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EDITOR'S PREFACE

This book is a concise introduction to modern probability
theory and certain of its ramifications. By deliberate
succinctness of style and judicious selection of topics, it
manages to be both fast-moving and self-contained.

The present edition differs from the Russian original
(Moscow, 1968) in several respects:

1. It has been heavily restyled with the addition of
some new material. Here I have drawn from my own
background in probability theory, information theory,
etc.

2. Each of the eight chapters and four appendices has
been equipped with relevant problems, many accom-
panied by hints and answers. There are 150 of these
problems, in large measure drawn from the excellent
collection edited by A. A. Sveshnikov (Moscow, 1965).

3. At the end of the book I have added a brief
Bibliography, containing suggestions for collateral and
supplementary reading.

R. A. S.
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BASIC CONCEPTS

1. Probability and Relative Frequency

Consider the simple experiment of tossing an unbiased coin. This
experiment has two mutually exclusive outcomes, namely "heads" and
"tails." The various factors influencing the outcome of the experiment are
too numerous to take into account, at least if the coin tossing is "fair."
Therefore the outcome of the experiment is said to be "random." Everyone
would certainly agree that the "probability of getting heads" and the "prob-
ability of getting tails" both equal J. Intuitively, this answer is based on the
idea that the two outcomes are "equally likely" or "equiprobable," because of
the very nature of the experiment. But hardly anyone will bother at this
point to clarify just what he means by "probability."

Continuing in this vein and taking these ideas at face value, consider an
experiment with a finite number of mutually exclusive outcomes which are
equiprobable, i.e., "equally likely because of the nature of the experiment."
Let A denote some event associated with the possible outcomes of the
experiment. Then the probability P(A) of the event A is defined as the fraction
of the outcomes in which A occurs. More exactly,

P(A) =N(A)
N

where N is the total number of outcomes of the experiment and N(A) is the
number of outcomes leading to the occurrence of the event A.

Example 1. In tossing a well-balanced coin, there are N= 2 mutually
exclusive equiprobable outcomes ("heads" and "tails"). Let A be either of



2 BASIC CONCEPTS

these two outcomes. Then N(A) = :1, and hence

P(A) = -1
2

Example 2. In throwing a single unbiased die, there are N = 6 mutually
exclusive equiprobable outcomes, namely getting a number of spots equal
to each of the numbers I through 6. Let A be the event consisting of getting
an even number of spots. Then there are N(A) = 3 outcomes leading to the
occurrence of A (which ones?), and hence

P(A) 6 2

Example 3. In throwing a pair of dice, there are N 36 mutually
exclusive equiprobable events, each represented by an ordered pair (a, b),
where a is the number of spots showing on the first die and b the number
showing on the second die. Let A be the event that both dice show the same
number of spots. Then A occurs whenever a = b, i.e., n(A) = 6. Therefore

P(A) == 36 = 6

Remark. Despite its seeming simplicity, formula (1.1) can lead to
nontrivial calculations. In fact, before using (1.1) in a given problem, we
must find all the equiprobable outcomes, and then identify all those leading
to the occurrence of the event A in question.

The accumulated experience of innumerable observations reveals a
remarkable regularity of behavior, allowing us to assign a precise meaning
to the concept of probability not only in the case of experiments with equi-
probable outcomes, but also in the most general case. Suppose the experi-
ment under consideration can be repeated any number of times, so that, in
principle at least, we can produce a whole series of "independent trials under
identical conditions,"' in each of which, depending on chance, a particular
event A of interest either occurs or does not occur. Let n be the total number
of experiments in the whole series of trials, and let n(A) be the number of
experiments in which A occurs. Then the ratio

n(A)
n

is called the relativefrequency of the event A (in the given series of trials). It
turns out that the relative frequencies n(A)/n observed in different series of

XConcerning the notion of independence, see Sec. 6, in particular footnote 2, p. 31.

CHAP. I



BASIC CONCEPTS 3

trials are virtually the same for large n, clustering about some constant

P(A) - (A), (1.2)
n

called the probability of the event A. More exactly, (1.2) means that

P(A) = lim n(A) (1.3)
nmn

Roughly speaking, the probability P(A) of the event A equals the fraction of
experiments leading to the occurrence of A in a large series of trials.2

Example 4. Table I shows the results of a series of 10,000 coin tosses,3

grouped into 100 different series of n = 100 tosses each. In every case, the
table shows the number of tosses n(A) leading to the occurrence of a head.
It is clear that the relative frequency of occurrence of "heads" in each set
of 100 tosses differs only slightly from the probability P(A) = i found in
Example 1. Note that the relative frequency of occurrence of "heads" is even
closer to i if we group the tosses in series of 1000 tosses each.

Table 1. Number of heads in a series of coin tosses

Number of/heads Number of/heads
in 100 series of in 10 series of

100 trials each 1000 trials each'

54 46 53 55 46 54 41 48 51 53 501
48 46 40 53 49 49 48 54 53 45 485
43 52 58 51 51 50 52 50 53 49 509
58 60 54 55 50 48 47 57 52 55 536
48 51 51 49 44 52 50 46 53 41 485
49 50 45 52 52 48 47 47 47 51 488
45 47 41 51 49 59 50 55 53 50 500
53 52 46 52 44 51 48 51 46 54 497
45 47 46 52 47 48 59 57 45 48 494
47 41 51 48 59 51 52 55 39 41 484

Example 5 (De Mere's paradox). As a result of extensive observation of
dice games, the French gambler de Mere noticed that the total number of
spots showing on three dice thrown simultaneously turns out to be 11 (the
event A,) more often than it turns out to be 12 (the event A2), although
from his point of view both events should occur equally often. De Mere

2 For a more rigorous discussion of the meaning of (1.2) and (1 .3), see Sec. 12 on the "law
of large numbers."

I Table I is taken from W. Feller, An Introduction to Probability Theory and Its Appli-
cations, Volume I, third edition, John Wiley and Sons, Inc., New York (1968), p. 21, and
actually stems from a table of "random numbers."

I Obtained by adding the numbers on the left, row by row.

SEC. I



4 BASIC CONCEPTS

reasoned as follows: A, occurs in just six ways (6:4:1, 6:3:2, 5:5:1, 5:4 :2,
5:3:3, 4:4:3), and A2 also occurs in just six ways (6:5:1, 6:4:2, 6:3:3,
5:5:2, 5:4:3, 4:4:4). Therefore Al and A2 have the same probability
P(A1 ) = P(A2 ).

The fallacy in this argument was found by Pascal, who showed that the
outcomes listed by de Mere are not actually equiprobable. In fact, one must
take account not only of the numbers of spots showing on the dice, but also
of the particular dice on which the spots appear. For example, numbering
the dice and writing the number of spots in the corresponding order, we find
that there are six distinct outcomes leading to the combination 6:4: 1, namely
(6, 4, 1), (6, 1, 4), (4, 6, 1), (4, 1, 6), (1, 6, 4) and (1, 4, 6), whereas there is
only one outcome leading to the combination 4:4:4, namely (4, 4, 4). The ap-
propriate equiprobable outcomes are those described by triples of numbers
(a, b, c), where a is the number of spots on the first die, b the number of spots
on the second die, and c the number of spots on the third die. It is easy to
see that there are then precisely N - 63 = 216 equiprobable outcomes. Of
these, N(A1 ) = 27 are favorable to the event Al (in which the sum of all the
spots equals 11), but only N(A2 ) = 25 are favorable to the event A2 (in which
the sum of all the spots equals 12).5 This fact explains the tendency observed
by de Mere for 11 spots to appear more often than 12.

2. Rudiments of Combinatorial Analysis

Combinatorial formulas are of great use in calculating probabilities.
We now derive the most important of these formulas.

THEOREM 1.1. Given n, elements al, a2, . . , a,, and n2 elements bl,
b , . . .b there are precisely nin

distinct ordered pairs (ai, b,) contain-

ing one element of each kind.

Proof. Represent the elements of
the first kind by points of the x-axis,
and those of the second kind by points
of the y-axis. Then the possible pairs
(ai, b1) are points of a rectangular
lattice in the xy-plane, as shown in

I I | ,x Figure 1. The fact that there are
0 O2 * * ' 0/7 just nln2 such pairs is obvious from

FIGURE 1. the figure. | 6

6 To see this, note that a combination a: b: c occurs in 6 distinct ways if a, b and c are
distinct, in 3 distinct ways if two (and only two) of the numbers a, b and c are distinct, and
in only 1 way if a = b = c. Hence A, occurs in 6 + 6 + 3 + 6 + 3 + 3 = 27 ways, while
A. occurs in 6 + 6 + 3 + 3 + 6 + I = 25 ways.

I The symbol I stands for Q.E.D. and indicates the end of a proof.

bn2

b 2

CHAP. I
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More generally, we have

THEOREM 1.2. Given n1 elements at, a2 , ... , an,, n2 elements b1,
b2,... , bn,, etc., up to n, elements x1, x2, ... , x",, there are precisely
nin 2 ... nr distinct ordered r-tuples (ai. bi., . .. , xi,) containing one
element of each kind.7

Proof. For r = 2, the theorem reduces to Theorem 1.1. Suppose
the theorem holds for r -1, so that in particular there are precisely
n2 *.. n, (r -I)-tuples (bi, . .. , xi) containing one element of each
kind. Then, regarding the (r - 1)-tuples as elements of a new kind, we
note that each r-tuple (ail, bi2, . . . , xi) can be regarded as made up of
a (r - 1)-tuple (bi,2 . . . , xi) and an element ail. Hence, by Theorem
1.1, there are precisely

n(n2 *.*.* n) = nIn2 ... n,

r-tuples containing one element of each kind. The theorem now
follows for all r by mathematical induction. I

Example 1. What is the probability of getting three sixes in a throw
of three dice?

Solution. Let a be the number of spots on the first die, b the number of
spots on the second die, and c the number of spots on the third die. Then
the result of throwing the dice is described by an ordered triple (a, b, c),
where each element takes values from I to 6. Hence, by Theorem 1.2 with
r = 3 and n, = n2 = n, = 6, there are precisely N = 63 = 216 equiprobable
outcomes of throwing three dice (this fact was anticipated in Example 5,
p. 3). Three sixes can occur in only -one way, i.e., when a = b = c = 6.
Therefore the probability of getting three sixes is 21'-

Example 2 (Sampling with replacement). Suppose we choose r objects
in succession from a "population" (i.e., set) of n distinct objects a,, a2, .*
an, in such a way that after choosing each object and recording the choice, we
return the object to the population before making the next choice. This
gives an "ordered sample" of the form

(ai1, ai2 . .... ai,)- (1.4)

Setting n, - n 2  = n, = n in Theorem 1.2, we find that there are
precisely

N = nr (1.5)

distinct ordered samples of the form (1.4).8

' Two ordered r-tuples (ail, bi, . .., xi,) and (al, bj 2,..., xi,) are said to be distinct
if the elements of at least one pair ail and ail, bi, and bj,, ... , ai, and bi, are distinct.

I Two "ordered samples" (ail, ai, .. , ai,.) and (aj,, a/2, . . ., a,,) are said to be distinct
if a,) -& aj,, for at least one k = 1, 2, . . ., r. This is a special case of the definition in
footnote 7.
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Example 3 (Sampling without replacement). Next suppose we choose r
objects in succession from a population of n distinct objects at, a2, . . ., an,
in such a way that an object once chosen is removed from the population.
Then we again get an ordered sample of the form (1.4), but now there are
n - I objects left after the first choice, n - 2 objects left after the second
choice, and so on. Clearly this corresponds to setting

n, = n, n2 = n -- 1, . . ., n, = n-r +-1

in Theorem 1.2. Hence, instead of n" distinct samples as in the case of sam-
pling with replacement, there are now only

N = n(n -- 1) .(n-r + 1) (1.6)

distinct samples. If r = n, then (1.6) reduces to

N-= n(n -- ]) . 2 1 =n!, (1.7)

the total number of permutations of n objects.

Example 4. Suppose we place r distinguishable objects into n different
"cells" (r < n), with no cell allowed to contain more than one object. Num-
bering both the objects and the cells, let i, be the number of the cell into which
the first object is placed, i2 the number of the cell into which the second
object is placed, and so on. Then the arrangement of the objects in the cells
is described by an ordered r-tuple (i , i . . , 4). Clearly, there are n1 = n
empty cells originally, n2 = n -I empty cells after one cell has been occupied,
n = n - 2 empty cells after two cells have been occupied, and so on. Hence,
the total number of distinct arrangements of the objects in the cells is again
given by formula (1.6).

Example 5. A subway train made up of n cars is boarded by r passengers
(r < n), each entering a car completely at random. What is the probability
of the passengers all ending up in different cars?

Solution. By hypothesis, every car has the same probability of being
entered by a given passenger. Numbering both the passengers and the cars,
let il be the number of the car entered by the first passenger, i2 the number
of the car entered by the second passenger, and so on. Then the arrangement
of the passengers in the cars is described by an ordered r-tuple (i1, i2, . . ., 0,

where each of the numbers 4, i, . . . , i4 can range from 1 to n. This is
equivalent to sampling with replacement, and hence, by Example 2, there are

N -= nr

distinct equiprobable arrangements of the passengers in the cars. Let A
be the event that "no more than one passenger enters any car." Then A
occurs if and only if all the numbers i4, i, . . . , i4 are distinct. In other

CHAP. I



BASIC CONCEPTS 7

words, if A is to occur, the first passenger can enter one of n cars, but the
second passenger can only enter one of n - I cars, the third passenger one
of n -2 cars, and so on. This is equivalent to sampling without replacement,
and hence, by Example 3, there are

N(A) = n(n -) * *(n-r + 1)

arrangements of passengers in the cars leading to the occurrence of A. There-
fore, by (1.1), the probability of A occurring, i.e., of the passengers all ending
up in different cars, is just

P(A) = n(n 1) (n r + 1
nr

Any set of r elements chosen from a population of n elements, without
regardfor order, is called a subpopulation of size r of the original population.
The number of such subpopulations is given by

THEOREM 1.3. A population of n elements has precisely

r! (n r)! (1.8)

subpopulations of size r < n.

Proof. If order mattered, then the elements of each subpopulation
could be arranged in r! distinct ways (recall Example 3). Hence there
are r! times more "ordered samples" of r elements than subpopulations
of size r. But there are precisely n(n - 1) . . . (n - r + 1) such ordered
samples (by Example 3 again), and hence just

n(n -1) (n-r + 1)_ n!

r! r! (n -r)!

subpopulations of size r. I

Remark. An expression of the form (1.8) is called a binomial coefficient,
often denoted by

(n )

instead of Cn. The number Cn is sometimes called the number of combinations
of n things taken r at a time (without regard for order).

The natural generalization of Theorem 1.3 is given by

THEOREM 1.4. Given a population of n elements, let n1, n2, . . nk be
positive integers such that

n, + n2 + *+ nk n.

SEC. 2
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Then there are precisely

N=- n2! (1.9)

ways of partitioning the population into k subpopulations, of sizes
nl, n2, . . . I nk, respectively.

Proof. The order of the subpopulations matters in the sense that
nj = 2, n2 = 4 , n., . . ., nk and n- = 4, n2 = 2, n3, . . ., nk (say)
represent different partitions, bul the order of elements within the
subpopulations themselves is irrelevant. The partitioning can be effected
in stages, as follows: First we form a group of ni elements from
the original population. This can be done in

N 1 = C-.1

ways. Then we form a group of n2 elements from the remaining n -n
elements. This can be done in

N 2 == CR2

ways. Proceeding in this fashion, wse are left with n- n- - nk-2
nk-l + nk elements after k - 2 stages. These elements can be partitioned
into two groups, one containing n, l elements and the other nk elements,
in

Nk-1 = nkI- nk 2

ways. Hence, by Theorem 1.2, there are

N =NIN-2- Nk-1

= cncn2 S cnk-1l n-

distinct ways of partitioning the given population into the indicated k
subpopulations. But

C nCn-nl ... Cn-nl--nk-.
n ng nk-1

n! (n-nj)! (n-ni- - nk-2)!

n,! (n - nj)! n2 ! (n-n 1 - n2 )! nk-I! (n- n- nk-2 - nk-I)!

n! (n-n,)! (n- ni- * nk-2)!

n,! (n - nj! n,! (n n, -- no)! nk-l! nk!

n!

n,! n2 ! ... nk!

in keeping with (1.9). I
Remark. Theorem 1.4 reduces to Theorem 1.3 if

k = 2, n1 == r, n 2 = n - r.

CHAP. I
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The numbers (1.9) are called multinomial coefficients, and generalize the
binomial coefficients (1.8).

Example 6 (Quality control). A batch of 100 manufactured items is
checked by an inspector, who examines 10 items selected at random. If
none of the 10 items is defective, he accepts the whole batch. Otherwise, the
batch is subjected to further inspection. What is the probability that a batch
containing 10 defective items will be accepted?

Solution. The number of ways of selecting 10 items out of a batch of
100 items equals the number of combinations of 100 things taken 10 at a time,
and is just

N=Cl0 = 100!
10! 90!

By hypothesis, these combinations are all equiprobable (the items being
selected "at random"). Let A be the event that "the batch of items is accepted
by the inspector." Then A occurs whenever all 10 items belong to the set of
90 items of acceptable quality. Hence the number of combinations favorable
to A is

N(A) = C-= 90!
N() - 10 80!

It follows from (1.1) that the probability of the event A, i.e., of the batch
being accepted, equals9

N(A) 90! 90! 8182 * 90 1 \10 1
P(A= = = N(A 1--a9- 0

N 80! 100! 91 * 92 * *100 T10 e

where e - 2.718 . . . is the base of the natural logarithms.

Example 7. What is the probability that two playing cards picked at
random from a full deck are both aces?

Solution. A full deck consists of 52 cards, of which 4 are aces. There are

Cs2 =52 ! 1
2 2! 50! = 1326

ways of selecting a pair of cards from the deck. Of these 1326 pairs, there are

C42 = 4 ! = 6
2! 2!

'The symbol P means "is approximately equal to."

SEC. 2



10 BASIC CONCEPTS

consisting of two aces. Hence the probability of picking two aces is just

C4a2= 6- 1
Ca2  1326 221

Example 8. What is the probability that each of four bridge players
holds an ace?

Solution. Applying Theorem 1.4 with n =52-and nl = n2 = n3 = n4 =

13, we find that there are
52!

13! 13! 13! 13!

distinct deals of bridge. There are 4! == 24 ways of giving an ace to each
player, and then the remaining 48 cards can be dealt out in

48!
12! 12! 12! 12!

distinct ways. Hence there are

24 48!
(12!)'

distinct deals of bridge such that each player receives an ace. Therefore the
probability of each player receiving an ace is just

48! (13!)4 24(13)4 0.105.
(12!)4 52! 52 51 * 50 * 49

Remark. Most of the above formulas contain the quantity

n! =n(n -'li . 2 1,

called nfactorial. For large n, it can be shown that' 0

I--
n ! v27rn n'e-'.

This simple asymptotic representation of n! is known as Stirling's formula."

PROBLEMS

1. A four-volume work is placed in random order on a bookshelf. What is the
probability of the volumes being in proper order from left to right or from
right to left?

10 The symbol - between two variables a., and (, means that the ratio ,/P3. -n I as
n -.

lt Proved, for example, in D. V. Widder, Advanced Calculus, second edition, Prentice-
Hall, Inc., Englewood Cliffs, N.J. (1961), p. 386.

CHAP. I
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2. A wooden cube with painted faces is sawed up into 1000 little cubes, all of the
same size. The little cubes are then mixed up, and one is chosen at random
What is the probability of its having just 2 painted faces?

Ans. 0.096.

3. A batch of n manufactured items contains k defective items. Suppose m
items are selected at random from the batch. What is the probability that I of
these items are defective?

4. Ten books are placed in random order on a bookshelf. Find the probability
of three given books being side by side.

Ans. A.
5. One marksman has an 80% probability of hitting a target, while another has
only a 70% probability of hitting the target. What is the probability of the
target being hit (at least once) if both marksman fire at it simultaneously?

Ans. 0.94.

6. Suppose n people sit down at random and independently of each other in an
auditorium containing n + k seats. What is the probability that m seats specified
in advance (m < n) will be occupied?

7. Three cards are drawn at random from a full deck. What is the probability
of getting a three, a seven and an ace?

8. What is the probability of being able to form a triangle from three segments
chosen at random from five line segments of lengths 1, 3, 5, 7 and 9?

Hint. A triangle cannot be formed if one segment is longer than the sum of
the other two.

9. Suppose a number from I to 1000 is selected at random. What is the proba-
bility that the last two digits of its cube are both I ?

Hint There is no need to look through a table of cubes.
Ans. 0.01.

10. Find the probability that a randomly selected positive integer will give a
number ending in I if it is

a) Squared;
b) Raised to the fourth power;
c) Multiplied by an arbitrary positive integer.
Hint. It is enough to consider one-digit numbers.
Ans. a) 0.2; b) 0.4; c) 0.04.

11. One of the numbers 2, 4, 6, 7, 8, 11, 12 and 13 is chosen at random as the
numerator of a fraction, and then one of the remaining numbers is chosen at
random as the denominator of the fraction. What is the probability of the
fraction being in lowest terms?

Ans. A.
12. The word "drawer" is spelled with six scrabble tiles. The tiles are then
randomly rearranged. What is the probability of the rearranged tiles spelling
the word "reward?"

Ans. -g.te

PROBLEMS
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13. In throwing 6n dice, what is the probability of getting each face n times?
Use Stirling's formula to estimate this probability for large n.

14. A full deck of cards is divided in half at random. Use Stirling's formula to
estimate the probability that each half contains the same number of red and
black cards.

C!CE 2
Ans. 52 R3 -- F 0.22.

C26 V6 7 ,

15. Use Stirling's formula to estimate the probability that all 50 states are
represented in a committee of 50 senators chosen at random.

16. Suppose 2n customers stand in line at a box office, n with 5-dollar bills and
n with 10-dollar bills. Suppose each ticket costs 5 dollars, and the box office
has no money initially. What is the probability that none of the customers has
to wait for change

17. Prove that

((,k)2 = C2V.

k=0

Hint. Use the binomial theorem to calculate the coefficient of x' in the
product (I + x)1(l + x)" = (I + x) 2''.

1' A detailed solution is given in B. V. Gnedenko, The Theory of Probability, fourth
edition (translated by B. D. Seckler), Chelsea Publishing Co., New York (1967), p. 43.

C2n - C2n I

" n +1
Ans. C n + I

CHAP. I



2
COMBINATION OF EVENTS

3. Elementary Events. The Sample Space

The mutually exclusive outcomes of a random experiment (like throwing
a pair of dice) will be called elementary events (or sample points), and a
typical elementary event will be denoted by the Greek letter a. The set of
all elementary events o associated with a given experiment will be called the
sample space (or space of elementary events), denoted by the Greek letter
Q. An event A is said to be "associated with the elementary events of Q" if,
given any X in Q2, we can always decide whether or not o leads to the occur-
rence of A. The same symbol A will be used to denote both the event A and
the set of elementary events leading to the occurrence of A. Clearly, an event
A occurs if and only if one of the elementary events X in the set A occurs.
Thus, instead of talking about the occurrence of the original event A, we can
just as well talk about the "occurrence of an elementary event X in the set
A." From now on, we will not distinguish between an event associated with
a given experiment and the corresponding set of elementary events, it being
understood that all our events are of the type described by saying "one of the
elementary events in the set A occurs." With this interpretation, events are
nothing more or less than subsets of some underlying sample space U. Thus
the certain (or sure) event, which always occurs regardless of the outcome
of the experiment, is formally identical with the whole space Q, while the
impossible event is just the empty set 0, containing none of the elementary
events co.

Given two events A1 and A2, suppose Al occurs if and only if A, occurs.
Then A, and A2 are said to be identical (or equivalent), and we write A, = A2.

13



14 COMBINATION OF EVENTS

Example 1. In throwing a pair of dice, let A, be the event that "the
total number of spots is even" and A2 the event that "both dice turn up even
or both dice turn up odd."' Then Al -= A2.

Example 2. In throwing three dice, let Al again be the event that "the
total number of spots is even" and A2 the event that "all three dice have either
an even number of spots or an odd number of spots." Then A, = A2.

Two events A, and A2 are said to be mutually exclusive or incompatible if
the occurrence of one event precludes the occurrence of the other, i.e., if A,
and A2 cannot occur simultaneously.

By the union of two events A, and A,, denoted by A, U A2, we mean the
event consisting of the occurrence of at least one of the events A, and A2.
The union of several events Al, A2 . . . . is defined in the same way, and is
denoted by U A,.

k
By the intersection of two events A, and A,, denoted by A, n A2 or simply

by AA 2, we mean the event consisting of the occurrence of both events A,
and A2. By the intersection of several events A,, A2, . . , denoted by n A,,

k

we mean the event consisting of the occurrence of all the events A,, A,, ..
Given two events A, and A2, by the difference Al - A2 we mean the event

in which A, occurs but not A2. By the complementary event of an event A,2
denoted by A, we mean the event "A does not occur." Clearly,

AT = n2 -- A.

Example 3. In throwing a pair of dice, let A be the event that "the
total number of spots is even," A, the event that "both dice turn up even,"
and A2 the event that "both dice turn up odd." Then A, and A2 are mutually
exclusive, and clearly

A=Au A2, A, =A--A 2 , A 2 =A-Al.

Let A, i1 and A2 be the events complementary to A, Al and A2 , respectively.
Then A-is the event that "the total number of spots is odd," A-, the event that
"at least one die turns up odd," and A2 the event that "at least one die turns
up even." It is easy to see that

A1, -1= (,nX=A 2 , A 1  2 -A=T 2 , rA==A,.

The meaning of concepts like the union of two events, the intersection
of two events, etc., is particularly clear if we think of events as sets of ele-
mentary events t, in the way described above. With this interpretation,

I To "turn up even" means to show an even number of spots, and similarly for to "turn
up odd."

' Synonymously, the "complement of A" or the "event complementary to A."

CHAP. 2
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given events A1, A, and A, A, U A, is the union of the sets A1 and A2,
A, n A2 is the intersection of the sets A1 and A2 , A = Q-A is the comple-
ment of the set A relative to the whole space Q, and so on. Thus the symbols
u, r), etc. have their customary set-theoretic meaning. Moreover, the
statement that "the occurrence of the event Al implies that of the event A,"
(or simply, "Al implies A2") means that A, - A2, i.e., that the set Al is a
subset of the set A2.

3

(c) ) ( Cb) )

A,

(d) (e) (f )

FIGURE 2. (a) The events A. and A, are mutually exclusive;
(b) The unshaded figure represents the union Al U As; (c) The
unshaded figure represents the intersection A1 rl A.; (d) The
unshaded figure represents the difference A -A 2 ; (e) The shaded
and unshaded events (Al and A2) are complements of each other;
(f) Event A1 implies event A2.

To visualize relations between events, it is convenient to represent the
sample space Q schematically by some plane region and the elementary
events X by points in this region. Then events, i.e., sets of points a, become
various plane figures. Thus Figure 2 shows various relations between two
events Al and A2, represented by circular disks lying inside a rectangle Q,
schematically representing the whole sample space. In turn, this way of
representing events in terms of plane figures can be used to deduce general
relations between events, e.g.,

a) If A1 C A2, then AT v A2 ;
b) If A ALuA 2,thenA 1  TlA2,;
c) If A A1 nA 2 ,then-A=AUA2 .

The symbol c means "is a subset of" or "is contained in," while:=, means "contains."

SEC. 3
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16 COMBINATION OF EVENTS

Quite generally, given a relation between various events, we can get an
equivalent relation by changing events to their complements and the symbols
A, U and c to A, U and - (the sign = is left alone).

Example 4. The following relations are equivalent:

U A, = Br al C,,
k k

n Ak =fi O n Ck
k k

U Ak = B C U Ce,
k k

Remark. It will henceforth be assumed that all events under considera-
tion have well-defined probabilities. Moreover, it will be assumed that all
events obtained from a given sequence of events A1, A2 , ... by taking unions,
intersections, differences and complements also have well-defined probabilities.

4. The Addition Law for Probabilities

Consider two mutually exclusive events A1 and A2 associated with the
outcomes of some random experiment, and let A = A1 U A2 be the union of
the two events. Suppose we repeat the experiment a large number of times,
thereby producing a whole series of "independent trials under identical
conditions." Let n be the total number of trials, and let n(Al), n(A 2) and
n(A) be the numbers of trials leading to the events Al, A, and A, respectively.
If A occurs in a trial, then either Al occurs or A2 occurs, but not both (since
A1 and A2 are mutually exclusive). Therefore

n(A) = n(A1) + n(A 2 ),
and hence

n(A) n(A,) n(A2)

n n n

But for sufficiently large n, the relative frequencies n(A)/n, n(Al)Jn and
n(A2)/n virtually coincide with the corresponding probabilities P(A), P(A 1)
and P(A2), as discussed on p. 3. It follows that

P(A) = P(A1) + P(A 2). (2.1)

Similarly, if the events A1, A2 and A3 are mutually exclusive, then so are
Al U A 2 and A3, and hence, by two applications of (2.1),

P(A 1 u A2 U A3) = P(A1 U A2) + P(A,) - P(A 1 ) + P(A 2) + P(A 3).

CHAP. 2
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More generally, given n mutually exclusive events A1, A2 ,.. .., An we have
the formula

P( U AI) = P(Ak), (2.2)
\k=l1 k=l

obtained by applying (2.1) n - I times. Equation (2.2) is called the addition
law for probabilities.

Next we prove some key relations involving probabilities:

THEOREM 2.1. Theformulas

O < P(A) < 1, (2.3)

P(A - A2 ) P(A1) -P(A 1 r) A2), (2.4)

P(A2 - A1 ) = P(A) - P(A1 n) A2), (2.5)

P(A1 U A,) = P(A1 ) + P(A2 ) - P(A1 r) A2) (2.6)

holdfor arbitrary events A, A1 and A2. Moreover,

P(A1 ) < P(A2 ) if A1 c A2- (2.7)

Proof. Formula (2.3) follows at once from the interpretation of
probability as the limiting value of relative frequency, since obviously

O < n() < 1,
n

where n(A) is the number of occurrences of an event A in n trials.4 Given
any two events A1 and A 2, we have

A1 = (A1 -A 2 ) U (A1 n A2),

A2 = (A 2 - A1 ) U (A 1 ro A 2 ),

A 1 U A2 = (A1 -A 2 ) U (A2 -A 1 ) u (A 1 n A),

where the events A 1 - A2, A 2 - A1 and A, r) A2 are mutually exclusive.
Therefore, by (2.2),

P(A1 ) = P(A1 - A) + P(A1 n A), (2.8)

P(A2 ) = P(A 2 -A 1) + P(A1 r) A2), (2.9)
P(A1 U A2) = P(A1 -A2) + P(A2 - A1 ) + P(A1 n A2)- (2.10)

Formulas (2.8) and (2.9) are equivalent to (2.4) and (2.5). Then, using
(2.4) and (2.5), we can write (2.10) in the form

P(A1 U A2) = P(A1) - P(A1 n A2) + P(A 2)

-P(A 1 r) A2 ) + P(A1 n A2 )

= P(A1) + P(A2 ) - P(A1 n A2),

4 Note that P(0) = 0, P(Q) = 1, since n(0) = 0, n(Q) = n for all n. Thus the impos-
sible event has probability zero, while the certain event has probability one.

SEC. 4



18 COMBINATION OF EVENTS CHAP. 2

thereby proving (2.6). Finally to prove (2.7), we note that if A1 - A2,
then A1 n A2 = A1, and hence (2.9) implies

P(A1 ) = P(A2) -I(A 2 - A1 ) < P(A2),

since P(A2 - A1 ) > 0 by (2.3). 1

The addition law (2.2) becomes much more complicated if we drop the
requirement that the events be mutually exclusive:

THEOREM 2.2 Given any n events A1, A 2, ... , A,,, let5

n

P1 = P(A).

P2 = P(AAj)
16<i< i6>7

P, = Y P(AiAjA,)....
1_<i<j<k<n

Then

P(U Ak) = P- - P2 ± P + P * * ± Pn. (2.11)
k=l

Proof. For n = 2, (2.11) reduces to formula (2.6), which we have
already proved. Suppose (2.11) holds for any n - I events. Then

P UAk) = P(A) -- Y P(AiAj)
k=2 i=2 :'6 i< j6<n

+ Y P(AiAjA k)- (2.12)
2<_i<j<k<6n

and
P(n n

P(UAjAk) = P(A1 Aj) - I P(A1 AiAj)
k=2 i=2 i6t-tj<n'n

+ z P(AAA jA k)- . (2.13)
2-<i<j<k<-n

But, by (2.6),

P (UAk) P(A,)+ P(U Ak) -P (UAAk),
k=l k=2 k=2

and hence, by (2.12) and (2.13),

P U A, = P(A1) + I P(Ad) - I P(AA 3j)
k=l i=2 2_<i< j<_n

+ Y P(AjA JA5 ) * *- P(A1AJ)
26 i<j<k6<n i=2

+ Y P(AAjAk )-* P 1 -P 2 + P 3 -- **
2<i< j2<n

6 AjA7 is shorthand for the intersection Ai rn Al, AiA 1Ak is shorthand for Ai n A, n) Ak,
and so on. In a sum like I P(AjAjA ), each group of indices (satisfying the indicated

1<i<j<k<_n
inequalities) is encountered just once.
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i.e., (2.11) holds for any n events. The proof for all n now follows by
mathematical induction. I

Example (Coincidences). Suppose n students have n identical raincoats
which they unwittingly hang on the same coat rack while attending class.
After class, each student selects a raincoat at random, being unable to tell it
apart from all the others. What is the probability that at least one raincoat
ends up with its original owner?

Solution. We number both the students and the raincoats from I to n,
with the kth raincoat belonging to the kth student (k = 1, 2, . . . , n). Let
Ak be the event that the kth student retrieves his own raincoat. Then the
event A that "at least one raincoat ends up with its original owner" is just

n
A =UAk,

kl

Every outcome of the experiment consisting of "randomly selecting" the
raincoats can be described by a permutation (il. is, . ., i), where 4k is the
number of the raincoat selected by the kth student. Consider the event
AkAk, ... Ak, where m < n. This event occurs whenever 4k. = k1, ik2 =
k 2, ... , ik. = km and the other indices take the remaining n - m values in
any order. Therefore

P(AkAk *.*.* A,.) - N(Ak,Ak 2 ... Ak,) (n -m)!

where N(AkAk 2 . .. Ak.) = (n -m)! is just the total number of permuta-
tions of n - m things, and N n! is the total number of permutations of
n things (m is the number of fixed indices k1, k 2,... ,km). There are pre-
cisely

Cn n!
m! (n-m)!

distinct events of the type AkAk, ... Ak, with m fixed indices, this being the
number of combinations of n things taken mn at a time (recall Theorem 1.3,
p. 7). It follows that

P, = P(AkAk, Ak) =C( m)! = 1
1<k,<k 2 < <km<n n. m!

Hence, by formula (2.11),

P UAk = s, P2 + P3  PI + P

2! 3! 4! n!

SEC. 4



20 COMBINATION OF EVENTS

i.e., the desired probability P(A) is a partial sum of the power series expansion
of the function I- e with x= ---1:

11 1 1 + 1
2! 3! 4! n

Thus, for large n,
P(A) -_ I- e-I P 0.632. (2.14)

To generalize the addition law to the case of an infinite sequence of mutu-
ally exclusive events A5, A2, . . ., we repeatedly apply (2.1). Thus

P(A 1 u A 2 u A 3 u ).=. P(A1 ) + P(A 2 u A u .)

P(A 1) + P(A2) + P(A3 u )

P(Aj) + P(A2 ) + P(A3) + * *,
or equivalently,

P(U A) = P(Ak).
P k=l k=I

We can combine this formula and (2.2) into a single formula

P (U A.) =- I P(Ak), (2.2')
k k

where it will always be clear from the context whether U and Y have finite
or infinite limits.

6  
k k

The "generalized addition law" (2.2') has a number of important con-
sequences. We begin with two theorems expressing a kind of "continuity
property" of probability:

THEOREM 2.3. If A5, A 2 , . .. is an "increasing sequence" of events,
i.e., a sequence such that A, c A2 c: * * , then

P(U Ak' lim P(A). (2.15)

Proof. Clearly, the events

fl-s
B 1 - Al, B2 = A2 -A, . . .. , B.= A.n-U Bk,.... (2.16)

k=1

In the last analysis, formulas (2.1), (2.2') and (2.3) are axioms, although they are, of
course, strongly suggested by experience, i.e., by the interpretation of probabilities as
limiting values of relative frequencies. In this sense, they are the "only reasonable axioms,"
and lead to a model of random phenomena whose consequences are fully confirmed by
experiment.

CHAP. 2
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are mutually exclusive and have union U A. Moreover,
k

UBBk = An.
k1=

Therefore, by (2.2'),

P (y A1) =P(U B) = P(Bk) =lim 2 P(B,)
k k k, n-"~ k1

=lim ( UBk) -limP(A7 ' ).
n-w k=l n-m

Similarly, we have

THEOREM 2.3'. If A1, A,,. . . is a "decreasing sequence" of events,
i.e., a sequence such that A, A2 - * * *, then

P ( nAk) =lim P(Aj.
k n-w

Proof. Going over to complementary events, we have l c A(- C *
and hence, by (2.15),

P(n A) 1 - P(U A) 1 lim P(X7 ' )
k ) k n-.o

- lim [1 -P(An)] lim P(A.). I
n-W n-a

In the case of arbitrary events, we must replace = by < in (2.2'):

THEOREM 2.4. The inequality

P (U Ak < Y P(A,)

holds for arbitrary events A1, A2 ....

Proof. As in the proof of Theorem 2.3, U Ak is the union of the
k

mutually exclusive events (2.16), where obviously Bk C Ak and hence
P(Bk) < P(Ak), by (2.7). Therefore

P(U A,) = P(U Bk) IP(Bk) < P(Ak).

Finally, we prove a proposition that will be needed in Chapter 7:

THEOREM 2.5 (First Borel-Cantellilemma).7  Given asequence of events

7 For the "second Borel-Cantelli lemma," see Theorem 3.1, p. 33.

SEC. 4
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A1 , A2, . . ., with probabilities Pk = P(Ak), k = 1, 2, . . ., suppose

< i, (2.17)
k1c=

i.e., suppose the series on the left converges. Then, with probability I
onlyfinitely many of the events Al, A2. . . . occur.

Proof. Let B be the event that infinitely many of the events Al,
A2, . . . occur, and let

B. U A,
k> n

so that B. is the event that at least one of the events An A"+1,...
occurs. Clearly B occurs if and only if B, occurs for every n- 1,
2,... Therefore

B = lbn = n (YUA 5 ).
B.n h n (kn

Moreover, B, - B2 ' * , and hence, by Theorem 2.3',

P(B) == lim P(B.).

But, by Theorem 2.4,

P(B.) < P(Ak) Pk 2, 0k as n x o,
k>n k>n

because of (2.17). Therefore

P(B) =m- 1i m P(B.) = 0,

i.e., the probability of infinitely many of the events Al, A2 , . . . occurring
is 0. Equivalently, the probability of only finitely many of the events
A1, A2, ... occurring is 1. I

PROBLEMS

1. Interpret the following relations involving events A, B and C:
a)AB A; b)ABC= A; c)AuBuC =A.

2. When do the following relations involving the events A and B hold:
a) A uB =A; b) AB = A; c) A U B = AB?

3. Simplify the following expressions involving events A, B and C:
a) (A U B)(B U C); b) (A u B)(A u B); c) (A u B)(A u B)(A u B).
Ans. a) AC u B; b) A; c) AB.

4. Given two events A and B, find the event X such that

(Xu )u(XuA) =B.
Ans. X = B.

CHAP. 2
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5. Let A be the event that at least one of three inspected items is defective, and B
the event that all three items are of acceptable quality. What are the events
A uBandAB?

6. A whole number from I to 1000 is chosen at random. Let A be the event that
the number is divisible by 5, and B the event that the number ends in a zero.
What is the event Al?

7. A target is made up of 10 circular disks bounded by 10 concentric circles of
radii rl, r2 , . . ., r1o where r, < r2 < < r1 o. Let Ak be the event consisting of
the disk of radius rk being hit (k = 1, 2, . . .10). What are the events

6 10
B= U Ak, C nfAk?

k=1 k=5
Ans. B = A6 , C = A,.

8. Given any event A, prove that

P(A) = I - P(A), P(A) = I -P(A).

9. A marksman fires at a target made up of a central circular disk and two
concentric rings. The probabilities of hitting the disk and the rings are 0.35,
0.30 and 0.25, respectively. What is the probability of missing the target?

10. Five items are chosen at random from a batch of 100 items and then in-
spected. The whole batch is rejected if any of the items is found to be defective.
What is the probability of the batch being rejected if it contains 5 defective items ?

95 94 93 92 91
Ans. I - 100 -99 -98 97 96 z 0-23

11. A secretary forgets the last digit of a telephone number, and dials the last
digit at random. What is the probability of calling no more than three wrong
numbers? How is this probability changed if she recalls that the last digit is
even ?

12. Given any n events Al, A2 ... I A., prove that

PfA, Ak) _ P( - AI).

13. A batch of 100 manufactured items contains 5 defective items. Fifty items
are chosen at random and then inspected. Suppose the whole batch is accepted if
no more than one of the 50 inspected items is defective. What is the probability
of accepting the whole batch?

47 - 37
Ans. 99 37 0.18.

14. Write an expression for the probability p(r) that among r randomly selected
people, at least two have a common birthday.

Comment. Rather surprisingly, it turns out that p(r) > 2 if r = 23.8

I See W. Feller, op. Cit., p. 33.

PROBLEMS
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15. Test the approximation (2.14) for n = 3, 4, 5 and 6.

16. Use Theorem 2.2 and Stirling's formula to find the probability that some
player is dealt a complete suit in a game of bridge.

16 72 72 339 39i X i 10
Ans. - ±9 -

13 13 C13 13 Z lCN 13 LT3 " -2

17. Given any n events Al, A2 , . . .,A., prove that the probability of exactly
m (m < n) of the events occurring is

Im (m + I) + (m+ 2 / n

where Pm, Pm+,.. . are the same as in Theorem 2.2.

18. Let n = 10 in the example on p. 19. What is the probability that exactly
5 raincoats end up with their original owners?

19. A whole number from 1 to 1000 is chosen at random. What is the proba-
bility of its being a power (higher than the first) of another whole number?

Hint. 312 < 1000 < 322.

Ans. -21,-9
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5. Conditional Probability

In observing the outcomes of a random experiment, one is often inter-
ested in how the outcome of one event A is influenced by that of another
event B. For example, in one extreme case the relation between A and B may
be such that A always occurs if B does, while in the other extreme case A never
occurs if B does. To characterize the relation between A and B, we introduce
the conditional probability of A on the hypothesis B, i.e., the "probability of
A occurring under the condition that B is known to have occurred." This
quantity is defined by

P(A IB) P(AB) (3.1)

where AB is the intersection of the events A and B, and it is assumed that
P(B) > 0.

To clarify the meaning of (3.1), consider an experiment with a finite
number of equiprobable outcomes (elementary events). Let N be the total
number of outcomes, N(B) the number of outcomes leading to the occurrence
of the event B, and N(AB) the number of outcomes leading to the occurrence
of both A and B. Then, as on p. 1, the probabilities of B and AB are just

P(B) = (B) , P(AB) = N(AB) (3.2)
N' N

and hence (3.1) implies

P(A I B) = N(AB) (3-3)
N(B)

25
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But (3.3) is of the same form as (3.2), if we restrict the set of possible out-
comes to those in which B is known to have occurred. In fact, the denomin-
ator in (3.3) is the total number of such outcomes, while the numerator is the
total number of such outcomes leading to the occurrence of A.

It is easy to see that conditional probabilities have properties analogous
to those of ordinary probabilities. For example,

a) 0 < P(A I B) < 1;
b) If A and B are incompatible, so that AB = 0, then P(A I B) = 0;
c) If B implies A, so that B - A, then P(A I B) = 1;
d) If Al, A2, . . . are mutually exclusive events with union A = U Ak,

then k

P(A IB = 6 P(Ak I B) (3.4)

(the addition law for conditional probabilities).

Property a) is an immediate consequence of (3.1) and the formula 0 <
P(AB) < P(B), implied by 0 c: AB - B. To prove b), we note that
AB = 0 implies P(AB) = 0 and hence P(A I B) = 0, by (3.1). Similarly,
c) follows from the observation that if B c A, then AB = B, P(AB) = P(B),
and hence P(A I B) = 1, by (3.1). Finally, if A U A, where A1, A, . . .
are mutually exclusive events, then k

AB U AB,
k

and hence
P(AB') =EP(AB), (3.5)

k

by formula (2.2'), p. 20, the addition law for ordinary probabilities. Dividing
(3.5) by P(B), we get (3.4), because of (3.1) and

P(A I B) -- P(AkB)
P(B)

In calculating the probability of an event A, it is often convenient to use
conditional probabilities as an intermediate step. Suppose B1 , B2, . . . is a
"full set"1 of mutually exclusive events, in the sense that one (and only one)
of the events B1 , B 2 , ... always occurs. Then we can find P(A) by using the
"total probability formula"

P(A) = 2 P(A I Bk)P(Bk). (3.6)
k

X Synonymously, an "exhaustive set."

CHAP. 3
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To prove (3.6), we need only note that

U Bk =
k

where Q is the whole sample space, since one of the events B1, B2,.. . must
occur. But then

A = U ABk,
k

and hence

P(A) = P(U ABk) = ; P(ABJ) = P( P(Bk),
( k k P(Bk)

which is equivalent to (3.6).

Example 1. A hiker leaves the point 0 shown in Figure 3, choosing one
of the roads 0B1, OB2 , OB8, OB, at random. At each subsequent crossroads
he again chooses a road at random. What is the probability of the hiker
arriving at the point A ?

FIGURE 3

Solution. Let the event that the hiker passes through the point B., k =
1, . . . , 4, be denoted by the same symbol Bk as the point itself. Then B1 , B2,
B3, B, form a "full set" of mutually exclusive events, since the hiker must
pass through one of these points. Moreover, the events B1, B2, B3, B, are
equiprobable, since, by hypothesis, the hiker initially makes a completely
random choice of one of the roads OB1, OB2 , OB3, OB4 . Therefore

P(Bk) k = 1,...,4.
4,

Once having arrived at B1, the hiker can proceed to A only by making the
proper choice of one of three equiprobable roads. Hence the conditional
probability of arriving at A starting from B1 is just J. Let the event that the

SEC. 5
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hiker arrives at A be denoted by the same symbol A as the point itself. Then

P(A I B1) = -

and similarly
1 2

P(A I B,) = P(A I B.) = I, P(A I B4) = 5

(consult the figure). It follows from (3.6) that the probability of arriving at
A is

P(A) = P(A I B1)P(BJ) + P(A I B2)P(B2 )
+ P(A I B3)P(B3 ) + P(A I B4)P(B4)

1/1 I1 2) 67
4 -3 + 2 5 = + 2-0

Example 2 (The optimal choice problem). Consider a set of mn objects,
all of different quality, such that it is always possible to tell which of a given
pair of objects is better. Suppose the objects are presented one at a time and
at random to an observer, who at each stage either selects the object, thereby
designating it as "the best" and examining no more objects, or rejects the
object once andfor all and examines another one. (Of course, the observer
may very well make the mistake of rejecting the best object in the vain hope
of finding a better one!) For example, the observer may be a fussy young lady
and the objects a succession of m suitors. At each stage, she can either accept
the suitor's proposal of marriage, thereby terminating the process of selecting
a husband, or she may reject him (thereby losing him forever) and wait for a
better prospect to come along. It will further be assumed that the observer
adopts the following natural rule for selecting the best object: "Never select
an object inferior to those previously rejected." Then the observer can select
the first object and stop looking for a better one, or he can reject the first
object and examine further objects one at a time until he finds one better
than those previously examined. He can then select this object, thereby
terminating the inspection process, or he can examine further objects in the
hope of eventually finding a still better one, and so on. Of course, it is
entirely possible that he will reject the very best object somewhere along the
line, and hence never be able to make a selection at all. On the other hand,
if the number of objects is large, almost anyone would reject the first object
in the hope of eventually finding a better one.

Now suppose the observer, following the above "decision rule," selects
the ith inspected object once and for all, giving up further inspection. (The
ith object must then be better than the i - I previously inspected objects.)
What is the probability that this ith object is actually the best of all m objects,
both inspected and uninspected?
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Solution. Let B be the event that the last of the i inspected objects is the
best of those inspected, and let A be the event that the ith object is the best
of all m objects, both inspected and uninspected. Then we want the condi-
tional probability P(A I B) of the event A given that B has already occurred.
According to (3.1), to calculate P(A I B) we need both P(B) and P(AB).
Obviously A - B and hence AB = A, so that P(AB) = P(A). By hypothesis,
all possible arrangements of the objects in order of presentation are equi-
probable (the objects are presented "at random"). Hence P(B) is the proba-
bility that in a random permutation of i distinguishable objects (the objects
differ in quality) a given object (the best of all i objects) occupies the ith
place. Since there are i! permutations of all i objects and (i - 1)! permuta-
tions subject to the condition that a given object occupy the ith place, this
probability is just

P(B) - (i -)! = 1

Similarly, P(A) is the probability that in a random permutation of m dis-
tinguishable objects, a given object (the best of all m objects) occupies the
ith place, and hence

P(A) (m -1)! 1
m! m

Therefore the desired conditional probability P(A I B) is just

P(A I B) P(AB) P(A) i
P(B) P(B) m

Example 3 (The gambler's ruin). Consider the game of "heads or tails,"
in which a coin is tossed and a player wins 1 dollar, say, if he successfully
calls the side of the coin which lands upward, but otherwise loses 1 dollar.
Suppose the player's initial capital is x dollars, and he intends to play until
he wins m dollars but no longer. In other words, suppose the game continues
until the player either wins the amount of m dollars, stipulated in advance,
or else loses all his capital and is "ruined." What is the probability that the
player will be ruined?

Solution. The probability of ruin clearly depends on both the initial
capital x and the final amount m. Let p(x) be the probability of the player's
being ruined if he starts with a capital of x dollars. Then the probability of
ruin given that the player wins the first call is justp(x + 1), since the player's
capital becomes x + 1 if he wins the first call. Similarly, the probability of
ruin given that the player loses the first call is p(x - 1), since the player's
capital becomes x - I if he loses the first call. In other words, if B1 is the
event that the player wins the first call and B2 the event that he loses the first
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call, while A is the event of ruin, then

P(A I B1) = p(x + 1), P(A I B2) = p(x - 1).

The mutually exclusive events B1 and B2 form a "full set," since the player
either wins or loses the first call. Moreover, we have

1 1
P(B1 )J= P(B2) = 2

assuming fair tosses of an unbiased coin (cf. Problem 1, p. 65). Hence, by
(3.6),

P(A) = P(A I B,)P(1B1 ) + P(A I B2)P(B2),
i.e.,

p !) [(Ax + 1) + A~X -- 1)], I < x < m -1, (3.7)

where obviously
p(O) = 1, p(m) = 0. (3.8)

The solution of (3.7) is the linear function

p(x) =C 1 + C2 X, (3.9)

where the coefficients C1 and C2 are determined by the boundary conditions
(3.8), which imply

C1 = 1, C' + C2m = 0. (3.10)

Combining (3.9) and (3.10), we finally find that the probability of ruin given
an initial capital of x dollars is just

p(x) = 1---, 0 < x < m.

6. Statistical Independence

In saying that two experiments are "statistically independent" (or briefly,
"independent"), we mean, roughly speaking, that the outcome of one experi-
ment has no influence on the outcome of the other. Let A1 be an event
associated only with the first experiment, and A2 an event associated only with
the second experiment. Then-the occurrence of A1 has no influence on the
probability of occurrence of A2 , and conversely. In this sense, we say that the
events A1 and A2 are "(statistically) independent."

To give mathematical expression to the notion of independence, we
calculate the probability that two independent events A1 and A2 both occur.
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To this end, we again resort to the empirical fact that the relative frequency
of an event in a large series of "independent trials under identical conditions"
virtually coincides with its probability (recall Sec. 1). Imagine a long series
of such trials, where each trial involves carrying out both experiments. If n
is the total number of trials and n(A1A2) the number of trials leading to
occurrence of both A, and A2, then

P(A1 A2 ) n(A1A2 ) (3.11)
n

Moreover, if n(A2 ) is the number of trials leading to occurrence of A2, then

P(A2) n(A2 ) (3.12)
n

Suppose we confine ourselves to examining the results of the n(A2) trials
leading to occurrence of A2, and look for occurrence of Al. Then clearly Al
will occur in precisely n(A1A2 ) of these trials. Moreover, if n is very large, then
so is n(A2), and hence

P(A) _n(AA 2 ) (3.13)
n(A 2)

since A, is associated only with the second experiment, which has nothing
whatsoever to do with the first experiment or the event Al associated with it.
Combining (3.1l)-(3.13), we find that

P(A1A2) n(A1A2) = n(A1A2) n(A2) _)

n n(A2 ) n

or, after going over to exact equations (in the limit as n - ),

P(A1A2) = P(A1)P(A2 ). (3.14)

Two events AL and A2 are said to be (statistically) independent if they satisfy
(3.14) and (statistically) dependent otherwise.3

The definition (3.14) is in keeping with the notion of conditional proba-
bility introduced in Sec. 5. In fact, if two events A, and A2 are independent,
then, loosely speaking, the occurrence of A2 should have no influence on the
probability of occurrence of A1, and hence the conditional probability

2 Thus there remains the problem of just what is meant by "independent trials under
identical conditions" (a phrase already encountered on pp. 2 and 16), although the in-
tuitive meaning of the phrase is perfectly clear, e.g., in a series of coin tosses. For a rigorous
discussion of this whole issue, see W. Feller, op. cit., p. 128.

In the last analysis, (3.14) is a definition, although one strongly suggested by experience,
i.e., by the intuitive meaning of independence and the interpretation of probabilities as
limiting values of relative frequencies (recall footnote 6, p. 20).
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P(A1 I A2) of A, occurring given that A2 has already occurred should be the
same as the unconditional probability of A1, i.e.,

P(A1 I A2) = P(A 1)

(and similarly with A, and A2 changing places). But clearly

P(A, I AD := -P(AA 2) = P(A)P(A1 A2) P(A2)

if and only if (3.14) holds.

Example 1. Let Al be the event that a card picked at random from a
full deck is a spade, and A2 the event that it is a queen. Are Al and A2
independent events?

Solution. The question is not easily answered on the basis of physical
intuition alone. However, noting that a full deck (52 cards) contains 13
spades and 4 queens, but only one queen of spades, we see at once that

13 1 4 1 1
P(A 2 -- = - P(AlA 2 )=-l) 5T2 4 P(,2) == 52 13 X 52

and hence P(A1A2 ) = P(A1)P(A0). Therefore the events A, and A2 are inde-
pendent.

Example 2. In throwing a pair of dice, let A1 be the event that "the
first die turns up odd," A, the event that "the second die turns up odd," and
Aa the event that "the total number of spots is odd." Clearly, the number of
spots on one die has nothing to do with the number of spots on the other die,
and hence the events Al and A2 are independent, with probabilities

P(A1 ) =, P(A2 ) = 2-

Moreover, it is clear that

P(A3) = -
2'

Given that Al has occurred, A, can occur only if the second die turns up even.
Hence

P(A 3 I Al) =

and similarly

P(A3| A2) =
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It follows that
P(A3 I A, = P(A3 ), P(A3 I A2) = P(A3).

Therefore the events Al and A3 are independent, and so are the events A,
and A3.

Generalizing (3.14), we have the following

DEFINITION. The events A1, A2, . . . , A,, are said to be (mutually)
independent if

P(AAj) = P(A-)P(A,),

P(AiAjAk) = P(Aj)P(Aj)P(Ak),

P(A 1A 2 ... A.) = P(A1)P(A2) ... P(A.)

for all combinations of indices such that 1 < i < j < ... < k < n.

Example 3. The events Al, A2 and A3 in Example 2 are not independent,
even though they are "pairwise independent" in the sense that

P(AiAj) = P(Ai)P(Aj)

for all I < i < j < 3. In fact, A3 obviously cannot occur if A, and A2 both
occur, and hence

P(AA 2 A 3 ) = 0.
But

P(A1)P(A 2)P(A 3 )

so that
P(A1 A2A3) # P(A1 )P(A2 )P(A3 ).

Given an infinite sequence of events A,, A2 , . . ., suppose the events
A ... ., A. are independent for every n. Then A1, A 2,... is said to be a
sequence of independent events.

THEOREM 3.1 (Second Borel-Cantelli lemma). Given a sequence of
independent events A,, A2, . . . with probabilities Pk = P(Ak), k = 1,
2, . . . , suppose

IPk - 'c, (3.15)
k=l

i.e., suppose the series on the left diverges. Then, with probability 1
infinitely many of the events A1, A 2, . . . occur.
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Proof. As in the proof of the first Borel-Cantelli lemma (Theorem
2.5, p. 21), let

B. , U Ak, B== nfB = n (UAk),
ki n n n k_>

so that B occurs if and only if infinitely many of the events A,, As,...
occur. Taking complements, we have

B.l = n , -gs = U Rn.
kin n

Clearly,
n+m

An cf nAk
k-n

for every m = 0, 1, 2, . . . Therefore

P(An) P ( A1 ) = P(ATn) P(A;n+m)

kinn
-(1- Pn)* (1 - Pn+m) < CXp (-.2;Pk)s (3.16)

where we use the inequality 1 --- x <X e- , x > 0 and the fact that if Al,
A2 , . . . is a sequence of independent events, then so is the sequence
of complementary events AT, A2 , ... .I But

n+m

I Pk-'- ca as m - co,
k=n

because of (3.15). Therefore, passing to the limit m - oo in (3.16),
we find that P(OJ) = 0 for every n = 1, 2, . . . It follows that

PAB at xV K(n) = ,

and hence
P(B) - 1--P() =I,

i.e., the probability of infinitely many of the events Al, Az . . . occurring
is1. *

PROBLEMS

1. Given any events A and B, prove that the events A, AB and A u B form a
full set of mutually exclusive events.

4 It is intuitively clear that if the events A,... A,, are independent, then so are their
complements. Concerning the rigorous proof of this fact, see Problem 7 and W. Feller,
op. cit., pp. 126, 128.
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2. In a game of chess, let A be the event that White wins and B the event that
Black wins. What is the event C such that A, B and C form a full set of mutually
exclusive events?

3. Prove that if P(A I B) > P(A), then P(B I A) > P(B).

4. Prove that if P(A) = P(B) = i, then P(A I B) >

5. Given any three events A, B and C, prove that

P(ABC) = P(A)P(B I A)P(C I AB).

Generalize this formula to the case of any n events.

6. Verify that
P(A) = P(A I B) + P(AIA)

if
a) A = 0; b) B = 0; c) B = f; d) B A; e) B =A.

7. Prove that if the events A and B are independent, then so are their comple-
ments.

Hint. Clearly P(B I A) + P(8 I A) = I for arbitrary A and B. Moreover
P(B I A) = P(B), by hypothesis. Therefore P(B I A) = I - P(B) = P(R), so
that A and B are independent.

8. Two events A and B with positive probabilities are incompatible. Are
they dependent?

9. Consider n urns, each containing w white balls and b black balls. A ball is
drawn at random from the first urn and put into the second urn, then a ball is
drawn at random from the second urn and put into the third urn, and so on,
until finally a ball is drawn from the last urn and examined. What is the prob-
ability of this ball being white?

w
Ans.

w + b~

10. In Example 1, p. 27, find the probability of the hiker arriving at each of
the 6 destinations other than A. Verify that the sum of the probabilities of
arriving at all possible destinations is 1.

11. Prove that the probability of ruin in Example 3, p. 29 does not change if
the stakes are changed.

12. Prove that the events A and B are independent if P(B I A) = P(B | A).

13. One urn contains w, white balls and bl black balls, while another urn
contains w2 white balls and b2 black balls. A ball is drawn at random from each
urn, and then one of the two balls so obtained is chosen at random. What is the
probability of this ball being white?

Ans. , WI + W2 ).

2 wL + b, w2 + b2J
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14. Nine out of 10 urns contain 2 white balls and 2 black balls each, while the
other urn contains 5 white balls and 1 black ball. A ball drawn from a randomly
chosen urn turns out to be white. What is the probability that the ball came from
the urn containing 5 white balls?

Hint. If B3, . . ., B. is a full set of mutually exclusive events, then

A) =(Bk)PIA Bk) P(Bk)P(A I Bk)

E) P(Bk)P(A I Bk)
k=1

a formula known as Bayes' rule. The events B1, . . ., B, are often regarded as
"hypotheses" accounting for the occurrence of A.

Ans. -35
3 2'

15. One urn contains only white balls, while another urn contains 30 white
balls and 10 black balls. An urn is selected at random, and then a ball is drawn
(at random) from the urn. The ball turns out to be white, and is then put back
into the urn. What is the probability that another ball drawn from the same urn
will be black?

Ans. -28

16. Two balls are drawn from an urn containing n balls numbered from I to n.
The first ball is kept if it is numbered I., and returned to the urn otherwise. What
is the probability of the second ball being numbered 2?

n2- n + 1
Ans. n2(n -1)

17. A regular tetrahedron is made into an unbiased die, by labelling the four
faces a, b, c and abc, respectively. Let A be the event that the die falls on either
of the two faces bearing the letter a, B the event that it falls on either of the two
faces bearing the letter b, and C the event that it falls on either of the two faces
bearing the letter c. Prove that the events A, B and Care "pairwise independent"5

but not independent.

18. An urn contains w white balls, b black balls and r red balls. Find the
probability of a white ball being drawn before a black ball if

a) Each ball is replaced after being drawn;
b) No balls are replaced.

w
Ans. in both cases.

w + b

6 As defined in Example 3, p. 33.
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7. Discrete and Continuous Random Variables.
Distribution Functions

Given a sample space Q, by a random variable we mean a numerical
function 0 = E(w) whose value depends on the elementary events X e Q.
Let P{x' < i < x'} be the probability of the event {x' < i < xv), i.e., the
probability that i takes a value in the interval x' < x < x". Then knowledge
of P{x' < i < x"} for all x' and x" (x' < xA) is said to specify the proba-
bility distribution of the random variable E.

A random variable E = !(X) is said to be discrete (or to have a discrete
distribution) if i takes only a finite or countably infinite number of distinct
values x, with corresponding probabilities

P4(x) = P{= x}

EPe(x) = 1,

where the summation is over all the values of x taken by E. For such random
variables,

xff
P{x' < E < x"} - P~(x), (4.1)

where the summation is over the finite or countably infinite number of values
of x which E can take in the interval x' < x < x".

A random variable E = ,(o) is said to be continuous (or to have a
continuous distribution) if

P{x' < E < x"} =f p(x) dx, (4.2)
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where p4(x) is a nonnegative integrable function, called the probability
density of the random variable i, with unit integral

f Pe(W) dx - 1.

Clearly, if i is a continuous random variable, then

P{ , == x} = 0
for any given value x, while'

P{E c dx} -p¢(x) dx

for every x with a neighborhood in which the probability density p4(x) is
continuous. Here P{0 E dx} is the probability of the event {E E dx}, con-
sisting of i taking any value in an infinitesimal interval dx centered at the
point x.

The function

4N(x) = P{ x < x}, -cc < x <

is called the distribution function of the random variable E. If E is a discrete
random variable, tI)4(x) is the step function

, X

taking a finite or countably infinite number of distinct values [the graph of
such a function is shown in Figure 4(a)]. If E is a continuous random
variable, I¢(x) is the continuous function

0IW(x) =p(x) dx (4.3)

[the graph of such a function is shown in Figure 4(b)]. 2 Clearly,

P{x' < < t.v"} == (D@(X") - 4(X') (4.4)

for any random variable E.
Now consider two random variables E, and E, or equivalently, the ran-

dom point or vector E = (i,, Z,). First suppose E, and E, are discrete. Then
E, and E2 have a joint probability distribution, characterized by the proba-
bilities

Pt1 e2(Xi, X2) = Ptl = X1 , 02 = X2}, (4.5)

where x, and x2 range over all possible values of the corresponding random

1 The symbol E means "belongs to" or "is contained in."
3 By a well-known theorem on differentiation, d(D(x)ldx = pt(x) almost everywhere.

See e.g., E. C. Titchmarsh, The TheorY of Functions, second edition, Oxford University
Press, London (1939), p. 362.
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FIGURE 4. (a) A typical distribution function of a discrete random
variable taking only the integral values . .. , -2,- 1, 0, 1, 2, . . .
At the points x =... , -2, -1,0,1,2.. (D(x) has jumps
equal to the corresponding probabilities Pg(x). (b) A typical
distribution function of a continuous random variable. Any
continuous monotonic function cD1(x) such that lim (DO(x) = 0,

lim qIg(x) = 1 can serve as the distribution function of a

continuous random variable V.'

variables 0, and 02. The probability of any event of the type {( c, 2) E B},
i.e., the "probability of the random point , - (G1, U) falling in a given set
B," is given by

P{(Et, E2) E- B) = E~ P~,.{2(Xl, X2)1
(X1 .X2)ER

where the summation is over all possible values xl, x2 of the random variables
L, E, such that the point (xl, x2) lies in B. Next suppose E, and L2 are con-
tinuous. Then by the joint probability density of E, and E2, we mean a

3 It should be noted that there are random variables which are neither discrete nor
continuous but a "mixture of both." There are also continuous distribution functions more
general than (4.3).
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function pe, 42(x1, x2) of two variables xl and x2 such that the probability of
any event of the type {(El, E.) E B) is given by

P{(E1, E2) E B} --=f pf i,2 (xl, x2) dx1 dx2  (4.6)

(the integral is over B).
Given a family of random variables 0,..., in, suppose the events

{xk < E } < x), k = 1, . . . , n are independent for arbitrary x4 and x'
(x4 < xk). Then the random variables E, ... ., En are said to be (statistically)
independent. Given an infinite sequence of random variables El, E, ... I
suppose the random variables i,...., Edn are independent for every n, or
equivalently that the events {xk no. Et < x41, k = 1, 2, . . . are independent
for arbitrary x4 and x4. Then E,, !, . . . is said to be a sequence of independent
random variables.

Suppose two random variables El and E2 are independent. Then clearly
their joint probability distribution (4.5) is such that

pa, a~ (x1, x.) =: Pt. (xI)Pt,(X0) (4.7)

if El and E, are discrete, and

Pal {,(xl, x2) = pt,(xi)pi2 (x2) (4.7')

if El and E2 are continuous. In (4.7'), p4,(xl) is the probability density of El
and p12(x2) that of. E2, while pg,. 1 (x, x2) is the joint probability density of 0
and E2 figuring in (4.6).

Example 1 (The uniform distribution). Suppose a point i is "tossed at
random" onto the interval [a, bi. This means that the probability of i falling
in a subinterval [x', x"] - [a, b] doe; not depend on the location of [x', xc].
Hence the probability of i falling in [x', x"] is proportional to the length
X- X'.4 More exactly, we have

P{x' < i <° = x -X, dx
b a Jx'b-a'

since then the probability of i falling in [a, b] itself is

P{a < i < b) :b = 1,

as it must be. Clearly, i is a continuous random variable, with probability

'Let f(s) be the probability of i falli g in a subinterval of length s. Then clearly
f(s + t) = f(s) + f(t). But it can be shown that any function f(s) satisfying this equation
is either of the form ks (k a constant) or else unbounded in every interval (see W. Feller,
op. cit., p. 459).
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density

I if a < x < b,

0 if x < a or x > b.
Such a random variable is said to have a uniform distribution.

Example 2. Suppose two points 0, and 02 are tossed at random and
independently onto a line segment of length L. What is the probability that
the distance between the two points does not exceed I?

Solution. Imagine that El falls in an interval [0, L] of the xl-axis, while
2 falls in an interval [0, L] of the x2-axis, perpendicular to the xl-axis as in

Figure 5. Then the desired probability is just the probability that a point
i = (E, E,) tossed at random onto the square 0 < x1 , x2 < L will fall in the

FIGURE 5

region B bounded by the lines x2 = I + xI and x2 = -1 + xI (B is the
unshaded region in Figure 5).5 By hypothesis, the random variables !, and {2

are independent and are both uniformly distributed in [0, L], i.e., both have
probability density

p(X) =-L < x <L.

Hence, by (4.6), the joint probability density of the independent random
variables 0, and 02 is just

1
p4 ,~2 (xl, X2) = L2, 0 < xl, x2 <L

Note that | -i I is the horizontal distance between the point (0, i) and the line
x= xl. This is the distance p shown in Figure 5, from which it is apparent that p < 1 if
and only if (E,, 0,) lies in B.
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Therefore the probability of the random point i = (E,, E,) falling in the
region B is given by

P{( 1, E.) e B} = ff dx1 dX2 = 2LI - 12
B L2

since L2 - 2 (L - 1)2 = 2LI - 12 is the area of B (the square minus the
two shaded triangles).

Example 3 (Buffon's needle problem). Suppose a needle is tossed at random
onto a plane ruled with parallel lines a distance L apart, where by a "needle"
we mean a line segment of length I < L. What is the probability of the needle
intersecting one of the parallel lines?

Solution. Let El be the angle between the needle and the direction of the
rulings, and let E2 be the distance between the bottom point of the needle
and the nearest line above this point [see Figure 6(a)]. Then the conditions

2

1 'l C2

I N--

(a) (b)

FIGURE 6

of the "needle tossing experiment" are such that the random variable it is
uniformly distributed in the interval [0, ir], while the random variable E2 is
uniformly distributed in the interval [0, L]. Hence, assuming that the random
variables E, and E2 are independent, we find that their joint probability density
Is

ptgXlX2 =- 0AmXI < 7r, 0 < X2 < LX rL
The event consisting of the needle intersecting one of the rulings occurs if
and only if

E2 < 1 sin E1,
i.e., if and only if the corresponding point E = (El, U) falls in the region B,
where B is the part of the rectangle 0 < xi < x, 0 < x2 < L lying between
the xl-axis and the curve x2 = sin xl [B is the unshaded region in Figure
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6(b)]. Hence, by the general formula (4.6),

P{(~I, U2) E B} =ff dxl dx2 _ 21 (4.8)
B trL 7cL

where

If sin xl dx, = 21

is the area of B.
In deducing (4.8), we have assumed that 0, and E2 are independent

random variables. This assumption can be tested experimentally. In fact,
according to (4.8), if the needle is repeatedly tossed onto the ruled plane,
then the frequency of the event A, consisting of the needle intersecting one of
the rulings, must be approximately 21/7rL. Suppose the needle is tossed n
times, and let n(A) be the number of times A occurs, so that n(A)/n is the
relative frequency of the event A. Then

n(A) 21

n 7rL

for large n, as discussed on p. 3. Hence

21 n

L n(A)

should be a good approximation to 7r = 3.14 . .. for large n. This actually
turns out to be the case.d

Example 4. Given two independent random variables E, and E, with
probability densities p4a(xl) and pi,(x2), find the probability density of the
random variable

= 41 + E2-

Solution. By (4.7'), the joint probability distribution of E, and E2 equals
pe(x,,)p4,(x2), and hence, by (4.6),

P{y' < X <y} = |f p 1,(XO)p4,(X 2) dxl dx2

=1f [f p,(y -x)pe (x) dx] dy.

Therefore the probability density of the random variable -7 is given by the
expression

P'(y) pi-t(y - x)p42 (x) dx,

called the composition or convolution of the functions p4, and P42.

' See J. V. Uspensky, Introduction to Mathematical Probability, McGraw-Hill Book
Co., Inc., New York (1937), p. 113.
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For example, suppose 0, and 02 are both uniformly distributed in the
interval [0, 1], so that they both have the probability density

I if 0 <x I

AX) = ~0 if x < 0 or x > 1.
Then

{JYd = if 0 < y < 1,

() dx=2 -- if I < y < 2,

if y < 0 or y > 2.
The graph of the density p,(y) is triangular in shape, as shown in Figure 7.

p1?(y)

-I I---

0 1 2

F FIGURE 7

8. Mathematical Expectation

By the mathematical expectation or mean value of a discrete random
variable i, denoted by Ei, we mean the quantity

,

Ed =a xP~(x), (4.9)

provided that the series converges absolutely Here the summation has the
same meaning as on p. 37, and, as usual, P~(x) = P{- = x}. Given a
discrete random variable i, consider the new random variable I = 9(i,
where cp(x) is some function of x. Then the mathematical expectation of - is
given in terms of the probability distribution of E. by the formula

E- = E ?(0) =- q p(x)PW(x). (4.10)

7 I.e., provided that E jxj Pj(x) < Co.
- ,W
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In fact, - is a discrete random variable taking only the values y = (X),
where x ranges over all possible values of the random variable i. Therefore8

PN = y} = 1 Px),
z:qp(z)=v

where the summation is over all x such that 9(x) = y, and hence

Em =EyP{- = y} = E P~(x) = E PW X),
-- x:-q(x)=y -v

as asserted.
More generally, let p(E, E2) be a random variable which is a function of

two random variables i, and E2, with joint probability distribution
Pt1,4,(xl, x2). Then it is easily verified that cp(E,, E,) has the mathematical
expectation

E?(,X, P2) = ; E x, x2)Pt1 (xl, X2). (4.11)
-,0 -,0

It is clear from (4.9) that

a) El =1;
b) E(cE) = cEE for an arbitrary constant c;

c) IEEI < EIEl. (4.12)

Moreover, it follows from (4.11) that
d) E(E1 + U2) = EE, + EE2 for arbitrary random variables E, and E2

with mathematical expectations EE, and EL2 ;
e) E > 0 implies EE > 0, and more generally

E, <E implies EE, < EE2 ; (4.13)

f) If El and E2 are independent random variables, then

E = EE1 EL2 - (4.14)

For example, to prove (4.14), we write ?(El, E2) = EE, Then, for inde-
pendent E, and E2, (4.11) implies

0 W

E(EA02) =, 1 XlX2PWlXl)Pdsx2)

.0 00

= 1XlP4,(xl)JX2Ps2 (x2) = EREE2-

To define the mathematical expectation of a continuous random variable
E, we first approximate E by a sequence of discrete random variables E,

I The colon should be read as "such that."
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n = 1, 2, ... Let e, n = 1, 2,... be a sequence of positive numbers con-
verging to zero. Then for each n = I, 2, . . ., let

* * X X-2, n, X-1 n, X)0 n, Xl.1, X 2 , . . (4.15)

be an infinite set of distinct points such that"

SUP lXk,. x5, wok-I,nl = en, (4.16)
k

and let li be a discrete random variable such that

in ,.xk,, if ok-.1,n < 0 < k~
It follows that

and hence
|mgag< | m -tw + Ela -0 < Em + En °

as m, n A-* . Therefore, by (4.12) and (4.13),

IEEm- Ein = IE(Em - nE)l <a E IEm- inl < Em + En+O

as m, n -*o c (provided Ei. exists for all n). But then

lim En

exists, by the Cauchy convergence criterion. This limit is called the mathe-
matical expectation or mean value of the continuous random variable E,
again denoted by Ei. Clearly,

Et = lim 2;Xk,,P(- k-1,.n < E < Xk..)

Suppose EI has the probability density p4(x). Then, choosing the points
(4.15) to be continuity points of p,(x), we have

.0 0

XXk..P{Xk-l.. < 0 < X,~j >-xk.='n p,(x) dx

#-'j Xk, .p(Xk..)(Xk, - Xk-1 ,),

and hence

Et --J xpt(x) dx (4.17)

[compare this with (4.9)]. For continuous random variables of the form

I The symbol sup denotes the supremum or least upper bound. Therefore the left-hand
side of (4.16) is the least upper bound of all the differences jxk,." - xk -,, k = . . . , -2,
-1, 0, 1, 2, . . . Thus (4.16) means that no two of the points (4.15) are more than e.
apart. Note also that any closed interval of length s. contains at least two of the points
(4.15).
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- = (i) and - = p(0,, i,), we have

Ecp(i) =|f (x)p,(x) dx (4.18)
and

Ecp(01 , UI) =ffcp(xI, xD)pt1 t,(xl, x2) dx, dx2, (4.19)

by analogy with (4.10) and (4.11), where pt,.,,(xl, x2) is the joint probability
density of the random variables 01 and %2* It is easily verified that properties
a)-f) of the mathematical expectation continue to hold for continuous
random variables (the details are left as an exercise).

Remark. Other synonyms for the mathematical expectation of a random
variable i, discrete or continuous, are the expected value of i or the average
(value) of i. The mathematical expectation and mean value are often simply
called the "expectation" and "mean," respectively.

Example Let i be a random variable uniformly distributed in the interval
[a, b], i.e., let E, have the probability density

' 1 if a< x b,
pa(x) - b a

if x < a or x > b.

Then the mathematical expectation of E, is

Ei ix dx a+b
ab a 2

A random variable of the form = - + iE2 involving two real random
variables 0l and E2 (the real and imaginary parts of A) is called a complex
random variable. The mathematical expectation of - = El + it 2 is defined as

En = Et, + iEE2 .

It is easy to see that formulas (4.10) and (4.18) remain valid for the case
where 9(i) is a complex-valued function of a real random variable i, and
that (4.11) and (4.19) remain valid for the case where y(0, E2) is a complex-
valued function of two real random variables El and E2, In particular, let
9p(E,) and P2(A2) be complex-valued functions of two independent real
random variables El and E2, Then, choosing 9((l, 2) = 9 1(P1)c2(P2 ) in
(4.11) or (4.19), we deduce the formula

Eg?= Epl(i)EEP2(EW), (4.20)

which generalizes (4.14).
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9. Chebyshev's Inequality. The Variance and
Correlation Coefficient

By the mean square value of a (real) random variable i is meant the
quantity E 2, equal to

if E, is discrete, or

E -=fX x2p~(x) dx

if E, is continuous.10 Given any random variable E and any number E > 0,
let

(0 if |I| £,

if I i| >

Then obviously El < E, and hence, by (4.13),
E',".1 < EV,

or equivalently
e

2
P{l . > z} < E 2,

since clearly
EE, =- e2P{| i| > e}.

It follows that
1

P {tIE } v -<2EE, (4.21)

a result known as Chebyshev's inequality. According to (4.21), if EE21/£2 
< 8,

then P { jII > E} < 8, and hence P { I I < el > I - 8. Therefore, if 8 is
small, it is highly probable that I E < e. In particular, if E 2 = 0, then
P { !I > e} = 0 for every £ > 0, an(l hence I - 0 with probability 1.

By the variance or dispersion of a random variable i, denoted by DE,
we mean the mean square value E(L, - a)2 of the difference i-a, where
a = EE is the mean value of E. It follows from

E(E-a)2 = Ei2 - 2aEE + a2 = EE2 -2a2 + a2

that
DE --- Ek - a2

.

Obviously
Dl = 0,

and
D(cE) =- c2DE

for an arbitrary constant c.

10 It is assumed, of course, that Et' exists. This is not always the case (see e.g., Problem
24, p. 53).
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If El and E2 are independent random variables, then

D( 1 + 2) = D, 1 + Di2-

In fact, if a1 = EE1 and a2 = EE2, then, by (4.14),

E(l- a1 )( 2 -a 2) = E( 1 -a 1 )E( 2 -a 2 ) = 0, (4.22)
and hence

D(E1 + =2) E(E1 + E2 - a, - a2)2

= E(l- a1)2 + 2E( 1 - al)(- a2 ) + E(2- a2 )2

= E( 1 - a1)2 + E(2- a2 )2 = DE1 + DE2-

Given two random variables El and E2' we now consider the problem of
finding the linear expression of the form e, + e2E2, involving constants el
and e2, such that el + -2E2 is the best "mean square approximation" to El,
in the sense that

E (l -el-ce 20 2)2 = min E (El -C1  - C 2 2 )2
, (4.23)

0c 2,c

where the minimum is taken with respect to all c1 and c2. To solve this
problem, we let

a1 , Ei1, r12 = D- ,
=2 (4.24)

a2 -EE 2 , ari DE2,
and introduce the quantity

r = E( 1 -a 1 )(l2- a2 ) (4.25)

alC2

called the correlation coefficient of the random variables El and E2. Going
over for convenience to the "normalized" random variables

n = a l  E2 -a 2
al C2

we find that

min E(E1  Cl - c 2 L2 )2 = CF2 min E(7 1 - cl - C2 2 )2  (4.26)
CliC2 C,,C2

(why ?). Clearly,

E7)1 = E7)2 = O. D-% = E-%2 = 1)72 = 122 1, E)117)2 =r,

E(Y1 - 2)'2 = Enm2- rE.2 = 0,

E(u 1- 2) = En, -2rEl 1n 2 + r2E, = 1 -r
and hence

E(-n C1  - c 2 2 )2 = E[( 1 - r72) - cl + (r -C2)722

- (1-r2) + C2 + (r -C)2
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for arbitrary cl and c2. It follows that the minimum of E( 1 -cL -c 2 - 2)
2

is achieved for cl = 0, c2 - r, and is equal to

min E( 1 c 1 -- -c1)2 = r 2 . (4.27)
Cl C2

But

- "2 a-,- r- 2-r - a2)]

in terms of the original random variables iX and 02. Therefore

el + e22 == a, + r a (1 2-a2)
a2

is the minimizing linear expression figuring in (4.23), where a,, a2, ,a, ,a and
r are defined by (4.24) and (4.25).

If Z, and i2 are independent, then, by (4.22),

r E( 1 - aI)( 2 -a 2 ) E( 1 -al)E( 2 - a2)
a1 2  1 6a2

It is clear from (4.27) that r lies in the interval -I < r < 1. Moreover, if
r = ± 1, then the random variable C1 is simply a linear expression of the
form

C1 + C2 i 2.

In fact, if r ±1, then, by (4.26) and (4.27), the mean square value of
Z1 1  2- i 2 is just

E(1-1- )(2) = 62(1-r2) = O.E(I- el 6 2 1,2) - 1 - r2) 0

and hence 1 - el-c 2 2 = 0 with probability I (why?).
The above considerations seem to suggest the use of r as a measure of the

extent to which the random variables !l and 42 are dependent. However,
although suitable in some situations (see Problem 15, p. 67), this use of r
is not justified in general (see Problem 19, p. 53).1

PROBLEMS

1. A motorist encounters four consecutive traffic lights, each equally likely to
be red or green. Let i be the number of green lights passed by the motorist
before being stopped by a red light. What is the probability distribution of i?

2. Give an example of two distinct random variables with the same distribution
function.

3.. Find the distribution function of the uniformly distributed random variable
i considered in Example 1, p. 40.

See also W. Feller, op. cit., p. 236.
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4. A random variable i has probability density

a
p,(x) = 2j a (- 00 < x < 00).

Find

a) The constant a; b) The distribution function of i;
c) The probability P{-I < i 1}.

Ans. a) -; b) + - arc tan x; c) -.

5. A random variable E has probability density

x 'ax2e-kx if O < x < co,
pt(x) otherwise

(k > 0). Find
a) The constant a; b) The distribution function of i;
c) The probability P{O < i < 1/k}.

6. A random variable i has distribution function

x
(D(x) = a + b arc tan - ( < x < C).

Find
a) The constants a and b; b) The probability density of E.

7. Two nonoverlapping circular disks of radius r are painted on a circular table
of radius R. A point is then "tossed at random" onto the table. What is the
probability of the point falling in one of the disks?

Ans. 2(rlR)2.

8. What is the probability that two randomly chosen numbers between 0 and I
will have a sum no greater than I and a product no greater than 2?

1 2 f2/3 dx 1 2
Ans. +93 - = - + - In 2 % 0.49.3 13 X 3 9

9. Given two independent random variables El and 02, with probability densities

le- x/2 if x >° if x> O

pt1 ~J =o if x <0, Pe( 0 if x <0,

find the probability density of the random variable - = El + E2-

Ae-[x3(1 -e-x16) if x > 0,

vAns p,(x) = o0 if x < 0.
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10. Given three independent random variables i,, E2 and E3, each uniformly
distributed in the interval [0, 1], find the probability density of the random
variable 1 + E2 + E3.

Hint. The probability density of E, + E2 (say) was found in Example 4,
p. 43.

11. A random variable i takes the values 1, 2, . . .., n.... with probabilities

Find EE.

12. Balls are drawn from an urn containing w white balls and b black balls until
a white ball appears. Find the mean value m and variance a2 of the number of
black balls drawn, assuming that each ball is replaced after being drawn.

b b(w + be
Ans. m =-, a= -2

W W2

13. Find the mean and variance of the random variable i with probability
density

p4Wx =i ~ 0c <- <x < 00).

Ans. E = 0,Dtj= 2.

14. Find the mean and variance of the random variable E with probability
density

-b if x -al < b,

O otherwise.

Ans. Et = a, DE = b2/3.

15. The distribution function of a random variable i is

0 if x < -1,

4Ie(x) = a + b arc sin x if -l < x < 1,

I if x > 1.
Find Et and DE.

Hint. First determine a and b.
Ans. E= 0,DE =12

16. Let i be the number of spots obtained in throwing an unbiased die. Find
the mean and variance of E.

Ans. EE = 2, DE = -i25

17. In the preceding problem, what is the probability P of E deviating from
EE by more than 25 ? Show that Chebyshev's inequality gives only a very crude
estimate of P.
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18. Prove that if E is a random variable such that Eeas exists, where a is a
positive constant, then

Eeat
P {e > C} <; eae

Hint. Apply Chebyshev's inequality to the random variable X eae2.

19. Let i be a random variable taking each of the values -2, -1, 1 and 2 with
probability i, and let 71 = 02. Prove that Z and n (although obviously dependent)
have correlation coefficient 0.

20. Find the means and variances of two random variables 0l and Z2 with joint
probability density

Psin xl sin x2 if 0 < x <- 0 < x2 < -
pe,,e2 (x1 , x2) = 2' 2

otherwise.

What is the correlation coefficient of 01 and E2?

21. Find the correlation coefficient r of two random variables El and 42 with
joint probability density

ptxsin (xl + x 2 ) if 0 < xI < -, 0 < x2 <
P{,(Xl x2) 2 0 2

otherwise.

1_ I - 1
2 16 1

Ans. r
7r 7r 4

-2-2 + -6
16

22. Given a random variable i, let cp(t) be a nondecreasing positive function
such that Ep(E) exists. Prove that

9t > <(4.28)

23. Deduce Chebyshev's inequality as a special case of (4.28).

24. Let 0 be a random variable with probability density

I
Show ta(l X) and < x < fi)x

Show that EX and DM fail to exist.
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THREE IMPORTANT

PROBABILITY DISTRIBUTIONS

10. Bernoulli Trials. The Binomial and Poisson Distributions

By Bernoulli trials we mean identical independent experiments in each of
which an event A, say, may occur with probability

p = P(A)

(p # 0) or fail to occur with probability

q== I-p.

Occurrence of the event A is called a "success," and nonoccurrence of A
(i.e., occurrence of the complementary event A) is called a "failure."

In the case of n consecutive Bernoulli trials, each elementary event X

can be described by a sequence like
1011 . . .0001

n times

consisting of n digits, each a 0 or a 1, where success at the ith trial is denoted
by a I in the ith place and failure at the ith trial by a 0 in the ith place. Be-
cause of the independence of the trials, the probability of an elementary
event X in which there are precisely k successes and n - k failures is just

p(t ) kqt-k.

Clearly, the various elementary events are equiprobable only if p = q.
Now consider the random variable I equal to the total number of suc-

cesses in n Bernoulli trials, i.e., i(X) == k if precisely k successes occur in the
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elementary event a. The number of distinct elementary events with the same
total number of successes k is just the number of distinct sequences consisting
of k ones and n - k zeros. But the number of such sequences is just the
binomial coefficient

k (k) k! (n-k)! (5.1)

equal to the number of combinations of n things taken k at a time (recall
Theorem 1.3, p. 7). These C," elementary events all have the same probability

P (w) = p^ n-

and hence the event {E = k} has probability

P{E = k} = Cpkqn-k

Thus the probability distribution of the random variable i is given by

P4(k) =Cnpkq n-k k O, 1,. n, (5.2)

and is known as the binomial distribution. The binomial distribution is
specified by two parameters, the probability p of a single success and the
number of trials n.

It should be noted that the random variable i is the sum

i~ =El +- + .in(5.3)

of n independent random variables E,, . . ., E,, where Ek = I if "success"
occurs at the kth trial and E, = 0 if "failure" occurs at the kth trial. We have

Eik = p, Dk = EE2 - (Ek)2 = p - p2 =p(l p)=pq.

Therefore
EE = np, DE = npq. (5.4)

Suppose the number of trials is large while the probability of success p
is relatively small, so that each success is a rather rare event while the average
number of successes np is appreciable. Then it is a good approximation to
write

,k

P,(k) - k m, k = 0, 1, 2, . . ., (5.5)

where a = np is the average number of successes and e = 2.718 ... is the
base of the natural logarithms. In fact, we know from calculus that

lim (1--) = em
n-w n
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But p = a/n, and hence (5.2) gives

nP~(O) =qfl I - a

Moreover, it is easily found from (5. L) and (5.2) that

P-(k) np -- (k - l)p a
P4(k -1) kq , k

as n oo. Therefore

P '(1) a - jD (0) -a e-a'

1 1
2

P,(2) -2 P )1 2 ea

. . . . . . . . . ._ a

P,(k) - F-, (k -- 1)-k e-ak . k

which proves the approximate formula (5.5).
A random variable E taking only the integral values 0, 1, 2, . . . is said

to have a Poisson distribution if

a k
P,(k) = k e- k = O. l, 2,. ... (5.6)

The distribution (5.6) is specified by a single positive parameter a, equal to the
mean value of i:

a = E, =-kP(k).

In fact, it follows from the expansion

eo x

k=O k!
valid for all x, that

k a k-1
k-i

E= kP(k) = k a e-e = ae -=aee a.
k=O k=O k! k=1(k -1)!

Remark. Thus the approximate formula (5.5) shows that the total
number of successes in n Bernoulli trials has an approximately Poisson
distribution with parameter a = np, if n is large and the probability of
success p is small.

Example I (The lottery ticket problem). How many lottery tickets must
be bought to make the probability of winning at least P?
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Solution. Let N be the total number of lottery tickets and M the total
number of winning tickets. Then MIN is the probability that a bought ticket
is one of the winning tickets. The purchase of each ticket can be regarded as
a separate trial with probability of "success" p = MIN in a series of n inde-
pendent trials, where n is the number of tickets bought. If p is relatively small,
as is usually the case, and the given probability P is relatively large, then it is
clear that a rather large number of tickets must be bought to make the
probability of buying at least one winning ticket no smaller than P. Hence
the number of winning tickets among those purchased is a random variable
with an approximately Poisson distribution, i.e., the probability that there
are precisely k winning tickets among the n purchased tickets is

ak

P(k) e_,

where
M

a = n-
N

The probability that at least one of the tickets is a winning ticket is just

1-P(O) 1- e.

Hence n must be at least as large as the smallest positive integer satisfying
the inequality

em = e nM/N < 1 -P.

Example 2 (The raisin bun problem). Suppose N raisin buns of equal size
are baked from a batch of dough into which n raisins have been carefully
mixed. Then clearly the number of raisins will vary from bun to bun,
although the average number of raisins per bun is just a = n/N. What is the
probability that any given bun will contain at least one raisin?

Solution. It is natural to assume that the volume of the raisins is much
less than that of the dough, so that the raisins move around freely and
virtually independently during the mixing, and hence whether or not a
given raisin ends up in a given bun does not depend on what happens to the
other raisins. Clearly, the raisins will be approximately uniformly distri-
buted throughout the dough after careful mixing, i.e., every raisin has the
same probability

P

N

of ending up in a given bun.' Imagine the raisins numbered from 1 to n,

' If v is the volume of the raisins and V that of the dough, then p = v/ V.
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and select a bun at random. Then we can interpret the problem in term as of
series of n Bernoulli trials, where "success" at the kth trial means that the
kth raisin ends up in the given bun. Suppose both the number of rolls N and
the number of raisins n are large, so that in particular = I /N is small. Then
the number of successes in the n trials, equal to the number of raisins in the
given bun, has an approximately Poisson distribution, i.e., the probability
P(k) of exactly k raisins appearing in the bun is given by

s k

where

na == np =-.
N

Hence the probability P of at least one raisin appearing in the bun is

P - 1 --- P(l)) = 1 - e-a.

Example 3 (Radioactive decay). It is observed experimentally that
radium gradually decays into radon by emitting alpha particles (helium
nuclei). The interatomic distances are large enough to justify the assumption
that (the nucleus of) each radium atom disintegrates independently of all the
others. Moreover, each of the no radium atoms initially present clearly has
the same small probability p(t) of disintegrating during an interval of t
seconds.2 Suppose the disintegration of each radium atom is interpreted as
a "success." Then the random variable i(t), equal to the number of alpha
particles emitted in t seconds, equals the number of successes in a series of
no Bernoulli trials with probability of success p(t). The values of no and p(t)
are such that the distribution of i(t) is very accurately a Poisson distribution,
i.e., the probability of exactly k alpha particles being emitted is given by

k

where
a = El(t) = nop(t)

is the average number of alpha particles emitted in t seconds.
Here we have used a model involving Bernoulli trials as a tool for showing

that the random variable ,(t) has a Poisson distribution. Another physical
situation leading to a Poisson distribution is considered in Example 4, p. 73.

' A gram of radium (no r 1022) emits about 1010 alpha particles per second. Hence
p(l) % 1010/102 = 10-12.
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II. The De Moivre-Laplace Theorem. The Normal Distribution

Next we prove the following basic "limit theorem":

THEOREM 5.1 (De Moivre-Laplace theorem). Given n independent
identically distributed random variables E, . .. , E., each taking the value
I with probability p and the value 0 with probability q = I- p, let

n So Sn-ESn

k=1 - A/ DS.
Then

lim P {x' < S* < x"} - I e -2 2dx. (5.8)

Proof. S. is the random variable denoted by E in (5.3) and (5.4),
i.e., S. is the number of successes in n Bernoulli trials, with mean and
variance

ES& = np, DS, = npq.

Hence the "normalized sum" S* is a random variable taking the values

k - np
x = , k =0, 1, . . .,n

with probabilities

P [S* = x} = Pnk) = !k pkqn-k, k =0, 1, ... ,n.

These values divide the interval

[ -np nq 1
L[Vnpq I-npqJ

into n equal subintervals of length

Ax = 1
Vnpq

Clearly, as n -o,

k = np + Vnpq x - o0, n - k = nq- Vnpq x caz,

where the convergence is uniform in every finite interval x' < x < xI.
Using Stirling's formula (see p. 10), we find that

Pjk) V /7flc nie- pc kn-k

\/2ltk kke-k12f7(n- k) (n - k)n-ke-(n-k) p q

1 \/ n knp)(k) n q n-k

fT2s k(n-k) tk J E-k
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Moreover,

k I+ Ix n-k x.
np np nq nq

Therefore, using the expansion

L2

In (I +- a,) - an~- 2
2

(as oc, -° 0), we have

In _ kIn (1 +/~T X)(npy =V np

(np 2 np)

In (= -(n - k) In (I - P x)

-(nq <'pX) (\LX .I1LX2).

Adding these expressions, we find that

lrn p)k( -q)k - X
n-M k 11k 2

and hence

lim {npk n-q \ k= e-X2/2
n-Ov k )Xn -- k

uniformly in every finite interval x' < x < x". Since

I n 1 k 1
n(n-k) \ np nq vnpq

it follows that

limP {S* = x} =-- e /2Ax Ax =
n-m VVnpq

Therefore

lim P {x' < S < x"} =lim I P{S= x}
nicoo n-* 2'<X<, 5

== lim 2; 1 e-2/ x (59
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where the sum is over all values of x in the interval x' < x < x". But
clearly

lim I, 1 e-'2/2 AX = - r. e-'2/2 dx
"_W <. Vt2,7 ,ITs (5.10)

(why?). Comparing (5.9) and (5.10), we finally get the desired limiting
formula (5.8). 1

According to Theorem 5.1, the limiting distribution of the random
variable S* is the distribution with probability density

p(x) = - e-'1'. (5.11)

Such a distribution is called a normal (or Gaussian) distribution. The density
p(x) is the "bell-shaped" curve shown in Figure 8(a). The corresponding
distribution function is

of ) = |Z fe2du (5.12)

p0X)

05

04

02

0.1

X rx) = I 
2/2, - < <c

, , . r

-4 -3 -2 -1 0 1 2 3 4
(a)

F(x)

1.0

08-

06-

, 2l/
-4 -3 -2 -i

4FWs = - xI -2/2 du,-ac < X< cc

- -CD
-0.2

I I

2 3 4

FIGURE 8

0 l
(b)
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Table 2. Values of the normal
distribution function D(x) given

by formula (5.12).

x

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0

0.5000
0.5398
0.5793
0.6179
0.6554

0.6915
0.7257
0.7580
0.7881
0.8159

0.8413
0.8643
0.8849
0.9032
0.9192

0.9332
0.9452
0.9554
0.9641
0.9713

0.9773
0.9821
0.9861
0.9893
0.9918

0.9938
0.9953
0.9965
0.9974
0.9981

0.9986
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and is shown in Figure 8(b). Since p(x) is even, it is clear that

(D(-x) = 1 - ¢(x).

Representative values of 'D(x) are given in Table 2.
Let E be a normal (or Gaussian) random variable, i.e., a random variable

with probability density (5.11). Then

Et= Cxe'1/2 dx = 0,

since the integrand is odd. Moreover,

D= EE2 - (EE)2 = EE2 = -|X2e-' /2 dx

1 lim (N x2e-x
2 /2 dx.

V/hN- J-N

Integrating by parts, we get

N -N- -N /2)

D lim xe
VTTC N-.(-f-N N N

I~ ~2~ ~e 2] N ±~~/ x

1 fJr e-'/2 dx = 1.

Hence i has variance 1. More generally, the random variable with probability
density

p(x) = e(Z)S/2G2  (5.13)

is also called a normal random variable, and has mean a and variance a2

(show this).

Example (Brownian motion). Suppose a tiny particle is suspended in a
homogeneous liquid. Then the particle undergoes random collisions with the
molecules of the liquid, and, as a result, moves about continually in a
chaotic fashion. This is the phenomenon of Brownian motion. As a model of
Brownian motion, we make the following simplifying assumptions, charac-
terizing a "discrete random walk" in one dimension:

1) The particle moves only along the x-axis.
2) The particle moves only at the times t = nAt, n = 0, 1, 2,....
3) Suppose the particle is at position x at time t. Then, regardless of its

previous behavior, the particle moves to either of the two neigh-
boring positions x + Ax and x - Ax (Ax > 0) with probability i.

SEC. I I
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In other words, at each step the particle undergoes a shift of amount
Ax either to the right or to the left, with equal probability. 3

Now let ,(t) denote the position of our "Brownian particle" at time t,
and suppose the particle is at the point x = 0 at time t = 0, so that i(O) = 0.
Then after t = nAt seconds, the particle undergoes n displacements of amount
Ax, of which Sn, say, are to the right (the positive direction) and n - S. to
the left (the negative direction). As a result, the position of the particle at
time t = nAt is just

[(t) = [S. Ax - (n - S.) Ax] (25 - n) Ax. (5.14)

Moreover, since i(0) = 0, we have

(t) = [E(s) --- E(01 + [i(t)- -

for any s in the interval 0 < s < t (for the time being, s is an integral multiple
of Ax). With our assumptions, it is clear that the increments i(s) - i(O)
and i(t) - i(s) are independent random variables, and that the probability
distribution of i(t) - a(s) is the same as that of (t -s) - E(O). Therefore
the variance a2(t) = DE(t) satisfies the relation

a2(t) = a 2(s) + a2lt - S), 0 < S < t.

It follows that aF2(t) is proportional to t, i.e.,4

DE(r) = a2t, (5.15)

where a2 is a constant called the dffusion coefficient. On the other hand, it is
easy to see that after a time t, i.e., after n = t/At steps, the variance of the
displacement must be

Di(t) -_ t (Ax)2 . (5.16)
At

Comparing (5.15) and (5.16), we obtain

a2= (AX) (5.17)

The displacements of the particle are independent of one another and can
be regarded as Bernoulli trials with probability of "success" p = j, "success"
being interpreted as a displacement in the positive direction. In this sense,
the number of displacements S,, in the positive direction is just the number of

I We will eventually pass to the limit Ar -- 0, Ax - 0, thereby getting the "continuous
random walk" characteristic of the actual physical process of Brownian motion.

' See footnote 4, p. 40.
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successes in n Bernoulli trials. Moreover, the relation between the particle's
position at time t and the normalized random variable

(2S,, - n)
Inpq /n

is given by

S",/n Ax = S Ax/t =S_ G/,

because of (5.14) and (5.17). Applying Theorem 5.1, in particular formula
(5.8), and passing to the limit At-- 0 while holding a constant (so that
Ax - 0), we find that the random variable E(t) describing the one-dimen-
sional Brownian motion satisfies the formula

P (x' < ) < x"} = lim P {x' < x"} < - If e-02/2 dx.
-- 1- At-0 >,27 f-

Therefore i(t) is a normal random variable with probability distribution

P {x' < it) < x"} = 1 1z e-X/2g2 tdx

PROBLEMS

1. Consider the game of "heads or tails," as in Example 3, p. 29. Show that
the probability of correctly calling the side of the coin landing upward is always
1 regardless of the call, provided the coin is unbiased. However, show that if
the coin is biased, then "heads" should be called all the time if heads are more
likely, while "tails" should be called all the time if tails are more likely.

2. There are 10 children in a given family. Assuming that a boy is as likely to
be born as a girl, what is the probability of the family having

a) 5 boys and 5 girls; b) From 3 to 7 boys?

3. Suppose the probability of hitting a target with a single shot is 0.001. What
is the probability P of hitting the target 2 or more times in 5000 shots?

Ans. P z I -6e- 5 - 0.96.

4. The page proof of a 500-page book contains 500 misprints. What is the
probability P of 2 or more misprints appearing on the same page?

5
Ans. P - I -- 0.08.

2e
5. Letp be the probability of success in a series of Bernoulli trials. What is the
probability P. of an even number of successes in n trials?

Ans. P. = Il[ + (I - 2p)fn].

PROBLEMS
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6. What is the probability of the pattern SFS appearing infinitely often in an
infinite series of Bernoulli trials, if S denotes "success" and F "failure"?

Hint. Apply the second Borel-Cantelli lemma (Theorem 3.1, p. 33).5

Ans. 1.

7. An electronic computer contains 1000 transistors. Suppose each transistor
has probability 0.001 of failing in the course of a year of operation. What is the
probability of at least 3 transistors failing in a year?

8. A school has 730 students. What is the probability that exactly 4 students were
born on January 1 ?

Hint. Neglect leap years.

9. Let Z be a random variable with the Poisson distribution (5.6). Find

a) a2 = Do; b) E( -a)
01

Ans. a) a; b)-.

10. Where is the uniform convergence used in the proof of Theorem 5.1 ?

11. The probability of occurrence of an event A in one trial is 0.3. What is the
probability P that the relative frequency of A in 100 independent trials will lie
between 0.2 and 0.4?

Hint. Use Theorem 5.1 and Table 2.

Ans. P m 0.97.

12. Suppose an event A has probability 0.4. How many trials must be performed
to assert with probability 0.9 that the relative frequency of A differs from 0.4 by
no more than 0.1 ?

Ans. About 65.

13. The probability of occurrence of an event 4 in one trial is 0.6. What is the
probability P that A occurs in the majority of 60 trials?

Ans. P % 0.94.

14. Two continuous random variables 0, and E2 are said to have a bivariate
normal distribution if their joint probability density is

Pt&,t,(xi, X2) 2=ras2V 1 -

l ((X -- ,1)2 (xI - a)(x2 - b) (x2 -b)2

X exp I-( r)Lc2- 2r sa 2 2
(518

6 For further details, see W. Feller, op. cit., p. 202.
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where a, > 0, a2 > 0, -1 < r < 1. Prove that each of the random variables
El and E2 has a univariate (i.e., one-dimensional) normal distribution of the
form (5.13), where EE1 = a, DE, = a2, EE2 = b, DM2 = 2o2

Hint. Clearly,

p&1 (Xl) =fPXti (XI, x2, dx2, Pe2(x2, = Pt I,(x2, x2) dxl

(why ?).

15. Prove that the number r in (5.18) is the correlation coefficient of the random
variables El and E2* Prove that El and E2 are independent if and only if r = 0.

Comment. This is a situation in which r is a satisfactory measure of the
extent to which the random variables El and E2 are dependent (the larger Irl,
the "more dependent" El and E2).

16. Let El and E2 be the same as in Problem 14. Find the probability distribution
of = l1 + E2

Ans. The random variable n is normal, with probability density

I (x -a-b) 2  1
P/(+) = L=- 2(a2 + 2rala2 +

V2,T(G2 + 2rala ~)a)
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SOME LIMIT THEOREMS

12. The Law of Large Numbers

Consider n independent identically distributed random variables , ....
E.. In particular, E, ... ,.in have the same mean a = EEk and variance
a2= D4k. If

0`11 + - $ -t * + E.)
n

is the arithmetic mean of the variables ~ . .... , E, then

fIC ItE7q - j E4k= a,
n k=1

D- -= E(7-a)2 = D= k = -.

n k=l n

Applying Chebyshev's inequality (see Sec. 9) to the random variable n - a,
we get the inequality

P {1- a > E} < -- E(- -a)2 = a2 (6.1)

for arbitrary C > 0.

THEOREM 6.1 (Weak law of large numbers). Let 1, .. ., en be n inde-
pendent identically distributed random variables with mean a and variance
a2. Then, given any 3 > 0 and; > 0, however small, there is an integer
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n such that

a- E < - (El + - + in) < a + E
n

with probability greater than I -8.

Proof. The theorem is an immediate consequence of (6.1) if we choose
n > a2 /8 e2

. I

Remark. Suppose 8 and E are so small that we can practically neglect
both the occurrence of events of probability 9 and differences between quanti-
ties differing by no more than E. Then Theorem 6.1 asserts that for sufficiently
large n, the arithmetic mean

I7 = I0 + + E.)
n

is an excellent approximation to the mean value a = EEk

Now consider n consecutive Bernoulli trials, in each of which an event
A can occur with probability p = P(A) or fail to occur with probability
q = 1 -p. Let Ek be a random variable equal to 1 if A occurs at the kth
trial and 0 if A fails to occur at the kth trial. Then the random variables

l ... .,i are independent and identically distributed (by the very meaning
of Bernoulli trials). Obviously

P {ik 1} p, P {1k 0} q.
Moreover, each random variable 4k has mean

a = E- = p * 1 + q * 0 - p = P(A).
Let n(A) be the number of trials in which A occurs, so that

n(A)

n

is the relative frequency of the event A. Then clearly

n(A) = 1+ - +in
and hence

n(A) (l + 1+ EJ
n n

It follows from Theorem 6.1 that n(A)/n virtually coincides with P(A) for
sufficiently large n, more exactly, that given any 8 > 0 and E > 0, however
small, there is an integer n such that

P(A)-e < n(A) < P(A) +
n
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with probability greater than I - . The justification for formula (1.2),
p. 3 is now apparent.

Remark. It can be shown' that with probability I the limit

li'm n(A)
n- w .4

exists and equals P(A). This result is known as the strong law of large
numbers.

13. Generating Functions. Weak Convergence of Probability
Distributions

Let I be a discrete random variable taking the values 0, 1, 2,... with
probabilities

P¢(k) = PE k, k = 0, 1, 2,... (6.2)
Then the function

FA(z) =- P,(kz', IzI < 1 (6.3)

is called the generating function of the random variable , or of the corre-
sponding probability distributions (6.2). It follows from the convergence of
the series (6.3) for IzI = 1 and from Weierstrass's theorem on uniformly
convergent series of analytic functions2 that F&(z) is an analytic function of z
in IzI < 1, with (6.3) as its power series expansion. Moreover, the probability
distribution of the random variable I, is uniquely determined by its generating
function F&(z), and in fact

Pt(k) = I Fi0k)(O) k = 0, 1, 2, ..

where Fk)(z) is the kth derivative of F,(z). According to formula (4.10),
p. 44, for fixed z the function F&(z) is just the mathematical expectation of
the random variable y(,) = z4, i.e.,

F, (z) = Ezt , Izl < 1. (6.4)

Example 1 (The Poisson distribution). If the random variable , has a
Poisson distribution with parameter a, so that

Pj(k) = k!em k = 0, 1, 2,_..

See e.g., W. Feller, op. cit., p. 203.
'See e.g., R. A. Silverman, Introductory Conplex Analysis, Prentice-Hall, Inc.,

Englewood Cliffs, N.J. (1967), p. 191. Also use Weierstrass' M-test (ibid., p. 186).
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then i has the generating function

Fr(z)2 a e-azk = aD(az) = ea(z-1). (6.5)
k=o k! kOk!"

Suppose the random variable i has mean a = EE and variance a2 
= DE.

Then, differentiating (6.4) twice with respect to z behind the expectation sign
and setting z = 1, we get

a = F'(l), a2 = EE2 - (EE)2 = F"(1) + F'(l) - [F' (1)]
2

.

(6.6)

The same formulas can easily be deduced from the power series (6.3). In
fact, differentiating (6.3) for jzj < 1, we get

F'(z) - 2 kP(k)zk-l1
k-=O

and hence

a = E kP4(k) = lim F~(z) = F-(1),
k=O .1-1

and similarly for the second of the formulas (6.6).
Next let E1, . * *, E. be n independent random variables taking the values

0, 1, 2, . .. Then the random variables z~', . .. , zoo, where z is a fixed number,
are also independent. It follows from formula (4.20), p. 47 that

Ez(41+±'' +±4) = Ezl *... Zen = E- t * Ezra.

Thus we have the formula

Fj(z) = F,,(z) . . Fgj(z), (6.7)

expressing the generating function F4(z) = Ezt of the sum -= + * * + 4,,
of the n random variables E, ... E, E, in terms of the generating functions
F4 (z) = Ez k, k = 1, . .. , n of the separate summands.

Example 2 (The binomial distribution). Suppose the random variable i

has a binomial distribution with parameters p and n, so that

P 4(k) = C"pkq '-k, q = 1 - p, k = 0 1, . . ., n.

Then, as already noted in Sec. 10, i can be regarded as the sum =

, + - + in of n independent random variables E, ... ., i,, where{ 1 with probability p,
0 with probability q.
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The generating function F4k(z) of each summand is clearlypz + q, and hence,
by (6.7), the generating function of i itself is

F&(z) (oz + q)fl (6.8)

Now let Eo, n = 1, 2, . . . be a sequence of discrete random variables
taking the values 0, 1, 2, . . ., with probability distributions P"(k) = P4 (k)
and generating functions F,(z), n ,= 2, 2. . . Then the sequence of distri-
butions {P,(k)} is said to converge weakly to the limiting distribution P(k) if

lim P,(k) = P(k) (6.9)
n-m

for all k =0, 1,2, . ..

Example 3 (Weak convergence of the binomial distribution to the Poisson
distribution). Let 51, ... . be a sequence of random variables such that
E.n has a binomial distribution Pn(k) with parameters p and n, i.e.,

Pp(k) Ckq7-A, q 1 p.

Suppose p depends on n in such a wal that the limit

lim na = a (6.10)
na)

exists. Then, according to formula (5.5), p. 55, the sequence of distributions
{P,,(k)} converges weakly to the Poisson distribution

P(k) =-_e a, k = O. 1, 2,. ...
k!

with parameter a given by (6.10).

In Example 3, the sequence of generating functions

F,(z) =(pZ + ,I)n , n = 1, 2,. ...

of the random variables E, ,, . . . converges uniformly to the generating
function F(z) = ea(z-1) of the limiting Poisson distribution, i.e.,

lim F,(z) = lim [1 + p(z 1)] =lim [1 + p( )]
n- f nt n n

ur 1 ± a(z n az1= lim [1+(:-]=e~

(justify the next-to-the-last step). This is no accident, as showii by

THEOREM 6.2. The sequence ofprobability distributions P.(k), n= 1,

2, . . . with generating functions F,,(z), n = 1, 2, . . . converges weakly to
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the limiting distribution P(k) if and only if

lim F(z) = F(z), (6.11)

where

F(z) = P(k)Zk
k=O

is the generating function of P(k) and the convergence is uniform in every
disk jzj < r < 1.

Proof. First suppose (6.9) holds. Clearly,

K
F.(z) - F(z)I < IP.(k) -P(k)I + I zjk (6.12)

k=3 k=K+l

for any positive integer K. Qiven any E > 0, we first choose K large
enough to make

rK+1 z

k-K+1 1 - r 2
and then find a positive integer N such that

IP.(k) - P(k)l <K
2(K ±1)

holds for k = 0,. . . , K if n > N. It then follows from (6.12) that

IF,,(z) -F(z)l < E

if n > N, which immediately proves (6.11).
Conversely, suppose (6.11) holds, where the convergence is uniform

in every disk Jzj < r < 1. Then, by Weierstrass' theorem on uniformly
convergent sequences of analytic functions,3

lim Flk1(z) = F lk(Z), IZI < 1 (6.13)
n-wo

for all k = 0,1, 2_ ... But

Pj(k) = k F W(O), P(k) - - (0)

and hence (6.13) implies (6.9) for all k = 0, 1, 2, . . ..

The following example is typical of the situations where the Poisson
distribution is encountered:

Example 4 (Random flow of events). Suppose that events of a given kind
occur randomly in the course of time. For example, we can think in terms

' R. A. Silverman, op. cit., p. 192.
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of "service calls" (requests for service) arriving randomly at some "server"
(service facility), like inquiries at an information desk, arrival of motorists
at a gas station, telephone calls at an exchange, etc. Let i(A) be the number of
events occurring during the time interval A. Then what is the distribution of
the random variable i(A)?

To answer this question, we will assume that our "random flow of events"
has the following three properties:

a) The events are independent of one another; more exactly, the random
variables i(A1), i(A2 ).... are independent if the intervals A1, A2, . .
are nonoverlapping.

b) The flow of events is "stationary," i.e., the distribution of the random
variable i(A) depends only on the length of the interval A and not on
the time of its occurrence (the initial time of A, say).

c) The probability that at least one event occurs in a small time interval
At is XAt + o(At), while the probability that more than one event
occurs in At is o(At). Here o(Ai)is an infinitesimal of higher order than
At, i.e.,

lim- 0t) ,
At-.o At

and X is a positive parameter characterizing the "rate of occurrence"
or "density" of the events.

Now consider the time interval A = [0, t], and let i(t) be the total
number of events occurring in 10, t]. Dividing [0, t] into n equal parts
A1, . .. , A,, we find that

W(t) - EAk)
k=1

where E(A1), . * *, i(AA) are independent random variables and i(Ak) is the
number of events occurring in the interval Ak. Clearly, the generating
function of each random variable E(Ak) is

F.(z) = (-- A!) + A Z + (n)

where o(t/n) is a term of order higher than tin. Hence, by (6.7), the generating
function of i(t) is

F(z) = [F.(z)]p = [1 + At(z -1) + 0

But F(z) is independent of the subintervals A ... ., A., and hence we can
take the limit as n -- oo, obtaining

F(z) = lim F1 -t(z I 1)] = e
n-L n
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Comparing this with (6.5), we find that F(z) is the generating function of a
Poisson distribution with parameter a = Xt, so that

P{$(t) = k} = (it) e-s k = 0,1, 2,....

Since
Xt =Ei~t),

the parameter ?X is just the average number of events occurring per unit time.

14. Characteristic Functions. The Central Limit Theorem

Given a real random variable i, by the characteristic function of 0 is
meant the function

fa(t) = Ee'gt , -xo < t < °°. (6.14)

Clearly,f~(t) coincides for every fixed t with the mathematical expectation of
the complex random variable n = eitt. For a discrete random variable taking
the values 0, 1, 2, . . . , the characteristic function ff(t) coincides with the
values of the generating function F~(z) on the boundary of the unit circle
zi = 1, i.e.,

ft(t) - F4 (e't ) = P¢(k)e
keO

This formula represents ft(t) as a Fourier series, with the probabilities
P~(k) = P{, = k}, k = 0, 1, 2, ... as its coefficients. Thus these proba-
bilities P4(k) are uniquely determined by the characteristic functionf(t).

If i is a continuous random variable with probability density pt(x), then,
by formula (4.18), p. 47, the characteristic function is the Fourier transform
of the density p(x):

AM(t) =fQeixtp (x) dx. (6.15)

Inverting (6.15), we find that

P~(X) 2 |- `YQ dt, (6.16)

at least at points wherepg(x) is suitably well-behaved. 4 Thusp~(x) is uniquely
determined by the characteristic functionf(t).

I If (6.16) fails, another inversion formula can be used, giving the distribution function
4Y(x) = P{4 < x} in terms of the characteristic function fsQ) (see e.g., B. V. Gnedenko,
op. cit., Sec. 36). We can then deducep4(x) from 04(x) by differentiation, at least almost
everywhere (recall footnote 2, p. 38).
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Example 1. Let A, be a normally distributed random variable, with
probability density

X2/2A~X) == -l-T e-z/ (6.17)
a/27r

Then, by (6.15), the characteristic function of !, is given by

ft(t) =f e'etp(x) dx == - fu eixt"(X2 /2)dx

1 (6.18)
_t 2e exi 2 / dx.

The function 9(z) = e-z2
/2 is an analytic function of the complex variable z,

and hence, by Cauchy's integral theorem,5 the integral of 9(z) along the
rectangular contour with vertices (--N, 0), (N, 0), (N, -it), (-N, -it)
equals zero. Therefore

l f0e-(X-i0)'/2dx = lim * JN e-('-it)2 /2dx

-/2-7r fN- V2 7r 2 N

-lim 2 -N-it ' dz = lim 1 | e x212 dx (6.19)
N-w N-.7T -

= f e-ez'/2dx

where we use the fact that the integral of 9(z) along the vertical sides of the
contour vanishes as N - oo (why '?). But

Lf7 e - 2/2dx == fp(x) dx = 1,

as for any probability density. Hence (6.18) and (6.19) imply

fA() == e t2/2 (6.20)

Now suppose the random variable i is such that E 11 exists. Then the
characteristic functionft(t) has the expansion

fz(t) 1 _+E t2 ± R(t), (6.21)
2

where the remainder R(t) satisfies the estimate

IR(t)j Ik CE 113. I t13

' R. A. Silverman, op. cit., p. 146.
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(C denotes a constant). In fact, we need only note that

e-~ 1± i~t V t 2±+0, (6.22)
2

by Taylor's formula, where
101 < c I ,13 t3.

We then get (6.21) by taking the mathematical expectation of both sides of
(6.22). In particular, it follows from (6.21) that the mean a = EE and
variance C2 = D- are given by the formulas

a if (O), 62 = -fZ(0) + [f'(0)]2 . (6.23)

Example 2. According to (6.23), the normally distributed random variable
E with probability density (6.17) has mean

a -if'(0) 0
and variance

2  - f"(O) 1.

Formula (6.7) has a natural analogue for characteristic functions. In
fact, if , ... ., E are independent random variables with sum i = ±, + * * -
+ E, then, by formula (4.20), p. 47, the characteristic function of i is

fw(t) = ft(t) .f.()- (6.24)

Let En n = 1, 2,... be a sequence of random variables with character-
istic functions M"(t), n = 1, 2, ... Then the sequence of probability distri-
butions of 0, 02. . is said to converge weakly to the distribution with
density p(x) if

lim P {x' E<n < x/} = i p(x) dx
n-t

for all x' and x" (x' < x"). This should be compared with the definition of
weak convergence for discrete random variables taking the values 0, 1, 2, ....
given in Sec. 13.

Theorem 6.2 has a natural analogue for characteristic functions, whose
proof will not be given here:6

THEOREM 6.2.' The sequence of probability distributions with charac-
teristic functions fg(t), n = 1, 2, . . . converges weakly to the limiting
distribution with density p(x) if and only if

limFotpo = eet), (6.e1c3)n-m
'For the proof, see e.g., B. V. Gnedenko, op. cit. Sec. 38.
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where

f (t) == f re tp(x) dx

is the characteristic function of the limiting distribution and the con-
vergence is uniform in every finite interval t' < t < tC.

We now prove a key proposition of probability theory, called the central
limit theorem, which has the De NMoivre-Laplace theorem (Theorem 5.1,
p. 59) as a very special case. Roughly speaking, the central limit theorem
asserts that the distribution of the sum of a large number of independent
identically distributed random variables is approximately normal.

DEFINITION. Given a sequence of random variables Ok, k = 1 2 . .
with finite means a, = Egk and variances aS = Dk, consider the
"normalized sum"

S* S -ES,,
n /~

where
n

Sn = k
k=l

Then the sequence E,, k = 1, 2, . . . is said to satisfy the central limit
theorem if7

lim P {x' < S* < x'I} =-i- e_/2 dx. (6.25)
n-m ,/~r"

THEOREM 6.3. Suppose the sequence of independent random variables

k k 1 I, 2,... with means ak and variances ok satisfies the Lyapunov
condition

,rn -I z E Rk - akl 0, (6.26)
no H, Bk=t

where

B2- = DS= EaS.
kee

Then the sequence of random variables satisfies the central limit theorem.

Proof. Equation (6.25) means that the sequence of distributions
of the normalized sums S.* I n == 1,2,... converges weakly to the
normal distribution with probability density (6.16). Hence, according
to Theorem 6.2', we need only show that the sequence of characteristic

' Cf. formula (5.8), p. 59. Note that the light-hand side of (6.25) equals (D(x) -cD(x'),
where D(x) is the distribution function of a normal random variable with mean 0 and vari-
ance 1.
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functions f,(t), n = 1, 2,... of the random variables S,*' converges
uniformly in every finite interval t' < t < t' to the characteristic
function f(t) = e-t'/3 of this normal distribution (recall Example 1).
Clearly,

S* akDS2
k=l Bn,

The random variable Ek- a,k has zero mean and variance ak, and
hence, by (6.21), has characteristic function

2

gk(t) - 1 t2 + Rk(t),

where
JRk(t)j < C |t|3 E RIk - ak,3

(C is some constant). Therefore the characteristic function of the
random variable (Ekk = ak)IBn is

An(t) (A 1 s 2 + Rk( t)Bn1  2B ,

where

|Rk(- C ItI3 ERk - ak 13

It follows from (6.24) that the random variable Sn - T + * + 71n

has characteristic function
n

fn(t) = Ifkfn(t).
k=l

Hence

Infn(t) I fkn(t) Ilk2t2 + Rk(
k= 1 kc= 2Bn B

where, because of the hypothesis (6.26),

I 1(B.) -|I|B E Ik - ak| O

as n -* o uniformly in every finite interval t' < t < t". Therefore

t2 n 2 t2

Ift) 2Bn k=1 2
or equivalently

fn(t) - e-t/2
asn - x.
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Example 3. The Lyapunov condition is always satisfied if the random
variables E' , . . . are identically distributed and if oc = E I -akl3 exists.
In fact,

Bn I)E = nc 2 ,
k=3

where a2 = Di48 , and hence

lim -3 E EIk -- akl=im -- 0.
noBe 3~ nz ln 3.1

PROBLEMS

1. Show that the conclusion of Theorem 6.1 can be written in the form

limP D -l Ek a < 1

for arbitrary C > 0.

2. Let t.. . ., in be n independent identically distributed random variables,
with common mean a = E I and variance ,2 = D ike Suppose a is known. Can
the quantity

n- k -( )2

be used to estimate G2 ?

3. A random variable 0 has probability density 8

p~( --. if x > 0,

otherwise,

where m is a positive integer. Prove that
rn

P {O < i < 2(m + 1)} > m+

Hint. Use Chebyshev's inequality.

4. The probability of an event A occurring in one trial is a. Is it true that the
probability of A occurring between 400 and 600 times in 1000 independent
trials exceeds 0.97?

Ans. Yes.

5. Let 0 be the number of spots obtained in throwing an unbiased die. What is
the generating function of V?

8 It follows by repeated integration by parts that Jo x"e-z dx = m!

CHAP. 6



SOME LIMIT THEOREMS 81

6. Use (6.6) and the result of the preceding problem to solve Problem 16, p. 52.

7. Let i be a random variable with the Poisson distribution

ak
Pg(k) =w- ea, k = 0, 1, 2,... (6.27)

Use (6.6) to show that E = DE = a.

8. Find the generating function of the random variable E with distribution

a k
P {E = k =(l+(a > 0).

Use (6.6) to find EtE and DR.

9. Let n be the sum of two independent random variables El and E, one with
the Poisson distribution (6.27), the other with the Poisson distribution obtained
by changing the parameter a to a' in (6.27). Show that - also has a Poisson
distribution, with parameter a + a'.

10. Let S. be the number of successes in a series of n independent trials, where
the probability of success at the kth trial ispk. Supposepl, . .. pn depend on n
in such a way that

Pi + *+ Pn =P
while

max {p1,. . . p n}

as n - Ao. Prove that S. has a Poisson distribution with parameter X in the
limit as n - oo.

Hint. Use Theorem 6.2.9

11. Find the characteristic functions (t)of the random variable with probability
density

P(x) =-eHI (-cc < x < cc).

1
Ans. A(t) = +t2

12. Use (6.23) and the result of the preceding problem to solve Problem 13,
p. 52.

13. Find the characteristic function of a random variable uniformly distributed
in the interval [a, b].

14. A continuous random variable e has characteristic function

f~)=e-aki (a > 0).

Find the probability density of R.

9 For the details, see W. Feller, op. cit., p. 282.
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a
Ans. p(x) = tr(a2 + x2)

15. The derivatives (O) andf4 (0 do not exist in the preceding problem. Why
does this make sense?

Hint. Cf. Problem 24, p. 53.

16. Let v be the total number of spots which are obtained in 1000 independent
throws of an unbiased die. Then Ev = 3500, because of Problem 16, p. 52.
Estimate the probability that v is a number between 3450 and 3550.

17. Let S., be the same as in Problem 10, and suppose I = x. Prove that
k=1

P (xI < k=p 1 -x212 dx

asn - A.

Hint. Apply Theorem 6.3.
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15. Transition Probabilities

Consider a physical system with the following properties:
a) The system can occupy any of a finite or countably infinite number of

states el, £2, ...
b) Starting from some initial state at time t = 0, the system changes its

state randomly at the times t = 1, 2,... Thus, if the random variable
!(t) is the state of the system at time t,1 the evolution of the system in
time is described by the consecutive transitions (or "steps")

c) At time t = 0, the system occupies the state se with initial probability

pi= P {i(°) = ei}, i = 1, 2, . . . (7.1)

d) Suppose the system is in the state e, at any time n. Then the proba-
bility that the system goes into the state e, at the next step is given by

pij = P (E(n + I) = ej I t(n) = ej), i, j = 1, 2, . . ., (7.2)

regardless of its behavior before the time n. The numbers pij, called
the transition probabilities, do not depend on the time n.

'In calling i(t) a random variable, we are tacitly assuming that the states zi, E2,
are numbers (random variables are numerical functions). This can always be achieved by
the simple expedient of replacing El, E, . . . by the integers 1, 2, . . . (see W. Feller, op. cit.,
p. 419).
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A "random process" described by this model is called a Markov chain.2

Now let
p,(n) =- P {i(n) = ej} (7.3)

be the probability that the system will be in the state e, "after n steps."
To find p,(n), we argue as follows: After n - 1 steps, the system must be in
one of the states ek, k = 1, 2, . . ., i.e., the events {i(n - 1) = Ok}, k =

1, 2, . . . form a full set of mutually exclusive events in the sense of p. 26.
Hence, by formula (3.6),

P {i(n) = j} = P {(n) = ej I i(u - 1) = e} P {f(n -1) =so}. (7.4)
k

Writing (7.4) in terms of the notation (7.1)-(7.3), we get the recursion
formulas

P(O) = Pop
p3(n) - Y Pk(n -- ')Ipk2 , n = 1, 2, (7.5)

If the system is in a definite state a at time t 0, the initial probability
distribution reduces to

pi=1, ik 0 if k i. (7.6)

The probability p,(n) is then the same as the probability

pis(n) = P {i(n) =. Es I 0E() = sil, ij = 1, 2,....

that the system will go from state e, to state e, in n steps. Hence, for the
initial distribution (7.6), the formulas (7.5) become

A0) =I if j-i
PO O if j (7.7)

pij(n) = E Pik(n --- l)Pki, n = 1, 2, ...
k

The form of the sum in (7.7) suggests introducing the transition probability
matrix

/711 P12

P = llpij -== 21 P22 ...

' More exactly, a Markov chain with stationary transition probabilities, where we allude
to the fact that the numbers (7.2) do not depend on n. For an abstract definition of a
Markov chain, without reference to an underlying physical system, see W. Feller, op. cit.,
p. 374.
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and the "n-step transition probability matrix"

p1l(n) p12 (n)

P(n) = IPp (n)" = p21(n) p2 2(n)

Then, because of the rule for matrix multiplications (7.7) implies

P(O) = I, P(1) = P, P(2) = P(1)P = P2, ,

where I is the unit matrix (with ones along the main diagonal and zeros
everywhere else). It follows that

P(n)=PI, n= 1,2,... (7.8)

Example 1 (The book pile problem). Consider a pile of m books lying
on a desk. If the books are numbered from I to m, the order of the books
from the top of the pile down is described by some permutation (4s, 2, ... ..
i,) of the integers 1, 2, . . , m, where il is the number of the book on top of
the pile, i2 the number of the next book down, etc., and im is the number of
the book at the bottom of the pile. Suppose each of the books is chosen with
a definite probability, and then returned to the top of the pile. Let p, be
the probability of choosing the kth book (k = 1, 2, . .. , m), and suppose
the book pile is in the state (i4, i, ... , im) Then, at the next step, the state
either remains unchanged, which happens with probability pi, when the top
book (numbered i4) is chosen, or else changes to one of the m - 1 states
of the form (ik, i1, ... .), which happens with probability Pik when a book
other than the top book is chosen. Thus we are dealing with a Markov chain,
with states described by the permutations (i4, i2, . . ., im) and the indicated
transition probabilities.

For example, if m = 2, there are only two states e, = (1, 2) and 2 =
(2, 1), and the transition probabilities are

PI. =P21 =PI, P12 = P22 =P2-

The corresponding transition probability matrix is

PI P2
P1 PI

The "two-step transition probabilities" are

P11(2) = P21(2) = PiP, + PIP2 = PI(P1 + P2) = PI,
P12(2) = P22(

2
) = PIP2 + P2P2 - P2(P1 + P2) = P2-

3 Suitably generalized to the case of infinite matrices, if there are infinitely many states
El, E2,...
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Hence p2 = P, and more generally 1'" = P. Given any initial probability
distribution p', pO, we have

pl(n) = pip1 1 (n) + p~p 2 1(n) = pl(p' + p2) = Pi

P2(n) = PIPn2(n) + P°P2 2 (n) = P2(P? + P2) = P2'

Example 2 (The optimal choice problem). Returning to Example 2, p. 28,
concerning the choice of the best object among m objects all of different
quality, let E, (k = 1, 2, . . . , m) be the state characterized by the fact that
the kth inspected object is the best of the first k objects inspected, and let
E.m+ be the state characterized by the fact that the best of all m objects has
already been examined and rejected. As the m objects are examined one by
one at random, there are various times at which the last object examined
turns out to be better than all previous objects examined. Denote these times
in order of occurrence by t = 0, 1, . . . , v, with t = 0 corresponding to
inspection of the first object and t == v being the time at which the best of all
m objects is examined (v = 0 if the best object is examined first). Imagine a
system with possible states s, .. I ., E7 Em and let ,(t) be the state of the
system at the time t, so that in particular t(O) =e,. To make the "random
process" t(0) i E(l) i- (2) * - - into a Markov chain, we must define
E(n) for n > v. This is done by the simple artifice of setting E(n) = Em+l for
all n > v.

The transition probabilities of this Markov chain are easily found.
Obviously Pn+i.rn+ = 1 and pij =- 0 if i > j, j < m. To calculate p,, for
i < j < m, we write (7.2) in the form

Po = P(E jE) = P(EIE ,) (7.9)
P(Ei)

in terms of the events Ei = {i(n) = ei} and E, = {E(n + 1) = ej). Clearly,
P(Ei) is the probability that the best object will occupy the last place in a
randomly selected permutation ofj objects, all of different quality. Since the
total number of distinct permutations ofj objects is]!, while the number of
such permutations with a fixed element in the last (]th) place is (j- 1)!,
we have

P(E,) (j-1)! 1 -j m: (7.10)

Similarly, P(EiEj) is the probability that the best object occupies the jth
place, while a definite object (namely, the second best object) occupies the
ith place. Clearly, there are (j -2)! permutations of j objects with fixed
elements in two places, and hence

(j 2)!
P(EiEj) = j! (] - 1)] j < j < M. (7.11)
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It follows from (7.7)-(7.1 1) that

Psj = (j I~ i <i < m.

As for the transition probabilities Pi.m+,, they have in effect already been
calculated in Example 2, p. 28:

Pi m+1 =-X i = 1s . . . , m.
m

Example 3 (One-dimensional random walk). Consider a particle which
moves randomly along the x-axis, coming to rest only at the points x = ....
-2, -1, 0, 1, 2, . . . with integral coordinates. Suppose the particle's motion
is such that once at a point i, it jumps at the next step to either the point
i + I or the point i - 1, with probabilities p and q = - p, respectively.4

Let t(n) be the particle's position after n steps. Then the sequence i(0)
0(I) - E(2) . is a Markov chain with transition probabilities

(p if j=i+l,

pij= q if j= i-I, (7.12)

10 otherwise.

In another kind of one-dimensional random walk, the particle comes to
rest only at the points x = 0, 1, 2, .. ., jumping from the point i to the point
i + I with probability pi and returning to the origin with probability qi
I - pi. The corresponding Markov chain has transition probabilities

(i if j=i+l,

P qi if j= 0, (7.13)

O otherwise.

16. Persistent and Transient States

Consider a Markov chain with states ED, E, ... and transition probabi-
lities pi,, i, j = 1, 2, . . . Suppose the system is initially in the state ei. Let

u, = pii(n),

and let v. be the probability that the system returns to the initial state e,

' Thus the particle's motion is "generated" by an infinite sequence of Bernoulli trials
(cf. the example on pp. 63-65, where p = q = i).
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for the first time after precisely n steps. Then

Un = uOvn + uiv,- + * *** - u, 1vl + u,,vO, n= 1, 2,.
(7.14)

where we set
u= 1, vO = O

by definition. To see this, let Bk (A := 1, . . . , n) be the event that "the
system returns to zi for the first time after k steps," BM+ the event that "the
system does not return at all to ei during the first n steps," and A the event
that "the system is in the initial state e, after n steps." Then the events
B ..... B, B,,+1 form a full set of mutually exclusive events, and hence, by
the "total probability formula" (3.6), p. 26,

P(A) = E P(A I Bk)P(Bk), (7.15)
i-I

where clearly P(A I B"+1) = 0 and

P(Bk)= Vk P(A I Bk) == gUk, k = ,...,n.
Substituting these values into (7.15), we get (7.14).

In terms of the generating functions 6

( 0

U(Z) = I UkZ, I 57V= kZ" I ZI < 1s

k=O k=O

we can write (7.14) in the form
U(z) -O = U(z)V(z), u = 1,

which implies

U(z) V(z) (7.16)

The quantity

is the probability that the system sooner or later returns to the original state
zi. The state zi is said to be persistent if v = I and transient if v < 1.

THEOREM 7.1. The state ei is persistent if and only if

a= Pii(n) = °°. (7.17)

'Although the numbers UO, U1, u,,... do not correspond to a probability distribution

as on p. 70 (in fact, we will consider the case where E Uk cO), we continue to call U(z)
k=O

a "generating function." The convergence of the series 2 ukzk for Izj < I follows by com-
p0k

parison with the geometric series, since IukI -; I for every k.
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Proof. To say that se is persistent means that

v = vn = lim V(z) = 1,
n-O z-.1

or equivalently,

lim U(z) = lim 1 =
Z-i 1 - V(z)

Suppose

EU" < O. (7.18)
n-O

Then, since the u, are all nonnegative,

N X

U a < lim U(z) < I Un
no z-1 n=o

for every N. and hence, taking the limit as N -- co, we have

lim U(z) = YU,.
z-1 n=O

In other words, U(z) approaches a finite limit as z -b I if and only if
(7.18) holds. Equivalently, U(z) -oc, as z - 1, i.e., ei is persistent, if
and only if (7.17) holds. I

THEOREM 7.2. If the initial state ej is persistent, then with probability
I the system returns infinitely often to ei as the number of steps n - o.
If ei is transient, then with probability I the system returns to ei only
finitely often, i.e., after a certain number of steps the system never again
returns to e,.

Proof Suppose the system first returns to ei after v1 steps, returns
a second time to e, after v2 steps, and so on. If there are fewer than k
returns to zi as n - a, we set vk = oo Then the event {vk < cA} means
that there are at least k returns to e,, and the probability of the system
returning to ei at least once is just

P {V1 < cf} = V.

If the event {v, < ox} occurs, the system returns to its initial state zi
after v1 steps, and its subsequent behavior is the same as if it just. started
its motion in e. It follows that

P {v2 < K I V1 < O} = V.

Clearly v, = oa implies v2 = oo, and hence v2 < Oc implies v, < co.
Therefore

P {V2 < OCl} = P {V 2 < V, < co}P {V1 < Oc} = V2,
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and similarly,

P {Vk < co I v'-1 < oOk = v, P{V, < co} v Vk.

If e, is transient, then v < 1 and hence

E IVo < a)) v < m0.
k-1 k=i

Therefore, by the first Borel-Cantelli lemma (Theorem 2.5, p. 21), with
probability I only finitely many of the events {vk < cA} occur, i.e., with
probability I the system returns to the state ej only finitely often. This
proves the second assertion in the statement of the theorem.

On the other hand, if ej is persistent, then v= 1, which implies

P {Vk <- c} = I

for every k. Let x be the number of times the system returns to its initial
state e, as n a o. Then obviously the events {x > k} and {vk < oo} are
equivalent, so that if P {Vk < 1O} == I for every k, then x exceeds any
preassigned integer k with probability 1. But then

P{x = }= 1,

which proves the first assertion..

A state e, is said to be accessible from a state ej if the probability of the
system going from re to el in some number of steps is positive, i.e., if
pil(M) > 0 for some M.

THEOREM 7.3. If a state e, is accessible from a persistent state ei,
then ei is in turn accessible from ej and ej is itselfpersistent.

Proof. Suppose ej is not accessible from e,. Then the system will go
from se to ej with positive probability pij (M) = oc > 0 for some number
of steps M, after which the system cannot return to zi. But then the
probability of the system eventually returning to ej cannot exceed 1 -c,

contrary to the assumption that sz is persistent. Hence ej must be acces-
sible from ej, i.e.,pji(N) = S > 0 For some N. It follows from (7.8) that

P(n + M + N) = P(M)P(n)P(N) = P(N)P(n)P(M),

and hence

pii(n + M + N) > pjj(M)pjj(n)pjj(N) = app,(n),
pjj(n + M + N) > pj,(N)pjj(n)pxj(N) = appii(n).

These inequalities show that the series

Y p t0
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either both converge or both diverge. But

zp2 i(n)= 0

by Theorem 7.1, since e, is persistent. Therefore

2 p,,(n) = oo,

i.e., zy is also persistent (again by Theorem 7.1). I
COROLLARY. If a Markov chain has only afinite number of states,

each accessible from every other state, then the states are all persistent.

Proof. Since there are only a finite number of states, the system
must return to at least one of them infinitely often as n - o. Hence at
least one of the states, say z,, is persistent. But all the other states are
accessible from e,. It follows from Theorem 7.3 that all the states are
persistent. I

Example 1. In the book pile problem (Example 1, p. 85), if every book
is chosen with positive probability, i.e., if pi > 0 for all i = 1, . . . , m, then
obviously every state is accessible from every other state. In this case, all
m! distinct states (i1, . . . , iQ) are persistent. If pi = 0 for some i, then all
states of the form (il.. ... , i.) where i, = i (the ith book lies on top of the
pile) are transient, since at the very first step a book with a number different
from i will be chosen, and then the book numbered i, which can never be
chosen from the pile, will steadily work its way downward.

Example 2. In the optimal choice problem (Example 2, p. 86), it is
obvious that after no more than m steps (m is the total number of objects),
the system will arrive at the state em+1, where it will remain forever. Hence
all the states except e.+, are transient.

Example 3. Consider the one-dimensional random walk with transition
probabilities (7.12). Clearly, every state (i.e., every position of the particle)
is accessible from every other state, and moreover6

0O if k = 2n + 1,

pi =C'pnqn if k = 2n.

Using Stirling's formula (see p. 10), we have

C2n nqn =(2n) ! pnn _4n (2n)2ne-2" nq = I (4q)
n P (n!)2 (Vf n=n p q = - (4pq/

Cf. formula (5.2), p. 55.
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for large n, where
4pq = (p + q)2 - (p -- q)2 = -(p - q)2 

< I

(the equality holds only for p = q - i). Therefore

pii(2n) 1 (4pq)n

for large n, and hence the series

Epii(2n), E -(4pq)'
tZ=O .=0 -1/7rn

either both converge or both diverge. Suppose p # q, so that 4pq < 1. Then
CO

Y pJ(2n) < co,

and hence every state is transient. It is intuitively clear that if p > q (say),
then the particle will gradually work its way out along the x axis in the posi-
tive direction, and sooner or later permanently abandon any given state i.
However, if p = q - i, we have

2; p, (2 n)= co,
n=o

and the particle will return to each state infinitely often, a fact apparent from
the symmetry of the problem in this case.

Example 4. Next consider the one-dimensional random walk with
transition probabilities (7.13). Obviously, if 0 < pi < I for all i = 0, 1, . . ..
every state is accessible from every other state, and hence the states are either
all persistent or all transient. Suppose the system is initially in the state i = 0.
Then the probability that it does not return to the state i = 0 after n steps
equals the product pop ... pn-I, the probability of the system making the
consecutive transitions 0 - 1 -** * - n. It is easy to see that the proba-
bility that the system never returns to its initial state i = 0 as n -- so equals
the infinite product

00

IT P. =-- limPP . P.-
n=O n-:m

If this infinite product converges to zero, i.e., if

lim PoPi* p. = 0,
n_.0

then the state i = 0 is persistent, and hence so are all the other states.
Otherwise, the probability of return ro the initial state is

v = 1 -lim 0p 1 * p,* < 1. (7.19)

Then the state i = 0 is transient, and hence so are all the other states.
We can arrive at the same result somewhat differently by direct calculation

CHAP. 7
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of the probability v. that the particle first returns to its initial state i = 0 in
precisely n steps. Obviously, v, is just the probability of the particle making
the consecutive transitions 0 1 -÷* * n - I in the first n - I steps and
then returning to the state i = 0 in the nth step. Therefore, since the transi-
tion i - 1 -- i has probability p,-,1

V1  1 Po,

V. = POPI .. P.-2(0 - P.-I), n = 2, 3,. ...
By definition, the probability of eventually returning to the initial state i = 0
is

V = V4n.
n~o

Therefore

v =1-pO +P p 1-PI) + POp1 (1-P2) + = 1-lim POPl ... P,,

in keeping with (7.19).

17.. Limiting Probabilities. Stationary Distributions

As before, let pi(n) be the probability of the system occupying the state
ej after n steps. Then, under certain conditions, the numbers pl(n), j = 1,
2,. .. approach definite limits as n -- c:

THEOREM 7.4. Given a Markov chain with a finite number of states
E1,. . . , Em, each accessible from every other state, suppose

min pj(N) = 8 > 0 (7.20)
iti

for some N.7 Then

lim p,(n) = p*,
nf as

where the numbers p', j - 1, . . ., m, called the limiting probabilities,8

do not depend on the initial probability distribution and satisfy the in-
equalities

max 1p2 (n) - pJ Ce<C , 1p1(n) - p*I < Ce-D, (7.21)

for suitable positive constants C and D.

Proof. Let
r,(n) = min p2,(n), R1(n) = max p6,(n).

i i

7 In other words, suppose the probability of the system going from any state eA to any
other state A in some (fixed) number of steps N is positive.

Clearly, the numbersp* are nonnegative and have the sum I (why?). Hence they are
candidates for the probabilities of a discrete probability distribution, as implicit in the
term "limiting probabilities."

sec. 17
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Then

r,(n + 1) min pij(n + 1) = min PikPkj(n) > minm pikrj(n) = r-(n),
fi l= 1 i k=l

R (n + 1) = max p,,(n + 1) = Inax pikpkj(n) < maxz pikRj(n) = R(n)
i i ktl

and hence

rj(l) < rj(2) < ... < rj(n) <C ... < Rj(n) < * <Rj(2) < Rj(l).
Let N be the same as in (7.20). Then, for arbitrary states e. and e,

m m

E P~k(N) = Pok(N) = 1.
k=l k:=l

Therefore
m m

z Pxk(N) - Po3k(N)
k=l k=l

= 2:[Pnk(N) - Prk(N)] + 5 [Pnk(N) - Ptk(N)] = 0,
k k

where the sum + ranges over all k such that pk(N) - pgk(N) > 0 and
I- ranges over all k such that pk(N) - pok(N) < 0. Clearly, (7.20)
implies

max 5+ [Pnk(N) -- Pgk(N)] = d < 1,
.j3 o k

for some positive number d.
Next we estimate the differences Rj(n) - rj(n) and Rj(n + N) -

rj(n + N):

R,(N) - r,(N) = max pa;(N) - min p,,(N)
a si

= max [p.,(N) - poj(N)]
a, [i

< max S+ [P~k(N) - Pk(N)] = d,

R,(n + N) - r,(n + N) = max lpnj(n + N) - pj(n + N)]

m

= max 1 [Phk(N) - pOk(N)]PkI(n)
a,13 A=1

< max {2+ [Phk(N) p-Pk(N)]Rj(n)
x,13 ~k

+ Y [Pk(N) - Pfk(N)]rj(n))

= max ( [Pck(N) - Psk(N)][Rj(n) rj(n)]}

= d[Rj(n) - r,(n)].
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It follows that
Rj(kN) - r,(kN) < d , k = 1,2,... (7.22)

But, as already noted, the sequence r,(n), n = 1, 2, ... is nonde-
creasing while the sequence R1(n), n = 1, 2,... is nonincreasing, and
moreover r3(n) < Rj(n). Hence (7.22) shows that both sequences have
the same limit

p* = lim r,(n) = lim R,(n).

Moreover, it is clear that

Ipij~n) - pi* < R1(n) - r,(n) < d(n/N)
1

, i = 1, . . . , n. (7.23)

Therefore, given any initial distribution pP, i = 1, . . . , n, we have

1p,(n) - pjre Epopff(n) -P* 2;pfPfni* Ip1 (n) p'jp= (n)O- p,,
-l - ~ p~[(7.24)

< po[R,(n) - r1(n)] = R,(n) - r,(n) <; d (nIN)1, d < 1.
i= I

But then
lim 1p1(n) - p* = 0,

i.e.,
lim p1 (n) =p*

independently of the initial distribution, as asserted. Choosing

C= , D=- Ind

in (7.23) and (7.24), we get (7.21). I
COROLLARY. The limiting probabilities par j = 1, . . . , m are a

solution of the system of linear equations
m

p1* ;Pf*Pf'j = 1, . . . , m. (7.25)
i-i

Proof. According to (7.5),

p,(n) = z p,(n - l)pij.

But this becomes (7.25), after taking the limit as n -- o. I
Remark. Given an arbitrary Markov chain with states e£, e2,. . ., let

p~j, i = 1, 2,... be numbers such that

po > 0 p° = 1

and
(7.26)

SEC. 17
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Choosingp?, i = 1, 2,... as the initial probability distribution, we calculate
the probability pj(n) of finding the system in the state A after n steps, obtain-
ing

p(l) = Y P°Pi == pig

iipj(2) = A p( )Ai POj PJ

. . . . . . . . . . . .

It follows that
p1(n) = p", j = 1, 2,... (7.27)

for all n = 0, 1, 2, .... [pj(O) =pO trivially], i.e., the probabilities pj(n),
j = 1, 2, ... remain unchanged as the system evolves in time.

A Markov chain is said to be stationary if the probabilities pj(n), j = 1,
2, . . . remain unchanged for all n -= 0, 1, 2,. . . , and then the corresponding
probability distribution with probabilities (7.27) is also said to be stationary.
It follows from the corollary and the remark that a probability distribution
p,-J = 1, 2, ... is stationary if and only if it satisfies the system of equations
(7.26). Moreover, if the limiting probabilities

pj*-= lim pj(n) (7.28)

are the same for every initial distribution, then there is a unique stationary
distribution with probabilities

pi = p* j =1, 2....
Hence Theorem 7.4 and its corollary can be paraphrased as follows: Subject
to the condition (7.20), the limiting probabilities (7.28) exist and are the unique
solution of the system of linear equations (7.25) satisfying the extra conditions

m
pi , >p =1.

1=1

Moreover, they form a stationary distribution for the given Markov chain.

Example 1. In the book pile problem, it will be recalled from p. 86 that
when m = 2, the. stationary distribution

p1 (n) = P1, p2 (n) = P2

is established at the very first step. In the case of arbitrary m, let
Pl..i,,) . .. . ,) denote the probability of the transition from the state
(i1 .... im) to the state (1 . I..m), and assume that the probabilities
Pi,. . ,Pwp are all positive. Then, as shown on p. 85,fPik if (ill ... I i ) = (iksl ' .* )

i. .ij = 0o otherwise,

CHAP. 7
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where the permutation (ik, il ... .) is obtained from (il ... ., i") by choosing
some ik and moving it into the first position. The limiting probabilities

.j are the solution of the system of linear equations

Ppil. .= P, X (7.29)

where (], .. * *,]j) ranges over the m permutations

UJl 2'S~ .~ . .I m) s(i~s il is) .X jM)s X (jl s j2l . . m .

which give (1 .... j1) when]j is moved into the first position.
After a sufficiently large number of steps, a stationary distribution will be

virtually established, i.e., the book pile will occupy the states (il. ... ., i")
with virtually unchanging probabilities p*, . .). Clearly, the probability of
finding the ith book on top of the pile is then

*
Pi=E1~.2.. . .j... ,,),

and hence, by (7.29),

Pi2i. .i.Pi (ill, i)

where (il ... ., i,) ranges over the m permutations

(is i2l i31 . . . I U m) (i21 is i3, I . Xi . . . 1 (i2 i31 . . . I imnli)

which give (i, i2, . .. , im) when i is moved into the first position. But then

Pi =pi P(' -)p, = =1,...,m,

i.e., the limiting probability pi* of finding the ith book on top of the pile
is just the probability pi with which the ith book is chosen. Thus, the more
often a book is chosen, the greater the probability of its ending up on top
of the pile (which is hardly surprising!).

Example 2. Consider the one-dimensional random walk with transition
probabilities (7.12). If p #/ q, then the particle gradually moves further and
further away from the origin, in the positive direction if p > q and in the
negative direction if p < q. If p = q, the particle will return infinitely often
to each state, but for any fixed ], the probability p, (n) of the particle being
at the point j approaches 0 as n -) o (why?). Hence, in any case,

lim p,(n) = pt = 0
n-m

for every ], but the numbers pj*, j = 1, 2, .. . cannot be interpreted as the
limiting probabilities, since they are all zero. In particular, there is no sta-
tionary distribution.
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Example 3. Finally, consider the one-dimensional random walk with
transition probabilities (7.13). Suppose

limpop, P,. = 1-v > 0, (7.30)

so that the states are all transient (see p. 92). Then as n -+ o, the particle
"moves off to infinity" in the positive direction with probability 1, and there
is obviously no stationary distribution If there is a stationary distribution,
it must satisfy the system of equations (7.26), which in the present case take
the form

IP = po pj.I,, j = 1,2,.... (7.31)

It follows from (7.31) that

PI = PoPo, P = PoPoP * *., P= = PoPoP .. * pn ...

Clearly a stationary distribution exists if and only if the series

PoP. * = 1Po + PoP + * (7.32)

converges.9 The stationary distribution is then

o 1
1 + Po + PoP, + '

= P---, n=1,2,...

1 + Po + PoP, +

PROBLEMS

1. A number from I to m is chosen at random, at each of the times t 1, 2, . . .
A system is said to be in the state so if no number has yet been chosen, and in the
state ei if the largest number so far chosen is i. Show that the random process
described by this model is a Markov chain. Find the corresponding transition
probabilities pi (i,j = 0, 1, . . . , nm).

CAns. pji =-, Pij = O if i > j, pij 1 if i < ;.
m m

2. In the preceding problem, which states are persistent and which transient?

3. Suppose m = 4 in Problem 1. Find the matrix P(2) = llpi(2)11, where
pfj(2) is the probability that the system will go from state ej to state el in 2 steps.

I Note that (7.32) automatically diverges it (7.30) holds.
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4. An urn contains a total of N balls, some black and some white. Samples are
drawn from the urn, m balls at a time (m < N). After drawing each sample,
the black balls are returned to the urn, while the white balls are replaced by
black balls and then returned to the urn. If the number of white balls in the urn
is i, we say that the "system" is in the state ci. Prove that the random process
described by this model is a Markov chain (imagine that samples are drawn at
the times t = 1, 2, . . . and that the system has some initial probability distribu-
tion). Find the corresponding transition probabilities p (i, j 0, 1, . . . , N).
Which states are persistent and which transient?

Ans. pi, =0 if i <j or if i >j, j > N -m,
ci cN-i

Pij = nCN if i >j,]j < N-rm.

The state co is persistent, but the others are transient.

5. In the preceding problems, let N = 8, m = 4, and suppose there are initially
5 white balls in the urn. What is the probability that no white balls are left after
2 drawings (of 4 balls each)?

6. A particle moves randomly along the interval [1, m], coming to rest only at
the points with coordinates x = 1, . . ., m. The particle's motion is described
by a Markov chain such that

P12 - 1, Pm,m-s - 1,

Pjj+l p, PlIJ-= q (j = 2,... , m-1),

with all other transition probabilities equal to zero. Which states are persistent
and which transient?

7. In the preceding problem, show that the limiting probabilities defined in
Theorem 7.4 do not exist. In particular, show that the condition (7.20) does not
hold for any N.

Hint. pl,(n) = 0 if n is odd, while p 12(n) = 0 if n is even.

8. Consider the same kind of random walk as in Problem 6, but now suppose
the nonzero transition probabilities are

-l q, Pmm P p,

Pu,j+l = pj1 P,- = q (Q = I,...

permitting the particle to stay at the points x = I and x = m. Which states
are persistent and which transient? Show that the limiting probabilities

PI *, P* defined in Theorem 7.4 now exist.

9. In the preceding problem, calculate the limiting probabilities p,... , pm.

Ans. Solving the system of equations

P* =qp* + qp2',

Pi PPj-7 + qp, 1  ( = 2. m-),
*= * m + P*

P.m PPn-i MlJO*

PROBLEMS
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we get
Pt (P- P Q I=1 ... )

Therefore

pa=I
m

if p = q, while

* I___(pq)_ _ps

in

if p u q (impose the condition that p* = 1).
1. 1

10. Two marksmen A and B take turns shooting at a target. It is agreed that A
will shoot after each hit, while B will shoot after each miss. Suppose A hits the
target with probability x > 0, while B hits the target with probability f3 > 0,
and let n be the number of shots fired. What is the limiting probability of hitting
the target as n =a ?

Ans.

11. Suppose the condition (7.20) holds for a transition probability matrix
whose column sums (as well as row sums) all equal unity. Find the limiting
probabilities pl. . *., Pm

Ans. p* = = m -.

12. Suppose m white balls and m black balls are mixed together and divided
equally between two urns. A ball is then drawn at random from each urn and
put into the other urn. Suppose this is done n times. If the number of white
balls in a given urn is j, we say that the "system" is in the state cj (the number
of white balls in the other urn is then m -j). Prove that the limiting prob-
abilities p*, p*, . . . ,p* defined in Theorem 7.4 exist, and calculate them.

Hint. The only nonzero transition probabilities are

2j(m -) (m -)2 j2
Pj= 2 Pjf i-1 2 Pji-1 =-2

Ans. Solving the system

P' = P 3* -pj-,j + pj*pjj 4- p,* pj+l, (Q = 0, 1, . . m),

we get pli = (Cr)2p*, and hence

(C(j 0, -.

0m2

(recall Problem 17, p. 12).
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13. Find the stationary distributionpop°,... for the Markov chain whose only
nonzero transition probabilities are

i 1
pl=ji +I pj,j+l = j7 + = 1, 2.*.)..

Ans. po - (

14. Two gamblers A and B repeatedly play a game such that A's probability
of winning is p, while B's probability of winning is q =1 - p. Each bet is a
dollar, and the total capital of both players is m dollars. Find the probability
of each player being ruined, given that A's initial capital is j dollars.

Hint. Let ej denote the state in which A hasj dollars. Then the situation
is described by a Markov chain whose only nonzero transition probabilities are

Poo = 1I Pmm =I
pjj+l =P, Pjj-l =q (j 1. m -1).

Ans. Let pi = lim pjo(n) be the probability of A's ruin, starting with an
n-

initial capital of j dollars. Then

PI =PP2 + q, Pm-, = qpm-2,

Pi = qP j-I + ppj+l ( j 2_ m -2)

(why ?). Solving this system of equations, we get

A I (7.33)

if p = q (as in Example 3, p. 29), and

pi - ((p/q)m (7.34)
=1-(p/qYm

if p # q. The probability of B's ruin is 1 - j.

15. In the preceding problem, prove that if p > q, then A's probability of ruin
increases if the stakes are doubled.

16. Prove that a gambler playing against an adversary with unlimited capital
is certain to be ruined unless his probability of winning in each play of the game
exceeds i.

Hint. Let m - o in (7.33) and (7.34).

PROBLEMS
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18. Definitions. The Sojourn Time

Consider a physical system with the following properties, which are
the exact analogues of those given on p. 83 for a Markov chain, except
that now the time t varies continuously:

a) The system can occupy any of a finite or countably infinite number of
states E., £2, ...

b) Starting from some initial state at time t = 0, the system changes its
state randomly at subsequent times. Thus, the evolution of the system
in time is described by the "random function" ,(t), equal to the state
of the system at time t.0

c) At time t = 0, the system occupies the state e, with initial probability

pi = P {0(O) = si , i = 1, 2,....

d) Suppose the system is in the state zi at any time s. Then the probability
that the system goes into the state ej after a time t is given by

pi,(t) = P {E(s + t) = Hj I i(s) = ei}, ij = 1, 2, .. . , (8.1)

regardless of its behavior before the time s. The numbers p2 j(t), called
the transition probabilities, do not depend on the time s.

A random process described by this model is called a continuous Markov

'Recall footnote 1, p. 83. Note that 0(t) is a random variable for any fixed t.
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process or simply a Markov process (as opposed to a Markov chain, which
might be called a "discrete Markov process").

Let
pi(t) = P {(t)e=}, j= 1,2,....

be the probability that the system will be in the state e at time t. Then, by
arguments which hardly differ from those given on p. 84, we have

pj(O) = Paj, j = 1, 2, .

pA(s + t) = j PA(s)Pk,(t), j = 1, 2, . . . (8.2)
and k

P iO) (O if ' i, (8.3)

pi,(s + 0) = ; Pik(s)Pkj(), ij - 1, 2, . . . (8.4)
k

for arbitrary s and t [cf. (7.5) and (7.7)].

THEOREM 8.1. Given a Markov process in the state £ at time t = to,
let T be the (random) time it takes the process to leave z by going to
some other state Then

P {t > t} = ea t , t > °, (8.5)

where X is a nonnegative constant.

Proof. Clearly P {- > t} is some function of t, say

P(t)=P{T>t}, t>O.

If X > s, then the process will be in the same state at time to + s as at
time to, and hence its subsequent behavior will be the same as if s = 0.
In particular,

P {-r > 5 ± t I > s} -p(t)

is the probability of the event {-r > s + t} given that X > s. It follows
that

P {T > S + t} = P {or > S + t I r > S}P {'r > S} = T(t)p(s),

and hence
cp(s + t)0 (s)eP(t)

or equivalently
In p(s + t) = In 9(s) + In cp(t)

'More exactly, a continuous Markov process with stationary transition probabilities.
where we allude to the fact that the numbers (8.1) do not depend on s (cf. footnote 2,
p. 84).

' Here we prefer to talk about states of the process rather than states of the system (as
in Chap. 7).
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for arbitrary s and t. Therefore In p(t) is proportional to t (recall
footnote 4, p. 40), say

In cp(t) =- -- Xt, t > 0, (8.6)

where X is some nonnegative constant (why nonnegative?). But (8.6)
implies (8.5). 1

The parameter )X figuring in (8.4) is called the density of the transition
out of the state e. If X = 0, the process remains forever in e. If X > 0, the
probability of the process undergoing a change of state in a small time
internal At is clearly

I - (?(At), = A At + o(At), (8.7)

where o(At) denotes an infinitesimal of higher order than At.
It follows from (8.5) that

P {t1 < t < t2 } = p(t1) - (2) = e-Xtl-e-t2 =ei 1Xe-Xt dt (8.8)

for arbitrary nonnegative t, and t 2 (t 1 < t 2). Therefore the random variable
T, called the sojourn time in state r, has the probability density

Xe-` if t > 0,

p =(t) 0 if t < 0. (8.9)

The distribution corresponding to (8.8) and (8.9) is called the exponential
distribution, with parameter A. The mean value Er, i.e., the "expected
sojourn time in state a," is given by

ET = tp,(t) dt =--

Example (Radioactive decay). In E example 3, p. 58, we gave a proba-
bilistic model of the radioactive decay of radium (Ra) into radon (Rn). The
behavior of each of the no radium atoms is described by a Markov process
with two states (Ra and Rn) and one possible transition (Ra -* Rn). As on
p. 58, let p(t) be the probability that a radium atom decays into a radon
atom in time t, and !(t) the number of alpha particles emitted in t seconds.
Then, according to formula (5.7),

a'

P {0(t) = k = te--, k = .0 1, 2,...,

where
a = Ei(t) = n0 p(t).

It follows from (8.5) that

p(t) = -e--A t ;> O.
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where X is the density of the transition Ra - Rn. Recalling (8.7), we see that
)X is the constant such that the probability of the transition Ra -- Rn in a
small time interval At equals XAt + o(At).

The number of (undisintegrated) radium atoms left after time t is clearly
no- (t), with mean value

n(t) = E[no - E(t)] = no-nop(t) = noe-t, t > 0. (8.10)

Let T be the half-life of radium, i.e., the amount of time required for half the
radium to disappear (on the average). Then

n(T) Ino, (8.11)

and hence, comparing (8.10) and (8.11), we find that T is related to the
density X of the transition Ra -+ Rn by the formula

T In 2T =-.

19. The Kolmogorov Equations

Next we find differential equations satisfied by the transition probabilities
of a Markov process:

THEOREM 8.2. Given a Markov process with afinite number of states,
suppose the transition probabilities p, 1(t) are such that

1-p,,(At) = Xi At + o(At), i = ,2, . .. , (8.12)
pil(At) = Xi At + o(At), j i, i,j= 1, 2, . . .,

and let
B i= 1,2,... (8.13)

Then the transition probabilities satisfy two systems of linear differential
equations, for forward Kolmogorov equations5

p.S(t)= 'Y p2k(t)Xk1, ij = 1, 2, . .. (8.14)

and the backward Kolmogorov equations

pif(t) E ?ikPkl(t), ij = 1, 2, . . ., (8.15)

subject to the initial conditions (8.3).

We might call Xi the "density of the transition out of the state ei," and )Xt the "density
of the transition from the state ei to the state es."

' The prime denotes differentiation with respect to t.
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Proof. It follows from (8.4) that

PAM(t + At) = p(t)pkNAt) = Pik(Pkj(t)
k k

Hence, using (8.12) and (8.13), we have

p,1(t ± At) - p~1 t) - o(At)1 - +otl]P(t)
A= I Pik(t)| Xkl + A]=2[ + Oat) ]AM~)-At k I~ At] kA

Both sums have definite limits as At -) 0. In fact,

lim E pd,(t)[)ki + - ]At) = pik(t))kJ9 (8.16)
At-O k I At k

lim [X)k +- -A] 1pk(t) = \ikPkl(t). (8.17)
At-° k At k

Therefore

limi (t + At) -- PAM(t) = pt)
At-o At

also exists, and equals (8.16) and (8.17). I
Remark 1. It follows from (8.12.) and the condition

E P..r(At) = 1
that

(8.18)
j~t

Remark 2. The Kolmogorov equations hold not only in the case of a
finite number of states, but also in the case of a countably infinite number of
states ,, e2, ... if we make certain additional assumptions. In fact, suppose
the error terms o(At) in (8.12) are such that

o(At) -_C as At-+0
At

uniformly in all i and j. Then the forward equations (8.14) hold if for any
fixed j, there is a constant C < oc) such that

),jj < (', i = 1, 2,...

while the backward equations (8.15) hold if the series (8.18) converges.

Example 1 (The Poisson process). As in Example 4, p. 73, consider
a "random flow of events" with density X, and let i(t) be the number of events
which occur in time t. Then i(t) is called a Poisson process. Clearly !(t) is a
Markov process, whose states can be described by the integers 0, 1, 2, ...

Moreover, i(t) can only leave the state i by going into the state i + 1.

CHAP. 8
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Therefore the transition densities Xit are just

X if j=i+1,

°0 if j i i+ 1,

where we use (8.13) and (8.18).
The transition probabilities pi,(t) of the Poisson process E(t) clearly

satisfy the condition
P,1 (t) = Po'J-M)

(why ?). Let
Pi (t) = poi(t), j = O. I, 2,. ...

Then the forward Kolmogorov equations take the form

Po(t) =-XPo(t)

p;(t) = ?pj-1 (t) - Xp1(t), j = 1, 2,...
Introducing the new functions

f1 (t) = elpi(t), j = 0, 1, 2,...,
we find that

fO(t) = Xf0 (t) + eC"p0(t) = f(t) - Xee tp 0(t) = 0,

f'(t) = Xfj(t) + eatp(t)

= Xfj(t) + Xe'lpj-1(t) - Xeatpj(t) = Xfj-1 (t), j = 1, 2, * . .
where

fo(O) = 1, (.9
fi(O) = , j = 1, 2, .. , (8.19)

because of (8.3). But the solution of the system of differential equations

fo(t) = 0,
f(t) = if,- 1(t), j = 1, 2_ .

subject to the initial conditions (8.19), is obviously

fot) = 1, MO~t = XIt, M nt) =-! . ...

Returning to the original functions pj(t) = e'tfj(t), we find that

pj(t) = ( ) e-x, j = 0,1, 2,...

or equivalently

P {j(t) = jo n), j = 0,1, 2,

just as on p. 75.



108 CONTINUOUS MARKOV PROCESSES

Example 2 (A service system with exponential holding times). Consider
a random flow of service calls arriving at a server, where the incoming
"traffic" is of the Poisson type described in Example 1, with density X. Thus
But + o(At) is the probability that at least one call arrives in a small time
interval At. Suppose it takes a random time r to service each incoming call,
where -r has an exponential distribution with parameter [:

P {a > t) = e-_ ' (8.20)

(the case of "exponential holding times"). Then the service system has two
states, a state co if the server is "free" and a state el if the server is "busy."
It will be assumed that a call is rejected (and is no longer a candidate for
service) if it arrives when the server is busy.

Suppose the system is in the state go at time to. Then its subsequent
behavior does not depend on its previous history, since the calls arrive
independently. The probability p,)3 (At) of the system going from the state
co to the state e1 during a small time interval At is just the probability XAt +
o(At) of at least one call arriving during At. Hence the density of the
transition from eo to el equals X. On the other hand, suppose the system is
in the state el at time t. Then the probability p1o(t) of the system going from
the state e, to the state co after a time t is just the probability that service
will fail to last another t seconds.6 Suppose that at the time t1, service has
already been in progress for exactly s seconds. Then

p10(t) = 1 - P {-r> s tIr> SI P {r > S + t}

Using (8.20), we find that

--p.(st)
=P 1 (8.21)

regardless of the time s, i.e., regardless of the system's behavior before the
time t1.

7 Hence the system can be described by a Markov process, with two
states go and el.

The transition probabilities of this Markov process obviously satisfy the
conditions

pol(t) I-poo(t), P10(t) = I- p 11(t). (8.22)
Moreover,

Xo = -?, 1ol = As

X0o = 4 -11 =-L

For simplicity, we choose seconds as the time units.
7 It is important to note that this is true only for exponential holding times (see W.

Feller, op. cit., p. 458).
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where we use the fact that

p10(At) = 1 - e-"'A = A At + o(At).

Hence in this case the forward Kolmogorov equations (8.14) becomes

po0(t) = ?'00 p0(t) + Xlopol(t) = -Xp0(t) + dl p 00(t)],

pll(t) = Xolplo(t) + Xllp1l(t) = Kl - p0(t)] -pll(t).

i.e.,

pO(?) + (0 + V)p 0 0(t) = t' (8.23)

pl1 (t) + (X + )p 11(t) = X.

Solving (8.23) subject to the initial conditions

POOP )=Pll(0) = I,
we get

p0o(t) = ( + )e(x+')t + X+
+ ++[L (8.24)

p11(t) = (i- )x+I + '
X + X+ ±

20. More on Limiting Probabilities. Erlang's Formula

We now prove the continuous analogue of Theorem 7.4:

THEOREM 8.3. Let !(t) be a Markov process with a finite number of
states, El, . . , E,, each accessible from every other state. Then

lim pj(t) = pi,

where p,(t) is the probability of i(t) being in the state e, at time t. The
numbers p*, j = 1,. . . , m, called the limiting probabilities, do not
depend on the initial probability distribution and satisfy the inequalities

max 1p3(t) - plj < Ce Di, jpJ(t)-paf < Ce Di (8.25)

for suitable positive constants C and D.

Proof. The proof is virtually the same as that of Theorem 7.4 for
Markov chains, once we verify that the continuous analogue of the
condition (7.20), p. 93 is automatically satisfied. In fact, we now have

min pJ(t) = 8(t) > 0 (8.26)

Because of (8.22), there is no need to write equations forp,1 (t) andp' 0(t).
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for all t > 0. To show this, we firstt observe that pii(t) is positive for
sufficiently small t, being a continuous function (why?) satisfying the
condition pii(O) = 1. But, because of (8.4),

pii(S - t) > pii(s)pii(t)

for arbitrary s and t, and hence pii(t) is positive for all t.
To show that pi,(t), i ] j is also positive for all t, thereby proving

(8.26) and the theorem, we note that

.PiX (S) > 0

for some s, since e, is accessible from ce, But

PAM(t) > pij(O)p(t - u), U < t,

again by (8.4), where, as just shown, p,1(t - u) is always positive.
Hence it suffices to show that p,,(u) > 0 for some u < t. Consider a
Markov chain with the same states si, ... ., em and transition proba-
bilities

Pi,~ = Aii

where n is an integer such that
S

n m -

Since

( i) > 0,
n

the state e, is accessible from E,. But it is easy to see that e, is accessible
from ei not only in n steps, but also in a number of steps no no greater
than the total number of states m (think this through). Therefore

Pt -f0  > 0,Pi, (no S) >°

where

no -S < t. i
n

The limiting probabilities ,j = 1,... , m form a stationary distribution
in the same sense as on p. 96. More exactly, if we choose the initial distri-
bution

p =inP j= 1. ,
then

pi(t)he st I , n h sa .,
i.e., the probability of the system tieing in the state e, remains unchanged

CHAP. 8
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for all t > 0. In fact, taking the limit as s co in (8.2), we get

p7 = I pi*pi(t), j = 1, ... , m. ($.27)

But the right-hand side is just pj(t), as we see by choosing s = 0 in (8.2).
Suppose the transition probabilities satisfy the conditions (8.12). Then
differentiating (8.27) and setting t = 0, we find that

EPi*Xij = °, j = 1 , . . . , m, (8.28)

where X)j is the density of the transition from the state e, to the state e;.

Example (A service system with m servers). Consider a service system
which can handle up to m incoming calls at once, i.e., suppose there are m
servers and an incoming call can be handled if at least one server is free. As
in Example 2, p. 108, we assume that the incoming traffic is of the Poisson
type with density X, and that the time it takes each server to service a call
is exponentially distributed with parameter ,u (this is again a case of "expo-
nential holding times"). Moreover, it will be assumed that a call is rejected
(and is no longer a candidate for service) if it arrives when all m servers are
busy, and that the "holding times" of the m servers are independent random
variables.

If precisely j servers are busy, we say that the service system is in the
state e (j = 0, 1, . . . , m). In particular, so means that the whole system is
free and em that the system is completely busy. For almost the same reasons
as on p. 108, the evolution of the system in time from state to state is described
by a Markov process. The only nonzero transition probabilities of this
process are

X00 = -X, X01 = X, X.. = -mt 8.9
-= ji, Xi = -(X, + jAA), j -J =X (j = 1, . . ., m - 1). (

In fact, suppose the system is in the state el. Then a transition from el to
el+, takes place if a single call arrives, which happens in a small time interval
At with probability XAt + o(At).9 Moreover, the probability that none of the
j busy servers becomes free in time At is just

[1 - tLAt + o(At)]',

since the holding times are independent, and hence the probability of at
least one server becoming free in time At equals

1 - [1 - tAt + o(At)]! =]juAt + o(At).

' For small At, this is also the probability of at least one call arriving in At.
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But for small At, this is also the probability of a single server becoming free
in time At, i.e., of a transition from e, to e,-,. The transitions to new states
other than e,-1 or e,, have small probabilities of order o(At). These con-
siderations, together with (8.12) and the formula

implied by (8.12) and (8.13), lead all once to (8.29).
In the case m = 1, it is clear from the formulas (8.24) that the transition

probabilities p,,(t) approach their limiting values "exponentially fast" as
t -* oo. It follows from the general formula (8.25) that the same is true in the
case m > I (more than I server). To find these limiting probabilities p*,
we use (8.28) and (8.29), obtaining the following system of linear equations:

(X + p)Pj* = XP- 1 + (U + 0Lp7+1  (j = 1,..., m-1),

xPm-_ mVPM

Solving this system, we get

P~ ,- j -0,1I,. . , M.

Using the "normalization condition'

Pi

'=0

to determine ps*, we finally obtain Erlang's formula

pi , j=0, l. .. ,m (8.30)

s~j!

for the limiting probabilities.

PROBLEMS

1. Suppose each alpha particle emitted by a sample of radium has probability
p of being recorded by a Geiger counter. What is the probability of exactly n
particles being recorded in t seconds?

Ans. ( P) e-1t, where X is the same as in the example on p. 104.
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2. A man has two telephones on his desk, one receiving calls with density )?,
the other with density X2.1O What is the probability of exactly n calls being
received in t seconds?

Hint. Recall Problem 9, p. 81. Neglect the effect of the lines being found
busy.

A [( 1 + )>2 )t]" <
Ans. RX 2tne-0,+X2)t.

n!

3. Given a Poisson process with density x, let ,(t) be the number of events
occurring in time t. Find the correlation coefficient of the random variables
i(t) and i(t + 'r), where r > 0.

Ans. t.

4. Show that (8.24) leads to Erlang's formula (8.30) for m = 1.

5. The arrival of customers at the complaint desk of a department store is
described by a Poisson process with density B. Suppose each clerk takes a
random time - to handle a complaint, where X has an exponential distribution
with parameter A, and suppose a customer leaves whenever he finds all the clerks
busy. How many clerks are needed to make the probability of customers
leaving unserved less than 0.015 if X - t?

Hint. Use Erlang's formula (8.30).

Ans. Four.

6. A single repairman services m automatic machines, which normally do not
require his attention. Each machine. has probability )At + o(At) of breaking
down in a small time interval At. The time required to repair each machine is
exponentially distributed with parameter p.. Find the limiting probability of
exactly j machines being out of order.

Hint. Solve the system of equations

[(m-j))7 + t]p*' - (m- + lPpp, 1 + I4+
Vm -j)X +APP = + Oxlm-l+I

m!mAns. P* = (~ *) (-JP j = O 1, . . . , m,

where p* is determined from the condition p = 1.
0-

Comment. Note the similarity between this result and formula (8.30).

7. In the preceding problem, find the average number of machines awaiting
the repairman's attention.

Ans. m - (1 -po*).

10 It is assumed that the incoming calls on each line form a Poisson process.

PROBLEMS
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8. Solve Problem 6 for the case of r repairmen, where I < r < m.

9. An electric power line serves m identical machines, each operating inde-
pendently of the others. Suppose that in a small interval of time At each machine
has probability )At + o(At) of being turned on and probability FAt + o(At)
of being turned off. Find the limiting probability p* of exactly j machines
being on.

Hint. Solve the system of equations

MXpO VIlp

[(im -j) +frLjp - (m -- j + I)Xps*-l + (j + lhq4+ 1 ,

Ans. = 1' 0,1 . Mn.Xpy( + tk (I t L } -

10. Show that the answer to the preceding problem is just what one would
expect by an elementary argument if ). = [.



Appendix 1

INFORMATION THEORY

Given a random experiment with N equiprobable outcomes A ... ., AN,
how much "information" is conveyed on the average by a message X
telling us which of the outcomes A ... , AN has actually occurred? As a
reasonable measure of this information, we might take the average length of
the message #, provided # is written in an "economical way." For
example, suppose we use a "binary code," representing each of the possible
outcomes Al, . . , AN by a "code word" of length 1, i.e., by a sequence

Ia, . .. a,,

where each "digit" ak is either a 0 or a 1. Obviously there are 2 such words
(all of the same length 1), and hence to be capable of uniquely designating the
N possible outcomes, we must choose a value of I such that

N< (2)

The smallest value of I satisfying (1) is just the integer such that

0 < 1-1092N< 1.

This being the case, the quantity

I= log2 N (2)

is clearly a reasonable definition of the average amount of information in the
message Xf (measured in binary units or "bits").

More generally, suppose the outcomes A, .. ., AN have different proba-
bilities

P1 = P(A1 ), * PN = P(AN)- (3)
115
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Then it is clear that being told about a rare outcome conveys more informa-
tion than being told about a likely outcome.' To take this into account, we
repeat the experiment n times, where n is very large, and send a new message
.A' conveying the result of the whole series of n trials. Each outcome is now
a sequence

Al, ... , A (4)

where Ai, is the outcome occurring at the kth trial. Of the N' possible out-
comes of the whole series of trials, it is overwhelmingly likely that the outcome
will belong to a much smaller set containing only

N = - n! (5)
n1! ... nN!

outcomes, where

n, = npd, . * ., nN = VnIy n + * - * + nN = n.

In fact, let n, = n(Ai) be the number of occurrences of the event Ai in N
trials. Then

n.
-- - Pi
n

by the law of large numbers (see Sec. 12), and hence n, - npi. To get (5),
we merely replace - by = and invoke Theorem 1.4, p. 7. We emphasize
that this is a plausibility argument and not a rigorous proof,2 but the basic
idea is perfectly sound.

Continuing in this vein, we argue that only a negligibly small amount of
information is lost on the average if we neglect all but the set of N,, highly
likely outcomes of the form (4), all with the same probability

P(A4i) ... P(Ai,) I . . pi,

This brings us back to the case of equiprobable outcomes, and suggests
defining the average amount of information conveyed by the message A' as

I' =- log2 N,,.

Hence, dividing by the number of trials, we find that the average amount of
information in the original message .X/ is just

log, N. (6)

n

XIn particular, no information at all is conveyed by being told that the sure event has
occurred, because we already know what the message will be!

I Among other missing details, we note that the numbers n .. ., n, are in general not
all integers, as assumed in (5).
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To calculate (6), we apply Stirling's formula (see p. 10) to the expression
(5), obtaining

N~ ,-2n nn e-n
N'27cn1 nlnje-n ... *i/27rnN nNe-n

and hence

In Nn -n Inn - np Iln (np - -- nPNIn (nPN)
= n nIn-(np1 + + nPN) In n- np In Pl- *-npN In PN

N

= -n pi In pi
itl

in terms of the natural logarithm

In x = log, x,
or equivalently

N

log, N. -n Pi 1092 Pi (7)
: 1

in terms of the logarithm to the base 2. Changing - to and substituting
(7) into (6), we get Shannon'sformula

N

I= Pi 1092 Pi (8)
itl

for the average amount of information in a message Xf telling which of the
N outcomes A1, ... ,AN with probabilities (3) has occurred. Note that (8)
reduces to (2) if the outcomes are equiprobable, since then

1
PI PN =--N

Example 1 (Average time of psychological reaction). One of N lamps is
illuminated at random, wherepi is the probability of the ith lamp being turned
on, and an observer is asked to point out the lamp which is lit. In a long
series of independent trials it turns out3 that the average time required to give
the correct answer is proportional to the quantity (8) rather than to the
number of lamps N, as might have been expected.

We can interpret the quantity (8) not only as the average amount of
information conveyed by the message //, but also the average amount of
"uncertainty" residing in the given random experiment, and hence as a
measure of the randomness of the experiment. Receiving the message
reduces the uncertainty of the outcome of the experiment to zero, since the

' See A. M. Yaglom and I. M. Yaglom, Wahrscheinlichkeit und Information, second
edition, VEB Deutscher Verlag der Wissenschaften, Berlin (1965), p. 67.
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message tells us the result of the experiment with complete certainty. More
generally, we might ask for the amount of information about one "full set"
of mutually exclusive events A1, . . ., AN conveyed by being told which of
a related full set of mutually exclusive events B1,* ... , BN, has occurred.
Suppose the two sets of events have probabilities P(A1 ), . .. , P(AN) and
P(Bl), *... , P(BN.), where P(A1 ) - * + P(AN) = 1,

P(B1 ) + -4- P(BN ) = 1.

Moreover, let P(AiBj) be the probability that both events Ai and B1 occur,
while P(Ai I Bj) is the probability of Ai occurring if Bj is known to have
occurred. Then

N

'AIB, -E P(A, I B,) log, P(Ai I B.)
i-i

is the amount of uncertainty about the events Al, . .. , AN remaining after
B1 is known to have occurred, and hence

N' N' N

IAIlB -- P(Bl)IAIB, - E P(Bj)P(Ai B1) log, P(Ai I B.)

- P(AB 1) Jog2 P(--) (9)
P(,Bj)

is the average amount of uncertainty about Al, . . , AN remaining after it is
known which of the events B1, . . *, BN, has occurred. Let IAB be the in-
formation about the events Al, ... , AN conveyed by knowledge of which of
the events B1, . . *, BN, has occurred. Then clearly 4

IAB -= - IA'B, (10)
where

N N N'

iA =- P(Ai) 1og2 P(Gli) - P(AiBj) 1og2 P(AJ) (11)

is the quantity previously denoted by I (justify the last step). Combining (9)
and (11), we finally get

I-AB -P(Aj Bj)Io0 2 P(AiBj) (12)
it P(Ai)P(B1)

Example 2 (Weather prediction). During a certain season it rains about
once every five days, the weather being fair the rest of the time. Every night
a prediction is made of the next day's weather. Suppose a prediction of rain
is wrong about half the time, while a prediction of fair weather is wrong

I In words, (10) says that "the information in the message" equals "the uncertainty
before the message is received" minus "the uncertainty after the message is received."
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only about one time out of ten. How much information about the weather
is conveyed on the average by the predictions?

Solution. Let A, denote rain, A2 fair weather, B1 a prediction of rain
and B2 a prediction of fair weather. Then, to a good approximation,

1 4
P(Aj) = 5, P(2) = 5,

P(AIB 1 )=- P(A)IB)=-

Moreover, since

P(A1 ) = P(A 1 I B)P(B,) + P(A1 B2 )P(B 2 ),
we have

P(B1 ) + - [I -P(Bj)]
5 2 10

and hence

P(B1 ) = 1, P(B2) =,
4 4

P(A1 B1 ) = P(Al Bj)P(Bj) =
3

P(A1B2) = P(A| B2 )P(B2 ) -

P(A2B,) = [I - P(Al | Bl)]P(B1 ) =

P(A2 B2 ) = [I - P(Al B2)]P(B2) 27
40-

It follows from (12) that

1 5 3 1 1 5 27 9
IAB = log8 2 + 4 log4 2 + 8 19 2 +40 10g2 8 0.12

is the average amount of weather conveyed by a prediction. In the case of
100% accurate predictions, Al B,, A2 = B2 and (12) reduces to

1 1 _4 4
I.AB= - 510g2  - log, - as 0.72.

PROBLEMS

1. Which conveys more information, a message telling a stranger's birthday or
a message telling his telephone number?
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2. Find the average amount of information in bits of a message telling whether
or not the outcome of throwing a pair of unbiased dice is

a) An odd number; b) A prime number; c) A number no greater than 5.

3. An experiment has four possible outcomes, with probabilities J,, 130, 15F

and ]6 respectively. What is the average amount of uncertainty about the
outcome of the experiment?

4. Each of the signals A 1, . . , A,, has equal probability of being transmitted
over a communication channel. In the absence of noise, the signal Aj is received
as aj (j = 1,. . . , n), while in the presence of noise Aj has probability of being
received as aj and equal probability of being received as any of the other symbols.
What is the average amount of information about the symbols A1 , . .. , An
conveyed by receiving one of the signals a, * * *, an

a) In the absence of noise; b) In the presence of noise?

1 -p
Ans. a) log2 n; b) log2n +plog2 p + (1 -p)log 2 - -



Appendix 2

GAME THEORY

Consider the following simple model of a game played repeatedly by two
players.' Each player can choose one of two strategies determining the result
of the game. The interests of the players are completely conflicting, e.g.,
whatever one nlaver wins. the other loses.2 Such a
"two-person game" can be described by the table
shown in Figure 9, where the quantity in the ith row
and jth column is the amount gained by the first player
if he chooses strategy i while his opponent chooses
strategy j (ij 1 , 2). For example, v,2 is the amount
gained by the first player (the first player's "payoff") if
he chooses the first strategy and his opponent (the
second player) chooses the second strategy, while -V2 1  FIGURE 9

is the second player's payoff if he chooses strategy I and
his opponent (the first player) chooses strategy 2. It is
now natural to ask for each player's "optimal strategy."

This question is easily answered in the case where

min (vl, v,2) > max (v21, v22), (1)

say, since then regardless of how the second player acts, the first player

I More generally, a game of strategy involves more than two players, each with more
than two available strategies, but the essential features of game theory (in particular, its
connection with probability) emerges even in this extremely simple case.

I Such a game, in which the algebraic sum of the players' winnings is zero, is called a
zero-sum game.
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should always choose the first strategy, thereby guaranteeing himself a gain
of at least

mil (all, V12 )-

Assuming a "clever" opponent, the second player should then choose the
strategy which minimizes the first player's maximum gain, i.e., the strategy
such that

v11 = mii (V11, v12).

The case just described is atypical. Usually, a relation like (1) does not
hold, and each player should adopt a "mixed strategy," sometimes choosing
one of the two "pure strategies" available to him and sometimes choosing the
other, with definite probabilities (found in a way to be discussed). More
exactly, the first player should choose the ith strategy with probability pli,
while the second player should (independently) choose the jth strategy with
probability P21. Then the first player's strategy is described by a probability
distribution P1 = {p,,,p12}, while the second player's strategy is described
by a probability distribution P2 == {P21,P22}. If these mixed strategies are
adopted, the average gain to the first player is clearly just

2

V(P1 , P2) = VEijPiP2j- (2)

Suppose the second player makes the optimal response to each strategy
PI= {PlliP12} chosen by the first player, by adopting the strategy P2* =
{P2*1'P 2} minimizing the first player s gain. The first player then wins an
amount

V(P 1, P2*) = min V(P 1, P2 ) = VA(PD)
P1

if he chooses the strategy P1 . To maximize this gain, the first player should
choose the strategy PO = {PI , P 2} such that

V1(P) === max V,(Pl),
P1 '

always, of course, under the assumption that his opponent plays in the best
possible way. Exactly the same argument can be applied to the second player,
and shows that his optimal strategy, guaranteeing his maximum average gain
under the assumption of optimal play on the part of his opponent, is the
strategy PO = {, p° )2} such that

V2(P°2) --= max V2 (P2 ),

where

V2(P2) = min {-V(P 1 , P2 )}.
P1
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To calculate the optimal strategies PO and PO, we consider the function

V(x1 y) VIXYy + V 12 X(1 -y) + V2 1 (l - X)y + V 2 2 (1 - X)( -y),

which for x p= and y = P21 equals the average gain of the first player if
the mixed strategies P1 = {P11IP12} and P2  {P21 ,P22} are chosen. The
function V(x, y) is linear in each of the variables x and y, 0 < x, y < 1.
Hence, for every fixed x, V(x, y) achieves its minimum V1(x) at one of the
end points of the interval 0 < y < 1, i.e., for y = 0 or y = I:

V1(x) = min V(x, y) = min {v, 2x + v22(1 - x), vlx + v21(1 - x)}.

As shown in Figure 10, the graph of the function V1(x) is a broken line with

y

Y2 2

v,(X°)

0

V21

FIGURE 10. A case where min (v11, v12) < max (vsl, v2,).

vertex at the point x° such that

v 12 x
0 

+ v 2 2 (0 - x°) = v 11 x
0 

+ v 2 1 ( -x°),

i.e., at the point

0 V22 V21___ __
x =(3)

VI + V 22 -(v 1 2 + V2 1 )

The value x = x° for which the function V,(x), 0 < x < 1 takes its
maximum is just the probability pO, with which the first player should
choose his first pure strategy. The corresponding optimal mixed strategy
P1° = 0{Pl, P 2} guarantees the maximum average gain for the first player
under the assumption of optimal play on the part of his opponent. This
gain is

VA(x
0

) = V__x
0

+ v 2 1 ( - x
0

) = v 1 2 x
0

+ v 2 2 ( - x).(

APP. 2
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Moreover, (4) implies

V(x, y) = y[vV11x + v21 (1 - x 0)] + (1 -y)[v 12x 0 + v22 (l -xN) = V 1(x5 )

for any y in the interval 0 < y < I . Hence, by choosing p~l - x0, the first
player guarantees himself an average gain V1(xO) regardless of the value of
y, i.e., regardless of how his opponent plays. However, if the first player
deviates from this optimal strategy, by choosing Pu, = x # x0, then his
opponent need only choose P21 = v equal to 0 or I (as the case may be) to
reduce the first player's average gain to just V1(x).

Applying the same considerations to the second player, we find that the
second player's optimal strategy is such that p' 1 = y0, where

0 "'11 V1 2  (5)

V11 + V,2 - (V12 + V21)

[(5) is obtained from (3) by reversing the roles of players I and 2, i.e., by
interchanging the indices I and 2]. As in the case of the first player, this
choice guarantees the second player an average gain V2(yO) regardless of the
first player's strategy, i.e.,

-V(x, yo) = '2 (,V°), 0 < x < 1.

In particular, it should be noted that

V 1(x0 ) V(x, y0 ),

V2(y0 ) V(x 0 , y0 ).

Example 1. One player repeatedly hides either a dime or a quarter, and
the second player guesses which coin is hidden. If he guesses properly, he
gets the coin, but otherwise he must pay the first player 15 cents. Find both
players' optimal strategies.

Solution. Here
V11 =-1o, v12 = 15,

v,1 = 15, V22 =-25,
so that, by (3),

p0 = = - 25- 15 = 8
-- 35 -30 13

Therefore the first player should hide the dime with probability PS3, and hide
the quarter with probability AA Similarly, by (5),

P Y -0 - 15  5
-35-30 13'

For the first player, hiding the dime is (pure) strategy 1, and hiding the quarter is
strategy 2. For the second player, guessing the dime is strategy 1, and guessing the quarter is
strategy 2.
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and hence the second player should guess that the hidden coin is a dime with
probability A, and that it is a quarter with probability A. Then, according
to (4), the first player's average gain will be

V(x 0, y 0)= -Io0- + 15- - -

13 13 13'

while the second player's average gain will be

-V(X0, y 0) = 5

Thus this game is unfavorable to the first player, who loses an average of
- cents every time he plays, even if he adopts the optimal strategy. However,
any departure from the optimal strategy will lead to an even greater loss, if
his opponent responds properly.

Example 2 (Aerial warfare).4 White repeatedly sends two-plane missions
to attack one of Blue's installations. One plane carries bombs, and the
other (identical in appearance) flies cover for the plane carrying the bombs.
Suppose the lead plane can be defended better by the guns of the plane in the
second position than vice versa, so that the chance of the lead plane surviving
an attack by Blue's fighter is 80 %, while the chance of the plane in the second
position surviving such an attack is only 60%. Suppose further that Blue
can attack just one of White's planes and that Blue's sole concern is the
protection of his installation, while White's sole concern is the destruction
of Blue's installation. Which of White's planes should carry the bombs, and
which plane should Blue attack?

Solution. Let White's payoff be the probability of accomplishing the
mission. Then5

vll = 0.8, V12 = I,

V21 I, v22 =0.6,
and hence

P0 ~0 -0.4 2 0 -0.2 1Pi 1 = x° - = - P2°1 == y = 0 6 -3
-0.6 3 -0.6 3'

by (3) and (5). Thus always putting the bombs in the lead plane is not
White's best strategy, although this plane is less likely to be shot down than

I After J. D. Williams, The Compleat Strategyst, McGraw-Hill Book Co., Inc., New
York (1954), p. 47.

5 For White, putting the bombs in the lead plane is (pure) strategy 1, and putting the
bombs in the other plane is strategy 2. For Blue, attacking the lead plane is strategy 1,
and attacking the other plane is strategy 2.
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the other. In fact, if White always puts the bombs in the lead plane, then
Blue will always attack this plane and the resulting probability of the mission
succeeding will be 0.8. On the other hand, if White adopts the optimal mixed
strategy and puts the bombs in the lead plane only two times out of three,
he will increase his probability of accomplishing the mission by A, since,
according to (4),

V(x 0, y) = 2 .8 + I 13

By the same token, Blue's best strategy is to attack the lead plane only one
time out of three and the other plane the rest of the time.

PROBLEMS

1. Prove that the game considered in Example 1 becomes favorable to the first
player if the second player's penalty for incorrect guessing is raised to 20 cents.

2. In Example 1, let a be the second player's penalty for incorrect guessing. For
what value of a does the game become "fair"?

3. Blue has two installations, only one of which he can successfully defend,
while White can attack either but not both of Blue's installations. Find the
optimal strategies for White and Blue if one of the installations is three times as
valuable as the other.6

Ans. White should attack the less valuable installation 3 out of 4 times,
while Blue should defend the more valuable installation 3 out of 4 times.

6 After J. D. Williams, op. cit., p. 51.
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Appendix 3

BRANCHING PROCESSES

Consider a group of particles, each "randomly producing" more particles
of the same type by the following process:

a) The probability that each of the particles originally present at some
time t = 0 produces a group of k particles after a time t is given by
pk(t), where k = 0, 1, 2,... and p,(t) is the same for all the particles.-

b) The behavior of each particle is independent of the behavior of the
other particles and of the events prior to the initial time t = 0.

A random process described by this model is called a branching process.
As concrete examples of such processes, think of nuclear chain reactions,
survival of family names, etc.2

Let !(t) be the total number of particles present at time t. Then !(t) is a
Markov process (why ?). Suppose there are exactly k particles initially
present at time t = 0, and let i,(t) be the number of particles produced by
the ith particle after a time t. Then clearly

i) = El(t) + + (t), (1)

where the random variables El(t),. . ., E(t) are independent and have the
same probability distribution

P {Ea(t) = n} = p,.(t), n = 0, 12, ....

The case k = 0 corresponds to "annihilation" of a particle.
' Concerning these examples and others, see W. Feller, op. cit., p. 294.
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Let pk,(t) be the probability of the k particles giving rise to a total of n
particles after time t, so that the numbers pk,(t) are the transition proba-
bilities of the Markov process ,(t), and introduce the generating functions3

F(t, z) = p,(t)z', (2)
n=O

Fk(t, Z) == z Pk.(t)z. (3)

Suppose the probability of a single particle giving rise to a total of n particles
in a small time interval At is

Pn(At) =,= ,xAt + o(At),

while the probability of the particle remaining unchanged is

p1 (At) = I ?,At + o(At).
Moreover, let

so that

E ;Xk = - (4)
k

Then the Kolmogorov equations (.8.1 5), p. 105 for the transition probabilities
p.(t) = p1,(t) become

dt k

Next we deduce a corresponding differential equation for the generating
function F(t, z). Clearly

d d 0p0 d )-F(t, z) = d , p.(t)z - zn d P = k pk(t)z (5)
dt dt n=O n=O dt k n=O

(justify the term-by-term differentiation), where Fk(t, z) is the generating
function of the random variable t(t) for the case of k original particles.4

But, according to (1), ,(t) is the sum of k independent randomvariables, each
with generating function F(t, z). Therefore, by formula (6.7), p. 71,

Fk(t, z) = [F(t, Z) k, k 0,1,2,... (6)

(the formula is trivial for k = 0). Substituting (6) into (5), we get

- F(t, z) == I )k[F(t, z)]k. (7)
dt k

Note that F1(t, z) = F(t, z), since clearly pl,(t) =p,(t).
' Clearly Fo(z) - 1, since new particles cannot be created in the absence of any original

particles.
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In what follows, we will assume that a given branching process !(t) is
specified by giving the transition densities Xk, k = 0, 1, 2,... Let f(x) be
the function defined by the power series

f(x) = Xkx', (8)
k-0

so that in particular f(x) is analytic for 0 < x < 1. Then, according to (7),
the generating function F(t, z) satisfies a differential equation of the form

dx
- = f (x). (9)
dt

Moreover, since F(O, z) = z, the generating function F(t, z) coincides for
every z in the interval 0 < z < I with the solution x = x(t) of (9) satisfying
the initial condition

x(O) = z. (10)

Instead of (9), it is often convenient to consider the equivalent differential
equation

dt 1 (1
dx f(x)

for the inverse t = t(x) of the function x x(t). The function satisfying
(11) and the initial condition (10) is just

t 4 du 0 x1.
f(u)

Example 1. If
Xo= )X, X1 =-X,

?'k = 0 k =2, 3,
then

f(x) = XG - x)
and

t =fl du~t =| -( )- [In (1 -x) -In (1- z)].
Afu) X

Hence F = F(t, z) is such that

In (I - F) =-Xt + ln (1 -z),

i.e.,
F(t, z) = 1- e (1 - z).

The probabilities p",(t) are found from the expansion

W

F(t, z) = p(t)zl,
n=o
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which in this case implies

po(t)= e, Pi = et,

p,(t)=O, n=2,3,...
Example 2. If

o= 0, ) -1,

= k = 2,3,
(k -'k

then
CD a) k X Xk

f (x) Xk
k=O k-2 Ik-1T

=-xIn(l -(x)- In ( -x) = (1 -x) In (I -x),

and hence

r du - In (1-x) du
t 2 =f.f (u) Jo'( (- U) I n (I1-u) Jl f ~l-2) U

=-In In (1 -- x) + nIn (1-z).

It follows that F = F(t, z) is such that

In (1-F) -e
In (1 - z)

i.e.,
F(t, z) == I -- (I - 6-tz

To find the corresponding probabilitIespj(t), we use repeated differentiation:

po(t) = 0, p1(t) - e-t

1 d"F(t, 0) _1 -'e t (e- - 1) . . (et - n + 1),
n!dz' n!

n = 2,3,...

Turning to the analysis of the differential equation (9), where f(x) is
given by (8), we note that

f "(x) =Y ,k(k - 1)kkx- 2 
> 0 if 0 < x < 1.

k=2

Thereforef(x) is concave upward in the interval 0 < x < 1, with a monotoni-
cally increasing derivative. Because of (4), x = 1 is a root of the equation
f(x) = 0. This equation can have at most one other root x = x (O < x < 1).
Thusf(x) must behave in one of the two ways shown in Figure 11.

We now study the more complicated case, wheref(x) = 0 has two roots
x = ox (O < xc < 1) and x = 1, corresponding to two singular integral
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y= f(x)

0 a ~~
(a) ( b)

FiGuRE 1I

curves x(t) = a and x(t) = I of the differential equations (9) and (11).
Consider the integral curve

f() (12)

going through the point t = 0, x = z (O < z < a). Since the derivative
f'(a) is finite and f(x) -f'(x)(x - a) for x ' a, the value of t along the
integral curve (12) increases without limit as x ca, but the curve itself never
intersects the other integral curve x(t) = a. The functionf(x) is positive in the
interval 0 < x < a, and hence the integral curve x = x(t) increases mono-
tonically as t -- coi, remaining bounded by the value x = a. Being a bounded
monotonic function, x(t) has a limit

3=lim x(t), z < , < a.

Butf(x) approaches a limitf(p) as x - , i.e.,

f(A) = limf[x(t)] = lim x'(t),
t-co t-co

wheref(p) must vanish, since otherwise the function

X(t) = z +f f[x(s)] ds

would increase without limit as t - A. It follows that P is a root of the
equationf(x) = 0. and hence must coincide with a. Therefore all the integral
curves x = x(t) going through the point x = z, 0 < z < a for t = 0 in-
crease monotonically as t - oo and satisfy the condition

lim x(t) = a.
t- OD

(13)
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The behavior of the integral curves going through the point x = z, x < z < I
for t = 0 is entirely analogous. The only difference is that x(t) now de-
creases monotonically, since the derivative x'(t) =f[x(t)] is negative and

A(x) < 0 for x < x < 1. The behavior
of typical integral curves in the interval
0) < z < I is shown in Figure 12,

1 where 0 <z, < C < Z 2 < 1.
z?2The behavior of the integral curves

at z = I warrants special discussion.
a First we note that in any case x(t) - 1 is

Aanl integral curve corresponding to z
z11 1. Suppose

0 F 1dx - (14)
FIGURE 12 00 f (X

for some x0 , x < x0 < 1.5 Then an arbitrary integral curve of the form

°Ot + fx0 -d < 1, (15)
x~ f (u)

going through some point (to, x0), decreases without limit as x l, i.e.,

= o+ f (u)

as x -* 1. This shows that given an) to > 0, the equation

t(z) = o -- f_ =0

holds for some x = z, oc < z < 1. Hence every integral curve intersects the
axis t = 0 in a point (0, z) such ihat x < z < I (see Figure 13). It follows
that in this case x(t) 1 is the unique integral curve going through the point
(0, 1).

On the other hand, suppose

l dx ->(16)
.O fWx

Then for sufficiently large to, the integral curve (15) intersects the integral
curve x(t)- 1, and is in fact tangent to it at the point (T, 1) where

° x0 f(x)

'This is always the case if f'(1) < co (why?).
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khme Jr gure asI ). In tms MINse, me1Cre IS

a whole family of integral curvesx,(t)
going through the point (0, 1), where I
each x,(t) is parameterized by the "
appropriate value of T > 0. Among
these integral curves, the curve x0 (t) a
shown in the figure, corresponding to
the value r = 0, has the property of
lying below all the other integral ,

T

; t)

curves, i.e., FIGURE 13

x0(t) < x:(t), O < t < oo.

This is explained by the fact that the solution of our differential equation is
unique in the region 0 < x < 1, 0 < t < A, so that the integral curves
do not intersect in this region. It is also easy to see that the integral curve
xv(t) is the limit of the integral curves x(t, z) lying below it and passing
through points (0, z) such that 0 < z < 1. In other words,"

x 0(t) = lim.x(t, z). (17)
.-1

The above analysis of the differential equation (9) has some interesting
implications for the corresponding branching process i(t). In general, there
is a positive probability that no particles at all are present at a given time t.
Naturally, this cannot happen if -= 0, since then particles can only be
"created" but not "annihilated." Clearly, the probability of all particles
having disappeared after time t is

p0(t) = F(t, 0)

if there is only one particle originally present at time t = 0, and

Pko(t) = [F(t, 0)]k [po(t)]k

if there are k particles at time t = 0. The function p,(t) is the solution of the
differential equation (9) corresponding to the parameter z = 0:

dpo(t) = [pO(t)], pO(O) = 0.
dt

As already shown, this solution asymptotically approaches some valuepo = c
as t A o, where a is the smaller root of the equationf(x) = 0 [recall (13)].
Thus po = x is the extinction probability of the branching process !(t), i.e.,
the probability that all the particles will eventually disappear. If the function
f(x) is positive in the whole interval 0 < x < 1, the extinction probability
equals 1.

I Note that x(t, z) = F(t, z) for t > 0, 0 < z < 1.
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There is also the possibility of an "explosion" in which infinitely many
particles are created. The probability of an explosion occurring by time t is
just

pW(t) = 1 - P {0(t) < a} - 1 - P {0(t) = n}

= 1 - pn(t) = - lim F(t, z).
n=O z-1

In the case where x(t) -- 1 is the unique integral curve of (9) passing through
the point (0, 1), we clearly have

lim F(t, z) = 1.
z-1

Therefore p.(t) = 0 for arbitrary t if (14) holds, and the probability of an
explosion ever occurring is 0. However, if (16) holds, we have (17) where
x 0 (t) is the limiting integral curve described above and shown in Figure 13.
In this case,

p. (t)= I - x 0(t) > 0

and there is a positive probability of an explosion occurring.

PROBLEMS

1. A cosmic ray shower is initiated by a single particle entering the earth's
atmosphere. Find the probability p,(t) of n particles being present after time t
if the probability of each particle producing a new particle in a small time
interval At is XAt + o(At).

Hint. X1l = - X, )2 = )-

Ans. pn,(t) = e Xt(l - e-MP~-1 n >I

2. Solve Problem 1 if each particle has probability ),At + o(At) of producing a
new particle and probability [±At + o(At) of being annihilated in a small time
interval At.

Hint. XO = JA, Xi ( + FL), 1, = X.

Ans-. po(t) = t~y, pn(t) = (1 -)y)(l - y)('y)n-- (n > 1),

where

if iL,

Yi=

if [L.1A

"PP. 3



APP. 3 BRANCHING PROCESSES 135

3. Find the extinction probability p, of the branching process in the preceding
problem.

Ans. po = if c <.X

I if tL>'X.



Appendix 4

PROBLEMS OF OPTIMAL CONTROL

As in Sec. 15, consider a physical system which randomly changes its
state at the times t 1 I, 2, . . . , starting from some initial state at time t = 0.
Let el, s, . . . be the possible states of the system, and i(t) the state of the
system at time t, so that the evolution of the system in time is described by the
consecutive transitions

i(O) - 1(l) .- (2) - --

We will assume that l(t) is a Markcv chain, whose transition probabilities
Pit, i,j = 1, 2, ... depend on a "control parameter" chosen step by step by
an external "operator." More exactly, if the system is in state e, at any time
n and if d is the value of the control parameter chosen by the operator, then

pii= pij(d)

is the probability of the system going into the state £j at the next step. The
set of all possible values of the control parameter d will be denoted by D.

We now pose the problem of controlling this "guided random process"
by bringing the system into a definite state, or more generally into one of a
given set of states E, after a given number of steps n. Since the evolution of
the process Q(t) depends not only on the control exerted by the operator, but
also on chance, there is usually only a definite probability P of bringing the
system into one of the states of the set E, where P depends on the "control
program" adopted by the operator. We will assume that every such control
program consists in specifying in advance, for all e, and t = O,. .., n - 1,
the parameter

d =d(i, t)
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to be chosen if the system is in the state ei at the time t. In other words, the
whole control program is described by a decision rule, i.e., a function of two
variables

d = d(x, t),

where x ranges over the states el, £2, ... and t over the times 0, . . ., n-1.
Thus the probability of the system going into the state e, at time k + 1,
given that it is in the state ei at time k, is given by

pij = p2j(d), d = d(£2, k).

By the same token, the probability of the system being guided into one of the
states in E depends on the choice of the control program, i.e., on the decision
rule d = d(x, t), so that

P = P(d).

Control with a decision rule d0 = d0(x, t) will be called optimal if

P(d0) = max P(d),
d

where the maximum is taken with respect to all possible control programs,
i.e., all possible decision rules d = d(x, t). Our problem will be to find this
optimal decision rule dO, thereby maximizing the probability

P(d) = P {i(n) E E}

of the system ending up in one of the states of E after n steps.
We now describe a multistage procedure for finding dO. Let

P(k, i, d) = P {0(n) E E I i(k) = ei}

be the probability that after occupying the state si at the kth step, the system
will end up in one of the states of the set E after the remaining n - k steps (it
is assumed that some original choice of the decision rule d = d(x, t) has
been made). Then clearly

P(k, i, d) = pij(d)P(k + 1, j, d). (1)

This is a simple consequence of the total probability formula, since at the
(k + l)st step the system goes into the state £e with probability p,,(d),
d = d(ei, k), whence with probability P(k + 1, j, d) it moves on (n - k - 1
steps later) to one of the states in the set E.

For k n - 1, formula (1) involves the probability

1 if £ E E,
P(ni, d) = (2)

0 otherwise,
and hence

P(n - 1, i, d) = 2; p j(d),
I: ejEE

APP. 4
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where the summation is over all j such that the state E; belongs to the given
set E. Obviously, P(n -1, i, d) does not depend on values of the control
parameter other than the values d(;, n - 1) chosen at the time n - 1.
Letting d0 denote the value of the control parameter at which the function
(3) takes its maximum,' we have

P0 (n -1, i) = P(n -1, i, do) = max P(n -1, i, d). (4)
deD

Clearly, there is a value d0 = d0(e,, n - 1) corresponding to every pair
(ei, n - 1), i = 1, 2,**-

For k = n - 2, formula (1) becomes

P(n - 2, i, d) - 2 p,,(d)P(n - 1, j, d).

Here the probabilities pf,(d) depend only on the values d = d(e2, n - 2) of
the decision rule d = d(x, t) chosen at time n - 2, while the probabilities
P(n - I, j, d) depend only on the values d = d(E1, n - 1) chosen at time
n -1. Suppose we "correct" the decision rule d = d(x, t) by replacing the
original values d(e,, n - 1) by the values d0(E1, n - 1) just found. Then the
corresponding probabilities P(n -, J, d) increase to their maximum values
PO(n -1,J), thereby increasing the probability P(n - 2, i, d) to the value

P(n - 2, i, d) = pf,(d)P0 (n -1, j). (5)

Clearly, (5) depends on the decision rule d = d(t, x) only through the de-
pendence of the transition probabilities pij(d) on the values d = d(e1, n - 2)
of the control parameter at time n -2. Again letting d° denote the value of
the control parameter at which the function (5) takes its maximum, we have

P°(n - 2, i) = P(n - 2, i, do) = max P(n - 2, i, d).
dcD

As before, there is a value d° = d0(rI., n -2) corresponding to every pair
(Ei, n - 2), i = 1, 2, ... Suppose we "correct" the decision rule d(x, t) by
setting

d(x, t) == d(x, t) (6)

for t = n -2, n - 1 and all x = el, e2 , ... Then clearly the probabilities
P(k, i, d) take their maximum values P0(k, i) for i = 1, 2, ... and k = n - 2,
n - 1. Correspondingly, formula (I) becomes

P(n - 3, i, d) = p12(d)P(n -- 2, j, d) = 2 p,1(d)P(n - 2, j),
j j

and this function of the control parameter d takes its maximum for some
d° = d0(ej, n - 3). We can then, once again, "correct" the decision rule

1 It will be assumed that this maximum and the others considered below exist.
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d = d(x, t) by requiring (6) to hold for t = n-3 and all x = e1,£2,.. . ,as
well as for t = n - 2, n - 1 and all x = e, e2, ...

Continuing this step-by-step procedure, after n -1 steps we eventually
get the optimal decision rule d = d0(x, t), defined for t = 0, . .. , n - 1 and
all x = eL, ... ., such that the probability P(d) = P(O, i, d) satisfying the
initial condition i(0) = Es achieves its maximum value. At the (n - k)th
step of this procedure of "successive corrections," we find the value d0 =
d0(ei, k) maximizing the function

P(k, i, d) = 2 pil(d)P0(k + 1, j),

where PO(k + 1,J) is the maximum value of the probability P(k + 1,j, d).
Carrying out this maximization, we get Bellman's equation2

P0(k, i) = max y pil(d)P0(k + 1, j),
deD i

which summarizes the whole procedure just described.

Example 1. Suppose there are just two states el and c2, and suppose
the transition probabilities are continuous functions of the control parameter
in the intervals

O1 < pll(d) < P1, 2 < P21(d) < 2-

What is the optimal decision rule maximizing the probability of the system,
initially in the state el, going into the state el two steps later?

Solution. In this case,

P°(l, 1) = 3, P°(1, 2) =12
P°(O, 1) max [p,,(d)p3 + p12(d)P2] = max [p,,(d)(PL - P2) + P 2]-

d d

If the system is initially in the state el, then clearly we should maximize the
transition probabilityp, (by choosingp, 1 = ,) if ,1 > P2 while maximizing
the transition probability P12 = 1 - P, (by choosing Pul = a) if P,1 < P2
There is an analogous optimal decision rule for the case where the initial
state of the system is .2-

Example 2 (The optimal choice problem). Once again we consider the
optimal choice problem studied on pp. 28-29 and 86-87, corresponding to

2 In keeping with (2)-(4), we have

Pl~n~) = 1 if el cEE,

(O otherwise.

Clearly, any choice of 1ii in the interval ac< p,, < , is optimal if P, - ,3,
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a Markov process i(t) with transition probabilities

0 if i>j,

P =if i j < m, (7)

if j =m +1,

where, as on p. 28, choice of an object better than all those previously
inspected causes the process 0(0) * t(1) - E(2) -+* to terminate. In
each of the states el, . . . , s (whose meaning is explained on p. 86), the
observer decides whether to terminate or to continue the process of inspection.
The decision to terminate, if taken in the state ei, is described formally by
the transition probabilities

I if i~j,
piJ = o0 if i :A j, (8)

while the decision to continue corresponds to the transition probabilities (7)-
Hence we are dealing with a "guided Markov process," whose transition
probabilities pij depend on the observer's decision. Here the control param-
eter d takes only two values, 0 and I say, where 0 corresponds to stopping
the process and 1 to continuing it. Thus (8) gives the probabilitiesp?,(O) and
(7) the probabilities pij(l).

Every inspection plan is described by a decision rule d = d(x), x =
, ... , Em, which specifies in advance for each of the states el, . . ., sm

whether inspection should be continued or terminated by selecting the last
inspected object. The problem consists of finding an inspection plan, or
equivalently a decision rule d = d(x), X = E1, . . . Z., maximizing the
probability of selecting the very best of all m objects. This probability is just

P = Pi, (9)
i m

where i/m is the probability that the ith inspected object is the best (recall p.
29), Pi is the probability that the process will stop in the state e,, and the
summation is over all the states ei in which the decision rule d = d(x) calls for
the process to stop.

To find the optimal decision rule dO = d0(x) maximizing (9), we consider
the probability P(k, d) of selecting the best object, given that the number of
previously inspected objects is no less than k, i.e., given that the process
!(t) actually occupies the state Ek. By the total probability formula, we have

m

P(k, d) = EptJ(d)P(j, d). (10)
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Clearly, if the process occupies the state ems then the mth object is the best of
the first m objects inspected and hence automatically the best of all
objects. Therefore the optimal value of the decision rule d = d(x) for
x = em is just d0(em) = 0, and P(m, d) = 1 for this value. It follows from
(9) and (10) that

m I if d(e,-,) 0,

P(m -1, d) -= (11)
m- 1 if d(e,) =I1

(m- l)m

is the probability of choosing the best object, given that the process stops in
the state em and the number of previously inspected objects is no less than
m - 1. Moreover, (11) implies that the optimal value of the decision rule
d = d(x) for x = Em-l is d0(e -,) = 0, and that

P(m- 1) =M-
m

Now suppose the optimum values of the decision rule d = d(x) are all
zero for x = ek, . . ., an, corresponding to the fact that the process is termi-
nated in any of the states ek, . . ., sn. Then what is the optimal value d0(ek-,) ?
To answer this question, we note that (9) and (10) imply that

P(k - 1, d)

k - 1 if d(Ek-1) = 0,
m

______k 1 kl k1 If d(ek- 1) = 1

(k - )km k(k + 1) m (m- 1)m

is the probability of choosing the best object, given that the process stops
in the states ek, . . . , em and the number of previously inspected objects is
no less than k - 1. It follows that the optimal value of the decision rule
d = d(x) for x = ek-1 is

d((0k-J if k-I k m -1 (12)

1 otherwise.

Moreover, it is easy to see that the optimal decision rule dO = d°(x) has the
structure

d0(x) ,[0 if x = , *, Em,

L1 if x = El, . . . ,Emo-1,
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where mO is some integer. Thus the optimal selection procedure consists
in continuing inspection until the appearance of an object numbered k > MO
which is better than all previously inspected objects. According to (12),
m, is the largest positive integer such that

1 + 1 1+ >1. (13)

mO mO + :I mr-

PROBLEMS

1. In Example 2, prove that
m

mo P - (14)

if m is large, where e = 2.718 .. . is the base of the natural logarithms.

Hint. Use an integral to estimate the left-hand side of (13).

2. Find the exact value of mO for m -= 50. Compare the result with (14).

3. Consider a Markov chain with two states e1 and e2 and transition proba-
bilitiespij(d) depending on a control parameter d taking only two values 0 and 1.
Suppose

Pii(O) = is P21(0) =t, pl(l) = i, P21(1 ) =

What is the optimal decision rule maximizing the probability of the system
initially in the state c,, going into the state C2 three steps later? What is this
maximum probability?
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