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Introduction 

Bonnie Gold 
Monmouth University 

Section I of this introduction explains the rationale for this book. Section 2 discusses what we 
chose not to include, and why. Sections 3 and 4 contain a brief summary of historical background 
leading to contemporary perspectives in the philosophy of mathematics. Section 3 traces the 
history of the philosophy of mathematics through Kant, and Section 4 consists of an overview of 
the foundational schools. Section 5 is an annotated bibliography of sources for interesting recent 
work by some influential scholars who did not write chapters for this book. And finally, section 
6 consists of very brief overviews of the chapters in this book. 

1 The Puryose I!f This Book 

This book provides a sampler of current topics in the philosophy of mathematics. It contains 
original articles by leading mathematicians, mathematics educators, and philosophers of mathe
matics written with a mathematical audience in mind. The chapters by philosophers have been 
edited carefully to minimize philosophical jargon, and summarize many years of work on these 
topics. They should thus provide a much gentler introduction to what philosophers have been 
discussing over the last 30 years than will be found in a typical book written by them for other 
philosophers. We have also included a glossary of the more common philosophical terms (such as 
epistemology, ontology, etc.). The chapters by mathematicians and mathematics educators raise 
and discuss questions not currently being considered by philosophers. 

The philosophy of mathematics, starting about 1975, has been undergoing something of a 
renaissance among philosophers. Interest in foundational issues began receding and philosophers 
returned to more traditional philosophical problems. Meanwhile, some developments in math
ematics, many related to the use of computers, have reawakened an interest in philosophical 
issues among mathematicians. Yet there is no book on these issues suitable for use in a course 
in the philosophy of mathematics for upper-level mathematics majors or mathematics graduate 
students, or for mathematicians interested in an introduction to this work. (Hersh's recent coIlec
tion [Hersh 2005] contains many interesting articles related to the philosophy and sociology of 
mathematics, and is accessible to a similar audience, but it does not attempt, as we do, to cover 
the range of current discussion in the philosophy of mathematics.) 

Our principal aim with this volume is to increase the level of interest among mathematicians 
in the philosophy of mathematics. Mathematicians who have been thinking about the philosophy 
of mathematics are likely to enjoy the variety of views in these papers presented in such an 
accessible form. Mathematicians who have never thought about philosophical issues but wonder 

xiii 
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what the major issues are should find several chapters to whet their interest. Those teaching courses 
in the philosophy of mathematics for upper-level mathematics undergraduates (or others with a 
similar mathematical background) should find it a useful collection of readings to supplement 
books on the foundational issues. Moreover, we hope to encourage more dialogue between 
two communities: mathematicians who are interested in the philosophy of mathematics, and 
philosophers who work in this field. We expect that most readers will not read every chapter in 
this book, but will find at least half to be interesting and worth reading. 

2 What is not Inc{uded in This Book 

A few words about our selection of topics for inclusion in this book are in order. We have not 
tried to include every topic that has ever been discussed in the philosophy of mathematics, or 
even everything currently being worked on. In part because we do not have adequate expertise 
to edit such articles, we have not included anything on the philosophy of statistics, which is 
currently a quite active field (although we do have a chapter on the philosophy of probability). 
More importantly, we have chosen not to include articles on the three foundational schools 
that developed in the late 19th and early 20th centuries: logicism, intuitionism, and formalism. 
They are described briefly later in this introduction, and much more thorough accounts of them 
appear in many books, including Stephan Komer's The Philosophy of Mathematics, Alexander 
George and Daniel Velleman's Philosophies of Mathematics, Marcus Giaquinto's The Searchfor 
Certainty, and Dennis Hesseling's Gnomes in the Fog. While there is still active work continuing 
in these fields, in our view the century from approximately 1865 to 1965 was an anomalous 
one for the philosophy of mathematics. What had seemed, prior to this period, to be the most 
certain form of human knowledge, mathematics, suddenly appeared to rest on shaky foundations. 
Thus essentially all work in the philosophy of mathematics during this period focused on trying 
to determine what basis we have for believing mathematical results. Gradually, problems were 
found with each of the foundationalist schools. Meanwhile new paradoxes did not appear despite 
an enormous growth in mathematics itself. As a result, the concern about mathematical coherence 
decreased, and philosophical attention began to return to more traditional philosophical questions. 
This book, then, concentrates on this new work, and complements the four books,just mentioned, 
that quite adequately discuss this foundational work. 

Today there are many philosophers actively working in the philosophy of mathematics. A 
number of the better-known among them were invited to contribute to this book. Some of them 
declined due to prior writing commitments. However, several very well respected philosophers 
of mathematics have written chapters for this volume, and other viewpoints are well represented 
by some younger philosophers who were recommended by their mentors. Thus, most current 
viewpoints in philosophy are represented here. However, a single volume cannot hope to do this 
in full detail. 

3 A BriifHistory rfThe Phi{ostphy rf Mathematics to A60ut 1850 

Although this book is concerned with recent developments in the philosophy of mathematics, it 
is important to set this work in the context of previous work. Thus I have written this historical 
section despite little expertise in the subject. Much of this material comes from, and is discussed 
in more detail in, chapter I of [Komer 1968]. Moreover, I am grateful to Charles Chihara for his 
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many suggestions on how to improve my first version of this section. Any errors that remain here 
are my responsibility, not his. 

The way a culture approaches mathematics and its use directly influences its philosophy of 
mathematics. Mathematics has been of interest to philosophers at least since ancient Greece. It 
has been used primarily as a touchstone to explore and test theories of knowledge. Tradition
ally, knowledge comes from two sources: sense perception and human reasoning. Mathematical 
know ledge has generally been taken as the archetypical example of the latter. 

Plato is particularly important to any understanding of the history of the philosophy of 
mathematics, for two reasons. First, he is the earliest known philosopher who saw mathematics 
(which, for him, was synonymous with geometry) as central to his philosophical discussions. 
Ancient texts assert he viewed mathematics as so important that above the door of his Academy, 
Plato inscribed "Let no one who is not a geometer [or, "who cannot think geometrically"] enter." 
Plato used mathematical examples throughout his dialogues for various purposes. For example, 
in Meno, there is a famous sub-dialogue between Socrates and a slave boy. In it, Socrates leads 
the slave boy to discover that if you want to double the area of a square, you must take a square 
whose side is the diagonal of the original square. This discussion is used to explore an idea Plato 
wants to propose, of knowledge as memory from a previous life. There are several excellent 
books on Plato's philosophy of mathematics and the mathematics of Plato's time: for example, 
[Brumbaugh 1954] and [Fowler 1999]. 

Second, some of Plato's general philosophical views have resulted in his name being given to 
what is still seen, by philosophers today, as the default philosophy of mathematics, "platonism." 
That is, "platonism" is the view that (I) there are mathematical objects, (2) these are abstract 
objects, existing somewhere outside of space and time, (3) mathematical objects have always 
existed and are entirely independent of people, (4) mathematical objects do not interact with the 
physical world in any "causal" way-we cannot change them, nor can they change us-and yet, 
(5) we somehow are able to gain knowledge of them. These properties come from Plato's theory 
of "Forms," which appears in his later dialogues, primarily the Republic and Parmenides. Plato 
was struggling with our everyday world of appearance, trying to discern what is permanent and 
dependably true. This led him to the idea of the form of an object (say, a table) as a sort of 
ideal limit toward which objects of the physical world are striving but are imperfect copies. In 
this realm of forms live the assorted mathematical objects we work with: numbers, geometric 
objects, and so on. Objects in the realm of the forms are apprehended by reason, rather than 
by the senses. The appeal of viewing geometric objects, so central to Greek mathematics, this 
way is apparent. We see imperfect lines and points in the physical world and can easily imagine 
a perfect point and line. Mathematical statements are necessarily true, because they describe 
objects in this unchangeable realm. Objects in the physical world "participate in" the forms that 
describe them, and, because they are only imperfect likenesses, are only approximately described 
by mathematical theorems. 

Aristotle objected to abstracting properties of objects into an independent existence. Rather, 
you can discuss these abstracted properties, but they reside in the objects they're abstracted from. 
Mathematical statements are then idealizations of statements about objects in the physical world. 
To the extent that these idealizations are accurate representations of the physical objects they're 
abstracted from, mathematical theorems can be approximately applied to physical objects. Two 
other contributions Aristotle made to the philosophy of mathematics were a discussion of infinity, 
and the beginnings of logic. Aristotle's distinction between potential infinities (basically, what 
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happens when we take the limit as x ---+ 00) and actual infinities (such as the set of integers, 
real numbers, etc.) was important historically in mathematicians' hesitation to accept many 
developments involving actual infinities. 

Gottfried Wilhelm Leibniz was, of course, one of the founders of calculus, but he also made 
a substantial contribution to logic and to philosophy. He believed that by developing a systematic 
calculational logic (a "calculus ratiocinator"), one could represent much human reasoning and 
resolve many differences of opinion. He began to develop such a system, and introduced many of 
the modem logical concepts: conjunction, disjunction, negation, etc. (None of this, however, was 
published during his lifetime.) For Leibniz, mathematical facts are truths ofreason, "necessary" 
truths whose denial is impossible (as opposed to truths of fact, that are "contingent," that just 
happen to be true in this world, and whose denial is possible). Mathematical facts are true in "all 
possible worlds" (a terminology he introduced). 

John Stuart Mill was a complete empiricist about mathematics as about everything else. He 
believed that mathematical concepts are derived from experience and that mathematical truths 
are really inductive generalizations from experience. There are no necessary truths. Thus every 
mathematical theorem can, in principle, be found to be false and in need of revision. Mathematical 
truths are about ordinary physical objects. Geometrical propositions are inductively derived from 
our experience with space, and are taken to mean that, the more closely physical objects approach 
these idealized geometrical objects, the more accurately the theorems can be applied to them. 
Statements such as "2 + 3 = 5" is a generalization about how many objects you get when you 
put together a pile of two and a pile of three physical objects. However, for people, such inductive 
generalizations are a psychological necessity, because they come from very deep and invariant 
experiences. These experiences create an appearance of mathematical facts being necessarily 
true. 

For Immanuel Kant, mathematics provided central examples for his classification ofknowl
edge. Knowledge of propositions was classified into a priori or a posteriori. Meanwhile, propo
sitions were classified as synthetic or analytic. A proposition is known a priori ("from the 
former"-before experience) if it is known without any particular experiences, simply by think
ing about it. A proposition is known a posteriori if knowledge of it is gained from experience or 
via the senses. An "analytic" proposition is one whose predicate is contained in its subject. For 
example, "all squares are rectangles" is analytic because the definition of square (as "a rectangle 
with congruent sides") contains the requirement that it be a rectangle. The canonical example of 
an analytic proposition is "all bachelors are unmarried." Many mathematical and logical truths 
are analytic and are known a priori, as with "all squares are rectangles." A proposition that is 
not analytic is "synthetic." According to Kant, most truths about the world-"Mount Everest is 
the highest mountain in the world," for example-are synthetic, and are known a posteriori. It 
is generally believed that no analytic propositions can be known a posteriori (although a modem 
philosopher, Saul Kripke, has disputed this). 

This leaves the category of synthetic propositions that are known a priori. According to Kant, 
our intuitions oftime and space, which give us facts about the real numbers (lIlt3 in particular) and 
the integers (such as 2 + 5 = 7), are synthetic, yet are known a priori. We do not get them simply 
by analyzing their definitions, but rather by thinking about space and time. (Frege disagreed with 
this, at least in the case of arithmetic facts; he viewed them as analytic, and this was part of 
the point of his Foundations of Arithmetic.) Nonetheless, actual experience with space or time is 
not required to get this knowledge. In Kant's case, by space, he meant Euclidean space; that is, 
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Euclidean geometry gives us our intuition of space. Thus Euclidean geometry is the inevitable 
necessity of thought, rather than being of empirical origin. The integers come from our intuition 
of time in the form of one moment, then the next moment, and so on. (This idea first appeared 
much earlier, in Plato's Timaeus 39b-c.) Another distinction Kant makes is between concepts we 
can both perceive and const'1l,ct-such as the concept of two objects-those we can construct but 
not perceive-such as 10 10 '" -and those we can neither construct nor perceive, but are simply 
"ideas of reason" because they are consistent-such as actual infinities. 

4 The Foundationa{ Pro6(ems and the Three Foundationa{ Schoofs 

In the nineteenth century, three events occurred that caused both mathematicians and philosophers 
to reassess their views of issues such as what mathematics is about, how we acquire mathematical 
knowledge, and how mathematics can be applied to the physical world. 

First came the inconsistencies in the use of limits in calculus. Soon after the introduction of 
calculus, there were concerns about foundational issues. Derivatives were found by taking a ratio 
of two infinitesimal quantities and then treating the denominator as ifit were zero (even though if 
the denominator is zero, one could not even have formed the quotient). Bishop George Berkeley, 
in The Analyst, 1734, inveighed against "ghosts of departed quantities." Maclaurin responded by 
showing how one can derive calculus results via contradiction in the "manner of the ancients," 
the method of exhaustion-thus, calculus is simply a short-cut to legitimate results. Lagrange 
(1797) responded to the problem by trying to use power series to get rid of limits. This introduced 
its own problems, in the absence of some way of seriously considering issues such as divergence. 
For example, Grandi, in 1703 (see [Burton 2003], p. 567) set x = I in 

_1_ = I _ x + x 2 _ x 3 + ... 
I+x 

1 
to get '2 = O. 

These difficulties were of increasing concern to mathematicians in the 1800s, and the need for 
developing textbooks for university students eventually led Cauchy, in the I 820s, to give careful 
definitions of continuity, differentiability, and the integral. But Cauchy did not notice the need 
for a distinction between pointwise and uniform convergence of functions. As a result, he stated 
a false theorem about convergence of sums of continuous functions. This led to the development 
of careful definitions of the limits by Weierstrass and of the real numbers by Dedekind. Fourier 
series introduced a new set of complications: when did they converge to a function, and what 
exactly was a function anyway? More broadly, mathematicians began to be concerned about 
the foundations of mathematical beliefs-how can we be sure that what we develop is free 
of contradictions? This concern led to logicism, the attempt to reduce all of mathematics to 
logic. This work began with Gottlob Frege's Foundations of Arithmetic in 1884. In his 1879 
Begrifftschrift, he developed the first fully formalized axiomatic development of the sentential 
calculus; he also introduced quantifiers and expanded his calculus to a predicate calculus. This 
was the basis for modem predicate logic, a major advance over the Aristotelian logic that had 
dominated for centuries. It provided him the language to formalize arithmetic. It was hoped that 
if there were any contradictions in mathematics, they would inevitably be found before they 
could cause any damage once everything was reduced to logic. One thing this formalization 
of arithmetic accomplished was to make statements such as 2 + 5 = 7 a consequence of the 
definitions of the numbers involved, and thus tum them into analytic propositions. 
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The second event was the development of non-Euclidean geometries: Lobachevsky (lectured 
on in 1826, published about 1835), Bolyai (published in 1831 as an appendix to a book by his 
father), Gauss (who apparently discovered it earlier but did not publish it), and later Riemann 
(1854). Apparently because of the obscurity of the journals in which the work of Lobachevsky 
and Bolyai published, it was not until Riemann's work that the world-view of Kant was finally 
rejected. (Kant's world-view (see section 3, above) was that Euclidean space is the inevitable 
necessity of thought, rather than being of empirical origin.) Euclidean geometry was no longer 
the science of space-it is still far from clear which geometry is best to describe actual physical 
space. This revolutionary development threw mathematics out of the physical world (though, of 
course, not out of its usefulness in describing that world). It also led to the use of ax ioma tics as a 
way of discovering new mathematics. 

The third event causing a revolution in the philosophy of mathematics was the discovery 
of contradictions (paradoxes) in naIve set theory. These contradictions were discovered not only 
for the work of Cantor (which many mathematicians were already suspicious of, as it dealt 
with "completed infinities") but right there in the careful work of Frege. Frege's Grundgesetze 
der Arithmetik (Fundamental Laws of Arithmetic) is a work of logicism reducing the truths of 
arithmetic to theorems of logic. The second volume was at the publisher in 1903 when Russell 
wrote to Frege, informing him of the inconsistency of his system via the Russell paradox. (The 
set consisting of all sets that are not members of themselves both must be and must not be a 
member of itself. That is, let A = IB : B is a set and B ¢ B}. Then both A E A and A ¢ A 
lead to contradictions.) Thus, the elementary step of forming the set of all objects having a 
given property can lead to a contradiction. Since mathematicians frequently form sets this way, 
this discovery shook a larger portion of the mathematical world than the others. Instead of the 
occasional misuses of limits, which were viewed as the result of bad mathematical taste, the 
view now was that there was a crisis in the foundations of mathematics. Was all of mathematics 
a house built on shifting sands? In response to this crisis, two additional foundational schools, 
intuitionism and formalism, were developed. Logicism was also further developed, by Russell 
and Whitehead, Zermelo, and others, trying to mend the problems in Frege's account. 

Logicism is the thesis that mathematics is a sub-branch of logic, that all theorems of math
ematics can be reduced to theorems of logic. Logic had experienced significant development in 
the nineteenth century in the work of Boole, De Morgan, C. S. Peirce, and Venn, among others, 
as well as, of course, Frege. This work made logic a very systematic study of correct rules for 
reasoning. Therefore, it seemed plausible that if all of mathematics could be deduced from logic, 
mathematics would be free of contradictions and its foundations firm. In addition, the work of 
Peano giving axioms for the natural numbers, of Dedekind building the real numbers, and of 
Weierstrass defining limits, gave logicists much material needed to reduce mathematics to logic. 
Frege began this work with his Grund/agen der Arithmetik (Foundations of Arithmetic) and con
tinued it with his two-volume Grundgesetze der Arithmetik (Fundamental Laws of Arithmetic). 
However, the Russell paradox meant that a different approach needed to be taken. Russell and 
Whitehead developed one such approach in Principia Mathematica, an enormous work com
prising three volumes and over 2000 pages. Their hope was to show in this work that all of 
mathematics (or at least, number theory) could be reduced to logic. Russell had analyzed the 
Russell paradox and other paradoxes of set theory, and determined that all of them involved 
defining a set by using a larger set of which the set being defined was a member, which he 
called a "vicious circle." He believed that, as long as one avoided using vicious-circle definitions 
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(also called "impredicative definitions"), one could avoid paradoxes. To do this, the set theory 
developed in Principia Mathematica builds sets in a hierarchy, a type-theory, with sets of the 
lowest type being individuals. On the next level are sets composed of these individuals. At each 
level, sets are built up of members that are sets from previous levels. The known large sets that 
lead to contradictions cannot be constructed in this system. (For brevity, the description here 
is significantly simplified. Their actual approach used propositional functions, rather than sets, 
as the basic objects on which everything else was built, and a "ramified" theory of types. See 
Ontology and the Vicious-Circle Principle [Chihara 1973], chapter I, for a good description.) 

Logicism in this revised form had three significant problems, which largely led mathemati
cians to lose interest in it. First, with a rigid type-theory, many important mathematical theorems 
not only cannot be proven, they cannot even be stated. For example, the least upper bound of a 
bounded set of real numbers is defined in terms ofthe set of real numbers. Therefore it must be of 
a higher type than the real numbers. Thus, this least upper bound cannot be, in this type-theory, 
a real number. To overcome this problem, an additional axiom was added to their system, called 
the axiom of reducibility. This axiom essentially says that a set that is defined at a higher level 
using only sets at some lower level is equivalent to some set that appears at the first level above 
all those involved in its definition. The problem with this axiom is that there is no justification 
for it within logic (and there are some concerns that it might allow the paradoxes to reappear). 
Hence, the program of reducing mathematics to logic fails: either you cannot get well-known 
theorems, or you must add a principle that is not purely logical. 

There is a similar problem with the axiom of infinity. For much of mathematics, we need 
infinite sets. Yet their existence simply does not follow from other axioms. Russell and Whitehead 
introduced it as an axiom, but cannot justify it based purely on logic. Later logicians have 
attempted to overcome these two problems, most notably Quine, but no one has managed to build 
up all of mathematics purely from logical principles. 

Third, Godel's incompleteness theorem dealt a very significant blow to even the possibility 
of deriving all of mathematics from logic. At least for consistent first-order, recursive axiomati
zations of number theory, this theorem says that if they are sufficiently strong to prove normal 
arithmetic properties, then there are theorems that are true but not provable in such systems. 
Hence, one simply cannot get all of mathematics from (at least first-order) logic. 

Intuitionism is the thesis that mathematical knowledge comes from constructing mathemat
ical objects within human intuition. Intuitionism's ancestors were Kant, Kronecker, and Poincare. 
Kant contributed an intuition of the integers from our a priori intuition of time. Kronecker was 
famous for his statement "God made the natural numbers; all else is the work of man." He objected 
to any mathematical object that could not be constructed in a finite way. In particular, he fought 
Cantor's transfinite numbers. Poincare viewed logic as sterile, and set theory as a disease. On the 
other hand, he viewed mathematical induction as a pure intuition of mathematical reasoning. 

L.E.1. Brouwer, the founder of intuitionism, believed that the contradictions of set theory 
came from inappropriate dependence on formal properties, including logic. In particular, the use 
of the law of the excluded middle (that either a statement P or its negation ~P must be true) with 
completed infinities or with proofs of existence is illegitimate and dangerous to the coherence 
of mathematics. Brouwer started with Kant's idea that our intuition of time is the basis for 
the natural numbers. Mathematical objects are mental constructions, which Brouwer described 
as "intuited non-perceptual objects and constructions which are introspectively self-evident." 
([Komer 1968], p. 120) Completed infinities cannot be inspected or introspected, and so are 
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not part of mathematics. A mathematical statement is true "only when a certain self-evident 
construction had been effected in a finite number of steps." ([Burton 2003], p. 661) To prove a 
proposition of the form "P or Q," one needs to prove P or to prove Q. To prove that (3x)P(x), 
one needs to give a construction of an object and show that it satisfies P. 

The rejection of completed infinities causes problems in the construction of real numbers. 
To define a real number, the intuitionist must, for example, give an algorithm that produces a 
sequence of rational numbers and give a proof that that sequence converges. 

Many standard theorems are not intuitionistically true. For example, the standard proof of 
the Intermediate Value Theorem involves repeatedly bisecting an interval on which the function 
changes from being below the desired value C to being above it (or vice versa), maintaining that 
property in the sub-interval chosen. However, intuitionistically, one cannot always determine 
whether a given real number is greater than, equal to, or less than C. For example, let 

if 2n is the first even integer that is not the sum of two primes, n > I, n even 
if 2n is the first even integer that is not the sum of two primes, n > I, n odd 
otherwise 

Define the real number r = L:;;:'2 an I o-n. Both intuitionistically and classically, r is a well
defined real number: to calculate its nth digit, just check if all even integers from 4 to 2n can be 
written as the sum of two primes. If the Goldbach conjecture is true, r = O. Ifit is false and first 
fails at a multiple of 4 (i.e., n as used above is even), r > O. Ifit first fails at an integer congruent 
to 2 modulo 4, r < O. You can calculate r to whatever degree of accuracy you wish, simply by 
trying to decompose the appropriate values of n into sums of two primes. But while, classically, 
r must be either positive, negative, or zero, intuitionistically it is none of these until we decide 
the Goldbach conjecture. One can easily use r to give a function that shows that the Intermediate 
Value Theorem is not true intuitionistically, not just that there is a problem with the usual proof. 

Intuitionism was developed in the same period that many abstract areas of modem 
mathematics-topology, functional analysis, etc.-were being developed. Most mathematicians 
were more interested in exploring these new developments than in retreating inside the shell of 
intuitionism. 

There are many philosophical problems with intuitionism as well. If mathematical objects 
are mental constructions, there is no good reason to believe that two people will construct the 
same objects or have the same theorems. It is also not clear why mathematics is so useful in 
the world. Furthermore, much of modem physics uses mathematical objects (from functional 
analysis, for example) that intuitionists do not accept. 

Intuitionism initially received enthusiastic support from Hermann Weyl (although he fell 
away from it later). Arend Heyting extended Brouwer's work in intuitionism and made Brouwer's 
often mystical and obscure writing much more accessible. However, because so many theorems 
of standard mathematics cannot be proven intuitionistically, very few mathematicians were 
inclined to adopt intuitionism. It required giving up too much mathematics just to avoid a few 
contradictions with extremely huge "sets." In the 1960s, Errett Bishop developed a variation on 
intuitionism, which he called constructivism (see [Bishop 1967]). He developed many theorems 
that are, using classical logic, equivalent to standard theorems but are constructively true. Thus, 
at least in analysis, one needs to give up less mathematics to be a constructivist than to be an 
intuitionist. This led to some renewed interest in the subject, but still has not led very many 
mathematicians to abandon classical mathematics. 
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Formalism is less well-defined. It is not clear that many serious mathematicians ever asserted 
the most extreme version of what is called formalism, that mathematics is just a formal game. I 
This view of mathematics is extremely unhelpful philosophically: it does not explain why we 
choose the axioms we choose, why mathematics is applicable to the world, why anyone would 
bother studying mathematics at all. 

This extreme characterization of formalism appears to come from combining two parts of 
Hilbert's work. In his Foundations of Geometry (Grundlagen der Geometrie), he fixes some 
incompletenesses in Euclidean geometry, adopting an axiom system based on three undefined 
objects-points, lines, and planes-and three undefined relations-incidence (a point lying on a 
line), order (betweenness), and congruence. He makes it clear that, while the intuition behind the 
axioms comes from what we call points, lines, and planes, they could just as well stand for any 
objects-say, tables, chairs, beer mugs-as long as those objects satisfy the axioms. This work 
of Hilbert is one of the early works of modem mathematics, where, instead of working entirely 
within one mathematical structure, one sets up definitions and axioms and then proves theorems 
about the whole class of objects that satisfy the definitions and axioms. 

Hilbert's proof of the consistency of his axioms for geometry reduces the question of the 
consistency of those axioms to the consistency of arithmetic. This brings us to the second part of 
Hilbert's work that is relevant for formalism. This is the "Hilbert program," aimed at restoring 
confidence in mathematics after the contradictions, described above, that came from work in 
the foundations of analysis and from na'ive set theory. In part, his program was a reaction to 
what he considered the pernicious affect that intuitionism was having on mathematicians. He was 
determined to put mathematics on a sound footing without giving up large parts of mathematics in 
the process. The program is to first set up each field of mathematics as a formal theory, consisting 
of undefined terms and axioms. A proof in such a theory is a finite sequence of formulas, 
each of which is either an axiom or follows from earlier formulas by finitary logical rules of 
inference. One then investigates several metamathematical questions about the systems thus 
developed. 

First, is the theory consistent? This can be investigated in one of two ways. One is to give 
a model of the theory. Usually this involves picking an already known mathematical structure 
(such as the integers). Then one interprets each of the undefined terms of the theory as objects 
within that structure in such a way that all of the axioms can be shown to be true theorems about 
the structure. When the structure involved is infinite, this then reduces the consistency of the 
original theory to the question of whether the axioms for the structure used to interpret the theory 
are consistent. Thus it is called a "relative consistency proof." Hilbert (in his Grundlagen der 
Geometrie) had given such proofs for Euclidean and non-Euclidean geometry by interpreting 
them within the real algebraic numbers. Thus, as long as the arithmetic of the real numbers is 
consistent, so is both Euclidean and non-Euclidean geometry. But this kind of consistency proof 

1 An exception is apparently von Neumann, who allegedly said "We must regard classical mathematics as a combinatorial 
game played with the primitive symbols ... " [von Neumann 1966, pp. 50-51]. There is a quotation floating around, 
attributed to Hilbert: "Mathematics is a game played according to certain simple rules with meaningless marks on paper." 
This quotation appears for the first time in E.T. Bell, without citation-it may well have been made up by BelL In 
fact, Hilbert, in [Hilbert 1919, p. 19], said "Mathematics is not like a game in which the problems are detennined by 
arbitrarily invented rules. Rather, it is a conceptual system of inner necessity that can only be what it is and not otherwise." 
(translated by Michael Detlefsen, emphasis mine). 
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does not rule out the possibility that all ofthe theories involved are inconsistent. In addition, it is 
not using strictly finitary reasoning, and thus does not provide the foundation that is needed. 

The second way consistency can be investigated is to show, in a finitary way, that it is not 
possible to derive a contradiction (for example, the statement 0 = I) from the axioms. This would 
then be an absolute consistency proof. It would not depend on another system (except, of course, 
the logic involved, which is finitary and might be acceptable to intuitionists). Of course, if one 
could give this kind of consistency proof for arithmetic, it would provide an absolute proof of 
the consistency of geometry, since a relative consistency proof had reduced the consistency of 
geometry to that of arithmetic. 

Second, is the theory complete? This has a syntactic and a semantic meaning. Semantically, 
can all truths about the structure involved be proven from the axioms? If an axiomatization is 
not complete, then it has not captured all the relevant features of the mathematical structure it 
is axiomatizing, and there is a need to find further axioms so as to fully represent the structure. 
Syntactically, if an axiomatization is complete, every sentence or its negation is derivable from 
the axioms (since every sentence is either true or its negation is true in the structure). 

Third, are the axioms independent of each other, or can some be eliminated? One usually 
shows independence by giving a structure in which all but one of the axioms are true, and the 
remaining one fails. This is the least important question, more an aesthetic issue than one central 
to the adequacy of the theory. But as mathematicians tend to like clean results, it is preferable to 
find axioms that are independent. Hilbert, in his Grundlagen der Geometrie, showed that many of 
his axioms were independent, though, given the tediousness of going through all combinations, 
he did not show that all were. 

The foundational school called formalism contains as its core the view that to set mathematics 
on firm foundations, one should investigate these questions for the various structures and theories 
that make up mathematics. This led to the development of the field called proof theory, which 
investigates these metamathematical questions. 

Unfortunately for Hilbert's program, two results of Gildel showed that the program could 
not work. His first incompleteness theorem showed that any consistent first-order axiomatization 
for the natural numbers that can be described recursively (basically, in a finitist way), and that is 
sufficiently strong to prove most of the standard theorems of number theory, is incomplete. That 
is, there are truths about arithmetic that cannot be proven within that axiomatization. (Actually, 
the result Gildel proved required a little more, called ",-consistency; the result was improved 
by Barclay Rosser to simply require standard consistency.) Thus, one cannot capture all truths 
about the integers within a finitistic system. His second incompleteness theorem was even more 
devastating. Given any consistent, recursive system of (first-order) axioms that is sufficiently 
strong to do a significant amount ofmathematics2 , it is impossible to prove the consistency of the 
system within that system. Thus, there is no point in looking for a finitary proof of consistency. 
There has been continuing work in proof theory investigating properties of axiom systems, but 
there does not appear to be any hope of reviving Hilbert's original program. Gildel proved a 
third important theorem relevant to the Hilbert program, the completeness theorem for first-order 

2 Here, "sufficiently strong" represents a technical requirement involving being able to represent the primitive recursive 
functions within it and derive some standard number theoretical results; for details, see any standard textbook on 
mathematical logic. 
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logic. This says that every consistent set of first-order statements has a model. That is, our system 
of first-order logic is complete: in it, every first-order statement which is true in every model can 
be proved. Thus, semantic consistency (having a model), for first-order theories, is equivalent to 
syntactic consistency (not being able to derive a contradiction). Second-order theories, however, 
may be consistent without having any models. 

Of these foundational schools, only logicism can really be called a philosophy ofmathemat
ics, as the other two do not really provide answers to all of the traditional philosophical questions: 
"what is the nature of mathematical objects," "what is the nature of mathematical knowledge," 
and "how can mathematical results help us understand physical world?" Intuitionism does not 
answer the last; formalism does not answer the first or the third (and, because ofG6del's results, 
does not answer the second either). Logicism's answer to all of these questions reduces to the 
similar questions about logic. However, since there are serious problems in reducing mathemat
ics to logic, logicism does not settle these questions either. But for the first three-quarters of the 
twentieth century, work on foundations replaced almost all other discussion about the philosophy 
of mathematics. 

More detailed discussions of the three foundational schools can be found in [Burton 2003]; 
[K6rner 1968] and [George/Velleman 2002] are books, aimed at the same audience as this book, 
devoted to a thorough discussion of these views. Also, [Giaquinto 2002] is an accessible book 
that gives a good discussion of what work has been done in each of these schools. 

4.1 Other Phi(os'?}'hers in This Period 

There are two philosophers who wrote a substantial amount about mathematics during this 
period, but were not part of any of these foundational schools. One was Edmund Husserl, who 
developed phenomenology. He had a Ph.D. in mathematics, and his habilitation dissertation 
was On the Concept of Number (1887), which was later expanded to Philosophy of Arithmetic, 
published in 1891. This book attempted a psychological foundation of arithmetic, and preceded 
his phenomenological work, which was first published in 1900 in Logical Investigations. Husser! 
also has a very fine (and influential) essay, called "The Origin of Geometry," that usually appears 
as an appendix to his The Crisis of European Sciences and Transcendental Phenomenology. 
Derrida's Ph.D. thesis is a response to it. Husser! is quite difficult to read. Richard Tieszen has 
worked on making Husser! accessible, as well as answering philosophical objections to Husserl's 
work; see his Phenomenology, Logic, and the Philosophy of Mathematics [Tieszen 2005]. 

Ludwig Wittgenstein is another influential philosopher of this period who is also not 
easy to read. His work focuses on "language games," or the relation between language, as 
we use it, and reality. His initial work on this topic in the Tractatus Logico-Philosophicus 
(1922) set the stage for his work on the philosophy of mathematics in Philosophical Remarks 
(l929~30), Philosophical Grammar (1931~33), and later in Remarks on the Foundations of 
Mathematics (1937-44). According to the Stanford Encyclopedia of Philosophy, Wittgenstein 
maintains that mathematical propositions differ from real propositions. Mathematical statements 
do not refer to anything real, but their content comes from their syntax. "On Wittgenstein's 
view, we invent mathematical calculi and we expand mathematics by calculation and proof, and 
though we learn from a proof that a theorem can be derived from axioms by means of certain 
rules in a particular way, it is not the case that this proof-path pre-exists our construction of it." 
(httpllplato.stanford.edu/entries/wittgenstein-mathematics/) He views mathematics as a human 
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invention, and no mathematics exists until we discover it. Wittgenstein is thus a precursor of 
some social-constructivist views of mathematics. 

5 More Recent Work That is Worth Reading 6ut is Not RryresentedHere 

As I mentioned in the first section of this introduction, this book consists of original articles by 
philosophers, mathematicians, and mathematics educators, most summarizing work over a period 
of years. To put this book together, I invited people whose work I had read and admired to write 
a chapter for this volume. I got a relatively good response, and thus this volume covers a fairly 
wide range of contemporary issues. However, in part because I was often asking very senior 
people in the field, there were a number of excellent writers on the philosophy of mathematics 
who declined to participate in this project. You'll certainly find suggestions for continued reading 
on any of the topics in this book in the bibliographies of the individual chapters. However, I 
want to take some space here to recommend some other very good places to learn more about the 
philosophy of mathematics. Full bibliographic references for these books and articles are in the 
Bibliography at the end of this introduction. 

5.1 Logicians with a Phi(osl!Phica( Bent 

Two logicians who have done a significant amount of very thoughtful and careful work in 
the philosophy of mathematics have recently collected that work in books: Solomon Fe
ferman's (math.stanford.edU!~fefermanl) In the Light of Logic [1998] and William Tait's 
(home.uchicago.edu!~wwtxl) The Provenance of Pure Reason: Essays in the Philosophy of 
Mathematics and Its History [2005]. I recommend both books highly. 

5.2 Phi(osl!Phers 

There are many philosophers working in the philosophy of mathematics, almost all of them 
working on questions of the nature of mathematical objects and of mathematical knowledge: 
the debate, represented and summarized in this volume by the chapters by Balaguer, Chihara, 
Linnebo, and Shapiro, of platonism versus nominalism. All of the philosophers listed below have 
written a lot more than is mentioned here, of course; but I'm pointing to those I think are likely 
to be interesting to mathematicians. 

Paul Benacerraf, at Princeton (philosophy.princeton.edulcomponents/com_facultyl 
documents/paulbena_cv.pdf) wrote two seminal papers that initiated the move in the 1970s, 
by philosophers of mathematics, back to traditional philosophical questions and away from 
foundations: "What Numbers Could Not Be" [1965] and "Mathematical Truth" [1973]. They are 
still well worth reading. He also, with Hilary Putnam, edited a book of readings in the philosophy 
of mathematics. It has gone through two editions, with a quite different selection of papers in 
the second edition. Both editions are worth looking at. His two articles mentioned above are 
reprinted in the second edition. 

John Burgess (www.princeton.edu/~jburgess/). also at Princeton, works in logic (philo
sophical and mathematical) and the philosophy of mathematics. What he says about mathematics 
is very careful and correct. However, since he works in the philosophy department, his interests 
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have been turning more and more toward technical philosophical issues. His "Why I Am Not a 
Nominalist" [1983] is quite accessible. I have not read his two recent books: A Subject with No 
Object [Burgess/Rosen 1997] and Fixing Frege [2005]. I looked at the former and decided that 
it was far more technical than I could handle without devoting months to it. I do hope to look at 
the latter once this book is finished. 

Imre Lakatos combined the approaches of philosophers of science Thomas Kuhn and Karl 
Popper and applied it to mathematics. His best-known work is Proofs and Refutations [1976], 
a lively dialogue about Euler's theorem that v ~ e + f = 2 (where v represents the number of 
vertices, e the number of edges, and f the number of faces) for a polyhedron. It shows how cases 
that are counterexamples motivate revisions of the hypotheses of the theorem and the definition 
of polyhedron. This provides, according to him, an example of how mathematics develops. 

Penelope Maddy (www.lps.uci.edu/home/fac-stafflfaculty/maddy/), at the University of 
California at Irvine, started her career as a student of Burgess and a platonist. Her first book, 
Realism in Mathematics [1990], described an unusual form of platonism in which mathematical 
objects are located in the physical world. This view was broadly attacked by other philosophers. 
Her current direction, a naturalist approach to the philosophy of mathematics (Naturalism in 
Mathematics [1997]), is one that takes science as the standard by which all knowledge is to 
be judged. Knowledge of anything, including mathematics, must be justifiable through our best 
scientific theories, in particular, empirical psychology, linguistics, etc. 

Charles Parsons (www.fas.harvard.edu/~phildeptlparsons.html). at Harvard, works in the 
philosophy of mathematics as well as in logic and in other fields of philosophy. His article "Math
ematical Intuition" [1979-80] is a fairly interesting discussion of how one can have intuitions 
of mathematical objects such as numbers and sets. However, it will be disappointing if you are 
expecting something like what Poincare wrote on the topic. Many of his papers in the philosophy 
of mathematics are collected in [Parsons 1983]. 

Hilary Putnam (www.fas.harvard.edu/~phildeptlputnam.html). also at Harvard, works on 
philosophy of mathematics, philosophy of science, and other fields of philosophy. His article, 
"Mathematics without Foundations" [1967], is one of the early articles moving philosophy of 
mathematics back from foundations to more traditional philosophical problems. Some of his 
work in the philosophy of mathematics is collected in [Putnam 1985]. 

Michael Resnik (http://philosophy.unc.edu/resnik.htm), at the University of North Carolina, 
Chapel Hill, is a structuralist (of a slightly different sort than Stewart Shapiro, who has an article 
in this volume). His book, Mathematics as a Science of Patterns [1997], is quite readable once you 
are used to philosophical terminology. Given that many mathematicians assert that mathematics 
is the science of patterns, the book is worth reading to see how philosophers establish such an 
assertion. 

5.3 Pery(e Working in the History and Ph i(osryhy cf Mathematics 

Several people work on the boundary between philosophy of mathematics and history of math
ematics. One is Kenneth Manders (www.pitt.edu/~philosop/people/manders.html). at the Uni
versity of Pittsburgh. He is primarily a philosopher (and logician) with a strong mathematical 
background, but his arguments are very carefully historically based. Unfortunately, he rarely 
publishes. One published article is "Domain extension and the philosophy of mathematics" 
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[1989].1 have a very interesting preprint, "Why Apply Math?" from 1999, and another, "Eu
clid or Descartes: Representation and Responsiveness." Both are very carefully and thoughtfully 
written, but the only way to get them is to write to him. 

Another is Leo Corry (http://www.tau.ac.il/~corry/). at Tel Aviv University. He is more of 
a historian of mathematics, but he asks philosophical questions. For example, his Modern Algebra 
and the Rise of Mathematical Structures [2004] investigates how the notions of what was meant 
by "algebra" and "mathematical structure" developed over the last two centuries. 

A third is Paolo Mancosu (http://philosophy.berkeley.edulmancosu/); see his "On Mathe
matical Explanation" [2000]. In addition to being interesting in itself, it mentions several other 
articles on this topic. 

A fourth is Howard Stein (https:llphilosophy-data.uchicago.edulindex-faculty.cfm#Stein), 
at the University of Chicago, who works on the history and philosophy of mathematics and 
physics. Three articles worth looking at are "Yes, but ... : Some Skeptical Reflections on Realism 
and Anti-realism" [1989], "Eudoxos and Dedekind: On the Ancient Greek Theory of Ratios and 
its Relation to Modem Mathematics" [1990] and (do not be put off by the title) "Logos, Logic, 
and Logistike: Some Philosophical Remarks on 19th Century transformation of Mathematics" 
[1988]. 

5.4 Pe'!P(e Working in Mathematics Education 

By the very act of teaching mathematics, one takes a position on how people acquire mathematical 
knowledge, which has both psychological and philosophical aspects. Therefore many people 
whose research is in mathematics education have interesting philosophies of mathematics. I 
contacted several of them, and, as it turns out, the person whose work I find most interesting 
has made a contribution to this book, but several others whose work I also respect were either 
unwilling or unable to do so. 

Ed Dubinsky (http://www.math.kent.edul~eddl) has worked applying an interpretation of 
Piaget's work to higher-level mathematics education. He is very active (though now retired), and 
has gathered a large community of mathematics educators who work with him. He started the 
Research in Undergraduate Mathematics Education Community, which later branched into the 
SIGMAA on RUME. He started out as a functional analyst. In his early work in mathematics 
education, he used a computer-based language, ISETL, to help students understand abstract 
mathematical objects. For example, see his "Teaching mathematical induction, l/Il" ([1986], 
[1989]). The basic theory that he developed, APOS theory (standing for Action, Process, Object, 
Schema), describes how students gradually develop more sophisticated concepts through a process 
of reflective abstraction. A description can be found in "A theory and practice of learning 
college mathematics" [1994]. It is applied to student understanding offunctions in "Development 
of the process conception of function" [1992], and to abstract algebra in "Development of 
students' understanding of cosets, normality and quotient groups" [1997]. An overall framework 
is given in "A framework for research and curriculum development in undergraduate mathematics 
education" [1996]. Dubinsky views his philosophy as inseparable from his educational theory 
and practice, and declined to write an article for this volume because he felt that his work already 
expresses his philosophical position adequately. 

Paul Ernest (http://www.people.ex.ac.uk/PEmestl) received a Ph.D. in philosophy of math
ematics, but spent much of his career working in mathematics education. He is the editor of 
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the Philosophy of Mathematics Education Journal. He has written an article, "The Impact of 
Beliefs on the Teaching of Mathematics" ([Ernest 1994]; originally written in 1989), suggesting 
that to make significant changes in mathematics education requires changing beliefs about the 
nature of mathematics as well as about how it is taught and learned. This then led to a book, 
The Philosophy of Mathematics Education [Ernest 1991]. More recently, he wrote a book setting 
forth his philosophical views of mathematics itself, Social Constructivism as a Philosophy of 
Mathematics [Ernest 1998]. As I make clear in my review of that book [Gold 1999], I do not 
view it as a viable version of social constructivism, but not all mathematicians agree with me, 
and I encourage readers to decide for themselves. 

Annie and John Selden are the editors of the Research Sampler on MAA Online 
(http://www.maa.org/Land_lIsampler/research_sampler.html), which brings selected research in 
mathematics education to the attention of collegiate mathematics educators. After long careers 
at various universities in the U.S. and abroad, they are now Adjunct Professors of Mathematics, 
New Mexico State University. In their own research, they have examined students' ability to solve 
novel calculus problems ([1989] and [2000]), students' grasp of the logical structure of informal 
mathematical statements, student difficulties with proofs [2003], and are currently investigating 
(college) teachers' beliefs about mathematics, teaching, and learning. See also their Research 
Questions page (http://www.maa.org/Land_lIsamplerlrs_questions.html) on MAA Online. 

David Tall (http://www.warwick.ac.uklstaff/David.Tall/) also connects philosophical views 
of mathematics with his educational work in significant ways. See his "Existence Statements and 
Constructions in Mathematics and Some Consequences to Mathematics Teaching" [TallNinner 
1982], and a book he edited, Advanced Mathematical Thinking [1991]. More recently he has 
looked at the mathematical world as really three different realms [2004], the first coming from 
our perceptions of the world and thinking about them, the second the world of symbols we use 
in mathematics, the third the formal axiomatic world. 

5.5 Matliematicians 

I had a better success rate getting mathematicians who are interested in the philosophy of 
mathematics to contribute to this book. One who did not was Saunders Mac Lane; anyone 
interested in the philosophy of mathematics will find his Mathematics: Form and Function 
[1986] worth reading. 

Chandler Davis has a very interesting view of mathematics, coming from a materialist 
perspective; see his "Materialist Mathematics" [1974] and "Criticisms of the Usual Rationale for 
Validity in Mathematics" [1990]. 

Lynn Steen has written a number of articles (and books) popularizing mathematics that 
include a philosophical bent. See particularly "The Science of Patterns" [1988]. 

Ian Stewart has also written a number of popular books about mathematics that have 
substantial philosophical implications. One of the best in that direction is Nature s Numbers: The 
Unreal Reality of Mathematics [1995]. 

6 A Briif Overview I!f This Book 

This book is not designed for a straight read from beginning to end, although some readers might 
choose to do that. It is meant to be dipped into as the topic and writing style appeals to you. Each 
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chapter is self-contained and most are liberally sprinkled with references for those wanting to 
delve more deeply into a particular topic. We have tried to organize it somewhat by topic, but 
within each topic the style and point of view of the chapters can be quite different. Thus, we've 
tried to provide you here with a guide to the chapters. Also each chapter is preceded by a short 
description of it and a brief biographical sketch of the author. 

For mathematicians who have some curiosity about philosophical questions regarding math
ematics, but who have not read any contemporary philosophy, a good place to start might be 
Philip Davis's chapter. He asks a question that we have all wrestled with at some point, after we 
have done some mathematics and are thinking of writing it up: when is a problem solved? When 
can we say, OK, let's wrap that up now? 

6.1 Views on Matliematica{ Olijects 

Barry Mazur's chapter should also be very accessible to mathematicians without much philo
sophical background. He asks a question that is close to a traditional philosophical question-how 
can one tell when one mathematical object is really the same as another. However, he looks in 
a very different direction than philosophers generally do as he traces some category theory from 
fundamentals to propose an answer this question, with some interesting comments along the way. 

The others writing about mathematical objects are all philosophers. 
Stewart Shapiro gives an overview of philosophical discussions concerning mathematical 

objects. This culminates with his view that mathematics is the science of structures (as suggested 
originally by Bourbaki), or, as it is sometimes called, of patterns. 

For mathematicians interested in reading about current work in the philosophy of math
ematics, Charles Chihara's chapter is a relatively gentle introduction to the kind of discus
sions philosophers have. He discusses concerns about the existence of mathematical objects. 
Finally he turns to how one can develop a structural account of mathematics without be
ing committed to the actual existence of structures in either the world or some ideal platonic 
realm. 

Mark Balaguer gives an overview of the major variations philosophers have discussed over 
the last thirty years on whether there are mathematical objects; if there are, what their nature is; 
and how we can gain mathematical knowledge. As a summary of thirty years of philosophical 
discussion, this chapter is quite dense. However, it very effectively and systematically summarizes 
the discussion from a wealth of philosophical views. 

0ystein Linuebo develops a new view of mathematical objects that allows them to ex
ist in some sense while avoiding some of the traditional objections to a platonist account of 
mathematical objects. 

6.2 Views on Prorf 

Proof and its relation to mathematical knowledge is an issue that has become an active concern 
again thanks to computer-assisted proofs and mathematical investigations involving computers. 

Michael Detlefsen discusses both the role of empirical reasoning-primarily due to the use 
of computers-and of formalization in mathematical proofs. 

Joseph Auslander discusses the various roles proof plays in mathematics, and how standards 
of proof vary over time. 
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Jon Borwein focuses less on proof than on the development of mathematics, and the roles 
computers may play in that development. Necessarily this includes the role they play in developing 
proofs. 

6.3 Wliat is Matliematics? 

Robert Thomas's chapter suggests, as a definition of mathematics, a variation on "mathematics 
is the science of patterns." He takes mathematics as one extreme end in the spectrum of the 
sciences, and suggests (read the chapter for what he means) that "mathematics is the science of 
relations as such." 

Guershon Harel approaches the problem of "what is mathematics?" from the viewpoint ofa 
researcher in mathematics education. He proposes an answer that includes not only the theorems, 
but also the tactics and conceptualizations we use. 

6.4 Socia{ Constructivism 

Reuben Hersh, one of the few mathematicians to attempt to describe social constructivism in 
some detail, discusses mathematics and its development (or, as he phrases it, mathematics as "a 
living organism") as the subject of scientific investigation. This lively chapter includes a beautiful 
attempt to describe the feeling when an idea for solving a problem suddenly flashes into one's 
mind. 

Julian Cole just finished his Ph.D. thesis in philosophy, working on how one can make social 
constructivism coherent from a philosopher's standpoint. His chapter summarizes the main points 
of interest to mathematicians of his work. 

6.4.1 The Boundaries Between Mathematics and the Other Sciences (Physica( and SociaO, 

and the Ayyllcabiflty if Mathematics 

Mark Steiner looks at a particular aspect of this question (primarily from the standpoint of a 
philosopher interested in the application of mathematics to physics) related to generalizations of 
addition. 

Keith Devlin looks at the question of what we currently call mathematics versus what we 
currently relegate to applied mathematics. He describes how he believes this will change. 

6.5 plii{os'!Pli!f d Probabillt!f 

Alan Hajek discusses some of the fundamental philosophical issues about the nature of proba
bilities. It is a very accessible chapter. 
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I 
Prol!f and How it is Changing 

Proof has been an essential part of mathematics since the time of the ancient Greeks. Its 
centrality has engendered much controversy. What is the role of proof in mathematics? 
What makes for an adequate proof? 

The recent use of computers in developing mathematical conjectures, and in checking 
cases when there are too many for humans to check in a reasonable amount of time, has 
led to questions about the role and importance of proof in mathematics, as well as what 
qualifies as a proof. The chapters in this section give three different views of these and 
other issues regarding relationships among proof, mathematics, and computers. 





1 
Prolj: Its Nature and Significance 

From the Editors 

Michael Detlefsen 
Professor of Philosophy 

University of Notre Dame 

In our first chapter, Michael Detlefsen carefully examines the historical tension between inductive 
and deductive methods in mathematics. and relates it to the current discussion of the roles of 
each in the development or mathematics. He then turns to the question of whether; in fact. 
formalization of proofs actually increases either understanding or reliability of proofs· He also 
summarizes recent work on diagrammatic reasoning in mathematics. and the possible roles of 
visual experience in proofs. 

We have chosen this as thefirst chapter in the book because we believe it is a fine. careful 
examination of these questions that virtually every reader of this volume will benefitfrom reading. 
For those of us who teach mathematics. an awareness ofthefluctuations in the role of proof, and 
what is considered a proof, can be of use in the classroom. Such awareness can give us both 
a context in which to set our students' attempts at proof and a historical background we can 
impart to our students. An awareness of the importance of inductive methods in the development 
of mathematics is also worth transmitting to our students. In particular; making students aware of 
the current discussion in the mathematical community about the role of computers in mathematics 
can help them realize that mathematics is still a growing subject. even ifmost of the mathematics 
they study at the undergraduate level is centuries old. 

Michael Detlefsen is a Professor of Philosophy at the University of Notre Dame 
(philosophy.nd.eduipeoplelalilprofilesidetiefsen-michaell). His interests include logic, the phi
losophy of mathematics. and more specifically the role of proof in mathematics. He has written 
one book. Hilbert's Program (1986), and edited two others. Proof, Logic, Formalization (1991). 
Proof and Knowledge in Mathematics (1991). Among his articles that are likely to be of particular 
interest to readers of this volume are "The Four-Color Theorem and Mathematical Proof" in 
The Journal of Philosophy (1980), "Poincare vs. Russell on the Role of Logic in Mathematics," 
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Philosophia Mathematica (1993), "Mind in the Shadows: Essay Review of Roger Penrose's The 
Emperor's New Mind (OUP, 1989), Shadows of the Mind (OUP, 1994) and The Large, the 
Small and the Human Mind (CUP, 1997)," Studies in the History and Philosophy of Modem 
Physics (1998), "What does G6del's Incompleteness Theorem Say?" Philosophia Mathematica 
(2001), and "Formalism," in The Oxford Handbook oftbe Philosophy of Mathematics and Logic 
(2005). He's currently working on "The Role of the Imaginary in Mathematics" and has a forth
coming article, "Purity as an Ideal of Proof," to appear in The Philosophy of Mathematical 
Practice. 

-----frg"D 

1 Introduction 

Recent philosophical work on the topic of mathematical proof has focused on epistemological 
concerns. Prominent among these are the questions whether 

(i) there is a special type of knowledge that proof and proof alone supports, or for which it 
provides special support, 

whether 

(ii) the knowledge supported by proof warrants a regimentation of mathematical practice 
that makes proof the sole legitimate or at least the preferred form of justification in 
mathematics 

and, relatedly, whether 

(iii) there is a place for broadly empirical reasoning in the development of mathematical 
knowledge. 

These concerns are not new, of course, but have been of perennial interest to mathematicians 
and philosophers. Traditionally, responses to (i) have generally been affirmative. Views on (ii) 
and (iii) have been more mixed, with some arguing that empirical reasoning has little if any 
place in the development of mathematical knowledge and others (in roughly equal numbers) 
maintaining that it plays a vital role. 

For most of the past three centuries, philosophical work on mathematics has mainly admitted 
the usefulness of empirical methods while also insisting that they do not provide the same quality 
of knowledge as classical demonstration or proof. 

Recent work has, for the most part, sustained this compromise. It has, in particular, supported 
the use of various types of empirical reasoning to help solve mathematical problems. Yet while 
earlier thinkers generally based their support of such methods on considerations of usefulness, 
convenience or perhaps practical necessity, recent writers have sometimes strengthened this to 
something verging on psychological or perhaps even physical necessity. 

This is nowhere more evident than in the recent controversy concerning the status of the 
computer-assisted resolution of the four-color problem in 1977. Here some have argued that 
the proof of the four-color theorem (or any other extremely long and/or complex argument) 
represents a fundamental departure from traditional standards and methods of justification in 
mathematics. Others have argued the contrary. My sympathies are primarily with the latter. 
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An examination of the historical record reveals, I think, that there have long been arguments 
recommending the use of inductive arguments in mathematics on the grounds of their usefulness 
and practical necessity. I survey some of this history in section 2 and relate it to more recent work 
in section 3. 

In section 4, I consider a different challenge to the currently prevailing view of proof---{)ne 
which focuses on rigor and the conditions necessary for its attainment. Of particular interest there 
is a recent series of papers by the artificial intelligence researcher J. A. Robinson, who argues 
that proof has two essential aims. One is to convince, the other to explain. He observes that 
though formalization may assist the convictive aim of proof in certain ways, it can also obstruct 
its explanatory aim. This being so, it may compromise the greater ends of proof. It may even 
interfere with rigor since, as he maintains, explanatory coherence is sometimes the best protection 
we have against serious gaps in our reasoning. 

Robinson's overall goal is to explain a notable phenomenon-namely, the apparent gap that 
exists between the standards of proof that seem to guide mathematical practice, and the more 
austere standards of formalization that prevail in mathematicians' descriptions of their ideals. If 
formalized proof is indeed the ideal of mathematical justification, why should ordinary practice 
remain so far from it? The common response would be that the two are not so remote from each 
other, that formalization of ordinary proof is largely a routine affair. Robinson challenges this 
view both with arguments and examples. More positively, he proposes a conception of proof 
which emphasizes its affinity with performance rather than pure text. The upshot is a view that 
promises to be at once subtler and empirically more realistic than the currently prevailing views 
of proof and rigor. 

In section 5, I turn to the large, wide-ranging recent literature on diagrammatic reasoning 
and its place in mathematics. This intersects with the topics treated earlier in that it stresses the 
role of visual experience in proof and considers how mathematical thinking might make use of 
such experience while still remaining properly rigorous. Of particular interest in this connection 
is the radical view of Jon Barwise and his co-author John Etchemendy (and their students), who 
claim that diagrammatic reasoning can play not only a heuristic but a genuinely justificative 
role in proof. At the heart of their view is the belief that visual and linguistic representations of 
the same information can and often do have significantly different properties. In particular, they 
commonly differ with respect to certain types of efficiency-the diagrammatic variants being 
generally more efficient in these ways. Describing and accounting for such differences has been 
a major preoccupation of both their work and other recent work on diagrammatic reasoning. 

So too has been the question of how visual and/or diagrammatic reasoning fits with the 
explanatory goals of proof and the quest for rigor. Of particular interest in this connection is 
a body of work by the philosopher Marcus Giaquinto, who, more than anyone else, has taken 
pains to clarify both the senses in and the extent to which diagrammatic reasoning figures in 
justificatively significant ways in mathematical reasoning. He refines the description of the types 
of justificative contributions diagrammatic reasoning can make and carefully investigates its 
justificative limits, particularly in analysis. Finally, he considers the difficult question of how 
diagrammatic reasoning fits with the explanatory aims of proof. 

In section 6, I summarize and conclude. I find that much recent work continues the dominant 
view of the last three centuries in its view of the place of empirical reasoning in mathematics. The 
chief novelties concern refinements in our understanding of the nature and role( s) of diagrammatic 
reasoning and of the proper place of formalization in proof. 
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2 Emyirica{ Reasonin!J in Matliematics: Historica{ Back!Jround 

The use of empirical evidence and broadly inductive reasoning in mathematics are by no means 
new phenomena in the history of mathematics. They have, in fact, been a major source of concern 
for more than two millenia. Archimedes gave an important early defense of the usefulness of 
empirical methods (particularly, mechanical methods) in solving geometrical problems. He did 
not see them as altogether supplanting classical methods, but he did see them as useful means of 
discovery (both of truths and of proper demonstrations) . 

. .. 1 have thought fit to ... explain ... a method, with which ... you' will be able to 
make a beginning (aphormE) in the investigation (theorein) by mechanics ... in mathe-
matics .... [I]nvestigation by this method does not amount to actual proof(apodeixe6s); 
but it is ... easier to provide the proof when some knowledge of the things sought has 
been acquired by this method rather than to seek it with no prior knowledge. 

[Archimedes], pp. 221, 2232 

Archimedes thus acknowledged a role in mathematics for reasoning other than proof. Though 
proof might yield knowledge in its highest form(s), other forms of reasoning might nonetheless 
yield lesser knowledge, and also aid in the development of genuine proofs. 

It was thus common for non-demonstrative methods of reasoning to be classified as meth
ods of invention or discovery, as distinct from methods of justification proper. The terminol
ogy is potentially misleading, though, in that it suggests that non-demonstrative reasoning 
was not viewed as justificative. This is not true. Discovery of a proposition was discovery 

of its truth. Discovermental methods were thus generally taken to have justificative value, but 
not so great as that typical of demonstration. This reflected the Aristotelian "causal" ideal of 

knowledge. 

We ... possess unqualified scientific knowledge of a thing ... when we know the cause 
on which the fact depends as the cause of the fact and ... that the fact could not be other 
than it is. [Aristotle 1908], 71b8-bl1 

The broad division of reasoning into justificative and discovermental varieties is thus of an
cient origin. Philosophers and mathematicians generally marked it and so too did other disciplines 
in which reasoning featured prominently. As Cicero remarked: 'every careful method of argu
ing has different divisions-one of discovering, one of deciding' ([Cicero 1894], vol. 4, Topics, 
pp. 459-460».3 Methods of the former type were termed arts of discovery (artis inveniendi), 
methods of the latter type arts of justification (artis iudicandi). 

16th and 17th century algebraists embraced the distinction. Viete, Descartes and Wallis all 
stressed the different purposes served by discovery-oriented and demonstrative reasoning and the 
different standards to which they are rightly held. They also saw in it a reflection of the ancient 

I The person addressed was Eratosthenes. 

2 The reader should bear in mind that the text for Archimedes' Method was only rediscovered at the tum of the 20th 
century and cannot generally be assumed to have been available to earlier thinkers. 

3 Cicero attributed the distinction to Aristotle, who urged a similar division in the Topics. It was also marked in Roman 
law, which distinguished evidence appropriate to the detention, questioning and/or charging of a suspect (investigatio), 
from evidence appropriate to her conviction (demonstratio). 
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distinction between analysis and synthesis. The classical statement of this distinction was given 
by Pappus of Alexandria in his Treasury of Analysis . 

. . . in analysis we suppose that which is sought to be already done, and inquire what it is 
from which this comes about ... until, by retracing our steps, we light upon something 
already known or ranking as a first principle ... 

. . . in synthesis ... we suppose to be already done that which was last reached in analysis, 
and arranging in their natural order as consequents what were formerly antecedents 
and linking them one with another, we finally arrive at the construction of what was 
sought. . . [Pappus 2000], pp. 597, 5994 

They believed, moreover, that symbolic algebra (what they commonly referred to as the 
analytic art) was analysis par excellence. It was, in the first instance, a method of discovery 
widely believed to be efficient and reliable. Wallis described it as 'plain, obvious and easy' 
([Wallis 1685], p. 298) and as yielding results that were readily verifiable by classical means 
(cf. [Wallis 1685], p. 305). In a similar spirit, Leibniz praised it as "a great aid in shortening 
thought and also in discovery" ([Leibniz 1707], p. 436) and claimed that it could not "lead us 
into error" (loc. cit). 

Others (e.g. MacLaurin, cf. [MacLaurin 1742], pp. 47, 49) conceded its usefulness but also 
emphasized that it was not the justificative equal of classical (synthetic) method. 

In general, it must be owned, that if the late discoveries [of Wallis', in his Arithmetica 
Infinitorum (1656)] were deduced at length, in the very same method in which the 
ancients demonstrated their theorems, the life of man could hardly be sufficient for 
considering them all . . [MacLaurin 1742], p. 49, brackets mine5 

Still, though 

[m ]athematicians [may] indeed abridge their computations by the supposition of in
finites, ... [they] cannot be too scrupulous in admitting of in finites, of which our ideas 
are so imperfect. [MacLaurin 1742], pp. 46-47, brackets mine 

Still others less qualifiedly opposed the use of algebraic methods. These included Hobbes 
([Hobbes 1839-45], vol. I, pp. 311-312)6 and, at times, Newton. 

Equations are Expressions of Arithmetical Computation, and properly have no Place 
in Geometry ... Multiplications, Divisions, and such sort of Computations, are newly 
received into Geometry, and that unwarily, and contrary to the first Design of this 
Science. [Newton 1720], p. 229 

4 Aristotle made a similar distinction earlier [Aristotle 2000] (cf. 111.3, 1112b 15-27). There is also a statement of 
uncertain origin in the manuscript sources for Book XIII of Euclid's Elements. See Heath's historical note on Book XIII 
([Euclid 1956], vol. 3, pp. 438--439 and his commentary on Propositions I-V ([Euclid 1956], vol. 3, pp. 441-442) for 
more on this. 

5 For similar statements during the same period, see that by Christian Wolff([Wolff 1739], preface, v-vi). A representative 
statement a half century earlier was that by Johann Christoph Sturm ([Sturm 1700], preface, articles XIV, XX), a half 
century later that by Charles Hutton ([Hutton 1795], vol. 1, p. 107). 

6 Hobbes and Wallis carried on a well-known dispute concerning the legitimacy of algebraic methods. An interesting 
account of this dispute is given by Jesseph in [Jesseph 1999]. 
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To counter such charges, algebraists of the 16th and 17th centuries argued that classical 
geometry would not have been the success it had been had not ancient geometers made regular 
use of algebraic methods in arriving at their discoveries-a use they then tried to conceal (cf. 
Descartes [Descartes 1620-28], Rule IV, [Wallis 1685], ch. II, 3, p. 290 and ViNe [Viete 1591], 
p. 27). Wallis thus wrote of Apollonius that 

... we may well give him the name of Magnus Geometra, and look upon him as a man of 
a prodigious reach of Phansy, if we can think it possible that he could discover all those 
Propositions, and perplex demonstrations, in the same order they are there delivered, 
without some such Art of Invention, as what we now call Algebra. 

[Wallis 1685], p. 290 

This is the traditional view of analytic or algebraic method and its place in classical geometry. 
But why classify it as empirical in character? Generally speaking, the reason is that it often 
relied on inductive forms of reasoning. Archimedes and various other ancient and medieval 
mathematicians appealed to analogies between mechanics and geometry, and algebraists of the 
early modem era (i.e. late 15th-17th centuries) often used a form of inductive reasoning they 
associated with the Principle of Exhaustion-the idea that if two quantities can be made to differ 
from each other by less than any assignable amount, they can then be treated as equal.7 

They often reasoned by analogy as well, extending laws proven for finite magnitudes and 
collections to infinite generalizations of them. One example of this is Wallis' extension of 
the law for sums of (finite) arithmetic progressions to sums of infinite arithmetic sequences 
([Wallis 1656], p. 155; [Wallis 1685], pp. 285-287, 297, 305-306). Overall the method was 
inductive and Wallis described it as such. 

The simplest method of investigation, in ... various problems ... is to exhibit the thing 
to a certain extent, and to observe the ratios produced and to compare them to each 
other; so that at length a general proposition may become known by induction. 

[Wallis 1656], p. 13 

Following this procedure, Wallis "retrieved" the classical law for the area of the triangle 
(viz. A = !>f)8 by applying Cavalieri's Method ofindivisibles. He resolved the triangle into a 
progression of uniformly thin rectangles, reasoned inductively that, compositely, they would 
come ever closer to matching the interior of the triangle as the individual rectangles became 
ever thinner, and reasoned analogically to their sum by extending the formula for arithmetic 

progressions to the "infinite" case.9 He thus arrived at Ox -£o;bX -! x 00, thence ~ ;00, thence Pf, 
the classical law for the area of a triangle.]O 

Wallis repeated the same general form of reasoning-finding the appropriate type of pro
gression and analogically inferring its sum-to obtain solutions to a variety of other quadrature 

7 The Principle of Exhaustion was well-known and widely used in antiquity (cf Def. IV, Bk. V of The Elements, which 
is used to prove another variant in Prop. I, Bk. X). Democritus is generally thought to have been the first to [annulate 
it, though there is evidence that Hippocrates fonnulated and used it too. Archimedes attributed the first "proof" of it to 
Eudoxus. 
8 cr. Wallis [Wallis 1656]. Proposition 3; [Wallis 1685]. pp. 285-287. 

9 cr. Wallis [Wallis 1656], pp. 13-15; [Wallis 1685], pp. 280-290. 

10 cr. Wallis [Wallis 1656], pp. 14-15, [Wallis 1685], pp. 285-287. 
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and cubature problems as well. II There was immediate, sharp criticism from both philosophers 
and mathematicians, most notably Hobbes, Huygens and Fermat. All three criticized Wallis for 
his use of inductive reasoning, characterizing it variously as unclear, uncertain, unnecessary and 
insufficient. '2 Wallis' chief response, stated in a reply to Fermat, was to reaffirm the ancient 
two-methods (discovery vs. demonstration) distinction. His aim, he said, was not primarily one of 
"Demonstrating things already known" ([Wallis 1685], p. 305), but "to shew a way of. .. finding 
out ... things yet unknown" (ibid.). 

Thus Wallis, and algebraists of 16th and 17th centuries generally, embraced the ancient 
distinction between an ars inveniendi and an ars iudicandi. In the next section we'll consider 
a r"cent proposal by Arthur Jaffe and Frank Quinn to divide mathematical labor in a roughly 
similar way between discovermental and more rigorously demonstrational components. We'll 
consider as well a widely-discussed argument (concerning the computer-assisted proof of the 
four-color theorem) that empirical reasoning may sometimes be the only humanly feasible means 
of justification. 

3 Emyirica{ Reasoning in Mathematics: Recent Pnposa{s 

3.1 Emyirica( Reasoning and Eyistemic Productivity 

Arthur Jaffe and Frank Quinn recently offered a new incarnation of the division of methods 
theme. They acknowledge the benefits of rigor as a constraint on mathematical reasoning and so 
affirm the virtues of strict proof. It has 'brought to mathematics a clarity and reliability unmatched 
by any other science' ([Jaffe/Quinn 1993], p. I). This notwithstanding, it has also at times made 
progress in mathematics 'slow and difficult' (lac. cit.). 

Too strong an emphasis on proof may thus be more of an impediment than an aid to 
the development of new mathematical knowledge. To become more efficient, they suggest, 
mathematics should follow the lead of physics and permit freer use of intuitive methods of 
thinking. And this despite the fact that by means of such more liberal reasoning, mathematicians 
may occasionally go beyond the bounds of what can be strictly established (op. cit., p. 2). 

Freer, more efficient 'theoretical' methods '3 should be used to generate initial hypotheses 
and to outline justifications. These hypotheses and justifications should then be converted into 
rigorous reasoning by mathematicians particularly skilled in such work. 

In Jaffe and Quinn's view, the role of rigorous proofin mathematics is 'functionally analogous 
to the role of experiment in the natural sciences' (lac. cit.). They thus foresee two types of 
mathematical research-a more intuitive and speculative 'theoretical' type aimed at efficient 
discovery, and a more rigorous, conventional type aimed essentially at confirmation. The latter is 
intended (i) to 'ensure the reliability of mathematical claims' (lac. cit.), and (ii) to yield, at least 
occasionally, 'new insights and unexpected new data' (lac. cit.). 

II Cf. Wallis [Wallis 1656], passim; [Wallis 1685], pp. 285-290, 29()"298. 

12 There were admirers too, of course. In addition to those mentioned above, these included Newton (at times) and, 
nearly two centuries later, Charles Babbage. Such influential admirers notwithstanding, Wallis' inductive and analogical 
methods did not change the norms of mathematical practice. Succeeding generations of mathematicians for the most part 
viewed them as falling short of ideal norms of rigor, certainty and precision. 

\3 So called because they resemble thinking in theoretical physics. 
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Dividing mathematics in this way, they suggest, may bring about the same rapid advancement 
in it as it did in physics. This, at any rate, is their hope. Their proposal goes farther, however, 
in proposing that the division of methods be incorporated into the institutions of professional 
mathematics, specifically, into its methods of training and its system of rewards. 

3.1.1 The Division if Mathematica{ Labor 

Fundamentally, Jaffe and Quinn's proposal is one of divided labor and, as such, it embodies the 
same strategic ideas that schemes of divided labor generally embody. Specifically, it proposes to 
increase productivity through increased specialization. 14 

Adam Smith's classical statement of the benefits of divided labor maintained that it 'occa
sions, in every art, a proportionable increase of the productive powers of labor' ([Smith 1776], 
Bk. I, ch. I, para. 4). By dividing production into small tasks and 'dedicating' each individual 
worker to the repeated execution of a single task (or a small number of such), productivity is 
increased. This is so because the tasks are 'smaller' and, so, more fully within the range of 
the worker's competence, and because the familiarity that comes from repetition increases the 
worker's proficiency in performing them. The result is a better product more efficiently produced. 
Or so the thinking goes. 

At bottom, this is what Jaffe and Quinn place their faith in. Mathematics will be divided into 
specialists in speculation or conjecture (practitioners of 'theoretical' methods in mathematics) 
and specialists in confirmation (those who convert 'theoretical' reasonings into proofs). With 
this increased specialization will come increased proficiency, and with increased proficiency, 
increased productivity. Mathematical knowledge will both improve in quality and grow faster. 

There are grounds for caution, however. One is the general lack of evidence for the claims 
and assumptions that Jaffe and Quinn make. Perhaps the most basic of these is the assumption that 
the recent growth of knowledge in physics is greater than that in mathematics. Even granting this 
assumption, though, questions remain. For example, do we know that it's the division of physics 
researchers into theoretical and experimental that's responsible for its superior rate of growth? 
And, supposing that it is, is what makes that division effective its separation of the speculative 
(roughly discovermental) and confirmatory (roughly justificative) tasks? Or might it instead be 
the increase in financial support for physics (and applied mathematics) research fueled by the 
race to develop atomic weapons and energy, or the race to put humans on the moon? Is the task 
of developing a proof for a conjecture in mathematics relevantly similar to that of confirming a 
physical conjecture? Is it generally as easy to devise a proof for a true mathematical conjecture 
as it is to design and conduct a confirmatory experiment (or body thereof) for a true physical 
conjecture? Such questions are not easily answered. 

In addition to these uncertainties, there is another that may be of even greater significance. 
It has to do with the costs of dividing labor. Even Smith, the champion of divided labor, 
acknowledged these costs and that they are considerable. 

In the progress of the division of labour, the employment of the far greater part of 
those who live by labour ... comes to be confined to a few very simple operations, 

14 It may also be that Jaffe and Quinn believe something like what Archimedes expressed when he claimed that it's 'easier 
to provide the proof when some knowledge of the things sought has been acquired' ([Archimedes], p. 223). The informal 
sketches of justifications produced by 'theoretical' mathematics may give the rigorist something to directly build on. 
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frequently to one or two .... The man whose whole life is spent in performing a few 
simple operations, of which the effects are perhaps always the same, or very nearly the 
same, has no occasion to exert his understanding or to exercise his invention in finding 
out expedients for removing difficulties which never occur. He naturally loses, therefore, 
the habit of such exertion, and generally becomes as stupid and ignorant as it is possible 
for a human creature to become. [Smith 1776], Bk. V, ch. I, para. 178 

11 

A more disheartening view of the effects of divided labor would be hard to imagine. Consis
tent division of labor, on this view, impedes the worker's ability to find fulfillment in her work. 
In short, it alienates her from her work. 

In addition to concerns regarding the accuracy of their comparison of mathematical and 
physical research, then, their proposal also raises larger moral and social concerns that have not 
been adequately addressed. 

3.2 Emyirica( Reasoning vs. Prod 

We saw in section 2 how broadly inductive reasoning and reasoning from analogy have been used 
as methods of discovery in mathematics since ancient times. In all cases, however, discovery and 
justification (at least ultimate or ideal justification) were conceived as distinct tasks. Discover
mental arguments were therefore to be only temporary substitutes for proper demonstrations. 

In recent times a different role for empirical reasoning in mathematics has been suggested. 
It is no longer seen as a mere propredeutic to proof, but an alternative to it-in some cases, a 
necessary alternative. 

Views of this type have been inspired by the appearance of extremely long and/or complex 
proofs. A well-known example is the widely discussed computer-assisted solution of the four
color problem developed by Kenneth Appel and Wolfgang Haken in 1977. 

This proof is so large as to seemingly prohibit the type of step-by-step surveyal com
monly assumed for mathematical proof. It has thus given rise to a variety of philosophical 
questions concerning whether proof is indeed the appropriate standard to adopt for mathematical 
justification. 

Thomas Tymoczko wrote a widely read discussion of these issues in his 1980 paper 'The 
Four-Color problem and its mathematical significance'. He argued that the solution of the four
color problem offered by Appel and Haken (hereinafter, the AH argument or proof) forced a 
reconsideration of traditional conceptions of mathematical proof and knowledge. His main claim 
was that 

... if we accept the 4CT as a theorem, we are committed to changing the sense of 
'theorem', or, more to the point, ... the sense of the underlying concept of "proof" . 

. . . use of computers in mathematics, as in the 4CT, introduces empirical experiments 
into mathematics. Whether or not we choose to regard the 4CT as proved, we must 
admit that the current proof is no traditional proof, no a priori deduction of a statement 
from premises. It is a traditional proof with a ... gap, which is filled by the results of 
a well-thought-out experiment. This makes the 4CT the first mathematical proposition 
to be known a posteriori and raises again for philosophy the problem of distinguishing 
mathematics from the natural sciences. [Tymoczko 1979], p. 58 
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Tymoczko 's argument had three main components. The first was an analysis of the traditional 
conception of proof which identified three key characteristics--convincingness, surveyability 
and formalizability. The second was an argument to the effect that, of the three ingredients just 
mentioned, surveyability was the most basic. The third was the claim that the AH proof is not 
surveyable. 

I'll now consider the argument more carefully, focusing, as Tymozcko did, on the two latter 
components-the claims that surveyability is central to the standard conception of proof and that 
the AH proof is not surveyable. 

In calling a proof convincing, Tymoczko meant that it had the capacity to move a rational 
proverl5 to belief in its conclusion. This in tum required that the proof be surveyable-that is, that 
it be capable of being 'looked over, reviewed, verified' (op. cit., p. 59) by human provers, specif
ically, by members of the human mathematical community (op. cit., p. 60; [Tymoczko 1980], 
p.132). 

Such a conception of proof was, in Tymoczko's view, seriously at odds with the computer
assisted proof of the 4CT. This proof established the existence ofa formalized proof of the 4CT, 
a formalized proof so large, however, as to debar human survey (cf. [Tymoczko 1979), p. 58). 
The AH proof of the 4CT thus substituted, at certain point(s), the results of unsurveyably long 
computer runs for the formal computations to which they correspond. So, at any rate, Tymoczko 
claimed. 

To evaluate this reasoning, we need to keep two distinct items separate. One is the actual 
argument given-that is, written down-by Appel and Haken. This argument is surveyable and 
was indeed surveyed by a number of mathematicians before being published. I'll call this the 
compressed argument, since it replaces the details of certain computations with (descriptions of) 
their results. 

The unsurveyable argument, on the other hand, is the argument that would result from 
setting out the suppressed details of the compressed argument in full. Call this the decompressed 
argument. 

Judged by Tymoczko's standards, neither the compressed nor the decompressed argument 
is a proof in the traditional sense. The decompressed argument is not a proof because it is not 
surveyable. The compressed argument is not a proof because it lacks the explicitness-the full 
disclosure of premises and inferences-traditionally required of proof. It is 

... like a mathematical proof where a key lemma is justified by an appeal to the results 
of certain computer runs or, as we might say "by computer." This appeal to computer, 
whether we count it as strictly a part of a proof or as a part of some explicitly non-proof
theoretic component of mathematical knowledge, is ultimately a report on a successful 
experiment. It helps establish the 4CT (actually, the existence of a formal proof of the 
4CT) on grounds that are in part empirical. [Tymoczko 1979), p. 63, brackets added 

In Tymoczko's view, then, to accept the compressed argument (i.e. the AH proof) as adequate 
mathematical justification for the 4CT requires changing the traditional conceptions of proof and 

15 By a 'prover', I mean not only one who discovers a proof, but also one who grasps it. 
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mathematical knowledge (cf. [Tymoczko 1979], p. 58). In particular, it requires relinquishing or 
modifying each of the following (cf. op. cit, p. 63): 

(i) all mathematical theorems are known a priori 
(ii) mathematics has no empirical content 

(iii) mathematics relies exclusively on proof and makes no use of experiment, and 
(iv) mathematical theorems are certain to a degree that no theorem of natural science can 

match. 

Tymoczko thus took the acceptance of the AH argument for the 4CT to be both a novel and a 
philosophically significant development. 

3.3 The Phi{osc!phica{ Significance if the AH Argument 

Items (i)-(iii) center on the question of the compatibility of the commonly supposed a priori 
status of mathematical judgments with the use of broadly empirical considerations in mathemat
ical reasoning. To get a better idea of the plausibility of Tymoczko's claim that (i)-(iii) must 
be relinquished or modified, we must first get clearer on what he means (or might or should 
mean) by 'mathematical theorem', 'known a priori', 'empirical content' and 'empirical justi
fication'. 

Tymoczko assumes that the traditional view of theorems is essentially this: 

(i-aux): A proposition is rightly classified as a theorem if and only if there is a known proof 
of it. 

From (i-aux) and the supplementary claim that 

(i-supp): If there is a known proof for a proposition, then it (the proposition) is known a 

priori, 

(i) follows. 
In truth, though, the claim that (i-aux) represents the traditional view is doubtful, at least if 

it is taken to imply that a known proof is a proof that has been surveyed in all its details. There is 
nothing in the traditional conception of proof to prohibit joint enterprises where a resolutive task 
is broken up into parts, and the various parts given over to different persons or groups in such 
a way that, in the end, no one participant will have surveyed the entire joint proof. The product 
of such an undertaking could still count as a proof so long as it was known that each part was 
correctly executed and that, taken together, the several parts solve the original problem. 16 

If this is right, a more reasonable condition than (i-aux) would be 

(i-aux '): A proposition is rightly classified as a theorem if and only if it is known to have a 
proof. 

(i-aux'), however, implies (i-aux) only on a constructive understanding of existence, and such an 
understanding is not part of the traditional conception of proof. 

16 A recent well-known example of such a joint undertaking is the classification of the finite simple groups. 
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Even if it were, though, problems would remain. For it's only the stricter forms of con
structivism that require actual exhibition (or survey) of an object as adequate justification of its 
existence. More liberal varieties allow existence to be established by the provision of suitably 
clear descriptions of methods the (perhaps idealized) execution of which can be seen to guarantee 
an exhibition of a thing of the type claimed to exist. 

(i-aux) thus has little to recommend it as a traditional condition of theoremhood. Related 
remarks apply to (i-supp) and condition (i). (i-supp) must give way to 

(i-supp'): A proposition known to have a proof is known to have an a priori justification I 7, 

and (i) to 

(i') A proposition rightly classified as a theorem is known to have an a priori justification. 18 

The question then becomes whether the compressed argument for the 4CT comports with 
(i'), and it seems that it does. It (the compressed argument) can reasonably be taken to show that 
there is a proof of the 4CT, and this together with (i-supp') implies that the 4CT has an a priori 
justification. This being so, the compressed argument would not seem to demand a revision of 
what is in truth the traditional view-namely, that whether or not they are humanly graspable, 
there nonetheless exist a priori justifications for mathematical theorems. 

Let's now consider (iii). As stated, it's too vague to assess. Clarified in the way Tymoczko's 
suggests, however, it runs counter to the traditional conception of proof. This conflict is due to 
a strong property of self-sufficiency that Tymoczko attributes to the traditional conception of 
proof. A proof is, he says, 

... an exhibition, a derivation of the conclusion, and it needs nothing outside of itself 
to be convincing. [Tymoczko 1979], p. 59 

Is such self-sufficiency characteristic of the traditional conception of proof? 
There are reasons to think that it isn't. Conviction often, perhaps typically, requires not 

only proofs per se but reflections on them. These may be as simple as the application of certain 
checking procedures or as complex as reflections on the meaning and/or plausibility of ideas and 
principles used in a proof. Whatever their particular character, reflections on proofs and their 
components are often vital to acceptance of their conclusions. At the same time, though, they do 
not strictly belong to the proofs themselves, at least not as proofs are ordinarily thought of these 
days.19 

Paul Teller ([Teller 1980]) made a similar point in arguing that Tymoczko was wrong to 
regard surveyability as a necessary condition of proof. It's not a property of proofs per se, he 
said, but a property some proofs have and others lack. It signifies not the extent to which an 
argument actually is a proof, but the extent to which it can be verified as such. It's thus a matter 
of degrees. Some proofs are so simple and easy that little knowledge and training is required 

17 Briefly, a proposition p will be said to have an a priori justification if there is a warrant for it that does not depend on 
taking the contents of any experience as evidence. 

18 Later we'll see reason to think that this might even be strengthened to something like' A proposition known to have a 
proof is known a priori' . 

19 This is in part due to the fact that modem understandings of the notion of axiom do not typically retain the classical 
requirement ofself~evidence. 
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for their verification. Others 'are so complicated that only a few mathematicians' ([Teller 1980], 
p. 798) can verify their correctness. Still others are 'out of the reach of the best [verifiers], (loc. 
cit.). Despite this variation in their verifiability, however, all may be genuine proofs. The AH 
proof of the 4CT thus represents at most an extension of our means of surveying proofs, not a 
change in our concept of proof. 

All in all, it seems wrong to say that, on the traditional conception, proof is a unit of 
reasoning that needs nothing outside itself to be convincing. (iii) is therefore not a basic tenet of 
the traditional conception of proof. Conviction in mathematics often involves not only proofs but 
judgments about them-judgments which do not themselves belong to the proofs in question. 
Neither has conviction traditionally been seen as requiring proof, as the discussion of section 2 
makes clear. In sum, proof has not traditionally been regarded as either necessary or sufficient 
for conviction. 

Tymoczko and his claims aside, the AH proof of the 4CT raises other interesting questions 
regarding proof and mathematical knowledge. One of these concerns what if any difference 
there might be between actually having an a priori warrant for a proposition and simply having 
evidence that one exists. 

Suppose that I become convinced, on evidence I know to be reliable, that a certain statement 
K is provable from certain a priori warranted statements IT!, ... , ITn whose warrants I know to be 
reliable. Suppose, in addition, that I have good reason to believe that the shortest proof of K from 
these statements is not humanly surveyable. 

Under such circumstances, it would not be humanly possible to have a proof of K from the 
statements mentioned, and I might even know or believe this to be so. This notwithstanding, I 
might still know that there is such a proof. More exactly, under the circumstances described, my 
knowledge that the statements in IT!, ... , ITn are a priori warranted, and my knowledge that K 

is provable from IT!, ... ,ITn could assure me that K cannot be empirically falsified. This being 
so, my attitude towards K would at least be similar to what it would be were I actually to have a 
proof of K. Applying this to the case of the AH argument, we see that though it may not itself be 
a proof of the 4CT, it might still provide a warrant similar in a priori character to that provided 
byaproof2o 

But does it provide mathematical knowledge? This is a subtler and more difficult question. 
I can read about a proof in a newspaper or the announcements section of a journal and learn 
that a certain theorem (e.g., Fermat's Last Theorem, FLT, for short) has been proved. When the 
publication and my reading of it are both properly judged to be reliable, this learning can amount 
to knowledge. I can thus know that FL T is provable, and, supposing I know that the methods of 
proof used are reliable, I can also know FLT. 

I can know all these things-I and many people in fact do--and still not have mathematical 
knowledge of FLT. The reason, roughly, is that in knowing what I know, I don't know the 
mathematical reasons for FL T. Neither do I know how (i.e. by what reasoning) they guarantee it. 
So, even though I might know that certain propositions (say, the axioms of second-order Peano 
Arithmetic) are true and that certain inferences are sound, and know that from these propositions 
and inferences a proof of FL T can be fashioned, I do not thereby gain mathematical knowledge 
ofFLT. 

20 See Peressini [Peressini 2003], Fallis [Fallis 1996] and [Fallis 1997] for related discussions. 
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This raises a question concerning the AH proof of the 4CT -namely, whether it provides 
enough insight into the mathematical reasons for the 4CT to give genuinely mathematical knowl
edge of it ---either to those who designed it (i.e. Appel, Haken and Koch) or to others with similar 
substantial knowledge of the program believed to be implemented by the computing device. I 
would estimate that it does, but my main point is that the mere fact that at various points the proof 
is turned over to a computer would not prohibit its being an adequate statement of mathematical 
reasons for its conclusion.21 

A key distinction here is that between program and implementation of program. Knowledge 
of the computer-assisted proof of the 4CT can give sufficient knowledge of reasons for the 4CT 
only if two conditions are satisfied. The first is that the knower have extensive enough knowledge 
of the reducibility program to allow him properly to judge that it is an adequate program for doing 
what it's intended anellor believed to do. The second is that the knower should have sufficient 
knowledge of the implementation to warrant judgment that the aforementioned program is indeed 
the program executed by the machine whose output is used. 

It seems the principal novelty of the AH proof concerns the second condition. In ordinary 
computations, knowledge that a computation implements a program comes through survey of the 
computation. In the case of the AH proof this is not and perhaps can not be the case. Whether this 
introduces an empirical element into the AH proof that is fundamentally unlike that which figures 
in more ordinary proofs may be doubted. This notwithstanding, the question of whether the type 
of knowledge an informed knower can have of the program that figures in the AH proof and of 
its implementation can amount to proper knowledge of the reasons for the 4CT is an important 
one, and one that deserves more careful discussion than I can give it here.22 

4 Formalization and' Rigor 

The prevailing view of proof sees rigor as a necessary feature of proof and formalizability as 
a necessary condition of rigor. On this view, a rigorous proof is one that can be known not to 
conceal substantive (i.e. non-logical) information. Its inferences can be seen to be valid solely by 
appeal to logical relations between concepts and not to their 'senses' or 'contents'. As Pasch put it: 

... the process of inferring must always be independent of the sense of. .. concepts 
just as it must be independent of diagrams. It is only relations between ... concepts that 
should be taken into account in the propositions and definitions that are dealt with. In 
the course of the deduction, it is certainly legitimate and useful, though by no means 
necessary, to think of the reference of the concepts involved. Ifit is indeed necessary to 
so think, the defectiveness of the deduction and the inadequacy of the ... proof is thereby 
revealed unless it is possible to remove the gaps by modification of the reasoning used. 

[Pasch 1912], p. 9823 

21 See Fallis [Fallis 2003] for an interesting discussion of the phenomenon of "gaps" in the statements of "reasons" 
offered by proofs. 

22 For an indication of one direction such further discussion might take, see Fallis [Fallis 2002] where broad questions 
concerning the fit between the goals of mathematics and its methods are considered. 

23 My translation. The same basic idea was defended in the middle of the eighteenth century by J. H. Lambert (cf. 
[Lambert 1766], p. 162). 
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Rigorous proof, on this view, is reasoning all of whose inferences track purely logical relations 
between concepts. In the late nineteenth and early twentieth centuries, syntactical criteria for 
such relations were developed and these have become the basis for the currently prevailing view 
of formalization. 

The reasoning behind this view is straightforward: (i) proper proofs are proofs that either 
are or can readily be made rigorous; (ii) proofs that are or can readily be made rigorous are 
formalizable; therefore (iii) all proper proofs are formalizable. Call this argument the common 
argument and its conclusion the common view. 

Both the view and its argument seem dubious. Mathematical proofs are not commonly 
formalized, either at the time they're presented or afterwards. Neither are they generally presented 
in a way that makes their formalizations either apparent or routine. This notwithstanding, they 
are commonly presented in a way that does make their rigor clear-if not at the start, then at least 
by the time they're widely circulated among peers and/or students. There are thus indications 
that rigor and formalization are independent concerns. 

This is not the common view, however. On that view, non-formalized proofs are typically 
close enough to formalized proofs to make the fact of formalizability clear and the remaining 
work of formalization routine. Saunders Mac Lane maintained such a view. 

A mathematical proof is rigorous when it is (or could be) written out in the first order 
predicate language L(E) as a sequence of inferences from the axioms ZFC, each 
inference made according to one of the stated rules .... practically no one actually 
bothers to write out ... formal proofs. In practice, a proof is a sketch, in sufficient detail 
to make possible a routine translation of this sketch into a formal proof. 

[Mac Lane 1986], p. 377 

This, as I said, is the common view. But common or not, not everyone agrees, and the 
dissenters include some who have great experience in the work of formalization. The ar
tificial intelligence researcher John A. Robinson (an expert in automated theorem-proving) 
is a case in point. His experience with formalization causes him to remark that it is often 
"surprisingly difficult" and only occasionally a routine matter (cf. Robinson [Robinson 1997], 
p.54). 

In most cases it requires considerable ingenuity, and has the feel of a fresh and separate 
mathematical problem in itself. In some cases ... formalization is so elusive as to seem 
to be impossible. [Robinson 1997], p. 54 

Still more importantly he sees standard formalization-that is, formalization of the 
usual reduction-to-syntactically-presented-rudimentary-Iogical-inference variety-as often un
desirable even if manageable. The reason is that a prime goal of proof is explanation (cf. 
[Mac Lane 1986], pp. 378~79 and [Robinson 2000], p. 277) and standard formalization can ob
scure explanatory connections. Indeed, Robinson believes that it "typically destroys all traces 
of the explanatory power of the informal proof" (Robinson [Robinson 1997], p. 56; see also 
Robinson [Robinson 2000], pp. 293~94). 

That this is so is due to the fact that standard formalization breaks an informal proof down into 
many artificially small steps of reasoning. Explanation, on the other hand, is typically carried by 
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"large-scale, high-level" ([Robinson 2000], p. 279) "architectural" patterns of reasoning, patterns 
which may be obscured when embedded in a mass of rudimentary logical inferences. 

Too much detail causes difficulty in viewing the big picture. One cannot see the forest 
for the trees. [Robinson 2000], p. 47924 

Robinson believes that real mathematical proofs are essentially performances, and not "struc
tured static texts" ([Robinson 2000], p. 281) in which nothing happens. To focus on formalized 
proofs is to view proofs as such texts, and to do this is like experiencing music only by reading 
musical scores (cf. loco cit.). Scores are important, but there is more to a 'living' piece of music 
than its score. 

In the same way, there is more to a real proof than its formalization. A formal proof is "only 
the score, only the script, only the instructions for producing the real proof" (loc. cit.). Indeed, 
it's typically not even that, since it's generally an afterthought rather than a guide to proof25 

Robinson supports this view by outlining a form of per formative experiment-an introspec
tive experiment in which he looks for theorems that he (a) understands, but which he (b) finds 
incredible and for which he (c) possesses a proof that is within his power to understand with a 
reasonable effort. Once a selection is made, the "experiment" consists in learning how to 'per
form' the given proof while monitoring the process to detect the "crucial moments in the proof" 
(op. cit., p. 282) when his attitude turns from incredulity to acceptance. Robinson illustrates these 
ideas with an example from number theory, namely, Erdos's proof of Bertrand's Conjecture that 
for every positive integer n > I, there is at least one prime p such that n < p < 2n. 26 

The result of such an experiment, Robinson suggests, is that a proof comes to be 
stored as "a collection of relatively few leading ideas dealing with interesting ... phenomena" 
([Robinson 2000], p. 291). Increasing familiarity with these phenomena eventually gives them 
"an aura of certainty" and they become "established resources" which can be "triggered at will". 
The mind, Robinson says, is "hungry" (op. cit., p. 292) for such "key ideas" that capture the 
gist of a proof. Fixing our attention on them provides a better grasp of the overall plan of a 
proof and, with the overall plan before it, the mind can then "understand" (loc. cit.) the proof 
and not get lost in its details. Details can thus be the enemy of understanding and blind us to 
the overall architecture ofa proof(cf. Robinson [Robinson 2000], p. 292). The central work to 
be done, then, is to identify those larger patterns of inference that guide actual mathematical 
practice and understanding and make a formal protocol (or different local formal protocols) 
ofthem. 

24 There is an unmistakable parallel here with Poincare, who campaigned against the "logicization" of mathematical 
reasoning for similar reasons. See Poincare [Poincare 1905], ch. I. See also Detlefsen [Detlefsen 1992] for a fuller 
discussion of these ideas of Poincare's. 

25 For related though in certain respects broader discussions of mathematical activities, see Giaquinto [Giaquinto 2005aJ 
and Rota [Rota 1997]. In addition to proof, the fonner identifies discovery, justification and explanation as other key 
epistemic activities. The latter describes mathematical practice as concerned with such things as investigations, intuitions, 
conjectures and verifications, all of which are taken to be different from, albeit related to, proof. Rota also discusses the 
axiomatic method and how it can sometimes conceal explanatory connections, and offers a few observations concerning 
the processes through which mathematical reasoning is refined. 

26 The conjecture was first proved in 1850 by Chebychev. Erd5s's proof is more picturesque than Chebychev's, however, 
and (therefore?) more memorable, or so Robinson argues (cf. Robinson [Robinson 2000], pp. 283-89). 
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Robinson notes certain difficulties involved in attempting to do this (cf. Robinson 
[Robinson 2000], pp. 293-294). There is, though, a larger possibility that Robinson seems to 
overlook-namely, that there may simply be no family of perceivable entailments that (a) are 
individually "larger" than tijose of rudimentary logic and (b) offer adequate protection from the 
admission of dangerous gaps in mathematical reasoning. This, at any rate, is a central problem 
confronting Robinson's and similar proposals. 

There is also a question concerning a possible deeper relation between explanatory content! 
character and rigor. Traditionally at least, mathematical reasoning has been taken to be at its most 
rigorous when it is also at its most potently explanatory. We're most certain to avoid gaps in 
reasoning when premises explain conclusions. 

Hilbert suggested such a view when he wrote 

It is an error to believe that rigor in proof is an enemy of simplicity. On the contrary we 
find it confirmed by numerous examples that the rigorous method is at the same time the 
simpler and the more easily comprehended. The very effort for rigor forces us to find 
out simpler methods of proof. [Hilbert 1902], p. 441 

In any event, it seems at least possible to think ofthe rigor as linked to explanatory transparency
an inference being rigorous to the extent that its premises can be seen to explain its conclusion.27 
The greater such explanatory transparency, the more confident we can be that unrecognized 
information has not been used to connect a conclusion to premises in ways that matter. To the 
extent, then, that formalization decreases explanatory transparency, it also decreases rigor. A 
reexamination of the commonly presumed connection(s) between rigor and formalization would 
thus seem to be in order. 

5 Visua{jzation and Diagrammatic Reasoning in Matliematics 

The common view of diagrams and their role in proof has for some time been that they are 
merely heuristic devices, useful instruments to aid the discovery, formulation and/or the intuitive 
comprehension of proofs, but lacking any genuinely justificative role in proof. Leibniz stated the 
essentials of this view as follows . 

. . . geometers do not derive their proofs from diagrams, though the expository approach 
makes it seem so. The cogency of demonstration is independent of the diagram, whose 
only role is to make it easier to understand what is meant and to fix one's attention. It 
is universal propositions, i.e. definitions and axioms and theorems which have already 
been demonstrated, that make up the reasoning, and they would sustain it even if there 
were no diagram. [Leibniz 1981], p. 36028 

27 For further recent discussions of the role of explanation in mathematics, see Mancosu [Mancosu 2000] and 
[Mancosu 2001], Tappenden [Tappenden 2005] and Mancosu, Jorgensen et al. [HafnerlMancosu 2005]. 

28 The New Essays were published posthumously in 1765. It was written over an extended period of time and completed 
sometime between 1709 and Leibniz' death in 1716. 
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Many have advocated similar views,29 although some have disagreed, the preeminent example 
being Kant. In Kant's view, diagrammatic reasoning (or something like it) was not only to be 
admitted into genuine proof, it was generally necessary for it ([Kant 1781-87], A 716-17/B744-
45; A713-14/B741-42.) 

Less radical, but still supportive of the use of diagrams in geometrical reasoning were 
Hobbes ([Hobbes 1655], [Hobbes 1656]), Newton ([Newton 1720], appendix, pp. 229-230), 
Locke ([Locke 1697], p. 58) and such lesser figures as Francis Maseres ([Maseres 1758], pp. 
ii-iii). Some, indeed, went beyond sympathy. C. S. Peirce, for example, maintained that virtually 
all reasoning-logical as well as mathematical-is either diagrammatic overall or has essential 
diagrammatic aspects ([Peirce 1898]). 

Historically, there have been two main reasons for denying a genuinely justificative role to 
diagrams. One is unreliability (see [Hahn 1933] for a summary statement), the other their partic
ularity ([Locke 1689-90], Bk IV, ch I, sect 9; [Hume 1748], sect XII, part I; [Berkeley 1709], in 
[Berkeley 1948-57], vol. I, p. 221, [Berkeley 1710], Bk IV, ch 7, sects 7-13). In geometry, there 
are well-known examples used to support the charge of unreliability. A widely used example is 
the famous diagrammatic "proof" that all triangles are equilateral. This was a favorite of Hilbert's 
which he repeated in various of his lecture courses on the foundations of geometry. 

The other, perhaps more fundamental reason for denying justificative status to diagrammatic 
reasoning is their particularity. Mathematical truths are typically general truths while diagrams 
are particular figures. Since deductive reasoning concerning a particular figure can not establish 
a general truth, diagrammatic reasoning can not deductively justify a typical mathematical truth. 
It can only do so by some sort of analogical or broadly inductive extension. So, at any rate, the 
traditional reasoning goes. 

In recent decades there has been renewed interest in diagrammatic reasoning in logic and 
mathematics. One influential example is the investigation and defense initiated by Jon Barwise and 
John Etchemendy, and pursued by various of their students and others. Barwise and Etchemendy 
argue that diagrams can and often do playa genuine epistemic role in proof: "we claim that 
visual forms of representation can be important, not just as heuristic and pedagogic tools, but 
as legitimate elements of mathematical proofs" ([Barwise/Etchemendy 1991], p. 9). Later they 
strengthen this by saying that "diagrams and other forms of visual representation can be essential 
and legitimate components in valid deductive reasoning" (op. cit., p. 16, emphasis added). 

They offer two responses to the charge that diagrammatic (or broadly visual) reasoning is 
unreliable. The first is the basic logical point that the existence of fallacious instances of reasoning 
ofa given broad type does not impugn all instances of that type. Accordingly, even though some 
diagrammatic reasoning is fallacious, not all of it need be. 

The second is a set of specific examples of what Barwise and Etchemendy characterize 
as 'perfectly valid proofs' that use diagrammatic (or other visual) reasoning in justificative 
ways ([Barwise/Etchemendy 1991], p. 12). Their mathematical example is an argument for 

29 We quoted a remark from Pasch earlier that expressed such a view. Hilbert too said such things (cf. lecture notes 
on geometry of the summer semester of 1894, the winter semester of 1898/99 and the summer semester of 1927). It is 
more difficult to determine his final view, however, because of the emphasis he elsewhere placed on 'intuitive grasp' 
(anschaulichen Eifassen) in geometric thinking ([Hilbert/Cohn-Vossen 1932J, V, VI). 

Russell too held such views ([Russell 1901], pp. 88-89, [Russell 19191, p. 145), as did Hans Hahn ([Hahn 1933]). 
More recent examples include Dieudonne [Dieudonne 1960], p. v and Tennant [Tennant 1986], p. 304. 
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the Pythagorean theorem ([Barwise/Etchemendy 1991], p. 12-13, Example 3) that combines 
diagrammatic reasoning and algebraic reasoning. The basic diagram is as follows: 

Br-____ -7F~---.C 

E 
G 

a c 

A b H D 

The focal triangle is /::,.E A H, and the claim to be proved is that a 2 + b 2 = c 2 . The argument 
begins by constructing a square on E H and replicating /::,.E A H three times as indicated in the 
diagram. One then determines that each side of ABC D is a straight line by appealing to the 
theorem that the sum of the angles of a triangle is a straight line. From this, we're told, "one 
easily sees" that ABC Dis itselfa square, and a square whose area can be computed in two ways: 
(a + b)2 and c 2 + 4("i'). Equating these two and doing the obvious calculations, we arrive at 
a 2 + b2 = c2 , which is what was to be proved. 

Commenting on this argument, Barwise and Etchemendy ([Barwise/Etchemendy 1991], p. 
12) make five claims. 

1. It is (clearly) a "legitimate proof of the Pythagorean theorem." 
2. It is a "combination of geometric manipulation of a diagram and algebraic manipulation 

of non diagrammatic symbols." 
3. The diagrammatic elements "playa crucial role in the proof." 
4. The diagrammatic elements are primary (and typical of many traditional geometric proofs) 

in two related ways. 
(a) They make the algebraic steps of the argument "almost transparent." Once the dia

grammatic steps are in place, the algebraic steps are easy to devise. 
(b) An analogous 'linguistic' proof would be both difficult to discover and difficult to 

remember without the use of diagrams. (This may give a sense for the suggestion 
noted above that the diagrammatic elements of the argument are "essential" to it.) 

5. The proof (clearly) does not make use of "accidental features" ofthe diagrams involved. 

Barwise and Etchemendy do not argue for these claims and, to my mind, none are evident. 
I'll briefly state some of my reservations below. Before doing that, though, I'd like to mention that 
both 4(a) and 4(b) are consonant with the traditional view of diagrams-namely, that they can be 
heuristically valuable, even though they play no legitimate justificative role in proof. Accepting 
4(a) and 4(b) would thus not commit one to a justificative role for diagrams. 

Regarding I, I note two points. First, since the argument does not clearly identity all the 
different propositions it depends upon, it seems wrong to say that it is clearly a legitimate proof. 
In fact, it contains gaps, which legitimate proofs are not supposed to have. As an example of a 
gap, consider the step where Barwise and Etchemendy call for the "replication" of the original 
triangle three times as "shown" in the diagram. What goes into such "replication"? And what 



22 Pro~f a",{ otfier Di(emmas 

justifies it? There are plausible answers to these questions, but they need to be added to the 
argument if it is to deserve the title of 'proof'. 

Nor does the Barwise-Etchemendy argument seem to support the suggestion in 4(a). In par
ticular, its diagrammatic starting point does not seem to determine its algebraic details or make 
them 'transparent'. Indeed, as Yanney and Calderhead ([Yanney/Calderhead 1898]) argued long 
ago, there are at least four significantly different ways to carry a proof of the Pythagorean Theorem 
forward from the initial diagrammatic starting point of constructing a square on the hypotenuse 
of /::,.E A H. There may be (and perhaps typically is) some point in the development of a dia
grammatic argument where a set of algebraic steps capable of completing the argument becomes 
"transparent". This would not be enough to show, though, that it's the diagrams that produce the 
transparency. It might instead be sheer accumulation of information, be it diagrammatically or 
non-diagrammatically supplied. Is this what is happening in the Barwise-Etchemendy proof? Or 
is there some distinctive gain in transparency that is specifically due to their use of diagrams? 

Regarding claim 2, my main concern is clarity: specifically, the clarity of the key notion of 
'geometrical manipulation'. On some level, the claim is uncontroversial. There are surely elements 
of the Barwise-Etchemendy argument that in some sense(s) are geometrical manipulations. 
A more difficult question, though, is what role specifically visual information plays in these 
operations. The answer to this is not, I think, clear, and this lack of clarity mounts when we 
consider claim 2 in conjunction with claims 3 and 5. 

What are the 'geometrical manipulations' that supposedly both reflect essentially visual 
information and are clearly not accidential? It's hard to see what they might be. The likely 
candidate is the so-called 'replication' of the original triangle on the four sides of the square 
constructed on its hypotenuse. But it should be noted that this cannot be regarded as non
accidental unless we're able to establish non-accidentally that the sides of ABC D are straight 
lines. 

Barwise and Etchemendy rightly recognize that there needs to be a proof that the sides of 
ABC D are straight lines. What is not clear from their argument is that this relies in any significant 
way on the visual information in their diagrams. Their reasoning is basically that the sides of 
ABC D are straight lines because the interior angles of a triangle sum to a straight line. This 
is non-accidentally true of the sides of A BC D, however, only because of the similarity (in the 
geometrical sense) of triangles AE H, B FE, CG F and DHG. It does not derive from the visual 
qualities of their diagram. We know that AB, for example, is a straight line because: (i) the sum 
of the interior angles of a triangle is a straight angle and (ii) LA E B is equal to such a sum. 
That (ii) is non-accidentally true follows from the additional facts that (a) LAE B is composed of 
LH EA, LH EF and LFE B, that (b) /::,.AE His composed of LH AE, LAH E and LH EA, and 
that (c) LH E A = LH EA, LH E F = LH AE and LFEB = LAH E. Similarly for the other 
sides of ABCD. 

Where is the appeal to visual information in all ofthis? Nothing suggests that it's in (i). We are 
thus left with (ii). But where in (ii)? Not from (b), since that comes from the definition of /::,.AE H. 
Not from (c) either, though, since we get that from logic (LH E A = LH E A) and the knowledge 
that /::,.A E Hand /::,.B FE are similar. This latter knowledge is not genuinely visual since it comes 
from knowledge that LH A E and LE B F are both right angles (because of the way ABC D is 
constructed), that the angles in a triangle sum to two right angles «i) again), that LH E F is a 
right angle (due to E FG H's being constructed as a square), and that LH E A and LF E Bare 
therefore complementary. From this it follows that LFE B = LAH E and LAE H = LBFE. 
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There are, of course, various heuristic roles that visual infonnation may play in this 
reasoning-for example, in first suggesting that LAEB = LAEH + LH EF + LFEB. What 
is not so clear, however, is what justificative role this infonnation might play. 

Suppose, for the sake of argument, that knowledge that LA E B = LA E H + LH E F + 
LF E B does come from the visual experience of the diagram. The content of that experience
LAEB = LAEH + LH EF + LFE B-plays a logical role inthe argument. Thisnotwithstand
ing, this content, and its logical relations to the contents of the other elements of the argument, 
are not the only things that affect the type of warrant the argument provides for its conclusion. 

Traditionally, proofs have been intended to support belief in the necessity of their conclu
sions. Basing belief that LA E B = LA E H + L H E F + LF E B (or any other premise of the 
Barwise-Etchemendy argument) on visual infonnation would not provide for the realization of 
this intention. If our only reason for believing that LA E B = LA E H + L HE F + LF E B is 
that it visually appears to be the case, we will not be in a position at the end of the Barwise
Etchemendy argument to know that it's necessarily the case that a 2 + b 2 = c2 . This, it seems to 
me, is similar to Berkeley's and Hume's objections to Locke's view of diagrams. 

There are other questions and concerns raised by the Barwise-Etchemendy proposal, but 
in the space that remains I'll consider other recent work concerning the use of diagrams and 
visual infonnation in mathematics. One example is Nonnan ([Nonnan 2006]), which argues for 
a broadly Kantian viewpoint according to which diagrammatic reasoning of the type found in 
classical geometry can contribute to a priori justification. That this is so is due to the fact that 
the reasoner typically fonns concepts of (types of) geometrical objects, that she reasons with 
diagrams by taking them to represent instances of these concepts and that she then infers a 
general conclusion by taking the diagram to represent not merely a particular picture or image 
itself but the full set of such images producible by the same essential process of construction 
by which the given diagram was constructed. Having argued this, Nonnan nonetheless concedes 
that, in the end, diagrammatic reasoning lacks the rigor generally required of proofs. He thus 
suggests, in the end, that proof is but one means of attaining mathematical knowledge, an idea 
not unlike that suggested by Wallis, Tymoczko and others. 

James Robert Brown has defended a similar view (cf. Brown [Brown 1999], pp. 24-43), 
arguing that diagrams and pictures can provide evidential grounds for propositions concerning 
mathematical objects we do not see. Since, however, the propositions supported by diagrams 
are often more general than the diagrams themselves are, the justificative role of diagrams can 
not generally be due to their depiction of the subject-matters of the propositions they support. 
They're not so much pictures, says Brown, as 'windows into Plato's heaven' ([Brown 1997], 
p.174). 

What these 'windows' are and how they're supposed to work is not clear. Brown mentions 
a "structural similarity" ([Brown 1997], p. 173) between diagrams and what they depict, and 
maintains that this somehow unites the items that belong to the justificative range of a diagram. 
This structural similarity is, however, presumably different from what Barwise and Etchemendy 
had in mind when they claimed that a 'good diagram is isomorphic, or at least homomorphic, 
to the situation it represents' ([Barwise/Etchemendy 1991], p. 22). Brown at any rate empha
sizes that diagrams are not generally either isomorphic or homomorphic to what they represent 
([Brown \997], p. 173). 

In the end, Brown doesn't show what he claims to show-namely, that diagrams either 
constitute proofs or play justificative roles in them. Indeed, some of what he says goes against 
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this. He notes, in particular, that the main epistemic function of diagrammatic reasoning is to 
provide rational conviction rather than understanding (cf. Brown [Brown 1999], pp. 42-43), the 
latter being typically reserved for the more conventional 'propositional' proofs. But one must then 
wonder whether diagrammatic reasoning supports the higher forms of mathematical knowledge. 
Brown has nothing convincing to say on this point. 

Marcus Giaquinto offers yet another account of visual reasoning in [Giaquinto 1994] and 
[Giaquinto 2005]. Where Brown emphasizes the legitimate evidential force of visual reasoning in 
establishing various theorems of number theory and analysis (e.g. Bolzano's Intermediate Value 
Theorem), Giaquinto emphasizes the differences between geometry and analysis, and argues for 
a much less extensive role for visual reasoning in analysis than in geometry. 

Giaquinto's account of the epistemic role of visual reasoning also differs from Brown's. 
He maintains that visual reasoning is a legitimate means of discovery, where 'discovery' for 
him has a justificative aspect.30 "One discovers a truth (which one does not already believe) 
by coming to believe it independently in an epistemically acceptable way." ([Giaquinto 1994], 
p. 790, emphases added). By requiring independence he means to rule out mere reliance on 
testimony. By epistemicafly acceptable ways he means reliable ways that are not undermined by 
an agent's other beliefs. 

Giaquinto expressly denies that visual reasoning can be used as evidence for various theorems 
of analysis (e.g. the Intermediate Value Theorem, cf. Giaquinto [Giaquinto 1994], p. 793). He 
denies, in particular, that it can serve as a legitimate means of discovery, in the sense of the term 
described above. The reason is that the theorems mentioned exhibit a type of generality that defies 
discovery (in the above sense) by visual reasoning. In visual reasoning in geometry, generality 
is achieved because the visual reasoning typically 'brings to mind' a reliable general 'form of 
thinking'. In the analytic cases mentioned, similarly general reasoning is unreliable. 

In the case of Bolzano' s Intermediate Value Theorem, he argues, in particular, forthe falsity 
of the following: 

(i) Any continuous function that changes signs on an interval has an uninterrupted curve 
from a point above the x-axis to a point below it. 

(ii) Any function whose curve meets the x-axis has a zero value. 

The latter is false because, judged according to visual criteria, a curve with a single point gap 
at the x-axis will nonetheless look like it intersects the x-axis. The two parts of such a line 
"could not appear to be separated by just one point, as a point has zero breadth" (op. cit., 
p. 800). Visualization therefore cannot be a way of discovering (in Giaquinto'S sense) Bolzano's 
theorem. 

Assumption (i) seems even less defensible. The assumption that every continuous function 
has an uninterrupted curve is false because not every continuous function has any (visualizable) 
curve at all. Giaquinto offers Weierstrass' everywhere continuous but nowhere differentiable 
function as an example. At every stage of visualization (assuming the stages to follow the 
imagined steps of magnification) of this function there is a smooth part and the function is thus 

30 He distinguishes two different types of justification, however. One (demonstrative justification) requires both the 
absence of any violation of basic standards of rationality and an ability to explicitly give a reason for one's belief. The 
other (default justification) requires only the fonner (cf. [Giaquinto 1994], p. 791). 
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differentiable. On the other hand, a curve which is non-differentiable at a point "makes a sharp 
tum at that point, and a curve consisting of sharp turns at every point, without any smooth 
segments between sharp points, is unvisualizable" (op. cit., p. 801). Some continuous functions 
thus have no curves (i.e. no visualizable curves) at all. This being so, theorems pertaining to such 
functions cannot be discovered through visualization. Or so Giaquinto reasons. 

He also discusses what he sees as a signal difference between visual reasoning in geometry 
and visual reasoning in analysis (op. cit., pp. 804~805). Certain geometrical concepts (e.g. those 
of a circle and a straight line) can have visual representations because some physical (or visually 
imagined) figures can appear to be perfect exemplars of their geometrical type. Thus, some 
physical or imagined circles can appear to be perfectly circular and some physical or imagined 
straight lines can appear to be perfectly straight. Geometrical concepts thus amount to idealizations 
or perfections, and can be visually represented by exemplars that are near enough to being perfect 
that their defects are not visually detectable. 

The same is not true of such analytic concepts as continuous function, differentiable function 
and the integral. The first cannot be visualized by an uninterrupted curve since this both excludes 
some continuous functions and includes come non-continuous ones. The second cannot be visu
alized as a function with a smooth curve. The third cannot be visualized because of demands that 
analysis places on the concept of area. Hence, there are significant differences between geometry 
and analysis as regards the discoverability of theorems via visualization. Visualization may often 
be an aid to understanding and a stimulus or "trigger" to discovery in analysis, but it is only rarely 
a mode of discovery (cf. op. cit., p. 811). This notwithstanding, it may still be a valuable tool to 
the analyst, and one whose value can be expected to grow with increased experience in analysis 
(op. cit., p. 812).31 

Thus far, I've not questioned the traditional assumption that diagrammatic reasoning is 
useful. I'll now briefly consider this question and the growing body of literature concerned with 
it. It contains some of the most interesting recent work concerning diagrammatic reasoning. 

An important earlier study was Jill Larkin & Herbert Simon's "Why a Diagram is 
(Sometimes) Worth Ten Thousand Words" ([Larkin/Simon 1987]). A key difference between 
diagrammatic and linguistic (what they and others term 'sentential') reasoning, they claimed, 
is the degree to which information explicit in the one is implicit in the other. Diagrams char
acteristically display information explicitly that is only implicit in their linguistic counterparts. 
Since implicit information has to be computed in order to be used, linguistic reasoning typically 
involves more computation than diagrammatic reasoning, and this means that it's less easy.32 
Larkin and Simon argue that this is due in large part to the fact that linguistic representation is 
sequential or linear, while diagrammatic representation is planar. In these planar representations, 
spatially adjacent parts of the diagram often carry inferentially adjacent information. A process 
of diagrammatic reasoning is thus commonly driven by visual traversal or survey of a diagram 
and requires relatively little extraction of (i.e., search for) tacit elements. 

31 For more on the idea that diagrams and/or other types of pictures can act causally as "triggers" for belief-formation 
see Giaquinto [Giaquinto 2005]. 

32 This assumes, of course, that we're talking about linguistic and diagrammatic expressions of the same information. 
Representations are treated as infonnationally equivalent when the information in each is inferrable from the information 
in the other. Infonnationally equivalent representations are then said to be computationally equivalent when, roughly, 
every inference in the one is as easy as the parallel inference in the other. 
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A different explanation of the relative efficiency of diagrammatic over linguistic reasoning 
is pursued by Stenning and Lemon ([Stenning/Lemon 2001]). They argue that it is typically due 
to diagrams' having a lower capacity for expression, in particular, a lower capacity for expressing 
abstractions. They argue further that restricted capacity to express abstractions generally makes 
for tractability of inference, while enhanced such capacity makes for intractability. The authors 
broadly attribute these differences to the planar character of diagrammatic representations . 

... the expressive restrictions on DRs [diagrammatic representations] arise from an 
interaction between topological and geometrical constraints on plane surfaces, and the 
ways in which diagrams are interpreted. 

[Stenning/Lemon 2001], p. 30, brackets added 

The topological constraints mentioned stem from a theorem of Helly's which limits the 
number of convex regions the mutual inclusion/exclusion relationships and emptiness/non
emptiness features that can be accurately presented in a planar array (cf. Stenning and Lemon 
[Stenning/Lemon 2001], pp. 45-46). Diagrams that exceed this limit are not generally trustwor
thy as regards the inclusiOn/exclusion, emptiness/non-emptiness information they convey. 

Stenning and Lemon offer general characterizations of diagrammatic represensentation sys
tems and efficacious diagrammatic representation systems. Roughly, a representation system 
functions diagrammatically to the extent that its interpretation can be directly read off its spa
tial characteristics. A little more exactly, a diagrammatic representation is "a plane structure in 
which representing tokens are objects whose mutual spatial and graphical relations are directly 
interpreted as relations in the target structure" (op. cit., p. 36). 

The directness mentioned plays a key role in the efficiency of diagrammatic reasoning. As 
the interpretation of a representational system grows in abstractness (i.e., becomes less direct) its 
diagrammatic character decreases and the need for extractive interpretation (hence complexity) 
increases. Roughly, then, what makes diagrammatic reasoning efficient, when it is efficient, is the 
directness of its interpretation-the relatively great capacity a user has to read off key features 
of the target structure from the appearance of the diagram. It becomes useful to the extent that 
the features of the target system that can be directly read off the diagram comprise important 
features of the target system. See op. cit., pp. 47-48 for a general characterization of diagrammatic 
effectiveness. 

Unfortunately, the examples treated in this paper, as in most other recent work on diagrams, 
deal mainly with the use of diagrams in purely logical reasoning. Little attention is given to more 

complicated cases such as the use of diagrams in geometrical reasoning33 It may be that the 
general characterizations of diagrammatic reasoning and effective diagrammatic reasoning that 
Stenning and Lemon offer can be extended to such cases, but they offer little to support such a 
view. Nor, finally, do they engage the question of the general relationship between diagrammatic 
reasoning and proof. 

These limitations notwithstanding, I commend the work for its attempt to provide a psy
chologically plausible explanation of why diagrammatic reasoning seems so often useful. Any 
serious account of the role of diagrams in proof will ultimately have to come to grips with the 

33 For examples of what mathematicians count as diagrammatic reasoning, see the continuing series of Prooft without 
Words in the Mathematics Magazine and also the two books by Nelsen ([Nelsen ]997], [Nelsen 2001]). 
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issues these authors address. I might also mention that the references in the paper provide the 
interested reader with valuable suggestions for continued study of these questions. 

6 Conduding Thoughts 

I've focused on three preoccupations of recent writings on proof: 

I. The role and possible effects of empirical reasoning in mathematics. Do recent de
velopments (specifically, the computer-assisted proof of the 4CT) point to something 
essentially new as regards the need for andlor effects of using broadly empirical and 
inductive reasoning in mathematics? In particular, should we see such things as the 
computer-assisted proof of the 4CT as pointing to the existence of mathematical truths of 
which we cannot have a priori knowledge? 

2. The role offormalization in proof. What are the patterns of inference according to which 
mathematical reasoning naturally proceeds? Are they of 'local' character (i.e. sensitive to 
the subject-matter of the reasoning concerned) or 'global' character (i.e. invariant across 
all subject-matters)? Finally, what if any relationship is there (a) between the patterns of 
inference manifest in a proof and its explanatory capacity and (b) between explanatory 
capacity and rigor? 

3. Diagrams and their role in mathematical reasoning. What essentially is diagrammatic 
reasoning, and what is the nature and basis of its usefulness? Can it playa justificative 
role in the development of mathematical knowledge and, more particularly, in genuine 
proof? Finally, does the use of diagrammatic reasoning force an adjustment either in our 
conception of rigor or in our view of its importance? 

Concerning I, I've urged caution as regards the suggestion by Tymoczko (and others) that 
the computer-assisted proof of the 4CT calls for fundamental changes in our understanding of 
mathematical method and proof. Its chief novelty, in my view, is the adjustment it suggests in 
our views of how we may come to know that proofs exist. It offers a concrete illustration of a 
proof that may defy human surveyal but nonetheless admits of survey by a computational routine 
designed and verified by humans. 

The broader proposal of Jaffe and Quinn to "institutionalize" the use of empirical methods 
in mathematics does not challenge our understanding of the nature of proof so much as our use 
of it as a justificative standard in mathematics. It joins questions regarding proper method in 
mathematics to larger questions of morality and social practice. 

The questions raised in 2 remain largely open. Robinson's work emphasizes the importance 
of finding the patterns that carry the flow of infonnation in mathematical proof, and presents 
reasons for thinking they're often detennined by 'local' topic and are not of a topic-neutral 
logical character. 

The questions raised in 3 remain similarly open. This notwithstanding, insightful cases 
have been made for the significance of diagrammatic reasoning as justificative (as distinct from 
purely heuristic). At the same time, our understanding of possible limits on justificative uses of 
diagrammatic reasoning have been similarly advanced. 

As regards the broad questions identified at the beginning of this paper, I've argued that little 
has been done to challenge the traditional view that proof has a distinctive role to play in the 
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development of mathematical knowledge. In particular, I've argued that there is nothing new in 
the view that broadly empirical methods can playa role in mathematical investigation. 

The challenges by Robinson and others to the traditional view of fonnalizability as an ideal 
of proof are of greater interest. They suggest that the level of detail required by certain types of 
fonnalization may actually interfere with the recognition oflarger-scale structures in proofs upon 
which their explanatory potential depends. 

Finally, the growing body of work on diagrammatic reasoning is of similarly great interest 
and potential. It challenges traditional ideas concerning the role of diagrammatic reasoning 
in proof and in the development of mathematical knowledge more generally. It suggests, in 
particular, that diagrammatic reasoning has a justificative and not merely a heuristic role to play 
in proof. Much interesting work has already been done in this direction, and more is sure to 
follow. 
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When computers werefirst introduced, they were much more a tool for the other sciences than 
for mathematics. It was many years hefore more than a very small subset of mathematicians used 
them for anything beyond word-processing. Today, however; more and more mathematicians are 
using computers to actively assist their mathematical research in a range of ways. In this chapter. 
Jonathan Borwein, one of the leaders in this trend, discusses ways that computers can be used in 
the development of mathematics, hoth to assist in the discovery of mathematicalfacts and to assist 
in the development of their proofs. He suggests that what mathematics requires is secure knowledge 
that mathematical claims are true, and an understanding of why they are true, and that proofs are 
not necessarily the only route to this security. For teachers of mathematics, computers are a very 
helpful, if not essential, component of a constructivist approach to the mathematics curriculum. 
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PB. Borwein and D.H. Bailey) for "Ramanujan, Modular Equations and Pi or How to Compute 
a Billion Digits of Pi," (Monthly 1989), Fellowship in the Royal Society of Canada (1994), and 
Fellowship in the American Association for the Advancement of Science (2002). Jointly with 
David Bailey he operates the Experimental Mathematics Website, www.experimentalmath.info. 
He is the author of several hundred papers, and the co-author of numerous books, including, with 
L. Berggren and PB. Borwein, Pi: a Source Book (Springer-Verlag 1997); with David Bailey, 
Mathematics by Experiment: Plausible Reasoning in the 21st Century (AK Peters 2003); with 
David Bailey and Roland Girgensohn, Experiments in Mathematics CD (AK Peters 2006); with 
these same co-authors, Experimentation in Mathematics: Computational Paths to Discovery (AK 
Peters 2004); with David Bailey, Neil Calkin, Roland Girgensohn, D. Luke, and Victor Moll, 
Experimental Mathematics in Action (AK Peters 20073); and he has just completed a related 
book with Keith Devlin, The Computer as Crucible, currently in press with AK Peters. Borwein 
and Bailey have also developed a number of software packagesfor experimental mathematics 
(crd.lbl.govl dhbaileylexpmathlsoftwarel). 

Christopher Koch [Koch 2004] accurately captures a great scientific distaste for philoso
phizing: 

"Whether we scientists are inspired, bored, or infuriated by philosophy, all our theorizing 
and experimentation depends on particular philosophical background assumptions. This 
hidden influence is an acute embarrassment to many researchers, and it is therefore not 
often acknowledged." (Christopher Koch, 2004) 

That acknowledged, I am of the opinion that mathematical philosophy matters more now 
than it has in nearly a century. The power of modem computers matched with that of modem 
mathematical software and the sophistication of current mathematics is changing the way we do 
mathematics. 

In my view it is now both necessary and possible to admit quasi-empirical inductive methods 
fully into mathematical argument. In doing so carefully we will enrich mathematics and yet 
preserve the mathematical literature's deserved reputation for reliability---even as the methods 
and criteria change. What do I mean by reliability? Well, research mathematicians still consult 
Euler or Riemann to be informed, anatomists only consult Harvey4 for historical reasons. Mathe
maticians happily quote old papers as core steps of arguments, physical scientists expect to have 
to confirm results with another experiment. 

1 Matfiematicaf Knowfedge as I View It 

Somewhat unusually, I can exactly place the day at registration that I became a mathematician 
and I recall the reason why. I was about to deposit my punch cards in the 'honours history bin'. I 
remember thinking 

3 An earlier version of this chapter was taught in this short-course based book. 

4 William Harvey published the first accurate descriptIOn of circulation, "An Anatomical Study of the Motion of the Heart 
and of the Blood in Animals," in 162X. 
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"If! do study history, in ten years I shall have forgotten how to use the calculus properly. 
If! take mathematics, I shall still be able to read competently about the War of 1812 or 
the Papal schism." (Jonathan Borwein, 1968) 
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The inescapable reality of objective mathematical knowledge is still with me. Nonetheless, 
my view then of the edifice I was entering is not that close to my view of the one I inhabit forty 
years later. 

I also know when I became a computer-assisted fallibilist. Reading Imre Lakatos' Proofs and 
Refutations, [Lakatos 1976], a few years later while a very new faculty member, I was suddenly 
absolved from the grave sin of error, as I began to understand that missteps, mistakes and errors are 
the grist of all creative work5 The book, his doctorate posthumously published in 1976, is a student 
conversation about the Euler characteristic. The students are of various philosophical stripes and 
the discourse benefits from his early work on Hegel with the Stalinist Lukacs in Hungary and 
from later study with Karl Popper at the London School of Economics. I had been prepared 
for this dispensation by the opportunity to learn a variety of subjects from Michael Dummett. 
Dummett was at that time completing his study rehabilitating Frege's status, [Dummett 1973]. 

A decade later the appearance of the first 'portable' computers happily coincided with my 
desire to decode Srinivasa Ramanujan's (l887~1920) cryptic assertions about theta functions and 
elliptic integrals, [Borwein et al. 1989]. I realized that by coding his formulae and my own in the 
APL programming language6 , I was able to rapidly confirm and refute identities and conjectures 
and to travel much more rapidly and fearlessly down potential blind alleys. I had become a 
computer-assisted fallibilist, at first somewhat falteringly, but twenty years have certainly honed 
my abilities. 

Today, while I appreciate fine proofs and aim to produce them when possible, I no longer 
view proof as the royal road to secure mathematical knowledge. 

2 Introduction 

I first discuss my views, and those of others, on the nature of mathematics, and then illustrate 
these views in a variety of mathematical contexts. A considerably more detailed treatment of 
many of these topics is to be found in my book with Dave Bailey entitled Mathematics by 
Experiment: Plausible Reasoning in the 21st Century-especially in Chapters One, Two and 
Seven, [BorweiniBailey 2003]. Additionally, [Bailey et al. 2007] contains several pertinent case 
studies as well as a version of this current chapter. 

Kurt Godel may well have overturned the mathematical apple cart entirely deductively, but 
nonetheless he could hold quite different ideas about legitimate forms of mathematical reasoning, 
[GOdeI1995]: 

"If mathematics describes an objective world just like physics, there is no reason why 
inductive methods should not be applied in mathematics just the same as in physics." 

(Kurt GodeJ1, 1951) 

5 Gila Hanna [Hanna·2006] takes a more critical view placing more emphasis on the role of proof and certainty in 
mathematics; I do not disagree, so much as I place more value on the role of computer-assisted refutation. Also 'certainty' 
usually arrives late in the development of a proof. 

6 Known as a 'write only' very high level language, APL was a fine tool, albeit with a steep learning curve whose code 
is almost impossible to read later. 

7 Taken from a previously unpublished work, [Godel 1995] originally given as the 1951 Gibbs lecture. 
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While we mathematicians have often separated ourselves from the sciences, they have tended 
to be more ecumenical. For example, a recent review of Models. The Third Dimension of Science, 
[Brown 2004], chose a mathematical plaster model of a Clebsch diagonal surface as its only 
illustration. Similarly, authors seeking examples of the aesthetic in science often choose iconic 
mathematics formulae such as E = MC2 . 

Let me begin by fixing a few concepts before starting work in earnest. Above all, I hope 
to persuade you of the power of mathematical experimentation-it is also fun-and that the 
traditional accounting of mathematical learning and research is largely an ahistorical caricature. 
I recall three terms. 

mathematics, n. a group of related subjects. including algebra. geometry, trigonometry and 
calculus. concerned with the study of number, quantity. shape. and space. and their inter
relationships, applications, generalizations and abstractions. 

This definition-taken from my Collins Dictionary [Borowski/Borwein 2006]-makes no 
immediate mention of proof, nor of the means of reasoning to be allowed. The Webster's 
Dictionary [Webster's 1999] contrasts: 

induction, n. any form of reasoning in which the conclusion. though supported by the premises. 
does not follow from them necessarily.; and 

deduction, n. a process of reasoning in which a conclusion follows necessarily from the premises 
presented. so that the conclusion cannot be false if the premises are true. 
b. a conclusion reached by this process. 

Like Godel, I suggest that both should be entertained in mathematics. This is certainly 
compatible with the general view of mathematicians that in some sense "mathematical stuff is 
out there" to be discovered. In this paper, I shall talk broadly about experimental and heuristic 
mathematics, giving accessible, primarily visual and symbolic, examples. 

3 Phi(oSl!J'hy rf ~erimenta( Mathematics 

"The computer has in turn changed the very nature of mathematical experience, sug
gesting for the first time that mathematics, like physics, may yet become an empirical 
discipline, a place where things are discovered because they are seen." 

(David Berlinski, [Berlinski 1997], p. 39) 

The shift from typographic to digital culture is vexing for mathematicians. For example, 
there is still no truly satisfactory way of displaying mathematics on the web--and certainly not of 
asking mathematical questions. Also, we respect authority, [Grabiner 2004], but value authorship 
deeply-however much the two values are in conflict, [BorweiniStanway 2005]. For example, 
the more I recast someone else's ideas in my own words, the more I enhance my authorship while 
undermining the original authority of the notions. Medieval scribes had the opposite concern and 
so took care to attribute their ideas to such as Aristotle or Plato. 

And we care more about the reliability of our literature than does any other science. Indeed 
I would argue that we have over-subscribed to this notion and often pay lip-service, not real 
attention, to our older literature. How often does one see original sources sprinkled like holy water 
in papers that make no real use of them-the references offering a false sense of scholarship? 
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The traditional central role of proof in mathematics is arguably and perhaps appropriately 
under siege. Via examples, I intend to pose and answer various questions. I shall conclude with 
a variety of quotations from our progenitors and even contemporaries: 

My Questions. What constitutes secure mathematical knowledge? When is computation convinc
ing? Are humans less fallible? What tools are available? What methodologies? What of the 'law 
of the small numbers'? Who cares for certainty? What is the role of proof? How is mathematics 
actually done? How should it be? I mean these questions both about the apprehension (discovery) 
and the establishment (proving) of mathematics. This is presumably more controversial in the 
fonnal proof phase. 

My Answers. To misquote D' Arcy Thompson (1860-1948) 'fonn follows function', [Thompson 
1992]: rigour (proof) follows reason (discovery); indeed, excessive focus on rigour has driven us 
away from our wellsprings. Many good ideas are wrong. Not all truths are provable, and not all 
provable truths are worth proving. Giidel's incompleteness results certainly showed us the first 
two of these assertions while the third is the bane of editors who are frequently presented with 
correct but unexceptional and unmotivated generalizations of results in the literature. Moreover, 
near certainty is often as good as it gets-intellectual context (community) matters. Recent 
complex human proofs are often very long, extraordinarily subtle and fraught with error
consider Fennat's last theorem, the Poincare conjecture, the classification of finite simple groups, 
presumably any proof ofthe Riemann hypothesis, [Economist 2005]. So while we mathematicians 
publicly talk of certainty we really settle for security. 

In all these settings, modern computational tools dramatically change the nature and scale 
of available evidence. Given an interesting identity buried in a long and complicated paper on an 
unfamiliar subject, which would give you more confidence in its correctness: staring at the proof, 
or confinning computationally that it is correct to 10,000 decimal places? 

Here is such a fonnula ([Bailey/Borwein 2005], p. 20): 

24 l rr/ 2 Itant + ./71 ? Fi log Fi dt == L_7(2) 
7..;7 rr/3 tant -..;7 

~ [I I I I I I ] 
= ~ (711 + 1)2 + (711 + 2)2 - (711 + 3)2 + (711 + 4)2 - (711 + 5)2 - (711 + 6)2 . 

(I) 

This identity links a volume (the integral) to an arithmetic quantity (the sum). It arose out of 
some studies in quantum field theory, in analysis of the volumes of ideal tetrahedra in hyperbolic 
space. The question mark is used because, while no hint of a path to a fonnal proof is yet known, 
it has been verified numerically to 20,000 digit precision-using 45 minutes on 1024 processors 
at Virginia Tech. 

A more inductive approach can have significant benefits. For example, as there is still some 
doubt about the proof of the classification of finite simple groups it is important to ask whether 
the result is true but the proof flawed, or rather if there is still perhaps an 'ogre' sporadic group 
even larger than the 'monster.' What heuristic, probabilistic or computational tools can increase 
our confidence that the ogre does or does not exist? Likewise, there are experts who still believe 
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the Riemann hypothesis8 (RH) may be false and that the billions of zeroes found so far are much 
too small to be representative.9 In any event, our understanding of the complexity of various 
crypto-systems relies on (RH) and we should like secure knowledge that any counter-example is 
enormOllS. 

Peter Medawar (1915-87)--a Nobel prize winning oncologist and a great expositor of science
writing in Advice to a Young Scientist, [Medawar 1979], identifies four fonns of scientific 
experiment: 

1. The Kantian experiment: generating "the classical non-Euclidean geometries (hyperbolic, 
elliptic) by replacing Euclid's axiom of parallels (or something equivalent to it) with 
alternative forms." All mathematicians perfonn such experiments while the majority of 
computer explorations are of the following Baconian fonn. 

2. The Baconian experiment is a contrived as opposed to a natural happening, it "is the con
sequence of 'trying things out' or even of merely messing about." Baconian experiments 
are the explorations of a happy if disorganized beachcomber and carry little predictive 
power. 

3. Aristotelian demonstrations: "apply electrodes to a frog 's sciatic nerve, and 10, the leg 
kicks; always precede the presentation of the dog's dinner with the ringing of a bell, and 10, 
the bell alone will soon make the dog dribble." Arguably our 'Corollaries' and 'Examples' 
are Aristotelian, they reinforce but do not predict. Medawar then says the most important 
fonn of experiment is: 

4. The Galilean experiment is "a critical experiment-one that discriminates between pos
sibilities and, in doing so, either gives us confidence in the view we are taking or makes us 
think it in need of correction." The Galilean is the only fonn of experiment which stands 
to make Experimental Mathematics a serious enterprise. Perfonning careful, replicable 
Galilean experiments requires work and care. 

Reuben Hersh's arguments for a humanist philosophy of mathematics, especially ([Hersh 1995], 
pp. 590-591), and ([Hersh 1999], p. 22), as paraphrased below, become even more convincing 
in our highly computational setting. 

1. Mathematics is human. It is part of and fits into human culture. It does not match Frege's 
concept of an abstract, timeless, tenseless, objective reality. 10 

2. Mathematical knowledge is fallible. As in science, mathematics can advance by making 
mistakes and then correcting or even re-correcting them. The "fallibilism" of mathematics 
is brilliantly argued in Lakatos' Proofs and Refutations. 

3. There are different versions of proof or rigor. Standards of rigor can vary depending on 
time, place, and other things. The use of computers in formal proofs, exemplified by the 

8 All non-trivial zeroes-not negative even integers---ofthe zeta function lie on the line with real part 112. 

9 See [Odlyzko 2001J and various of Andrew Odlyzko's unpublished but widely circulated works. 

10 That Frege's view of mathematics is wrong, for Hersh as for me, does not diminish its historical importance. 
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computer-assisted pro%/the four color theorem in /977." is just one example of an 
emerging nontraditional standard o/rigor. 

4. Empirical evidence, numerical experimentation and probabilistic proof all can help us 
decide what to believe in mathematics. Aristotelian logic isn't necessarily always the best 
way o/deciding. 

5. Mathematical objects are a special variety of a social-cultural-historical object. Contrary 
to the assertions o/certain post-modern detractors. mathematics cannot be dismissed as 
merely a new/orm o/literature or religion. Nevertheless, many mathematical objects can 
be seen as shared ideas. like Mohy Dick in literature. or the Immaculate Conception in 
religion. 

I entirely subscribe to points 2., 3., 4., and with certain caveats about objective knowledge'2 
to points I. and 5. In any event mathematics is and will remain a uniquely human undertaking. 

This version of humanism sits fairly comfortably along-side current versions of social
constructivism as described next. 

"The social constructivist thesis is that mathematics is a social construction, a cultural 
product, fallible like any other branch of knowledge." (Paul Ernest, [Ernest 1990], §3) 

But only if I qualify this with "Yes. but much-much less fallible than most branches of 
knowledge." Associated most notably with the writings of Paul Ernest-an English Mathematician 
and Professor in the Philosophy of Mathematics Education who in [Ernest 1998] traces the 
intellectual pedigree for his thesis, a pedigree that encompasses the writings of Wittgenstein, 
Lakatos, Davis, and Hersh among others-social constructivism seeks to define mathematical 
knowledge and epistemology through the social structure and interactions of the mathematical 
community and society as a whole. 

This interaction often takes place over very long periods. Many of the ideas our students
and some colleagues-take for granted took a great deal of time to gel. The Greeks suspected 
the impossibility of the three classical construction problems 13 and the irrationality ofthe golden 
mean was well known to the Pythagoreans. 

While concerns about potential and completed infinities are very old, until the advent of the 
calculus with Newton and Leibnitz and the need to handle fluxions or infinitesimals, the level of 
need for rigour remained modest. Certainly Euclid is in its geometric domain generally a model 
of rig our, while also Archimedes' numerical analysis was not equalled until the 19th century. 

The need for rigour arrived in full force in the time of Cauchy and Fourier. The treacherous 
countably infinite processes of analysis and the limitations of formal manipulation came to the 
fore. It is difficult with a modem sensibility to understand how Cauchy's proof of the continuity 

II Especially since a new implementation by Seymour, Robertson and Thomas in 1997 has produced a simpler, clearer 
and less troubling implementation. 

12 While it is not Hersh's intention, a superficial reading of point 5. hints at a cultural relativism to which I certainly do 
not subscribe. 

13 Trisection, circle squaring and cube doubling were taken by the educated to be impossible in antiquity. Already in 414 
BCE, in his play The Bird,;, Aristophanes uses 'circle-squarers' as a tenn for those who attempt the impossible. Similarly, 
the French Academy stopped accepting claimed proofs a full two centuries before the 19th century achieved proofs of 
their impossibility. 
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of pointwise-limits could coexist in texts for a generation with clear counter-examples originating 
in Fourier's theory of heat. 14 

By the end of the 19th century Frege's (1848-1925) attempt to base mathematics in a linguis
tically based logicism had foundered on Russell and other's discoveries of the paradoxes of naive 
set theory. Within thirty five years Godel-and then Turing's more algorithmic treatment 15-had 
similarly damaged both Russell and Whitehead's and Hilbert's programs. 

Throughout the twentieth century, bolstered by the armor of abstraction, the great ship 
Mathematics has sailed on largely unperturbed. During the last decade of the 19th and first few 
decades of the 20th century the following main streams of philosophy emerged explicitly within 
mathematics to replace logicism, but primarily as the domain of philosophers and logicians. 

• Platonism. Everyman's idealist philosophy-stuff exists and we must find it. Despite 
being the oldest mathematical philosophy, Platonism-still predominant among working 
mathematicians-was only christened in 1934 by Paul Bernays.16 

• Formalism. Associated mostly with Hilbert-it asserts that mathematics is invented and 
is best viewed as formal symbolic games without intrinsic meaning. 

• Intuitionism. Invented by Brouwer and championed by Heyting, intuitionism asks for 
inarguable monadic components that can be fully analyzed and has many variants; this 
has interesting overlaps with recent work in cognitive psychology such as Lakoff and 
Nunez' work, [LakofflNunez 200 I], on 'embodied cognition'. 17 

• Constructivism. Originating with Markoff and especially Kronecker (1823-1891), and 
refined by Bishop it finds fault with significant parts of classical mathematics. Its 'I'm 
from Missouri, tell me how big it is' sensibility is not to be confused with Paul Ernest's 
'social constructivism', [Ernest 1998]. 

The last two philosophies deny the principle of the excluded middle, "A or not A," and 
resonate with computer science-as does some of formalism. It is hard after all to run a deter
ministic program which does not know which disjunctive logic-gate to follow. By contrast the 
battle between a Platonic idealism (a 'deductive absolutism') and various forms of 'fallibilism' 
(a quasi-empirical 'relativism') plays out across all four, but fallibilism perhaps lives most easily 
within a restrained version of intuitionism which looks for 'intuitive arguments' and is willing 
to accept that 'a proof is what convinces'. As Lakatos shows, an argument that was convincing 
a hundred years ago may well now be viewed as inadequate. And one today trusted may be 
challenged in the next century. 

14 Cauchy's proof appeared in his 1821 text on analysis. While counterexamples were pointed out almost immediately, 
Stokes and Seidel were still refining the missing unifonnity conditions in the late 1 840s. 

15 The modem treatment of incompleteness leans heavily on Turing's analysis of the Halting prohlem for so-called Turing 
machines. 
16 Sec Karlis Podnicks. "Platonism. Intuition and the Nature on Mathematics," available at w\J\J.ltn.lv/podnieks/ 

gtl.html 

17 The cognate views of Henri Poincare (1854-1912) ([Poincare 2004]. p. 23) on the role of the suhliminal are reflected 
in "The mathematical facts that are worthy of study are those that, by their analogy with other facts are susceptible of 
leading us to knowledge ofa mathematical law, in the same way that physical facts lead us to a physical law." He also 
wrote "It is by logic we prove, it is by intuition that we invent," [Poincare 19041. 
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As we illustrate in the next section or two, it is only perhaps in the last twenty five years, 
with the emergence of powerful mathematical platforms, that any approach other than a largely 
undigested Platonism and a reliance on proof and abstraction has had the tools l8 to give it traction 
with working mathematicians. 

In this light, Hales' proof of Kepler's conjecture that the densest way to stack spheres 
is in a pyramid resolves the oldest problem in discrete geometry. It also supplies the most 
interesting recent example of intensively computer-assisted proof, and after five years with the 
review process was published in the Annals of Mathematics-with an "only 99% checked" 
disclaimer, withdrawn very late in the process and after being widely reported. 

This process has triggered very varied reactions [Kolata 2004] and has provoked Thomas 
Hales to attempt a formal computational proof which he expects to complete by 2011, 
[Economist 2005]. Famous earlier examples of fundamentally computer-assisted proof include 
the Four color theorem and proof of the Non-existence of a projective plane of order 10. The 
three raise and answer quite distinct questions about computer-assisted proof-both real and 
specious. For example, there were real concerns about the completeness of the search in the 1976 
proof of the Four color theorem but there should be none about the 1997 reworking by Seymour, 
Robertson and Thomas. 19 Correspondingly, Lam deservedly won the 1992 Lester R. Ford award 
for his compelling explanation of why to trust his computer when it announced there was no 
plane of order ten, [Lam 1991]. Finally, while it is reasonable to be concerned about the certainty 
of Hales' conclusion, was it really the Annal's purpose to suggest all other articles have been 
more than 99% certified? 

To make the case as to how far mathematical computation has come we trace the changes 
over the past half century. The 1949 computation of rr to 2,037 places suggested by von Neumann, 
took 70 hours. A billion digits may now be computed in much less time on a laptop. Strikingly, 
it would have taken roughly 100,000 ENIAC's to store the Smithsonian's picture-as is possible 
thanks to 40 years of Moore's law in action.2o 

This is an astounding record of sustained exponential progress without peer in the history of 
technology. Additionally, mathematical tools are now being implemented on parallel platforms, 
providing much greater power to the research mathematician. Amassing huge amounts of process
ing power will not alone solve many mathematical problems. There are very few mathematical 
'Grand-challenge problems', [JBorweiniPBorwein 2001] where, as in the physical sciences, a 
few more orders of computational power will resolve a problem. 

For example, an order of magnitude improvement in computational power currently translates 
into one more day of accurate weather forecasting, while it is now common for biomedical 
researchers to design experiments today whose outcome is predicated on 'peta-scale' computation 
being available by say 2010, [Rowe et al. 2005]. There is, however, much more value in very 
rapid 'Aha's' as can be obtained through "micro-parallelism;" that is, where we benefit by being 
able to compute many simultaneous answers on a neurologically-rapid scale and so can hold 
many parts of a problem in our mind at one time. 

18 That is, to broadly implement Hersh's central points (2.-4.). 

19 See wWloI.math. gatech. edu/thomas/FC/fourcolor. html. 

20 Moore's Law is now taken to be the assertion that semiconductor technology approximately doubles in capacity and 
performance roughly every 18 to 24 months. 
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To sum up, in light of the discussion and tenns above, I now describe myself a sort-of social
constructivist, and as a computer-assisted fallibilist with constructivist leanings. I believe that 
more-and-more of the interesting parts of mathematics will be less-and-Iess susceptible to classical 
deductive analysis and that Hersh's 'non-traditional standard of rigor' must come to the fore. 

4 Our ~erimenta( MatflOdo(0!J!f 

Despite Picasso's complaint that "computers are useless, they only give answers," the main 
goal of computation in pure mathematics is arguably to yield insight. This demands speed or, 
equivalently, substantial micro-parallelism to provide answers on a cognitively relevant scale; 
so that we may ask and answer more questions while they remain in our consciousness. This 
is relevant for rapid verification; for validation; for proofs and especially for refutations which 
includes what Lakatos calls "monster barring," [Lakatos 1976]. Most of this goes on in the daily 
small-scale accretive level of mathematical discovery but insight is gained even in cases like the 
proof of the Four color theorem or the Non-existence ofa plane of order ten. Such insight is not 
found in the case-enumeration of the proof, but rather in the algorithmic reasons for believing 
that one has at hand a tractable unavoidable set of configurations or another effective algorithmic 
strategy. For instance, Lam [Lam 1991] ran his algorithms on known cases in various subtle 
ways, and also explained why built-in redundancy made the probability of machine-generated 
error negligible. More generally, the act of programming~if well perfonned~always leads to 
more insight about the structure of the problem. 

In this setting it is enough to equate parallelism with access to requisite more space and 
speed of computation. Also, we should be willing to consider all computations as 'exact' 
which provide truly reliable answers.2] This now usually requires a careful hybrid of sym
bolic and numeric methods, such as achieved by Maple's liaison with the Numerical Algo
rithms Group (NAG) Library22, see [Bornemann et al. 2004], [Borwein 200Sb]. There are now 
excellent tools for such purposes throughout analysis, algebra, geometry and topology, see 
[BorweiniBailey 2003], [Borwein et al. 2004], [Bornemann et al. 2004], [JBorwein/PBorwein 
2001], [BorweiniCorIess 1999]. 

Along the way questions required by---or just made natural by---computing start to force 
out older questions and possibilities in the way beautifully described a century ago by Dewey 
regarding evolution. 

"Old ideas give way slowly; for they are more than abstract logical fonns and categories. 
They are habits, predispositions, deeply engrained attitudes of aversion and preference. 
Moreover, the conviction persists~though history shows it to be a hallucination~that 
all the questions that the human mind has asked are questions that can be answered in 
tenns of the alternatives that the questions themselves present. But in fact intellectual 
progress usually occurs through sheer abandonment of questions together with both of 
the alternatives they assume; an abandonment that results from their decreasing vitality 
and a change of urgent interest. We do not solve them: we get over them. Old questions 

21 If careful interval analysis can certify that a number known to be integer is larger than 2.5 and less than 3.5, this 
constitutes an exact computational proof that it is 3. 

22 See ww'w .nag. co. uk/. 
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are solved by disappearing, evaporating, while new questions corresponding to the 
changed attitude of endeavor and preference take their place. Doubtless the greatest 
dissolvent in contemporary thought of old questions, the greatest precipitant of new 
methods, new intentions, new problems, is the one effected by the scientific revolution 
that found its climax in the 'Origin of Species. ", (John Dewey, [Dewey 1997]) 

43 

Lest one think this a feature of the humanities and the human sciences, consider the artisanal 
chemical processes that have been lost as they were replaced by cheaper industrial versions. 
And mathematics is far from immune. Felix Klein, quoted at length in the introduction to 
[JBorweiniPBorwein 1987], laments that "now the younger generation hardly knows abelian 
functions." He goes on to explain that: 

"In mathematics as in the other sciences, the same processes can be observed again and 
again. First, new questions arise, for internal or external reasons, and draw researchers 
away from the old questions. And the old questions, just because they have been worked 
on so much, need ever more comprehensive study for their mastery. This is unpleasant, 
and so one is glad to tum to problems that have been less developed and therefore require 
less foreknowledge-even if it is only a matter of ax ioma tics, or set theory, or some 
such thing." (Felix Klein, [Klein 1928], p. 294) 

Freeman Dyson has likewise gracefully described how taste changes: 

"I see some parallels between the shifts of fashion in mathematics and in music. In 
music, the popular new styles of jazz and rock became fashionable a little earlier than 
the new mathematical styles of chaos and complexity theory. Jazz and rock were long 
despised by classical musicians, but have emerged as art-forms more accessible than 
classical music to a wide section of the public. Jazz and rock are no longer to be despised 
as passing fads. Neither are chaos and complexity theory. But still, classical music and 
classical mathematics are not dead. Mozart lives, and so does Euler. When the wheel of 
fashion turns once more, quantum mechanics and hard analysis will once again be in 
style." (Freeman Dyson, [Dyson 1996]) 

For example recursively defined objects were once anathema-Ramanujan worked very 
hard to replace lovely iterations by sometimes-obscure closed-form approximations. Addition
ally, what is "easy" changes: high performance computing and networking are blurring, merg
ing disciplines and collaborators. This is democratizing mathematics but further challenging 
authentication---consider how easy it is to find information on Wikipedia23 and how hard it is to 
validate it. 

Moving towards a well articulated Experimental Mathodology-both in theory and 
practice-will take much effort. The need is premised on the assertions that intuition is acquired
we can and must better mesh computation and mathematics, and that visualization is of growing 
importance-in many settings even three is a lot of dimensions. 

23 Wikipedia is an open source project at en. wikipedia. org/wiki/Main_Page; "wiki-wiki" is Hawaiian for "quickly." 
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"Monster-barring" (Lakatos's tenn, [Lakatos 1976], for refining hypotheses to rule out nasty 
counter-examples24) and "caging" (Nathalie Sinclair tells me this is my own tenn for imposing 
needed restrictions in a conjecture) are often easy to enhance computationally, as for example 
with randomized checks of equations, linear algebra, and primality or graphic checks of equalities, 
inequalities, areas, etc. Moreover, our mathodology fits well with the kind of pedagogy espoused 
at a more elementary level (and without the computer) by John Mason in [Mason 2006]. 

4.1 Eight Roresjor Comyutation 

I next recapitulate eight roles for computation that Bailey and I discuss in our two recent books 
[BorweiniBailey 2003], [Borwein et al. 2004]: 

#1. Gaining insight and intuition or just knowledge. Working algorithmically with math
ematical objects almost inevitably adds insight to the processes one is studying. At some 
point even just the careful aggregation of data leads to better understanding. 

#2. Discovering new facts, patterns and relationships. The number of additive partitions 
ofa positive integer n, pen), is generated by 

'" n I P(q):= I + L..,.p(n)q = n= (I _ n)' 
n2:i n=1 q 

(2) 

Thus, p(5) = 7 since 

5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1. 

Developing (2) is a fine introduction to enumeration via generating functions. Additive 
partitions are harder to handle than multiplicative factorizations, but they are very inter
esting ([Borwein et al. 2004], Chapter 4). Ramanujan used Major MacMahon's table of 
pen) to intuit remarkable deep congruences such as 

p(5n + 4) == 0 mod 5, p(7n + 5) == 0 mod 7, p(ltn + 6) == 0 mod lt, 

from relatively limited data like 

P(q) = I + q + 2 q2 + 3 q3 + ~ q4 + '7 q5 + II q6 + 15 q 7 

+ 22 qS + 30q9 + 42 q 10 + 56q" + 77 q12 + 101 q 13 + illql4 

+ 176 q '5 + 231 q'6 + 297 q'7 + 385 q 'S + 490ql9 

+ 627 q 20b + 792 q21 + 1002 q22 + ... + p(200)q200 + ... (3) 

Cases 5n + 4 and 7n + 5 are flagged in (3). Of course, it is markedly easier to (heuris
tically) confinn than find these fine examples of Mathematics: the science ofpatterns.25 

The study of such congruences-much assisted by symbolic computation-is very active 
today. 

24 Is, for example, a polyhedron always convex? Is a curve intended to be simple? Is a topology assumed Hausdorff, a 
group commutative? 

25 The title of Keith Devlin's 1996 book, [Devlin 1996]. 
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#3. Graphing to expose mathematical facts, strnctures or principles. Consider Nick Tre
fethen's fourth challenge problem as described in [Bornemann et a!. 2004], [Borwein 
2005bj. It requires one to find ten good digits of: 
4. What is the global minimum of the function 

exp(sin(50x» + sin(60e}') + sin(70 sinx) + sin(sin(80y» 

- sin(IO(x + y» + (x 2 + y2)/4? 

As a foretaste of future graphic tools, one can solve this problem graphically and inter
actively using current adaptive 3-D plotting routines which can catch all the bumps. This 
does admittedly rely on trusting a good deal of software. 

#4. Rigourously testing and especially falsifying conjectures. I hew to the Popperian scien
tific view that we primarily falsify; but that as we perform more and more testing experi
ments without such falsification we draw closer to firm belief in the truth of a conjecture 
such as: the polynomial P(n) = n 2 - n + p has prime values Jar all n = 0, 1, ... , p - 2, 
exactly Jar Euler's lucky prime numbers, thatis. p = 2. 3, 5, 11, 17, and 4126 

#5. Exploring a possible result to see if it merits formal proof. A conventional deductive 
approach to a hard multi-step problem really requires establishing all the subordinate 
lemmas and propositions needed along the way-especially if they are highly technical 
and un-intuitive. Now some may be independently interesting or useful, but many are only 
worth proving if the entire expedition pans out. Computational experimental mathematics 
provides tools to survey the landscape with little risk of error: only if the view from the 
summit is worthwhile, does one layout the route carefully. I discuss this further at the 
end of the next Section. 

#6. Suggesting approaches for formal proof. The proof of the cubic theta Junction identity 
discussed in ([Borwein et a!. 2004], p. 21 Off), shows how a fully intelligible human proof 
can be obtained entirely by careful symbolic computation. 

#7. Computing replacing lengthy hand derivations. Who would wish to verify the following 
prime factorization by hand? 

6422607578676942838792549775208734746307 

(2140992015395526641)( 1963506722254397)( 1527791). 

Surely, what we value is understanding the underlying algorithm, not the human work? 
#8. Confirming analytically derived results. This is a wonderful and frequently accessible 

way of confirming results. Even if the result itselfis not computationally checkable, there 
is often an accessible corollary. An assertion about bounded operators on Hilbert space 
may have a useful consequence for three-by-three matrices. It is also an excellent way to 
error correct, or to check calculus examples before giving a class. 

5 Finding Things versus Proving Things 

I now illuminate these eight roles with eight mathematical examples. At the end of each I note 
some of the roles illustrated. 

26 See [Weisstein WWW] for the answer. 
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Figure 2.1 (Ex. I.): Graphical comparison of -x' In(x) (IowerIocal maximum in both graphs) with x - x' 
(left graph) and x' - X4 (right graph) 

1. Pictorial comparison of y - y2 and y2 - y4 to - y2 In(y), when y lies in the unit interval, 
is a much more rapid way to divine which function is larger than by using traditional 
analytic methods. 

Figure 2.1 below shows that it is clear in the latter case that the functions cross, and so 
it is futile to try to prove one majorizes the other. In the first case, evidence is provided 
to motivate attempting a proof and often the picture serves to guide such a proof-by 
showing monotonicity or convexity or some other salient property. • 

This certainly illustrates roles #3 and #4, and perhaps role #5. 

2. A proof and a disproof. Any modem computer algebra can tell one that 

l ' (I - X)4x 4 22 
0< dx = --1f 

o 1 +x2 7' 
(4) 

since the integral may be interpreted as the area under a positive curve. We are however 
no wiser as to why! If however we ask the same system to compute the indefinite integral, 
we are likely to be told that 

l ' 1 7 2 6 5 4 3 
. = - I - - I + I - - I + 4 I - 4 arctan (I). 

o 7 3 3 

Then (4) is now rigourously established by differentiation and an appeal to the Funda
mental theorem of calculus. • 

This illustrates roles #1 and #6. It also falsifies the bad conjecture that 1f = 22/7 and so 
illustrates #4 again. Finally, the computer's proof is easier (#7) and very nice, though probably it 
is not the one we would have developed by ourselves. The fact that 22/7 is a continued fraction 
approximation to 1f has led to many hunts for generalizations of (4), see [Borwein et al. 2004], 
Chapter I. None so far are entirely successful. 

3. A computer discovery and a 'proof' of the series for arcsin2(x). We compute a few 
coefficients and observe that there is a regular power of 4 in the numerator, and integers 
in the denominator; or equivalently we look at arcsin(x /2f. The generating function 
package 'gfun' in Map/e, then predicts a recursion, r, for the denominators and solves it, 
as R. 

>wi th(gfun) : 

>s:=[seq(l/coeff(series(arcsin(x/2)~2tx,25),x,2*n)tn=1 . . 6)]: 

>R: =unapply(rsolve(op(l , listtorec(s,r(m»),r(m»,m);[seq(R(m),m=O .. 8)]; 
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yields, s := [4,48,360,2240, 12600,66528], 

4m r(3/2 + m)(m + I) 
R :=m t-> 8 rrl/2r(l +m) , 

where r is the Gamma function, and then returns the sequence of values 

[4,48,360,2240,12600,66528,336336,1647360,7876440]. 

We may now use Sloane's Online Encyclopedia of Integer Sequences27 to reveal that the 
coefficients are R(n) = 2n 2 c:), More precisely, sequence A002544 identifies 
R(n + 1)/4 = Cnn+1)(n + 1)2, 

confirms this with 

[4,48,360,2240,12600,66528,336336,1647360], 

Next we write 

> s:=Sum«2*x)-(2*n)/(2*n-2*binomial(2*n,n)),n=1, ,infinity):S=values(S); 

which returns 

That is, we have discovered-and proven if we trust or verify Maple's summation 
algorithm-the desired Maclaurin series. 

As prefigured by Ramanujan, it transpires that there is a beautiful closed form for 
arcsin2m (x) for all m = I, 2, .... In [BorweiniChamberland 2007] there is a discussion of 
the use of integer relation methods, [BorweiniBailey 2003], Chapter 6, to find this closed 
form and associated proofs are presented. • 

Here we see an admixture of all of the roles save #3, but above all #2 and #5. 

4. Discovery without proof. Donald Knuth28 asked for a closed form evaluation of: 

OO{kk I} L -k - ~ = -0.084069508727655 .... 
k=l k!e v 2 rrk 

(5) 

Since about 2000 CE it has been easy to compute 20-or 200---digits of this sum in 
Maple or Mathematica; and then to use the 'smart lookup' facility in the Inverse Symbolic 
Calculator(ISC). The ISC at oldweb. cecm. sfu. ca/proj ects/ISC uses a variety of 
search algorithms and heuristics to predict what a number might actually be. Similar ideas 
are now implemented as 'identify' in Maple and (for algebraic numbers only) as 'Rec
ognize' in Mathematica, and are described in [Borwein 2005b], [BorweiniBailey 2003], 

27 At wvw. research. att. com/"-'nj as/sequences/index. html. 

28 Posed as an MAA Problem [Knuth 2002]. 
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[BorweiniCorless 1999], [Bailey/Borwein 2000]. In this case it rapidly returns 

0.084069508727655 ~ ~ + ;; ~) . 
3 v27f 

We thus have a prediction which Maple 9.5 on a 2004 laptop confirms to 100 places in 
under 6 seconds and to 500 in 40 seconds. Arguably we are done. After all we were asked 
to evaluate the series and we now know a closed-form answer. 

Notice also that the 'divergent' ;;(1/2) term is formally to be expected in that while 
2::::, Iln'/2 = 00, the analytic continuation of ;;(s) := 2::::, lin' for s > I evaluated 
at 112 does occur! • 

We have discovered and tested the result and in so doing gained insight and knowledge while 
illustrating roles # I, #2 and #4. Moreover, as described in [Borwein et al. 2004], p. 15, one can 
also be led by the computer to a very satisfactory computer-assisted but also very human proof, 
thus illustrating role #6. Indeed, the first hint is that the computer algebra system returned the value 
in (5) very quickly even though the series is very slowly convergent. This suggests the program 
is doing something intelligent-and it is! Such a use of computing is termed "instrumental" in 
that the computer is fundamental to the process, see [Lagrange 2005]. 

5. A striking conjecture with no kuown proof strategy (as of spring 2007)29 given in 
[Borwein et al. 2004], p. 162, is: for n = I. 2, 3 ... 

(6) 

Explicitly, the first two cases are 

and 64 

The notation should now be clear-we use the 'overbar' to denote an alternation. Such 
alternating sums are called multi-zeta values (MZV) and positive ones are called Euler 
sums after Euler who first studied them seriously. They arise naturally in a variety of 
modem fields from combinatorics to mathematical physics and knot theory. 

There is abundant evidence amassed since 'identity' (6) was found in 1996. For 
example, very recently Petr Lisonek checked the first 85 cases to 1000 places in about 41 
HP hours with only the predicted round-off error. And the case n = 163 was checked in 
about ten hours. These objects are very hard to compute naively and require substantial 
computation as a precursor to their analysis. 

Formula (6) is the only identification of its type of an Euler sum with a distinct MZV 
and we have no idea why it is true. Any similar MZV proof has been both highly non
trivial and illuminating. To illustrate how far we are from proof: can just the case n = 2 
be proven symbolically as has been the case for n = I? • 

This identity was discovered by the British quantum field theorist David Broadhurst and me 
during a large hunt for such objects in the mid-nineties. In this process we discovered and proved 
many lovely results (see [BorweiniBailey 2003], Chapter 2, and [Borwein et al. 2004], Chap
ter 4), thereby illustrating #1,#2, #4, #5 and #7. In the case of 'identity' (6) we have failed with 

29 A quite subtle proof has now been found by Zhao and is described in the second edition of [BorweiniBailey 2003]. 
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Fi!lure 2.2 (Ex. 6.): "The price of metaphor is eternal vigilance." (Arturo Rosenblueth & Norbert Wiener, 
[Lewontin 2001]) 

#6, but we have ruled out many sterile approaches. It is one of many examples where we can 
now have (near) certainty without proof. Another was shown in equation (1) above. 

6. What you draw is what you see. Roots of polynomials with coefficients 1 or -I up to 
degree 18. 

As the quote suggests, pictures are highly metaphorical. The shading in Figure 2.2 
is determined by a normalized sensitivity of the coefficients of the polynomials to slight 
variations around the values of the zeros with red indicating low sensitivity and violet 
indicating high sensitivity.3D It is hard to see how the structure revealed in the pictures 
above3l would be seen other than through graphically data-mining. Note the different 
shapes-now proven by P. Borwein and colleagues----of the holes around the various 
roots of unity. 

The striations are unexplained but all re-computations expose them! And the fractal 
structure is provably there. Nonetheless different ways of measuring the stability of the 
calculations reveal somewhat different features. This is very much analogous to a chemist 
discovering an unexplained but robust spectral line. • 

This certainly illustrates #2 and #7, but also #1 and #3. 

30 Colour versions may be seen at oldweb. cecm. sfu. ca/personal/loki/Pro j ects/Roots/Bookl and on the cover 
of this book. 

31 We plot all complex zeroes of polynomials with only ~l and I as coefficients up to a given degree. As the degree 
increases some of the holes fill in-at different rates. 
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Fi!Jure 2.3 (Ex. 7.): "Visual convergence in the complex plane" 

7. Visual Dynamics. In recent continued fraction work, Crandall and I needed to study the 
dynamical system to := t, := I: 

tn := ~ tn-I + "'n-1 (I - ~) tn-2, 

where "'n = a 2 , b2 for n even, odd respectively, are two unit vectors. Think of this as a 
black box which we wish to examine scientifically. Numerically, all one sees is tn --+ 0 
slowly. Pictorially, in Figure 2.3, we learn significantly more32 If the iterates are plotted 
with colour changing after every few hundred iterates,33 it is clear that they spiral roman
candle like in to the origin: 

Scaling by .;n, and distinguishing even and odd iterates, fine structure appears in 
Figure 2.4. We now observe, predict and validate that the outcomes depend on whether 
or not one or both of a and b are roots of unity (that is, rational multiples of JT). Input a 
pth root of unity and out come p spirals, input a non-root of unity and we see a circle .• 

This forceably illustrates role #2 but also roles #1, #3, #4. It took my coauthors and me, over a 
year and 100 pages to convert this intuition into a rigorous formal proof, [Bailey/Borwein 2005]. 
Indeed, the results are technical and delicate enough that I have more faith in the facts than in the 
finished argument. In this sentiment, I am not entirely alone. 

Carl Friedrich Gauss, who drew (carefully) and computed a great deal, is said to have noted, 
I have the result, but I do not yet know how to get it. 34 An excited young Gauss writes: "A new 
field of analysis has appeared to us, self-evidently, in the study of functions etc." (October 1798, 

32 ... "Then felt I like a watcher of the skies, when a new planet swims into his ken." From John Keats (1795-1821) 
poem On first looking into Chapman :\' Horner. 

33 A colour version may be seen on the cover of [Bailey et al. 2007]. 

34 Like so many attributions, the quote has so far escaped exact isolation! 
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Figure 2.4 (Ex. 7.): The attractors for various 101 = Ihl = 1 

reproduced in [BorweiniBailey 2003]. Fig. 1.2, p.15). It had and the consequent proofs pried 
open the doors of much modern elliptic function and number theory. 

My penultimate and more comprehensive example is more sophisticated and I beg the 
less-expert analyst's indulgence. Please consider its structure and not the details. 

8. A full run. Consider the unsolved Problem 10738 from the 1999 American Mathematical 
Monthly, [Borwein et al. 2004]: 

Problem: For 1 > 0 let 

= t k 
mn(t) = L kn exp( -t) -

k~O k! 

be the nth moment ofaPoisson distribution with parameter I. Let Cn(l) = mn(t)/n!. Show 

a) [mn(t)I~o is ]og-convex35 for all t > O. 
b) [cn(t)}~o is not log-concave for I < I. 

c*) [cn(t)I~o is log-concave for I :: 1. 

Solution. (a) Neglecting the factor of exp( -I) as we may, this reduces to 

(jk)"+ltk+ j (jk)"tk+j ,_ (jk)"lk+ j k' + j' L k! '! :<' L -k-'-',- k - L k!"! --2-' 
k,J?:..O ] k,j?:..O J k,}?:.O) 

and this now follows from 2)k ::s k 2 + )2. 

(b) As 

00 Ik 

mn+l(t) = t L(k + I)" exp( -I) kI' 
k=O 

on applying the binomial theorem to (k + I)", we see that mn(t) satisfies the recurrence 

mo(t) = 1. 

In particular for I = I, we computationally obtain as many terms of the sequence 

I, 1,2,5,15,52,203,877,4140 ... 

35 A sequence {an} is log-convex if an+l an-l ::: a~. for n ::: I and log-concave when the inequality is reversed. 
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as we wish. These are the Bell numbers as was discovered again by consulting Sloane s 
Encyclopedia which can also tell us that, for t = 2, we have the generalized Bell numbers, 
and gives the exponential generating functions. 36 Inter alia, an explicit computation shows 
that 

1+ t 2 2 
t -2- = CO(t)C2(t)::: CI(t) = t 

exactly ift:o: I, which completes (b). 
Also, preparatory to the next part, a simple calculation shows that 

LcnUn =exp(t(e" -I». (7) 
n~O 

(C*)37 We appeal to a recent theorem, [Borwein et al. 2004], p. 42, due to E. Rodney 
Canfield which proves the lovely and quite difficult result below. A self-contained proof 
would be very fine. 

Theorem t: If a sequence I, b l , b2 , ••• is non-negative and log-concave then so is the 
sequence I, CI, C2, ... determined by the generating function equation 

Using equation (7) above, we apply this to the sequence b j = t/U - I)! which is log
concave exactly for t :0: I. • 

A search in 200 I on MathSciNet for "Bell numbers" since 1995 turned up 18 items. Canfield's 
paper showed up as number 10. Later, Google found it immediately! 

Quite unusually, the given solution to (c) was the only one received by the Monthly. The 
reason might well be that it relied on the following sequence of steps: 

I A (Question Posed) => Computer Algebra System => Interface => I 
I Search Engine => Digital Library => Hard New Paper => (Answer) I 

Without going into detail, we have visited most of the points elaborated in Section 4.1. Now if 
only we could already automate this process! 

Jacques Hadamard, describes the role of proof as well as anyone-and most persuasively 
given that his 1896 proof of the Prime number theorem is an inarguable apex of rigorous analysis. 

"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, 
and there was never any other object for it." (Jacques Hadamard38 ) 

Of the eight uses of computers instanced above, let me reiterate the central importance of 
heuristic methods for determining what is true and whether it merits proof. I tentatively offer the 

36 Bell numbers were known earlier to Ramanujan-an example of Stigler s Law of Eponymy, [Borwein et al. 2004], 
p. 60. Combinatorially they count the number of non empty subsets ofa finite set. 

37 The '*' indicates this was the unsolved component. 

38 J. Hadamard, in E. Borel, Lecons sur la theorie des [onctions, 3rd ed. 1928, quoted in ([Polya 1981 ](2), p. 127). See 
also [Poincare 2004]. 
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following surprising example which is very very likely to be true, offers no suggestion of a proof 
and indeed may have no reasonable proof. 

9. Conjecture. Consider 

{ 120n2 -89n+16} 
Xn = 16xn _1 + 512n4 _ 1024n3 + 712n2 _ 206n + 21 . (8) 

The sequence f3n = (LI6xn J), where (xn) is the sequence o/iterates defined in equation 
(8), precisely generates the hexadecimal expansion o/n - 3. 

(Here {. I denotes the fractional part and (L'J) denotes the integer part.) In fact, we know 
from [BorweiniBailey 2003], Chapter 4, that the first million iterates are correct and in 
consequence: 

L Ilxn - {I6n nlll ~ 1.46 x 10-8 .... (9) 
n=1 

where Iiall = min(a, I - a). By the first Borel-Cantelli lemma this shows that the hex
adecimal expansion of n only finitely differs from (f3n). Heuristically, the probability of 
any error is very low. • 

6 Conc(usions 

To summarize, I do argue that reimposing the primacy of mathematical knowledge over proof 
is appropriate. So I return to the matter of what it takes to persuade an individual to adopt new 
methods and drop time honoured ones. Aptly, we may start by consulting Kuhn on the matter of 
paradigm shift: 

"The issue of paradigm choice can never be unequivocally settled by logic and ex
periment alone .... in these matters neither proof nor error is at issue. The transfer of 
allegiance from paradigm to paradigm is a conversion experience that cannot be forced." 

(Thomas Kuhn39 ) 

As we have seen, the pragmatist philosopher John Dewey eloquently agrees, while Max 
Planck, [Planck 1949], has also famously remarked on the difficulty of such paradigm shifts. 
This is Kuhn's version40 : 

"And Max Planck, surveying his own career in his Scientific Autobiography, sadly 
remarked that 'a new scientific truth does not triumph by convincing its opponents and 
making them see the light, but rather because its opponents eventually die, and a new 
generation grows up that is familiar with it.'" 

(Albert Einstein, [Kuhn 1996], [Planck 1949]) 

This transition is certainly already apparent. It is certainly rarer to find a mathematician under 
thirty who is unfamiliar with at least one of Maple, Mathematica or MatLab, than it is to one 

39 In [Regis 1988], Who Got Einstein: .. Qffice? The answer is Arne Beurling. 

40 Kuhn is quoting Einstein quoting Planck. There are various renderings of this second-hand German quotation. 
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over sixty five who is really fluent. As such fluency becomes ubiquitous, I expect are-balancing 
of our community's valuing of deductive proof over inductive knowledge. 

In his famous lecture to the Paris International Congress in 1900, Hilbert writes4l 

"Moreover a mathematical problem should be difficult in order to entice us, yet not 
completely inaccessible, lest it mock our efforts. It should be to us a guidepost on the 
mazy path to hidden truths, and ultimately a reminder of our pleasure in the successful 
solution." (David Hilbert, [Yandell 2002]) 

Note the primacy given by a most exacting researcher to discovery and to truth over proof 
and rigor. More controversially and most of a century later, Greg Chaitin invites us to be bolder 
and act more like physicists. 

"I believe that elementary number theory and the rest of mathematics should be pursued 
more in the spirit of experimental science, and that you should be willing to adopt 
new principles .... And the Riemann Hypothesis isn't self-evident either, but it S very 

useful. A physicist would say that there is ample experimental evidence for the Riemann 
Hypothesis and would go ahead and take it as a working assumption .... We may want 
to introduce it formally into our mathematical system." 

(Greg Chaitin, [BorweiniBailey 2003], p. 254) 

Ten years later: 

"[Chaitin's] "Opinion" article proposes that the Riemann hypothesis (RH) be adopted as 
a new axiom for mathematics. Normally one could only countenance such a suggestion 
if one were assured that the RH was undecidable. However, a proof of undecidability 
is a logical impossibility in this case, since if RH is false it is provably false. Thus, the 
author contends, one may either wait for a proof, or disproof, of RH-both of which 
could be impossible--or one may take the bull by the horns and accept the RH as an 
axiom. He prefers this latter course as the more positive one." (Roger Heath Brown42 ) 

Much as I admire the challenge of Greg Chaitin's statements, I am not yet convinced that 
it is helpful to add axioms as opposed to proving conditional results that start "Assuming the 
continuum hypothesis" or emphasize that "without assuming the Riemann hypothesis we are able 
to show .... " Most important is that we lay our cards on the table. We should explicitly and 
honestly indicate when we believe our tools to be heuristic, we should carefully indicate why we 
have confidence in our computations-and where our uncertainty lies-and the like. 

On that note, Hardy is supposed to have commented-somewhat dismissively-that Landau, 
a great German number theorist, would never be the first to prove the Riemann Hypothesis, but 
that if someone else did so then Landau would have the best possible proof shortly after. I certainly 
hope that a more experimental methodology will better value independent replication and honour 

41 See the late Ben Yandell's fine account of the twenty-three "Mathematische Probleme" lecture, Hilbert Problems and 
their solvers, [Yandell 2002]. The written lecture (given in [Yandell 2002]) is considerably longer and further ranging 
that the one delivered in person. 

42 Roger Heath-Brown's Mathematical Review of[Chaitin 2004], 2004. 
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the first transparent proof 43 of Fennat's last theorem as much as Andrew Wiles' monumental 
proof. Hardy also commented that he did his best work past forty. Inductive, accretive, tool
assisted mathematics certainly allows brilliance to be supplemented by experience and-as in my 
case-stands to further undennine the notion that one necessarily does one's best mathematics 
young. 

6.1 As Jor Education 

The main consequence for me is that a constructivist educational curriculum-supported by 
both good technology and reliable content-is both possible and highly desirable. In a traditional 
instructivist mathematics classroom there are few opportunities for realistic discovery. The current 
sophistication of dynamic geometry software such as Geometer s Sketchpad, Cabri or Cinderella, 
of many fine web-interfaces, and of broad mathematical computation platfonns like Maple and 
Mathematica has changed this greatly-though in my opinion both Maple and Mathematica are 
unsuitable until late in high-school, as they presume too much of both the student and the teacher. 
A thoughtful and detailed discussion of many of the central issues can be found in J.P. Lagrange's 
article [Lagrange 2005] on teaching functions in such a milieu. 

Another important lesson is that we need to teach procedural or algorithmic thinking. Al
though some vague notion of a computer program as a repeated procedure is probably ubiquitous 
today, this does not carry much water in practice. For example, five years or so ago, while teaching 
future elementary school teachers (in their final year), I introduced only one topic not in the text: 
extraction of roots by Newton's method. I taught this in class, tested it on an assignment and 
repeated it during the review period. About half of the students participated in both sessions. On 
the final exam, I asked the students to compute v'3 using Newton's method starting at Xo = 3 to 
estimate v'3 = 1.732050808 ... so that the first three digits after the decimal point were correct. 
I hoped to seex\ = 2,X2 = 7/4andx3 = 97/56 = 1.732142857 .... I gave the students the exact 
iteration in the fonn 

x + 3/XOLD 
XNEW = 2 (10) 

and some other details. The half of the class that had been taught the method had no trouble with 
the question. The rest almost without exception "guessed and checked." They tried XOLD = 3 and 
then rather randomly substituted many other values in (10). If they were lucky they found some 
XOLD such that XNEW did the job. 

My own recent experiences with technology-mediated curriculum are described in Jen 
Chang'S 2006 MPub, [Chang 2006]. There is a concurrent commercial implementation of such a 
middle-school Interactive School Mathematics currently being completed by MathResources. 44 

Many of the examples I have given, or similar ones more tailored to school [Borwein 2005a], are 
easily introduced into the curriculum, but only if the teacher is not left alone to do so. Technology 
also allows the same teacher to provide enriched material (say, on fractions, binomials, irrational
ity, fractals or chaos) to the brightest in the class while allowing more practice for those still 

43 Should such exist and as you prefer be discovered or invented. 

44 See WW"W .mathresources. com/products/ism/index .html. I am a co-founder ofthis ten-year old company. Such 
a venture is very expensive and thus relies on commercial underpinning. 
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struggling with the basics. That said, successful mathematical education relies on active partici
pation of the learner and the teacher and my own goal has been to produce technological resources 
to support not supplant this process; and I hope to make learning or teaching mathematics more 
rewarding and often more fun. 

6.2 Last Words 

To reprise, I hope to have made convincing arguments that the traditional deductive accounting 
of Mathematics is a largely ahistorical caricature-Euclid's millennial sway not withstanding.45 

Above all, mathematics is primarily about secure knowledge not proof, and that while the aesthetic 
is central, we must put much more emphasis on notions of supporting evidence and attend more 
closely to the reliability of witnesses. 

Proofs are often out of reach-but understanding, even certainty, is not. Clearly, computer 
packages can make concepts more accessible. A short list includes linear relation algorithms, 
Galois theory, Groebner bases, etc. While progress is made "one funeral al a lime,"46 in Thomas 
Wolfe's words "you can 'I go home again" and as the co-inventor of the Fast Fourier transform 
properly observed, in [Tukey 1962]47 

"Far better an approximate answer to the right question, which is often vague, than the 
exact answer to the wrong question, which can always be made precise." 

Acknowledgements My gratitude is due to many colleagues who offered thoughtful and chal
lenging comments during the completion of this work, and especially to David Bailey, Neil Calkin 
and Nathalie Sinclair. Equal gratitude is owed to the editors, Bonnie Gold and Roger Simons, for 
their careful and appropriately critical readings of several earlier drafts of this chapter. 

Riferences 
[BaiJey/Borwein 2000] D.H. Bailey and 1.M. Borwein, "Experimental Mathematics: Recent Developments 

and Future Outlook," pp. 51-66 in Vol. I of Mathematics Unlimited--2001 and Beyond. B. Engquist 
& W. Schmid (Eds.), Springer-Verlag, 2000. 

[Bailey/Borwein 2005] --, "Experimental Mathematics: Examples, Methods and Implications," Notices 
Amer. Math. Soc., 52 No.5 (2005), pp. 502-514. 

[Bailey et al. 2007] D. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luke, and V. Moll, Experimental 
Mathematics in Action, A.K. Peters, Ltd., 2007. 

[Berlinski 1997] David Berlinski, "Ground Zero: A Review of The Pleasures of Counting, by T. W. Koerner," 
by David Berlinski, The Sciences, July/August 1997, pp. 37-41. 

[Bornemann et al. 2004] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM 100 Digit 
Challenge: A Study in High-Accuracy Numerical Computing, SIAM, Philadelphia, 2004. 

45 Most of the cited quotations are stored at jborwein/quotations .html 

46 This grim version of Planck's comment is sometimes attributed to Niels Bohr but this seems specious. It is also 
spuriously attributed on the web to Michael Milken, and 1 imagine many others. 

47 Ironically, despite often being cited as in that article, I can not locate it! 



2. Tmyllcatiom qf Exyerimema[ Matfrematics}or the Pfri[os'!J1h!J qf Mathematics 57 

[Borowski/Borwein 2006) E.J. Borowski and J.M. Borwein, Dictionary of Mathematics, Smithsonian! 
Collins Edition, 2006. 

[Borwein 2005a) J.M. Borwein "The Experimental Mathematician: The Pleasure of Discovery and the Role 
of Proof," International Journal o{Computersfor Mathematical Learning, 10 (2005), pp. 75-108. 

[Borwein 2005b)--, "The 100 Digit Challenge: an Extended Review," Math Intelligencer, 27 (4) (2005), 
pp. 40-48. Available at users. cs. dal. ca/~jborwein/digits .pdf. 

[Borwein/Bailey 2003) J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning 
in the 21st Century, AK Peters Ltd, 2003, second expanded edition, 2008. 

[Borwein et al. 2004] 1.M. Borwein, D.H. Bailey and R. Girgensohn, Experimentation in Mathematics: 
Computational Paths to Discovery, AK Peters Ltd, 2004. 

[JBorwein/PBorwein 1987) J.M. Borwein and P.B. Borwein, Pi and the AGM, CMS Monographs and 
Advanced Texts, John Wiley, 1987. 

[JBorwein/PBorwein 2001) --, "Challenges for Mathematical Computing," Computing in Science & 
Engineering, 3 (200 I), pp. 48-53. 

[Borwein et al. 1989] 1.M. Borwein, P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi 
or how to compute a billion digits of pi," MAA Monthly, 96 (1989), pp. 201-219. Reprinted in Organic 
Mathematics Proceedings, (www.cecm.sfu.ca/organics), April 12, t 996. Print version: CMSIAMS 
Conference Proceedings, 20 (1997), ISSN: 0731-1036. 

[BorweiniChamberland 2007) Jonathan Borwein and Marc Chamberland, "Integer powers of Arcsin," Int. 
J. Math. & Math. Sci., 10 Pages, Art. ID 19381, June 2007. [D-drive preprint 288). 

[BorweiniCorless 1999) Jonathan M. Borwein and Robert Corless, "Emerging Tools for Experimental 
Mathematics," MAA Monthly, 106 (1999), pp. 889-909. 

[BorweiniStanway 2005) J.M. Borwein and T.S. Stanway, "Knowledge and Community in Mathematics," 
The Mathematical Intelligencer, 27 (2005), pp. 7-16. 

[Brown 2004) Julie K. Brown, "Solid Tools for Visualizing Science," Science, November 19, 2004, 
pp. 1136-37. 

[Chaitin 2004) G.J. Chaitin, "Thoughts on the Riemann hypothesis," Math. Intelligencer. 26 (2004), no. I, 
pp. 4-7. (MR2034034) 

[Chang 2006) Jen Chang, "The SAMPLE Experience: the Development of a Rich Media Online Mathe
matics Learning Environment," MPub Project Report, Simon Fraser University. 2006. Available at 
locutus.cs.dal.ca:8088/archive/00000327/. 

[Dewey 1997) John Dewey, Influence o{Darwin on Philosophy and Other Essays, Prometheus Books, 1997. 

[Devlin 1996) Keith Devlin, Mathematics the Science of Patterns, Owl Books, 1996. 

[DongaITa/Sullivan 2000) J. DongaITa, F. Sullivan, "The top 10 algorithms," Computing in Science & Engi
neering. 2 (2000), pp. 22-23. (See www.cecm.sfu.ca/personal/ jborwein/algori thIns. html.) 

[Dummett 1973) Michael Dummett, Frege: Philosophy of Language, Harvard University Press, 1973. 

[Dyson 1996) Freeman Dyson, Review of Nature s Numbers by Ian Stewart (Basic Books, 1995). American 
Mathematical Monthly, August-September 1996, p. 612. 

[Economist 2005) "Proof and Beauty," The Economist, March 31, 2005. 
(See www.economist.com/science/displayStory . cfm?story_id=3809661.) 

[Ernest 1990] Paul Ernest, ·'Social Constructivism As a Philosophy of Mathematics. Radical Constructivism 
Rehabilitated?" A 'historical paper' available at www.people.ex.ac . uk/PErnest/. 

[Ernest 1998)--, Social Constructivism As a Philosophy of Mathematics, State University of New York 
Press, 1998. 



58 Proqf aMa otfrer Di(emmas 

[Godel 1995] Kurt Godel, "Some Basic Theorems on the Foundations," p. 313 in Collected Works. Vol. III. 
Unpublished essays and lectures. Oxford University Press, New York, 1995. 

[Grabiner 2004] Judith Grabiner. "Newton, Maclaurin, and the Authority of Mathematics," MAA Monthly, 
December 2004, pp. 841-852. 

[Hanna 2006] Gila Hanna, "The Influence of Lakatos," preprint, 2006. 

[Hersh 1995] Reuben Hersh, "Fresh Breezes in the Philosophy of Mathematics", MAA Monthly, August 
1995, pp. 589-594. 

[Hersh 1999]--, What is Mathematics Really? Oxford University Press, 1999. 

[Klein 1928] Felix Klein, Development of Mathematics in the 19th Century. 1928, Trans Math. Sci. Press, 
R. Hermann Ed. (Brookline, MA, 1979). 

[Kolata 2004] Gina Kolata, "In Math, Computers Don't Lie. Or Do They?" NY Times, April 6th, 
2004. 

[Koch 2004] Christopher Koch, "Thinking About the Conscious Mind," a review of John R. Searle's 
Mind. A Brief Introduction. Oxford University Press, 2004. Science, November 5, 2004, pp. 979-
980. 

[Knuth 2002] Donald Knuth, American Mathematical Monthly Problem 10832, November 2002. 

[Kuhn 1996] T.S. Kuhn, The Structure of Scientific Revolutions. 3rd ed., U. of Chicago Press, 1996. 

[Lakatos 1976] bnre Lakatos, Proofs and Refutations, Cambridge Univ. Press, 1976. 

[LakofflNunez 200 I] George Lakoff and Rafael E. Nunez, Where Mathematics Comes From: How the 
Embodied Mind Brings Mathematics into Being, Basic Books, 2001. 

[Lam 1991] Clement W.H. Lam, "The Search for a Finite Projective Plane of Order 10," Amer. Math. 
Monthly 98 (1991), pp. 305-318. 

[Lagrange 2005] J.B. Lagrange, "Curriculum, Classroom Practices, and Tool Design in the Learning of 
Functions through Technology-aided Experimental Approaches," International Journal q[Computers 
in Math Learning. 10 (2005), pp. 143-189. 

[Lewontin 2001] R. C. Lewontin, "In the Beginning Was the Word," (Human Genome Issue), Science, 
February 16,2001, pp. 1263-1264. 

[Mason 2006] John Mason, Learning and Doing Mathematics, QED Press; 2nd revised ed.b, 2006. 

[Medawar 1979] Peter B. Medawar, Advice to a Young Scientist. HarperCollins, 1979. 

[Odlyzko 200 I] Andrew Odlyzko, "The 1022-nd zero of the Riemann zeta function. Dynamical, spectral, 
and arithmetic zeta functions," Contemp. Math., 290 (2001), pp. 139-144. 

[Planck 1949] Max Planck, Scientific Autobiography and Other Papers, trans. F. Gaynor (New York, 1949), 
pp.33-34. 

[Poincare 2004] Henri Poincare, "Mathematical Invention," pp. 2()"""30 in Musing S of the Masters, Raymond 
Ayoub editor, MAA, 2004. 

[Poincare 1904]--, Mathematical Definitions in Education, (1904). 

[Polya 1981] George P6lya, Mathematical Discovery: On Understanding, Learning. and Teaching Problem 
Solving (Combined Edition), New York, Wiley & Sons, 1981. 

[Regis 1988] Ed Regis, Who got Einstein's office? Addison Wesley, 1988. 

[Rowe et al. 2005] Kerry Rowe et aI., Engines of Discovery: The 21st Century Revolution. The Long Range 
Plan for HPC in Canada, NRC Press, Ottawa, 2005. 

[Thompson 1992] D' Arcy Thompson, On Growth and Form. Dover Publications, 1992. 



2. Imy(;cations if Exyerimenta( MatHematicsjor tHe PHi(osryH!f if MatHematics 

[Tukey 1962) l.W. Tukey, "The future of data analysis," Ann. Math. Statist. 33, (1962), pp. 1-67. 

[Webster's 1999) Random House Webster s Unabridged Dictionary, Random House, 1999. 

59 

[Weisstein WWW) Eric W. Weisstein, "Lucky Number of Euler," from MathWorld-A Wolfram Web Re
source. mathworld. wolfram. com/LuckyNumberofEuler. html. 

[Yandell 2002) Benjamin Yandell, The Honors Class, AK Peters, 2002. 





3 
On the Ro{es '!! Pro'!! in Mathematics 

From the Editors 

Joseph Auslander 
Department of Mathematics 

University of Maryland 

This third perspective on proof comes from a mathematician with a more traditional perspective 
than Borwein s. The author brings his considerable experience both in developing his own proofs 
and in reviewing others' to questions about the roles of proof His discussion on the roles of 
proof contains some interesting new ideas, such as proof as exploration and proof as justification 
of dl!finitions-ideas that are relevant to us as we think about how we teach mathematics. At 
the end he offers some extended illustrations of his main points. from his experience working in 
topological dynamics and ergodic theory. 

Joseph Auslander is a Professor Emeritus of Mathematics at the University of Maryland. 
He has published extensively in topological dynamics and ergodic theory. He is the author 
of Minimal Flows and Their Extensions (1988) and co-editor, with Walter H Gottschalk, of 
Topological Dynamics. an international symposium (1968). He has published two reviews of 
booh in the philosophy of mathematics: What is Mathematics, Really? by Reuben Hersh, Where 
Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being by George 
Lakoff and Rafael E. Nunez. Those reviews appeared in SIAM Review (2000) and American 
Scientist (2001), respectively. With Bonnie Gold, he organized a panel for the winter 2001 joint 
mathematics meetings in New Orleans on "The Philosophy of Mathematics: That Which is of 
Interest to Mathematicians," which led to the founding ofPOMSIGMAA. He was thefirst Secretary 
ofPOMS1GMAA, and gave a talk, "When is a Proofa Proof?" at the POMSIGMAA contributed 
paper session in January 2004. 
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In this article, I will make, and try to justify, the following points. 

Deductive proof is almost the defining feature of mathematics. Mathematics without proof 
would not be mathematics. This is so although mathematics consists of more than proof, 
and proof occurs in other disciplines. 

Proof is necessary for validation of a mathematical result. But there are other, equally 
compelling reasons for proof. 

Standards of proof vary over time, and even among different mathematicians at a given time. 
The question of "when is a proof a proof?" is a complex one. This has al ways been an issue, 

but it is particularly so now in the light of computer assisted proofs and very long proofs. 

1 Protj as a Difining Feature tj Mathematics 

I am writing. as a working mathematician, not as a philosopher. My approach to proofis consistent 
with the viewpoint, cogently put forth by Reuben Hersh [1997] and Paul Ernest [1998], that 
mathematics is socially constructed. That is, it has been constructed by humans, and is part of 
human culture. Therefore I will focus on what mathematicians actually do. This is what Hersh 
calls "practical proof-the argument that convinces the qualified skeptical expert" rather than 
formal proof. 

Thomas Hales clarifies this distinction well [Hales www.]: 

"Traditional mathematical proofs are written in a way to make them easily understood 
by mathematicians. Routine logical steps are omitted. An enormous amount of context 
is assumed on the part of the reader. Proofs, especially in topology and geometry, rely 
on intuitive arguments in situations where a trained mathematician would be capable 
of translating those intuitive arguments into a more rigorous argument." This is distin
guished from formal proof where "all the intermediate logical steps are supplied" and 
"no appeal is made to intuition." 

I will not try to give a precise definition of mathematics; the definitions I've seen are either 
too restrictive or too inclusive, but certainly the use of deductive proof is an essential feature. 
Mathematics is not just about "results." (One might refer to the belief in the primacy of results to 
the exclusion of anything else as the "Vince Lombardi" approach, after the football coach who 
said that "winning is the only thing.") 

Mathematics is a process, which includes definitions, conjectures, examples, numerical evi
dence, statements of theorems, modelling, algorithms, and proofs, as well as heuristic arguments 
which fall short of proof. These are all woven together. In particular the proof is inextricably 
bound up with the result; indeed one can't really separate them. This is part of the aesthetics of 
mathematics, but it also has "practical" consequences. Proofs often contain "subresults," as well 
as implicit or explicit lemmas, which are of interest in themselves. These would be lost if one just 
catalogued "results." Moreover, often a proof yields more than is explicitly stated, and it may 
point the way to new theorems. This is illustrated by Hillel Furstenberg's proof of the Szemeredi 
theorem, which will be discussed below. 

As John Franks [1989] eloquently puts it "a proof is not some kind of super spell checker 
that merely validates mathematical facts ... Proofs (are) the central content of mathematical 
knowledge ... Who would be satisfied if God were to announce that the Riemann hypothesis is 
true, but deny us the proof?" (Regarding the last point, we might ask if we would be satisfied if 
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a computer "announced" that a theorem had been proved, but we couldn't see the proof. See the 
section on "Proof as Certification" for more about this.) 

Another gloss on this topic was stated by the biologist Richard Lewontin [2005] writing in 
the New York Review of Books: "Science, indeed scholarship in general, is a domain in which 
the integrity of the process is more important than ... any particular result. This is ... a question 
of the very survival of the process of investigation." Lewontin in this passage was concerned 
with issues of honesty and fraud in science, but the point holds in a more general context. 

As was mentioned above, mathematics is not only about proof. Moreover, the notion of proof 
also occurs in other areas (in other sciences of course-physical, biological, and social-and also 
such disciplines as law and history) but it has a somewhat different meaning, and different methods 
are used to attain it. These are characterized by a mixture of deductive reasoning and empirical 
evidence. Debates about the relation of these are at the heart of the philosophy of science. 

I should say at the outset that I am definitely not asserting that proofs in mathematics are 
in some sense more "valid" than those in other disciplines. Rather, there are different methods 
of arriving at conclusions, and that deductive proof is central to mathematics to a much higher 
degree than in other areas. This is in spite of some challenges to this central role and even some 
predictions of the "death of proof." 

We might accept as a provisional definition of proof a (valid) sequence of deductions, starting 
with the hypothesis, and arriving at the conclusion. Somewhat more formally [Kitcher 1984, 
p. 38] "We can now define a proof as a sequence of statements such that every member of the 
sequence is either a basic a priori statement or a statement which follows from previous members 
of the sequence in accordance with some apriority-preserving rule of inference." 

This is somewhat at variance with our earlier emphasis on "practical proof," and in fact this 
tension is one of the things that makes the issue interesting. Nevertheless, mathematicians do feel 
that their proofs essentially accomplish what Kitcher describes (as the quotation from Hales in 
Section I points out). In fact, it's fair to say that this is a necessary and sufficient condition for a 
proof. That is, if this is achieved, we have a proof, and if it isn't there is no proof. 

In a sense, that's all there is to it. As Gian-Carlo Rota [1996] puts it, "Mathematical proof does 
not admit degrees. A sequence of steps in an argument is either a proof, or it is meaningless .... The 
mathematical notion of proof is strikingly at variance with notions of proof in ... law, everyday 
conversation, and physics." 

However, I will argue that the situation is more complex than Rota makes it out to be. While 
any two mathematicians will agree in the abstract what a proof is, it's when one gets down to 
cases that problems may arise. Many of these can be reduced to "how do we know that a theorem 
has in fact been proved?" For example, what about "Proof: Obvious," or "Proof: This follows 
from the previous lemma?" At the other extreme, how do we evaluate a 15000 page proof, which 
may itself rely on papers the author hasn't read? Or a proof dependent on an unpublished or 
unobtainable paper? Or, a hot topic these days, a proof making use of computer calculations? 

The issue of proofs in elementary and secondary school mathematics has been much dis
cussed. Many (this writer included) lament the lack of emphasis on proofs in today's high school 
geometry classes, in contrast to what occurred in previous generations. The following quotation 
of Ken Ross [1998] addresses this point. 

"While science verifies through observation, mathematics verifies through logical rea
soning. Thus the essence of mathematics lies in proofs .... It should be emphasized 
that results in mathematics follow from hypotheses .... Moreover, beginning in the 8th 
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grade, students should distinguish between inductive and deductive reasoning, be able 
to identify the hypothesis and conclusion in a deduction, test an assertion with examples, 
realize that one counterexample is enough to show that an assertion is false, and recognize 
whether something is being proved or merely given a plausibility argument." 

2 The Ro(es d Prod 

Mathematicians have a range of views on the role of proof in mathematics. Several of these views 
are illustrated by the following quotations, in which I have italicized words that emphasize the 
role of proof being mentioned. 

Hyman Bass [2003]: "The characteristic that distinguishes mathematics from all other sci
ences is the nature of mathematical knowledge and its certification by means of mathe
mati cal proof ... it is the only science that thus pretends to claims of absolute certainty." 

Gian-Carlo Rota [1993, p. 93]: "Mathematicians cannot afford to behave like physicists, 
who take experimental verification as corifirmation of the truth." 

In fact, the physicist Steven Weinberg [200 I] makes essentially the same point as Rota: "You 
give up worrying about certainty when you make that tum in your career that makes 
you a physicist rather than a mathematician." 

David Gale [1990]: "The main goal of science is to observe and then to explain phenomena. 
In mathematics the explanation is the proof. .. the theorem-proof methodology ... (is) 
the only methodology we have." 

Philip Davis and Reuben Hersh [1981, p. 151]: "Proof serves many purposes simulta
neously ... (It is) subject to a constant process of criticism and revalidation. Errors, 
ambiguities, and misunderstandings are cleared up by constant exposure. Proof is 
respectability. Proof is the seal of authority ... (It) increases understanding by revealing 
the heart of the matter. Proof suggests new mathematics. Proof is mathematical power, 
the electric voltage of the subject which vitalizes the static assertions of the theorems." 

Saunders Mac Lane [Responses 1994, p.190]: "Intuition is glorious, but the heaven of 
mathematics requires much more .... Mathematics rests on proof-and proof is eternal." 

There is no doubt that the overwhelming majority of mathematicians is committed to proofs 
in the traditional sense, and endorses the sentiments, if not the exact wording of the above 
quotations. Later, I'll express reservations about some of the assertions. 

I would like to single out several (not unrelated) roles of proof, including certification (or 
validation), explanation, and exploration. 

2.1 Pro'!! as Certification 

We accept that a purported result is correct when we hear that it has been proved by a mathe
matician we trust and "validated" by experts in the author's mathematical specialty. This is the 
case even if we haven't read the proof, or more frequently when we don't have the background 
to follow the proof. As an extreme, perhaps hackneyed, example, mathematicians accept Wiles' 
proof of Fermat's last theorem because number theorists have "certified" it to be correct. While 
certification is the most "primitive" or "elementary" aspect of proof, it is worthwhile looking at 
this role more closely. It is an indication that we are part of a community whose members trust 
one another. In fact, mathematics could not be a coherent discipline, as opposed to a random 
collection of techniques and results, without the process of certification. 



3. On tHe Rares qf Prod in MatHematics 65 

Usually, certification of a result is a consequence of its appearance as a paper in a refereed 
journaL In fact, we might agree that this is a necessary condition for certification. In this case it is 
generally accepted that the "burden of proof" (the pun is inevitable) has shifted, and the result is 
presumed correct, unless there is a compelling reason to believe otherwise. It should be empha
sized that it's necessary that one is convinced that a competent mathematician has worked out the 
proof, rather than it being "announced" by "God" (as in the quotation from John Franks earlier). 

However, this process is far from perfect, and should be regarded as provisionaL For one 
thing, it is well known that standards of refereeing vary widely. Some papers-for example, the 
proof of Fermat's last theorem, and Hales' proof of the Kepler conjecture discussed below
concern famous problems, and thus have received intense scrutiny. Other papers receive more 
routine treatment. Ralph Boas, who was for many years the editor of Mathematical Reviews, is said 
to have remarked that of the new results in papers reviewed most are true but the corresponding 
proofs are perhaps half the time wrong. 

An interesting example was the published assertion by Waraskiewicz [1937], that a ho
mogeneous plane continuum is necessarily a simple closed curve. This "result" was generally 
accepted, and in fact a more general assertion was published by Choquet [1944]. However, a 
counterexample was provided by Bing [1948]. (Another example will be discussed in the section 
"Four Examples.") 

Also, referees are generally told that it is not their job to determine whether a paper is 
correct-this is the responsibility of the author-although the referee should be reasonably 
convinced. The referee is typically asked to determine whether the paper is worthwhile. Of course 
this begs the question somewhat. If the result is not correct, then the paper is not worthwhile. In 
the case of very long papers, referees usually don't try to check every line. Robert MacPherson, 
an editor of the Annals of Mathematics says "I try to understand the internal logic of the proof 
and do consistency checks." [Szpiro 2003, p. 208] Moreover, there are (presumably refereed) 
papers in respectable journals where the claimed result is false (in some cases not so noted for 
many years). 

The issue of the refereeing process-real and ideal-in mathematics is fascinating and largely 
unexplored. Gossip on this topic abounds but I know of no systematic study. 

Certification of a result allows us to use it in further research. In theory, one just checks 
the hypotheses, and if they are appropriate to the given situation, applies the result and goes on 
from there. This may be necessary (one can't develop all of mathematics each time one writes 
out a proof) but it brings along certain dangers. For reasons which aren't entirely clear, applying 
a result mechanically, without an understanding of the proof, can lead to errors. For example, 
sometimes one is fooled by notation. (This is borne out by my own experience. In fact, on one 
occasion I was attempting to apply something I had proved earlier without thinking it through 
carefully, and I made an elementary error.) 

The point is that a mathematician is not absolved from understanding the proof, even when 
the result in question has been accepted by the mathematical community. When one uses a result 
in one's own research or teaching, the stakes are higher. It then becomes necessary to understand 
at least the basic outlines of the proof. One requires a higher degree of certainty for the use of a 
result than is obtained by the passive acceptance of it. 

This was put well by Daniel Biss [2004]: "No honest mathematician uses a result simply 
because it has been published. Rather we use results we trust are true ... the defining threshold 
for this notion is ... a complex melange of what has been published, what has been accepted as 
true by a larger community, and ... what we believe ourselves to understand." 
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There is a recent tendency for (some) mathematicians to post their papers on preprint servers. 
Frequently this is preliminary to the submission of these papers to a journal (in which case it's 
not particularly different from the former practice of the distribution of preprints, allowing 
access of the results to researchers in the field prior to publication), but in some cases there 
is no intention of submission to a journal. Even given the imperfect process of refereeing, this 
somewhat undermines the certification ofthe results in question. 

2.2 Pro'!! as ~(anation 

Our second role of proof is explanation. This is what concerns most mathematicians. One should 
be able to follow at least the broad outlines of the argument, and be confident that one can fill in 
the details. As Andrew Gleason [Yandell 2001, p. 150] points out, "Proofs really aren't there to 
convince you that something is true ... they're there to show you why it is true." 

Ideally this is what proof is all about. Almost by definition, a proof is supposed to explain the 
result. Now, it must be admitted that not all proofs meet this standard. To some extent this is in the 
eye of the beholder. Indeed sometimes the conviction that a result is correct may arise not from 
the proof, but from (say) numerical evidence, illuminating examples, or visual representation. 
Such considerations have often led to the development of new, more understandable, proofs. 

The great mathematician Paul Erdos spoke of "The Book" in which "God" maintained 
the "perfect" proofs of theorems. In fact there is a real book, appropriately titled Prooft from 
THE BOOK by Martin Aigner and Gunter Ziegler [1999] which presents many proofs in this 
spirit. Erdos collaborated on this book shortly before his death, and many of the proofs are due 

to him. 
The first chapter consists of six different proofs of the infinity of primes, starting with the 

familiar proof due to Euclid. The sixth proof, due to Erdos, proves more, namely that the sum of 
the reciprocals of the primes diverges. (The first proof of this fact was given by Euler.) Erdos' 
proof is by contradiction-suppose the sum converges. If PI, P2, . .. is the sequence of primes 

written in increasing order, then there is a k such that Li2:k+1 -}, < 1. Call PI,···, Pk the small 
primes, and the others the big primes. For a fixed N > 0 let Nh be the number of n ::: N which 
are divisible by at least one big prime, and N, the number of such integers with only small prime 
divisors. Clearly N = Nh + Ns • On the other hand, Erdos shows, by an intricate combinatorial 
argument, that for a suitable N (in fact 2k+2), Nh + Ns < N, which gives the contradiction. 

2.3 Pro'!! as ~(oration 

The above proof is also an example of the third role of proof, that of exploration. Every mathe
matician knows that when he/she writes out a proof, new insights, ideas, and questions emerge. 
Moreover, the proof requires techniques which may then be applied to the consideration of new 
problems .. What makes this topic interesting, and somewhat complex, is that there is not always 
a hard line between explanation and exploration. Often the hallmark of a good proof is that it 
proves more than the statement of the theorem, as the Erdos proof illustrates. 

A fascinating example of proof as exploration is the story of the proof of the alternating sign 
matrix conjecture, a topic on the boundary of algebra and combinatorics. An alternating sign 
matrix (ASM) is a square matrix of Os, I s, and ~ I s such that the sum of the entries in each row 
and each column is 1 and the nonzero entries in each row and each column alternate in sign. 
These are generalizations of permutation matrices. The ASM conjecture (now the ASM theorem) 
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concerns the number An of such n X n matrices, which is given by An = nO~j::n-1 ~;::)~!. (In 
contrast, there are n! permutation matrices.) 

The history of the proof is brilliantly developed in David Bressoud's book Proofs and 
Confirmations [Bressoud 1999]. (The title was inspired by Imre Lakatos' book Proofs and Refu
tations [Lakatos 1976] which in tum was adapted from Karl Popper's Conjectures and Refutations 
[Popper 1963].) Bressoud presents the proof as an exploration, and in fact the chapter containing 
the proof is entitled "Explorations." He is referring to the development of the proof of the ASM 
conjecture, which he's presenting the way it developed historically. 

Woven into the narrative are classical antecedents of the ASM conjecture, including an algo
rithm for the evaluation of determinants due to Charles Dodgson (Lewis Carroll), the appearance 
of many participants (including Mills, Robbins, Rumsey, Stanley, Andrews, and Zeilberger) as 
well as other results and conjectures. In fact, the ASM conjecture is one of fourteen related 
conjectures, two of which are still unproved. (One of these was "checked by one of the largest 
army of reviewers any paper has seen: 88 referees and one computer. ") 

Bressoud writes that the ASM proof "lay in unexpected territory and revealed a host of new 
insights and engaging problems." The unexpected territory included plane partitions, symmetric 
functions, and hypergeometric series. Indeed, it turns out that physicists were interested in ASMs, 
but they called them six vertex models or square ice. 

The strategy of the proof was to try to find a one-to-one correspondence between n x n 

ASMs and descending plane partitions with largest part less than or equal to n. (Plane partitions 
are partitions of integers arranged as a two dimensional array, with certain restrictions. Some 
of the other conjectures concern generating functions - namely power series whose coefficients 
count the number of certain plane partitions.) 

2.4 Pro'!! as Justification,!! Difinitions 

Still another reason for proof, closely connected to teaching, is the justification for mathematical 
definitions. (I am indebted to my colleague Paul Green for this observation.) For example, one 
proves that the sum and product of continuous functions is continuous to confirm that the to - 8 
definition is successful in capturing the intuitive idea of continuity. Similarly, the proof of the 
intermediate value theorem justifies the definition of the real number system. Yet another example 
is the use of the fundamental theorem of calculus to show that there is a real valued function 
whose derivative is e-x '. What is involved here is the very definition ofa function. It demonstrates 
that a function need not be given by a simple formula, which is something we want to drive home 
to students. Only a formal proof can guarantee its existence and allow it to be studied. 

Proofs also develop and underscore connections between different branches of mathematics, 
frequently to the benefit of both areas. Well known instances of this phenomenon are combinations 
of algebra and topology, and of combinatorics and number theory. In "Four Examples," we'll 
discuss in detail Furstenberg's proof on the Szemeredi theorem, which combines ergodic theory 
and combinatorial number theory. 

2.5 The Dieudonne-Katznefson Encounter 

It is frequently asserted that one can fill in the details of an informal argument to obtain a formally 
correct proof. To quote Bourbaki [1968, p. 8]: "In general [a mathematician] is content to bring 
the exposition to a point where his experience and mathematical flair tell him that translation 
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into a fonnal language would be no more than an exercise of patience (though doubtless a very 
tedious one)." As ifin reply, Hersh [1997, p. 52] says "It may be true. It's a matter of faith." 

In this connection, let me tum to a personal recollection. In 1971, the distinguished math
ematicians Yitzhak Katznelson and Jean Dieudonne visited the University of Maryland for a 
semester. Katznelson gave a course in ergodic theory, to which Dieudonne was a faithful at
tendee (as was I). Katznelson's lectures were well organized, although somewhat infonnal. 
Dieudonne (who had been a member of Bourbaki) didn't give Katznelson a moment's peace. He 
kept saying "That is not a proof" or sometimes "That's a nice presentation of the idea-now 
let's see the proof" and made Katznelson go over the argument until it was accomplished to his 
(Dieudonne' s) satisfaction. 

I'm certainly not saying that Dieudonne was more "rigorous" than Katznelson. Katznelson's 
proofs definitely met the standards of mathematical discourse. There are many acceptable styles 
of proof. (One might imagine Dieudonne lecturing, with Alonzo Church in the audience, who 
would say that Dieudonne's arguments were not proofs.) 

Dieudonne had a high regard for Katznelson and the course (as he told me) and probably 
thought that the latter's arguments were essentially correct. But Dieudonne was not playing 
games. I'm sure he was serious in asserting that Katznelson's arguments fell short of proof, and 
felt that it was worth the class time for the development of one which was acceptable to him. 

2.6 The J'!ife-Quinn Artide 

An extremely interesting discussion of various issues concerning proof was initiated by an article 
in the Bulletin of the American Mathematical Society by Arthur Jaffe and Frank Quinn [1993], 
and the responses it generated [Responses 1994]. The article (henceforth referred to as JQ) is 
entitled "Theoretical mathematics: towards a cultural synthesis of mathematics and theoretical 
physics." JQ use the tenn "theoretical mathematics" for "speculative and intuitive work" (this 
tenninology was much criticized by a number of the respondents) and "rigorous mathematics" 
for "proof oriented work." While they agree that mathematics is "nearly characterized by the use 
of rigorous proofs" (which they unequivocally endorse) they call attention to "a trend towards 
basing mathematics on intuitive reasoning without proof" and say that this "may be the beginning 
of fundamental changes in the way mathematics is organized." 

JQ contrast mathematics with physics. In the latter there is a "division oflabor" between ex
perimenters and theoreticians. But "the mathematical community has not undergone a bifurcation 
into theoretical and rigorous branches." 

There is at least an implication by JQ that such a "bifurcation" would be desirable. But the 
lack of it is not accidental, and I doubt that it can be created by fiat. Of course there always has 
been a speculative and intuitive component to mathematics (and JQ correctly point to this as one 
of mathematics' "success stories") but I don't think there can be a division of mathematicians into 
two kinds, as there is in physics. That is, in general a mathematician's work is both intuitive and 
rigorous. Certainly there are individuals-Mandelbrot (one of the respondents) and Feigenbaum 
come to mind-whose main activity is "theoretical," but it's doubtful that there will be an entire 
community of such. 

A yearlater the Bulletin printed a number of responses to JQ (by pure and applied mathemati
cians, physicists, and a historian of mathematics), as well as a separate article by Bill Thurston. 
These were in tum followed by a response by JQ. 



3. 0", dic Rof{:s ~f Pro~f irl Mathcmatics 69 

While some of the responders are in substantial agreement with lQ, there are attacks from 
both the "right" and the "left." Mac Lane felt that physics is not a good model for mathematics. 
(The quote from Mac Lane in the section "The Roles of Proof," above, is part of his response.) 
Moe Hirsch (presumably tongue in cheek) suggests that "published mathematics ... like good 
wine, should carry a date. If after ten years no errors have been found the theorem will be 
generally accepted" and that one should "attach a label to each proof, e.g., computer aided, mass 
collaboration, formal, informal, constructive, fuzzy, etc." 

A particularly negative response was by Benoit Mandelbrot. He finds lQ "appalling" and 
refers to rigorous mathematicians as "Charles" mathematicians (since the AMS office in Provi
dence is on Charles Street). He characterizes mathematical rigor as "besides the point and usually 
distracting, even where possible." 

Richard Palais, the editor of the Bulletin, wrote that ("with mixed feelings") the Bulletin 
would no longer publish "controversial" articles. (Such would be restricted to the Notices of the 
American Mathematical Society.) One wonders about the subtext of this decision. 

3 Comyuters and Protj 

There is no question that computers are having a profound impact on mathematical practice. Per
haps their main role has been in experimentation, production of pictures, data, and the generation 
of conjectures. But computers have been used in some controversial proofs. 

The relation between computers and proof is quite complex, and is still being sorted out. This 
paper will consider only a few such cases. It is interesting that Rota, in a passage following the 
quotation cited in the section "The Roles of Proof," above, says that it is because of computers 
that proof is "more indispensable than ever" (since "conjectures in number theory may fail for 
integers ... beyond the reach of. .. computers"). There are some mathematicians, notably Paul 
Halmos and Pierre Deligne, who completely reject the use of computers. For example, Deligne 
has written "I don't believe in a proof done by a computer ... I believe in a proofifl understand 
it." [Szpiro 2003, p. 21] In the same spirit, Eugene Wigner is reported to have said [Robertson 
2003, p. 80] "It's nice to know that the computer understands the problem. But I would like to 
understand it, too." On the other hand, Thomas Hales says "I now feel that computer proofs are 
vital to the progress of mathematics." [Szpiro 2003, p. 212] 

I take an intermediate point of view. Regardless of anyone's feelings (even Deligne's), one 
cannot wish away the use of computers in proofs. Mathematicians will use them if they find them 
necessary, or even convenient, and it's necessary to come to terms with this phenomenon. On the 
other hand, it's somewhat disingenuous to say that there is no difference between a calculation 
done by a computer and one done "by hand." 

The issue is not whether one should "believe" a proof making use of a computer. Indeed, it 
may well be the case that a computer calculation is more reliable than a traditional one, especially 
if the latter is very long (witness the competing attempts at proving the Kepler conjecture, 
discussed below). Some of the same processes as in traditional proofs, for example modifications 
of the original argument, and repeated scrutiny, occur with computer proofs, and confirm the 
truth of the claimed assertion. 

Moreover, there are certain proofs which just couldn't be accomplished without a computer. 
One such is the much discussed proof of the four color theorem, by Appel and Haken. The 
problem was reduced to several thousand cases, which were then checked by the computer. 
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The point is that it is necessary to recognize that there are tradeoffs involved here, namely 
the achievement of results versus the understanding of the reasons for their proofs. Even a rote 
computation in a traditional proof involves a certain amount of thinking. In the case of replication 
of a computer argument we cannot determine easily what hidden assumptions or errors lie in 
the shared bits of coding or hardware. At some point in the proof, a result is true because the 
computer "said so." 

With regard to computers and proof, the story of the Kepler conjecture on sphere packing is 
particularly striking. (In my opinion, it is an order of magnitude more interesting than the four 
color theorem, although the latter was the first well known problem to make use of the computer 
for its solution). 

The conjecture is that the densest way to pack spheres is the hexagonal close (or "greengro
cers") packing. This is a four hundred year old problem, the oldest problem in discrete geometry, 
which was also part of Hilbert's 18th problem. There was a disputed proof (by Hsiang), and then 
a very long, computer assisted proof (by Hales), which is apparently correct. And the latter has 
led to conjectures and proofs of new results. All of this is recounted in detail in the excellent book 
Kepler's Conjecture by George C. Szpiro [2003]. 

A proposed proof, by Wu-Yi Hsiang [1993], was actually published. This proof made no use 
of the computer, just tools from (relatively) elementary geometry and calculus. The consensus of 
the mathematical community is that the attempted proof is incorrect, although Hsiang still stands 
by it. The proof that is now generally accepted is by Thomas Hales, with significant help from 
his student Samuel Ferguson. It consists of six papers, as well as a computer program. It was 
submitted to the Annals of Mathematics (in fact it was solicited by the Annals) and a tearn of 
12 referees worked on it for four years. They returned a report saying that they were unable to 
completely certify the proof, although they were 99 percent certain of it. 

In fact, the Annals has published Hales' proof [Hales 2005], although not the computer 
code on which it was based. The original plan was to publish it with a disclaimer, but after 
Hales reorganized it, it appeared as a single (more than one hundred page) paper, without a 
disclaimer. On the first page, Hales writes, "Here we describe the top-level outline of the proof 
and give sources of details of the proof. The latter are to appear as several papers in Discrete and 
Computational Geometry." 

The Szpiro book has a chapter entitled "But is it really a proof?" There does seem to be 
a strong consensus that the Kepler conjecture is now proved-that it is "certified." There is 
considerably less agreement as to whether it meets the criterion of "explanation." For example, 
the mathematician and science writer Ian Stewart likens Hales' proof to a telephone directory, in 
contrast to Wiles' proof of Fermat's last theorem, which he compares to "War and Peace." 

In this case, how are we to decide if the "telephone book" nature of Hales' proof is inherent 
to the problem? 

This type of thing is unprecedented in mathematics. Regardless of one's feelings about 
the use of computers in proof, it must be recognized that Hales' work is a major scientific 
achievement. The story is not over; although the proof has appeared in print, there will very 
likely be simplifications that will really embed the result into mathematics. 

The proofs of the four color theorem and the Kepler conjecture definitely fall within the 
traditional framework of proof as a sequence of deductions, although the computer plays an 
essential role. But there is another trend which in fact challenges the accepted dichotomy between 
a proof and an argument which falls short of proof. This is not concerned with the computer as 
an aid to proof, but rather envisions computer calculations as replacing proof. 
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One of the most provocative challenges to traditional proof was put forth by Doron Zeilberger 
in an article "Theorems for a price: tomorrow's semi-rigorous mathematical culture." [Zeilberger 
1993] (As we'll see, "for a price" is meant literally.) The tone is set by Zeilberger's much quoted 
(and by now notorious) statement that in the future "rigorous old style mathematicians ... may 
be viewed by mainstream mathematicians as a fringe sect of harmless eccentrics." He continues: 
"The computer has already started doing to mathematics what the telescope and microscope did 
to astronomy and biology .... In the future mathematicians will not care about absolute certainty, 
since there will be so many exciting new facts to discover." After presenting a number of identities 
which were proved by, or with the aid of, a computer, he envisions an abstract of a paper (c. 
2 100); "We show in a certain precise sense that the Goldbach conjecture is true with a probability 
larger than 0.9999 and that its complete truth could be determined with a budget of$IO billion." 
(Perhaps intentionally, there is no explanation of this assertion by the 2100-era mathematician.) 

I should mention that Zeilberger is an outstanding mathematician, and in fact was one of the 
participants in the solution of the alternating sign matrix conjecture. But on this question I think 
he is quite wrongheaded. 

Zeilberger's article was reprinted in the Mathematicallntelligencer, where it is followed by 
a response from his friend and collaborator George Andrews [I994]. Andrews' article is entitled 
(in part) "You've got to be kidding." He challenges Zeilberger's evaluation of the role of the 
computer in the discovery and proof of the various identities, and says moreover that Zeilberger 
"ignores the insight provided by proof" and "has produced exactly no evidence that his Brave 
New World is on the way." 

As for Zeilberger's assertion that important theorems can be proved "for a price"-I don't 
believe it. Mathematicsjust doesn't work that way. Although mathematicians are no more immune 
to the lure of money than anyone else, one can't imagine a "crash program" to prove the Riemann 
hypothesis or the twin prime conjecture. It's true that there is now a well publicized monetary 
prize for such proofs, but there is no reason to think that the proofs will be attained any earlier 
on that account. 

Another proponent of this trend is the geologist Douglas Robertson [2003]. Robertson's 
point of view is similar to Zeilberger's (he might be termed "Zeilberger lite"). Interestingly, he 
is extremely frank and explicit about what may be lost by this process. "Just as astronomers had 
to accept the idea that the telescope vastly extends the reach of the naked eye, mathematicians 
will have to accept the idea that the computer similarly extends the reach of the human mind." 
[Robertson 2003, p. 8 I] He also says that the understanding of the reasons behind such a computer 
proof "may not be attainable." Robertson asserts that computers will throw light on whether 17: 

is a normal number. I (This is very doubtful, in my opinion. No amount of computer calculation 
can settle this question.) 

4 Four Examy{es 

The examples which I'll discuss at some length are from topological dynamics and ergodic theory, 
areas of which I have some knowledge. 

I A number is said to be nonnal (say to base 10) for which every finite sequence in the decimal expansion occurs with 
the "right" limiting frequency. For example, the occurrence of 57 has limiting frequency .01. Normal numbers have full 
Lebesgue measure, but are of first category. 
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4.1 The Birkht1f Ergodic Theorem 

Even an absurdly naive idea can lead to a valid proof. Recall the statement of G.D. Birkhoff's 
(pointwise) ergodic theorem: Let T be a measure preserving transformation on a probability space 
X and let f be an integrable function on X. Then lim"~oo ~ L7~o f(T; x) exists for almost all x. 

(T;denotes the i fold composition of the transformation T.) 
In his book Lectures on Ergodic Theory [Halmos 1956], Halmos, after proving and obtaining 

some consequences of the ergodic theorem, concludes a chapter with what he calls an alternative 
"proof." 

If f is a non-negative function on the positive integers, write 

1 f(n)dn = lim .!. ~ f(i) 
n-+=n ~ 

;=0 

whenever the limit exists, and call such functions integrable. If T is a measure preserving 
transformation on a space X and f is an integrable function on X, then 

11 If(T"x)ldndx = 11 If(T"x)ldxdn = 11 If(x)ldxdn = 1 If(x)ldx < <Xl. 

Hence by "Fubini's theorem"(!) f(T"x) is an integrable function of its two arguments, and 
therefore, for almost every fixed x, it is an integrable function of n. That is, 

1 n-J . 

lim - Lf(T'x) 
n-+= n 

i=O 

exists for almost all x. 

(This "proof" would work if there were a probability measure on the integers which assigned 
equal measure to each integer.) 

One might think that this was just a joke on the part of Halmos, but he then asks, "Can any 
of this nonsense be made meaningful?" In fact, more than thirty years later, Ornstein obtained 
a proof based on this idea. This is the most conceptual proof of the ergodic theorem. The proof 
is by a delicate approximation argument. Essentially, one considers the product of the measure 
space with a finite space. This is a good example of the role of explanation in proof. Other proofs, 
some of which are shorter, depend on a trick. With this proof one really sees what is happening. 
The ideas of the proofled to theorems (by Ornstein and Weiss) on the actions oflocally compact 
amenable groups. 

4.2 Tc!po(ogica(Entrc!p'J 

Lakatos characterizes mathematical knowledge as proceeding by a sequence of proofs and refu
tations, and indeed sometimes erroneous "proofs" lead to refinements and clarifications. A case 
in point occurred in the early work on entropy, which is an important numerical invariant for 
dynamical systems. 

Actually, there are two kinds of entropy. Measure theoretical entropy (defined by Kol
mogorov and Sinai around 1958) applies to measure preserving transformations of probability 
spaces, and is defined in terms of measurable partitions. Topological entropy, defined several 
years later by Adler, Konheim, and McAndrew [Adler et at. 1965] concerns continuous selfmaps 
of compact metric spaces, and is defined in terms of open sets. In each case, the entropy is an ex
tended non-negative real number. That is, if T is the transformation defined on the (probability or 
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metric) space X, then the entropy h(T) satisfies 0 <:: h(T) <:: 00. There are interesting connections 
between the two notions of entropy. 

For measure theoretic entropy, there is a product theorem. If T\ and T2 are measure preserving 
transformations of X\ and X 2 respectively, and T\ x T2 is the product transformation, then 
h(T\ x T2 ) = h(T\) + h(T2). Moreover, the prooffollows almost immediately from the definition. 

When Adler, et al. introduced topological entropy, their paper included what they presented 
as a proof of the corresponding theorem for continuous transformations, which closely mimics 
the measure theoretic proof. This "proof," which was published, was erroneous-it slipped by a 
careless referee. 2 

This error (which was discovered by Kakutani) inspired an alternative (equivalent) definition 
of topological entropy by Bowen, which is in some ways more useful than the original definition. 
In particular, a correct proof of the product theorem can be given using this definition (although 
as a matter of fact Bowen's first proof was also incorrect). 

4.3 The Szemeredi Theorem 

Many important theorems have more than one proof. On an elementary level, there are several 
proofs of the infinity of primes, and several hundred proofs of the quadratic residue theorem (ten 
by Gauss). Also, as was mentioned above, there are a number of proofs of the ergodic theorem. 

Of course, in terms of validation of a result, one correct proof is sufficient. If there is any 
question, the existence of multiple proofs provides some confirmation that a proposed result 
is correct. In this respect, mathematics is like an experimental science. An alternative proof is 
something like a replication of an experiment. 

But I think what is even more important is that a new proof frequently connects with 
other branches of mathematics. As Michael Atiyah [2005] says "different proofs have different 
strengths and weaknesses, and they generalize in different directions-they are not just repetitions 
of each other." 

A striking example is the Szemeredi theorem, which says that every set of integers of 
positive upper density contains arbitrarily long arithmetic progressions. Szemeredi's original 
proof was combinatorial and extremely long. Hillel Furstenberg gave another proof, which was 
accomplished by translating the problem to ergodic theory. 

The main ergodic theoretic lemma is: 

Let T\, ... , Tk be commuting measure preserving transformations of a probability space 
(X,I-'), and let A be a set of positive measure. Then there is a positive integer n such that 
I-'(A n T\-n An··· n Tk- n A) > O. To see how this measure theoretic result implies Szemeredi's 
theorem, we consider Q = {O, I }z, the space of doubly infinite sequences of zeroes and ones, 
provided with the producttopology. The shifttransformation Ton Q is defined by Tw(n) = w(n+ I). 

Now let S be a subset of the integers of positive upper density, and let Is be the indicator 
function of S (that is Is (n) = I if n E Sand 0 otherwise); I s is a point of Q. Let X be the orbit 
closure of Is under T, and let A = {w E XI w(O) = I}. It can be shown that there is a measure I-' 
on X which is invariant under the shift for which I-'(A) > O. (This fact depends on, and in fact is 
equivalent with the assumption that S has positive upper density.) Now apply the above lemma 
to the commuting transformations T, T 2 , • .. ,Tk. It follows that there is a point w E X for which 

2 I was the careless referee. 
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Tin(w) E A for some nand j= 1,2, ... , k from which one easily deduces that for some h, one 
has h, h + n, ... , h + kn E S. 

Byproducts of the proof include a general structure theorem for ergodic transformations, 
which in tum inspired an analogous structure theorem (by Veech) in topological dynamics, as well 
as "multidimensional" Szemeredi theorems. Furstenberg's proof initiated a fruitful connection 
between ergodic theory and combinatorial number theory. The ideas introduced played a role 
in the spectacular recent work of Tau and Green on the existence of arbitrarily long arithmetic 
progressions in the primes [GreeniTau to appear]. 

4.4 A Fixed Point Theorem 

Standards of proof vary over time. 3 For example, it's well known that Euclid's proofs were 
incomplete (although apparently all of his theorems are correct). Also, the proofs of the Italian 
algebraic geometers of the early part of the last century are now found wanting. 

An interesting more recent case is provided by a paper by Morton Brown and Walter 
Neumann [1977], which is related to two papers ofG.D. Birkhoff, [1913] and [1925]. BirkhotT 
claimed to prove a conjecture of Poincare ("Poincare's last geometric theorem"), which asserted 
the existence of two fixed points for an area preserving homeomorphism of an annulus which 
rotates the boundary circles in opposite directions. Over the years there were questions as to 
whether Birkhoff's proof was correct. The paper of Brown and Neumann presents a proof which 
the authors generously say is essentially the same as BirkhotT's. 

Be that as it may, the language of Brown and Neumann is quite different from Birkhoff's, 
reflecting the development of topology in the intervening years. Some of Birkhoff's statements 
lacked precision. For example a curve is defined to be the boundary of an open set. It isn't 
even clear what is meant by rotating the boundary curves in opposite directions. (A clockwise 
rotation of one degree can be regarded as a counterclockwise rotation of 359 degrees.) In the 
Brown-Neumann paper, this is made precise by passing to the universal covering space, a notion 
which was probably not known to Birkhoff. Another tool is the homotopy lifting property, which 
also was probably not known explicitly to Birkhoff. 

One expects that fifty years from now, some of the proofs of mathematicians of 2006 will be 
thought to be in need of correction or modification. 

While there are differences among the four proofs just discussed, a common thread is what 
might be called reinforcement (a new proof, or a correction, or a reworking of an earlier proof). 
There seems to be no doubt that the theorems in question have been proved. 

We are confronted with a different situation with certain very long proofs. We conclude with a 
brief discussion of two current (possible) proofs of important results, on which the jury is still out. 

One is the classification of finite simple groups, organized by the late Daniel Gorenstein, 
of which there is some doubt whether it has actually been accomplished. (Moe Hirsch, in his 
response to JQ irreverently asks "Who's in charge here, anyway'?") 

The other is the (apparent) proof by Perelman of Thurston's geometrization conjecture 
(which implies the Poincare conjecture). John Morgan, in a survey article [Morgan 2005], writes 

3 A fascinating discussion of differing standards of proof over time is presented in [Kleiner/Movshovitz-Hadar 19971-
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"The mathematical community is still ttying to digest his argument and ascertain whether it is 
indeed ... complete and correct." 

In the latter case, the expectation is that a proof will in fact emerge. In spite of certain 
differences (in particular, the computer plays no role in Perelman's arguments) something like 
the "Kepler process" is occurring. As was discussed above, following a lengthy and elaborate 
process, Hales' proof is now generally accepted, and it's quite likely the same will hold for 
Perelman's4 

On the other hand, opinion is sharply divided in regard to the classification of finite simple 
groups, and it's anyone's guess as to how it will finally turn out. 
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II 
Socia{ Constructivist Views c1 Mathematics 

Two completely new philosophies of mathematics have been developed since 1950: 
structuralism and social constructivism. Structuralism is the view that mathematics is 
the science of structures, or patterns. That view is discussed in several of the chapters 
in section 3. Social constructivism has been developed primarily by mathematicians, 
although one can trace its origins to some discussion by philosophers such as Lakatos. 
Social constructivism is the view that mathematics is constructed by the community 
of mathematicians. In one sense, this is so obviously true that there is no need to 
discuss it further. Certainly, human knowledge of mathematics is developed by the 
community of mathematicians. However, as we discover mathematical facts, it/eels to 
most of us as ifthere is an objective reality out there, within which these facts are either 
true or false. It certainly does not seem that the bunch of us can just one day decide, 
"the Riemann hypothesis is true," and it will be so. On the other hand, when a new 
mathematical concept is introduced and developed, things are less clear. Is there some 
external "natural" concept that we're grasping for? Or are we just making it up, albeit 
with some restrictions related to the questions we are developing it to investigate? The 
less extreme versions of social constructivism, represented in this volume, suggest that, 
once the community has developed a mathematical concept, the facts about this concept 
are indeed objective. However, there are philosophical issues with this viewpoint, and 
these are also discussed in this section. 

The first two chapters of this section were written by mathematicians who have been 
outspoken proponents of social constructivism, and the third is by a philosopher who 
has been working to formulate social constructivism carefully enough for criticism by 
the community of philosophers of mathematics. 





4 
When Is a Proh{em So{ved?1 

From tlie Editors 

Philip J. Davis 
Division of Applied Mathematics 

Brown University 

The question Philip Davis asks in his chapter, "When is a problem solved?" seems like a natural 
one to ask. but we have never read a discussion of this elsewhere. It is a good example of why 
it is important for some people who actually do mathematics to contribute to the philosophy of 
mathematics. There are questions ofinterest to mathematicians that do not occur to philosophers. 
who are motivated largely by the types of questions that occur in other areas of philosophy. This 
question might never occur to philosophers. because it is really only in mathematics that we 
appear to getfinal answers to our questions. 

Philip Davis is a Professor Emeritus of Applied Mathematics at Brown University 
(www.dam.brown.edulpeople(facultypage.davis.html). He came to Brown after serving as Chief 
for Numerical Analysis at the National Bureau of Standards in Washington. D.Cfor five years. 
Hisfields of research included numerical analysis and approximation theory. in which he wrote 
many papers and several books. including Interpolation and Approximation (1963). Numerical 
Integration (with Philip Rabinowitz. 1967). and The Schwarz Function (1974) and Circulant 

Matrices (1979). He is a prize winning expositor of mathematics. who received the Chauvenet 
Prize of the Mathematical Association of America in 1963 for ''An Historical Profile of the 
Gamma Function." Professor Davis has also received the Laster Ford Award in 1982 for 'Are 
there Considences in Mathematics?" and the George Polya Award in 1986 for "What Do 1 
know? A study of Mathmatical Self-Awareness." In 1997. he won the Communications Award 
of the Joint Policy Board for the Mathematical Science. His books written jointly with Reuben 

I This article was initially submitted to this volume. However, due to the long time between initial solicitation of articles 
and the appearance of this volume, this article first appeared in 2006 in a collection of my articles, Mathematics and 
Common Sense: A Case of Creative Tension. It is reprinted here with pennission of the publisher, AK Peters. 

81 
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Hersh, The Mathematical Experience (1980) and Descartes' Dream (1986), explore certain 
questions in the philosophy of mathematics, and the role of mathematics in society. Mathematics 
and Common Sense: A Case of Creative Tension, which appeared in 2006, contains a version 
of his chapter. among other philosophical articles. Readers of this volume will also be interested 
in his article, "When Mathematics Says No" in No Way: The Nature of the Impossible, which he 
edited with David Park (/987). 

A poem is never finished, it is only abandoned.-Paul Valery 

1 Introduction 

I recently spent three days participating in MathPath, a summer math camp for very bright students 
aged c. 12-14 (see www.mathpath.org). One day I asked the students to pass in to me a question 
that was a bit conceptual or philosophical. Out of the large variety of responses, one question 
struck me as both profound and remarkable in that sophisticated interpretations were possible: 

Elizabeth Roberts: How do we know when a problem is solved? 

My first reaction on reading this question-which was pencilled on a sheet of notebook 
paper-was "mathematical problems are never solved." Due to my limited stay at the camp, 
I didn't have the opportunity to ask the student what exactly she meant and so her question 
went unanswered at the time. I told the camp faculty-all professional mathematicians-my gut 
reaction. I added that my answer was not appropriate for the present age group and hoped that the 
faculty would take up the question after I'd left. I also told the faculty that the question inspired 
me to write an article. Here it is. 

2 A Bit d plii(os~li!J 
Some problems are solved. A baker knows when a loaf of bread is done.2 Yogi Berra said: 
"It's not over till it's over." Which implies that a baseball game gets over. But when one thinks 
of the problems that confront humanity-personal, medical, sociological, economic, military
problems that seem never to be solved, it is easy to conclude that to be truly alive is to be 
perpetually racked by problems. 

Example: When should clinical trials for new medical procedures be terminated? This question 
is currently on the front pages of newspapers and is a matter of litigation and the confrontation 
of statisticians involved in the jurimetrics. [Finkelstein/Levin 2004] 

Thus, we are concerned here with a fundamental question that can be viewed as residing 
at the heart of human existence itself. How can we be sure that we have solved a problem? 
More than this, how can we be sure we have formulated a proper question? We can't, because 
problems, questions and solutions are not static entities. On the contrary, the creation, formulation 
and solution of problems change throughout history, throughout own lifetime and throughout our 

2 In an amusing e-Ietter. Yvon Maday, a Parisian applied mathematician, pointed out to me ambiguities in the baking 
process. 
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readings and re-readings of texts. That is to say, meaning is dynamic and ongoing and there is no 
finality in the creation, formulation and solution to problems, despite our constant efforts to create 
order in the world. Our ability to create changes in meaning is great and hence our problems 
and our solutions change. We frequently settle for provisional, "good enough" solutions---often 
described as "band aid solutions." [0' Halloran 2005] 

3 What Might Etiza6eth Have Meant? 

One might think that in the case of mathematics-that supposedly clean-cut, logical, but limited 
intellectual area-the situation would be otherwise. One might think that when a mathematical 
problem arises, then after a while (it may be a very long while) the problem gets solved. But 
think again; what takes place can be very complex. 

The set of possible responses to the question under discussion spans the whole of mathe
matical methodology, history, and philosophy. Though responses are implicit everywhere in the 
mathematical literature, I believe that the question as framed here puts a slightly different slant 
on this material. I don't recall seeing it treated head on. 

The question: How do we know when a problem is solved? can be approached at a variety 
of levels. The lay public tends to think that mathematics is an area where there is one and only 
one answer to a problem. Approached from the point of view of a school teacher, the teacher, 
relying on habits or traditions, and considering the age of the pupils, knows when a pupil has 
solved a problem. It is a matter of common sense. (I am not thinking here of multiple choice 
questions graded by machine.) 

Approached from the point of view of the individual or the group that makes up problems 
either for daily work, tests, or contests, I would suppose that the act of making up the problem 
already implies a more or less definite notion of what the answer is. The examiner will think the 
problem is solved if he gets the answer he had in mind or possibly a variant that conforms to 
certain unconsciously maintained criteria. 

One answer, appropriate to students starting algebra, might be "you plug your solution 
back into the equation and see if it checks." The set of possible responses that lie between this 
simplistic response and my seemingly dismissive "mathematical problems are never solved," 
spans the whole of mathematical methodology, history, and philosophy. Though responses to 
the question under discussion are implicit everywhere in the mathematical literature, I believe 
that the question as framed puts a slightly different slant on this material. I don't recall seeing it 
treated head on. 

What did the student mean by her question? I can only guess. Perhaps she meant: "How can 
I tell whether my answer is correct." Well, what methods or practices of validation are available 
at ages 12-14? Yes, you can plug the answer back into the equation and see if it checks. But 
this kind of check is not available for most problems-as, for example, what and where do you 
plug in when asked to add a column of numbers? If you care to employ them, processes such 
as "casting out nines" (taught in elementary school years and years ago) or estimating the sum 
provide partial checks for addition. 

You can "check your work" by doing the problem over again in perhaps a simpler or a 
more clever way and then compare. You may, in some cases, put the problem or part of it on a 
computer. You can ask your friend what her answer is and compare. You can look in the back 
of the book and see whether you get the book's answer. If the problem is a "word problem," you 
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can ask whether your answer makes sense in the "real world." An answer of minus seven and a 
half dappled cows is evidence of an error somewhere. 

Perhaps the student, having learned that ../2 is irrational, will wonder whether or why 
../2 = 1.41421356237 ... constitutes an answer. From a certain point of view, ../2 can never have 
a completed answer. Does one have to elaborate the meaning of the three dots ... and trot out the 
theory of the set of real numbers to accept this as an answer? 

Iterative computations that theoretically "converge at infinity" are frequent. They must be 
terminated-abandoned-and an "answer" outputted. I know at least thirteen different termina
tion criteria that are employed. It would be useful to have a full taxonomic study of such criteria, 
but I am not aware of such a study.3 

Perhaps the student, having heard from the camp faculty (or from reading newspapers) that 
some mathematical problems have taken centuries before they were resolved, was asking me 
how long she should spend on a problem before abandoning it. We all abandon problems. Life 
calls us to other things that must get done. 

4 Matftematica{ Argumentation as a Mixture I!f MateriafS 

Here is a final conjecture as to what might have been in the student's mind in asking the question. 
It is a very unlikely conjecture, but it expresses a feeling that I occasionally have after reading 
through mathematical material. 

What is the source of one's confidence that the informal, patched together mixture of verbal 
argumentation, symbol manipulation, computation and the use of visuals, whether in the published 
literature or of one's own devising, all click together properly as presented, and result in the 
confident assertion: "Yes, that certainly solves the problem!" 

Let me elaborate. Consider the processes and techniques used in solving mathematical 
problems. The melange of materials involved has been well described by mathematical semioticist 
Kay O'Halloran who studies the relationship between mathematical ideas and the symbols with 
which these ideas are expressed. 

"Mathematical discourse succeeds through the interwoven grammars oflanguage, math
ematical symbolism and visual images, which means that shifts may be made seamlessly 
across these three resources. Each semiotic resource has a particular contribution or func
tion within mathematical discourse. Language is used to introduce, contextualize, and 
describe the mathematics problem. The next step is typically the visualization of the 
problem in diagrammatic form. Finally, the problem is solved using mathematical sym
bolism through a variety of approaches which include the recognition of patterns, the 
use of analogy, an examination of different cases, working backwards from a solution 
to arrive at the original data, establishing sub-goals for complex problems, indirect rea
soning in the form of proof by contradiction, mathematical induction and mathematical 
deduction using previously established results." [O'Halloran 2005] 

3 Each special problem may develop its own special tennination criteria. See,e.g., [Ehrich 2001]. 
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Behind the understanding of and expertise with symbolisms, there are cognitive capacities 
that act to create and glue together the mathematical discourse. Lakoff & Nunez give a list 
required for doing simple arithmetic. They are (with these authors' elaborations omitted): 

"grouping capacity, ordering capacity, pairing capacity, memory capacity, exhaus
tion detection capacity, cardinal number assignment, independent-order capacity, 
combinatorial-grouping capacity, symbolizing capacity, metaphorizing capacity, con
ceptual-blending capacity." [LakofflNunez 2000] 

Just as logicians have wondered whether further axioms are necessary for mathematics, I 
wonder whether further mental capacities than those above are required to do mathematics that 
is more complex than simple arithmetic. I wonder whether as mathematics progresses, and as it 
adds new proofs and develops new theories, we are now in the possession of additional mental 
capacities in virtue of the work of the brilliant mathematicians of the past. I wonder also whether 
semantics, semiotics, and cognitive science, taken together, are adequate to explain the occurrence 
of the miraculous epiphany "Yes. That's it. The problem is now solved." Psychological studies 
and autobiographical material have not yet uncovered all the ingredients that make up the "aha" 
moment. 

5 From a Matliematician's Perpective 

I am now lead to imagine that the question How do we know when a problem is solved? has 
been put to a professional. There is no universal answer to this question. It depends on the 
situation at hand. The typical answers for validation just gi ven to young math students, carry into 
the professional domain. Examples: product barcodes have check digits that employ modular 
arithmetic. When, in the first generation of computers, I computed the Gaussian weights and 
abscissas for approximate integration to 30 D, I plugged back to verify my output. The modes of 
validating a long and involved computation may involve reworking the problem with a different 
algorithm, with different software on a different computer and then comparing.4 

But there is much, much more that has to be said. At the very outset, one might ask: does the 
problem, as stated, make sense or does it need reformulation? There are ill-posed problems, in 
either the technical sense or a broader sense. There are well-posed problems, weakly-well-posed 
problems, etc. One might also ask-but is rarely able to ask at the outset---does the problem have 
a solution? From the simplest problems lacking solutions, such as "express ../2 as the ratio of two 
integers," or "find two real numbers x and y such that x + y = I and xy = I simultaneously," to 
the unsolvable problems implied by Godel's Theorem, the potential solvability can be an issue 
that lurks in the background. We are faced with the paradoxical situation that the solution to a 
problem may be that there is no solution. 

What kind of an answer will you accept as a solution? It is important to have in mind 
the purpose to which a presumptive solution will be put. (See [Uspenskii 1974], pp. 5-8, and 
[Wilf 1982].) 

A so-called solution may be useless in certain situations and hence, not a solution at all. 

4 At the research level, "plugging back in" can have its own problems. See [Gautschi 1983]. 
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Example: The expression of the determinant of an nx n matrix in terms of n! monomials formed 
from the matrix elements is pretty useless in the world of scientific computation. One looks 
around for other ways and finds them. 

Example: Most finite algorithm problems have a solution that involves enumerating all the 
possibilities and checking, but this brute force strategy is seldom a satisfactory solution and is 
certainly not an aesthetic solution. 

Example: A differential equation may be solved by exhibiting its solution as an integral. But to 
a college undergraduate who has met up with integrals only in a previous semester, an integral 
is itself a problem and not a solution. An approximation to the solution of a differential equation 
may be exhibited as a table, a graph, a computer program or may be built into a chip. Is such a 
solution good enough in a particular situation? 

Example: If the problem is to "identify" the sequence 1,2,9, 15, 16, ... will you accept a "closed" 
formula (query: what exactly do you consider as a closed formula?), a recurrence relation, an 
asymptotic formula, a generating function? A semi-verbal description? Do you want statistical 
averages or other properties? Will you try to find the sequence in The Online Encyclopedia of 
Integer Sequences? Or will you simply say that a finite sequence of numbers can be extended to 
an infinite sequence in an unlimited number of ways and chuck the problem out the window as 
ill-formulated? How would you even elaborate explicitly the verb "identify" so as not to chuck 
the problem? 

Though a problem has been solved in one particular way, the manner of solution may 
suggest that it would be very nice to have an alternate solution. An interesting instance of this 
is the prime number theorem. Originally proved via complex variable methods, Norbert Wiener 
(and others) asked for a real variable proof. Since the statement of the prime number theorem 
involves only real numbers, the demand for such a proof was possibly a matter of mathematical 
aesthetics. A real variable proof was given by Paul ErdOs and Atle Selberg in 1949, partly 
independently. 

Is such and such really a solution? There are constructive solutions but, as already observed, 
a solution may be "constructive" in principle but in practice the construction would take too long 
to be of any actual use. (The dimensional effect or the n! effect.) 

Then there are existential solutions in which the generic statement is "There exists a number, 
a function, a structure, a whatever, such that .... " The mathematician Paul Gordan (1837-1912), 
when confronted with Hilbert's existential (i.e., non-constructive) proof of the existence of a 
finite rational integral basis for binary invariants, asked "Is this mathematics or theology?" ([Reid 
1970], pp. 34-37) 

Example: The Mean Value Theorem asserts that given a function f(x), continuous on (a, b) and 
differentiable on (a, b), there exists a ~ in (a, b) such that feb) - f(a) = f'(~)(b - a). Some 
students find this statement hard to take when they first meet up with it. The ~ appears mysterious. 

Example: The famous Pigeonhole Principle: Given m boxes and n objects in the boxes where 
nis larger than m. Then there exists at least one box that contains more than one object. Who 
can deny this? This may lead to an existential solution. On this basis, for example, together with 
some tonsorial data, one can conclude that there are two people in Manhattan that have the same 
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number of hairs on their head. Now find them. We have been assured that they can surely be 
located in a platonic universe of mortals. 

Example: There exist irrational numbers x and y such that xY is rational. Proof: Set r = 

.)2v'2.Now if r is rational, then since.)2 is irrational, the selection x = y = .)2 works. On 
the other hand, ifr is irrational, then set x = rand y = ')2. Since x Y = (.)2v'2)v'2 = (.)2)2 = 2, 
this selection works. One may ask: is this really a solution if we can't, with our present knowledge, 
decide whether r is or is not rational? 

There are "probabilistic solutions" as, for example, the Rabin-Miller probabilistic test for 
the primality ofa large integer. [Rabin 1980] 

Then there are the "weak solutions." In 1934, Jean Leray proved that there is a weak solution 
to the incompressible Navier-Stokes equations. Is there only one such? The question appears to 
be still open. But what, in a few sentences, is a weak solution? If there is ambiguity about the 
very notion of a "solution," this is equally the case for a "weak solution." Technically, if L is a 
differential operator, and if u = f satisfies the equation Lu = g, then f is the solution. If so, then 
for all "test functions" 0, 

(Lf, 0) ~ (g, 0), (,) designating an inner product. But if only the latter is true, f is said to be a 
"weak solution." 

Since some problems are very difficult, or even unreachable with current mathematical theory 
and techniques, the notion of a weak problem, possessing weak solutions, has been introduced as 
a framework that allows existing mathematical tools to solve them. A strong solution is a weak 
one but often a weak solution is not a strong one, and the relation between the two notions is still 
the subject of intense research. 

In a numerical problem, is a weak solution really a solution if it is not computable? Despite 
this limitation, the knowledge that a weak solution exists can have a have considerable impact. 

Apparently, the meaning of the word "solution" can be stretched quite a bit. The elastic 
quality of mathematical terms or definitions is remarkable, and is often achieved through context 
enlargement. 

There are cases where a problem has been turned into its opposite. Thus, the search for the 
dependence of Euclid's Fifth Axiom (the parallel axiom) on the other axioms, resulted in the 
unanticipated knowledge of its independence. The Axiom of Choice was hopefully derivable 
from the other axioms of set theory. It is now known to be independent of them. An instruction 
to prove, disprove, or prove that neither proof nor disproof is possible, is a legitimate, though a 
psychologically unpleasant formulation of a problem. 

There are cases where a problem was felt to be solved, and then later was felt to be open, 
not because an error was found, but because there was a shift in the (unconscious) interpretation 
of what had been given. For this, read Imre Lakatos' classic discussion of the history of the 
Euler-Poincare theorem. A very early version reads V - E + F = 2 where V, E, and Fare 
respectively the number of vertices, edges, and faces of a polyhedron. But just what kind of a 3-
dimensional object is a polyhedron and what are its vertices, edges and faces? Lakatos' discussion 
chronicles the ensuing tug-of war-almost comic-between hypotheses and conclusions and the 
negotiations necessary so as to maintain a semblance of the original conclusion. This is known 
in philosophy as "saving the phenomenon." [Lakatos 1976]. 



88 Pro~f and other Di(emmas 

6 When is a Protf Co my (ete ? 

If the problem is to find a proof (or a disproof) of a conjecture, how does one know that that a 
purported proof is correct? Gallons and gallons of ink have been expended on this question as 
formulated generally. Are proofs stable over time? A half century after D' Alembert gave a proof 
of the Fundamental Theorem of Algebra, Gauss criticized it. A century after Gauss' first proof 
(he gave four), Alexander Ostrowski criticized it. 

Is a proof legitimate if it is hundreds of pages long and would tire most of its human 
checkers? Is a proof by computer considered legitimate? The publicized proof by Thomas Hales 
of the Kepler sphere packing conjecture is said to require 250 pages of text and 3 gigabytes of 
programs. The mathematical community is itself split over the philosophical implications of the 
answers given to these and a myriad of similar questions. [Hales www] 

For one criterion as to when a solution is a solution, when a proof is a proof, let's go, as 
bank robber Willie Sutton said he went, to where the money is. A recent answer to this question 
was fonnulated by the Clay Mathematics Institute which offers prizes of a million dollars for the 
solution of each of seven famous problems. The Clay criteria for detennining whether a problem 
is solved are as follows. 

(I) The solution must be published in a refereed journal. 
(2) A wait of two years must ensue after which time if the solution is still "generally 

acceptable" to the mathematical community, 
(3) the Clay Institute will appoint its own committee to verify the solution. 

In short, a solution is accepted as such if a group of qualified experts in the field agree that it's 
a solution. This comes close to an assertion of the socially constructive nature of mathematics. 
The remarkable thing is the social phenomenon of (almost) universal, but not necessarily rapid, 
agreement, which has been cited as strengthening mathematical platonism. (See [Davis 1990], 
[Ernest 1998], [Rosental 2003].) 

7 Ayy{jed Mathematics 

In applied mathematics-and I include here both physical and social models--other answers 
to the basic question of this article can be put forward. Proofs may not be of importance. The 
fonnulation of adequate mathematical models and adequate computer algorithms may be all 
important. What may be sought is not a solution but a "good enough solution." 

In introductions to applied mathematical and in philosophical texts, loops are often displayed 
to outline and conceptualize the process. The loops indicate a flow from 

(a) the real world problem to 
(b) the fonnulation ofa mathematical model, to 
(c) the theoretical consequences of the model, to 
(d) the computer algorithm or code, to 
(e) the computer output to 
(f) the comparison between output and experiment. 

Then back to anyone of (b)-(f) at any stage. And even back to (a), for in the intervening 
time, the real world problem may have changed, may have been reconceived, or even abandoned. 
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In looking over these steps, it occurred to me that one additional step is missing from this 
standardized list. It is that (f) can lead to 

(g) an action taken in the real world and to the responses of the real world to this action. 

This omission might be explained as follows: at every stage of the process one must certainly 
simplity-but not too much, else verisimilitude will be lost. The responses of the real world are 
both of a physical and of a human nature, and the latter is notoriously difficult to handle via 
mathematical modeling. Hence there is a temptation to "put a diagrammatic wall" around (b) 
to (e) that emphasizes the mathematical portion as though mathematics gets done in a sanitized 
world of idealized concepts that does not relate to humans. Step (g) is often conflated with 
(f) and let go at that. Since we are living in a thoroughly mathematized world with additional 
mathematizations inserted by fiat every day that impact our lives in myriads of ways, it is vital to 
distinguish (g) and to emphasize it as a separate stage of the process. 

What cannot be known in advance is how often these loops must be traversed before one says 
the problem has been adequately solved. Common sense, experience, the support of the larger 
community in terms of encouragement and funding may all be involved arriving at a judgment. 
And yet, one may still wonder whether steps (a)-(g) provide a sufficiently accurate description 
of the methodology of applied mathematics. 

8 Some Historica( Perpectives 

One can throw historical light on the question of when a problem is solved. There are several 
ways of writing the history of mathematics. I'll call them the horizontal and the vertical ways. In 
horizontal history, one tries to tell all that was going on in, say, the period 400-300 B.C. or between 
1801 and 1855. In vertical history, one selects a specific theme or mathematical seed, and shows 
how, from our contemporary perspective, it has blossomed over time. (See [Grattan-Guinness 
2004].) 

As a piece of vertical mini-history, consider the quadratic algebraic equations first met in 
high school. Such equations were "solved" by the Babylonians 4,000 years ago. But over the 
years, immense new problems came out of this equation in a variety of ways: higher order 
algebraic equations, the real number system as we now know it, complex numbers and algebraic 
geometries; group and field theory, modem number theory, numerical analysis. 

Solving a polynomial algebraic equation of degree n once meant finding a positive rational 
solution. Today it means finding all solutions, real or complex together with their multiplicities 
and finding it either in closed form (rare) or by means of a convergent algorithm whose rate of 
convergence can be specified. But the generalizations of quadratic equations go further. Formal 
equations can be interpreted as a matrix or even as an operator equation in various abstract spaces. 
The equation x 2 = 0 trivially has only x = 0 as its solution when x is either real or complex. 
But this is not the case if x is interpreted as an nby n matrix: the nilpotent matrices solve this 
equation. And if you have the temerity to ask for all nilpotent operators in abstract spaces, you 
have raised a question without a foreseeable end. 

A more recent example, of which there are multitudes. In 1959, Gelfand asked for the index 
of systems of linear elliptic differential equations on compact manifolds without boundary. The 
problem was solved in 1963 by Atiyah and Singer, and this opened up new ramifications with 
surprising features including Alain Connes' work on non-commutative geometry. 
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In the historical context, mathematical problems are never solved. Material, well established, 
is gone over and over again. New proofs, often simplified, are produced; contexts are varied, 
enlarged, united, and generalized. Remarkable connections are found. Repetition, reexamination 
are parts of the practice of mathematics. 

9 A Dia(ogue on When is a Theory Comy{ete 

The original question as to when is a problem solved may be moved up a level to ask: when 
is a theory complete? Stephen Maurer, one of the MathPath faculty, provided me with a web 
discussion of this question he'd had with one of his most philosophical students. I present it here 
as Maurer sent it to me. 

Andy Drucker: 
"This question has been haunting me, and I know I shouldn't expect definite answers. 

But how do mathematicians know when a theory is more or less done? Is it when they've 
reached a systematic classification theorem or a computational method for the objects 
they were looking for? Do they typically begin with ambitions as to the capabilities 
they'd like to achieve? I suppose there's nuanced interaction here, for instance, in seeking 
theoretical comprehension of vector spaces we find that these spaces can be characterized 
by possibly finite 'basis' sets. Does this lead us to want to construct algorithmically these 
new ensembles whose existence we weren't aware of to begin with? Or, pessimistically, 
do the results just start petering out, either because the 'interesting' ones are exhausted 
or because as we push out into theorem-space it becomes too wild and wooly to reward 
our efforts? Are there more compelling things to discover about vector spaces in general, 
or do we need to start scrutinizing specific vector spaces for neat quirks--or introduce 
additional structure into our axioms (or definitions): dot products, angles, magnitudes, 
etc.? 

Also, how strong or detailed is the typical mathematician's sense of the openness or 
settledness of the various theories? And is there an alternative hypothesis I'm missing?" 

Stephen Maurer: 
"This is an absolutely wonderful question-how do mathematicians know when a 

theory is done-and you are right that there is no definitive answer. The two answers 
you gave are both correct, and I can think of a third. Your two answers were I) we know 
it's done when the questions people set out to answer have been answered, and 2) we 
know it's done when new results dry up. My third answer is 3) we don't know when it's 
done. 

An individual probably feels done with a theory when the questions that led him/her 
to the subject are answered (answered in a way that he feels gives a real understanding) 
and he either sees no further interesting follow-up questions or can't make progress 
on the ones he sees. Mathematicians as a group probably feel it's done when progress 
peters out-the subject is no longer hot and it is easier to make a reputation in some 
other field that is opening up. (You called this attitude pessimistic, and I'm not so keen 
about it either, but it shows that math, like other subjects, is influenced by more than 
pure thought, and it means that mathematicians are trying to optimize results/effort.) 
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But finally, history shows that fields are rarely ever done. Much later a new way 
of looking at an old field may arise, and then it's a new ball game. Geometry is an 
example. The study of n-dimensions was around long before vectors and dot products 
(there are books of n-dimensional theorems proved by classical Euclidean methods) but 
the creation of these vector ideas in physics led to a new blossoming of geometry. 

Another example is the field of matroids, in which I got my Ph.D. Matroids have 
been described as "linear algebra without the algebra." Concepts such as basis and 
independence make sense (and have the same theorems you have seen, such as that all 
bases have the same size) but there is no plus or scalar multiplication! Matroids were 
invented in the 1930s, for a different purpose than generalizing linear algebra, and lay 
fallow for some time. Then, starting in the 1960s, their general value was appreciated 
and they sprung to life for perhaps 30 years. We might have said that we thought linear 
algebra was done, but since matroids are a form of linear algebra generalization, we 
discovered it was not done. 

Now matroids are fairly quiet again; there are still papers published in the field, 
but the natural questions that occurred to people when the subject was fresh have been 
answered or people have mostly stopped trying. It has become, like linear algebra itself, 
a background theory that people apply when appropriate." 
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Examples of revitalization abound. At the end of the 19th century, it was thought that 
invariant theory was finished and that Hilbert's work had killed it off. But it lives on. Where is 
nomography today? Its theoretical heyday seems to have been in the work of Maurice d'Ocagne 
[d'Ocagne 1899], but it lives on in engineering circles. See also [Po Davis 1995] for another 
example of revitalization in geometry. 

Reading the Drucker-Maurer dialogue recalled to my mind that Felix Klein (1849-1925) 
and John von Neumann (1903-1957) emphasized other sources of revitalization. Felix Klein: 

"It should always be required that a mathematical subject not be considered exhausted 
until it has become intuitively evident .... " ([Kline 1972], p. 904) 

By Klein's criterion, and considering contemporary proofs that require hundreds of pages 
or are done with a computer assist, it would appear that many mathematical subjects have a long 
life ahead of them before they become intuitively evident. 

Von Neumann's answer contains a cautionary message which I, as an applied mathematician, 
appreciate. I reproduce a short portion of his article. 

"As a mathematical discipline travels far from its empirical source, or still more, if it is 
a second and third generation only indirectly inspired from ideas coming from 'reality,' 
it is beset with very grave dangers. It becomes more and more purely aestheticizing, 
more and more purely I 'art pour I 'art. This need not be bad, if the field is surrounded 
by correlated subjects, which still have closer empirical connections, or if the discipline 
is under the influence of men with an exceptionally well-developed taste. 

But there is a grave danger that the subject will develop along the line of least 
resistance, that the stream, so far from its source, will separate into a multitude of 
insignificant branches, and that the discipline will become a disorganized mass of details 
and complexities. 
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In other words, at a great distance from its empirical source, or after much' abstract' 
inbreeding, a mathematical subject is in danger of degeneration. At the inception the 
style is usually classical; when it shows signs of becoming baroque the danger signal is 
up. It would be easy to give examples, to trace specific evolutions into the baroque and 
the very high baroque, but this would be too technical. 

In any event, whenever this stage is reached, the only remedy seems to me to be 
the rejuvenating return to the source: the reinjection of more or less directly empirical 
ideas. I am convinced that this is a necessary condition to conserve the freshness and the 
vitality of the subject, and that this will remain so in the future." [von Neumann 1947] 

10 A Possi6(e Examy(e tf Renewafjrom the Outside 

It may be invidious to mention a specific example of exhaustion of a field when there are people 
working very happily in it. But the following example and opinion is in the open literature. 
(See [Mumford 2000].) Classical mathematical logic, which proceeds from Aristotle through 
Frege, Russell & Whitehead, Tarski, and later, has lost its connection to reality and has produced 
mathematical monsters. The change that is suggested is to develop logics that build in theories 
of probability. There currently exist a number of probabilistic logics, but they are not entirely 
successful. Some have even said: construct logics that build in "intent" in the sense of the 
mathematical philosophy of Edmund Husserl. 

11 Imy{jcations Jor Mathematica( Education 

What are some of the pedagogic implications of the discussions of this article? 
Normally, the average student thinks of a mathematical problem as something where one 

arrives at a single answer as quickly as possible and then moves on to the next assigned problem. 
Brighter students-those who will go further with mathematics-should be encouraged to think 
of a problem as never really finished. 

Other ways of looking at the problem may emerge and yield new insights. It is also important 
to examine a problem in relation to other parts of mathematics as well as to the historical and 
cultural flow of ideas in which it is embedded. 

Discovering a sense in which a solved problem is still not completely solved but leads to 
new and profound challenges, is one important direction that mathematical research takes. 
To be fully alive in the world of mathematics is to be constantly aware of this possibility. 

Finally, alluding to my MathPath experience that gave rise to this article, taking a student's 
question seriously can be fruitful for both the student and the professor. "Out of the mouths of 
babes and sucklings have I found strength." 
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Matliematica{ Practice as a Scientific Prob{em 
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University of New Mexico 

From the Editors 

Reuben Hersh is probably the best-known proponent of social constructivism as a philosophy of 
mathematics, which was implicit in his two books with Philip Davis and made explicit in his own 
What is Mathematics, Really? His viewpoint results in his reading widely, not only philosophers 
of mathematics, but also sociologists, anthropologists, linguists, and others who have something 
to say about how mathematics develops. He tends to expand the topics generally considered 
part of the philosophy of mathematics. In this chapter, he explores several topics from a social 
constructivist viewpoint: why the existence and nature of mathematical objects are important, 
why it is important to study mathematical practice from a scientific perspective, and the apparent 
timelessness of mathematical results. 

Reuben Hersh is an Emeritus Professor of Mathematics and Statistics at the University of 
New Mexico (www.math.unm.edu/~rhersh/). His mathematical work has been primarily in par
tial differential equations and random evolutions. In addition to his research work, he has written 
a number of expository articles, including "Non-Cantorian set theory" (with Paul J. Cohen), 
Scientific American (I967), "Nonstandard analysis" (with M. Davis), Scientific American 
(1972), "How to classifY differential polynomials," American Mathematical Monthly (1973), and 
"Hilbert's tenth problem" (with M. Davis), Scientific American (1973) (which won the Chauvenet 

prize). His two books with Philip Davis, The Mathematical Experience (1980) and Descartes' 
Dream (1986), explore certain questions in the philosophy of mathematics, and the role of mathe
matics in society. To explore more concretely the social constructivism that was the philosophical 
basis of these two books, he wrote What is Mathematics, Really? More recently, he edited a book, 
18 Unconventional Essays on the Nature of Mathematics (2005) that explores some of the issues 
his chapter here suggests need to be studied. Among his other philosophical articles that readers 
of this volume are likely tofind interesting are "Some Proposals for Reviving the Philosophy of 
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Mathematics," Advances in Mathematics (1979), "Rhetoric and Mathematics" (with P. J. Davis) in 
The Rhetoric of the Human Sciences (1987), "What is Humanistic Mathematics?" Mathematics in 
College (1990), "Let's Teach Philosophy of Math! " in The College Mathematics Journal (1990), 
"Mathematics Has a Front and a Back," reprinted in Synthese (1991), "Proofis convincing and 
explaining," Educational Studies in Mathematics (1993), "Humanistic Mathematics and the Real 
World" in Essays in Humanistic Mathematics (1993), "Math Lingo vs. Plain English: Double 
Entendre," American Mathematical Monthly, (1997), and "Proof-Once More and Yet Again," 
Philo sophia Mathematica (1997). His latest book with Vera John-Steiner. Loving and Hating 
Mathematics: Inside Mathematical Life will appear in 2009. 

1 Introduction 

Mathematical entities do exist, they are cultural items. Mathematical experience and activity 
need to be studied both philosophically and empirically. Study of the nature of mathematics 
brings together neuroscience and cognitive science, linguistics, history, anthropology, sociology 
and philosophy. Phenomenological analysis can make a useful contribution: for example, in 
clarifying the sense in which mathematical truths are "timeless." 

2 Atiyah's P(easant Suryrise 

Commenting on a recent anthology [Hersh 2005], Michael Atiyah wrote: "I was pleasantly 
surprised to find that this book does not treat mathematics as desiccated formal logic, but as a 
living organism, immediately recognizable to any working mathematician." 

What does it mean to say that mathematics is "a living organism"? It grows, it evolves, it 
interacts with its environment. It has purpose and intention. It's created and sustained by and for 
living human beings-with all the complexity which that fact implies. 

Atiyah's comment of course conveys no disrespect for logic as a branch of mathematics. 
The "desiccation" refers to the philosophical reduction of all mathematics to "formal logic" 
(including formal set theory). That view of mathematics was plainly stated by W.V.O. Quine: 
"Researches in the foundations of mathematics have made it clear that all of mathematics in the 
above sense [i.e., all of both pure and applicable mathematics] can be got down to logic and set 
theory." [Quine 1966] Forty years later, that opinion still is found in the academic philosophy of 
mathematics. But when mathematicians wonder about the meaning and nature of our work, we 
look at our actual experience, creating and discovering the facts of geometry, algebra, topology, 
or analysis. Our reports are recognizable as mathematics by other mathematicians. 

The English philosopher David Corfield urges his colleagues to get interested in mathematics 
as it is lived and practiced. "By far the larger part of activity in what goes by the name 'philosophy 
of mathematics' is dead to what mathematicians think and have thought, aside from an unbalanced 
interest in the 'foundational' ideas of the 1890-1930 time ... We should be looking to inspire a 
new generation of philosophers to sign up to the major project of understanding how mathematics 
works." [Corfield 2003] 

And now, in the present collection, philosophers of mathematics are addressing mathemati
cians! This is radical. Maybe it will start a trend. (Indeed, four or five philosophers contributed 
to the anthology that Professor Atiyah found "pleasantly surprising.") 
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Does "existence" matter? 
Much current conversation among philosophers of mathematics is about "Platonism versus 

fictional ism." Do mathematical "things" (objects, entities, items, whatever label you like) really 
"exist" (whatever that means)? Or are they just "fictions" (whatever that means)? 

The trouble is that mathematical items don't fall into either of Rene Descartes' two categories 
of existence-physical (material, ponderable, spatiotemporal) or mental (subjective, private.) The 
number 2, for example, is neither a physical object nor a private thought in the philosopher's 
head. 

Perhaps out of impatience with the Platonist-fictionalist back-and-forth, some writers have 
even decided that existence is a matter of no concern ([Cellucci 2005], [Davies], [MacKenzie 
2005], [Rota 1996]). (After all, how we calculate and prove isn't affected by philosophical 
existence.) And yet, mathematical existence is one of our frequent concerns! (As in, existence of 
the sporadic "Monsters" of finite group theory, or existence ofa classical solution of the mixed 
initial-boundary value problem for the Navier-Stokes equation.) 

I am only a "working mathematician," not a philosopher, so I say something "exists" if it 
affects us, if we need to take it into account in our actions. This violates the honorable tradition, 
older than Plato, in which the ephemera of daily life are mere illusion, and do not "exist" for 
philosophy. 

If we take daily life and experience as real, the notion of existence can't be restricted 
only to physical existence-what can be weighed, measured, detected in the laboratory or the 
observatory-nor to mental existence-the private consciousness of the individual philosopher. 
"What exists" has to include the other things that daily life is made up of, that no one can 
ignore-the calendar, the schedule, the price list, the pay roll. 

Laws_ 
Customs_ 

Family relationship_ 
Nations_ 

Special sales for Christi mas_ 
Et cetera, et cetera. 

All that important stuffis not weighed and measured, nor is it located inside the philosopher's 
mind. You can call it "public," or "inter-subjective," or "cultural-historic-social." I call it "socia\" 
for short. Of course, the social is grounded in the physical and mental, in complex, fascinating 
ways. We must study and try to understand all that. But first of all, given the slightest degree or 
measure of sanity, it exists! Mathematical objects (entities, items, whatever word you like) are 
part of that public, social, intersubjective world. As such, they exist. They are real. They have 
objective properties, which we may discover, or which may elude discovery. 

But someone may object, and argue, "You say something exists if it actually affects us. 
Yes, the speed limit and the price of gasoline are real, they do affect me. But how do the 
facts of mathematics directly affect anyone?" One standard answer is, "Mathematics is tied, 
directly and indirectly, to physics, which is embodied in the objects and processes you use 
every day in modem consumer society." A second answer is, "Your checks will bounce if you 
ignore the laws of arithmetic." A third answer is: "Mathematicians, once they enter the world 
of mathematics, find that they cannot do whatever they please. They must accommodate to 
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mathematical reality.'" (Thus it was that Andrew Wiles, working on Fermat's last conjecture, 
was stuck in his attic for seven years. The subtleties and complications he had to overcome were 
real. They had to be understood as they really are; they could not be ignored, just because he 
might have wished they weren't there.) 

Once existence is understood to include all the stuff we have to deal with every day, the 
big puzzle about mathematical existence fades away. Mathematics exists, neither as a kind of 
physical entity, nor as a private mental experience, but socially, historically, culturally, inter
subjectively, publicly. The classical article [White 2005] by the famous anthropologist Leslie 
White established this simple fact once and for all. Starting from that simple observation, we 
should work to unravel the important properties and qualities of mathematical entities, objects, 
processes. White's friend, the topologist Raymond Wilder, made important contributions, with 
his effort to apply "culturological" analysis to mathematics. His work [Wilder 1981] deserves to 
be reread today. 

What's missing from White's article is the special, unique character of mathematical 
objects-their universality, their seeming "certainty," the unanimous agreement that is forced by 
mathematical argumentation. To account more deeply for these special, characteristic features of 
mathematics is the major open problem. 

One approach to it would be through understanding its adaptive role in the evolution of our 
species; another would be by investigating its basis in our nervous system and our visual and 
auditory centers. (See, e.g., the articles by Rav and Nunez in [Hersh 2005a].) 

The trouble with Platonism is not so much that it's wrong. The trouble is, it's an easy answer, 
it avoids looking for scientific answers. When Newton and Leibniz believed that mathematical 

truths are thoughts in the mind of God, they didn't need to trouble any further about the nature 
of mathematical truth. Still today, a kind of Platonic faith is natural, at the moment when you're 
hot in pursuit of your research problem. But when you step back, and look at what you and your 
colleagues are doing, you can recognize another fascinating problem: to understand mathematics 
as a special aspect of human thought and culture. 

3 For a Mu{ti-DiscijJ{jned Study if Matliematica{ Practice 

Once it's acknowledged that socio-cultural-historical entities, including mathematical ones, are 
real objects with objective properties, we can escape from the back-and-forth between Platonism 
and fictional ism (or logicism and formalism). We are left with an empirical or scientific question, 
a real phenomenon to study, to try ultimately to understand. The situation is analogous to 
what happened when anthropology, psychology or linguistics were recognized as autonomous 
disciplines, separating off from the "What is Man?", "What is Mind?", "What is Language?" 
wonderments. Mathematics-both mathematical practice and mathematical concepts---can be 
studied with every available method, as a special form of cultural life. 

Of course the scientific study of special forms of cultural life is nothing new. Take 
economics, for instance. It started independent life as a priori rules of behavior ofa hypothesized 
"economic man." But later we saw the rise of "behavioral" or "empirical" economics. A similar 
story can be told about linguistics. The young field of "sociolinguistics" is empirical; it may 

I I am grateful to Julian Cole [Cole 2005] for taking this argument seriously enough to give it some respectable 
philosophical backing. 
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some day bring mathematical linguistics down to the ground of actual speech data, of behavior 
of language speakers. 

4 Difinition if "Mathematica{ Ofiject" 

If economics is the study of economic activity and behavior and linguistics is the study oflanguage 
activity and behavior, then we may be ready to start a systematic study of mathematical activity 
and behavior. Our first step, naturally, is to ask: 

What do we mean by "mathematical activity or behavior"? 
Certainly it includes thinking, wondering, dreaming, learning about mathematics. Certainly 

it includes problem solving at all levels, from pre-kindergarten up through postdocs and Fields 
Prize winners. Teaching mathematics, at all levels, is also mathematical activity. (If it isn't, 
then we'd call it bad teaching.) Ordinary commercial calculations are too. Routine plugging of 
numbers into formulas by engineers and technicians is another form of mathematical behavior. 
So too are geometrical reasoning, and probabilistic reasoning, and combinatorial reasoning, and 
any formal logical reasoning. 

In fact, we must expect that other, hitherto unthought-of kinds of mathematical behavior 
will yet arise. If that should happen, how would we identifY such hitherto unseen behavior as 
mathematical? This question, I believe, is the crucial one that leads to a convincing, workable 
definition of mathematics. 

Consider how it was decided in the past that some new branch of study was not just 
"mathematical" (containing some mathematical features) but really mathematics: to be included 
within the field of mathematics itself. Two famous examples are set theory and probability. Infinite 
sets were not part of mathematics before Georg Cantor explicitly based them on the notion of 
one-to-one correspondence. On that basis, he was able to make compelling arguments, and set 
theory (with some resistance) became a mathematical subject. An older example is gambling or 
betting. Fermat and Pascal demonstrated "rigorous" (irrefutable, compelling) conclusions about 
some games of chance. Therefore their work was mathematical, even though it was outside the 
limits of mathematics as previously understood. The subsequent work of Bernoulli, De Moivre, 
Laplace and Chebychev was certainly mathematics, for the same reason. Ultimately Kolmogorov 
axiomatized probability in the context of abstract measure theory. In doing so he was axiomatizing 
an already existing, ancient branch of mathematics. 

It was pointed out in The Mathematical Experience [Davis/Hersh 1981] in 198 I that "While 
mathematics is a humanistic study with respect to its subject matter, it is like the sciences in its 
objectivity. Those results about the physical world that are reproducible-that come out the same 
way every time anyone asks-are called natural sciences. In the realm of ideas, of mental objects, 
those ideas whose properties are reproducible, that come out the same way every time anyone 
asks, are called mathematical objects, and the study of mental objects with reproducible properties 
is called mathematics" I was gratified when David Mumford quoted this approvingly. "I love 
this definition because it doesn't try to limit mathematics to what has been called mathematics 
in the past but really attempts to say why certain communications are classified as math, others 
as science, others as art, others as gossip. Thus reproducible properties of the physical world are 
science whereas reproducible mental objects are math." [Mumford 2000, p. 199]. Reasoning about 
mental objects (concepts. ideas) that compels assent (on the part of everyone who understands the 
concepts involved) is characteristically "mathematical." This is what is meant by "mathematical 
certainty." It does not imply infallibility! (On the contrary, history shows that the concepts about 
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which we reason with such conviction have sometimes surprised us on closer acquaintance, and 
forced us to re-examine and improve our reasoning). 

Certainly mathematics itself isn't the only place where conclusive reasoning occurs! For 
example, historians can use rigorous, even unimpeachable reasoning, to establish the sequence 
of events, or to refute anachronistic claims. Rigorous reasoning can occur anywhere-in law, in 
textual analysis ofliterature, and in ordinary daily life apart from academics. But although dates in 
history are subject to rigorous reasoning, they are not mathematical objects, part of mathematics. 
They are tied to specific places and persons. Infonnation about them comes ultimately from 
reports ofsomeone's visual or auditory perceptions. 

On the other hand, when we consider abstractions, whether in law, or in theology, or in art 
criticism, musical criticism, or literary criticism, we certainly do find argument and reasoning, but 
it is not usually conclusive. It is usually subject to continuing unresolved dispute and disagreement. 
And if in a part of some field of abstract thought, such as linguistics for example, some concepts 
arise which lend themselves to conclusive and decisive reasoning, then that field is characterized 
as "mathematical," and we have mathematical linguistics. 

So mathematics itself isn't the only place where conclusive reasoning occurs. But its objects 
of study are all those abstractions that lend themselves to conclusive, irresistible reasoning
to ''proof'' "proof," not in any fonnal or fonnalized sense, but in the sense mathematicians 
talk about proof-conclusive demonstrations that compel agreement by all who understand the 
concepts involved. Abstract concepts subject to such conclusive reasoning or proof are called 
mathematical concepts. 

Beginning with Aristotle, fonnal logic has helped to clarify mathematical reasoning, and 
rigorous argument in general. But most mathematical argument is done on the basis of the content 
of mathematical statements, not on their logical fonn. It is done, not only without reference to 
the rules offonnallogic, but often even without awareness of them. And now fonnallogic itself 
is well-established as another part of mathematics! As such, it is subject to conclusive reasoning 
that generally is informal, as in the rest of mathematics. That is to say, logicians reason informally 
in proving theorems about formal logic. (This remark, made forcefully by Imre Lakatos 30 years 
ago [Lakatos 1976], is now a commonplace). 

Donald MacKenzie [2005] uses the tenn "rigorous proof" in contrast to "fonnal proof," to 
mean "all those arguments that are accepted by mathematicians (or other relevant specialists) 
as constituting mathematical proofs, but that are not fonnal proofs." I could amend him, and 
say "rigorous proof" is any argument that compels assent from everyone who understands the 
concepts involved. Then my definition of mathematics could be shortened: any set of ideas is 
mathematical, to the extent that it is subject to rigorous proof. 

Saunders MacLane [1986], among others, has written that mathematics is characterized by 
"precision." But what is meant by "precision"? He could not have meant numerical precision, for 
a huge part of modem mathematics, including his own contribution, is geometrical or syntactical, 
not numerical. By "precise" did he mean "fonnally explicit"--expressed in a fonnal symbolism? 
But it has been said, by several famous mathematicians, that you don't really understand a 
mathematical concept until you can explain it to the first person you meet in the street. And of 
course there are many beautiful examples in mathematics of conclusive visual reasoning, which 
are accepted and recognized as mathematical proofs independent of any post hoc fonnalization 
and fonnal proof. 
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Probably the correct interpretation of "precise" should be simply, "subject to conclusive, 
irrefutable reasoning." So my argument here amounts to accepting the familiar claim that "Math
ematics is characterized above all by precision" and simply "unpacking" what is meant by 
"precise." 

Lakoff and Nunez [ 2000] have shown that mathematical proof often can be under
stood as based on "embodied metaphors." That explanation of proof cannot be formalized. 
In fact, mathematical proof is too varied to be pinned down in a single precise, universal 
description 

I will repeat: Mathematics can be defined as the subject that consists primarily, characteris
tically, of conclusive, irresistible reasoning about abstract concepts. Such reasoning is what we 
call "proof:" "proof," not in the formal or formalized sense, but in the sense mathematicians 
say "proof"-a conclusive demonstration that compels agreement by all who understand the 
concepts involved. 

And mathematical objects (or entities or items, or whatever word you like) are simply those 
concepts which are subject to such conclusive reasoning or proof 

Wouldn't this include chess problems? Yes, of course. "A chess problem is simply an exercise 
in pure mathematics ... Chess problems are the hymn-tunes of mathematics." [Hardy 1992, 
p.87] 

5 The Basic Pro6(em 

The basic problem is the same for us as it was for Kant: 
"How is pure mathematics possible?" [Kant 1950] 
In the context of the philosophical discourse of his time, Kant answered, "intuition." 
In the context of empirical science, we can ask: 
"How is it possible for people to create reasoning which is indisputable?" 

This is a major intellectual challenge, which will take decades to unfold: to use the method
ologies of history, sociology, anthropology, psychology, cognitive and neuroscience, and no 
doubt still others yet to be invented, to develop a coherent, empirically-based, overall under
standing of the nature of mathematical practice and knowledge, as a major part of our larger 
understanding of what it is to be human. 

This is much more than saying "We need a sociology of mathematics." Mathematics is a near
universal, almost all-pervasive aspect of humanity, of being human, and should be studied from 
all points of views, by all available methods, not as distinct, disconnected academic departments, 
but as related ways of focusing on the same mysterious phenomenon. 

Empirical studies of mathematics are already taking place, in considerable variety. The 
wonderful book The Number Sense by Stanislas Dehaene [1997], reports on neurological, lin
guistic and educational studies, all pointing to a bodily (neurological or biological) foundation 
for arithmetic. (See also [Butterworth 1999] and [Campbell 2005].) 

Bettina Heintz [2000] carried out an extended ethnological study of ongoing mathematical 
research at the Max Planck Institute in Bonn. 

Where Mathematics Comes From by George Lakoff and Rafael Nunez [2000], and The Math 
Gene by Keith Devlin [2001], are path-breaking attempts to connect mathematical thinking with 
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the language ability. Nunez [2005] is carrying out a precise quantitative study of gesture in 
mathematical communication, as a clue to the connection between mathematical abstractions and 
embodied metaphor. 

Anthropologists have long studied mathematical understanding and language in many dif
ferent cultures and recently, under the label of "ethnomathematics," they have been joined by 
mathematicians Ubiratan D'Ambrosio [1985] and Marcia Ascher [1991]. Among sociologists, 
the writings of David Bloor [1976] in Edinburgh stirred up considerable resistance and con
troversy. The sociologists Andrew Pickering and Donald Mackenzie contributed to my recent 
collection, 18 Unconventional Essays on the Nature of Mathematics [Hersh 2005a]. The long
standing work of developmental and educational psychologists, especially Jean Piaget [1958, 
1960, 1065, 1965a, 1967, 1969, 1970, 1975] and Lev Vygotsky [1978, 1986] and their followers, 
has yielded a great deal of knowledge on how children learn mathematics. 

The oldest specialty in "mathematics studies" is, of course, the history of mathematics. Tra
ditional history concentrated on describing mathematical findings and results as embedded or 
embalmed in print, but today many historians are broadening their focus, to see mathematics as the 
product of individuals in communities-the professional community of fellow-mathematicians, 
and also the larger political-economic-ideological community, whose support makes them 
possible. 

It would be redundant to try to summarize the work of these different authors. 
Here are some questions to which we do not have adequate answers: 
The dialectic between discrete and continuous, between arithmetic and geometry, between 

logical and visual, is a fundamental pervading theme throughout mathematics. It was manifested 
to the Pythagoreans, when they discovered that no fraction can measure the diagonal of the 
unit square. It manifested in the acceptance, rejection and acceptance of infinitesimals, from 
Archimedes, Newton and Leibniz to Abraham Robinson [1996]. It surfaced again in Andre 
Weil's conjectures [Weil 1979], linking the number of solutions of Diophantine equations to the 
cohomology of differentiable manifolds. 

If we trace back to our animal origin, it is clear that both human and pre-human primate 
hunters and gatherers had to think about direction and distance. This kind of thinking is intimately 
connected with seeing, with the visual function of the brain. It is also clear that language is 
primarily auditory. Words and language, first spoken, later written, are the soil from which 
spring logic and counting-number and arithmetic. Are there two different brain activities or 
potentialities, one for visual-geometric and another for logical-arithmetical thinking, associated 
with the two different brain centers-visual and auditory? Is there a neurological basis for these 
two contrasting worlds of mathematical thought-at once incompatible and inseparable? This 
question can be investigated even today, using current methods of brain localization on subjects 
carrying on mathematical work. 

Another fundamental dialectic is between "existence as construction" and "existence as 
logical possibility." How are we able to think and draw conclusions about things that we do not 
know how to find? This has played out as the dispute of intuitionism and constructivism (Brouwer, 
Bishop) against mainstream mathematics, whether formalist or Platonist (Hilbert, G6del). (See 
[Bishop 1967], [Brouwer 1975], [G6del 1995], [Hilbert 1964].) 

Unconscious mathematizing is a huge mystery. Mathematical ideas can come into conscious
ness by surprise, as ifby a gift from nowhere--evidently from some subconscious process. This 



5. Mathematicaf Practice as a 5cientjic Pro6fem 103 

is attested to by many anecdotes. The most famous is Poincare's discovery of the theta-fuchsian 
functions, a mystery calling for explanation. [Poincare 1923] 

The disconnect between verbal and mathematical abilities is another unexplained common 
observation. So is the prominent correlation between ability in mathematics and ability to perform 
music. 

If the nature of mathematics can be identified as a scientific problem, where does that leave 
philosophy of mathematics? Of course philosophers of mathematics will still carry on. Many will 
continue their traditional ongoing conversation, without serious attention to actual mathematical 
practice. But some others are already trying to study mathematical behavior, activity and experi
ence ([Asprey/Kitcher 1988], [Cellucci 2005], [Corfield 2003]). In that effort, phenomenological 
analysis deriving from Edmund Husser! and his followers is helpful. (See [Hauser], [Livadas 
preprint, 2005, 2006], [Rota 1974, 1996], [Tieszen 2005, 2006a, 2006b], [Tragesser 1984], and 
my own [Hersh 2005b].) Here I offer a phenomenological analysis of an aspect of mathematical 
practice. 

6 Timety or Timdess? 

One puzzle about mathematics is its timeliness or timelessness. People say mathematical truths 
are timeless, even eternal-"Always were true, always will be." The squares on the sides of 
a right triangle add up to the square on the hypotenuse-presumably they "did so" before the 
notion of right triangle or hypotenuse had crossed anyone's head. This way of thinking seems 
to force one to allow the "existence" of all right triangles with their hypotenuses, even before 
the famous Big Bang that gave birth to our Cosmos. And of course, the same thinking applies to 
all complex determinants, say, of order 29,146,298,979, or to all Grothendieck toposes. They all 
existed, "somewhere, somehow." 

Once, at a math department colloquium in a certain state university, I called for a vote for 
or against the following proposition: "Resolved, that the spectral representation of self-adjoint 
operators in Hilbert space was true before the Big Bang that created the Cosmos." The vote was 
3 to I in favor. 

I would like to suggest a different way oflooking at these matters. Once a new, well-founded 
mathematical question is asked, the answer usually is already determined, but still unknown. In 
that sense, the answer now exists. But the answer didn't exist in advance of the question. Once 
people conceived of right triangles and of the area ofa square, the question about the squares on 
the sides of the triangle was meaningful, and we would say that the Pythagorean theorem was 
true, even before it was stated. But before there were triangles and sums of squares, there was no 
object to which the Pythagorean theorem could refer, so it is senseless to say it was true already 
at that time. 

Similarly, theorems on "faithful functors" or "Abelian sheaves" were neither true nor false 
before the mathematical concepts they describe had been conceived or formulated. They simply 
didn't refer, they had no content. Once those objects came into being, as mathematical objects, 
that is as thoughts and objects of discourse, then we could say that certain theorems were already 
true-waiting to be discovered, so to speak. 

In this respect mathematical facts are different from physical ones. The Earth rotated on its 
axis before there were people to care about night and day. But mathematical concepts or entities 
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or objects, whichever you prefer to call them, are called into being by our questions. Only then 
can answers to such questions be true or false. 

It is tempting for mathematicians and philosophers of mathematics to look for mathematical 
precision in thinking about mathematics. But it will not do to expect a definite yes-or-no, either-or 
answer to such questions as exactly when some mathematical fact became true. 

Mathematics is not a fixed, static, eternal piece of abstract hardware. It is an evolving, 
growing, developing world of ideas, problems, algorithms, conjectures, proofs, analogies-a 
cultural world, a world existing first of all in the thoughts of people, and in the activities in their 
brains that correspond to these thoughts, and only subsequently in the records on paper and on 
microchips where they have recorded their thoughts. 

A new mathematical concept may arise in the course of a mathematical conversation, or in 
the course of an individual's thinking or writing about a mathematical topic. In its first state of 
coming into being, it is transient, evanescent, subject to quick disappearance and oblivion. It may 
be held onto, communicated to others, developed, it may become a topic of conversation among 
several people. Ifit is written down and preserved somehow, or ifit becomes a widespread topic 
of conversation over a considerable period of time, we recognize it as a stable part of the cultural 
world of mathematics, as a new topic or concept in mathematics. But there would be no single 
moment when it was created or invented. 

If it is the predetermined solution of a definitely stated problem, there is a sense in which 
it existed latently, in potentia. from the time that problem was stated. And if that problem was 
a natural consequence, predictable as part of an already existing theory, we could say that the 
object in question had a potential existence, even before the explicit statement of the problem to 
which it is a solution. This is not a particularly mysterious situation. In exactly the same sense, 
one could say that a leaf on an oak tree was potentially present in the DNA of the acorn from 
which the tree grew. 

The creation of novelty in mathematics, as in life, is precisely the passage from potentiality 
to actuali ty. 

The intermediate region between the potential and the actual is the area of active growth at 
any particular time. It is the social counterpart of what the psychologist Lev Vygotsky called "the 
zone of proximal development." Colloquially, we talk about new ideas being "in the air." We 
call on this notion to account for a very common event: multiple near-simultaneous inventions 
or discoveries. 

On the other hand, when we are doing mathematics rather than reflecting on ourselves as 
doers of mathematics, we set aside, disregard the temporality of a mathematical object (or "item" 
or "entity," if you like.) For the purpose of doing mathematics, its temporality is irrelevant, so we 
set it aside, put it out of consideration. (In Husserl-style vocabulary, we "bracket" it.) It is in that 
sense, and for that reason, that mathematics can be said to be timeless. We make it so, because 
its temporality is not to our purpose most of the time. 

An analogy can be made to watching a movie. When we watch a movie in a movie theater, 
we are looking at a flat screen on which are projected patterns of color. In order to watch it as a 

movie (that's our purpose in being there) we intentionally put aside our awareness that all we are 
seeing is patterns of color on a flat screen. That "putting aside" is what enables us to "see" the 
story, the movie. 

Putting aside the temporality and concrete historicity of mathematical objects is necessary 
for us to enter the mathematical dream world and liv.e there, to make discoveries and creations 
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there. On the other hand, when we are not doing mathematics, but talking about what mathematics 
is, we can look at it from the outside and see that it is a temporal part of human culture (just 
as movie-goers have no trouble, before or after the movie, in seeing the blank screen where the 
images will be projected). 

This may be what some people mean by calling mathematics "a fiction." Call it "a fiction" 
if you want-but a "necessary fiction," not an arbitrary fiction-a "fiction" with laws of its own 
that must be obeyed, ifit is to be entered and lived in successfully. Because it does have its own 
laws, which compel us to obey, I call it a reality. 

7 Educationa{ Imyflcations 

IdentifYing the nature of mathematics as a form of human activity has important implications for 
education. Mathematics educators easily accept this identification. They often seem to take it for 
granted. A forthcoming article [Umland/Hersh] develops some of the interactions between the 
philosophical and the educational issues. 

Arithmetical skills that used to be essential for cashiers have long vanished from the checkout 
counter. Pocket calculators are everywhere, so cheap they're almost free. So it's no surprise when 
a high school teacher tells me her students can't multiply or divide! 

Yet the industry which has made universal skill in arithmetic obsolete, the computer industry, 
is totally dependent on mathematical thinking! This is a paradox. There is a simultaneous degra
dation and glorification of mathematics in our culture and our economy. These two opposing 
trends create a tremendous stress and dislocation for mathematics education. 

Numerical and geometric thinking are rooted in our brains, our genes and our culture. If 
this becomes better understood, it might help move mathematics education away from fruitless 
preoccupation with obsolete skills, and toward a liberating part of human enlightenment. If it 
were well understood that rigorous thinking is as much a part of our nature as playing ball 
or making music, then mathematics might come to be seen as part of everyone's educational 
birthright. 

8 Condusion 

The existence of mathematical items or entities does matter. Their seeming timelessness is an 
artifact of our practice, a necessary way of framing them so that we can "enter into" their world. 
The study of the nature of mathematics and mathematical practice is an interdisciplinary task. It 
is too big for philosophy alone, or even for half a dozen separate, isolated academic specialties. 
It is a central problem in the ongoing study of humankind. 
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Matfiematica{ Domains: Socia{ Constructs? 

Julian Cole 
Department of Philosophy and Humanities 

Buffalo State College 

From the Editors 

Social constructivism is probably the philosophy oj mathematics that has seen the greatest growth 
in support among mathematicians in the last twenty-jive years. However, until now, because oj 
assorted difficulties that this view appears to imply, it has not received serious attention Jrom 
philosophers oj mathematics. For example, see Balaguer's quick dismissal oj it in his chapter 
(section 2.2 and elsewhere). Julian Cole is one oJthefirst philosophers to seriously attempt to deal 
with these problems. This chapter gives you an introduction to the philosophical issues and how 
he is attempting to deal with them. His view is still being developed. After reading this chapter, 
you may want to Jollow his Juture work (and that oj those who respond to it). In particular, his 
upcoming article, "Creativity, Freedom, and Authority: A New Perspective on the Metaphysics oj 
Mathematics" seems likely to be oj interest. 

Julian Cole is an Assistant ProJessor oj Philosophy in the Department oj Philosophy and 
Humanities at Buffalo State College. His interests are in logic and the philosophy oj mathematics. 
He recently finished a doctoral dissertation on social constructivism as a philosophy oj mathe
matics, under the direction oj Stewart Shapiro at The Ohio State University. Prior to his work on 
social constructivism he wrote a doctoral dissertation in multifractal geometry at the University 
oJSt. Andrews under the direction oj Lars Olsen. 

1 Introduction 

There can be little doubt that mathematics is a social activity. Among other things, mathemati
cians often work together in groups, they frequently choose to work on problems because other 
mathematicians deem them important or difficult or worthy, they rely on other mathematicians 
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to verify the correctness of their work, they present their work in public forums, more than one 
mathematician (or group of mathematicians) can work on the same problem, and mathematicians 
compete with each other for sparse funding. That mathematics is social in all ofthese senses-and 
several others-is uncontentious. In the last ten years, however, two books 1 have been pub
lished that advocate that mathematics is social in a much deeper-and correspondingly more 
controversial-sense than any of these. The authors of these books-respectively, Reuben Hersh, 
a professional mathematician, and Paul Ernest, a specialist in mathematics education-suggest 
that the subject matter of mathematics is social. More precisely, they advocate the thesis that 
the subject matter of mathematics-mathematical domains or structures-is constructed by or 
created by--quite literally brought into existence by-the social activities of mathematicians. 
This is a contentious thesis if ever there was one, as, on a standard interpretation, it implies there 
were, for example, no numbers until mathematicians invented them. 

The details of Ernest's and Hersh's accounts of how the subject matter of mathematics is 
socially constructed2 are quite different. Further, anybody who has read their books will be aware 
that both Ernest and Hersh have a much broader agenda3 than the mere advocacy of the thesis that 
the subject matter of mathematics is socially constructed. Indeed, it would probably be accurate 
to say that the articulation and defense of this thesis are in many ways secondary to both authors' 
primary goals. Nonetheless, both Ernest and Hersh do promote this thesis. 

I am fascinated by the suggestion that mathematical domains (structures)4 are socially 
constructed. What I would like to do in this chapter is to explore this suggestion with the aim 
of making one version of it reasonably precise and evaluating its merits and weaknesses. I shall 
undertake the latter task by comparing it with Platonism, its best-known rival. Ideally, I would 
also compare this version of social constructivism with the two popular versions of Nominalism, 
Fictionalism and Modal Nominalism. Unfortunately, space does not allow. For similar reasons, 
I shall be unable to discuss all of the details of this account of mathematics. 

2 Ernest's and Hersh's View rf Mathematics 

Let us begin by considering what Ernest and Hersh say about the social construction of math
ematical ontology-the mathematical items that exist. The following quotes indicate Ernest's 
general position about mathematical objects: 

According to the social constructivist view the discourse of mathematics creates a 
cultural domain within which the objects of mathematics are constituted by mathematical 
signs in use. ([Ernest 1998], p. 193) 

I Reuben Hersh's What is Mathematics, Really? [Hersh 1997] and Paul Ernest's Social Constructivism as a Philosophy 
of Mathematics [Ernest 1998]. 

2 I shal1 provide an extensive discussion of social construction in Section 3. 

3 This broader agenda is, as a matter of fact, quite similar for both authors. They are both interested in exploring 
philosophical issues concerning mathematics using a much broader range of mathematical examples than is typical 
in the contemporary (analytic) philosophy of mathematics literature. They are both interested in discussing infonnal 
mathematical activities, e.g., the nature of mathematical intuition and how mathematical theories are generated and 
refined before they are fonnalized. (Discussions of this type are almost completely lacking in contemporary ana
lytic philosophy of mathematics.) Additionally, they are both interested in combating what they believe-l think mis
takenly-~is a dominant conception of mathematical knowledge as certain and infallible. 

4 From this point onwards I shall simply talk about mathematical domains. I leave it open whether some or all mathematical 
domains are structures. 
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... signifiers have ontological priority over the signified---especially in mathematics, 
for the signifiers can be inscribed and produced, or at least instantiated, whereas the 
signified can be indicated only indirectly, mediated through signifiers. 

([Ernest 1998], p. 196) 

... the ontology of mathematics is given by the discursive realm of mathematics, which is 
populated by cultural objects, which have real existence in that domain ... mathematical 
discourse as a living cultural entity creates the ontology of mathematics. 

([Ernest 1998], p. 202) 
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While there is much in these quotes that the reader is likely to find perplexing and in need of 
further explanation, two points can be gleaned from them. First, Ernest's belief that mathematical 
objects are constructed by or created by-made real by-the activities of mathematicians. This 
is the basic thesis of social constructivism (about mathematics). Second, Ernest takes the 
discursive elements of mathematics to be central to the construction of mathematical ontology. 
Indeed, the first and second quotes indicate that Ernest believes that the constructive work of 
mathematical practicesS is done, at least primarily, by the presence of mathematical signs and 
signifiers in the discursive elements of those practices. 

The most natural interpretation of "mathematical signs" and "signifiers" in Ernest's quotes 
is one according to which they are lexical items-such items as the marks written down by 
mathematicians and the sounds uttered by mathematicians. Yet, under this interpretation, Ernest's 
suggestion is problematic. Mathematical discursive practices only contain a finite number of such 
signs and signifiers. Thus, if such signs and signifiers are responsible for the existence of all 
mathematical entities, then some of them must be responsible for the existence of collections of 
mathematical entities with infinite-indeed, extremely large infinite---eardinalities. How can they 
be so responsible? At least to my knowledge, Ernest has not provided an answer to this question.6 

So, Ernest's discussion of the social construction of mathematical ontology is unhelpful with 
respect to a key aspect of that construction. We shall explore this issue further in Section 4. 

Let us investigate whether Hersh can provide us with a more helpful account of mathematics. 
Here are some quotes from his book: 

Fact I: Mathematical objects are created by humans. Not arbitrarily, but from activity with 
existing mathematical objects, and from the needs of science and daily life. 

Fact 2: Once created, mathematical objects can have properties that are difficult for us to 
discover. ([Hersh 1997], p. 16) 

4. Mathematical objects are a distinct variety of social-historical objects. They're a special 
part of culture. ([Hersh 1997], p. 22) 

5 A practice is a collection of activities governed by standards of correctness and incorrectness. A practice is discursive if 
the activities in question are ones that center about assertoric content, i.e., the thing that we can assert, assume, consider, 
etc. Many mathematical activities are discursive practices because they involve assertions, proofs, etc. For a detailed 
discussion of assertoric content, I refer the reader to Crispin Wright's discussion in Chapters I and 2 of [Wright 1992]. 

6 Interestingly, non-mathematicians tend to find the criticism I level at Ernest in this paragraph obvious, while mathe
maticians sometimes have difficulties understanding the problem. I suspect that this is because mathematicians are so 
used to representing infinite collections of entities with a finite number of symbols that they intuitively fill in an answer 
to my question. My point is simply this, while there most certainly is an answer that can be provided, Ernest has failed 
to provide it in his book. 
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In Fact 1, Hersh expresses the basic social constructivist thesis with a minor twist: he recog
nizes the need to account for why human beings created mathematical domains 7 and hints at such 
an account. In Fact 2, Hersh indicates his sensitivity to a certain type of independence that math
ematical domains have from mathematical practices-let us call it epistemic8 independence, for 
it relates to our knowledge of mathematical domains. Just below Fact 2, he tells us 

Once created and communicated, mathematical objects are there. They detach from their 
originator and become part of human culture. We learn of them as external objects, with 
known and unknown properties. Of the unknown properties, there are some that we are 
able to discover. Some we can't discover, even though they are our own creations. 

([Hersh 1997], p. 16) 

The second part of this quote reinforces Hersh's sensitivity to the epistemic independence 
of mathematical domains from mathematical practices. The first part of this quote goes further 
than this, however. It indicates that mathematical domains detach-in some sense-from their 
specific creator. We shall return to this point in Section 4. 

Perhaps Hersh's most interesting claim, however, is that "mathematical objects are ... social
historical objects" ([Hersh 1997], p. 22). What are we to make of this claim? I believe that the 
following quote is helpful: 

Frege showed that mathematical objects are neither physical nor mental. He labeled them 
"abstract objects." What did he tell us about abstract objects? Only this: They're neither 
physical nor mental. 

Are there other things besides numbers that aren't mental or physical? 
Yes! Sonatas. Prices. Eviction notices. Declarations of war. 
Not mental or physical, but not abstract either! 
The U.S. Supreme Court exists. It can condemn you to death! 
Is the court physical? If the Court building were blown up and the justices moved to the 

Pentagon, the Court would go on. Is it mental? If all nine justices expired in a suicide 
cult, they'd be replaced. The court would go on. 

The Court isn't the stones of its building, nor is it anyone's minds and bodies. Physical and 
mental embodiment are necessary to it, but they're not it. It s a social institution. Mental 
and physical categories are insufficient to understand it. It's comprehensible only in the 
context of American society. 

What matters to people nowadays? 
Marriage, divorce, child care. 
Advertising and shopping. 

7 The observant reader will have noticed that both Ernest and Hersh talk about the construction of mathematical objects 
while I talk about the construction of mathematical domains. There are two reasons for this. First, it seems to me that (at 
least most) mathematical objects are the objects they are in virtue of their relationships to the other objects in the domain 
of which they are a member. So, in order to construct a particular mathematical object, one really needs to construct all of 
the objects in the domain of which that object is a member. Second, in constructing some aspect of mathematical reality, 
one is presumably not only constructing the objects in that aspect of mathematical reality, but also the properties of those 
objects and the relationships between those objects. A domain, at least as I am using this notion. is a collection of objects 
that have properties and stand in relations to one another. 

8 Epistemology is the branch of philosophy that investigates the nature of knowledge andjustification. 
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Jobs, salaries, money. 
The news, and other television entertainment. 
War and peace. 
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All these entities have mental and physical aspects, but none is a mental or a physical entity. 
Every one is a social[-historical] entity. ([Hersh 1997], pp. 13-14) 

In this passage, Hersh mentions a wide variety of social-historical entities, some legal (e.g., 
eviction notices and the U.S. Supreme Court), some political (e.g., declarations of war and peace), 
some financial (e.g., money and salaries), and others recreational (e.g., sonatas and television 
programs). All of these items exist, and their existence has very real consequences. Yet they owe 
their existence to the power of certain types of acts, decisions or practices undertaken by human 
beings to make certain items real simply by happening or being undertaken. In suggesting that 
mathematical entities are social-historical entities, Hersh is suggesting that the same is true of 
mathematical domains. That is, mathematical domains exist and they owe their existence to the 
power of certain mathematical activities undertaken by human (and other rational) beings to make 
them real simply by being undertaken. Let us call this the social-institutional understanding of 
the nature of mathematics. 

In what follows, when I talk about mathematical domains as social constructs, I shall have 
in mind Hersh's social-institutional understanding of the nature of mathematics. I believe that it 
is more promising than Ernest's signifier-signified understanding of mathematics. While many 
of the practices that constitute social-historical entities involve signs and signifiers, the presence 
of these signs and signifiers is not, in general, central to these practices' constructive power. The 
above discussion of Ernest's account of mathematics certainly suggests that, if the basic social 
constructivist insight is correct, then the same is true in the mathematical case. 

3 Socia( Construction and Dpendence 

In this section, I provide one framework for how objects come to be socially constructed. I do 
this so that I can locate the social construction of mathematical domains within this framework. 
In "Ontology and Social Construction" ([Haslanger 1995]), Sally Haslanger gives expression 
to a variety of ways in which social acts, decisions, or practices might be involved in social 
construction. The most basic distinction she makes is that between "causal social construction" 
and "constitUtive social construction." These are two ways of constructing existent items. 
Haslanger offers the following characterizations of these two varieties of social construction: 

Causal social construction: Something is causally socially constructed if 9 social factors 
playa causal role in bringing it into existence or, to some substantial extent, in its being 
the way that it is. 

Constitutive social construction: Something is constitutively socially constructed if a cor
rect definition or account of what it is for something to be an item of the type in question 
must make reference to social factors. 10 

9 Throughout I follow the mathematical convention of leaving 'only if' out of definitions. 

10 These definitions are taken from page 98 of[Haslanger 1995], though I have slightly modified the second. 
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Consider first such items as cars, scissors, alarm clocks, and telephones. These are spatio
temporal entities that have been manufactured for some particular purpose. Let us call such 
items artifacts. Clearly, artifacts would not exist if there were no social acts, decisions, or 
practices. So, artifacts are dependent on II certain social acts, decisions, or practices. Further, 
the primary mechanism of artifacts' dependence on social acts, decisions, or practices is well 
understood. Artifacts are causally dependent on the social acts, decisions, or practices that bring 
them into existence. Thus, artifacts are causal social constructs-the products of causal social 
construction. 

Next, consider the examples that Hersh mentions in the long quote in Section 2, and such 
items as legal borders between pieces of property (land), political borders between countries, 
property itself, countries themselves, laws (in the sense of statutes), 12 and games like baseball 
and tennis. It should be uncontroversial that all ofthese items exist. Further, a moment's reflection 
should make it clear that if various types of legal, political, financial, cultural and recreational 
practices had not developed on Earth, then none of these items would exist. Thus, all these 
items are dependent on social practices. Yet the mechanism of these items' dependence on social 
practices is different from that of artifacts' dependence on social acts, decisions, or practices. 
Social practices need not causally manipulate previously existing spatio-temporal items in order 
to bring legal and political borders, countries, laws, etc. into existence. Rather, these items simply 
owe their existence to certain social acts. It is this type of a dependence of an item on a social 
act that is characteristic of constitutive social construction. This type of dependence ensures that 
social factors have to be talked about in a correct definition or account of what the item is. Thus, 
these items are constitutive social constructs. 13 

Constitutive social constructs can have influence over the spatio-temporal world and the 
spatio-temporal world can have influence over which items we construct constitutively. One only 
need reflect on the impact of declarations of war to recognize this. What our contrast emphasizes 
is that the means by which an item becomes a constitutive social construct is not causal in the 
strict sense characteristic of causal social construction. 

While my exposition so far might suggest that constitutive and causal social construction are 
mutually exclusive, this is not the case. Many cases of social construction involve both elements, 
though one or the other might be dominant in any particular case. An excellent example of 
this is a "regulation baseball" for Major League play. Two distinct types of considerations are 
involved in something's being a regulation baseball. First, the ball in question must have certain 
physical characteristics, e.g., it must be a certain size, shape, color, etc. Regulation baseballs are 
manufactured to have these characteristics. Thus, regulation baseballs are causal social constructs. 
The second consideration is that the ball has to have been deemed regulation by an individual 

II Let us say that an item X is dependent on an act, decision, or practice Y if X would not exist if Y did not occur or 
exist. Additionally, let us say that an item X is in"dependent of an act, decision, or practice Y if X would exist even if 
Y did not occur or exist. 

12 Whenever I talk about laws in this chapter, I shall be talking about laws in the sense of statutes rather than laws in the 
sense of laws of nature or the laws of probability. 

13 I have to confess a certain level of dissatisfaction with Haslanger's definition of constitutive social construction. This 
dissatisfaction is rooted in the fact that her definition obscures the importance of the particular mechanism of dependence 
of an item on social factors that my examples serve to illustrate. This mechanism of dependence is central to my own 
thought about constitutive social construction. 
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acting on behalf of the League and be signed by the League's commissioner. This consideration 
makes regulation baseballs constitutive social constructs. 

Many acts of constitutive social construction are accompanied by acts of causal social con
struction, or provide already existing objects with additional features. For example, in composing 
a sonata, a composer will usually write a score. When declaring war, a country will usually 
produce a written proclamation of war. In legally dividing a single piece ofland into two pieces 
ofland, the owners of the two properties will usually either construct a barrier of some descrip
tion to mark the division or divide the land using a natural bamer. Some acts of constitutive 
social construction require an accompanying object or act of causal construction. For example, a 
representative of the Major League can only deem a baseball regulation if it has certain physical 
characteristics. You don't have an eviction notice-as opposed to an eviction order-without the 
piece of paper on which the eviction order is written. Other acts of constitutive social construction 
do not require any kind of associated object. For example, in legally dividing a single property 
into two smaller properties, there is no need to place a bamer between the two properties, and in 
declaring war, there is no need to write a proclamation. 

Let us call constitutive social constructs that do not require any kind of associated object pure 
constitutive social constructs, and those that do impure constitutive social constructs. Pure 
constitutive social constructs exist wholly in virtue of the undertaking of certain acts, decisions, 
or practices of social significance. Legal statutes are pure constitutive social constructs: roughly 
speaking, 14 a collection of statements has the property of being a legal statute wholly in virtue of 
its having appropriately proceeded through the process of approval and having been passed by 
a legitimate legislative authority. 15 Political borders are also pure constitutive social constructs. 
Roughly speaking, a certain line's marking a political border is wholly a matter of certain 
decisions made by relevant political groups; there is no need for such a border to be marked in 
any particular way. 

With the above conceptual tools in place, let us refine the basic thesis of social construc
tivism (about mathematics) into the central thesis of social constructivism (about mathematics): 
mathematical domains (and the items o/which they are composed) are pure constitutive social 
constructs constituted by mathematical practices. That is, particular mathematical domains (and 
the items of which they are composed) exist wholly in virtue of the undertaking of mathematical 
practices ofa specific type. In the next section, we shall consider what specific type ofmathemat
ical practice is required. In the remainder of this chapter, when I talk about social constructivism, 
I shall be talking about this thesis, not the wider agenda of most social constructivists (see 
Footnote 3). 

Social constructivism's advocacy of the dependence of mathematical domains on mathemat
ical practices is what distinguishes it from all forms of Platonism. For our purposes, Platonism is 
the conjunction of three theses about mathematical domains: a) some exist, b) they (and the items 

14 There are other considerations involved. For example, a statute must not be declared unconstitutional and it must not 
be overridden by later legislative activities. None of these further considerations undennine the claim that legal statutes 
are pure constitutive social constructs. 

IS It is part of the procedure for passing a federal statute that various written versions of it are produced, including 
the version signed by the President. Yet, after signing, should all these required written versions of the statue be 
destroyed-perhaps by a nuclear attack in the D.C. area-it would remain law without them. Consequently, the statue 
itself has a certain type of independence from all of its written versions; they are not required for its continued existence. 
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of which they are composed) are paradigm cases of abstract entities 16_S0, for example, they are 
acasual, non-spatio-temporal, eternal, and changeless, and c) they (and the items of which they 
are composed) are independent of all social acts, decisions, and practices-they would exist even 
ifthere were no social acts, decisions, or practices. 

4 Logic and Onto{ogica{ Structure 

We now have a basic understanding of the account of mathematical domains offered by social 
constructivists-mathematical domains are socially constituted by mathematical practices. Yet 
we still lack an answer to one important question: according to social constructivists, how, exactly, 
do mathematical practices manage to socially constitute mathematical domains? 

As a preliminary to answering this question, it will be useful to ask, "Why, according to 
social constructivists, is the purported construction that takes place within mathematics social 
in nature rather than individual in nature?" After all, it would appear that many mathematical 
domains are introduced by individual mathematicians rather than by groups of mathematicians. 
For example, it would appear that William Hamilton introduced the domain of quaternions and 
Georg Cantor introduced the domain of transfinite numbers. 

In order to answer this question, we first need to be clear about what is meant by 'social in 
nature' rather than 'individual in nature'. I mean to be asking "Why are mathematical constructs 
sharable?" That is, why can both you and I-and any reasonably sophisticated human being
theorize about the same mathematical construct rather than each of us theorizing about, and 
thus constructing, a different mathematical domain. For example, it could be that you construct 
your domain of natural numbers and I construct my domain of natural numbers, where these two 
constructs are different entities. 17 

Consider for a moment another class of constitutive social constructs, sonatas. In general, 
one individual is responsible for composing any given sonata, yet this does not undermine the 
social-sharable-nature of sonatas. An individual's musical creation can be shared by many, 
because that individual uses socially recognized tools in its construction. For example, sonatas 
are composed using the twelve-tone scale, a social convention standardized around "middle C" 
having the frequency of 440Hz, and sonatas are composed for standard-socially recognized
musical instruments. It is precisely because shared musical tools of this type are used in the 
construction of sonatas that they are constructs of a social nature rather than constructs of an 
individual nature. 

16 I shall provide a somewhat more detailed discussion of abstract entities in Section 5. 

17 There are some passages in Arend Heyting's work that suggest that he took mathematical entities to be individual mental 
entities rather than sharable entities in the sense that I am concerned with here (see, e.g., [Heyting 1931]). My worries 
about the sharability of mathematical constructs are a direct response to Gottlob Frege's criticisms of psychologism 
(see [Frege 1884]). My interest in this notion of "social", i.e., sharability, distinguishes me from Ernest and Hersh. 
Reflection on constitutive social construction will reveal that it is frequently achieved by providing certain individuals 
or groups of individuals with certain rights, responsibilities, authorities, etc. Consequently, it involves complex social 
dynamics. At least as I read Ernest and Hersh, when they claim that mathematical constructs are social in nature, they are 
acknowledging the importance of these social dynamics. I certainly do not want to deny the importance of these social 
dynamics. Likewise, I presume that Ernest and Hersh would not want to deny that mathematical constructs are sharable. 
We are merely emphasizing different things with our respective uses of the word 'social'. 
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According to social constructivists, a similar situation arises in mathematics. Frequently, one 
mathematician is responsible for the mathematical community taking an interest in a particular 
mathematical domain." Consequently, from the perspective of a social constructivist, one indi
vidual is responsible for introducing the mathematical practice that constitutes that domain. Yet 
mathematical domains are sharable because mathematicians use shared logical tools (e.g., first and 
higher-order quantification) to characterize and constitute those domains. '9 These shared logical 
tools allow mathematicians to characterize the domains they seek to theorize about, specifically, 
how they are structured into objects, properties and relations. For example, characterizing the 
structure of the domain of natural numbers involves characterizing an ",-sequence. 

Characterizing the structure of a mathematical domain is precisely what we take cate
gorical axiom systems to do. For example, Hilbert's axioms characterize the structure of a 
two-dimensional Euclidean plane. The production of a categorical axiom system within a math
ematical practice is, usually, the formal culmination of a long process. From the early stages of 
their development, mathematical practices that concern a single domain incorporate features that 
informally characterize the structure of the domain they concern. Perhaps the most important 
such features are the informal proofs and counterexamples given and accepted within the practice 
in question. Close consideration of which such proofs are judged legitimate, which illegitimate, 
and which purported counterexamples are taken to be actual and which not provides extensive in
formation about the structure ofthe domain the mathematical practice in question is about. These 
and other features of the early development of these types of mathematical practices contribute 
to those practices determining how their subject malters are structured into objects, properties, 
and relations. 

Let us now return to the question asked at the outset of this section, i.e., according to 
social constructivists, how, exactly, do mathematical practices manage to socially constitute 
mathematical domains? The optimal answer to this question--{)r at least part of that optimal 
answer-is that it is their ability to provide a (coherent) characterization of a particular structure20 

A social constructivist should maintain that all that there is to a particular mathematical 
domain existing is the undertaking of a mathematical practice that centers about a (coherent) 
characterization of the structure of the domain in question21 So, for example, when William 

l8 There are, of course, cases where two mathematicians are independently responsible for introducing a particular 
mathematical domain. I am not aware of any analogous cases in the musical world. This difference is best explained by 
the very specific purposes for which mathematical domains are introduced. Further, this difference in no way undennines 
the point I am making in this discussion. 

19 A second difference between the mathematical and musical cases relates to community involvement in the charac
terization of a construct. While occasionally close friends of a composer do make suggestions for change prior to the 
completion ofa composition. typically, other musicians are extremely uncomfortable making any changes to another's 
(finalized) work. By contrast, it is common for members of the mathematical community to seek more conspicuous 
characterizations of newly introduced mathematical domains. Ernest and Hersh both emphasize this type of social nego
tiation as important to the nature of mathematics. I agree, but wish to note that this aspect of mathematics' social nature 
is independent of, and secondary to, the type of sociality that I am discussing. In order for a mathematician to offer a 
different characterization ofa newly introduced domain, he or she must already be sharing the domain in question with 
the individual who introduced it. Thus. that domain must be sharable. 

20 There is, in fact, a lot more involved in providing an optimal answer to this question. Some further details can be found 
in Chapter 2 of my Ph. D. dissertation [Cole 2005]. 

21 Early characterizations of new domains are often less than ideal. Frequently, later development shows them to be 
ambiguous. Difficult questions need to be asked about when the practices surrounding these characterizations actually 
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Hamilton first started to discuss entities with a noncommutative algebra to help represent and 
reason about 3-dimensional vectors, he introduced the practice responsible for the existence of 
quaternions. 

With this social constructivist conception of mathematics in place, we should note the 
following features of it. First, it vindicates Hersh's claim that mathematical domains "detach 
from their originator" ([Hersh 1997], p. 16). They do this in a similar way to the way that a piece 
of music detaches from its composer or composers. Both types of detachment are made possible 
by the use of sharable tools in the social construction/constitution of the respective items. 

Second, mathematical domains have objective features. Sonatas have objective features be
cause of the objective features of the sharable tools that are used in their composition. Similarly, 
the objective nature of the logical tools used in the characterization and constitution ofmathemat
ical domains provides them with objective features. Roughly speaking, mathematical domains 
inherit the objectivity of logical consequence because they are constituted using logical tools.22 

Third, the detachment of mathematical domains from mathematical practices allows for 
the epistemic independence of mathematical domains from mathematical practices highlighted 
in Section 2. Our imperfect knowledge of mathematical domains can be accounted for in the 
following way: mathematical domains are constituted using logical tools, yet human beings 
do not immediately perceive all of the logical consequences of a given characterization of a 
domain. 

Fourth, the above social constructivist conception of mathematics at least points in the 
direction of an account of how finite mathematical practices have the ability to socially constitute 
mathematical domains with extremely large cardinalities. Mathematical practices do so simply 
by (coherently) characterizing those domains. There is, of course, an interesting question that 
one might ask about how mathematical practices manage to so characterize extremely large 
domains. Yet it is clear that mathematicians do take themselves to do this all of the time. Thus, 
any philosophy of mathematics will have to face this question concerning characterization (and 
offer an answer to it) unless it wants to claim that mathematical practices are riddled with massive 
amounts of error. 

Fifth, according to the above account of the nature of mathematical domains, they are 
socially constituted by mathematical activities that concern particular mathematical domains 
(e.g., arithmetic, early Euclidean geometry, real analysis, complex analysis, and set theory). 
Those aspects of mathematics-such as group theory, ring theory, etc.-that do not concern 
particular domains (but rather all domains that share some structural features) do not, at least in 
general,23 contribute to the social constitution of mathematical objects. 

become responsible for the existence of the domains they characterize. We need not address these difficult questions for 
our purposes in this chapter. 

22 Issues concerning the objectivity oflogic and, consequently, the inherited objectivity of mathematics are complex from 
the perspective of a social constructivist. Unfortunately, I cannot hope to treat them adequately in this chapter. 

23 It seems to me that there are (probably) historical exceptions. Algebraic theories are only considered of interest ifthere 
are particular domains that have the structural features they center about. Consequently, a mathematician working on an 
algebraic theory will generally produce examples that have the structural features her theory centers about. Nowadays, set 
theory provides such examples. But. before this rich collection of structures was constituted by set-theorists. those working 
with algebraic theories produced their own examples. I suspect that occasionally this resulted in them characterizing new 
particular domains. 
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5 Abstract Entities 

There is one final piece of metaphysics24 that is worth exploring before we tum to the evaluation 
of social constructivism as an account of mathematical domains. This is the issue of whether 
or not mathematical domains and the items of which they are composed are abstract entities. 
Traditional-by which I mean Platonistic accounts of mathematical entities take them to be 
abstract entities-indeed, paradigm cases of abstract entities25 You might recall, however, that 
Hersh denies that mathematical entities (and social-historical entities in general) are abstract 
entities. Yet his argument for this thesis is peculiar. First, all he tells us about abstract entities is 
that they are neither mental nor physical. Second, he maintains that social-historical entities are 
neither mental nor physical. Why, then, does Hersh deny that social-historical entities are abstract? 
The reason, I suspect, is that Hersh's concept of an abstract entity is-unnecessarily-restricted 
to the concept of a paradigm case of an abstract entity. 

A concept F is said to be a cluster concept if the application of F is determined by several 
features, known as "the cluster constitutive ofF." IfF is a cluster concept, then an item x is F if 
and only if x has a sufficiently large number of the features in the cluster constitutive of F. An 
item that has all of the features in the cluster constitutive ofF is said to be a paradigm case ofF.26 

I contend that 'abstract' is a cluster concept. It is difficult to specify all members of the cluster 
constitutive of 'abstract', but the following are the most important members: acausality-the 
item neither exerts a (strict) causal influence over other items nor does any other item influence 
it in a (strict) causal way,27 non-spatio-temporality-the item does not stand in spatio-temporal 
relations to other items, eternality-the item exists timelessly, and changelessness-none of 
the item's (intrinsic28 ) properties change. I conjecture that, for Hersh, for something to be an 
abstract entity, it must have all of these features and the others in the cluster constitutive of 
'abstract' . 

Hersh's restricted use of abstract is quite understandable and his claim that social-historical 
entities are not abstract is reasonable. Many social-historical entities fail to have some of the 
features constitutive of 'abstract'. For example, the U.S. Constitution has a causal impact on 
people, was constituted at a certain time and so is not eternal, and-perhaps29 -goes through 
revisions of its intrinsic properties: amendments to it have been, and probably will continue to 

24 Metaphysics is the branch of philosophy that investigates the nature of reality. A metaphysical account of some 
subject matter is a theory about the nature of that subject matter. The following theses are popular parts of Platonistic 
metaphysical accounts of mathematics: mathematical entities exist, mathematical entities would exist even ifthere weren't 
any human beings or other types of beings, mathematical entities are not spatio-temporal entities, mathematical entities 
do not causally influence other entities, the properties of mathematical entities do not change over time, etc. I hope that 
these theses give the reader some understanding of what it is to provide a metaphysical theory (or interpretation) of 
mathematics. 

25 I shall provide an account of what an abstract entity is and what a paradigm case of an abstract entity is shortly. 

26 This notion ofa cluster concept is prefigured in a number of places in the philosophy literature. Perhaps the most useful 
discussion is Hilary Putnam's (see [Putnam 1962]). 

27 The relevant sense of strict is the one I identified while I was discussing causal social construction. 

28 The intrinsic properties of an item are those that it has independently of its relationships to other items. This modifier 
is needed, because it is clear that the extrinsic properties of all things change. For example, the extrinsic properties of the 
number 7 would change were I to decide that it is no longer my favorite (natural) number. 

29 There is a very tricky issue here about whether such amendments result in a new Constitution or a modified version of 
the original Constitution. 
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be, made. It is thus quite reasonable that Hersh should take mathematical entities to be like other 
social-historical entities in this regard. 

However, I don't see any convincing reason why a social constructivist has to deny that math
ematical domains and the items of which they are composed are acausal, non-spatio-temporal, 
eternal (or at least timeless), and changeless. I have sketched an argument elsewhere that this 
suggestion is intelligible (see [Cole 2005], Section 2.1). In fact, in [Cole 2005], I actually endorse 
it. Unfortunately, I do not have space here to provide a full argument for my endorsement of this 
suggestion. At the heart of this argument is a recognition ofthe universal representational function 
that mathematical domains serve. In essence, the argument is that the universal representational 
function of mathematics would be undermined by our taking mathematical domains to be causal, 
spatio-temporal, of limited duration, or changeable. 

For clarity, let me briefly illustrate what I mean by the universal representational function of 
mathematics. The natural numbers can aid us in representing all subject matters-including past, 
future, spatio-temporal, abstract, and counterfactual subject matters. For example, I can claim 
that the number of people on planet Earth was smaller one hundred years ago than it is today and 
than it is likely to be in one hundred years time. Mathematics' ability to help represent all subject 
matters is what is meant by the claim that mathematics' representational function is universal. 

A further reason a social constructivist should maintain that mathematical domains are 
abstract entities is the abundance of tenseless forms of representation in mathematical practices. 
Another is the fact that this contention allows for the vindication of the intuition that 2 + 2 = 4 
has always been true, as have all well-established mathematical truths.'o 

In addition, maintaining that mathematical domains and the items of which they are composed 
are (at least close to) paradigm cases of abstract entities would allow a social constructivist to 
sidestep some tricky issues. For example, it is well-known that Newton's and Leibniz's early 
developments of calculus were riddled with inconsistencies, yet practiced users of Newton's 
and Leibniz's tools were able to avoid these inconsistencies. Does the presence of this stable 
mathematical practice force a social constructivist to acknowledge the existence of a domain of 
infinitesimals with inconsistent properties constituted by this practice? On the present proposal, 
the answer is no. She could 31 take Newton and Leibniz to have been making a range of false 
assumptions about the real numbers as constituted by our contemporary practice of real analysis
presuming, of course, that our practice of real analysis does constitute the domain of real numbers. 
Further, the contention that mathematical domains and the items of which they are composed 
are (at least close to) paradigm cases of abstract entities would allow a social constructivist to 
account for mathematical practices progressing toward optimal characterizations of mathematical 
domains. It would also provide for a sense in which a social constructivist could account for early 
participants in a mathematical practice-individuals like Newton and Leibniz-getting things 
wrong about the domain the practice in question concerns. Both the claim that mathematical 
practices progress toward optimal characterizations of mathematical domains and the claim that 

30 Some social constructivists (e.g. Ernest and Hersh) would deny or criticize this intuition. I do not share their views on 
this matter. 

31 She is not, however, forced to offer this answer. A careful investigation of the early practices surrounding the calculus 
might warrant her accepting the constitution of a domain having inconsistent properties. 
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early participants in mathematical practices get things wrong about the domain the practice in 
question concerns find widespread acceptance in our everyday thought about mathematics.32 

It is for the types of reasons mentioned above that I take the optimal variety of social con
structivism to be one that takes mathematical domains and the items of which they are composed 
to be constituted as (at least close to) paradigm cases of abstract objects. For convenience, let us 
call this variety of social constructivism practice-dependent realism (PDR)---Hrealism" because 
it maintains that many mathematical domains genuinely exist and have objective features, and 
"practice-dependent" because their existence is dependent on the existence of the mathematical 
practices that constitute them. Officially, practice-dependent realism-like Platonism-is the 
conjunction of three theses about mathematical domains: a) some exist, b) they and the items of 
which they are composed are (at least close to) paradigm cases of abstract objects, and c) they 
and the items of which they are composed are dependent on mathematical practices-in fact, 
they are pure constitutive social constructs constituted by mathematical practices. 

6 Why Accpt Practice-Dpendent Reaflsm? 

So far, I have done little more than explicate social constructivism in general and POR in particular. 
I have given little or no reason to accept POR--or any variety of social constructivism-as an 
account of the nature of mathematical domains. All that I have done is show that PDR is 
compatible with various aspects of mathematical practices. So, why might one endorse PDR? 
Ernest pays little attention to this aspect of his social constructivist proposal. I find no argument in 
his book for social constructivism-the thesis that mathematical domains are socially constituted 
by mathematical practices. Hersh, on the other hand, provides two arguments in favor of social 
constructivism. 

Hersh's first argument is an extended historical discussion of Platonism, social construc
tivism's best-known rival. This discussion shows why Platonism has been the historically domi
nant account of mathematical domains. It also demonstrates why the historical factors that have 
made Platonism dominant do not provide it with genuine support. 

It is all very well to show that Platonism has been accepted for dubious reasons: despite this, 
it might be true. As Hersh notes in connection with mathematical discovery, it doesn't matter 
how you come to believe a thesis, what matters is whether that thesis is true. What is needed is 
not an argument that historical arguments for Platonism have been flawed, but an argument that 
Platonism is false or at least that social constructivism is preferable to Platonism as an account of 
mathematical domains. Even better would be a positive argument for the conclusion that social 
constructivism is true. 

Hersh's second argument takes a very different approach from his first. It cites historical ev
idence from mathematical practices concerning the creative nature of mathematicians' activities. 
Specifically, Hersh argues that introducing new mathematical theories is a creative endeavor, 
i.e., involves genuine creativity. No doubt Hersh is correct; the introduction of new mathematical 

32 The arguments of this paragraph rely on the assumption that a mathematical discursive practice is able to pick out a 
mathematical domain as the one it is about, even if it does not characterize that domain perfectly. This is a controversial 
assumption. Yet my overall argument on behalf of social constructivism can be provided without the support of the 
arguments made in this paragraph. 
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theories is a creative endeavor. Yet this fact does not establish the truth of social constructivism. 
The introduction of new theories about the spatio-temporal world is also a creative endeavor. It 
doesn't follow that the spatio-temporal world is a pure constitutive social construct. So, Hersh's 
second argument is no more successful than his first. 

Yet Hersh's second argument does point in the direction of a better argument for social 
constructivism, or at least the thesis that social constructivism is preferable to Platonism as an 
account of the nature of mathematical domains. In order to make this better argument, one needs 
to provide historical evidence for more than the thesis that the introduction of new mathematical 
theories is a creative endeavor. One needs to provide historical evidence that it is a creative 
endeavor that is not-in fact, cannot be-influenced by Platonistically construed mathematical 
domains---domains that are abstract and independent of all social practices. To start with, such 
evidence would distinguish the mathematical case from the spatio-temporal case; clearly, theories 
about the spatio-temporal world are generated under the influence of that (independent) world. 
In addition, however, it would go some way toward establishing that Platonistically construed 
mathematical domains are a kind of metaphysical extravagancy that we can-and therefore 
should---do without.33 

In fact, Hersh even makes observations about mathematical practices that support the con
clusion that new mathematical theories are introduced by mathematicians without influence from 
Platonistically construed mathematical domains. Recall, for example, the second half of Hersh's 
Fact I, where he tells us that the creation of mathematical domains is "[not arbitrary], but from 
activity with existing mathematical objects, and from the needs of science and daily life" ([Hersh 
1997], p. 16). Here Hersh observes that new mathematical theories are, on the whole, intro
duced for two reasons. Most (particularly contemporary) mathematical theories are introduced in 
response to needs internal to mathematics, such as answering questions raised within already ex
isting mathematical practices. Consider, for example, Hamilton's introduction of the quaternions 
as a tool for representing and reasoning about three dimensional vectors. The other important 
reason why new mathematical theories are---or at least were-introduced is in response to a 
need from science or everyday life, frequently the kind of representational need mentioned in 
Section 5. 

It is important to recognize that new mathematical theories are not introduced simply to 
describe Platonistically construed mathematical domains that, to use Godel's famous phrase, 
"force themselves upon" us. Yes, once mathematical domains have been characterized by some 
individual or group of individuals, discovering their properties can-and does-feel like discov
ering the properties of something external to the individual.3' But this kind of feeling comes 
after the introduction of a new mathematical theory; it does not motivate that introduction. The 
introduction of mathematical theories occurs for a variety of (other) reasons, primarily the two 
mentioned in the last paragraph. These reasons can force a mathematician to include certain 
features in her new theory, but these external constraints are not constraints from a Platonistically 
construed mathematical domain, but rather from the problem that she is introducing her theory to 
solve. Further, mathematical domains can-and, a social constructivist will argue, do--perform 

33 Further details of how this argument is meant to go will be provided in Section 8. 

34 Indeed, according to social constructivists, these properties are external to individual mathematicians in the sense that 
they are detennined, at least to a large extent, by the objective logical tools used to characterize mathematical domains. 
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the roles demanded by these reasons without them needing to exist independently of mathematical 
practices. 

In an ideal world, I would provide further empirical evidence showing that new mathematical 
theories are introduced without influence from Platonistically construed mathematical domains. 
But space is limited. So, instead, I shall offer a philosophical argument that new mathematical 
theories must be introduced without influence from these domains. In order to make this argument 
clear, it will be useful to relate it to well known epistemological worries about Platonism. So, let 
us consider those. 

7 P{atonism and Eyistemo{ogy 

In his 1973 paper "Mathematical Truth" [Benacerraf 1973], Paul Benacerraf made explicit an 
epistemological concern about Platonism that has inspired much discussion. It is now generally 
agreed that Benacerraf's original formulation of the challenge is not damaging to Platonism 
because it rests on a false assumption. Benacerraf's original formulation assumes that there 
needs to be a causal relationship between a knower and any domain of which she has knowledge. 
Yet the influence of his challenge remains, as it has been reformulated without mention of this 
false premise. Perhaps the most forceful such reformulation is Hartry Field's (see [Field 1989]). 

According to Platonists, there are two distinct realms that are connected in a specific way: first, 
a mathematical realm consisting of Platonistically construed mathematical domains, and second, 
a collection of beliefs, shared by many mathematicians (and others), about this mathematical 
realm. Further, according to Platonists, the mathematical domains that make up the mathematical 
realm in question are those things that make the mathematical beliefs in question true or false. 35 

Thus, the connection that Platonists claim holds between these two realms is that the first makes 
many of the second true. Given mathematicians' (and non-mathematicians') causal isolation 
from any Platonistically construed mathematical realm, there is a need for an explanation of this 
connection existing. Field challenges Platonists to provide such an explanation. 

Let us call an explanation non-mysterious ifit does not appeal to any mechanisms that would 
be found illegitimate by a reasonable individual engaged in a natural scientific investigation of the 
world. The specific form of Field's challenge to Platonists is to provide a non-mysterious, even 
if only rough, explanation of the systematic truth of mathematicians' (and non-mathematicians') 
pure mathematical beliefs. In other words, Field challenges Platonists to identify some collection 
of mechanisms that are scientifically investigable and which, in principle, could be the basis 
of an explanation of mathematicians (and others) having systematically true beliefs about a 
Platonistically construed mathematical realm. 

Field's challenge is legitimate because we share a belief that non-mysterious explanations 
are, in principle, available for many types of relationships, including our knowledge and beliefs 
about the world. It is therefore unacceptable to provide an account of the nature of mathematical 
reality that rules out the possibility of there being a non-mysterious explanation of our having 
systematically true beliefs about that reality. Field challenges Platonists to show that they have 
not made this unacceptable move. 

35 More precisely, the mathematical realm is that in virtue of which the mathematical beliefs are true or false. 
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It is our lack of causal connection with any Platonistically construed mathematical realm that 
motivates Field's challenge. Yet Field's challenge is stronger than can be recognized simply by 
noting our lack of causal connection with such a realm. 'Abstract' is, in fact, defined in opposition 
to 'spatio-temporal'. Thus, the abstract nature of any Platonistically construed mathematical 
realm makes it likely that all explanations grounded in features of the spatio-temporal world 
are unavailable to a Platonist in answering Field's challenge. In other words, it is likely that 
there are no scientifically investigable mechanisms that could be the basis of an explanation of a 
Platonistically construed mathematical realm influencing mathematicians and their practices. 

Logical deduction is likely to occur almost immediately to the reader as a different kind of 
potential tool for responding to Field's challenge. Yet noting the role of deduction in mathematics 
does not provide a full answer to Field's challenge, because beliefs established by means of 
deduction are only systematically true if the basic beliefs from which they are deduced are 
systematically true. So, for example, the many arithmetical truths that one can establish by 
deduction from the Peano Axioms are only systematically true if the Peano Axioms are. A Platonist 
must thus account for the systematic truth of the basic truths about mathematical domains. Most 
mathematicians will be tempted to suggest that the basic truths about mathematical domains are 
true in virtue of something like stipulation. But why can we simply stipulate these basic truths? The 
independence of Platonistically construed mathematical domains from mathematical practices 
seems to ensure that there might be no mathematical domain that answers to the stipulations in 
question. 

A similar challenge has no force against a PORist, because, according to her, mathematical 
practices are responsible for mathematicians' (and non-mathematicians') basic pure mathemati
cal beliefs being true. The Peano Axioms are true because they have been accepted as an optimal 
characterization of a collection of objects, i.e., the natural numbers, appropriate for mathemati
cians' purposes. More generally, because mathematicians get to decide which mathematical 
objects should be constituted to serve their purposes, and get to decide which basic claims best 
characterize such objects, roughly speaking, mathematicians do indeed stipulate the basic truths 
about mathematical domains. Further, mathematical practices, as spatio-temporally instantiated 
activities, can causally influence human beings to become (at least minimally) competent par
ticipants in them. Consequently, mathematical practices can causally influence human beings to 
have systematically true pure mathematical beliefs. Think, for example, of how school teachers 
influence their pupils to become minimally competent participants in mathematical practices. 
This influence begins with such rudimentary lessons as how to add together two natural numbers, 
includes an introduction to axiomatic characterization and deduction from axioms, usually in the 
form of Euclidean Geometry, and will, in the mathematically sophisticated classroom, incorpo
rate discussions of how to characterize the continuity of real valued functions using epsilons and 
deltas. 

There are those who have not been persuaded by Field's challenge. While there have been 
many responses, the only promising one has been of the following type. 36 Field's challenge
and other challenges inspired by Benacerraf-rests on a false assumption: that there is some 
need for the mathematical realm to influence human beings in order for human beings to have 
mostly true beliefs about that realm. As Mark Balaguer (see [Balaguer 1998]) and Stewart 

36 A defense of this claim can be mounted along the lines found in Chapter 2 of[8aJaguer 1998J. 
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Shapiro (see [Shapiro 1997]) have realized, such influence is not required. All that is needed is 
that no matter which axiom systems mathematicians choose to believe, provided only that they 
are coherent,37 they will be true of that realm. Balaguer and Shapiro suggest that the mathe
matical realm is so "large" that every coherent axiom system (characterization) will be true of 
some collection of objects, properties, and relations in that realm. So, their response to Field 
is simple: all mathematical statements true in a coherent mathematical theory are true because 
the mathematical realm is so large that it has enough objects, properties, and relations to ac
commodate the existential commitments of the theory in question. This suggestion provides a 
partial38 solution-indeed, the only known and ever likely to be produced partial solution-to 
the epistemological challenge to Platonists39 

For our purposes, it is important to note that this partial solution does not rest on any 
assumption that a Platonistically construed mathematical realm influences mathematicians or 
their practices. Indeed, according to both Balaguer and Shapiro, mathematical practices float free 
of any influence from the mathematical realm that they countenance. This mathematical realm is 
not involved in the best explanation of why mathematical practices are the way that they are. Nor 
should it be invoked as the basis of internal justifications of mathematicians' beliefs and choices. 

Now, why have I gone to the trouble of discussing these epistemological worries about 
Platonism? First, one of the theses that is central to Field's challenge is that there is no respectable 
sense in which a Platonistically construed mathematical domain can be taken to influence mathe
maticians and their practices. My argument for the preferability ofPDR to Platonism relies on this 
thesis. Second, some readers might be aware of the Balaguer-Shapiro response to the epistemo
logical worries about Platonism. For this reason, I wanted to be clear that my argument is distinct 
from the argument to which Balaguer and Shapiro respond. Third, by giving the details ofField's 
challenge and the Shapiro-Balaguer response to it, I can make it clear that the Shapiro-Balaguer 
response does not undermine the thesis on which my argument relies. 

8 P{atonism vs. Practice-DtyJew{ent Reaflsm 

Let us turn to my argument forthe preferability ofPDR to Platonism as an account of mathematical 
domains. It is very simple: Platonistically construed mathematical domains are explanatorily and 
justificationally superfluous. Consequently, we should not accept their existence. Let me make 
some observations about this argument. First, the conclusion follows from the premise by means 
of an application of Occam's razor---don't multiply types of entities without necessity. The idea 
is that if Platonistically construed mathematical domains are explanatorily and justificationally 
superfluous, we can do without them. 

37 The notion of coherence in play here is a technical one developed by Shapiro (see [Shapiro 1997]). It is closely related 
to, though not identical with either, deductive consistency and set-theoretic satisfiability. 

38 I describe this solution as merely partial, because it leaves unjustified Platonists' metaphysical claims about the 
mathematical realm. A full solution to the epistemological worries about Platonism should have the resources to justify 
these claims. 

39 This claim is controversiaL The most significant challenge to it concerns worries about our ability to refer to items 
in a realm consisting of Platonistically construed mathematical domains (see, e.g., [Azzouni 2000]). It falls outside the 
scope of this chapter to respond to this worry. Yet if this worry were to be well-founded, it would only strengthen the 
case against Platonism. 
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Those familiar with mathematical practices might be wary of applying Occam's razor to 
mathematical domains. Mathematics is not governed by Occam's razor. Rather, it is an underlying 
methodological feature of many mathematical practices that mathematicians should seek maximal 
generality. This feature of those practices can, particularly in foundational areas such as set theory 
and category theory, result in the characterization of ever larger mathematical domains. There 
is no problem here, however, because my application of Occam's razor is not intemal to some 
mathematical practice, but rather takes place within the practice of naturalistic metaphysics (i.e., 
metaphysics guided by the methodological practices of natural science). Occam's razor is a 
legitimate tool within this practice, because it is a legitimate tool within the non-mathematical 
aspects of natural science. 

Further, I take it to be a benefit ofPDR that it predicts this methodological difference between 
the mathematical and non-mathematical aspects of natural science. If mathematical domains are 
pure constitutive social constructs, then Occam's razor governs mathematics if and only if it 
governs the practices that constitute pure constitutive social constructs. Does it? No! Consider 
for a moment the collection of legal statutes of the United States of America. Without doubt, 
the system oflaw embodied in this collection could be represented in a simpler and theoretically 
more elegant way by a collection of statutes with fewer members than there are in the actual 
collection. Despite this, we claim that the number of legal statutes is exactly the number in 
the actual collection. That number is, at least roughly speaking, the number felt necessary in 
order for them to serve the social functions for which they are constituted. So, the proposal that 
mathematical domains are pure constitutive social constructs should bring with it two predictions: 
first, that Occam's razor does not govern mathematical practices, and second, that the number 
of mathematical domains that in fact exist is linked with the purposes for which mathematical 
domains are constituted. Both predictions are accurate. 

The discussion in the preceding paragraph points toward the following: entities that are 
dependent on social practices are not the kind of entities whose existence should be denied on 
the grounds of Occam's razor, while entities that are independent of social practices are the kind 
of entities whose existence can be--and, in some cases, should be----denied on the grounds of 
Occam's razor. 

Let us now consider the premise of my argument, viz., Platonistically construed mathematical 
domains are explanatorily andjustificationally superfluous. The thesis that there is no respectable 
sense in which these domains can be thought to influence mathematicians and their practices 
is central to the justification of this premise. Yet my premise requires further justification, for 
it might be possible for these domains to play some kind of explanatory or justificatory role 
without influencing mathematicians or their practices. Indeed, this belief has been embedded in 
a number of arguments for Platonism. For example, the existence of Platonistically construed 
mathematical domains has been argued to be required in order for mathematical statements to have 
the truth-value ascribed to them by mathematicians. Also, their existence has been considered 
necessary for providing mathematics with a semantics that resembles the semantics of everyday 
discourses sufficiently closely to account for the way in which these two types of discourses are 
intermingled40 

40 See [Benacerraf 1973] for arguments of both types. 
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Taking PDR seriously undennines both of these reasons for postulating Platonistically con
strued mathematical domains. First, PDR takes mathematical statements to have the truth-value 
ascribed to them by mathematicians. Second, since pure constitutive social constructs are among 
the entities talked about using everyday discourses, an adequate semantics for everyday discourses 
must be able to accommodate them. 

Perhaps there are other explanatory or justificatory benefits that Platonistically construed 
mathematical domains might yield without influencing mathematicians or their practices. The 
most natural suggestion would be that they are indispensable to an account of the objectivity 
of mathematics. Yet~as I have indicated above~1 believe that a PDRist has the resources to 
provide such an account. If such an account can be fleshed out, then Platonistically construed 
mathematical domains are not required for this purpose. 

In fact, it is difficult to see what work Platonistically construed mathematical domains can 
do that the mathematical domains countenanced by POR cannot do. And, unless some such work 
can be found~indeed, a fairly significant amount of such work can be found~we should not 
countenance these domains, for to do so would be to multiply types of (independent) entities 
without necessity. 

9 Conc{usion 

Obviously, there is still much work that could be done in defending the premise of my argument 
that PDR is preferable to Platonism as an account of mathematical domains. Most importantly, I 
need to give the details of a PORist's account of the objectivity of mathematics. There is also a 
need for arguments that PDR is preferable to the other accounts of mathematical domains found 
within the philosophy of mathematics literature. Such arguments require PORists to show that 
they have the resources to account for the other traditional features of mathematics (e.g., its 
apriority and necessity). I don't have the space to explore these topics in this chapter. What I 
hope I have achieved in this chapter is to have given you a clearer understanding of what social 
constructivism about mathematics is and to have given you an idea of why you might want to be 
a social constructivist about mathematics. 
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III 
The Nature '!f Mathematica{ Olijects and 

Mathematica{ Know{edge 

In the last forty years, philosophers of mathematics who are not working strictly in 
foundations have concentrated on questions about the nature of mathematical objects 
and how we come to have mathematical knowledge. Because this work has resulted 
in hundreds of papers and dozens of books, we have four chapters summarizing it. 
They were written by philosophers with very different perspectives. While there is a 
common set of questions running through these chapters, each has chosen different 
aspects in his summary, because of the difference of perspective. Of the philosophers 
whose chapters are in this section, Chihara has spent his career working on various ver
sions of nominalism, the view that there are no mathematical objects. Shapiro has leaned 
toward the realist side, currently in a version called structuralism, which has origins in 
Bourbaki's mother-structures and the view of mathematics as the science of patterns. 
Balaguer has most recently suggested that there may be no testable distinction between 
the most appealing versions of platonism (or realism) and nominalism. Linnebo, the 
youngest of the authors in this section, appears to be working on developing a very min
imal version of platonism (that is, a commitment to mathematical objects that involves 
a minimal "ontological" commitment). Each of these chapters sets forth the general 
argument overall and then gives the individual author's perspective on where the deli
cate points are. We end the section with a chapter by a mathematician, offering a very 
different approach to the question of mathematical objects via category theory. 





7 
The Existence cf Mathematica{ O~ects 

From tfie Editors 

Charles Chihara 
Emeritus Professor of Philosophy 
University of California, Berkeley 

Charles Chihara is the most senior of the philosophers contributing to this book. He appears 
to be genuinely interested in having his philosophy of mathematics be one that is acceptable to 
mathematicians. One would think that this is requisite; what is the point of a philosophy of X 
that people who work in X view as absurd? But there has not been much interaction between 
the two communities (mathematicians and philosophers of mathematics) in the last half century. 
As he notes in his chapter, Charles Chihara started out as a mathematician and has both a 
brother and a niece who are mathematicians. He thus has a better feel for what will make sense 
to a mathematician than do many philosophers of mathematics. His writings are normally quite 

accessible to mathematicians. and this one is especially so. 
His chapter walks a rather delicate line. Since Chihara is a nominalist. he is not willing 

to commit to the existence of any mathematical objects, including structures. Yet it is important 
finm his viewpoint that we do have mathematical knowledge. Chihara s solution is a sort of 
structuralism. but without a commitment to the existence of structures. It is a rather delicate 

balance. but it is certainly a thoughtful one. 
Charles Chihara is an Emeritus Professor of Philosophy at the University of California. 

Berkeley (sophos. berkeley. edu!chihara/}. Chihara has published nearly fifty articles in his princi
pal areas of interest: philosophy of mathematics and philosophy of logic. He has also published 
widely in the philosophy of science and confirmation theory. as well as on the philosophies of 
Wittgenstein. Russell. Quine. Goodman and Davidson. He is the author of Ontology and the Vi
cious Circle Principle (1973). Constructibility and Mathematical Existence (1990), The Worlds of 
Possibility: Model Realism and the Semantics of Modal Logic (1998). and A Structural Account 
of Mathematics (2004). Among his articles likely to be of interest to readers of this volume are 
"On Alleged Refutations of Mechanism Using Gi5del s Incompleteness Results." The Journal of 
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Philosophy (1972); ':4 Godelian Thesis Regarding Mathematical Objects: Do They Exist? And 
Can We Perceive Them?" The Philosophical Review (1982); "Burgess's 'Scientific' Argument 
for the Existence of Mathematical Objects," Philosophia Mathematica (2006); and "The Burgess
Rosen Critique of Nominalistic Reconstructions," Philosophia Mathematica (2007). He continues 
to work on various problems in the philosophy of mathematics. 

---ty"'3 

1 Introduction 

Many mathematicians believe in the existence of mathematical objects of various sorts, and they 
think that mathematics is the study of these objects. It is the contention of this paper that such 
beliefs are fundamentally mistaken and that mathematics can more appropriately be regarded as a 
particular kind of study of structures: one that does not imply the existence of special mathematical 
objects. But before explaining in detail in what way and why I believe mathematics should be so 
regarded, some misconceptions about the nature of philosophy need to be cleared away. 

Shortly after I began my teaching career at Berkeley, I had lunch with two of my former 
teachers-mathematicians who were in the city to attend a conference. Intrigued by the fact that 
I had switched fields from mathematics to philosophy, one of these professors rather pointedly 
said to me: "So, you are now a philosopher of mathematics! So far as I can see, philosophy of 
mathematics is either logic or mysticism. Which do you do?" 

Needless to say, I do not regard my work in the philosophy of mathematics as being just 
logic, even though logical work and logical reasoning clearly have an important place in my 
view of mathematics. Nor can I find anything in my philosophical views that is in the least way 
mystical. What follows is a detailed description, from my perspective, of the sort of undertaking 
philosophy is and of what I, as a philosopher, am trying to accomplish. It will then be clear to the 
reader why what I do in philosophy is neither logic nor mysticism. 

2 What is Phi(os'!Phy? 

The philosopher seeks an understanding of the world. But the sort of understanding sought 
might be called "Big Picture understanding." What one seeks in philosophy is the really "Big 
Picture": what, in general and in broad outlines, is the universe like? What, in general and in 
broad outlines, is our (i.e. humanity's) place in the universe? How, in general and in broad 
outlines, do we (humans) gain an understanding of the universe? This "Big Picture" goal explains 
a striking feature of philosophy: the fact that, for practically any heavily studied area X of serious 
intellectual work, there is a philosophy of X. There is philosophy of biology, philosophy of 
physics, philosophy oflanguage, philosophy of religion, philosophy of art, philosophy of history, 
and so on. For each X, one seeks to fit X into this Big Picture. 

In this search for the Big Picture, coherence is an essential ingredient. We seek an understand
ing of X that is consistent with our other beliefs about the universe and us. Take the philosophy 
of language, for example. Here, we seek an understanding of the nature of language and our 
mastery oflanguage that is consistent with both our common sense beliefs and also our scientific 
views about the universe we inhabit and also about us as organisms with the features attributed to 
us by science. Any account of the nature oflanguage that conflicted with the prevailing scientific 
accounts of how we learn a language would be considered by most philosophers of language to 
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be in serious trouble. We seek a coherent and comprehensive Big Picture, where all the different 
Xs fit together. Thus, one would expect a contemporary philosopher's account of mathematics 
to be consistent with our generally accepted views of science and scientific knowledge. 

One can see, then, why in philosophy there is great attention to uncovering and solving 
paradoxes. A paradox is an argument that starts with premises that seem to be incontestable, 
that proceeds according to rules of inference that are apparently incontrovertible, but that ends 
in a conclusion that appears to be obviously false. In many cases, a paradox ends in an outright 
absurdity or even a self-contradiction. Thus a paradox evidently shows us that either one or 
other of our "incontestable" premises are not true or that some "apparently incontrovertible" rule 
of inference that we used in our reasoning is not valid. Ultimately, it seems to show that the 
totality of our beliefs do not fonn a coherent whole and hence that there is a need to repair our 
beliefs-which is one reason philosophers of mathematics continue to work on the paradoxes 
of mathematics and set theory discovered in the late Nineteenth and early Twentieth Centuries. I 
It is all part of the philosopher's ongoing project of refashioning our beliefs into a coherent 
whole.2 

3 The P(atonic (Reaflstic) Conc9'tion d Mathematics 

Given the above conception of philosophy, one can see why some philosophers are dissatisfied 
with one of the most widely held philosophical views of mathematics: the view known as "Math
ematical Realism" ("Realism" for short) or "Platonism." Realism is frequently characterized to 
be the philosophical doctrine that mathematical objects exist3 Anyone who held that such things 
as numbers, sets, functions, vectors, matrices, spaces, etc., in fact exist could then be said to be a 
Realist. 

What about the mathematician who accepts the theorem that there are prime numbers greater 
than five? Is such an acceptance tantamount to an acceptance of the existence of prime numbers? 
And should such a mathematician be classified as a Realist? Well, suppose that the mathemati
cian's acceptance amounts to no more than the belief that among the theorems of arithmetic is 
one that can be expressed by the sentence 'There are prime numbers greater than five'. Strictly 
speaking, a mathematician who believes that 'there are prime numbers greater than five' is a 
theorem of arithmetic need not conclude that there are such things as prime numbers: such a 
conclusion requires an additional acceptance of a substantial philosophical thesis (to be discussed 
in detail later). 

In any case, most Realists maintain a much more robust view of mathematics than is expressed 
by the above existential characterization. Kurt Giidel expressed a Realist view of mathematics that 
is more typical than the bare bones existential doctrine indicated above. In discussing Cantor's 
Continuum Hypothesis (henceforth 'CH'), Giidel rejected the belief of a number of researchers 
that, if CH were proven to be independent of the standard axioms of set theory, the question of 
its truth or falsity would simply lose its meaning, just as the question of the truth or falsity of the 
Fifth Postulate of Euclidean geometry was thought to have lost its meaning with the discovery of 

I See [Chihara 1973, Chapter 1] for a discussion of the paradoxes and of Russell's attempt to solve them. 

2 The reader can find a fuller account of my view of the nature of philosophy in the Introduction to [Chihara 2004]. 

3 For more details on this topic, see [Chihara 2004, Chapter 5], and [Maddy 1990]. 
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its independence from the other postulates.4 Godel was convinced that CH had a truth value that 
was independent of whether or not it was formally decidable from the axioms of standard versions 
of set theory. This conviction was tied to his belief that sets truly exist.' Thus, he argued in his 
paper [Godel 1964b 1 that such an independence result in set theory would render the question of 
the truth or falsity ofCH meaningless only ifset theory were regarded as a hypothetico-deductive 
system in which the meanings of the primitives of set theory were left undetermined. But, Godel 
argued, set theory is not that sort of system. According to Godel: 

and 

(I) the objects of set theory "exist independently of our constructions;" 
(2) we have "an intuition of them individually" (the term "intuition" here being used by 

Godel to refer to something like a "perception" of individual sets6 ); 

(3) the general mathematical concepts we employ in set theory are "sufficiently clear for us 
to be able to recognize their soundness and the truth of the axioms concerning" these 
objects. 

He concluded that "the set-theoretical concepts and theorems describe some well-determined 
reality, in which Cantor's conjecture must either be true or false," even if the conjecture is 
independent of the other axioms.7 

Godel's views about CH illustrate some of the principal features of most robust forms of 
Mathematical Realism. These Mathematical Realists maintain that mathematical objects truly 
exist and that the mathematician is attempting to provide us with information about these objects. 
In the case of set theory, these Realists believe that the theorems are true statements that tell 
us what sets in fact exist and how these mathematical objects are related to one another by the 
membership relationship. One implication of such a view of set theory is that the standard axioms 
of set theory, such as those of Zermelo-Fraenkel set theory (or ZF for short), are literally true 
statements-the statements correctly describe objects that in fact exist and that in fact are related 
(by the membership relation) in the way implied by the axioms. According to such Realists, the 
axioms are not statements that the set theorist merely postulates or arbitrarily lays down. They are 
supposed to be truths that the mathematician has, in some way, discovered. 8 Since mathematical 
entities are not supposed to be things that can be seen, touched, heard, smelled, tasted, or even 

4 Such a position is suggested by the following quote: "Probably we shall have in the future essentially different intuitive 
notions of sets just as we have different notions of space, and will base our discussions of sets on axioms which correspond 
to the kind of sets we wish to study .. everything in the recent work on foundations of set theory points toward the 
situation which I just described." [Mostowski ] 967, p. 94]. 

5 It should be noted that Godei did not believe that the question of the truth or falsity ofCH rested solely upon the belief 
in the existence of sets. He argued that the "mere psychological fact of the existence of an intuition which is sufficiently 
clear to produce the axioms of set theory and an open series of extensions of them suffices to give meaning to the question 
of the truth or falsity of propositions like Cantor's continuum hypothesis." [GOdel I 964b, p. 272]. 

6 [G5deI1964b, p. 271]. 

7 [Godel 1964b, p. 262]. It is now known, as a result of Paul Cohen's proof (see [Cohen 1966]), that CH is indeed 
independent of the axioms of standard versions of set theory. 

8 Cf. O. H. Hardy's Platonic assertion: "I believe that mathematical reality lies outside us, and that our function is to 
discover or observe it, and that the theorems which we prove, and which we describe grandiloquently as our 'creations' 
are simply our notes of our observations." [Hardy 1941, pp. 63-4] Cf. also [Hardy 2002, p. 182]. A recent work defending 
a robust Realist view similar to Godel's is [Brown 1999J. 
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detected by our most advanced scientific instruments, we seem to have, according to the picture of 
mathematics advocated by these thinkers, two causally isolated worlds. There is the mathematical 
world of sets, numbers, functions, etc., from which we are excluded, and the physical world of 
which we humans are members-with apparently no causal links between any member of one of 
these worlds and any member ofthe other9 Anti-Realists find it hard (ifnot impossible) to recon
cile the above Realistic position with generally accepted scientific views of how humans are able 
to obtain knowledge of things "outside" their minds. The idea that set theorists, just sitting in their 
offices, are somehow able to discover the truths that mathematicians enshrine as "the axioms of set 
theory"-this about entities that are supposed to be completely undetectable by us and yet inde
pendent of our thoughts and intentions--strikes anti-Realists as bizarre or even unintelligible. 10 

Realists have, of course, tried to deal with the difficulty of accounting for the mathematician's 
supposed knowledge of the existence and properties of mathematical entities. For example, Godel 
postulated that we have something like a perception of the objects of set theory. Then he argued: 

I don't see any reason why we should have less confidence in this kind of perception, 
i.e. in mathematical intuition, than in sense perception, which induces us to build up 
physical theories and to expect that future sense perceptions will agree with them and, 
moreover, to believe that a question not decidable now has meaning and may be decided 
in the future." 

The idea here seems to be that mathematical intuition plays a role in mathematics analogous 
to the role that sense perception plays in the empirical sciences. In both cases, we are pictured 
as constructing theories that have implications about future "perceptions," so that, in favorable 
instances, the theory is confirmed by "perceptions.",2 Such a view of set theory suggested to 
Godel that: 

There might exist axioms so abundant in their verifiable consequences, shedding so 
much light upon a whole field, and yielding such powerful methods for solving prob
lems ... that, no matter whether or not they are intrinsically necessary, they would have 
to be accepted at least in the same sense as any well-established physical theory. 13 

Anti-Realists (more commonly called "nominalists",4) have found Godel's epistemology of 
set theory to be paradox-ridden, fantastic, or simply unscientific. '5 

9 It should be noted that G5del explicitly asserted that the objects of transfinite set theory "clearly do not belong to the 
physical world." [Godel I 964b. p. 271 ]. 

10 The reader should be warned that not all Realists accept all the doctrines being attributed here to G5del. There are 
many different brands of Mathematical Realism; see the article by Balaguer in this volume for a discussion of them. 

11 [G5del 1964b, p. 271] Of course, not all versions of Realism. even "robust" fanns, appeal to a kind of "perception" of 
mathematical objects being characterized here by G5del. 

12 For additional insights into G6del's philosophical views about the nature of mathematics, the reader should study 
[GljdeJ 1964a]. For another Realist's view of how mathematicians obtain knowledge of mathematical objects, see [Brown 
1999, Chapter 3]. J give criticisms of Brown's view in [Chihara 2004, Chapter 10, Section 2]. 

13 [Gljdel 1964b, p. 271] In one of his Alfred Tarski lectures given in April, 2001, Ronald Jensen described the view 
expressed in the above quote as being the most influential (in the community of set theorists) of all ofGljdel's philosophical 
views. 

14 See [Chihara 2005] for a detailed defense of the nominalist's view of mathematics. For a critical assessment of 
nominalism, see rBurgess/Rosen 1997J. 

15 For a detailed criticism ofGljdc!'s views about his postulation ofa kind of perception of the objects of transfinite set 
theory ("mathematical intUition"), see [Chihara 1982] and [Chihara 1990, Chapter I, Section 3]. 
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Also, anti-Realists find it hard to make sense of the Realist's picture of the set theorist 
somehow picking out and referring to specific mathematical entities (such as the empty set), If 
we accept the Realist's assumption that sets are entities that are completely undetectable by us 
or our scientific instruments, then how can this picking out and referring take place? Well, can't 
we pick out and refer to specific things that we have never seen, touched, or experienced in any 
way? No scientists have ever perceived a dinosaur, but no one doubts that they are able to pick 
out and to refer to specific ones, How is this done? By way of the traces dinosaurs have left. For 
example, we have fossil remains of specific dinosaurs by means of which we can refer to, say, 
"that specific Tyrannosaur whose fossilized bones are in the Smithsonian museum." But suppose 
that dinosaurs left no causal traces. Suppose that they were things in a completely separate world 
from which we were totally isolated. How could we then pick out and refer to specific dinosaurs? 
That is the sort of situation we are in vis-a-vis the sets postulated by Realists. 

Still, the Realist might argue that we can pick out and refer to a particular set by saying, 
for example, that "it is that set that has no members." Of course, this strategy assumes that the 
meaning of the word 'set' somehow actually distinguishes those mathematical entities that are 
sets from those that are not (since, even if one had adequately defined the membership relation, 
there is no reason to believe that the null set is the only mathematical entity that has no members). 
It also assumes that we succeeded in specifying what the membership relation is in a sufficiently 
definite way so that only one mathematical object could be the null set. But we haven't. To see 
why, imagine that God has informed you that 'A' and 'B' name two sets. Now try to answer 
the question: what would have to be the case for A to be a member of B? Can one answer this 
question, giving necessary and sufficient conditions, in a way that is not merely another way 
saying that A is a member ofB (such as "A belongs to B," "B contains A as a member" or "A is 
in B")? In fact, we cannot specify what must be the case for A to be a member of B in a way that 
would enable one to pick out one particular mathematical object as the empty set. 

It has been suggested to me that many mathematicians believe that there a "standard inter
pretation" of 'membership' which could be used to pick out that unique mathematical object that 
is the null set. Supposedly, this is because there is only one set, under the standard interpretation 
of membership, that has no element whatsoever. Talk of a "standard interpretation" is usually 
about an interpretation of some axiom system such as PA (see p. 144). Take the "standard inter
pretation" (or "standard model") of PAc it can be said that in this model, there is only one element 
that is the successor of O. But "in this model" is not the same as "in the universe of mathematical 
objects." Thus, in a group structure, there is only one thing that is the right identity element. No 
realist would be led to believe by such talk that, in the vast realm of mathematical objects, there 
is only one thing that is the right identity element of a group. 

The idea that the "standard interpretation" of membership can enable us to pick out a single 
mathematical object as the null set may have arisen from the fact that when we were first 
introduced to set theory, we were given such examples of sets as the set of all dogs or the set of all 
natural numbers (or more generally the set of all Fs, where F is some condition). One can indeed 
give necessary and sufficient conditions for a thing x to be a member of the set of dogs: one can 
say that a thing x is a member of the set of dogs iff x is a dog. One may be led to think that this 
shows that one really knows what the membership relation is, when in fact, all one knows is that, 
when one is informed that some set C is the set of all Fs, then one can state that x is a member 
of C iff x is an F. We can state necessary and sufficient conditions in this case only because we 
were informed that a thing x is a member of C iff x is an F. But without this extra information, 
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we would still be in the dark about what must be the case for something to be a member of a set, 
as the above thought experiment illustrates. 

Typically, what is done in text books on set theory is to take the axiomatic approach: one 
simply lists the axioms that are to govern the universe of sets and the relation of membership 
that the sets may bear to one another. Obviously, such a listing will not enable us to pick out a 
unique mathematical object as the one thing that is the null set. After all, the axioms of standard 
formalized set theories such as ZF fail to pick out a unique totality of objects as the universe of 
sets: ZF has many different models. 

Realists may contend that set theorists have a kind of "intuition" or "mind's eye" by means 
of which they are able to distinguish the empty set from all the other mathematical objects that 
are supposed to exist. But any such postulation of special mental powers would be met by much 
skepticism among contemporary philosophers. Clearly, the Realist is faced with a daunting task 
if she is to convince anti -Realists of her ability to single out and to refer to the empty set. 16 

The mystery is deepened by the fact that questions of reference of the above sort never seem 
to arise in actual mathematical practice. 17 As Jodi Azzouni has noted: 

The current philosophical concern with how mathematical terms pick out what they 
refer to is an oddity from the point of view of mathematical practice, which, in broad 
respects, is simply not concerned with reference. Any view that fails to explain why this 
is the case has not explained something crucial about mathematics. 

[Azzouni 1994, p. 31] 

Surprisingly, the Realists have, for the most part, simply ignored the problem of how one 
is able to pick out and refer to specific mathematical objects. It is a problem that they should 
grapple with since it seriously stains their portrait of mathematics. 

There is another implication of the Realist's view of mathematics that anti-Realists have 
difficulty making sense of. It will be agreed by everyone that the empirical scientist makes heavy 
use of mathematics. Evidently, the scientist needs to know a significant amount of mathematics 
in order to understand the workings of the physical world. But these apparent facts about science, 
interpreted in the metaphysical way the Realist advocates, imply that the empirical scientist needs 
to know a great deal about how various non-physical entities are related to one another in a world 
from which we are forever isolated-this in order to understand the workings of the physical 
entities in the world we do inhabit. That this should be the case strikes the anti-Realist as, if not 
totally implausible, at least very counterintuitive. 

The above problem is closely related to a puzzle that Azzouni labels "the epistemic role 
puzzle." [Azzouni 1994, p. 58] This puzzle arises when we ask: what role do mathematical 
objects play in our attempts to gain knowledge of the entities in our world? It is clear that 
mathematical objects are not involved in the causal processes that occur around us, since they are 
not supposed to interact causally with any physical entities. It is hard to see what possible function 

16 There are, of course, other attempts to answer the anti-Realist's skeptical doubts, and many responses to responses. 
See [Chihara 2004, pp. 15-16], for references to works discussing the topic. 

17 Some readers may ask: Why should anyone be interested in such questions of reference, if they never seem to arise in 
actual mathematical practice? One answer is: because such questions of reference naturally arise when one accepts the 
Realist's view of mathematics. The fact that such questions never seem to arise in actual mathematical practice is, as I 
see it, a reason for questioning the Realist's view of mathematics. 
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the existence of these mathematical objects can have in the scientist's theoretical understanding 
of the physical world. IS But ifso, then why should we postulate such things? 

Despite these problems, many Realists continue to hold fast to their metaphysical picture of 
mathematics. Of course, it is open to Realists to search for a resolution of their difficulties by, 
say, questioning the scientific or epistemological views that conflict with the implications of their 
own views or that raise difficulties for their ontological position.1 9 But any serious philosopher 
of mathematics should, I would think, at least consider the possibility that such conflicts are the 
products of the Platonic doctrines themselves. 

4 ReasonsJor Accpting tlie Reanst's View 

There is no doubt that many mathematicians and philosophers continue to find the Realist's view 
irresistibly attractive. What makes Platonism so plausible? I suggest that it is ultimately a thesis 
I shall call "the central assumption of philosophy of mathematics" or "the Central Assumption" 

for short. This is the proposition that the theorems of classical mathematics are truths. Of course, 
no one denies that there could be errors in classical mathematics, whereby what are taken to be 
genuine theorems are in fact not truths at all. But most mathematicians and philosophers believe 
that, apart from a few exceptions, what mathematicians call "theorems" are in fact truths. 

Every Mathematical Realist I know of has accepted the Central Assumption in some form 
or other.2o For example, John Burgess and Gideon Rosen signal their acceptance of the Cen
tral Assumption in [Burgess/Rosen 1997] when they advance a version of a Realistic view of 
mathematics which they call "minimal anti-nominalism" (a view they clearly advocate). "Having 
studied Euclid's Theorem," they write, "we are prepared to say that there exist infinitely many 
prime numbers." Furthermore, they understand Euclid's theorem in the standard straightforward 
way that logicians tend to understand such theorems: "Moreover, when we say that there exist 
infinitely many prime numbers, we say so without conscious mental reservations or purpose of 
evasion .... " [Burgess/Rosen 1997, pp. 1O~11] Thus, they are willing to accept the implications 
oftheir acceptance of the truth of the theorem by also asserting that there are prime numbers (and 
hence that mathematical objects exist). 

4.1 Why the Centra{ Assumytion Leads to Mathematica{ Reallsm 

Using the above reasoning of the minimal anti-nominalists as a model, one can develop an explicit 
argument for the existence of mathematical objects. (In the following discussion, I shall use the 
term 'classical mathematics' to include set theory, number theory, and the theory of functions of 
real and complex numbers). 

Argument T: 

(Central Assumption) The theorems of classical mathematics are true. 

18 See [Azzouni 1994, Section 7] for a fuller discussion of this puzzle. 

19 For an example of an attempt to defend the Realist position against such doubts, see [Brown 1999, pp. 15-18]. For 
criticisms of Brown's defenses, see [Chihara 2004, pp. 13-15]. 

20 It should be noted, however, that not all philosophers of mathematics have accepted the central assumption. Hartry 
Field, for example, argued in [Field 1980] that most of the theorems of classical mathematics arc false. 
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(E) Some of the theorems of classical mathematics assert the existence of mathematical 
objects. 

(Conclusion) There are mathematical objects. 

4.2 Reasons Jar Believing the Centra( Assumytion 

What reasons do we have for accepting the Central Assumption? Here are some of the principal 
ones2 ! Certainly classical mathematics is constantly being fruitfully used by all sorts of people 
in a variety of situations, both practical and theoretical, in ways that suggest that the assertions 
of mathematics are truths. In particular, mathematics is applied in science and engineering to 
draw conclusions upon which even our most brilliant thinkers rely in dealings with the world 
and other people. If the mathematical theorems were not true, how could we rationally place so 
much confidence in the conclusions that we infer using mathematics? Would we not be basing 
our inferences upon falsehoods and shouldn't we accumulate false beliefs about the world? If 
these theorems were not true, shouldn't we expect the bridges we build using mathematics to 
collapse, and shouldn't the rockets we program using mathematics go off course, etc.? Perhaps 
one can see why Michael Resnik would include the following as a premise in an argument he 
once produced: 

(R-l) We are justified in drawing conclusions from and within science only if we are justified 
in taking the mathematics used in science to be true. 22 

Resnik does not provide a convincing justification for accepting (R-l), perhaps because he 
believes that the claim is obviously true.23 

Another related reason for accepting the Central Assumption is based upon the fact that 
many mathematical theorems seem to be directly verified to be true. Consider, for example, 
the Fundamental Theorem of Calculus. This theorem not only has been successfully applied 
in countless ways for hundreds of years, apparently it has also been confirmed in a variety of 
empirical ways by graphing specific continuous functions and empirically calculating the areas 
under the graph, say on engineering paper. For example, it would seem that what the theorem says 
regarding 137 (2x + 7)dx can be checked, empirically, by graphing the function in the interval [3, 
7] and counting the relevant squares. Of course, this particular example is so simple as to appear 
trite. But obviously one can produce examples in which the values of far more complicated and 
sophisticated definite integrals are estimated by making the same sort of empirical estimations 
of areas under curves, yielding the type of "confirmation" of the fundamental theorem discussed 
above. 

A closely related reason for accepting the Central Assumption is based on the undeniable 
fact that mathematical theorems frequently convey information to researchers. It is not just that 
mathematics is continually being applied in science and engineering (the central fact underlying 
the first reason given above), but it also seems to provide scientists and engineers with information. 

21 Other reasons are given in [Chihara 2004], e.g. see "Maddy's mystery" (pp_ 229-30, 291-2). 

22 [Resnik 1997, p. 48] 

23 Actually, Resnik does put forward a kind of argument for (R-l) in [Resnik 1998, p. 233], but there he uses the premise 
that "science assumes ... the truth of much mathematics," which is itself not justified by Resnik. 
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Since declarative sentences that convey information are, for the most part, true, we seem to have 
additional evidence that theorems of mathematics are true. Indeed, if the theorems were not true, 
how could they provide us with information? 

The above reasons, however, do not convince me ofthe correctness ofthe Central Assumption 
and later I shall explain why. But first, I should emphasize that I am not suggesting here that 
mathematical theorems are false but only that we should not simply assume that they are true--
that a serious investigation is called for. Let me say straight off that I am one of those anti-Realists 
who have come to reject the kind of metaphysical view of reality that the Realists have adopted. 
Despite the fact that some renowned mathematicians have espoused a Realist philosophy of 
mathematics, I am convinced that a reasonable view of mathematics can only be achieved by 
abandoning the Platonic view24 Thus, I have set about trying to fashion a more accurate view. 

5 The Hi{6ert-Fre!Je Dipute 

I believe that some helpful insights into the sort of view of mathematics I shall be sketching 
in this paper can be obtained by examining a dispute between two outstanding mathematicians 
that was carried on by letter between l899~ 1903. During this period in which David Hilbert 
was conducting his pioneering research on geometry-a period which gave rise to, among other 
things, the publication of his groundbreaking Foundations ofGeometr~it was widely accepted 
that the axioms of geometry were truths. Hilbert himself seems to have accepted this widely held 
view during this period. For example, in 1898, in an introduction to a course he was giving in 
mechanics, Hilbert characterized geometry as a sort of empirical science, asserting: 

[G]eometry [like mechanics] emerges from the observation of nature, from experience. 
To this extent, it is an experimental science . .. But its experimental foundations are so 
irrefutably and so generally acknowledged, they have been confirmed to such a degree, 
that no further proof of them is deemed necessary. Moreover, all that is needed is to 
derive these foundations from a minimal set of independent axioms and thus to construct 
the whole building of geometry by purely logical means.25 

In the introduction to his Festschrift on geometry, Hilbert had written: "Geometry re
quires ... for its consequential construction only a few simple facts. These basic facts are called 
axioms of geometry.,,26 Notice that, in this quotation, Hilbert is claiming that the "few simple 
facts" that geometry requires are called axioms of geometry-what are called "axioms" are said 
by Hilbert to be facts. In his Foundations of Geometry, he tells his readers that the axioms express 
"certain related facts basic to our intuition." [Hilbert 1971, p. 23] Thus, it can be seen that Hilbert, 
at least some of the time, thought of the axioms of geometry as expressing true statements. 

However, in section 3 of his Foundations of Geometry, Hilbert asserts that the axioms there 
"define the concept 'between'," and he goes on to say, in section 6, that the "axioms of this group 
define the concept of congruence or of motion." These characterizations elicited the following 

24 Of course, I am not alone in rejecting the Realist's view of mathematics. As Paul Cohen as noted, "probably most 
of the famous mathematicians who have expressed themselves on the question have in one fonn or another rejected the 
Realist position." [Cohen 1971, p. 13] Cf. also Saunders Mac Lane's view that "save for mythology, all the variants of 
Platonism shatter on the actual practice of mathematics." [Mac Lane 1986, p. 449] 

25 This quotation is taken from the introduction to a course on mechanics Hilbert taught in the winter semester of 1898. 
See [Corry 1999, p. 152] (italics in the text). 

26 This is quoted in [Frege 1971, p. 25] and then criticized. 
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critical question from Gottlob Frege: "How can axioms [that express facts basic to our intuition] 
define something?" [Frege 1971, p. 25] If the axioms are definitions, then for Frege they are laid 
down by fiat or stipulation. On the other hand, if the axioms are facts or express facts, then they 
are truths and they are truths whether or not we take them to be truths: not something that is 
stipulated to be so. So how can the axioms be both true statements that express facts and also 
definitions?27 

Evidently, Hilbert had adopted a significantly new approach to geometry in his book, but, 
unfortunately, the old traditional approach remained in the background. It still exerted an influence 
upon his thoughts, thus producing the conflicting characterizations of his axioms described above. 
To obtain a more perspicuous grasp of Hilbert's new point of view, let us imagine that Hilbert's 
geometrical theory had been developed as a formal theory of first-order logic in such a way 
that the undefined terms 'is a point', 'is a line', and 'is a plane' of Hilbert's book are given as 
non-logical constants in the vocabulary of this formalized theory. Within such a logical setting, 
let us investigate why Hilbert might regard his axioms as "definitions." 

We get some idea of how Hilbert regarded his axioms from his letters to Frege. In response 
to Frege's claim that, from the truth of one's axioms, it follows that the axioms do not contradict 
one another, Hilbert wrote back that, as long as he had been thinking about these matters, he had 
been saying 'Just the reverse": 

If the arbitrarily given axioms do not contradict one another, then they are true and the 
things defined by the axioms exist. [Hilbert 1980, p. 40] 

By this reasoning, Hilbert thought that one can prove that the set of axioms of the real 
numbers do define something and the things defined do exist. In other words, Hilbert thought 
that one can simply lay down axioms about some new mathematical entity-axioms stating how 
these new entities are interrelated-and by proving that the set of axioms is consistent, one would 
prove that the axioms legitimately define something that can be said to "exist." 

We can make sense of these ideas of Hilbert within the setting of first-order logic. Imagine 
that a mathematician lays down a set of sentences as axioms, and the set is found to be consistent. 
This would imply that the set ofaxioms succeeds in singling out a class of models. Any first-order 
structure satisfying the axioms would have to be such that the individual constants refer to specific 
"parts" of the structure-the "parts" being related to each other in definite ways. In this way, 
the axioms can be regarded as "implicitly defining" the non-logical constants themselves. The 
axioms implicitly tell us what the individual constants refer to (and hence "mean") in the various 
models of the theory. Thus, it would be natural for Hilbert to claim, as he did in a letter to Frege, 
that "to try to give a definition of a point in three lines is to my mind an impossibility, for the 
whole structure of axioms yields a complete definition." [Hilbert 1980, p. 40] It is, of course, the 
whole set of axioms-and not just a single axiom-that determines what properties each model 
of the theory must have. 

There are passages in Hilbert's letters to Frege that suggest that Hilbert was definitely thinking 
in terms of models of the axioms when he called his axioms 'definitions'. He wrote, for example: 

[I]t is surely obvious that every theory is only a scaffolding or schema of concepts 
together with their necessary relations to one another, and that the basic elements can 

27 I am here focusing on only one aspect of the dispute between Frcge and Hilbert. For a more detailed discussion of this 
dispute, see [Chihara 2004, Chapter 2, Section I]. 
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be thought of in any way one likes. If in speaking of my points I think of some system 
of things, e.g. the system: love, law, chimney sweep ... and then assume all my axioms 
as [specifying] relations between these things, then my propositions, e.g. Pythagoras' 
theorem, are also valid for these things. In other words: any theory can always be applied 
to infinitely many systems of basic elements. [Hilbert 1980, p. 40] 

Paul 8emays, writing in The Encyclopedia of Philosophy, describes Hilbert's axiom system 
"not as a system of statements about a subject matter but as a system of conditions for what might 
be called a relational structure." [8emays 1967, p. 497] Similarly, Ian Mueller describes the 
content of Hilbert's geometrical axioms as "structural" and characterizes the Hilbertian geometry 
as "the study of structure." [Mueller 1981, p. 9] 

It should be noted that, when we view geometry in the structural way Hilbert did, then the 
axioms of geometry cannot be said to be literally true. Such sentences could be taken to be "true" 
only in the technical sense of being true in a structure or true under an interpretation. Thus, Hans 
Freudenthal describes this revolutionary aspect of Hilbert's geometry with the words: "[T]he 
bond with reality is cut. Geometry has become pure mathematics .... Axioms are not evident 
truths. They are not truths at all in the usual sense." [Freudenthal 1962, p. 618] 

6 Matliematics Regarded as a Tlieory A60ut Structures 

Might we not view practically all mathematical theories in the way Hilbert regarded geometry? In 
the case of ax iomati zed mathematical theories, we can take the axioms of the theory as, in effect, 
characterizing (or implicitly defining) a type of structure (not necessarily first-order). We could 
then regard the theorems of the theory as being about this type of structure without worrying 
about what the assertions really say about mathematical objects or about "reality"? 

6.1 First-Order Logic 

To make the above ideas both more specific and also more precise, I shall restrict my discussion 
of mathematical theories, for now,28 to just axiomatized theories expressed in a first-order logical 
language whose non-logical constants include only individual constants and predicates29 I shall 
assume that the readers of this work are familiar with the fundamentals of first-order logic. The 
semantics of first-order logic yields a definition of 'true under an interpretation' (or 'true in a 
structure') for the sentences of the formal language. An interpretation for such a theory consists 
of: (l) a first-order structure, and (2) an assignment of appropriate "parts" of the structure to 
the non-logical constants of the language. 3o A first-order structure consists of: a non-empty set 
of elements called "the domain" of the structure, and n-ary relations among the elements of the 
domain (n = 1,2,3, ... ). Thus, each individual constant is assigned an element of the domain, 
and each n-ary predicate is assigned an n-ary relation among the elements of the domain3 ! 

28 Later in this paper, I shall consider the cases of mathematical theories expressed in natural languages and even those 
that are not axiomatized. 

29 I do not include operation symbols for the sake of simplicity of exposition: operation symbols can be defined as special 
kinds of predicates. 

30 See [Mates 1972, Chapter 4, Section 3] for an elementary account of these definitions. 

31 See [Mates 1972, Chapter 4, Section I] for additional details and examples. 
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There is, however, another sort of "interpretation" of fonnal logical languages that is im
portant for my analysis: they are what I call "natural language interpretations" (or "NL In
terpretations" for short). These are the sort of "interpretations" of first-order languages that 
philosophically trained logicians are apt to consider when "translations" of the logical language 
into some natural language are seriously contemplated. These "interpretations" do more than what 
the first-order interpretations described above do. They not only single out a first-order structure 
and assign the relevant sort of objects and relations to the non-logical constants of the fonnal 
language in question -they also supply meanings or senses to the constants and quantifiers. 
"Interpretations" of this sort specify the domain of the structure, using a specific English name 
or description of the domain. They assign to each individual constants the sense or meaning of 
some English name or definite description. For example, it may assign to the individual constant 
'b' the meaning of the English definite description 'the governor of Florida' , so that 'b' can then 
be understood to mean the very same thing as the phrase 'the governor of Florida'. They also 
provide each predicate of the language with the sense or meaning of an English predicate, where 
English predicates are obtained from English declarative sentences by replacing occurrences of 
names or definite descriptions with occurrences of circled numerals.32 For example, if the NL 
interpretation .'7 specifies that the domain is to be the set of living human beings, and it assigns to 
the binary predicate' R2' the sense of the English predicate '<D is younger than <V', and it assigns 
to the individual constants 'a' and 'b' the senses of 'The father of the President of the United 
States' and 'Hillary Clinton' respectively, then the sentence' R 2ab' will express the statement 'the 
father of the President of the United States is younger than Hillary Clinton' and '(3x)R2xa' will 
express the statement that there is a living human who is younger than the father of the President 
of the United States. In this interpretation, the fonner sentence will be false and the latter wiIl be 
true. 

There is an important respect, then, in which an NL interpretation differs from a standard 
first-order interpretation. A sentence ofa fonnallanguage that has been given an NL interpretation 
will express a statement. However, a sentence of a language that has been given only a first-order 
interpretation cannot reasonably be said to express a statement, since the non-logical constants 
occurring in it have not been given meaning or sense. It is only in the fonner case that a sentence 
of the language can be said to be true or false (and not merely true under an interpretation). 
I shall say that a logical language equipped with the meanings or senses provided by an NL 
interpretation is an NL interpreted language. 33 

One reason philosophical logicians have made use ofNL interpretations is because, from the 
time when Logical Positivism34 was the dominant school in the area of philosophy of science, a 
question that has received much attention from philosophers is whether genuine scientific theories 
can be (and ought to be) fonnalized as axiomatized deductive theories of first-order logic. Of 

32 See [Mates 1972, p. 77] for a fuller explanation of what English predicates are. 

33 See [Chihara 2004, chapters 5, 6, and 7] for more detailed discussions of NL interpretations and NL interpreted 
languages. 

34 Logical Positivism arose out of the Vienna Circle and became a dominant force in the philosophy of science in the 
Twentieth Century, especially during the thirties and forties, and even into the fifties (so much so that the Positivist's 
view of scientific theories has frequently been called "the Received View"). For a detailed discussion of the development 
of the philosophy of science of the Logical Positivists, see [Suppe 1974, Sections I, II, and III]. Suppe notes that the 
Positivists "construed scientific theories as axiomatic theories formulated in a mathematical logic" meeting a number of 
specific conditions (p. 16). 
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course, if such a fonnal theory is to serve as a genuine scientific theory, its assertions must express 
statements that can be said to be true or false-hence the need for NL interpretations. 

6.2 The Basic Idea d the Structura( Account d Mathematics 

Let us now reconsider the idea of treating all axiomatized mathematical theories in the way Hilbert 
regarded his geometry. We can regard the assertions of any axiomatized first-order mathematical 
theory as characterizing its first-order models. Notice, that we can ignore NL interpretations of the 
language for this purpose, since we can treat the non-logical constants occurring in mathematical 
sentences in the way Hilbert treated the non-logical constants in his geometry: as being parameters. 
One advantage of understanding mathematical theories in this way is that we can avoid having 
to justify any analysis of what the assertions of the mathematical theories truly mean. Trying to 
understand what mathematical assertions mean usually comes down to trying to figure out what 
actual individual mathematicians, scientists, engineers, and everyday ordinary working people 
have in mind when they utter mathematical sentences-a none too easy task. 

7 The Structura( Content tjTheorems tj Mathematics 

Let us start with the precise case in which a theorem </> is derived in an axiomatized fonnal theory 
of first-order logic, say Peano Arithmetic (or what I shall call 'PA' for short).35 It follows that: 

Any model of PA would have to be a model of </>. 

The above displayed sentence gives what I call "the structural content" of </>. More generally, 
one can give the structural content of any theorem 8 ofa logically fonnalized mathematical theory 
(not necessarily first-order) with axioms r as follows: 

Any structure that would satisfy r would also have to satisfy 8. 

The above displayed sentences are what philosophers characterize as "modal sentences" 
because they crucially involve the concept of necessity36 It is not just that any model of PA 
happens to be a model of</>; any model ofPA would have to be a model of</>. That is, necessarily, 
any model of PA is a model of </>. 

Notice that I have not been claiming that the structural content of any theorem </> of PA 
gives the meaning of </> or tells us what </> asserts. Had I done so, I would have been advancing a 
view about mathematics that philosophers call "if-thenism." If-thenism is the type of view Hilary 
Putnam once proposed in claiming that "pure mathematics consists of assertions to the effect that 
if anything is a model for a certain system of axioms, then it has certain properties." [Putnam 
1967, p. 294] In the above passage, Putnam was putting forward a thesis about the meaning or 
semantic fonn of all the theorems of pure mathematics. I, on the other hand, do not advocate any 
such thesis. I certainly do not claim that '2 + 2 = 4' asserts that if anything is a model of, say, 
Peano's axioms, then this model has certain properties. Nor do I want to be committed to the 

35 See [Chihara 2004, p. 241] for a specific version ofPA. 

36 A modal sentence asserts how a proposition is true (or false). Thus, the following is a modal sentence: "That there is 
life on Mars is possibly truc." 
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position that all the theorems of pure mathematics have such an if-then form. I see no plausible 
way of justifying any such semantic position, and in fact I see a number of serious problems that 
such a view implies.37 Instead, what I have been suggesting is that, regardless of what a theorem 
ofa first-order theory may actually mean or assert, a proof of the theorem can be seen to give us 
the above sort of if-then information. 

Some readers may find the differences I have been noting here to be slight, if not trivial. 
Some indication of the philosophical importance of these differences will become evident from the 
paragraph following the next, in which Newton and Leibniz are discussed, and also from Section 
10 below. The previous paragraph also distinguishes my position from that of Mathematical 
Structuralists, who claim that mathematical theorems are always assertions about structures. 
Such a view is expressed by the Structuralist Michael Resnik: 

In mathematics, I claim, we do not have objects with an "internal" composition arranged 
in structures, we have only structures. The objects of mathematics, that is, the entities 
which our mathematical constants and quantifiers denote, are structureless points or 
positions in structures. As positions in structures, they have no identity or features 
outside a structure. [Resnik 1981, p. 530] 

Charles Parsons writes that such a view is a familiar one with "a long history, going back 
to the late nineteenth century." It is the view that "reference to mathematical objects is always 
in the context of some structure, and that the objects involved have no more to them than can 
be expressed in terms of the basic relations of the structure." [Parsons 1995, p. 74] Thus, the 
Structuralist claims to be providing an account of "what mathematics is about.,,38 My position, by 
contrast, is in no wayan account of what mathematical theorems actually assert. "The structural 
content of a theorem" is not supposed to tell one what the terms of the theorem refer to and 
what the range of the quantifiers is. Hence, it would be misleading to identify my account of 
mathematics with that of the Mathematical Structuralist. 

There are a few other points of clarification of my position that should be made. I do not 
restrict the structural information provided by mathematical theorems to only cases in which a 
theorem is proved in an axiomatized formal theory such as PA or ZF. Newton and Leibniz, for 
example, proved theorems even though they were reasoning in unformalized and unaxiomatized 
systems of mathematics. They were, as I see it, theorizing about a kind of structure, and hence 
their proofs were providing mathematicians with structural information.39 Thus, a proof they 
gave of some theorem if> would provide the following sort of information: 

Any structure of the kind about which the mathematician(s) producing the proof is (are) 
theorizing would have to be a model of if> 

37 See [Chihara 2004 Chapter 10, Section 4] for a detailed discussion of some of the problems that «if-then ism" faces. 
For a fuller exposition of Putnam's Hif-thenism" and how my structural account differs from his account, see [Chihara 
2004, p. 245-491. 

38 This is explicitly claimed by the Structuralist Stewart Shapiro in his [Shapiro 1997, p. 8]. For Shapiro, "mathematics is 
the science of structure." [Shapiro 1997, p. 75] Shapiro also claims that "the subject matter of, say, arithmetic is a single 
abstract structure, the natural-number structure." [Shapiro 1997, p. 9] For additional material (as well as references) on 
Structuralism, the reader should consult the two articles on Structuralism (by G. Hellman and F. MacBride respectively) 
in The Oxford Handbook of Philosophy of Mathematics and Logic edited by Shapiro. 

39 However, just what specific kind of structure these pioneers had in mind is not easy to specify with confidence. 
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Thus, given such a structure S, each quantifier in 1> would have as its range the domain of 
S and each individual constant in 1> would denote an appropriate element of the domain of S 
and each n -ary predicate would denote an appropriate n -ary relation among the elements of the 
domain of S. And 1>, so interpreted, would be true in the structure. The situation is, in important 
respects, similar to the case of Hilbert's geometrical theory axiomatized in his Foundations 
of Geometry. The axioms are expressed in an ordinary natural language (say, English)-not a 
formal logical language. Still, it can be seen that the theorems had a structural content of the sort 
described above. 

For cases like the Newton-Leibniz one, there is admittedly a great deal of vagueness and 
unclarity as to the kind of structures intended. Hence, for such cases, one should not expect the 
precision and definiteness of first-order logic. In general, the structural content of any theorem 
1> of mathematics can be given in the above way, but obviously the earlier ones expressed 
in terms of logically formalized axiomatized theories should be used wherever possible. The 
advantage of dealing with formalized axiomatic theories is that it allows much more clarity and 
precision. 

Finally, I should emphasize that by "a proof of a theorem," I do not intend to restrict what 
are to count as proofs to only formal proofs ("derivations") or to proofs that only establish what 
logically follows from a set of axioms. The non-formal proofs that practicing mathematicians 
regularly produce can be, according to my view, perfectly rigorous and convincing.4o In this 
respect, too, my position on proofs differs from what Putnam advocated at the time he advocated 
if-thenism, since he specifically asserted: 

[I]n pure mathematics, the business of the mathematician is not in discovering materially 
true propositions of the form 'If M is a model for T then so-and-so', but in discovering 
logically true propositions of that form. Even if a proposition of the form in question 
is true, if it is only 'true by accident' ... , then it will not be provable by purely formal 
means, and hence will not be asserted by the mathematician. [Putnam 1967, p. 291] 

My account accepts that Newton, Leibniz, and Euler gave genuine proofs of mathematical 
theorems, even when their proofs could not be translated into a formal proof or could not be said 
to yield the sort oflogical knowledge that, say, a proof in first-order logic establishes. 

8 A Structura{ Account I!f Ayyflcations I!f Mathematics 

Recall Resnik's claim that we are justified in drawing conclusions from and within science only 
if we are justified in taking the mathematics used in science to be true. Let's see how we can 

make use ofa mathematical theorem to draw some conclusion in science even though we are not 
justified in taking the theorem used to be true. 

40 cr. what William Thurston has written about fonnal proofs: "[W]e should recognize that the humanly understandable 
and humanly checkable proofs that we actually do [produce] are what is most important to us, and that they are quite 
different from formal proofs. For the present, formal proofs are out of reach and mostly irrelevant: we have good human 
processes for checking mathematical validity." [Thurston 1994, p. 171] Cf. also Hardy's comments about fonnal and 
infonnal proofs in his [Hardy 2002]. 
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8.1 A Theory rf Light Rays4! 

Definition I: The tenn 'point' is used to refer to points in Euclidean 3-space, i.e. the space of 
ordered triples of real numbers, the standard metric being used, and the points being ordered in 
the standard way. 

Definitions and Axioms Assumed: In the following, all the usual axioms and definitions of 
the geometry of Euclidean 3-space will be assumed, as well as the usual properties of the real 
numbers-in particular, such tenns as 'angle', 'nonnal', 'plane', 'half space bounded by a plane', 
'lies on', and 'continuous curve' will be assumed to have been defined in standard ways. 

Definition 2: Any continuous curve from point a to point b will be called a path from a to b. Iff 
is any path from a to b, then a may be called a 'source' and b may called an 'observer'. 

Definition 3: Apath ofa light ray is a path from any source to any observer, which is the shortest 
path from the source to the observer. 

Definition 4: A light reflection instance consists of a path f, a plane p, and points a, b, and c 
such that: 

c lies on p; a and b are not on p, but are both in the same half space bounded by p; and f is 
the union of a path of a light ray from a to c and a path of a light ray from c to b, all the parts 
off being in the same half space bounded by p. 

Such an fwill be called a 'path of reflection (relative to p) from a to b'; c will be called a 'point 
of reflection' off; and the half-space bounded by p in which fis present will be called the 'space 
of reflection' of f, whereas the half-space bounded by p in which f is absent will be called the 
'complement space of reflection' of f. 

This theory has one principal axiom (in addition to all of the axioms assumed above to have 
been gi ven): 

Axiom: If p, f. a, b, and c constitute a light reflection instance-f being a path of reflection 
(relative to p) from a to b-then if b* is that point in the complement space of reflection off that 
is symmetric42 to b with respect to p, point c must be such that the path consisting of the union of 
that part off that goes from a to c and the path of a light ray that goes from c to b* is the shortest 
path from a to b*. 

It can be shown that: 

Theorem: Let p, f, a, b, and c constitute a light reflection instance, f being a path of reflection 
(relative to p) from a to b. If n is the normal to p at c directed into the space of reflection, then 
the angle between that part of f that is a path from a to c and n is equal to the angle between n 
and that part off that is a path from c to b. 

This theory is a purely mathematical theory, despite the fact that such expressions as 'ob
server', 'source' and 'path of a light ray' may suggest otherwise. For example, by examining 

41 This theory is based upon a theory given in Sec. 2.3.3 of [Maki/Thompson 1973]. 

42 The sense of 'symmetric' here is that p is a perpendicular bisector of the path ofa light ray from b* to h. 
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the definitions above, it can be seen that the first two of the above tenns are only suggestive of 
how the theory is to be applied and in fact are said to refer only to points. Also, seeing that not 
all mathematical structures satisfY the principal axiom, one can conclude that the tenn 'path of 
reflection' functions as a parameter that can refer to different "entities" in different structures. 
Thus, sentences of the theory involving this tenn are not true (or false), but only true (or false) 
in certain structures. In particular, the above theorem is not true (but only true in certain 
structures).43 

However, this theory can in fact be applied to actual physical situations involving the behavior 
of light, by regarding paths of actual light rays to be approximately that of paths of light rays 
from a source to an observer (as characterized above). In so applying the theory, we need to 
make certain idealizations about the physical space in which we operate (e.g. that it is Euclidean 
and three dimensional). Also, we need to restrict the scope of the theory to light traveling in 
"homogeneous media"-say, reasonably clear (fogless, smokeless) air-which is reflected by a 
flat object, such as a mirror, approximating a plane in certain geometrically relevant ways. The 
structural content of the theorem mentioned earlier tells us that, in such conditions, the angle of 
incidence of the light is equal to its angle ofrefiection. Needless to say, knowing such a result 
can be used to make practical predictions in a variety of situations.44 

The above reasoning undercuts the Resnik premise (discussed earlier) that we are justified in 
drawing conclusions from and within science only if we are justified in taking the mathematics 
used in science to be true, since it is clear from the above example that a mathematical theorem 
can be legitimately applied in science even when it is not a true assertion (but only true in certain 
structures). 

8.2 The Fundamenta{Theorem if Ca{cu{us Reexamined 

The above example shows us how to understand the kind of "empirical verification" of the Fun
damental Theorem of Calculus discussed earlier. We have on the one hand a purely mathematical 
theory (analysis) in which the Fundamental Theorem is proved. On the other hand, we have an 
empirical theory (say, about the printed squares of engineering paper) according to which certain 
kinds of entities are definitely related in ways that approximate, more or less accurately, the 
ways that various elements of structures are asserted to be interrelated by the structural contents 
of the axioms of analysis. It is natural to speak, in this context, of a sort of "empirical model" 
that is structurally identical, given certain idealizations, to the models (or sub-models) of the 
mathematical theory.45 Then, the fact that the theorems of the mathematical theory are true of all 
the models of the theory explains why the theorem would hold of the "empirical model" used to 
carry out the "empirical verification." Thus, it is not the actual truth of the mathematical theorem 
that is "empirically verified" but rather only its structural content. It can be seen that this kind of 
"verification" no more presupposes the literal truth of the Fundamental Theorem itself than does 
an "empirical verification" (made by observations that verify the empirical law of reflections of 
light rays) presuppose the truth of the theorem of the previously discussed theory of light. In 

43 Hence, there is no need to argue in this argument that such mathematical terms as 'point' and 'continuous curve' do 
not refer to particular entities but only places in structures. 

44 For an indication of how the above theory of light rays can be developed into a more complex and versatile theory, see 
[MakilThompson 1973, Sec. 2.3.4]. 

45 Cf. [Chihara 2004, Ch. 9, Sec. 12, especially en. 59]. 
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both cases, all that is really presupposed in the verification is that the structural contents of the 
respective mathematical theorems in questions hold46 

Of course the above discussion is not meant to provide a rigorous argument to undermine 
the convictions of a staunch supporter of the Central Assumption or a devoted Realist. It is only 
meant to provide the reader with the central ideas of how the structural content of mathematical 
theorems can supply the information needed to apply mathematics in an empirical science or, 
more substantially, to show how one can have a nominalist philosophy that accords with our 
picture of mathematics. For a more detailed argumentation that supports my rejection of the 
thesis that the applicability of mathematics in science presupposes its truth, the reader should 
study [Chihara 2004, Chapter 9, Sections 8-12]. 

9 Fermat's Last Tfieorem 

Since Andrew Wiles' 1993 proof of Fermat's Last Theorem depended upon proving the 
Taniyama-Shimura conjecture, and involved reasoning about modular forms and elliptic curves, 
one can see that his proof involves theorizing about the field of complex numbers and about a 
four-dimensional space called hyperbolic space47 The above facts prompt the following ques
tions: why were investigations into the nature of such conceptually complicated mathematical 
concepts as modular forms in hyperbolic space needed to solve a problem about the natural 
numbers? One might think that a question about the natural numbers would be best answered by 
reasoning directly about the natural number structure. Why was it necessary for mathematicians 
to theorize about positions in the much more complicated structure of hyperbolic space in order 
to prove the theorem? 

To see how something like this can come about, let's look at a somewhat simpler case of the 
use of a larger structure to prove theorems about a smaller one. Note that most mathematicians 
learn to prove the Fundamental Theorem of Algebra in their studies ofthe theory of functions of 
complex variables.48 Then, from the Fundamental Theorem, it is proved as a corollary that: 

Every polynomial of degree n, with only real coefficients, can be factored into a product of 
real linear and real irreducible quadratic polynomials49 

The latter is a theorem about the structure of the real numbers. Yet, the above sort of proof of 
the corollary involves theorizing about the field of complex numbers 50 This can be understood 
to be a case in which the mathematician obtains important information about the type of structure 
that forms the subject matter of the algebraic study of the field of real numbers, and she does this by 

46 For a more detailed explanation of the underlying point being made here, sec [Chihara 2004, Ch. 9, Sec. 12]. From 
the perspective of the structural account, one can also rebut the third reason given earlier for accepting the central 
assumption. One can explain how a mathematical theorem can provide researchers with genuine information, without 
baving to assume that the theorem is truc. For the theorem does not have to be true to provide researchers with valuable 
information about what must hold in all structures of a certain sort. 

47 Ken Ribet had earlier proved that the Taniyama-Shimura conjecture implied FennaCs last theorem. For a highly 
readable account of Wiles' proof, see [Singh 1997]. See also [LaubenbacherlPengelley 1999, Chapter 4J, for a nice 
historical discussion ofFennat's last theorem, giving helpful references about the details of Wiles' proof. 

48 As, for example, in [Knopp 1945, pp. I \3-114j. 

49 See [BirkhoffiMac Lane 1953, p. II OJ. 

50 I am not suggesting, however, that one cannot prove the corollary without theorizing about the realm of complex 
numbers. See, for example, [Fine/Rosenberger 1997]. 
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investigating a more complicated structure in which is embedded the type of structure in question. 
One can see how reasoning about the larger, encompassing structure can yield information about 
the embedded structure, since the embedded structure will be related mathematically to the larger 
structure in countless ways. 

Still, it may be wondered how it can be that a mathematician, faced with a problem about 
a given structure, may find a solution to the problem only by reasoning about a more complex 
structure in which the given structure is embedded. I am sure there are many explanations that can 
be given in answer to such wonderment. One thing stands out as evident: theorizing about features 
ofthe more complex structure may make apparent to the "mind's eye" a number of mathematically 
significant relationships, features, and regularities involving "entities" in an embedded structure 
that are difficult, if not practically impossible, to "visualize" when one is thinking only in terms 
of the simpler structure. 51 The reason may be that certain sorts of relationships, features and 
regularities concerning the "entities" of the simpler structure can only be readily comprehended 
when these "entities" are seen in their relationships with the "entities" of the more complex 
structure. This is a bit like the case in which certain traits of character of a certain member of a 
family can only be easily noticed in contexts in which this member interacts with a more diverse 
group of people than those only in the immediate family, as say when the whole family gets 
together with all their friends and relations at a wedding. 

A mathematical example that illustrates the above idea may be helpful here. Consider the 
well-known "diagrammatic proof" of the Pythagorean Theorem (see the figure). 

b 

The reasoning would proceed as follows: 

[I] The area of the outer square = (a + b)2 

a 

[2] The area of the outer square is also = c2 + 4 x (area of triangle abc). 
[3] From the above and by simplification, we get: a 2 + b 2 = c 2 . 

The role of the diagram is clear. This diagram represents the "structure" (pattern) of the 
triangle abc as part of a larger, more complex encompassing "structure" (pattern), which then 

51 In speaking of "'the mind's eye", I am not making any sort ofappeaJ to the sort of mental powers that G5del postulated 
to when he wrote about "mathematical intuition." I am not suggesting, for example, that humans have the ability to 
"perceive" or "intuit" mathematical objects that do not exist in the physical world. When I spoke above of what may be 
made apparent to the "mind's eye", I only intended to be speaking metaphorically about what nonnal humans can be 
made to grasp, to comprehend, or to understand. 
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makes apparent a number of geometric and algebraic relationships, involving the sides of the 
triangle abc-relationships that are essential to the above reasoning but that would not be apparent 
in the absence of the more complex "structure."S2 

Let's return to the discussion of Wiles' use of very high-powered theorems of analysis to 
prove Fennat's theorem. This can be seen to be a case in which reasoning about very complicated 
and sophisticated structures is used to draw conclusions about the much simpler embedded 
structure of the natural numbers. This is similar to what we saw in the above examples involving 
the Fundamental Theorem of Algebra and the Pythagorean Theorem. 

All of the above is meant to give some additional insights into how mathematicians are able 
to provide physicists with, as Arthur Jaffe and Frank Quinn put it, "reliable new infonnation about 
the structures they study." Physicists frequently fonnulate their theories in tenns of mathematical 
structures. Mathematician may study these structures directly, or they may investigate generalized 
versions of these structures, perhaps via more abstract structures possessing substructures of which 
the physicist's structures are instances. The above examples indicates how the mathematician's 
researches into features of the structures they single out for study can yield theoretically useful 
(and even essential) infonnation for the physicist. We can now also see how mathematicians 
are able to accomplish such feats without requiring of the theorems of mathematics they prove 
that they be true assertions. It is required only that the structural contents of the theorems be 
true53 

Notice that to regard mathematical theories in this way is to regard mathematicians as 
reasoning about structures. That mathematicians reason about structures is not controversial. 
That they even see themselves as reasoning about structures is evident. William Thurston, for 
example, describes mathematical progress with the words: "As our thinking becomes more 
sophisticated, we generate new mathematical concepts and new mathematical structures: the 
subject matter of mathematics changes to reflect how we think." [Thurston 1994, p. 162] Jaffe 
and Quinn describe the stages of mathematical discovery in the following way: 

Typically, infonnation about mathematical structures is achieved in two stages. First, 
intuitive insights are developed, conjectures are made, and speculative outlines of jus
tifications are suggested. Then the conjectures and speculations are corrected; they are 
made reliable by proving them. [Jaffe/Quinn 1993, p. I] 

A crucial role that mathematics plays in physics is specified when they write: "It is now 
mathematicians who provide [physicists] with reliable new infonnation about the structures they 
study." [Jaffe/Quinn 1993, p. 3] 

52 Taking diagrams to be structures is something that Resnik has advocated with his pattern-theory of structures. See in 
this regard his [Resnik 1997, p. 206]. In opposition to the widely held view that diagrams and pictures are only heuristic 
devices that have no place in a mathematical proof, Jon BalWise and John Etchemendy write (in connection with the 
above proof of the Pythagorean Theorem): "Once you have been given the relevant diagram, the rest of the proof is not 
difficult to figure out. It seems odd to forswear nonlinguistic representation and so be forced to mutilate this elegant proof 
by constructing an analogous linguistic proof, one no one would ever discover or remember without the use of diagrams." 
[Barwise/Etchemendy 1991, p. 12J. 

53 To see how I treat applications of arithmetic, see [Chihara 2004], especially pp. 244-5. 
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Of course, the classic statement of the importance of structure for mathematics was given by 
Bourbaki when he wrote: 

[M]athematics appears thus as a storehouse of abstract forms-the mathematical struc
tures; and it so happens-without our knowing why-that certain aspects of empirical 
reality fit themselves into these forms, as if through a kind of preadaptation .... The 
unity which it [i.e. structure] gives to mathematics is not the armor of formal logic, 
the unity of a lifeless skeleton; it is the nutritive fluid of an organism at the height of 
its development, the supple and fertile research instrument to which all mathematical 
thinkers since Gauss have contributed54 

10 The Big Picture 

From discussions I have had with mathematicians, I have gotten the impression that many 
mathematicians think that philosophy is not a serious topic of study and that, in philosophy, one 
can believe and say practically anything without being thought a fool. Such a view of philosophy 
may have obtained currency among mathematicians because a superficial perusal of the history of 
philosophy can convince a sober mind that the most absurd and unbelievable doctrines have been 
espoused by some highly regarded philosophers. Certainly, some celebrated philosophers have 
espoused such remarkable theses as "the real things that we know by experience last for a very 
short time, one tenth or haifa second ... the things we call real, like tables and chairs, are ... logical 
fictions." [Russell 1956, p. 274] But such an apparently absurd doctrine is taken seriously by other 
philosophers because it can be seen to be an essential part of an ingenious "Big Picture"SS-a 
"Big Picture" that is not obviously inconsistent or incoherent. Indeed, such a doctrine would 
be especially attractive to some philosophers if it provided an effective way of obviating or 
overcoming certain serious theoretical difficulties that had long troubled philosophers. 

Can the structural account I have sketched here be fitted into such a "Big Picture"? There 
is no way I could convincingly defend a positive answer to this question in the limited space I 
have left, but I can give some indications of how my structural account is consistent with more 

54 [Bourbaki 1950, p. 231] Some may argue that what mathematicians mean by 'structure' is not what philosophers or 
physicists mean by it, in which case the above quotes do not provide any support for the view I have put forward. In 
response, I would argue that, although there are some minor differences in how the three groups use the term, there is a 
core meaning to the terms 'structure' and 'model' which are common to all these groups, and that the above quotes all 
use this core meaning. Thus, in the article from which the above quotation was taken, Boubaki undertakes to make clear 
what is to be understood by 'mathematical structure': the tenn, we are told, "can be applied to sets of elements whose 
nature has not been specified: to define a structure, one takes as given one or several relations. into which these elements 
enter ... ; then one postulates that the given relation, or relations, satisty certain conditions (which are explicitly stated 
and which are the axioms ofthe structure under consideration)." This is basically a characterization of what philosophers 
take structures to be. Consider what Mac Lane writes, after giving the Peano axioms: "This is a typical description of 
a structure by axioms" [Mac Lane 1986, p. 44]-which with relatively minor differences fits my view beautifully. He 
also gives the "general notion" of an algebraic structure {note: there are also non-algebraic structures!} as follows: "A 
set Xwith nullary, unary, binary, ternary ... operations satisfying as axioms a variety of identities between composite 
operations." [Mac Lane 1986, p. 26] See also [Mac Lane 1986, p. 33]. Mac Lane's characterization of structure is 
essentially what philosophers of mathematics have in mind when they speak of "structures." See [Chihara 2004, Chapter 
3, Section I]. Cf. [Barbut 1970]. See also [Suppes 1967a], where Suppes argues that "the meaning of the concept model 
is the same in mathematics and the empirical sciences." (p. 289) Cf. also [Suppes I 967b, pp. 57~59]. 

55 Recall the discussion of philosophy in Section 2 and the philosopher's goal of achieving a kind of understanding I 
called "Big Picture" understanding. 
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than just our beliefs about mathematics, by showing how the structural account does not conflict 
with standard views about knowledge and reference in the way the Realist's account did. In this 
way, I can illustrate how the structural account affords us an effective way not only of avoiding 
some of the theoretical problems that troubled the Realist's view of mathematics, but also of 
accommodating standard views about knowledge and reference, thus indicating how the account 
fits into a larger picture of the world than can be obtained by just focusing on mathematics. 56 

Recall, from section 3, that one difficulty with the Realist's account of mathematics was 
the problem of understanding how set theorists, just sitting in their offices and, apparently 
merely thinking, are able somehow to obtain knowledge of the existence and properties of sets
mathematical entities from which humans are completely cut off physically and causally. This 
prompted some outstanding Realists to postulate some kind of faculty of mathematical intuition 
by means of which set theorists are able to "perceive" sets (in a way analogous to the way 
we can perceive physical objects). Recall also that another problem the Realist ran into was 
of comprehending how mathematicians are able to pick out and refer to specific mathematical 
entities (such as the empty set). Additionally, there was the "oddity" noted by Azzouni that 
mathematical practice "is simply not concerned with reference." And recall Azzouni's follow up 
assertion that any "view that fails to explain why this is the case has not explained something 
crucial about mathematics." 

Before beginning my sketch of how, within the framework of my structural account, math
ematics is to be fitted into a "bigger picture," I should like to review the reasons I am reluctant 
to call my view of mathematics "Structuralism" (I prefer instead to call it a "structural account 
of mathematics"). Certainly, my view of mathematics is in harmony with many of the views 
of Mathematical Structuralists. For example, I am willing to grant the Structuralist that math
ematical theorems can be viewed as being about structures. But this is because I hold that the 
theorems have a structural content that is about structures. My account differs importantly from 
the Structuralist's in so far as: (I) I do not require the theorems of mathematics to be genuine 
statements about structures; and (2) I do not require the theorems to be literally true assertions. 

These differences figure in my "Big Picture" investigations. My structural account takes 
no stand either on what the theorems assert, if anything, or on whether they are true or false. 
Applications of mathematics are not explained in terms of the truth and meaning of the theorems 
used in the application. One simply makes use of the fact that the structural content of each 
theorem is true: that is, that the theorem is true in every model of the theory. This eliminates 
the task of explaining how the set theorist could know the truth of the axioms and theorems of 
set theory. It thus eliminates the need to attribute special faculties or powers of "perception" to 
set theorists. 

56 In this paper, I have sought to avoid getting bogged down working out confusing details and messy logical reasoning. 
My aim has been only to produce an overview of the structural account, stressing essential ideas and general principles, 
rather than to provide a ful1 account of my positions. This is because of constraints of space and because the reader can 
find a much more complete and in-depth account in my book [Chihara 2004]. 

For similar reasons, I do not respond to various objections that may occur to the alert reader. For example, a critic 
might observe that my structural account seems to make reference to, and to assume the existence of, "structures"
entities which are widely regarded as mathematical entities (because they apparently have just the features attributed to 
mathematical entities that raise serious epistemological difficulties for the Realist). Thus, an objector might conclude that 
my structural account has failed to avoid the many theoretical problems that bedevil the Realist's metaphysical account 
of mathematics. For my response to this objection, see [Chihara 2004], especially Chapters 7 and 8. 
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For similar reasons, the .structural account eliminates the problem of explaining how the 
mathematician is able to pick out and refer to mathematical entities -a problem that arises out 
the Realist's metaphysical view of mathematics. The structural account eliminates this problem 
by eliminating the need for there to be mathematical entities to be picked out. Thus, this account 
is consistent with that feature of mathematical practice noted by Azzouni: mathematical practice 
is simply not concerned with reference. From the perspective of the structural account of mathe
matics, individual mathematicians do well not to concern themselves with questions of how they 
succeed in referring to particular mathematical objects. 
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Stewart Shapiro, in this chapter; sets forth the questions that philosophers of mathematics have 
been trying to answer; dividing philosophers of mathematics along two axes: whether or not they 
believe mathematical objects exist objectively in some way (realism or nominalism of ontology), 
and whether or not they believe the theorems of mathematics are objectively true (realism or 
fictionalism in epistemology). He introduces the problems connected with each of these view
points, and describes how they developed. He then gives more details on several approaches that 
are receiving considerable attention currently, including neo-logicism (successors to Frege and 
Russell) and structuralism. Structuralism is immediately of interest because it appears that what 
we study in mathematics are structures-whether general structures such as topological spaces, 
or specific structures such as the real numbers. Generally, mathematicians are not very interested 
in what kind of thing a real number is (is it an object in some non-physical realm, a mark on a 
piece of paper; an idea in people's heads ?), but in how it interacts with the rest of the real numbers. 
So in this sense, mathematicians study structures. Stewart Shapiro and some others (including 
Michael Resnik) have been trying to see whether that view of mathematics can resolve some of 
the philosophical problems that arise in a platonic approach to the philosophy of mathematics. 

Stewart Shapiro is the 0 'Donnell Professor of Philosophy at The Ohio State University 
and a Professorial Fellow at the University of St. Andrews. His research interests include logic, 

philosophy of logic, epistemic logic, philosophy of language, and the philosophy of mathematics. 
Among his booh and articles that readers of this volume are likely to be interested in are Thinking 
about mathematics: The philosophy of mathematics (2000); Philosophy of Mathematics: Structure 
and Ontology, (1997); "Categories, structures, and the Frege-Hilbert controversy: the status of 
meta-metamathematics ", Philosophia Mathematica (2005); "Simple truth, contradiction, and 
consistency", in The law of non-contradiction, edited by Graham Priest and J. C. Beall, (2004); 
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''All sets great and small: and 1 do mean ALL", Philosophical Perspectives (2003); "Space, 
Number, and Structure: A Tale of Two Debates," Philosophia Mathematica (/996); "Reasoning, 
Logic and Computation," Philosophia Mathematica, (/995); "Mathematics and the Philosophy 
of Mathematics," Philosophia Mathematica, (/994); and "Mathematics and Reality," Philosophy 
of Science (1983). 

1 Battfe Lines 

Examples of mathematical objects include natural numbers, real numbers, complex numbers, 
sets, geometric points, functions, topological spaces, groups, rings, and fields. These items are 
described by common nouns in ordinary mathematical discourse; some are referred to by proper 
names, such as '3' and 'Jr'. A number of philosophical questions come to mind almost immedi
ately. Do mathematical objects exist? Do they exist independently of the language, mind, social 
contexts, or, to use a Wittgensteinian term, "form of life" of the mathematician? In short, do 
mathematical objects exist objectively? If mathematical objects exist, how do we know about 
them? 

There is no agreed upon background framework for addressing questions like these. Early on 
in my education, I learned that in philosophy, an important part of each question-well over half 
of the battle-is to figure out what is being asked. This includes figuring out what the words in the 
question mean. What is it to be an object? What is it for an object, or for a type of object, to exist 
objectively? How do we know that objects exist? How do we know anything? Such questions can 
be asked for other sorts of objects, both mundane and exotic, such as rocks, baseballs, planets, 
people, nations, borders, galaxies, electrons, and quarks. 

This, of course, is not the place to attack the general questions in a systematic manner, but it 
is clear that such questions must be addressed as we tackle the special cases of them that concern 
us here. As far as possible, we will keep focus on the specific questions concerning mathematics. 

The view that mathematical objects-numbers, sets, points, etc.--exist objectively is some
times called realism in ontology. Opponents of this view logically fall into two groups. Nominal
ists deny the existence of mathematical objects altogether. Members of the other group hold that 
mathematical objects exist, but not objectively. Constructivists hold that mathematical objects 
are constructions of a perhaps idealized mind. So mathematical objects are mind-dependent. If 
there were no minds, then there would be no mathematical objects. Social constructivists hold 
that mathematical objects are products of social mathematical activity. If there were no math
ematicians, or no mathematical community, then there would be no mathematical objects (see 
Julian Cole's contribution to this volume). 

Georg Kreisel is often credited with shifting attention from the nature of mathematical objects 
to the objectivity of mathematical discourse. Are the basic propositions of mathematics (non
trivially) true or false? Are they true or false independently of the judgments of mathematicians 
and their communities? Are there, or can there be, unknowable mathematical truths? These, too, 
are instances of more general questions. What is it for a given proposition to be true or false? 
What is it for a given area of discourse to be objective? Can there be any unknowable truths? 

Realism in truth-value is the view that the basic propositions of mathematics-at least 
the bulk of the axioms and theorems of the major branches of mathematics-are objectively 
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true. Here, again, the opposition falls into two camps. Fictionalists hold that mathematical 
assertions are, by and large, false. As indicated by the name, mathematical objects are likened 
to characters of fiction. Statements such as "13 + 2i 12 = 13" and "for each natural number n, 

there is a prime number m > n" have the same status as "Miss Marple's nosiness has brought 
several murderers to justice." In a sense, statements like these are true in the stories, but strictly 
and literally, they are false. Since Miss Marple does not exist, she is in no position to bring 
anyone (or at least any existing person) to (existing) justice. Other truth-value irrealists agree 
that basic mathematical propositions are true, but not objectively. In some way, the truth of 
basic mathematical propositions is due to the mind, language, or social life of the mathemati
cian. A common theme of this second group of irrealists is that all mathematical truths are 
knowable.' 

There is a natural alliance between realism in ontology and realism in truth-value. The latter 
holds that mathematical assertions are objectively true or false. To get to ontological realism 
from this, one just has to understand mathematical assertions literally, at face value. Consider the 
two examples above, "13 + 2il2 = 13" and "for each natural number n, there is a prime number 
m > n." In the first, '3', '2', I', '13' are proper names, which at least purport to denote objects. 
The second proposition, taken literally, speaks of objects called "prime numbers," and it, together 
with a premise that there is at least one number and some other well-known facts about arithmetic, 
implies the existence of infinitely many prime numbers. According to truth-value realism, the 
statements are objectively true. If they are read literally, at face value, then it would seem that 
the objects referred to in these statements exist objectively. 

There is a similar alliance between the respective irrealisms. A fictionalist about mathematical 
truth, for example, is likely to hold that mathematical objects do not exist. What is the point of 
saying that the mathematicians make fictional statements-assertions which are only "true in 
the story"-about objectively existing mathematical objects? Similarly, someone who holds that 
mathematical objects are the constructions of a mind is likely to also hold that mathematical 
propositions are likewise mind-dependent. How can we make objectively true statements about 
mind-dependent objects? 

As natural as these alliances may be, they are not universal. Every combination of ontological 
realismlirrealism and truth-value realism/irrealism is articulated and defended by established and 
respected philosophers of mathematics. Kurt Godel [1944], [1964], Michael Resnik [1997], 
Penelope Maddy [1990], and myself [1997] combine realism in ontology with realism in truth
value. Charles Chihara [1990] and Geoffrey Hellman [1989] develop programs to establish 
the combination of irrealism in ontology with realism in truth-value. The idea is to interpret 
mathematical statements in a non-face value manner. The result is that such statements enjoy 
objective truth-values even though (or even if) there are no distinctive mathematical objects. 
Hartry Field [1980], [1989] and Steven Yablo [2002], [2005] are fictionalists, adopting both forms 
of irrealism. Michael Dummett [1973], [1977] and the traditional intuitionists L. E. J. Brouwer 
(e.g., [1912], [1948]) and Arend Heyting (e.g., [1930], [1931], [1956]) hold that mathematical 
objects and mathematical truth are alike mind-dependent. Neil Tennant [1987], [1997] holds 
that mathematical objects exist objectively, but also that, in a sense, no truth-mathematical 

I The word "anti-realism" is sometimes used for the view that it is impossible for there to be any unknowable truths. See, 
for example, Tennant [1997]. Here, I use "irrealism" for all views opposed to realism. 
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or otherwise-is completely independent of the human ability to determine its truth. In present 
terms. this is realism in ontology, irrealism in truth-value. 

General questions and issues concerning objectivity, objecthood, and existence loom large 
in this taxonomy. It may be that the different authors do not accept the same conceptions of the 
basic metaphysical notions, and thus they may not disagree as much as it looks. Let us tum to the 
strengths, shortcomings, and issues of some of the major positions. 

2 Wliat Matliematica{ Of!jects are Like, or Wou{d' 6e Like if tliey Existed' 

It seems that mathematical objects, if such there be, do not have physical properties. No one 
wonders how much the number 2 weighs, or where it is located, or whether it can be moved. It 
is misguided to even wonder about such things. We might as well ask if the number 2 is brave, 
or funny. Of course, one can slaughter and eat two goats, and one can vaporize four ice cubes. 
So some physical relations invoke mathematical entities, or at least they are usually stated using 
mathematical language. But, it seems, one cannot destroy the number two itself and the number 
four itself. Realists in ontology typically also hold that mathematical objects, such as natural 
numbers, were not created. Mathematical objects thus have no beginning or end in time. They are 
eternal, or perhaps better, timeless. In like manner, mathematical objects do not have any causal 
relations with material reality, or anything else for that matter. Nothing that anyone or anything 
does can have any effect on the arithmetic properties of natural numbers, and numbers have no 
effects on anything else--or so it seems. Objects with properties like these are sometimes called 
abstract. 

According to Plato, properties or Forms such as Beauty, Justice, and Goodness, are similarly 
eternal, unchanging, and acausal. For this reason, realism in ontology is sometimes called "Pla
tonism."2 Sometimes this is written "platonism," with a lowercase 'p', probably to mark some 
distance from the master. On views like these, mathematical objects are sometimes said, often 
pejoratively, to reside in "Plato's heaven." This, of course, is only a metaphor. According to the 
typical ontological realist, mathematical objects are not located anywhere. 

3 A Di{emma 

Much of the work in the philosophy of mathematics over the last 30 years can be traced to a 
dilemma posed by Paul Benacerraf [1973]. There are two desiderata for a philosophical account of 
mathematics. The first is that languages of mathematics and the languages of ordinary discourse 
and science be understood the same way. In other words, there should be a uniform semantics 
for the various languages. Ordinary discourse contains mathematical terms, and just about all 
of science does. Otherwise, mathematics would not be applicable to the material world, the 
world studied by science. Ifwe had to understand mathematical language and non-mathematical 
language in different ways, then we would need an account of how the discourses interact, and 
a way to understand mixed statements, such as "one can slaughter and eat two goats" and "the 
force of gravity between two objects is proportional to the square ofthe distance between them." 

2 Plato's own views on mathematics are a matter of some scholarly dispute. For a brief overview, and some references to 
the extensive literature, see Shapiro [2000, Chapter 3]. 
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Now consider the following pair of sentences: 

There are filthy cities larger than Chicago. 
There are prime numbers larger than 100. 

161 

These sentences have the same grammatical form. The first desideratum would suggest that 
they be understood in closely analogous ways. The first sentence has a proper name, "Chicago," 
a complex predicate "filthy city," and a term for the relation of largeness. The sentence is true if 
(and only if) there is a city denoted by "Chicago" and some cities are both filthy and larger than 
it. The second sentence has a name" 100" that purports to refer to a natural number, a complex 
predicate symbol "prime number," and the relation symbol "larger." The sentence is true if (and 
only if) there is a number denoted by "100" and there are, in fact, some natural numbers that are 
both prime and larger than that number. 

The first sentence is clearly true; there are such cities (although I will not name any, to 
avoid giving offence). The second sentence is an easy theorem of elementary arithmetic, and 
mathematicians assert it, without reservation. It is natural to hold that mathematicians know 
what they are talking about, that they mean what they say, and that they get things right, at 
least most of the time, especially when dealing with matters this elementary. So it would seem 
that the second sentence is true, like the first. Benacerraf's first desideratum thus suggests that 
mathematical objects exist. Ifwe combine this with the above observations concerning the nature 
of mathematical objects, we are led to the thesis that mathematical objects are eternal, unchanging, 
and acausal. In other words, the first desideratum suggests realism in ontology. As above, this is 
allied with realism in truth-value. 

A second desideratum for the philosophy of mathematics is a plausible (and uniform) epis
temology. Mathematical knowledge should not be mysterious. It seems that we do know some 
mathematics. How? Benacerrafpoints out that the way we come to know about ordinary objects 
and the objects of science is by interacting with them. We see baseballs, trees, people, and the 
like. Of course, we do not literally see (or hear or touch) some of the theoretical posits of science, 
but we do see the effects of these objects, in Brownian motion and in cloud chambers, for exam
ple. In contrast, mathematical objects-if such there be-seem to have no effects on us, or on 
anything else. So even if mathematical objects do exist, we cannot interact with them, and thus 
know anything about them. We cannot even know that they exist. 

This, then, is Benacerraf's dilemma. Thefirst desideratum is to understand mathematical 
and non-mathematical discourse (as well as mixed discourse) the same way. This would have 
us take mathematical propositions at face value. If some such propositions are true, we are led 
to the existence of an acausal realm of mathematical objects. The second desideratum suggests 
that we cannot know anything about such objects, since we do not and cannot interact with 
them. 

The second horn of the dilemma, as presented in [Benacerraf 1973], invokes a premise 
sometimes called the "causal theory of knowledge." The thesis is that there can be no knowledge 
about a type of object unless at least some knowers have at least some causal contact with at least 
some ofthe objects. This is impossible with abstract mathematical objects, as conceived above. 
Although causal theories have fallen into disrepute among epistemologists, the general theme of 
the Benacerraf dilemma continues to bother those working in the philosophy of mathematics, no 
matter what their views on mathematical objects and no matter what their views on knowledge. 
Hartry Field [1989, Essay 7] formulated a variation of the second hom of the dilemma that is 
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substantially independent of the details of any particular theory of knowledge. According to 
realism in ontology, mathematical propositions are about a realm of objects that have no causal 
relations with the human mathematician (or anything else for that matter). Presumably, the realist 
also holds that at least the bulk of the beliefs of practicing mathematicians about these abstract 
objects are true: every natural number has a successor, the successor function is one-to-one, etc. 
So the ontological realist postulates a correlation between the beliefs of mathematicians and the 
facts about an eternal, acausal realm of abstract mathematical objects. The burden is to explain 
this correlation. It cannot be an accident that humans evolved to the point that they have correct 
beliefs about the mathematical realm-about Plato's heaven. How did we accomplish this feat? 
What reason do we have to think that we did accomplish this feat? If ontological realism is true, 
then what reason do we have for thinking that mathematicians are correct in their mathematical 
beliefs? 

Benacerraf's dilemma thus leads to a pair of problems, one for the realist and one for the 
irrealist. Perhaps the most serious problem with ontological realism is to provide an account of 
mathematical knowledge, an account that makes it the case that mathematicians (and ordinary 
folk) have genuine knowledge about abstract objects. A serious problem for the various irrealisms 
is to give an account of how we understand mathematical language, and how mathematical 
knowledge figures in ordinary and scientific knowledge of the material world. 

4 The Irreafist Horn 

I turn to a sketch of some views that attack the first horn of Benacerraf's dilemma, and deny 
that mathematical objects enjoy an objective existence. As noted above, there are two versions 
of ontological irrealism. One has it that mathematical objects are mind-dependent, and the other 
holds that there are no mathematical objects at all. 

The more radical version of ontological irrealism is nominalism, the view that mathematical 
objects do not exist-mind-independently or otherwise. As noted, one variety of this view is that 
mathematical objects are fictions. Accordingly, what passes for mathematical knowledge is just 
knowledge of the "stories" that mathematicians weave, and knowledge of the consequences of 
these stories. Presumably, that sort of knowledge is not problematical. 

Other varieties of nominalism provide ways to interpret mathematical statements in a non
face value manner (e.g., [Chihara 1990], [Hellman 1989]). The basic axioms and theorems end 
up objectively true, but they do not imply the existence of distinctively mathematical objects. 
Typically, the statements of mathematics are about what is necessary and/or possible. Such 
statements are sometimes called "modal." According to views like this, mathematics is known 
the same ways that any modal propositions are known. That is, we know mathematics the same 
way that we know how anything is necessary or possible. It is not clear that such an epistemology 
for mathematics is any more tractable than one for the ontological realist (see [Shapiro 1997], 
Chapter 7). 

In all these nominalistic accounts, the first desideratum of the Benacerraf dilemma is left 
unfulfilled: mathematical statements are not understood the same way as ordinary and scientific 
language is. The advocates of the various fictionalist and modal reconstructive programs take this 
burden seriously, and attempt to provide accounts of how mathematical propositions (whether 
fictional or modal) are useful, or indeed practically necessary, for understanding the physical 
world. A central focus of these projects is to show how to understand the statements of science, 
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such as the laws of physics, that themselves invoke mathematics. Since the concern ofthis article 
is mathematical objects, I will go no further on the details of these accounts 3 

We turn now to views that mathematical objects exist, but not objectively. The intuitionist 
Arend Heyting explicitly denied the mind-independence of mathematical objects: 

... we do not attribute an existence independent of our thought, i.e., a transcendental 
existence, to the integers or to any other mathematical objects ... mathematical objects 
are by their very nature dependent on human thought. Their existence is guaranteed only 
insofar as they can be detennined by thought. They have properties only insofar as these 
can be discerned in them by thought... ([Heyting 1931], pp. 52-53]) 

... [L. E. J.] Brouwer's program ... consisted in the investigation of mental mathemati
cal construction as such, ... a mathematical theorem expresses ... the success of a certain 
construction ... In the study of mental mathematical constructions, "to exist" must be 
synonymous with "to be constructed" .... In fact, mathematics, from the intuitionist 
point of view, is a study of certain functions of the human mind. 

([Heyting 1956], pp. I, 8, 10) 

Benacerrafargues that the philosophies of mathematics like this have a more tractable line on 
epistemology, on the second horn of the dilemma. If mathematical objects are mind-dependent, 
then mathematical knowledge is knowledge of our own minds. As mysterious as the mind is, it 
is not nearly as mysterious as Plato's heaven. Surely, we have some access to the mind, and to 
its productions. If nothing else, we have introspection. 

If we take the statement of this philosophy literally, at face value, then it is not clear that 
it can make sense of the mathematics that we all know and love. It is an easy theorem of set 
theory that there are uncountably many real (and complex) numbers, and even more functions on 
real numbers. The universe of set theory itself is even more staggering. Surely, no one can claim 
that humans have constructed that many objects. When did we do so? The objects of advanced 
mathematics cannot be constructed one item at a time. There are too many of them. 

Following Aristotle, the traditional intuitionist rejects the existence of an actual infinity. For 
example, there is no completed, existing set of natural numbers. Rather, we have a procedure for 
generating ever more natural numbers. The intuitionist understands the axiom that every natural 
number has a successor to mean that the procedure for constructing natural numbers does not run 
out. If given a natural number, one can construct its successor. But this is not to say that anyone 
ever could construct all of the natural numbers. As usual, one can think of an integer as a pair of 
natural numbers, a rational number as a pair of integers, and a real number as a Cauchy sequence 
of rational numbers (or a Dedekind cut). But here, again, the sequence (or cut) is not thought of 
as an actual infinity. It is not as if the members of a given Cauchy sequence exist all at once. 
Rather, we think of the sequence as generating its members, one at a time. The sequence is a 
potential infinity, in that it does not tenninate. 

Even the elementary parts of the arithmetic go beyond what humans can actually construct. 
We talk about gargantuan natural numbers when discussing the national debt, the distance between 
galaxies, and the numbers of atoms in a given substance. Avogadro's number is 6.02 x 1023. No 

3 The interested reader is directed to the previously cited sources, and to Burgess and Rosen [1997] for a less than 
sympathetic account. See also Shapiro [2000, Chapter 9]. 
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one has carried out the procedure for constructing natural numbers (one at a time) that far. Yet 
the intuitionist has no trouble countenancing the existence of numbers that large. It is a theorem 
of intuitionistic arithmetic that every number is either prime or composite. But clearly, there are 
numbers that are so large that no one can determine whether they are prime or composite before 
the sun goes cold, using the resources available in this limited universe. 

The standard response here is to idealize. Even though Heyting speaks of mathematics as "a 
study of certain functions of the human mind," it is really an idealized mind that is being studied. 
And the study is hardly empirical-mathematics is not a branch of psychology. This might lessen 
the benefits conceded to the intuitionist on the second, epistemological, hom of the Benacerraf 
dilemma. We may have access to our finite and limited minds, via introspection, but do we have 
access to the postulated ideal mind? 

The intuitionistic perspective has ramifications within mathematics itself. Brouwer showed 
that every function on (a closed and bounded set of) real numbers is (uniformly) continuous. Most 
intuitionists accept this. For example, they hold that there simply is no real valued function f such 
that f(x) = I if x < 0, and f(x) = 2 if x "'" O. This is despite that fact that discontinuous functions 
are easily definable in classical mathematics-I just defined one-and that such functions have 
found application in science. In like manner, the intermediate value theorem cannot be proved 
in intuitionistic real analysis. An ongoing research program is to see how well science can get 
on with intuitionistic mathematics. A neutral observer might say that the jury is still out on that 
matter. 

Brouwer, who is usually difficult to interpret, articulated a Kantian view that arithmetic 
concerns the ways that humans (or creatures with minds like humans) perceive the world in time. 
The natural numbers are the structure of our experience of events following each other, one at 
a time. Following Kant, he postulated that we have a faculty, called "intuition," which yields 
knowledge of the basic truths of arithmetic. This is the source of our knowledge of arithmetic. It 
is not clear whether such an epistemology is any more tractable than one for ontological realism. 

What of the first hom ofthe Benacerraf dilemma, the desire that the languages of mathematics, 
ordinary discourse, and science be understood the same way? One option for the intuitionist 
would be to articulate a Kantian philosophy that ordinary objects and those of science are mind
dependent, at least to some extent. Then all discourses would receive a uniform treatment, and 
the first desideratum would be satisfied. Another option would be to develop contrasting and 
complementary accounts for the various discourses, including the mixed language of science, 
and show how the systems complement each other and function together. 

Another variation of ontological irrealism is the view that mathematical objects are social 
constructions, along the lines of money, property, statutes, and borders. The idea, again, is that 
mathematical objects exist, but not independently of the mathematical and scientific community. 
A mathematical proposition is the same sort of statement as "the border between the USA and 
Canada is north of the equator" and "three strikes and you are out." Versions of this relatively 
fresh perspective are articulated in [Ernest 1998] and [Hersh 1997] (see Julian Cole's contribution 
to this volume). 

5 The Reaflst Horn 

We now take up attempts to grasp the first hom of the Benacerraf dilemma, and thus try to over
come the second, epistemological hom. These are usually tied to detailed, speculative accounts 
of the nature of mathematical objects. 
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5.1 An Intuitive Grap 

Plato held that the human mind has some sort of direct grasp of the world of eternal, unchanging 
Fonns. Taking a cue from this, the ontological realist about mathematics might conjecture that 
there is a faculty for perceiving relations among mathematical objects, a faculty that gives us 
a glimpse into Plato's heaven, which Plato called the World of Being. The mathematician and 
logician Kurt Giidel is well-known for holding a view like this. In a much quoted philosophical 
essay, he spoke favorably of the philosopher who "considers mathematical objects to exist 
independently of our constructions and of our having an intuition of them individually ... " 
([GOdel 1964], p. 474, my emphasis). He elaborates: 

But, despite their remoteness from sense experience, we do have something like a 
perception also of the objects of set theory, as is seen from the fact that the axioms 
force themselves on us as being true. I don't see any reason why we should have 
less confidence in this kind of perception, i.e., in mathematical intuition, than in sense 
perception, which induces us to build up physical theories and to expect that future sense 
perceptions will agree with them ... 

It should be noted that mathematical intuition need not be conceived of as a faculty 
giving an immediate knowledge of the objects concerned. Rather it seems that, as in 
the case of physical experience, we form our ideas also of those objects on the basis of 
something else which is immediately given. Only this something else here is not, or not 
primarily, the sensations. ([GOdel 1964], pp. 483-484) 

Giidel's use of the word "intuition" here is explicitly Kantian. Unlike the intuitionists, and 
Kant himself, however, G6del was a realist in ontology, writing that the "given" underlying 
mathematics "may represent an aspect of objective reality, but, as opposed to the sensations, their 
presence in us may be due to another kind of relationship between ourselves and reality." That 
is, Giidel took mathematical intuition to be an intuition of an objectively existing realm' 

5.2 Holism 

Giidel's views capture an experience described by many mathematicians. The view, however, 
is often derided by philosophers. It is difficult to accept the idea of a special intuitive grasp of 
a Platonic mathematical realm. G6del's philosophy suggests that mathematical objects do have 
some sort of effect on us, since we intuit them, presumably as they are. Apparently, Giidel rejects 
the common thesis, noted above, that mathematical objects lack causal powers. In any case, the 
lack ofa detailed account of mathematical intuition makes it tempting to both reject and overly 
simplify the view. 

A popular view today, at least in North America, is naturalism, characterized by W. V. 
O. Quine [1981, p. 72] as "the abandonment of first philosophy" and "the recognition that it is 
within science itself. .. that reality is to be identified and described" (see also [Quine 1969]). The 
naturalistic philosopher sees the human knower as a thoroughly physical being within a physical 
universe. So any faculty that the philosopher invokes to explain knowledge must involve only 
natural processes amenable to ordinary scientific scrutiny: "The naturalistic philosopher begins 

4 James Robert Brown [1999] advocates a similar use of intuition on behalf of ontological realism. 
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his reasoning within the inherited world theory as a going concern;" and the "inherited world 
theory is primarily a scientific one, the current product of the scientific enterprise." It is hard to 
see what sort of empirical study could confirm the existence of a Kantian-cum-platonic intuition. 

Naturalism exacerbates the epistemic problems with realism in ontology, the second hom of 
the Benacerraf dilemma. The challenge to the ontological realist is to show how a physical being 
in a physical universe can come to know about abstracta like mathematical objects, or the truths 
about such objects. 

Besides being an unrelenting naturalist, Quine is an unrelenting empiricist, holding that all 
knowledge is ultimately based on sensory observation. He proposes a metaphor that our system 
of beliefs is a "seamless web." Each "node" (belief) has innumerable links to other nodes in 
the web, via logic and linguistic usage. Some nodes are fairly directly related to experience, so 
that they can be confirmed by direct observation. These lie at or near the "edges" of the web. 
To pursue the metaphor, sensory experience impinges on the web only at these "edges," through 
irritations on our nerve endings--observation. New observations bring about changes inside the 
web, via the innumerable links between the nodes, until some sort of equilibrium is achieved. 

For Quine, "science is a tool ... for predicting future experience in the light of past experi
ence" ([Quine 1951], §6). Although the only evidence relevant to a theory is sensory experience,s 
Quine argues that experience does not bear on scientific statements considered one at a time. 
Our beliefs face the tribunal of experience only in groups. In light of recalcitrant experience, the 
scientist has many options on which of her beliefs to modify. In philosophy, the technical term 
for Quine's view is holism. 

As noted above, several times, mathematics is a central part of the sciences. Thus, for Quine 
mathematics itself has a central place in the web of belief. He accepts mathematics as true for the 
same reason he accepts physics as true. Indeed, for Quine, mathematics has the same status as the 
more theoretical parts of science. It lies far from the "periphery" of the web, where observation 
has a more direct role. For Quine, the ultimate criterion for accepting anything-mathematics, 
physics, psychology, ordinary objects, myth-is that it play an essential role in the web of belief, 
in organizing and predicting experience. Physics, chemistry, and with those, mathematics, are 
entrenched in the web, and so we believe in the truth of the basic pronouncements of those fields. 
Mathematics, it seems, has a vast ontology, speaking of numbers, points, sets, and the like. So 
these objects exist. 

One of the clearest articulations of the role of mathematics in Quinean holism is due to 
Hilary Putnam ([1971], Chapter 5). Define a "nominalist language" to be one that only refers to 
concrete, physical objects. Putnam invites us to "consider the best-known example ofa physical 
law: Newton's law ofgravitation,,,6 which 

... asserts that there is a force lab exerted by any body G on any other body b. 
The ... magnitude F [of the force] is given by: 

F =gM"Mb/d2 

where g is a universal constant, M" is the mass of G, Mb is the mass of b, and d is the 
distance which separates a and b. 

5 Quine allows other factors, like simplicity, to playa subsidiary role in developing theories. 

(1 Putnam notes that it does not matter much that this particular law is not quite true. In any mature science. the laws of 
nature arc thoroughly mathematical. 
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The point of the example is that Newton's law has a content which, although in one 
sense is perfectly clear (it says that gravitational "pull" is directly proportional to the 
masses and obeys an inverse-square law), quite transcends what can be expressed in 
nominalistic language. Even if the world were simpler than it is, so that gravitation 
were the only force, and Newton's law held exactly, still it would be impossible to "do" 
physics in nominalistic language. ([Putnam 1971], p. 37) 
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Since it seems that there is not much prospect of pursuing science without invoking real 
numbers, Putnam concludes that real numbers exist: 

If the numericalization of physical magnitudes is to make sense, we must accept such 
notions as function and real number; and these are just the notions the nominalist rejects. 
Yet if nothing really answers to them, then what at all does the law of gravitation assert? 
For that law makes no sense at all unless we can explain variables ranging over arbitrary 
distances (and also forces and masses, of course). ([Putnam 1971], p. 43) 

Putnam ([1971], p. 57) sums things up: 

... I have been developing an argument for realism along roughly the following lines: 
quantification over mathematical entities is indispensable for science ... therefore we 
should accept such quantification; but this commits us to accepting the existence ofthe 
mathematical entities in question. This type of argument stems, of course, from Quine, 
who has for years stressed both the indispensability of quantification over mathematical 
entities and the intellectual dishonesty of denying the existence of what one daily 
presupposes. 

The holistic perspective also attempts to provide a line on the epistemology of mathematics 
as well, to satisfy the second hom of the Benacerraf dilemma. According to Quine and Putnam, 
mathematics is known the same way as anything else in the web of belief is known, by playing a 
role in a highly successful way to organize and predict experience. 

One would think, however, that articulations of the holistic picture should provide a careful 
analysis of the role of mathematics in science, rather thanjust noting the existence of this role. This 
analysis would shed light on the abstract, non-spatio-temporal, acausal nature of mathematical 
objects, and the relationships between such objects and ordinary and scientific material objects. 
How is it that talk of numbers and functions can shed light on rock formations, the stability of 
buildings, and the orbits of the planets? Such an analysis would go a long way toward defending 
the holistic picture. 

Note also that QUine's view does not account for branches of mathematics, such as higher 
set theory, that have not found application in science. He takes a more hypothetical view toward 
unapplied branches of mathematics, claiming that he is not committed to the truth of these 
branches, or the existence of the indicated objects. Note also that mathematicians themselves do 
not follow the epistemology suggested by the Quinean picture. That is, mathematicians do not 
look for confirmation in science before believing (and publishing) their theorems. So Quine's 
picture does not account for mathematics as practiced.7 

7 See Colyvan [2001] and Resnik [2005] for a detailed articulation and defense of the holism and the indispensability 
argument. Penelope Maddy [1990] provides a defense of an ontological and truth-value realism that synthesizes aspects 
ofG5del's perspective and Quine's naturalism and empiricism. 
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6 A Matter if Meaning 

I now present brief sketches of two specific accounts of the nature of mathematical objects, 
neo-logicism and structuralism, Each account cuts across the realistlirrealist divide of the past 
two sections, in the sense that each view has both realist and irrealist versions, The accounts are 
presented as a sample of the terrain, and are not even close to exhaustive ofthe rich and extensive 
literature in the philosophy of mathematics, The views were chosen, in part, because each has 
something specific to say about what it is to be a (mathematical) object 

One program in the philosophy of mathematics is to show that at least some basic principles 
of mathematics are what philosophers sometimes call "analytic." The idea is that anyone who 
properly understands the meanings of terms like "natural number," "successor function," "addi
tion," and "multiplication," has all that she needs to see that the basic principles of arithmetic, 
such as the Peano postulates, are true. 

The most prominent historical instance version of this program is logicism, the view that 
arithmetic truth, at least, is a species oflogical truth. The most detailed developments are those of 
Gottlob Frege [1884], [1893] and Alfred North Whitehead and Bertrand Russell [1910]. Frege was 
a realist in ontology, in that he took the natural numbers to be objects, and to exist independent of 
the mathematician. Numbers are what may be called logical objects. Frege's program is thus an op
tion to handle the second, epistemological hom of the Benacerrafdilemma. For Frege, arithmetical 
propositions are known the same way as any other logical truths (whatever way that may be). 

Two concepts are equinumerous if they can be put in one-to-one correspondence. For ex
ample, the napkins on a table are equinumerous with the plates, provided that there is exactly 
one napkin corresponding to each plate. Frege showed how to define equinumerosity using the 
resources of what would later be called "second-order logic." Crucially, his definition does not 
explicitly invoke natural numbers. In attempting to define the natural numbers, and the general 
notion of natural number, Frege ([ 1884], §63) proposed the following principle, which has since 
become known as "Hume's principle":8 

For any concepts F, G, the number of F's is identical to the number of G's ifand only 
if F is equinumerous with G. 

For various reasons, Frege was not satisfied with Hume's principle as a characterization of 
number. He pointed out that the principle only determines the truth-values of identities of the 
form "the number of F's = the number of G's," where' F' and 'G' stand for concepts. Hume's 
principle does not determine the truth-value of sentences in the form "the number of F's = t," 
where tis an arbitrary name. In particular, Hume's principle does not determine whether the 
number 2 is identical with the empty set, or with Julius Caesar for that matter. The issue of 
"identifying" the individual natural numbers came to be known as the "Caesar problem." 

In formulating this issue, and taking it seriously, Frege seems to be invoking a principle for 
numbers that applies to objects generally. Quine ([1981], p. 102) puts the criterion well: "We 
have an acceptable notion of class, or physical object, or attribute, or any other sort of object, 
only insofar as we have an acceptable principle of individuation for that sort of object. There is no 

8 This attribution is based on a passage from Hume that Frege quotes. Hume. however, made no substantial mathematical 
use of the principle. Since the name «Hume's principle" has stuck, we will go along with it here. 
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entity without identity." Hume's principle tells us when two terms for numbers, given a certain 
way, denote the same or different numbers. It does not tell us what it is for numbers in general to 
be identical or distinct from other sorts of objects, or even from numbers given in other ways. 

To solve the Caesar problem, Frege provided an explicit definition of the natural numbers 
in terms of concepts and their extensions. The number three, for example, is the extension (or 
collection) of all concepts that hold of exactly three things. So the concept "child of Stewart 
Shapiro" is a member of the number three. 

Frege's ontological realism was not compromised by this definition, since he took extensions 
to be objects. They are among the objects of logic. One of the principles governing extensions is 
Frege's Basic Law V: 

For any concepts F, G, the extension of F is identical to the extension of G if and only 
if every F is a G, and every Gis an F. 

This is an instance of a familiar style of definition by abstraction, used throughout mathe
matics. Basic Law V, however, is problematic, to say the least. Frege's logicist program came to 
a tragic end when his theory of extensions was shown to be inconsistent, via Russell's paradox: 
define x to be a "Russell-object" if there is a concept F such that x is the extension of F, and x 

is not an F (i.e., Fx is false). Let r be the extension of the concept of being a Russell-object. It 
follows, from Basic Law V, that ris a Russell-object if and only if r is not a Russell-object. This 
is (or leads to) a contradiction. 

For his part, Russell ([1919], Chapter 2) was not deterred by this paradox. He held that 
Fregc's account of the natural numbers is substantially correct: 

The question "What is number?" is one which has been often asked, but has only been 
correctly answered in our own time. The answer was given by Frege in 1884, in his 
Grundlagen der Arithmetik. Although this book is quite short, not difficult, and of the 
very highest importance, it attracted almost no attention, and the definition of number 
which it contains remained practically unknown until it was rediscovered by the present 
author [Russell] in 1901. 

According to Russell, once Basic Law V is correctly understood, it is indeed a good definition 
of "extension" or "class." His diagnosis was that the derivation of the contradiction from Basic 
Law V invokes a fallacy. A definition ofa mathematical entity is said to be impredicative ifitrefers 
to a collection that contains the defined entity. The usual definition of the "least upper bound" is 
impredicative since it refers to a set of upper bounds and characterizes a member of this set. 

Russell ([ 1919], Chapter 17) argued that impredicative definitions are illegitimate, since they 
are circular: 

Whenever, by statements about "all" or "some" of the values that a variable can signif
icantly take, we generate a new object, this new object must not be among the values 
which our previous variable could take, since, ifit were, the totality of values over which 
the variable could range would be definable only in terms of itself, and we should be 
involved in a vicious circle. For example, if I say "Napoleon had all the qualities that 
make a great general," I must define "qualities" in such a way that it will not include 
what I am now saying, i.e., "having all the qualities that make a great general" must not 
be itself a quality in the sense supposed. 
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The "vicious circle principle" thus bans impredicative definitions and, in particular, the 
generation of Russell's paradox. Recall that we defined an object x to be a Russell-object just 
in case there is a concept F such that x is the extension of F and Fx is false. The definition 
of "Russell-object" thus refers to all concepts F, and "Russell-object" is just such a concept 
F. We then derived a contradiction from the assumption that the definition of "Russell-object" 
holds of its own extension. The ban on impredicative definitions precludes even making this 
assumption. Russell argues, from the vicious circle principle, that it "must under all circumstances 
be meaningless (not false) to suppose [that] a class [is] a member of itself or not a member of 
itself." 

Russell proposed a type theory. Define an "individual" to be an object that is not a class. 
Individuals are of type 0, and classes of individuals are of type l. Classes of classes of individuals 
are of type 2, and so on. So, for example, the people that make up a team are each individuals 
and so are type 0 objects. The team, regarded as a class of its players, is a type I object; and a 
league, regarded as a class of teams, is of type 2. A collection ofleagues would be of type 3. 

The move to classes allows a simplification of Frege's definitions of the natural numbers. 
For any class C, define the number of C to be the "class of all those classes (of the same type 
as C) that are" equinumerous with C (see [Russell 1919], Chapter 2). Let A be the class of my 
three children; so that A is of type I. The number of A is the class of all three-membered type I 
classes. The number of my children is thus a type 2 class. Similarly, the number of a type 2 class 
is a type 3 class, etc. For Russell, a "number is anything which is the number of some class." 

But what is mathematics about? What are numbers, function, etc., really? Do they exist 
objectively? Since Russell took the various sorts of numbers to be classes, the status of numbers 
turns on the status of classes. His mature writings deny the independent existence of classes: "the 
symbols for classes are mere conveniences, not representing objects called 'classes' ... [C]lasses 
are in fact ... logical fictions ... [They] cannot be regarded as part of the ultimate furniture of the 
world" (Russell [1919, Chapter 18]). He called this view the "no class" theory. Talk of classes is 
only a "manner of speaking" about properties and relations of ordinary, non-mathematical objects 
(as well as properties of properties, etc.). Talk of classes and thus numbers is thus eliminable in 
principle. So at this period, Russell sharply departed from Frege's realism in ontology. 

A variation on Frege's approach is pursued today, in the work of Crispin Wright, beginning 
with [Wright 1983], and Bob Hale [1987] (see [HalelWright 2001]) and other neo-logicists. The 
idea is to bypass the treatment of extensions and to work with Hume's principle, or something 
like it, directly. Hume's principle, recall, is: 

For any concepts F, G, the number of F's is identical to the number of G's if and only 
if F is equinumerous with G. 

Frege's own technical development shows that the standard postulates for arithmetic, now 
known as the Peano-Dedekind axioms, can be derived from Hume's principle in a standard, 
higher-order logical system. This result has since been dubbed Frege's theorem. In Frege's 
foundational work on arithmetic, the only essential use of extensions, and Basic Law V, is in the 
derivation of Hume's principle. Everything else concerning natural numbers follows from that. 
Moreover, Hume's principle is consistent with second-order logic if second-order arithmetic is 
consistent (see [Boo los 1987] and [Hodes 1984]). 

Wright and Hale hold that the right-hand side ofHume's principle gives the truth conditions 
for the left-hand side, but the left-hand side has the proper grammatical and logical fonn. In 
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particular, locutions like "the number of F's" are terms that (purport to) denote objects. At least 
some instances of the right-hand side of Frege's principle are true on logical grounds alone. For 
example, it is a logical truth that the concept of "not identical to itself" is equinumerous with the 
concept "not identical to itself." Thus, from Hume's principle, we conclude that the number of 
non-self-identical things is identical to the number of non-self-identical things. Letting "0" denote 
the number of non-self-identical things, we conclude that 0 = 0 and so zero exists: 3x(x = 0). 
Similarly, we can define the number one to be the number of the concept "identical to zero." 
This makes sense since it follows that exactly one thing is identical to zero. Hume's principle, 
and basic logic, implies that the number one exists: 3x(x = I). The number two is the number of 
the concept "either identical to zero or identical to one." And it goes on from .there: each natural 
number has a similar definition. It follows from Hume's principle that these natural numbers all 
exist, and are different from each other. In effect, it follows from Hume's principle that there are 
infinitely many natural numbers. If the neo-Iogicist holds that Hume's principle is objectively 
true, then he is a realist in ontology.9 

Let us tum to epistemology, the second hom of the Benacerraf dilemma. If we know that 
Hume's principle is true, and if we know that the relevant principles of higher-order logic preserve 
truth, then we know the basic propositions of arithmetic. So, to provide an epistemology for basic 
arithmetic, the neo-Iogicist must show how Hume's principle is known. On most contemporary 
accounts, logical truths are known on the basis of their form alone, and, more importantly, logical 
truths alone have no substantial consequences concerning what exists. Accordingly, Hume's 
principle is not a truth of logic, since it implies the existence of the natural numbers. The 
neo-Iogicist claims that Hume's principle is analytic of the concept of natural number, or is an 
explanation of the concept of natural number. 'o Anyone who grasps the concept will accept, or 
ought to accept, or has the wherewithal to know, Hume's principle: 

Frege's theorem will ... ensure ... that the fundamental laws of arithmetic can be de
rived within a system of second-order logic augmented by a principle whose role is 
to explain, if not exactly to define, the general notion of identity of cardinal number, 
and that this explanation proceeds in terms of a notion which can be defined in terms 
of second-order logic. If such an explanatory principle ... can be regarded as analytic, 
then that should suffice ... to demonstrate the analyticity of arithmetic. Even if that term 
is found troubling, ... it will remain that Hume's principle-like any principle serving 
implicitly to define a certain concept-will be available without significant epistemolog
ical presupposition ... So one clear a priori route into a recognition of the truth of ... the 
fundamental laws of arithmetic ... will have been made out. And ifin addition [Hume's 
principle] may be viewed as a complete explanation-as showing how the concept of 
cardinal number may be fully understood on a purely logical basis-then arithmetic will 
have been shown up by Hume's principle ... as transcending logic only to the extent 
that it makes use of a logical abstraction principle--one [that] deploys only logical 

9 The aforementioned Caesar problem remains an active and open research problem on the philosophical agenda of 
neo-Iogicism (see Hale and Wright [2001a]). Apparently, the neo-logicist is obligated to give an account of the truth 
conditions of any statement in the fonn " n = t," where nis a natural number and tis any object whatsoever. 

\0 Neil Tennant [1997] provides a different neo-Iogicist program. He shows how to derive the basic propositions of 
arithmetic from certain principles, and then claims that we know that such principles are necessarily true. 
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notions. So, ... there will be an a priori route from a mastery of second-order logic to a 
full understanding and grasp of the truth of the fundamental laws of arithmetic. Such an 
epistemological route ... would be an outcome still worth describing as logicism ... 

([Wright 1997], pp. 210-211) 

Recently, Hale and Wright [2000] have argued that Hume's principle is an implicit definition, 
and true by stipulation. Notice that Hume's principle has the same form as Basic Law V. The 
latter, of course, cannot be true by stipulation, since it is not consistent, and it is not analytic of, 
and does not explain, and is not an implicit definition of, anything. Clearly, one cannot stipulate 
anything one wants, and expect to provide a plausible epistemology of the consequences of these 
stipulations. A major item on the agenda of neo-logicism is to articulate plausible doctrines for 
when one can stipulate a principle, and thus provide an epistemological account ofthe ontological 
consequences of the principle. 

The neo-Iogicist project, as developed thus far, only applies to basic arithmetic and the 
natural numbers. Another item on their agenda is to extend the treatment to cover other areas 
of mathematics, such as real analysis, functional analysis, geometry, and set theory. The pro
gram involves the search for principles rich enough to characterize more powerful mathematical 
theories, and yet be plausible to assert by stipulation, as an implicit definition. 

7 Mathematics is the Science if Structure 

Structuralism is a popular philosophy of mathematics that comes in both realist and irrealist 
versions. The main theme is that the subject matter of a branch of mathematics, such as arith
metic, is the pattern common to any system of objects that shares a given form. The natural 
number structure, for example, is the pattern common to any infinite system of objects that has 
a distinguished initial object and a one-to-one successor relation or operation that satisfies the 
induction principle. The natural number structure is .exemplified by the Arabic numerals, the 
sequences of characters on a finite alphabet in lexical order, and an infinite sequence of distinct 
moments of time. From this perspective. a natural number, such as 4, is a place in the natural 
number structure, the fourth place (if the structure starts with one). The number 4 is an office, 
that can be occupied by any number of objects. In the system of Arabic numerals, the symbol 
'4' occupies the four-place. In like manner, real analysis is about the real number structure, set 
theory is about the set-theoretic-hierarchy structure, topology is about topological structures, etc. 
The slogan of structuralism is that mathematics is the science of structure. 

Since the same structure can have many different instances, a structure is a "one-over-many", 
of sorts, much like a property or universal in traditional metaphysics. For example, the property 
"horse" is a single property that applies to the many horses in the universe, and "beauty" is a 
single property that applies to the many beautiful things. There are many competing philosophical 
accounts of universals that are readily adapted to structuralism. One view is that there is no more 
to the natural number structure, for example, than the systems of objects that exemplify this 
structure. Destroy the systems and the structure goes with them. From this perspective, either 
structures do not exist at all, or the existence of structures is tied to their "instances," the systems 
that exemplify them. This ontologically parsimonious view is a nominalism toward struclures
sometimes called eliminative structuralism (see [Benacerraf 1965], [Parsons 1990]). It is a struc
turalism without structures. 
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The eliminative structuralist does not understand arithmetic statements at face value. Appar
ent names, such as numerals, are really variables. For example, "2 + 3 = 5" comes to something 
like "in any natural number system S, any object in the 2-place of S S-added to the object in the 
3-place of S is the object in the 5-place of S." On the eliminative view, neither the structures, nor 
their places, exist as objects in their own right. 

The physical universe does not seem to have enough objects to exemplify all of the structures 
of mathematics. So it would seem that the eliminative structuralist is committed to a Platonic 
universe after all, in order to give the propositions of mathematics substantial content. Another 
option is to think in terms of possible instantiations of the various systems. According to the 
modal structuralist, "2 + 3 = 5" comes to something like "necessarily, in any possible natural 
number system S, any object in the 2-place of S S-added to the object in the 3-place of S is the 
object in the 5-place of S" (see [Hellman 1989]). Since our topic here is mathematical objects, I 
won't go much further into these views. 

The competing realist (or platonic) view is that mathematical structures exist independently 
of whether they have instances in the physical world, or any other world for that matter. In a 
metaphysical sense, the structure is prior to its instances. This view is sometimes called ante rem 
structuralism (see Shapiro [1983], [1997] and Resnik [1981], [1988], [1997]). On this view, the 
subject matter of mathematics is a realm of structures. 

Benacerraf [1965] was a relatively early advocate of eliminative structuralism. He made 
much of the fact that the set-theoretic hierarchy contains many instances of the natural number 
structure. He concluded from this that numbers are not objects. The viability of this conclu
sion depends on the general philosophical issue concerning what it is to be an object. The 
ante rem structuralist argues that places within ante rem structures are themsel ves bona fide 
objects. 

Consider a mundane pattern, such as an organizational chart for a certain corporation. The 
places in the pattern are the various positions in the organization: president, vice-president 
for human resources, chairman of the policy committee, etc. The chart specifies the relation
ships between the holders of the offices, indicating who reports to whom, and the like. For the 
structuralist, the natural number structure is understood in a similar manner. It consists of an 
infinite number of positions and the relations that the occupants of these positions bear to each 
other. 

There are two ways to think about the places in a pattern, or structure. One can think ofthem as 
offices which can be held by different people or objects in different exemplifications of the pattern. 
Thus, we might say that Shirley Jones was the president in the previous administration, and she 
presently serves as vice-president for commerce. Similarly, one may say that the numeral 'IV' is 
in the four-place of the natural number structure under one exemplification, while the moment 
of time 12:00:04 EST on January 1,2005, occupies the four place in a different exemplification 
of the same structure. In this sense, which we can call places-are-offices, numbers are more like 
properties than objects. They apply to, or hold of, different objects. 

Sometimes, however, we talk about the places in a pattern or structure as objects in their 
own right. We may say that the president has the authority to veto the recommendation of the 
policy committee. In a sense, we are not talking about the person or people who occupy the 
various offices, but about the offices themselves. Call this the "places-are-objects" perspective. 
The ante rem structuralist understands the language of arithmetic to be about the places of the 
natural number structure, understood from this perspective. An apparent proper name, like "2," 
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is a genuine proper name, denoting a place in the natural number structure. The referent of the 
numeral '2' is the indicated place in the natural number structure. So the ante rem structuralist 
takes mathematical statements at face value. A sum, like "2 + 3 = 5," is a statement concerning 
operations in this structure. 

The ante rem structuralist easily accommodates Benacerraf's concerns about the many 
models of the natural number structure. The natural number structure, construed from the places
are-offices perspective, is exemplified by many systems of objects: the Roman numerals, a 
sequence of moments of time, etc. The view adds that there is a different perspective, one from 
which we can talk about the places ofthe structure as objects. 

Ante rem structuralism also accounts for the fact that mathematical structures are exempl ified 
by other mathematical objects. For example, the natural number structure is exemplified by the 
finite von Neumann ordinals, and by the following rational numbers 1, .5, .25, .125, ... Indeed, 
the natural number structure is exemplified by various systems a/natural numbers, such as the 
even numbers and the prime numbers. The ante rem structuralist explains this as follows. The 
natural numbers, as places in the natural number structure, and the rational numbers, as places 
in the rational number structure, exist as objects. Again, this is to adopt the places-are-objects 
perspective. Some of these objects can be organized into systems, and some of these systems 
exemplify various structures-including the natural number structure itself. So now we are taking 
the places-as-offices perspective. So, for example, in the system "even numbers," six occupies 
the three place (since it is the third even number), and in the system of prime numbers five 
occupies the three place (since it is the third prime number). In the system of rationals described 
just above, .25 occupies the three-place. 

So the ante rem structuralist satisfies the first desideratum of the Benacerraf dilemma. The 
languages of mathematics are understood and treated in the same way as the languages of ordinary 
and scientific discourse. The proper names of mathematics refer to places in structures, and the 
bound variables range over places in structures. Ante rem structuralists have developed several 
strategies for resolving the epistemic problems with mathematics, the second horn of the Be
nacerraf dilemma. The question becomes: how do we know about structures? The psychological 
mechanism of pattern recognition may be invoked for at least small, finite structures. By encoun
tering instances of a given pattern, we obtain knowledge of the pattern itself ([Shapiro 1997], 
Chapter 4). Resnik [1997] proposes a strategy much like that of Quine . The success of patterns in 
organizing our experience and in the overall scientific enterprise-the web of belief-justifies us 
in postulating the instances of the patterns, or at least the places in patterns. More sophisticated 
structures are apprehended via implicit definition. One gives axioms that characterize the places 
and relationships of a given structure. If the axiomatization is coherent, then at least one struc
ture satisfies it. We learn about these structure(s) by deducing the consequences of the axioms. 
The neo-logicist strategy of abstraction-principles can also be adapted to structuralist aims. The 
success ofHume's principle, for example, suggests that the natural number structure is coherent, 
and thus that the structure exists (again, see [Shapiro 1997], Chapter 4]). 

As noted, the above survey is not exhaustive of the views on the existence and nature of 
mathematical objects. The bulk of the space here was devoted to positions that endorse the 
existence of such objects, and this is perhaps not typical in the philosophy of mathematics. 
I do hope that the reader has been induced to delve further into the rich literature on this 
topic. 
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From the Editors 

"Platonism" as a philosophy oj mathematics reJers back to Plato s dialogues on the Forms, which 
have been represented as existing in some eternal, unchanging, non-physical realm. Platonism 
in mathematics locates mathematical objects there. Many mathematicians believe that platonism 
as a philosophy oj mathematics has been discredited, in part due to the contradictions oj naive 
set theory, in part because oj the question oj how we physical beings could contact such a realm. 
However, in Jact platonism remains the deJault philosophy oJmathematics among philosophers, 
one that Jew are willing to deJend in the strong Jorm attributed to Godel, but which will not be 
replaced until a satisJactory alternative has been Jound. 

This chapter summarizes over Jorty years oj such discussion, between those deJending some 
version oj platonism (called platonists, or realists) and those opposing platonism, usually called 
nominalists. Because it is summarizing discussion that has developed in several hundred articles 
and dozens oJbooks, this chapter is not one to read casually. However, this chapter is very clearly 
and comprehensively structured, so that those who take the effort it to read it will be rewarded 
with a thorough survey oj the many different schools oj thought that have developed among 
philosophers during this period. Thus this chapter provides an excellent introduction Jor anyone 
who would like to be able to start reading original work by philosophers oj mathematics. 

Mark Balaguer is a Professor oj Philosophy at California State University, Los Angeles 
(www.calstatela.edul[acultylmbalagul}.Hisinterestsaremetaphysics.philosophy oJmathemat
ics, philosophy oJlanguage, and metaethics. He has published numerous articles in the philosophy 
oj mathematics, including ':4 Theory oj Mathematical Correctness and Mathematical Truth," Pa
cific Philosophical Quarterly (2001), ':4 Fictionalist Account oj the Indispensable Applications 

1 Many of the ideas in this essay, and in some cases the wording of the ideas, come from my [1998a] and my [2004]. 
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of Mathematics," Philosophical Studies (J 996), "Towards a Nominalization of Quantum Mechan
ics," Mind (1996), ':.4 Platonist Epistemology," Synthese (1995), and has an article soon to be 
published, "Realism and Anti-Realism in Mathematics," in a forthcoming book, Handbook of 
the Philosophy of Mathematics, edited by Andrew Irvine, He has published one book, Platonism 
and Anti-Platonism in Mathematics (1998), which does in a much more extensive way what this 
chapter does: it explains the various platonist (realist) and anti-platonist (nominalist) approaches 
to the philosophy of mathematics, and attempts to show that there is only one plausible version 
of each, and that these two versions are effictively indistinguishable, 

-----ig"'O 

1 Introduction 

Philosophers of mathematics are interested in the question of what our mathematical sentences 
and theories are about, These sentences and theories seem to be making straightforward claims 
about certain objects, Consider, for instance, the sentence '3 is prime,' This sentence seems to 
be a simple subject-predicate sentence of the form 'The object a has the property F' -like, for 
instance, the sentence 'The moon is round.' This latter sentence seems to make a straightforward 
claim about the moon, Likewise, the sentence '3 is prime' seems to make a straightforward 
claim about the number 3. But this is where philosophers get puzzled. For it's not clear what the 
number 3 is supposed to be. What kind of thing is a number? Some philosophers (anti-realists, 
or nominalists) have responded here with disbelief: according to them, there are simply no such 
things as numbers. Others (the realists) think that there are such things as numbers (as well 
as other mathematical objects, such as sets). But among the realists, there are several different 
views of what kind of thing a number is. Some people have thought that numbers are mental 
objects (something like ideas in our heads). Others have claimed that numbers exist outside of 
our heads, as features of the physical world. The historically most popular view, however, called 
platonism, is the view that numbers are abstract objects. An abstract object is an object that exists 
outside of space and time. These objects (ifthere really are such things) are wholly non-physical, 
non-mental, and causally inert. In other words, they do not enter into causal relations with other 
objects. (The fact that abstract objects are non-causal in this way follows from the fact that they're 

nonspatiotemporal. Since they're not extended in space, and since they aren't made of physical 
stuff, they cannot enter into cause-and-effect relationships. They cannot cause other objects to 
move in the way that, say, a cue ball can.) So according to platonists, 3 is a real and objective 
thing that, like the moon, exists independently of us and our thinking (that is, it's not just an idea 
in our heads). But 3 is also different from the moon, according to platonists, because it's not a 
physical thing. That is, numbers exist (really and objectively and independently of us and our 
thoughts), but they do not exist in space and time. 

Given these remarks, it might seem that a "philosophy of mathematics" is essentially an 
ontological theory. (An ontological theory is a theory about what sorts of things really exist. 
Thus, for instance, the claim that there are unicorns is a false ontological theory, and the claim 
that there are tigers is a true ontological theory.) Now, there is often (though not always) an 
ontological component to a philosophy of mathematics; but if you want to understand what 
philosophers of mathematics are really up to, it is important to realize that the first thing they 
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want to do (and sometimes the only thing) is to construct a semantic theory. A semantic theory 
is a presumably empirical theory about what certain expressions mean (or refer to) in ordinary 
discourse. So, for instance, the claim that the term 'George W. Bush' denotes (in English) the 
Empire State Building is a false semantic theory, and the claim that 'George W. Bush' denotes 
(in English) the forty-third president of the United States is a true semantic theory. A philosophy 
of mathematics involves a semantic theory because it tells us how to interpret the sentences 
of ordinary mathematical discourse. It tells us what sorts of objects, if any, terms like '3' are 
supposed to refer to. For instance, platonism tells us that numerals like '3' are supposed to refer 
to abstract objects. Another theory (psychologism) tells us that numerals are supposed to refer to 
mental objects. 

Some philosophical views about mathematics also have ontological components. For in
stance, platonism tells us not just that numerals like '3' are supposed to refer to abstract objects, 
but that there really do exist such things. But other philosophical views don't have any ontological 
components. For instance, some views hold that numerals aren't supposed to refer to objects at 
all, and so, on views like this, ontological questions (about what kinds of objects really exist) 
are simply irrelevant to the philosophy of mathematics. And finally, there are other philosophical 
views that contain entirely uncontroversial ontological components. For instance, the psycholo
gistic view that says that numerals like '3' refer to ideas in our heads does contain an ontological 
thesis (namely, that we really do have ideas of numbers in our heads). But this ontological thesis 
is not very controversial: of course we have such ideas. In contrast to this, however, any theory 
that could accurately be called a philosophy of mathematics is going to contain a (controversial) 
semantic component. 

Given this, the relationship between a mathematician and a philosopher of mathematics is 
analogous to the relationship between a native speaker of French and a certain sort of linguist-in 
particular, a grammarian of French whose native tongue is English but who has learned a good 
deal of French in order to construct a grammar for that language. There is an obvious sense in 
which the native speaker of French knows her language better than the linguist does. But the 
linguist has been trained to construct syntactic theories, and most native speakers of French have 
not. Thus, while the linguist has to respect the linguistic intuitions of native speakers, he cannot 
very well ask them what the right theory is. Likewise, while it is obvious that mathematicians 
know mathematics (and the language of mathematics) better than philosophers do, most of them 
have not been trained to construct semantic theories in the way that philosophers have. So while 
philosophers of mathematics have to respect the intuitions of mathematicians, they cannot very 
well ask them what the right theory is. 

In this essay, I will provide an overview of the most important views and arguments in the 
philosophy of mathematics, and at the same time, I will provide some (brief and incomplete) 
arguments for what I think is the right view. In section 2, I will provide a more precise statement 
of the platonistic view of mathematics, and then I will formulate the central argument in favor of 
this view. In the process of running through this argument and the various possible responses to it, 
I will also provide a description and critique of the various alternatives to platonism. (These two 
tasks naturally go together, because the main argument for platonism is centrally concerned with 
showing that none of the alternatives to platonism is plausible. And this should not be surprising. 
For while platonism seems to provide a very satisfying account of our mathematical theories, it can 
be pretty hard to swallow from an ontological point of view. After all, the platonist's ontological 
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thesis-that there are wholly non-physical and non-mental objects that exist outside of space and 
time-seems rather weird and mysterious. One might simply find it hard to believe that there 
really exist such things as abstract objects. But the problem is that it's very hard to find a plausible 
alternative to platonism. And this is the basis of the central argument in favor of platonism. The 
idea is to try to show that none of the alternatives is capable of providing a satisfactory account 
of mathematical theory and mathematical practice.) After running through the central argument 
for platonism in section 2, 1 will move on in section 3 to a discussion of what is widely thought 
to be the best argument against platonism. My own view is that in the end, neither of these 
two arguments succeeds, and in discussing these arguments, 1 will explain why 1 think they fail. 
But since this essay is primarily a survey piece, my remarks will have to be rather sketchy and 
incomplete. (I will, however, refer the reader to other works that fill in the details.) Finally, in 
section 4, 1 will provide a few concluding remarks about what 1 think we ought to say about the 
question of whether platonism is true and, more generally, about the philosophy of mathematics. 

2 The Fre!Jean Ar!JumentJor Mathematica( P(atonism 

(and a Taxonomy of the Alternatives to Platonism) 

2.1 The Argument 

Mathematical platonism, formally defined, is the view that (a) there exist abstract mathematical 
objects-objects that are non-spatiotemporal and wholly non-physical and non-mental-and (b) 
our mathematical theories are true descriptions of such objects. This view has been endorsed by 
a number of different people, including Plato, Frege, Godel, and in some of his writings, Quine.' 

The central argument for platonism is due mainly to Frege ([1884] and [1893-1903]), 
although 1 will present it somewhat differently than he did. The argument can be put like this: 

(I) Our mathematical theories are extremely useful in empirical science-indeed, they seem 
to be indispensable to our empirical theories-and the only way to account for this is to 
admit that our mathematical theories are true. Therefore, 

(2) The sentences of our mathematical theories-sentences like '3 is prime' -are true. More
over, it seems that 

(3) Sentences like '3 is prime' should be read at face value. (Philosophers would put this by 
saying that the logical form of'3 is prime' is 'a is F,' where 'a' is a constant and 'F' is 
a predicate. Thus, the claim here is that '3 is prime' has the same logical form as, e.g., 
'Mars is red.' Both sentences just make straightforward claims about the nature of certain 
objects. The one makes a claim about the nature of Mars, and the other makes a claim 
about the nature of the number 3.) But 

(4) If we allow that sentences like '3 is prime' are true, and if moreover we allow that they 
should be read at face value, then we are committed to believing in the existence of the 
objects that they're about. For instance, if we read '3 is prime' as making a straightforward 
claim about the nature of the number 3, and if we allow that this sentence is literally true, 
then we are committed to believing in the existence of the number 3. But 

2 See, e.g., Plato's Meno and Phaedo; IFrege 1893-1903]; IGMeI1964]; and [Quine 1948], [Quine 1951]. 
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(5) If there are such things as mathematical objects (i.e., things that our mathematical theories 
are about), then they are abstract objects. For instance, if there is such a thing as the number 
3, then it is an abstract object, not a physical or mental object. Therefore, 

(6) There are such things as abstract mathematical objects, and our mathematical theories 
provide true descriptions of these things. In other words, mathematical platonism is true. 

Arguments similar to this are sometimes called the Quine-Putnam indispensability argument.' 
However, just about all of this argument, including the part in (I) about the applicability of 
mathematics, has roots in the work of Frege. In any event, when I talk in this essay about the 
"Quine-Putnam argument," I will have in mind only the subargument contained in (1)-(2). 

There are a number of ways that anti-platonists can respond to the above argument, and 
different kinds of anti-platonists will respond in different ways. The most important divide in the 
anti-platonist camp is between the realists on the one hand and the anti-realists, or the nominalists, 
on the other. Nominalists reject the existence of mathematical objects like numbers and sets (or 
as philosophers would say, nominalists deny that mathematics has an ontology). So they deny 
that our mathematical theories provide true descriptions of some part of the world. Realistic anti
platonists, on the other hand, maintain that our mathematical theories do provide true descriptions 
of objects that exist in the world, but they deny that these objects are abstract. Thus, in connection 
with the above argument, realistic anti-platonists reject premise (5), and nominalists reject either 
(4), (3), or(2), depending on the kind of nominalism they endorse. In particular, neo-Meinongians 
reject (4); paraphrase nominalists reject (3); and fictionalists reject (2), as well as the argument 
for (2) contained in (I). Thus, the argument in (I}-(6) is set up so that as I run through the 
different responses to the argument, from the rejection of (5) back to the rejection of (2), we 
will get something of a taxonomy of the various kinds of anti-platonism. In what follows, I 
will run through these anti-platonist responses to the Fregean argument, indicating what (if 
anything) I think is wrong with the various views and responses. In particular, I will discuss 
realistic versions of anti-platonism in section 2.2 and nominalistic versions of anti-platonism in 
section 2.3. 

2.2 Realistic Anti-P{atonism 

Realistic anti-platonism is the view that (a) our mathematical theories provide true descriptions 
of objects that exist in the world, but (b) these objects are not abstract. Now, if mathematical 
objects are not abstract-if, that is, they are concrete-then it seems that they must be either 
mental objects of some kind or (non-mental) physical objects of some kind. (One might think that 
they could also be social objects, or perhaps social constructions. It seems, though, that social 
objects would ultimately have to reduce to either mental objects or abstract objects4) Thus, there 

3 See, e.g .• [Quine 1948], [Quine 1951]. [Putnam 1971]. and [Colyvan 2001]. 

4 This does not mean that we should think of social construction views of mathematics as either psychologistic or 
platonistic. It's easy to imagine versions of this view which are such that (a) the social objects in question could only be 
abstract objects, but (b) the view clearly rejects the existence of abstract objects, and so (c) in the end, the view is best 
thought of as a sort of anti-realism, perhaps a kind of fictionalism. I think this is probably the best way to understand 
Hersh's [1997] view, although I doubt that he would want to put it this way. 
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are two kinds of realistic anti-platonism: physicalism and psychologism. I will now discuss these 
in turn. 

2.2.1 Physicalism 

Advocates of physicalism maintain that our mathematical theories are about (non-mental) things 
that exist in the physical world. Thus, they agree with platonists that our mathematical theories 
provide true descriptions of things that exist independently of us and our thinking, but they reject 
the platonist idea that mathematical objects are abstract. There are a few different ways that 
one might try to develop a physicalist view of mathematics. The most famous strategy here is 
due to John Stuart Mill ([1843], book II, chapters 5 and 6). On his view, mathematics is about 
ordinary physical objects and it is just a very general empirical science. For instance, Mill takes 
arithmetical sentences like '2 + 3 = 5' to make very general claims about piles of objects. Thus, 
on this view, '2 + 3 = 5' does not tell us something about specific entities (numbers). Rather, it 
tells us that whenever we push a pile of two objects together with a pile of three objects, we get 
a pile of five objects--or something along these lines. 

One problem with this view is that in order to account for contemporary mathematics in 
this general way, a contemporary Millian would have to take set theory to be about physical 
piles as well. This, however, is untenable. One argument here is that sets could not be piles 
of physical stuff, because corresponding to every physical pile--or, indeed, every individual 
physical object-there are infinitely many sets. Corresponding to a ball, for instance, is the set 
containing the ball, the set containing its molecules, the set containing that set, and so on. Clearly, 
these sets are not purely physical objects, because (a) they are all distinct from one another, 
and (b) they all share the same physical base (i.e., they're all made of the same matter and 
have the same spatiotemporallocation). Thus, there must be something non-physical about these 
sets, over and above the physical base that they all share. So sets cannot be purely physical 
objects. 

A second problem with physicalism is that it seems to imply that mathematics is an empir
ical science, contingent on physical facts and susceptible to empirical falsification. This seems 
to fly in the face of the facts about actual mathematical methodology. Of course, there's a 
sense in which mathematical thinking is sometimes "empirical": mathematicians often proceed 
by thinking of examples and counterexamples. But Millian physicalism implies that all mathe
matical claims-e.g., '2 + 3 = 5 '---could in principle be falsified by discoveries aboutphysica/ 
objects. This seems not just implausible (because most mathematical assertions cannot be empir
ically falsified by discoveries about the nature of the physical world), but also out of step with 
mathematical practice. It is just not plausible to interpret ordinary utterances of sentences like 
'2 + 3 = 5' as being about the physical world in a way that makes them contingent upon physical 
facts. 

A third problem is that physicalism seems incapable of accounting for the truth ofmathemat
ical sentences that require the existence of infinitely many objects. Consider, e.g., the sentence, 
'There are infinitely many transfinite cardinals.' It is hard to believe that this is a true claim about 
purely physical objects. (For a more thorough argument against the Millian view of mathematics, 
see my [1998a], chapter 5, section 5.) 

Philip Kitcher [1984] has developed a view that might seem like a contemporary version of 
Millian physicalism. On Kitcher's view, our mathematical theories should be interpreted as (or 
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paraphrased into) sentences about the activities of an ideal agent (a creature who pushes blocks 
around, adding them to piles of blocks, taking them away from piles, and so on).5 But according to 
Kitcher, there aren't really any such things as ideal agents, and so, on his view, our mathematical 
theories are vacuous-that is, in the end, they are not about anything. So Kitcher isn't really a 
physicalist at all; he is, rather, an anti-realist. In particular, he is what I will call a paraphrase 
nominalist. Thus, Kitcher's view falls prey to the argument I give below (section 2.3.2) against 
paraphrase nominalism.6 

Another way to develop physicalism would be to claim that mathematical objects are prop
erties of some kind and to adopt a physicalistic view of properties. For example, one might 
take natural numbers to be properties of piles of physical objects. (This sort of view has been 
defended by Armstrong [1978].) There are numerous problems with views like this. To name 
just one, they seem to encounter problems with branches of mathematics that deal with things 
not found in the physical world. For instance, talk of certain large transfinite cardinals is not 
plausibly interpreted as being about properties that are found in the physical world. One might try 
to interpret such talk as being about convoluted properties that are found in the physical world. 
But any such interpretation would involve a significant departure from actual mathematical prac
tice, and it would be susceptible to the argument given below (section 2.3.2) against paraphrase 
nominalism. 

2.2.2 Psycho(ogism 

This is the view that there do exist mathematical objects like numbers and sets but that they do 
not exist independently of us. Instead, they are mental objects; in particular, the claim is usually 
that they are something like ideas in our heads. Thus, for instance, on this view, '3 is prime' is 
about a certain mental object, namely, the idea of 3. Today, most philosophers of mathematics 
think that psychologism is completely untenable, but the view was popular in the late nineteenth 
and early twentieth centuries (see, e.g., the early Husser! [1891]). 

(It is often thought that intuitionism is a form of psychologism, but this is a mistake. 
What's true is that many intuitionists--most notably, Brouwer ([1912] and [1948]), and Heyting 
[1956]-have also endorsed psychologism. But intuitionism is perfectly consistent with platon
ism and nominalism, and psychologism is consistent with a rejection of intuitionism. See my 
[forthcoming] for more on the difference between psycho log ism and intuitionism.) 

We can obtain a better understanding of psycho log ism, and of why philosophers find the view 
implausible, by distinguishing two different theses that are inherent in this view. As we saw above 
(section I), we can think of a philosophy of mathematics as a semantic theory (an empirical theory 
about what certain words mean) and (usually) an ontological theory (a theory about what sorts of 
things really exist). In particular, psycho log ism is the conjunction of a certain ontological thesis 

5 The reason we can't take these sentences to be about actual agents is that most of the operations in question have never 
been performed. For instance, it seems likely that no one has ever pushed a pile of 17,312 blocks together with a pile of 
8,643,912 blocks. 

6 One might argue that Kitcher's view is actually worse off than other paraphrase nominalist views, because it fails 
to deliver what is ordinarily taken to be the benefit of paraphrasing, namely, salvaging the truth of mathematics while 
claiming that our mathematical theories aren't about anything. For while some mathematical claims come out vacuously 
true on Kitcher's view, some of them come out untrue. Thus, his view is actually an odd sort of cross between paraphrase 
nominalism and fictionalism. 
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(namely, thatthere do exist such things as number-ideas, and set-ideas, and so on, in human heads) 
and a certain semantic thesis (namely, that sentences like '3 is prime' and '8,937,461.1174 > 

67,491.398,' in ordinary mathematical discourse, are best interpreted as being about these ideas 
in our heads). Thus, taking the two claims together, psychologism is the claim that mathematical 
sentences like the above are true claims about actual objects that literally exist in human heads. 
Now, psychologism's ontological thesis-that we have ideas of mathematical objects in our 
heads-is obviously true: we do have ideas of numbers and so on. So whatever philosophy of 
mathematics you endorse, you should endorse the psychologist's ontological thesis. Thus, it is 
the semantic thesis of psychologism that really sets that view apart from other views. And it 
is this semantic thesis that other philosophers (i.e., platonists and physicalists and anti-realists) 
deny. That is, they deny that terms like '67,491.398' should be interpreted as denoting ideas in 
our heads. 

There are a number of well-known arguments against the psychologist's semantic thesis. 
Many of these were articulated by Frege ([ 1884, introduction and section 27], [1893-1903, 
introduction], [1894], and [1919]). 1 will present three of these arguments here (although 1 should 
note that while the arguments 1 provide are all Fregean in spirit, my formulations are a bit different 
from Frege's). The first argument is that psychologism makes mathematical truths contingent 
upon psychological truths. So, for instance, if we all died, '4 is greater than 2' would suddenly 
become untrue. But this seems wrong: it seems that mathematics is true independently of us. 
Whether 4 is greater than 2 has nothing at all to do with how many humans are alive. Second, 
psycho log ism seems incompatible with the fact that there are infinitely many numbers, since 
clearly, there are not infinitely many number-ideas in human brains. (This is not to say that 
humans can't conceive of an infinite set. The point is, rather, that it's not the case that there is 
an infinite set of actual objects (i.e., distinct number-ideas) actually residing in human heads. 
Standard arithmetical theories like Peano Arithmetic (PA) imply that there is such a thing as 
the number I, and there is such a thing as the number 2, and 2 is not identical to I, and so on. 
Thus, psychologism together with PA implies that there actually exist infinitely many distinct 
number-ideas in human heads. Thus, either psychologism or PA is false. Third, psychologism 
suggests that the proper methodology for mathematics is that of empirical psychology. That is, 
if psychologism were true, the proper way to discover whether, say, there is a prime number 
between 10,000,000 and 10,000,020, would be to do an empirical study of humans and ascertain 
whether there is, in fact, an idea of such a number in one of our heads. But, of course, this is not 
the proper methodology for mathematics; the proper methodology involves mathematical proof, 
not empirical psychology. As Frege says [Frege 1884, section 27], "Weird and wonderful ... are 
the results of taking seriously the suggestion that number is an idea." 

Given the implausibility of the semantic thesis inherent in psychologism, one might ask 
whether there's any way to endorse a psychologistic view of mathematics without endorsing the 
strong semantic thesis that leads to such obvious problems. The answer is no. One might try to 
do this by taking psychologism's ontological thesis (i.e., the thesis that humans do have ideas 
of numbers and sets and so on) and strengthening it in an effort to generate a thesis that isn't so 
trivial and that would separate psycho log ism from platonism and anti-realism. But I think it can 
be argued that this is hopeless. To appreciate this point, consider the following thesis: 

(COR) Mathematical correctness is ultimately settled by the ideas that we have in our 
heads. More specifically, a mathematical sentence is correct just in case it is "built 
into," or follows from, the notions, conceptions, intuitions, and so on that we have in 
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connection with the given branch of mathematics (or if we have no substantive pre
theoretic conception of the objects being studied, then correctness is detennined by the 
axioms that we happen to be working with). Thus, for instance, an arithmetical sentence 
is correct ifand only ifit is built into our full conception of the natural numbers (FCNN), 
where FCNN is just the sum total of all of our "natural-number thoughts" and everything 
that follows from these thoughts. And a set-theoretic sentence is correct if and only if it 
is built into our full conception of the universe of sets, or our notion of set. And so on. 7 
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This might seem, at first, like a pretty psychologistic thesis. But I have argued elsewhere [Balaguer 
200 I] that platonists and anti-realists can-indeed should--endorse (COR). I will say a few words 
about this below: we'll see in section 3.3.4 that the best versions of platonism imply (COR), and 
we'll see in section 2.3.3 that the best versions of anti-realism imply (COR). So (COR) is not a 
particularly psychologistic thesis. Likewise, it is not a particularly "social constructivist" thesis. 
It is perfectly consistent with platonism and anti-realism to claim that social and psychological 
facts are crucially important to the detennination of mathematical truth. So, again, what separates 
psychologism from other more plausible views (e.g., platonism and anti-realism) is not anything 
like (COR); what sets psychologism apart is the semantic thesis that our mathematical sentences 
are about ideas in our heads. But as we've seen, there are strong arguments against this thesis. 
And this is why philosophers of mathematics roundly reject psychologism. 

2.3 Anti-Reallstic Anti-P{atonism (aka Nominallsm) 

If arguments like the ones discussed above are correct, then sentences like '3 is prime' are not 
about physical or mental objects. So it would seem that premise (5) in the Fregean argument 
for platonism is true. We tum now to the nominalistic responses to the Fregean argument. 
For platonists, this is the hard part. There is a good deal of agreement among philosophers of 
mathematics that psychologism and physicalism are untenable. Hence, most philosophers of 
mathematics are either platonists or nominalists. But there is very little agreement as to whether 
platonism or nominalism is correct. 

Mathematical nominalism is the view that there are no such things as mathematical objects 
like numbers and sets. So on this view, our mathematical theories do not provide true descriptions 
of some part of the world. Thus, while nominalists would admit that there are such things as 
piles of three stones, and thoughts of the number 3 in people's heads, they would deny that the 
'3' of ordinary mathematical discourse can plausibly be interpreted as denoting any of these 
things. Nominalists think that when we get the correct interpretation of the tenn '3,' as it's 
used in ordinary mathematical discourse, it turns out that there is simply no such thing as the 
number 3. There are at least three different major subcategories within the nominalist camp. The 
first, which I will call neo-Meinongianism, involves a rejection of premise (4) in the Fregean 
argument. The second, which I will call paraphrase nominalism, involves a rejection of premise 
(3). And the third,fictionalism, involves a rejection of premise (2) and hence also a rejection of 
the Quine-Putnam argument for (2), i.e., the argument contained in (1). I will now discuss these 
views in tum. 

7 I assume here, and in what follows, that our various full conceptions are consistent. Anyone who wanted to endorse 
a view like (COR) would obviously have to tell a different story in connection with cases involving inconsistent full 
conceptions. I won't go into this here, but see my [2001] for more on this. 
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2.3.1 Neo-Meil1ol1!}ial1ism 

Let traditional Meinongianism be the view that 

(a) every singular term---e.g., 'Clinton,' '3,' and 'Sherlock Holmes'--denotes an object that 
has some sort of being (that subsists, or that is, in some sense); but 

(b) only some of these objects have full-blown existence; and 
(c) mathematical sentences like '3 is prime' express truths about objects that don't exist (but 

that still have some sort of being). 

This view has been almost universally rejected. The standard argument against it (see, e.g., 
[Quine 1948], p. 3) is that it does not provide a view that is clearly distinct from platonism and 
merely creates the illusion ofa different view by altering the meaning of the term 'exist.' On the 
standard meaning of 'exist,' any object that has any being at all exists. So according to standard 
usage, traditional Meinongianism implies that numbers exist. But this view clearly doesn't take 
such things to exist in spacetime. Therefore, traditional Meinongianism implies that numbers are 
abstract objects-which, of course, is just what platonism says. 

There is a second version of Meinongianism, however, that is not refuted by the above 
argument. This view, which we can call neo-Meinongianism, holds that 

(a) '3 is prime' should be given a face-value interpretation according to which it makes a 
straightforward claim about the nature of the number 3 (in particular, it says that this 
object is prime); and 

(b) there is no such thing as the number 3 (i.e., it has no sort of being whatsoever); and yet 
(c) '3 is prime' is literally true. 

Thus, the idea here is that we can make true claims about things that don't exist at all. We 
can say (truly) of the number 3 that it is prime, even though there is no such thing as 3. (It is 
standardly thought that Meinong [1904] held the traditional Meinongian view described above, 
but one might argue that he actually endorsed what I am calling neo-Meinongianism. In any 
event, neo-Meinongianism has been endorsed by Richard Routley [1 980]---or Richard Sylvan, 
as he later became known-and by Priest [2003], Azzouni ([1994], [2004]), and Bueno [2005]. 

One problem with neo-Meinongianism is that just as traditional Meinongians seem to alter 
the meaning of 'exist,' so neo-Meinongians seem to alter the meaning of 'true.' It seems that, 
on the standard meaning of 'true,' if there is no such thing as the object a, then sentences of 
the form 'a is F' cannot be literally true. In other words, if you believe that 'a is F' is literally 
true, then you also have to believe in the existence of the object a. Given this, it seems that 
neo-Meinongianism is untenable. Ifwe want to maintain that mathematical sentences like '3 is 
prime' are literally true (and that they are of the form 'a is F'), then we have to admit that 
there are mathematical objects like the number 3. (See also David Lewis [1990] for an argument 
against Routley's view.) 

Another view that might be mentioned here-a view that's related to neo-Meinongianism 
but also importantly different-is conventionalism (see, e.g., [Ayer 1946, chapter 4], [Hempel 
1945], [Camap 1934], and [Camap 1956]). This view holds that sentences like '3 is prime' and 
'There are infinitely many prime numbers' are analytic. That is, they are true in virtue of meaning, 
or linguistic conventions-along the lines of, say, 'All bachelors are unmarried' or 'All warlocks 
are warlocks.' But again, if sentences like '3 is prime' imply that mathematical objects like 3 
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exist, then it's hard to see how these sentences could be true by convention, or true in virtue of 
meaning. It's hard to see how the existence of infinitely many numbers could follow from our 
accepting a set oflinguistic conventions-unless we're talking about some sort of psycho log ism, 
a view that we've already dispensed with. 

2.3.2 Partplirase Nominalism 

Paraphrase nominalists reject premise (3) of the Fregean argument. That is, they claim that 
we should not read sentences like '3 is prime' at face value, i.e., as being of the form 'a is 
F.' Instead, they claim, sentences like this should be read as having different logical forms. In 
particular, paraphrase nominalists think that these sentences have logical forms that do not imply 
the existence of any objects. Thus, to back this claim up, paraphrase nominalists have to specify 
what they think sentences like '3 is prime' are saying. Or in other words, they have to give 
paraphrases of these sentences that reveal their real logical forms. There are several different 
strategies in the literature for paraphrasing mathematics. One view here, known as if-thenism, 
holds that '3 is prime' can be paraphrased by 'If there were numbers, then 3 would be prime.'8 
For an early view of this general kind, see the early Hilbert ([ 1899] and his letters to Frege in 
[Frege 1980]); for later versions, see [Putnam 1967a], [Putnam 1967b] and [Hellman 1989]. For 
other paraphrase views, see, e.g., [Curry 1951] and [Chihara 1990]. 

The main problem with paraphrase nominalist views is that they're committed to implausible 
empirical hypotheses about the intentions of mathematicians and ordinary folk. For instance, if
thenism is committed to the thesis that when mathematicians and ordinary folk utter sentences 
like' 3 is prime,' what they really mean to say is that if there were numbers, then 3 would be 
prime. But there is no evidence for the thesis that this is what is meant, and what's more, it seems 
obviously false. The same point can be made in connection with all of the other versions of 
paraphrase nominalism. In short, it just seems wrongheaded to claim that when mathematicians 
and ordinary folk utter sentences like '3 is prime,' they are speaking non-literally and really 
mean to be saying something other than what they seem to be saying, e.g., that 3 is prime. 
Now, one might question whether paraphrase nominalists are really committed to the empirical 
hypothesis that their nominalist paraphrases capture what mathematicians really mean to be 
saying when they utter sentences like '3 is prime.' But it's easy to see that they are so committed. 
For if they admit that ordinary mathematical utterances should be interpreted at face-value, 
then their view will collapse into fictionalism (see 2.3.3). They will be committed to saying 
that when we interpret our mathematical theories as saying what they actually mean in the 
mouths of mathematicians, they imply the existence of abstract objects. But since paraphrase 
nominalists deny that there are any such things as abstract objects, they will have to say that 
our mathematical theories, interpreted literally, are not true. And this is just what fictional ism 
says. 

8 One might point out here that '3 is prime' can be paraphrased by the sentence 'Aside from 3 and 1. there does not 
exist a pair of natural numbers, n and rn, such that n x m = 3.' But this sort of mathematical paraphrase is not helpful 
to nominalists, because many such paraphrases will still imply the existence of mathematical objects. For instance, if 
we switch the example to '4 is composite,' then the relevant mathematical paraphrase would be something like this: 'In 
addition to 4 and I, there exists a pair of natural numbers, n and m, such that n x m = 4.' But this sentence obviously 
implies the existence of mathematical objects. So this kind of paraphrase won't work. What nominalists need is a general 
method of paraphrasing that always delivers sentences that don't imply the existence of any mathematical objects. 
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2.3.3 Matliematica( Fictionafism 

Mathematical fictional ism (or simply fictional ism, as I'll call it) is the view that 

(a) our mathematical sentences and theories should be interpreted at face value; (e.g., '3 
is prime' should be interpreted as making---or purporting to make---a straightforward 
claim about the number 3); but 

(b) there are no such things as abstract objects such as the number 3; and so 
(c) mathematical sentences like '3 is prime' are not true. 

Or, equivalently, we can say that fictionalists endorse the semantic theory ofplatonists but reject 
the ontological theory of platonists. Thus, according to fictionalists, our mathematical theories 
are not literally true for the same reason that, say, Alice in Wonderland is not literally true. Just as 
there are no such things as talking rabbits and hookah-smoking caterpillars and so on, so too there 
are no such things as numbers and sets and so on. Fictionalists agree with platonists that premises 
(3 )-( 5) in the Fregean argument are correct. They admit that if our mathematical theories are true, 
then there are abstract objects and platonism is correct. But fictionalists reject (2), and they reject 
the Quine-Putnam argument for (2)-i.e., the argument contained in (1)9 Fictionalism was first 
introduced by Hartry Field ([1980], [1989]) (see below). He saw the view as being wedded to 
the thesis that empirical science can be nominalized. That is, on Field's view, scientific theories 
can be restated so that they don't contain any reference to, or quantification over, mathematical 
objects. In my [l996a] and [1998a], I defend a version of fictionalism that is divorced from 
the nominalization program, and similar versions of fictionalism have been endorsed by Rosen 
[2001] and Yablo [2002]. 

The most important objection to fictionalism is the Quine-Putnam indispensability objection. 
The argument here can be put like this: 

Our mathematical theories are extremely useful in empirical science; indeed, they seem 
to be indispensable to our empirical theories. Therefore, assuming that we want to claim 
that our empirical theories provide accurate pictures of the world, it seems that we also 
have to maintain that our mathematical theories provide accurate descriptions of the 
world. Therefore, it seems that fictionalism is false. 

Before saying how fictionalists can respond to this argument, it should be noted that fictionalism 
is not the only philosophy of mathematics that encounters a problem here. Every philosophy of 
mathematics has to account for the fact that mathematics is applicable (and perhaps indispensable) 
to empirical science. And for most of the standard views in the literature, there is some initial 
reason to think that they might not be able to provide the required explanation. The only exception 
here is physicalism (a view that, as we've seen, is untenable for other reasons). Indeed, I think it 
can be argued that the problem of applications is essentially equivalent for all non-physicalistic 

9 In addition to fictionalism, there is a second (much more radical) way to claim that our mathematical theories are 
not true and, hence, that (2) is false. One could endorse a non-cognitivist view of mathematics, claiming that sentences 
like '3 is prime' don't really say anything at all and, hence, aren't the sorts of things that have truth values. One such 
view is game formalism, which holds that mathematics is a game of symbol manipulation. According to this view, '3 
is prime' is one of the "legal results" of the game of arithmetic. This view was defended by Heine and Thomae and 
attacked vigorously by Frege (see Frege [1893-1903J, sections 88-131). One might also interpret Wiugenstein's [1956] 
philosophy of mathematics as non-cognitivist, although this is controversial. 
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views of mathematics. And I also think it can be argued that either all of these views can solve the 
problem or else none of them can. In what follows, I will discuss the question of how fictionalists 
can respond to this worry; but the view of applications and indispensability that I favor can be 
conjoined with other views as weB-most notably, with platonism and other (non-fictionalistic) 
versions of nominalism. 

Fictionalists have developed two different responses to the Quine-Putnam argument. The 
first was developed by Field [1980]. He argues that 

(a) mathematics is in fact not indispensable to empirical science; and 
(b) the fact that it is applicable to empirical science in a dispensable way can be explained 

without abandoning fictionalism. 

Claim (b) is fairly plausible and has not been subjected to much criticism,1O but claim (a) is 
highly controversiaL In order to establish thesis (a), we would have to argue that all of our 
empirical theories can be nominalized, i.e., reformulated in a way that avoids reference to, and 
existential quantification over, abstract objects. Field [1980] tried to motivate this by carrying 
out the nominalization for one empirical theory, namely, Newtonian Gravitation Theory. And 
in my [l996b] and [1998a], I show how to extend Field's strategy to quantum mechanics. 
However, philosophers have raised several objections to Field's nominalization program-see, 
e.g., [Malament 1982], [Resnik 1985], and [Chihara 1990, chapter 8, section 5]. The consensus 
opinion seems to be that this program cannot be made to work, although this is far from established. 

The second fictionalist response to the Quine-Putnam argument is 

(a) to grant for the sake of argument that mathematics is hopelessly and inextricably woven 
into some of our empirical theories; and 

(b) to simply account for these indispensable applications from a fictionalist point of view. 

I developed this strategy in my [I 996a], [l998b], and [I 998a, chapter 7]; the idea has also been 
pursued by Rosen [2001] and Yablo [2002]. The central ideas are as follows. Because abstract 
objects are entirely non-causal, and because our empirical theories don't assign any causal role 
to abstract objects, it follows that the truth of empirical science depends upon two sets of facts 
that are entirely independent of one another. That is, the two sets of facts hold or don't hold 
independently of one another. One of these sets of facts is purely platonistic and mathematical, 
and the other is purely physical (or more precisely, purely nominalistic). Consider, for instance, 
the sentence 

(A) The physical system S is forty degrees Celsius. 

This sentence says that the physical system S stands in the Celsius relation to the number 40. 
But, trivially, it does not assign any causal role to the number 40. It is not saying that the number 
40 is responsible in some way for the fact that S has the temperature it has. Rather, what's going 
on here is that we are using the numeral '40' to help us say what we want to say about S. In 
essence, what we're doing is using '40' as a name ofa certain temperature state. (It is convenient 
to use numerals here, instead of ordinary names like 'Ralph' and' Jane,' because the real numbers 
are structured in the same way that the possible temperature states are structured.) Thus, given 

10 See, however, [Shapiro 1983a] for one objection; and for a response, see [Field 1989, essay 4]. 



192 Pro'!! and other Di(emmas 

this, it follows that if (A) is true, it is true in virtue of facts about Sand 40 that are entirely 

independent of one another. And the same point seems to hold for all of empirical science. Since 
no abstract objects are causally relevant to the physical world, and since empirical science never 

says that they are, it follows that if empirical science is true, then its truth depends upon two 

entirely independent sets offacts: a set of purely physical or nominalistic facts and a set of purely 

platonistic facts. 

Now, since these two sets of facts hold or don't hold independently of one another, it could 

be that (a) there does exist a set of purely physical facts of the sort required for the truth of 
empirical science, but (b) there doesn't exist a set of purely platonistic facts of the sort required 

for the truth of empirical science (because there are no such things as abstract objects). Therefore, 

mathematical fictional ism is perfectly consistent with the claim that empirical science paints an 

essentially accurate picture of the physical world. In other words, fictionalists can endorse what I 

call nominalistic scientific realism. This isjust the view that (a) and (b) above are true. In other 
words, it's the view that the physical world holds up its end of the "empirical-science bargain." 

(This view is different from standard scientific realism, because it doesn't imply that our empirical 

theories are strictly true. Nonetheless, this view is still a realist view, for according to this view, 

the physical world is essentially just the way empirical science makes it out to be. After all, this 

view says that there does exist a set of purely physical facts of the sort needed for the truth of 

empirical science.) Therefore, fictionalism is consistent with whatever role mathematics plays in 

empirical science, indispensable or not. For even if mathematics can't be eliminated from our 
empirical theories, and even if there are no such things as mathematical objects (and hence our 

empirical theories aren't literally true), the picture that empirical science paints of the physical 

world could still be essentially accurate. 

Now, one might wonder what mathematics is doing in empirical science, if it doesn't need 

to be true in order for empirical science to be essentially accurate. The answer, I think, is that 
mathematics appears in empirical science as a descriptive aid. That is, it provides us with an easy 

way of saying what we want to say about the physical world. I I For a more complete formulation 

of this second fictionalist response to the Quine-Putnam argument, see my [1996a], [1998b], and 

[1998a, chapter 7]. 
Even if fictionalists can successfully respond to the Quine-Putnam argument in this way, 

they are not out of the woods. For while the Quine-Putnam argument is the most important worry 

about fictionalism, there are other objections that one might raise against the view. I do not have 

the space to discuss all of these objections here, or to respond in full to the ones I do discuss, but 

I would like to say a few words about some of the more obvious of these objections. 

Objection 1: Fictionalism seems incapable of accounting for the objectivity of mathematics. 
In particular, it seems inconsistent with the fact that there is an important difference between 
sentences like '3 is prime' on the one hand and sentences like '3 is composite' on the other. It 
seems that the difference here is that '3 is prime' is true whereas '3 is composite' is false. But 

II One might wonder how it could be that mathematics is indispensable to an empirical theory T if the mathematics in 
T functions merely as a descriptive aid in that theory. The answer is that it may be impossible to fonnulate a theory 
that doesn't use any mathematics and yet still counts as a "version of T." There might be theories that don't use any 
mathematics and that are empirically equivalent to T in the sense that they imply the same predictions about the physical 
world. But they might be so unlike T, in "'look and feel," that it would be implausible to treat them as "alternate versions 
ofT." 
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jictionalists can't say this, because they think that both of these sentences are untrue. So what can 

jictionalists say about this? 

Response: As Field [1980] pointed out when he first introduced the view, fictionalists can say 
that the difference between '3 is prime' and '3 is composite' is analogous to the difference between 
'Oliver Twist lived in London' and 'Oliver Twist lived in sin.' In other words, the difference is 
that '3 is prime' is part of a certain well-known mathematical story, whereas '3 is composite' is 
not. We might express this idea by saying that while neither '3 is prime' nor '3 is composite' 
is literally true, there is another truth predicate (or pseudo-truth predicate, as the case may be)-
viz., 'is true in the story ofmathematics'-that applies to '3 is prime' but not to '3 is composite.' 

This seems to be the view that Field endorses, but there is more that needs to be said on the topic. 
According to fictionalism, there are alternative mathematical "stories" consisting of sentences 
that are not part of standard mathematics. Thus, the real difference between '3 is prime' and '3 
is composite' is that the former is part of our story of mathematics, whereas the latter is not. (Of 
course, there is no consistent mathematical story that contains the sentence '3 is composite' and 
in which that sentence means what it does in English; but that's not relevant here.) 

Objection 2: OK, this will enable jictionalists to account for the difference between '3 is prime' 
and '3 is composite,' but there is more than this to the objectivity of mathematics. For instance, 
it could turn out that mathematicians are going to discover an objectively correct answer to 
the question of whether the continuum hypothesis (CH) is true or false; but it's not clear how 
.fictionalists could account for this. Given that both CH and its negation (~CH) are consistent 
with the standard Zermelo-Fraenkel axiomatization of set theory (ZF), how couldfictionalists 
claim that one of these sentences is true in the story of mathematics whereas the other is not? 

Response: In order to respond to this objection, fictionalists need to get more precise about 
what determines whether a sentence is true in the story of mathematics, or part of our story of math
ematics. According to the version of fictionalism I favor, our story of mathematics goes beyond 
the axioms systems that we currently accept. It covers what I call thefull conceptions that we have 
of the objects, or purported objects, in the various branches of mathematics. That is, it covers the 
sum total of the intentions that we, as a community, have regarding those objects. So the story of 
arithmetic includes everything that follows from our full conception ofthe natural numbers. And 

the story of set theory includes everything that follows from our full conception of the universe 
of sets, or our notion of set. And if we have no substantive pretheoretic conception of the objects 
being studied, then the given "full conception" is exhausted by the axiom system in question. 

Given this, fictionalists can account for how mathematicians could discover an objectively 
correct answer to the CH question. Suppose, for instance, that some mathematician thought of 
some new axiom candidate A such that (i) all mathematicians agreed that A was intuitively 
obvious, and (ii) ZF + A implied CH. Then mathematicians would claim that we had discovered 
that CH was correct (and that it had been correct all along, that we hadn't just made this up). 
Fictionalists of the kind I have in mind can account for this. They can claim that the fact that A 
was intuitively obvious to all mathematicians shows that it was inherent in, or followed from, 
our notion of set, and hence that CH followed from our notion of set (even before we discovered 
A). So fictionalists can claim in this case that CH was part of the story of mathematics all along, 
even though we hadn't noticed this. 

Now, this is not to say that fictionalists are committed to saying that there is an objectively 
correct answer to the CH question. In fact, they're not-fictionalism of this kind is consistent 
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with the claim that it might be that there is no objectively correct answer to the CH question. For 
it may be that neither CH nor ~CH follows from our notion of set. In this case, according to my 
version of fictionalism, neither CH nor ~CH would be true in the story of mathematics. And so 
there would be no objectively correct answer to the CH question. Fictionalism is thus consistent 
with whatever mathematicians end up saying about CH. And this, I think, is a very attractive 
feature of fictionalism. For the question of what we ought to say about CH is a mathematical 
question. We don't want our philosophy of mathematics dictating what mathematicians ought to 
say about this.12 

(By the way, the above considerations suggest that fictionalists should endorse (COR) (see 
section 2.2.2). From this it follows that fictionalism has more in common with "social construc
tivist" views than one might have thought. Below, we will see that the best versions of platonism 
also imply (COR), and so they too have something in common with social constructivist views. 
Indeed, depending on what is meant by "social constructivism," one might even conclude that, 
surprisingly, the best versions of platonism and fictional ism are social constructivist views. But if 
"social constructivism" is taken to involve a non-standard view ofthe meanings of mathematical 
sentences, then these views are not social constructivist views. For according to both platonism 
and fictional ism, our mathematical sentences and theories should be read at face value, as being 
about abstract mathematical objects (or as fictionalists would put it, as purporting to be about 
such objects).) 

I have just scratched the surface of the topic of fictional ism and objectivity. There is much 
more to say about this. I cannot say any more about it here, but I have discussed it at length 
elsewhere, in my [2001] and my [l998a]. 

Objection 3: Fictionalism is just wildly implausible on its face. Mathematics andfiction are 
radically different enterprises; there are numerous obvious disanalogies between the two. 

Response: Fictionalists can simply grant that there are deep and important disanalogies 
between mathematics and fiction, because they aren't committed to there being any deep similar
ities between the two enterprises. Mathematical fictionalism is a view about mathematics only. 
It doesn't say anything at all about fictional discourse, and so it is not committed to there being 
any deep similarities between mathematics and fiction. Likewise, fictionalists aren't committed 
to there being any deep similarities between mathematics and metaphor, or between mathematics 
and anything else. (For this reason, the name 'fictionalism' might be a bit misleading; a less 
misleading name might be 'Iack-of-reference-ism,' or 'not-true-ism.') 

Let's summarize what we've found so far. There are two realistic alternatives to platonism, 
namely, physicalism and psychologism. And there are three main anti-realist alternatives to 
platonism, namely, neo-Meinongianism, paraphrase nominalism, and fictionalism. I have argued 
(albeit rather briefly) that, aside from fictional ism, none of these views is tenable. Thus, returning 
to the Fregean argument for platonism with which we began, it seems that premises (3)-(5) are 
correct. This means that if(2) is true then (6) is also true. That is, it means that ifourmathematical 

12 The remarks in the text suggest that fictionalists should say that a mathematical sentence is "correct" iff it follows from 
the full conception that we have of the objects, or purported objects, in the given branch of mathematics. But this isn't 
quite right, for if the given full conception is inconsistent, fictionalists need to say something else. See my [2001, note 5] 
for more on this. 
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theories are literally true then platonism is true. But my own view is that we don't have any good 
reason to believe that our mathematical theories are literally true; in particular, I don't think 
the Quine-Putnam argument contained in (I) gives us a good reason to believe (2). As we will 
presently see, however, this is not to say that I think we have good reason to endorse fictional ism. 

3 The Eyistemo(ogica( Argument Against P(atonism 

There are a number of arguments against platonism in the literature, but one of these arguments 
stands out as the strongest, namely, the epistemological argument. This argument goes all the way 
back to Plato, but it has received renewed interest since 1973, when Paul Benacerraf presented a 
version of the argument. The argument can be put in the following way (see my [I 998a]); 

(EI) Human beings exist entirely within spacetime. 
(E2) If there exist any abstract mathematical objects, then they exist outside of spacetime. 

Therefore, it seems very plausible that 
(E3) If there exist any abstract mathematical objects, then human beings could not attain 

knowledge of them. Therefore, 
(E4) Ifmathematical platonism is correct, then human beings could not attain mathematical 

knowledge. 
(ES) Human beings have mathematical knowledge. Therefore, 
(E6) Mathematical platonism is not correct. 

The argument for (E3) is everything here. Ifit can be established, then so can (E6), because (E3) 
trivially implies (E4), (ES) is beyond doubt, and (E4) and (ES) trivially imply (E6). Now, (El) 
and (E2) do not strictly imply (E3), and so there is room for platonists to maneuver here. And 
as we'll see, this is precisely how most platonists have responded. However, it is important to 
notice that (El) and (E2) seem to provide strong motivation for (E3). They seem to imply that 
mathematical objects (if there are such things) are totally inaccessible to us, i.e., that information 
cannot pass from mathematical objects to human beings. But given this, it's hard to see how 
human beings could acquire knowledge of mathematical objects. Thus, we should think of this 
argument not as refuting platonism but as issuing a challenge to platonists to explain how human 
beings could acquire knowledge of abstract mathematical objects. 

There are three strategies that platonists can use in trying to respond to this argument, and I 
will now discuss these in tum. 

3.1 Rtjecting the View that the Human Mind is Pure(y Physica( 

First, platonists can try to argue that (El) is false and that the human mind is capable of somehow 
forging contact with abstract objects and thereby acquiring information about them. This strategy 
has been pursued by Plato (see The Meno and The Phaedo) and Giidel [1964]. Plato's idea is 
that our immaterial souls acquired knowledge of abstract objects before we were born and that 
mathematical learning is really just a process of coming to remember what we knew before we 
were born. On Giidel's version of the view, we acquire knowledge of abstract objects in much the 
same way that we acquire knowledge of concrete physical objects. Just as we acquire information 
about physical objects via the faculty of sense perception, so we acquire information about 
abstract objects by means of a faculty of mathematical intuition. Now, other philosophers have 
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endorsed the idea that we possess a faculty of mathematical intuition. But Godel's version of this 
view-and he seems to be alone in this-seems to involve the idea that the mind is non-physical 
in some sense and that we are capable of forging contact with, and acquiring information from, 
abstract objects. 13 This view has been almost universally rejected. One problem is that denying 
(E I) doesn't seem to help. The idea of an immaterial mind receiving information from an abstract 
object seems just as mysterious and confused as the idea of a physical brain receiving information 
from an abstract object. 

3.2 Rtjectin!J the Thesis that Abstract Mathematica{ Oryects Exist 
Outside if ~acetime 

The second strategy that one might pursue in responding to the epistemological argument is to 
argue that (E2) is false and that human beings can acquire information about mathematical objects 
via ordinary perceptual means. The early Maddy [1990] pursued this idea in connection with set 
theory, claiming that sets of physical objects can be taken to exist in spacetime and, hence, that 
we can perceive them. For instance, on Maddy's view, if there are two books on a table, then the 
set containing these books exists on the table, in the same place that the books exist, and we can 
see the set and acquire information about it in this way. Now, according to the definitions I've 
been using here, views like Maddy's-i.e., views that reject (E2)-are not versions of platonism 
at all, because they do not take mathematical objects to be non-spatiotemporal. Nonetheless, there 
is some rationale for thinking of Maddy's view as a sort of non-traditional platonism. First of 
all, Maddy's view implies that there is an infinity of sets associated with every ordinary physical 
object, all sharing the same spatiotemporallocation and the same physical matter. (For example, 
corresponding to a book, there is the set containing the book, the set containing that set, the 
pair containing those two sets, and so on and so forth.) But since these sets all share the same 
physical base (i.e., the same location and matter), and since they are all distinct objects, Maddy 
has to allow that they differ from one another in some non-physical way. Hence, on Maddy's 
view, there must be something about these sets that is non-physical, or abstract, in some sense of 
these terms. Moreover, if Maddy didn 'f take this line, her view would be untenable, because it 
would collapse into a version of physicalism along the lines of Mill's view, which we've already 
rejected. In any event, regardless of whether Maddy's view counts as version of "platonism," it 
is an available response to the above epistemological argument. 

Maddy's early view has been subjected to much criticism, including arguments from the later 
Maddy [1997]. Others to attack the view include Lavine [1992], Dieterle and Shapiro [1993], 
myself([1994], [1998a]), Milne [1994], Riskin [1994], and Carson [1996]. One strategy here is 
to argue as follows: 

(a) there is more to an early-Maddian set than the aggregate of physical stuff with which it 
shares its location (in particular, as we've seen, there is something abstract about the set, 
over and above the physical aggregate); but 

13 This interpretation of GOdel is a bit controversial. Evidence for it comes not just from his [1964J, but also from his 
[1951]. See my [1998a, section 4.2] for a discussion. 
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(b) human beings don't receive any sensory data about any such sets that go beyond the data 
that they receive about physical aggregates; therefore, 

(c) there is still an unexplained epistemic gap between the information we receive in sense 
perception and the relevant facts about sets. 

In fact, one might push this line of thought a bit further and argue as follows: 

(a) traditional platonists can grant that humans receive sensory information about physical 
aggregates; and 

(b) traditional platonists can also claim that humans can use this information in coming to 
knowledge of sets; therefore, 

(c) Maddian platonists are no better off here, epistemologically speaking, than traditional 
platonists. 

For a fuller version of this argument, see my [1998a]. 

3.3 E'9"{aining How We Cou(d Have Know{edge if A{jstract Mathematica{ Ofjects 

Without An!} Contact With Such Ofjects 

The third and final strategy that platonists can pursue is to accept (EI) and (E2) and explain why 
(E3) is nonetheless false. This strategy is different from the first two in that it doesn't involve the 
postulation of an information-transferring contact between human beings and abstract objects. 
The idea here is to grant that human beings do not have any such contact with abstract objects 
and to explain how they can nonetheless acquire knowledge of such objects. This has been the 
most popular strategy among contemporary platonists. Its advocates include Quine [1951, section 
6], Steiner [1975, chapter 4], Parsons ([ 1980], [1994]), Katz ([ 1981], [1998]), Resnik ([ 1982], 
[1997]), Wright [1983], Lewis [1986, section 2.4], Hale [1987], Shapiro ([1989], [1997]), myself 
([1995], [I 998a]), and Linsky and Zalta [1995]. There are several different versions of this view. 
We will look very briefly at the most prominent of them. 

3.3.1 Justification via Emyiricaf Cotifirmation? 

One version of the third strategy, implicit in the writings of Quine [1951, section 6] and developed 
by Steiner [1975, chapter four, especially section IV] and Resnik [1997, chapter 7], is to argue 
as follows: 

(a) our mathematical theories are embedded in our empirical theories; and 
(b) these empirical theories (including their mathematical parts) have been confirmed by 

empirical evidence; moreover, 
(c) when an empirical theory is confirmed by empirical evidence, the entire theory is con

firmed; therefore, 
(d) even though we don't have any contact with mathematical objects, we have empirical 

evidence for believing that our mathematical theories are true and hence for believing 
that there do exist abstract mathematical objects. 

Given what I said above about how mathematical fictionalists can account for the role that 
mathematics plays in empirical science, this view seems implausible. Since abstract objects do 
not enter into any causal relations with anything in the physical world, it follows that we humans 
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would receive the same perceptual information-i.e .• we would have the same set of empirical 
data-whether there were any such things as mathematical objects or not. Thus, empirical data 
can provide reason for believing only that there exist purely physical facts of the sort needed for 
the truth of empirical science. Empirical data do not provide any good reasons for believing that 
our empirical theories (including their implications about the existence of mathematical objects) 
are literally true. 

A second problem with the Quine-Steiner-Resnik view is that it leaves unexplained the fact 
that mathematicians acquire knowledge of their theories before these theories are applied in 
empirical science. (For a more complete argument against the Quinean view, see my [I 998a].) 

3.3.2 Justification via Necessity? 

A second version of the third strategy, developed by Katz ([1981], [1998]) and Lewis [1986, 
section 2.4], is to argue that we can know that our mathematical theories are true, without any 
sort of information-transferring contact with mathematical objects, because these theories are 
necessarily true. It may be that in order to know that fire engines are red, we need some sort 
of information-transferring contact with fire engines. But according to the Katz-Lewis view, we 
don't need any such contact with the number 3 in order to know that it's prime, because it couldn't 
have been composite, i.e., because the sentence '3 is prime' is necessarily true. For criticisms of 
this view, see Field [1989, pp. 233-38] and my [1998a, chapter 2, section 6.4]. One problem here 
is that there doesn't seem to be any epistemologically relevant sense in which our mathematical 
theories are necessarily true. Since sentences like '3 is prime' and 'There is a null set' assert that 
certain objects exist, they don't seem to be logically or conceptually necessary. (One might try to 
argue that they're metaphysically necessary, but there are serious problems with this suggestion. 
See my [1998a, chapter 2] for more on this.) 

3.3.3 Structurallsm 

A third version ofthe third strategy has been developed by Resnik [1997] and Shapiro [1997]. Both 
of these philosophers endorse (platonistic) structuralism, a view that holds that our mathematical 
theories provide true descriptions of mathematical structures, which, according to this view, are 
abstract. Moreover, Resnik and Shapiro both claim that human beings can acquire knowledge 
of mathematical structures (without coming into any sort of information-transferring contact 
with such things) by simply constructing mathematical axiom systems. For these axiom systems 
provide implicit definitions of structures. There are a few different problems with this view. I 
discuss these problems in my [1998a], but I will just mention one of them here: Resnik-Shapiro 
structuralism doesn't explain how human beings could know which of the various axiom systems 
that we might formulate actually pick out real structures that exist in the mathematical realm. 

3.3.4 Fu{{-B{ooded P{atonism 

A fourth and final version of the third strategy, developed in my own writings (see my [1992], 
[1995], and [1998a], and see Linsky and Zalta [1995] for a related view), is based upon the 
adoption of a particular version of platonism that can be called plenitudinous platonism, or 
as I call it, full-blooded platonism (FBP). FBP can be intuitively but sloppily expressed with 
the slogan, 'All possible mathematical objects exist.' More precisely, the view is that all the 
mathematical objects that possibly could exist actually do exist. I argue that if platonists endorse 
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FBP, then they can explain how human beings could acquire knowledge of abstract mathematical 
objects without the aid of any sort of information-transferring contact with such objects. If FBP 
is true, then all consistent purely mathematical theories accurately describe some collection of 
abstract mathematical objects. Thus, to attain knowledge of abstract mathematical objects, all we 
need to do is acquire knowledge that some purely mathematical theory is consistent. (It doesn't 
matter how we come up with the theory; some creative mathematician might simply "dream it 
up.") But knowledge of the consistency of a theory doesn't require any sort of contact with, 
or access to, the objects that the theory is about. Thus, the epistemological problem has been 
solved. We can acquire knowledge of abstract mathematical objects without the aid of any sort 
of information-transferring contact with such objects. 

There are a number of objections that one might raise against FBP and the above FBP-based 
epistemology. Here, for instance, are six different objections that one might raise: 

I. Your view seems to assume that humans are capable of thinking about abstract objects, 
or referring to them, or formulating theories about them. But it's not clear how humans 
could do these things. 

2. The above sketch of your epistemology seems to assume that it will be easy for FBP-ists 
to account for how human beings could (without the aid of any contact with mathematical 
objects) acquire knowledge that certain mathematical theories are consistent. But it's not 
clear how FBP-ists could do this. 

3. You may be right that ifFBP is true, then all consistent purely mathematical theories truly 
describe some collection of mathematical objects, or some part ofthe mathematical realm. 
But which part? How do we know that it will be true oftbe part oftbe mathematical realm 
that its authors intended to characterize? Indeed, it seems mistaken to think that such 
theories will characterize unique parts of the mathematical realm at all. (For instance, if 
FBP is true, then there are infinitely many w-sequences in the mathematical realm. Can 
FBP-ists maintain that some unique one of these sequences is the sequence of natural 
numbers?) 

4. All your theory can explain is how humans could know that if FBP is true, then our 
mathematical theories truly describe parts of the mathematical realm. It doesn't explain 
how humans could acquire genuine knowledge of the mathematical realm, because it 
doesn't explain how humans could know that FBP is true. 

5. How can FBP-ists account for the applications of mathematics to empirical science? FBP 
implies that our mathematical theories are about objects that are causally isolated from 
the physical world. So why do our physical theories make use of these mathematical 
theories? 

6. FBP seems to be inconsistent with the objectivity of mathematics. It seems to imply that, 
for example, the continuum hypothesis (CH) has no determinate truth value because CH 
and ~CH both accurately describe parts of the mathematical realm. Indeed, one might 
argue that because of this, FBP leads to the contradictory result that CH and ~CH are 
both true. 

I respond to all of these objections, as well as a few others, in my [1998a] and my [2001]. 
Moreover, in my [forthcoming], I respond to some objections that have been put forward 
recently by other philosophers, most notably Colyvan and Zalta [1999] and Restall [2003]. I do 
not have the space to address these objections here, but it is worth noting, in connection with 
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objection 6, that the FBP-ist account of mathematical objectivity is (surprisingly) virtually 
identical to the fictionalist account of objectivity. According to FBP, whether CH (or any other 
mathematical sentence) is true (not just true in some model, or some part of the mathematical 
realm) depends on whether it's true in the intended model (or more precisely, in all intended 
models). But given this, it can be argued that FBP implies that a mathematical sentence is true if 
and only ifit follows from our intentions, or from the full conception that we have of the objects in 
the given branch of mathematics. (And it should be noted that if we have no substantive pretheo
retic conception of the objects being studied, then the given "full conception" is exhausted by the 
axiom system in question.) What this means is that FBP-ists are going to endorse the thesis that I 
called (COR) in section 2.2.2. They will not take (COR) to provide a definition of mathematical 
correctness. Like all platonists, they think that, by definition, correctness has to do with accurately 
describing the intended objects. But on the FBP-ist view, it turns out that (COR) is true. 

So according to FBP, mathematical truth is ultimately determined by what follows from our 
"full conceptions." For instance, ifCH follows from our full conception of the universe of sets, or 
our notion of set, then it will be true in all intended parts of the mathematical realm, and hence it 
will be true. Similarly, if~CH follows from this full conception, then it will be true and, hence, 
CH will be false. And if neither CH nor ~CH follows from our full conception of the universe of 
sets, then they will both be true in some intended hierarchies and false in others. In this case, there 
will be no fact of the matter as to whether either of them is true or false. But this is essentially 
equivalent to what fictionalists say about how mathematical correctness--or truth in the story of 
mathematics-is ultimately determined. (For a full discussion of this issue, see my [2001].) 

There are many other appealing features ofFBP, aside from the fact that it enables platonists to 
solve the epistemological problem with their view. For instance, as I have argued elsewhere ([Bal
aguer 1998a], [Balaguer 200 I]), it is only by adopting FBP that platonists can provide a plausible 
account of how our mathematical intuitions could be accurate indicators of mathematical truth. 

In sum, then, the epistemological argument against platonism is not entirely successful. It 
succeeds in refuting all traditional versions of platonism, but it does not refute FBP. 

4 Condudln!J Remarks 

So we seem to be left with just one version of platonism (namely, FBP) and one version of anti
platonism (namely, fictionalism). Now, I have argued elsewhere ([Balaguer 1998a], [Balaguer 
2001]) that FBP and fictionalism (interestingly and surprisingly) agree on almost everything 
about the interpretation of mathematical practice. Ijust said a few words about this in connection 
with the question of what ultimately determines mathematical truth. But it turns out that FBP 
and fictionalism agree on much more than this. It can be argued that FBP-ists and fictionalists 
should say essentially the same things in response to virtually all questions about mathematical 
practice. The reason for this is two-pronged. First, FBP-ists think that mathematical objects are 
causally inert, so that the existence or nonexistence of mathematical objects is irrelevant to the 
practice of mathematics. And second, FBP-ists think that every consistent purely mathematical 
theory accurately describes some collection of mathematical objects, so that, like fictionalists, 
they are committed to the thesis that from a purely ontological point of view, all consistent purely 
mathematical theories are equally good. Because of these two points, FBP-ists end up agreeing 
with fictionalists on almost all important questions about mathematical practice. They agree on 
questions about how and why mathematics is applicable to empirical science, what mathematical 
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knowledge ultimately consists in, the semantics of mathematical discourse, the roles of creation 
and discovery in mathematics, and many other things. In short, FBP and fictional ism offer almost 
identical views of mathematics. The only questions about which they disagree are the question 
of whether there actually exist any abstract mathematical objects and (as a result) the question 
of whether our mathematical theories are literally true. That is, they disagree on the question of 
whether the mathematical statements that we all agree are good (or correct, or acceptable) are 
distinguished by being literally true or true in the story a/mathematics. 

Now, in my [1998a], I argue that while FBP and fictionalism can be defended against all 
of the standard objections to those views in the literature, there are no good positive arguments 
for either view. That is, there are no good arguments for the claim that there are abstract objects 
and hence that our mathematical theories are literally true, and there are no good arguments for 
the claim that there are no abstract objects and hence that our mathematical theories are strictly 
speaking untrue. Indeed, 1 argue that for a variety of reasons (most notably because we cannot 
obtain any information about whether there are any mathematical objects), we could never have 
any good reason to endorse FBP over fictionalism or vice versa. And finally, I argue that there is 
actually no fact of the matter about whether FBP or fictionalism is true, because there is no fact 
of the matter about whether there are any such things as abstract objects. 
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As we work on a mathematical problem, the mathematical objects we are working with seem very 
real and concrete, For example, when they do not behave as we had expected, they certainly seem 
quite objective and separate from our internal thoughts, As a result, many mathematicians tend 
toward a platonist/realist view of mathematical objects, at least until the problems with platonism 
are voiced In this chapter; @ystein Linnebo attempts to resolve some of those problems by looking 
carefully at the language we use when referring to mathematical objects, 

In ordinary speech, when we say "that s merely a semantic distinction," we mean that there is 

no real difference-they are just two different ways of saying the same thing. But for philosophers, 
questions of semantics-what words mean and how they are used-are essential to unraveling 
many apparent disagreements or contradictions, Mathematicians, for example, generally are 
indifferent to the distinction between numbers and numerals (or tend to resolve them, as Errett 
Bishop did, by saying "I identifY a number with its numeral "), But paradoxes appear when one 
is not careful about the distinction between an object and its name, In this chapter; Linnebo uses 
this distinction in his attempt to resolve some of the problems plaguing those who would like to 
view mathematical objects as objective, 

@ystein Linnebo is a Lecturer in Philosophy at the University of Bristol, England, 
(seis,bris,ac,uk/~plxol/), He received his PhD, in 2002 from Harvard under the direction of 
Charles Parsons, His main research interests are in the philosophies of logic and mathematics, 
metaphysics and the philosophy of language, He is particularly interested in questions concerning 
ontology, individuation, essence, reference (especially to abstract objects), necessity and knowl
edge of necessary truths, Among his articles that are likely to be of interest to readers of this 
volume are "Frege S Context Principle and Reference to the Natural Numbers," forthcoming in 
S. Lindstrom (ed), Logicism, Formalism, Intuitionism-What Has Become of Them?, "Against 
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Limitation of Size," in Paradox: Logical, Cognitive and Communicative Aspects (2006), and 
"Epistemological Challenges to Mathematical Platonism," Philosophical Studies (2006). 

1 Fre!Je's Ar!JumentJor Matliematica{ P(atonism 

Philosophers classify objects as either concrete or abstract. Roughly speaking, an object is 
concrete if it exists in space-time and is involved in causation. Otherwise the object is abstract. I 
Someone who believes that there exist abstract objects is said to be a platonist, and someone who 
denies this is called a nominalist. 

On the face of it, platonism seems very far removed from the scientific world view that 
dominates our age. Nevertheless many philosophers and mathematicians believe that modem 
mathematics requires some form of platonism. The defense of mathematical platonism that is 
both most direct and has been most influential in the analytic tradition in philosophy derives 
from the German logician-philosopher Gottlob Frege (1848-1925)2 I will therefore referto it as 
Frege s argument. This argument is part of the background of any contemporary discussion of 
mathematical platonism 3 

Frege's argument begins with the observation that the language of mathematics contains 
expressions that are supposed to refer to abstract mathematical objects such as numbers, functions, 
spaces, and geometrical figures. We see this already from a casual inspection of the language 
of mathematics: this language has its own stock of proper names that are supposed to denote 
mathematical objects (for instance' 5' and' 1f'), and it contains quantifier phrases that are supposed 
to to range over mathematical objects (,for any natural number n' and 'there is a real number x'). 

Frege's argument continues by claiming that a lot of mathematical statements are true. Evidence 
for this claim is that lots of such statements are asserted in complete earnest by everyone from 
lay people to expert mathematicians, and that such statements are employed in everything from 
quotidian reasoning to advanced science. Combining this second premise about truth with the 
first premise about the semantic purpose of various mathematical expressions, Frege's argument 
concludes that there exist mathematical objects. For a sentence containing expressions that are 
supposed to refer to a certain kind of object cannot be true unless there really exist objects of the 
kind in question. 

The two premises of Frege's argument take at face value certain apparent features of math
ematical language and mathematical practice. But as we all know, appearances can sometimes 
deceive. Both premises have therefore been challenged. 

Consider the first premise that the language of mathematics is supposed to refer to mathe
matical objects. Here one may challenge the classification of certain mathematical expressions as 

I This distinction between abstract and concrete is different from the one used in mathematics, where it means something 
like the distinction between general and particular. 

2 See in particular [Frege 1884]. 

3 What I call "Frege's argument" abstracts from certain aspects ofFrege's own defense of mathematical platonism, most 
importantly, from his view that arithmetic is reducible to logic. These aspects are in my opinion best seen as providing 
further support for and explanation of the premises of what I call "Frege's argument." By thus detaching Frege's argument 
from optional add-ons, we get an argument with very broad appeal. For instance, the so-called ""indispensability argument" 
for mathematical platonism, deriving from W. V. Quine and Hilary Putnam, can be seen as just another way of supporting 
and explaining the premises of Frege's argument. 
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singular terms and quantifiers. For instance, one may argue that the adjectival use ofthe numerals 
(as in "there are five apples") is more fundamental than the substantival use (as in "the number 
of apples is five"). Indeed, it is a commonplace that the surface structure of natural language can 
deceive. Consider for instance a sentence like 'Tom did it for John's sake'. Although at a super
ficiallevel the expression 'John's sake' appears to be analogous to the expression 'John's car', 
a more careful logico-linguistic analysis reveals that these two expressions function differently. 
Frege himself was acutely aware of the danger of being misled by the surface structure of natural 
language. For this reason, he gave a sustained defense of his claim that certain mathematical 
expressions function logically as singular terms and quantifiers. He did this by developing the 
logical analysis of the language of mathematics which is now standard in philosophy and in 
mathematical logic. On this analysis, the numerals function logically as singular terms, and what 
look like quantifiers do indeed function as such. If this logical analysis is acceptable, then so will 
be the first premise of Frege's argument. 

The second premise of Frege's argument states that the theorems of mathematics for the 
most part are true. Why, one may wonder, should we accept this claim? Can't we just regard 
these theorems as part of a useful game or a convenient fiction, and in this way avoid assigning 
any truth-values to them? On this sort of view, mathematical theorems would playa role that 
is strictly internal to a game or a fiction, and we wouldn't in full earnest have to accept them 
as true. Again, Frege has a response4 Unless we accept the theorems of mathematics as true, 
Frege says, we won't be able to account for their applicability. On the formalist and fictionalist 
interpretations of mathematics it remains a mystery how mathematics can be applied. For if 
mathematics isn't true, why should an empirical statement deduced from a true empirical theory 
along with a body of mathematics itselfbe true? The conclusion ofa valid argument is guaranteed 
to be true only if all the premises are true, or so one would think. So Frege's response has great 
force. 5 

Although this defense of the premises of Frege's argument is less than conclusive, it at 
least shows that they enjoy great plausibility. No wonder, then, that Frege's argument has 
so profoundly changed the nature of the debate about mathematical platonism. The argument 
identifies two premises that are eminently natural and plausible, and it shows that mathematical 
platonism follows from these two premises. Frege's argument therefore succeeds in shifting the 
burden of proof onto the nominalist. Since our starting point is to believe in these two premises, 
we now need a reason not to believe in mathematical platonism. 

2 Two Cha{{en!Jes to Mathematica{ P{atonism 

To examine such reasons, I will now discuss two challenges to mathematical platonism. 
The first challenge is that mathematical platonism appears to make mathematical knowledge 

impossible. 6 How can the human mind reach out to the platonist's universe of abstract mathe
matical objects? Any causal relation is obviously out of the question, given that abstract objects 

4 See in particular [Frcge 1903]. Section 91 and the surrounding discussion. 

5 But his response isn't conclusive as it stands. For it is not ruled out that mathematical theorems have some property 
other than truth which guarantees the truth of all empirical statements that are deduced from a true empirical theory 
along with these mathematical theorems. For instance, Hartry Field has argued that the semantic conservativeness ofpurc 
mathematics is such a property. See [Field 1980] and [Field 1989]. 

6 The classical source is [Benacerraf 1973], but see also [Field 1989], chapters I and 7. 
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aren't involved in causation. How then can our mathematical beliefs be sensitive to truths about 
this universe of abstract objects? In fact, it seems that our mathematical beliefs are completely 
insensitive to such truths. For people's beliefs are determined by facts about their brains and their 
physical envirorunents. So the causal processes that take place in the physical world would have 
produced in us precisely the same mathematical beliefs regardless of the universe of abstract 
objects! This abstract universe appears to contribute nothing to the fact that we believe as we 
do. Even if this mathematical universe had not existed at all, our mathematical beliefs would 
have been precisely the same. The contrast with knowledge of the physical world is stark. My 
beliefthat there is a computer in front of me is caused by there actually being a computer in front 
of me. Had there not been a computer in front of me, I would not have believed that there is 
one. But mathematical platonists place the subject matter of mathematics outside of space-time 
and deny that it is involved in causation, and in so doing they foreclose the possibility of any 
causal explanation of mathematical knowledge. It therefore looks like the platonist's conception 
of mathematics makes mathematical knowledge impossible. 

It may be responded that it is illegitimate to require, as this challenge does, that mathematical 
beliefs depend on or be sensitive to mathematical truths. Forto say that X depends on or is sensitive 
to Y is, at the very least, to say that X co-varies with Y. But this claim makes no sense when 
Y consists of necessary truths. For a necessary truth could not have been any other way. Since 
mathematical truths are traditionally taken to be necessary, it therefore makes no sense to ask 
how other truths depend on them or are sensitive to them7 

This response is correct as far as it goes. But our first challenge to mathematical platonism 
can be stated so as to avoid this problem. We arrive at our mathematical beliefs by undergoing 
certain processes and by following certain methods. We would therefore like an account of how 
the processes and methods by which we arrive at our mathematical beliefs are relevant to what 
these beliefs are about. These processes and methods must somehow be appropriate for finding 
out about this subject matter. For surely it isn't just an accident that beliefs arrived at in these 
ways tend to be true" 

Can this challenge be met? The challenge confronts mathematical platonists with the follow
ing exercise of "solving for the unknown." Hold fixed our assumption that there is such a thing as 
mathematical knowledge and that this knowledge has an explanation. Then mathematical objects 
must be such that the methods by which we arrive at our mathematical beliefs are conducive 
to finding out about such objects. It is far from obvious that this equation has a solution. Since 
we cannot causally interact with abstract mathematical objects, the model that is appropriate to 
empirical knowledge doesn't apply to pure mathematics. And it remains a wide open question 
whether an alternative model exists which is appropriate to pure mathematics. 

The second challenge to mathematical platonism is concerned with "Occam's razor," which 
instructs us not to postulate entities beyond necessity. Other things being equal, we should 
prefer lean scientific theories to ones with excess fat. By and large, this seems to be good 
scientific methodology. But not in mathematics! For mathematical objects are cheap.9 In general, 

7 A response of this sort is developed in [Lewis 1986], pp. 111-12. 

8 For more on the ideas of this paragraph, see my [2006]. 

9 At least according to the nonns that are standard in contemporary mathematics. But even on more restrictive views on 
mathematical method, such as constructivism, there will be a contrast between pure mathematics and empirical science 
of the sort I am calling attention to. 
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if mathematical objects answering to some natural description can exist, then they do. Given that 
imaginary numbers can exist, we assume (following Cardano and others) that they do. Given that 
"ideal numbers" can exist, we assume (following Dedekind and others) that they do. Given that 
various large cardinal numbers can exist, we assume (following past and present set-theorists) 
that they do. This view of correct mathematical methodology is nicely expressed in the following 
passage from the inventor of modern infinitary set theory, Georg Cantor. 

Mathematics is in its development entirely free and is only bound in the self-evident 
respect that its concepts must both be consistent with each other and also stand in exact 
relationships, ordered by definitions, to those concepts which have previously been 
introduced and are already at hand and established. 

In particular, in the introduction of new numbers it is only obligated to give definitions 
of them which will bestow such a determinacy and, in certain circumstances, such 
a relationship to the older numbers that they can in any given instance be precisely 
distinguished. As soon as a number satisfies all these conditions it can and must be 
regarded in mathematics as existent and real. [ ... J for the essence of mathematics lies 
precisely in its freedom. ([Cantor 1883], p. 896) 

Most extravagant of all branches of mathematics is set theory. For arguably, the guiding norm in set 
theory is to maximize, to postulate as many sets as possible, stopping just short ofinconsistency.1O 
But this norm is diametrically opposite to Occam's razor! 

This challenge confronts mathematical platonists with another exercise of "solving for the 
unknown." Hold fixed that the extravagant methods of modern mathematics are suited to finding 
out about mathematical objects. What is it about mathematical objects that makes these methods 
appropriate? Again it is unclear whether the platonists' equation has a solution. For it seems to 
follow from our common sense idea of an object that objects should not be postulated lightly. 

3 From Olijects to Semantic Va(ues 

We have seen that different considerations pull in different directions. On the one hand, Frege's 
argument for mathematical platonism has great plausibility. On the other hand, mathematical 
platonism faces two very serious challenges. To make progress, let's consider a radical pro
posal. Perhaps the two challenges appear insuperable only because we are operating with a 
wrong model of what "mathematical objects" are. Our model of objecthood has been physical 
bodies. According to this model, objects are like sticks and stones, apples and oranges. They 
are nuggets of stuff, lumps of reality. Being abstract rather than concrete, mathematical objects 
obviously cannot be entirely like sticks and stones. But they are supposed to be pretty much 
like sticks and stones except for being "outside of space-time" and causally isolated from us. 
Now, if this is what mathematical objects are, how on earth can our mathematical methods be 
conducive to our finding out about them? And how can such utterly exotic things be postulated so 
lightly? 

Can we find a better model of what it is to be an object? I believe progress can be made by 
returning to Frege's argument. The argument's first premise, we recall, says that the language 
of mathematics contains expressions that contribute to sentences in which they occur in a way 

10 For documentation, see [Maddy 1997], esp. p. 131. 
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that is similar to how more familiar proper names contribute to sentences in which they occur. 
The similarity is that both kinds of expressions refer to objects. But in our present context, this 
characterization of the similarity isn't very helpful, given that our goal is precisely to explicate 
what it is to be an object. More helpful is the notion of a semantic value, which plays a fundamental 
role in contemporary semantics and philosophy of language. Very briefly, this notion can be 
explained as follows. Each component of a sentence makes some definite contribution to the truth 
or falsity of the sentence. This contribution is its semantic value. Consider a simple sentence 
such as 'George W. Bush is president.' The proper name 'George W. Bush' makes a definite 
contribution to the truth of this sentence, namely its referent, George W. Bush. Likewise, the 
predicate 'is president' makes a definite contribution, namely a specification of what is required 
of an object for the predicate to be true of it; in this case, that the object be president (as opposed 
to, say, being king). Moreover, the truth or falsity of a sentence is determined as a function of 
the semantic values of its constituents. This is known as the principle of compositionality. For 
instance, in our toy sentence, it doesn't matter how the semantic value George W. Bush is picked 
out. If the proper name 'Dubya' has the same semantic value as 'George W. Bush', then 'Dubya 
is president' must have the same semantic value (in this case, truth-value) as our toy sentence. 

The second premise of Frege's argument is that many mathematical sentences are true. For 
this to be the case, all expressions involved in these sentences must succeed in making their 
appropriate semantic contributions. Using our new terminology, this means that all of these 
expressions must have semantic values, and that these semantic values must combine so as to 
make the relevant sentences true. The conclusion of Frege's argument can now be re-stated 
as the claim that mathematical singular terms have semantic values. As we have seen, these 
semantic values (unlike those of proper names such as 'George W. Bush') cannot be identified 
with any concrete objects. Perhaps we can shed light on mathematical objects by explaining 
how mathematical singular terms manage to have semantic values and what the nature of these 
semantic values is. 

To develop this idea, we need a better understanding of what is involved in our reference 
to various sorts of objects. Since human beings are very complex organisms who stand in very 
complex social relations, we will have to simplify. What we want is a good model, not necessarily 
a description that is accurate in every detail. I therefore propose that we develop a model of our 
reference to various sorts of objects based on robots (or computers embedded in, and interacting 
with, a physical environment). I will thus investigate under what conditions it makes sense to 
ascribe to robots a semantics involving reference to different sorts of objects. I will focus on two 
fundamental cases: reference to physical bodies and reference to natural numbers. 

4 Riference to Physica{ Bodies 

What is required of a robot for it to refer to physical bodies, such as sticks and stones, in its 
environment? I believe we get a better understanding of the problem by focusing on the senses 
of sight and touch, and on some very fundamental thought processes. Other senses, such as 
smell, taste, and hearing, appear to playa less fundamental role in our reference to physical 
bodies. Consciousness too (in the sense of awareness of what it is like to have various sorts of 
experiences) will be put to one side, as it appears inessential to our core notion of reference. II 

II This section draws on my [2005], especially Section 4. 
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So consider a robot equipped with senses of sight and touch similar to our natural human 
senses. Such a robot must interact with its environment by detecting light reflected by surrounding 
surfaces and by having a capacity for touching and grasping things in its vicinity. What is required 
for such a robot to make reference to a physical body in its environment? Obviously the robot 
must "perceive" the body in the sense that it must receive light from some part of its surface or 
touch some part of it. The robot will thus receive information from some spatiotemporal part of 
the body. These parts need not have natural boundaries in either space or time; they are simply the 
sum-totals of the particle-instants with which the robot causally interacts in this perception-like 
way. 

But it is not sufficient, in order for a robot to refer to a body, that it should receive such 
information from some part of the body. The robot also needs a mechanism for determining when 
two such pieces of information belong to the same body. This task is far from trivial. For we are 
surrounded by bodies that are partially hidden, that are occluded by other bodies, and that move in 
and out of view. For instance, a stick can be partially buried, and a stone can be partially covered 
by other stones piled up around it. So there will always be different ways of "getting at" one and 
the same physical body, both from different spatial points of view and at different moments of 
time. It is therefore essential that the robot have some mechanism for grouping together pieces 
of perceptual information that belong to one and the same body. 

I claim that what matters for this task is that the chunks of stuff from which the robot 
receives perceptual information be spatiotemporally connected (in some suitable way to be 
spelled out shortly). Assume for instance that the robot establishes visual contact with part of a 
stick that emerges from the ground and that one of its "arms" is simultaneously probing into the 
ground nearby and encountering something hard. What should we "teach" the robot about the 
conditions under which the two chunks of stuff it interacts with belong to the same body? Roughly, 
the kind of connectedness that matters has to do with solidity and motion: the two chunks must 
be related through a continuous stretch ofsolid l2 stuff, all of which belongs to the same unit of 
independent motion (roughly in the sense that, if you wiggle one chunk, the other chunk follows 
along). 

To produce a more precise answer, think of this as an exercise in robotics. I submit that the 
following fundamental principles are part of an analysis of the concept of a physical body, and 
will therefore have to be implemented in the robot. 13 

(B I) Bodies are three-dimensional, solid objects. 

(This principle holds because any two parts of a three-dimensional solid are naturally connected 
in space.) Thus, a cloud of gas doesn't qualify as a body in the present sense. This means that not 
all spatiotemporal objects are bodies. 

(B2) Bodies have natural and relatively well distinguished spatial boundaries. 

12 I here mean 'solid' in the ordinary sense in which a stick or a stone is said to be solid. Of course, physics tells us that 
even sticks and stones aren't solid in the stricter sense of filling up all space at an atomic level. 

[3 These principles are also constitutive of the concept of what psychologists sometimes call "Spelke-objects." This 
concept corresponds closely to my concept ofa physical body. See C.g. {Spelke 1993] and [Xu 1997]. 
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For instance, an undetached half-rock fails to be a body because it lacks sufficiently natural 
boundaries, and a mountain fails because its boundaries are insufficiently well distinguished. 14 

(B3) Bodies are units of independent motion. 

Thus, although a book is a body, a pile of papers is not. 

(B4) Bodies move along continuous paths. 

Consider the object that came into being with the birth of Bill Clinton, coincided with Clinton 
until the end of his presidency, and thenceforth coincides with George W. Bush. By (B4) this 
object cannot be a body. 

(B5) Bodies have natural and relatively well distinguished temporal boundaries. 

So arbitrary temporal parts of bodies are not themselves bodies. 
I believe this relatively simple model captures the core of the phenomenon of reference 

to physical bodies. What matters is that our agents (whether human or robot) receive sensory 
information from parts of bodies and that they have a capacity for grouping together such pieces 
of information just in case these pieces derive from parts that are spatiotemporally connected in 
the way spelled out above. Let ~ be this relation of spatiotemporal connectedness. This is an 
equivalence relation on parts of bodies. This equivalence relation determines a (partial) function 
B that maps a part u to the physical body, ifany, that u picks out. That is, B(u) is the body that 
u is part of. Bodies are then subject to the following criterion of identity: 

(Id-B) VuVv(B(u) = B(v) ++ u ~ v) 

5 Riference to Natura( Numbers 

Might it be the case that the structure involved in reference to physical bodies is just an instance 
of a more general phenomenon? Perhaps reference always consists in some relation to parts or 
aspects of objects, accompanied by some mechanism for determining when two such parts or 
aspects pick out the same object. 15 

Let's attempt to apply this idea to the natural numbers. Instead of information causally 
linked to some part of a body, a natural number is presented by means of a numeral. In fact, 
the most immediate ways in which a natural number is presented to people from contemporary 
Western culture is by means of an ordinary decimal numeral. So assume that our robots too 
operate with this system of numerals. However, no system of numerals can be identified with the 
natural numbers. For it is part of ordinary arithmetical competence that the natural numbers are 

14 Precisely how well distinguished must the boundaries ofa body be? Presumably, a shedding cat is still a physical body 
despite all the hairs that are in the process offalling off. Although I doubt that our question allows of any precise answer, 
I am hopeful that an approximate answer can be given by empirical investigation of ordinary people's concept ofa body. 

15 This section and the next draw on my [forthcoming], especially Sections 3 and 4. The most influential attempt to 
account for reference to natural numbers by means of equivalence relations on other entities is due to Wright ([ 1983]); see 
also [HalelWright 2001], especially the Introduction. Their attempt differs from mine in two main respects. Firstly, they 
take natural numbers to be presented by means of concepts, and they take the equivalence relation on such presentations 
to be that of one concept's being in one-to-one correspondence with another. Secondly, they deny that their account 
brings with it any sort of reductionism, whereas I argue in the next section that mine does. 
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"notation independent," in the sense that they can be denoted by different systems of numerals. 
Even people with a very rudimentary knowledge of arithmetic know that the natural numbers can 
be denoted not only by ordinary decimal numerals but also by their counterparts in written and 
spoken English (and in other natural languages) and by sequences of strokes (perhaps grouped 
in fives). Many people also know alternative systems of numerals such as the Roman numerals 
and the numerals of position systems with bases other than ten, such as binary and hexadecimal 
numerals. 

I will here take a numeral to be any object that occupies a position in a well-ordering. In fact, 
since it is convenient to make the well-ordering explicit, I will take a numeral to be an ordered 
pair (u, R), where u is the numeral proper and R the well-ordering in which u occupies a position. 
On this very liberal view of the matter, the numeral proper u need not be a syntactical object, 
at least not in any traditional sense. (For instance, if a pre-historic shepherd counts his sheep by 
matching them with cuts in a stick, then these cuts count as numerals.) Moreover, since R can be 
any well-ordering, these numerals refer to ordinal numbers but not necessarily to finite ones. 

Next, we need to equip our robot with a general condition for when two numerals determine 
the same number. A moment's reflection shows that two numerals (u, R) and (u', R') determine 
the same number just in case u and u' occupy analogous positions in their respective orderings; 
for instance, that both occupy the 17th position. This can easily be given a precise mathematical 
definition and (at least in principle) implemented in our robot. Let"" be the resulting equivalence 
relation on numerals. I" This equivalence relation determines a function N that maps a numeral 
to the number that it determines: 

(Id-N) N(u, R) = N(u', R') -<-+ (u, R) "" (u', R') 

The numbers to which the numerals are mapped are not equivalence classes of numerals but form 
their own category of objects. (Compare the physical bodies to which the function B from the 
previous section maps parts of physical stuff. These physical bodies are not equivalence classes 
of their parts but form a distinct category of objects.) And the criterion of identity (Id-N) tells 
us how these objects are identified, just like the criterion of identity (Id-B) tells us how physical 
bodies are identified. Let 0 (for "ordinal") be a predicate that holds of all and only objects in the 
range of N. 

Next we want to define a relation p# that holds between two numerals (u, R) and (u',R') 

just in case the number determined by the former immediately precedes the number determined 
by the latter. One easily sees that the right definition is that u' has an R' -predecessor v such that 
(u, R) "" (v, R'). It is then easy to verify that p# doesn't distinguish between numerals that are 
equivalent under "". This means that the relation p" on numerals induces a predecessor relation 
P on the ordinals themselves, defined by 

(Def-P) P(N(u, R), N(u', R'» -<-+ p#«u, R), (u', R'». 

Finally, following the ordinary practice of counting, we let I be the first number. We may for 
instance define I as N (' I " D), where D is the familiar well-ordering of base 10 numerals for 
positive integers. 

16 The relation ~ may be taken to be a linguistic object, not a properly mathematical one, by identifying it with a formula 
with two free variables in an interpreted language. 
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With these definitions, it is easy to establish some of the basic axioms for ordinal numbers, 
for instance: 

(01) 0(1) 
(02) ~3xP(x, 1) 
(03) P(x, y) /\ P(x', y) -4 X = x' 

(04) P(x,y)/\ P(x,y')---> y=y' 

For instance, (03) follows from the fact that any two numerals that precede a third are equivalent 
under "", which means that they determine the same ordinal. 

However, I have not yet said anything very substantial about how many ordinals there are. 
For the purpose of describing the natural numbers (which I identify with the finite ordinals), the 
only such principle we need is an axiom that ensures the existence of successors: 

(05) Vx(O(x) ---> 3yP(x,y» 

This axiom doesn't follow from what has been said so far about the numerals. But the axiom 
can be motivated as follows. Begin with the extremely plausible principle that for any numeral, 
there could be (roughly, that it is consistent that there is) another numeral directly succeeding it. 
By (Oef-P), this means that for any ordinal, there could be another ordinal directly succeeding 
it. From this we get (05) by invoking the principle that any ordinal that could exist, does 
exist. 

Finally, we need to specify some condition offinitude with which to restrict the ordinals such 
that we get all and only the natural numbers but no infinite ordinals. I claim that this condition is 
simply that mathematical induction should be valid of the natural numbers. That is, an ordinal n 
is a natural number just in case the following schema holds for any predicate ¢: 

(MI) ¢(1) /\ VxVy[¢(x) /\ P(x, y) ---> ¢(Y)l ---> ¢(n). 

Our characterization of the natural numbers has thus allowed us to derive all the familiar axioms 
of Peano Arithmetic. 

6 The "Thinness" r1 the Natura( Numbers 

I will now explain a fundamental difference between physical bodies and natural numbers that 
has to do with the ways in which these objects possess properties. Consider the question whether 
a physical body x has some property, say being round. To answer this question, it isn't sufficient 
to consider any proper part of x. Whether a body is round isn't determined by any of its proper 
parts but information is needed about the entire body. And there is nothing unusual about this 
case. It is in general true that, in order to determine whether a body x has some property G (such 
as a particular shape or mass), one needs information about many or all parts of x. The question 
whether a body has some property G cannot in general be reduced to a question about anyone 
of its proper parts. This means that a body can have properties in an irreducible way, that is, in a 
way that isn't reflected in any property of anyone of its proper parts. 17 

17 The converse IS true as well (although less important to the present discussion): a proper part can have properties that 
aren't reflected in any properties of the body of which it fonns a part. 
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The situation is very different with the natural numbers. Consider the question whether a 
natural number n has some arithmetical property G, say the property of being even. In this 
case, unlike the situation of roundness of physical bodies, a standard presentation of n by some 
numeral (say a standard decimal numeral) suffices to answer the question. There is no need to 
examine other presentations of the number n or the number itself. In fact, the question whether 
the natural number n possesses an arithmetical property G can always be reduced to a question 
about the numeral by which the number n is presented. For all the usual arithmetical properties 
are definable (in second-order logic) from the predecessor relation P. And as (Def-P) shows, 
the question of whether P holds between two natural numbers is itself reducible to the question 
whether the relation p# holds between certain numerals. 

This means that on the view I have defended, the natural numbers are "impoverished" 
compared to numerals. For whenever a natural number n possesses some arithmetical property, 
its doing so is inherited from the fact that the numerals that present n possess some related 
property. Natural numbers are therefore "thinner" than the numerals that present them. In fact, 
since questions about natural numbers can be reduced to questions about the numerals that present 
them, this opens the possibility of a form of reductionism about natural numbers. 

Given the possibility of this reductionism, does it still make sense to say that numerals refer 
to natural numbers? In light of Section 3, this question is best understood as asking whether it 
still makes sense to ascribe semantic values to numerals. I will now argue that this does still 
make sense. One observation that supports this claim is the following. The default assumption 
is that expressions that belong to the same syntactic category-in this case, the class of singular 
terms-should belong to the same semantic category as well. And indeed, when we analyze 
English and the language of arithmetic, singular terms such as '5' and' 1001' seem to function 
just like singular terms such as 'Alice' and 'Bob.' But it is uncontroversial that singular terms 
such as 'Alice' and 'Bob' have semantic values, namely the physical bodies that they refer to. 
This provides at least some reason to think that arithmetical singularterms such as '5' and' 100 I' 
have semantic values as well. 

I! may be objected that this default assumption is overridden by our discovery that questions 
about natural numbers can be reduced to questions about the associated numerals. Since this 
reduction shows that it suffices to talk about the numerals, the objection continues, there is no 
need to ascribe any sort of semantic values to numerals. However, this objection assumes that 
the structure responsible for the reduction that we have discovered is also the kind of structure 
that matters for semantic analysis. I argue in other work that this condition is not met and that the 
objection therefore fails.'8 Taking a broader look at the issue, this shouldn't be very surprising. 
For not every kind of structure that is involved in the phenomenon of reference is semantic 
structure. For instance, reference is often based on perception, and perception is undoubtedly 
a complicated process that involves all kinds of structuring of sensory information. But this 
structure will typically not be semantic structure. Although perception is often presupposed by 
the relation of reference and thus also by semantics, perception and its structure aren't thereby 
included in semantics. 

If I am right that the objection fails, then it still makes sense to ascribe semantic values to 
numerals. And since these semantic values are nothing other than the natural numbers, this means 
that the numerals do after all refer to natural numbers. 

18 See [Linnebo forthcoming], Section 4. 
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7 Back to the Two Cha{{en!jes 

I have argued that natural numbers are fundamentally different from physical bodies by being so 
"thin." Can this be used to answer the two challenges discussed in Section 2? I proceed in reverse 
order. 

The second challenge was to explain why it is reasonable to operate with such onto logically 
"extravagant" methods as those of modern mathematics rather than the more "parsimonious" 
methods found in the empirical sciences. What is it about mathematical objects that makes it 
appropriate to postulate such objects so much more lightly than we postulate physical objects? 
When we translate talk about objects into talk about semantic values, the question becomes why so 
much less is required for a mathematical singular term to have a semantic value than for a physical 
singular term to have one. This is a question that we are now well equipped to answer. Ifpure math
ematics is at all like arithmetic, then very little is required for a mathematical singular term to have 
a semantic value. All that is required is that the term be associated with some (possibly syntactic) 
object that serves as a presentation of some semantic value, and that we have some principled and 
well-founded way of telling when two such presentations determine the same semantic value. 
This supports a view of mathematics like the one expressed in the passage from Cantor quoted in 
Section 2. 

The first challenge was to explain how knowledge of mathematical objects is possible 
without any causal interaction with such objects. How can the methods by which we arrive at 
our mathematical beliefs be sensitive to the facts that are involved in making these beliefs true? 
Let's begin by considering a simple belief about the physical world such as 'This body is round' 
(pointing at a near-perfect globe). The truth of this belief l9 depends on two things: first, that the 
belief has some particular proposition as its semantic content, and second, that the world is such 
as to make this proposition true. I will now describe these two kinds of dependence and explain 
how both contribute to the formation of true beliefs. 

Let's begin with the first kind of dependence. Why does the belief have this particular 
proposition as its content? On the account I have been developing, this question can be reduced 
to the question why the various simple constituents of the belief have the semantic values that 
they happen to have. This is a question about which I have had quite a lot to say. I have proposed 
a model of how the expression 'this body' comes to refer to a particular body, in this case the 
globe. This involves facts about the causal transmission of information from the globe to our 
sense organs and about this information's being put together in a way that is sensitive to the 
natural spatiotemporal connectedness of the chunks of physical stuff from which it derives.2o 

Since these facts make it the case that the belief has some particular proposition as its content, 
they contribute semantically to the truth of the belief in question. 

The second kind of dependence requires less comment. Since the content of the belief in 
question is the proposition that the relevant globe is round, this globe's actually being round 
obviously contributes to making the belief true. Now, the fact that the globe is round isn't among 

19 Here and in what follows I use the word 'belief' to mean a particular sort ofintemal psychological state, considered in 
abstraction from any propositional content that this state may have. This is thus a syntactic, rather than semantic, notion 
of belief. 

20 A story can also be told about how 'is round' comes to have its semantic value. This story will crucially involve the 
fact that our subject takes this predicate to apply to all and only round things. 
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the facts that contribute semantically to the truth of the belief in question. I will therefore say 
that it contributes non-semantically. Note that we are not distinguishing between two kinds of 
facts-the semantic and the non-seman tic-but rather between two kinds of contributions that a 
unique realm of facts can make to the truth of a belief. 

Facts that contribute to making a belief true in either of these ways typically also contribute to 
an agent's formation of this belief. Let's begin with the facts that contribute non-semantically
in our example, the globe's actually being round. This fact obviously contributes to the agent's 
formation of the belief in question. Had this globe been seriously dented, say, the agent would 
have noticed and therefore not formed the belief in question. What about the facts that contribute 
semantically? Recall that these are facts about the agent's being in perceptual contact with the 
globe and about the resulting perceptual information's being put together in accordance with 
the principle (Id-B) (see the end of section 4). These facts too contribute to the formation of 
the belief. Had the agent been in perceptual contact with another body, or had he put together 
pieces of perceptual information in accordance with some principle other than (Id-B), he would 
most likely not have formed the belief in question2l So in this example, a complete account 
of why the agent formed the belief in question must appeal both to the facts that contribute 
semantically to the truth of the belief and to the facts that contribute non-semantically. 

I tum now to a very simple mathematical example, involving the mathematical belief that 
2 directly precedes 3. (Once this example is in place, more complex examples can be given by 
exploiting the fact that other arithmetical relations are definable from the predecessor relation.) 
In this example too there are facts that ensure that the constituents of the belief have the semantic 
values that they happen to have. First there is the fact that the numerals '2' and '3' occupy the 
second and third positions of the standard sequence of decimal numerals. Then there is the fact 
that the agent takes two numerals to determine the same number just in case they stand in the 
equivalence relation "". Finally there is the fact that the agent takes the predecessor relation P's 
holding of two natural numbers to be a matter of the associated numerals' standing in the relation 
p', as described in (Def-P). Unlike the previous example, however, there are no facts whose 
contribution to the truth of the belief that 2 directly precedes 3 is completely non-semantic. This 
kind of contribution to truth has vanished entirely.22 

Fortunately, the facts that contribute semantically to the truth of the belief that 2 directly 
precedes 3 also suffice to explain why an agent formed this belief. Because the agent treats the 
predicate 'directly precedes' in accordance with (Def-P), he regards the belief that 2 directly 
precedes 3 as true just in case the associated numerals stand in the relation p'. And because he 
regards the associated numerals '2' and '3' as ordinary decimal numerals, he deems that they 
indeed stand in the relation p'. Consequently he regards the belief as true. Had the agent not 
treated the predicate 'directly precedes' in accordance with the definition (Def-P), or had he not 
taken the numerals '2' and '3' to be ordered as decimal numerals, he would not have formed the 
belief. 

21 Much the same goes for the facts involved in giving the predicate 'is round' its semantic value. 

22 Whether or not this makes the belief in question analytic will depend on how one understands the notion ofanalyticity. 
I would deny that the belief is analytic in the traditional sense that anyone who grasps the belief can see it to be true by 
conceptual analysis alone. For the semantic facts that I have been talking about need not be consciously accessible even 
to people with a perfect grasp of the belief. (Similarly, the semantic facts involved in reference to physical bodies need 
not be consciously accessible even to people who are fully competent with such reference.) 
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Summing up, it turns out that the very same facts that make our sample mathematical belief 
true are also responsible for making the agent form the belief. The agent's belief is therefore 
appropriately sensitive to the truth of the belief, which answers the first challenge. 

8 Conc(usion 

I began by outlining two conflicting views on mathematics: first Frege's argument that there 
exist abstract mathematical objects, and then two serious challenges to the idea that there could 
exist such objects. To make progress, I suggested that we must reject the standard conception of 
objecthood (which is modeled on the notion of a physical body) and instead use the technical 
notion of a semantic value to explicate the notion of objecthood. I then gave an account of 
reference to physical bodies, based on the idea that we perceptually interact with parts of such 
bodies and that we operate with an equivalence relation which tells us when two such parts 
belong to the same body. I next suggested that a similar account is possible of reference to natural 
numbers: natural numbers are presented to us by means of numerals, and we operate with an 
equivalence relation that tells us when two such numerals determine the same number. Natural 
numbers are on this view much "thinner" than physical bodies, in the sense that all properties 
of a natural number can be reduced to properties of the corresponding numeral, whereas not 
all properties of a physical body can be reduced to properties of its individual parts. I finally 
observed that on this conception of numbers (and of mathematical objects more generally) as 
"thin," we are able to both agree with Frege's argument and answer the two challenges to which 
this argument gives rise. 

This means that we may continue to use platonistic language when thinking, talking and 
teaching about mathematics. For there is a perfectly legitimate sense in which we succeed in 
referring to mathematical objects. And there is nothing scientifically suspect about this form of 
platonism-at least not when the mathematical objects are understood as "thin." 

Acknowledgements Thanks to Matti Eklund, Frode Kjosavik, and the editors ofthis volume for 
very valuable comments on an earlier version. 
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11 
When is One Thing Equa{ to Some Other Thing? 

From tlie Editors 

Barry Mazur 
Gerhard Gade University Professor 

Harvard University 

You may wonder why this chapter by Barry Mazur is in this section on the nature of mathematical 
objects. We have put it here because, in order to have an object, you need to be able to distinguish 
itfrom other objects that it is not identical to-as Cantor said, when d,,/ining tran~/inite numbers, 
objects must be "definite, well-distinguished objects of our perception or of our thought." We must 
be able to tell when a mathematical object given one way is the same as that given another way: 
"the integer that is the successor of 1 " and "the only even prime," for example. The (general) 
solution to this problem is less obvious than it might initially appear. and this chapter is certainly 
the most mathematically sophisticated contribution to the question that we have seen. 

In a way it is a continuation of the discussions on structuralism by the philosophers in this 
section, but now via category theory. It also leads naturally into the final section of this book, on 
the nature of mathematics. 

Barry Mazur is the Gerhard Gade University Professor in the Department of Mathematics at 
Harvard University (www.math.harvard.edu/~mazur/) and a member of the National Academy 
of Sciences. His early work was in geometric topology, but he soon started working in algebraic 
geometry and number theory. In addition to his many mathematical papers, he has written several 
articles about the philosophy of mathematics, including "On the Absence of Time in Mathematics," 
For the Learning of Mathematics (2004) and "Conjecture," Synthese (1997). His mathematical 
expository work has won him prizes, including the Chauvenet prize in 1994 for "Number Theory 
as Gadfly" (American Mathematical Monthly, 1991). 

Many of his expository articles include substantial philosophical content, particularly "How 
did Theaetetus prove his Theorem?" to be published in a Festschrift in honor of Eva Brann, "Per
turbations, deformations, and variations (and 'near-misses') in geometry, physics, and number 
theory" in the issue of the Bulletin of the A.M.S. in honor of Rene Thom (2004), an article with 
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Federica la Nave, "Reading Bombelli," The Mathematical Intelligencer (2002), and his book 
Imagining Numbers (particularly the square root of minus fifteen) (2003). 

In memory of Saunders Mac Lane 

1 T/ie Awkwardness d Equant!} 

One can't do mathematics for more than ten minutes without grappling, in some way or other, 
with the slippery notion of equality. Slippery, because the way in which objects are presented to 
us hardly ever, perhaps never, immediately tells us-without further commentary-when two of 
them are to be considered equal. We even see this, for example, if we try to define real numbers 
as decimals, and then have to mention aliases like 20 = 19.999 ... , a fact not unknown to the 
merchants who price their items $19.99. 

The heart and soul of much mathematics consists of the fact that the "same" object can be 
presented to us in different ways. Even if we are faced with the simple-seeming task of "giving" a 
large number, there is no way of doing this without also, at the same time, giving a hefty amount 
of extra structure that comes as a result of the way we pin down-or the way we present--our 
large number. If we write our number as 1729 we are, sotto voce, offering a preferred way of 
"computing it" (add one thousand to seven hundreds to two tens to nine). Ifwe present itas I + 123 

we are recommending another mode of computation, and if we pin it down-as Ramanujuan 
did- as the first number expressible as a sum of two cubes in two different ways, we are being 
less specific about how to compute our number, but have underscored a characterizing property 
of it within a subtle diophantine arena. 

The issue of "presentation" sometimes comes up as a small pedagogical hurdle-no more 
than a pebble in the road, perhaps, but it is there-when one teaches young people the idea of 
congruence mod N. How should we think of 1, 2, 3, ... mod 691? Are these ciphers just members 
of a new number system that happens to have similar notation as some of our integers? Are we 
to think of them as equivalence classes of integers, where the equivalence relation is congruence 
mod 691? Or are we happy to deal with them as the good old integers, but subjected to that 
equivalence relation? The eventual answer, of course, is: all three ways-having the flexibility 
to adjust our viewpoint to the needs of the moment is the key. But that may be too stiff a dose of 
flexibility to impose on our students all at once. 

To define the mathematical objects we intend to study, we often-perhaps always-first 
make it understood, more often implicitly than explicitly, how we intend these objects to be 
presented to us, thereby delineating a kind of super-object; that is, a species of mathematical 
objects garnished with a repertoire of modes of presentation. Only once this is done do we try 
to erase the scaffolding of the presentation, to say when two of these super-objects-possibly 
presented to us in wildly different ways-are to be considered equal. In this oblique way, the 
objects that we truly want enter the scene only defined as equivalence classes of explicitly 
presented objects. That is, as specifically presented objects with the specific presentation ignored, 
in the spirit of "ham and eggs, but hold the ham." 

This issue has been with us, of course, forever: the general question of abstraction, as 
separating what we want from what we are presented with. It is neatly packaged in the Greek 
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verb aphairein, as interpreted by Aristotle! in the later books of the Metaphysics to mean simply 
separation: if it is whiteness we want to think about, we must somehow separate it from white 
horse, white house, white hose, and all the other white things that it invariably must come along 
with, in order for us to experience it at all. 

The little trireme of possibilities we encounter in teaching congruence mod 691 (i.e., is S mod 
691 to be thought of as a symbol, or a stand-in for any number that has remainder S when divided 
by 691, or should we take the tack that it (i.e., "S mod 691 ") is the (equivalence) class of all 
integers that are congruent to S mod 691 '1) has its analogue elsewhere-perhaps everywhere-in 
mathematics. Familiarity with a concept will allow us to finesse, or ignore, this, as when we 
are happy to deal with a fraction a! b ambiguously as an equivalence class of pairs of integers 
(a, b) with b '" 0, where the equivalence relationship is given by the rule (a, b) ~ (a', b') if and 
only if ab' = a' b, or as a particular member of this class. Few mathematical concepts enter our 
repertoire in a manner other than ambiguously a single object and at the same time an equivalence 
class of objects. This is especially true for the concept of natural number, as we shall see in the 
next section where we examine the three possible ways we have of coming to terms with the 
number S. 

One of the templates of modem mathematics, category theory, offers its own formulation 
of equivalence as opposed to equality; the spirit of category theory allows us to be content to 
determine a mathematical object, as one says in the language of that theory, up to canonical 
isomorphism. The categorical viewpoint is, however, more than merely "content" with the in
evitability that any particular mathematical object tends to come to us along with the contingent 
scaffolding of the specific way in which it is presented to us, but has this inevitability built in 
to its very vocabulary, and in an elegant way, makes profound use of this. It will allow itself 
the further flexibility of viewing any mathematical object "as" a representation of the theory 
in which the object is contained to the proto-theory of modern mathematics, namely, to set 
theory. 

My aim in this article is to address a few points about mathematical objects and equality 
of mathematical objects following the line of thought of the preceding paragraph. I see these 
"points" bome out by the doings of working mathematicians as they go about their daily business 
thinking about, developing, and communicating mathematics, but I haven't found them specifi
cally formulated anywhere. 2 I don't even see how questions about these issues can even be raised 
within the framework of vocabulary that people employ when they talk about the foundations 
of mathematics for so much of the literature on philosophy of mathematics continues to keep to 
certain staples: formal systems, consistency, undecidability, provability and unprovability, and 
rigor in its various manifestations. 

To be sure, people have exciting things to talk about, when it comes to the list oftopics I have 
just given. These issues have been the focus of dramatic encounters-famous "conversations," 
let us call them-that represent turning points in our understanding of what the very mission 
of mathematics should be. The ancient literature-notably, Plato's comment about how the 

I Aristotle first uses this term in Book XI Chap 3 1061a line 29 of the Metaphysics; his discussion in Book XIII, Chap 2 
begins to confront some of the puzzles the term poses. 

2 The faintest resonance, though, might be seen in the discussion in Books 13 and 14 of Aristotle's Metaphysics which 
hits at the perplexity of whether the so-called mathematicals (that ostensibly play their role in the platonic theory of 
forms) occur uniquely for each mathematical concept, or multiply. 
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mathematicians bring their analyses back to the hypotheses that they frame, but no further
already delineates this mission3 . The early modem literature---epitomized by the riveting use 
that Kant made of his starkly phrased question "how is pure mathematics possible?"--offers a 
grounding for it. In the century just past, we have seen much drama regarding the grounds for 
mathematics: the Frege-Russell correspondence, the critique that L.E.J. Brouwer made of the 
modem dealings with infinity and with Cantor's set theory, Hilbert's response to this critique, 
leading to his magnificent invention of formal systems, and the work of Go del, itself an extraordi
nary comment on the relationship between the mission of mathematics and the manner in which 
it formulates its deductions. 

Formal systems remain our lingua franca. The general expectation is that any particular work 
we happen to do in mathematics should be, or at least should be capable of being, packaged within 
some formal system or other. When we want to legitimize our modes of operation regarding 
anything, from real numbers to set theory to cohomology-we are in the habit of invoking 
axiomatic systems as standard-bearer. But when it comes to a crisis of rigorous argument, the 
open secret is that, for the most part, mathematicians who are not focussed on the architecture 
of formal systems per se, mathematicians who are consumers rather than providers, somehow 
achieve a sense of utterly firm conviction in their mathematical doings, without actually going 
through the exercise of translating their particular argumentation into a brand-name formal 
system. 

If we are shaky in our convictions as to the rigor of an argument, an excursion into formal 
systems is rarely the thing that will shore up faith in the argument. To be sure, it is often very 
helpful for us to write down our demonstrations very completely using pencil and paper or our all
efficient computers. In any event, no matter how wonderful and clarifying and comforting it may 
be for mathematician X to know that all of his or her proofs have, so far, found their expression 
within the framework of Zermelo-Frankel set theory, the chances are that mathematician X, if 
quizzed on what-exactly-those axioms are, might be at a loss to answer. 

Of course, it is vitally important to understand, as fully as we can, what tools we need to as
semble in order to justity our arguments. But to appreciate, and discuss, a grand view of the nature 
of mathematical objects that has taken root in mathematical culture during the past half-century, 
we must also become conversant with a language that has a thrust somewhat different from the 
standard fare of foundations. This newer vocabulary has phrases like canonical isomorphism, 
unique up to unique isomorphism, functor, equivalence of category and has something to say 
about every part of mathematics, including the definition of the natural numbers. 

2 Difining Natura(Numbers 

Consider natural numbers; for instance, the number 5. Here are three approaches to the task of 
defining the number 5 . 

• We could, in our effort to define the number 5, deposit five gold bars in, say, Gauss's 
observatory in Gottingen, and if ever anyone wants to determine whether or not their set 

] "I think you know that students of geometry, calculation, and the like hypothesize the odd and the even, the various 
figures, the three kinds of angles, and other things akin to these in each of their investigations, as ifthey know them. They 
make these their hypotheses and don't think it necessary to give any account of them, either to themselves or others, as 
if they were clear to everyone." -[Plato 1997] RepUblic Book VI 51Oe. 



225 

has cardinality five, they would make a quick trip to Gottingen and try to put the elements 
oftheir set in one-one correspondence with the bullion deposited there. Of course, there are 
many drawbacks to this approach to defining the number "five," the least of which is that 
it has the smell of contingency. Let us call this kind of approach the bureau of standards 
attitude towards definition: one chooses a representative exemplar of the mathematical 
object one wishes to define, and then gives a criterion for any other mathematical object 
to be viewed as equal to the exemplar. There is, after all, something nice and crisp about 
having a single concrete exemplar for a mathematical concept . 

• The extreme opposite approach to this is Frege's: define a cardinality (for example, five) 
as an equivalence class in the set of all sets, the equivalence relation A ~ B being the 
existence of a one-one correspondence between A and B. The advantage, here, is that 
it is a criterion utterly devoid of subjectivity: no set is preferred and chosen to govern 
as benchmark for any other set; no choice (in the realm of sets) is made at all. The 
disadvantage, after Russell, is well known: the type of universal quantification required 
in Frege's definition, at least when the equivalence classes involved are considered to be 
sets, leads to paradox. The Frege-Russell correspondence makes it clear that one cannot, 
or at least one should not, be too greedy regarding unconditional quantification. To keep 
clear of immediate paradox, we introduce the word class into our discussion, amend the 
phrase set of all sets to class of all sets, and hope for the best. 

• A fine compromise between the above two extremes is to do what we all, in fact, do: a 
strategy that captures the best features of both of the above approaches. What I mean here, 
by the way, is to indicate what we do, rather than what we say we do when quizzed about our 
foundations. I allow my notation 1,2,3,4,5,6, ... to play the role of my personal bureau
of-standards within which I happily make my calculations. I think of the set {I, 2, 3, 4, 5], 
for example, as a perfectly workable exemplar for quintuples. Meanwhile you use your 
notation I', 2', 3', 4', 5', 6', ... (or whatever it is) to playa similar role with respect to your 
work and thoughts, the basic issue being whether there is a faithful translation of structure 
from the way in which you view natural numbers to the way I do. 

Equivalence (of structure) in the above "compromise" is the primary issue, rather than equal
ity of mathematical objects. Furthermore, it is the structure intrinsic to the whole gamut of natural 
numbers that plays a crucial role there. For only in terms of this structure (packaged, perhaps, 
as a version of Peano's axioms) do we have a criterion to determine when your understanding 
of "natural numbers," and mine, admit "faithful translations" one to another. A consequence of 
such an approach-which is the standard modus operandi of mathematics ever since Hilbert-is 
that any single mathematical object, say the number 5, is understood primarily in terms of the 
structural relationship it bears to the other natural numbers. Mathematical objects are determined 
by-and understood by-the network of relationships they enjoy with all the other objects of their 
species. 

3 0f!jects versus Structure 

Mathematics thrives on going to extremes whenever it can. Since the "compromise" we sketched 
above has "mathematical objects determined by the network ofrelationships they enjoy with all 
the other objects of their species," perhaps we can go to extremes within this compromise, by 
taking the following further step. Subjugate the role of the mathematical object to the role of its 
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network of relationships -or, a further extreme-simply replace the mathematical object by this 
network. 

This may seem like an impossible balancing act. But one of the elegant~and surprising
accomplishments of category theory is that it perfonns this act, and does it with ease. 

4 Category Theory as Ba(ancing Act Rather Than "Foundations" 

There are two great modern fonnulas-as I'll call them-for packaging entire mathematical 
theories. There is the concept of formal system, following David Hilbert, as discussed above. 
There is also the concept of category, the great innovation of Samuel Eilenberg and Saunders 
MacLane. Now, these two fonnulas have vastly different intents. 

A formal system representing a mathematical theory has, within it, all of the mechanics and 
vocabulary necessary to discuss proofs, and the generation of proofs, in the mathematical theory; 
indeed, that is mainly what a fonnal system is all about. 

In contrast, a category is quite sparse in its vocabulary: it can say nothing whatsoever about 
proofs; a category is a mathematical entity that, in the most succinct oflanguages, captures the 
essence of what a mathematical theory consists: objects of the theory, allowable transformations 
between these objects, and a composition law telling us how to compose two transfonnations 
when the range of the first transfonnation is the domain of the second. 

It stands to reason, then, that the concept of category cannot provide us with anything that 
goes under the heading of "foundations." Nevertheless, in its effect on our view of mathematical 
objects it plays a fine balancing role: it extracts-as I hope you will see-the best elements 
from both a Fregean and a bureau-of-standards attitude towards the fonnulation of mathematical 
concepts. 

5 Examy(e: The Category if Sets 

Even before I describe category more fonnally, it pays to examine the category of sets as an 
example. The category of sets, though, is not just "an" example, it is the proto-type example; it 
is as much an example of a category as Odette is un amour de Swann. 

The enonnous complexity to set theory is one of the great facts of life of mathematics. I 
suppose most people before Cantor, ifthey ever had a flicker of a thought that sets could occur at 
all as mathematical objects, would have expected that a rather straightforward theoretical account 
of the notion would encompass everything that there was to say about those objects. As we all 
know, nothing of the sort has transpired. 

The famous attitude of St. Augustine towards the notion of "time," (i.e., "What then is time'! 
If no one asks me, I know what it is. If I wish to explain it to him who asks, I do not know.") 
mirrors my attitude-and I would suppose, most people's attitude-toward sets. If I retain my 
naive outlook on sets, all is, or at least seems to be, well; but once I embark on fonnulating 
the notion rigorously and specifically, I am either entangled, or else I am forced to make very 
contingent choices. 

Keeping to the bare bones, a set theory will consist of 

• the repertoire of elements of the theory, and if! wish to refer to one of them I will use a 
lower case symbol, e.g., a, b, 
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• the repertoire of sets of the theory, and for these I will use upper case symbols, e.g., 
X,Y, ... 

• the relation of containment telling us when an element x is contained in a set X (x E X); 
each set X is extensionally distinguished by the elements, x E X, that are in it. 

• the mappings f : X ->- Y' between sets of the theory, each mapping f uniquely char
acterized by stipulating for every x E X the (unique) image, f(x) E Y, of that element 
x. 

• the guarantee that if f : X ->- Y and g : Y ->- Z are mappings in my theory, I can form the 
composition g . f : X ->- Z by the rule that for any element x E X the value (g . f)(x) E 

Z is just g(f(x)). 

We neither lose nor gain anything by adding the requirement that, for any object X, the 
identity mapping Ix : X ->- X is a bona fide mapping in our set theory, so for convenience 
let us do that. Also, we see that our composition rule is associative in the standard sense of 
multiplication, i.e., (h· g). f = h . (g. f), when these compositions can be made, and that our 
identity mappings play the role of "unit." 

Much has been omitted from this synopsis-all traces of quantifications, for example
and certain things have been hidden. The repeated use of the word repertoire is already a 
hint that something big is being hidden. It would be downright embarrassing, for example, to 
have replaced the words "repertoire" in the above description by "set," for besides the blatant 
circularity, we would worry, with Russell, about what arcane restrictions we would have then to 
make regarding our universal quantifier, once that is thrown into the picture. "Repertoire" is my 
personal neologism; the standard word is class and the notion behind it deserves much discussion; 
we will have some things to say about it in the next section. You may notice that I refrained from 
using the word "repertoire" when talking about mappings. A subtle issue, but an important one, 
is that we may boldly require that all the mappings from a given set X to a given set Y form a 
bona fide set in our theory, and not merely an airy repertoire. This is a source of power, and we 
adopt it as a requirement. Let us refer, then, to a theory such as we have just sketched as a bare 
set theory. 

A bare set theory can be stripped down even further by forgetting about the elements and a 
fortiori the containment relations. What is left? 

We still have the objects of the theory, i.e., the repertoire (synonymously: class) of its sets. 
For any two sets X and Y we have the set of mappings from Xto Y; and for any three sets X, Y, Z 
and two mappings f : X ->- Y and g : Y ->- Z we have the mapping that is the composition of 
the two, g. f : X ->- Z, this composition rule admitting "units" and satistying the associative 
law. 

This further-stripped-down bare set theory is our first example of a category: it is the 
underlying category of the bare set theory. 

The concept of class which will occur in the definition of category, and has already occurred 
in our proto-example, now deserves some discussion. 

6 Class as a Li6rary With Strict Ru(esJor Taking Out Books 

I'm certain that there are quite precise formulations of the notion of class, but here is a ridiculously 
informal user's-eye-view of it. Imagine a library with lots of books, administered by a somewhat 
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stern librarian. You are allowed to take out certain subcollections of books in the library, but not 
all. You know, for example, that you are forbidden to take out, at one go, all the books of the 
library. You assume, then, that there are other sub collections of books that would be similarly 
restricted. But the full bylaws of this library are never to be made completely explicit. This 
doesn't bother you overly because, after all, you are interested in reading, and not the legalisms 
of libraries. 

In observing how mathematicians tend to use the notion class, it has occurred to me that 
this notion seems really never to be put into play without some background version of set theory 
understood already. In short by a class, we mean a collection of objects, with some restrictions 
on which subcollections we, as mathematicians, can deem sets and thereby operate on with the 
resources of our set theory. I'm perfectly confident that this seeming circularity can be-and 
probably has been-ironed out. But there it is. 

7 Category 
A category C is intrinsically a relative notion for it depends upon having a set theory in mind; a 
bare set theory such as sketched above will do. 

Fixing on a "bare set theory," a category C (modeled on this bare set theory) is given by the 
following4 : 

• a class of things called the objects ofC and denoted Ob(C); 
• given any two objects X, Y ofC, a set denoted Morc(X, V), which we think of as the set 

of transformations from the object X to the object Y; we refer to these transformations 
as morphisms from X to Y and usually denote such a morphism f as a labelled arrow 
f: X-+ Y; 

• given any three objects X, Y, Z of C and morphisms f : X -+ Y and g : Y -+ Z we are 
provided with a law that tells us how to "compose" these morphisms to get a morphisms 

g. f: X --> Z. 

Intuitively, we are thinking of f and g as "transformations," and composition of them 
means that we imagine "first" applying f to get us from X to Y and "then" applying g to 
get us from Y to Z. The rule that associates to such a pair (f, g) the composition, 

(j,g) ....... g·f 

we think of as a sort of "multiplication law." 
One also requires that morphisms playing the role of "identity elements" Ix in 

M orc(X, X) with respect to this composition law exist; that is, for any morphism f : X --> 

Y we have f· Ix = f; and similarly, for any morphism e : V --> X we have Ix' e = e. 
Finally the composition law is assumed to be associative, in the evident sense. 

As for the word class that enters into the definition, we will, at the very least, want, for any 
object X in our category, that the singleton set consisting of that object,(X}, be viewed as a bona 
fide set of our set theory. 

4 Category theorists will note that I am restricting my attention to what are called locally small categories. 
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This concept of category is an omni-purpose affair: we have our categories of sets, where the 
objects are sets, the morphisms are mappings of sets; we have the category of topological spaces 
whose objects are the eponymous ones, and whose morphisms are continuous maps. We have 
the algebraic categories: the category of groups where the morphisms are homomorphisms, the 
category of rings with unit element where the morphisms are ring homomorphisms (that preserve 
the unit element), etc. Every branch and sub-branch of mathematics can package their entities 
in this format. In fact, at this point in its career it is hard to say whether the role of category in 
the context of mathematical work is more descriptive, or more prescriptive. It frames a possible 
template for any mathematical theory: the theory should have nouns and verbs, i.e., objects, and 
morphisms, and there should be an explicit notion of composition related to the morphisms; the 
theory should, in brief, be packaged by a category. There is hardly any species of mathematical 
object that doesn't fit into this convenient, and often enlightening, template. 

Template is a crucial feature of categories, for in its daily use, a category avoids any really 
detailed discussion of its underlying set theory. This clever manner in which category theory 
engages with set theory shows, in effect, that it has learned the Augustinian lesson. Category 
theory doesn't legislate which set theory we are to use, nor does it even give ground-rules for 
what "a" set theory should be. As I have already hinted, one of the beautiful aspects of category 
theory is that it is up to you, the category-theory-user to supply "a" set theory, a bare category of 
sets S, for example. A category is a B.Y.O.S.T. party, i.e., you bring your own set theory to it. 
Or, you can adopt an even more curious stance: you can view S as something ofa free variable, 
and consequently, end up by making no specific choice! 

So, for example, "the" category of rings with unit element is, more exactly, a mold that you 
can impress on any bare set theory. To be sure, you want your set theory to be sufficiently rich so 
as to hold this impression: if there were no sets at all in your set theory, you wouldn't get much. 

You might wonder why the framers of the notion of category bothered to use two difficult 
words class and set rather than only one, in their definition. One could, after all, simply require 
thatthere be a set of objects ofthe category, rather than bring in the airy word class. In fact, people 
do that, at times: it is standard to call a category whose objects form a set a small category, 
and these small categories do have their uses. Indeed, if you are worried about foundational 
issues, it is hardly a burden to restrict attention to small categories. But I think the reason 
that the notion of class is invoked has to do with the high ambition we have for categories: 
categories are meant to offer a fluid vocabulary for whole 'fields of mathematics' like group 
theory or topology, with a Fregean desire for freedom from the contingency implicit in subjective 
choices. 

8 Equaflty versus Isomoryliism 

The major concept that replaces equality in the context of categories is isomorphism. An isomor
phism 1 : A --+ B between two objects A, B of the category C is a morphism in the category 
C that can be "undone," in the sense that there is another morphism g : B --+ A playing the 
role of the inverse of I; that is, the composition g/: A --+ A is the identity morphism IA and 
the composition Ig: B --+ B is the identity morphism lB. The essential lesson taught by the 
categorical viewpoint is that it is usually either quixotic, or irrelevant, to ask if a certain object X 
in a category C is equal to an object Y. The query that is usually pertinent is to ask for a specific 
isomorphism from X to Y. 
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Note the insistence, though, on a specific isomorphism; although it may be useful to be merely 
assured ofthe existence of isomorphisms between X and Y, we are often in a much better position 
if we can pinpoint a specific isomorphism f : X ---> Y characterized by an explicitly formulated 
property, or list of properties. In some contexts, of course, we simply have to make do without 
being able to pinpoint a specific isomorphism. If, for example, I manage to construct an algebraic 
closure of the finite field F 2 (i.e., of the field consisting of two elements), and am told that someone 
halfway around the world has also constructed such an algebraic closure, I know that there exists 
an isomorphism between the two algebraic closures but~without any further knowledge-I have 
no way of pinpointing a specific isomorphism. In contrast, desipte my ignorance of the manner 
in which my colleague at the opposite end of the world went about constructing her algebraic 
closure, I can, with utter confidence, put my finger on a specific isomorphism between the group 
ofautomorphisms of my algebraic closure and the group ofautomorphisms of the other algebraic 
closureS. The fact that the algebraic closures are not yoked together by a specified isomorphism 
is the source of some theoretical complications at times, while the fact that their automorphism 
groups are seen to be isomorphic via a cleanly specified isomorphism is the source of great 
theoretical clarity, and some profound number theory. 

A uniquely specified isomorphism from some object X to an object Y characterized by a list 
of explicitly formulated properties-this list being sometimes, the truth be told, only implicitly 
understood-is usually dubbed a "canonical isomorphism." The "canonicality" here depends, of 
course, on the list. It is this brand of equivalence, then, that in category theory replaces equality: 
we wish to determine objects, as people say, "up to canonical isomorphism." 

9 An Examy(e rf Cate9orica(Voca[,u(ary: Initia( Oryects 

We also have at our immediate disposal, a broad range of concepts that can be defined purely in 
terms of the structure that we have already elucidated. For example, if we are given a category C, 
an initial object Z ofC is an object Z that has the property that given any object X ofC there is a 
unique morphism of the category ix : Z ---> X from Z to X; that is, the set Morc(Z, X) consists 
of the single element {ix}. 

Suppose that a category C has an initial object Z. There may, very well, be quite a number 
of objects vying for the role of initial object of this category C. But given another contender, 
call it Z', there is a unique morphism iz. : Z ---> Z' since Z is an initial object, and a unique 
morphism i~ : Z' ---> Z since Z' is. Also, again since Z is an initial object, there can only be one 
morphism from Z to Z, and the identity morphism lz : Z ---> Z fills this role just fine, so we 
must have that i~ . i z . = lz and, for similar reasons, iz . i~. = l z·. In summary, i z· and i~ are 
(inverse) isomorphisms, and provide us with canonical. in fact the only. isomorphisms between 
Z and Z'. One way of citing this is to say, as people do, that the initial object of a category-if 
it exists-is unique up to unique isomorphism. To be sure it is not unique as "object," but rather, 
as "something else." It is this difference, what the "something else" consists in, that we are 
exploring. 

5 for these automorphism groups are both topologically generated by the field automorphism consisting of squaring every 
element. 
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10 Difinin!J tfie Natura( Num6ers as an "Initia( 0f!ject" 

For this discussion, let us start by considering "the" initial object in the category of rings with 
unit. As we shall see, such an initial object does exist, given that the underlying bare set theory 
is not ridiculously impoverished. Such an initial object is "unique up to unique isomorphism," as 
all initial objects are. What is it? 

Well, by the definition of initial object, it must be a ring Z (with a unit element) that admits 
a unique ring homomorphism (preserving unit elements) to any ring with unit. Since the ring 01 
ordinary integers Z has precisely this property (there being one and only one ring homomorphism 
from Z to any ring with unit, the one that sends I E Z to the unit of the range ring) "the" initial 
object in the category of rings with unit is nothing more nor less than Z but, of course, only "up 
to unique isomorphism." 

The previous paragraph situated Z among its fellow rings with unit element. Let us fashion a 
similar discussion for the Natural Numbers, highlighting the type of structure that Peano focussed 
on, when formulating his famous axioms. 

For this, I want to define a category denoted P that I will call the Peano category. 
The objects, Ob(P), of the Peano category consists of triples (X, x, s) where Xis a set, x EX 

is an element (call it a base point), and s : X ~ X is a mapping of X to itself ( a "self-map" 
which we might call the successor map). 

Given two objects X = (X, x, s) and Y = (Y, y, t) ofP, a morphism 

F: (X,x,s) --> (Y,y, t) 

in the category P is a mapping of sets I : X ~ Y with the property that 

• I preserves base points; i.e., f(x) = y, and 
• I respects the self-maps .I' and t, in the sense that I· s = t . I, i.e., we have for all 

elements Z E X, /(s(z)) = t(f(z)). 

We will denote by Morp(X, Y) the set of morphisms of the Peano category from X to Y, 
i.e., the set of such F's. 

For any choice of bare set theory, we have thereby formed the category which we will call 
P. If our bare set theory, on which the category is modeled, is at all decent----e.g., is one of the 
standard set theories containing the set of natural numbers N = {I, 2, 3, ... }, then N may be 
viewed as an object of P, its base point being given by 1 E N, and the self-map s : N ~ N 
being given by the rule that sends a natural number to its successor, i.e., n t-+ n + 1. 

Given any object X = (X, x, .1') in Ob P there is one and only one morphism from N to X 
in the category P; it is given by the mapping of sets sending 1 EN to the base point x E X (for, 
indeed, any morphism in P is required to send base point to base point) and the mapping is then 
"forced," from then on, by the formula I(n + 1) = s/(n). 

In summary, there is a unique morphism in P from the natural numbers to any object in the 
category. That is, the natural numbers, N, is an initial object ofP. 

Moreover, as any initial object in any category is uniquely characterized, up to unique 
isomorphism, by its role as initial object, the natural numbers when viewed as initial object olP 
is similarly pinned down. 

This strategy of defining the Natural Numbers as "an" initial object in a category of (what 
amounts to) discrete dynamical systems, as we have just done, is revealing, I think; it isolates, as 
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Peano himselfhad done, the fundamental role of mere succession in the formulation ofthe natural 
numbers. It also follows the third of the three formats we listed for defining natural numbers; it is, 
in a sense that deserves to be understood, a compromise strategy between a bureau-of-standards 
kind of definition, and a Fregean universal quantification approach. Notice, though, its elegant 
shifting sands. At the very least, we have a definition that depends upon a selection of a set theory, 
as well as an agreement to deal with the object Z pinned down "up to unique isomorphism." We 
have even further to go, but first let us discuss how our definition differs in approach from the 
standard way of expressing Peano's axioms. 

11 Light, Shadow, Dark 
In elementary mathematics classes, we usually describe Peano's axioms that characterize the 
natural numbers roughly as follows. 

The natural numbers N is a set with a chosen element lEN and an injective 
("successor") function s : N -+ N such that I '" seN) and such that mathemati
cal induction holds, in the sense that if P(n) is any proposition which may be 
formulated for all n EN, and for which P(I) is true, and which has the further 
property that whenever Pen) is true then P(s(n)) is true, then Pen) is true for all 
n EN. 

This, of course, has shock-value: it recruits the entire apparatus of propositional verification 
to its particular end. The fact that, especially when taken broadly, mathematical induction has 
extraordinary consequences, is amply illustrated by the ingenious work ofGentzen6 To formalize 
things, we tame these axioms by explicitly providing a setting in which the words proposition 
and true make sense. 

The easiest way of comparing the Peano axioms with the Peano category as modes of defining 
natural Numbers, is to ask what each of these formats 

• shines a spotlight on? 
• keeps in the shadows? 

and 

• keeps in the dark? 

6 Gentzen developed a normal/arm for propositions and deductions in (Peano) arithmetic, and he noted that if it were 
pennitted to employ-in one's demonstrations- a version of mathematical induction that ranges over all demonstrations 
in arithmetic (these demonstrations being organized according to their natural partial ordering) one can actually prove the 
consistency of arithmetic; see [Gentzen 1936] and [Gentzen 1938]. 

To be sure, there is an inherent circularity issue here, beyond the fact that one is calling forth an unusually powerful 
version of mathematical induction, but Gentzen's ideas are not the less interesting for all this. His tactic was to assume 
that the line 

"0 ~ I" 

occurred in a demonstration expressed in nonnal fann, and then to examine what the line immediately preceding 0 = I 
in this putative demonstration could possibly be. From the structure of normalfhrm demonstrations one sees that there 
could be no such line, and as a consequence, one could never deduce a contradiction in arithmetic by a demonstration 
that has been expressed in normal form. 
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Bath ways afpinpainting natural numbers are fastidiausly explicit about the fact that a certain 
discrete dynamical system is invalved: each shine their spatlight on the essence of iteration, the 
successor functian. The Peano axioms do this by focussing in samewhat mare detail an the 
elementary properties of this successor function s, requiring as thase axiams da, that I nat be 
in the image .of s, and that s be injective. The Peana categary approach daes this by simply 
cansidering the entire species .of discrete dynamical systems with chosen base point. 

Bath mades .of definitian need a way .of insisting on a certain "minimality" for the structure 
.of natural numbers that they are developing. The Peano axioms formulate this "minimality" by 
dependence upon the domino effect .of truth in a mathematically inductive cantext. The Peana 
category approach farmulates "minimality" by cansidering the pasitian .of the natural numbers 
as a discrete dynamical system, amang all discrete dynamical systems. 

The Peana axiam approach calls up the full propositional apparatus .of mathematics. But 
the details of the apparatus are kept in the shadaws: you are required ta "bring yaur awn" 
propositional vocabulary if you wish to even begin to flesh out thase axiams. The Peana cat
egary appraach keeps all this in the dark: na mentian whatsaever is made .of propositianal 
language. 

The Peana axiam approach requires-at least explicitly-hardly any investment in some 
specific brand .of set theary. At most one set is on the scene, the set .of natural numbers itself. In 
contrast, the Peano category appraach farces yau ta "bring your awn set theary" ta make sense 
of it. 

When we gauge the differences in variaus mathematical viewpaints, it is a gaad thing to 
contrast them nat .only by what equipment these viewpoints ultimately invoke to establish their 
stance, far ultimately they may very well require exactly the same things, but also to pay attentian 
to the order in which each piece of equipment is introduced and ta the level .of explicitness 
required for it to play its role. 

12 RlJ1resenting One Theory in Another 

If categories package entire mathematical thearies, it is natural ta laak for the shadaw .of .one 
mathematical theory (as packaged by a category C) in another mathematical theary (as packaged 
by a categary D). We might da this by establishing a "mapping" .of the entire categary C ta the 
categary D. Such a "mapping" shauld, .of caurse, send basic features (i.e., .objects, marphisms) 
.of C ta carrespanding features .of the categary D, and mareaver, it must relate the composition 
law afmorphisms in C to the corresponding law for marphisms afD; we call such a "mapping" 
a functor from C to D. 

To give a functar F fram C ta D, then, we must stipulate haw we assaciate ta any abject 
X of C a well-defined abject F(X) .of D, and ta any marphism between .objects f : X --> Y of 
C a well-defined marphism F(/) : F(X) --> F(Y) between corresponding .objects afD; and, as 
mentianed, this relatianship between .objects and marphisms in C ta .objects and marphisms in D 
must respect identity marphisms, and the campasitian laws of these categories 7 • Let us denate 

7 By definition, then, a functor F from C to D associates to each object U of C an object of D, call it F(U); and to 
each morphism h : U ----'" V ofC, a morphism ofD, call it F(h): F(U) ---'I' F(V). If the morphism tu : U -+ U is the 
identity, then we require that F(tu) = IF(u), i.e., that it be the identity morphism of the object F(U) in D. When we say 
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such a functor F from C to '0 by a broken arrow 

F: C - - ---+ D. 

In this way, we have a vocabulary for establishing bridges between whole disciplines of 
mathematics; we have a way of representing grand aspects of, say, topology in algebra (or 
conversely) by establishing functors from the category of topological spaces to the category of 
groups (or conversely): construct the pertinent functors from the one category to the other! 

The easiest thing to do, at least in mathematics, is to forget, and the forgetting process offers 
us some elementary functors, such as the functor from topological spaces to sets that passes from 
a topological space to its underlying set, thereby forgetting its topology. Of course one should 
also pay one's respects to the simplest of functors, the identity Junctor 

Ie 
C-- ---+ C, 

which when presented with any object U of C it gives it back to you intact, as it does each 
morphism. 

The more profound bridges between fields of mathematics are achieved by more interesting 
constructions. But there is a ubiquitous type of functor, as easy to construct as one can imagine, 
and yet extraordinarily revealing. Given any object X in any category C we will construct (in 
section 14) an important functor (we will denote it Fx) from C to S, the category of sets upon 
which C was modeled. This functor Fx will be enough to "reconstruct" X, but-as you might 
guess---only "up to canonical isomorphism." 

But before we do this, we need to say what we mean by a morphism from one functor to 
another. 

13 Mtpying One Functor to Another 

If we are given two functors, 

F, G: C - - ---+ '0, 

by a morphism of functors 

we mean that we are given, for each object U of C, a morphism 

/-tv : F(U) ---+ G(U) 

in the category '0 which respects the structures involved. 8 

that the functor F respects composition laws we mean that if g : V -----')- W is a morphism of C (so that we can fonn the 
composition g . h : U ---+ W in the category C) we have the law 

F(g· h) = F(g)· F(h): F(U) ..... F(W). 

8 in the sense that for every pair of objects U, V orc, and morphism h : U ---+ V in More( U. V) we have the equality 

G(h)· J.Lu = J.Lv F(h), 

both lcft- and right-hand side of this equation being morphisms F(U) ---+ G( V) in the category D. 
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To offer a humble example, for any functor 

F:C - - ---> D, 

we have the identity morphism oj the Junctor F to itself, 

F~F 

235 

which associates, to an object U ofC, the identity morphism IF(u) : F(U) ---> F(U) (this being 
the identity morphism of the object F(U) in the category D). You might think that this example 
is not very enlightening, but it already holds its surprises; in any event, in the next section we 
shall visit an important large repertoire of morphisms of functors. 

Once we have settled on the definition of morphism of functors, our way is clear to define 
isomorphism of functors for the definition of this notion follows the natural format for the 
definition of isomorphism related to absolutely any species of mathematical object. Namely, an 
isomorphism oj the Junctor F : C - - ---> D to the Junctor G : C - - ---> D is a morphism of 
functors JL : F ---> G for which there is a morphism of functors going the other way, v : G ---> F 
such that v . JL : F ---> F and JL . v : G ---> G are equal to the respective identity morphisms (of 
functors). 

To understand the notion of isomorphism oj Junctors I find it particularly illuminating to 
consider, for the various categories of interest, what the automorphisms oj the identity Junctor 
consist of. Note, to take a random example, that if V is the category of vector spaces over a 
field k, then multiplication by any nonzero scalar (i.e., element of k*) is an automorphism of the 
identity functor. That is, let I v : V - - ---> V denote the identity functor; for any fixed nonzero 
scalar A E k* we can form (for all vector spaces U over k) the morphism in V, 

Au: U ---> U 

defined by x t-> A . x, and this data can be thought of as giving an isomorphism of functors 

14 An Of!ject "as" a Functorjrom the Theory-in-Which-it-Lives 
to Set Theory 

Given an object X of a category C, we shall define a specific functor (that we will denote F x) that 
encodes the essence of the object X. The functor F x will, in fact, determine X up to canonical 
isomorphism. 

This functor F x maps the category C to the category S of sets (the same category of sets on 
which C is "modeled," as we've described in section 7 above). 

Here is how it is defined. The functor F x assigns to any object Y of C the set of morphisms 
from X to Y; that is, 

Fx(Y) := Morc(X, Y). 

Now, More (X, Y) is indeed a set, i.e., an object of S, so we have described a mapping from 
objects oJC to sets, 

Y t-> Fx(Y) = More(X, Y). 
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Moreover, to every morphism g : Y ---> Z of C, our functor F x assigns the mapping of sets 

Fx(g) : Fx(Y) = Morc(X, Y) ----+ Fx(Z) = Morc(X, Z) 

given simply by composition with g; i.e., if / E Fx(Y), the mapping Fx(g) sends / to 
g·/EFx(Y): 

/t-+g.J. 

In this way, every object X of any category C gives us a functor, Fx from C to S. 
Also any morphism h : X' ---> X in C gives rise to a morphism of functors 1) : Fx ---> Fx' 

by this simple formula: for an element Y of C , the morphism h gives us a mapping of sets 
1)y : Fx(Y) ---> Fx'(Y) by sending any / : X ---> Y in Fx(Y) to /. h : X' ---> Y in Fx'(Y). The 
rule associating to an object Y the mapping of sets 1)y produces our morphism of functors 

1): Fx---> Fx '. 
The fundamental, but miraculously easy to establish, fact is that the object X is entirely 

retrievable (however, only up to canonical isomorphism, of course) from knowledge of this 
functor Fx. This fact, a consequence ofa result known as Yoneda's Lemma, can be expressed 
this way: 

Theorem: Let X, X' be objects in a category C. Suppose we are given an isomorphism o/their 
associated/unctors 1) : Fx ~ Fx '. Then there is a unique isomorphism o/the objects themselves, 

h :X'~X 

that gives rise-as in the process described above-to this isomorphism 0/ functors. 

The beauty of this result is that it has the following decidedly structuralist, or Wittgensteinian 
language-game, interpretation: 

an object X 0/ a category C is determined (always only up to canonical isomorphism, 
the recurrent theme o/this article!) by the network o/relationships that the object X has 
with all the other objects in C. 

Yoneda's lemma, in its fuller expression, tells us that the set ofmorphisms (of the category C) 
from an object X to an object Y is naturally in one-one correspondence with the set ofmorphisms 
of the functor F y to the functor F x. 

In brief, we have (or rather, Yoneda has) reconstructed the category C, objects and morphisms 
alike, purely in terms of functors to sets; i.e., in terms of networks of relationships that deal with 
the entire category at once 9 

With all this, Yoneda's Lemma is one of the many examples ofa mathematical result that is 
both extraordinarily consequential, and also extraordinarily easy to prove. 10 

9 The connection between Yoneda's lemma and structuralist and/or Wittgensteinian attitudes towards meaning was 
discussed in Michael Harris's review of Mathematics and the Roots of Postmodern Theory [Harris 2003] 

10 A full proof, for example, is given neatly and immediately via a single diagram in the "wikipedia entry" 
(en.wikipedia.org/wikiNoneda's_lemrna). For an accessible introductory reference to the ideas of category theory, see 
the article by Daniel K. Biss [Biss 2003]. For a more technical, but still relatively gentle, account of category theory, see 
Saunders MacLane's Categories jiJr the working mathematician [Mac Lane 1971]. 
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15 Rpresenta6(e Functors 

The following definition (especially as it pervades the mathematical work of Alexander 
Grothendieck) marked the beginning ofa significantly new viewpoint in our subject. 

A functor F : C - - -> S, from a category C to the category of sets S on which 
it is modeled, is said to be represented by an object X of C if an isomorphism of 
functors F ~ Fx is given. The functor F is said, simply, to be representable ifit can 
be represented by some object X. 

If you consult the theorem quoted at the end ofthe last section you see that Yoneda's lemma, 
then, guarantees that if a functor F is representable, then F detennines the object X that represents 
it up to unique isomorphism. 

One of the noteworthy lessons coming from subjects such as algebraic geometry is that often, 
when it is important for a theory to make a construction of a particular object that perfonns an 
important function, we have a ready description of the functor F that it would represent, if it 
exists. Often, indeed, the basic utility of the object X that represents this functor F comes exactly 
from that: that X represents the functor! 11 Although a specific construction of X may tell us more 
about the particularities of X, there is no guarantee that all the added infonnation a construction 
provides---or any of it-furthers our insight beyond guaranteeing representability of F. 

Some of the important turning points in the history of mathematics can be thought of as 
moments when we achieve a fuller understanding of what it means for one "thing" to represent 
another "thing." The issue of representation is already implicit in the act of counting. as when we 
say that these two mathematical units "represent" those two cows. Leibniz dreamed of a scheme 
for a universal language that would reduce ideas "to a kind of alphabet of human thought" and 
the ciphers in his universal language would be manipulable representations of ideas. 

Kant reserved the tenn representation (Vorstellung) for quite a different role. Here is the 
astonishing way in which this concept makes its first appearance in the Critique of Pure Reason: 12 

There are only two possible ways in which synthetic representations and their objects 
... can meet one another. Either the object (Gegenstand) alone must make the represen
tation possible, or the representation alone must make the object possible. 

It is this either-or, this dance between object and representation, that animates lots of what 
follows in Kant's Critique of Pure Reason. With meanings quite remote from Kant's, the same two 
tenns, object and representation, each provide grounding for the other, in our present discussion. 

Nowadays, whole subjects of mathematics are seen as represented in other subjects, the 
"represented" subject thereby becoming a powerful tool for the study of the "representing" 
subject, and vice versa. 

It sometimes happens that the introduction of a tenn in a mathematical discussion is the 
signal that an important shift of viewpoint is taking place, or is about to take place. An emphasis 

II Students of algebra encounter this very early in their studies: the tensor product is (happily) nowadays first taught 
in tenns of its functorial characterization, with its construction only coming afterwards; this is also the case for fiber 
products, for localization in commutative algebra; indeed this is the pattern of exposition for lots of notions in elementary 
mathematics. as it is for many of the grand constructions in modem algebraic geometry. 

12 [Kant 19611. p. 125. 
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on "representability" of functors in a branch of mathematics suggests an ever so slight, but ever 
so important, shift. The lights are dimmed on mathematical objects and beamed rather on the 
corresponding functors; that is, on the networks of relationships entailed by the objects. The 
functor has center stage, the object that it represents appears almost as an afterthought. The lights 
are dimmed on on equality oj mathematical objects as well, and focussed, rather, on canonical 
isomorphisms, and equivalence. 

16 The Natura{Num6ers as Functor 

Allow me to define, for any category, a particularly humble functor. If C is a category with 
underlying set theory S define a functor 

I:C---+S 

as follows: 
If X is an object ofC, let 

I(X):= {X); 

that is, the set I(X) is the singleton consisting in the set containing only one element: the object 
X. If J : X -+ Y is any morphism in C, I(/) : {X) -+ {Y) is the unique mapping of singleton 
sets. We may think of our functor I as a singleton Junctor: it is a functor from C to the category 
of set that assigns to each object of the category C a singleton set. Any two "singleton functors" 
are (uniquely) isomorphic as functors. Is our functor I representable? 

The answer here is clean. The functor I is representable if and only if our category C has 
an initial object. For if Z is an initial object, then Fz , by the very meaning of initial object, is a 
singleton functor (there is a unique morphism from Z to any object X of the category). Therefore 
Fz is isomorphic as a functor to I. Conversely, any object that represents I has the feature that 
it needs for us to deem it an initial object of C. 

This viewpoint gives us a way of pinning down the natural numbers from a different angle, 
which at first glance may seem quite strange. 

The natural numbers are defined uniquely, up to unique isomorphism, as an object oj 
the Peano category P that represents the singleton Junctor I. 

There is aspect to this definition that Frege might have liked: nothing "bureau-of-standards
like," nothing that smacks of a subjective choice of some particular exemplar, has entered this 
description. But where, in this definition, are the tangible, familiar, natural numbers? You may 
well ask this question; for--despite the crispness of the above definition-the concept embodied 
by the good old symbols I, 2, 3, ... appears to have holographically smeared itself over the 
panoply of little "discrete dynamical systems" given by the objects of P. And the category P 
itself, remember, is but a template, dependent upon an underlying set theory. But we have even 
further to go. 

17 Equiva{ence I!f Categories 

If the grand lesson is that equivalence has some claim to priority over equality in the mathematical 
theories packaged by categories, why are categories themselves untouched by this insight? The 
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answer is that they are not. With this briefQ & A, to say nothing of the title of this section, you 
will not be surprised to find that what is next on the agenda is 

Definition. A functor F : C - - --+ D from the category C to D is called an equivalence of 
categories if there is afunctor going the other way, G : D - - --+ C such that G . F is isomorphic 
to the identity functor from C to C, and F . G is isomorphic to the identity functor from D to D. 

and that we are specifically interested in the nature of many of our categories, only up to 
equivalence. So with this elementary vocabulary, entire theories are allowed to shift-up to 
equivalence. 

18 Oliject anti Pro6{em 

Following Kronecker, we sometimes allow ourselves to think, say, of../2 as nothing more than a 
cipher that obeys the standard rules of arithmetic and about which all we know is that its square 
is 2. This characterization, to be sure, doesn't pin it down, for -../2 has precisely the same 
description. Nevertheless, there is no contradiction here, for having named our cipher ../2 we 
have given birth to a specific creature of mathematics, and -../2 is just another creature with 
(evidently!) a different name. It is a clarifying move (in fact, the essence of algebra) to usher into 
the mathematical arena, and to name, certain mathematical objects that are unspecified beyond 
the sole fact that they are a solution to a certain explicit problem; in this case: a solution to the 
polynomial equation X2 = 2. 

When we do such a thing, what is sharply delineated is the problem, the object being a tag 
for (a solution to) the problem. 

In the same spirit, any functor, explicitly given, from a category C to the category of sets S 
that the category is modeled on, 

F:C----+S 

may be construed as formulating an explicit problem: 

Problem: Find "an" object X of the category C together with an isomorphism offunctors 

,: Fx ~ F. 

then 

In a word, solve the above problem for the unknown X. To be sure, if we find two solutions, 

, : Fx ~ F and,' : Fx ' ~ F, 

,-1.,': F x, ~ Fx 

is an isomorphism of representable functors and so, by Yoneda's Lemma, is induced from a 
unique isomorphism 

X'~X; 

i.e., the solution is unique, up to unique isomorphism. 
The moral here, is that it is the problem that is explicit, while the object (that represents the 

solution ofthe problem) follows the theme of this essay: it is unique up to unique isomorphism. 
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19 00ect and Equaflty 

The habitual fonnat for discussions regarding the grounding of mathematics shines a bright light 
on modes of fonnulating assertions, organizing and justifying proofs of those assertions, and 
on setting up the substrate for it all-which is invariably a specific set theory, In doing this a 
battery of choices will be made. These choices smack of contingency, of viewing the clarity of 
mathematics through some subjective lens or other. 

I imagine that all of us want to ignore-when possible-the contingent, and seize the 
essential, aspect of any idea. If we are of the make-up of Frege, who relentlessly strove to rid 
mathematical foundations of subjectivism (Frege excoriated the writings of Husserl-incorrectly, 
in my opinion-for usheringpsychologism into mathematics), we look to universal quantification 
as a possible method of effacing the contingent- drowning it, one might say, in the sea of all 
contingencies. But this doesn't work. 

A stark alternative-the viewpoint of categories- is precisely to dim the lights where 
standard mathematical foundations shines them brightest. Instead of focussing on the question 
of modes of justification, and instead of making any explicit choice of set theory, the genius of 
categories is to provide a vocabulary that keeps these issues at bay. It is a vocabulary that can 
say nothing whatsoever about proofs, and that works with any---even the barest-choice of a set 
theoretic language, and that captures the essential template nature of the mathematical concepts 
it studies, showing these concepts to be-indeed-separable from modes of justification, and 
from the substrate of ever-problematic set theory. Separable but not forever separated, effecting 
the kind of aphairesis that Aristotle might have wanted, for, as we have said, you must bring 
your own set theory, and your own mode of proof, to this party. With the other lights low, the 
mathematical concepts shine out in this new beam, as pinned down by the web of relations they 
have with all the other objects of their species. What has receded are set theoretic language and 
logical apparatus. What is now fully incorporated, center stage under bright lights, is the curious 
class of objects of the category, a template for the various manners in which a mathematical 
object of interest might be presented to us. The basic touchstone is that, in appropriate deference 
to the manifold ways an object can be presented to us, objects need only be given up to unique 
isomorphism, this being an enlightened view of what it means for one thing to be equal to some 
other thing. 
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IV 
The Nature '!f Mathematics and its Ayyfications 

In this final section we consider general questions about the nature of mathematics and 
about its applicability to the world. The question "What is mathematics?" can be looked at 
in a number of ways: what the objects of mathematics are, what topics do mathematicians 
study, what kinds of methods mathematics uses, whether mathematics belongs with 
the humanities or the sciences, and so on. Robert Thomas proposes an answer to the 
question by considering mathematics in relationship to the spectrum of the sciences. 
Guershon Harel proposes an answer from the viewpoint of a researcher in mathematics 
education. Keith Devlin discusses how the answers to this question have changed over 
time, and in what direction he sees the answer likely to change over this current century. 

Mathematics appears to be abstract and independent of the physical world. Given 
this, the question of why it turns out to be so useful in scientific investigation of that 
physical world has been a topic of discussion for many years. The discussion has 
been carried on more by physicists (who are making use of that mathematics) and by 
philosophers, than by mathematicians. Mark Steiner, in his chapter, shows that some 
of the discussion has simply been due to philosophers and physicists meaning different 
things by the question. However, he also gives an extended example to suggest that there 
is still a mystery to be investigated. Alan Hajek looks at a particular topic, probability, 
which has had many interactions with problems external to mathematics throughout its 
development. He also discusses some of the philosophical confusions that are still being 
sorted out in this field. 
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From tlie Editors 

The question of what mathematics is has never received a satisfactory answer, we feel, although 
"mathematics is the science of patterns" may come close. Devlin s chapter (which takes that as 
its definition) discusses briefly some answers that have been tried. This chapter by Robert Thomas 
is a new contribution to the question, and, we feel, one worth serious consideration. It certainly 
helps with questions such as the relationship between mathematics and the (other) sciences, and 
has something to say about the applicability of mathematics. 

As this chapter is exploring where mathematics fits into our overall understanding of the 
world, it is not likely to specifically influence how to teach mathematics. However, both in our 
courses/or mathematics majors and in our service courses (for students who will use mathematics 
in the service of their majors, and for students taking mathematics to enhance their general 
education) there is some value to reflectingfrom on the nature of what we are teaching. Students 
often appreciate this reflection on where the whole enterprise is going and how it might fit into 
their world-view. This chapter may be of use as you consider how to talk with your students about 
mathematics and its role. 

Robert Thomas is a Professor of Mathematics at the University of Manitoba in Canada 
(www.umanitoba.calscience!mathematicslnewlfacultylhtmllthomas.html). He is the current edi
tor of Philosophia Mathematica, the one journal devoted exclusively to the philosophy of math
ematics, and was a founding member of the Canadian Society for the History and Philosophy of 
Mathematics. His research interests include applications of geometry and philosophy of mathe
matics, more specifically in the application of descriptions to the world. To study these applica
tions to the world, he felt it essential to do some: classical applied mathematics from a geometric 
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perspective, primarily applying differential geometry to continuum mechanics in collaboration 
with H, Cohen, studying linear elastic waves in shells, He has pursued an interest in the phi
losophy of mathematics, with a historical focus, This historical focus resulted in a book with 
J.L. Berrgren, Euclid's Phrenomena: A translation and study of a Hellenistic treatise in spherical 
astronomy, reprinted as History of Mathematics Sources, Volume 29, by the American Mathe
matical Society and London Mathematical Society (2006). Beyond mathematics, he is interested 
in natura/language as a rational structure. 

Among his philosophical articles that are likely to be of interest to readers of this volume are 
"Mathematicians and mathematical objects," in One Hundred Years of Russell 's Paradox. Papers 
from the 2001 Munich Russell Conference, Godehard Link, ed. (2004), which discusses similar 
issues as this chapter; "Idea Analysis of Groups," Philosophical Psychology (2002) (a response 
to George Lakoff and Rafael Nunez s, Where Mathematics Comes From: How the Embodied 
Mind Brings Mathematics into Being); "Proto-Mathematics and/or Real Mathematics," For the 
learning of mathematics (1996), and "Meanings in ordinary language and in mathematics," 
Philo sophia Mathematica (1991). Also likely to be of interest are a series of articles comparing 
mathematics to literature: "Mathematics and Narrative," The Mathematical Intelligencer (2002), 
"Mathematics and Fiction 1: Identification," Logique et Analyse (2000), "Mathematics and 
Fiction II: Analogy," Logique et Analyse (2002), and "The comparison of mathematics with 
narrative," in Perspectives on mathematical practices: Bringing together philosophy of mathe
matics, sociology of mathematics, and mathematics education, Bart Van Kerkhove and J. P Van 
Bendegem, eds. (2006). 

------jgCC'> 

1 Introduction 

Consideration of any mathematical model, whether from science or operations research, can lead 
to consideration of the effectiveness of mathematical models for understanding and prediction 
of the non-mathematical world. This effectiveness was famously called 'unreasonable' by 
Eugene Wigner [1960] but 'reasonable' by Saunders Mac Lane [1990]. Whether reasonable 
or unreasonable, its effectiveness does require explanation-actually two explanations. One 
explanation is of why the world is the way it is that allows our rationality to function dependably. 
This explanation is probably religious even when it does not set out to be so (see [McGrath 2004 D. 
Another explanation is required of how or why mathematics is the way it is as a successful vehicle 
for our rationality. This explanation is probably philosophical, and it is a virtue of the view of 
mathematics presented here that it makes the mathematical side of the effectiveness seem natural. 

Mathematics works so well in the sciences, I say, because it is one of the sciences but not in 
the simple-minded way of being empirical (based on pattern observation) that is associated with 
John Stuart Mill. Having lived with this idea for a long time, I find it obvious, obvious but not 
necessarily correct. Certainly it is not the only way to look at mathematics. Another way to see 
mathematics is as an art, and I have nothing whatever to say against that view. Mathematics is a 
complex business, and it would be remarkable if there were only one informative way to see it. 
The science view has a certain simple plausibility that ought, it seems to me, to require at least a 
wave of dismissal for those presenting other views, especially those that make mathematics sui 
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generis.! While it has its own character, as both an art and science, it is not all on its own. But 
even a wave of dismissal of the science view is often not forthcoming. With the exception of 
Saunders Mac Lane, whose very similar view led him to regard its effectiveness in the world as 
reasonable, the view is hardly even available to be dismissed. The intention of this essay is to 
present a sketch of the view in this context so that it is available to be dismissed, argued against, 
or even further developed. 

Seeing mathematics as a science (though not exclusively) does not solve a lot of philosophical 
problems. In presenting a context of other sciences for mathematics, philosophy of mathematics 
is set into philosophy of science, leaving most of its problems intact. The effect on a couple of 
philosophical problems will be mentioned at the end. Mostly what the remainder of this essay will 
do is context setting2 In order to see mathematics as a science, one needs to see it in two of its 
contexts: historical and then scientific. Accordingly, I begin in the next section with the historical 
beginnings of mathematics. Next, I describe the sciences in a way that allows mathematics to fit 
into them. Finally, having fitted mathematics into a picture of the sciences, I say something about 
a couple of philosophical problems. 

2 Historica( Context 

One needs to push back a long way in order to include the whole development of mathematics, 
since mathematical records go back a very long way indeed even if you don't count notches on 
sticks found in stone-age sites, and I don't. We have tablets several thousand years old-how 
many hardly matters-recording the solution of mathematical problems. If we think about the 
learned landscape of such a period, we note that most current scholarly disciplines had not been 
invented. History was a long way from birth. Of the sciences, astronomy, botany, and zoology 
were beginning their pre-scientific period of data collection. The social sciences and humanities, 
the latter based on what we call the classics, did not exist. Our classics had not yet been written! All 
there was on the learned landscape was myth, of which we still have records. Is the mathematics 
the same as or different from these myths? Obviously different in both manner and subject 
matter. Or are the manners so different? In previous writing [2002], in which I have compared 
mathematical proof to narrative, I have dismissed algorithms as being so obviously narrative 
in form as to require no comment. I thought that the interesting comparison was of the things 
that were not so obviously similar. But what of the things that are obviously similar? What we 
have from the most distant past that is mathematical is algorithmic rather than theoretical. Quite 
differently from contemporary presentation of algorithms, specific problems are solved using 
their peculiar data because, lacking algebraic notation with which to represent either general 
numbers or arithmetic operations, verbal description of how to solve a particular problem was all 
that could be written down. More could be learned, however. The apparent intention was that, 
by learning a few examples, the algorithm could be mastered and applied elsewhere. This is, as 

1 I have in mind those, like the realists of Charles Chihara's essay in this volume, that give mathematics a subject matter 
and way of knowing it totally different from other subjects. 

2 What is offered is, while not necessarily the 'big picture' of Charles Chihara's essay, a bigger picture than a portrait of 
mathematics alone. 
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one easily recognizes, a learning technique still used by students-with the same attendant pitfall 
that the range of usefulness of the algorithm is not learned. I draw attention to this because it is 
somewhat similar to how myths work. 

A narrative can perform a variety of functions. Fiction informs us of possibilities, and history 
informs us about what happened in the past. A function of myth, according to a recent theory 
[Peterson 1999] is that myth informs us how things ought to be. Myth is one of the few ways 
in which value is communicated. Mythical stories are applied to present reality allegorically to 
indicate the distinction between good outcomes and bad outcomes. An example of how a story 
can suggest how things ought to be is the stories we heard of from the path of the 2004 Boxing 
Day tsunami. Some societies had stories that motivated them to seek high ground when the earth 
shook. Whether those stories were history or something like Chicken Licken, 3 they worked, and 
those that had no such stories suffered the avoidable consequence oflacking an appropriate myth. 
The same process is applied whenever we apply a proverb to assure ourselves that what seems 
to be happening or what has happened is in accordance with the expectations we ought to have 
had, even if we did not have them. The process of applying a numerical example to another 
numerical example by way of an unspecified algorithm is surprisingly similar to the application 
of a story allegorically to a situation. It appears then that myths, which existed long before history 
or literary fiction, both are important and compose the literary context in which the earliest serious 
mathematics was written down. And the modes of interpretation of a mythical narrative and a 
special-case algorithm are surprisingly parallel. 

The way of communicating that I am attributing to ancient mathematicians involves writing 
about something without worrying what that something is going to tum out to be in the situation 
of the reader. This is like knowing that interpretation will be allegorical. Particulars stand in for 
other particulars. In the recounting on a clay tablet of how to solve a particular mathematical 
problem by an algorithm that could not itself be written down, a whole class of solutions for a 
whole class of inputs were being recorded in the only way available. 

Long before the invention of what we recognize as natural science at the Renaissance, the 
mathematics from which ours descended had become theoretical----quite different from telling 
little numerical stories. Recipe mathematics can be extremely useful; ask most engineers. It 
was recipe mathematics that helped build the pyramids. By Euclid's time, whether in Indian or 
Hellenistic civilization, mathematics had ceased to be primarily algorithmic, a transformation 
that did not occur in China. Another shift took place along with that from recipes to theorems. 
The language used shifted from the particulars that were used to represent the ancient algorithms 
to attempts at generality. The ubiquitous triangle PQR in Euclid's Elements is just any (non
degenerate) triangle for the reader. Syntactically, it is a particular, but functionally it stands for 
any triangle at all. Any choice of a particular number, used to represent an arbitrary number 
in an algorithm, still has its own special properties, perhaps divisible by various factors and 
perhaps prime, but the generic triangle used by Euclid has no particular features. It can be right 
or isosceles or both, and so on. This indefiniteness became much more explicit when algebra was 
invented and a symbol not a number was specifically set to have the value of an unknown. Talking 
about things without knowing which things (if any) seems to be an easily observed fundamental 

3 Also known as The sky isfalling. 
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mathematical technique. I am suggesting that it predates algebra and is more pervasive than is 
often thought. 

Interpretation is so obviously a feature of accounts of the past that I cannot imagine that 
historical works have ever been straightforwardly and commonly accepted as telling it like it is 
in the way that mathematics does. Mathematics is the very paradigm of dependable knowledge 
and I think has been since it became theoretical with the axiom-proof format.4 So used are we 
in the present day to accepting accounts as accurate that we forget that financial accounts, like 
historical accounts, are made to convince someone of something, even if the something is not 
quite true. People may believe what they read in newspapers because they believed what they 
read in textbooks at school. And television is believable because seeing is believing. In the world 
of two thousand years ago, in which deductive geometry flourished, one of the most important 
studies was rhetoric. Convincing folks may even be more important now, but we are less frank 
about needing to do it. Mathematics, in contrast, is mercifully free of that sort of thing. Logic, 
not rhetoric, rules. Mathematics is unusual in this. It is not faulty mathematics that is used to 
convince shareholders of Enron that their shares will increase in value; it is assumptions on 
which calculations are based. I mention this to emphasize that, in being logical and dependable, 
mathematics has for two thousand years-a long time in human affairs-been what thinking has 
aspired to if it is to be regarded as above reproach. 

What I have been concerned to indicate with this sketch of mathematics before and after the 
invention of the theorem-proof way of expression is that, as written documents, it began similar to 
myths in form and interpretation and was transformed from narrative (always about particulars) 
to theoretical form with language intended to be general, assuming a unique place as what any 
serious intellectual enterprise would be if it could. 

3 Scientific Context 

Plainly there are many ways to look at mathematics. As my title indicates, I am putting one 
forward. Some would call it a view of the nature ofmathematics.5 The main point I want to make 
in this essay is that one way to see mathematics is as sitting at the extreme of a spectrum of 
sciences. Since such boundaries don't matter, I don't see it as important whether it isjust beyond 
the extreme end of the spectrum and so not a science or just inside the end and so is the most 
abstract science. I do see it as sufficiently important to want to make two subsidiary points: The 
sciences do compose a spectrum, and something important can be leamed about mathematics 
by seeing it in its place on (or beyond) that spectrum, with one end being chemistry, physics, 
mathematics and with the other end containing the subject matters that are interesting in their 
own right like psychology. Whether one finds mathematics, physics, chemistry, sociology, or 
psychology interesting is not what I am concerned with. That is a question about prior interests, 
modes of presentation, and inclinations of various sorts. I am drawing attention to the gradual 
difference in what these subjects study-what is there before the study begins. With psychology 
there are folks with their varied minds. With sociology there are whole groups of folks with their 

4 Does it matter that not all of mathematics is axiomatized? Not at all; axioms are just a remarkably effective coping 
strategy, as they are in science. 

5 I am sceptical about mathematics' having a nature. It has been pointed out to me by Carlo Cellucci that I suggest 
variously fictionalism, modal structuralism, and deductivism. All three have things to say worth hearing. 
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common mind and differences. But with chemistry there are just reagents; even a chemist would 
have a hard time working up interest in ajar of Glauber's salts. With physics there is anything at 
all, so long as it is flying through the air, sliding along a surface, flowing in a channel, or doing 
any of the other physical things that objects and substances do, but such contemplation abstracts 
from all of the aspects of the objects that make them interesting in themselves. The psychologist's 
person with a mental life has become simply a rigid body or a point mass with friction. The subject 
matters of chemistry and physics, near the one extreme, are sufficiently undifferentiated not to 
be of intrinsic interest, since chemistry considers relations among all substances that interact 
chemically and physics considers relations among all things that are physical. As I am going to 
spell out in greater detail in the next section, a physicist in considering a person as a point mass 
with friction is not negating personality but simply considering what physics considers, physical 
relations. Physics is about how things interact physically, chemistry about how they interact, as 
we say, chemically, biology about the new relations added by being alive, and psychology about 
the new relations added by thinking. Even a thinking thing has merely physical relations. 

The contradictory view of what scientific subjects are about, which I consider myself to 
be combatting because it misrepresents mathematics, is that the different sciences simply have 
different stuffs as subject matters, and that the stuff of mathematics is the things philosophers call 
mathematical objects or even what a self-confessedly ill-informed poster to the POMSIGMAA 
listserve has too often said, numbers. I do not see that widening the focus from numbers to more 
than just numbers improves this view. At its narrowest, it is plain wrong, but even broadened I 
find it misleadingly uninformative. The argument against mathematics' having a stuff has been 
carried through some way by Charles Chihara in his essay in this volume. 

I am putting forward a picture, the frame of which I have now described. In order to see 
mathematics as I see it, one needs to see chemistry and physics-and for that matter psychology
as I see them. I take the defining feature of science as we understand it now, as distinct from 
natural philosophy before Galileo, to be its study of relations rather than of the things themselves. 
The sciences are ways of understanding not minds, chemicals, and things in general but the ways 
minds interact with one another and the world, the way chemicals relate--chiefly react, and the 
way things in general behave physically: statics, kinematics, dynamics, thermodynamics, fluid 
mechanics. Psychologists do not pontificate on the nature of mind. You will not find a chemist say 
anything about the essence of antimony. And even when they profess to be thinking the thoughts 
of God, physicists do not tell us what gravity is any more than Newton did. Physicists tell us 
the magnitude and direction of gravitational acceleration, whether Newtonian or relativistic, but 
that is as far as they go. And clearly the science that opposed Galileo, based on Aristotelian 
common sense and observation, was essentialist to the core. It is an interesting historical question 
how conscious Galileo was of modelling his new science on mathematics in anything like the 
way I have suggested. But whether it was conscious or not, that is what he did. It is a possible 
interpretation of his famous statement that the laws of physics are written in mathematical 
language. 

Mathematics, in its shift from algorithms to theory, moved from what we could do with 
numbers to the study of relations among numbers, relations among points, lines, and planes. That 
shift to the rigorous determination of relational consequences of relations had been consolidated 
nearly two millennia before Galileo. He had little choice. As I tried to indicate in the previous 
section, mathematics and its approach were all there was to imitate. Myth was hardly appropriate, 
history is similar to the natural philosophy he was replacing, and Europe was innocent of serious 
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prose fiction. The systematic study of relations and their consequences, which mathematics had 
been doing apparently forever, was the right target6 

We all know that the definitions of points, lines, etc., at the beginning of Euclid's Elements 
are not used in the sequel. What are used in ruler-and-compasses geometry are the positions of 
lines and points and planes and the construction of new ones in specific positions and proofs 
of their relations. What a line is does not matter. What a magnitude is does not matter. All that 
matters is how they are related. When the Elements was written, it was thought to be about 
relations in physical space. But because the enterprise was to prove what followed from the 
assumptions, it did not matter whether Euclidean space was indeed an accurate model of physical 
space. The subject, modulo some implicit assumptions, was coherent in itself, and it showed that 
such study was possible. When it came time to do heliocentric astronomy, it was not only the 
conic sections that could be taken over from geometry but also the method of making assumptions 
about relations and seeing what those relations led to without regard to the obvious enough fact 
that the relations were among physical objects with their varied inner constitutions. The only thing 
that was required was that they have mass, and even that is a matter of inertial and gravitational 
behaviour not of essence. And so essences quietly became irrelevant. They turned out to be no 
loss, since no one had known what they were anyway. We no longer worry about the difference 
between magnitudes; they each have their dimensions, but aside from keeping track of those 
dimensions, we treat all magnitudes as numbers. They all behave identically as to arithmetic 
operations, and so from our structuralist mathematical point of view there is nothing other than 
their dimensions to distinguish them. 

4 Mathematics as a Science 

Evidence for the view that mathematics can be regarded as a science is the recent turn to 
experimental mathematics. Not just to experimenting to look for counterexamples or patterns 
that might turn out to be universal, but the search for evidence in the absence of proofs. Those 
writing about these matters in books [BorweiniBailey 2004], [BorweiniBailey/Girgensohn 2004], 
and the recent papers [Bailey/Borwein 2005], [Borwein 2008], are mathematicians interested in 
proving what they have evidence for, but it is easy to see that they need not have that interest 
or even be mathematicians. Moreover, there are the proofs up to a pre-set level of probability 
advocated by Doron Zeilberger [1993], for instance that a given number is prime with 99.9% 
probability. An old-fashioned mathematician will probably say that proofs help us to understand 
the results and do not just assure us of their correctness. You cannot say that of a 'proof' to a 
certain level of probability, no matter how high; it is just limited assurance of a scientific-like 
fact. 

An aspect of this notion of scientific-like facts, of things that happen to be true, is that they 
do not have the interest of justified facts whose justification is much of why they are interesting. 
Gregory Chaitin has often said, e.g., [Chaitin 1998], that there are so very many such facts that 

6 More precisely. Galileo chose the right way, with primary properties and no essences, to imitate mathematics, Aristotle 
having attempted a more superficial and less successful imitation. The difference was noted by Kant in the preface of his 
[Kant 1992], according to [Cassirer 1923]. 
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have no old-fashioned reason to be true. It remains to be seen whether such facts have any 
permanent place in mathematics, where, after all, interest is a joint value with correctness. 

The reader that has come this far can now see that the case I am making can be put so 
simply that it looks as though I am saying nothing at all. Mathematics is like the sciences because 
the sciences have been constructed to imitate mathematics. This is easily said, but to mean 
anything--{)r to mean what I mean-some content has to be given to the words. 

If one sees science in the way I do, then one can easily see mathematics as the next step, 
where it simply does not matter-is not taken into account-what the things are that are being 
talked about so long as they behave in the way that we are interested in studying. Mathematics 
is the extreme of the sciences because they are themselves approximations to varying degrees 
to its method and matter. If one calls the characterless objects of mathematics point masses, 
then suddenly one is doing physics, but if one does not, one is doing mathematics-perhaps, 
depending on motivation, applied mathematics. 

Reviel Netz claims [1999, p. 197] that the relational view was present even in ancient Greek 
mathematics, taking his book on it to vindicate such a claim on the part of just one of the mathe
maticians that has held the view. Newton viewed numbers as relations (ratios) between magni
tudes7 but I don't know about geometry. The relational view is easier to see in pure mathematics 
than in mathematics before the invention of pure mathematics, perhaps by Riemann but which 
for our purposes we can date between Newton and Frege. But Newton may possibly have had a 
clearer idea of what he was doing than the average mathematician. Another clearer than average 
thinker was Gauss, to whom Bourbakiste Jean Dieudonne [1977] attributed the same view. After 
the invention of pure mathematics, the view becomes more common. It was Russell who made 
the claim Netz vindicated, that mathematics considers 'types of relation' [Russell 1956, p. 3]. 
Poincare [1902, p. 20] states the view very clearly, 'Mathematicians do not study objects, but the 
relation between objects.' Hilbert and von Neumann seem to have agreed, although the latter, 
like Saunders Mac Lane, preferred functions, which are interdefinable with relations in general. 
Carnap's philosophy of physics was so formalistic that he was accused of turning physics into 
mathematics.8 

Another philosopher that seems to have taken this view was Ernst Cassirer, quoting [1953, 
vol. 3, p. 293] approvingly more of the above quotation from Russell. 9 Godel at one time at least 
appears to have embraced the scientific-style basis for axiom choice advocated by Russell ('their 
justification lies (exactly as in physics) in the fact that they make it possible for [what one wants] 
to be deduced' [GOdel 1944, p. 121]). Sir Michael Atiyah's presidential address to the Royal 
Society of London [Atiyah 1995] contained the following statement, speaking of abstraction, 
which he had been saying was used in science: 'Mathematics takes the process to its ultimate 
conclusion: the identity of the players is ignored, only their mutual relations are studied. It is 
this abstraction that makes mathematics such a universal language: it is not tied to any particular 
interpretation.' Note that this ignoring does not empty mathematical language of all meaning; 

7 Austin, translator of [Frege 1980], gives the reference Arithmetica Universalis, Vol. I, cap. ii, 3 at § 19. 

8 [Camap 1967, §15, p. 27], cited in [H. Wang 1974, p. 40] and n. 2 to that page. 

9 A contemporary philosopher that assimilates mathematics to science and in particular deduction in mathematics to 
deduction in science is Carlo Cellucci in his book [Cellucci 2002], of which only the introduction is available in English 
as [Cellucci 20051. 
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rather it allows its various patches to be filled with a variety of meanings including new meanings. 
My most up-to-date indication that this is a common view of reflective mathematicians is the 
recent book [Widdows 2004], in which the mathematician author expresses a similar view both 
at the beginning and at the end. 

I have not been concerned to combat the blinkered view that mathematics is just about 
numbers, although my examples tend to be geometrical. That is an unnecessary limitation. If 
one finds something in the world that is an application of the four-group, that is not because 
the elements of that group bear any resemblance to the elements of Klein's four-group or of the 
general abstract four-group. It is because their squares are the identity and they multiply one 
another to give one another. It is group behaviour that we find in the world, not the elements 
of abstract groups. If one models something with a graph in the sense of graph theory, one may 
be modelling activities by the edges of a graph whose vertices just represent the termination of 
the tasks, as in the critical-path method, or one may be modelling places by vertices and the 
routes among them by edges, as in the travelling-salesman problem. But places and times are not 
significantly like the vertices, which have no character to be like. And activities and distances are 
not like edges, which are just pairs of vertices. In these and other cases, graphs represent naked 
relations with any quantitative elements as add-ons. Perhaps my exposure to graph theory as a 
beginning graduate student is what sensitized me to this aspect of mathematics. 

One may reasonably ask what relations are studied in pure mathematics-those that are later 
applied elsewhere. Not to give arithmetic priority over geometry, one of the earliest relations has 
to be sameness. In arithmetic sameness is equality, in geometry congruence. I think it is fair to 
say that there is little to study about these two fundamental relations, but one does need them 
in order to consider others. Arithmetic appears to be based on the successor relation that allows 
us to assign both ordinal and cardinal numbers, whichever came first historically. Both kinds 
of number, that is, the objects invented to carry the successor relation as far as we wish, have 
long been studied. The relation that connects pairs of numbers to their sums can be thought of as 
connecting the number of things in the combination of two counted clusters to their counts. This 
can be thought of as an operation on two numbers to produce their sum or as a function on the 
cartesian product of the numbers with themselves. The cartesian product itself is based on the 
relation between two things and the single thing that is the pair of them. The relation expressed 
by the operation of addition gives rise to the relation expressed by the operation of subtraction. In 
order to make subtraction work more of the time, we consider what the numbers would have to be 
that would allow us to subtract always. In this way, repeated mutatis mutandis to form fractions, 
real numbers, and complex numbers, the raw material of the study of the relations is expanded 
in a way that the raw material of the other sciences cannot be. (And yet, the extension of physics 
to infrared, ultraviolet, and X-radiation is not utterly divorced from what had happened earlier in 
mathematics.) The study of addition logically produces two quite different offspring: the further 
scientific consideration of addition and the technology of addition. It is not enough to be able to 
add two numbers a and b by counting b numbers beginning with a + I. We need to be able to take 
a and b, written in the customary notation for numbers and produce algorithmically the customary 
notation for a + b. As notation (to think only of Europe) changed from Greek to Roman to the 
contemporary decimal system, the technology of addition had to be changed and improved with 
much thought; the addition of Greek and of Roman numbers is not so easily performed. On the 
other hand, if one is adding a number of cases of the same number, then one stumbles on a new 
relation, that expressed by the operation of multiplication-again an operation on two numbers or 
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a function from the cartesian product to the numbers. Multiplication gives rise to the new relation 
of two numbers to their quotient in much the same way as addition gives rise to subtraction. It 
is discovered that zero misbehaves seriously in division as it did not in subtraction. Beginning 
with the integers, one quickly needs a new sort of number to deal with practical examples of 
division. And again there is the technology of performing divisions and multiplications as well 
as the coming to understand how they work. The relation of equality is basic to this because one 
is often looking for the succinct and standard number that is equal to the one for which one has a 
cumbersome expression: one wants the standard expression for the integer a + b or a ~ b rather 
than the expressions 'a + b' or 'a ~ b', that is, the standard expression for the integer equal to 
a + b or a ~ b. 

Similar basic notions are involved in geometry. Beyond congruence, there are several basic 
relations. Coxeter's Introduction to Geometry [Coxeter 1961] elaborates an axiom system forthe 
ternary relation 'between' on a line. Euclid does not concern himself with such things, presumably 
taking their behaviour to be obvious. Collinearity seems to me to be the basic ternary relation in 
Euclidean geometry. If one has three points, no two identical, then eitherthey are collinear or not. 
If they are, then fine, the line defined by each of the three pairs is the same. (The line segments 
may have very different lengths, however-with relations like those in arithmetic.) If they are 
not collinear, then they define a triangle with sides the line segments defined by each of the pairs. 
As soon as one has triangles, then one can consider their congruence and then the slightly more 
sophisticated relations of similarity and equality of area. Congruence will obviously not apply to 
figures of different shapes, but equality of area may. Differently shaped polygons can be studied 
for their equality properties, and eventually one reaches the possible relation of areas of polygons 
and circles and other figures with curved boundaries (eventually leading to integral calculus). 
But even to say this is to call upon the relations 'boundary of' and 'same number of sides' for 
polygons. A small increase in the level of sophistication of the relations involved brings one from 
the geometry well studied in the fourth century B.C.E. to the topology only brought to light in the 
nineteenth century C.E. This is not to say that the relations are more complicated; they may be 
simpler. But simple in mathematics does not always mean easy. 

I conclude this indication of what sort of relation has been studied mathematically-an 
indication that is just the start, since all of classical mathematics can be looked at in this way
with a word on what lies beyond arithmetic and geometry. Multiplication and addition give 
us linear functions, which are just the simplest examples of functions as they were historically 
viewed. It has taken a long time to change thinking about functions from the process view with 
which functional relationships originally began to the set-of-ordered-pair view that allows any 
functional relationship to be specified. No matter how they are specified, functions are a specific 
sort of relation. Their study developed into analysis with particular attention to those of use 
in physics. The relation between a function as values and the rates of change of those values 
was particularly important in this developmental process. Differentiation was not originally 
thought of as a relation between functions, but that view has become standard. I have already 
alluded to modern algebra, which is a development of the study of operations (as in addition and 
multiplication) applied to what are not necessarily numbers. With the development of category 
theory, the relation view in its function form, which I attributed above to von Neumann and 
Mac Lane, appears to have triumphed as the practical way to organize mathematical ideas, while 
the mathematical-object view of set theory still holds centre stage in foundational discussions 
(a competition hotly disputed). 
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5 Onto(o9ica( Consequences 

One might reasonably ask what philosophical problem the relational view offers a solution to 
that the object view does not. My concern is not to solve philosophical problems but rather 
to have philosophical problems that purport to be about mathematics actually be about what 
I can recognize as mathematics. Since the relational or scientific view says nothing specific 
about metaphysics, it does not attempt to solve metaphysical problems, although it does try to 
avoid unnecessary ones. Ontological arguments concern what exists, often whether mathematical 
objects exist'O or even whether abstract objects in general exist with mathematical objects taken 
as typical abstract objects. It is not clear to me that mathematical objects are typical examples 
of abstract objects, but I am trying to avoid a concentration on objects." A switch to relations, 
if taken seriously, would I am sure produce different and more relevant problems. I think that 
argument about the existence of relations is harder to mount than analogous argument about 
objects. It is not clear what it means for a relation to exist. It does not seem to require that the 
relata exist, since a great deal of fictional literature takes its meaning from the fact that relations 
in fiction are intended to be of the same types as occur in the real world. If that were not so, 
it would be meaningless to have a fictional child of a fictional parent without explaining what 
parenthood meant in the world of the fiction. While parenthood could be differently defined in 
a science-fiction world, all such relations, when verbally described, are parasitic on the ordinary 
relations from which we derive our vocabulary. This view is subversive of ontology as well 
as trying to avoid it, but it does not seem to favour either answer to the existence question for 
mathematical objects. 

While we cannot easily and convincingly say what we mean by a relation's existing or not, 
something we can say about some relations is that they cannot relate anything; they are impossible. 
The obvious example is the relation describable as being not self-identical, sometimes used to 
define the empty set as consisting of those things that are not self-identical. The empty set, by 
the way, is the only mathematical object that I am almost sure exists, in some sense of that 
slippery word. While there are some persons that find contradiction (logical contradiction, not 
argumentative contradiction) interesting, mostly mathematicians prefer to avoid it at almost any 
cost. Russell's notorious ridicule of Meinong was based on the latter's ontological espousal of 
impossible objects, not just non-existent objects. Just what espousal consisted of we need not 
go into, my point being that mathematicians have no time for them when doing mathematics
however amusing they may find Escher's impossible drawings. Given that we wish to avoid 

10 Such arguments are discussed by Stewart Shapiro and others in this volume. 

II Jeremy Gray captures the connection to objects briefly in discussing implicit definitions by axioms, 'There was no 
attempt to show that the new, implicit, definitions somehow captured the essence of the real object, because the real 
object was only incidentally what it was about: [Gray 2006, p. 390] Jean Dieudonne puts it more clearly as follows. To 
solve eighteenth-century problems in the nineteenth century, it was necessary to abandon 'the semi-"concrete" character 
of classical mathematical objects; it has to be understood that what is essential about these objects is not the particular 
features which they seem to have but the relations between them. These relations are often the same for objects which 
appear very different, and therefore they must be expressed in ways which do not take these appearances into account; for 
example; if we wish to specify a relation which can be defined either between numbers or between functions, it can only 
be done by introducing objects which are neither numbers nor functions, but which can be specialized at will as either 
numbers or functions, or indeed other kinds of mathematical objects. It is these "'abstract" objects which are studied in 
what have come to be called mathematical structures . .. ' [Dieudonne 1992, pp. 2 f.]. 
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impossible relations in particular and contradictions in general, what does the relational view of 
mathematics suggest to us? It seems to me that it suggests only that, in our study of relations by 
attributing them to objects made up for the purpose, we need to be careful to avoid the possibility 
of deducing any logical contradiction. We would like not only to avoid logical contradictions, 
which we might do by being careful, but also to avoid the possibility ofthem.12 And to operate in 
the realm of no logical contradictions is to operate in the realm of the logically possible. To say 
that mathematics studies logical possibilities is, while certainly true for most of mathematics, no 
more informative than to say that we want our deductions to be logically valid because, without 
the relational subject matter to which I say the subject is devoted, that description would describe 
logic or logicism. Mathematicians explore, in a scientific spirit, relations that interest us to see 
how those relations are related to one another regardless of the objects that grammatically are their 
subject matter, any choice of which, as I have said, is an extra-mathematical enterprise called 
interpretation or application. A philosopher that studies the consequences of approximately 
this point of view is Geoffrey Hellman, who calls it [Hellman 1989] modal structuralism, a 
structuralism without structures. He genuinely attempts to avoid the basis in things that I regard 

as artificial and misleading. A different attempt to avoid things and structures is made by Charles 
Chihara [2008]. 

I have mentioned structuralism, both modal and otherwise, because non-modal structuralism 
is as close as most philosophy of mathematics gets to the relational view of the subject. Ordinary 
structuralism, which one can easily attribute to Bourbaki, has been philosophically elaborated 
chiefly by Michael Resnik [1997] and Stewart Shapiro [1997]. In order, it seems to me, to have 
objects to talk about, structuralism considers usually sets of objects and their relations as forming 
structures, which are then said to be the subject matter of mathematics. Mathematics is then 
about those structures rather than about the somehow lesser objects that compose them; how 
the objects are inferior to the structures other than by inclusion is unclear. Because structures 
are objects themselves, the usual discussion of their definition and existence is easy to launch. 
Structuralism does appear to be inspired by mathematicians' interest in structure rather than in a 
uniquely mathematical subject matter, whether objects or structures. It is close but, as is widely 
thought, not quite right. In criticizing structuralism, Fraser MacBride [2005] chooses as its weak 
link what is called the incompleteness of mathematical objects. Note the retum to the objects that 
philosophers are happy talking about from the structures or positions or relations that structuralism 
tries to replace them with. I have not found in MacBride's article what seems to me the obvious 
criticism, namely that it is not positions in structures that have the relations we want but the 
hypothetical holders of those positions that have them. A set of eggs is what goes into an egg 
carton, not the egg carton. I do not see talk ofthe positions instead oftheir contents as satisfactory. 
And both of the main advocates of positions structuralism, Michael Resnik and Stewart Shapiro, 
use essentially this approach. I am concerned, however, to discuss very briefly the actual criticism 
made of both of them, which is that, as things having only the relations assumed or deduced, these 
structures are incomplete in the way that Hamlet is incomplete because we do not know the length 
of his nose or many other things about him that Shakespeare did not tell us. This incompleteness 

12 So far as I know, how to do this dependably is not known. Considering relations rooted in physical relations is one 
attempt. Intuitionism is another. 
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of fictional characters is an inevitable result of the way in which they are specified. In the next of 
a series of novels, the author is free to specify some feature of, say, a serial detective, that was 
not previously specified-even in the case of Dr Watson to specify features previously differently 
specified. 13 The freedom of fiction does not carry over to mathematics. The incompleteness of 
mathematical objects, the fact that we do not know everything about them, is I think a direct and 
harmless consequence of their role in mathematics. 

When we use the definition of bachelor as unmarried adult human male, and then deduce that 
whatever is a bachelor has no husband, say, or wife, we are not using an incomplete object denoted 
by 'whatever.' We are using a pronoun, the non-fictional uses of which are all objects of whatever 
kind they may be, none of them incomplete. If we apply the term whateverlbachelor to Hamlet, 
then that bachelor is incomplete but not because we used the word we used. The incompleteness 
is not in the pronoun or term but in the antecedent. If we apply the pronoun or term to a real 
person, say, Sam Smith, then there is no incompleteness. Similarly, because our mathematical 
expressions are all ultimately of the form 'whatever satisfies the axioms of our system and the 
hypotheses of our theorem satisfies also the conclusion of our theorem', it is too hasty to claim 
that our whatevers are incomplete. The time for incompleteness claims is in application not in 
hypothetical pure mathematics. This incompleteness, by the way, is entirely distinct from the 
incompleteness (of mathematical systems not objects) ofG5del's famous theorems. 

To summarize, the relational view does not settle any ontological problems, but it does suggest 
two conjectures. Ontology is less important to mathematics than contemporary philosophers often 
think. (I have in mind those that require an existent subject matter for worthwhile talk or even 
reference; one can only denote what is not blessed with existence, not refer to it.) Ontology that 
considers only objects and ignores relations (or regards them as non-existent or unimportant) is 
too simple-minded to cope with mathematics. 

6 Eyistemo{ogica{ Consequences 

The philosophical aspect that the relation view is particularly useful for is epistemological-for 
explaining how it is that we can gain and apply mathematical knowledge. Object views have 
notorious difficulty with gaining mathematical knowledge because they make the subject matter 
of mathematics even more remote than the mathematical knowledge itself. Since we do not 
interact with mathematical objects, which are supposed to exist on an altogether different plane 
from us, we have no way to get information about them-no way to form reasonable hypotheses, 
and no way to disprove them if they are wrong-not even any way to see that our proofs about 
them are relevant to them. This is referred to as the problem of access because we have no 
access to timeless objects outside space. Aristotle's solution to this platonic problem was to 
locate mathematical objects, likewise mysteriously, 'in' physical objects. So the problem has 
been recognized as a problem for over two thousand years. It seems to me that the way in which 
the problem is to be solved is to notice what we mean by access in this context. Obviously it 
cannot mean sensory access to objects that are not sensible. The relational view allows a solution 
like Aristotle's but without the metaphorical 'in.' We have access to a relation whenever we can 

13 Conan Doyle is inconsistent in what he says about Watson. 
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consider objectively what stands in that relation, where 'in' is not metaphorical but is just the 
standard way in which we speak of x related to y by relation R. We say that x stands in relation 
R to y. Mathematically, we say x Ry if the relation happens to be binary, as it need not be. And 
so, to consider relation R, all we need to be able to do is to talk objectively about any things at all 
that stand in relation R. To begin to consider marriage, all that we need is some persons that are 
married, not access to all married couples, past, present, and future. Because marriage is a relation 
among real persons, it will be difficult to say anything definitive about it, but it is not difficult 
to see examples of it. Its study would have to be empirical. Because mathematical relations are 
among mathematical objects, we are free to define them for ourselves-by consensus if we are 
going to communicate successfully. 

We have access to the relation of successor, as used in arithmetic, both as Brouwer claimed 
with the passage of time and in many physical arrangements of one thing after another, where 
'after' is not temporal but can be physical. To have access to this relation it is not necessary that 
the set of things standing in the relation all be accessible or on the other hand that the set be 
infinite even though in mathematics we extend the domain of the relation to infinity. Our puny 
physical access to this relation inspires us to imagine an infinite domain on which it is defined
by us. This is handy even though our physical means cannot even represent what is in such a 
domain, either on paper or electronically. In the natural sciences we likewise have access only 
to limited examples of the relations that are studied, some of which we assume to have infinite 
domains. To the infinite domain of arithmetic we have no access at all, and so our examples and 
counterexamples in arithmetic are often finite where we can specify and understand them. Once 
we have this ideal domain and become comfortable with it, we can consider relations within 
it other than the relation of successor. I have indicated above how we define ternary relations 
like sum and product, difference and quotient. Once we have these working well, in order to 
make them work better we further idealize to negative numbers and to rational numbers. Debit 
balances and portions of a pizza help us out with the relations involved, but they do not give 
us access to the negative numbers and fractions of which any mathematical discussion of such 
things makes use. Because we have access to ordinary things that stand in the relations among 
the mathematical objects, even if only approximately, we do not need access to the mathematical 
objects themselves. They are idealizations or reifications that it is extremely convenient to talk 
about, but we can get along perfectly well without access to them and-a nominalist will say
without their being in any sense real. But their reality is more irrelevant than relevantly false. 
Most mathematical relations arise among mathematical objects themselves. In physics we have 
no access to the perfect systems that physics books talk about either. I see mathematical objects 
as similar idealizations for the sake of how they are related, which is what the idealizations in 
the physics books are there for too. But it is essential that we have very clear ideas about their 
relations widely agreed upon so that our reasoning can be correct and be seen to be correct. 
We do not need to agree on their non-mathematical existence or location or when or how they 
were created or discovered (or which it was). These aspects are mathematically irrelevant and so 
mathematically neutral. 

The above paragraph concerns the big leap from ordinary objects and their relations to the 
mathematical objects that bear the idealizations of those relations. We have access to the former 
and not to the latter. But we have something more powerful than mere access to the mathematical 
objects and relations; we decide what they shall be and stipulate that to suit ourselves (collectively, 
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not individually). It is a smaller step to move from one set of mathematical objects and the relations 
among them to another set of mathematical objects and relations based on them. For example, 
studies in analysis from the seventeenth century to the nineteenth had produced many functions, 
and it was observed that functions could be added and mUltiplied like the values in their common 
ranges. This allowed the creation of altogether new structures, function spaces, based on the 
relations among the functions composing those spaces. Such creation is a smaller step than 
the move from combining sets of physical objects to the addition of their cardinal numbers. It 
appears to be much easier to make such intra-mathematical steps than to find altogether new 
physical relations to mathematize. That would appear to be why graph theory, topology, and 
modem algebra are so much more recent inventions than arithmetic and geometry. No one can 
specify in advance what might be mathematized or what cannot be. That may be because of our 
comparative ignorance of how it is done or because it is so creative an action that we shall never 
understand it. 

While the above considerations go some way, I think, to clarifying the problem of access
largely by recasting it, it deals not at all with the somewhat different philosophical problem 
of reference. One can ask, if one takes the view that mathematical statements are made about 
mathematical objects, how we refer to them. Since I think that mathematical statements do not 
refer to specifically mathematical objects but to whatever might satisfy our axioms, the problem 
of reference in what might be called its platonic form does not arise. We have genuine reference 
to objects only in cases of applied mathematics, and there it is usually only approximate, and in 
informal discussion, where we are free to talk in ways that no doubt defy philosophical analysis. 
The same is true of the relations involved in our mathematical statements. Just as the nouns in 
our theorems are really pronouns standing for whatever satisfies the axioms or conventions of our 
theory, the relating words stand for whatever relations work in the ways specified by the theory. 
An example of this apparent indefiniteness that is particularly clear is plane projective geometry. 
One can state the axioms in terms of points lying on lines (in the plane, which itself need not 
be mentioned), for example, every pair of points lies on one and only one line. The obvious and 
intuitive content oflying on is something much like set membership because one thinks ofa line 
as composed of the points that lie on it. But, because of the point-line duality of plane projective 
geometry, the word 'point' can be taken to refer to the lines in the plane, and the word 'line' 
can be taken to refer to the points in the plane. Then lying on is transferred to what intuitively 
one would think of as passing through, with the result that the content of the above axiom is 
that every pair of lines passes through one and only one point-perfectly correct. Coxeter [1955] 
shows that this can be done with the whole theory.!4 This example shows that there is a whatever 
aspect to the relations in mathematical theories that parallels the whatever aspect to the objects. 
This whatever aspect is why Russell in the quotation above!5 said 'types of relation', not just 

'relations'. It was a mistake for Camap to think that mathematics is logical syntax oflanguage, 
but the mistake was not totally lacking in excuse; there is in mathematics an element of how it is 
possible to talk objectively and reason correctly. 

14 This example, where it is unclear which are the sets and which are the elements, seems to me more dramatic than the 
mere automorphism problem of distinguishing between i and -i in the complex numbers. 
15 Section 4, paragraph 5. 
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When we ask whether there exists a rational square root of two, we are not asking a 
metaphysical question. The question can be thought of as being a metaphysical one, but that 
is a mistake. The relational view suggests a non-metaphysical attitude that completely avoids 
any question about existence of rational numbers. The question is rather whether a rational 
number-whatever it may be--can stand in the relation that squared it equals two. Since none 
of the rational numbers-whatever they may be--can stand in that relation, we say that the root 
of two does not exist among the rationals. Only when we are happy with infinite sequences can 
we extend the arithmetic relations to the limits of Cauchy sequences and find that, among the 
Cauchy sequences, there are those whose limits have squares equalling two. So the root of two 
exists among the real numbers, but nothing was either created or found in a metaphysical sense. 
We simply extended our domain of discourse by making our relations apply to new materials. 16 

We did not even create the Cauchy sequences; we just decided to talk about unending sequences 
of numbers, something we had got used to after we decided that the positive integers would be 
better thought of as an unending sequence. And why did we think that'? Because the last positive 
integer would have embarrassing relations to the others. 

I remarked earlier that the relational view helps with understanding the application of math
ematics. This has always seemed to me one of its fundamental and obvious advantages, but the 
problem itself (discussed in this volume by Mark Steiner) is so little spoken of that I ought to 
elaborate. The simplest application of arithmetic, to make the example as simple as possible, 
to everyday objects requires only that they be discrete so that they can be counted rather than 
continuous like water. Even when what is counted is continuous, like time, we can agree on 
chunks, days for instance, that can be counted rather than measured. As soon as we recognize an 
order, as in the case of days, or impose an order, as in the case of pebbles, we can count them 
and perform arithmetic meaningfully because the relevant relations among the things are those 
based on order, which gave us the integers with which to do arithmetic. The relations among 
measurements rather than counts are more complicated, and we have created (epistemically not 
metaphysically) rational numbers to bear those relations to one another. This allows us to apply 
the arithmetic of rational numbers meaningfully to measurements. However amusing it may be 
to think that the hypotenuse of a 1-1-v'2 triangle has an irrational side in mathematics, when one 
measures distances outside mathematics one always deals in rational numbers. Note that on this 
view the analogy is between relations among counts and relations among integers, and between 
relations among measurements and relations among rationals rather than directly between objects 
counted and integers or between material measured and rational numbers. One sees occasionally 
the questions, why should platonic mathematical objects 'apply' to ordinary physical objects, 
and what does it mean that they 'apply'?' If one is concerned with those mathematical objects 
as primary, that's a very puzzling question. If one views them as being the bearers of important 
relations that we have decided to think about, then their application-through the relations in 
which they stand-is not at all mysterious. 

I end with a return to disclaiming any exclusivity for the view of mathematics I have presented 
and discussed. In particular, I have much respect for mathematics as art. Art too is concerned with 

16 I am alluding to the standard introduction of arithmetic on equivalence classes of Cauchy sequences in which it is 
shown that the same arithmetic applies to ordinary numbers so that fonnally we replace the rationals with equivalence 
classes of Cauchy sequences so as to have a unifonn theory. 
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relations but with their presentation rather than with their scientific study. You will note that I have 
not argued for the scientific view, lacking any premises from which to do so. I have just presented 
evidence and consequences. The aim is to offer a 'big picture,' as Charles Chihara puts it, a 
picture big enough to contain both mathematics and a context, in this case the scientific context. 
As a picture, its virtue is meant to be representational rather than merely aesthetic. It ought to 
correspond to what it represents. Like any representation, it omits much of what it represents. 
And non-correspondences mar it. It is not a myth, not being intended to motivate action. Let 
me end with a speculation. I have suggested that mathematics does not have a subject matter of 
things that could exercise a directing influence on our study of them by drawing themselves to 
our attention as matters of survival. Perhaps this is a reason why aesthetic influence is enhanced 
in mathematics beyond its considerable function in the natural sciences. Something has to ground 
our choices of topics, our choices of results to prove, our choices of proofs. What better than how 
attracti ve they are? 
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Wliat is Matliematics? A Pedagogica( Answer 

to a plii(osl!J'liica( Question 

From the Editors 

Guershon Harel 
Professor of Mathematics 

University of California, San Diego 

We had hoped to have several contributions to this book from people doing research in under
graduate mathematics education, since we believe that one s philosophy of mathematics often has 
a significant impact on how one teaches mathematics. Unfortunately, several of those we invited 
either declined or initially accepted and then found themselves too involved in other projects. 
Fortunately, Guershon Harel does some of the most interesting work in undergraduate mathe
matics education, although of course he does not represent the whole community. He includes the 
conceptual tools of mathematics as part of mathematics and hence part of what we must teach 
along with definitions, theorems and proofs. Those who are involved in teaching undergraduate 
mathematics are likely to.find his chapter worthwhile. 

We have one suggestion that we think may he!p you as you read this chapter. There is a nice 
parallelism in the language, "ways of thinking," "ways of understanding," but the first several 
times we read the chapter we had difficulty separating in our minds how a way of thinking differs 
from a way of understanding. We suggested to the author that he replace "ways of understanding" 
simply by "understandings" (by which we mean how each of us understands the objects and facts 
of mathematics). But he was reluctant to do this for reasons he explains in his chapter. As you 
read the chapter. you may want to mentally drop "ways of "from "ways of understanding "-at 
least, this helped us keep the distinction clear between his notions of "ways of thinking" and 
what we prefer to call "understandings." 

Guershon Hare! is a Professor of Mathematics at the University of California, San Diego 
(www.math.ucsd.edu/~harel/). He has research interests in cognition and epistemology of math
ematics and their applications in mathematics curricula and teacher education. He has focused 
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on the concept of mathematical proof, the learning and teaching of linear algebra, and the de
velopment of proportional reasoning of the multiplicative conceptual field. Dr. Harel's current 
work focuses on the concept of mathematical proof and the development of a theoretical frame
work, called DNR-based instruction in mathematics, which stipulates conditions for achieving 
critical goals such as provoking students' intellectual need to learn mathematics, helping them 
acquire mathematical ideas and practices,and assuring that they internalize, organize, and 
retain the mathematics they learn. He developed (with L. Sowder) a taxonomy of students cogni
tive mathematical-proof schemes-based, in part, on parallels between historical and individual 
epistemologies-and a system offoundational pedagogical principles for instructional treatments 
that facilitate the development of deductive reasoning among students. Harel worked on several 
projects, funded, in part, by the National Science Foundation, the US Department of Education, 
and the State of California. These include the Rational Number Project (a research project in
vestigating the learning and teaching of multiplicative concepts, such asfractions and linearity); 
the Algebraic Thinking Institute (a professional development project for secondary mathematics 
teachers); Proof Understanding, Production, and Appreciation (a research project aimed at 
mapping the development of the concept of proof with students); and Development of Mathe
matics Teachers Knowledge Base Through DNR-Based Instruction (a research project aimed at 
investigating the development of teachers' knowledge of mathematics and of pedagogy). He is 
the author of over 80 articles (many joint) in mathematics education at all levels from elemen
tary school through collegiate mathematics. Some that are especially likely to interest readers 
of this chapter include "Learning and Teaching Linear Algebra: Difficulties and an Alternative 
Approach to Visualizing Concepts and Processes," Focus on Learning Problems in Mathematics 
(1989); "The General, the Abstract, and the Generic," For the Learning of Mathematics (1991, 
with D. Tall); "The Role of Conceptual Entities in Building Advanced Mathematical Concepts 
and Their Symbols," in D. Tall (ed.), Advanced Mathematical Thinking (1991, with J. Kaput); 
"The Process Conception of Function," in G. Harel & E. Dubinsky, The Concept of Function: 
Aspects of epistemology and pedagogy (1992, with E. Dubinsky); "Two Dual Assertions: The 
First on Learning and the Second on Teaching (Or Vice Versa)," The American Mathematical 
Monthly (1998); "The Development of Mathematical Induction as a Proof Scheme: A Model 
for DNR-Based Instruction," in S. Campbell & R. Zaskis (eds.). Learning and Teaching Number 
Theory (2001); 'Advanced Mathematical- Thinking at Any Age: Its Nature and Its Development," 
Mathematical Thinking and Learning (2005, with L. Sowder); and "Toward a Comprehensive 
Perspective on Proof," in F. Lester (ed.), Second Handbook of Research on Mathematics Teaching 
and Learning (2007, with L. Sowder). 

o Introduction 

Why do we teach the long division algorithm, the quadratic formula, techniques of integration, 
and so on when one can perform arithmetic operations, solve many complicated equations, 
and integrate complex functions quickly and accurately using electronic technologies? Typical 
answers teachers give to these questions include "these materials appear on standardized tests," 
"one should be able to solve problems independently in case a suitable calculator is not present," 
"such topics are needed to solve real-world problems and to learn more advanced topics." From 
a social point of view, there is nothing inadequate about these answers. Teachers must prepare 
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students for tests mandated by their educational system, they must educate students to carry 
out elementary calculations independent of computer technologies, especially calculations one 
might encounter in daily life, and they must prepare students to take advanced courses where 
certain computational skills might be assumed by the instructors of these courses. These answers, 
however, are external to mathematics as a discipline, in that they offer justifications that are 
neither cognitive (about thought processes) nor epistemological (regarding the philosophical 
theory of knowledge) but mainly social. For example, nothing in these answers suggests the role 
of computational skills in one's conceptual development of mathematics; nor do these answers 
reflect the role of computations in the development of mathematics. A related question is: why 
teach proofs? The most typical answer given by teachers to this question was, "so that students can 
be certain that the theorems we present to them are true." While this is an adequate answer-both 
cognitively and (by inference) epistemologically--it is incomplete. The teachers who were asked 
this question had little to say when skeptically confronted about their answers by being asked: Do 
you or your students doubt the truth of theorems that appear in textbooks? Is certainty the only goal 
of proofs? The theorems in Euclidean geometry, for example, have been proven and re-proven for 
millennia. We are certain of their truth, so why do we continue to prove them again and again? 

Overall, these teachers' answers do not address the question of what intellectual tools one 
should acquire when learning a particular mathematical topic. Such tools, I argue, define the 
nature of mathematical practice. Judging from current textbooks and teaching practices, teachers 
at all grade levels, including college instructors, tend to view mathematics in terms of subject 
matter, such as definitions, theorems, proofs, problems and their solutions, and so on, not in 
terms of the conceptual tools that are necessary to construct such mathematical objects. While 
knowledge of and focus on subject matter is indispensable for quality teaching, I argue it is 
not sufficient. Teachers should also concentrate on conceptual tools such as problem-solving 
approaches, which, I argue, constitute an important category of knowledge different from the 
subject matter category, as I will explain shortly. 

What exactly are these two categories of knowledge, subject matter and conceptual tools? 
And what is the basis for the argument that both categories are needed? Initially, pedagogical 
considerations, not philosophical ones, engendered the two questions. However, my inquiries into 
these questions, especially in relation to students' conceptions of proof, have led me into historical 
and philosophical analyses not initially intended. These analyses have shed considerable light 
on my understanding of cognitive processes of learning. For example, the philosophical debate 
during the Renaissance as to whether mathematics conforms to the Aristotelian definition of 
science helped me understand certain difficulties able students have with a particular kind of 
proof (see [Harel 1999]). The juxtaposition of such epistemological and cognitive analyses 
compelled me to look deeply into the nature of mathematical knowledge and its implications for 
curriculum development and instruction. Thus, my answers to the above two questions-the main 
concern of this paper--draw upon epistemological, cognitive, and pedagogical considerations. 
These answers are situated within a broader theoretical framework called DNR-based instruction 
in mathematics (DNR for short).The initials, D, N,and R, stand for three leading principles in 
the framework--duality, necessity, and repeated-reasoning-to be presented in Section 4. DNR 
stipulates conditions for achieving critical goals such as provoking students' intellectual need to 
learn mathematics, helping them acquire mathematical ideas and practices, and assuring that they 
internalize, organize, and retain the mathematics they learn. 

The paper consists of five sections: Section I discusses a triad of key DNR constructs: "mental 
act," "way of understanding," and "way of thinking." On the basis of these constructs, a definition 
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according to which mathematics consists of two categories of knowledge is offered in Section 2. 
Epistemological considerations and pedagogical consequences of this definition are discussed in 
Section 2 and Section 3. Section 3 focuses mainly on long term curricular and research goals, with 
particular attention to lessons from history. The three foundational principles of DNR along with 
examples of other DNR constructs are briefly presented in Section 4. However, DNR concepts 
and themes are on every page of the paper. The paper concludes with a summary in Section 5. 

1 Menta( Act, Way I!fUnaerstandln!J, anaWay I!fTliinkin!J 

1.1 Menta( Act 

Humans' reasoning involves numerous mental acts such as interpreting, conjecturing, inferring, 
proving, explaining, structuring, generalizing, applying, predicting, classifying, searching, and 
problem solving.' These are examples of mental acts as opposed to phYSical acts. "Lifting" and 
"pulling" an object are examples of the latter. However, many terms may refer to either physical 

acts or mental acts. For example, searching may refer to the act of physically looking fora missing 
material object-such as when one searches for missing keys---or to the act of mentally looking 
for an abstract object-such as when one searches for the value of an equation's unknown. The 
distinction between "mental act" and "physical act" is not without difficulty, as one can learn 
from the work of Lakoffand Johnson ([Lakoff/Johnson 2003]) and Johnson ([1987]), who argue 
that meaning, imagination, and reason have a bodily basis. This debate, however, is beyond the 
scope and goals of this paper. 

Humans perform mental acts, and they perform them in every domain of life, not just in 
science and mathematics. Although all the aforementioned examples of mental acts are important 
in the learning and creation of mathematics, they are not unique to mathematics-people interpret, 
conjecture, justify, abstract, solve problems, etc. in every area of their everyday and professional 

life. Professionals from different disciplines are likely to differ in the extent to which they carry 
out certain mental acts; for example, a painter is likely to abstract more often than a carpenter, a 
chemist to model more often than a pure mathematician, and the latter to conjecture and justify 
more often than a pianist. But a more interesting and critical difference among these professionals 
is in the nature, the characteristics, ofthe mental acts they perform. A biologist, chemist, physicist, 
and mathematician all carry out problem-solving acts in every step in their professional activities, 
and they may even produce similar solutions to problems their fields have in common. The four, 
however, are likely to differ in the nature of the problem-solving act and other related mental 
acts they perform while solving problems. Mental acts are basic elements of human cognition. 
To describe, analyze, and communicate about humans' intellectual activities, one must attend to 

their mental acts. 

1.2 Way '!fUnderstanding Versus Way '!fThinking 

It was suggested earlier that teachers at all grade levels tend to view mathematics in terms 
of "subject matter" (e.g., definitions, theorems, proofs, problems and their solutions), not in 

I The notion of "mental act" is taken as undefined in this paper. 



13. Wliat is Mathematics? A Pedagogica( Amwer to a Plii(os'!Pliica( Questio" 269 

tenns of the conceptual tools that are necessary to construct such mathematical objects, and that 
cognitively, pedagogically, and epistemologically both categories are needed. In this section, 
these two categories of knowledge will be defined more precisely in tenns of the triad, mental 

act, way of understanding and way ofthinking.2 

Mental acts can be studied by observing peoples' statements and actions. A person's state
ments and actions may signify cognitive products of a mental act carried out by the person. 
Such a product is the person's way of understanding associated with that mental act. Repeated 
observations of one's ways of understanding associated with a given mental act may reveal 
certain cognitive characteristics of the act. Such a characteristic is referred to as a way of think
ing associated with that act. In the rest of this section, these definitions will be explained and 
illustrated. 

Again, a way of understanding is a particular cognitive product of a mental act carried out 
by an individual. For example, upon seeing the symbol 3/4 one may carry out the interpreting 
act to produce a meaning for this symbol. The interpretation the person produces is her or his 
way of understanding the symbol. Such a way of understanding may vary with context, and 
when judged by an observer, it can be deemed right or wrong. For example, in one context 
a person may produce the meaning "3 objects out of 4 objects," and in another the meaning 
"the sum 1/4 + 1/4 + 1/4." One person may produce a mathematically sophisticated way of 
understanding, such as "the equivalence class {3n /4n I n is an integer different from zero J," and 
another a naive way of understanding, such as "two numbers with a bar between them." Likewise, 
a particular solution to a problem and a particular proof of an assertion are products of the 
problem-solving act and proving act, respectively; hence, each is a way of understanding. 

A way of thinking, on the other hand, is a cognitive characteristic of a mental act. Such a 
characteristic is always inferred from observations of ways of understanding ---cognitive products 
ofa mental act. For example, a teacher following her student's mathematical behavior may infer 
that the student's interpretation of mathematical symbols is characteristically inflexible, devoid 
of quantitative referents, or, alternatively, flexible and connected to other concepts. Likewise, the 
teacher may infer that a student's justifications of mathematical assertions are typically based on 
empirical evidence, or, alternatively, based on rules of deduction. 

Methodologically, when analyzing students' mathematical behavior in tenns of ways of 
understanding and ways of thinking, one begins with, and fixes, a mental act under consideration, 
looks at a class of its products (i.e., ways of understanding associated with it), and attempts to 
detennine common cognitive properties among these ways of understanding. Any property found 
is a way of thinking associated with the mental act. 

To further illustrate the distinction between ways of understanding and ways of thinking, 
consider the three mental acts of "interpreting," "problem solving" and "proving." 

1.2.1 The Interyretin'J Act 

The actual interpretation one gives to a tenn or a string of symbols is a way of understanding 
because it is a particular cognitive product of her or his act of interpreting. For example, one may 

2 Until the terms, way a/understanding and way a/thinking, are defined and illustrated, the reader might find it helpful 
to associate this pair oftenns with the pair, subject matter and conceptual tools, respectively. The two pairs of terms, 
however, are not synonymous (see also Footnote 5). 
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interpret the string of symbols y = ./6x - 5 in different ways: as an equation (a condition on the 
variables x and y), as a number-valued function (for each number x, there corresponds the number 
./6x - 5), or as a proposition-valued function (for each ordered pair (x, y) there corresponds the 
value "true" or the value "false."). These ways of understanding manifest certain characteristics 
of the interpreting act-for example, that "symbols in mathematics represent quantities and 
quantitative relationships." A person who holds more than one such way of understanding is 
likely to possess, in addition, the way of thinking that "mathematical symbols can have multiple 
interpretations." And a person who is able to vary the interpretation of symbols according to 
the problem at hand is likely to possess the way of thinking that "it is advantageous to attribute 
different interpretations to a mathematical symbol in the process of solving problems." These 
are examples of mature ways of understanding and ways of thinking, which are absent for many 
high school and college students. For example, when a class of calculus students was asked what 
y = ./6x - 5 meant to them, many were unable to say more than what one of their classmates 
said: "It is a thing where what you do on the left you do on the right." For many students the act 
of interpreting algebraic symbols can be characterized as being free of quantitative meaning. 

It is not uncommon that students manipulate symbols without meaningful basis in the 
context (as in (toga + logb)/ logc = (a + b)/c). Matz ([1980]) connects this (erroneous) way 
of understanding and a wide range of algebra errors to an overgeneralization of the distributive 
property. Students factor out the symbol log from the numerator and cancel it, without attending to 
the quantitative meaning of their action. The behavior of operating on symbols as if they possess 
a life of their own, not as representations of entities in a coherent reality, is referred to as the 
non-referential symbolic way of thinking. With this way of thinking, one does not attempt to attend 
to meaning. For example, one does not ask questions such as "What is the definition of log a?", 
"Does log·a (multiplication) have a quantitative meaning?", "Is loga + 10gb = log(a + b)?" 
and so on, for symbols are not conceived as representations of a coherent mathematical reality. 
Of course, one may produce correct results and still operate with the non-referential symbolic 
way of thinking. For example, we have observed students correctly solve systems of equations 
without attaching meaning to the operations they apply or to the solution they obtain. Our 
current work ([Harel et al. forthcoming]) points to an expected source of the phenomenon of 
non-attendance to meaning by students: the way algebra is taught in school. We demonstrate how 
current teaching practices of algebra teachers tend to deemphasize, ignore, or misuse mathematical 
meaning. 

Before proceeding with the other two mental acts, a remark on the non-referential symbolic 
way of thinking, which I have just mentioned, is needed. The characterization of this way of 
thinking may have evoked with the reader a different image from the one portrayed here since 
relative to the reader's practice of mathematics it is not uncommon that symbols are treated 
as if they possess a life of their own, and, accordingly, are manipulated without (necessarily) 
examining their meaning. I will return to discuss this point in Section 3.2. 

1.2.2 T/ie Pro6(em So(ving Act 

As to the mental act of problem solving, the actual solution--correct or erroneous--ane provides 
to a problem is a way of understanding because it is a particular cognitive product of the person's 
problem-solving act. A problem-solving approach, on the other hand, is a way of thinking. For 
example, problem-solving approaches such as "look for a simpler problem," "consider alternative 
possibilities while attempting to solve a problem," and "just look for key words in the problem 
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statement" characterize, at least partially, the problem-solving act; hence, they are instances of 
ways of thinking. 

The problem-solving act is not of the same status as the other mental acts listed above, in 
that any of these acts is, in essence, a problem-solving act. The acts of interpreting, generalizing, 
and proving, for example, are essentially acts of problem solving. Despite this, the distinction 
among the different mental acts is cognitively and pedagogically important, for it enables us to 
better understand the nature of mathematical practice by individuals and communities throughout 
history, and, accordingly, set explicit instructional objectives for instruction. This viewpoint will 
be demonstrated in Sections 2 and 3. 

1.2.3 The Proving Act 

While problem-solving approaches are instances of ways of thinking associated with the problem
solving act,proofschemes are ways ofthinking associated with the proving act. Proving is defined 
in [Harel/Sowder 1998] as the act employed by a person to remove or instill doubts about the 
truth of an assertion. Any assertion can be self-conceived either as a conjecture or as afact. A 
conjecture is an assertion made by a person who has doubts about its truth. A person ceases 
to consider an assertion to be a conjecture and views it to be a fact once the person becomes 
certain of its truth. In [Harel/Sowder 1998], a distinction was made between two variations of the 
proving act, ascertaining and persuading. Ascertaining is the act one employs to remove one's 
own doubts about the truth of an assertion (or its negation), whereas persuading is the act one 
employs to remove others' doubts about the truth of an assertion (or its negation). Aproofscheme 
characterizes one's collective acts of ascertaining and persuading; hence, it is a way of thinking. 

A common proof scheme among students is the authoritative proof scheme, a scheme by 
which proving depends mainly on the authority of the teacher or textbook. Another common 
proof scheme among students is the empirical proof scheme-a scheme marked by its reliance on 
evidence from examples or visual perceptions. Against these proof schemes stands the deductive 
proof scheme. a scheme by which one proves an assertion with a finite sequence of steps, where 
each step consists of a conclusion which follows from premises (and previous conclusions) 
through the application of rules of inference.) Note that while a proof scheme is a way of 
thinking, a proof-a particular statement one offers to ascertain for oneself or convince others
is, by definition, a way of understanding. 

Mathematical reasoning centers on the deductive proof scheme. In contrast, the authoritative 
proof scheme and the empirical proof scheme are examples of undesirable ways of thinking. 
While undesirable, a dash of the authoritarian proof scheme is not completely hannful and is 
unavoidable; people may use this scheme to some extent when they are sampling an area outside 
their specialties. In two of its worst fonns, however, either the student is helpless without an 
authority at hand, or the student regards a justification of a result as valueless and unnecessary. 
As with the authoritarian proof scheme, the empirical proof scheme does have value. Examples 
and nonexamples can help to generate ideas or to give insights. The problem arises in contexts in 
which a deductive proof is expected, and yet all that is necessary or desirable in the eyes of the 
student is verification by one or more examples. 

3 For an extensive taxonomy of proof schemes drawn from students' mathematical behaviors and the historical develop
ment of proof, see [HarellSowder 1998]. 
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1.2.4 Termino(0!JY 

Two remarks on terminology are in order. The first remark concerns the adjective "cognitive" in 
the definitions of "way of understanding" and "way of thinking." A way of understanding is a 
cognitive product of a mental act, and a way of thinking is a cognitive characteristic of a mental 
act. This is to indicate that the focus here is on cognition rather than affect or physiology. For 
example, the product of feeling confusion or frustration as one attempts to interpret a statement, 
prove an assertion, or solve a problem, is not dealt with in the conceptual framework offered 
here. Nor does this framework deal with physiological characteristics of mental acts-those that 
include, for example, certain neurological activities in the brain. Thus, the adjective "cognitive" 
in the above definitions intends to single out one type of products and characteristics-that which 
signifies cognition. The focus on cognition rather than affect and physiology is also evident in 
the examples discussed to illustrate the definitions. 

The second remark concerns ease ofterminology. It may not be easy to get accustomed to the 
technical distinction between the terms "way of understanding" and "way of thinking" as is made 
here. This is partly because in communication among educators and in the literature on learning 
and teaching the two terms are often used interchangeably (and without exact definitions). Also, 
the phrase "way of" seems to connote a sort of a process and, hence, a dynamic image, whereas the 
definition of "way of understanding" as aproductofa mental act may connote an outcome, a static 
image. My intention in using the phrase "way of" is to insinuate "one of several possible ways," 
which suggests that a mental act in mathematics can, and should, have multiple products and 
characteristics-an implied view in the DNR perspective, as we will see. The verbs "to understand" 
and "to think" are used in this paper in accordance with the definitions ofthe corresponding terms: 
"to understand" means to "have a way of understanding," and "to think" means to "apply a way of 
thinking." In DNR, and throughout this paper, "ways of understanding" and "ways of thinking" 
are distinguished from their values. For example, one's way of understanding can be judged as 
correct or wrong, useful or impractical in a given context, etc. 

2 A Difinition I!f Matliematics: Eyistemo(0!Jica( Considerations and 
Peda!Jo!Jica( Imyllcations 

The notions of "ways of understanding" and "ways of thinking" as defined here are key con
structs in the definition of mathematics I will now state. Mathematicians, the practitioners of 
the discipline of mathematics, practice mathematics by carrying out mental acts with particu
lar characteristics (ways of thinking) to produce particular constructs (ways of understanding). 
Accordingly, mathematics consists of these two categories of knowledge. Specifically: 

Definition: Mathematics consists of two complementary subsets: 

• The first subset is a collection, or structure, of structures consisting of particular axioms, 
definitions, theorems, proofs, problems, and solutions. This subset consists of all the 
institutionalized' ways of understanding in mathematics throughout history. It is denoted 

byWoU. 

4 Institutionalized ways of understanding are those the mathematics community at large accepts as correct and useful 
in solving mathematical and scientific problems. A subject matter of particular field may be viewed as a structure of 
institutionalized ways of understanding. 
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• The second subset consists of all the ways of thinking, which are characteristics of the 
mental acts whose products comprise the first set. It is denoted by WoT. 

By this definition, mathematics is like a living organism. It grows continually as math
ematicians carry out mental acts and their mathematical communities assimilate the ways of 
understanding and ways ofthinking associated with the mathematicians' mental acts. The assim
ilation is attained when new ways of understandings are integrated into an existing mathematical 
edifice and ways of thinking are adopted in subsequent mathematical practices. As one can learn 
from the history of mathematics, the assimilation process is gradual and often not without con
ceptual struggle. Some ways of understanding and ways of thinking are regarded as inaccurate or 
faulty-sometimes long after they have been institutionalized. They, too, are part of mathematics 
according to this definition, as I explain later in this paper. In the rest of this section, I shall 
discuss several epistemological issues concerning this definition and examine their pedagogical 
consequences. 

2.1 Listabillty 

Mathematics as a union of WoU and WoT is not listable---capable of being completely listed. 
WoU contains more than the collection of all the statements appearing in mathematical publica
tions, and the members ofWoT are largely unidentified. I explain. 

Consider a statement-say, a new theorem-that has appeared in a mathematical publication, 
such as a book or research paper. Its publication indicates recognition by a community that a 
new way of understanding has been accepted. Individual mathematicians might believe and act 
as if the published theorem represents a way of understanding shared by the community at 
large, whereas, in fact, each individual mathematician possesses an idiosyncratic way of under
standing the theorem. Of all the latter "private" ways of understanding, consider only the subset 
of those that are consistent with the former "public" ways of understanding. These, too, are 
considered institutionalized, since it is assumed by the mathematics community that any way 
of understanding that is consistent with a "public" way of understanding is acceptable. Thus, 
WoU contains all the statements that have appeared in mathematical publications-which the 
mathematics community views as representations of shared ways of understanding. WoU also 
contains individual mathematicians' ideas which are consistent with the published assertions. 
While statements in the first set are listable, those in the latter are not. The reason they are not 
listable is this. Let S be a statement that has been published, and let S' be a particular person's way 
of understanding S. Once this person has expressed S' to the community, S' moves to the domain 
of those ways of understanding assumed-to-be shared by the community. But the members of 
the community, including this person, possess idiosyncratic ways of understanding S'. 

A pedagogical implication ofthis analysis is that a way of understanding, such as a definition, 
theorem, proof, or solution to a problem, cannot and should not be treated by teachers as an 
absolute universal entity shared by all students. Any statement a teacher (or a classmate) utters 
or puts on the board will be translated by each individual student into a way of understanding 
that depends on her or his experience and background. The goal of the teacher is then that these 
necessarily different individual mental constructs are compatible with each other. A classroom 
environment that promotes discussion and debate among students is both necessary for and 
instrumental in achieving this goal. 
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As to the WoT subset of mathematics, its members are not formally recognized by the 
mathematics community. They are neither explicitly targeted as instructional objectives by math
ematicians nor investigated and reported in formal publications. Occasionally, however, they 
are informal parts of communications between collaborators. P6lya's book "How to Solve It" 
([P6Iya 1957]) is a rare attempt by a professional mathematician to explicate desirable problem
solving approaches, which, as was explained earlier, are ways of thinking. (For a discussion on 
P6lya's pedagogical and epistemological assumptions on mathematical heuristics, see [Schoen
feld 1992].) It is much more difficult to reflect on and express in precise words ways of think
ing than ways of understanding. In DNR-based instruction, considerations of ways of thinking 
are central; they are an essential part of curriculum development and instruction, as we will 
see. 

2.2 Boundaries 

A consequence of my definition of mathematics is that mathematics must include ways of 
understanding and ways of thinking that from the vantage point of contemporary mathematicians 
are imperfect or erroneous; Euclid's Elements is an example. This leads to the following question: 
should ways of understanding and ways of thinking used or produced by individuals (students, 
for example) while they are engaged in a mathematical activity be considered mathematical even 
if they are narrow or faulty? My answer to this question is affirmative in so far as the individual 
has utilized--with or without the help of an expert-such ways of understanding and ways of 
thinking for the construction of institutionalized knowledge-knowledge accepted at the time by 
the mathematics community at large. 

This position is consistent with the definitions of "way of understanding" and "way of 
thinking." As can be seen from the examples discussed in the previous section, these terms 
do not imply correct knowledge. The terms only indicate the knowledge currently held by a 
person, which may be correct or erroneous, useful or impractical. Having said this, it must be 
emphasized that the ultimate goal of instruction must be unambiguous: to help students develop 
ways of understanding and ways of thinking that are compatible with those that are currently 
accepted by the mathematics community at large. From a pedagogical point of view this goal is 
meaningless without realizing that the process of learning necessarily involves the construction 
of imperfect and even erroneous ways of understanding and deficient, or even faulty, ways of 
thinking. Teachers must be aware of this phenomenon when working toward an instructional 
goal, and their teaching actions must be consonant with this awareness. In particular, they must 
attempt to identify students' current ways of understanding and ways of thinking, regardless of 
their quality, and help students gradually refine and modify them toward those that have been 
institutionalized-those the mathematics community at large accepts as correct and useful in 
solving mathematical and scientific problems. 

The repeated use of the term "institutionalized" here raises the question: what about 
creativity-the discovery of new, not necessarily institutionalized, ways of understanding and 
ways of thinking? Are such discoveries mathematical? By my definition of mathematics they are 
not. This position is based on the premise that mathematics is a human endeavor, not a predeter
mined reality. As such, it is the community of the creators of mathematics who makes decisions 
about the inclusion of new discoveries in the existing edifice of mathematics. Such decisions 
may never be made by the community at large, and the new discoveries may be forever lost as 
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a result. The work of Ramanujan would have likely been lost had G. H. Hardy not recognized 
the precious mathematical discoveries in the letter Ramanujan sent to him around 1913. Other 
decisions may be delayed; the work of Grassman (19th century) and the work of Cantor (19th 
century) are examples. Grassman's work was ignored for many years but became later the basis 
for vector and tensor analysis and associative algebras. Cantor's set theory, too, was ignored or 
boycotted for some time, but was later recognized as one of the most important discoveries of 
twentieth century mathematics. At the time of their discoveries, prior to their institutionalization, 
these works did not belong to mathematics, according to the definition of mathematics I propose 
in this paper. 

2.3 Rdation to Onto{0!J!1 

There is a danger of confounding the above definition of mathematics with a particular philosoph
ical stance with which I vehemently disagree. Mathematics, according to this definition, consists 
of ways of understanding and ways of thinking that have evolved throughout history. Inevitably, 
some of these constructs are narrow and even faulty if judged from a contemporary perspective. 
This does not entail that particular mathematical statements could be true for some people and 
falseforothers-a view that is implied by an extreme form of post-modernism, which asserts that 
mathematical truth depends on the culture or bias of the mathematician (see [Buss 2005] for a dis
cussion against this view). Such disputed statements cannot be part of mathematics according to 
my definition, for they have never been institutionalized by any mathematics community in the his
tory of mathematics. That is, no mathematics community, as far as I know, has ever accepted that 
a statement A and its negation, ~A, can both be true within the same system of rules of inference. 
A statement such as "Every function on the real numbers is continuous" is true for intuitionists but 
false for the rest of us because the two communities are considering the statement within different 
systems of rules of inference. Also the term "function" has different meanings for the two commu
nities. Thus, a statement must not be considered in isolation but within a context that constitutes its 
meaning. 

What is disputed among philosophers, and to a lesser extent among mathematicians, is the 
answer to an ontological question: what is the nature of the being and existence of mathematics? 
For example, is mathematical practice an act of discovery of eternal objects and ideas that 
are independent of human existence, an intuition-free game in which symbols are manipulated 
according to a fixed set of rules, or a product of constructions from primitive intuitive objects, most 
notably the integers? The three positions expressed in this question correspond, respectively, to the 
three major schools of thought, Platonism, Formalism, and Constructivism. Since Constructivism 
insists that mathematical objects must be computable in a finite number of steps, it does not admit 
many results accepted by the other schools as true. The basis for this rejection is not "cultural 
difference" or "personal bias," as the extreme forms of post-modernism imply; rather, the basis 
for the rejection is philosophical: nothing can be asserted unless there is a proof-a constructivist 
proof-for it. 

It is an open, empirical question whether mathematicians' ontological stances on the nature 
of mathematical practice have any bearing on their views of how mathematics is learned and, 
consequently, how it should be taught. I conjecture that teachers' approaches to the learning and 
teaching of mathematics are not determined by their ontological stance on the being and existence 
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of mathematics. Dieudonne, a prominent member of the Bourbaki group, calls in the following 
statement for an uncompromising Formalist view: 

Hence the absolute necessity from now on for every mathematician concerned with 
intellectual probity to present his reasoning in axiomatic form, i.e., in a form where 
propositions are limited by virtue of rules of logic only, all intuitive "evidence" which 
may suggest expressions to the mind being deliberately disregarded. 

([Dieudonne 1971], p. 253). 

Yet, he cautions his reader: 

We are saying that this is a form imposed on the presentation of the results; but this 
does not lessen in any way the role of intuition in their discovery. Among the majority 
of researchers the role of intuition is considerable, and no matter how confused it may 
be, an intuition about the mathematical phenomena being studied often puts them on the 
track leading to their goal. (Emphases added; [Dieudonne 1971], p. 253). 

One can reasonably infer from these statements that Dieudonne's approach to teaching is to 
emphasize intuition despite his adherence to the Formalist school. 

What, then, does determine one's approach to learning and teaching of mathematics? 

2.4 Quaflty '!fTeacher's Knowred!Je Base 

Quality of instruction is determined largely by what teachers know. Building on Shulman's 
([ 1986], [1987]) work and consistent with current views ([Brousseau 1997] [Cohen/Ball 1999], 
[Cohen/Ball 2000]), teacher's knowledge base was defined in [Harel 1993] in terms of three 
components: knowledge of mathematics, knowledge of student learning, and knowledge ofpeda
gogy. Here I present a refined definition of these components that is aligned with the definition 
of mathematics I have just discussed: 

• Knowledge of mathematics refers to a teacher's ways of understanding and ways ofthink
ing. It is the quality of this knowledge that is the cornerstone of teaching for it affects both 
what the teachers teach and how they teach it. 

• Knowledge of student learning refers to the teacher's understanding of fundamental psy
chological principles of learning, such as how students learn and the impact of their 
previous and existing knowledge on the acquisition of new knowledge. 

• Knowledge of pedagogy refers to teachers' understanding of how to teach in accordance 
with these principles. This includes an understanding of how to assess students' knowledge, 
how to utilize assessment to pose problems that stimulate students' intellectual curiosity, 
and how to help students solidify and retain knowledge they have acquired. 

Thus, while mathematical knowledge is indispensable for quality teaching, it is not sufficient. 
Teachers must also know how to address students as learners. In DNR, however, teacher's 
knowledge of student learning and pedagogy rests on the teacher's knowledge of mathematics. 
That is to say, although each of the three components of knowledge is indispensable for quality 
teaching, they are not symmetric: the development ofteachers' knowledge of student learning and 
of pedagogy depends on and is conditioned by their knowledge of mathematics. A brief example 
to illustrate this claim follows. The example is from an on-site professional development study, 
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currently underway, aimed at investigating the evolution ofteachers' knowledge base. One of the 
findings of this study is that teachers' appreciation for students' struggle with a particular concept 
is a function of the quality of the teachers' way of understanding that concept. For example, 
Lisa, one of the teacher participants in this study, developed and enthusiastically implemented 
an instructional activity where her tenth-grade class gradually discerned the formula for the sum 
of the interior angles in a convex polygon along with a mathematically acceptable justification 
for it. In one of the interviews with Lisa, she pointed out, with great satisfaction and a sense 
of accomplishment, that the class understood well the proof of the formula and some students 
even developed it on their own. On the other hand, Lisa, who had insufficient understanding of 
graphical representation of solutions to systems of linear inequalities, struggled to see the benefit 
of a multi-stage instructional activity that was designed to involve students in developing a solid 
understanding of how to solve and graph the solution of such systems. She inclined, instead, to 
provide the students with a prescribed procedure of how to solve these systems. Thus, Lisa's 
lack of a deep understanding of systems of linear inequality prevented her from pursuing good 
teaching of this topic. Overall, Lisa's knowledge of pedagogy and of student learning seems to 
evolve hand in hand with the growth of and self reflection on her knowledge of mathematics, not 
out of institutional demand to improve her students' mathematical performance. 

3 Long-Term Curricu(ar and Research GoalS 

In the opening of this paper, it was argued that the instructional objectives teachers set for 
their classes correspond merely to subject matter in terms of products of mental acts-ways 
of understanding, such as particular definitions, procedures, techniques, theorems, and proofs. 
Neither the actions ofthe teachers nor the justifications they provide for their objectives indicate 
attention to the characteristics of mental acts-to the ways of thinking that students are to develop 
by learning particular subject matter. Objectives formulated in terms of ways of understanding 
are essential, as it is asserted in one of the DNR principles, to be presented in Section 4, but 
without targeting ways of thinking, students are unlikely to become independent thinkers when 
doing mathematics. This brings up the question, when should we start targeting ways of thinking 
with students? 

3.1 E(ementary Mathematics 

The formation of ways of thinking is extremely difficult and those that have been established are 
hard to alter. This is one of the main findings of our research (see for example, [Harel/Sowder 
1998]). Hence, the development of desirable ways of thinking should not wait until students 
take advanced mathematics courses; rather. students must begin to construct them in elementary 
mathematics, which is rich in opportunities to help students begin acquiring crucial ways of 
thinking. Consider, for example, the concept of fraction. In current mathematics teaching, even 
when students learn mathematics symbolism in context, the context is usually limited. For 
example, the most common way of understanding the concept of fraction among elementary 
school students is what is known in the literature as the part-whole interpretation: min (where 
m and n are positive integers) means "m out of n objects." Many students never move beyond 
this limited way of understanding fraction and encounter, as a result, difficulties in developing 
meaningful knowledge of fraction arithmetic ([Lamon 200 I]) and beyond ([Pustejovsky 1999]). 
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Seldom do students get accustomed to other alternative ways of understanding such as min 
means "the sum lin + ... + lin, m times" or "the quantity that results from m units being 
divided into n equal parts" or "the measure ofa segment m-inches long in terms ofa ruler whose 
unit is n inches" or "the solution to the equation nx = m" or "the ratio m : n; namely, m objects 
for each n objects." This range of ways of understanding a fraction makes the area of fractions 
a powerful elementary mathematics topic--one that can offer young students a concrete context 
to construct desirable-indeed, crucial-ways of thinking, such as: mathematical concepts can 
be understood in different ways, mathematical concepts should be understood in different ways, 
and it is advantageous to change ways of understanding ofa mathematical concept in the process 
of solving problems. These ways of thinking will be needed in the development of future ways 
of understanding. Indeed, without the above cluster of ways of thinking students are bound to 
encounter difficulties in other parts of mathematics. In calculus, for example, depending upon 
the problem at hand, one would need to interpret the phrase "derivative of a function at a," 
or the symbol pea), as "the slope of a line tangent to the graph of a function at a" or "the 
limh~o ([(a + h) - [(a» I h" or "the instantaneous rate of change at a" or "the slope of the 
best linear approximation to a function near a." Likewise, in solving linear algebra problems it 
is often necessary--or at least advantageous-to convert one way of understanding into another 
way of understanding by using the equivalence among problems on systems of linear equations, 
matrices, and linear transformations. 

The history of mathematics can provide a guide to ways of thinking worth pursuing-in the 
classroom and in mathematics education research. In the rest of this section, I will illustrate this 
claim with examples from the history of algebra and proof. 

3.2 Al!Je6ra 

According to Klein ([1968]) the revival and assimilation of Greek mathematics during the 
16th century resulted in a conceptual transformation that culminated in Vieta's development 
of symbolic algebra. Until then, mathematics had evolved for at least three millennia with hardly 
any symbols. The following is an example to illustrate the colossal role symbolic algebra played 
in defining modern mathematics. The work of Vieta that led to the creation of algebra and that 
of Descartes and Fermat that led to the creation of analytic geometry constituted the conceptual 
foundation for the critical shift from "results of operations" as the object of study to the operations 
themselves as the object of study. While the Greeks restricted their attention to attributes of spatial 
configurations and paid no attention to the operations underlying them, 19th century mathematics 
investigated the operations, their algebraic representations, and their structures. In particular, 
Euclidean constructions using only a compass and straightedge were translated into statements 
about the constructability of real numbers, which, in turn, led to observations about the structure 
of constructible numbers. A deeper investigation into the theory of fields led to the understanding 
of why certain constructions are possible whereas others are not. The Greeks had no means to 
build such an understanding, since they did not attend to the nature of the operations underlying 
Euclidean construction. Thus, by means of analytic geometry, mathematicians realized that all 
Euclidean geometry problems can be solved by a single approach, that of reducing the problems 
into equations and applying algebraic techniques to solve them. Euclidean straightedge-and
compass constructions were understood to be equivalent to equations, and hence the solvability 
ofa Euclidean problem became equivalent to the solvability of the corresponding equation(s) in 
the constructible field. 
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The monumental role that symbolic algebra played in defining modem mathematics might 
be obvious to many, but it is worth pointing out in debates on the future direction of school 
mathematics, particularly when attempts are made to deemphasize symbolic manipulation skills. 
Often the rationale behind these attempts is the availability of electronic technologies equipped 
with computer algebra programs that can carry out complex computations of all kinds and in 
all areas of mathematics. While these technologies can have a positive role in the teaching of 
mathematics (see [Kaput! Hegedus 2003]) they can, ifnot used wisely, deprive the students of the 
experience necessary for developing critical mathematical ways of thinking. In particular, they 
can deprive students of the opportunity to develop one of the most crucial mathematical ways of 
thinking, that of algebraic invariance. 

Algebraic invariance refers to the way of thinking by which one recognizes that algebraic 
expressions are manipulated not haphazardly but with the purpose of arriving at a desired form 
and maintaining certain properties of the expression invariant. If this way of thinking were 
set as an instructional objective, elementary algebra---especially symbol manipulation skills
would be taught differently and more meaningfully. The method of completing the square, for 
example, would have an added value, not just as a method for solving quadratic equations but 
as an activity to advance students toward acquiring the algebraic invariance way of thinking. 
Assuming the students have already learned how to solve equations of the form (x + T)2 = L, 
the teacher's action would be geared toward helping them manipulate the quadratic equation 
ax 2 + bx + c = 0 with a goal in mind-that of transforming the latter equation form into the 
former known equation form but maintaining the solution set unchanged. The intellectual gain is 
that students learn that algebraic expressions are re-formed for a reason and would, accordingly, 
develop a sense of the actions needed in order to reach a desired algebraic form. Without this 
ability, symbol manipulation is largely a mysterious activity for students-an activity they carry 
out according to prescribed rules but without a goal in sight. With this ability, on the other 
hand, symbol manipulation is not a matter of magic tricks performed by the teacher but goal
directed operations learnable by all students. Of course, one reason symbolic manipulation is 
being deemphasized is that this is not how it's being taught! 

With the algebraic invariance way of thinking as an instructional objective, teaching tech
niques of integration, for example, will have an added value: would one teach such techniques 
not only so that students know how to determine antiderivatives of functions and values of 
integrals, but also to help students develop a critical way of thinking in mathematics-that of 
utilizing the power of mathematical symbolism to solve problems and make and prove conjec
tures. Techniques of integration provide an excellent context to advance students toward this 
goal, which is why I believe this topic should be maintained as part of the calculus curriculum. 
Take, for example, the simplest technique of Reduction to Standard Formulas. In solving an 
integral such as J tan ede, students in freshman calculus learn to set a goal of transforming this 
unknown integral into an equivalent form that is familiar. Even if the students do not note that 
the symbolic representation tan e = sin e j cos e suggests the substitution u = cos e, they would 
learn to appreciate such a representation when they see how it is utilized to change the form, of 
the integral without changing its value through a sequence of symbolic transformations, e.g., 

J tanede = ~ J duju = ~lnlul + C = lnlu-II +C = lnlsecel +c. 

Likewise, the algebraic invariance way of thinking is the basis for the concept of "equivalent 
systems;" that is, for manipulating a system of equations but maintaining its solution set. 
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Algebraic invariance is of course a special case of the more general way of thinking where 
one attempts to reduce a given problem into a familiar problem, represent a mathematical entity 
by another, more useful one, etc. The algebraic invariance way ofthinking is not learned at once
one constructs it gradually by applying it in different contexts, such as techniques of integration, 
systems oflinear equations, matrix factorization, etc. Students can start acquiring it in elementary 
mathematics, for example when transforming fractions into decimals, and vice versa. It is crucial, 
however, that such transformations are carried out meaningfully. Often students are taught to carry 
out symbolic transformations without adequate emphasis on their justification. For example, we 
have seen students learn to solve division problems involving decimal numbers (e.g., 0.14v12.9T 
by transforming them into division problems involving whole numbers (e.g., 14"fi29f) without 
ever attending to the mathematical basis for the transformation. Such exercises-devoid of 
meaning-have no value in advancing the algebraic invariance way of thinking among students, 
and they deprive the students of the opportunity to develop other critical ways of thinking. 
When justifying the equivalence of 0.14v12.9T and 14"fi29f, for example, students reason 
proportionally, e.g., when justifying that 

0.14 

12.91 

0.14x100 

12.91 x 100' 

attend to the nature of the number system (e.g., when justifying that 0.14 x 100 = 14 and 
12.91 x 100 = 1291), and begin to develop algorithmic ways of thinking (when dividing 1291 
into 14 by using the long-division algorithm). Obviously, such opportunities will not occur if the 
non-referential way of thinking dominates students' actions or if the students obtain the answer 
to 0.14v12.9T by using a calculator. 

It should be clear that in applying the algebraic invariance way of thinking, it is never the 
case that every single symbol is referential. It is only in critical stages--viewed as such by the 
person who carries the symbol manipulations-that one forms, or attempts to form, referential 
meanings. One does not usually attend to interpretation in the middle of symbol manipulations 
unless one encounters a barrier or recognizes a symbolic form that is of interest to the problem at 
hand; thus, for most of the process the symbols are treated as if they have a life of their own. It is 
in this sense that symbol manipulation skills should be understood and, accordingly, be taught. 

One might ask, what is then the difference between the algebraic invariance way of thinking 
and the non-referential symbolic way of thinking? The answer is that the former includes the 
ability to pause at will to probe into a referential meaning for the symbols involved, whereas 
the latter does not. In applying the algebraic invariance way of thinking, the attempt to form a 
referential meaning does not have to occur, and even if it occurs it does not have to succeed. It is 
only that the person who carries out the manipulation has the ability to investigate the referential 
meaning of any symbol and transformation involved. In the non-referential symbolic way of 
thinking this ability is largely absent. 

It is worth pointing out that the practice of manipulating symbols without necessarily exam
ining their meaning played a significant role in the development of mathematics. For example, 
during the nineteenth century significant work was done in differential and difference calcu
lus using a technique called the "operational method," a method whose results are obtained by 
symbol manipulations without understanding their meaning, and in many cases in violation of 
well-established mathematical rules. (See, for example, the derivation of the Euler-MacLaurin 
summation formula for approximating integrals by sums, in [Friedman 1991].) Mathematicians 
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sought meaning for the operational method, and with the aid of functional analysis, which 
emerged early in the twentieth century, they were able to justify many of its techniques. Hence, 
the operational method technique is a manifestation of the algebraic invariance way of thinking, 
not the non-referential symbolic way of thinking. 

In sum, with the algebraic invariance way of thinking, teachers would recognize that the 
goals of teaching manipulation skills include both learning how to compute solutions to particular 
problems and constructing conceptual tools that are an essential part of mathematical practice. 
The goal of teaching techniques of integration, for example, is not just to obtain an antiderivative 
for a given function, but also to help students acquire an important way of thinking-that of 
manipulating symbols with a goal of changing the form of an entity without changing a certain 
property of the entity, a way of thinking that is ubiquitous and essential in mathematical practice. 
The role of symbolic algebra in the reconceptualization of mathematics raises a critical question 
about the role of symbolic manipulation skills in students' conceptual development of mathe
matics. In response to increasing use of electronic technologies in schools, particularly computer 
algebra systems, educators should ask: might these tools deprive students of the opportunity to 
develop algebraic manipulation skills which are needed for the development of the algebraic 
invariance way of thinking? 

3.3 Pro'!! 

Certain obstacles students encounter with the concept of proof seem to parallel obstacles in 
the development of mathematics. I discuss here two related observations. The first involves 
the transition from Greek mathematics to modem mathematics and the second the notion of 
Aristotelian causality. 

3.3.1 Transition ]rom Greek mathematics to Modern Mathematics 

The deductive mode of thought was conceived by the Greeks more than 20 centuries ago and is 
still dominant in the mathematics of our day. The mathematicians of the civilizations that preceded 
the Greeks established their observations on the basis of empirical measurements; hence, they 
mainly possessed and employed empirical proof schemes-schemes marked by their reliance 
on evidence from examples or visual perceptions. In Greek mathematics, logical deduction is 
central in the reasoning process, and it was necessary for the geometric edifice they created. 
This edifice, however, represents a single model-that of idealized physical reality. This ultimate 
bond to a real-world context had an impact on the Greeks' deductive proof scheme, in that 
Euclid often uses arguments that are not logical consequences of his initial assumptions but are 
rooted in humans' intuitive physical experience. While Euclid's Elements is restricted to a single 
interpretation-namely that its content is a presumed description of human spatial realization
Hilbert's Grundlagen is open to different possible realizations, such as Euclidean space, the 
surface ofa half-sphere, ordered pairs and triples of real numbers, etc., including the interpretation 
that the axioms are meaningless formulas. In other words, the Grundlagen characterizes a structure 
that fits different models. To reflect this fundamental conceptual difference, I refer to the Greeks' 
method of proving as the Greek axiomatic proof scheme and to the modem mathematics' method 
of proving as the modern axiomatic proofscheme. The transition between these two proof schemes 
is revolutionary: it marks a monumental conceptual change in humans' mathematical ways of 
thinking. Understanding this transition may shed light on epistemological obstacles students 
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encounter upon moving from concrete models of their quantitative or spatial reality-such as 
the ones held by the Greeks-to a more abstract setting-such as that offered by Hilbert. As a 
historian might ask what events-social, cultural, and intellectual-necessitated the transition 
from one way of thinking to another (e.g. from pre-Greek mathematics to Greek mathematics to 
the mathematics of the Renaissance and to modem mathematics), a mathematics educator should 
ask what is the nature of the instructional interventions that can bring students to refine and alter 
an existing way of thinking to a more desirable one? 

3.3.2 Causallty 

According to the definition of "proof scheme" presented in Section I, certainty is achieved when 
an individual determines-by whatever means he or she deems appropriate-that an assertion is 
true. Truth alone, however, may not be the only aim of an individual, and he or she may also 
desire to know why the observation is true-the cause that makes it true. An individual may be 
certain of the truth of an observation and still strive to understand what in that truth liberates her 
or him from doubt. "Proofs really aren't there to convince you that something is true--they're 
there to show you why it is true," said Gleason, one of the solvers of Hilbert's Fifth Problem 
([Yandell 2002], p. 150). Two millennia before him, Aristotle, in his Posterior Analytic, asserted 
"To grasp the why of a thing is to grasp its primary cause." 

The 16-18th century conception of mathematics reflects global epistemological positions 
that can be traced back to this position of Aristotle, according to which explanations in science 
must be causal. According to the philosophers of the time, this position entails the rejection of 
proof by contradiction, for when a theorem "A implies B" is proved by showing how not B (under 
the assumption of A) leads logically to an absurdity, a person does not learn anything about the 
causality relationship between A and B, nor--one might add--does one gain insight into how 
the theorem was--or might have been-conjectured. Some students' behavior with proof can 
be explained in terms of this epistemological position, in that many able students search for 
causal relationships in proofs and dislike indirect proofs (see [Harel 1999]). Likewise, for the 
decisive majority of mathematicians the purpose of a proof is not only demonstrating that the 
assertion is true, but also explaining why it is true. Proofs by contradiction, while accepted in 
modem mathematics, usually lack the explanatory power direct proofs can have. As an example, 
it is worth mentioning the controversy that Hilbert's proof of Gordan's Conjectures raised. 
Hilbert didn't find a basis that everyone had searched for but merely proved that if we accept 
Aristotle's law of the excluded middle ("Any statement is either true or its negation is true") 
then such a basis had to exist, whether we could produce it or not. Why was Hilbert's use of 
proofs-by-contradiction so controversial-after all, he was not the first to use this method of 
argument? According to Yandell ([2002]), previous uses had not dealt with a subject of such 
obvious calculational complexity. A pure existence proof does not produce a specific object that 
can be checked--one had to trust the logical consistency of the growing body of mathematics to 
trust the proof. The presence of an actual object that can be evaluated provides more than mere 
certainty; it can constitute a cause-in the Aristotelian sense-for the observed phenomenon. 
The philosophers of the Renaissance rejected proof by contradiction, and the practice of many 

5 The conjecture states: There is a finite basis from which all algebraic invariants of a given polynomial fonn could be 
constructed by applying a specified set of additions and multiplications. 
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mathematicians of that period, such as Cavalieri, Guldin, Descartes, and Wallis, reflected this 
position by explicitly avoiding proofs by contradiction in order to conform to the Aristotelian 
position on what constitutes perfect science ([Mancosu 1996]). 

The implication of this history is not to avoid proofs by contradiction in mathematics 
curricula. On the contrary, proofs by contradiction represent an important, institutionalized way 
of thinking, which students should acquire. The point of this history is that modern proof schemes 
were born out of an intellectual struggle-a struggle in which Aristotelian causality seems to 
have played a significant role. It is an open question whether the development of students' proof 
schemes necessarily includes some of these epistemological obstacles. The fact that even able 
students encounter these obstacles makes this question even more relevant to the matter at hand. 
An answerto this question may shed light on some of the roots of the obstacles students encounter 
with certain kinds of proof, such as proofby contradiction. Accordingly, appropriate instructional 
interventions can be devised to help students develop desirable proof schemes as they encounter 
these obstacles, which, perhaps, are unavoidable. 

4 DNR Basea Instruction in Mathematics 

DNR-based instruction in mathematics (DNR, for short) is a theoretical framework for the learning 
and teaching of mathematics-a framework that provides a language and tools to formulate 
and address critical curricular and instructional concerns. In this framework the mathematical 
integrity of the content taught and the intellectual need of the student are at the center of the 
instructional effort. DNR has been developed from a long series of teaching experiments in 
elementary, secondary, and undergraduate mathematics courses, as well as teaching experiments 
in professional development courses for teachers at each of these levels. Briefly, DNR can be 
thought of as a system consisting of three categories of constructs: 

I. Premises--explicit assumptions underlying the DNR concepts and claims. 
2. Concepts-referred to as DNR determinants. 
3. Instructional principles---claims about the potential effect of teaching actions on student 

learning. 

It goes beyond the scope of this paper to do more than present a brief outline of these 
constructs. For more about DNR, see [Harel 1989], [Harel 2001], [Harel et al. forthcoming] and 
[Harel forthcoming]. 

Premises. One of the DNR premises is the conceptualization premise: 

Humans-all humans-possess the ability to develop a desire to be puzzled and to learn to 
carry out physical and mental acts to fulfill their desire to be puzzled and to solve the 
puzzles they create. 

This premise, which follows from Aristotle, is one of eight DNR premises. Note that it 
assumes not only humans' desire to solve puzzles but also humans' desire to be puzzled. It serves 
as a basis for many themes in DNR-the necessity principle, to be stated shortly, is one of them. 
It is also the basis of DNR 's interpretation of equity: all students are capable of learning if they 
are given the opportunity to be puzzled, create puzzles, and solve puzzles. 
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Concepts. "Mental act," "way of understanding," and "way of thinking" are examples of 
DNR determinants. 

Instructional Principles. Not every DNR instructional principle is explicitly labeled as 
such. The system states only three foundational principles: the duality principle, the necessity 
principle, and the repeated-reasoning principle; hence, the acronym DNR. The other principles 
in the system are derivable from and organized around these three principles. 

Recall, according to my definition, mathematical knowledge consists of ways of understand
ing and ways of thinking. The duality principle concerns the developmental interdependency 
between these two constructs: 

The Duality Principle: Students develop ways of thinking only through the construction 
of ways of understanding, and the ways of understanding they produce are determined 
by the ways of thinking they possess. 

The reciprocity between ways of understanding and ways of thinking claimed in the duality 
principle is of mutual effect: a change in ways of thinking brings about a change in ways 
of understanding, and vice versa. The claim intended is, in fact, stronger. Not only do these 
two categories of knowledge affect each other but a change in one cannot occur without a 
corresponding change in the other. 

Implied from the duality principle is that preaching ways of thinking to students would have 
no effect on the quality of the ways of understanding they would produce. For example, talking 
to them about the nature of proof in mathematics or advising them to use particular heuristics 
would have minimal or no effect on the quality of the proofs and solutions they would produce. 
Only by producing desirable ways of understanding-by way of carrying out mental acts of, 
for example, solving mathematical problems and proving mathematical assertions-can students 
construct desirable ways ofthinldng. This seems obvious until one observes, for example, teachers 
teaching problem-solving heuristics explicitly and students following them as if they were general 
rules rather than rules of thumb for solving problems. 

Attention to ways of thinking, on the other hand, is necessary-according to the duality 
principle-for they direct teachers as to which teaching actions to avoid and which to pursue. As 
we have discussed earlier, attention to desirable ways of thinking-such as algebraic invariance, 
proportional reasoning, and algorithmic reasoning-highlights the need to focus on particular 
ways of understanding certain concepts and processes (e.g., the solution process of quadratic 
functions, techniques of integration, and division of decimal numbers; see Section 3.2). In 
particular, teachers must take into consideration students' current ways of thinking. For example, 
a college instructor may start a course in geometry with finite geometries as a preparation for 
non-Euclidean geometries. We found ([Harei/Sowder 1998]) that most undergraduate students 
taking college geometry are not prepared for such an instructional treatment because they do not 
possess the modern axiomatic proof scheme-which includes the way of thinking that geometric 
properties are not limited to spatial imageries6 As was discussed earlier, this way of thinking 
was born at the turn of the 20th century with the publication of Hilbert's Grundlagen and is 
considered revolutionary in the development of mathematics. 

6 For example, students in our study encountered insunnountable difficulty interpreting the statement "Given a line and 
a point not on the line, there is a line which contains the given point and is parallel to the given line" in a finite geometry. 
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Of critical pedagogical importance is the question: what is the nature of instructional treat
ments that can help students construct desirable ways of understanding and ways of thinking? 
This is addressed by the other two DNR principles: the necessity principle and the repeated 
reasoning principle. 

The Necessity Principle: For students to learn what we intend to teach them, they must 
have a need for it, where 'need' refers to intellectual need, not social or economic need. 

Most students, even those who are eager to succeed in school, feel intellectually aimless 
in mathematics classes because we-teachers-fail to help them realize an intellectual need 
for what we intend to teach them. The term intellectual need refers to a behavior that mani
fests itself internally with learners when they encounter an intrinsic problem-a problem they 
understand and appreciate. For example, students might encounter a situation that is incom
patible with, or presents a problem that is unsolvable by, their existing knowledge. Such an 
encounter is intrinsic to the learners because it stimulates a desire within them to search for a 
resolution or a solution, whereby they might construct new knowledge. There is no guarantee 
that the learners construct the knowledge sought or any knowledge at all, but whatever knowl
edge they construct is meaningful to them since it is integrated within their existing cognitive 
schemes as a product of effort that stems from and is driven by their personal, intellectual need. 
While one should not underestimate the importance of students' social need (e.g., mathematical 
knowledge can endow me with a respectable social status in my society) and economic need 
(e.g., mathematical knowledge can help me obtain a comfortable means of living) as learn
ing factors, teachers should not and cannot be expected to stimulate (let alone fulfill) these 
needs. Intellectual need, on the other hand, is a prime responsibility of teachers and curriculum 
developers. 

Even if ways of understanding and ways of thinking are necessitated through students' 
intellectual need there is still the task of ensuring that students internalize, organize, and retain 
this knowledge. This concern is addressed by the repeated-reasoning principle: 

The Repeated Reasoning Principle: Students must practice reasoning in order to 
internalize, organize, and retain ways of understanding and ways of thinking. 

Research has shown that repeated experience, or practice, is a critical factor in these cognitive 
processes (see, for example, [Cooper 1991]). DNR-based instruction emphasizes repeated rea
soning that reinforces desirable ways of understanding and ways of thinking. Repeated reasoning, 
not mere drill and practice of routine problems, is essential to the process of internalization-a 
conceptual state where one is able to apply knowledge autonomously and spontaneously. The 
sequence of problems must continually call for reasoning through the situations and solutions, 
and they must respond to the students' changing intellectual needs. 

These instructional principles are the basis for many of the pedagogical positions expressed 
in this paper, and they have been used to organize my instruction, in general, and teaching exper
iments, in particular. Consider the following unit taken from a recent teaching experiment with 
secondary mathematics teachers with limited mathematics background. The teachers worked on 
justifying the quadratic formula. Prior to this problem, they had repeatedly worked with many 
quadratic functions, finding their roots by essentially completing the square. They abstracted 
this process to develop the quadratic formula. In doing so they repeatedly transformed particular 
equations ofthe form ax2 + bx + c = 0 into an equivalent equation ofthe form (x + T)2 = L for 
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some terms T and L, in order for them to solve for x (as - T + .Ji and - T - .Ji). To get to the 
desired equivalent form, they understood the reason and need for dividing through by a, bringing 
to the other side of the equation, and completing the square. For these teachers, the symbolic 
manipulation process stems from an intellectual need-the need to arrive at a particular form in 
order to determine the equation's unknown-and conditioned by quantitative considerations-to 
transform the algebraic expressions without altering their quantitative value. In these activities, 
the teachers practiced the algebraic invariance way of thinking, whose importance I have dis
cussed in Section 3.2. We see here the simultaneous implementation of the duality principle,the 
necessity principle, and the repeated reasoning principle.ln particular, the repeated application 
of the invariance way of thinking helped the participant teachers internalize it, whereby they 
become autonomous and spontaneous in applying it. 

5 Summary 

Current teaching practices tend to view mathematics in terms of subject matter, such as definitions, 
theorems, proofs, problems and their solutions, not in terms of the conceptual tools that are 
necessary to construct such mathematical objects. The tenet of this paper is that instruction 
should focus on both categories of knowledge: subject matter and conceptual tools. The paper 
defines these two categories and explains why both categories are needed. The definitions and 
explanations are oriented within the DNR framework. Central to DNR is the distinction between 
"way of understanding" and "way of thinking." "Way of understanding" refers to a cognitive 
product of a person's mental act, whereas "way of thinking" refers to its cognitive characteristic. 
Accordingly, mathematics is defined as the union of two sets: the set WoU, which consists of 
all the institutionalized ways of understanding in mathematics throughout history, and the set 
WoT, which consists of all the ways of thinking that characterize the mental acts whose products 
comprise the first set. 

The members ofWoT are largely unidentified in the literature, though some significant work 
was done on the problem-solving act (e.g., [Schoenfeld 1985]; [Silver 1985]) and the proving 
act (see an extensive literature review in [Harel/Sowder 2007]). The members ofWoU include 
all the statements appearing in mathematical publications, such as books and research papers, 
but it is not listable because individuals (e.g., mathematicians) have their idiosyncratic ways of 
understanding. A pedagogical consequence of this fact is that a way of understanding should not 
be treated by teachers as an absolute universal entity shared by all students, for it is inevitable that 
each individual student is likely to possess an idiosyncratic way of understanding that depends 
on her or his experience and background. Together with helping students develop desirable ways 
of understanding, the goal of the teacher should be to promote interactions among students so 
that their necessarily different ways of understanding become compatible with each other and 
with that of the mathematical community. 

Since mathematics, according to the definition offered in this paper, includes historical 
ways of understanding and ways of thinking, it must include ones that might be judged as 
imperfect or even erroneous by contemporary mathematicians. Also included in mathematics 
are imperfect ways of understanding and ways of thinking used or produced by individuals in 
the process of constructing institutionalized knowledge. The boundaries as to what is included 
in mathematics are in harmony with the nature of the process of learning, which necessarily 
involves the construction of imperfect and erroneous ways of understanding and deficient and 
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faulty ways of thinking. These boundaries, however, are not to imply acceptance of the radical 
view that particular mathematical statements could be true for some people and false for others. 

My definition of mathematics implies that an important goal of research in mathematics 
education is to identify desirable ways of understanding and ways of thinking, recognize their 
development in the history of mathematics, and, accordingly, develop and implement mathematics 
curricula that aim at helping students construct them. This claim was illustrated in the contexts 
of algebra and proof. The discussion on algebra highlights the need to promote the algebraic 
invariance way of thinking among students. With it, students learn to manipulate symbols with 
a goal in mind-that of changing the form of an entity without changing a certain property of 
the entity. It also points to the risk that the use of electronic technologies in schools, particularly 
computer algebra systems, can deprive students of the opportunity to develop this crucial way of 
thinking. The discussion on proof focuses on the transition from Greek mathematics to modem 
mathematics and the role of Aristotelian causality in the development of mathematics during 
the Renaissance. It raises the question of whether the development of students' proof schemes 
parallels those of the mathematicians and philosophers of these periods. An answer to this question 
would likely have important curricular and instructional implications. 

Since the formation of desirable ways of thinking is difficult and undesirable ways of 
thinking that have been formed are hard to relinquish, an effort must be made in early grades to 
help students acquire desirable ways of thinking. The concept of fraction, for example, can be 
taught with multiple ways of understanding, and in a context where students can develop ways of 
thinking necessary for the acquisition of advanced mathematics. Similarly, arithmetic problems 
such as division of decimals can provide invaluable opportunities to engage in proportional 
reasoning and algorithmic reasoning and revisit the nature of the decimal-number system. 

Pedagogically, the most critical question is how to achieve such a vital goal as helping stu
dents construct desirable ways of understanding and ways of thinking. DNR has been developed 
to achieve this very goal. As such, it is rooted in a perspective that positions the mathematical 
integrity of the content taught and the intellectual need of the student at the center of the in
structional effort. The mathematical integrity of a curricular content is determined by the ways 
of understanding and ways of thinking that have evolved over many centuries of mathematical 
practice and continue to be the ground for scientific advances. To address the need of the student 
as a leamer, a subjective approach to knowledge is necessary. For example, the definitions ofthe 
process of "proving" and "proof scheme" are deliberately student-centered (see Section 1). It is 
so because the construction of new knowledge does not take place in a vacuum but is shaped by 
one's current knowledge. What a learner knows now constitutes a basis for what he or she will 
know in the future. This fundamental, well-documented fact has far-reaching instructional impli
cations. When applied to the concept of proof , for example, this fact requires that instruction takes 
into account students' current proof schemes, independent of their quality. Again, despite this 
subjective definition the goal of instruction must be unambiguous-namely, to gradually refine 
current students' proof schemes toward the proof scheme shared and practiced by contemporary 
mathematicians. This claim is based on the premise that such a shared scheme exists and is part 
of the grounds for advances in mathematics. 

Instruction concerns what mathematics should be taught as well as how to teach it. While the 
definition of mathematics offered in this paper dictates the kind of knowledge to teach-ways 
of understanding and ways of thinking-the three DNR principles stipulate how to teach that 
knowledge: 
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The duality principle concerns the developmental interdependency between ways of under
standing and ways of thinking. Students would be able to construct a way of thinking associated 
with a certain mental act or refine or modify an existing one only if they are helped to construct 
suitable ways of understanding associated with that mental act. Conversely, students would be 
able to construct a way of understanding associated with a certain mental act or refine or modify 
an existing one only if they are helped to construct suitable ways of thinking associated with that 
mental act in the form of problem-solving approaches or proof schemes. 

According to the necessity principle, problem solving is not just a goal but also the means
the only means-for learning mathematics. Learning grows only out of problems intrinsic to the 
students, those that pose an intellectual need for them. In general, an intellectually-based activity 
is one where students' actions are driven by a desire to solve intrinsic problems. In a socially
based activity, on the other hand, students' actions are carried out merely to satisfy a teacher's 
will 7 In an intellectually-based teaching environment, students are continually challenged with 
new problems from which they elicit new concepts and ideas. Such an environment is necessary 
for learning, and is conducive to creativity. 

The repeated reasoning principle is complementary to the duality principle and the necessity 
principle, in that its aim is for students to internalize what they have learned through the application 
of these two principles. Through repeated reasoning in solving intrinsic problems, the application 
of ways of understanding and ways of thinking become autonomous and spontaneous. 
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---tg"'G 

1 What is Mathematics Today? 

What is mathematics? That's one of the most basic questions in the philosophy of mathematics. 
The answer has changed several times throughout history. 

Up to 500 B.C. or thereabouts, mathematics was-if it was anything to be given a name-the 
systematic use of numbers. This was the period of Egyptian, Babylonian, and early Chinese and 
Japanese mathematics. In those civilizations, mathematics consisted primarily of arithmetic. It 
was largely utilitarian, and very much of a cookbook variety. ("Do such and such to a number 
and you will get the answer. ") 

Modem mathematics, as an area of study, traces its lineage to the ancient Greeks of the 
period from around 500 B.C. to 300 A.D. From the perspective of what is classified as mathematics 
today, the ancient Greeks focused on properties of number and shape (geometry). (The word 
"mathematics" itself comes from the Greek for "that which is learnable." As always when 
interpreting one culture or age with another, it has to be acknowledged that things often appear 
quite different to those within a particular culture or age than when viewed from the other.) 

It was with the Greeks that mathematics came into being as an identifiable discipline, and 
not just a collection of techniques for measuring, counting, and accounting. Greek interest in 
mathematics was not just utilitarian; they regarded mathematics as an intellectual pursuit having 
both aesthetic and religious elements. Around 500 B.C., Thales of Miletus (now part of Turkey) 
introduced the idea that the precisely stated assertions of mathematics could be logically proved 
by a formal argument. This innovation marked the birth of the theorem, the central focus of 
modem mathematics. 

The next major change in the overall nature in mathematics (again from the perspective of 
looking back at the chain of development that led to today's subject) was when Isaac Newton (in 
England) and Gottfried Leibniz (in Germany) independently invented the calculus. Calculus is the 
study of continuous motion and change. Previous mathematics had been largely restricted to the 
static issues of counting, measuring, and describing shape. With the introduction of techniques 
to handle motion and change, mathematicians were able to study the motion of the planets and of 
falling bodies on earth, the workings of machinery, the flow of liquids, the expansion of gases, 
physical forces such as magnetism and electricity, flight, the growth of plants and animals, the 
spread of epidemics, the fluctuation of profits, and so on. After Newton and Leibniz, mathematics 
became the study of number, shape, motion, and change. 

Most of the initial work involving calculus was directed toward the study of physics; indeed, 
many of the great mathematicians of the period are also regarded as physicists. But from about 
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the middle of the 18th century there was an increasing interest in the mathematics itself, not just 
its applications, as mathematicians sought to understand what lay behind the enormous power 
that the calculus gave to humankind. Here the old Greek tradition of formal proof came back into 
ascendancy, as a large part of present-day pure mathematics was developed. By the end of the 
19th century, mathematics had become the study of number, shape, motion, change, and of the 
mathematical tools that are used in this study, together with a number of other topics, such as 
formal logic and the theory of probabilities. With the growth and diversification of the subject, it 
became quite difficult to say what mathematics is without writing a short essay. 

In the 1980s, however, a definition of mathematics emerged on which most mathematicians 
now agree, and which captured the broad and increasing range of different branches of the subject: 
mathematics is the science of patterns. This definition does, admittedly, require some elaboration 
as to what exactly constitutes a pattern, but that aside it captures very well what the subject is about. 

According to this new definition, what the mathematician does is examine abstract patterns
numerical patterns, patterns of shape, patterns of motion, patterns of behavior, voting patterns in 
a population, patterns of repeating chance events, and so on. Those patterns can be either real or 
imagined, visual or mental, static or dynamic, qualitative or quantitative, purely utilitarian or of 
little more than recreational interest. They can arise from the world around us, from the depths of 
space and time, or from the inner workings of the human mind. Different kinds of patterns give 
rise to different branches of mathematics. For example: 

• Arithmetic and number theory study the patterns of number and counting. 
• Geometry studies the patterns of shape. 
• Calculus allows us to handle patterns of motion (including issues such as velocity and 

acceleration, polynomial motion, exponential motion, etc.). 
• Logic studies patterns of reasoning. 
• Probability theory deals with patterns of chance. 
• Topology studies patterns of closeness and position. 

and so forth. 
It is mathematics viewed in this way that I will attempt to project one hundred years into 

the future, to the start of the 22nd century. But before I do that, I should note that, around 
150 years ago, in the middle of the period when mathematics was growing in scope, the subject 
also changed in nature. 

2 The Last Revo{ution in Mathematics 

For most of its history, mathematics was regarded as primarily about calculation or symbolic 
manipulation. Proficiency in mathematics was measured primarily in terms of an ability to carry 
out calculations or manipulate symbolic expressions to solve problems. In the middle of the 
19th century, however, a revolution took place. Generally regarded as having its epicenter in the 
small university town ofG5ttingen in Germany, the revolution's leaders were the mathematicians 
Lejeune Dirichlet, Richard Dedekind, and Bernhard Riemann. In their new conception of the sub
ject, the primary focus was not performing a calculation or computing an answer, but formulating 
and understanding abstract concepts and relationships. This represented a shift in emphasis from 
doing to understanding. For the G5ttingen revolutionaries, mathematics was about "Thinking 
in concepts" (Denken in Begriffen). Mathematical objects, which had been thought of as given 
primarily by formulas, came to be viewed rather as carriers of conceptual properties. Proving 
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was no longer a matter of transforming terms in accordance with rules, but a process of logical 
deduction from concepts. 

For example, one post-G6ttingen concept is the modem notion of a function. Prior to the 19th 
century, mathematicians were used to the fact that a formula such as y = x 2 + 3x - 5 specifies 
a rule that produces a new number (y) from any given number (x). Then along came Dirichlet 
who said, forget the formula and concentrate on what the function does in terms of input--output 
behavior. Afunction, according to Dirichlet, is any rule that produces new numbers from old. The 
rule does not have to be specified by an algebraic formula. In fact, there's no reason to restrict 
your attention to numbers. A function can be any rule that takes objects of one kind and produces 
new objects from them. 

Mathematicians began to study the properties of abstract functions, specified not by some 
formula but by their behavior. For example, does the function have the property that when you 
present it with different starting values it always produces different answers? (Injectivity.) 

This approach was particularly fruitful in the development of real analysis, where mathemati
cians studied the properties of continuity and differentiability of functions as abstract concepts 
in their own right. 

Karl Weierstrass in Germany and Augustin Cauchy in France analyzed continuity and 
differentiability, finally coming up with today's famous epsilon-delta definitions. With Cauchy's 
contributions, in particular, mathematicians finally had a rigorous way to handle infinity, a 
concept that their predecessors had grappled with since the ancient Greek era. Riemann spoke of 
mathematics having reached "a turning point in the conception of the infinite." 

In the 1850s, Riemann defined a complex function by its property of differentiability, rather 
than a formula, which he regarded as secondary. Karl Friedrich Gauss's residue classes were a 
forerunner of the approach-now standard-whereby a mathematical structure is defined as a 
set endowed with certain operations, whose behaviors are specified by axioms. Taking his lead 
from Gauss, Dedekind examined the new concepts of ring, field, and ideal--each of which was 
defined as a collection of objects endowed with certain operations. 

Like most revolutions, the G6ttingen one had its origins long before the main protagonists 
came on the scene. The Greeks had certainly shown an interest in mathematics as a conceptual 
endeavor, not just calculation, and in the 17th century, Gottfried Leibniz thought deeply about 
both approaches. But for the most part, until the G6ttingen revolution, mathematics was viewed 
primarily as a collection of procedures for solving problems. To today's mathematicians, however, 
brought up entirely with the post-G6ttingen conception of mathematics, what in the 19th century 
was a revolution is simply taken to be what mathematics is. 

How will mathematicians one hundred years from now view their subject? Will it be more of 
the same? Will there be radically new branches ofthe subject? Or will there be another revolution, 
which changes the very nature of what is viewed as "mainstream mathematics"? These are the 
questions I want to address here. 

3 How and Why Mathematics Changes 

The first thing to note is that, for all its abstraction, much of mathematics has been developed 
in response to the needs of society. For example, the needs of commerce and trade led to the 
development of techniques of arithmetic, and navigation and architecture gave rise to geometry 
and trigonometry. A great deal ofthe mathematics developed since the 17th century was created 
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with applications in the physical world in mind. In particular, the invention of calculus was 
motivated in large part by the need to bring precision to the study of the motion of the planets. In 
the physical domain for which it was developed, today's mathematics has been highly successful. 
That success depends in large part upon the deterministic nature of much of the physical universe, 
which makes it amenable to a mathematical approach. 

While foretelling the future is always a perilous activity, most present-day scientists seem 
to agree that the next hundred years will see major advances in the life sciences-some of those 
sciences very new-such as biology, psychology, sociology, neuroscience, and the study of mind 
and consciousness. Some ofthese areas seem amenable to the application of current mathematical 
techniques. For example, many parts of biology already are highly mathematical. Other areas 
may yield to techniques that, while new, are not radically different from current mathematics. 
When it comes to the social and psychological world of people, however, we are in a (seemingly) 
highly nondeterministic realm that appears to rule out more than the occasional, fairly superficial 
use of mathematics as we understand it today. (The exception is where larger populations are 
concerned, when statistical techniques can capture the deterministic order that can emerge from 
the often nondeterministic actions of the individuals.) It is these areas that will, I believe, give rise 
to the development of new mathematics. But here's the rub. I suspect that this new mathematics 
will not look very much like today's mathematics. Whereas the Gilttingen revolution changed 
the nature of mathematics, but left it looking on the surface much as it always had, I believe 
the next revolution will leave the fundamental nature of mathematics unchanged but will lead to 
something that looks very different on the surface. 

The reason why this new mathematics will look different is precisely because it will be applied 
to domains having either a significant degree of nondeterminism or else such high complexity as 
to defY capture within a traditional mathematical framework in any form intelligible to the human 
mind. Handling such matters will require a new form of analysis that, to present day ryes, will 
look like a blend of mathematics with rigorous, logical-but not mathematical-reasoning (of 
the kind you can find today in, say, psychology or sociology-I'll give some examples presently). 

This new form of reasoning-what I am suggesting will come to be viewed as a new form of 
mathematics-will result from the meeting of two approaches that can be witnessed today: top 
down (where attempts are made to apply current mathematical techniques to some human domain) 
and bottom up (where attempts are made to make human-science arguments more mathematical). 
At present, the gap between those two approaches is generally large. But a hundred years from 
now, it will, I believe, in many cases have been bridged. 

Let me first illustrate my point with three examples from fields where both the bottom up 
and top down approaches have progressed quite far. All three involve quantifYing uncertainties. 

4 Bernou({j's Uti{;ty Concpt 

My first example is Daniel Bernoulli's work on risk assessment. The great 18th century Swiss 
mathematician, whose uncle Jacob did pioneering work in the mathematical theory of probability, 
set out to try to understand why people assess risk the way they do. 

A modem-day example that shows how the human assessment of risk can differ from the 
mathematical analysis is the fear some people have about flying. Such individuals may know 
that the probability of being involved in a major airline accident is far less than being in a major 
auto accident. The issue is the nature of an airline crash and the importance they attach to such 
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an event, however unlikely it may be. Fear caused by lightning is a similar phenomenon, where 
the tiny mathematical probability of being struck by a lightning bolt is far outweighed by the 
significance many individuals attach to the possibility of such an event. 

It was this, essentially human, aspect of risk assessment that interested Daniel Bernoulli. To 
try to capture mathematically the way people actually assessed risk, he introduced the concept of 
utility. 

Utility depends upon another notion of probability theory that preceded it: expectation (or 
expected value). Your expectation in, say, playing a certain game is a measure of what you 
can "expect" to win. It is the average amount you would win per game if you were to play 
repeatedly. To compute your expectation, you take the probability of each possible outcome and 
multiply it by the amount you would win in that case, and then add together all those amounts. 
By taking account of both the probabilities and the payoffs, the expectation measures the value 
to an individual of a particular risk or wager. The greater the expectation, the more attractive the 
risk. 

For many examples, expectation seemed to work well enough. But there was a problem, and 
it was most dramatically illustrated by a tantalizing puzzle proposed by Daniel's cousin Nicolaus, 
commonly known as the Saint Petersburg Paradox. Here it is. 

Suppose I challenge you to a game of repeated coin tosses. If you throw a head on the first 
toss, I pay you $2 and the game is over. If you throw a tail on the first throw and a head on the 
second, I pay you $4 and the game is over. If you throw two tails and then a head, I pay you 
$8 and the game is over. We continue in this fashion until you throw a head. Each time you 
throw a tail and the game continues, I double the amount you will win if and when you throw a 
head. 

Now imagine that a friend comes along and offers to pay you $10 to take your place in the 
game. Would you accept or decline? What if he offered you $50? Or $100? In other words, how 
much do you judge the game to be worth to you? 

The expectation of this game works out to be infinite, so in theory you should not give 
up your opportunity to play for any amount of money. But most people-even knowledgeable 
probability theorists-would be tempted to take a fairly low offer. Why is this? 

This was the kind of problem with expectation that led Bernoulli to replace the highly 
mathematical concept of expectation (an example of what I am calling a top-down use of 
mathematics) by the far less formal and less precise concept of utility (which is very definitely 
bottom-up ). 

Utility is intended to measure the significance you attach to a particular outcome. As such, 
utility is very much an individual thing. It depends on the value a person puts on a particular 
event. Your utility and mine might differ. 

At first glance, the move to replace the mathematically precise concept of expectation by the 
decidedly personal idea of utility might appear to render impossible any further mathematical 
analysis. Even for a single individual, it may well be impossible to assign specific numerical values 
to utility. Nevertheless, Bernoulli was able to make a meaningful, and definitely mathematical, 
observation about the concept. He wrote: "[The] utility resulting from any small increase in 
wealth will be inversely proportionate to the quantity of goods previously possessed." 

Bernoulli's utility law explains why even moderately wealthy individuals will generally find 
it much more painful to lose halftheir fortune than the pleasure or benefit gained by doubling it. 
As a result, few of us are prepared to gamble half our wealth for the chance of doubling it. Only 
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when we are truly able to declare "What have I got to lose'!" are most of us prepared to take a 
big gamble. 

For instance, suppose you and I each has a net worth of $10,000. I offer you a single 
toss of a coin. Heads and I give you $5,000; tails and you give me $5,000. The winner comes 
out with $15,000, the loser with $5,000. Since the payoffs are equal and the probability of 
each of us winning is 112, we each have an expectation of zero. In other words, according 
to expectation theory, it makes no difference to either of us whether we play or not. But few 
of us would play. We would almost certainly view it as taking an. unacceptable risk. The 0.5 
probability oflosing $5,000 (half our wealth) far outweighs the 0.5 probability of winning the same 
amount. 

Bernoulli's concept of utility likewise explains the Saint Petersburg paradox. According to 
Bernoulli's law, once you reach the stage where your minimum winning represents a measurable 
gain in your terms, the benefit to be gained by playing longer starts to decrease. That determines 
the amount for which you would be prepared to sell your place in the game. 

So much for expectation. In fact, a similar fate was to befall Bernoulli's utility concept 
in due course, when mathematicians and economists of a later generation collaborated with 
psychologists to look more closely at human behavior. But the fact remains that it was Bernoulli 
who first insisted that if you wanted to apply mathematics to real world problems that involve 
chance, and if you want the results of that analysis to be of real use, then you had to take account 
of the human factor. In so doing, he was approaching the issue in a bottom-up fashion, and 
thereby making one of the first steps toward what I am suggesting will eventually be classified as 
a fully-fledged branch of mathematics-something that will be done in university departments 
of mathematics and taught (as mathematics) to mathematics students. 

5 Bayesian I'!terence 

My second example of what the 22nd century will view as mathematics addresses the question: 
How do you use inconclusive evidence to assess the probability that a certain event will occur? 
One method that has become increasingly popular in recent years depends on a mathematical 
theorem proved by an 18th century English Presbyterian minister by the name of Thomas Bayes. 
Curiously, Bayes' theorem languished largely ignored and unused for over two centuries before 
statisticians, lawyers, medical researchers, software developers, and others started to use it in 
earnest during the 1990s. 

Bayesian inference, as the method using Bayes' theorem is called, is a step toward a new 
mathematics because it uses an honest-to-goodness mathematical formula (Bayes' theorem) in 
order to improve---on the basis of evidence-the best (human) estimate that a particular event 
will take place. In the words of some statisticians, it's "mathematics on top of common sense." 
You start with an initial estimate of the probability that the event will occur and an estimate of 
the reliability of the evidence. The method then tells you how to combine those two figures-in 
a precise, mathematical way-to give a new estimate of the event's probability in the light of the 
evidence. 

In some highly constrained situations, both initial estimates may be entirely accurate, and 
in such cases Bayes' method will give you the correct exact answer. In a more typical real-life 
situation, you don't have exact figures, but as long as the initial estimates are reasonably good, 
then the method will give you a better estimate of the probability that the event of interest will 
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occur. Thus, in the hands of an expert in the domain under consideration, someone who is able 
to assess all the available evidence reliably, Bayes' method can be a powerful tool. 

Specifically, Bayes' theorem shows you how to calculate the probability ofa certain hypoth
esis H, based on evidence E. Let P( H) be the probability that the hypothesis H is correct in the 
absence of any evidence-the prior probability. Let P(H I E) be the probability that H is correct 
given the evidence E. This is the revised estimate you want to calculate. Let P(EIH) be the 
probability that E would be found if H were correct. This is called the likelihood. To compute 
the new estimate, you first have to calculate P(H-wrong), the probability that H is false, and 
you have to calculate P(EIH-wrong), the probability that the evidence E would be found in 
the event that H were false. 

Bayes' theorem says that: 

P(HIE) = P(H) x P(EIH) 
P(H) x P(EIH) + P(H - wrong) x P(EIH - wrong) 

A quantity such as P (H I E) is known as a conditional probability-the conditional probability 
ofH occurring, given the evidence E. 

Unscrupulous lawyers have been known to take advantage of the lack of mathematical so
phistication among judges and juries by deliberately confusing the two conditional probabilities 
P(GIE), the probability that the defendant is guilty given the evidence, and P(EIG), the con
ditional probability that the evidence would be found assuming the defendant were guilty. Such 
misuse of probabilities is a real possibility in cases where scientific evidence such as DNA testing 
is involved, such as paternity suits and rape and murder cases. Prosecuting attorneys in such 
cases have been known to provide the court with a figure for peE), whereas the figure relevant to 
deciding guilt is P(GIE), which, as Bayes' formula shows, is generally much lower than peE). 
Unless there is other evidence that puts the defendant into the group of possible suspects, such 
use of P( E) is highly suspect, and indeed should perhaps be prohibited. The reason is that it 
ignores the initial low prior probability that a person chosen at random is guilty of the crime in 
question. 

In addition to its use-or misuse-in court cases, Bayesian inference methods lie behind a 
number of new products on the market. For example, chemists make use of Bayesian methods 
to improve the resolution of nuclear magnetic resonance (NMR) spectrum data. When NMR 
spectroscopy is used to determine three-dimensional molecular structures, problems remain in 
translating the data into atomic coordinates. The data is usually insufficient to uniquely define a 
structure, and subjective choices in data treatment and parameter settings make it difficult to judge 
the precision of NMR structures. To overcome this problem, probabilistic methods are used to 
calculate structures from NMR data. The idea is to view structure determination as an inference 
problem, and use a Bayesian approach to derive a probability distribution that represents the 
calculated structure and its precision. This approach can improve the resolution of the data by 
several orders of magnitude. 

Other recent uses of Bayesian inference are in the evaluation of new drugs and medical 
treatments, the analysis of human DNA to identity particular genes, analyzing police arrest data 
to see if any officers have been targeting one particular ethnic group, and counter-terrorism 
intelligence analysis. 

At the moment, the uses of Bayesian methods are viewed as a combination of mathematics 
(in the traditional sense) and other forms of reasoning. What will change, I believe, is that the 
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entire reasoning process will come to be viewed as, simply, mathematics, as I shall argue toward 
the end of this article. 

6 B{ack-Scho{es Theory 

My third example of what I think will be part of 22nd century mathematics is provided by the 
field of economics and finance. 

The 1997 Nobel Prize for economics was awarded for the 1970 discovery of a mathematical 
formula. The prizewinners were Stanford University professor of finance (emeritus) Myron 
Scholes and economist Robert C. Merton of Harvard University. The prize would undoubtedly 
have been shared with a third person, Fischer Black, but for the latter's untimely death in 1995. 

Discovered by Scholes and Black, and developed by Merton, the Black-Scholes formula 
tells investors what value to put on a financial derivative, such as a stock option. Use of the 
Black-Scholes formula is a clear example of how mathematics can be blended with other forms 
of reasoning. Human judgment is required both in providing numerical values to some of the 
formula's input variables and in deciding how much weight to attach to the derivative's value the 
formula provides. 

When the Black-Scholes method was first introduced, the idea that you could use mathematics 
to (help) price derivatives was so revolutionary that Black and Scholes had difficulty publishing 
their work. When they first tried in 1970, Chicago University's Journal of Political Economy and 
Harvard's Review of Economics and Statistics both rejected the paper without even bothering 
to have it refereed. It was only in 1973, after some influential members of the Chicago faculty 
put pressure on the journal editors, that the Journal of Political Economy published the paper. 
[Black/Scholes 1973]. 

Industry was far less shortsighted than the ivory-towered editors at the University of Chicago 
and Harvard. Within six months ofthe publication ofthe Black-Scholes article, Texas Instruments 
had incorporated the new formula into their latest calculator, announcing the new feature with a 
half-page ad in The Wall Street Journal. 

Modem risk management, including insurance, stock trading, and investment, rests upon the 
fact that you can use mathematics to predict the future well enough that you can make a wise 
decision as to where to put your money. When you take out insurance or purchase stock, the 
real commodity you are dealing with is risk. The underlying ethos in the financial markets is that 
the more risk you are prepared to take, the greater the potential rewards. Using mathematics can 
never remove the risk. But it can help to tell you just how much of a risk you are taking, and help 
you decide on a fair price. 

What Black and Scholes did was find a way to determine the fair price to charge for a 
derivative such as a stock option. The idea with stock options is that you purchase an option to 
buy stock at an agreed price prior to some fixed later date. If the value of the stock rises above the 
agreed price before the option runs out, you buy the stock at the agreed lower price and thereby 
make a profit. If you want, you can simply sell the stock immediately and realize your profit. If 
the stock does not rise above the agreed price, then you don't have to buy it, but you lose the 
money you paid out to purchase the option in the first place. 

What makes stock options attractive is that the purchaser knows in advance what the max
imum loss is: the cost of the option. The potential profit is theoretically limitless: if the stock 
value rises dramatically before the option runs out, you stand to make a killing. Stock options are 
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particularly attractive when they are for stock in a market which sees large, rapid fluctuations, 
such as the computer and software industries. Most of the many thousands of Silicon Valley 
millionaires became rich because they elected to take a portion of their initial salary in the form 
of stock options in their new company. 

The question is, how do you decide a fair price to charge for an option on a particular stock? 
This is precisely the question that Scholes, Black, and Merton investigated back in the late 1960s. 
Black was a mathematical physicist with a recent doctorate from Harvard, who had left physics 
and was working for Arthur D. Little, the Boston-based management consulting firm. Scholes 
had just obtained a Ph.D. in finance from the University of Chicago. Merton had obtained a 
bachelor of science degree in mathematical engineering at New York's Columbia University, 
and had found ajob as a teaching assistant in economics at MIT. 

The three young researchers-all were still in their twenties-set about trying to find an 
answer using mathematics, exactly the way a physicist or an engineer approaches a prob
lem. But would a mathematical approach work in the highly volatile world of options trading, 
which was just being developed at the time. (The Chicago Board Options Exchange opened in 
April 1973, just one month before the Black-Scholes paper appeared in print.) Many senior 
market traders thought such an approach could not possibly work, and that options trading was 
beyond mathematics. If that were the case, then options trading was an entirely wild gamble, 
strictly for the foolhardy. 

The old guard were wrong. Mathematics could be applied. It was heavy duty mathematics at 
that, involving stochastic differential equations. The formula takes four input variables-duration 
of the option, prices, interest rates, and market volatility-and produces a price that should be 
charged for the option. 

Not only did the new formula work, it transformed the market. When the Chicago Options 
Exchange first opened in 1973, less than 1,000 options were traded on the first day. By 1995, 
over a million options were changing hands each day. 

So great was the role played by the Black-Scholes formula (and extensions due to Merton) 
in the growth of the new options market that, when the American stock market crashed in 1978, 
the influential business magazine Forbes put the blame squarely onto that one formula. Scholes 
himself has said that it was not so much the formula that was to blame, rather that market traders 
had not grown sufficiently sophisticated in how to use it. 

At present the use of the Black~Scholes formula in assessing the value of stock options is 
viewed as a combination of (standard) mathematics and other forms of reasoning, but again I 
believe that in due course the entire reasoning process will be thought of as mathematics. 

7 Mathematica( Theories d Language 

One feature of the examples I have presented so far is that the top down and bottom up approaches 
have to some extent already met. My next, and final set of examples are taken from a field where 
this has not yet happened: linguistics. 

The first major attempt to develop a mathematical theory of ordinary language began with 
the publication of No am Chomsky's seminal work Syntactic Structures in 1957 [Chomsky 1957]. 

Chomsky based his analysis on the axiomatic approach to mathematics, where the mathe
matician starts with an initial set of assumptions, or axioms, and then proceeds to deduce truths 
(theorems) from those axioms. He was inspired, in particular, by the dramatic advances that had 
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been made in mathematical logic in the first half of the 20th century, and by the new branch of 
mathematics known as recursion theory. 

Just as the logicians had been able to formulate axioms and rules that show how a mathe
matical proof is constructed as a chain of mathematical statements, so too Chomsky formulated 
rules that show how grammatical sentences are built up from words and phrases. For example, 
one such rule is that a sentence can be constructed by taking a determinate noun phrase (i.e., a 
noun phrase that starts with a determiner such as the or a) and following it by a verb phrase. 
For example, the sentence The large black dog licked the tabby kitten consists of the determinate 
noun phrase The large black dog followed by the verb phrase licked the tabby kitten. Using the 
letter S to stand for "sentence," DNP to denote "determinate noun phrase," and VP to denote 
"verb phrase," this rule may be written like this: 

S --+ DNPVP. 

This expression is read as "S arrows DNP VP," or more colloquially, "a sentence results 
from taking a determinate noun phrase and following it by a verb phrase." The sentences (S), 
determinate noun phrases (DNP), and verb phrases (VP) are examples of what are called syntactic 
categories. 

The rule for generating determinate noun phrases (DNP) from noun phrases (NP) is 

DNP --+ DET NP 

where DET is given by the rule 

DET --+ the, a. 

The first of the above two rules reads "a determinate noun phrase can be generated by taking 
a determiner and following it by a noun phrase." The second rule is an example of what is called 
a lexical rule, since it assigns particular words (i.e., items of the lexicon) to a syntactic category, 
namely the syntactic category DET of determiners. It says that either of the words the and a 
constitutes a determiner. 

Thus, the determinate noun phrase the large black dog is generated by taking the determiner 
the and following it by the noun phrase large black dog. 

Here are some further rules of syntax: 

VP --+ VDNP 

"A verb phrase results from taking a verb and following it by a determinate noun phrase." 

NP --+ ANP 

"A noun phrase results from taking an adjective and following it by a noun phrase." This rule 
has a circular property, in that you start with a noun phrase and the rule gives you another noun 
phrase. For example, the noun phrase large black dog results from combining the adjective large 
with the noun phrase black dog. The rule could then be applied again to give the noun phrase old 
large black dog, etc. 

NP --+ N 

"A noun is (itself) a noun phrase." 

S --+ If S then S 
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"A sentence can consist of the word If followed by a sentence followed by the word then 
followed by another sentence." For example, 

If John comes home then we will play chess. 

On their own, these kinds of rules for combining phrases to give sentences produce stilted, 
machine-like, and often ungrammatical utterances of the kind produced by a robot or a space 
alien in a low budget science fiction movie. To obtain the correct verb forms, gender and plurality 
agreements, etc. to give a genuinely grammatical sentence, the strings of words generated by the 
initial composition rules have to be "massaged." Chomsky introduced transformation rules to 
perform this task. 

Transformation rules take a word string produced by the generative grammar, such as The 
large black dog lick the tabby kitten, and turn it into a grammatical sentence such as The large black 
dog licks the tabby kitten or The large black dog licked the tabby kitten. Similarly, transformation 
rules generate other variants of the initial word string, such as the passive form The tabby 
kitten is licked by the large black dog or the question Did the large black dog lick the tabby 
kitten? 

For example, the grammar-generated string 
The large black dog lick the tabby kitten. 

is transformed to the sentence 
The large black dog licks the tabby kitten. 

by the rule 

DNP'ing V stem DNP -;. DNP'ing Vstems DNP 

In words, this reads: "Starting with a grammar-generated string consisting of a singular 
determinate noun phrase, add the letter s to the verb stem." (Note that this kind of rule uses the 
arrow to mean something difJerentfrom its meaning in the generative grammar or the lexicon.) 

The same grammar-generated string 
The large black dog lick the tabby kitten. 

is transformed to the passive sentence 
The tabby kitten is licked by the large black dog. 

by the transformation rule 

The superscripts I and 2 on the two DNPs are there simply to indicate that there are two 
different phrases involved, and to keep track of which goes where. This rule reads: "Given a 
grammar-generated string consisting of a singular determinate noun phrase, a verb stem, and a 
determinate noun phrase, to obtain the passive form, put the second noun phrase first, follow it 
by the word is, followed by the verb stem with the string ed appended, followed by the word by, 
followed in turn by the first noun phrase." This rule does not apply to irregular verbs, such as 
break-broken, which form their passives in a different manner. 

Even with an extensive list of transformation rules, Chomsky's mathematical treatment of 
syntax provided at best a fairly crude model of syntactic structure, and in his subsequent work he 
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adopted a different approach. The significance of his original work from my present perspective 
is that it was a first attempt to develop a mathematical description of linguistic structure in a 
top down fashion, by formulating formal, symbolic rules-a formal system-and then trying to 
modify the framework to provide a better fit to real language. 

Chomsky's was not the only attempt to develop a mathematical model of language. The 
logician Richard Montague developed an elaborate mathematical model of linguistic meaning 
that came to be known as Montague semantics, inspired by the work on mathematical truth of his 
doctoral advisor Alfred Tarski. (See [Montague 1974] for details.) 

8 Grice's Maxims 

Both Chomsky and Montague took an approach that was predominantly top down. An example 
of a bottom-up approach to language was presented in a lecture given by the British philosopher 
and logician H. P. (Paul) Grice at Harvard University in 1967. Grice subsequently published his 
lecture under the title Logic and Conversation. (See [Grice 1975].) In his talk, he formulated a set 
of "maxims" that participants in a conversation implicitly follow. It was a bold attempt to apply 
a mathematical approach to the structure of conversation, very much in the spirit of Euclid's 
formulation of axioms for plane geometry. 

Grice was trying to analyze the structure any conversation must have, regardless of its 
topic and purpose. He began by observing that a conversation is a cooperative act, which the 
two participants enter into with a purpose. He tried to encapsulate the cooperative nature of 
conversation by what he called the Cooperative Principle: 

Make your conversational contribution such as is required, at the stage at which it occurs, 
by the accepted purpose or direction of the talk exchange in which you are engaged. 

In other words, be cooperative. 

Grice went on to derive more specific principles-his maxims-from the Cooperative Prin
ciple, by examining its consequences under four different headings: quantity, quality, relation, 
and manner. He illustrated these four headings by means of non-linguistic analogies: 

Quantity. If you are assisting a friend to repair his car, your contribution should be neither 
more nor less than is required; for example, if your friend needs four screws at a particular 
moment, she expects you to hand her four, not two or six. 

Quality. If you and a friend are making a cake, your contributions to this joint activity should 
be genuine and not spurious. If your friend says he needs the sugar, he does not expect 
you to hand him the salt. 

Relation. Staying with the cake making scenario, your contribution at each stage should be 
appropriate to the immediate needs of the activity; for example, if your friend is mixing 
the ingredients, he does not expect to be handed a novel to read, even if it is a novel he 
would, at some other time, desire to read. 

Manner. Whatever joint activity you are engaged in with a friend, your partner will expect 
you to make it clear what contribution you are making, and to execute your contribution 
with reasonable dispatch. 
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In tenns of conversation, the category of quantity relates to the amount of infonnation the 
speaker should provide. In this category, Grice fonnulated two maxims: 

1. Make your contribution as infonnative as is required. 
2. Do not make your contribution more infonnative than is required. 

Under the category of quality, Grice listed three maxims, the second two being refinements 
of the first: 

I. Try to make your contribution one that is true. 
2. Do not say what you believe to be false. 
3. Do not say that for which you lack adequate evidence. 

Under the category relation, Grice gave just one maxim: 

Be relevant. 

However, Grice observed that it would take a great deal more study to come up with more spe

cific maxims that stipulate what is required to be relevant at any particular stage in a conversation. 

Finally, under the category of manner, Grice listed five maxims, a general one followed by 
four refinements, although he remarked that the list of refinements might be incomplete: 

1. Be perspicuous. 
2. A void obscurity of expression. 
3. Avoid ambiguity. 

4. Be brief. 
S. Be orderly. 

As Grice observed, his maxims are not laws that have to be followed. In that respect, they 
are not like mathematical axioms. If you want to perfonn an arithmetical calculation in a proper 
manner, you have to obey the rules of arithmetic. But it is possible to engage in a genuine and 
meaningful conversation and yet fail to observe one or more of the maxims Grice listed. The 
maxims seem more a matter of an obligation of some kind. In Grice's own words: "I would like 
to be able to think of the standard type of conversational practice not merely as something which 
all or most do in/act follow, but as something which it is reasonable for us to follow, which we 
should not abandon." [Emphasis as in the original.] 

One of the more interesting parts of Grice's analysis is his discussion of the uses to which 
people may put his maxims in the course of an ordinary conversation. Indeed, it was this part of 
his work that makes it a contribution to a science of communication. In science, the real tests of 
a new theory come when the scientist (1) checks the theory against further evidence, (2) attempts 
to base explanations on the theory, and (3) tries to use the theory to make predictions that can 
then be tested. 

Grice made successful use of his maxims in analyzing a widespread conversational phe

nomenon he called conversational implicature. 

9 Conversationa{ Imy(;cature 

Conversational implicature occurs when a person says one thing and means something other than 
the literal meaning. For example, suppose Naomi says to Melissa,"I am cold" after Melissa has 
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just entered the room and left the door wide open. Literally, Naomi has simply informed Melissa 
of her body temperature. But what she surely means is "Please close the door." Naomi's words 
do not actually say this; rather it is implicated by her words. Grice used the word "implicate" 
rather than "imply" for such cases since Naomi's words certainly do not imply the "close the 
door" meaning in any logical sense. Assuming Melissa understands Naomi's remark as a request 
to close the door, she does so because of cultural knowledge, not logic. 

Conversational implicatures are ubiquitous in our everyday use of language. They can be 
intended by the speaker, or can be made by the listener. Traditional methods of analyzing language 
say virtually nothing about the way conversational implicature works. Grice used his maxims to 
analyze the phenomenon. 

Although Grice makes no claim that people have any conscious awareness of his maxims, 
his discussion of conversational implicature establishes a strong case that the maxims capture 
part of the abstract structure of conversation. They enable the linguist to provide satisfactory, 
after-the-event explanations of a variety of conversational gambits. 

According to Grice, a participant in a conversation, say Bill in conversation with Doris, may 
fail to fulfill a maxim in various ways, including the following. 

(I) Bill may quietly and unostentatiously violate a maxim. In some cases, Bill will thereby 
mislead Doris. 

(2) Bill may opt out from the operation both of the maxim and the Cooperative Principle, 
making it plain that he is unwilling to cooperate in the way the maxim requires. For 
example, he might say, "I cannot say more." 

(3) Bill may be faced with a clash. For example, he may find it impossible to satisfy both the 
quantity maxim "Be as informative as required" and the quality maxim "Have adequate 
evidence for what you say." 

(4) Bill may flout or blatantly fail to fulfill a maxim. Assuming that Bill could satisfy the 
maxim without violating another maxim, that he is not opting out, and that his failure to 
satisfy the maxim is so blatant that it is clear he is not trying to mislead, then Doris has to 
find a way to reconcile what Bill actually says with the assumption that he is observing 
the Cooperative Principle. 

Case (4) is the one that Grice suggests most typically gives rise to a conversational impli
cature. For example, suppose Professor Alice Smith is writing a testimonial for her linguistics 
student Mark Jones, who is seeking an academic appointment at MIT. She writes a letter in 
which she praises Jones's well groomed appearance, his punctuality, his handwriting, and his 
prowess at tennis, but does not say anything about his ability as a student oflinguistics. Clearly, 
Professor Smith is flouting the maxim "Be relevant." The implicature is that Professor Smith 
has nothing good to say about Jones's ability in linguistics, but is reluctant to put her opinion in 
writing. 

Notice that Grice's analysis of conversation does not involve any use of mathematical 
notation. Nevertheless, it is inspired by axiomatic mathematics, and the methodology is very 
definitely mathematicaL 

10 Socio{in!Juistics 

Another example of a bottom-up attempt to develop a "mathematical" analysis of language is 
provided by a seminal article published in 1972 called On the Analyzability of Stories by Children 
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[Sacks 1972]. In this article the sociologist Harvey Sacks tried to understand the way people use 
and understand ordinary language in an everyday setting, in particular the way a speaker and a 
listener make use oftheir knowledge of social structure to communicate. According to Sacks, the 
particular choice of words used by a speaker in, say, a description is critically influenced by her 
knowledge of social structure, and the listener utilizes his knowledge of social structure in order 
to interpret, in the manner the speaker intended, the juxtaposition of these words. 

The principal data Sacks examined consists of the first two sentences uttered by a small child 
asked to tell a story: 

The baby cried. The mommy picked it up. 

As Sacks observes, when heard by a typical, competent speaker of English, the utterance 
is almost certainly heard as referring to a very small human (although the word baby has other 
meanings in everyday speech) and to that baby's mommy (even though there is no genitive in the 
second sentence, and it is certainly consistent for the mommy to be some other child's mother). 
Moreover it is the baby that the mother picks up (although the it in the second sentence could 
refer to some object other than the baby). Why do we almost certainly, and without seeming to 
give the matter any thought, choose this particular interpretation? 

To continue, we are also likely to regard the second sentence as describing an action (the 
mommy picking up the baby) that follows, and is caused by, the action described by the first 
sentence (the baby crying). We do this even though there is no general rule to the effect 
the sentence order corresponds to temporal order or causality of events (even though it often 
does so). 

Moreover, we may form this interpretation without knowing what baby or what mommy is 
being talked of. 

Furthermore, we recognize these two sentences as constituting a "possible description" 
(Sacks' terminology) of an ordered sequence of events. Indeed it seems to be in large part 
because we make such recognition that we understand the two sentences the way we do. 

As Sacks noted, what leads us effortlessly, instantaneously, and almost invariably, to the 
interpretation we give to this simple discourse, is the speaker and listener's shared knowledge 
of, and experience with, the social structure that pertains to (the subject matter of) this particular 
utterance. Specifically, it is our knowledge of the way mothers behave toward their babies in our 
culture that leads us to hear the two sentences the way we do. It is this underlying social structure 
that Sacks is after. 

Sacks was the first to admit that the chosen example is extremely simple. But, he claimed, far 
from rendering his study trivial, this very simplicity makes his observations all the more striking. 
He observed: "the fine power of a culture ... does not, so to speak, merely fill brains in roughly 
the same way, it fills them so that they are alike in fine detail." 

It is that observation that the influence of culture on human behavior makes us alike in fine 
detail that makes the domain amenable to a mathematical (in the evolving sense I am talking 
about) analysis. 

To begin his analysis, Sacks first of all introduced what he called categories. For example, the 
following are categories (of persons): maleJemale, baby, mommy. He then defined a (membership) 
categorization device to be a non-empty collection of categories that "go together" in some natural 
way, together with rules of application. For example, the categorization device gender. This device 
consists ofthe two categories male and female, together with the rule for applying these categories 
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to (say) human populations. Other examples are the family categorization device, which consists 
of categories such as baby, mommy, daddy, etc. and the stage-of-life device, which consists of 
categories such as baby, child, adult, etc. 

As examples of the rules of application that are part of a categorization device, Sacks gave 
the following. First, the economy rule: 

(ER) A single category from any device can be referentially adequate. 

For instance, the economy rule allows use of the phrase the baby to be referentially adequate. 
Sacks' second rule, the consistency rule, says: 

(CR) Ifsome population of persons is being categorized, and if a category from some device 
has been used to categorize one member of the population, then that category, or 
other categories of the same device, may be used to categorize further members of the 
population. 

For instance, if the device family has been used to refer to some baby by means of the 
category baby, then further persons may be referred to by other categories in the same device, 
such as mommy and daddy. 

Associated with the consistency rule, Sacks formulated the following hearer s maxim: 

(HMI) If two or more categories are used to categorize two or more members of some 
population, and those categories can be heard as categories from the same device, 
then hear them that way. 

For instance it is in this way that in the two sentences under consideration, "baby" and 
"mommy" are heard as from the family device. But notice that this does not preclude our 
simultaneously hearing "baby" as from the stage-of-life device-indeed, as Sacks himself argued, 
this is probably what does occur. 

This hearer's maxim does not fully capture what goes on in the example under consideration. 
For it is not just that "baby" and "mommy" are heard as belonging to the same category family; 
rather they are heard as referring to individuals in the very same family. Sacks explained this by 
observing that the device family is one that is what he called duplicatively organized. In his own 
words: 

When such a device is used on a population, what is done is to take its categories, treat 
the set of categories as defining a unit, and place members of the population into cases 
of the unit. If a population is so treated and is then counted, one counts not numbers 
of daddies, numbers of mommies, and numbers of babies but numbers of families
numbers of "whole families," numbers of "families without fathers," etc. A population 
so treated is partitioned into cases of the unit, cases for which what properly holds is 
that the various persons partitioned into any case are "coincumbents" of that case. 

The following hearer's maxim is associated with duplicatively organized devices: 

(HM2) If some population has been categorized by means of a duplicatively organized 
device, and a member is presented with a categorized population which can be heard 
as coincumbents of a case of that device's unit, then hear it that way. 
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According to Sacks, it is this maxim that results in our hearing "the baby" and "the mommy" 
in our example as referring to individuals in the very same family. 

Sacks' next point was that the phrase the baby is in fact heard not just in terms ofthe/amily 
device but simultaneously as from the stage-ol-life device. The reason is, he claimed, that cry is, in 
his terminology, a category-bound activity, being bound to the category baby in the stage-ol-life 
device. 

Sacks codified what it is that leads us to hear "baby" as from the stage-ol-life device in 
addition to the/amity device, by means ofa further hearer's maxim: 

(HM3) If a category-bound activity is asserted to have been done by a member of some 
category where, if that category is ambiguous (i.e., is a member of at least two 
devices), but where, at least for one ofthose devices, the asserted acti vity is category
bound to the given category, then hear at least the category from the device to which 
it is bound. 

The final part of Sacks' analysis that I shall consider here concerns the way that an observer 
describes a particular scene. For instance, if you were to observe a very small human crying, you 
would most likely describe what you saw as "A baby is crying," or some minor variant thereof. 
You are far less likely to say "A person is crying" or, even if you could identify the gender of the 
baby as female, "A girl is crying." Again, if you subsequently saw a woman pick up that baby, 
and if that woman looked about the age to be the baby's mother, you would probably describe 
what you saw as "Its mother picked it up." You are less likely to say "A woman picked it up." 

Sacks explained the first of these observations, the use of the phrase "the baby," by means 
of the following viewer's maxim: 

(VMl) Ifa member sees a category-bound activity being done by a member of a category 
to which the activity is bound, then see it that way. 

Since the activity of crying is category-bound to the category baby in the stage-ol-life device, 
this is the natural way to see and to describe the activity, whenever such a way of seeing and 
describing is possible. 

Turning to the remaining set of observations, there are social norms that govern, or can be 
seen to govern, the actions of members of the society, and one such norm is that a mother will 
comfort her crying baby. This is a very powerful social norm, and society generally demonstrates 
strong disapproval for a mother who fails to conform to it. Sacks' point was that in addition 
to governing behavior-where by "governing" we may mean nothing more than that the norm 
serves to describe a normal way of behaving-norms fulfill a further role; namely, viewers use 
norms to provide some of the orderliness of the activities they observe. In this case, we may 
capture such a use ofa norm by means ofa second viewer's maxim: 

(VM2) If one sees a pair of actions which can be related via a norm that provides for the 
second given the first, where the doers can be seen as members of the categories the 
norm provides as proper for that pair of actions, then (a) see that the doers are such 
members, and (b) see the second as done in conformity with the norm. 

By means of VM2(a), the viewer sees the person who picks up the baby as the baby's 
mother, provided it is possible to see it thus, and moreover, by VM2(b), takes it that this action 
is performed in accordance with the norm that says that mothers comfort their crying babies. 
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11 Why this Wirr he Viewed as Mathematics 

Neither Grice's analysis nor Sacks' can be classified as mathematics. They are, however, clearly 
inspired by mathematics, and exhibit a definite mathematical flavor. They do, I believe, represent 
first attempts to develop, in a bottom-up fashion, analyses that may (and I think will) eventually 
lead to analyses that will in time (perhaps when they meet top-down approaches) be viewed 
as mathematics. Their approaches work because, for all the nondetenninism inherent in people, 
their behavior nevertheless exhibits regular, repeated, and for the most part predictable patterns. 
And that makes them amenable to a mathematical analysis, prOViding only that you broaden your 
conception o{mathematics to include the study o{such patterns. Today, we are not yet at the point 
of making such a leap. But as a result of the increasing production of such analyses, I believe 
that a hundred years from now, such reasoning will indeed be thought of as mathematics, just as 
probability theory is today, despite the fact that the ancient Greeks believed-and wrote-that a 
study of chance events was not within the realm of a mathematics. 

The new mathematics I am speaking of is not yet here. At best, what we see today are 
blends of (contemporary) mathematics with other methods of reasoning and analysis, such as 
Bayesian reasoning or Black-Scholes analysis. More commonly, there is not even a meeting of 
the two approaches, let alone a blending. The top down approach involves the development of 
mathematical models (such as Chomksy's fonnal grammar) that reflect the domain of interest 
in a fairly crude fashion. The mathematical models typically ignore much of the complexity of 
the domains they are intended to model. Meanwhile, the bottom-up approach, which tries to 
reflect the full complexity of the domain (for example, Grice's maxims), can perhaps best be 
described as the adoption of a mathematical approach to an analysis, as opposed to an application 
of mathematics. 

So why do I think that what we are seeing are the initial steps toward what will in due 
course be viewed as a bona fide part of mathematics? First, there is historical precedence. 
Mathematicians have always tried to extend their discipline to apply to new areas. The ancient 
Greeks tried to develop a "mathematical analysis" of language and reasoning (the Stoic and 
Aristotelian schools of Logic). Gottfried Leibniz in the 17th century and George Boole in the 
19th further tried to develop a mathematics of language and reasoning, leading eventually to a 
rich branch of mathematics known as mathematical logic, developed in the first half of the 20th 
century. Then there are the examples of Bernoulli, Bayes, and Black-Scholes-Merton I considered 
earlier. 

Mathematical logic eventually came to be regarded as a fully-fledged branch ofmathematics. 
The work of Bernoulli and Bayes in probability theory is also generally viewed as mathematics. 
Black-Scholes theory is usually referred to as "financial mathematics," a tenninology that ar
guably reflects acceptance of it as a branch of mathematics. Certainly many college and university 
mathematics departments offer course called "Financial Mathematics" and count completion of 
such a course towards a mathematics degree. 

On the other hand, statistics and computer science, for all their heavy dependence on math
ematics, are generally classified as outside of mathematics. This despite the fact that, in a great 
many colleges and universities, both are taught (only) in the Mathematics Department. 

Moreover, statisticians, in particular, are often seen in large numbers at major mathematics 
conferences. 

All this seems to suggest a certain degree of indecision on the issue. 
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However, the case I am trying to make in this essay is based not so much on historical 
precedent, but rather on a highly pragmatic view of the discipline as a human activity carried out 
by a human community. I titled my article "What will count as mathematics in 2100?" As I see 
it, the question then is, who gets to say what is and what is not to be called "mathematics"? 

One answer is to leave it to the profession to define the answer-a solution that mathemati
cians (of all people) might be expected to find attractive. This was done for several years by the 
International Mathematical Union, in connection with the publication of the (now abandoned) 
annual World Directory oj Mathematicians. The general criterion of admissibility to the Directory 
was two articles reviewed in Mathematical Reviews, ReJerativnyi Zhurnal, or ZentralblattJuer 
Mathematik over the preceding five years, or the publication of five papers reviewed in these 
journals at any time. That certainly provides a precise, profession-certified definition of what 
counts as a "mathematician," and by extension yields a definition of what counts as mathematics. 
The problem is, the definition excludes the vast majority of people who earn their living as 
"professors of mathematics" at colleges and universities all over the world, and an even great 
number of people in industry, government, and elsewhere in society, who spend large parts of 
every day "doing math." 

Another way to provide an answer is to abstract one from mathematical practice. Mathematics 
is the science of patterns. The mathematician extracts-or abstracts-patterns either from the 
world or from a mental discipline (including mathematics itself) and studies them. What makes 
such a study mathematics, as opposed to some other discipline, is the high degree of abstraction of 
both the patterns and the way they are studied. Mathematical patterns are the structural skeletons 
that lie beneath the world. Such is their abstraction that the only tool available for their study 
is pure human reasoning. Except in an occasional, peripheral way, observation and experiment 
are of little use. When applied to the deterministic, physical world, mathematics leads to results 
that can be given with absolute certainty. When we try to use the mathematical method to study 
nonmathematical objects-in particular, people-however, the results become less certain. But, I 
would suggest, that is the nature of the domain; it is not caused by the method we use to analyze it. 
lt is only a matter of time, I believe, before we become so familiar with mathematically-inspired 
analyses such as the examples I have presented here that the mathematical community--or at 
least a substantial portion thereof-begins to accept them as a regular part of the discipline. I 
believe we put ourselves on that path the moment we took on board the definition of mathematics 
as the science of patterns. 

Contemporary mathematics may have declared its goal to be the formulation of precise 
definitions and axioms and the subsequent deduction of theorems, but that is a fairly recent 
phenomenon, and likely just a passing fad. It is also, I suggest, a foolish one that serves no one 
particularly well. In the last hundred years or so, mathematics has parted company with (and 
even distanced itself from) theoretical physics, statistics, and computer science, and even split 
internally into "pure" and "applied" mathematics, only to find that some of the most exciting and 
productive new developments within core mathematics (i.e., those parts that have not been cast 
out) have come from those other disciplines. 

Of course, there is a difference between "mathematics pursued for its own sake" and math
ematics carried out in the course of studying some other domain. Of course there is a difference 
between formal, proof-oriented mathematics based on axioms, and applications of mathematics 
such as the work ofChomksy or of Black and Scholes. And of course there will always be some 
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individuals who prefer to focus entirely on the pursuit of axiom-theorem type mathematics. The 
question is, will that relatively small group be able to define what the word "mathematics" means? 

I believe the answer is no. In my view, what counts as mathematics will be determined not 
(solely) by one particular organization within mathematics (such as the IMU). Rather, I believe it 
will be determined for the most part on sociological grounds, by society as a whole. What classifies 
as "mathematics" will be determined by what gets done in university "mathematics departments" 
and by what society expects from people it categorizes as "mathematicians." For it is society as a 
whole that, one way or another, provides both the environment in which mathematics is done and 
the funds for its pursuit. Since the main importance of mathematics for humanity as a whole is 
the role it plays in human understanding, when the main objects ofthat understanding are people, 
as well as deterministic physical systems, as will be the case in the coming century, mathematics 
will change. 

I should finish by observing that I am by no means the first to come to such a conclusion. 
For instance, the late Gian-Carlo Rota of MIT wrote (see [RotalSchwartz/Kac 1985]): 

Sometime, in a future that is knocking at our door, we shall have to retrain ourselves 
or our children to properly tell the truth. The exercise will be particularly painful 
in mathematics. The enrapturing discoveries of our field systematically conceal, like 
footprints erased in the sand, the analogical train of thought that is the authentic life 
of mathematics. Shocking as it may be to a conservative logician, the day will come 
when currently vague concepts such as motivation and purpose will be made formal 
and accepted as constituents of a revamped logic, where they will at last be allotted the 
equal status they deserve, side-by-side with axioms and theorems. 

If you take Rota's phrase "made formal and accepted as constituents ofa revamped logic" as 
suggesting formalized mathematics in the sense currently understood in mathematics-as some 
have done-then Rota's suggestion seems doomed to fail, as I am sure Rota himself would have 
agreed. But if you interpret it in the light ofa changing conception of what counts as mathematics, 
as I do and as I suspect Rota intended, then it predicts a rosy future for mathematics. 
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In this chapter, Mark Steiner first describes what makes the applicability of mathematics a thorny 
philosophical problem-and explains that it is really two prob/ems, one that the philosophers have 
been discussing and a quite different one that physicists have been asking. He then concentrates 
on one aspect of the problem, which at first seems quite unproblematic, the question of addition. 
It leads to a better understanding of what Wigner might have meant when he asked, many years 
ago, about the "Unreasonable Effectiveness of Mathematics in the Natural Sciences." 

Mark Steiner is a Professor of Philosophy in the Faculty of Humanities at the Hebrew Uni
versity of Jerusalem (socrates.huji.ac.ilIProf-A4ark-Steiner.htm). His interests include philosophy 
of mathematics, philosophy of science, Wittgenstein, and Hume. He has worked on philosophical 
issues in contemporary mathematics education. 

In the first paragraph of this chapter, he has written "to the extent one can talk about a 
'consensus' of the philosophical community, I'm not in it." This is because he has consistently 
worked, independently of the trends in the philosophy of mathematics, on issues involving how 
mathematics is actually practiced. His work has several times been far ahead of that of his 
contemporaries. His book, Mathematical Knowledge, published in 1975, was one of the first 
works to say that none of the traditionalfoundational schools-logicism, formalism, intuitionism
describe how mathematicians come to have mathematical knowledge. Mathematical knowledge 
cannot be identified with formal proofs, as mathematicians very rarely give formal proofs. Also, 
some informal arguments have actually produced mathematical certainty, or near certainty, as 
in some of the work of Euler. Steiner appears to have been the first philosopher to recognize this. 
His essay on explanatory versus non-explanatory proofs from thirty years ago has now begun to 
motivate studies on explanation in the mathematicalfield. His second book, The Application of 
Mathematics as a Philosophical Problem, published in 1998, makes a very important distinction 
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(also explained in this chapter) between what philosophers mean when they write of this problem 
and what physicists mean. Steiner was the first to point out that the two groups have been talking 
past each other for years. Steiner's may be the only philosophical book dedicated solely to the 
applications of mathematics in the twentieth century. 

Other articles of his which are likely to be of interest to the readers of this volume in
clude "Mathematical explanation ", Philosophical Studies (1978), "Wittgenstein: Mathematics, 
Regularities, Rules" in Benacerraf and His Critics (1996), "Teaching elementary arithmetic 
through applications" in A Companion to the Philosophy of Education, edited by R. Curren 
(2003), "Mathematical intuition and physical intuition in Wittgenstein s later philosophy," Syn
these (2000), "Frege, the Natural Numbers, and Natural Kinds" in Between Logic and Intuition: 
Essays in Honor of Charles Parsons, (2000), and "Penrose and Platonism" in The Growth of 
Mathematical Knowledge (2000), and his forthcoming "Getting more out of mathematics than 
what we put there." 

When we speak of applying mathematics, we have one of two roles in mind: the logical role, and 
the empirical role. Philosophers tend to focus on the former role, scientists the latter. As a result, 
there is often a "communications gap" between the two communities, which this little essay will 
try to bridge. I make no claim, however, to "represent" the philosophical community, because to 
the extent one can talk about a "consensus" of the philosophical community, I'm not in it. 

To illustrate the various kinds of roles that mathematics plays in application, I will focus 
on an example, that of addition (including its generalizations, such as complex addition, tensor 
sum, etc.). I will show how addition functions both logically and empirically. Some empirical 
applications are easily accounted for, and I will give an example. But there are others in which 
the physical basis for the empirical applications seems lacking, and I will give an example ofthis 
too. 

One of the more striking kinds of application of mathematics is the use of mathematics 
to discover the application itself. For example, if two mathematical structures are isomorphic, 
physicists tend to assume (without further evidence) that the physical structures they describe 
are interchangeable. Here I will give an example from particle physics, using a generalization 
of the arithmetic identity 4 + 2 = 3 x 2 to the arithmetic of group representations. The kind 
of reasoning exhibited in these kinds of applications which create themselves reminds me of 
Pythagorean ism, understood broadly as the view that mathematics is the reality underlying all 
nature. I will set forward (merely for discussion) a number of Pythagorean principles ofincreasing 
strength to conclude the essay on a speculative note. 

The logical role of mathematics is just that: mathematics resembles logic, in that itfacilitates 
reasoning. It can be applied to anything, just as can logic-both are, in the philosophical jargon, 
"topic neutral." It resembles logic to such an extent, that some philosophers and logicians have 
actually asserted that mathematics is simply a more advanced branch of logic, i.e., that it is 
reasoning. Using elementary arithmetic, the theory of numbers, the most applicable theory of 
mathematics in the logical sense, we can balance--or unbalance--our checkbooks. My grand
children live in a building with floors that include -3, -2, and -I. In order to know how many 
flights they need to ascend from -2 to 3, they need to invoke the arithmetic of the integers, 
positive and negative, at an extremely early age. Addition can be used to reason from the premise 
that I have 5 female students and 4 male students to the conclusion that I have a total of9 students. 
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In fact, the last example can actually be formalized directly in the "predicate calculus with iden
tity," as a purely logical argument, with no direct reference to numbers at all. Not every form of 
arithmetic reasoning can be formalized so simply: even such a simple proposition as "Two apples 
and two more apples does not make seven apples" cannot be formalized in the predicate calculus 
with identity.' If we allow elementary set theory to be called "logic," however, we can regard 
arithmetic as a theory of properties of sets (e.g., their cardinality). Arithmetic so understood 
resembles logic in its abstractness and topic neutrality--i.e., arithmetic is not about any kind of 
set in particular: one can use arithmetic to reason about thoughts, as well as sticks and stones. 

Arithmetic as logic is not likely to pose puzzles for physicists, or other scholars not working 
in the philosophy of mathematics. Nevertheless, most of the literature on the philosophy of 
mathematics in the last twenty years seems to focus on the logical side of arithmetic. Questions 
such as "How do we know there are sets? How do we know there are numbers? Even if there are 
numbers, how could they possibly be relevant to the empirical world?" have exercised some of 
the most intelligent people in philosophy today. A good survey of this literature (up to 1997) will 
be found in [Burgess/Rosen 1997], as well as the chapters by Balaguer, Chihara, and Shapiro 
in the present volume, but I will focus this essay on the empirical aspects of mathematical 
application. 

Consider, for example, the addition of weights. What is involved in arguing that, if we 
combine on the scale a weight of 3 kg and another one of 4 kg, the total weight is 7 kg? 
This, certainly, is not a purely logical argument, but follows from the additivity of mass, and thus 
weight, which is an empirical hypothesis, used to great effect by Newton. The additivity of weight 
is so far from being "logic," that it is not even quite true: according to Einstein's theory, when we 
put two equal weights together, the system of the two loses gravitational energy, and thus mass, 
according to Einstein's famous equation, E = mc2 Of course, this difference is undetectable in 
normal applications. 

We have thus an example of the empirical role of mathematics, which is to supply the means 
for empirical descriptions of natural phenomena. When we add two groups of bodies, we can 
use addition to calculate their total number, meaning the cardinal number of the two sets (logical 
role), but also to calculate their weight (empirical role)2 

Let us now ask the following question: is there anything mysterious about the applicability 
of addition? 

We can see that the answer has to be divided into two parts. As for the logical role of addition 
(in counting), there is an obvious sense in which 7 + 5 = 12 is a necessary truth (i.e., it could not 
have been false, there is no possible world in which it is false). And if necessary truths can be 
mysterious, they are mysterious in ways which do not interest thinkers outside philosophy itself. 
Let us, then, explore the empirical role of addition - in weighing, assuming for simplicity's sake 
that weighing is completely additive. Is that mysterious? 

I The first order transcription of an addition identity is a conditional sentence: "If we have ... then we have .... " Thus, 
if we negate the logical version of "Two apples and two more apples is seven apples", we get: "There are two apples and 
there arc two more apples, but there are not seven apples," a sentence that may well be false (if there are no apples, say). 

2 Nevertheless. even in using addition to calculate the cardinality of a set (an abstract object), there is still an empirical 
aspect, since there are often empirical implications to the answer we get. (For a discussion of the empirical applications 
of elementary arithmetic, see [Steiner 20051.) Also. even in using addition to calculate weights, there is still the purely 
logical matter of adding natural numbers-it is an empirical fact. that weight is given by addition, but the result of that 
addition is given by "logic." 
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Not really. It seems quite reasonable, and seemed to Newton, that the sum of two masses is 
the mass of the sum, i.e., that there is no interaction between the masses that spoils the additivity. 
This argument is obviously not deductively conclusive (otherwise we would have a refutation of 
Einstein's Special Theory of Relativity), but it is good enough to make additivity quite plausible. 
We can generalize this kind of argument to extract from it the formal properties that make 
any magnitude additive, and there is literature on this subject in what is called the theory of 
measurement. 3 

Now let us look at masses in motion, accelerated by forces. We have, first, Galileo's famous 
thought experiment showing that light masses fall like heavy ones. Galileo imagines two equal 
masses connected by a long light string. The masses fall together. We now imagine the string 
shorter and shorter, till the masses fuse. Galileo reasons by continuity that the fused mass will 
fall just as each of the equal parts. 

In the Newtonian conceptual scheme, Galileo's conclusion reads: to get the total force on a 
body (at a given time and place), we calculate each force acting on the body, and sum. 

This principle is also at work in Galileo's thought experiment on the trajectory of the cannon 
ball. Suppose the angle of the cannon barrel is 45 degrees. We have gravity acting throughout; 
and, following the initial cannon blast, we have no other forces, i.e. zero force. So we have 
inertial motion in the direction of the barrel. Galileo resolves the inertial motion into horizontal 
and vertical components, and then splits the problem into two - one for vertical inertial motion 
plus gravity, and one for horizontal motion without gravity. He then takes the vector sum of both 
solutions. In this example, aside from the principle that at any given time and place we sum forces 
acting on a body to get the total force, we have special assumptions used by Galileo, namely 
that (again, in Newtonian terminology) the force of gravity is constant in space and time - an 
assumption approximately true for our military example. The more general assumption is the one 
calling for the summing of all forces acting on a body at a given point in space and time, to get 
the net force then and there. We can call this general assumption the sum rule. 

The principle underlying the sum rule is, of course, that two forces operating together, operate 
independently of one another. This is an empirical principle, which is not always true, but, where 
it is true, it expresses itself mathematically in the sum rule. 

Just as we saw that the additivity of various magnitudes corresponds to the non-numerical 
Suppes-Field axioms for scalar fields, so in general we can say that the numerical sum rule for 
force fields corresponds to a general, metaphysical, qualitative directive, which is vague, yet 
supremely useful: in studying a complex cause, try to analyze the cause into a finite number of 
component causes, each of which operates independently of the others. Let us call this principle 
the Priuciple of Analysis, the empirical, yet qualitative basis of the sum rule. 

3 Hartry Field ([Field \980], Chapter 7) shows how to fannulate nonnumeric axioms for scalar fields (ordered and 
nonordered) that detennine uniquely (up to a scale factor) the numerical functions which we call additive magnitudes, 
such as temperature. These axioms can be regarded as the explanation for the utility of addition in a wide variety of 
theories. Field's treatment is an adaptation of the classic work, [Krantz et al. 1971], which presents a qualitative (non
numerical) system of axioms, based on "congruence" and "betweenness." This underlies - and I would say explains - our 
practice of numerical measurement oflengths, which is of course additive (before Einstein). Field's book, which I expect 
will be mentioned in other contributions to the present volume, was written to support the "nominalist" philosophy of 
mathematics, i.c. to show that there is no good reason to believe in the existence of mathematical entities like numbers. 
I think the book is much better regarded in a different light-as an exploration of the conditions under which certain 
mathematical concepts can be applied in physics. 
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Ifwe formulate the the Principle of Analysis as an existential statement-"There is" a way 
to break a system into noninterfering components-it is very hard to refute; nevertheless, it is 
an empirical, disconfirmable, statement. It is, furthermore, a plausible principle, even if not a 
priori. It is certainly a statement that physicists would hope is true; so it has the benefit of wishful 
thinking. And it certainty shows that using a sum rule is reasonable, not mysterious. 

The waters get muddier when we look at the sum rule in quantum mechanics. A sum rule is 
certainly operating; the problem is, there seems to be no Principle of Analysis underpinning it. 

In quantum mechanics, we have, indeed, a very simple sum rule: the sum of two solutions of 
the equation is again a solution. This follows from the linearity of the Schr6dinger equation. The 
problem here is that we are dealing (as it turns out) with equations that have complex solutions, 
such that we can't even "separate out" the real from the imaginary parts. (No analysis here.) 
There is immediately an issue of what we mean physically by the solution in the first place, to 
say nothing of what the physical "meaning" of complex addition is. 

The interpretation of the mathematical formalism generally adopted by working physicists is 
as follows. For a single particle in a potential field, a solution "'(x) of the Schr6dinger equation4 , 

where x is position along the x axis, is said to mean: the probability (densitys) of finding the 
electron at x is 1",(x)12 • (For this to work, the solutions of the equation have to be "normalized" 
to prevent probabilities greater than I. I will pass over this problem.) 

What now is the meaning ofthe sum of two solutions, "'(x) + ¢(x)? The standard answer is: 
suppose that "'(x) is a solution of the equation under condition A, and suppose ¢(x) is a solution 
of the equation under condition B, then I"'(x) + ¢(x)12 is the probability (density) the electron is 
at x when either A or B holds. 

For example, let a phosphorescent screen be placed behind a wall with two slits which can 
be opened or closed. Now suppose A is the condition that the electron shot from a gun can get 
through the wall only at slit A, and ",(x) is the solution corresponding to the possibility that the 
electron has gotten through slit A and landed at place x on the screen; and B is the condition 
that the electron can get through the wall only at slit B, and ¢(x) is the solution corresponding 
to the possibility that the electron has in fact gotten through the wall at slit B and landed at x on 
the screen; then the solution ",(x) + ¢(x) corresponds to the condition that the electron can use 
either A or B (both are open) and the probability that the electron has arrived at x on the screen 
when both slits are open is therefore I"'(x) + ¢(x)12 

Note that this means that a place on the screen which could be arrived at with slit A open, 
and with B open, might not be possible with both slits open, since the sum of the two (complex) 
functions might be zero at x. And this presents a serious problem with applying the Principle 
of Analysis in finding a nonmathematical explanation of why we use this formalism, under this 
interpretation. Our usual physical intuition would argue for the opposite: the more slits, the better. 

To be sure, there are physicists who have attempted to use a "wave" concept to provide the 
missing analysis. In fact, if we allow water waves to travel through two slits, we can actually 

4 The nonrelativistic equation of quantum mechanics usually used in this connection was given by SchrOdinger in the 
middle of the 1920's. I mention this because I actually know at least one mathematician who was not aware (till I told 
him) that this equation has application to physics, although he had studied for years its properties professionally. I know 
this sounds unbelievable, but you will have to take this on faith, since I won't reveal the name of the mathematician. 

5 There are difficulties defining this concept here, but I believe they can be gotten around by mathematicians, and ignoring 
them won't weaken my case; on the contrary, discussing the difficulties would only strengthen it. 
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produce interference phenomena which can cancel the wave at given points, where the wave 
height would not have been zero with one slit open. Yet nobody has succeeded in reducing 
quantum mechanics to the mechanics of waves; even in the case of two electrons in Euclidean 
space, where the solutions in general are functions in six variables, there is no way to make sense 
of "waves" in physical space. I think, then, it would be fair to say that working physicists have 
abandoned the wave concept. As Feynman says, the only thing we ever observe are particles, 
never waves. Even light "waves" are really photons. We are left with a sum rule which remains 
true as a mathematical constraint on theories, without any empirical backing for the Principle 
which could be stated without using the very mathematical formalism in question. To adapt a 
figure from Lewis Carroll, we have the grin, without the cat. 

Before we go on, a remark. I have been referring to complex addition as though it were 
the same function as in real analysis. Actually, it might be said, we have a generalization of 
addition, not addition itself. I am artificially increasing the "wonder" involved in the Principle 
of Superposition. Yet the matter is not so simple. Complex addition is the analytic continuation 
of real addition into the entire complex plane, and is thus the only way to extend real addition 
while keeping its axioms intact. We could thus just as well say that addition on the reals is what 
you get by arbitrarily restricting "plus" to the real line. I find it rather mysterious, in fact, why 
functions on the reals which were known for hundreds of years before Cardan, turned out to be 
continuable. Why did the extension ofthese functions to the complex plane tum out to be largely 
"forced," in the sense of my colleague Meir Buzaglo? (See [Buzaglo 2001].) 

Up to now, we have discussed the concept of (various kinds of) addition: addition as a kind 
of logic, addition as a quantification of a physical idea which we can understand qualitatively, 
by some very general, if empirical, principle; finally, addition as mathematical concept, whose 
application to quantum mechanics has no obvious physical substratum. 

Our final example adds a new element: the use of addition to replace the entire notion of a 
physical substratum. (Even if you don't buy this, it's an interesting example nevertheless.) 

Suppose we have two noninteracting particles, particle 1 and particle 2, whose location 
probabilities at x, and X2 are defined, respectively, by complex valued functions o/(x,) and q,(X2). 
Then the function o/(x,) q,(X2) gives the location probability (density) of the pair of non interacting 
particles. We will call this the product rule. This rule is nothing special, since the probability 
of the conjunction of two independent events is the product of the probabilities of these events, 
and of course we have, for complex numbers u and v, luvl 2 = lul2lvl2. I just need it for what 
follows. 

There is a generalization ofthe sum and product rule which is also important for what follows. 
We think of the functions as vectors in complex linear spaces (finite or infinite dimensional-in 
what follows, finite) and their values as the coordinates. If we have vectors that represents states 
of particles, then we substitute "tensor sum" and "tensor product" for the sum and product of two 
functions. 

Let us now take a brieflook at particle physics. In 1932, Heisenberg made a bold hypothesis 
that revolutionized nuclear physics: that the proton and the neutron, despite their different charges, 
and despite the slight difference in their mass, are two states of the same particle, called today a 
nucleon. The essential difference between neutron and proton was only in the different orientation 
of their "isotopic spin," an abstract quantity supposedly conserved in nuclear reactions. (The term 
"orientation" is here a metaphor, to be explained, in tenns more familiar to mathematics, such as 
"double covering group.") 
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Subsequently, other families of particles were found, particles which respond to the nuclear 
(strong) force; today these particles are called hadrol1s. For example, we have the three pions: 
positive, neutral, and negative. These have comparable mass, but 15% of that of the nucleons. 
Again, these are regarded as three "orientations" of one particle. And we have the four delta 
particles: double positive, positive, neutral, negative. These are unstable and decay into a nucleon
pion pair rather quickly, so their presence must be inferred, but 10-23 seconds is still enough time 
to create a new political party where I live. 

Let's imagine that we could set up an experiment where a positive delta decays into a pion 
and a nucleon6 By charge conservation, the two possibilities are a positive pion and a neutron; or 
a neutral pion and a proton. These two possibilities are not ruled out, either, by energy-momentum 
conservation. We would like, however, to know the probability of each of these possibilities. In 
other words it would be nice to express the result of the decay as a linear combination of the two 
possibilities (each possibility thought of as a basis vector of a linear space); squaring the complex 
coordinates of the two possibilities would give these probabilities, though at the present time we 
have no way of saying that one possibility is more likely than the other. 

To go further with this we have to take a deeper look at the meaning of conservation laws. It 
is well known that, in physics, symmetries are associated with conservation laws. But in general, 
the conservation laws were established before the symmetries were discovered. Even where there 
are exceptions-for example, the conservation ofthe "Lenz vector" in Keplerian motion (which 
prevents precession of the orbits), on account of an "internal" 0(3) symmetry of this motion7-

the historical direction could have been reversed, since the property in question (the Lenz vector) 
could easily have been formulated before the mathematical symmetry of the Hamiltonian had 
been discovered (by Lenz). 

In our case of hadrons, even after it was "discovered," the magnitude known as "isotopic 
spin," or isospin today, had no meaning other than "the property conserved under SU(2) sym
metry," SU(2) being a group known, no doubt, to readers of this volume. Each type of hadron 
corresponds to a irreducible representation of this group: thus, nucleons correspond to the 2-
dimensional representation; pions, to the 3-dimensional; deltas, to the 4-dimensionaL In other 
words, if we ignore their mass and everything else about them except their isospin, we can regard 
the proton and the neutron as basis vectors of a 2-dimensional complex vector space, on which 
the group G acts by means of2x2 complex matrices which in this case are themselves members 
of SU(2). In the case of the pions and the deltas, the action of SU(2) is represented by 3 x 3 
and 4 x 4 complex matrices. The isospins of all the hadrons can thus be calculated using group 
theoretical methods discovered by Eli Cartan well before the advent of particle physics, and 
clearly described in [Sternberg 1994]; and in this classification the isospin of the proton is +1/2, 
that of the neutron is -1/2; that ofthe pions are I, 0, - I; that of the deltas are 3/2, 1/2, - I /2, 
-3/2. Even if we don't know what isospin "is" we can speak of its conservation in hadronic 
reactions. 

Returning to our positive delta decay example, we easily see that isospin conservation also 
allows the two results: positive pion and a neutron (rr+, n) and a neutral pion and a proton (rro, p). 

6 In actual experiments, we "create" the delta by a collision between a pion and an nucleon, but I want to keep things 
mathematically simple. 

7 For details see [Guillemin/Stemberg 1990]. 
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The amazing difference is that isospin conservation, or rather SU(2) symmetry, will enable us to 
show that the latter possibility is twice as likely as the former! 

Let us consider a system consisting of a pion and a nucleon; we use the "product rule." 
The pions "are" the basis vectors of a 3-dimensional irreducible representation of SU(2), and 
the nucleons, of a 2-dimensional irreducible of the same group. Taking the tensor product here 
means that we take the 6-dimensional space whose basis vectors are the Cartesian product of 
the two aforementioned bases. This, according to group theory, gives a 6-dimensional reducible 
representation of SU(2). We have the "tensor product" of the representations. 

We can also derive another 6-dimensional reducible representation of SU(2) starting with 
the 4-dimensional representation which we identify with the set of deltas. By simply "padding" 
the basis with the two basis vectors p and n from the nucleonic 2-dimensional representation, we 
get a 6-dimensional vector space upon which we have a reducible representation of SU(2). We 
get the "tensor sum" of the two representations: a rather fancy way of saying 4 + 2 = 3 x 2. 

We now pull the rabbit out of the hat. These two reducible representations are SU(2)
isomorphic (alternative terminology: SU(2) morphic) to one another. This means that there is an 
isomorphism between the two vector spaces that preserves the action of SU(2): any member of 
SU(2) maps corresponding vectors onto corresponding vectors. 

We now make the following assumption: ignoring all other properties of matter, any two 
configurations ofisospin which are SU(2)-morphic, can be regarded as essentially the same. Here 
is how we use this assumption. 

Take the basis vector representing positive delta in the sum representation, and find its corre
spondent in the product representation. Then express this latter vector as a linear combination of 
basis vectors in the product representation. After a group theoretical calculation (which Sternberg 
carries out in great detail in 4.8), we find that 

which leads to the conclusion that the neutral pion and proton is twice as probable as the positive 
pion and neutron. This is the type of "prediction" that group theory allows in particle physics. 
The conjunction, then, of tensor sums and products, with theory of group representations, yields 
a powerful engine of discovery. 

The peculiar role of "sum" in this example is quite remarkable. Though we are interested in 
the decay of a positive delta, we cannot do the calculation unless we sum the delta representation 
with something that has nothing to do with this experiment ~ the two-dimensional nucleonic 
representation. 

What is behind the leading assumption that there must be a vector in the product representation 
that physically represents the positive delta? The only thing I can think of is: 

Pythagorean Principle A (PPA): At the deepest level of description, physical systems 
which are mathematically equivalent are physically equivalent-and thus one can be 
transformed into the other. 

This principle does not follow from the sum or the product rules of quantum mechanics. It is 
left deliberately vague, since it is meantto be a principle of scientific inquiry. It doesn't even work 
all the time. An example of this is the fortuitous analogy between the mathematics of electronic 
"spin," and the mathematics of nucleonic "isospin." Both of these magnitudes correspond to 
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SU(2) symmetry, yet there does not seem to be any explanation for this analogy, even though it 
was used by Heisenberg to discover isospin! 

On the macroscopic level, of course, PPA is violated all the time. On that level, the opposite 
thing happens: quite different systems are found to be describable by the same differential 
equations. To put it another way, once a mathematical structure is discovered, it is almost sure to 
be discovered somewhere else. The increasing applicability of mathematics to molecular biology 
is a result of this. 

Another version of the Pythagorean Principle can be stated thus: 

PPB: The ultimate classification of reality is by mathematical symmetries and structures. 

From time immemorial, thinkers have tried to classify reality according to different schemes. 
One can't begin to formulate the laws of nature without such a scheme. One recalls the four 
elements of the Greeks: earth, air, fire, and water. A better one was the periodic table of the 
elements. Even better is the system of atomic numbers and atomic weights. 

Yet in early antiquity there were those who looked to mathematics as the deepest method of 
classifying reality. The Pythagoreans went so far as to attempt to reduce all existence to numbers. 
There were attempts to use the characteristic concepts of number theory in biology, to predict 
the gestation period of animals by the use of such concepts as prime number or perfect number. 
The only successful Pythagorean application of this type was, of course, to music ~ in which the 
continuum of musical tones was related to the discrete domain of numbers. 

In the last 100 years, however, it would seem that Pythagorean reasoning has returned with 
a bang. Classifying the elementary particle world using the classifications of Lie groups has been 
enormously successful, replacing the "empirical" type of classification hitherto seen. Instead of 
saying that atom consists of protons, neutrons, and electrons, we say the 6-dimensional reducible 
ofSU(2) "consists" of the four and the two irreducibles by tensor sum. 

Ending this essay with an even more speculative leap, we formulate: 

ppe: The deepest language with which to describe reality, even qualitatively, is mathematical 
language. 

I am not arguing that PPC is actually true, but only that it deserves consideration. At least 
one prominent physicist has actually adopted PPC: " ... [AJt the deepest level, all we find are 
symmetries and responses to symmetries. Matter itself dissolves, and the universe itselfis revealed 
as one large reducible representation ofthe symmetry group ofnature."g It would be rather ironic 
if the two warring Greek schools, Democritean materialism and Pythagorean Platonism, should 
tum out to have been ultimately saying the same thing-everything is matter, but all matter is 
mathematics.9 

il [Weinberg 1989J, p. 80. 

9 One of the editors of this volume asked whether this means that Newton, standing under the apple tree, was hit by a 
tensor product. By this reasoning. however, we could "prove" that anger is not a state of the brain, since we never saw 
a furious neuron. The tnlth is, that on the level of "appearances," i.e., how things look to us, there IS a tree, an apple, 
collisions, and, for that matter, Newton. On the deepest level of description, none of these things, including "hits," exist. 
Again. this is only speculation, since I don't know whether ppe is true. 
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From the Editors 

The work in the philosophy of probability seems much closer to the mathematical content than 
most work by philosophers of mathematics. This could be because probability is a relatively 
recent addition to the set of mathematical subjects, or maybe because of its origins in topics such 
as gambling. Perhaps because everyone has studied at least some mathematics in school, but not 
everyone has studied much probability, there are fewer philosophers working in the philosophy 
of probability. Alan Hajek is a philosopher with a deep interest in the philosophy of probability. 
His chapter is an introduction to many of the issues currently being discussed in the philosophy 
of probability. It should be accessible to anyone who has taken the standard undergraduate 
probability and statistics course. Neither of the editors of this volume have done any work in the 
.field, but the questions here seem very natural to us. 

Alan Hajek is a Professor of Philosophy in the Research School of Social Sciences at the Aus
tralian National University (philrsss.anu.edu.aulpeople-defaultslalanhlindexphp3). His research 
interests include the philosophical foundations of probability and decision theory, epistemology, 
the philosophy of science, metaphysics, and the philosophy of religion. His paper "What Condi
tional Probability Could Not Be" won the 2004 American Philosophical Association Article Prize 
for the best article published in the previous two years by a younger scholar. The Philosopher's 
Annual selected his "Waging War on Pascal sWager" as one of the ten best articles in philosophy 
in 2003. Other articles of interest are "Perplexing Expectations" (with Harris Nover), Mind 
115, (2006) and "The Cable Guy Paradox", Analysis, 65: 2, (2005). He has a book in prepara
tion, Arrows and Haloes: Probabilities, Conditionals, Desires, Beliefs to be published by Oxford 
University Press. 
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1 Persona{ and Pedagogica( Prorogue 

Once upon a time I was an undergraduate majoring in mathematics and statistics. I attended 
many lectures on probability theory, and my lecturers taught me many nice theorems involving 
probability: 'P of this equals P of that', and so on. One day I approached one of them after a 
lecture and asked him: "What is this' P' that you keep on writing on the blackboard? What is 
probability?" He looked at me like I needed medication, and he told me to go to the philosophy 
department. In the interests of pedagogy, in retrospect I think that he could have benefited from 
some discussions with philosophers. For when I now teach those same theorems to my students, 
I hope that I can imbue them with deeper meaning and motivation when I point out what is at 
stake philosophically. 

Anyway, I did go to the philosophy department. (Admittedly, my route there was long and 
circuitous.) There I found a number of philosophers asking the very same question: what is 
probability? All these years later, it's still one of the main questions that I am working on. I still 
don't feel that I have a completely satisfactory answer, although I like to think that I've made some 
progress on it. For starters, I know many things that probability is not, namely various highly 
influential analyses of it that cannot be right-we will look at them shortly. As to promising 
directions regarding what probability is, I will offer my best bets at the end, concluding with 
some further personal and pedagogical thoughts. 

2 Introduction 

Bishop Butler's dictum [Butler 1736] that "Probability is the very guide oflife" is as true today as 
it was when he wrote it in 1736. It is hardly necessary to point out the importance of probability in 
statistics, physics, biology, chemistry, computer science, medicine, law, meteorology, psychol
ogy, economics, and so on. Probability is crucial to any discipline that deals with indeterministic 
processes, any discipline in which evidence has a non-deductive bearing on hypotheses, indeed 
any discipline in which our ability to predict outcomes is imperfect-Which is to say virtually any 
serious empirical discipline. Probability is also seemingly ubiquitous outside the academy. Prob
abilistic judgments of the efficacy and side-effects of a pharmaceutical drug determine whether or 
not it is approved for release to the public. The fate of a defendant on trial for murder hinges on the 
jurors' opinions about the probabilistic weight of evidence. Geologists calculate the probability 
that an earthquake of a certain intensity will hit a given city, and engineers accordingly build 
skyscrapers with specified probabilities ofwithstanding such earthquakes. Probability undergirds 
even measurement itself, since the error bounds that accompany measurements are essentially 
probabilistic confidence intervals. We find probability wherever we find uncertainty-that is, 
almost everywhere in our lives. 

It is surprising, then, that probability is a comparative latecomer on the intellectual scene. 
To be sure, inchoate ideas about chance date back to antiquity-Epicurus, and later Lucretius, 
believed that atoms occasionally underwent indeterministic swerves. In the middle ages, Averroes 
had a notion of 'equipotency' that might be regarded as a precursor to probabilistic notions. But 
probability theory was not conceived until the 17th century, when the study of gambling games 
motivated the first serious mathematical study of chance by Pascal and Fermat in the mid- 17th 
century, culminating in the Port-Royal Logic. Over the next three centuries, the theory was 
developed by such authors as Huygens, Bernoulli, Bayes, Laplace, Condorcet, de Moivre, Venn, 
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Johnson, and Keynes. Arguably, the crowning achievement was Kolmogorov's axiomatization 
in 1933, which put probability on rigorous mathematical footing. 

When I asked my professor "What is probability?", there are two ways to understand that 
question, and thus two kinds of answer that could be given (apart from bemused advice to seek 
attention from a doctor, or at least a doctor of philosophy). First, the question may mean: what 
are the/ormalfoatures a/probability? That is a mathematical question, to which Kolmogorov's 
axiomatization is the widely (though not universally) agreed upon answer. I review this answer 
in the next section as it was given to me at great length in my undergraduate statistics courses. 
Second, the question may mean: what sorts a/things are probabilities-what, that is, is the subject 
matter of probability theory? This is a philosophical question, and while the mathematical theory 
of probability certainly bears on it, the answer must come from elsewhere-in my case, from the 

philosophy department. 

3 The Forma{ Theory tf Pro6a6j{jty 

3.1 Uncondltiona{ Pyobabi{lt!J 

Kolmogorov begins his classic book ([Kolmogorov 1933]) with what he calls the "elementary 
theory of probability": the part of the theory that applies when there are only finitely many events 
in question. Let rl be a set (the 'universal set'). Afield on rl is a set of subsets of rl that has rl 
as a member, and that is closed under complementation (with respect to rl) and finite union. Let 
rl be given, and let F be a field on rl. Kolmogorov's axioms constrain the possible assignments 

of numbers, thought of as probabilities, to the members of F. Let P be a function from F to the 
real numbers obeying: 

I. (Non-negativity) peA) :::: 0 for all A E :F. 
2. (Normalization) perl) ~ I. 

3. (Finite additivity) peA U B) = peA) + PCB) for all A, B E F such that An B = 0. 

Such a triple (rl, F, P) is called a probability space. 
Here the arguments of the probability function are sets, often called events. (Note that this 

is a technical sense of the term that may not neatly align with ordinary usage-for example, it 
is not clear that 'events' in the latter sense have the required closure properties.) Kolmogorov's 
probability theory is thus dependent on set theory. 

We could instead attach real-valued probabilities to members of a collection S of sentences 
of a language, closed under finite truth-functional combinations, with the following counterpart 
axiomatization: 

I. peA) :::: 0 for A E S. 
II. If T is a tautology, then peT) = I. 

III. peA V B) = peA) + PCB) for all A E Sand B E S such that A and B are logically 
incompatible. 

Note how these axioms take the notions of 'tautology,' 'logical incompatibility' and 'impli
cation' as already understood. To this extent we may regard probability theory, so formulated, as 
dependent on deductive logic. 
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Now let Q be infinite. A non-empty collection F of subsets of Q is called a sigma algebra 
(or sigma field, or Borel field) on Q iff F is closed under complementation and countable 
union, i.e. 

A I, A 2 , ••• E F '* U An E F. 
n=1 

Kolmogorov introduces a further 'infinitary' axiom. 

4. (Continuity) If E 1, E 2 , ••• is a sequence of sets such that Ei ;2 Ei+ 1 Vi and n;:l En = 0 
then PeEn) -+ 0 (where En E F for all n). 

That is, if E I, E 2 , • •• is a sequence of non-increasing sets (according to the set-inclusion relation), 
with empty infinite intersection, then limn~ooP(En) = p(n::'=l En). Now, define a probability 
measure P(-) on F as a function from F to [0, I] satisfying axioms 1-3, as before, and also the 
new axiom 4. 

Equivalently, we can replace the conjunction of axioms 3 and 4 with a single axiom: 

3'. (Countable additivity) If {Ai} is a countable collection of (pairwise) disjoint sets, each 
Ai E F, then 

Thanks to the assumption that F is a sigma algebra, we are guaranteed that the probability on the 
left hand side is defined. 

De Finetti ([de Finetti 1972] and [de Finetti 1974]) marshals a battery of arguments against 
countable additivity, most of them variations on these: 

The infinite lottery: Suppose a positive integer is selected at random-we might think of 
this as an infinite lottery with each positive integer appearing on exactly one ticket. We 
would like to reflect this in a uniform distribution over the positive integers (indeed, 
proponents of the principle of indifference would seem to be committed to it), but if we 
assume countable additivity this is not possible. For if we assign probability 0 in turn 
to each number being picked, then the sum of all these probabilities is again 0; yet the 
union of all of these events has probability I (since it is guaranteed that some number 
will be picked), and I =f o. On the other hand, if we assign some probability e > 0 
to each number being picked, then the sum of these probabilities diverges to 00, and 
I =f 00. If we drop countable additivity, however, then we may assign 0 to each event 
and I to their union without contradiction. 

Biased assignments to denumerable sets: Countable additivity allows one to assign uniform 
probability lin to each member of an n-celled partition (for example, 1/6 to each result 
of tossing a die). However, it requires one to assign an extremely biased distribution to 
a denumerable partition of events. Indeed, for any e > 0, however small, there will be a 
finite number of events that have a combined probability of at least I - e, and thus the 
lion's share of all the probability. 

See [Seidenfeld 200 I] for further discussion of countable additivity. 
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It is often thought that the only part of the axiomatization that is not merely conventional 
stipulation is the third axiom, in either its finite or countable form, (For example, it is tempting 
to say that it is pure~v conventional to set P(Q) = 1, rather than P(Q) = 100, say,) That is too 
quick, For each of the following involves a substantial mathematical assumption: 

(i) Probabilities are defined by functions (rather than by one-many or many-many map
pings), 

(ii) These are functions of one variable (unlike primitive conditional probability functions, 
which are functions of two variables): there is just a single argument for a probability 
function. 

(iii) Such a function is defined on afield (rather than a set with different closure conditions). 
(iv) Probabilities are to be represented numerically (rather than qualitatively, or compara

tively). 
(v) Their numerical values are real numbers (rather than those of some other number 

system). 
(vi) These values are bounded (unlike other quantities that are treated measure-theoretically, 

such as lengths). 
(vii) Probability functions attain maximal and minimal values (thus prohibiting open or 

half-open ranges, such as (0, 1) or (0, 1 D. 

For a discussion of rival theories that relax or replace (ii), (iii), (iv) and (vi), see [Fine 
1973]. Complex-valued probabilities are proposed by Feynman and Cox (see [Miickenheim 
et al. 1986]); infinitesimal probabilities (of non-standard analysis) by Skyrms ([ 1980]) and Lewis 
([ 1980]) among others; unbounded probabilities by Renyi ([ 1970]). 

3.2 Condltiona( Probability 

Kolmogorov also defines the conditional probability of A given B by the ratio formula: 

Thus, we may say that the probability that the toss of a fair die results in a 6 is 1/6, but the 
probability that it results in a 6 given that it results in an even number, is 1/611/2 = 1/3. In 
straightforward applications in which the requisite unconditional probabilities are well-defined, 
and the denominator P( B) is greater than 0, this formula seems to be impeccable. 

But not all applications are straightforward, and in some these conditions are not met. 
Consider first the proviso that P(B) > O. As probability textbooks repeatedly drum into their 
readers, probability zero events need not be impossible, and indeed they can be of real significance. 
It is curious, then, that some of the same textbooks glide over (1)'s proviso without missing a 
beat. In fact, interesting cases of conditional probabilities with probability-zero conditions are 
manifold. Consider an example due to Borel: a point is chosen at random from the surface of the 
earth (thought of as a perfect sphere); what is the probability that it lies in the Western hemisphere, 
given that it lies on the equator? 1/2, surely. Yet the probability of the condition is 0, since a 
uniform probability measure over a sphere must award probabilities to regions in proportion to 
their area, and the equator has area O. The ratio formula thus cannot deliver the intuitively correct 
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answer. Obviously there are uncountably many problem cases of this form for the sphere. (For 
more discussion see [Hajek 2003b].) 

Probability theory and statistics are shot through with cases of non-trivial zero-probability 
events. Witness the probabilities of continuous random variables taking particular values (such 
as a normally distributed random variable taking the value 0). Witness the various 'almost 
sure' results-the strong law of large numbers, the law of the iterated logarithm, the martingale 
convergence theorem, and so on. They assert that certain convergences take place, not with 
certainty, but with probability I. A fair coin may land tails forever. But despite this event's 
having probability 0, various probabilities conditional on it are intuitively well defined-for 
example, the probability that the coin lands tails forever, given that it lands tails forever, is surely 
I. More generally, it is surely a triviality that the probability of any possible outcome, given itself, 
is I. This is about as fundamental an intuition about conditional probability as there could be. 
The fact that the ratio formula cannot respect this intuition is a major strike against it. 

The difficulties that probability zero conditions pose for the ratio formula for conditional 
probability are well known (which is not to say that they are unimportant). Indeed, Kolmogorov 
himself was well aware of them, and he offered a more sophisticated account of conditional prob
ability as a random variable conditional on a sigma algebra, appealing to the Radon-Nikodym 
theorem to guarantee the existence of such a random variable. But my complaints about the ratio 
analysis are hardly aimed at a straw man, since (I) is by far the most commonly used analysis of 
conditional probability (especially in philosophical applications of probability). Moreover, the 
move to Kolmogorov's more sophisticated theory of conditional probability does not lay to rest 
the problem of zero-probability conditions. In particular, even Kolmogorov's more sophisticated 
account of conditional probability does not respect the fundamental intuition above concerning 
conditional probability, as evidenced by the existence of so-called improper conditional proba
bility random variables. Seidenfeld et al. ([200 I]) show just how extreme and how widespread 
violations of the intuition can be. 

Hajek ([2003b]) goes on to consider further problems for the ratio formula: cases in which 
the unconditional probabilities that figure in the ratio are imprecise or are undefined, and yet 
the corresponding conditional probabilities are defined. Consider first the problem of imprecise 
unconditional probabilities: peA IB) does not have a sharp value when PCB) is imprecise. Exam
ple: presumably, your probability that it rains tomorrow is not a sharp value, such as 0.3. After 
all, that value is infinitely sharp, precise to infinitely many decimal places: 0.30000 .... Rather, 
your probability is spread out over a range of values-say, the interval [0.25, 0.35]. Philoso
phers commonly represent such imprecision with a set of probability functions-in this case, 
the set of all such functions that assign some value in the interval [0.25, 0.35] to it raining 
tomorrow, and that agree with your opinions in all other respects. (See [van Fraassen 1990], 
which develops proposals by Levi [1980] and Jeffrey [1983], among others.) Nevertheless, 
you assign various perfectly sharp conditional probabilities, given that it rains. For example, 
the probability that a particular fair coin toss lands heads, given that it rains tomorrow, is a 
sharp 112. 

The problem of undefined conditional probabilities is even more widespread: peA I B) is 
undefined when either or both of peA n B) and PCB) are undefined. Suppose that P(Sam has 
just watered the garden) is undefined. Still, the probability that the garden is dry, given that Sam 
has just watered the garden, is O. Hajek ([2003b]) discusses a plethora of such cases, ranging 
from quantum mechanics to decision theory, from non-measurable sets to probabilistic causation. 
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The ratio fonnula goes silent where our intuitions cry out what the answers should be. Moreover, 
these prove to be problematic also for the more sophisticated account; so therein lies no solution 
either. 

I believe that the right response is to tum the tables on Kolmogorov's analysis: rather than 
regarding unconditional probabilities as fundamental, and later defining conditional probabilities 
in tenns of them, we should regard conditional probability as the fundamental notion. And there 
are various ways to define primitive conditional probabilities as total functions from F x F to 
[0, I] (for a given sigma field F). Popper ([ 1959a]) presents a general account of such conditional 
probabilities. Among other things, any such account codifies the intuition that the conditional 
probability of anything, given itself, is I. See [Hajek 2003b] for further discussion. 

3.3 Indpendence 

If P(X I Y) = P(X), then X and Yare said to be independent. Intuitively, the occurrence of one 
of the events is completely uninfonnative about the occurrence of the other. Thus, successive 
spins ofa roulette wheel are typically regarded as independent. When P(X) > 0 and P(Y) > 0, 
the definition of independence is equivalent to 

P(Y I X) = P(Y) 

and to 

P(X n Y) = P(X)P(Y). 

The latter fonnulation can be used even when P(X) or P(Y) is O. 
The locution 'X is independent of Y' is somewhat careless, encouraging one to forget that 

independence is a 3-place relation that events or sentences bear to a probability function. Further
more, this technical sense of 'independence' should not be identified unreflectively with causal 
independence, or any other pre-theoretical sense of the word, even though such identifications 
are often made in practice. 

Independence plays a central role in probability theory-indeed, it is that theory's distinctive 
add-on to the more general measure theory on which it is based. Many of those theorems that my 
statistics professors taught me, and which I now teach, hinge on it-witness again the various 
laws of large numbers, for instance. It should come as no surprise that my misgivings about the 
ratio analysis of conditional probability carry over to the present definitions of independence, 
which presupposes that analysis. 

4 Interyretations rf Pro6a6ifity 

This section turns to the so-called interpretations of probability: attempts to answer the cen
tral philosophical question: what sorts of things are probabilities? The tenn 'interpretation' is 
misleading here. Various quantities that intuitively have nothing to do with 'probability' obey 
Kolmogorov's axioms-for example, length, volume, and mass, each suitably nonnalized-and 
are thus 'interpretations' of it, but not in the intended sense. Nevertheless, we will silence our 
scruples and follow common usage in our quick survey of the 'interpretations' of probability. 
(See [Hajek 2003a] for a far more detailed survey.) 
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4.1 C(assica( Interyretation 

The classical interpretation, historically the first, can be found in the works of Pascal, Huygens, 
Bernoulli, and Leibniz, and it was famously presented by Laplace ([1814]). Cardano, Galileo, 
and Fermat also anticipated this interpretation. Suppose that our evidence does not discriminate 
among the members of some set of possibilities---either because that evidence provides equal 
support for each of them, or because it has no bearing on them at all. Then the probability of an 
event is simply the fraction of the total number of possibilities in which the event occurs-this 
is sometimes called the principle of indifference. We may think of this as the rational subjective 
probability appropriate for someone in the evidential situation described. This interpretation was 
inspired by, and typically applied to, games of chance that by their very design create such 
circumstances-for example, the classical probability of a fair die landing with an even number 
showing up is 3/6. Probability puzzles typically take this means of calculating probabilities for 
granted. 

Unless more is said, the interpretation yields contradictory results: you have a one-in-a
million chance of winning the lottery, but either you win or you don't; so each of these possibilities 
has probability ~! We might look for a "privileged" partition of the possibilities, but we will 
not always find one. For example, in this case, the million-celled partition corresponding to each 
of the possible lottery outcomes seems more natural than the win/don't win partition, if only 
because the former is more fine-grained. But Bertrand's paradoxes ([Bertrand 1889]) show that a 
particular problem may have competing, equally natural, partitions. They all tum on alternative 
parametrizations of a given problem that are non-linearly related to each other. The following 
example (adapted from [van Fraassen 1989]) nicely illustrates how Bertrand-style paradoxes 
work. A factory produces cubes with side-length between 0 and 1 foot; what is the probability 
that a randomly chosen cube has side-length between 0 and 112 a foot? The tempting answer is 
112, as we imagine a process of production that is uniformly distributed over side-length. But 
the question could have been given an equivalent restatement: a factory produces cubes with 
face-area between 0 and I square-feet; what is the probability that a randomly chosen cube 
has face-area between 0 and 1/4 square-feet? Now the tempting answer is 114, as we imagine a 
process of production that is uniformly distributed over face-area. And it could have been restated 
equivalently again: a factory produces cubes with volume between 0 and I cubic feet; what is 
the probability that a randomly chosen cube has volume between 0 and 1/8 cubic-feet? Now the 
tempting answer is 118, as we imagine a process of production that is uniformly distributed over 
volume. What, then, is the probability of the event in question? 

4.2 Logica( Interyretation 

The logical interpretation of probability, developed most extensively by Carnap ([ 1950]), sees 
probability as an extension of logic. Traditionally, logic aims to distinguish valid from invalid 
arguments by virtue of the syntactic form of the premises and conclusion. (E.g., any argument 
that has the form 

p 
Jfp then q 
Therefore, q 
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is valid in virtue of this form.) But the distinction between valid and invalid arguments is not fine 
enough: many invalid arguments are compelling, in the sense that the premises strongly support 
the conclusion-we will see an example of such an argument shortly. Carnap described this 
relation of "support" or "confirmation" as the logical probability that an argument's conclusion is 
true, given that its premises are true. He had faith that logic, more broadly conceived, could also 
give it a syntactic analysis. So according to this program, probability is a measure of the degree 
to which a sentence supports another sentence, where this could be determined by the syntactic 
forms of the sentences themselves. 

The program did not succeed. A central problem is that changing the language in which 
items of evidence and hypotheses are expressed will typically change the confirmation relations 
between them-for example, adding further predicates or names to a given language will typically 
revise how probabilities are shared around individual sentences. Moreover, Goodman ([1983]) 
showed that inductive logic must be sensitive to the meanings of words, for syntactically parallel 
inferences can differ wildly in their inductive strength. For example, 

A II observed snow is white. 
Therefore, all snow is white. 

is an inductively strong argument: its premise gives strong support to its conclusion. However, 

All observed snow is observed. 
Therefore, all snow is observed. 

is inductively weak, its premise providing minimal support for its conclusion. It is quite unclear 
how a notion oflogical probability can respect these intuitions. 

4.3 Frequency Interyretations 

Frequency interpretations date back to Venn ([1876]). Gamblers, actuaries and scientists have 
long understood that relative frequencies bear an intimate relationship to probabilities. Frequency 
interpretations posit the most intimate relationship of all: identity. In a sound bite, probabilities 
are relative frequencies according to this view. Thus, the probability of '6' on a die that lands '6' 
3 times out of 10 tosses is, according to the frequentist, 3/10. In general: 

the probability of an outcome A in a reference class B is the proportion of occurrences of A 
within B. 

Frequentism is still the dominant interpretation among scientists who seek to capture an 
objective notion of probability, heedless of anyone's beliefs. It is also the philosophical position 
that lies in the background of the classical FisherlNeyman-Pearson approach that is used in most 
statistics textbooks. Frequentism does, however, face some major objections. For example, a coin 
that is tossed exactly once yields a relative frequency of heads of either 0 or I, whatever its true 
bias-an instance of the infamous 'problem of the single case'. A coin that is tossed twice can 
only yield relative frequencies of 0, lI2, and l. And in general, a finite number n of tosses can 
only yield relative frequencies that are multiples of lin. Yet it seems that probabilities can often 
fall between these values. Quantum mechanics, for example, posits irrational-valued probabilities 
such as 1/ .y'2. 



332 Pro'!! ani otlier Di(emmas 

Some frequentists (notably Reichenbach [1949] and von Mises [1957]) address this problem 
by considering infinite reference classes of hypothetical occurrences. Probabilities are then de
fined as limiting relative frequencies in suitable infinite sequences of trials. Von Mises offers a 
sophisticated formulation based on the notion of a collective: an (hypothetical, or virtual) infinite 
sequence of 'attributes' (possible outcomes) of a specified experiment that is performed infinitely 
often. He goes on to lay down two requirements for such an infinite sequence w to be a collective. 
Call a place-selection an effectively specifiable method of selecting indices of members of w, 
such that the selection or not of the index i depends at most on the first i ~ I attributes. The 
axioms are: 

Axiom of Convergence: the limiting relative frequency of any attribute exists. 

Axiom of Randomness: the limiting relative frequency of each attribute in a collective w is the 
same in any infinite subsequence of w which is determined by a place selection. 

The probability of an attribute A, relative to a collective w, is then defined as the limiting relative 
frequency of A in w. 

Collectives are abstract mathematical objects that are not empirically instantiated, but that 
are nonetheless posited by von Mises to explain the stabilities of relative frequencies in the 
behaviour of actual sequences of outcomes of a repeatable random experiment. Church ([ 1940]) 
renders precise the notion of a place selection as a recursive function. 

If there are in fact only finitely many trials of the relevant type, then this kind offrequentism 
requires the actual sequence of outcomes to be extended to a hypothetical or 'virtual' sequence. 
This creates new difficulties. For instance, there is apparently nothing that determines how the 
coin in my pocket would have landed if it had been tossed indefinitely-it could yield any 
hypothetical limiting relative frequency that you like. Moreover, a well-known problem for any 
version of frequentism is the reference class problem: relative frequencies must be relativized to 
a reference class. Suppose that you are interested in the probability that Collingwood will win its 
next match. Which reference class should you consult? The class of all matches in Collingwood's 
history? Presumably not. The class of all recent Collingwood matches? That's also unsatisfactory: 
it is somewhat arbitrary what counts as 'recent', and some recent matches are more informative 
than others regarding Collingwood's prospects. The only match that resembles Collingwood's 
next match in every respect is that match itself. But then we are saddled again with the problem 
of the single case, and we have no guidance to its probability in advance. The reference class 
problem can also be a very practical problem-insurance companies face it on a daily basis. 
After all, the premiums that they set for a given individual are based on frequencies of claims 
of people ofthat type; but the individual is a member of many classes of people, whose relevant 
frequencies may differ wildly. 

4.4 Pnpensit!:} Interyretations 

Propensity interpretations, like frequency interpretations, regard probability as an objective fea
ture of the world. Probability is thought of as a physical propensity, or disposition, or tendency 
ofa system to produce given outcomes. This view, which originated with Popper ([1959b]), was 
motivated by the desire to make sense of single-case probability attributions on which frequentism 
apparently foundered, particularly those found in quantum mechanics. Propensity theories fall 
into two broad categories. According to single-case propensity theories, propensities measure 
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a system's tendencies to produce given outcomes; according to long-run propensity theories, 
propensities are tendencies to produce long-run outcome frequencies over repeated trials. See 
[Gillies 2000] for a useful survey. 

Single-case propensity attributions face the charge of being untestable. Long-run propensity 
attributions may be considered to be verified if the long-run statistics agree sufficiently well with 
those expected, and falsified otherwise; however, then the view risks collapsing into frequentism, 
with its attendant problems. A prevalent objection to any propensity interpretation is that it is 
uninfonnative to be told that probabilities are 'propensities.' For example, what exactly is the 
property in virtue of which this coin has a 'propensity' of 112 of landing heads (when suitably 
tossed)? Indeed, some authors regard it as mysterious whether propensities even obey the axioms 
of probability in the first place. (See [Hajek 20OJa].) 

4.5 Suljectivist Interyretations 

Subjectivist interpretations-sometimes called 'Bayesian'-pioneered by Ramsey ([1926]) and 
de Finetti ([1937]), see probabilities as degrees of belief, or credences of appropriate agents. These 
agents cannot be actual people since, as psychologists have repeatedly shown, people typically 
violate probability theory in various ways, often spectacularly so. Instead, we imagine the agents 

to be ideally rational. 
But what are credences? De Finetti identifies an agent's subjective probabilities with his or 

her betting behavior. For example, 

your probability for the coin landing heads is ! 
ifand only if 

you are prepared to buy or sell for 50 cents a ticket that pays $1 if the coin lands heads, 
nothing otherwise. 

All of your other degrees of belief are analyzed similarly. 
The analysis has met with many objections. Taken literally, it assumes that opinions would 

not exist without money, and moreover that you must value money linearly; but if it is just a 
metaphor, then we are owed an account of the literal truth. Even if we allow other prizes that 
you value linearly, problems remain. For your behavior in general, and your betting behavior in 
particular, is the result of your beliefs and desires working in tandem; any such proposal fails to 
resolve these respective components. Even an ideally rational agent may wish to misrepresent 
her true opinion; or she may particularly enjoy or abhor gambling; or, like a Zen master, she 
may lack a desire for worldly goods altogether. In each case, her betting behavior is a highly 
misleading guide to her true probabilities. 

A more sophisticated approach, championed by Ramsey, seeks to fix an agent's utilities and 
probabilities simultaneously by appeal to her preferences. Suppose that you have a preference 
ranking over various possible states of affairs and gambles among them, meeting certain con
ditions required by rationality (for example, if you prefer A to B, and B to C, then you prefer 
A to C). Then we can prove a 'representation' theorem: these preferences can be represented as 
resulting from an underlying probability distribution and utility function. This approach avoids 
some of the objections to the betting interpretation, but not all of them. Ramsey's method essen
tially appeals to preferences over gambles, raising again the concern that the wrong quantities are 
being measured. And notice that the representation theorem does not show that rational agents' 
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opinions must be represented as probabilities; it merely shows that they can be, leaving open that 
they can also be represented in other, radically different ways. 

Radical subjectivists such as de Finetti recognize no constraints on initial, or 'prior,' subjec
tive probabilities beyond their conformity to Kolmogorov's axioms. But they typically advocate 
a learning rule for updating probabilities in the light of new evidence. Suppose that you initially 
have a probability function Pinitial, and that you become certain of E (and of nothing more). What 
should be your new probability function Pnew? The favoured updating rule among Bayesians is 
conditionalization; Pnew is related to Pinilial as follows: 

(2) Pnew (X) = Pinitial (X I E) (provided Pinilial(E) > 0). 

Radical subjectivism has been charged with being too permissive. It apparently licenses credences 
that we would ordinarily regard as crazy. For example, you can assign, without its censure, initial 
probability 0.999 to your navel ruling the universe-provided that you remain coherent (and 
update by (2». Radical subjectivism also seems to allow inferences that are normally considered 
fallacious, such as 'the gambler's fallacy' (believing, for instance, that after a surprisingly long 
run of heads, a fair coin is more likely to land tails). Rationality, the objection goes, is not so 

ecumenical. 
A standard defense (e.g., [Savage 1954], [HowsonlUrbach 1993]) appeals to famous 

'convergence-to-truth', and 'merger-of-opinion' results. Roughly, they say that in the long run, 
the effect of choosing one prior probability function rather than another is washed out: successive 
conditionalizations on the evidence will, with probability one, make a given agent eventually 
converge to the truth, and thus initially discrepant agents eventually come to agreement. Unfor
tunately, these theorems tell us nothing about how quickly the convergence occurs. In particular, 
they do not explain the unanimity that we in fact often reach, and often rather rapidly. We will 
apparently reach the truth 'in the long run;' but as Keynes quipped, "in the long run, we shall all 
be dead." 

5 Concfusion 

In this limited space I have tried to convey how tendentious the mathematical and philosophical 
foundations of probability remain, despite some 350 years of research in the area. The interested 
reader will find more discussion of some of the liveliest current debates, trends, and prospects 
for the future in [Hajek/Hall 2002] and [Fitelson et al. 2005]. 

Feller ([1957], p. 19) writes: "All possible definitions of probability fall short of the actual 
practice." Certainly, a lot is asked of the concept of probability. In a suitably self-referential 
post-modern moment, I will complete this survey with some of my own bets on the uncertain 
future ofthe field. 

I wager that we will continue to appeal to some quasi-logical notion of probability-for the 
evidential relations between various sentences or propositions are hardly exhausted by 'entail
ment' and 'refutation,' the stock-in-trade of deductive logic. Confirmation theory, pioneered by 
Hempel ([1945]) and Carnap ([1950]), is making a big comeback in philosophy. Arguably, the 
leading approach is probabilistic-sometimes called Bayesian confirmation theory. Its central 
idea is simple: confirmation relations are identified with dependence relations. Thus, we may say 

that, relative to probability function P: 

• E confirms H iff P(H I E) > P(H). 
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Note that this notion of confirmation is incremental in the sense that E increases the amount 
of evidence for H, without necessarily leaving H highly supported. Thus, a coin's landing heads 
on the first toss confirms its landing heads 100 times in a row. Similarly, 

• E disconfirms H iff P(H I E) < P(H) . 
• E is evidentially irrelevant to H iff P(H I E) = P(H). 

See [Hajek/Joyce forthcoming] for a survey of confirmation theory. 
I see a healthy future for objective probability, or chance, underpinning the indeterministic 

aspects of the mind-independent world, such as we apparently find in radioactive decay. I find 
especially promising approaches that ground chance in physical symmetries-see e.g. [Strevens 
1998]. Think of how fundamental symmetries are to probabilistic reasoning. These approaches 
seem to capture what's right about the principle of indifference, without inheriting what's wrong 
about frequentism. 

And we will need the notion of degrees of belief or credences as long as there is uncertainty
which is to say, as long as there is human thought. But radical subjectivism is, to my mind, 
too radical-remember the navel ruling the universe! It needs to be constrained by something 
objective. For example, Lewis's ([1980]) Principal Principle says roughly that rational credences 
strive to align with chances, so that if a rational agent knows the chance of a given outcome, 
her degree of belief will agree with it. More generally, where' P' is the subjective probability 
function of a rational agent, and 'ch' is the chance function, 

peA I ch(A) = x) = x, for all A and for all x such that P(ch(A) = x) > 0.' 

For example, my degree of belief that this coin toss lands heads, given that its chance oflanding 
heads is 1/4, is 114. 

Perhaps one would do better to think of these quasi-logical, objective, and subjective notions 
as distinct concepts of probability, admittedly with some important interrelations-we have al
ready seen one such interrelation in the Principal Principle (and see [Hajek 2003a] for more). Each 
of the leading interpretations, then, attempts to illuminate one of these concepts, while leaving 
the others in the dark. In that sense, the interpretations might be regarded as complementary, 
although to be sure each will need some further refinement. 

Clearly, much work remains to be done on the foundations of probability. Equally clearly, 
we have come a long way since the Port-Royal Logic and Bishop Butler. 

6 Personae and Pedagogica{ Eyi{ogue 

I began with some brief personal and pedagogical reflections, and so will I end. You have just 
taken a crash course in the philosophical foundations of probability, a high-speed version of a 
course that filled 10 weeks at Cal tech when I used to teach there. My students were typically 
budding scientists and engineers, and I tried to bring the material to life for them by emphasizing 
how ubiquitous probability is, and how often high-stakes decisions are made on the basis of 
probability judgments. I used to begin with this example: 

I There are subtleties that I cannot go into here, including the notion of admissibility, the relativity of chances to times, 
and Lewis' revised version of the Principle. 
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On January 28, 1986 at II :38 A.M., the space shuttle Challenger was launched in Florida. 
Seventy-three seconds later it exploded, setting back the American manned space program by 
years. Managers made the decision to launch, against the advice of engineers, on the basis of 
a superficial and flawed analysis of the probability that the two solid rocket motors would fail 
at low temperatures, leading to a serious underestimate of that probability ([Dalal et al. 1989]). 
Lacking a clear conception of probability-and with it, a well understood, universally accepted 
methodology for determining probabilities-otherwise careful engineers and managers resorted 
to ad hoc calculations and dubious rules of thumb that resulted in tragedy. In particular, I believe 
that none of the parties concerned truly understood the notion of the single-case probability of 
disaster that was appropriate for Challenger. And yet its launch that day, in exactly the conditions 
that prevailed, was by its very nature unrepeatable. 

Nor have the scientists (even at Caltech!) succeeded in understanding probability. I used to 
set my students the following question on the final exam for my course: 

In Feynman's Lectures on Physics, Volume I, we find the following "definition" of 
probability: 

By the "probability" of a particular outcome of an observation we mean our 
estimate for the most likely fraction of a number of repeated observations that 
will yield that particular outcome. 

There are many problems with this definition. Briefly indicate several of them. 

Now that you, dear reader, have seen some of the problems with frequentism, you should be able 
to make a good start on this question. Here are some further hints: 

• the definition is circular; 
• it is easy to come up with cases in which there is more than one "most likely fraction;" 
• irrational probabilities, such as 1/.J2 are excluded-yet our best physical theory, quantum 

mechanics, freely assigns such probabilities! 

Finally, to bring home the subjective interpretation of probability in a way that I hope the 
students will never forget, I used to give them a multiple-choice test with a twist. Rather than 
choosing a correct answer, they had to assign credences to each possible answer. 2 The test began 
with the following explanation: 

Each of the following questions has exactly one correct answer among the choices a--d. 
I would like you to assign SUbjective probabilities to each of the choices, representing in 
each case your own probability that that choice is correct. For example, suppose you are 
nearly certain that b. is the correct answer to a given question, and the other choices look 
about equally implausible to you. Then you might represent your opinion as follows: 

a. 0.01 
b. 0.97 
c. 0.01 
d. 0.01 

2 David Dowe of Monash University devised a similar 'probabilistic football betting' system, and I am grateful to him 
for suggesting the scoring rule. 
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For each question, you will receive a score determined by the probability you gave 
to the correct answer. Let that probability be p. Your score for that question will be: 

I 
Score = I + 2 logz p 

Thus, if you give probability I to the correct answer to a question, and 0 to the rest, 
you get a perfect score of I for that question; if you give 0 to the correct answer, you get 
a score of -00 for that question. (Totals less than 0 will be rounded up to 0.) Make sure 
your probabilities for a given question are nonnegative, and add up to l--otherwise you 
get 0 for that question automatically! 
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You, dear reader, might like to try your hand at the first question on my test, reprinted below. 
Good luck! 

QI. Let n be a non-empty set. Which of the following provides a correct characterization of 
a set F of subsets of n being a sigma algebra on n? 

a. n E F; if A E F, then ~A E F; and if AI, A2 , ... is a sequence of pairwise disjoint sets, 
each one E F, then their countable union UAn E F. 

b. F is non-empty, closed under complementation (with respect to n) and under countable 
intersection. 

c. 0 E F; F is closed under complementation (with respect to n) and under finite union. 
d. F is the power set of n. 

Postscript: almost every year at least one student would get a score of -00. 
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G{ossaryl!f Common Phi{ostphica{Terms 

If you start reading books, or articles in journals, written by philosophers of mathematics, you 
will find many of the terms listed below thrown about with abandon. In this volume, we usually 
asked authors either to replace them by what they mean, or at least to decrease dramatically the 
density of these terms in a given paragraph. But you will be expected to be very familiar with 
these words if you start reading articles written by philosophers for other philosophers. Thus, the 
glossary is provided here only partly to help with the chapters in this volume; it is also here to 
help those who would like to read further. 

In addition to the words discussed here, quite a few standard philosophical terms are defined 
in the chapters by Balaguer, Chihara, and Shapiro. 

Warning: this is a rough-and-dirty glossary. For formal definitions, see any introduction to 
philosophy (or Wikipedia, or the Stanford Encyclopedia of Philosophy (plato.stanford.edu/». 

Abstract objects are the opposite of concrete objects, which are the objects of everyday life 
(tables, books, etc.). Abstract objects are usually taken to be "causally inert" (see that 
entry), and do not exist in space-time. Mathematical objects are often taken to be the 
quintessential examples of abstract objects. 

AcausaI is another word for "Causally inert;" see that entry. 
Causally inert/causally isolated/ (and their opposite, causally efficacious): an object is 

causally inert if it does not interact with anything in the world in a cause-and-effect way. 
That is, nothing in the world changes that object, and the object cannot cause any change 
in some real-world object. Mathematical objects are usually taken to be causally inert 
(even though, for example, graphical properties of the bridges of Konigsberg appear to 
cause us not to be able to complete an Euler tour of them). 

Desideratum: something that is desired, something you want to be true, or that you want to 
find. 

Empirical: subject to experimental or observational verification; using the methods of the 
sciences. 

Entails: what mathematicians usually call "implies." If A entails B, B follows from A. 
Entailments of a theory are propositions that are implied by that theory. 

Epistemology (epistemological, epistemic): epistemology is the study of the basis for 
assertions that we know something: how we acquire knowledge, what must we do to 
be able to say we know something. An epistemological investigation is an investigation 
into how we can justifiably say we know something, and an epistemic support would be 
a support of a claim to knowledge. 

Existential import: a statement has existential import if it implies that something exists; see 
"ontological commitment." 
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Fa: this is how philosophers apparently designate that a is an F, or that property F is true 
of a, or that a has property F. In particular, usually F is an elementary predicate not 
further logically analyzable. 

Instantiated: a concept is instantiated if some object (usually concrete) is an example, or 
instance, of it. 

Metaphysical/metaphysics: metaphysics is study of the nature of objects, of the basic 
structure of reality. It includes ontology and epistemology. 

Modal (logic, notions, statements): modal statements are statements that concern what is 
necessary or possible. For example, "it is necessary that 17 is a prime number, but it is 
not necessary that there are 9 planets around our sun-in fact, they recently decided that 
there are just 8. Yet it is possible that another will one day be discovered and we will 
have 9 again." One way to interpret statements such as "it is necessary that 17 is a prime 
number" is to say that "in all possible worlds, 17 is a prime number." See Shapiro's and 
Chihara's chapters. 

Mereology/mereological sum: mereology is the study of the relationship between parts of 
a whole, each other, and the whole. The mereological sum of two objects is the whole 
that consists of just those two objects. 

Nominalism is the view that there are no abstract objects; in particular, there are no mathemat
ical objects. See, particularly, Balaguer's chapter, where he describes various versions 
of nominalism, and Chihara's chapter (as he is a nominalist). 

Obtain: "there does obtain the following facts ... " is philosophical jargon for "the following 
are facts ... " 

Occam's razor, due to William ofOckham in the 14th century, is that one should not multiply 
entities unnecessarily. It is also called the principle of parsimony. If your house burns 
down, you could explain it by saying that a fire genie got hold of your house and set it 
afire, or you could observe that you let a burning match drop on your carpet and did not 
notice it until it was too late. The former is multiplying entities (in this case, a fire genie) 
unnecessarily. (Occam presumably used his razor to slash away the vast undergrowth of 
unnecessary entities.) In Latin, it is "entia non sun! multiplicanda praeter necessitatem": 
literal translation, "entities should not be multiplied beyond necessity." 

Ontology (ontological, ontological commitment): ontology is the study of what things 
exist, what things there are. If a theory has an ontological commitment to a certain 
object, that theory implies/assumes that the particular object exist. (This is also called 
"existential import.") 

Physicalism is the thesis that everything is physical. Physicalists do not deny that the 
world might contain many items that at first glance do not seem physical-items of a 
psychological, moral, or social nature. But they insist that, when more carefully analyzed, 
it will be clear that such items are wholly physical. As a philosophy of mathematics, it 
is usually a variety of nominalism. However, there was an attempt by Penelope Maddy 
to find mathematical objects in the physical world (a set of 12 elements in a carton of 
eggs, etc.), and she is one of the main proponents of physicalism in mathematics. 

Platitudes (platitudinous): obviously or trivially true facts. 
Platonism (mathematical platonism): the term originates from several of Plato's dialogues, 

in which a realm of Forms is described (examples being Beauty, Justice, and Goodness), 
which are eternal, unchanging, and acausal (causally inert). Mathematical objects were 
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also viewed as Fonns. Mathematical platonism is the belief that (1) there are math
ematical objects; (2) these objects are non-physical, non-mental, abstract objects that 
have always existed and are independent of people; and (3) properties and theorems 
about mathematical objects are true independently of whether people are aware ofthem. 
Thus, mathematical facts and objects are discovered, rather than invented. See the chap
ters by Balaguer, Chihara, and Shapiro in this volume for substantial discussions of 
mathematical platonism. Another tenn for platonism is "realism." 

Posit: to posit an object is to affinn its existence, generally in order to discuss issues relevant 
to it. 

Prima facie: apparent, self-evident; "it would seem obvious that." 
Realism is another word used to describe views sometimes called "Platonism." Using this 

tenn allows one to separate different parts of platonism, as Shapiro does in his chap
ter (realism in ontology, realism in epistemology) and investigate variations on the 
traditional platonic view. 

Reference (the problem of reference): how can we pick out and refer to specific mathemat
ical objects if they are not part of our physical world, and we can not see, hear, touch, or 
otherwise interact with, them? (See Chihara's chapter for a discussion of this problem.) 

Reify: to make real, or treat as if it were a real object. On some views, going from "there are 
two objects on the table" to talking about the number two is reifying the number two. 

Semantic(s): this word is used differently by philosophers than its most common use in 
English. When most people say, "the difference is semantic," the word "just" is under
stood prior to "semantic," and it means that it is just a difference of how we say it, not 
a real difference. However, in philosophy, the "semantic problem," how we know what 
someone means, is a substantial one. A semantic theory is a (presumably) empirical 
theory about what certain expressions mean (or refer to) in ordinary discourse. 

Social constructivism is the view that mathematical objects and mathematical truths are 
products of social mathematical activity, rather than existing outside of space and time. 

Spatiotemporal: involved in space and/or time. Platonism (see that entry) includes a belief 
that mathematical objects are not spatiotemporal. 

Token: a concrete object that stands in for, or represents, something else. For example, a 
"sentence token" is what non-philosophers would call a sentence. When you see on this 
page just now "There are only three moons of Jupiter," this is a sentence token standing 
for the (false) sentence that says that there are only three moons of Jupiter. Similarly, 
the 3 here is a token for the number three. Gertrude Stein's "Rose is a rose is a rose is 
a rose" has ten word-tokens (four tokens for "rose," and three each for "is" and "a"), 
though just three word-types ("rose," "is," and "a"). 

True-in-the-story-of versus true simpliciter: "Sherlock Holmes, the detective, smokes a 
pipe" is true in the detective stories of Conan Doyle, but is not true simpliciter because 
there is no person with that name and thus he cannot smoke a pipe. "True in a model" 
is a mathematical version of "true-in-the-story-of." 
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