equilibrium 

 In his  principia , Newton reduced the basic principles of 
mechanics to three laws: 

•    Every body continues in its state of rest or 
of uniform motion in a straight line, unless 
it is compelled to change that state by forces 
impressed upon it. 

•  The change of motion of an object is propor-
tional to the force impressed and is made in the 
direction of the straight line in which the force 
is impressed. 
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•  To every action there is always opposed an 
equal reaction; or, the mutual actions of two 
bodies upon each other are always equal and 
directed to contrary parts. 

   Newton’s fi rst law is a restatement of the principle 
of inertia, proposed earlier by Galileo and perfected by 
Descartes. 

 The second law is the most important of the three; it 
may be understood very nearly to summarize all of classi-
cal mechanics. Newton used the word “motion” to mean 
what is today called momentum—that is, the product 
of mass and velocity, or  p  =  m  v , where  p  is the momen-
tum,  m  the mass, and  v  the velocity of a body. The second 
law may then be written in the form of the equation  F  = 
d  p / dt , where  F  is the force, the time derivative expresses 
Newton’s “change of motion,” and the vector form of the 
equation assures that the change is in the same direction 
as the force, as the second law requires. 

 For a body whose mass does not change, 
 

 where  a  is the acceleration. Thus, Newton’s second law 
may be put in the following form: 

F = ma (2) 

 It is probably fair to say that equation (2) is the most 
famous equation in all of physics. 

 Newton’s third law assures that when two bodies inter-
act, regardless of the nature of the interaction, they do 
not produce a net force acting on the two-body system as 
a whole. Instead, there is an action and reaction pair of 
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equal and opposite forces, each acting on a different body 
(action and reaction forces never act on the same body). 
The third law applies whether the bodies in question are 
at rest, in uniform motion, or in accelerated motion.

If a body has a net force acting on it, it undergoes 
accelerated motion in accordance with the second law. If 
there is no net force acting on a body, either because there 
are no forces at all or because all forces are precisely bal-
anced by contrary forces, the body does not accelerate and 
may be said to be in equilibrium. Conversely, a body that is 
observed not to be accelerated may be deduced to have no 
net force acting on it.

Consider, for example, a massive object resting on a 
table. The object is known to be acted on by the gravi-
tational force of Earth; if the table were removed, the 
object would fall. It follows therefore from the fact that 
the object does not fall that the table exerts an upward 
force on the object, equal and opposite to the downward 
force of gravity. This upward force is not a mere physicist’s 
bookkeeping device but rather a real physical force. The 
table’s surface is slightly deformed by the weight of the 
object, causing the surface to exert a force analogous to 
that exerted by a coiled spring.

It is useful to recall the following distinction: the mas-
sive object exerts a downward force on the table that is 
equal and opposite to the upward force exerted by the table 
(owing to its deformation) on the object. These two forces 
are an action and reaction pair operating on different bod-
ies (one on the table, the other on the object) as required 
by Newton’s third law. On the other hand, the upward 
force exerted on the object by the table is balanced by a 
downward force exerted on the object by Earth’s gravity. 
These two equal and opposite forces, acting on the same 
body, are not related to or by Newton’s third law, but they 
do produce the equilibrium immobile state of the body.
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chapter 4
The Laws of 

Particle Motion

The applications of Newton’s laws are wide-ranging. 
They can explain the motion of a pebble falling to 

the ground, a pendulum swinging in a grandfather clock, 
or a planet orbiting a distant star.

Motion of a Particle 
in one Dimension

The simplest problems in mechanics involve a particle 
moving in one dimension—in other words, on a line. Such 
problems include those of falling bodies and masses oscil-
lating back and forth.

Uniform Motion

According to Newton’s first law (also known as the prin-
ciple of inertia), a body with no net force acting on it will 
either remain at rest or continue to move with uniform 
speed in a straight line, according to its initial condition of 
motion. In fact, in classical Newtonian mechanics, there 
is no important distinction between rest and uniform 
motion in a straight line; they may be regarded as the same 
state of motion seen by different observers, one moving 
at the same velocity as the particle, the other moving at 
constant velocity with respect to the particle.

Although the principle of inertia is the starting point 
and the fundamental assumption of classical mechanics, 
it is less than intuitively obvious to the untrained eye. 
In Aristotelian mechanics, and in ordinary experience, 
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objects that are not being pushed tend to come to rest. 
The law of inertia was deduced by Galileo from his experi-
ments with balls rolling down inclined planes. 

 For Galileo, the principle of inertia was fundamental to 
his central scientifi c task: he had to explain how it is possible 
that if Earth is really spinning on its axis and orbiting the Sun 
we do not sense that motion. The principle of inertia helps 
to provide the answer: Since we are in motion together with 
Earth, and our natural tendency is to retain that motion, Earth 
appears to us to be at rest. Thus, the principle of inertia, 
far from being a statement of the obvious, was once a cen-
tral issue of scientifi c contention. By the time Newton had 
sorted out all the details, it was possible to account accurately 
for the small deviations from this picture caused by the fact 
that the motion of Earth’s surface is not uniform motion in 
a straight line. In the Newtonian formulation, the common 
observation that bodies that are not pushed tend to come 
to rest is attributed to the fact that they have unbalanced 
forces acting on them, such as friction and air resistance. 

 As has already been stated, a body in motion may be said 
to have momentum equal to the product of its mass and its 
velocity. It also has a kind of energy that is due entirely to 
its motion, called kinetic energy. The kinetic energy of a 
body of mass  m  in motion with velocity  v  is given by  

      (3)

 Falling Bodies and Uniformly 
Accelerated Motion 

 During the 14th century, the French scholar Nicole Oresme 
studied the mathematical properties of uniformly acceler-
ated motion. He had little interest in whether that kind of 
motion could be observed in the realm of actual human 
existence, but he did discover that, if a particle is uniformly 
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accelerated, its speed increases in direct proportion to 
time, and the distance it traverses is proportional to the 
square of the time spent accelerating. Two centuries later, 
Galileo repeated these same mathematical discoveries (per-
haps independently) and, just as important, determined 
that this kind of motion is actually executed by balls rolling 
down inclined planes. As the incline of the plane increases, 
the acceleration increases, but the motion continues to 
be uniformly accelerated. From this observation, Galileo 
deduced that a body falling freely in the vertical direction 
would also have uniform acceleration. Even more remark-
ably, he demonstrated that, in the absence of air resistance, 
all bodies would fall with the same constant acceleration 
regardless of their mass. If the constant acceleration of any 
body dropped near the surface of Earth is expressed as  g , 
the behaviour of a body dropped from rest at height  z  0  and 
time  t  = 0 may be summarized by the following equations:  

 (4) (4)

(5)

 (6) (6)

  where  z  is the height of the body above the surface,  v  is its 
speed, and  a  is its acceleration. These equations of motion 
hold true until the body actually strikes the surface. The value 
of  g  is approximately 9.8 metres per second squared (m/s 2 ). 

 A body of mass  m  at a height  z  0  above the surface may be 
said to possess a kind of energy purely by virtue of its position. 
This kind of energy (energy of position) is called potential 
energy. The gravitational potential energy is given by  

 (7)
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 Technically, it is more correct to say that this potential 
energy is a property of the Earth-body system rather than 
a property of the body itself, but this pedantic distinction 
can be ignored. 

 As the body falls to height  z  less than  z  0 , its potential 
energy  U  converts to kinetic energy  K  = 1⁄2 mv  2 . Thus, the 
speed  v  of the body at any height  z  is given by solving the 
equation  

 (8)
 

 Equation (8) is an expression of the law of conservation 
of energy. It says that the sum of kinetic energy, 1⁄2  mv  2 , and 
potential energy,  mgz , at any point during the fall, is equal to 
the total initial energy,  mgz  0 , before the fall began. Exactly 
the same dependence of speed on height could be deduced 
from the kinematic equations (4), (5), and (6) above. 

 In order to reach the initial height  z  0 , the body had 
to be given its initial potential energy by some external 
agency, such as a person lifting it. The process by which 
a body or a system obtains mechanical energy from out-
side of itself is called work. The increase of the energy of 
the body is equal to the work done on it. Work is equal to 
force times distance. 

 The force exerted by Earth’s gravity on a body of mass 
 m  may be deduced from the observation that the body, if 
released, will fall with acceleration  g . Since force is equal 
to mass times acceleration, the force of gravity is given by 
 F  =  mg . To lift the body to height  z  0 , an equal and opposite 
(i.e., upward) force must be exerted through a distance  z  0 . 
Thus, the work done is  

 (9)
 
 which is equal to the potential energy that results. 
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 If work is done by applying a force to a body that is not 
being acted upon by an opposing force, the body is acceler-
ated. In this case, the work endows the body with kinetic 
energy rather than potential energy. The energy that the 
body gains is equal to the work done on it in either case. 
It should be noted that work, potential energy, and kinetic 
energy, all being aspects of the same quantity, must all have 
the dimensions  ml  2 / t  2 .     

 Simple Harmonic Oscillations 

   Consider a mass  m  held in an equilibrium position by springs. 
The mass may be perturbed by displacing it to the right 
or left. If  x  is the displacement of the mass from equilib-
rium, the springs exert a force  F  proportional to  x , such that 
 

  (10)

 where  k  is a constant that depends on the stiffness of the 
springs. Equation (10) is called Hooke’s law, and the force 

(A) A mass  m  held in equilibrium by springs. (B) A mass  m  displaced a 
distance  x.  Copyright Encyclopædia Britannica; rendering for this edi-
tion by Rosen Educational Services
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is called the spring force. If  x  is positive (displacement to 
the right), the resulting force is negative (to the left), and 
vice versa. In other words, the spring force always acts so 
as to restore mass back toward its equilibrium position. 
Moreover, the force will produce an acceleration along the 
x  direction given by  a  =  d  2  x / dt  2 . Thus, Newton’s second law, 
F  =  ma , is applied to this case by substituting − kx  for  F  and 
d  2  x / dt  2  for  a , giving − kx  =  m ( d  2  x / dt  2 ). Transposing and divid-
ing by  m  yields the equation 
 

 
(11)

  
 Equation (11) gives the derivative—in this case the sec-

ond derivative—of a quantity  x  in terms of the quantity 
itself. Such an equation is called a differential equation, 
meaning an equation containing derivatives. Much of the 
ordinary, day-to-day work of theoretical physics consists 
of solving differential equations. The question is, given 
equation (11), how does  x  depend on time? 

 The answer is suggested by experience. If the mass 
is displaced and released, it will oscillate back and forth 
about its equilibrium position. That is,  x  should be an 
oscillating function of  t , such as a sine wave or a cosine 
wave. For example,  x  might obey a behaviour such as 

 
 (12)

 The mass is initially displaced a distance  x  =  A  and 
released at time  t  = 0. As time goes on, the mass oscillates 
from  A  to − A  and back to  A  again in the time it takes 
ωt  to advance by 2 π . This time is called  T , the period 
of oscillation, so that  ωT  = 2 π , or  T  = 2 π / ω . The recip-
rocal of the period, or the frequency  f , in oscillations 
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per second, is given by  f  = 1/ T  =  ω /2 π . The quantity  ω  is 
called the angular frequency and is expressed in radians 
per second. 

 The choice of equation (12) as a possible kind of behav-
iour satisfying the differential equation (11) can be tested 
by substituting it into equation (11). The fi rst derivative of 
x  with respect to  t  is 

 (13) (13)

  
 Differentiating a second time gives 

 (14) (14)

  

 The function  x  =  A  cos  ωt .  Copyright Encyclopædia Britannica; render-
ing for this edition by Rosen Educational Services
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 Equation (14) is the same as equation (11) if 

 (15) (15)
 

 Thus, subject to this condition, equation (12) is a cor-
rect solution to the differential equation. There are other 
possible correct guesses (e.g.,  x  =  A  sin  ωt ) that differ from 
this one only in whether the mass is at rest or in motion at 
the instant  t  = 0. 

 The mass, as has been shown, oscillates from  A  to 
− A  and back again. The speed, given by  dx / dt , equation 
(13), is zero at  A  and − A , but has its maximum magnitude, 
equal to  ωA , when  x  is equal to zero. Physically, after the 
mass is displaced from equilibrium a distance  A  to the 
right, the restoring force  F  pushes the mass back toward 
its equilibrium position, causing it to accelerate to the 
left. When it reaches equilibrium, there is no force act-
ing on it at that instant, but it is moving at speed  ωA , and 
its inertia takes it past the equilibrium position. Before 
it is stopped it reaches position − A , and by this time 
there is a force acting on it again, pushing it back toward 
equilibrium. 

 The whole process, known as simple harmonic motion, 
repeats itself endlessly with a frequency given by equation 
(15). Equation (15) means that the stiffer the springs (i.e., 
the larger  k ), the higher the frequency (the faster the oscil-
lations). Making the mass greater has exactly the opposite 
effect, slowing things down. 

 One of the most important features of harmonic 
motion is the fact that the frequency of the motion,  ω  (or 
 f ), depends only on the mass and the stiffness of the spring. 
It does not depend on the amplitude  A  of the motion. If 
the amplitude is increased, the mass moves faster, but 
the time required for a complete round trip remains the 
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same. This fact has profound consequences, governing the 
nature of music and the principle of accurate timekeeping. 

 The potential energy of a harmonic oscillator, equal to 
the work an outside agent must do to push the mass from 
zero to  x , is  U  = 1⁄2 kx  2 . Thus, the total initial energy in the 
situation described above is 1⁄2 kA  2 ; and since the kinetic 
energy is always 1⁄2 mv  2 , when the mass is at any point  x  in 
the oscillation, 

(16)

  
 Equation (16) plays exactly the role for harmonic oscil-

lators that equation (8) does for falling bodies. 
 It is quite generally true that harmonic oscillations 

result from disturbing any body or structure from a state 
of stable mechanical equilibrium. To understand this 
point, a brief discussion of stability is useful. 

 Consider a bowl with a marble resting inside, then 
consider a second, inverted bowl with a marble balanced 
on top. In both cases, the net force on the marble is zero. 
The marbles are thus in mechanical equilibrium. However, 
a small disturbance in the position of the marble balanced 
on top of the inverted bowl will cause it to roll away and 
not return. In such a case, the equilibrium is said to be 
unstable. Conversely, if the marble inside the fi rst bowl is 
disturbed, gravity acts to push it back toward the bottom 
of the bowl. The marble inside the bowl is an example of 
a body in stable equilibrium. If it is disturbed slightly, it 
executes harmonic oscillations around the bottom of the 
bowl rather than rolling away. 

 This argument may be generalized by a simple math-
ematical argument. Consider a body or structure in 
mechanical equilibrium, which, when disturbed by a small 
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amount  x , fi nds a force acting on it that is a function of  x, 
F ( x ). For small  x , such a function may be written generally 
as a power series in  x;  i.e., 

 (17) (17)
  

 where  F (0) is the value of  F ( x ) when  x  = (0), and  a  and  b  are 
constants, independent of  x , determined by the nature of 
the system. The statement that the body is in mechanical 
equilibrium means that  F (0) = 0, so that no force is acting 
on the body when it is undisturbed. Since  x  is small,  x  2  is 
much smaller; thus the term  bx  2  and all higher powers may 
be disregarded. This leaves  F ( x ) =  ax . Now, if  a  is positive, a 
disturbance produces a force in the same direction as the 
disturbance. This was the case when the marble was bal-
anced on top of the inverted bowl. It describes unstable 
equilibrium. For the system to be stable,  a  must be neg-
ative. Thus, if  a  = − k , where  k  is some positive constant, 
equation (17) becomes  F ( x ) = − kx , which is simply Hooke’s 
law, equation (10). As has been described above, any sys-
tem obeying Hooke’s law is a harmonic oscillator. 

 The generality of this argument accounts for the 
fact that harmonic oscillators are abundantly observed 
in common experience. For example, any rigid structure 
will oscillate at many different harmonic frequencies 
corresponding to different possible distortions of its equi-
librium shape. In addition, music may be produced either 
by disturbing the equilibrium of a stretched wire or fi bre 
(as in the piano and violin), a stretched membrane (e.g., 
drums), or a rigid bar (the triangle and the xylophone) or 
by disturbing the density of an enclosed column of air 
(as in the trumpet and organ). While a fl uid such as air is 
not rigid, its density is an example of a stable system that 
obeys Hooke’s law and may therefore be set into harmonic 
oscillations. 
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All music would be quite different from what it is were 
it not for the general property of harmonic oscillators 
that the frequency is independent of the amplitude. Thus, 
instruments yield the same note (frequency) regardless 
of how loudly they are played (amplitude), and, equally 
important, the same note persists as the vibrations die 
away. This same property of harmonic oscillators is the 
underlying principle of all accurate timekeeping.

The first precise timekeeping mechanism, whose prin-
ciples of motion were discovered by Galileo, was the simple 
pendulum. The accuracy of modern timekeeping has been 
improved dramatically by the introduction of tiny quartz 
crystals, whose harmonic oscillations generate electrical 
signals that may be incorporated into miniaturized cir-
cuits in clocks and wristwatches. All harmonic oscillators 
are natural timekeeping devices because they oscillate at 
intrinsic natural frequencies independent of amplitude. A 
given number of complete cycles always corresponds to the 
same elapsed time. Quartz crystal oscillators make more 
accurate clocks than pendulums do principally because 
they oscillate many more times per second.

Damped and Forced Oscillations

The simple harmonic oscillations discussed earlier con-
tinue forever, at constant amplitude, oscillating between 
A and −A. Common experience indicates that real oscil-
lators behave somewhat differently, however. Harmonic 
oscillations tend to die away as time goes on. This behav-
iour, called damping of the oscillations, is produced by 
forces such as friction and viscosity. These forces are 
known collectively as dissipative forces because they tend 
to dissipate the potential and kinetic energies of macro-
scopic bodies into the energy of the chaotic motion of 
atoms and molecules known as heat.
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 Friction and viscosity are complicated phenomena 
whose effects cannot be represented accurately by a gen-
eral equation. However, for slowly moving bodies, the 
dissipative forces may be represented by 

 (18) (18)
  

 where  v  is the speed of the body and  γ  is a constant coef-
fi cient, independent of dynamic quantities such as speed 
or displacement. Equation (18) is most easily understood 
by an argument analogous to that applied to equation (17) 
above.  F   d   is written as a sum of powers of  v , or  F   d  ( v ) =  F   d   (0) 
+  av  +  bv  2  + ∙ ∙ ∙ . When the body is at rest ( v  = 0), no dissipa-
tive force is expected because, if there were one, it might 
set the body into motion. Thus,  F   d   (0) = 0. The next term 
must be negative since dissipative forces always resist 
the motion. Thus,  a  = − γ  where  γ  is positive. Since  v  2  has 
the same sign regardless of the direction of the motion, 
b  must equal 0 lest it sometimes contribute a dissipative 
force in the same direction as the motion. The next term 
is proportional to  v  3 , and it and all subsequent terms may 
be neglected if  v  is suffi ciently small. So, as in equation 
(17) the power series is reduced to a single term, in this 
case  F   d   = − γv . 

 To fi nd the effect of a dissipative force on a harmonic 
oscillator, a new differential equation must be solved. The 
net force, or mass times acceleration, written as  md   2  x / dt  2 , 
is set equal to the sum of the Hooke’s law force, − kx , and 
the dissipative force, − γv  = − γdx / dt . Dividing by  m  yields 

(19)

  
 The general solution to equation (19) is given in the 

form  x  =  Ce  − γt /2 m   cos( ωt  +  θ  0 ), where  C  and  θ  0  are arbitrary 
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constants determined by the initial conditions. For the 
case in which  θ  0  = 0, the harmonic oscillations die out with 
time. The amplitude of the oscillations is bounded by an 
exponentially decreasing function of time (the dashed 
curves). The characteristic decay time (after which the 
oscillations are smaller by 1/ e , where  e  is the base of the 
natural logarithms  e  = 2.718 . . . ) is equal to 2 m / γ . The fre-
quency of the oscillations is given by 

(20)

  
 Importantly, this frequency does not change as the 

oscillations decay. 
 Equation (20) shows that it is possible, by proper 

choice of  γ , to turn a harmonic oscillator into a system 
that does not oscillate at all—that is, a system whose 
natural frequency is  ω  = 0. Such a system is said to be criti-
cally damped. For example, the springs that suspend the 
body of an automobile cause it to be a natural harmonic 
oscillator. The shock absorbers of the auto are devices 
that seek to add just enough dissipative force to make the 

 Damped oscillations.    Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services
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assembly critically damped. In this way, the passengers 
need not go through numerous oscillations after each 
bump in the road.

A simple disturbance can set a harmonic oscillator into 
motion. Repeated disturbances can increase the ampli-
tude of the oscillations if they are applied in synchrony 
with the natural frequency. Even a very small disturbance, 
repeated periodically at just the right frequency, can cause 
a very large amplitude motion to build up. This phenom-
enon is known as resonance.

Periodically forced oscillations may be represented 
mathematically by adding a term of the form a0 sin ωt to 
the right-hand side of equation (19). This term describes 
a force applied at frequency ω, with amplitude ma0. The 
result of applying such a force is to create a kind of motion 
that does not need to decay with time, since the energy 
lost to dissipative processes is replaced, over the course 
of each cycle, by the driving force. The amplitude of the 
motion depends on how close the driving frequency ω is 
to the natural frequency ω0 of the oscillator. Interestingly, 
even though dissipation is present, ω0 is not given by equa-
tion (20) but rather by equation (15): ω2

0 = k/m. In a graph 
of the amplitude of the steady state motion (i.e., long after 
the driving force has begun to be applied), the maximum 
amplitude occurs as expected at ω = ω0. The height and 
width of the resonance curve are governed by the damp-
ing coefficient γ. If there were no damping, the maximum 
amplitude would be infinite. Because small disturbances 
at every possible frequency are always present in the natu-
ral world, every rigid structure would shake itself to pieces 
if not for the presence of internal damping.

Resonances are not uncommon in the world of familiar 
experience. For example, cars often rattle at certain engine 
speeds, and windows sometimes rattle when an airplane 
flies by. Resonance is particularly important in music. For 
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example, the sound box of a violin does its job well if it 
has a natural frequency of oscillation that responds res-
onantly to each musical note. Very strong resonances to 
certain notes—called “wolf notes” by musicians—occur in 
cheap violins and are much to be avoided. Sometimes, a 
glass may be broken by a singer as a result of its resonant 
response to a particular musical note.

Motion of a Particle in 
Two or More Dimensions

More complex problems in mechanics involve a particle 
moving in two or more dimensions. Such problems include 
those of the pendulum and the circular orbit.

Projectile Motion

Galileo pointed out with some detectable pride that none 
before him had realized that the curved path followed 
by a missile or projectile is a parabola. He had arrived at 
his conclusion by realizing that a body undergoing ballis-
tic motion executes, quite independently, the motion of 
a freely falling body in the vertical direction and inertial 
motion in the horizontal direction. These considerations, 
and terms such as ballistic and projectile, apply to a body 
that, once launched, is acted upon by no force other than 
Earth’s gravity.

Projectile motion may be thought of as an example 
of motion in space—that is to say, of three-dimensional 
motion rather than motion along a line, or one-dimensional 
motion. In a suitably defined system of Cartesian coor-
dinates, the position of the projectile at any instant may 
be specified by giving the values of its three coordinates, 
x(t), y(t), and z(t). By generally accepted convention, z(t) 
is used to describe the vertical direction. To a very good 
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approximation, the motion is confi ned to a single verti-
cal plane, so that for any single projectile it is possible 
to choose a coordinate system such that the motion is 
two-dimensional [say,  x ( t ) and  z ( t )] rather than three-
dimensional [ x ( t ),  y ( t ), and  z ( t )]. It is assumed throughout 
this section that the range of the motion is suffi ciently lim-
ited that the curvature of Earth’s surface may be ignored. 

 Consider a body whose vertical motion obeys equation 
(4), Galileo’s law of falling bodies, which states  z  =  z  0  − 1⁄2  gt  2 , 
while, at the same time, moving horizontally at a constant 
speed  v   x   in accordance with Galileo’s law of inertia. The 
body’s horizontal motion is thus described by  x ( t ) =  v   x   t , 
which may be written in the form  t  =  x / v   x  . Using this result 
to eliminate  t  from equation (4) gives  z  =  z  0  − 1⁄2  g (1/ v   x  ) 2  x  2 . 
This latter is the equation of the trajectory of a projectile 
in the  z – x  plane, fi red horizontally from an initial height 
 z  0 . It has the general form 
 
 (21) (21)

  
 where  a  and  b  are constants. Equation (21) may be recog-
nized to describe a parabola, just as Galileo claimed. The 

(A) The parabolic path of a projectile. (B) The parabolic path of a projectile 
with an initial upward component of velocity. Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
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parabolic shape of the trajectory is preserved even if the 
motion has an initial component of velocity in the vertical 
direction. 

 Energy is conserved in projectile motion. The poten-
tial energy  U ( z ) of the projectile is given by  U ( z ) =  mgz . The 
kinetic energy  K  is given by  K  = 1⁄2  mv  2 , where  v  2  is equal to 
the sum of the squares of the vertical and horizontal com-
ponents of velocity, or  v  2  =  v  2   x   +  v  2   z  . 

 In all of this discussion, the effects of air resistance 
(to say nothing of wind and other more complicated phe-
nomena) have been neglected. These effects are seldom 
actually negligible. They are most nearly so for bodies that 
are heavy and slow-moving. This discussion, therefore, is 
of great value for understanding the underlying principles 
of projectile motion but of little utility for predicting the 
actual trajectory of, say, a cannonball once fi red or even a 
well-hit baseball.     

 Motion of a Pendulum 

 According to legend, Galileo discovered the principle 
of the pendulum while attending mass at the Duomo 
(cathedral) located in the Piazza del Duomo of Pisa, 
Italy. A lamp hung from the ceiling by a cable and, having 
just been lit, was swaying back and forth. Galileo real-
ized that each complete cycle of the lamp took the same 
amount of time, compared to his own pulse, even though 
the amplitude of each swing was smaller than the last. As 
has already been shown, this property is common to all 
harmonic oscillators, and, indeed, Galileo’s discovery led 
directly to the invention of the fi rst accurate mechani-
cal clocks. Galileo was also able to show that the period 
of oscillation of a simple pendulum is proportional to 
the square root of its length and does not depend on 
its mass. 
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 Consider a simple pendulum with a bob of mass  M  sus-
pended by a massless cable or bar of length  L  from a point 
about which it pivots freely. The angle between the cable 
and the vertical is called  θ . The force of gravity acting on 
the mass  M , always equal to − Mg  in the vertical direction, 
is a vector that may be resolved into two components, one 
that acts ineffectually along the cable and another, per-
pendicular to the cable, that tends to restore the bob to its 
equilibrium position directly below the point of suspen-
sion. This latter component is given by 
 
 (22) (22)

  
 The bob is constrained by the cable to swing through 

an arc that is actually a segment of a circle of radius  L . If 
the cable is displaced through an angle  θ , the bob moves 
a distance  Lθ  along its arc ( θ  must be expressed in radians 
for this form to be correct). Thus, Newton’s second law 
may be written  

 A simple pendulum.    Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services
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(23)

  
 Equating equation (22) to equation (23), one sees 

immediately that the mass  M  will drop out of the result-
ing equation. The simple pendulum is an example of a 
falling body, and its dynamics do not depend on its mass 
for exactly the same reason that the acceleration of a fall-
ing body does not depend on its mass: both the force of 
gravity and the inertia of the body are proportional to the 
same mass, and the effects cancel one another. The equa-
tion that results (after extracting the constant  L  from the 
derivative and dividing both sides by  L ) is 

(24)

  
 If the angle  θ  is suffi ciently small, equation (24) 

may be rewritten in a form that is both more familiar 
and more amenable to solution. Consider a segment of 
a circle of radius  L . A radius vector at angle  θ  locates a 
point on the circle displaced a distance  Lθ  along the arc. 
It is clear from the geometry that  L  sin  θ  and  Lθ  are very 
nearly equal for small  θ . It follows then that sin  θ  and  θ  are 

 A segment of a circle of radius  L .  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services
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also very nearly equal for small  θ . Thus, if the analysis is 
restricted to small angles, then sin  θ  may be replaced by  θ
in equation (24) to obtain 

(25)

  
 Equation (25) should be compared with equation (11): 

d  2  x / dt  2  = −( k / m ) x . In the fi rst case, the dynamic variable 
(meaning the quantity that changes with time) is  θ , in the 
second case it is  x . In both cases, the second derivative of 
the dynamic variable with respect to time is equal to the 
variable itself multiplied by a negative constant. The equa-
tions are therefore mathematically identical and have the 
same solution—i.e., equation (12), or  θ  =  A  cos  ωt . In the 
case of the pendulum, the frequency of the oscillations 
is given by the constant in equation (25), or  ω  2  =  g / L . The 
period of oscillation,  T  = 2 π / ω , is therefore 

 Just as Galileo concluded, the period is independent of 
the mass and proportional to the square root of the length. 

 As with most problems in physics, this discussion of 
the pendulum has involved a number of simplifi cations 
and approximations. Most obviously, sin  θ  was replaced 
by  θ  to obtain equation (25). This approximation is sur-
prisingly accurate. For example, at a not-very-small angle 
of 17.2°, corresponding to 0.300 radian, sin  θ  is equal to 
0.296, an error of less than 2 percent. For smaller angles, 
of course, the error is appreciably smaller. 

 The problem was also treated as if all the mass of 
the pendulum were concentrated at a point at the end of the 
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cable. This approximation assumes that the mass of the 
bob at the end of the cable is much larger than that of  
the cable and that the physical size of the bob is small 
compared with the length of the cable. When these 
approximations are not sufficient, one must take into 
account the way in which mass is distributed in the 
cable and bob. This is called the physical pendulum, as 
opposed to the idealized model of the simple pendulum. 
Significantly, the period of a physical pendulum does not 
depend on its total mass either.

The effects of friction, air resistance, and the like have 
also been ignored. These dissipative forces have the same 
effects on the pendulum as they do on any other kind of 
harmonic oscillator. They cause the amplitude of a freely 
swinging pendulum to grow smaller on successive swings. 
Conversely, in order to keep a pendulum clock going, a 
mechanism is needed to restore the energy lost to dissipa-
tive forces.

Circular Motion

Consider a particle moving along the perimeter of a 
circle at a uniform rate, such that it makes one complete 
revolution every hour. To describe the motion mathe-
matically, a vector is constructed from the centre of the 
circle to the particle. The vector then makes one com-
plete revolution every hour. In other words, the vector 
behaves exactly like the large hand on a wristwatch, an 
arrow of fixed length that makes one complete revolu-
tion every hour. The motion of the point of the vector is 
an example of uniform circular motion, and the period 
T of the motion is equal to one hour (T = 1 h). The arrow 
sweeps out an angle of 2π radians (one complete circle) 
per hour. This rate is called the angular frequency and 
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is written  ω  = 2 π  h −1 . Quite generally, for uniform circular 
motion at any rate, 

 (26) (26)
  

 These defi nitions and relations are the same as they 
are for harmonic motion. 

 Consider a coordinate system with the circle centred 
at the origin. At any instant of time, the position of 
the particle may be specifi ed by giving the radius  r  of the 
circle and the angle  θ  between the position vector and 
the  x -axis. Although  r  is constant,  θ  increases uniformly 
with time  t , such that  θ  =  ωt , or  dθ / dt  =  ω , where  ω  is the 
angular frequency in equation (26). Contrary to the case of 

 (A) A coordinate system to describe uniform circular motion.(B) The distance 
traveled in time Δ t  by a particle undergoing uniform circular motion. (C) The 
instantaneous velocity of the particle. (D) The velocity vector  v  undergoes uni-
form circular motion at the same angular frequency as the particle. (e) The 
acceleration vector of the particle.   Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services 
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the wristwatch, however,  ω  is positive by convention when 
the rotation is in the counterclockwise sense. The vector  r
has  x  and  y  components given by 

   (27)

  (28)  (28)
  

 One meaning of equations (27) and (28) is that, when 
a particle undergoes uniform circular motion, its  x  and  y  
components each undergo simple harmonic motion. They 
are, however, not in phase with one another: at the instant 
when  x  has its maximum amplitude (say, at  θ  = 0),  y  has 
zero amplitude, and vice versa. 

 In a short time, Δ t , the particle moves  r Δ θ  along the 
circumference of the circle. The average speed of the par-
ticle is thus given by 
 

 
(29)

  
 The average velocity of the particle is a vector given by 

 

 
(30)

  
 This operation of vector subtraction yields a vector 

that is nearly perpendicular to  r ( t ) and  r ( t  + Δ t ). Indeed, 
the instantaneous velocity, found by allowing Δ t  to shrink 
to zero, is a vector  v  that is perpendicular to  r  at every 
instant and whose magnitude is 
 

 
(31)
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 The relationship between  r  and  v  means that the par-
ticle’s instantaneous velocity is always tangent to the circle. 

 Notice that, just as the position vector  r  may be 
described in terms of the components  x  and  y  given by 
equations (27) and (28), the velocity vector  v  may be 
described in terms of its projections on the  x  and  y  axes, 
given by 
 
 (32) (32)

  
 
 (33) (33)

  
 Imagine a new coordinate system, in which a vector of 

length  ωr  extends from the origin and points at all times 
in the same direction as  v . Each time the particle sweeps 
out a complete circle, this vector also sweeps out a com-
plete circle. In fact, its point is executing uniform circular 
motion at the same angular frequency as the particle itself. 
Because vectors have magnitude and direction, but not 
position in space, the vector that has been constructed is 
the velocity  v . The velocity of the particle is itself under-
going uniform circular motion at angular frequency  ω . 

 Although the speed of the particle is constant, the 
particle is nevertheless accelerated, because its velocity is 
constantly changing direction. The acceleration  a  is given by 
 
 (34)

      
 Since  v  is a vector of length  rω  undergoing uniform cir-

cular motion, equations (29) and (30) may be repeated, giving 
 

 
(35)
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(36)

 Thus, one may conclude that the instantaneous accel-
eration is always perpendicular to  v  and its magnitude is 

(37)
 

 Since  v  is perpendicular to  r , and  a  is perpendicular to 
 v , the vector  a  is rotated 180° with respect to  r . In other 
words, the acceleration is parallel to  r  but in the opposite 
direction. The same conclusion may be reached by real-
izing that  a  has  x  and  y  components given by 
 

 
(38)

  

(39)

  
 similar to equations (32) and (33). When equations (38) 
and (39) are compared with equations (27) and (28) for 
x  and  y , it is clear that the components of  a  are just those 
of  r  multiplied by − ω  2 , so that  a  = − ω  2  r . This acceleration 
is called the centripetal acceleration, meaning that it is 
inward, pointing along the radius vector toward the 
centre of the circle. It is sometimes useful to express 
the centripetal acceleration in terms of the speed  v . 
Using  v  =  ωr , one can write 

(40)
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 Circular Orbits 

 The detailed behaviour of real orbits is the concern of 
celestial mechanics. This section treats only the idealized, 
uniform circular orbit of a planet such as Earth about a 
central body such as the Sun. In fact, Earth’s orbit about 
the Sun is not quite exactly uniformly circular, but it is 
a close enough approximation for the purposes of this 
discussion. 

 A body in uniform circular motion undergoes at all 
times a centripetal acceleration given by equation (40). 
According to Newton’s second law, a force is required 
to produce this acceleration. In the case of an orbiting 
planet, the force is gravity. The gravitational attraction of 
the Sun is an inward (centripetal) force acting on Earth. 
This force produces the centripetal acceleration of the 
orbital motion. 

 Before these ideas are expressed quantitatively, an 
understanding of why a force is needed to maintain a body 
in an orbit of constant speed is useful. The reason is that, 
at each instant, the velocity of the planet is tangent to the 
orbit. In the absence of gravity, the planet would obey the 
law of inertia (Newton’s fi rst law) and fl y off in a straight 
line in the direction of the velocity at constant speed. The 
force of gravity serves to overcome the inertial tendency 
of the planet, thereby keeping it in orbit. 

 The gravitational force between two bodies such as 
the Sun and Earth is given by  

 
(41)

 where  M   S   and  M   e   are the masses of the Sun and Earth, 
respectively,  r  is the distance between their centres, and 
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G  is a universal constant equal to 6.672 × 10 −11  Nm 2 /kg 2

(Newton metres squared per kilogram squared). The force 
acts along the direction connecting the two bodies (i.e., 
along the radius vector of the uniform circular motion), 
and the minus sign signifi es that the force is attractive, 
acting to pull Earth toward the Sun. 

 To an observer on the surface of Earth, the planet 
appears to be at rest at (approximately) a constant dis-
tance from the Sun. It would appear to the observer, 
therefore, that any force (such as the Sun’s gravity) act-
ing on Earth must be balanced by an equal and opposite 
force that keeps Earth in equilibrium. In other words, 
if gravity is trying to pull Earth into the Sun, some 
opposing force must be present to prevent that from hap-
pening. In reality, no such force exists. Earth is in freely 
accelerated motion caused by an unbalanced force. The 
apparent force, known in mechanics as a pseudoforce, 
is due to the fact that the observer is actually in acceler-
ated motion. In the case of orbital motion, the outward 
pseudoforce that balances gravity is called the centrifu-
gal force. 

 For a uniform circular orbit, gravity produces an 
inward acceleration given by equation (40),  a  = − v  2 / r . The 
pseudoforce  f  needed to balance this acceleration is just 
equal to the mass of Earth times an equal and opposite 
acceleration, or  f  =  M   e   v  2 / r . The earthbound observer 
then believes that there is no net force acting on the 
planet—i.e., that  F  +  f  = 0, where  F  is the force of gravity 
given by equation (41). Combining these equations yields 
a relation between the speed  v  of a planet and its dis-
tance  r  from the Sun:  

 
(42)
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 It should be noted that the speed does not depend on 
the mass of the planet. This occurs for exactly the same 
reason that all bodies fall toward Earth with the same 
acceleration and that the period of a pendulum is inde-
pendent of its mass. An orbiting planet is in fact a freely 
falling body. 

 Equation (42) is a special case (for circular orbits) of 
Kepler’s third law. Using the fact that  v  = 2 πr / T , where 2 πr
is the circumference of the orbit and  T  is the time to make 
a complete orbit (i.e.,  T  is one year in the life of the planet), 
it is easy to show that  T   2  = (4 π  2 / GM   S   ) r  3 . This relation also 
may be applied to satellites in circular orbit around Earth 
(in which case,  M   e   must be substituted for  M   S   ) or in orbit 
around any other central body.     

 Angular Momentum and Torque 

 A particle of mass  m  and velocity  v  has linear momentum 
 p  =  m  v . The particle may also have angular momentum  L  
with respect to a given point in space. If  r  is the vector 
from the point to the particle, then 
 
 (43) (43)

  
 Notice that angular momentum is always a vector per-

pendicular to the plane defi ned by the vectors  r  and  p  (or 
 v ). For example, if the particle (or a planet) is in a circular 
orbit, its angular momentum with respect to the centre of 
the circle is perpendicular to the plane of the orbit and in 
the direction given by the vector cross product right-hand 
rule. Moreover, since in the case of a circular orbit,  r  is 
perpendicular to  p  (or  v ), the magnitude of  L  is simply 
 
 (44) (44)
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 The signifi cance of angular momentum arises from its 
derivative with respect to time, 

  
(45)

 where  p  has been replaced by  m  v  and the constant  m  has been 
factored out. Using the product rule of differential calculus, 
 

  
 

(46)

 In the fi rst term on the right-hand side of equation 
(46),  d  r / dt  is simply the velocity  v , leaving  v  ×  v . Since the 
cross product of any vector with itself is always zero, that 
term drops out, leaving 
 
 

(47)
  

 The angular momentum  L  of a particle traveling in a circular orbit.  
 Copyright Encyclopædia Britannica; rendering for this edition by 
Rosen Educational Services 
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 Here,  d  v / dt  is the acceleration  a  of the particle. Thus, 
if equation (47) is multiplied by  m , the left-hand side 
becomes  d  L / dt , as in equation (45), and the right-hand 
side may be written  r  ×  m  a . Since, according to Newton’s 
second law,  m  a  is equal to  F , the net force acting on the 
particle, the result is 

(48)
  

 Equation (48) means that any change in the angular 
momentum of a particle must be produced by a force 
that is not acting along the same direction as  r . One par-
ticularly important application is the solar system. Each 
planet is held in its orbit by its gravitational attraction to 
the Sun, a force that acts along the vector from the Sun 
to the planet. Thus the force of gravity cannot change the 
angular momentum of any planet with respect to the Sun. 
Therefore, each planet has constant angular momentum 
with respect to the Sun. This conclusion is correct even 
though the real orbits of the planets are not circles but 
ellipses. 

 The quantity  r  ×  F  is called the torque  τ . Torque may 
be thought of as a kind of twisting force, the kind needed 
to tighten a bolt or to set a body into rotation. Using this 
defi nition, equation (48) may be rewritten 

(49)

  
 Equation (49) means that if there is no torque act-

ing on a particle, its angular momentum is constant, or 
conserved. Suppose, however, that some agent applies a 
force  F   a   to the particle resulting in a torque equal to  r  ×  F   a  . 
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According to Newton’s third law, the particle must apply 
a force −Fa to the agent. Thus there is a torque equal to 
−r × Fa acting on the agent. The torque on the particle 
causes its angular momentum to change at a rate given by 
dL/dt = r × Fa. However, the angular momentum La of the 
agent is changing at the rate dLa /dt = −r × Fa. Therefore, 
dL/dt + dLa /dt = 0, meaning that the total angular momen-
tum of particle plus agent is constant, or conserved. This 
principle may be generalized to include all interactions 
between bodies of any kind, acting by way of forces of any 
kind. Total angular momentum is always conserved. The 
law of conservation of angular momentum is one of the 
most important principles in all of physics.

Motion of a Group of Particles

The word “particle” has been used in this article to sig-
nify an object whose entire mass is concentrated at a point 
in space. In the real world, however, there are no parti-
cles of this kind. All real bodies have sizes and shapes. 
Furthermore, as Newton believed and is now known, all 
bodies are in fact compounded of smaller bodies called 
atoms. Therefore, the science of mechanics must deal not 
only with particles but also with more complex bodies 
that may be thought of as collections of particles.

Centre of Mass

To take a specific example, the orbit of a planet around the 
Sun was discussed earlier as if the planet and the Sun were 
each concentrated at a point in space. In reality, of course, 
each is a substantial body. However, because each is nearly 
spherical in shape, it turns out to be permissible, for the 
purposes of this problem, to treat each body as if its mass 
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were concentrated at its centre. This is an example of an 
idea that is often useful in discussing bodies of all kinds: 
the centre of mass. The centre of mass of a uniform sphere 
is located at the centre of the sphere. For many purposes 
the sphere may be treated as if all its mass were concen-
trated at its centre of mass. 

 To extend the idea further, consider the Earth and 
the Sun not as two separate bodies but as a single system 
of two bodies interacting with one another by means of 
the force of gravity. In the previous discussion of circu-
lar orbits, the Sun was assumed to be at rest at the centre 
of the orbit, but, according to Newton’s third law, it must 
actually be accelerated by a force due to Earth that is equal 
and opposite to the force that the Sun exerts on Earth. In 
other words, considering only the Sun and Earth (ignor-
ing, for example, all the other planets), if  M   S   and  M   e   are, 
respectively, the masses of the Sun and Earth, and if  a   S   
and  a   e   are their respective accelerations, then combining 
Newton’s second and third laws results in the equation 
 M   S    a   S   = − M   e    a   e  . Writing each  a  as  d  v / dt , this equation is 
easily manipulated to give 
 
 (50) (50)

  
 

   (51)

 This remarkable result means that, as Earth orbits the 
Sun and the Sun moves in response to Earth’s gravitational 
attraction, the entire two-body system has constant linear 
momentum, moving in a straight line at constant speed. 
Without any loss of generality, one can imagine observing 
the system from a frame of reference moving along with 
that same speed and direction. This is sometimes called 



91

7 The Laws of Particle Motion 7

the centre-of-mass frame. In this frame, the momentum 
of the two-body system—i.e., the constant in equation 
(51)—is equal to zero. Writing each of the  v ’s as the corre-
sponding  d  r / dt , equation (51) may be expressed in the form 
 

(52)

 Thus,  M   S    r   S   and  M   e    r   e   are two vectors whose vector 
sum does not change with time. The sum is defi ned to be 
the constant vector  M  R , where  M  is the total mass of the 
system and equals  M   S   +  M   e  . Thus, 
 

   (53)

 This procedure defi nes a constant vector  R , from any 
arbitrarily chosen point in space. The fact that  R  is con-
stant (although  r   S   and  r   e   are not constant) means that, 
rather than Earth orbiting the Sun, Earth and Sun are both 
orbiting an imaginary point fi xed in space. This point is 
known as the centre of mass of the two-body system. 

 Knowing the masses of the two bodies ( M   S   = 1.99 × 
10 30  kilograms,  M   e   = 5.98 × 10 24  kilograms), it is easy to fi nd 

  The centre of mass of the two-body earth-Sun system.   Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
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the position of the centre of mass. The origin of the coor-
dinate system may be chosen to be located at the centre 
of mass merely by defi ning  R  = 0. Then  r   S   = ( M   e   / M   S   )  r   e   ≈
450 kilometres, when  r   e   is rounded to 1.5 × 10 8  km. A few 
hundred kilometres is so small compared to  r   e   that, for all 
practical purposes, no appreciable error occurs when  r   S
is ignored and the Sun is assumed to be stationary at the 
centre of the orbit. 

 With this example as a guide, it is now possible to 
defi ne the centre of mass of any collection of bodies. 
Assume that there are  N  bodies altogether, each labeled 
with numbers ranging from 1 to  N , and that the vector 
from an arbitrary origin to the  i th body—where  i  is some 
number between 1 and  N —is  r   i   . Let the mass of the  i th 
body be  m   i  . Then the total mass of the  N -body system is 

(54)
  

 The centre of mass of an  N -body system.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services
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 and the centre of mass of the system is found at the end 
of a vector  R  given by 

(55)

  
 where this defi nition applies regardless of whether the 
 N  bodies making up the system are the stars in a galaxy, 
the atoms in a rigid body, larger and arbitrarily chosen 
segments of a rigid body, or any other system of masses. 
According to equation (55), the vector to the centre of 
mass of any system is a kind of weighted average of the 
vectors to all the components of the system. 

 As will be demonstrated in the sections that follow, 
the statics and dynamics of many complicated bodies 
or systems may often be understood by simply applying 
Newton’s laws as if the system’s mass were concentrated at 
the centre of mass.     

 Conservation of Momentum 

 Newton’s second law, in its most general form, says that 
the rate of a change of a particle’s momentum  p  is given by 
the force acting on the particle; i.e.,  F  =  d  p / dt . If there is no 
force acting on the particle, then, since  d  p / dt  = 0,  p  must 
be constant, or conserved. This observation is merely a 
restatement of Newton’s fi rst law, the principle of inertia: 
if there is no force acting on a body, it moves at constant 
speed in a straight line. 

 Now suppose that an external agent applies a force  F   a   
to the particle so that  p  changes according to  

 
(56)
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 According to Newton’s third law, the particle must 
apply an equal and opposite force − F   a   to the external 
agent. The momentum  p   a   of the external agent therefore 
changes according to  

 
(57)

 Adding together equations (56) and (57) results in the 
equation  

 
(58)

 The force applied by the external agent changes 
the momentum of the particle, but at the same time the 
momentum of the external agent must also change in 
such a way that the total momentum of both together 
is constant, or conserved. This idea may be generalized 
to give the law of conservation of momentum: in all the 
interactions between all the bodies in the universe, total 
momentum is always conserved. 

 It is useful in this light to examine the behaviour 
of a complicated system of many parts. The centre of 
mass of the system may be found using equation (55). 
Differentiating with respect to time gives  

(59)

 where  v  =  d  R / dt  and  v   i   =  d  r   i   / dt . Note that  m   i    v   i   is the momen-
tum of the  i th part of the system, and  m  v  is the momentum 
that the system would have if all its mass (i.e.,  m ) were con-
centrated at its centre of mass, the point whose velocity 
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is  v . Thus, the momentum associated with the centre of 
mass is the sum of the momenta of the parts. 

 Suppose now that there is no external agent applying 
a force to the entire system. Then the only forces act-
ing on the system are those exerted by the parts on one 
another. These forces may accelerate the individual parts. 
Differentiating equation (59) with respect to time gives  

(60)

 
 where  F   i   is the net force, or the sum of the forces, exerted 
by all the other parts of the body on the  i th part.  F   i   is 
defi ned mathematically by the equation  

(61)

 where  F   ij   represents the force on body  i  due to body  j  (the 
force on body  i  due to itself,  F   ii  , is zero). The motion of the 
centre of mass is then given by the complicated-looking 
formula  

 
(62)

 
 This complicated formula may be greatly simplifi ed, 

however, by noting that Newton’s third law requires that 
for every force  F   ij   exerted by the  j th body on the  i th 
body, there is an equal and opposite force − F   ij   exerted by 
the  i th body on the  j th body. In other words, every term 
in the double sum has an equal and opposite term. The 
double summation on the right-hand side of equation 
(61) always adds up to zero. This result is true regardless 
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of the complexity of the system, the nature of the forces 
acting between the parts, or the motions of the parts. 
In short, in the absence of external forces acting on the 
system as a whole, mdv/dt = 0, which means that the 
momentum of the centre of mass of the system is always 
conserved. Having determined that momentum is con-
served whether or not there is an external force acting, 
one may conclude that the total momentum of the uni-
verse is always conserved.

Collisions

A collision is an encounter between two bodies that 
alters at least one of their courses. Altering the course of 
a body requires that a force be applied to it. Thus, each 
body exerts a force on the other. These forces of interac-
tion may operate at some distance, as do the gravitational 
and electromagnetic forces, or the bodies may appear to 
make physical contact. However, even apparent contact 
between two bodies is only a macroscopic manifestation 
of microscopic forces that act between atoms some dis-
tance apart. There is no fundamental distinction between 
physical contact and interaction at a distance.

The importance of understanding the mechanics of 
collisions is obvious to anyone who has ever driven an 
automobile. In modern physics, however, collisions are 
important for a different reason. The current understand-
ing of the subatomic particles of which atoms are composed 
is derived entirely from studying the results of collisions 
among them. Thus, in modern physics, the description of 
collisions is a significant part of the understanding of mat-
ter. These descriptions are quantum mechanical rather 
than classical, but they are nevertheless closely based on 
principles that arise out of classical mechanics.
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 It is possible in principle to predict the result of a col-
lision using Newton’s second law directly. Suppose that 
two bodies are going to collide and that  F , the force of 
interaction between them, is known to be a function of 
 r , the distance between them. Then, if it is known that, 
say, one particle has incident momentum  p , the problem 
is solved if the fi nal momentum  p  + Δ    p  can be determined. 
Inverting Newton’s second law,  F  =  d  p / dt , the change in 
momentum is given by 

(63)
  

 This integral is known as the impulse imparted to the 
particle. In order to perform the integral, it is necessary 
to know  r  at all times so that  F  may be known at all times. 
More realistically, Δ    p  is the sum of a series of small steps, 
such that 
 

   (64)

 where  F  depends on the instantaneous distance between 
the particles. Because  p  =  m  v  =  md  r / dt , the change in  r  in 
this step is 
 

   (65)

 At the next step, there is a new distance,  r  +  δ   r , giv-
ing a new value of the force in equation (64) and a new 
momentum,  p  +  δ   p , in equation (65). This method of ana-
lyzing collisions is used in numerical calculations on digital 
computers. 

 To predict the result of a collision analytically (rather than 
numerically) it is often most useful to apply conservation 
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laws. In any collision (as in any other phenomenon), energy, 
momentum, and angular momentum are always conserved. 
Judicious application of these laws may be extremely use-
ful because they do not depend in any way on the detailed 
nature of the interaction (i.e., the force as a function of 
distance). 

 This point can be illustrated by the following example. 
A collision is to take place between two bodies of the same 
mass  m . One of the bodies is initially at rest (its momen-
tum is zero). The other has initial momentum  p  0 . After the 
collision, the body previously at rest has momentum  p  1 , 
and the body initially in motion has momentum  p  2 . Since 
momentum is conserved, the total momentum after the 
collision,  p  1  +  p  2 , must be equal to the total momentum 
before the collision,  p  0 ; that is, 
 
 (66) (66)

   
  Equation (66) is the equation of a vector triangle. 

However,  p  1  and  p  2  are not determined by this condition; 
they are only constrained by it. 

 Collision between two particles of equal mass.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
 Collision between two particles of equal mass.  Copyright Encyclopædia 
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 Although energy is always conserved, the kinetic 
energy of the incident body is not always converted 
entirely into the kinetic energy of the two bodies after 
the collision. For example, if the bodies are microscopic 
(say, two identical atoms), the collision may cause one or 
both to be excited into a state of higher internal energy 
than it started with. Such an event would leave corre-
spondingly less kinetic energy for the outgoing atoms. In 
fact, it is precisely by studying the trajectories of outgo-
ing projectiles in collisions like these that physicists are 
able to determine the possible excited states of micro-
scopic particles. 

 In a collision between macroscopic objects, some of 
the kinetic energy is always converted to heat. Heat is the 
energy of random vibrations of the atoms and molecules 
that constitute the bodies. However, if the amount of heat 
is negligible compared to the initial kinetic energy, it may 
be ignored. Such a collision is said to be elastic. 

 Suppose the collision just described between two bod-
ies, each of mass  m , is between billiard balls, and suppose it 
is elastic (a reasonably good approximation of real billiard 
balls). The kinetic energy of the incident ball is then equal 
to the sum of the kinetic energies of the outgoing balls. 
According to equation (3), the kinetic energy of a moving 
object is given by  K  = 1⁄2  mv  2 , where  v  is the speed of the 
ball (technically, the energy associated with the fact that 
the ball is rolling as well as translating is ignored here). 
Equation (3) may be written in a particularly useful form 
by recognizing that since  p  =  mv 
 
 
 

(67)

  
 Then the conservation of kinetic energy may be written 
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(68)

  
 or, canceling the factors 2 m , 

 (69) (69)
  

 Comparing this result with equation (66) shows that the 
vector triangle is pythagorean;  p  1  and  p  2  are perpendicular. 
This result is well known to all experienced pool players. 
Notice that it was possible to arrive at this result without any 
knowledge of the forces that act when billiard balls collide.     

 Relative Motion 

 A collision between two bodies can always be described 
in a frame of reference in which the total momentum is 
zero. This is the centre-of-mass (or centre-of-momentum) 
frame mentioned earlier. Then, for example, in the colli-
sion between two bodies of the same mass, the two bodies 
always have equal and opposite velocities. It should be 
noted that, in this frame of reference, the outgoing 
momenta are antiparallel and not perpendicular. 

 Any collection of bodies may similarly be described in 
a frame of reference in which the total momentum is zero. 
This frame is simply the one in which the centre of mass is 
at rest. This fact is easily seen by differentiating equation 
(55) with respect to time, giving 
 
 

(70)

 The right-hand side is the sum of the momenta of all 
the bodies. It is equal to zero if the velocity of the centre 
of mass,  d   R / dt , is equal to zero. 
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 If Newton’s second law is correct in any frame of ref-
erence, it will also appear to be correct to an observer 
moving with any constant velocity with respect to that 
frame. This principle, called the principle of Galilean rela-
tivity, is true because, to the moving observer, the same 
constant velocity seems to have been added to the veloc-
ity of every particle in the system. This change does not 
affect the accelerations of the particles (since the added 
velocity is constant, not accelerated) and therefore does 
not change the apparent force (mass times acceleration) 
acting on each particle. That is why it is permissible to 
describe a problem from the centre-of-momentum frame 
(provided that the centre of mass is not accelerated) or 
from any other frame moving at constant velocity with 
respect to it. 

 Collision between two particles of equal mass as seen from the centre-of-mass 
frame of reference.  Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services
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 If this principle is strictly correct, the fundamental 
forces of physics should not contain any particular speed. 
This must be true because the speed of any object will 
be different to observers in different but equally good 
frames of reference, but the force should always be the 
same. It turns out, according to the theory of James Clerk 
Maxwell, that there is an intrinsic speed in the force laws 
of electricity and magnetism: the speed of light appears 
in the forces between electric charges and between mag-
netic poles. This discrepancy was ultimately resolved by 
Albert Einstein’s special theory of relativity. According 
to the special theory of relativity, Newtonian mechanics 
breaks down when the relative speed between particles 
approaches the speed of light.     

 Coupled Oscillators 

 In the section on simple harmonic oscillators, the motion 
of a single particle held in place by springs was considered. 
In this section, the motion of a group of particles bound 
by springs to one another is discussed. The solutions of 
this seemingly academic problem have far-reaching impli-
cations in many fi elds of physics. For example, a system of 
particles held together by springs turns out to be a useful 
model of the behaviour of atoms mutually bound in a crys-
talline solid. 

 To begin with a simple case, consider two particles in a 
line. Each particle has mass  m , each spring has spring con-
stant  k , and motion is restricted to the horizontal, or  x , 
direction. Even this elementary system is capable of sur-
prising behaviour, however. For instance, if one particle is 
held in place while the other is displaced, and then both are 
released, the displaced particle immediately begins to exe-
cute simple harmonic motion. This motion, by stretching 
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the spring between the particles, starts to excite the sec-
ond particle into motion. Gradually the energy of motion 
passes from the fi rst particle to the second until a point 
is reached at which the fi rst particle is at rest and only 
the second is oscillating. Then the process starts all over 
again, the energy passing in the opposite direction. 

 To analyze the possible motions of the system, one 
writes equations similar to equation (11), giving the accel-
eration of each particle owing to the forces acting on it. 
There is one equation for each particle (two equations in 
this case). The force on each particle depends not only 
on its displacement from its equilibrium position but also 
on its distance from the other particle, since the spring 
between them stretches or compresses according to that 
distance. For this reason the motions are coupled, the 
solution of each equation (the motion of each particle) 
depending on the solution of the other (the motion of 
the other). 

 Analyzing the system yields the fact that there are 
two special states of motion in which both particles are 
always in oscillation with the same frequency. In one state, 
the two particles oscillate in opposite directions with 
equal and opposite displacements from equilibrium at all 
times. In the other state, both particles move together, so 

 Coupled oscillators.  Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services
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 Normal modes.  Copyright Encyclopædia Britannica; rendering for this 
edition by Rosen Educational Services

that the spring between them is never stretched or com-
pressed. The fi rst of these motions has higher frequency 
than the second because the centre spring contributes an 
increase in the restoring force. 

 These two collective motions, at different, defi nite 
frequencies, are known as the normal modes of the system. 

 If a third particle is inserted into the system together 
with another spring, there will be three equations to solve, 
and the result will be three normal modes. A large num-
ber  N  of particles in a line will have  N  normal modes. 
Each normal mode has a defi nite frequency at which all 
the particles oscillate. In the highest frequency mode 
each particle moves in the direction opposite to both 
of its neighbours. In the lowest frequency mode, neigh-
bours move almost together, barely disturbing the springs 
between them. Starting from one end, the amplitude of 
the motion gradually builds up, each particle moving a 
bit more than the one before, reaching a maximum at the 
centre, and then decreasing again. A plot of the amplitudes 
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basically describes one-half of a sine wave from one end 
of the system to the other. The next mode is a full sine 
wave, then  ³ ⁄ ²  of a sine wave, and so on to the highest fre-
quency mode, which may be visualized as  N ⁄² sine waves. If 
the vibrations were up and down rather than side to side, 
these modes would be identical to the fundamental and 
harmonic vibrations excited by plucking a guitar string. 

 The atoms of a crystal are held in place by mutual 
forces of interaction that oppose any disturbance from 
equilibrium positions, just as the spring forces in the 
example. For small displacements of the atoms, they behave 
mathematically just like spring forces—i.e., they obey 
Hooke’s law, equation (10). Each atom is free to move in 
three dimensions rather than one, however; therefore 
each atom added to a crystal adds three normal modes. In 
a typical crystal at ordinary temperature, all these modes 
are always excited by random thermal energy. The lower-
frequency, longer-wavelength modes may also be excited 
mechanically. These are called sound waves.       
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Rigid Bodies

 The previous chapter discussed mechanics in terms of 
particles. However, many objects are not particles 

but what physicists call rigid bodies. A body is formally 
regarded as rigid if the distance between any set of two 
points in it is always constant. In reality no body is per-
fectly rigid. When equal and opposite forces are applied 
to a body, it is always deformed slightly. The body’s own 
tendency to restore the deformation has the effect of 
applying counterforces to whatever is applying the forces, 
thus obeying Newton’s third law. Calling a body rigid 
means that the changes in the dimensions of the body are 
small enough to be neglected, even though the force pro-
duced by the deformation may not be neglected.     

 STaTicS 

 Statics is the study of bodies and structures that are in 
equilibrium. For a body to be in equilibrium, there must 
be no net force acting on it. In addition, there must be no 
net torque acting on it. 

 When a body has a net force and a net torque acting 
on it owing to a combination of forces, all the forces act-
ing on the body may be replaced by a single (imaginary) 
force called the resultant, which acts at a single point on 
the body, producing the same net force and the same net 
torque. The body can be brought into equilibrium by apply-
ing to it a real force at the same point, equal and opposite 
to the resultant. This force is called the equilibrant. 
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 The resultant force ( F   R   ) produces the same net force and the same net torque 
about point  A  as  F  1  +  F  2  ; the body can be brought into equilibrium by applying 
the equilibrant force  F   e   .  Copyright Encyclopædia Britannica; rendering 
for this edition by Rosen Educational Services

 (A) A body in equilibrium under equal and opposite forces. (B) A body not 
in equilibrium under equal and opposite forces.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services

 The torque on a body due to a given force depends on 
the reference point chosen, since the torque  τ  by defi ni-
tion equals  r  ×  F , where  r  is a vector from some chosen 
reference point to the point of application of the force. 
Thus, for a body to be at equilibrium, not only must the 
net force on it be equal to zero but the net torque with 
respect to any point must also be zero. Fortunately, it is 
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easily shown for a rigid body that, if the net force is zero 
and the net torque is zero with respect to any one point, 
then the net torque is also zero with respect to any other 
point in the frame of reference. 

 Equal and opposite forces acting on a rigid body may 
act so as to compress the body or to stretch it. The bodies 
are then said to be under compression or under tension, 
respectively. Strings, chains, and cables are rigid under ten-
sion but may collapse under compression. On the other 
hand, certain building materials, such as brick and mortar, 
stone, or concrete, tend to be strong under compression 
but very weak under tension. 

 (A) Compression produced by equal and opposite forces. (B) Tension produced 
by equal and opposite forces.  Copyright Encyclopædia Britannica; ren-
dering for this edition by Rosen Educational Services

 The most important application of statics is to study 
the stability of structures, such as edifi ces and bridges. In 
these cases, gravity applies a force to each component of 
the structure as well as to any bodies the structure may 
need to support. The force of gravity acts on each bit of 
mass of which each component is made, but for each rigid 
component it may be thought of as acting at a single point, 
the centre of gravity, which is in these cases the same as 
the centre of mass. 

 To give a simple but important example of the applica-
tion of statics, consider two situations in which a mass  m
is supported by two symmetric members, each making an 
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 (A) A body supported by two rigid members under tension. (B) A body sup-
ported by two rigid members under compression.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services

angle  θ  with respect to the horizontal. When the members 
are below the horizontal, the members are under tension; 
when they are above the horizontal, they are under com-
pression. In either case, the force acting along each of the 
members is shown to be 

(71)
  

 The force in either case thus becomes intolerably large 
if the angle  θ  is allowed to be very small. In other words, 
the mass cannot be hung from thin horizontal members 
only capable of carrying either the compression or the 
tension forces of the mass. 

 The ancient Greeks built magnifi cent stone temples; 
however, the horizontal stone slabs that constituted the 
roofs of the temples could not support even their own weight 
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over more than a very small span. For this reason, one char-
acteristic that identifi es a Greek temple is the many closely 
spaced pillars needed to hold up the fl at roof. The problem 
posed by equation (71) was solved by the ancient Romans, 
who incorporated into their architecture the arch, a struc-
ture that supports its weight by compression. 

 A suspension bridge illustrates the use of tension. The 
weight of the span and any traffi c on it is supported by 
cables, which are placed under tension by the weight. The 
cables are not stretched to be horizontal, but rather they 
are always hung so as to have substantial curvature. 

 It should be mentioned in passing that equilibrium 
under static forces is not suffi cient to guarantee the 
stability of a structure. It must also be stable against per-
turbations such as the additional forces that might be 
imposed, for example, by winds or by earthquakes. Analysis 
of the stability of structures under such perturbations is 
an important part of the job of an engineer or architect.     

 roTaTion abouT a Fixed axiS 

 Consider a rigid body that is free to rotate about an axis 
fi xed in space. Because of the body’s inertia, it resists 
being set into rotational motion, and equally important, 
once rotating, it resists being brought to rest. Exactly how 
that inertial resistance depends on the mass and geometry 
of the body is discussed here. 

 Take the axis of rotation to be the  z -axis. A vector in 
the  x - y  plane from the axis to a bit of mass fi xed in the 
body makes an angle  θ  with respect to the  x -axis. If the 
body is rotating,  θ  changes with time, and the body’s angu-
lar frequency is 
 

   
(72)
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ω  is also known as the angular velocity. If  ω  is changing in 
time, there is also an angular acceleration  α , such that 

   
(73)

 Because linear momentum  p  is related to linear speed  v
by  p  =  mv , where  m  is the mass, and because force  F  is related 
to acceleration  a  by  F  =  ma , it is reasonable to assume that 
there exists a quantity  I  that expresses the rotational iner-
tia of the rigid body in analogy to the way  m  expresses the 
inertial resistance to changes in linear motion. One would 
expect to fi nd that the angular momentum is given by 
 

   (74)

 and that the torque (twisting force) is given by 
   
  (75)
   

 One can imagine dividing the rigid body into bits of 
mass labeled  m  1 ,  m  2 ,  m  3 , and so on. Let the bit of mass at 
the tip of the vector be called  m   i  . If the length of the vec-
tor from the axis to this bit of mass is  r   i  , then  m   i  ’s linear 
velocity  v   i   equals  ωr   i   (see equation [31]), and its angular 
momentum  L   i   equals  m   i    v   i    r   i   (see equation [44]), or  m   i    r   i    2  ω . 
The angular momentum of the rigid body is found by 
summing all the contributions from all the bits of mass 
labeled  i  = 1, 2, 3 . . . : 

   
(76)

 In a rigid body, the quantity in parentheses in equation 
(76) is always constant (each bit of mass  m   i   always remains 
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the same distance  r   i   from the axis). Thus if the motion is 
accelerated, then 
 

   
(77)

 Recalling that  τ  =  dL / dt , one may write 

   
(78)

 (These equations may be written in scalar form, since 
L  and  τ  are always directed along the axis of rotation in 
this discussion.) Comparing equations (76) and (78) with 
(74) and (75), one fi nds that 
 

 rotation around a fi xed axis.  Copyright Encyclopædia Britannica; ren-
dering for this edition by Rosen Educational Services
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(79)

 The quantity  I  is called the moment of inertia. 
 According to equation (79), the effect of a bit of mass 

on the moment of inertia depends on its distance from 
the axis. Because of the factor  r   i   2 , mass far from the axis 
makes a bigger contribution than mass close to the axis. It 
is important to note that  r   i   is the distance from the axis, 
not from a point. Thus, if  x   i   and  y   i   are the  x  and  y  coordi-
nates of the mass  m   i  , then  r   i   2  = x  i   2  +  y   i   2 , regardless of the 
value of the  z  coordinate. 

 The moment of inertia of any body depends on the axis 
of rotation. Depending on the symmetry of the body, there 
may be as many as three different moments of inertia about 
mutually perpendicular axes passing through the centre of 
mass. If the axis does not pass through the centre of mass, the 
moment of inertia may be related to that about a parallel axis 
that does so. Let  I   c   be the moment of inertia about the paral-
lel axis through the centre of mass,  r  the distance between 
the two axes, and  M  the total mass of the body. Then 
 

   (80)

 In other words, the moment of inertia about an axis 
that does not pass through the centre of mass is equal to 
the moment of inertia for rotation about an axis through 
the centre of mass ( I   c   ) plus a contribution that acts as if 
the mass were concentrated at the centre of mass, which 
then rotates about the axis of rotation. 

 The dynamics of rigid bodies rotating about fi xed 
axes may be summarized in three equations. The angular 
momentum is  L  =  Iω , the torque is  τ  =  Iα , and the kinetic 
energy is  K  = 1⁄2  Iω  2 .     



7 The Britannica Guide to Heat, Force, and Motion 7

114

 roTaTion abouT a moVing axiS 

 The general motion of a rigid body tumbling through 
space may be described as a combination of translation 
of the body’s centre of mass and rotation about an axis 
through the centre of mass. The linear momentum of the 
body of mass  M  is given by 

   (81)

 where  v   c   is the velocity of the centre of mass. Any change 
in the momentum is governed by Newton’s second law, 
which states that 
 

   
(82)

 where  F  is the net force acting on the body. The angular 
momentum of the body with respect to any reference 
point may be written as 
 

   (83)

 where  L   c   is the angular momentum of rotation about an 
axis through the centre of mass,  r  is a vector from the ref-
erence point to the centre of mass, and  r  ×  p  is therefore 
the angular momentum associated with motion of the 
centre of mass, acting as if all the body’s mass were con-
centrated at that point. The quantity  L   c   in equation (83) 
is sometimes called the body’s spin, and  r  ×  p  is called the 
orbital angular momentum. Any change in the angular 
momentum of the body is given by the torque equation, 

(84)
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 An example of a body that undergoes both translational 
and rotational motion is the Earth, which rotates about an 
axis through its centre once per day while executing an orbit 
around the Sun once per year. Because the Sun exerts no 
torque on Earth with respect to its own centre, the orbital 
angular momentum of Earth is constant in time. However, 
the Sun does exert a small torque on Earth with respect to 
the planet’s centre, owing to the fact that Earth is not per-
fectly spherical. The result is a slow shifting of Earth’s axis 
of rotation, known as the precession of the equinoxes. 

 The kinetic energy of a body that is both translating 
and rotating is given by 

   
(85)

 where  I  is the moment of inertia and  ω  is the angular veloc-
ity of rotation about the axis through the centre of mass. 

 A common example of combined rotation and transla-
tion is rolling motion, as exhibited by a billiard ball rolling 
on a table, or a ball or cylinder rolling down an inclined 
plane. Consider the latter example. Motion is impelled by 
the force of gravity, which may be resolved into two com-
ponents,  F   N  , which is normal to the plane, and  F   p  , which is 
parallel to it. In addition to gravity, friction plays an essen-
tial role. The force of friction, written as  f , acts parallel to 
the plane, in opposition to the direction of motion, at the 
point of contact between the plane and the rolling body. 
If  f  is very small, the body will slide without rolling. If  f
is very large, it will prevent motion from occurring. The 
magnitude of  f  depends on the smoothness and composi-
tion of the body and the plane, and it is proportional to  F   N  , 
the normal component of the force.       

 Consider a case in which  f  is just large enough to cause 
the body (sphere or cylinder) to roll without slipping. The 
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 rolling motion.  Copyright Encyclopædia Britannica; rendering for this 
edition by Rosen Educational Services

motion may be analyzed from the point of view of an axis 
passing through the point of contact between the rolling 
body and the plane. Remarkably, the point of contact may 
always be regarded to be instantaneously at rest. To under-
stand why, suppose that the rolling body has radius  r  and 
angular velocity  ω  about its centre-of-mass axis. Then, with 
respect to its own axis, each point on the circular cross sec-
tion moves with instantaneous tangential linear speed  v   c   = 
rω . In particular, the point of contact is moving backward 
with this speed relative to the centre of mass. But with 
respect to the inclined plane, the centre of mass is moving 
forward with exactly this same speed. The net effect of the 
two equal and opposite speeds is that the point of contact is 
always instantaneously at rest. Therefore, although friction 
acts at that point, no work is done by friction, so mechanical 
energy (potential plus kinetic) may be regarded as conserved. 

 With respect to the axis through the point of con-
tact, the torque is equal to  rF   p  , giving rise to an angular 
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acceleration  α  given by  I   p   α  =  rF   p  , where  I   p   is the moment of 
inertia about the point-of-contact axis and can be deter-
mined by applying equation (80) relating moments of 
inertia about parallel axes ( I   p   =  I  +  Mr  2 ). Thus, 

(86)
  

 From this result, the motion of the body is easily 
obtained using the fact that the velocity of the centre of 
mass is  v   c   =  rω  and hence the linear acceleration of the 
centre of mass is  a   c   =  rα . 

 Notice that, although without friction no angular 
acceleration would occur, the force of friction does not 
affect the magnitude of  α . Because friction does no work, 
this same result may be obtained by applying energy con-
servation. The situation also may be analyzed entirely 
from the point of view of the centre of mass. In that case, 
the torque is − fr , but  f  also provides a linear force on the 
body. The  f  may then be eliminated by using Newton’s sec-
ond law and the fact that the torque equals the moment of 
inertia times the angular acceleration, once again leading 
to the same result. 

 One more interesting fact is hidden in the form of 
equation (86). The parallel component of the force of 
gravity is given by 
 

   (87)

 where  θ  is the angle of inclination of the plane. The 
moment of inertia about the centre of mass of any body of 
mass  M  may be written 

   (88)
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 where  k  is a distance called the radius of gyration. 
Comparison to equation (79) shows that  k  is a measure of 
how far from the centre of mass the mass of the body is 
concentrated. Using equations (87) and (88) in equation 
(86), one fi nds that 

   
(89)

 Thus, the angular acceleration of a body rolling down 
a plane does not depend on its total mass, although it 
does depend on its shape and distribution of mass. The 
same may be said of  a   c  , the linear acceleration of the 
centre of mass. The acceleration of a rolling ball, like 
the acceleration of a freely falling object, is independent 
of its mass. This observation helps to explain why Galileo 
was able to discover many of the basic laws of dynamics 
in gravity by studying the behaviour of balls rolling down 
inclined planes.     

 cenTriFugal Force 

 According to the principle of Galilean relativity, if 
Newton’s laws are true in any reference frame, they are 
also true in any other frame moving at constant veloc-
ity with respect to the fi rst one. Conversely, they do not 
appear to be true in any frame accelerated with respect to 
the fi rst. Instead, in an accelerated frame, objects appear 
to have forces acting on them that are not in fact present. 
These are called pseudoforces. Since rotational motion is 
always accelerated motion, pseudoforces may always be 
observed in rotating frames of reference. 

 As one example, a frame of reference in which Earth 
is at rest must rotate once per year about the Sun. In this 
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reference frame, the gravitational force attracting Earth 
toward the Sun appears to be balanced by an equal and 
opposite outward force that keeps Earth in stationary 
equilibrium. This outward pseudoforce is the centrifu-
gal force.

The rotation of Earth about its own axis also causes 
pseudoforces for observers at rest on Earth’s surface. 
There is a centrifugal force, but it is much smaller than 
the force of gravity. Its effect is that, at the Equator, where 
it is largest, the gravitational acceleration g is about 0.5 
percent smaller than at the poles, where there is no cen-
trifugal force. This same centrifugal force is responsible 
for the fact that Earth is slightly nonspherical, bulging just 
a bit at the Equator.

Pseudoforces can have real consequences. The oce-
anic tides on Earth, for example, are a consequence of 
centrifugal forces in the Earth-Moon and Earth-Sun 
systems. The Moon appears to be orbiting Earth, but 
in reality both the Moon and Earth orbit their common 
centre of mass. The centre of mass of the Earth-Moon 
system is located inside Earth nearly three-fourths of 
the distance from the centre to the surface, or roughly 
4,700 kilometres from the centre of Earth. Earth rotates 
about this point approximately once a month. The gravi-
tational attraction of the Moon and the centrifugal 
force of this rotation are exactly balanced at the centre 
of Earth. At the surface of Earth closest to the Moon, 
the Moon’s gravity is stronger than the centrifugal force. 
The ocean’s waters, which are free to move in response 
to this unbalanced force, tend to build up a small bulge 
at that point. On the surface of Earth exactly opposite 
the Moon, the centrifugal force is stronger than the 
Moon’s gravity, and a small bulge of water tends to build 
up there as well. The water is correspondingly depleted 



7 The Britannica Guide to Heat, Force, and Motion 7

120

at the points 90° on either side of these. Each day Earth 
rotates beneath these bulges and troughs, which remain 
stationary with respect to the Earth-Moon system. The 
result is two high tides and two low tides every day every 
place on Earth. The Sun has a similar effect, but of only 
about half the size; it increases or decreases the size of 
the tides depending on its relative alignment with Earth 
and Moon.

Coriolis Force

The Coriolis force is a pseudoforce that operates in all 
rotating frames. One way to envision it is to imagine a 
rotating platform (such as a merry-go-round or a phono-
graph turntable) with a perfectly smooth surface and a 
smooth block sliding inertially across it. The block, hav-
ing no (real) forces acting on it, moves in a straight line 
at constant speed in inertial space. However, the platform 
rotates under it, so that to an observer on the platform, 
the block appears to follow a curved trajectory, bending 
in the opposite direction to the motion of the platform. 
Since the motion is curved, and hence accelerated, there 
appears, to the observer, to be a force operating. That 
pseudoforce is called the Coriolis force.

The Coriolis force also may be observed on the sur-
face of Earth. For example, many science museums have 
a pendulum, called a Foucault pendulum, suspended 
from a long cable with markers to show that its plane of 
motion rotates slowly. The rotation of the plane of motion 
is caused by the Coriolis force. The effect is most easily 
imagined by picturing the pendulum swinging directly 
above the North Pole. The plane of its motion remains 
stationary in inertial space, while Earth rotates once a day 
beneath it.



121

7 Rigid Bodies 7

At lower latitudes, the effect is a bit more subtle, but it 
is still present. Imagine that, somewhere in the Northern 
Hemisphere, a projectile is fired due south. As viewed 
from inertial space, the projectile initially has an eastward 
component of velocity as well as a southward component 
because the gun that fired it, which is stationary on the 
surface of Earth, was moving eastward with Earth’s rota-
tion at the instant it was fired. However, since it was fired 
to the south, it lands at a slightly lower latitude, closer to 
the Equator. As one moves south, toward the Equator, the  
tangential speed of Earth’s surface due to its rotation 
increases because the surface is farther from the axis of 
rotation. Thus, although the projectile has an eastward 
component of velocity (in inertial space), it lands at a 
place where the surface of Earth has a larger eastward 
component of velocity. Thus, to the observer on Earth, 
the projectile seems to curve slightly to the west. That 
westward curve is attributed to the Coriolis force. If the 
projectile were fired to the north, it would seem to curve 
eastward.

The same analysis applied to a Foucault pendulum 
explains why its plane of motion tends to rotate in the clock-
wise direction anywhere in the Northern Hemisphere 
and in the counterclockwise direction in the Southern 
Hemisphere. Storms, known as cyclones, tend to rotate 
in the opposite direction in each hemisphere, also due 
to the Coriolis force. Air moves in all directions toward 
a low-pressure centre. In the Northern Hemisphere, air 
moving up from the south is deflected eastward, while 
air moving down from the north is deflected westward. 
This effect tends to give cyclones a counterclockwise cir-
culation in the Northern Hemisphere. In the Southern 
Hemisphere, cyclones tend to circulate in the clockwise 
direction.
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Spinning Tops and Gyroscopes

Consider a wheel that is weighted in its rim to maximize 
its moment of inertia I and that is spinning with angular 
frequency ω on a horizontal axle supported at both ends. 
The wheel has an angular momentum L along the x direc-
tion equal to Iω. Now suppose the support at point P is 
removed, leaving the axle supported only at one end. 
Gravity, acting on the mass of the wheel as if it were con-
centrated at the centre of mass, applies a downward force 
on the wheel. The wheel, however, does not fall. Instead, 
the axle remains (nearly) horizontal but rotates in the 
counterclockwise direction as seen from above. This 
motion is called gyroscopic precession.

Horizontal precession occurs in this case because the 
gravitational force results in a torque with respect to the 
point of suspension, such that τ = r × F and is directed, 
initially, in the positive y direction. The torque causes 
the angular momentum L to move toward that direction 
according to τ = dL/dt. Because τ is perpendicular to L, it 
does not change the magnitude of the angular momen-
tum, only its direction. As precession proceeds, the torque 
remains horizontal, and the angular momentum vector, 
continually redirected by the torque, executes uniform 
circular motion in the horizontal plane at a frequency Ω, 
the frequency of precession.

In reality, the motion is a bit more complicated than 
uniform precession in the horizontal plane. When the 
support at P is released, the centre of mass of the wheel 
initially drops slightly below the horizontal plane. This 
drop reduces the gravitational potential energy of the 
system, releasing kinetic energy for the orbital motion of 
the centre of mass as it precesses. It also provides a small 
component of L in the negative z direction, which bal-
ances the angular momentum in the positive z direction 
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that results from the orbital motion of the centre of 
mass. There can be no net angular momentum in the ver-
tical direction because there is no component of torque 
in that direction. 

Gyroscopic precession. Copyright Encyclopædia Britannica; rendering 
for this edition by Rosen Educational Services



124

7 The Britannica Guide to Heat, Force, and Motion 7

 One more complication: the initial drop of the centre 
of mass carries it too far for a stable plane of precession, 
and it tends to bounce back up after overshooting. This 
produces an up-and-down oscillation during precession, 
called nutation (“nodding”). In most cases, nutation is 
quickly damped by friction in the bearings, leaving uni-
form precession. 

 If a top is initially set spinning with a vertical axis, 
there will be virtually no torque, and conservation of 
angular momentum will keep the axis vertical for a long 
time. Eventually, however, friction at the point of contact 
will require the centre of mass to lower itself, which can 
only happen if the axis tilts. The spinning will also slow 
down, making the tilting process easier. Once the top tilts, 
gravity produces a horizontal torque that leads to preces-
sion of the spin axis. The subsequent motion depends on 
whether the point of contact is fi xed or free to slip on the 
horizontal plane. Vast tomes have been written on the 
motions of tops. 

 A gyroscope is a device that is designed to resist 
changes in the direction of its axis of spin. That purpose 
is generally accomplished by maximizing its moment of 
inertia about the spin axis and by spinning it at the maxi-
mum practical frequency. Each of these considerations 
has the effect of maximizing the magnitude of the angular 
momentum, thus requiring a larger torque to change its 
direction. It is quite generally true that the torque  τ , the 
angular momentum  L , and the precession frequency  Ω
(defi ned as a vector along the precession axis in the direc-
tion given by the right-hand rule) are related by 

   (90)

 Equation (90) is called the gyroscope equation. 
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 Gyroscopes are used for a variety of purposes, includ-
ing navigation. Use of gyroscopes for this purpose is called 
inertial guidance. The gyroscope is suspended as nearly 
as possible at its centre of mass, so that gravity does not 
apply a torque that causes it to precess. The gyroscope 
tends therefore to point in a constant direction in space, 
allowing the orientation of the vehicle to be accurately 
maintained. 

 One further application of the gyroscope principle 
may be seen in the precession of the equinoxes. Earth is a 
kind of gyroscope, spinning on its axis once each day. The 
Sun would apply no torque to Earth if Earth were perfectly 
spherical, but it is not. Earth bulges slightly at the Equator. 
The effect of the Sun’s gravity on the near bulge (larger 
than it is on the far bulge) results in a net torque about 
the centre of Earth. When Earth is on the other side of 

 A gyroscope.  Copyright Encyclopædia Britannica; rendering for this 
edition by Rosen Educational Services
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the Sun, the net torque remains in the same direction. The 
torque is small but persistent. It causes the axis of Earth to 
precess, about one revolution every 25,800 years. 

 As seen from Earth, the Sun passes through the plane 
of the Equator twice each year. These points are called the 
equinoxes, and on the days of the equinoxes the hours of 
daylight and night are equal. From antiquity it has been 
known that the point in the sky where the Sun intersects 
the plane of the Equator is not the same each year but 
rather drifts very slowly to the west. This ancient observa-
tion, fi rst explained by Newton, is due to the precession 
of Earth’s axis. It is called the precession of the equinoxes.     

 analyTic approacheS 

 Classical mechanics can, in essence, be reduced to 
Newton’s laws, starting with the second law, in the form 

(91)

 If the net force acting on a particle is  F , knowledge of 
 F  permits the momentum  p  to be found; and knowledge 

 Forces acting on equatorial bulges in (A) the summer and (B) the winter cause 
the axis of the earth to precess.   Copyright Encyclopædia Britannica; ren-
dering for this edition by Rosen Educational Services 
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of  p  permits the position  r  to be found, by solving the 
equation 

(92)

 These solutions give the components of  p —that is,  p   x  , 
p   y  , and  p   z  —and the components of  r — x, y , and  z —each 
as a function of time. To complete the solution, the value 
of each quantity— p   x  ,  p   y  ,  p   z  ,  x, y , and  z —must be known at 
some defi nite time, say,  t  = 0. If there is more than one 
particle, an equation in the form of equation (91) must 
be written for each particle, and the solution will involve 
fi nding the six variables  x, y, z, p   x  ,  p   y  , and  p   z  , for each par-
ticle as a function of time, each once again subject to some 
initial condition. The equations may not be independent, 
however. For example, if the particles interact with one 
another, the forces will be related by Newton’s third law. 
In this case (and others), the forces may also depend 
on time. 

 If the problem involves more than a very few particles, 
this method of solution quickly becomes intractable. 
Furthermore, in many cases it is not useful to express 
the problem purely in terms of particles and forces. 
Consider, for example, the problem of a sphere or cyl-
inder rolling without slipping on a plane surface. Rolling 
without slipping is produced by friction due to forces act-
ing between atoms in the rolling body and atoms in the 
plane, but the interactions are very complex; they prob-
ably are not fully understood even today, and one would 
like to be able to formulate and solve the problem with-
out introducing them or needing to understand them. 
For all these reasons, methods that go beyond solving 
equations (91) and (92) have had to be introduced into 
classical mechanics. 
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The methods that have been introduced do not involve 
new physics. In fact, they are deduced directly from 
Newton’s laws. They do, however, involve new concepts, 
new language to describe those concepts, and the adop-
tion of powerful mathematical techniques. Some of those 
methods are briefly surveyed here.

Configuration Space

The position of a single particle is specified by giving its 
three coordinates, x, y, and z. To specify the positions of 
two particles, six coordinates are needed, x1, y1, z1, x2, y2, 
z2. If there are N particles, 3N coordinates will be needed. 
Imagine a system of 3N mutually orthogonal coordinates in 
a 3N-dimensional space (a space of more than three dimen-
sions is a purely mathematical construction, sometimes 
known as a hyperspace). To specify the exact position of 
one single point in this space, 3N coordinates are needed. 
However, one single point can represent the entire con-
figuration of all N particles in the problem. Furthermore, 
the path of that single point as a function of time is the 
complete solution of the problem. This 3N-dimensional 
space is called configuration space.

Configuration space is particularly useful for describ-
ing what is known as constraints on a problem. Constraints 
are generally ways of describing the effects of forces that 
are best not explicitly introduced into the problem. For 
example, consider the simple case of a falling body near 
the surface of Earth. The equations of motion—equations 
(4), (5), and (6)—are valid only until the body hits the 
ground. Physically, this restriction is due to forces between 
atoms in the falling body and atoms in the ground, but, as 
a practical matter, it is preferable to say that the solutions 
are valid only for z > 0 (where z = 0 is ground level). This 
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constraint, in the form of an inequality, is very difficult to 
incorporate directly into the equations of the problem. In 
the language of configuration space, however, one merely 
needs to specify that the problem is being solved only in 
the region of configuration space for which z > 0.

Notice that the constraint, rolling without sliding 
on a plane, cannot easily be described in configuration 
space, since it is basically a condition on relative velocities 
of rotation and translation; but another constraint, that 
the body is restricted to motion along the plane, is easily 
described in configuration space.

Another type of constraint specifies that a body is 
rigid. Then, even though the body is composed of a very 
large number of atoms, it is not necessary to find sepa-
rately the x, y, and z coordinate of each atom because 
these are related to those of the other atoms by the condi-
tion of rigidity. A careful analysis yields that, rather than 
needing 3N coordinates (where N may be, for example, 
1024 atoms), only 6 are needed: 3 to specify the position 
of the centre of mass and 3 to give the orientation of the 
body. Thus, in this case, the constraint has reduced the 
number of independent coordinates from 3N to 6. Rather 
than restricting the behaviour of the system to a por-
tion of the original 3N-dimensional configuration space, 
it is possible to describe the system in a much simpler 
6-dimensional configuration space. It should be noted, 
however, that the six coordinates are not necessarily all 
distances. In fact, the most convenient coordinates are 
three distances (the x, y, and z coordinates of the centre 
of mass of the body) and three angles, which specify the 
orientation of a set of axes fixed in the body relative to a 
set of axes fixed in space. This is an example of the use of 
constraints to reduce the number of dynamic variables 
in a problem (the x, y, and z coordinates of each particle) 
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to a smaller number of generalized dynamic variables, 
which need not even have the same dimensions as the 
original ones.     

 The Principle of Virtual Work 

 A special class of problems in mechanics involves systems 
in equilibrium. The problem is to fi nd the confi guration 
of the system, subject to whatever constraints there may 
be, when all forces are balanced. The body or system 
will be at rest (in the inertial rest frame of its centre of 
mass), meaning that it occupies one point in confi gura-
tion space for all time. The problem is to fi nd that point. 
One criterion for fi nding that point, which makes use of 
the calculus of variations, is called the principle of vir-
tual work. 

 According to the principle of virtual work, any infi n-
itesimal virtual displacement in confi guration space, 
consistent with the constraints, requires no work. A virtual 
displacement means an instantaneous change in coordi-
nates (a real displacement would require fi nite time during 
which particles might move and forces might change). To 
express the principle, label the generalized coordinates  r  1 , 
r  2 , . . . ,  r   i  , . . . . Then if  F   i   is the net component of general-
ized force acting along the coordinate  r   i  ,  

  
(93)

 Here,  F   i     dr   i   is the work done when the generalized 
coordinate is changed by the infi nitesimal amount  dr   i  . If 
r   i   is a real coordinate (say, the  x  coordinate of a particle), 
then  F   i   is a real force. If  r   i   is a generalized coordinate (say, 
an angular displacement of a rigid body), then  F   i   is the 
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generalized force such that Fi  dri is the work done (for an 
angular displacement, Fi is a component of torque).

Take two simple examples to illustrate the principle. 
First consider two particles that are restricted to motion 
in the x direction and are constrained by a taut string con-
necting them. If their x coordinates are called x1 and x2, 
then F1 dx1 + F2 dx2 = 0 according to the principle of vir-
tual work. But the taut string requires that the particles 
be displaced the same amount, so that dx1 = dx2, with the 
result that F1 + F2 = 0. The particles might be in equilib-
rium, for example, under equal and opposite forces, but F1 
and F2 do not need individually to be zero. This is gener-
ally true of the Fi  in equation (93). As a second example, 
consider a rigid body in space. Here, the constraint of 
rigidity has already been expressed by reducing the coor-
dinate space to that of six generalized coordinates. These 
six coordinates (x, y, z, and three angles) can change quite 
independently of one another. In other words, in equation 
(93), the six dri are arbitrary. Thus, the only way equation 
(93) can be satisfied is if all six Fi are zero. This means that 
the rigid body can have no net component of force and no 
net component of torque acting on it. Of course, this same 
conclusion was reached earlier by less abstract arguments.

Lagrange’s and Hamilton’s Equations

Elegant and powerful methods have also been devised 
for solving dynamic problems with constraints. One 
of the best known is called Lagrange’s equations. The 
Lagrangian L is defined as L = T − V, where T is the kinetic 
energy and V the potential energy of the system in ques-
tion. Generally speaking, the potential energy of a system 
depends on the coordinates of all its particles; this may 
be written as V = V(x1, y1, z1, x2, y2, z2, . . . ). The kinetic 
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energy generally depends on the velocities, which, using 
the notation  v   x   =  dx / dt  =  x·  , may be written  T  =  T ( x·   1 ,  y·   1 ,  z·   1 , 
x·   2 ,  y·   2 ,  z·   2 , . . . ). Thus, a dynamic problem has six dynamic 
variables for each particle—that is,  x, y, z  and  x· , y· , z·  —and 
the Lagrangian depends on all 6 N  variables if there are  N
particles. 

 In many problems, however, the constraints of the 
problem permit equations to be written relating at least 
some of these variables. In these cases, the 6 N  related 
dynamic variables may be reduced to a smaller number 
of independent generalized coordinates (written sym-
bolically as  q  1 ,  q  2 , . . .  q   i  , . . . ) and generalized velocities 
(written as  q·  1 ,  q·  2 , . . .  q·   i  , . . . ), just as, for the rigid body, 
3 N  coordinates were reduced to six independent general-
ized coordinates (each of which has an associated velocity). 
The Lagrangian, then, may be expressed as a function of 
all the  q   i   and  q·   i  . It is possible, starting from Newton’s laws 
only, to derive Lagrange’s equations 

 
   

(94)

 where the notation ∂ L /∂ q   i   means differentiate  L  with 
respect to  q   i   only, holding all other variables constant. 
There is one equation of the form (94) for each of the gen-
eralized coordinates  q   i   (e.g., six equations for a rigid body), 
and their solutions yield the complete dynamics of the 
system. The use of generalized coordinates allows many 
coupled equations of the form (91) to be reduced to fewer, 
independent equations of the form (94). 

 There is an even more powerful method called 
Hamilton’s equations. It begins by defi ning a generalized 
momentum  p   i  , which is related to the Lagrangian and 
the generalized velocity  q·   i   by  p   i   = ∂ L /∂ q·   i   . A new function, 
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the Hamiltonian, is then defi ned by  h  = ∑ i  q·   i    p   i   −  L . From 
this point it is not diffi cult to derive 
 

   
(95)

 and 
  

   
(96)

 There are two Hamilton equations for each general-
ized coordinate. They may be used in place of Lagrange’s 
equations, with the advantage that only fi rst derivatives—
not second derivatives—are involved. 

 The Hamiltonian method is particularly important 
because of its utility in formulating quantum mechanics. 
However, it is also signifi cant in classical mechanics. If 
the constraints in the problem do not depend explicitly 
on time, then it may be shown that  h  =  T  +  V , where  T  
is the kinetic energy and  V  is the potential energy of the 
system—i.e., the Hamiltonian is equal to the total energy 
of the system. Furthermore, if the problem is isotropic ( h  
does not depend on direction in space) and homogeneous 
( h  does not change with uniform translation in space), 
then Hamilton’s equations immediately yield the laws of 
conservation of angular momentum and linear momen-
tum, respectively.       
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Solids

In the previous chapter, the motion of a rigid body as a 
whole was discussed. For a body to be rigid, the distance 

between any set of two points in it is always constant. This 
does not happen in reality. But what does? To answer this 
question, we have to consider what, then, is a solid. Any 
material, fluid or solid, can support normal forces. These are 
forces directed perpendicular, or normal, to a material plane 
across which they act. The force per unit of area of that plane 
is called the normal stress. Water at the base of a pond, air in 
an automobile tire, the stones of a Roman arch, rocks at the 
base of a mountain, the skin of a pressurized airplane cabin, a 
stretched rubber band, and the bones of a runner all support 
force in that way (some only when the force is compressive).

A material is called solid rather than fluid if it can also 
support a substantial shearing force over the time scale 
of some natural process or technological application of 
interest. Shearing forces are directed parallel, rather than 
perpendicular, to the material surface on which they act; 
the force per unit of area is called shear stress. For example, 
consider a vertical metal rod that is fixed to a support at 
its upper end and has a weight attached at its lower end. 
If one considers a horizontal surface through the material 
of the rod, it will be evident that the rod supports normal 
stress. But it also supports shear stress, and this becomes 
evident when one considers the forces carried across a 
plane that is neither horizontal nor vertical through the 
rod. Thus, while water and air provide no long-term sup-
port of shear stress, granite, steel, and rubber normally do 
so and are therefore called solids. Materials with tightly 
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bound atoms or molecules, such as the crystals formed 
below melting temperature by most substances or simple 
compounds and the amorphous structures formed in glass 
and many polymer substances at sufficiently low tempera-
ture, are usually considered solids.

The distinction between solids and fluids is not pre-
cise and in many cases will depend on the time scale. 
Consider the hot rocks of the Earth’s mantle. When a 
large earthquake occurs, an associated deformation dis-
turbance called a seismic wave propagates through the 
adjacent rock, and the entire Earth is set into vibrations 
which, following a sufficiently large earthquake, may 
remain detectable with precise instruments for several 
weeks. The rocks of the mantle are then described as 
solid—as they would also be on the time scale of, say, tens 
to thousands of years, over which stresses rebuild enough 
in the source region to cause one or a few repetitions of 
the earthquake. But on a significantly longer time scale, 
say, on the order of a million years, the hot rocks of the 
mantle are unable to support shearing stresses and flow 
as a fluid. The substance called Silly Putty (trademark), 
a polymerized silicone gel familiar to many children, is 
another example. If a ball of it is left to sit on a table at 
room temperature, it flows and flattens on a time scale of 
a few minutes to an hour. But if picked up and tossed as 
a ball against a wall, so that large forces act only over the 
short time of the impact, the Silly Putty bounces back and 
retains its shape like a highly elastic solid.

Several types of solids can be distinguished according 
to their mechanical behaviour. In the simple but common 
case when a solid material is loaded at a sufficiently low 
temperature or short time scale, and with sufficiently lim-
ited stress magnitude, its deformation is fully recovered 
upon unloading. The material is then said to be elastic. 
But substances can also deform permanently, so that 
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not all the deformation is recovered. For example, if one 
bends a metal coat hanger substantially and then releases 
the loading, it springs back only partially toward its ini-
tial shape; it does not fully recover but remains bent. The 
metal of the coat hanger has been permanently deformed, 
and in this case, for which the permanent deformation 
is not so much a consequence of longtime loading at suf-
ficiently high temperature but more a consequence of 
subjecting the material to large stresses (above the yield 
stress), the permanent deformation is described as a plas-
tic deformation and the material is called elastic-plastic. 
Permanent deformation of a sort that depends mainly on 
time of exposure to a stress—and that tends to increase 
significantly with time of exposure—is called viscous, or 
creep, deformation, and materials that exhibit those char-
acteristics, as well as tendencies for elastic response, are 
called viscoelastic solids (or sometimes viscoplastic solids, 
when the permanent strain is emphasized rather than the 
tendency for partial recovery of strain upon unloading).

Solid mechanics has many applications. All those who 
seek to understand natural phenomena involving the 
stressing, deformation, flow, and fracture of solids, as well 
as all those who would have knowledge of such phenom-
ena to improve living conditions and accomplish human 
objectives, have use for solid mechanics. The latter activi-
ties are, of course, the domain of engineering, and many 
important modern subfields of solid mechanics have been 
actively developed by engineering scientists concerned, for 
example, with mechanical, structural, materials, civil, or 
aerospace engineering. Natural phenomena involving solid 
mechanics are studied in geology, seismology, and tectono-
physics, in materials science and the physics of condensed 
matter, and in some branches of biology and physiology. 
Furthermore, because solid mechanics poses challeng-
ing mathematical and computational problems, it (as well 
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as fluid mechanics) has long been an important topic for 
applied mathematicians concerned, for example, with par-
tial differential equations and with numerical techniques 
for digital computer formulations of physical problems.

Here is a sampling of some of the issues addressed 
using solid mechanics concepts: How do flows develop 
in Earth’s mantle and cause continents to move and 
ocean floors to subduct (i.e., be thrust) slowly beneath 
them? How do mountains form? What processes take 
place along a fault during an earthquake, and how do the 
resulting disturbances propagate through Earth as seis-
mic waves, shaking, and perhaps collapsing, buildings and 
bridges? How do landslides occur? How does a structure 
on a clay soil settle with time, and what is the maximum 
bearing pressure that the footing of a building can exert 
on a soil or rock foundation without rupturing it? What 
materials should be chosen, and how should their pro-
portion, shape, and loading be controlled, to make safe, 
reliable, durable, and economical structures—whether 
airframes, bridges, ships, buildings, chairs, artificial heart 
valves, or computer chips—and to make machinery such 
as jet engines, pumps, and bicycles? How do vehicles (cars, 
planes, ships) respond by vibration to the irregularity of 
surfaces or mediums along which they move, and how are 
vibrations controlled for comfort, noise reduction, and 
safety against fatigue failure? How rapidly does a crack 
grow in a cyclically loaded structure, whether a bridge, 
engine, or airplane wing or fuselage, and when will it 
propagate catastrophically? How can the deformability 
of structures during impact be controlled so as to design 
crashworthiness into vehicles? How are the materials and 
products of a technological civilization formed—e.g., by 
extruding metals or polymers through dies, rolling mate-
rial into sheets, punching out complex shapes, and so on? 
By what microscopic processes do plastic and creep strains 
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occur in polycrystals? How can different materials, such 
as fibre-reinforced composites, be fashioned together to 
achieve combinations of stiffness and strength needed in 
specific applications? What is the combination of material 
properties and overall response needed in downhill skis 
or in a tennis racket? How does the human skull respond 
to impact in an accident? How do heart muscles control 
the pumping of blood in the human body, and what goes 
wrong when an aneurysm develops?

History

Solid mechanics developed in the outpouring of math-
ematical and physical studies following the great 
achievement of Newton in stating the laws of motion, 
although it has earlier roots. The need to understand and 
control the fracture of solids seems to have been a first 
motivation. Leonardo da Vinci sketched in his notebooks 
a possible test of the tensile strength of a wire. Galileo, 
who died in the year of Newton’s birth (1642), investigated 
the breaking loads of rods under tension and concluded 
that the load was independent of length and proportional 
to the cross section area, this being a first step toward a 
concept of stress. He also investigated the breaking loads 
on beams that were suspended horizontally from a wall 
into which they were built.

Concepts of Stress, 
Strain, and Elasticity

The English scientist Robert Hooke discovered in 1660, 
but published only in 1678, that for many materials the 
displacement under a load was proportional to force, thus 
establishing the notion of (linear) elasticity but not yet in 
a way that was expressible in terms of stress and strain. 
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Edme Mariotte in France published similar discoveries 
in 1680 and, in addition, reached an understanding of 
how beams like those studied by Galileo resist transverse 
loadings—or, more precisely, resist the torques caused 
by those transverse loadings—by developing extensional 
and compressional deformations, respectively, in material 
fibres along their upper and lower portions. It was for the 
Swiss mathematician and mechanician Jakob Bernoulli 
to observe, in the final paper of his life, in 1705, that the 
proper way of describing deformation was to give force 
per unit area, or stress, as a function of the elongation per 
unit length, or strain, of a material fibre under tension. 
The Swiss mathematician and mechanician Leonhard 
Euler, who was taught mathematics by Jakob’s brother 
Johann Bernoulli, proposed, among many contributions, a 
linear relation between stress σ and strain ε, in 1727, of the 
form σ = Eε, where the coefficient E is now generally called 
Young’s modulus after the British naturalist Thomas Young,  
who developed a related idea in 1807.

The notion that there is an internal tension acting 
across surfaces in a deformed solid was expressed by the 
German mathematician and physicist Gottfried Wilhelm 
Leibniz in 1684 and Jakob Bernoulli in 1691. Also, Jakob 
Bernoulli and Euler introduced the idea that at a given 
section along the length of a beam there were internal 
tensions amounting to a net force and a net torque. Euler 
introduced the idea of compressive normal stress as the 
pressure in a fluid in 1752. The French engineer and physi-
cist Charles-Augustin Coulomb was apparently the first to 
relate the theory of a beam as a bent elastic line to stress 
and strain in an actual beam, in a way never quite achieved 
by Bernoulli and, although possibly recognized, never 
published by Euler. He developed the famous expres-
sion σ = My/I for the stress due to the pure bending of a 
homogenous linear elastic beam; here M is the torque, or 
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bending moment,  y  is the distance of a point from an axis 
that passes through the section centroid, parallel to the 
torque axis, and  I  is the integral of  y  2  over the section area. 
The French mathematician Antoine Parent introduced 
the concept of shear stress in 1713, but Coulomb was the 
one who extensively developed the idea, fi rst in connec-
tion with beams and with the stressing and failure of soil 
in 1773 and then in studies of frictional slip in 1779. 

 It was the great French mathematician Augustin-Louis 
Cauchy, originally educated as an engineer, who in 1822 
formalized the concept of stress in the context of a gen-
eralized three-dimensional theory, showed its properties 
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as consisting of a 3 × 3 symmetric array of numbers that 
transform as a tensor, derived the equations of motion 
for a continuum in terms of the components of stress, 
and developed the theory of linear elastic response for 
isotropic solids. As part of his work in this area, Cauchy 
also introduced the equations that express the six com-
ponents of strain (three extensional and three shear) in 
terms of derivatives of displacements for the case in which 
all those derivatives are much smaller than unity; similar 
expressions had been given earlier by Euler in expressing 
rates of straining in terms of the derivatives of the velocity 
field in a fluid.

Beams, Columns, 
Plates, and Shells

The 1700s and early 1800s were a productive period during 
which the mechanics of simple elastic structural elements 
were developed—well before the beginnings in the 1820s 
of the general three-dimensional theory. The development 
of beam theory by Euler, who generally modeled beams as 
elastic lines that resist bending, as well as by several mem-
bers of the Bernoulli family and by Coulomb, remains 
among the most immediately useful aspects of solid 
mechanics, in part for its simplicity and in part because 
of the pervasiveness of beams and columns in structural 
technology. Jakob Bernoulli proposed in his final paper of 
1705 that the curvature of a beam was proportional to its 
bending moment. Euler in 1744 and Johann’s son, Daniel 
Bernoulli, in 1751 used the theory to address the transverse 
vibrations of beams, and in 1757 Euler gave his famous anal-
ysis of the buckling of an initially straight beam subjected 
to a compressive loading; such a beam is commonly called 
a column. Following a suggestion of Daniel Bernoulli 
in 1742, Euler in 1744 introduced the concept of strain 
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energy per unit length for a beam and showed that it is 
proportional to the square of the beam’s curvature. Euler 
regarded the total strain energy as the quantity analogous 
to the potential energy of a discrete mechanical system. 
By adopting procedures that were becoming familiar in 
analytical mechanics and following from the principle of 
virtual work as introduced in 1717 by Johann Bernoulli for 
such discrete systems as pin-connected rigid bodies, Euler 
rendered the energy stationary and in this way developed 
the calculus of variations as an approach to the equations 
of equilibrium and motion of elastic structures.

That same variational approach played a major role in 
the development by French mathematicians in the early 
1800s of a theory of small transverse displacements and 
vibrations of elastic plates. This theory was developed in 
preliminary form by Sophie Germain and was also worked 
on by Siméon-Denis Poisson in the early 1810s; they con-
sidered a flat plate as an elastic plane that resists curvature. 
Claude-Louis-Marie Navier gave a definitive development 
of the correct energy expression and governing differential 
equation a few years later. An uncertainty of some duration 
arose in the theory from the fact that the final partial dif-
ferential equation for the transverse displacement is such 
that it is impossible to prescribe, simultaneously, along an 
unsupported edge of the plate, both the twisting moment 
per unit length of middle surface and the transverse shear 
force per unit length. This was finally resolved in 1850 
by the Prussian physicist Gustav Robert Kirchhoff, who 
applied virtual work and variational calculus procedures in 
the framework of simplifying kinematic assumptions that 
fibres initially perpendicular to the plate’s middle surface 
remain so after deformation of that surface.

The first steps in the theory of thin shells were taken 
by Euler in the 1770s; he addressed the deformation of 
an initially curved beam as an elastic line and provided a 
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simplified analysis of the vibration of an elastic bell as an 
array of annular beams. Johann’s grandson, Jakob Bernoulli 
“the Younger,” further developed this model in the last 
year of his life as a two-dimensional network of elastic 
lines, but he could not develop an acceptable treatment. 
Shell theory did not attract attention again until a century 
after Euler’s work. The first consideration of shells from 
a three-dimensional elastic viewpoint was advanced by 
Hermann Aron in 1873. Acceptable thin-shell theories for 
general situations, appropriate for cases of small deforma-
tion, were then developed by the British mathematician, 
mechanician, and geophysicist Augustus Edward Hough 
Love in 1888 and by the British mathematician and phys-
icist Horace Lamb in 1890 (there is no uniquely correct 
theory, as the Dutch applied mechanician and engineer 
W.T. Koiter and the Soviet mechanician V.V. Novozhilov 
clarified in the 1950s; the difference between predictions 
of acceptable theories is small when the ratio of shell 
thickness to a typical length scale is small). Shell theory 
remained of immense interest well beyond the mid-1900s, 
in part because so many problems lay beyond the linear 
theory (rather small transverse displacements often dra-
matically alter the way that a shell supports load by a 
combination of bending and membrane action) and in 
part because of the interest in such lightweight structural 
forms for aeronautical technology.

The General Theory 
of Elasticity

Linear elasticity as a general three-dimensional theory 
began to be developed in the early 1820s based on Cauchy’s 
work. Simultaneously, Navier had developed an elasticity 
theory based on a simple corpuscular, or particle, model of 
matter in which particles interacted with their neighbours 
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by a central force attraction between particle pairs. As was 
gradually realized, following work by Navier, Cauchy, and 
Poisson in the 1820s and ’30s, the particle model is too 
simple and makes predictions concerning relations among 
elastic moduli that are not met by experiment. Most of 
the subsequent development of this subject was in terms 
of the continuum theory. Controversies concerning the 
maximum possible number of independent elastic mod-
uli in the most general anisotropic solid were settled by 
the British mathematician George Green in 1837. Green 
pointed out that the existence of an elastic strain energy 
required that of the 36 elastic constants relating the 6 
stress components to the 6 strains, at most 21 could be 
independent. The Scottish physicist Lord Kelvin put this 
consideration on sounder ground in 1855 as part of his 
development of macroscopic thermodynamics, showing 
that a strain energy function must exist for reversible iso-
thermal or adiabatic (isentropic) response and working 
out such results as the (very modest) temperature changes 
associated with isentropic elastic deformation.

The middle and late 1800s were a period in which 
many basic elastic solutions were derived and applied to 
technology and to the explanation of natural phenom-
ena. The French mathematician Adhémar-Jean-Claude 
Barré de Saint-Venant derived in the 1850s solutions for 
the torsion of noncircular cylinders, which explained the 
necessity of warping displacement of the cross section 
in the direction parallel to the axis of twisting, and for 
the flexure of beams due to transverse loadings; the lat-
ter allowed understanding of approximations inherent 
in the simple beam theory of Jakob Bernoulli, Euler, and 
Coulomb. The German physicist Heinrich Rudolf Hertz 
developed solutions for the deformation of elastic sol-
ids as they are brought into contact and applied these to 
model details of impact collisions. Solutions for stress and 
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displacement due to concentrated forces acting at an inte-
rior point of a full space were derived by Kelvin, and those 
on the surface of a half space by the French mathematician 
Joseph Valentin Boussinesq and the Italian mathemati-
cian Valentino Cerruti. The Prussian mathematician Leo 
August Pochhammer analyzed the vibrations of an elas-
tic cylinder, and Lamb and the Prussian physicist Paul 
Jaerisch derived the equations of general vibration of an 
elastic sphere in the 1880s, an effort that was continued 
by many seismologists in the 1900s to describe the vibra-
tions of Earth. In 1863 Kelvin had derived the basic form of 
the solution of the static elasticity equations for a spheri-
cal solid, and these were applied in following years to such 
problems as calculating the deformation of Earth due to 
rotation and tidal forcing and measuring the effects of elas-
tic deformability on the motions of Earth’s rotation axis.

The classical development of elasticity never fully con-
fronted the problem of finite elastic straining, in which 
material fibres change their lengths by other than very 
small amounts. Possibly this was because the common 
materials of construction would remain elastic only for 
very small strains before exhibiting either plastic straining 
or brittle failure. However, natural polymeric materials 
show elasticity over a far wider range (usually also with 
enough time or rate effects that they would more accu-
rately be characterized as viscoelastic), and the widespread 
use of natural rubber and similar materials motivated the 
development of finite elasticity. While many roots of the 
subject were laid in the classical theory, especially in the 
work of Green, Gabrio Piola, and Kirchhoff in the mid-
1800s, the development of a viable theory with forms of 
stress-strain relations for specific rubbery elastic materi-
als, as well as an understanding of the physical effects of 
the nonlinearity in simple problems such as torsion and 
bending, was mainly the achievement of the British-born 
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engineer and applied mathematician Ronald S. Rivlin in 
the 1940s and ’50s.

Waves

Poisson, Cauchy, and George G. Stokes showed that the 
equations of the general theory of elasticity predicted the 
existence of two types of elastic deformation waves which 
could propagate through isotropic elastic solids. These 
are called body waves. In the faster type, called longitudi-
nal, dilational, or irrotational waves, the particle motion is 
in the same direction as that of wave propagation; in the 
slower type, called transverse, shear, or rotational waves, 
it is perpendicular to the propagation direction. No ana-
logue of the shear wave exists for propagation through a 
fluid medium, and that fact led seismologists in the early 
1900s to understand that Earth has a liquid core (at the 
centre of which there is a solid inner core).

Lord Rayleigh showed in 1885 that there is a wave type 
that could propagate along surfaces, such that the motion 
associated with the wave decayed exponentially with 
distance into the material from the surface. This type of 
surface wave, now called a Rayleigh wave, propagates typi-
cally at slightly more than 90 percent of the shear wave 
speed and involves an elliptical path of particle motion 
that lies in planes parallel to that defined by the normal to 
the surface and the propagation direction. Another type 
of surface wave, with motion transverse to the propaga-
tion direction and parallel to the surface, was found by 
Love for solids in which a surface layer of material sits 
atop an elastically stiffer bulk solid; this defines the situ-
ation for Earth’s crust. The shaking in an earthquake is 
communicated first to distant places by body waves, but 
these spread out in three dimensions and to conserve the 
energy propagated by the wave field must diminish in their 
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displacement amplitudes as r  −1, where r is the distance 
from the source. The surface waves spread out in only two 
dimensions and must, for the same reason, diminish only 
as fast as r  −1/2. Thus, the shaking effect of the surface waves 
from a crustal earthquake is normally felt more strongly, 
and is potentially more damaging, at moderate to large dis-
tances. Indeed, well before the theory of waves in solids was 
in hand, Thomas Young had suggested in his 1807 lectures 
on natural philosophy that the shaking of an earthquake 
“is probably propagated through the earth in the same 
manner as noise is conveyed through air.” (It had been sug-
gested by the American mathematician and astronomer 
John Winthrop, following his experience of the Boston-
area earthquake of 1755, that the ground shaking was due 
to a disturbance propagated like sound through the air.)

With the development of ultrasonic transducers oper-
ated on piezoelectric principles, the measurement of the 
reflection and scattering of elastic waves has developed 
into an effective engineering technique for the nonde-
structive evaluation of materials for detection of such 
potentially dangerous defects as cracks. Also, very strong 
impacts, whether from meteorite collision, weaponry, or 
blasting and the like in technological endeavours, induce 
waves in which material response can be well outside 
the range of linear elasticity, involving any or all of finite 
elastic strain, plastic or viscoplastic response, and phase 
transformation. These are called shock waves; they can 
propagate much beyond the speed of linear elastic waves 
and are accompanied by significant heating.

Stress Concentrations 
and Fracture

In 1898 G. Kirsch derived the solution for the stress distri-
bution around a circular hole in a much larger plate under 
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remotely uniform tensile stress. The same solution can be 
adapted to the tunnel-like cylindrical cavity of a circular 
section in a bulk solid. Kirsch’s solution showed a signifi-
cant concentration of stress at the boundary, by a factor of 
three when the remote stress was uniaxial tension. Then in 
1907 the Russian mathematician Gury Vasilyevich Kolosov, 
and independently in 1914 the British engineer Charles 
Edward Inglis, derived the analogous solution for stresses 
around an elliptical hole. Their solution showed that the 
concentration of stress could become far greater, as the 
radius of curvature at an end of the hole becomes small 
compared with the overall length of the hole. These results 
provided the insight to sensitize engineers to the possibility 
of dangerous stress concentrations at sharp reentrant cor-
ners, notches, cutouts, keyways, screw threads, and similar 
openings in structures for which the nominal stresses were 
at otherwise safe levels. Such stress concentration sites are 
places from which a crack can nucleate.

The elliptical hole of Kolosov and Inglis defines a crack 
in the limit when one semimajor axis goes to zero, and 
the Inglis solution was adopted by the British aeronauti-
cal engineer A.A. Griffith in 1921 to describe a crack in a 
brittle solid. In that work Griffith made his famous propo-
sition that a spontaneous crack growth would occur when 
the energy released from the elastic field just balanced the 
work required to separate surfaces in the solid. Following 
a hesitant beginning, in which Griffith’s work was ini-
tially regarded as important only for very brittle solids 
such as glass, there developed, largely under the impetus 
of the American engineer and physicist George R. Irwin, 
a major body of work on the mechanics of crack growth 
and fracture, including fracture by fatigue and stress cor-
rosion cracking, starting in the late 1940s and continuing 
into the 1990s. This was driven initially by the cracking 
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of a number of American Liberty ships during World War 
II, by the failures of the British Comet airplane, and by 
a host of reliability and safety issues arising in aerospace 
and nuclear reactor technology. The new complexion of 
the subject extended beyond the Griffith energy theory 
and, in its simplest and most widely employed version in 
engineering practice, used Irwin’s stress intensity factor 
as the basis for predicting crack growth response under 
service loadings in terms of laboratory data that is corre-
lated in terms of that factor. That stress intensity factor is 
the coefficient of a characteristic singularity in the linear 
elastic solution for the stress field near a crack tip; it is 
recognized as providing a proper characterization of crack 
tip stressing in many cases, even though the linear elastic 
solution must be wrong in detail near the crack tip owing 
to nonelastic material response, large strain, and discrete-
ness of material microstructure.

Dislocations

The Italian elastician and mathematician Vito Volterra 
introduced in 1905 the theory of the elastostatic stress 
and displacement fields created by dislocating solids. This 
involves making a cut in a solid, displacing its surfaces rela-
tive to one another by some fixed amount, and joining the 
sides of the cut back together, filling in with material as nec-
essary. The initial status of this work was simply regarded 
as an interesting way of generating elastic fields, but, in 
the early 1930s, Geoffrey Ingram Taylor, Egon Orowan, 
and Michael Polanyi realized that just such a process could 
be going on in ductile crystals and could provide an expla-
nation of the low plastic shear strength of typical ductile 
solids, much as Griffith’s cracks explained low fracture 
strength under tension. In this case, the displacement on 
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the dislocated surface corresponds to one atomic lattice 
spacing in the crystal. It quickly became clear that this 
concept provided the correct microscopic description of 
metal plasticity, and, starting with Taylor in the 1930s and 
continuing into the 1990s, the use of solid mechanics to 
explore dislocation interactions and the microscopic basis 
of plastic flow in crystalline materials has been a major 
topic, with many distinguished contributors.

The mathematical techniques advanced by Volterra 
are now in common use by earth scientists in explain-
ing ground displacement and deformation induced by 
tectonic faulting. Also, the first elastodynamic solutions 
for the rapid motion of crystal dislocations, developed 
by South African materials scientist F.R.N. Nabarro in 
the early 1950s, were quickly adapted by seismologists 
to explain the radiation from propagating slip distribu-
tions on faults. The Japanese seismologist H. Nakano had 
already shown in 1923 how to represent the distant waves 
radiated by an earthquake as the elastodynamic response 
to a pair of force dipoles amounting to zero net torque. 
(All his manuscripts were destroyed in the fire in Tokyo 
associated with the great Kwanto earthquake in that same 
year, but copies of some had been sent to Western col-
leagues and the work survived.)

Continuum Plasticity Theory

The macroscopic theory of plastic flow has a history nearly 
as old as that of elasticity. While in the microscopic theory 
of materials, the word “plasticity” is usually interpreted as 
denoting deformation by dislocation processes, in macro-
scopic continuum mechanics it is taken to denote any type 
of permanent deformation of materials, especially those 
of a type for which time or rate of deformation effects are 
not the most dominant feature of the phenomenon (the 
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terms viscoplasticity, creep, or viscoelasticity are usually 
used in such cases). Coulomb’s work of 1773 on the fric-
tional yielding of soils under shear and normal stress has 
been mentioned; yielding denotes the occurrence of large 
shear deformations without significant increase in applied 
stress. His results were used to explain the pressure of 
soils against retaining walls and footings in the work of the 
French mathematician and engineer Jean Victor Poncelet 
in 1840 and the Scottish engineer and physicist William 
John Macquorn Rankine in 1853. The inelastic deforma-
tion of soils and rocks often takes place in situations for 
which the deforming mass is infiltrated by groundwater, 
and Austrian-American civil engineer Karl Terzaghi in the 
1920s developed the concept of effective stress, whereby 
the stresses that enter a criterion of yielding or failure are 
not the total stresses applied to the saturated soil or rock 
mass but rather the effective stresses, which are the dif-
ference between the total stresses and those of a purely 
hydrostatic stress state with pressure equal to that in the 
pore fluid. Terzaghi also introduced the concept of consol-
idation, in which the compression of a fluid-saturated soil 
can take place only as the fluid slowly flows through the 
pore space under pressure gradients, according to Darcy’s 
law; this effect accounts for the time-dependent settle-
ment of constructions over clay soils.

Apart from the earlier observation of plastic flow at 
large stresses in the tensile testing of bars, the theory of 
continuum plasticity for metallic materials begins with 
Henri Edouard Tresca in 1864. His experiments on the 
compression and indentation of metals led him to pro-
pose that this type of plasticity, in contrast to that in soils, 
was essentially independent of the average normal stress 
in the material and dependent only on shear stresses, a 
feature later rationalized by the dislocation mechanism. 
Tresca proposed a yield criterion for macroscopically 
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isotropic metal polycrystals based on the maximum shear 
stress in the material, and that was used by Saint-Venant 
to solve an early elastic-plastic problem, that of the partly 
plastic cylinder in torsion, and also to solve for the stresses 
in a completely plastic tube under pressure.

The German applied mechanician Ludwig Prandtl 
developed the rudiments of the theory of plane plas-
tic flow in 1920 and 1921, with an analysis of indentation 
of a ductile solid by a flat-ended rigid indenter, and the 
resulting theory of plastic slip lines was completed by H. 
Hencky in 1923 and Hilda Geiringer in 1930. Additional 
developments include the methods of plastic limit analy-
sis, which allowed engineers to directly calculate upper 
and lower bounds to the plastic collapse loads of structures 
or to forces required in metal forming. Those methods 
developed gradually over the early 1900s on a largely intu-
itive basis, first for simple beam structures and later for 
plates, and were put on a rigorous basis within the rapidly 
developing mathematical theory of plasticity about 1950 
by Daniel C. Drucker and William Prager in the United 
States and Rodney Hill in Great Britain.

The Austrian-American applied mathematician 
Richard von Mises proposed in 1913 that a mathemati-
cally simpler theory of plasticity than that based on the 
Tresca yield criterion could be based on the second ten-
sor invariant of the deviatoric stresses (i.e., of the total 
stresses minus those of a hydrostatic state in which pres-
sure is equal to the average normal stress over all planes). 
An equivalent yield criterion had been proposed inde-
pendently by the Polish engineer Maksymilian Tytus 
Huber. The Mises theory incorporates a proposal by M. 
Levy in 1871 that components of the plastic strain incre-
ment tensor are in proportion to one another just as are 
the components of deviatoric stress. This criterion was 



153

7 Solids 7

generally found to provide slightly better agreement with 
experiment than did that of Tresca, and most work on the 
application of plasticity theory uses this form. Following 
a suggestion of Prandtl, E. Reuss completed the theory 
in 1930 by adding an elastic component of strain incre-
ments, related to stress increments in the same way as 
for linear elastic response. This formulation was soon 
generalized to include strain hardening, whereby the 
value of the second invariant for continued yielding 
increases with ongoing plastic deformation, and was 
extended to high-temperature creep response in metals 
or other hot solids by assuming that the second invariant 
of the plastic (now generally called “creep”) strain rate is 
a function of that same invariant of the deviatoric stress, 
typically a power law type with Arrhenius temperature 
dependence.

This formulation of plastic and viscoplastic, or creep, 
response has been applied to all manner of problems in 
materials and structural technology and in flow of geo-
logic masses. Representative problems addressed include 
the growth and subsequent coalescence of microscopic 
voids in the ductile fracture of metals, the theory of the 
indentation hardness test, the extrusion of metal rods 
and rolling of metal sheets, design against collapse of duc-
tile steel structures, estimation of the thickness of the 
Greenland Ice Sheet, and modeling the geologic evolu-
tion of the Plateau of Tibet. Other types of elastic-plastic 
theories intended for analysis of ductile single crystals 
originate from the work of G.I. Taylor and Hill and base 
the criterion for yielding on E. Schmid’s concept from the 
1920s of a critical resolved shear stress along a crystal slip 
plane, in the direction of an allowed slip on that plane; this 
sort of yield condition has approximate support from the 
dislocation theory of plasticity.
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Viscoelasticity

The German physicist Wilhelm Weber noticed in 1835 
that a load applied to a silk thread produced not only an 
immediate extension but also a continuing elongation of 
the thread with time. This type of viscoelastic response 
is especially notable in polymeric solids but is present to 
some extent in all types of solids and often does not have 
a clear separation from what could be called viscoplastic, 
or creep, response. In general, if all of the strain is ulti-
mately recovered when a load is removed from a body, the 
response is termed viscoelastic, but the term is also used 
in cases for which sustained loading leads to strains that 
are not fully recovered. The Austrian physicist Ludwig 
Boltzmann developed in 1874 the theory of linear visco-
elastic stress-strain relations. In their most general form, 
these involve the notion that a step loading (a suddenly 
imposed stress that is subsequently maintained constant) 
causes an immediate strain followed by a time-dependent 
strain which, for different materials, either may have a 
finite limit at long time or may increase indefinitely with 
time. Within the assumption of linearity, the strain at time 
t in response to a general time-dependent stress history 
σ(t) can then be written as the sum (or integral) of terms 
that involve the step-loading strain response due to a step 
loading dt′dσ(t′)/dt′ at time t′. The theory of viscoelasticity 
is important for consideration of the attenuation of stress 
waves and the damping of vibrations.

A new class of problems arose with the mechanics of 
very-long-molecule polymers, which do not have signifi-
cant cross-linking and exist either in solution or as a melt. 
These are fluids in the sense that they cannot long support 
shear stress, but at the same time they have remarkable 
properties like those of finitely deformed elastic solids. A 
famous demonstration is to pour one of these fluids slowly 
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from a beaker and to cut the flowing stream suddenly with 
scissors; if the cut is not too far below the place of exit 
from the beaker, the stream of falling fluid immediately 
contracts elastically and returns to the beaker. The mole-
cules are elongated during flow but tend to return to their 
thermodynamically preferred coiled configuration when 
forces are removed.

The theory of such materials came under intense 
development in the 1950s after the British applied math-
ematician James Gardner Oldroyd showed in 1950 how 
viscoelastic stress-strain relations of a memory type could 
be generalized to a flowing fluid. This requires that the 
constitutive relation, or rheological relation, between the 
stress history and the deformation history at a material 
“point” be properly invariant to a superposed history of 
rigid rotation, which should not affect the local physics 
determining that relation (the resulting Coriolis and cen-
trifugal effects are quite negligible at the scale of molecular 
interactions). Important contributions on this issue were 
made by the applied mathematicians Stanisław Zaremba 
and Gustav Andreas Johannes Jaumann in the first decade 
of the 1900s; they showed how to make tensorial defini-
tions of stress rate that were invariant to superposed spin 
and thus were suitable for use in constitutive relations. 
But it was only during the 1950s that these concepts found 
their way into the theory of constitutive relations for gen-
eral viscoelastic materials; independently, a few years later, 
properly invariant stress rates were adopted in continuum 
formulations of elastic-plastic response.

Computational Mechanics

The digital computer revolutionized the practice of many 
areas of engineering and science, and solid mechanics was 
among the first fields to benefit from its impact. Many 
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computational techniques have been used in this field, 
but the one that emerged by the end of 1970s as, by far, 
the most widely adopted is the finite-element method. 
This method was outlined by the mathematician Richard 
Courant in 1943 and was developed independently, and 
put to practical use on computers, in the mid-1950s by 
the aeronautical structures engineers M.J. Turner, Ray 
W. Clough, Harold Clifford Martin, and LeRoy J. Topp 
in the United States and J.H. Argyris and Sydney Kelsey 
in Britain. Their work grew out of earlier attempts at sys-
tematic structural analysis for complex frameworks of 
beam elements. The method was soon recast in a varia-
tional framework and related to earlier efforts at deriving 
approximate solutions of problems described by varia-
tional principles. The new technique involved substituting 
trial functions of unknown amplitude into the variational 
functional, which is then rendered stationary as an alge-
braic function of the amplitude coefficients. In the most 
common version of the finite-element method, the 
domain to be analyzed is divided into cells, or elements, 
and the displacement field within each element is interpo-
lated in terms of displacements at a few points around the 
element boundary (and sometimes within it) called nodes. 
The interpolation is done so that the displacement field 
is continuous across element boundaries for any choice 
of the nodal displacements. The strain at every point can 
thus be expressed in terms of nodal displacements, and 
it is then required that the stresses associated with these 
strains, through the stress-strain relations of the material, 
satisfy the principle of virtual work for arbitrary varia-
tion of the nodal displacements. This generates as many 
simultaneous equations as there are degrees of freedom 
in the finite element model, and numerical techniques 
for solving such systems of equations are programmed for 
computer solution.
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chapter 7
Stress and Strain

In addressing any problem in continuum or solid 
mechanics, three factors must be considered: (1) the 

Newtonian equations of motion, in the more general form 
recognized by Euler, expressing conservation of linear and 
angular momentum for finite bodies (rather than just for 
point particles), and the related concept of stress, as for-
malized by Cauchy, (2) the geometry of deformation and 
thus the expression of strains in terms of gradients in the 
displacement field, and (3) the relations between stress 
and strain that are characteristic of the material in ques-
tion, as well as of the stress level, temperature, and time 
scale of the problem considered.

These three considerations suffice for most problems. 
They must be supplemented, however, for solids undergo-
ing diffusion processes in which one material constituent 
moves relative to another (which may be the case for fluid-
infiltrated soils or petroleum reservoir rocks) and in cases 
for which the induction of a temperature field by defor-
mation processes and the related heat transfer cannot be 
neglected. These cases require that the following also be 
considered: (4) equations for conservation of mass of diffus-
ing constituents, (5) the first law of thermodynamics, which 
introduces the concept of heat flux and relates changes 
in energy to work and heat supply, and (6) relations that 
express the diffusive fluxes and heat flow in terms of spatial 
gradients of appropriate chemical potentials and of tem-
perature. In many important technological devices, electric 
and magnetic fields affect the stressing, deformation, and 
motion of matter. Examples are provided by piezoelectric 
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crystals and other ceramics for electric or magnetic actua-
tors and by the coils and supporting structures of powerful 
electromagnets. In these cases, two more considerations 
must be added: (7) James Clerk Maxwell’s set of equations 
interrelating electric and magnetic fi elds to polarization 
and magnetization of material media and to the density 
and motion of electric charge, and (8) augmented relations 
between stress and strain, which now, for example, express 
all of stress, polarization, and magnetization in terms of 
strain, electric fi eld, magnetic intensity, and temperature. 
The second law of thermodynamics, combined with the 
above-mentioned principles, serves to constrain physically 
allowed relations between stress, strain, and temperature in 
(3) and also constrains the other types of relations described 
in (6) and (8) above. Such expressions, which give the rela-
tionships between stress, deformation, and other variables, 
are commonly referred to as constitutive relations. 

 To examine the mathematical structure of the theory, 
considerations (1) to (3) above will now be further devel-
oped. For this purpose, a continuum model of matter will 
be used, with no detailed reference to its discrete structure 
at molecular—or possibly other larger microscopic—
scales far below those of the intended application.     

 linear and angular 
momenTum principleS: STreSS 
and equaTionS oF moTion 

 Let  x  denote the position vector of a point in space as 
measured relative to the origin of a Newtonian refer-
ence frame;  x  has the components ( x  1 ,  x  2 ,  x  3 ) relative to a 
Cartesian set of axes, which is fi xed in the reference frame 
and denoted as the 1, 2, and 3 axes. Suppose that a material 
occupies the part of space considered, and let  v  =  v ( x  , t ) 
be the velocity vector of the material point that occupies 
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position  x  at time  t ; that same material point will be at 
position  x  +  v  dt  an infi nitesimal interval  dt  later. Let  ρ  = 
 ρ ( x  , t ) be the mass density of the material. Here  v  and  ρ  are 
macroscopic variables. What is idealized in the continuum 
model as a material point, moving as a smooth function of 
time, will correspond on molecular-length (or larger but 
still “microscopic”) scales to a region with strong fl uctua-
tions of density and velocity. In terms of phenomena at 
such scales,  ρ  corresponds to an average of mass per unit of 
volume, and  ρ  v  to an average of linear momentum per unit 
volume, as taken over spatial and temporal scales that are 
large compared to those of the microscale processes but 
still small compared to those of the intended application 
or phenomenon under study. Thus, from the microscopic 
viewpoint,  v  of the continuum theory is a mass-weighted 
average velocity. 

 The position vector  x  and the velocity vector  v  of a material point, the body 
force  f  dV  acting on an element  dV  of volume, and the surface force  T  dS
acting on an element  dS  of surface in a Cartesian coordinate system 1, 2, 3.  
Copyright Encyclopædia Britannica; rendering for this edition by 
Rosen Educational Services
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The linear momentum P and angular momentum H 
(relative to the coordinate origin) of the matter instanta-
neously occupying any volume V of space are then given 
by summing up the linear and angular momentum vectors 
of each element of material. Such summation over infini-
tesimal elements is represented mathematically by the 
integrals P = ∫VρvdV and H = ∫Vρx × vdV. In this discus-
sion attention is limited to situations in which relativistic 
effects can be ignored. Let F denote the total force and M 
the total torque, or moment (relative to the coordinate ori-
gin), acting instantaneously on the material occupying any 
arbitrary volume V. The basic laws of Newtonian mechan-
ics are the linear and angular momentum principles that 
F = dP/dt and M = dH/dt, where time derivatives of P and 
H are calculated following the motion of the matter that 
occupies V at time t. When either F or M vanishes, these 
equations of motion correspond to conservation of linear 
or angular momentum.

An important, very common, and nontrivial class of 
problems in solid mechanics involves determining the 
deformed and stressed configuration of solids or struc-
tures that are in static equilibrium; in that case the relevant 
basic equations are F = 0 and M = 0. The understanding 
of such conditions for equilibrium, at least in a rudimen-
tary form, long predates Newton. Indeed, Archimedes of 
Syracuse (3rd century bce), the great Greek mathemati-
cian and arguably the first theoretically and experimentally 
minded physical scientist, understood these equations 
at least in a nonvectorial form appropriate for systems 
of parallel forces. This is shown by his treatment of the 
hydrostatic equilibrium of a partially submerged body and 
by his establishment of the principle of the lever (torques 
about the fulcrum sum to zero) and the concept of centre 
of gravity.



161

7 Stress and Strain 7

 Stress 

 Assume that  F  and  M  derive from two types of forces, 
namely, body forces  f , such as gravitational attractions—
defi ned such that force  f  dV  acts on volume element 
dV —and surface forces, which represent the mechani-
cal effect of matter immediately adjoining that along 
the surface  S  of the volume  V  being considered. Cauchy 
formalized in 1822 a basic assumption of continuum 
mechanics that such surface forces could be represented 
as a stress vector  T , defi ned so that  T  dS  is an element of 
force acting over the area  dS  of the surface. Hence, the 
principles of linear and angular momentum take the forms 

 (111) (111)
  

 (112) (112)
  

 which are now assumed to hold good for every conceiv-
able choice of region  V . In calculating the right-hand 
sides, which come from  d  P / dt  and  d  H / dt , it has been noted 
that  ρdV  is an element of mass and is therefore time-
invariant; also,  a  =  a ( x  , t ) =  d  v / dt  is the acceleration, where 
the time derivative of  v  is taken following the motion 
of a material point so that  a ( x  , t ) dt  corresponds to the 
difference between  v ( x  +  v  dt, t  +  dt ) and  v ( x  , t ). A more 
detailed analysis of this step shows that the understand-
ing of what  T  dS  denotes must now be adjusted to include 
averages, over temporal and spatial scales that are large 
compared to those of microscale fl uctuations, of transfers 
of momentum across the surface  S  due to the microscopic 
fl uctuations about the motion described by the macro-
scopic velocity  v . 
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 The nine components of a stress tensor.  The fi rst index denotes the direction 
of the normal, or perpendicular, stresses to the plane across which the contact 
force acts, and the second index denotes the direction of the component of force. 
Copyright Encyclopædia Britannica; rendering for this edition by 
Rosen Educational Services

 The nine quantities  σ   ij  ( i, j  = 1, 2, 3) are called stress com-
ponents; these will vary with position and time—i.e.,  σ   ij   = 
σ   ij  ( x  , t )—and have the following interpretation. Consider 
an element of surface  dS  through a point  x  with  dS  oriented 
so that its outer normal (pointing away from the region  V , 
bounded by  S ) points in the positive  x   i   direction, where  i
is any of 1, 2, or 3. Then  σ   i 1 ,  σ   i 2 , and  σ   i 3  at  x  are defi ned as the 
Cartesian components of the stress vector  T  (called  T    ( i  ) ) 
acting on this  dS . To use a vector notation with  e  1 ,  e  2 , and 
 e  3  denoting unit vectors along the coordinate axes,  T   ( i  )  = 
 σ   i 1   e  1  +  σ   i 2   e  2  +  σ   i 3   e  3 . Thus, the stress  σ   ij   at  x  is the stress in the  j  
direction associated with an  i -oriented face through point 
 x ; the physical dimension of the  σ   ij   is [force]/[length] 2 . The 
components  σ  11 ,  σ  22 , and  σ  33  are stresses directed perpen-
dicular, or normal, to the face on which they act and are 
normal stresses; the  σ   ij   with  i  ≠  j  are directed parallel to the 
face on which they act and are shear stresses. 
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 By hypothesis, the linear momentum principle applies 
for any volume  V . Consider a small tetrahedron at  x  with 
an inclined face having an outward unit normal vector  n
and its other three faces oriented perpendicular to the 
three coordinate axes. Letting the size of the tetrahedron 
shrink to zero, the linear momentum principle requires 
that the stress vector  T  on a surface element with out-
ward normal  n  be expressed as a linear function of the 
 σ   ij   at  x . The relation is such that the  j  component of the 
stress vector  T  is  T   j   =  n  1  σ  1 j   +  n  2  σ  2  j   +  n  3  σ  3   j   for ( j  = 1, 2, 3). This 
relation for  T  (or  T   j  ) also demonstrates that the  σ   ij   have 
the mathematical property of being the components of a 
second-rank tensor. 

 Suppose that a different set of Cartesian reference 
axes 1′, 2′, and 3′ have been chosen. Let  x  1 ′,  x  2 ′, and  x  3 ′
denote the components of the position vector of point  x
and let  σ   kl  ′( k, l  = 1, 2, 3) denote the nine stress components 

 The force  T  dS  acting on an arbitrarily inclined face (whose outward unit 
normal vector is  n   ). Stress vectors  T  (−1) ,  T  (−2) , and  T  (−3)  act on the faces per-
pendicular to the coordinate axes.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services
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relative to that coordinate system. The  σ   kl  ′ can be writ-
ten as the 3 × 3 matrix [ σ ′], and the  σ   ij   as the matrix [ σ ], 
where the fi rst index is the matrix row number and the 
second is the column number. Then the expression for  T   j
implies that [ σ ′] = [ α ][ σ ][ α ]  T  , which is the defi ning equa-
tion of a second-rank tensor. Here [ α ] is the orthogonal 
transformation matrix, having components  α   pq   =  e   p  ′  · e   q   for 
 p, q  = 1, 2, 3 and satisfying [ α ]  T  [ α ] = [ α ][ α ]  T   = [ I ], where the 
superscript  T  denotes transpose (interchange rows and 
columns) and [ I ] denotes the unit matrix, a 3 × 3 matrix with 
unity for every diagonal element and zero elsewhere; also, 
the matrix multiplications are such that if [ A ] = [ B ][ C ], 
then  A   ij   =  B   i 1  C  1 j   +  B   i 2  C  2 j   +  B   i 3  C  3  j  .     

 Equations of Motion 

 Now the linear momentum principle may be applied to 
an arbitrary fi nite body. Using the expression for  T   j   above 
and the divergence theorem of multivariable calculus, 
which states that integrals over the area of a closed sur-
face  S , with integrand  n   i   f  ( x ), may be rewritten as integrals 
over the volume  V  enclosed by  S , with integrand  ∂f  ( x )/ ∂  x   i  ; 
when  f  ( x ) is a differentiable function, one may derive that  

 
(113)

 
 at least when the σ  ij   are continuous and differentiable, 
which is the typical case. These are the equations of 
motion for a continuum. Once the above consequences 
of the linear momentum principle are accepted, the 
only further result that can be derived from the angular 
momentum principle is that σ  ij   = σ  ji   ( i, j  = 1, 2, 3). Thus, the 
stress tensor is symmetric.     
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 Principal Stresses 

 Symmetry of the stress tensor has the important conse-
quence that, at each point  x,  there exist three mutually 
perpendicular directions along which there are no shear 
stresses. These directions are called the principal stress 
directions, and the corresponding normal stresses are 
called the principal stresses. If the principal stresses are 
ordered algebraically as  σ  I ,  σ  II , and  σ  III , then the normal 
stress on any face (given as  σ   n   =  n · T ) satisfi es  σ  I  ≤  σ   n   ≤  σ  III . 
The principal stresses are the eigenvalues (or characteris-
tic values)  s , and the principal directions the eigenvectors 
 n , of the problem  T  =  s  n , or [ σ ]{ n } =  s { n } in matrix nota-
tion with the 3-column { n } representing  n . It has solutions 
when det ([ σ ] −  s [ I  ]) = − s  3  +  I  1  s  2  +  I  2  s  +  I  3  = 0, with  I  1  = tr[ σ ], 
 I  2  = −(1/2) I  2/1 + (1/2)tr([ σ ][ σ ]), and  I  3  = det [ σ ]. Here “det” 
denotes determinant and “tr” denotes trace, or sum of 
diagonal elements, of a matrix. Since the principal stresses 

principal stresses. Copyright Encyclopædia Britannica; rendering for 
this edition by Rosen Educational Services
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are determined by I1, I2, and I3 and can have no depen-
dence on how one chooses the coordinate system with 
respect to which the components of stress are referred, 
I1, I2, and I3 must be independent of that choice and are 
therefore called stress invariants. One may readily verify 
that they have the same values when evaluated in terms 
of σij′ above as in terms of σij by using the tensor trans-
formation law and properties noted for the orthogonal 
transformation matrix.

Very often, in both nature and technology, there is 
interest in structural elements in forms that might be 
identified as strings, wires, rods, bars, beams, or columns, 
or as membranes, plates, or shells. These are usually ide-
alized as, respectively, one- or two-dimensional continua. 
One possible approach is then to develop the conse-
quences of the linear and angular momentum principles 
entirely within that idealization, working in terms of net 
axial and shear forces and bending and twisting torques 
at each point along a one-dimensional continuum, or in 
terms of forces and torques per unit length of surface in a 
two-dimensional continuum.

Strain

The shape of a solid or structure changes with time dur-
ing a deformation process. To characterize deformation, 
or strain, a certain reference configuration is adopted and 
called undeformed. Often, that reference configuration is 
chosen as an unstressed state, but such is neither neces-
sary nor always convenient. If time is measured from zero 
at a moment when the body exists in that reference con-
figuration, then the upper case X may be used to denote 
the position vectors of material points when t = 0. At 
some other time t, a material point that was at X will have 
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moved to some spatial position x. The deformation is thus 
described as the mapping x = x(X, t), with x = x(X, 0) = X. 
The displacement vector u is then u = x(X, t) − X; also, v = 
∂x(X, t)/∂t and a = ∂2x(X, t)/∂t2.

Strain-Displacement Relations

It is simplest to write equations for strain in a form that, 
while approximate in general, is suitable for the case when 
any infinitesimal line element dX of the reference configu-
ration undergoes extremely small rotations and fractional 
change in length, in deforming to the corresponding line 
element dx. These conditions are met when |  ∂ui  /∂Xj   |  << 1. 
Many solids are often sufficiently rigid, at least under the 
loadings typically applied to them, that these conditions 
are realized in practice. Linearized expressions for strain 
in terms of [∂u/∂X], appropriate to this situation, are called 
small strain or infinitesimal strain. Expressions for strain 
will also be given that are valid for rotations and fractional 
length changes of arbitrary magnitude; such expressions 
are called finite strain.

Two simple types of strain are extensional strain and 
shear strain. Consider a rectangular parallelepiped, a brick-
like block of material with mutually perpendicular planar 
faces, and let the edges of the block be parallel to the 1, 
2, and 3 axes. If the block is deformed homogeneously, so 
that each planar face moves perpendicular to itself and 
so that the faces remain orthogonal (i.e., the parallelepi-
ped is deformed into another rectangular parallelepiped), 
then the block is said to have undergone extensional 
strain relative to each of the 1, 2, and 3 axes but no shear 
strain relative to these axes. If the edge lengths of the 
undeformed parallelepiped are denoted as ΔX1, ΔX2, and 
ΔX3, and those of the deformed parallelepiped as Δx1, Δx2, 
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 (A) extensional strain and (B) simple shear strain, where the element 
drawn with dashed lines represents the reference confi guration, and the 
element drawn with solid lines represents the deformed confi guration.  
Copyright Encyclopædia Britannica; rendering for this edition by 
Rosen Educational Services

and Δ x  3 , then the quantities λ 1  = Δ x  1 /Δ X  1 , λ 2  = Δ x  2 /Δ X  2 , and 
λ = Δ x  3 /Δ X  3  are called stretch ratios. There are various ways 
that extensional strain can be defi ned in terms of them. 
Note that the change in displacement in, say, the  x  1  direc-
tion between points at one end of the block and those at 
the other is Δ u  1  = (λ 1  − 1)Δ X  1 . For example, if  e  11  denotes the 
extensional strain along the  x  1  direction, then the most 
commonly understood defi nition of strain is  e  11  = (change 
in length)/(initial length) = (Δ x  1  − Δ X  1 )/Δ X  1  = Δ u  1 /Δ X  1  = λ 1  − 1. 
A variety of other measures of extensional strain can be 
defi ned by  e  11  =  g (λ 1 ), where the function  g (λ) satisfi es  g (1) 
= 0 and  g ′(1) = 1, so as to agree with the above defi nition 
when λ 1  is very near 1. Two such measures in common use 
are the strain  e M  = (λ  2 ⁄ 1  − 1)/2, based on the change of met-
ric tensor, and the logarithmic strain  e L  = ln(λ 1 ). 
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 To defi ne a simple shear strain, consider the same rect-
angular parallelepiped, but now deform it so that every 
point on a plane of type  X  2  = constant moves only in the 
x  1  direction by an amount that increases linearly with  X  2 . 
Thus, the deformation  x  1  =  γX  2  +  X  1 ,  x  2  =  X  2 ,  x  3  =  X  3  defi nes 
a homogeneous simple shear strain of amount  γ . Note that 
this strain causes no change of volume. For small strain, 
the shear strain  γ  can be identifi ed as the reduction in 
angle between two initially perpendicular lines.     

 Small-Strain Tensor 

 The small strains, or infi nitesimal strains,  ε   ij   are appro-
priate for situations with | ∂u   k  / ∂X   l  |<< 1 for all  k  and  l . 
Consider two infi nitesimal material fi bres, one initially in 
the 1 direction and the other in the 2 direction. To fi rst-
order accuracy in components of [ ∂u / ∂X ], the extensional 
strains of these fi bres are  ε  11  =  ∂u  1 / ∂X  1  and  ε  22  =  ∂u  2 / ∂X  2 , and 
the reduction of the angle between them is  γ  12  =  ∂u  2 / ∂X  1  

 relations of strains to gradients of displacement.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
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+  ∂u  1 / ∂X  2 . For the shear strain denoted  ε  12 , however, half 
of  γ  12  is used. Thus, considering all extensional and shear 
strains associated with infi nitesimal fi bres in the 1, 2, and 
3 directions at a point of the material, the set of strains 
is given by 
 

   
(114)

 The  ε   ij   are symmetric—i.e.,  ε   ij   =  ε   ji  —and form a second-
rank tensor (that is, if Cartesian reference axes 1′, 2′, and 
3′ were chosen instead and the  ε   kl  ′ were determined, then 
the  ε   kl  ′ are related to the  ε   ij   by the same equations that 
relate the stresses  σ   kl  ′ to the  σ   ij  ). These mathematical fea-
tures require that there exist principal strain directions; 
at every point of the continuum it is possible to identify 
three mutually perpendicular directions along which there 
is purely extensional strain, with no shear strain between 
these special directions. The directions are the principal 
strain directions, and the corresponding strains include 
the least and greatest extensional strains experienced by 
fi bres through the material point considered. Invariants 
of the strain tensor may be defi ned in a way paralleling 
those for the stress tensor. 

 An important fact to note is that the strains cannot 
vary in an arbitrary manner from point to point in the body. 
This is because the six strain components are all deriv-
able from three displacement components. Restrictions 
on strain resulting from such considerations are called 
compatibility relations; the body would not fi t together 
after deformation unless they were satisfi ed. Consider, for 
example, a state of plane strain in the 1, 2 plane (so that 
ε  33  =  ε  23  =  ε  31  = 0). The nonzero strains  ε  11 ,  ε  22 , and  ε  12  can-
not vary arbitrarily from point to point but must satisfy 
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∂2ε22/∂X  2⁄1 + ∂2ε11/∂X 2⁄2 = 2∂2ε12/∂X1∂X2, as may be verified 
by directly inserting the relations for strains in terms of 
displacements.

When the smallness of stretch and rotation of line 
elements allows use of the infinitesimal strain tensor, 
a derivative ∂/∂Xi will be very nearly identical to ∂/∂xi. 
Frequently, but not always, it will then be acceptable to 
ignore the distinction between the deformed and unde-
formed configurations in writing the governing equations 
of solid mechanics. For example, the differential equa-
tions of motion in terms of stress are rigorously correct 
only with derivatives relative to the deformed configura-
tion, but, in the circumstances considered, the equations 
of motion can be written relative to the undeformed con-
figuration. This is what is done in the most widely used 
variant of solid mechanics, in the form of the theory of 
linear elasticity. The procedure can be unsatisfactory and 
go badly wrong in some important cases, however, such as 
for columns that buckle under compressive loadings or for 
elastic-plastic materials when the slope of the stress ver-
sus strain relation is of the same order as existing stresses. 
Cases such as these are instead best approached through 
finite deformation theory.

Finite Deformation and Strain Tensors

In the theory of finite deformations, extension and rota-
tions of line elements are unrestricted as to size. For an 
infinitesimal fibre that deforms from an initial point given 
by the vector dX to the vector dx in the time t, the defor-
mation gradient is defined by Fij = ∂xi(X, t)/∂Xj; the 3 × 3 
matrix [F], with components Fij, may be represented as a 
pure deformation, characterized by a symmetric matrix 
[U], followed by a rigid rotation [R]. This result is called 
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the polar decomposition theorem and takes the form, 
in matrix notation, [ F ] = [ r ][ U ]. For an arbitrary defor-
mation, there exist three mutually orthogonal principal 
stretch directions at each point of the material; call these 
directions in the reference confi guration  N  (I) ,  N  (II) ,  N  (III) , 
and let the stretch ratios be λ I , λ II , λ III . Fibres in these three 
principal strain directions undergo extensional strain but 
have no shearing between them. Those three fi bres in 
the deformed confi guration remain orthogonal but are 
rotated by the operation [ r ]. 

 As noted earlier, an extensional strain may be defi ned 
by  e  =  g  (λ), where  g (1) = 0 and  g ′(1) = 1, with examples for  g (λ) 
given above. A fi nite strain tensor  e   ij   may then be defi ned 
based on any particular function  g (λ) by  e   ij   =  g (λ I ) N   i   (I)  N   j   (I)

+  g  (λ II ) N   i   (II)  N   j   (II)  +  g (λ III ) N   i   (III)  N   j   (III) . Usually, it is rather dif-
fi cult to actually solve for the λ’s and  N ’s associated with 
any general [ F ], so it is not easy to use this strain defi ni-
tion. However, for the special choice identifi ed as  g   M  (λ) = 
(λ 2  − 1)/2 above, it may be shown that  

 
 which, like the fi nite strain generated by any other  g (λ), 
reduces to  ε   ij   when linearized in [ ∂u / ∂X ].     

 STreSS-STrain relaTionS 

 In general, the stress-strain relations are to be determined 
by experiment. A variety of mechanical testing machines 
and geometric confi gurations of material specimens have 
been devised to measure them. These allow, in different 
cases, simple tensile, compressive, or shear stressing, and 
sometimes combined stressing with several different com-
ponents of stress, as well as the determination of material 
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response over a range of temperatures, strain rates, and 
loading histories. The testing of round bars under tensile 
stress, with precise measurement of their extension to 
obtain the strain, is common for metals and for techno-
logical ceramics and polymers. For rocks and soils, which 
generally carry load in compression, the most common 
test involves a round cylinder that is compressed along its 
axis, often while being subjected to confining pressure on 
its curved face. Frequently, a measurement interpreted by 
solid mechanics theory is used to determine some of the 
properties entering stress-strain relations. For example, 
measuring the speed of deformation waves or the natu-
ral frequencies of vibration of structures can be used to 
extract the elastic moduli of materials of known mass den-
sity, and measurement of indentation hardness of a metal 
can be used to estimate its plastic shear strength.

In some favourable cases, stress-strain relations 
can be calculated approximately by applying principles 
of mechanics at the microscale of the material consid-
ered. In a composite material, the microscale could be 
regarded as the scale of the separate materials making up 
the reinforcing fibres and matrix. When their individual 
stress-strain relations are known from experiment, con-
tinuum mechanics principles applied at the scale of the 
individual constituents can be used to predict the over-
all stress-strain relations for the composite. For rubbery 
polymer materials, made up of long chain molecules that 
randomly configure themselves into coil-like shapes, 
some aspects of the elastic stress-strain response can be 
obtained by applying principles of statistical thermody-
namics to the partial uncoiling of the array of molecules 
by imposed strain. For a single crystallite of an element 
such as silicon or aluminum or for a simple compound 
like silicon carbide, the relevant microscale is that of 
the atomic spacing in the crystals; quantum mechanical 
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principles governing atomic force laws at that scale can be 
used to estimate elastic constants. In the case of plastic 
flow processes in metals and in sufficiently hot ceramics, 
the relevant microscale involves the network of disloca-
tion lines that move within crystals. These lines shift atom 
positions relative to one another by one atomic spacing as 
they move along slip planes. Important features of elastic-
plastic and viscoplastic stress-strain relations can be 
understood by modeling the stress dependence of disloca-
tion generation and motion and the resulting dislocation 
entanglement and immobilization processes that account 
for strain hardening.

Linear Elastic Isotropic Solid

The simplest type of stress-strain relation is that of the 
linear elastic solid, considered in circumstances for which 
|∂ui/∂Xj|<< 1 and for isotropic materials, whose mechanical 
response is independent of the direction of stressing. If a 
material point sustains a stress state σ11 = σ, with all other 
σij = 0, it is subjected to uniaxial tensile stress. This can be 
realized in a homogeneous bar loaded by an axial force. 
The resulting strain may be rewritten as ε11 = σ/E, ε22 = ε33 
= −νε11 = −νσ/E,ε12 = ε23 = ε31 = 0. Two new parameters have been 
introduced here, E and ν. E is called Young’s modulus, and 
it has dimensions of [force]/[length]2 and is measured 
in units such as the pascal (1 Pa = 1 N/m2), dyne/cm2, or 
pounds per square inch (psi); ν, which equals the ratio of 
lateral strain to axial strain, is dimensionless and is called 
the Poisson ratio.

If the isotropic solid is subjected only to shear stress 
τ—i.e., σ12 = σ21 = τ, with all other σij = 0—then the response 
is shearing strain of the same type, ε12 = τ/2G, ε23 = ε31 = ε11 = 
ε22 = ε33 = 0. Notice that because 2ε12 = γ12, this is equivalent 
to γ12 = τ/G. The constant G introduced is called the shear 



175

7 Stress and Strain 7

modulus. (Frequently, the symbol  µ  is used instead of  G .) 
The shear modulus  G  is not independent of  e  and  ν  but is 
related to them by  G  =  e /2(1 +  ν ), as follows from the tensor 
nature of stress and strain. The general stress-strain rela-
tions are then 

 (114) (114)

 
 where  δ   ij   is defi ned as 1 when its indices agree and 0 
otherwise. 

 These relations can be inverted to read  σ   ij   = λ δ   ij   ( ε  11  +  ε  22  
+  ε  33 ) + 2 µε   ij  , where  µ  has been used rather than  G  as the 
notation for the shear modulus, following convention, and 
where λ = 2 νµ /(1 − 2 ν ). The elastic constants λ and  µ  are some-
times called the Lamé constants. Since  ν  is typically in the 
range ¼ to ¹⁄³ for hard polycrystalline solids, λ falls often in 
the range between  µ  and 2 µ . (Navier’s particle model with 
central forces leads to λ =  µ  for an isotropic solid.) 

 Another elastic modulus often cited is the bulk modu-
lus  K , defi ned for a linear solid under pressure  p ( σ  11  =  σ  22  =  σ  33  
= − p ) such that the fractional decrease in volume is  p / K . For 
example, consider a small cube of side length  L  in the refer-
ence state. If the length along, say, the 1 direction changes 
to (1 +  ε  11 ) L , the fractional change of volume is (1 +  ε  11 )(1 +  ε  22 )
(1 +  ε  33 ) − 1 =  ε  11  +  ε  22  +  ε  33 , neglecting quadratic and cubic order 
terms in the  ε   ij   compared to the linear, as is appropriate 
when using linear elasticity. Thus,  K  =  e /3(1 − 2 ν ) =  λ  + 2 µ /3.     

 Thermal Strains 

 Temperature change can also cause strain. In an isotro-
pic material the thermally induced extensional strains are 
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equal in all directions, and there are no shear strains. In 
the simplest cases, these thermal strains can be treated as 
being linear in the temperature change θ − θ0 (where θ0 is 
the temperature of the reference state), writing εij

thermal = 
δijα(θ − θ0) for the strain produced by temperature change 
in the absence of stress. Here α is called the coefficient 
of thermal expansion. Thus, in cases of temperature 
change, εij is replaced in the stress-strain relations above 
with εij − εij

thermal, with the thermal part given as a function 
of temperature. Typically, when temperature changes are 
modest, the small dependence of E and ν on temperature 
can be neglected.

Anisotropy

Anisotropic solids also are common in nature and tech-
nology. Examples are single crystals; polycrystals in which 
the grains are not completely random in their crystal-
lographic orientation but have a “texture,” typically 
owing to some plastic or creep flow process that has left 
a preferred grain orientation; fibrous biological materi-
als such as wood or bone; and composite materials that, 
on a microscale, either have the structure of reinforcing 
fibres in a matrix, with fibres oriented in a single direction 
or in multiple directions (e.g., to ensure strength along 
more than a single direction), or have the structure of a 
lamination of thin layers of separate materials. In the most 
general case, the application of any of the six components 
of stress induces all six components of strain, and there is 
no shortage of elastic constants. There would seem to be 
6 × 6 = 36 in the most general case, but, as a consequence 
of the laws of thermodynamics, the maximum number of 
independent elastic constants is 21 (compared with 2 for 
isotropic solids). In many cases of practical interest, sym-
metry considerations reduce the number to far below 21. 
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For example, crystals of cubic symmetry, such as rock salt 
(NaCl); face-centred cubic metals, such as aluminum, cop-
per, or gold; body-centred cubic metals, such as iron at 
low temperatures or tungsten; and such nonmetals as dia-
mond, germanium, or silicon have only three independent 
elastic constants. Solids with a special direction, and with 
identical properties along any direction perpendicular to 
that direction, are called transversely isotropic; they have 
fi ve independent elastic constants. Examples are provided 
by fi bre-reinforced composite materials, with fi bres that 
are randomly emplaced but aligned in a single direction in 
an isotropic or transversely isotropic matrix, and by single 
crystals of hexagonal close packing such as zinc. 

 General linear elastic stress-strain relations have the form

where the coeffi cients  C   ijkl   are known as the tensor elastic 
moduli. Because the  ε   kl   are symmetric, one may choose  C   ijkl

=  C   ijlk  , and, because the  σ   ij   are symmetric,  C   ijkl   =  C   jikl  . Hence 
the 3 × 3 × 3 × 3 = 81 components of  C   ijkl   reduce to the 6 × 6 = 36 
mentioned. In cases of temperature change, the  ε   ij   above is 
replaced by  ε   ij   −  ε   ij    thermal  , where  ε   ij    thermal   =  α   ij  ( θ  −  θ  0 ) and  α   ij   is the 
set of thermal strain coeffi cients, with  α   ij   =  α   ji  . An alterna-
tive matrix notation is sometimes employed, especially in 
the literature on single crystals. That approach introduces 
6-element columns of stress and strain { σ } and { ε }, defi ned 
so that the columns, when transposed (superscript  T ) or 
laid out as rows, are { σ }  T   = ( σ  11 ,  σ  22 ,  σ  33 ,  σ  12 ,  σ  23 ,  σ  31 ) and { ε }  T   = 
( ε  11 ,  ε  22 ,  ε  33 , 2 ε  12 , 2 ε  23 , 2 ε  31 ). These forms assure that the scalar 
{ σ }  T  { dε } =̄ tr([ σ ][ dε ]) is an increment of stress working per 
unit volume. The stress-strain relations are then written 
{ σ } = [ c ]{ ε }, where [ c ] is the 6 × 6 matrix of elastic moduli. 
Thus,  c  13  =  C  1133 ,  c  15  =  C  1123 ,  c  44  =  C  1212 , and so on.     
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Thermodynamic Considerations

In thermodynamic terminology, a state of purely elastic 
material response corresponds to an equilibrium state, 
and a process during which there is purely elastic response 
corresponds to a sequence of equilibrium states and hence 
to a reversible process. The second law of thermodynam-
ics assures that the heat absorbed per unit mass can be 
written θds, where θ is the thermodynamic (absolute) tem-
perature and s is the entropy per unit mass. Hence, writing 
the work per unit volume of reference configuration in a 
manner appropriate to cases when infinitesimal strain can 
be used, and letting ρ0 be the density in that configuration, 
from the first law of thermodynamics it can be stated that 
ρ0θds + tr([σ][dε]) = ρ0de, where e is the internal energy per 
unit mass. This relation shows that if e is expressed as a 
function of entropy s and strains [ε], and if e is written so as 
to depend identically on εij and εji, then σij = ρ0∂e([ε], s)/∂εij.

Alternatively, one may introduce the Helmholtz free 
energy f per unit mass, where f = e − θs = f([ε], θ), and show 
that σij = ρ0∂f([ε], θ)/∂εij. The latter form corresponds to 
the variables with which the stress-strain relations were 
written above. Sometimes ρ0 f is called the strain energy 
for states of isothermal (constant θ) elastic deformation; 
ρ0e has the same interpretation for adiabatic (s = con-
stant) elastic deformation, achieved when the time scale 
is too short to allow heat transfer to or from a deforming 
element. Since the mixed partial derivatives must be inde-
pendent of order, a consequence of the last equation is that 
∂σij([ε], θ)/∂εkl = ∂σkl([ε], θ)/∂εij, which requires that Cijkl = Cklij, 
or equivalently that the matrix [c] be symmetric, [c] = [c]T, 
reducing the maximum possible number of independent 
elastic constraints from 36 to 21. The strain energy W([ε]) at 
constant temperature θ0 is W([ε]) =̄ ρ0 f([ε], θ0) = (1⁄2){ε}T[c]{ε}.
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The elastic moduli for adiabatic response are slightly 
different from those for isothermal response. In the case 
of the isotropic material, it is convenient to give results in 
terms of G and K, the isothermal shear and bulk moduli. 
The adiabatic moduli G and K- are then G = G and K- = 
K(1 + 9θ0Kα2/ρ0cε), where cε = θ0∂s([ε],θ)/∂θ, evaluated at θ = 
θ0 and [ε] = [0], is the specific heat at constant strain. The 
fractional change in the bulk modulus, given by the sec-
ond term in the parentheses, is very small, typically on the 
order of 1 percent or less, even for metals and ceramics of 
relatively high α, on the order of 10−5/kelvin.

The fractional change in absolute temperature dur-
ing an adiabatic deformation is found to involve the same 
small parameter: [(θ − θ0)/θ0]s = const = −(9θ0Kα2/ρ0cε) [(ε11 + ε22 + 
ε33)/3αθ0]. Values of α for most solid elements and inorganic 
compounds are in the range of 10−6 to 4 × 10−5/kelvin; room 
temperature is about 300 kelvins, so 3αθ0 is typically in the 
range 10−3 to 4 × 10−2. Thus, if the fractional change in vol-
ume is on the order of 1 percent, which is quite large for a 
metal or ceramic deforming in its elastic range, the frac-
tional change in absolute temperature is also on the order 
of 1 percent. For those reasons, it is usually appropriate 
to neglect the alteration of the temperature field due to 
elastic deformation and hence to use purely mechanical 
formulations of elasticity in which distinctions between 
adiabatic and isothermal response are neglected.

Finite Elastic Deformations

When elastic response under arbitrary deformation gra-
dients is considered—because rotations, if not strains, are 
large or, in a material such as rubber, because the strains 
are large too—it is necessary to dispense with the infini-
tesimal strain theory. In such cases, the combined first 
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and second laws of thermodynamics have the form  ρ  0  θds  + 
det[ F ]tr([ F ] −1 [ σ ][ dF ]) =  ρ  0  de , where [ F ] −1  is the matrix inverse 
of the deformation gradient [ F ]. If a parcel of material is 
deformed by [ F ] and then given some additional rigid rota-
tion, the free energy  f  must be unchanged in that rotation. 
In terms of the polar decomposition [ F ] = [ r ][ U ], this is 
equivalent to saying that  f  is independent of the rotation 
part [ r ] of [ F ], which is then equivalent to saying that  f  is 
a function of the fi nite strain measure [ e   M  ] = (1⁄2 )([ F ]  T  [ F ] − 
[ I ]) based on change of metric or, for that matter, on any 
member of the family of material strain tensors. Thus,

is sometimes called the second Piola-Kirchhoff stress and 
is given by  S   kl   =  ρ  0  ∂f ([ e   M  ], θ )/ ∂e  M ⁄ kl   , it being assumed that 
f  has been written so as to have identical dependence on 
e M ⁄ kl   and  e M ⁄ lk  .     

 Inelastic Response 

 The above mode of expressing [ σ ] in terms of [ S ] is valid 
for solids showing viscoelastic or plastic response as well, 
except that [ S ] is then to be regarded not only as a func-
tion of the present [ e   M  ] and  θ  but also as dependent on 
the prior history of both. Assuming that such materials 
show elastic response to sudden stress changes or to small 
unloading from a plastically deforming state, [ S ] may still 
be expressed as a derivative of  f , as above, but the deriva-
tive is understood as being taken with respect to an elastic 
variation of strain and is to be taken at fi xed  θ  and with 
fi xed prior inelastic deformation and temperature history. 
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Such dependence on history is sometimes represented as 
a dependence of  f  on internal state variables whose laws 
of evolution are part of the inelastic constitutive descrip-
tion. There are also simpler models of inelastic response, 
and the most commonly employed forms for plasticity 
and creep in isotropic solids are presented next. 

 To a good approximation, plastic deformation of crys-
talline solids causes no change in volume; and hydrostatic 
changes in stress, amounting to equal change of all normal 
stresses, have no effect on plastic fl ow, at least for changes 
that are of the same order or magnitude as the strength 
of the solid in shear. Thus, plastic response is usually for-
mulated in terms of deviatoric stress, which is defi ned by 
τ   ij   =  σ   ij   −  δ   ij  ( σ  11  +  σ  22  +  σ  33 )/3. Following Richard von Mises, in 
a procedure that is found to agree moderately well with 
experiment, the plastic fl ow relation is formulated in 
terms of the second invariant of deviatoric stress, com-
monly rewritten as

and called the equivalent tensile stress. The defi nition is 
made so that, for a state of uniaxial tension,  σ  equals the 
tensile stress, and the stress-strain relation for general 
stress states is formulated in terms of data from the tensile 
test. In particular, a plastic strain  ε      p   in a uniaxial tension 
test is defi ned from  ε      p   =  ε  −  σ / e , where  ε  is interpreted as the 
strain in the tensile test according to the logarithmic defi -
nition  ε  = lnλ, the elastic modulus  e  is assumed to remain 
unchanged with deformation, and  σ / e  << 1. 

 Thus, in the rate-independent plasticity version of the 
theory, tensile data (or compressive, with appropriate sign 
reversals) from a monotonic load test is assumed to defi ne 
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a function  ε      p   (σ). In the viscoplastic or high-temperature 
creep versions of the theory, tensile data is interpreted to 
defi ne  dε      p   / dt  as a function of σ in the simplest case, repre-
senting, for example, secondary creep, and as a function 
of  σ  and ε     p   in theories intended to represent transient 
creep effects or rate-sensitive response at lower tem-
peratures. Consider fi rst the rigid-plastic material model 
in which elastic deformability is ignored altogether, as is 
sometimes appropriate for problems of large plastic fl ow, 
as in metal forming or long-term creep in Earth’s mantle 
or for analysis of plastic collapse loads on structures. The 
rate of deformation tensor  D   ij   is defi ned by 2 D   ij   =  ∂v   i  / ∂x   j
+  ∂v   j  / ∂x   i  , and in the rigid-plastic case [ D ] can be equated 
to what may be considered its plastic part [ D     p  ], given as 
D   p  ij   = 3( dε      p  / dt ) τ   ij  /2 σ . The numerical factors secure agree-
ment between  D   p  11    and  dε      p  / dt  for uniaxial tension in the 
1-direction. Also, the equation implies that

 
which must be integrated over previous history to get  ε      p   as 
required for viscoplastic models in which  dε      p  / dt  is a function 
of  σ  and  ε      p  . In the rate-independent version, [ D      p  ] is defi ned 
as zero whenever  σ  is less than the highest value that it has 
attained in the previous history or when the current value 
of  σ  is the highest value but  dσ / dt  < 0. (In the elastic-plastic 
context, this means that “unloading” involves only elastic 
response.) For the ideally plastic solid, which is idealized to 
be able to fl ow without increase of stress when  σ  equals the 
yield strength level,  dε      p  / dt  is regarded as an undetermined 
but necessarily nonnegative parameter, which can be deter-
mined (sometimes not uniquely) only through the complete 
solution of a solid mechanics boundary-value problem. 
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 The elastic-plastic material model is then formulated 
by writing  D   ij   =  D    e    ij   +  D   p  ij      , where  D   p  ij  is given in terms of 
stress and possibly stress rate as above and where the elas-
tic deformation rates [ D   e  ] are related to stresses by the 
usual linear elastic expression  D    e    ij   = (1 +  ν ) σ   ij   * / e  −  νδ   ij  ( σ  11  * +  σ  22  * + 
 σ  33  * )/ e . Here the stress rates are expressed as the Jaumann 
co-rotational rates

is a derivative following the motion of a material point 
and where the spin Ω  ij   is defi ned by 2Ω  ij   =  ∂v   i  / ∂x   j   −  ∂v   j  / ∂x   i  . 
The co-rotational stress rates are those calculated by an 
observer who spins with the average angular velocity of 
a material element. The elastic part of the stress-strain 
relation should be consistent with the existence of a free 
energy  f , as discussed above. This is not strictly satisfi ed by 
the form just given, but the differences between it and one 
which is consistent in that way involves additional terms 
that are on the order of  σ / e  2  times the  σ   kl   *  and are negligible 
in typical cases in which the theory is used, since  σ / e  is 
usually an extremely small fraction of unity, say, 10 −4  to 10 −2 . 
A small-strain version of the theory is in common use for 
purposes of elastic-plastic stress analysis. In these cases, 
[ D ] is replaced with  ∂ [ ε ( X  , t )]/ ∂t , where [ ε ] is the small-
strain tensor,  ∂ / ∂x  with  ∂ / ∂X  in all equations, and [ σ  * ] with 
 ∂ [ σ ( X  , t )]/ ∂t . The last two steps cannot always be justifi ed, 
even in cases of very small strain when, for example, in a 
rate-independent material,  dσ / dε   p   is not large compared to 
 σ  or when rates of rotation of material fi bres can become 
much larger than rates of stretching, which is a concern 
for buckling problems even in purely elastic solids.     
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 problemS inVolVing 
elaSTic reSponSe 

 There are cases in which a deformed material body returns 
to its original shape and size when the forces causing the 
deformation are removed. A body with this ability is said 
to behave (or respond) elastically.     

 Equations of Motion of 
Linear Elastic Bodies 

 The fi nal equations of the purely mechanical theory of 
linear elasticity (i.e., when coupling with the temperature 
fi eld is neglected, or when either isothermal or isentropic 
response is assumed) are obtained as follows. The stress-
strain relations are used, and the strains are written in 
terms of displacement gradients. The fi nal expressions for 
stress are inserted into the equations of motion, replacing 
∂ / ∂x  with  ∂ / ∂X  in those equations. In the case of an isotro-
pic and homogenous solid, these reduce to  

 
(116)

 known as the Navier equations (here, ∇ =  e  1  ∂ / ∂X  1  +  e  2  ∂ / ∂X  2
+  e  3  ∂ / ∂X  3 , and ∇ 2  is the Laplacian operator defi ned by ∇∙∇, 
or  ∂  2 / ∂x  1  2  +  ∂  2 / ∂x  2  2  +  ∂  2 / ∂x  3  2 , and, as described earlier, λ and 
µ  are the Lamé constants,  u  the displacement,  f  the body 
force, and  ρ  the density of the material). Such equations 
hold in the region  V  occupied by the solid; on the surface 
 S  one prescribes each component of  u , or each component 
of the stress vector  T  (expressed in terms of [ ∂u / ∂X ]), or 
sometimes mixtures of components or relations between 
them. For example, along a freely slipping planar inter-
face with a rigid solid, the normal component of  u  and 
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the two tangential components of  T  would be prescribed, 
all as zero.     

 Body Wave Solutions 

 By looking for body wave solutions in the form  u ( X  , t ) =  pf  
( n · X  −  ct ), where unit vector  n  is the propagation direction, 
 p  is the polarization, or direction of particle motion, and  c  
is the wave speed, one may show for the isotropic material 
that solutions exist for arbitrary functions  f  if either

The fi rst case, with particle displacements in the prop-
agation direction, describes longitudinal, or dilatational, 
waves; and the latter case, which corresponds to two 
linearly independent displacement directions, both trans-
verse to the propagation direction, describes transverse, 
or shear, waves.     

 Linear Elastic Beam 

 The case of a beam treated as a linear elastic line may also 
be considered. Let the line along the 1-axis, have proper-
ties that are uniform along its length and have suffi cient 
symmetry that bending it by applying a torque about the 
3-direction causes the line to deform into an arc lying in 
the 1,2-plane. Make an imaginary cut through the line, 
and let the forces and torque acting at that section on the 
part lying in the direction of decreasing  X  1  be denoted as 
a shear force  V  in the positive 2-direction, an axial force 
 p  in the positive 1-direction, and torque  M , commonly 
called a bending moment, about the positive 3-direction. 
The linear and angular momentum principles then require 
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that the actions at that section on the part of the line lying 
along the direction of increasing  X  1  be of equal magnitude 
but opposite sign. 

 Now let the line be loaded by transverse force  F  per 
unit length, directed in the 2-direction, and make assump-
tions on the smallness of deformation consistent with 
those of linear elasticity. Let  ρA  be the mass per unit 
length (so that  A  can be interpreted as the cross-sectional 
area of a homogeneous beam of density  ρ ) and let  u  be 
the transverse displacement in the 2-direction. Then, 
writing  X  for  X  1 , the linear and angular momentum prin-
ciples require that  ∂V / ∂X  +  F  =  ρA ∂  2  u / ∂t  2  and  ∂M / ∂X  +  V  
= 0, where rotary inertia has been neglected in the second 
equation, as is appropriate for disturbances which are of 
a wavelength that is long compared to cross-sectional 
dimensions. The curvature  κ  of the elastic line can be 
approximated by  κ  =  ∂  2  u / ∂X  2  for the small deformation sit-
uation considered, and the equivalent of the stress-strain 
relation is to assume that  κ  is a function of  M  at each point 
along the line. The function can be derived by the analysis 
of stress and strain in pure bending and is  M  =  eIκ , with 
the moment of inertia  I  = ∫  A  ( X  2 ) 2  dA  for uniform elastic 

 Transverse motion of an initially straight beam, shown at left as an elas-
tic line and at right as a solid of fi nite section.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
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properties over all the cross section and with the 1-axis 
passing through the section centroid. Hence, the equa-
tion relating transverse load and displacement of a linear 
elastic beam is − ∂  2 ( eI∂  2  u / ∂X  2 )/ ∂X  2  + F =  ρA∂  2  u / ∂t  2 , and this 
is to be solved subject to two boundary conditions at each 
end of the elastic line. Examples are  u  =  ∂u / ∂X  = 0 at a com-
pletely restrained (“built in”) end,  u  =  M  = 0 at an end that 
is restrained against displacement but not rotation, and 
 V  =  M  = 0 at a completely unrestrained (free) end. The 
beam will be reconsidered later in an analysis of response 
with initial stress present. 

 The preceding derivation was presented in the spirit of 
the model of a beam as the elastic line of Euler. The same 
equations of motion may be obtained by the following 
fi ve steps: (1) integrate the three-dimensional equations of 
motion over a section, writing  V  = ∫  A   σ  12  dA ; (2) integrate the 
product of  X  2  and those equations over a section, writing 
 M  = −∫  A   X  2  σ  11  dA ; (3) assume that planes initially perpendic-
ular to fi bres lying along the 1-axis remain perpendicular 
during deformation, so that  ε  11  =  ε  0 ( X, t ) −  X  2  κ ( X, t ), where 
 X  =̄  X  1 ,  ε  0 ( X, t ) is the strain of the fi bre along the 1-axis, 
and  κ ( X, t ) =  ∂  2  u / ∂X  2 , where  u ( X, t ) is  u  2  for the fi bre ini-
tially along the 1-axis; (4) assume that the stress  σ  11  relates 
to strain as if each point were under uniaxial tension, so 
that  σ  11  =  eε  11 ; and (5) neglect terms of order  h  2 / L  2  compared 
to unity, where  h  is a typical cross-section dimension and 
 L  is a scale length for variations along the direction of 
the 1-axis. In step (1) the average of  u  2  over area  A  enters 
but may be interpreted as the displacement  u  of step (3) 
to the order retained in (5). The kinematic assumption 
(3) together with (5), if implemented under conditions 
such that there are no loadings to generate a net axial 
force  p , requires that  ε  0 ( X, t ) = 0 and that  κ ( X, t ) =  M ( X, 
t )/ eI  when the 1-axis has been chosen to pass through the 
centroid of the cross section. Hence, according to these 
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approximations,  σ  11  = − X  2  M ( X, t )/ I  = − X  2  e∂  2  u ( X, t )/ ∂X  2 . The 
expression for  σ  11  is exact for static equilibrium under pure 
bending, since assumptions (3) and (4) are exact and (5) is 
then irrelevant. This motivates the use of assumptions 
(3) and (4) in a situation that does not correspond to pure 
bending. 

 Sometimes it is necessary to deal with solids that are 
already under stress in the reference confi guration that is 
chosen for measuring strain. As a simple example, suppose 
that the beam just discussed is under an initial uniform 
tensile stress  σ  11  =  σ  0 —that is, the axial force  p  =  σ  0  A . If  σ  0  
is negative and of signifi cant magnitude, one generally 
refers to the beam as a column; if it is large and positive, 
the beam might respond more like a taut string. The ini-
tial stress  σ  0  contributes a term to the equations of small 
transverse motion, which now becomes − ∂  2 ( eI∂  2  u / ∂X  2 )
/ ∂X  2  +  σ  0  A∂  2  u / ∂X  2  +  F  =  ρA∂  2  u / ∂t  2 .     

 Free Vibrations 

 Suppose that the beam is of length  L , is of uniform prop-
erties, and is hinge-supported at its ends at  X  = 0 and  X  
=  L  so that  u  =  M  = 0 there. Then free transverse motions 
of the beam, solving the above equation with  F  = 0, are 
described by any linear combination of the real part of 
solutions that have the form  u  =  C   n   exp ( iω   n   t )sin( nπX / L ), 
where  n  is any positive integer,  C   n   is an arbitrary complex 
constant, and where  

 
(117)

 
 defi nes the angular vibration frequency  ω   n   associated with 
the  n th mode, in units of radians per unit time. The number 
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of vibration cycles per unit time is ωn/2π. Equation (117) is 
arranged so that the term in the brackets shows the correc-
tion, from unity, of what would be the expression giving the 
frequencies of free vibration for a beam when there is no 
σ0. The correction from unity can be quite significant, even 
though σ0/E is always much smaller than unity (for interest-
ing cases, 10−6 to, say, 10−3 would be a representative range; 
few materials in bulk form would remain elastic or resist 
fracture at higher σ0/E, although good piano wire could 
reach about 10−2). The correction term’s significance results 
because σ0/E is multiplied by a term that can become enor-
mous for a beam that is long compared to its thickness; for 
a square section of side length h, that term (at its largest, 
when n = 1) is AL2/π2I ≈ 1.2L2/h2, which can combine with a 
small σ0/E to produce a correction term within the brack-
ets that is quite non-negligible compared to unity. When 
σ0 > 0 and L is large enough to make the bracketed expres-
sion much larger than unity, the EI term cancels out and 
the beam simply responds like a stretched string (here, 
string denotes an object that is unable to support a bend-
ing moment). When the vibration mode number n is large 
enough, however, the stringlike effects become negligible 
and beamlike response takes over; at sufficiently high n 
that L/n is reduced to the same order as h, the simple beam 
theory becomes inaccurate and should be replaced by three-
dimensional elasticity or, at least, an improved beam theory 
that takes into account rotary inertia and shear deformabil-
ity. (While the option of using three-dimensional elasticity 
for such a problem posed an insurmountable obstacle over 
most of the history of the subject, by 1990 the availability 
of computing power and easily used software reduced it to 
a routine problem that could be studied by an undergradu-
ate engineer or physicist using the finite-element method 
or some other computational mechanics technique.)
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Buckling

An important case of compressive loading is that in 
which σ0 < 0, which can lead to buckling. Indeed, if σ0A 
< −π2EI/L2, then the ω2

n is negative, at least for n = 1, which 
means that the corresponding ωn is of the form ± ib, where 
b is a positive real number, so that the exp(iωnt) term has a 
time dependence of a type that no longer involves oscilla-
tion but, rather, exponential growth, exp(bt). The critical 
compressive force, π2EI/L2, that causes this type of behav-
iour is called the Euler buckling load; different numerical 
factors are obtained for different end conditions. The 
acceleration associated with the n = 1 mode becomes small 
in the vicinity of the critical load and vanishes at that load. 
Thus solutions are possible, at the buckling load, for which 
the column takes a deformed shape without acceleration; 
for that reason, an approach to buckling problems that is 
equivalent for what, in dynamic terminology, are called 
conservative systems is to seek the first load at which an 
alternate equilibrium solution u = u(X), other than u = 0, 
may exist.

Instability by divergence—that is, with growth of 
displacement in the form exp(bt)—is representative of 
conservative systems. Columns under nonconservative 
loadings by, for example, a follower force, which has the 
property that its line of action rotates so as to be always 
tangent to the beam centreline at its place of applica-
tion, can exhibit a flutter instability in which the dynamic 
response is proportional to the real or imaginary part of 
a term such as exp(iat)exp(bt)—i.e., an oscillation with 
exponentially growing amplitude. Such instabilities also 
arise in the coupling between fluid flow and elastic struc-
tural response, as in the subfield called aeroelasticity. The 
prototype is the flutter of an airplane wing—that is, a 
torsional oscillation of the wing, of growing amplitude, 
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which is driven by the coupling between rotation of the 
wing and the development of aerodynamic forces related 
to the angle of attack; the coupling feeds more energy into 
the structure with each cycle.

Of course, instability models that are based on linear-
ized theories and predicting exponential growth in time 
actually reveal no more than that the system is deforming 
out of the range for which the mathematical model applies. 
Proper nonlinear theories that take account of the finite-
ness of rotation, and sometimes the large and possibly 
nonelastic strain of material fibres, are necessary to really 
understand the phenomena. An important subclass of 
such nonlinear analyses for conservative systems involves 
the static post-buckling response of a perfect structure, 
such as a perfectly straight column or perfectly spherical 
shell. That post-buckling analysis allows one to determine 
if increasing force is required for very large displacement 
to develop during the buckle or whether the buckling is 
of a more highly unstable type for which the load must 
diminish with buckling amplitude in order to still satisfy 
the equilibrium equations. The latter type of behaviour 
describes a structure whose maximum load (that is, the 
largest load it can support without collapsing) shows 
strong sensitivity to very small imperfections of material 
or geometry, as is the case with many shell structures.
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chapter 8
Liquids at Rest

Fluid mechanics is the science concerned with the 
response of fluids to forces exerted upon them. It is 

a branch of classical physics with applications of great 
importance in hydraulic and aeronautical engineering, 
chemical engineering, meteorology, and zoology.

The most familiar fluid is of course water, and an ency-
clopaedia of the 19th century probably would have dealt 
with the subject under the separate headings of hydrostat-
ics, the science of water at rest, and hydrodynamics, the 
science of water in motion. Archimedes founded hydrostat-
ics in about 250 bce when, according to legend, he leapt out 
of his bath and ran naked through the streets of Syracuse 
crying “Eureka!”; it has undergone rather little develop-
ment since. The foundations of hydrodynamics, on the 
other hand, were not laid until the 18th century when math-
ematicians such as Leonhard Euler and Daniel Bernoulli 
began to explore the consequences, for a virtually continu-
ous medium such as water, of the dynamic principles that 
Newton had enunciated for systems composed of discrete 
particles. Their work was continued in the 19th century by 
several mathematicians and physicists of the first rank, nota-
bly G.G. Stokes and William Thomson. By the end of the 
century explanations had been found for a host of intrigu-
ing phenomena having to do with the flow of water through 
tubes and orifices, the waves that ships moving through 
water leave behind them, raindrops on windowpanes, and 
the like. There was still no proper understanding, however, 
of problems as fundamental as that of water flowing past a 
fixed obstacle and exerting a drag force upon it; the theory 
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of potential flow, which worked so well in other contexts, 
yielded results that at relatively high flow rates were grossly 
at variance with experiment. This problem was not prop-
erly understood until 1904, when the German physicist 
Ludwig Prandtl introduced the concept of the boundary 
layer. Prandtl’s career continued into the period in which 
the first manned aircraft were developed. Since that time, 
the flow of air has been of as much interest to physicists 
and engineers as the flow of water, and hydrodynamics has, 
as a consequence, become fluid dynamics. The term fluid 
mechanics, as used here, embraces both fluid dynamics and 
the subject still generally referred to as hydrostatics.

One other representative of the 20th century who 
deserves mention here besides Prandtl is Geoffrey Taylor 
of England. Taylor remained a classical physicist while most 
of his contemporaries were turning their attention to the 
problems of atomic structure and quantum mechanics, 
and he made several unexpected and important discover-
ies in the field of fluid mechanics. The richness of fluid 
mechanics is due in large part to a term in the basic equa-
tion of the motion of fluids which is nonlinear—i.e., one 
that involves the fluid velocity twice over. It is characteris-
tic of systems described by nonlinear equations that under 
certain conditions they become unstable and begin behav-
ing in ways that seem at first sight to be totally chaotic. In 
the case of fluids, chaotic behaviour is very common and 
is called turbulence. Mathematicians have now begun to 
recognize patterns in chaos that can be analyzed fruitfully, 
and this development suggests that fluid mechanics will 
remain a field of active research well into the 21st century.

Basic Properties of Fluids

Fluids are not strictly continuous media in the way that 
all the successors of Euler and Bernoulli have assumed, 
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for they are composed of discrete molecules. The mol-
ecules, however, are so small and, except in gases at very 
low pressures, the number of molecules per millilitre is 
so enormous that they need not be viewed as individual 
entities. There are a few liquids, known as liquid crystals, 
in which the molecules are packed together in such a way 
as to make the properties of the medium locally anisotro-
pic, but the vast majority of fluids (including air and water) 
are isotropic. In fluid mechanics, the state of an isotropic 
fluid may be completely described by defining its mean 
mass per unit volume, or density (ρ), its temperature (T), 
and its velocity (v) at every point in space, and just what 
the connection is between these macroscopic properties 
and the positions and velocities of individual molecules is 
of no direct relevance.

A word perhaps is needed about the difference 
between gases and liquids, though the difference is easier 
to perceive than to describe. In gases the molecules are 
sufficiently far apart to move almost independently of one 
another, and gases tend to expand to fill any volume avail-
able to them. In liquids the molecules are more or less in 
contact, and the short-range attractive forces between 
them make them cohere; the molecules are moving too 
fast to settle down into the ordered arrays that are char-
acteristic of solids, but not so fast that they can fly apart. 
Thus, samples of liquid can exist as drops or as jets with 
free surfaces, or they can sit in beakers constrained only by 
gravity, in a way that samples of gas cannot. Such samples 
may evaporate in time, as molecules one by one pick up 
enough speed to escape across the free surface and are not 
replaced. The lifetime of liquid drops and jets, however, is 
normally long enough for evaporation to be ignored.

There are two sorts of stress that may exist in any solid 
or fluid medium, and the difference between them may be 
illustrated by reference to a brick held between two hands. 



195

7 Liquids at Rest 7

If the holder moves his hands toward each other, he exerts 
pressure on the brick; if he moves one hand toward his 
body and the other away from it, then he exerts what is 
called a shear stress. A solid substance such as a brick can 
withstand stresses of both types, but fl uids, by defi nition, 
yield to shear stresses no matter how small these stresses 
may be. They do so at a rate determined by the fl uid’s vis-
cosity. This property, about which more will be said later, 
is a measure of the friction that arises when adjacent lay-
ers of fl uid slip over one another. It follows that the shear 
stresses are everywhere zero in a fl uid at rest and in equi-
librium, and from this it follows that the pressure (that 
is, force per unit area) acting perpendicular to all planes 
in the fl uid is the same irrespective of their orientation 
(Pascal’s law). For an isotropic fl uid in equilibrium there 
is only one value of the local pressure ( p ) consistent with 
the stated values for ρ and  T . These three quantities are 
linked together by what is called the equation of state for 
the fl uid. 

 For gases at low pressures the equation of state is 
simple and well known. It is 

 
(118)

 where  r  is the universal gas constant (8.3 joules per degree 
Celsius per mole) and  M  is the molar mass, or an average 
molar mass if the gas is a mixture; for air, the appropriate 
average is about 29 × 10 −3  kilogram per mole. For other fl u-
ids knowledge of the equation of state is often incomplete. 
Except under very extreme conditions, however, all one 
needs to know is how the density changes when the pres-
sure is changed by a small amount, and this is described 
by the compressibility of the fl uid—either the isothermal 
compressibility, β  T  , or the adiabatic compressibility, β  S  , 
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according to circumstance. When an element of fl uid is 
compressed, the work done on it tends to heat it up. If the 
heat has time to drain away to the surroundings and the 
temperature of the fl uid remains essentially unchanged 
throughout, then β  T   is the relevant quantity. If virtually 
none of the heat escapes, as is more commonly the case in 
fl ow problems because the thermal conductivity of most 
fl uids is poor, then the fl ow is said to be adiabatic, and β  S
is needed instead. (The  S  refers to entropy, which remains 
constant in an adiabatic process provided that it takes 
place slowly enough to be treated as “reversible” in the 
thermodynamic sense.) For gases that obey equation (118), 
it is evident that  p  and ρ are proportional to one another in 
an isothermal process, and 

 
(119)

 In reversible adiabatic processes for such gases, however, 
the temperature rises on compression at a rate such that 

 (120)

 and  

 
(121)

 where γ is about 1.4 for air and takes similar values for 
other common gases. For liquids the ratio between the 
isothermal and adiabatic compressibilities is much closer 
to unity. For liquids, however, both compressibilities are 
normally much less than  p  −1 , and the simplifying assump-
tion that they are zero is often justifi ed. 
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 The factor γ is not only the ratio between two com-
pressibilities; it is also the ratio between two principal 
specifi c heats. The molar specifi c heat is the amount of 
heat required to raise the temperature of one mole through 
one degree. This is greater if the substance is allowed to 
expand as it is heated, and therefore to do work, than if 
its volume is fi xed. The principal molar specifi c heats,  C   p
and  C   V  , refer to heating at constant pressure and constant 
volume, respectively, and  

(122)

 For air,  C   p   is about 3.5  r . 
 Solids can be stretched without breaking, and liquids, 

though not gases, can withstand stretching, too. Thus, 
if the pressure is steadily reduced in a specimen of very 
pure water, bubbles will ultimately appear, but they may 
not do so until the pressure is negative and well below 
-10 7  newton per square metre; this is 100 times greater in 
magnitude than the (positive) pressure exerted by Earth’s 
atmosphere. Water owes its high ideal strength to the fact 
that rupture involves breaking links of attraction between 
molecules on either side of the plane on which rupture 
occurs; work must be done to break these links. However, 
its strength is drastically reduced by anything that pro-
vides a nucleus at which the process known as cavitation 
(formation of vapour- or gas-fi lled cavities) can begin, and 
a liquid containing suspended dust particles or dissolved 
gases is liable to cavitate quite easily. 

 Work also must be done if a free liquid drop of spherical 
shape is to be drawn out into a long thin cylinder or deformed 
in any other way that increases its surface area. Here again 
work is needed to break intermolecular links. The surface 
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of a liquid behaves, in fact, as if it were an elastic membrane 
under tension, except that the tension exerted by an elastic 
membrane increases when the membrane is stretched in a 
way that the tension exerted by a liquid surface does not. 
Surface tension is what causes liquids to rise up capillary 
tubes, what supports hanging liquid drops, what limits the 
formation of ripples on the surface of liquids, and so on.     

 hydroSTaTicS 

 It is common knowledge that the pressure of the atmo-
sphere (about 10 5  newtons per square metre) is due to the 
weight of air above Earth’s surface, that this pressure falls 
as one climbs upward, and, correspondingly, that pressure 
increases as one dives deeper into a lake (or comparable 
body of water). Mathematically, the rate at which the pres-
sure in a stationary fl uid varies with height  z  in a vertical 
gravitational fi eld of strength  g  is given by 
 

(123)

 If ρ and  g  are both independent of  z , as is more or less 
the case in lakes, then 

 (124)

 This means that, since ρ is about 10 3  kilograms per 
cubic metre for water and  g  is about 10 metres per sec-
ond squared, the pressure is already twice the atmospheric 
value at a depth of 10 metres. Applied to the atmosphere, 
equation (124) would imply that the pressure falls to zero 
at a height of about 10 kilometres. In the atmosphere, 
however, the variation of ρ with  z  is far from negligible and 
equation (124) is unreliable as a consequence.     
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 Differential Manometers 

 Instruments for comparing pressures are called differen-
tial manometers, and the simplest such instrument is a 
U-tube containing liquid. The two pressures of interest, 
p  1  and  p  2 , are transmitted to the two ends of the liquid 
column through an inert gas—the density of which is neg-
ligible by comparison with the liquid density, ρ—and the 
difference of height,  h , of the two menisci is measured. It 
is a consequence of equation (124) that 
 

   (125)

 A barometer for measuring the pressure of the atmo-
sphere in absolute terms is simply a manometer in which 
 p  2  is made zero, or as close to zero as is feasible. The 
barometer invented in the 17th century by the Italian 
physicist and mathematician Evangelista Torricelli, and 
still in use today, is a U-tube that is sealed at one end. It 
may be fi lled with liquid, with the sealed end downward, 
and then inverted. On inversion, a negative pressure may 
momentarily develop at the top of the liquid column if 
the column is long enough; however, cavitation normally 
occurs there and the column falls away from the sealed 
end of the tube, as shown in the fi gure. Between the two 
exists what Torricelli thought of as a vacuum, though 
it may be very far from that condition if the barometer 
has been fi lled without scrupulous precautions to ensure 
that all dissolved or adsorbed gases, which would other-
wise collect in this space, have fi rst been removed. Even if 
no contaminating gas is present, the Torricellian vacuum 
always contains the vapour of the liquid, and this exerts a 
pressure which may be small but is never quite zero. The 
liquid conventionally used in a Torricelli barometer is of 
course mercury, which has a low vapour pressure and a 
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 Schematic representations of (A) a differential manometer, (B) a Torricellian 
barometer, and (C) a siphon.  Copyright Encyclopædia Britannica; ren-
dering for this edition by Rosen Educational Services

high density. The high density means that  h  is only about 
760 millimetres; if water were used, it would have to be 
about 10 metres instead. 

 Consider the principle of the siphon, two containers 
of differing heights connected by a tube. The top con-
tainer is open to the atmosphere, and the pressure in 
it,  p  2 , is therefore atmospheric. To balance this and the 
weight of the liquid column in between, the pressure  p  1  in 
the bottom container ought to be greater by ρ g  h . If the 
bottom container is also open to the atmosphere, then 
equilibrium is clearly impossible; the weight of the liquid 
column prevails and causes the liquid to fl ow downward. 
The siphon operates only as long as the column is con-
tinuous; it fails if a bubble of gas collects in the tube or if 
cavitation occurs. Cavitation therefore limits the level dif-
ferences over which siphons can be used, and it also limits 
(to about 10 metres) the depth of wells from which water 
can be pumped using suction alone.     
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 Archimedes’ Principle 

 Consider now a cube of side  d  totally immersed in liquid 
with its top and bottom faces horizontal. The pressure 
on the bottom face will be higher than on the top by ρ g  d , 
and, since pressure is force per unit area and the area of a 
cube face is  d  2 , the resultant upthrust on the cube is ρ g  d  3 . 
This is a simple example of the so-called Archimedes’ 
principle, which states that the upthrust experienced by 
a submerged or fl oating body is always equal to the weight 
of the liquid that the body displaces. As Archimedes must 
have realized, there is no need to prove this by detailed 
examination of the pressure difference between top and 
bottom. It is obviously true, whatever the body’s shape. 
It is obvious because, if the solid body could somehow be 
removed and if the cavity thereby created could somehow 
be fi lled with more fl uid instead, the whole system would 
still be in equilibrium. The extra fl uid would, however, 
then be experiencing the upthrust previously experienced 
by the solid body, and it would not be in equilibrium unless 
this were just suffi cient to balance its weight. 

 Archimedes’ problem was to discover, by what would 
nowadays be called a nondestructive test, whether the 
crown of King Hieron II was made of pure gold or of gold 
diluted with silver. He understood that the pure metal and 
the alloy would differ in density and that he could deter-
mine the density of the crown by weighing it to fi nd its 
mass and making a separate measurement of its volume. 
Perhaps the inspiration that struck him (in his bath) was 
that one can fi nd the volume of any object by submerg-
ing it in liquid in something like a measuring cylinder (i.e., 
in a container with vertical sides that have been suitably 
graduated) and measuring the displacement of the liquid 
surface. If so, he no doubt realized soon afterward that a 
more elegant and more accurate method for determining 
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density can be based on the principle that bears his name. 
This method involves weighing the object twice, fi rst, 
when it is suspended in a vacuum (suspension in air will 
normally suffi ce) and, second, when it is totally submerged 
in a liquid of density ρ. If the density of the object is ρ′, the 
ratio between the two weights must be  

 (126) (126)

 
 If ρ′ is less than ρ, then  W  2 , according to equation (126), 

is negative. What that means is that the object does not 
submerge of its own accord; it has to be pushed down-
ward to make it do so. If an object with a mean density 
less than that of water is placed in a lake and not subjected 
to any downward force other than its own weight, it nat-
urally fl oats on the surface, and Archimedes’ principle 
shows that in equilibrium the volume of water which it 
displaces is a fraction ρ′/ρ of its own volume. A hydrom-
eter is an object graduated in such a way that this fraction 
may be measured. By fl oating a hydrometer fi rst in water 
of density ρ 0  and then in some other liquid of density ρ 1  
and comparing the readings, one may determine the ratio 
ρ 1 /ρ 0 —i.e., the specifi c gravity of the other liquid.     

 Surface Tension of Liquids 

 Of the many hydrostatic phenomena in which the surface 
tension of liquids plays a role, the most signifi cant is prob-
ably capillarity. Consider what happens when a tube of 
narrow bore, often called a capillary tube, is dipped into 
a liquid. If the liquid “wets” the tube (with zero contact 
angle), the liquid surface inside the tube forms a concave 
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meniscus, which is a virtually spherical surface having the 
same radius,  r , as the inside of the tube. The tube experi-
ences a downward force of magnitude 2π r  d σ, where σ is the 
surface tension of the liquid, and the liquid experiences 
a reaction of equal magnitude that lifts the meniscus 
through a height  h  such that 

   (127)

 —i.e., until the upward force for which surface tension 
is responsible is balanced by the weight of the column of 
liquid that has been lifted. If the liquid does not wet the 
tube, the meniscus is convex and depressed through the 
same distance  h . A simple method for determining sur-
face tension involves the measurement of  h  in one or the 
other of these situations and the use of equation (127) 
thereafter. 

 Capillarity.  Copyright Encyclopædia Britannica; rendering for this 
edition by Rosen Educational Services
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 It follows from equations (124) and (127) that the pres-
sure at a point P in the tube just below the meniscus differs 
from the pressure at Q outside of the tube by an amount 

   
(128)

 it is less than the pressure at Q in the case in which the 
liquid wets the tube and rises up in it and greater than the 
pressure at Q in the other case in which the liquid does not 
wet the tube and is depressed. Since the pressure at Q is 
just the atmospheric pressure, it is equal to the pressure at 
a point immediately above the meniscus. Hence, in both 
instances there is a pressure difference of 2σ/ r  between the 
two sides of the curved meniscus, and in both the higher 
pressure is on the inner side of the curve. Such a pressure 
difference is a requirement of equilibrium wherever a liquid 
surface is curved. If the surface is curved but not spherical, 
the pressure difference is 

   (129)

 where  r  1  and  r  2  are the two principal radii of curvature. If 
it is cylindrical, one of these radii is infi nite, and, if it is 
curved in opposite directions, then for the purposes of 
(129) they should be treated as being of opposite sign. 

 The preceding analysis applies equally well to two ver-
tical parallel plates that are partly submerged in the liquid 
a small distance apart. Consideration of how the pressure 
varies with height shows that over the range of height  h
the plates experience a greater pressure on their outer sur-
faces than on their inner surfaces; this is true whether the 
liquid wets both plates or not. It is a matter of observa-
tion that small objects fl oating near one another on the 
surface of a liquid tend to move toward one another, and it 
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is the pressure difference just referred to that makes them 
behave in this way. 

 One other problem having to do with surface tension 
will be examined here. Consider the stages in the growth of 
a liquid drop on the end of a tube which the liquid is sup-
posed to wet. In the beginning, by which time the drop is 
roughly hemispheric in shape, the radius of curvature of 
the drop diminishes; and it follows from equation (128) 
that, to bring about this growth, one must slowly increase 
the pressure of the liquid inside the tube. If the pressure 
could be held steady, the drop would then become unstable, 
because any further growth (e.g., to a more or less spherical 
shape) would involve an increase in radius of curvature. The 
applied pressure would then exceed that required to hold 
the drop in equilibrium, and the drop would necessarily 
grow bigger still. In practice, however, it is easier to control 
the rate of fl ow of water through the tube, and hence the 
rate of growth of the drop, than it is to control the pressure. 
If the rate of fl ow is very small, drops will form nonspherical 
shapes before they detach themselves and fall. It is not an 
easy matter to analyze the shape of a drop on the point of 
detachment, and there is no simple formula for the volume 
of the drop after it is detached.       

 Stages in the formation of a liquid drop.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services
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chapter 9
Liquids in Motion

This chapter deals with fluids that are in motion in a 
steady fashion such that the fluid velocity at each 

given point in space is not changing with time. Any flow 
pattern that is steady in this sense may be seen in terms of 
a set of streamlines, the trajectories of imaginary particles 
suspended in the fluid and carried along with it. In steady 
flow, the fluid is in motion but the streamlines are fixed. 
Where the streamlines crowd together, the fluid velocity 
is relatively high; where they open out, the fluid becomes 
relatively stagnant.

Bernoulli’s Law

When Euler and Bernoulli were laying the foundations 
of hydrodynamics, they treated the fluid as an idealized 
inviscid substance in which, as in a fluid at rest in equilib-
rium, the shear stresses associated with viscosity are zero 
and the pressure p is isotropic. They arrived at a simple law 
relating the variation of p along a streamline to the varia-
tion of v (the principle is credited to Bernoulli, but Euler 
seems to have arrived at it first), which serves to explain 
many of the phenomena that real fluids in steady motion 
display. To the inevitable question of when and why it is 
justifiable to neglect viscosity, there is no single answer.

Consider a small element of fluid of mass m, which—
apart from the force on it due to gravity—is acted on 
only by a pressure p. The latter is isotropic and does 
not vary with time but may vary from point to point in 
space. It is a well-known consequence of Newton’s laws 
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of motion that, when a particle of mass  m  moves under 
the infl uence of its weight  m  g  and an additional force  F
from a point P where its speed is  v  P  and its height is  z  P  to 
a point Q where its speed is  v  Q  and its height is  z  Q , the 
work done by the additional force is equal to the increase 
in kinetic and potential energy of the particle—i.e., that 
 

 
(130)

  
 In the case of the fl uid element under consideration, 

 F  may be related in a simple fashion to the gradient of the 
pressure, and one fi nds 
 

 (131) (131)

  
 If the variations of fl uid density along the streamline 

from P to Q are negligibly small, the factor ρ −1  may be 
taken outside the integral on the right-hand side of equa-
tion (131), which thereupon reduces to ρ −1 ( p  Q  -  p  P ). Then 
equations (130) and (131) can be combined to obtain 
 

 
(132)

  
 Since this applies for any two points that can be visited 

by a single element of fl uid, one can immediately deduce 
Bernoulli’s (or Euler’s) important result that along each 
streamline in the steady fl ow of an inviscid fl uid the quantity 

(133)

  
 is constant. 
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 Under what circumstances are variations in the den-
sity negligibly small? When they are very small compared 
with the density itself—i.e., when 

 (134) (134)
  

 where the symbol Δ is used to represent the extent of the 
change along a streamline of the quantity that follows it, 
and where  V  s  is the speed of sound. If the fl uid is air, it is 
adequately satisfi ed provided that the largest excursion in 
 z  is on the order of metres rather than kilometres and pro-
vided that the fl uid velocity is everywhere less than about 
100 metres per second. 

 Bernoulli’s law indicates that, if an inviscid fl uid is 
fl owing along a pipe of varying cross section, then the 
pressure is relatively low at constrictions where the veloc-
ity is high and relatively high where the pipe opens out 
and the fl uid stagnates. Many people fi nd this situation 
paradoxical when they fi rst encounter it. Surely, they say, a 
constriction should increase the local pressure rather than 
diminish it? The paradox evaporates as one learns to think 
of the pressure changes along the pipe as cause and the 
velocity changes as effect, instead of the other way around; 
it is only because the pressure falls at a constriction that 
the pressure gradient upstream of the constriction has the 
right sign to make the fl uid accelerate. 

 Paradoxical or not, predictions based on Bernoulli’s 
law are well-verifi ed by experiment. Try holding two sheets 
of paper so that they hang vertically two centimetres or so 
apart and blow downward so that there is a current of air 
between them. The sheets will be drawn together by the 
reduction in pressure associated with this current. Ships 
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are drawn together for much the same reason if they are 
moving through the water in the same direction at the 
same speed with a small distance between them. In this 
case, the current results from the displacement of water 
by each ship’s bow, which has to fl ow backward to fi ll the 
space created as the stern moves forward, and the cur-
rent between the ships, to which they both contribute, is 
stronger than the current moving past their outer sides. 
As another simple experiment, listen to the hissing sound 
made by a tap that is almost, but not quite, turned off. 
What happens in this case is that the fl ow is so constricted 
and the velocity within the constriction so high that the 
pressure in the constriction is actually negative. Assisted 
by the dissolved gases that are normally present, the water 
cavitates as it passes through, and the noise that is heard 
is the sound of tiny bubbles collapsing as the water slows 
down and the pressure rises again on the other side. 

 Two practical devices that are used by hydraulic 
engineers to monitor the fl ow of liquids though pipes 
are based on Bernoulli’s law. One is the venturi tube, a 
short length with a constriction in it of standard shape, 
which may be inserted into the pipe proper. If the veloc-
ity at a point P before the constriction, where the tube 
has a cross-sectional area  A  P , is  v  P  and the velocity in the 
constriction, where the area is  A  Q , is  v  Q , the continuity 
condition—the condition that the mass fl owing through 
the pipe per unit time has to be the same at all points 
along its length—suggests that ρ P   A  P  v  P  = ρ Q   A  Q  v  Q , or that 
 A  P  v  P  =  A  Q  v  Q  if the difference between ρ P  and ρ Q  is negli-
gible. Then Bernoulli’s law indicates 

 (135) (135)
  



210

7 The Britannica Guide to Heat, Force, and Motion 7

 Thus one should be able to fi nd  v  P , and hence the quan-
tity  Q  (=  A  P  v  P ) that engineers refer to as the rate of discharge, 
by measuring the difference of level  h  of the fl uid in the two 
side tubes shown in the diagram. At low velocities the pres-
sure difference ( p  P  -  p  Q ) is greatly affected by viscosity, and 
equation (135) is unreliable in consequence. The venturi 
tube is normally used, however, when the velocity is large 
enough for the fl ow to be turbulent. In such a circumstance, 
equation (135) predicts values for  Q  that agree with values 
measured by more direct means to within a few parts per-
cent, even though the fl ow pattern is not really steady at all. 

 The other device is the pitot tube. It consists of a tube 
with a short, right-angled bend, which is placed vertically 
in a moving fl uid with the mouth of the bent part directed 
upstream. The fl uid streamlines divide as they approach 
the blunt end of this tube, and at the point Q, just before 
the end of the tube, there is complete stagnation, since the 
fl uid at this point is moving neither up nor down nor to 
the right. It follows immediately from Bernoulli’s law that 
 

   
(136)

 Schematic representation of (A) a venturi tube and of (B) a pitot tube.  
Copyright Encyclopædia Britannica; rendering for this edition by 
Rosen Educational Services
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 As with the venturi tube, one should therefore be able 
to fi nd  v  P  from the level difference  h .   One other simple 
result deserves mention here. It concerns a jet of fl uid 
emerging through a hole in the wall of a vessel fi lled with 
liquid under pressure. Observation of jets shows that 
after emerging they narrow slightly before settling down 
to a more or less uniform cross section known as the 
vena contracta. They do so because the streamlines are 
converging on the hole inside the vessel and are obliged 
to continue converging for a short while outside. It was 
Torricelli who fi rst suggested that, if the pressure excess 
inside the vessel is generated by a head of liquid  h , then 
the velocity  v  at the vena contracta is the velocity that 
a free particle would reach on falling through a height 
 h —i.e., that 
 

   (137)

 This result is an immediate consequence, for an invis-
cid fl uid, of the principle of energy conservation that 
Bernoulli’s law enshrines. 

 In the following section, Bernoulli’s law is used in 
an indirect way to establish a formula for the speed at 
which disturbances travel over the surface of shallow 
water. The explanation of several interesting phenomena 
having to do with water waves is buried in this formula. 
Analogous phenomena dealing with sound waves in gases 
are discussed later in the section on compressible fl ow 
in gases, where an alternative form of Bernoulli’s law is 
introduced. This form of the law is restricted to gases in 
steady fl ow but is not restricted to fl ow velocities that 
are much less than the speed of sound. The complication 
that viscosity represents is again ignored throughout 
these two sections.     
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 Steps on the surface of shallow water.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services

 WaVeS on ShalloW WaTer 

 Imagine a layer of water with a fl at base that has a small 
step on its surface, dividing a region in which the depth of 
the water is uniformly equal to  D  from a region in which 
it is uniformly equal to  D (1 + ε), with ε << 1. Let the water 
in the shallower region fl ow toward the step with some 
uniform speed  V , and let this speed be just suffi cient to 
hold the step in the same position so that the fl ow pat-
tern is a steady one. The continuity condition (i.e., the 
condition that as much water fl ows out to the left per 
unit time as fl ows in from the right) indicates that in the 
deeper region the speed of the water is  V (1 + ε) −1 . Hence by 
applying Bernoulli’s law to points P and Q, which lie on 
the same streamline and at both of which the pressure is 
atmospheric but with P at a height ε D  lower than Q, one 
may deduce that 
 

 
(138)
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 This result shows that, if the water in the shallower 
region is in fact stationary, the step advances over it with 
the speed  V  that equation (138) describes, and it reveals inci-
dentally that behind the step the deeper water follows up 
with speed  V [1 - (1 + ε) −1 ] ≈ ε V . The argument may readily be 
extended to disturbances of the surface that are undulatory 
rather than steplike. Provided that the distance between 
successive crests—a distance known as the wavelength 
and denoted by λ—is much greater than the depth of the 
water,  D , and provided that its amplitude is very much less 
than  D , a wave travels over stationary water at a speed given 
by equation (138). Because their speed does not depend on 
wavelength, the waves are said to be nondispersive. 

 Evidently waves that are approaching a shelving beach 
should slow down as  D  diminishes. If they are approaching 
it at an angle, the slowing-down effect bends, or refracts, 
the wave crests so that they are nearly parallel to the shore 
by the time they ultimately break. 

 Suppose now that a small step of height ε D  (ε << 1) is 
traveling over stationary water of uniform depth  D  and 
that behind it is a second step of much the same height 
traveling in the same direction. Because the second step 
is traveling on a base that is moving at ε √(  g  D )  and because 
the thickness of that base is (1 + ε) D  rather than  D , the 
speed of the second step is approximately (1 + 3ε/2) √(  g  D ) . 
Since this is greater than  √(  g  D ) , the second step is bound 
to catch up with the fi rst. Hence, if there are a succession 
of infi nitesimal steps that raise the depth continuously 
from  D  to some value  D ′, which differs signifi cantly from 
 D , then the ramp on the surface is bound to become 
steeper as it advances. It may be shown that if  D ′ exceeds 
about 1.3 D , the ramp ultimately becomes a vertical step 
of fi nite height and that the step then “breaks.” A fi nite 
step that has broken dissipates energy as heat in the resul-
tant foaming motion, and Bernoulli’s equation is no longer 
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applicable to it. A simple argument based on conservation 
of momentum rather than energy, however, suffi ces to 
show that its velocity of propagation is 

   
(139)

 Tidal bores, which may be observed on some estuaries, 
are examples on the large scale of the sort of phenomena 
to which equation (139) applies. Examples on a smaller 
scale include the hydraulic jumps that are commonly seen 
below weirs and sluice gates where a smooth stream of 
water suddenly rises at a foaming front. In this case, equa-
tion (139) describes the speed of the water, since the front 
itself is more or less stationary. 

 When water is shallow but not extremely shallow, so 
that correction terms of the order of ( D /λ) 2  are signifi cant, 
waves of small amplitude become slightly dispersive. In 
this case, a localized disturbance on the surface of a river or 
canal, which is guided by the banks in such a way that it can 
propagate in one direction only, is liable to spread as it prop-
agates. If its amplitude is not small, however, the tendency 
to spread due to dispersion may in special circumstances 
be subtly balanced by the factors that cause waves of rel-
atively large amplitude to form bores, and the result is a 
localized hump in the surface, of symmetrical shape, which 
does not spread at all. The phenomenon was fi rst observed 
on a canal near Edinburgh in 1834 by a Scottish engineer 
named Scott Russell; he later wrote a graphic account of 
following on horseback, for well over a kilometre, a “large 
solitary elevation . . . which continued its course along the 
channel apparently without change of form.” What Scott 
Russell saw is now called a soliton. Solitons on canals can 
have various widths, but the smaller the width the larger 
the height must be and the faster the soliton travels. Thus, 
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if a high, narrow soliton is formed behind a low, broad one, 
it will catch up with the low one. It turns out that, when 
the high soliton does so, it passes through the low one and 
emerges with its shape unchanged. 

 It is now recognized that many of the nonlinear dif-
ferential equations that appear in diverse branches of 
physics have solutions of large amplitude corresponding 
to solitons and that the remarkable capacity of solitons 
for surviving encounters with other solitons is universal. 
This discovery has stimulated much interest among math-
ematicians and physicists, and understanding of solitons is 
expanding rapidly.     

 compreSSible FloW in gaSeS 

 Compressible fl ow refers to fl ow at velocities that are 
comparable to, or exceed, the speed of sound. The 

 Interaction of two solitons.  Copyright Encyclopædia Britannica; render-
ing for this edition by Rosen Educational Services
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compressibility is relevant because at such velocities the 
variations in density that occur as the fl uid moves from 
place to place cannot be ignored. 

 Suppose that the fl uid is a gas at a low enough pres-
sure for the ideal equation of state, equation (118), to apply 
and that its thermal conductivity is so poor that the com-
pressions and rarefactions undergone by each element of 
the gas may be treated as adiabatic. In this case, it follows 
from equation (120) that the change of density accompa-
nying any small change in pressure,  d  p , is such that 

 
(140)

 This makes it possible to integrate the right-hand side 
of equation (131), and one thereby arrives at a version of 
Bernoulli’s law for a steady compressible fl ow of gases 
which states that 

(141)

 is constant along a streamline. An equivalent statement 
is that 

(142)

 
 is constant along a streamline. It is worth noting that, 
when a gas fl ows through a nozzle or through a shock 
front, the fl ow, though adiabatic, may not be reversible in 
the thermodynamic sense. Thus the entropy of the gas is 
not necessarily constant in such fl ow, and as a consequence 
the application of equation (120) is open to question. 
Fortunately, the result expressed by equation (141) or (142) 
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can be established by arguments that do not involve inte-
gration of equation (131). It is valid for steady adiabatic 
fl ow whether this is reversible or not. 

 Bernoulli’s law in the form of equation (142) may be 
used to estimate the variation of temperature with height 
in Earth’s atmosphere. Even on the calmest day the atmo-
sphere is normally in motion because convection currents 
are set up by heat derived from sunlight that is released 
at Earth’s surface. The currents are indeed adiabatic to a 
good approximation, and their velocity is generally small 
enough for the term  v  2  in equation (142) to be negligible. 
One can therefore deduce without more ado that the 
temperature of the atmosphere should fall off in a linear 
fashion—i.e., that 
 

 
(143)

 Here β is used to represent the temperature lapse rate, 
and the value suggested for this quantity, ( M  g / C   p  ), is close 
to 10° C per kilometre for dry air. 

 This prediction is not exactly fulfi lled in practice. 
Within the troposphere (i.e., to the heights of about 10 
kilometres to which convection currents extend), the 
mean temperature does decrease with height in a linear 
fashion, but β is only about 6.5° C per kilometre. It is the 
water vapour in the atmosphere, which condenses as the 
air rises and cools, that lowers the lapse rate to this value 
by increasing the effective value of  C   p  . The fact that the 
lapse rate is smaller for moist air than for dry air means 
that a stream of moist air which passes over a mountain 
range and which deposits its moisture as rain or snow at 
the summit is warmer when it descends to sea level on the 
other side of the range than it was when it started. The 
foehn wind of the Alps owes its warmth to this effect. 
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 The variation of the pressure of the atmosphere with 
height may be estimated in terms of β, using the equation 

 
(144)

 This is obtained by integration of equation (123), using 
equations (118) and (143). 

 In the form of equation (141), Bernoulli’s law may be 
used to calculate the speed of sound in gases. The argu-
ment is directly analogous to that for waves on shallow 
water. The results of the argument will be stated without 
proof. If there exists an infi nitesimal step in the density 
of the gas, it will remain stationary provided that the gas 
fl ows uniformly through it toward the region of higher 
density, with a velocity  

 
(145)

 If the gas is stationary, then equation (145) describes 
the velocity with which the step moves. It also describes 
the speed of propagation of the sort of undulatory vari-
ation of density that constitutes a sound wave of fi xed 
frequency or pitch. Because the speed of sound is inde-
pendent of pitch, sound waves, like waves on shallow 
water, are nondispersive. This is just as well. It is only 
because there is no dispersion that one can understand 
the words of a distant speaker or listen to a symphony 
orchestra with pleasure from the back of an auditorium 
as well as from the front. 

 It should be noted that the formula for the speed of 
sound in gases may be proved in other ways, and Newton 
came close to it a century before Bernoulli’s time. However, 
because Newton failed to appreciate the distinction 
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between adiabatic and isothermal fl ow, his answer lacked 
the factor γ occurring in equation (145). The fi rst person to 
correct this error was Pierre-Simon Laplace. 

 The above statements apply to density steps or undu-
lations, the amplitude of which is infi nitesimal, and they 
need some modifi cation if the amplitude is large. In the 
fi rst place it is found, as for waves on shallow water and for 
very much the same reasons, that, where two small den-
sity steps are moving parallel to one another, the second 
is bound to catch up with the fi rst. It follows that, if there 
exists a propagating region in which the density rises in a 
continuous fashion from ρ to ρ′, where (ρ′ - ρ) is not nec-
essarily small, then the width of this region is bound to 
diminish as time passes. Ultimately a shock front devel-
ops over which the density—and hence the pressure and 
temperature—rises almost discontinuously. There are 
processes within the shock front, vaguely analogous on 
the molecular scale to the foaming of a breaking water 
wave, by which energy is dissipated as heat. The speed of 
propagation,  V  sh , of a shock front in a gas that is station-
ary in front of it may be expressed in terms of  V  s  and  V  s ′, 
the velocities of small-amplitude sound waves in front of 
the shock and behind it, respectively, by the equation 
 

 
(146)

 
 Thus, if the shock is a strong one (ρ′ >> ρ),  V  sh  may be 

signifi cantly greater than both  V  s  and  V  s ′. 
 Even the gentlest sound wave, in which density and 

pressure initially oscillate in a smooth and sinusoidal fash-
ion, develops into a succession of weak shock fronts in 
time. More noticeable shock fronts are a feature of the 
fl ow of gases at supersonic speeds through the nozzles 
of jet engines and accompany projectiles that are moving 
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through stationary air at supersonic speeds. In certain cir-
cumstances when a supersonic aircraft is following a curved 
path, the accompanying shock wave may accidentally 
reinforce itself in places and thereby become offensively 
noticeable as a “sonic boom,” which may break window-
panes and cause other damage. Strong shock fronts also 
occur immediately after explosions, of course, and when 
windowpanes are broken by an explosion, the broken glass 
tends to fall outward rather than inward. Such is the case 
because the glass is sucked out by the relatively low den-
sity and pressure that succeed the shock itself.     

 Viscosity 

 A number of phenomena of considerable physical interest 
can be discussed using little more than the law of conser-
vation of energy, as expressed by Bernoulli’s law. However, 
the argument has so far been restricted to cases of steady 
fl ow. To discuss cases in which the fl ow is not steady, an 
equation of motion for fl uids is needed, and one cannot 
write down a realistic equation of motion without facing 
up to the problems presented by viscosity, which have so 
far been deliberately set aside.     

 Stresses in Laminar Motion 

 The concept of viscosity was fi rst formalized by Newton, 
who considered the shear stresses likely to arise when a 
fl uid undergoes what is called laminar motion; the lami-
nae here are planes normal to the  x  2 -axis, and they are 
moving in the direction of the  x  1 -axis with a velocity  v  1 , 
which increases in a linear fashion with  x  2 . Newton sug-
gested that, as each lamina slips over the one below, it 
exerts a sort of frictional force upon the latter in the for-
ward direction, in which case the upper lamina is bound to 
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experience an equal reaction in the backward direction. 
The strength of these forces per unit area constitutes the 
component of shear stress normally written as σ 12  (not to 
be confused with surface tension, for which the symbol 
σ has been used above). Consider an infi nitesimal ele-
ment of the fl uid of cubic shape and the directions of 
the forces experienced by this cube associated with σ 12 . 
The directions of the forces associated with the so-called 
normal stresses σ 11  and σ 22  in the absence of motion of 
the fl uid would both be equal, by Pascal’s law, to - p . Now 
σ 12  is clearly zero when the rate of variation of velocity, 
∂ v  1 /∂ x  2 , is zero, for then there is no slip, and presumably 
it increases monotonically as ∂ v  1 /∂ x  2  increases. Newton 
made the plausible assumption that the two are linearly 
related—i.e., that 
 

   
(147)

 Laminar motion and associated stresses.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services
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 The full name for the coeffi cient η is shear viscosity to 
distinguish it from the bulk viscosity,  b . The word “shear,” 
however, is frequently omitted in this context. 

 Now if the only shear stress acting on the cubic ele-
ment of fl uid were σ 12 , the cube would experience a torque 
tending to make it twist in a clockwise sense. Since the 
magnitude of the torque would vary like the third power 
of the linear dimensions of the cube, whereas the moment 
of inertia of the element would vary like the fi fth power, 
the resultant angular acceleration for an infi nitesimal cube 
would be infi nite. One may infer that any tendency to 
twist in a clockwise sense gives rise instantaneously to an 
additional shear stress σ 21 , the direction of which is indi-
cated in the diagram, and that σ 12  and σ 21  are equal at all 
times. It follows that equation (147) cannot be a complete 
expression for these shear stresses, for it does not include 
the possibility that the fl uid is moving in the  x  2  direction, 
with a velocity  v  2  that varies with  x  1 . The complete expres-
sion for what is called a Newtonian fl uid is 
 

  
 

(148)

 Similar expressions may be written down for σ 23  
(= σ 32 ) and σ 31  (= σ 13 ). Since Newton’s day these hypotheti-
cal expressions have been fully substantiated for gases and 
simple liquids, not only by experiment but also by analy-
sis of the molecular motions and molecular interactions 
in such fl uids undergoing shear, and for such fl uids one 
can even predict the magnitude of η with reasonable suc-
cess. There do exist, however, more complicated fl uids for 
which the Newtonian description of shear stress is inad-
equate, and some of these are very familiar in the home. 
In the whites of eggs, for example, and in most shampoos, 
there are long-chain molecules that become entangled 
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with one another, and entanglement may hinder their 
efforts to respond to changes of environment associated 
with flow. As a result, the stresses acting in such fluids may 
reflect the deformations experienced by the fluid in the 
recent past as much as the instantaneous rate of defor-
mation. Moreover, the relation between stress and rate 
of deformation may be far from linear. Non-Newtonian 
effects, interesting though they are, lie outside the scope 
of the present discussion, however.

The sort of velocity profile may be established by con-
taining the fluid between two parallel flat plates and moving 
one plate relative to the other. The possibility exists that 
in this situation the layers of fluid immediately in contact 
with each plate will slip over them with some finite veloc-
ity (indicated in the diagram by an arrow labeled vslip  ). If so, 
the frictional stresses associated with this slip must be such 
as to balance the shear stress η(∂v1/∂x2) exerted on each of 
these layers by the rest of the fluid. Little is known about 
fluid-solid frictional stresses, but intelligent guesswork 
suggests that they are proportional in magnitude to vslip and 
that, in the circumstances of laminar motion, the distance 
d below the surface of the stationary bottom plate at which 
the variation of v1 with x2 extrapolates to zero should be of 
the same order of magnitude as the diameter of a molecule 
if the fluid is a liquid or as the molecular “mean free path” 
if it is a gas. These distances are normally very small com-
pared with the separation of the plates, D. Accordingly, 
fluid flow patterns may normally be treated as subject to 
the boundary condition that at a fluid-solid interface the 
relative velocity of the fluid is zero. No reliable evidence 
for failure of predictions based on this no-slip boundary 
condition has yet been found, except in the case of what 
is called Knudsen flow of gases (i.e., flow at such low pres-
sures that the mean free path is comparable in length with 
the dimensions of the apparatus).



7 The Britannica Guide to Heat, Force, and Motion 7

224

 Velocity profi le for laminar fl ow between two plates (or inside a cylindrical 
tube), driven by a pressure gradient.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services

 If a fl uid is fl owing steadily between two parallel plates 
that are both stationary and if its velocity must be zero in 
contact with both of them, the velocity profi le must nec-
essarily have the form in which the velocity is a maximum 
midway between the two plates. A force in the forward direc-
tion due to the shear stress η(∂ v  1 /∂ x  2 ) is transmitted to the 
plates, and an equal force in the backward direction acts on 
the fl uid. The motion therefore cannot be maintained unless 
the pressure acting on the fl uid is greater on the left of the 
diagram than it is on the right. A full analysis shows the veloc-
ity profi le to be parabolic, and it indicates that the rate of 
discharge is related to the pressure gradient by the equation 

   
(149)

 where  W  ( >>  D ) is the width of the plates. A similar analy-
sis of the problem of steady fl ow through a (horizontal) 
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cylindrical pipe of uniform diameter  D  shows the rate of 
discharge in this case to be given by 
 

   
(150)

 this famous result is known as Poiseuille’s equation, and 
the type of fl ow to which it refers is called Poiseuille fl ow.     

 Bulk Viscosity 

 Viscosity may affect the normal stress components, σ 11 , 
σ 22 , and σ 33 , as well as the shear stress components. To see 
why this is so, one needs to examine the way in which 
stress components transform when one’s reference axes 
are rotated. Here, the result will be stated without proof 
that the general expression for σ 11  consistent with equa-
tion (148) is  

 (151) (151)

 On the right-hand side of this equation,  p  represents 
the equilibrium pressure defi ned in terms of local density 
and temperature by the equation of state, and  b  is another 
viscosity coeffi cient known as the bulk viscosity. 

 The bulk viscosity is relevant only where the density is 
changing. Thus it plays a role in attenuating sound waves 
in fl uids and may be estimated from the magnitude of the 
attenuation. If the fl uid is effectively incompressible, how-
ever, so that changes of density may be ignored, the fl ow is 
everywhere subject to the continuity condition that 
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(152)

 The terms in equation (151) that involve  b  then cancel, 
and the expression simplifi es to  

 
(153)

 Similar equations may be written down for σ 22  and σ 33 . 
These simpler expressions provide the basis for the argu-
ment that follows, and the bulk viscosity can be left on 
one side.     

 Measurement of Shear Viscosity 

 A variety of methods are available for the measurement 
of shear viscosity. One standard method involves mea-
surement of the pressure gradient along a pipe for various 
rates of fl ow and application of Poiseuille’s equation. 
Other methods involve measurement either of the damp-
ing of the torsional oscillations of a solid disk supported 
between two parallel plates when fl uid is admitted to the 
space between the plates, or of the effect of the fl uid on 
the frequency of the oscillations. 

 The Couette viscometer deserves a fuller explanation. 
In this device, the fl uid occupies the space between two 
coaxial cylinders of radii  a  and  b  (>  a ); the outer cylinder is 
rotated with uniform angular velocity ω 0 , and the resultant 
torque transmitted to the inner stationary cylinder is mea-
sured. If both the terms on the right-hand side of equation 
(148) are taken into account, the shear stress in the circu-
lating fl uid is found to be proportional to  r  ( d ω/ d  r ) rather 
than to ( d  v / d  r )—not an unexpected result, since it is only 
if ω, the angular velocity of the fl uid, varies with radius  r  
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that there is any slip between one cylindrical lamina of 
fl uid and the next. The torque transmitted through the 
fl uid is therefore proportional to  r   3 ( d ω/ d  r ). In the steady 
state, the opposing torques acting on the inner and outer 
surfaces of each cylindrical lamina of fl uid must be of 
equal magnitude—otherwise the laminae accelerate—and 
this means that  r   3 ( d ω/ d  r ) must be independent of  r . There 
are two basic modes of motion for a circulating fl uid that 
satisfy this condition: in one, the liquid rotates as a solid 
body would, with an angular velocity that does not vary 
with  r , and the torque is everywhere zero; in the other, ω 
varies like  r   −2 . The angular velocity of the fl uid in a Couette 
viscometer can be viewed as a mixture of these two modes 
in proportions that satisfy the boundary conditions at  r  =  a  
and  r  =  b . The torque transmitted per unit length of the 
cylinders turns out to be given by  

 
(154)

 
 It may be added that if the inner cylinder is absent, 

the steady fl ow pattern consists only of the fi rst mode—
i.e., the fl uid rotates like a solid body with uniform angular 
velocity ω 0 . If the outer cylinder is absent, however, and 
the inner one rotates, it then consists only of the second 
mode. The angular velocity falls off like  r   −2 , and the veloc-
ity  v  falls off like  r   −1 . 

 In the equation of motion given in the following sec-
tion, the shear viscosity occurs only in the combination 
(η/ρ). This combination occurs so frequently in argu-
ments of fl uid dynamics that it has been given a special 
name—kinetic viscosity. The kinetic viscosity at normal 
temperatures and pressures is about 10 −6  square metre per 
second for water and about 1.5 × 10 −5  square metre per sec-
ond for air.     
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 naVier-STokeS equaTion 

 One may have a situation where σ 11  increases with  x  1 . The 
force that this component of stress exerts on the right-hand 
side of the cubic element of fl uid will then be greater than 
the force in the opposite direction that it exerts on the left-
hand side, and the difference between the two will cause 
the fl uid to accelerate along  x  1 . Accelerations along  x  1  will 
also result if σ 12  and σ 13  increase with  x  2  and  x  3 , respectively. 
These accelerations, and corresponding accelerations in 
the other two directions, are described by the equation of 
motion of the fl uid. For a fl uid moving so slowly compared 
with the speed of sound that it may be treated as incom-
pressible and in which the variations of temperature from 
place to place are insuffi cient to cause signifi cant variations 
in the shear viscosity η, this equation takes the form 

(155)

  

 Euler derived all the terms in this equation except the 
one on the left-hand side proportional to (η/ρ), and with-
out that term the equation is known as the Euler equation. 
The whole is called the Navier-Stokes equation. 

 The equation is written in a compact vector notation 
which many readers will fi nd totally impenetrable, but 
a few words of explanation may help some others. The 
symbol ∇ represents the gradient operator, which, when 
preceding a scalar quantity X, generates a vector with 
components (∂X/∂ x  1 , ∂X/∂ x  2 , ∂X/∂ x  3 ). The vector product 
of this operator and the fl uid velocity  v —i.e., (∇ ×  v )—is 
sometimes designated as  curl v  [and ∇ × (∇ ×  v ) is also 
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curl curl v ]. Another name for (∇ ×  v ), which expresses 
particularly vividly the characteristics of the local fl ow 
pattern that it represents, is vorticity. In a sample of fl uid 
that is rotating like a solid body with uniform angular 
velocity ω 0 , the vorticity lies in the same direction as the 
axis of rotation, and its magnitude is equal to 2ω 0 . In other 
circumstances the vorticity is related in a similar fashion 
to the local angular velocity and may vary from place to 
place. As for the right-hand side of equation (155),  D  v / D  t  
represents the rate of change of velocity that one would 
see if the motion of a single element of the fl uid could 
be followed—that is, it represents the acceleration of 
the element—while ∂ v /∂ t  represents the rate of change 
at a fi xed point in space. If the fl ow is steady, then ∂ v /∂ t  
is everywhere zero, but the fl uid may be accelerating all 
the same, as individual fl uid elements move from regions 
where the streamlines are widely spaced to regions where 
they are close together. It is the difference between  D  v / D  t  
and ∂ v /∂ t —i.e., the fi nal ( v  ∙ ∇)  v  term in equation (155)—
that introduces into fl uid dynamics the nonlinearity that 
makes the subject so rife with surprises.     

 poTenTial FloW 

 This section is concerned with an important class of fl ow 
problems in which the vorticity is everywhere zero, and for 
such problems the Navier-Stokes equation may be greatly 
simplifi ed. For one thing, the viscosity term drops out of 
it. For another, the nonlinear term, ( v  ∙ ∇)  v , may be trans-
formed into ∇( v  2 /2). Finally, it may be shown that, when 
(∇ ×  v ) is zero, one may describe the velocity by means of a 
scalar potential ϕ, using the equation  

 (156)
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 Thus equation (155) becomes 

 which may at once be integrated to show that  

 
(157)

 This result incorporates Bernoulli’s law for an effec-
tively incompressible fl uid (equation [133]), as was to be 
expected from the disappearance of the viscosity term. It 
is more powerful than equation (133), however, because it 
can be applied to nonsteady fl ow in which ∂ϕ/∂ t  is not zero 
and because it shows that in cases of potential fl ow the 
left-hand side of equation (157) is constant everywhere and 
not just constant along each streamline. 

 Vorticity-free, or potential, fl ow would be of rather lim-
ited interest were it not for the theorem, fi rst proved by 
Thomson, that, in a body of fl uid which is free of vorticity 
initially, the vorticity remains zero as the fl uid moves. This 
theorem seems to open the door for relatively painless solu-
tions to a great range of problems. Consider, for example, a 
stream of fl uid in uniform motion approaching an obstacle 
of some sort. Well upstream of the obstacle the fl uid is cer-
tainly vorticity-free, so it should, according to Thomson’s 
theorem, be vorticity-free around the obstacle and down-
stream as well. In this case a fl ow potential should exist; 
and, if the fl uid is effectively incompressible, it follows from 
equations (152) and (156) that it satisfi es Laplace’s equation, 

 
(158)
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This is perhaps the most frequently occurring dif-
ferential equation in physics, and methods for solving it, 
subject to appropriate boundary conditions, are very well 
established. Given a solution for ϕ, the fluid velocity v fol-
lows at once, and one may then discover how the pressure 
varies with position and time from equation (157).

The physicists and mathematicians who developed 
fluid dynamics during the 19th century relied heavily 
on this reasoning. They based splendid achievements 
upon it, a notable example being the theory of waves 
on deep water. There was a touch of unreality, however, 
about some of their theorizing. If carried to extremes, 
the argument of the previous section implies that water 
initially stationary in a beaker can never be set into rota-
tion by rotating the beaker or by stirring it with a spoon, 
and this is clearly nonsense. It suggests that vorticity-
free water remains vorticity-free if it is squeezed into a 
narrow pipe, and this too is plainly nonsensical, for the 
well-established parabolic profile for laminar flow in a 
tube is not vorticity-free. What is misleading about the 
argument in situations like these is that it pays inade-
quate attention to what happens at interfaces. Following 
the work of Prandtl, physicists now appreciate that 
vorticity is liable to be fed into the fluid at interfaces, 
whether these are interfaces between the fluid and 
some solid object or the free surfaces of a liquid. Once 
the slightest trace of vorticity is present, it destroys the 
conditions on which the proof of Thomson’s theorem 
depends. Moreover, vorticity admitted at interfaces 
spreads into the fluid in much the same way that a dye 
would spread, and whether or not the results of poten-
tial theory are useful depends on how much of the fluid 
is contaminated in the particular circumstances under 
discussion.
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Potential Flow with 
Circulation: Vortex Lines

The proof of Thomson’s theorem depends on the con-
cept of circulation, which Thomson introduced. This 
quantity is defined for a closed loop which is embedded 
in, and moves with, the fluid; denoted by K, it is the inte-
gral around the loop of v · dl, where dl is an element of 
length along the loop. If the vorticity is everywhere zero, 
then so is the circulation around all possible loops, and 
vice versa. Thomson showed that K cannot change if the 
viscous term in equation (155) contributes nothing to the 
local acceleration, and it follows that both K and vorticity 
remain zero for all time.

Reference was made earlier to the sort of steady flow 
pattern that may be set up by rotating a cylindrical spindle 
in a fluid; the streamlines are circles around the spindle, 
and the velocity falls off like r−1. This pattern of flow occurs 
naturally in whirlpools and typhoons, where the role of 
the spindle is played by a “core” in which the fluid rotates 
like a solid body; the axis around which the fluid circulates 
is then referred to as a vortex line. Each small element of 
fluid outside the core, if examined in isolation for a short 
interval of time, appears to be undergoing translation 
without rotation, and the local vorticity is zero. Were it 
not so, the viscous torques would not cancel and the flow 
pattern would not be a steady one. Nevertheless, the cir-
culation is not zero if the loop for which it is defined is 
one that encloses the spindle or core. In such situations, a 
potential that obeys Laplace’s equation outside the spindle 
or core can be found, but it is no longer, to use a technical 
term that may be familiar to some readers, single-valued.

Readers who recognize this term are likely to have 
encountered it in the context of electromagnetism, and 
it is worth remarking that all the results of potential flow 
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theory have electromagnetic analogues, in which stream-
lines become the lines of force of a magnetic fi eld and 
vortex lines become lines of electric current. The analogy 
may be illustrated by reference to the Magnus effect. 

 This effect (named for the German physicist and chem-
ist H.G. Magnus, who fi rst investigated it experimentally) 
arises when fl uid fl ows steadily past a cylindrical spindle, 
with a velocity that at large distances from the spindle is 
perpendicular to the spindle’s axis and uniformly equal to, 
say,  v  0 , while the spindle itself is steadily rotated. Rotation 
is communicated to the fl uid, and in the steady state the 
circulation around any loop that encloses the spindle (and 
encloses a layer of fl uid adjacent to the spindle within 
which the vorticity is nonzero and potential theory is 
inapplicable) has some nonzero value  K . The details of the 

 Streamlines for potential fl ow with circulation past a rotating cylinder. The 
cylinder experiences a downward Magnus force.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
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streamlines that describe the steady fl ow pattern (outside 
that “boundary layer”) naturally depend on the magnitude 
of  v  0  and  K . The fl ow pattern has two stagnation points 
at P and P′ and, since the pressure is high at such points, 
the spindle may be expected to experience a downward 
force perpendicular both to its axis and to the direction 
of  v  0 . Detailed calculations confi rm this expectation and 
show that the magnitude of the force, per unit length of 
the spindle, is 
 

   (159)

 This so-called Magnus force is directly analogous to 
the force that a transverse magnetic fi eld  B  0  exerts upon 
a wire carrying an electric current  I , the magnitude of 
which, per unit length of the wire, is  B  0  I . 

 The Magnus force on rotating cylinders has been 
utilized to propel experimental yachts, and it is closely 
related to the lift force on airfoils that enables airplanes 
to fl y. The transverse forces that cause spinning balls to 
swerve in fl ight are, however, not Magnus forces, as is 
sometimes asserted. They are due to the asymmetrical 
nature of the eddies that develop at the rear of a spinning 
sphere. Cricket balls, unlike the balls used for baseball, 
tennis, and golf, have a raised equatorial seam that plays 
an important part in making the eddies asymmetric. 
A bowler in cricket who wants to make the ball swerve 
imparts spin to it, but he does so chiefl y to ensure that the 
orientation of this seam remains steady as the ball moves 
toward the batsman. 

 It may be shown, by reference to the magnetic ana-
logue or in other ways, that straight vortex lines of equal 
but opposite strength, ± K , which are parallel and sepa-
rated by a distance  d , will drift sideways together through 
the fl uid at a speed given by  K /2π d . Similarly, a vortex line 
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that has joined up on itself to form a closed vortex ring of 
radius  a  drifts along its axis with a speed given by 

   
(160)

 where  c  is the radius of the line’s core, with ln standing 
for natural logarithm. This formula applies, for example, 
to smoke rings. The fact that such rings slow down as they 
propagate can be explained in terms of the increase of  c
with time, due to viscosity.     

 WaVeS on deep WaTer 

 One particular solution of Laplace’s equation that describes 
wave motion on the surface of a lake or of the ocean is 

   
(161)

 In this case the  x -axis is the direction of propagation 
and the  z -axis is vertical;  z  = 0 describes the free surface 
of the water when it is undisturbed and  z  = − D  describes 
the bottom surface; ϕ 0  is an arbitrary constant that deter-
mines the amplitude of the motion; and  f  is the frequency 
of the waves and λ their wavelength. If λ is more than a few 
centimetres, surface tension is irrelevant and the pressure 
in the liquid just below its free surface is atmospheric for 
all values of  x . It can be shown that in these circumstances 
the wave motion described by equation (161) is consistent 
with equation (157) only if the frequency and wavelength 
are related by the equation 
 

   
(162)
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 and an expression for the speed of the waves may be 
deduced from this, since  V  =  f λ. For shallow water ( D  << 
λ) one obtains the answer already quoted as equation (138), 
but for deep water ( D  >> λ) the answer is 

   
(163)

 Waves on deep water are evidently dispersive, and 
surfers rely on this fact. A storm in the middle of the ocean 
disturbs the surface in a chaotic way that would be useless 
for surfi ng, but as the component waves travel toward the 
shore they separate; those with long wavelengths move 
ahead of those with short wavelengths because they travel 
faster. As a result, the waves seem nicely regular by the 
time that they arrive. 

 Wave crests in the Kelvin wedge behind a source S that is moving steadily 
from left to right. The maximum wavelength λ max  depends on the speed of 
the source, but the angle of the wedge does not.  Copyright Encyclopædia 
Britannica; rendering for this edition by Rosen Educational Services
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 Anyone who has observed the waves behind a mov-
ing ship will know that they are confi ned to a V-shaped 
area of the water’s surface, with the ship at its apex. The 
waves are particularly prominent on the arms of the V, but 
they can also be discerned between these arms where the 
wave crests curve. It seems to be widely believed that the 
angle of the V becomes more acute as the boat speeds up, 
much in the way that the conical shock wave accompa-
nying a supersonic projectile becomes more acute. That 
is not the case; the dispersive character of waves on deep 
water is such that the V has a fi xed angle of 2 sin −1 ( 1⁄  3 ) = 39°. 
Thomson (Lord Kelvin) was the fi rst to explain this, and 
so the V-shaped area is now known as the Kelvin wedge. 

 Mach’s explanation of the shock front from a supersonic projectile.  (A) 
Source speed  U  less than speed of sound  V  S  , (B)  U  greater than  V  S  . Copyright 
Encyclopædia Britannica; rendering for this edition by Rosen 
Educational Services
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 Consider a situation in which S (the “source”) repre-
sents the bow of the ship which is moving from left to right 
with uniform speed  U , and lines labeled C, C′, C′′, etc., rep-
resent a set of parallel wave crests which are also moving 
from left to right. It can be shown that S will create this 
set of crests if, but only if, it rides continuously on the one 
labeled C. (It also can be shown that, though the crests in 
the set continue indefi nitely to the left of C, there can be 
none to the right of this one.) The condition that S and C 
move together indicates that there is a relation between 
wavelength λ and inclination α expressed by the equation 

   
(164)

 This condition can evidently be satisfi ed by many other 
sets of crests—e.g., by the set with slightly shorter wave-
length λ′ that is represented by broken lines. When one 
takes into consideration all the sets that satisfy equation 
(164) and have wavelengths intermediate between λ and 
λ′, it becomes apparent that over most of the area behind 

 The curved wave crests in the Kelvin wedge (depicted in the fi rst image in 
this section) result from the superposition of many sets of straight wave crests 
like the two shown here. These two sets and others that are intermediate in 
wavelength reinforce one another near the line of inclination  β  and interfere 
destructively elsewhere.  Copyright Encyclopædia Britannica; rendering 
for this edition by Rosen Educational Services

 The curved wave crests in the Kelvin wedge (depicted in the fi rst image in 



239

7 Liquids in Motion 7

the source they interfere destructively. They reinforce one 
another, however, near several intersections. These inter-
sections lie on a line through S of inclination β, where 

   
(165)

 It follows that, though the angle α can take any value 
between 90° (corresponding to λ = λ max  = 2π U  2 / g ) and zero, 
tan β can never exceed  1⁄  2  √2 , and sin β can never exceed  1⁄  3 . 

 Ships lose energy to the waves in the Kelvin wedge, 
and they experience additional resistance on that account. 
The resistance is particularly high when the wave system 
created by the bow, where water is pushed aside, rein-
forces the wave system created by the “anti-source” at the 
stern, where the water closes in again. Such reinforcement 
is liable to occur when the effective length of the boat,  L , 
is equal to (2 n  + 1)λ max /2 (with  n  = 0, 1, 2, . . .) and there-
fore when the Froude number,  U / √( L  g ) , takes one of the 
values [ √(2 n  + 1)π  ] −1 . However, once a boat has been accel-
erated past  U  =  √( L  g /π) , the bow and stern waves tend to 
cancel, and the resistance resulting from wave creation 
diminishes. 

 Waves on deep water whose wavelength is a few centi-
metres or less are generally referred to as ripples. In such 
waves, the pressure differences across the curved surface 
of the water associated with surface tension (see equation 
[129]) are not negligible, and the appropriate expression 
for their speed of propagation is 
 

   
(166)

 The wave velocity is therefore large for very short 
wavelengths as well as for very long ones. For water at 
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normal temperatures,  V  has a minimum value of about 
0.23 metre per second where the wavelength is about 17 
millimetres, and it follows (note that equation [164] has 
no real root for α unless  U  exceeds  V ) that an object mov-
ing through water can create no ripples at all unless its 
speed exceeds 0.23 metre per second. A wind moving over 
the surface of water likewise creates no ripples unless its 
speed exceeds a certain critical value, but this is a more 
complicated phenomenon, and the critical speed in ques-
tion is distinctly higher.     

 boundary layerS 
and SeparaTion 

 It should be reiterated that vorticity is liable to enter a fl uid 
that is initially undergoing potential fl ow where it makes 
contact with a solid and also at its free surface. The way 
in which, having entered, it spreads, may be illustrated by 
a simple example. Consider a large body of fl uid, initially 
stationary, being set into motion by the movement in its 
own plane of a large solid plate that is immersed within 
the fl uid. The motion is communicated from solid to fl uid 

 Velocity profi le established by motion of a plate through stationary fl uid.  
Copyright Encyclopædia Britannica; rendering for this edition by Rosen 
Educational Services
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by the frictional forces that prevent slip between the two. 
The development of the velocity profi le with time turns 
out to be described by the partial differential equation 

   
(167)

 In this situation the vorticity, which may be denoted 
by the symbol Ω, has one nonzero component, directed 
along the axis perpendicular to  x  1  and  x  2 ; it is Ω 3  = -(∂ v  1 /∂ x  2 ). 
Differentiation of equation (167) with respect to  x  2  shows 
at once that 
 

   
(168)

 This is a diffusion equation. It indicates that, if the 
plate oscillates to and fro with frequency  f , then the 
so-called boundary layer within which Ω 3  is nonzero has a 
thickness δ given by 
 

   
(169)

 and in most instances of oscillatory motion this is small 
enough for the boundary layer to be neglected. For 
example, the boundary layer on the surface of the ocean 
has a thickness of less than one millimetre when a wave 
with a frequency of about one hertz passes by; because the 
effects of viscosity are confi ned to this layer, they are too 
slight to affect the propagation of the wave to any signifi -
cant degree. If the plate is kept moving at a uniform rate, 
however, the thickness of the boundary layer, as described 
by equation (168), will increase with the time  t  that has 
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elapsed since the motion of the plate began, according to 
the equation 

   
(170)

 Prandtl suggested that when a stream of fl uid fl ows 
steadily past an obstacle of fi nite extent, such as a sphere, 
the time that matters is the time for which fl uid on a 
streamline just outside the boundary layer remains in 
contact with it. This time is of order  D / v  0 , where  D  is 
the diameter of the sphere and  v  0  is the speed of the fl uid 
well upstream. Hence, one would expect the thickness of 
the boundary layer at the rear of the sphere to be some-
thing like 

   
(171)

 If the velocity  v  0  is so low that equation (170) is compa-
rable with or greater than the diameter  D , the fl ow pattern 
must be so contaminated by vorticity that the neglect of 
viscosity and reliance on Bernoulli’s equation and on the 
other results of potential theory is clearly unjustifi ed. If 
the velocity is high and equation (171) is much less than 
D , however, the boundary layer would seem to be of little 
importance. Surely then the results of potential theory are 
to be trusted? 

 Alas, that optimistic conclusion is not confi rmed by 
experiment. What happens at high velocities is that the 
boundary layer comes unstuck from the surface of the 
sphere—it is said to separate. Evidently the fl uid veloc-
ity is higher near the equator of the sphere, at Q, than it 
is at either of the two poles, P and P′. Thus according to 
Bernoulli’s equation, which can be relied on outside the 
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boundary layer, the pressure near Q is less than it is near 
P and P′. The pressure gradient acts on the fl uid in the 
boundary layer, accelerating it between P and Q but decel-
erating it between Q and P′. As the fl ow velocity increases, 
so does the pressure gradient, and at a certain stage the 
decelerating effect between Q and P′ becomes so large that 
the direction of fl ow within the boundary layer reverses in 
sign near the point labeled R in the diagram. The backfl ow 
of fl uid near R causes an accumulation of fl uid that obliges 
the oncoming boundary layer to separate, and the fl uid 
behind the sphere circulates slowly within the boundary 
layer as a ring-shaped eddy. 

 This analysis might well refer to a cylinder rather than 
a sphere. If such were the case, however, the regions of cir-
culating fl ow behind the obstacle would form parts of two 
separate straight eddies instead of a single ring-shaped one. 
At high velocities the eddies behind a cylinder become so 
large that they are blown off by the current and disappear 
downstream while new eddies form in their place; they 

 Flow past a stationary solid sphere.  Copyright Encyclopædia Britannica; 
rendering for this edition by Rosen Educational Services
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are said to have been shed. The top and bottom eddies are 
shed alternately, and the cylinder experiences an oscillat-
ing force as a consequence. If the cylinder is something 
fl exible like a telephone or power cable, it will move to 
and fro under this force; the singing noise produced by 
cables in high winds is due to a resonance between their 
natural frequency of transverse oscillation and the fre-
quency of eddy shedding. Similar processes are liable to 
occur behind obstacles of any shape, and the occurrence 
of eddies behind rocks or walls that interrupt the smooth 
fl ow of rivers is a familiar phenomenon.     

 drag 

 A fl uid stream exerts a drag force  F  D  on any obstacle 
placed in its path, and the same force arises if the obstacle 
moves and the fl uid is stationary. How large it is and how 
it may be reduced are questions of obvious importance 
to designers of moving vehicles of all sorts and equally to 
designers of cooling towers and other structures who want 
to be certain that the structures will not collapse in the 
face of winds. 
 An expression for the drag force on a sphere which is valid 
at such low velocities that the  v  2  term in the Navier-Stokes 
equation is negligible, and thus at velocities such that 
the boundary layer thickness described by equation (171) 
is larger than the sphere diameter  D , was fi rst obtained 
by Stokes. Known as Stokes’s law, it may be written as 
 

   (172)

 One-third of this force is transmitted to the sphere by 
shear stresses near the equator, and the remaining two-
thirds are due to the pressure being higher at the front of 
the sphere than at the rear. 
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 As the velocity increases and the boundary layer 
decreases in thickness, the effect of the shear stresses (or 
of what is sometimes called skin friction in this context) 
becomes less and less important compared with the effect 
of the pressure difference. It is impossible to calculate that 
difference precisely, except in the limit to which Stokes’s 
law applies, but there are grounds for expecting that once 
eddies have formed it is about ρ v  0  2 /2. Hence at high veloci-
ties one may expect 

   
(173)

 where  A ′ is some effective cross-sectional area, presum-
ably comparable to its true cross-sectional area  A  (which 
is π D  2 /4 for a sphere) but not necessarily exactly equal to 
this. It is conventional to describe drag forces in terms of 
a dimensionless quantity called the drag coeffi cient; this is 
defi ned, irrespective of the shape of the body, as the ratio 
[ F  D /(ρ v  0  2 /2) A ] and is denoted by  C  D . At high velocities, 
 C  D  is clearly the same thing as the ratio ( A ′/ A ) and should 
therefore be of order unity. 

 This is as far as theory can go with this problem. The 
principles of dimensional analysis can be invoked to show 
that, provided the compressibility of the fl uid is irrelevant 
(i.e., provided the fl ow velocity is well below the speed 
of sound), the drag coeffi cient must be some universal 
function of another dimensionless quantity known as the 
Reynolds number and defi ned as 
 

   
(174)

 One must, however, resort to experiments to discover 
the form of this function. Fortunately, a limited number 
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of experiments will suffi ce because the function is uni-
versal. They can be performed using whatever liquids and 
spheres are most convenient, provided that the whole 
range of  r  that is likely to be important is covered. Once 
the results have been plotted on a graph of  C  D  versus  r , 
the graph can be used to predict the drag forces experi-
enced by other spheres in other liquids at velocities that 
may be quite different from those so far employed. This 
point is worth emphasizing because it enshrines the prin-
ciple of dynamic similarity, which is heavily relied on by 
engineers whenever they use results obtained with models 
to predict the behaviour of much larger structures. 

 The  C  D  versus  r  curve for spheres, plotted with log-
arithmic scales, is shown in Stokes’s law, re-expressed in 
terms of  C  D  and  r , becomes  C  D  = 24/ r . This law evidently 
fails when  r  exceeds about 1. For a diagram of  C  D  versus  r
for spheres, there is a considerable range of  r  beginning at 
about 10 3  over which  C  D  is about 0.5, but when  r  reaches 
about 3 × 10 5  it falls dramatically, to about 0.1. The curve 

 Variation of drag coeffi cient with reynolds number for spheres, cylinders, and 
disks.  Copyright Encyclopædia Britannica; rendering for this edition 
by Rosen Educational Services
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for cylinders of diameter  D  whose axes are transverse to 
the direction of fl ow is similar to that for spheres (though 
it has no straight-line part at low Reynolds number to cor-
respond to Stokes’s law), but the curve for transverse disks 
of diameter  D  is noticeably fl atter. This fl atness is linked 
to the fact that a disk has sharp edges around which the 
streamlines converge and diverge rapidly. The resulting 
large pressure gradients near the edge favour the forma-
tion and shedding of eddies. The drag force on a transverse 
fl at plate of any shape can normally be estimated quite 
accurately, provided its edges are sharp, by assuming the 
drag coeffi cient to be unity. 

 Since sharp edges favour the formation and shed-
ding of eddies, and thereby increase the drag coeffi cient, 
one may hope to reduce the drag coeffi cient by stream-
lining the obstacle. It is at the rear of the obstacle that 
separation occurs, and it is therefore the rear that needs 
streamlining. By stretching the rear of the sphere out, the 
pressure gradient acting on the boundary layer behind the 
obstacle can be much reduced. There are other methods 
of reducing drag that have some practical applications. 
When the obstacle is the wing of an aircraft with a slot 

 Methods for reducing drag.  Copyright Encyclopædia Britannica; render-
ing for this edition by Rosen Educational Services
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through its leading edge, the current of air channeled 
through this slot imparts forward momentum to the fl uid 
in the boundary layer on the upper surface of the wing to 
hinder this fl uid from moving backward. The cowls that 
are often fi tted to the leading edges of aircraft wings have 
a similar purpose. In another case, the spherical obstacle 
is equipped with an internal device—a pump of some 
sort—that prevents the accumulation of boundary-layer 
fl uid that would otherwise lead to separation by sucking 
it in through small holes in the surface of the obstacle; the 
fl uid may be ejected again through holes in the rear, where 
it will do no harm. 

 It should be stressed that the curves of  C  D  versus  r  are 
universal only so long as the velocity  v  0  is much less than 
the speed of sound. When  v  0  is comparable with the speed 
of sound,  V  S , the compressibility of the fl uid becomes 
relevant, which means that the drag coeffi cient has to 
be regarded as dependent on the dimensionless ratio  M
=  v  0 / V  S , known as the Mach number, as well as on the 
Reynolds number. The drag coeffi cient always rises as  M
approaches unity but may thereafter fall. To reduce drag 
in the supersonic region, it pays to streamline the front of 
obstacles or projectiles rather than the rear, as this reduces 
the intensity of the shock cone.     

 liFT 

 If an aircraft wing, or airfoil, is to fulfi ll its function, it must 
experience an upward lift force, as well as a drag force, when 
the aircraft is in motion. The lift force arises because the 
speed at which the displaced air moves over the top of the 
airfoil (and over the top of the attached boundary layer) is 
greater than the speed at which it moves over the bottom 
and because the pressure acting on the airfoil from below 
is therefore greater than the pressure from above. It also 
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can be seen, however, as an inevitable consequence of the 
fi nite circulation that exists around the airfoil. One way to 
establish circulation around an obstacle is to rotate it, as 
was seen earlier in the description of the Magnus effect. 
The circulation around an airfoil, however, is created by 
its forward motion; it arises as soon as the airfoil moves 
fast enough to shed its fi rst eddy. 

 The lift force on an airfoil moving through stationary 
air at a steady speed  v  0  is the same as the lift force on an 
identical airfoil that is stationary in air moving at  v  0  the 
other way; the latter is easier to represent pictorially. The 
pattern of the set of streamlines representing potential 
fl ow past a stationary inclined plate before any eddy has 
been shed is a symmetrical one, and the pressure varia-
tions associated with it generate neither drag nor lift. At 
the rear of the plate, however, the streamlines diverge rap-
idly, so conditions exist for the formation of an eddy there, 
and the sense of its rotation will be counterclockwise. It 
grows more easily and is shed more quickly because the 
edges of the plate are sharp. The circulation around the 
closed loop that encloses both the plate and the eddy was 
zero before the eddy formed and, according to Thomson’s 

 Generation of lift force.  Copyright Encyclopædia Britannica; rendering 
for this edition by Rosen Educational Services
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theorem, it must still be zero. Passing through this loop, 
there thus must be a vortex line having clockwise cir-
culation -K to compensate for the circulation +K of the 
starting vortex. This other line, known as the bound vor-
tex, is not immediately apparent in the diagram because it 
is attached to the plate, and it remains thus attached as the 
starting vortex is swept away downstream. It does show 
up, however, in a modification of the flow pattern imme-
diately behind the plate, where the streamlines no longer 
diverge. Because the divergence here has been eliminated, 
no further eddies are likely to be formed.

Earlier, the formula ρv0K was quoted for the strength 
of the Magnus force per unit length of a rotating cylinder, 
and the same formula can be applied to the inclined plate 
or to any airfoil that has shed a starting vortex and around 
which, consequently, there is circulation. The validity of 
the formula does not depend in any way on the precise 
shape of the airfoil, any more than the force exerted by 
a magnetic field on a wire carrying a current depends on 
the cross-sectional shape of the wire. The design of the 
airfoil, nevertheless, has a critical effect on the magnitude 
of the lift force because it determines the magnitude of 
K. The rear edge is made as sharp as possible for reasons 
that have already been explained, and it may take the form 
of hinged flaps that are lowered at takeoff. Lowering the 
flaps increases K and therefore also the lift, but the flaps 
need to be raised when the aircraft has reached its cruising 
altitude because they cause undesirable drag. The circula-
tion and the lift can also be increased by increasing the 
angle α at which the main part of the airfoil is inclined to 
the direction of motion. There is a limit to the lift that can 
be generated in this way, however, for if the inclination is 
too great the boundary layer separates behind the wing’s 
leading edge, and the bound vortex, on which the lift 
depends, may be shed as a result. The aircraft is then said 
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to stall. The leading edge is made as smooth and rounded 
as possible to discourage stalling.

Thomson’s theorem can be used to prove that if the 
airfoil is of finite length then the starting vortex and the 
bound vortex must both be parts of a single, continuous 
vortex ring. They are joined by two trailing vortices, which 
run backward from the ends of the airfoil. As time passes, 
these trailing vortices grow steadily longer, and more and 
more energy is needed to feed the swirling motion of the 
fluid around them. It is clear, at any rate in the case where 
the airfoil is moving and the air is stationary, that this 
energy can come only from whatever agency propels the 
airfoil forward, and hence that the trailing vortices are a 
source of additional drag. The magnitude of the additional 
drag is proportional to K2 but it does not increase, as the 
lift force does, if the airfoil is made longer while K is kept 
the same. For this reason, designers who wish to maximize 
the ratio of lift to drag will make the wings of their aircraft 
as long as they can—as long, that is, as is consistent with 
strength and rigidity requirements.

When a yacht is sailing into the wind, its sail acts as 
an airfoil of which the mast is the leading edge, and the 
considerations that favour long wings for aircraft favour 
tall masts as well.

Turbulence

The nonlinear nature of the (v · ∇)  v term in the Navier-
Stokes equation—equation (155)—means that solutions of 
this equation cannot be superposed. The fact that v1(R, t) 
and v2(R, t) satisfy the equation does not ensure that (v1 
+ v2) does so too. The nonlinear term provides a contact, 
in fact, through which two different modes of motion 
may exchange energy, so that one grows in amplitude at 
the expense of the other. A great deal of experimental and 
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theoretical work has shown, in particular, that if a fl uid is 
undergoing regular laminar motion (of the sort that was 
discussed in connection with Poiseuille’s law, for example) 
at suffi ciently high rates of shear, small periodic pertur-
bations of this motion are liable to grow parasitically. 
Perturbations on a smaller scale still grow parasitically on 
those that are fi rst established, until the fl ow pattern is 
so grossly disturbed that it is no longer useful to defi ne a 
fl uid velocity for each point in space; the description of 
the fl ow has to be a statistical one in terms of mean values 
and of correlated fl uctuations about the mean. The fl ow is 
then said to be turbulent. 

 In the case (to which Poiseuille’s law applies) of lami-
nar fl ow through a uniform cylindrical pipe of diameter  D , 
turbulence inevitably sets in when the Reynolds number  r
reaches a critical value that is about 10 5 ; in this context, the 
Reynolds number is defi ned (compare equation [174]) as  

 
(175)

 where  Q  is the rate of discharge and < v > is the mean fl uid 
velocity. Turbulence sets in at much lower velocities, how-
ever, if the end of the pipe where the fl uid enters is not 
carefully fl ared. The critical value of the Reynolds num-
ber for a pipe with a bluff entry may be as low as 2300, 
and this corresponds to a rate of discharge through a pipe 
for which  D  is, say, two centimetres, of only about three 
litres per minute. Thus pipe fl ow in engineering prac-
tice is more often turbulent than not. Once turbulence 
has set in,  Q  increases less rapidly with pressure gradient 
than Poiseuille’s equation—equation (150)—predicts; it 
increases roughly as the square root of the pressure gradi-
ent or slightly more rapidly than this if the internal surface 
of the pipe is very smooth. 
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Turbulence arises not only in pipes but also within 
boundary layers around solid obstacles when the rate of 
shear within the boundary layer becomes large enough. 
Curiously enough, the onset of turbulence in the boundary 
layer can reduce the drag force on obstacles. In the case of 
a spherical obstacle, the point at which the boundary layer 
separates from the rear surface of the sphere shifts back-
ward when the boundary layer becomes turbulent, and the 
eddies attached to the sphere therefore become smaller. It 
is turbulence in the boundary layer that is responsible for 
the dramatic drop in the drag coefficient for both spheres 
and cylinders that occurs, when the Reynolds number is 
about 3 × 105. This drop enables golf balls to travel farther 
than they would do otherwise, and the dimples on the 
surface of golf balls are meant to encourage turbulence in 
the boundary layer. If swimsuits with rough surfaces help 
swimmers to move faster, as has been claimed, the same 
explanation may apply.

Where conditions for turbulence exist, flow rates of 
water through tubes may be increased and the drag forces 
exerted on obstacles by water diminished by dissolving 
small amounts of suitable polymers in the water. This is 
surprising, because such additives increase viscosity, and in 
the preturbulent regime to which Poiseuille’s law applies, 
their effect on the flow rate is quite the reverse. As has 
already been stated, the small perturbations that arise in 
a turbulent fluid tend to collapse into smaller perturba-
tions and then into smaller perturbations still, until the 
motion is turbulent on a very fine scale—i.e., on the scale 
of molecular dimensions—and until the energy stored in 
the perturbations is finally dissipated as heat. Polymer 
molecules seem to have the effect they do because, over 
the relatively large distances to which each such molecule 
extends, they impose a coherence on the fluid motion that 
would not otherwise be present.
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Convection

No attention has yet been paid to situations in which tem-
perature differences are imposed upon a fluid by contact 
with hot and cold bodies. Consider first the case of two 
vertical plates with fluid between them, one at tempera-
ture T1 and the other at T2, in the presence of a vertical 
gravitational field. The hotter plate might be a domestic 
radiator and the colder plate the wall to which it is fixed. 
Thermal conduction ensures that the layer of air adjacent 
to the radiator is hotter than the rest of the air, and ther-
mal expansion ensures that it is less dense. Consequently, 
the vertical pressure gradient which satisfies equation 
(123) in the rest of the air is too large to keep the layer 
adjacent to the radiator in equilibrium; that layer rises 
and, similarly, the cold layer adjacent to the wall falls. 
A circulating pattern of thermal convection is thereby 
established, and, because this brings colder air into con-
tact with the radiator, the rate at which heat is lost from 
the radiator is enhanced. The heat loss, once convection 
has been established, depends in a complicated manner on 
the separation between the plates (D) and on the thermal 
diffusivity (κ), specific heat, density, thermal expansion 
coefficient (α), and viscosity of the fluid. The heat loss also 
depends on (T1 - T2), of course, and it is worthwhile noting 
that the manner in which it does so is not linear; the heat 
loss increases more rapidly than the temperature differ-
ence. Newton’s law of cooling, which postulates a linear 
relationship, is obeyed only in circumstances where con-
vection is prevented or in circumstances where it is forced 
(when a radiator is fan-assisted, for example).

Imagine a situation in which the same two plates are 
horizontal rather than vertical. In such a case, no convec-
tion can occur if the hot plate is above the cold one, and 
it is not obvious that it occurs in the reverse situation. 
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Whether it does so or not depends on the magnitude of 
the temperature difference through a dimensionless com-
bination of some of the relevant parameters, ρgαD3(T1 - T2)/
ηκ, which is known as the Rayleigh number. If the Rayleigh 
number is less than 1,708, the fluid is stable—or perhaps 
it would be more accurate to say that it is metastable—
even though it is warmer at the bottom than at the top. 
However, when 1,708 is exceeded, a pattern of convec-
tive rolls known as Bénard cells is established between 
the plates. Evidence for the existence of such cells in the 
convecting atmosphere is sometimes seen in the regular 
columns of cloud that form over regions where the air is 
rising. Their periodicity can be astonishingly uniform.

Macroscopic instabilities of a convective nature, of 
which the formation of Bénard cells provides just one 
example, are a feature of the oceans as well as of the 
atmosphere and are frequently associated with gradients 
of salinity rather than gradients of temperature. A seri-
ous discussion of atmospheric and oceanic circulation on 
Earth, however, requires a more detailed examination of 
the dynamics of rotating fluids than is given here.
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chapter 10
Gravity:

The Force of Attraction

Gravity is the universal force of attraction acting between 
all matter. It is by far the weakest known force in nature 

and thus plays no role in determining the internal proper-
ties of everyday matter. On the other hand, through its long 
reach and universal action, it controls the trajectories of 
bodies in the solar system and elsewhere in the universe and 
the structures and evolution of stars, galaxies, and the whole 
cosmos. On Earth all bodies have a weight, or downward 
force of gravity, proportional to their mass, which Earth’s 
mass exerts on them. Gravity is measured by the accelera-
tion that it gives to freely falling objects. At Earth’s surface 
the acceleration of gravity is about 9.8 metres (32 feet) per 
second per second. Thus, for every second an object is in 
free fall, its speed increases by about 9.8 metres per second. 
At the surface of the Moon the acceleration of a freely fall-
ing body is about 1.6 metres per second per second.

The works of Isaac Newton and Albert Einstein domi-
nate the development of gravitational theory. Newton’s 
classical theory of gravitational force held sway from his 
Principia, published in 1687, until Einstein’s work in the 
early 20th century. Newton’s theory is sufficient even 
today for all but the most precise applications. Einstein’s 
theory of general relativity predicts only minute quantita-
tive differences from the Newtonian theory except in a few 
special cases. The major significance of Einstein’s theory is 
its radical conceptual departure from classical theory and 
its implications for further growth in physical thought.

The launch of space vehicles and developments of 
research from them have led to great improvements in 
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measurements of gravity around Earth, other planets, and 
the Moon, and in experiments on the nature of gravitation.

Development of 
Gravitational Theory

Newton argued that the movements of celestial bodies 
and the free fall of objects on Earth are determined by the 
same force. The classical Greek philosophers, on the other 
hand, did not consider the celestial bodies to be affected 
by gravity, because the bodies were observed to follow per-
petually repeating nondescending trajectories in the sky. 
Thus, Aristotle considered that each heavenly body fol-
lowed a particular “natural” motion, unaffected by external 
causes or agents. Aristotle also believed that massive 
earthly objects possess a natural tendency to move toward 
the Earth’s centre. Those Aristotelian concepts prevailed 
for centuries along with two others: that a body moving at 
constant speed requires a continuous force acting on it and 
that force must be applied by contact rather than interac-
tion at a distance. These ideas were generally held until the 
16th and early 17th centuries, thereby impeding an under-
standing of the true principles of motion and precluding 
the development of ideas about universal gravitation. This 
impasse began to change with several scientific contribu-
tions to the problem of earthly and celestial motion, which 
in turn set the stage for Newton’s later gravitational theory.

Early Concepts

The 17th-century German astronomer Johannes Kepler 
accepted the argument of Nicolaus Copernicus (which goes 
back to Aristarchus of Samos) that the planets orbit the 
Sun, not Earth. Using the improved measurements of plan-
etary movements made by the Danish astronomer Tycho 
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Brahe during the 16th century, Kepler described the plan-
etary orbits with simple geometric and arithmetic relations. 
Kepler’s three quantitative laws of planetary motion are:

1.	 The planets describe elliptic orbits, of which 
the Sun occupies one focus (a focus is one of 
two points inside an ellipse; any ray coming 
from one of them bounces off a side of the 
ellipse and goes through the other focus).

2.	 The line joining a planet to the Sun sweeps out 
equal areas in equal times.

3.	 The square of the period of revolution of a 
planet is proportional to the cube of its average 
distance from the Sun.

During this same period the Italian astronomer and 
natural philosopher Galileo Galilei made progress in 
understanding “natural” motion and simple accelerated 
motion for earthly objects. He realized that bodies that 
are uninfluenced by forces continue indefinitely to move 
and that force is necessary to change motion, not to main-
tain constant motion. In studying how objects fall toward 
Earth, Galileo discovered that the motion is one of con-
stant acceleration. He demonstrated that the distance a 
falling body travels from rest in this way varies as the square 
of the time. As noted earlier, the acceleration due to grav-
ity at the surface of Earth is about 9.8 metres per second 
per second. Galileo was also the first to show by experi-
ment that bodies fall with the same acceleration whatever 
their composition (the weak principle of equivalence).

Newton’s Law of Gravity

Newton discovered the relationship between the motion of 
the Moon and the motion of a body falling freely on Earth. 
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By his dynamical and gravitational theories, he explained 
Kepler’s laws and established the modern quantitative sci-
ence of gravitation. Newton assumed the existence of an 
attractive force between all massive bodies, one that does 
not require bodily contact and that acts at a distance. By 
invoking his law of inertia (bodies not acted upon by a force 
move at constant speed in a straight line), Newton con-
cluded that a force exerted by Earth on the Moon is needed 
to keep it in a circular motion about Earth rather than mov-
ing in a straight line. He realized that this force could be, 
at long range, the same as the force with which Earth pulls 
objects on its surface downward. When Newton discovered 
that the acceleration of the Moon is 1/3,600 smaller than the 
acceleration at the surface of Earth, he related the number 
3,600 to the square of the radius of Earth. He calculated that 
the circular orbital motion of radius  r  and period  T  requires 
a constant inward acceleration  A  equal to the product of 4π 2  
and the ratio of the radius to the square of the time: 
 

 
(1)

 
 The Moon’s orbit has a radius of about 384,000 km 

(239,000 miles; approximately 60 Earth radii), and its 
period is 27.3 days (its synodic period, or period measured 
in terms of lunar phases, is about 29.5 days). Newton found 
the Moon’s inward acceleration in its orbit to be 0.0027 
metre per second per second, the same as (1/60) 2  of the 
acceleration of a falling object at the surface of Earth. 

 In Newton’s theory every least particle of matter 
attracts every other particle gravitationally, and on that 
basis he showed that the attraction of a fi nite body with 
spherical symmetry is the same as that of the whole mass 
at the centre of the body. More generally, the attraction 
of any body at a suffi ciently great distance is equal to that 
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of the whole mass at the centre of mass. He could thus 
relate the two accelerations, that of the Moon and that of 
a body falling freely on Earth, to a common interaction, a 
gravitational force between bodies that diminishes as the 
inverse square of the distance between them. Thus, if the 
distance between the bodies is doubled, the force on them 
is reduced to a fourth of the original. 

 Newton saw that the gravitational force between bod-
ies must depend on the masses of the bodies. Since a body 
of mass  M  experiencing a force  F  accelerates at a rate  F / M , 
a force of gravity proportional to  M  would be consistent 
with Galileo’s observation that all bodies accelerate under 
gravity toward Earth at the same rate, a fact that Newton 
also tested experimentally. In Newton’s equation

 
(2)

F  12  is the magnitude of the gravitational force acting 
between masses  M  1  and  M  2  separated by distance  r  12 . The 
force equals the product of these masses and of  G , a uni-
versal constant, divided by the square of the distance. 

 The constant  G  is a quantity with the physical dimen-
sions (length) 3 /(mass)(time) 2 ; its numerical value depends 
on the physical units of length, mass, and time used. ( G  is 
discussed more fully in subsequent sections.) 

 The force acts in the direction of the line joining the 
two bodies and so is represented naturally as a vector,  F . If 
 r  is the vector separation of the bodies, then

 
(3)

In this expression the factor  r / r  3  acts in the direction of  r  
and is numerically equal to 1/ r  2 . 
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 The attractive force of a number of bodies of masses 
M  1  on a body of mass  M  is

(4)

where Σ 1  means that the forces due to all the attract-
ing bodies must be added together vectorially. This is 
Newton’s gravitational law essentially in its original form. 
A simpler expression, equation (5), gives the surface accel-
eration on Earth. Setting a mass equal to Earth’s mass  M  E
and the distance equal to Earth’s radius  r  E , the downward 
acceleration of a body at the surface  g  is equal to the prod-
uct of the universal gravitational constant and the mass of 
Earth divided by the square of the radius:

 (5)

 Weight and Mass 

 The weight  W  of a body can be measured by the equal and 
opposite force necessary to prevent the downward accel-
eration; that is  M   g  . The same body placed on the surface 
of the Moon has the same mass, but, as the Moon has a 
mass of about  1 ⁄ 81  times that of Earth and a radius of just 
0.27 that of Earth, the body on the lunar surface has a 
weight of only  1 ⁄ 6  its Earth weight, as the Apollo program 
astronauts demonstrated. Passengers and instruments in 
orbiting satellites are in free fall. They experience weight-
less conditions even though their masses remain the same 
as on Earth. 

 Equations (1) and (2) can be used to derive Kepler’s 
third law for the case of circular planetary orbits. By using 
the expression for the acceleration  A  in equation (1) for 
the force of gravity for the planet  G  M   p   M  S / r  2  divided by 
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the planet’s mass  M   p  , the following equation, in which  M  S
is the mass of the Sun, is obtained:

 (6) (6)

 
 Kepler’s very important second law depends only on 

the fact that the force between two bodies is along the line 
joining them. 

 Newton was thus able to show that all three of Kepler’s 
observationally derived laws follow mathematically from 
the assumption of his own laws of motion and gravity. In 
all observations of the motion of a celestial body, only the 
product of  G  and the mass can be found. Newton fi rst esti-
mated the magnitude of  G  by assuming Earth’s average 
mass density to be about 5.5 times that of water (some-
what greater than Earth’s surface rock density) and by 
calculating Earth’s mass from this. Then, taking  M  E  and  r  E  
as Earth’s mass and radius, respectively, the value of  G  was

 
(7)

which numerically comes close to the accepted value of 
6.6726 × 10 −11  m 3  s −2  kg −1 , fi rst directly measured by Henry 
Cavendish. 

 Comparing equation (5) for Earth’s surface accelera-
tion  g  with the  r  3 / T  2  ratio for the planets, a formula for 
the ratio of the Sun’s mass  M  S  to Earth’s mass  M  E  was 
obtained in terms of known quantities,  r  E  being the radius 
of Earth’s orbit:
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(8)

 The motions of the moons of Jupiter (discovered by 
Galileo) around Jupiter obey Kepler’s laws just as the 
planets do around the Sun. Thus, Newton calculated that 
Jupiter, with a radius 11 times larger than Earth’s, was 318 
times more massive than Earth but only  1 ⁄ 4  as dense.     

 Interaction Between Celestial Bodies 

 When two celestial bodies of comparable mass interact 
gravitationally, both orbit about a fi xed point (the centre 
of mass of the two bodies). This point lies between the 
bodies on the line joining them at a position such that the 
products of the distance to each body with the mass of each 
body are equal. Thus, Earth and the Moon move in com-
plementary orbits about their common centre of mass. 
The motion of Earth has two observable consequences. 
First, the direction of the Sun as seen from Earth relative 
to the very distant stars varies each month by about 12 arc 
seconds in addition to the Sun’s annual motion. Second, 
the line-of-sight velocity from Earth to a freely moving 
spacecraft varies each month by 2.04 metres per sec-
ond, according to very accurate data obtained from radio 
tracking. From these results the Moon is found to have 
a mass  1 ⁄ 81  times that of Earth. With slight modifi cations 
Kepler’s laws remain valid for systems of two comparable 
masses; the foci of the elliptical orbits are the two-body 
centre-of-mass positions, and, putting  M  1  +  M  2  instead of 
 M  S  in the expression of Kepler’s third law, equation (6), 
the third law reads:

 
(9)
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 That agrees with equation (6) when one body is so 
small that its mass can be neglected. The rescaled formula 
can be used to determine the separate masses of binary 
stars (pairs of stars orbiting around each other) that are 
a known distance from the solar system. Equation (9) 
determines the sum of the masses; and, if  r  1  and  r  2  are the 
distances of the individual stars from the centre of mass, 
the ratio of the distances must balance the inverse ratio of 
the masses, and the sum of the distances is the total dis-
tance  r . In symbols

 
(10)

 Those relations are suffi cient to determine the individ-
ual masses. Observations of the orbital motions of double 
stars, of the dynamic motions of stars collectively moving 
within their galaxies, and of the motions of the galaxies 
themselves verify that Newton’s law of gravity is valid to 
a high degree of accuracy throughout the visible universe. 

 Ocean tides, phenomena that mystifi ed thinkers for 
centuries, were also shown by Newton to be a consequence 
of the universal law of gravitation, although the details of 
the complicated phenomena were not understood until 
comparatively recently. They are caused specifi cally by the 
gravitational pull of the Moon and, to a lesser extent, of 
the Sun. 

 Newton showed that the equatorial bulge of Earth 
was a consequence of the balance between the centrifugal 
forces of the rotation of Earth and the attractions of each 
particle of Earth on all others. The value of gravity at the 
surface of Earth increases in a corresponding way from 
the Equator to the poles. Among the data that Newton 
used to estimate the size of the equatorial bulge were 
the adjustments to his pendulum clock that the English 
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astronomer Edmond Halley had to make in the course 
of his astronomical observations on the southern island 
of Saint Helena. Jupiter, which rotates faster than Earth, 
has a proportionally larger equatorial bulge, the differ-
ence between its polar and equatorial radii being about 10 
percent. Another success of Newton’s theory was his dem-
onstration that comets move in parabolic orbits under the 
gravitational attraction of the Sun. In a thorough analysis 
in the Principia, he showed that the great comet of 1680–
81 did indeed follow a parabolic path.

It was already known in Newton’s day that the 
Moon does not move in a simple Keplerian orbit. Later, 
more-accurate observations of the planets also showed 
discrepancies from Kepler’s laws. The motion of the 
Moon is particularly complex; however, apart from a long-
term acceleration due to tides on Earth, the complexities 
can be accounted for by the gravitational attraction of the 
Sun and the planets. The gravitational attractions of the 
planets for each other explain almost all the features of 
their motions. The exceptions are nonetheless important. 
Uranus, the seventh planet from the Sun, was observed 
to undergo variations in its motion that could not be 
explained by perturbations from Saturn, Jupiter, and the 
other planets. Two 19th-century astronomers, John Couch 
Adams of Britain and Urbain-Jean-Joseph Le Verrier of 
France, independently assumed the presence of an unseen 
eighth planet that could produce the observed discrepan-
cies. They calculated its position within a degree of where 
the planet Neptune was discovered in 1846. Measurements 
of the motion of the innermost planet, Mercury, over 
an extended period led astronomers to conclude that 
the major axis of this planet’s elliptical orbit precesses 
in space at a rate 43 arc seconds per century faster than 
could be accounted for from perturbations of the other 
planets. In this case, however, no other bodies could be 
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found that could produce this discrepancy, and very slight 
modifi cation of Newton’s law of gravitation seemed to be 
needed. Einstein’s theory of relativity precisely predicts 
this observed behaviour of Mercury’s orbit.     

 Potential Theory 

 For irregular, nonspherical mass distributions in three 
dimensions, Newton’s original vector equation (4) is ineffi -
cient, though theoretically it could be used for fi nding the 
resulting gravitational fi eld. The main progress in classical 
gravitational theory after Newton was the development of 
potential theory, which provides the mathematical repre-
sentation of gravitational fi elds. It allows practical as well 
as theoretical investigation of the gravitational variations 
in space and of the anomalies due to the irregularities and 
shape deformations of Earth. 

 Potential theory led to the following elegant formu-
lation: the gravitational acceleration  g  is a function of 
position  R ,  g ( R ), which at any point in space is given from 
a function Φ called the gravitational potential, by means 
of a generalization of the operation of differentiation:

(11)

in which  i ,  j , and  k  stand for unit basis vectors in a three-
dimensional Cartesian coordinate system. The potential 
and therefore  g  are determined by an equation discovered 
by the French mathematician Siméon-Denis Poisson:

 
(12)

where ρ( R ) is the density at the vector position  R . 
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 The signifi cance of this approach is that Poisson’s 
equation can be solved under rather general conditions, 
which is not the case with Newton’s equation. When the 
mass density ρ is nonzero, the solution is expressed as the 
defi nite integral:

(13)

where the integral is a three-dimensional integral over 
the volume of all space. When ρ = 0 (in particular, outside 
Earth), Poisson’s equation reduces to the simpler equation 
of Laplace. 

 The appropriate coordinates for the region outside 
the nearly spherical Earth are spherical polar coordi-
nates:  R , the distance from the centre of Earth; θ, the 
colatitude measured from the North Pole; and the longi-
tude measured from Greenwich. The solutions are series 
of powers of  R  multiplied by trigonometric functions of 
colatitude and longitude, known as spherical harmonics; 
the fi rst terms are:

(14)

 The constants  J  2 ,  J  3 , and so forth are determined 
by the detailed mass distribution of Earth; and, since 
Newton showed that for a spherical body all the  J   n   are 
zero, they must measure the deformation of Earth from a 
spherical shape.  J  2  measures the magnitude of Earth’s rota-
tional equatorial bulge,  J  3  measures a slight pear-shaped 
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deformation of Earth, and so on. The orbits of spacecraft 
around Earth, other planets, and the Moon deviate from 
simple Keplerian ellipses in consequence of the various 
spherical harmonic terms in the potential. Observations 
of such deviations were made for the very fi rst artifi cial 
spacecraft. The parameters  J  2  and  J  3  for Earth have been 
found to be 1,082.7 × 10 −6  and −2.4 × 10 −6 , respectively. Very 
many other harmonic terms have been found in that way 
for Earth and also for the Moon and for other planets. 
Halley had already pointed out in the 18th century that 
the motions of the moons of Jupiter are perturbed from 
simple ellipses by the variation of gravity around Jupiter. 

 The surface of the oceans, if tides and waves are 
ignored, is a surface of constant potential of gravity and 
rotation. If the only spherical harmonic term in gravity 
were that corresponding to the equatorial bulge, the sea 
surface would be just a spheroid of revolution (a surface 

 The variation in the gravitational fi eld, given in milliGals (mGal), over the 
earth’s surface gives rise to an imaginary surface known as the geoid. The geoid 
expresses the height of an imaginary global ocean not subject to tides, currents, 
or winds. Such an ocean would vary by up to 200 metres (650 feet) in height 
because of regional variations in gravitation.   Encyclopædia Britannica, Inc. 

 The variation in the gravitational fi eld, given in milliGals (mGal), over the 
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formed by rotating a two-dimensional curve about some 
axis; for example, rotating an ellipse about its major axis 
produces an ellipsoid). Additional terms in the poten-
tial give rise to departures of the sea surface from that 
simple form. The actual form may be calculated from 
the sum of the known harmonic terms, but it is now pos-
sible to measure the form of the sea surface itself directly 
by laser ranging from spacecraft. Whether found indi-
rectly by calculation or directly by measurement, the 
form of the sea surface may be shown as contours of 
its deviation from the simple spheroid of revolution.     

 Effects of Local Mass Differences 

 Spherical harmonics are the natural way of expressing the 
large-scale variations of potential that arise from the deep 
structure of Earth. However, spherical harmonics are not 
suitable for local variations due to more-superfi cial struc-
tures. Not long after Newton’s time, it was found that the 
gravity on top of large mountains is less than expected on 
the basis of their visible mass. The idea of isostasy was 
developed, according to which the unexpectedly low accel-
eration of gravity on a mountain is caused by low-density 
rock 30 to 100 km (19–62 miles) underground, which buoys 
up the mountain. Correspondingly, the unexpectedly high 
force of gravity on ocean surfaces is explained by dense 
rock 10 to 30 km (6–19 miles) beneath the ocean bottom. 

 Portable gravimeters, which can detect variations of 
one part in 10 9  in the gravitational force, are in wide use 
today for mineral and oil prospecting. Unusual under-
ground deposits reveal their presence by producing local 
gravitational variations.     

 Weighing Earth 

 The mass of Earth can be calculated from its radius 
and  g  if  G  is known.  G  was measured by the English 
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physicist-chemist Henry Cavendish and other early 
experimenters, who spoke of their work as “weighing the 
Earth.” The mass of Earth is about 5.98 × 1024 kg, while 
the mean densities of Earth, the Sun, and the Moon are, 
respectively, 5.52, 1.43, and 3.3 times that of water.

Acceleration Around Earth, 
the Moon, and Other Planets

The value of the attraction of gravity or of the potential 
is determined by the distribution of matter within Earth 
or other celestial body. In turn, as seen above, the distri-
bution of matter determines the shape of the surface on 
which the potential is constant. Measurements of gravity 
and the potential are thus essential both to geodesy, which 
is the study of the shape of Earth, and to geophysics, the 
study of its internal structure. For geodesy and global geo-
physics, it is best to measure the potential from the orbits 
of artificial satellites. Surface measurements of gravity are 
best for local geophysics, which deals with the structure of 
mountains and oceans and the search for minerals.

Variations Due to Location and Time

The acceleration g varies by about 1⁄2 of 1 percent with 
position on Earth’s surface, from about 9.78 metres per 
second per second at the Equator to approximately 9.83 
metres per second per second at the poles. In addition to 
this broad-scale variation, local variations of a few parts 
in 106 or smaller are caused by variations in the density of 
Earth’s crust as well as height above sea level.

The gravitational potential at the surface of Earth is 
due mainly to the mass and rotation of Earth, but there 
are also small contributions from the distant Sun and 
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Moon. As Earth rotates, those small contributions at any 
one place vary with time, and so the local value of g varies 
slightly. Those are the diurnal and semidiurnal tidal varia-
tions. For most purposes it is necessary to know only the 
variation of gravity with time at a fixed place or the changes 
of gravity from place to place; then the tidal variation can 
be removed. Accordingly, almost all gravity measurements 
are relative measurements of the differences from place to 
place or from time to time.

Measurements of g

Because gravity changes are far less than 1 metre per sec-
ond per second, it is convenient to have a smaller unit for 
relative measurements. The gal (named after Galileo) has 
been adopted for this purpose; a gal is one-hundredth 
metre per second per second. The unit most commonly 
used is the milligal, which equals 10−5 metre per second 
per second—i.e., about one-millionth of the average 
value of g.

Absolute Measurements

Two basic ways of making absolute measurements of grav-
ity have been devised: timing the free fall of an object and 
timing the motion under gravity of a body constrained 
in some way, almost always as a pendulum. In 1817 the 
English physicist Henry Kater, building on the work of 
the German astronomer Friedrich Wilhelm Bessel, was 
the first to use a reversible pendulum to make absolute 
measurements of g. If the periods of swing of a rigid pen-
dulum about two alternative points of support are the 
same, then the separation of those two points is equal to 
the length of the equivalent simple pendulum of the same 
period. By careful construction, Kater was able to measure 
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the separation very accurately. The so-called reversible 
pendulum was used for absolute measurements of gravity 
from Kater’s day until the 1950s. Since that time, elec-
tronic instruments have enabled investigators to measure 
with high precision the half-second time of free fall of a 
body (from rest) through one metre. It is also possible to 
make extremely accurate measurements of position by 
using interference of light. Consequently, direct measure-
ments of free fall have replaced the pendulum for absolute 
measurements of gravity.

Nowadays, lasers are the sources of light for interfer-
ometers, while the falling object is a retroreflector that 
returns a beam of light back upon itself. The falling object 
can be timed in simple downward motion, or it can be 
projected upward and timed over the upward and down-
ward path. Transportable versions of such apparatuses 
have been used in different locations to establish a basis 
for measuring differences of gravity over the entire Earth. 
The accuracy attainable is about one part in 108.

More recently, interferometers using beams of atoms 
instead of light have given absolute determinations of 
gravity. Interference takes place between atoms that have 
been subject to different gravitational potentials and so 
have different energies and wavelengths. The results are 
comparable to those from bodies in free fall.

Relative Measurements

From the time of Newton, measurements of differences of 
gravity (strictly, the ratios of values of gravity) were made 
by timing the same pendulum at different places. During 
the 1930s, however, static gravimeters replaced pendu-
lums for local measurements over small ranges of gravity. 
Today, free-fall measurements have rendered the pendu-
lum obsolete for all purposes.
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Spring gravimeters balance the force of gravity on a 
mass in the gravity field to be measured against the elas-
tic force of the spring. Either the extension of the spring 
is measured, or a servo system restores it to a constant 
amount. High sensitivity is achieved through electronic 
or mechanical means. If a thin wire is stretched by a mass 
hung from it, the tension in the wire, and therefore the 
frequency of transverse oscillations, will vary with the 
force of gravity upon the mass. Such vibrating string gra-
vimeters were originally developed for use in submarines 
and were later employed by the Apollo 17 astronauts on 
the Moon to conduct a gravity survey of their landing site. 
Another relatively recent development is the supercon-
ducting gravimeter, an instrument in which the position 
of a magnetically levitated superconducting sphere is 
sensed to provide a measure of g. Modern gravimeters may 
have sensitivities better than 0.005 milligal, the standard 
deviation of observations in exploration surveys being of 
the order of 0.01–0.02 milligal.

Differences in gravity measured with gravimeters are 
obtained in quite arbitrary units—divisions on a gradu-
ated dial, for example. The relation between these units 
and milligals can be determined only by reading the instru-
ment at a number of points where g is known as a result 
of absolute or relative pendulum measurements. Further, 
because an instrument will not have a completely linear 
response, known points must cover the entire range of 
gravity over which the gravimeter is to be used.

Since g is an acceleration, the problem of its measurement 
from a vehicle that is moving, and therefore accelerating 
relative to Earth, raises a number of fundamental prob-
lems. Pendulum, vibrating-string, and spring-gravimeter 
observations have been made from submarines; using gyro-
stabilized platforms, relative gravity measurements with 
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accuracies approaching a few milligals have been and are 
being made from surface ships. Experimental measure-
ments with various gravity sensors on fixed-wing aircraft 
as well as on helicopters have been carried out.

Gravimetric Surveys and Geophysics

As a result of combining all available absolute and rela-
tive measurements, it is now possible to obtain the most 
probable gravity values at a large number of sites to high 
accuracy. The culmination of gravimetric work begun in the 
1960s has been a worldwide gravity reference system having 
an accuracy of at least one part in 107 (0.1 milligal or better).

The value of gravity measured at the terrestrial surface 
is the result of a combination of factors:

1.	 The gravitational attraction of Earth as a whole
2.	 Centrifugal force caused by Earth’s rotation
3.	 Elevation
4.	 Unbalanced attractions caused by surface 

topography
5.	 Tidal variations
6.	 Unbalanced attractions caused by irregularities 

in underground density distributions

Most geophysical surveys are aimed at separating out 
the last of these in order to interpret the geologic struc-
ture. It is therefore necessary to make proper allowance for 
the other factors. The first two factors imply a variation of 
gravity with latitude that can be calculated for an assumed 
shape for Earth. The third factor, which is the decrease in 
gravity with elevation, due to increased distance from the 
centre of Earth, amounts to −0.3086 milligal per metre. 
This value, however, assumes that material of zero density 



275

7 Gravity: The Force of Attraction 7

occupies the whole space between the point of observa-
tion and sea level, and it is therefore termed the free-air 
correction factor. In practice the mass of rock material 
that occupies part or all of this space must be considered. 
In an area where the topography is reasonably flat, this is 
usually calculated by assuming the presence of an infinite 
slab of thickness equal to the height of the station h and 
having an appropriate density σ; its value is +0.04185 σh 
milligal per metre. This is commonly called the Bouguer 
correction factor.

Terrain or topographical corrections also can be 
applied to allow for the attractions due to surface relief if 
the densities of surface rocks are known. Tidal effects (the 
amplitudes are less than 0.3 milligal) can be calculated and 
allowed for.

The Moon and the Planets

Although the Apollo astronauts used a gravimeter at 
their lunar landing site, most scientific knowledge about 
the gravitational attractions of the Moon and the planets 
has been derived from observations of their effects upon 
the accelerations of spacecraft in orbit around or passing 
close to them. Radio tracking makes it possible to deter-
mine the accelerations of spacecraft very accurately, and 
the results can be expressed either as terms in a series of 
spherical harmonics or as the variation of gravity over 
the surface. As in the case of Earth, spherical harmon-
ics are more effective for studying gross structure, while 
the variation of gravity is more useful for local features. 
Spacecraft must descend close to the surface or remain in 
orbit for extended periods in order to detect local grav-
ity variations; such data had been obtained for the Moon, 
Venus, Mars, and Jupiter by the end of the 20th century.
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The Moon’s polar flattening is much less than that 
of Earth, while its equator is far more elliptical. There 
are also large, more-local irregularities from visible and 
concealed structures. Mars also exhibits some large local 
variations, while the equatorial bulges of Mercury and 
Venus are very slight.

By contrast, the major planets, all of which rotate 
quite fast, have large equatorial bulges, and their gravity 
is dominated by a large increase from equator to pole. The 
polar flattening of Jupiter is about 10 percent and was first 
estimated from telescopic observation by Gian Domenico 
Cassini about 1664. As mentioned above, Edmond Halley 
subsequently realized that the corresponding effect on 
gravity would perturb the orbits of the satellites of Jupiter 
(those discovered by Galileo). The results of gravity 
measurements are crucial to understanding the internal 
properties of the planets.
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chapter 11
Gravity:
The Universe

The Newtonian theory of gravity is based on an assumed 
force acting between all pairs of bodies—i.e., an action 

at a distance. When a mass moves, the force acting on other 
masses had been considered to adjust instantaneously to the 
new location of the displaced mass. That, however, is incon-
sistent with special relativity, which is based on the axiom 
that all knowledge of distant events comes from electro-
magnetic signals. Physical quantities have to be defined in 
such a way that certain combinations of them—in particu-
lar, distance, time, mass, and momentum—are independent 
of choice of space-time coordinates. This theory, with the 
field theory of electrical and magnetic phenomena, has 
met such empirical success that most modern gravita-
tional theories are constructed as field theories consistent 
with the principles of special relativity. In a field theory the 
gravitational force between bodies is formed by a two-step 
process: (1) One body produces a gravitational field that 
permeates all surrounding space but has weaker strength 
farther from its source. A second body in that space is then 
acted upon by this field and experiences a force. (2) The 
Newtonian force of reaction is then viewed as the response 
of the first body to the gravitational field produced by the 
second body, there being at all points in space a superpo-
sition of gravitational fields due to all the bodies in it.

Field Theories of Gravitation

In the 1970s the physicists Abdus Salam of Pakistan and 
Steven Weinberg and Sheldon L. Glashow of the United 
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States were able to show that the electromagnetic forces 
and the weak force responsible for beta decay were dif-
ferent manifestations of the same basic interaction. That 
was the first successful unified field theory. Physicists 
are actively seeking other possible unified combinations. 
The possibility that gravitation might be linked with the 
other forces of nature in a unified theory of forces greatly 
increased interest in gravitational field theories dur-
ing the 1970s and ’80s. Because the gravitational force is 
exceedingly weak compared with all others and because it 
seems to be independent of all physical properties except 
mass, the unification of gravitation with the other forces 
remains the most difficult to achieve. That challenge has 
provided a tremendous impetus to experimental investi-
gations to determine whether there may be some failure 
of the apparent independence.

The prime example of a field theory is Einstein’s gen-
eral relativity, according to which the acceleration due to 
gravity is a purely geometric consequence of the proper-
ties of space-time in the neighbourhood of attracting 
masses. In a whole class of more-general theories, these 
and other effects not predicted by simple Newtonian 
theory are characterized by free parameters; such formu-
lations are called parameterized post-Newtonian (PPN) 
theories. There is now considerable experimental and 
observational evidence for limits to the parameters. So 
far, no deviation from general relativity has been demon-
strated convincingly.

Field theories of gravity predict specific corrections 
to the Newtonian force law, the corrections taking two 
basic forms: (1) When matter is in motion, additional 
gravitational fields (analogous to the magnetic fields pro-
duced by moving electric charges) are produced; also, 
moving bodies interact with gravitational fields in a 
motion-dependent way. (2) Unlike electromagnetic field 
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theory, in which two or more electric or magnetic fi elds 
superimpose by simple addition to give the total fi elds, 
in gravitational fi eld theory nonlinear fi elds proportional 
to the second and higher powers of the source masses are 
generated, and gravitational fi elds proportional to the 
products of different masses are created. Gravitational 
fi elds themselves become sources for additional gravita-
tional fi elds. The acceleration  A  of a moving particle of 
negligible mass that interacts with a mass  M , which is 
at rest, is given in the following formula, derived from 
Einstein’s gravitational theory. 

 The expression for  A  now has, as well as the Newtonian 
expression from equation (1), further terms in higher pow-
ers of  G  M / R  2 —that is, in  G  2  M  2 / R  4 . As elsewhere,  V  is the 
particle’s velocity vector,  A  is its acceleration vector,  R  is 
the vector from the mass  M , and  c  is the speed of light. 
When written out, the sum is

 
(15)

 
 This expression gives only the fi rst post-Newtonian 

corrections; terms of higher power in 1/ c  are neglected. 
For planetary motion in the solar system, the 1/ c  2  terms 
are smaller than Newton’s acceleration term by at least 
a factor of 10 −8 , but some of the consequences of these 
correction terms are measurable and important tests of 
Einstein’s theory. It should be pointed out that prediction 
of new observable gravitational effects requires particu-
lar care; Einstein’s pioneer work in gravity has shown that 
gravitational fi elds affect the basic measuring instruments 
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of experimental physics—clocks, rulers, light rays—with 
which any experimental result in physics is established. 
Some of these effects are listed below:

•	 The rate at which clocks run is reduced by prox-
imity of massive bodies; i.e., clocks near the Sun 
will run slowly compared with identical clocks 
farther away from it.

•	 In the presence of gravitational fields, the spa-
tial structure of physical objects is no longer 
describable precisely by Euclidean geometry; 
for example, in the arrangement of three rigid 
rulers to form a triangle, the sum of the sub-
tended angles will not equal 180°. A more-general 
type of geometry, Riemannian geometry, seems 
required to describe the spatial structure of mat-
ter in the presence of gravitational fields.

•	 Light rays do not travel in straight lines, the 
rays being deflected by gravitational fields. To 
distant observers the light-propagation speed 
is observed to be reduced near massive bodies.

Gravitational Fields and the 
Theory of General Relativity

In Einstein’s theory of general relativity, the physical con-
sequences of gravitational fields are stated in the following 
way. Space-time is a four-dimensional non-Euclidean con-
tinuum, and the curvature of the Riemannian geometry 
of space-time is produced by or related to the distribution 
of matter in the world. Particles and light rays travel along 
the geodesics (shortest paths) of this four-dimensional 
geometric world.

There are two principal consequences of the geometric 
view of gravitation: (1) the accelerations of bodies depend 
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only on their masses and not on their chemical or nuclear 
constitution, and (2) the path of a body or of light in the 
neighbourhood of a massive body (the Sun, for example) 
is slightly different from that predicted by Newton’s 
theory. The first is the weak principle of equivalence. 
Newton himself performed experiments with pendulums 
that demonstrated the principle to better than one part 
in 1,000 for a variety of materials, and, at the beginning 
of the 20th century, the Hungarian physicist Roland, 
Baron von Eötvös, showed that different materials accel-
erate in Earth’s field at the same rate to within one part 
in 109. More-recent experiments have shown the equality 
of accelerations in the field of the Sun to within one part 
in 1011. Newtonian theory is in accord with these results 
because of the postulate that gravitational force is propor-
tional to a body’s mass.

Inertial mass is a mass parameter giving the inertial 
resistance to acceleration of the body when responding 
to all types of force. Gravitational mass is determined by 
the strength of the gravitational force experienced by the 
body when in the gravitational field g. The Eötvös experi-
ments therefore show that the ratio of gravitational and 
inertial mass is the same for different substances.

In Einstein’s theory of special relativity, inertial mass 
is a manifestation of all the forms of energy in a body, 
according to his fundamental relationship E = mc2, E being 
the total energy content of a body, m the inertial mass of 
the body, and c the speed of light. Dealing with gravita-
tion, then, as a field phenomenon, the weak principle of 
equivalence indicates that all forms of nongravitational 
energy must identically couple to or interact with the 
gravitational field, because the various materials in nature 
possess different fractional amounts of nuclear, electri-
cal, magnetic, and kinetic energies, yet they accelerate at 
identical rates.
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 In the theory of general relativity, the gravitational 
fi eld also interacts with gravitational energy in the same 
manner as with other forms of energy, an example of that 
theory’s universality not possessed by most other theories 
of gravitation. 

 The Sun has an appreciable fraction of internal gravita-
tional energy, and the repetitions of the Eötvös experiments 
during the 1970s, with the Sun instead of Earth as the attract-
ing mass, revealed that bodies accelerate at identical rates 
in the Sun’s fi eld as well as in that of Earth. Extremely accu-
rate laser measurements of the distance of the Moon from 
Earth have made possible a further test of the weak prin-
ciple of equivalence. The chemical constitutions of Earth 
and the Moon are not the same, and so, if the principle did 
not hold, they might accelerate at different rates under the 
Sun’s attraction. No such effect has been detected. 

 Newton’s third law of dynamics states that every force 
implies an equal and opposite reaction force. Modern fi eld 
theories of force contain this principle by requiring every 
entity that is acted upon by a fi eld to be also a source of 
the fi eld. An experiment by the American physicist Lloyd 
Kreuzer established to within 1 part in 20,000 that differ-
ent materials produce gravitational fi elds with a strength 
the same as that of gravitational fi elds acting upon them. 
In this experiment a sphere of solid material was moved 
through a liquid of identical weight density. The absence 
of a gravitational effect on a nearby Cavendish balance 
instrument during the sphere’s motion is interpreted as 
showing that the two materials had equal potency in pro-
ducing a local gravitational-fi eld anomaly. 

 Other experiments have confi rmed Einstein’s predic-
tions to within a few percent. Using the Mössbauer effect 
to monitor the nuclear reabsorption of resonant gamma 
radiation, a shift of wavelength of the radiation that trav-
eled vertically tens of metres in Earth’s gravitational fi eld 
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was measured, and the slowing of clocks (in this case the 
nuclear vibrations are clocks) as predicted by Einstein was 
confi rmed to 1 percent precision. If ν and Δν are clock fre-
quency and change of frequency, respectively,  h  is the height 
difference between clocks in the gravitational fi eld  g . Then

 
(16)

     

 The paThS oF parTicleS 
and lighT 

 The idea that light should be defl ected by passing close to 
a massive body had been suggested by the British astron-
omer and geologist John Michell in the 18th century. 
However, Einstein’s general relativity theory predicted 
twice as much defl ection as Newtonian physics. Quick 
confi rmation of Einstein’s result came from measuring 
the direction of a star close to the Sun’s direction during 
an expedition led by the British astronomer Sir Arthur 
Stanley Eddington to observe the solar eclipse of 1919. 
Optical determinations of the change of direction of a 
star are subject to many systematic errors, and far better 
results have been obtained of the directions of spacecraft 

 experimental evidence for general relativity.   In 1919, observation of a solar 
eclipse confi rmed einstein’s prediction that light is bent in the presence of mass. 
This experimental support for his general theory of relativity garnered him 
instant worldwide acclaim.   Encyclopædia Britannica, Inc. 
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with radio interferometers of very long baselines. The 
effect comes from the decrease in the speed of light near 
a massive object (the Sun). That decrease has also been 
found directly from the round-trip travel times for radar 
pulses between Earth and other inner planets or artifi cial 
satellites passing behind the Sun and has confi rmed to 
about 4 percent the prediction of an additional time delay 
Δ t  given by the following formula, in which  M  S  is the Sun’s 
mass,  r  1  and  r  2  are the distances from the Sun to Earth 
and to the other refl ecting body, and  D  is the distance of 
closest approach of the radar pulses to the Sun (ln stands 
for natural logarithm):

 
(17)

 The additional precession of the orbit of Mercury of 
43 arc seconds per century was known before the devel-
opment of the theory of general relativity. With radar 
measurements of the distances to the planets, similar 
anomalous precessions have been estimated for Venus and 
Earth and have been found to agree with general relativity.     

 graViTaTional radiaTion 

 According to general relativity, the curvature of space-
time is determined by the distribution of masses, while 
the motion of masses is determined by the curvature. In 
consequence, variations of the gravitational fi eld should 
be transmitted from place to place as waves, just as varia-
tions of an electromagnetic fi eld travel as waves. If the 
masses that are the source of a fi eld change with time, they 
should radiate energy as waves of curvature of the fi eld. 
There are strong grounds for believing that such radiation 
exists. One particular double-star system has a pulsar as 
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one of its components, and, from measurements of the 
shift of the pulsar frequency due to the Doppler effect, 
precise estimates of the period of the orbit show that the 
period is changing, corresponding to a decrease in the 
energy of the orbital motion. Gravitational radiation is 
the only known means by which that could happen.

Double stars in their regular motions (such as that 
for which a change in period has been detected) and mas-
sive stars collapsing as supernovas have been suggested as 
sources of gravitational radiation, and considerable theo-
retical effort has gone into calculating the signals to be 
expected from those and other sources.

Three types of detectors are being developed to look 
for gravitational radiation, which is expected to be very 
weak. The changes of curvature would correspond to a 
dilation in one direction and a contraction at right angles 
to that direction. One scheme, first tried out about 1960, 
employs a massive cylinder that might be set in mechani-
cal oscillation by a gravitational signal. The authors of this 
apparatus argued that signals had been detected, but their 
claim has not been substantiated. In later developments 
the cylinder has been cooled by liquid helium, and great 
attention has been paid to possible disturbances. In a sec-
ond scheme an optical interferometer is set up with freely 
suspended reflectors at the ends of long paths that are at 
right angles to each other. Shifts of interference fringes 
corresponding to an increase in length of one arm and a 
decrease in the other would indicate the passage of gravi-
tational waves. A third scheme is planned that uses three 
separate, but not independent, interferometers located 
in three spacecraft located at the corners of a triangle 
with sides of some 5 million km (3 million miles). Some 
extremely sensitive instruments have been built or are still 
being developed, but so far gravitational radiation has not 
been observed with certainty.
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 Laser Interferometer Space Antenna (LISA) a Beyond einstein Great 
Observatory, is scheduled for launch   in 2015. Jointly funded by the National 
Aeronautics and Space Administration (NASA) and the european Space 
Agency (eSA), LISA will consist of three identical spacecraft that will trail 
the earth in its orbit by about 50 million km (30 million miles). The spacecraft 
will contain thrusters for maneuvering them into an equilateral triangle, with 
sides of approximately 5 million km (3 million miles), such that the triangle’s 
centre will be located along the earth’s orbit. By measuring the transmission of 
laser signals between the spacecraft (essentially a giant Michelson interferom-
eter in space), scientists hope to detect and accurately measure gravity waves.  
 Encyclopædia Britannica, Inc. 
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Some Astronomical 
Aspects of Gravitation

As stated earlier, studies of gravity allow the masses and 
densities of celestial bodies to be estimated and thereby 
make it possible to investigate the physical constitutions 
of stars and planets. Because gravitation is a very weak 
force, however, its distinctive effects appear only when 
masses are extremely large. The idea that light might be 
attracted gravitationally had been suggested by Michell 
and examined by the French mathematician and astrono-
mer Pierre-Simon Laplace. Predictions by classical physics 
and general relativity that light passing close to the Sun 
might be deflected are described above. There are two 
further consequences for astronomy. Light from a distant 
object may pass close to objects other than the Sun and 
be deflected by them. In particular, they may be deflected 
by a massive galaxy. If some object is behind a massive gal-
axy, as seen from Earth, deflected light may reach Earth 
by more than one path. Operating like a lens that focuses 
light along different paths, the gravity of the galaxy may 
make the object appear multiple; examples of such appar-
ently double objects have been found.

Both Michell and Laplace pointed out that the attrac-
tion of a very dense object upon light might be so great 
that the light could never escape from the object, render-
ing it invisible. Such a phenomenon is a black hole. The 
relativistic theory of black holes has been thoroughly 
developed in recent years, and astronomers have con-
ducted an intense search for them. One possible class of 
black holes comprises very large stars that have used up all 
of their nuclear energy so that they are no longer held up 
by radiation pressure and have collapsed into black holes 
(less-massive stars may collapse into neutron stars). Black 
holes are thought to exist at the centres of most galaxies.
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Black holes, from which no radiation is able to escape, 
cannot be seen by their own light, but there may be observ-
able secondary effects. If a black hole were one component 
of a double star, the orbital motion of the pair and the mass 
of the invisible member might be derived from the oscil-
latory motion of a visible companion. Because black holes 
attract matter, any gas in the vicinity of an object of this 
kind would fall into it and acquire, before vanishing into 
the hole, a high velocity and consequently a high tempera-
ture. The gas may become hot enough to produce X-rays 
and gamma rays from around the hole. While there is still 
no definite proof, such a mechanism may be the origin of at 
least some powerful X-ray and radio astronomical sources, 
including those at the centres of galaxies and quasars.

Only astronomical objects are sufficiently massive 
to produce detectable gravitational radiation. As already 
mentioned, gravitational radiation is probably responsible 
for changes in the orbits of some double stars, and so, in 
the very long term, it may have an effect on the stability 
of celestial objects. If and when gravitational radiation is 
detected, new astronomical phenomena will no doubt be 
discovered.

Experimental Study 
of Gravitation

The essence of Newton’s theory of gravitation is that the 
force between two bodies is proportional to the product 
of their masses and the inverse square of their separation 
and that the force depends on nothing else. With a small 
modification, the same is true in general relativity. Newton 
himself tested his assumptions by experiment and obser-
vation. He made pendulum experiments to confirm the 
principle of equivalence and checked the inverse square 
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law as applied to the periods and diameters of the orbits 
of the satellites of Jupiter and Saturn.

During the latter part of the 19th century, many exper-
iments showed the force of gravity to be independent of 
temperature, electromagnetic fields, shielding by other 
matter, orientation of crystal axes, and other factors. 
The revival of such experiments during the 1970s was the 
result of theoretical attempts to relate gravitation to other 
forces of nature by showing that general relativity was an 
incomplete description of gravity. New experiments on 
the equivalence principle were performed, and experi-
mental tests of the inverse square law were made both in 
the laboratory and in the field.

There also has been a continuing interest in the deter-
mination of the constant of gravitation, although it must be 
pointed out that G occupies a rather anomalous position 
among the other constants of physics. In the first place, 
the mass M of any celestial object cannot be determined 
independently of the gravitational attraction that it exerts. 
Thus, the combination GM, not the separate value of M, 
is the only meaningful property of a star, planet, or galaxy. 
Second, according to general relativity and the principle of 
equivalence, G does not depend on material properties but 
is in a sense a geometric factor. Hence, the determination 
of the constant of gravitation does not seem as essential as 
the measurement of quantities like the electronic charge 
or Planck’s constant. It is also much less well determined 
experimentally than any of the other constants of physics.

Experiments on gravitation are in fact very difficult, 
as a comparison of experiments on the inverse square law 
of electrostatics with those on gravitation will show. The 
electrostatic law has been established to within one part in 
1016 by using the fact that the field inside a closed conduc-
tor is zero when the inverse square law holds. Experiments 
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with very sensitive electronic devices have failed to detect 
any residual fields in such a closed cavity. Gravitational 
forces have to be detected by mechanical means, most 
often the torsion balance, and, although the sensitivities of 
mechanical devices have been greatly improved, they are 
still far below those of electronic detectors. Mechanical 
arrangements also preclude the use of a complete gravi-
tational enclosure. Last, extraneous disturbances are 
relatively large because gravitational forces are very small 
(something that Newton first pointed out). Thus, the 
inverse square law is established over laboratory distances 
to no better than one part in 104.

The Inverse Square Law

Recent interest in the inverse square law arose from two 
suggestions. First, the gravitational field itself might have a 
mass, in which case the constant of gravitation would change 
in an exponential manner from one value for small distances 
to a different one for large distances over a characteristic dis-
tance related to the mass of the field. Second, the observed 
field might be the superposition of two or more fields of dif-
ferent origin and different strengths, one of which might 
depend on chemical or nuclear constitution. Deviations 
from the inverse square law have been sought in three ways:

1.	 The law has been checked in the laboratory 
over distances up to about 1 metre.

2.	 The effective value of G for distances between 
100 metres and 1 km has been estimated from 
geophysical studies.

3.	 There have been careful comparisons of the 
value of the attraction of Earth as measured 
on the surface and as experienced by artificial 
satellites.
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Early in the 1970s an experiment by the American 
physicist Daniel R. Long seemed to show a deviation from 
the inverse square law at a range of about 0.1 metre. Long 
compared the maximum attractions of two rings upon 
a test mass hung from the arm of a torsion balance. The 
maximum attraction of a ring occurs at a particular point 
on the axis and is determined by the mass and dimensions 
of the ring. If the ring is moved until the force on the test 
mass is greatest, the distance between the test mass and 
the ring is not needed. Two later experiments over the 
same range showed no deviation from the inverse square 
law. In one, conducted by the American physicist Riley 
Newman and his colleagues, a test mass hung on a torsion 
balance was moved around in a long hollow cylinder. The 
cylinder approximates a complete gravitational enclosure 
and, allowing for a small correction because it is open at 
the ends, the force on the test mass should not depend 
on its location within the cylinder. No deviation from the 
inverse square law was found. In the other experiment, 
performed in Cambridge, Eng., by Y.T. Chen and asso-
ciates, the attractions of two solid cylinders of different 
mass were balanced against a third cylinder so that only 
the separations of the cylinders had to be known; it was 
not necessary to know the distances of any from a test 
mass. Again no deviation of more than one part in 104 
from the inverse square law was found. Other, somewhat 
less-sensitive experiments at ranges up to one metre or so 
also have failed to establish any greater deviation.

The geophysical tests go back to a method for the deter-
mination of the constant of gravitation that had been used 
in the 19th century, especially by the British astronomer 
Sir George Airy. Suppose the value of gravity g is measured 
at the top and bottom of a horizontal slab of rock of thick-
ness t and density d. The values for the top and bottom 
will be different for two reasons. First, the top of the slab 
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is t farther from the centre of Earth, and so the measured 
value of gravity will be less by 2(t/R)g, where R is the radius 
of Earth. Second, the slab itself attracts objects above and 
below it toward its centre; the difference between the 
downward and upward attractions of the slab is 4πGtd. 
Thus, a value of G may be estimated. Frank D. Stacey and 
his colleagues in Australia made such measurements at the 
top and bottom of deep mine shafts and claimed that there 
may be a real difference between their value of G and the 
best value from laboratory experiments. The difficulties 
lie in obtaining reliable samples of the density and in tak-
ing account of varying densities at greater depths. Similar 
uncertainties appear to have afflicted measurements in a 
deep bore hole in the Greenland ice sheet.

New measurements have failed to detect any deviation 
from the inverse square law. The most thorough investi-
gation was carried out from a high tower in Colorado. 
Measurements were made with a gravimeter at different 
heights and coupled with an extensive survey of gravity 
around the base of the tower. Any variations of gravity over 
the surface that would give rise to variations up the height 
of the tower were estimated with great care. Allowance 
was also made for deflections of the tower and for the 
accelerations of its motions. The final result was that no 
deviation from the inverse square law could be found.

A further test of the inverse square law depends on the 
theorem that the divergence of the gravity vector should 
vanish in a space that is free of additional gravitational 
sources. An experiment to test this was performed by 
M.V. Moody and H.J. Paik in California with a three-axis 
superconducting gravity gradiometer that measured the 
gradients of gravity in three perpendicular directions. The 
sum of the three gradients was zero within the accuracy of 
the measurements, about one part in 104.
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The absolute measurements of gravity described ear-
lier, together with the comprehensive gravity surveys 
made over the surface of Earth, allow the mean value of 
gravity over Earth to be estimated to about one part in 106. 
The techniques of space research also have given the mean 
value of the radius of Earth and the distances of artificial 
satellites to the same precision; thus, it has been possible 
to compare the value of gravity on Earth with that acting 
on an artificial satellite. Agreement to about one part in 
106 shows that, over distances from the surface of Earth 
to close satellite orbits, the inverse square law is followed.

Thus far, all of the most reliable experiments and obser-
vations reveal no deviation from the inverse square law.

The Principle of Equivalence

Experiments with ordinary pendulums test the prin-
ciple of equivalence to no better than about one part 
in 105. Eötvös obtained much better discrimination 
with a torsion balance. His tests depended on compar-
ing gravitational forces with inertial forces for masses of 
different composition. Eötvös set up a torsion balance 
to compare, for each of two masses, the gravitational 
attraction of Earth with the inertial forces due to the 
rotation of Earth about its polar axis. His arrangement 
of the masses was not optimal, and he did not have the 
sensitive electronic means of control and reading that are 
now available. Nonetheless, Eötvös found that the weak 
equivalence principle was satisfied to within one part in 
109 for a number of very different chemicals, some of 
which were quite exotic. His results were later confirmed 
by the Hungarian physicist János Renner. Renner’s work 
has been analyzed recently in great detail because of the 
suggestion that it could provide evidence for a new force. 
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It seems that the uncertainties of the experiments hardly 
allow such analyses.

Eötvös also suggested that the attraction of the Sun 
upon test masses could be compared with the inertial 
forces of Earth’s orbital motion about the Sun. He per-
formed some experiments, verifying equivalence with an 
accuracy similar to that which he had obtained with his 
terrestrial experiments. The solar scheme has substan-
tial experimental advantages, and the American physicist 
Robert H. Dicke and his colleagues, in a careful series of 
observations in the 1960s (employing up-to-date methods 
of servo control and observation), found that the weak 
equivalence principle held to about one part in 1011 for the 
attraction of the Sun on gold and aluminum. A later exper-
iment by the Russian researcher Vladimir Braginski, with 
very different experimental arrangements, gave a limit of 
about one part in 1012 for platinum and aluminum.

Galileo’s supposed experiment of dropping objects 
from the Leaning Tower of Pisa has been reproduced in 
the laboratory with apparatuses used to determine the 
absolute value of gravity by timing a falling body. Two 
objects, one of uranium, the other of copper, were timed 
as they fell. No difference was detected.

Laser-ranging observations of the Moon in the 
LAGEOS (laser geodynamic satellites) experiment have 
also failed to detect deviations from the principle of 
equivalence. Earth and the Moon have different compo-
sitions, the Moon lacking the iron found in Earth’s core. 
Thus, if the principle of equivalence were not valid, the 
accelerations of Earth and the Moon toward the Sun 
might be different. The very precise measurements of 
the motion of the Moon relative to Earth could detect no 
such difference.

By the start of the 21st century, all observations and 
experiments on gravitation had detected that there are 
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no deviations from the deductions of general relativity, 
that the weak principle of equivalence is valid, and that 
the inverse square law holds over distances from a few 
centimetres to thousands of kilometres. Coupled with 
observations of electromagnetic signals passing close to 
the Sun and of images formed by gravitational lenses, those 
observations and experiments make it very clear that gen-
eral relativity provides the only acceptable description of 
gravitation at the present time.

The Constant of Gravitation

The constant of gravitation has been measured in three ways:

1.	 The comparison of the pull of a large natural 
mass with that of the Earth

2.	 The measurement with a laboratory balance of 
the attraction of Earth upon a test mass

3.	 The direct measurement of the force between 
two masses in the laboratory

The first approach was suggested by Newton; the 
earliest observations were made in 1774 by the British 
astronomer Nevil Maskelyne on the mountain of 
Schiehallion in Scotland. The subsequent work of Airy 
and more-recent developments are noted above. The 
laboratory balance method was developed in large part by 
the British physicist John Henry Poynting during the late 
1800s, but all the most recent work has involved the use 
of the torsion balance in some form or other for the direct 
laboratory measurement of the force between two bod-
ies. The torsion balance was devised by Michell, who died 
before he could use it to measure G. Cavendish adapted 
Michell’s design to make the first reliable measurement 
of G in 1798; only in comparatively recent times have 
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clearly better results been obtained. Cavendish measured 
the change in deflection of the balance when attracting 
masses were moved from one side to the other of the tor-
sion beam. The method of deflection was analyzed most 
thoroughly in the late 1800s by Sir Charles Vernon Boys, 
an English physicist, who carried it to its highest develop-
ment, using a delicate suspension fibre of fused silica for 
the pendulum. In a variant of that method, the deflection 
of the balance is maintained constant by a servo control.

The second scheme involves the changes in the period 
of oscillation of a torsion balance when attracting masses 
are placed close to it such that the period is shortened in 
one position and lengthened in another. Measurements 
of period can be made much more precisely than those 
of deflection, and the method, introduced by Carl Braun 
of Austria in 1897, has been used in many subsequent 
determinations. In a third scheme the acceleration of the 
suspended masses is measured as they are moved relative 
to the large attracting masses.

In another arrangement a balance with heavy attract-
ing masses is set up near a free test balance and adjusted so 
that it oscillates with the same period as the test balance. 
The latter is then driven into resonant oscillations with an 
amplitude that is a measure of the constant of gravitation. 
The technique was first employed by J. Zahradnicek of 
Czechoslovakia during the 1930s and was effectively used 
again by C. Pontikis of France some 40 years later.

Suspensions for two-arm balances for the comparison 
of masses and for torsion balances have been studied inten-
sively by T.J. Quinn and his colleagues at the International 
Bureau of Weights and Measures, near Paris, and they have 
found that suspensions with thin ribbons of metal rather 
than wires provide the most stable systems. They have 
used balances with such suspensions to look for deviations 
from the predictions of general relativity and have most 
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recently used a torsion balance with ribbon suspension in 
two new determinations of the constant of gravitation.

Many new determinations of G were made in the five 
years from 1996 to 2001. However, despite the great atten-
tion given to systematic errors in those experiments, it is 
clear from the range of the results that serious discrepan-
cies, much greater than the apparent random errors, still 
afflict determinations of G. In 2001 the best estimate of 
G was taken to be 6.67553 × 10−11 m3 s−2 kg−1. Results before 
1982 indicate a lower value, perhaps 6.670, but those from 
1996 onward suggest a higher value.

The Variation of the Constant 
of Gravitation with Time

The 20th-century English physicist P.A.M. Dirac, among 
others, suggested that the value of the constant of gravi-
tation might be proportional to the age of the universe; 
other rates of change over time also have been proposed. 
The rates of change would be extremely small, one part 
in 1011 per year if the age of the universe is taken to be 1011 
years; such a rate is entirely beyond experimental capabili-
ties at present. There is, however, the possibility of looking 
for the effects of any variation upon the orbit of a celestial 
body, in particular the Moon. It has been claimed from 
time to time that such effects may have been detected. As 
yet, there is no certainty.

Fundamental Character of G

The constant of gravitation is plainly a fundamental quan-
tity, since it appears to determine the large-scale structure 
of the entire universe. Gravity is a fundamental quantity 
whether it is an essentially geometric parameter, as in gen-
eral relativity, or the strength of a field, as in one aspect 
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of a more-general field of unified forces. The fact that, so 
far as is known, gravitation depends on no other physical 
factors makes it likely that the value of G reflects a basic 
restriction on the possibilities of physical measurement, 
just as special relativity is a consequence of the fact that, 
beyond the shortest distances, it is impossible to make 
separate measurements of length and time.

Conclusion

In this book we examined the subjects of thermodynam-
ics and the various branches of mechanics. These branches 
include the mechanics of solids and fluid mechanics. The 
force of gravity was also studied in detail. These subjects 
are associated with simple laws, those of thermodynamics 
and Newton’s laws of motion and gravity.

The 20th-century English scientist and novelist C.P. 
Snow explained the first three laws of thermodynamics, 
respectively, as:

 
1.	 You cannot win (i.e., one cannot get something 

for nothing, because of the conservation of mat-
ter and energy).

2.	 You cannot break even (i.e., one cannot return 
to the same energy state, because entropy, or 
disorder, always increases).

3.	 You cannot get out of the game (i.e., absolute 
zero is unattainable because no perfectly pure 
substance exists).

The sweeping generality of the constraints imposed 
by the laws of thermodynamics makes the number of 
potential applications so large that it is impractical to 
catalog every possible formula that might come into use, 
even in detailed textbooks on the subject. For this reason, 
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students and practitioners in the field must be proficient 
in mathematical manipulations involving partial deriva-
tives and in understanding their physical content.

The principles of mechanics have been applied to many 
different phenomena. The motions of such celestial bodies 
as stars, planets, and satellites can be predicted with great 
accuracy thousands of years before they occur through 
knowledge of Newton’s law of gravity. (The theory of rela-
tivity predicts some deviations from the motion according 
to classical, or Newtonian, mechanics; however, these are 
so small as to be observable only with very accurate tech-
niques, except in problems involving all or a large portion of 
the detectable universe.) The law of gravity has been used 
to determine the mass of Earth. Even the internal struc-
ture of the planets has been studied using the principles 
of mechanics. Ordinary objects on Earth down to micro-
scopic size (moving at speeds much lower than that of light) 
are properly described by classical mechanics without sig-
nificant corrections. The engineer who designs bridges or 
aircraft may use the Newtonian laws of classical mechanics 
with confidence, even though the forces may be very com-
plicated, and the calculations lack the beautiful simplicity 
of celestial mechanics. Such complications were addressed 
in the sections on solids, stress and strain, and liquids.
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chapter 12
Biographies

In this section, biographies of some of the notable 
people who studied thermodynamics and mechanics 

are presented. Some names, such as Sir Isaac Newton and 
Galileo, are familiar worldwide. Others, such as Sophie 
Germain and J. Willard Gibbs, are not so prominent, but 
interesting for their important contributions to physics.

Ludwig Eduard Boltzmann
(b. Feb. 20, 1844, Vienna, Austria—d. Sept. 5, 1906, Duino, Italy)

Ludwig Eduard Boltzmann was a physicist whose great-
est achievement was in the development of statistical 
mechanics, which explains and predicts how the prop-
erties of atoms (such as mass, charge, and structure) 
determine the visible properties of matter (such as viscos-
ity, thermal conductivity, and diffusion).

After receiving his doctorate from the University of 
Vienna in 1866, Boltzmann held professorships in math-
ematics and physics at Vienna, Graz, Munich, and Leipzig.

In the 1870s Boltzmann published a series of papers in 
which he showed that the second law of thermodynamics, 
which concerns energy exchange, could be explained by 
applying the laws of mechanics and the theory of prob-
ability to the motions of the atoms. In so doing, he made 
clear that the second law is essentially statistical and that 
a system approaches a state of thermodynamic equilib-
rium (uniform energy distribution throughout) because 
equilibrium is overwhelmingly the most probable state of 
a material system. During these investigations Boltzmann 
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worked out the general law for the distribution of energy 
among the various parts of a system at a specific tempera-
ture and derived the theorem of equipartition of energy 
(Maxwell-Boltzmann distribution law). This law states 
that the average amount of energy involved in each differ-
ent direction of motion of an atom is the same. He derived 
an equation for the change of the distribution of energy 
among atoms due to atomic collisions and laid the founda-
tions of statistical mechanics.

Boltzmann was also one of the first continental scien-
tists to recognize the importance of the electromagnetic 
theory proposed by James Clerk Maxwell of England. 
Though Boltzmann’s work on statistical mechanics was 
strongly attacked and long-misunderstood, his conclu-
sions were finally supported by the discoveries in atomic 
physics that began shortly before 1900 and by recognition 
that fluctuation phenomena, such as Brownian motion 
(random movement of microscopic particles suspended in 
a fluid), could be explained only by statistical mechanics.

Sadi Carnot
(b. June 1, 1796, Paris, France—d. Aug. 24, 1832, Paris)

French scientist Nicolas-Léonard-Sadi Carnot described 
the Carnot cycle, relating to the theory of heat engines.

Carnot was the eldest son of the French Revolutionary 
figure Lazare Carnot and was named for a medieval Persian 
poet and philosopher, Sa‘dī of Shīrāz. His early years were 
a period of unrest, and the family suffered many changes 
of fortune. His father fled into exile soon after Sadi’s birth; 
in 1799 he returned to be appointed Napoleon’s minister 
of war but was soon forced to resign. A writer on math-
ematics and mechanics as well as military and political 
matters, the elder Carnot now had the leisure to direct his 
son’s early education.
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Nicolas-Léonard-Sadi Carnot. SSPL via Getty Images
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Sadi entered the École Polytechnique in 1812, an insti-
tution providing an exceptionally fine education, with a 
faculty of famous scientists aware of the latest develop-
ments in physics and chemistry, which they based on 
a rigorous mathematics. By the time Sadi graduated 
in 1814, Napoleon’s empire was being rolled back, and 
European armies were invading France. Soon Paris itself 
was besieged, and the students, Sadi among them, fought 
a skirmish on the outskirts of the city.

During Napoleon’s brief return to power in 1815, 
Lazare Carnot was minister of the interior, but, following 
the emperor’s final abdication, he fled to Germany, never 
to return to France.

Sadi remained an army officer for most of his life, 
despite disputes about his seniority, denial of promotion, 
and the refusal to employ him in the job for which he had 
been trained. In 1819 he transferred to the recently formed 
General Staff but quickly retired on half pay, living in Paris 
on call for army duty. Friends described him as reserved, 
almost taciturn, but insatiably curious about science and 
technical processes.

The mature, creative period of his life now began. 
Sadi attended public lectures on physics and chemistry 
provided for workingmen. He was also inspired by long 
discussions with the prominent physicist and successful 
industrialist Nicolas Clément-Desormes, whose theories 
he further clarified by his insight and ability to generalize.

The problem occupying Carnot was how to design 
good steam engines. Steam power already had many uses—
draining water from mines, excavating ports and rivers, 
forging iron, grinding grain, and spinning and weaving 
cloth—but it was inefficient. The import into France of 
advanced engines after the war with Britain showed Carnot 
how far French design had fallen behind. It irked him 



7 The Britannica Guide to Heat, Force, and Motion 7

304

particularly that the British had progressed so far through 
the genius of a few engineers who lacked formal scientific 
education. British engineers had also accumulated and 
published reliable data about the efficiency of many types 
of engines under actual running conditions; and they vigor-
ously argued the merits of low- and high-pressure engines 
and of single-cylinder and multicylinder engines.

Convinced that France’s inadequate utilization of steam 
was a factor in its downfall, Carnot began to write a non-
technical work on the efficiency of steam engines. Other 
workers before him had examined the question of improving 
the efficiency of steam engines by comparing the expansion 
and compression of steam with the production of work and 
consumption of fuel. In his essay, Réflexions sur la puissance 
motrice du feu et sur les machines propres à développer cette puis-
sance (Reflections on the Motive Power of Fire), published in 1824, 
Carnot tackled the essence of the process, not concerning 
himself as others had done with its mechanical details.

Carnot saw that, in a steam engine, motive power is 
produced when heat “drops” from the higher temperature 
of the boiler to the lower temperature of the condenser, 
just as water, when falling, provides power in a waterwheel. 
He worked within the framework of the caloric theory of 
heat, assuming that heat was a gas that could be neither 
created nor destroyed. Though the assumption was incor-
rect and Carnot himself had doubts about it even while 
he was writing, many of his results were nevertheless true, 
notably the prediction that the efficiency of an idealized 
engine depends only on the temperature of its hottest and 
coldest parts and not on the substance (steam or any other 
fluid) that drives the mechanism.

Although formally presented to the Academy of 
Sciences and given an excellent review in the press, the 
work was completely ignored until 1834, when Émile 
Clapeyron, a railroad engineer, quoted and extended 
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Carnot’s results. Several factors might account for this 
delay in recognition; the number of copies printed was 
limited and the dissemination of scientific literature was 
slow, and such a work was hardly expected to come from 
France when the leadership in steam technology had been 
centred in England for a century. Eventually Carnot’s 
views were incorporated by the thermodynamic theory 
as it was developed by Rudolf Clausius in Germany (1850) 
and William Thomson (later Lord Kelvin) in Britain (1851).

Little is known of Carnot’s subsequent activities. 
In 1828 he described himself as a “constructor of steam 
engines, in Paris.” When the Revolution of 1830 in France 
seemed to promise a more liberal regime, there was a 
suggestion that Carnot be given a government position, 
but nothing came of it. He was also interested in improv-
ing public education. When absolutist monarchy was 
restored, he returned to scientific work, which he contin-
ued until his death in the cholera epidemic of 1832 in Paris.

Henry Cavendish
(b. Oct. 10, 1731, Nice, France—d. Feb. 24, 1810, London, Eng.)

Natural philosopher Henry Cavendish was the greatest 
experimental and theoretical English chemist and physi-
cist of his age. Members of the Cavendish family were 
distinguished for their great accuracy and precision. His 
experiment to weigh Earth has come to be known as the 
Cavendish experiment.

Cavendish had no title, although his father was the 
third son of the duke of Devonshire, and his mother (née 
Ann Grey) was the fourth daughter of the duke of Kent. 
Henry went to the Hackney Academy, a private school 
near London, and in 1748 entered Peterhouse College, 
Cambridge, where he remained for three years before he 
left without taking a degree (a common practice). He then 
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lived with his father in London, where he soon had his 
own laboratory.

Cavendish took virtually no part in politics, but, like his 
father, he lived a life of service to science, both through his 
researches and through his participation in scientific orga-
nizations. Cavendish was a shy man who was uncomfortable 
in society and avoided it when he could. He conversed little, 
always dressed in an old-fashioned suit, and developed no 
known deep personal attachments outside his family.

In 1783 Cavendish published a paper on the production 
of water by burning inflammable air (that is, hydrogen) in 
dephlogisticated air (now known to be oxygen), the latter 
a constituent of atmospheric air. Cavendish concluded 
that dephlogisticated air was dephlogisticated water and 
that hydrogen was either pure phlogiston or phlogisti-
cated water.

In 1783 he published a paper on the temperature at 
which mercury freezes and in that paper made use of 
the idea of latent heat, although he did not use the term 
because he believed that it implied acceptance of a mate-
rial theory of heat. He made his objections explicit in his 
1784 paper on air. He went on to develop a general theory 
of heat, which was at once mathematical and mechani-
cal; it contained the principle of the conservation of heat 
(later understood as an instance of conservation of energy) 
and even contained the concept (although not the label) of 
the mechanical equivalent of heat.

 The most famous of Cavendish’s experiments, pub-
lished in 1798, was to determine the density of Earth. His 
apparatus for weighing the world was a modification of 
the Englishman John Michell’s torsion balance. The bal-
ance had two small lead balls suspended from the arm of a 
torsion balance and two much larger stationary lead balls. 
Cavendish calculated the attraction between the balls from 
the period of oscillation of the torsion balance, and then 
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he used this value to calculate the density of Earth. What 
was extraordinary about Cavendish’s experiment was its 
elimination of every source of error and every factor that 
could disturb the experiment and its precision in measur-
ing an astonishingly small attraction, a mere 1/50,000,000 
of the weight of the lead balls. The result that Cavendish 
obtained for the density of Earth is within 1 percent of the 
currently accepted figure. The combination of painstak-
ing care, precise experimentation, thoughtfully modified 
apparatus, and fundamental theory carries Cavendish’s 
unmistakable signature. Cavendish remained active in sci-
ence and healthy in body almost until the end.

Rudolf Clausius
(b. Jan. 2, 1822, Köslin, Prussia—d. Aug. 24, 1888, Bonn)

German mathematical physicist Julius Emanuel Rudolf 
Clausius formulated the second law of thermodynamics 
and is credited with making thermodynamics a science.

Clausius was appointed professor of physics at the 
Artillery and Engineering School at Berlin in 1850, the same 
year in which he presented a paper stating the second law 
of thermodynamics in the well-known form: “Heat cannot 
of itself pass from a colder to a hotter body.” He applied 
his results to an exhaustive development of the theory of 
the steam engine, stressing the concept of entropy (dis-
sipation of available energy). He became professor of 
physics at Zürich Polytechnikum in 1855, and, two years 
later, contributed to the theory of electrolysis (the break-
ing down of a compound by electricity) by suggesting that 
molecules are made up of continually interchanging atoms 
and that electric force does not cause but simply directs 
the interchange. This view later was used as the basis of 
the theory of electrolytic dissociation (breakdown of mol-
ecules into charged atoms or ions).
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 He became professor of physics at the University of 
Würzburg in 1867 and at the University of Bonn in 1869. 
In molecular physics, Clausius restated the French physi-
cist Sadi Carnot’s principle concerning effi ciency of heat 
engines and thus provided a much sounder basis for the 
theory of heat.     

 guSTaVe-gaSpard corioliS 
 (b. May 21, 1792, Paris, France—d. Sept. 19, 1843, Paris) 

 French engineer and mathematician Gustave-Gaspard 
Coriolis fi rst described what would be termed the Coriolis 
force, an effect of motion on a rotating body, of paramount 
importance to meteorology, ballistics, and oceanography. 

 An assistant professor of analysis and mechanics at the 
École Polytechnique, Paris (1816–38), he introduced the 
terms “work” and “kinetic energy” in their modern sci-
entifi c meanings in his fi rst major book,  Du calcul de l’effet 
des machines  (1829; “On the Calculation of Mechanical 
Action”), in which he attempted to adapt theoretical prin-
ciples to applied mechanics. 

 In 1835 Coriolis published a paper, “Sur les équations 
du mouvement relatif des systèmes de corps” (“On the 
Equations of Relative Motion of Systems of Bodies”), in 
which he showed that on a rotating surface, in addition to 
the ordinary effects of motion of a body, there is an iner-
tial force acting on the body at right angles to its direction 
of motion. This force results in a curved path for a body 
that would otherwise travel in a straight line. The Coriolis 
force on Earth determines the general wind directions 
and is responsible for the rotation of hurricanes and tor-
nadoes. His other works include  Traité de la mécanique des 
corps solides  (1844; “Treatise on the Mechanics of Solid 
Bodies”) and  Théorie mathématique des   effets du jeu de billiard
(1835; “Mathematical Theory of the Game of Billiards”).     
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 galileo 
 (b. Feb. 15, 1564, Pisa [Italy]—d. Jan. 8, 1642, Arcetri, near Florence)

Italian astronomer and mathematician Galileo Galilei 
contributed to the sciences of motion, astronomy, and 
strength of materials and to the development of the scien-
tifi c method. His formulation of (circular) inertia, the law 
of falling bodies, and parabolic trajectories marked the 
beginning of a fundamental change in the study of motion. 

 In 1581 Galileo matriculated at the University of Pisa, 
where he was to study medicine but instead became 

 encyclopædia Britannica, Inc. 
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enamoured with mathematics. In 1585 Galileo left the uni-
versity without having obtained a degree, and for several 
years he gave private lessons in mathematics. During this 
period he designed a new form of hydrostatic balance for 
weighing small quantities. He also began his studies on 
motion.

Galileo obtained the chair of mathematics at the 
University of Pisa in 1589. There he demonstrated, by 
dropping bodies of different weights from the top of the 
famous Leaning Tower, that the speed of fall of a heavy 
object is not proportional to its weight, as Aristotle had 
claimed. The tract De motu (On Motion), finished during this 
period, shows that Galileo was abandoning Aristotelian 
notions about motion. But his attacks on Aristotle made 
him unpopular, and in 1592 his contract was not renewed. 
His patrons, however, secured him the chair of mathemat-
ics at the University of Padua, where he taught from 1592 
until 1610.

Galileo continued his research on motion, and by 
1609 he had determined that the distance fallen by a 
body is proportional to the square of the elapsed time 
(the law of falling bodies) and that the trajectory of a pro-
jectile is a parabola, both conclusions that contradicted 
Aristotelian physics.

At this point, however, Galileo’s career took a dramatic 
turn. In the spring of 1609 he heard that in the Netherlands 
an instrument had been invented that showed distant 
things as though they were nearby. By trial and error, he 
quickly figured out the secret of the invention and made 
his own telescope from lenses for sale in spectacle makers’ 
shops. In the fall of 1609 Galileo began observing the heav-
ens. In December he drew the Moon’s phases, showing that 
the Moon’s surface is not smooth, as had been thought, but 
is rough and uneven. In January 1610 he discovered four 
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Galileo Galilei. Hulton Archive/Getty Images
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moons revolving around Jupiter. He also found that the 
telescope showed many more stars than are visible with 
the naked eye. These discoveries were earthshaking.

Galileo went on to discover that Venus goes through 
phases just as the Moon does. Although these discoveries 
did not prove that Earth is a planet orbiting the Sun, they 
nevertheless undermined Aristotelian cosmology: the 
absolute difference between the corrupt earthly region 
and the perfect and unchanging heavens was proved wrong 
by the mountainous surface of the Moon, the moons of 
Jupiter showed that there had to be more than one centre 
of motion in the universe, and the phases of Venus showed 
that it revolves around the Sun. As a result, Galileo was 
confirmed in his belief that the Sun is the centre of the 
universe and that Earth is a planet, as Copernicus had 
argued. Galileo’s conversion to Copernicanism would be a 
key turning point in the scientific revolution.

Galileo’s increasingly overt Copernicanism began to 
cause trouble for him. In 1615, Inquisition consultants 
pronounced the Copernican theory heretical. Galileo was 
admonished by Robert Cardinal Bellarmine not to “hold 
or defend” the Copernican theory. An improperly pre-
pared document placed in the Inquisition files at this time 
states that Galileo was admonished “not to hold, teach, or 
defend” the Copernican theory.

Galileo was thus effectively muzzled, but he slowly 
recovered from this setback. Il saggiatore (The Assayer), 
published in 1623, was a brilliant exposition of the new sci-
entific method.

Publication of Il saggiatore came at an auspicious 
moment, for Maffeo Cardinal Barberini, a friend of 
Galileo, was named Pope Urban VIII as the book was 
going to press. In 1624 Galileo had six interviews with 
Urban VIII. Galileo told the pope about his theory of the 
tides, which he put forward as proof of the annual and 
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diurnal motions of Earth. The pope gave Galileo permis-
sion to write a book about theories of the universe but 
warned him to treat the Copernican theory only hypo-
thetically. The book, Dialogo sopra i due massimi sistemi del 
mondo, tolemaico e copernicano (Dialogue Concerning the Two 
Chief World Systems, Ptolemaic & Copernican), was finished in 
1630 and appeared in 1632 with a preface in which Galileo 
professed that what followed was written hypothetically.

In the Dialogue’s witty conversation between Salviati 
(representing Galileo), Sagredo (the intelligent layman), 
and Simplicio (the Aristotelian), Galileo gathered together 
all the arguments for the Copernican theory. However, he 
gave Simplicio the final word, that God could have made 
the universe any way he wanted to and still made it appear 
to us the way it does, thus putting Urban VIII’s favou-
rite argument in the mouth of the person who had been 
ridiculed throughout the dialogue. The reaction against 
the book was swift. The pope convened a special commis-
sion that recommended that a case be brought against 
Galileo by the Inquisition. During Galileo’s first appear-
ance before the Inquisition, he was confronted with the 
1616 edict recording that he was forbidden to discuss 
the Copernican theory. In his defense Galileo produced 
a letter from Cardinal Bellarmine, by then dead, stating 
that he was admonished only not to hold or defend the 
theory. The case was at somewhat of an impasse, and, in 
what can only be called a plea bargain, Galileo confessed 
to having overstated his case. He was condemned to life 
imprisonment and was made to abjure formally. There 
is no evidence that at this time he whispered, “Eppur 
si muove” (“And yet it moves”). It should be noted that 
Galileo was never in a dungeon or tortured; during the 
trial he stayed mostly at the house of the Tuscan ambas-
sador to the Vatican. After the process he moved into a 
villa near Florence.
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 Galileo was then 70 years old. Yet he kept working. 
He had begun a new book on the sciences of motion and 
strength of materials. The book was published in Leiden, 
the Netherlands, in 1638 under the title  Discorsi e dimost-
razioni matematiche intorno a due nuove scienze attenenti alla 
meccanica  ( Dialogues Concerning Two New Sciences ). Galileo 
here treated for the fi rst time the bending and breaking of 
beams and summarized his mathematical and experimental 
investigations of motion, including the law of falling bodies 
and the parabolic path of projectiles as a result of the mixing 
of two motions, constant speed, and uniform acceleration.     

 Sophie germain 
 (b. April 1, 1776, Paris, France—d. June 27, 1831, Paris)

French mathematician Marie-Sophie Germain contrib-
uted notably to the study of acoustics, elasticity, and the 
theory of numbers. 

Sophie Germain, as engraved by 19th century French sculptor and painter 
Zacharie Astruc. Boyer/Roger Viollet/Getty Images
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As a girl Germain read widely in her father’s library 
and then later, using the pseudonym of M. Le Blanc, man-
aged to obtain lecture notes for courses from the newly 
organized École Polytechnique in Paris. It was through 
the École Polytechnique that she met the mathematician 
Joseph-Louis Lagrange, who remained a strong source 
of support and encouragement to her for several years. 
Germain’s early work was in number theory, her inter-
est having been stimulated by Adrien-Marie Legendre’s 
Théorie des nombres (1789) and by Carl Friedrich Gauss’s 
Disquisitiones Arithmeticae (1801). This subject occupied 
her throughout her life and eventually provided her most 
significant result. In 1804 Germain initiated a correspon-
dence with Gauss under her male pseudonym. Gauss 
only learned of her true identity when Germain, fearing 
for Gauss’s safety as a result of the French occupation of 
Hannover in 1807, asked a family friend in the French army 
to ascertain his whereabouts and ensure that he would not 
be ill-treated.

In 1809 the French Academy of Sciences offered a prize 
for a mathematical account of the phenomena exhibited in 
experiments on vibrating plates conducted by the German 
physicist Ernst F.F. Chladni. In 1811 Germain submitted an 
anonymous memoir, but the prize was not awarded. The 
competition was reopened twice more, once in 1813 and 
again in 1816, and Germain submitted a memoir on each 
occasion. Her third memoir, for which she finally won 
the prize, treated vibrations of general curved as well as 
plane surfaces and was published privately in 1821. During 
the 1820s she worked on generalizations of her research 
but, isolated from the academic community on account 
of her gender and thus largely unaware of new develop-
ments taking place in the theory of elasticity, she made 
little real progress. In 1816 Germain met Joseph Fourier, 
whose friendship and position in the Academy helped her 
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to participate more fully in Parisian scientific life, but his 
reservations about her work on elasticity eventually led 
him to distance himself from her professionally, although 
they remained close friends.

Meanwhile Germain had actively revived her interest 
in number theory and in 1819 wrote to Gauss outlining her 
strategy for a general solution to Fermat’s last theorem, 
which states that there is no solution for the equation 
xn + yn = zn if n is an integer greater than 2 and x, y, and z are 
nonzero integers. She proved the special case in which x, 
y, z, and n are all relatively prime (have no common divisor 
except for 1) and n is a prime smaller than 100, although 
she did not publish her work. Her result first appeared in 
1825 in a supplement to the second edition of Legendre’s 
Théorie des nombres. She corresponded extensively with 
Legendre, and her method formed the basis for his proof 
of the theorem for the case n = 5. The theorem was proved 
for all cases by the English mathematician Andrew Wiles 
in 1995.

J. Willard Gibbs
(b. Feb. 11, 1839, New Haven, Conn., U.S.—d. April 28, 1903,  
New Haven)

Theoretical physicist and chemist Josiah Willard Gibbs 
was one of the greatest scientists in the United States in 
the 19th century. His application of thermodynamic the-
ory converted a large part of physical chemistry from an 
empirical into a deductive science.

Gibbs was the fourth child and only son of Josiah 
Willard Gibbs, Sr., professor of sacred literature at Yale 
University. There were college presidents among his ances-
tors and scientific ability in his mother’s family. Facially and 
mentally, Gibbs resembled his mother. He was a friendly 
youth but was also withdrawn and intellectually absorbed. 
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This circumstance and his delicate health kept him from 
participating much in student and social life. He was edu-
cated at the local Hopkins Grammar School and in 1854 
entered Yale, where he won a succession of prizes. After 
graduating, Gibbs pursued research in engineering. His 
thesis on the design of gearing was distinguished by the 
logical rigour with which he employed geometrical meth-
ods of analysis. In 1863 Gibbs received the first doctorate 
of engineering to be conferred in the United States. He 
was appointed a tutor at Yale in the same year. He devoted 
some attention to engineering invention.

Gibbs lost his parents rather early, and he and his two 
older sisters inherited the family home and a modest for-
tune. In 1866 he and his sisters went to Europe, remaining 
there nearly three years while Gibbs attended the lectures 
of European masters of mathematics and physics, whose 
intellectual technique he assimilated. He returned more 
a European than an American scientist in spirit—one of 
the reasons why general recognition in his native country 
came so slowly. Gibbs applied his increasing command of 
theory to the improvement of James Watt’s steam-engine 
governor. In analyzing its equilibrium, Gibbs began to 
develop the method by which the equilibriums of chemi-
cal processes could be calculated.

He was appointed professor of mathematical physics 
at Yale in 1871, before he had published his fundamen-
tal work. His first major paper was “Graphical Methods 
in the Thermodynamics of Fluids,” which appeared in 
1873. It was followed in the same year by “A Method of 
Geometrical Representation of the Thermodynamic 
Properties of Substances by Means of Surfaces” and in 
1876 by his most famous paper, “On the Equilibrium 
of Heterogeneous Substances.” The importance of his 
work was immediately recognized by the Scottish physi-
cist James Clerk Maxwell in England, who constructed 
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a model of Gibbs’s thermodynamic surface with his own 
hands and sent it to him.

He remained a bachelor, living in his surviving sis-
ter’s household. In his later years he was a tall, dignified 
gentleman, with a healthy stride and ruddy complexion, 
performing his share of household chores, approachable 
and kind (if unintelligible) to students.

Gibbs was highly esteemed by his friends, but U.S. sci-
ence was too preoccupied with practical questions to make 
much use of his profound theoretical work during his life-
time. He lived out his quiet life at Yale, deeply admired by 
a few able students but making no immediate impression 
on U.S. science commensurate with his genius. He never 
even became a member of the American Physical Society. 
He seems to have been unaffected by this. He was aware 
of the significance of what he had done and was content to 
let posterity appraise him.

The contemporary historian Henry Adams called 
Gibbs “the greatest of Americans, judged by his rank in 
science.” Gibbs’s application of thermodynamics to physi-
cal processes led him to develop the science of statistical 
mechanics; his treatment of it was so general that it was 
later found to apply as well to quantum mechanics as to 
the classical physics from which it had been derived.

Sir William Rowan Hamilton
(b. Aug. 3/4, 1805, Dublin, Ire.—d. Sept. 2, 1865, Dublin)

Irish mathematician Sir William Rowan Hamilton contrib-
uted to the development of optics, dynamics, and algebra—in 
particular, discovering the algebra of quaternions.

Hamilton was the son of a solicitor. At five he was 
already making progress with Latin, Greek, and Hebrew, 
broadening his studies to include Arabic, Sanskrit, Persian, 
Syriac, French, and Italian before he was 12.
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A serious interest in mathematics was awakened on 
reading the Analytic Geometry of Bartholomew Lloyd at 
the age of 16. Further reading included works of the French 
mathematicians Pierre-Simon Laplace and Joseph-Louis 
Lagrange.

Hamilton entered Trinity College, Dublin, in 1823. He 
excelled as an undergraduate in mathematics and physics, 
while he continued with his own mathematical investiga-
tions. In 1827, while still an undergraduate, Hamilton was 
appointed professor of astronomy at Trinity College and 
Royal Astronomer of Ireland.

Hamilton’s first published mathematical paper begins 
by proving that a system of light rays filling a region of 
space can be focused down to a single point by a suitably 
curved mirror if and only if those light rays are orthogonal 
to some series of surfaces. Moreover, the latter property 
is preserved under reflection in any number of mirrors. 
Hamilton’s innovation was to associate with such a sys-
tem of rays a characteristic function, constant on each of 
the surfaces to which the rays are orthogonal, which he 
employed in the mathematical investigation of the foci 
and caustics of reflected light.

The theory of the characteristic function of an opti-
cal system was further developed in three supplements. In 
the third of these, the characteristic function depends on 
the Cartesian coordinates of two points (initial and final) 
and measures the time taken for light to travel through 
the optical system from one to the other. If the form of 
this function is known, then basic properties of the opti-
cal system can easily be obtained.

From 1833 onward, Hamilton adapted his optical meth-
ods to the study of dynamics. He created an elegant theory 
that associated a characteristic function with any system 
of attracting or repelling point particles. If the form of this 
function is known, then the solutions of the equations of 
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motion of the system can easily be obtained. The equa-
tions of motion of a dynamical system are expressed in 
a particularly pleasing form (Hamilton’s equations of 
motion). The significance of Hamilton’s approach became 
apparent in the development of celestial mechanics and 
quantum mechanics. Hamiltonian mechanics under-
lies contemporary mathematical research the theory of 
dynamical systems.

Hamilton had a deep interest in the fundamental prin-
ciples of algebra. Complex numbers were then represented 
as “algebraic couples”—i.e., ordered pairs of real numbers. 
For many years Hamilton sought to construct a theory of 
triplets, analogous to complex numbers, that would be 
applicable to the study of three-dimensional geometry. 
Then, on Oct. 16, 1843, while walking with his wife beside 
the Royal Canal on his way to Dublin, Hamilton suddenly 
realized that the solution lay not in triplets but in qua-
druplets, or quaternions. Thrilled by his inspiration, he 
stopped to carve the fundamental equations of this alge-
bra on a stone of a bridge they were passing.

Hamilton devoted the last 22 years of his life to the 
development of the theory of quaternions and related sys-
tems. Many basic concepts and results in vector analysis 
have their origin in Hamilton’s papers on quaternions.

Hermann von Helmholtz
(b. Aug. 31, 1821, Potsdam, Prussia [Germany]—d. Sept. 8, 1894, 
Charlottenburg, Berlin, Ger.)

German scientist and philosopher Hermann Ludwig 
Ferdinand von Helmholtz made fundamental contribu-
tions to physiology, optics, electrodynamics, mathematics, 
and meteorology. He is best known for his statement of 
the law of the conservation of energy.
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Helmholtz was the eldest of four children and because 
of his delicate health was confined to home for his first 
seven years. After graduating from the gymnasium, 
Helmholtz in 1838 entered the Friedrich Wilhelm Medical 
Institute in Berlin, where he received a free medical edu-
cation on the condition that he serve eight years as an 
army doctor. At the institute he did research under the 
greatest German physiologist of the day, Johannes Müller. 
Helmholtz attended physics lectures, worked his way 
through the standard textbooks of higher mathematics, 
and learned to play the piano with a skill that later helped 
him in his work on the sensation of tone.

Upon graduation from medical school in 1843, 
Helmholtz was assigned to a regiment at Potsdam. Because 
his army duties were few, he did experiments in a make-
shift laboratory he set up in the barracks. Before long, 
Helmholtz’s obvious scientific talents led to his release 
from military duties. In 1848 he was appointed assistant at 
the Anatomical Museum and lecturer at the Academy of 
Fine Arts in Berlin, moving the next year to Königsberg, 
in East Prussia (now Kaliningrad), to become assistant 
professor and director of the Physiological Institute. In 
1855 he became professor of anatomy and physiology at 
the University of Bonn, moving in 1858 to Heidelberg. 
During these years his scientific interests progressed from 
physiology to physics. His growing scientific stature was 
further recognized in 1871 by the offer of the professorship 
of physics at the University of Berlin; in 1882, by his eleva-
tion to the nobility; and, in 1888, by his appointment as 
first director of the Physico-Technical Institute at Berlin, 
the post that he held for the rest of his life.

The variety of positions Helmholtz held reflects his 
interests and competence but does not reflect the way in 
which his mind worked. He did not start out in medicine, 
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shift to physiology, then drift into mathematics and phys-
ics. Rather, he was able to coordinate the insights he had 
acquired from his experience in these disciplines and to 
apply them to every problem he examined. 
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The general theme that runs through most, if not all, 
of Helmholtz’s work may be traced to his rejection of the 
then-prevalent “Nature philosophy.” Nature philosophy 
derived from Immanuel Kant, who in the 1780s had sug-
gested that the concepts of time, space, and causation were 
not products of sense experience but mental attributes by 
which it was possible to perceive the world. Therefore, 
the mind did not merely record order in nature; rather, the 
mind organized the world of perceptions so that it could 
deduce the system of the world from a few basic prin-
ciples. Helmholtz opposed this view by insisting that all 
knowledge came through the senses. Furthermore, in his 
view, all science could and should be reduced to the laws of 
classical mechanics.

Helmholtz’s approach to nature was evident in the 
very first scientific researches he undertook while work-
ing for his doctorate in Müller’s laboratory. Like most 
biologists, Müller was a vitalist who was convinced that it 
was impossible to reduce living processes to the ordinary 
mechanical laws of physics and chemistry.

In Müller’s laboratory Helmholtz met a group of 
young men, among whom were Emil Heinrich Du Bois-
Reymond, the founder of experimental neurophysiology, 
and Ernst Wilhelm von Brücke, who later became an 
expert on the operations of the human eye. Du Bois-
Reymond expressed their opposition to Müller’s views in 
a statement that fully expressed Helmholtz’s own posi-
tion. “Brücke and I,” Du Bois-Reymond wrote, “we have 
sworn to each other to validate the basic truth that in an 
organism no other forces have any effect than the com-
mon physiochemical ones.”

It was with this attitude that Helmholtz began his doc-
toral thesis in 1842 on the connection between nerve fibres 
and nerve cells. This soon led him to a broader field of 
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inquiry, namely, the source of animal heat. Recent publica-
tions in France had cast doubt upon the earlier confident 
assertion that all the heat produced in an animal body was 
the result of the heats of combination of the various chem-
ical elements involved, particularly carbon, hydrogen, and 
oxygen. Having mastered both physics and mathematics, 
Helmholtz could do what no other physiologist of the 
time could even attempt—subject the problem to a math-
ematical and physical analysis. He supposed that, if vital 
heat were not the sum of all the heats of the substances 
involved in chemical reactions within the organic body, 
there must be some other source of heat not subject to 
physical laws. This, of course, was precisely what the vital-
ists argued. But such a source, Helmholtz went on, would 
permit the creation of a perpetual motion machine if the 
heat could, somehow, be harnessed. Hence, Helmholtz 
concluded, vital heat must be the product of mechani-
cal forces within the organism. From there he went on to 
generalize his results to state that all heat was related to 
ordinary forces and, finally, to state that force itself could 
never be destroyed. His paper “On the Conservation of 
Force,” which appeared in 1847, marked an epoch in both 
the history of physiology and the history of physics. For 
physiology, it provided a fundamental statement about 
organic nature that permitted physiologists henceforth to 
perform the same kind of material and energy balances as 
their colleagues in physics and chemistry. For the physi-
cal sciences, it provided one of the first, and certainly the 
clearest, statements of the principle of the conservation 
of energy.

Helmholtz attacked and solved equations that had 
long frustrated physicists and mathematicians. In 1858 he 
published the paper “On the Integrals of Hydrodynamic 
Equations to Which Vortex Motions Conform.” One 
of the consequences that flowed from Helmholtz’ 
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mathematical analysis was that vortices of an ideal fluid 
were amazingly stable; they could collide elastically with 
one another, intertwine to form complex knotlike struc-
tures, and undergo tensions and compressions, all without 
losing their identities.

Helmholtz’s work was the end product of the devel-
opment of classical mechanics. He pushed it as far as it 
could go. When Helmholtz died, the world of physics was 
poised on the brink of revolution. The discovery of X rays, 
radioactivity, and relativity led to a new kind of physics in 
which Helmholtz’s achievements, although impressive, 
had little to offer the new generation.

Robert Hooke
(b. July 18, 1635, Freshwater, Isle of Wight, Eng.—d. March 3,  
1703, London)

English physicist Robert Hooke discovered the law of 
elasticity, known as Hooke’s law, and who did research in a 
remarkable variety of fields.

In 1655 Hooke was employed by Robert Boyle to 
construct the Boylean air pump. Five years later, Hooke 
discovered his law of elasticity, which states that the 
stretching of a solid body (e.g., metal or wood) is propor-
tional to the force applied to it. The law laid the basis for 
studies of stress and strain and for understanding of elas-
tic materials. He applied these studies in his designs for 
the balance springs of watches. In 1662 he was appointed 
curator of experiments to the Royal Society of London 
and was elected a fellow the following year.

One of the first men to build a Gregorian reflect-
ing telescope, Hooke discovered the fifth star in the 
Trapezium, an asterism in the constellation Orion, in 1664 
and first suggested that Jupiter rotates on its axis. His 
detailed sketches of Mars were used in the 19th century 
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to determine that planet’s rate of rotation. In 1665 he was 
appointed professor of geometry in Gresham College. In 
Micrographia (1665; “Small Drawings”) he included his stud-
ies and illustrations of the crystal structure of snowflakes, 
discussed the possibility of manufacturing artificial fibres 
by a process similar to the spinning of the silkworm, and 
first used the word “cell” to name the microscopic honey-
comb cavities in cork. His studies of microscopic fossils 
led him to become one of the first proponents of a theory 
of evolution.

Hooke suggested that the force of gravity could be 
measured by utilizing the motion of a pendulum (1666) 
and attempted to show that Earth and the Moon follow 
an elliptical path around the Sun. In 1672 he discovered 
the phenomenon of diffraction (the bending of light rays 
around corners); to explain it, he offered the wave theory 
of light. He stated the inverse square law to describe plan-
etary motions in 1678, a law that Newton later used in 
modified form. Hooke complained that he was not given 
sufficient credit for the law and became involved in bit-
ter controversy with Newton. Hooke was the first man to 
state in general that all matter expands when heated and 
that air is made up of particles separated from each other 
by relatively large distances.

William Thomson, Baron Kelvin
(b. June 26, 1824, Belfast, County Antrim, Ire. [now in Northern 
Ireland]—d. Dec. 17, 1907, Netherhall, near Largs, Ayrshire, Scot.)

William Thomson, Baron Kelvin of Largs, was a Scottish 
engineer, mathematician, and physicist, who profoundly 
influenced the scientific thought of his generation.

Thomson’s contributions to science included a major role 
in the development of the second law of thermodynamics; 
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the absolute temperature scale (measured in kelvins); the 
dynamical theory of heat; the mathematical analysis of 
electricity and magnetism, including the basic ideas for 
the electromagnetic theory of light; the geophysical deter-
mination of the age of Earth; and fundamental work in 
hydrodynamics. His theoretical work on submarine teleg-
raphy and his inventions for use on submarine cables aided 
Britain in capturing a preeminent place in world communi-
cation during the 19th century.

William Thomson was the fourth child in a fam-
ily of seven. His mother died when he was six years old. 
His father, James Thomson taught mathematics, first 
in Belfast and later as a professor at the University of 
Glasgow; he taught his sons the most recent mathematics, 
much of which had not yet become a part of the British 
university curriculum.

William, age 10, matriculated at the University of 
Glasgow in 1834. There he was introduced to the advanced 
and controversial thinking of Jean-Baptiste-Joseph 
Fourier when one of the young student’s professors loaned 
him Fourier’s path-breaking book The Analytical Theory of 
Heat, which applied abstract mathematical techniques to 
the study of heat flow through any solid object. Thomson’s 
first two published articles, which appeared when he was 
16 and 17 years old, were a defense of Fourier’s work, which 
was then under attack by British scientists. Thomson was 
the first to promote the idea that Fourier’s mathematics, 
although applied solely to the flow of heat, could be used 
in the study of other forms of energy—whether fluids in 
motion or electricity flowing through a wire.

Thomson entered Cambridge in 1841 and took his B.A. 
degree four years later with high honours. In 1845 he was 
given a copy of George Green’s An Essay on the Application 
of Mathematical Analysis to the Theories of Electricity and 
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Magnetism. That work and Fourier’s book were the com-
ponents from which Thomson shaped his worldview and 
which helped him create his pioneering synthesis of the 
mathematical relationship between electricity and heat.

The chair of natural philosophy (later called physics) at 
the University of Glasgow fell vacant in 1846. Thomson’s 
father then mounted a carefully planned and energetic 
campaign to have his son named to the position, and at the 
age of 22 William was unanimously elected to it. Thomson 
remained at Glasgow for the rest of his career.

Thomson’s scientific work was guided by the convic-
tion that the various theories dealing with matter and 
energy were converging toward one great, unified theory. 
He pursued the goal of a unified theory even though he 
doubted that it was attainable in his lifetime—or ever. 
The basis for Thomson’s conviction was the cumula-
tive impression obtained from experiments showing the 
interrelation of forms of energy. By the middle of the 19th 
century it had been shown that magnetism and electricity, 
electromagnetism, and light were related, and Thomson 
had shown by mathematical analogy that there was a 
relationship between hydrodynamic phenomena and an 
electric current flowing through wires. James Prescott 
Joule also claimed that there was a relationship between 
mechanical motion and heat, and his idea became the 
basis for the science of thermodynamics.

In 1847 Thomson first heard Joule’s theory about the 
interconvertibility of heat and motion at a meeting of 
the British Association for the Advancement of Science. 
Joule’s theory went counter to the accepted knowledge of 
the time, which was that heat was an imponderable sub-
stance (caloric) and could not be, as Joule claimed, a form 
of motion. Thomson was open-minded enough to dis-
cuss with Joule the implications of the new theory. At the 
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time, though he could not accept Joule’s idea, Thomson 
was willing to reserve judgment, especially since the rela-
tion between heat and mechanical motion fit into his own 
view of the causes of force. By 1851 Thomson was able to 
give public recognition to Joule’s theory, along with a cau-
tious endorsement in a major mathematical treatise, “On 
the Dynamical Theory of Heat.” Thomson’s essay con-
tained his version of the second law of thermodynamics, 
which was a major step toward the unification of scien-
tific theories.

Thomson’s work on electricity and magnetism also 
began during his student days at Cambridge. When, 
much later, James Clerk Maxwell decided to undertake 
research in magnetism and electricity, he read all of 
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Thomson’s papers on the subject and adopted Thomson 
as his mentor. Maxwell—in his attempt to synthesize all 
that was known about the interrelationship of electricity, 
magnetism, and light—developed his monumental elec-
tromagnetic theory of light, probably the most significant 
achievement of 19th-century science. This theory had its 
genesis in Thomson’s work, and Maxwell readily acknowl-
edged his debt.

Thomson’s contributions to 19th-century science were 
many. He advanced the ideas of Michael Faraday, Fourier, 
Joule, and others. Using mathematical analysis, Thomson 
drew generalizations from experimental results. He for-
mulated the concept that was to be generalized into the 
dynamic theory of energy. He also collaborated with a 
number of leading scientists of the time, among them Sir 
George Gabriel Stokes, Hermann von Helmholtz, Peter 
Guthrie Tait, and Joule. With these partners, Thomson 
advanced the frontiers of science in several areas, par-
ticularly hydrodynamics. Furthermore, he originated the 
mathematical analogy between the flow of heat in solid 
bodies and the flow of electricity in conductors.

In an 1884 series of lectures at Johns Hopkins 
University on the state of scientific knowledge, Thomson 
wondered aloud about the failures of the wave theory of 
light to explain certain phenomena. His interest in the 
sea, roused aboard his yacht, the Lalla Rookh, resulted in 
a number of patents: a compass that was adopted by the 
British Admiralty; a form of analog computer for measur-
ing tides in a harbour and for calculating tide tables for 
any hour, past or future; and sounding equipment. He 
established a company to manufacture these items and a 
number of electrical measuring devices. Like his father, he 
published a textbook, Treatise on Natural Philosophy (1867), 
a work on physics coauthored with Tait that helped shape 
the thinking of a generation of physicists.
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Johannes Kepler
(b. Dec. 27, 1571, Weil der Stadt, Württemberg [Germany]—d.  
Nov. 15, 1630, Regensburg)

German astronomer Johannes Kepler discovered three 
major laws of planetary motion, conventionally designated 
as follows: (1) the planets move in elliptical orbits with the 
Sun at one focus; (2) the time necessary to traverse any arc 
of a planetary orbit is proportional to the area of the sec-
tor between the central body and that arc (the “area law”); 
and (3) there is an exact relationship between the squares 
of the planets’ periodic times and the cubes of the radii of 
their orbits (the “harmonic law”). Kepler himself did not 
call these discoveries “laws,” as would become customary 
after Isaac Newton derived them from a new and quite 
different set of general physical principles. He regarded 
them as celestial harmonies that reflected God’s design 
for the universe. Kepler’s discoveries turned Nicolaus 
Copernicus’s Sun-centred system into a dynamic universe, 
with the Sun actively pushing the planets around in non-
circular orbits. And it was Kepler’s notion of a physical 
astronomy that fixed a new problematic for other impor-
tant 17th-century world-system builders, the most famous 
of whom was Newton.

Kepler came from a very modest family in a small 
German town called Weil der Stadt and was one of the 
beneficiaries of the ducal scholarship; it made possible 
his attendance at the Lutheran Stift, or seminary, at the 
University of Tübingen, where he began his university 
studies in 1589. Kepler had planned to become a theologian.

His life did not work out quite as he expected. At 
Tübingen, the professor of mathematics was Michael 
Maestlin, one of the most talented astronomers in 
Germany and also, privately, one of the few adher-
ents of the Copernican theory in the late 16th century. 
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Maestlin lent Kepler his own heavily annotated copy of 
Copernicus’s 1543 book, De revolutionibus orbium coeles-
tium libri vi (“Six Books Concerning the Revolutions of 
the Heavenly Orbs”). Kepler quickly grasped the main 
ideas in Copernicus’s work and was tutored in its complex 
details by Maestlin.

The ideas that Kepler would pursue for the rest of 
his life were already present in his first work, Mysterium 
cosmographicum (1596; “Cosmographic Mystery”). In 1595, 
it struck him suddenly that the spacing among the six 
Copernican planets might be explained by circumscrib-
ing and inscribing each orbit with one of the five regular 
polyhedrons. Since Kepler knew Euclid’s proof that there 
can be five and only five such mathematical objects made 
up of congruent faces, he decided that such self-sufficiency 
must betoken a perfect idea. If now the ratios of the mean 
orbital distances agreed with the ratios obtained from cir-
cumscribing and inscribing the polyhedrons, then, Kepler 
felt confidently, he would have discovered the architecture 
of the universe. Remarkably, Kepler did find agreement 
within 5 percent, with the exception of Jupiter, at which, he 
said, “no one will wonder, considering such a great distance.”

Had Kepler’s investigation ended with the estab-
lishment of this architectonic principle, he might have 
continued to search for other sorts of harmonies; but 
his work would not have broken with the ancient Greek 
notion of uniform circular planetary motion. Kepler 
posited the hypothesis that a single force from the Sun 
accounts for the increasingly long periods of motion as 
the planetary distances increase. Kepler did not yet have 
an exact mathematical description for this relation, but 
he intuited a connection. A few years later he acquired 
William Gilbert’s groundbreaking book De Magnete, 
Magneticisque Corporibus, et de Magno Magnete Tellure (1600; 
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“On the Magnet, Magnetic Bodies, and the Great Magnet, 
the Earth”), and he immediately adopted Gilbert’s theory 
that Earth is a magnet. From this Kepler generalized to 
the view that the universe is a system of magnetic bod-
ies in which the rotating Sun sweeps the planets around. 
The solar force, attenuating inversely with distance in the 
planes of the orbits, was the major physical principle that 
guided Kepler’s struggle to construct a better orbital the-
ory for Mars.

But there was something more: the standard of 
empirical precision that Kepler held for himself was 
unprecedented for his time. The great Danish astronomer 
Tycho Brahe (1546–1601) had set himself the task of amass-
ing a completely new set of planetary observations—a 
reform of the foundations of practical astronomy. In 1600 
Tycho invited Kepler to join his court at Castle Benátky 
near Prague. When Tycho died suddenly in 1601, Kepler 
quickly succeeded him as imperial mathematician to 
Holy Roman emperor Rudolf II. In his lifetime Tycho had 
been stingy in sharing his observations. After his death, 
although there was a political struggle with Tycho’s heirs, 
Kepler was ultimately able to work with data accurate to 
within 2′ of arc. Without data of such precision to back 
up his solar hypothesis, Kepler would have been unable 
to discover his “first law” (1605), that Mars moves in an 
elliptical orbit. At one point, for example, as he tried to 
balance the demand for the correct heliocentric distances 
predicted by his physical model with a circular orbit, an 
error of 6′ or 8′ appeared in the octants (assuming a circle 
divided into eight equal parts). Kepler exclaimed, “Because 
these 8′ could not be ignored, they alone have led to a total 
reformation of astronomy.”

Finally, Kepler published the first textbook of Copernican 
astronomy, Epitome Astronomiae Copernicanae (1618–21; Epitome 
of Copernican Astronomy). The title mimicked Maestlin’s 
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traditional-style textbook, but the content could not have 
been more different. The Epitome began with the elements 
of astronomy but then gathered together all the argu-
ments for Copernicus’s theory and added to them Kepler’s 
harmonics and new rules of planetary motion. This work 
would prove to be the most important theoretical resource 
for the Copernicans in the 17th century. Galileo and 
Descartes were probably influenced by it. It was capped by 
the appearance of Tabulae Rudolphinae (1627; “Rudolphine 
Tables”). The Epitome and the Rudolphine Tables cast helio-
static astronomy and astrology into a form where detailed 
and extensive counterargument would force opponents 
to engage with its claims or silently ignore them to their 
disadvantage. Eventually Newton would simply take over 
Kepler’s laws while ignoring all reference to their original 
theological and philosophical framework.

Joseph-Louis Lagrange
(b. Jan. 25, 1736, Turin, Sardinia-Piedmont [Italy]—d. April 10, 1813, 
Paris, France)

Italian-French mathematician Joseph-Louis Lagrange, 
comte de l’Empire, made great contributions to number 
theory and to analytic and celestial mechanics. His most 
important book, Mécanique analytique (1788; “Analytic 
Mechanics”), was the basis for all later work in this field.

Lagrange was from a well-to-do family of French origin 
on his father’s side. His father was treasurer to the king 
of Sardinia and lost his fortune in speculation. Lagrange 
later said, “If I had been rich, I probably would not have 
devoted myself to mathematics.” His interest in math-
ematics was aroused by the chance reading of a memoir 
by the English astronomer Edmond Halley. At 19 (some 
say 16) he was teaching mathematics at the artillery school 
of Turin (he would later be instrumental in founding the 



7 The Britannica Guide to Heat, Force, and Motion 7

336

Turin Academy of Sciences). Lagrange’s early publica-
tions, on the propagation of sound and on the concept of 
maxima and minima, were well received; the Swiss math-
ematician Leonhard Euler praised Lagrange’s version of 
his theory of variations.

By 1761 Lagrange was already recognized as one of the 
greatest living mathematicians. In 1764 he was awarded 
a prize offered by the French Academy of Sciences for 
an essay on the libration of the Moon (i.e., the apparent 
oscillation that causes slight changes in position of lunar 
features on the face that the Moon presents to Earth). In 
this essay he used the equations that now bear his name. 
His success encouraged the academy in 1766 to propose, 
as a problem, the theory of the motions of the satellites of 
Jupiter. The prize was again awarded to Lagrange, and he 
won the same distinction in 1772, 1774, and 1778. In 1766, 
on the recommendation of Euler and the French math-
ematician Jean d’Alembert, Lagrange went to Berlin to fill 
a post at the academy vacated by Euler, at the invitation of 
Frederick the Great, who expressed the wish of “the great-
est king in Europe” to have “the greatest mathematician 
in Europe” at his court.

Lagrange stayed in Berlin until 1787. His productiv-
ity in those years was prodigious: he published papers on 
the three-body problem, which concerns the evolution of 
three particles mutually attracted according to Sir Isaac 
Newton’s law of gravity; differential equations; prime 
number theory; the fundamentally important number-
theoretic equation that has been identified (incorrectly 
by Euler) with John Pell’s name; probability; mechan-
ics; and the stability of the solar system. In his long 
paper “Réflexions sur la résolution algébrique des équa-
tions” (1770; “Reflections on the Algebraic Resolution of 
Equations”), Lagrange inaugurated a new period in alge-
bra and inspired Évariste Galois to his group theory.
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A kind and quiet man, living only for science, Lagrange 
had little to do with the factions and intrigues around the 
king. When Frederick died, Lagrange preferred to accept 
Louis XVI’s invitation to Paris. He was given apart-
ments in the Louvre, was continually honoured, and was 
treated with respect throughout the French Revolution. 
From the Louvre he published his classic Mécanique ana-
lytique, a lucid synthesis of the hundred years of research 
in mechanics since Newton, based on his own calculus of 
variations, in which certain properties of a mechanistic 
system are inferred by considering the changes in a sum (or 
integral) that are due to conceptually possible (or virtual) 
displacements from the path that describes the actual his-
tory of the system. This led to independent coordinates 
that are necessary for the specifications of a system of a 
finite number of particles, or “generalized coordinates.” It 
also led to the so-called Lagrangian equations for a classi-
cal mechanical system in which the kinetic energy of the 
system is related to the generalized coordinates, the corre-
sponding generalized forces, and the time. The book was 
typically analytic; he stated in his preface that “one cannot 
find any figures in this work.”

The French Revolution, which began in 1789, pressed 
Lagrange into work on the committee to reform the met-
ric system. When the great chemist Antoine-Laurent 
Lavoisier was guillotined, Lagrange commented, “It took 
them only an instant to cut off that head, and a hundred 
years may not produce another like it.” When the École 
Centrale des Travaux Publics (later renamed the École 
Polytechnique) was opened in 1794, he became, with 
Gaspard Monge, its leading professor of mathematics. 
His lectures were published as Théorie des fonctions analy-
tiques (1797; “Theory of Analytic Functions”) and Leçons 
sur le calcul des fonctions (1804; “Lessons on the Calculus of 
Functions”) and were the first textbooks on real analytic 
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functions. In them Lagrange tried to substitute an alge-
braic foundation for the existing and problematic analytic 
foundation of calculus—although ultimately unsuccessful, 
his criticisms spurred others to develop the modern ana-
lytic foundation. Lagrange also continued to work on his 
Mécanique analytique, but the new edition appeared only 
after his death.

Napoleon honoured the aging mathematician, making 
him a senator and a count of the empire, but he remained 
the quiet, unobtrusive academician—a venerable figure 
wrapped in his thoughts.

Horace Lamb
(b. Nov. 27, 1849, Stockport, near Manchester, Eng.—d. Dec. 4, 1934, 
Cambridge, Cambridgeshire)

Sir Horace Lamb was an English mathematician who con-
tributed to the field of mathematical physics.

In 1872 Lamb was elected a fellow and lecturer of Trinity 
College, Cambridge, and three years later he became pro-
fessor of mathematics at Adelaide University, Australia. 
He returned to England in 1885 to become professor of 
mathematics at Victoria University, Manchester (now the 
University of Manchester). Lamb wrote the Mathematical 
Theory of the Motion of Fluids (1878) which was enlarged and 
transformed into Hydrodynamics (1895); the latter was, for 
many years, the standard work on hydrodynamics. His 
many papers, principally on applied mathematics, detailed 
his researches on wave propagation, electrical induction, 
earthquake tremors, and the theory of tides and waves.

Lamb made valuable studies of airflow over aircraft 
surfaces for the Aeronautical Research Committee from 
1921 to 1927. He was made a fellow of the Royal Society of 
London in 1884 and was knighted in 1931. His other pub-
lications include Infinitesimal Calculus (1897), Dynamical 
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Theory of Sound (1910), Statics (1912), Dynamics (1914), and 
Higher Mechanics (1920).

Lamb was elected to the Royal Society in 1884, and 
was president of the London Mathematical Society (1902-
1904). He was awarded many honours and was knighted 
in 1931.

James Clerk Maxwell
(b. June 13, 1831, Edinburgh, Scot.—d. Nov. 5, 1879, Cambridge, 
Cambridgeshire, Eng.)

Scottish physicist James Clerk Maxwell was best known 
for his formulation of electromagnetic theory. He also 
contributed to the study of thermodynamics.

Maxwell was an only child. A dull and uninspired tutor 
was engaged who claimed that James was slow at learning, 
though in fact he displayed a lively curiosity at an early age 
and had a phenomenal memory. Fortunately the young 
Maxwell was rescued by his aunt Jane Cay and from 1841 
was sent to school at the Edinburgh Academy.

Maxwell’s interests ranged far beyond the school sylla-
bus, and he did not pay particular attention to examination 
performance. His first scientific paper, published when he 
was only 14 years old, described a generalized series of oval 
curves that could be traced with pins and thread by anal-
ogy with an ellipse.

At age 16 he entered the University of Edinburgh, 
where he read voraciously on all subjects and published two 
more scientific papers. In 1850 he went to the University 
of Cambridge, where his exceptional powers began to be 
recognized. His mathematics teacher, William Hopkins, 
was a well-known “wrangler maker” (a wrangler is one who 
takes first-class honours in the mathematics examina-
tions at Cambridge). Of Maxwell, Hopkins is reported to 
have said that he was the most extraordinary man he had 
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ever met and that it seemed impossible for him to think 
wrongly on any physical subject.

In 1854 Maxwell was second wrangler. He was elected to 
a fellowship at Trinity, but, because his father’s health was 
deteriorating, he wished to return to Scotland. In 1856 he 
was appointed to the professorship of natural philosophy 
at Marischal College, Aberdeen, but before the appoint-
ment was announced his father died. This was a great 
personal loss, for Maxwell had had a close relationship 
with his father. In 1860 he was appointed to the professor-
ship of natural philosophy at King’s College, London.

The next five years were undoubtedly the most fruitful 
of his career. During this period his two classic papers on 
the electromagnetic field were published, and his demon-
stration of colour photography took place. His theoretical 
and experimental work on the viscosity of gases also was 
undertaken during these years and culminated in a lecture 
to the Royal Society in 1866.

In 1865 Maxwell resigned his professorship at King’s 
College and retired to the family estate in Glenlair. Most 
of his energy during this period was devoted to writing his 
famous treatise on electricity and magnetism.

It was Maxwell’s research on electromagnetism that 
established him among the great scientists of history. In 
the preface to his Treatise on Electricity and Magnetism (1873), 
the best exposition of his theory, Maxwell stated that his 
major task was to convert Michael Faraday’s physical 
ideas into mathematical form. In attempting to illustrate 
Faraday’s law of induction (that a changing magnetic field 
gives rise to an induced electromagnetic field), Maxwell 
constructed a mechanical model. He found that the 
model gave rise to a corresponding “displacement current” 
in the dielectric medium, which could then be the seat 
of transverse waves. On calculating the velocity of these 
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waves, he found that they were very close to the velocity 
of light. Maxwell concluded that he could “scarcely avoid 
the inference that light consists in the transverse undula-
tions of the same medium which is the cause of electric 
and magnetic phenomena.”

In addition to his electromagnetic theory, Maxwell 
made major contributions to other areas of physics. The 
Maxwell relations of equality between different partial 
derivatives of thermodynamic functions are included in 
every standard textbook on thermodynamics. Though 
Maxwell did not originate the modern kinetic theory of 
gases, he was the first to apply the methods of probability 
and statistics in describing the properties of an assembly 
of molecules. Thus he was able to demonstrate that the 
velocities of molecules in a gas, previously assumed to be 
equal, must follow a statistical distribution (known sub-
sequently as the Maxwell-Boltzmann distribution law). In 
later papers Maxwell investigated the transport properties 
of gases—i.e., the effect of changes in temperature and 
pressure on viscosity, thermal conductivity, and diffusion.

Maxwell was far from being an abstruse theoretician. He 
was skillful in the design of experimental apparatus, as was 
shown early in his career during his investigations of colour 
vision. He devised a colour top with adjustable sectors of 
tinted paper to test the three-colour hypothesis of Thomas 
Young and later invented a colour box that made it possible 
to conduct experiments with spectral colours rather than 
pigments. His investigations of the colour theory led him 
to conclude that a colour photograph could be produced by 
photographing through filters of the three primary colours 
and then recombining the images. He demonstrated his 
supposition in a lecture to the Royal Institution of Great 
Britain in 1861 by projecting through filters a colour photo-
graph of a tartan ribbon that had been taken by this method.
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In addition to these well-known contributions, a 
number of ideas that Maxwell put forward quite casu-
ally have since led to developments of great significance. 
The hypothetical intelligent being known as Maxwell’s 
demon was a factor in the development of information 
theory. Maxwell’s analytic treatment of speed governors is 
generally regarded as the founding paper on cybernetics, 
and his “equal areas” construction provided an essential 
constituent of the theory of fluids developed by Johannes 
Diederik van der Waals. His work in geometrical optics 
led to the discovery of the fish-eye lens. From the start of 
his career to its finish, his papers are filled with novelty 
and interest. He also was a contributor to the ninth edi-
tion of Encyclopædia Britannica.

In 1871 Maxwell was elected to the new Cavendish 
professorship at Cambridge. He set about designing the 
Cavendish Laboratory and supervised its construction. 
Maxwell had few students, but they were of the highest 
calibre and included William D. Niven, Ambrose (later 
Sir Ambrose) Fleming, Richard Tetley Glazebrook, John 
Henry Poynting, and Arthur Schuster.

During the Easter term of 1879 Maxwell took ill on 
several occasions; he returned to Glenlair in June, but his 
condition did not improve. He died on November 5, after 
a short illness. Maxwell received no public honours and 
was buried quietly in a small churchyard in the village of 
Parton, in Scotland.

Isaac Newton
(b. Dec. 25, 1642 [Jan. 4, 1643, New Style], Woolsthorpe, 
Lincolnshire, Eng.—d. March 20 [March 31], 1727, London)

English physicist and mathematician Sir Isaac Newton 
was the culminating figure of the scientific revolution 
of the 17th century. His three laws of motion, the basic 
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principles of modern physics, resulted in the formulation 
of the law of universal gravitation.

A tiny and weak baby, Newton was not expected to 
survive his first day of life, much less 84 years. Deprived 
of a father before birth, he soon lost his mother when 
she remarried and her husband, the well-to-do minister 
Barnabas Smith, left young Isaac with his grandmother. 
For nine years, Isaac was effectively separated from his 
mother, and his pronounced psychotic tendencies have 
been ascribed to this traumatic event.

After his mother was widowed again, she determined 
that Newton should manage her now considerable prop-
erty, but he could not bring himself to concentrate on rural 
affairs—set to watch the cattle, he would curl up under a 
tree with a book. Fortunately, the mistake was recognized, 
and Newton was sent to the grammar school in Grantham 
to prepare for the university.

When Newton arrived in Cambridge in 1661, the sci-
entific revolution was well advanced. Yet the universities 
of Europe, including Cambridge, continued to be the 
strongholds of outmoded Aristotelianism, which rested 
on a geocentric view of the universe.

Newton began his higher education by immersing 
himself in Aristotle’s work. However, on his own, with-
out formal guidance, Newton had sought out the new 
philosophy and the new mathematics and made them his 
own, but he had confined the progress of his studies to 
his notebooks. Then, in 1665, the plague closed the uni-
versity, and for most of the following two years he was 
forced to stay at his home. During the plague years he 
examined the elements of circular motion and, apply-
ing his analysis to the Moon and the planets, derived the 
inverse square relation that the radially directed force 
acting on a planet decreases with the square of its dis-
tance from the Sun—which was later crucial to the law 
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of universal gravitation. The world heard nothing of this 
discovery.

About 1679, Newton began to ascribe puzzling 
phenomena—chemical affinities, the generation of heat 
in chemical reactions, surface tension in fluids, capillary 
action, and the cohesion of bodies—to attractions and 
repulsions between particles of matter. Newton originally 
applied the idea of attractions and repulsions solely to the 
range of terrestrial phenomena mentioned above. But late 
in 1679, another application was suggested in a letter from 
Robert Hooke, who was seeking to renew correspon-
dence. Hooke mentioned his analysis of planetary motion. 
Newton bluntly refused to correspond but, nevertheless, 
mentioned an experiment to demonstrate the rotation of 
Earth: let a body be dropped from a tower; because the 
tangential velocity at the top of the tower is greater than 
that at the foot, the body should fall slightly to the east. 
He sketched the path of fall as part of a spiral ending at 
the centre of Earth. This was a mistake, as Hooke pointed 
out; according to Hooke’s theory of planetary motion, the 
path should be elliptical, so that if Earth were split and 
separated to allow the body to fall, it would rise again to 
its original location. Newton corrected Hooke’s figure 
using the assumption that gravity is constant. Hooke then 
countered by replying that, although Newton’s figure was 
correct for constant gravity, his own assumption was that 
gravity decreases as the square of the distance. Several 
years later, this letter became the basis for Hooke’s charge 
of plagiarism. He was mistaken in the charge. His knowl-
edge of the inverse square relation rested only on intuitive 
grounds. Moreover, unknown to him, Newton had so 
derived the relation more than ten years earlier.

Nearly five years later, in August 1684, Newton was 
visited by the British astronomer Edmond Halley, who 
was also troubled by the problem of orbital dynamics. 
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Upon learning that Newton had solved the problem, he 
extracted Newton’s promise to send the demonstration. 
Three months later he received a short tract entitled  De 
Motu  (“On Motion”). Already Newton was at work improv-
ing and expanding it. In two and a half years, the tract  De 
Motu  grew into  philosophiae Naturalis principia Mathematica , 
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which is not only Newton’s masterpiece but also the fun-
damental work for the whole of modern science.

The mechanics of the Principia was an exact quan-
titative description of the motions of visible bodies. It 
rested on Newton’s three laws of motion: (1) that a body 
remains in its state of rest unless it is compelled to change 
that state by a force impressed on it; (2) that the change 
of motion (the change of velocity times the mass of the 
body) is proportional to the force impressed; (3) that to 
every action there is an equal and opposite reaction. The 
analysis of circular motion in terms of these laws yielded a 
formula of the quantitative measure, in terms of a body’s 
velocity and mass, of the centripetal force necessary to 
divert a body from its rectilinear path into a given circle. 
When Newton substituted this formula into Kepler’s 
third law, he found that the centripetal force holding the 
planets in their given orbits about the Sun must decrease 
with the square of the planets’ distances from the Sun. 
Because the satellites of Jupiter also obey Kepler’s third 
law, an inverse square centripetal force must also attract 
them to the centre of their orbits. Newton was able to 
show that a similar relation holds between Earth and its 
Moon. The distance of the Moon is approximately 60 
times the radius of Earth. Newton compared the distance 
by which the Moon, in its orbit of known size, is diverted 
from a tangential path in one second with the distance 
that a body at the surface of Earth falls from rest in one 
second. When the latter distance proved to be 3,600 (60 
× 60) times as great as the former, he concluded that one 
and the same force, governed by a single quantitative law, 
is operative in all three cases, and from the correlation of 
the Moon’s orbit with the measured acceleration of grav-
ity on the surface of Earth, he applied the ancient Latin 
word gravitas (literally, “heaviness” or “weight”) to it. The 
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law of universal gravitation states that every particle of 
matter in the universe attracts every other particle with 
a force that is proportional to the product of their masses 
and inversely proportional to the square of the distance 
between their centres.

The Principia immediately raised Newton to inter-
national prominence. In their continuing loyalty to the 
mechanical ideal, Continental scientists rejected the idea 
of action at a distance for a generation, but even in their 
rejection they could not withhold their admiration for the 
technical expertise revealed by the work. Young British 
scientists spontaneously recognized him as their model. 
Within a generation the limited number of salaried posi-
tions for scientists in England were monopolized by the 
young Newtonians of the next generation.

Ludwig Prandtl
(b. Feb. 4, 1875, Freising, Ger.—d. Aug. 15, 1953, Göttingen)

German physicist Ludwig Prandtl is considered to be the 
father of aerodynamics.

In 1901 Prandtl became professor of mechanics at the 
Technical Institute of Hannover, where he continued his 
earlier efforts to provide a sound theoretical basis for fluid 
mechanics. From 1904 to 1953, he served as professor of 
applied mechanics at the University of Göttingen, where 
he established a school of aerodynamics and hydrody-
namics that achieved world renown. In 1925 he became 
director of the Kaiser Wilhelm (later the Max Planck) 
Institute for Fluid Mechanics. His discovery (1904) of the 
boundary layer, which adjoins the surface of a body mov-
ing in air or water, led to an understanding of skin friction 
drag and of the way in which streamlining reduces the 
drag of airplane wings and other moving bodies. His work 
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on wing theory, which followed similar work by a British 
physicist, Frederick W. Lanchester, but was carried out 
independently, elucidated the process of airflow over air-
plane wings of finite span. That body of work is known as 
the Lanchester-Prandtl wing theory.

Prandtl made decisive advances in boundary-layer 
and wing theories, and his work became the fundamen-
tal material of aerodynamics. He was an early pioneer in 
streamlining airships, and his advocacy of monoplanes 
greatly advanced heavier-than-air aviation. He contrib-
uted the Prandtl-Glaubert rule for subsonic airflow to 
describe the compressibility effects of air at high speeds. 
In addition to his important advances in the theories of 
supersonic flow and turbulence, he made notable innova-
tions in the design of wind tunnels and other aerodynamic 
equipment. He also devised a soap-film analogy for ana-
lyzing the torsion forces of structures with noncircular 
cross sections.

William John 
Macquorn Rankine
(b. July 5, 1820, Edinburgh, Scot.—d. Dec. 24, 1872, Glasgow)

Scottish engineer and physicist William John Macquorn 
Rankine was one of the founders of the science of thermo-
dynamics, particularly in reference to steam-engine theory.

Trained as a civil engineer under Sir John Benjamin 
MacNeill, Rankine was appointed to the Queen Victoria 
chair of civil engineering and mechanics at the University 
of Glasgow (1855). One of Rankine’s first scientific works, 
a paper on fatigue in metals of railway axles (1843), led 
to new methods of construction. His Manual of Applied 
Mechanics (1858) was of considerable help to designing 
engineers and architects. His classic Manual of the Steam 
Engine and Other Prime Movers (1859) was the first attempt 
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at a systematic treatment of steam-engine theory. Rankine 
worked out a thermodynamic cycle of events (the so-called 
Rankine cycle) used as a standard for the performance of 
steam-power installations in which a condensable vapour 
provides the working fluid.

In soil mechanics his work on earth pressures and the 
stability of retaining walls was a notable advance, particu-
larly his paper “On the Thermodynamic Theory of Waves 
of Finite Longitudinal Disturbance.”

Benjamin Thompson
(b. March 26, 1753, Woburn, Mass. [U.S.]—d. Aug. 21, 1814,  
Auteuil, France)

Sir Benjamin Thompson, count von Rumford, was an 
American-born British physicist, government admin-
istrator, and a founder of the Royal Institution of Great 
Britain, London. His investigations of heat overturned 
the theory that heat is a liquid form of matter and estab-
lished the beginnings of the modern theory that heat is a 
form of motion.

In 1772 Thompson married a wealthy widow, Sarah 
Walker, and lived in Rumford (now Concord), N.H. Loyal 
to the British crown, he served as a spy after the outbreak 
of the American Revolution, but in 1776 he was forced 
to flee to London, leaving his wife and daughter behind. 
There he served for a time as a government clerk and 
undersecretary of state. As a lieutenant colonel he later 
commanded a British regiment in New York, but with the 
end of the war he resigned himself to exile.

Knighted by King George III in 1784, Thompson sub-
sequently received the crown’s permission to enter the 
Bavarian civil service and became war and police minis-
ter and grand chamberlain to the elector of Bavaria. He 
introduced numerous social reforms and brought James 
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Watt’s steam engine into common use. Thompson’s work 
resulted in improved fireplaces and chimneys, and among 
his inventions are a double boiler, a kitchen range, and a 
drip coffeepot. He also introduced the potato as a staple 
food. He was created a count of the Holy Roman Empire 
in 1791. Interest in gunpowder and weaponry stimulated 
his physical investigations, and in 1798 he began his stud-
ies of heat and friction. He reported some of his findings 
in the classic paper “An Experimental Enquiry Concerning 
the Source of the Heat which is Excited by Friction” (1798) 
and made one of the earliest measurements of the equiva-
lence of heat and mechanical energy.

Thompson returned to England in 1798 and con-
tinued his researches on heat. In 1799, with Sir Joseph 
Banks, he helped establish the Royal Institution of Great 
Britain and chose the British chemist Sir Humphry Davy 
as lecturer. He established the Rumford professorship 
at Harvard College as well as the Rumford medals of the 
Royal Society (London) and the American Academy of 
Arts and Sciences, Boston.
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abjure  To renounce.
adiabatic  Occurring without loss or gain of heat.
aneurysm  Blood-filled protrusion in the wall of a 

blood vessel (usually an artery, and particularly  
the aorta).

anisotropic  Exhibiting properties with different values 
when measured in different directions.

anomalous  Inconsistent with or deviating from what is 
usual, normal, or expected.

architectonic  Of, relating to, or according with the 
principles of architecture.

attenuating  To lessen the amount, force, magnitude, or 
value of.

cavitate  To form cavities or bubbles.
centripetal  Proceeding or acting in a direction toward a 

centre or axis.
cesium-133  An isotope of cesium used especially in 

atomic clocks and one of whose atomic transitions is 
used as a scientific time standard. (Cesium is a silver-
white soft ductile element of the alkali metal group 
that is the most electropositive element known and 
that is used especially in photoelectric cells.)

diatomic  Consisting of two atoms.
differential  The product of the derivative of a function 

of one variable by the increment of the independent 
variable.

dilatational  The state of being expanded.
dissipate  To cause to spread thin or scatter and gradu-

ally vanish.
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ducal  Of or relating to a duke or dukedom.
ductile  Capable of being fashioned into a new form.
enthalpy  The sum of the internal energy of a body or 

system and the product of its volume multiplied by 
the pressure.

entropy  Measure of a system’s energy that is unavailable 
for work; the degree of disorder or uncertainty in a 
system.

equinox  Either of two moments in the year when the 
Sun is exactly above the Equator and day and night 
are of equal length all over Earth.

foehn  A warm dry wind blowing down the side of a 
mountain.

geoid  The surface within or around the earth that is 
everywhere normal to the direction of gravity and 
coincides with mean sea level in the oceans.

hertz  A unit of frequency equal to one cycle per 
second—abbreviation Hz.

inertia  A property of matter by which it remains at rest 
or in uniform motion in the same straight line unless 
acted upon by some external force.

interferometer  An apparatus that utilizes the interfer-
ence of waves (as of light) for precise determinations 
(as of distance or wavelength).

isentropic  Of or relating to equal or constant entropy; 
especially: taking place without change of entropy.

isothermal  Of, relating to, or marked by equality of 
temperature.

isotropic  Exhibiting properties (as velocity of light 
transmission) with the same values when measured 
along axes in all directions.

joule  A unit of work or energy equal to the work done 
by a force of one newton acting through a distance of 
one metre.
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kilojoule  One thousand joules; also: a unit in nutrition 
equivalent to 0.239 calorie.

kinematic  A branch of dynamics that deals with 
aspects of motion apart from considerations of mass 
and force.

lamina  A thin plate or scale (plural laminae).
libration  An oscillation in the apparent aspect of a sec-

ondary body (as a planet or a satellite) as seen from 
the primary object around which it revolves.

macroscopic  Involving large units or elements.
meniscus  The curved upper surface of a column of liquid.
milligal  A unit of acceleration equivalent to 1/1000 gal.
monatomic  Consisting of one atom.
newton  That force necessary to provide a mass of 1 

kilogram with an acceleration of 1 metre per second 
per second.

orthogonal  Intersecting or lying at right angles.
oscillate  To swing backward and forward like a 

pendulum.
paradoxical  Seemingly contradictory or opposed to 

common sense, yet perhaps true.
parallelepiped  A 6-faced polyhedron all of whose faces 

are parallelograms lying in pairs of parallel planes.
parameter  Any of a set of physical properties whose 

values determine the characteristics or behaviour of 
something.

pascal  A unit of pressure in the metre-kilogram-second 
system equivalent to one newton per square metre.

pedantic  Unimaginative, pedestrian.
phlogiston  The hypothetical principle of fire regarded 

formerly as a material substance.
piezoelectricity  Electricity or electric polarity due to 

pressure especially in a crystalline substance  
(as quartz).
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polyatomic  Containing more than one and especially 
more than two atoms.

postulate  A hypothesis advanced as an essential pre-
supposition, condition, or premise of a train of 
reasoning.

prototype  A standard or typical example.
proximate  Very near, close.
quaternion  A generalized complex number that is com-

posed of a real number and a vector and that depends 
on one real and three imaginary units.

radian  A unit of plane angular measurement that is equal 
to the angle at the centre of a circle subtended by an 
arc whose length equals the radius or approximately 
57.3 degrees.

reactant  A substance that enters into and is altered in 
the course of a chemical reaction.

resonance  The enhancement of an atomic, nuclear, or 
particle reaction or a scattering event by excitation of 
internal motion in the system.

Roman legion  A soldier from ancient Rome, upon 
whose pace the mile is based.

scalar  A quantity (as mass or time) that has a magnitude 
describable by a real number and no direction.

seismology  Scientific discipline that is concerned with 
the study of earthquakes.

solicitor  One of the two types of practicing lawyers in 
England, the other being the barrister, who pleads 
cases before the court. The solicitors carry on most of 
the office work in law.

supersonic  Of, being, or relating to speeds from one to 
five times the speed of sound in air.

synodic  Relating to the period between two succes-
sive conjunctions of the same celestial bodies (as the 
moon and the sun).
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torque  A force that produces or tends to produce rota-
tion or torsion (twisting).

trajectory  The curve that a body (as a planet or comet 
in its orbit or a rocket) describes in space.

translational  Changing from one form to another.
undulatory  Moving in or resembling waves.
vector  A quantity that has magnitude and direction 

and that is commonly represented by a directed  
line segment whose length represents the magni-
tude and whose orientation in space represents  
the direction.

viscosity  The property of resistance to flow in a fluid 
or semifluid.

vorticity  A vector measure of local rotation in a 
fluid flow.
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