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Introduction

Physics is what it’s all about. What what’s all about? Everything. 
Physics is present in every action around you. And because physics is 

everywhere, it gets into some tricky places, which means it can be hard to 
follow. Studying physics can be even worse when you’re reading some dense 
textbook that’s hard to follow.

For most people who come into contact with physics, textbooks that land 
with 1,200-page whumps on desks are their only exposure to this amazingly 
rich and rewarding field. And what follows are weary struggles as the readers 
try to scale the awesome bulwarks of the massive tomes. Has no brave soul 
ever wanted to write a book on physics from the reader’s point of view? One 
soul is up to the task, and here I come with such a book.

About This Book
Physics I For Dummies, 2nd Edition, is all about physics from your point of 
view. I’ve taught physics to many thousands of students at the university level, 
and from that experience, I know that most students share one common trait: 
confusion. As in, “I’m confused about what I did to deserve such torture.”

This book is different. Instead of writing it from the physicist’s or professor’s 
point of view, I wrote it from the reader’s point of view. After thousands of 
one-on-one tutoring sessions, I know where the usual book presentation of 
this stuff starts to confuse people, and I’ve taken great care to jettison the 
top-down kinds of explanations. You don’t survive one-on-one tutoring ses-
sions for long unless you get to know what really makes sense to people — 
what they want to see from their points of view. In other words, I designed 
this book to be crammed full of the good stuff — and only the good stuff. You 
also discover unique ways of looking at problems that professors and teach-
ers use to make figuring out the problems simple.

Conventions Used in This Book
Some books have a dozen conventions that you need to know before you 
can start. Not this one. All you need to know is that variables and new terms 
appear in italics, like this, and that vectors — items that have both a magni-
tude and a direction — appear in bold. Web addresses appear in monofont.
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2 Physics I For Dummies, 2nd Edition 

What You’re Not to Read
I provide two elements in this book that you don’t have to read at all if you’re 
not interested in the inner workings of physics — sidebars and paragraphs 
marked with a Technical Stuff icon.

Sidebars provide a little more insight into what’s going on with a particular 
topic. They give you a little more of the story, such as how some famous 
physicist did what he did or an unexpected real-life application of the point 
under discussion. You can skip these sidebars, if you like, without missing 
any essential physics.

The Technical Stuff material gives you technical insights into a topic, but you 
don’t miss any information that you need to do a problem. Your guided tour 
of the world of physics won’t suffer at all.

Foolish Assumptions
In writing this book, I made some assumptions about you: 

 ✓ You have no or very little prior knowledge of physics.

 ✓ You have some math prowess. In particular, you know algebra and a 
little trig. You don’t need to be an algebra pro, but you should know how 
to move items from one side of an equation to another and how to solve 
for values. 

 ✓ You want physics concepts explained clearly and concisely, and you 
want examples that let you see those concepts in action.

How This Book Is Organized
The natural world is, well, big. And to handle it, physics breaks the world 
down into different parts. The following sections present the various parts 
you see in this book.

Part I: Putting Physics into Motion
You usually start your physics journey with motion, because describing 
motion — including acceleration, velocity, and displacement — isn’t very 
difficult. You have only a few equations to deal with, and you can get them 
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3 Introduction

under your belt in no time at all. Examining motion is a great way to under-
stand how physics works, both in measuring and in predicting what’s going on.

Part II: May the Forces 
of Physics Be with You
“For every action, there is an equal and opposite reaction.” Ever heard that 
one? The law (and its accompanying implications) comes up in this part. 
Without forces, the motion of objects wouldn’t change at all, which would 
make for a very boring world. Thanks to Sir Isaac Newton, physics is particu-
larly good at explaining what happens when you apply forces. You also take a 
look at the motion of fluids.

Part III: Manifesting the Energy to Work
If you apply a force to an object, moving it around and making it go faster, what 
are you really doing? You’re doing work, and that work becomes the kinetic 
energy of that object. Together, work and energy explain a whole lot about the 
whirling world around you, which is why I dedicate Part III to these topics. 

Part IV: Laying Down the 
Laws of Thermodynamics
What happens when you stick your finger in a candle flame and hold it there? 
You get a burned finger, that’s what. And you complete an experiment in heat 
transfer, one of the topics you see in Part IV, which is a roundup of thermo-
dynamics — the physics of heat and heat flow. You also see how heat-based 
engines work, how ice melts, how the ideal gas behaves, and more.

Part V: The Part of Tens
The Parts of Tens is made up of fast-paced lists of ten items each. You dis-
cover all kinds of amazing topics here, like some far-out physics — every-
thing from black holes and the Big Bang to wormholes in space and the 
smallest distance you can divide space into — as well as some famous 
 scientists whose contributions made a big difference in the field.
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Icons Used in This Book
You come across some icons that call attention to certain tidbits of 
information in this book. Here’s what the icons mean:

 This icon marks information to remember, such as an application of a law of 
physics or a particularly juicy equation.

 When you run across this icon, be prepared to find a shortcut in the math or 
info designed to help you understand a topic better.

 This icon highlights common mistakes people make when studying physics 
and solving problems.

 This icon means that the info is technical, insider stuff. You don’t have to 
read it if you don’t want to, but if you want to become a physics pro (and who 
doesn’t?), take a look.

Where to Go from Here
You can leaf through this book; you don’t have to read it from beginning to 
end. Like other For Dummies books, this one was designed to let you skip 
around as you like. This is your book, and physics is your oyster. You can 
jump into Chapter 1, which is where all the action starts; you can head to 
Chapter 2 for a discussion of the necessary algebra and trig you should 
know; or you can jump in anywhere you like if you know exactly what 
topic you want to study. And when you’re ready for more-advanced topics, 
from electromagnetism to relativity to nuclear phsics, you can check out 
Physics II For Dummies.
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Putting Physics 
into Motion
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In this part . . .

Part I is designed to give you an introduction to the 
ways of physics. Motion is one of the easiest physics 

topics to work with, and you can become a motion meister 
with just a few equations. This part also arms you with 
foundational info on math and measurement to show how 
physics equations describe the world around you. Just 
plug in the numbers, and you can make calculations that 
astound your peers.
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Chapter 1

Using Physics to Understand 
Your World

In This Chapter
▶ Recognizing the physics in your world

▶ Understanding motion

▶ Handling the force and energy around you

▶ Getting hot under the collar with thermodynamics

Physics is the study of the world and universe around you. Luckily, the 
behavior of the matter and energy — the stuff of this universe — is not 

completely unruly. Instead, it strictly obeys laws, which physicists are gradu-
ally revealing through the careful application of the scientific method, which 
relies on experimental evidence and sound rigorous reasoning. In this way, 
physicists have been uncovering more and more of the beauty that lies at the 
heart of the workings of the universe, from the infinitely small to the mind-
bogglingly large. 

Physics is an all-encompassing science. You can study various aspects of 
the natural world (in fact, the word physics is derived from the Greek word 
physika, which means “natural things”), and accordingly, you can study dif-
ferent fields in physics: the physics of objects in motion, of energy, of forces, 
of gases, of heat and temperature, and so on. You enjoy the study of all these 
topics and many more in this book. In this chapter, I give an overview of 
physics — what it is, what it deals with, and why mathematical calculations 
are important to it — to get you started.

What Physics Is All About
Many people are a little on edge when they think about physics. For them, 
the subject seems like some highbrow topic that pulls numbers and rules out 
of thin air. But the truth is that physics exists to help you make sense of the 
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8 Part I: Putting Physics into Motion 

world. Physics is a human adventure, undertaken on behalf of everyone, into 
the way the world works.

 At its root, physics is all about becoming aware of your world and using mental 
and mathematical models to explain it. The gist of physics is this: You start by 
making an observation, you create a model to simulate that situation, and then 
you add some math to fill it out — and voilà! You have the power to predict 
what will happen in the real world. All this math exists to help you see what 
happens and why.

In this section, I explain how real-world observations fit in with the math. 
The later sections take you on a brief tour of the key topics that comprise 
basic physics.

Observing the world
You can observe plenty going on around you in your complex world. Leaves 
are waving, the sun is shining, light bulbs are glowing, cars are moving, com-
puter printers are printing, people are walking and riding bikes, streams are 
flowing, and so on. When you stop to examine these actions, your natural 
curiosity gives rise to endless questions such as these:

 ✓ Why do I slip when I try to climb that snow bank?

 ✓ How distant are other stars, and how long would it take to get there?

 ✓ How does an airplane wing work?

 ✓ How can a thermos flask keep hot things warm and keep cold things cool?

 ✓ Why does an enormous cruise ship float when a paper clip sinks?

 ✓ Why does water roll around when it boils? 

Any law of physics comes from very close observation of the world, and 
any theory that a physicist comes up with has to stand up to experimental 
measurements. Physics goes beyond qualitative statements about physical 
things — “If I push the child on the swing harder, then she swings higher,” 
for example. With the laws of physics, you can predict precisely how high the 
child will swing. 

Making predictions
Physics is simply about modeling the world (although an alternative view-
point claims that physics actually uncovers the truth about the workings 
of the world; it doesn’t just model it). You can use these mental models to 
describe how the world works: how blocks slide down ramps, how stars form 
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9 Chapter 1: Using Physics to Understand Your World

and shine, how black holes trap light so it can’t escape, what happens when 
cars collide, and so on. 

When these models are first created, they sometimes have little to do with 
numbers; they just cover the gist of the situation. For example, a star is made 
up of this layer and then that layer, and as a result, this reaction takes place, 
followed by that one. And pow! — you have a star. As time goes on, those 
models become more numeric, which is where physics students sometimes 
start having problems. Physics class would be a cinch if you could simply 
say, “That cart is going to roll down that hill, and as it gets toward the 
bottom, it’s going to roll faster and faster.” But the story is more involved 
than that — not only can you say that the cart is going to go faster, but in 
exerting your mastery over the physical world, you can also say how much 
faster it’ll go.

There’s a delicate interplay between theory, formulated with math, and 
experimental measurements. Often experimental measurements not only 
verify theories but also suggest ideas for new theories, which in turn suggest 
new experiments. Both feed off each other and lead to further discovery.

Many people approaching this subject may think of math as something 
tedious and overly abstract. However, in the context of physics, math comes 
to life. A quadratic equation may seem a little dry, but when you’re using it 
to work out the correct angle to fire a rocket at for the perfect trajectory, you 
may find it more palatable! Chapter 2 explains all the math you need to know 
to perform basic physics calculations.

Reaping the rewards
So what are you going to get out of physics? If you want to pursue a career 
in physics or in an allied field such as engineering, the answer is clear: You’ll 
need this knowledge on an everyday basis. But even if you’re not planning 
to embark on a physics-related career, you can get a lot out of studying the 
subject. You can apply much of what you discover in an introductory physics 
course to real life:

 ✓ In a sense, all other sciences are based upon physics. For example, the 
structure and electrical properties of atoms determine chemical reac-
tions; therefore, all of chemistry is governed by the laws of physics. In 
fact, you could argue that everything ultimately boils down to the laws 
of physics! 

 ✓ Physics does deal with some pretty cool phenomena. Many videos 
of physical phenomena have gone viral on YouTube; take a look for 
yourself. Do a search for “non-Newtonian fluid,” and you can watch the 
creeping, oozing dance of a cornstarch/water mixture on a speaker cone.
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10 Part I: Putting Physics into Motion 

 ✓ More important than the applications of physics are the problem-solving 
skills it arms you with for approaching any kind of problem. Physics 
problems train you to stand back, consider your options for attacking 
the issue, select your method, and then solve the problem in the easiest 
way possible.

Observing Objects in Motion
Some of the most fundamental questions you may have about the world deal 
with objects in motion. Will that boulder rolling toward you slow down? How 
fast do you have to move to get out of its way? (Hang on just a moment while I 
get out my calculator. . . .) Motion was one of the earliest explorations of physics.

When you take a look around, you see that the motion of objects changes all 
the time. You see a motorcycle coming to a halt at a stop sign. You see a leaf 
falling and then stopping when it hits the ground, only to be picked up again 
by the wind. You see a pool ball hitting other balls in just the wrong way so 
that they all move without going where they should. Part I of this book handles 
objects in motion — from balls to railroad cars and most objects in between. 
In this section, I introduce motion in a straight line, rotational motion, and the 
cyclical motion of springs and pendulums.

Measuring speed, direction, 
velocity, and acceleration
Speeds are big with physicists — how fast is an object going? Thirty-five miles 
per hour not enough? How about 3,500? No problem when you’re dealing with 
physics. Besides speed, the direction an object is going is important if you 
want to describe its motion. If the home team is carrying a football down the 
field, you want to make sure they’re going in the right direction.

When you put speed and direction together, you get a vector — the velocity 
vector. Vectors are a very useful kind of quantity. Anything that has both size 
and direction is best described with a vector. Vectors are often represented 
as arrows, where the length of the arrow tells you the magnitude (size), 
and the direction of the arrow tells you the direction. For a velocity vector, 
the length corresponds to the speed of the object, and the arrow points in 
the direction the object is moving. (To find out how to use vectors, head to 
Chapter 4.)
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11 Chapter 1: Using Physics to Understand Your World

Everything has a velocity, so velocity is great for describing the world around 
you. Even if an object is at rest with respect to the ground, it’s still on the 
Earth, which itself has a velocity. (And if everything has a velocity, it’s no 
wonder physicists keep getting grant money — somebody has to measure 
all that motion.)

If you’ve ever ridden in a car, you know that velocity isn’t the end of the 
story. Cars don’t start off at 60 miles per hour; they have to accelerate until 
they get to that speed. Like velocity, acceleration has not only a magnitude 
but also a direction, so acceleration is a vector in physics as well. I cover 
speed, velocity, and acceleration in Chapter 3.

Round and round: Rotational motion
Plenty of things go round and round in the everyday world — CDs, DVDs, 
tires, pitchers’ arms, clothes in a dryer, roller coasters doing the loop, or 
just little kids spinning from joy in their first snowstorm. That being the case, 
physicists want to get in on the action with measurements. Just as you can 
have a car moving and accelerating in a straight line, its tires can rotate and 
accelerate in a circle.

Going from the linear world to the rotational world turns out to be easy, 
because there’s a handy physics analog (which is a fancy word for “equiva-
lent”) for everything linear in the rotational world. For example, distance 
traveled becomes angle turned. Speed in meters per second becomes angular 
speed in angle turned per second. Even linear acceleration becomes rota-
tional acceleration.

So when you know linear motion, rotational motion just falls in your lap. You 
use the same equations for both linear and angular motion — just different 
symbols with slightly different meanings (angle replaces distance, for exam-
ple). You’ll be looping the loop in no time. Chapter 7 has the details.

Springs and pendulums: 
Simple harmonic motion
Have you ever watched something bouncing up and down on a spring? That 
kind of motion puzzled physicists for a long time, but then they got down to 
work. They discovered that when you stretch a spring, the force isn’t con-
stant. The spring pulls back, and the more you pull the spring, the stronger 
it pulls back.
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So how does the force compare to the distance you pull a spring? The force 
is directly proportional to the amount you stretch the spring: Double the 
amount you stretch the spring, and you double the amount of force with 
which the spring pulls back.

Physicists were overjoyed — this was the kind of math they understood. 
Force proportional to distance? Great — you can put that relationship into an 
equation, and you can use that equation to describe the motion of the object 
tied to the spring. Physicists got results telling them just how objects tied to 
springs would move — another triumph of physics.

This particular triumph is called simple harmonic motion. It’s simple because 
force is directly proportional to distance, and so the result is simple. It’s 
harmonic because it repeats over and over again as the object on the spring 
bounces up and down. Physicists were able to derive simple equations that 
could tell you exactly where the object would be at any given time.

But that’s not all. Simple harmonic motion applies to many objects in the 
real world, not just things on springs. For example, pendulums also move in 
simple harmonic motion. Say you have a stone that’s swinging back and forth 
on a string. As long as the arc it swings through isn’t too high, the stone on 
a string is a pendulum; therefore, it follows simple harmonic motion. If you 
know how long the string is and how big of an angle the swing covers, you 
can predict where the stone will be at any time. I discuss simple harmonic 
motion in Chapter 13.

When Push Comes to Shove: Forces
Forces are a particular favorite in physics. You need forces to get motionless 
things moving — literally. Consider a stone on the ground. Many physicists 
(except, perhaps, geophysicists) would regard it suspiciously. It’s just sitting 
there. What fun is that? What can you measure about that? After physicists 
had measured its size and mass, they’d lose interest.

But kick the stone — that is, apply a force — and watch the physicists come 
running over. Now something is happening — the stone started at rest, 
but now it’s moving. You can find all kinds of numbers associated with this 
motion. For instance, you can connect the force you apply to something to 
its mass and get its acceleration. And physicists love numbers, because num-
bers help describe what’s happening in the physical world.

Physicists are experts in applying forces to objects and predicting the results. 
Got a refrigerator to push up a ramp and want to know if it’ll go? Ask a physi-
cist. Have a rocket to launch? Same thing. 
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Absorbing the energy around you
You don’t have to look far to find your next piece of physics. (You never do.) 
As you exit your house in the morning, for example, you may hear a crash 
up the street. Two cars have collided at a high speed, and locked together, 
they’re sliding your way. Thanks to physics (and more specifically, Part III 
of this book), you can make the necessary measurements and predictions to 
know exactly how far you have to move to get out of the way.

Having mastered the ideas of energy and momentum helps at such a time. 
You use these ideas to describe the motion of objects with mass. The energy 
of motion is called kinetic energy, and when you accelerate a car from 0 to 
60 miles per hour in 10 seconds, the car ends up with plenty of kinetic energy.

Where does the kinetic energy come from? It comes from work, which is 
what happens when a force moves an object through a distance. The energy 
can also come from potential energy, the energy stored in the object, which 
comes from the work done by a particular kind of force, such as gravity or 
electrical forces. Using gasoline, for example, an engine does work on the 
car to get it up to speed. But you need a force to accelerate something, and 
the way the engine does work on the car, surprisingly, is to use the force of 
friction with the road. Without friction, the wheels would simply spin, but 
because of a frictional force, the tires impart a force on the road. For every 
force between two objects, there is a reactive force of equal size but in the 
opposite direction. So the road also exerts a force on the car, which causes 
it to accelerate.

Or say that you’re moving a piano up the stairs of your new place. After 
you move up the stairs, your piano has potential energy, simply because 
you put in a lot of work against gravity to get the piano up those six floors. 
Unfortunately, your roommate hates pianos and drops yours out the window. 
What happens next? The potential energy of the piano due to its height in a 
gravitational field is converted into kinetic energy, the energy of motion. You 
decide to calculate the final speed of the piano as it hits the street. (Next, you 
calculate the bill for the piano, hand it to your roommate, and go back down-
stairs to get your drum set.)

That’s heavy: Pressures in fluids
Ever notice that when you’re 5,000 feet down in the ocean, the pressure is dif-
ferent from at the surface? Never been 5,000 feet beneath the ocean waves? 
Then you may have noticed the difference in pressure when you dive into a 
swimming pool. The deeper you go, the higher the pressure is because of 
the weight of the water above you exerting a force downward. Pressure is 
just force per area.
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Got a swimming pool? Any physicists worth their salt can tell you the 
approximate pressure at the bottom if you tell them how deep the pool is. 
When working with fluids, you have all kinds of other quantities to measure, 
such as the velocity of fluids through small holes, a fluid’s density, and so on. 
Once again, physics responds with grace under pressure. You can read about 
forces in fluids in Chapter 8.

Feeling Hot but Not Bothered: 
Thermodynamics

Heat and cold are parts of your everyday life. Ever take a look at the beads of 
condensation on a cold glass of water in a warm room? Water vapor in the air 
is being cooled when it touches the glass, and it condenses into liquid water. 
The condensing water vapor passes thermal energy to the glass, which passes 
thermal energy to the cold drink, which ends up getting warmer as a result.

Thermodynamics can tell you how much heat you’re radiating away on a cold 
day, how many bags of ice you need to cool a lava pit, and anything else 
that deals with heat energy. You can also take the study of thermodynamics 
beyond planet Earth. Why is space cold? In a normal environment, you radi-
ate heat to everything around you, and everything around you radiates heat 
back to you. But in space, your heat just radiates away, so you can freeze.

Radiating heat is just one of the three ways heat can be transferred. You can 
discover plenty more about heat, whether created by a heat source like the 
sun or by friction, through the topics in Part IV.
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Chapter 2

Reviewing Physics Measurement 
and Math Fundamentals

In This Chapter
▶ Mastering measurements (and keeping them straight as you solve equations)

▶ Accounting for significant digits and possible error

▶ Brushing up on basic algebra and trig concepts

Physics uses observations and measurements to make mental and 
mathematical models that explain how the world (and everything 

in it) works. This process is unfamiliar to most people, which is where 
this chapter comes in.

This chapter covers some basic skills you need for the coming chapters. 
I cover measurements and scientific notation, give you a refresher on basic 
algebra and trigonometry, and show you which digits in a number to pay 
attention to — and which ones to ignore. Continue on to build a physics foun-
dation, solid and unshakable, that you can rely on throughout this book.

Measuring the World around You 
and Making Predictions

Physics excels at measuring and predicting the physical world — after all, that’s 
why physics exists. Measuring is the starting point — part of observing the 
world so you can then model and predict it. You have several different measur-
ing sticks at your disposal: some for length, some for mass or weight, some for 
time, and so on. Mastering those measurements is part of mastering physics.
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Using systems of measurement
To keep like measurements together, physicists and mathematicians have 
grouped them into measurement systems. The most common measure-
ment system you see in introductory physics is the meter-kilogram-second 
(MKS) system, referred to as SI (short for Système International d’Unités, the 
International System of Units), but you may also come across the foot-pound-
second (FPS) system. Table 2-1 lists the primary units of measurement in the 
MKS system, along with their abbreviations.

Table 2-1 Units of Measurement in the MKS System

Measurement Unit Abbreviation

Length meter m

Mass kilogram kg

Time second s

Force newton N

Energy joule J

Pressure pascal Pa

Electric current ampere A

Magnetic flux density tesla T

Electric charge coulomb C

 Because different measurement systems use different standard lengths, you 
can get several different numbers for one part of a problem, depending on 
the measurement you use. For example, if you’re measuring the depth of the 
water in a swimming pool, you can use the MKS measurement system, which 
gives you an answer in meters, or the less common FPS system, in which 
case you determine the depth of the water in feet. The point? When working 
with equations, stick with the same measurement system all the way through 
the problem. If you don’t, your answer will be a meaningless hodgepodge, 
because you’re switching measuring sticks for multiple items as you try to 
arrive at a single answer. Mixing up the measurements causes problems — 
 imagine baking a cake where the recipe calls for 2 cups of flour, but you use 
2 liters instead.
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From meters to inches and back again: 
Converting between units
Physicists use various measurement systems to record numbers from their 
observations. But what happens when you have to convert between those 
systems? Physics problems sometimes try to trip you up here, giving you the 
data you need in mixed units: centimeters for this measurement but meters 
for that measurement — and maybe even mixing in inches as well. Don’t be 
fooled. You have to convert everything to the same measurement system 
before you can proceed. How do you convert in the easiest possible way? 
You use conversion factors, which I explain in this section.

Using conversion factors
 To convert between measurements in different measuring systems, you can 

multiply by a conversion factor. A conversion factor is a ratio that, when you 
multiply it by the item you’re converting, cancels out the units you don’t want 
and leaves those that you do. The conversion factor must equal 1.

Here’s how it works: For every relation between units — for example, 
24 hours = 1 day — you can make a fraction that has the value of 1. If, for 
example, you divide both sides of the equation 24 hours = 1 day by 1 day, 
you get

Suppose you want to convert 3 days to hours. You can just multiply your 
time by the preceding fraction. Doing so doesn’t change the value of the time 
because you’re multiplying by 1. You can see that the unit of days cancels out, 
leaving you with a number of hours:

 Words such as days, seconds, and meters act like the variables x and y in that if 
they’re present in both the numerator and the denominator, they cancel each 
other out.
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To convert the other way — hours into days, in this example — you simply 
use the same original relation, 24 hours = 1 day, but this time divide both 
sides by 24 hours to get

Then multiply by this fraction to cancel the units from the bottom, which 
leaves you with the units on the top. 

Consider the following problem. Passing the state line, you note that you’ve 
gone 4,680 miles in exactly three days. Very impressive. If you went at a con-
stant speed, how fast were you going? Speed is just as you may expect — 
distance divided by time. So you calculate your speed as follows:

Your answer, however, isn’t exactly in a standard unit of measure. You have 
a result in miles per day, which you write as miles/day. To calculate miles per 
hour, you need a conversion factor that knocks days out of the denominator 
and leaves hours in its place, so you multiply by days/hour and cancel out days:

Your conversion factor is days/hour. When you multiply by the conversion 
factor, your work looks like this:

Note that because there are 24 hours in a day, the conversion factor 
equals exactly 1, as all conversion factors must. So when you multiply 1,560 
miles/day by this conversion factor, you’re not changing anything — all 
you’re doing is multiplying by 1.

When you cancel out days and multiply across the fractions, you get the 
answer you’ve been searching for:

So your average speed is 65 miles per hour, which is pretty fast considering 
that this problem assumes you’ve been driving continuously for three days.
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You don’t have to use a conversion factor; if you instinctively know that 
you need to divide by 24 to convert from miles per day to miles per hour, 
so much the better. But if you’re ever in doubt, use a conversion factor 
and write out the calculations, because taking the long road is far better 
than making a mistake. I’ve seen far too many people get everything in a 
problem right except for this kind of simple conversion.

Eliminating Some Zeros: Using 
Scientific Notation

Physicists have a way of getting their minds into the darndest places, and 
those places often involve really big or really small numbers. Physics has a 
way of dealing with very large and very small numbers; to help reduce clutter 
and make them easier to digest, it uses scientific notation.

Looking at the units when numbers 
make your head spin

Want an inside trick that teachers and instruc-
tors often use to solve physics problems? Pay 
attention to the units you’re working with. I’ve 
had thousands of one-on-one problem-solving 
sessions with students in which we worked on 
homework problems, and I can tell you that this 
is a trick that instructors use all the time.

As a simple example, say you’re given a dis-
tance and a time, and you have to find a speed. 
You can cut through the wording of the problem 
immediately because you know that distance 
(for example, meters) divided by time (for exam-
ple, seconds) gives you speed (meters/second). 
Multiplication and division are reflected in the 
units. So, for example, because a rate like speed 
is given as a distance divided by a time, the 
units (in MKS) are meters/second. As another 
example, a quantity called momentum is given 

by velocity (meters/second) multiplied by mass 
(kilograms); it has units of kg·m/s. 

As the problems get more complex, however, 
more items are involved — say, for example, 
a mass, a distance, a time, and so on. You find 
yourself glancing over the words of a problem 
to pick out the numeric values and their units. 
Have to find an amount of energy? Energy is 
mass times distance squared over time squared, 
so if you can identify these items in the question, 
you know how they’re going to fit into the solu-
tion and you won’t get lost in the numbers.

The upshot is that units are your friends. They 
give you an easy way to make sure you’re 
headed toward the answer you want. So when 
you feel too wrapped up in the numbers, check 
the units to make sure you’re on the right path. 
But remember: You still need to make sure 
you’re using the right equations! 

06_9780470903247-ch02.indd   1906_9780470903247-ch02.indd   19 5/26/11   11:25 PM5/26/11   11:25 PM
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 In scientific notation, you write a number as a decimal (with only one digit 
before the decimal point) multiplied by a power of ten. The power of ten 
(10 with an exponent) expresses the number of zeroes. To get the right power 
of ten for a vary large number, count all the places in front of the decimal 
point, from right to left, up to the place just to the right of the first digit (you 
don’t include the first digit because you leave it in front of the decimal point 
in the result).

For example, say you’re dealing with the average distance between the sun 
and Pluto, which is about 5,890,000,000,000 meters. You have a lot of meters 
on your hands, accompanied by a lot of zeroes. You can write the distance 
between the sun and Pluto as follows:

5,890,000,000,000 meters = 5.89 × 1012 meters

The exponent is 12 because you count 12 places between the end of 
5,890,000,000,000 (where a decimal would appear in the whole number) and 
the decimal’s new place after the 5.

Scientific notation also works for very small numbers, such as the one that 
follows, where the power of ten is negative. You count the number of places, 
moving left to right, from the decimal point to just after the first nonzero digit 
(again leaving the result with just one digit in front of the decimal):

 0.0000000000000000005339 meters = 5.339 × 10–19 meters 

Using unit prefixes
Scientists have come up with a handy nota-
tion that helps take care of variables that have 
very large or very small values in their standard 
units. Say you’re measuring the thickness of 
a human hair and find it to be 0.00002 meters 
thick. You could use scientific notation to write 
this as 2 × 10–5 meters (20 × 10–6 meters), or you 
could use the unit prefix μ, which stands for 
micro: 20 μm. When you put μ in front of any 
unit, it represents 10–6 times that unit. 

A more familiar unit prefix is k, as in kilo, which 
represents 103 times the unit. For example 
the kilometer, km, is 103 meters, which equals 

1,000 meters. The following table shows other 
common unit prefixes that you may see.

Unit Prefix Exponent

mega (M) 106 

kilo (k) 103 

centi (c) 10–2 

milli (m) 10–3

micro (μ) 10–6

nano (n) 10–9

pico (p) 10–12
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 If the number you’re working with is larger than ten, you have a positive 
exponent in scientific notation; if it’s smaller than one, you have a negative 
exponent. As you can see, handling super large or super small numbers 
with scientific notation is easier than writing them all out, which is why 
calculators come with this kind of functionality already built in.

Here’s a simple example: How does the number 1,000 look in scientific 
notation? You’d like to write 1,000 as 1.0 times ten to a power, but what is 
the power? You’d have to move the decimal point of 1.0 three places to 
the right to get 1,000, so the power is three:

1,000 = 1.0 × 103

Checking the Accuracy and 
Precision of Measurements

Accuracy and precision are important when making (and analyzing) measure-
ments in physics. You can’t imply that your measurement is more precise 
than you know it to be by adding too many significant digits, and you have to 
account for the possibility of error in your measurement system by adding a ± 
when necessary. This section delves deeper into the topics of significant digits, 
precision, and accuracy.

Knowing which digits are significant
This section is all about how to properly account for the known precision of the 
measurements and carry that through the calculations, how to represent num-
bers in a way that is consistent with their known precision, and what to do with 
calculations that involve measurements with different levels of precision.

Finding the number of significant digits
In a measurement, significant digits (or significant figures) are those that were 
actually measured. Say you measure a distance with your ruler, which has mil-
limeter markings. You can get a measurement of 10.42 centimeters, which has 
four significant digits (you estimate the distance between markings to get the 
last digit). But if you have a very precise micrometer gauge, then you can mea-
sure the distance to within one-hundredth of that, so you may measure the 
same thing to be 10.4213 centimeters, which has six significant digits.
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By convention, zeroes that simply fill out values down to (or up to) the 
decimal point aren’t considered significant. When you see a number given 
as 3,600, you know the the 3 and 6 are included because they’re significant. 
However, knowing which, if any, of the zeros are significant can be tricky.

 The best way to write a number so that you leave no doubt about how many 
significant digits there are is to use scientific notation. For example, if you 
read of a measurement of 1,000 meters, you don’t know if there are one, two, 
three, or four significant figures. But if it were written as 1.0 × 103 meters, 
you would know that there are two significant figures. If the measurement 
were written as 1.000 × 103 meters, then you would know that there are four 
significant figures.

Rounding answers to the correct number of digits
When you do calculations, you often need to round your answer to the cor-
rect number of significant digits. If you include any more digits, you claim a 
precision that you don’t really have and haven’t measured.

For example, if someone tells you that a rocket traveled 10.0 meters in 7.0 sec-
onds, the person is telling you that the distance is known to three significant 
digits and the seconds are known to two significant digits (the number of digits 
in each of the measurements). If you want to find the rocket’s speed, you can 
whip out a calculator and divide 10.0 meters by 7.0 seconds to come up with 
1.428571429 meters per second, which looks like a very precise measurement 
indeed. But the result is too precise — if you know your measurements to only 
two or three significant digits, you can’t say you know the answer to ten signifi-
cant digits. Claiming as such would be like taking a meter stick, reading down 
to the nearest millimeter, and then writing down an answer to the nearest ten-
millionth of a millimeter. You need to round your answer.

 The rules for determining the correct number of significant digits after doing 
calculations are as follows:

 ✓ When you multiply or divide numbers: The result has the same number 
of significant digits as the original number that has the fewest significant 
digits. In the case of the rocket, where you need to divide, the result 
should have only two significant digits (the number of significant digits 
in 7.0). The best you can say is that the rocket is traveling at 1.4 meters 
per second, which is 1.428571429 rounded to one decimal place.

 ✓ When you add or subtract numbers: Line up the decimal points; the 
last significant digit in the result corresponds to the right-most column 
where all numbers still have significant digits. If you have to add 3.6, 14, 
and 6.33, you’d write the answer to the nearest whole number — the 14 
has no significant digits after the decimal place, so the answer shouldn’t, 
either. You can see what I mean by taking a look for yourself:
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  When you round the answer to the correct number of significant digits, 
your answer is 24.

 When you round a number, look at the digit to the right of the place you’re 
rounding to. If that right-hand digit is 5 or greater, round up. If it’s 4 or less, 
round down. For example, you round 1.428 up to 1.43 and 1.42 down to 1.4.

Estimating accuracy
Physicists don’t always rely on significant digits when recording measure-
ments. Sometimes, you see measurements that use plus-or-minus signs to 
indicate possible error in measurement, as in the following:

5.36 ± 0.05 meters

The ± part (0.05 meters in the preceding example) is the physicist’s estimate 
of the possible error in the measurement, so the physicist is saying that 
the actual value is between 5.36 + 0.05 (that is, 5.41) meters and 5.36 – 0.05 
(that is, 5.31 meters), inclusive. Note that the possible error isn’t the amount 
your measurement differs from the “right” answer; it’s an indication of how 
precisely your apparatus can measure — in other words, how reliable your 
results are as a measurement.

Arming Yourself with Basic Algebra
Physics deals with plenty of equations, and to be able to handle them, you 
should know how to move the variables in them around. Note that algebra 
doesn’t just allow you to plug in numbers and find values of different variables; 
it also lets you rearrange equations so you can make substitutions in other 
equations, and these new equations show different physics concepts. If you 
can follow along with the derivation of a formula in a physics book, you can get 
a better understanding of why the world works the way it does. That’s pretty 
important stuff! Time to travel back to basic algebra for a quick refresher.
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You need to be able to isolate different variables. For instance, the following 
equation tells you the distance, s, that an object travels if it starts from rest 
and accelerates at rate of a for a time, t:

Now suppose the problem actually tells you the time the object is in motion 
and the distance it travels and asks you to calculate the object’s acceleration. 
By rearranging the equation algebraically, you can solve for the acceleration:

In this case, you’ve multiplied both sides by 2 and divided both sides by t2 to 
isolate the acceleration, a, on one side of the equation.

What if you have to solve for the time, t? By moving the number and variables 
around, you get the following equation:

Do you need to memorize all three of these variations on the same equation? 
Certainly not. You just memorize one equation that relates these three 
items — distance, acceleration, and time — and then rearrange the equa-
tion as needed. (If you need a review of algebra, get a copy of Algebra I For 
Dummies by Mary Jane Sterling [Wiley].)

Tackling a Little Trig
You need to know a little trigonometry, including the sine, cosine, and tan-
gent functions, for physics problems. To find these values, start with a simple 
right triangle. Take a look at Figure 2-1, which displays a right triangle in all 
its glory, complete with labels I’ve provided for the sake of explanation. Note 
in particular the angle θ, which appears between one of the triangle’s legs 
and the hypotenuse (the longest side, which is opposite the right angle). 
The side y is opposite θ, and the side x is adjacent to θ.

 

Figure 2-1: 
A labeled 

triangle that 
you can use 

to find trig 
values.

 

r

x

y

θ
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 To find the trigonometric values of the triangle in Figure 2-1, you divide one 
side by another. Here are the definitions of sine, cosine, and tangent:

 ✓ 

 ✓ 

 ✓ 

If you’re given the measure of one angle and one side of the triangle, you can 
find all the other sides. Here are some other forms of the trig relationships — 
they’ll probably become distressingly familiar before you finish any physics 
course, but you don’t need to memorize them. If you know the preceding sine, 
cosine, and tangent equations, you can derive the following ones as needed:

 ✓ 

 ✓ 

 ✓ 

To find the angle θ, you can go backward with the inverse sine, cosine, and 
tangent, which are written as sin–1, cos–1, and tan–1. Basically, if you input the 
sine of an angle into the sin–1 equation, you end up with the measure of the 
angle itself. Here are the inverses for the triangle in Figure 2-1:

 ✓ 

 ✓ 

 ✓ 

If you need a more in-depth refresher, check out Trigonometry For Dummies, 
by Mary Jane Sterling (Wiley).

Interpreting Equations 
as Real-World Ideas

After teaching physics to college students for many years, I’m very familiar 
with one of the biggest problems they face — getting lost in, and being intimi-
dated by, the math.
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 Always keep in mind that the real world comes first and the math comes later. 
When you face a physics problem, make sure you don’t get lost in the math; 
keep a global perspective about what’s going on in the problem, because 
doing so helps you stay in control.

In physics, the ideas and observations of the physical world are the things 
that are important. Math operations are really only a simplified language for 
accurately describing what is going on. For example, here’s a simple equation 
for speed:

In this equation, v is the speed, s is the distance, and t is the time. You can 
examine this equation’s terms to see how this equation embodies simple 
common-sense notions of speed. Say that you travel a larger distance in the 
same amount of time. In that case, the right side of the equation must be 
larger, which means that your speed, on the left, is also greater. If you travel 
the same distance but it takes you more time, then the right side of this equa-
tion becomes smaller, which means that your speed is lower. The relation-
ship between all the different components makes sense. 

You can think of all the equations you come across in a similar way to make 
sure they make sense in the real world. If your equation behaves in a way 
that doesn’t make physical sense, then you know that something must be 
wrong with the equation. 

Bottom line: In physics, math is your friend. You don’t need to get lost in it. 
Instead, you use it to formulate the problem and help guide you in its solu-
tion. Alone, each of these mathematical operations is very simple, but when 
you put them together, they’re very powerful.

Be a genius: Don’t focus on the math
Richard Feynman was a famous Nobel Prize 
winner in physics who had a reputation during 
the 1950s and ’60s of being an amazing genius. 
He later explained his method: He attached the 
problem at hand to a real-life scenario, creating 
a mental image, while others got caught in the 
math. When someone would show him a long 
derivation that had gone wrong, for example, 
he’d think of some physical phenomenon that 

the derivation was supposed to explain. As 
he followed along, he’d get to the point where 
he suddenly realized the derivation no longer 
matched what happened in the real world, 
and he’d say, “No, that’s the problem.” He was 
always right, which mystified people who, awe-
struck, took him for a supergenius. Want to be 
a supergenius? Do the same thing: Don’t let the 
math scare you.
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Chapter 3

Exploring the Need for Speed
In This Chapter
▶ Getting up to speed on displacement

▶ Dissecting different kinds of speed

▶ Going with acceleration

▶ Examining the link among acceleration, time, and displacement

▶ Connecting velocity, acceleration, and displacement

There you are in your Formula 1 racecar, speeding toward glory. You have 
the speed you need, and the pylons are whipping past on either side. 

You’re confident that you can win, and coming into the final turn, you’re far 
ahead. Or at least you think you are. Seems that another racer is also making 
a big effort, because you see a gleam of silver in your mirror. You get a better 
look and realize that you need to do something — last year’s winner is gain-
ing on you fast.

It’s a good thing you know all about velocity and acceleration. With such 
knowledge, you know just what to do: You floor the gas pedal, accelerating 
out of trouble. Your knowledge of velocity lets you handle the final curve 
with ease. The checkered flag is a blur as you cross the finish line in record 
time. Not bad. You can thank your understanding of the issues in this chap-
ter: displacement, velocity, and acceleration.

You already have an intuitive feeling for what I discuss in this chapter, or you 
wouldn’t be able to drive or even ride a bike. Displacement is about where 
you are, speed is about how fast you’re going, and anyone who’s ever been 
in a car knows about acceleration. These characteristics of motion concern 
people every day, and physics has made an organized study of them. This 
knowledge has helped people to plan roads, build spacecraft, organize traffic 
patterns, fly, track the motion of planets, predict the weather, and even get 
mad in slow-moving traffic jams. Understanding movement is a vital part of 
understanding physics, and that’s the topic of this chapter. Time to move on.
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Going the Distance with Displacement
When something moves from Point A to Point B, displacement takes 
place in physics terms. In plain English, displacement is a distance in a 
particular direction. 

 Like any other measurement in physics (except for certain angles), displace-
ment always has units — usually centimeters or meters. You may also use 
kilometers, inches, feet, miles, or even light-years (the distance light travels 
in one year, a whopper of a distance not fit for measuring with a meter 
stick: 5,865,696,000,000 miles, which is 9,460,800,000,000 kilometers or 
9,460,800,000,000,000 meters).

In this section, I cover position and displacement in one to three dimensions.

Understanding displacement and position
You find displacement by finding the distance between an object’s initial 
position and its final position. Say, for example, that you have a fine new golf 
ball that’s prone to rolling around, shown in Figure 3-1. This particular golf ball 
likes to roll around on top of a large measuring stick. You place the golf ball at 
the 0 position on the measuring stick, as you see in Figure 3-1, diagram A.

 

Figure 3-1: 
Examining 
displace-

ment with a 
golf ball.

 

A
meters−4 −3 −2 −1 0 1 2 3 4

B
meters−4 −3 −2 −1 0 1 2 3 4

C
meters−4 −3 −2 −1 0 1 2 3 4

The golf ball rolls over to a new point, 3 meters to the right, as you see in 
Figure 3-1, diagram B. The golf ball has moved, so displacement has taken 
place. In this case, the displacement is just 3 meters to the right. Its initial 
position was 0 meters, and its final position is at +3 meters. The displacement 
is 3 meters.
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 In physics terms, you often see displacement referred to as the variable s 
(don’t ask me why). 

Scientists, being who they are, like to go into even more detail. You often see 
the term s

i
, which describes initial position, (the i stands for initial). And you 

may see the term s
f
 used to describe final position.

In these terms, moving from diagram A to diagram B in Figure 3-1, s
i
 is at the 

0-meter mark and s
f
 is at +3 meters. The displacement, s, equals the final 

position minus the initial position:

 s = s
f
 – s

i

 = 3 m – 0 m = 3 m

 Displacements don’t have to be positive; they can be zero or negative as well. 
If the positive direction is to the right, then a negative displacement means 
that the object has moved to the left.

In diagram C, the restless golf ball has moved to a new location, which is 
measured as –4 meters on the measuring stick. The displacement is given by 
the difference between the initial and final position. If you want to know the 
displacement of the ball from its position in diagram B, take the initial posi-
tion of the ball to be s

i
 = 3 meters; then the displacement is given by

 s = s
f – s

i
 

 = –4 m – 3 m = –7 m

 When working on physics problems, you can choose to place the origin of 
your position-measuring system wherever is convenient. The measurement of 
the position of an object depends on where you choose to place your origin; 
however, displacement from an initial position s

i
 to a final position s

f  does not 
depend on the position of the origin because the displacement depends only 
on the difference between the positions, not the positions themselves.

Examining axes
Motion that takes place in the world isn’t always in one dimension. Motion 
can take place in two or three dimensions. And if you want to examine motion 
in two dimensions, you need two intersecting meter sticks (or number lines), 
called axes. You have a horizontal axis — the x-axis — and a vertical axis — the 
y-axis. (For three-dimensional problems, watch for a third axis — the z-axis — 
sticking straight up out of the paper.)
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Finding the distance
Take a look at Figure 3-2, where a golf ball moves around in two dimensions. 
The ball starts at the center of the graph and moves up to the right. In terms 
of the axes, the golf ball moves to +4 meters on the x-axis and +3 meters on 
the y-axis, which is represented as the point (4, 3); the x measurement comes 
first, followed by the y measurement: (x, y).

So what does this mean in terms of displacement? The change in the x posi-
tion, Δx (Δ, the Greek letter delta, means “change in”), is equal to the final 
x position minus the initial x position. If the golf ball starts at the center of 
the graph — the origin of the graph, location (0, 0) — you have a change 
in the x location of

 Δx = x
f
 – x 

i
 

 = 4 m – 0 m = 4 m

The change in the y location is

 Δy = y
f
 – y

i
 

 = 3 m – 0 m = 3 m

 

Figure 3-2: 
A ball 

moving 
in two 

dimensions.
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If you’re more interested in figuring out the magnitude (size) of the displace-
ment than in the changes in the x and y locations of the golf ball, that’s a 
different story. The question now becomes: How far is the golf ball from its 
starting point at the center of the graph?
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 Using the distance formula — which is just the Pythagorean theorem solved for 
the hypotenuse — you can find the magnitude of the displacement of the golf 
ball, which is the distance it travels from start to finish. The Pythagorean theo-
rem states that the sum of the squares of the legs of a right triangle (a2 + b2) is 
equal to the square on the hypotenuse (c2). Here, the legs of the triangle are 
Δx and Δy, and the hypotenuse is s. Here’s how to work the equation:

So in this case, the magnitude of the ball’s displacement is exactly 5 meters.

Determining direction
 You can find the direction of an object’s movement from the values of Δx 

and Δy. Because these are just the legs of a right triangle, you can use basic 
trigonometry to find the angle of the ball’s displacement from the x-axis. The 
tangent of this angle is simply given by 

Therefore, the angle itself is just the inverse tangent of that:

The ball in Figure 3-2 has moved at an angle of 37° from the x-axis.

Speed Specifics: What Is Speed, Anyway?
There’s more to the story of motion than just the actual movement. When 
displacement takes place, it happens in a certain amount of time. You may 
already know that speed is distance traveled per a certain amount of time:
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For example, if you travel distance s in a time t, your speed, v, is

 The variable v really stands for velocity, but true velocity also has a direc-
tion associated with it, whereas speed does not. For that reason, velocity is a 
vector (you usually see the velocity vector represented as v or . Vectors have 
both a magnitude (size) and a direction, so with velocity, you know not only 
how fast you’re going but also in what direction. Speed is only a magnitude (if 
you have a certain velocity vector, in fact, the speed is the magnitude of that 
vector), so you see it represented by the term v (not in bold). You can read 
more about velocity and displacement as vectors in Chapter 4.

 Just as you can measure displacement, you can measure the difference in time 
from the beginning to the end of the motion, and you usually see it written 
like this: Δt = t

f
 – t

i
. Technically speaking (physicists love to speak technically), 

velocity is the change in position (displacement) divided by the change in time, 
so you can also represent it like this, if, say, you’re moving along the x-axis:

Speed can take many forms, which you find out about in the following sections.

Reading the speedometer: 
Instantaneous speed
You already have an idea of what speed is; it’s what you measure on your 
car’s speedometer, right? When you’re tooling along, all you have to do to 
see your speed is look down at the speedometer. There you have it: 75 miles 
per hour. Hmm, better slow it down a little — 65 miles per hour now. You’re 
looking at your speed at this particular moment. In other words, you see your 
instantaneous speed.

 Instantaneous speed is an important term in understanding the physics 
of speed, so keep it in mind. If you’re going 65 mph right now, that’s your 
instantaneous speed. If you accelerate to 75 mph, that becomes your instanta-
neous speed. Instantaneous speed is your speed at a particular instant of time. 
Two seconds from now, your instantaneous speed may be totally different.
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Staying steady: Uniform speed
What if you keep driving 65 miles per hour forever? You achieve uniform 
speed in physics (also called constant speed). Uniform motion is the simplest 
speed variation to describe, because it never changes.

Uniform speed may be possible in the western portion of the United States, 
where the roads stay in straight lines for a long time and you don’t have to 
change your speed. But uniform speed is also possible when you drive around 
a circle, too. Imagine driving around a racetrack; your velocity would change 
(because of the constantly changing direction), but your speed could remain 
constant as long as you keep your gas pedal pressed down the same amount. 
I discuss uniform circular motion in Chapter 7, but in this chapter, I stick to 
motion in straight lines.

Shifting speeds: Nonuniform motion
Nonuniform motion varies over time; it’s the kind of speed you encounter 
more often in the real world. When you’re driving, for example, you change 
speed often, and your changes in speed come to life in an equation like this, 
where v

f
 is your final speed and v

i
 is your initial speed:

Δv = v
f
 – v

i

The last part of this chapter is all about acceleration, which occurs in 
 nonuniform motion. There, you see how changing speed is related to 
 acceleration — and how you can accelerate even without changing speed!

Busting out the stopwatch: Average speed
 Average speed is the total distance you travel divided by the total time it takes. 

Average speed is sometimes written as ; a bar over a variable means average 
in physics terms.

Say, for example, that you want to pound the pavement from New York City to 
Los Angeles to visit your uncle’s family, a distance of about 2,781 miles. If the 
trip takes you 4.000 days, what was your average speed? You divide the total 
distance by the change in time, so your average speed for the trip would be
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This solution divides miles by days, so you come up with 695.3 miles per day. 
Not exactly a standard unit of measurement — what’s that in miles per hour? 
To find it, you want to cancel days out of the equation and put in hours (see 
Chapter 2). Because a day is 24 hours, you can multiply this way (note that 
days cancels out, leaving miles over hours, or miles per hour):

That’s a better answer.

 You can relate total distance traveled, s, with average speed, , and time, t, 
like this:

Contrasting average and instantaneous speed
 Average speed differs from instantaneous speed, unless you’re traveling in 

uniform motion (in which case your speed never varies). In fact, because aver-
age speed is the total distance divided by the total time, it may be very differ-
ent from your instantaneous speed.

If you travel 2,781 miles in four days (a total of 96 hours), you go at an average 
speed of 28.97 miles per hour. That answer seems pretty slow, because when 
you’re driving, you’re used to going 65 miles per hour. You’ve calculated an 
average speed over the whole trip, obtained by dividing the total distance by 
the total trip time, which includes non-driving time. You may have stopped 
at a hotel several nights, and while you slept, your instantaneous speed was 
0 miles per hour; yet even at that moment, your overall average speed was 
still 28.97 miles per hour!

Distinguishing average speed and average velocity
There is a difference between average speed and average velocity. Say, for 
example, that while you were driving in Ohio on your cross-country trip, you 
wanted to make a detour to visit your sister in Michigan after you dropped 
off a hitchhiker in Indiana. Your travel path may have looked like the straight 
lines in Figure 3-3 — first 80 miles to Indiana and then 30 miles to Michigan.

If you drove at an average speed or a uniform speed of 55 miles per hour 
and you had to cover 80 + 30 = 110 miles, this trip took you 2.0 hours. But if 
you calculate the magnitude of the average velocity (by taking the distance 
between the starting point and the ending point, about 85 miles as the crow 
flies), you get

07_9780470903247-ch03.indd   3407_9780470903247-ch03.indd   34 5/26/11   11:25 PM5/26/11   11:25 PM



35 Chapter 3: Exploring the Need for Speed

 

Figure 3-3: 
A trip from

 Ohio to
 Michigan.

 

Michigan

Indiana

Ohio

80 miles

85 miles

30 miles

The direction of the average velocity is just the direction between the start 
and end points. But if you’re interested in your average speed along either 
of the two legs of the trip, you have to measure the time it takes for a leg and 
divide the length of that leg by that time to get the average speed.

To calculate the average speed over the whole trip, you look at the whole dis-
tance traveled, which is 80 + 30 = 110 miles, not just 85 miles. And 110 miles 
divided by 2.0 hours is 55 miles per hour; this is your average speed.

As another illustration of the difference between average speed and average 
velocity, consider the motion of the Earth around the sun. The Earth travels 
in its nearly circular orbit around the sun at an enormous average speed of 
something like 18 miles per second! However, if you consider one full revolu-
tion of the Earth, the Earth returns to its original position, relative to the sun, 
after one year. After one year, there’s no displacement relative to the sun, so 
the Earth’s average velocity over a year is zero, even though its average speed 
is enormous! 

 When considering motion, it’s not only speed that counts but also direction. 
That’s why velocity is important: It lets you record an object’s speed and its 
direction. Pairing speed with direction enables you to handle cases like cross-
country travel, where the direction can change.

Speeding Up (Or Down): Acceleration
Acceleration is a measure of how quickly your velocity changes. When you 
pass a parking lot’s exit and hear squealing tires, you know what’s coming 
next — someone is accelerating to cut you off. After he passes, he slows 
down right in front of you, forcing you to hit your brakes to slow down your-
self. Good thing you know all about physics.
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 You may think that, with all this speeding up and slowing down, you’d use 
terms like acceleration and deceleration. Well, physics has no use for the term 
deceleration, because deceleration is just a particular kind of acceleration — 
one in which speed reduces.

Like speed, acceleration takes many forms that affect your calculations in 
various physics situations. In different physics problems, you have to take 
into account the direction of the acceleration (whether the acceleration is 
positive or negative in a particular direction), whether it’s average or instan-
taneous, and whether it’s uniform or nonuniform. This section tells you more 
about acceleration and explores its various forms.

Defining acceleration
 In physics terms, acceleration, a, is the amount by which your velocity 

changes in a given amount of time, or

Given the initial and final velocities, v
i
 and v

f
, and the initial and final times over 

which your speed changes, t
i
 and t

f
, you can also write the equation like this:

Acceleration, like velocity, is actually a vector and is often written as a, in 
vector style (see Chapter 4). In other words, acceleration, like velocity but 
unlike speed, has a direction associated with it.

Determining the units of acceleration
You can calculate the units of acceleration easily enough by dividing velocity 
by time to get acceleration:

In terms of units, the equation looks like this:
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Distance per time squared? Don’t let that throw you. You end up with time 
squared in the denominator because you divide velocity by time. In other 
words, acceleration is the rate at which your velocity changes, because rates 
have time in the denominator. For acceleration, you see units of meters per 
second2, centimeters per second2, miles per second2, feet per second2, or 
even kilometers per hour2.

 It may be easier, for a given problem, to use units such as mph/s (miles per 
hour per second). This would be useful if the velocity in question had a mag-
nitude of something like several miles per hour that changed typically over a 
number of seconds.

Looking at positive and 
negative  acceleration
Just as for displacement and velocity, acceleration can be positive or nega-
tive. This section explains how positive and negative acceleration relate to 
changes in speed and direction.

Changing speed
The sign of the acceleration tells you whether you’re speeding up or slowing 
down (depending on which direction you’re traveling).

For example, say that you’re driving at 75 miles per hour, and you see those 
flashing red lights in the rearview mirror. You pull over, taking 20 seconds to 
come to a stop. The officer appears by your window and says, “You were going 
75 miles per hour in a 30-mile-per-hour zone.” What can you say in reply?

You can calculate your rate of acceleration as you pulled over, which, no 
doubt, would impress the officer — look at you and your law-abiding tenden-
cies! You whip out your calculator and begin entering your data. Remember 
that the acceleration is given in terms of the change in velocity divided by 
the change in time:

Plugging in the numbers, your calculations look like this:
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Your acceleration was 3.8 mph/s. But that can’t be right! You may already see 
the problem here; take a look at the original definition of acceleration:

Your final speed was 0 mph, and your original speed was 75 mph, so plugging 
in the numbers here gives you this acceleration:

In other words, –3.8 mph/s, not +3.8 mph/s — a big difference in terms of 
solving physics problems (and in terms of law enforcement). If you acceler-
ated at +3.8 mph/s rather than –3.8 mph/s , you’d end up going 150 mph at 
the end of 20 seconds, not 0 mph. And that probably wouldn’t make the cop 
very happy.

Now you have your acceleration. You can turn off your calculator and smile, 
saying, “Maybe I was going a little fast, officer, but I’m very law abiding. Why, 
when I heard your siren, I accelerated at –3.8 mph/s just in order to pull over 
promptly.” The policeman pulls out his calculator and does some quick cal-
culations. “Not bad,” he says, impressed. And you know you’re off the hook.

Accounting for direction

 

The sign of the acceleration depends on direction. If you slow down to a com-
plete stop in a car, for example, and your original velocity was positive and 
your final velocity was 0, then your acceleration is negative because a positive 
velocity came down to 0. However, if you slow down to a complete stop in a 
car and your original velocity was negative and your final velocity was 0, then 
your acceleration would be positive because a negative velocity increased to 0.

Looking at positive and negative acceleration
When you hear that acceleration is going on in an everyday setting, you typi-
cally think that means the speed is increasing. However, in physics, that isn’t 
always the case. An acceleration can cause speed to increase, decrease, and 
even stay the same! 

Acceleration tells you the rate at which the velocity is changing. Because the 
velocity is a vector, you have to consider the changes to its magnitude and 
direction. The acceleration can change the magnitude and/or the direction 
of the velocity. Speed is only the magnitude of the velocity. 

07_9780470903247-ch03.indd   3807_9780470903247-ch03.indd   38 5/26/11   11:25 PM5/26/11   11:25 PM



39 Chapter 3: Exploring the Need for Speed

Here’s a simple example that shows how a simple constant acceleration can 
cause the speed to increase and decrease in the course of an object’s motion.
Say you take a ball, throw it straight up in the air, and then catch it again. If 
you throw the ball upward with a speed of 9.8 m/s, the velocity has a magni-
tude of 9.8 m/s in the upward direction. Now the ball is under the influence 
of gravity, which, on the surface of the Earth, causes all free-falling objects 
to undergo a vertical acceleration of –9.8 m/s2. This acceleration is negative 
because its direction is vertically downward.

With this acceleration, what’s the velocity of the ball after 1.0 second ? Well, 
you know that

Rearrange this equation and plug in the numbers, and you find that the final 
velocity after 1.0 second is 0 meters/second: 

 v
f
 = v

i
 + a(t

f
 – t

i
) 

 = 9.8 m/s + (–9.8 m/s2 )(1.0 s) 

 = 0 m/s

After 1.0 second, the ball has zero velocity because it’s reached the top of its 
trajectory, just at the point where it’s about to fall back down again. So the 
acceleration has actually slowed down the ball because it was going in the 
direction opposite the velocity.

Now see what happens as the ball falls back down to Earth. The ball has zero 
velocity, but the acceleration due to gravity accelerates the ball downward 
at a rate of –9.8 m/s2. As the ball falls, it gathers speed before you catch it. 
What’s its final velocity as you catch it, given that its initial velocity at the 
top of its trajectory is zero? 

The time for the ball to fall back down to you is just the same as the time it 
took to reach the top of its trajectory, which is 1.0 second, so you can find 
the final velocity for this part of the ball’s motion with this calcuation:

 v
f
 = v

i
 + a(t

f
 – t

i
) 

 = 0 m/s + (–9.8 m/s2 )(1.0 s) 

 = –9.8 m/s

So the final velocity is 9.8 meters/second directed straight downward. The 
magnitude of this velocity — that is, the speed of the ball — is 9.8 meters/
second. The acceleration increases the speed of the ball as it falls because 
the acceleration is in the same direction as the velocity for this part of the 
ball’s trajectory.
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 When you work with physics problems, bear in mind that acceleration can 
speed up or slow down an object, depending on the direction of the accelera-
tion and the velocity of the object. Don’t simply assume that just because 
something is accelerating its speed must be increasing. (By the way, if you 
want to see an example of how an acceleration can leave the speed of an object 
unchanged, take a look at the circular motion topic covered in Chapter 7.)

Examining average and instantaneous 
acceleration
Just as you can examine average and instantaneous speeds and velocities, 
you can also examine average and instantaneous acceleration. Average 
acceleration is the ratio of the change in velocity to the change in time. You 
calculate average acceleration, also written as , by taking the final velocity, 
subtracting the initial velocity, and dividing the result by the total time (final 
time minus the initial time):

 At any given point, the acceleration you measure is the instantaneous accel-
eration, and that number can be different from the average acceleration. For 
example, when you first see red flashing police lights behind you, you may 
jam on the brakes, which gives you a big acceleration, in the direction 
opposite to which you’re moving (in everyday parlance, you’d say you just 
decelerated, but that term’s a no-no in physics circles). But you lighten up a 
little and coast to a stop, so the acceleration is smaller. The average accel-
eration, however, is a single value, derived by dividing the overall change in 
velocity by the overall time.

 Acceleration is the rate of change of velocity, not speed. If a velocity’s direc-
tion changes without a change in speed, this is also a kind of acceleration.

Taking off: Putting the acceleration 
 formula into practice
Here’s an acceleration example. As they strap you into the jet on the aircraft 
carrier deck, the mechanic says you need to take off at a speed of at least 
62.0 m/s. You’ll be catapulted at an acceleration of 31 m/s2. Is there going to 
be enough catapult to do the job? You ask how long the catapult is. “A hun-
dred meters,” says the mechanic, finishing strapping you in.
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Hmm, you think. Will an acceleration of 31 m/s2 over a distance of 100 meters 
do the trick? You take out your clipboard and ask yourself: How far must I be 
accelerated at 31 m/s2 to achieve a speed of 62 m/s?

First think of the distance that you need to be accelerated over as the size 
of the displacement from your initial position. To find this displacement, 
you can use the equation , where s is the displacement,  is the aver-
age velocity, and t is the time — which means you have to find the time over 
which you’re accelerated. For that, you can use the equation that relates 
change in velocity, Δv, acceleration a, and change in time, Δt: 

Solving for Δt gives you

Plugging in the numbers and solving gives you the change in time:

Okay, so it takes 2.0 seconds for you to reach a speed of 62 m/s if your rate 
of acceleration is 31 m/s2. Now you can use this equation to find the total 
distance you need to travel to get up to this speed; it is the size of the dis-
placement, which is given by , where , v

i
 = 0 m/s, and 

v
f
 = 62 m/s. So your equation is

Plugging in the numbers gives you

So it will take 62 meters of 31 m/s2 acceleration to get you to takeoff speed — 
and the catapult is 100 meters long. No problem. 
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Understanding uniform and 
nonuniform acceleration
Acceleration can be uniform or nonuniform. Nonuniform acceleration 
requires a change in acceleration. For example, when you’re driving, you 
encounter stop signs or stop lights often, and when you slow to a stop and 
then speed up again, you take part in nonuniform acceleration.

Other accelerations are very uniform (in other words, unchanging), such as 
the acceleration due to gravity near the surface of the Earth. This acceleration 
is 9.8 meters per second2 downward, toward the center of the Earth, and it 
doesn’t change (if it did, plenty of people would be pretty startled).

Relating Acceleration, Time, 
and Displacement

This chapter deals with four quantities of motion: acceleration, velocity, time, 
and displacement. You work the standard equation relating displacement and 
time to get velocity:

And you see the standard equation relating velocity and time to get 
 acceleration:

But both of these equations only go one level deep, relating velocity to dis-
placement and time and acceleration to velocity and time. What if you want 
to relate acceleration to displacement and time? This section shows you how 
you can cut velocity out of the equation.

 When you’re slinging around algebra, you may find it easier to write single 
quantities like v (to stand for Δv) rather than v

f
 – v

i
. You can usually turn v 

into v
f
 – v

i
 later if necessary.
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Not-so-distant relations: 
Deriving the formula
You relate acceleration, displacement, and time by messing around with the 
equations until you get what you want. First, note that displacement equals 
average velocity multiplied by time:

You have a starting point. But what’s the average velocity? If your accelera-
tion is constant, your velocity increases in a straight line from 0 to its final 
value, as Figure 3-4 shows.

 

Figure 3-4: 
Increasing 

velocity 
under 

constant 
acceleration.

 

Velocity

Time

Final Velocity

The average velocity is half the final velocity, and you know this because 
there’s constant acceleration. Your final velocity is v

f
 = at, so your average 

velocity is half this:

So far, so good. Now you can plug this average velocity into the  equa-
tion and get

 

And this becomes
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 You can also put in t
f
 – t

i
 rather than just plain t:

Congrats! You’ve worked out one of the most important equations you need 
to know when you work with physics problems relating acceleration, dis-
placement, time, and velocity.

Notice that when you derived this equation, you had an initial velocity of 
zero. What if you don’t start off at zero velocity, but you still want to relate 
accel eration, time, and displacement? What if you’re initially going 100 miles 
per hour? That initial velocity would certainly add to the final distance you 
go. Because distance equals speed multiplied by time, the equation looks 
like this (don’t forget that this assumes the acceleration is constant):

 You also see this written simply as the following (where t stands for Δt, the 
time over which the acceleration happened):

 

Calculating acceleration and distance
With the formula relating distance, acceleration, and time, you can find any of 
those values, given the other two. If you have an initial velocity, too, finding 
distance or acceleration isn’t any harder. In this section, I work through some 
physics problems to show you how these formulas work.

Finding acceleration
Given distance and time, you can find acceleration. Say you become a drag 
racer in order to analyze your acceleration down the dragway. After a test 
race, you know the distance you went — 402 meters, or about 0.25 miles 
(the magnitude of your displacement) — and you know the time it took — 
5.5 seconds. So what was your acceleration as you blasted down the track?

Well, you know how to relate displacement, acceleration, and time (see the 
preceding section), and that’s what you want — you always work the algebra 
so that you end up relating all the quantities you know to the one quantity 
you don’t know. In this case, you have
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(Keep in mind that in this case, your initial velocity is 0 — you’re not allowed 
to take a running start at the drag race!) You can rearrange this equation with 
a little algebra to solve for acceleration; just divide both sides by t2 and multi-
ply by 2 to get

Great. Plugging in the numbers, you get the following:

Okay, the acceleration is approximately 27 meters per second2. What’s that in 
more understandable terms? The acceleration due to gravity, g, is — 9.8 meters 
per second2, so this is about 2.7 g’s — you’d feel yourself pushed back into your 
seat with a force about 2.7 times your own weight.

Figuring out time and distance
Given a constant acceleration and the change in velocity, you can figure out 
both time and distance. For instance, imagine you’re a drag racer. Your accel-
eration is 26.6 meters per second2, and your final speed is 146.3 meters per 
second. Now find the total distance traveled. Got you, huh? “Not at all,” you 
say, supremely confident. “Just let me get my calculator.”

You know the acceleration and the final speed, and you want to know the 
total distance required to get to that speed. This problem looks like a puzzler 
because the equations in this chapter have involved time up to this point. But 
if you need the time, you can always solve for it. You know the final speed, v

f
, 

and the initial speed, v
i
 (which is zero), and you know the acceleration, a. 

Because v
f – v

i
 = at, you know that

Now you have the time. You still need the distance, and you can get it this way:
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The second term drops out because v
i
 = 0, so all you have to do is plug in 

the numbers:

In other words, the total distance traveled is 402 meters, or a quarter mile. 
Must be a quarter-mile racetrack.

Finding distance with initial velocity
Given initial velocity, time, and acceleration, you can find displacement. 
Here’s an example: There you are, the Tour de France hero, ready to give a 
demonstration of your bicycling skills. There will be a time trial of 8.0 sec-
onds. Your initial speed is 6.0 meters/second, and when the whistle blows, 
you accelerate at 2.0 m/s2 for the 8.0 seconds allowed. At the end of the time 
trial, how far will you have traveled?

You could use the relation s = (1/2)at2, except you don’t start off from zero 
speed — you’re already moving, so you should use the following:

In this case, a = 2.0 m/s2, t = 8.0 s, and v
i
 = 6.0 m/s, so you get the following:

You write the answer to two significant digits — 110 meters — because you 
know the time only to two significant digits (see Chapter 2 for info on round-
ing). In other words, you ride to victory in about 110 meters in 8.0 seconds. 
The crowd roars.
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Linking Velocity, Acceleration, 
and Displacement

Say you want to relate displacement, acceleration, and velocity without 
having to know the time. Here’s how it works. First, you solve the accelera-
tion formula for the time:

Because displacement is  and average velocity is  when 
the acceleration is constant, you can get the following equation:

Substituting for the time, t, you get

After doing the algebra and simplifying, you get

 Moving the 2a to the other side of the equation, you get an important equation 
of motion:

v
f
2 – v

i
2 = 2as 

Whew. If you can memorize this one, you can relate velocity, acceleration, and 
displacement. Put this equation to work — you see it often in physics problems.

Finding acceleration
There you are, getting into your Physics racer as the crowd cheers. It’s time for 
some hefty acceleration. You get out your clipboard. What acceleration would 
you need to end up at 100 miles per hour at the end of a 1.0-mile racetrack?
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Okay, you think. You need an equation that relates speed, acceleration, and 
displacement. It’s time for 

v
f
2 – v

i
2 = 2as

In this case, it’s even a little easier, because you know that the initial velocity is 
0 (v

i
 = 0), so you have

v
f
2 = 2as

Well, well, it looks like the problem is half-solved. Putting in the numbers 
gives you

 (100 mph)2 = 2a(1.0 mile)

Now solve for a:

Miles per hour2? What the heck kind of units are those? Change that to some-
thing more understandable, such as mph per second. To change one of 
the per-hour units to per-second, multiply by the conversion factor (see 
Chapter 2):

So your velocity would be increasing by only 1.4 mph every second — that’s 
not too outrageous — you’d feel a mild acceleration, that’s all.
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Solving for displacement
Now say that you’re at the end of the first mile and want to see how far you’d 
have to go — at the same acceleration — to get to 200 miles per hour. Once 
again, you need to relate velocity, acceleration, and displacement, so this 
equation is your baby:

v
f
2 = 2as

Here, you want to solve for s, the displacement, and you get this:

Great. Now for some numbers. In this case, v
f
 = 200 mph, v

i
 = 100 mph, and 

a = 5,000 miles/hour2, and you don’t know s at this point. To find s, plug your 
numbers into the equation you found for s to get

So it would take 3.0 additional miles to get you up to 200 mph.

Finding final velocity
Here’s one more example. Say you’re in your rocket ship, happily speeding 
along at some 3.25 kilometers per second (about 7,280 miles per hour) when 
you see a sign: Speed Zone 215 km Ahead — New Speed Limit: 3.0 km/s.
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You jam on the brakes (which are a retro rocket in the front of the rocket ship). 
The retro rocket is capable of accelerating your ship at –10.0 meters/second2.

It’s a tense moment. Will you get your speed down to below 3.0 kilometers 
per second in 215 kilometers of acceleration? Find out, using your old friend:

v
f
2 – v

i
2 = 2as

In this case, you want to solve for the final speed, which is

v
f
2 = 2as + v

i
2

where a = –10.0 m/s2, s = 215 km = 215,000 m, and v
i
 = 3.25 km/s = 3,250 m/s. 

Plugging in the data and solving for v
f
 gives you the following:

Whew, you think — 2.50 kilometers per second is well under the speed limit 
of 3.0 kilometes per second. You’re safe.

You can now consider yourself a motion master.
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Chapter 4

Following Directions: Motion in 
Two Dimensions

In This Chapter
▶ Mastering vector addition and subtraction

▶ Putting vectors into numerical coordinates

▶ Dividing vectors into components

▶ Identifying displacement, acceleration, and velocity as vectors

▶ Completing an exercise in gravity

You aren’t limited to moving left and right or forward and backward; you 
can move in more than one dimension. In the real world, you need to 

know which way you’re going and how far to go. For example, when a person 
gives you directions, she may point and say something like, “The posse went 
15 miles thataway!” When you’re helping someone hang a door, the person 
may say, “Push hard to the left!” And when you swerve to avoid hitting some-
one in your car, you accelerate in another direction. All these statements 
involve vectors.

A vector is a quantity that has both a size (magnitude) and a direction. Because 
physics models everyday life, plenty of concepts in physics are vectors, too, 
including velocity, acceleration, and force. For that reason, you should snuggle 
up to vectors, because you see them in just about any physics course you take. 
Vectors are fundamental.

Many people who’ve had tussles with vectors decide they don’t like them, 
which is a mistake — vectors are easy after you get a handle on them, and 
you get a handle on them in this chapter. I break down vectors from top to 
bottom and relate the characteristics of motion (displacement, velocity, and 
acceleration) to the concept of vectors. Here, balls fly through the air and roll 
off cliffs, baseball players race to make plays, and you find a great shortcut to 
the nearest park bench. Read on.
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Visualizing Vectors
In one dimension, displacement, velocity, and acceleration are either positive 
or negative (see Chapter 3). For example, they may be negative if they’re to 
the left and positive to the right. The size of the displacement, velocity, or 
acceleration is given by the absolute size (regardless of sign) of the number 
representing it — this is the magnitude. The sign of the number indicates 
direction (left or right).

But what do you do if you have more than one dimension? If the object can 
move up and down as well as left and right, you can no longer use a single 
number to represent displacement, velocity, and acceleration. You need vec-
tors. In this section, I represent vectors as arrows and show you what vector 
addition and subtraction look like.

Asking for directions: Vector basics
 When you have a vector, you have to keep in mind two quantities: its direction 

and its magnitude. Quantities that have only a magnitude are called scalars. If 
you give a scalar magnitude a direction, you create a vector.

Visually, you see vectors drawn as arrows in physics, which is perfect because 
an arrow has both a clear direction and a clear magnitude (the length of the 
arrow). Take a look at Figure 4-1. The arrow represents a vector that starts at 
the arrow’s foot (also called the tail) and ends at the head.

 

Figure 4-1: 
A vector, 

represented 
by an arrow, 

has both a 
direction 

and a 
 magnitude.

 

A

In physics, you use a letter in bold type to represent a vector. This is the 
notation I use in this book; in some books, however, you see a letter with an 
arrow on top like this: . The arrow means that this is not only a scalar value, 
which would be represented by A, but also something with direction.
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Say that you tell some smartypants that you know all about vectors. When 
he asks you to give him a vector, A, you give him not only its magnitude but 
also its direction, because you need these two bits of info together to define 
this vector. That impresses him to no end! For example, you may say that A 
is a vector at 15° from the horizontal with a magnitude of 12 meters/second. 
Smartypants knows all he needs to know, including that A is a velocity vector.

Take a look at Figure 4-2, which features two vectors, A and B. They look 
pretty much the same — the same length and the same direction. In fact, 
these vectors are equal. Two vectors are equal if they have the same magni-
tude and direction, and you can write this as A = B.

 

Figure 4-2: 
Equal vec-

tors have 
the same 

length and 
direction 
but may 

have differ-
ent starting 

points.
 

B

A

Looking at vector addition 
from start to finish

 Just as you can add two numbers to get a third number, you can add two 
vectors to get a resultant vector. To show that you’re adding two vectors, put 
the arrows together so that one arrow starts where the other arrow ends. The 
sum is a new arrow that starts at the base of the first arrow and ends at the 
head (pointy end) of the other.

Consider an example using displacement vectors. A displacement vector gives 
the change in position: the distance from the starting point to the ending 
point is the magnitude of the displacement vector, and the direction traveled 
is the direction of the displacement vector.

Assume, for example, that a passerby tells you that to get to your destination, 
you first have to follow vector A and then vector B. Just where is that desti-
nation? You work this problem just as you find the destination in everyday 
life. First, you drive to the end of vector A, and from that point, you drive to 
the end of vector B, just as you see in Figure 4-3.
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Figure 4-3: 
Going from 

the tail of 
one vector 
to the head 
of a second 

gets you 
to your 

 destination.
 

B

A

When you get to the end of vector B, how far are you from your starting 
point? To find out, you draw a vector, C, from your starting point (foot, or 
tail, of the first vector) to your ending point (head of the second vector), as 
you see in Figure 4-4. This new vector represents your complete trip, from 
start to finish. In other words, C = A + B. The vector C is called the sum, the 
result, or the resultant vector.

 

Figure 4-4: 
Take the 

sum of two 
vectors by 
creating a 

new vector.
 

B
C

A

Going head-to-head with 
vector subtraction
You don’t come across vector subtraction very often in physics problems, 
but it does pop up. To subtract two vectors, you put their feet (the non-
pointy parts) together; then draw the resultant vector, which is the differ-
ence of the two vectors, from the head of the vector you’re subtracting to 
the head of the vector you’re subtracting it from.

To make heads or tails of this, check out Figure 4-5, where you subtract A from 
C (in other words, C – A). As you can see, the result is B, because C = A + B.

08_9780470903247-ch04.indd   5408_9780470903247-ch04.indd   54 5/26/11   11:25 PM5/26/11   11:25 PM



55 Chapter 4: Following Directions: Motion in Two Dimensions

 

Figure 4-5: 
Subtracting 
two vectors 

by putting 
their feet 
together 

and drawing 
the result.

 

B = C − A
C

A

 Another (and for some people, easier) way to do vector subtraction is to 
reverse the direction of the second vector (A in C – A) and use vector addition; 
that is, start with the first vector (C), put the reversed vector’s foot (A) at the 
first vector’s head, and draw the resultant vector.

Putting Vectors on the Grid
Vectors may look good as arrows floating in space, but that’s not exactly the 
most precise way of dealing with them. You can get numerical with vectors, 
taking them apart as you need them, by putting the arrows in a grid, on the 
coordinate plane. The coordinate plane allows you to work with vectors using 
(x, y) coordinates and algebra.

Adding vectors by adding coordinates
In this section, I explain how you can use the components of vectors to add 
vectors together. Doing so reduces the problem of adding vectors to a simple 
combination of adding numbers together, which is very useful when you 
solve problems. 

Take a look at the vector addition problem A + B in Figure 4-6. Now that you 
have the vectors plotted on a graph, you can see how easy vector addition 
really is. If the measurements in Figure 4-6 are in meters, that means vector 
A is 5 meters to the right and 1 meter up, and vector B is 1 meter to the right 
and 4 meters up. To add them for the result, vector C, you add the horizontal 
parts together and the vertical parts together.
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Figure 4-6: 
Use vector 

coordinates 
to make 

handling 
vectors 

easy.
 

B

C

A

The resultant vector, C, ends up being 6 meters to the right and 5 meters up. 
You can see what that looks like in Figure 4-6: To get the horizontal part of 
the sum, you add the horizontal part of A (5 meters) to the horizontal part 
of B (1 meter). To get the vertical part of the sum, C, you just add the vertical 
part of A (1 meter) to the vertical part of B (4 meters).

 If vector addition still seems cloudy, you can use a notation that was invented 
for vectors to help physicists and For Dummies readers keep it straight. 
Because A is 5 meters to the right (the positive x-axis direction) and 1 up (the 
positive y-axis direction), you can express it with (x, y) coordinates like this:

A = (5, 1)

And because B is 1 meter to the right and 4 up, you can express it with (x, y) 
coordinates like this:

B = (1, 4)

Having a notation is great, because it makes vector addition totally simple. 
To add two vectors together, you just add their x and y parts, respectively, 
to get the x and y parts of the result:

A (5, 1) + B (1, 4) = C (6, 5)

 The whole secret of vector addition is breaking each vector up into its x and 
y parts and then adding those separately to get the resultant vector’s x and y 
parts. Nothing to it. Now you can get as numerical as you like, because you’re 
just adding or subtracting numbers. Getting those x and y parts can take a 
little work, but it’s a necessary step. And when you have those parts, you’re 
home free.

Here’s a real-world example: Assume you’re looking for a hotel that’s 20 miles 
due north and then 20 miles due east. What’s the vector that points at the 
hotel from your starting location? Taking your coordinate info into account, 
this is an easy problem. Say that the east direction is along the positive x-axis 
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and that north is along the positive y-axis. Step 1 of your travel directions is 
20 miles due north, and Step 2 is 20 miles due east. You can write the prob-
lem in vector notation like this (east [positive x], north [positive y]):

Step 1: (0, 20)

Step 2: (20, 0)

To add these two vectors together, add the coordinates:

(0, 20) + (20, 0) = (20, 20)

The resultant vector is (20, 20). It points from your starting point directly 
to the hotel.

Changing the length: Multiplying 
a vector by a number

 You can perform simple vector multiplication by a scalar (number). For exam-
ple, say you’re driving along at 150 miles per hour eastward on a racetrack 
and you see a competitor in your rearview mirror. No problem, you think; 
you’ll just double your speed:

2(0, 150) = (0, 300)

Now you’re flying along at 300 miles per hour in the same direction. In this 
problem, you multiply a vector by a scalar.

A Little Trig: Breaking Up 
Vectors into Components

Physics problems have a way of not telling you what you want to know 
directly. As the preceding section explains, a vector can be described by 
its components, which are enough to uniquely specify a vector. Because a 
vector, by definition, is a quantity that has both magnitude and direction, 
another way to specify a vector is to use its magnitude and direction directly. 
If you know one way of describing the vector, you can work out the other. 

08_9780470903247-ch04.indd   5708_9780470903247-ch04.indd   57 5/26/11   11:25 PM5/26/11   11:25 PM



58 Part I: Putting Physics into Motion 

These are just two different ways of specifying the same thing, and each 
has its own use in physics problems. Here’s why you may work with 
vector components:

 ✓ When you have vectors in components, they’re easy to add and sub-
tract and manipulate generally. When a problem gives you vectors 
in terms of their magnitude and direction (which is often the case), 
you typically need to calculate their components just so you can work 
through the problem.

 ✓ Being able to treat the horizontal and vertical directions separately 
is useful because you can often split one difficult problem into two 
simple problems. Using components also helps when one direction is 
more important than the other. For example, a problem may say that a 
ball is rolling on a table at angle of 15° with a speed of 7.0 meters/second 
and ask you how long the ball will take to roll off the table’s edge if that 
edge is 1.0 meter away. In that case, you care only about how quickly the 
ball is moving horizontally, directly toward the table’s edge — the speed 
in the vertical direction doesn’t matter.

After you solve a problem, the answer usually needs to be in terms of the 
magnitude and direction. So after you find your answer in components, you 
often have to work out the magnitude and direction again.

This section shows you how you can take the magnitude and direction of a 
vector and work out its components, as well as how you can take the compo-
nents of a vector and work out its magnitude and direction.

Finding vector components
When you break a vector into its parts, those parts are called its components. 
For example, in the vector (4, 1), the x-axis (horizontal) component is 4, and 
the y-axis (vertical) component is 1. Typically, a physics problem gives you 
an angle and a magnitude to define a vector; you have to find the components 
yourself using a little trigonometry.

Suppose you know that a ball is rolling on a flat table at 15° from a direction 
parallel to the bottom edge with a speed of 7.0 meters/second. You may want 
to find out how long the ball will take to roll off the edge 1.0 meter to the right.

Define your axes so the ball is at the origin initially and the x-axis is paral-
lel to the bottom edge of the table (see Figure 4-7). Therefore, the problem 
breaks down to finding out how long the ball will take to roll 1.0 meter in 
the x direction. To find the time, you first need to know how fast the ball 
is moving in the x direction.
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The problem tells you that the ball is rolling at a speed of 7.0 meters/second 
at 15° to the horizontal (along the positive x-axis), which is a vector: 
7.0 meters/second at 15° gives you both a magnitude and a direction. What 
you have here is a velocity — the vector version of speed. The ball’s speed 
is the magnitude of its velocity vector, and when you include a direction to 
that speed, you get the velocity vector v.

To find out how fast the ball is traveling toward the table edge, you need not 
the ball’s total speed but the x component of the ball’s velocity. The x com-
ponent is a scalar (a number, not a vector), and you write it like this: v

x
. The 

y component of the ball’s velocity vector is v
y
. Therefore, you can say that

v = (v
x
, v

y
)

That’s how you express breaking a vector up into its components. So what’s 
v

x
 here? And for that matter, what’s v

y
, the y component of the velocity? The 

vector has a length (7.0 meters/second) and a direction (θ = 15° to the hori-
zontal). And you know that the edge of the table is 1.0 meter to the right.

As you can see in Figure 4-7, you have to use some trigonometry to resolve 
this vector into its components. No sweat. The trig is easy after you get the 
angles you see in Figure 4-7 down.

 

Figure 4-7: 
Breaking a 
vector into 

components 
allows you 

to add or 
subtract 

them easily.
 

7.0 m/s

15˚

Ball

Table

x

y

vy

vx

v

1.0 m
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 The magnitude of a vector v is expressed as v, and from Figure 4-7, you can 
see that the following is true:

 ✓ Horizontal component: v
x = v cos θ

 ✓ Vertical component: v
y
 = v sin θ

The two vector-component equations are worth knowing because you see 
them a lot in any beginning physics course. Make sure you know how they 
work, and always have them at your fingertips.

Of course, if you forget these equations, you can always retrieve them from 
basic trigonometry. You may remember that the sine and cosine of an angle in 
a right triangle are defined as the ratio of the opposite side and the adjacent 
side to the hypotenuse, like so: sin θ = v

y
/v and cos θ = v

x
/v (see Chapter 2). 

By multiplying both sides of these equations by v, you can express the x and y 
components of the vector as

v
x = v cos θ

v
y
 = v sin θ

You can go further by relating each side of the triangle to each other side 
(and if you know that tan θ = sin θ/cos θ, you can derive all these from the 
previous two equations as required; no need to memorize all these):

✓

✓

 
✓

 

You know that v
x 

= v cos θ, so you can find the x component of the ball’s 
velocity, v

x
, this way:

v
x = v cos θ

Plugging in the numbers gives you
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You now know that the ball is traveling at 6.8 meters/second to the right. And 
because you also know that the table’s edge is 1.0 meter away, you can divide 
distance by speed to get the time:

Because you know how fast the ball is going in the x direction, you now know 
the answer to the problem: The ball will take 0.15 seconds to fall off the edge of 
the table. What about the y component of the velocity? That’s easy to find, too:

Reassembling a vector from 
its components
Sometimes you have to find the angle and magnitude of a vector rather than 
the components. To find the magnitude, you use the Pythagorean theo-
rem. And to find θ, you use the inverse tangent function (or inverse sine or 
cosine). This section shows you how these formulas work.

For example, assume you’re looking for a hotel that’s 20 miles due east 
and then 20 miles due north. From your present location, what is the angle 
(measured from east) of the direction to the hotel, and how far away is the 
hotel? You can write this problem in vector notation, like so (see the section 
“Putting Vectors on the Grid”):

Step 1: (20, 0)

Step 2: (0, 20)

When adding these vectors together, you get this result:

 (20, 0) + (0, 20) = (20, 20)

The resultant vector is (20, 20). That’s one way of specifying a vector — use 
its components. But this problem isn’t asking for the results in terms of com-
ponents. The question wants to know the angle and distance to the hotel. In 
other words, looking at Figure 4-8, the problem asks, “What’s h, and what’s θ?”
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Figure 4-8: 
Using the 

angle cre-
ated by a 

vector to get 
to a hotel.

 
x = 20 miles

Hotel

You

y = 20 miles
h

θ

Finding the magnitude
If you know a vector’s vertical and horizontal components, finding the vec-
tor’s magnitude isn’t so hard, because you just need to find the hypotenuse 
of a triangle. You can use the Pythagorean theorem (x2 + y2 = h2), solved for h:

Plugging in the numbers gives you

Finding and checking the angle

 

When you know the horizontal and vertical components of a vector, you can 
use the tangent to find the angle because tan θ = y/x. All you have to do is take 
the inverse tangent of y/x:
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Suppose you drive 20 miles east and 20 miles north. Here’s how you find θ, 
the angle between your original position and your final one:

So the hotel is about 28 miles away (as you see from the earlier section 
“Finding the magnitude”) at an angle of 45°.

 Be careful when doing calculations with inverse tangents, because angles that 
differ by 180° have the same tangent. When you take the inverse tangent, you 
may need to add or subtract 180° to get the actual angle you want. The inverse 
tangent button on your calculator will always give you an angle between 90° and 
–90°. If your angle is not in this range, then you have to add or subtract 180°.

For this example, the answer of 45° must be correct. But consider a situation 
in which you’d need to add or subtract 180°: Suppose that you walk in com-
pletely the opposite direction to the hotel. You walk 20 miles west and 
20 miles south (x = –20 miles, y = –20 miles), so if you use the same method 
to work out the angle, you get the following:

You get the same answer for the angle even though you’re walking in com-
pletely the opposite direction as before! That’s because the tangents of 
angles that differ by 180° are equal. But if you look at the components of the 
vector (x = –20 miles, y = –20 miles), they’re both negative, so the angle must 
be between –180° and 0°. If you subtract 180° from your answer of 45°, you 
get –135°, which is your actual angle. 

 An alternative method of working out the direction is to find the vector’s mag-
nitude (hypotenuse) and then use the components in terms of the sine and 
cosine of the angle:
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 ✓ x = h cos θ

 ✓ y = h sin θ

Then you can write the cosine and sine of the angle as

Now all you have to do is take the inverse cosine or sine:

Featuring Displacement, Velocity, 
and Acceleration in 2-D

When an object is moving in only one dimension (as in Chapter 3), you only 
have to deal with one component, which is just a single number — displace-
ment is just a distance, velocity is just a speed, and acceleration is just speed-
ing up or slowing down. So in one dimension, vectors just look like numbers: 
The magnitude of the vector is the size of the number, and the direction of 
the vector is just the sign of the number.

However, displacement, velocity, and acceleration are always vectors. In the 
real world, an object may be moving in two or more dimensions, so direction 
is important. In this section, I take another look at the equations for motion, 
except in more than one dimension so you can see more clearly how the 
equations are really vector equations.

Displacement: Going the distance 
in two dimensions
Displacement, which is the change in position (see Chapter 3), has a magni-
tude and a direction associated with it. When you have a change of position 
in a particular direction and of a particular distance, then these are given by 
the magnitude and direction of the displacement vector.
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Instead of writing displacement as s, you should write it as s, a vector (if 
you’re writing on paper, you can put an arrow over the s to signify its vector 
status). When you’re talking about displacement in the real world, direction 
is as important as distance.

For example, say your dreams have come true: You’re a big-time baseball or 
softball hero, slugging another line drive into the outfield. You take off for 
first base, which is 90 feet away. But 90 feet in which direction? Because you 
know how vital physics is, you happen to know that first base is 90 feet away 
at a 45° angle, as you can see in Figure 4-9. 

 

Figure 4-9: 
A baseball 
diamond is 
a series of 

vectors cre-
ated by the 
x-axis and 

y-axis.
 x-axis

90 feet

45°

Now you’re set, all because you know that displacement is a vector. In this 
case, here’s the displacement vector:

s = 90 feet at 45°

What’s that in components?

Sometimes, working with angles and magnitudes isn’t as easy as working with 
x and y components. For example, say that you’re at the park and ask direc-
tions to the nearest bench. The person you ask is very precise and deliberate 
and answers, “Go north 10.0 meters.”

 “North 10.0 meters,” you say. “Thanks.”

“Then east 20.0 meters. Then north another 50.0 meters.”
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“Hmm,” you say. “North 10.0 meters, then 20.0 meters east, and then another 
50.0 meters east . . . I mean north. Is that right?”

“Then 60.0 meters east.”

You look at the person warily. “Is that it?”

“That’s it,” she says. “Nearest bench.”

Okay, time for some physics. The first step is to translate all that north and 
east business into x and y coordinates like this: (x, y). So assuming that the 
positive x-axis points east and the positive y-axis points north (as on a map), 
the first step is 10.0 meters north, which becomes the following (where all 
measurements are in meters):

(0, 10.0)

That is, the first step is 10.0 meters north, which translates into 10.0 meters 
in the positive y direction. Adding the second step, 20.0 meters east (the 
positive x direction), gives you

  (0, 10.0)

 + (20.0, 0)

The third step is 50.0 meters north, and adding that gives you

 (0, 10.0)

 + (20.0, 0)

 + (0, 50.0)

And finally, the fourth step is 60.0 meters east, which gives you

  (0, 10.0)

 + (20.0, 0)

 + (0, 50.0)

 + (60.0, 0)

Whew. Okay, what’s the sum of all these vectors? You just add up the  components:
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So the resulting vector is (80.0, 60.0). Hmm, that seems a lot easier than the 
directions you got. Now you know what to do: proceed 80.0 meters east and 
60.0 meters north. See how easy adding vectors together is?

You can, if you like, go even further. You have the displacement to the nearest 
bench in terms of x and y components. But it looks like you’ll have to walk 
80.0 meters east and then 60.0 meters north to find the bench. Wouldn’t it be 
easier if you just knew the direction to the bench and the total distance? Then 
you could cut the corner and just walk in a straight line directly to the bench.

This is an example where it’s good to know how to convert from the (x, y) 
coordinate form of a vector into the magnitude-angle form. And you can do 
it with all the physics knowledge you have. Converting (80.0, 60.0) to the 
magnitude-angle form allows you to cut the corner when you walk to the 
bench, saving a few steps.

You know that the x and y components of a vector form a right triangle and 
that the total magnitude of the vector is equal to the hypotenuse of the right 
triangle, h. So the magnitude of h is

Plugging in the numbers gives you the following:

Voilà! The bench is only 100 meters away. So instead of walking 80.0 meters east 
and then 60.0 meters north, a total  distance of 140 meters, you only need to 
walk 100 meters. Your superior knowledge of vectors has saved you 40 meters.

But in what direction is the bench? You know it’s 100 meters away — but 
100 meters which way? You find the angle from the x-axis with this trig:
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So plugging in the numbers, you have

Therefore, the angle θ is the following (using the handy tan–1 button on 
your calculator):

θ ≈ 36.9°

And there you have it — the nearest bench is 100 meters away at 36.9° from 
the x-axis. You start off confidently in a straight line at 36.9° from the east, 
surprising the person who gave you directions, who was expecting you to 
take off in the goofy zigzag path she’d given you.

Velocity: Speeding in a new direction
Velocity, which is the rate of change of position (or speed in a particular 
direction), is a vector. Imagine that you just hit a ground ball on the baseball 
diamond and you’re running along the first-base line, or the s vector, 90 feet 
at a 45° angle to the positive x-axis. But as you run, it occurs to you to ask, 
“Will my velocity enable me to evade the first baseman?” A good question, 
because the ball is on its way from the shortstop. Whipping out your calcula-
tor, you figure that you need 3.0 seconds to reach first base from home plate; 
so what’s your velocity? To find your velocity, you quickly divide the s vector 
by the time it takes to reach first base:

This expression represents a displacement vector divided by a time, and 
time is just a scalar. The result must be a vector, too. And it is: velocity, or v:

Your velocity is 30 feet/second at 45°, and it’s a vector, v.

 Dividing a vector by a scalar gives you a vector with potentially different units 
and the same direction.

In this case, you see that dividing a displacement vector, s, by a time gives 
you a velocity vector, v. It has the same magnitude as when you divided a 
distance by a time, but now you see a direction associated with it as well, 
because the displacement, s, is a vector. So you end up with a vector result 
rather than the scalars you see in the Chapter 3.
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Acceleration: Getting a new angle 
on changes in velocity
What happens when you swerve, whether in a car or on a walk? You acceler-
ate in a particular direction. And just like displacement and velocity, accel-
eration, a, is a vector.

Assume that you’ve just managed to hit a groundball in a softball game and 
you’re running to first base. You figure you need the y component of your 
velocity to be at least 25.0 feet/second and that you can swerve at 90° to 
your present path with an acceleration of 60.0 feet/second2 in an attempt to 
dodge the first baseman. Is that acceleration going to be enough to change 
your velocity to what you need it to be in the tenth of a second that you 
have before the first baseman touches you with the ball? Sure, you’re up 
to the challenge!

Your final time, t
f
, minus your initial time, t

i
, equals your change in time, Δt. 

You can find your change in velocity with the following equation:

Δv = aΔt

Now you can calculate the change in your velocity from your original velocity, 
as Figure 4-10 shows.

 

Figure 4-10: 
You can 

use accel-
eration and 

change in 
time to find 

a change in 
velocity.

 

Δv = aΔt

vf = ?
vi = 30.0 ft/s

135˚

45°

Finding your new velocity, vf, becomes an issue of vector addition. That 
means you have to break your original velocity, v

i
, and your change in 

velocity, Δv, into components. Here’s what vi equals:
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You’re halfway there. Now, what about Δv, the change in your velocity? You 
know that Δv = aΔ t and that a = 60.0 feet/second2 at 90° to your present path, 
as Figure 4-10 shows. You can find the magnitude of Δv, because

Δv = aΔt = (60.0 ft/s2)(0.10 s) = 6.0 ft/s

But what about the angle of Δv? If you look at Figure 4-10, you can see that 
Δv is at an angle of 90° to your present path, which is itself at an angle of 45° 
from the positive x-axis; therefore, Δv is at a total angle of 135° with respect 
to the positive x-axis. Putting that all together means that you can resolve Δv 
into its components:

 

You now have all you need to perform the vector addition to find your 
final velocity:

 vf = vi + Δv

 = (21.2 ft/s, 21.2 ft/s) + (–4.2 ft/s, 4.2 ft/s) 

 = (17.0 ft/s, 25.4 ft/s)

You’ve done it: vf = (17.0, 25.4). The y component of your final velocity is more 
than you need, which is 25.0 feet/second. Having completed your calculation, 
you put your calculator away and swerve as planned. And to everyone’s amaze-
ment, it works — you evade the startled first baseman and make it to first base 
safely without going out of the baseline (some tight swerving on your part!). The 
crowd roars, and you tip your helmet, knowing that it’s all due to your supe-
rior knowledge of physics. After the roar dies down, you take a shrewd look at 
second base. Can you steal it at the next pitch? It’s time to calculate the vectors, 
so you get out your calculator again (not as pleasing to the crowd).

Notice that total displacement is a combination of where your initial velocity 
takes you in the given time, added to the displacement you get from 
constant acceleration.

Accelerating Downward: Motion under 
the Influence of Gravity

Gravity problems present good examples of working with vectors in two 
dimensions. Because the acceleration due to gravity is only vertical, it’s 
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71 Chapter 4: Following Directions: Motion in Two Dimensions

especially useful to treat the horizontal and vertical components separately. 
Because there’s no acceleration in the horizontal direction, the horizontal 
component of motion is just uniform. The vertical component undergoes a 
constant acceleration of magnitude g, directed straight down. You can use 
this idea to make the solutions to trajectory problems really easy. 

The golf-ball-off-the-cliff exercise
Here’s an example of the motion of an object accelerating under the influ-
ence of gravity. Treating the horizontal and vertical components separately 
is natural to the problem and can really help you solve it. In this example, the 
horizontal motion is uniform (as always in gravitational trajectories near the 
surface of the Earth), and the vertical component of the motion is just the 
same as that of an object dropping from a height.

Imagine that a golf ball traveling horizontally at 1.0 meter/second is about to 
hurtle off a 5.0-meter cliff, as Figure 4-11 shows. The question: Where will the 
ball hit the ground, and what will be its total speed immediately before land-
ing? First you must find the amount of time the golf ball will be flying through 
the air before it lands.

 

Figure 4-11: 
A golf ball 

about to roll 
off a cliff.

 

1.0 meter/second

5.0 meters

Time to gather the facts. You know that the golf ball has the velocity vector 
(1.0, 0) and that it flies off the cliff from a position that is 5.0 meters above the 
ground. When it falls, it comes down with a constant acceleration, g, the accel-
eration due to gravity, and that’s 9.8 meters/second2 directed straight down.

So how can you find out where the golf ball will hit the ground? One way to 
solve this problem is to determine how much time the ball will have before it 
hits. Because the golf ball accelerates only in the y direction (straight down), 
the x component of its velocity, v

x
, doesn’t change, which means that the hor-

izontal distance at which it hits will be v
x
t, where t is the time the golf ball is 
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in the air. Gravity is accelerating the ball as it falls, so the following equation, 
which relates displacement, acceleration, and time, is a good one to use:

Here, s is the displacement of the ball, vi is the initial velocity of the ball, and 
the acceleration a is equal to the acceleration due to gravity, g. Write down 
the components of these vectors.

First consider the displacement, s. You know that the ball starts at the top 
of the cliff and falls to the bottom, so the vertical component of the displace-
ment is –5.0 meters. The vertical displacement has a magnitude of 5.0 meters, 
equal to the height of the cliff. Displacement is negative because the ball falls 
in the negative direction. You don’t know the horizontal displacement of the 
ball yet, so write it as s

x
. So you can write the displacement vector as

s = (s
x
, –5.0 m) 

Second, write down the initial velocity, vi, of the ball. You know that the ball is 
initially rolling along the horizontal top of the cliff with a speed of v

x
 = 1.0 m/s, 

so the initial velocity of the ball is

vi = (1.0 m/s, 0 m/s)

Finally, you know that the acceleration is just equal to the acceleration 
due to gravity, g, directed straight down, and it’s constant. So the ball’s 
acceleration, a, is

 a = (0, –g)

 = (0, –9.8 m/s2)

Now you have all you need to know to work out the horizontal displacement 
s

x
. Take each component of the preceding equation for displacement under 

constant acceleration separately. 

First write the vertical component of the equation by putting in the vertical 
components of displacement, initial velocity, and acceleration:

You can simplify and rearrange this equation to find t, the time that the ball 
is falling:
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So you know now that the ball falls for 1.0 second. Great! Now use this to look 
at the horizontal component. If you write out the horizontal component of 
the displacement equation, you have:

And now that you know that t = 1.0 s, you can work out how far the ball 
moves horizontally as it falls from the top to the bottom of the cliff:

s
x
 = (1.0 m/s)(1.0 s) = 1.0 m

So there you have it — the ball will land 1.0 meter to the right.

Time to figure out what the speed of the golf ball will be when it hits. You 
already know half the answer, because the x component of its velocity, v

x
, 

isn’t affected by gravity, so it doesn’t change. Gravity is pulling on the golf 
ball in the y direction, not the x, which means that the final velocity of the 
golf ball will look like this: (1.0, ?). So you have to figure out the y component 
of the velocity, or the ? business in the (1.0, ?) vector. For that, you can use 
the following equation:

v
f
 – v

i
 = a t

In this case, vi = 0, the acceleration is –g, and you want the final velocity of 
the golf ball in the y direction, so the equation looks like this:

v
y
 = –gt

 The acceleration due to gravity, g, is also a vector, g. That makes sense 
because g is an acceleration. This vector happens to point to the center of 
the Earth — that is, in the negative y direction — and on the surface of the 
Earth, its value is 9.8 meters/second2.

The negative sign here indicates that g is pointing downward, toward nega-
tive y. So the real result is

v
y
 = –gt

  = (–9.8 m/s2)(1.0 s)

  = –9.8 m/s

The final velocity vector of the golf ball when it hits the ground is (1.0, –9.8) 
meters/second. You still need to find the golf ball’s speed when it hits, which 
is the magnitude of its velocity. You can figure that out easily enough:
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You’ve triumphed! The golf ball will hit 1.0 meter to the right, and its speed at 
that time will be 9.9 meters/second.

Not bad, but if you’re still not satisfied, you can work out the angle at which 
the ball strikes the ground, too. You can simply use the components of the 
final velocity vector to work out the angle as usual, using the inverse tangent:

If the ball were traveling straight down, the angle would be –90°, so the ball is 
only 6° from traveling straight down.

The how-far-can-you-kick-the-ball exercise
This example uses the same principles and strategies as the one in the pre-
ceding section, except that this time the trajectory is not quite as simple. In 
this example, the object is projected up at an angle before it falls back down 
again. With your new projectile skills gleaned from the preceding section, you 
can determine how far the object will go.

You’re at the tryouts for your favorite soccer team, with World Cup dreams 
on your mind. The only thing left is to prove that you can kick the ball far 
enough. The situation is as you see in Figure 4-12. You kick the ball at an 
angle θ with a certain speed, and you want to know how far the ball will go 
before hitting the ground.

 

Figure 4-12: 
A kicked 

soccer ball.
 

θ

Say that θ = 45° and that the initial speed of the ball is 50.0 meters/second. 
How far will it travel in the x direction before it hits the ground?
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Most people would be lost here, but you have your knowledge of physics to 
guide you. You consider the problem carefully — you know that the horizon-
tal distance the ball travels is equal to

x = v
x
t

where v
x
 is the speed of the ball in the x direction. But what’s t?

The variable t is the time the ball takes to leave your foot, travel through the 
air, and then hit the ground again. How on Earth can you calculate that time?

During the time t, the ball leaves your foot, travels upward, then goes down-
ward, and then hits the ground. Here’s where you can be clever. The vertical 
speed of the ball is

v
y
 = v

yi
 + at

where v
yi is the ball’s original speed vertically, a is the acceleration of the 

ball, and t is time. 

So how does that help? It helps because you know the vertical speed of the 
ball at the top of its flight — and that’s zero. Think about it — the ball starts 
by flying upward, then it stops rising, and then it starts going down. So at a 
particular time, at the top of its flight, the ball has zero speed in the vertical 
direction for just an instant. That happens exactly halfway through the ball’s 
flight. So if you can solve for the time at which the ball has zero vertical speed 
and then double that time, you’ll have the total time the ball is in the air.

Looked at purely in the vertical direction, the ball starts off at its maximum 
vertical speed, then reaches the top of its flight. The ball stops traveling 
vertically for an instant and then falls, hitting the ground with the same maxi-
mum speed (only in the opposite direction — down, not up). So if you can 
find the time at which the ball instantaneously has zero speed vertically and 
then double that time, you’ll have the total time of the ball’s flight. 

To find the time at which the ball has zero vertical speed temporarily, turn to 
the equation for its vertical speed:

v
y
 = v

yi
 + at

The vertical component of acceleration, a, is equal to –g (it’s negative 
because it’s in the downward direction). That means you have:

v
y
 = v

yi
 – gt 

Halfway through the flight, at time = t1/2, vy
 = 0, so you have
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Okay, so what is v
yi
, the original speed in the vertical direction? You know 

that θ = 45° and that the speed of the ball is v
i
 = 50.0 m/s. The vertical compo-

nent of this speed is

v
yi
 = v

i
 sin θ

And plugging in the numbers, you have

Great! Now recalling that t1/2 = v
yi

/g and that g = 9.8 m/s2, you have the following:

Because t1/2 is the time halfway through the flight, the time the full flight 
takes, t, must be twice that:

t = 2t1/2 = 2(3.6 s) = 7.2 s

So how far does the ball go before it hits the ground? The horizontal distance is

x = v
x
t

where v
x
 is the speed of the ball in the x direction (which doesn’t change 

throughout the whole flight). Taking the horizontal component of the ball’s 
velocity vector gives you

Because x = v
x
t, you can plug in the numbers and find out how far the ball 

sailed downfield:

Wow — 255 meters. That’s a hefty kick. You not only made the team but most 
certainly set a world record for distance in the process!
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May the Forces 
of Physics Be 

with You
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In this part . . .

Part II gives you the lowdown on famous laws related 
to forces, such as “For every action, there is an equal 

and opposite reaction.” The subject of forces is where 
Isaac Newton gets to shine. His laws of motion and the 
equations in this part allow you to predict what will happen 
when you apply a force to an object or even to fluids. 
Mass, acceleration, friction — all the key topics having 
to do with forces are here.
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Chapter 5

When Push Comes to Shove: Force
In This Chapter
▶ Discovering Newton’s three takes on force 

▶ Utilizing force vectors with Newton’s laws

You can’t get away from forces in your everyday world; you use force to 
open doors, type at a keyboard, steer a car, drive a bulldozer through a 

wall, climb the stairs of the Statue of Liberty (not everyone, necessarily), take 
your wallet out of your pocket — even to breathe or talk. You unknowingly 
take force into account when you cross bridges, walk on ice, lift a hot dog to 
your mouth, unscrew a jar’s cap, or flutter your eyelashes at your sweetie. 
Force is integrally connected to making objects move, and physics takes a 
big interest in understanding how it works.

Force is fun stuff. Like other physics topics, you may assume it’s difficult, but 
that’s before you get into it. Like your old buddies displacement, velocity, 
and acceleration (see Chapters 3 and 4), force is a vector, meaning it has a 
magnitude and a direction (unlike, say, speed, which just has a magnitude).

This chapter is where you find Newton’s famous three laws of motion. You’ve 
heard these laws before in various forms, such as “For every action, there’s 
an equal and opposite reaction.” That’s not quite right; it’s more like “For 
every force, there’s an equal and opposite force,” and this chapter is here 
to set the record straight. In this chapter, I use Newton’s laws as a vehicle 
to focus on force and how it affects the world.
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Newton’s First Law: 
Resisting with Inertia

Newton’s laws explain what happens with forces and motion, and his first 
law states, “An object continues in a state of rest, or in a state of motion at a 
constant velocity along a straight line, unless compelled to change that state 
by a net force.” Translation? If you don’t apply a net, or unbalanced, force to 
an object at rest or in motion, it will stay at rest or in that same motion along 
a straight line. Forever.

For example, when scoring a hockey goal, the hockey puck slides toward the 
open goal in a straight line because the ice it slides on is nearly frictionless. 
If you’re lucky, the puck won’t come into contact with the opposing goalie’s 
stick, which would cause it to change its motion.

Newton’s first law may not seem very intuitive because most things don’t 
seem to continue moving in straight lines forever. Left to themselves, most 
moving things come to a halt. The idea that the natural tendency of an object 
in motion is to come to a halt was Aristotle’s, and it was accepted wisdom for 
2,000 years. It took the tremendous insight of Newton to see that the natural 

Newton, Einstein, and the laws of physics
In the 17th century, Sir Isaac Newton was the 
first to put the relationship among force, mass, 
and acceleration into equation form. (He’s also 
famous for watching apples drop off trees 
and developing the consequent mathematical 
expression of gravity.)

As with other advances in physics, Newton 
made observations first, modeled them men-
tally, and then expressed those models in math-
ematical terms. Newton expressed his model 
by using three assertions, which have come to 
be known as Newton’s laws. But don’t forget 
that physics just models the world, and as such, 
it’s all subject to later revision.

Newton’s laws have been heavily revised by 
the likes of Albert Einstein and his theory of 

relativity. Newton’s laws are based on ideas 
of space and time and mass that make sense 
to most people in everyday terms: Everyone 
agrees when two events are simultaneous, 
mass is a constant that doesn’t depend on 
speed, and so on. But Einstein’s theory of rela-
tivity takes the speed of light as a constant for 
all observers however they’re moving, and this 
leads to some very different ideas of space and 
time, which in turn brings about very different 
laws of motion. However, Einstein’s theory 
becomes important only for motion close to the 
speed of light. At speeds that you see around 
you every day, Newton’s laws of motion are 
extremely accurate and, therefore, are still 
very important to understand.

10_9780470903247-ch05.indd   8010_9780470903247-ch05.indd   80 5/26/11   11:24 PM5/26/11   11:24 PM



81 Chapter 5: When Push Comes to Shove: Force

state of motion is actually to continue in a straight line at constant velocity. 
Only when acted on by a force does the motion change. 

 In everyday life, objects don’t coast around in straight lines at constant veloc-
ity. This is because most objects around you are subject to friction forces. 
So, for example, when you slide a coffee mug across your desk, it slows and 
comes to a stop (or spills over). That’s not to say Newton’s first law is invalid, 
just that friction provides a force to change the mug’s motion to stop it.

 

Saying that if you don’t apply a force to an object in motion, it will stay in 
motion at constant velocity forever sounds an awful lot like a perpetual-motion 
machine, a theoretical machine that would run indefinitely without the input 
of any energy. Interestingly, such a machine is perfectly possible according 
to Newton’s laws. In practice, you just can’t get away from forces that will 
ultimately affect an object in motion. Even in the farthest reaches of space, 
the rest of the mass in the universe pulls at you, if only very slightly. And 
that means your motion is affected. So much for perpetual motion!

What Newton’s first law really says is that the only way to get something to 
change its motion is to use force. It also says that an object in motion tends 
to stay in motion, which introduces the idea of inertia.

Resisting change: Inertia and mass
Inertia is the natural tendency of an object to resist any change in its motion, 
which means that it tends to stay at rest or in constant motion along a 
straight line. Inertia is a quality of mass, and the mass of an object is really 
just a measurement of its inertia. To get a stationary object to move — that 
is, to change its current state of motion — you have to apply a force to over-
come its inertia.

 Be careful to distinguish between mass and weight. The weight of an object 
is the force of gravity on it, so weight depends on where the mass is. For 
example, a 1-kilogram object would have a different weight on the moon than 
it does on Earth, but the mass would be the same. Even in space, with no sig-
nificant gravitational field and therefore no weight, the mass would still be 
1 kilogram. If you tried to push this object in space, you’d feel a resistance to 
the acceleration, which is inertia. The larger the mass of the object, the more 
resistance you would feel. 

Say, for example, you’re at your summer vacation house, taking a look at the 
two boats at your dock: a dinghy and an oil tanker. If you apply the same net 
force to each with your foot, the boats respond in different ways. The dinghy 
scoots away and glides across the water. The oil tanker moves away more 
slowly (what a strong leg you have!). That’s because they both have different 
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masses and, therefore, different amounts of inertia. When responding to the 
same net force, an object with little mass — and a small amount of inertia — 
will have greater acceleration than an object with large mass, which has a 
large amount of inertia.

 

Inertia, the resistance of an object to changes in its velocity, can be a problem 
at times. Refrigerated meat trucks, for example, have large amounts of frozen 
meat hanging from their ceilings, and when the drivers of the trucks begin 
turning corners, they create a pendulum motion they can’t stop from the 
driver’s seat. Trucks with inexperienced drivers can end up tipping over 
because of the inertia of the swinging frozen load in the back.

 Because objects have inertia, they resist changing their motion, which is why 
you have to start applying forces to get changes in velocity and therefore 
acceleration. Mass ties force and acceleration together.

Measuring mass
The units of mass (and, therefore, inertia) depend on your measuring system. 
In the meter-kilogram-second (MKS) system, or the International System of 
Units (SI), mass is measured in kilograms (under the influence of the Earth’s 
gravity, 1 kilogram of mass weighs about 2.205 pounds). What’s the unit of 
mass in the foot-pound-second system? Brace yourself: It’s the slug. Under 
the influence of the Earth’s gravity, a slug has a weight of about 32 pounds. 
If you need to convert between the slug and the kilogram, then you’ll be 
pleased to know that one slug is equal to about 14.59 kilograms.

 Mass isn’t the same as weight. Mass is a measure of inertia; when you put 
that mass into a gravitational field, you get weight. So, for example, a slug is a 
certain amount of mass. When you subject that slug to the gravitational pull 
on the surface of the Earth, it has weight. And that weight is about 32 pounds. 
If you took that same slug of mass to the moon, which doesn’t have as much 
gravitational pull as Earth, the slug would weigh only around 5.3 pounds, 
which is about 1/6 of its weight on Earth.  

Newton’s Second Law: Relating Force, 
Mass, and Acceleration

Newton’s first law says that an object remains in uniform motion unless 
acted on by a net force. When a net force is applied, the object accelerates. 
Newton’s second law details the relationship among net force, the mass, 
and the acceleration:
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 ✓ The acceleration of an object is in the direction of the net force. 
If you push or pull an object in a particular direction, it accelerates 
in that direction.

 ✓ The acceleration has a magnitude proportional to the magnitude 
of the net force. If you push twice as hard (and no other forces are 
present), the acceleration is twice as big.

 ✓ The magnitude of the acceleration is inversely proportional to the 
mass of the object. That is, the larger the mass, the smaller the accelera-
tion for a given force (which is just as you’d expect from inertia).

 All these features of the relation among net force (ΣF), acceleration (a), and 
mass (m) are contained in the following equation:

ΣF = ma

Note that you use the term ΣF to describe the net force because the Greek 
letter sigma, Σ, stands for “sum”; therefore, ΣF means the sum of all the sepa-
rate forces acting on the object. If this is not zero, then there’s a net force.

Relating the formula to the real world
You can see that the equation ΣF = ma is consistent with Newton’s first law of 
motion (which deals with inertia), because if there’s no net force (ΣF) acting 
on a mass m, then the left-hand side of this equation is zero; therefore, the 
acceleration must also be zero — just as you’d expect from the first law.

If you rearrange the net-force equation to solve for acceleration, you can see 
that if the size of the net force doubles, then so does the size of the accelera-
tion (if you push twice as hard, the object accelerates twice as much), and if 
the mass doubles, then the acceleration halves (if the mass is twice as big, it 
accelerates half as much — inertia):

Take a look at the hockey puck in Figure 5-1 and imagine it’s sitting there all 
lonely in front of a net. These two should meet.

In a totally hip move, you decide to apply your knowledge of physics to this 
one. You figure that if you apply the force of your stick to the puck for a tenth 
of a second, you can accelerate it in the appropriate direction. You try the 
experiment, and sure enough, the puck flies into the net. Score! Figure 5-1 
shows how you made the goal. You applied a net force to the puck, which has 
a certain mass, and off it went — accelerating in the direction you pushed it.
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Figure 5-1: 
Accelerating 

a hockey 
puck.

 

Force

Mass

Acceleration

What’s its acceleration? That depends on the force you apply (along with any 
other forces that may be acting on the puck), because ΣF = ma.

Naming units of force
So what are the units of force? Well, ΣF = ma, so in the MKS or SI system, 
force must have these units:

kilogram-meters/second2 

This is a derived unit because you reach it by using a formula. Because most 
people think this unit line looks a little awkward, the MKS units are given a 
special name: newtons (named after guess who). Newtons are often abbrevi-
ated as simply N. Table 5-1 shows unit names for force in the MKS and foot-
pound-second systems of measurement.

Table 5-1 Units of Force

System of Measurement Derived Unit Special Unit Name

Meter-kilogram-second 
(MKS) or SI

kilogram-meters/second2 

(kg·m/s2)
newton (N)

Foot-pound-second slug-feet/second2 (slug·ft/s2) pound (lb)

So how do these units relate to each other? Well, 1.0 pound is about 
4.448 newtons.

Vector addition: Gathering net forces
 Most books shorten ΣF = ma to simply F = ma, which is what I do, too, but I 

must note that F stands for net force. An object you apply force to responds 
to the net force — that is, the vector sum of all the forces acting on it.
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Take a look, for example, at all the forces (represented by arrows) acting on 
the ball in Figure 5-2. Which way will the golf ball be accelerated?

 

Figure 5-2: 
A ball in 

flight may 
face many 
forces that 

act on it.
 

Because Newton’s second law talks about net force, the problem becomes 
easier. All you have to do is add the various forces together as vectors to get 
the resultant, or net, force vector, ΣF, as Figure 5-3 shows. When you want to 
know how the ball will accelerate, you can apply the equation ΣF = ma. 

 

Figure 5-3: 
The net 

force vector 
factors in 

all forces to 
determine 

the ball’s 
acceleration.

 

ΣF

Calculating displacement given a time and acceleration
Assume that you’re on your traditional weekend physics data-gathering expe-
dition, and you happen upon a football game. Very interesting, you think. In 
a certain situation, you observe that the football, although it starts from rest, 
has three players subjecting forces on it, as you see in Figure 5-4. This figure 
shows a free-body diagram.

 A free-body diagram shows all the forces acting on an object, making it easier 
to determine their components and find the net force.
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Figure 5-4: 
A free-body 

diagram 
of all the 

forces 
acting on a 

football at 
one time.

 

Fa

Fb45°
Fc

Slipping intrepidly into the mass of moving players, risking injury in the name 
of science, you measure the magnitude of these forces and mark them down 
on your clipboard:

F
a
 = 15.0 N

F
b
 = 12.5 N

F
c
 = 16.5 N

You measure the mass of the football as 0.40 kilograms (I don’t include the 
force of gravity). Now you wonder where the football will be in 1.0 second, 
assuming the forces shown act on the ball continuously during that second. 
Follow these steps to calculate the displacement of an object in a given time 
with a given constant acceleration:

 1. Find the net force, ΣF, by using vector addition to add all the forces 
acting on the object (see Chapter 4 for info on vector addition).

 2. Use ΣF = ma to determine the acceleration vector.

 3. Use s = v
i
t + (1/2)at 2 to get the distance traveled in the specified time. 

  Refer to Chapter 3 to find this original equation.

Step 1: Finding net force
Time to get out your calculator. Because you want to relate net force, mass, 
and acceleration, the first order of business is to find the net force on the 
mass. To do that, you need to break up the force vectors you see in Figure 5-4 
into their components and then add those components together to get the net 
force (see Chapter 4 for more info on breaking up vectors in components).

Determining F
a
 and F

b
 is easy because F

a
 is straight up — along the positive 

y-axis — and F
b
 is to the right — along the positive x-axis. That means

F
a
 = (0 N, 15.0 N)

F
b
 = (12.5 N, 0 N)
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Finding the components of F
c
 is a little trickier. You need the x and y compo-

nents of this force this way:

F
c
 = (F

cx
, F

cy
)

F
c
 is along an angle 45° with respect to the negative x-axis, as you see in 

Figure 5-4. If you measure all the way from the positive x-axis, you get an 
angle of 180° + 45° = 225°. This is the way you break up F

c
:

F
c
 = (F

cx
, F

cy
) = (F

c
 cos θ, F

c
 sin θ) 

Plugging in the numbers gives you

 F
c
 = (16.5 N cos 225°, 16.5 N sin 225°)

  ≈ (–11.7 N, –11.7 N)

Look at the signs here — both components of F
c
 are negative. You may not 

follow that business about the angle of F
c
 being 180° + 45° = 225° without 

some extra thought, but you can always make a quick check of the signs of 
your vector components. F

c
 points downward and to the left, along the nega-

tive x- and negative y-axis. That means that both components of this vector, 
F

cx and F
cy

, have to be negative. I’ve seen many people get stuck with the 
wrong signs for vector components because they didn’t think to make sure 
their numbers matched the reality.

 Always compare the signs of your vector components with their actual 
directions along the axes. It’s a quick check, and it saves you plenty of 
problems later.

Now you know the components of the three forces on the football:

F
a
 = (0 N, 15.0 N)

F
b
 = (12.5 N, 0 N)

F
c
 = (–11.7 N, –11.7 N)

You’re ready for some vector addition:

You calculate that the net force, ΣF, is (0.8 N, 3.3 N). That also gives you the 
direction in which the football will move, assuming it was at rest when you 
made the force measurements.
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Step 2: Finding acceleration
The next step is to find the acceleration of the football. From Newton, you 
know that ΣF = (0.8 N, 3.3 N) = ma, which means the following:

Because the mass of the football is 0.40 kilograms, the problem works out 
like this:

You’re making good progress; you now know the acceleration of the football.

Step 3: Finding displacement
To find out where the football will be in 1.0 second, you can apply the following 
equation (found in Chapter 3), where s is the distance and the acceleration is 
assumed to be for one full second due to the forces continuously being applied:

Plugging in the numbers gives you the following (note that the football’s initial 
velocity is 0 meters/second, so the first term drops out):

Well, well, well. At the end of 1.0 second, the football will be 1.0 meter along the 
positive x-axis and 4.2 meters along the positive y-axis. You get your stopwatch 
out of your lab-coat pocket and measure off 1.0 second. Sure enough, you’re 
right. The football moves 1.0 meter toward the sideline and 4.2 meters toward 
the goal line. Satisfied, you put your stopwatch back into your pocket and put 
a checkmark on the clipboard. Another successful physics experiment.

Calculating net force given a time and velocity
What if you want to find how much net force is necessary in a specific time to 
produce a particular velocity? Say, for example, that you want to accelerate 
your car from 0 to 60.0 miles per hour in 10.0 seconds; how much net force 
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is necessary? You start by converting 60.0 miles/hour to feet/second. First, 
convert to miles/second:

Notice that the hours and minutes cancel out to leave you with miles and 
seconds for the units. Next, you take the result to feet/second:

You want to get to 88 feet/second in 10.0 seconds. If the car weighs 3,000 
pounds, how much net force do you need? First you find the accelera tion 
with the following equation from Chapter 3:

Plugging in some numbers, you get

You calculate that 8.8 feet/second2 is the acceleration you need.

From Newton’s second law, you know that ΣF = ma, and you know that 
the weight of the car is 3,000 pounds. What’s the car’s mass in the foot-
pound-second system of units, or slugs? In this system of units, you can 
find an object’s mass given its weight by dividing by the acceleration due 
to  gravity — 32 feet/second2 (converted from 9.8 meters/second2 — 
the number given to you in most physics problems):

You have all you need to know. You have to accelerate 94 slugs of mass by 
8.8 feet per second2; so, what net force do you need? Just multiply to get 
your answer:

ΣF = ma = (94 slugs)(8.8 ft/s2) ≈ 830 pounds

There needs to be a net force of about 830 pounds on the car for those 
10.0 seconds to accelerate you to the speed you want: 60.0 miles per hour.

Note that this solution ignores pesky little issues like friction and upward 
grade on the road; you get to those issues in Chapter 6. Even on a flat sur-
face, friction would be large in this example, so you’d need to maybe double 
the magnitude of force in real life.
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Newton’s Third Law: Looking at 
Equal and Opposite Forces

Newton’s third law of motion is famous, especially in wrestling and drivers’ 
ed circles, but you may not recognize it in all its physics glory: “Whenever 
one body exerts a force on a second body, the second body exerts an oppo-
sitely directed force of equal magnitude on the first body.”

The more popular version of this, which I’m sure you’ve heard many times, 
is “For every action, there’s an equal and opposite reaction.” But for physics, 
it’s better to express the originally intended version, in terms of forces, not 
actions (which, from what I’ve seen, can apparently mean everything from 
voting trends to temperature forecasts!).

Seeing Newton’s third law in action
Here’s a real-world example to show you how Newton’s third law of motion 
works. Say that you’re in your car, speeding up with constant acceleration. 
To do this, your car has to exert a force against the road; otherwise, the car 
wouldn’t be accelerating. And the road has to exert the same force on your 
car. You can see what this looks like, tire-wise, in Figure 5-5.

The two forces in the Figure 5-5 are equal in magnitude but opposite in direc-
tion. However, they do not cancel out because the two forces are acting on 
different bodies — one on the car and the other on the road. The force that 
the car exerts on the road is equal and opposite to the force the road exerts 
on the car. The force on the car accelerates it.

 

Figure 5-5: 
Equal forces 

acting on 
a car tire 

and the 
road during 

acceleration.
 

Fcar

Froad

So why doesn’t the road accelerate? The car accelerates, so shouldn’t the 
road accelerate in the opposite direction? Believe it or not, it does; Newton’s 
law is in full effect. Your car pushes the Earth, affecting the motion of the 
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Earth in just the tiniest amount. Given the fact that the Earth is about 
6,000,000,000,000,000,000,000 times as massive as your car, however, any 
effects aren’t too noticeable!

Similarly, when a hockey player slaps a puck, the puck accelerates away from 
the spot of contact, and so does the hockey player. If hockey pucks weighed 
1,000 pounds — with a mass of about 31 slugs, or 450 kilograms — you’d 
notice this effect much more; in fact, the puck wouldn’t move much at all, but 
the player would hurtle off in the opposite direction after striking it. (More 
on what happens in this case in Part III of this book.)

Pulling hard enough to overcome friction
Because of Newton’s third law, whenever you apply a force to an object, say, 
by pulling it, then the object applies an equal and opposite force on you. 
Here’s an example that lets you work out how much force you’re subject 
to when you drag something along. For fantasy physics purposes, say that 
a hockey game ends, and you get the job of dragging a 31-slug hockey puck 
off the rink. You use a rope to do the trick, as shown in Figure 5-6.

 Physics problems are very fond of using ropes, including ropes with pulleys, 
because with ropes, the force you apply at one end is the same as the force 
that the rope exerts on what you tie it to at the other end.

In this case, the massive hockey puck will have some friction that resists 
you — not a terrific amount, given that it slides on top of ice, but still, some. 
Therefore, the net force on the puck is

ΣF = F
rope

 – F
friction

 

Figure 5-6: 
Pulling a 

heavy puck 
with a rope 

to exert 
equal force 

on both 
ends.

 

Ffriction Frope

Hockey puck

Ice rink

Because F
rope

 is greater than F
friction

, the puck will accelerate and start to 
move. In fact, if you pull on the rope with a constant force, the puck will 
accelerate at a constant rate, which obeys the equation

ΣF = F
rope

 – F
friction

 = ma
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Because some of the force you exert on the puck goes into accelerating it and 
some goes into overcoming the force of friction, the force you exert on the 
puck is the same as the force it exerts on you (but in the opposite direction), 
as Newton’s third law predicts:

F
rope

 = F
friction

 + ma

Pulleys: Supporting double the force
 No force can be exerted without an equal and opposite force (even if some 

of that opposing force comes from making an object accelerate). A rope and 
pulley can act together to change the direction of the force you apply, but not 
for free. In order to change the direction of your force from –F (that is, down-
ward) to +F (upward on the mass), the pulley’s support has to respond with a 
force of 2F.

Here’s how this works: When you pull a rope in a pulley system to lift a sta-
tionary object, you lift the mass if you exert enough force to overcome its 
weight, mg, where g is the acceleration due to gravity at the surface of the 
Earth, 9.8 meters/second2. Take a look at Figure 5-7, in which a rope goes 
over a pulley and down to a mass m.

 

Figure 5-7: 
Using a 

pulley to 
exert force.

 

FF

m

The rope and pulley together function not only to transmit the force, F, you 
exert but also to change the direction of that force, as you see in the figure. The 
force you exert downward is exerted upward on the mass, because the rope, 
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going over the pulley, changes the force’s direction. In this case, if F is greater 
than mg, you can lift the mass. If you apply no force on the object, then the only 
force acting on it is gravity, F

gravity
, and so the object accelerates at a rate of –mg 

(the negative sign indicates that the acceleration is downward) because

F
gravity

 = –mg

If you apply a force on the rope of magnitude F, then it is transmitted by the 
rope and pulley to the object as an upwardly directed force of the same mag-
nitude. Therefore, the total force on the object is given by the sum of these 
two forces, F

gravity
 + F. The force F, acting alone without gravity, would acceler-

ate the object upward at a rate that you can call a:

F = ma

When the two forces act together, you have the following sum:

 F
gravity

 + F = –mg + ma

 = m(a – g)

So you can see that if F is greater than mg, then a is greater than g and the 
object accelerates upward. 

But this force-changing use of a rope and pulley comes at a cost, because 
you can’t cheat Newton’s third law. Assume that you lift the mass and it 
hangs in the air. In this case, F must equal mg to hold the mass stationary. 
The direction of your force is being changed from downward to upward. 
How does that happen?

To figure this out, consider the force that the pulley’s support exerts on the 
ceiling. What’s that force? Because the pulley isn’t accelerating in any direc-
tion, you know that ΣF = 0 on the pulley. That means that all the forces on the 
pulley, when added up, give you zero.

From the pulley’s point of view, two forces pull downward: the force F you 
pull with and the force mg that the mass exerts on you (because nothing is 
moving at the moment). That’s 2F downward. To balance all the forces and 
get 0 total, the pulley’s support must exert a force of 2F upward. 

Analyzing angles and force 
in Newton’s third law
To take angles into account when measuring force, you need to do a little 
vector addition. Take a look at Figure 5-8. Here, the mass m isn’t moving, 
and you’re applying a force F to hold it stationary. Here’s the question: What 
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94 Part II: May the Forces of Physics Be with You 

force is the pulley’s support exerting, and in which direction, to keep the 
pulley where it is?

You’re sitting pretty here. Because the pulley isn’t moving, you know that 
ΣF = 0 on the pulley. So what are the forces on the pulley? You can account for 
the force due to the mass’s weight, which has magnitude mg and is directed 
straight down. Putting that in terms of vector components (see Chapter 4), it 
looks like this (keep in mind that the y component of F

mass has to be negative, 
because it points downward, which is along the negative y-axis):

F
mass

 = (0, –mg)

You also have to account for the force of the rope on the pulley, which, 
because you’re holding the mass stationary and the rope transmits the force 
you’re applying, must be of magnitude mg and directed to the right — along 
the positive x-axis. That force looks like this:

F
rope

 = (mg, 0)

 

Figure 5-8: 
Using a 

pulley at 
an angle to 

keep a mass 
stationary.

 

F

135°

m

You can find the force exerted on the pulley by the rope and the mass by 
adding the vectors F

mass
 and F

rope
:

 F
mass + rope

 = F
mass

 + F
rope

 = (0, –mg) + (mg, 0)

 = (mg, –mg)

The force exerted by both the mass and the rope, F
mass + rope

, is (mg, –mg). You 
know that the total force on the pulley is zero (because it is not accelerating): 
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ΣF = 0. Two forces are acting on the pulley, F
mass + rope

 and F
support

,
 
so the sum of 

these two must be zero:

F 
mass + rope

 + F
support  

 = 0

This means that

F
support

 = –F
mass + rope

Therefore, F
support

 must equal

 F
support

 = –F
mass + rope

 = –(mg, –mg)

 = (–mg, mg)

As you can see by checking Figure 5-8, the directions of this vector make 
sense — the pulley’s support must exert a force to the left (–mg) and upward 
(+mg) to hold the pulley where it is.

You can also convert F
support

 to magnitude and direction form (see Chapter 4), 
which gives you the full magnitude of the force. The magnitude is equal to

Note that this magnitude is greater than the force you exert or the force the 
mass exerts on the pulley, because the pulley support has to change the 
direction of those forces.

Now find the direction of the force F
support

. You can find the angle it makes with 
the horizontal axis, θ, using the components of the force. You know from basic 
trigonometry that the components can be expressed in terms of θ, like so:

F
support, x

 = F
support

 cos θ

F
support, y

 = F
support

 sin θ

where F
support

 indicates the magnitude of the force in these equations. This 
relates the components of the vector to its magnitude and direction; you can 
use this to isolate the direction in terms of the components in the following 
way: If you divide the y component by the x component in the preceding 
form, you find the tangent of the angle:
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Now if you take the inverse tangent, you get an answer for θ:

tan–1(1) = 45°

However, this answer can’t be right, because this angle would mean that 
the force pointed to the right and up. But you may remember that angles 
that differ by a multiple of 180° give the same tangent, so you can subtract 
the preceding answer from 180° to get

θ = 135°

This direction is to the left and upward and has the correct tangent, so this is 
the direction of the force. See Chapter 4 for more info on trig.

 If you get confused about the signs when doing this kind of work, check your 
answers against the directions you know the force vectors actually go in. A 
picture’s worth a thousand words, even in physics!

Finding equilibrium
In physics, an object is in equilibrium when it has zero acceleration — when 
the net force acting on it is zero. The object doesn’t actually have to be at 
rest — it can be going 1,000 miles per hour as long as the net force on it is 
zero and it isn’t accelerating. Forces may be acting on the object, but they 
all add up, as vectors, to zero.

For example, take a look at Figure 5-9, where you’ve started your own grocery 
store and bought a wire rated at 15 newtons to hang the sign with.

The sign weighs only 8.0 newtons, so hanging it should be no problem, right? 
Obviously, you can tell from my phrasing that you have a problem here. Coolly, 
you get out your calculator to figure out what force the wire, F1 in the diagram, 
has to exert on the sign to support it. You want the sign to be at equilibrium, 
which means that the net force on it is zero. Therefore, the entire weight of the 
sign, mg, has to be balanced out by the upward force exerted on it.

In this case, the only upward force acting on the sign is the y component 
of F1, where F1 is the tension in the wire, as you can see in Figure 5-9. Force 
exerted by the horizontal brace, F2, is only horizontal, so it can’t do anything 
for you in the vertical direction. Using your knowledge of trigonometry (see 
Chapter 4), you can determine from the figure that the y component of F1 is

F1y
 = F 1 sin 30°

To hold up the sign, F1y
 must equal the weight of the sign, mg:

F1y
 = F 1 sin 30° = mg
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Figure 5-9: 
Hanging 

a sign 
requires 

equilibrium 
from the 
involved 

forces.
 

F1

mg
Grocery

store
sign

F2
30°

60°

This tells you that the tension in the wire, F1, must be

You know that the weight of the sign is 8.0 newtons, so

Uh oh. Looks like the wire will have to be able to withstand a force of 16 new-
tons, not just the 15 newtons it’s rated for. You need to get a stronger wire.

Assume that you get a stronger wire. Now you may be worried about the 
brace that provides the horizontal force, F2, you see diagrammed in Figure 5-9. 
What force does that brace have to be capable of providing? Well, you know 
that the figure has only two horizontal forces: F

brace
 and the x component of 

F1. And you already know that F1 = 16 N. You have all you need to figure F
brace

. 
To start, you need to determine what the x component of F1 is. Looking at 
Figure 5-9 and using a little trig, you can see that

F1x
 = F 1 cos 30°
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This is the force whose magnitude must be equal to F
brace

:

F
brace

 = F1 cos 30°

This tells you that

F
brace

 = (16 N) cos 30° ≈ 14 N

The brace you use has to be able to exert a force of about 14 newtons.

To support a sign of just 8 newtons, you need a wire that supports at least 
16 newtons and a brace that can provide a force of 14 newtons. Look at the 
configuration here — the y component of the tension in the wire has to sup-
port all the weight of the sign, and because the wire is at a pretty small angle, 
you need a lot of tension in the wire to get the force you need. And to be able 
to handle that tension, you need a pretty strong brace.
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Chapter 6

Getting Down with Gravity, 
Inclined Planes, and Friction

In This Chapter
▶ Jumping into gravity

▶ Examining angles on an inclined plane

▶ Adjusting for the forces of friction

▶ Measuring flight paths

Gravity, one of the fundamental forces of the universe, is a very big 
part of our everyday lives. Any object that has mass exerts an attrac-

tive force on any other object that has mass. All objects on the surface of 
the Earth are subject to significant gravitational forces, and gravity plays an 
important role throughout the whole universe. For these reasons, an under-
standing of gravity is a vital part of physics. 

In this chapter, you find out how to handle gravity along ramps and how to 
work friction into your calculations. You also see how gravity affects the tra-
jectory of objects flying through the air.

This discussion sticks pretty close to the ground, er, Earth, where the accel-
eration due to gravity is constant. But Chapter 7 takes off into orbit, looking 
at gravity from the moon’s point of view. The farther you get away from the 
Earth, the less its gravity affects you.
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Acceleration Due to Gravity: 
One of Life’s Little Constants

 When you’re on or near the surface of the Earth, the pull of gravity is con-
stant. It’s a constant force directed straight down with magnitude equal to mg, 
where m is the mass of the object being pulled by gravity and g is the magni-
tude of the acceleration due to gravity:

g = 9.8 meters/second2 = 32.2 feet/second2

Acceleration is a vector, meaning it has a direction and a magnitude (see 
Chapter 4), so this equation really boils down to g, an acceleration straight 
down toward the center of the Earth. The fact that F

gravity
 = mg is important 

because it says that the acceleration of a falling body doesn’t depend on 
its mass:

F
gravity

 = ma = mg 

In other words, ma = mg.

 Because a = g, a heavier object doesn’t fall faster than a lighter one. Gravity gives 
any freely falling body the same acceleration downward (g near the surface of 
Earth), assuming that no other forces, such as air resistance, are present.

Finding a New Angle on Gravity 
with Inclined Planes

 Plenty of gravity-oriented problems in introductory physics involve inclined 
planes, or ramps. Gravity accelerates objects down ramps — but not the full 
force of gravity; only the component of gravity acting along the ramp acceler-
ates the object. That’s why an object rolling down a steep ramp rolls quickly: 
The ramp slopes sharply downward, close to the direction of gravity, so most 
of the force of gravity can act along the ramp.

To find out how much of the force of gravity accelerates an object on a ramp, 
you have to break the gravity vector into its components along and perpen-
dicular to the ramp.

Check out Figure 6-1. Here, a cart is about to roll down a ramp. The cart trav-
els not only vertically but also horizontally along the ramp, which is inclined 
at an angle θ. Say that θ = 30° and that the length of the ramp is 5.0 meters. 
How fast will the cart be going at the bottom of the ramp?
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You know the length of the ramp (the cart’s displacement) and the cart’s 
mass, so if you can find the cart’s acceleration along the ramp, you can calcu-
late the cart’s final velocity.

 

Figure 6-1: 
Racing a 

cart down 
a ramp.

 
θ

90°– θ

θ mg sin θ

mg cos θ

mg

Finding the force of gravity along a ramp
You can break the weight of the cart down into components that are parallel 
to and perpendicular to the ramp. The component perpendicular to the ramp 
presses the cart into the surface of the ramp. The component of the weight 
that acts along the ramp accelerates the cart down the ramp. In this section, 
you find the component of gravity acting along the ramp when the vertical 
force due to gravity is F

g
.

Figuring out the angle
To work out the components of the weight parallel to and perpendicular to 
the ramp, you need to know the relationship between the direction of the total 
weight and the direction of the ramp. The simplest way to determine this is to 
work out the angle between the weight and a line perpendicular to the ramp. 
This angle is labeled in Figure 6-1 as θ, which is equal to the angle of the ramp. 

There are various ways you can use geometry to show that θ is equal to the 
angle of the ramp. For example, you may note that the angle between the 
weight and the line perpendicular to the ramp must be complementary to the 
angle at the top of the ramp, which is 90° – θ (two angles are complementary if 
they add up to 90°).

Look at Figure 6-2. The angle of the ramp is given by the angle ABC. The angle 
at the top of the ramp is the complement of this because the angles of a triangle 
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add up to 180°, so the angle BDE = 90°– θ. The angle BCA must be equal to the 
angle BDE because the triangles EBD and ABC are similar, so you can say that 
the angle BCA = 90°– θ. Finally, the angle BCA must be complementary to the 
angle ACF because they clearly add up to 90° (along with right angle FCD, they 
form a straight line), so you finally have your answer: ACF= θ.

 

Figure 6-2: 
The angle of 
the direction 
perpendicu-

lar to the 
ramp sur-
face from 

the angle of 
the ramp.

 
θ

90° – θ

90° – θθ

F

A BE

D

C

Finding the component of the weight along a ramp

 

If you use trigonometry to project the weight vector onto the lines perpendic-
ular to and parallel to the ramp (refer to Figure 6-1 and rotate the book by 30° 
if doing so helps you see what’s going on), you obtain the expression for the 
component of the weight perpendicular to the ramp as this:

 

And the component of the weight that’s along the ramp is this:

Because you know the force, you can use Newton’s second law to work out 
the acceleration:

 At this point, you know that the acceleration of the cart along the ramp is 
given by a = g sin θ. This equation holds for any object that gravity accelerates 
down a ramp, as long as friction doesn’t apply.
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Figuring the speed along a ramp
All you speed freaks may be wondering, “What’s the speed of the cart at 
the bottom of the ramp?” This looks like a job for the following equation 
 (presented in Chapter 3):

v
f
2 – v

i
2 = 2as

The initial velocity along the ramp, v
i
, is 0 meters/second; the displacement of 

the cart along the ramp, s, is 5.0 meters; and the acceleration along the ramp 
is g sin θ, so you get the following:

 v
f
2 = 2as

 v
f
2 = 2(9.8 m/s2 sin 30°)(5.0 m)

v
f
2 = 49 m2/s2

 v
f
  = 7.0 m/s

This works out to v
f
 = 7.0 meters/second, or a little under 16 miles/hour. That 

doesn’t sound too fast until you try to stop an 800-kilogram automobile at 
that speed — don’t try it at home! (Actually, this example is a little simplified, 
because some of the motion goes into the angular velocity of the wheels and 
such. More on this topic in Chapter 11.)

Quick: How fast would an ice cube on the ramp from Figures 6-1 and 6-2 go at 
the bottom of the ramp if friction weren’t an issue? Answer: the same speed 
you just figured, 7.0 meters/second. The acceleration of an object along a 
ramp that’s at an angle θ with respect to the ground is g sin θ. The mass of 
the object doesn’t matter — this simply takes into consideration the com-
ponent of the acceleration due to gravity that acts along the ramp. And after 
you know the acceleration along the ramp’s surface, which has a length equal 
to s, you can use this equation:

v
f
2 = 2as

Mass doesn’t enter into it.

Getting Sticky with Friction
You know all about friction. It’s the force that holds objects in motion back — 
or so it may seem. Actually, friction is essential for everyday living. Imagine a 
world without friction: no way to drive a car on the road, no way to walk on 
pavement, no way to pick up that tasty sandwich. Friction may seem like an 
enemy to the hearty physics follower, but it’s also your friend.

11_9780470903247-ch06.indd   10311_9780470903247-ch06.indd   103 5/26/11   11:24 PM5/26/11   11:24 PM



104 Part II: May the Forces of Physics Be with You 

Friction comes from the interaction of surface irregularities. If you introduce 
two surfaces that have plenty of microscopic pits and projections, you pro-
duce friction. And the harder you press those two surfaces together, the 
more friction you create as the irregularities interlock more and more.

Physics has plenty to say about how friction works. For example, imagine 
that you decide to put all your wealth into a huge gold ingot (a bar of gold), 
only to have someone steal your fortune. The thief applies a force to the 
ingot to accelerate it away as the police start after him. Thankfully, the force 
of friction comes to your rescue, because the thief can’t accelerate away 
nearly as fast as he thought — all that gold drags heavily along the ground. 
See Figure 6-3, which shows the forces on the gold ingot.

 

Figure 6-3: 
The forces 
acting on a 
bar of gold.

 

Ffriction Fpull

mg

Fnormal

Ground

So if you want to get quantitative here, what would you do? You’d say that the 
pulling force, F

pull
, minus the force due to friction, F

friction
, is equal to the net 

force in the x-axis direction, which gives you the acceleration in that direction:

F
pull

 – F
friction = ma

That looks straightforward enough. But how do you calculate F
friction

? You 
start by calculating the normal force.

Calculating friction and the normal force
 The force of friction, F

friction
, always acts to oppose the force you apply when 

you try to move an object. Friction is proportional to the force with which an 
object pushes against the surface you’re trying to slide it along.

As you can see in Figure 6-3, the force with which the gold ingot presses against 
the ground in this situation is just its weight, or mg. The ground presses back 
with the same force in accordance with Newton’s third law. The force that 
pushes up against the ingot, perpendicular to the surface, is called the normal 
force, and its symbol is N. The normal force isn’t necessarily equal to the force 
due to gravity; it’s the force perpendicular to the surface an object is sliding on. 
In other words, the normal force is the force pushing the two surfaces together, 
and the stronger the normal force, the stronger the force due to friction.
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In the case of Figure 6-3, because the ingot slides along the horizontal 
ground, the normal force has the same magnitude as the weight of the ingot, 
so F

normal = mg. You have the normal force, which is the force pressing the 
ingot and the ground together. But where do you go from there? You find 
the force of friction.

Conquering the coefficient of friction
The force of friction comes from the surface characteristics of the materi-
als that come into contact. How can physics predict those characteristics 
theoretically? It doesn’t. Detailed knowledge of the surfaces that come into 
contact is something people have to measure themselves (or they can check 
a table of information after someone else has done all the work).

What you measure is how the normal force (a force perpendicular to the sur-
face an object is sliding on) relates to the friction force. It turns out that to a 
good degree of accuracy, the two forces are proportional, and you can use a 
constant, μ, to relate the two:

F
friction

 = μF
normal

Usually, you see this equation written in the following terms:

F
F
 = μF

N

This equation tells you that when you have the normal force, F
N
, all you have 

to do is multiply it by a constant to get the friction force, F
F
. This constant, μ, 

is called the coefficient of friction, and it’s something you measure for contact 
between two particular surfaces. (Note: Coefficients are simply numbers; 
they don’t have units.)

 Here are a couple of things to remember:

 ✓ The equation F
F
 = μF

N
 relates the magnitude of the force of friction 

to the magnitude of the normal force. The normal force is always 
directed perpendicular to the surface, and the friction force is always 
directed parallel to the surface. F

F
 and F

N
 are perpendicular to each other.

 ✓ The force due to friction is generally independent of the contact area 
between the two surfaces. This means that even if you have an ingot 
that’s twice as long and half as high, you still get the same frictional 
force when  dragging it over the ground. This makes sense, because if 
the area of contact doubles, you may think that you should get twice 
as much friction. But because you’ve spread out the gold into a longer 
ingot, you halve the force on each square centimeter, because less 
weight is above it to push down.
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On the move: Understanding 
static and kinetic friction

 Okay, are you ready to get out your lab coat and start calculating the forces 
due to friction? Not so fast — you need to know whether the objects in contact 
with each other are moving. You have two different coefficients of friction for 
each pair of surfaces because two different physical processes are involved:

 ✓ Static: When two surfaces aren’t moving but are pressing together, they 
have the chance to interlock on the microscopic level. That’s static fric-
tion. The coefficient of static friction is μ

s
.

 ✓ Kinetic: When the surfaces are sliding, the microscopic irregularities 
don’t have the same chance to connect, and you get kinetic friction. 
Kinetic friction is weaker than static friction; however, for most hard, 
smooth surfaces, these two coefficients are quite similar. The coefficient 
of kinetic friction is μ

k
.

Therefore, you must account for two different coefficients of friction for each 
pair of surfaces: a static coefficient of friction, μ

s
, and a kinetic coefficient of 

friction, μ
k
.

You can notice yourself that static friction is stronger than kinetic friction. 
Imagine that a box you’re unloading onto a ramp starts to slide. To make it 
stop, you can put your foot in its way, and after you stop it, the box is more 
likely to stay put and not start sliding again. That’s because static friction, 
which happens when the box is at rest, is greater than kinetic friction, which 
happens when the box is sliding.

Starting motion with static friction
You experience static friction when you push something that starts at rest. 
This is the friction that you have to overcome to get something to slide.

For example, say that the static coefficient of friction between the ingot from 
Figure 6-3 and the ground is 0.30, and the ingot has a mass of 1,000 kilograms 
(quite a fortune in gold). What’s the horizontal force that a thief has to exert 
to get the ingot moving? You know that the magnitude of the force of friction 
is related to the magnitude of the normal force by

F
F
 = μ

s
F

N

And because the surface is flat, the normal force — the force that presses the 
two surfaces together — is in the opposite direction of the ingot’s weight and 
has the same magnitude. That means that

F
F
 = μ

s
mg
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where m is the mass of the ingot and g is the acceleration due to gravity near 
the surface of the Earth. Plugging in the numbers gives you

 F
F
 = μ

s
mg

 = (0.30)(1,000 kg)(9.8 m/s2)

 ≈ 2,900 N

The thief needs about 2,900 newtons of force just to get the ingot started. 
There are 4.448 newtons to a pound, so that translates to about 650 pounds 
of force. Pretty respectable force for any thief. What happens after the burly 
thief gets the ingot going? How much force does he need to keep it moving? 
He needs to look at kinetic friction.

Sustaining motion with kinetic friction
The force due to kinetic friction, which occurs when two surfaces are already 
sliding, isn’t quite as strong as static friction, but that doesn’t mean you can 
predict what the coefficient of kinetic friction is going to be, even if you know 
the coefficient of static friction — someone has to measure both forces.

Say that the gold ingot from Figure 6-3, which has a mass of 1,000 kilograms, 
has a coefficient of kinetic friction, μ

k
, of 0.18. How much force does the thief 

need to pull the ingot along at a constant speed during his robbery? You have 
all you need — the magnitude of the kinetic coefficient of friction is related to 
the magnitude of the normal force by:

F
F
 = μ

k
F

N = μ
k
mg

Putting in the numbers gives you

 F
F
 = μ

k
mg

 = (0.18)(1,000 kg)(9.8 m/s2)

 ≈ 1,800 N

The thief needs approximately 1,800 newtons of force to keep your gold ingot 
sliding while evading the police. That converts to about 400 pounds of force 
(4.448 newtons to a pound) — not exactly the kind of force you can keep 
going while trying to run at top speed, unless you have some friends helping 
you. Lucky you! Physics states that the police are able to recover your gold 
ingot. The cops know all about friction — taking one look at the prize, they 
say, “We got it back. You drag it home.”
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A not-so-slippery slope: Handling 
uphill and downhill friction
Frictional forces depend on the normal force acting. However, when frictional 
forces are acting on a ramp, the angle of the ramp tilts the normal force 
at an angle. When you work out the frictional forces, you need to take this 
into account. 

What if you have to drag a heavy object up a ramp? Say, for example, you 
have to move a refrigerator. You want to go camping, and because you 
expect to catch plenty of fish, you decide to take your 100-kilogram refrigera-
tor with you. The only catch is getting the refrigerator into your vehicle (see 
Figure 6-4). The refrigerator has to go up a 30° ramp that happens to have 
a static coefficient of friction with the refrigerator of 0.20 and a kinetic coef-
ficient of friction of 0.15 (see the earlier section “On the move: Understanding 
static and kinetic friction”). The good news is that you have two friends 
to help you move the fridge. The bad news is that you can supply only 
350 newtons of force each, so your friends panic.

 

Figure 6-4: 
You must 
battle dif-

ferent types 
of force 

and friction 
to push an 

object up a 
ramp.

 
θ

θ

90° – θ
mg sin θ

mg cos θ

mg

Fpush
FN

The minimum force needed to push that refrigerator up the ramp has a 
magnitude F

push
, and it has to counter the component of the weight of the 

refrigerator acting along the ramp and the force due to friction. I tackle 
these components one at a time in the following sections.
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Figuring out the weight components parallel 
and perpendicular to the ramp 
The first step in this problem is to resolve the weight of the refrigerator into 
components parallel and perpendicular to the ramp. Take a look at Figure 6-4, 
which shows the refrigerator and the forces acting on it. I show you how to 
resolve the components of the weight vector on a ramp in the earlier section 
“Finding the component of the weight along a ramp.” The component of the 
weight of the refrigerator along the ramp is mg sin θ, and the component of 
the refrigerator’s weight perpendicular to the ramp is –mg cos θ.

When you know the component of the weight along the ramp, you can work 
out the minimum force required to push the refrigerator up the ramp. The 
minimum force has to overcome the static force of friction acting down the 
ramp and the component of the refrigerator’s weight acting down the ramp, 
so the minimum force is

 F
push 

= mg sin θ + F
F

Determining the force of friction
The next question is “What’s the force of friction, F

F
?” Should you use the 

static coefficient of friction or the kinetic coefficient of friction? Because the 
static coefficient of friction is greater than the kinetic coefficient of friction, 
the static coefficient is your best choice. After you and your friends get the 
refrigerator to start moving, you can keep it moving with less force. Because 
you’re going to use the static coefficient of friction, you can get F

F
 this way:

F
F 
= μs

F
N

You also need the normal force, F
N
, to continue (see the section “Calculating 

friction and the normal force” earlier in this chapter). F
N
 is equal and oppo-

site to the component of the refrigerator’s weight acting perpendicularly to 
the ramp. The component of the refrigerator’s weight acting perpendiculary 
to the ramp is –mg cos θ (see the preceding section), so you can say that the 
normal force acting on the refrigerator is

F
N 

= mg cos θ

You can verify this by letting θ go to zero, which means that F
N
 becomes mg, 

as it should. 

The static force of friction, F
F
, is then given by F

F = μ
s mg cos θ. So the mini-

mum force required to overcome the component of the weight acting along 
the ramp and the static force of friction is given by

F
pull

 = mg sin θ + μ
s
mg cos θ
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Now just plug in the numbers:

 F
pull

 = mg sin θ + μ
s
mg cos θ

 = (100 kg)(9.8 m/s2)(sin 30°) + (0.20)(100 kg)(9.8 m/s2)(cos 30°)

 ≈ 490 N + 170 N

 = 660 N

You need 660 newtons of force to push the refrigerator up the ramp. In 
other words, your two friends, who can exert 350 newtons each, are enough 
for the job. “Get started,” you say, pointing confidently at the refrigerator. 
Unfortunately, just as they get to the top of the ramp, one of them stumbles. 
The refrigerator begins to slide down the ramp, and they jump off, abandon-
ing it to its fate.

Object on the loose: Calculating how far an object will slide
Assuming that the ramp and the ground both have the same kinetic coefficient 
of friction and that the refrigerator starts to slide from the top of the ramp, how 
far will the refrigerator that your friends drop (in the preceding section) slide? 
Take a look at Figure 6-5, which shows the refrigerator as it slides down the 
3.0-meter ramp. As you watch with dismay, it picks up speed. A car is parked 
behind the ramp, only 7.2 meters away. Will the errant refrigerator smash it?

 

Figure 6-5: 
All the 

forces act-
ing on an 

object slid-
ing down a 

ramp.
 

θ

θ

90° – θ
mg sin θ

FN
FF

mg cos θ

mg

Figuring the acceleration and final velocity at the end of the ramp
When an object slides downward, the forces acting on it change (see 
Figure 6-5). With the fridge, there’s no more F

pull force to push it up the ramp. 
Instead, the component of the refrigerator’s weight acting along the ramp 
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pulls the refrigerator downward. And while the fridge slides down, friction 
opposes that force. So what force accelerates the refrigerator downward? 
The weight acting along the ramp is mg sin θ and the normal force is mg cos θ, 
which means that the kinetic force of friction is

F
F = μ

k
F

N
 = μ

k
mg cos θ

The net force accelerating the refrigerator down the ramp, F
accleration

, is the 
the difference between the component of the refrigerator’s weight along the 
ramp and the frictional force opposing it:

 F
acceleration = mg sin θ – F

F

 = mg sin θ – μ
k
 mg cos θ 

Note that you subtract F
F
, the force due to friction, because that force always 

acts to oppose the force causing the object to move. Plugging in the numbers 
gives you

 F
acceleration 

= (100 kg)(9.8 m/s2)sin 30° – (0.15)(100 kg)(9.8 m/s2)cos 30°

 ≈ 360 N

The force pulling the refrigerator down the ramp is 360 newtons. Because 
the refrigerator is 100 kilograms, you have an acceleration of 360 N/100 kg = 
3.6 m/s2, which acts along the entire 3.0-meter ramp. You can calculate the 
final speed of the refrigerator at the bottom of the ramp this way:

v
f
2 = 2as

Plugging in the numbers, you get

v
f
2 = 2(3.6 m/s2)(3.0 m)

v
f
2 = 21.6 m2/s2

v
f
 ≈ 4.6 m/s

The final speed of the refrigerator when it starts traveling along the street 
toward the parked car is about 4.6 meters per second.

Figuring the distance traveled
With your calculations from the preceding section, do you know how far the 
refrigerator will travel after your friends let go of it on a ramp? 

You have a refrigerator heading down the street at 4.6 meters per second, 
and you need to calculate how far it’s going to go. Because it’s traveling along 
the pavement now, you need to factor in the force due to friction. Gravity will 
no longer accelerate the object, because the street is flat. Sooner or later, 
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the refrigerator will come to a stop. But how close will it come to a car that’s 
parked in the street 7.2 meters away? As usual, your first calculation is the 
force acting on the object. In this case, you figure the magnitude of the force 
due to friction:

F
F
 = μ

k
F

N

Because the refrigerator is moving along a horizontal surface, the normal 
force, F

N
, is simply the weight of the refrigerator, mg, which means the force 

of friction is

F
F
 = μ

k
F

N = μk
mg

Plugging in the data gives you

F
F
 = μ

k
mg = (0.15)(100 kg)(9.8 m/s2) ≈ 150 N

A force of 150 newtons acts to stop the sliding refrigerator that’s now ter-
rorizing the neighborhood. So how far will it travel before it comes to rest? 
If you take the refrigerator to be moving horizontally in the positive direc-
tion, then because the force is acting in the opposite direction, its horizontal 
 component is negative. Because of Newton’s second law, the acceleration is 
also negative and is given by

You can find the distance through the equation v
f
2 – v

i
2 = 2as. The distance 

the refrigerator slides is

In this case, you want the final velocity, v
f
, to be zero, because you need to 

know where the refrigerator will stop. Therefore, this equation breaks down to

Whew! The refrigerator slides only 7.1 meters, and the car is 7.2 meters away. 
With the pressure off, you watch the show as your panic-stricken friends 
hurtle after the refrigerator, only to see it come to a stop right before hitting 
the car — just as you expected.
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Let’s Get Fired Up! Sending 
Objects Airborne

This section is all about how what goes up must come down — the behav-
ior of objects under the influence of constant gravitational attraction. With 
Newton’s second law, you can relate the acceleration of a body to the net 
force acting on it. You know that gravity exerts a force on a mass, called its 
weight, which has the magnitude mg. So you can work out the constant g, the 
acceleration of a mass under the sole influence of gravity. When you know 
how constant acceleration relates to velocity and displacement, you can 
work out the motion of a projectile.

In this section, you sling projectiles around and let gravity do its work on 
shaping their trajectories. You’ll see that because the force of gravity only 
acts downward — that is, in the vertical direction — you can treat the verti-
cal and horizontal components separately. I start with just vertical motion 
before going on to look at trajectories with both horizontal and vertical com-
ponents to them. Armed with this information, you can calculate things like 
the time for a projectile to strike the ground or reach the top of its trajectory 
and the distance that a projectile will travel.

Shooting an object straight up
To start simply, figure out how far a projectile can travel straight up in the 
air. Say, for example, that on your birthday, your friends give you just what 
you’ve always wanted: a cannon. It has a muzzle velocity of 860 meters/
second, and it shoots 10-kilogram cannonballs. Anxious to show you how it 
works, your friends shoot it off. The only problem: The cannon is pointing 
straight up. How long do you have to get out of the way?

Going up: Maximum height
Wow, you think, watching the cannonball. You wonder how high it will go, so 
everyone starts to guess. Because you know your physics, you can figure this 
one out exactly.

You know the initial vertical velocity, v
i
, of the cannonball, and you know that 

gravity will accelerate it downward. How can you determine how high the 
ball will go? At the cannonball’s maximum height, its vertical velocity will be 
zero, and then it will head down to Earth again. Therefore, you can use the 
following equation at the cannonball’s highest point, where its vertical veloc-
ity will be zero:

v
f
2 – v

i
2 = 2as
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You want to know the cannonball’s displacement from its initial position, so 
solve for s. This gives you

Plugging in what you know — v
f
 is 0 meters/second, v

i
 is 860 meters/second, 

and the acceleration is g downward (g being 9.8 meters/second2, the accelera-
tion due to gravity on the surface of the Earth), or –g. You get this:

Whoa! The ball will go up 38 kilometers, or nearly 24 miles. Not bad for a 
birthday present.

Floating on air: Hang time
How long would it take a cannonball shot 24 miles straight up (see the pre-
ceding section) to reach its maximum height?

You know that the vertical velocity of the cannonball at its maximum height 
is 0 meters/second, so you can use the following equation to find the time the 
cannonball will take to reach its maximum height:

v
f
 = v

i
 + at

Because v
f
 = 0 meters/second and a = –g = –9.8 meters/seconds2, it works out 

to this:

0 = v
i – gt

Solving for time, you get the following:

You enter the numbers into your calculator as follows:

It takes about 88 seconds for the cannonball to reach its maximum height.

Note: This equation is one way to come to the solution, but you have all 
kinds of ways to solve a problem like this. You look at a somewhat similar 
problem in Chapter 4, where a golf ball falls off a cliff; there, you use the 
equation  to determine how long the ball is in the air, given the 
height of the cliff.
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Going down: Factoring the total time
How long would it take a cannonball shot 24 miles straight into the air to 
complete its entire trip — up and then down, from muzzle to lawn — half of 
which takes 88 seconds (to reach its maximum height)? Flights like the one 
taken by the cannonball are symmetrical; the trip up is a mirror of the trip 
down. The velocity at any point on the way up has exactly the same magni-
tude as on the way down, but on the way down, the velocity is in the oppo-
site direction. Ignoring air resistance, this means that the total flight time is 
double the time it takes the cannonball to reach its highest point, or

t
total = 2(88 s) = 176 s

You have 176 seconds, or 2 minutes and 56 seconds, until the cannonball hits 
the ground.

Projectile motion: Firing 
an object at an angle
Firing projectiles at an angle introduces a horizontal component to the 
motion. However, the force of gravity acts only in the vertical direction, so 
the horizontal component of the trajectory is uniform. You can tackle this 
kind of problem by separating out the horizontal and vertical components 
of the motion. 

Here’s an example: Imagine that one of your devious friends decides to fire a 
cannonball at an angle, as Figure 6-6 shows. The following sections cover the 
cannonball’s motion when you shoot at an angle.

 

Figure 6-6: 
Shooting a 
cannon at 

a particular 
angle with 
respect to 

the ground.
 

θ

Breaking down a cannonball’s motion into its components
 How do you handle the motion of an object shot up at an angle? Because you 

can always break motion in two dimensions up into x and y components, and 
because gravity acts only in the y component, your job is easy. All you have to 
do is break the initial velocity into x and y components (see Chapter 4 for the 
basics of this task):
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v
x = v

i cos θ

v
y = v

i sin θ

These velocity components are independent, and gravity acts only in the 
y direction, which means that v

x
 is constant; only v

y
 changes with time, 

as follows:

v
y 
= v

i sin θ – gt  

If you want to know the x and y positions of the cannonball at any time, you 
can easily find them. You know that x is simply

x = v
x
t = (v

i cos θ)t

And because gravity accelerates the cannonball vertically, here’s what y 
looks like (the t2 here is what gives the cannonball’s trajectory in Figure 6-6 
its parabolic shape):

You figure out in previous sections the time it takes a cannonball to hit the 
ground when shot straight up: t = 2v

y
 / g. Knowing the time allows you to find 

the range of the cannon in the x direction:

So there you have it — now you can figure out the range of the cannon given 
the speed of the cannonball and the angle at which it was shot.

Discovering the cannon’s maximum range
What’s the range for your new cannon if you aim it at 45°, which gives 
you your maximum range? If the cannonball has an initial velocity of 
860 meters/second, the equation you use looks like this:

Your range is 75 kilometers, or nearly 47 miles. Not bad.
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Chapter 7

Circling around Rotational 
Motion and Orbits

In This Chapter
▶ Working with centripetal acceleration

▶ Feeling the pull of centripetal force

▶ Incorporating angular displacement, velocity, and acceleration

▶ Orbiting with Newton’s laws and gravity

▶ Staying in the loop with vertical circular motion

Circular motion can include rockets’ moving around planets, race cars’ 
whizzing around a track, or bees’ buzzing around a hive. In this chapter, 

you look at the velocity and acceleration of objects that are moving in circles. 
This discussion leads to more general forms of rotational motion, where it’s 
useful to talk about motion in angular terms.

Angular equivalents exist for displacement, velocity, and acceleration. Instead 
of dealing with linear displacement as a distance, you deal with angular 
displacement as an angle. Angular velocity indicates what angle you sweep 
through in so many seconds, and angular acceleration gives you the rate of 
change in the angular velocity. All you have to do is take linear equations and 
substitute the angular equivalents: angular displacement for displacement, 
angular velocity for velocity, and angular acceleration for acceleration.

Centripetal Acceleration: Changing 
Direction to Move in a Circle

 In order to keep an object moving in circular motion, its velocity con-
stantly changes direction. Because velocity changes, you have acceleration. 
Specifically, you have centripetal acceleration — the acceleration needed to 
keep an object moving in circular motion. At any point, the velocity of the 
object is perpendicular to the radius of the circle.
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If the string holding the ball in Figure 7-1 breaks at the top, bottom, left, or 
right moment you see in the illustration, which way would the ball go? If 
the velocity points to the left, the ball would fly off to the left. If the velocity 
points to the right, the ball would fly off to the right. And so on. That’s not 
intuitive for many people, but it’s the kind of physics question that may 
come up in introductory courses.

 The velocity of an object in circular motion is always at right angles to the 
radius of the object’s path.  At any one moment, the velocity points along the 
tiny section of the circle’s circumference where the object is, so the velocity is 
tangential to the circle.

 

Figure 7-1: 
Velocity 

constantly 
changes 
direction 
when an 
object is 

in circular 
motion.

 

v

v

v

v

Keeping a constant speed with 
uniform circular motion
An object with uniform circular motion travels in a circle with a constant 
speed. Practical examples may be hard to come by, unless you see a race car 
driver on a perfectly circular track with his accelerator stuck, a clock with a 
seconds hand that’s in constant motion, or the moon orbiting the Earth.

Take a look at Figure 7-2, where a golf ball tied to a string is whipping around 
in circles. The golf ball is traveling at a uniform speed as it moves around in a 
circle, so you can say it’s traveling in uniform circular motion.

 An object in uniform circular motion does not travel with a uniform velocity, 
because its direction changes all the time.

Describing the period
Any object that travels in uniform circular motion always takes the same 
amount of time to move completely around the circle. That time is called 
its period, designated by T.
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Figure 7-2: 
A golf ball 

on a string 
traveling 

with 
constant 

speed.
 

ac

v

θ

If you’re swinging a golf ball around on a string at a constant speed, you can 
easily relate the ball’s speed to its period. You know that the distance the 
ball must travel each time around the circle equals the circumference of the 
circle, which is 2πr (where r is the radius of the circle), so you can get the 
equation for finding an object’s period by first finding its speed:

 If you solve for T, you get the equation for the period:

Say that you’re spinning a golf ball in a circle at the end of a 1.0-meter string 
every half-second. How fast is the ball moving? Time to plug in the numbers:

The ball moves at a speed of 12.6 meters/second. Just make sure you have a 
strong string!

Accelerating toward the center
When an object travels in uniform circular motion, its speed is constant, 
which means that the magnitude of the object’s velocity doesn’t change. 
Therefore, acceleration can have no component in the same direction as 
the velocity; if it did, the velocity’s magnitude would change.

However, the velocity’s direction is constantly changing — it always bends 
so that the object maintains movement in a constant circle. To make that 
happen, the object’s centripetal acceleration is always concentrated toward 
the center of the circle, perpendicular to the object’s velocity at any one 
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time. The acceleration changes the direction of the object’s velocity while 
keeping the magnitude of the velocity constant.

In the ball’s case (refer to Figures 7-1 and 7-2), the string exerts a force on the 
ball to keep it going in a circle — a force that provides the ball’s centripetal 
acceleration. In order to provide that force, you have to constantly pull on 
the ball toward the center of the circle. (Picture what it feels like, force-wise, 
to whip an object around on a string.) You can see the centripetal accelera-
tion vector, a

c
, in Figure 7-2.

If you accelerate the ball toward the center of the circle to provide the cen-
tripetal acceleration, why doesn’t it hit your hand? The answer is that the 
ball is already moving at a high speed. The force, and therefore the accelera-
tion, that you provide always acts at right angles to the velocity.

Finding the magnitude of the 
centripetal acceleration

 You always have to accelerate an object toward the center of the circle to 
keep it moving in circular motion. So can you find the magnitude of the accel-
eration you create? No doubt. If an object is moving in uniform circular motion 
at speed v and radius r, you can find the magnitude of the centripetal accelera-
tion with the following equation:

For a practical example, imagine you’re driving around curves at a high 
speed. For any constant speed, you can see from the equation a

c
 = v2/r 

that the centripetal acceleration is inversely proportional to the radius 
of the curve. In other words, on tighter curves (as the radius decreases), 
your car needs to provide a greater centripetal acceleration (the 
acceleration increases).

Seeking the Center: Centripetal Force
When you’re driving a car around a bend, you create centripetal accelera-
tion by the friction of your tires on the road. How do you know what force 
you need to create to turn the car at a given speed and turning radius? That 
depends on the centripetal force — the center-seeking, inward force needed 
to keep an object moving in uniform circular motion.
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In this section, you discover how the centripetal force keeps the object 
moving in a circle and how the details of the circular motion such as radius 
and velocity depend upon the centripetal force.

Looking at the force you need
 Centripetal force isn’t some new force that appears out of nowhere when an object 

travels in a circle; it’s the force the object needs to keep traveling in that circle.

As you know from Newton’s first law (see Chapter 5), if there’s no net force 
on a moving object, the object will continue to move uniformly in a straight 
line. If a force (or a component of a force) acts in the same direction as the 
object’s velocity, then the object begins to speed up, and if the force acts in 
the opposite direction to the velocity, then the object slows down. However, 
if the force always acts perpendicularly to the velocity while remaining of 
constant magnitude, then the magnitude of the velocity (the speed) does not 
change; only its direction does — the object moves in a circle. In this case, 
the force is called centripetal force.

If you’re spinning a ball on a string, then the centripetal force comes from 
the tension in the string. When the moon orbits the Earth, the centripetal force 
comes from gravity. And when you drive your car in a circle, the centripetal 
force comes from the friction of the tires against the road. The origin of the 
force is not important, only that it remains of constant magnitude and always 
acts perpendicularly to the velocity, toward the center of the circle.

The fictitious centrifugal force
You’ve probably heard of centrifugal force and 
most likely have felt it when a car you were in 
turned a corner. However, centrifugal force is 
not really a force as defined in Newton’s laws. 
It only appears to be a force. When you’re in a 

car turning a corner, your body has inertia and 
is naturally inclined to move at uniform speed 
in a straight line. But because the car is turn-
ing, it feels as though your body is being thrown 
outward, toward the car door. 
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Seeing how the mass, velocity, and 
radius affect centripetal force

 Because force equals mass times acceleration, F = ma, and because centripetal 
acceleration is equal to v2/r (see the earlier section “Finding the magnitude of 
the centripetal acceleration”), you can determine the magnitude of the cen-
tripetal force needed to keep an object moving in uniform circular motion 
with the following equation:

This equation tells you the magnitude of the force that you need to move 
an object of a given mass, m, in a circle at a given radius, r, and speed, v. 
(Remember that the direction of the force is always toward the center of 
the circle.)

Think about how force is affected if you change one of the other variables. The 
equation shows that if you increase mass or speed, you’ll need a larger force; 
if you decrease the radius, you’re dividing by a smaller number, so you’ll also 
need a larger force. Here’s how these ideas play out in the real world:

 ✓ Increasing mass: You may have an easy time swinging a golf ball on a string 
in a circle, but if you replace the golf ball with a cannonball, watch out. You 
may now have to whip 10 kilograms around on the end of a 1.0-meter string 
every half-second. As you can tell, you need a heck of a lot more force.

 ✓ Increasing speed: Not interested in spinning cannonballs? Then imagine 
you’re driving your car around in a circle. If you’re going quite slowly 
around the circle, your tires have no problem generating enough fric-
tional force to keep you going in the circle. But if you go too fast, then 
your tires can no longer generate the frictional force acting toward the 
center of the circle, so you start to skid.

 ✓ Decreasing the radius: You can see the effect of the radius in your car 
going around in a circle. If you drive your car at a fixed speed in a circle 
of smaller and smaller radius, eventually your tires won’t be able to 
supply enough centripetal force from the friction, and you’ll skid off 
the circular path.

Try plugging some numbers into the formula. The ball from Figure 7-2 is 
moving at 12.6 meters/second on a 1.0-meter string. How much force do you 
need to make a 10.0-kilogram cannonball move in the same circle at the same 
speed? Here’s what the equation looks like:
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You need about 1,590 newtons, or about 357 pounds of force (4.448 newtons 
are in a pound; see Chapter 5). Pretty hefty, if you ask me; I just hope your 
arms can take it.

Negotiating flat curves and banked turns
Imagine that you’re driving a car and you come to a curve. On a flat road, the 
centripetal force you need to negotiate the curve comes from the friction of 
the tires against the ground. If the surface is covered with a substance such 
as ice, you have less friction, and you can’t turn as safely at high speeds.

To make turns safer, engineers design roads so that curves are banked. With 
the road at an angle, there’s a component of the normal force of the road 
against your car, toward the center of the circle. This means that you don’t 
require as much friction from your tires to make the turn.

Relying on friction to turn on a flat road
When you’re driving on a flat road, friction provides the centripetal force — 
toward the center of the circle — that allows you to make a turn.

Say you’re sitting in the passenger seat of the car, approaching a turn with 
a 200.0-meter radius (with a level, non-banked road surface). You know that 
the coefficient of static friction is 0.8 on this road (you use the coefficient 
of static friction because the tires aren’t slipping on the road’s surface) and 
that the car has a mass of about 1,000 kilograms. What’s the maximum speed 
the driver can go and still keep you safe? You get out your calculator as the 
driver shoots you a look with raised eyebrows. The frictional force needs to 
supply the centripetal force, so you come up with the following:

where m is the mass of the car, v is the velocity, r is the radius, μs is the coef-
ficient of static friction, and g is the acceleration due to gravity, 9.8 meters/
second2. Solving for the speed on one side of the equation gives you

This looks simple enough — you just plug in the numbers to get

You calculate 40 meters/second, or about 87 miles/hour. You look at the 
speedometer and see a speed of 70 miles/hour. You can negotiate the turn 
safely at your present speed.
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Depending on the normal force to make a banked turn
If a curve is banked, then a component of the normal force of the road against 
the car contributes to the centripetal force, and so you can go around the 
curve much faster. Because you don’t have to rely on friction to supply the 
centripetal force, the question of whether you can safely make the turn no 
longer depends on road conditions.

Take a look at Figure 7-3, which shows a car banking around a turn. The engi-
neers can make the driving experience enjoyable if they bank the turn so that 
drivers garner the centripetal force needed to go around the turn entirely by 
the component of the normal force of the road against the car acting toward 
the center of the turn’s circle. That component is F

N
 sin θ (F

N
 is the normal 

force, the upward force perpendicular to the road; see Chapter 6), so

 

Figure 7-3: 
The forces 
acting on a 

car banking 
around a 

turn.
 

mg
FN

FN

sin θ

θ

θ
θ

To find the centripetal force, you need the normal force, F
N
. If you look at 

Figure 7-3, you can see that F
N
 comes from a combination of the centripetal 

force due to the car’s banking around the turn and the car’s weight. The 
purely vertical component of F

N
 must equal mg, because no other forces 

are operating vertically, so

Plugging this result into the equation for centripetal force gives you
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Because sin θ / cos θ = tan θ, you can also write this as

Solve for θ to find the angle of the road. The equation finally breaks down to

 You don’t have to memorize this result, in case you’re panicking — this is the 
kind of equation used by highway engineers when they have to bank curves 
(notice that the mass of the car cancels out, meaning that it holds for vehicles 
regardless of weight). You can always derive this equation from your knowl-
edge of Newton’s laws and circular motion.

What should the angle θ be if drivers go around a 200-meter-radius turn 
at 60 miles/hour? Plug in the numbers; 60 miles/hour is about 
27 meters/second and the radius of the turn is 200 meters, so

The designers should bank the turn at about 20° to give drivers a smooth 
experience. Remember though, that you made this calculation such that all 
the centripetal force comes from the normal force of the road against the 
car. You could go around the corner faster than this if you have some friction 
from your tires — but not too fast, or you’ll be skidding off into the verge!

Getting Angular with Displacement, 
Velocity, and Acceleration

For objects moving in a circle, you can work with acceleration and velocity using 
the horizontal and vertical components, just as in previous chapters on motion. 
But when objects are undergoing rotational motion, using angular variables 
instead makes a lot of sense. With these variables, instead of specifying the 
horizontal and vertical components, you specify the radius and the angle 
of rotation.
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In this section, you discover the angular equivalents of displacement, veloc-
ity, and acceleration. You can apply these variables to rotating objects and 
objects moving in a circle. 

Measuring angles in radians
 The natural unit of measurement of angles is the radian, not the degree. A 

full circle is made up of 2π radians, which is also 360°, so 360° = 2π radians. If 
you travel in a full circle, you go 360°, or 2π radians. (If an object rotates one 
revolution, then the angle has magnitude of 2π radians. Therefore, sometimes 
instead of radians per second, you see revolutions per second.) A half-circle is 
π radians, and a quarter-circle is π/2 radians.

The radian is a natural measure of angle because a circular arc that has a 
length of one radius extends an angle of 1 radian (see Figure 7-4). So if you 
know the radius and the angle that an object has moved through in radians, 
you can easily find the distance that the object has moved in proportion to 
the radius. If the object moves θ radians in a circle of radius r, then the 
object travels a distance of θr along the circle.

 

Figure 7-4: 
A circular 

arc extends 
an angle of 
one radian.

 

r

r

θ = 1 radian

This idea is useful in relating the angular velocity to the speed of an object 
moving in a circle. In addition, you can see why a full circle has an angle of 
2π radians: You know that the circumference of a circle is 2πr and that to 
go the whole way around the 360° of a circle, you need to travel 2π times 
the radius. Therefore, there are 2π radians to 360°.

 How do you convert from degrees to radians and back again? Because 
360° = 2π radians (or 2 multiplied by 3.14, the rounded version of pi), you 
have an easy calculation. If you have 45° and want to know how many 
radians that translates to, just use this conversion factor:
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You find out that 45° = π/4 radians. If you have, say, π/2 radians and want to 
know how many degrees that converts to, you do this conversion:

You calculate that π/2 radians = 90°.

Relating linear and angular motion
 The fact that you can think of the angle, θ, in rotational motion just as you 

think of the displacement, s, in linear motion is great, because it means you 
have an angular counterpart for many of the linear motion equations (see 
Chapter 3). Here are the variable substitutions you make to get the angular 
motion formulas:

 ✓ Displacement: Instead of s, which you use in linear travel, use θ, the 
angular displacement; θ is measured in radians.

 ✓ Velocity: In place of the velocity, v, use the angular velocity, ω; angular 
velocity is the number of radians covered per second.

 ✓ Acceleration: Instead of acceleration, a, use the angular acceleration, α; 
the unit for angular acceleration is radians per second2.

Table 7-1 compares the formulas for both linear and angular motion.

Table 7-1 Linear and Angular Motion Formulas

Type of Formula Linear Angular

Velocity

Acceleration

Displacement

Motion with time 
canceled out

vf
2 – vi

2 = 2as ωf
2 – ωi

2 = 2αθ

Say, for example, that you have a ball tied to a string. What’s the angular 
velocity of the ball if you whirl it around? It makes a complete circle, 2π radi-
ans, in 0.5 seconds, so its angular velocity is
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 Another demonstration of the usefulness of radians in measuring angles is 
that the linear speed can easily be related to the angular speed. If you take 
the equation 

And multiply both sides by the radius, r, you get

The term rΔθ is simply the distance traveled by an object moving in a circle 
of radius r, so this equation becomes

You may recognize the right side of this equation as the equation for speed. 
So you can see that linear speed and angular speed are related by rω = v.

If the ball speeds up from 4π radians per second to 8π radians per second in 
2 seconds, what would its average angular acceleration be? Work it out by 
plugging in the numbers:

To find out more about angular displacement, angular velocity, and angu-
lar acceleration, see the discussion on angular momentum and torque in 
Chapter 11. Keep in mind, however, that these angular variables, like their 
linear counterparts, are actually vector quantities. What you’ve seen so far 
are simply components of vectors in one dimension. Because they only have 
one component, the sign of the component gives the direction in the single 
dimension (for example, positive indicates movement to the right, and nega-
tive indicates movement to the left). In Chapter 11, you see more about the 
direction and the vector nature of these variables.

Letting Gravity Supply Centripetal Force
You don’t have to tie objects to strings to observe travel in circular motion; 
larger bodies such as planets move in circular motion, too. Gravity provides 
the necessary centripetal force.

In this section, you discover Newton’s take on the gravitational force between 
two objects, and I show you how his theory relates to 9.8 meters/second2, the 
value experimenters identified as the acceleration due to gravity near the 
surface of the Earth. Then you put Newton’s formula to use in looking at the 
orbits of satellites.
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Using Newton’s law of universal gravitation
 Sir Isaac Newton came up with one of the heavyweight laws in physics for 

you: the law of universal gravitation. This law says that every mass exerts an 
attractive force on every other mass. If the two masses are m1 and m2 and the 
distance between them is r, the magnitude of the force is

where G is a constant equal to 6.67 × 10–11 N·m2/kg2.

This equation allows you to figure the gravitational force between any two 
masses. What, for example, is the pull between the sun and the Earth? The 
sun has a mass of about 1.99 × 1030 kilograms, and the Earth has a mass of 
about 5.98 × 1024 kilograms. A distance of about 1.50 × 1011 meters separates 
the two bodies. Plugging the numbers into Newton’s equation gives you

Your answer of 3.52 × 1022 newtons converts to about 8.0 × 1020 pounds of 
force (4.448 newtons are in a pound).

On the land-based end of the spectrum, say that you’re out for your daily 
physics observations when you notice two people on a park bench, looking 
at each other and smiling. As time goes on, you notice that they seem to be 
sitting closer and closer to each other each time you take a glance. In fact, 
after a while, they’re sitting right next to each other. What could be causing 
this attraction? If the two lovebirds have masses of about 75 kilograms each, 
what’s the force of gravity pulling them together, assuming they started out 
0.50 meters away? Your calculation looks like this:

The force of attraction is roughly 5 millionths of an ounce. Maybe not enough 
to shake the surface of the Earth, but that’s okay. The Earth’s surface has its 
own forces to deal with.
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Deriving the force of gravity 
on the Earth’s surface
The equation for the force of gravity — F = (Gm1m2)/r2 — holds true no matter 
how far apart two masses are. But you also come across a special gravita-
tional case (which most of the work on gravity in this book is about): the 
force of gravity near the surface of the Earth.

The gravitational force between a mass and the Earth is the object’s weight. 
Mass is considered a measure of an object’s inertia, and its weight is the force 
exerted on the object in a gravitational field. On the surface of the Earth, the 
two forces are related by the acceleration due to gravity: F

g
 = mg. Kilograms 

and slugs are units of mass; newtons and pounds are units of weight.

You can use Newton’s law of gravitation to get the acceleration due to grav-
ity, g, on the surface of the Earth just by knowing the gravitational constant 
G, the radius of the Earth, and the mass of the Earth. The force on an object 
of mass m1 near the surface of the Earth is

F = m1g

This force is provided by gravity between the object and the Earth, according 
to Newton’s gravity formula, and so you can write

The radius of the Earth, r
e, is about 6.38 × 106 meters, and the mass of the 

Earth is 5.98 × 1024 kilograms. Putting in the numbers, you have

Dividing both sides by m1 gives you the acceleration due to gravity:

Newton’s law of gravitation gives you the acceleration due to gravity near the 
surface of the Earth: 9.8 meters/second2.
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Of course, you can measure g by letting an apple drop and timing it, but what 
fun is that when you can calculate it in a roundabout way that requires you to 
first measure the mass of the Earth?

Using the law of gravitation 
to examine circular orbits
In space, bodies are constantly orbiting other bodies due to gravity. Satellites 
(including the moon) orbit the Earth, the Earth orbits the sun, the sun orbits 
around the center of the Milky Way, the Milky Way orbits around the center 
of its local group of galaxies. This is big-time stuff. In the case of orbital 
motion, gravity supplies the centripetal force that causes the orbits.

The force of gravity between orbiting bodies is quite a bit different from 
small-time orbital motion — such as when you have a ball on a string — 
because for a given distance and two masses, the gravitational force is 
always going to be the same. You can’t increase the force to increase the 
speed of an orbiting planet as you can with a ball. The following sections 
examine the speed and period of orbiting bodies in space.

Calculating a satellite’s speed
A particular satellite can have only one speed when in orbit around a par-
ticular body at a given distance because the force of gravity doesn’t change. 
So what’s that speed? You can calculate it with the equations for centripetal 
force and gravitational force. You know that for a satellite of a particular 
mass, m1, to orbit, you need a corresponding centripetal force (see the 
section “Seeking the Center: Centripetal Force”):

This centripetal force has to come from the force of gravity, so

You can rearrange this equation to get the speed:
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This equation represents the speed that a satellite at a given radius must have 
in order to orbit if the orbit is due to gravity. The speed can’t vary as long as 
the satellite has a constant orbital radius — that is, as long as it’s going around 
in circles. This equation holds for any orbiting object where the attraction is the 
force of gravity, whether it’s a human-made satellite orbiting the Earth or the 
Earth orbiting the sun. If you want to find the speed for satellites that orbit 
the Earth, for example, you use the mass of the Earth in the equation:

 Here are a few details you should note on reviewing the orbiting speed equation:

 ✓ You have to use the distance from the center of the Earth, not the dis-
tance above Earth’s surface, as the radius. Therefore, the distance you 
use in the equation is the distance between the two orbiting bodies. In 
this case, you add the distance from the center of the Earth to the surface 
of the Earth, 6.38 × 106 meters, to the satellite’s height above the Earth.

 ✓ The equation assumes that the satellite is high enough off the ground 
that it orbits out of the atmosphere. That assumption isn’t really true 
for artificial satellites; even at 400 miles above the surface of the Earth, 
satellites do feel air friction. Gradually, the drag of friction brings them 
lower and lower, and when they hit the atmosphere, they burn up on re-
entry. When a satellite is less than 100 miles above the surface, its orbit 
decays appreciably each time it circles the Earth. (Look out below!)

 ✓ The equation is independent of mass. If the moon rather than the arti-
ficial satellite orbited at 400 miles and you could ignore air friction and 
collisions with the Earth, it would have to go at the same speed as the 
satellite in order to preserve its close orbit (which would make for some 
pretty spectacular moonrises).

Human-made satellites typically orbit at heights of 400 miles from the surface 
of the Earth (about 640 kilometers, or 6.4 × 105 meters). What’s the speed of 
such a satellite? All you have to do is put in the numbers:

This converts to about 16,800 miles per hour.

 You can think of a satellite in motion around the Earth as always falling. The 
only thing that keeps it from striking the Earth is that its velocity points over the 
horizon. The satellite is falling, but its velocity takes it over the horizon — that 
is, over the curve of the world as it falls — so it doesn’t get any closer to the 
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Earth. (The same is true of the astronauts inside. They only have the appear-
ance of being weightless, but they’re continuously falling, too.)

Calculating the period of a satellite
Sometimes it’s more important to know the period of an orbit rather than the 
speed, such as when you’re counting on a satellite to come over the horizon 
before communication can take place. The period of a satellite is the time it 
takes it to make one full orbit around an object. The period of the Earth as it 
travels around the sun is one year.

If you know the satellite’s speed and the radius at which it orbits (see the pre-
ceding section), you can figure out its period. The satellite travels around the 
entire circumference of the circle — which is 2πr if r is the radius of the orbit — 
in the period, T. This means the orbital speed must be 2πr/T, giving you

If you solve this for the period of the satellite, you get

You, the intuitive physicist, may be wondering: What if you want to examine 
a satellite that simply stays stationary over the same place on the Earth at 
all times? In other words, a satellite whose period is the same as the Earth’s 
24-hour period? Can you do it? Such satellites do exist. They’re very popular 
for communications, because they’re always orbiting in the same spot rela-
tive to the Earth; they don’t disappear over the horizon and then reappear 
later. They also allow for the satellite-based global positioning system, or 
GPS, to work.

In cases of stationary satellites, the period, T, is 24 hours, or about 86,400 
seconds. Can you find the radius a stationary satellite needs to have? Using 
the equation for periods, you see that

Plugging in the numbers, you get
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Understanding Kepler’s laws of orbiting bodies
Johannes Kepler (1571–1630), a German national 
born in the Holy Roman Empire, came up with 
three laws that helped explain a great deal about 
orbits before Newton came up with his law of 
universal gravitation. Here are Kepler’s laws:

 ✓ Law 1: Planets orbit in ellipses. An ellipse 
is a shape like a squashed circle, and 
the degree of squashedness is called 
the eccentricity of the ellipse. The orbits 
allowed can have any degree of eccentric-
ity. When the eccentricity is zero, you have 
a circular orbit. 

 ✓ Law 2: Planets move so that a line between 
the sun and the planet sweeps out the 
same area in the same time, independent 
of where they are in their orbits. This means 

that when the planet is in that part of its 
orbit where it is close to the sun, it has to 
travel faster to sweep out the same area 
that it does when it’s farther away.

 ✓ Law 3: The square of a planet’s orbital 
period (the time it takes the planet to make 
one complete orbit) is proportional to its 
average distance from the sun cubed.

You can see how the third law can be derived 
from Newton’s laws by looking at the section 
“Calculating the period of a satellite.” It takes 
the form of this equation: r 3 = (T 2GmE)/4π 2. 

Although Kepler’s third law says that T 2 is pro-
portional to r 3, you can get the exact constant 
relating these quantities by using Newton’s law 
of gravitation.

If you take the cube root of this, you get a radius of 4.23 × 107 meters. 
Subtracting the Earth’s radius of 6.38 × 106 meters, you get 3.59 × 107 meters, 
which converts to about 22,300 miles. This is the distance from the Earth 
geosynchronous satellites need to orbit. At this distance, they orbit the 
Earth at the same rate the Earth is turning, which means that they stay 
put over the same piece of real estate.

 In practice, it’s very hard to get the speed just right, which is why geosyn-
chronous satellites have either gas boosters that can be used for fine-tuning 
or magnetic coils that allow them to move by pushing against the Earth’s 
magnetic field.

Looping the Loop: Vertical Circular Motion
Maybe you’ve watched extreme sports on television and wondered how bikers 
or skateboarders can ride into a loop on a track and go upside down without 
falling to the ground. Shouldn’t gravity bring them down? How fast do they 
have to go? The answers to these vertical circular-motion questions lie in 
centripetal force and the force of gravity.
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Take a look at Figure 7-5, where a ball is looping around a circular track. A 
question you may come across in introductory physics classes asks, “What 
speed is necessary so that the ball makes the loop safely?” The crucial point 
is at the very top of the track — if the ball is going to peel away from its circu-
lar track, the top is where it’ll fall. To answer the crucial question, you must 
know what criterion the ball must meet to hold on. Ask yourself, “What’s the 
constraint that the ball must meet?”

To travel in a loop, an object must have a net force acting on it that equals the 
centripetal force it needs to keep traveling in a circle of the given radius and 
speed. At the top of its path, as you can see in Figure 7-5, the ball barely stays 
in contact with the track. Other points along the track provide normal force 
(see Chapter 6) because of the speed and the fact that the track is curved. If 
you want to find out what minimum speed an object needs to have to stay on 
a loop, you need to look at where the object is just barely in contact with the 
track — in other words, on the verge of falling out of its circular path.

 

Figure 7-5: 
The force 

and velocity 
of a ball on 

a circular 
track.

 

v

v

mg

mg

The normal force the track applies to an object at the top is just about zero. 
The only force keeping the object on its circular track is the force of gravity, 
which means that at the apex, the speed of the object has to be such that the 
centripetal force equals the object’s weight to keep it going in a circle whose 
radius is the same as the radius of the loop. That means that if this is the 
force needed

then the force of gravity at the top of the loop is

F
g
 = mg
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And because F
g
 must equal F

c
, you can write

You can simplify this equation into the following form:

The mass of any object traveling around a circular track, such as a 
motorcycle or a race car, drops out of the equation.

The square root of r times g is the minimum speed an object needs at the 
top of the loop in order to keep going in a circle. Any object with a slower 
speed will peel off the track at the top of the loop (it may drop back into the 
loop, but it won’t be following the circular track at that point). For a practical 
example, if the loop from Figure 7-5 has a radius of 20.0 meters, how fast does 
the ball have to travel at the top of the loop in order to stay in contact with 
the track? Just put in the numbers:

The golf ball has to travel 14.0 meters per second at the top of the track, 
which is about 31 miles per hour.

What if you want to do the same trick on a flaming circular loop on a motor-
cycle to impress your pals? The same speed applies — you need to be going 
about 31 miles per hour minimum at the top of the track, which has a radius 
of 20 meters. If you want to try this at home, don’t forget that this is the 
speed you need at the top of the track — you have to go faster at the bottom 
of the track in order to travel at 31 miles per hour at the top, simply because 
you’re twice the radius, or 40 meters, higher up in the air, much like having 
coasted to the top of a 40-meter hill.

So how much faster do you need to go at the bottom of the track? How about 
 times faster? Check out Chapter 9, where kinetic energy (the kind of energy 

moving motorcycles have) is turned into potential energy (the kind of energy that 
motorcycles have when they’re high up in the air against the force of gravity). 
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Chapter 8

Go with the Flow: Looking at 
Pressure in Fluids

In This Chapter
▶ Examining mass density

▶ Understanding pressure in liquids and gases

▶ Floating with Archimedes’s principle

▶ Looking at fluids in motion

On a hot summer day, nothing is better than taking a dip in the neigh-
bor’s pool. As you execute the perfect swan dive and slip gracefully to 

the depths, you notice a curious sensation: water pressure. It increases with 
every foot you’re below the surface. You note the rapid increase of that pres-
sure as you go deeper, and you wonder what being miles under the surface of 
the ocean would feel like. “Hmm,” you think. “Just how does water pressure 
increase with depth?”

This chapter is all about pressures in fluids, and I cover a lot more than 
pounds per square inch. You also encounter info on Archimedes’s principle 
(which is all about floating and buoyancy), hydraulic machines, fluids moving 
in pipes, streamlines, and lots more. With all that coming up, it’s time to get 
your feet wet in the physics of fluids.

 Both liquids and gases are considered fluids. A fluid is defined as any continu-
ous distribution of matter that cannot support a shear stress without moving. 
If, on the other hand, you shear a solid piece of material by applying different 
forces to different parts of it, then the solid deforms to some degree but even-
tually finds a balance. For example, if you hold a piece of rubber in one hand 
and then push the top of it with the other, it bends over, supporting the shear 
stress you apply to it. 
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Mass Density: Getting Some 
Inside Information

Density is the ratio of mass to volume. Any solid object that’s less dense 
than water floats. Density is an important property of a fluid because mass 
is continuously distributed throughout a fluid; the static forces and motions 
within the fluid depend on the concentration of mass (density) rather than 
the fluid’s overall mass.

Calculating density
 Density (ρ) is mass (m) divided by volume (V), so here’s the formula for 

 density:

In the MKS system, the units are kilograms per cubic meter, or kg/m3. 

Say you have a whopper diamond with a volume of 0.0500 cubic meters 
(that’s a cube that’s about 1 foot on each side, so it’s truly a whopper). You 
measure its mass as 176.0 kilograms. So what’s its density?

Plugging in the numbers and doing the calculations gives you your answer:

So the density of diamond is 3,520 kg/m3. That’s pretty dense. 

You can see a sample of the densities of common materials in Table 8-1. Note 
that ice is less dense than water, so ice floats. Generally, solids and gases 
expand with temperature and therefore become less dense (you can find out 
more about the expansion of solids in Chapter 14 and the expansion of gases 
in Chapter 16). This table includes the density of water at 4°C as a reference 
point because the density of water varies with temperature. The densities 
of the gases generally have a stronger dependence on temperature than the 
solids do, though. 
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Table 8-1 Densities of Common Materials

Substance Density (kg/m3)

Gold (near room temperature) 19,300

Mercury (near room temperature) 13,600

Silver (near room temperature) 10,500

Copper (near room temperature) 8,890

Diamond (near room temperature) 3,520

Aluminum (near room temperature) 2,700

Blood (near body temperature) 1,060

Water (4°C) 1,000

Ice (0°C) 917

Oxygen (at 0°C, 101.325 kPa) 1.43

Helium (at 0°C, 101.325 kPa) 0.179

Comparing densities with specific gravity
A substance’s specific gravity is the ratio of that substance’s density to the 
density of water at 4°C. Because the density of water at 4°C is 1,000 kg/m3, 
that ratio is easy to find. For example, the density of gold is 19,300 kg/m3, 
so its specific gravity is the following:

Specific gravity has no units, because it’s a ratio of density divided by density, 
so all units cancel out. Therefore, the specific gravity of gold is simply 19.3.

 Anything with a specific gravity greater than 1,000 sinks in pure water at 4°C, 
and anything with a specific gravity less than 1,000 floats. As you’d expect, 
gold, with a specific gravity of 19,300, sinks. Ice, on the other hand, with a 
specific gravity of 917, floats. So how can a ship, which is made of metal with 
a specific gravity very much greater than water, float? The ship floats because 
of the shape of its hull. The ship is mostly hollow and displaces water weigh-
ing more than the weight of the ship. Averaged throughout, the ship is less 
dense than the water overall, so the effective specific gravity of the ship is less 
than that of water.
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Applying Pressure
Everyone who’s ever talked about car or bicycle tires or blown up a balloon 
knows about air pressure. And if you’ve gone swimming underwater, you 
know about water pressure. When you push on something, people say you 
exert pressure on it.

 In physics terms, pressure is force per area — a fact you may already know 
if you’ve filled a tire to a certain number of pounds per square inch. The 
equation for pressure, P, is the following:

 

where F is force and A is area. Note that pressure is not a vector — it’s a 
scalar (that is, just a number without a direction).

In this section, you look at the units of pressure, see how pressure changes 
along with depth or altitude, and discover how hydraulic machines work.

Looking at units of pressure
Because pressure is force divided by area, its MKS units are newtons per 
square meter, or N/m2. In the foot-pound-second (FPS) system, the units are 
pounds per square inch, or psi.

 The unit newtons per square meter is so common in physics that it has a spe-
cial name: the pascal, which equals 1 newton per square meter. The pascal is 
abbreviated as Pa.

You don’t have to be underwater to experience pressure from a fluid. Air 
exerts pressure, too, due to the weight of the air above you. Here’s how much 
pressure the air exerts on you at sea level:

 air pressuresea level = 1.013 × 105 Pa

 The air pressure at sea level is a standard pressure that people refer to as 
1 atmosphere (abbreviated atm):

air pressuresea level = 1.013 × 105 Pa = 1 atm

If you convert an atmosphere to pounds per square inch, it’s about 14.7 psi. 
That means that 14.7 pounds of force are pressing in on every square inch of 
your body at sea level.
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Your body pushes back with 14.7 psi, so you don’t feel any pressure on you 
at all. But if you suddenly got transported to outer space, the inward pres-
sure of the air pushing on you would be gone, and all that would remain 
would be the 14.7 pounds per square inch your body exerted outward. You 
wouldn’t explode, but your lungs could burst if you tried to hold your breath. 
The change in pressure could also cause the nitrogen in your blood to form 
bubbles and give you the bends!

Here’s a pressure example problem using water pressure. Say you’re in your 
neighbor’s pool, waiting near the bottom until your neighbors give up trying 
to chase you off and go back into the house. You’re near the deep end of the 
pool, and using the handy pressure gauge you always carry, you measure the 
pressure on the back of your hand as 1.2 × 105 pascals. What force does the 
water exert on the back of your hand? The back of your hand has an area of 
about 8.4 × 10–3 square meters. You reason that if P = F/A, then the following 
is true:

F = PA

Plugging in the numbers and solving gives you the answer:

 F = PA 

 = (1.2 × 105 Pa)(8.4 × 10–3 m2)

 = (1.2 × 105 N/m2)(8.4 × 10–3 m2)

 ≈ 1.0 × 103 N

Yikes. A thousand newtons! You whip out your underwater calculator to find 
that’s about 230 pounds. Forces add up quickly when you’re underwater 
because water is a heavy liquid. The force you feel is the weight of the 
water above you.

Connecting pressure to changes in depth
You know that pressure increases the farther you go underwater, but by 
how much? As a physicist, you can put some numbers in and get numerical 
results out. Just what pressure would you expect for a given depth?

Say that you’re underwater and you’re considering the imaginary cube of 
water you see in Figure 8-1. At the top of the cube, the water pressure is P1. At 
the bottom of the cube, it’s P2. The cube has horizontal faces of area A and a 
height h. First find the forces on the top and bottom of the cube.
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Figure 8-1: 
A cube of 
water has 

different 
pressures 
on the top 

and bottom 
faces.

 

A

h

P1

P2

The sum of the forces is the difference between the force on the bottom face 
of the cube, F2 , and the force on the top face of the cube, F1:

ΣF = F2 – F1 

You can say the force pushing down on the top face is F1 = P1A and that the 
force pushing on the bottom face is F2 = P2A. Therefore, in terms of pressure, 
the sum of forces is the following:

ΣF = P2A – P1A 

So what’s the net force upward on the cube of water? The upward force must 
be equal to the weight of the water, mg, where m is the mass of the water 
and g is the gravitational constant (9.8 meters/second2). So you have the 
following equation:

P2A – P1A = mg 

Hmm. You don’t know m, the mass of the water. Can you get the weight of 
the water in terms of A, the area of the top and bottom faces of the cube? 
The mass of the water is the density of water, ρ, multiplied by the volume 
of the cube, which is Ah. So you can replace m with ρAh, which gives you 
the following equation:

P2A – P1A = ρgAh 

Now you’re talking. Dividing everything by A gives you the difference 
in  pressures:

P2 – P1 = ρgh
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 If you call the difference in the pressures ΔP, you get the following equation:

ΔP = ρgh

The preceding equation is an important, general result that holds for any 
fluid: water, air, gasoline, and so on. This equation says that the difference 
in pressure between two points in a fluid is equal to the fluid’s density mul-
tiplied by g (the acceleration due to gravity) multiplied by the difference in 
height between the two points.

The next few sections provide some example problems so you can see what 
the pressure formula looks like in practice.

Diving down
How much does the pressure increase for every meter you go underwater? 
You know that ΔP = ρgh, so plug in the numbers and do the math:

ΔP = ρgh = (1,000 kg/m3)(9.8 m/s2)(1.0 m) = 9,800 Pa

That works out to be about 1.4 pounds per square inch added pressure for 
every meter you go down.

 If you were wondering how the units work out, rearrange the units from the 
first equation:

A kg∙m/s2 is just a newton, and a N/m2 is a pascal, so the units boil down 
to pascals:

That’s a fair bit of added pressure. But what if you decided to take a dip in a 
pool of mercury instead (don’t try this at home)? Mercury has a density of 
13,600 kg/m3, as opposed to water’s density at 1,000 kg/m3. In this case, the 
added pressure for every meter would be

ΔP = ρgh = (13,600 kg/m3)(9.8 m/s2)(1.0 m) ≈ 133,000 Pa

That’s an increase of about 19 pounds per square inch for every meter you go 
down — and that’s a lot of pressure.
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So does that mean that the pressure 1 meter under the surface of a pool of 
mercury is about 19 pounds per square inch? No, because you have to add to 
that pressure the pressure of the air on top of it, so you have the following:

P
t
 = P

m
 + P

a

where P
t
 is the total pressure, P

m
 is the pressure due to the mercury, and P

a
 is 

the pressure due to the air.

 To find the total pressure on something submerged in a liquid, you have to 
add the pressure due to the liquid to the atmospheric pressure, which is 
about 14.7 pounds per square inch, or 1.013 × 105 pascals.

Varying blood pressure
Say that your head is 1.5 meters above your feet. What’s the difference in 
blood pressure between your head and your feet (neglecting the action of 
the heart) when you’re lying down and when you’re standing? You can use 
the following equation to settle these questions:

ΔP = ρgh

The calculation for the case where you’re lying down is simple because h, the 
vertical distance between your heart and your feet, is 0:

ΔP = ρgh = ρg(0) = 0

Therefore, you see no difference in pressure between your heart and feet 
when you’re lying down (neglecting heart action). What about when you’re 
standing up? In that case, h = 1.5 m:

ΔP = ρgh = ρg(1.5 m)

As you can see in Table 8-1, the density, ρ, of blood is 1,060 kg/m3. Putting in 
the numbers and doing the math gives you the following difference in pressure:

ΔP = ρgh = (1,060 kg/m3)(9.8 m/s2)(1.5 m) ≈ 1.6 × 104 Pa 

That pressure works out to be slightly less than 2.0 pounds per square inch.

Pumping water upward
Suppose that a water slide park has been drilling a well to get water. The 
water in the well is 20 meters down, and the park owners hire you to find 
out how powerful of a pump they need to get a satisfactory water flow. 
Hmm, you think — a well that’s 20 meters deep, with a water pump on top. 
Will that even work?
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How much pressure can the pump exert on the water at the bottom of the 
well? The pump is pulling up air in the pipe, creating a vacuum, which the 
water will follow. But the amount of suction you can create with a pump suck-
ing air is limited. You can create the most pressure with a complete vacuum, 
P = 0. Atmospheric pressure is pushing down on the surface of the water 
and a total vacuum is at the top of the pipe, so the maximum pressure the 
pump at the top of the well can exert on the water at the bottom of the well 
is atmospheric pressure, or 1.01 × 105 pascals:

ΔP = 1.01 × 105 Pa 

How far up a pipe can a pressure of 1.01 × 105 pascals pull water? Well, you 
know that ΔP = ρgh, so when you’ve pulled water up as far as it’s going to go, 
ρgh of the column of water in the pipe equals 1.01 × 105 pascals:

ρgh = 1.01 × 105 Pa

Solving for h gives you the formula for how far the water can rise:

Plugging in the numbers (using the density value you know for water, 
1,000 kg/m3 at 4°C) gives you the height:

Therefore, the maximum height you can pump water out of a well with 
the pump at the top of the well is 10.3 meters. But in this case, the well is 
20 meters deep. You turn to the slide park owners and say, “I have some 
bad news.”

The solution? Put the pump at the bottom of the well and push the water up 
the pipe instead of trying to use air pressure to pull the water up the pipe.

Hydraulic machines: Passing on 
pressure with Pascal’s principle

 Pascal’s principle says that given a fluid in a totally enclosed system, a change 
in pressure at one point in the fluid is transmitted to all points in the fluid, as 
well as to the enclosing walls. In other words, if you have a fluid enclosed in a 
pipe (with no air bubbles) and change the pressure in the fluid at one end of 
the pipe, the pressure changes all throughout the pipe to match.
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The fact that pressure inside an enclosed system is the same (neglecting 
gravitational differences) has an interesting consequence. Because P = F/A, 
you get the following equation for force:

F = PA

So if the pressure is the same everywhere in an enclosed system but the areas 
you consider are different, can you get different forces?

To make this question clearer, look at Figure 8-2, which shows a system of 
enclosed fluid with two hydraulic pistons, one with a piston head of area A1 
and one with a piston head of area A2. You apply a force of F1 on the smaller 
piston. What is the force on the other piston, F2?

Pressure at each point is F/A. According to Pascal’s principle, the pressure is 
the same everywhere inside the fluid, so F1/A1 = F2/A2:

Solving for F2 gives you the force at Point 2:

 

Figure 8-2: 
A hydraulic 

system 
magnifies 

force.
 

F1
A1

A2

F2
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Cool. That means that you can develop a huge force from a small force if the 
ratio of the piston sizes is big. For example, say the area of Piston 2 is bigger 
than Piston 1 by a factor of 100. Does that mean that any force you apply to 
piston 1 will be multiplied by 100 times on piston 2?

Yes, indeed — that’s how hydraulic equipment works. By using a small 
piston at one end and a large piston at the other, you can create huge forces. 
Backhoes and other hydraulic machines, such as garbage trucks and hydrau-
lic lifts, use Pascal’s principle to function.

What’s the catch here? If you push on Piston 1 and get 100 times the force on 
Piston 2, you seem to be getting something for nothing. The catch is that you 
have to push the smaller piston 100 times as far as the second piston will move.

Buoyancy: Float Your Boat with 
Archimedes’s Principle

 Archimedes’s principle says that any fluid exerts a buoyant force on an object 
wholly or partially submerged in it, and the magnitude of the buoyant force 
equals the weight of the fluid displaced by the object. An object that’s less 
dense than water floats because the water it displaces weighs more than the 
object does. Therefore, as the object pushes down, the water pushes back 
up more strongly.

If you’ve ever tried to push a beach ball underwater, you’ve felt this principle 
in action. As you push the ball down, it pushes back up. In fact, a big beach 
ball can be tough to hold underwater. As a physicist in a bathing suit, you 
may wonder, “What’s happening here?”

What is the buoyant force, F
b
, the water exerts on the beach ball? To make 

this problem easier, you decide to consider the beach ball as a cube of height 
h and horizontal face with area A. So the buoyant force on the cubic beach 
ball is equal to the force at the bottom of the beach ball minus the force at 
the top:

F
buoyancy

 = F
bottom

 – F
top

And because F = PA, you can work pressure into the equation with a simple 
substitution:

F
buoyancy

 = (P
bottom

 – P
top

)A
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You can also write the change in pressure, P
bottom

 – P
top

, as ΔP:

F
buoyancy

 = ΔPA 

The change in pressure equals ρgh, so replace ΔP:

F
buoyancy

 = ρghA 

Note that hA is the volume of the cube. Multiplying volume, V, by density, ρ, 
gives you the mass of the water displaced by the cube, m, so you can replace 
ρhA with m:

F
buoyancy

 = mg

You should recognize mg (mass times acceleration due to gravity) as the 
expression for weight, so the force of buoyancy is equal to the weight of 
the water displaced by the object you’re submerging:

F
buoyancy

 = W
water displaced

 

That equation turns out to be Archimedes’s principle.

Here’s an example of how to use Archimedes’s principle. Suppose the design-
ers at Acme Raft Company have hired you to tell them how much of their new 
raft will be underwater when it’s launched. You can see the new Acme raft in 
Figure 8-3. The density of the wood used in their rafts is 550 kilograms/meter3, 
and the raft is 20 centimeters high.

 

Figure 8-3: 
A raft in 

water.
 

A h

y

You get out your clipboard and reason that to make the raft float, the weight 
of the raft must equal the buoyant force the water exerts on the raft.

Say the raft is of height h and horizontal surface area A; that would make its 
weight equal to the following:

W
raft

 = ρ
raft

Ahg 
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Now what’s the buoyant force that the water exerts on the raft? The buoyant 
force is equal to the weight of the water that the submerged part of the raft 
displaces. Say that when the raft floats, the bottom of the raft is a distance 
y underwater. Then the submerged volume of the raft is Ay. That makes the 
mass of the water displaced by the raft equal to the following:

m
water displaced

 = ρ
water

Ay

The weight of the displaced water is just its mass multiplied by g, the accel-
eration due to gravity, so multiplying both sides of the equation by g gives 
you the weight, W

water displaced
, on the left side of the equation. The displaced 

weight of water equals the following:

W
water displaced

 = ρ
water

Ayg 

For the raft to float, the weight of the displaced water must equal the 
weight of the raft, so set the values for raft weight and water weight 
equal to each other:

ρ
raft

Ahg = ρ
water

Ayg 

A and g appear on both sides of the equation, so they cancel out. The 
equation simplifies to

ρ
raft

h = ρ
water

y 

Solving for y gives you the equation for how much of the raft’s height 
is underwater:

 

Plugging in the densities tells you how far the raft is submerged in terms 
of the raft’s height:

That means that 55 percent of the raft will be underwater. So if the raft is 
20 centimeters (or 0.20 meters) high, how much is underwater when it’s 
floating? You can plug in the value for the raft’s height to find the answer:

y = 0.550(0.20 m) = 0.11 m

So 11 centimeters of the raft’s height will be underwater. 
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Fluid Dynamics: Going 
with Fluids in Motion

Fluids move according to simple laws that are consistent with Newton’s laws of 
motion. But even though these laws are simple, the range of possible fluid flows 
is enormous! As you can see all around you, fluids can do all kinds of motions: 
They can swirl like in a hurricane, they can be in steady uniform flows like when 
a tap is running, and they can tumble in the most complicated patterns like the 
steam rising from a boiling kettle. All these different kinds of flow can be char-
acterized with certain properties, which is the subject of this section.

Characterizing the type of flow
Fluid flow has all kinds of aspects — it can be steady or unsteady, compress-
ible or incompressible, and more. Some of these characteristics reflect prop-
erties of the liquid or gas itself, and others focus on how the fluid is moving. 
This section looks at the possibilities.

 Note that fluid flow can actually get very complex when it becomes turbulent. 
Physicists haven’t developed any elegant equations to describe turbulence 
because how turbulence works depends on the individual system — whether 
you have water cascading through a pipe or air streaming out of a jet engine. 
Usually, you have to resort to computers to handle problems that involve 
fluid turbulence.

Evenness: Steady or unsteady flow
Fluid flow can be steady or unsteady, depending on the fluid’s velocity:

 ✓ Steady: In steady fluid flow, the velocity of the fluid is constant at 
any point.

 ✓ Unsteady: When the flow is unsteady, the fluid’s velocity can differ 
between any two points.

For example, suppose you’re sitting by the side of a stream and note that the 
water flow is not steady: You see eddies and backwash and all kinds of swirl-
ing. Imagine velocity vectors for a hundred points in the water, and you get a 
good picture of unsteady flow — the velocity vectors can be pointing all over 
the map, although the velocity vectors generally follow the stream’s overall 
average flow. (Sometimes, in a complex flow, physicists divide the flow into 
a sum of a smooth average flow and complicated fluctuations, but you don’t 
need to do that here.)
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Squeezability: Compressible or incompressible flow
 Fluid flow can be compressible or incompressible, depending on whether you 

can easily compress the fluid. Liquids are usually nearly impossible to com-
press, whereas gases (also considered a fluid) are very compressible.

A hydraulic system works only because liquids are incompressible — that is, 
when you increase the pressure in one location in the hydraulic system, the 
pressure increases to match everywhere in the whole system (for details, see 
the earlier section “Hydraulic machines: Passing on pressure with Pascal’s 
principle”). Gases, on the other hand, are very compressible — even when 
your bike tire is stretched to its limit, you can still pump more air into it by 
pushing down on the plunger and squeezing it in. The laws of how gases 
behave when compressing and expanding in different situations can be 
found in Chapter 16.

Thickness: Viscous or nonviscous flow
Liquid flow can be viscous or nonviscous. Viscosity is a measure of the thick-
ness of a fluid, and very gloppy fluids such as motor oil or shampoo are 
called viscous fluids.

 Viscosity is actually a measure of friction in the fluid. When a fluid flows, the 
layers of fluid rub against one another, and in very viscous fluids, the friction 
is so great that the layers of flow pull against one other and hamper that flow.

Viscosity usually varies with temperature, because when the molecules of a 
fluid are moving faster (when the fluid is warmer), the molecules can more 
easily slide over each other. So when you pour pancake syrup, for example, 
you may notice that it’s very thick in the bottle, but the syrup becomes 
quite runny when it spreads over the warm pancakes and heats up.

Spinning: Rotational or irrotational flow
Fluid flow can be rotational or irrotational. If, as you travel in a closed loop, 
you add up all the components of the fluid velocity vectors along your path 
and the end result is not zero, then the flow is rotational.

 To test whether a flow has a rotational component, you can put a small object 
in the flow and let the flow carry it. If the small object spins, the flow is rota-
tional; if the object doesn’t spin, the flow is irrotational.

For example, look at the water flowing in a brook. It eddies around 
stones, curling around obstacles. At such locations, the water flow has 
a rotational component.
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Some flows that you may think are rotational are actually irrotational. For 
example, away from the center, a vortex is actually an irrotational flow! You 
can see this if you look at the water draining from your bathtub. If you place 
a small floating object in the flow, it goes around the plug hole, but it does 
not spin about itself; therefore, the flow is irrotational.

On the other hand, flows that have no apparent rotation can actually be rota-
tional. Take a shear flow, for example. In a shear flow, all the fluid is moving 
in the same direction, but the fluid is moving faster on one side. Suppose the 
fluid is moving faster on the left than on the right. The fluid isn’t moving in 
a circle at all, but if you place a small floating object in this flow, the flow on 
the left side of the object is slightly faster, so the object begins to spin. The 
flow is rotational.

Picturing flow with streamlines
A handy way of visualizing the flow of a fluid is through streamlines. You 
draw a fluid’s streamline so that a tangent to the streamline at any point is 
parallel to the fluid’s velocity at that point. In other words, a streamline 
follows the fluid flow.

You can see an example in Figure 8-4, where the streamline is the darker 
line in the middle of the fluid flow.

 

Figure 8-4: 
A streamline 

shows the 
directions 

of flow.
 

If you plot streamlines for any flow, you get an immediate picture of how that 
fluid is flowing. You can have as many or as few streamlines as you need to 
get an accurate picture of fluid flow. 
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When fluid flow is turbulent, streamlines can become all mixed up. That’s 
why dealing with turbulent flows in a precise, mathematical way is very hard.

 You can have a number of streamlines that form a tube of flow. That is, the 
streamlines form the walls of a tube. The interesting thing about tubes of flow 
is that fluid does not pass through the walls of such a tube — it’s always con-
ducted inside such a tube.

Getting Up to Speed on 
Flow and Pressure

However complicated a fluid flow may seem, fluids do obey some simple laws 
that can be expressed in equations. This section introduces the equation 
that describes the continuity of fluid flow (the result of the fact that matter is 
neither created nor destroyed) and the relation between speed and pressure. 
You also take a look at some of the consequences of these relations.

The equation of continuity: Relating 
pipe size and flow rates
If a fluid is flowing at a certain speed at a certain point in a system of pipes, 
you can predict what its speed will be at another point using the equation 
of continuity. Because the mass of the fluid is neither created nor destroyed, 
if mass moves away from one place at a certain rate, it must therefore move 
to the neighboring place at the same rate. With this idea expressed as an 
equation, you can find out how the speed changes in a narrowing pipe, 
for example. 

Conserving mass with the equation of continuity
The equation of continuity comes from the idea that no mass disappears 
when fluid is flowing. In other words, the fluid you get out equals what you put 
in. You can find the equation of continuity by mixing a little geometry with the 
physics formulas for mass (which remains constant), density, and speed.

Imagine a cube of fluid flowing in a pipe with the rest of the fluid, as Figure 8-5 
shows. The cube has an area A perpendicular to the fluid flow and has a length 
h along the fluid flow.
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Figure 8-5: 
A cube of 
fluid flow-

ing through 
a pipe.

 

A
h

v

Now say that the pipe narrows so much that the cube no longer fits. The 
boundary of the cube is going to change shape. What can you say stays 
constant between the original cube and the deformed cube? The mass of 
the fluid inside the box shape will stay constant because no fluid flows 
through the boundary. Therefore, you can say that

m1 = m2 

where m1 is the mass of fluid in the first cube and m2 is the mass of the fluid 
in the deformed cube later on, where the pipe narrows. 

If you instead look at the situation in terms of density, ρ, the mass of the fluid 
in the cube is the density multiplied by the volume of the cube, which is Ah. 
So you can restate the equation as

ρ1A1h1 = ρ2A2h2 

where A1 is the area of the front face of the cube originally, h1 is the original 
length of the cube, and so on.

Now say you’re measuring the amount of mass going by in time t to get the 
flow rate, so you divide the equation you just got by a time interval, t:

 

The length of the cube passing you by in time, t, gives you the speed of the 
fluid at that location, so h/t becomes the speed of the fluid at that location. 
Substituting v, the speed, for h/t, you get the following equation:

ρ1A1v1 = ρ2A2v2 
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And this quantity, ρAv, is called the mass flow rate — it’s the mass of fluid 
that passes by a certain point per second. The MKS units of the mass flow 
rate are kilograms per second, or kg/s.

 The mass flow rate has the same value at every point in a fluid conduit that 
has a single entry and single exit point. The mass flow rate at any two points 
along the conduit can be related like this, with the equation of continuity:

ρ1A1v1 = ρ2A2v2 

Incompressible liquids: Changing the pipe size to change the flow rate
Because liquids are virtually incompressible, the density doesn’t change 
along the flow. Therefore, if you come to a location where the same amount 
of water must squeeze through a smaller space than before, the water’s 
velocity has to change — it goes faster. Just think of what you do to get water 
to squirt faster from a garden hose: You put your thumb over most of the end 
of the hose, forcing the water to squirt through a smaller area. 

You can show this idea mathematically using the equation of continuity. 
For incompressible liquids, density must be the same at Point 1 and Point 2. 
Because ρ1 = ρ2, you have this equation, where ρ is the shared density:

ρA1v1 = ρA2v2 

Dividing by ρ gives you

A1v1 = A2v2 

where Av is called the volume flow rate, whose symbol is Q. So at any two 
points along the flow of an incompressible liquid, the following is true:

Q1 = Q2

Here’s an example with some numbers. Say that you’re playing with a fire 
hose, and you note that water is spraying from the hose at 7.7 meters/second. 
The cross-sectional area of the nozzle is 4.0 × 10–4 square meters. What is the 
speed of the water leaving the hydrant when it first enters the fire hose, which 
has a cross-sectional area of 1.0 × 10–2 square meters? 

This is a good chance to use the fact that the volume rate of flow of an incom-
pressible liquid is the same at any point along its flow. That means that the 
following is true:

A1v1 = A2v2 

where A1 is the cross-sectional area of the hose, v1 is the speed of the water 
as it enters the hose, A2 is the cross-sectional area of the nozzle, and v2 is the 
speed at which water leaves the hose.
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Solving for v1, the speed of the water as it enters the hose, gives you the 
following equation:

Plugging in the numbers gives you the answer: 

So water enters the hose at a comparatively leisurely speed of 0.31 
meters/second and leaves the nozzle at a speedier 7.7 meters/second.

Bernoulli’s equation: Relating 
speed and pressure 
Now you come to the powerhouse of fluid flow — Daniel Bernoulli’s equa-
tion, which lets you relate pressure, fluid speed, and height. Using Bernoulli’s 
equation, you can find the difference in fluid pressure between two points if 
you know the fluid’s speed and height at those two points.

 Bernoulli’s equation relates a moving fluid’s pressure, density, speed, and 
height from Point 1 to Point 2 in this way:

 

Here’s what the variables stand for in this equation (where the subscripts 
indicate whether you’re talking about Point 1 or Point 2):

 ✓ P is the pressure of the fluid.

 ✓ ρ is the fluid’s density.

 ✓ g is the acceleration due to gravity.

 ✓ v is the fluid’s speed.

 ✓ y is the height of the fluid.

The equation assumes that you’re working with the steady flow of an 
incompressible, irrotational, nonviscous fluid (see the earlier section 
“Characterizing the type of flow” for details).
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 One thing you can take immediately from this equation is what’s called 
Bernoulli’s principle, which says that increasing a fluid’s speed can lead to 
a decrease in pressure.

Pipes and pressure: Putting it all together
 Together, the equation of continuity and Bernoulli’s equation allow you to 

relate the pressure in pipes to their changes in diameter. You often use the 
equation of continuity, which tells you that a particular volume of a liquid 
flows at a constant rate, to find the speeds you use in Bernoulli’s equation, 
which relates speed to pressure.

Getting a lift
You can easily demonstrate Bernoulli’s prin-
ciple at home. All you need are two pieces 
of regular copy paper. Hold the two pieces of 
paper by the very top so that they dangle freely; 
then hold them face to face at a separation of a 
few inches. The air pressure between the two 
pieces of paper is the same as the air pressure 
on the other side, so they hang there without 
moving. Now here comes the cool part. If you 
blow between the two pieces of paper, what 
do you think will happen? Most of your friends 
would probably say that the two pieces of paper 
will drift apart. But if you try it, you find that the 
two pieces of paper actually move together! 
You can work out why this happens because 
you know Bernoulli’s principle.

When you blow between the two pieces of 
paper, the air increases its speed and reduces 
its pressure simultaneously. Because the pres-
sure between the pieces of paper is now less 
than the pressure outside, the pieces of paper 
move together.

And the fun doesn’t end there: If you amaze 
your friends with the paper trick, you can fur-
ther boggle their minds by using the principle 
to explain how airplanes fly. The cross-section 
of an airplane wing has a kind of swept dome 
shape to it. Because of this particular shape, air 
moving toward the wing diverges at the leading 
edge. Some air goes over the wing, and some 
air goes under the wing before rejoining at the 
trailing edge of the wing. But because of the 
shape of the cross-section, the air that goes 
over has to travel a longer distance than the 
air that goes under; therefore, it has to travel 
faster. And as you have just demonstrated with 
two pieces of paper (according to Bernoulli’s 
principle), faster air has a lower pressure. So 
the pressure of the air below the wing is greater 
than the pressure above the wing. This pres-
sure difference provides the lift required for the 
airplane to fly. 
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Here’s an example. The operating room is hushed as you’re ushered into it. 
On the operating table lies a very important person who has an aneurism 
in the aorta, the principal artery leading from the heart. An aneurysm is an 
enlargement in a blood vessel where the walls have weakened.

The doctors tell you, “The cross-sectional area of the aneurysm is 2.0A, 
where A is the cross-sectional area of the normal aorta. We want to operate, 
but first we need to know how much higher the pressure is in the aneurysm 
before we cut into it.”

Hmm, you think. You happen to know that the normal speed of blood through 
a person’s aorta is 0.40 meters/second. And quickly checking Table 8-1, you see 
that the density of blood is 1,060 kg/m3. But will that be enough information?

You’d like to use Bernoulli’s equation here because it relates pressure 
and velocity:

 

You can simplify Bernoulli’s equation because the patient is lying on the 
operating table, which means that y1 = y2, so Bernoulli’s equation becomes 
the following:

 

You want to know how much more pressure is in the aneurysm than in 
the normal aorta, so you’re looking for P2 – P1. Rearrange the equation:

 

That’s looking better; you already know ρ (the density of the blood) and v1 
(the speed of blood in a normal person’s aorta). But what’s v2, the speed 
of blood inside the aneurysm, equal to? You think hard — and you have an 
inspiration: The equation of continuity can come to the rescue because it 
relates speeds to cross-sectional areas:

ρ1A1v1 = ρ2A2v2 

Because the density of blood is the same at Point 1 and Point 2, in the normal 
aorta and inside the aneurysm, you can divide out the density to get:

A1v1 = A2v2 
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Solving for v2 gives you the following:

 

Now plug in the numbers. Because the doctors told you A2 = 2.0A1 and you 
know that v1 = 0.4 m/s, you get

 

So now you’re ready to work with the equation you derived:

 

You can factor out ρ, the density, on the right side of the equation:

 

Plugging in the numbers gives you the following:

 

You tell the doctors that the pressure is 64 pascals higher in the aneurysm 
than in the normal aorta.

“How’s that?” ask the doctors. “Give that to us in units we can understand.”

“The pressure is about 0.01 pounds per square inch higher in the aneurysm.” 

“How’s that? That’s nothing,” say the doctors. “We’ll operate immediately — 
you just saved a very important person’s life!”

All in a day’s work for a physicist.

13_9780470903247-ch08.indd   15913_9780470903247-ch08.indd   159 5/26/11   11:24 PM5/26/11   11:24 PM



160 Part II: May the Forces of Physics Be with You 

13_9780470903247-ch08.indd   16013_9780470903247-ch08.indd   160 5/26/11   11:24 PM5/26/11   11:24 PM



Part III

Manifesting the 
Energy to Work
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In this part . . .

If you drive a car up a hill and park it, it still has 
energy — potential energy. If the brake slips and the 

car rolls down the hill, it has a different kind of energy at 
the bottom — kinetic energy. This part alerts you to what 
energy is and how the work you do when moving and 
stretching objects becomes energy. Thinking in terms 
of work and energy allows you to solve problems that 
Newton’s laws of motion don’t even let you attempt or 
that would be more difficult using Newton’s laws. You 
also find out about simple harmonic motion, which is 
useful for things like springs and pendulums.
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Chapter 9

Getting Some Work Out of Physics
In This Chapter
▶ Taking stock of the work force

▶ Evaluating kinetic and potential energy

▶ Walking the path of conservative and nonconservative forces

▶ Accounting for mechanical energy and power in work

You know all about work; it’s what you do when you have to do physics 
problems. You sit down with your calculator, you sweat a little, and you 

get through it. You’ve done your work. Unfortunately, that doesn’t count as 
work in physics terms.

In physics, work is done when a force moves an object through a displacement. 
That may not be your boss’s idea of work, but it gets the job done in physics. 
Along with the basics of work, I use this chapter to introduce kinetic and poten-
tial energy, look at conservative and nonconservative forces, and examine 
mechanical energy and power.

Looking for Work
Holding heavy objects — like, say, a set of exercise weights — up in the air 
seems to take a lot of work. In physics terms, however, that isn’t true. Even 
though holding up weights may take a lot of biological work, no mechanical 
work takes place if the weights aren’t moving.

 In physics, mechanical work is performed on an object when a force moves 
the object through a displacement. When the force is constant and the angle 
between the force and the displacement is θ, then the work done is given by 
W = Fs cos θ. In layman’s terms, if you push a 1,000-pound hockey puck for 
some distance, physics says that the work you do is the component of the 
force you apply in the direction of travel multiplied by the distance you go.

To get a picture of the full work spectrum, you need to look across different 
systems of measurement. After you have the measurement units down, you 
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can look at practical working examples, such as pushing and dragging. You 
can also figure out what negative work means.

Working on measurement systems
Work is a scalar, not a vector; therefore, it has only a magnitude, not a direc-
tion (more on scalars and vectors in Chapter 4). Because work is force times 
distance, Fs cos θ, it has the unit Newton-meter (N·m) in the MKS system (see 
Chapter 2 for info on systems of measurement).

 Mechanical work done by a net force is equivalent to a transfer of energy (this 
is called the work-energy theorem), which has units called joules. Because of 
this, work and energy have the same units. For conversion purposes, 1 newton 
of force applied through a distance of 1 meter (where the force is applied along 
the line of the displacement) is equivalent to 1 joule, or 1 J, of work.  (In the 
foot-pound-second system, work has the unit foot-pound. You can also discuss 
energy and work in terms of kilowatt-hours, which you may be familiar with 
from electric bills; 1 kilowatt-hour (kWh) = 3.6 × 106 joules.)

Pushing your weight: Applying force 
in the direction of movement
Motion is a requirement of work. For work to be done, a net force has to move 
an object through a displacement. Work is a product of force and displacement.

Here’s an example: Say that you’re pushing a huge gold ingot home, as 
Figure 9-1 shows. How much work do you have to do to get it home? To 
find work, you need to know both force and displacement. First, find out 
how much force pushing the ingot requires.

 

Figure 9-1: 
To do work 
on this gold 

ingot, you 
have to push 
with enough 

force to 
overcome 

friction and 
cause the 

ingot to 
move.

 

Ffriction Fpush

mg

Fnormal

Ground
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Suppose that the kinetic coefficient of friction (see Chapter 6), μ
k
, between 

the ingot and the ground is 0.250 and that the ingot has a mass of 1,000 kilo-
grams. What’s the force you have to exert to keep the ingot moving without 
accelerating it? Start with this equation for the force of friction:

F
F
 = μ

k
 F

N

Assuming that the road is flat, the magnitude of the normal force, F
N
, is just 

mg (mass times the acceleration due to gravity). That means that

F
F
 = μ

k
 mg

where m is the mass of the ingot and g is the acceleration due to gravity on 
the surface of the Earth. Plugging in the numbers gives you the following:

F
F
 = μ

k
 mg 

= (0.250)(1,000 kg)(9.8 m/s2) 

= 2,450 N

You have to apply a force of 2,450 newtons to keep the ingot moving 
without accelerating.

You know the force, so to find work, you need to know the displacement. Say 
that your house is 3 kilometers, or 3,000 meters, away. To get the ingot home, 
you have to do this much work:

W = Fs cos θ

Because you’re pushing the ingot with a force that’s parallel to the ground, 
the angle between F and s is 0°, and cos 0° = 1, so plugging in the numbers 
gives you the following:

W = Fs cos θ 

= (2,450 N)(3,000 m)(1) 

= 7.35 × 106 J

 You need to do 7.35 × 106 joules of work to move your ingot home. Want some 
perspective? Well, to lift 1 kilogram 1 meter straight up, you have to supply 
a force of 9.8 newtons (about 2.2 pounds) over that distance, which takes 
9.8 joules of work. To get your ingot home, you need 750,000 times that. Put 
another way, 1 kilocalorie equals 4,186 joules. A kilocalorie is commonly called 
a Calorie (capital C) in nutrition; therefore, to move the ingot home, you need 
to expend about 1,755 Calories. Time to get out the energy bars!
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Using a tow rope: Applying 
force at an angle
You may prefer to drag objects rather than push them — dragging heavy 
objects may be easier, especially if you can use a tow rope, as Figure 9-2 shows.

 When you’re pulling at an angle θ, you’re not applying a force in the exact 
same direction as the direction of motion. To find the work in this case, all 
you have to do is find the component of the force along the direction of travel. 
Work properly defined is the force along the direction of travel multiplied by 
the distance traveled:

W = F
pull 

s cos θ

 

Figure 9-2: 
More force 
is required 

to do 
the same 

amount of 
work if you 

pull at a 
larger angle.

 

Ffriction
Fpull

Fnormal

Ground

θ

mg

Pulling harder to do the same amount of work
If you apply force at an angle instead of parallel to the direction of motion, 
you have to supply more force to perform the same amount of work.

Say that instead of pushing your ingot, you choose to drag it along with rope 
that’s at an angle of 10° from the ground instead of parallel. This time, θ = 10° 
instead of zero. If you want to do the same amount of work as when you pushed 
the ingot (7.35 × 106 joules), then you need the component of your force that 
is in the direction of the displacement to be the same as before — that is, 
2,450 newtons. This means that

F
pull

 cos θ = 2,450 N

If you solve for the magnitude of your force, you have
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If you pull at a 10° angle, you have to supply about 40 extra newtons of force to 
do the same amount of work. But before you brace yourself to pull really hard, 
think about the situation a bit more — you don’t have to do all that work.

Cutting down on your work by reducing friction
 If you pull at an angle, the component of the force you apply that’s directed 

along the floor — in the direction of the displacement — does the work. The 
component of the force you apply that’s directed at right angles to this — 
straight up — does no work, but it does go some way toward lifting the ingot 
(or whatever you’re towing). The force isn’t big enough to lift the ingot clean 
off the ground, but it does reduce its normal force with the ground, and you 
know what that means: less friction.

Work out how much frictional force you have if you drag your ingot with a rope 
that’s at a 10° angle. The coefficient of friction is the same as before, but now 
the normal force with the ground is given by the weight of the ingot minus the 
upward component of the force you supply. Therefore, the force of friction 
is given by

F
friction

 = μ(mg – F
pull

 sin θ)

Here, the vertical component of the force you apply to the ingot is given 
by F

pull
 sin θ. The force of friction must be smaller than before because the 

normal force is smaller — you can already see that you need to do less work 
to move the ingot.

Because you want to do the least amount of work, you want to drag the ingot 
across the ground with the smallest force needed to overcome friction. So set 
the horizontal component of your force equal to the force of friction:

F
pull

 cos θ = F
friction

 Now plug in the frictional force, which gives you the following:

F
pull

 cos θ = μ(mg – F 
pull

 sin θ)

If you rearrange this equation to solve for F
pull

, you can find the magnitude of 
the force you need to apply:
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This is slightly smaller than the force you’d have to apply if you pushed the 
ingot straight on. If the rope is at a 10° angle, the work you’d do in pulling 
the ingot over the horizontal distance of 3,000 meters would be

W = F
pull 

s cos θ

= (2,380 N)(3,000 m)(cos 10°)

≈ 7.0 × 106 J

So you see, you have to do less work if you pull at an angle because there’s 
less frictional force to overcome.

Negative work: Applying force 
opposite the direction of motion

 If the force moving the object has a component in the same direction as the 
motion, the work that force does on the object is positive. If the force moving 
the object has a component in the opposite direction of the motion, the work 
done by that force on the object is negative.

Consider this example: You’ve just gone out and bought the biggest television 
your house can handle. You finally get the TV home, and you have to lift it up 
the porch stairs. It’s a heavy one — about 100 kilograms, or 220 pounds — and 
as you lift it up the first few stairs, a distance of about 0.50 meters, you think 
you should’ve gotten some help because of how much work you’re doing 
(Note: F equals mass times acceleration, or 100 kilograms times g, the accelera-
tion due to gravity; θ is 0° because the force and the displacement are in the 
same direction, the direction in which the TV is moving.):

W1 = Fs cos θ

= mgs cos 0°

= (100 kg)(9.8 m/s2)(0.50 m)(1.0) = 490 J

However, as you get the TV to the top of the steps, your back decides that 
you’re carrying too much weight and advises you to drop it. Slowly, you lower 
the TV back to its original position (with no acceleration so that the force you 
apply is equal and opposite to the weight of the TV) and take a breather. How 
much work did you do on the way down? Believe it or not, you did negative 
work on the TV, because the force you applied (still upward) was in the oppo-
site direction of travel (downward). In this case, θ = 180°, and cos 180° = –1. 
Here’s what you get when you solve for the work:

W2 = Fs cos θ

= mgs cos 180°

= (100 kg)(9.8 m/s2)(0.50 m)(–1.0) = –490 J
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The net work you’ve done is W = W1 + W2 = 0 joules, or zero work. That makes 
sense, because the TV is right back where it started.

 Because the force of friction always acts to oppose the motion, the work done 
by frictional forces is always negative.

Making a Move: Kinetic Energy
 When you start pushing or pulling a stationary object with a constant force, it 

starts to move if the force you exert is greater than the net forces resisting the 
movement, such as friction and gravity. If the object starts to move at some 
speed, it will acquire kinetic energy. Kinetic energy is the energy an object 
has because of its motion. Energy is the ability to do work.

You know the ins and outs of kinetic energy. So how do you calculate it?

The work-energy theorem: Turning 
work into kinetic energy
A force acting on an object that undergoes a displacement does work on the 
object. If this force is a net force that accelerates the object (according to 
Newton’s second law — see Chapter 5), then the velocity changes due to the 
acceleration (see Chapter 3). The change in velocity means that there is a 
change in the kinetic energy of the object.

 The change in kinetic energy of the object is equal to the work done by the 
net force acting on it. This is a very important principle called the work-
energy theorem. 

After you know how work relates to kinetic energy, you’re ready to take a 
look at how kinetic energy relates to the speed and mass of the object.

 The equation to find kinetic energy, KE, is the following, where m is mass and 
v is velocity:

Using a little math, you can show that work is also equal to (1/2)mv2. Say, for 
example, that you apply a force to a model airplane in order to get it flying 
and that the plane is accelerating. Here’s the equation for net force:

F = ma
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The work done on the plane, which becomes its kinetic energy, equals 
the following:

W = Fs cos θ

Net force, F, equals mass times acceleration. Assume that you’re pushing 
in the same direction that the plane is going; in this case, cos 0° = 1, so

W = Fs = mas

You can tie this equation to the final and original velocity of the object. Use 
the equation v

f
2 – v

i
2 = 2as (see Chapter 3), where v

f
 equals final velocity 

and v
i
 equals initial velocity. Solving for a gives you 

If you plug this value of a into the equation for work, W = mas, you get 
the following:

If the initial velocity is zero, you get

This is the work that you put into accelerating the model plane — that is, into 
the plane’s motion — and that work becomes the plane’s kinetic energy, KE:

This is just the work-energy theorem stated as an equation.

Using the kinetic energy equation
You normally use the kinetic energy equation to find the kinetic energy 
of an object when you know its mass and velocity. Say, for example, that 
you’re at a firing range and you fire a 10-gram bullet with a velocity 
of 600 meters/second at a target. What’s the bullet’s kinetic energy? 
The equation to find kinetic energy is
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All you have to do is plug in the numbers, remembering to convert from 
grams to kilograms first to keep the system of units consistent throughout 
the equation:

The bullet has 1,800 joules of energy, which is a lot of energy to pack into a 
10-gram bullet.

You can also use the kinetic energy equation if you know how much work 
goes into accelerating an object and you want to find, say, its final speed. 
For example, say you’re on a space station, and you have a big contract from 
NASA to place satellites in orbit. You open the station’s bay doors and grab 
your first satellite, which has a mass of 1,000 kilograms. With a tremendous 
effort, you hurl it into its orbit, using a net force of 2,000 newtons, applied in 
the direction of motion, over 1 meter. What speed does the satellite attain 
relative to the space station? The work you do is equal to

W = Fs cos θ

Because θ = 0° here (you’re pushing the satellite straight on), W = Fs:

W = Fs = (2,000 N)(1.0 m) = 2,000 J

Your work goes into the kinetic energy of the satellite, so

Now solve for v and plug in some numbers. You know that m equals 
1,000 kilograms and W equals 2,000 joules, so

The satellite ends up with a speed of 2 meters/second relative to you — 
enough to get it away from the space station and into its own orbit.

 Bear in mind that forces can also do negative work. If you want to catch a sat-
ellite and slow it to 1 meter/second with respect to you, the force you apply 
to the satellite is in the opposite direction of its motion. That means it loses 
kinetic energy, so you do negative work on it.
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Calculating changes in kinetic 
energy by using net force
In everyday life, multiple forces act on an object, and you have to take them 
into account. If you want to find the change in an object’s kinetic energy, you 
have to consider only the work done by the net force. In other words, you 
convert only the work done by the net force into kinetic energy.

For example, when you play tug-of-war against your equally strong friends, 
you pull against each other but nothing moves. Because there’s no move-
ment, no work is done and you have no net increase in kinetic energy from 
the two forces.

Take a look at Figure 9-3. You may want to determine the speed of the 
100-kilogram refrigerator at the bottom of the ramp, using the fact that the 
net work done on the refrigerator goes into its kinetic energy. How do you 
do that? You start by determining the net force on the refrigerator and then 
find out how much work that force does. Converting that net-force work into 
kinetic energy lets you calculate what the refrigerator’s speed will be at the 
bottom of the ramp.

 

Figure 9-3: 
You find the 

net force 
acting on 
an object 
to find its 
speed at 

the bottom 
of a ramp.
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Ramp
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θ
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What’s the net force acting on the refrigerator? In Chapter 6, you find that 
the component of the refrigerator’s weight acting along the ramp is

F
g, ramp

 = mg sin θ

where m is the mass of the refrigerator and g is the acceleration due to 
gravity. The normal force is

F
N
 = mg cos θ

which means that the kinetic force of friction is

F
F
 = μ

k
 F

N
 = μ

k
 mg cos θ
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where μ
k
 is the kinetic coefficient of friction. The net force accelerating the 

refrigerator down the ramp, F
net

, therefore, is

F
net

 = F
g, ramp

 – F
F
 = mg sin θ – μ

k
 mg cos θ

You’re most of the way there! If the ramp is at a 30° angle to the ground and 
there’s a kinetic coefficient of friction of 0.57, plugging the numbers into this 
equation results in the following:

F
net

 = (100 kg)(9.8 m/s2)(sin 30°) – (0.57)(100 kg)(9.8 m/s2)(cos 30°) ≈ 6.2 N

The net force acting on the refrigerator is about 6.2 newtons. This net force 
acts over the entire 3.0-meter ramp, so the work done by this force is

W = F
net

s 

= (6.2 N)(3.0 m) ≈ 19 J

You find that 19 joules of work goes into the refrigerator’s kinetic energy. 
That means you can find the refrigerator’s kinetic energy like this:

You want the speed here, so solving for v and plugging in the numbers gives you

The refrigerator will be going 0.61 meters/second at the bottom of the ramp.

Energy in the Bank: Potential Energy
There’s more to motion than kinetic energy — an object can also have poten-
tial energy, which is stored energy or the energy an object has because of its 
position. The energy is called potential because it can be converted to kinetic 
energy or other forms of energy, such as heat.

Objects can have potential energy from different sources. To give an object 
potential energy, all you need to do is perform work on an object against a 
force, such as when you pull back on an object connected to a spring. Gravity 
is a very common source of potential energy in physics problems.

Suppose you have the job of taking your little cousin Jackie to the park, and 
you put the little tyke on the slide. Jackie starts at rest and then accelerates, 
ending up with quite a bit of speed at the bottom of the slide. You sense 
physics at work here. Taking out your clipboard, you put Jackie higher up 
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the slide and let go, watching carefully. Sure enough, Jackie ends up going 
even faster at the bottom of the slide. You decide to move Jackie even higher 
up. (Suddenly, Jackie’s mother shows up and grabs him from you. That’s 
enough physics for one day.)

What was happening on the slide? Where did Jackie’s kinetic energy come 
from? It ultimately came from the work you did lifting Jackie against the 
force of gravity. Jackie sits at rest at the bottom of the slide, so he has no 
kinetic energy. If you lift him to the top of the slide and hold him, he waits 
for the next trip down the slide, so he has no motion and no kinetic energy. 
However, you did work lifting him up against the force of gravity, so he has 
potential energy. As Jackie slides down the (frictionless) slide, gravity turns 
your work — and Jackie’s potential energy — into kinetic energy.

To new heights: Gaining potential 
energy by working against gravity
How much work do you do when you lift an object against the force of grav-
ity? Suppose that you want to store a cannonball on an upper shelf at height 
h above where the cannonball is now. The work you do is

W = Fs cos θ

In this case, F equals the force required to overcome gravity, s equals distance, 
and θ is the angle between them. The gravitational force on an object is mg 
(mass times the acceleration due to gravity, 9.8 meters/second2), and when 
you lift the cannonball straight up, θ = 0°, so

W = Fs cos θ = mgh

The variable h here is the distance you lift the cannonball. To lift the ball, you 
have to do a certain amount of work, or m times g times h. The cannonball is 
stationary when you put it on the shelf, so it has no kinetic energy. However, 
it does have potential energy, which is the work you put into the ball to lift it 
to its present position.

If the cannonball rolls to the edge of the shelf and falls off, how much kinetic 
energy would it have just before it strikes the ground (which is where it started 
when you first lifted it)? It would have mgh joules of kinetic energy at that 
point. The ball’s potential energy, which came from the work you put in lifting 
it, changes to kinetic energy thanks to the fall.

 In general, you can say that if you have an object of mass m near the surface 
of the Earth (where the acceleration due to gravity is g), at a height h, then the 
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potential energy of that mass compared to what it’d be at height 0 (where h = 0 
at some reference height) is

PE = mgh

And if you move an object vertically against the force of gravity from height 
h

i
 to height h

f
, its change in potential energy is

ΔPE = mg(h
f
 – h

i
) 

The work you perform on the object changes its potential energy.

Achieving your potential: Converting 
potential energy into kinetic energy
Gravitational potential energy for a mass m at height h near the surface of the 
Earth is mgh more than the potential energy would be at height 0. (It’s up to 
you where you choose height 0.)

For example, say that you lift a 40-kilogram cannonball onto a shelf 3.0 meters 
from the floor, and the ball rolls and slips off, headed toward your toes. If you 
know the potential energy involved, you can figure out how fast the ball will be 
going when it reaches the tips of your shoes. Resting on the shelf, the cannon-
ball has this much potential energy with respect to the floor:

PE = mgh

= (40 kg)(9.8 m/s2)(3.0 m)

≈ 1,200 J

The cannonball has 1,200 joules of potential energy stored by virtue of its posi-
tion in a gravitational field. What happens when it drops, just before it touches 
your toes? That potential energy is converted into kinetic energy. So how fast 
will the cannonball be going at toe impact? Because its potential energy is con-
verted into kinetic energy, you can write the problem as the following (see the 
section “Making a Move: Kinetic Energy” earlier in this chapter for an explana-
tion of the kinetic energy equation):
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Plugging in the numbers and putting velocity on one side, you get the speed:

The velocity of 7.7 meters/second converts to about 25 feet/second. You 
have a 40-kilogram cannonball — or about 88 pounds — dropping onto your 
toes at 25 feet/second. You play around with the numbers and decide you 
don’t like the results. Prudently, you turn off your calculator and move your 
feet out of the way.

Choose Your Path: Conservative 
versus Nonconservative Forces

 The work a conservative force does on an object is path-independent; the actual 
path taken by the object makes no difference. Fifty meters up in the air has the 
same gravitational potential energy whether you get there by taking the steps 
or by hopping on a Ferris wheel. That’s different from the force of friction, 
which dissipates kinetic energy as heat. When friction is involved, the path 
you take does matter — a longer path will dissipate more kinetic energy than 
a short one. For that reason, friction is a nonconservative force.

For example, suppose you and some buddies arrive at Mt. Newton, a majestic 
peak that rises h meters into the air. You can take two ways up — the quick 
way or the scenic route. Your friends drive up the quick route, and you drive 
up the scenic way, taking time out to have a picnic and to solve a few physics 
problems. They greet you at the top by saying, “Guess what — our potential 
energy compared to before is mgh greater.”

“Mine, too,” you say, looking out over the view. You pull out this equation 
(originally presented in the section “To new heights: Gaining potential energy 
by working against gravity,” earlier in this chapter):

ΔPE = mg(h
f
 – h

i
) 

This equation basically states that the actual path you take when going 
vertically from h

i
 to h

f
 doesn’t matter. All that matters is your beginning 

height compared to your ending height. Because the path taken by the 
object against gravity doesn’t matter, gravity is a conservative force.

Here’s another way of looking at conservative and nonconservative forces. 
Say that you’re vacationing in the Alps and that your hotel is at the top of 
Mt. Newton. You spend the whole day driving around — down to a lake one 
minute, to the top of a higher peak the next. At the end of the day, you end 
up back at the same location: your hotel on top of Mt. Newton.
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What’s the change in your gravitational potential energy? In other words, 
how much net work did gravity perform on you during the day? Gravity is a 
conservative force, so the change in your gravitational potential energy is 
0. Because you’ve experienced no net change in your gravitational potential 
energy, gravity did no net work on you during the day.

 The road exerted a normal force on your car as you drove around (see 
Chapter 6), but that force was always perpendicular to the road, so it 
didn’t do any work, either.

Conservative forces are easier to work with in physics because they don’t 
“leak” energy as you move around a path — if you end up in the same place, 
you have the same amount of energy. If you have to deal with nonconserva-
tive forces such as friction, including air friction, the situation is different. If 
you’re dragging something over a field carpeted with sandpaper, for example, 
the force of friction does different amounts of work on you depending on 
your path. A path that’s twice as long will involve twice as much work 
to overcome friction.

 What’s really not being conserved around a track with friction is the total 
potential and kinetic energy, which taken together is mechanical energy. When 
friction is involved, the loss in mechanical energy goes into heat energy. You 
can say that the total amount of energy doesn’t change if you include that heat 
energy. However, the heat energy dissipates into the environment quickly, so 
it isn’t recoverable or convertible. For that and other reasons, physicists often 
work in terms of mechanical energy.

Keeping the Energy Up: The Conservation 
of Mechanical Energy

Mechanical energy is the sum of potential and kinetic energy, or the energy 
acquired by an object upon which work is done. The conservation of mechani-
cal energy, which occurs in the absence of nonconservative forces (see the 
preceding section), makes your life much easier when solving physics prob-
lems, because the sum of kinetic energy and potential energy stays the same.

In this section, you examine the different forms of mechanical energy: kinetic 
and potential. You also find out how to relate the kinetic energy to the object’s 
motion, how potential energy arises from the forces acting on the object, and 
how you can calculate the potential energy for the particular case of gravita-
tional forces. And last, I explain how you can use mechanical energy to make 
calculations easier. 
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Shifting between kinetic 
and potential energy
Imagine a roller coaster car traveling along a straight stretch of track. The 
car has mechanical energy because of its motion: kinetic energy. Imagine that 
the track has a hill and that the car has just enough energy to get to the top 
before it descends the other side, back down to a straight and level track 
(see Figure 9-4). What happens? Well, at the top of the hill, the car is pretty 
much stationary, so where has all its kinetic energy gone? The answer is that 
it has been converted to potential energy. As the car begins its descent on 
the other side of the hill, the potential energy begins to be converted back 
to kinetic energy, and the car gathers speed until it reaches the bottom of 
the hill. Back at the bottom, all the potential energy the car had at the top 
of the hill has been converted back into kinetic energy.

An object’s potential energy derives from work done by forces, and a label 
for a particular potential energy comes from the forces that are its source. 
For example, the roller coaster has potential energy because of the gravita-
tional forces acting on it, so this is often called gravitational potential energy. 
For more on potential energy, see the section “Energy in the Bank: Potential 
Energy” earlier in this chapter.

 

Figure 9-4: 
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 The roller coaster car’s total mechanical energy, which is the sum of its kinetic 
and potential energies, remains constant at all points of the track. The combi-
nation of the kinetic and potential energies does vary, however. When no work 
is done on an object, its mechanical energy remains constant, whatever 
motions it may undergo.

Say, for example, that you see a roller coaster at two different points on a 
track — Point 1 and Point 2 — so that the coaster is at two different heights 
and two different speeds at those points. Because mechanical energy is the 
sum of the potential energy (mass × gravity × height) and kinetic energy 
(1⁄2 mass × velocity2), the total mechanical energy at Point 1 is

At Point 2, the total mechanical energy is

What’s the difference between ME2 and ME1? If there’s no friction (or another 
nonconservative force), then ME1 = ME2, or

 

These equations represent the principle of conservation of mechanical energy. 
The principle says that if the net work done by nonconservative forces is 
zero, the total mechanical energy of an object is conserved; that is, it doesn’t 
change. (If, on the other hand, friction or another nonconservative force is 
present, the difference between ME2 and ME1 is equal to the net work the 
nonconservative forces do: ME2 – ME1 = W

nc
.

 Another way of rattling off the principle of conservation of mechanical energy 
is that at Point 1 and Point 2,

PE1 + KE1 = PE2 + KE2

You can simplify that mouthful to the following:

ME1 = ME2

where ME is the total mechanical energy at any one point. In other words, an 
object always has the same amount of energy as long as the net work done by 
nonconservative forces is zero.
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 You can cancel out the mass, m, in the previous equation, which means 
that if you know three of the values (heights and velocities), you can 
solve for the fourth:

The mechanical-energy balance: 
Finding velocity and height
Breaking apart the equation for mechanical energy into potential and kinetic 
energy at two different points — gh1 + (1/2)v1

2 = gh2 + (1/2)v2
2 — allows you to 

solve for individual variables, such as velocity and height. Check out the 
following examples.

Determining final velocity with mechanical energy
You can use the principle of conservation of mechanical energy to find an 
object’s final speed.

“Serving as a roller coaster test pilot is a tough gig,” you say as you strap 
yourself into the Physics Park’s new Bullet Blaster III coaster. “But someone 
has to do it.” The crew closes the hatch and you’re off down the totally fric-
tionless track. Halfway down the 400-meter drop, however, the speedometer 
breaks. How can you record your top speed when you get to the bottom?

No problem; all you need is the principle of conservation of mechanical 
energy, which says that if the net work done by nonconservative forces is 
zero, the total mechanical energy of an object is conserved. You know that

You can make this equation a little easier. Your initial velocity is 0 and your 
final height is 0, so two of the terms will drop out when you plug in the num-
bers. You can then divide both sides by m, so you get

Much nicer. Solve for v2 by rearranging the terms and taking the square root 
of both sides:
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Then plugging in the numbers gives you the speed:

The coaster travels at 89 meters/second, or about 198 miles/hour, at the 
bottom of the track — should be fast enough for most kids.

Determining final height with mechanical energy
Besides determining variables such as final speed with the principle of conserva-
tion of mechanical energy, you can determine final height. At this very moment, 
for example, suppose Tarzan is swinging on a vine over a crocodile-infested river 
at a speed of 13.0 meters/second. He needs to reach the opposite river bank 
9.0 meters above his present position in order to be safe. Can he swing it? The 
principle of conservation of mechanical energy gives you the answer:

At Tarzan’s maximum height at the end of the swing, his speed, v2, will be 
0 meters/second, and assuming h1 = 0 meters, you can relate h2 to v1 like this:

Solving for h2, this means that

Tarzan will come up 0.4 meters short of the 9.0 meters he needs to be safe, so 
he needs some help.

Powering Up: The Rate of Doing Work
Sometimes, it isn’t just the amount of work you do but the rate at which you 
do work that’s important. The concept of power gives you an idea of how 
much work you can expect in a certain amount of time.

 Power in physics is the amount of work done divided by the time it takes, or 
the rate of work. Here’s what that looks like in equation form:

15_9780470903247-ch09.indd   18115_9780470903247-ch09.indd   181 5/26/11   11:23 PM5/26/11   11:23 PM



182 Part III: Manifesting the Energy to Work 

Assume you have two speedboats of equal mass, and you want to know which 
one will get you up to a speed of 120 miles per hour faster. Ignoring silly details 
like friction, you’ll need the same amount of work to get up to that speed, but 
how long it will take? If one boat takes three weeks to get you up to 120 miles 
per hour, that may not be the one you take to the races. In other words, the 
amount of work you do in a certain amount of time can make a big difference.

If the work done at any one instant varies, you may want to work out the 
average work done over the time t. An average quantity in physics is often 
written with a bar over it, as in the following equation for average power:

This section covers what units you’re dealing with and the various ways to 
find power.

Using common units of power
Power is work or energy divided by time, so power has the units of 
joules/second, which is called the watt — a familiar term for just about 
anybody who uses anything electrical. You abbreviate a watt as simply W, 
so a 100-watt light bulb converts 100 joules of electrical energy into light 
and heat every second.

 You occasionally run across symbol conflicts in physics, such as the W for 
watts and the W for work. This conflict isn’t serious, however, because one 
symbol is for units (watts) and one is for a concept (work). Capitalization is 
standard, so be sure to pay attention to units versus concepts.

Note that because work and time are scalar quantities (they have no direction), 
power is a scalar as well.

Other units of power include foot-pounds per second (ft·lbs/s) and horse-
power (hp). One hp = 550 ft·lbs/s = 745.7 W.

Say, for example, that you’re in a horse-drawn sleigh on the way to your 
grandmother’s house. At one point, the horse accelerates the sleigh with 
you on it, with a combined mass of 500 kilograms, from 1.0 meter/second 
to 2.0 meters/second in 2.0 seconds. How much power does the move take? 
Assuming no friction on the snow, the total work done on the sleigh, from 
the work-energy theorem, is
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Plugging in the numbers gives you

Because the horse does this work in 2.0 seconds, the power needed is

One horsepower is 745.7 watts, so the horse is giving you about one-half 
horsepower — not too bad for a one-horse open sleigh.

Doing alternate calculations of power
 Because work equals force times distance, you can write the equation for power 

the following way, assuming that the force acts along the direction of travel:

where s is the distance traveled. However, the object’s speed, v, is just s divided 
by t, so the equation breaks down to

That’s an interesting result — power equals force times speed? Yep, that’s 
what it says. However, because you often have to account for acceleration 
when you apply a force, you usually write the equation in terms of average 
power and average speed:

Here’s an example. Suppose your brother got himself a snappy new car. You 
think it’s kind of small, but he claims it has over 100 horsepower. “Okay,” you 
say, getting out your clipboard. “Let’s put it to the test.”

Your brother’s car has a mass of 1.10 × 103 kilograms. On the big Physics Test 
Track on the edge of town, you measure its acceleration as 4.60 meters/second2 
over 5.00 seconds when the car started from rest. How much horsepower is that?
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You know that , so all you need to calculate is the average speed and 
the net applied force. Take the net force first. You know that F = ma, so you 
can plug in the values to get

F = (1.10 × 103 kg)(4.60 m/s2) = 5,060 N

Okay, so the force applied to accelerate the car steadily is 5,060 newtons. 
Now all you need is the average speed. Say the starting speed was v

i
 and the 

ending speed v
f 
. You know that v

i
 = 0 m/s, so what is v

f
? Well, you also know 

that because the acceleration was constant, the following equation is true:

v
f
 = v

i
 + at

As it happens, you know that acceleration and the time the car was 
accelerated over:

v
f
 = 0 m/s + (4.60 m/s2)(5.00 s) = 23.0 m/s 

Because the acceleration was constant, the average speed is

Because v
i
 = 0 m/s, this breaks down to

Plugging in the numbers gives you the average velocity:

Great — now you know the force applied and the average speed. You can use 
the equation  to find the average power. In particular

You still need to convert to horsepower. One horsepower = 745.7 watts, so

Therefore, the car developed an average of 78.0 horsepower, not 100 horse-
power. “Rats,” says your brother. “I demand a recount.”
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Okay, so you agree to calculate power another way. You know you can also 
calculate average power as work divided by time:

And the work done by the car is the difference in the beginning and ending 
kinetic energies:

W = KE
f
 – KE

i

The car started at rest, so KE
i
 = 0 J. That leaves only the final kinetic energy 

to calculate:

Plugging in the numbers gives you:

So because  and the work done was 2.91 × 105 joules in 5.00 seconds, 
you get the following:

And, as before

“Double rats,” your brother says.
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Chapter 10

Putting Objects in Motion: 
Momentum and Impulse

In This Chapter
▶ Checking your impulse

▶ Gaining knowledge about momentum

▶ Intertwining impulse and momentum

▶ Utilizing the conservation of momentum

▶ Examining different types of collisions

Both momentum and impulse are very important to kinematics, or the 
study of objects in motion. After you have these topics under your belt, 

you can start talking about what happens when objects collide (hopefully not 
your car or bike). Sometimes they bounce off each other (like when you hit 
a tennis ball with a racket), and sometimes they stick together (like when a 
dart hits a dart board). With the knowledge of impulse and momentum you 
pick up in this chapter, you can handle either case.

Looking at the Impact of Impulse
In physics terms, impulse tells you how much the momentum of an object 
will change when a force is applied for a certain amount of time. Say, for 
example, that you’re shooting pool. Instinctively, you know how hard to tap 
each ball to get the results you want. The nine ball in the corner pocket? No 
problem — tap it and there it goes. The three ball bouncing off the side cush-
ion into the other corner pocket? Another tap, this time a little stronger.

The taps you apply are called impulses. Take a look at what happens on a 
microscopic scale, millisecond by millisecond, as you tap a pool ball. The force 
you apply with your cue appears in Figure 10-1. The tip of each cue has a cush-
ion, so the impact of the cue is spread out over a few milliseconds as the cush-
ion squashes slightly. The impact lasts from the time when the cue touches the 
ball, t

i
, to the time when the ball loses contact with the cue, t

f
. As you can see 
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from Figure 10-1, the force exerted on the ball changes during that time; in 
fact, it changes drastically, and figuring out what the force was doing at any 
1 millisecond would be hard without some fancy equipment.

 

Figure 10-1: 
Examining 

force versus 
time gives 

you the 
impulse you 

apply on 
objects.

 

Force

Time

Because the pool ball doesn’t come with any fancy equipment, you have to do 
what physicists normally do, which is to talk in terms of the average force over 
time. You can see what that average force looks like in Figure 10-2. Speaking as a 
physicist, you say that the impulse — or the tap — that the pool cue provides is 
the average force multiplied by the time that you apply the force.

 Here’s the equation for impulse:

 

Figure 10-2: 
The average 
force over a 
time interval 
depends on 

the values 
the force 
has over 

that time.
 

Force

Time

Average force

Note that this equation is a vector equation, meaning it deals with both 
direction and magnitude (see Chapter 4). Impulse, J, is a vector, and it’s 
in the same direction as the average force (which itself may be a net 
vector sum of other forces).

 You get impulse by multiplying a quantity with units of newtons by a quantity 
with units of seconds, so the units of impulse are newton-seconds in the 
MKS system and pound-seconds in the FPS system. (See Chapter 2 for details 
on systems of measurement.)
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Gathering Momentum
In physics terms, momentum is proportional to both mass and velocity, and to 
make your job easy, physics defines momentum as the product of mass times 
velocity. Momentum is a big concept both in introductory physics and in some 
advanced topics such as high-energy particle physics, where the components 
of atoms zoom around at high speeds. When the particles collide, you can 
often predict what will happen based on your knowledge of momentum.

Even if you’re unfamiliar with the physics of momentum, you’re already familiar 
with the general idea. Catching a runaway car going down a steep hill is a prob-
lem because of its momentum. If a car without any brakes is speeding toward 
you at 40 miles per hour, trying to stop it by standing in its way may not be a 
great idea. The car has a lot of momentum, and bringing it to a stop requires 
plenty of effort. Now think of an oil tanker. Its engines aren’t strong enough to 
make it turn or stop on a dime. Therefore, an oil tanker can take 20 miles or 
more to come to a stop, all because of the ship’s momentum.

 The more mass that’s moving, the more momentum the mass has. The greater 
the magnitude of its velocity (think of an even faster oil tanker), the more 
momentum it has. The symbol for momentum is p, so you can say that

p = mv

Momentum is a vector quantity, meaning that it has a magnitude and a direction 
(see Chapter 4). The magnitude is in the same direction as the velocity — all 
you have to do to get the momentum of an object is to multiply its mass by its 
velocity. Because you multiply mass by velocity, the units for momentum are 
kilogram-meters per second (kg·m/s) in the MKS system.

The Impulse-Momentum Theorem: 
Relating Impulse and Momentum

You can connect the impulse you give to an object — like striking a pool ball with 
a cue — with the object’s change in momentum; all you need is a little algebra 
and the process you explore in this section, called the impulse-momentum 
theorem. What makes the connection easy is that you can play with the equa-
tions for impulse and momentum to simplify them so you can relate the two 
topics. What equations does physics have in its arsenal to connect these two? 
Relating force and velocity is a start. For example, force equals mass times 
acceleration (see Chapter 5), and the definition of average acceleration is
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where v stands for velocity and t stands for time. Now you may realize that 
if you multiply that equation by the mass, you get force, which brings you 
closer to working with impulse:

Now you have force in the equation. To get impulse, multiply the force 
equation by Δt, the time over which you apply the force:

Take a look at the final expression, mΔv. Because momentum equals mv (see 
the section “Gathering Momentum” earlier in this chapter), this is just the dif-
ference in the object’s initial and final momentum: pf – pi = Δp. Therefore, you 
can add that to the equation:

FΔt = Δp

Now take a look at the term on the left, FΔt. That’s the impulse, J (see the 
section “Looking at the Impact of Impulse” earlier in this chapter), or the 
force applied to the object multiplied by the time that force was applied. 
Therefore, you can write this equation as

J = FΔt = Δp

 Getting rid of everything in the middle finally gives you the impulse-momentum 
theorem, which says that impulse equals change in momentum:

J = Δp 

The rest of this section provides some examples so you can practice this 
equation. But before you set off, think about what the formula means for 
the relation among impulse, force, and momentum. The impulse-momentum 
theorem defines a very simple relation between the impulse and momentum, 
namely that impulse is equal to the change in momentum. You can also see 
how a constant force applied over a time is equal to an impulse that is given 
by the force multiplied by the time:

 J = FΔt

Last, you can tie the force and momentum together through the impulse, 
which gives you

FΔt = Δp
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The meaning of this relation may become clearer if you divide both side by Δt :

So you see that the force is given by the rate of change of momentum. This 
is a whole new way of thinking about force! Wherever you see momentum 
changing with time, you know a force is acting, and if calculating the momen-
tum is easier, it can lead to an easier way of calculating the force. Check out 
the following examples. 

Shooting pool: Finding force 
from impulse and momentum
With the equation J = Δp, you can relate the impulse with which you hit an 
object to its consequent change in momentum. How about using the equation 
the next time you hit a pool ball? You line up the shot that the game depends 
on. You figure that the end of your cue will be in contact with the ball for 
5 milliseconds (a millisecond is a thousandth of a second). 

You measure the ball at 200 grams (or 0.200 kilograms). After testing the side 
cushion with calipers, spectroscope, and tweezers, you figure that you need to 
give the ball a speed of 2.0 meters per second. What average force do you have 
to apply? To find the average force, first find the impulse you have to supply. 
You can relate that impulse to the change in the ball’s momentum this way:

J = Δp = pf – pi 

Because the pool ball doesn’t change direction, you can use this equation for 
the component of the pool ball’s momentum in the direction in which you 
strike it. Because you’re using a component of the vector, you remove the 
bold from p.

So what’s the change in the ball’s momentum? The speed you need, 2.0 meters 
per second, is the magnitude of the pool ball’s final velocity. Assuming the pool 
ball starts at rest, the change in the ball’s momentum will be the following:

Δp = p
f
 – p

i
 = m(v

f
 – v

i
) 

Where v is the component of the ball’s velocity in the direction in which you 
strike it. Plugging in the numbers gives you the change in momentum:

Δp = m(v
f
 – v

i
) = (0.200 kg)(2.0 m/s – 0.0 m/s) = 0.40 kg·m/s 
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You need a change in momentum of 0.40 kilogram-meters per second, which 
is also the impulse you need. Because J = FΔt, this equation becomes the 
following for the component of the force in the direction of motion:

FΔt = 0.40 kg·m/s 

Therefore, the force you need to apply works out to be

In this equation, the time your cue ball is in contact with the ball is 5 millisec-
onds, or 5.0 × 10–3 seconds. Plug in the time to find the force:

You have to apply about 80 newtons (or about 18 pounds) of force, which 
sounds like a huge amount. However, you apply it over such a short time, 
5.0 × 10–3 seconds, that it seems like much less.

Singing in the rain: An impulsive activity
After a triumphant evening at the pool hall, you decide to leave and discover 
that it’s raining. You grab your umbrella from your car, and the handy rain 
gauge on the umbrella’s top tells you that 100 grams of water are hitting the 
umbrella each second at an average speed of 10 meters per second. If the 
umbrella has a total mass of 1.0 kilograms, what force do you need to hold 
it upright in the rain?

Figuring the force you usually need to hold the weight of the umbrella is 
no problem — you just figure mass times the acceleration due to gravity 
(F = ma), or (1.0 kg)(9.8 m/s2) = 9.8 N. 

But what about the rain falling on your umbrella? Even if you assume that the 
water falls off the umbrella immediately, you can’t just add the weight of the 
water, because the rain is falling with a speed of 10 meters per second; in other 
words, the rain has momentum. What can you do? You know that you’re facing 
100 grams (0.10 kilograms) of water falling onto the umbrella each second at a 
velocity of 10 meters per second downward. When that rain hits your umbrella, 
the water comes to rest, so the change in momentum of rain every second is

Δp = mΔv

You’re considering only the vertical components of the vectors, so the vari-
ables aren’t in bold. Plugging in numbers gives you the change in momentum:

Δp = mΔv = (0.10 kg)(10 m/s) = 1.0 kg·m/s 
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The rain’s change in momentum, every second, as it hits your umbrella is 
1.0 kilogram-meter per second. You can relate that change to force with the 
impulse-momentum theorem, which tells you that

FΔt = Δp

Dividing both sides by Δt allows you to solve for the force, F:

You know that Δp = 1.0 kg·m/s in 1.0 second, so plugging in Δp and setting Δt 
to 1.0 second gives you the force of the rain:

In addition to the 9.8 newtons of the umbrella’s weight, you need 1.0 newton 
to stand up to the falling rain as it drums on the umbrella, for a total of 
10.8 newtons, or about 2.4 pounds of force.

When Objects Go Bonk: 
Conserving Momentum

 The principle of conservation of momentum states that when you have an iso-
lated system with no external forces, the initial total momentum of objects 
before a collision equals the final total momentum of the objects after the 
collision. In other words, Σp

i
 = Σp

f
.

You may have a hard time dealing with the physics of impulses because of 
the short times and the irregular forces. But with the principle of conser-
vation, items that are hard to measure — for example, the force and time 
involved in an impulse — are out of the equation altogether. Thus, this 
simple principle may be the most useful idea I provide in this chapter.

Deriving the conservation formula
You can derive the principle of conservation of momentum from Newton’s 
laws, what you know about impulse, and a little algebra.

Say that two careless space pilots are zooming toward the scene of an inter-
planetary crime. In their eagerness to get to the scene first, they collide. During 
the collision, the average force the second ship exerts on the first ship is F

12
. 

By the impulse-momentum theorem (see the section “The Impulse-Momentum 
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Theorem: Relating Impulse and Momentum”), you know the following for 
the first ship:

F12Δt = Δp1 = m1Δv1 = m1(vf1 – v
i1)

And if the average force exerted on the second ship by the first ship is F
21

, 
you also know that

F21Δt = Δp2 = m2Δv2 = m2(vf2 – v
i2) 

Now you add these two equations together, which gives you the 
resulting equation:

F12Δt + F21Δt = m1(vf1 – v
i1) + m2(vf2 – v

i2) 

Distribute the mass terms and rearrange the terms on the right until you 
get the following: 

F12Δt + F21Δt = m1vf1 – m1vi1 + m2vf2 – m2vi2

F12Δt + F21Δt = (m1vf1 + m2vf2) – (m1vi1 + m2vi2) 

This is an interesting result, because m1vi1 + m2vi2 is the initial total momentum 
of the two rocket ships (p1i

 + p
i2) and m1vf1 + m2vf2 is the final total momentum 

(p1f
 + p2f

) of the two rocket ships. Therefore, you can write this equation 
as follows:

F12Δt + F21Δt = (p1f
 + p2f

) – (p1i
 + p

i2) 

If you write the initial total momentum as p
f
 and the final total momentum 

as p
i
, the equation becomes

F12Δt + F21Δt = p
f
 – p

i 

Where do you go from here? Both terms on the left include Δt, so you can 
rewrite F12Δt + F21Δt as the sum of the forces involved, ΣF, multiplied by 
the change in time:

ΣFΔt = p
f 
– p

i
 

 If you’re working with what’s called an isolated or closed system, you have no 
external forces to deal with. Such is the case in space. If two rocket ships col-
lide in space, there are no external forces that matter, so by Newton’s third 
law (see Chapter 5), F12Δt = –F21Δt. In other words, when you have a closed 
system, you get the following:

ΣFΔt = p
f
 – p

i

0 = p
f
 – p

i
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This converts to

p
f
 = p

i
 

 The equation p
f
 = p

i
 says that when you have an isolated system with no 

external forces, the initial total momentum before a collision equals the 
final total momentum after a collision, giving you the principle of conserva-
tion of momentum.

Finding velocity with the 
conservation of momentum
You can use the principle of conservation of momentum to measure other 
characteristics of motion, such as velocity. Say, for example, that you’re out on 
a physics expedition and you happen to pass by a frozen lake where a hockey 
game is taking place. You measure the speed of one player as 11.0 meters per 
second just as he collides, rather brutally for a pick-up game, with another 
player initially at rest. You watch with interest, wondering how fast the result-
ing mass of hockey players will slide across the ice. After asking a few friends 
in attendance, you find out that the first player has a mass of 100 kilograms 
and the bulldozed player (who turns out to be his twin) also has a mass of 
100 kilograms. So what’s the final speed of the player tangle?

You’re dealing with a closed system, because you neglect the force of friction 
here, and although the players are exerting a force downward on the ice, the 
normal force (see Chapter 5) is exerting an equal and opposite force on them; 
therefore, the vertical force sums to zero.

But what about the resulting horizontal speed along the ice? Due to the 
principle of conservation of momentum, you know that

p
f
 = p

i
 

Imagine that the collision is head on, so all the motion occurs in one dimen-
sion — along a line. So you only need to examine the components of the 
vector quantities in this single dimension. The component of a vector in 
one dimension is just a number, so I don’t write them in bold.

The victim isn’t moving before the hit, so he starts without any momentum. 
Therefore, the initial momentum, p

i
, is simply the initial momentum of the 

enforcer, Player 1. To put this equation into more helpful terms, substitute 
Player 1’s mass and initial velocity (m1vi1) for the initial momentum (p

i
):

p
i
 = m1vi1
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After the hit, the players tangle up and move with the same final velocity. 
Therefore, the final momentum, p

f
, must equal the combined mass of the 

two players multiplied by their final velocity, (m1 + m2)vf
, which gives you 

the following equation:

(m1 + m2)vf
 = m1vi1

Solving for v
f
 gives you the equation for their final velocity:

Plugging in the numbers gives you the answer:

The speed of the two players together will be half the speed of the original 
player. That may be what you expected, because you end up with twice the 
moving mass as before; because momentum is conserved, you end up with 
half the speed. Beautiful. You note the results down on your clipboard.

Finding firing velocity with the 
conservation of momentum
The principle of conservation of momentum comes in handy when you can’t 
measure velocity with a simple stopwatch. Say, for example, that you accept 
a consulting job from an ammunition manufacturer that wants to measure 
the muzzle velocity of its new bullets. No employee has been able to measure 
the velocity yet, because no stopwatch is fast enough. What do you do? You 
decide to arrange the setup shown in Figure 10-3, where you fire a bullet of 
mass m1 into a hanging wooden block of mass m2.

The directors of the ammunition company are perplexed — how can your 
setup help? Each time you fire a bullet into a hanging wooden block, the 
bullet kicks the block into the air. So what? You decide they need a lesson 
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on the principle of conservation of momentum. The original momentum, 
you explain, is the momentum of the bullet:

p
i
 = mv

i

Because the bullet sticks in the wooden block, the final momentum is the 
product of the total mass, m1 + m2, and the final velocity of the bullet/wooden 
block combination:

p
f
 = (m1 + m2)vf

 

 

Figure 10-3: 
Shooting 

a wooden 
block on 
a string 

allows you to 
experiment 

with velocity, 
but don’t try 
this at home!

 

vi

Bullet

h

wooden
block

Bullet
wooden

block

Because of the principle of conservation of momentum, you can say that

p
f
 = p

i
 

Therefore, you can plug in the earlier expressions for final and initial momentum:
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The directors start to get dizzy, so you explain how the kinetic energy of the 
block when it’s struck goes into its final potential energy when it rises to 
height h (see Chapter 9). Here’s how you can represent the bullet’s kinetic 
energy and the bullet-and-block’s change in potential energy:

You can plug in the value of v
f
, which gives you

 

With a flourish, you explain that solving for v
i
 gives you the bullet’s 

initial velocity:

You measure that the bullet has a mass of 50 grams, that the wooden block 
has a mass of 10.0 kilograms, and that upon impact, the block rises 50.0 centi-
meters into the air. Plugging in those values gives you your result:

The initial velocity is 630 meters per second, which converts to about 
2,070 feet per second. “Brilliant!” the directors cry as they hand you a 
big check.
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When Worlds (Or Cars) Collide: 
Elastic and Inelastic Collisions

Examining collisions in physics can be pretty entertaining, especially because 
the principle of conservation of momentum makes your job so easy (see the 
earlier section “When Objects Go Bonk: Conserving Momentum”). But when 
you’re dealing with collisions, there’s often more to the story than impulse and 
momentum. Sometimes, kinetic energy is also conserved, which gives you the 
extra edge you need to figure out what happens in all kinds of collisions, even 
across two dimensions.

Collisions are important in many physics problems. Two cars collide, for 
example, and you need to find the final velocity of the two when they stick 
together. You may even run into a case where two railway cars going at dif-
ferent velocities collide and couple together, and you need to determine the 
final velocity of the two cars.

But what if you have a more general case where the two objects don’t stick 
together? Say, for example, you have two pool balls that hit each other at dif-
ferent speeds and at different angles and bounce off with different speeds and 
different angles. How the heck do you handle that situation? You have a way to 
handle these collisions, but you need more than just the principle of conserva-
tion of momentum gives you. In this section, I explain the difference between 
elastic and inelastic collisions and then do a few elastic-collision problems.

Determining whether a collision is elastic
 When bodies collide in the real world, they sometimes squash and deform to 

some degree. The energy to perform the deformation comes from the objects’ 
original kinetic energy. In other cases, friction turns some of the kinetic energy 
into heat. Physicists classify collisions in closed systems (where the net forces 
add up to zero) based on whether colliding objects lose kinetic energy to some 
other form of energy:

 ✓ Elastic collision: In an elastic collision, the total kinetic energy in the 
system is the same before and after the collision. If losses to heat and 
deformation are much smaller than the other energies involved, such as 
when two pool balls collide and go their separate ways, you can gener-
ally ignore the losses and say that kinetic energy was conserved. 
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 ✓ Inelastic collision: In an inelastic collision, the collision changes the 
total kinetic energy in a closed system. In this case, friction, deforma-
tion, or some other process transforms the kinetic energy. If you can 
observe appreciable energy losses due to nonconservative forces 
(such as friction), kinetic energy isn’t conserved.

  You see inelastic collisions when objects stick together after colliding, 
such as when two cars crash and weld themselves into one. However, 
objects don’t need to stick together in an inelastic collision; all that has 
to happen is the loss of some kinetic energy. For example, if you smash 
your car into a car and deform it, the collision is inelastic, even if you 
can drive away after the accident. 

 Regardless of whether a collision is elastic or inelastic, momentum is always 
the same before and after the collision, as long as you have a closed system.

Colliding elastically along a line
When a collision is elastic, kinetic energy is conserved. The most basic way to 
look at elastic collisions is to examine how the collisions work along a straight 
line. If you run your bumper car into a friend’s bumper car along a straight line, 
you bounce off and kinetic energy is conserved along the line. But the behavior of 
the cars depends on the mass of the objects involved in the elastic collision.

Bumping into a heavier mass
You take your family to the Physics Amusement Park for a day of fun and 
calculation, and you decide to ride the bumper cars. You wave to your family 
as you speed your 300-kilogram car-and-driver up to 10.0 meters per second. 
Suddenly, Bonk! What happened? The 400-kilogram car-and-driver in front of 
you had come to a complete stop, and you rear-ended the car elastically; now 
you’re traveling backward and the other car is traveling forward. “Interesting,” 
you think. “I wonder if I can solve for the final velocities of both bumper cars.”

You know that the momentum was conserved, and you know that the car in 
front of you was stopped when you hit it, so if your car is Car 1 and the other 
is Car 2, you get the following:

m1vf1 + m2vf2 = m1vi1 

However, this doesn’t tell you what v
f1 and v

f2 are, because you have two 
unknowns and only one equation here. You can’t solve for v

f1 or v
f2 exactly in this 

case, even if you know the masses and v
i1. You need some other equations relat-

ing these quantities. How about using the conservation of kinetic energy? The 
collision was elastic, so kinetic energy was conserved. KE = (1/2)mv2, so here’s 
your equation for the two cars’ final and initial kinetic energies:
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Now you have two equations and two unknowns, v
f1 and v

f2, which means you 
can solve for the unknowns in terms of the masses and v

i1. You have to dig 
through a lot of algebra here because the second equation has many squared 
velocities, but when the dust settles, you get the following two equations:

 

 

Now you have v
f1 and v

f2 in terms of the masses and v
i1. Plugging in the num-

bers gives you the two bumper cars’ final velocities. Here’s the velocity of 
your car:

 

And here’s the final velocity of the other guy:

 

The two speeds tell the whole story. You started off at 10.0 meters per 
second in a bumper car of 300 kilograms, and you hit a stationary bumper 
car of 400 kilograms in front of you. Assuming the collision took place 
directly and the second bumper car took off in the same direction you were 
going before the collision, you rebounded at –1.43 meters per second — 
backward, because this quantity is negative and the bumper car in front 
of you had more mass — and the bumper car in front of you took off at a 
speed of 8.57 meters per second.

Bumping into a lighter mass
After having a bad experience in a previous trip to the bumper car pit — 
where your light bumper car rear-ended a heavy bumper car (see the preced-
ing section for the calculation) — you decide to go back and pick on some 
poor light cars in a monster bumper car. What happens if your bumper 
car (plus driver) has a mass of 400 kilograms and you rear-end a station-
ary 300-kilogram car? In this case, you use the equation for conservation of 
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kinetic energy, the same formula you use in the preceding section. Here’s 
what your final velocity comes out to:

The little car’s final velocity comes out to

In this case, you don’t bounce backward. The lighter, stationary car takes 
off after you hit it, but not all your forward momentum is transferred to the 
other car. Is momentum still conserved? Here are your formulas for the initial 
and final momentums:

 ✓ p
i
 = m1vi1

 ✓ p
f
 = m1vf1 + m2vf2

Putting in the numbers, here’s the initial momentum:

p
i
 = m1vi1 = (400 kg)(10.0 m/s) = 4,000 kg·m/s 

And here’s the final momentum:

p
f
 = m1vf1 + m2vf2

= (400 kg)(1.43 m/s) + (300 kg)(11.4 m/s)

≈ 4,000 kg∙m/s

The numbers match, so momentum is conserved in this collision, just as it is 
for your collision with a heavier car.

Colliding elastically in two dimensions
Collisions don’t always occur along a straight line. For example, balls on a pool 
table can travel in two dimensions, both x and y, as they roll around. Collisions 
along two dimensions introduce variables such as angle and direction.
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Say, for example, that your physics travels take you to the golf course, where 
two players are lining up for their final putts of the day. The players are tied, 
so these putts are the deciding shots. Unfortunately, the player closer to the 
hole breaks etiquette, and both golfers putt at the same time. Their 45-gram 
golf balls collide! You can see what happens in Figure 10-4.

 

Figure 10-4: 
Before, 
during, 

and after 
a collision 

between 
two balls 

moving 
in two 

dimensions.
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You quickly stoop down to measure all the angles and velocities involved in the 
collision. You measure the speeds: v

i1 = 1.0 meter per second, v
i2 = 2.0 meters per 

second, and v
f2 = 1.2 meters per second. You also measure most of the angles, as 

Figure 10-4 shows. However, you can’t get the final angle and speed of Ball 1.

Because the golf balls collide elastically, both momentum and kinetic energy 
are conserved. In particular, momentum is conserved in both the x and y 
directions, and total kinetic energy is conserved as well. You need both of 
these conservations to find the final speed and direction of Ball 1.

First work out the final speed of Ball 1. Because the masses of the balls are equal, 
you can call each mass m. The initial total kinetic energy (for both balls) is

Then the final kinetic energy is given by
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Then because kinetic energy is conserved, the final kinetic energy must be 
equal to the initial kinetic energy, and so you can write

Then you can rearrange the equation to isolate the term with the final 
velocity of Ball 1, v

f1:

Then if you solve for v
f1 (divide both sides by m, multiply both sides by 2, and 

take the square root), you get

So there you have it: The final speed of Ball 1 is 2.0 meters per second.

To work out the angle of Ball 1’s velocity, you use the conservation of 
momentum. Momentum is conserved in both the x and y directions, so the 
following equations are true:

 ✓ p
fx
 = p

ix

 ✓ p
fy
 = p

iy
 

In other words, the final momentum in the x direction is the same as the ini-
tial momentum in the x direction, and the final momentum in the y direction 
is the same as the initial momentum in the y direction. Here’s what the initial 
momentum in the x direction looks like:

p
ix 

= mv
i1 cos 40° + mv

i2

You can see that this is the sum of the x momenta of both balls. 

The final momentum in the x direction is given by

p
fx 

= mv
f1 cos θ + mv

f2 cos 30°

The x component of momentum is conserved, so you can equate the initial and 
final momenta in the x direction:

mv
i1 cos 40° + mv

i2 = mv
f1 cos θ + mv

f2 cos 30°
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Divide both sides by m to get

v
i1 cos 40° + v

i2 = v
f1 cos θ + v

f2 cos 30°

If you rearrange this equation to put the term with the unknown angle, θ, on 
one side, you get

v
f1 cos θ = v

i1 cos 40° + v
i2 – v

f2 cos 30°

Dividing by v
f1 gives you

Plug in the measured values and the final speed of Ball 1 you calculated 
previously to get

Finally, you can take the inverse cosine of each side to find the angle:

θ ≈ 30°

So there you have it: After the collision, Ball 1 moves with a velocity of 
2.0 m/s at an angle of 30° from horizontal. You have combined the use of 
conservation of kinetic energy (in an elastic collision) and conservation of 
momentum (as in all collisions) to work out the final velocity of Ball 1.
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Chapter 11

Winding Up with Angular Kinetics
In This Chapter
▶ Changing gears from linear motion to rotational motion 

▶ Calculating tangential speed and acceleration

▶ Understanding angular acceleration and velocity

▶ Identifying the torque involved in rotational motion

▶ Maintaining rotational equilibrium

This chapter is the first of two on handling objects that rotate, from space 
stations to marbles. Rotation is what makes the world go round — liter-

ally — and if you know how to handle linear motion and Newton’s laws (see 
the first two parts of the book if you don’t), the rotational equivalents I pres-
ent in this chapter and in Chapter 12 are pieces of cake. And if you don’t have 
a grasp on linear motion, no worries. You can get a firm grip on the basics 
of rotation here. You see all kinds of rotational ideas in this chapter: angular 
acceleration, tangential speed and acceleration, torque, and more. Kinetics 
deals not only with the motions of objects but the forces behind those 
motions. Rotational kinetics deals with rotational motions and the forces 
behind them (torque). But enough spinning the wheels. Read on!

Going from Linear to Rotational Motion
You need to change equations when you go from linear motion to rotational 
motion. Here are the angular equivalents (or analogs) for the linear 
motion equations:

Linear Angular

Velocity

Acceleration

Displacement

Motion with time 
canceled out

v
f
2 – v

i
2 = 2as ω

f
2 – ω

i
2 = 2αθ
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In all these equations, t stands for time, Δ means “change in,” 
f
 means final, 

and 
i
 means initial. In the linear equations, v is velocity, s is displacement, 

and a is acceleration. In the angular equations, ω is angular velocity (mea-
sured in radians/second), θ is angular displacement in radians, and α is angu-
lar acceleration (in radians/second2).

You know that the quantities displacement, velocity, and acceleration are 
all vectors; well, their angular equivalents are vectors, too. First, consider 
angular displacement, Δθ — this is a measure of the angle through which an 
object has rotated. The magnitude tells you the size of the angle of the rota-
tion, and the direction is parallel to the axis of the rotation. Similarly, angular 
velocity, ω, has a magnitude equal to the angular speed and a direction that 
defines the axis of rotation. The angular acceleration, α, has a magnitude 
equal to the rate at which the angular velocity is changing; it’s also directed 
along the axis of rotation.

If you consider only motion in a plane, then you have only one possible direc-
tion for the axis of rotation: perpendicular to the plane. In this case, these vector 
quantities have only one component — this vector component is just a number, 
and the sign of the number indicates all you need to know about the direc-
tion. For example, a positive angular displacement may be a clockwise rotation, 
and a negative angular displacement may be a counterclockwise rotation.

Just as the magnitude of the velocity is the speed, the magnitude of the angu-
lar velocity is the angular speed. Just as the magnitude of a displacement is a 
distance, the magnitude of an angular displacement is an angle — that is, the 
magnitude of the vector quantity is a scalar quantity.

Note: In the next section, I begin by looking at the motion in a plane consid-
ering only the single component of the vectors — which are scalar numbers 
(I identify the vector with its single component). So for that section, the 
quantities, Δθ, ω, and α don’t appear in bold type because they represent the 
single component of a rotation in a plane. In the section “Applying Vectors 
to Rotation,” I take a closer look at the vector nature of the angular displace-
ment, velocity, and acceleration.

Understanding Tangential Motion
Tangential motion is motion that’s perpendicular to radial motion, or motion 
along a radius. Given a central point, vectors in the surrounding space can 
be broken into two components: radial direction, which points directly away 
from the center of the circle, and tangential direction, which follows the circle 
and is directed perpendicular to the radial direction. Motion in the tangential 
direction is referred to as tangential motion.
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 You can tie angular quantities such as angular displacement (θ), angular veloc-
ity (ω), and angular acceleration (α) to their associated tangential quantities. 
All you have to do is multiply by the radius, using these equations:

 ✓ s = r θ

 ✓ v = r ω

 ✓ a = rα

 These equations rely on using radians as the measure of angles; they don’t 
work if you try to use degrees.

Say you’re riding a motorcycle, for example, and the wheels’ angular speed 
is ω = 21.5π radians per second. What does this mean in terms of your motor-
cycle’s speed? To determine your motorcycle’s velocity, you need to relate 
angular velocity, ω, to linear velocity, v. The following sections explain how 
you can make such relations.

Finding tangential velocity
At any point on a circle, you can pick two special directions: The direction 
that points directly away from the center of the circle (along the radius) is 
called the radial direction, and the direction that’s perpendicular to this is 
called the tangential direction.

When an object moves in a circle, you can think of its instantaneous velocity 
(the velocity at a given point in time) at any particular point on the circle as 
an arrow drawn from that point and directed in the tangential direction. For 
this reason, this velocity is called the tangential velocity. The magnitude of 
the tangential velocity is the tangential speed, which is simply the speed of 
an object moving in a circle.

 Given an angular velocity of magnitude ω, the tangential velocity at any radius 
is of magnitude rω. The idea that the tangential velocity increases as the 
radius increases makes sense, because given a rotating wheel, you’d expect a 
point at radius r to be going faster than a point closer to the hub of the wheel.

Take a look at Figure 11-1, which shows a ball tied to a string. The ball is whip-
ping around with angular velocity of magnitude ω.
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Figure 11-1: 
A ball in 
circular 

motion has 
angular 

speed with 
respect to 

the radius of 
the circle.
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Golf ball

s

θ

 You can easily find the magnitude of the ball’s velocity, v, if you measure the 
angles in radians. A circle has 2π radians; the complete distance around a 
circle — its circumference — is 2πr, where r is the circle’s radius. In general, 
therefore, you can connect an angle measured in radians with the distance 
you cover along the circle, s, like this:

s = r θ

where r is the radius of the circle. Now, you can say that v = s/t, where v is 
magnitude of the velocity, s is the distance, and t is time. You can substitute 
for s to get

 

Because ω = θ/t, you can say that

In other words,

v = rω

Now you can find the magnitude of the velocity. The wheels of a motorcycle 
are turning with an angular velocity of 21.5π radians/second. If you can find 
the tangential velocity of any point on the outside edges of the wheels, you 
can find the motorcycle’s speed. Say, for example, that the radius of one of 
your motorcycle’s wheels is 40 centimeters. You know that v = rω, so just 
plug in the numbers:

v = rω = (0.40 m/s)21.5π ≈ 27 m/s 

Converting 27 meters/second to miles/hour gives you about 60 mph.
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Finding tangential acceleration
Tangential acceleration is a measure of how the tangential velocity of a point 
at a certain radius changes with time. Tangential acceleration is just like 
linear acceleration (see Chapter 3), but it’s particular to the tangential direc-
tion, which is relevant to circular motion. Here you look at the magnitude of 
the angular acceleration, α , which tells you how the speed of the object in 
the tangential direction is changing.

For example, when you start a lawn mower, a point on the tip of one of its 
blades starts at a tangential velocity of zero and ends up with a tangential 
velocity with a pretty large magnitude. So how do you determine the point’s 
tangential acceleration? You can use the following equation from Chapter 3, 
which relates velocity to acceleration (where Δv is the change in velocity and 
Δt is the change in time) to relate tangential quantities like tangential velocity 
to angular quantities such as angular velocity:

Tangential velocity, v, equals rω (as you see in the preceding section), so you 
can plug in this information:

Because the radius is constant here, the equation becomes

However, Δω/Δt = α, the angular acceleration, so the equation becomes

a = rα

Translated into layman’s terms, this says tangential acceleration equals 
angular acceleration multiplied by the radius.

Finding centripetal acceleration
Newton’s first law says that when there are no net forces, an object in motion 
will continue to move uniformly in a straight line (see Chapter 5). For an 
object to move in a circle, a force has to cause the change in direction — 
this force is called the centripetal force. Centripetal force is always directed 
toward the center of the circle.
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The centripetal acceleration is proportional to the centripetal force (obeying 
Newton’s second law; see Chapter 5). This is the component of the object’s 
acceleration in the radial direction (directed toward the center of the circle), 
and it’s the rate of change in the object’s velocity that keeps the object 
moving in a circle; this force does not change the magnitude of the velocity, 
only the direction.

You can connect angular quantities, such as angular velocity, to centripetal 
acceleration. Centripetal acceleration is given by the following equation (for 
more on the equation, see Chapter 7):

where v is the velocity and r is the radius. Linear velocity is easy enough to 
tie to angular velocity because v = rω (see the section “Finding tangential 
velocity”). Therefore, you can rewrite the acceleration formula as

 The centripetal-acceleration equation simplifies to

a
c
 = rω2

Nothing to it. The equation for centripetal acceleration means that you can 
find the centripetal acceleration needed to keep an object moving in a circle 
given the circle’s radius and the object’s angular velocity.

Say that you want to calculate the centripetal acceleration of the moon 
around the Earth. Start with the old equation

First you have to calculate the tangential velocity of the moon in its orbit. 
Alternatively, you can calculate the tangential velocity from the angular 
velocity. Using the new version of the equation, a

c
 = rω2, is easier because 

the moon orbits the Earth in about 28 days, so you can easily calculate the 
moon’s angular velocity.
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Because the moon makes a complete orbit around the Earth in about 28 days, 
it travels 2π radians around the Earth in that period, so its angular velocity is

Converting 28 days to seconds gives you the following:

Therefore, you get the following angular velocity:

You now have the moon’s angular velocity, 2.60 × 10–6 radians per second. 
The average radius of the moon’s orbit is 3.85 × 108 meters, so its centripetal 
acceleration is

a
c
 = rω2

= (3.85 × 108 m)(2.60 × 10–6 s–1)2 

≈ 2.60 × 10–3 m/s2 

 In the preceding equation, the units of angular velocity, radians per second, 
are written as s–1 because the radian is a dimensionless unit. A radian is the 
angle swept by an arc that has a length equal to the radius of the circle. Think 
of it as a particular portion of the whole circle; as such, it has no dimensions. 
So when you have “radians per second,” you can omit “radians,” which leaves 
you with “per second.” Another way to write this is to use the exponent –1, 
so you can represent radians per second as s–1.

Just for kicks, you can also find the force needed to keep the moon going 
around in its orbit. Force equals mass times acceleration (see Chapter 5), 
so you multiply acceleration by the mass of the moon, 7.35 × 1022 kilograms:

F
c
 = ma

c
 = (7.35 × 1022 kg)(2.60 × 10–3 m/s2) ≈ 1.91 × 1020 N 

The force in newtons, 1.91 × 1020 N, converts to about 4.3 × 1019 pounds of 
force needed to keep the moon going around in its orbit.
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Applying Vectors to Rotation
Angular displacement, angular velocity, and angular acceleration are each 
vector quantities. When you consider circular motion in a plane, these vec-
tors only have one component, which is a scalar number; in that case, you 
don’t have to consider the direction very much. However, when you have 
circular motion in more than one plane (as with the motions of the planets, 
which orbit on very slightly different planes) or when the plane of rotation 
changes (like in a wobbling spinning top, for example), then the direction of 
these vectors becomes significant.

 Angular velocity and angular acceleration are vectors that are directed along 
the axis of the rotation.

In this section, you hear more about the directions of the angular vectors. 
For the rest of this section, the quantities , , and  appear in bold type 
because you’re explicitly dealing with vectors.

Calculating angular velocity
 When a wheel is spinning, it has not only an angular speed but also a direc-

tion. Here’s what the angular velocity vector tells you:

 ✓ The size of the angular velocity vector tells you the angular speed.

 ✓ The direction of the vector tells you the axis of the rotation, as well as 
whether the rotation is clockwise or counterclockwise.

Say that a wheel has a constant angular speed, ω — which direction does its 
angular velocity, , point? It can’t point along the rim of the wheel, as tangen-
tial velocity does, because its direction would then change every second. In 
fact, the only real choice for its direction is perpendicular to the wheel.

The direction of the angular velocity always takes people by surprise: Angular 
velocity, , points along the axle of a wheel (see Figure 11-2). Because the 
angular velocity vector points the way it does, it has no component along the 
wheel. The wheel is spinning, so the tangential (linear) velocity at any point 
on the wheel is constantly changing direction — except for at the very center 
point of the wheel, where the base of the angular velocity vector sits. If the 
wheel is lying flat on the ground, the vector’s head points up or down, away 
from the wheel, depending on which direction the wheel is rotating.

 You can use the right-hand rule to determine the direction of the angular veloc-
ity vector. Wrap your right hand around the wheel so that your fingers point in 
the direction of the tangential motion at any point — the fingers on your right 
hand should go in the same direction as the wheel’s rotation. When you wrap 
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your right hand around the wheel, your thumb points in the direction of the 
angular velocity vector, .

Figure 11-2 shows a wheel lying flat, turning counterclockwise when viewed 
from above. Wrap your fingers in the direction of rotation. Your thumb, 
which represents the angular velocity vector, points up; it runs along the 
wheel’s axle. If the wheel were to turn clockwise instead, your thumb — 
and the vector — would have to point down, in the opposite direction.

 

Figure 11-2: 
Angular 
velocity 

points in a 
direction 
perpen-

dicular to 
the wheel.

 

ω

Figuring angular acceleration
In this section, you find out how the angular acceleration and angular veloc-
ity relate to each other in terms of their magnitude and direction. You first 
see what happens in the simplest case, where the angular acceleration and 
velocity are in the same direction or in opposite directions. Then you look at 
a situation in which angular acceleration and angular velocity are at an angle 
to each other, leading to a tilting of the rotational axis.

Changing the speed and reversing direction
If the angular velocity vector points out of the plane of rotation (see the pre-
ceding section), what happens when the angular velocity changes — when 
the wheel speeds up or slows down? A change in velocity signifies the pres-
ence of angular acceleration. Like angular velocity, , angular acceleration, , 
is a vector, meaning it has a magnitude and a direction. Angular acceleration 
is the rate of change of angular velocity:
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For example, look at Figure 11-3, which shows what happens when angular accel-
eration affects angular velocity. In this case,  points in the same direction as  
in 11-3A. When the angular acceleration vector, , points along the angular veloc-
ity, , the magnitude of  will increase as time goes on, as Figure 11-3B shows.

 

Figure 11-3: 
Angular 
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direction as 
the angular 

velocity.
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 Just as an object’s linear velocity and linear acceleration may be in opposite 
directions, the angular acceleration also doesn’t have to be in the same 
direction as the angular velocity vector (as Figure 11-4A shows). If the angular 
acceleration is directed in the opposite direction of the angular velocity, then 
the magnitude of the angular velocity decreases at a rate given by the magni-
tude of the angular acceleration.

Just as in the case of linear velocity and acceleration, the angular accelera-
tion gives the rate of change of angular velocity: The magnitude of the angu-
lar acceleration gives the rate at which the angular velocity changes, and the 
direction gives the direction of the change. You can see a decreased angular 
velocity in Figure 11-4B.

 

Figure 11-4: 
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Tilting the axle
The angular acceleration is the rate of change of angular velocity — the change 
can be to the direction instead of the magnitude. For example, suppose you 
take hold of the axle of the spinning wheel in Figure 11-3 and tilt it. You’d 
change the angular velocity of the wheel but not by changing its magnitude 
(the angular speed of the wheel would remain constant); rather, you’d change 
the direction of the angular velocity by changing the axis of rotation — this is 
an angular acceleration that’s directed perpendicular to the angular velocity, 
as in Figure 11-5.

 

Figure 11-5: 
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Doing the Twist: Torque
For extended objects (rods, disks, or cubes, for example), which, unlike point 
objects, have their mass distributed through space, you have to take into 
account where the force is applied. Enter torque. Torque is a measure of the 
ability of a force to cause rotation. In physics terms, the torque exerted on an 
object depends on the force itself (its magnitude and direction) and where 
you exert the force. You go from the strictly linear idea of force as something 
that acts in a straight line (such as when you push a refrigerator up a ramp) 
to its angular counterpart, torque.

 Just as force causes acceleration, torque causes angular acceleration, so you 
can think of torque as the angular equivalent of force (see Chapter 12 for more 
info on that aspect of torque).
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Torque brings forces into the rotational world. Most objects aren’t just 
points or rigid masses, so if you push them, they not only move but also turn. 
For example, if you apply a force tangentially to a merry-go-round, you don’t 
move the merry-go-round away from its current location — you cause it to 
start spinning. Rotational motions and the forces behind them are the focus 
of this chapter and Chapter 12.

Look at Figure 11-6, which shows a seesaw with a mass m on it. If you want to 
balance the seesaw, you can’t have a larger mass, M, placed on a similar spot 
on the other side of the seesaw. Where you put the larger mass M determines 
whether the seesaw balances. As you can see in Figure 11-6A, if you put the 
mass M on the pivot point — also called the fulcrum — of the seesaw, you 
don’t have balance. The larger mass exerts a force on the seesaw, but the 
force doesn’t balance it.

As you can see in Figure 11-6B, as you increase the distance you put the mass 
M away from the fulcrum, the balance improves. In fact, if M = 2m, you need 
to put the mass M exactly half as far from the fulcrum as the mass m is.

 

Figure 11-6: 
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The torque is a vector. The magnitude of the torque tells you the ability 
of the torque to generate rotation; more specifically, the magnitude of the 
torque is proportional to the angular acceleration it generates. The direc-
tion of the torque is along the axis of this angular acceleration. This section 
starts by considering torques and forces that are in a plane, so you only need 
to think about the magnitude of the torque and not the full vector. Later, I 
explain a little more about the direction of the torque vector.

Mapping out the torque equation
 How much torque you exert on an object depends on the following:

 ✓ The force you exert, F

 ✓ Where you apply the force; the lever arm — also called the moment 
arm — is the perpendicular distance from the pivot point to the point 
at which you exert your force and is related to the distance from the 
axis, r, by l = r sin θ, where θ is the angle between the force and a line 
from the axis to the point where the force is applied.

Assume that you’re trying to open a door, as in the various scenarios in 
Figure 11-7. You know that if you push on the hinge, as in diagram A, the door 
won’t open; if you push the middle of the door, as in diagram B, the door will 
open; but if you push the edge of the door, as in diagram C, the door will open 
more easily.

In Figure 11-7, the lever arm, l, is distance r from the hinge at which you exert 
your force. The torque is the product of the magnitude of the force multiplied 
by the lever arm. It has a special symbol, the Greek letter τ (tau):

τ = Fl

The units of torque are force units multiplied by distance units, which is 
newton-meters in the MKS system and foot-pounds in the foot-pound-second 
system (see Chapter 2 for more on these measurement systems).

For example, the lever arm in Figure 11-7 is distance r (because this is the 
distance perpendicular to the force), so τ = Fr. If you push with a force of 
200 newtons and r is 0.5 meters, what’s the torque you see in the figure? In 
diagram A, you push on the hinge, so your distance from the pivot point is 
zero, which means the lever arm is zero. Therefore, the magnitude of the 
torque is zero. In diagram B, you exert the 200 newtons of force at a distance 
of 0.5 meters perpendicular to the hinge, so

τ = Fl = (200 N)(0.5 m) = 100 N·m 
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Figure 11-7: 
The torque 

you exert 
on a door 

depends on 
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push it.
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The magnitude of the torque here is 100 newton-meters. But now take a look at 
diagram C. You push with 200 newtons of force at a distance of 2r perpendicular 
to the hinge, which makes the lever arm 2r or 1.0 meter, so you get this torque:

τ = Fl = (200 N)(1.0 m) = 200 N·m 

Now you have 200 newton-meters of torque, because you push at a point 
twice as far away from the pivot point. In other words, you double the mag-
nitude of your torque. But what would happen if, say, the door were partially 
open when you exerted your force? Well, you would calculate the torque 
easily, if you have lever-arm mastery.
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Understanding lever arms
If you push a partially open door in the same direction as you push a closed 
door, you create a different torque because of the non-right angle between 
your force and the door.

Take a look at Figure 11-8A to see a person obstinately trying to open a door 
by pushing along the door toward the hinge. You know this method won’t 
produce any turning motion, because the person’s force has no lever arm 
to produce the needed turning force. In this case, the lever arm is zero, so 
it’s clear that even if you apply a force at a given distance away from a pivot 
point, you don’t always produce a torque. The direction you apply the force 
also counts, as you know from your door-opening expertise.

 

Figure 11-8: 
You produce 

a useful 
angle of a 
lever arm 

by exerting 
force in 

the proper 
direction.
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Figuring out the torque generated
Generating torque is how you open doors, whether you have to quickly pop a 
car door or slowly pry open a bank-vault door. But how do you find out how 
much torque you generate? First, you calculate the lever arm, and then you 
multiply that lever arm by the force to get the torque.

Take a look at Figure 11-8B. You apply a force to the door at some angle, θ. 
The force may open the door, but it isn’t a sure thing, because as you can tell 
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from the figure, you apply less of a turning force here. What you need to do 
is find the lever arm first. As you can see in Figure 11-8B, you apply the force 
at a distance r from the hinge. If you apply that force perpendicularly to the 
door, the lever arm’s length would be r, and you’d get

τ = Fr

However, that’s not the case here, because the force isn’t perpendicular to 
the door.

 The lever arm is the effective distance from the pivot point at which the force 
acts perpendicularly. Picture moving the point where the force is applied, car-
rying the force vector along without changing its direction. When you move to 
a spot where the force is perpendicular to the direction of the axis 
of rotation, the distance to the axis is the lever arm. 

To see how this works, take a look at diagram B in Figure 11-8, where you can 
draw a lever arm from the pivot point so that the force is perpendicular to 
the lever arm. To do this, extend the force vector until you can draw a line 
from the pivot point that’s perpendicular to the force vector. You create a 
new triangle. The lever arm and the force are at right angles with respect to 
each other, so you create a right triangle. The angle between the force and 
the door is θ, and the distance from the hinge at which you apply the force 
is r (the hypotenuse of the right triangle), so the lever arm becomes

l = r sin θ

When θ goes to zero, so does the lever arm, so there’s no torque (see diagram 
A in Figure 11-8). You know that τ = Fl, so you can now find τ = Fr sin θ, where 
θ is the angle between the force and the door.

 This is a general equation; if you apply a force with a magnitude of F at a dis-
tance r from a pivot point, where the angle between that displacement vector r 
and the force vector F is θ, the torque you produce will have a magnitude of 
τ = Fr sin θ. So, for example, if θ = 45°, F = 200 newtons, and r = 1.0 meter, you get

τ = Fr sin θ = (200 N)(1.0 m)(0.707) ≈ 140 N·m

This number is less than you’d expect if you just push perpendicularly to the 
door (which would be 200 newton-meters).

Recognizing that torque is a vector
 Torque is a vector, so it has not only magnitude but also direction. The direc-

tion of the torque is the same as the angular acceleration that it causes. It is 
perpendicular to the force and the lever arm in a right-hand fashion.
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To get a little more technical, torque is given by the cross-product of the 
vector that points from the axis of rotation to the point at which the force is 
applied, r, and the force vector, F. The cross-product is written as an ×, so 
mathematically, the torque vector is the following:

 = r × F

This equation is really a fancy mathematical way of saying that the torque 
vector has a magnitude of rF sin θ and that the direction of the torque vector 
is as Figure 11-9 shows.

The right-hand rule is a useful way of remembering the direction of torque. If 
you point the thumb of your right hand in the direction of the radius vector 
r and your fingers in the direction of the force vector F, then your palm faces 
the direction of the torque vector .

 

Figure 11-9: 
A turning 

motion 
toward 

larger 
positive 
angles 

indicates 
a positive 

vector.
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Spinning at Constant Velocity: 
Rotational Equilibrium

You may know equilibrium as a state of balance, but what’s equilibrium in 
physics terms? When you say an object has equilibrium, you mean that the 
motion of the object isn’t changing; in other words, the object has no accel-
eration (it can have motion, however, as in constant velocity and/or constant 
angular velocity). As far as linear motion goes, the vector sum of all forces 
acting on the object must be zero for the object to be in equilibrium. The net 
force acting on the object is zero: ΣF = 0.

 Equilibrium occurs in rotational motion in the form of rotational equilibrium. 
When an object is in rotational equilibrium, it has no angular acceleration — 
the object may be rotating, but it isn’t speeding up or slowing down or 
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changing directions (its tilt angle), which means its angular velocity is con-
stant. When an object has rotational equilibrium, you see no net turning force 
on the object, which means that the net torque on the object must be zero:

Στ = 0

This equation represents the rotational equivalent of linear equilibrium. 
Rotational equilibrium is a useful idea because given a set of torques operat-
ing on an extended object, you can determine what torque is necessary to 
stop the object from rotating. In this section, you try out three problems that 
involve objects in rotational equilibrium.

Determining how much 
weight Hercules can lift
Say that Hercules wants to lift a massive dumbbell using the deltoid (shoulder) 
muscle in his right arm and hold the weight at arm’s length. His arm, which has a 
weight of magnitude F

a
 = 28.0 newtons, can exert a force F of 1,840 newtons. His 

deltoid muscle is attached to the arm at 13.0°, as Figure 11-10 shows. The figure 
also shows the distances between the pivot point and the points of application 
of the forces: The distance to the muscle is 0.150 m, to the effective point of 
application of the weight of the arm is 0.310 m (half the length of the arm), and 
to the dumbbell is 0.620 m. The weight of the dumbbell has magnitude F

d
.

 

Figure 11-10: 
A schematic  
of the forces 

acting on 
Hercules’s 

arm.
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What is the maximum weight of the dumbbell Hercules can hold at arm’s 
length, and what are the two components of the force F

b
, the force against 

his body? Because Hercules is holding the dumbbell without accelerating, 
the net force acting must be zero, so F

b
 must cancel out the sum of the forces 

in Figure 11-10.
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Hercules’s arm is not moving, so ΣF = 0 and Σ  = 0. Look at ΣF = 0 first. In the x 
direction, that gives you the following force against Hercules’s body:

ΣF
x
 = F

bx
 + F cos 13.0° = 0

F
bx

 = –F cos 13.0°

Plugging in the value of force F gives you

F
bx

 = (–1,840 N) cos 13.0° ≈ –1,790 N

That was pretty easy. Already you have F
bx

, which is –1,790 newtons. Now 
find the force against Hercules’s body in the y direction:

ΣF
y
 = F

by
 + F sin 13.0° – F

a
 – F

d
 = 0 

F
by

 + (1,840 N) sin 13.0° – 28.0 N – F
d
 = 0

F
by

 = –(1,840 N) sin 13.0° + 28.0 N + F
d
 

Well, that gives you one equation in two variables, F
by

 and F
d
, so you need 

more information to solve for those variables.

Torque to the rescue. You can get that additional information with the equa-
tion Σ  = 0. If you look at Figure 11-10, you see that three forces are acting on 
the arm to cause torques around the arm joint: the y component of F (the pull 
of Hercules’s deltoid muscle), F

a
 (the weight of his arm), and F

d
 (the weight of 

the dumbbell).

The component of F in the y direction is F
y
 = (1,841 N) sin 13.0°. The magni-

tude of the weight of Hercules’s arm is F
a
 = 28.0 newtons, and you don’t yet 

know the magnitude of the weight of the dumbbell, F
d
.

So what are the torques due to these three torque-causing forces? The direc-
tion of the torque is in the direction perpendicular to the plane of Figure 11-10. 
Consider the component of the torque in this direction, such that positive 
values correspond to counterclockwise-acting torques and negative values cor-
respond to clockwise-acting torques. Because this component of the torque 
vectors is a number (scalar), I don’t write it in bold type. The torque from the 
y component of the muscle-pull F is the following:

τ
M
 = F

y
 (0.150 m)

= (1,840 N) sin 13.0° (0.150 m) 

17_9780470903247-ch11.indd   22517_9780470903247-ch11.indd   225 5/26/11   11:23 PM5/26/11   11:23 PM



226 Part III: Manifesting the Energy to Work 

This torque is positive because it leads to a turning force in the counterclock-
wise direction, as Figure 11-10 shows (or you can reason that the torque is 
positive because the angle between the force and the lever is θ = 90°, so 
l = r sin θ = (0.150 m) sin 90° = 0.150 m). The torque from the weight of 
Hercules’s arm is

τ
a
 = (28.0 N)(–0.310 m) 

This torque is negative because the lever arm is negative, so the force causes 
a clockwise torque, as Figure 11-10 shows (or you can find that the torque 
is negative because the angle between the force and the lever is θ = 90°, so 
l = r sin θ = (0.310 m) sin –90° = –0.310 m). The torque due to the weight 
of the dumbbell is

τ
d
 = –F

d
(0.620 m) 

This is obviously negative for the same reason that τ
a
 is negative.

Because Στ = 0, that means that

τ
M
 + τ

a
 + τ

d
 = Στ

(1,840 N)(0.150 m) sin 13.0° + (–31.0 N)(0.280 m) + (–F
d
)(0.620 m) = 0

Calculating the products and solving for F
d
 gives you the following:

Great — you have the force on the arm socket in the x direction, F
bx

, and now 
you know the weight of the maximum dumbbell that Hercules could hold at 
arm’s length indefinitely.

That leaves only F
by

, the force on the arm socket in the y direction, to calculate. 
Earlier, you found that

F
by

 = –(1,840 N) sin 13.0° + 28.0 N + F
d
 

You now know that F
d
 = 86.0 N, so plug in that value. You get the following:

F
by

 = –(1,840 N) sin 13.0° + 28.0 N + 86.0 N

F
by

 = –413.9 N + 28.0 N + 86.0 N

≈ –300 N
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227 Chapter 11: Winding Up with Angular Kinetics

Here, the negative sign indicates that the net vertical force is in the 
downward direction.

Therefore, due to the shallowness of the angle between arm and muscle, 
Hercules can hold a dumbbell of an 86.0-newton weight at arm’s length — 
if he doesn’t mind a horizontal force on his arm socket of 1,790 newtons 
and a vertical force of 300 newtons.

Hanging a flag: A rotational 
equilibrium problem
The manager at the hardware store you work at asks you to help hang a flag over 
the top of the store. The store is extra-proud of the flag because it’s an extra-big 
one (to check it out, see Figure 11-11). The problem is that the bolt holding the 
flagpole in place seems to break all the time, and both the flag and pole go hur-
tling over the edge of the building, which doesn’t help the store’s image.

 

Figure 11-11: 
Hanging a 
heavy flag 

requires 
some 

serious 
torque.

 

0.1
meter

3.0
meters

W

PivotBolt
Flag

To find out how much force the bolt needs to provide, you start taking measure-
ments and note that the flag has a mass of 50 kilograms — much more than the 
mass of the pole, so you can neglect that. The manager had previously hung 
the flag 3.0 meters from the pivot point, and the bolt is 10 centimeters from the 
pivot point. To get rotational equilibrium, you need to have zero net torque:

Στ = 0

In other words, if the torque due to the flag is τ1 and the torque due to the 
bolt is τ2, then the following is true:

0 = τ1 + τ2 
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What are the torques involved here? The direction of all the torque vectors is 
perpendicular to the plane of Figure 11-11, so consider only the component of 
these vectors in that direction (a positive component would correspond to a 
counterclockwise rotational force in Figure 11-11, and a negative component 
would correspond to a clockwise rotational force). Because you’re dealing 
with the components of the vector, which are numbers (not directions), I 
don’t write them in bold type. You know that the flag’s weight provides a 
torque τ1 around the pivot point, where

τ1 = mgl1

where m is the mass of the pole, g is the acceleration due to gravity, and l1 is 
the lever arm for the flag. Plugging in the numbers gives you the following:

τ1 = mgl1 = (50 kg)(9.8 m/s2)(–3.0 N) = –1,470 N·m

Note that this is a negative torque because the lever arm is negative — the force 
causes a clockwise turning force, as Figure 11-11 shows. (You can check this 
mathematically: The angle between the force and the lever is θ = –90°, so 
l = r sin θ = (3.0 m) sin –90° = –3.0 m.) What about the torque τ2 due to the 
bolt? As with any torque, you can write τ2 as

τ2 = F2l2

where F2 is the magnitude of the force at the bolt.

Plugging in as many numbers as you know gives you

τ2 = F2(0.10 m)

The lever arm is positive because the bolt provides a counterclockwise turning 
force (or mathematically, the angle between the force and the lever is θ = 90°, 
so l = r sin θ = (0.10 m) sin 90° = 0.10 m. Because you want rotational equilib-
rium, the following condition must hold:

Στ = τ1 + τ2 = 0

In other words, the torques must balance out, so

τ2 = –τ1 = 1,470 N·m

Now you can finally find F2, because you know both τ2 and l. Plug the known 
values into the equation τ2 = F2l2 and solve for F2:

τ2 = F2l2 = F2(0.10) = 1,470 N·m
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Putting F2 on one side and solving the equation gives you

τ2 = F2l2

1,470 N·m = F2(0.10 m)

F2 = 14,700 N

The bolt needs to provide at least 14,700 newtons of force, or about 330 pounds.

Ladder safety: Introducing friction 
into rotational equilibrium
A hardware store owner has come to you for help with another problem. A 
clerk has climbed near the top of a ladder to hang a sign for the company’s 
upcoming sale. The owner doesn’t want the ladder to slip — lawsuits, he 
explains — so he asks you whether the ladder is going to fall.

The situation appears in Figure 11-12. Here’s the question: Will the force of 
friction keep the ladder from moving if θ is 45° and the static coefficient 
of friction (see Chapter 6) with the floor is 0.7?

You have to work with net forces to determine the overall torque. Write 
down what you know (you can assume that the weight of the ladder is con-
centrated at its middle and that you can neglect the force of friction of the 
ladder against the wall because the wall is very smooth):

 ✓ F
W

 = Force exerted by the wall on the ladder

 ✓ F
C
 = Weight of the clerk = 450 N

 ✓ F
L
 = Weight of the ladder = 200 N

 ✓ F
F
 = Force of friction holding the ladder in place

 ✓ F
N
 = Normal force (see Chapter 5)

 You need to determine the needed force of friction here, and you want the 
ladder to be in both linear and rotational equilibrium. Linear equilibrium tells 
you that the force exerted by the wall on the ladder, F

W
, must be the same as 

the force of friction in magnitude but opposite in direction, because those are 
the only two horizontal forces. Therefore, if you can find F

W
, you know what 

the force of friction, F
F
, needs to be.
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Figure 11-12: 
Keeping 
a ladder 
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requires 
friction and 

rotational 
equilibrium.
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You know that the ladder is in rotational equilibrium, which means that

Στ = 0

To find F
W

, take a look at the torques around the bottom of the ladder, using 
that point as the pivot point. All the torques around the pivot point have to add 
up to zero. The direction of all the torque vectors is in the plane perpendicular 
to the one in Figure 11-12, so consider only the component of these vectors in 
that direction (a positive component would correspond to a counterclockwise 
rotational force in Figure 11-12, and a negative component would correspond 
to a clockwise rotational force). Because you’re dealing with the components 
of the vector, which are numbers, I don’t write them in bold type.
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Here’s how to find the three torques around the bottom of the ladder:

 ✓ Torque due to the force from the wall against the ladder: Here, r is the 
full length of the ladder:

 F
W 

(4.0 m) sin –45° = (–2.83 m)F
W

  Note that the torque due to the force from the wall is negative because it 
tends to produce a clockwise motion.

 ✓ Torque due to the clerk’s weight: In this case, r is 3.0 meters, the 
distance from the bottom of the ladder to the clerk’s location:

 F
C  

(3.0 m) sin 45° = (450 N)(3.0 m) sin 45° ≈ 954 N·m

 ✓ Torque due to the ladder’s weight: You can assume that the ladder’s 
weight is concentrated in the middle of the ladder, so r = 2.0 meters, 
half the total length of the ladder. Therefore, the torque due to the 
ladder’s weight is

 F
L  (2.0 m) sin 45° = (200 N)(2.0 m) sin 45° ≈ 283 N·m

  These last two torques are positive because the lever arms are positive, 
and therefore the forces generate a counterclockwise turning force, as 
Figure 11-12 shows.

Now, because Στ = 0, you get the following result when you add all the 
torques together:

Στ = 954 N·m + 283 N·m – (2.83 m)F
W

 

0 = 1,237 N·m – (2.83 m)F
W

 

(2.83 m)F
W

 = 1,237 N·m

F
W

 ≈ 437 N

The force the wall exerts on the ladder is 437 newtons, which is also equal 
to the frictional force of the bottom of the ladder on the floor, because F

W
 

and the frictional force are the only two horizontal forces in the whole 
system. Therefore,

F
F
 = 437 N
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You know the force of friction that you need. But how much friction do you 
actually have? The basic equation for friction (as outlined in Chapter 6) 
tells you that

F
F actual

 = μ
s
F

N
 

where μs is the coefficient of static friction and F
N
 is the normal force of 

the floor pushing up on the ladder, which must balance all the downward-
pointing forces in this problem because of linear equilibrium. This 
means that

F
N
 = W

C
 + W

L
 = 450 N + 200 N = 650 N

Plugging this into the equation for F
F actual

 and using the value of μ
s
, 0.700, 

gets you the following:

F
F actual

 = μ
s
F

N
 = (0.700)(650) = 455 N

You need 437 newtons of force, and you actually have 455 newtons. Good 
news — the ladder isn’t going to slip.
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Chapter 12

Round and Round with 
Rotational Dynamics

In This Chapter
▶ Converting Newton’s linear thinking into rotational thinking

▶ Utilizing the moment of inertia

▶ Finding the angular equivalent of work

▶ Looking at the rotational kinetic energy caused by work

▶ Conserving angular momentum

This chapter is all about applying forces and seeing what happens in the 
rotational world. You find out what Newton’s second law (force equals 

mass times acceleration) becomes for rotational motion, you see how iner-
tia comes into play in rotational motion, and you get the story on rotational 
kinetic energy, rotational work, and angular momentum.

Rolling Up Newton’s Second 
Law into Angular Motion

Newton’s second law, force equals mass times acceleration (F = ma; see 
Chapter 5), is a physics favorite in the linear world because it ties together the 
vector’s force and acceleration. But if you have to talk in terms of angular kinet-
ics rather than linear motion, what happens? Can you get Newton spinning?

Angular kinetics has equivalents (or analogs) for linear equations (see 
Chapter 11). So what’s the angular analog for F = ma? You may guess that 
F, the linear force, becomes . And you may also guess that a, linear accel-
eration, becomes , angular acceleration. But what the heck is the angular 
analog of m, mass? The answer is rotational inertia, I, and you come to this 
answer by converting tangential acceleration to angular acceleration. As I 
show you in this section, your final formula is Σ  = I , the angular form of 
Newton’s second law.
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234 Part III: Manifesting the Energy to Work 

Switching force to torque
You can start the linear-to-angular conversion process with a simple example. 
Say that you’re whirling a ball in a circle on the end of a string, as in Figure 12-1. 
You apply a tangential force (along the circle) to the ball, making it speed up 
(keep in mind that this force is not directed toward the center of the circle, as 
when you have a centripetal force; see Chapter 11). You want to write Newton’s 
second law in terms of torque rather than force.

 

Figure 12-1: 
A tangen-
tial force 

applied to 
a ball on a 

string.
 

r

String

F

Start by working with only the magnitudes of the vector quantities, saying that

F = ma

To put this equation terms of angular quantities, such as torque, multiply 
by the radius of the circle, r (see Chapter 11 for details on the relationship 
between angular and linear quantities):

Fr = mra

Because you’re applying tangential force to the ball, the force and the circle’s 
radius are at right angles (see Figure 12-1), so you can replace Fr with torque:

τ = mra

You’re now partly done making the transition to rotational motion. Instead of 
working with linear force, you’re working with torque, which is linear force’s 
rotational analog.

Converting tangential acceleration 
to angular acceleration
To move from linear motion to angular motion, you have to convert a, tan-
gential acceleration, to α, angular acceleration. Great, but how do you make 
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235 Chapter 12: Round and Round with Rotational Dynamics

the conversion? You can multiply angular acceleration by the radius to get 
the linear equivalent, which is the magnitude of the tangential acceleration 
(see Chapter 11): a = rα. Substitute rα for a in the equation for the angular 
equivalent of Newton’s second law, τ = mra:

τ = mr(rα) = mr2α

Now you’ve related the magnitude of the torque to magnitude of the angular 
acceleration. The direction of the angular acceleration and the torque turns 
out to be the same, so this equation is true for vectors, too:

τ = mr2α

Factoring in the moment of inertia
To go from linear force, F = ma, to torque (linear force’s angular equivalent), 
you have to find the angular equivalent of acceleration and mass. In the pre-
ceding section, you find angular acceleration, giving you the equation  = mr2 .

In this equation, mr2 is the rotational analog of mass, officially called the 
moment of inertia (sometimes referred to as the rotational inertia). The 
moment of inertia is a measure of how resistant an object is to changes 
in its rotational motion.

In physics, the symbol for inertia is I, so you can write the equation for 
torque as follows:

Στ = Iα

The symbol Σ means sum of, so Στ means net torque. The units of moment 
of inertia are kilogram-square meters (kg·m2). Note how close the torque 
equation is to the equation for net force, which follows:

ΣF = ma

 Σ  = I  is the angular form of Newton’s second law for rotating bodies: net 
torque equals moment of inertia multiplied by angular acceleration. 

Now you can put the equation to work. Say, for example, that you’re whirling 
the 45-gram ball from Figure 12-1 in a 1.0-meter circle, and you want to speed 
it up at a rate of 2π radians per second2. What magnitude of torque do you 
need? You know that

τ = Iα

18_9780470903247-ch12.indd   23518_9780470903247-ch12.indd   235 5/26/11   11:22 PM5/26/11   11:22 PM



236 Part III: Manifesting the Energy to Work 

 You can drop the symbol Σ from the angular version of the equation for 
Newton’s second law when you’re dealing with only one torque. The 
“sum of” the torques is the value of the only torque you’re dealing with.

The moment of inertia equals mr2, so

τ = Iα = mr2α

Plugging in the numbers (after converting grams to kilograms) gives you

τ = mr2α = (0.045 kg)(1.0 m)2(2π s–1) = 9.0π × 10–2 N·m

Your answer, 9.0π × 10–2 N·m, is about 0.28 newton-meters of torque. Solving 
for the torque required in angular motion is much like being given a mass and 
a required acceleration and solving for the needed force in linear motion.

Moments of Inertia: Looking 
into Mass Distribution

 The moment of inertia depends not only on the mass of the object but also 
on how the mass is distributed. For example, if two disks have the same mass 
but one has all the mass around the rim and one is solid, then the disks would 
have different moments of inertia.

Calculating moments of inertia is fairly simple if you only have to examine the 
orbital motion of small point-like objects, where all the mass is concentrated 
at one particular point at a given radius r. For instance, for a golf ball you’re 
whirling around on a string, the moment of inertia depends on the radius of 
the circle the ball is spinning in:

I = mr2

Here, r is the radius of the circle, from the center of rotation to the point at 
which all the mass of the golf ball is concentrated.

Crunching the numbers can get a little sticky when you enter the non–golf ball 
world, however, because you may not be sure of which radius to use. What if 
you’re spinning a rod around? All the mass of the rod isn’t concentrated at a 
single radius. When you have an extended object, such as a rod, each bit of 
mass is at a different radius. You don’t have an easy way to deal with this, so 
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you have to sum up the contribution of each particle of mass at each differ-
ent radius like this:

I = Σmr2

You can use this concept of adding up the moments of inertia of all the ele-
ments to get the total in order to work out the moment of inertia of any dis-
tribution of mass. Here’s an example using two point masses, which is a bit 
more complex than a single point mass. Say you have two golf balls, and you 
want to know what their combined moment of inertia is. If you have a golf 
ball at radius r1 and another at r2, the total moment of inertia is

I = Σmr2 = m(r1
2 + r2

2)

So how do you find the moment of inertia of, say, a disk rotating around an 
axis stuck through its center? You have to break the disk up into tiny balls 
and add them all up. Trusty physicists have already completed this task for 
many standard shapes; I provide a list of objects you’re likely to encounter, 
and their moments of inertia, in Table 12-1. Figure 12-2 depicts the shapes 
that these moments of inertia correspond to.

Table 12-1 Moments of Inertia for Various Shapes and Solids

Shape Moment of Inertia

(a) Solid cylinder or disk of radius r

(b) Hollow cylinder of radius r I = mr 2

(c) Solid sphere of radius r

(d) Hollow sphere of radius r

(e) Rectangle rotating around an axis along one 
 edge, where the other edge has length r
(f) Rectangle with sides r1 and r2 rotating around 
 a perpendicular axis through the center

(g) Thin rod of length r rotating about its middle

(h) Thin rod of length r rotating about one end
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Check out the following examples to see advanced moments of inertia in action.

DVD players and torque: A 
spinning-disk inertia example
Here’s an interesting fact about DVD players: They actually change the 
angular speed of the DVD to keep the section of the DVD under the laser 
head moving at constant linear speed.

Say that a DVD has a mass of 30 grams and a diameter of 12 centimeters. It 
starts at 700 revolutions per second when you first hit play and winds down 
to about 200 revolutions per second at the end of the DVD 50 minutes later. 
What’s the average torque needed to create this acceleration? You start with 
the torque equation:

τ = Iα

A DVD is a disk shape rotating around its center, so from Table 12-1, you 
know that its moment of inertia is 
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The diameter of the DVD is 12 centimeters, so the radius is 6.0 centimeters. 
Putting in the numbers gives you the moment of inertia:

How about the angular acceleration, α? Here’s the angular equivalent of the 
equation for linear acceleration (see Chapter 11 for details):

But because the angular velocity always stays along the same axis, you can 
consider just the components of the angular velocity and angular accelera-
tion along this axis. They are then related by

The time, Δt, is 50 minutes, or 3,000 seconds. So what about Δω (which equals 
ω

f
 – ω

i
)? First, you need to express angular velocity in radians per second, not 

revolutions per second. You know that the initial angular velocity is 700 revolu-
tions per second, so in terms of radians per second, you get

Similarly, you can get the final angular velocity this way:

Now you can plug the angular velocities and time into the angular 
acceleration formula:
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The angular acceleration is negative because the disk is slowing down. As 
previously defined, the component of the angular velocity along the axis of 
rotation is positive. The negative acceleration then leads to a reduction in 
this angular velocity.

You’ve found the moment of inertia and the angular acceleration, so now you 
can plug those values into the torque equation:

τ = Iα = (5.4 × 10–5 kg·m2)(–1.047 s–2) ≈ –5.65 × 10–5 N·m 

The average torque is –5.65 × 10–5 N·m. To get an impression of how easy or 
difficult this torque may be to achieve, you may ask how much force is this 
when applied to the outer edge — that is, at a 6-centimeter radius. Torque is 
force times the radius, so

This converts to about 2 × 10–4 pounds, or about 3 × 10–3 ounces of force. 
Slowing down the DVD doesn’t take much force. 

Angular acceleration and torque: 
A pulley inertia example
You may not always look at an object in motion and think “angular motion,” 
as you do when looking at a spinning DVD. Take someone lifting an object 
with a rope on a pulley system, for example. The rope and the object are 
moving in a linear fashion, but the pulley has angular motion. 

Say that you’re using a pulley that has a mass of 1 kilogram and a radius of 
10 centimeters to pull a 16-kilogram mass vertically (see Figure 12-3). You 
apply a force of 200 newtons. What’s the angular acceleration of the pulley?

You use the equation for torque, including the sum symbol, Σ, because you’re 
dealing with more than one torque in this problem (you always use the net 
torque in a problem, but many problems only have one torque, so the 
symbol drops off):

Σ  = I

where Σ  means net torque.

In this case, there are two torques, 1 and 2. The direction of these torque 
vectors is perpendicular to the plane of Figure 12-3. Consider the component 
of the torque vectors in this direction, written τ1 and τ2 , such that a positive 
value corresponds to a clockwise rotation.
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Figure 12-3: 
You use the 
torque you 
apply and 

the angular 
motion of 

the pulley to 
lift objects 
in a pulley 

system.
 

r

mg

F

T

Solve the torque equation for angular acceleration, α, and write Στ as the sum 
of τ1 and τ2:

where α is the component of the pulley’s angular acceleration and τ is the 
torque on the pulley in the direction perpendicular to the plane of Figure 12-3.

First concentrate on the torques. The two forces act at radius of 10.0 centimeters, 
so the two torques are

 ✓ τ1 = Fr, with F as the force and r as the radius of the pulley

 ✓ τ2 = –Tr, where T is the tension in the rope between the mass m 
and the pulley

The pulley’s support goes through the axis of rotation, so no torque 
comes from it.

You need to work out the tension in the rope, T, which is providing torque τ2. 
The forces acting on the 16-kilogram mass, m, are its weight acting downward 
and the tension in the rope acting upward, so you can use Newton’s second 
law to write the following:

–mg + T = ma

where a is the acceleration of the mass m. You want to find tension, so solve for T:

T = ma + mg
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Because the string does not stretch, the acceleration of the mass m must be equal 
to the tangential acceleration of the edge of the pulley wheel. The tangential 
acceleration is related to the linear acceleration by a = rα (see Chapter 11 
for details), so you can replace a to write the tension in the rope as

T = ma + mg

= m(rα) + mg

= m(rα + g) 

Knowing the tension allows you to find τ2, which equals –Tr. You know that 
τ1 equals Fr, so you can work out the total torque acting on the pulley wheel:

τ1 + τ2 = Fr – Tr

= Fr – m(rα + g)r

 If you consider the rotating part of the pulley to be a circular disk of radius r 
and mass M, then you can use Table 12-1 to look up the moment of inertia, 
which is I = (1/2) Mr2. Because the total torque is equal to the moment of 
inertia times the angular acceleration, you can write the following:

Then you can rearrange this equation to give the angular acceleration, like so:

Plugging in the numbers gives you the answer:

So the angular acceleration is 26 radians per second2, which is about 
4 revolutions per second.
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Wrapping Your Head around Rotational 
Work and Kinetic Energy

One major player in the linear-force game is work (see Chapter 9); the equation 
for work is work equals force times distance, or W = Fs. Work has a rotational 
analog. To relate a linear force acting for a certain distance with the idea of 
rotational work, you convert force to torque (its angular equivalent) and dis-
tance to angle. I show you how to derive the rotational-work equation in this 
section. I also show you what happens when you do work by turning an object, 
creating rotational motion — your work goes to increasing the kinetic energy.

Putting a new spin on work
When force moves an object through a distance, work is done on the object 
(refer to Chapter 9). Similarly, when a torque rotates an object through an 
angle, work is done. In this section, you work out how much work is done 
when you rotate a wheel by pulling a string attached to the wheel’s outside 
edge (see Figure 12-4).

 

Figure 12-4: 
Exerting a 

force to turn 
a tire.

 

F

r

String tied around tire

Work is the amount of force applied to an object multiplied by the distance 
it’s applied. In this case, a force F is applied with the string. Bingo! The string 
lets you make the handy transition between linear and rotational work. So 
how much work is done? Use the following equation:

W = Fs
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where s is the distance the person pulling the string applies the force over. 
In this case, the distance s equals the radius multiplied by the angle through 
which the wheel turns, s = rθ, so you get

W = Frθ

However, the torque, τ, equals Fr in this case, because the string is acting 
at right angles to the radius (see Chapter 11). So you’re left with

W = τθ

When the string is pulled, applying a constant torque that turns the wheel, 
the work done equals τθ. This makes sense, because linear work is Fs, and to 
convert to rotational work, you convert from force to torque and from dis-
tance to angle. The units here are the standard units for work — joules in 
the MKS system.

 You have to give the angle in radians for the conversion between linear work 
and rotational work to come out right.

Say that you have a plane that uses propellers, and you want to determine 
how much work the plane’s engine does on a propeller when applying a con-
stant torque of 600 newton-meters over 100 revolutions. You start with the 
work equation in terms of torque:

W = τθ

A full revolution is 2π radians, so θ equals 2π times 100, the number of revolu-
tions. Plugging the numbers into the equation gives you the work:

W = τθ = (600 N·m)(100 × 2π) ≈ 3.77 × 105 J

The plane’s engine does 3.77 × 105 joules of work.

Moving along with rotational 
kinetic energy
If you put a lot of work into turning an object, the object starts spinning. And 
when an object is spinning, all its pieces are moving, which means that it has 
kinetic energy. For spinning objects, you have to convert from the linear 
concept of kinetic energy to the rotational concept of kinetic energy.

You can calculate the kinetic energy of a body in linear motion with the 
following equation (see Chapter 9):
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where m is the mass of the object and v is the speed. This formula applies 
to every bit of the object that’s rotating — each bit of mass has this 
kinetic energy.

To go from the linear version to the rotational version, you have to go from 
mass to moment of inertia, I, and from velocity to angular velocity, ω. You can 
tie an object’s tangential speed to its angular speed like this (see Chapter 11):

v = rω

where r is the radius and ω is its angular speed. Plugging v’s equivalent into 
the kinetic-energy equation gives you the following:

The equation looks okay so far, but it holds true only for the one single bit of 
mass under discussion — each other bit of mass may have a different radius, 
so you’re not finished. You have to sum up the kinetic energy of every bit of 
mass like this:

You can simplify this equation. Start by noticing that even though each bit 
of mass may be different and be at a different radius, each bit has the same 
angular speed (they all turn through the same angle in the same time). 
Therefore, you can take the ω out of the summation:

This makes the equation much simpler, because Σ(mr2) equals the moment of 
inertia, I (see the section “Rolling Up Newton’s Second Law into Angular Motion,” 
earlier in this chapter). Making this substitution takes all the dependencies 
on the individual radius of each bit of mass out of the equation, giving you

Now you have a simplified equation for rotational kinetic energy. The equa-
tion proves useful because rotational kinetic energy is everywhere. A satellite 
spinning around in space has rotational kinetic energy. A barrel of beer rolling 
down a ramp from a truck has rotational kinetic energy. The latter example (not 
always with beer trucks, of course) is a common thread in physics problems.
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Let’s roll! Finding rotational 
kinetic energy on a ramp
Objects can have both linear and rotational kinetic energy. This fact is an 
important one, if you think about it, because when objects start rolling down 
ramps, any previous ramp expertise you have goes out the window. Why? 
Because when an object rolls down a ramp instead of sliding, some of its 
gravitational potential energy (see Chapter 9) goes into its linear kinetic 
energy, and some of it goes into its rotational kinetic energy.

Look at Figure 12-5, where you’re pitting a solid cylinder against a hollow 
cylinder in a race down the ramp. Each object has the same mass. Which 
cylinder is going to win? In other words, which cylinder will have the higher 
speed at the bottom of the ramp? When looking only at linear motion, you 
can handle a problem like this by setting the potential energy equal to the 
final kinetic energy (assuming no friction!) like this:

where m is the mass of the object, g is the acceleration due to gravity, and 
h is the height at the top of the ramp. This equation would let you solve for 
the final speed. 

 

Figure 12-5: 
A solid 

cylinder and 
a hollow 
cylinder 
ready to 

race down a 
ramp.

 

Hollow
cylinder

Solid
cylinder
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But the cylinders are rolling in this case, which means that the initial gravi-
tational potential energy becomes both linear kinetic energy and rotational 
kinetic energy. You can now write the equation as

You can relate v and ω together with the equation v = rω, which means 
that ω = v/r, so

You want to solve for v, so try grouping things together. You can factor 
(1/2)v2 out of the two terms on the right:

Isolating v, you get the following:

For the hollow cylinder, the moment of inertia equals mr2, as you can see 
in Table 12-1. For a solid cylinder, on the other hand, the moment of inertia 
equals (1/2)mr2. Substituting for I for the hollow cylinder gives you the hollow 
cylinder’s velocity:

Substituting for I for the solid cylinder gives you the solid cylinder’s velocity:
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Now the answer becomes clear. The solid cylinder will be going  times 

as fast as the hollow cylinder, or about 1.15 times as fast, so the solid 
cylinder will win.

The hollow cylinder has as much mass concentrated at a large radius as the 
solid cylinder has distributed from the center all the way out to that radius, 
so this answer makes sense. With that large mass way out at the edge, the 
hollow cylinder doesn’t need to go as fast to have as much rotational kinetic 
energy as the solid cylinder.

Can’t Stop This: Angular Momentum
Picture a small child on a spinning playground ride, such as a merry-go-round, 
and she’s yelling that she wants to get off. You have to stop the spinning ride, 
but it’s going to take some effort. Why? Because it has angular momentum. 

Linear momentum, p, is defined as the product of mass and velocity:

p = mv

This is a quantity that is conserved when there are no external forces acting. 
The more massive and faster moving an object, the greater the magnitude 
of momentum.

Physics also features angular momentum, L. The equation for angular 
momentum looks like this:

L = I

where I is the moment of inertia and  is the angular velocity.

 Note that angular momentum is a vector quantity, meaning it has a magnitude 
and a direction. The vector points in the same direction as the  vector (that 
is, in the direction the thumb of your right hand points when you wrap your 
fingers around in the direction the object is turning).

The units of angular momentum are I multiplied by the units of , or kg·m2/s 
in the MKS system.

The important idea about angular momentum, much as with linear momentum, 
is that it’s conserved.
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Conserving angular momentum
 The principle of conservation of angular momentum states that angular momen-

tum is conserved if no net torques are involved.

This principle comes in handy in all sorts of problems, such as when two ice 
skaters start off holding each other close while spinning but then end up at 
arm’s length. Given their initial angular velocity, you can find their final 
angular velocity, because angular momentum is conserved:

If you can find the initial moment of inertia and the final moment of inertia, 
you’re set. But you also come across less obvious cases where the principle 
of conservation of angular momentum helps out. For example, satellites don’t 
have to travel in circular orbits; they can travel in ellipses. And when they 
do, the math can get a lot more complicated. Lucky for you, the principle 
of conservation of angular momentum can make the problems simple.

Satellite orbits: A conservation-
of-angular-momentum example
Say that NASA planned to put a satellite into a circular orbit around Pluto for 
studies, but the situation got a little out of hand and the satellite ended up 
with an elliptical orbit. At its nearest point to Pluto, 6.0 × 106 meters, the 
satellite zips along at 9,000 meters per second.

The satellite’s farthest point from Pluto is 2.0 × 107 meters. What’s its speed 
at that point? The answer is tough to figure out unless you can come up with 
an angle here, and that angle is angular momentum.

Angular momentum is conserved because there are no external torques the 
satellite must deal with (gravity always acts perpendicular to the orbital 
radius). Because angular momentum is conserved, you can say that
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Because the satellite is so small compared to the radius of its orbit at any loca-
tion, you can consider the satellite a point mass. Therefore, the moment of 
inertia, I, equals mr2 (refer to the earlier section “Factoring in the moment of 
inertia”). The magnitude of the angular velocity equals v/r, so you can express 
the conservation of angular momentum in terms of the velocity like so:

I1ω1 = I2ω2

mr1v1 = mr2v2

You can put v2 
on one side of the equation by dividing by mr2:

You have your solution; no fancy math involved at all, because you can rely 
on the principle of conservation of angular momentum to do the work for 
you. All you need to do is plug in the numbers:

At its closest point to Pluto, the satellite will be screaming along at 9,000 meters 
per second, and at its farthest point, it will be moving at 2,700 meters per 
second. Easy enough to figure out, as long as you have the principle of 
conservation of angular momentum under your belt.
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Chapter 13

Springs ’n’ Things: Simple 
Harmonic Motion

In This Chapter
▶ Understanding force when you stretch or compress springs

▶ Going over the basics of simple harmonic motion

▶ Mustering up the energy for simple harmonic motion

▶ Predicting a pendulum’s motion and period

In this chapter, I shake things up with a new kind of motion: periodic 
motion, which occurs when objects are bouncing around on springs or 

bungee cords or are swooping on the end of a pendulum. This chapter is all 
about describing their motion. Not only can you describe their motion in 
detail, but you can also predict how much energy bunched-up springs have, 
how long a pendulum will take to swing back and forth, and more.

Bouncing Back with Hooke’s Law
Objects that can stretch but return to their original shapes are called elastic. 
Elasticity is a valuable property, because it allows you to use objects such 
as springs for all kinds of applications: as shock absorbers in lunar landing 
modules, as timekeepers in clocks and watches, and even as hammers of 
justice in mousetraps.

In this section, I introduce Hooke’s law, which relates forces to how much a 
spring is stretched or compressed.

Stretching and compressing springs
 Robert Hooke, a physicist from England, undertook the study of elastic mate-

rials in the 1600s. He discovered a new law, not surprisingly called Hooke’s 
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law, which states that stretching or compressing an elastic material requires 
a force that’s directly proportional to the amount of stretching or compress-
ing you do. For example, to stretch a spring a distance x, you need to apply a 
force that’s directly proportional to x:

F
a
 = kx

Here, F
a
 and x are the components of the applied force and displacement 

along the direction of the spring, such that

 ✓ Positive values correspond to stretching

 ✓ Negative values correspond to compression

The constant k is called the spring constant, and its units are newtons 
per meter (N/m).

Pushing or pulling back: The 
spring’s restoring force

 In accordance with Newton’s third law, if an object applies a force to a spring, 
then the spring applies an equal and opposite force to the object. Hooke’s 
law gives the force a spring exerts on an object attached to it with the 
following equation:

F = –kx

where the minus sign shows that this force is in the opposite direction of the 
force that’s stretching or compressing the spring (see the preceding section 
for info on forces on springs).

 The force exerted by a spring is called a restoring force; it always acts to 
restore the spring toward equilibrium. In Hooke’s law, the negative sign on 
the spring’s force means that the force exerted by the spring opposes the 
spring’s displacement.

Figure 13-1 shows a ball attached to a spring. You can see that if the spring 
isn’t stretched or compressed, it exerts no force on the ball. If you push the 
spring, however, it pushes back, and if you pull the spring, it pulls back.

 Hooke’s law is valid as long as the elastic material you’re dealing with stays 
elastic — that is, it stays within its elastic limit. If you pull a spring too far, it 
loses its stretchy ability. As long as a spring stays within its elastic limit, you 
can say that F = –kx. When a spring stays within its elastic limit and obeys 
Hooke’s law, the spring is called an ideal spring.
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Suppose that a group of car designers knocks on your door and asks whether 
you can help design a suspension system. “Sure,” you say. They inform you 
that the car will have a mass of 1,000 kilograms, and you have four shock 
absorbers, each 0.5 meters long, to work with. How strong do the springs 
have to be? Assuming these shock absorbers use springs, each one has to 
support a mass of at least 250 kilograms, which weighs the following:

F = mg = (250 kg)(9.8 m/s2) = 2,450 N

where F equals force, m equals the mass of the object, and g equals the 
acceleration due to gravity, 9.8 meters per second2. The spring in the shock 
absorber will, at a minimum, have to give you 2,450 newtons of force at 
the maximum compression of 0.5 meters. What does this mean the spring 
constant should be? Hooke’s law says

F = –kx 

Looking only at the magnitudes and therefore omitting the negative sign 
(look for its return in the following section), you get

Time to plug in the numbers:

The springs used in the shock absorbers must have spring constants of at 
least 4,900 newtons per meter. The car designers rush out, ecstatic, but you 
call after them, “Don’t forget, you need to at least double that if you actually 
want your car to be able to handle potholes.”
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Getting Around to Simple 
Harmonic Motion

An oscillatory motion is one that undergoes repeated cycles. When the net 
force acting on an object is elastic, the object undergoes a simple oscilla-
tory motion called simple harmonic motion. The force that tries to restore 
the object to its resting position is proportional to the displacement of the 
object. In other words, it obeys Hooke’s law.

Elastic forces suggest that the motion will just keep repeating (that isn’t 
really true, however; even objects on springs quiet down after a while as 
friction and heat loss in the spring take their toll). This section delves into 
simple harmonic motion and shows you how it relates to circular motion. 
Here, you graph motion with the sine wave and explore familiar concepts 
such as position, velocity, and acceleration.

Around equilibrium: Examining 
horizontal and vertical springs
Take a look at the golf ball in Figure 13-1. The ball is attached to a spring on 
a frictionless horizontal surface. Say that you push the ball, compressing the 
spring, and then you let go; the ball shoots out, stretching the spring. After 
the stretch, the spring pulls back and once again passes the equilibrium point 
(where no force acts on the ball), shooting backward past it. This happens 
because the ball has inertia (see Chapter 5), and when the ball is moving, 
bringing it to a stop takes some force. Here are the various stages the ball 
goes through, matching the letters in Figure 13-1 (and assuming no friction):

 ✓ Point A: The ball is at equilibrium, and no force is acting on it. This 
point, where the spring isn’t stretched or compressed, is called the 
equilibrium point.

 ✓ Point B: The ball pushes against the spring, and the spring retaliates 
with force F opposing that pushing.

 ✓ Point C: The spring releases, and the ball springs to an equal distance on 
the other side of the equilibrium point. At this point, the ball isn’t moving, 
but a force acts on it, F, so it starts going back the other direction.

The ball passes through the equilibrium point on its way back to Point B. At 
the equilibrium point, the spring doesn’t exert any force on the ball, but the 
ball is traveling at its maximum speed. Here’s what happens when the golf 
ball bounces back and forth; you push the ball to Point B, and it goes through 
Point A, moves to Point C, shoots back to A, moves to B, and so on: B-A-C-A-
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255 Chapter 13: Springs ’n’ Things: Simple Harmonic Motion

B-A-C-A, and so on. Point A is the equilibrium point, and both Points B and C 
are equidistant from Point A.

What if the ball were to hang in the air on the end of a spring, as Figure 13-2 
shows? In this case, the ball oscillates up and down. Like the ball on a surface 
in Figure 13-1, the ball hanging on the end of a spring oscillates around the 
equilibrium position; this time, however, the equilibrium position isn’t the 
point where the spring isn’t stretched.

 The equilibrium position is defined as the position at which no net force acts 
on the ball. In other words, the equilibrium position is the point where the ball 
can simply sit at rest. When the spring is vertical, the weight of the ball down-
ward matches the pull of the spring upward. If the x position of the ball corre-
sponds to the equilibrium point, x

i
, the weight of the ball, mg, must match the 

force exerted by the spring. Because F = kx
i
, you can write the following:

mg = kx
i
 

 

Figure 13-2: 
A ball on 
a spring, 

influenced 
by gravity.

 

Equilibrium

A

–A

Solving for x
i
 gives you the distance the spring stretches because of the 

ball’s weight:

When you pull the ball down or lift it up and then let go, it oscillates around 
the equilibrium position, as Figure 13-2 shows. If the spring is elastic, the ball 
undergoes simple harmonic motion vertically around the equilibrium position; 
the ball goes up a distance A and down a distance –A around that position (in 
real life, the ball would eventually come to rest at the equilibrium position, 
because a frictional force would dampen this motion).
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256 Part III: Manifesting the Energy to Work 

 The distance A, or how high the object springs up, is an important one when 
describing simple harmonic motion; it’s called the amplitude. The amplitude 
is simply the maximum extent of the oscillation, or the size of the oscillation.

Catching the wave: A sine 
of simple harmonic motion
Calculating simple harmonic motion can require time and patience when you 
have to figure out how the motion of an object changes over time. Imagine 
that one day you come up with a brilliant idea for an experimental appara-
tus. You decide to shine a spotlight on a ball bouncing on a spring, casting a 
shadow on a moving piece of photographic film. Because the film is moving, 
you get a record of the ball’s motion as time goes on. You turn the apparatus 
on and let it do its thing. See the results in Figure 13-3.

 

Figure 13-3: 
Tracking a 

ball’s simple 
harmonic 

motion over 
time.

 

Equilibrium

A

A

spotlig
ht

The ball oscillates around the equilibrium position, up and down, reaching 
amplitude A at its lowest and highest points. But take a look at the ball’s 
track: You can tell where the ball is moving fastest because that’s where 
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257 Chapter 13: Springs ’n’ Things: Simple Harmonic Motion

the curve has the steepest slope. The ball goes fastest near the equilibrium 
point because of the acceleration caused by the spring force, which has been 
applied since the turning point. At the top and bottom, the ball is subject to 
plenty of force, so it slows down and reverses its motion.

The track of the ball is best modeled with a sine wave, which means that its 
track is a sine wave of amplitude A. (Note: You can also use a cosine wave, 
because the shape is the same. The only difference is that when a sine wave 
is at its peak, the cosine wave is at zero, and vice versa.)

 

You can get a clear picture of the sine wave if you plot the sine function on an 
xy graph like this:

y = sin x

In the rest of this section, I show you how the sine wave relates circular 
motion to simple harmonic motion.

Understanding sine waves with a reference circle
Take a look at the sine wave in a circular way. If you attach a ball to a rotating 
disk (see Figure 13-4) and you shine a spotlight on it, you get the same result as 
when you have the ball hanging from the spring (Figure 13-3): a sine wave.

The rotating disk, which you can see in Figure 13-5, is often called a reference 
circle. You can see how the vertical component of circular motion relates to 
the sinusoidal (sine-like) wave of simple harmonic motion. Reference circles 
can tell you a lot about simple harmonic motion.

As the disk turns, the angle, θ, increases in time. What does the track of the 
ball look like as the film moves to the right? Using a little trig, you can resolve 
the ball’s motion along the y-axis; all you need is the vertical (y) component 
of the ball’s position. At any one time, the ball’s y position is the following:

y = A sin θ

The vertical displacement varies from positive A to negative A in amplitude. 
In fact, you can say that you already know how θ is going to change in time 
because θ = ωt, where ω is the single component of the angular velocity — that 
is, the angular velocity along the axis of rotation of the disk — and t is time:

y = A sin(ωt) 

You can now explain the track of the ball as time goes on, given that the disk 
is rotating with angular velocity ω.
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Figure 13-4: 
The vertical 
component 

of the dis-
placement 

of an object 
moving in a 

circle 
follows a 

sine wave.
 

sp
otl
igh

t

Equilibrium

A

A

 

Figure 13-5: 
A reference 
circle helps 
you analyze 

simple 
harmonic 

motion.
 

θ = ωt

A

time

A

−A

y

t

Rotates with time t

Getting periodic
 Each time an object moves around a full circle, it completes a cycle. The time 

the object takes to complete the cycle is called the period, and it’s generally 
measured in seconds. The letter used for period is T.

Look at Figure 13-5 in terms of the y motion on the film. During one cycle, the 
ball moves from y = A to –A and then back to A. When the ball goes from any 
point on the sine wave and passes through one whole wave (including one peak 
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and one trough) back to the next equivalent point on the sine wave later in time, 
it completes a cycle. The time the ball takes to move from a certain position 
back to that same position while moving in the same direction is its period.

 How can you relate the period to something more familiar? When an object 
moves in a full circle, completing a cycle, the object goes 2π radians. It travels 
that many radians in T seconds, so its angular speed, ω (see Chapter 11), is

Multiplying both sides by T and dividing by ω allows you to solve for the 
period. Now you can relate the period and the angular speed:

 Sometimes you speak in terms of the frequency of periodic motion, not the 
period. The frequency is the number of cycles that are completed per second.

For instance, if the disk from Figure 13-4 rotates at 1,000 full turns per second, 
the frequency, f, would be 1,000 cycles per second. Cycles per second are 
also called hertz, abbreviated Hz, so this frequency would be 1,000 hertz.

 So how do you connect frequency, f, to period, T? T is the amount of time one 
cycle takes, so here’s how you can define frequency:

Because ω = 2π/T and Tf = 1, you can rewrite the angular-velocity equation in 
terms of frequency:

 In simple harmonic motion, the angular velocity, ω, is often referred to as angu-
lar frequency. Don’t confuse the wave’s frequency, f, with the angular frequency.

Remembering not to speed away without the velocity
Take a look at Figure 13-5, where a ball is rotating on a disk. In the section 
“Understanding sine waves with a reference circle,” earlier in this chapter, 
you figure out that

y = A sin(ωt) 

where y stands for the y coordinate and A stands for the amplitude of the 
motion. At any point y, the ball also has a certain velocity, which varies in 
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time also. So how can you describe the velocity mathematically? Well, you 
can relate tangential velocity to angular velocity like this (see Chapter 11):

v = rω

where r represents the radius. Because the radius of the circle is equal to 
the amplitude of wave it corresponds to, r = A. Therefore, you get the 
following equation:

v = Aω

Does this equation get you anywhere? Sure, because the ball’s shadow on the 
film gives you simple harmonic motion. The velocity vector (see Chapter 4) 
always points tangential to the circle — perpendicular to the radius — so 
you get the following for the y component of the velocity at any one time:

v
y
 = Aω cos θ

 And because the ball is on a rotating disk, you know that θ = ωt, so

v
y
 = Aω cos(ωt) 

 This equation describes the velocity of any object in simple harmonic motion. 
Note that the velocity changes in time — from –Aω to 0 and then to Aω and 
back again to 0. So the maximum velocity, which happens at the equilibrium 
point, has a magnitude of Aω. Among other things, this equation says that, for 
a given angular velocity, the maximum velocity (v) is directly proportional to 
the amplitude (A) of the motion: Simple harmonic motion of greater amplitude 
has a larger maximum velocity, and vice versa.

For example, say that you’re on a physics expedition watching a daredevil 
team do some bungee jumping. You notice that the team members are start-
ing by finding the equilibrium point of their new bungee cords when a jumper 
is dangling from it but not bouncing, so you measure that point.

The team decides to release their leader from a few meters above the equi-
librium point, and you watch as he flashes past the point and then bounces 
back at a speed of 4.0 meters per second at the equilibrium point. Ignoring all 
caution, the team lifts its leader to a distance 10 times greater away from the 
equilibrium point and lets go again. This time you hear a distant scream as 
the costumed figure hurtles up and down. What’s his maximum speed?

You know that, on the first run, he was going 4.0 meters per second at the 
equilibrium point, the point where he achieved maximum speed; you know 
that he started with an amplitude 10 times greater on the second try; and you 
know that the maximum velocity is proportional to the amplitude. Therefore, 
assuming that the frequency of his bounce is the same, he’ll be going 40.0 
meters per second at the equilibrium point — pretty speedy.
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Including the acceleration
You can find the displacement of an object undergoing simple harmonic 
motion with the equation y = A sin(ωt), and you can find the object’s veloc-
ity with the equation v = Aω cos(ωt). But you have another factor to account 
for when describing an object in simple harmonic motion: its acceleration at 
any particular point. How do you figure it out? No sweat. When an object is 
going around in a circle, the acceleration is the centripetal acceleration (see 
Chapter 11), which is

a = rω2

where r is the radius and ω is the single component of angular velocity (that 
is, the angular velocity in the direction of the [constant] axis of rotation). 
And because r = A — the amplitude — you get the following equation:

a = Aω 2

This equation represents the relationship between centripetal acceleration, 
a, and angular velocity, ω. To go from a reference circle (see the earlier sec-
tion “Understanding sine waves with a reference circle”) to simple harmonic 
motion, you take the component of the acceleration in one dimension — the 
y direction here — which looks like this:

a = –Aω 2 sin θ

 The negative sign indicates that the y component of the acceleration is always 
directed opposite the displacement (the ball always accelerates toward the 
equilibrium point). And because θ = ωt, where t represents time, you get the 
following equation for acceleration:

a = –Aω 2 sin(ωt) 

Now you have the equation to find the acceleration of an object at any point 
while it’s moving in simple harmonic motion.

For example, say that your phone rings, and you pick it up. You hear “Hello?” 
from the earpiece.

“Hmm,” you think. “I wonder what the maximum acceleration of the diaphragm 
in the phone is.” The diaphragm (a metal disk that acts like an eardrum) in 
your phone undergoes a motion very similar to simple harmonic motion, so 
calculating its acceleration isn’t any problem. Measuring carefully, you note 
that the amplitude of the diaphragm’s motion is about 1.0 × 10–4 meters. So far, 
so good. Human speech is in the 1.0-kilohertz (1,000 hertz) frequency range, 
so you have the frequency, ω. And you know that the maximum acceleration 
equals the following:

a
max

 = Aω 2 
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262 Part III: Manifesting the Energy to Work 

Also, ω = 2πf, where f represents frequency. Replace ω with 2πf, and you can 
plug in the amplitude and frequency to find your answer:

a
max

 = A(2πf)2 = (1.0 × 10–4 m)[2π(1,000/s)]2 ≈ 3,940 m/s2 

You get a value of 3,940 meters per second2. That seems like a large accelera-
tion, and indeed it is; it’s about 402 times the magnitude of the acceleration 
due to gravity! “Wow,” you say. “That’s an incredible acceleration to pack 
into such a small piece of hardware.”

“What?” says the impatient person on the phone. “Are you doing physics again?”

Finding the angular frequency 
of a mass on a spring
If you take the information you know about Hooke’s law for springs (see 
the earlier section “Bouncing Back with Hooke’s Law”) and apply it to what 
you know about simple harmonic motion (see “Getting Around to Simple 
Harmonic Motion”), you can find the angular frequencies of masses on 
springs, along with the frequencies and periods of oscillations. And because 
you can relate angular frequency and the masses on springs, you can find 
the displacement, velocity, and acceleration of the masses.

Hooke’s law says that

F = –kx

where F is the force exerted by the string, k is the spring constant, and x is 
displacement from equilibrium. Because of Isaac Newton (see Chapter 5), 
you know that force also equals mass times acceleration:

F = ma

These force equations are in terms of displacement and acceleration, 
which you see in simple harmonic motion in the following forms (see the 
preceding section):

 ✓ x = A sin(ωt)

 ✓ a = –Aω 2 sin(ωt)

Inserting these two equations into the force equations gives you the following:

  ma = –kx

m[–Aω 2 sin(ωt)] = –kA sin(ωt) 
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263 Chapter 13: Springs ’n’ Things: Simple Harmonic Motion

Divide both sides by –A sin(ωt), and this equation breaks down to

mω 2 = k 

Rearranging to put ω on one side of the equation gives you the formula for 
angular frequency:

You can now find the angular frequency (angular velocity) of a mass on a 
spring, as it relates to the spring constant and the mass. You can also tie the 
angular frequency to the frequency and period of oscillation (see “Getting 
periodic”) by using the following equation:

With this equation and the earlier angular-frequency formula, you can write 
the formulas for frequency and period in terms of k and m:

 ✓
 

 ✓
 

Say that the spring in Figure 13-1 has a spring constant, k, of 15 newtons per 
meter and that you attach a 45-gram ball to the spring. What’s the period of 
oscillation? After you convert from grams to kilograms, all you have to do is 
plug in the numbers:

The period of the oscillation is 0.34 seconds. How many bounces will you get 
per second? The number of bounces represents the frequency, which you 
find this way:

You get nearly 3 oscillations per second.
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 Because you can relate the angular frequency, ω, to the spring constant and 
the mass on the end of the spring, you can predict the displacement, velocity, 
and acceleration of the mass, using the following equations for simple har-
monic motion (see the section “Catching the wave: A sine of simple harmonic 
motion” earlier in this chapter):

 ✓ y = A sin(ωt)

 ✓ v = Aω cos(ωt)

 ✓ a = –Aω 2 sin(ωt)

Using the example of the spring in Figure 13-1 — with a spring constant of 
15 newtons per meter and a 45-gram ball attached — you know that the 
angular frequency is the following:

You may like to check how the units work out. Remember that 1 N = 1 kg·m/s2, 
so the units you get from the preceding equation for the angular velocity work 
out to be

Say, for example, that you pull the ball 10.0 centimeters before releasing 
it (making the amplitude 10.0 centimeters). In this case, you find that

x = (0.10 m) sin[(18 s–1)t]

v = (0.10 m)(18 s–1) sin[(18 s–1)t]

a = –(0.10 m)(18 s–1)2 cos[(18 s–1)t] 

Factoring Energy into Simple 
Harmonic Motion

Along with the actual motion that takes place in simple harmonic motion, you 
can examine the energy involved. For example, how much energy is stored in 
a spring when you compress or stretch it? The work you do compressing or 
stretching the spring must go into the energy stored in the spring. That energy 
is called elastic potential energy and is equal to the force, F, times the distance, s:

W = Fs 
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As you stretch or compress a spring, the force varies, but it varies in a linear 
way (because in Hooke’s law, force is proportional to the displacement). 
Therefore, you can write the equation in terms of the average force, :

The distance (or displacement), s, is just the difference in position, x
f
 – x

i
, 

and the average force is (1/2)(F
f
 + F

i
). Therefore, you can rewrite the equation 

as follows:

Hooke’s law says that F = –kx. Therefore, you can substitute –kx
f
 and –kx

i
 

for F
f
 and F

i
:

Distributing and simplifying the equation gives you the equation for work in 
terms of the spring constant and position:

 The work done on the spring changes the potential energy stored in the spring. 
Here’s how you give that potential energy, or the elastic potential energy:

For example, suppose a spring is elastic and has a spring constant, k, 
of 1.0 × 10–2 newtons per meter, and you compress the spring by 
10.0 centimeters. You store the following amount of energy in it:

 You can also note that when you let the spring go with a mass on the end of it, 
the mechanical energy (the sum of potential and kinetic energy) is conserved:

PE1 + KE1 = PE2 + KE2 

When you compress the spring 10.0 centimeters, you know that you have 
5.0 × 10–5 joules of energy stored up. When the moving mass reaches the 
equilibrium point and no force from the spring is acting on the mass, you 
have maximum velocity and therefore maximum kinetic energy — at that 
point, the kinetic energy is 5.0 × 10–5 joules, by the conservation of mechani-
cal energy (see Chapter 9 for more on this topic).
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Swinging with Pendulums
Other objects besides springs, such as pendulums, move in simple harmonic 
motion. In Figure 13-6, a ball tied to a string swings back and forth.

 

Figure 13-6: 
A 

pendulum 
moves 

in simple 
harmonic 

motion.
 

L

s

θ

The torque, τ, that comes from gravity is the weight of the ball (which is a 
force of magnitude mg directed downward — hence the minus sign) multi-
plied by the lever arm, s (for more on lever arms and torque, see Chapter 11):

τ = –mgs

Here’s where you make an approximation. For small angles θ, the distance s 
approximately equals Lθ, where L is the length of the pendulum string:

τ = –mgLθ 

This equation resembles Hooke’s law, F = –kx, if you treat mgL as you would 
a spring constant. In Chapter 12, I show you the relation between torque and 
angular acceleration, and you see that the angular variables obey the same 
equations as their linear equivalents. Therefore, the calculation goes in just 
the same way as for the spring. In the angular variables:

Στ = Iα

Just as in the case of the spring, the pendulum undergoes simple harmonic 
motion, with

 ✓ θ = A sin(ωt)

 ✓ α = –Aω 2 sin(ωt)
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Plug in the torque of the pendulum and the values of α and θ to get

 Iα = –mgLθ 

 I[–Aω 2 sin(ωt)] = –mgLA sin(ωt)

Then solve for ω to get this:

The moment of inertia equals mr2 for a point mass (see Chapter 12), which 
you can use here, assuming that the ball is small compared to the pendulum 
string. For the pendulum, the radius r is the length of the string, L. This gives 
you the following equation:

Now you can plug this angular velocity into the equations for simple harmonic 
motion. You can also find the period of a pendulum with the following equation:

where T represents period. If you substitute the preceding form for ω, you 
get this:

Then rearrange to find the period:

Note that this period is actually independent of the mass on the pendulum!
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Part IV

Laying Down the Laws 
of Thermodynamics
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In this part . . .

How much boiling water do you need to melt a 
200-pound block of ice? Why would you freeze in 

space? Why does metal feel cold to the touch? What is 
an ideal gas? The answers all boil (or freeze) down to 
thermodynamics, which is the physics of thermal energy 
and heat flow. You find the answers to your questions in 
this part in the form of useful equations and explanations.
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Chapter 14

Turning Up the Heat with 
Thermodynamics

In This Chapter
▶ Taking temperature in Fahrenheit, Celsius, and Kelvin

▶ Examining temperature change with thermal expansion

▶ Following along with heat flow

▶ Accounting for specific heat capacity

▶ Meeting the requirements for phase change

The concepts of heat and temperature are part of your daily life. Under-
standing the laws that govern the temperatures of things, how heat 

flows between them, and how the material and thermal properties depend 
on each other hasn’t only furthered physicists’ appreciation of the world and 
its workings; it has also led to technological and engineering advances. A 
structurally sound bridge, for example, depends on understanding the ther-
mal expansion of any of the bridge’s metal elements. The motor car works 
because of the thermal energy released from the combustion of gasoline and 
air. These, and more, are possible only with an understanding of the relation-
ship between materials and their thermal properties. 

This chapter explores heat and temperature. Physics gives you plenty of 
power to predict what goes on when things heat up or cool down. I discuss 
temperature scales, linear expansion, volume expansion, and how much 
of liquid at one temperature will change the temperature of another when 
they’re put together.
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Measuring Temperature
Temperature is a measure of molecular movement — how fast and how much 
the molecules of whatever substance you’re measuring are moving. You always 
start a calculation or observation in physics by making mea surements, and 
when you’re discussing temperature, you have several scales at your disposal: 
most notably, Fahrenheit, Celsius, and Kelvin.

Fahrenheit and Celsius: 
Working in degrees
In the United States, the most common temperature scale is the Fahrenheit scale, 
which measures temperature in degrees. For example, the blood temperature 
of a healthy human being is 98.6°F — the F means you’re using the Fahrenheit 
scale. In Fahrenheit’s system, pure water freezes at 32°F and boils at 212°F.

However, the Fahrenheit system wasn’t very reproducible in its early days, so 
scientists developed another system — the Celsius scale (formerly called the cen-
tigrade system). Using this system, pure water freezes at 0°C and boils at 100°C. 
Here’s how you tie the two systems of temperature measurement together 
(these measurements are at sea level; they change as you go up in altitude):

 ✓ Freezing water: 32°F = 0°C

 ✓ Boiling water: 212°F = 100°C

If you do the math, you find 180°F between the points of freezing and boiling 
in the Fahrenheit system and 100°C in the Celsius system, so the conver-
sion ratio is 180/100 = 18/10 = 9/5. And don’t forget that the measurements 
are also offset by 32 degrees (the 0-degrees point of the Celsius scale corre-
sponds to the 32-degrees point of the Fahrenheit scale). Putting these ideas 
together lets you convert from Celsius to Fahrenheit or from Fahrenheit to 
Celsius pretty easily; just remember these equations:

 ✓ 

 ✓ 
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For example, the blood temperature of a healthy human being is 98.6°F. What 
does this equal in Celsius? Just plug in the numbers:

Zeroing in on the Kelvin scale
In the 19th century, William Thompson created a third temperature system, 
one now in common use in physics — the Kelvin system (Thompson later 
became Lord Kelvin). The Kelvin system has become so central to physics 
that the Fahrenheit and Celsius systems are defined in terms of the Kelvin 
system — a system based on the concept of absolute zero.

Analyzing absolute zero
Molecules move more and more slowly as the temperature lowers. At abso-
lute zero, the molecules almost stop, which means you can’t cool them 
anymore. (The molecules only “almost” stop because when you get down to 
the scale of molecules, you’re in the realm of quantum mechanics. When the 
molecules have as little energy as possible, they still have zero-point energy.) 
No refrigeration system in the world — or in the universe — can go any lower 
than absolute zero.

The Kelvin system uses absolute zero as its zero point, which makes sense. 
What’s a little odd is that you don’t measure temperature in this scale in degrees; 
you measure it in kelvins. A temperature of 100 is 100 kelvins (not 100 degrees 
Kelvin) in the Kelvin scale. This system has become so widely adopted that the 
official MKS unit of temperature is the kelvin (in practice, however, you see °C 
used more often in introductory physics).

Making kelvin conversions
 Each kelvin is the same size as a Celsius degree, which makes converting 

between Celsius degrees and kelvins easy. On the Celsius scale, absolute zero 
is –273.15°C. This temperature corresponds to 0 kelvins, which you also write 
as 0 K (not, please note, 0°K).
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 To convert between the Celsius and Kelvin scales, use the following formulas:

 ✓ Celsius to Kelvin: K = C + 273.15

 ✓ Kelvin to Celsius: C = K – 273.15

 And to convert from kelvins to Fahrenheit, you can use this formula:

(Or you can convert kelvins to degrees Celsius and then use the conversion 
formulas in the earlier section “Fahrenheit and Celsius: Working in degrees.”)

At what temperature does water boil in kelvins? Well, pure water boils at 
100°C at sea level, so plug your numbers into the formula:

K = C + 273.15 

= 100 + 273.15 = 373.15 K 

Water boils at 373.15 kelvins. Helium turns to liquid at 4.2 kelvins; what’s that 
in degrees Celsius? Use the formula:

C = K – 273.15 

= 4.2 – 273.15 = –268.95°C 

Helium liquefies at –268.95°C. Pretty chilly.

The Heat Is On: Thermal Expansion
Some screw-top jars can be tough to open, which is maddening when you 
really want some pickles. Maybe you remember seeing your mom run stub-
born jar lids under hot water when you were a kid. She did this because heat 
makes the lid expand, which usually makes the job of turning it much easier.

On a molecular level, thermal expansion happens because when you heat 
objects, the molecules bounce around faster, which leads to a physical expan-
sion. (Note that this relationship between heating and expanding isn’t true for 
all materials, however. For example, water becomes denser as you raise its 
temperature from 0°C to 4°C.)
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In this section, I first cover the linear expansion of solids — how solid objects 
lengthen when temperature rises. I then discuss thermal expansion in 3-D so 
you can observe volume changes in both solids and liquids. (For info on 
thermal expansion in gases, flip to Chapter 16.)

Linear expansion: Getting longer
When you talk about the expansion of a solid in any one dimension under the 
influence of heat, you’re talking about linear expansion. Figure 14-1 shows an 
image of this phenomenon.

 

Figure 14-1: 
Linear 

expansion 
usually 

takes place 
when you 

apply heat 
to solids.

 

Temperature = T0

Length = L0

A

Temperature = T0 + ∆T

Length = L0 + ∆L
B

Relating temperature changes to changes in length
Under thermal expansion, a solid object’s change in length, ΔL, is proportional to 
the change in temperature, ΔT. You can show this relationship mathematically.

Note: Even though initial values are represented by a subscript i in other 
chapters (L

i
, for example), I use a subscript 0 (L

0
, for example), which is what 

you’re more likely to see in other texts for these kinds of equations. 

First, suppose you raise the temperature of an object a small amount:

T = T
0
 + ΔT

where T represents the final temperature, T
0
 represents the original tempera-

ture, and ΔT represents the change in temperature. The change of tempera-
ture results in an expansion in any linear direction of

L = L
0
 + ΔL 
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where L represents the final length of the solid, L
0
 represents its original 

length, and ΔL represents the change in length. 

When you heat a solid, the solid expands by a few percent, and that percent-
age is proportional to the change in temperature. In other words, ΔL/L

0
 

(the fraction by which the solid expands) is proportional to ΔT (the 
change in temperature).

The constant of proportionality, which helps tell you exactly how much an 
object will expand, depends on which material you’re working with. The con-
stant of proportionality is the coefficient of linear expansion, which you give 
the symbol α. You can write this relationship as an equation this way:

 Here’s the linear-expansion equation in standard form, solved for ΔL:

ΔL = αL
0
ΔT

 People usually measure α, the coefficient of linear expansion, in units of 1/°C 
(that is, in °C–1). However, because the units of Celsius and Kelvin are the 
same size, a difference in temperature measured in degrees Celsius is of the 
same magnitude when measured in kelvins. Therefore, to convert the coef-
ficient of linear expansion from degrees Celsius to kelvins, you only have to 
swap the symbols. 

Physics problems provide these coefficients when you need them to solve 
the problem. But just in case, here’s a useful website that lists many of the 
coefficients: www.engineeringtoolbox.com/linear-expansion-
coefficients-d_95.html.

Workin’ on the railroad: A linear expansion example
Plenty of construction projects take linear expansion into account. You often 
see bridges with “expansion joints” connecting the bridge to the road sur-
face. As temperatures rise, these joints allow the bridge materials to expand 
without buckling.

Here’s a construction-based example. Say that you’re called in to check out 
a new railroad. You look closely at the 10.0-meter-long rails, noticing that 
they’re only 1.0 millimeter apart at the ends. “How much hotter does it get 
around these parts during the summer?” you ask.

“Hotter?” the chief designer guffaws. “You afraid the rails will melt?”
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Everyone snickers at your ignorance as you check your almanac, which tells 
you that you can expect the rails to get 50°C hotter during a normal summer. 
The coefficient of linear expansion for the steel that the rails are made from 
is approximately 1.2 × 10–5°C–1. So how much will the typical rail expand 
during the hot part of summer? You know that

ΔL = αL
0
ΔT 

Plugging in the numbers gives you the expansion:

ΔL = αL
0
ΔT = (1.2 × 10–5°C–1)(10.0 m)(50°C–1 ) = 6.0 × 10–3 m 

In other words, you can expect the rails to expand 6.0 × 10–3 meters, or 6.0 
millimeters, in the summer. However, the rails are only 1.0 millimeter apart. 
The railroad company is in trouble.

You look at the chief designer and say, “You and I are about to have a nice, 
long talk about physics.”

Volume expansion: Taking up more space
Linear expansion, as the name indicates, takes place in one dimension, but the 
world comes with three dimensions. If an object undergoes a small tempera-
ture change of just a few degrees, you can say that the volume of the solid or 
liquid will change in a way proportionate to the temperature change. As long 
as the temperature differences involved are small, the fraction by which the 
solid expands, ΔV/V

0
, is proportional to the change in temperature, ΔT (where 

ΔV represents the change in volume and V
0
 represents the original volume). 

With volume expansion, the constant involved is called the coefficient of 
volume expansion. This constant is given by the symbol β, and like α, it’s 
often measured in °C–1. Using β, here’s how you can express the equation 
for volume expansion:

 When you solve for ΔV, you get the volume-expansion equation in standard form:

ΔV = βV
0
ΔT
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You’ve created the analog (or equivalent) of the equation ΔL = αL
0
ΔT for 

linear expansion (see the earlier section “Linear expansion: Getting longer”).

 If the lengths and temperature changes are small, you find that β =3α for 
most solids. This makes sense, because you go from one dimension to three. 
For example, for steel, α is 1.2 × 10–5°C–1 and β is 3.6 × 10–5°C–1. Liquids also 
undergo linear volume expansion, but the preceding relation between β and 
α does not apply generally. 

Tanker trucks: Looking at expanding liquids
Say you’re at the gasoline refinery when you notice that workers are filling 
all the 5,000-gallon tanker trucks to the very brim before driving off on a hot 
summer day. “Uh oh,” you think as you get your calculator out. For gasoline, 
β = 9.5 × 10–4°C–1, and you figure that it’s 10.0°C warmer in the sunshine than 
in the building, so here’s how much the volume of gasoline will increase:

ΔV = βV
0
ΔT = (9.5 × 10–4°C–1)(5,000 gal)(10.0°C) = 47.5 gal 

Not good news for the refinery — those 5,000-gallon tankers of gasoline that 
are filled to the brim have to carry 5,047.5 gallons of gasoline after they go 
out in the sunshine. The gas tanks may also expand, but the β of steel is 
much less than the β of gasoline. Should you tell the refinery workers? Or 
should you ask for a bigger fee first?

First you negotiate your whopper fee, and then you go explain the problem to 
the foreman. “Holy smokes!” he cries. “We’d have gasoline pouring out of the 
caps on the top of our trucks.” He stops the trucks and gets some gasoline 
taken out of each before they’re sent on their way.

Radiators: Seeing expanding liquids and containers
The foreman of a gasoline refinery notices that his workers are filling the 
radiators of the trucks full up to the brim. “Holy smokes!” he cries. “What 
about volume expansion? The coolant will be pouring out of those radiators 
when they get hot.” True, the coolant will expand. But doesn’t everyone fill 
radiators to the brim?

Most cars have a plastic overflow reservoir that catches the overflow as it 
happens. So are the gasoline company’s radiators safe? Each radiator holds 
15 quarts of coolant, which is 1.4 × 10–2 cubic meters, and has a 1-quart cool-
ant reservoir, which is 9.5 × 10–4 cubic meters. Will a radiator overflow more 
than the reservoir can handle?

You get out your clipboard. Okay, the radiator takes 15 quarts (1.4 × 10–2 m3) of 
coolant, and you happen to know that the β for the coolant is β = 4.1 × 10–4°C–1.
You want to be precise this time and take into account the expansion of the 
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radiator as well. The radiator is made of copper (with a thin outer layer of 
aluminum, which you can neglect in this example), so β = 5.1 × 10–5°C–1. If the 
radiator starts at 20°C and heats up to its working temperature of 92°C, will a 
1-quart (9.5 × 10–4 m3) coolant reservoir be enough to catch the overflow?

The foreman watches tensely as you begin your calculations. Here’s the 
formula for the expansion of the coolant:

ΔV
c
 = β

c
V

0c
ΔT 

You know that β
c
 = 4.1 × 10–4°C–1, V

0c
 = 1.4 × 10–2 m3, and ΔT = 92°C – 20°C = 72°C 

in this example. Plug in these numbers and solve:

ΔV
c
 = β

c
V

0c
ΔT = 4.2 × 10–4 m3 

Okay, so the coolant will expand by 4.2 × 10–4 m3, which is equal to 0.44 quarts. 
But the radiator will also expand, meaning it can hold more coolant. This time, 
you take that expansion into account to get a more accurate answer.

Because the radiator is made of copper, it’ll expand as though it were made 
of solid copper, which makes the math easier. Here’s the change in volume 
for the radiator:

ΔV
r
 = β

r
V

0r
ΔT 

Here, β
r
 = 5.1 × 10–5°C–1, ΔV

0r
 = 1.4 × 10–2 m3, and ΔT = 92°C – 20°C = 72°C. Plug 

in your numbers and solve:

ΔV
r
 = β

r
V

0r
ΔT

 = (5.1 × 10–5°C–1)(1.4 × 10–2 m3)(72°C) 

 ≈ 5.2 × 10–5 m3 

The total overflow is equal to the coolant expansion minus the amount the 
radiator expands, so plug in your numbers:

ΔV = ΔV
c
 – ΔV

r
 

 = 4.2 × 10–4 m3 – 5.2 × 10–5 m

 ≈ 3.7 × 10–4 m3

So each radiator will overflow a little more than a third of a quart, and the 
overflow reservoir is 1 quart in volume. You turn to the foreman and say, 
“The radiators are fine, with a good safety margin.”

“Whew,” says the foreman.
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Heat: Going with the Flow 
(Of Thermal Energy)

What, really, is heat? When you touch a hot object, heat flows from the object 
to you, and your nerves record that fact. When you touch a cold object, heat 
flows from you to that object, and again, your nerves keep track of what’s 
happening. Your nerves record why objects feel hot or cold — because 
heat flows from them to you or from you to them.

To understand heat, you need to understand thermal energy. Thermal energy 
is the energy that a body has in the vibrations of its molecules — the energy 
stored in the internal molecular motion of an object. The temperature of a 
body usually increases with its thermal energy.

When two bodies are brought into thermal contact, thermal energy is free to 
be exchanged between them. If no thermal energy flows between them, they 
are in thermal equilibrium. In other words, they are in a kind of balance. Two 
objects in thermal equilibrium are said to have the same temperature. If ther-
mal energy does flow between them — an object at a higher temperature is 
in thermal contact with an object at a lower temperature and the thermal 
energy flows from the hotter body to the cooler one — they are not in 
thermal equilibrium. 

 In physics terms, heat is thermal energy that flows from objects of higher tem-
peratures to objects of lower temperatures. The unit of this energy in the MKS 
system is the joule (J) — the same unit you use for other forms of energy and 
work (see Chapter 9).

 One calorie is defined as the amount of heat needed to raise the temperature 
of 1.0 gram of water 1.0°C, so 1 calorie = 4.186 joules. Nutritionists use the food-
energy term Calorie (capital C) to stand for 1,000 calories — 1.0 kilocalorie 
(kcal), so 1.0 Calorie = 4,186 joules. Engineers use another unit of measurement 
as well: the British thermal unit (Btu). One Btu is the amount of heat needed to 
raise 1 pound of water 1.0°F. To convert, you can use the relation 1 British ther-
mal unit = 1,055 joules.

This section covers heat and how the change in energy affects temperature. 
I also discuss phase changes, special cases in which a substance can absorb 
heat without changing temperature.
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Getting specific with temperature changes
 At a given temperature, different materials can hold different amounts of ther-

mal energy. For instance, if you warm up a potato, it can hold its heat longer 
(as your tongue can testify) than a lighter material such as cotton candy. Why? 
Because the potato stores more thermal energy for a given change in tempera-
ture; therefore, more heat has to flow to cool the potato than is needed to cool 
the cotton candy. The measure of how much heat an object of a given mass 
can hold at a given temperature is called its specific heat capacity.

Suppose you see someone making a pot of coffee. You measure exactly 
1.0 kilogram of brewed coffee in the pot, and then you get down to the real 
measurements. You find out that you need 4,186 joules of heat energy to 
raise the temperature of the coffee by 1°C, but you need only 840 joules 
to raise 1.0 kilogram of glass by 1°C; the coffee and glass have different 
specific heat capacities. The energy goes into the substance being heated, 
which stores the energy as internal energy until it leaks out again. (Note: 
If you need 4,186 joules to raise 1.0 kilogram of coffee by 1°C, you need 
double that, 8,372 joules, to raise 2.0 kilograms of coffee by 1°C or to raise 
1.0 kilogram of coffee by 2°C.)

 The following equation relates the amount of heat needed to raise an object’s 
temperature to the change in temperature and the amount of mass involved:

Q = cmΔT

Here, Q is the amount of heat energy involved (measured in joules if you’re 
using the MKS system), m is the mass, ΔT is the change in temperature, and c 
is a constant called the specific heat capacity, which is measured in joules per 
kilogram-degree Celsius, or J/(kg·°C). In Chapter 16, you can find a calculation of 
the specific heat capacity for the special case of an ideal gas, but usually physi-
cists calculate specific heat capacity through experiment, so most problems 
give you c or refer you to a table of specific-heat values for various materials. 

You can use the heat equation to find out how temperature changes when 
you mix liquids of different temperatures. Suppose you have 45 grams of 
coffee in your cup, but it cooled while you were figuring out the coffee’s spe-
cific heat. You call over your host. The coffee is 45°C, but you like it at 65°C. 
The host gets up to pour some more. “Just a minute,” you say. “The coffee in 
the pot is 95°C. Wait until I calculate exactly how much you need to pour.”
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The following equation represents the heat lost by the new mass of coffee, m1:

ΔQ1 = cm1(T – T1,0) 

And here’s the heat gained by the existing coffee, mass m2:

ΔQ2 = cm2(T – T2,0) 

Assuming you have a superinsulating coffee mug, no energy leaves the 
system to the outside, and because energy cannot be created or destroyed, 
energy is conserved within such a closed system; therefore, the heat lost 
by the new coffee is the heat that the existing coffee gains, so

ΔQ1 = –ΔQ2 

Therefore, you can say the following:

cm1(T – T1,0) = –cm2(T – T2,0) 

Dividing both sides by the specific heat capacity, c, and plugging in the 
numbers gives you the following:

 

You need 0.03 kilograms, or 30 grams. Satisfied, you put away your calculator 
and say, “Give me exactly 30 grams of that coffee.”

Just a new phase: Adding heat 
without changing temperature

 Phase changes occur when materials change state, going from liquid to solid 
(as when water freezes), solid to liquid (as when rocks melt into lava), liquid 
to gas (as when you boil water for tea), and so on. When the material in 
question changes to a new state — liquid, solid, or gas (you can also factor in 
a fourth state: plasma, a superheated gas-like state) — some heat goes into or 
comes out of the process without changing the temperature.
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 You can even have solids that turn directly into gas. As dry ice (frozen 
dioxide gas) gets warmer, it turns into carbon dioxide gas. This process 
is called sublimation.

Imagine you’re calmly drinking your lemonade at an outdoor garden party. 
You grab some ice to cool your lemonade, and the mixture in your glass is 
now half ice, half lemonade (which you can assume has the same specific 
heat as water), with a temperature of exactly 0°C.

As you hold the glass and watch the action, the ice begins to melt — but 
the contents of the glass don’t change temperature. Why? The heat (thermal 
energy) going into the glass from the outside air is melting the ice, not 
warming the mixture up. So does this make the equation for heat energy 
(Q = cmΔT) useless? Not at all — it just means that the equation doesn’t 
apply for a phase change.

In this section, you see how heat affects temperature before, during, and after 
phase changes.

Breaking the ice with phase-change graphs
If you graph the heat added to a system versus the system’s temperature, the 
graph usually slopes upward; adding heat increases temperature. However, 
the graph levels out during phase changes, because on a molecular level, 
making a substance change state requires energy. After all the material has 
changed state, the temperature can rise again.

Imagine that someone has taken a bag of ice and thoughtlessly put it on 
the stove. Before it hit the stove, the ice was at a temperature below freez-
ing (–5°C), but being on the stove is about to change that. You can see the 
change taking place in graph form in Figure 14-2.

As long as no phase change takes place, the equation Q = cmΔT holds (the 
specific heat capacity of ice is around 2.0 × 10–3 J/kg∙°C), which means that 
the temperature of the ice will increase linearly as you add more heat to it, 
as you see in the graph.

However, when the ice reaches 0°C, the ice is getting too warm to hold its 
solid state, and it begins to melt, undergoing a phase change. When you melt 
ice, breaking up the crystalline ice structure requires energy, and the energy 
needed to melt the ice is supplied as heat. That’s why the graph in Figure 14-2 
levels off in the middle — the ice is melting. You need heat to make the ice 
change phase to water, so even though the stove adds heat, the temperature 
of the ice doesn’t change as it melts.
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As you watch the bag of ice on the stove, however, you note that all the ice 
eventually melts into water. Because the stove is still adding heat, the tempera-
ture begins to rise, which you see in Figure 14-2. The stove adds more and more 
heat to the water, and in time, the water starts to bubble. “Aha,” you think. 
“Another phase change.” And you’re right: The water is boiling and becoming 
steam. The bag holding the ice seems pretty resilient, and it expands while the 
water turns to steam.

You measure the temperature of the water. Fascinating — although the water 
boils, turning into steam, the temperature doesn’t change. Once again, you 
need to add heat to incite a phase change — this time from water to steam. 
You can see in Figure 14-2 that as you add heat, the water boils, but the 
temperature of that water doesn’t change.

What’s going to happen next, as the bag swells to an enormous volume? You 
never get to find out, because the bag finally explodes. You pick up a few 
shreds of the bag and examine them closely. How can you account for the 
heat that’s needed to change the state of an object? How can you add some-
thing to the equation for heat energy to take into account phase changes? 
That’s where the idea of latent heat comes in.

Understanding latent heat
Latent heat is the heat per kilogram that you have to add or remove to make 
an object change its state; in other words, latent heat is the heat needed to 
make a phase change happen. Its units are joules per kilogram (J/kg) in the 
MKS system.

21_9780470903247-ch14.indd   28421_9780470903247-ch14.indd   284 5/26/11   11:22 PM5/26/11   11:22 PM



285 Chapter 14: Turning Up the Heat with Thermodynamics

 Physicists recognize three types of latent heat, corresponding to the changes 
of phase between solid, liquid, and gas:

 ✓ The latent heat of fusion, L
f
: The heat per kilogram needed to make the 

change between the solid and liquid phases, as when water turns to ice 
or ice turns to water

 ✓ The latent heat of vaporization, L
v
: The heat per kilogram needed to 

make the change between the liquid and gas phases, as when water boils 
or when steam condenses into water

 ✓ The latent heat of sublimation, L
s
: The heat per kilogram needed 

to make the change between the solid and gas phases, as when 
dry ice evaporates

Water’s latent heat of fusion of water, L
f
, is 3.35 × 105 J/kg, and its latent heat 

of vaporization, L
v
, is 2.26 × 106 J/kg. In other words, you need 3.35 × 105 joules 

to melt 1 kilogram of ice at 0°C (just to melt it, not to change its temperature). 
And you need 2.26 × 106 joules to boil 1 kilogram of water into steam.

 Here’s the formula for heat transfer during phase changes, where ΔQ is the 
change in heat, m is the mass, and L is the latent heat:

ΔQ = mL

Here, L takes the place of the ΔT (change in temperature) and c (specific heat 
capacity) terms in the temperature-change formula.

Suppose you’re in a restaurant with a glass of 100.0 grams of water at room 
temperature, 25°C, but you’d prefer ice water at 0°C. How much ice would 
you need? You can find the answer using the heat formulas for both change 
in temperature and phase change.

You get out your clipboard, reasoning that the heat absorbed by the melting 
ice must equal the heat lost by the water you want to cool. Here’s the heat 
lost by the water you’re cooling:

ΔQ
water

 = cmΔT = cm(T – T
0
) 

where ΔQ
water

 is the heat lost by the water, c is the specific heat capacity 
of water, m is the mass of the water, ΔT is the change in temperature 
of the water, T is the final temperature, and T

0
 is the initial temperature.
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Plugging in the numbers tells you how much heat the water needs to lose:

ΔQ
water

 = cm(T – T
0
) 

= (4,186 J kg–1 K–1)(0.100 kg)(0 K – 25 K) ≈ –1.04 × 104 J 

Therefore, the water needs to lose 1.04 × 104 joules of heat. 

So how much ice would that amount of heat melt? That is, how much ice 
at 0°C would you need to add to cool the water to 0°C? That would be the 
following amount, where L

f
 is the latent heat of fusion for ice:

ΔQ
ice

 = m
ice

L
f
 

For ice, L
m

 is 3.35 × 105 J/kg, so you get this answer:

ΔQ
ice

 = m
ice

(3.35 × 105 J/kg) 

You know this has to be equal to the heat lost by the water, so you can set 
this equal and opposite to ΔQ

water
, or –1.04 × 104 joules:

 ΔQ 
ice

 = –ΔQ
water

m
ice

(3.35 × 105 J/kg) = –(–1.04 × 104 J)

In other words,

So you need 3.10 × 10–2 kilograms, or 31.0 grams of ice. 

“Pardon me,” you say to the waiter. “Please bring me exactly 31.0 grams of 
ice at precisely 0°C.”
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Chapter 15

Here, Take My Coat: How 
Heat Is Transferred

In This Chapter
▶ Examining natural and forced convection

▶ Transferring heat through conduction 

▶ Shining the light on radiation

Heat is the flow of thermal energy from one point to another (see 
Chapter 14). You witness the transfer of heat every day. You cook 

some pasta, and you see currents of water cycling the noodles in the pan. 
You pick up the pan without a hand towel, and you burn your hand. You look 
to the sky on a summer day, and you feel your face warming up. You give 
your coat to your date, and you watch his or her feelings for you warm up 
(through radiation, of course!).

In this chapter, I discuss the three primary ways in which heat can be trans-
ferred. You find out how to predict how quickly pot handles get hot, see why 
heat rises, and discover how the sun warms the Earth.

Convection: Letting the Heat Flow
Convection is a means of transferring thermal energy (heat) in a fluid. In con-
vection, the flowing fluid carries energy along, mixing with the rest of the fluid 
and thereby transferring the thermal energy. Through this mixing, thermal 
energy moves from a higher-temperature region to a lower-temperature region.

 Convection occurs in both liquids and gases, because both liquids and gases 
are fluids. Buoyancy, which is the upward force on the part of the fluid that’s 
less dense than the surrounding fluid, often drives the fluid’s motion. Fluids 
expand when you add heat, changing the fluid’s density (refer to Chapter 14 
for info on thermal expansion). Cooler, denser regions of fluid tend to sink as 
warmer, less dense regions rise, causing the fluid to flow.

22_9780470903247-ch15.indd   28722_9780470903247-ch15.indd   287 5/26/11   11:21 PM5/26/11   11:21 PM



288 Part IV: Laying Down the Laws of Thermodynamics 

Figure 15-1 shows a cross-section of a pan of water coming to the boil. The 
water at the bottom heats up, expands slightly, and then rises in the pan by 
buoyant forces. The warm fluid carries the thermal energy from the bottom 
of the pan to the top.

 

Figure 15-1: 
You can see 
convection 
in action by 

boiling a pot 
of water.

 

Convection may be natural or forced, and the following subsections give you 
the story on both.

Hot fluid rises: Putting fluid in 
motion with natural convection
You may have heard the maxim “heat rises,” which is all about convection. 
However, a more accurate statement is that “hot fluid rises.” In substances 
where convection is free to take place — that is, in gases and liquids — 
hotter material naturally ends up on top and cooler material ends up on 
the bottom because of buoyancy.

If your house has two floors, you often end up with the bottom floor being 
cooler than the top floor. The warmer air rises by buoyancy, which drives the 
convection. Physicists refer to this type of convection as natural convection 
because it isn’t externally driven.

 To understand how natural convection works, look at the microscopic pic-
ture. Any substance is made up of molecules, tiny particles that zip around at 
varying speeds. When a gas or liquid becomes hot, its molecules move faster. 
If you have a heating element that contacts the bottom of the substance — such 
as a wood stove at the bottom of a room or a stove element that’s heating a 
kettle of water — the molecules near the heating element become hot. Hotter 
molecules have more kinetic energy and so can zip around faster and hit 
other molecules harder.
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Because they move faster and hit harder, hotter molecules make the substance 
in their immediate area less dense. That is, they have more energy with which 
to push other molecules out of the way. The molecules that have been hit also 
have more energy to push other molecules out of the way, so the substance in 
the immediate vicinity of the heating element becomes less dense.

A unit volume of material that’s less dense weighs less than a unit volume of 
the surrounding material, and if that material is a gas or liquid, the less dense 
stuff rises. Because the denser material has more mass per volume, it sinks 
under the influence of gravity.

 Anyone who has ever flown in a plane is familiar with natural convection in 
the form of turbulence. Turbulence is caused by the sun’s heating of the Earth, 
which in turn heats the air above it. The hot air rises through the atmosphere, 
and airplanes, going along on their merry way, fly through these rising col-
umns of rising hot air. If you look out the window of the plane, you may see 
birds riding these columns, called thermals, as well. If you see a bird rising 
but not flapping its wings, it’s most likely hitching a ride on a thermal.

Controlling the flow with forced convection
With natural convection, you rely on the fact that hot fluid rises to transfer 
heat. But sometimes natural convection is the opposite of what you want. 
With forced convection, you control the movement of the warm or cool fluid, 
often using a fan or pump.

For example, take a room on a cold winter’s day. Because heat rises, the 
hotter air in the room drifts up to the ceiling, while the cooler air in the room 
settles near the bottom of the room, where you are. So in time, all the hot 
air in the room collects near the ceiling, and all the cold air collects near 
the floor. Although you were originally quite cozy, you may now be getting 
pretty cold — all as a result of natural convection.

What can you do? You can turn on your room’s ceiling fan in reverse! Ceiling 
fans force the air to circulate, so the hot air near the top of the room moves 
downward. The warmer air at the top of the room now ends up at the bottom 
of the room again, where you are. Just make sure you choose a low speed so 
you don’t create a breeze.

You find forced convection all around you. The fans in a desktop computer, 
for example, cause forced convection (and the lack of room for a fan in laptop 
computers has caused plenty of overheating problems). Refrigerators use fans 
to blow away heat, again relying on forced convection.
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 Natural convection is the dominant way heat is transferred through the inte-
rior of any standard oven (microwave ovens, on the other hand, use electro-
magnetic radiation to jostle the water molecules in the food — see Chapter 19 
for details). In traditional ovens, the buoyancy of the hot air distributes the 
heat. Ovens specifically labeled convection ovens use a fan to increase the heat 
transfer by convection. The fan drives the air inside the oven to move more 
and thereby distribute the heat faster.

Here’s a last example, this time of forced convection happening twice in the 
same system. Cars generate a lot of heat when they’re running. To keep the 
engine cool, a pump circulates coolant throughout the engine. The liquid 
coolant transfers heat away from the engine to the radiator to keep the car 
from overheating. And the radiator itself is another example of forced con-
vection, moving the air not with a cooling fan but with the motion of the car 
itself: the car drives air through the radiator, cooling it as the car moves. 
When the car isn’t moving, the engine produces less heat, so there’s less 
need to dissipate heat from the radiator.

Too Hot to Handle: Getting 
in Touch with Conduction

Conduction transfers heat through material directly, through contact. Take 
a look at the metal pot in Figure 15-2 and its metal handle; the pot has been 
boiling for 15 minutes. Would you want to lift it off the fire by grabbing the 
handle without an oven mitt? Probably not. The handle is hot because of 
conduction of heat through the metal handle.

On the molecular level, the molecules near the heat source are heated and 
begin vibrating faster. They bounce off nearby molecules and cause them 
to vibrate faster. That increased bouncing is what heats a substance.

 

Figure 15-2: 
Conduction 

heats the 
pot that 

holds the 
boiling 
water.
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Some materials, such as most metals, conduct heat better than others, such as 
porcelain, wood, or glass. The way substances conduct heat depends a great 
degree on their molecular structures, so different substances react differently.

Finding the conduction equation
You have to take different properties of objects into account when you want 
to examine the conduction that takes place. If you have a bar of steel, for 
example, you have to consider the bar’s area and length, along with the 
temperature at different parts of the bar.

Take a look at Figure 15-3, where a bar of steel is being heated on one end 
and the heat is traveling by conduction toward the other side. Can you find 
out the thermal energy transferred? No problem.

 Here are the factors that affect the rate of conduction:

 ✓ Temperature difference: The greater the difference in temperature 
between the two ends of the bar, the greater the rate of thermal energy 
transfer, so more heat is transferred. The heat, Q, is proportional to the 
difference in temperature, ΔT:

  Q  ΔT

 ✓ Cross-sectional area: A bar twice as wide conducts twice the amount of 
heat. In general, the amount of heat conducted, Q, is proportional to the 
cross-sectional area, A, like this:

  Q  A 

How the elephant got its ears: A physics 
lesson in body design

As bodies become larger, their volume grows 
faster than their surface area. Cooling a larger 
body becomes more difficult because for every 
unit of volume of the body, there’s less sur-
face area through which the heat can escape. 
This idea also applies to animals, and it partly 
explains why the elephant needs such large 
ears. Because an elephant has such a large 

body, it has lots of heat to conduct through its 
body and then from its skin to the air; but rela-
tive to its large volume, the elephant doesn’t 
have much surface area through which to con-
duct the heat. So the elephant sports two great 
big ears, with a large surface area, through 
which to conduct away its heat.
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 ✓ Length (distance heat must travel): The longer the bar, the less heat 
that will make it all the way through. Therefore, the conducted heat is 
inversely proportional to the length of the bar, l:

  

 ✓ Time: The amount of heat transferred, Q, depends on the amount of 
time that passes, t — twice the time, twice the heat. Here’s how you 
express this idea mathematically:

  Q  t

 

Figure 15-3: 
Conducting 

heat in a bar 
of steel.

 

A

l

Now you can put the variables together, using k as a constant of proportion-
ality that’s yet to be determined.

 Here’s the equation for heat transfer by conduction through a material:

 

This equation represents the amount of heat transferred by conduction in a 
given amount of time, t, down a length l, where the cross-sectional area is A. 
Here, k is the material’s thermal conductivity, measured in joules per second-
meters-degrees Celsius, or J/s·m·°C.

Working with thermal conductivity
 Different materials (such as glass, steel, copper, and bubble gum) conduct 

heat at different rates, so the thermal conductivity constant depends on the 
material in question. Lucky for you, physicists have measured the constants 
for various materials already. Check out some of the values in Table 15-1.
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Table 15-1 Thermal Conductivities for Various Materials

Material Thermal Conductivity (J/s·m·°C)

Diamond 1,600 

Silver 420

Copper 390

Brass 110

Lead 35

Steel 14.0

Glass 0.80

Water 0.60

Body fat 0.20

Wood 0.15

Wool 0.04

Air 0.0256

Styrofoam 0.01

The thermal conductivity of the steel part of a pot handle is 14.0 J/s·m·°C (see 
Table 15-1). Take a look at Figure 15-3. Suppose the handle is 15 centimeters 
long, with a cross-sectional area of 2.0 square centimeters (2.0 × 10–4 m2). If 
the fire at one end is 600°C, how much heat would be pumped into your 
hand in 1 second if you grabbed the handle? The equation for heat transfer 
by conduction is

If you assume that the end of the cool end of the handle starts at about room 
temperature, 25°C, you get the following amount of heat transferred in a time t:

You can see that in 1 second, 10.7 joules of thermal energy would enter 
your hand. 
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If 10.7 joules of heat is being transferred to the end of the handle each 
second, then the heat transfer is 10.7 joules per second, or 10.7 watts. As 
the seconds go by, the joules of heat add up, making the handle hotter and 
hotter. Note that the conduction rate of 10.7 watts will decrease with time 
because the end of the handle heats up, giving you a smaller value for ΔT.

Camping with the Johnsons: A conduction example
The vacationing Johnson family wants to know whether they have enough ice 
in their ice chest to last for 12 hours while they’re out camping, so they ask 
you, the famous consulting physicist. A quick glance at your outdoor thermom-
eter tells you that the outside temperature is 35°C. You measure the walls of 
the Styrofoam ice chest to be 2.0 centimeters thick. The total surface area of 
the ice chest is 0.66 square meters.

The final measurement you note on your clipboard is that the Johnsons have 
loaded the ice chest with exactly 1.5 kilograms of ice at 0°C. So how long will 
1.5 kilograms of ice take to melt in that chest? 

Because, in this situation, you have an amount of heat conducting through 
a material of known surface area and thickness, you can start with the 
conduction equation:

You want to know the time, so solve the equation for t:

Now think about which values you already know. The heat has to travel 
the width of the cooler to escape, so l = 2.0 cm = 0.020 m. Styrofoam’s 
thermal conductivity is k = 0.010 J/s·m·°C, and the ice chest’s surface 
area is A = 0.66 m2. The difference between inside and outside temperature 
is ΔT = 35°C – 0°C = 35°C. Now all you need is Q, the amount of heat needed 
to melt the ice.

You can use water’s latent heat of fusion to figure out how much heat you 
need to change the ice from a solid to liquid state (see Chapter 14 for details 
on heat and phase changes). In general, you need the following amount of 
heat to melt ice at 0°C:

Q = mL

where Q is the amount of heat needed, m is the mass of ice, and L is water’s 
latent heat of fusion, 3.35 × 105 J/kg. Plugging in the numbers gives you the 
amount of heat you need:

Q = mL = (1.5 kg)(3.35 × 105 J/kg) ≈ 5.0 × 105 J 
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Now you know Q, so you have enough info to use the conduction equation. 
Plugging the numbers in the conduction equation (solved for time) gives 
you the answer:

 

You tell the Johnsons, “It will take 44,000 seconds for your ice to melt.”

“How long is that?” they ask.

Well, you think, 60 seconds are in a minute, and 60 minutes are in an hour, 
so you do a few more calculations:

 

 “Your ice will last for 12 hours,” you tell them, handing them your bill.

Considering conductors and insulators 
Materials with high thermal conductivity, such as copper, conduct heat well. 
For example, you may have seen copper wire in indoor/outdoor thermom-
eters. The wires conduct heat in from outside so that the thermometer can 
measure the outside temperature. Diamond is a far better conductor of heat 
than copper, as you can see in Table 15-1 (but building indoor/outdoor ther-
mometers with diamonds would be a little pricey).

On the other end of the scale, some materials act as heat insulators because 
their thermal conductivity is so low. For example, body fat has a low thermal 
conductivity, as you can see in Table 15-1, and so it’s a natural insulator. 
Thus, body fat can help keep you warm on cold days.

 Of course, in terms of conduction, the champion thermal insulator of all time 
is a vacuum. Conduction relies on the movement of heat through material, and 
if there’s no material, there can’t be any conduction. Nothing can conduct the 
heat in that case.

For that reason, people use vacuum flasks to keep foods hot or cold. These 
flasks have a double wall with a vacuum between the walls, so no heat can be 
conducted from inside to outside or outside to inside. Therefore, your soup 
stays hot, or your iced tea stays cold.
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Some thermal conductivity does exist between inside and outside in a 
vacuum flask. There’s always some path for heat to take, such as the stopper 
of the flask itself. Because some heat is conducted, vacuum flasks keep hot 
foot hot or cold food cold only for a little while. Theoretically, if you had a 
capsule of food floating in a vacuum, there’d be no heat loss or gain through 
conduction at all — but there’d still be heat loss or gain through radiation.

Radiation: Riding the (Electromagnetic) 
Wave

Radiation is another way to transfer heat. You experience radiation person-
ally whenever you get out of the shower soaking wet in the dead of winter 
and bask in the warmth of the heat lamp in your bathroom. Why? Because 
of a little physics, of course. The heat lamp, which you see in Figure 15-4, 
beams out heat to you and keeps you warm through radiation.

With radiation, electromagnetic waves carry the energy (you can find plenty 
of info on electromagnetic waves in Physics II For Dummies). Electromagnetic 
radiation comes from accelerating electric charges. On a molecular level, 
that’s what happens as objects warm up — their molecules move around 
faster and faster and bounce off other molecules hard.

Heat energy transferred through radiation is as familiar as the light of day; in 
fact, it is the light of day. The sun is a huge thermal reactor about 93 million 
miles away in space, and neither conduction nor convection can produce any 
of the energy that arrives to Earth through the vacuum of space. The sun’s 
energy gets to the Earth through radiation, which you can confirm on a sunny 
day just by standing outside and letting the sun’s rays warm your face.

Cool to the touch
Why do metals feel cold to the touch when 
they’re at room temperature? If you know some-
thing about thermal conduction, the phenome-
non makes sense. Metals are such good thermal 
conductors that they carry away the heat from 
your fingers very quickly, which leads to a drop 
in temperature in your skin. The nerves in your 
skin detect this drop in temperature and send 

the message to your brain that you’re touching 
something cold. Wood, on the other hand, is 
not a good conductor (it’s an insulator), so little 
heat is conducted away from your fingertips. 
Your brain interprets this to mean that the wood 
is warmer than the metal, when they’re actu-
ally both in thermal equilibrium with the room — 
that is, the same temperature!
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Figure 15-4: 
An incan-

descent 
light bulb 
radiates 

heat 
into its 

environ-
ment.

 

Mutual radiation: Giving 
and receiving heat
Every object around you is continually radiating, unless its temperature is 
at absolute zero (which is a little unlikely because you can’t physically get to a 
temperature of absolute zero, with no molecular movement). A scoop of ice 
cream, for example, radiates. Even you radiate all the time, but that radiation 
isn’t visible as light because it’s in the infrared part of the spectrum. However, 
that light is visible to infrared scopes, as you’ve probably seen in the movies 
or on television.

You radiate heat in all directions all the time, and everything in your environ-
ment radiates heat back to you. When you have the same temperature as 
your surroundings, you radiate as fast and as much to your environment as 
it does to you. When two things are in thermal contact but no thermal energy 
is exchanged between them, they’re in thermal equilibrium. If two things are 
in thermal equilibrium, they have the same temperature.

 If your environment didn’t radiate heat back to you, you’d freeze, which is why 
space is considered so “cold.” There’s nothing cold to touch in space, and you 
don’t lose heat through conduction or convection. Rather, the environment 
doesn’t radiate back at you, which means that the heat you radiate away is 
lost. You can freeze very fast from the lost heat.
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When an object heats up to about 1,000 kelvins, it starts to glow red (which 
may explain why, even though you’re radiating, you don’t glow red in the vis-
ible light spectrum). As the object gets hotter, its radiation moves up in the 
spectrum through orange, yellow, and so on up to white hot at somewhere 
around 1,700 K (about 2,600°F).

 Radiant heaters with coils that glow red rely on radiation to transfer heat. 
Convection takes place as air heats, rises, and spreads around the room (and 
conduction can occur if you touch the heater on a hot spot by mistake — not 
the most desirable of heat transfers!). But the heat transfer to you takes place 
mostly through radiation. 

Blackbodies: Absorbing 
and reflecting radiation
Humans understand heat radiation and absorption in the environment intui-
tively. For example, on a hot day, you may avoid wearing a black t-shirt, 
because you know it would make you hotter. A black t-shirt absorbs light 
from the environment while reflecting less of it back than a white t-shirt. The 
white t-shirt keeps you cooler because it reflects more radiant heat back to 
the environment.

Some objects absorb more of the light that hits them than others. Objects 
that absorb all the radiant energy that strikes them are called blackbodies. A 
blackbody absorbs 100 percent of the radiant energy striking it, and if it’s in 
equilibrium with its surroundings, it emits all the radiant energy as well.

In terms of reflection and absorption of radiation, most objects fall some-
where between mirrors, which reflect almost all light, and blackbodies, which 
absorb all light. The middle-of-the-road objects absorb some of the light strik-
ing them and emit it back into their surroundings. Shiny objects are shiny 
because they reflect most of the light, which means they don’t have to emit 
as much heat radiantly into the room as other objects. Dark objects appear 
dark because they don’t reflect much light, which means they have to emit 
more as radiant heat (usually lower down in the spectrum, where the radia-
tion is infrared and can’t be seen).

The Stefan-Boltzmann constant 
How much heat does a blackbody emit when it’s at a certain temperature? 
The amount of heat radiated is proportional to the time you allow — twice 
as long, twice as much heat radiated, for example. So you can write the heat 
relation, where t is time, as follows:

Q  t
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And as you may expect, the amount of heat radiated is proportional to the 
total area doing the radiating. So you can also write the relation as follows, 
where A is the area doing the radiating:

Q  At

Temperature, T, has to be in the equation somewhere — the hotter an object, 
the more heat radiated. Experimentally, physicists found that the amount of 
heat radiated is proportional to T to the fourth power, T4. So now you have 
the following relation:

Q  AtT4 

To show the exact relationship between heat and the other variables, you 
need to include a constant, which physicists measured experimentally. To 
find the heat emitted by a blackbody, you use the Stefan-Boltzmann constant, 
σ, which goes in the equation like this:

Q = σAtT4 

The value of σ is 5.67 × 10–8 J/s·m2·K4. Note, however, that this constant works 
only for blackbodies that are perfect emitters. 

The Stefan-Boltzmann law of radiation
Most objects aren’t perfect emitters, so you have to add another constant 
most of the time — one that depends on the substance you’re working with. 
The constant is called emissivity, e.

 The Stefan-Boltzmann law of radiation says the following:

Q = eσAtT4 

where e is an object’s emissivity, σ is the Stefan-Boltzmann constant 
5.67 × 10–8 J/s·m2·K4, A is the radiating area, t is time, and T is the 
temperature in kelvins.

Finding heat from the human body
A person’s emissivity is about 0.98. At a body temperature of 37°C, how much 
heat does a person radiate each second? First, you have to factor in how much 
area does the radiating. If you know that the surface area of the human body 
is A = 1.7 m2, you can find the total heat radiated by a person by plugging the 
numbers into the Stefan-Boltzmann law of radiation equation, making sure 
you convert the temperature to kelvins: 
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Then dividing both sides by t, you get

You get a value of 550 joules per second, or 550 watts. That may seem high, 
because skin temperature isn’t the same as internal body temperature, but 
it’s in the ballpark.

Doing star calculations
Here’s another example: A knock sounds on your door at around 10 p.m. 
Surprised, you open the door, and a number of astronomers enter. “We 
need you to measure the radius of Betelgeuse,” they say.

“Betelgeuse, the star?” you ask. “You want me to measure the radius of a star 
640 light-years from Earth?”

“If it’s not too much trouble,” they reply. “We heard it was a supergiant star, 
and we wanted to know how big it was.”

You get out your telescope and find Betelgeuse. Using the set of instruments 
you always carry in your pocket, you use the spectrum of the star to measure 
its temperature (the distribution of the intensity of the light over the different 
wavelengths is directly related to its surface temperature because stars radi-
ate like blackbodies). The temperature is about 2,900 kelvins and the star’s 
power output is 4.0 × 1030 watts.

Because you know the rate at which the star is radiating energy and its sur-
face temperature, you can use the Stefan-Boltzman law of radiation to relate 
the star’s surface area to these known values. Then assuming the star is 
a sphere, you can easily work out the radius of the sphere that has that 
surface area. 

You know that Q = eσAtT4, so the power is
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And you can solve for the surface area of the star, A, like this:

Assuming that Betelgeuse is a sphere, you can connect the surface area to 
the star’s radius by using this formula for spheres:

A = 4πr2

Solve for r:

Plugging in the star’s surface-area expression for A, you get the following:

Assuming that e = 1, plugging in numbers gives you:

That’s a pretty big radius for a star. If the sun had that radius, the Earth 
would be inside it — and so would Mars.

“Two hundred eighty million kilometers,” you tell the astronomers, and you 
hand them your bill.
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Chapter 16

In the Best of All Possible 
Worlds: The Ideal Gas Law

In This Chapter
▶ Getting gassy with Avogadro’s number

▶ Finding your ideal gas

▶ Mastering Boyle’s and Charles’s laws

▶ Keeping up with the molecules in ideal gases

G as gets just about everywhere — in balloons, in the wind, in your stove, 
even in your lungs. In physics, an atom-by-atom (or molecule-by-molecule) 

knowledge of these gases is essential when you start working with heat, pres-
sure, volume, and more.

Get out your stomach pills, because in this chapter, you get gassy! This chap-
ter focuses on the ideal gas law, which explains the relationship among pres-
sure, heat, volume, and the amount of a gas. But first, I introduce you to the 
mole, a measurement that helps you work with gases on the molecular level. 

Digging into Molecules and Moles 
with Avogadro’s Number

To look at gases on the molecular level, you need to know how many mol-
ecules you have in a certain sample. Counting the molecules is impractical, 
so instead, physicists use a measurement called a mole to relate the mass of 
a sample to the number of molecules it contains.
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A mole (abbreviated mol) is the number of atoms in 12.0 grams of carbon 
isotope 12. Carbon isotope 12 — also called carbon-12, or just carbon 12 — 
is the most common version of carbon. Isotopes of an element have the same 
number of protons but different numbers of neutrons. Carbon-12 has six pro-
tons and six neutrons (a total of 12 particles); however, some carbon atoms 
(isotopes) have a few more neutrons in them — carbon-13, for example, has 
seven neutrons. The average mass of a mole of a mixture of the carbon iso-
topes works out to be 12.011 grams.

 The number of atoms in one mole (in 12.0 grams of carbon-12) has been mea-
sured as 6.022 × 1023, which is called Avogadro’s number, N

A
.

Do you find the same number of atoms in, say, 12.0 grams of sulfur? Nope. 
Each sulfur atom has a different mass from each carbon atom, so even if you 
have the same number of grams, you have a different number of atoms.

How much more mass does an atom of sulfur have than an atom of carbon-12? 
If you check the periodic table of elements hanging on the wall in a science lab, 
you find that the atomic mass of sulfur is 32.06. (Note: The atomic mass usually 
appears under the element’s symbol.) But 32.06 what? It’s 32.06 atomic mass 
units, u, where each atomic mass unit is 1/12 of the mass of a carbon-12 atom.

A mole of carbon-12 (6.022 × 1023   atoms of carbon-12) has a mass of 
12.0 grams, and the mass of your average sulfur atom is bigger than 
the mass of a carbon-12 atom:

Sulfur mass = 32.06 u

Carbon 12 mass = 12 u

Therefore, a mole of sulfur atoms must have this mass:

 How convenient! A mole of an element has the same mass in grams as its 
atomic mass in atomic units. You can read the atomic mass of any element 
in atomic units off any periodic table. For instance, you can find that a mole 
of silicon (atomic mass: 28.09 u) has a mass of 28.09 grams, a mole of sodium 
(atomic mass: 22.99 u) has a mass of 22.99 grams, and so on. Each of those 
moles contains 6.022 × 1023 atoms.
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Now you can determine the number of atoms in a diamond, which is solid 
carbon (atomic mass: 12.01 u). A mole is 12.01 grams of diamond, so when you 
find out how many moles you have, you multiply that times 6.022 × 1023 atoms. 
Then if you like, you can work out how many atoms of carbon are in a 1 carat 
diamond: 1 carat is equal to 0.200 grams, so here’s how many atoms you have:

 Not every object is made up of a single kind of atom. When atoms combine, 
you have molecules. For example, water is made up of two hydrogen atoms 
for every one oxygen atom (H2O). Instead of the atomic mass, you look for the 
molecular mass, which is also measured in atomic mass units. For example, 
the molecular mass of water is 18.0153 atomic mass units, so 1 mole of water 
molecules has a mass of 18.0153 grams. 

Some physics problems provide the molecular mass; others require you to 
calculate molecular mass by using the atomic mass and the compound’s 
molecular formula. That is, you add the atomic masses of the individual 
atoms in the molecule.

Relating Pressure, Volume, and 
Temperature with the Ideal Gas Law

When you start working atom-by-atom and molecule-by-molecule, you begin 
working with gases from a physics point of view. For example, you can relate 
the temperature, pressure, volume, and number of moles together for a gas. 
The relation I introduce in this section doesn’t always hold true, but it always 
works for ideal gases.

 Ideal gases are those gases for which the ideal gas law holds. This law is an 
idealized model in which the gas’s particles are small compared to the aver-
age distance between them and only interact by colliding elastically. It so 
happens that there is no such “ideal” gas, but real gases best approximate this 
scenario when the pressure is low and the temperature is high. Ideal gases are 
very light, like helium.
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Forging the ideal gas law
By using the ideal gas law, you can predict the pressure of an ideal gas 
if given how much gas you have, its temperature, and the volume you’ve 
enclosed it in. Here’s how the various factors affect pressure:

 ✓ Temperature: Experiments show that if you keep the volume constant 
and heat a gas, the pressure goes up linearly, as you see in Figure 16-1. 
In other words, at a constant volume, where T is the temperature mea-
sured in kelvins and P is the pressure, the pressure is proportional to 
temperature:

  P  T

 ✓ Volume: If you let the volume vary, you also find that the pressure is 
inversely proportional to the volume:

  

  For instance, if the volume of a gas doubles, its pressure is cut in half.

 ✓ Moles: When the volume and temperature of an ideal gas are constant, 
the pressure is proportional to the number of moles of gas you have — 
twice the amount of gas, twice the pressure (see the earlier section 
“Digging into Molecules with Avogadro’s Number” for info on moles). 
If the number of moles is n, then you can say the following:

  

 

Figure 16-1: 
For an 

ideal gas, 
pressure 

is directly 
proportional 

to 
temperature.
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 Adding a constant, R — the universal gas constant, which has a value of 
8.31 joules/mole-kelvin (J/mol·K) — gives you the ideal gas law, which 
relates pressure, volume, number of moles, and temperature:

PV = nRT

 The unit of pressure is the pascal and the unit of volume is meters3, and they 
combine to give the joule; when the quantity of gas, n, is measured in moles 
and the temperature, T, is measured in kelvins, then the units of the universal 
gas constant, R, are joules/mole-kelvin (J/mol·K).

You can also express the ideal gas law a little differently by using the total 
number of molecules, N, and Avogadro’s number, N

A
 (see the earlier section 

“Digging into Molecules and Moles with Avogadro’s Number”):

 The constant R/N
A
 is also called Boltzmann’s constant, k, and it has a value of 

1.38 × 10–23 J/K. Using this constant, the ideal gas law becomes

PV = NkT 

Say that you’re measuring a volume of 1 cubic meter filled with 600 moles of 
helium at room temperature, 27°C, which is very close to an ideal gas under 
these conditions. What’s the pressure of the gas? Using this form of the ideal 
gas law, PV = nRT, you can put P on one side by dividing by V. Now plug 
in the numbers, making sure you convert temperature to kelvins (see 
Chapter 14 for details):

 

The pressure on all the walls of the container is 1.50 × 106 N/m2. Notice the 
units of pressure here — newtons per square meter. The unit is used so 
commonly that it has its own name in the MKS system: pascals, or Pa.

 One pascal equals 1 newton per square meter, or 1.45 × 10–4 pounds per 
square inch. Atmospheric pressure is 1.013 × 105 pascals, which is 14.70 
pounds per square inch. The pressure of 1 atmosphere is also given in torr 
on occasion, and 1.0 atmosphere = 760 torr.

In this example, you have a pressure of 1.50 × 106 pascals, which is about 
15 atmospheres.
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Working with standard temperature 
and pressure

 You may come across a special set of conditions when talking about gases — 
standard temperature and pressure, or STP. The standard pressure is 1 atmo-
sphere (or 1.013 × 105 Pa), and the standard temperature is 0°C (or 273.15 K).

You can use the ideal gas law to calculate that at STP, 1.0 mole of an ideal gas 
occupies 22.4 liters of volume (1.0 liter is 1 × 10–3 m3). How do you get 22.4 
liters? You know that PV = nRT, and solving for V gives you

 

Plug in STP conditions and do the math:

And that’s 22.4 liters, the volume 1 mole of ideal gas occupies at STP conditions.

A breathing problem: 
Checking your oxygen
Here’s an example using the ideal gas law. There you are, walking in the park, 
when you notice a man sitting on a park bench and gasping. You ask what’s 
wrong. “I don’t think I’m getting enough oxygen in my lungs,” he says.

You decide to check it out. Using a large plastic bag you happen to have with 
you, you measure his lung capacity as 5.0 liters. How many molecules of 
oxygen does that correspond to? You know that, to a good approximation, 
air is an ideal gas, so you can use the ideal gas law:

PV = NkT 

Solving for N, the number of molecules, gives you the following equation:
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The pressure in the lungs is about atmospheric pressure, so P = 1.0 × 105 Pa. 
The temperature in the lungs is body temperature, so T = 37°C, or about 
310 kelvins (K = C + 273.15). V is the volume of the lungs, which you’ve 
measured at 5.0 liters, or 0.0050 cubic meters. Putting this all together 
and doing the math gives you the answer:

Being a physicist, you happen to know that the gas in the lungs is about 
14 percent oxygen (a little less than in air by itself), so the number of 
oxygen molecules in the man’s lungs equals

 (0.14)(1.2 × 1023 molecules) ≈ 1.7 × 1022 molecules

You turn to the man and say, “You have approximately 17 sextillion molecules 
of oxygen in your lungs.” That’s more than enough.

Boyle’s and Charles’s laws: Alternative 
expressions of the ideal gas law

 You can often express the ideal gas law in different ways. For example, you can 
express the relationship between the pressure and volume of an ideal gas before 
and after one of those quantities changes at a constant temperature like this:

P
f
V

f
 = P

i
V

i

This equation, called Boyle’s law, says that all other factors being the same, 
the product of pressure and volume (PV) will be conserved. 

 At constant pressure, you can say that the following relationship is true for an 
ideal gas:

This equation, called Charles’s law, says that the ratio of volume to tempera-
ture (V/T) will be conserved for an ideal gas, all other factors being the same.
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Here’s an example that uses Boyle’s law. You’re taking a well-deserved vaca-
tion on the beach when the director of the Acme Tourism Company runs up 
to you and says, “We usually let our tourists scuba dive at 10.0 meters for 
ten minutes, but one of our tourists says he wants to stay down for a half 
an hour. He’s going to run out of air, and we’ll be sued!”

“Hmm,” you say. “Let me have your data.” You take some papers from the 
director and see that the Acme Tourism Company has scuba tanks with a 
volume of 0.015 cubic meters that are pressurized to 2.0 × 107 pascals. The 
diver breathes at a rate of 0.04 cubic meters per minute.

Because you’re a physicist, you happen to know how scuba tanks work. They 
keep the air in the lungs at the same pressure as the surrounding water pres-
sure (or else the lungs may collapse). 

The way to tackle this problem is to take the volume of pressurized air inside 
the tank and work out what its volume would be if it were all released at the 
pressure you find at the submerged depth. You know the oxygen require-
ments of the body as a volume rate, so you can work out how long the pres-
surized air can sustain breathing from the volume the air would have at the 
submerged pressure. To work out the volume the pressurized air in the tank 
would have when released at the submerged depth, you use Boyle’s law:

P
f
V

f
 = P

i
V

i
 

You know the pressure of the scuba tank and its volume. Now you need to 
know the pressure at the diver’s depth to be able to calculate the available 
volume of air for the diver. You can find the water pressure with this equa-
tion (see Chapter 8), where P

w
 is the pressure of the water, ρ is the water’s 

density, g is the acceleration due to gravity, and h is the change in depth:

P
w
 = ρgh 

The density of water is about 1,025 kilograms per cubic meter, and the diver 
descends 10.0 meters, so you have the following pressure from the water:

P
w
 = ρgh = (1,025 kg/m3)(9.8 m/s2)(10.0 m) ≈ 1.0 × 105 Pa 

To get the total pressure at the diver’s depth, add the pressure of air on the sur-
face of the water — that is, atmospheric pressure, P

a
 — to the water pressure:

P
f
 = P

a
 + P

w
 = (1.0 × 105 Pa) + (1.0 × 105 Pa) = 2.0 × 105 Pa 

Now you’re ready to use Boyle’s equation:

P
f
V

f
 = P

i
V

i
 

where P
i
 is the pressure of the tank and V

i
 is the volume of the tank.

23_9780470903247-ch16.indd   31023_9780470903247-ch16.indd   310 5/26/11   11:21 PM5/26/11   11:21 PM



311 Chapter 16: In the Best of All Possible Worlds: The Ideal Gas Law

You want to find the volume of air available to the diver, so solve for V
f
:

 

Plugging in the numbers and doing the math gives you the volume of air available:

How long will that last? The diver breathes at a rate of 0.04 cubic meters per 
minute, so 1.5 cubic meters of air is enough for

You tell the director that the diver will have enough air for 38 minutes. The 
director breathes a sigh of relief. “No lawsuit, then?”

“No lawsuit.”

“But what if the diver goes down to 30.0 meters?” You figure out the new 
pressure from the water at 30 meters:

P
w
 = ρgh = (1,025 kg/m3)(9.8 m/s2)(30.0 m) ≈ 3.0 × 105 Pa 

And add air pressure to get

P
f
 = P

a
 + P

w
 = (1.01 × 105 Pa) + (3.0 × 105 Pa) = 4.01 × 105 Pa 

As before, you want to find V
f
, the volume of air available to the diver:

 

Plugging in the numbers and doing the math gives you this result:

At a rate of 0.03 cubic meters per minute, 0.75 cubic meters of air is enough for
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“Uh oh,” you tell the director.

“Lawsuit?” the director asks.

“Lawsuit.”

Tracking Ideal Gas Molecules with 
the Kinetic Energy Formula

 You can examine certain properties of molecules of an ideal gas as they zip 
around. For instance, you can calculate the average kinetic energy of each 
molecule with a very simple equation:

where k is Boltzmann’s constant, 1.38 × 10–23 joules per kelvin (J/K), and T is 
the temperature in kelvins. And because you can determine the mass of each 
molecule if you know which gas you’re dealing with (see the section “Digging 
into Molecules and Moles with Avogadro’s Number” earlier in this chapter), 
you can figure out the molecules’ speeds at various temperatures.

Predicting air molecule speed
Imagine you’re at a picnic with friends on a beautiful spring day. You can’t 
see the air molecules whizzing around you, but you can predict their average 
speeds. You get out your calculator and thermometer. You measure the air 
temperature at about 28°C, or 301 kelvins (see Chapter 14 for this conver-
sion). You know that for the molecules in the air, you can measure their 
average kinetic energy with

Now plug in the numbers:

The average molecule has a kinetic energy of 6.23 × 10–21 joules. The mol-
ecules are pretty small — what speed does 6.23 × 10–21 joules correspond to? 
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Well, you know that KE = (1/2)mv2 where m is the mass and v is the velocity 
(see Chapter 9). Therefore,

Air is mostly nitrogen, and each nitrogen atom has a mass of about 
14.0 u = 2.32 × 10–26 kg (you can figure that one out yourself by finding the 
mass of a mole of nitrogen and dividing by the number of atoms in a mole, 
N

A
). In air, nitrogen molecules form molecules comprising two nitrogen 

atoms, so the mass of these molecules is 28.0 u = 4.65 × 10–26 kg. You can 
plug in the numbers to get

Yow! What an image; huge numbers of the little guys crashing into you at 
1,160 miles per hour! Good thing for you the molecules are so small. Imagine 
if each air molecule weighed a couple of pounds. Big problems.

Calculating kinetic energy in an ideal gas
Molecules have very little mass, but gases contain many, many molecules, 
and because they all have kinetic energy, the total kinetic energy can pile up 
pretty fast. How much total kinetic energy can you find in a certain amount of 
gas? Each molecule has this average kinetic energy:

To figure the total kinetic energy, you multiply the average kinetic energy by the 
number of molecules you have, which is nN

A
, where n is the number of moles:

 N
A
k equals R, the universal gas constant (see the section “Forging the ideal gas 

law” earlier in this chapter), so this equation becomes the following:
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If you have 6.0 moles of ideal gas at 27°C, here’s how much internal energy is 
wrapped up in thermal movement (make sure you convert the temperature 
to kelvins):

This converts to about 5 kilocalories, or Calories (the kind of energy unit you 
find on food wrappers). 

Suppose you’re testing out your new helium blimp. As it soars into the sky, 
you stop to wonder, as any physicist might, just how much internal energy 
there is in the helium gas that the blimp holds. The blimp holds 5,400 cubic 
meters of helium at a temperature of 283 kelvins. The pressure of the helium 
is slightly greater than atmospheric pressure, 1.1 × 105 pascals. So what is the 
total internal energy of the helium? 

The total–kinetic energy formula tells you that KE
total

 = (3/2)nRT. You know 
T, but what’s n, the number of moles? You can find the number of moles of 
helium with the ideal gas equation:

PV = nRT

Solving for n gives you the following:

Plug in the numbers and solve to find the number of moles:

So you have 2.5 × 105 moles of helium. Now you’re ready to use the equation 
for total kinetic energy:

Putting the numbers in this equation and doing the math gives you

So the internal energy of the helium is 8.8 × 108 joules. That’s about the same 
energy stored in 94,000 alkaline batteries.
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Chapter 17

Heat and Work: The Laws of 
Thermodynamics

In This Chapter
▶ Achieving thermal equilibrium

▶ Storing heat and energy under different conditions

▶ Revving up heat engines for efficiency

▶ Dropping close to absolute zero

If you’ve ever had an outdoor summer job, you know all about heat and 
work, a relationship encompassed by the term thermodynamics. This 

chapter brings together those two cherished topics, which I cover in detail 
in Chapter 9 (work) and Chapter 14 (heat).

Thermodynamics has laws one through three, much like Newton, but it 
does Newton one better: Thermodynamics also has a zeroth law. You may 
think that odd, because few other sets of everyday objects start off that way 
(“Watch out for that zeroth step — it’s a doozy . . .”), but you know how 
physicists love their traditions.

In this chapter, I cover thermal equilibrium (the zeroth law), heat and energy 
conservation (the first law), heat flow (the second law), and absolute zero 
(the third law). Time to throw the book at thermodynamics.

Thermal Equilibrium: Getting Temperature 
with the Zeroth Law

Two objects are in thermal equilibrium if heat can pass between them but no 
heat is actually doing so. For example, if you and the swimming pool you’re 
in are at the same temperature, no heat is flowing from you to it or from it 
to you (although the possibility is there). You’re in thermal equilibrium. On 
the other hand, if you jump into the pool in winter, cracking through the ice 
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covering, you won’t be in thermal equilibrium with the water. And you don’t 
want to be. (Don’t try this physics experiment at home!)

To check for thermal equilibrium (especially in cases of frozen swimming 
pools that you’re about to jump into), you should use a thermometer. You 
can check the temperature of the pool with the thermometer and then check 
your temperature. If the two temperatures agree — in other words, if you’re 
in thermal equilibrium with the thermometer, and the thermometer is in 
thermal equilibrium with the pool — you’re in thermal equilibrium with 
the pool.

 The zeroth law of thermodynamics says that if two objects are in thermal 
equilibrium with a third, then they’re in thermal equilibrium with each other. 
Then you can say that each of these objects has a thermal property that they 
all share — this property is called temperature.

Among other jobs, the zeroth law sets up the idea of temperature as an 
indicator of thermal equilibrium. The two objects mentioned in the zeroth 
law are in equilibrium with a third, giving you what you need to set up a scale 
such as the Kelvin scale.

Conserving Energy: The First 
Law of Thermodynamics

The first law of thermodynamics deals with energy conservation. One of the 
forms of energy involved is the internal energy that resides in the motion of 
the atoms and molecules (vibrations and random jostling). Another of the 
terms in this law is heat, which is a transfer of thermal energy. And finally, 
there is work, which is a transfer of mechanical energy; for example, work is 
done on a gas when it is compressed. The first law of thermodynamics states 
that these energies, together, are conserved. The initial internal energy in a 
system, U

i
, changes to a final internal energy, U

f
, when heat, Q, is absorbed 

or released by the system and the system does work, W, on its surroundings 
(or the surroundings do work on the system), such that

U
f
 – U

i
 = ΔU = Q – W

For mechanical energy to be conserved (see Chapter 9), you have to work 
with systems where no energy is lost to heat — there could be no friction, for 
example. All that changes now. Now you can break down the total energy of a 
system, which includes heat, work, and the internal energy of the system.
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These three quantities — heat, work, and internal energy — make up all the 
energy you need to consider. When you add heat, Q, to a system, and that 
system doesn’t do work, the amount of internal energy in the system, which is 
given by the symbol U, changes by Q. A system can also lose energy by doing 
work on its surroundings, such as when an engine lifts weight at the end of a 
cable. When a system does work on its surroundings and gives off no waste 
heat, its internal energy, U, changes by W. In other words, you’re in a position 
to think in terms of heat as energy, so when you take into account all three 
quantities — heat, work, and the internal energy — energy is conserved.

The first law of thermodynamics is a powerful one because it ties all the 
quantities together. If you know two of them, you can find the third.

Calculating with conservation of energy
The most confusing part about using ΔU = Q – W is figuring out which signs to 
use. The quantity Q (heat transfer) is positive when the system absorbs heat 
and negative when the system releases heat. The quantity W (work) is positive 
when the system does work on its surroundings and negative when the 
surroundings do work on the system.

 To avoid confusion, don’t try to figure out the positive or negative values of 
every mathematical quantity in the first law of thermodynamics; work from 
the idea of energy conservation instead. Think of values of work and heat 
flowing out of the system as negative:

 ✓ The system absorbs heat: Q > 0

 ✓ The system releases heat: Q < 0

 ✓ The system does work on the surroundings: W > 0.

 ✓ The surroundings do work on the system: W < 0.

Practicing the sign conventions
Say that a motor does 2,000 joules of work on its surroundings while releasing 
3,000 joules of heat. By how much does its internal energy change? In this 
case, you know that the motor does 2,000 joules of work on its surroundings, 
so its internal energy (U) will decrease by 2,000 joules. And the system also 
releases 3,000 joules of heat while doing its work, so the internal energy of 
the system decreases by an additional 3,000 joules. Thinking this way makes 
the total change of internal energy the following:

ΔU = –2,000 J – 3,000 J = –5,000 J 
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The internal energy of the system decreases by 5,000 joules, which makes 
sense. On the other hand, what if the system absorbs 3,000 joules of heat from 
the surroundings while doing 2,000 joules of work on those surroundings? In 
this case, you have 3,000 joules of energy going in and 2,000 joules going out. 
The signs are now easy to understand:

ΔU = –2,000 J [work going out] + 3,000 J [heat coming in] = 1,000 J 

In this case, the net change to the system’s internal energy is +1,000 joules. 

You can also see negative work when the surroundings do work on the 
system. Say, for example, that a system absorbs 3,000 joules at the same time 
that its surroundings perform 4,000 joules of work on the system. You can tell 
that both of these energies will flow into the system, so the system’s internal 
energy goes up by 3,000 J + 4,000 J = 7,000 J. If you want to go by the numbers, 
use this equation:

ΔU = Q – W 

Then note that because the surroundings are doing work on the system, W is 
considered negative. Therefore, you get the following equation:

ΔU = Q – W = +3,000 J – (–4,000 J) = 7,000 J 

Say that the system absorbs 1,600 joules of heat from the surroundings and 
performs 2,300 joules of work on the surroundings. What is the change in 
the system’s internal energy? Use the equation ΔU = Q – W. Here, Q is positive, 
because energy is absorbed by the system, and work is also positive, because 
work is done by the system, so you have

ΔU = Q – W = +1,600 J – (+2,300 J) = 700 J 

So the internal energy of the system decreases by 700 joules. 

Now say that the system absorbs 1,600 joules of heat while the surroundings 
do 2,300 joules of work on the system. What’s the change in the internal 
energy of the system?

In this case, the work done by the system is negative — that is, the 
surroundings do work on the system. So using ΔU = Q – W, you do the 
following calculations: 

ΔU = Q – W 

 = +1,600 J – (–2,300 J) 

 = +1,600 J + 2,300 J

 = 3,900 J 
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So in this case, where the system both absorbs heat and work is done on it, 
the change in internal energy is 3,900 joules.

Trying a first-law-of-thermodynamics sample problem
The president of Acme Gas comes up to you, the world-famous physicist. 
“Our gases are getting lazy,” the president says. “We have two processes, 
and we need to select the process where the gas does the most work for us. 
In both methods, the temperature of 6.0 moles of ideal gas is reduced from 
590 kelvins to 400 kelvins. In method one, 5,500 joules of heat flow into the 
gas, while in method two, 1,500 joules of heat flow into the gas. So in which 
method does the gas do more work?”

Hmm, you think. Now’s the time to use the equation ΔU = Q – W. You want to 
find the work, so you solve for the work done by the gas:

W = Q – ΔU 

You know how much heat, Q, flows into the gas in each method because the 
president just told you those numbers. But what about the change in internal 
energy of the gas? You know that the internal kinetic energy of an ideal gas is 
the following (taking a tip from Chapter 16):

 

And because the gas is ideal, the molecules don’t interact with one another, 
so the gas has no potential energy; therefore, the total internal energy of the 
gas is simply the kinetic energy:

That means that the internal energy of an ideal gas depends only on its 
temperature. Because the gas ends up with the same temperature change 
in both methods Acme Gas uses, the change of the internal energy of the 
gas will be the same in both cases.

In particular, the change in the internal energy of the gas in both methods is
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So because the ideal gas drops in temperature, the internal energy of the gas 
is reduced — in this case, by 14,200 joules.

Now you can plug the value of ΔU into the work equations for the ideal gas in 
both methods:

W = Q – (–14,200 J) 

In method one, the gas absorbs 5,500 joules, so you have

W1 = 5,500 J – (–14,200 J) = 19,700 J 

And for the second method, the gas absorbs 1,500 joules, so here’s how 
much work the gas does:

W2 = 1,500 J – (–14,200 J) = 15,700 J 

“In method one,” you tell the president of Acme Gas, “the gas does 19,700 
joules of work. In method two, the gas only does 15,700 joules of work.”

“We’ll use method one, then,” says the president. “And stop those gases from 
getting lazy!”

Staying constant: Isobaric, isochoric, 
isothermal, and adiabatic processes
You come across a number of quantities in this chapter — volume, pressure, 
temperature, and so on. The ways in which these quantities vary as work is 
done determine the final state of the system. For example, if a gas is doing 
work while you keep its temperature constant, the amount of work performed 
and the intermediate and final states of the system will be different from 
when you keep the gas’s pressure constant instead.

 A gas performs work only if the gas expands. You can show this idea 
mathematically. First, note that work, W, equals force, F, times distance, s 
(see Chapter 9):

W = Fs

In turn, force equals pressure, P, times area, A (see Chapter 8). This means 
that you can write work as pressure times area times distance:

W = PAs
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Finally, the area times the distance (As) equals the change in volume, ΔV, so 
here’s the new work equation:

W = PΔV

 The formula W = PΔV makes graphs of pressure versus volume very useful 
in thermodynamics. The curve you draw shows how pressure and volume 
change in relation to each other, and the area under the curve shows how 
much work is done.

In this section, I cover four standard conditions under which work is 
performed in thermodynamics: constant pressure, constant volume, 
constant temperature, and constant heat. I also graph pressure and volume 
for each of these processes and show you what work looks like. Note: When 
anything changes in these processes, the change is assumed to be quasi-static, 
which means the change comes slowly enough that the pressure and 
temperature are the same throughout the system’s volume.

At constant pressure: Isobaric
When you have a process where the pressure stays constant, it’s called 
isobaric (baric means “pressure”). In Figure 17-1, you see a cylinder with a 
piston being lifted by a quantity of gas as the gas gets hotter. The volume of 
the gas is changing, but the weighted piston keeps the pressure constant.

 

Figure 17-1: 
An isobaric 
system may 

feature a 
change in 

volume, but 
the pressure 

remains 
constant.

 

Piston

Cylinder

Gas heat
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Graphically, you can see what the isobaric process looks like in Figure 17-2, 
where the volume is changing while the pressure stays constant. Because 
W = PΔV, the work is the shaded area beneath the graph.

 

Figure 17-2: 
Pressure 

and 
volume in 

an isobaric 
system.

 Volume

Vi Vf

Pr
es

su
re

Say you have 60 cubic meters of an ideal gas at a pressure of 200 pascals. You 
heat the gas until it expands to a volume of 120 cubic meters (see Chapter 14 
for details on gas expansion as temperature rises). How much work does the 
gas do? All you have to do is plug in the numbers:

W = PΔV = (200 Pa)(120 m3 – 60 m3) = 12,000 J 

The gas does 12,000 joules of work as it expands under constant pressure.

Working with constant water pressure
Suppose you’re waiting for a connecting flight to the next physics conference. 
You look around but don’t see much to amuse yourself with — just a water 
fountain. Proving that physicists can find fun anywhere, you take a gram of 
water from the fountain and put it into the pocket isobaric chamber that you 
always happen to carry with you. As an airport security guard looks on, you 
increase the pressure to 2.0 × 105 pascals and increase the temperature of the 
water by 62°C. 
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You note that the gram of water increases in volume by 1.0 × 10–8 cubic 
meters. “Hmm,” you think. “I wonder what work was done by the water 
and what the change in internal energy of the water was.” The process 
was isobaric, so the work done by the water was

W = PΔV 

Filling in the numbers and doing the math yields:

W = (2.0 × 105 Pa)(1.0 × 10–8 m3) = 0.002 J 

So that’s the work done by the water. What about the change in the internal 
energy of the water? The first law of thermodynamics tells you that

ΔU = Q – W

You know W, but what is Q? Q is the heat absorbed by the water. You know 
the change in temperature of the water, and using the water’s specific heat 
capacity (Chapter 15), you can find the heat actually absorbed by the water 
using this equation:

Q = cmΔT

Water’s specific heat capacity is 4,186 J/kg·°C. Plugging in the numbers and 
doing the math gives you

Q = cmΔT = (4,186 J/kg·°C)(0.0010 kg)(62°C) ≈ 260 J 

Now back to the first law of thermodynamics:

ΔU = Q – W 

Substituting in the values gives you the change in internal energy:

ΔU = Q – W = 260 J – 0.002 J ≈ 260 J 

Hmm, you think. The work done was a tiny 0.002 joules, while the change 
in internal energy was 260 joules. Interesting — very little work was done 
because the water didn’t expand much, but you saw a fair gain in internal 
energy because the water’s temperature went up.
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Increasing steam’s energy without changing the pressure
Now you decide to find the work done by something that can really expand, 
such as steam. Would the work done change by a lot? You decide to take 
a look. 

Using your isobaric chamber, you raise the temperature of a gram of water 
until it becomes steam. Then you raise the temperature of the steam by 62°C 
(just as you raise the temperature of the liquid water by the same amount in 
the preceding section) while keeping the pressure at 2.0 × 105 pascals. This 
time, you note that the steam expanded by a lot more than the liquid water 
did — by 7.1 × 10–5 cubic meters.

How much work did the steam do? Because the expansion was in your pocket 
isobaric chamber, the process didn’t involve a change in pressure, so you 
can use the following equation:

W = PΔV 

Substituting in the numbers and doing the math gives you

W = PΔV = (2.0 × 105 Pa)(7.1 × 10–5 m3) ≈ 14 J 

Now what about the change in internal energy of the steam? Once again, you 
can use the equation for the first law of thermodynamics:

ΔU = Q – W

You know W, but what is Q? Q is the heat absorbed by the steam. You know 
the temperature change of the steam, so you can use the following equation:

Q = cmΔT

Plugging in the numbers and doing the math gives you

Q = cmΔT = (2,020 J/kg·°C)(0.0010 kg)(62°C) ≈ 126 J 

Going back to the first law of thermodynamics, you get the following after 
you plug in the numbers and do the math:

ΔU = Q – W = 126 J – 14 J = 112 J 
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The steam did much more work than the water did when it expanded, so less 
energy was available to boost the total internal energy of the steam.

“Hey buddy,” says the airport security guard, indicating your pocket isobaric 
chamber, “What’s that contraption?”

“This contraption just told me that the steam does a lot more work through 
expansion under isobaric conditions than liquid water does.”

The security guard blinks and says, “Oh.”

At constant volume: Isochoric
What if the pressure in a system isn’t constant? You may see a simple closed 
container, which can’t change its volume. In this case, the volume is con-
stant, so you have an isochoric process.

In Figure 17-3, someone has neglectfully tossed a spray can onto a fire. As the 
gas inside the spray can heats up, its pressure increases, but its volume stays 
the same (unless, of course, the can explodes).

 

Figure 17-3: 
An isochoric 

system 
features a 

constant 
volume as 

other 
quantities 

vary.
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How much work does the fire do on the spray can? Look at the graph in 
Figure 17-4. In this case, the volume is constant, so Fs (force times distance) 
equals zero. No work is being done — the area under the graph is zero.

 

Figure 17-4: 
Because 
volume is 

constant in 
an isochoric 

process, 
no work is 

done.
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Here’s an example. The CEO of Acme Pressure Vessels approaches you and 
says, “We’re adding 16,000 joules of energy to 5 moles of ideal gas at constant 
volume, and we want to know how much the internal energy changes. Can 
you help?”

You get out your clipboard and explain. The work done by an ideal gas 
depends on the change in its volume: W = PΔV (see the earlier section 
“Staying constant: Isobaric, isochoric, isothermal, and adiabatic processes” 
for details on why). Because the volume change is zero in this case, the 
work done is zero.

The change in internal energy of an ideal gas is ΔU = Q – W. Because W is 
zero, the following is true:

ΔU = Q 

You turn to the CEO and say, “You’ve added 16,000 joules of energy to an 
ideal gas at constant volume, so the change in the gas’s internal energy is 
exactly 16,000 joules.”

“What?” says the CEO. “That was too easy. We won’t pay.”

Handing the CEO a receipt, you say, “You already have. Thanks for 
your business.”
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At constant temperature: Isothermal
In an isothermal system, the temperature remains constant as other quantities 
change. Look at the remarkable apparatus in Figure 17-5. It’s specially designed 
to keep the temperature of the enclosed gas constant, even as the piston rises. 
When you apply heat to this system, the piston rises or lowers slowly in such 
a way as to keep the product of pressure times volume constant. Because PV = 
nRT (see Chapter 14), the temperature stays constant as well. (Remember that 
n is the number of moles of gas that remains constant, and R is the gas constant.)

What does the work look like as the volume changes? Because PV = nRT, the 
relation between P and V is

 

You can see this equation graphed in Figure 17-6, which shows the work done 
as the shaded area underneath the curve. But what the heck is that area?

 The work done in an isothermal process is given by the following equation, 
where ln is the natural log (ln on your calculator), R is the gas constant 
(8.31 J/mol·K), V

f
 is the final volume, and V

i
 is the initial volume:

 

Figure 17-5: 
An 

isothermal 
system 

maintains 
a constant 

temperature 
amidst other 

changes.
 

Piston

Cylinder
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Figure 17-6: 
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 Because the temperature stays constant in an isothermal process and because 
the internal energy for an ideal gas equals (3/2)nRT (see Chapter 16), the inter-
nal energy doesn’t change. Therefore, you find that heat equals the work done 
by the system:

ΔU = Q – W

 0 = Q – W

 Q = W

If you immerse the cylinder you see in Figure 17-5 in a heat bath, what 
would happen? The heat, Q, would flow into the apparatus, and because 
the temperature of the gas stays constant, all that heat would become 
work done by the system.

Say that you have a mole of helium to play around with on a rainy day of 
temperature 20°C, and for fun you decide to expand it from V

i
 = 0.010 m3 to 

V
f
 = 0.020 m3. What’s the work done by the gas in the expansion? All you 

have to do is plug in the numbers:

The gas does 1,690 joules of work. The gas’s change in internal energy is 
0 joules, as always in an isothermal process. And because Q = W, the heat 
added to the gas is also equal to 1,690 joules.
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Here’s another example. Say that you’re given 2.0 moles of hydrogen gas at 
a temperature of 600 kelvins for your birthday. Expanding the gas from a 
volume of 0.05 cubic meters to 0.10 meters isothermally, you wonder how 
much work the gas does, so you get out your clipboard. The work done by 
an ideal gas during isothermal expansion is

Plugging in the numbers and doing the math gives you

So the gas does 6,900 joules of work during its expansion.

So what about the change in the internal energy of the gas? You know that 
the change in internal energy is ΔU = (3/2)nRΔT (see Chapter 16 for details). 
Therefore, because ΔT equals zero in an isothermal process, ΔU is zero as 
well. So the change in the internal energy of the gas is zero during the 
isothermal expansion.

At constant heat: Adiabatic
In an adiabatic process, no heat flows from or to the system. Take a look at 
Figure 17-7, which shows a cylinder surrounded by an insulating material. 
The insulation prevents heat from flowing into or out of the system, so any 
change in the system is adiabatic.

Examining the work done during an adiabatic process, you can say Q = 0, so 
ΔU (the change in internal energy) equals –W. Because the internal energy of 
an ideal gas is U = (3/2)nRT (see Chapter 14), the work done is the following:

where T
f
 represents the final temperature and T

i
 represents the initial 

temperature. So if the gas does work, that work comes from a change 
in temperature — if the temperature goes down, the gas does work on 
its surroundings.

You can see what a graph of pressure versus volume looks like for an 
adiabatic process in Figure 17-8. The adiabatic curve in this figure, called 
an adiabat, is different from the isothermal curves, called isotherms. The 
work done when the total heat in the system is constant is the shaded 
area under the curve.
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Figure 17-7: 
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In adiabatic expansion or compression, you can relate the initial pressure 
and volume to the final pressure and volume this way:

P
i
V

i
γ = P

f
V

f
γ 

In this equation, γ is the ratio of the specific heat capacity of an ideal gas at 
constant pressure divided by the specific heat capacity of an ideal gas at 
constant volume (specific heat capacity is the measure of how much heat an 
object can hold; see Chapter 15):

How can you find those specific heat capacities? That’s coming up next.

Figuring out molar specific heat capacities
To figure out specific heat capacity, you need to relate heat, Q, and tempera-
ture, T. You usually use the formula Q = cmΔT, where c represents specific 
heat capacity, m represents the mass, and ΔT represents the change 
in temperature.

For gases, however, it’s easier to talk in terms of molar specific heat capacity, 
which is given by C and whose units are joules/mole-kelvin (J/mol·K). With 
molar specific heat capacity, you use a number of moles, n, rather than 
the mass, m:

Q = CnΔT

To solve for C, you must account for two different quantities, C
P
 (constant 

pressure) and C
V
 (constant volume). Solved for Q, the first law of 

thermodynamics states that

Q = W + ΔU

So if you can get ΔU and W in terms of T, you’re set.

First consider heat at constant volume (Q
V
). The work done (W) is PΔV, so at 

constant volume, no work is done; W = 0, so Q
V
 = ΔU. And ΔU, the change in 

internal energy of an ideal gas, is (3/2)nRΔT (see Chapter 16). Therefore, Q at 
constant volume is the following:
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Now look at heat at constant pressure (Q
P
). At constant pressure, work (W) 

equals PΔV. And because PV = nRT, you can represent the work as nRT: 
W = PΔV = nRΔT. At constant pressure, the change in energy, ΔU, is 
still (3/2)nRΔT, just as it is at constant volume. Therefore, here’s Q 
at constant pressure:

So how do you get the molar specific heat capacities from this? You’ve 
decided that Q = CnΔT, which relates the heat exchange, Q, to the tempera-
ture difference, ΔT, via the molar specific heat capacity, C. This equation 
holds true for the heat exchange at constant volume, Q

V, so you write 

where C
V
 is the specific heat capacity at constant volume. You already have 

an expression for Q
V
, so you can substitute into the earlier equation:

Then you can divide both sides by nΔT to get the specific heat capacity at 
constant volume:

If you repeat this for the specific heat capacity at constant pressure, you get

Now you have the molar specific heat capacities of an ideal gas. The ratio you 
want, γ, is the ratio of these two equations:

 For an ideal gas, you can connect pressure and volume at any two points along 
an adiabatic curve this way:

P
i
V

i
5/3 = P

f
V

f
5/3 
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Finding a new pressure after an adiabatic change
Suppose you start with 1.0 liter of gas at a pressure of 1.0 atmosphere. After an 
adiabatic change (where no heat is gained or lost), you end up with 2.0 liters 
of gas. What would the new pressure, P

f
, be? Putting P

f 
on one side of the 

equation gives you

Plug in the numbers and do the math:

The new pressure would be 0.31 atmospheres.

Building a bigger lab: An adiabatic-change practice problem
There you are, the world-famous physicist, on vacation in Antarctica. The 
head of a South Pole scientific team comes running up to you and asks for 
your help. “We’ve got a big problem,” the director says.

“Oh yes?” you ask.

“We put an explorer on the South Pole in a lab with vacuum chamber walls — 
the walls prevent any heat from being gained or lost to the environment, so 
he stays nice and cozy,” the director says. “The problem is we pressurized 
it too highly. It’s at 2 atmospheres and the scientist is very uncomfortable. 
We’d like to expand the volume of the lab so that it’s at 1 atmosphere inside.”

Always willing to come to the aid of a fellow scientist, you take out your 
clipboard. The specially constructed lab has vacuum chamber walls, so no 
heat is exchanged with the outside. Therefore, the expansion will be an 
adiabatic one, and this equation applies:

The scientists want to reduce the pressure from 2 atmospheres to 
1 atmosphere, so
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Solving the pressure-volume equation for the ratio of pressures, P
f
/P

i
, you get

If you raise both sides of this equation to the power 3/5, you get

Then if you invert the terms on both sides (this is the same as raising both 
sides to the power of –1), you get the following

Finally, multiply both sides by V
i 
to get

If you put in the value of the pressure ratio, you have

So V
f
 is about 1.5V

i
. You turn to the director and say, “Expand the lab’s 

volume by 50 percent.”

“Thanks,” says the director. “Your usual fee?”

“No charge for a fellow scientist,” you say.

Flowing from Hot to Cold: The Second 
Law of Thermodynamics

 The second law of thermodynamics says that heat flows naturally from an 
object at a higher temperature to an object at a lower temperature, and 
heat doesn’t flow in the opposite direction of its own accord.
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The law is certainly borne out in everyday observation — when was the last time 
you noticed an object getting colder than its surroundings unless another object 
was doing some kind of work? You can force heat to flow away from an object 
when it would naturally flow into it if you do some work — as with refrigerators 
or air conditioners — but heat doesn’t go in that direction by itself.

Heat engines: Putting heat to work
You have many ways to turn heat into work. You may have a steam engine, 
for example, that has a boiler and a set of pistons, or you may have an atomic 
reactor that generates superheated steam that can turn a turbine.

Engines that rely on a heat source to do work are called heat engines; you can 
see the principle behind a heat engine in Figure 17-9. A heat source provides 
heat to the engine, which does work. The waste heat left over goes to a heat 
sink, which effectively has an infinite heat capacity, because it can take such 
a large amount of heat energy without changing temperature. The heat sink 
could be the surrounding air, or it could be a water-filled radiator, for example. 
As long as the heat sink is at a lower temperature than the heat source, the 
heat engine can do work — at least theoretically.

 

Figure 17-9: 
A heat 

engine turns 
heat into 

work.
 

Heat source

Engine Work

Heat sink

Evaluating heat’s work: Heat engine efficiency
Heat supplied by a heat source is given the symbol Q

h
 (for the hot source), 

and heat sent to a heat sink is given the symbol Q
c
 (for the cold heat sink). 
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With some calculations, you can find the efficiency of a heat engine. The 
efficiency is the ratio of the work the engine does, W, to the input amount 
of heat — the fraction of the input heat that the engine converts to work:

If the engine converts all the input heat to work, the efficiency is 1.0. If no 
input heat is converted to work, the efficiency is 0.0. Often, the efficiency 
is given as a percentage, so you express these values as 100 percent and 
0 percent.

 Because total energy is conserved, the heat into the engine must equal the 
work done plus the heat sent to the heat sink, which means that Q

h
 = W + Q

c
. 

Therefore, you can rewrite the efficiency in terms of just Q
h
 and Q

c
:

Finding heat from a car engine
Say that you have a heat engine that’s 78.0 percent efficient and that produces 
2.55 × 107 joules of energy. Perhaps this is the energy produced by the engine 
of a car from burning one tank of fuel. How much heat does the engine use, and 
how much does it reject? Well, you know that W = 2.55 × 107 joules and that

Solving for Q
h
 gives you

The amount of input heat is 3.27 × 107 joules. So how much heat gets left 
over and sent into the heat sink, Q

c
? You know that Q

h
 = W + Q

c
, and you 

can rearrange the problem to solve for Q
c
:

Q
c
 = Q

h
 – W

Plugging in the numbers gives you

Q
c
 = Q

h
 – W = (3.27 × 107 J) – (2.55 × 107 J) = 7.2 × 106 J

The amount of heat sent to the heat sink is 7.2 × 106 joules.
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Finding heat from your race car
You’re at the race track, testing out your new physics racer. You’re proud 
of the car, which has 25 percent efficiency. Today, you estimate, it’s already 
produced 8,000 joules of work. Then you notice a mechanic about to put his 
hand on the radiator. “Don’t touch that,” you say. “It’s got to be hot.”

“How hot could it be?” the mechanic asks.

How hot indeed? The car gets rid of its excess heat through the radiator, 
you think. So how much heat did the car get rid of? Your car is 25 percent 
efficient and has done 8,000 joules of work, so the input heat is

 

Plugging in the numbers gives you:

Okay, the input heat was 32,000 joules. You know that the input heat equals 
the work done plus the output heat Q

h
 = W + Q

c
, so the output heat is

Q
c
 = Q

h
 – W

The input heat was 32,000 joules and the engine did 8,000 joules of work, so 
plug in the numbers and solve:

Q
c
 = Q

h
 – W = 32,000 J – 8,000 J = 24,000 J

“How hot could the radiator be?” you ask the mechanic. “Twenty-four thousand 
joules hot, that’s how hot!”

“But how hot is that?” replies the mechanic? Indeed, if the radiator is 
10 kilograms and it absorbs 24,000 joules of energy, how much does its 
temperature change? Well, if its specific heat capacity is 460 J/kg·K, then 
the change in temperature is the following:

A difference of 5.2 kelvins is the same as a difference of 5.2°C. “Oh, only five 
degrees? That’s fine,” says the mechanic. You wonder whether you should 
tell him that’s more than 40°F.
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Limiting efficiency: Carnot 
says you can’t have it all
Given the amount of work a heat engine does and its efficiency, you can cal-
culate how much heat goes in and how much comes out (along with a little 
help from the law of conservation of energy, which ties work, heat in, and 
heat out together). But why not create 100-percent efficient heat engines? 
Converting all the heat that goes into a heat engine into work would be nice, 
but the real world doesn’t work that way. Heat engines have some inevitable 
losses, such as through friction on the pistons in a steam engine.

Studying this problem, Sadi Carnot (a 19th-century engineer) came to the 
conclusion that the best you can do, effectively, is to use an engine that has 
no such losses. If the engine experiences no losses, the system will return 
to the state it was in before the process took place. This is called a revers-
ible process. For example, if a heat engine loses energy overcoming friction, 
it doesn’t have a reversible process, because it doesn’t end up in the same 
state when the process is complete. You have the most efficient heat engine 
when the engine operates reversibly.

Carnot’s principle says that no nonreversible engine can be as efficient as a 
reversible engine and that all reversible engines that work between the same 
two temperatures have the same efficiency. Here’s the kicker: A perfectly 
reversible engine doesn’t exist, so Carnot came up with an ideal one. 

Finding efficiency in Carnot’s engine
No real engine can operate reversibly, so Carnot imagined a kind of ideal, 
reversible engine. In the Carnot engine, the heat that comes from the heat 
source is supplied at a constant temperature T

h
. Meanwhile, the rejected heat 

goes into the heat sink, which is at a constant temperature T
c
. Because the 

heat source and the heat sink are always at the same temperature, you can 
say that the ratio of the heat provided and rejected is the same as the ratio 
of those temperatures (expressed in kelvins):

 And because the efficiency of a heat engine is Efficiency = 1 – (Q
c
/Q

h
), the 

efficiency of a Carnot engine is
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This equation represents the maximum possible efficiency of a heat engine. 
You can’t do any better than that. And as the third law of thermodynamics 
states (see the final section in this chapter), you can’t reach absolute zero; 
therefore, T

c
 is never 0, so the efficiency is always 1 minus some number. 

You can never have a 100-percent efficient heat engine.

Using the equation for a Carnot engine
Applying the equation for maximum possible efficiency (Efficiency = 1 – Q

c
/Q

h
 = 

1 – T
c
/T

h
) is easy. For example, say that you come up with a terrific new 

invention: a Carnot engine that uses a balloon to connect the ground (27°C) 
as a heat source to the air at 33,000 feet (about –25°C), which you use as the 
heat sink. What’s the maximum efficiency you can get for your heat engine? 
After converting temperatures to kelvins, plugging in the numbers gives you

Your Carnot engine can be no more than 17.3 percent efficient — not too 
impressive. On the other hand, assume you can use the surface of the sun 
(about 5,800 kelvins) as the heat source and interstellar space (about 3.40 
kelvins) as the heat sink (such is the stuff science-fiction stories are made of). 
You’d have quite a different story:

You get a theoretical efficiency for your Carnot engine — 99.9 percent.

Here’s another example. You’re in Hawaii, taking a well-deserved vacation 
with other hard-working physicists. The summer has been hot, and as you 
lounge on the beach, you read an article about the energy crisis caused by 
all those whirring air conditioners. You put down the paper as the happy 
physicists bobbing in the surf call to you, saying you should come in for a dip.

“How warm is it?” you ask.

“Very,” they say, bobbing up and down. “About 300 kelvins.”

Hmm, you think. If you could create a Carnot engine and use the surface of 
the ocean as the input heat source (300 kelvins) and the bottom of the ocean 
(about 7°C, or 280 kelvins) as the heat sink, what would the efficiency of such 
an engine be? And how much input heat would you need to supply the entire 
energy needs of the United States for one year (about 1.0 × 1020 J)?
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You know that Efficiency = 1 – (T
c
/T

h
), so plug in the numbers and do the 

math to find the efficiency:

Hmm, 6.7 percent efficiency. So how much input heat would be needed to get 
1.0 × 1020 joules out? You know that Efficiency = W/Q

h
, so

Plugging in the numbers and doing the math yields

How much would taking that heat out of the top meter of the Pacific Ocean 
change its temperature by? Assume that the top meter of the Pacific Ocean 
contains about 1.56 × 1014 cubic meters of water — that’s 1.56 × 1017 kilo-
grams of water.

The heat gained or lost is tied to temperature change by Q = cmΔT, so the 
temperature change would be

Plugging in the numbers and doing the math gives you a temperature change of

So if your Carnot engine were connected from the top of the Pacific Ocean to 
the bottom and sucked all its heat out of the top meter of the surface water, 
it’d lower the temperature of that top meter of water by 4.5°C to supply all 
the energy needs of the United States.

Going against the flow with heat pumps
Usually, Carnot engines take heat from the hot reservoir (Q

h
), do work, 

and then dump the leftover heat in the cold reservoir (Q
c
). But what if you 

swapped the hot and cold reservoirs and actually did some work on the 
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Carnot engine (instead of having it do work on you)? Then you could “pump 
heat uphill,” from the cold reservoir to the hot reservoir. You can do this if 
you connect the input of a Carnot engine to the cold reservoir and connect 
the exhaust to the hot reservoir.

Why on Earth would you want to move heat? Think about a cold room on an 
even colder day. If you connect a Carnot engine to the outside — which is 
colder than the inside — doing some work on the Carnot engine can drive 
heat into the room. This use of a Carnot engine is called a heat pump, because 
you put in work to drive heat uphill, from the cold reservoir to the hot one.

Why are heat pumps a good way to warm your house? Consider heating with 
electric heat instead. If you use enough electricity to add 1,000 joules to the 
heat inside your house, you have to pay for 1,000 joules of energy. But if you 
pump the heat from outside to inside, most of the heat comes from the cold 
reservoir, and you only have to provide the work needed to pump the heat 
into the hot reservoir.

A heat pump can be used to move heat in the other direction, too, to bring 
about cooling. In this case, mechanical work is used to pump heat from a 
source at a higher temperature to a lower temperature. Your refrigerator 
uses electrical energy to drive a compressor unit, which forms part of the 
refrigeration cycle.

Heating with less work
Operating heat pumps requires less work than the heat they transfer. For 
example, suppose you’re vacationing in your woodland cabin, which is at 
20°C (that is, 293 kelvins — about 68°F). You want to pump some heat in from 
outside, which is at 10°C (283 kelvins — about 50°F). You decide you need 
about 4,000 joules of heat. How much work would you need to pump 4,000 joules 
into your house?

You unpack a Carnot engine and connect it to the outdoors so that it will use 
the outside (which is colder) as its hot reservoir and the inside of your cabin 
(which is warmer) as its cold reservoir. To get heat to flow uphill like that, you 
have to do work on the Carnot engine instead of having it do work on you.

So how much work do you need to pump 4,000 joules of heat inside? You can 
start from this equation:

Q
h
 = W + Q

c
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Here, Q
h
 is the heat dumped into the cabin and Q

c
 is the heat taken from 

the outside. W is the amount of work you need to supply to the heat pump. 
You’re trying to solve for the work, so rearrange the equation:

W = Q
h
 – Q

c
 

For a Carnot engine, Q
c
/Q

h
 = T

c
/T

h
. Therefore, here’s the formula for the heat 

taken from the outside:

 

Now plug this value of Q
c
 into the work equation (W = Q

h
 – Q

c
) and simplify:

You want to get 4,000 joules of heat into the room, so Q
h
 = 4,000 joules. 

Plugging in the heat and temperatures and doing the math gives you

So you’d need only 136 joules of work to pump 4,000 joules of heat in from 
the outside. See why heat pumps can be so attractive? If you were using 
electric heat, you’d have to pay for the full 4,000 joules.

However, as the temperature outside gets lower and lower, you have to do 
more work to pump heat indoors, because you have a bigger temperature 
difference to overcome. For example, what if the temperature outside were 
–20°C (that is, 253 kelvins, or –4°F)? In this case, how much work do you have 
to do on the Carnot engine to pump 4,000 joules of heat into the cabin?

You can use the same work equation you just derived:

 

Plugging in the numbers and doing the math gives you

So when the temperature outside is 10°C, you only need 136 joules to pump 
4,000 joules of heat into your cabin. But when the outside temperature is –20°C, 
you need 546 joules to pump the same 4,000 joules. Notice, however, that in 
either case, you get 4,000 joules for a lot less than the whole 4,000 joules you’d 
have to pay for if you were using electric heat.
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Checking a heat pump’s performance
 The heat delivered to you from a heat pump is more than the work you put 

into the heat pump. You can measure how much more heat you get out of a 
heat pump than the work you put in using the coefficient of performance (COP):

The coefficient of performance tells you how much heat you get out of a heat 
pump per work you have to put in to it.

For something like electric heat, where you have to pay for all the heat you 
get, the coefficient of performance is 1. But for a heat pump, the coefficient 
can be a lot higher than 1, indicating that you get more heat out of the pump 
than the work you put in.

The coefficient of performance depends on the inside and outside temperatures. 
You can put the coefficient of performance into a form that makes its 
dependence on temperature explicit.

Because W = Q
h
 – Q

c
, the coefficient of performance equation becomes

Or if you multiply both the numerator and denominator by 1/Q
h
, you can 

express this like so:

For a Carnot engine, Q
c
/Q

h
 = T

c
/T

h
, so you end up with

Suppose you’re pumping heat from 283 kelvins to 293 kelvins. You have a 
coefficient of performance of

So when the inside is at 293 kelvins and the outside at 283 kelvins, you 
pump 29 times as much energy as the work you do to make the heat transfer. 
Not bad.
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Going Cold: The Third (And Absolute 
Last) Law of Thermodynamics

Absolute zero is the lower limit for the temperature of any system, and the 
third law of thermodynamics can be formulated in terms of this tempera-
ture. The third law of thermodynamics is pretty straightforward — it just says 
that you can’t reach absolute zero (0 kelvins, or about –273.15°C) through 
any process that uses a finite number of steps. In other words, you can’t get 
down to absolute zero at all. Each step in the process of lowering an object’s 
temperature to absolute zero can get the temperature a little closer, but you 
can’t get all the way there.

 Although you can’t get down to absolute zero with any known process, you 
can get close. And if you have some expensive equipment, you discover 
more and more strange facts about the near-zero world. I have a pal who 
discovered how liquid helium works at very, very low temperatures — below 
two-thousandths of a kelvin. For example, the helium will climb entirely out of 
containers by itself if you get it started. For these and some other observations, 
he and some friends got the Nobel Prize in Physics in 1996, the lucky dogs 
(you can read about it at nobelprize.org).
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The Part of Tens
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In this part . . .

I let physics off the leash in Part V, and it goes wild. 
Here, I list discoveries and ideas that had profound 

impacts on physics and changed the way people view 
their world. I also list ten great scientists and outline the 
contributions they made to the field of physics.
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Chapter 18

Ten Physics Heroes
In This Chapter
▶ Looking at people who made major contributions to physics

▶ Lending names to famous laws and units of measurement

Through the centuries, physics has had thousands of heroes — people 
who furthered the field in some way or another. In this chapter, you take 

a look at ten physics heroes who’ve done their bits to make physics what it is 
today. And just because age has its privileges, I’ve arranged these in chrono-
logical order by birth date. 

Galileo Galilei
Galileo Galilei (1564–1642) was an Italian physicist, mathematician, astronomer 
and philosopher. He was a very important person in the Scientific Revolution — 
at various times, people called him the father of modern observational 
astronomy, the father of modern physics, and even the father of science.

He’s perhaps best known for his improvements to the telescopes and the 
consequent observations he was able to make. Among his other achievements 
were the confirmation of the phases of Venus, the discovery of the four 
largest satellites of Jupiter (now named the Galilean moons), and the 
observation and analysis of sunspots. He also studied the motion of objects 
undergoing constant acceleration. 

Famously, he supported the heliocentric view of the solar system, which says 
the planets orbit around the sun, not the Earth. That was a tough stance to 
take in 1610, and he got into trouble for it with the Catholic Church, which in 
1616 declared it “false and contrary to Scripture.” In 1632, he was tried by the 
Roman Inquisition, found guilty of heresy, and forced to recant. He spent the 
rest of his life under house arrest. Modern physicists can be glad that kind of 
thing doesn’t go on much anymore.
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Robert Hooke
Like many early physicists, Robert Hooke (1635–1703) had his finger in many 
pies — he was a scientist, architect, investor, and so on. He’s best known for 
his law of elasticity, Hooke’s law, which says that the restoring force on an 
object undergoing an elastic pull is proportional to the displacement of the 
object and a constant, often called the spring constant (see Chapter 13).

Hooke experimented in many different fields, however — in fact, he was the 
first person to use the term cell to refer to the basic unit of life. Originally 
very poor, he grew quite wealthy through his investments. He was very 
active after the Great Fire of London, surveying the ruins in organized 
maps. He was also a well-known architect, and buildings he designed 
still survive in England.

Sir Isaac Newton
Sir Isaac Newton (1643–1726) was an exceptional genius. He was an English 
physicist, mathematician, astronomer, natural philosopher, and theologian. 
His accomplishments include the following:

 ✓ Laying the groundwork for most of classical mechanics 

 ✓ Discovering universal gravitation 

 ✓ Discovering the three laws of motion 

 ✓ Building the first practical reflecting telescope

 ✓ Developing a theory of color based on prisms

 ✓ Discovering an empirical law of cooling

 ✓ Studying the speed of sound

 ✓ Sharing the credit with Gottfried Leibniz for the development of 
differential and integral calculus 

 ✓ Demonstrating the generalized binomial theorem, an ancient mathematical 
problem of the expansion of the sum of two terms into a series

 ✓ Developing Newton’s method for approximating the roots of a function

 ✓ Adding to the study of power series

Newton greatly influenced three centuries of physicists. In 2005, the members 
of Britain’s Royal Society were asked who had the bigger effect on the history of 
science and made the greater contribution to humankind — Sir Isaac Newton 
or Albert Einstein. The Royal Society chose Newton.
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Benjamin Franklin
Benjamin Franklin (1706–1790) is familiar to most people as one of the 
Founding Fathers of the United States. He was an author, printer, political 
theorist, politician, postmaster, scientist, inventor, statesman, and diplomat. 
He invented the following:

 ✓ The lightning rod

 ✓ Bifocals

 ✓ The Franklin stove

 ✓ A carriage odometer

 ✓ The glass “armonica” (a popular musical instrument of the day) 

 ✓ The first public lending library in America 

Franklin even created the first fire department in Pennsylvania. He was 
also a leading newspaperman and printer in Philadelphia (the major city 
of the colonies at that time). He became wealthy publishing Poor Richard’s 
Almanack and The Pennsylvania Gazette. He played a large role in the creation 
of the University of Pennsylvania and was elected the first president of the 
American Philosophical Society. He became a national hero when he headed 
the effort to have Parliament repeal the unpopular Stamp Act.

As a scientist, Franklin is famous for his work with electricity. The idea that 
lightning is electricity may seem pretty clear today, but in Franklin’s day, 
the largest manmade sparks were only an inch or so long. No one knows 
whether he really performed his most famous experiment — tying a key to a 
kite string and flying it during a thunderstorm to see whether it could draw 
sparks from the key, indicating that lightning was electricity (this experiment 
is so famous that I’ve had students who confused Franklin with Francis Scott 
Key). However, Franklin did write about how someone could carry out such 
an experiment, saying that flying the kite before the storm actually started 
would be important, or else you’d risk getting electrocuted.

Charles-Augustin de Coulomb
Charles-Augustin de Coulomb (1736–1806) is best known for developing 
Coulomb’s law, which defines the electrostatic force of attraction or repulsion 
between charges. In fact, the MKS unit of charge, the coulomb (C), was named 
after him.
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Coulomb originally came to prominence with his long-titled work Recherches 
théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de 
metal (“Theoretical and experimental research on the force of torsion and 
the elasticity of metal wire”).

Throughout his life, Coulomb conducted research into many fields, but his 
work in electrostatics was what brought him true fame. He showed that electro-
static attraction and repulsion varied inversely as the square of the distance 
between the charges. There was still a lot of work to be done, though — 
Coulomb thought electric “fluids” were responsible for the charges.

Amedeo Avogadro
Amedeo Avogadro (1776–1856) is most well-known for Avogadro’s number, 
approximately 6.022 × 1023 — the number of molecules contained within a mole 
(see Chapter 16 for details). He started practicing as a lawyer after getting his 
doctorate. In 1800, he started studying mathematics and physics and became 
so interested (who wouldn’t be?) that he turned to it as his new career.

Avogadro was a pioneer of physics on the microscopic level with Avogadro’s 
hypothesis, which says that “equal volumes of all gases under the same 
conditions of temperature contain the same number of molecules.” 
Unfortunately, acceptance of the hypothesis was slow because of opposition 
from other scientists and a general confusion between molecules and atoms.

Fifty years later in the Karlsruhe Congress, Stanislao Cannizzaro was 
able to get general agreement on Avogadro’s hypothesis. When Johann 
Josef Loschmidt calculated Avogadro’s number for the first time in 1865, 
Loschmidt happily called it Loschmidt’s number. But the general scientific 
community, in deference to the guy who first suggested that such a number 
existed, renamed it Avogadro’s number.

Nicolas Léonard Sadi Carnot
Nicolas Léonard Sadi Carnot (1796–1832) was a French physicist and military 
engineer. In 1824, he published his work Reflections on the Motive Power of 
Fire, which gave the theoretical description of heat engines, now called the 
Carnot cycle. That work laid the theoretical foundations for the second law 
of thermodynamics (see Chapter 17).
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Some people call Carnot the father of thermodynamics because he came up 
with concepts such as Carnot efficiency, the Carnot theorem, the Carnot heat 
engine, and others.

James Prescott Joule
James Joule (1818–1889) was an English physicist who set as his task to study 
the relationship between heat and work (steam engines were very big in his 
time). His studies led to laws on the conservation of energy (see Chapter 9), 
which led to the development of the first law of thermodynamics (Chapter 17). 
As a result, the MKS unit of energy was named the joule.

He also worked on the opposite side of the thermometer from steam, getting as 
close as he could to absolute zero, along with Lord Kelvin (coming up next). 
Joule’s interests were wide-ranging — in fact, he’s the one who discovered 
the relationship between the electrical current through a resistance and the 
heat generated, now called Joule’s law.

William Thomson (Lord Kelvin)
William Thomson (1824–1907) did important work in analyzing electricity 
mathematically and formulating the first and second laws of thermodynamics. 
Like many physicists of his day, he had many interests, starting off as an 
electric telegraph engineer and inventor, which made him famous — and 
rich. With enough money to do what he wanted, Thomson turned to 
physics, naturally. 

Physicists remember him for developing the absolute zero scale of tempera-
ture, which bears his name to this day — the Kelvin scale (see Chapter 14). 
Already a knight, he became a nobleman in recognition of his achievements 
in thermodynamics. He’s also almost as well-known for his work on develop-
ing a maritime compass as on the laws of thermodynamics. Queen Victoria 
knighted him as Lord Kelvin for his work on the transatlantic telegraph.

Albert Einstein
Perhaps the most well-known physicist in the popular mind is Albert Einstein 
(1879–1955). Einstein, whose name has become synonymous with genius, 
made many contributions to physics, including the following:
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 ✓ The special and general theories of relativity

 ✓ The founding of relativistic cosmology

 ✓ The explanation of the perihelion precession of Mercury, which is the 
gradual rotation of the axis of the elliptical orbit of the planet

 ✓ The prediction of the deflection of light by gravity (gravitational lensing)

 ✓ The first fluctuation dissipation theorem, which explained the Brownian 
motion of molecules, which is the random jittery motion of small 
particles suspended in a fluid, which is caused by collisions with 
the molecules of the fluid

 ✓ The photon theory 

 ✓ Wave-particle duality

 ✓ The quantum theory of atomic motion in solids

Einstein was the scientist who, on the eve of World War II, alerted President 
Franklin D. Roosevelt that Germany could be creating an atomic bomb. As a 
result of that warning, Roosevelt created the top secret Manhattan Project, 
which led to the development of the atomic bomb. 

In 1921, Einstein won the big one, the Nobel Prize, “for his services to 
Theoretical Physics, and especially for his discovery of the law of the 
photoelectric effect.”

Einstein was affected by that absent-mindedness that scientists who habitually 
spend all their time thinking about their studies can suffer from. He’s said to 
have painted his front door red so he could tell which house was his. People 
joke that he once asked a child, “Little girl, do you know where I live?” And 
the little girl answered, “Yes, Daddy. I’ll take you home.”
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Chapter 19

Ten Wild Physics Theories
In This Chapter
▶ Pinpointing the smallest distance and smallest time

▶ Getting comfortable with uncertainty

▶ Exploring space for physics facts

▶ Uncovering the truth about microwave ovens

▶ Coming to grips with your bearings in the physical world

This chapter gives you ten outside-the-box physics facts that you may not 
hear or read about in a classroom. As with anything in physics, however, 

you shouldn’t really consider these “facts” as actual facts — they’re just the 
current state of many theories. And in this chapter, some of the theories 
get pretty wild, so don’t be surprised to see them superseded in the 
coming years.

You Can Measure a Smallest Distance
Physicists now have a theory that a “smallest distance” exists. It’s the Planck 
length, named after the physicist Max Planck. The length is the smallest 
division that, theoretically, you can divide space into. However, the Planck 
length — about 1.6 × 10–35 meters, or about 10–20 times the approximate size 
of a proton — is really just the smallest amount of length with any physical 
significance, given the current understanding of the universe. Smaller than 
this, and the whole notion of distance breaks down.

27_9780470903247-ch19.indd   35327_9780470903247-ch19.indd   353 5/26/11   11:20 PM5/26/11   11:20 PM



354 Part V: The Part of Tens 

There May Be a Smallest Time
In the same sense that Planck length is the smallest distance (see the preceding 
section), Planck time is the smallest amount of time. The Planck time is the 
time light takes to travel 1 Planck length, or 1.6 × 10–35 meters. If the speed 
of light is the fastest possible speed, you can easily make a case that the 
shortest time you can measure is the Planck length divided by the speed 
of light. The Planck length is very small, and the speed of light is very fast, 
which gives you a very, very short time for the Planck time:

The Planck time is about 5.3 × 10–44 seconds, and the notion of time breaks 
down as times become smaller than this.

 Some people say that time is broken up into quanta of time, called chronons, 
and that each chronon is a Planck time in duration.

Heisenberg Says You Can’t Be Certain
You may have heard of the uncertainty principle, but you may not have 
known that a physicist named Heisenberg first suggested it. Of course, that 
explains why it’s called the Heisenberg uncertainty principle, I suppose. The 
principle had its beginnings in the wave nature of matter, as Louis de Broglie 
suggested. Matter is made up of particles, such as electrons. But particles 
also act as waves, much like light waves — you just don’t normally notice it 
because particles have such small wavelengths.

Particles have wave-like properties, and the more localized the wave is, the 
more certain you can be about the position of the particle. However, the 
wavelength of the wave is directly related to the momentum of the particle. 
The more definite the wavelength of a wave, the more certain you can be 
about the momentum of the particle. But because of the nature of waves, 
the more definite the wavelength, the more spread out in space it becomes. 
That’s why the more sure you are of the momentum, the less sure you can be 
of the position, and vice versa. You can also say that the more precisely you 
measure their locations, the less precisely you know their momentums.
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Black Holes Don’t Let Light Out
Black holes are created when particularly massive stars use up all their fuel 
and collapse inwardly to form super-dense objects, much smaller than the 
original stars. Only very large stars end up as black holes. Stars that aren’t 
quite massive enough to collapse that far often end up as neutron stars 
instead. A neutron star occurs when gravity has smashed together all the 
electrons, protons, and neutrons, effectively creating a single mass of neutrons 
with the density of an atomic nucleus.

Black holes go even further than that. They collapse so far that not even light 
can escape their intense gravitational pulls. How’s that? The photons that 
make up light aren’t supposed to have any mass. How can they possibly be 
trapped in a black hole?

Photons are indeed affected by gravity, a fact predicted by Einstein’s theory 
of general relativity. Tests have experimentally confirmed that light passing 
next to massive objects in the universe is bent by their gravitational fields. 
Gravity affects photons, and the gravitational pull of a black hole is so 
strong that photons can’t escape it.

Gravity Curves Space
Isaac Newton gave physicists a great theory of gravitation, and from him 
came the following famous equation:

where F represents force, G represents the universal gravitational constant, 
m1 represents one mass, m2 represents another mass, and r represents the 
distance between the masses (see Chapter 7). Newton was able to show that 
what made an apple fall also kept the planets in orbit. But Newton had one 
problem he could never figure out: how gravity could operate instantaneously 
at a distance.

Enter Einstein, who created the modern take on this problem. Instead of 
thinking of gravity as a simple force, Einstein suggested in his theory of 
general relativity that space and time are actually different aspects of a 
single entity called spacetime. Mass and energy curve the spacetime, and 
this curvature is gravity!
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 Einstein’s idea is that mass and energy curve space and time (and ultimately, 
that’s where the idea of wormholes in space comes from). The curvature 
of space and time is gravity. Mathematically, you treat time as the fourth 
dimension when working with relativity. The vectors you use have four 
components: three for the x-, y-, and z-axes and one for time, t.

What’s really happening when a planet orbits the sun is that it’s simply 
following the shortest path through the curved spacetime through which 
it travels. The mass of the sun curves the spacetime around it, and the 
planets follow that curvature.

Matter and Antimatter 
Destroy Each Other

One of the coolest things about high-energy physics, also called particle 
physics, is the discovery of antimatter. Antimatter is sort of the reverse of 
matter. The counterparts of electrons are called positrons (which are posi-
tively charged), and the counterparts of protons are antiprotons (which are 
negatively charged). Even neutrons have an antiparticle: antineutrons. A neu-
tron is made up of smaller particles called quarks, which have antiparticle 
versions, too. So the antineutron has no charge just like the neutron, but 
each of the quarks it’s made of is the anti- version of the neutron quarks.

In physics terms, matter is sort of on the plus side, and antimatter sort of 
on the negative side. When the two come together, they destroy each other, 
leaving pure energy — light waves of great energy, called gamma waves. And 
like any other radiant energy, gamma waves can be considered heat energy, 
so if you have a pound of matter and a pound of antimatter coming together, 
you’ll have quite a bang.

That bang, pound for pound, is much stronger than a standard atomic bomb, 
where only 0.7 percent of the fissile material is turned into energy. When 
matter hits antimatter, 100 percent is turned into energy.

 If antimatter is the opposite of matter, shouldn’t the universe have as much 
antimatter as it does matter? That’s a puzzler, and the debate is continuing. 
Where’s all the antimatter? The jury is still out. Some scientists say that there 
could be vast amounts of antimatter around that people just don’t know 
about. Immense antimatter clouds could be scattered throughout the galaxy, 
for example. Others say that the way the universe treats matter and antimatter 
is a little different — but different enough so that the matter people know of 
in the universe can survive.
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Supernovas Are the Most 
Powerful Explosions

What’s the most energetic action that can happen anywhere, throughout the 
entire universe? What event releases the most energy? What’s the all-time 
champ when it comes to explosions? Your not-so-friendly neighborhood 
supernova. A supernova occurs when a very massive star explodes. The 
star’s fuel is used up, and its structure is no longer supported by an internal 
release of energy. At that point, the star collapses in on itself, and if the star 
is massive enough, the gravitational potential energy that the star had is 
suddenly released upon the collapse.

Among the 100 billion stars in the Milky Way, the last known supernova 
occurred nearly 400 years ago. (I say known because light takes quite a while 
to reach Earth; a star could’ve gone supernova 100 years ago, but if it’s far 
enough from Earth, no one would know it yet.)

Most of the star that becomes a supernova explodes at speeds of about 
10,000,000 meters per second, or about 22,300,000 miles per hour. By 
comparison, even the highest of explosives on Earth detonate at speeds 
of 1,000 to 10,000 meters per second.

Because the physics of how a star explodes is quite well understood, physicists 
can observe the apparent brightness of a supernova in a distant galaxy and 
work out how far away that galaxy must be. This development has led to the 
most-accurate measurements of the rate of expansion of the universe!

The Universe Starts with the Big Bang 
and Ends with the Gnab Gib

The first ideas about the large-scale nature of the universe tended to hypoth-
esize that the universe was steady and unchanging and that it had existed for 
all time and would continue to do so.

Astronomer Edwin Hubble measured the velocities of galaxies and found that 
they were all moving apart from each other and that the more distant the 
galaxy, the faster it was moving away. This could only mean one thing: The 
universe is expanding. (The best way to imagine this is to think of the galaxies 
as dots drawn on a balloon that’s being inflated. Each of the dots moves away 
from all the others as the balloon expands, and the wider the separation 
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between the dots, the faster they move away from each other.) This means 
the universe yesterday was slightly smaller than it is today, and so on and 
so on backward in time until the universe was all concentrated into a single 
point! This is the point at which space and time were concentrated into 
what’s called a singularity. It’s from this singularity, in a single violent event 
called the Big Bang, that space, time, and the universe expanded to what 
it is today. 

Given that the universe was “born” in the Big Bang, this raised the question 
of whether it might “die.” Or if not, what might the ultimate fate of the universe 
be? Well, Einstein’s theory of general relativity is useful here, because it tells 
how space and time curve with a given distribution of matter and energy. 
The theory predicts that the ultimate fate of the universe depends on the 
density of mass and energy in the universe. If enough mass and energy is in 
the universe, then that mass and energy may cause enough attraction to halt 
the expansion of the universe and reverse it — bringing the entire universe 
back to a single point in an event called the Big Crunch. Otherwise, the universe 
will continue to expand forever — getting colder and darker. Neither option 
seems very appealing!

Microwave Ovens Are Hot Physics
You can find plenty of physics going on in microwaves — everyday items you 
may have taken for granted in your pre-physics life. What really happens in a 
microwave oven? A device called a magnetron generates waves of radiation 
similar to those involved in the transport of thermal energy (see Chapter 15). 
These waves are called electromagnetic waves, and they have a similar form 
to sine waves.

Electromagnetic waves with different wavelengths have very different prop-
erties. If they have a wavelength in a particular range, then they’re visible as 
light; in another range, at longer wavelengths, they cause water to heat up. The 
waves exert forces on the molecules as they pass through water, causing the 
molecules to oscillate in a way similar to simple harmonic motion (Chapter 13).

You may remember from chemistry that water molecules are polar because 
of the arrangement of the hydrogen and oxygen atoms and the distribution 
of the electrons. The hydrogen and oxygen atoms share electrons, but the 
electrons spend more time by the oxygen nucleus, which has a stronger pull. 
This means that one end of the molecule has a partial positive charge and 
the other has a partial negative charge. 

A microwave is composed of an oscillating electrical field, and the water 
molecules, with their partial charges, rotate to align with that changing field. 
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The oscillating water molecules bump and jostle the surrounding molecules 
that constitute the food. This increased oscillating and jostling motion of the 
molecules is exactly what’s meant by an increased temperature — and your 
dinner is ready! The frequency of the microwave determines the frequency 
of the oscillating molecules (the frequency of their simple harmonic motion), 
and this transfers energy to the molecules at a rate that increases with the 
frequency (and intensity) of the wave. The frequency of microwaves is just 
right for increasing the temperature at the rate required for cooking food.

 Microwave ovens were invented by accident, during the early days of radar. A 
man named Percy Spencer put his chocolate bar in the wrong place — near a 
magnetron used to create radar waves — and it melted. “Aha,” thought Percy. 
“This could be useful.” And before he knew it, he had invented not only 
microwave ovens but also microwave popcorn (no kidding).

 The universe is full of microwaves, which are a sort of leftover heat glow from 
the Big Bang. The discovery of this so-called cosmic background microwave 
radiation in the 1960s was a powerful confirmation of the Big Bang theory. 
You can read more about microwaves and other forms of electromagnetic 
radiation in Physics II For Dummies (Wiley).

Is the Universe Made to Measure?
Fundamental constants are fixed and written into the laws of physics, 
which describe the whole universe. These constants describe things such 
as the strength of gravity and the relative masses of fundamental particles. 
Physicists hope to develop a theory that can explain why the fundamental 
physical constants have the values that they do. Physicists would like their 
final theory of everything to be completely self-contained, leaving nothing 
unexplained — even the values of the fundamental constants.

Physicists have worked out what the world would be like if the constants 
were slightly different. What would happen if gravity were slightly weaker? 
What would happen if the forces holding atoms of matter together were 
slightly stronger? And the answer they find is that if any of the constants were 
only slightly different from the values that they have, then people wouldn’t be 
able to live in this universe. For example, if gravity were slightly weaker, then 
stars couldn’t form and we’d have no sun. And if gravity were slightly stron-
ger, then stars would burn their fuel so quickly that life wouldn’t have time to 
evolve! How can people explain why the constants seem to be so finely tuned?

The anthropic principle says that the constants have to have the values that 
they do because if they didn’t, then we wouldn’t be here to measure them. 
This is a very curious argument that many people are not happy with!
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Another puzzle related to the constants is the question of why gravity is so 
weak. Gravity is exceedingly weak compared to other forces, such as electrical 
forces (the same kind of force that makes your hair stand on end when you 
rub a balloon on your shirt and bring the balloon near your head). This 
question has led some physicists to contemplate extra dimensions to 
space and time.
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Glossary

Here’s a glossary of common physics terms you come across in this 
book. Note: Words in italics appear in separate glossary entries.

absolute zero: The lower limit of physically possible temperature

acceleration: The rate of change of velocity, expressed as a vector

adiabatic: Without releasing heat into or absorbing heat from the environment

angular acceleration: The rate of change of angular velocity

angular displacement: The angle between the initial and final angular positions 

angular momentum: The product of an object’s moment of inertia and its 
angular velocity

angular velocity: The rate of change of angular displacement

Avogadro’s number: The number of molecules in a mole, 6.022 × 1023

blackbody: A body that absorbs all radiation incident upon it, reaches a 
thermodynamic balance with this incident energy, and radiates it all back

Boltzmann’s constant: A thermodynamic constant with a value of 1.38 × 10–23 
joules per kelvin; it quantifies the average amount of energy of individual 
particles, at a given temperature, and is given by the gas constant divided 
by Avogadro’s number

buoyancy: The upward-acting force on a body immersed in a fluid that’s 
equal in magnitude to the weight of the fluid displaced by the object

centripetal acceleration: The acceleration needed to keep an object in 
circular motion; centripetal acceleration is directed toward the center of 
the circle

centripetal force: The force, directed toward the center of the circle, that 
keeps an object going in circular motion

conduction: The transmission of heat through a material via direct contact
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conservation of energy: The law of physics that says that the total energy 
of a closed system doesn’t change

convection: A mechanism for transporting heat through the motion of a 
heated gas or liquid

conversion factor: The number that relates two sets of units

density: A quantity of mass divided by volume

displacement: The change in an object’s position in terms of distance 
and direction

elastic collision: A collision in which kinetic energy is conserved (momentum 
is conserved, too, as it is in any collision)

emissivity: A property of a substance showing how well it radiates

energy: The ability of a system to do work

FPS system: The system of measurement that uses feet, pounds, and seconds

frequency: The number of cycles of a periodic occurrence per unit of time 

friction: The force between two surfaces that always acts to oppose any 
relative movement between them

heat: The flow of thermal energy

heat capacity: The amount of heat needed to raise the temperature of one 
unit of mass of a substance by 1 degree

hertz: The MKS unit of measurement of frequency — one cycle per second

impulse: The product of the amount of force on an object and the time 
during which the force is applied

inelastic collision: A collision in which kinetic energy isn’t conserved 
(though momentum is conserved, as it is in any collision)

inertia: The tendency of masses to resist changes in their motion

isobaric: At constant pressure

isochoric: At constant volume

isothermal: At constant temperature

joule: The MKS unit of energy — one newton-meter
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kelvin: The MKS unit of temperature, equal in size to a degree Celsius; 
the Kelvin scale starts at absolute zero

kilogram: The MKS unit of mass

kinematics: The branch of mechanics concerned with motion without 
reference to force or mass

kinetic energy: The energy of an object due to its motion

kinetic friction: Friction that resists the motion of an object that’s 
already moving

latent heat: The heat per kilogram needed to cause a change in phase 
in a substance 

law of conservation of momentum: A law stating that the momentum 
of a system doesn’t change unless influenced by an external force 

linear momentum: The product of an object’s mass times its velocity; 
momentum is a vector

magnitude: The size, amount, or length associated with a vector (vectors 
are made up of a direction and a magnitude)

mass: The quantitative measure of the property that makes matter resist 
being accelerated

mechanics: The area of physics that deals with the motions of bodies and 
the forces imposed upon them

MKS system: The measurement system that uses meters, kilograms, 
and seconds

mole: A quantity of substance that’s defined to have a number of atoms 
(or molecules if the substance is molecular) equal to Avogadro’s number

moment of inertia: The property of matter that makes it resist 
rotational acceleration

newton: The MKS unit of force; the amount of force that would accelerate 
a mass of 1 kilogram with an acceleration of 1 meter per second2

normal force: The force a surface applies to an object, in a direction 
perpendicular to that surface

oscillate: Move or swing side to side regularly

pascal: The MKS unit of pressure, equal to 1 newton per meter2
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period: The time it takes for one complete cycle of a repeating event

phase (of matter): One of four notably distinct states of matter: solid (the 
molecules are relatively fixed in place), liquid (the molecules are free to flow 
but are bound relatively close to each other), gas (the molecules are free to 
flow and are far apart from each other relative to their size), and plasma (the 
atoms have been broken down to form a gas of subatomic particles)

potential energy: The energy an object has because of its internal configuration 
or its position when a force is acting on it

power: The rate at which work is done by a system 

pressure: Force applied to a surface divided by the surface area over which 
the force acts

radians: The MKS unit of angle; 2π radians are in a circle; one radian is the 
angle subtended by an arc that has a length equal to the radius of the circle

radiation: A physical mechanism that transports heat and energy as 
electromagnetic waves

resultant: A vector sum

rotational inertia: See moment of inertia

scalar: A quantity that has magnitude but not direction (in contrast to a 
vector, which has both)

significant digits (significant figures): The number of digits that are of 
known value, according to the precision of the measurement and any 
subsequent calculations

simple harmonic motion: Repetitive motion in which the restoring force is 
proportional to the displacement

specific gravity: The density of a substance relative to a reference substance

specific heat capacity: A material’s heat capacity per kilogram

standard pressure: One atmosphere, or 1.01 × 105 pascals

standard temperature: A temperature of 0°C

static friction: Friction on a stationary object

streamline: Lines in a fluid flow that are parallel to the velocity of the fluid 
at every point
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temperature: A measure of molecular movement in a substance; when two 
objects are in thermal contact yet no heat flows between them, then they are 
defined to be at the same temperature

thermal conductivity: A property of a substance showing how well or 
how poorly heat moves through it

thermal expansion: The increase in length or volume of a material as it 
gets hotter

thermodynamics: The section of physics covering heat and matter

torque: The product of a force around a turning point and the force’s 
perpendicular distance to that turning point

vector: A mathematical construct that has both a magnitude and a direction

velocity: The time rate of change of an object’s position, expressed as a 
vector whose magnitude is speed

viscosity: The “thickness” of a fluid; the rate at which the velocity changes 
across a fluid flow increases with viscosity 

weight: The force exerted on a mass by a gravitational field

work: Force multiplied by the displacement over which that force acts and 
the cosine of the angle between them; force is equal to the amount of energy 
transferred by a force
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• Symbols •
μ (micro) prefi x, 20

• A •
A (ampere), 16
absolute zero

defi nition, 361
reaching, 344
third law of thermodynamics, 344

absorbing radiation, 298–301
acceleration. See also speed; velocity

average, 40
calculating, 36, 44–45, 47–48, 69–70
centripetal force, 125–128
changing, 37–38
deceleration, 36
defi nition, 35, 361
direction, 38
displacement, calculating, 49
displacement, from initial velocity, 46
distance, calculating, 44–45
example, 40–41
fi nal velocity, calculating, 49–50
instantaneous, 40
of moving objects, 10–11
Newton’s second law, 82–84
nonuniform, 42
positive versus negative, 37–40
simple harmonic motion, 261–262
tangential, 211
time and displacement, 42–46
uniform, 42
units of, 36–37
velocity and displacement, 47–50

acceleration, centripetal
defi nition, 117, 361
direction of, 119–120
magnitude, fi nding, 120

period, 118–119
rotational motion, 211–213
uniform circular motion, 118

accuracy of measurements, 21–23
Acme Gas, sample thermodynamics 

problem, 319–320
adding vectors

by adding coordinates, 55–57
notation, 56
overview, 53–54
resultant vectors, 53–54

adiabatic thermodynamic processes, 
329–334, 361

adiabats, 329
air molecule speed, predicting in ideal 

gases, 312–313
algebra. See also math basics

Algebra I For Dummies (Sterling), 24
basics, 23–24
isolating variables, 24

Algebra I For Dummies (Sterling), 24
ampere (A), 16
angles, fi nding with inverse trig functions, 

25, 63–64
angular acceleration

calculating, 215–217
converting to tangential acceleration, 

234–235
defi nition, 361
pulley inertia example, 240–242

angular displacement, 361
angular frequency, 259
angular momentum, 248–250, 361
angular motion, centripetal force, 125–128
angular velocity, 214–215, 361
answers, rounding, 22
anthropic principle, 359
antimatter versus matter, 356
antineutrons, 356
antiprotons, 356
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Archimedes’s principle, 147–149
arrows, representing vectors, 52–53
atmospheric pressure, 140–141
atomic mass of gases, 304–305
atoms per mole, 304
average acceleration, 40
average speed, 33–35
average velocity, 34–35
Avogadro, Amedeo (physicist), 350
Avogadro’s hypothesis, 350
Avogadro’s number

defi nition, 304, 361
origin of, 350

axes, 29
axle, tilting, 217

• B •
background microwave radiation, 359
banked turns, 123–125
Bernoulli, Daniel (physicist), 156–157
Bernoulli’s principle, 156–157
Big Bang theory, 357–358, 359
Big Crunch theory, 358
black holes, 355
blackbodies, 298–301, 361
blood pressure, 144
boiling water, temperature, 272
Boltzmann’s constant, 307, 361
Boyle’s law, 309–312. See also Charles’s 

law; ideal gas law
Broglie, Louis de (physicist), 354
buoyancy, 147–149, 361

• C •
C (coulomb), 16, 349–350
c (centi) prefi x, 20
calories, 280
camping, conduction example, 294–295
Cannizzaro, Stanislao (chemist), 350
car engines, heat effi ciency, 336
carbon 12, 304

Carnot, Sadi (physicist and inventor), 
338–340, 350–351

Carnot cycle, 350–351
Carnot’s engine, 338–340
Carnot’s principle, 338–340
Celsius (centigrade) scale, 272–273
centrifugal force, 121
centripetal acceleration. 

See also acceleration
defi nition, 117, 361
direction of, 119–120
magnitude, fi nding, 120
period, 118–119
rotational motion, 211–213
uniform circular motion, 118

centripetal force
acceleration, 125–128
angular motion, 125–128
banked turns, 123–125
defi nition, 120, 361
displacement, 125–128
fl at curves, 123–125
mass, 122–123
measuring angles in radians, 126–127
overview, 121
radians per second, 126
radius, 122–123
rotational motion, 211–213
velocity, 122–123, 125–128
vertical loops, 134–136

Charles’s law, 309–312. See also Boyle’s 
law; ideal gas law

circular motion. See centripetal 
acceleration; simple harmonic motion

coeffi cient of friction, 105
coeffi cient of linear expansion, 276
coeffi cient of performance (COP), 343
coeffi cient of volume expansion, 277–279
cold. See thermodynamics
collisions. See also impulse; momentum

along a line, 200–202
in closed systems, 199
defi nition, 199
elastic, 199–205
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with a heavier mass, 200–201
inelastic, 200
with a lighter mass, 201–202
in two dimensions, 202–205

compressible fl ow, 151, 155–156
conduction

camping, example, 294–295
conduction equation, 291–295
conductors, 295–296
defi nition, 361
factors affecting, 291–292
ice chest, example, 294–295
insulators, 295–296
overview, 290–296
thermal conductivity, 292–294, 295–296
for various materials, 293

conduction equation, 291–295
conductors, 295–296
conservation of

angular momentum, 249–250
energy, 317–320, 362. See also fi rst 

law of thermodynamics
mechanical energy, 177–181

conservation of momentum. 
See also momentum

closed systems, 194–195
defi nition, 193, 363
fi nal total momentum, 194
fi ring velocity, calculating, 196–198
formula for, 193–195
initial total momentum, 194
isolated systems, 194–195
velocity, calculating, 195–196

conservative forces, 176–177
constant thermodynamic processes

heat (adiabatic), 329–334
pressure (isobaric), 321–325, 362
temperature (isothermal), 327–329, 362
volume (isochoric), 325–326, 362

constant water pressure, 322–323
constants, universal, 359
convection

convection ovens, 290
defi nition, 362

forced convection, 289–290
natural convection, 288–289
overview, 287–290
thermals, 289

convection ovens, 290
conversion factors, 17, 362
converting units of measure, 17–19
COP (coeffi cient of performance), 343
cosine function, 24–25
coulomb (C), 16, 349–350
Coulomb, Charles-Augustin (physicist), 

349–350
Coulomb’s law, 349–350
cycles per second, simple harmonic 

motion, 258–259

• D •
deceleration, 36. See also acceleration
density. See also mass

calculating, 138–139
of common materials, 139
defi nition, 138, 362
versus specifi c gravity, 139

digits, signifi cant, 21–23, 364
dimensionless units, 213
direction

acceleration, 38
of moving objects, 10–11
radial, 208
rotational motion, reversing, 215–216
tangential, 208
vectors, 52–53

direction of heat fl ow. See also second 
law of thermodynamics

car engines, 336–337
Carnot’s principle, 338–340
COP (coeffi cient of performance), 343
effi ciency in Carnot’s engine, 338–340
effi ciency limitations, 338–340
heat engines, 335–337
heat pumps, 340–343
heat sinks, 335
overview, 334–335
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direction of heat fl ow (continued)

reversible processes, 338–340
reversing, 340–343

displacement
centripetal force, 125–128
defi nition, 28, 362
difference between positions, 29
direction, determining, 30–31
distance formula, 31
fi nal position, 29
initial position, 29
magnitude, determining, 30–31
position, 28–29
vectors, 53

displacement, calculating
from acceleration, 42–46, 49
from initial velocity, 46
in two dimensions, 30–31, 64–68

displacement vectors, 53
distance, smallest measurable, 353. 

See also displacement
dividing vectors by scalars, 68
DVD players, moment of inertia 

example, 238–240

• E •
eccentricity of the ellipse, 134
Einstein, Albert (physicist), 80, 

351–352, 355–356
elastic collision, 362
elastic limit of springs, 252–253
elastic potential energy, 264–265
elasticity, 251–253
electric charge, unit of measure, 16
electric current, unit of measure, 16
electromagnetic waves

heat transfer, 296–301. See also radiation 
(heat transfer)

microwave ovens, 358–359
elliptical orbits, 134
emissivity, 299, 362
energy. See also thermal energy

defi nition, 169, 362
unit of measure, 16

energy, kinetic. See also mechanical 
energy; potential energy; work

changes, calculating, 172–173
converting to potential, 178–179
defi nition, 169, 363
ideal gases, calculating, 313–314

energy, mechanical
conservation of, 177–181
converting between potential energy and 

kinetic, 178–179
defi nition, 177
fi nal height, fi nding, 180–181
fi nal velocity, fi nding, 180–181
gravitational potential energy, 178–179

energy, potential. See also kinetic energy; 
mechanical energy; work

converting to kinetic, 175–176, 178–179
defi nition, 173, 364
elastic, 264–265
gravitational effects, 174–175
overview, 173–174

energy conservation. See also fi rst 
law of thermodynamics

adiabats, 329
calculating, sign conventions, 317–320
constant heat (adiabatic), 329–334, 361
constant pressure (isobaric), 321–325
constant temperature (isothermal), 

327–329
constant volume (isochoric), 325–326
constant water pressure, 322–323
defi nition, 362
internal energy, 316
isotherms, 329
molar specifi c heat capacities, 331–332
overview, 316–317
pressure after adiabatic change, 333
sample problem, 319–320, 333–334
sign conventions, 317–320
steam pressure, 324–325

energy of motion. See kinetic energy
energy stored. See potential energy
equation of continuity, 153–156
equations, as real-world ideas, 25–26
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equilibrium
defi nition, 96–98
rotational, 223–224, 227–232
springs, 254–256
thermal, 297–298, 315–316

evenness, fl ow, 150
expanding liquids, examples, 278–279

• F •
Fahrenheit scale, 272–273
Feynman, Richard (physicist), 26
fi gures, signifi cant, 21
fi nal height, fi nding, 180–181
fi nal total momentum, 194
fi nal velocity, calculating, 49–50
fi ring velocity, calculating, 196–198
fi rst law of thermodynamics: 

energy conservation
adiabats, 329
constant heat (adiabatic), 329–334, 361
constant pressure (isobaric), 321–325
constant temperature (isothermal), 327–329
constant volume (isochoric), 325–326
constant water pressure, 322–323
internal energy, 316
isotherms, 329
molar specifi c heat capacities, 331–332
overview, 316–317
pressure after adiabatic change, 333
sign conventions, 317–320
steam pressure, 324–325

fl at curves, 123–125
fl ight, Bernoulli’s principle, 157
fl ow types, fl uid dynamics

compressible versus incompressible, 
151, 155–156

evenness, 150
rotational versus irrotational, 151–152
spinning, 151–152
squeezability, 151, 155–156
steady versus unsteady, 150
thickness, 151
viscous versus nonviscous, 151

fl uid dynamics
Bernoulli’s principle, 156–157
equation of continuity, 153–156
generating lift, 157
picturing fl ow, 152–153
pipe size and fl ow rates, 153–156
speed and pressure, 156–157
streamlines, 152–153

foot-pound, 164
foot-pound-second (FPS), 84
force

applied at an angle, 166–168
converting to torque, 234
gathering net forces, 84–89
impulse, calculating, 191–192
momentum, calculating, 191–192
Newton’s second law, 82–84
opposite direction of motion, 168–169
stretching/compressing springs, 251–253
unit of measure, 16

force, centripetal
acceleration, 125–128
angular motion, 125–128
banked turns, 123–125
defi nition, 120, 361
displacement, 125–128
fl at curves, 123–125
mass, 122–123
measuring angles in radians, 126–127
overview, 121
radians per second, 126
radius, 122–123
rotational motion, 211–213
velocity, 122–123, 125–128
vertical loops, 134–136

force, equal and opposite
angles and force, 93–96
changing direction of force, 92–93
doubling force, 92–93
equilibrium, 96–98
overcoming friction, 91–92
overview, 90–91
pulleys, 92–93
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force, Newton’s third law
angles, 93–96
changing direction, 92–93
doubling, 92–93
equilibrium, 96–98
overcoming friction, 91–92
pulleys, 92–93

force per area. See pressure
forced convection, 289–290
forces, 12–13. See also work
FPS (foot-pound-second), 84
FPS system, 362
Franklin, Benjamin (scientist and 

inventor), 349
free-body diagram, 85–86
freezing water, temperature, 272
frequency, 259, 362
friction

coeffi cient of, 105
contact area between surfaces, 105
defi nition, 362
kinetic, 106–107
nonconservative force, 176–177
normal force, 104–105
overcoming, 91–92
overview, 103–104
on ramps, 108–112
reducing, 167–168
starting motion, 106–107
static, 106–107

• G •
Galilean moons of Jupiter, 347
Galileo Galilei (physicist), 347
gamma waves, 356
gas phase of matter, 364
gases

atomic mass, 304–305
atoms per mole, 304
Avogadro’s number, 304
carbon 12, 304
heat transfer through, 287–289. 

See also convection

mole (mol), 303–305
molecular mass, 305
units of measure, 303–305

gases, ideal
air molecule speed, predicting, 312–313
Boltzmann’s constant, 307
Boyle’s law, 309–312. See also 

Charles’s law; ideal gas law
Charles’s law, 309–312. See also 

Boyle’s law; ideal gas law
defi nition, 305
kinetic energy, calculating, 313–314
lung pressure, example, 308–309
moles, effects on pressure, 306–307
pressure, factors affecting, 306–307, 309–312
scuba tank example, 310–312
STP (standard temperature and 

pressure), 308
temperature, effects on pressure, 306–307
tracking molecules, 312–314
universal gas constant, 307
volume, effects on pressure, 306–307

golf ball off cliff example, 71–74
gravity at the Earth’s surface, 

calculating, 130–131
gravity’s effects on

motion, 71–76
orbital motion, 128–134
potential energy, 174–175, 178–179
ramps, 100–103
space, 355–356
trajectories, 74–76, 113–116

• H •
hang time, 114
hanging a fl ag, example of rotational 

motion, 227–229
harmonic motion. See simple 

harmonic motion
heat. See also temperature

defi nition, 362
required for phase change, 284–286
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specifi c heat capacity, 281–282
thermal equilibrium, 280

heat, thermal expansion
coeffi cient of linear expansion, 276
coeffi cient of volume expansion, 277–279
linear expansion, 275–277
overview, 274–275
volume expansion, 277–279

heat, thermal expansion examples
expanding liquids, 278–279
linear expansion of solids, 276–277
radiators, 278–279
railroad tracks, 276–277
tanker trucks, 278

heat capacity, 362, 364
heat engines, 335–337
heat fl ow, direction. See also second 

law of thermodynamics; thermal 
energy; thermodynamics

car engines, 336–337
Carnot’s principle, 338–340
COP (coeffi cient of performance), 343
effi ciency in Carnot’s engine, 338–340
effi ciency limitations, 338–340
heat engine effi ciency, 335–336
heat engines, 335–337
heat pumps, 340–343
heat sinks, 335
overview, 280–286, 334–335
reversible processes, 338–340
reversing, 340–343

heat pumps, 340–343
heat sinks, 335
heat (adiabatic) thermodynamic 

processes, 329–334, 361
heat transfer. See also second law 

of thermodynamics
elephant ears, example, 291
metals, cool to the touch, 296
through liquids and gases, 287–290. 

See also convection
through solid materials, 290–296. 

See also conduction
via electromagnetic waves, 296–301. 

See also radiation (heat transfer)

heat transfer, conduction
camping, example, 294–295
conduction equation, 291–295
conductors, 295–296
factors affecting, 291–292
ice chest, example, 294–295
insulators, 295–296
overview, 290–296
thermal conductivity, 292–294, 295–296
for various materials, 293

heat transfer, convection
convection ovens, 290
forced convection, 289–290
natural convection, 288–289
overview, 287–290
thermals, 289

heat transfer, radiation
absorbing and refl ecting radiation, 298–301
blackbodies, 298–301
defi nition, 296
emissivity, 299
giving and receiving heat, 297–298
from the human body, 299–300
overview, 296–301
Physics II For Dummies (Holzner), 4, 296
from stars, 300–301
Stefan-Boltzmann constant, 298–299
Stefan-Boltzmann law of radiation, 299–301
thermal equilibrium, 297–298

Heisenberg uncertainty principle, 354
heliocentric view of the solar system, 347
Hercules’s weight lifting, example of 

rotational motion, 224–227
Holzner, Steven 

Physics II For Dummies, 4, 296
Hooke, Robert (physicist and inventor), 

251–253, 348
Hooke’s law, 251–253, 348
horizontal axes, 29
horizontal springs, 254–256
horizontal vector components, 60
human body, heat transfer from, 299–300
hydraulic machines, 145–147
Hz (hertz), 259, 362
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• I •
ice chest, conduction example, 294–295
ice on a stove, phase change 

example, 283–284
icons used in this book, 6
ideal gas law, 305–309. See also 

Boyle’s law; Charles’s law
ideal gases. See also gases

air molecule speed, predicting, 312–313
Boltzmann’s constant, 307
Boyle’s law, 309–312. See also 

Charles’s law; ideal gas law
Charles’s law, 309–312. See also 

Boyle’s law; ideal gas law
defi nition, 305
kinetic energy, calculating, 313–314
lung pressure, example, 308–309
moles, effects on pressure, 306–307
pressure, factors affecting, 306–307, 309–312
scuba tank example, 310–312
STP (standard temperature and 

pressure), 308
temperature, effects on pressure, 306–307
tracking molecules, 312–314
universal gas constant, 307
volume, effects on pressure, 306–307

impulse. See also collisions; momentum
calculating, 188
defi nition, 187, 362
force, calculating, 191–192
overview, 187–188

impulse-momentum theorem, 189–193
inclined planes. See ramps
incompressible fl ow, 151, 155–156
inelastic collisions, 200, 362
inertia, 81–82, 362. See also moment of inertia; 

Newton’s laws of motion, fi rst law
initial total momentum, 194
instantaneous acceleration, 40
instantaneous speed, 32, 34

instantaneous velocity, 209–210
insulators, 295–296
internal energy, 316
International System of Units (SI), 16
inverse tangent calculations, 63–64
inverse trig functions, 25
irrotational fl ow, 151–152
isobaric thermodynamic processes, 

321–325, 362
isochoric thermodynamic processes, 

325–326, 362
isolated systems, 194–195
isothermal thermodynamic processes, 

327–329, 362
isotherms, 329

• J •
J (joule), unit of measure

defi nition, 16
origin of, 351
thermal energy, 280
work, 362
work-energy theorem, 164

Joule, James Prescott (physicist), 351
Joule’s law, 351

• K •
k (kilo) prefi x, 20
kelvin, 363
Kelvin (William Thompson) (physicist and 

engineer), 351
Kepler, Johannes (astronomer), 134
Kepler’s laws of orbiting bodies, 134
kg (kilogram), 16, 363
kg⋅m/s2 (kilogram-meters/second2), 84
kick-the-ball exercise, 74–76
kinematics, 187, 363. See also 

impulse; momentum
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kinetic energy. See also mechanical energy; 
potential energy; work

changes, calculating, 172–173
converting to potential, 178–179
defi nition, 169, 363
ideal gases, calculating, 313–314

kinetic energy equation, 170–171
kinetic friction, 106–107, 363

• L •
ladder safety, example of rotational 

motion, 229–232
latent heat

defi nition, 284–286, 363
of fusion, 285
of sublimation, 285
of vaporization, 285

law of conservation of momentum, 363
laws of motion. See Kepler’s laws of orbiting 

bodies; Newton’s laws of motion
laws of thermodynamics, fi rst law: 

energy conservation
adiabats, 329
constant heat (adiabatic), 329–334
at constant pressure (isobaric), 321–325
constant temperature (isothermal), 327–329
constant volume (isochoric), 325–326
constant water pressure, 322–323
internal energy, 316
isotherms, 329
molar specifi c heat capacities, 331–332
overview, 316–317
pressure after adiabatic change, 333
sample problem, 319–320, 333–334
sign conventions, 317–320
steam pressure, 324–325

laws of thermodynamics, second law: 
direction of heat fl ow

car engines, 336–337
Carnot’s principle, 338–340
COP (coeffi cient of performance), 343

effi ciency in Carnot’s engine, 338–340
effi ciency limitations, 338–340
heat engine effi ciency, 335–336
heat engines, 335–337
heat pumps, 340–343
heat sinks, 335
overview, 334–335
reversible processes, 338–340
reversing direction, 340–343

laws of thermodynamics, third law: 
absolute zero, 344

laws of thermodynamics, zeroth law: 
thermal equilibrium, 315–316

lazy gas, sample thermodynamics 
problem, 319–320

lb (pound), 84
length, unit of measure, 16
lever arms, 219–221
lift, generating, 157
linear expansion, 275–277
linear momentum, 248, 363
linear motion, converting to rotational, 

207–208
liquid phase of matter, 364
liquids, heat transfer through, 287–290. 

See also convection
Loschmidt, Josef (physicist and 

chemist), 350
Loschmidt’s number, 350
lung pressure, ideal gas example, 308–309

• M •
M (mega) prefi x, 20
m (meter), 16
m (milli) prefi x, 20
magnetic fl ux density, 16
magnitude

centripetal acceleration, fi nding, 120
defi nition, 363
displacement, determining, 30–31
vectors, 52–53, 62

29_9780470903247-bindex.indd   37529_9780470903247-bindex.indd   375 5/26/11   11:20 PM5/26/11   11:20 PM



376 Physics I For Dummies, 2nd Edition 

mass
centripetal force, 122–123
defi nition, 363
Newton’s fi rst law, 81–82
Newton’s second law, 82–84
on springs, fi nding angular frequency, 

262–264
unit of measure, 16
versus weight, 81

mass-to-volume ratio (density)
calculating, 138–139
of common materials, 139
defi nition, 138, 362
versus specifi c gravity, 139

math basics
algebra, 23–24
eliminating zeros, 19–21
representing very large/small 

numbers, 19–21
scientifi c notation, 19–21
trigonometry, 24–25
unit prefi xes, 20

matter versus antimatter, 356
measurement systems

accuracy and precision, 21–23
conversion factors, 17
converting between systems, 17–19
estimating accuracy, 23
FPS (foot-pound-second), 84
MKS (meter-kilogram-second) system, 16
rounding, 22
SI (International System of Units), 16
signifi cant digits, 21–23
table of, 16
units of force, 84
using the wrong unit, 19

measuring the universe, 359
mechanical energy

conservation of, 177–181
converting between potential energy 

and kinetic, 178–179

defi nition, 177
fi nal height, fi nding, 180–181
fi nal velocity, fi nding, 180–181
gravitational potential energy, 178–179

mechanics, 363
mega (M) prefi x, 20
metals, cool to the touch, 296
meter (m), 16
micro (μ) prefi x, 20
microwave ovens, 358–359
milli (m) prefi x, 20
MKS (meter-kilogram-second) system, 16, 363
modeling the world with physics, 8–9
mol (mole), 303–305, 363
molar specifi c heat capacities, 331–332
molecular mass of gases, 305
molecules, speed and energy of in ideal 

gases, 312–314
moles, effects on pressure in ideal 

gases, 306–307
moment arms, 219–220. See also lever arms
moment of inertia. See also inertia

calculating, 235–236
defi nition, 233, 235, 363–364
force, converting to torque, 234
mass distribution, 236–240
tangential acceleration, converting to 

angular acceleration, 234–235
momentum. See also collisions; impulse; 

principle of conservation of 
momentum

angular, 248–250
defi nition, 189
force, calculating, 191–192
linear, 248
overview, 189

motion. See also acceleration; direction; 
Newton’s laws of motion; specifi c types; 
speed; velocity

overview, 10–12
perpetual, 81
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motion, orbital. See also 
centripetal acceleration

conservation of angular momentum, 
249–250

eccentricity of the ellipse, 134
elliptical orbits, 134
gravitational effects, 128–134
gravity at the Earth’s surface, 130–131
Kepler’s laws of orbiting bodies, 134
Newton’s law of universal gravitation, 

129–133
planetary movement, 134
planetary period, 134
satellite period, calculating, 133
satellite speed, calculating, 131–133
stationary satellites, 133

motion, rotational. See also centripetal 
acceleration; torque

applying vectors to, 215–217
centripetal acceleration, 211–213
centripetal force, 211–213
constant velocity, 223–224
converting from linear, 207–208
instantaneous velocity, 209–210
radial direction, 208
rotational equilibrium, 223–224, 227–232
tangential acceleration, 211
tangential direction, 208
tangential motion, 208–213
tangential speed, 209–210
tangential velocity, 209–210

motion, rotational examples
hanging a fl ag, 227–229
Hercules’s weight lifting, 224–227
ladder safety, 229–232

motion, under gravity
golf ball off cliff example, 71–74
horizontal movement, 71–74
kick-the-ball exercise, 74–76
upward trajectory, 74–76

multiplying vectors by a scalar, 57

• N •
N (newton), 16, 84, 363
n (nano) prefi x, 20
natural convection, 288–289
negative work, 168–169
net force, changing kinetic energy, 172–173
neutron stars, 355
Newton, Isaac (physicist), 80, 348
Newton’s law of universal gravitation, 

129–133, 355–356
Newton’s laws of motion

fi rst law: inertia, 80–82
second law: force equals mass times 

acceleration, 82–84
third law: equal and opposite forces, 90–98

nonconservative forces, 176–177
nonuniform acceleration, 42
nonuniform speed, 33
nonviscous fl ow, 151
normal force, 104–105, 363
numbers, representing very large/small, 19–21

• O •
observation, role in physics, 8
orbital motion. See also 

centripetal acceleration
conservation of angular momentum, 249–250
eccentricity of the ellipse, 134
elliptical orbits, 134
gravitational effects, 128–134
gravity at the Earth’s surface, 130–131
Kepler’s laws of orbiting bodies, 134
Newton’s law of universal gravitation, 

129–133
planetary movement, 134
planetary period, 134
satellite period, calculating, 133
satellite speed, calculating, 131–133
stationary satellites, 133
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oscillate, 363
oscillatory motion, 254. See also 

simple harmonic motion

• P •
p (pico) prefi x, 20
Pa (pascal), 16, 140, 363
particle physics, 356
Pascal’s principle, 145–147
pendulums, 266–267. See also simple 

harmonic motion; springs
The Pennsylvania Gazette (Franklin, 

publisher), 349
periods

centripetal acceleration, 118–119
defi nition, 364
simple harmonic motion, 258–259

perpetual motion, 81
phase (of matter), 364
phase changes

defi nition, 282
examples, 283–284
fusion, 285
latent heat, 284–286
required heat change, 284–286
solid into gas, 283
sublimation, 283, 285
vaporization, 285

phase-change graphs, 283–284
physics

defi nition, 7
rewards of, 9–10
word origin, 7

Physics II For Dummies (Holzner), 296, 359
pico (p) prefi x, 20
pipe size and fl ow rates, 153–156
Planck, Max (physicist), 353
Planck length, 353
Planck time, 354
planetary movement, 134
planetary period, 134

plasma phase of matter, 364
Poor Richard’s Almanac (Franklin, 

publisher), 349
positive acceleration versus negative, 37–40
positrons, 356
potential energy. See also kinetic energy; 

mechanical energy; work
converting to kinetic, 175–176, 178–179
defi nition, 173, 364
elastic, 264–265
gravitational effects, 174–175
overview, 173–174

pound (lb), 84
power. See also work

alternate calculations, 183–185
defi nition, 181–182, 364
units of measure, 182–183
W (watt), 182–183

precision of measurements, 21–23
predicting with physics, 8–9
prefi xes, units of measure, 20
pressure. See also fl uid dynamics

after adiabatic change, 333
atmospheric, 140–141
defi nition, 140, 364
in fl uids, 13–14
ideal gases, factors affecting, 

306–307, 309–312
Pa (pascal), 140
real-world example, 157–159
units of measure, 16, 140–141

pressure, water. See also hydraulic machines
changes in depth, 141–145
effects on blood pressure, 144
example, 141
hydraulic machines, 145–147 
pumping water upward, 144–145

pressure (isobaric), thermodynamic 
processes, 321–325, 362

principle of conservation of angular 
momentum, 249–250
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principle of conservation of momentum. 
See also momentum

closed systems, 194–195
defi nition, 193
fi nal total momentum, 194
fi ring velocity, calculating, 196–198
formula for, 193–195
initial total momentum, 194
isolated systems, 194–195
velocity, calculating, 195–196

pulley inertia, moment of inertia 
example, 240–242

pulleys, 92–93
pulling to perform work, 166–168
pumping water upward, 144–145
pushing to perform work, 164–165

• Q •
quarks, 356

• R •
race car engines, heat effi ciency, 337
radial direction, 208
radians

defi nition, 364
dimensionless units, 213
notation, 213

radians per second, 126
radiation (electromagnetic waves)

defi nition, 364
left over from the Big Bang, 359

radiation (heat transfer)
absorbing and refl ecting radiation, 298–301
blackbodies, 298–301
defi nition, 296
emissivity, 299
giving and receiving heat, 297–298
from the human body, 299–300
overview, 296–301
Physics II For Dummies (Holzner), 296
from stars, 300–301

Stefan-Boltzmann constant, 298–299
Stefan-Boltzmann law of radiation, 299–301
thermal equilibrium, 297–298

radiators, thermal expansion example, 
278–279

radius, centripetal force, 122–123
railroad tracks, thermal expansion 

example, 276–277
rain, example of momentum, 192–193
ramps. See also gravity effects on, ramps

friction, 108–112
rotational kinetic energy, 246–248
sliding distance, calculating, 110–112
weight components, calculating, 109

reference circles, 257–258
refl ecting radiation, 298–301
Refl ections on the Motive Power 

of Fire (Carnot), 350–351
Remember icon, 6
repeating motion. See simple 

harmonic motion
restoring force of springs, 252–253
resultant vectors, 53–54, 364
reversible processes, 338–340
reversing direction of heat fl ow, 340–343
revolutions per second, 126
right-hand rule, 214–215
rotational equilibrium, 223–224, 227–232
rotational fl ow, 151–152
rotational inertia. See moment of inertia
rotational kinetic energy, 244–248
rotational motion. See also centripetal 

acceleration; torque
centripetal force, 211–213
constant velocity, 223–224
converting from linear, 207–208
instantaneous velocity, 209–210
radial direction, 208
rotational equilibrium, 223–224, 227–232
tangential acceleration, 211
tangential direction, 208
tangential motion, 208–213
tangential speed, 209–210
tangential velocity, 209–210
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rotational motion, applying vectors to
angular acceleration, calculating, 215–217
angular velocity, calculating, 214–215
changing speed, 215–216
reversing direction, 215–216
right-hand rule, 214–215
tilting the axle, 217

rotational motion, examples
hanging a fl ag, 227–229
Hercules’s weight lifting, 224–227
ladder safety, 229–232

rounding answers, 22

• S •
s (second), 16
satellites. See also orbital motion

conservation of angular momentum, 
249–250

period, calculating, 133
speed, calculating, 131–133
stationary, 133

scalar
defi nition, 364
dividing vectors by, 68
multiplying vectors by, 57

scientifi c notation, 19–21
scuba tank, ideal gas example, 310–312
second law of thermodynamics: direction 

of heat fl ow
car engines, 336–337
Carnot’s principle, 338–340
COP (coeffi cient of performance), 343
effi ciency in Carnot’s engine, 338–340
effi ciency limitations, 338–340
heat engine effi ciency, 335–336
heat engines, 335–337
heat pumps, 340–343
heat sinks, 335
overview, 334–335
reversible processes, 338–340
reversing direction, 340–343

shooting pool, example of impulse-
momentum theorem, 191–192

SI (International System of Units), 16
sides of triangles, calculating. 

See trigonometry
sign conventions, calculating conservation 

of energy, 317–320
signifi cant digits, 21–23, 364
simple harmonic motion

defi nition, 12, 364
elastic potential energy, 264–265

simple harmonic motion
acceleration, 261–262
angular frequency, 259
cycles, 258–259
cycles per second, 259
frequency, 259
Hz (hertz), 259
periods, 258–259
recording, 256–257
reference circle, 257–258
velocity, 259–260

sine function, 24–25
singularities, 358
slug, 82
slug⋅ft/s2 (slug-feet/second2), 84
smallest measurable

distance, 353
time, 354

solid, changing to gas, 283
solid materials, heat transfer through, 

290–296. See also conduction
solid phase of matter, 364
South Pole lab, adiabatic-change sample 

problem, 333–334
space, effects of gravity, 355–356
spacetime, 355–356
specifi c gravity, 139, 364
specifi c heat capacity, 364
speed. See also acceleration; velocity

average, 33–35
defi nition, 31
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instantaneous, 32, 34
of moving objects, 10–11
nonuniform, 33
rotational motion, changing, 215–216
shifting, 33
steady, 33
tangential, 209–210
uniform, 33
versus velocity, 32

Spencer, Percy (inventor), 359
spinning disks, moment of inertia example, 

238–240
spinning fl ow, 151–152
spring constant, 252, 348
springs. See also pendulums; simple 

harmonic motion
angular frequency of masses, fi nding, 

262–264
elastic limit, 252–253
elasticity, 251–253
equilibrium, 254–256
force generated by stretching/

compression, 11–12, 251–253
Hooke’s law, 251–253
horizontal, 254–256
restoring force, 252–253
vertical, 254–256

squeezability, fl ow, 151, 155–156
standard pressure, 364
standard temperature, 364
standard temperature and 

pressure (STP), 308
stars, radiation from, 300–301
state changes. See phase changes
static friction, 106–107, 364
stationary satellites, 133
steady fl ow, 150
steady speed, 33
steam pressure, 324–325
Stefan-Boltzmann constant, 298–299

Stefan-Boltzmann law of radiation, 299–301
Sterling, Mary Jane

Algebra I For Dummies, 24
Trigonometry For Dummies, 25

stored energy. See potential energy
STP (standard temperature and 

pressure), 308
streamlines, 152–153, 364
sublimation, 283, 285
subtraction, vectors, 54–55
sun-centered view of the solar system, 347
supernovas, 357
systems of measurement. See 

measurement systems

• T •
T (tesla), 16
tangent function, 24–25
tangential acceleration, 211, 234–235
tangential direction, 208
tangential motion, 208–213
tangential speed, 209–210
tangential velocity, 209–210
tanker trucks, thermal expansion example, 278
Technical Stuff icon, 6
temperature. See also heat; thermal 

energy; thermodynamics
boiling water, 272, 274
Celsius scale, 272–273
changes in object’s, 281–282
defi nition, 365
effects on pressure in ideal gases, 306–307
equal across objects, 280
Fahrenheit scale, 272–273
freezing water, 272
Kelvin scale, 273–274
measuring, 272–274
phase changes, 282–286
thermal equilibrium, 280
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temperature, conversions
Fahrenheit/Celsius, 272–273
kelvin/Celsius, 273–274
kelvin/Fahrenheit, 273–274

temperature (isothermal), thermodynamic 
processes, 327–329, 362

tesla (T), 16
thermal conductivity, 292–294, 295–296, 365
thermal energy. See also heat; 

thermodynamics
calories, 280
defi nition, 280
maximum heat held, 281–282
phase-change graphs, 283–284
specifi c heat capacity, 281–282
thermal equilibrium, 280
units of measure, 280

thermal energy, phase changes
defi nition, 282
examples, 283–284
fusion, 285
latent heat, 284–286
required heat change, 284–286
sublimation, 283, 285
vaporization, 285

thermal equilibrium, 297–298, 315–316
thermal expansion

coeffi cient of linear expansion, 276
coeffi cient of volume expansion, 277–279
defi nition, 365
linear expansion, 275–277
overview, 274–275
volume expansion, 277–279

thermal expansion examples
expanding liquids, 278–279
linear expansion of solids, 276–277
radiators, 278–279
railroad tracks, 276–277
tanker trucks, 278

thermals (convection), 289
thermodynamics, 365. See also heat; laws 

of thermodynamics; temperature; 
thermal energy

thickness, fl ow, 151

third law of thermodynamics: absolute 
zero, 344

Thompson, William (Lord Kelvin), 351
tilting the axle, 217
time

calculating from acceleration, 42–46
smallest measurable, 354
unit of measure, 16

Tip icon, 6
torque. See also rotational motion

calculating, 221–222
converting from force, 234
defi nition, 217, 365
equation for, 219–220
lever arms, 219–221
moment arms, 219–220. See also 

lever arms
overview, 217–219
units of measure, 219–220
as a vector, 222–223

tow rope, pulling an object, 166–168
trajectories. See gravity effects 

on, trajectories
trigonometry, 24–25. See also math basics
Trigonometry For Dummies (Sterling), 25

• U •
uniform acceleration, 42
uniform circular motion, 118
uniform speed, 33
unit prefi xes, 20
units of acceleration, 36–37
units of force, 84
units of measure. See also specifi c units

gases, 303–305
power, 182–183
pressure, 140–141
temperature, 272–274
thermal energy, 280
torque, 219–220
work, 164
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universal gas constant, 307
universe

anthropic principle, 359
background microwave radiation, 359
beginning and end of, 357–358
Big Bang theory, 357–358, 359
Big Crunch theory, 358
constants, 359
measuring, 359

unsteady fl ow, 150

• V •
vaporization, 285
vector addition, gathering net forces, 84–89
vector components

breaking into, 57–58
defi nition, 58
equations, 60
fi nding, 58–61
horizontal, 60
reassembling, 61–64
vertical, 60

vectors
angles, fi nding, 62–63
defi nition, 10, 365
direction, 52–53
displacement, 53
dividing by scalars, 68
equality, 53
magnitude, 52–53, 62
multiplying by a scalar, 57
overview, 51
representing, 10, 52–53
subtraction, 54–55
velocity, 10–11

vectors, addition
adding coordinates, 55–57
notation, 56
overview, 53–54
resultant vectors, 53–54
sums, 54. See also resultant vectors

velocity. See also speed
acceleration and displacement, 47–50
average, 34–35
centripetal force, 122–123, 125–128
defi nition, 365
instantaneous, rotational motion, 209–210
of moving objects, 10–11
simple harmonic motion, 259–260
versus speed, 32
tangential, 209–210

velocity, calculating
changes in, 69–70
fi nal velocity, 49–50
fi ring velocity, 196–198
mechanical energy, 180–181
principle of conservation of momentum, 

195–196
in two dimensions, 68

vertical axes, 29
vertical loops, 134–136
vertical springs, 254–256
vertical vector components, 60
viscosity, 365
viscous fl ow, 151
volume, effects on pressure in ideal 

gases, 306–307
volume (isochoric), thermodynamic 

processes, 325–326, 362
volume expansion, 277–279
volume-to-mass ratio. See density

• W •
Warning icon, 6
water pressure. See pressure, water
weight

defi nition, 365
versus mass, 81

work. See also forces; kinetic energy; 
potential energy; power

conservative forces, 176–177
converting to kinetic energy, 169–170
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work (continued)

defi nition, 163, 365
force at an angle, 166–168
force opposite direction of motion, 168–169
negative, 168–169
nonconservative forces, 176–177
pulling motion, 166–168
pushing motion, 164–165
reducing friction, 167–168
rotational, 243–248
units of measure, 164
using a tow rope, 166–168

work-energy theorem
converting work to kinetic energy, 169–170
defi nition, 169
kinetic energy changes, calculating, 172–173
kinetic energy equation, 170–171
net force, changing kinetic energy, 172–173
overview, 169–170

• X •
x-axis, 29

• Y •
y-axis, 29

• Z •
z-axis, 29
zeros, eliminating, 19–21
zeroth law of thermodynamics: thermal 

equilibrium, 315–316
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