
Quick and Easy Math 



To copyreaders everywhere 

who deserve so much credit 

and get so little 

FOURTH PRINTING C 

COPYRIGHT ® 1964 BY ISAAC ASIMOV 

ALL RIGHTS RESERVED INCLUDING THE RIGHT TO REPRODUCE 

'lIDS BOOK: OR PARTS THEREOF IN ANY FORM 

LIBllAl\Y OF CONGRESS CATALOG CARD NUMBER: 64-12276 

PRINTED IN THE U. S. A. 

� 

1 

2 

l 

I 
CONTENTS 

Why Shortcuts? 1 

Addition 7 

Naming the Parts of Addition 7 

Carrying 10 
Adding Left to Right 14 
Round Numbers 22 
Checking Addition 26 

Subtraction 35 

Addition in Reverse 35 
Checking Subtraction 41 

Multiplication 45 

The Multiplication Table 45 
Beyond the Multiplication Table 50 
Making the Multiplier a Sum 55 
Doubling 62 

Checking Multiplication 67 

Division 71 

The Perils of Division 71 

Divisibility by 2, 5, and 10 75 

Divisibility by 4 and 8 78 

Divisibility by 3, 6, and 9 84 
Other Divisibilities 88 

The Division Table 94 

Rewriting Divisions 98 
Long Division 102 
Checking Division 109 



6 Decimals 

Zeros in Reserve 
Freeing the Decimal Point 
Manipulating Decimals 
Simplif1ing by Decimal 
Dollars and Cents 
Percentage 
Checking the Decimal Point 
The Uses of Approximation 

7 Fractions 

Manipulating Fractions 
Fractions and Decimals 
Multiplication of Fractions 
Fractions and Percentage 
Changing Fractions into Whole Numbers 

Index 

112 

112 

118 

122 

132 

139 

142 

147 

153 

159 

159 

163 

168 

174 

177 

181 

; ' ., 

Author's Note 

THIS BOOK describes methods for solving arithmetical prob

lems by "quick and easy" routes. These are not intended 

to replace the more systematic methods familiar to every

one but to supplement them. 

It is customary in books such as this to include many 

exercises to develop the reader's confidence and skill in 

handling these easy but possibly new techniques. However, 

such exercises would clutter the book and reduce the room 

available for explaining the principles behind the methods; 

and it is crucial, in my opinion, to explain these principles 

thoroughly. 

I think it is fair to assume that anyone interested enough 

in the subject to read this book will have the wit and en

ergy to make exercises of his own. Better yet, I hope he 

will take the trouble to exercise the methods described in 
this book on all arithmetical problems that come his way 

in day-to-day life. 
At first this may actually slow him. Through sheer lack 

. .. pf practice these short cuts may take more time than would 

.the "tried-and-true" methods. Let him bear up, though . 
... jWith a little patience, he will find himself racing through 

. :to correct results in practically no time and with practically 
'no pain. 

ISAAC ASIMOV 
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Why Shortcuts? 

I SUPPOSE we have all heard of "mental marvels" who 
could add long columns of figures in a flash and do com
plicated calculations in their head. Perhaps we've even 
wished we could do so in order to astonish our friends. 
and have thought �at if we only took a little time and 
effort. we could learn how. Actually, it doesn't take a 
'genius or a good mathematician to do such calculations. 
To . be sure. some great mathematicians and some ex
tremely intelligent men have indeed been able to per
-form mental calculations in quick time. but o�ers have 
not been able to do so. Albert Einstein always claimed 
he was poor at calculations and that he had trouble 
making out his income tax. 

Then. too. there have been many cases of people 
�without any education. and without much real intelli
gence. who were able to perform all sorts of mallie
:matical tricks. Some were illiterate and could make 
nothing of themselves in their lives except for earning 
money by putting on exhibitions of calculation. 

But if it doesn>t take education or intelligence to be 
,· a lightning calculator, what does it take? Is it a matter 

of learning a few easy tricks with figures? 
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Apparently not. Lightning calculators seem to have 
unusually good memories for figures. If they multiply 

two large numbers, they seem to be able to "write 

down" the different steps in their minds as you would 

on paper. They seem to remember what they "write 

down" even, in some cases, if they have to stop the cal

culations for a considerable period of time. They can 
always go back to it afterward and continue, as you 

would if you wrote it on paper. 

Yet memories can be trained. If you are not born 

with a miraculous one, you can still exercise what you 

do have and make it better. And then there are surely 
tricks and shortcuts in calculation. If you can learn 
those, too, would you not be set? Perhaps so, if you did 

two things. First, you must memorize all the short-cut 

rules for calculation. This is not hard if you're really 

serious about it and apply yourself, but in itself it is not 

enough. 

A magician can show you how to manipulate cards so 

as to make whole decks seem to appear in your hand 

out of nowhere, but you will have to practise constantly; 
first to make your fingers nimble enough for the task 

and then to keep them so. You can learn how to read 

music in a day and discover just exactly which piano 

key to hit for every note shown; but to become a good 

pianist you must practise every day for years. 
And that is the second step, then, after you have 

learned the rules: you must practise constantly. Even 

those few who are born "mental marvels" improve as 

I , 
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they grow older and practise the art. Some of them 
keep at it, practising every day. If they were to stop, 
their ability would begin to fade off. 

Yet, even though you may memorize the rules and 

practise daily, the chances are that you will not become 

a lightning calculator. Mter all, many people study 
piano and practise every day, but very few go on to 

become great concert pianists. 

Well, then, if all that is so, why am I bothering to 
write a book on QUick and Easy Math - a book that is 
to be full of methods for making calculations simpler 

and more rapid? The answer is that we are faced every 
day with small calculations that often take up unneces
sary time. You may have to be a mental marvel to look 

at a long chain of large numbers and add them in a 

flash, but you don't have to be one to look at 69 + 36 
and see in: a flash that the answer is 105. Or you can be 

presented with the problem of multiplying 64 and 25 

and say � at once, without putting pencil to paper. 

Or you can find that C210 of $15 is 9Q¢ without pain or 
trouble. • T -

It's the little things that count. You may not be able 

to put on exhibitions with the ability to multiply 64 and 
25; you may not even be able to astonish your friends 

more than once or twice. However, you can make life 
easier for yourself and save yourself time and errors. 

You may feel, though, that you know how to add 
69 + 36 and get 105 as an answer. You were taught 

how� long ago, in school. Was the "school method" 
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wrong? If better and quicker methods exist, why 

weren't they taught in school? 

School methods, of course, are not wrong; but usually 

they are longer than they have to be. For this there are 

two reasons. In the first place, school methods are in

tended mainly for written calculations, and the rules 

taught in school have you write down practically every 

step of the calculation. This is important for youngsters 

in the early grades who are just learning to handle 

numbers. Short-cut methods, on the other hand, de

pend often on the ability to manipulate numbers quickly 

in the head without writing them down. Most people 

can't do that easily until they have learned enough 

about number manipulation according to the long

drawn-out written methods. 

By that time, the school methods have come to seem 

natural. In the early grades, children are drilled con

stantly in simple calculations by the school methods, 

over and over. �ater on, when short-cut methods are 

introduced they may prefer the old, comfortable ways, 

even ,though the shortcut is really easier. 

In the second place, if school methods are slow, they 

are also safe. They always work. H you follow the 

rules taught you in school for multiplication, you can 

multiply any two numbers that exist. It may take time, 

it may be very tedious, but you will get your answer. 

All you have to learn is the multiplication table and a 

certain set method of "carrying" and "indenting." 

Short-cut methods, on the contrary, usually apply 

I 
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only to certain types of calculation. One short-cut 

method can be applied to multiplications by B or 16, 

but not to multiplications by 7 or 15. There is a good 

method for dividing by 25 quickly, but not for dividing 
by 23 quickly. You therefore have to pick and choose 

shortcuts, and this places a great deal of responsibility 

on you. It takes more thought but you are repaid 

eventually by speed, if only you are patient at first. 

I will suppose, then, that you are already familiar 

with the school methods of addition, subtraction, mul

tiplication, and division and are willing to spend a 
little time trying to learn some special methods that 

will make calculation even easier. 
For my part, I will try to make the book more than 

merely a list of rules. The rules exist, of course, but 
they are based on the manner in which numbers be
have; that is, on the principles of arithmetic. It is more 
important to understand the prinCiples than simply to 
memorize rules. Things that are memorized without 
real understanding are easily forgotten, and once for
gotten can't be reconstructed. If, on the other hand, 
the rules you memorize arise out of the principles of 
arithmetic, then those rules seem natural and are easy 
to remember. Even if you forget them, you can recon
struct them from your knowledge of the prinCiples. 

You've got to remember the principles, but the prin

ciples make sense and are therefore easy to remember. 

Furthermore, the principles that have to. be kept in 

mind are few in number, and out of them a large num-
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ber of ru les c an be c on struc ted. 
Occ asi onally I wil l  il lustr at e  th e pri nci ples by maki ng 

use of a lgebraic symbols, si mply bec ause th at i s  th e 

short est way of r epresenti ng th em. However, you may 

ski p th e  al gebra if you c hoose. It helps, but it i s  nol ( 
essenti al. 

L et us st art, then, as one al ways does, wi th t he si m-

plest of the a rit hmetic al operati ons - additi on. 

2 

Addition 

NAMING THE PARTS OF ADDITION 

AnDmoN i s  t he first arit hmetic al operati on learned in 
sc hool, and th e youngst er begi ns by bei ng dri lled i n  the 
additi on of di git s until he has c omplet ely memori zed 
the result s of suc h additi on. (A di git i s  a number made 
up of a si ngle symbol. We use t en of them: 0,1 , 2, 3 , 4, 
5, 6 , 7, 8, and 9.) 

As a result we al l know t hat 6 + 1 == 7 and 8 + 4 == 

1 2. Indeed, we c an t el l  at a glanc e t he answers t o  all 
t he hundred one- di git 

. 
additi ons from 0 + 0 t o  9 + 9. 

W e  have i n  eff ect memori zed t he « additi on t able." This 
i s  done so early i n  li fe t hat hardly any of us are even 
awa re t hat t here i s  suc h a t hin g  as an addi ti on t able. 

Onc e t he addi ti on t able· i s  m emori zed we a re able t o  
a dd an y  li st of numb ers, no matt er how many th er e are 
a nd no matt er how many di git s  each possesses. Sup
pose, for i nst anc e, we want ed t o  add 

62 
+36 

It is onl y n ec essa ry t o  add up t he t wo vertical c ombin a-
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tions, so that 2 + 6 = 8 and 6 + 3 = 9. The problem 
therefore works out as .follows: 

62 
+36 

98 

In exactly the same way, we can work out the follow
ing: 

623 ,107 
+134,891 

757, 998 

If we want to add three numbers, as in 12 + 3 2  + 54, 
and make use only of the addition table, we can add 
them one addition at a time. Thus, 12 + 3 2  = 44 and 
44 + 54 = 98. 

This far, all seems so simple that there is no room 
for any method of making matters "quick and easy." 
Addition is quick and easy to begin with. However, we 
are about to come to a few difficulties, and before doing 
so, let's learn some names to use for the numbers and 
parts of numbers being added. The names are not com
monly used in everyday life, but they are handy just the 
same. They give me a way of referring to a particular 
number or part of a number without having to say "the 
first number I mentioned" or "the column two from the 
right." 

In the problem 

Addition 

62 
+3 6 

98 

9 

the number 62 is the "augend" (aw'jend) from a Latin 
word meaning "to increase." The augend, in other 
words, is the number to be increased through addition. 
The number 36 is the "addend"; that is, the number

' 
"to 

be added." (If more than two numbers are involved in 
addition, all but the first are called addends.) The solu
tion to the addition, 98 in this case, is the "sum." This 
is from a Latin word meaning "highest" for, of course, 
the sum is the highest number involved in an ordinary 
addition. 

In addition it doesn't matter how you arrange the 
numbers to be added. The sum remains the same. 
Thus, 62 + 3 6  = 98, and 3 6  + 62 = 98 also. (In al
gebraic symbols, we would say that a + b = b + a. ) 
This means that the 62 can be either augend or addend, 

'and the same is true for 36. For this reason, it often 
-happens that all the numbers being summed are lumped 
;together as addends. I, however, shall continue to call 

i the first number the augend so that I can refer to it 
easily. 

Not only do different numbers in an addition have 
their own particular names, but different parts of a 
number have their own names, too. Consider once 
again 
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6 23,1 07 
+1 3 4,891 

757, 998 

Quick and Easy Math 

Suppose that you think of the three numbers making up 
this problem as consisting of vertical columns of digits. 
The column at the extreme right (7, 1, 8) is the "units 
column" and the oIie to its left (0, 9, 9) is the "tens 
column." Proceeding steadily leftward, we have the 
"hundreds column," the "thousands column," and the 
"ten thousands column." The one at the extreme left 
in this case is the ''hundred thousands column." If we 
had even larger numbers to deal with, we would have a 
"millions column," a "ten millions column," and so on. 

Now we are ready to consider the point at which 
certain difficulties arise in addition. 

CARRYING 
, 

Suppose that instead of adding '6 2  and 3 6, we wished 
to add 68 and 76. If we do exactly as we did before, we 
find that 8 + 6 = 1 4  and 6 + 7 = 1 3. The sum in each 
case is a two-digit number. We place the right-hand 
digit under the digits being added and allow the" left
hand digit to push over into the column to the left. 

68 
+ 76 

1 4  
1 3  

144 

;-, .,'!: 

Addition 11 
The 1 4  and the 1 3  are the "partial sums" and, when 
properly arranged, can be added to give the final sum 
of 1 44. 

This may puzzle you, because you may think that 
this is not the way you have been taught to add 68 and 
76. However, it isl You are taught early in grade 
school not to write out the 14. You are told to "put 
down 4 and carry 1." Then you add 6 and 7 and the 1 
you have carried, so that 6 + 7 + 1 = 1 4: 

68 
+ 76 

1 

1 44 

This is exactly what I've done before, except that the 
1 of the 1 4  is placed ( as a small number ) in the tens 
column instead of among the partial sums. A more 
complicated example of an addition, first with all the 
partial sums written out and then with the use of carry
ing is this: 

5,6 72 
5, 672 + 4, 981 

+ 4, 981 + 2,1 69 
+ 2,16 9 121 

1 2  1 2, 822 
21 

16 
11 

1 2
,

822 
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It is the carrying of numbers that confuses people. 
They try to keep it in their head and at the crucial 
moment forget; or else remember that something must 
be carried but forget whether it is 1 or 2; or else they 
write down little numbers (as I have done above) 
which are sometimes hard to read and one number is 
confused with another. Naturally, the more compli
cated the addition the more likely it is that such diffi

culties may arise. 
Is there any way, then, in which we can eliminate 

carrying? Even if we could eliminate it only some of 
the time, we would end with a great saving in time and 
tension. 

Well, let's think about carrying in general. The larger 
a digit, the more likely it is to involve carrying. The 
digit 9, when added to any digit but 0, will make carry
ing necessary. On the other hand, a small digit is easy 
to handle and 0 is the easiest of all. No matter what 
digit you add to a 0, even a 9, no carrying is involved. 

The first rule in making math quick and easy is to 

change something difficult into something easy, when
ever that is possible. Therefore, is there any way of 
changing a large digit into a small one? In particular, 
in adding 68 and 76, it is the 8 which gives the trouble. 
Is there any way of changing it to a small digit; best of 
all, to a O? 

The easiest way to do that is to add 2 to 68, and make 
it 70. But if you change 68 to 70, aren't you altering 
the problem? You want to add 68 and 76, not 70 and 
76. Perfectly correct, but perhaps you can dQ some-

Addition 13 

thing to the 76 to balance what you have done to the 
68. You have added 2 to 68, therefore subtract 2 from 

76. Having done these 'things, you will not have altered 
the sum. 

You can see this if you make use of some very simple 
algebra. The sum of a and b is a + b. Suppose you add 

any number (n) to a and subtract that same number 
from b. The number a becomes a + n while b becomes 
b - n. Add the two numbers together thus: a + n + 

b - n and the answer is still a + b as before. If you 
subtract n from a and add it to b, the sum is a - n + 

b + n, and that too works out to a + b. 
In short, you can add a particular number to the 

'augend and subtract it from the addend without alter
ing the sum; or you can subtract a particular number 
from the augend and add it to the addend without 
altering the sum. 

In any addition, what we are really interested in is 
the sum, and prOvided that sum is unchanged we can 

· do anything we want to the augend and addend. Why 
not, then, pick out something to do to them which will 

· eliminate carrying and will simplify the addition? 
Instead of adding 68 and 76, we can add 70 and 74 

...u.u.UJ'� 2 to the augend and subtracting 2 from the 
·.-addend) so that the answer, 144, is clear in a Hash, with
. Out carrying. We might also have subtracted 4 from the 
auli!:en:d and added 4 to the addend, so as to change 6 to 

: aO. Instead of adding 68 and 76, we would he adding , 
and 80, and the answer, 144, would still be clear in 

· a flash. 
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In this first example of quick and easy math, let me 
make two points. First, you may wonder which change 
you ought to make. Ought you to change 68 + 76 to 
70 + 74 or to 64 + 80? The proper answer is that there 
is no "ought" about it. Do as you please. Both changes 
are based on the same arithmetical principle and both 
give you the same correct answer. You need only 
choose the change you prefer. I myself would change 
68 + 76 to 70 + 74 because to add and subtract 2 seems 
easier to me than to add and subtract 4. However, your 
mind need not necessarily work the way mine does, and 
you may like to add and subtract 4. In which case, go 
ahead. 

Second, it takes me a long time to explain a rule for 
making an operation quick and easy. This does not 

mean that the rule is long and complicated. It just 
means that I am concerned with making the rule as 
clear as possible and making sure you see the arith
metical principles on which it is based. Once the rule 
is clear, you will find it easy to apply - and much, 
much quicker to use than to explain. 

ADDING LEFT TO RIGHT 

You may think, Yes, but these are very small addi
tions. What if I have a string of numbers to add? 

In the first place, remember that most of the time 
you will be faced with the addition of two numbers. If 
you learn to avoid carrying in such simple cases, you 
will avoid perhaps nine tenths of all the errors made in 
addition. 

Addition 15 

Next, even when you add more than two numbers, 
you may well be adding them two at a time. Suppose 
you are asked to add 55, 76, and 39, for instance. You 
can do it the long way and say, "First, 5 and 6 is 11 and 
9 is 20. Put down 0 and carry 2. Then, 5 and 7 is 12 
and 3 is 15 and how much did I carry? Oh, yes, 2. That 
means 15 and 2 is 17 and the answer is 170." 

Instead, you might also do it this way: 55 + 76 + 39, 
begins with 55 + 76, which is the same as 60 + 71 = 
131. Then, 131 + 39 is the same as 130 + 40 = 170. 

Here is something else. If you should happen to be 
faced with a long string of figures, are you sure you 
need the exact answer? We sometimes imagine we 
must solve all problems exactly, to the last tiny figure. 
In everyday life, however, we sometimes don't have to 
be exact. Suppose the following string of numbers 
represents the prices (in dollars) of various articles that 
must be bought: 

13,667 
5,687 

2 1,112 
10,377 
9,898 
5,100 

11,132 
331 

34: 
2 6  

24 
5 

16,973 
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Notice that I have written down all the partial sums. 
If we did it by the usual method of carrying, we would 
start with the units column at the extreme right. That 
would add up to 33, so we would "put down 3 and carry 
3"; the 3 being carried to the tens column. ,The tens 
column would add up to 37 (counting the 3 we had 
carried), so we would put down 7 and carry 3 into the 
hundreds column, and so on. 

When we add a string of numbers, with carrying, we 
come to think that there is some sort of rigid law mak
ing it absolutely necessary for us to start with the 
units column and work toward the left, column by 
column. If, however, we don't carry, but write out all 
the partial sums, we find that it doesn't matter which 
column we add first. The string of numbers I gave 
you could be added in either of the follOwing ways or 
any of a hundred seventeen others: 

13,667 13,667: 
5,687 5,687 

21,112 21,112 
10,377 10,377 
9,898 9,898 
5,100 5,100 

11,132 11,132 

2 6  34 
33 2 6  

24 5 
5 33" 

34 

76,973 

24 
76,973 

-

Addition 17 

In the example on the left, I added up the hundreds 
column first, then the units, and so on. In the example 
on the right, I added up the tens column first, then the 
hundreds, and so forth. It doesn't matter in what order 
we add the columns; the answer comes out the same. 

Why, then, are we taught to start from the units 
column and work to the left? That is because we are 
also taught to carry, and because if we carry we can 
only be sure of the numbers we actually write down (if 
we remember to start at the right and work left). 

You see, numbers that are carried are taken from a 
particular column into the column on its left. This 
means that the sum of a given column can be altered by 
what happens in the column to its right, but cannot be 

; altered by what happens in the column to its left. 
Suppose, in the example we have been considering, 

", "we added up the ten thousands column (the one at 
", the extreme left) first. We would say 1 + 2 + 1 + 1 = 

5, and write down 5. If we then proceeded to the 
thousands column, which is the next one to the right, 
we would say that 3 + 5 + 1 + 0 + 9 + 5 + 1 = 24. 

, "" Now we would put down 4 and carry 2. This means 
"" ':: that the 5 we had already written down would have to 
,:00 changed to a 7. If we then went one column farther 

,', ,:to the right, we would find that the 4 we had written 
,'idown under the thousands column would have to be 

, , changed to a 6. 
Watch, though, what happens if we add up the units 

,'column first, the one at the extreme right. Now we 
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say that 7 + 7 + 2 + 7 + 8 + 0 + 2 = 33, which means 
we put down 3 and carry 3. The 3 which we have put 
down is going to stay no matter what else happens in 
the addition, because there is no column to the right of 
the units column to supply a number to carry. Further
more, the 3 we have carried into the tens column is the 
only number that will be carried there. 

We add up the tens column: 6 + 8 + 1 + 7 + 9 +0 + 
3 and add the carried 3 to that, so that the sum is 37. 
We put down 7 and carry 3. The 7 we have put down 
is permanent because the only thing that can change it 
is a number carried over from the units column, and 
that has already been carried over. As for the 3 which 
has now been carried over into the hundreds column, 

that is all we will have to be concerned with there, and 
so on. 

By starting at the right and working to the left, then, 
you can proceed without making any changes in the 
numbers you actually write down. You needn't erase 
or cross out (provided you make no errors.) 

But this also means that you must deal with the units 
before you deal with the tens, and with the tens before 
you deal with the hundreds, and so on. But the tens 
column is more important than the units column, and 
the hundreds column is still more important (a mistake 
in the hundreds column might give you an answer that 
was off by 300, whereas the same mistake in the units 
column would give an answer that was only off by 3) . 

For the sake of the increased importance at the left 

Addition 19 
end of the figures, it is sometimes better to start there, 
even if it does mean you will have to change the num
bers you write down. 

Suppose, for instance, you happen to have $40,000 
available for purchases and you want to know if you 
can buy everything on the list. You don't care what 
the exact total is. You only want to know if it comes 
to more than $40,000 or not. In that case, what's the 
use of carefully adding up the units column? 

Instead, you start with the ten thousands column at 
the extreme left. Adding that, you find that 1 + 2 + 1 + 
1 = 5. Changes may be made in that 5 as a result of 
carrying numbers, if you proceed in the addition, but 
those changes can only serve to increase the 5, never 
to decrease it. By adding the first column, we know 
immediately that the sum is at least $50,000. That 
means it is more than $40,000 and we need proceed no 
further with the addition. 

Or suppose you have $72,000 and want to know if 
that's enough. Starting at the ten thousands column as 
before and finding a total of 5, we proceed to the thou
sands column immediately to its right. This gives a 

',.total of 24. We can write down the 4 and carry the 2, 
,and that carried 2 must change the 5 in the ten thou
sands column to a 7. Now we know that the sum is at 
least $74,000 and again we can stop. 

H you start at the left and proceed to the right, add
ing the partial sums as you go, the result would be as 

. follows: 
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13,667 
5,687 

21,112 
10,377 

9,898 
5,100 

11,132 

5 
24 

74 
2 6  

76 6 
34 

76 94 
33 

76,973 

Quick and Easy Math " 

Each column you add gets you closer to the answer, 

calculating from the important end: $50,000, $74,000, 
$76,000, $76,940, and, finally, $76,973. 

Let's compare the two directions of addition. If you 

start at the right, you must go all the way to the left, 

because the columns grow more important the farther 

leftward you go. However, you end with an exact an

swer. If you start at the left, you can quit at any time, 

as soon as you have the information you need. How

ever, if you quit before adding all the columns, you will 

not have the exact answer. 

Notice, by the way, that in adding from the left to 

the right, you will have to be changing the values of 
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your sum constantly. It may strike you that it is too 

much to expect a person to carry all these changing 

figures in his head. 

Quite so, at least at first. With practice you'll be able 

to, but to begin with you will certainly have to write 

down numbers. Otherwise, you'll be sure to make mis

takes. But what of that? There is no particular rule 

that says that quick and easy math must be done in the 

head. Many operations can be, but not necessarily all. 

you find you must write down numbers, but that the 

or(]lCel)S takes less time than the long-way-round school 

,uv,,,uu'u.. you are still the gainer. 

For example if you want to add 34 + 86 + 154 + 
+ 69, it is not really difficult, with practice, to look at 

list and come to the answer 415. However, you may 

to add the numbers two at a time, writing down 

partial sums as you go. Since 34 + 86 = 120 + 
= 274 + 72 = 346 + 69 = 415, you write down 120, 

4, 346, 415, just to keep things :straight. You are not 

u...,a.LUllt::; you are just being cautious. Eventually, you 

not need to do this. 

of COurse you make use of simplifications as you 

You change 34 + 86 to 30 + 90; 346 + 69 to 345 + 

kt,;j:luDDose you are only interested in an approximate 

�>III1w,p.T and don't want to trouble yourseH by adding 

left to right. It may be that you are so used to 
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adding from right to left you don't want to 6ght the 
habit. Is there another way out of having to add up 
columns you don't need? Yes, there is; another and, in 
some ways, an even better way. 

The one time we don't need to worry about adding 
up a column of digits is when all those digits are zeros. 
The sum of any number of zeros is still zero, and such a 
sum can be written down without labor or thought. 

What we want to do, then, is to change the digits in 
the unwanted columns to zeros and to do so while 
changing the value of the original number as little as 
possible. Suppose we go back to the long addition we 
dealt with in the previous section and assume we are 
only interested in the answer to the nearest thousand. 
In that case why bother with the hundreds column, the 
tens column, or the units column? Change the digits 
in those columns to zeros. 

If we take the 6rst number 13,667, we can change 
that to 13,000. In doing so we have decreased the num
ber by 667. Suppose, however, that we change 13,667 
to 14,000. Now we have increased the value of the 
number, but only by 333. The latter change is the bet
ter one. In the same way we can change 5687 to 6000, 
21,112 to 21,000, 10,377 to 10,000, 9898 to 10,000, 5100 
to 5000, and 11,132 to 11,000. 

If we compare a number like 6000 with a number like 
5687, we say that the fonner is a «round number." This 
goes back to the ancient feeling that a circle is the 
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perfect figure and that roundness therefore signifies 
perfection. The number 6000 represents an exact num
ber of thousands and 5687 does not. The former is 
therefore "round." Of course, round numbers usually 
end with one or more zeros and the symbol for zero is 
a circle or an oval, so "round number" has a new kind 
of meaning in that light. 

When 5687 is changed to 6000 it is being «rounded 
off to the nearest thousand." It might also be rounded 
off to the nearest ten and be written �s 5690, or to the 
nearest hundred and written as 5700. 

Adding up the figures, we have, after rounding them 
off to the nearest thousand: 

14,000 
6,000 

21,000 
10,000 
10,000 

5,000 
11,000 

77,000 

The three columns on the right are all zeros and add up 
to zeros. We are left with the first two columns con
taining digits other than zero, and these can be added 
up quickly (even mentally). Moreover, the final, 
rounded answer is 77,000 as compared with the actual 
sum of 76,973. The difference is only 27. 

II 
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In general, adding round numbers gives a more ac
curate answer than adding left-to-right, if the same 
number of columns is added in each case. The reason 
for this is not hard to see. 

In left-to-right addition of exact numbers, we add 
each column without worrying about any changes that 
would be produced by carrying. The figure that is 
eventually carried, however, always increases the sum. 
For this reason, the sum we get by adding left-to-right 
is always less than the real sum. If only one or two 
columns are added, the sum obtained may be consider
ably less than the actual sum. 

In the example given in the previous section, the 
actual answer is 76,973, but if we add up only the first 
column on the left the answer we get is 50,000. If we 
add up the first two columns, the answer is 74,000; if 
we add up the first three, it is 76,000; and if we add up 
the first four, it is 76,940. Even after adding up four 
columns left-to-right, we have not come as close to the 
actual answer as we did in adding two columns of digits 
by the round-number method. 

In rounding off a number, you see, you sometimes in .. 
crease it and sometimes decrease it. Thus, 13,667 is 
changed to 14,000, an increase of 333, while 21, 112 was 
changed to 21,000, a decrease of 1 12. In any long series 
of numbers, it is quite likely that the increases and de
creases involved in rounding off will very nearly balance 
each other. This will leave the· sum not very different 
hom what it would have been in the first place. 

I 

. ,' 
�J, 
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( Of course, we never gain in one place without losing 
in another. The round-number method may be more 
accurate than the left-to-right method, but in the former 
you have to take time to change each number into the 
nearest round number, whereas in the latter you work 
with the numbers as they are.) 

It is important to remember that the increases 
and decreases in rounding off are very likely to just 
about balance - but not certain to do so. It might just 
happen, for instance, that the following numbers are 
to be added: 13,575, 4065, 5551, and 7001. If you are 
interested in the answer to the nearest thousand, you 
can round off each number accordingly, and work out 
the sum of 14,000, 4000, 6000, and 7000. The rounded 
sum is 3 1,000 as compared with an actual sum of 30,192. 

The rounded sum is too large by 808, and that may be 
rather too far off for your liking . 

The reason for such a large difference is that two of 
the numbers, when rounded, are decreased by very 
small amounts, while the other two are increased by 
quite large amounts. The increases, in this case, con
siderably overbalance the decreases. 

H, then. you are rounding off a number to the nearest 
thousand and notice that you are going to make a rather 
large change, you might round it off to the nearest hun
dred instead Instead of rounding 13,575 and 5551 to 
14,000 and 6000 respectively, round them to 13,600 and 
5600. 

Now, if you add 
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13,600 
4,000 
5,600 
7,000 

30,200 

Quick and Easy Math 

" the answer 30,200 is only 8 removed from 30,192. There 
is a considerable gain in accuracy for only very little 
extra in the way of work. 

CHECKING ADDmON 

After you have worked out the answer to an arith
metical calculation, particularly if it is a complicated 
one, the question arises: Is my answer correct? 

It may be that you have worked out the answer ex
actly to the last place, but you just want to make sure 
there is no really big error - a small error won't be 
fatal. In that case you can repeat your addition by the 
round-number method in order to see if you get about 
the answer you had before. If you do, there are no big 
mistakes anyway. More likely, though, you are inter
ested in the exact answer and don't want to make any 
mistake, large or small. What then? 

What most people do then is to "go over it." They 
repeat the calculation a second time and even a third 
time, going through all the steps and making sure they 
have made no mistake. Unfortunately, repeating a cal
culation exactly as before is not the best way to catch 
a mistake. 

Suppose that you have the following addition: 

Additio� 

3,145 
272 

1 8,146" 
1,9 87 .. 

322 

27 

You decide to add these numbers right-to-Ieft. You 
start with the units column, adding downward, and 
keeping the partial sums in your head as everyone does. 
You say, t:herefore, 5, 7, 14,21,23, put down "3 and carry 
2. In doing this you have already made a mistake: 

\5 + 2 = 7, but 7 + 6 ::-13, not 14. 
" 

\
,
You know very well that 7 + 6 = 13 and you may 

feel certain you would never say 7 + 6 = 14. Yet, you 
might. Notice that when you are adding 7 and 6 the 
next number you are going to add will be a 7. Your eye 
may see tha� 7 and automatically your mind might add 
it rather thari�e 6 and, of course, 7 + 7 = 14. The re
sult is that you arrive at an answer of 23,873 instead of 
23,872. 

If you decided to check your answer and begin the 
calculation in preCisely the same way as before, there 
is a good chance that you might again say 5, 7, 14,21, 
23. It may be that the mind remembers the sequence of 
numbers as worked out originally (even though you 
may not realize you remember it) and takes the easy 
way out of repeating it without actually doing the cal
culation again. 

In any case, it is not at all unusual to have a person 
make the same quite silly mistake over and over again 
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as he repeats a calculation. Anyone can do that - make 
a simple error first, then repeat it when checking. A 
professor of mathematics can do it as well as a beginner� 
It is better, then, in repeating an addition, to reach the 
sum by a different route. Ip. that way, the number com
binations would be different and there would he no 
reason to make the same error you made before. 

Since it doesn't matter in what order you add a series 
of digits, why do it from the top down? In checking, 
why not do it from the bottom up? If you add upward, 
beginning with the units column, you say, 2, 9, 15, 17, 
22, put down 2 and carry 2. At once you see a discrep
ancy; you had put down a 3 the first time. 

That won't tell you, of course, whether your first 
answer was wrong. The first answer may have been 
perfectly correct, and you may have made an error in 
checking. But the fact that you arrived at two different 
answers means there is something wrong and you must 
inspect your addition carefully. 

Naturally, it is to be hoped (and, I think, expected) 
that you will not make any mistakes. In that case, the 
sum of the numbers added from the bottom up should 
be the same as that obtained when the numbers are 
added from the top down. It is perfectly natural to 
assume then that your answer is correct, and you need 
investigate it no further. 

It may happen, though, that you may make one mis
take while adding from the top down and another mis
take while adding from the bottom up and, that these 

\' 
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two different mistakes will give you the same wrong 

answer. This is possible, but very unlikely, and few 

people worry about such a chance at all. 

Checking a calculation by repeating it, whether by 

the same route or by a different route, doubles the 

amount of time spent on the calculation. For this rea

son most people don't bother checking the addition of 

long columns of figures; they seem to prefer to take their 

. chances on errors. 

Perhaps if there were a short-cut way to see if a long 

complicated addition needs checking-

Well, there is. 
Consider the following, 

8,921 
+ 4,135 

13,05fr 
. ' '� . _ 'I' 
. :',; . � 

, and suppose you add up the digits of the augend, 8921. 

. ..
. 
, You have 8 + 9 + 2 + 1 = 20. Add up the digits of 

':).� sum: 2 + 0 = 2. Do the same for the other num-
. 

involved in the addition, always continuing to add 

you have but a single digit left, and lel's call the 

we finally reach in this manner the "digit sum." 

., '. ,Thus, the digit sum of the addend (4135) is 4 + 1 + 
'.3+ 5 = 13; 1 + 3 = 4. That of the sum (13,056) is 

"',1+ 3 + 0 + 5 + 6 = 15; 1 + 5 = 6. 

,Lel's repeat the addition now, placing the digit sum 

, . the right of each number: 
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8,921 
+ 4,135 

13,056 

2 
4 

6 

Quick and Easy Math 

You can't help noticing that the digit sums add up 
correctly. This is no coincidence; it always happens. 

Try another one : 

5,633 8 
+ 4,903 7 

10,536 6 

The digit sum of the augend is 5 + 6 + 3 + 3 = 17; 

1 + 7 = 8. The digit sum of the addend is 4 + 9 + ° + 

3 = 16; 1 + 6 = 7. The digit suin of the sum is 1 + 0 + 

5 + 3 + 6 = 15; 1 + 5 = 6. However, 8 + 7  does not 
equal 6. Perhaps not, if we are dealing with actual 
numbers, but we are dealing with digit sums. Thus, 
8 + 7 = 15 and 1 + 5 = 6. In digit-sum calculations, 
then, we can say that 8 + 7 = 6. 

Whenever you add uP . a column of figures to get a 
correct sum, you will find that the digit suins will form 
a correct add.ition, too. H, therefore, you have com
pleted an addition, it is not necessary to check by re
peating the calculation. You can work out the digit 
sums and see if they form a correct addition. If so, you 
can be almost sure the answer is correct . .  

Unfortunately, you cannot be positively sure. Sup
pose the correct answer is 10,536 and its digit sum is ' 6, 

as in the last example given. But there are many other 

, . I 

1; , 

' . 
" " 

}:  
', . , . 
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numbers with a digit sum of 6. These include 10 563 , , 
15,036, 65,310, 11,112. 60,000, 24, and so on. 

lt is quite unlikely, however, that mistakes made in 
addition will produce a wrong answer with the same 
digit sum as the right answer. It is much more likely 
that the digit sum will be altered. You will then find 
yourself faced with a digit-sum addition such as 2 + 3 = 

7 or 4 + 8 = 2, which are wrong. Mter all, 2 + 3 = 5 
and 4 + 8 = 12 and 1 + 2 = 3; so that 4 + 8 = 3. 

You can then be quite certain that somewhere in your 
addition there is a mistake. 

To be sure, adding up the digits of each number takes 
time. Fortunately, working out the di�t Sum can be 
simplified one step fUrther. This simplification depends 
on the fact that ad�g .  9 never' alters the digit sUm. 
Thus, 13 + 9 =  22 and the digit sum

' 
of both 13 and 22 

is 4; 175 + 9 = 184 and the digit sum of both 175 and 
184 is 4; 4658 + 9 = 4667 and the digit sum of both 
4658 and 4667 is 5. In fact, no matter how many times 
we add 9 to a number we don't change the digit sum. 
Consider that 72 + 9 + 9 + 9 + 9 = 108 and the digit 
sum of both 72 and lOB is 9. 

Therefore, in adding up the digits in any number, 
why bother to include any 9, since adding it won't 
change the digit sum? For that matter, why bother to 
include a set of smaller numbers which add up to 9? 
H we add the digits of 8921 we get 20 and 2 + 0 = 2. 

However, if we eliminate the 9 to begin with and then 
the 8 + 1 because that adds up to 9, we are left only 
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with the 2. We arrive at the same digit sum with much 
less time and effort. 

Consider the following sum : 

42,572 2 
17,�9 8 
11,240 8 
54,603 0 

126,414 0 

In the first number, you eliminate 5 + 4, and 7 + 2 and 
that leaves only the digit 2, which is the digit sum. In 
the second number you eliminate the three 9's and end 
with 1 + 7 = 8. In the third number there is no elimi
nation possible but 1 + 1 + 2 + 4 is easy enough to 
add up to 8. In the fourth number you eliminate 5 + 4 
and 6 + 3 and are left with O. Finally, in the sum you 
can eliminate the 1 + 2 + 6 and the 4 + 1 + 4, since 
both sums add up to 9, and are again left with zero. 

Now you must see if the digit-sum addition is correct. 
Is 2 + 8 + 8 + 0 = O? Well, the sum is 18 according to 
the ordinary system of arithmetic, but from that sum of 
18, we can eliminate 1 + 8 and are left with O. The 
digit-sum addition is correct, and in all likelihood so is 
the actual addition. 

Because 9' s and digits adding up to 9 are eliminated 
from consideration, this method of checking addition is 
called "casting out nines." 

The method of casting out nines is a quicker way of 
checking addition than by actually repeating the cal-
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culation. The longer and more complicated the addi
tion, the more time is saved. Furthermore, many people 
find it entertaining to hunt down the 9' s and watch the 
digit sums add up correctly and, after learning the 
method, check their additions for the fun of it. 

Of course, there is no magic in casting out nines ( al
though it may seem magical just at first ) .  Let's see why 
it works. H we start with the single-digit numbers ( 0, 
1, 2, 3, 4, 5, 6, 7, 8, 9 )  they all are their own digit sums 
except 9, which we cast out and for which we assign 0 
as its digit sum. The digit sums, then, are 0, 1, 2, 3, 4, 
5, 6, 7, 8, O. 

Now let's try the two-digit numbers ( 10, 11, 12, 13, 
14, 15, 16, 17, 18, 19, 20, 21, and so on) .  If we write 
their digit sums in order ( continuing to set 9' s equal to 

, ' , 0 ) ,  we find these to be 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2. In 
' fact, you can continue as long as you like ( into the 
millions and billions, if you have the patience and 
time ) ,  and you will find that the digit sums go on for
ever like that - 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 

< ,7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, on and on and on. 
, " Furthermore, if you check the series you will find 
, "that every number that has the digit sum ° is divisible 
, ,by 9 without a remainder. (We shall take up division 
' later in the book; I am sure you know enough about 

division to see that 9, 18, 27, 36, 54, and so on - all 
of which have digit sums of 0 - are also divisible by 
9 without remainder. )  

Since the digit sums increase in order by adding 1 
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each time ( 1, 2, 3, etc. ) ,  we can see that any number 
which, when divided by 9 leaves a remainder of 1, has 
a digit sum of 1. If it leaves a remainder of 2, it has a 
digit sum of 2, and so on. The · digit sums are just the 
remainders left when a number is divided by 9, 

In algebra, then, we can say that any nUmber can be 
written in the fonn, 9a + b, where a is any number and 
b is the digit sum of the entire number; 9a + b. For 
instance, take the number 214. If we divide it by 9, 
the answer is 23 plus a remainder of 7. Therefore, 214 
can be written 9 ( 23 ) + 7. The digit sum of the original 
number is indeed 7. 

. 

Suppose we write two numbers, one as 9a + b and 
the other as 9c + d. If we add these, the total is 
9 ( a + c )  + b + d. The digit sum of the sum is there
fore b + d (which may be simplified further, of course ) .  

In other words, in any addition which is correct 9a + 
b + 9c + d = 9 (  a + c )  + b + d, the digit sums must 
add up correctly too ( b  + d = b + d ) .  

As we shall see later, the other operations � subtrac
tion, multiplication, and division - are all related to 
addition. Subtraction is the reverse of addition; multi
plication is a series of additions; and division is the re
verse of multiplication. Therefore, if casting out nines 
works for addition, it will also work for the other opera
tions. In the proper places, I will demonstrate this. 

3 

Subtraction 

ADDmON IN REVERSE 

WE can look upon subtraction as the reverse of addi
tion. Suppose we know that 6 + 1 = 7. Let us take 
that in reverse and look at the numbers from right to 
left. If we then change the plus sign ( + )  to a minus 
sign ( - ),  we have 7 - 1 = 6. 

This is true in any number of cases. If 7 + 5 = 12 . - �  - ,  
then 12 - 5 = J; if 18 + 3 

.-
21, then 21 - 3 = 18. ( I� 

algebraic notation, we say that if a + b = c, then c -
b = a. ) This means that if we know the addition table 
from 0 + 0 = 0 to 9 + 9 = 18, we automatically know 
the "subtraction table" from 18 - 9 � 9 to 0 - 0 = O. 

( The word "plus," by the way, comes from a Latin 
.' word meaning "more," and "minus" �omes from a Latin 
word meaning '1ess." Thus, if we say "seven plus some 
number" we will have an answer that is more than 
seven; while if we say "seven minus some number" we 
will have an answer that is less than seven. ) 

In a subtraction such as 12 - 5 = 7, the first number, 
12, is called the "minuend," from a Latin word meaning 
"to be made less." The minuend, you see, is to be made 
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less as a result of the subtraction. The number 5 is the 
"subtrahend" from a Latin word meaning "that which 
is to be subtracted." The number 7 is the "difference." 
We can put it this way: the minuend minus the sub
trahend equals the difference. 

In the addition a + b = c, a and b can be any num
bers at all, and C must then be larger than either a or b 

(unless either a or b is 0 ) .  The sum is the largest num
ber in any addition. If the addition is reversed and con
verted into a subtraction, c - b = a, the sum becomes 
the minuend. Since the sum is the highest number in an 
addition, the minuend must be the highest number in a 
subtraction. In particular, it must be higher than the 
subtrahend, if the difference is to be greater than zero. 
(If  the minuend is equal to the subtrahend, the differ
ence is zero: a - a = 0. ) 

This means that you can't subtract any number from 
any number, at least not by the methods of grade 'school 
arithmetic. You can get an answer to 7 - 5, or even to 
7 - 7, but not to 7 - 9, for in the last case the minuend 
is smaller than the subtrahend. Once you study alge
bra, subtractions like 7 - 9 are solved by introducing 
the notion of "negative numbers" - but we won't 
bother with that in this book. 

However, even though the minuend may be larger 
than the subtrahend, there may be certain digits in the 
minuend that are smaller than certain digits · in the 
subtrahend. This may or may not cause trouble. 

If we line up a minuend and a subtrahend, units 
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column under units column, tens column under tens 
column, and so on, we would have no trouble if each 
digit in the minuend is larger than the digit immediately 
underneath in the subtrahend. The following shows 
what I mean: 

72,998,476 
-61,818,034 

llJ80,442 

In such a subtraction, you can write down the differ
ence as rapidly as you can move a pencil. What's more, 
it doesn't matter whether you go from right to left or 
from left to right. 

It is when you get a subtraction like this 

61 
-48 

that you are likely to hesitate a bit, even though it 

involves far fewer digits than the first subtraction. The 
subtrahend, 48, is smaller than the minuend, 61, so the 
subtraction is quite legitimate. However, if we start 
with the units column, as we are taught to do in school, 
we face a problem at once, for 8 is larger than 1. The 
subtraction 1 - 8 is not in our subtraction table. 

To handle such a situation, we are therefore taught 
a system of "borrowing." Instead of subtracting 8 from 
1, we borrow a 10 and add it to the 1 to make 11. Now 
we are subtracting 8 from 11 and get the answer 3, 
which we write down. 

.. 
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But where did the borrowed 10 come from? Nat

urally, it came from the tens column. To make up for 
that we must subtract 1 from the 6 in that tens column, 

making it 5. Now we subtract 4 from 5 ( instead of 4 

from the original 6) .  In subtracting 4 from 5, we get 

the difference 1, and write that down. In other words, 
6 1 - 4 8 =  13. 

Here is another way of looking at it. The number 6 1  

is actually 60 + 1. It can also be considered 50 + 1 1, 
so that we can actually consider "sixty-one" to be 

"fifty-eleven." Instead of writing 6 1  - 48, we can write 

5 ( 1 1 )  
- 4  8 

1 3 

and, as you see, get 13 as the difference. 
Instead of subtracting 1 from the 6 in the tens 

column of the minue1)d, we can add 1 to the 4 in the 

tens column of the subtrahend and make it 
/ 

6( 1 1 ) 
-5 8 

1 3 

and still get 13 as the difference. 
Some grade schools teach the latter method, because 

that involves "carrying," which we have usually al

ready learned and grown accustomed to in addition. 

If we are asked to solve 6 1  - 48, we say something 

like this to ourselves : "Let's see now, 8 from 1 is im-
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possible, so that makes it 8 from 1 1, leaving 3. Write 
down 3 and carry 1 and that makes the 4 into a 5. Take 

5 from 6 and get 1, so the answer is 13." 

Although this system is rather complicated at first, it 

becomes such second nature to most of us that we come 

to do it without ever trying to figure out why we do it. 

But because most people subtract without understand

ing the mechanics, they are likely to hesitate whenever 
it comes time to borrow and carry. 

They may make mistakes, too. If a person isn't care
ful, the 6 - 4 in the tens column is going to strike him 
as coming to 2 so strongly that he may easily write 
23 as the answer. Either he will forget to carry the l or, 

if he does carry it, he will forget to do anything with 

it. Almost all errors in subtraction involve the step 

in which we borrow and carry. Consequently, we 

should follow our first general rule of changing some

thing difficult into something easy. If we don't want 

to make mistakes, let's try to avoid borrowing and 

carrying in subtraction if that is at all possible. 

The one digit we can always subtract from any other 
digit without borrowing is O. Therefore, let" s try to 

place a 0 in the subtrahend of the subtraction problem 

we are discussing in place of the troublesome 8. If, in 
6 1  - 4 8, we add 2 to the subtrahend and make it 50, 

we have our zero. But now we'll have to do something 
to the minuend to keep the difference from being 

changed. 

In adding two numbers, you may remember, we were 
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able to keep the sum unchanged if we added a partic

ular number to the augend and subtracted that same 

number from the addend. This won't work in sub

traction. Thus 7 - 4 = 3, but if you add 2 to the min

uend and subtract 2 from the subtrahend, you have 

9 - 2 = 7. The difference has been changed. 

Consider this, though. Not only is 7 - 4 = 3, but 

8 - 5 = 3, and 9 - 6 = 3 and 10 - 7 = 3. If we add 

the same number to both minuend and subtrahend the 

difference remains unchanged. If we subtract the same 

number from both, the difference also remains un

changed. 

We can express this algebraically. In the subtraction, 

a - b, suppose we add n to both numbers. The sub

traction becomes ( a  + n ) - ( b  + n ) . Clearing paren

theses, we have a + n - b - n; the n's cancel and the 

answer is still a - b. If we had subtracted n from both 

numbers, we would have ( a  - n ) - ( b  - n ) . This 

would become a - n - b + n, which is a - b once 

more. 

We can show the type of alterations allowed in addi

tion and subtraction as follows. Let's have an upward 

pointing arrow indicate a particular increase in a num

ber and a downward pointing arrow indicate a decrease. 

In addition, then: 

i a + l b = a + b  
l a + T b = a + b  

In subtraction, on the other hand, 

Subtraction 

T a - lb = a - b  
l a - l b = a - b  
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Now let's go back to our example 61 - 48. If we add 
2 to 48 to make it 50, we must also add 2 to 61 and make 
it 63, if we are to keep the difference unchanged. In
stead of 61 - 48, then, we have 63 - 50, and the an
swer is 13 at a glance. No borrowing or carrying is 
necessary. 

This can be done for more complicated cases, too. 
If you are trying to get the answer to 412 - 279, you 
can first add 1 to both numbers and make it 413 - 2 80; 
that changes a 9 in the subtrahend to a O. Then add 
20 to both numbers and it becomes 433 - 300, which 
changes the 8 in the subtrahend to a O. As for 
433 - 300, the answer is obviously 133. 

With practice, you can learn to do this sort of thing 

at a glance. You might feel, of course, that with really 

long numbers it would be so difficult to add numbers 

little by little that it woUld really be easier to do it by 

borrowing and carrying. There you may be right but, 

once again, it is the small subtractions you will be meet

ing with day after day. Once you are handy with those, 

perhaps 90 per cent of your subtraction problems will 
trouble you no more. 

CHECKING SUBTRACI'lON 

Subtraction cannot be checked in quite the same 

fashion that addition can be, for in subtraction we can-
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not change the order of the numbers to suit ourselves. 
The expression a - b is not equal to b - a. However, 
as I have pointed out several times in this chapter, sub
traction is the reverse of addition. If we start with the 
problem a - b = C; we are justified in turning it about 
and saying c + b = a. In any correctly worked out 
subtraction, in other words, the difference plus the 
subtrahend should equal the minuend. 

Consider the following subtraction: 

75,413 
- 6,295 

69,118 

To check the correctness of the result by simply re
peating the subtraction lays you open to the possibility 
of repeating your mistake, whatever it was. Instead, 
we can check it by turning it into an addition: 

69,118 
+ 6,295 

75,413 

If the sum in the second calculation is not equal to the 
minuend in the first, then something is wrong. Nat
urally, it is not necessary to rewrite the problem; I do 
that here only to make it quite clear. The differ
ence and the subtrahend in the problem as originally 
written can be added upward mentally. 

Casting out nines can work for subtraction also, 
though in subtraction it is not likely to be as useful 
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as in addition. Casting out nines is most useful in addi
tion when a long series of numbers is being added, but 
in subtraction, we are rarely faced with more than two 
numbers, a minuend and a subtrahend. It is about 
as easy to add upward as to cast out nines. Neverthe
less, let's consider the previous subtraction once more. 

75,413 2 
- 6,295 -4 

69,118 7 

In the minuend, casting out 5 + 4, we are left with 
7 + 1 + 3 = 11, and 1 + 1 = 2. In the subtrahend, 
casting out 9, we have 6 + 2 + 5 = 13 and 1 + 3 = 4. 
In the difference, casting out 9 and 1 + 8, we have 
6 +  1 = 7. 

If we concentrate on the digit sums, then, we find 
that 2 - 4 = 7. Is that correct? In the first place, we 
are subtracting a larger number from a smaller and, 
in this book at least, we shall not attempt such a task. 
Therefore we must revise the situation to make the 
minuend larger. We know that adding and subtracting 
9's makes no difference in manipulating digit sums. 
Let's, therefore, add a 9 to the minuend digit sum; so 
that 2 + 9 = 11. Leave it as 11, without adding the 
digits together so as to keep the new minuend larger 
than the subtrahend. Now we have 11 - 4 = 7, which 
is certainly correct. 

On the other hand, it is not necessary to do this, 
either, if we prefer not to. If we are faced with the 

' !  

�. 
-! 
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digit-sum subtraction 2 - 4 = 7, we need only remem

ber that every subtraction can be reversed into an 

addition. We have 7 + 4 = 2. Since 7 + 4 = 11 and 

1 + 1 = 2, we can conclude that the subtraction is very 

probably correct. If the digit-sum manipulations had 

not worked out, we would have been I..'ertain there was 

a mistake in the subtraction. 

4 

Multiplication 

THE MULTIPUCATION TABLE 

I think it would be generally agreed that addition 

and subtraction are the simplest of the arithmetical 

operations. Even without time-saving devices, most 

people would accept them without much trouble. Mul

tiplication, however, is considerably harder and more 

tedious; mistakes are easier to make; and most people 

hesitate more over working out particular problems. 

Yet multiplication is only a form of addition, and is 
itself a kind of shortcut. 

Thus, let's consider the multiplication problem 9 

times 8, or to use the "multiplication sign" ( X ) , 9 X 8. 

The number 9 is the "multiplicand" in this case (from 

a Latin word meaning "that which is to be multi

plied") while the ntimber 8 is the "multiplier." As you 

all surely know, 9 X 8 = 72, and 72 is the "product." 

But what is there in 9 X 8 = 72 that makes the prob

lem a kind of addition? Remember that you can read 

9 X 8 as «nine times eight." You are asked to take 8 

"nine times." Well, if you take nine 8's and add them 
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together: 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8, you do 
indeed get 72. 

Because multiplication is a form of addition, it shares 
some of the properties of addition. Just as a + b = 

b + a, so a X b = b X a. ( In algebra, the multiplica
tion sign is generally omitted, so we can express the last 
statement as ab = ba. ) Consequently if 9 X 8 = 72, 
then 8 X 9 = 72. Sure enough, if you add eight 9' s to
gether: 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9, the sum there 
too comes to 72. 

The fact that multiplJcation is a shortcut for at least 
some problems in addition is at once plain. It is easier 
to memorize that 8 X 9 = 72 than to have to add all 
those 9's and 8's. 

In the third grade or so we are usually set to mem
orizing the "multiplication table," a table which gives 
the products of all possible combinations of single digits. 
As a result, it soon becomes second nature for us to say 
3 X 2 = 6, 7 X 7 = 49, 5 X 9 = 45, and' so forth. We 
ought to be able to rattle off any combination &am 
o X 0 = 0 to 9 X 9 = 8l. 

The multiplication table I learned as a child ran all 
the way up thraugh 12, so that I alsa learned that 
8 X 11 = 88, 11 X 12 = 132, and 12 X 12 = 144. It 
might not be a bad idea far people who want to make 
multiplication easier for themselves to memorize all the 
combinations up to 20 sa that they can say, at the drop 
of a hat, 6 X 15 = 90, 17 X 12 = 204, 18 X 19 = 342, 
and 20 X 20 = 400. However, these extra memoriza-
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tians, involving two-digit numbers, though handy, are 
not absolutely necessary. Yau can make out perfectly 
well if you memorize a multiplicatian table that takes 
you .only to 9 X 9. 

The simplest part of multiplication involves zero. 
Any number at all, no matter how large, when multi
plied by zero gives zero as the product. We can say 
that 2 X 0 = 0; 75 X 0 = 0; 6,354,876 X 0 = O. And, 
of course, 0 X 0 = O. 

This behavior of zero simplifies certain types of mul
tiplication problems. Suppose, for instance, you want 
to multiply 10 by 10 and that yau decide to do it by 
the step-by-step method you were taught in school. 
First, yau multiply 10 by 0, writing down the answer; 
then you multiply 10 by 1, indenting the secand an
swer; finally you add the two answers. I am sure that 
you all know how to do this and, in fact, that you do 
this sort of thing every time you multiply. The problem 
10 X 10 would then be worked out as follows: 

10 
X 10 

00 
10 

100 

The numbers that lie between the two horizontal lines 
are called "partial praducts." Notice that the first par
tial product comes out 00, because that partial product 
is the result of multiplying 10 by 0, and all multiplica-
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tions by 0 yield O. We might write 00 or 000 or even 

000000000000, but all numbers made up only of zeros 

are equal to O. 
We get these zeros as partial products whenever there 0 

is a zero as one of the digits in the multiplier. Let's 

take some more cases of multiplications involving num

bers made up of a 1 followed by several zeros. 

100 1,000 
X 100 X 10 

000 0 000 
0 00  10 00 

10 0 10,000 
10,000 

In short, 100 X 100 = 10,000 and 1000 X 10 = 10,000. 

If we stick to numbers of this type and study the 

answers, we find that the product contains as many 

zeros as do the multiplicand and multiplier put to

gether. 

In multiplying 10 X 10, multiplicand and multiplier 

end in one zero apiece and the product 100 ends in two 

zeros. In multiplying 100 X 100, multiplicand and mul

tiplier end in two zeros apiece and the product, 10,000, 

ends in four zeros. Again, in multiplying 1000 X 10, the 

total number of zeros in multiplicand and multiplier is 

four and the product is also 10,000. 

Without bothering to multiply out in full, you can tell 

that 10,000 X 1,000, with a total of seven zeros, must 

have a product of 10,000,000. 
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If the numbers being multiplied contain but a single 

digit before the various zeros and one or both of these 

digits is not 1, things are hardly any inore complicated. 

Suppose that we wish to multiply 300 by 500. We can 

write 300 as 3 X 100 and 500 as 5 X 100. ThiS means 

that 300 X 500 = 3 X 100 X 5 X 100. But we know 

from the multiplication table that 3 X 5 = 15 and we 

.know from adding zeros that 100 X ioo = 10,000. 

Therefore 3 X 100 X 5 X 100 = 15 X 10,000, or 150,()()(). 

If you consider this preceding paragraph carefully, 

you see that what we are doing is to add the zeros of 

multiplicand and multiplier and put the product of the 

non-zero digits in front of the sum of those zeros. 

In multiplying 300 X 500 we could, without ado, 

count zeros and see that the answer must end in four 

zeros, 0000. We then multiply 3 X 5 and place the 

product, 15, in front of the four zeros. That gives us 

our complete answer, 150,000. 

Using this system, you can see quickly that 700 X 

4OOO
"
has an answer in which 28 ( that is, 7 X 4 )  is fol

lowed by five zeros. Therefore 700 X 4000 = 2,800,000. 

In the same way 5 X 50 has as its product 25 followed 

by a single zero, or 250; 100 X 80 = 8000; 20 X 60 = 
1200, and so on. 

Sometimes it is possible to have more zeros in the 

product than you might expect from merely counting 

the zeros in multiplicand and multiplier. Suppose you 

were multiplying 40 X 50. You know the answer will 
end in two zeros, 00, and that these will be preceded 
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by the product of 4 X 5, which is 20. Therefore, 40 X 
50 = 2000, which, as it turns out, ends in three zeros, 
not in two. The third zero, however, was added by .way 
of the product of 4 X 5, and not by adding the zeros 
in multiplicand and multiplier. 

This is not a matter of concern, of course. The 
method of counting zeros and putting the product of 
the single digits before those zeros will give the correct 
answer in any case. If an additional zero is needed, it 
will be added automatically. 

What we see, then, is that we have learned more 
from the multiplication table than we perhaps sup
posed. In memorizing the product of 8 X 9 as 72, we 
also made it possible for ourselves to tell, at a glance, 
the product of 80 X 9, of 8 X 90, of 80 X 90, of 8000 X 
900, and so on. 

BEYOND TIlE MULTIPLICATION TABLE 

But if we think that's all there is to multiplication, we 
are living in a fool's paradise. What if one of the num
bers contains more than one · digit that is not zero? 
What if it is not the product of 8 X 9 that we want but 
the product of 83 X 9? 

This is something we haven't memorized in any mul
tiplication table. Instead, we usually work it out digit 
by digit in the manner taught us in school. First, we 
multiply the 3 by the 9, which gives us 27 . .  We put 
down 7 and carry 2. Then we multiply 8 X 9, which 
gives us 72. Addfug the 2 we have carried, gives us the 
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sum of 74. Writing this down before the 7 we had 
previously written down, the answer is 747. This sys
tem of multiplying without actually writing down the 
partial products is "short multiplication." If we mul
tiply 83 X 9 by short multiplication, it would look like 
this: 

83 
X 9 

2 

747 

H we wrote out the partial products in full, we would 
have "long multiplication," thus : 

83 
X 9 

27 
72 

747 

Is there any way of simplifying this? Yes, there is, if 
we follow our basic principle of changing a difficult 
problem into an easy one. We have already decided 
that once the multiplication table is memorized it is 
easy to multiply numbers that consist of only single 
digits, plus zeros. How, then, can we convert 83 into 
such numbers? The logical way is to write 83 as 80 + 3. 
The number 3 is a single digit, and the number 80 is a 
single digit plus a zero. 

But how can one multiply 80 + 3 by 9? 

; . 

: ' i' 
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U sing algebraic symbolism we are multiplying a sum 

a + b by a number e and this is written (a + b )e. H 

we clear parentheses, we find that (a  + b)e = ac + be. 
In other words, to multiply 80 + 3 by 9, we first mul

tiply 80 X 9, then 3 X 9, then add the two products. 

This may strike you as a step backward. How can we 

make a multiplication simpler by changing it into two 

multiplications? Are we not just making it harder? Not 

at all. We are converting one difficult multiplication 

into two easy ones, and this is a step forward, not back

ward. We know at a glance that 80 X 9 = 720, and 

that 3 X 9 = Z7. Since 720 + 27 = 747, there is our 

answer. 

You can do this in your head without trouble, in all 

likelihood, but if you want to do it on paper it would 

look like this : 

80 + 3  
X 9  

720 + �7 = 747 

, , 
Naturally you can use this method on numbers in-

volving final zeros. H you are faced with the multipli

cation 83 X 90, work out 83 X 9 and add the zero. 

Since you know that 83 X 9 = 747, then 83 X 90 = 
7470. Furthermore, 830 X 9 = 7470 also; 8300 X 900 = 
7,470,000, and so on. 

Now lees look back a bit to the point where I mul

tiplied 83 X 9 by the usual method of long multiplica

tion. The partial products were: 

Multiplication 

27 
72 

53 

The indented 72 might just as well have a zero after it, 

for that would not change things. In that case we 

would have: 
83 

X 9 

27 
720 

747 

This means that in ordinary long multiplication we are 

adding 27 and 720 to get 747, while in the method I 

recommend, we are adding 720 and 27. Since we are 

doing the same thing either way, why should one 

method be preferable to the other? 

The answer is this: the school method works from 

right to left. This is to simplify the written work. Any 

number you write down will not have to be changed. 

as a result of any number that you will later carry ( just 

as in addition ) .  The trouble is that we think of numbers 

from left to right, no matter how much we may work 

with them from right to left, and that makes for con

fusion. 

H we try to multiply 83 X 9 mentally, in the usual 

manner, we begin by saying 3 X 9 = 27, put down 7 
and carry 2, but since we think of 27 as "two-seven" we 

might carelessly put down 2 and carry 7. We then end 

with a completely wrong answer. 
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In the left-to-right method, however, we are thinking 
of numbers in the customary left-to-right way. We say 
(80 + 3)  X 9 = 720 + 27 = 747. It may not be any 
easier arithmetically, but it is certainly easier psycho
logically. 

In the same way you can say 44 X 6 = (40 + 4 )  X 

6 = 240 + 24 = 264; and 46 X 7 = ( 40 + 6)  X 7 = 

280 + 42 = 322; and so on. 
Furthermore, the left-to-right method is more versa

tile in that it allows subtractions as well as additions. 
The school method of right-to-Ieft does not allow this. 

Suppose that we must multiply 89 X 7. We can write 
this (80 + 9 )  X 7 = 560 + 63 = 623. However, add
ing 560 and 63 mentally might produce a bit of hesita
tion. Why not, then, consider 89 to be 90 - 1, rather 
than 80 + 9? Now we can say that 89 X 7 = (90 -

1 )  X 7 = 630 - 7  = 623. 
Most people would find it easier to deal with 630 - 7 

than with 560 + 63, and the left-to-right method allows 
such people to make the necessary shift from addition 
to subtraction. 

In the same way, 49 X 8 = (50 - I )  X 8 = 400 -
8 = 392. And 38 X 3 = ( 40 - 2)  X 3 = 120 - 6 = 
114. 

Of course, you can pass this system on to numbers 
with more than two digits. The problem 546 X 6 can 
be expressed as (500 + 40 + 6) X 6 � 3000 + 240 + 
36 = 3276. Or, 329 X 5 = (300 + 30 - 1) X 5 = 

1500 + 150 - 5 = 1645. 
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If you try this technique on larger numbers, you may 
well find it difficult to keep all the partial products in 
your head while trying to sum them. Enough practice 
will make it easier to do so but if you would rather not 
devote the necessary time to such practice, all is not yet 
lost. You can use pencil and paper after all. 

In multiplying 7625 X 7, you can mentally break up 
7625 into 7000 + 600 + 20 + 5, and multiply each of 

C) 
these portions by 7. You then write down the partial 
products only: 

49,000 
4,200 

140 
35 

53,375 

You may still find this faster than the usual method 
taught in school. 

MAKING THE MULTIPLIER A SUM 

SO far, all the multiplications I have discussed have 
involved at least one number that consisted of a single 
digit (plus one or more zeros, on occasion ) .  What if 
both numbers in a multiplication have at least two digits 
other than zero? What if we wanted to multiply 48 X 
I6? 

There are a number of ways of tackling such a prob
lem. The first that might occur to you is to break up 
both numbers into single-digit numbers, with or with-



56 Quick and Easy Math 

out zeros. The number 48 can be written 40 + 8 and 
the number 16 can be written 10 + 6. But once that is 
done, how do we go about multiplying 40 + 8 by 
IO + 6? 

In algebraic notation, we are )asking how one multi

plies ((j + b ) c +  d) .• The answer is DC + ad + be + 

bd. In other words, each part of the first sum must 

be multiplied in turn by each part of the last sum. Then 

all the multiples must be added together. 

In the case of 48 X 16, we might write matters out 
in full as follows: 

40 + 8 

lXl 
10 + 6 

The arrows show the combinations we must multiply. 

( In fact, the crossed arrows in the center are thought by 

some people to have given rise to the symbol X for mul

tiplication. This method, in all likelihood, was used in 

ancient times quite often. ) 

If we carry out the four multiplications indicated by 

the arrows, we have 40 X 10 = 400, 40 X 6 = 240, 8 X 

10 = 80, and 8 X 6 = 48. We then add 400 + 240 + 

80 + 48 and get 768 as the answer. It doesn't matter in 

which order we do the multiplications or in which order 

we add the multiples. The answer will always be 768. 

Until you have considerable practice you won't find 

this particularly easy. You have to remember four num

hers and add them in your head. If you multiply a 

l .� 
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three-digit number by a two-digit number, as in 752 X 
34, you have to remember six partial products. The 
multiplication can be written ( 700 + 50 + 2)  X (30 + 
4) .  If we multiply each of the numbers in the first 
parenthesis by each of the numbers in the second, we 
get the follOwing list of partial products: 21,000 + 
2800 + 1500 + 200 + 60 + 8 and that equals "25,568. 
If you multiply a three-digit number by a three-digit 

b number, you will have nine partial products to remem
ber (or to write down. ) 

This system works, but it is not a good example of 
quick and easy math. What we must look for, then, is 
a simpler method. We might find one, perhaps, which 
w�uldn't work in every single case, but which would 
work in certain cases, at least. Well, that's better than 
nothing. 

Consider that next to multiplying by 0 the easiest 
form of multiplication is that of multiplying by 1. Any 
number multiplied by 1 remains itself. This means that 
56 X 1 = 56 and, remembering our zero rule, 56 X 10 = 

500, 56 X 100 = 5600, and so on. 

Suppose, then, that we can break up the multiplier 
into the sum of two or more . numbers, each of which 
involves only a single 1, plus one or more zeros. For 
example, if we are multiplying a number by 11, we can 
express the 11 as 10 + 1. We then multiply the number 
first by 10, then by I, and add the multiples. But it is 
so simple to multiply by 10 or by 1, that we don't have 
to break up the other number at all. 

\ 
� �. , " 
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For instance, 54 X 11 is equal to 54 X ( 10 + 1 ) or 

54 X 10 plus 54 X 1. You can see at a glance that this 

is 540 + 54 = 594. In the same way 62 X 11 = 620 + 
62 = 682. We have here the case of the multiplication 

of a two-digit number by a two digit-number where 

only two multiples, not four, need be added. Further

more, the two multiples are closely related, differing 

only by a zero, which makes matters all the better. 

This same device will work for even larger numbers, 

so that 322 X 11 = 3220 + 322 = 3542. For the larger 

numbers you may want a piece of paper to jot down the 

partial products; 

Sometimes you will read the following rule offered 

for the multiplication of a two-digit number by 11:  add 

the two digits and place the sum between them. Thus, 
5 + 4 = 9, so 54 X 11 = 594; 3 + 6 = 9, so 36 X 11 = 

396; 6 + 2 = 8, so 62 X 11 = 682. This is all right as 
far as it goes, but it only works for pairs of digits that do 

not add up to more than 9. 
Suppose that you wanted to multiply 75 X 11. The 

sum of 7 and 5 is 12. Someone who follows rules with

out understanding them may say that 75 X 11 = 7125 

and be quite wrong. If, instead, he remembers that 11 
may be expressed as 10 + I, he will decide that 75 X 

11 = 750 + 75 = 825. That is �e correct answer. 

Of course, since 11 is the simplest two-digit number 

that does not contain zero, you may think that the 

ability to multiply quickly by 11 is not much of a vic

tory. Thi,nk of the method, however, as representing a 
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general principle. If it works for 11, it will work for 

101, or 1001, or 10,001. 

We can break 101 into 100 + 1. Then 62 X 101 be

comes (62 X 100 ) + (62 X I ) ,  or 6200 + 62 or 6262. 

And 403 X 101 is equal to 40,300 + 403, or 40,703. You 
can see for yourself how to multiply by 1001, 10,001, 

and other numbers of this type. 

�, for that matter, suppose that you want to multiply 

by 111. This breaks up into 100 + 10 + 1. Now, then, 

68 X 111 is equal to 68<>q + 680 + 68, or 7548. 

Where only 1's and O's are involved in the original 

number, the school method of multiplication is not very 

difficult, to be sure, and converting the multiplier into a 

sum does not save much time. However, the principle, 

once understood, can be used for numbers that contain 

neither a 1 nor a 0, provided subtraction rather than 

addition is used. 

Suppose you wanted to multiply 7249 X 9. The usual 

method is to say that 9 X 9 = 81, put down 1 and carry 

8; 4 X 9 = 36, plus 8 is 44, put down 4 and carry 4; and 

so on. But suppose we look upon 9 as equal to 10 -

1. That means that 7249 X 9 = 7249 X ( 10 - 1 ) = 

(7249 X 10 ) - (7249 X I) = 72,490 - 7249 = 65,241. 

You'll want to use paper and pencil, perhaps to make 

the subtraction, but even so that would be much quicker 

than the multiplication. All you ever do is add a zero 

to the number and subtract the number itself. Thus, 

11,476 X 9 = 114,760 - 11,476 = 103,284. 

This device of changing a multiplier into a difference 



60 Quick and Easy Math 

rather than a sum is even handier when that multiplier 

is 99. If you are trying to multiply 48 X 99 and want to 

avoid long multiplication, your first thought might be 

to convert 99 into a sum 90 + 9. This means you have 

to multiply 48 first by 90, then by 9. Actually, you need 

multiply 48 by 9 only. This comes to 432. Multiplying 

48 by 90 gives the same product with a 0 added: 4320. ) 
Adding, 4320 + 432 = 4752. This is easier than long 

multiplication, but perhaps not very much easier. 

Suppose you reverse the multiplication and make it 

99 X (40 + 8 ) ,  breaking up the 48 into a sum. This 
strikes me as still harder. Thus, 99 X 4 = 396 and 99 X 

40 = 3960. Again 99 X 8 = 792. Finally, 3960 + 792 = 
4752. 

But suppose that you decide to change 99 into a dif

ference and make it 100 - 1. Now 48 X 99 becomes 48 

X ( 100 - 1 )  or (48 X 100) - (48 X l ) ,  or 4800 - 48, 

or 4752. I think you will agree that this is by far the 

easiest of the three possible shortcuts. 

It is important to realize, by the way, that there are 

no hard and fast rules for handling an arithmetical 

operation. There is usually a variety of routes you can 

take to the correct answer. Sometimes as in the case 

I've just given, one route is so much simpler than others 

you might think of that there is no question in your 

mind as to which to take. Anytime you must multiply 

by 99, you will automatically consider it as 100 - 1. 

Sometimes there may be some doubt. Consider the . 

following: 72 X 9. You might say to yourself that one 
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should obviously treat 9 as 10 - 1. The answer would 

then be 72 X ( 10 - 1 ) or 720 - 72 = 648. On the 
other hand, it might have occurred to you to write 72 
as 70 + 2. The problem then becomes (70 + 2)  X 9 = 
630 + 18 = 648. 

In the first alternative it is childishly easy to multiply 

by 10 and 1; but the subtraction 72fJ - 72 requires a 

little thought. In the second alternative, multiplying by 

9 isn't quite as .  easy as multiplying by either l() or 1. 

However, the partial products yield an addition, 630 + 
18, which is very simple. Which alternative ought you 

to use? 

I don't think there is any hard and fast decision here. 

Use the alternative with which you are most comfor

table. Each person has his own way of thinking, his 
own mental comforts and dislikes. One person might 

not mind a difficult subtraction if he can avoid multiply

ing by 9, while another isn't the least bothered by mul

tiplication by 9, provided he can avoid a subtraction 

that involves carrying. 

Suit yourself. 

Changing a multiplier into a sum or difference involv
ing a 1 can be useful even for numbers that are not near 

the very simple 10, 100, or 1,000 point. If you wish, for 

instance, to multiply 34 X 61, you might note that 61 = 
60 + 1. Multiplying 34 X 60 can be carried through by 

multiplying 34 X 6 and adding a zero. Since 34 X 6 = 

204, then 34 X 60 = 2040. Now we must add to that 

34 X 1, which is, of course, 34. So 2040 + 34 = 2074. 
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More startling, you can multiply 34 X 59 without 
trouble ( even in your head, if you choose ) ,  if you con
sider 59 = 60 - 1. The problem becomes 34 X ( 60 -
1 )  = 2040 - 34 = 2006. 

, DOUBUNG 

Next to multiplying ' by 1 and by 0, it is easiest to 
J;Ilultiply by 2. We have more occasion to multiply by 2 
( that is, to double a number) than to multiply by any 
number higher than 2. Furthermore, as youngsters we 
early learn to double numbers. Almost the first addi
tions children learn actually are doublings. 

"One and one is two," they will come home, chanting. 
"two and two is four; three and three is six.:' Obviously, 
the sum of any nUIftber with itself is �al to double 
that number, or to that number multiplied by 2. In 
algebraic notation, n + n = 2n = n X 2. 

As a result of such early training, we can double even 
a large number without trouble and can do so despite 
the fact that this might involve carrying. Most of us 
can say 36 X 2 = 72 or 49 X 2 = 98 or even 274 X 2 = 
548 rapidly and without batting an eye. 

This means that it should be fairly easy to multiply 
any two-digit number ( and sometimes larger ones ) by 
12, if we consider 12 as equal to 10 + 2. To multiply a 
number by 10, we just add a zero; to multiply by 2 we 
just double; and then we add the two results. Thus 
34 X 12 = 34 X ( 10 + 2)  = 340 + 68 = 408; and 81 X 

Ir 
��/.: !",: 
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12 = 810 + 162 = 972. For that · matter, 432 X 12 = 
4320 + 864 = 5184. 

In the same way, provided that we switch to subtrac
tion, we can multiply by 98, which we can represent as 
100 - 2. We can then say that 34 X 98 = 34 X ( 100 -
2) = 3400 - 68 = 3332. 

Other combinations are possi�le, too. If the multi
plier is 21, that can be expressed lis 20 + 1. To multiply 
by 20 we need only double and add a zero. Hence 52 X 
21 = 52 X ( 20 + 1 )  = 1040 + 52 = 1092. As for 19, 
that is 20 - 1. Therefore. 64 X 19 = 64 X (20 - 1 )  = 
1280 - 64 = 1216. 

Doubling ( or multiplying by 2)  is so much simpler 
than multiplying �y any number higher than 2 that we ' f' ,. 
ought to n· -ke use of it whene\fer we can. Sometimes 
doing this enables us to multiply by numbers that would 
otherwise be tricky to handle. 

Consider the number 16 as multiplier. If we wish to 
represent it as a sum or a difference, we can write it as 
10 + 6 or as 20 - 4. If we do,this we are involved with 
multiplication by 10 or by 20, which is easy, but also 
with multiplication by 6 or by 4, which is less easy. 

Thus, 72 X 16 will become 72 X ( 10 + 6 )  = 720 + 
432 = 1152. Or 72 X 16 = 72 X ( 20 - 4 )  = 1440 -'-'-
288 = 1152. Neither alternative is very easy. Is there 
any way in which we can do better? 

Let's consider first if we must write multipliers only 
as sums and differences. Can they be represented as 
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products? For instance, 12 is not only 10 + 2, it is also 
4 X 3. H we are faced with 34 X 12, we might decide 
to tackle it as 34 X ( 10 + 2),  but might we not also 
consider it to be 34 X ( 4  X 3 ) ?  We know how to han
dle the former, but how do we handle the other? 

It turns out that if we multiply a number by 4, then 
multiply the product by 3, we get the same answer as 
we would have gotten if we multiplied the original 
number by 12. ( In algebraic notation, if be = d, then 
abe = ad. ') This means that we can always write an 
inconvenient multiplier as the product of two smaller 
numbers and then multiply by first one and then the 
other. It may well be that multiplying twice by small 
numbers would be easier than multiplying once by a 
large number. 

Thus, 34 X 12 becomes 34 X 4 X 3. First 34 X 4 = 
136; then 136 X 3 = 408. 

This probably strikes you as not much of an improve
ment and certainly not so easy as saying 34 X 12 = 
34 X ( 10 + 2 )  = 340 + 68 = 408. But we must not 

conclude from this that multipliers ought always to be 
considered as sums or differences and never as products. 

Consider 16 again, where we have decided that using 
it as either 10 + 6 or 20 - 4 does not make matters 

particularly easy. What if, instead, we considered 16 
to be 2 X 2 X 2 X 2? In that case, if we wanted to 
multiply a number by 16, we could multiply it by 2, 
multiply the product by 2, multiply that product by 2, 
and multiply that product by 2. In other words, we 
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would double the original number four successive times. 
Doubling is so easy that four doublings might well be 
done more quickly than a single multiplication by 16. 

H we want to solve 23 X 16, we can double 23 to 46, 
double again to 92, double a third time to 184, and 
double a fourth time to 368. 

H we wish, we can,_ without trouble, double 368 to 
736 and get the answer to 23 X 3Z:( since 32 is 16 X 2 ) .  

Another doubling brings u s  to 1472, which is 23 X 64, 
and still another doubling yields 2944, which is 23 X 
128. 

We can summarize this as follows : 

One doubling is multiplication by 2. 
Two doublings is multiplication by 4. 
Three doublings is multiplication by 8. 
Four doublings is multiplication by 16. 
Five doublings is multiplication by 32. 
Six doublings is multiplication by 64. 
Seven doublings is multiplication by 128. 

You can continue this as far as you like, but it is the 
small numbers as multipliers that are most useful. 

Nor need you work only with doubles of 2 itself. You 
can double and redouble any answer you have obtained 
by a multiplication according to some other method. 
Let's go back to 34 X 12, where we wrote 12 as 4 X 3 

and found the results not entirely satisfactory. But, as 
I have already shown, it is not necessary to write a 
multiplier as the product of two numbers, it can be the 
product of any number of numbers. Thus, 12 can not 
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only be written as 4 X 3 but also as 2 X 2 X 3. There

fore 34 X 12 = 34 X 2 X 2 X 3. 

Now it makes sense when we are multiplying a num

ber by a series of multipliers to make use of the largest 

multiplier first. As we multiply, the original number 

will get larger and larger, and if we take care of the 

largest multiplier first, that will be done while the origi

nal number is at its smallest. 

If we say 34 X 2 X 2 X 3, we double 34 twice, first to 

68 next to 136, and we must then solve 136 X 3. 

If, on the other hand, we write the problem 34 X 3 X 

2 X 2, it is only 34 that we must multiply by 3 and that 

is simple, for the answer is 102, as you can see quickly. 

Now we have 102 X 2 X 2, and doubling it twice we 

have first 204 then 408. You will agree, I think. that it 

is almost as easy to work out 34 X 12 by considering it 

to be 34 X 3 X 2 X 2 as it would be to work it out as 
34 X ( 10 + 2 ) .  , 

Again, take 13 X 28. You can express 28 as 7 X 2 X 2. 

the largest multiple being placed first. Therefore 13 X 

28 = 13 X 7 X 2 X 2. It may be that you remember 

that 13 X 7 = 91 because you have memorized the mul

tiplication table up to 20 X 20. Or perhaps you see that 

13 X 7 = ( 10 + 3) X 7 = 70 + 21 = 91. In either case, 

you see that 13 X 7 X 2 X 2 = 91 X 2 X 2. You need 

simply double 91 twice, first to 182, then to 364, and 

that is your answer: 13 X 28 = 364. 

Remember, though. that you are not condemned to 

one particular line of attack. It may be actually simpler 

\.�,: . " j' !', J 
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not to write a multiplier as the product of a number of 

small multiples. Suppose we are dealing with 35 X 24. 

we can write 24 as 3 X 2 X 2 X 2. Therefore 35 X 24 = 

35 X 3 X 2 X 2 X 2. First 35 X 3 = 105, and if we 

double that three times (:6rst to 210, then to 420, and 

finally to 840) ,  we can conclude that 35 X 24 = 840. 
But we can also consider 24 as 12 X 2. That means 

35 X 24 = 35 X 12 X 2. As for 35 X 12, we can see at 
a glance that it is equal to 35 X ( 10 + 2)  = 350 + 
70 = 420. We need double that only once to 840, and 
there is the answer again. You might well consider this 
second alternative the easier of the two. I think I would 
myself. Incidentally, doubling 840 to 1680 and then to 
3360, shows us that 35 X 48 = 1680 and that 35 X 96 = 
3360. 

Another example of alternate methods arises if we are 

going to multiply 71 X 22, for instance. You might 

decide that 22 can be considered as 11 X 2. Therefore 

71 X 22 = 71 X 11 X 2. It is easy to see that 71 X 11 

equals 710 + 71 = 781, and doubling that gives us 

1562 as our answer : 71 X 22 = 1562. 

On the other hand, we might say that 71 X 22 = 71 X 

(20 + 2) = 1420 + 142 = 1562. Suit yourself. 

CHECKING MULTIPLICATION 

Since multiplication is a fonn of addition, it is not 

surprising that the methods of checking that apply to 

addition also apply to multiplication. 

For instance, if we perfonn addition of a series of 
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numbers downward, we can easily check the answer if 
we perform the same addition upward. This can be 
done in multiplication also. Consider the following 

multiplication: 

75,812 
X 2,749 

682 308 
3 032 48 

53 048 4 
151 624 

208,387,188 

It looks pretty, but is it correct? You might check by 

repeating the multiplication a second time, following 

exactly in the footsteps of the first; but if you have made 

a mistake there is a reasonable chance that you will re

peat it. It would be better if you repeat the multiplica

tion reversing, this time, the position of the multiplicand 

and multiplier. This gives you: 

2,749 
X 75,812 

5 498 
27 49 

2 199 2 
13 745 

192 43 

208,407,188 

The answers do not check. The product is 208,387,188 

in the first multiplication and 208,407,188 in the sec-

:.;;' 
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ond. In one or the other, a mistake has been made. 

It is necessary to go over both to see which answer is 

the correct one. (Perhaps neither is correct. )  If the 

two products had come out the same, we might have 

been reasonably certain that no mistake was involved. 

Here is where casting out nines comes into its own 

as a checking process. It is much more useful in multi
plication than in addition. A multiplication problem 

usually takes up a considerably longer time than an 

addition problem, so that it is much more time-consum

i,ng to check by repeating the problem with the numbers 

rearranged. Casting out nines, however, takes no more 

time in multiplication than in addition. 

In multiplication, only the multiplicand, multiplier, 

and product need be involved in casting out nines, and 

we need not worry about the partial products. We can 
write the first multiplication simply like this: 

75,812 5 
X 2,749 4 

208,387,188 o 

In the multiplicand, 75,812, we can cast out 7 + 2 

and 8 + 1, leaving only the 5 as the digit sum. In the 

multiplier, 2749, we can cast out the 2 + 7 and the 9, 

leaving only the 4 as the digit sum. In the product, 

. 208,387,188, we can cast out 2 + 7 and 1 + 8, leaving 
8 + 3 + 8 + 8 = 27. But 2 + 7 can be cast out so that 

the digit sum of the product is O. 
Here the digit sums must be manipulated as in mul-
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. tiplication, of course, and we must say that 5 X 4 = 20 
and 2 + 0 = 2. Therefore 5 X 4 - 2 and 5 X 4 does not 
equal zero. There is, therefore, a mistake in the multi
plication above. 

Let's try the other one: 

2,749 
X 75,812 

208,407,188 

4 
5 

2 

The numbers 2749 and 75,812 have the digit sums 

of 4 and 5 respectively, as before. The new product, 

208,407,188, can be simplified by casting out 2 + 7 and 

1 + 8, and now, ignoring the zeros, we sum the digits 
8 + 4 + 8 = 20 and 2 + 0 = 2. As far as the digit sums 
are concerned, we have 4 X 5 = 2. But 4 X 5 = 20 and 

2 + 0 = 2. The digit-sum manipulation is a correct one 

and the answer is in all likelihood correct. ( I  will leave 

it to the reader to see where the exact mistake is in the 

first multiplication. ) 

5 

Division 

THE PERILS OF DIVISION 

JUST as subtraction is the reverse of addition, so divi

sion is the reverse of multiplication. Since we know 

that 5 X 3 = 15, we can tum that about, replace the 

multiplication sign by a division sign ( +  ) ,  and say that 

15 + 3 = 5. 

Also, since 5 X 3 = 3 X 5, we can say that 3 X 5 = 

15, too. In that case 15 + 5 = 3. 

( In algebraic terminology, we can say that if a X  b = 

c, then c + b = a and c + a = b. In algebra, as I said 

earlier .(n the book, multiplication signs are
, 
omitted. 

Then, too, division is usually indicated by putting the 

two symbols involved in division in the form of a frac

tion. We can therefore say that if ab = c, then cIa = b 

and c/b = a) .  

In the example 15 -+- 3 = 5, the first number, 15, is the 

"dividend" (from a Latin word meaning "that which is 
to be divided") .  The number 3, which does the divid

ing, is, naturally, the "divisor," while the number 5, 

which is the answer to the problem, is the "quotient." 

"Quotient" is from a Latin word meaning "how many 
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times?" I suppose it was customary for teachers to ask 
"How many times does 3 go into 15?" The answer to 
"how many times?" is, obviously, the quotient. 

Just'as multiplication shares some of the properties of 
addition, so division shares some of the properties of 
subtraction. In addition and multiplication it does not 
matter how you arrange the numbers being added or 
multiplied:  a + b = b + a or ab = ba. In . subtraction 
and division, however, the order of the numbers does 

matter. It is important to realize that a - b is not equal 
to b - a, and a -+- b is not equal to b -+- a. 

, Thus, 5 - 3 
. 
2, but 3 - 5 equals what? For a 

proper answer we must introduce negative numbers. 
Again, 15 -+- 5 = 3, but 5 -+- 15 equals what? For a 
proper answer here, we must introduce fractions. 
Therefore, if subtraction exposes us to the perils of 
negative numbers, division exposes us to the perils of 
fractions. Actually, the perils of fractions are greater 
than those of negative numbers. Once you have mas
tered a few rules, negative numbers can be handled in 
much the same way that positive numbers can be han
dled. Furthermore, it is easy to avoid negative numbers. 
As long as you remember to keep the minuend from 
being smaller than the su}:>trahend you will never run 
into negative numbers. For this reason it is possible to 
ignore negative numbers in grade school, and it is even 
possible for me to ignore them in this book. 

The manipulation of fractions, unfortunately, is rather 
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more complicated than that of either positive or nega
tive numbers. Even the simple addition of fractions can 
be complicated, and if one deals with division, fractions 
are bound to come. If the divisor is larger than the 
dividend, the quotient is always a fraction. Even if we 
are careful to keep the divisor from being larger than 
the dividend, we can't avoid them. For example, 
16 -+- 5 = 3% and 14 -+- 5 = 2¥6, and both quotients 
contain fractions. In fact, very few divisions come out 
"even"; very few divisions, that is, give quotients that 
are whole numbers and do not contain fractions. 

There is no number greater than 1 that will evenly 
divide most numbers. The closest is the number 2, 

which will evenly divide half the numbers you can 
write. The number 3 will evenly divide only 1 out of 
3 numbers; the number 4 will evenly divide only l out 
of 4 numbers; the number 5 will evenly divide only 1 
out of 5 numbers, and so forth. The larger the number 
used as divisor, the fewer numbers it will go into 
evenly and the more likely we are , to find ourselves 
with fractions. 

It is for this reason that fractions cannot be avoided 
in grade school as negative numbers can be. Nor can 
fractions be ignored in this book, although I will do the 
best I can and leave them for the final chapter. 

Because fractions are more difficult to manipulate 
than whole numbers, schoolchildren find them almost 
always painful at first. They've managed whole num-
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bers, feel pleased at having been able to do so, and 

now suddenly find that there is such a thing as "higher 

mathematics." Very often this disillusionment lasts the 

rest of one's life, and a fear of fractions is retained into 

adulthood. 

This fear more than anything else worries people 

about division. The possibility that a division will not 

come out even is something that produces nervousness. 
There is always a certain fear that a fraction will spring 

out suddenly, and a certain relief when a division does 

come out even and no fraction appears. 

It might therefore be comfortable, in doing divisions, 

if you could tell in advance, and with very little trouble, 

if the problem were to come out even or not. . It would 

make very little difference arithmetically, but it might 

make a great deal of difference psychologically, and that 

is important. 

Now let us say that if b + a gives a whole number as 

quotient, that b is divisible by a. In other words, 15 
is divisible by 3, but 16 and 14 are not divisible by 3. 
What we want, then, is some easy test for "divisibility" 

where particular numbers are divisors. For instance, if 
3 is the divisor, we need a test for divisibility by 3, so 

that we can tell at a glance that 15 is divisible by 3, and 

that 45 is, and that 75 is, but that 25 and 35 are not, and 

that 65 and 85 are not, either. 

To seek for such tests, let's tackle the possible divisors 

one by one, beginning with 1. ( You might think, Why 

not begin with O? However, one of the most important 
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rules in mathematics is this: never divide by 0 under 

any circumstances. It is not allowed I Don't even ever 

allow yourseH to think of it! ) 

DMSmILITY BY 2, 5, AND 10 

Dividing by 1 is no problem, for it leaves the number 

unchanged just as multiplying by 1 does. In other 

words, 5 + 1 = 5, 17 + 1 = 17, 365 + 1 = 365, and so 

on. All numbers are divisible by 1 and there is usually 

no point in even involving oneself in , such a diviSion, 

since no change is introduced. 

The first real problem begins with 2. Now remember 

that I said that division was the reverse of multiplica

tion. In other words, if 5 X 2 = 10, then 10 + 2 = 5. 
This means that any whole number obtained by mul

tiplying another whole number by 2 is itself divisible 

by 2. Thus, 17 X 2 = 34 and 18 X 2 = 36, therefore 

both 34 and 36 are divisible by 2, for 34 + 2 = 17 and 

36 + 2 = 18. However, 35 is not divisible by 2 because 

there is no whole number which, when multiplied by 

2, gives 35. Try to find one. 

So now we see a possible way to list all the numbers 

that are divisible by 2. We simply multiply all the 

numbers in tum by 2 and list the products: 

O X 2 = 0  
l X 2 = 2  
2 X 2 = 4  
3 X 2 = 6  
4 X 2 = 8  
5 X 2 = 10, etc. 
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But if we look at the products, we see that we have a 

series of numbers that begins with 0 and adds 2, then 

adds 2 again, then adds 2 again, and so on. We are 

"counting by twos." We can therefore list all the num

bers divisible by two, simply by continuing this count

ing by twos, without bothering actually to multiply. 

The numbers divisible by 2 turn out to be: 

o 
10 
20 

2 
12 
22 

4 
14 
24 

6 
16 
26 

8 
18 
28, etc. 

No matter how far you continue, you will notice that 

every number divisible by 2 ends with either a 0, a 2, 
a 4, a 6, or an 8; or are those digits themselves. Nor is 

any such number skipped. Every number ending with 

0, 2, 4, 6, or 8 is included in the list, as far as you care to 

carry the list. These numbers are the "even numbers" 

and they are called that because they are evenly di

visible by 2. We learn to tell the even numbers at quite 

an early age. H I were to state the rule that all even 

numbers are divisible by 2 you would have no trouble 

in that respect afterward. 
The digits 1, 3, 5, 7, 9 are not even numbers. Neither 

is any larger number that ends in one of those digits. 
Those numbers that are not even are "odd numbers" 
and we can tell an odd number at a glance, too. All 
odd numbers are not divisible by 2. 

You will notice, by the way, that 0 is divisible by 2, 
for 0 -7- 2 = O. In fact, 0 is divisible by any number, 
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for 0 -7- 5 = 0; 0 -7- 17 = 0; 0 -7- 562 = 0; and so forth. 

However, the quotient is always 0 in these cases, so 

such divisions serve little purpose. 

( It is important to remember that you can divide 0, 
but you cannot divide by it. Or we can put it this way: 

o can be a dividend, or a quotient, but never a divisor. ) 

The case of divisibility by 2 is so familiar to all of us 

that you may wonder why I have spent so much time on 

it. My reason for doing so is that the system I used, 

which is so easily understood in the case of 2, will also 

apply to working out rules for divisibility by other 

numbers. To decide what numbers are divisible by 3 or 

by 5 or by 18, we start with 0 and list the numbers, 

counting by threes, by fives or by eighteens, respec

tively, and see if we can find a general rule. ( To be sure, 

we might not. ) 

Take 10 as an example. H we start with 0 and count 

by tens, we have 0, 10, 20, 30, 40, 50, 60, and so on. 

Every member in the list ends with a zero, and no such 

numbers are skipped. Therefore we can say that any 

number ending with a zero is divisible by 10. We can 

also say that any number that does not end with a 0 
is not divisible by 10. This is true because in starting 

with 0 and counting by tens we never hit any number 

but those that . end with zero. 

Notice that a number ending with 0 is also an even 

number and therefore divisible by 2. This is perfectly 

all right, for there is no reason why a particular number 

might not be divisible by more than one divisor. For 

'�  

. . " 

. ,  

'J , ' J . , 

, " 
, 

, � 1 . . . 



78 Quick and Easy Math 

instance 20 -;- 10 = 2 and 20 -;- 2 = 10. The important 

point is that all numbers divisible by 10 are also divisible 

by 2, and this follows from the rules we have worked 

out for divisibility. 

Again, try counting by hundreds : 0, 100, 200, 300, 
and so on. You see at once that any number ending in 

00 is divisible by 100, but such a number also ends in 

one 0 and is therefore divisible by 10; and, of course, 

also by 2. You can see for yourself that any number 

ending in 000 is divisible by 1,000, by 100, by 10, and 

by 2. ( It may also be divisible by other numbers, too, 

and in fact, is. ) 

Or try 5. In counting by fives, we have 0, 5, 10, 15, 
20, 25, 30, 35, 40, and so on. Every number ends either 

in a 5 or a 0, and no such number is skipped. There

fore, any number that ends with either a 5 or a 0 is 

divisible by 5. 
This means that any number that ends in 0 (or 00, or 

000, and so on) is divisible by 5 as well as by 10 and 

by 2. 

plVIsmn.ITY BY 4 AND 8 

Rules for divisibility by 2, by 5, and by 10 all share 
this in common: it is only necessary to look at the last 

digit of the number. 

The rules are not quite so easy for the other digits. 

Consider 4, for instance. If we start with 0 and count 

by fours, we have: 
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o 4 8 12 16 
20 24 28 32 36 
40 44 48 52 56, etc. 

Here all the numbers are even, but some of the even 

numbers are skipped ( half of them, in fact ) .  You go 

from 0 to 4, skipping 2; then you go from 4 to 8, skip

ping 6; then from 8 to 12, skipping 10; and so on. We 
can deduce two things from this. First, if a number 

ends in an odd digit, it is not divisible by 4. Second, if 
a number ends in an even digit, it may be divisible by 

4 and it may not, the odds being fifty-fifty. 

Let's go further, then. If we continue counting by 
fours, we will eventually reach 100 ( try it and see ) ;  past 

that we go on to 104, 108, 112, 116, 120, 124, 128, and 

so on. The last two digits, as you see, repeat the original 

series. That will bring us to 200 and carry us forward 

to 204, 208, 212, etc., then to 300, 304, 308, 312, etc., 

then to 400, and so on. The last two digits will always 

be found in the original series. Therefore, if we know 

that 24 is divisible by 4, we also know that 524 is 

divisible by 4, as well as 1824, 364,024, and 999,999,924. 
To test divisibility by 4, consequently, it is enough to 

look at the last two digits of a number ( however long ) 

and see if that is divisible by 4. You can test that by 
actually dividing it by 4, if you haven't memorized the 

series of multiples of 4 from 0 to 100. 
Perhaps you hesitate at dividing by 4. H you are 

faced with the number 1576 and wish to know if it is 

divisible by 4, you have to tell whether 76 is divisible 
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by 4, and you may find such a test not quick and easy 
enough. In that case, look at it this way. Since 
2 X 2 = 4, it follows that if a number is multiplied by 
2 and the product is again multiplied by 2 it is as 
though the original number were multiplied by 4. 

Since division is the reverse of multiplication, it also 
follows that if a number is divided by 2 and the quo
tient is divided again by 2 then this is as though the 
original number had been divided by 4. 

I'll give you an example to sharpen the point. We 
know that 36 � 4 = 9. What, then, if we have 36 

twice? Well, 36 � 2 = 18 and 18 -+- 2 = 9. The answer 
\'. 

is 9 in either case, and this will work in any example 
you choose. ( Algebraically we can say that ( alb) Ie = 
a/be. ) 

To check, then, if a number is divisible by 4, one need 
only see if it can be divided by 2 twice. It is much 
easier to divide by 2 than by 4 (simply because, as in 
multiplying by 2, we come up against division by 2 so 
much more often than any other kind of division that 
we automatically get more practice ) .  

Now let us look at 1576 again. It is an even number 
so it may be divisible by 4. We concentrate on 76 and 
divide by 2 to get 38, then divide that by 2 to get 19. 

We were able to divide by 2 twice which means that 76 

is divisible by 4 and that the whole number therefore 
is divisible by 4. 

In fact, we don't even have to divide by 2 twice. If 
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the first division by 2 gives us a quotient that ends with 
an even number, we know automatically that that quo
tient is also divisible by 2 and that the original number 
is divisible by 4. On the other hand, if the first division 
gives us an odd number then the quotient is not di", 
visible by 2 and the original number, although divisible 
by 2, is not divisible by 4. 

The number 14,154 ends with the digits 54. On di
vision by 2, we get 27, an odd number; hence, 14,154 

is not divisible by 4. H it were 14,152, division by 2 of 
the last two digits 52 would give us 26, an even number. 
Hence, 14,152 is divisible by 4. 

The number 8 as divisor carries matters one step 
further. Let us start with 0 and count by eights: 

o 
40 
80 

8 
48 
88 

16 
56 
96 

24 
64 

104 

32 
72 

112, etc. 

Notice that you do not land evenly on 100 as you do in 
the case of adding by fours. Between 100 and 200, the 
last two digits are different from those we found be
tween 0 and 100. We have 104, 112, 120, 128, 136, and 
so on. 

The number 200, however, is divisible by 8, and 
would fall in the series if you continued it. Mter that, 
the final digits would repeat as they were in the group 
below 100. You would have 208, 216, 224, 232, and so 
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on. Then 300 would not fall in the series, while 400 
would; 500 would not fall in the series, while 600 would, 

and so on. 

In some groups of one hundred, certain endings 

would represent divisibility by 8 and in other groups 

other endings would. The two groups would alternate. 
Thus, 104, 304, 504, and 704 are divisible by 8, but 

204, 404, 604, and 804 are not. Again, 232, 432, 632, 
and 832 are divisible by 8, but 132, 332, 532, and 732 
are not. 

We can set up two rules for divisibility by 8, accord

ing to whether the digits in the hundreds column is odd 

or even ( counting 0 as even ) .  If the hundreds digit is 

even, the last two digits must be divisible by 8. 1£ the 

hundreds digit is odd the last two digits must be di

visible by 4, but not by 8. And, of course, if the last two 

digits are not divisible by 4, you need look no further; 

the number is then not divisible by 8, no matter what 

the hundreds digit is. 

However, such a double-edged rule is quite compli

cated, too complicated to make a quick-and-easy mathe

matician happy. Is there anything better? 

1£ you continue the series of counting by 8's far 

enough, you will come to the number 1000, which is 

divisible by 8. Mter that you will get 1008, 1016, 1024, 

1032, and so on. Then you will eventually hit 2000 and 

follow with 2008, 2016, and so on. You will hit 3000, 

4000 and all the rest of that sort. 

This means that the last three digits of any number 
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divisible by 8 will duplicate the series running from 0 

to 1000. If those last three digits are divisible by 8 then 
the whole number is divisible by 8. Since 888 is di

visible by 8, the number 1888 is divisible by 8, and so 

are 2888, 5888, 72,888, and 9,345,811,888. 
Since 8 = 2 X 2 X 2, we can check divisibility by 8 

by dividing three times by 2. Suppose we have the 
number 21,911. It is odd so it cannot be divisible by 8. 

( Incidentally, just a point - no odd number can be 

divisible by any even number. )  How about 21,918? 

It is even, so it may be. Concentrate on the last three 

digits : 918. Divide by 2 and get 459. That is odd and 
the process stops. What about 21,916? Well, 916 -+-

2 = 458 and 458 -+- 2 = 229 and the process stops. Still 
no good. We must be able to divide by 2 three times. 
What about 21,912? Well, 912 -+- 2 = 456; 456 -+- 2 = 
228; and 228 -+- 2 = 114. The triple division by 2 is pos

sible, so 21,912 is divisible by 8. 

1£ a triple division strikes you as lengthy, you can 

shorten the procedure but you must be prepared to 

divide by 4. Remember that 8 = 4 X 2. That means 

that a number that is divisible by 8 is divisible by 4, giv

ing a quotient that is divisible by 2 and is hence an even 

number. Consider the number 8,555,111,844. Is it di
visible by 8? Take the last three digits 844 and divide 

by 4. The answer is 211, an odd number. The original 

number is not divisible by 8. If the number had been 
8,555,111,848; we would have found that 848 -+- 4 = 

212, an even number, and now the Original number 

, 
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would be divisible by 8. The rule is : if you can divide 
the last three digits by 4 and get an even number, the 
original number is divisible by 8. 

Naturally, any number divisible by 4 is automatically 
divisible by 2, since if the number can be divided by 
2 twice ( as is necessary for , divisibility by 4)  it can 
certainly be divided by 2 once. By the same reasoning,. 
any number divisible by 8 is also divisible by 4 and by 2. 

DlVISffiILlTY BY 3, 6, AND 9 

When we consider 3 as a divisor, we encounter a new 
situation altogether. Let's start with ° and count by 
threes:  

° 
18 
36 

3 
21 
39 

6 
24 
42 

9 
27 
45 

12 
30 
48 

15 
33 
51, etc. 

At first glance, this looks hopeless. Some of the num
bers are odd, some even - in fact, they alternate: odd, 
even, odd, even, odd, even . .  . Furthermore, there are 
numbers that end with every possible digit from ° to 9. 

If we continue the list on and on, we would find that 
there are numbers in the series which contain any com
bination of 2 digits at the end and any combination of 
3 digits at the end, and so forth. ( The trouble is that 
100 is not divisible by 3, nor 1,000, nor 10,000, nor 

, 100,000 - nor any number of this sort. Therefore, the 
series never starts over again. ) 

However, suppose you work with digit sums for each 
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of the numbers in the series formed by counting by ' 
threes. The first three numbers offer no problem. They 
are 0, 3, and 6, and as single digits have digit sums 

,equal to 0, 3, and 6, respectively. Then 9, and if we 
follow the practice of casting out nines, the digit sum 
is 0. 

The next number is 12, with a digit sum of 3; then 
15 with a digit sum of 6; then 18 with a digit sum of 0. 
If we continue the series as high as we like and lisnhe 
digit sums for each number, we find we will have a 
digit-sum series of 0, 3, .6, 0, 3, 6, 0, 3, 6, 0, 3, 6, and so 
on, for as long as we can manage to continue. Further
more, the numbers that are not in the series and are 

,
therefore not divisible by 3, have digit sums that are 
1, 2, 4, 5, 7, or 8 and are never 0, 3, or 6. 

We conclude, then, that any number with a digit sum 
of either 0, 3, or 6 is divisible by 3. A number with any 
other digit sum is not divisible by 3. 

Suppose that we take the number 562,789,002. We 
cast out the 9 and the 2 + 7 and we find that what re
mains is 5 + 6 + 8 + 2 = 21 and 2 + 1 = 3. The num
ber is therefore divisible by 3. On the other hand, the 
number 562,789,012 has a digit sum of 4 and is there
for� not divisible by 3. 

This brings up an interesting point. The digit sum 
of a number is not affected if the order of the digits in 
it is changed or if zeros are inserted. The digit sum of 
124 is 7 and 7 is also the digit sum of 241, of 142, of 412, 

of 1204, of 4210, and so on. Therefore if 8997 is di-

� I  , I 
' .  
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visible by 3 because its digit sum is 6, then 9897, 7899, 
9978, 708,909, and all other numbers of this family are 

also divisible by 3. 
This can be helpful in some cases. If you know that 

15 is divisible by 3, you know that 51 is, too, and so are 

105 and 501. You don't even have to add up the digits 

( though that is. easy enough, to be sure, in this case ) .  

It is easy to go from divisibility by 3 to divisibility 

by 6. If we start with 0 and count by sixes, we have: 

o 
30 

6 
36 

12 
42 

18 
48 

24 
54, etc. 

If we compare this list with the one made when we 

counted by threes, we see .that we are .. taking every 

other number in the former list. We start with 0, skip 
3 and take 6, skip 9 and take 12, skip 15 and take 18, 
and so on. In fact, we are skipping all the odd numbers 

in the count-by-threes list and taking all the .even num

bers. 

This means that if the digit system of a number is 0, 
3, or 6 and if the number is also even it is divisible by 

6 ( and, of course, by 3, too ) .  If, on the contrary, the 

digit sum adds up to 0, 3, or 6 and the number is odd, 

then the number is divisible by 3 but not by 6. Thus; 

5241, with a digit sum of 3, is odd, so it is divisible by 

3 but not by 6. On the other hand, 7302 has a digit 

sum of 3 and is even, so it is divisible by 6 as well as 

by 3. 
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And what about 9? If we start with 0 and count by 

nines, we have : 

o 
45 

9 
54 

18 
63 

27 
72 

36 
81, etc. 

This time, if we work out the digit sums ( remembering 

to cast out nines ) we find that the digit sum is always 

O. Moreover, the digit sum of any number not in the 
list is always some value other than 0; never O. 

That makes it easy. Any number with a digit sum 

of 0 is divisible by 9. Any number with a digit sum not 

equal to 0 is not divisible by 9. 
Consider the number 682,900,767. We can cast out 

9 and 2 + 7. This leaves us 6 + 8 + 6 + 7 = 27 and. 

casting out 2 + 7, leaves us O. Hence the original num

ber is divisible by 9. 
As in the case of 3, divisibility by 9 does not depend 

on the order of digits in the number, since that does 

not affect the digit sum. If 5427 is divisible by 9 ( as it 

is ) ,  so are 4572, 7254, 720,504, and so on. If you know 

for a fact that 18 is divisible by 9, you know that 81,. 
lOB, 8010, and 8001 are divisible by 9, without even 

bothering to add digits. 

This sort of thing, does not hold for divisibility by 6, 
because that depends not only on a digit sum but also 
on the quality of being even. Thus, 36 has a digit sum 

. of 0 and is even; hence it is divisible by 6. Reverse the 

digits to 63 and the digit sum is still 0, but now the 

number is not even, so that 63 is not divisible by 6. 
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For divisibility by 2, � 5, or 8, where the rule does 

not depend on digit sums at all, the order of the digits 

must make a great deal of difference. Thus 16 is di

visible by 8, by 4, and by 2, but 61 is divisible by none 

of those numbers. Again, 15 is divisible by 5, but 51 
is not. 

OTIIER DIVISIBILITIES 

Let's summarize. We have rules for telling divisi

bility by 2, 3, 4, 5, 6, 8, 9, and 10. Dividing by 0 is not 

allowed and dividing by 1 serves no purpose. That 

leaves us with one number less than 10 for which I 

have worked out no rule foX divisibility. That number 

is 7. Unfortunately, there is no good rule for divisi

bility by 7. The best way to tell whether a number is 
divisible by 7 is actually to go through the process of 

dividing. 

This is too bad, but since the rules fail us in only 

one case out of ten, I suppose we shouldn't complain. 

To make up for it, there is the possibility of telling 

divisibility quickly for some nUmbers higher than 10. 
To see how that works, let's consider first the manner 

in which numbers can be divided evenly by other num

bers. (A number which divides another number evenly 

is a "factor" of that other number - 2 is a factor of 8 

and 3 is Ii factor of 12. ) 
In the first place, every number is divisible by 1, 

giving as a quotient the number itself. In the second 

place, every number is divisible by itself, giving 1 as a 
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quotient. (In algebraic notation we would say that 

nIl = n and nln = 1. ) There are no exceptions to 

this rule; every number has itself and 1 as factors. 

We next ask, how many numbers are divisible by 
numbers other than 1 and themselves? It turns out 
that this includes most numbers, as a matter of fact, and 

from now on we will consider only numbers other than 

1 and the number itself. Thus, 10 has 2 and 5 for 

factors; 12 has 2, 3, 4, and 6 for factors; and 60 has 2, 
3, 4, 5, 6, 10, 12, 15, 20, and 30 for factors. Numbers 

pos�essing such factors are "composite numbers," and 

10, 12, and 60 are examples of these. 

Yet there are some numbers that are divisible only 
by themselves and 1. Such numbers are called "prime 

numbers," or simply "primes." Several of the small 

numbers are primes : 2, 3, 5, and 7. So are 11, 13, 17, 19. 
It might seem to you that as numbers get larger and 

larger, the number of factors they possess increase, be

cause there are more and more smaller numbers to serve 

as possible factors. This is true for some numbers, such 

as 10, which has two factors, 12, which has four factors, 

and 60, with 10 factors. 

However, no matter how far you go in the number 

scale, there will always be numbers with very few fac

tors; and there will be primes, too - numbers with no 

factors at all but themselves and 1. Immediately after 

60, with ten factors, you have 61 with no factors at all 

( except itself and 1, of course ) .  Again, 5237 is a prime. 

There are 5235 different numbers smaller than itself (not 
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counting 1 ) ,  but not one of these will serve as a factor 
for 5237. Not one of them will divide 5237 evenly. 
There are numbers far, far larger than 5237 - numbers 
made up of thousands of digits - that are known to be 
prime. In principle, numbers of any size can be primes. 

It is harder, usually, to check for divisibility by .a 
prime than by a composite number. Fortunately, the 
three smallest primes, 2, 3, and 5 can be checked easily, . 
but the one number under 10 which gives trouble is 7, 
and that is a prime. For any prime over 10, it is too 
much to expect a simple rule. Consequently, we can 
forget about easy rules for divisibility by 11, 13, 17, 
or 19. 

What about 12, though? That is not a prime, because 
it can be expressed as . the product of factors other 
than itself and 1. In fact, this can be done in two 
ways: 12 = 4 X 3 and 12 = 6 X 2. Any number that is 
divisible by 12 is divisible first by 4 and then by 3, or 
first by 6 and then by 2. Thus, 96 -;- 12 = 8, and we 
also find that 96 + 4 = 24 and 24 + 3 =  8, or that 
_96 -;- 6 = 16 and 16 + 2 = 8. To check for divisibility 
by 12, therefore, we might divide by 6 and see if we 
have an even number as a quotient (for if the quotient 
is even we know that it can be divided by 2 ) .  This will 
work, but it requires an actual division. Is there no way 
to work on the original number and check whether that 
original number is divisible by both 6 and by 2? 

Unfortunately that is not useful. If you remember, a 
number is divisible by 6 when its digit sum is 0, 3, or 6 
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and when the number itself is even. But if the number 
is even, then it is already divisible by 2. This means 
that any number divisible by 6 is automatically di
visible by 2, and this automatically spoils things. Half 
the numbers divisible by 6 are also divisible by 12 
( examples are 36, 60, and 84 ) ,  but the other half are 
not divisible by 12 ( examples 42, 54, and 66) .  Since 
all of them are divisible by 2, we cannot distinguish the 
right ones from the wrong ones. We must divide by 6 

- first, then check the quotient for divisibility by 2; or we 
can ' divide by 2 and then check the quotient for di-
visibility by 6. In either case, we must actually divide. 

Whenever we consider two numbers, one of which is 
divisible by the other, then any number divisible by 
the larger number is automatically divisible by the 
smaller number as well. Accordingly, any number that 
is divisible by 21 is automatically divisible by 7 or by 3. 
Any number divisible by 60 is automatically divisible 
by 2, by 3, by 4, by 5, by 6, by 10, by 12, by 15, by 20, 
and by 30. And as soon as divisibility is automatic, we 
can learn nothing new by such a division. 

But what if we consider 12 = 4 X 3. The number 4 
is not divisible by 3 and 3 is not divisible by 4. This 

means that a number divisible by 4 is not automatically 
divisible by 3, and one divisible by 3 is not automati
cally divisible by 4. Thus, 28 is divisible by · 4 but not 
by 3; and 27 is divisible by 3 but not by 4. Under these 
conditions, if a number is divisible by both ·4 and 3, 
it must be divisible by 4 X 3 - that is, by 12. 
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For instance, the number 312 has a digit sum of 6, 
so it is divisible by 3. Its last two digits, 12. are di

visible by 4, so the whole number is divisible by 4. 

Since it is divisible by both 3 and 4, it is divisible by 12; 

and indeed 312 + 12 = 26. 
In the same way, 15 = 3 X 5. Since 5 is not divisible 

by 3 or 3 by 5, the two numbers can be used together 

to test divisibility by 15. If a number ends in a 5 or 0 
(so that it is divisible by 5 )  and also has a digit sum of 

0, 3, or 6 (so that it is divisible by 3 ) ,  the number is 
divisible by 15. You can tell at little more than a glance 

that 540, 450. and 405 are all divisible by 15, but that 
504, 305 and 100 are not. " 

The number 18 can be represented as 6 X 3, but that 
is no help since 6 is divisible by 3 and any number ' 

divisible by 6 is automatically divisible by 3 also. How
ever, 18 = 9 X 2 and neither of these numbers is di

visible by the other. Therefore, if a number is even 

(so that it is divisible by 2 )  and has a digit sum of 0 ( so 

that it is divisible by 9) ,  the number is divisible by 18. 

As for 14, that can be represented as 7 X 2, and 

neither number is divisible by the other. Nevertheless, 

since there is no simple rule for divisibility by 7, there 

is none for divisibility by 14 either. 

The number 16 can be represented as 4 X 4 and 
8 X 2. In both cases, divisibility rears its ugly head, 

because 4 is divisible by 4 and 8 is divisible by 2. This 

means that some sort of division must be carried 

through. The best that can be done is to .stick to the 
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last four digits of a number and see if those digits can 
be divided by 4 to give a quotient divisible by 4; or to 

see if those digits can be divided by 8 to give an even 

quotient. I don't think this qualifies as a particularly 
quick and easy method. 

We end, then, by having reasonably simple rules for 

divisibility by 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, and 18. 

It is easy sometimes to change a division that is going 

to involve a remainder into one that will not. Instead 

of carrying through the division to find what the re
mainder is, you extract the remainder first, then work 

out the division to get a quotient without a remainder. 

There is no arithmetical reason for this, but there can 

be a psychological one. You may feel more comfort

able with the division if you know in advance you won't 

have to worry about a remainder. 

To illustrate: if a number is odd, we subtract 1 to 

make it even and it is then divisible by 2. The 1 which 

we subtracted will be the remainder. Thus, if you are 

faced with 39 + 2, reduce the 39 to 38 and 38 + 2 = 
19. Therefore 39 + 2 = 19, with a remainder of 1. In 

the same way, you can reduce a number by just enough 

to convert the final digit to a 5 or 0 in order to ensure 
its divisibility by 5. Thus 48 - 3 = 45; and 45 + 5 = 9; 

therefore 48 + 5 = 9, with a remainder of 3. 

Once you have worked out the digit sum of a number, 

it is easy to convert it to a smaller number that is di

visible by 9. Consider 5712, which has a digit sum of 

6. If you subtract the 6 from 5712, you will have 5706, 
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which is divisible by 9. The remainder has been safely 
extracted before the division has even been begun. 

In like manner you can subtract enough to make the 
digit sum either 0, 3, or 6 (whichever is closest ) and 
ensure divisibility by 3. Thus, the number 73,41l has a 
digit sum of 7. It is enough to subtract 1, to give a 
digit sum of 6, and 73,410 is divisible by 3. 

For divisibility by 6 there is one added complication. 
Consider the number 12,304, which has a digit sum of 
1. If we sUbtract 1 from the number, making it 12,303, 

the digit sum becomes 0, which is one of the require..; 
moots for divisibility by 6. However, the number is not 
even, so we must subtract enough to bring it to the next 
�ppropriate digit sum. If we subtracted 4 from 12,304 

to get 12,300, the digit sum would be 6 and the number 
would be even. Consequently, 12,300 is divisible by 6. 

Divisibility by 4 requires a rather similar device. If 
a number is odd, subtract 1 and check the last two 
digits for divisibility by 4. If it is not divisible by 4, 

subtract 3 rather than 1 to get it to the next lower even 
number. ( You can see for yourseH how to handle di
visibility by 8 ) 

THE DIVISION TABLE 

Telling whether a dividend is divisible by a particular 
divisor and extracting a remainder to begin with may 
be amusing but it is only of psychological advantage. 
Eventually you will have to diVide, and even if a re
mainder does not exist, or if it has been eliminated, 
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division remains the most difficult of the four arith
metical operations. 

Division is a backward process, based on our knowl
edge of multiplication. Everyone memorizes the multi
plication table, but no one memorizes a "division table" 
because that is only the multiplication table worked 
backward. If you are asked to solve 72 + 9, you know 
the answer is 8, because you have already memorized 
the fact that 8 X 9 = 72. In the same way, you know 
that 56 ;+- 7 = 8, that 48 + 6 = 8, that 63 + 9 = 7, and 
the like. You may even know offhand that 72 + 6 = 12, 

that 45 + 15 = 3, and so on, simply from remembering 
that 12 X 6 = 72 and 15 X 3 = 45. However, all that is 
really necessary for any division, no matter how com
plicated, is to know the "division table» ( that is, the 
reverse of the multiplication table) from 81 + 9 = 9 to 
1 + 1 =  1. 

This act of knowing the division table teaches us 
more about division than many of us suspect. Remem
ber that 0 divided by any number - any number at 
all - gives a quotient of O. Suppose, then, that we are 
faced with 90 + 3. We know that the 9 divided by 
3 is 3 and the 0 divided by 3 ( or by any other num
ber ) is O. The quotient of 90 + 3 is therefore 30. In 
fact, we can bring down the zeros without worrying 
about dividing them at all, so that 900 + 3 = 300, 
9000 + 3 = 3000, and so on. For these divisions we 
need remember no more than the mere fact that 
9 + 3 = 3. 

" � . 
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In the same way, we know at once that 720 -+- 9 = 80; 
that 6300 -+- 7 = 900; that 81,000 -+- 9 = 9000, and so on. 

Nor are we through. What if we add a zero . to the 

divisor? In other words, what if we consider 90 -+- 30? 
We know the answer must be 3, because 30 X 3 = 90. 
We can try similar problems and work them out from 

our knowledge of multiplication so that we .see that 

900 -+- 30 = 30, 9000 -+- 300 = 30, 90,000 -+- 30 = 3000, 

and so on. 

But we shouldn't have to work out each problem 

separately. Instead, we can consider that division is 

the reverse of multiplication. When two numbers, each 

ending in one or more zeros, are multiplied, the product 

ends in a number of zeros equal to the sum of those in 

multiplicand and multiplier. H the multiplication were 

a division, one would expect that the quotient would 

end in a number of zeros equal to the difference of those 

in the dividend and divisor. 

This is so in the cases I have cited, and we can cite 

any number of others. If we are faced with 27,000 -+- 30, 
we have three zeros ending the dividend and one zero 

ending the divisor. We can expect 3 - 1, or 2 zeros, 

ending the quotient. Since 27 -+- 3 = 9, we can con

fidently say, with no further thought, that 27,000 -+-

30 = 900. In the same way, 2,700,000 -+- 900 will have a 

quotient ending in 5 - 2, or 3 zeros, so the answer is 

3000. 
(You may wonder what happens if the divisor has 

more zeros than the dividend, as in the example 7770 -+-
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700. We'll get to that later in the book. ) 

There are, of course, innumerable division problems 

that can't be handled directly out of the division table. 

I've just mentioned one - 7770 -+- 700. For the time 

being let's drop the zeros in the divisor and consider it 

7770 -+- 7. What we can do is divide each digit by 7 
and the answer then is 1110. In the same way 369 -+-

3 = 123, 484 -+- 4 = 121, and so on. 

It may be that a particular digit cannot be divided 

by a particular divisor, and in that case there is nothing 

to prevent us from taking the digits two at a time, or 

even three at a time. We might wish to get the answer 

to 6,364,812 -+- 6. Let's consider the dividend in parts 

as ( 6) ( 36) ( 48 ) ( 12) .  Dividing each part by 6, we 

have ( 1 )  ( 06) ( 08 ) ( 02 )  and the answer is 1,060,802. 

The only difficulty here is that we must remember to 

keep the number of digits in the quotient the same as 

the number in the dividend. H we had divided (36) 

(48 ) ( 12 ) by 6 to give (6) ( 8 ) (  2),  our answer would 

have been 682, which would have been wildly wrong. 

Placing a ° before a number ( or placing any number 

of zeros before it ) does not change the value of a num

ber. We are perfectly justified in saying that 36 -+- 6 = 

06, if we want to keep the number of digits in the quo

tient the same as in the dividend, for 06 = 6. For that 

matter, 006 = 6 and 000,000,000,006 = 6. 

The only reason this seems strange to you is that it is 

customary to drop all those zeros when they are at the 

very beginning of a whole number. For instance, we 

I.., 
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say that 36 + 4 = 9. Why bother writing 09? However, 
it is only at the beginning of a whole number that we 
can drop zeros. If we have the number 109, you can 
bet we can't drop that zero, for 109 does not equal 19. 
Therefore if we are dividing 327 by .3, and consider 327 
as (3 ) ( 27 )  + 3, we had better find the quotient to be 
( 1 )  ( 09) or 109. 

For further examples consider the following. With 
6453 + 3, write this as ( 6 )  ( 45 ) ( 3 )  + 3 and you see at 
once that the answer is ( 2 ) ( 15) ( 1 )  or 2151. In 910,836 
+ 9, we have (9 ) ( 108 ) (36) + 9 =  ( 1 ) (012 ) (04 )  or 
101,204. 

REWllITING DIVISIONS 

Obviously, we cannot always break up a number into 
convenient groups of digits. Even simple cases may 
stump us. Take 897 + 3. We can divide 9 by 3, but 
what can we do with the 8 and the 7? Dividing it as 
( 89 ) ( 7 )  doesn't help much; I:I.or does ( 8 )  (97 ) .  There 
is the school method, of course, which is slow, steady, 
and sure - and involves carrying. We say, "First, 8 
divided by 3 equals 2 with 2 left over. Put down 2 and 

make the 9 a 29. Now 29 divided by 3 equals 9 with 2 
left over. Put down 9 and make the 7 a 27. Finally, 27 
divided by 3 equals 9 with nothing left over. Put down 
9, and the answer is 299." 

Here's the way it looks in figures: 
3) 82927 

2 9 9  

99 
(This is an example of "short division." ) 

The difficulty in the school method lies chiefly - as 
always - in the carrying. Is there any way whereby 
the dividend can be converted into a number, or group 
of numbers, in which there is no carrying because all 
the digits, or small groups of digits, are divisible by the 
divisor? 

Well, suppose that we wrote 897 as 900 - 3. :Both 
900 and 3 are easily divided by 3; at a glance, in fact. 
The on,ly question is : How does one go about dividing 
900 - 3 by 3? In algebraic notation it is easy to show 

that a -
b - � _ �. To divide 900 - 3 by 3, it is c c c 

only necessary to divide 900 by 3, then 3 by 3 and sub
tract the second quotient from the Hrst. In other words 
(900 - 3 )  + 3 = (900 + 3 )  - (3  + 3 ) .  Instead of 

. : worrying about 897 + 3, we say ( 900 - 3)  -;- 3 = 
300 - 1 = 299. The answer is ours in a moment. 

Likewise, in dividing 756 by 4, we can write 756 as 
800 - 44. Well, (800 - 44) -;- 4 = 200 - 11 = 189. 
Or, if faced with 2376 -;- 8, we can write 2376 as 
2400 - 24. Now we have (2400 - 24) + 8 = 300 -
3 = 297. 

We are not restricted to subtraction, either. If we 
want 135 -;- 3, we can write 135 as 120 + 15. With the 
problem ( 120 + 15 ) -;- 3, the answer is 40 + 5 or 45. 

Or, if we want to divide 285 by 5, we try it (250 + 
�A�$) -;- 5 = 50 + 7  = 57. We might just as well have 

" �en 285 as 300 - 15. Then, (300 - 15) + 5 = 60 -
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3 = 57. The exact route by which you arrive at a quick 

and easy answer is up to you, and, once you understand 

the principles involved, you can pick yom; route at will. 

The system will work for larger numbers too, of 

course. To divide 176,968- by 8, we might decide to 

write 176,968 as 160,000 + 16,000 + 800 + 168. Divid-
(l" 

ing that sum by 8 we get 20,000 + 2000 + 100 + 21. for 

an answer of 22,121. Here, however, the number of 

figures involved becomes so large that you lose enough 

time working it out, perhaps, to make you decide to go 
back to carrying. 

But wait, we need not stop at writing the dividend as 
a sum or difference. Might there not be something we 

could do to the divisor to simplify matters? 
If dividing by 8, for instance, let's remember that 8 = 

2 X 2 X 2 and that, therefore, instead of saying 176,968 -+ 
8, we could say 176,968 -+ 2 -+ 2 -+ 2. The advantage 

of substituting three divisions for one is that each of the 
three divisions is by 2 and dividing by 2 is simpler than 

dividing by any other number. Well, then, let's carry 
through the division of 176,968 in the follOwing man
ner: 

� )  176,968 

2 )  88,484 
2 )  44,242 

22,121 

There is your answer. Even the necessity of carrying 

isn't much of a chore in the case of division by.2, and 
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_ the chances are that you will arrive at the answer more 

quickly and painlessly through dividing by 2 three times 

than through dividing by 8 once. 

For smaller numbers the same process can be used 

mentally, if you choose. If we were to try to work out 

192 -:- 8 directly, it might take a few moments of time. 
If we were to divide 192 by 2 three times and say to 

ourselves 96, 48, 24, we would have the answer 24 al

most at once. 

, So far, in discussing actual divisions, the examples I 

have used have happened to come out evenly. But sup

Pose they don't. In the first place, you can sometimes 

arrange to have them come out evenly without any 

trouble. If asked to divide 347 by 3, you can see that 

347 has the digit sum 5 and is therefore not divisible 
by 3. If you reduce 347 by 2 to 345, you will have a 
digit sum of 3, and 345 is therefore divisible by 3. If 
you look upon 345 as ( 3 )  ( 45 )  you can see instantly 

that 345 -:- 3 = 115. Remembering the 2 which you 

had previously removed, you know the answer to 347 -+ 

3 is 115%. 

If the dividend is large, it may take a while to check 

its divisibility and correct it, especially if the divisor is, 
let us say, 8. Suppose that we wanted to solve 176,975 ..;-

8. We could tell that the division will not come out even 

because the last three digits, 975, are not divisible by 8. 

It would take some time. however, to work out the fact 

that we ought to reduce the number by 7 to achieve 

divisibility by 8. In that time we might well have gone 
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through the complete division by the ordinary method 
and obtained the answer. 

But suppose that we divide 176, 975 by 8 exactly as it 
is, without worrying about remainders, and see what 
happens: 

ri, 
2)  176,975 
2 )  88,487 and 1 1eft over 
2 )  44,243 and 1 1eft over 

22,121 and 1 left over 

What if you simply ignore the remainders and state 
the answer to be 22,121? How wrong are you? Not 
very; the correct answer is 22,121 %. You are wrong by 
less than 1. Whenever you break up a divisor and sub
stitute many divisions by small numbers for one division 
by a large number, then - no matter how many re
mainders you forget about and no matter how large the 
remainders are - the end result is that your answer is 
wrong by less than 1. 

H the quotient is large, a mistake by less than 1 may 
not be important. Certainly, if absolute accuracy is not 
required, the loss of a fraction is worth a saving in time. 

LONG DIVISION 

So far, of course, I have been dealing with divisors 
containing but a single digit, and that means 1 have 
been restricting myself to only the simplest part of the 
subject. When dealing with one-digit divisors, we can 
even make out, if we must, with the usual method of 
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short division. For instance, if we divided 8,563,990,806 
by 7, we could do it this way: 

7) 8, 151623, 291950, 18.056 
1, 2 2 3, 4 2 7, 2 5 8 

Carrying is involved, of course, and we can write down 
the numbers carried, making them small to avoid con
fusion with the digits of the dividend. 

With practice it becomes quite possible to keep the 
nuIfibers being carried in the head and simply write the 
example this way: 

7)  8,563,990,806 

1,223,427,258 

This isn't really too bad. There may be no good method 
for sunplifying division by 7, but we can grit our teeth 
and bear it. 

However, in dividing by one-digit divisors we are 
always working within the limits of the division table, 
where we know all the answers by heart. We know that 
7 goes into 8 one time with 1 1eft over. We know that 
7 goes into 18 two times with 4 left over. What if we 
divide our large dividend by 18, though? Now we move 
outside the division table. Consider 8,563,990,806 -:- 18. 
We know that 18 won't go into 8 even once, so we move 
on and consider how many times 18 will go into 85 and 
what, if anything, is the remainder. That's not so easy. 

Let's see, now. H we multiply 18 by 2 the answer is 
36, and twice that is 72, so 18 X 4 = 72. H we add an-
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other 18 we get 90, so 18 X 5 = 90, and since that is 
over 85 and too high well stop at 4 and place that in the 
quotient. Furthennore, 85 - 72 = 13, so that is the 
remainder. That makes the next digit 136 and the next 
problem 136 -:- 18. 

Unless we are mental marvels, this sort of thing is 
simply more than we can do in our heads, so we work 
it out, in full, on paper. It would look like this :  

475,777,207 
18) 8,563,990,806 

7 2  

1 36 
1 26 

103 
90 

13 9 
12 6 

1 39 
1 26 

130 
126 

4 8  
3 6  

1 20 
l OB  

126 
126 

o 
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This is '10ng division," and of all the processes of grade 
school arithmetic it is undoubtedly the most hated. 

. Most adults never recover from that hatred. I hate it. 
Well, then, let's remember the first basic rule : change 

something difficult into something easy. H we find 
long division hateful and short division bearable, we 
should search for methods of converting long division 
into short division. Since long division is brought on 
by divisors of more than one digit and short division 
involves divisors of just one digit, let's concentrate 
on the divisor. We know that 18 = 9 X 2; therefore 
a number -:- 18 gives the same answer it would give if 
it were -:- 9 -:- 2, or -:- 2 -:- 9. 

Does it matter whether we divide first by 9 and then 
by 2, or first by 2 and then by 9? As far as getting the 
correct answer is concerned, no; we end with the same 
answer in both cases. However, the smaller the divisor 
the easier the division, so why not divide by the smaller 
number first? Then when we have to turn to division 
by a larger number we have a smaller dividend to work 
with. 

If we work first with 2 and then with 9 our problem 
becomes : 

2) 8,563,990,806 
9)  4,281,995,403 

475,777,267 

The long division has been replaced by two short 
divisions. The two short divisions have not perhaps 
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been the easiest thing in the world and have required 

a little concentration, but they probably have taken you 

a lot less time and tension than the single long division 

would have done. 

In the ,�xample just given, dividing by 9 was more 

difficult than dividing by 2 and undoubtedly caused 

most of what delay was involved in getting the solu

tion. But then, 9 = 3 X 3, so instead of + 9 you might 

work with + 3 + 3. Now the problem becomes : 

2 ) 8,563,990,806 

3 ) 4,281,995,403 

3) 1,427,331,801 

475,777 ,2(f/ 

It's up to you. If you :find that dividing once by 9 isn't 

very difficult, and that it takes less time than dividing 

twice by 3, stick to 9. 

I only used a large dividend to demonstrate the prin

ciple. You are much more likely to run into smaller 

numbers in the ordinary course of life. An example 

would be the problem 252 + 18. Despite the smallness 

of the dividend, this could plunge you into long division, 

too. But suppose that instead you divide 252 ifirst by 2, 

then by 3, then by 3. You would :find that 252 + 2 = 

126, 126 + 3 = 42, and 42 + 3 = 14. Each of these 

three divisions, far from requiring long division, can be 

done with perfect ease at a stroke, and in the head. 

The result is that you see that 252 + 18 = 14 without 

trouble or pain, and certainly without long division. 
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If you are dividing by 12, you can divide first by 3, 

then by 4, since 3 X 4 = 12; or you can divide by 2, 

then by 2, then by 3, since 2 X 2 X 3 = 12. How about 

432 + 12? Well, 432 + 2 = 216; 216 + 2 = 108; 108 + 

3 = 36, and that is the answer. 

Naturally, one can go too far and make too many divi

sions. Since 2 X 2 X 3 X 3 = 36, you can change a 

division by 36 into two successive divisions by 2 fol

lowed by two successive divisions by 3. You may :find 

that four divisions are confusing and that you can get 

along perfectly well with only three ( 3 X 3 X 4 = 36) , 

or even two ( 4 X 9 = 36) . If you have · an aversion to 

division by 9 but would still like to have only two divi

sions, you might try 6 X 6 = 36. 

It makes no difference which route you take. Con-

sider: 

432 + 36 = 12 
432 + 2 = 216; 216 + 2 = 108; 

lOB + 3 = 36; 36 + 3 = 12 
432 + 3 = 144; 144 + 3 = 48; 48 + 4 = 12 
432 + 4 = 108; 108 + 9 = 12 
432 + 6 = 72; 72 + 6 = 12 

The answer is the same in every case, so you may as 

well choose that route which is quickest and easiest for 

you. For myself. I find the division first by 4 and then 

by 9 the easiest, because 432 + 4 immediately can be 

seen to be lOB if I consider 432 as ( 4 ) ( 32) , and because 

I happen to know oHhand that 108 + 9 = 12. For you 

. ;>0  
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a different route may be easier. Suit yourself by all 

means, so long as the answer remains c·orrect. 

( You may ask how one can know which is the easiest 

method for oneself. The answer is time. If you practise 

quick and easy math long enough, you'll begin to get 

the feel for what you can do best. It will begin to 

"come natural")  

Of course, not all potential long divisions are so easily 

handled. Remember that there are prime numbers. 

What do we do if we must divide by 13 instead of by 

12, or by 19 instead of by 18, or by 37 instead of by 36? 
The numbers 13, 19, and 37 are primes, and if you are 

stuck with division by them ( or by any other prime ) 

you cannot break up the division into one-digit steps. 

Even if a number can be broken up into factors, some 

of the factors may be primes that are too large to 

handle. You might have to divide by 133. This divisor 

can be expressed as 7 X 19, but 19 is a prime and can 

be broken down no further. In such cases, especially if 

you feel you must have an exact answer, there may be 

nothing to do but face the music and get busy with your 

long division. That at least will work no matter what 

the divisor is. Remember once again what I said at the 

beginning of the book. The school methods sometimes 

may be slow, but they are sure. 

If, on the contrary, you would be content with an

swers that are nearly right, provided you can get them 

quickly, there remains a chance. I will have a few more 

words to say on this subject later in the book. 

, . ��;�l�; . 
��y 
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CHECKING DMSION 

In division as in subtraction we have the problem that 

the order in which dividend and divisor are written 

cannot be changed:  a -;- b is not equal to b -;- a. How

ever, in subtraction we could reverse matters by switch

ing to addition; and in division we can reverse matters 

by switching to multiplication. If a -;- b = c, then c X 

b = a. This means that in any division the quotient 

times the divisor must equal the dividend. 

Accordingly, if you have worked out 2812 -;- 37 = 76 

and wish to check your answer, it is inefficient to go 

over your figures and do nothing more: you may make 

the same mistake over again. Instead, reverse matters 

and consider 76 X 37. The product should be 2812. If 

it is not, then you have made a mistake either in the 

original division or in the check multiplication and you 

had better search carefully. If the product comes out 

to 2812, then you are ahnost certainly correct (unless 

you have made mistakes in both the division and mul

tiplication that balance each other - which is extremely 

unlikely) and you may relax. 

Naturally, this works in quick and easy techniques as 

well as in examples worked out in full. If you have 

solved 984 -;- 8 by dividing 984 three times by 2 to get 

492, 246, 123 - with 123 your answer - you can check 

by doubling 123 three times. You find that beginning 

with 123 you have 246, 492, 984. The check product 

equals the original dividend and you are all right. 

But what if the quotient is not a whole number? 

\1 ; ',11 I" ! , 

1 1 
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What if there is a remainder? The remainder represents 
the quantity which, when subtracted from the dividend , 
makes the dividend divisible. Suppose, for instance, 
you

1,
found that 895 -:- 17 = 52 with a remainder of 11. 

( The answer would then usually be written 521Yt. 7 . ) If 
the 11 were subtracted from 895 you would get 884 and 
that would be divisible by 17. It would turn out that 
884 -:- 17 = 52. Once you have subtracted the remain
der from the dividend 'and achieved divisibility you can 
carry through the usual check. Since 52 X 17 = 884 , 
your division was correct. ( Of course, you might make 
an error in subtracting the remainder from the dividend, 
but be careful and you won't. ) 

Division can be checked by casting out nines, too. 

Suppose we have worked out 99,934 -:- 58 = 1723. In 
the dividend we cast out the three 9's, and the digit sum 

is 7. In the divisor, 5 + 8 = 13 and 1 + 3 = 4, which is 

the digit sum there. In the quotient we cast out the 

7 + 2 and the digit sum is 1 + 3 = 4. The digit-sum 

division becomes 7 -:- 4 = 4. This does not look right 

at first glance, but remember that we can add 9 ( or any 

number of 9's ) to any of the digit sums without chang

ing the essential nature of the situation. If we add 9 to 

the 7, the division becomes 16 -:- 4 = 4, which is correct 

and which shows the division is probably without an 
error. 

You may not want to go to the trouble of trying to 

figure out where to add a 9 and how many to add. We 

can therefore reverse the situation in the usual manner 
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and make a digit-sum multiplication out of the digit

sum division. If 7 -:- 4 = 4, then 4 X 4 = 7. By ordi

nary arithmetic, 4 X 4 = 16 and 1 + 6 = 7 all right, so 

the digit sums check. 

And yet here again we must ask: What if the division 

doesn't come out even? Consider the case of 5556 -:-

17 = 3261� 7 .  There is here a remainder of 14. Again, 

we subtract 14 from the dividend to make it divisible. 

The dividend shrinks from 5556 to 5542 and the smaller 

number is divisible, for 5542 -:- 17 = 326. 

You can check this second division by casting out 

nines. For 5542 -:- 17 = 326, the digit sums come out 

to 7 -:- 8 = 2. Add 9 to the 7 and get 16 -:- 8 &hich 

is correct. Or reverse matters and say that 2Y'S = 7. 

Since 2 X 8 = 16 and 1 + 6 = 7, that is correct. The 

division is checked. 

You can, if you wish, subtract the remainder from the 

dividend at the digit-sum stage. Consider again 5556 -:-

17 = 3261�7, and take digit sums as they are. The 

digit sum of 5556 is 3, that of 17 is 8, that of 326 is 2, 

and that of 14 ( the remainder) is 5. The digit-sum 

division becomes 3 -:- 8 = 2, with a remainder of 5. 

Now subtract the remainder digit sum from the divi

dend digit sum, 3 - 5. To make this possible increase 

the 3 by 9 to 12. We have 12 - 5 = 7, which is the new 

digit sum of the dividend. With the remainder now 

removed, we have 7 -:- 8 = 2, which, as we showed in 

, , the previous paragraph, is correct. 
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Decimals 

ZEROS IN RESERVE 

THANKS to the way in which our number system is 
built up, it is particularly easy to multiply or divide by 10. Let's start with the number 243, for example ( any 
other number.�would do ) ,  and multiply it by 10. The 
answer.;is 243Q.. ¥ultiply that product by 10 again, and 
we h6,300; by 10 again, and it is 243,000; again 
and ,,�,430,OOO. Eac:Q multipli<:ation by JO adds 
anotheI. zero to the number but doesn't change any of 
the digits:" -

Now, let's begin with 2,430,000 and try dividing by 
10; the. answer is 243,000. Divide that by 10 . and the 
new quotient is .24,300; divide by 10 . again and you 
have 2430; still again and you have 243. Each division 
by 10 removes one of the zeros. 

In order to see what this means let us supply the 
number 243 with a series of zeros to use for the purpose 
of multiplying by 10, placing them on the paper to 

begin with instead of having them appear out of no
where. In order to make sure we don't confuse this 
supply of zeros with zeros that may actually form part 
of the number itself, let's put a period after the digits 
making up the actual number. (After all, it is custom-

113 Decimals � ary to use a period to indicate �stop." ) The zeros to 

the right of the period would then represent the reserve 
supply. 

We can write 243 this way, in other words: 

243.V\I\IVUV\I\JV\J'VV'.JV\JI\IUI.JU\Jl\IUIlJ\I 

Or, if we choose, with as many additional zeros for 

which we have room, and the patience, to write. 
H we multiply 243 with its reserve supply of zeros by 

10, then by 10 again, then by 10 again, and so on, we 
get the following numbers ( the period always marking 
Ute end of the actual number ) .  

2,430.000000000000000 .. 
24,300.0000000000()000 
243,000.00000000000000000 
2,430,000.000000000000000 
24,300,000.00000000000000 
243,000,000.0000000000000, etc. 

H we take the final number above and start dividing 
by 10, we get the follOwing succession of numbers: 

24,300,000.00000000000000 
2,430,000.000000000000000 
243,000.000000000000000 
24,300.000000000000000000 
2,430.000000000000000 
243.000000000000000 

, The  period I have been using is called a "decimal 
point," from a Latin word for "ten" because it came to 

be used in connection with multiplying and dividing by 

1 

. --

, �  
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10. If we look upon the multiplication by 10 and the 
division by 10 in the manner I have just presented, we 
see that we are not so much adding and subtracting 
zeros as merely moving the decimal point. 

Every time you multiply a number by 10, the decimal 
point moves one place to the right. H you divide by 10, 
it moves one place to the left. If you try to multiply 
by 100, you will find that the decimal point moves two 
places to the right, while multiplying by 1000 will move 
it three places to the right. Dividing by 100 will move 
the decimal point two places to the left, and dividing 
it by 1� will move it three places to the left. 

The�.ber of places it moves is equal to the num
ber of zeros in the multiplier or diviser; multiplication 
always involving a rightward movement and division a 
leftward movement. 

If you practise this sort of thing, you will see that 
this explains why the number of zeros at the end of a 
product is equal to the sum of the zeros at the end of 
the multiplicand and the multiplier. It also explains 
why the number of zeros at the end of' a quotient is 
equal to the zeros at the end of the dividend minus the 
zeros at the end of the divisor. 

But now a question arises. Imagine taking the num
ber 243 and dividing it by 10. If we write . the number 
with the reserve supply of zeros as 243.000000 (or as 
many zeros as we want ) ,  we might suppose that we 
ought to move the decimal point leftward again, even 
though there are no more zeros to the left of ·the decimal 
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point. The number would then become 24.30000000, 
and we must ask ourselves what such a number can 
mean - in particular, what a non-zero digit to the right 
of the decimal point means. 

To look into that question, let's reduce our non-zero 
digits to a bare minimum, a single I, and deal with the 
number 100. If we divide that by 10, we have 10 as 
the quotient. Divide the quotient by 10 again and we 
have 1. Divide that by 10 still again and we have a 
fraction Yto.  Divide that by 10 yet again and we have a 
fraction ¥t oo.  

Now let's use the decimal point and write the number 
100 with a reserve of zeros ( just three or four, for we 
don't need many ) and let's put another reserve of zeros 
in front. We don't need a decimal point to mark off the 
reserve in front, since zeros in front of a number don't 
change its value. There is a difference between 1 and 
10, so we need a decimal point in order to write 1.0 and 
make sure the number stays "one." There is no diHer
ence in value, however, between 01 and 1, or even be
tween 00000001 and 1. Consequently, we can write 100 
like this: 

0000100.00000 
If we divide this number by 10, the decimal point 

moves to the left and we have 
000010.00000 - which is 10. 
Divide by 10 again and we have 
00001.000000 - which is 1. 

Now if we again divide by 10 and once more move 
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the decimal point to the left, we have 
0000.1000000 

Since we know that 1 divided by 10 is ;to. let's say 
that 0000.1000000 is a way of writing *0. 

H we divide once more by 10 and move the decimal 
point leftward again, we get 

000.01000000 
We must say this is a way of writing %00. 

But now we can make matters clearer by getting rid 
of the reserve supply of zeros, or at least of as much of 

the reserve supply as does not serve any useful purpose. 
We know the reserve supply is there, but we don't have 
to stare at it continuously. 

On the right-hand side of the decimal point let's drop 
the zeros at the extreme right; on the left-hand side let's 
drop the zeros at the extreme left. Thus, if we had the 
number 0000024.300000, we can write it simply as 24.3, 
remembering that the reserve supply is still there ( if 
invisible ) and can be put back as needed at any time. 
The zeros are "on call." 

Of course, one must never drop zeros that are actually 
part of the number itself and not of the reserve supply. 
The best way to recognize such essential zeros is to 
notice that they are bounded either by two non-zero 
digits or by a decimal point and a non-zero digit. 'The 
number 00002004.0030000, for instance, can be written 
2004.003. Of the four zeros we have kept the two at the 
left are bounded by a 2 and a 4 and the two at the right 
are bounded by the decimal point and a 3. 
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This means that the number 0000100.0000 can be 
written 100. The only two zeros that need be kept are 
those bounded by the 1 and the decimal point; and, 
indeed, 100 is the usual way of writing "one hundred" 
and the way in which we are accustomed to see it. We 
want to include the decimal point, because it is ex
tremely handy in calculation; I have done this by writ
ing the number not as 100 but as 100. with a decimal 
point. 

Just to make sure we notice that the decimal point 
js there and that we don't think it is a period at the end 
of a sentence or merely an accidental speck, let's write 
down just one zero from our invisible reserve supply 
and write it 100.0. This makes the decimal point quite 
visible and doesn't alter the value of the number. (Ac
tually, in making measurements 100.0 has a diHerent 
meaning from 100. Both have the same value of "one 
hundred," but 100.0 represents a more accurate meas
Urement than 100 does. In the arithmetical calculations 
with which this book is concerned, however, we can 
ignore this difference and consider 100.0 = 100. ) 

As we multiply or divide a number written with a 
decimal point, let's add zeros from our invisible reserve 
as we need them, or drop zeros back into our invisible 
reserve when we no longer need them. For example, if 
we divided 100.0 by 10, we move the decimal point one 

. place to the left and have 10.00 as the quotient. We 
don't need that last zero, so well write it as 10.0 and 
say that 100.0 -7- 10 = 10.0, which, of course, is ·'ten." 

1 -

" " ." 
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Then 10.0 -7 10 = 1.0, which is "one." If we wish to 
continue on the basis of a leftward-moving decimal 
point, we say that 1.0 -7 10 = .1. Now, in order not to 
miss the decimal point, let's include one zero from the 
invisible reserve supply on the left and say 1.0 -7 10 = 
0.1, and consider that 0.1 is the decimal-point way of 
writing YIo. Another division by 10 and we have 0.1 -7 
10 = 0.01, which is the decimal-point way of writing 
YIoo. 

Digits to the right of the decimal point seem to repre
sent fractions, and such numbers are therefore called· 
"decimal ·fractions" - or, simply, "decimals." 

FREEING THE DECIMAL POINT 

Now we are ready to go back to the problem of divid
ing 243 by 10. 

If we worked this out by ordinary arithmetic we 
would find that 243 -7 10 = 24%.0. We must not forget 
that writing a number such as 24%.0 is just a short way 
of writing what is actually a sum 24 + %.0. If we want 
to express the numbers as decimals, we can write 24 as 
24.0 without trouble. As for %.0, it isn't difficult to guess 
that if YIo is 0.1 then %0 ought to be 0.3. So 24%0 be
comes 24.0 + 0.3. 

Suppose instead that we had divided 243 by 100. The 
answer by ordinary arithmetic is 243 -7 100 = 24%00, 

or 2 + 4%00. If we remember anything at all about the 
addition of fractions, we know that 4%00 can be written 
as 4%.00 + %00. If we remember how to reduce frac-
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tions, we also know that 4%00 can be written as %0. 
Therefore 24%.00 becomes 2 + %0 + %.00.  

We will introduce the decimal point and write 2 as 
2.0; and %0 as 0.4. Since YIoo is 0.01, %.00 ought to be 
0.03. We conclude that 24%.00 = 2.0 + 0.4 + 0.03. 

But now we are faced with sums involving decimals, 
and how is that worked out? 

In adding ordinary numbers, we are taught at the 
very beginning to place units under units and tens un
der tens, so that if we add 74 and 5, we write it 

thus 74 
5 

and not thus 74 
5 

This should continue beyond the decimal point also. 
The first place to the right of the decimal point is the 
"tenth column," the second place to the right is the 
"hundredth column"; then comes the "thousandth col
u�," and so on. These too should be lined up accu
rately. 

The best way to make sure of this is to see to it that 
the decimal points all fall in a vertical line. When that 
is taken care of, all the columns will line up properly on 
both sides of the decimal point. In other words, to add 
24.0 and 0.3, we write it as follows: 

24.0 
+ 0.3 

24.3 

The sum is quite obviously 24.3. 
Similarly, if you work out the sum of 2.0, 0.4, and 
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0.03, keeping the decimal points in a vertical line you 
will have 

2.0 
0.4 
0.03 

2.43 

Notice that you have the 3 in a column that includes 
nothing else. That should not be disturbing. We are 
used to such additions as this: . 

305 
22 
17 

344 

We automatically bring down the 3. Of course, you 
may be thinking about it now for the first time and 
wondering why that is allowed. Well, try looking at 
it this way. Suppose that we make use of our reserve of 
zeros on the left and tum the addition immediately 
above to 

305 
022 
017 

344 

This is certainly permissible, for 022 and 017 are the 
same in value as 22 and 17. 

Similarly, in the addition of 2.0, 0.4, and 0.03. we 
could make use of the reserve of zeros on the right 
and make it 

Decimals 

2.00 
0.40 
0.03 

2.43 

121 

We are completely justified, then, in reaching the 
final conclusion that 243.0 + 10 = 24.3 and 243.0 + 
100 = 2.43. 

In short, our rule that the decimal point moves one 
place to the right as you multiply by 10 and one place 
to the left as yo� divide by 10 is true even when digits 
other than zero border the decimal point. The decimal 
point is completely freed and we can move it through 
a number at will. 

Thus 24.327 X 100 = 2432.7 and 24.327 + 100 = 
0.24327. ( For some reason it is not customary to mark 
off numbers to the right of the decimal point by commas 
in groups of three, as is done for the numbers to the 
left of the decimal point. ) 

Now we have the answer to the question raised earlier 
in the book as to what happens if the divisor has more 
zeros than the dividend. To refresh your memory: I 
said that the zeros ending the quotient were equal in 

. 
number to those ending the dividend minus those 
ending the divisor. Thus, 10,000 + 10� = 100 (four 
zeros minus two zeros equal two zeros ) .  

.But what happens if we wish to tackle 100 + 1O,OOO? 

Here we have two zeros ending the dividend and four 
ending the divisor, iO that the number of zeros ending 
the quotient ought to be 2 - 4, and unless we go into 
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negative numbers that stumps us. 

n we forget the old rule and use the decimal point 
instead, we have 100.0 -+ 10,000. There are four zeros 
ending 10,000, so we move the decimal point four places 
to the left ( we are dealing with a division) and the 
example becomes 100.0 -;- 10,000 = 0.01, or 7{00. 

MANIPULATING DECIMALS 

You may wonder what other devices used earlier in 
this book can be replaced by devices involving the 
decimal point. Fortunately, very few need to be. In 
fact, one of the important conveniences of decimals is 
that although they represent fractions they can be 
treated by the same techniques used for whole numbers. 

In addition and subtraction, for instance, it is only 
necessary to make sure the decimal points line up, and, 
after that, all the usual rules apply. If we wish to add 

37.3 
+19.9 

we subtract 0.1 from the augend and add 0,1 to the 

addend and have 
37.2 

+20.0 
57.2 

which gives us our answer at a glance. 
Again, instead of writing 

57.5 
-22.8 

Decimals 123 

we add 0.2 to both minuend and subtrahend and have 

57.7 
-23.0 

34.7 

so that the answer comes quickly. 
, To understand how multiplication affects numbers 

with decimal points, let's first try some simple examples 
involving fractions. You will accept the fact, I think, 
that 7{0 X 7 = %0. n this is converted into decimal 
form, what we are saying is that 0. 1 X 7 = 0.7. 

You can try other examples of this, and you will see 
that when a multiplicand containing a decimal poipt 
is multiplied by a whole number, the position of the 
decimal point is not changed. Thus, 2�0 X 4 is ( 2  + 
%0 ) X 4, which equals 8 + 1%0 . , You know that 

HYtO = 1%0 = 1 + %0. Th1
, 

efo,
,

'
. si+ 1%0 = 8 + 1 + 

%0, or 9%0.  To summari7f : ; 2,0 .'/< 4 = 9%0. n we 
place that in decimal form, we are saying that 2.4 X 

4 = 9.6. If we were to work out other examples in 

fractional form we would find that 2.4 X 8 = 19.2, 
0.24 X 4 = 0.96, 0.24 X 8 = 1.92, and the like. 

The digits are as they would be if no decimal point 
were involved, and the placing of the decimal point is 

the same in the product as in the multiplicand ( pro
vided the multiplier is a whole number ) .  n the decimal 
point is one place frbm the right in the multiplicand, it 
is one place from the right in the product; if it is two 

,places from the right in one, it is two places from the -;', " 
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right in the other. 

This means that you can follow the ordinary rules 

of whole-number calculation and then just remember 

to place the decimal point correctly. H you are multi

plying 6.3 by 11, you can forget the decimal point to 

start with. Since 63 X 11 is 63 X ( 10 + 1) ,  the answer 

is 630 + 63 = 693, if we consider digits alone. Then, 

since the decimal point is one place from the right in 

the multiplicand, 6.3, it is placed similarly in the 

product, which becomes 69.3. 

Or try 2.35 X 99. Consider it to be 235 X 99 or 
235( 100 - 1 ). The answer, as far as digits are con

cerned, is 23,500 - 235 or 23,265. Now place the dec

imal point two places from the right, as in the multipli

cand, and the answer to the problem is 232.65. 

Sometimes one
. 
or

. 
more zeros appear on the extreme 

right to the right;pf;pte <fcimal point. Let's say that 

you are faced wi�,l� � 20. If this were 1422 X 20, 

you would represent ·.oo as 10 X 2: Multiplying 1422 by 
2 gives you 2844 and a multiplication by 10 simply adds 

a zero at the end to make it 28,440. You want the dec

imal point three places from the right, however, so it 

becomes 28.440. H you wish, you can then drop that 

final zero, and state the answer as 28.44. However, 

don't drop the zero until after you have placed the 

decimal point correctly. It is only after the decimal 

point is in place that the value of the number is fixed 

and it is only then that you are safe in dropping (or, t� 
indicate accuracy, not dropping) zeros. 
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You can even learn to manipulate your decimals 
without dropping the decimal point. For instance, let's 

try l.422 X 20 once more. Again, we break up 20 into 

10 X 2, but this time we multiply first by 10 and do 

that by simply moving the decimal point one place to 

the right, so that l.422 becomes 14.22. Now we multi

ply that by 2 without budging the decimal point, and 

it becomes 28.44. 
But what if the multiplicand and the multiplier are 

both decimals? What, in other words if we are not 
multiplying 6.3 by 11, but 6.3 by l.l. 

At this point, let's back up a little and look at some 

simple multiplications. Consider this : 60 X 4 = 240. 

Suppose that we divide 60 by 2, getting 30, and multi

ply 4 by 2 to get 8. H we multiply the new numbers, 

we find that 30 X 8 gives us the same product as before, 

240. H we divide 60 by 5 and multiply 4 by 5, we have 

12 X 20, which is still 240. Or what if we multiply 60 

by 2 and divide 4 by 2? We have 120 X 2; yes, 240. 

If you check further you can satisfy yourself that 

when two numbers are involved in a multiplication, 

then multiplying one and dividing the other by the 

same number leaves the product unchanged. In alge

braic notation: a X b = abo If a is multiplied by n and 

b is divided by n and the two new numbers are multi

plied, you have an X bIn = abnln = abo The product 

is Dot changed. ( You may remember we had a similar 

situation in addition, where a sum was not changed if 
the same number was added to the augend and sub-
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tracted from the addend. )  

Now lees go back to the problem 6.3 X 1.1. What 

is troubling us here is the fact that both numbers are 

decimals. If only one were a decimal we could make 

the other the multiplier and have the situation where 

a decimal is multiplied by a whole number, and that 

we can handle. Lees follow the basic rule, then, of 

converting a difficult problem into a simple one, and 

change one of the decimals into a whole number. 

We multiply 1.1 by 10; the decimal point moves one 

place to the right and 1.1 becomes 11. In order to keep 

our product unchanged, however, we must now divide 

6.3 by 10. The decimal point moves one place to the 

left and 6.3 becomes 0.63. Our multiplication problem 

is changed from 6.3 X 1.1 to 0.63 X 11. Matters are 

now simple. Since 63 X 11 = 630 + 63 = 693, we need 

only place the decimal point two from the right (as it is 
in the multiplicand, 0.63 ),  so the answer is 6.93. 

Suppose that we have the problem 521.2 X 0.008. If 
we multiply 0.008 by 1000, the decimal point moves 

three places to the right and 0.008 becomes 8. Now we 

must divide 521.2 by 1000, so the decimal point moves 

three places to the left and 521.2 becomes 0.5212. The 

problem has now become 0.52l2 X 8. We double 5212 
three times : 10,424, 20,848, and 41,696. In the mul

tiplicand, 0.5212, the decimal point is four places from 

the right, and it must be so in the product as well. The 

answer therefore is 4.1696. 
Now let us write out the original numbers being mul-
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tiplied in the two cases just given, without any shift in 

the decimal points, and place the correct product ( as 

we have determined it) under each: 

6.3 521.2 
X 1.1 X 0.008 

6.93 4.1696 

In the first case the decimal point is 1 from the right in 

the multiplicand, 1 from the right in the multiplier, and 

2 from the right in the product. In the second case, the 

decimal point is 1 from the right in the multiplicand, 3 
from the right in the multiplier, and 4 from the right in 

the product. 

You can try this for any number of cases by the meth

ods I have used here and you will find an easy rule for 

the location of the decimal point in multiplications. 

The number of places from the right in the product is 

equal to the sum of the number of places from the right 

in multiplicand and multiplier. 

Assume that we know that 54 X 12 = 648. ( Mter all 
54 X 12 = 54 X ( 10 + 2 )  = 540 + lOB = 648.) In that 

case, without doing any shifting of decimal points at 

all, we can say that 

5.4 5.4 
X 12 X 1.2 
-- --

64.8 6.48 

5.4 
X 0.12 

0.648 

0.54 
X 0.12 

0.0648 

0.0054 
X 1.2 

0.00648 

So the rules for multiplication do not alter for deci

mals. One need only be careful about placing the 

decimal point. (This is a matter I will return to later. ) 

� '1 ':� 
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The matter of decimals and division remains. We 
know that the multiplication of a decimal by a whole 
number leaves the position of the decimal point un
changed. It is not surprising that the same is true of 
division. We can check this with fractions: %0 -7- 3 = 

%0. If we write this in decimals, we have 0.9 -7- 3 = 0.3. 
Similarly, since 75 -7- 15 = 5, then 7.5 -7- 15 = 0.5 and 
0.75 -7- 15 = 0.05. You can work this out in fractional 
form if you wish to check the point. 

Notice that by using decimals in this fashion we can 
solve problems in which the divisor is larger than the 
dividend by the same techniques used when the divi
dend is larger than the divisor, and without bringing in 
ordinary fractions. Take the question of dividing 15 by 
50. Without decimals we would have to say that 15 -7-
50 = 1 % o .  We could reduce that fraction to lowest 
terms by dividing· the numerator and denominator of 
the fraction by 5 so that the answer becomes %0. ( I  
will have something to say about reducing to lowest 
terms in the next chapter. ) 

On the other hand, why don't we write 15 as 15.0? 
Now, 150 -7- 50 = 3 - a problem we can solve at a 
glance. Therefore 15.0 -7- 50 = 0.3, a problem we can 
solve in the same glance. Since 0.3 is the decimal way 
of writing % 0, the answer is the same with and without 
decimals, but using decimals is certainly swifter. ( There 
are times, to be sure, when fractions are easier and 
quicker than decimals. We'll get to such cases later 
on: ) 

Once again, the problem becomes a trifle more com-
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plicated when both divisor and dividend are decimals. 
What if, instead of 7.5 -7- 15, we have the problem 7.5 -7-
1.5 or 0.75 -7- 0.OOOI5? Astonishingly enough, the situa
tion in division is for once simpler than the correspond
ing situation in multiplication. Let's look at a few ordi
nary divisions using whole numbers only; 72 -7- 12 = 6, 
for instance. Suppose dividend and divisor are both 
divided by 3; we then have 24 -7- 4 = 6. What if the 
original numbers are both divided by 6? Then we have 
12 -7- 2 = 6. What if they are both multiplied by 4? 

Then we have 288 -7- 48 = 6. 
You can test as many cases as you like and you will 

find that if both dividend and divisor are multiplied ( or 
divided) by the same number, the quotient remains the 
same; the answer to the problem is not affected. 

Expressed in algebraic notation, we can say that a -7-
b = a/b. If a and b are both multiplied by n, the divi
sion becomes an -7- bn = an/bn = a/b. If a and b are 
both divided by n then we have a/n -7- b/n. This divi
sion is equivalent to a/n X n/b = anlbn = alb once 
more. You may remember that we had a similar situa
tion in subtraction, where the two numbers involved in 
the subtraction yielded the same difference when the 
same number was added to both or subtracted from 
both. 

If now we are faced with a division in which dividend 
and divisor are both decimal numbers, we must try to 
convert the divisor to a whole number, since we can 
handle division by a whole number even when the 
dividend is a decimal. Consider the problem 7.5 -7- 1.5. 
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If we multiply the divisor ( 1.5 ) by 10, the decimal point 

moves one place to the right and 1.5 becomes 15. How

ever, if we are to keep the quotient unchanged, the 

dividend must be multiplied by 10 also so that 7.5 be

comes 75. The problem becomes 75 -+- 15 and the an

swer is 5. 
If the problem were 0.75 -+- 0.00015, we would be 

faced with having to convert 0.00015 into a whole num

ber. We could do this if we moved the decimal point 

five places to the right, which means multiplication by 

100,000. In that case 0.00015 would become 15. But 

now we must also multiply 0.75 by 100,000 and move 

the decimal point five places to the right there, too. 

Don't be fooled into thinking that in 0.75 there are only 

two decimal places available. Remember that there is 

an unlimited reserve supply of zeros at the extreme 

right to the right of the decimal point. We can write 

0.75 as 0.75000, and now when we move the decimal 

point five places to the right 0.75000 becomes 75,000. 
The problem 0.75 -+- 0.00015 becomes 75,000 -+- 15 and 

the answer is 5000. 
Nor must you worry about multiplying or dividing by 

10 or 100 or 100,000. Simply move the decimal point, 

remembering that, however you move it, you must move 

it exactly the same in dividend and divisor. And, in 

moving it, move it so that the divisor becomes a whole 

number. Then proceed as always. 

This will work even if the dividend is itself a whole 

number to begin with. Thus, 75 -+- 1.5 becomes 750 -+-
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15 if the decimal point is moved one place to the right 

in both dividend and divisor, and the answer, as you see 

at once, is 50. 

SIMPLIFYING BY DECIMAL 

So far, the decimal point has faced us with the prob

lem of locating its correct position. With care, this is 

not much of a difficulty, but it does add to the chore ,of 

calculation. It is only fair, therefore, to ask if the deci

mal point in return can help us in our calculations and 

actually make things easier. 

It does in one respect, we have already seen. Multi

plication or division by numbers such as 10, 100, or 1000 
can be accomplished by merely shifting the decimal 

point back and forth. Well, can we bend this to our 

purposes where numbers not of this sort are involved? 

Actually we can. Suppose we want to multiply 68 by 

5. This is not too hard, but we can introduce a time

saving step that will make it even easier. We could 

'consider 5 as 10 -+- 2. Instead of saying 68 X 5, then, 

we can say 68 X 10 -+- 2. By now you won't be the least 

surprised that a multiplication can be simplified by sub

stituting two steps for one, and making one of the 

two steps a division besides. The two steps, naturally, 

are simple. To multiply by 10, we simply move the 

decimal point one place to the right. In the case of a 

whole number 'this is equivalent to adding a zero - 68 
becomes 680. This is so easy that it scarcely counts as 

a step. The only comparison we need really make is 
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whether it is simpler to multiply 68 by 5 or to divide 680 
by 2. I think you will agree that dividing by 2 is simpler 
and that a glance is enough to tell us the answer: 340. 
Consequently, 68 X 5 = 340. 

For somewhat larger numbers, the diHerence be
tween the two methods is even more marked. Suppose 
you had to multiply 42.48 by 5. H you think of it as 
424.8 divided by 2 you can see at once that 42.48 X 5 = 
212.4. 

H to multiply by 5 we multiply by 10 and divide by 
2, then we do just the reverse in order to divide by 5. 
We divide by 10 and multiply by 2. ( Since division is 
the inverse of multiplication, you would expect such 
opposites in behavior. )  In order to divide 170 by 5, we 
divide by 10 first, which means shifting the decimal 
point one place to the left and changing 170 to 17. 
Which is easier now, 170 -+- 5 or 17 X 2? Clearly the 
latter, and the answer is 34. 

We can carry this same principie to multiplications 
and divisions by some other numbers. For instance, 
25 = 100 -+- 4. Why multiply by 25, then ( something 
which would have to be done on paper by almost every
one ),  when we can multiply by 100 by simply moving 
the decimal point two places to the right and then 
divide by 4? Thus, 824 X 25 must, in the ordinary way, 
be worked out on paper. Yet consider that if one mul
tiplies 824 by 100 to get 82,400 and then divides by 4, 
the answer, 20,600, appears without trouble. H in a 
particular case division by 4 is a bit clumsy, we can 
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always divide by 2 twice. Accordingly, 7.56 X 25 can 
be rewritten as 756 -+- 4; and dividing by 2 twice gives 
us first 378, then 189; so 7.56 X 25 = 189. 

Again we can reverse matters for division. Dividing 
by 25 is equivalent to dividing by 100 ( moving the deci
mal point two places to the left ) ,  then multiplying by 
4. H we are faced with 212 -+- 25, we change that to 
2.12 X 4 and the answer comes out 8.48. 

One further step brings us to 125, which is 1000 -+- 8. 
H we must multiply by 125, let us multiply by 1000 
(moving the decimal point three places to the right) 
and divide by 8, or, if we choose, divide by 2 three 
times. Thus, 1.736 X 125 is the same as 1736 -+- 8. 
Dividing 1736 by 2 three times gives us 868, 434 and 
217. Consequently, 1.736 X 125 = 217. 

And the reverse? H we want the answer to 1311 -+-
125, first we divide by 1000, so 1311 becomes 1.311. The 
problem has become 1.311 X 8, and if we double 1.311 
three times, 2.622, 5.244, and 10,488, the last figure -
10.488 - is the answer. 

With very little extra trouble we can multiply by 15 
or 35. The number 15 can be written as 10 + 5; there
fore, in multiplying by 15 we multiply first by 10, then 
by 5, and add the two products. In multiplying by 10 
we merely move the decimal point one place to the 
right, and in multiplying by 5 we do the same thing and 
then divide by 2. The second product is half the size 
of the first. In other words, if we wish to solve 72 X 15, 
we add a zero to 72 (making it 720 ) ,  take half of that 
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(360) ,  and then add the two. As you see, 720 + 360 = 
1080; so 72 X 15 = lOBO. 

To multiply by 35 is to multiply by 25 + 10. Sup
pose we have 84 X 35. First we multiply B4 X 25, 
which becomes 8400 -+- 4 = 2100. Then we multiply 84 
by 10, which is 840. Then we add 2100 and 840 to get 
2940; so B4 X 35 = 2940. If you are afraid youll forget 
2100 while you're working with the 840, you can always 
jot down the 2100 after you get that part. Even with 
the time lost in jotting, you are still very likely to solve 
the problem more quickly than if you tried to do B4 X 
35 by the full method of multiplication. 

This same procedure gives us an alternate method for 
multiplying by 125 without introducing division by B. 
We can consider 125 as 25 + 100. If we are faced with 
76 X 125, we concentrate on 76 X 25. That is the same 
as 7600 -+- 4, which equals 1900. Next, 76 X 100 = 7600 
and 7600 + 1900 = 9500; thereby we find that 76 X 

125 = 9500. And we have had to divide by 4 rather 
than B. 

It is scarcely any more trouble to multiply by a num
ber very close to those for which such shortcuts are 
available. Suppose you had to multiply by 126 or 124. 

Well, 126 = 125 + 1 and 124 = 125 - 1. If you want 
to work with 76 X 126, and can find without too much 
trouble that 76 X 125 = 9500, you can add to that 76 X 
1, Or 76 itself. Therefore, 76 X 126 = 9576. 

If it were 76 X 124, you would subtract 76 from 
9500. Therefore, 76 X 124 = 9424. 
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We have broken up multipliers into sums before now 
but we have never done so with divisors. Perhaps you 
may wonder why we don't. Since division is the reverse 
of multiplication, you may feel that instead of dividing 
by 35, we might divide first by 25 then by 10 and take 
the difference of the two quotients. This would be the 
exact reverse of the situation in multiplications. Never
theless, this does not work! 

Whenever you think of a possible shortcut - one you 
haven't seen suggested anywhere but which you've 
worked out from what seem to you to be general prin
ciples - always check it on some simple cases. If it 
doesn't work, forget it. Let me give you this case as an 
example. 

If we wanted to solve 30 X 15 by adding 30 X 10 and 
30 X 5, we would say 30 X 15 = 300 + 150 = 450. 
That is correct. Suppose, though, we wanted to say 

, 30 -+- 15 was equal to 30 -+- 10 minus 30 -+- 5. If we 
tried that we would say 30 -+- 15 = 3 - 6 = what? As 
we happen to know 30 -+- 15 = 2, but we certainly don't 
get 2 by trying to solve 3 - 6. 

Actually, instead of trying to say 3 - 6, we could 
make each number the denominator of a fraction with 1 
as the numerator, and then add. The addition would 
become % + lis. We would find an answer to that with 
a unit numerator; in this case the answer is Y2; and the 
denominator, 2, is the answer we are seeking. This, 
obviously, is not a quick and easy method, and I cer
tainly don't recommend it. Indeed, I urge you to forget 
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it; I have inserted this passage only as a horrible ex

ample. 
Using algebraic notation to explain the above, we can 

say this: if b = e + d, then ab = a(e + d) and alb = 
a/( e  + d) .  But ab = a(e  + d) can be rewritten as 
ab = ac + ad, which is fine and is what we do when we 
convert a multiplier into a sum and multiply by augend 
and addend separately. However, we cannot convert 
alb = a(e  + d)  into alb = ale + aId or into alb = 
ale - aid or anything of the sort. If we remove the 
parentheses in alb = a(c + d)  by correct algebraic 
principles, we find we must say that 

1 
ajb = 

bla + cIa 

which gives us no handle for a decent shortcut. 
Does this mean ther� is nothing to be done about 

dividing by 15? Not at alt H you can't change a divisor 
into the sum of smaller numbers, there is nothing 
against changing it into the product of smaller numbers. 
In fact, earlier in the book, I pointed out that 15 = 5 X 
3, so that you can divide by 15 by first dividing by 3 and 
then by 5 (or first by 5 and then by 3, if you prefer, 
although it is usually better to divide by the smaller 
number first ) .  

Consider 765 -:- 15. We could divide by 3 first to get 
255. Then divide by 5 to get 51. 

Or we could decide to divide by 5 first, the short way. 
Since 765 -:- 5 = 76.5 X 2, the answer is 153. Divide 
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that by 3 and again the final answer is 51. 
Still another way of handling this situation is to re

member that a quotient is not changed by multiplying 
dividend and divisor by the same number. Therefore, 
if you double both 765 and 15, you will find that 765 -:

-15 becomes 1530 -;- 30. Next, divide both by 10 and you 
have 153 -:- 3 = 51. In the same way, faced with 490 -:-
35, you might double the dividend and divisor, making 
it 980 -;- 70; divide both by 10, making it 98 -:- 7; and 
the answer is 14. 

How about multiplying by 55? Well, 55 is 5 + 50, 
and let's look at that for a moment. Since 50 is 5 X 10, 
this means that if we multiply by 5, then add a 0 to the 
answer (or, alternatively, move the decimal point one 
place to the right) ,  we shall have the product we would 
have had if we had multiplied by 50. For instance, sup
pose we are dealing with 16.12 X 55. Let's first think 
of it as 16.12 X 5. That means multiply by 10, moving 
the decimal point one place to the right and then divid
ing by 2; and 161.2 -:- 2 = 80.6 . .If we know that 16.12 X 
5 = 80.6, then we also know that 16.12 X 50 = 806. 
It remains only to add 806 and 80.6 to get the final an
swer as 886.6. 

We can also consider 55 as 11 X 5, multiplying 16.12 
by 11 first and then by 5. I think that breaking up 55 

into 5 + 50 is simpler in this case, but breaking it up 
into 11 X 5 may be simpler in other cases. You must 
keep an open mind about such things. 

You can multiply by 44, or by 33, or by 66, or by 771 
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using the same principle. Multiply by 4, shift the deci
mal place to give the product of a multiplication by 40, 
and add. Multiply by 3, shift the decimal place to give 
the product of a multiplication by 30, and add. And 
so on. 

If you are willing to try subtracting you can multiply 
quickly by 45, for that is 50 - 5. If you wanted to solve 
16.12 X 45, you can still get the products of 16.12 with 
5 and with 50, finding them to be SO.6 and 806. Now, 
however, you subtract: 806 - 80.6 = 725.4, which is 
the product of 16.12 X 45. 

In the same manner you can multiply by 27 (which is 
30 - 3 ) ,  by 54 (which is 60 - 6) .  and so on. And, of 
course, multiplying by 5.5 or by 0.45 or by 660 follows 
the same principles, with the added provision that you 
have to be careful about the location of the decimal 
point. 

We can broaden the principle to take care of cases 
where matters aren't quite as simple as involving the 
mere movement of a decimal point. 

Imagine that we wanted to multiply a number by 36. 
We already know that we �an write 36 as 4 X 9 or as 
6 X 6 or as 3 X 3 X 4, or as 2 X 2 X 3 X 3, and make a 
series of multiplications with any of these combinations. 
However, there is still another device. Suppose we 
write 36 as 30 + 6. Since 30 is five times as large as 6, 
any number multiplied by 30 will give a product five 
times as large as the same number multiplied by 6. Con
sequently, if you wanted to solve 132 X 36, you might 
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first multiply 132 by 6 to get 792. Then multiply 792 
by 5 by changing that to 7920 -7- 2 = 3960. Now you 
can add 3960 and 792 for the final answer of 4752. 

You may think it easier to multiply by 6 and then 
multiply by 6 again, thus avoiding the addition. And, 
indeed, I think it is, in this case. Nevertheless, there 
may be other cases where treating 36 as 30 + 6 - that 
is, (5  X 6)  + 6 - may be handy. 

DOLLARS AND CENTS 

Decimals are of particular importance to Americans, 
since American money is based on a decimal system. 
A large proportion of the calculations that Americans 
must make from day to day naturally involves money, 
and decimals are automatically involved. 

The smallest American coin is the "cent," and one 
cent can be written 1¢, the cent symbol being a "c" with 
a line through it. The cent is sometimes called a 
"penny," but penny is the name of a small British coin 
(worth about 1% cents these days ) .  The American use 
of the word is a hangover from Colonial times. 

There are ten cents to the "dime" and ten dimes to 
the "dollar." A dime can be written as lQ¢, therefore, 
and a dollar can be written as lOO¢. The word "dollar" 
comes from the name of an old German coin, a thaler. 
This was a short form of loachimsthaler and it was so 
called because it was coined in Joachimsthal, Bohemia. 
Joachimsthal in English would be "St. Joachim's Val-
l " ey. 
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It is much more convenient to reckon in dollars than 

in cents, because most things cost a few dollars at least 

and you don't want to be dealing forever in hundreds 

or in thousands of cents. A dollar is therefore written 

with a special symbol of its own ( $ ) .  This is a capital 

S with a vertical line through it or sometimes two ver

tical lines. The origin of this sign is unknown ( though 

there are many theOries, such as that originally it was 

"US" with the U printed over the S ) .  The sign comes 

before the number, so that one dollar is written $1. 

If we work with dollars, then a dime can be viewed as 

*0 of a dollar, and a cent as *00 of a dollar. ( Indeed, 

the word "dime" comes from a Latin word meaning 

"tenths," while "cent" is from one meaning ''hun

dredth.")  Using the dollar symbol, then, a dime is $0.1 

and a cent is $0.01. It is customary, in dealing with 

American money, always to allow two places after the 

decimal point, even when no odd number of cents are 

involved, so that the dime is always written as $0.10 

when the dollar sign is used, and five dollars can be 

written $5.00. 

In SWitching from the dollar symbol to the cent sym

bol we must move the decimal point two places to the 

right, since we are then multiplying by 100 ($1 = 
l00¢ ) . In shifting from cents to dollars the decimal 

point must be moved two places to the left, because we 

are then dividing by 100 ( 100¢ = $1 ) .  Thus, $2.57 = 

'257¢ and 5298¢ = $52.98. 

All coins other than the cent and the dime are forced 
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into this decimal system. The ''half dollar" is, obviously, 

half a dollar. That makes it five dimes, or fifty cents, 

and it is written 50¢ or $0.50. The "quarter" is actually 

a short name for "quarter dollar," and it is two and a 

half dimes, or twenty-five cents. It is written 25¢ or 

$0.'25. Finally, the "nickel" ( so called because the metal 

nickel makes up a quarter of its substance, the rest be

ing copper ) is half a dime, or five cents. It can be 

written 5¢ or $0.05. 

In calculating with American money it is not really 

necessary to worry about the different coins. To be 

sure, sometimes one tries to solve problems which may 

involve, for instance, the number of ways in which one 

can change a two-dollar bill without using nickels; but 

these problems are puzzles, and in this book we are not 

concerned with puzzles. 

In serious calculations everything is done in dollars to 

the left of the decimal point and cents to the right of it. 

Even the dime is swallowed up, for $0.10 is never read 

"one dime" but always "ten cents." The sum $2.23 is 

not read "two dollars, two dimes, and three cents" but 

is read "two dollars and twenty-three cents." In fact, a 

common phrase representing money in the United 

States is "dollars and cents." 

In calculating with American money, then, we follow 

all the rules for ordinary decimal numbers except that 

we must remember to keep the decimal point two places 

from the right at all times. Say that we want to mul

tiply $2.51 by 10. The most convenient device would 
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be to move the decimal point one place to the right, so 
the answer might be $25.1. However, the decimal point 
is now only one place from the right. To make it two 
places from the right (without actually moving it and 
making the answer wrong) ,  we add a zero from the 
reserve supply on the extreme right and say $2.51 X 
10 = $25.10. If, instead, we multiply $2.51 by 100, the 
answer is $251.00. 

What if we divide $2.51 by 1O? Now we must move 
the decimal point one place to the left, and the quotient 
will be $0.251. That final 1 represents a peculiarity, 
however, for if we were to convert $0.251 to cents by 
shifting the decimal point two places to the right we 
would find the sum to be 25.1¢. 

But there is no "tenth of a cent" in modem American 
coinage. A tenth of a cent is sometimes called a "mill." 
from the Latin word for "thousandth," because a tenth 
of a cent is a thousandth of a dollar. Tenths and even 
hundredths of a cent are frequently used in business 
calculations, but in ordinary day-to-day situations frac
tions of a cent are not used. If in any calculation a 
fraction amounting to less than half a cent is met with, 
it is simply dropped. If half a cent or a larger fraction 
is met with, it is added to the answer as a whole cent: 

$2.51 +- 10 = $0.25, and not $0.251 
$2.59 +- 10 = $0.26, and not $0.259 

PERCENTAGE 

Decimals can help us with respect to percentages. 
Percentages are themselves merely decimals in disguise, 
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and in a thoroughly unnecessary disguise, too. 
It is often desirable in day-to-day life to deal with a 

small portion of a particular quantity as, for example, 
, interest on a loan or discount on a sale. This small 

portion rises and falls as the quantity itself rises and 
falls. If the quantity triples, the small portion triples; 
if the quantity falls to a fifth of its original size, so does 
the small portion. In this way, the portion maintains a 
fixed relationship to the quantity. 

Let us suppose that we are dealing with money and 
that the small portion is just *00 of the quantity. Since 
a cent is %00 of a dollar, this would mean that for every 
dollar in the sum, there is a cent in the small portion. 
You might offer that small sum as a discount to en
courage prompt payment: "If you pay immediately, I 
will give you back'a cent for every dollar you pay." Or 
you might charge one cent as interest for every dollar 
you lend: "When you pay back in three months, you 
must give me an additional cent for every dollar you 
pay back." 

What applies to money would apply to anything else. 
For every hundred cents ( that is, one dollar ) one cent 
would make up the ?ioo part. For every hundred dol
lars, one dollar would make up the %00 part; for every 
hundred cats, one cat would make up the %00 part. 
The small part would. in this case, be "one part of a 
particular thing out of every hundred parts of that par
ticular thing." One could express this, shortly, as "one 
part per hundred." 
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This notion first arose in Roman times. In Latin, "per 

hundred" is per centum. This phrase was shortened 
( and sometimes joined together ) ,  becoming "per cent" 
in English. One part per hundred, therefore, is "one 
per cent." One per cent of 6 dollars ( or 600 cents ) is 
6 cents. One per cent of 600 cats is 6 cats. One per cent 

of 5000 automobiles is 50 automobiles. In every case, 
you take 7{00 of the sum, and that is one per cent. Since 
the 1400's the symbol % has stood for "per cent." It 
was originally a small c ( for centum ) with a little circle 
over it, thus, c, and you can see how that became % .  
Therefore, "one per cent" can be written as 1 % .  

Since 1 %, or "one part per hundred," is actually equal 
tD 7{00, it can be written in decimal form as 0.01. In 
the same way, 6% is 0.06; 20% is 0.20 or 0.2, and 100% 
is 1.00 or 1. You can even have 154%, which is 1.54, or 
1000% ,  which is 10.00 or simply 10. In short, any whole 

num� written as a "per cent" can be changed into a 
decimal by simply placing a decimal point two places 
from the right and, of course, dropping the per cent 
sign. 

. Once a percentage is written as a decimal, it becomes 
very easy to handle. For instance 1 % of 478 is simply 
478 X 0.01 = 4.78. It also does not require much 
thought to see that 6% of 900 is 900 X 0.06, which is 
equivalent to 9 X 6 = 54. 

You might wonder why we use percentages at all, if 
they are merely disguised decimals and if using deci
mals is so much simpler. The only answer to that is 
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that the ancient Romans made the :first moves toward 
the use of percentages, and these became better devel
oped and more common throughout the Middle Ages. 

Decimals did not come into use until the 1500's, and by 
then percentages had heen in use for a thousand years 
and more and were so familiar that the business com
munity has never been able to abandon them. 

Sometimes percentages involve fractions, as in the 
case of 7% % .  The number 7% always means 7 + %, so 
7% % means 7% + % %, and we have to ask ourselves 
what % %  means. Well, 1% = 0.01 and % %  must be 
half that. This means that % %  is 0.01 +- 2. If we write 
0.01 as 0.010 ( as we have every right to do ) ,  then 

. 0.010 +- 2 = 0.005. This is equivalent to the fraction 
%000 ( as you can see if you divide 5 by 1000 - moving 
the decimal point three places to the left and converting 
5 to 0.(05 ) .  

Since %% is 0.005, or 0/1000, it can be spoken of as 
"five parts per thousand." So, 7% % is 0.07 + 0.005, or 
0.075, and it can be spoken of as either "seven and a half 
parts per hundred" or as "seventy-five parts per thou
sand." Whatever it is called, it is most easily handled in 
calculations if it is written in simple straightforward 
decimal fashion as 0.075. 

Very occasionally, people will speak of "parts per 
thousand" as "per mill" (from the Latin word for "thou
sandth. )" In that case, the symbol 0/00 may be used, so 
that 7% % could be spoken of as 75 per mill or written 

75 0/00• 
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Then, too, chemical analysts might also speak of 
"parts per million" meaning one millionth, or 1Looo,ooo . 
Such "parts per million" can be abbreviated as "ppm." 

All such "parts per" expressions can be easily written 

as decimals, thus: 

One part in ten, equals 1{0 or 0.1 
One part in a hundred, equals 1{ 00, 1 per cent, 1 %, or 

0.01 
One part in a thousand equals 7'1000, 1 per mill, 1 0/00 ,  

or 0.001 
One part in ten thousand equals 1{0,000, or 0.0001 
One part in a hundred thousand equals 1{00,ooo, or 

0.00001 
One part in a million equals 1{,ooo,ooo. 1 ppm, or 

or 0.000001, and so on. 

Notice that the number of zeros in the denominator 
of the fraction is one greater than the number to the 
right of the decimal point in the corresponding deci

mal. Thus, if you want to convert one ten-billionth 
to decimals, the process is simple. The fraction is 
1{0,ooo,o oo,ooo . There are ten zeros in the denominator, 
so there must be nine zeros to the right of the decimal 

point when it is written as a decimal. One ten-billionth 
is therefore 0.0000000001. To change that to a percent

age, move the decimal point two places to the right and 
add the per cent sign, so that it becomes 0.00000001 % .  

Nor are we confined to "one part per -." Thus, six 
parts per thousand is six times as much as one part per 
thousand, or 6 X 0.001 = 0.006. Fifteen parts per hun-
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dred thousand is 15 X 0.00001 = 0.00015, and so on. 

It is impossfhle to speak of "parts per - " where num

bers like 100, and 1000 are not involved. One might 

speak of "six parts per fifteen" or "seventeen parts per 

twenty-five." This is just a way of describing a fraction. 

Just as "one part per hundred" equals 1{oo, so "six parts 

per fifteen" equals o/t.:; and "seventeen parts per twenty

five" equals 1 %�. 
A practical example of this sort of thing is the ex

pression "14 carat," which defines the purity of a par
ticular gold alloy. The word "carat" is a way of saying 
"parts per twenty-four" so that 14 carat means "14 parts 
per 24." This really means that the alloy is 1%4 gold. 

But this brings us to fractions, which I have been 
bumping into now and then in the last two chapters, 
and I will delay further consideration until the next 
chapter. 

CHECKING THE DECIMAL POINT 

So . far, I have discussed methods for checking an
swers obtained by each type of operation, but I have 
concentrated on the actual digits in the answer. The 

method of casting out nines, for instance, depends en
tirely on the digits and is unable to tell the wrong 
order of the digits from the right order. 

Yet there is one way in which we can have all the 
digits correct and even in the right order, and still have 
an answer which is quite wrong. This happens when 

\Ve misplace the decimal point or, which is the same 
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thing, get the number of zeros in the answer wrong. 

Of course, if we follow the methods of handling 

decimals in a sensible manner and keep our wits about 

us, we should not make mistakes in placing the decimal 

point. But then we should not make mistakes in digits 

either. The fact of the matter is that mistakes will 
happen and no matter how careful we are, a decimal 

point may slip out of place. Naturally, we can repeat 

the calculation but this is inefficient. It would be better 

if we found a different method. 

Let's see the sort of problems in which the question 

of the position of the decimal place would chiefly 

arise. In addition or subtraction we are not likely to 

have trouble. There we line up the numbers with the 

decimal points in a vertical row and the answer has the 

decimal point also in that same row. It is in multipli

cation and division that misplacement of the decimal 

point is a problem. 

Suppose you are multiplying 750 by 0.0000012. As 
far as digits are concerned you need only work it out 

as 75 X 12 = 750 + 150 = 900. You have the digit 9, 

therefore, but is it 0.0009 or 0.000009, or what? You 

may decide that the first alternative is correct by care

ful work, but are you sure? Is there any quick way of 

checking and being certain? 

Again, what if you are dividing 123.2 by O.ll? In 

sheer digits, the answer is 112; but is it 1.12 or 1l.2? 

You are here interested not in the answer itself but 

merely in its "order of magnitude." Each shift of the 
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decimal point by one place changes the number by one 

order of magnitude. This means that if one number is 

ten times as large as a second number it is also one order 

of magnitude greater. Thus 210 is one order of magni

tude higher than 21 and it is one order of magnitude 

lower than 2100. 

Nor need one be this exact. Numbers that differ by 

less than a multiple of 5 can be considered as of the 

same order of magnitude. For instance, 10 and 40 are 

of the iame order of magnitude because the latter is 

only four times as large as the former. Again 125 and 

217 are of the same order of magnitude, for the latter 

is less than twice the size of the fonner. However, 13 

and 72 might fairly be considered one magnitude apart, 

for 72 is 6 times as large as 13. 

Well, then, in a complicated multiplication, if one 

"rounds off" the numbers involved in such a way as 

not to alter any of the numbers by a multiple of more 

than 5, the chances are that although the digits of the 

new product will be altogether wrong, the order of 

magnitude wnI remain correct. If, in the new multi

plication, the final answer, with the decimal point cor

rectly placed, is easy to get, it serves as a guide for the 

original multiplication, for there the decimal point must 

be similarly placed. 

Naturally, the smaller the change involved in round-

ing off, the more likely the order of magnitude is to 

remain correct. In a multiplication, furthermore, it is 

best to round off multiplicand and multiplier in opposite 
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directions, since this will introduce a smaller change in 
the product than if multiplicand and multiplier are both 
made larger or both smaller. ( Remember that earlier 

in the chapter, I explained that multiplying the multipli
cand and dividing the multiplier by the same number 
leaves the product unchanged. ) 

Let's return then to our multiplication problem of 
750 X 0.0000012. We can increase the 750 slightly to 
800 and decrease the 0.0000012 to 0.000001. The multi
plication becomes 800 X 0.000001 and with such small 

changes we can't possibly have altered the order of 
magnitude of the product. 

The new multiplication doesn't give us the correct 
digits but it is easy to solve, decimal point and all. Let's 

consider 800 as 8 X 100. Therefore the problem be
comes 8 X 100 X 0.000001. H we multiply 100 X 
0.000001 first, the decimal point in the latter number 

must be moved two places to the right, so that 100 X 
0.000001 = 0.0001. That leaves us with 8 X 0.0001 = 

0.0008, with no possibility of mistake in the position of 
the decimal point. 

The actual answer to the problem 750 X 0.0000012 
contains the digit 9, not the digit 8, but the order of 

magnitude must be the same. Therefore instead of 
0.0008 we write 0.0009, and we can be quite certain 
that we have the decimal point in the right place. 

There is a possibility of error here that I must warn 
you against by using a very simple case. Consider 

0.95 X 0.09. H you think of digits alone, 95 X 9 = 855. 
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However, suppose you are not certain whether the 

actual answer to 0.95 X 0.09 is 0.855 or 0.0855. You 
decide to round off. Since 0.95 is almost 1 and 0.09 is 
almost 0.1, you can change the problem to read 1 X 0.1 
without being much afraid of altering the order of 

magnitude. ( It would be better if you altered multipli
cand and multiplier in opposite directions, but the 
opportunity of using numbers like 1 and 0.1 is too 

attractive to give up. ) Well, then 1 X 0.1 = 0.1 and 
that is the approximate answer. 

If you take a quick look at 0.1 you might say "Aha, 
the digits start immediately to the right of the decimal 
point, without any zeros. Therefore 0.855 is right and 
0.0855 is wrong." 

Well, not sol If you compare 0.1 and 0.855 you see 
they are different orders of magnitude, for 0.855 is 8.55 
times as large as 0.1. However, if you compare 0.1 and 

. 0.0855, you see they are of the same order of magnitude, 

for 0.1 is only about 1 � times as large as 0.0855. There

fore, the correct answer is 0.0855. 
Always judge by the order of magnitude and not by 

the number of zeros alone. 
Now let's pass on to division, where it is best to round 

off the numbers in the same direction, making the 
dividend and divisor both smaller or both larger. ( Re

member that if you multiply both dividend and divisor 
by the same number, or divide them by the same num

ber, the quotient remains altogether unchanged. ) 
If we try 123.2 -:- 0.11, the division problem I men-
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tioned earlier in this section, we can lower 123.2 to 120 

and lower 0.11 to 0.1. Now the problem has become 

120 + 0.1. We have undoubtedly kept the order of 

magnitude of the answer unchanged, but how much 

simpler we have made the problem. If we multiply 

both dividend and divisor by 10 now, we make the 

problem simpler still, for it becomes 1200 + 1 = 1200. 

We know that the answer in digits to 123.2 + 0.11 is 

112, and now we know that its order of magnitude is 

the same as that of 1200. The correct answer of the 

original problem there is neither 1.12 nor 11.2 ( two 

possibilities I advanced earlier) ,  but is 1120. 

In fact, we can determine the order of magnitude of 

an answer before we ever try to work it out. Suppose 

we were faced with the problem : 

78.99 X 13.56 

167.11 + 21.35 

By rounding off we can easily change the problem to 

8O X lO 

160 + 20 

The second version will not give us exactly the right 

answer but it will give us the order of magnitude and 

in a second, too, for 80 X 10 = 800 and 160 + 20 = 8. 
The fraction becomes 80%, which equals 100. 

Now we can work out the problem with digits only 

and never mind any of the decimal points at all. When 

we do so we find that the answer in digits comes to 
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13684, plus a number of other digits which I will omit. 
You know, however, the answer can't be 13.684 or 1368.4 

because whatever it is, it must be of the same order 

of magnitude as 100. The answer, therefore, is 136.84, 

and you don't have to give two second's uneasiness to 

whether the decimal point is in the right place or not. 

TIlE USES OF APPROXIMATION 

You will notice that, in working out the answer 136.84 

to the problem with which I ended the previous section, 

you spent a long time and ran an excellent chance of 

making errors in the digits. However, in working out 

the approximate answer, 100, you had no trouble at all, 

spent virtually no time, and, indeed, probably did it in 
your head. 

The question has to arise: Must one spend all that 

time and effort to get 136.84 when there are cases when 

a simple 100 might do? Indeed, often a simple 100 

would do. In making estimates, for instance, an ap

proximate answer may be all we want. In making 

actual measurements, we may not be able to be certain 
of the exact fraction of an inch so that we must round 

off our answers and no «exact" answer really makes 

sense. 

Early in the book, I pointed out methods for obtain

ing approximate answers in addition; you now have the 

method for multiplication. You round off the numbers 

here as you did there. 

Thus, 69 X 31 becomes 70 X 30, or 2100. Compare 
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that with the exact answer, 2139. Again, 7.89 X 3.15 

becomes 8 X 3, or 24. Compare that with the exact 

answer; 24.8535. 

It is possible, of course, for numbers to be rounded 

off in different fashions. Suppose you want to multiply 

87 by 57. H you take the easy way out and raise both 

numbers to get two multiples of ten with the smallest 

possible change, you would have 90 X 60. The answer 

to that is 5400 and you are quite a way off. The exact 

answer is 4959 and your approximation, 5400, is about 

16% too high. 

, Of course, it would have been worse if you had 

lowered both numbers and made it 80 X 50 = 4000. 
You would then be 20% too low. 

But suppose you realized that in multiplication, mul

tiplicand and multiplier should be changed in opposite 

directions. H you raise the 87 to 90, you should, per

haps, lower the 57 to 50. You would then have 90 X 
50 = 4500. This is better, but you are still more than 

10% low. 

However, you don't do that, you make the change 

the other way. You raise the 57 to 60 and lower the 87 

to 80. Now it is 80 X 60 = 4800 and you are only 370 

low. 

Of course, you are not expected to be clairvoyant. 

You may wonder how you can tell that changing 

87 X 57 to 90 X 50 is not as good as changing it to 

80 X 60. In both cases you are changing one number 

by 3 and the other number by 7. Why, then, should 
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there be such a difference, and how can you know how 

to take advantage of the difference unless you know 

the correct answer in advance? 

Actually, the reasoning is simple. 

In general, the larger a number is, the larger the 

change it can take without too much damage to the 
answer. Consider the problem 1000 X 10 = 10,000. , If  
you increase the multiplier, 10, by 10 to make it 20, you 

have 1000 X 20 = 20,000. You have doubled the an

swer. But suppose you increase the multiplicand, 1000, 

by 10 and make it 1010. Now 1010 X 10 is 10,100, an 

answer which is only 1% higher than the previous 

answer. 

So let's go back to 87 X 57. H we round it off to 

90 X 50, we have changed the larger number by 3 and 

the smaller number by 7. If we round it off to 80 X 60, 

we have changed the larger number by 7 and the smaller 

number by 3. All we need do is remember that the 

larger number can better absorb the larger change and 

we will automatically choose 80 X 60 as the better 

method of rounding. 

Divisions can also be rounded off to give quick 

though possibly not entirely accurate answers. In the 

c� of division, remember to make the changes in the 

same direction, giving the larger number the greater 

change, if possible. Thus, 78.408 -+- 26.4 can be rounded ' 

off to 75 -+- 25 = 3. This is an excellent approximation, 

achieved in a second, for the correct answer is 2.97. 

. Again, suppose you are faced with 160.906 -+- 43. 

�, ! 
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Your first impulse might be to round it off to 160 -+- 40 

and give yourself an answer of 4. That isn't too bad, but 

160.906 is approximately four times as large as 43 and 

it can take a change that is approximately four times as 

large. H you reduce 43 by 3 to 40, then 160.906 ought 

to be reduced to 150 rather than 160. A change of 11 

for the larger number is more in keeping with the 

change in 3 for the lower number. The problem 

150 + 40 can be changed to 15 -+- 4 by dividing both 

dividend and divisor by 10, and the answer is 3%, or 

3.75. 

The actual answer for 160.906 + 43 is 3.742, and yoU: 

see that 3.75 is a very good approximation indeed, much 

better than 4 would have been. Compare the time it 

takes to get the 3.75 by approximation and the 3.742 
by long division and ask yourseH if there are not times 

when the saving in time is worth the trifling inaccuracy. 

The use of approximations also makes it possible to 

work out quick ways for dividing by prime numbets 

greater than 10. The price you pay, once again, is a 
triHing inaccuracy. 

Suppose, for instance, you must divide a number by 

17. Now 17 X 6 = 102. That product is almost equal 

to 100, so suppose you pretend it is equal to 100. In 

that case, instead of dividing by 17 ( long division for 

sure ),  divide by 100, by moving the decimal pOint two 

places to the left and then multiply by 6. 

As an example, consider 134.3 -+- 17. Change that to 

134.3 -+- 100 X 6 = 1:343 X 6 = 8.058. Compare this 

..-____________ .'� .. � __ , _" " " " '_,_ .. _ , .  " " ", . '  ' ' ' ,_ " . __ , __ "_�_,,_. , __ ,, _ ","�W'\ . .  
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with the correct answer, which you would find by long 

division to be 7.9. 

Now here is something I don't particularly recom

mend for beginners, but as one gets used to this way of 

handling numbers by approximations, one can see how 

to correct the approximate answers you get in order to 

come closer to the true answer. 

The approximate answer you get for division by 17, 

when you divide by 100 and multiply by 6, comes out 

a little too high. The reason for this is that 17 X 6 = 102 

and you should, for complete accuracy, have divided 

by 102 and not by 100. By dividing by the smaller num

ber, you get a higher quotient. The difference be

tween 100 and 102 is 2%.  Therefore, reduce your 

approximate quotient by 2% to correct for the error. 

This isn't hard. Since 1 % of 8.058 is 0.08058, which 

you can round off to 0.08, 2% of 8.058 would be twice 

that, or 0.16. Now, then, round off 8.058 to 8.06 and 

carry through the correcting subtraction: 8.06 - 0.16 

gives you 7.9 which, as it happens, is exactly the correct 

answer. 

Once you are familiar with the method, division by 

100 followed by multiplication by 6 followed by sub

traction of 2 % of the approximate quotient will still 

take you less time than long division by 17. 

Similarly, consider division by 13. Since 13 X 8 = 

104, you can get an approximate answer by dividing 

by 100 and multiplying by 8. H you want to improve 

the approximation, you can subtract 4% of the quo-
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tient's value from the quotient. An alternative is to 

divide by 200 and multiply by 15, since 13 X 15 = 195. 

Here you are dividing by 200, which is a bit more than 

2% larger than the correct value of 195. Your approxi

mate quotient will be a bit more than 2% smaller than 

the true value and you can make the proper correction. 

If you wish to divide by 19, you can round that :figure 

off to 20 and convert the division into a simple one 

indeed. The divisor as rounded off would be higher 

than the true number by about 5%, so the quotient will 
be too low by about 5% and can be corrected upward. 

To divide 1368 by 19, write it 1368 -+- 20 = 684 -+-
10 = 68.4. To get 5% of that quotient we must solve 

68.4 X 0.05. Since you are only after an approximation, 

you can round this off to 10 X 0.05, or 1 X 0.5, which 

equals 3.5. ( In a multiplication, if you divide the multi

plicand by 10 you must multiply the multiplier by 10 

to keep the product unchanged; therefore 70 X 0.05 = 
1 X 0.5 ) .  

If you now add 68.4 and 3.5, you have the sum 71.9. 

If you work out the correct answer to 1368 -+- 19 by long 

division you come out with 72. 

You can work up a variety of methods for handling 

difficult prime divisors, but you must be careful. It is 

all too easy to work out a fascinating method that in
cludes so many steps and corrections that it would be 

a relief to go back to long division. Remember that the 

prime aim of such methods is not to display how in

genious one is, but to save time and labor. 

7 

Fractions 

MANIPULATING FRACTIONS 

A fraction is an expression of the form alb, in which a, 

the number above the horizontal line, is the "numer

ator" and b, the number below the horizontal line, is 

the "denominator." Such a fraction actually represents 

a division, with a the dividend and b the divisor so that 

alb is equal to a -+- b. 

For this reason, the expression 1% is identical with 

16 -+- 4 and this is equal to 4. In the same way 3%5 = 

2, 1 % = 6, and so on. Such fractions, in which the 

numerator is larger than the denominator, are examples 

of "improper fractions." � Where the numerator is smaller than the denominator, 

as in ti, %, o/r, there is no whole number obtained by 

the division. Such fractions are examples of "proper 

fractions." �sometimes a fraction may have a numerator which, 

although larger than the denomin�tor, i� not divisible 

by the denominator. An example 15 the lIDproper frac

tion 3%. This represents 31 -+- 7, which, if one conducts 

division in the usual manner, gives the answer 4% . You 

might also tell yourself that 377 = 2% + %. Since 

2% = 4, S% = 4 + % . When a whole number and a 
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fraction are added it is customary simply to run them 
together thus : 4% . 

¥ expression such as 4%, containing both a whole 
number and a fraction, is called a "mixed number.;" · 

Earlier in the book, I pointed out that dlviding both 
dividend and divisor by the sameJ lIulllbeI does not . 
change the quotient. Suppose we have the improper 
fraction 4%4 .  Its value is 2. If we divide the numerator 
( dividend ) and denominator ( divisor ) of that haction, 
each by 2, we have 2%2, which also has the value 2. 

We can continue the process, dividing by 2 again, by 2 
still again, and finally by 3, and at ea.ch stage the value 
of the fraction we get, 1%,  o/a, and ,i, will be 2. All 
these fractions are equal. 

o Ice t at ;{ = 2. Any fraction which has a de
nominator of 1 has a value equal to its numerator, since 
division of a number by 1 gives that number itself as a 
quotient. Hence % = 3, 1}1 = 17, 561j:i = 561, and so 
on. Working the other way, any whole number can be 
made into a fraction by placing it over 1 as a denom
inator. You can put 75 into fractional form by writing )t.1%2�f so on. i.1: \. ( Proper ractions so \ retain their value if numerator 

i and denominator are both divided by the same number. 

( Thus, 1%4 can be divided, top and bottom, by 17 to 
i give the fraction %, which has the same value � 1%4.  ! Tile fraction %-;can15ttset equafto-% after di-,ision, �-

I top and bottom, by 2. The fraction %0 = %0, %! �',:- %,. \ ... 1�4 = %2, and � ___ ' 1  
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This process can be continued until there are no 
whole numbers left which will divide both numerator 
and denominator and yield whole number quotients. 
No whole number will divide both numerator and de
nominator to give whole-number quotients in the case 
of such fractions as liz, %, a %, 1 7h,  and so , . Such 
fractions are sai to be "reduced to lowest le�s." 

In working with fractions, it is common to use them 
after they have been reduced to lowest terms because , 
then we are working with the smallest numbers possible. 
Why try to deal with 2%0 when we can just as well 
deal with Ya? 

In adding and subtracting fractions, it  is  necessary 
to keep the denominators the same throughout. Thus 
( and I will use words to make the 'situation clearer) ,  
one fifth plus one fifth equals two fifths ( Ys  + Ys = % ) , 

just as one apple plus one apple equals two apples. 
Again, seven twenty-fifths minus three twenty-fifths 
equals four twenty-fifths ( %5 - %5 = �5 ) just as 
seven oranges minus three oranges equal four oranges. 

However, one fifth cannot be added to seven twenty
fifths directly, or subtracted from it directly, any more 
than you can add one apple to ( or subtract one apple 
from ) seven oranges. What would your answer be if 
you tried? 

Fortunately, although one cannot change apples into 
oranges or oranges into apples, numbers at least can be 
manipulated. Fifths can be changed into twenty-fifths 
and twenty-fifths can be changed into fifths. 
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Suppose we are indeed faced with the problem 1;5 + 

%:5.  We cannot work out the sum unless we make both 

denominators equal. To change %5 into fifths, we must 

divide the denominator by 5. In order to keep the value 

of the fraction unchanged we must also divide the 

numerator by 5, but 7 -;- 5 does not yield a whole num

ber as quotient, and this introduces complications. In 

fact division only rarely yields a whole number, so, on 

the whole, it is not wise to try to change a fraction by 

division without a close inspection of the fraction first. 

On the other hand, if we want to change 7t into 

twenty-fifths we have to multiply the denominator by 

5 and, of course, the numerator also, to keep the value 

of the fraction unchanged. Fortunately, the multipli

cation of any whole number by any whole number gives 

a whole-number product every time. There will there

fore never be complications in multiplying the numer

ator and denominator of a fraction by any number. 

The fraction 1;5, multiplied by 5 top and bottom, 

becomes l}·b .  Therefore, 1;5 + %5 can be written 

%:5 + %5 and, now that we have both fractions with 

the same denominator, the answer is 17b. In the same 

way, % - 112 = % - % = 74. 

This same system can be used for mixed numbers, 

too. If you must work out 374 + 4%, you might first 

change both numbers into improper fractions. The 

whole number 3 can be written as % and if both 

numerator and denominator are multiplied by 4, it be

comes 1% .  Since 374 is the same as 3 + 74,  that can 
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now be written as 1 %  + 74 = 1 % .  In the same way, 

4% becomes f1 + % = 2 %  + % = 2%.  
Now the problem 374 + 4 %  becomes 1% + 2 %  and 

we face the further task of adjusting the denominators. 

The 4 can't be changed into a 5 by multiplication, nor 

can the 5 be changed into 4. If you think a little, how

ever, you will see that the 5 can be changed into 20 by 

multiplication by 4, while the 4 can be changed into 

20 by multiplication by 5. Consequently we multiply 

both the numerator and denominator of 1%  by 5 to 

get 6%0. Then we multiply both the numerator and 

denominator of 2 %  by 4 to get 9%0.  Now we find we 

have 6%0 + 9%0 = 16%0, and that is the answer. If 

we would rather not leave it as an improper fraction, 

we can write it as 161 -;- 20 and find the answer to be 

8%0 . Sticking to mixed numbers throughout, we can 

say 374 + 4% = 8Y:w. 

FRACTIONS AND DECIMALS 

The addition and subtraction of fractions and of 

mixed numbers requires complicated manipulations, 

and it is no wonder that youngsters, first introduced to 

fractions, take a dislike to them. Is there any way of 

getting around them? 

In certain cases, yes. There are some fractions which 

can be converted into �.!mple de� and for deci

mals one need not worry about any of the contortions 

involved in the addition and subtraction of fractions. 

Whole-number devices are good enough. 
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Of course, we know that ¥to can be written as 0.1, 

%0, as 0.3, 'lloo as 0.01, and so on. However, decimals 

can be obtained even for fractions where the denomina

tor is not 10, 100, 1000 or any of this type of number. 

For instance, 1;2 can be written 1 ...;.- 2. Well, then, what 

if you write 1 as 1.0, as it is perfectly all right to do? In 

that case 1.0 ...;.- 2 = 0.5 and we can therefore say that 

1;2 = 0.5 
Since 1 % is actually 1 + %, we can write it as 1 + 

0.5 or as 1.5. In the same way, 71;2 = 7.5, 18% = 18.5, 
239% = 239.5, and so on. In the same way % is 1 ...;.- 5, 
which can be written as 1.0 ...;.- 5, which equals 0.2. 
Therefore, % = 0.2, 17% = 17.2, 87% = 87.2, and so 

on. 

What about %? You can work this out in either of 

two ways. First, % = 2.0 ...;.- 5 = 004. Second, % = 2 X 
Ya = 2 X 0.2 = 004. In either case, % = 0.4. You can 

also show very easily that % = 0.6 and % = 0.8. Fur

thermore, 24% = 24.6, 2% = 2.4, 10% = 10.8, and so 

on. 

You see, then, that one advantage of putting fractions 

into decimal form is that proper fractions, improper 

fractions, and mixed numbers all melt into ordinary 

numbers containing a decimal point. 

Halves and fifths come out as simple decimals be

cause our number system is based on 10 and 10 is divisi

ble by 2 and by 5. This means that any fraction with a 

denominator which can be expressed as a product of 

2' s and 5' s can be converted into a simple decimal. 
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Consider �, for instance, where the denominator 4 = 

2 X 2. The fraction 1,4 can be expressed as 1.00 ...;.- 4, or 

0.25. The fraction %, is 2.00 ...;.- 4 or 0.5. Here, then, we 

have another advantage of the decimal form : %, = 0.5 

and 1;2 = 0.5. For that matter, if you work out 1 %4 
( 17.00 ...;.- 34) or 2%8 ( 29.00 ...;.- 58 ) ,  you will find that 

their value is 0.5 also. And, of course, %0 = 0.5 also. 

Any fraction that reduces to % as its lowest terms equals 

0.5. The decimal 0.5 represents not only % but a whole 

family of fractions. In decimals it is not necessary ever 

to reduce to lowest terms, because all are adjusted to 

tenths, hundredths, thousandths, etc., to begin with. 

And %? That is equal to %, + 1,4,  which is to say, to 

0.5 + 0.25, or 0.75. So % = 0.75. 

Where the denominator of a fraction is 8 ( 2  X 2 X 2 ) ,  
1 0  ( 2  X 5 ) ,  16 ( 2  X 2 X 2 X 2 ) ,  20 ( 2  X 2 X 5 ) ,  25 
( 5  X 5 ) ,  and so on, simple decimals can be found. For 

instance, Ys = 0.125. Therefore, % = 0.375, % = 0.625, 

and % = 0.875. 

Then, too, 'llo = 0.1, ¥t6 = 0.0625, Y:w = 0.05, 1;25 = 

0.04, and so on. Based on this, %0 = 0.05 X 7 = 0.35, 

%5 = 9 X 0.04 = 0.36, 8%0 = 8.35, 11%5 = 11.36, and 

so on. 

lf you form the habit of converting such fractions 

into decimals whenever you use them, you will eventu

ally memorize the conversions and have no difficulty. 

When you see % ,  you will automatically think 0.625; % 
will be an instant 0.6; 19%0 an obvious 19.05, and so on. 

The gains to be derived are considerable. You can 
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add and subtract fractions in decimal form without 

worrying about converting mixed numbers into im

proper fractions and without worrying about adjusting 

denominators. Instead of going through a great deal of 

complication in deciding that 3:x, + 4% = 8%0, as we 

did in the previous section, we simply write 3:x, as 3.25 

and 4% as 4.8. Now, 3.25 + 4.8 ( remembering to keep 

the decimal point lined up ) is 8.05. You can write this 

as 8Y20 if you wish, but usually there is no reason why 

you should. The sum, which required great pains in 

mixed number form, becomes an easy mental addition 

in decimals. 

To give another example, consider 8%5 - 5% and, 

working with fractions strictly, see how long it takes 

you to come up with the answer ( which happens to be 
2 13Y200. )  Now, remember that %5 is 7 X %5,  or 7 X 
0.04 and therefore 0.28, while % is 0.625. Therefore, 

8%:; - 5% is equal to 8.28 - 5.625 and almost at once 

you get the answer 2.655, which, as you can easily check 

for yourself, is equal to 21 3%00 . 

There is no question that working in decimals 

wherever possible will greatly reduce the time required 

in adding and subtracting fractions. 

Why, then, do people insist on using fractions at all? 

Well, there are several reasons. In the first place, frac

tions were invented far back at the dawning of civiliza

tion and were used by the ancient Babylonians and 

Egyptians, who worked out complicated methods for 

handling them. The tradition of fractions is therefore a 
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very strong and ancient one, whereas the use of deci

mals is only about 500 years old. 

Secondly, fractions are sometimes mOre convenient 

than decimals - perhaps not in addition and subtrac

tion, but certainly, as we shall soon see, in multipli

cation and division. 

Thirdly, not all fractions can be placed into really 

simple decimal form. Only those with denominators 

that can be expressed as products of twos and fives can. 

Consider Ya,  for instance. This is 1.0 + 3, but if you 

try to carry through the division you will find that there 

is no end to the decimal you get. The fraction Ya is 

equal to 0.333333 . . . with the threes going on for

ever. Try 116 and you get 0. 166666666 . . . , while � is 

0.11111111111 . . .  

These are «repeating decimals," in which a figure 

or group of figures · repeats itself over and over. As 

an example, where the repeating group consists of 

more than one digit, 7{ 1 is 0.0909090909 . . . where 

the repeating group contains two digits. And � is 

0.142857142857142857142857 . . .  , where the repeating 

group contains six digits. 

Working with repeating decimals is by no means as 

neat as working with small definite fractions. For in
stance, � + 'li1 can be solved after the problem 

is written as 1�7  + �h, which gives the answer 1�h .  
It  may take you a few moments to see that � and 'li 1 
can both be put into fractions with the denominator 77, 
work out the proper numerators, then carry through the 
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addition. Still, that is surely better than to try to add 

0. 142857142857142857 . . . and 0.09090909090909 . . . 

The answer to such an addition of repeating decimals 

happens to be 0.233766233766233766 . . . another re

peating decimal in which the repeating group is made 

up of six digits. You might well prefer the answer 1/}'h 
to that repeating decimal. I would. 

MULTIPLICATION OF FRACTIONS 

Although multiplication and division are usually con

sidered more complicated procedures than addition and 

subtraction, the multiplication and division of fractions 

is actually easier than the addition and subtraction of 

fractions. In multiplying or dividing fractions, we don't 

have to worry about any differences in the denominator. 

We can take the fractions exactly as they are and mul

tiply ( or divide ) numerator by numerator and denomi

nator by denominator. It is better to have the fractions 

in their lowest terms while you are working, so that you 

are dealing with the smallest possible numbers, but that 

is only for convenience. 

In algebraic notation: alb X cld = aclbd and alb + 

alc 
c/d = bid ' Thus, % X * = %0, which you can 

quickly reduce to "Yto. Again, Ys + % = %,  which can 

also be expressed 1 *. In decimal form, these problems 

would be 0.4 X 0.25 = 0.1 and 0.875 + 0.5 = 1.75. In 

the first case, the decimal form of the problem is about 

as simple as the fractional form, but in the latter case 
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the fractional form is definitely the simpler; at least, in 
my opinion. 

Then, suppose you are considering 77 X %.  The an

swer, you can see at a glance, is made up of 2 X 5 = 10 

in the numerator and 7 X 6 = 42 in the denominator. 

The answer is therefore 1%2 or, reducing to lowest 

terms, %1. H you tried the same problem in deci

mal form: % = 0.285714285714285714 . . .  and % = 

0.8333333333333 . . . , and surely you wouldn't want to 

multiply these numbers. 

In the same way, 1%9 + % = %, a solution difficult 

to reach if you put 1%0 and 0/7 into decimal form. 

In multiplications and divisions involving fractions, 

then, we will usually want to stick to fractions and we 

may as well look closely at them in order to see how 

best to handle them. Let's consider the problem 8 X %. 

In order not to get confused by trying to deal with both 

whole numbers and fractions, let's write the whole num

ber in fra.ction form, too, so that we can express the 

problem as % X %. If we multiply these two fractions, 

numerator by numerator and denominator by denomi

nator, we get the answer %, which can also be written 

8+ 2, ar, in fractional form, % + %. 

We reach the conclusion, then, that % X 1f2 can also 

be written % + %. 

Suppose, next, we try the problem 8 + 1f2, or, in frac

tional form, % + 1f2. We know that the quotient won't 

be changed if we multiply both dividend and divisor 

by 2, so we can make the problem 1 % + %. In whole 
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numbers, 1% = 16 and % = 1, so that 8 + Y2 becomes 

16 + 1 and the answer to that is 16. We conclude then 

that o/t. + Y2 = 16. However, * X 7i = 1%,  Or 16. 

Therefore we end by saying that * + liz can also be 

written * X %. 
Now when a fraction is turned upside down so that 

the numerator becomes the denominator and the de

nominator becomes the numerator, the two fractions are 

said to be "reciprocals" of each other. Thus, % is the 

reciprocal of %, and vice versa; 1 %2 is the reciprocal of 

1% r, and vice versa. Again, % is the reciprocal of Yr;, 
and vice versa. Since fractions with a denominator of 

1 are almost always written as whole numbers, we can 

pedectly well say that 5 is the reCiprocal of ¥5, and 

vice versa; 2 is the reciprocal of Y2, and vice versa; Yt2 

is the reciprocal of 12, and vice versa, and so on. 

( The only exceptional case is 1, which is its own 

reciprocal, since Yt, turned upside down, is still Yt .  Of 

course, % is its own reciprocal and so are %, O/S,  34%43 ,  
and so on. All these fractions, however, are but differ

ent ways of writing 1. ) 

Well, suppose we say once again that % X liz = * + 

% ( and find similar situations in as many different cases 

as we care to test ) .  We can say that if two fractions are 

multiplied, one can get the same answer if one of the 

fractions is made into its reciprocal and the multiplica

tion is converted into a division. By the same token, if 

one fraction is divided by another and if the divisor is 

converted into its reCiprocal, then the division becomes 
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a multiplication and the same answer is obtained. 

Thus, if we are faced with 1 Yt 7 X %2, we can, if we 

choose, express it as 1Ytr + 1%.  Again, % + % can be 

written % X %. In algebraic symbolism we can say 

that a/b + c/d =-a/b X d/c. And alb X cld = alb + 

d/c. 

In general, multiplication is simpler than division; 

therefore every division involving fractions ought auto

matically be turned into a multiplication by converting 

the divisor into its reciprocal. We can consequently 

confine our attention to multiplication only. 

Suppose, for instance, we had the problem %6 + %.  
If we tried to divide directly, we would have to divide 

the numerator by the numerator and the denominator 

by the denominator. We cannot, however, always rely 

on division to give us whole numbers. To be sure, 5 + 
5 = 1, but 16 + 9 gives us 1 % and to write the answer 

1 
as 

1% 
would not be helpful. 

So we "invert." We convert % to its reciprocal %, 
and also convert the division to a multiplication, so that 

%6 + % becomes % 6  X % .  Multiplication of whole 

numbers will always yield a whole number, and the 

answer is 4%0.  To reduce it to lowest terms, we see 

that both 45 and 80 are divisible by 5. Dividing top 

and bottom of the fraction by 5, we find it can be 

expressed as %6 .  Since 9 and 16 have no factors in 
common, the fraction can be reduced no further. 
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It is possible to reduce fractional products to lowest 

terms before actually carrying through the multiplica

tion of fractions. By doing so you will save time. 

If you were multiplying 1%4 by 2%5,  the answer 

would be 3 1 l}ho. Both HK4  and 2Ys5 are in lowest 

terms, but 3 HY1ro is not. Since both 315 and 770 end in 

5 or 0, both are divisible by 5. Dividing numerator and 

denominator by 5, we can change 31f}-ho to 6%54 .  We 

might wonder quite a while whether 63 and 154 had 

any common factors and we might not even see that 

both were divisible by 7, and consider 6%54 to be in its 

lowest terms. 

However, if we go back to the problem 1%. X 2�5,  

it  doesn't matter whether, in multiplying the denomina

tors, we say 14 X 55 or 55 X 14 ( since ab = ba ) .  Con

sequently, we might just as well reverse the denomina

tors and write the problem 1%5 X 2%4, for we would 

get the same answer. 

But now the fractions we are working with are clearly 

not in lowest terms. There is the common factor 5 in 

15 and 55, so 1%5 becomes %1; and there is a common 

factor 7 which clearly makes 2%.  into %. So the prob

lem becomes %1 X % and the answer is %2 . We have 

no trouble in seeing that %2 is in its lowest terms. 

Why does it matter whether we reduce the fractions 

to lowest terms before multiplying or after? Simply 

that after multiplication both numerator and denomi

nator are larger numbers and the larger the numbers 

the harder it is to spot common factors quickly, espe-
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cially where the common factor is 7, 11, 13, Or some 

other number for which no simple rule for divisibility is 
established. 

In fact, there is no necessity for switching denomina

tors in such cases. You can just divide through by com

mon factors in any of the numerators and any of the 

denominators in fractions being multiplied. Thus, in % 6 X % you can divide the first numerator and the 

second denominator by 5, so that the problem becomes 

%6 X % and the answer is %6.  
This process of dividing the numerator and denomi

nator of fractions being multiplied by common factors 

contains a trap. It won't work for fractions being added 

or subtracted! It will work only in multiplication. ( It 

won't even work in just this way in the division of frac

tions, but a division of fractions can always be COll
verted into a multiplication and then it will work. ) 

Naturally, in the multiplication of fractions, all the 

shortcuts available for multiplication generally can be 

used. If you are trying to handle 7Ys X 1 Y;; ( without 

changing them into decimals ) you can see at a glance 

that there are no cancellations possible. You must mul

tiply numerator by numerator and denominator by de

nominator without the ability to simplify matters by 

redUCing the numbers. 

Well, then, 71 X 11 = 710 + 71 = 781, and the prod

uct is therefore 7 8 7'25 .  This is 781 -7- 25 or 7.81 X 4. 

Doubling 7.81 twice, we have 15.62; 31.24, and it is 

31.24 that is the answer. 
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If we want the answer as an improper fraction, we 

can regard it as 312o/too or 3Yt + 2 o/tO O  or 3 1 0
%00 + 

2 o/tOO or 3 12o/tOO'  Reduced to lowest terms, this be

comes ( after dividing both numerator and denominator 
by 4 ) 7 8 Y:!5, or, in mixed-number form, 781 -;- 25 = 

31%5. 

FRACTIONS AND PERCENTAGE 

Sometimes it is convenient to consider percentages as 

fractions rather than as decimals. Suppose you are in

terested in determining 2570 of 16. ( The word "of' in 

such a phrase is usually taken to mean multiplication, so 

that "half of three" means "Y:! X 3." ) In order to solve 

the problem 25% X 16, we might convert the percent

age to a decimal by moving the decimal point two 

places to the left and dropping the per cent sign. Thus, 

2570 would become 0.25 and the problem would be 

0.25 X 16. We can multiply 16 by 25 by first multiply

ing 16 by 100 ( to get 16(0 ) and then dividing by 4 to 

get 400. If we place the decimal point in the product 

as it is in the multiplicand ( two places from the right) ,  

we end with our answer, which is 4.00, or 4. 

However, we should know that 0.25 is, in fractional 

terms, 14 and that therefore 2570 = 14. Instead of 

25% X 16, we write Y-t X 16, and we see at once that 

the answer is 1 % or 4. 

In the same way, 50% = y:!, 10% = Yto, 75 % = %0, 
80% = %, and 12% = %5.  For that matter, 13% = 
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1%00  and 23% = 2%00 .  Any percentage can be con
verted into a fraction. 

You can't always be sure which is the easier tech

nique, to convert the percentage to a decimal or to a 

fraction. It depends on the problem. If you have both 

the decimal and fractional equivalent of a percentage at 

your fingertips, however, you are free to make your 

choice. 

Suppose you have a fractional percentage; let us say 

12Y:!% .  You can convert the Y:! to a decimal before 

doing anything else to the percentage. In other words 

12Y:! %  = 12.5% .  Now convert the whole expression to 

decimal form by moving the decimal point two places 

to the left, so that 12.5% = 0.125, which is, in turn, 

equal to Ys. Therefore 12% %  = Ys. If you are asked 

what 12% %  of 24 is, this is by no means as formidable 

as it sounds; you need only consider it as liB X 24, to 

which the answer is obviously 2%, or 3 .  In the same 

way, 37% %  = %, 62% %  = %,  and 87Y:! %  = %.  
Something which, on the face of it, may seem even 

more complicated is an expression such as 33 Ya % .  

Change the % to a decimal form first and it becomes 

0.333333333 . . . This means that 33Ys % is equal to 

33.333333333 . . .  % .  Move the decimal point two places 

leftward to remove the per cent sign and you have 

0.333333333 . . . But that is, after all, only Ys. Conse

quently, 33Ys % = Ya and 33Ys 70 of 15 is easily seen to 

be 5. In the same way 66% 70 = %, 16% % = Va, and 

83Ys 7o = %. 
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There is no particular problem with percentages over 

100% . For instance, 150% is 1.5 ( after the decimal 

point is moved two places to the left and the unneces

sary zero at the extreme right is dropped ) or 1 Y2 or %. 
Again, 233� % is equal to 2.333333 . . .  or to 2� or %;  

512Y2 ro is 5.125 or  5Ys or  4Ys,  and so on. 

Sometimes you may be given the value of a particular 

per cent of a particular number and wish to know the 

number itself. You may be told that 20% of a certain 

number is 16 and then asked for the number. 

If 20% of a number is 16, we must nevertheless real

ize that 100% of that same number is the number itself. 

Mter all, 100% = 1 and any number times 1 is that 

number itself. 

Since 100% is five times as great as 20%, the nmnber 

is five times as great as the percentage. Now, 5 X 16 = 

80 and that is the original number. 

If, however, you were told that 37Y2 %  of a certain 

number was 15 and were asked for the number, you 

might find it easier to work out the problem by way of 

fractions. Thus, 37%% = %,  so that the problem states 

that % of a certain number is $15. On the other hand, 

% of that number is the number itself. Since % -:- % = 

% X % = 1 X % = %, the number is % times the per

centage. It is easy to see that % X 15 = % X 5 = 40. 

That is the original quantity. Another and perhaps even 

easier route is to say that if 15 is % of a number then 

15 -:- 3 (or 5 )  is % -:- 3 or Ys of a number. If Ys of a 

number is 5, then % of a number is 5 X 8, or 40. 
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CHANGING FRACTIONS INTO WHOLE NUMBERS 

There is no question that whole numbers are easier 

to handle . than fractions. Whole numbers are even 

easier to handle than decimals, for with whole num

bers the position of the decimal point need not bother 

us. Therefore, if there is any chance of changing frac

tions, or mixed numbers, into whole numbers, we ought 

to jump at it. Suppose, for instance, you wanted to 

work out 244 X 2%. You could do this in several ways. 

If you consider 2 % to be 2 + % ( as you can) , then you 

can multiply 244 first by 2, then by %, and add the 

products. Sinc'e 244 X 2 = 488 and 244 X % = 122, 

the answer is 488 + 122, or 610. 

Again, you might switch to decimals. Since 2% can 

be written 2.5, the problem becomes 244 X 2.5. To 

multiply 244 by 25, you would multiply 244 by 100 

( 24,400 ) and divide by 4 to get 6100. Then, since you 

were multiplying by 2.5 rather than by 25, you would 

move the decimal point one place to the left and 6100 

would become 610, which is the answer. 

Or you might remember that if you multiply one 

number in a multiplication by a certain amount and 

divide the other number by the same amount you leave 

the product unchanged. Suppose you multiply 2% by 

2. The product is 5. If you also divide 244 by 2 you get 

122. In other words, 244 X 2% can be written without 

any trouble as 122 X 5 and suddenly the mixed number 

is gone and you are dealing only with whole numbers. 
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Of course, 122 X 5 = 122 X 10 + 2 = 1220 + 2 = 610. 

Better still, you can multiply 2Y2 by 4 to get 10, and 

divide 244 by 4 to get 61. In that case, 244 X 2Y2 be

comes 61 X 10, which is 610 at a glance. 

This system can work for a great many mixed num

bers. Thus, 3Y2 can be doubled to 7; 5Y:J can be doubled 

to 11; and 7Y2 can be doubled to 15. 

Instead of trying to work out 66 X 3Y2 directly, you 

can change it to 33 X 7, and the answer is 231. Again, 

306 X 5Y:J becomes 153 X 11, which is 1530 + 153 = 

1683. And 644 X 7Y2 can be written 322 X 15, which 

is 3220 + 1610, or 4830. 

The mixed number 12Y:J can be doubled to 25, or it 

can be multiplied by 8 to give 100. Thus, 288 X 12% 

can be written as 144 X 25 or, better yet, as 36 X 100, 

and there is the answer, 3600. If the number is 112Y2, 

then remember that 112Y2 X 8 = 900. That means that 

96 X 112% = 12 X 900 = 10,800. Or you might con

sider 112% as equal to 100 + 12%. Therefore, 96 X 
112Y:J = 96 X ( 100 + 12Y:J ) .  Since 96 X 100 = 9600 
and 96 X 12Y:J = 12 X 100 = 1200, the answer is 9600 + 
1200 = 10,800. 

All this works very much the same way in division. 

The big difference is that when two numbers are mul

tiplied, one must be enlarged and the other correspond

ingly made small if the product is to be left unchanged; 

whereas in division both dividend and divisor must be 

made larger, or both must be made smaller. In other 

words, if you multiply the divisor by 2 you must also 

multiply the dividend by 2. 
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Therefore, when faced with the problem 25 -7- 2Y2, a 

glance should suffice to show you that this can be writ

ten 50 + 5 and that the answer is therefore 10. Con

sider, too, that 3� X 3 = 10. Therefore, if you are con

sidering 31 + 3Ya, you need only multiply both divi

dend and divisor by 3 and the problem becomes 93 + 

10. The answer is, as you see at once, 9.3, or 9%0, 

whichever you prefer. 

You will have no trouble seeing that 21 + 3Y:J can be 

written 42 -7- 7 and that the answer is clearly 6. Again, 

42 + 12Y:J can be written 84 + 25 or, better still, 336 + 

100, so the answer is 3.36. 

In principle, this is a possible technique for handling 

any mixed number. If a fraction is multiplied by the 

value of its denominator, it becomes a whole number. 

( In algebraic symbols, we would say alb X b = a. ) If, 

then, you are faced with 31%3,  you can multiply it by 

13. You have the problem ( 3  + 1%3 ) X 13 = 39 + 
10 = 49. 

Now then, if it is a matter of a multiplication such as 

39 X 31%3,  you divide the multiplicand by 13 and mul

tiply the multiplier by 13 and get 3 X 49 = 3 X ( 50 -

1 )  = 150 - 3 = 147. If it were a division: 2 + 31%3, 

you multiply both dividend and divisor by 13, so that 

the problem becomes 26 + 49, or 2 %9 .  

Let me end, then, by considering the moral of the 

book once again. 

Watch what you are doing when you calculate, and 

try to see the sense in all the operations, whether the ' 
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slow-but-sure school rules or the quick shortcuts. If 

you do that you will be able to see for yourself what 

quick and easy methods you can adopt in particular 

cases. 

With practice you will then begin to take such short

cuts automatically. You will, without taking any special 

pains, begin to convert hard problems into easy ones 

and you will learn when and how to get approximate 

answers instead of exact ones. 

In the end you will not only save time and make 

fewer mistakes; you will find that there is actual enjoy

ment in manipulating figures. You will find that num

bers are old and faithful friends who are not there to 

trip you up but to help you. 

In short, arithmetic will become fun instead of work. 
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